Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

Cheol Park 1, Eun Ok Choi 1,2,3, Hyun Hwangbo 2,4, Hyesook Lee 1,3, Jin-Woo Jeong 5, Min Ho Han 6, Sung-Kwon Moon 7, Seok Joong Yun 8, Wun-Jae Kim 8, Gi-Young Kim 9, Hye-Jin Hwang 10, and Yung Hyun Choi 2,3§

1Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Korea
2Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
3Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea
4Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
5Nakdonggang National Institute of Biological Resources, Sangju 17104, Korea
6National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
7Department of Food and Nutrition, Chung-Ang University, Busan 15671, Korea
8Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
9Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
10Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-eui University, Busan 47340, Korea

©2022 The Korean Nutrition Society and the Korean Society of Community Nutrition
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ORCID IDs
Cheol Park https://orcid.org/0000-0003-4906-0410
Eun Ok Choi https://orcid.org/0000-0002-9441-4596
Hyun Hwangbo https://orcid.org/0000-0003-2180-1205
Hyesook Lee https://orcid.org/0000-0003-3546-9370
Jin-Woo Jeong https://orcid.org/0000-0003-1546-9370
Min Ho Han https://orcid.org/0000-0002-7549-4514

© 2022 The Korean Nutrition Society and the Korean Society of Community Nutrition
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anticancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

Keywords: Apoptosis; reactive oxygen species; caspases; mitochondria; cytochrome c

INTRODUCTION

Apoptosis, a type of programmed cell death, can mechanistically be divided into the intrinsic and extrinsic pathways [1,2]. The intrinsic pathway occurs as a consequence of increased mitochondrial permeability, via activation of caspase-9 subsequent to the cytosolic release of apoptosis-inducing proteins (including cytochrome c) present in the space between the outer and inner mitochondrial membranes. The extrinsic pathway involves the activation of caspase-8 following the binding of death ligands to death receptors (DRs) present on the cell membrane surface [2,3]. Activated caspase-9 and caspase-8, function as intrinsic and extrinsic initiator caspases, respectively, and induce the activation of downstream caspases (such as caspase-7 and caspase-3), ultimately leading to apoptosis through degradation of cell matrix proteins. In addition, the intrinsic pathway is strictly regulated by the Bcl-2 protein family proteins that contribute to the regulation of mitochondrial integrity [4,5].

Apoptosis is also exquisitely regulated by multiple intracellular signaling pathways. Among these, the phosphoinositide 3-kinase (PI3K)/Akt pathway is precisely involved in several processes including cell proliferation, differentiation, and apoptosis [6-8]. Moreover, reactive oxygen species (ROS) play important roles as intracellular signaling molecules under normal conditions, but aberrant accumulation of excessive ROS induces oxidative stress in cells and promotes apoptosis [9,10]. Numerous earlier studies have reported that inactivation of the PI3K/Akt signaling pathway is associated with excessive ROS production [11-13]. Therefore, these observations indicate that blocking the PI3K/Akt signaling pathway while promoting ROS production may be an attractive approach to induce apoptosis in cancer cells.

Zanthoxylum schinifolium Sieb. et Zucc. belongs to the genus Zanthoxylum. It is a widely used seasoning in East Asian countries, including Korea. Z. schinifolium is also prescribed as a herbal medicine in traditional practice to treat several symptoms [14-16]. To corroborate these applications, a number of pharmacological activities of the plant have been reported, which include anti-viral, anti-obesity, antioxidant, immunostimulatory, and anti-inflammatory effects [15,17-23]. Although recent studies show that Z. schinifolium exerts antitumor effects on human cancer cells [24-27], the underlying mechanisms have not been clearly elucidated. Therefore, the current study was undertaken to investigate the effect of ethanol extracts of Z. schinifolium (EEZS) leaves on apoptosis in human bladder cancer T24 cells.

MATERIALS AND METHODS

Preparation of EEZS

EEZS was extracted as described previously [19]. Briefly, 80 g finely powdered dried leaves of Z. schinifolium were soaked in 1,500 mL 100% ethanol for 48 h. The liquid extract was then filtered using filter paper (Whatman No. 4, Whatman International Ltd., Maidstone, UK) to remove debris, concentrated with a rotary evaporator (N-1000S-W, EYELA, Bohemia, NY,
USA), freeze-dried, and stored at −80°C until use in experiments. The lyophilized ethanol extract powder (EEZS) was dissolved in dimethyl sulfoxide (DMSO; Thermo Fisher Scientific, Waltham, MA, USA) to prepare a stock solution (200 mg/mL), and diluted to the appropriate concentrations with culture medium before adding to cells.

