Enhanced active oxidative species generation over Fe-doping defective TiO$_2$ nanosheets for boosted photodegradation

Xintong Gaoa, Shuai Zhangb, Jingchao Liuc, Shiqi Xua and Zenghe Li*

Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2020
Materials

Tetrabutyl titanate (Ti(OBu)$_4$), tetracycline hydrochloride (TC-HCl), ethylenediaminetetraacetic acid (EDTA) and bulk anatase TiO$_2$ were purchased from Aladdin Co., Ltd. Iron(III) nitrate nonahydrate (Fe(NO$_3$)$_3$·9H$_2$O) and tertiary butyl alcohol (TBA) were obtained from Tianjin Fuchen Chemical Reaction Factory. The Ti(OBu)$_4$ and Fe(NO$_3$)$_3$·9H$_2$O were of analytical grade. Anhydrous ethanol, hydrofluoric acid (HF, 40 wt.%), and hydrogen peroxide (H$_2$O$_2$, 30wt.%) were purchased from Beijing Chemical Corporation. Rhodamine B (RhB) and p-benzoquinone (PBQ) were obtained from Sinopharm Chemical Reagent Co., Ltd. Ultra-pure water was used in all experiments.

Synthesis of X%-TiO$_2$ nanosheets (where X% is the mole percent of Fe, expressed as $100\% \times \frac{\text{mol Fe}}{\text{mol Ti}}$)

In a typical synthesis, 0.1685 g, 0.2808 g, 0.3931 g, 0.5054 g of Fe(NO$_3$)$_3$·9H$_2$O were added into anhydrous ethanol (40 mL) containing Ti(OBu)$_4$ (10 mL) and HF (1.2 mL), respectively. After stirring for 30 min, the solution was transferred into a stainless steel autoclave (100 mL) and then heated at 180°C for 2 h. The products were collected by centrifugation and washed repeatedly with ultra-pure water. Finally, the products were dried at 60°C under vacuum for 24 h.

Photocatalysts characterization

XRD patterns for photocatalysts were recorded by X-ray diffractometer (XRD, Bruker D8 Advance). The morphology of photocatalysts was characterized using a high-resolution transmission electron microscopy (HRTEM, JEOL-2100). Elemental analyses were obtained on inductively coupled plasma atomic emission spectroscopy (ICP-AES-7500, SHIMADZU). Chemical composition analyses were performed using a scanning transmission electron microscope (STEM, FEI Tecnai G2 F30) equipped with energy dispersive X-ray (EDX). Raman spectra were collected on Renishaw in Via spectrometer system. X-ray photoelectron spectroscopy (XPS) was performed on a KRATOS AXIS SUPRA system equipped with an Al Kα X-ray source. Brunauer-Emmett-Teller (BET) surface areas and N$_2$ physisorption isotherms were measured with a surface area and porosity analyzer (ASAP 2460t, Micromeritics), using liquid
nitrogen adsorbent at 77 K. Ultraviolet-Visible diffuse reflectance spectra (UV-DRS) were measured on a spectrophotometer (UV-3600, Shimadzu) using BaSO$_4$ as the reflectance standard. Photoluminescence spectra (PL) were obtained at room temperature using a fluorescence spectrophotometer (FLS700, Hitachi) (EM Start WL: 260.0 nm). Electron paramagnetic resonance (EPR) spectra were obtained on a Bruker EPR-E500 spectrometer. The thickness of the 3.5%-TiO$_2$ nanosheets was determined by atomic force microscopy (AFM) (Bruker FastScan).

