Factors Predict Prolonged Wait Time and Longer Duration of Radiotherapy in Patients with Nasopharyngeal Carcinoma: A Multilevel Analysis

Po-Chun Chen¹, Ching-Chieh Yang², Cheng-Jung Wu³, Wen-Shan Liu⁴, Wei-Lun Huang⁴, Ching-Chih Lee⁵,⁶,⁷*

1 Department of Radiation Oncology, Pingtung Christian Hospital, Pingtung, Taiwan, 2 Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan, 3 Department of Otolaryngology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 4 Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 5 Department of Otolaryngology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, 6 Cancer Center, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan, 7 School of Medicine, Tzu Chi University, Hualin, Taiwan

Abstract

Purpose: Radiotherapy with or without chemotherapy is the primary treatment for patients with nasopharyngeal carcinoma (NPC). It wastes time from diagnosis to treatment. Treatment time of radiotherapy generally takes at least seven weeks. The current study aimed to evaluate factors associated with prolonged wait time and longer duration of radiotherapy in NPC patients.

Methods and Materials: From Taiwan’s National Health Insurance research database, we identified 3,605 NPC patients treated with radiotherapy between 2008 and 2011. Wait time was calculated from the date of diagnosis to the start of radiotherapy. The impact of each variable on wait time and duration of radiotherapy was examined by multilevel analysis using a random-intercept model.

Results: The mean wait time and duration of radiotherapy were 1.78±3.33 and 9.72±7.27 weeks, respectively. Multilevel analysis revealed prolonged wait time in patients aged 45–65 years, those receiving radiotherapy alone, those with more comorbidities, those with low SES, and those living in eastern Taiwan. A prolonged duration of radiotherapy was associated with receipt of concurrent chemoradiotherapy, more comorbidities, and moderate SES.

Conclusions: Understanding the factors associated with longer wait times and duration of radiotherapy in patients with NPC may help healthcare providers better assist both these patients and potentially those with other head-and-neck cancers.

Citation: Chen P-C, Yang C-C, Wu C-J, Liu W-S, Huang W-L, et al. (2014) Factors Predict Prolonged Wait Time and Longer Duration of Radiotherapy in Patients with Nasopharyngeal Carcinoma: A Multilevel Analysis. PLoS ONE 9(10): e109930. doi:10.1371/journal.pone.0109930

Copyright: © 2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* Email: hematcd2@hotmail.com

Introduction

Nasopharyngeal carcinoma (NPC) is endemic in Southeast Asia, with an annual incidence of 6.17 per 100,000 in Taiwan; its annual incidence in Western countries, by contrast, is <1 per 100,000 [1]. Radiotherapy with or without chemotherapy, which has long been the primary treatment for NPC, varies slightly in treatment modalities [2,3]. Although NPC is highly radiosensitive, a high failure rate is noted in patients with advanced stage. Treatment strategies and some time factors, such as wait time or length of treatment, have yet to be optimized [4–5].

The impact of time delay on disease control has been investigated in patients with head-and-neck cancers [6]. Moreover, a previous report showed that a treatment delay of ≥40 days was significantly associated with poorer survival rates in early-stage head-and-neck cancer patients [7]. A longer course of radiotherapy may result in poor disease control in early-stage NPC patients (>12 weeks) or early-stage head-and-neck cancer patients (>7 weeks) [8,9]. It is important to raise awareness of time delay and prolonged treatment time for decision makers in clinical practice. At present, it remains unclear which factors are associated with time delay and a prolonged duration of radiotherapy in NPC.

We used the nationwide claims data from Taiwan’s National Health Insurance (NHI) research database to analyze NPC patients who received radiotherapy between 2008 and 2011. This database provides basic demographic data as well as hospital characteristics, patient characteristics and treatment modality. We sought to identify key factors associated with prolonged wait time and a longer duration of radiotherapy in NPC patients. In terms of improving treatment effects, we hope these information may help to improve future public health stategies and welfare policies.
Patients and Methods

Ethical consideration

This study was approved by the Institutional Review Board of Buddhist Dalin Tzu Chi General Hospital, Taiwan. Review board requirements for written informed consent were waived because all personal identifying information was removed from the dataset prior to analysis.