Cell culture

T24 cells (HTB-4™), a cell line established from a human urinary bladder cancer patient, were obtained from the American Type Culture Collection (Manassas, VA, USA) and maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum and antibiotics (WelGENE Inc., Gyeongsan, Korea), at 37°C in a humidified 5% CO₂ atmosphere.

Cell viability assay

Cell viability was determined by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Briefly, T24 cells were seeded at a density of 1.5 × 10⁵ cells per well in 6-well plates. After 24 h incubation, cells were treated with different concentrations of EEZS for 48 h, in the presence or absence of necrostain-1 (NEC; Sigma-Aldrich Chemical Co., St. Louis, MO, USA), carbenzoxyl-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (z-VAD-fmk; Cell Signaling Technology, Danvers, MA, USA), LY294002 (Cell Signaling Technology), or N-acetyl-L-cysteine (NAC, Sigma-Aldrich Chemical Co.). The treated cells were subsequently incubated in a medium containing 50 μg/mL MTT solution (Thermo Fisher Scientific), as described previously [28]. After 2 h incubation, the medium was discarded and DMSO was added, followed by gentle shaking for 10 min at room temperature (RT). The dissolved formazan was transferred to 96-well plates, and the absorbance was compared at 540 nm using a microplate reader (Beckman Coulter Inc., Brea, CA, USA). Changes in cell morphology were simultaneously observed by phase-contrast microscopy (Carl Zeiss, Oberkochen, Germany). The final DMSO concentration was maintained at non-toxic levels of < 0.05%.

Observation of apoptotic morphological changes

Morphological changes of the nucleus were investigated by applying the 4',6'-diamidino-2-phenylindole (DAPI) staining [28]. Briefly, T24 cells cultured in normal medium or medium containing 300 μg/mL of EEZS for 48 h were washed with phosphate buffered saline (PBS), followed by fixation with 4.0% paraformaldehyde (Sigma-Aldrich Chemical Co.) for 10 min at RT. The fixed cells were then stained with 1 μg/mL DAPI solution (Sigma-Aldrich Chemical Co.) in the dark for 10 min, and subsequently washed with PBS, after which the nuclear fluorescence was observed by fluorescence microscopy (Carl Zeiss).

Assessment of apoptosis by flow cytometer

To analyze the degree of apoptosis, the cells treated with EEZS in the presence or absence of NEC, LY294002 or NAC for 48 h, were washed with PBS and then double-stained with fluorescein isothiocyanate (FITC)-conjugated annexin V and propidium iodine (PI) (Becton Dickinson, San Jose, CA, USA) for 20 min, according to the manufacturer’s protocol. Subsequently, the stained cells were measured using a Muse® Cell Analyzer (Merck Millipore, Darmstadt, Germany) at the Core-Facility Center for Tissue Regeneration, Dong-eui University (Busan, Korea). The apoptosis rate (%) was determined as the ratio of number of annexin V positive cells to the total number of cells observed, as previously described [29].

Protein extraction and Western blot analysis

For Western blot analysis, total protein was extracted from cells cultured under various conditions, following a previously described protocol [30]. Cytoplasmic and mitochondrial
proteins were simultaneously extracted using a mitochondrial isolation kit purchased from Active Motif (Carlsbad, CA, USA), according to the manufacturer’s protocol. Equal amounts of proteins from individual lysates were separated by electrophoresis using sodium-dodecyl sulfate polyacrylamide gels, and subsequently transferred to polyvinylidene difluoride membranes (Schleicher & Schuell, Keene, NH, USA). After blocking the membrane with 3% bovine serum albumin for 30 min at RT, primary antibodies (Cell Signaling Technology, Inc., Danvers, MA, USA and Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) were added to the membranes, incubated overnight at 4°C, and subsequently probed with horseradish peroxidase-conjugated secondary antibodies (sc2004, goat anti-rabbit immunoglobulin [Ig] G; sc2005, goat anti-mouse IgG; Santa Cruz Biotechnology, Inc.) for 2 h at RT. Finally, enhanced chemiluminescent reagent (Amersham Biosciences Corp., Amersham, UK) was used to visualize the proteins of interest. The primary antibodies against DR4 (sc-8411), DR5 (sc-57086), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, sc-6079), Fas (sc-715), Fas-ligand (FasL, sc-957), caspase-8 (sc-56070), caspase-9 (sc-7885), caspase-3 (sc-7148), poly(ADP-ribose) polymerase (PARP, sc-8007), Bax (sc-7480), Bcl-2 (sc-7382), Bid (sc-514622), cytochrome c (sc-7159), cytochrome oxidase subunit 4 (COX IV, sc-23,986), phosphorylated Akt (p-Akt, sc-101629), Akt (sc-8312), and actin (sc-7210) were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Anti-p-PI3K (4228S) and PI3K (4292S) were procured from Cell Signaling Technology.

