IDENTIFYING NONLINEAR DYNAMICAL SYSTEMS FROM MULTI-MODAL TIME SERIES DATA

A PREPRINT

Philine Lou Bommer1,3*, Daniel Kramer1*, Carlo Tombolini1, Georgia Koppe1, and Daniel Durstewitz1,2

1Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Heidelberg University, Germany
2Faculty of Physics and Astronomy, Heidelberg University, Germany
3Dept. of Machine Learning, Technical University Berlin, Berlin, Germany

*Contributed equally

Correspondence to: Daniel.Durstewitz@zi-mannheim.de; Daniel.Kramer@zi-mannheim.de

November 5, 2021

ABSTRACT

Empirically observed time series in physics, biology, or medicine, are commonly generated by some underlying dynamical system (DS) which is the target of scientific interest. There is an increasing interest to harvest machine learning methods to reconstruct this latent DS in a completely data-driven, unsupervised way. In many areas of science it is common to sample time series observations from many data modalities simultaneously, e.g. electrophysiological and behavioral time series in a typical neuroscience experiment. However, current machine learning tools for reconstructing DSs usually focus on just one data modality. Here we propose a general framework for multi-modal data integration for the purpose of nonlinear DS identification and cross-modal prediction. This framework is based on dynamically interpretable recurrent neural networks as general approximators of nonlinear DSs, coupled to sets of modality-specific decoder models from the class of generalized linear models. Both an expectation-maximization and a variational inference algorithm for model training are advanced and compared. We show on nonlinear DS benchmarks that our algorithms can efficiently compensate for too noisy or missing information in one data channel by exploiting other channels, and demonstrate on experimental neuroscience data how the algorithm learns to link different data domains to the underlying dynamics.

1 Introduction

Many natural phenomena, from physics to psychology, as well as many engineered systems, can genuinely be described as (usually nonlinear) dynamical systems (DSs), whose temporal evolution is specified by a set of differential or time-recursive equations. While traditionally these systems are derived by scientific insight, there has been growing interest in recent years to infer the governing equations directly from time series observations, in a purely data-driven way, using machine learning tools, such as polynomial regression \cite{Brunton2016, Champion2019}, Gaussian processes \cite{Duncker2019}, or recurrent neural networks (RNN) \cite{Lu2017a, Durstewitz2017, Koppe2019, Hernandez2018, Vlachas2018, Pathak2018}. Based on Cybenko’s universal approximation theorem \cite{Cybenko1989}, it has been shown that RNNs with sigmoid \cite{Funahashi1993, Kimura1998, Hanson2020} or Rectified Linear Unit (ReLU) \cite{Lin2017b, Lin2018} activation functions are theoretically powerful enough to approximate any DS, i.e. its flow field, to arbitrary precision in its own set of dynamical equations \cite{Funahashi1993, Trischler2016}. This objective of reconstructing, or approximating, the underlying DS itself, is a more challenging one than the more common goal of training a system to produce good ahead-predictions of temporal sequences \cite{Koppe2019}.
Figure 1: Illustration of the multi-modal PLRNN setup: A latent DS, modelled by a PLRNN that may potentially receive external inputs, is coupled to different data modalities via modality-specific observation models.

In DS reconstruction, we expect the trained model to reproduce invariant properties of the underlying system, like the underlying attractor geometry or the power spectrum.

Many natural and engineered DSs can be observed through many different measurement channels that produce time series: In Smartphone apps tracking psychiatric risk and behavior, for instance, one may want to combine categorical or ordinal information from ecological momentary assessments (EMA) with different continuous sensor readings, typing dynamics, proxies for social interactions, and GPS tracking [Radu et al., 2016, Koppe et al., 2018]. In typical experiments in neuroscience one observes at the same time both continuous, often high-dimensional, measurements from the brain by means of electrophysiological or neuroimaging tools, and a subject’s often categorical behavioral responses across many trials. Not only is it often desirable to directly relate these different data streams within a common latent model, e.g. to gain insight into how neural activity produces behavior, or to predict behavioral choices from accelerometer readings, but the different data streams may also convey complementary information about the underlying DS that will supplement each other and help in identifying the system. Yet, different types of time series data may require very different distributional assumptions, especially when dealing with both continuous or ordinal data and with categorical, event-type information.

While in general the integration of multi-modal data into common predictive models has been intensely researched in recent years [Sui et al., 2012, Lahat et al., 2015, Purdon et al., 2010, Ngiam et al., 2011, Srivastava and Salakhutdinov, 2012, Turner et al., 2013, Liang et al., 2015, Dezfooli et al., 2015, Halpern et al., 2018, Bhagwat et al., 2018, Antelmi et al., 2018, Sutter et al., 2021, Shi et al., 2021], this so far has hardly been a topic in the field of DS identification. The major aim of the present work is to contribute to filling this gap. We consider the reconstruction of latent nonlinear DSs from observed time series that come from qualitatively different data domains best described by different distributional models (Fig. 1). We discuss several such observation (or decoder) models from the class of generalized linear models (GLMs), but focus for most of our presentation on the case where we have both continuous Gaussian (like neural measurements) as well as distinct categorical (like behavioral responses) time series, linked to the same latent RNN for approximating the DS. For training the complete system, both a novel expectation-maximization (EM) as well as a variational inference (VI) approach are developed.

2 Related work

A larger body of work deals with the identification of DSs from time series data. Some of these build on physical or biological domain knowledge to set up a system of ordinary (ODE) or partial (PDE) differential equations whose parameters are to be inferred from the data [Gorbach et al., 2017, Raissi, 2018, Meeds et al., 2019], i.e. with the basic form of the ODE/PDE equations assumed to be known. Here, in contrast, we are interested in the case where the (exact) form of the equations is not known in advance, or where the data-generating DS is so complex (like the brain) that not all its details can be modeled, and hence we must rely on general purpose equations to approximate the underlying DS.
Techniques toward this goal have been formulated both in continuous [Chen et al., 2021, Iakovlev et al., 2021] and discrete time [Schmidt et al., 2021, Zhao and Park, 2020]. When using continuous-time ODE or PDE formulations [Chen et al., 2018, 2021, Iakovlev et al., 2021], numerical integration techniques must be used [Press et al., 2007], which can be computationally quite expensive if the ODE/PDE system is stiff (like in spiking neuron models) and simple Euler or Runge-Kutta integration schemes quickly run into numerical issues [Press et al., 2007, Koch and Seveg, 2003]. Existing methods either aim to approximate the estimated flow (e.g., obtained by differentiating the time series) through (deep) neural networks [Trischler and D’Eleuterio, 2016, Chen et al., 2018], RNNs [Vlachas et al., 2018], or other types of universal approximators like polynomial basis expansions [Brunton et al., 2016, Champion et al., 2019]. Or they are directly trained on the observed time series [Koppe et al., 2019, Schmidt et al., 2021, Lu et al., 2017a, Razaghi and Paninski, 2019, Hernandez et al., 2018], thus avoiding computation of numerical derivatives which are often unstable with large variance [Chen et al., 2017, Raissi 2018, Baydin et al., 2018].

Most of the existing techniques assume (implicitly or explicitly) the underlying set of equations to be deterministic, i.e. do not consider dynamical process noise. This is especially true for continuous-time approaches [Ayed et al., 2019, Champion et al., 2019, Rudy et al., 2019], since stochastic DEs are even harder to deal with [Risken, 1998, Hertag et al., 2014]. Here instead, following [Durstewitz, 2017, Koppe et al., 2019, Schmidt et al., 2021], we assume that the generating equations are stochastic, which also helps in compensating for model misspecification [Abarbanel, 2013]. Fully probabilistic, generative models for DS inference have been proposed in the context of state space models and the EM algorithm [Roweis and Ghahramani, 2002, Yu et al., 2006, Durstewitz, 2017, Koppe et al., 2019, Schmidt et al., 2021] or, more recently, based on sequential variational auto-encoders (SVAE) [Krishnan et al., 2015, Archer et al., 2015, Zhao and Park, 2020].

Kusner et al., 2017, Hernandez et al., 2018, Pandarinath et al., 2018. Many of these were primarily aimed, however, at obtaining a smoothed posterior estimate $p(Z | X)$ of latent state trajectories $Z = \{ z_t \}$ given observed time series $X = \{ x_t \}$. In DS reconstruction, in contrast, we demand that the RNN, once trained, will produce simulated data (i.e., generated from scratch from the prior $p(Z)$) with the same temporal and geometrical structure as those from the original DS [Molano-Mazon et al., 2018].

