Balancing conservation priorities for grassland and forest specialist bird communities in agriculturally dominated landscapes

Devin R. de Zwaan1,2,*, Niloofar Alavi2, Greg W. Mitchell2,3, David R. Lapen4, Jason Duffe2 and Scott Wilson1,5

1 Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, B.C. V6T 1Z4, Canada.
2 Environment and Climate Change Canada, Science and Technology, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
3 Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
4 Agriculture and Agri-Food Canada, Ottawa, Ottawa Research Development Centre, 906 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
5 Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Road, Delta, B.C., V4K3N2, Canada.

*Corresponding author.
E-mail: drdezwaan@gmail.com
Phone: +31 687598973
Abstract
Effective conservation planning often requires difficult decisions when at-risk species inhabit economically valuable landscapes or if the needs of multiple threatened species do not align. In the agriculture-dominated landscape of eastern Ontario and southwestern Quebec, Canada, conflicting habitat requirements exist between threatened grassland birds benefiting from certain agriculture practices and those of a diverse woodland bird community dependent on forest recovery. Using multi-scale species distribution models with Breeding Bird Survey (BBS) data, we assessed habitat suitability for 8 threatened grassland and forest specialists within this region. We also identified landscapes that jointly maximize occurrence of the 8 focal species and diversity of the overall grassland and forest communities. Influential habitat associations differed among species at the territory (200m radius) and landscape level (1km), highlighting the importance of considering multiple spatial scales. Species diversity was maximized when forest or grassland/pasture cover approached 40–50%, indicating a positive response to land cover heterogeneity. We identified species diversity hotspots near Lake Huron, as well as along the shore and southeast of the St. Lawrence River. These areas represent mosaic landscapes, balancing forest patches, wetland, grassland/pasture, and row crops such as corn, soybean, and cereals. Despite drastic landscape changes associated with agroecosystems, we demonstrate that targeted habitat protection and enhancement that prioritizes land cover diversity can maximize protection of bird communities with directly contrasting needs. We highlight multiple pathways to achieve this balance, including forest retention or separating row crops with hedgerows and wooded fence-lines, improving flexibility in conservation approaches.

Keywords: biodiversity and species richness, Breeding Bird Survey (BBS), ensemble species distribution models, land prioritization, multi-scale spatial analysis, species-at-risk
1. Introduction

Conservation planning requires decisions on how to allocate limited resources to maximize outcomes (Margules and Pressey 2000, Naidoo and Ricketts 2006). For institutions that have multiple conservation goals under their mandate, these decisions may require trade-offs among goals that do not align, either because of their location or the strategy needed. For example, a poor alignment of goals could occur when proactive versus reactive conservation strategies emphasize different geographic areas (Brooks et al. 2006, Wilson et al. 2019) or where greater investment in the recovery of a small number of highly threatened species comes at the cost of protecting a larger number of less threatened species (Martin et al. 2018). In this study, we demonstrate how we can prioritize agricultural landscapes for conservation in a historically forested ecosystem. In this case, there are conflicting goals between the needs of threatened grassland species that benefit from certain agricultural practices and those of a diverse community of woodland-associated species that benefit from forest recovery and retention.

Prior to European settlement, eastern North American ecosystems were largely forested with small openings associated with wetlands, grassland, and Indigenous agriculture (Williams 1989, Butt et al. 2005). Following settlement, forests were cleared for crop agriculture and silviculture with expansion beginning in the east and continuing westward (Ramankutty and Foley 1999, Steyaert and Knox 2008). As the center of agricultural productivity shifted towards the mid-continent, agricultural areas in eastern North America were increasingly abandoned, promoting forest recovery in the late 19th and 20th centuries at rates that varied regionally (Pimm and Askins 1995, Ramankutty and Foley 1999, Ramankutty et al. 2010). In recent decades however, forest recovery has slowed or even reversed in eastern North America due to urbanization, agricultural intensification, and timber harvesting (Drummond and Loveland 2010).

The opening of the landscape in the eastern hardwood forests of North America would have benefitted species that inhabit grasslands, many of which were also losing extensive areas of habitat to agriculture in central North America following the near disappearance of tall grass prairie (Vickery et al. 1999, Norment 2002). Today, declining grassland species such as bobolink (Dolichonyx oryzivorus) and Eastern meadowlark (Sturnella magna) readily use agricultural landscapes in eastern North America, particularly those associated with pastoral or hay production (Wilson et al. 2017). These two species are federally listed under Canada’s Species-at-Risk Act (SARA 2002) and thus there is a mandate to enact measures for their recovery. At
the same time, crop and pastoral agriculture are associated with the loss of forest bird diversity with declines due mainly to the disappearance of insectivorous Neotropical migrants from the community (Endenburg et al. 2019). Some of these Neotropical migrants are also federally listed under SARA (e.g., wood thrush Hylocichla mustelina, Eastern wood-pewee Contopus virens). This scenario leads to a challenging conservation dilemma on how to best manage agroecosystems when the habitat needs for declining, federally listed grassland species conflict with those for threatened forest birds and the broader diversity of the forest bird community.

In this study, we focused on an extensive, agricultural-dominated region of eastern Ontario and southwestern Quebec (Figure 1A) to address this conservation challenge. Specifically, we (1) used a multi-scale species distribution approach to identify geographic areas with the greatest potential to maximize conservation of three targets: i) declining grassland birds, ii) declining forest birds, and iii) total avian diversity. For both declining grassland and forest birds we considered species that are federally listed in Canada as species at risk (SAR), but also species of conservation concern that have yet to be listed. We then assessed (2) which landscape characteristics and spatial scales most influenced occurrence of each species, and thus how to optimize conservation of the three target groups. Finally, (3) we used this information as the basis for a systematic prioritization analysis to formally identify the landscapes and regions that allow us to reach a 25% landscape area protection goal in a manner that maximizes conservation of grassland and forest-dependent species. This goal was chosen to align with Canada’s commitment to protect 25% of terrestrial area by 2025. The results from this study will provide critical insights into the types of landscapes we need to manage or protect to jointly benefit at-risk forest and grassland specialists despite contrasting habitat needs.

2. Material and Methods

2.1. Study region and species
The study region in eastern Ontario and southwestern Quebec, Canada, represents a land cover gradient from forest to intensive agriculture (primarily livestock cash crop) that spans approximately 600 km in latitude and 1000 km in longitude (Figure 1A). This region has experienced extensive habitat modification due to agricultural practices and urbanization, particularly in the south. To the north and west, forests have been cleared for timber and pastoral purposes, yet large sections of native mixed-wood forest, wetland, scrub, and riparian habitats
still exist, including in protected areas such as Algonquin Provincial Park. We focused on the
distribution of four federally listed species-at-risk (SAR) and four species of concern (SOC),
consisting of both grassland and forest specialists (Table 1). All have experienced precipitous
decrees since the 1970s, with population loss in Ontario and Quebec ranging from 55.7% for
least flycatcher *Empidonax minimus* to 88.3% for horned lark *Eremophila alpestris* (Table 1;
Smith et al. 2019).

Table 1. Focal species differentiated by conservation status (SAR – species-at-risk, SOC – species of
concern) and habitat specialization (open-country and forest). Population change indicates the average
percent decline in Ontario and Quebec from 1970 to 2017 as derived from Breeding Bird Survey data
(Smith et al. 2019), while ‘n’ refers to the number of occurrence records for 2018 in the study region.