Assay of caspase activity
Proteolytic cleavage of fluorescent substrates was measured to detect the activity of caspases, using the caspase colorimetric assay kits purchased from R&D Systems (Minneapolis, MN, USA). Briefly, cells were treated with the indicated concentrations of EEZS in the presence or absence of z-VAD-fmk for 48 h. Treated cells were subsequently lysed using the provided lysis buffer, and the resultant supernatants were reacted with the supplied reaction buffer for 2 h at 37°C. Optical density values of the reaction mixtures of each sample were then detected at 405 nm using a microplate reader, and are presented as relative values [31].

Measurement of mitochondrial membrane potential (MMP)
To measure the MMP, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetramethyl-imidacarbocyanine iodide (JC-1) staining was performed. Briefly, cells exposed to various concentrations of EEZS were stained with 10 μM JC-1 (Invitrogen, Carlsbad, CA, USA) for 30 min at 37°C, according to the manufacturer’s protocol. After washing the cells with PBS, MMP values were determined at 488/575 nm by flow cytometry [32]. Subsequent to JC-1 staining, cells were subjected to DAPI for staining the nuclei. MMP depletion was also observed under a fluorescence microscope.

Determination of ROS generation
The amount of ROS produced in the cells was measured by applying the 2′,7′-dichlorofluorescin-diacetate (DCF-DA) reagent, as previously described [33]. Cells treated with EEZS in the presence or absence of ROS scavenger (NAC) were reacted with 10 μM DCF-DA (Invitrogen) for 20 min. Immediately after the reaction, the levels of ROS production in each sample were analyzed by flow cytometry at 480/520 nm. DCF-DA-stained cells were also observed by fluorescence microscopy (Carl Zeiss).

Statistical analysis
GraphPad Prism 5.03 statistical software (GraphPad Software, Inc., La Jolla, CA, USA) was applied for statistical analysis. All experimental values are presented as mean ± SD. Statistical analysis examined differences between groups through a one-way analysis of variance followed by Tukey’s post-test, and P-values < 0.05 are considered to represent a statistically significant difference.
RESULTS

Effect of EEZS on cell viability of T24 cells
To assess the cytotoxicity of EEZS, we measured the cell viability of T24 cells treated with various concentrations of EEZS for 48 h by applying the MTT assay. As presented in Fig. 1A, treatment concentrations less than 50 μg/mL showed no effect on the cell viability, whereas treatment with EEZS over 100 μg/mL significantly reduced the cell viability, as compared to the control group. Cells exposed to 200 μg/mL and 300 μg/mL EEZS showed inhibition of cell viability by more than 30% and 50%, respectively. In addition, increasing concentrations of EEZS showed further reduction in the cell density, as well as increasing numbers of irregularly outlined cells and isolated cells. As an example, comparative images of cells treated with 300 μg/mL EEZS and the control group are presented in Fig. 1B.