Regarding integration of multi-modal data, especially in the fields of computer vision [Srivastava and Salakhudinov, 2012, Sutter et al., 2021, Shi et al., 2021] and in medical AI applications [Purdon et al., 2010, Liang et al., 2015, Miotto et al., 2016, Rajkomar et al., 2018, Antelmi et al., 2018] it has been demonstrated that the fusion of different data domains into a common latent representation could substantially improve predictions or reveal interesting cross-domain links [Liang et al., 2015]. For instance, integration of auditory and visual information into a common latent code improves speech recognition when the auditory signal is distorted, and enables cross-domain prediction [Ngiam et al., 2011, Lee et al., 2021]. Likewise, integration of physiological measurements like electrocardiograms or blood pressure with (categorical) entries from electronic health records (EHR) does not only enable to find important links between different data types, but also leads to better prediction of clinical outcomes [Purdon et al., 2010, Liang et al., 2015, Rajkomar et al., 2018, Antelmi et al., 2018]. Most recent work focused on variational auto-encoders (VAE) and inference for multi-modal integration, assuming fully joint [Vedantam et al., 2018], factorized [Kurle et al., 2019], mixture forms [Shi et al., 2019], or a combination of these [Sutter et al., 2021]. For the approximate posterior. Comparatively less work on multi-modal VAEs has been done, however, in the time series domain, with some exceptions especially in the area of language processing [Tsalai et al., 2019, Wu and Goodman, 2018]. Most importantly, none of the approaches so far was aimed at DS reconstruction in the sense defined above. Thus, to our knowledge, algorithms for identifying nonlinear DSs from multiple data modalities do not exist currently, although such scenarios frequently occur in the natural sciences. Here we aim to fill this gap.

3 Model framework for DS reconstruction from multi-modal data

Our complete model setup is illustrated in Fig. 1. We assume that we have observed time series $X = \{ x_t \}$ generated by some unknown DS $dy/dt = f(y, t)$ sampled at discrete time points t according to some output distribution $p(X | Y)$, e.g. Gaussian, Poisson, or categorical. In fact, as illustrated in Fig. 1 here we assume that the unknown DS is observed through several such output channels (data modalities) simultaneously, from which we would like to infer the underlying DS which is approximated by a sufficiently expressive RNN.

3.1 Generative multi-modal RNN model

For our approach we build on a nonlinear state space model framework introduced previously in [Durstewitz, 2017, Koppe et al., 2019]. The latent process used for approximating the unknown DS $f(y, t)$ is modeled by a Gaussian
piecewise-linear (PL) RNN of the form

$$
\begin{align*}
 z_t \mid z_{t-1} &\sim \mathcal{N}(Az_{t-1} + W\phi(z_{t-1}) + h + Fs_t, \Sigma), \\
 z_1 &\sim \mathcal{N}(\mu_0 + Fs_1, \Sigma),
\end{align*}
$$

where \(z_t \in \mathbb{R}^{M \times 1}\) is the latent state vector, \(A \in \mathbb{R}^{M \times M}\) is diagonal with auto-regression weights \(a_{mm}\), \(W \in \mathbb{R}^{M \times M}\) is off-diagonal (to minimize redundancy with terms in \(A\)) with coupling weights \(w_{ml}, m \neq l, h \in \mathbb{R}^{M \times 1}\), and \(\phi(z_t) = \max(z_t, 0)\) is an element-wise ReLU transform. We also account for a time-dependent external input \(s_t \in \mathbb{R}^{Q \times 1}\), weighted by coefficient matrix \(F \in \mathbb{R}^{M \times Q}\), as well as Gaussian process noise with diagonal covariance matrix \(\Sigma \in \mathbb{R}^{M \times M}\).

One major advantage of the specific PLRNN structure in the context of DS identification is that many of its dynamical properties are (analytically) tractable: Fixed points and cycles of the system can be explicitly computed [Schmidt et al., 2021], many important types of bifurcations are comparatively well described for this class of piecewise linear maps [Monfared and Durstewitz, 2020a; Sushko and Gardini, 2010], and it can be directly translated into dynamically equivalent systems of ODEs which brings further advantages for visualization and analysis [Monfared and Durstewitz, 2020b]. This enables a detailed analysis of the learned model’s behavior from a DS perspective, which is particularly important in scientific contexts where we seek to understand dynamical mechanisms beyond mere prediction of future states.

For inferring the latent process equations simultaneously from different data sources, the PLRNN is then connected to different observation (decoder) models that embody the specific distributional properties of the respective data domains. While this approach can be easily developed for almost any type of data model, especially in the flexible VI framework, in our examples we will focus on one of the most common multi-modal settings encountered in practice, namely when we have observed real-valued Gaussian time series \(X = \{x_t\}, x_t \in \mathbb{R}^{N \times 1}, t = 1...T\), along with multi-categorical data \(C = \{c_t\}\), where \(c_t \in \{0, 1\}^{K \times 1}, \sum_t c_t = 1\), are binary indicator vectors.

In this case, the latent model is connected to these two types of data domains through a Gaussian and a multi-categorical observation model, respectively, assuming that Gaussian \((x_t)\) and categorical \((c_t)\) observations are conditionally independent given latent state \(z_t\):

$$
\begin{align*}
 x_t \mid z_t &\sim \mathcal{N}(B\phi(z_t), \Gamma), \\
 c_t \mid z_t &\sim \text{Cat}(K, \pi).
\end{align*}
$$

The elements of the probability vector \(\pi = (\pi_1, \ldots, \pi_K)^T\) are generated from the latent states \(z_t\) via the natural link function

$$
\pi_i = \frac{\exp(\beta_i^T z_t)}{1 + \sum_{j=1}^{K-1} \exp(\beta_j^T z_t)} \in [0, 1] \quad \forall i \in \{1 \ldots K - 1\}
$$

$$
\pi_K = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\beta_j^T z_t)}, \quad \text{such that} \quad \sum_{i=1}^{K} \pi_i = 1,
$$

where \(\beta_i \in \mathbb{R}^{M \times 1}\) is the vector of regression weights for category \(i = 1 \ldots K - 1\).

In Appx. C, we illustrate how to incorporate other exponential family models or mixtures thereof into our framework, but this Gaussian + categorical setting will suffice to convey the basic principles and features of our algorithm. We call the resulting model, Eqs. (1-4), the multi-modal PLRNN (mmPLRNN). We would like to infer the mmPLRNN parameters \(\theta = \{\mu_0, A, W, F, B, \beta_j, \Gamma, \Sigma\}\) and latent states \(Z = \{z_t\}\) from the set of observations \(\{X, C\}\) by maximizing the likelihood

$$
p_{\theta}(X, C) = \int_d p_{\theta}(Z) \prod_{t=1}^{T} p_{\theta}(z_t \mid z_{t-1}) \prod_{t=1}^{T} p_{\theta}(x_t \mid z_t) \prod_{t=1}^{T} p_{\theta}(c_t \mid z_t) dZ,
$$

where we have used the conditional independence of Gaussian and categorical observations. Observations missing in one or both channels at any time point \(t\) may simply be dropped from the likelihood Eq. (5) while training. Since the log-likelihood is intractable for our model, we replace it by the evidence lower bound (ELBO), which in our case is

$$
\begin{align*}
 \mathcal{L}(\theta, q) :&= E_q [\log p_{\theta}(X, C, Z)] + H[q(Z \mid X, C)] \\
 &= \log p_{\theta}(X, C) - \text{KL} [q(Z \mid X, C) \mid \mid p_{\theta}(Z \mid X, C)] \\
 &\leq \log p_{\theta}(X, C),
\end{align*}
$$

where \(q(Z \mid X, C)\) is a proposal or variational density.

In the next two sections we will introduce both an efficient EM as well as a VI algorithm for maximizing the ELBO.
3.2 Expectation Maximization (EM) for model training

It has been shown previously [Durstewitz 2017; Koppe et al. 2019] that the piecewise-linear structure of model Eq. (1) can be efficiently exploited in EM by a fixed-point iteration algorithm and partly analytical derivation of expectations, on which we will build here.

State estimation In the E-step we assume, similar to a Laplace-Gaussian approximation, that the expectation value $E[Z | X, C]$ is reasonably well approximated by the mode, and solve the following maximization problem:

$$E[Z | X, C] \simeq z^\text{max} := \arg \max_z \log p_\theta(Z | X, C)$$

$$= \arg \max_z \left[\log p_\theta(C | Z) + p_\theta(X | Z) + \log p_\theta(Z) - p_\theta(X, C) \right]$$

(7)

The covariance matrix of $p_\theta(Z | X, C)$ is then approximated by the negative inverse Hessian $(-H^\text{max})^{-1}$ around this maximizer, based on which all state expectations $E[z_t, E[zz^T], E[\phi(z)], E[z\phi(z)^T] \text{ and } E[\phi(z)\phi(z)^T]$ needed for the M-step can be computed (semi-)analytically for the PLRNN [Durstewitz 2017; Koppe et al. 2019].

In the original formulation of the PLRNN algorithm [Durstewitz 2017; Koppe et al. 2019], criterion Eq. (7) was piecewise quadratic (owing to the piecewise linear ReLU activation) and could be addressed by an efficient fixed-point iteration algorithm. Due to the non-Gaussian terms in $p(C | Z)$, this is no longer the case, but for any exponential family function in the decoder, Eq. (7) will remain piecewise concave (within each orthant) and can be addressed by an efficient Newton-Raphson (NR) scheme (see Appx. A.1 for details).