Species	Latin name	Status	Habitat	Pop. change	n
bobolink	*Dolichonyx oryzivorus*	SAR	Open	-84.6%	421
Eastern meadowlark	*Sturnella magna*	SAR	Open	-86.1%	323
wood thrush	*Hylocichla mustelina*	SAR	Forest	-72.8%	195
Eastern wood-pewee	*Contopus virens*	SAR	Forest	-71.0%	202
horned lark	*Eremophila alpestris*	SOC	Open	-88.3%	111
Savannah sparrow	*Passerculus sandwichensis*	SOC	Open	-77.0%	694
killdeer	*Charadrius vociferus*	SOC	Open	-82.0%	307
least flycatcher	*Empidonax minimus*	SOC	Forest	-55.7%	158

2.2. **Bird observations**

Observations were extracted from the North American Breeding Bird Survey (BBS; Pardieck et
al. 2018). BBS surveys have been conducted since 1966 and involve 40 km long transects
consisting of 50 road-side point counts separated by ~0.8 km. Each count lasts 3 min and all
birds detected within 400m are recorded. Each route is surveyed once per year during peak
breeding season (late-May to early-July) and under fair weather conditions. Rather than
summing observations within route segments as is typically done (e.g., Distler et al. 2015), we
treated each count as an individual data point to leverage fine-scale habitat associations when
predicting species distributions.

We used a single year of BBS data to match remote-sensing land cover estimates
collected in 2018 and limit uncertainty introduced by crop rotation. Count data were converted to
occurrence data for each species to use in binomial species distribution models. The BBS
sampling methodology, combined with one year of data, does not allow estimates of detection
probability. To assess the impact of using uncorrected occurrence data, we used an additional
validation test based on occurrence data pooled over 5 years (2014–2018; see section 2.5). Due to a large sample size of 5200 points across 104 routes, we expected issues of detectability to have a minimal effect on estimates of species distribution.

Figure 1. (A) Map of the study region showing the distribution of the main land cover variables and the individual Breeding Bird Survey (BBS) stop locations (black points). (B) A schematic of the modelling process.
2.3. Habitat and environmental predictors

For habitat associations, we used 30m resolution land cover data from the 2018 Agriculture and Agri-food Canada annual crop inventory (ISO 19130; Table A1). This data set provides detailed information on up to 71 natural and agricultural land cover classes. For each of a subset of ecologically relevant classes, we calculated the proportional area within a 200m and 1km radius. The resulting 16- and 400-hectare areas allowed us to fit multi-scale species distribution models that incorporated habitat associations at both the territory and landscape scale.

We included the following natural land cover classifications in our analyses: water, wetland, shrub, forest, and grassland. Forests consisted of deciduous (broadleaf), coniferous, and mixed-wood forest cover. For agriculture, we separated land covers into pasture, including grass and forages (e.g., hay), and arable crop (hereafter ‘crop’) following Wilson et al. (2017). Native grassland only represents around 1% of the land cover and therefore it was grouped with pasture. Crops included three main types – corn, soybean, and cereals – as combined they make up >90% of the crop land cover in the region. Finally, we included urban land cover which consists of any human-made structures, such as cities, industrial parks, and roads.

To account for general effects of climate and topography, we extracted breeding season climate variables from the CHELSA Bioclim database and three terrain variables (elevation, slope, aspect) from the Canadian Digital Elevation Model (Table A1). The CHELSA database includes seasonal temperature and precipitation variables averaged from 1901–2016 and thus indicates broad-scale spatial differences in climate. We chose the two most relevant climate variables for the breeding season: mean temperature of the warmest quarter (BIO10), and precipitation of the warmest quarter (BIO18). Across the study region, average breeding season temperature varied by 12.8°C (range: 11.0–23.8°C) and precipitation by 350 mm (170–520mm), with the southwest being warmer and drier on average. From the CDEM, we derived aspect in radians and then converted it from a circular variable using a negative cosine transformation, such that a value of 1 is south, -1 north, and 0 either east or west.

2.4. Species distribution models

Habitat suitability was estimated for each species as a function of habitat, terrain, and climate using a 400m resolution grid to match the scale of BBS point counts. For habitat, each grid cell was associated with land cover proportions both within the cell (200m radius), as well as within
1km of the center of the cell. Incorporating multiple spatial scales in species distribution models can outperform single-scale models by accounting for scale-dependent habitat associations and species-specific habitat requirements (Hallman and Robinson 2020). Since point counts were conducted along roads, we included urban cover (which includes road surfaces) at the 1km scale only to avoid overpredicting presence along roadways. For forest-dependent species, we tested models that combined all crop classes into one class ‘crops’ and separated forest cover into its three subclasses: deciduous, coniferous, and mixed-wood. For grassland species, we included forest cover as a general variable and retained individual crop types (cereals, corn, soy) as we expected grassland species to be more responsive to variation in crop type (Table A1).

Prior to model fitting, both presence and absence points were thinned to reduce the potential influence of spatial autocorrelation. We calculated pairwise distances among each point and then randomly removed points until no two were within 1km of each other. This process was replicated 10 times for both presences and absences of each species and the single replicate that retained the most combined data points was selected.

We used ensemble species distribution models (ESDMs) to predict current habitat suitability across the study region for each of the eight focal species. ESDMs integrate multiple modelling approaches, allowing for the modeling of uncertainty among predictions (Thuiller 2004, Elith et al. 2006, Buisson et al. 2010). This is a powerful framework for uncommon species, such as species-at-risk (Breiner et al. 2015), because predictions are informed by multiple techniques that may perform better with certain presence to absence ratios, spatially-structured land cover patterns (i.e., homogenous, heterogeneous), or combinations of habitat predictors (Thuiller 2004, Marmion et al. 2009). We combined Generalized Linear Models (GLMs), General Additive Models (GAMs), and Random Forest (RF) to leverage linear associations, splines, and a decision tree approach, respectively.

Each component model of the ensemble was fit using the same model structure across species. GLMs were fit with all linear and quadratic terms, while GAMs included thin-plate splines with a maximum of 10 knots per variable. RFs were built by growing 5000 trees per replication, with a terminal node size of 1 for fine-scale classification, keeping all other default settings. Each model was replicated 10 times for a total of 30 iterations for each species. All model approaches and replications within the ensemble were integrated using a weighting scheme based on the area under the curve (AUC), such that models with the highest AUC
contributed proportionally more to the final prediction. We also set an ensemble threshold of 0.7, where only replicates with an AUC ≥ 0.7 were retained to reduce uncertainty by precluding poorly fit models. The binary threshold which converts habitat suitability to predicted occurrence was estimated by maximizing the True Skills Statistic (TSS; Allouche et al. 2006) while minimizing the difference between sensitivity and specificity (Liu et al. 2005). In this way, we prioritized small omission rates (false absences) rather than commission rates (false presences), which is advisable for uncommon species (Liu et al. 2013). Finally, we estimated variable contribution by calculating the Pearson’s correlation (r_p) between predictions from the global model and a model with each of the variables sequentially removed.

2.5. Model fit and validation

To estimate model fit, we used a hold-out cross validation approach where the data was randomly partitioned into a training and test dataset using a 70:30 split repeated 5 times with replacement for each model replication (i.e., 50 times per model; 150 per species). Model fit was assessed on the test dataset using a combination of AUC, TSS, the omission rate, and the commission rate averaged across replicates. Models with higher AUC or TSS values and low omission/commission rates were considered a better fit. In addition, while BBS data technically has absence data, the survey methodology is not conducive to estimating detectability and thus it is uncertain to what degree locations with undetected species are ‘true’ absences. To validate prediction accuracy and account for imperfect detection, we also calculated commission rate based on occurrence data pooled over 5 years (2014–2018), where a point was only considered a ‘true’ absence if a species went undetected in all years. Using multiple years of data to identify detectability issues has been employed in previous studies using BBS data (e.g., Donovan and Flather 2002, Endenberg et al. 2019). Since we only used one year to fit our models, assessing the accuracy of predicted absences over 5 years allowed us to quantify over-prediction due to issues with model fit or species detectability.

