Early intervention services, cognitive–behavioural therapy and family intervention in early psychosis: systematic review

V. Bird, P. Premkumar, T. Kendall, C. Whittington, J. Mitchell and E. Kuipers

Background

Early intervention services for psychosis aim to detect emergent symptoms, reduce the duration of untreated psychosis, and improve access to effective treatments.

Aims

To evaluate the effectiveness of early intervention services, cognitive–behavioural therapy (CBT) and family intervention in early psychosis.

Method

Systematic review and meta-analysis of randomised controlled trials of early intervention services, CBT and family intervention for people with early psychosis.

Results

Early intervention services reduced hospital admission, relapse rates and symptom severity, and improved access to care. Including CBT and family intervention within the service appear to have clinically important benefits over standard care. Including CBT and family intervention within the service may contribute to improved outcomes in this critical period. The longer-term benefits of this approach and its component treatments for people with early and established psychosis need further research.

Declaration of interest

None.

Method

Search strategy and selection criteria

We identified randomised controlled trials (RCTs) of early intervention services, CBT or family intervention for people with early psychosis, using the original schizophrenia guideline and five bibliographic databases (CINAHL, CENTRAL, EMBASE, MEDLINE, PsycINFO). The database search was conducted in September 2009 and restricted to English language papers or papers with an abstract in English. Full details of the search strategy can be found in the online supplement. Additional papers were identified by searching the reference list of retrieved articles, tables of contents of relevant journals, recent systematic reviews and meta-analyses of interventions in schizophrenia, and suggestions made by members of the schizophrenia Guideline Development Group (a comprehensive review protocol can be found in the updated edition of the full schizophrenia guideline, available from www.nccmh.org.uk).

Early psychosis was defined as a clinical diagnosis of psychosis within 5 years of the first psychotic episode or presentation to mental health services. Interventions addressing high-risk groups or ‘pre-psychotic'/prodromal populations were excluded, as were studies where the main focus of the intervention was not on psychosis or where the duration since the first psychotic episode was greater than 5 years.

Quality assessment

All trials meeting the eligibility criteria were assessed for methodological quality using a modified version of the SIGN checklist. Trials that were judged to be of adequate quality were included in the review. Trials that were not clearly described as randomised were excluded as were those with fewer than ten participants per intervention arm.
Data extraction

Two of the authors (V.B. and J.M.) entered study details into a database and assessed methodological quality. Three of the authors (V.B., C.W. and P.P.) extracted outcome data into Review Manager (RevMan version 5.0,18 for Windows XP; The Cochrane Collaboration, Oxford, UK). The assessment of study quality and all outcome data were double-checked by one author (C.W.) for accuracy, with disagreements resolved by discussion.

Where available, data were extracted for the following outcomes: hospital admission; psychotic relapse (if appropriate criteria were used); DUP; and mean positive and negative symptoms as measured using the Positive and Negative Syndrome Scale (PANSS),17 Brief Psychiatric Rating Scale (BPRS),18 Scale for the Assessment of Positive Symptoms (SAPS),19 and the Scale for the Assessment of Negative Symptoms (SANS).20 Outcome data were extracted at both end of treatment and follow-up (based on mean end-point scores). In light of the fundamental aims of early intervention services,12 data on remaining in contact with services and accessing psychosocial treatments were also extracted.

Statistical analysis

Meta-analysis was used, where appropriate, to synthesise the evidence using RevMan. Where possible, intention-to-treat with last observation carried forward data were used in the analyses. For binary outcomes, this approach assumes that participants leaving the study early, for whatever reason, had an unfavourable outcome. We calculated the standardised mean difference (SMD) for continuous outcomes, and relative risk (RR) for binary outcomes. For consistency, data from all outcomes (continuous and binary) were entered into RevMan in such a way that negative effect sizes or relative risks less than one favoured the active intervention. The number needed to treat for benefit (NNTB)21 was calculated for statistically significant relative risks. Data from more than one study were pooled using a random-effects model, regardless of heterogeneity between trials, as this has recently been shown to be the most appropriate model in most circumstances.22 Summary effects were assessed for clinical importance, taking into account both the point estimate and the associated 95% confidence interval (CI).

Results

The search process and total number of trials included in the review are illustrated in Fig. 1. Details of all included trials can be found in Table 1, with further information about included and excluded studies available in online Tables DS1 and DS2.