Parameter estimation For parameter estimation (M-step) we assume we have all relevant moments of $q(Z | X, C)$ from the E-step and, based on this, solve the maximization problem $\theta^* := \arg \max_{\theta} \mathcal{L}(\theta, q^*)$. In the original PLRNN state space model defined by Eqs. (1)-(2) one can solve this analytically and quickly in one step as a linear regression problem given all expectations in Z. This is still true here for all parameters that define the latent state prior model $p_{\theta_\mu}(Z)$ (Eq. (1)), $\theta_\text{uni} = \{\mu_0, A, W, F, h, \Sigma\}$, and those occurring within the Gaussian observation model $p_{\theta_X}(X | Z)$, $\theta_X = \{B, \Sigma\}$. However, the terms in $E[\log p(C | Z)]$ are a bit more tricky. To separate model parameters θ from expectations in states z_t, we therefore introduce another lower bound into the log-likelihood using Jensen’s inequality (\ast) that makes the problem tractable:

$$E[\log p_\theta(C | Z)] = \sum_{t=1}^T \sum_{i=1}^{K-1} c_{it} \beta^T z_t - \sum_{t=1}^T \sum_{i=1}^{K-1} \log(1 + \sum_{j=1}^{K-1} \exp(\beta_j^T z_t))$$

(8)

Further noting that states z_t are conditionally Gaussian, we can use the moment-generating function of the Gaussian (see also [Smith and Brown 2003]) to reshape Eq. (8) as

$$f(\beta) := \sum_{t=1}^T \sum_{i=1}^{K-1} c_{it} \beta^T E[z_t] - \sum_{t=1}^T \log(1 + \sum_{j=1}^{K-1} \exp(\beta_j^T E[z_t]))$$

(9)

This is a concave function again in parameters β that only requires expectations $E[z_t], E[z_t z_t^T]$, and $E[z_t z_{t-1}^T]$ from the E-step, which can hence be solved quickly and efficiently by NR iterations (see Appx. A.1).

Since all exponential family distributions, as well as sums of exponential family models, have concave log-likelihoods [Kandala et al. 2001], one can always employ the NR scheme for the E- and M-steps as in Eq. (12) and (13), as long as the distributional parameters are connected to the latent states through the natural link function. This makes the above algorithm more generally applicable (beyond just Gaussian and categorical observations).

We adopt a stepwise training protocol [Koppe et al. 2019] that has been shown to strongly improve the approximation of the true underlying DS for the EM algorithm described above. This training protocol successively shifts the burden of reproducing the observations from the observation model $p_\theta(X, C | Z)$ to the latent process model $p_\theta(Z)$ (find more information in Appx. A.2 Stepwise training protocol).

3.3 Variational Inference for model training

The EM algorithm for PLRNN inference has been shown to efficiently work with small data sets [Koppe et al. 2019], but it lacks flexibility (other than exponential family distributions may be harder to accommodate). An alternative way
to optimize expression (9) is VI, whereby \(q_\theta(Z \mid X, C) \) becomes a parameterized family of variational densities for approximating the true posterior. We model the approximate posterior by a multivariate Gaussian,

\[
q_\theta(Z \mid X, C) = \mathcal{N}(\mu_Z(X, C), \Lambda_Z(X, C)),
\]

where the mean \(\mu_Z(X, C) \in \mathbb{R}^{MT \times 1} \) and covariance matrix \(\Lambda_Z(X, C) \in \mathbb{R}^{MT \times MT} \) are parameterized by neural networks with parameters \(\zeta = \{\zeta_\mu, \zeta_\Lambda\} \). Specifically, instead of parameterizing a full covariance \(\Lambda \) directly, we follow [Archer et al., 2015] and parameterize the \(M \times M \) on- and off-diagonal blocks of the Hessian \(H = -\Lambda_Z^{-1} \) by neural networks, exploiting its block tri-diagonal structure owing to the Markovian latent model assumptions (see Appx. A.3 for more details).

Joint optimization of variational (\(\zeta \)) and generative (\(\theta \)) model parameters is performed via Stochastic Gradient Variational Bayes (SGVB) using the re-parameterization trick for the model’s random variables [Kingma and Welling, 2013; Rezende et al., 2014]. We chose Adam [Kingma and Ba, 2015] with learning rate \(\alpha = 10^{-3} \).

4 Results

We first evaluate the algorithm’s ability to combine information from different, distinct data streams into a common latent nonlinear DS model on two purpose-designed ground truth systems. For these we produce both continuous Gaussian and categorical information from the Lorenz ODE system within its chaotic regime [Lorenz, 1963], a popular benchmark system for testing DS reconstruction. We then probe our algorithm on experimental data consisting of simultaneous functional Magnetic Resonance Imaging (fMRI) recordings of different brain regions and (categorical) behavioral data from healthy subjects performing a working memory task [Koppe et al., 2014].

4.1 Benchmarks: Noisy or incomplete Lorenz system with Gaussian and categorical observations

The 3D-Lorenz system is defined by the set of Eqs. (28) (see Appx. B.1) where we have added a Gaussian dynamical (process) noise term \(\text{de}(t) \sim \mathcal{N}(0, 10^{-6} \times I) \) when integrating the equations, making this a system of stochastic differential equations. State trajectories \(x_t = (x_1, x_2, x_3)^T \) were generated from this system (Fig. 2A) using 4th-order Runge-Kutta numerical integration. Generated trajectories were further standardized (centered and scaled to unit variance on each dimension) and blurred by adding a relatively large amount of Gaussian observation noise \(\eta_t \sim \mathcal{N}(0, 0.1 \times I) \), strongly degrading the information about the underlying DS that could be obtained from the continuous Gaussian observations alone. This emulates a natural scenario where one information channel on its own may be too noisy to enable identification of the underlying system. In addition to these Gaussian observations, we provide categorical information about the system’s dynamics by indicating in which of the eight orthants the system’s current state is in (Fig. 2A), i.e. in the form of an 8-dimensional indicator vector \(c_t = (c_{1t}, \ldots, c_{8t})^T \), where \(c_{it} = 1 \) for the \((I[x_{1t} > 0]^2 + I[x_{2t} > 0]^2 + I[x_{3t} > 0]^2 + 1)^{16} \) bit and 0 otherwise. The mmPLRNN algorithm had access to only relatively short time series \(\{x_t, c_{it}\}, t = 1 \ldots T, \) of length \(T = 1000 \) to infer the underlying DS, using \(M = 15 \) latent states based on previous work [Koppe et al., 2019].

To evaluate the quality of DS reconstruction, new trajectories were sampled from the once trained generative model \(p_\theta(X, C, Z) \), i.e. new latent state trajectories were first drawn from the model prior \(Z \sim p_{\theta_{lat}}(Z) \) defined by the latent
As in the Lorenz benchmark setups, we first studied whether including categorical information would help the algorithm working memory task. The details of the experimental setup are not overly important here and are given in [Koppe et al., 2014] and briefly summarized in Appx. B.3. Importantly, this measure assesses the agreement across space, not time: As pointed out in [Woods, 2010, Appx. B.2), Importantly, this measure assesses the agreement across space, not time: As pointed out in [Woods, 2010, Fig. 2B provides an example of successful reconstruction of the Lorenz system, i.e. where the mmPLRNN’s intrinsic dynamics captures well the butterfly-wing structure of the chaotic Lorenz attractor.

To quantify reconstruction quality, we used a previously introduced Kullback-Leibler measure for the agreement between true, \(p_{\text{true}}(x) \), and model-generated, \(p_{\text{gen}}(x \mid z) \), attractor geometries [Koppe et al., 2019] (see Eq. (29) in Appx. B.2). Importantly, this measure assesses the agreement across space, not time: As pointed out in [Woods, 2010, trajectories from chaotic systems not started from exactly the same initial condition exponentially diverge, potentially leading to ultimately highly dissimilar time series with large MSE deviation, even though they may have been generated by the very same DS (see Fig. 2 in [Koppe et al., 2019]). In contrast, invariant properties like flow fields and attractor geometries should be preserved. As shown in Fig. 2C-D, attractor reconstructions as assessed by this measure strongly improve when the algorithm has access to the categorical information on top of the Gaussian time series, in contrast to when only the latter were available. This was true regardless of whether the mmPLRNN was trained by EM or VI, although for EM the improvement was somewhat more pronounced and reconstructions were better on average. This demonstrates that the mmPLRNN can strongly enhance DS identification by supplementing the highly noisy trajectory information by categorical data, even though, and importantly, these do not provide quantitative information about the dynamics.

As a second test case, we studied whether additional categorical information could also help to identify the chaotic Lorenz system when one of its dynamical variables (\(x_2 \)) was missing from the observations, i.e. only \(x_t^{\text{red}} = (x_{1t}, x_{3t})^T \) was provided for training. This is indeed the case, as reported in Appx. B.5 (Fig. 3).

4.2 Empirical example: DS inference from neurophysiological and task label data

For probing the mmPLRNN on real data, we chose a data set consisting of fMRI recordings (which assess the so-called Blood-Oxygenation-Level-Dependent, BOLD, signal) taken from human subjects while they performed a simple working memory task. The details of the experimental setup are not overly important here and are given in [Koppe et al., 2014] and briefly summarized in Appx. B.3. \(N = 20 \) brain regions from \(p = 26 \) subjects were selected for analysis, yielding continuous time series data \(X = \{ x_t \}, x_t = (x_{1t}, \ldots, x_{20t})^T \) for each subject. Of note, BOLD signal time series were relatively short (\(T = 360 \)) and hence extracting reasonable dynamics from single subjects is quite challenging. In fact, for this type of very sparse data only the more efficient EM algorithm tended to produce meaningful results, and hence only these are reported here. As categorical data we defined the five major task stages subjects underwent during the experiment (‘Rest’, ‘Instruction’, ‘Choice Reaction Task’, ‘Continuous Delayed Response Task’, ‘Continuous Matching Task’), and endowed each time step with a categorical label \(c_t \in \{0, 1\}^5 \) accordingly.