Study population

We inspected 5,026 NPC patients who received radiotherapy from Taiwan’s NHI research database between 2008 to 2011. Taiwan’s NHI program covered 99% of the population after 2005, with chart reviews and patient interviews used to verify the accuracy of diagnosis and treatment coding. Patients who received induction or systemic chemotherapy as the initial treatment were excluded except those who received chemotherapy within 14 days prior to radiotherapy. We also excluded patients who were treated for second irradiation. This left 3,605 patients who matched the inclusion criteria for this study. Basic data collected included wait time, duration of radiotherapy, hospital characteristics, gender, age, treatment modality, Chartlon Comorbidity Index Score (CCIS), and patient socioeconomic status (SES).

Treatment modality

Concurrent chemotherapy regimen mostly used in Taiwan is cisplatin 100 mg/m² every 3 weeks for 3 cycles or weekly cisplatin 40 mg/m², followed by adjuvant cisplatin-based chemotherapy (cisplatin 80 mg/m² D1, 5-FU 1000 mg/m² D1-4, repeat cycle every 4 weeks for 1–3 cycles). External beam irradiation of 66–78 Gy was delivered in 33–39 fractions daily using three-dimensional conformal radiotherapy or intensity-modulated radiotherapy.

Wait time and duration of radiotherapy

Wait time was calculated from the date of diagnosis to the start of radiotherapy. We used the cutpoint of ≥4 weeks to define prolonged wait time. Duration of radiotherapy was calculated from the start of radiotherapy to the end of radiotherapy. We used the cutpoint of ≥10 weeks to define longer duration of radiotherapy.

Other covariates

SES and urbanization of residence were taken from insurance premiums, using income in Taiwan and urbanization variables previously described [10]. Patients were classified into 3 subgroups: high SES (civil servants, full-time or regular paid personnel with a government affiliation or employees of privately owned institutions), moderate SES (self-employed individuals, other employees, and members of the farmers’ or fishermen’s associations), and low SES (veterans, low-income families, and substitute service draftees). Severity of comorbidity was based on the modified CCIS as recorded before the diagnosis of NPC. The CCIS is a widely accepted scale used for risk adjustment in administrative claims data sets [11]. Different level of hospitals may have inequalities in treatment delay and clinical management during radiotherapy. The hospitals were categorized by hospital teaching level (medical center, regional hospital, or district hospital) or hospital ownership (profit, non-profit, or public). The geographic regions were recorded as northern, central, southern, and eastern Taiwan.

Statistical analysis

The key dependent variables of interest were wait time and duration of radiotherapy. The distribution of diseases was described and compared using chi-squared testing. The continuous variables were compared with one-way ANOVA test. Patient characteristics (age, gender, individual SES, CCIS, urbanization and region of patient residence) and hospital characteristics (including ownership and teaching level) were included in the regression model. In this series, the hierarchical linear regression method was used due to the potential clustering effect within a hospital. A hospital-level random effect might account for possible correlations between the wait time and duration of radiotherapy within a hospital’s panel. A two-tailed value of p<0.05 was considered significant. All statistical operations were performed using SPSS (version 15, SPSS Inc., Chicago, IL).

Results

A total of 3,605 NPC patients in Taiwan received radiotherapy from 2008 to 2011. Table 1 summarizes the basic demographic characteristics of these patients. In all, 317 patients (8.8%) had wait times greater than 4 weeks. There were 1404 patients (38.9%) who had longer duration of radiotherapy. The mean duration of radiotherapy is 7.68 weeks and 10.16 weeks in patients who received radiotherapy alone and concurrent chemoradiotherapy (CCRT), respectively. Most patients (87.5%) were younger than 65 years. More than half of patients (59.1%) were treated at a medical center. Most, or 2,970 patients (82.4%), received CCRT. Approximately 15.9% of all patients had low SES. Most patients (72%) had lower CCIS. The mean wait time and duration of radiotherapy were 1.78 ± 3.33 and 9.72 ± 7.27 weeks, respectively (Table 2).

