New observations of NGC 1624-2 reveal a complex magnetospheric structure and underlying surface magnetic geometry*

A. David-Uraz,1,2,3 † V. Petit,1,4 M. E. Shultz,1 A. W. Fullerton,5 C. Erba,1
Z. Keszthelyi,6 S. Seadrow,1 and G. A. Wade7

1Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
2Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA
3Center for Research and Exploration in Space Science and Technology, and X-ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA
4Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
5Space Telescope Science Institute, Baltimore, MD 21218, USA
6Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
7Department of Physics and Space Science, Royal Military College of Canada, PO Box 17000, Stn Forces, Kingston, Ontario K7K 7B4, Canada

Accepted XXX. Received YYY; in original form 14 October 2020

ABSTRACT
NGC 1624-2 is the most strongly magnetized O-type star known. Previous spectroscopic observations of this object in the ultraviolet provided evidence that it hosts a large and dense circumstellar magnetosphere. Follow-up observations obtained with the Hubble Space Telescope not only confirm that previous inference, but also suggest that NGC 1624-2’s magnetosphere has a complex structure. Furthermore, an expanded spectropolarimetric time series shows a potential departure from a dipolar magnetic field geometry, which could mean that the strongest field detected at the surface of an O-type star is also topologically complex. This result raises important questions regarding the origin and evolution of magnetic fields in massive stars.

Key words: stars: magnetic fields – stars: early-type – stars: winds, outflows – stars: individual: NGC 1624-2 – ultraviolet: stars – techniques: polarimetric

1 INTRODUCTION
As sources of ionizing flux, momentum and chemical enrichment, O stars represent formidable galactic engines, sculpting their immediate environment and participating in the overall evolution of their galactic hosts (e.g. Chu 2003). Of particular interest is the subset (≈7 per cent; Grunhut et al. 2017) of O stars that exhibit a detectable surface magnetic field, thought to potentially be the progenitors of exotic objects and transients such as heavy stellar-mass black holes (Petit et al. 2017; Groh et al. 2020) and pair instability supernovae (Georgy et al. 2017) even at solar metallicity, as well as magnetars (Ferrario & Wickramasinghe 2008).

There are many limitations to our understanding of these stars and of the role that they play in galactic ecology. The most obvious one concerns their rarity: only 11 such objects are known to exist so far (Petit et al. 2013; Fossati et al. 2016), making an in-depth characterization of their magnetic properties as a population difficult due to small number statistics. Furthermore, these stars have undergone “magnetic braking” (Weber & Davis 1967; ud-Doula et al. 2009) and hence are typically slow rotators, which means their detailed study requires long monitoring programs in some cases. Indeed, the O-type star with the longest known rotation period is the magnetic O4-8f?p star HD 108, with a period of ≈55 yr (Nazé et al. 2010; Shultz & Wade 2017). Even for those few stars which do have shorter rotation periods, other complications (such as binarity) muddle the interpretation of their observations and properties (e.g. HD 47129, also called “Plaskett’s star”; Grunhut et al. 2013).

That said, as far as we know from the results of large-scale spectropolarimetric surveys (e.g. Morel et al. 2015; Wade et al. 2016), magnetic O stars harbour essentially dipolar, globally-organized fields on their surfaces, with strengths on the order of a few kG – with the notable exceptions of ζ Ori A and NGC 1624-2 on the lower (≈140 G; Blazè et al. 2015) and higher (≈20 kG; Wade et al. 2012) end of this range, respectively. Recent studies suggest that O stars might not follow the long-held assumption of magnetic flux conservation as they evolve (Landstreet et al. 2007, 2008; Fossati et al. 2016; Shultz et al. 2019; though large surveys may not as yet conclusively address this issue; Petit et al. 2019), although the details of the dissipation mechanism and rate remain unknown.

One key characteristic of magnetic O stars is the interplay between their dense, radiatively-driven winds (e.g. Castor et al. 1975) and their magnetic fields, which channel and confine their outflows to form circumstellar magnetospheres (Landstreet & Borra 1978; Shore & Brown 1990; Babel & Montmerle 1997). Early magnetohydrodynamic (MHD) simulations provided valuable insights into the structure of magnetospheres, as well as their role in spinning down...
their host stars and inhibiting their gradual loss of mass throughout their main-sequence lifetimes (ud-Doula & Owocki 2002; ud-Doula et al. 2008, 2009). Incorporation of these effects into dedicated evolutionary models has profound consequences on the end points of the evolution of magnetic massive stars (e.g. Meynet et al. 2011; Keszthelyi et al. 2019, 2020).

Given that most magnetic O stars have very slow rotation (as a consequence of the braking mentioned above; Petit et al. 2013), the confined wind material within their magnetospheres is not centrifugally supported and therefore the analytic prescription of Owocki et al. (2016) – or Analytic Dynamical Magnetosphere model – presents a practical time-averaged view of the structure of the magnetosphere that agrees well with earlier MHD investigations. Such a prescription is ideally suited to the interpretation of various multi-wavelength magnetospheric diagnostics (such as Hα; Owocki et al. 2016; X-ray emission; Nazé et al. 2014; optical broadband photometry; Munoz et al. 2020; as well as ultraviolet resonant line profiles; Erba et al. 2019), without the computational cost associated with full-scale MHD simulations. Indeed, while none of these diagnostics individually contains sufficient information to construct a fully model-independent view of the magnetosphere (such as e.g. a 3-dimensional tomographic Doppler reconstruction of the magnetospheric structure), qualitative inferences can be made in light of simple analytic tools such as the ADM model.