As in the Lorenz benchmark setups, we first studied whether including categorical information would help the algorithm to produce better reconstructions and predictions as compared to when only BOLD time series were provided. Fig. 3A shows the ahead-prediction error for \(n \in \{5 \ldots 15\} \) future time steps, and for both a uni-modal PLRNN, trained only

\(^2\)We stress that these different task stages did not differ in the type of presented stimuli or required responses, i.e. in their ‘external inputs’, but rather tapped into to different cognitive processes.
on the BOLD signals, and the mmPLRNN which consumed class labels in addition (both trained with $M = 20$ states based on [Koppe et al., 2019]; for comparison, also predictions produced by a LSTM with the same number of latent states are shown). There is a consistent increase in performance for the mmPLRNN across all prediction time steps, revealing that the additional categorical information indeed helped to reconstruct the underlying system. The example of true and reconstructed power spectra in Fig. 3B furthermore confirms that the PLRNN has learned to generate (i.e., freely simulate) time series which exhibit the same major temporal signatures (peaks in the spectrum) as the real data. Hence, also for this empirical example the mmPLRNN seems to exploit both data modalities to achieve the best reconstruction. This is an important and non-trivial result, as it confirms that even in this empirical scenario purely categorical information may help in guiding the algorithm toward better approximations of the underlying dynamics.

Figure 4: Association between predicted class labels (color coding) and learned BOLD dynamics. Shown are 2d subspaces of a mmPLRNN’s generated state space. Subspaces chosen for display were selected according to Fisher’s discriminant criterion.

Finally, we tested cross-modal inference, i.e. whether the trained mmPLRNN would be able to predict class labels from BOLD signals alone on left-out test data. While here this mainly serves to examine whether cross-modal links have been built within the model’s latent space, it is also a relevant application case. Specifically, we ran a cross-validation protocol where each 20% segment of the time series was left out in turn for training, and inference was probed on these left-out test sets. This was done by fixing the mmPLRNN’s parameters from the training set and obtaining posterior state estimates $E[Z_{test} \mid X_{test}]$ from the left-out BOLD signal X_{test} alone (using the pre-trained encoder model), after re-estimating the initial condition μ_0 on the left-out segment. These inferred latent trajectories were then used to predict the unseen task labels through the previously trained observation model $p_{\theta_{cat}}(C_{test} \mid Z_{test})$ (Eq. (3)). Fig. 4C summarizes the agreement between true and predicted behavioral class labels across all test sets from successful training runs (see Appx. B.3) in a confusion matrix. These results were about on par with those produced by various classifiers trained directly on the BOLD signals (multi-class F1 scores for logistic regression: ≈ 0.47, linear discriminant analysis: ≈ 0.48, support vector machines: ≈ 0.47, mmPLRNN: ≈ 0.45). Hence, this example illustrates that the multi-modal PLRNN has learned the connections between the two data modalities within its latent space in an about optimal manner (i.e., without much loss of information as judged by this performance comparison).

Of course, in practise we would not use the mmPLRNN merely for cross-modal prediction, but would want to harvest the common latent representation to address the DS basis of cross-modal links. Fig. 4E shows an example of a reconstructed latent space from one subject, harboring a complex chaotic attractor (see Fig. 7 for further examples). Different task stages seem to be associated with different subcycles or phases of the chaotic oscillator, revealing interesting links between learned BOLD dynamics and mental processes.

5 Conclusions

In this work we introduced a new algorithm for nonlinear DS reconstruction, the mmPLRNN, that draws on several data channels described by different distributional models. By DS reconstruction here we meant that the trained system approximates the true underlying DS in a generative sense, i.e. such that after training trajectories drawn (simulated) from the latent process would produce the same state space behavior and invariant properties (like attractor geometries) as the observed system. Although various approaches toward this goal have been introduced before [Brunton et al., 2016] [Champion et al., 2019] [Duncker et al., 2019] [Lu et al., 2017a] [Durstewitz, 2017] [Koppe et al., 2019] [Razaghi and Paninski, 2019], to our knowledge the mmPLRNN is the first such system that can integrate different types of data modalities for this purpose. We developed both an EM- and a VI-based variant of the basic algorithm, and demonstrated that the mmPLRNN will use categorical (or other, see Appx. C) information to fill in for information too noisy or missing in the Gaussian channel, i.e. will effectively combine the different information sources to infer the underlying
We also showcased the mmPLRNN on a neuroscientific dataset consisting of simultaneous fMRI recordings and behavioral task labels. Both the EM- and VI-based algorithms have their own advantages and drawbacks: VI scales better with problem size than EM, as it can be efficiently trained through gradient descent using the reparameterization trick \cite{KingmaWelling2013,Rezende2014,Krishnan2015,Archer2015}. It is also more flexible as it can more easily accommodate a larger variety of distributional models. For the EM-based mmPLRNN, on the other hand, although the steps outlined here for categorical data are fairly easy to extend to other exponential family models, more complex distributional models would require additional thought and possibly hand-crafted solutions. On the upside, the EM algorithm can more efficiently deal with smaller scale problems as often encountered in physical or biological experiments (like the fMRI data studied here), and provides higher accuracy estimates that may be preferable in scientific or medical settings. A principle limitation of either algorithm could be that non-continuous, non-Gaussian channels (e.g., count or categorical data) provide too scarce or distorted information on their own to enable DS reconstruction (cf. Appx. C). In general, which types and amounts of data under which distributional assumptions and transformations allow for a faithful reconstruction of the underlying DS remains an open question for further research.

6 Acknowledgements

This work was funded by grants from the German Research Foundation (DFG) within the CRC TRR-265 (A06 & B08) to DD and GK, and through Du 354/10-1 (DFG) to DD.
Identifying nonlinear dynamical systems from multi-modal time series data

References

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. *Proceedings of the National Academy of Sciences*, 113(15):3932–3937, mar 2016. doi: 10.1073/pnas.1517384115.

Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery of coordinates and governing equations. *Proceedings of the National Academy of Sciences*, 116(45):22445–22451, October 2019. doi: 10.1073/pnas.1906955116. URL https://doi.org/10.1073/pnas.1906955116

Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. Learning interpretable continuous-time models of latent stochastic dynamical systems. volume 97 of *Proceedings of Machine Learning Research*, pages 1726–1734. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/duncker19a.html

Zhixin Lu, Jaideep Pathak, Brian Hunt, Michelle Girvan, Roger Brockett, and Edward Ott. Reservoir observers: Model-free inference of unmeasured variables in chaotic systems. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 27(4):041102, apr 2017a. doi: 10.1063/1.4979665.

Daniel Durstewitz. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements. *PLoS ONE*, 13(6):e0100542, jun 2017. doi: 10.1371/journal.pcbi.1005542.

Georgia Koppe, Hazem Toutounji, Peter Kirsch, Stefanie Lis, and Daniel Durstewitz. Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI. *PLoS Computational Biology*, 15(8):e1007263, aug 2019.

Daniel Hernandez, Antonio Khalil Moretti, Ziqiang Wei, Shreya Saxena, John Cunningham, and Liam Paninski. Nonlinear evolution via spatially-dependent linear dynamics for electrophysiology and calcium data, 2018.

Pantelis R. Vlachas, Wonmin Byeon, Zhong Y. Wan, Themistoklis P. Sapsis, and Petros Koumoutsakos. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 474(2213):20170844, May 2018. doi: 10.1098/rspa.2017.0844. URL https://doi.org/10.1098/rspa.2017.0844.

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach. *Physical Review Letters*, 120(2), January 2018. doi: 10.1103/physrevlett.120.024102. URL https://doi.org/10.1103/physrevlett.120.024102

G. Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals, and Systems*, 2(4):303–314, dec 1989. doi: 10.1007/bf02551274.

Ken Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time recurrent neural networks. *Neural Networks*, 6(6):801–806, jan 1993. doi: 10.1016/s0893-6080(05)80125-x.

M. Kimura and R. Nakano. Learning dynamical systems from neural networks. *Neural Networks*, 11(9): 1589–1599, dec 1998. doi: 10.1016/s0893-6080(98)00098-7.

Joshua Hanson and Maxim Raginsky. Universal simulation of stable dynamical systems by recurrent neural nets. In *Proceedings of the 2nd Conference on Learning for Dynamics and Control*, volume 120 of *Proceedings of Machine Learning Research*, pages 384–392, The Cloud, 10–11 Jun 2020. PMLR. URL http://proceedings.mlr.press/v120/hanson20a.html

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of neural networks: A view from the width. *NIPS*, 2017b.

Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal approximator. In *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/03bfc1d4783966c69cc6aef8247e0103-Paper.pdf

Adam P. Trischler and Gabriele M.T. D’Eleuterio. Synthesis of recurrent neural networks for dynamical system simulation. *Neural Networks*, 80:67–78, aug 2016. doi: 10.1016/j.neunet.2016.04.001.

Valentin Radu, Nicholas D. Lane, Sourav Bhattacharya, Cecilia Mascolo, Mahesh K. Marina, and Fahim Kawsar. Towards multimodal deep learning for activity recognition on mobile devices. In *Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct - UbiComp16*. ACM Press, 2016. doi: 10.1145/2968219.2971461.

Georgia Koppe, Sinan Guloksuz, Ulrich Reininghaus, and Daniel Durstewitz. Recurrent neural networks in mobile sampling and intervention. *Schizophrenia Bulletin*, 45(2):272–276, nov 2018. doi: 10.1093/schbul/sby171.