Wait time

Univariate analysis revealed that wait times were prolonged in patients older than 45 years, those who received radiotherapy alone, those with higher CCIS, those with low to moderate SES, and those who did not live in northern Taiwan.

After adjusting for patient and hospital characteristics, the hierarchical linear regression revealed significant factors associated with wait time as the following: for those age 45–65 years was 0.25 week shorter than those age less than 45 years (p = 0.03); for those with RT alone was 1.38 week longer than those with CCRT (p<0.001); for those with higher morbidities was 0.72 week longer than those with lower comorbidities (p<0.001); for those with low SES was 0.34 week longer than those with high SES (p = 0.029) and those in eastern area was 1.29 week longer than the northern area (Table 3).

Duration of radiotherapy

Univariate analysis revealed a longer duration of radiotherapy in patients who received CCRT, with a mean of 10.16 weeks; in those with higher CCIS, with a mean of 10.62 weeks; and in those with low or moderate SES, with a mean of 10.04 weeks.

After adjusting for patient and hospital characteristics, the hierarchical linear regression revealed significant factors associated with duration of radiotherapy as the following: for those with RT alone was 2.42 week shorter than those with CCRT (p<0.001); for those with higher morbidities was 1.08 week longer than those with lower comorbidities (p<0.001); for those with moderate SES was 0.65 week longer than those with high SES (p = 0.021) (Table 3).
Table 1. Demographic characteristics for nasopharyngeal cancer patients from 2008 to 2011 (n = 3,605).

Characteristics	Wait time	P value	Duration of radiotherapy	P value
	Less than 4 weeks	More than 4 weeks	Less than 10 weeks	More than 10 weeks
	(n = 3288)	(n = 317)	(n = 2201)	(n = 1404)
	No. %	No. %	No. %	No. %
Hospital characteristics				
Ownership	0.008		<0.001	
For Profit (n = 1,915)	1,770 53.8	1,114 50.6	801 57.1	
Non-profit (n = 563)	498 15.1	396 18.0	167 11.9	
Public (n = 1,127)	1,020 31.1	691 31.4	436 31.1	
Teaching level	0.442		0.006	
Medical center (n = 2,332)	2,131 64.8	1,394 63.3	938 66.8	
Regional (n = 1,121)	1,015 30.9	724 32.9	397 28.3	
District (n = 152)	142 4.3	83 3.8	69 4.9	
Gender	0.498		0.151	
Male (n = 2,711)	2,472 75.2	1,637 74.4	1,074 76.5	
Female (n = 894)	816 24.8	564 25.6	330 23.5	
Age group	<0.001		0.185	
0–44.99 years (n = 1,239)	1,166 35.5	733 33.3	506 36.0	
45–64.99 years (n = 1,916)	1,739 52.9	1,182 53.7	734 52.3	
Older than 65 years (n = 450)	383 11.6	286 13.0	164 11.7	
Treatment	<0.001		<0.001	
CCRT† (n = 2,970)	2,789 84.8	1,705 77.5	1,265 90.1	
RT‡ alone (n = 635)	499 15.2	496 22.5	139 9.9	
Charlson Comorbidity Index Score	<0.001		0.053	
Lower than mean (n = 2,597)	2,411 73.3	1,611 73.2	986 70.2	
Higher than mean (n = 1,008)	877 26.7	590 26.8	418 29.8	
Socioeconomic status (SES)	0.031		0.050	
High SES (n = 1,857)	1,709 52.0	1,169 53.2	688 49.0	
Moderate SES (n = 1,176)	1,073 32.6	690 31.3	486 34.6	
Table 1, continued				
Characteristics	Wait time	P value	Duration of radiotherapy	P value
	Less than 4 weeks	More than 4 weeks	Less than 10 weeks	More than 10 weeks
	(n = 3288)	(n = 317)	(n = 2201)	(n = 1404)
	No. %	No. %	No. %	No. %
Low SES (n = 572)	506 15.4	342 15.5	230 16.4	
Urbanization	0.045		0.728	