In particular, wind-sensitive ultraviolet (UV) resonance lines have historically been coupled very successfully with spherically symmetric models to provide important insights into the mass-loss properties of the general population of O stars (e.g. Bouret et al. 2003). Their ability to probe the density and velocity structure of the extended atmospheres of these stars make them particularly useful in that regard, and that usefulness carries over to magnetic stars as well, although the assumption of spherical symmetry breaks down and dedicated models must be used to interpret their variations. For instance, assuming a globally-organized dipolar field, it is fairly simple to distinguish between different viewing angles. The general phenomenology of the UV line profile variations (e.g. Marcolino et al. 2013) can be framed in terms of the rotational phases associated with the “high” (\(\phi \approx 0.0\)) and “low” (\(\phi \approx 0.5\)) states, which are defined respectively by the maximum and minimum of the variation exhibited by the equivalent width of Hα. In the context of the oblique rotator model (Stibbs 1950), variations in the equivalent width of Hα are attributed to changes in the projected surface area of the region of enhanced magnetospheric emission that forms in the magnetic equatorial plane. Consequently, the “high” state corresponds to times when the magnetic pole is most closely aligned to the observer’s line of sight, while the “low” state occurs when the magnetic equator is closest to being viewed edge on. Within that framework, “strong” UV resonance lines (i.e. with large oscillator strengths, and thus nearly optically thick when formed in dense O-star winds) show enhanced high-velocity absorption at high state, since we are looking through wind material flowing nearly radially along open magnetic field lines, while enhanced absorption can be observed near line center in both strong and weaker lines at low state (e.g., Nazé et al. 2015).

The archetype of an O star magnetosphere can be found around the Of?p 1 star NGC 1624–2 (Of?p, Walborn et al. 2010). Discovered to host the strongest known magnetic field at the surface of an O-type star by almost an order of magnitude (\(\sim 20\) kG, assuming a dipolar geometry; Wade et al. 2012), it is also the only star of that peculiar spectral type to exhibit clearly separated Zeeman components in its integrated Stokes / line profiles. This allows for a complementary measure of the disc-integrated field modulus (in addition to the usual disc-integrated longitudinal field measurements enabled by circular polarization and typically used to diagnose magnetic fields in massive stars). Preliminary attempts (which we revisit in this paper with additional monitoring) to reconcile both field modulus and longitudinal field measurements have so far failed to do so using a solely dipolar field, hinting at a more complex magnetic geometry (Wade et al. 2012; Macf insisted 2016; David-Uraz et al. 2017).

Previous X-ray and UV investigations have found NGC 1624–2 to be surrounded by a giant magnetosphere, as expected from its large Alfvén radius (\(R_A/R_* \sim 11.4\), Wade et al. 2012), the largest of any O-type star. Petit et al. (2015) showed that it must be large and dense, as it absorbs up to 95 per cent of the intrinsic circumstellar X-ray emission, a result further supported by David-Uraz et al. (2019), who found it to cause very large line profile variations in the UV.

In this paper, we present new UV spectra taken with the Hubble Space Telescope (HST) as well as spectropolarimetric observations taken at the Canada-France-Hawaii Telescope (CFHT). In Section 2, we provide more details about the observations, while the UV and magnetic results are presented in Section 3. Finally, we interpret these results and offer our conclusions in Section 4.

2 OBSERVATIONS

2.1 HST

Previous observations of NGC 1624–2 were obtained by GO Program 13734 (PI: Petit; David-Uraz et al. 2019) with the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST), and sampled the morphology of the key UV resonance lines at the phases of the 157.99 day period associated with the “high” (\(\phi \approx 0.0\)) and “low” (\(\phi \approx 0.5\)) states. General Observer Program 15066 (PI: David-Uraz) also used COS to obtain 4 additional ultraviolet spectra of NGC 1624–2 near the two quadrature phases, in order to assess asymmetries in the structure of the magnetosphere. Table A1 summarizes the available UV spectroscopy of NGC 1624–2.

Each COS observation obtained by GO Program 15066 consisted of a two-orbit visit. For each visit, the first orbit began with guide-star acquisition by the Fine Guidance Sensor (FGS), which was followed by target acquisition using the imaging mode of COS with the near-UV channel. Mirror A, and the bright-object aperture (BOA). After execution of a small-angle maneuver to center NGC 1624–2 accurately in the primary science aperture (PSA; 2.5” diameter), spectra with the GI30M grating centered on 1222 Å and 1291 Å were obtained. During the second orbit, exposures with the GI60M grating centered on wavelengths of 1577 Å and 1623 Å were acquired. Both channels of the far-ultraviolet cross-delay (XDL) line detector were used to make the observations in time-tag mode.

These four instrumental configurations provided useful wavelength coverage from about 1150 to 1800 Å with a resolving power that increases linearly with wavelength from \(\sim 16,000\) to \(\sim 21,000\) over the respective ranges of both gratings. For each grating setting, the total exposure time indicated in Table A1 was divided into sub-exposures of equal duration but slightly different positions (FP-POS) on the detector to mitigate the effects of fixed-pattern noise in the combined “x1dsun” spectrum. Since the observations were made at COS lifetime position 4, only 2 FP-POS positions were available.

1 This spectral class was defined by Walborn (1972) and found to be related to magnetism by Gruhut et al. (2017).
for the G130M/1291 configuration. For all other configurations, 4 FP-POS positions were used.

The spectra were uniformly processed with version 3.3.4 (2018-01-08) of the CALCOS calibration pipeline. Calibration steps included: correcting the photon-event table for dead-time and positional effects such as drifts in the detector electronics, geometric distortion, and the Doppler shift of the observatory; binning the time-tag data and assigning wavelengths to the bins on the basis of Pt-Ne spectra acquired simultaneously with spectra of NGC 1624–2; extraction and photometric calibration of 1-D spectra; and the “shift and add” combination of spectra taken at different FP-POS positions for each grating setting.

2.2 CFHT

NGC 1624-2 was observed with ESPaDOnS (an Echelle SpectroPolarimetric Device for the Observation of Stars; Donati et al. 2006) at the CFHT, as part of observing programs 12AP14, 12BP13 and 13BC05 (PI: Wade), as well as program 15BC13 (PI: Petit). This instrument has a high resolving power ($R \sim 65000$) and covers a wavelength range of about 3600-10000 Å. In total, 22 observations, each consisting of four subexposures, were obtained between 2012 and 2015. Data reduction was performed using the UPENA pipeline (Martioi et al. 2011), which is based on the LINE-K-ESRRT reduction package (Donati et al. 1997). It combines the aforementioned subexposures (each corresponding to a different angle of the Fresnel rhombs) to yield integrated spectra (Stokes I parameter), as well as circularly polarized spectra (Stokes V parameter), which are sensitive to the Zeeman effect (e.g. Landi degl’Innocenti & Landolfi 2004), thus allowing us to detect and measure astrophysical magnetic fields. It also produces two diagnostic nulls (N_i), which characterize the level of noise and allow us to identify potential spurious signals in the Stokes V spectra.