Jing Sui, Tülay Adali, Qingsuo Yu, Jiayu Chen, and Vince D. Calhoun. A review of multivariate methods for multimodal fusion of brain imaging data. *Journal of Neuroscience Methods*, 204(1):68–81, feb 2012. doi: 10.1016/j.jneumeth.2011.10.031.

Dana Lahat, Tülay Adali, and Christian Jutten. Multimodal data fusion: An overview of methods, challenges, and prospects. *Proceedings of the IEEE*, 103(9):1449–1477, sep 2015. doi: 10.1109/jproc.2015.2460697.

P.L. Purdon, C. Lamus, M.S. Hamalainen, and E.N Brown. A state space approach to multimodal integration of simultaneously recorded EEG and fMRI. In *2010 IEEE International Conference on Acoustics, Speech and Signal Processing*. IEEE, mar 2010. doi: 10.1109/icassp.2010.5494906.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Ng. Multimodal deep learning. In *Proceedings of the 28th International Conference on Machine Learning (ICML-11)*. ICML ’11, pages 689–696, New York, NY, USA, June 2011. ACM. ISBN 978-1-4503-0619-3.
Identifying nonlinear dynamical systems from multi-modal time series data

Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning with deep boltzmann machines. In *Advances in Neural Information Processing Systems 25*, pages 2222–2230. Curran Associates, Inc., 2012.

Brandon M. Turner, Birte U. Forstmann, Eric-Jan Wagenmakers, Scott D. Brown, Per B. Sederberg, and Mark Steyvers. A bayesian framework for simultaneously modeling neural and behavioral data. *NeuroImage*, 72:193–206, may 2013. doi: 10.1016/j.neuroimage.2013.01.048.

Muxuan Liang, Zhizhong Li, Ting Chen, and Jianyang Zeng. Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 12(4):928–937, jul 2015. doi: 10.1109/tcbxb.2014.2377729.

Amir Dezfoli, Richard Morris, Fabio Ramos, Peter Dayan, and Bernard W. Balleine. Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models. *NIPS*, may 2018. doi: 10.1101/328849.

David Halpern, Shannon Tubridy, Hong Yu Wang, Camille Gasser, Pamela Joy Osborn Popp, Lila Davachi, and Todd Matthew Gureckis. Knowledge tracing using the brain. *PsyArXiv*, apr 2018. doi: 10.31234/osf.io/fin48.

Nikhil Bhagwat, Joseph D. Viviano, Aristotle N. Voinoskos, and M. Mallar Chakravarty and. Modeling and prediction of clinical symptom trajectories in alzheimer’s disease using longitudinal data. *PLOS Computational Biology*, 14(9):e1006376, sep 2018. doi: 10.1371/journal.pcbi.1006376.

Luigi Antelmi, Nicholas Ayache, Philippe Robert, and Marco Lorenzi. Multi-channel stochastic variational inference for the joint analysis of heterogeneous biomedical data in alzheimer’s disease. In Danail Stoyanov, Zeike Taylor, Seyed Mostafa Kia, Ipek Oguz, Mauricio Reyes, Anne L. Martel, Lena Maier-Hein, Andre F. Marquand, Edouard Duchesnay, Tommy Löfdstedt, Bennett A. Landman, M. Jorge Cardoso, Carlos A. Silva, Sérgio Pereira, and Raphael Meier, editors, *Understanding and Interpreting Machine Learning in Medical Image Computing Applications - First International Workshops MLCN 2018, DLF 2018, and iMIMIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16-20, 2018, Proceedings*, volume 11038 of *Lecture Notes in Computer Science*, pages 15–23. Springer, 2018. doi: 10.1007/978-3-030-02628-8_2. URL https://doi.org/10.1007/978-3-030-02628-8_2

Thomas M. Sutter, Imant Daunhawer, and Julia E Vogt. Generalized multimodal ELBO. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=svjYs9eDv88

Yuge Shi, Brooks Paige, Philip Torr, and Siddharth N. Relating by contrasting: A data-efficient framework for multimodal generative models. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=vhe89UFbrJo

Nico S Gorbach, Stefan Bauer, and Joachim M Buhmann. Scalable variational inference for dynamical systems. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/e71e5cd119bb5c579f64f80cd7fd94a4-Paper.pdf

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. *Journal of Machine Learning Research*, 19(25):1–24, 2018. URL http://jmlr.org/papers/v19/18-046.html

Ted Meeds, Geoffrey Roeder, Paul Grant, Andrew Phillips, and Neil Dalchau. Efficient amortised bayesian inference for hierarchical and non-linear dynamical systems. volume 97 of *Proceedings of Machine Learning Research*, pages 4445–4455. FMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/meeds19a.html

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Learning neural event functions for ordinary differential equations. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=KZ_yzFeMlDP

Valeriia Iakovlev, Markus Heinonen, and Harri Lähdesmäki. Learning continuous-time (pde) from sparse data with graph neural networks. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=aUX5Plaq7Oy

Dominik Schmidt, Georgina Koppe, Zahra Monfared, Max Beutelspacher, and Daniel Durstewitz. Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=XZyuxP1Qu6

Yuan Zhao and Il Memming Park. Variational online learning of neural dynamics. *Frontiers in Computational Neuroscience*, 14, October 2020. doi: 10.3389/fncom.2020.00071. URL https://doi.org/10.3389/fncom.2020.00071

Ricky T. Q. Chen, Yulina Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. In *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c58686939b9-Paper.pdf

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. *Numerical Recipes*. Cambridge University Pr., 2007. ISBN 0521880688.

Christof Koch and Idan Seveg. *Methods in Neuronal Modeling (Computational Neuroscience Series): From Ions to Networks (Computational Neuroscience)* Second Edition. A Bradford Book, 2003. ISBN 9780262517133.

Hooshmand Shokri Razaghi and Liam Paninski. Filtering normalizing flows. In *4th workshop on Bayesian Deep Learning (NeurIPS 2019)*, 2019.

Shizhe Chen, Ali Shojaie, and Daniela M. Witten. Network reconstruction from high-dimensional ordinary differential equations. *Journal of the American Statistical Association*, 112(520):1697–1707, aug 2017. doi: 10.1080/01621459.2016.1229197.
Identifying nonlinear dynamical systems from multi-modal time series data

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey. *Journal of machine learning research*, 2018.

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning dynamical systems from partial observations. *arXiv*, 2019.

Samuel H. Rudy, Steven L. Brunton, and J. Nathan Kutz. Smoothing and parameter estimation by soft-adherence to governing equations. *Journal of Computational Physics*, 398:108860, dec 2019. doi: 10.1016/j.jcp.2019.108860.

Hannes Risken. *The Fokker-Planck Equation*. Springer Berlin Heidelberg, 1984. doi: 10.1007/978-3-642-96807-5.

Lorenz Hertz, Daniel Durstewitz, and Nicolas Brunel. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise. *Frontiers in Computational Neuroscience*, 8, sep 2014. doi: 10.3389/fncom.2014.00116.

Hyunwook Hong, Yin Wu, Zhaoli Wu, and Yiming Ying. Parallelizing the Fokker-Planck equation on GPUs for efficient inference of large scale dynamical systems. *Journal of Computational Physics*, 398:108860, 2019. doi: 10.1016/j.jcp.2019.108860.

Carlos X. Hernández, Kimberly K. Wayment-Steele, Mohammad M. Sultan, Brooke E. Husic, and Vijay S. Pande. Variational encoding of complex dynamics. *Phys. Rev. E*, 97:062412, Jun 2018. doi: 10.1103/PhysRevE.97.062412. URL https://link.aps.org/doi/10.1103/PhysRevE.97.062412

Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, Rafał Jozefowicz, Sergey D. Stavisky, Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I. Ryu, Leigh R. Hochberg, Jamie M. Henderson, Krishna V. Shenoy, L. F. Abbott, and David Sussillo. Inferring single-trial neural population dynamics using sequential auto-encoders. *Nature Methods*, 15(10):805–815, September 2018. doi: 10.1038/s41592-018-0109-9. URL https://doi.org/10.1038/s41592-018-0109-9

Manuel Molano-Mazon, Arno Onken, Eugenio Piasini, and Stefano Panzeri. Synthesizing realistic neural population activity patterns using generative adversarial networks. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=op2X4vFqf

Riccardo Miotto, Li Li, Brian A. Kidd, and Joel T. Dudley. Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. *npj Digital Medicine*, 1(1), may 2018. doi: 10.1038/s41592-018-0109-9. URL https://doi.org/10.1038/s41592-018-0109-9.

Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajiag, Michaela Hardt, Peter J. Liu, Xiaobing Liu, Jake Marcus, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Yi Zhang, Gerardo Flores, Gavin E. Duggan, Jamie Irvine, Quoc Le, Kurt Litsch, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte, Michael D. Howell, Claire Cui, Greg S. Corrado, and Jeffrey Dean. Scalable and accurate deep learning with electronic health records. *npj Digital Medicine*, 1(1), may 2018. doi: 10.1038/s41746-018-00116.