While multi-scale models can be more informative than single-scale models, they run the risk of collinearity and over-fitting. Predictions of species distribution are generally not influenced by collinearity if the collinear structure is consistent in the training and testing data (Dormann et al. 2012, Hallman and Robinson 2020). By evaluating model fit on 150 randomly selected training and testing data sets per species, it is highly unlikely we would consistently
sample different collinear structures. However, we tested for over-fitting using two approaches. First, we calculated the difference in AUC and TSS among training and test partitions for each replication (AUC_{dir} and TSS_{dir}). High values of AUC_{dir} and TSS_{dir} indicate potential over-fitting and low precision as there is less agreement among partitions. Secondly, we fit fine- and coarse-scale ensemble models to compare with the multi-scale model using the same model fit statistics mentioned above: AUC, TSS, omission rate, and commission rate (1 and 5 years). Either of the reduced models fitting better than the multi-scale model would indicate potential over-fitting (Hallman and Robinson 2020).

2.6. Species richness

To evaluate species richness across the study region, we used stacked species distribution models (SSDMs). SSDMs involve overlaying the predicted distribution of each species and summing across layers to estimate species richness, retaining valuable information on species composition (i.e., forest or grassland specialists; Dubuis et al. 2011). While SSDMs can overpredict species richness because species-specific habitat predictors do not reflect macroecological community drivers (e.g., species interactions), the extent of overprediction is often dependent on individual model fit and optimization (Distler et al. 2015, Biber et al. 2019). Therefore, like the focal species, each individual model was optimized to more accurately represent relative species richness across the study region.

We built SSDMs for: 1) grassland specialist SAR and SOC, 2) forest specialist SAR and SOC, 3) all SAR and SOC species combined, and 4) all species that occur within the region (i.e., total species richness). For all species (4), ensemble models were built for all terrestrial birds observed on the BBS routes, excluding non-native species. We also excluded species observed less than 50 times in 2018. Of the 176 species observed in 2018, 76 species met the criteria and were included (Table A2). For consistency with focal species, the same model structure, binary threshold estimation, and fit evaluation were used (sections 2.4–2.5).

Predicted distribution maps were overlaid with those of the 8 focal species and summed to estimate species richness. Variable contribution for species richness was calculated as the average contribution across all species and its associated standard error. We also fit GAMs describing predicted species richness with the land cover, terrain, and climate predictors that
were identified as having the greatest variable contribution to evaluate the habitat associations that shape species richness.

2.7. Prioritization analysis

We performed a prioritization analysis using Integer Linear Programming (ILP) with the Gurobi optimizer (Gurobi Optimization and LCC, 2020) to evaluate planning scenarios based on our conservation objective. Our goal was to maximize the effectiveness of limited conservation funds by optimizing the trade-off between the conservation of all targets and socioeconomic cost. In this case, the targets refer to the distributions of the 8 focal species and the upper 25% of areas with the highest total species richness. We used a minimum set objective with the goal of retaining at least 25% representation of all targets in the most cost-effective manner by minimizing the number of planning units needed to reach this goal. The planning units for the prioritization were 2 km² terrestrial pixels (1km radius). Distribution maps for each target were created at a 0.4 km² scale (200m radius), but each one was individually aggregated to a 2 km² scale for the prioritization as the more likely scale at which lands are managed. Portions of the study area that were already formally protected were locked into the solution. Thus, we identified additional non-protected areas that, when combined with existing protected areas, met the minimum set objective.

A conceptual diagram of all modelling steps is including in Figure 1B. All spatial and statistical analyses were conducted in R software version 3.6.3 (R Core team 2020). GLMs were fit using package ‘lme4’ (Bates et al. 2015), GAMS with ‘mgcv’ (Wood 2011), and RFs with ‘randomForest’ (Liaw and Wiener 2002). Individual species distribution models were combined into ESDMs using a modified version of ‘SSDM’ (Schmitt et al. 2017). The prioritization analysis was conducted using ‘prioritizr’ (Hanson et al. 2020).

3. Results

3.1. Predicted distributions of focal species

In 2018, at least one of the eight focal species was observed at approximately 30% of the 5200 BBS point counts. The number of observations per species ranged from a low of 111 for horned lark to a high of 694 for Savannah sparrow (Table 1). Model fit was generally high, with an average AUC of 0.860 (range: 0.826–0.921) and TSS of 0.732 (range: 0.653–0.869). The rate of
false negatives (omission error) was also low and within expected ranges (0.030–0.184) as was
the false positive or commission error rate (0.101–0.199), indicating high predictive accuracy
across species (Table A3). Model comparisons among the multi-, fine-, and coarse-scale models
clearly indicated an advantage to using a multi-scale approach as it was the best fitting model
across all species (Table A3). Predictions within each ensemble model were moderately to highly
correlated ($r_p > 0.70$), suggesting each component model was capturing similar relationships,
except for the three forest specialists where RF and GLM were in poor agreement, highlighting
the value of an ensemble approach ($r_p \sim 0.50$; Table A4).

As expected, predicted distributions indicated grassland specialists have more suitable
habitat in the southern and southeastern regions of Ontario where land cover is dominated by
agriculture, although substantial areas of suitability were also predicted along the St. Lawrence
River in Quebec (Figure 2). Forest specialists concentrated in the northern portions of the study
region, yet suitable habitat was still identified within the more intensive agricultural area in the
south, particularly near Lake Huron which represents a mosaic of field crops, forest patches, and
hedgerows (Figure 2). Grassland (including pasture, forage, and hay) had the strongest influence
on the distribution of bobolink, Eastern meadowlark, and Savannah sparrow, but had little
influence on horned lark and killdeer (Table A5). Instead, these latter two species responded
positively to row crops, particularly cereals but also soybean for horned lark (Table A5). Forest
specialists primarily responded to forest availability, with particularly strong and positive
associations with deciduous, and for wood thrush, mixed-wood forest cover (Table A5). The
influence of scale also differed among species, highlighting the importance of a multi-scale
approach. For example, while grassland species were generally associated with grassland and
agriculture land-use at the territory scale (200m radius), horned lark responded most strongly to
agricultural land cover at larger spatial scales (1km; Table A5).
Figure 2. Estimates of species distribution or the fundamental niche of the four species-at-risk (a, c, e, g) and species of concern (b, d, f, h) based on the estimated habitat suitability threshold. Distributions in brown and green indicate grassland and forest specialists, respectively.

3.2. Focal species richness

For the focal at-risk community, our models predicted higher grassland specialist richness in the south and southwest, whereas greater forest specialist richness occurred in the north and northwest (Figure 3), paralleling results from individual focal species models. The proportion of
grassland within a 200m radius had the greatest influence on grassland species richness, followed
by moderately strong influences of row crops at both 200m and 1km radii (Figure 3), again,
aligning with results from our focal species. Forest species richness was driven primarily by
deciduous and mixed-wood forest cover, as well as more moderate influences of wetland and
shrub at larger spatial scales (Figure 3).