Early intervention services

Four published trials (n = 800) were included in the meta-analysis of early intervention services: COAST (Croydon Outreach and Assertive Support Team);23 LEO (Lambeth Early Onset);11 the OPUS trial;24 and OTP (Optimal Treatment Project).12 Inspection of the Cochrane review of early interventions in psychosis identified three additional trials; however, these were excluded as they failed to meet our inclusion criteria regarding the population studied and comparison used. All included trials recruited participants from local mental health services such as community mental health teams, in-patient and out-patient services. However, the trials varied as to whether the participant was a new referral, with LEO11 including only those making contact for the first or second time, whereas COAST,23 OPUS24 and OTP12 considered people who had a documented first contact within a specified time period, ranging from 12 weeks to 5 years.

Interventions often included a case manager or care coordinator, with a lower case-load than in standard care. In addition to medication management, all participants allocated to early intervention services were offered a range of psychosocial interventions, including CBT,11,12,23 social skills training24 and family intervention12,23,24 or family counselling,11 and vocational strategies such as supported employment.11,12,23 The psychosocial and vocational interventions were usually adapted to the needs of first-episode psychosis and offered on an ‘as-required’ basis. The frequency and duration of contact differed between trials, with the duration of the intervention lasting up to 2 years. Outcomes were reported at 9 months to 5 years post-randomisation.

Participants receiving early intervention services, when compared with those receiving standard care, were less likely to relapse (35.2% v. 51.9%; NNTB for one extra patient to avoid relapse 6, 95% CI 3 to 25; heterogeneity I² = 0%, P = 0.67) or be admitted to hospital (28.1% v. 42.1%; NNTB = 7, 95% CI 5 to 7; heterogeneity I² = 0%, P = 1.00) (Table 2). Early intervention services also significantly reduced positive symptoms with a pooled SMD of −0.21 (95% CI −0.42 to −0.01; heterogeneity I² = 9%, P = 0.29) and negative symptoms with a pooled SMD of −0.39 (95% CI −0.57 to −0.20; heterogeneity I² = 0%, P = 0.38). The rate of discontinuation for any reason was lower for early intervention services compared with standard care (27.0% v. 40.5%; NNTB = 8, 95% CI 5 to 14; heterogeneity I² = 40%, P = 0.17). In terms of access and engagement with treatment, although generally high, participants in early intervention

![Fig. 1 Flow diagram of selection of papers for inclusion in the clinical review.](image)
services were more likely to remain in contact with the index mental health team (91.4% vs. 84.2%; NNTB = 13, 95% CI 4 to ∞; heterogeneity I² = 0%, P = 0.79), and were twice as likely to receive a psychosocial intervention (36.6% vs. 14.0%; NNTB = 5, 95% CI 4 to 6; heterogeneity I² = 74%, P = 0.02).

Cognitive–behavioural therapy

Four published trials of CBT25–28 were included in the review (n = 620). One paper27 published in Chinese but with an English abstract was translated subsequent to publication of the schizophrenia (update) guideline15 and included in this analysis.

Participants were recruited from a range of services which included early intervention services, community mental health clinics and in-patient psychiatric wards. In two trials, participants were exclusively in their first episode of psychosis.25–27 Another trial26 additionally included participants who had been admitted for a second time, providing the episode occurred within 2 years of the first admission (17% of their sample). The fourth trial28 included participants who had consulted a mental health professional for psychosis in the first time in the past 2 years. Cognitive–behavioural therapy was delivered individually in three out of the four trials,25–27 with a group-based approach in the fourth.28 Two of the interventions specifically adapted the CBT

Table 1 Characteristics of included trials
Study (primary paper)

Early intervention services
COAST23
LEO11
OPUS24
OTP12
Cognitive–behavioural therapy
Jackson et al25
Lecomte et al28
Lewis et al26
Wang et al27
Family intervention
Goldstein et al29
Leavley et al30
Zhang et al31

BPRS, Brief Psychiatric Rating Scale; CBT, cognitive–behavioural therapy; CMHT, community mental health team; COAST, Croydon Outreach and Assertive Support Team; LEO, Lambeth Early Onset team; OTP, Optimal Treatment Project; PANSS, Positive and Negative Syndrome Scale; SANS, Scale for the Assessment of Negative Symptoms.
approach for early psychosis, with the remaining two interventions targeting positive symptoms and insight building.

The frequency of sessions and the duration of treatment varied across trials, with the total duration ranging from 5 weeks (plus booster sessions) to 1 year.

At up to 2 years post-treatment follow-up, when compared with standard care alone, CBT significantly reduced positive symptoms with a pooled SMD of 0.60 (95% CI: 0.39 to 0.80; heterogeneity $I^2 = 62\%$, $P = 0.07$). Positive symptoms were included in the review, and the remaining two interventions targeting positive symptoms and insight building.