Jun-Tae Lee, Mihir Jain, Hyoungwoo Park, and Sungrack Yun. Cross-attentional audio-visual fusion for weakly-supervised action localization. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=hWr3e5r-0HS

Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy. Generative models of visually grounded imagination. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=HkCsm6d1Rb

Richard Kurle, Stephan Günnemann, and Patrick Van der Smagt. Multi-source neural variational inference. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33:4114–4121, July 2019. doi: 10.1609/aaai.v33i01.33014114. URL https://doi.org/10.1609/aaai.v33i01.33014114

Yuge Shi, Siddharth N. Brooks Paige, and Philip Torr. Variational mixture-of-experts autoencoders for multi-modal deep generative models. In *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/0ae775a8cb3b499ad1fca94de6f5c836-Paper.pdf

Yao-Hung Habert Tsai, Paul Pu Liang, Amir Zadeh, Louis-Philippe Morency, and Ruslan Salakhutdinov. Learning factorized multimodal representations. In *7th International Conference on Learning Representations, ICLR 2019*, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=rygqqsA9KX

Mike Wu and Noah D. Goodman. Multimodal generative models for scalable weakly-supervised learning. In *NeurIPS*, 2018.
Z. Monfared and D. Durstewitz. Existence of n-cycles and border-collision bifurcations in piecewise-linear continuous maps with applications to recurrent neural networks. *Nonlinear Dynamics*, 101(2):1037–1052, July 2020a. doi: 10.1007/s11071-020-05841-x. URL: https://doi.org/10.1007/s11071-020-05841-x

Iryna Sushko and Laura Gardini. Degenerate Bifurcations and Border Collisions in Piecewise Smooth 1d and 2d Maps. *International Journal of Bifurcation and Chaos*, 20(07):2045–2070, July 2010. doi: 10.1142/s0218127410026927. URL: https://doi.org/10.1142/s0218127410026927

Zahra Monfared and Daniel Durstewitz. Transformation of ReLU-based recurrent neural networks from discrete-time to continuous-time. volume 119 of *Proceedings of Machine Learning Research*, pages 6999–7009. PMLR, 13–18 Jul 2020b. URL: http://proceedings.mlr.press/v119/monfared20a.html

A. Smith and E. Brown. Estimating a State-Space Model from Point Process Observations. *Neural Computation*, 15, 2003.

N. B. Kandala, S. Lang, S. Klasen, and Ludwig Fahrmeir. Semiparametric analysis of the socio-demographic and spatial determinants of undernutrition in two african countries, 2001. URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:19-epub-1626-2

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. *Arxiv*, 2013.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. volume 32 of *Proceedings of Machine Learning Research*, pages 1278–1286. Beijing, China, 22–24 Jun 2014. PMLR. URL: http://proceedings.mlr.press/v32/rezende14.html

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015. URL: http://arxiv.org/abs/1412.6980

Edward N. Lorenz. Deterministic nonperiodic flow. *Journal of the Atmospheric Sciences*, 20(2):130–141, March 1963. doi: 10.1175/1520-0469(1963)020<0130:dntf>2.0.co;2. URL: https://doi.org/10.1175/1520-0469(1963)020<0130:dntf>2.0.co;2

Georgia Koppe, Harald Gruppe, Gebhard Sammer, Bernd Gallhofer, Peter Kirsch, and Stefanie Lis. Temporal unpredictability of a stimulus sequence affects brain activation differently depending on cognitive task demands. *NeuroImage*, 101, 07 2014. doi: 10.1016/j.neuroimage.2014.07.008.

Andrew W. Woods. Turbulent plumes in nature. *Annual Review of Fluid Mechanics*, 42(1):391–412, jan 2010. doi: 10.1146/annurev-fluid-121108-145430.

Liam Paninski, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamniar Rahnama Rad, Michael Vidne, Joshua Vogelstein, and Wei Wu. A new look at state-space models for neural data. *Journal of Computational Neuroscience*, 29(1-2):107–126, aug 2009. doi: 10.1007/s10827-009-0179-x.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. *Transactions of the ASME–Journal of Basic Engineering*, 82(Series D):35–45, 1960.

Adrian M. Owen, Kathryn M. McMillan, Angela R. Laird, and Ed Bullmore. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. *Human Brain Mapping*, 25(1):46–59, 2005. doi: 10.1002/hbm.20131. URL: https://doi.org/10.1002/hbm.20131

Diane Lambert. Zero-inflated poisson regression, with an application to defects in manufacturing. *Technometrics*, 34:1–14, 02 1992. doi: 10.1080/00401706.1992.10485228.
A Methodological details

A.1 Newton-Raphson iterations

Let \(z = (z_{11}, \ldots, z_{M1}, \ldots, z_{1T}, \ldots, z_{MT})^T \in \mathbb{R}^{MT \times 1} \) be the concatenated vector of all state variables across all time steps, \(d_\theta := (d_\theta^{(1)}, d_\theta^{(2)}, \ldots, d_\theta^{(MT)})^T \) an indicator vector with \(d_\theta^{(mt)} = 1 \) \(\forall m, t > 0 \) and \(d_\theta^{(mt)} = 0 \) otherwise, and \(D_\theta := \text{diag}(d_\theta) \). Arranging all terms quadratic, linear, and constant in \(z \) into big matrix form (see [Koppe et al., 2019]), one can rewrite optimization criterion \([17]\) as

\[
Q_\Omega^*(Z) = -\frac{1}{2} \left[2(\alpha^T a) - 2\bar{\beta}^T z + z^T \left(U_0 + D_\Omega U_1 + U_1^T D_\Omega + D_\Omega U_2 D_\Omega \right) z \right]
- \frac{1}{2} \left[-z^T (v_0 + D_\Omega v_1) - (v_0 + D_\Omega v_1)^T z \right]
\]

where \(\bar{\beta} = (\bar{\beta}_1, \ldots, \bar{\beta}_T) \in \mathbb{R}^{MT \times 1} \) is a column vector with vector elements \(\bar{\beta}_t := [\beta_1, \ldots, \beta_{K-1}, 0]_t \in \mathbb{R}^{K \times 1} \) (picking out the regression vector \(\beta_t \) associated with the selected category \(c_{it} = 1 \) at time \(t \)), \(a = (\sqrt{\gamma_{a1}}, \ldots, \sqrt{\gamma_{aT}})^T \in \mathbb{R}^{T \times 1} \) with \(\gamma_{a1} := \log \left(1 + \sum_{j=1}^{K-1} \exp(\beta_j z_1) \right) \). In the original formulation of the PLRNN algorithm [Durstewitz, 2017, Koppe et al., 2019], the non-Gaussian terms due to \(p(C \mid Z) \) were lacking, and hence criterion Eq. [11] was piecewise quadratic (owing to the piecewise linear ReLU activation) and could be addressed by an efficient fixed-point-iteration algorithm that alternates between (i) solving the set of equations \(dQ_\Omega^*(Z) / dZ = 0 \) linear in \(Z \) and (ii) recomputing the ReLU-derivatives \(D_\Omega \). Here we need to modify this algorithm, as the derivatives \(dQ_\Omega^*(Z) / dZ \) are not linear anymore, even for a fixed matrix \(D_\Omega \). Luckily, however, Eq. [11] will still be piecewise concave (within each orthant of the objective function landscape) and hence we can efficiently solve it using the Newton-Raphson (NR) scheme

\[
z^{\text{new}} = z^{\text{old}} - \alpha_\beta \mathbf{H}^{-1} \nabla z^{\text{old}}
\]

where \(\mathbf{H} \) is recomputed after a few NR steps. Due to the Markov property of model Eq. [4] the Hessian \(\mathbf{H} := \partial^2 Q_\Omega^*(Z) / \partial z \partial z^T \) has a specific, block-tridiagonal structure (see Eq. [14] and [Koppe et al., 2019]). This can be exploited (a) to store \(\mathbf{H} \) in sparse format and (b) to obtain the inverse in \(\mathcal{O}(T) \) time ([Pannisni et al., 2009]).

Likewise, we can use NR updates to solve for parameters \(\beta \) in Eq. [9].

\[
\beta^{\text{new}} = \beta^{\text{old}} - \alpha_\beta J^{-1} \nabla \beta^{\text{old}},
\]

where \(\nabla \beta^{\text{old}} := \partial f(\theta) / \partial \beta \) indicates the Jacobian, the Hessian is given by \(J \), and \(\alpha_\beta \) is a learning rate (set to \(\alpha_\beta = 0.001 \) here). Using the analytical derivations and approximations outlined here and in sect. 3.2 both the E- and the M-step become reasonably fast.

A.2 Stepwise training protocol

It has been shown previously [Koppe et al., 2019] that the approximation of the true underlying DS is strongly improved by embedding the EM algorithm (described in section 3.2) into a stepwise training protocol that successively shifts the burden of reproducing the observations from the observation model \(p_0(X, C \mid Z) \), as defined by Eqs. [2] & [3], to the latent process model \(p_0(Z) \) as defined by Eq. [1]. In a first step, a linear dynamical system (LDS) is trained by EM on the time series to find a suitable initial guess of parameters and states. Next, by deliberately fixing the covariance terms \(\Gamma \) and \(\Sigma \) of the observation and latent models, respectively, to certain values in the first full PLRNN runs, efficient training of the observation model is encouraged. In later steps, the observation model term \(E[\log p_0(X, C \mid Z)] \) in optimization criterion Eq. [6] is clamped off completely, thus enforcing the temporal consistency requirements in Eq. [1] and hence forcing the latent dynamical model to capture the observed temporal evolution in its own prior dynamics \(p_0(Z) \). We use the same strategy here. For further details please refer to [Koppe et al., 2019].

