Abstract

Introduction

The introduction of tyrosine kinase inhibitors (TKIs) has revolutionized the therapy of chronic myeloid leukemia (CML). Although the efficacy of TKIs is beyond dispute, conception-related safety issues are still waiting to be explored, particularly in males. This systematic review aimed to summarize all available evidence on pregnancy outcomes of female spouses of male CML patients who fathered children after TKI treatment for CML.

Methods

We performed a systematic search in seven electronic databases for studies that reported on male CML patients who did or did not discontinue TKI treatment before conceiving, and the pregnancy outcomes of their female spouse are available. The search centered on the TKI era (from 2001 onward) without any other language or study design restrictions.

Results

Out of a total of 38 potentially eligible papers, 27 non-overlapping study cohorts were analyzed. All were descriptive studies (case or case series studies). Altogether, 428 pregnancies from 374 fathers conceived without treatment discontinuation, 400 of which (93.5%) ended up in a live birth. A total of ten offspring with a malformation (2.5%) were reported: six with imatinib (of 313 live births, 1.9%), two with nilotinib (of 26 live births, 7.7%), one with dasatinib (of 43 live births, 2.3%), and none with bosutinib (of 12 live births).
status were scarcely reported. Only nine pregnancies (from nine males) and no malformation were reported in males who discontinued TKI treatment before conception.

Conclusion

Malformations affected, on average 2.5% of live births from fathers who did not discontinue TKI treatment before conception, which is comparable with the rate of malformations in the general population. Large-scale studies with representative samples are awaited to confirm our results.

Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm driven by the presence of the BCR-ABL1 fusion product generated as a result of the t(9;22) Philadelphia chromosome (Ph). The annual incidence ranges between 0.4 and 1.75 per 100,000 inhabitants. Although CML can strike at any age and its incidence prominently increases with aging [1], peak incidence falls at around 60 years in Europe [2] but at a lower age in Asia [3].

The introduction of imatinib (IMA), a tyrosine kinase inhibitor (TKI), has revolutionized the treatment of CML, dramatically improving life-expectancies and resulting in a great 10-year survival rate exceeding 80% [4–7]. The success of IMA led to the development of second- and third-generation TKIs, such as nilotinib (NIL), dasatinib (DAS), bosutinib (BOS), and ponatinib (PON). Network meta-analyses confirmed the efficacy and safety of new-generation TKIs in IMA-resistant or IMA-failure cases and even as first-line alternatives of IMA [8, 9].

As a result of the widespread use of TKIs and the subsequent improvement in life quality, hematologists faced new challenges of procreation. Around one-fourth of CML patients, both males and females, are diagnosed at a reproductive age. While women are often in the spotlight, research on male fertility issues is less popular [10–12].

Fertility issues may derive from the molecular mechanism of the agents. TKIs are competitive inhibitors of ABL kinase, inhibiting the autophosphorylation of BCR-ABL, which results in the induction of apoptosis in the corresponding cells. However, TKIs are not purely selective to ABL kinase: targets include c-kit, PDGFR-alpha, c-FMS, and other kinases [13]. This non-selective enzymatic inhibition may interfere with the steps of spermato- and spermiogenesis: sporadic reports indicated that IMA affects the human reproductive system [14, 15]. The most comprehensive report included the semen samples of 48 IMA-treated CML males and proved that IMA is secreted to the semen, reduces sperm survival and activity, but does not significantly affect the levels of gonadotrophic hormones and sexual steroids [16].

Turning to the conception outcomes, the first report that discussed males being exposed to IMA at the time of conception was released in 2003 by Hensley and Ford [17]. Several relevant cases have been reported since then, and expert reviews summarized the available evidence on fertility-related safety issues [10–12, 16, 18–22]. These were all high-quality but non-systematic summaries except in a 2016 review of about 200 cases with a restricted search to one database and other non-electronic data sources [11]. The niche of analyzing disease status at conception has remained unoccupied.

In this study, we aimed to perform a strict systematic review with a transparent, reproducible methodology to summarize conception-related outcomes of TKI-treated males, with a special focus on CML status at conception.
Methods

This work is reported following the Preferred Reporting Items for Systematic Review (PRISMA) Statement [23]. The pre-protocol of the systematic review was registered \textit{a priori} in PROSPERO under registration number CRD42018087127.

Search

We performed a comprehensive search of the medical literature. The search strategy covered the following sources:

1. Electronic databases including MEDLINE (via PubMed), EMBASE, Web of Science, Scopus, WHO Global Health Library, Cochrane Controlled Register of Trials (CENTRAL), and ClinicalTrials.gov were searched for relevant reports from 2001 (date of approval of IMA in the US) up to Nov 2020 without other restrictions. We used Medical Subject Heading (MeSH) in combination with free-text terms to capture all relevant papers. The query was designed to include the Chemical Abstract Service (CAS)-numbers of agents: \textit{(chronic AND (myeloid OR myelogenous) AND (leukemia OR leukaemia)) AND (“tyrosine kinase inhibitor” OR imatinib OR “152459-95-5” OR nilotinib OR “641571-10-0” OR dasatinib OR “302962-49-8” OR bosutinib OR “380843-75-4” OR ponatinib OR “943319-70-8”) AND (pregnant OR gestation OR conception OR fertile OR inseminate OR childbearing OR embryotoxic OR genotoxic OR teratogenic}).

2. Reference lists of relevant included and excluded reports, including previous non-systematic reviews, were hand searched.

3. Citing papers of relevant articles were identified by using Google Scholar.

4. Abstract books of The European Hematology Association (EHA) and The American Society of Hematology (ASH) were hand-searched from 2001 on.

Selection, eligibility, and data collection

We included records reporting on male patients suffering from CML and receiving TKIs (IMA, NIL, DAS, BOS, or PON) before or at the time of conception if pregnancy-related or neonatological outcomes are available. We excluded cases with cryopreservation of sperm donated before the initiation of TKI treatment. Since unfavorable pregnancy outcomes are rare events, any record containing original data (full-text articles and conference papers) of at least one patient was eligible for inclusion.

All records were combined in a reference manager software (EndNote X7.4, Clarivate Analytics, Philadelphia, PA, US) to remove database overlaps and duplicate references. Then, records were tested against our eligibility criteria by title, abstract, and full-text. Eligible records were subjected to data collection. Two review authors selected the records and collected data in duplicates; discrepancies were resolved by third-party arbitration after each step of selection and data collection. We collected data on patients’ baseline characteristics, therapy regimens (agent, dose, timing), pregnancy course; obstetric, neonatal, and pediatric complications; and disease activity of males at conception. We had no contact with the authors of the included papers.

Finishing data collection, we reviewed all records carefully to identify overlaps across study populations. Overlapping records (and data) were linked together, then handled as a cohort of patients.
Quality assessment

Two review authors used Murad et al.’s tool to assess case studies’ and case series’ quality in duplicate, resolving discrepancies by consensus [24]. The tool’s leading explanatory questions cover four domains: selection, ascertainment, causality, and reporting. As recommended by Murad et al., we did not aggregate scores but discussed the findings as limitations of the evidence.