Figure 3. Predicted richness of focal species richness, depicting: A) grassland specialists only, B) forest
specialists only, and C) all focal species combined. For (C), the predicted distributions of open-country
and forest specialists were summed within 2 km2 (1km radius) to demonstrate the richness of focal
species at the landscape scale rather than the territory scale. The adjacent bar plots indicate average
variable contribution as a percentage for each of the grassland and forest specialists. Error bars depict
standard deviation among component species.
Combined richness of at-risk grassland and forest communities was greatest to the west and northwest of Toronto, near Lake Huron, as well as west, southwest of Montreal and Ottawa (Figure 3C). Again, these are regions with greater habitat heterogeneity, including fields of pasture or crop interspersed with forest and woody shrub patches. This was reflected in the top habitat associations, where at-risk species richness increased with the proportion of shrub at the territory scale and wetland at the broader landscape scale (Figure 4). Importantly, the positive influence of grassland and deciduous forest both peaked around 40–50% of land cover, indicating that a mix of habitat types and forest edges maximizes diversity of all focal species (Figure 4). At the broader scale, the influence of grassland and corn also plateaued around 40% of land cover, while cereals had a strong linear effect, likely driven by the positive influence on species like horned lark, Savannah sparrow, and killdeer (Figure 4). Temperature (BIO10) and precipitation (BIO18) had positive and negative influences on richness, respectively, suggesting warmer and moderately dry climates are favoured, although the magnitude of influence was significantly less than the landcover effects (Figure 4).

Figure 4. The top habitat associations predicting focal species richness. Relative species richness is the difference from the mean species richness at zero. For all associations, the X-axis is proportion of land cover, except for bios 10 (temperature) and bios 18 (precipitation) which are displayed in 1/10th degrees Celsius and mm, respectively. The shaded band represents the 95% CI and the distribution of points is depicted along the X-axis.
3.3. Overall species richness

Species richness of the overall bird community (76 species) was predicted to reach ~50–60 species in multiple mid-latitude areas from east to west (Figure 5A). We quantified areas with high species richness, defined as containing at least 75% of the total species richness or 75% of the focal species. This demonstrated that greater than average richness for both groups was predicted in regions near Lake Huron, west of Montreal and Ottawa, as well as along the St. Lawrence River (Figure 5B). These regions contain the necessary land cover, terrain, and climate features that jointly facilitate high species richness of declining species, as well as the overall grassland and forest bird communities.

Figure 5. Total species richness predicted within the study region, showing: A) total richness of all terrestrial birds with at least 50 observations (76 species), and B) areas with richness greater than the 3rd quantile (>75% of maximum). For the latter, green indicates areas where species richness is greater than the 3rd quantile for either the focal species-at-risk (≥ 6 species) or total species richness (≥ 41 species), while yellow depicts areas where high species-at-risk and total richness align.

3.4. Prioritization analysis

The minimum set objective required 16.7% (64,800 km²) of the focal land area of which 48% (31,040 km²) lacked existing protection (Figure 6). The prioritized and protected areas were largely concentrated in the northern portions of the focal area with considerable blocks of protected area represented by larger parks (e.g., Algonquin Provincial Park in Ontario, Mont-Tremblant National Park in Quebec). The prioritized and unprotected area included many small parcels, mostly in the south with larger contiguous selections in the southwest, near Lake Huron, and south of the St. Lawrence River Valley in the east (Figure 6). While the minimum set
objective ensured 25% of each species’ distribution was included, variable distribution extents among species translated into considerable differences in selected areas ranging from 6,068 km² for Eastern meadowlark to 42,992 km² for least flycatcher (Table A6).

Figure 6. Minimum set prioritization results showing selected sites with existing protection (blue) and without protection (green). The prioritization selected at least 25% of the distribution for each feature in the most cost-effective manner (i.e., minimum required area). Features were the distribution maps for each species shown in Figure 3 and the upper quartile for total species richness shown in Figure 5A.

4. Discussion
Conservation planning frequently requires trade-offs to meet multiple objectives. In this study, we examined how to balance the conservation needs of grassland and forest birds within a naturally forested ecosystem where the expansion of agriculture has resulted in a vastly different ecosystem with consequent shifts in bird communities (Wilson et al. 2020). Despite extensive agriculture land-use, we were still able to identify areas and landscape types that were suitable
for individual species-at-risk and maximized the diversity of bird communities dependent on grassland and forest. Habitat associations and the spatial scale at which they influenced occupancy differed greatly among individual focal species and indicated the importance of mixed-wood forests, wetland, native grassland and pastoral agriculture (i.e., forage, hay), as well as certain row crops such as cereals which enhanced occupancy of some grassland species of concern. Despite differences in habitat requirements among species, several regions characterized by complex landscape structures were predicted to balance the needs of both grassland and forest-associated species.

Our study highlights the importance of maintaining habitat heterogeneity in agroecosystems, a result that has been shown across different temperate and tropical ecosystems globally (Karp et al. 2012, Liu et al. 2013). Areas with high species richness and selected by the prioritization included two types of heterogeneity. In western portions of the study region south of Lake Huron, the landscape is largely agricultural but with considerable representation of linear woody features along roadways and between fields (Figure S1). These features include hedgerows and riparian strips associated with natural and drainage ditch networks, which have been shown to enhance the diversity of forest and shrub-bird communities in both eastern Canada (Wilson et al. 2017) and elsewhere (Hinsley and Bellamy 2000, Sykes and Hannon 2001, Bátary et al. 2010, Mulwa et al. 2012). Richness and the number of prioritized sites declined to the south of this region near Lake Erie where minimal woody cover has been retained (Figure S1). Parts of the eastern study region (e.g., south and east of Montreal) also included areas of high richness that were selected by the prioritization. In contrast to the areas south of Lake Huron, where habitat heterogeneity was maintained via linear strips within a largely agricultural region, the areas south of the St. Lawrence Valley in Quebec were often a combination of forest blocks and open agricultural fields, thus highlighting two different types of landscapes that can meet the conservation challenge we addressed in this study.

As forests are the primary land cover in the region, the potential distribution of forest specialists tended to be considerably greater than that for grassland species. When using a minimum set prioritization with a goal to protect a percentage of each species distribution, the result is a higher area target for forest species. For example, a 25% area goal required only 6,068 km² for Eastern meadowlark, but 42,992 km² for least flycatcher. Because much of the northern portion of the study region contains little agriculture and most of the forested protected areas,
this higher area goal for forest species could be met more easily by utilizing the existing
protected area network and incorporating forested provincial crown land in management
strategies. In contrast, the more challenging goal will be to meet area targets in high value
agricultural regions where almost all land is private and strictly protected areas are often not
feasible; yet these are the regions needed to reach the area targets for grassland species while
also accommodating forest species. In these cases, the objective should be to work with
landowners to manage landscapes in a manner that maximizes the diversity of both avian groups
to the extent possible without compromising agricultural yields.

It is important to note that we assessed fundamental habitat suitability, or the potential
distribution that each focal species could inhabit, rather than the realized distribution
(Hutchinson 1957, Pulliam 2000). Various factors can limit realized relative to fundamental
distribution, including 1) avoidance of certain sites due to human activity (e.g., recreation), and
2) species interactions, which were not addressed in this study. Additionally, 3) legacy effects
may be particularly important with agriculture as crop rotation can change land cover from year-
to-year and thus settlement decisions of philopatric individuals may be partially influenced by
previous land cover types. Finally, 4) population size may be limited by non-breeding season
effects stemming from different periods across the annual cycle (Taylor and Stutchbury 2016,
Wilson et al. 2018), such that suitable habitat may remain unoccupied. We found relatively low
commission error rates (false positives) even when pooling across 5 years, suggesting our models
were accurately differentiating between good and poor breeding habitat. That said, wood thrush,
least flycatcher, and eastern wood-pewee had the highest 5-year commission rates (14–18%).
Since these are Neotropical migrants where non-breeding season threats are now well
established, it is possible that these higher commission rates are partially explained by poor
survival during migration and on the wintering grounds, leading to lower occupancy rates of
otherwise suitable habitat.

