Interoception Primes Emotional Processing: Multimodal Evidence from Neurodegeneration

Paula C. Salamone, Agustina Legaz, Lucas Sedeño, Sebastián Moguilner, Matías Fraile-Vazquez, Cecilia Gonzalez Campo, Sol Fittipaldi, Adrián Yoris, Magdalena Miranda, Agustina Birba, Agostina Galiani, Sofía Abrevaya, Alejandra Neely, Miguel Martorell Caro, Florencia Alifano, Roque Villagra, Florencia Anunziata, Maira Okada de Oliveira, Ricardo M. Pautassi, Andrea Slachevsky, Cecilia Serrano, Adolfo M. García, and Agustín Ibañez

Recent frameworks in cognitive neuroscience and behavioral neurology underscore interoceptive priors as core modulators of negative emotions. However, the field lacks experimental designs manipulating the priming of emotions via interoception and exploring their multimodal signatures in neurodegenerative models. Here, we designed a novel task that involves interoceptive and control-exteroceptive priming conditions followed by post-interoception and post-exteroception facial emotion recognition (FER). We recruited 114 participants, including healthy controls (HCs) as well as patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson’s disease (PD), and Alzheimer’s disease (AD). We measured online EEG modulations of the heart-evoked potential (HEP), and associations with both brain structural and resting-state functional connectivity patterns. Behaviorally, post-interoception negative FER was enhanced in HCs but selectively disrupted in bvFTD and PD, with AD presenting generalized disruptions across emotion types. Only bvFTD presented impaired interoceptive accuracy. Increased HEP modulations during post-interoception negative FER was observed in HCs and AD, but not in bvFTD or PD patients. Across all groups, post-interoception negative FER correlated with the volume of the insula and the ACC. Also, negative FER was associated with functional connectivity along the (a) salience network in the post-interoception condition, and along the (b) executive network in the post-exteroception condition. These patterns were selectively disrupted in bvFTD (a) and PD (b), respectively. Our approach underscores the multidimensional impact of interoception on emotion, while revealing a specific pathophysiological marker of bvFTD. These findings inform a promising theoretical and clinical agenda in the fields of interoception, emotion, alostasis, and neurodegeneration.

Received Aug. 7, 2020; revised Mar. 17, 2021; accepted Mar. 18, 2021.

Author contributions: AJ, P.C.S., A.L., S.A., A.A., M.M., J.C.G.C., S.F., M.M., and A.B. analyzed data; P.C.S. and A.L. wrote the first draft of the paper; P.C.S., A.Y., R.M.P., and A.I. edited the paper; P.C.S., A.L., A.Y., R.M.P., and A.I. wrote the paper.

This work was supported in part by Takeda Grant CW2680521; CONICET; ANVONEDICTIVY Regular (1201015 & 1201076); FONCYT-PICT 2017-1802; ANVONEDICTIVY1510001; Alzheimer’s Association Global Brain Health Institute: AJ: U54-AG087254, Alzheimer’s Association (56-20-72507), Ramon y Cajal Charitable Foundation (Sao Conrado), and Global Brain Health Institute. The contents of this publication are solely the responsibility of the authors and do not represent the official views of these institutions. We thank the patients and their families for their invaluable time and commitment to our study; and Instituto Conicet Carpiñeiro (Córdoba, Argentina), Hospital Nacional de Clinicas (Facultad de Ciencias Medicas, Universidad Nacional de Córdoba, Córdoba, Argentina), and Dr. Rodrigo Rivera and Ingeborg Lopez (Servicio de Neuroradiología, Instituto de Neurocirugía Dr. A. Ana, Sao Paulo, Brazil, and Department of Neurology, Hospital Santa Marcelina, Sao Paulo, Brazil, for their collaboration.

*P.E.S. and A.L. contributed equally to this work as first authors.

The authors declare no competing financial interests.

Correspondence should be addressed to Agustín Ibañez at agustin.ibanez@igihi.org or Adolfo M. Garcia at adolfomartingarcia@gmail.com.

https://doi.org/10.1523/JNEUROSCI.2578-20.2021

Copyright © 2021 Salamone, Legaz et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
**Key words:** Alzheimer’s disease; behavioral variant frontotemporal dementia; emotion; interoception; Parkinson’s disease; priming

**Significance Statement**

We examined whether and how emotions are primed by interoceptive states combining multimodal measures in healthy controls and neurodegenerative models. In controls, negative emotion recognition and ongoing HEP modulations were increased after interoception. These patterns were selectively disrupted in patients with atrophy across key interoceptive-emotional regions (e.g., the insula and the cingulate in frontotemporal dementia, frontostriatal networks in Parkinson’s disease), whereas persons with Alzheimer’s disease presented generalized emotional processing abnormalities with preserved interoceptive mechanisms. The integration of both domains was associated with the volume and connectivity (salience network) of canonical interoceptive-emotional hubs, critically involving the insula and the anterior cingulate. Our study reveals multimodal markers of interoceptive-emotional priming, laying the groundwork for new agendas in cognitive neuroscience and behavioral neurology.

**Introduction**

Interoception (Intero, the sensing of visceral signals) seems intertwined with facial emotion recognition (FER), especially negative emotions (Barrett and Simmons, 2015; Garfinkel and Critchley, 2016). Still, beyond metanalytical findings (Adolfi et al., 2017) and partial associations (Pollatos and Schandry, 2008; Terasawa et al., 2014), evidence of how Intero primes FER is limited in healthy populations and absent in neurodegenerative conditions. Here, we combined neurophysiological, neuroanatomical, and functional connectivity (FC) measures with a novel task capturing interoceptive effects on FER in four groups: healthy controls (HCs) and patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson’s disease (PD), and Alzheimer’s disease (AD).

Behavioral evidence from HCs suggests that Intero increases sensitivity to negative FER (Terasawa et al., 2014; Critchley and Garfinkel, 2017). Alterations in both domains are systematic in bvFTD (Piguet et al., 2011; Kumfor et al., 2013; Van den Stock and Kumfor, 2017; Ibáñez, 2019) and less marked in PD (Enrici et al., 2015; Argaud et al., 2018), contrasting with the interoceptive pattern (García-Cordero et al., 2016) and generalized emotional deficits (Klein-Koerkamp et al., 2012) observed in AD.

Electrophysiologically, an interoceptive frontal cortical marker (heart-evoked potential [HEP]) has been linked to emotional processing in HCs (Gouto et al., 2015). Conversely, HEP modulations during Intero are abnormal in bvFTD, dependent on fronto-temporo-insular integrity in AD (García-Cordero et al., 2016), and uncharted in PD, although this disorder involves disruptions of fronto-central potentials during emotional facial processing (Garrido-Vásquez et al., 2016).

Regarding neuroimaging, evidence highlights the insula and the ACC as key regions integrating interoceptive and emotional processes (Adolfi et al., 2017; J. Kim et al., 2019). Such convergence is supported by the salience network (SN), which encompasses the abovementioned areas and is involved in processing internal events (Seeley et al., 2007), including interoceptive and affective signals (Uddin, 2015). This cross-modal role differentiates the SN from other networks subserving emotional (Lindquist and Barrett, 2012) and interoceptive (Sridharan et al., 2008) processes, such as the frontoparietal executive network (EN). Suggestively, the SN is distinctively affected in bvFTD relative to HCs and AD patients (Zhou et al., 2010; Seeley, 2019), and its connectivity with striatal hubs correlates with disease severity in PD (Putcha et al., 2015).

Yet, such links have been mainly captured through partial associations between separate interoceptive and emotional tasks. Therefore, they fail to reveal whether Intero can directly influence emotional processing at different behavioral and neurocognitive levels, limiting theoretical and clinical developments (Van den Stock and Kumfor, 2017). This can be achieved through priming paradigms, which have illuminated the impact of Intero on other social cognition processes (Ernst et al., 2013), and of cardiac dynamics on negative FER (Pezzulo et al., 2018). Here, we developed an interoceptive priming task (IPT) comprising (1) a priming phase, including counterbalanced interoceptive and control-exteroceptive conditions; and (2) an FER phase after each priming condition (post-Intero and post-exteroception [Extero]) (see Fig. 1A). This design can reveal novel, direct links between Intero and emotion.

We advanced three sets of hypotheses. First, we predicted that HCs would show enhanced negative FER in the post-Intero condition, and that such effect would be selectively disrupted in bvFTD and PD patients relative to HCs, contrasting with generalized FER alterations in AD. For bvFTD, such disruptions would be accompanied by impaired interoceptive accuracy. Second, we hypothesized that HEP modulations would significantly increase during post-Intero-negative FER in HCs, but not in bvFTD and PD. Third, across all groups, we expected that post-Intero-negative FER would correlate with the volume of the insula and the ACC as well as connectivity along networks involving such hubs (the SN). Instead, post-Extero-negative FER was expected to correlate with EN connectivity. Moreover, we predicted that associations between post-Intero-negative FER and SN connectivity would be abolished in bvFTD, and that no other group would show this specific pattern across networks and conditions. By testing these hypotheses, we aim to understand how interoceptive and emotional processes converge in the brain.