These observations are detailed in Table A2, together with mean longitudinal field measurements, while separate longitudinal field measurements obtained from single lines (see Section 3.2) appear in Table A3.

3 RESULTS

3.1 UV analysis

The new spectra were continuum normalized, and in particular, we focused on the profiles of the same wind-sensitive lines which were studied by David-Uraz et al. (2019), namely the Si iv L11393/1402 and C iv L11548/50 doublets. A comparison of the newly-obtained profiles with those obtained previously by David-Uraz et al. (2019) is presented in Fig. 1. While one would normally expect to see – assuming that the magnetosphere is formed by a global dipolar field – a gradual transition (e.g. Erba et al. 2019) between the high state and the low state profiles, and vice-versa, that is not what is observed.

Instead, every newly-observed line profile closely resembles one of the previous two observations. In particular, observations obtained at rotational phases ~ 0.36 and ~ 0.62 are very similar to the previous high-state observation obtained at phase ~ 0.99, in that they present enhanced emission in the Si iv doublet as well as enhanced absorption at high velocities (i.e. in the blue vertical band in Fig. 1) on the blue side of the C iv doublet. Similarly, observations obtained at phases ~ 0.27 and ~ 0.87 are very similar to the previous low-state observation obtained at phase ~ 0.45, with stronger absorption close to line center in both doublets. In fact, the observation at phase 0.62 appears to exhibit even more extreme high-state line profile features than that at phase 0.99, with even stronger emission at low velocities in the Si iv doublet and deeper absorption at high velocities on the blue side of the C iv doublet.

In principle, one might have expected that either the high-state and low-state do not quite correspond to magnetic pole-on and equator-on views, respectively, or that the viewing angle crosses the magnetic equator more than once over the course of a rotational cycle, leading to double-wave variations of the line profile variability described above. That said, neither one of these scenarios can explain: (i) the fact that observations taken at three separate rotational phases show similar line morphologies, and (ii) that the “high-state-like” and “low-state-like” morphologies alternate throughout a rotational cycle. This is also at odds with the behaviour of other magnetoospheric diagnostics, such as Hz emission (Wade et al. 2012).

To further illustrate this point, we compute equivalent widths using the wavelength ranges shown in Fig. 1: the full range of the Si iv doublet, as well as two separate ranges within the blue side of the C iv doublet corresponding to high/low velocities. The results of our measurements are shown in the top three panels of Fig. 2. We can see that for a given integration range, all three equivalent width measurements taken at low-state-like phases (represented by downward-pointing red triangles) are consistent with each other within the error bars. Similarly, the high-state-like measurements (represented by upward-pointing blue triangles) are also relatively consistent with each other, with the exception of the point at phase 0.621, especially for the high-velocity absorption on the blue side of the C iv doublet. They are also clearly distinct from the low-state-like measurements, except once again in the case of the high-velocity absorption in the C iv doublet, for which the difference between both sets of measurements is less significant, though systematic. Furthermore, the overall behaviour corresponds to what can be seen from the line profiles themselves. The Si iv doublet shows greatly enhanced emission at high-state-like phases, presumably due to dense confined material seen off the limb of the star. Meanwhile, the high-velocity absorption trough of the C iv doublet shows deeper absorption when the star is viewed in such a way that fast-flowing wind material along open field lines intersects the line of sight (high-state-like phases), and conversely the low-velocity absorption near line center is enhanced when an accumulation of wind material confined near the surface occults the stellar disc (low-state-like phases).

In principle, it appears as though these observations might provide some support for the hypothesis of a complex field (i.e. departing from a simple dipole), as investigated in greater detail below. We also attempt to develop further inferences on the global structure of the magnetosphere in Section 4.2.

3.2 Magnetic analysis

The optical spectra were continuum normalized and co-added (for spectra taken within a few days of each other, hence similar rotational phase), and then used to measure the disk-averaged line-of-sight magnetic field (B_{\odot}) (as defined by Mathys 1989) from a selection of spectral lines chosen to be strong, isolated, and relatively uncontaminated by wind emission. The laboratory wavelengths and Landé factors (given in Table A3, along with the measurements from each line) were obtained from a line list downloaded from the Vienna Atomic Line Database (VALD3; Piskunov et al. 1995; Ryabchikova et al. 1997; Kupka et al. 1999, 2000; Ryabchikova et al. 2015) with an ‘extract stellar’ request formulated with NGC 1624-
Figure 1. *HST/COS* spectra of NGC 1624-2 obtained at 6 different rotational phases, as computed using the ephemerides published by Wade et al. (2012). Each spectrum is vertically offset proportionally to its phase, which is included as a label. Magenta lines represent spectra that have “low-state-like” behaviour, while blue lines represent “high-state-like” spectra. The thicker lines correspond to spectra that were already presented by David-Uraz et al. (2019). These spectra were smoothed with a 21-pixel wide boxcar filter for display purposes. Vertical background bands correspond to ranges of integration for our equivalent width calculations, with the grey band corresponding to the whole range of the Si iv doublet, and the magenta and blue bands corresponding to the low- and high-velocity absorption troughs of the C iv doublet, which respectively characterise low-state-like and high-state-like morphological features.
strong winds of O-type stars are expected to inhibit the formation (et al. 2015; Shultz et al. 2015, 2018). This is not surprising, as the
level). It furthermore confirms that Stokes in these lines is indeed minimal (or at least, at a similarly low
in the same fashion; Thenullfield
ranges, while the high-state-like measurementshavedifferentvaluesandare
high- and low-state-like phases are indicated by upward-pointing blue and
profile
measurements
harmonics (Fig. 2, bottom).

The bottom panel of Fig. 2 shows the Full-Width at Half-Maximum (FWHM) of C iv λ5801 and λ5812 folded with with the same rotational period (157.99 d) used for the bottom panel, as a proxy of the magnetic modulus. A direct measurement of the modulus, by fitting synthetic profiles to the observed lines, is made challenging by the large degeneracies between the magnetic, thermal and turbulent broadening mechanisms, since only a few km s\(^{-1}\) of extra turbulent broadening, for instance, leads to large differences in the inferred modulus. Nevertheless, the FWHM of C iv appears to exhibit rotational modulation: the reduced \(\chi^2\) of a harmonic fit is 1.2, as compared to 2.7 for the null hypothesis of no variation about the mean value. While the null hypothesis cannot quite be formally ruled out (at a 99 per cent confidence threshold), this result still strongly suggests that rotational modulation is present, a result which could be better confirmed with higher S/N observations. By contrast, the less magnetically sensitive C iv λ5801 line shows no coherent variation. Since there is no reason to expect that turbulent or thermal broadening varies horizontally across the stellar surface, the variation in the FWHM is most likely due to variation in the magnetic modulus.