A.3 Parameterization approximate posterior

Owing to the latent model’s Markov property, the \(MT \times MT \) Hessian \(\mathbf{H} \) of the approximate posterior \(q(Z \mid X, C) \) in Eq. [7] and Eq. [10] has a specific block-tridiagonal structure (see also [Pannisni et al., 2009, Archer et al., 2015]):

\[
\mathbf{H} = \begin{pmatrix}
S_1 & K_1 & 0 & \cdots & 0 \\
K_1^T & S_2 & K_2 & 0 & \cdots \\
0 & K_2^T & S_3 & K_3 & 0 \\
\vdots & 0 & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & K_{T-2}^T & S_{T-1} & K_{T-1} \\
0 & 0 & 0 & 0 & K_{T-1}^T & S_T
\end{pmatrix}
\]

with \(M \times M \) on-diagonal blocks \(S_t \) and off-diagonal blocks \(K_t \). For the EM algorithm, \(\mathbf{H} \) splits into the components \(U_0, U_1 \), and \(U_2 \) used in Eq. [11] above. These matrices as well as the vectors \(v_0 \) and \(v_1 \) from that equation are specified in [Koppe et al., 2019].
For VI, we closely follow [Archer et al., 2015] who factorize the approximate posterior into a product of two Gaussians as
\[p_\theta(Z | X, C) \approx q_\ell(Z | X, C) \propto q_1(Z | X, C) q_0(Z), \]
where
\[q_1(Z | X, C) = \mathcal{N}(\mu_Z(X, C), \Lambda_Z(X, C)), \]
\[q_0(Z) = \mathcal{N}(\mathbf{0}, \mathbf{D}). \]
Combining these two Gaussians yields for the combined mean \(\mu_Z \) and covariance \(\Lambda_Z \) of the posterior [Archer et al., 2015]
\[\Lambda_Z(X, C) = (\mathbf{D}^{-1} + \mathbf{E}_{\xi}^{-1}(X, C))^{-1}, \]
\[\mu_Z(X, C) = \Lambda_Z(X, C)\mathbf{E}_{\xi}^{-1}(X, C)\mathbf{m}_{\xi_0}(X, C), \]
where both \(\mathbf{D}^{-1} \) and \(\mathbf{E}_{\xi}^{-1} \) are \(MT \times MT \) matrices of the general form given in Eq. [14]. Because of this block-tri-diagonal form, matrix inversions can be done efficiently in \(O(T) \) time [Paninski et al., 2009].

The formulation in Eqs. (15-20) allows to insert a smoothness prior into the posterior via \(q_0(Z) \). More specifically, the on-diagonal blocks \(\mathbf{P}_t \) and off-diagonal blocks \(\mathbf{K} \) of prior matrix \(\mathbf{D}^{-1} \) are time-independent and given by (see [Archer et al., 2015])
\[\mathbf{P}_t = \mathbf{Q}_0^{-1} + \mathbf{V}^T \mathbf{Q}^{-1} \mathbf{V}, \]
\[\mathbf{P}_T = \mathbf{Q}^{-1}, \]
\[\mathbf{K} = -\mathbf{V}^T \mathbf{Q}^{-1}, \]
where \(\mathbf{V} \in \mathbb{R}^{M \times M}, \mathbf{Q}_0 \in \mathbb{R}^{M \times M} \) and \(\mathbf{Q} \in \mathbb{R}^{M \times M} \) are full parameter matrices optimized during training. This specific formulation follows the Kalman filter-smoother equations [Kalman, 1960; Paninski et al., 2009] where matrix \(\mathbf{D}^{-1} \) collects the covariance terms that come from the process model, and the specific form of Eqs. (21-25) ensures they are arranged in the correct way within the full Hessian Eq. (14). Matrix \(\mathbf{E}_{\xi}^{-1} \) in turn captures the time-dependent terms from the observation model which appear only in the blocks on the diagonal. These on-diagonal blocks \(\mathbf{L}_t \), as well as the time-dependent mean in Eq. (17) are parameterized through MLP-type neural network as
\[\mathbf{m}_{\xi_0}^{(t)}(x_t, c_t) = \mathbf{N}\mathbf{N}_{\xi_0}(x_t, c_t), \]
\[\mathbf{L}_t(x_t, c_t) = \mathbf{N}\mathbf{N}_{\xi_{\xi}}(x_t, c_t), \]
with \(\mathbf{m}_{\xi_0} \in \mathbb{R}^{M \times 1} \) and \(\mathbf{L}_t \in \mathbb{R}^{M \times M} \). The diagonal blocks in matrix Eq. (15) are then given by \(\mathbf{S}_t = \mathbf{P}_t + \mathbf{L}_t \). In our case, each NN has two separate input layers for the two data modalities, followed by two hidden layers of dimension \(d_h = 25 \) each. The input and hidden layers of the respective data modality are fully connected. The third layer combines the two input streams (therefore has input dimension \(d_c = 2 \cdot d_h = 50 \)), followed by an additional hidden layer, again fully connected. For all but the output layer we use ReLU activation functions.

The VI code was implemented in Python/PyTorch, while for EM we modified a previous MatLab (MathWorks Inc.) implementation [Koppe et al., 2019]. All experiments were run on CPU-based systems (Intel Xeon Plat 8160 @ 2.1GHz with 24 cores or Intel Xeon Gold 6148 @ 2.3GHz with 20 cores), and the EM and VI algorithms were comparable in runtime (around 400 minutes on a single core, i.e. without parallelization, for training on one Lorenz data set as used in sects. 4.1 and B.5).

B Details on experimental setups and performance measures

B.1 Lorenz equations

The (stochastic) 3D-Lorenz system [Lorenz, 1963] is defined by the set of equations
\[\frac{dx_1}{dt} = s(x_2 - x_1) + \frac{d_1(t)}{dt}, \]
\[\frac{dx_2}{dt} = x_1(r - x_3) - x_2 + \frac{d_2(t)}{dt}, \]
\[\frac{dx_3}{dt} = x_1x_2 - bx_3 + \frac{d_3(t)}{dt}. \]

The system was solved with 4th order Runge-Kutta numerical integration. Process noise was injected by adding an i.i.d. Gaussian term \(d \sim \mathcal{N}(0, 5 \times 10^{-5} dt I) \) to the three equations. Parameter values used here were \(s = 10, r = 28, \) and \(b = 8/3, \) which place the Lorenz system into the chaotic regime.
Identifying nonlinear dynamical systems from multi-modal time series data

Figure 5: Same setup as in Fig. 2 but with one Lorenz variable (x_2) omitted from the observations. A) Cumulative performance histograms ($n = 100$ runs) as in Fig. 2C for continuous+categorical (purple) vs. only (degenerated) continuous (cyan) information channel for models trained by EM. \bar{D}_{KL} indicates the median. B) Same as A for models trained by VI.

B.2 Agreement in attractor geometries

Following [Koppe et al., 2019, Schmidt et al., 2021], we quantify the agreement in attractor geometries by comparing the true and model-generated probability distributions across observations X in state space through a Kullback-Leibler divergence (D_{KL}), approximated as

$$D_{KL}(\hat{p}^{(k)}_{true}(x) \mid\mid \hat{p}^{(k)}_{gen}(x \mid z)) \approx \sum_{k=1}^{K} \hat{p}^{(k)}_{true}(x) \log \left(\frac{\hat{p}^{(k)}_{true}(x)}{\hat{p}^{(k)}_{gen}(x \mid z)} \right)$$

where $\hat{p}_{true}(x)$ is the true distribution of observations across state space, $\hat{p}_{gen}(x \mid z)$ the simulated distribution generated by the (freely running) PLRNN, and index k runs across bins in state space. See [Koppe et al., 2019] or [Schmidt et al., 2021] for more details. To evaluate D_{KL}, trajectories of length $T = 100,000$ were generated from both ground truth system and PLRNN, from which the initial transients (500 time points) were cut off. To yield a relative measure in $[0, 1]$, D_{KL} was normalized to the largest $D_{KL}^{max} = 18.4$ across all iterations from both the noisy and incomplete Lorenz experiments using either EM or VI (i.e., same maximum value was used for all graphs in Figs. 2, 5).

In order to compute D_{KL} in observation space for the case where one Lorenz variable was missing (see below), a projection from the latent into the full observation space was computed by linear regression (i.e., re-computing matrix B from observation model Eq. (2) for the full set of observations).

B.3 Details on fMRI experiments

Briefly, human study participants [Koppe et al., 2014] were presented with a sequence of images of different shapes (rectangles and triangles) under three different task conditions while lying in a fMRI scanner: The continuous delayed response 1-back task (CDRT), the continuous matching 1-back task (CMT), and a 0-back control choice reaction task (CRT). In all three task stages subjects had to correctly indicate the type of stimulus currently presented (0-back) or 1 step before in the sequence (1-back). Task blocks were presented sequentially and repeated 5 times (amounting to 3×5 task blocks), and only differed w.r.t. the instruction phase and displayed response options. In addition to these three task phases, a resting condition where the participants were just lying still in the scanner with eyes closed, and an instruction phase which informed the participants about the upcoming task phase, were included in the experiments. These constituted the five task stages, each of which involving different mental processes, which were assigned different categorical labels for decoding. Any external information concerning the type of stimulus presented was omitted during training, in order to not provide the algorithm with any other source of information about the labels or dynamics. Analysis of BOLD signals was performed on the first principal components of 10 brain regions bilaterally relevant to the n-back task [Owen et al., 2005] (yielding $N = 20$ time series per subject). The details of the experimental setup are given in [Koppe et al., 2014]; fully anonymized data were obtained from the authors of that study and used here with their permission.