Factors in Time Delay in NPC Patients
Discussion

Our study demonstrated that higher CCIS was an independent factor for both prolonged wait time and longer duration of radiotherapy in NPC patients. Lower SES was an independent factor for time delay but not for duration of radiotherapy. CCRT was associated with the greatest duration of radiotherapy, prolonging treatment 2.42 weeks more than radiotherapy alone.

The strengths of our study include the endemic nature of NPC in Taiwan, allowing for the collection of a large sample size to make valid estimates and compare treatment modalities. Moreover, the NHI research database captures complete follow-up information, provides comprehensive health care benefits with a moderate cost sharing, and records all treatments. Ongoing validation of the NHI research database is conducted via comparison of chart-based and claims-based records [12]. To avoid causes of delay not identified in our study, we excluded patients with an interval of more than 120 days between diagnosis and start of radiotherapy. To our knowledge, this is the first study investigating the association between time factors and hospital characteristics, patient characteristics, and treatment modality in NPC patients.

As cancer incidence has increased in various parts of the world, so has the demand for radiotherapy for each type and stage of cancer [13,14]. Radiotherapy facilities are available worldwide, but are often inadequate to the population demands placed on them. In Taiwan, the nearly 60 radiotherapy facilities provide medical care for more than 20 million people. Taiwan’s NHI program has provided for the medical needs of Taiwan for 20 years. Nevertheless, treatment delays are common. Similarly, Round et al. [13] compared predictive models for radiotherapy demand. The Methus model estimated a 13.1% increase in need for radiotherapy between 2011 and 2016. In general, treatment delays may result from health policy, patients themselves, or hospital characteristics. In our study, we did not find any significant difference in wait time between medical centers and other types of hospitals. Furthermore, alternating radiotherapy helps to relieve the burden on the system and shorten the wait time. However, such treatment is not indicated for certain cancers.

A literature review reported a negative impact of comorbidity on incidence of treatment complication, quality of life, increased cost of treatment and survival [15]. Assessment of comorbid diseases should be an important part in clinical practice. Moreover, the impact of comorbid diseases on therapeutic decision-making in head and neck cancer has been reported [16]. Comorbidity was assessed with Adult Comorbidity Evaluation (ACE-27) and Charlson Comorbidity Index (CCI). Results showed moderate to strong positive correlation between comorbidity and change in therapeutic decision-making. In our study, higher CCIS is an independent factor for both prolonged wait time and longer duration of radiotherapy in NPC patients. It is important to correct any underlying comorbid diseases prior to and during radiotherapy. Moreover, radiotherapy is a local treatment. The most common treatment-related side effects which lead to unplanned treatment interruptions are severe mucositis and skin reaction. The recovery time depends on the degree of the injury. Some comorbid conditions are associated with delayed wound healing, especially poor nutritional status, vascular disease, and diabetes mellitus [17]. Since the exact cause of treatment interruptions in our study is unknown, possible causes have been discussed using Charlson Comorbidity Index Score instead of a specific comorbid disease. A recently published study has developed a revised comorbidity index for head and neck cancer.
In fact, patients with low SES have inequalities in health. They have delays in diagnosis, are offered different treatment modalities than those with higher income, and experience inferior outcomes mostly shown in research on breast cancer [10,12,19]. A systemic review shows that patients from lower social classes receive significantly less positive socio-emotional utterances, a more directive and a less participatory consulting style, characterized by significantly less information

Table 2. Distribution of wait time and duration of radiotherapy for nasopharyngeal cancer patients from 2008 to 2011 by univariate analysis (n = 3,605).