Photocatalytic activity evaluation

The photocatalytic performance of all the as-prepared samples was investigated by measuring the degradation rate of RhB aqueous solution (10 mg L$^{-1}$) and TC-HCl aqueous solution (20 mg L$^{-1}$) under simulated sunlight irradiation (300 W xenon lamp, CEL-HXF300, Beijing Zhongjiao Jinyuan Technology Co., Ltd.). In each photocatalytic reaction, 80 mg photocatalysts and 1.5 mmol H$_2$O$_2$ were added into an aqueous RhB solution of 80 mL, and then the suspensions were stirred in the dark for 40 min to reach the adsorption-desorption equilibrium between photocatalysts and RhB solutions. Under light irradiation, 4 mL of RhB solution was sampled at 5 min interval and filtered to remove the photocatalysts for optical absorbance measurements. To analogous, 10 mg sample and 1.5 mmol H$_2$O$_2$ were added into an aqueous TC-HCl solution of 80 mL, and then the suspension was stirred in the dark for 40 min to reach the adsorption-desorption equilibrium between photocatalysts and TC-HCl solutions. During irradiation, 4 mL of TC-HCl solution was sampled at 10 min interval and filtered to remove the photocatalysts for optical absorbance measurements. The absorbance of reaction solution was measured with a UV-vis spectrophotometer (UVmini-1240, Shimadzu), and the concentration of pollutants was determined by the RhB and TC-HCl standard curve. According to Beer’s law, the absorbance at 553 nm (the characteristic absorption wavelength of RhB) and 357 nm (the characteristic absorption wavelength of TC-HCl) were proportional to the concentration of RhB and TC-HCl in the reaction solution, respectively. Furthermore, the kinetic behaviors of photocatalysts were investigated through a pseudo-first-order model, $\ln[C/C_0] = -kt + \alpha$. Here, C_0 and C present the initial concentration before irradiation and the residual
concentration of RhB and TC-HCl solution after irradiation for t min, respectively, and k is the apparent rate constant.

In the cycle test experiments, photocatalytic performance of 3.5%-TiO$_2$ was evaluated by performing 20 min of RhB photodegradation and 60 min of TC-HCl photodegradation experiments. Then the photocatalysts were recovered from the reaction solution, repeatedly washed with ethanol/ultrapure water and dried, and reused in photodegradation tests (ethanol was completely removed from the photocatalysts before the photocatalytic testing). A total of 4 such reaction cycles were performed (with approximately the same amount of photocatalyst used in each reaction cycle).

Active oxidative species (AOS) trapping

Generally, holes (h^+), superoxide radical ($\cdot O_2^-$), and hydroxyl radicals ($\cdot OH$) are considered as predominant AOS for dyes and antibiotics photodegradation.1,2 To investigate the predominant AOS involved, radicals trapping experiments were performed, which is similar to former photocatalytic activity measurement. In this process, TBA (10 mmol L$^{-1}$), PBQ (10 mmol L$^{-1}$), and EDTA (10 mmol L$^{-1}$) were used as the scavengers for $\cdot OH$, $\cdot O_2^-$, and h^+, respectively.

EPR tests

EPR tests were performed by using a Bruker EPR-E500 spectrometer operating at room temperature. The $\cdot O_2^-$ radicals can be captured by 5,5-dimethyl-l-pyrroline N-oxide (DMPO). For the detection of DMPO-$\cdot O_2^-$ adducts, 20 mg of 3.5%-TiO$_2$ photocatalyst and a small amount of H$_2$O$_2$ were added into 50 μL of 5 wt.% DMPO/DMSO solution.

Electrochemical measurements

The electrochemical measurements were performed on a CHI 660E electrochemical workstation equipped with a three-electrode cell. The working electrode was a glassy carbon electrode coated with catalysts, the counter electrode was a platinum foil, and the reference electrode was a saturated Ag/AgCl electrode with saturated K$_2$SO$_4$ (1 mol L$^{-1}$) as the electrolyte. The electrochemical impedance spectroscopy (EIS) measurements were conducted over a frequency range 0.01-105 Hz without light. Photocurrent measurements and Mott-Schottky experiments were conducted with voltage range from -1.5 V-0 V, in accordance with procedures previous work.3
Poisson’s equation can be solved to give the Mott–Schottky equation:4

\[
\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 e A^2 N_D} \left(V - V_{fb} - \frac{k_B T}{e}\right)
\]

Where C and A are the interfacial capacitance and area, respectively, N_D the number of donors, V the applied voltage, k_B is Boltzmann’s constant, T is the temperature, and e is the electronic charge. Therefore, a plot of C^{-2} against voltage should yield a straight line from which V_{fb} can be determined from the intercept on the voltage axis.

