THE TWO-COMPONENT NON-PERTURBATIVE POMERON AND THE G-UNIVERSALITY

Basarab NICOLESCU

LPNHE*- LPTPE, Université Pierre et Marie Curie, 4, Place Jussieu, 75252 Paris Cedex 05, France
nicolesc@in2p3.fr

Talk at the International Workshop on Diffraction in High-Energy Physics, Cetraro, Italy, September 2-7, 2000 (to be published in the Proceedings of this Conference, Nucl. Phys. B)

Abstract

In this communication we present a generalization of the Donnachie-Landshoff model inspired by the recent discovery of a 2-component Pomeron in LLA-QCD by Bartels, Lipatov and Vacca. In particular, we explore a new property, not present in the usual Regge theory - the G-Universality - which signifies the independence of one of the Pomeron components on the nature of the initial and final hadrons. The best description of the $pp, pp, \pi^\pm p, K^\pm p, \gamma\gamma$ and γp forward data is obtained when G-universality is imposed. Moreover, the ℓn^2's behaviour of the hadron amplitude, first established by Heisenberg, is clearly favoured by the data.

LPNHE 00-13

October 2000
The Donnachie-Landshoff model \[1\] - denoted as \(X_s\) in the following - is very successful in describing \(\sigma_T\) and forward \((t = 0)\) \(\rho\) data for \(\bar{p}p, pp, \pi^\pm p, K^\pm p, \gamma\gamma\) and \(\gamma p\) scatterings: \(\chi^2/dof = 1.020\) for 16 parameters, 383 data points and \(\sqrt{s} \geq 9\) GeV \[2\].

In the present communication I will explore a QCD-inspired generalization of this model. The results are obtained in collaboration with P. Gauron \[3\].

Recently, Bartels, Lipatov and Vacca \[4\] discovered the existence of a 2-component Pomeron in LLA. The first component is associated with 2-gluon exchanges and corresponds to an intercept

\[
\alpha_{P}^{2g} \geq 1. \tag{1}
\]

The second component is associated with 3-gluon exchanges with \(C = +1\) and corresponds to an intercept

\[
\alpha_{P}^{3g} = 1. \tag{2}
\]

This last component is exchange-degenerate with the 3-gluon \(C = -1\) Odderon. It is therefore useful to explore possible 2-component Pomeron generalizations of the 1-component \(X_s\) Pomeron

\[
\sigma_{AB}(s) = Z_{AB} + X_{AB}(s) + Y_{AB}^+ s^{\alpha_+ - 1} \pm Y_{AB}^- s^{\alpha_- - 1}, \tag{3}
\]

where \(\sigma_{AB}(s)\) are total cross-sections,

\[
X_{AB}(s) = X_{AB}s^{\alpha_p - 1} \tag{4}
\]

\[
= X_{AB} \ln s \tag{5}
\]

\[
= X_{AB} \left[\ln^2 \left(\frac{s}{s_0} \right) - \frac{\pi^2}{4} \right], \tag{6}
\]

and \(\alpha_p, \alpha_+\) and \(\alpha_-\) are Reggeon intercepts; \(Z_{AB}, X_{AB}, Y_{AB}^+, s_0\) are constants. The + sign in front of the \(Y_{AB}^-\) term in eq. (3) corresponds to \(\{A = \bar{p}, \pi^-, K^-, B = p\}\) and the - sign to \(\{A = p, \pi^+, K^+, B = p\}\). If \(A = \gamma\) in eqs. (3)-(6), then \(B = \gamma, p\) and \(Y_{AB}^- = 0\). An implicit scale factor of 1 \((\text{GeV})^2\) is present in the Reggeon and \(\ln s\) terms.

The first model in eqs. (3)-(6) - denoted as \(Z + X_s\) - in the following - corresponds to a generalized Donnachie-Landshoff approach \[2\] \[5\] \[6\]; the second - denoted as \(Z + X \ln s\) - to the well known dipole approach \[7\]; the third - denoted as \(Z + X \ln^2 s\) - to the Heisenberg-Froissart-Martin form first considered in 1952 by W. Heisenberg \[8\]. The \(\rho\)-parameter is calculated from (3) by using the known \(s \rightarrow se^{-\pi/2}\) crossing rule.

We study, in particular, the following properties:
1. The G-universality ("G" from "gluon") expressed by (see eqs. (3)-(6))

$$X_{AB}(s) = X(s),$$

i.e. independence of X_{AB} on A and B ($A, B =$ hadrons only), a property not present in the usual Regge theory.

2. The weak exchange-degeneracy

$$\alpha_+ = \alpha_-, \quad Y_{AB}^+ \neq Y_{AB}^-.$$ (8)

The results for the simultaneous description of $\bar{p}p, pp, \pi^\pm p, K^\pm p, \gamma\gamma$ and γp reactions are given in Tables I (fits of σ_T data only) and II (fits of σ_T and ρ data).

Table 1: Results of the fits of σ_T data. The symbol = in the α_+ column means weak exchange-degeneracy ($\alpha_+ = \alpha_-$).