**Materials and Methods**

**Participants**

To determine the sample size required for our study, we ran a power estimation analysis on G*Power 3.1 (Faul et al., 2007). Given our statistical design (one-way ANOVA among groups and post hoc comparisons between HCs and each patient group), we considered the following parameters: a large effect size of $f=0.40$, an $\alpha$ level of $p=0.05$, and a power of 0.80, higher than the median of powers analyzed in previous studies in the area for detecting large effect sizes (Szucs and Ioannidis, 2017). This analysis showed that a total sample size of 76 is adequate to detect...
the estimated effects. The study comprised 114 participants, reaching a power of 0.95. All were part of an ongoing multicenter protocol, which follows recommendations for similar designs (Sedeño et al., 2017; Moguilner et al., 2018, 2021; Bachli et al., 2020; Ibáñez and Manes, 2012). We recruited 48 HCs with no history of psychiatric or neurologic disease, 19 patients fulfilling revised criteria for bvFTD (Rascovsky et al., 2011), 25 PD patients diagnosed in accordance with the United Kingdom Parkinson’s Disease Society Brain Bank criteria (Hughes et al., 1992), and 22 AD patients who fulfilled international National Institute of Neurological and Communicative Disorders and Stroke–Alzheimer’s Disease and Related Disorders Association criteria (Dubois et al., 2007; McKhann et al., 2011). Patients did not exhibit specific psychiatric disorders or primary language deficits. Samples were recruited from three international clinics. Each patient sample was matched on gender, age, and education with HCs (Table 1). The patients’ clinical diagnosis was established in each center through an extensive neurologic, neuropsychiatric, and neuropsychological examination (Table 1) and revised by neurodegenerative disease experts, as done previously (Baez et al., 2014; Melloni et al., 2016; Sedeño et al., 2017; Donnelly-Kehoe et al., 2019).

As expected, whole-brain gray matter (GM) analyses (p < 0.05, familywise error [FWE] correction; extent threshold = 50 voxels) revealed fronto-temporo-insular atrophy in bvFTD patients (Whitwell et al., 2009; Piguet et al., 2011; Ibáñez and Manes, 2012), no GM atrophy in PD patients (Huber et al., 1989; Schulz et al., 1999; Price et al., 2004), and a predominantly bilateral temporal pattern (with smaller frontal compromise) in AD patients (Du et al., 2007; Pini et al., 2016) (Table 2). bvFTD patients were functionally impaired and exhibited prominent changes in personality and social behavior, as verified by caregivers. PD patients were medicated with antiparkinsonian therapy and evaluated during “off” phase. Finally, AD patients were also functionally impaired as verified by caregivers. Cognitive impairments were assessed in all patients with the Montreal Cognitive Assessment (Nasreddine et al., 2005) and a clinical interview with experts. Further clinical and behavioral features of patients are described in Table 3.

The institutional ethics committees of each recruitment center approved the study protocol. All participants (or their caregivers) provided signed informed consent in accordance with the Declaration of Helsinki.

**Experimental design**

**Behavioral task.** The IPT included two phases: (1) a tapping-priming phase, in which subjects have to follow their own heartbeats [interoceptive condition (Intero)] or a recorded one [control exteroceptive condition (Extero)]; and (2) a subsequent FER phase, in which participants were requested to identify the emotion of static faces. The tapping-priming phase consisted of four blocks of 2 min each, with two blocks per condition (Intero and Extero), which were always counterbalanced across participants. The order of presentation was also counterbalanced per subject per group, so half of them started with Intero and the other half started with Extero. Immediately after each tapping-priming block, a block of the FER phase was administered, resulting in two post-Intero
Table 1. Demographic and neuropsychological results

| Variable                  | HCs  | bvFTD | PD   | AD   | Statistical results       | Post hoc       |
|---------------------------|------|-------|------|------|---------------------------|----------------|
| Demographics              |      |       |      |      |                           |                |
| Sex                       | 27:21| 6:13  | 12:13| 11:11|                           |                |
| Age**                     | 71.58 (6.09) | 68.47 (10.47) | 73.08 (6.98) | 74.64 (5.34) | F = 2.85, p = 0.04*, ηp² = 0.07 | HCs-bvFTD: p = 0.36 HCs-PD: p = 0.82 HCs-AD: p = 0.33 |
| Education                 | 14.12 (3.75) | 14.53 (5.36) | 11.84 (4.44) | 11.59 (3.81) | F = 3.33, p = 0.02*, ηp² = 0.08 | HCs-bvFTD: p = 0.98 HCs-PD: p = 0.13 HCs-AD: p = 0.09 |
| Cognitive screening results|      |       |      |      |                           |                |
| MoCA**                    | 25.3 (2.9) | 19.95 (5.24) | 21.04 (4.29) | 16.27 (4.71) | F = 27.34, p < 0.001* HCs-PD: p < 0.001* HCs-AD: p < 0.001* |
| IFS**                     | 21.01 (3.31) | 17.11 (5.82) | 19.16 (4.59) | 14.45 (4.76) | F = 12.32, p < 0.001*, ηp² = 0.25 | HCs-PD: p = 0.44 HCs-AD: p < 0.001* |

*Data are mean (SD). Demographic and clinical data were assessed through ANOVAs, except for sex, which was analyzed via Pearson’s χ² test. Effect sizes were calculated through ηp². MoCA, Montreal Cognitive Assessment (Nasreddine et al., 2005); IFS, heo Frontal Screening.

**Significant difference.

---

Table 2. GM atrophy patterns in patients

| Region                        | Cluster | Peak | MNI coordinates |
|-------------------------------|---------|------|-----------------|
|                               | No. of voxels p (FWE) | t | x | y | z |
| bvFTD atrophy                 |         |      |                |
| Middle temporal R             | 869     | 0.008| -42           | -27    | -8 |
| Inferior temporal R           | 468     | 0.001| 51            | -18    | -21 |
| Middle temporal R             | 457     | 0.001| 51            | -29    | -11 |
| Middle temporal pole R        | 446     | 0.001| 44            | 6       | -32 |
| Inferior orbital frontal R    | 661     | 0.001| 46            | 29      | 7   |
| Insula L                      | 124     | 0.047| 42            | -33     | 21  |
| AD atrophy                    |         |      |                |
| Hippocampus R                 | 24779   | 0.002| 6             | 32      | -9  |
| Hippocampus L                 | 687     | 0.001| -43           | -8      | -20 |
| Amygdala L                    | 677     | 0.001| -27           | 2       | -21 |
| Middle temporal R             | 294     | 0.001| 48            | 53      | -30 |
| Middle frontal L              | 186     | 0.001| -41           | 48      | 5   |
| Insula L                      | 333     | 0.018| -49           | 36      | 14  |

---

Table 3. Clinical and behavioral features of patients

|                       | bvFTD | PD   | AD   |
|-----------------------|-------|------|------|
| FAQ**                 | 10.42 (7.36) | 4.46 (5.65) | 15.91 (7.56) |
| FRS**                 | -0.05 (1.49)  | 1.37 (1.22)  | -0.98 (1.47)  |

*Data are mean (SD).

**FAQ, Functional Activities Questionnaire, a 10 item rating scale that measures instrumental activities of daily living (e.g., preparing meals and personal finance) (Pfeffer et al., 1982). A score >9 suggests a possible impaired function and possible cognitive impairment.

**FRS, Frontotemporal Dementia Rating Scale, a 30 item scale that evaluates severity in patients with dementia (Mossi et al., 2010). Scores from 1.93 to 2.58 indicate a moderate/severe disease stage; scores from 2.58 to 6.66 indicate a severe/profound disease stage.

*Variable with significant differences (p < 0.05) between patient groups, precluding comparisons between them in our target measures.

---

FER blocks and two post-Extero FER blocks (four FER blocks in total). Before the test, participants had a 2 min tapping-priming practice phase and an FER practice phase. High-density EEG (hd-EEG) recordings were obtained during the FER blocks for each participant to evaluate the impact of interoceptive priming on the HEP correlates of FER.

For the tapping-priming phase, we used a validated heartbeat detection (HBD) task (Canal-Lojohn et al., 2015; Garcia-Cordero et al., 2016; Yonis et al., 2017, 2018; Salomone et al., 2018, 2020; Abrevaya et al., 2020; Richter et al., 2021; Richter and Íñiguez, 2021). Participants were required to tap a computer keyboard along with their heartbeats (Intero) or external stimuli (Extero). Two blocks were presented for each condition. In each Intero condition, subjects were asked to follow their own heartbeats in the absence of any sensory feedback, for 2 min. This condition provides an objective measure of each participant’s interoceptive accuracy (Garfinkel et al., 2015). In Extero, participants were instructed to follow an audio recording of a simulated heartbeat for 2 min, as a control measure to test the influence of noninteroceptive priming over FER. An accuracy score (d') was estimated for each condition per subject based on HBD outcomes via signal detection theory (Macmillan and Creelman, 2004; Thomson and Kristan, 2005; González-Campo et al., 2020). This approach yields robust motor-tracking HBD indexes, as it allows estimating subjects’ signal-to-noise sensitivity and specificity by penalizing correct responses made by chance (Brener and Ring, 2016; Richter and Zimmer, 2018). Accordingly, it is preferable to more classical measures, such as Schandry’s index (Schandry, 1981), which can be contaminated by confounds, such as heart rate (HR) estimations and total number of responses (Zamarola et al., 2018; Fittipaldi et al., 2020; Richter and Zimmer, 2020).

The FER phase was based on Ekman and Friesen’s images (Ekman and Friesen, 1971; Ekman, 1976). In each of the four FER blocks, 56 faces were presented in a different pseudorandomized order per block, for 200 ms each. The stimuli comprised 8 neutral, 16 positive (8 for happiness, 8 for surprise), and 32 negative (8 for anger, 8 for disgust, 8 for sadness, 8 for fear) faces. All images denoted their corresponding emotion with the same intensity (100%). Participants were asked to judge, as fast and accurately as possible, whether each face presented a negative, neutral, or positive emotion by pressing preassigned keyboard arrows. FER performance was quantified through the Inverse Efficiency Score (IES) (Hesse et al., 2016, 2019), a standard metric that combines reaction time (RT) and accuracy data to holistically establish weighted behavioral outcomes (Jacques and Rossion, 2007; Jacquet and Fd). Specifically, it is calculated by dividing the mean RT by the proportion

(continued...
of correct responses (Mevorach et al., 2006; Brozzoli et al., 2008), thus controlling for biases introduced by fast RTIs with low accuracy and vice versa. Therefore, the higher the IES, the poorer the performance. The average IES from the two post-Intero and the two post-Extero FER blocks was obtained per subject for each emotion type (negative, positive, and neutral).