EEZs induces apoptosis in T24 cells
We next examined whether EEZS-induced T24 cell growth inhibition is associated with the induction of apoptosis. DAPI stained EEZS-treated cells showed condensed and markedly fragmented nuclei in a concentration-dependent manner (Fig. 1C). Similarly, the annexin V/PI double staining also indicates that exposure to EEZS concentration-dependently increases the frequency of apoptosis-induced cells (Fig. 1D and E). Next, to determine whether necrosis is involved in the cytotoxicity of EEZS, T24 cells were pre-treated with or without 200 μM NEC for 1 h, and subsequently exposed to 300 μg/mL of EEZS (which inhibits cell viability

Fig. 1. Inhibition of cell survival and induction of apoptosis by EEZS in T24 cells. Cells were cultured for 48 h in medium containing the indicated concentrations of EEZS. (A) Cell viability was measured by MTT assay. (B) Morphological changes were observed with a phase-contrast microscope. (C) Nuclear morphological changes were observed under a fluorescence microscope using DAPI staining. (D) Flow cytometry analysis using annexin V/PI double staining was applied to measure the degree of apoptosis in T24 cells after EEZS treatment. (E) Statistical analysis of apoptotic cell population. The percentage of cells undergoing apoptosis is expressed as the percentage of the number of annexin V-positive cells using a flow cytometer. Data are expressed as the mean ± SD.

EEZS, ethanol extracts of Z. schinifolium leaves; FITC, fluorescein isothiocyanate; PI, propidium iodine; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; DAPI, 4′,6′-diamidino-2-phenylindole.

*P < 0.05, **P < 0.01 and ***P < 0.001 vs. untreated cells.
by about 50%) for 48 h. As shown in Fig. 2, pretreatment with NEC, an inhibitor of necrosis, does not diminish the EEZS-mediated cell viability reduction and apoptosis induction, thereby indicating that exposure to EEZS induces apoptosis, but not necrosis.

Effect of EEZS on the expression of DR-mediated proteins and activity of caspases in T24 cells

We next examined whether the DR-related family proteins are involved in EEZS-induced apoptosis, and found that the expressions of Fas and Fas ligand (FasL) were concentration-dependently upregulated in response to EEZS treatment. However, the expressions of DRs and TRAIL were not altered significantly, as compared to the controls (Fig. 3A). We also determined that EEZS induces expressions of the active forms of caspase-3, -8 and -9, and results in cleavage of PARP, a substrate protein degraded by the activated effector caspases (Fig. 3B). Consistent with the results of Western blot analysis, the activities of caspases were also concentration-dependently and significantly increased after EEZS exposure (Fig. 3C). To further investigate whether EEZS-induced apoptosis is caspase-dependent, cells were pre-treated to a pan-caspase inhibitor, z-VAD-fmk. As presented in Fig. 3D, pre-treatment with z-VAD-fmk significantly rescues the cell viability in EEZS-treated cells.

EEZS regulates the levels of Bcl-2 family protein and increase mitochondrial dysfunction in T24 cells

We further investigated the MMP and mitochondrial pathway-related proteins in EEZS-treated cells. As shown in Fig. 4A, EEZS treatment downregulates the expression of anti-apoptotic Bcl-2 protein, but upregulates the expression of the apoptosis-promoting Bax protein. In addition, increased expressions of the truncated form of Bid (tBid) and cytochrome c in the cytoplasm were promoted in EEZS-stimulated cells (Fig. 4B). Furthermore, EEZS triggered a concentration-dependent loss of MMP in comparison to untreated controls (Fig. 4C). In good agreement with the results of flow cytometry, the results of fluorescence microscopy revealed that EEZS-treated T24 cells display markedly reduced MMP as compared to untreated cells, as evidenced by decreased and increased red and green JC-1 fluorescence, respectively (Fig. 4D).

EEZS inactivates the PI3K/Akt signaling pathway in T24 cells

To evaluate the effect of EEZS on PI3K/Akt signaling in T24 cells, we investigated whether EEZS inhibits the phosphorylation of PI3K and its downstream regulator Akt. As presented

Fig. 2. Effect of necrostain-1, an inhibitor of necrosis, on decreased cell viability and increased apoptosis by EEZS in T24 cells. Cells were pre-treated with 200 μM NEC for 1 h, after which they were exposed to 300 μg/mL EEZS for 48 h. MTT assay (A) and flow cytometry analysis (B and C) were subsequently conducted. Data are expressed as the mean ± SD (n = 3).