The value of N_D is determined from the slope with knowledge of ε and A.5,6
Fig. S1 TEM images of (a) 0%-TiO$_2$ nanosheets and (b) Bulk-TiO$_2$.
Fig. S2 (a) AFM image and (b) corresponding height profiles of 3.5%-TiO$_2$ nanosheets (the numbers 1, 2 and 3 correspond to the line scan number in (a).
Table S1 ICP-AES data for the actual contents of Fe doping in X%-TiO$_2$ nanosheets (X = 1.5, 2.5, 3.5, 4.5).

sample	cFe (ppm)	cTi (ppm)	X (%)
1.5%-TiO$_2$	4.716	233.2	1.70%
2.5%-TiO$_2$	7.833	239.1	2.75%
3.5%-TiO$_2$	10.93	236.4	3.89%
4.5%-TiO$_2$	12.37	216.3	4.80%

cFe and cTi represent the concentration of metal ions in the catalysts solution.
Fig. S3 (a) Raman spectra for X%-TiO$_2$ nanosheets (X=0, 1.5, 2.5, 3.5, 4.5) and Bulk-TiO$_2$.
Fig. S4 XPS spectra of O 1s in the (a) Bulk-TiO$_2$ and (b) 0%-TiO$_2$ nanosheets.
Table S2 Comparison of RhB photodegradation of various photocatalysts reported.

Catalyst	Light source	The amount of catalyst (mg)	RhB concentration (ppm)	Photocatalytic degradation rate (min⁻¹)	Reference
3.5%-TiO₂	300 W xenon lamp	80	10	0.3073	This work
Ce-doped TiO₂	300 W xenon lamp	400	10	0.00348	[7]
B-doped BiOCl	350W xenon lamp	10	10	0.01704	[8]
N-doped ZnWO₄	sunlight	10	10	0.1708	[9]
B-doped Bi₂MoO₆	250 W halogen Lamp	20	5	0.016	[10]
Pt-doped TiO₂	220W mercury lamp	3	10	0.0053	[11]
I/C-doped TiO₂	300 W Xe arc lamp	50	20	0.1600	[12]
C-N-S-doped TiO₂	8 W UV lamp	20	10	0.01234	[13]
Fe–N–S-tri-doped TiO₂	500 W Xenon lamp	200	20	0.0291	[14]
C/N-doped Au/TiO₂	500 W xenon lamp	5	4.79	0.0071	[15]
Fig. S5 Cycling runs of 3.5%-TiO$_2$ nanosheets for photocatalytic degradation of (a) RhB and (b) TC-HCl solution.
According to the International Union of Pure and Applied Chemistry (IUPAC) classification,16 the isotherm curves of Bulk-TiO\textsubscript{2} can be classified as Type-II isotherms, which manifested the nature of micropores.17 The X%-TiO\textsubscript{2} nanosheets showed Type-IV isotherms with H2-type hysteresis in the relative pressure of 0.4-0.8, which confirmed the presence of mesopores in the ultrathin X%-TiO\textsubscript{2} nanosheets.

Fig. S6 (a) N\textsubscript{2} adsorption-desorption isotherms of X%-TiO\textsubscript{2} nanosheets and Bulk-TiO\textsubscript{2}. (b) Pore size distribution of X%-TiO\textsubscript{2} nanosheets and Bulk-TiO\textsubscript{2}.
Fig. S7 (a) UV-DRS data and (b) Tauc plots for X%-TiO$_2$ nanosheets and Bulk-TiO$_2$.
Fig. S8 XPS valence band spectra of 3.5%-TiO$_2$.

According to the UV-DRS (Fig. S7a-b) and Mott-Schottky diagram (Fig. 5d), the band gap and conduction band (CB) position of 3.5%-TiO$_2$ nanosheets were estimated to be 2.04 eV and -0.54 eV, respectively. The valence band (VB) position of 3.5%-TiO$_2$ nanosheets was thus calculated to be about 1.50 eV. The VB maximum of 3.5%-TiO$_2$ was also measured by XPS valance spectra, a VB edge was 2.06 eV and a band tailing was 1.51 eV (Fig. S8). In addition, the band edge energy (E_{CB}, E_{VB}) of 3.5%-TiO$_2$ nanosheets was further calculated according to the empirical equation as follow:

$$E_{VB} = \chi - E_C + \frac{1}{2}E_g$$

where χ represents the electronegativity of the semiconductors (here, the value of χ is 5.18 eV for 3.5%-TiO$_2$), E_C is the standard hydrogen electrode scale (NHE) ($E_C = 4.5$ eV21 and E_g is the bandgap for 3.5%-TiO$_2$ ($E_g = 2.04$ eV). The calculated E_{VB} for 3.5%-TiO$_2$ is found to be about 1.70 eV. Considering the above calculation results, experimental data and inevitable experimental errors, the VB position of 3.5%-TiO$_2$ is inferred between 1.50-2.06 eV. According to the previous reports, some typical semiconductor photocatalysts with VB position between 1.50-2.06 eV can also generate holes with sufficient oxidation potential for the photodegradation of RhB and TC-HCl in water.$^{23-24}$ Moreover, both superoxide radical (\bulletO$_2^-$) and photo-generated holes contributed to the photodegradation of RhB and TC-HCl, as proved by radicals trapping experiments and EPR tests (Fig. 6a-c). Considering that both \bulletO$_2^-$ and the photo-
generated holes of 3.5%-TiO$_2$ possess sufficient oxidation ability to oxidize RhB and TC-HCl, so it would be safe to deduce that the 3.5%-TiO$_2$ nanosheets has sufficient oxidation for oxidizing the pollutants.
To explore the role of H$_2$O$_2$ in the photocatalytic reaction, we carried out a series of control experiments. As shown in Fig. S9, when there is no catalyst and only H$_2$O$_2$ in the reaction system, the concentration of RhB remained basically unchanged after 20 min light irradiation, which means that H$_2$O$_2$ itself cannot achieve the RhB photodegradation without the aid of photocatalysts. For Bulk-TiO$_2$, regardless of whether H$_2$O$_2$ is added to the reaction solution, the removal efficiency of RhB was almost unchanged after 20 min light irradiation, while the 0%-TiO$_2$ nanosheets displayed improved degradation performance in the presence of H$_2$O$_2$, with the RhB removal efficiency of 19.2%, which is higher than that for 0%-TiO$_2$ in the absence of H$_2$O$_2$. Since ultrathin 0%-TiO$_2$ nanosheets possessed higher concentration of Vo than Bulk-TiO$_2$, it is assumed that H$_2$O$_2$ can play a role in boosting the photocatalytic degradation only in the presence of photocatalysts rich in Vo. This inference may also be valid for 3.5%-TiO$_2$ nanosheets.

In the photocatalysis process, H$_2$O$_2$ can be reduced to •OH by photo-generated electrons,25-26 while it can also be oxidized to •O$_2$$^-−$ by photo-generated holes.25, 27-28 Through radical capture experiments, the main oxidative species for RhB/TC-HCl degradation by 3.5%-TiO$_2$ were identified to be holes and •O$_2$$^-−$, rather than •OH (Fig. 6a-b). Thence, it is possible that Vo-rich TiO$_2$ nanosheets converted H$_2$O$_2$ into more •O$_2$$^-−$ which contribute to the pollutants degradation. The above experimental results

Fig. S9 Time profiles of RhB degradation for 0%-TiO$_2$ nanosheets and Bulk-TiO$_2$ with or without H$_2$O$_2$.

manifested that H$_2$O$_2$ could not only participate in the Fenton reaction, but also be oxidized to •O$_2^-$ by photo-generated holes in the assistance of Vo-rich TiO$_2$ photocatalysts, thereby further promoting the degradation of RhB or TC-HCl.
References