Results

Search and selection

Fig 1 shows the flowchart of the systematic review. A total of 1,957 records were identified in seven databases. Finally, 40 publications reported the pregnancy outcomes of the spouses of male patients. The most common cause of exclusion on full-text assessment was reporting pregnancy outcomes of female CML patients exclusively (57 records).

Out of the 40 publications, we excluded two papers [17, 25]. In the conference paper of Siddique et al. [25], we were unable to separate pregnancy outcomes of IMA-treated males from that of females in a cohort of patients conceiving a total of ten times (the outcomes included three elective terminations; no malformations were recorded). The reason for exclusion was similar in the case of the study by Hensley and Ford [17]: data of IMA-treated CML and gastrointestinal stromal tumor cases were not separable (the outcomes included two elective terminations and two spontaneous abortions; no malformations were recorded).

Fig 1. Flowchart.

https://doi.org/10.1371/journal.pone.0243045.g001
We carefully checked the remaining 38 publications (24 full-text papers and 14 conference abstracts) to find overlaps of cases; finally, 27 non-overlapping cohorts of patients or case studies were identified.

Characteristics of the studies included

Tables 1 and 2 show the summary of the studies included [10, 11, 26–61]. Seven papers were non-English language articles: one was written in Bulgarian [40], one in French [41], one in Japanese [61], and another four in Chinese [43, 53, 58, 59]. We did not identify any comparative (controlled) studies: all evidence came from descriptive studies (case studies or case series studies). Eleven cohorts of patients were recruited from Europe, another eleven from Asia, two from the US, one from Africa, and there were two multinational studies.

Planned treatment discontinuation

Nine pregnancies from nine males in three cohorts of patients were reported (Table 1) [10, 11, 26, 38, 41, 49]. Six cases were pre-treated with IMA, another three with DAS. One pregnancy, where the father was pre-treated with IMA, ended up in spontaneous abortion; otherwise, all were uneventful (no malformations were recorded). Detailed follow-up data were not available for the cases. No information is available on NIL, DAS, or BOS. We were unable to separate the outcomes of planned treatment discontinuation (four of 49 males) from those of no treatment discontinuation in one cohort of patients [59].

No treatment discontinuation

Studies observed a total of 374 males who had conceived under the effect of TKIs (Table 2). A total of 428 pregnancies were reported, 400 of which (93.5%) ended up in a successful delivery.

Study population	Country	N° of pregnancies (N° of males)	TKI (N° of pregnancies)	Non-fatal malformations with live births	In utero fatal events (N° of cases, TKI)	Peripartum feto-maternal complications	Infant complications	CML status at conception (N° of cases)	Timing of treatment discontinuation
Abruzzese et al. 2014 [10, 26] (article and conference abstract) and 2016 [11] (article) (from the GINEMA registry)	Italy	2 (probably 2)	dasatinib (2)	none	none (probably)	none	none	CP (all)	3 and 5 months before conception
Guerci-Breder et al. 2011 (from the FI-LMC Group) (article in French) [41]	France	1 (1)	dasatinib (1)	none	none	not reported	not reported	not reported	15 days before conception
Mukhopadhyay et al. 2015 [49] (article) and Dasgupta et al. 2013 [38] (conference abstract)	India	6 (6)	imatinib (6)	none	spontaneous abortion (1, imatinib)	not reported	not reported	CP (all), CHR (all), CCR (all), MMR (all)	4–6 weeks before conception

CCR, complete cytogenic remission; CHR, complete hematological remission; CML, chronic myeloid leukemia; CP, chronic phase; MMR, major molecular remission; TKI, tyrosine kinase inhibitor

https://doi.org/10.1371/journal.pone.0243045.t001
Table 2. Characteristics of the studies reporting on male patients not discontinuing tyrosine kinase treatment before conception.

Study population	Country	N₀ of pregnancies (N₀ of males)	TKI (N₀ of pregnancies)	Non-fatal malformations with live births (N₀ of cases, TKI)	In utero fatal events (N₀ of cases, TKI)	Peripartum fetal-maternal complications (N₀ of cases, TKI)	Infant complications (N₀ of cases, TKI)
Abruzzese et al. 2014 [10, 26] (article and conference abstract) and 2016 [11] (article) (from the GINEMA registry)	Italy	44 (probably 40)	imatinib (34), nilotinib (7), dasatinib (1), bosutinib (2)	none (probably)	premature delivery (1, imatinib)	jaundice (1, imatinib)	
Alizadeh et al. 2015 [27] (article)	Hungary	10 (5)	imatinib (8), nilotinib (2)	none	premature delivery (1, imatinib)	jaundice (1, imatinib)	
Aota et al. 2020 [61] (article in Japanese)	Japan	1 (1)	nilotinib (1)	none	premature delivery (1, imatinib)	jaundice (1, imatinib)	
Assi et al. 2017 [28] (conference abstract)	The US	7 (7)	nilotinib (5), dasatinib (2)	none	premature delivery (1, imatinib)	jaundice (1, imatinib)	
Ault et al. 2006 [29] (article)	The US	9 (8)	imatinib (9)	spontaneous abortion (1, imatinib)	complex cardiopathy (1, imatinib), hydronephrosis with pyeloureteral junction syndrome (1, imatinib), pulmonary stenosis (1, nilotinib)	none	
Babu et al. 2015 [30] (article)	India	3 (3)	imatinib (3)	none	premature delivery (1, imatinib)	jaundice (1, imatinib)	
Breccia et al. 2008 [31] (article) and Pacilli et al. 2009 [51] (conference abstract)	Italy	5 (5)	imatinib (5)	none	premature delivery (1, imatinib)	jaundice (1, imatinib)	
Carlier et al. 2017 [32] (article) and Markarian et al. 2016 [47] (conference abstract)	France	15 (15)²	imatinib (13), nilotinib (1), dasatinib (1)	spontaneous abortion (1, imatinib), elective termination (2, imatinib, dasatinib)	complex cardiopathy (1, imatinib), hydronephrosis with pyeloureteral junction syndrome (1, imatinib), pulmonary stenosis (1, nilotinib)	none	
Chelysheva et al. 2009 [33], 2011 [35], and 2012 [33] (conference abstracts)	Russia	14 (14)	imatinib (13), nilotinib (1)	spontaneous abortion (2, dasatinib)	complex cardiopathy (1, imatinib), hydronephrosis with pyeloureteral junction syndrome (1, imatinib), pulmonary stenosis (1, nilotinib)	none	
Cortes et al. 2008 [36] and 2015 [37] (from the BMS CARES database) (conference abstract and article)	Multinational	33 (33)³	dasatinib (33)	spontaneous abortion (2, dasatinib)	complex cardiopathy (1, imatinib), hydronephrosis with pyeloureteral junction syndrome (1, imatinib), pulmonary stenosis (1, nilotinib)	none	
Cortes et al. 2020 [60] (from the Pfizer safety database) (article)	Multinational	14 (14)⁷	bosutinib (14)	premature delivery (1, imatinib), spontaneous abortion (1)²	spontaneous abortion (2, dasatinib)	premature delivery (1, imatinib), spontaneous abortion (2, not reported)	
Dou et al. 2019 [59], Jiang et al. 2012 [43] (articles in Chinese)⁸	China	61 (49)	imatinib (40), nilotinib (5), dasatinib (4)	complex cardiopathy (1, imatinib), hydronephrosis with pyeloureteral junction syndrome (1, imatinib), pulmonary stenosis (1, nilotinib)	spontaneous abortion (2, dasatinib)	premature delivery (1, imatinib), spontaneous abortion (2, not reported)	
Gentile et al. 2014 [39] (article)	Italy	1 (1)	dasatinib (1)	spontaneous abortion (2, dasatinib)	complex cardiopathy (1, imatinib), hydronephrosis with pyeloureteral junction syndrome (1, imatinib), pulmonary stenosis (1, nilotinib)	none	
Grudeva-Popova et al. 2010 [60] (article in Bulgarian)	Bulgaria	2 (2)	imatinib (2)	premature delivery (1, imatinib), spontaneous abortion (1)²	spontaneous abortion (2, dasatinib)	none	
Guerci-Bresler et al. 2011 (from the FI-LMC Group) (article in French) [41]	France	30 (30)	imatinib (28), nilotinib (2)	spontaneous abortion (2, dasatinib)	spontaneous abortion (2, dasatinib)	none	
Iqbal et al. 2014 [42] (article)	Pakistan	62 (40)	imatinib (62)	spontaneous abortion (2, dasatinib)	spontaneous abortion (2, dasatinib)	premature delivery (2, imatinib)	