**hd-EEG data acquisition.** We obtained hd-EEG signals during the FER phase from 100 participants. These comprised 18 bvFTD, 23 PD, 16 AD, and 34 HCs (n = 41) (Table 4). Recordings were performed with a Biosemi Active-two 128-channel system at 1024 Hz, following standard preprocessing steps (García-Cordero et al., 2016, 2017; Yoris et al., 2017, 2018; Salamone et al., 2018), as detailed in hd-EEG preprocessing and analysis.

**MRI/fMRI data acquisition.** MRI and fMRI acquisition and preprocessing steps are reported as recommended by the Organization for Human Brain Mapping (Nichols et al., 2017; Poldrack et al., 2017). In each center, following standard protocols (García-Cordero et al., 2016; Gonzalez Campo et al., 2020), we obtained 3D volumetric and 10-min-long resting-state MRI sequences from all participants; recordings were performed in three scanners.

**Table 4. HEP: demographic results**

| Variable   | HCs     | bvFTD   | PD       | AD       | Statistical results | Post hoc |
|------------|---------|---------|----------|----------|---------------------|----------|
| Sex        | 24:20   | 3:12    | 11:10    | 10:9     | $\chi^2 = 5.77$,    |          |
|            |         |         |          |          | $p = 0.12$          |          |
| Age        | 71.54 (6.02) | 68.39 (10.77) | 72.83 (7) | 74.06 (5.33) | $F = 2.10$, $p = 0.10$, $\eta^2 = 0.06$ |          |
| Education  | 13.8 (3.8) | 15.11 (4.85) | 11.48 (4.28) | 11.56 (3.76) | $F = 3.87$, $p = 0.01^*$, $\eta^2 = 0.10$ |          |

*Data are mean (SD). Demographic data were assessed through ANOVAs. Gender was analyzed with the Pearson $\chi^2$ test. Effect sizes were calculated through $\eta^2$.

*Significant difference.

**Table 5. Specific neuroimaging parameters per left**

| Parameter                                                                 |
|---------------------------------------------------------------------------|
| left 1 3-T Phillips scanner with a standard head coil, whole-brain T1-rapid anatomic 3D gradient echo volumes were acquired parallel to the plane connecting the anterior and posterior commissures, with the following parameters: TR = 8300 ms; TE = 3000 ms; flip angle = 8°; 160 slices, matrix dimension = 224 × 224 × 160; voxel size = 1 mm × 1 mm × 1 mm. Also, functional spin echo volumes, parallel to the anterior-posterior commissures, covering the whole brain, were sequentially and ascendingly acquired with the following parameters: TR = 2640 ms; TE = 30 ms; flip angle = 90°; 49 slices, matrix dimension = 80 × 80 × 49; voxel size in plane = 3 mm × 3 mm × 3 mm; slice thickness = 3 mm; sequence duration = 10 min; number of volumes = 220. |
| left 2 Using a 3-T Siemens Skyra scanner with a standard head coil, we acquired whole-brain T1-rapid gradient echo volumes, parallel to the plane connecting the anterior and posterior commissures, with the following parameters: TR = 1700 ms; TE = 2000 ms; flip angle = 8°; 208 slices, matrix dimension = 224 × 224 × 208; voxel size = 1 mm × 1 mm × 1 mm. Also, functional EP2D-BOLD pulse sequences, parallel to the anterior-posterior commissures, covering the whole brain, were acquired sequentially, intercalating pair-ascending first with the following fMRI parameters: TR = 2660 ms; TE = 30 ms; flip angle = 90°; 46 slices, matrix dimension = 76 × 76 × 46; voxel size in plane = 3 mm × 3 mm × 3 mm; slice thickness = 3 mm; sequence duration = 13.3 min; number of volumes = 300. |
| left 3 Using a 3-T Siemens Skyra scanner with a standard head coil, we acquired whole-brain T1-rapid gradient echo volumes, parallel to the plane connecting the anterior and posterior commissures, with the following parameters: TR = 2400 ms; TE = 30 ms; flip angle = 9°; 192 slices, matrix dimension = 256 × 256 × 192; voxel size = 1 mm × 1 mm × 1 mm. Also, functional EP2D-BOLD pulse sequences, parallel to the anterior-posterior commissures, covering the whole brain, were acquired sequentially, intercalating pair-ascending first with the following fMRI parameters: TR = 2660 ms; TE = 30 ms; flip angle = 90°; 46 slices, matrix dimension = 76 × 76 × 46; voxel size in plane = 3 mm × 3 mm × 3 mm; slice thickness = 3 mm; sequence duration = 10.5 min; number of volumes = 240. |

*Following standard protocols (García-Cordero et al., 2016; Gonzalez Campo et al., 2020), we obtained 3D volumetric and 10-min-long resting-state MRI sequences from all participants; recordings were performed in three scanners.

**Table 6. MRI-T1: demographic results**

| Variable   | HCs     | bvFTD   | PD       | AD       | Statistical results | Post hoc |
|------------|---------|---------|----------|----------|---------------------|----------|
| Sex        | 24:20   | 3:12    | 11:10    | 10:9     | $\chi^2 = 5.77$,    |          |
|            |         |         |          |          | $p = 0.12$          |          |
| Age        | 71.36 (6) | 68.73 (10.71) | 72.86 (7.52) | 74.68 (5.32) | $F = 2.17$, $p = 0.09$, $\eta^2 = 0.06$ |          |
| Education  | 14.05 (3.86) | 14.73 (5.22) | 11.62 (4.48) | 11.16 (3.32) | $F = 3.85$, $p = 0.01^*$, $\eta^2 = 0.10$ |          |

*Data are mean (SD). Demographic data were assessed through ANOVAs. Gender was analyzed with the Pearson $\chi^2$ test. Effect sizes were calculated through $\eta^2$.

*Significant difference.

Statistical analysis

**Statistical analysis for behavioral outcomes.** As in previous reports with neurodegenerative diseases (Sollierber et al., 2009, 2014; Shany-Ur et al., 2012, 2014; Chiong et al., 2016; García-Cordero et al., 2016, 2019), our hypotheses hinged on differences between each patient group and HCs. Hence, behavioral statistical analyses were performed to compare...
The HBD task, a heartbeat is considered “noise,” whereas the absence of a heartbeat is “signal.” Subjects’ reactions can be classified as “yes” (tapping the keyboard) or “no” (not tapping the keyboard) (Richter and Zimar, 2018). If a yes response occurs in a given window time-locked to the R-wave of the preceding heartbeat (signal), then it is considered correct and called “hit.” On the contrary, the absence of a response in the defined temporal window is considered a “miss.” In addition, the signal detection formula weights the strategy of the subject in discriminating signal from noise, to penalize successful responses by chance (e.g., a subject who always responds yes would get all hits). Hence, a response outside the window is a “false alarm,” whereas the absence of a response outside the window is a correct rejection. To control for potential interindividual differences, the temporal extension of the window was determined for each subject according to their HR. The window was locked 750 ms after the beat for a HR < 69.76; 600 ms after the beat for a HR between 69.76 and 94.25; and 400 ms after the beat for a HR > 94.25 (Salamone et al., 2018). Higher values of $d'$ indicate better discrimination ability and thus better intercorceptive accuracy in the intercorceptive condition, and better tapping accuracy in the exteroceptive condition. We calculated $d'$ index with the following equation:

$$d' = \left( \frac{z_{\sum \text{hits}} - z_{\sum \text{false alarm}}}{z_{\sum \text{correct rejection}} - z_{\sum \text{false alarm}}} \right)$$

Where $z$ ($p$) is the inverse normal probability corresponding to cumulative probability. To calculate the tapping index of the exteroceptive condition, we used a window between 0 and 750 ms after the recorded heartbeat. After this, to test our hypothesis of specific intercorceptive accuracy disruptions in bvFTD compared with HCs, $t$ tests were run to compare the IPT’s $d'$ index between HCs and each patient group, using Statistica (StatSoft) software.

For the FER phase, to improve the responses’ signal-to-noise ratio (avoiding responses biased by attentional distraction or technical problems in the recordings), we removed trials with RTs > 2500 ms (Pérez-Mata et al., 2012; Hatziidakis et al., 2015; Pelaez et al., 2016) and then also excluded those that fell 3 SDs away from the mean of each subjects’ RT. Also, to exclude data that may not reflect our target psychological processes in both phases of the task, we discarded subjects whose mean RTs fell 3 SDs from the sample’s mean in each condition (de la Fuente et al., 2019).

Given that Shapiro–Wilk’s tests revealed non-normal distributions for FER indexes (Table 8), and that analyses based on non-normalized data may promote Type I and Type II errors, we normalized the IES scores using box-Cox transformation, previously applied in emotion recognition studies (Kuperman et al., 2014; Statuca and Walder, 2017) for behavioral analyses. This approach supersedes traditional normalization procedures as it fulfills the assumptions of normality, linearity, and homoscedasticity (Sakia, 1992; Osborne, 2010), improving results’ generalizability and effect size precision (Osborne, 2010). Behaviorally, we predicted that HCs would show enhanced negative FER in the post-Intero condition. To test this hypothesis, FER performance was compared in HCs between conditions for emotion type via two-tailed $t$ tests. Moreover, we hypothesized that such enhancement effect would be selectively disrupted in bvFTD and PD patients relative to HCs. To test this, FER performance was compared between groups via one-way ANOVAs, for each condition and emotion type. More specifically, we performed pairwise comparisons (HCs-bvFTD, HCs-PD, and HCs-AD) via Tukey’s HSD tests, to assess specific intercorceptive-emotional patterns in each patient group relative to HCs. Effect sizes were reported with Cohen’s $d$ and partial $\eta^2$ squared ($\eta^2_p$), as required. All FER behavioral analyses were performed using Pandas package (version 0.25.1) (McKinney, 2010), and Pingouin statistics package (version 0.3.6) (Vallat, 2018) in Python (version 3.7.4, Python Software Foundation), as well as BestNormalize package (Peterson and Cavanaugh, 2020) and lmertest package (Kuznetsova et al., 2017) in R software (version 4.0.2, R Foundation for Statistical Computing). Figures were generated using the Seaborn Python package (version 0.9.0) (Batsis et al., 2019).