Family intervention

Three trials assessing family intervention in early psychosis were included in the review. Participants were recruited from psychiatric services, including in-patient units, and were either first or second admissions, or had made first contact with services within the past 6 months. Two trials included the individual with psychosis in the family sessions, whereas in Zhang et al the majority of family sessions did not include the patient. The interventions delivered in each trial included an element of psychoeducation and problem-solving, with crisis management also evident in one trial. Interventions varied in their mode of delivery, with two trials utilising an individual family approach and the remaining trial combining individual and group-based family sessions. Only one trial reported a further two trials reported hospital admission; these outcomes were combined to increase statistical power.

The combined analysis indicated that at the end of treatment, participants receiving family intervention were less likely to relapse or be admitted to hospital compared with those receiving standard care (14.5% v. 28.9%; NNTB = 7, 95% CI 4 to 20; heterogeneity $I^2 = 0\%$, $P = 0.40$). At up to 2 years follow-up, one study reported a numerically lower risk of relapse (23.1% v. 30.8%, $P = 0.38$), although this was not statistically significant. None of the included family intervention trials provided data on mean positive and negative symptoms.

Table 2

Analysis of interventions for early psychosis compared with standard care (random-effects model)

Outcome	Time of data collection	Trials, n	Participants, n: treatment/control	Summary effect estimate (95% CI)	
Early intervention service	Hospital admission	End of treatment	3	342/280	RR = 0.67 (0.54 to 0.83)
	Relapse (full or partial)	End of treatment	2	91/81	RR = 0.66 (0.47 to 0.94)
	Positive symptoms (PANSS or SAPS)	End of treatment	2	260/208	SMD = -0.21 (-0.42 to -0.01)
	Negative symptoms (PANSS or SANS)	End of treatment	2	260/208	SMD = -0.39 (-0.57 to -0.20)
	Not receiving a psychological intervention	End of treatment	3	344/286	RR = 0.67 (0.46 to 0.97)
	Not in contact with index team	End of treatment	2	314/266	RR = 0.60 (0.39 to 0.92)
	Leaving the study early for any reason	End of treatment	4	408/392	RR = 0.71 (0.53 to 0.94)
Cognitive-behavioural therapy	Positive symptoms (BRPS, PANSS or SAPS)	End of treatment	4	285/251	SMD = -0.05 (-0.22 to 0.12)
	Positive symptoms	Up to 2 years follow-up	3	233/209	SMD = -0.60 (-0.79 to -0.41)
	Negative symptoms (BRPS, PANSS or SAPS)	End of treatment	3	207/191	SMD = 0.03 (-0.17 to 0.23)
	Negative symptoms	Up to 2 years follow-up	3	233/209	SMD = -0.45 (-0.80 to -0.09)
	Relapse	Up to 2 years follow-up	2	227/227	RR = 0.67 (0.24 to 1.85)
	Hospital admission	Up to 2 years follow-up	2	146/148	RR = 1.01 (0.76 to 1.33)
Family intervention	Relapse	End of treatment	1	52/52	RR = 0.58 (0.25 to 1.36)
	Relapse	Up to 2 years follow-up	1	52/52	RR = 0.75 (0.39 to 1.43)
	Hospital admission	End of treatment	2	99/90	RR = 0.51 (0.24 to 1.10)
	Hospital admission and relapse (combined)	End of treatment	3	151/142	RR = 0.50 (0.32 to 0.80)

BRPS, Brief Psychiatric Rating Scale; PANSS, Positive and Negative Syndrome Scale; RR, relative risk; SANS, Scale for the Assessment of Negative Symptoms; SAPS, Scale for the Assessment of Positive Symptoms; SMD, standardised mean difference.

Discussion

Main findings

For people with early psychosis, in four trials of early intervention services, four trials of CBT, and three trials of family intervention, meta-analysis demonstrated advantages over standard care. By the end of treatment, early intervention services produced clinically important reductions in the risk of both relapse and hospital admission. In addition, small effects favouring early intervention services were shown in terms of reduced symptom severity and improved access to and engagement with treatment (including psychological therapies). Family intervention also produced clinically important reductions in the risk of relapse and hospital admission when compared with standard care. In the 2 years following the intervention, medium effects favouring CBT were demonstrated in terms of reduced positive and negative symptom severity. We found no data on the effect of family intervention on symptoms and insufficient evidence to reach a conclusion about the impact of CBT on relapse or hospital admission.