(Continued)
with live fetus (17 spontaneous abortions, 10 elective terminations, and 1 case of stillbirth) (Fig 2A). Offspring from ten live births (2.5% of total life births) had any malformation (the type of TKI was not specified in one case) (Fig 2B).

Table 2. (Continued)

Study population	Country	N₀ of pregnancies (N₀ of males)	TKI (N₀ of pregnancies)	Non-fatal malformations with live births (N₀ of cases, TKI)	In utero fatal events (N₀ of cases, TKI)	Peripartum fetomaternal complications (N₀ of cases, TKI)	Infant complications (N₀ of cases, TKI)
Klamova et al. 2013 [44] (conference abstract)	Czech Republic	9 (8)	imatinib (7), dasatinib (1), unknown (1)	umbilical hernia (1, TKI not reported)	none	none	none (probably)
Luciano et al. 2010 [45] (conference abstract)	Italy	6 (4)	imatinib (6)	none	none	premature delivery (3, imatinib)²	none
Mukhopadhyay et al. 2015 [49] (article) and Dasgupta et al. 2013 [48] (conference abstract)	India	4 (4)	imatinib (4)	hydrocephalus (1, imatinib)	elective termination (1, imatinib)¹⁴	none	not reported
Madabahi et al. 2019 [46] (article) and Modi et al. 2018 [48] (conference abstract)	India	58 (58)	imatinib (58)	none	none	none	none
Oweini et al. 2011 [50] (article)	Lebanon	1 (1)	dasatinib (1)	none	none	not reported	none
Ramasamy et al. 2007 [52] (article)	The UK	5 (4)	imatinib (5)	none	none	none	not reported
Ruirui et al. 2016 [53] (article in Chinese)	China	5 (5)	imatinib (5)	spontaneous abortion (1, imatinib)	none	none	
Shash et al. 2011 [54] (article)	Italy	2 (1)	imatinib (2)	none	none	none	none
Yamina et al. 2015 [56] (conference abstract)	Algeria	18 (13)	imatinib (15), nilotinib (1), dasatinib (2)	malformation not specified (1, nilotinib)	spontaneous abortion (3, imatinib)	none	not reported
Zhou et al. 2013 [57] (article) and Wang et al. 2013 [55] (conference abstract)	China	7 (7)	imatinib (6), nilotinib (1)	none	none	premature delivery (1, imatinib)	none
Xiaohui et al. 2013 [58] (article in Chinese)	China	1 (1)	imatinib (1)	none	none	not reported	not reported

TKIs listed were taken at the time of conception or harvesting sperm for cryopreservation.

¹Follow-up data are available only for patients receiving imatinib.
²Diagnosis (chronic myeloid leukemia or gastrointestinal stromal tumor) is not specified in one case.
³Twins were delivered at week 36.
⁴The infant who had pulmonary stenosis developed acute leukemia.
⁵Outcomes of 36 cases are unknown.
⁶A healthy baby was delivered at week 37.
⁷Three cases lack data.
⁸Fetal biopsy revealed basal deciduitis with necrotic foci and bleeding.
⁹Four cases discontinued treatment before conception.
¹⁰A healthy baby was delivered at week 38.
¹¹Three cases lack data.
¹²Stillbirth occurred due to fetal malformations.
¹³Twins had a family history positive for neuroblastoma.
¹⁴The conception in the acute phase treated with imatinib resulted in an uneventful pregnancy and premature delivery.
¹⁵The conception in the acute phase resulted in an elective abortion. TKI, tyrosine kinase inhibitor.

https://doi.org/10.1371/journal.pone.0243045.t002
Imatinib. A total of 327 pregnancies conceived under the effect of IMA, 14 of which (4.3%) did not end up in live birth (six elective and seven spontaneous abortions, one stillbirth). The outcomes were not reported by TKI agents separately in one study [59].

Six of 313 live births (1.9%) developed any malformation, these included cases with congenital hip dysplasia [10, 11, 26], gut malrotation [29], hydrenephrosis with pyeloureteral junction syndrome [32, 47], complex cardiopathy [32, 47], hypospadiasis, and hydrocephalus [38, 49].

In addition to sporadic cases of breach [27]; pregnancy-induced hypertension [27], podalic position with threatening miscarriage [31, 51], and a total of nine cases of premature delivery were reported. Regarding postnatal complications; cases of jaundice [10, 11, 26], intrauterine growth retardation [32, 47], and neonatal respiratory distress syndrome [32, 47] were reported. In the long-term, one case of neuroblastoma was identified in a child with family history positive for the tumor [42].

Nilotinib. All pregnancies conceived under the effect of NIL ended up in live birth (the outcomes were not reported by TKI agents separately in one study [59]). Two (7.7%) of 26 pregnancies developed malformation; these were a case of pulmonary stenosis [32, 47] and another case in which the malformation was not specified [56].

Regarding feto-maternal complications, one case of premature delivery with severe hyperbilirubinemia [33–35] and another case of acute myeloid leukemia were reported [32, 47].

Dasatinib. Three out of 46 pregnancies (6.5%) conceived under the effect of DAS ended up in elective termination or spontaneous abortion (the outcomes were not reported by TKI agents separately in one study [59]). One (2.3%) of 43 live births developed syndactyly [37]; otherwise, no malformations were reported.

Regarding feto-maternal complications, one case of preeclampsia [36, 37] and another case of placenta accrete [35] were reported.

Fig 2. Characteristics of male patients not discontinuing tyrosine kinase treatment before conception. A: Distribution of pregnancy outcomes among all pregnancies (n = 428). B: Malformations among live births (n = 400). PJS: pyeloureteral junction syndrome.

https://doi.org/10.1371/journal.pone.0243045.g002
Bosutinib. Out of 16 pregnancies, four ended up in elective termination and another one in spontaneous abortion, in which basal deciduitis was confirmed [60]. All the other pregnancies were uneventful.