The confusion matrix reported in Fig. 3C was determined through 5-fold cross-validation. Only validation blocks from all subjects were included for which the BOLD dynamics was reconstructed successfully on the respective training set (only in these cases the
training was considered successful; note that the quality of the recordings may differ considerably among subjects. This yielded a total of \(n = 84 \) left-out test sets from \(p = 21 \) subjects. Relative frequencies were then computed by first summing across all these test sets from those subjects and then dividing by the respective total counts.

B.4 MSE \(n \)-step ahead prediction

We define the MSE for \(\eta \) which assumes that each observation \(q, \xi, \omega > 0 \) was provided. This is a nontrivial case, since the Lorenz system is a highly condensed minimal model for the chaotic attractor. As a second test case, we studied whether additional categorical information (as in sect. 4.1 above, Fig. 2) could also help to identify \(\hat{z}_{t+n} \) where \(\hat{z}_{t+n} \) is either 0 with probability \(\lambda_t \) or distributed according to a Poisson process with excess of zeros. This situation could be described by the ZIP model [Lambert, 1992].

B.5 Benchmarks: Lorenz system with incomplete Gaussian and categorical observations

As a second test case, we studied whether additional categorical information (as in sect. 4.1 above, Fig. 2) could also help to identify the chaotic Lorenz system when one of its dynamical variables (\(x_2 \)) was missing from the observations, i.e. only \(x_1^{\text{red}} = (x_1, x_3) \) was provided. This is a nontrivial case, since the Lorenz system is a highly condensed minimal model for the chaotic attractor dynamics, i.e. with each variable absolutely necessary to produce the observed behavior (unlike many experimental systems which often have quite some redundancy, as in the nervous system or molecular networks). Yet, as shown in Fig. 5, non-quantitative, categorical data could efficiently compensate for the lack of continuous time series information about one of the system’s variables. In terms of summary statistics, this is reflected in the \(D_{KL} \) distributions (Fig. 5) when the mmPLRNN inference was run with (purple) vs. without (cyan) access to categorical data on top of the linearly transformed \((x_1, x_3)\) time series. Again this was generally true for both EM and VI, with EM performing somewhat better on average.

C Other examples of GLM-type observation models: Gamma and zero-inflated Poisson distributions

Here we illustrate the VI-based mmPLRNN on two further examples of observation models, namely when we have observations that could best be accounted for by 1) a gamma-distribution or by 2) a Poisson distribution with an excess of zeros (Zero-Inflated Poisson (ZIP) model [Lambert, 1992]). Examples of the latter are event counts for earthquakes or a neuron’s action potentials where occasional periods of increased activity may be separated by relatively long periods of silence.

Real-valued gamma time series \(G = \{g_t\}, g_t \in \mathbb{R}^J_{++}, t = 1 \ldots T \), would be described by the conditional density

\[
g_t \mid z_t \sim \text{Gamma}(\omega, \nu_t)
\]

where \(\omega > 0 \) is a shape parameter and \(\nu_t \in \mathbb{R}^J_{++} \) are scale parameters. We may connect them to the latent states \(z_t \) in model Eq. (1) through a GLM, where we model the distribution’s conditional means \(\mu_t = (\mu_{1t}, \ldots, \mu_{Jt})^T = \omega / \nu_t \) at time \(t \) via the log link function:

\[
\log \mu_{jt} = \xi_{jt}^T z_t \quad \forall j \in \{1 \ldots J\}
\]

where \(\xi_j \in \mathbb{R}^M_{++} \) is a vector of regression weights for each of the gamma observations \(j = 1 \ldots J \). Note that like for the Gaussian and categorical models we did not include the usual constant offset (bias) term in the GLM, as we assume the overall level is determined by the latent states \(x_t \) which are equipped with their own bias terms \(h \) (cf. Eq. (1), avoiding model redundancy).

As an example of a somewhat more complex, composite distributional model, assume we have integer-valued Poisson data \(Q = \{q_t\}, q_t \in \mathbb{N}^{L \times 1}, t = 1 \ldots T \), but with an excess proportion of zeros. This situation could be described by the ZIP model [Lambert, 1992] which assumes that each observation \(q_{lt} \) at time \(t \) is either 0 with probability \(\psi_{lt} \), or distributed according to a Poisson process with mean \(\lambda_{lt} \) with probability \(1 - \psi_{lt} \):

\[
q_{lt} \mid z_t \sim \text{ZIP}(\psi_{lt}, \lambda_{lt})
\]

\[
p(q_{lt} \mid z_t) = \begin{cases}
\psi_{lt} + (1 - \psi_{lt})e^{-\lambda_{lt}} & \text{for } q_{lt} = 0 \\
(1 - \psi_{lt}) \frac{\lambda_{lt}^{q_{lt}}}{q_{lt}!} e^{-\lambda_{lt}} & \text{for } q_{lt} > 0
\end{cases}
\]

The elements of probability vector \(\psi_{lt} = (\psi_{1lt}, \ldots, \psi_{Llt})^T \) are produced from the latent states \(z_t \) through the log link function:

\[
\log \frac{\psi_{lt}}{1 - \psi_{lt}} = \eta_{lt}^T z_t \quad \forall l \in \{1 \ldots L\}
\]

where \(\eta_l \in \mathbb{R}^M_{++} \) is a vector of regression weights for each Poissonian variable \(l = 1 \ldots L \). Likewise, the mean values \(\lambda_t = (\lambda_{1t}, \ldots, \lambda_{Llt})^T \) of the Poisson distribution are connected to the latent states \(z_t \) through the log-link function:

\[
\log \lambda_{lt} = \gamma_{lt}^T z_t \quad \forall l \in \{1 \ldots L\},
\]
where $\gamma_l \in \mathbb{R}^{M \times 1}$ is another vector of regression weights for each of the Poisson observations $l = 1 \ldots L$.

Assuming, as for the Gaussian and categorical observations, that the gamma (g_t) and ZIP (q_t) observations are conditionally independent given the latent state z_t, the log-likelihood for this setup including Gaussian data is given by the following factorization:

$$
\log p(\theta | x, g, q) = \int_Z \log \left(\prod_{t=1}^T p(x_t | z_t) \prod_{t=1}^T p(g_t | z_t) \prod_{t=1}^T p(q_t | z_t) \prod_{t=1}^T p(z_t) \right) \ d\mathbf{Z}
$$

(37)

with parameters $\theta = \{\mu_0, A, W, h, \Sigma, B, \Gamma, \omega, \{\xi_1, \ldots, \xi_J\}, \{\eta_1, \ldots, \eta_L\}, \{\gamma_1, \ldots, \gamma_L\}\}$. Again we approximate this by the ELBO as given for categorical+Gaussian observations in Eq. (6), and parameterize the variational approximation $q(\mathbf{Z} | \mathbf{X}, \mathbf{G}, \mathbf{Q})$ through neural networks in the very same way as described in Appx. A.3 above.

Fig. 6 illustrates the application to the noisy Lorenz setting (as described in sect. 4.1), this time with gamma and/or ZIP observations on top, or instead, of Gaussian observations. Simulations were run with $M = 15$ latent states, a linear-Gaussian observation model in addition to the two models described above, and 20% observation noise in the Gaussian channel. For the mmPLRNN including all 3 modalities, the NN parameterizing the approximate posterior had three separate input layers for the three data modalities, followed by two hidden layers of dimension $d_h = 25$ each. A third layer of dimension $d_c = 75 = 3d_h$, where 3 is the number of modalities, combined the modality-specific streams, followed by two additional hidden layers of size d_h. All layers were fully connected with ReLU activation, except for the output layer. As the graphs indicate, additional observations from other modalities again help to reconstruct the attractor geometry if the Gaussian observations are very noisy. We also observed, however, that it is difficult to reconstruct the Lorenz system from (by definition non-negative) gamma or ZIP observations alone. At least for ZIP-distributed data this is easy to explain (see example time series in Fig. 6B), as these - by model definition - low and sparse counts provide only very little information about the Lorenz attractor’s complex geometry.

Figure 6: A) Cumulative histograms ($n = 100$ runs) of D_{KL}/D_{KL}^{max} for all three (Gaussian, gamma, ZIP) uni-modal PLRNNs (from light to dark cyan) and the mmPLRNN connected to all three observation modalities simultaneously (purple). D_{KL} indicates the median. $G =$ Gaussian, $g =$ gamma, $Z =$ ZIP model. B) Example time series of ZIP (top) and gamma (center) observations generated from the Lorenz attractor dynamics for which the time series of one variable is shown at the bottom. Note that the original Lorenz time series information appears highly degraded in the sparse ZIP output, and the structure is also distorted in the gamma output.
Identifying nonlinear dynamical systems from multi-modal time series data

Figure 7: Two further examples for the association between predicted class labels (color coding) and learned BOLD dynamics. Shown are 2d subspaces of a mmPLRNN’s generated state space. Subspaces chosen for display were selected according to Fisher’s discriminant criterion.