1. X. Zhang, L. Li, Y. Zeng, F. Liu, J. Yuan, X. Li, Y. Yu, X. Zhu, Z. Xiong, H. Yu and Y. Xie, *ACS Appl. Nano Mater.*, 2019, **2**, 7255-7265.
2. Y. Wang, L. Rao, P. Wang, Z. Shi and L. Zhang, *Appl. Catal. B: Environ.*, 2020, **262**, 118308.
3. Y. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F. Teng, L.-Z. Wu, C.-H. Tung, D. O'Hare and T. Zhang, *Adv. Mater.*, 2017, **29**, 1703828.
4. Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, *Adv. Mater.*, 2019, **31**, 1806482.
5. K. Gelderman, L. Lee and S. W. Donne, *J. Chem. Educ.*, 2007, **84**, 685.
6. J. Chen, B. Li, J. Zheng, S. Jia, J. Zhao, H. Jing and Z. Zhu, *J. Phys. Chem. C.*, 2011, **115**, 7104-7113.
7. Z. Liu, L. Xing, H. Ma, L. Cheng, J. Liu, J. Yang and Q. Zhang, *Environ. Prog. Sustain. Energy.*, 2017, **36**, 494-504.
8. C. Yu, H. He, Q. Fan, W. Xie, Z. Liu and H. Ji, *Sci. Total Environ.*, 2019, **694**, 133727.
9. Y. A. Sethi, C. S. Praveen, R. P. Panmand, A. Ambalkar, A. K. Kulkarni, S. W. Gosavi, M. V. Kulkarni and B. B. Kale, *Catal. Sci. Technol.*, 2018, **8**, 2909-2919.
10. M. Wang, J. Han, P. Guo, M. Sun, Y. Zhang, Z. Tong, M. You and C. Lv, *J. Phys. Chem. Solids.*, 2018, **113**, 86-93.
11. R. Pol, M. Guerrero, E. García-Lecina, A. Altube, E. Rossinyol, S. Garroni, M. D. Baró, J. Pons, J. Sort and E. Pellicer, *Appl. Catal. B-Environ.*, 2016, **181**, 270-278.
12. J.-C. Wang, H.-H. Lou, Z.-H. Xu, C.-X. Cui, Z.-J. Li, K. Jiang, Y.-P. Zhang, L.-B. Qu and W. Shi, *J. Hazard. Mater.*, 2018, **360**, 356-363.
13. X. Cheng, X. Yu and Z. Xing, *J. Phys. Chem. Solids*, 2013, **74**, 684-690.
14. X. Xu, X. Zhou, L. Zhang, L. Xu, L. Ma, J. Luo, M. Li and L. Zeng, *Mater. Res. Bull.*, 2015, **70**, 106-113.
15. Y. Li, S. Cao, A. Zhang, C. Zhang, T. Qu, Y. Zhao and A. Chen, *Appl. Surf. Sci.*, 2018, **445**, 350-358.
16. D. X. Martinez Vargas, J. Rivera De la Rosa, C. J. Lucio-Ortiz, A. Hernández-Ramirez, G. A. Flores-Escamilla and C. D. Garcia, *Appl. Catal. B-Environ.*, 2015, **179**, 249-261.
17. T. Wang, W. Li, D. Xu, X. Wu, L. Cao and J. Meng, *Appl. Surf. Sci.*, 2017, **426**, 325-332.
18. X. Chen, L. Liu, P. Y. Yu and S. S. Mao, *Science*, 2011, **331**, 746.
19. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro and V. Dal Santo, *J. Am. Chem. Soc.*, 2012, **134**, 7600-7603.
20. S. G. Ullattil and R. M. Ramakrishnan, *ACS Appl. Mater. Interfaces*, 2018, **1**, 4045-4052.
21. Zhang, L. Li, Y. Zeng, F. Liu, J. Yuan, X. Li, Y. Yu, X. Zhu, Z. Xiong, H. Yu and Y. Xie, *ACS Appl. Nano Mater.*, 2019, **2**, 7255-7265.
22. M. A. Majeed Khan, R. Siwach, S. Kumar and A. N. Alhazaa, *Opt. Laser Technol.*, 2019, **118**, 170-178.
23. R. Zhao, X. Sun, Y. Jin, J. Han, L. Wang and F. Liu, *J. Mater. Sci.*, 2019, **54**, 5445-
24 Y. Wang, X. Yang, T. Ye, C. Xu, F. Xia and D. Meng, *J. Electron. Mater.*, 2017, 46, 1598-1606.

25 T. Hirakawa and Y. Nosaka, *Langmuir*, 2002, 18, 3247-3254.

26 J. Rabani, K. Yamashita, K. Ushida, J. Stark and A. Kira, *J. Phys. Chem. B*, 1998, 102, 1689-1695.

27 L. Sun and J. R. Bolton, *J. Phys. Chem.*, 1996, 100, 4127-4134.

28 Y. Nosaka and A. Nosaka, *Chem. Rev.*, 2017, 117, 11302–11336.