Early intervention services

Compared with a previous review of early interventions in psychosis, our meta-analysis found stronger evidence to support the effectiveness of early intervention services overall. The earlier review included fewer trials that specifically focused on service-level interventions delivered during the ‘critical period’ following onset of psychosis. Furthermore, although the previous review included both discrete psychosocial and multicomponent service-level interventions, there was a lack of comparable trials for any conclusions to be drawn. Our findings do, however,
substantiate those previously reported in a narrative review of randomised and non-randomised studies by Penn and colleagues, who concluded that early interventions had beneficial effects across a range of domains, although further investigation was needed to establish the robustness of these findings. Our review attempts to overcome these limitations and provides the first meta-analytic evidence indicating that both early intervention services and discrete psychological interventions improve outcomes for early psychosis.

In the present review, the early intervention services provided in all of the trials included the provision of psychosocial interventions, pharmacological treatment and some form of case management involving smaller case-loads (1:10) and an assertive approach to treatment. All of the components were tailored to meet the needs of the individual patient and offered at the earliest opportunity. These elements were not present in treatment as usual, although an assertive approach to treatment is so common that it cannot be specifically excluded. The psychological interventions used in the included trials were CBT and either family intervention or family counselling. It is possible that the reduced case-loads and more appropriate use of pharmacological interventions within early intervention services may account for some of the clinical and statistically important improvements demonstrated. Although further research is needed to investigate the beneficial contributions of these features of early intervention, given the positive effects of CBT and family intervention when delivered as discrete interventions for people with early psychosis, it is just as likely that these two psychosocial interventions have contributed to some of the benefits of early intervention services in this review.

Gleeson and colleagues recently demonstrated that the addition of a cognitive–behavioural and family therapy-based relapse prevention programme to an early intervention service for individuals in remission from a first episode of psychosis was more likely to prevent or significantly delay a second episode when compared with an early intervention service alone. In this trial the early intervention service alone included only family psychoeducation and peer support. This study provides some evidence to support our hypothesis: that an important part of the overall effectiveness of the early intervention teams included in our meta-analysis derives from the inclusion of two evidence-based psychological interventions, namely, CBT and family intervention. In our review we have shown that the likelihood of a service user receiving a psychosocial intervention in an early intervention team is double that found in a community mental health team.

Limitations
One limitation of the present review is the paucity of trials included in each meta-analysis. We excluded trials focusing on high-risk groups or prevention of psychosis because of the possible ethical implications of targeting interventions at these individuals. Another limitation is the variability in long-term follow-up measures available in different trials making some comparisons difficult. Only one trial of an early intervention service provided long-term data (up to 5 years post-randomisation), whereas all four trials of CBT and one of family intervention included long-term follow-up measures. Therefore, it remains to be determined whether the effects of early intervention services are sustained.

Psychological interventions
Despite the limitations, our findings regarding the efficacy of CBT and family intervention are consistent with, and reflect, the wider evidence base found in the treatment and management of later psychotic episodes. The updated edition of the schizophrenia guideline recommends that both interventions should be offered to people experiencing an acute episode of schizophrenia and for promoting recovery in those with established schizophrenia.

The evidence presented here suggests that CBT for early psychosis has longer-term benefits in terms of reducing symptom severity. Consistent with the wider evidence base for CBT for established psychosis, the present review failed to find any evidence that CBT reduced relapse rates in early psychosis, which suggests that the main benefits of this intervention are likely to be a reduction in symptoms and distress in early and established psychosis. This finding confirms a recent review assessing both RCTs and non-randomised studies of CBT in first-episode psychosis, which also failed to demonstrate positive effects on relapse and readmission.

Although the number of RCTs for family interventions for early psychosis was limited in our review, the evidence is consistent with the larger body of evidence for the role of family interventions in established schizophrenia, in that family intervention reduced combined hospital admission and relapse rates. The review conducted for the updated edition of the schizophrenia guideline also found robust evidence for the efficacy of family intervention in established schizophrenia in reducing symptoms at the end of treatment. However, in the present review, none of the included trials reported measures that allowed us to assess this in the context of early psychosis. It is, therefore, anticipated that family intervention in first-episode psychosis may also reduce symptom levels.