Characteristics	Wait time		Duration of radiotherapy	
	Mean ± SD	P value	Mean ± SD	P value
Hospital characteristics				
Ownership	0.092	0.064		
Profit organization (n = 1,915)	1.71	3.45	9.92	7.88
Non-profit organization (n = 563)	2.06	3.44	9.10	6.19
Public (n = 1,127)	1.77	3.05	9.69	6.65
Teaching level	0.226	0.171		
Medical center (n = 2,332)	1.72	3.21	9.81	7.34
Regional (n = 1,121)	1.93	3.54	9.43	7.21
District (n = 152)	1.77	3.47	10.43	6.55
Gender		0.803		0.811
Male (n = 2,711)	1.79	3.35	9.70	7.32
Female (n = 894)	1.76	3.27	9.77	7.11
Age group	<0.001	0.407		
0–44.99 years (n = 1,239)	1.44	2.71	9.90	6.83
45–64.99 years (n = 1,916)	1.90	3.54	9.68	6.98
Older than 65 years (n = 450)	2.23	3.85	9.39	9.37
Treatment	<0.001		<0.001	
CCRT\(^1\) (n = 2,970)	1.47	2.60	10.16	7.49
RT\(^2\) alone (n = 635)	3.27	5.36	7.68	5.71
Charlson Comorbidity Index Score	<0.001		<0.001	
Lower than mean (n = 2,597)	1.58	2.80	9.37	6.50
Higher than mean (n = 1,008)	2.30	4.37	10.62	8.90
Socioeconomic status (SES)	0.008	0.036		
High SES (n = 1,857)	1.66	2.99	9.42	6.37
Moderate SES (n = 1,176)	1.81	3.42	10.04	8.37
Low SES (n = 572)	2.15	4.08	10.04	7.53

Table 2, continued

Characteristics	Wait time		Duration of radiotherapy	
	Mean ± SD	P value	Mean ± SD	P value
Urbanization	0.348	0.482		
Urban (n = 1,149)	1.73	3.30	9.61	7.53
Suburban (n = 1,508)	1.74	3.29	9.89	7.53
Rural (n = 948)	1.92	3.42	9.58	6.45
Geographic Region	<0.001	0.698		
Northern (n = 1,745)	1.58	3.06	9.68	7.28
Central (n = 502)	1.87	3.22	9.50	6.40
Southern (n = 946)	1.99	3.54	9.92	7.81
Eastern (n = 95)	2.76	5.32	9.55	5.78

\(^1\)CCRT, Concurrent chemoradiotherapy.
\(^2\)RT, Radiotherapy.
SD, standard deviation;
doi:10.1371/journal.pone.0109930.t002

patients [18]. It is worth investigating this revised comorbidity index in NPC patients in future studies.

In fact, patients with low SES have inequalities in health. They have delays in diagnosis, are offered different treatment modalities than those with higher income, and experience inferior outcomes to those of patients with higher SES, mostly shown in research on breast cancer [10,12,19]. A systemic review shows that patients from lower social classes receive significantly less positive socio-emotional utterances, a more directive and a less participatory consulting style, characterized by significantly less information
giving, less directions and less socio-emotional and partnership building utterances from their doctor [20]. In Taiwan, SES does not affect the medical care patients receive, as all receive universal health insurance which reimburses hospitals directly for care. Even so, patients in our study who had low SES had significantly prolonged wait times over others. Thorough communication between doctors and patients is crucial so that mutual understanding can be achieved to improve patients' compliance, thereby reduce prolonged wait times, especially in low SES patients.

Table 3. Distribution of wait time and duration of radiotherapy for nasopharyngeal cancer patients from 2008 to 2011 by multivariate analysis using a random-intercept model (n = 3605).