Curiously, the FWHM of the C iv λ5812 line – and therefore also the magnetic modulus, assuming that all variations in the FWHM result from variations in the modulus – is at a maximum near phase 0.5, at which phase \(\langle B_z \rangle \) is consistent with 0. This behaviour is not expected for a dipolar magnetic field, as the magnetic modulus at the equator of a dipole should instead be at its minimum, but is commonly seen in Ap stars, for which the measured field modulus variations can be reproduced by adding a quadrupolar component to the global field topology (e.g., Landstreet & Mathys 2000). Further indication that the field is probably not purely dipolar is given by the harmonic fit to the mean \(\langle B_z \rangle \) measurements (calculated from all lines except the discrepant C iv λ5812 line). A first-order fit, as would be appropriate to a dipolar field, yields a reduced \(\chi^2\) of 16.6, as compared to 6.6 when \(\langle B_z \rangle \) is fit with two harmonics (Fig. 2, bottom).

2’s stellar parameters \(T_{\text{eff}} = 35\) kK, \(\log g = 4.0\); Wade et al. 2012). The null field \(\langle N_z \rangle\) was also obtained from the diagnostic N profile in the same fashion; \(\langle N_z \rangle\) is consistent with 0 in all measurements.

The bottom panel of Fig. 2 shows \(\langle B_z \rangle \) folded with the 157.99 d rotation period (Wade et al. 2012). Notably, there is no statistically significant difference in results from He lines, the C iv λ5801 line, or the O iv λ5592 line. This suggests that wind contamination in these lines is indeed minimal (or at least, at a similarly low level). It furthermore confirms that Stokes V is not affected by the presence of chemical spots, which can lead to large discrepancies in \(\langle B_z \rangle \) measurements obtained from different chemical species in cooler stars with Bp type chemical peculiarities (e.g. Yakunin et al. 2015; Shultz et al. 2015, 2018). This is not surprising, as the strong winds of O-type stars are expected to inhibit the formation of chemical spots.

On the other hand, \(\langle B_z \rangle \) measurements made using the C iv λ5812 line exhibit clear departures from the other lines. This is almost certainly a result of the high magnetic sensitivity of this line. Indeed, as pointed out by Wade et al. (2012), Zeeman splitting is visible in the C iv λ5801 and λ5812 lines. Fig. 3 shows the profile variations over phase for both lines. The spectrum nearest to high-state (phase 0.97) is overlaid with each spectrum to highlight the phase variation. We notice that magnetic splitting is seen at all phases in the C iv λ5812 line.

The fourth panel of Fig. 2 shows the Full-Width at Half-Maximum (FWHM) of C iv λ5801 and λ5812 folded with with the same rotational period (157.99 d) used for the bottom panel, as a proxy of the magnetic modulus. A direct measurement of the modulus, by fitting synthetic profiles to the observed lines, is made challenging by the large degeneracies between the magnetic, thermal and turbulent broadening mechanisms, since only a few km s\(^{-1}\) of extra turbulent broadening, for instance, leads to large differences in the inferred modulus. Nevertheless, the FWHM of C iv appears to exhibit rotational modulation: the reduced \(\chi^2\) of a harmonic fit is 1.2, as compared to 2.7 for the null hypothesis of no variation about the mean value. While the null hypothesis cannot quite be formally ruled out (at a 99 per cent confidence threshold), this result still strongly suggests that rotational modulation is present, a result which could be better confirmed with higher S/N observations. By contrast, the less magnetically sensitive C iv λ5801 line shows no coherent variation. Since there is no reason to expect that turbulent or thermal broadening varies horizontally across the stellar surface, the variation in the FWHM is most likely due to variation in the magnetic modulus.

Curiously, the FWHM of the C iv λ5812 line – and therefore also the magnetic modulus, assuming that all variations in the FWHM result from variations in the modulus – is at a maximum near phase 0.5, at which phase \(\langle B_z \rangle \) is consistent with 0. This behaviour is not expected for a dipolar magnetic field, as the magnetic modulus at the equator of a dipole should instead be at its minimum, but is commonly seen in Ap stars, for which the measured field modulus variations can be reproduced by adding a quadrupolar component to the global field topology (e.g., Landstreet & Mathys 2000). Further indication that the field is probably not purely dipolar is given by the harmonic fit to the mean \(\langle B_z \rangle \) measurements (calculated from all lines except the discrepant C iv λ5812 line). A first-order fit, as would be appropriate to a dipolar field, yields a reduced \(\chi^2\) of 16.6, as compared to 6.6 when \(\langle B_z \rangle \) is fit with two harmonics (Fig. 2, bottom).

4 DISCUSSION AND CONCLUSIONS

4.1 Rotational period

The first thing to rule out as a means of interpreting the variation of the UV spectrum is the possibility that the rotational period, calculated using equivalent width measurements of a few lines and line ratios by Wade et al. (2012), is wrong. While they already provide compelling arguments as to why other periods are not suitable to reproduce the variations of these lines, we further investigate whether a different rotational period would help make sense of the UV observations presented above.

If the current rotational period is wrong, while spectra with similar line morphologies might not have been obtained at exactly the same rotational phase, within a dipolar field framework, one would imagine that they were obtained at relatively close phases (within a difference of up to ~0.2 cycles). In particular, the spectra obtained at phases 0.27 and 0.87 (with respect to the published
First, assuming for instance that the equivalent widths of the aforementioned lines undergo a double-wave variation over a single rotational cycle, one might surmise that the “real” period is in fact 315.98 d, or twice the previously inferred value. Such a period would encompass all of our new UV observations, and while the UV line profiles phased with this longer period appear to vary in a more coherent manner, they do so in a single-wave pattern, which is inconsistent with the global picture derived from other observational diagnostics, which would show a double-wave variation as assumed in this scenario.