EEZS, ethanol extracts of *Z. schinifolium* leaves; NEC, necrostain-1; FITC, fluorescein isothiocyanate; PI, propidium iodine; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

***P < 0.001 vs. untreated cells; NS, not significant vs. 300 μg/mL EEZS-treated cells.
in Fig. 5A, cells exposed to EEZS show a gradual and a concentration-dependent decrease in the expression levels of p-PI3K (Tyr 458) and p-Akt (Ser 473) with no alterations in the overall expression of PI3K and Akt, thereby suggesting that the PI3K/Akt signaling activity is inhibited by EEZS stimulation. Therefore, to determine the role of this pathway in EEZS-induced apoptosis, T24 cells were co-treated with EEZS and a PI3K inhibitor, LY294002. We observed markedly increased apoptosis and further decrease in cell viability in cells treated with both compounds, as compared to EEZS alone (Fig. 5B-D).

EEZS increases ROS production in T24 cells

To evaluate the effect of EEZS on intracellular ROS production, flow cytometry and fluorescence microscopy with DCF-DA staining were performed. Results of flow cytometry (Fig. 6A and B) show that ROS levels are greatly increased within 1 h of EEZS treatment. However, the EEZS-induced ROS generation is significantly suppressed by the ROS scavenger NAC. Consistent with the results of flow cytometry, a strongly increased intensity of DCF fluorescence was obtained in cells treated with EEZS alone for 1 h, with significantly decreasing intensity in cells cultured in the presence of NAC (Fig. 6C). Additionally, artificial blocking of ROS generation by NAC resulted in maintaining control levels of p-PI3K and p-Akt expressions in 300 μg/mL EEZS-treated cells (Fig. 6D).
EEZS induces ROS-dependent apoptosis in T24 cells

To evaluate if EEZS-mediated cytotoxicity is associated with ROS generation, we investigated the effect of NAC on EEZS-induced cell death and growth inhibition. As observed in the results of DAPI staining and flow cytometry (Fig. 7A-C), NAC pretreatment significantly protects cells from EEZS-induced apoptosis. Consistent with this, decrease in the EEZS-induced cell viability was largely restored by blocking ROS generation (Fig. 7D).

DISCUSSION

Results of the current study demonstrate that EEZS activates both caspase-8 and caspase-9, and promotes the mitochondrial dysfunction and truncation of Bid in T24 bladder cancer cells, accompanied by upregulation in the ratio of Bax expression to Bcl-2, and increased cytochrome c expression in the cytoplasm. In cells treated with EEZS, we determined greatly increased caspase-3 activation and PARP degradation. However, the EEZS-induced cytotoxicity and apoptosis were markedly suppressed by pre-treatment with pan-caspase inhibitor. It is well known that activation of caspase-8 initiates the DR-mediated extrinsic apoptotic pathway, and cleaves and converts Bid to tBid [5,34,35]. tBid then migrates to the mitochondria, promoting permeability of the mitochondrial outer membrane. This results in cytoplasmic translocation of cytochrome c, ultimately amplifying the mitochondrial-mediated intrinsic apoptosis pathway [34,36]. Our results therefore demonstrate that EEZS induces apoptosis of T24 cells through activation of the caspase-dependent extrinsic and intrinsic pathways by tBid-mediated crosstalk.

https://e-nrp.org

https://doi.org/10.4162/nrp.2022.16.3.330
Previous results indicate that excessive activity of the PI3K/Akt signaling pathway plays a critical role in pathogenesis of numerous human tumors, including bladder cancer [11,13,37,38]. Akt is a representative downstream kinase of PI3K. Phosphorylation of Akt by activated PI3K inhibits the induction of apoptosis by blocking initiation of the caspase cascade through phosphorylation of caspases. In addition, it enhances the expression of anti-apoptotic proteins, thereby improving the survival and proliferation of cancer cells [39,40]. Ultimately, PI3K and its modulators are potentially attractive targets in cancer treatment, as they contribute to chemotherapeutic resistance, which induces cell death in cancer cells. In the present study, exposure to EEZS resulted in decreasing the levels of phosphorylation of PI3K and Akt, indicating inactivation of PI3K/Akt by EEZS. Furthermore, LY294002, a PI3K inhibitor, markedly enhanced the apoptotic activity of EEZS and suppressed the cell viability, supporting our conclusion that EEZS-induced T24 cell apoptosis is associated with inhibition of the activity of PI3K/Akt signaling pathway.