Characteristics	Wait time	95% CI*	p value	Duration of radiotherapy	Estimate	95% CI*	p value
Intercept	0.97	(0.53–1.41)	<0.001	9.74	(8.77–10.71)	<0.001	

Hospital characteristics

Ownership	Reference	Reference		Reference	Reference			
Profit organization	Reference	Non-profit organization	0.13	(−0.41–0.68)	0.628	−0.27	(−1.48–0.93)	0.648
Public	0.09	(−0.37–0.55)	0.690	−0.08	(−1.10–0.93)	0.865		

Teaching level

Medical center	Reference	Reference		Reference	Reference	
Regional	0.20	(−0.21–0.62)	0.336	−0.33	(−1.25–0.59)	0.475
District	−0.07	(−0.74–0.60)	0.831	0.81	(−0.68–2.30)	0.285

Gender

Gender	Reference	Reference		Reference	Reference	
Female	−0.030	(−0.27–0.21)	0.806	0.08	(−0.45–0.62)	0.312

Age group

Age group	Reference	Reference		Reference	Reference			
0–44.99 years	Reference	Non-profit organization	0.25	(0.02–0.49)	0.303	−0.23	(−0.75–0.28)	0.377
45–64.99 years	Reference	Public	−0.03	(−0.41–0.33)	0.840	−0.20	(−1.04–0.62)	0.622
Older than 65 years	Reference	Non-profit organization	0.25	(0.02–0.49)	0.303	−0.23	(−0.75–0.28)	0.377
Regional	0.20	(−0.21–0.62)	0.336	−0.33	(−1.25–0.59)	0.475		
District	−0.07	(−0.74–0.60)	0.831	0.81	(−0.68–2.30)	0.285		

Treatment

Treatment	Reference	Reference		Reference	Reference			
CCRT	Reference	CCRT	1.78	(1.49–2.07)	<0.001	−2.42	(−3.06–−1.77)	<0.001

Charlson Comorbidity Index Score

Charlson Comorbidity Index Score	Reference	Reference		Reference	Reference	
Lower than mean	0.72	(0.48–0.96)	<0.001	1.08	(0.56–1.61)	<0.001

Socioeconomic status (SES)

Socioeconomic status (SES)	Reference	Reference		Reference	Reference	
High SES	Reference	Reference		Reference	Reference	
Low SES	0.34	(0.03–0.64)	0.029	0.65	(−0.02–1.33)	0.059
Moderate SES	−0.01	(−0.26–0.23)	0.920	0.65	(0.09–1.20)	0.021

Table 3, continued

Characteristics	Wait time	95% CI*	p value	Duration of radiotherapy	Estimate	95% CI*	p value
Urbanization	Reference	Reference		Reference	Reference		
Suburban	−0.18	(−0.45–0.07)	0.159	0.31	(−0.27–0.90)	0.291	
Rural	−0.28	(−0.61–0.03)	0.081	−0.09	(−0.81–0.62)	0.796	

Geographic Region

Geographic Region	Reference	Reference		Reference	Reference	
Central	0.17	(−0.25–0.60)	0.426	0.01	(−0.94–0.95)	0.992
Southern	0.29	(−0.06–0.66)	0.111	0.04	(−0.76–0.85)	0.909
Eastern	1.29	(0.51–2.08)	0.01	−0.21	(−1.94–1.51)	0.805