Ponatinib. No information is available.

CML status and conception

Out of 428 pregnancy cases, CML status of 175 fathers were not reported. Among the patients, 250 were in the chronic phase, whereas three patients conceived in the active phase:

- Case 1, aged 31 years, was treated with alternated NIL/IMA in the accelerated phase when conceived (uneventful pregnancy and follow-up) [10, 11, 26].
- Case 2, aged 34 years, was treated with IMA in the blast phase when conceived (uneventful pregnancy, premature delivery at the 34th week) [45].
- Case 3, aged 24 years, treated with IMA 800 mg in the accelerated phase when conceived (elective termination) [38, 49].

Out of the ten malformations, the phase of CML is unknown for five cases, and fathers were in the chronic phase for another five (complete hematological response: two cases; no complete hematological response: one case; and unknown hematological response: two cases). Data on cytogenetic and molecular responses are scarcely reported. However, note that most of the males who had not achieved a complete cytogenetic or molecular response at conception had healthy offspring. Table 3 summarizes data on CML status at conception.

Quality assessment

The quality of the studies included is summarized in Table 4.

Discussion

An interesting issue is the safety of exposure to TKIs in men to conceive a pregnancy. Studies suggest it is acceptable to continue TKI with counseling regarding uncertainty, but there are no clear data on safety for men on TKIs to conceive pregnancy (as presented in Table 2). Limited case reports exist of successful, healthy pregnancies conceived by men taking TKI, including second-generation agents (DAS, NIL, and BOS), but there are no reports of successful pregnancies of partners of men on PON. US Food and Drug Administration enrolls TKIs in the 'D' pregnancy category, which means that there is potential evidence of risk on fetal development but, due to the potential benefits of use, the drug may be applied during pregnancy. The labeling does not concern paternal issues, although potentially harmful factors affecting the father and the mother may be associated with fetal development [62].

Congenital anomalies are the leading cause of death in infancy in the US [63]. Based on data from the European Surveillance of Congenital Anomalies (EUROCAT, covering approximately 1.5 million births), major congenital anomalies were reported in 23.9 per 1 000 births (2.39%) between 2003 and 2007; 80% of these cases were live births. Congenital heart defects are the most common anomalies (6.5 per 1 000 births) [64]. In line with these, we observed a total of ten malformations (2.5%), including two heart defects, among the children of those fathers who did not discontinue TKI treatment. Malformations having a little impact on health and function, i.e., the 'minor' anomalies, are included in this number as well (Table 2 and Fig 2) [65]. Taken together, the rate of malformations seems comparable with the European average. However, we must keep in mind that the pattern and incidence of congenital anomalies may vary by region and time, whereas our study population was recruited from many sites.
Table 3. CML status at conception in males with no treatment discontinuation.

Study population	Nº of pregnancies (Nº of males)	TKI (Nº of pregnancies)	Disease status at conception			
			Phase (Nº of cases)	Hematological response (Nº of cases)	Cytogenetic response (Nº of cases)	Molecular response (Nº of cases)
Abruzzese et al. 2014 [10, 26] (article and conference abstract) and 2016 [11] (article) (from the GINEMA registry)	44 (probably 40)	imatinib (34), nilotinib (7), dasatinib (1), bosutinib (2)	accelerated (1), chronic (43)	not reported	not reported	not reported
Alizadeh et al. 2015 [27] (article)	10 (5)	imatinib (8), nilotinib (2)	chronic (all)	CHR (all)	CCyR (all)	MMR (all)
Aota et al. 2020 [61] (article in Japanese)	1 (1)	nilotinib	chronic (all)	CHR (all)	CCyR (all)	MMR (all)
Assi et al. 2017 [28] (conference abstract)	7 (7)	nilotinib (5), dasatinib (2)	not reported	not reported	not reported	not reported
Ault et al. 2006 [29] (article)	9 (8)	imatinib (9)	chronic (all)	CHR (all)	not reported	not reported
Babu et al. 2015 [30] (article)	3 (3)	imatinib (3)	not reported	not reported	not reported	not reported
Breccia et al. 2008 [31] (article) and Pacilli et al. 2009 [51] (conference abstract)	5 (5)	imatinib (5)	chronic (all)	CHR (all)	CCyR (4), no CCyR (1)	not reported
Carlier et al. 2017 [32] (article) and Markarian et al. 2016 [47] (conference abstract)	15 (15)	imatinib (13), nilotinib (1), dasatinib (1)	not reported	not reported	not reported	not reported
Chelysheva et al. 2009 [35], 2011 [34], and 2012 [33] (conference abstracts)	14 (14)	imatinib (13), nilotinib (1)	chronic (13), not reported (1)	not reported	not reported	not reported
Cortes et al. 2008 [36] and 2015 [37] (from the BMS CARES database) (conference abstract and article)	33 (33)	dasatinib (33)	not reported	not reported	not reported	not reported
Cortes et al. 2020 [60] (from the Pfizer safety database) (article)	14 (14)	bosutinib (14)	not reported	not reported	not reported	not reported
Dou et al. 2019 [59], Jiang et al. 2012 [43] (articles in Chinese)	61 (49)	imatinib (40), nilotinib (5), dasatinib (4)	chronic (all)	CHR (all)	CCyR (42), no CCyR (7)	MMR (38), no MMR (11)
Gentile et al. 2014 [39] (article)	1 (1)	dasatinib (1)	chronic (all)	CHR (all)	CCyR (all)	MMR (all)
Grudeva-Popova et al. 2010 [40] (article in Bulgarian)	2 (2)	imatinib (2)	chronic (all)	CHR (all)	CCyR (all)	MMR (all)
Guerci-Bresler et al. 2011 (from the FI-LMC Group) (article in French) [41]	30 (30)	imatinib (28), nilotinib (2)	not reported	not reported	not reported	not reported
Iqbal et al. 2014 [42] (article)	62 (40)	imatinib (62)	chronic (all)	CHR (all)	no CyR (6), minor CyR (7), major CyR (17), CCyR (32)	not reported
Klamova et al. 2013 [44] (conference abstract)	9 (8)	imatinib (7), dasatinib (1), unknown (1)	not reported	not reported	not reported	not reported
Luciano et al. 2010 [45] (conference abstract)	6 (4)	imatinib (6)	blast phase (1), chronic (1), not reported (4)	CHR (1), no CHR (1), not reported (4)	CCyR (1), no CCyR (1), not reported (4)	MMR (1), no MMR (1), not reported (4)
Mukhopadhyay et al. 2015 [49] (article) and Dasgupta et al. 2013 [38] (conference abstract)	4 (4)	imatinib (4)	accelerated phase (1), chronic (3)	CHR (2), no CHR (2)	CCyR (1), no CCyR (3)	MMR (0), no MMR (4)
Madabhavi et al. 2019 [46] (article) and Modi et al. 2018 [48] (conference abstract)	58 (58)	imatinib (58)	not reported	not reported	not reported	not reported
Oweini et al. 2011 [50] (article)	1 (1)	dasatinib (1)	not reported	not reported	not reported	not reported

(Continued)
worldwide and over a long period, embracing 15 years. The incidence of malformations with IMA (1.9%) is even closer to the European average, but that with NIL is surprisingly high (7.7%). Notably, the latter value must be interpreted with caution due to the low case numbers (Fig 2) and knowing that NIL proved neutral regarding male fertility in rats [12].