Future habitat suitability predictions can be further improved by integrating different
habitat features. We focused primarily on the proportion of various land covers to describe
habitat suitability for each species. Our results highlighted the importance of diverse habitat
complements across multiple scales but did not shed any light on the relative position of certain
habitat types within either territory or landscape scales which may impact habitat suitability (e.g.,
patch size, structural connectivity; Andrén 1994, Mortelliti et al. 2010, Fahrig 2020). Future
research should refine predictions by incorporating variables such as habitat aggregation, patch size, and structural connectivity (i.e., placement of linear woody features) to improve recommendations on how to manage for a more diverse agroecosystem.

4.1. Application of bird conservation in an agroecosystem

Our results provide a framework to derive habitat management priorities focused on preserving both forest and grassland bird communities in southern Ontario and Quebec, a region that is representative of many intensive agroecosystems in north temperate regions. We expect this information could be used in programs such as Canada’s Habitat Stewardship Program, which allows agencies to identify areas and enact stewardship programs for species-at-risk recovery. Retaining strips of woody habitat as a strategy to maintain biodiversity may be particularly suitable in landscapes with higher agriculture value, requiring minimal agricultural land while providing numerous ecosystem services such as limiting soil erosion, windbreaks to minimize crop damage, riparian corridors for reducing runoff pollution, and supporting insect and faunal communities that provide pest control and pollination (Marshall and Moonen 2002, Swinton et al. 2007, Tscharntke et al. 2012). Retaining forest blocks may be more feasible in regions with lower agricultural value, occurring more often when grassland/pasture represented a high proportion of agricultural land-use in our study region. With little remaining grassland, these landscapes allow grassland-dependent species to persist, including federally listed species such as Eastern meadowlark and bobolink (Wilson et al. 2017). Therefore, in addition to crop type, actions benefitting grassland-dependent species also need to target favourable agricultural practices, including reduced fertilizer and pesticide inputs, multi-year forage production within corn-soy rotations to provide consistency in preferred forage cover types, and limiting mortality of offspring by scheduling hay harvest to reduce overlap with peak breeding season (Put et al. 2020).
Authors’ Contributions
All authors contributed to study design. DDZ conducted the analyses with assistance from NA on land cover assembly and extraction. DDZ and SW co-led writing of the manuscript with feedback and revision from all authors.

Data Accessibility
Data and code will be made available in a public repository upon manuscript acceptance.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements
We thank all volunteers who collect the Breeding Bird Survey data that allowed us to conduct this analysis. Funding for this work was provided by the Interdepartmental Initiatives in Agriculture Grant of Agriculture and Agri-Food Canada.
Literature cited

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa, and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Andrén, H. (1994). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71: 355-366. https://doi.org/10.2307/3545823

Bátary, P., Matthiesen, T. & Tscharntke, T. (2010). Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biol. Conserv. 143:2020–2027. https://doi.org/10.1016/j.biocon.2010.05.005

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 67: 1–48. https://doi.org/10.18637/jss.v067.i01

Biber, M. F., Voskamp, A., Niamir, A., Hickler, T., & Hof, C. (2020). A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. J. Biogeogr. 47: 114–129. https://doi.org/10.1111/jbi.13696

Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6: 1210–1218. https://doi.org/10.1111/2041-210X.12403

Brooks, T. M., Mittermeier, R. A., da Fonseca, G. A., Gerlach, J., Hoffmann, M., Lamoreux, J. F., ... & Rodrigues, A. S. (2006). Global biodiversity conservation priorities. Science 313:58–61. https://doi.org/10.1126/science.1127609

Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16: 1145–1157. https://doi.org/10.1111/j.1365-2486.2009.02000.x

Butt, S., Ramprasad, P., & Fenech, A. (2005). Changes in the landscape of southern Ontario, Canada since 1750: Impacts of European Colonization. In Fenech, A., MacIver, D., Auld, H., Hansell, R. (Eds.), Integrated Mapping Assessment (pp. 83–92). Toronto, ON: Environment Canada

Distler, T., Schuetz, J. G., Velásquez-Tibátá, J., & Langham, G. M. (2015). Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change. J. Biogeogr. 42: 976–988. https://doi.org/10.1111/jbi.12479

Donovan, T. M., & Flather, C. H. (2002). Relationships among North American songbird trends, habitat fragmentation, and landscape occupancy. Ecol. Appl. 12: 364–374. https://doi.org/10.1890/1051-0761(2002)012[0364:RANAST][2.0.CO;2

Dormann, C. F., ELith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., ... & Münkemüller, T. (2012). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Drummond, M. A., & Loveland, T. R. (2010). Land-use pressure and a transition to forest-cover loss in the eastern United States. Biosci. 60: 286–298. https://doi.org/10.1525/bio.2010.60.4.7
Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J. P., & Guisan, A. (2011). Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers. Distrib. 17: 1122–1131. https://doi.org/10.1111/j.1472-4642.2011.00792.x

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., ... & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Endenburg, S., Mitchell, G. W., Kirby, P., Pasher, J., Fahrig, L., & Wilson, S. (2019). The homogenizing influence of agriculture on forest bird communities. Landsc. Ecol. 34: 2385–2399. https://doi.org/10.1007/s10980-019-00895-8

Fahrig, L. (2020). Why do several small patches hold more species than few large patches? Glob. Ecol. Biogeogr. 29: 615–628. https://doi.org/10.1111/gub.13059

Hallman, T. A., & Robinson, W. D. (2020). Comparing multi- and single-scale species distribution and abundance models built with the boosted regression tree algorithm. Landsc. Ecol. 35: 1161–1174. https://doi.org/10.1007/s10980-020-01007-7

Hanson, J. O., Schuster, R., Morrell, N., Strimas-Mackey, M., Watts, M.E., Arcese, P., Bennett, J. R., & Possingham, H. P. (2020). prioritizr: Systematic Conservation Prioritization in R. Available at https://prioritizr.net/

Hinsley, S. A., & Bellamy, P. E. (2000). The influence of hedge structure, management, and landscape context on the value of hedgerows to birds: a review. J. Environ. Manag. 60: 33–49. https://doi.org/10.1006/jema.2000.0360

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22: 415–427.

Karp, D. S., Rominger, A. J., Zook, J., Ranganathan, J., Ehrlich, P. R., & Daily, G. C. (2012). Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15: 963–970. https://doi.org/10.1111/j.1461-0248.2012.01815.x

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News 2: 18–22.

Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x

Liu, Y., Duan, M., & Zhenrong, Y. (2013). Agricultural landscapes and biodiversity in China. Agric. Ecosyst. Environ. 166: 46–54. https://doi.org/10.1016/j.agee.2011.05.009

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature 405: 243–253. https://doi.org/10.1038/35012251

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. (2009). Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15: 59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x
Marshall, E. J. P., & Moonen, A. C. (2002). Field margins in northern Europe: their functions and interactions with agriculture. Agric. Ecosyst. Environ. 89: 5–21. https://doi.org/10.1016/S0167-8809(01)00315-2

Martin, T. G., Kehoe, L., Mantyka-Pringle, C. S., Chadès I., Wilson, S., Bloom, R. G., Davis, S. K., Fisher, R., Keith, J., Mehl, K., Prieto Diaz, B., Wayland, M. E., Wellicome, T. I., Zimmer, K. P., & Smith, P. A. (2018). Prioritizing recovery funding to maximize conservation of endangered species. Conserv. Lett. 11: e12604. https://doi.org/10.1111/conl.12604

Mortelliti, A., Fagiani, S., Battisti, C., Capizzi, D., & Boitani, L. (2010). Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds. Divers. Distrib. 16: 941–951. https://doi.org/10.1111/j.1472-4642.2010.00701.x

Mulwa, R. K., Böhning-Gaese, K., & Schluning, M. (2012). High bird species diversity in structurally heterogenous farmland in Western Kenya. Biotropica 44: 801–809. https://doi.org/10.1111/j.1744-7429.2012.00877.x

Naidoo, R., & Ricketts, T. H. (2006). Mapping the economic costs and benefits of conservation. PloS Biol. 11: 2153–2164. https://doi.org/10.1371/journal.pbio.0040360

Norment, C. (2002). On grassland bird conservation in the Northeast. Auk 119: 271–279. https://doi.org/10.1093/auk/119.1.271

Pardieck, K. L., Ziolkowski Jr., D. J., Lutmerding, M., Campbell, K., & Hudson, M.-A. R. (2018). North American Breeding Bird Survey Dataset 1966–2018, version 2018.0. U.S. Geological Survey. Patuxent Wildlife Research Center

Pimm, S. L., & Askins, R. A. (1995). Forest losses predict bird extinctions in eastern North America. PNAS 92: 9343–9347. https://doi.org/10.1073/pnas.92.20.9343

Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecol. Lett. 3: 349–361. https://doi.org/10.1046/j.1461-0248.2000.00143.x

Put, J. E., Camponizzi, A. J., & Lebrun-Southcott, Z. M. (2020). Determining when bobolink finish breeding to time agricultural activity in nesting refuges. J. Wildl. Manag. 84: 468–477. https://doi.org/10.1002/jwmg.21826

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ramankutty, N., & Foley, J. A. (1999). Estimating historical changes in land cover: North American croplands from 1850 to 1992. Glob. Ecol. Biogeogr. 8: 381–396. https://doi.org/10.1046/j.1365-2699.1999.00141.x

Ramankutty, N., Heller, E., & Rhemtulla, J. (2010). Prevailing myths about agricultural abandonment and forest regrowth in the eastern United States. Ann. Assoc. Am. Geogr. 100: 502–512. https://doi.org/10.1080/00045601003788876

[SARA] Species At Risk Act. (2002). Bill C-5: An act respecting the protection of wildlife species at risk in Canada.

Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F., & Birnbaum, P. (2017). ssdm: An r package to predict distribution of species richness and composition based on stacked species
distribution models. Methods Ecol. Evol. 8: 1795–1803. https://doi.org/10.1111/2041-210X.12841

Smith, A. C., Hudson, M-A. R. Aponte, V., & Francis, C. M. (2019). North American Breeding Bird Survey - Canadian Trends Website, Data-version 2017. Gatineau, Quebec: Environment and Climate Change Canada

Steyaert, L. T., & Knox, R. G. (2008). Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interactions within the eastern United States. J. Geophys. Res. 113: D02101. https://doi.org/10.1029/2006JD008277

Sykes, A. K., & Hannon, S. J. (2001). Fencerows as habitat for birds in an agricultural landscape in central Alberta, Canada. Ecoscience 8: 441–449. https://doi.org/10.1080/11956860.2001.11682673

Swinton, S. M., Lupi, F., Robertson, G. P., & Hamilton, S. K. (2007). Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64: 245–252. https://doi.org/10.1016/j.ecoene.2007.09.020

Taylor, C. M., & Stutchbury, B. J. M. (2016). Effect of breeding vs. winter habitat loss and fragmentation on the population dynamics of a migratory songbird. Ecol. Appl. 26: 424–437. https://doi.org/10.1890/14-1410

Thuiller, W. (2004). Patterns and uncertainties of species’ range shifts under climate change. Glob. Change Biol. 10: 2020–2027. https://doi.org/10.1111/j.1365-2486.2004.00859.x

Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J., & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151: 53–59. https://doi.org/10.1016/j.biocon.2012.01.068

Vickery, P. D., Tubaro, P. L., Cardosa de Silva, J. M., Peterjohn, B. G., Herkert, J. R., & Cavalcanti, R. B. (1999). Conservation of grassland birds in the Western Hemisphere. Stud. Avian Biol. 19: 2–26.

Williams, M. (1989) Americans and Their Forests: A Historical Geography. Cambridge, UK: Cambridge University Press.

Wilson, S., Mitchell, G. W., Pasher, J., McGovern, M., Hudson, M. R., & Fahrig, L. (2017). Influence of crop type, heterogeneity, and woody structure on avian biodiversity in agricultural landscapes. Ecol. Indic. 83: 218–226. https://doi.org/10.1016/j.ecolind.2017.07.059

Wilson, S., Saracco, J. F., Krikun, R., Flockhart, D. T. T., Godwin, C. M., & Foster, K. R. (2018). Drivers of decline across the annual cycle of a threatened migratory bird. Sci. Rep. 8: 7316. https://doi.org/10.1038/s41598-018-25633-z

Wilson, S., Schuster, R., Rodewald, A. D., Bennett, J. R., Smith, A. C., La Sorte, F. A., Verburg, P. H., Arcese, P. (2019). Prioritize diversity or declining species? Trade-offs and synergies in spatial planning for the conservation of migratory species in the face of land cover change. Biol. Conserv. 239: 108285. https://doi.org/10.1016/j.biocon.2019.108285
Wilson S., Alavi, N., Pouliot, D., & Mitchell, G. W. (2020). Similarity between agricultural and natural land covers shape how biodiversity response to agricultural expansion at landscape scales. Agric. Ecosyst. Environ. 301: 107052. https://doi.org/10.1016/j.agee.2020.107052

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B. 73: 3–36
Table A1. Overview of habitat predictors for species distribution models (SDMs). Guild indicates the species group associated with the predictor (G = grassland, F = forest). ‘Original res’ is the resolution at which the raster layer was available, while ‘Res’ is the resolution incorporated into the model and ‘Method’ indicates the aggregation/resampling method by which the resolution was converted.