### Table 7. fMRI Demographic results

| Variable   | HCs  | bvFTD | PD  | AD  | Statistical results | Post hoc |
|------------|------|-------|-----|-----|---------------------|----------|
| Sex        | 24:20| 3:10  | 11:10| 9:9 | $\chi^2 = 4.14$, $p = 0.24$ | HCs-bvFTD: $p = 0.51$ HCs-PD: $p = 0.85$ |
| Age        | 71.36 (6) | 68.31 (10.67) | 72.86 (7.52) | 74.94 (5.35) | $F = 2.47$, $p = 0.06$, $\eta^2_p = 0.07$ | HCs-bvFTD: $p = 0.26$ HCs-PD: $p = 0.02$ |
| Education  | 14.05 (3.86) | 14.08 (5.3) | 11.62 (4.48) | 11.39 (3.26) | $F = 2.95$, $p = 0.03^*$, $\eta^2_p = 0.08$ | HCs-bvFTD: $p = 0.09$ HCs-PD: $p = 0.12$ |

*Data are mean (SD). Demographic data were assessed through ANOVAs. Gender was analyzed with the Pearson $\chi^2$ test. Effect sizes were calculated through $\eta^2_p$.

*Significant difference.

### Table 8. Shapiro–Wilk test for normality

|                      | HCs  | bvFTD | PD  | AD  |
|----------------------|------|-------|-----|-----|
| FER phase negative emotions |      |       |     |     |
| Post-Intero          | $W = 0.907$, $p < 0.001$  | $W = 0.784$, $p < 0.001$  | $W = 0.780$, $p < 0.001$  | $W = 0.907$, $p < 0.001$  |
| Post-Extero          | $W = 0.889$, $p < 0.001$  | $W = 0.890$, $p < 0.001$  | $W = 0.877$, $p < 0.001$  | $W = 0.936$, $p < 0.001$  |
|                      | $W = 0.990$, $p = 0.02$   | $W = 0.985$, $p = 0.02$   | $W = 0.981$, $p = 0.02$   | $W = 0.980$, $p = 0.02$   |
| FER phase positive emotions |      |       |     |     |
| Post-Intero          | $W = 0.916$, $p < 0.001$  | $W = 0.914$, $p < 0.001$  | $W = 0.670$, $p < 0.001$  | $W = 0.961$, $p < 0.001$  |
| Post-Extero          | $W = 0.748$, $p < 0.001$  | $W = 0.859$, $p < 0.001$  | $W = 0.835$, $p < 0.001$  | $W = 0.896$, $p < 0.001$  |
|                      | $W = 0.901$, $p = 0.02$   | $W = 0.900$, $p = 0.02$   | $W = 0.900$, $p = 0.02$   | $W = 0.900$, $p = 0.02$   |
| FER phase neutral emotions |      |       |     |     |
| Post-Intero          | $W = 0.879$, $p < 0.001$  | $W = 0.810$, $p < 0.001$  | $W = 0.877$, $p < 0.001$  | $W = 0.879$, $p < 0.001$  |
| Post-Extero          | $W = 0.827$, $p < 0.001$  | $W = 0.885$, $p < 0.001$  | $W = 0.908$, $p < 0.001$  | $W = 0.972$, $p < 0.001$  |

$W = 0.95$, $p = 0.03$ HCs-bvFTD: $p = 0.51$ HCs-PD: $p = 0.85$ HCs-AD: $p = 0.26$ HCs-bvFTD: $p = 0.09$ HCs-PD: $p = 0.12$ HCs-AD: $p = 0.02$ HCs-bvFTD: $p = 0.09$ HCs-PD: $p = 0.12$ HCs-AD: $p = 0.02$ HCs-bvFTD: $p = 0.09$ HCs-PD: $p = 0.12$ HCs-AD: $p = 0.02$ HCs-bvFTD: $p = 0.09$ HCs-PD: $p = 0.12$ HCs-AD: $p = 0.02$ HCs-bvFTD: $p = 0.09$ HCs-PD: $p = 0.12$ HCs-AD: $p = 0.02$ HCs-bvFTD: $p = 0.09$ HCs-PD: $p = 0.12$ HCs-AD: $p = 0.02$ HCs-bvFTD: $p = 0.09$ HCs-PD: $p = 0.12$ HCs-AD: $p = 0.02$
around the R-wave peak, and baseline-corrected relative to −300 to 0 ms (Salamone et al., 2018). Epoch selection was designed to guarantee one full HEP modulation after each emotional stimulus. The signal was referenced offline to the average reference. Noisy epochs were rejected using an automatic EEGLAB procedure; criteria for exclusion included elimination of trials which exceeded a threshold of 2.5 SD from the mean probability distribution calculated from all trials and by measuring the kurtosis of probability distribution (Zich et al., 2015), percentage of rejected trials was similar across groups and conditions (for details, see Table 9). Low drifts were removed by linear trend corrections (Delorme and Makeig, 2004). HEP was then extracted for each priming condition (FER post-Intero or post-Extero) and for each stimuli valence (negative and neutral faces), and trials were averaged across subjects for group comparisons.

To test for potential effects of interoceptive priming on HEP modulation during the FER phase as hypothesized in HCs, we compared the modulation between negative and neutral faces for each priming condition (Intero vs Extero) in this group. In line with our hypothesis and previous supporting evidence, analyses focused on negative faces (Straube and Milner, 2011; Couto et al., 2015; Terasawa et al., 2015; Georgiou et al., 2018; Marshall et al., 2018; Mai et al., 2019). Comparisons of HEP modulations were performed using a 5000 point-by-point Monte Carlo permutation test with bootstrapping (Manly, 2006). This analysis constitutes a robust approach for HEP analyses (Couto et al., 2014, 2015; Canales-Johnson et al., 2015; Garcia-Cordero et al., 2016, 2017; Yoris et al., 2017, 2018; Salamone et al., 2018, 2020; Abrevaya et al., 2020; Legaz et al., 2020; Richter and Ibáñez, 2021), providing a solution for the multiple comparison problems and circumventing Gaussian distribution assumptions (Nichols and Holmes, 2002). To avoid cardiac field artifacts (Kern et al., 2013), we only analyzed time points between 200 and 500 ms, as these time points are proposed to be less affected by cardiac field artifacts (Dirlich et al., 1997; Kern et al., 2013; Park et al., 2014), and they capture a typical HEP latency (Pollatos and Schandry, 2004; Canales-Johnson et al., 2015; Müller et al., 2015; Pollatos et al., 2016). The main HEP analyses were based on a frontal ROI associated with interoceptive attention modulation (Couto et al., 2014; Garcia-Cordero et al., 2016; Marshall et al., 2017). The ROI was composed of 11 electrodes: C9, C10, C14, C15, C18, C19, C20, C27, C28, C31, and C32. Additional analyses with three frontal ROIs (left-frontal, central-frontal, and right-frontal ROIs) were performed to evaluate the modulation in different locations. To ensure that results were not driven by different numbers of trials in each condition (negative vs neutral), we performed a complementary analysis selecting equal number of trials for each condition. To do this, for each subject, a random number of negative trials was extracted that matched that subject’s number of neutral trials. The function randperm on MATLAB was used to select a random list of trials without repetitions.

Then, to test whether the interoceptive priming of negative emotions involved cortical neurophysiological alterations in patients, we compared HCs’ FER-related HEP modulations with those of each pathologic group. To this end, for each group, we calculated the mean HEP modulation of each emotion type and subtracted the HEP modulation of negative-minus-neutral faces in each condition (post-Intero and post-Extero), based on the significant time window established for HCs (232–251 and 290–317 ms; for details, see Results). Finally, we compared the obtained indexes in each HCs-patient group pair using a nonparametric test (Wilcoxon rank-sum test without p < 0.05).

| Table 9. EEG: percentage of rejected trials per conditiona |
|----------------|--------|--------|--------|--------|-----------------|
| Variable         | HCs     | bvFTD  | PD     | AD     | Statistical results | Post hoc |
|------------------|---------|--------|--------|--------|--------------------|----------|
| NEG-Intero       | 25.41 (7.03) | 24.60 (9.00) | 22.47 (8.94) | 20.97 (8.92) | $F = 1.80$, $\eta^2 = 0.04$ | HCs-bvFTD: $p = 0.98$ |
| NEG-Extero       | 26.22 (9.14) | 23.98 (9.08) | 23.28 (12.66) | 23.30 (10.03) | $F = 0.69$, $\eta^2 = 0.01$ | HCs-bvFTD: $p = 0.84$ HCs-PD: $p = 0.66$ |
| NEU-Intero       | 20.06 (9.41) | 18.15 (10.68) | 20.48 (10.92) | 18.48 (12.53) | $F = 0.28$, $\eta^2 = 0.008$ | HCs-PD: $p = 0.99$ |
| NEU-Extero       | 24.42 (11.95) | 24.12 (13.99) | 22.41 (11.53) | 19.52 (11.99) | $F = 0.90$, $\eta^2 = 0.02$ | HCs-PD: $p = 0.99$ |

aData are mean (SD). The percentage of rejected trials was assessed through ANOVAs. Effect sizes were calculated through $\eta^2$. No significant differences were found. All HEP results in HCs and HEP mean difference results were based on a similar amount of trials per emotional valence faces (negative – neutral) and condition (Intero – Extero). NEG, Negative emotion; NEU, Neutral emotion.