Model	G- exchange	Universality	degeneracy	α_+	α_-	N_{par}	χ^2/dof		
		Yes	No	Yes	No				
$X s^t$		x	x			0.66±0.02	0.45±0.02	16	0.931
			x			=	0.48	15	1.009
$Z + X s^t$		x	x			0.618±0.021	0.465±0.021	17	0.936
			x			=	0.491±0.023	16	0.980
		x	x			0.526±0.029	0.479±0.023	17	0.835
			x			=	0.487±0.023	16	0.836
$Z + Xln s$		x	x			0.826±0.013	0.468±0.022	16	0.865
			x			=	0.586±0.019	15	1.281
		x	x			0.658±0.007	0.485±0.022	16	1.066
			x			=	0.610±0.016	15	1.286
$Z + Xln^2 s$		x	x			0.653±0.026	0.465±0.022	17	0.939
			x			=	0.491±0.023	16	0.990
		x	x			0.583±0.077	0.476±0.023	17	0.822
			x			=	0.478±0.024	16	0.822
		x	x			=	**0.48**	**15**	**0.819**

It can be seen from Tables I-II that the G-universality leads to a clear improvement of the description of all the considered data. Moreover, the
Table 2: Results of the fits of σ_T and ρ data. The symbol \equiv has the same meaning as in Table 1.

Model	Universality	degeneracy	α_+	α_-	N_{par}	χ^2/dof
$X s^4$	Yes	No	0.66± 0.02	0.45± 0.02	16	1.020
	Yes	No	=	0.48	15	1.320
$Z + X s^4$	x	x	0.641±0.012	0.440±0.015	17	1.024
	=		=	0.494±0.013	16	1.203
$Z + X \ell n s$	x	x	0.602±0.014	0.458±0.016	17	0.986
	=		=	0.500±0.013	16	1.092
$Z + X \ell n^2 s$	x	x	0.816±0.001	0.450±0.012	16	0.941
	=		=	0.569±0.001	15	1.769
	x	x	0.691±0.005	0.465±0.015	16	1.250
	=		=	0.592±0.008	15	1.944
	x	x	0.651±0.017	0.442±0.016	17	1.015
	=		=	0.475±0.014	16	1.142
	x	x	0.552± 0.048	0.453± 0.017	17	0.927
	=		=	0.457±0.015	16	0.933

G-universality leads to a mild violation of the weak exchange-degeneracy ($\alpha_+-\alpha_-\simeq0.1$), in constant with the non-universality cases. These two independent features could hardly be considered as numerical accidents. It is therefore important to explore the validity of the 2-component G-universal Pomeron in all the other (non-forward) existing data.

A remarkable result is the fact that the forward data clearly favour the maximal Heisenberg-Froissart-Martin $\ell n^2 s$ behaviour of the hadron scattering amplitude $[8]$: the absolute minimum of χ^2/dof is precisely obtained for the G-universal $\ell n^2 s$ form of the amplitude. Our χ^2/dof is better than that given in the last edition of "Review of Particle Physics" $[2]$.

Let us also note that the dipole model, corresponding to a $\ell n s$ behaviour of the scattering amplitude, has a serious pathology : the first component of the Pomeron Z_{AB} has a negative contribution to the total cross-sections. Therefore this $\ell n s$ fit has to be dismissed. The
above pathological feature of the $\ell n s$ model was already remarked in J.R. Cudell et al. \cite{2}, but it was omitted from the "Review of Particle Physics" \cite{2}.

The theoretical and numerical details will be presented elsewhere \cite{3}.

Aknowledgements

I thank Prof. Roberto Fiore for the kind invitation at this wonderfully organized meeting and Prof. Vladimir Ezhela for important exchanges of information during the last year. I thank Dr. Pierre Gauron for a careful reading of the manuscript.

References

[1] A. Donnachie and P. V. Landshoff, Nucl. Phys. B244 (1984) 322.

[2] Particle Data Group, Review of Particle Properties, Eur. Phys. J. C15 (2000) 231-238; J. R. Cudell, V. Ezhela, K. Kang, S. Lugovsky and N. Tkachenko, Phys. Rev. D61 (2000) 034019; computer readable data files can be found at \url{http://pdg.lbl.gov/}.

[3] P. Gauron and B. Nicolescu, to be published.

[4] J. Bartels, L. N. Lipatov and G. P. Vacca, Phys. Lett. B477 (2000) 178; G.P. Vacca, \texttt{hep-ph/0007067} preprint.

[5] P. Gauron and B. Nicolescu, Phys. Lett. B486 (2000) 71.

[6] J. Kontros, K. Kontros and A. Lengyel, \texttt{hep-ph/0006141}.

[7] P. Desgrolard, M. Giffon, E. Martynov and E. Predazzi, \texttt{hep-ph/0006244}.

[8] W. Heisenberg, Z. Phys. 133 (1952) 65 ; M. Froissart, Phys. Rev. 123 (1961) 1053 ; A. Martin, Phys. Rev 129 (1963) 1432 ; Nuovo Cimento 42A (1966) 209.

[9] L.G. Dakhno and V.A. Nikonov, Eur. Phys. J A5 (1999) 209.