Variable	Guild	Original res	Res	Method	Description	Source
Natural land cover						
Water	G/F	30m	400m	Sum	Lakes, rivers, streams	AAFC1
Shrub	G/F	30m	400m	Sum	Low-profile woody vegetation (+/- 2m height)	AAFC1
Wetland	G/F	30m	400m	Sum	High water table with semi-permanent/permanent wetland veg (eg, marsh, bog, swamp)	AAFC1
Forest	G	30m	400m	Sum	Coniferous, deciduous, & mixed-wood forest.	AAFC1
Deciduous	F	30m	400m	Sum	Broadleaf forest only.	AAFC1
Coniferous	F	30m	400m	Sum	Coniferous forest only.	AAFC1
Mixed-wood	F	30m	400m	Sum	Mixed deciduous & coniferous forest or treed areas.	AAFC1
Grassland	G/F	30m	400m	Sum	Native grassland (grasses, herbaceous veg), pasture, & forage (periodically cultivated grasses and perennial crops such as clover grown for hay, pasture, or seed).	AAFC1
Anthropogenic land cover						
Crops	F	30m	400m	Sum	Combination of cereals, corn, and soybean (>90% of agricultural land).	AAFC1
Cereals	G	30m	400m	Sum	Consists of barley, millet, oats, rye, spelt, triticale, switchgrass, sorghum, quinoa, and winter/spring wheat.	AAFC1
Corn	G	30m	400m	Sum	Predominantly corn crops.	AAFC1
Soybean	G	30m	400m	Sum	Predominantly soybean crops.	AAFC1
Variable	Guild	Original res	Res	Method	Description	Source
----------	-------	--------------	-----	--------	--	--------
Urban	G/F	30m	2km	Sum	Developed land with associated veg (eg, roads, cities, industrial sites, golf courses, etc.)	AAFC¹

Topography

Variable	Guild	Original res	Res	Method	Description	Source
Elevation	G/F	22m	400m	Avg	Height above sea level (m).	CDEM²
Slope	G/F	22m	400m	Avg	Incline (°) calculated from adjacent elevation.	CDEM²
Aspect	G/F	22m	400m	Avg	North-south orientation	CDEM²

Climate

Variable	Guild	Original res	Res	Method	Description	Source
Bios10	G/F	1km	400m	Bilinear	Mean temp of warmest quarter	CHELSA³
Bios18	G/F	1km	400m	Bilinear	Precipitation of warmest quarter	CHELSA³

¹Annual crop inventory assembled by the Earth Observation Team of the Science and Technology Branch of Agriculture and Agri-food Canada (AAFC; Government of Canada; Access: https://open.canada.ca/data/en/dataset/ba2645d5-4458-414d-b196-6303ac06c1e9).

²Canadian Digital Elevation Model, 1945-2011, Canada Center for Mapping and Earth Observation, Natural Resources Canada, Government of Canada (Accessed: https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333).

³CHELSA Bioclim data (Karger et al. 2017a,b)

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kref, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, P., Kessler, M. (2017a). Climatologies at high resolution for the Earth land surface areas. Sci. Data 4: 170122. https://doi.org/10.1038/sdata.2017.122

Karger D. N., Conrad, O., Böhner, J., Kawohl, T., Kref, H., Soria-Auza, R.W., Zimmermann, N. E., Linder, H. P., Kessler, M. (2017b). Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4
Table A2. Species included in the stacked species distribution models (SSDMs) for assessing species richness. Observations (n) are the number of sites each species was observed at in 2018. Open refers to grassland-dependent species. All focal species are highlighted in bold.

Species	Latin name	Habitat	n
Alder flycatcher	Empidonax alnorum	Open	389
American crow	Corvus brachyrhynchos	Open	2233
Barn swallow	Hirundo rustica	Open	490
Bobolink			
Brown-headed cowbird	Molothrus ater	Open	287
Brown thrasher	Toxostoma rufum	Open	237
Common grackle	Quiscalus quiscula	Open	1316
Common yellowthroat	Geothlypis trichas	Open	1530
Eastern bluebird	Sialia sialis	Open	64
Eastern kingbird	Tyrannus tyrannus	Open	262
Eastern meadowlark			
Field sparrow	Spizella pusilla	Open	158
Horned lark	Eremophila alpestris	Open	111
Killdeer	Charadrius vociferus	Open	307
Mourning dove	Zenaida macroura	Open	1246
Red-winged blackbird	Agelaius phoeniceus	Open	2146
Savannah sparrow	Passerellus sandwichiens	Open	694
Swamp sparrow	Melospiza georgiana	Open	231
Tree swallow	Tachycineta bicolor	Open	303
Turkey vulture	Cathartes aura	Open	160
Vesper sparrow	Poecetes gramineus	Open	79
American goldfinch	Spinus tristis	Forest	1236
American redstart	Setophaga ruticilla	Forest	479
American robin	Turdus migratorius	Forest	2643
Baltimore oriole	Icterus galbula	Forest	282
Black-and-white warbler	Mniotilta varia	Forest	367
Black-billed cuckoo	Coccyzus erythropthalmus	Forest	59
Black-capped chickadee	Poecile atricapillus	Forest	732
Blue-headed vireo	Vireo solitarius	Forest	124
Blackburnian warbler	Setophaga fusca	Forest	116
Blue jay	Cyanocitta cristata	Forest	877
Black-throated blue warbler	Setophaga caerulescens	Forest	85
Black-throated green warbler	Setophaga virens	Forest	186
Cedar waxwing	Bombycilla cedrorum	Forest	550
Chipping sparrow	Spizella passerina	Forest	1233
Common raven	Corvus corax	Forest	229
Chestnut-sided warbler	Setophaga pensylvanica	Forest	663
Downy woodpecker	Picoides pubescens	Forest	132
Eastern phoebe	Sayornis phoebe	Forest	351
Eastern towhee	Pipilo erythrophthalmus	Forest	71
Eastern wood-pewee			
Great crested flycatcher	Miapircrus cintrinus	Forest	371
Gray catbird	Dumetella carolinensis	Forest	324
Hairy woodpecker	Leucomotopicus villosus	Forest	103
Hermit thrush	Catharus guttatus	Forest	259
Species	Latin name	Habitat	n
-------------------------	-----------------------	---------	-------
House wren	*Troglodytes aedon*	Forest	567
Indigo bunting	*Passerina cyanea*	Forest	420
Least flycatcher	*Empidonax minimus*	Forest	158
Magnolia warbler	*Setophaga magnolia*	Forest	274
Mourning warbler	*Geothlypis philadelphia*	Forest	155
Myrtle warbler	*Setophaga coronata*	Forest	184
Nashville warbler	*Leiothlypis ruficapilla*	Forest	291
Northern cardinal	*Cardinalis cardinalis*	Forest	368
Northern flicker	*Colaptes auratus*	Forest	359
Northern parula	*Setophaga americana*	Forest	91
Northern waterthrush	*Parkesia noveboracensis*	Forest	91
Ovenbird	*Seiurus aurocapilla*	Forest	1134
Pine siskin	*Spinus pinus*	Forest	61
Pine warbler	*Setophaga pinus*	Forest	92
Pileated woodpecker	*Dryocopus pileatus*	Forest	143
Purple finch	*Haemorhous purpureus*	Forest	101
Rose-breasted grosbeak	*Pheucticus ludovicianus*	Forest	357
Red-breasted nuthatch	*Sitta canadensis*	Forest	290
Red-eyed vireo	*Vireo olivaceus*	Forest	2093
Scarlet tanager	*Piranga olivacea*	Forest	103
Song sparrow	*Melospiza melodia*	Forest	2637
Swainson’s thrush	*Catharus ustulatus*	Forest	83
Veery	*Catharus fuscescens*	Forest	675
Warbling vireo	*Vireo gilvus*	Forest	479
White-breasted nuthatch	*Sitta carolinensis*	Forest	128
Wild turkey	*Meleagris gallopavo*	Forest	130
Winter wren	*Troglodytes hiemalis*	Forest	206
Wood thrush	*Hylocichla mustelina*	Forest	195
White-throated sparrow	*Zonotrichia albicollis*	Forest	850
Yellow-bellied sapsucker	*Sphyrapicus varius*	Forest	321
Yellow warbler	*Setophaga petechia*	Forest	641
Table A3. Model fit metrics for each focal species comparing the multi-scale model to the fine- and coarse-scale models. The model highlighted in bold was considered the top model based on the AUC, TSS, omission rate (OR; false absences) and commission rate (CR; false presences). The commission rate was also calculated over 5 years (2014–2018) to account for imperfect detection. Accuracy is the proportion of correctly predicted presences and absences combined. AUC_{dif} and TSS_{dif} are the average differences between training and testing AUC and TSS, respectively.