| Table 10. Tapping-priming resultsa |
|----------------|--------|--------|----------------|
| Condition      | HCs     | bvFTD  | Student’s $t$ test | $p$ |
| Intero          | 1.02 (0.34) | 0.75 (0.69) | 2.15 | 0.03* |
| Extero          | 1.33 (1.60) | 0.64 (1.54) | 1.51 | 0.13 |

aData are mean (SD). *Statistically significant differences.
MRI preprocessing and analysis

Preprocessing included removal of nonbrain tissue, an automatic Talairach transformation, segmentation of the subcortical white matter (WM) and deep GM volumetric structures (including hippocampus, amygdala, caudate, putamen, and ventricles), intensity normalization, tessellation of the GM-WM boundary, an automatic topology correction, and surface deformation following intensity gradients to optimally place the GM/WM and GM/CSF borders at the location where the greatest shift in intensity defines the transition to the other tissue class. All T1 images were processed via surface-based morphometry (SBM) on FreeSurfer software suite (version 6.0; https://surfer.nmr.mgh.harvard.edu/). Structural surface-based metrics included cortical volume and thickness. SBM avoids registration to a standard space, overcoming registration errors, improving parcellation, and offering reliable estimation of region-specific differences (Clarkson et al., 2011). Full details on the implemented methods can be found elsewhere (Fischl, 2012). The plain-text output of the FreeSurfer’s pipeline was postprocessed on Python (version 3.7.4, Python Software Foundation) and transformed into a better structure for statistical analysis. To avoid potential biases because of differences among the participants’ head size (Whitwell et al., 2001), volume measures of each area were normalized as a percentage of the estimated total intracranial volume (provided also in FreeSurfer’s results). One HC and one AD patient had to be excluded from this analysis because of artifacts. Finally, we performed a site normalization to avoid MRI-setup-dependent bias in the measurements. For each center, volume of both HCs and patients was z-scored based on the mean and SD of the corresponding center’s HCs (Donnelly-Kehoe et al., 2019).

We hypothesized that, across all groups, post-Intero-negative FER would correlate with the volume of key interoceptive-emotional regions (i.e., insula and the ACC). Therefore, we tested this hypothesis by assessing the association between cortical volume and FER outcomes (IES) on negative emotions after both tapping-priming conditions (Intero and Extero), through Spearman correlations with PingoInnis statistics package (version 0.3.6) (Vallat, 2018) on Python (version 3.7.4, Python Software Foundation). Following previous procedures (Solberger et al., 2009; Garcia-Cordero et al., 2016; O’Callaghan et al., 2016) and considering the moderate size of our experimental samples, all four groups were included in the analysis to increase behavioral variance and statistical power. To target relevant areas, analyses were made on masks, including canonical interoceptive cortical regions (insula, rostral ACC, and post-central) also involved in emotional processes (Adolfi et al., 2017). Statistical significance was set at $p < 0.05$, corrected via false discovery rate (FDR).

FC preprocessing and analysis

Based on the IMRI resting-state recordings, we evaluated the different patterns of positive association between FER outcomes for negative emotions (after both tapping-priming conditions: Intero and Extero) and FC patterns. Images were preprocessed on an open-access toolbox: the Data Processing Assistant for Resting-State FMRI (DPARSFv2.3) (Chao-Gan and Yu-Feng, 2010).

To ensure that magnetization achieved a steady state, we discarded the first five volumes of each subject’s resting-state recording. Then, images were preprocessed using an open-access toolbox: DPARSFv2.3 (Chao-Gan and Yu-Feng, 2010), which generates an automatic pipeline for FMRI analysis by calling the Statistical Parametric Mapping software (SPM12) (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and the Resting-State IMRI Data Analysis Toolkit (REST V.1.7). As in previous studies (Salamone et al., 2018; Yoris et al., 2018), preprocessing steps included slice-timing correction (using middle slice of each volume as the reference scan) and realignment to the first scan of the session to correct head movement (SPM functions) (Garcia-Cordero et al., 2016; Melloni et al., 2016; Sedeño et al., 2017). Then, images were normalized to the MNI space using the default EPI template from SPM12, smoothed using an 8 mm FWHM isotropic Gaussian kernel, and bandpass filtered between 0.01 and 0.08 Hz to correct and remove low-frequency drifts from the MR scanner. Finally, we regressed out six motion parameters, CSF, and WM signals to reduce the effect of motion and physiological artifacts, such as cardiac and respiratory effects (REST V1.7 toolbox). Motion parameters were estimated during realignment, and CSF and WM masks were derived from the tissue segmentation of each subject’s T1 scan in native space with SPM12 (after coregistration of each subject’s structural image with the functional image). Finally, we excluded recordings with movements $> 3$ mm and/or rotation movements $> 3^\circ$ (for details, see Extended Data Fig. 5-1).

We hypothesized that SN connectivity would correlate with post-Intero-negative FER across all groups, but not in bvFTD. Also, we predicted that EN connectivity would correlate with post-Extero-negative FER in all groups. Consequently, after preprocessing, we used seed analyses to examine associations between behavioral outcomes and FC along the SN, related to Intero and emotion (Uddin, 2015; Adolfi et al., 2017; Kim et al., 2019; Seeley, 2019) and the EN, implicated in exteroceptive processes (Sridharan et al., 2008). To test the specificity of our predictions for these networks, we also examined associations between performance and connectivity along three additional control networks: the default-mode network (DMN), the visual network (VN), and the motor network (MN). We expected null associations between both post-Intero and post-Extero and these three control networks. We placed two bilateral seeds on cubic ROIs with a size of $7 \times 7 \times 7$ voxels (Koslov et al., 2019).
(2011) for each network. Each pair of seeds was located on different coordinates to capture each network’s connectivity: (1) the dorsal ACC, a main hub of the SN (Seeley et al., 2007) (MNI coordinates 10, 34, 24 and −10, 34, 24); (2) the right and left superior frontal gyri of the EN (Boord et al., 2017) (MNI coordinates 30, −2, 62 and −30, −2, 62); (3) the posterior cingulate cortex, a key node of the DMN (Uddin et al., 2009) (MNI coordinates 3, −54, 27 and −3, −54, 27); (4) the primary visual cortex for the VN (Saiote et al., 2016) (MNI coordinates 8, −92, 8 and −8, −92, 8); and (5) the primary motor cortex (M1) for the MN (Vahdat et al., 2011) (MNI coordinates 32, −30, 68 and 332, −30, 68).

To calculate the resting-state networks, we used Pearson’s correlation coefficient across the whole time series obtained in the resting-state acquisition. Then, we used standard masks (Shirer et al., 2012) to isolate the voxels that are typically involved in each resting-state network. Finally, we spatially averaged across all included voxels to obtain one feature per network. To increase behavioral variance and statistical power, we
first performed analyses, including all four groups (HCs, bvFTD, PD, and AD), and then included both patients and controls in each analysis (bvFTD-HCs, PD-HCs, AD-HCs) (Sollberger et al., 2009; Garcia-Cordero et al., 2016; O’Callaghan et al., 2016). Resulting connectivity maps were correlated with FER outcomes for negative emotions (after both tapping-priming conditions: Intero and Extero) through the SPM12 multiple regression module (FDR-corrected, p < 0.05).

Data availability
Anonymized data that support the study’s findings are available from open-source software (Salamone and Legaz, 2021) or from the corresponding author on reasonable request. The task is available online at https://github.com/pausalamone/Interoception.

Results
Behavioral results
Tapping-priming phase: interoceptive results
Compared with HCs, bvFTD patients exhibited selective impairments of Intero. No significant difference was observed in AD or PD patients relative to HCs. Concerning exteroceptive outcomes, no significant differences appeared in any group of patients with respect to HCs (Table 10). These results confirmed a compromise of Intero only in bvFTD patients.

FER phase: effects of interoceptive priming
To corroborate the link between Intero and emotions, we examined whether interoceptive priming improved FER outcomes (normalized IES) in HCs. Relative to the post-Extero condition, post-Intero yielded better IES only for negative emotions (t = −2.63, p = 0.01, Cohen’s d = 0.27). No differences were found for the other two types of emotion (positive: t = −0.07, p = 0.94, Cohen’s d = 0.01; neutral: t = −1.61, p = 0.11, Cohen’s d = 0.20) (Figs. 1B, 2). Briefly, HC exhibited the expected selective interoceptive (but not exteroceptive) priming of negative (but not other) emotions.

We also tested this priming effect in each emotion across patients compared with HCs. For negative emotions (Fig. 1C), we found significant differences between groups in post-Intero FER (F(3,110) = 10.41, p < 0.001, ηp² = 0.22). Specifically, post hoc comparisons demonstrated significantly lower negative emotion recognition post-Intero relative to HCs (mean = −0.48, SD = 0.67) in all patient samples (bvFTD: mean = 0.15, SD = 1.04, p = 0.02; PD: mean = 0.17, SD = 0.93, p = 0.007; AD: mean = 0.62, SD = 0.73, p < 0.001). In contrast, while significant differences were found between groups in post-Extero-negative FER (F(1,108) = 8.37, p < 0.001, ηp² = 0.18), post hoc comparisons revealed deficits only in the AD sample (AD: mean = 0.61, SD = 0.71, p < 0.001) relative to HCs (mean = −0.33, SD = 0.62). The other groups did not exhibit significant differences against HCs in post-Extero outcomes (bvFTD: mean = 0.19, SD = 1.05, p = 0.06; PD: mean = 0.11, SD = 0.76, p = 0.09).