On the other hand, if we consider the possibility of the period being shorter (perhaps by a factor of 2 or 3, given the UV observations), we encounter further complications. Not only are significantly shorter periods ruled out by the equivalent width analysis performed by Wade et al. (2012), down to 60 d, but they are also difficult to reconcile with the profiles of photospheric lines in the optical spectra of NGC 1624-2. Wade et al. (2012) place an upper limit on $v \sin i$ of 15 km s$^{-1}$, based on the modelling of the C iv λ5801 line, assuming macroturbulent broadening, but without magnetic broadening. Conversely, when they model this line (which is quite magnetically sensitive due to its high Landé factor) using Zeeman broadening, they find their best fit to be consistent with all of the broadening being accounted for by the Zeeman effect (as discussed above), or essentially no rotational broadening. Based on their estimated values for the stellar radius ($R_\star = 10R_\odot$) and their measured rotation period, they find an upper limit on the equatorial rotational velocity of ~ 3.2 km s$^{-1}$. Increasing that value by a factor of 2 or more requires us to adopt a fairly low value of the inclination angle i, which does not appear to be consistent with the large variations seen in the UV. The magnetic measurements presented in Figs. 2 and 3 also phase well with the published period, and rule out a period that is significantly different from that value, or possibly its double (in the case of a double-wave variation of the longitudinal field).

While we cannot, within the scope of this article, constrain a firm lower limit on the inclination based on UV variations alone, further modelling of the surface magnetic field, including modelling of the photospheric line profiles, is in progress and should conclusively resolve this issue. In the meantime, however, we infer that the previously derived rotational period is probably correct, or sufficiently close to the real value that it does not affect the interpretation that similar line morphologies are observed at three separate rotational phases.

4.2 Magnetospheric structure and surface magnetic geometry

The most obvious hypothesis to attempt to explain the puzzling behaviour of the UV resonance lines of NGC 1624-2 involves a complex magnetospheric structure, with significant departures from what would be expected in the case of a purely dipolar surface magnetic field interacting with the stellar wind. Our preliminary magnetic analysis shows that the surface magnetic field of NGC 1624-2 is likely better modelled using a more complex geometry, though determination of the detailed magnetic geometry is outside...
UV variability and magnetic analysis of NGC 1624-2

the scope of this paper. While this explanation appears satisfying from the point of view of these observations, it also appears at odds with the behaviour of optical lines (Wade et al. 2012), in particular He II λ4686 (their Fig. 5), which despite certain gaps in phase coverage, seems to behave in a fairly monotonic way between high state (phase 0.0) and low state (phase 0.5), and vice versa.

One possibility is that the explanation could reside not necessarily in the complexity of the field responsible for the formation of the magnetosphere, but instead arise as a consequence of dynamic flows within the magnetosphere, predicted in MHD simulations to occur (e.g. ud-Doula & Owocki 2002). It could be that some observational diagnostics – especially those formed further away from the stellar surface, such as the UV resonance lines – are more sensitive to these flows than others, which are dominated by averaging effects. However, while this could explain some discrepancies at low velocities, it is difficult to produce high-velocity blueshifted absorption (as observed in the C iv λ1548/50 doublet) using these dynamic flows. In fact, investigations of different implementations of the ADM model using material either flowing up or down closed field loops (mimicking in a way the aforementioned flows) do not lead to any variations in the line profile past a velocity of about 70 per cent of the inferred terminal velocity (Henninger et al. 2018).

The increased depth of the C iv doublet at high velocity at rotational phases 0.274, 0.621 and 0.986 suggest that we are looking down open field lines, something that can only occur, as far as we can tell, if the field is topologically complex (given that this line is understood to form throughout most of the wind, therefore probing its full structure).

While the detailed geometry of the surface magnetic field cannot be inferred from the effect that it has on the magnetospheric structure and hence on the variation of UV resonance line profiles, better spectropolarimetric phase coverage and surface mapping techniques such as Zeeman Doppler Imaging (ZDI; Semel 1989; Piskunov & Kochukhov 2002) have the potential of shedding light on NGC 1624-2’s potentially complex magnetic field. This topic will be addressed in more detail in a forthcoming publication.

4.3 Magnetic field origin and evolution

A photometric study of the NGC 1624 cluster has yielded an upper limit on the main-sequence turnoff age of 4 Myr (Lim et al. 2015). A better characterization of this cluster (and in particular of its massive star population by means of quantitative spectroscopy) would prove useful to get a more precise age and better constrain the evolutionary status of NGC 1624-2.

This question is of particular relevance in the context of the origin of magnetic fields in massive stars and their evolution. It has been suggested that their fields might decay over time (e.g. Landstreet et al. 2007, 2008; Fossati et al. 2016), and that the decay rate increases with higher mass, from near-flux conservation in A stars (Sikora et al. 2019) to stronger flux decay in OB stars (Shultz et al. 2019). Assuming Ohmic dissipation to be the mechanism by which these fields decay, higher order multipolar components are expected to decay fastest (e.g. Charbonneau 2013, and references therein; there is also tentative evidence that complex fields decay faster in OB stars, Shultz et al. 2019). Therefore, a strong, complex field might be consistent with the Ohmic dissipation scenario (and indicative of a young magnetic star, if its field is fossil in origin), and a more detailed characterization of the field topology of magnetic high-mass stars might prove crucial to reveal the phenomena influencing the evolution of magnetism in these stars.

Alternatively, stellar mergers have been proposed as a viable channel for the formation of magnetic fields in massive stars (Ferrario et al. 2009; Schneider et al. 2016, 2019, 2020). While merger products are expected to potentially exhibit large surface enhancements of hydrogen-burning products such as helium and nitrogen (Glebbeek et al. 2013), NGC 1624-2 is believed to show at most only a moderate nitrogen surface enrichment (Wade et al. 2012), though the precise abundance is difficult to determine due partly to the uncertainties on the strength of the magnetic field and the effective temperature. A more thorough evaluation of the merger hypothesis in the specific case of NGC 1624-2 can only be conducted once its environment is better characterised, including especially abundance analyses of other massive stars in the cluster.