Critical period
The studies included in the present review did not provide any data relating to DUP, as all papers focused on people with an agreed diagnosis, not on populations at high risk of becoming psychotic and receiving a diagnosis. A number of other reviews assessing DUP as a predictor have indicated that longer DUP is subsequently associated with poorer outcomes, including reduced adherence to CBT, altered response to antipsychotic medications, poorer social functioning and increased levels of disability. There is some suggestion from studies assessing the impact of early intervention programmes on high-risk and ultra-high-risk populations that education and awareness of psychosis may significantly reduce DUP. Although further research is needed to clarify issues surrounding DUP.

The present review focused on the first 3–5 years following the onset of illness. This period has been defined as a critical period, when many of the psychological, clinical and social deteriorations associated with psychosis might occur, and when interventions might potentially have their greatest positive impact on prognosis. Although the current evidence to support this idea is limited, intervening at the earliest possible opportunity makes both practical and ethical sense, and hope remains that such intervention might reduce subsequent symptom severity, loss of functioning and other negative consequences of psychosis such as social exclusion. Intervening early may also help to reduce the adverse social and societal consequences of the disorder for both individuals and their family and carers. However, it can also be argued that providing excellent care and access to a range of appropriate and effective psychological, pharmacological and vocational interventions should be available at any stage of psychosis.

Implications
On balance, the evidence reviewed here suggests that early intervention services are an effective way of delivering care for people with early psychosis and can reduce hospital admission,
relapse rates and symptom severity, while improving access to and engagement with a range of treatments. The characteristics of these early intervention services include the provision of multimodal psychosocial interventions, pharmacotherapy, and some form of case management with lower case-loads and an assertive approach to treatment, all within the context of intervening as early as possible. Our review also suggests that providing evidence-based psychological interventions as part of a comprehensive early intervention service may contribute to improving outcomes for people with early psychosis. It is important that these psychological interventions have been shown rather more robustly to be effective for people with established schizophrenia. This raises the possibility that comprehensive services comparable to those described here as early intervention services, which include a full range of evidence-based psychological interventions, should be considered for people with established psychosis.

Acknowledgements

We thank our other members of the Guideline Development Group of the updated edition of the schizophrenia guideline16 and Ms Sarah Stockton for creating the search strategies and conducting the database searches. We also thank Dr Alegría young Sapora for independently extracting the data for the CIIT section of the review.