The effect of CML status is hard to be assessed since we lacked data in 41% of the cases. If we consider the available data only, five malformations were recorded in patients being in the chronic phase, four of which in those who achieved a complete hematological response. Importantly, several cases without achieving a complete cytogenetic or major molecular response ended up in uneventful pregnancies (Table 3).

Limitations of the evidence

First, controlled studies are lacking: only case reports and case series studies, which cannot confirm a cause–effect relationship [66], are available. Rechallenge may provide an opportunity to confirm real causality; however, it is not an option in our scenario. Evidence acquired from uncontrolled studies is inherently weak [67]. Hence, we discarded the idea of performing meta-analysis because pooling would not have strengthened the evidence.

Second, reports from large registries with representative populations are lacking, though there are promising initiatives [68, 69].

Third, case reports and case series studies are particularly vulnerable to dissemination bias, questioning the representativeness of the sample. It is impossible to judge whether investigators are more likely to report complicated pregnancies or uncomplicated cases. We tried to reduce publication bias by including non-English language reports [70].

Fourth, the quality of reporting proved to be poor (Table 4)—none of the reports adhered to reporting guidelines [71]. Detailed, long-term follow-up data of the offspring were also lacking (Tables 2 and 4).

Fifth, the recommended sequence of treatment modalities in resistant cases and the first choice of therapy in CML vary with time and across countries. Some cases were pre-treated...
Table 4. Quality assessment.

Domain	Leading question	Comments from the review authors
Selection	**Question 1** Does the patient(s) represent(s) the whole experience of the investigator (center) or is the selection method unclear to the extent that other patients with a similar presentation may not have been reported?	Judged as ‘yes’ if consecutive patient enrolment was carried out.
Ascertainment	**Question 2** Was the exposure adequately ascertained? Judged as ‘yes’ if the TKI agent(s), dose(s), and treatment duration were reported.	
Casuality	**Question 3** Was the outcome adequately ascertained?	Judged as ‘yes’ if the malformation (or its absence) was investigated and described accurately or all pregnancies were uneventful.
Casality	**Question 4** Were other alternative causes that may explain the observation ruled out?	
Reporting	**Question 5** Was there a challenge/rechallenge phenomenon?	Not applicable to the review question
Reporting	**Question 6** Was there a dose-response effect?	Not applicable to the review question
Reporting	**Question 7** Was follow-up long enough for outcomes to occur?	Judged as ‘yes’ if at least one-year follow-up of all offspring was reported. Not applicable if offspring were not followed up.
Reporting	**Question 8** Is the case(s) described with sufficient details to allow other investigators to replicate the research or to allow practitioners to make inferences related to their own practice?	Judged as ‘yes’ if the medical history, characteristics, and management of both the fathers and mothers were documented and discussed.

Study population	Selection	Ascertainment	Causality	Reporting				
	Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Question 7	Question 8
Abruzzese et al. 2014 [10, 26] (article and conference abstract) and 2016 [11] (article) (from the GINEMA registry)	yes	no	yes	no	N/A	N/A	uncertain	no
Allazadeh et al. 2015 [27] (article)	yes	no	yes	no	N/A	N/A	N/A	no
Aota et al. 2020 [61] (article in Japanese)	no	yes	yes	no	N/A	N/A	N/A	yes
Assi et al. 2017 [28] (conference abstract)	yes	no	yes	no	N/A	N/A	N/A	no
Ault et al. 2006 [29] (article)	yes	yes	yes	no	N/A	N/A	yes	yes
Babu et al. 2015 [30] (article)	uncertain	yes	yes	no	N/A	N/A	N/A	no
Brescia et al. 2008 [31] (article) and Pacilli et al. 2009 [32] (conference abstract)	uncertain	yes	yes	no	N/A	N/A	N/A	no
Carlier et al. 2017 [33] (article) and Markarian et al. 2016 [47] (conference abstract)	no	yes	yes	no	N/A	N/A	uncertain	no
Chelysheva et al. 2009 [35], 2011 [34], and 2012 [33] (conference abstracts)	uncertain	no	yes	no	N/A	N/A	N/A	no
Cortes et al. 2008 [36] and 2015 [27] (from the BMS CARES database) (conference abstract and article)	uncertain	no	no	no	N/A	N/A	N/A	yes
Cortes et al. 2020 [60] (from the Pfizer safety database) (article)	uncertain	yes	yes	no	N/A	N/A	N/A	yes
Dou et al. 2019 [39], Jiang et al. 2012 [43] (articles in Chinese)	yes	yes	yes	no	N/A	N/A	yes	no
Gentile et al. 2014 [41] (article)	no	yes	yes	no	N/A	N/A	no	yes
Grudeva-Popova et al. 2010 [40] (article in Bulgarian)	no	yes	yes	no	N/A	N/A	yes	yes
Guerci-Bresler et al. 2011 from the FI-LMC Group (article in French) [41]	uncertain	no	yes	no	N/A	N/A	N/A	no
Iqbal et al. 2014 [42] (article)	yes	yes	yes	no	N/A	N/A	uncertain	yes
Klunova et al. 2013 [43] (conference abstract)	uncertain	no	yes	no	N/A	N/A	uncertain	no
Luciano et al. 2010 [44] (conference abstract)	no	yes	yes	no	N/A	N/A	uncertain	no
Mukhopadhuyay et al. 2015 [45] (article) and Dougupta et al. 2013 [46] (conference abstract)	uncertain	no	yes	no	N/A	N/A	N/A	yes
Madhabavi et al. 2019 [47] (article) and Modi et al. 2018 [48] (conference abstract)	uncertain	no	yes	no	N/A	N/A	uncertain	no
Owaini et al. 2011 [49] (article)	no	yes	yes	no	N/A	N/A	uncertain	no
Ramasamy et al. 2007 [50] (article)	uncertain	yes	yes	no	N/A	N/A	uncertain	yes
Ruirui et al. 2016 [51] (article in Chinese)	uncertain	yes	yes	no	N/A	N/A	uncertain	yes
Shahi et al. 2011 [52] (article)	no	yes	yes	no	N/A	N/A	uncertain	no
Shu et al. 2015 [53] (conference abstract)	yes	yes	no	no	N/A	N/A	N/A	no
Zhou et al. 2013 [54] (article) and Wang et al. 2013 [55] (conference abstract)	yes	yes	yes	no	N/A	N/A	uncertain	no
Xiaohui et al. 2013 [56] (article in Chinese)	no	yes	yes	no	N/A	N/A	N/A	yes

N/A; not applicable. TKI; tyrosine-kinase inhibitor.

https://doi.org/10.1371/journal.pone.0243045.t004
with non-TKI chemotherapeutics (ancillary therapies, such as interferon) or different TKI agents, raising concerns about stochastic toxicity.