1CCRT, Concurrent chemoradiotherapy.
2RT, Radiotherapy.
CI, confidence interval.
doi:10.1371/journal.pone.0109930.t003
An early report from Hong Kong confirmed that interruptions in and prolongation of treatment adversely affects outcomes in radiotherapy for NPC [21]. Other studies have also demonstrated the impact of a longer duration of radiation treatment on local failure rate and overall survival in patients with NPC and other types of head-and-neck cancers [19-22]. However, there is little evidence to suggest which factors are associated with prolonged duration of radiotherapy. To find a possible correlation, we looked in this study for factors associated with prolonged radiation treatment time. CGCRT was associated with the greatest duration of radiotherapy in this study. In general, acute toxicity caused by radiation and chemotherapy is responsible for this. Concurrent chemotherapy would increase acute toxicity over that of radiotherapy alone. Supportive medications to improve symptoms such as odynophagia and severe skin reaction should be provided as early as possible. Kim et al. [23] reported a prescription of a 3-week cycle of 100 mg/m² cisplatin prolonged treatment 1.8 weeks more than weekly cisplatin 30 mg/m². Current evidence suggested no difference in survival between the two chemotherapy groups. In our study, concurrent chemotherapy regimen mostly used is either cisplatin 100 mg/m² every 3 weeks for 3 cycles or weekly cisplatin 40 mg/m². Weekly Cisplatin that causes less complications may be effectively used to avoid treatment interruptions, thereby shorten the radiation treatment period.

This study has three potential limitations. Firstly, cancer stage was not obtained. However, we excluded patients who had potentially distant metastases by capturing information on the interval between initial chemotherapy and radiotherapy. In fact, the association between cancer stage and time factors has not yet to be identified from previous literatures. Secondly, the diagnosis of NPC and the record of comorbid conditions are dependent on ICD codes. Different coding quality between different levels of hospitals may result in bias. Finally, the association of time factors ad NPC outcomes were not explored in this series, and we will launch a new study in the future. However, the NIH program in Taiwan reviews selected charts to verify the accuracy of diagnosis and treatment coding.

Conclusion

Radiotherapy is a multi-step, time-consuming treatment. It is difficult to determine whether the time delay related to health policy, patient factors, hospital characteristics, or some combination of these. With available administrative data, we found significant factors associated with prolonged wait time and longer duration of radiotherapy in patients with NPC. Our study may help healthcare providers and those responsible for health policy better understand this patient population and even apply these results to those with other head-and-neck cancers so as to make informed decisions on how to reduce wait time and length of treatment in the future. The impact of both wait time and duration of radiotherapy on survival remains to be investigated.

Acknowledgments

This study is based on data from the National Health Insurance Research Database, provided by the Bureau of National Health Insurance, Department of Health, Taiwan, and managed by the National Health Research Institute. The interpretations and conclusions contained herein do not represent those of the Bureau of National Health Insurance, the Department of Health, or the National Health Research Institute.

Author Contributions

Conceived and designed the experiments: PCC CCL. Performed the experiments: PCC CCL. Analyzed the data: CCL. Contributed reagents/materials/analysis tools: PCC CCL. Wrote the paper: PCC CCY CJW WSL WHL CCL.