4.4 Conclusions

The line profile variations observed in HST/COS spectra of NGC 1624-2 over six separate rotational phases do not correspond to the expected phenomenology – as established by observations of other magnetic O-type stars, or modelled using MHD simulations or the ADM prescription – which accounts for a magnetosphere formed by the interaction of a strong stellar wind and a global dipolar field. Instead, the observed line profiles appear to exhibit one of two morphologies, previously understood – within the aforementioned scenario – to correspond to either a magnetic pole-on or magnetic equator-on view of the magnetosphere. Furthermore, a magnetic analysis using spectropolarimetric observations shows that the diagnostics of NGC 1624-2’s surface magnetic field cannot be well reproduced using a purely dipolar geometry, assuming that the FWHM of the C iv λ5812 line acts as an appropriate proxy for the field modulus. Having exhausted more mundane explanations such as an error in the determination of the rotation period (such that our rotational phase determinations are sufficiently wrong to change the overall phenomenological picture) and short-term stochastic variations, we conclude that the magnetosphere of NGC 1624-2 is likely more structured than previously assumed, and that its surface magnetic field might depart from a dipolar geometry. The perspective of the strongest known magnetic field on an O-star also being topologically complex provides us with crucial information regarding the formation and evolution of such fields on massive stars and further emphasizes the singular importance of this archetypal object.

ACKNOWLEDGEMENTS

Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). This work has made use of the VALD database, operated at Uppsala University, the Institute of Astronomy RAS in Moscow, and the University of Vienna. Support for this work was provided by program HST-GO-15066.001-A that was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

ADU and GAW gratefully acknowledge the support of the Natural Science and Engineering Research Council of Canada (NSERC). VP acknowledges support from the University of Delaware Research Foundation. This material is based upon work supported by the National Science Foundation under Grant No. 1747658. MES acknowledges support from the Annie Jump Cannon Fellowship, supported by the University of Delaware and endowed by the Mount Cuba Astronomical Observatory. CE acknowledges graduate assistant salary support from the Bartol Research Institute.
in the Department of Physics, University of Delaware, as well as support from program HST-GO-13629.002-A that was provided by NASA through a grant from the Space Telescope Science Institute.

Finally, the authors also thank D. H. Cohen for useful discussions and feedback which contributed to improve this paper.

DATA AVAILABILITY

The ultraviolet spectroscopic data underlying this article are available in the Canadian Astronomy Data Center (CADC) archive at https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/, and are uniquely identified with the ObsIDs listed in Table A2.

REFERENCES

Babel J., Montmerle T., 1997, ApJ, 485, L29
Blazé A., Neiner C., Tkachenko A., Bouret J.-C., Riviüssis T., 2015, A&A, 582, A110
Bouret J. C., Lanz T., Hillier D. J., Heap S. R., Hubeny I., Lennon D. J., Smith L. J., Evans C. J., 2003, ApJ, 595, 1182
Castor J. I., Abbott D. C., Klein R. I., 1975, ApJ, 195, 157
Charbonneau P., 2013, Solar and Stellar Dynamos, Saas-Fee Advanced Course, doi:10.1007/978-3-642-32993-4
Chu Y.-H., 2003, in van der Hucht K., Herrero A., Esteban C., eds, IAU Symposium Vol. 212, A Massive Star Odyssey: From Main Sequence to Supernova, p. 585
David-Uraz A., Petit V., Machnis R., Erba C., Owocki S. P., Fullerston A. W., Walborn N. R., Cohen D. H., 2017, in Eldridge J. J., Bray J. C., McClelland L. A. S., Xiao L., eds, IAU Symposium Vol. 329, The Lives and Death-Throes of Massive Stars. p. 394, doi:10.1017/S1743921317002903
David-Uraz A., et al., 2019, MNRAS, 483, 2814
Donati J.-F., Semel M., Carter B. D., Rees D. E., Collier Cameron A., 1997, MNRAS, 291, 658
Donati J.-F., Catala C., Landstreet J. D., Petit P., 2006, ESPaDOnS: The New Generation Stellar Spectro-Polarimeter. Performances and First Results. p. 362
Erba C., Petit V., David-Uraz A., Fullerton A. W., 2019, arXiv e-prints, p. arXiv:1912.08748
Ferrario L., Wickramasinghe D., 2008, MNRAS, 389, L69
Ferrario L., Pringle J. E., Tout C. A., Wickramasinghe D. T., 2009, MNRAS, 464, 244
Ryabchikova T., Piskunov N., Kurucz R. L., Stempels H. C., Heiter U., Piskunov N., Kochukhov O., 2002, A&A, 381, 736
Piskunov N. E., Kupka F., Ryabchikova T. A., Weiss W. W., 1997, Balt. Astron., 9, 590
Kupka F. G., Piskunov N., Ryabchikova T. A., Stempels H. C., Weiss W. W., 1999, A&AS, 138, 119
Kupka F. G., Ryabchikova T. A., Piskunov N. E., Stempels H. C., Weiss W. W., 2000, Balt. Astron., 9, 590
Landi degli’Innocenti E., Landolfi M., 2004, Polarization in Spectral Lines. Astrophysics and Space Science Library Vol. 307, Kluwer Academic Publishers, Dordrecht, The Netherlands
Landstreet J. D., Borra E. F., 1978, ApJ, 224, L5
Landstreet J. D., Mathys G., 2000, A&A, 359, 213
Landstreet J. D., Baglan A., Audretta V., Fossati L., Mason E., Silaj J., Wade G. A., 2007, A&A, 470, 685
Landstreet J. D., et al., 2008, A&A, 481, 465
Lim B., Sung H., Bessell M. S., Kim J. S., Hur H., Park B.-G., 2015, AJ, 149, 127
Macniss R., 2016, Master’s thesis, Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida
Marcolino W. L. F., Bouret J.-C., Sundqvist J. O., Walborn N. R., Fullerton A. W., Howarth I. D., Wade G. A., ud-Doula A., 2013, MNRAS, 431, 2253
Martiel E., Teeple D., Manset N., 2011, in Gadjalhah S., et al., eds, Telescopes from Apar. p. 63
Mathys G., 1989, FCP, 13, 143
Megey N., Eggenberger P., Mader A., 2011, A&A, 525, L11
Morel T., et al., 2015, in Megey N., Georgy C., Groh J., Stee P., eds, IAU Symposium Vol. 307, New Windows on Massive Stars. pp 342–347, arXiv:1408.2100, doi:10.1017/S1743921314007054
Munoz M. S., Wade G. A., Nazé Y., Puls J., Baglan A., Szymański M. K., 2020, MNRAS, 492, 1199
Nazé Y., ud-Doula A., Sano M., Rauw G., De Becker M., Walborn N. R., 2010, A&A, 520, A59
Nazé Y., Petit V., Winbrand M., Cohen D., Owocki S., ud-Doula A., Wade G. A., 2014, ApJS, 215, 10
Nazé Y., Sundqvist J. O., Fullerton A. W., ud-Doula A., Wade G. A., Rauw G., Walborn N. R., 2015, MNRAS, 452, 2641
Owocki S. P., ud-Doula A., Sundqvist J. O., Petit V., Cohen D. H., Townsend R. H. D., 2016, MNRAS, 462, 3830
Petit V., et al., 2013, MNRAS, 429, 398
Petit V., et al., 2015, MNRAS, 453, 3288
Petit V., et al., 2017, MNRAS, 466, 1052
Petit V., et al., 2019, MNRAS, 489, 5669
Piskunov N., Kochukhov O., 2002, A&A, 381, 736
Piskunov N. E., Kupka F., Ryabchikova T. A., Weiss W. W., Jeffery C. S., 1995, A&AS, 112, 525
Ryabchikova T. A., Piskunov N. E., Kupka F., Weiss W. W., 1997, Balt. Astron., 6, 244
Ryabchikova T., Piskunov N., Kurucz R. L., Stempels H. C., Heiter U., Pakhomov Y., Barklem P. S., 2015, Phys. Scr., 90, 054005
Schneider F. R. N., Podsiadlowski P., Langer N., Castro N., Fossati L., 2016, MNRAS, 457, 2355
Schneider F. R. N., Ottmann S. T., Podsiadlowski P., Röpke F. K., Balbus S. A., Pakmor R., Springel V., 2019, Nature, 574, 211
Schneider F. R. N., Ottmann S. T., Podsiadlowski P., Röpke F. K., Balbus S. A., Pakmor R., 2020, MNRAS, 495, 2796
Semel M., 1989, A&AS, 225, 456
Shore S. N., Brown D. N., 1990, ApJ, 365, 665
Shultz M., Wade G. A., 2017, MNRAS, 468, 3985
Shultz M., et al., 2015, MNRAS, 449, 3945
Shultz M. E., et al., 2018, MNRAS, 475, 5144
Shultz M. E., et al., 2019, MNRAS, 490, 274
Sidibé D. W. N., 1950, MNRAS, 110, 395
Walborn N. R., 1972, AJ, 77, 312
Walborn N. R., Sota A., Maiz Apellaniz J., Alvaro E. J., Morrell N. I., Barbá R. H., Arias J. I., Gamen R. C., 2010, ApJ, 711, L143
Weber E. J., Davis Leeverett J., 1967, ApJ, 148, 217
Yakunin I., et al., 2015, MNRAS, 447, 1418
ud-Doula A., Owocki S. P., 2002, ApJ, 576, 413
ud-Doula A., Owocki S. P., Townsend R. H. D., 2008, MNRAS, 385, 97
ud-Doula A., Owocki S. P., Townsend R. H. D., 2009, MNRAS, 392, 1022