Implications for clinical practice

The detailed analysis of more than 400 conceptions revealed that the rate of malformations is lower than 3%, comparable with that measured in the general population. However, due to the studies' uncontrolled nature, the level of evidence is low (by the GRADE system). Since discontinuing TKIs may result in CML’s progression towards the acute phase while conceiving under the effect of TKIs seems safe, the risk-benefit ratio of TKI discontinuation has not been justified. Semen cryopreservation before TKI treatment may be a much safer alternative. However, due to the weak evidence, we must emphasize the importance of individual risk assessment in daily practice.

Implications for research

Since none of the studies identified recruited a control group, it is impossible to differentiate the effects of (1) TKIs, (2) ancillary therapies, (3) CML status, and (4) other noxae on pregnancy outcomes. Based only on the frequency of undesirable pregnancy outcomes in our study, we know that statistically strong evidence (powered to the adverse events of TKIs regarding pregnancy) would require a large sample size [72]. CML registries carry the potential to achieve the required size. Controlled observational studies are awaited to verify the safety of TKIs, particularly for the new generation TKIs.

Author Contributions

Conceptualization: Zsolt Szakács, Péter Jenő Hegyi, Alizadeh Hussain.

Data curation: Zsolt Szakács, Péter Jenő Hegyi, Márta Balaskó, Adrienn Erős, Szabina Szujó, Judit Pammer, Bernadett Mosdósi, Mária Simon, Gabriella Für.

Formal analysis: Nelli Farkas.

Funding acquisition: Péter Hegyi.

Investigation: Judit Pammer, Mária Simon, Arnold Nagy, Alizadeh Hussain.

Methodology: Zsolt Szakács, Judit Pammer, Bernadett Mosdósi, Arnold Nagy.

Supervision: Péter Hegyi, Bernadett Mosdósi, Alizadeh Hussain.

Validation: Péter Hegyi.

Visualization: Nelli Farkas.

Writing – original draft: Zsolt Szakács, Péter Hegyi, Márta Balaskó, Mária Simon, Alizadeh Hussain.

References

1. Hoglund M, Sandin F, Simonsson B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol. 2015; 94 Suppl 2:S241–7. https://doi.org/10.1007/s00277-015-2314-2 PMID: 25814090

2. Smith AG, Painter D, Howell DA, Evans P, Smith G, Patmore R, et al. Determinants of survival in patients with chronic myeloid leukaemia treated in the new era of oral therapy: findings from a UK population-based patient cohort. BMJ Open. 2014; 4(1):e004266. https://doi.org/10.1136/bmjopen-2013-004266 PMID: 24435897
3. Mendizabal AM, Garcia-Gonzalez P, Levine PH. Regional variations in age at diagnosis and overall survival among patients with chronic myeloid leukemia from low and middle income countries. Cancer Epidemiol. 2013; 37(3):247–54. https://doi.org/10.1016/j.canep.2013.01.002 PMID: 23411044

4. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017; 376(10):917–27. https://doi.org/10.1056/NEJMoa1609324 PMID: 28273028

5. Heilmann R, Lauseker M, Saussele S, Piffriman M, Krause S, Kolb HJ, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017; 31(11):2398–406. https://doi.org/10.1038/leu.2017.253 PMID: 28804124

6. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002; 1(7):493–502. https://doi.org/10.1038/nrd839 PMID: 12120256

7. Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014; 2014:357027. https://doi.org/10.1155/2014/357027 PMID: 24963404

8. Fachi MM, Tonin FS, Leonart LP, Aguiar KS, Lenzi L, Figueiredo BC, et al. Comparative efficacy and safety of tyrosine kinase inhibitors for chronic myeloid leukemia: A systematic review and network meta-analysis. Eur J Cancer. 2018; 104:9–20. https://doi.org/10.1016/j.ejca.2018.08.016 PMID: 30296736

9. Mealing S, Barcena L, Hawkins N, Clark J, Eaton V, Hirji I, et al. The relative efficacy of imatinib, dasatinib and nilotinib for newly diagnosed chronic myeloid leukemia: A systematic review and network meta-analysis. Exp Hematol Oncol. 2013; 2(1):5. https://doi.org/10.1186/2162-3619-2-5 PMID: 23422286

10. Abruzzese E, Trawinska MM, de Fabritiis P, Bacchiani M. Management of pregnant chronic myeloid leukemia patients. Expert Rev Hematol. 2016; 9(6):781–91. https://doi.org/10.1080/17474086.2016.1205479 PMID: 27352939

11. Palani R, Milojkovic D, Apperley JF. Managing pregnancy in chronic myeloid leukaemia. Ann Hematol. 2015; 94 Suppl 2:S167–76. https://doi.org/10.1007/s00277-015-2317-z PMID: 25814083

12. Ghelaut VS, Prakash G, Bansal P, Dahiya K, Ghelaut PS, et al. Effect of imatinib on male reproductive hormones in BCR-ABL positive CML patients: A preliminary report. J Oncol Pharm Pract. 2014; 20(4):243–8. https://doi.org/10.1177/1077551213500686 PMID: 23966360

13. Mariani S, Basciani S, Fabbri A, Agati L, Ulisse S, Lubrano C, et al. Severe oligozoospermia in a young man with chronic myeloid leukemia on long-term treatment with imatinib started before puberty. Fertil Steril. 2011; 95(3):1120.e15-7. https://doi.org/10.1016/j.fertnstert.2010.08.060 PMID: 20888557

14. Seshadri T, Seymour JF, McArthur GA. Oligospermia in a patient receiving imatinib therapy for the hypereosinophilic syndrome. N Engl J Med. 2004; 351(20):2134–5. https://doi.org/10.1056/NEJM200411113512024 PMID: 15537917

15. Chang X, Zhou L, Chen X, Xu B, Cheng Y, Sun S, et al. Impact of Imatinib on the Fertility of Male Patients with Chronic Myelogenous Leukaemia in the Chronic Phase. Target Oncol. 2017; 12(6):827–32. https://doi.org/10.1007/s11523-017-0521-6 PMID: 28791527

16. Hensley ML, Ford JM. Imatinib treatment: specific issues related to safety, fertility, and pregnancy. Semin Hematol. 2003; 40(2 Suppl 2):21–5. https://doi.org/10.1053/shem.2003.50038 PMID: 12783371

17. Apperley J. Issues of imatinib and pregnancy outcome. J Natl Compr Canc Netw. 2009; 7(10):1050–8. https://doi.org/10.6004/jnccn.2009.0069 PMID: 19930974

18. Bhandari A, Rolen K, Shah BK. Management of chronic myelogenous leukemia in pregnancy. Anticancer Res. 2015; 35(1):1–11. PMID: 25550528

19. Jouvelet C, Brouin S, Gil S, Mir O, Paci A. Tyrosine kinase inhibitors and pregnancy: A risk to the fetus? Bull Cancer. 2016; 103(5):478–83. https://doi.org/10.1016/j.bulcan.2016.02.001 PMID: 26969425

20. Lodish MB. Clinical review: kinase inhibitors: adverse effects related to the endocrine system. J Clin Endocrinol Metab. 2013; 98(4):1333–42. https://doi.org/10.1210/jc.2012-04085 PMID: 23450053

21. Lorenzi E, Simonelli M, Santoro A. Infertility risk and teratogenicity of molecularly targeted anticancer therapy: A challenging issue. Crit Rev Oncol Hematol. 2016; 107:1–13. https://doi.org/10.1016/j.critrevonc.2016.08.005 PMID: 27823636

22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine. 2009; 151(4):264–9. https://doi.org/10.1001/nejmoe.2014.4819-151-4-200908180-00135 PMID: 19622511
24. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis of case series and case reports. BMJ evidence-based medicine. 2018; 23(2):60–3. https://doi.org/10.1136/bmjebm-2017-110853 PMID: 29420178

25. Siddique MK, Siddiqui N, Mahmood R, Rehan H. Fertility in patients on imatinib for chronic myeloid leukemia. J Clin Oncol. 2008; 26(15_suppl):18031-.