References

1. Taiwan Cancer Registry Annual Report, 2001. (2004) Department of Health, The Executive Yuan, Republic of China. Available: http://tcr.cph.ntu.edu.tw/main.php?Page=N2. Accessed 17 March 2014.
2. Wei WI, Shan JS (2005) Nasopharyngeal carcinoma. Lancet 365: 2041–2045.
3. Zhang L, Zhao C, Ghimrie R, Hong MH, Liu Q, et al. (2010) The role of concurrent chemoradiotherapy in the treatment of locoregionally advanced nasopharyngeal carcinoma among endemic population: a meta-analysis of the phase III randomized trials. BMC Cancer 10: 158.
4. Lin J-C, Jan J-S, Hou CY, Liang SM, Jhang RS, et al. (2005) Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival. J Clin Oncol 23: 631–637.
5. Chiu AT, Toh PM, Ngan RK, Leung TW, Lau WH, et al. (2002) Concurrent chemoradiotherapy-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: progression-free survival analysis of a phase III randomized trial. J Clin Oncol 20: 2038–2044.
6. Huang J, Barbera L, Broussais M, Brownman G, Mackillop WJ (2003) Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J Clin Oncol 21: 553–563.
7. Forin A, Bairati I, Albert M, Moore L, Allard J, et al. (2002) Effect of treatment delay on outcome of patients with early-stage head-and-neck carcinoma receiving radical radiotherapy. Int J Radiat Oncol Biol Phys 52: 929–936.
8. Cannon DL, Geyer HM, Haring GK, Traynor AM, Hoang T, et al. (2013) Increased local failure with prolonged radiation treatment time in head and neck cancer treated with concurrent chemotherapy. Head Neck 36: 1120–1125.
9. Chang JT, See LC, Liao CT, Chen LH, Leung WM, et al. (1998) Early stage nasopharyngeal carcinoma: radiotherapy dose and time factors in tumor control. Jpn J Clin Oncol 28: 207–213.
10. Chang TS, Chang GM, Hsu TW, Lin YS, Lai NS, et al. (2013) The combined effect of individual and neighborhood socioeconomic status on nasopharyngeal cancer survival. PLoS One 8(3): e57809.
11. Deyo RA, Cherkin DC, Ciol MA (1992) Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 45: 613–619.
12. Cheng CL, Kao YH, Lin SJ, Lee CH, Lai ML, (2011) Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoeconomics Drug Saf 20: 236–242.
13. Round CE, Williams MV, Mee T, Kirkby NF, Cooper T, et al. (2013) Radiotherapy demand and activity in England 2006–2020. Clin Oncol (R Coll Radiol) 25: 522–530.
14. Abdel-Wahab M, Bourque JM, Pynda Y, Iwieszka J, Van der Merwe D, et al. (2013) Status of radiotherapy resources in Africa: an International Atomic Energy Agency analysis. Lancet Oncol 14:e168–e175.
15. Paleri V, Wright RG, Silver CE, Haigentz M Jr, Takes RP, et al. (2010) Comorbidity in head and neck cancer: a critical appraisal and recommendations for practice. Oral Oncol 46: 712–719.
16. Baijal G, Gupta T, Hotwani C, Laskar SG, Budrukkar A, et al. (2012) Impact of comorbidity on therapeutic decision-making in head and neck cancer: audit from a comprehensive cancer center in India. Head Neck 34: 1251–1254.
17. Takahashi PY, Kiemele IJ, Chandra A, Cha SS, Tognoski PV (2009) A retrospective cohort study of factors that affect healing in long-term care residents with chronic wounds. Ostomy Wound Manage 55: 32–37.
18. Boje CR, Dalon SO, Primdahl H, Kristensen CA, Andersen E, et al. (2014) Evaluation of comorbidity in 9388 head and neck cancer patients: a national cohort study from the DAHANCA database. Radiother Oncol 110: 91–97.
19. Wu XC, Lund MJ, Kimmig GG, Richardson LG, Sabatino SA, et al. (2012) Influence of race, insurance, socioeconomic status, and hospital type on receipt of guideline-concordant adjuvant systemic therapy for locoregional breast cancers. J Clin Oncol 30: 142–150.
20. Willems S, De Maeschalck S, Devreugel M, Derese A, Haigentz M Jr, Takes RP, et al. (2009) A phase III randomized trial. J Clin Oncol 20: 2038–2044.
21. Willems S, De Maeschalck S, Devreugel M, Derese A, Haigentz M Jr, Takes RP, et al. (2009) Socio-economic status of the patient and doctor-patient communication: does it make a difference? Patient Educ Couns 76: 139–146.
22. Kwong DL, Shan JS, Chiu DT, Chey DT, Au GK, et al. (1997) The effect of interruptions and prolonged treatment time in radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 39: 703–710.
23. Sherr DJ, Posner MR, Tishler RB, Sarlis NJ, Harild RJ, et al. (2011) Relationship between radiation treatment time and overall survival after induction chemotherapy for locally advanced head-and-neck carcinoma: a subset analysis of TAX 324. Int J Radiat Oncol Biol Phys 81:e113–e118.