MNRRS 000, 1–9 (2020)
APPENDIX A: JOURNAL OF OBSERVATIONS

In this section, we list the HST and CFHT observations used in the context of this study, as well as the longitudinal magnetic field measurements performed using the latter.

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.
Table A1. Journal of COS Observations

ObsID	Program ID	Grating	\(\lambda_c\) \(^1\) (Å)	S/N \(^2\)	UT (Start)	Exp. Time (s)	MJD(mid)	\(\phi\) \(^3\)
lcl601010	13734	G130M	1291	10.6	2015-02-17T06:16:42	848	57070.2685	0.986
lcl601020	13734	G130M	1327	10.1	2015-02-17T06:39:53	844	57070.2846	0.986
lcl601030	13734	G160M	1577	16.1	2015-02-17T07:40:05	1084	57070.3279	0.986
lcl601040	13734	G160M	1623	16.0	2015-02-17T08:07:48	1080	57070.3472	0.986
lcl602010	13734	G130M	1291	10.2	2015-10-06T16:20:53	848	57301.6881	0.451
lcl602020	13734	G130M	1327	9.9	2015-10-06T16:44:04	844	57301.7042	0.451
lcl602030	13734	G160M	1577	15.6	2015-10-06T17:07:58	1084	57301.7309	0.451
lcl602040	13734	G160M	1623	15.6	2015-10-06T18:00:30	1080	57301.7588	0.452
ldmu04010	15066	G130M	1222	10.5	2018-02-08T09:59:05	940	58157.4233	0.867
ldmu04020	15066	G130M	1291	12.0	2018-02-08T10:23:13	940	58157.4390	0.868
ldmu04030	15066	G160M	1577	15.7	2018-02-08T11:25:11	1080	58157.4842	0.868
ldmu04040	15066	G160M	1623	15.6	2018-02-08T11:52:50	1080	58157.5033	0.868
ldmu01010	15066	G130M	1222	10.4	2018-04-13T13:44:46	940	58221.5927	0.274
ldmu01020	15066	G130M	1291	11.9	2018-04-13T14:45:31	940	58221.6212	0.274
ldmu01030	15066	G160M	1577	15.4	2018-04-13T15:20:10	1080	58221.6605	0.274
ldmu01040	15066	G160M	1623	15.6	2018-04-13T16:25:40	1080	58221.6986	0.274
ldmu02010	15066	G130M	1222	10.4	2018-10-01T21:47:01	940	58392.9149	0.358
ldmu02020	15066	G130M	1291	12.0	2018-10-01T23:00:25	940	58392.9648	0.358
ldmu02030	15066	G160M	1577	15.6	2018-10-01T23:22:25	1080	58393.0032	0.359
ldmu02040	15066	G160M	1623	15.8	2018-10-02T00:50:19	1080	58393.0432	0.359
ldmu03010	15066	G130M	1222	10.6	2018-11-12T11:23:02	940	58434.4816	0.621
ldmu03020	15066	G130M	1291	12.0	2018-11-12T12:30:57	940	58434.5277	0.622
ldmu03030	15066	G160M	1577	15.9	2018-11-12T12:52:57	1080	58434.5452	0.622
ldmu03040	15066	G160M	1623	15.8	2018-11-12T14:06:15	1080	58434.5959	0.622

\(^1\) Central wavelength of the grating setting.
\(^2\) Computed per 9-pixel resolution element between 1350–1355 Å (G130M) or 1490–1495 Å (G160M).
\(^3\) Phase of MJD(mid) according to the ephemeris of Wade et al. (2012).
Table A2. Observations of NGC 1624-2 from ESPaDOnS at CFHT. In this table HJD is the Heliocentric Julian Date, and JD0 is the arbitrary Julian Date chosen as the starting point to record the rotations of NGC 1624-2. The rotation, and phase are based off of JD0 and NGC 1624-2’s well defined rotation period of 157.99 days.