For positive emotions, no significant group differences were found in post-Intero-positive FER (F(3,110) = 2.42, p = 0.06, ηp² = 0.06). In post-Extero-positive FER, although we found significant differences between groups (F(3,109) = 2.83, p = 0.04, ηp² = 0.07), only AD patients (mean = 0.92, SD = 1.00, p = 0.02) exhibited lower outcomes than HCs (mean = 0.09, SD = 1.15) in post hoc comparisons (Table 11).

For neutral emotions, significant differences between groups were found in post-Intero (F(3,109) = 5.65, p = 0.001, ηp² = 0.13) and post-Extero (F(3,107) = 4.12, p = 0.008, ηp² = 0.10) neutral FER. Post hoc comparisons revealed significant deficits only in AD patients (Post-Intero: mean = 0.18, SD = 0.60, p < 0.001; Post-Extero: mean = 0.08, SD = 0.73, p = 0.007) compared with HCs (Post-Intero: mean = −0.74, SD = 0.81; Post-Extero: mean = −0.59, SD = 0.72) (Table 11).

EEG results
HEP modulation during emotion recognition after priming
To evaluate interoceptive priming effects on FER-related HEP modulations, we tested the differences between negative and neutral faces for each tapping-priming condition in HCs. In the post-Intero condition, HCs showed significantly larger HEP amplitudes for negative than neutral faces in two canonical windows (232-251 and 290-317 ms; Fig. 3A). No differences emerged in the post-Extero condition. Results were not driven by a different number of trials between negative and neutral conditions (Fig. 3A). Moreover, these results were replicated in the additional frontal sub-ROIs (Fig. 3A).

Table 12. Association between cortical volume and post-Inter-negative FER

| Region                      | R    | p (FDR) |
|-----------------------------|------|---------|
| Insula R                    | −0.268 | 0.023*   |
| Insula L                    | −0.209 | 0.059   |
| Rostral anterior cingulate R | −0.225 | 0.053   |
| Rostral anterior cingulate L | −0.311 | 0.011*   |
| Postcentral R               | −0.195 | 0.066   |
| Postcentral L               | −0.139 | 0.174   |

*Cortical volume measures were obtained through SBM. Spearman correlations were examined between cortical volume of main interoceptive/emotion areas and negative FER post-Intero outcomes, applying p < 0.05 with FDR correction. Results are presented using Desikan-Killiany cortical atlas (Desikan et al., 2006). No significant associations were found between cortical volume and post-Extero IES in negative emotions. R, Right; RH, right hemisphere; P, posterior; RH, right hemisphere.
Based on the time window detected in HCs, we compared the mean HEP modulation for negative minus neutral faces across groups. In the post-Intero condition, the negative-neutral HEP difference was higher for HCs than bvFTD ($W = 251$, $p = 0.02$, Cohen’s $d = 0.33$) and PD ($W = 348$, $p = 0.03$, Cohen’s $d = -0.48$) patients, but similar to that of AD patients ($W = 413$, $p = 0.18$, Cohen’s $d = 0.26$) ($Fig. 3B$). The post-Extero condition yielded no significant differences between HCs and any patient group (bvFTD: $W = 367$, $p = 0.64$, Cohen’s $d = 0.16$; PD: $W = 448$, $p = 0.91$, Cohen’s $d = -0.08$; AD: $W = 346$, $p = 0.40$, Cohen’s $d = -0.39$).

**Neuroimaging results**

**Structural associations with negative FER**

Analyses for all groups revealed significant associations ($p < 0.05$, FDR-corrected) between post-Intero-negative FER and the volume of emotional-interoceptive regions (right insula, left rostral ACC). No significant associations were found for post-Extero-negative FER ($Fig. 4$, Table 12).

**FC associations with negative FER**

For all groups ($Fig. 5$), seed analyses revealed significant negative associations (i.e., the better the performance, the higher the FC) between post-Intero FER and SN ($r = -0.39$, $p$-FDR = 0.009), whereas post-Extero FER was significantly associated to EN ($r = -0.57$, $p$-FDR = 0.007) (Table 13). No associations were significant with the control networks (DMN, VN, MN).

In the bvFTD-HCs tandem, no network was associated with post-Intero performance. However, post-Extero FER of negative emotions was significantly associated with FC in the EN ($r = -0.32$, $p$-FDR = 0.014). The opposite pattern was found in the...
PD-HCs tandem, with significant associations between post-Intero-negative FER and FC in the SN ($r = -0.45$, p-FDR = 0.008), and no significant associations between FC and post-Extero performance. Finally, the AD-HC tandem presented significant associations between FC in SN and post-Intero FER ($r = -0.43$, p-FDR = 0.008), and between FC in EN and post-Extero FER ($r = -0.41$, p-FDR = 0.008).

**Discussion**

We investigated the multimodal impact of Intero on negative emotions and its manifestation across neurodegenerative conditions and HCs. Behaviorally, interoceptive accuracy impairments were only observed in bvFTD. Intero primed negative FER in HCs and AD (in despite of generalized FER alterations in the latter group), but this effect was disrupted in bvFTD and PD patients. Increased HEP modulations during post-Intero-negative FER were present in HCs and AD, but not in bvFTD and PD. Anatomofunctional signatures in all groups evidenced the involvement of canonical cortical hubs (ACC and insula) and networks (SN) in the integration of interoceptive-emotional processes, and the role of the EN in exteroceptive emotional processes. Disrupted connectivity associations were found between post-Intero-negative FER and SN in bvFTD, and between post-Extero-negative FER and EN in PD, but both networks’ associations were preserved in AD. These findings indicate that multimodal signatures of interoceptive priming are compromised in bvFTD, further revealing dynamic interactions between neurocognitive disruptions isolatedly acknowledged in affective (Rosen et al., 2004; Fernandez-Duque and Black, 2005; Kipps et al., 2009; Piquet et al., 2011; Kumfor et al., 2013) and interoceptive (García-Cordero et al., 2016; Van den Stock and Kumfor, 2017; Salvato et al., 2018; Ibáñez, 2019) clinical research.

**Behavioral effects of interoceptive priming on emotion recognition**

We found a behavioral effect of interoceptive priming over negative FER in HCs, as expected from previous literature (Terasawa et al., 2014; Critchley and Garfinkel, 2017). Compared with HCs, bvFTD patients were the only group to present selective interoceptive deficits (with preserved Extero), accompanied by specific impairments in negative FER post-Intero. These results suggest that alterations in interoceptive predictive coding mechanisms are tied to abnormal emotional processing (Seth et al., 2011), consistent with recent theoretical proposals for this disease (Ibáñez et al., 2017; Van den Stock and Kumfor, 2017; Ibáñez, 2019). Negative FER impairments in PD replicate previous findings (Narme et al., 2011; Enrici et al., 2015; Argaud et al., 2018). As expected in AD, generalized FER deficits (Klein-Koerkamp et al., 2012) were observed even with preserved interoceptive processing. Together, behavioral results show three distinct patterns of patient deficit, with only bvFTD evidencing a specific deficit of interoceptive priors on FER.

**Electrophysiological markers of interoceptive priors**

Electrophysiological signatures of selective interoceptive priming of negative emotions were observed in HCs, as expected (Couto et al., 2015). In comparison, aligned with the interpretation of emotionally compromised interoceptive coding (Seth et al., 2011), bvFTD patients did not present increased HEP modulation during negative FER. Although interoceptive accuracy was preserved in PD, no HEP modulation post-Intero was observed, suggesting interrupted ongoing links between Intero and emotion. Temporal estimation deficits in PD would be compatible with the hypothesis of impaired Bayesian temporal interoceptive inference (Adams et al., 2019; Seth and Friston, 2016). In AD (as in HCs), HEP modulations during post-Intero FER were preserved. Other general pathophysiological mechanisms (e.g., general cognitive impairment, mood disorders) (Shanay-Ur and Rankin, 2011; Henry et al., 2016; Christidi et al., 2018) could explain these emotional processing deficits in AD. Briefly, relative to HCs, results show abolished electrophysiological markers of interoceptive priming (HEP) on FER across bvFTD and PD, with preserved patterns in AD.

**Anatomofunctional correlates on interoceptive-emotional integration**

Our study also reveals anatomofunctional correlates of interoceptive-emotional blending, confirming previous metanalytic evidence of their neurocognitive overlaps (Adolfi et al., 2017). In all-group analyses, key cortical regions (insula, ACC) in addition to the SN were associated to post-Intero recognition of negative emotions. Complementary, the EN was associated to post-Extero performance. The SN processes interoceptive and emotional signals (Chong et al., 2017; Ichenour et al., 2017; Toller et al., 2018; J. Kim et al., 2019; Ruiz-Rizzo et al., 2020) and the EN guides appropriate responses to external stimuli (Uddin, 2015). Our findings implicate the SN in the integration of interoceptive and emotional processes, and the EN in interoceptive emotional operations (Sridharan et al., 2008; Lindquist and Barrett, 2012). Moreover, no associations were found in the DMN, VN, or MN, confirming the specific impact of interoceptive and exteroceptive

| Table 13. Association between FC and negative FER* |
|--------------------------------------------------|
| Network | Post-Intero | Post-Extero |
|---------|-------------|-------------|
| SN | $-0.395$ | $0.099^*$ | $-0.052$ | $0.114$ |
| EN | $-0.125$ | $0.071$ | $-0.571$ | $0.007^*$ |
| DMN | $-0.025$ | $0.125$ | $-0.225$ | $0.061$ |
| VN | $-0.121$ | $0.069$ | $-0.025$ | $0.125$ |
| MN | $-0.187$ | $0.095$ | $-0.263$ | $0.06$ |
| bvFTD + HCs | | | |
| SN | $-0.125$ | $0.071$ | $-0.131$ | $0.07$ |
| EN | $-0.214$ | $0.084$ | $-0.328$ | $0.014^*$ |
| DMN | $-0.152$ | $0.076$ | $-0.184$ | $0.094$ |
| VN | $-0.169$ | $0.072$ | $-0.135$ | $0.085$ |
| MN | $-0.202$ | $0.061$ | $-0.157$ | $0.075$ |
| PD + HCs | | | |
| SN | $-0.453$ | $0.008^*$ | $-0.175$ | $0.093$ |
| EN | $-0.187$ | $0.07$ | $-0.214$ | $0.069$ |
| DMN | $-0.204$ | $0.062$ | $-0.075$ | $0.106$ |
| VN | $-0.225$ | $0.061$ | $-0.124$ | $0.071$ |
| MN | $-0.214$ | $0.08$ | $-0.235$ | $0.068$ |
| AD + HCs | | | |
| SN | $-0.432$ | $0.008^*$ | $-0.216$ | $0.069$ |
| EN | $-0.192$ | $0.093$ | $-0.412$ | $0.008^*$ |
| DMN | $-0.186$ | $0.095$ | $-0.054$ | $0.113$ |
| VN | $-0.215$ | $0.069$ | $-0.112$ | $0.07$ |
| MN | $-0.215$ | $0.069$ | $-0.245$ | $0.064$ |