26. Abruzzese E, Trawinska MM, Perrotti AP, De Fabritiis P. Tyrosine kinase inhibitors and pregnancy. Mediterr J Hematol Infect Dis. 2014; 6(1):e2014028. https://doi.org/10.4084/MJHID.2014.028 PMID: 24804001

27. Alizadeh H, Jaafar H, Rajnics P, Khan MI, Kajtar B. Outcome of pregnancy in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: short report from a single centre. Leuk Res. 2015; 39(1):47–51. https://doi.org/10.1016/j.leukres.2014.10.002 PMID: 25455655

28. Assi R, Kantarjian HM, Keating MJ, Pemmaraju N, Verstovsek S, Garcia-Manero G, et al. Management of chronic myeloid leukemia (CML) during pregnancy among patients (pts) treated with a tyrosine kinase inhibitor (TKI): A single-center experience. Blood. 2017; 130.

29. Ault P, Kantarjian H, O'Brien S, Faderl S, Beran M, Rios MB, et al. Pregnancy among patients with chronic myeloid leukemia treated with imatinib. J Clin Oncol. 2006; 24(7):1204–8. https://doi.org/10.1200/JCO.2005.04.6557 PMID: 16446320

30. Babu GK, Thanky A, Jacob LA, Babu MCS, Dasappa L, Ganguly S. Outcome of young adults with chronic myeloid leukemia treated with upfront imatinib: A single institutional experience. Journal of Applied Hematology. 2015; 6(4):157.

31. Breccia M, Cannella L, Montefusco E, Frustaci A, Pacilli M, Alimena G. Male patients with chronic myeloid leukemia treated with imatinib involved in healthy pregnancies: report of five cases. Leuk Res. 2008; 32(3):519–20. https://doi.org/10.1016/j.leukres.2007.07.022 PMID: 17804066

32. Carlier P, Markarian M, Bernard N, Lagarce L, Dautriech A, Bene J, et al. Pregnancy outcome among partners of male patients receiving imatinib, dasatinib or nilotinib in chronic myeloid leukemia: reports collected by the French network pharmacovigilance centres (vol 295, pg 269, 2017). Archives of Gynecology and Obstetrics. 2017; 295(4):1059-. https://doi.org/10.1007/s00404-017-4321-0 PMID: 28255764

33. Chelysheva E, Turkina A, Kolosheinova T, Gasarova G, Sokolova M, Vakhrusheva M, et al. Pregnancy outcomes and treatment regimens in patients with chronic myeloid leukemia. Haematologica. 2012; 97:311–2.

34. Chelysheva E, Turkina A, Kolosheinova T, Gasarova G, Sokolova M, Vinogradova O, et al. Pregnancy outcomes in patients with chronic myeloid leukemia receiving tyrosine kinase inhibitors. Haematologica. 2011; 96:294–5.

35. Chelysheva EY, Turkina AG, Gasarova GA, Kolosheinova TI, Sokolova MA, Khoroshko ND, et al. Pregnancy among the patients with chronic myeloid leukemia on imatinib therapy. Haematologica. 2009; 94:262.

36. Cortes J, O'Brien S, Ault P, Borthakur G, Jabbour E, Bradley-Garel ik B, et al. Pregnancy Outcomes among Patients with Chronic Myeloid Leukemia Treated with Dasatinib. Blood. 2008; 112(11):1109-.

37. Cortes JE, Abruzzese E, Chelysheva E, Guha M, Wallis N, Apperley JF. The impact of dasatinib on pregnancy outcomes. Am J Hematol. 2015; 90(12):1111–5. https://doi.org/10.1002/ajh.24186 PMID: 26348106

38. Dasgupta S, Mukhopadhyay A, Ray UK, Gharami FH, Basu CK, Mukhopadhyay S. Report on imatinib treated CML patients: Pregnancy outcome. European Journal of Cancer. 2013; 49:S844. https://doi.org/10.1016/S0959-8049(13)70065-0

39. Gentile M, Guido M, Lucia E, Vigna E, Mazzone C, Recchia AG, et al. Favorable conception and pregnancy involving a male patient affected by chronic myeloid leukemia while taking dasatinib. Leuk Lymphoma. 2014; 55(3):709–10. https://doi.org/10.3109/10428194.2013.811240 PMID: 23741978

40. Grudeva-Popova J, Alexandrova K, Kenova I. Successful pregnancies of spouses of male patients with chronic myeloid leukemia on imatinib therapy. Clinical and Transfusion Haematology. 2010; 46(1–2):90–2.

41. Guerci-Bresler A, Huguet F, Legros L, Maloisel F, Réa D. Fertilité, grossesse, allaitement et état de santé des nouveau-nés chez les patient (e) s souffrant de LMC-PC et traité (e) s par inhibiteurs de la tyrosine kinase. Recommandations du groupe Fi-LMC Correspondances en Onco-hématologie. 2011; 6:92–102.

42. Iqbal J, Ali Z, Khan AU, Aziz Z. Pregnancy outcomes in patients with chronic myeloid leukemia treated with imatinib mesylate: short report from a developing country. Leuk Lymphoma. 2014; 55(9):2109–13. https://doi.org/10.3109/10428194.2013.866662 PMID: 24237577

43. Jiang Q, Jiang B, Chen SS, Jiang H, Qin YZ, Lai YY, et al. Pregnancy outcome among patients with chronic myelogenous leukemia treated with tyrosine kinase inhibitors. Zhonghua xue ye xue za zhi. 2012; 33(1):6–9. PMID: 22575184
44. Klamová H, Srbová D, Štíšková M, Poláková K, Březinová J, Cetkovský P, et al. Successful management of CML during pregnancy and in post-partum period. Haematologica. 2013; 98:551.

45. Luciano L, Cerchione C, Ciancia R, Pane F. Successful pregnancies in chronic myeloid Leukaemia male patients on imatinib therapy. Haematologica. 2010; 95:541.