Numerous studies have shown that moderate levels of ROS play a key role as important messengers in multiple signaling pathways. However, excessive accumulation of ROS increases the oxidation of mitochondrial pores, triggering an onset of apoptotic signaling [4,10,41]. Additionally, several studies have shown that numerous bioactive compounds with anti-cancer activity increase the ROS levels, thereby activating apoptosis in cancer cells, which correlates with inhibition of the PI3K/Akt signaling pathway activity [11,13]. Although Z. schinifolium extracts have antioxidant activity in normal cells [18], Paik et al. [24] and Lee et al. [42] reported...
that when exposed to essential oil extracted from *Z. schinifolium* pericarp, the ROS act as key signaling molecules in inducing apoptosis of human hepatoma cells. We therefore investigated whether the EEZS-induced apoptosis is related to ROS, and examined the role of ROS in EEZS-induced inactivation of PI3K/Akt signaling. As indicated by the results obtained in the current study using DCF-DA, ROS levels were markedly increased during the early stage of EEZS treatment. However, the quenching of ROS production significantly attenuated EEZS-mediated dephosphorylation of PI3K and Akt proteins, and blocked the EEZS-induced reduction in viability and increase in apoptosis. These results demonstrate that ROS production by EEZS in T24 cells plays a critical role in the initiation of apoptosis induction as an upstream signal, and inhibits activation of the PI3K/Akt signaling pathway (Fig. 8). However, more studies are required to determine the role of other cellular signaling pathways that may be involved in the anti-cancer activity of EEZS, and to determine the direct relationship with PI3K/Akt signaling. In addition, establishing the role of other intracellular organelles in cells that are involved in ROS production by EEZS, should be a priority.

Induction of apoptosis by ethanol extract of *Zanthoxylum schinifolium* leaf

![Flow chart](https://e-nrp.org)

Fig. 6. Effect of ROS on inactivation of PI3K/Akt signaling pathway by EEZS in T24 cells. (A-C) Cells were treated with 300 μg/mL EEZS for the indicated periods, or pre-treated with or without 10 mM NAC for 1 h, followed by treatment with 300 μg/mL EEZS for 1 h. (A) ROS generation was detected by flow cytometry analysis. (B) Quantification of ROS generation measured by a flow cytometer. Data are expressed as the mean ± SD. (C) Intracellular ROS levels in T24 cells were detected using fluorescence microscopy. (D) Cells were incubated with 300 μg/mL EEZS for 48 h, or pre-incubated with 10 mM NAC for 1 h followed by treatment with 300 μg/mL EEZS for 48 h. The expressions of PI3K and Akt proteins and their phosphorylated forms were evaluated by Western blot analysis. Actin was used as a control for protein loading.

EEZS, ethanol extracts of *Z. schinifolium* leaves; NAC, N-acetyl cysteine; DCF, 2′,7′-dichlorofluorescin; PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species. *P < 0.05 and **P < 0.001 vs. untreated cells. ***P < 0.001 vs. 300 μg/mL EEZS-treated cells.
Taken together, results of the current study indicate that exposure to EEZS inhibits the proliferation of human bladder cancer T24 cells through activation of the caspase-dependent apoptosis pathway. The mechanism of EEZS-induced apoptosis involves activation of caspase-3 and caspase-9, leading to PARP degradation and mitochondrial dysfunction. NAC, an antioxidant, prevents apoptosis induced by EEZS, suggesting that oxidative stress is involved in EEZS-induced apoptosis.

Fig. 7. Induction of ROS-dependent apoptosis by EEZS in T24 cells. Cells were treated with 300 μg/mL EEZS for 48 h, or pre-treated with 10 mM NAC for 1 h before 300 μg/mL EEZS treatment. (A) Nuclear morphological changes were observed under a fluorescence microscope using DAPI staining. (B) Apoptosis was analyzed using flow cytometry after annexin V/PI double staining in T24 cells. (C) Statistical analysis of apoptotic cell proportion. The percentage of cells undergoing apoptosis is expressed as the percentage of the number of annexin V-positive cells using a flow cytometer. (D) Cell viability was measured by the MTT assay. (C and D) Data are expressed as the mean ± SD.

Fig. 8. Illustration of the mechanism of EEZS-induced apoptosis in human bladder cancer T24 cells. NAC, N-acetyl cysteine; ROS, reactive oxygen species; PI3K, phosphoinositide 3-kinase; FasL, Fas ligand; PARP, poly(ADP-ribose) polymerase; MMP, mitochondrial membrane potential; EEZS, ethanol extracts of Z. schinifolium leaves.