*pSeed analyses over five networks (SN, EN, MN, VN, DMN, p = 0.05 FDR-corrected) were performed to test the association between the FC of each network and post-Intero- and post-Extero-negative FER outcomes, in all groups together and in tandems (bvFTD-HCs, PD-HCs, AD-HCs). Significant associations were found between SN and post-Intero-negative FER in all subjects, PD and AD, and between EN and post-Extero-negative FER in all subjects, bvFTD, and AD.*

*Significant difference.
priming at network level. The SN association was specifically affected in bvFTD (Day et al., 2013; Seeley, 2019), suggesting that interoceptive networks do not modulate emotional processing in this disease, potentially contributing to patients’ inability to adjust to social situations (Zhou and Seeley, 2014). In PD, the SN was preserved in post-Intero, suggesting that the behavioral and ongoing HEP deficits do not rely on this network and would constitute less specific deficits (i.e., temporal estimation deficits).

Also, the association between post-Extero with the EN confirms the role of executive functions in emotional processing in PD (Péron et al., 2012; Moonen et al., 2017; Argaud et al., 2018). Thus, both results suggest unspecific interoceptive deficits that are not linked to multimodal mechanisms and cognitive processes, which are critical for emotional processing in PD. The AD group presented preserved FC modulations; and together with the conserved HEP modulations, these results suggest partially unaffected interoceptive priming mechanisms. These neurofunctional results converge in showing a distinctive altered pattern in bvFTD, unspecific associations in PD, and partially preserved predictive interoceptive coding in AD.

Theoretical and clinical implications

These results carry theoretical and clinical implications. Our findings may support theoretical accounts of functional synergies between both domains (Garfinkel and Critchley, 2016; Seth and Friston, 2016; Owens et al., 2018; Pace-Schott et al., 2019), supporting models of cognitive blending (Ibáñez and Manes, 2012; Baez et al., 2017; Ibáñez et al., 2017; Ibáñez, 2018, 2019; Ibáñez and García, 2018; Ibáñez and Schulte, 2020). From an embodied perspective, since emotional processing is partly modulated by the perception on visceral information, understanding the integration of these multimodal signals could prove critical for patients’ successful allostatics; that is, efficient preparation of physiological need and internal states relative to the context (Sterling, 2014; Kleckner et al., 2017). From a clinical perspective, a novel agenda is opened, related to basic and clinical innovations at the crossing of cognitive neuroscience and behavioral neurology. Present findings offer new insights about interventions related to body awareness (Fustos et al., 2013; Müller et al., 2015) and metacognition of emotion (García-Cordero et al., 2021), interoceptive priors, and allostatic predictive coding addressing patients’ emotional-self regulation.

Limitations and further research

Our study featured important limitations, calling for further research. First, our design was based on modest sample sizes. Nevertheless, these are similar to or larger than those of other multimodal reports assessing neurodegenerative subtypes (Moretti et al., 2009; Hughes et al., 2011; Premi et al., 2014; García-Cordero et al., 2016; Melloni et al., 2016). Also, this caveat was counteracted by the strict control clinical variables, as well as detailed diagnostic procedures and systematic assessments. Moreover, although our findings provide a multimodal picture across behavioral, electrophysiological, anatomical, and FC dimensions with moderate to large effect sizes, future studies should contemplate larger samples and alternative designs allowing for exploration of relevant effects and patient-group interactions outside the scope of our study.

Also, since the task required a tripartite (positive/negative) categorization (Rosen et al., 2004; Fernandez-Duque and Black, 2005; Kipps et al., 2009), and considering the relatively low number of trials per emotion and the need guarantee adequate signal-to-noise ratios for EEG data, different negative emotions (anger, disgust, fear, sadness) were not assessed individually. Moreover, the valence of “surprise” may prove ambiguous, prompting both positive and negative interpretations (M. J. Kim et al., 2017, 2020; Petro et al., 2018). Future tasks could tackle these shortcomings and provide more fine-grained results for each emotion individually. In addition, new studies could also examine both short- and long-lasting HEP effects, by analyzing several HEP using longer periods of stimulus presentation and interstimulus intervals.

Finally, by targeting a multimodal neurodegenerative lesion model (Rorden and Karnath, 2004; García-Cordero et al., 2016; Melloni et al., 2016), we provided evidence on the relationship of Intero and emotion. This approach may be expanded with direct stimulation techniques (vagal peripheral stimulation, electrical stimulation with intracranial recordings) to assess how the modulation of visceral or neural signals underlying Intero impact of emotional processing outcomes.

In conclusion, research on the interactions between internal body signals and emotion has a long tradition in cognitive neuroscience, neurology, and related disciplines. Our multimodal, cross-pathologic approach reveals novel links between Intero and emotion recognition, pointing to its distinct disruptions in bvFTD, unspecific deficits in PD, and preserved interoceptive priming effects, despite generalized FER deficits in AD. These results may support theoretical accounts of functional synergies between both domains while opening a novel agenda for basic and clinical innovations at the crossing of cognitive neuroscience and behavioral neurology.

References

Alveusva S, Fittipaldi S, García AM, Dottori M, Santamaria-García H, Birba A, Yorís A, Hildebrandt MK, Salomone P, De la Fuente A, Alarco-Martí S, García-Cordero I, Mataról-Caro M, Pautassi RM, Serrano C, Sedeño L, Ibáñez A (2020) At the heart of neurological dimensionality: cross-nosological and multimodal cardiac interoceptive deficits. Psychosom Med 82:850–861.

Arbizzani A, Richter F, Decety J, Lopez J, Sigman M, Manes F, Ibáñez A (2017) Convergence of interoception, emotion, and social cognition: a twofold fMRI meta-analysis and lesion approach. Cortex 88:124–142.

Baez S, Manes F, Pau, Grandjean D (2018) Facial emotion recognition in Parkinson’s disease: a review and new hypotheses. Mov Disord 33:554–567.

Bachli MB, Sedeño L, Ochab JK, Piguet O, Kumfo F, Reyes P, Torralva T, Roca M, Cardona JF, Campo CG, Herrera E, Slachevsky A, Matallana D, Manes F, García AM, Ibáñez A, Chialvo DR (2020) Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: a machine learning approach. Neuroimage 208:116456.

Baez S, Manes F, Hupe D, Torralva T, Fiorentino N, Richter F, Huepe-Artigas D, Ferrari J, Montanes P, Reyes P, Matallana D, Viglleea NS, Decety J, Ibáñez A (2014) Primary empathy deficits in frontotemporal dementia. Front Aging Neurosci 6:262.

Baez S, García AM, Ibáñez A (2017) The social context network model in psychiatric and neurological diseases. Curr Top Behav Neurosci 30:379–396.

Barrett LF, Simmons WK (2015) Interoceptive predictions in the brain. Nat Rev Neuosci 16:419–429.

Batsis JA, Boateng GG, Seo LM, Petersen CL, Fortuna KL, Wechsler EV, Barrett LF, Simmons WK (2015) Interoceptive predictions in the brain. Nat Rev Neuosci 16:419–429.

Batsis JA, Boateng GG, Seo LM, Petersen CL, Fortuna KL, Wechsler EV, Peterson RJ, Cook SB, Pidgeon D, Dokko RS, Halter RJ, Kozt DF (2019) Development and usability assessment of a connected resistance exercise band application for strength-monitoring. World Acad Sci Eng Technol 13:340–348.

Boord P, Madhyastha TM, Askren MK, Grabowski TJ (2017) Executive attention networks show altered relationship with default mode network in PD. Neuroimage Clin 13:1–8.

Salamone, Legaz et al. • Interoceptive Emotions in Neurodegeneration
Narme P, Bonnet AM, Dubois B, Chaby L (2011) Understanding facial emotion perception in Parkinson’s disease: the role of configural processing. Neuropsychologia 49:3295–3302.

Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699.

Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Map 15:1–25.

Nichols TE, Das S, Eckhoff SB, Evans AC, Glataré T, Hanke M, Kriegeskorte N, Milham MP, Poldrack RA, Poline JB, Proel E, Thirion B, Van Essen DC, White T, Yeo BT (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303.

O’Callaghan C, Bertoux M, Irish M, Shine JM, Wong S, Spilopoulos L, Hodges JR, Hornerber M (2016) Fair play: social norm compliance failures in behavioural variant frontotemporal dementia. Brain 139:204–216.

Osborne J (2010) Improving your data transformations: applying the Box-Cox transformation. Pract Assess Res Eval 15:12.