References

1. Harrigan S, McGorry P, Krstev H. Does treatment delay in first-episode psychosis really matter? Psychiatr Med 2003; 33: 97–110.
2. Harrison G, Hopper K, Craig T, Laska E, Siegel C, Wanderling J, et al. Recovery of young people with a first episode of psychosis: randomized controlled trial of the effectiveness of specialised care for early psychosis. BMJ 2004; 329: 1067–71.
3. Grae RW, Falloon IR, Widen JH, Skovgol E. Two years of continued treatment for recent-onset schizophrenia: a randomised controlled study. Acta Psychiatr Scand 2000; 114: 328–36.
4. Marshall M, Rathbone J. Early Intervention for psychosis. Cochrane Database Syst Rev 2006; 4: CD004718.
5. Penn DL, Waldheier EJ, Perkins DO, Mueser KT, Lieberman JA. Psychosocial treatment for first-episode psychosis: a research update. Am J Psychiatry 2005; 162: 220–32.
6. National Collaborating Centre for Mental Health. Schizophrenia: Core Interventions in the Treatment and Management of Schizophrenia in Adults in Primary and Secondary Care (Clinical Guideline CG82). National Institute for Health and Clinical Excellence, 2009.
7. Scottish Intercollegiate Guidelines Network. SIGN 50: A Guideline Developer’s Handbook. SIGN, 2001.
8. Kay SR, Fiszbein A, Opler LA. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–76.
9. Ventura J, Lukoff KH, Neuchterlein KH, Liberman RP, Green MF, Shen A. Manual for the Expanded Brief Psychiatric Rating Scale. Int J Methods Psychiatr Res 1993; 3: 227–44.
10. Andreasen NC. The Scale for the Assessment of Positive Symptoms (SAPS). University of Iowa, 1994.
11. Andreasen NC. The Scale for the Assessment of Negative Symptoms (SANS). University of Iowa, 1984.
12. Altman DG. Confidence intervals for the number needed to treat. BMJ 1998; 317: 1309–12.
13. Schmidt FL, Ohs Hays TL. Fixed- versus random-effects models in meta-analytic: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol 2009; 62: 97–128.
14. Kuipers E, Holloway F, Rabe-Hesketh S, Tennakoon L. An RCT of early intervention in psychosis: Croydon Outreach and Assertive Support Team (COAST). Soc Psychiatr Psychia Epidemiol 2004; 39: 358–63.
15. Petersen L, Jeppesen P, Thorup A, Abel MB, Ohlenschlaeger J, Christensen TO, et al. A randomised multicentre trial of integrated versus standard treatment for patients with a first episode of psychotic illness. BMJ 2005; 331: 602–8.
16. Jackson H, McGorry P, Edwards J, Hubert C, Henry L, Harrigan S, et al. A controlled trial of cognitively orientated psychotherapy for early psychosis (COPE) with four-year follow-up readmission data. Psychol Med 2005; 35: 1295–306.
17. Lewis S, Tarrier N, Haddock G, Bentall R, Kinderman P, Kingdom D, et al. Randomised controlled trial of cognitive-behavioural therapy in early schizophrenia: acute-phase outcomes. Br J Psychiatry 2002; 181 (suppl 43): s91–7.
18. Wang C, Li Y, Zhao Z, Pan M, Feng Y, Sun F, et al. Controlled study on long-term effects of antipsychotics in patients with established psychosis. J Clin Psychiatry 2003; 64: 37–44.
19. Bottlender R, Sato T, Jager M. The impact of the duration of untreated psychosis on the 15-year outcome in schizophrenia. Schizophr Res 2009; 62: 37–44.
20. Birchwood M, McGorry P, Jackson H. Early intervention in schizophrenia. Br J Psychiatry 1997; 500: 200–2.
21. Joseph R, Birchwood M. The national policy reforms for mental health services and the story of early intervention services in the United Kingdom. J Psychiatry Neurosci 2000; 30: 362–5.
32 Gleeson JFM, Cotton SM, Alvarez-Jiménez D, Wade D, Gee D, Crisp K, et al. A randomized controlled trial of relapse prevention for first-episode psychosis patients. J Clin Psychiatry 2009; 70: 477–86.
33 Morrison AP. Cognitive behaviour therapy for first episode psychosis: good for nothing or fit for purpose? Psychosis 2009; 1: 103–12.
34 Álvarez-Jiménez M, Gleeson JF, Cotton S, Wade D, Gee D, Pearce T, et al. Predictors of adherence to cognitive-behavioural therapy in first episode psychosis. Can J Psychiatry 2009; 54: 710–8.
35 Perkins DO, Gu H, Boteva K, Lieberman JA. Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: a critical review and meta-analysis. Am J Psychiatry 2005; 162: 1785–804.
36 Barnes TRE, Leeson VC, Mutsatsa SH, Watt HC, Hutton SB, Joyce EM. Duration of untreated psychosis and social function: 1-year follow-up study of first-episode schizophrenia. Br J Psychiatry 2008; 193: 203–9.
37 Farooq S, Large M, Niessen O, Waheed W. The relationship between the duration of untreated psychosis and outcome in low-and-middle income countries: a systematic review and meta analysis. Schizophr Res 2009; 109: 15–23.
38 Joa I, Johannessen JO, Auestad B, Friis S, McGlashan T, Melle I, et al. The key to reducing duration of untreated psychosis: information campaigns. Schizophr Bull 2008; 34: 466–72.
39 McGorry PD. Evaluating the importance of reducing the duration of untreated psychosis. Aust N Z J Psychiatry 2000; 34: 5145–9.
40 Birchwood M, Iqbal Z, Chadwick P, Trower P. Cognitive approach to depression and suicidal thinking in psychosis. I. Ontogeny of post-psychotic depression. Br J Psychiatry 2000; 177: 516–28.
41 Thornicroft G. Tackling discrimination. Ment Health Today 2006; Jun: 26–9.
42 Kuipers E. The case for early, middle and late intervention in psychosis. World Psychiatry 2008; 7: 158–9.
43 van Os J, Kapur S. Schizophrenia. Lancet 374: 635–45.

Strategy

Peter Wells

Love was at a premium –
Jane ran out of supplies.
Father a miner, his life stained by cold dust,
his chest a box of birds,
let go his last persecutory breath.

Mum had three daughters to keep,
al got the message:
love is a ration book.

Jane, the youngest, had least time
for what was left of the crust;
a starveling in love
she sickened for it.
When the strategy was rumbled
she risked the lot
and slit her wrists
in and out of hospital
a lifetime career;
the only way to keep going
and to save Mum.

She hid behind the curtains
when she won the ward prize for a cake.
She could not explain herself.

Paint became her arbiter
picture after picture –
they did not need words.

At long last, she found words:
‘I got into hospital by pretending to be sick,
I got home by pretending to be sane’.