Ethanol extract of Zanthoxylum schinifolium
extrinsic as well as intrinsic apoptosis pathways, involving ROS-mediated inactivation of the PI3K/Akt signaling pathway. We therefore conclude that EEZS has the potential to be a promising therapeutic and nutritional agent for cancer treatment.

REFERENCES

1. Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016;37:8471-86.
2. Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci 2018;19:448.
3. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int 2014;2014:150845.
4. Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin Cell Dev Biol 2017;72:152-62.
5. Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun 2018;500:26-34.
6. Faes S, Dormond O. PI3K and AKT: unfaithful partners in cancer. Int J Mol Sci 2015;16:21138-52.
7. Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 2017;45:62-71.
8. Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med 2016;67:11-28.
9. Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2018;39:1419-30.
10. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2018;80:50-64.
11. Mi Y, Xiao C, Du Q, Wu W, Qi G, Liu X. Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways. Free Radic Biol Med 2016;90:230-42.
12. Karimian A, Mir SM, Parsian H, Refeyan S, Mirza-Aghazadeh-Attari M, Yousefi B, Majidinia M. Crosstalk between phosphoinositide 3-kinase/Akt signaling pathway with DNA damage response and oxidative stress in cancer. J Cell Biochem 2019;120:10248-72.
13. Song X, Wang Z, Liang H, Zhang W, Ye Y, Li H, Hu Y, Zhang Y, Weng H, Lu J, et al. Dioscin induces gallbladder cancer apoptosis by inhibiting ROS-mediated PI3K/AKT signalling. Int J Biol Sci 2017;13:782-93.
14. Sun X, Duan Z. Research progress of medicinal plants of Zanthoxylum Linn. Yao Xue Xue Bao 1996;31:231-40.
15. Hu L, Wang K, Wang Z, Liu J, Wang K, Zhang J, Luo Z, Xue Y, Zhang Y, Zhang Y. A new megastigmane sesquiterpenoid from Zanthoxylum schinifolium Sieb. et Zucc. Molecules 2016;21:383.
16. Liu ZL, Chu SS, Jiang GH. Feeding deterrents from Zanthoxylum schinifolium against two stored-product insects. J Agric Food Chem 2009;57:10130-3.
17. Tsai IL, Lin WY, Teng CM, Ishikawa T, Doong SL, Huang MW, Chen YC, Chen IS. Coumarins and antiplatelet constituents from the root bark of Zanthoxylum schinifolium. Planta Med 2000;66:618-23.
18. Cao LH, Lee YJ, Kang DG, Kim JS, Lee HS. Effect of Zanthoxylum schinifolium on TNF-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Vascul Pharmacol 2009;50:200-7.

https://e-nrp.org https://doi.org/10.4162/nrp.2022.16.3.330 341
Induction of apoptosis by ethanol extract of *Zanthoxylum schinifolium* leaf

19. Choi EO, Park C, Shin SS, Cho EI, Kim BW, Hwang JA, Hwang HJ, Choi YH. *Zanthoxylum schinifolium* leaf ethanol extract inhibits adipocyte differentiation through inactivation of the extracellular signal regulated kinase and phosphoinositide 3-kinase/Akt signaling pathways in 3T3-L1 pre-adipocytes. Mol Med Rep 2015;12(13):1314-20.

20. Nguyen PH, Zhao BT, Kim O, Lee JH, Choi JS, Min BS, Woo MH. Anti-inflammatory terpenylated coumarins from the leaves of *Zanthoxylum schinifolium* with α-glucosidase inhibitory activity. J Nat Med 2016;70(7):276-81.

21. Kim KK, Kim TW, Kang YH, Kim DJ, Choe M. Lipid-lowering effects of *Zanthoxylum schinifolium* Siebold & Zucc. seed oil (ZSO) in hyperlipidemic rats and lipolytic effects in 3T3-L1 adipocytes. Food Sci Biotechnol 2016;25:1427-36.

22. Lee HY, Park YM, Lee YH, Kang YG, Lee HM, Park DS, Yang HJ, Kim MJ, Lee YR. Immunostimulatory effect of *Zanthoxylum schinifolium*-based complex oil prepared by supercritical fluid extraction in splenocytes and cyclophosphamide-induced immunosuppressed rats. Evid Based Complement Alternat Med 2018;2018:8107326.