Owens AF, Allen M, Ondobaka S, Friston KJ (2018) Interoceptive inference: from computational neuroscience to clinic. Neurosci Biobehav Rev 90:174–183.

Pace-Schott EF, Amole MC, Aue T, Balconi M, Bylsma LM, Critchley H, Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafo MR, Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Map 15:1–25.

Petro NM, Tong TT, Henley DJ, Neta M (2018) Individual differences in valence bias: fMRI evidence of the initial negativity hypothesis. Soc Cogn Psychol 24:256–277.

Picard D, Ross RS, Cronin-Golomb A, Janes AC, Stem CE (2015) Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. Neuroimage Clin 7:449–455.

Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Durnez J, Gorno-Tempini ML, Rosen H, Prioleau-Latham CE, et al. (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477.

Richter F, Ibáñez A (2021) Time is body: multimodal evidence of crossstalk between interoception and time estimation. Biol Psychol 159:108017.

Richter F, Zimmer H (2018) Analysis of heartbeat tracking tasks by means of the signal-detection theory. Diagnostica 64:97–108.

Richter F, Zimmer H (2020) Validierung einer Methode zum Messung kardialer Sensitivität sowie neue Erkenntnisse zur funktionellen Signifikanz herzschlagvogezister Poteniale. Z Neuropsychologie 31:215–227.

Richter F, García AM, Rodriguez Arriagada N, Yoris A, Birba A, Huf B, Zinner H, Ibáñez A, Sedeño I. (2021) Behavioral and neurophysiological signatures of interoceptive enhancements following vagus nerve stimulation. Hum Brain Map 42:1227–1242.

Roden C, Karnath HO (2004) Using human brain lesions to infer function: a relict from a past era in the IMRI age? Nat Rev Neurosci 5:812–819.

Romijn MJ, Van-Savitsky K, Perry RJ, Kramer JH, Miller LB, Levenson RW (2004) Recognition of emotion in the frontal and temporal variants of frontotemporal dementia. Dement Geriatr Cogn Disord 17:277–281.

Ruíz-Rizzo AI, Beissern F, Finke K, Muller HJ, Zimmer C, Pasquini L, Sorg C (2020) Human subsystems of medial temporal lobes extend locally to amygdala nuclei and globally to an allostatic-interoceptive system. Neuroimage 207:16404.

Saito C, Tacchino A, Brichetto G, Roccatagliata L, Bonmarito G, Cordano C, Battaglia M, Mancardi GL, Inglese M (2016) Resting-state functional connectivity and motor imagery brain activation. Hum Brain Map 37:3847–3857.

Sakia RM (1992) The Box-Cox transformation technique: a review. J R Stat Soc D 41:169–178.

Salameone PC, Legaz A (2021) Interoceptive emotions in neurodegeneration - ANID/FONDECYT (1170010). doi:https://doi.org/10.17605/OSF.IO/2F7TV.

Salameone PC, Esteves S, Sinay VJ, Garcia-Cordero I, Abrevaya S, Couto B, Adolfi F, Martorell M, Petroni A, Yoris A, Torquati K, Alifano F, Legaz A, Cassara FP, Bruno D, Kemp AH, Herrera E, Garcia AM, Ibáñez A, Sedeño I. (2018) Altered neural signatures of interoception in multiple sclerosis. Hum Brain Map 39:4743–4754.

Salameone PC, Sedeño L, Legaz A, Bekinschtein T, Martorell M, Adolfi F, Fraile-Vázquez M, Arriagada NR, Faveloro L, Peradejordi M (2020) Dynamic neurocognitive changes in interoception after heart transplant. Brain Commun 2(6):fca095.

Salvato G, Mercurio M, Sberna M, Paulus E, Bottini G (2018) A very light lunch: interoceptive deficits and food aversion at once in an experimental variant frontotemporal dementia. Alzheimers Dement (Amst) 10:750–754.

Schandry R (1981) Heart beat perception and emotional experience. Psychophysiology 18:483–488.

Schandry R, Montoya P (1996) Event-related brain potentials and the processing of emotional pictures. J Cogn Psychol 7:1636.

Price S, Paviour D, Scahill R, Stevens J, Rossor M, Lees A, Fox N (2004) Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson’s disease. Neuroimage 23:661–669.

Price S, Ross RS, Cronin-Golomb A, Janes AC, Stem CE (2015) Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. Neuroimage Clin 7:449–455.

Ruiz-Rizzo AI, Beissern F, Finke K, Muller HJ, Zimmer C, Pasquini L, Sorg C (2020) Human subsystems of medial temporal lobes extend locally to amygdala nuclei and globally to an allostatic-interoceptive system. Neuroimage 207:16404.
Seth AK, Friston KJ (2016) Active interoceptive inference and the emotional brain. Philos Trans R Soc Lond B Biol Sci 371:20160007.

Seth AK, Suzuki K, Critchley HD (2011) An interdictive predictive coding model of conscious presence. Front Psychol 2:395.

Shany-Ur T, Rankin KP (2011) Personality and social cognition in neurodegenerative disease. Curr Opin Neurol 24:550–555.

Shany-Ur T, Poorzand P, Grossman SN, Growdon ME, Jang JY, Ketelle RS, Miller BL, Rankin KP (2012) Comprehension of insincere communication in neurodegenerative disease: lies, sarcasm, and theory of mind. Cortex 48:1329–1341.

Shany-Ur T, Lin N, Rosen HJ, Sollberger M, Miller BL, Rankin KP (2014) Self-awareness in neurodegenerative disease relies on neural structures mediating reward-driven attention. Brain 137:2368–2381.

Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22:158–165.

Sollberger M, Stanley CM, Wilson SM, Gyurak A, Beckman V, Growdon M, Jang J, Weiner MW, Miller BL, Rankin KP (2009) Neural basis of inter-personal traits in neurodegenerative diseases. Neuropsychologia 47:2812–2827.

Sollberger M, Rosen HJ, Shany-Ur T, Ullah J, Stanley CM, Laluz V, Weiner MW, Wilson SM, Miller BL, Rankin KP (2014) Neural substrates of socioemotional self-awareness in neurodegenerative disease. Brain Behav 4:201–214.

Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right frontoinsular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574.

Statucka M, Walder DJ (2017) Facial affect recognition and social functioning among individuals with varying degrees of schizotypy. Psychiatry Res 256:180–187.

Sterling P (2014) Homeostasis vs allostatics: implications for brain function and mental disorders. JAMA Psychiatry 71:1192–1193.

Straube T, Miltner WH (2011) Attention to aversive emotion and specific activation of the right insula and right somatosensory cortex. Neuroimage 54:2534–2538.

Szsuc D, Ioannidis JP (2017) Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biol 15:e2000797.

Terasawa Y, Moriguchi Y, Tochizawa S, Umeda S (2014) Interoceptive sensitivity predicts sensitivity to the emotions of others. Cogn Emot 28:1435–1448.

Terasawa Y, Kurosaki Y, Ibata Y, Moriguchi Y, Umeda S (2015) Attenuated sensitivity to the emotions of others by insular lesion. Front Psychol 6:1314.

Terhaar J, Viola FC, Bar KJ, Debener S (2012) Heartbeat evoked potentials mirror altered body perception in depressed patients. Clin Neurophysiol 123:1950–1957.

Thomson EE, Kristan WB (2005) Quantifying stimulus discriminability: a comparison of information theory and ideal observer analysis. Neural Comput 17:741–778.

Toller G, Brown J, Sollberger M, Shdo SM, Bouvet L, Sukhanov P, Seeley WW, Miller BL, Rankin KP (2018) Individual differences in socioemotional sensitivity are an index of salience network function. Cortex 103:211–223.

Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61.

Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30:625–637.

Vahdat S, Darainy M, Milner TE, Ostry DJ (2011) Functionally specific changes in resting-state sensorimotor networks after motor learning. J Neurosci 31:16907–16915.

Vallat R (2018) Pingouin: statistics in Python. JOSS 3:1026.

Van den Stock J, Kumfor F (2017) Behavioural variant frontotemporal dementia: at the interface of interoception, emotion and social cognition? Cortex 115:335–340.

Whitwell JL, Crum WR, Watt HC, Fox NC (2001) Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR Am J Neuroradiol 22:1483–1489.

Whitwell JL, Przybelski SA, Weigand SD, Ivnik RJ, Vemuri P, Gunter JL, Senjem ML, Shiung MM, Boeve BF, Knopman DS, Parisi JE, Dickson DW, Petersen RC, Jack CR Jr, Josephs KA (2009) Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study. Brain 132:2932–2946.

Yoris A, Garcia AM, Traiber I, Santamaría-García H, Martorell M, Alfiano F, Kichic R, Moser JS, Četkovská M, Manes F, Ibáñez A, Sedeño L (2017) The inner world of overactive monitoring: neural markers of interoception in obsessive-compulsive disorder. Psychol Med 47:1957–1970.

Yoris A, Abrevaya S, Esteves S, Salamone P, Lori N, Martorell M, Legaz A, Alfiano F, Petroni A, Sanchez R, Sedeno L, Garcia AM, Ibáñez A (2018) Multilevel convergence of interoceptive impairments in hypertension: new evidence of disrupted body-brain interactions. Hum Brain Mapp 39:1563–1581.

Zamariola G, Maurage P, Luminet O, Corneille O (2018) Interoceptive accuracy scores from the heartbeat counting task are problematic: evidence from simple bivariate correlations. Biol Psychol 137:12–17.

Zhou J, Seeley WW (2014) Network dysfunction in Alzheimer’s disease and frontotemporal dementia: implications for psychiatry. Biol Psychiatry 75:565–573.

Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, Kramer JH, Weiner M, Miller BL, Seeley WW (2010) Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133:1352–1367.

Zich C, Debener S, Kranczioch C, Bleichner MG, Gutherle I, De Vos M (2015) Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery. Neuroimage 114:438–447.