Model	AUC	TSS	OR	CR	CR (5yr)	Accuracy	AUC_{dif}	TSS_{dif}
Bobolink								
Multi	0.852	0.711	0.089	0.199	0.138	0.815	0.01	0.02
Fine	0.847	0.701	0.068	0.230	0.172	0.791	0.04	0.04
Coarse	0.820	0.646	0.098	0.255	0.198	0.765	0.02	0.01
Eastern meadowlark								
Multi	0.881	0.774	0.060	0.166	0.106	0.844	0.02	0.03
Fine	0.849	0.709	0.088	0.203	0.145	0.808	0.01	0.05
Coarse	0.836	0.681	0.092	0.227	0.155	0.787	0.04	0.08
Horned lark								
Multi	0.921	0.869	0.030	0.101	0.052	0.902	0.02	0.09
Fine	0.912	0.850	0.040	0.110	0.072	0.893	0.01	0.23
Coarse	0.888	0.801	0.090	0.109	0.066	0.892	0.02	0.21
Savannah sparrow								
Multi	0.839	0.691	0.122	0.187	0.119	0.826	0.01	0.02
Fine	0.835	0.682	0.120	0.198	0.122	0.817	0.01	0.11
Coarse	0.809	0.629	0.122	0.249	0.173	0.776	0.02	0.14
Killdeer								
Multi	0.870	0.758	0.083	0.159	0.100	0.848	0.01	0.05
Fine	0.835	0.687	0.067	0.246	0.165	0.772	0.01	0.05
Coarse	0.807	0.630	0.103	0.267	0.183	0.750	0.03	0.03
Wood thrush								
Multi	0.866	0.735	0.118	0.148	0.139	0.855	0.05	0.04
Fine	0.821	0.641	0.094	0.264	0.265	0.747	0.05	0.15
Coarse	0.803	0.606	0.141	0.253	0.228	0.755	0.04	0.18
Eastern wood-pewee								
Multi	0.826	0.662	0.152	0.186	0.174	0.817	0.01	0.03
Fine	0.771	0.550	0.103	0.346	0.338	0.672	0.04	0.10
Coarse	0.776	0.561	0.141	0.298	0.305	0.714	0.03	0.16
Least flycatcher								
Multi	0.828	0.653	0.184	0.163	0.177	0.836	0.03	0.07
Fine	0.768	0.530	0.136	0.334	0.356	0.678	0.01	0.20
Coarse	0.779	0.552	0.143	0.305	0.330	0.704	0.01	0.20

Footnote: Small differences in AUC and TSS among data partitions (AUC_{dif} = 0.01 – 0.05; TSS_{dif} = 0.02 – 0.09) suggest high consistency among partitions and no indication of over-fitting. Consistent selection of the multi-scale model as the best fit model also suggests that any collinearity among scales is not leading to systematic issues with over-fitting.
Table A4. Correlation among predictions of each component model within the ensemble species distribution models for the focal species.

Model	Correlation		
	GLM	GAM	RF
Bobolink			
GLM	1.00	–	–
GAM	0.94	1.00	–
RF	0.81	0.82	1.00
Eastern meadowlark			
GLM	1.00	–	–
GAM	0.87	1.00	–
RF	0.81	0.80	1.00
Horned lark			
GLM	1.00	–	–
GAM	0.80	1.00	–
RF	0.82	0.82	1.00
Savannah sparrow			
GLM	1.00	–	–
GAM	0.88	1.00	–
RF	0.82	0.84	1.00
Killdeer			
GLM	1.00	–	–
GAM	0.83	1.00	–
RF	0.81	0.73	1.00
Wood thrush			
GLM	1.00	–	–
GAM	0.65	1.00	–
RF	0.57	0.71	1.00
Eastern wood-pewee			
GLM	1.00	–	–
GAM	0.91	1.00	–
RF	0.55	0.52	1.00
Least flycatcher			
GLM	1.00	–	–
GAM	0.76	1.00	–
RF	0.49	0.60	1.00
Table A5. Variable importance for each focal species as derived from the ensemble species distribution models. A dash means that the association is negative, while no sign indicates a positive association. Bios 10 and Bios 18 refer to temperature and precipitation during the breeding season, respectively.

	Grassland specialists	Forest specialists						
	BOBO	EAME	HOLA	SAVS	KILL	WOTH	EWPE	LEFL
200m								
Water	-0.60	-1.61	-0.60	-0.49	-2.01	-1.33	-2.80	4.19
Shrub	-0.92	2.22	-0.65	-0.64	-2.50	6.85	1.75	-2.87
Wetland	-1.55	1.58	-1.08	-0.82	-2.59	1.16	2.08	2.63
Grassland	46.41	40.73	-2.27	34.17	3.03	-2.10	-0.92	4.48
Crops						-1.60	-1.12	-3.89
Cereals	-2.92	-0.77	8.62	7.75	9.41			
Corn	-2.99	-0.73	6.10	6.87	10.13			
Soy	9.35	-1.64	12.93	8.31	16.86			
Forest	-1.71	-2.70	-4.11	-9.13	-7.97			
Deciduous						9.32	34.36	14.12
Coniferous						5.76	-2.57	-1.73
Mixed forest						16.12	6.25	4.11
1km								
Water	-1.21	-1.95	-0.99	-1.15	-1.41	-1.04	-3.56	-2.46
Urban	-3.33	-0.82	-0.80	-1.08	-0.95	-2.00	-1.60	-4.03
Shrub	2.94	5.75	-0.71	-1.08	-2.52	3.05	2.58	-3.47
Wetland	2.69	6.62	-0.89	1.04	-2.27	4.37	6.70	-1.81
Grassland	2.33	6.72	1.24	3.24	2.70	-1.84	6.35	-2.37
Crops						-2.90	-3.93	-1.07
Cereals	4.76	-3.23	10.56	1.60	8.36			
Corn	1.49	-3.00	9.27	2.71	5.09			
Soy	1.60	-3.77	11.35	5.59	3.84			
Forest	-2.00	-4.48	-1.56	-1.41	-1.79			
Deciduous						12.88	2.92	2.91
Coniferous						1.72	-5.14	5.41
Mixed forest						1.07	-1.69	1.61
Terrain								
Elevation								
Slope								
Aspect	1.32	0.83	1.43	1.39	1.92	4.64	1.59	-6.55
Climate								
Bios10	-3.46	3.10	10.15	2.73	5.22	11.29	4.24	-10.77
Bios18	4.06	-1.38	0.83	4.91	3.38	-3.40	-2.76	-5.43
Table A6. Minimum set prioritization results showing the percentage (%) of the distribution and area selected for each feature. Total richness refers to sites within the upper quartile for highest species richness in the focal area.

Feature	% distribution	area (km²)
Bobolink	0.30	9032
Eastern meadowlark	0.25	6068
Eastern wood Pewee	0.25	22732
Horned lark	0.25	7228
Killdeer	0.25	12040
Least flycatcher	0.25	42992
Savannah sparrow	0.25	11104
Wood thrush	0.25	19032
Total richness	0.25	19556
Figure A1. Agricultural landscapes within the study region showing a site with little retained vegetation cover (1) and two sites with vegetation retained in the form of linear woody strips (2) and small forest blocks (3). Site locations are shown in the study region map in the lower right quadrant.