Date	ObsID	HJD -2,450,000	Rotations since JD0	Phase	Mean Phase	Mean \(\langle B_z \rangle\) (kG)	Mean \(\langle N_z \rangle\) (kG)
2012-02-01	1522987p	5958.7154	-1	0.948 ± 0.06	0.97 ± 0.06	4.10 ± 0.15	0.12 ± 0.15
2012-02-02	1523106p	5959.7155	-1	0.954 ± 0.06			
2012-02-03	1523413p	5960.7132	-1	0.960 ± 0.06			
2012-02-04	1523605p	5961.7128	-1	0.966 ± 0.06			
2012-02-09	1524145p	5966.7204	-1	0.998 ± 0.06			
2012-09-27	1573465p	6197.9445	1	0.462 ± 0.07	0.46 ± 0.07	-0.49 ± 0.15	-0.35 ± 0.15
2012-09-27	1573469p	6198.0900	1	0.462 ± 0.07			
2013-08-27	1650338p	6532.1192	3	0.577 ± 0.09	0.59 ± 0.09	2.05 ± 0.14	0.09 ± 0.14
2013-08-29	1650656p	6534.0561	3	0.589 ± 0.09			
2013-08-29	1650660p	6534.1180	3	0.590 ± 0.09			
2013-09-13	1653352p	6549.0333	3	0.684 ± 0.09	0.68 ± 0.09	2.96 ± 0.17	-0.04 ± 0.17
2013-09-13	1653356p	6549.0961	3	0.684 ± 0.09			
2013-09-25	1656332p	6561.0236	3	0.760 ± 0.09	0.76 ± 0.09	3.72 ± 0.17	0.28 ± 0.17
2013-09-25	1656336p	6561.0859	3	0.760 ± 0.09			
2013-11-17	1669969p	6613.9900	4	0.095 ± 0.09	0.10 ± 0.09	3.83 ± 0.16	-0.24 ± 0.16
2013-11-17	1669981p	6614.0410	4	0.095 ± 0.09			
2013-11-24	1671235p	6621.0356	4	0.140 ± 0.09	0.14 ± 0.09	3.28 ± 0.19	0.02 ± 0.19
2013-11-24	1671239p	6621.0978	4	0.140 ± 0.09			
2014-01-08	1682621p	6665.8216	4	0.423 ± 0.09	0.42 ± 0.09	0.24 ± 0.22	0.03 ± 0.22
2014-01-08	1682625p	6665.8835	4	0.424 ± 0.09			
2015-09-24	1834775p	7290.0326	8	0.374 ± 0.11	0.38 ± 0.11	-0.36 ± 0.19	-0.11 ± 0.19
2015-09-25	1834930p	7291.0543	8	0.381 ± 0.11			

Table A3. \(\langle B_z \rangle\) measurements from individual lines, in kG. The second row of the table gives the Landé factor of each line, as found in the output of the VALD database, or computed from LS coupling. In the case of multiplets, the highest value among the components of the line complex is shown.

HJD -2450000	He/4471	He/4713	He/4922	He/5016	He/47281	He/45412	Civ/45801	Civ/45812	Our/4592
5961.51560	4.5 ± 0.9	2.9 ± 0.4	5.2 ± 0.4	4.4 ± 0.5	4.1 ± 0.3	4.0 ± 0.5	3.8 ± 0.4	2.4 ± 0.3	5.2 ± 0.8
6197.97660	-0.9 ± 0.7	-0.1 ± 0.4	-0.5 ± 0.4	-0.2 ± 0.4	-0.6 ± 0.3	-0.7 ± 0.7	-0.8 ± 0.4	-0.2 ± 0.3	0.2 ± 0.8
6533.43120	1.4 ± 0.8	1.7 ± 0.4	1.8 ± 0.5	2.7 ± 0.4	2.3 ± 0.3	2.0 ± 0.5	1.9 ± 0.2	1.5 ± 0.3	2.7 ± 0.8
6549.06450	4.4 ± 1.0	2.1 ± 0.5	3.5 ± 0.7	3.6 ± 0.4	3.0 ± 0.3	3.6 ± 0.6	2.6 ± 0.4	2.1 ± 0.2	2.4 ± 1.0
6561.05470	4.5 ± 1.1	3.1 ± 0.6	4.3 ± 0.6	4.4 ± 0.6	3.8 ± 0.3	3.7 ± 0.8	3.1 ± 0.4	2.1 ± 0.3	3.4 ± 1.1
6613.97510	2.8 ± 1.0	2.9 ± 0.6	2.9 ± 0.6	4.0 ± 0.4	4.2 ± 0.2	4.5 ± 0.8	2.4 ± 0.6	3.1 ± 0.3	3.4 ± 1.2
6621.06640	2.0 ± 0.8	1.7 ± 0.5	4.0 ± 0.7	3.9 ± 0.6	4.0 ± 0.4	4.0 ± 0.7	2.9 ± 0.3	1.8 ± 0.3	4.9 ± 0.9
6665.85250	0.2 ± 1.0	0.6 ± 0.7	0.6 ± 0.7	1.0 ± 0.7	0.4 ± 0.4	-0.3 ± 0.7	-0.0 ± 0.4	0.3 ± 0.2	-0.9 ± 1.1
7290.54490	1.0 ± 1.0	-0.9 ± 0.6	-1.7 ± 0.7	-0.5 ± 0.5	-0.1 ± 0.3	0.9 ± 0.9	-0.5 ± 0.4	0.3 ± 0.3	-0.8 ± 1.5