23. Lee SW, Lim JM, Mohan H, Seralathan KK, Park YJ, Lee JH, Oh BT. Enhanced bioactivity of *Zanthoxylum schinifolium* fermented extract: Anti-inflammatory, anti-bacterial, and anti-melanogenic activity. J Biosci Bioeng 2020;129:638-45.

24. Paik SY, Koh KH, Beak SM, Paek SH, Kim JA. The essential oils from *Zanthoxylum schinifolium* pericarp induce apoptosis of HepG2 human hepatoma cells through increased production of reactive oxygen species. Biol Pharm Bull 2005;28:802-7.

25. Jun DJ, Kim JS, Park HS, Han CR, Fang Z, Woo MH, Rhee IK, Kim YH. Apoptogenic activity of auraptene of *Zanthoxylum schinifolium* toward human acute leukemia Jurkat T cells is associated with ER-stress-mediated caspase-8 activation that stimulates mitochondria-dependent or-independent caspase cascade. Carcinogenesis 2007;28(13):3034-13.

26. Min BK, Hyun DG, Jeong SY, Kim YH, Ma ES, Woo MH. A new cytotoxic coumarin, 7-[(E)-3′,7′-dimethyl-6′-oxo-2′,7′-octadienyl]oxy coumarin, from the leaves of *Zanthoxylum schinifolium*. Arch Pharm Res 2011;34(7):723-6.

27. Li W, Sun YN, Yan XT, Yang SY, Kim EJ, Kang HK, Kim YH. Coumarins and lignans from *Zanthoxylum schinifolium* and their anticancer activities. J Agric Food Chem 2013;61(70):30-40.

28. Choi YH. Trans-cinnamaldehyde protects C2C12 myoblasts from DNA damage, mitochondrial dysfunction and apoptosis caused by oxidative stress through inhibiting ROS production. Genes Genomics 2021;43(3):303-12.

29. Pham TNA, Le B, Yang SH. Anticancer activity of the potential *Pyropia yezoensis* galactan fractionated in human prostate cancer cells. Biotechnol Bioprocess Eng 2021;26:63-70.

30. Park S, Kim M, Hong Y, Lee H, Tran Q, Kim C, Kwon SH, Park J, Park J, Kim SH. Myristoylated TMEM39AS41, a cell-permeable peptide, causes lung cancer cell death. Toxicol Res 2020;36:123-30.

31. Liang Y, Kong D, Zhang Y, Li S, Li Y, Ramamoorthy S, Ma J. Fisetin inhibits cell proliferation and induces apoptosis via JAK/STAT3 signaling pathways in human thyroid TPC1 cancer cells. Biotechnol Bioprocess Eng 2019;25:197-205.

32. Kwangbo H, Kim SY, Lee H, Park SH, Hong SH, Park C, Kim GY, Lee SM, Hyun JW, Cheong J, et al. Auranofin enhances sulforaphane-mediated apoptosis in hepatocellular carcinoma Hep3B cells through inactivation of the PI3K/Akt signaling pathway. Biomed Ther (Seoul) 2020;28:443-55.

33. Bae CS, Lee CM, Ahn T. Encapsulation of apoptotic proteins in lipid nanoparticles to induce death of cancer cells. Biotechnol Bioprocess Eng 2020;25:264-71.

34. Yin XM. Bid, a BH3-only multi-functional molecule, is at the cross road of life and death. Gene 2006;369:74-9.
35. Billen LP, Shamas-Din A, Andrews DW. Bid: a Bax-like BH3 protein. Oncogene 2008;27 Suppl 1:S93-104.

36. Kantari C, Walczak H. Caspase-8 and Bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 2011;1813:558-63.

37. Houédé N, Pourquier P. Targeting the genetic alterations of the PI3K-AKT-mTOR pathway: its potential use in the treatment of bladder cancers. Pharmacol Ther 2015;145:145-148.

38. Sathe A, Nawroth R. Targeting the PI3K/AKT/mTOR pathway in bladder cancer. Methods Mol Biol 2018;1655:335-50.

39. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005;9:59-71.

40. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007;129:1261-74.

41. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 2017;104:144-64.

42. Lee YJ, Yoon HJ, Lee SM, Kim JS, Kang DG, Lee HS. Inhibitory effect of Zanthoxylum schinifolium on vascular smooth muscle proliferation. Immunopharmacol Immunotoxicol 2012;34:354-61.