46. Madabhavi I, Sarkar M, Modi M, Kadakol N. Pregnancy Outcomes in Chronic Myeloid Leukemia: A Single Center Experience. J Glob Oncol. 2019; 5:1–11. https://doi.org/10.1200/JGO.18.00211 PMID: 31584851

47. Markarian M, Carlier P, Bernard N, Lagarce L, Dautriche A, Bené J, et al. Pregnancy outcome among partners of male patients receiving imatinib, dasatinib or nilotinib in chronic myeloid leukemia (CML): Reports collected by the French regional pharmacovigilance (PV) centers. Fundamental and Clinical Pharmacology. 2016; 30:40. https://doi.org/10.1111/fcp.12189

48. Modi M, Madabhavi I, Lahori M. Pregnancy outcomes in chronic myeloid leukemia (CML): A single-centre experience. American Journal of Clinical Pathology. 2018; 149:S45. https://doi.org/10.1093/ajcp/aqx118.106

49. Mikhapadhyay A, Dasgupta S, Kanti Ray U, Gharami F, Bose CK, Mukhopadhyay S. Pregnancy outcome in chronic myeloid leukemia patients on imatinib therapy. Br J Haematol. 2007; 137(4):374–5. https://doi.org/10.1111/j.1365-2141.2007.06542.x PMID: 17408403

50. Oweini H, Otrock ZK, Mahfouz RA, Bazarbachi A. Successful pregnancy involving a man with chronic myeloid leukemia on dasatinib. Arch Gynecol Obstet. 2011; 283(1):133–4. https://doi.org/10.1007/s00404-010-1501-6 PMID: 20473616

51. Pacilli M, Montefusco E, Porrini R, Moscetti A, Veggia B, Antolino G, et al. Conception of healthy children under imatinib treatment in two men affected by chronic myeloid leukemia. Haematologica. 2009; 94:168–9.

52. Ramasamy K, Hayden J, Lin Z, Mufti GJ, Ho AY. Successful pregnancies involving men with chronic myeloid leukemia on imatinib therapy. Br J Haematol. 2007; 137(4):374–5. https://doi.org/10.1111/j.1365-2141.2007.06542.x PMID: 17408403

53. Ruirui G, Zhang G, Li Z, Zhai H, Zu Y, Li M, et al. Clinical observation of fertility circumstance among patients with chronic granulocytic leukemia treated with imatinib. J Clin Hematol (China). 2016; 29(6):887–90.

54. Shash E, Bassi S, Cocorocchio E, Colpi GM, Cinieri S, Peccatori FA. Fatherhood during imatinib. Acta Oncologica. 2011; 50(5):734–5. https://doi.org/10.3109/0284186X.2011.577562 PMID: 21517714

55. Wang A, Zhou L. Pregnancies in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Haematologica. 2013; 98:555. https://doi.org/10.3324/haematol.2012.076240 PMID: 23242593

56. Yamina B, Souad T, Mohand Tayeb A. Impact of tyrosine kinase inhibitors (TKIs) on the fertility of chronic myeloid leukemia patients (CML) in a single center in Algeria. Haematologica. 2015; 100:690–1. https://doi.org/10.3324/haematol.2014.117283 PMID: 25715403

57. Zhou L, You JH, Wu W, Li JM, Shen ZX, Wang AH. Pregnancies in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitor. Leuk Res. 2013; 37(10):1216–21. https://doi.org/10.1016/j.leukres.2013.07.020 PMID: 23937984

58. Xiaoqiu C, Huai G, Yubin C. One case report: a male patient with chronic myeloid leukemia treated with imatinib involved in healthy pregnancies [article in Chinese]. Zhong Guo Yi Yao Dao Bao. 2013; 10(1):116–7.

59. Dou XL, Qin YZ, Shi TX, Lai YY, Hou Y, Huang XJ, et al. [Fertility and disease outcomes in patients with chronic myeloid leukemia]. Zhonghua Xue Ye Xue Za Zhi. 2019; 40(12):980–5. https://doi.org/10.3760/cma.j.issn.0253-2727.2019.12.002 PMID: 32023726

60. Cortes JE, Gambacorti-Passerini C, Deininger M, Abruzzese E, DeAnnunzio L, Brümmendorf TH. Pregnancy outcomes in patients treated with bosutinib. Int J Hematol Oncol. 2020; 9(2):Ijh26. https://doi.org/10.2217/ijh-2020-0004 PMID: 33005329

61. Aota Y, Udagawa S, Honda T, Okuda Y, Gotoh A. [Delivery of a Healthy Newborn by the Partner of a Patient with CML Undergoing Treatment with Nilotinib]. Gan To Kagaku Ryoho. 2020; 47(5):811–3. PMID: 32408325

62. Baldacci S, Gorini F, Santoro M, Pierini A, Minichilli F, Bianchi F. Environmental and individual exposure and the risk of congenital anomalies: a review of recent epidemiological evidence. Epidemiol Prev. 2018; 42(3–4 Suppl 1):1–34. https://doi.org/10.19191/EP18.3-4.S1.P001.057 PMID: 30066535

63. Mathews TJ, Driscoll AK. Trends in Infant Mortality in the United States, 2005–2014. NCHS Data Brief. 2017;(279):1–8. PMID: 28437240

64. Dolk H, Loane M, Garne E. The prevalence of congenital anomalies in Europe. Adv Exp Med Biol. 2010; 686:349–64. https://doi.org/10.1007/978-90-481-9485-8_20 PMID: 20824455
65. Rasmussen SA, Olney RS, Holmes LB, Lin AE, Keppler-Noreuil KM, Moore CA. Guidelines for case classification for the National Birth Defects Prevention Study. Birth Defects Res A Clin Mol Teratol. 2003; 67(3):193–201. https://doi.org/10.1002/bdra.10012 PMID: 12797461

66. Grimes DA, Schulz KF. Descriptive studies: what they can and cannot do. Lancet. 2002; 359 (9301):145–9. https://doi.org/10.1016/S0140-6736(02)07373-7 PMID: 11809274

67. Burns PB, Rohrich RJ, Chung KC. The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg. 2011; 128(1):305–10. https://doi.org/10.1097/PRS.0b013e318219c171 PMID: 21701348

68. Hoffmann VS, Baccarani M, Hasford J, Castagnetti F, Di Raimondo F, Casado LF, et al. Treatment and outcome of 2904 CML patients from the EUTOS population-based registry. Leukemia. 2017; 31 (3):593–601. https://doi.org/10.1038/leu.2016.246 PMID: 27568522

69. Hoglund M, Sandin F, Hellstrom K, Bjoreman M, Bjorkholm M, Brune M, et al. Tyrosine kinase inhibitor usage, treatment outcome, and prognostic scores in CML: report from the population-based Swedish CML registry. Blood. 2013; 122(7):1284–92. https://doi.org/10.1182/blood-2013-04-495598 PMID: 23843494

70. Thornton A, Lee P. Publication bias in meta-analysis: its causes and consequences. J Clin Epidemiol. 2000; 53(2):207–16. https://doi.org/10.1016/s0895-4356(99)00161-4 PMID: 10729693

71. Gagnier JJ, Kienle G, Altman DG, Moher D, Sox H, Riley D. The CARE guidelines: consensus-based clinical case reporting guideline development. BMJ Case Rep. 2013;2013. https://doi.org/10.1136/bcr-2013-201554 PMID: 24155002

72. Gelperin K, Hammad H, Leishear K, Bird ST, Taylor L, Hamp C, et al. A systematic review of pregnancy exposure registries: examination of protocol-specified pregnancy outcomes, target sample size, and comparator selection. Pharmacoepidemiol Drug Saf. 2017; 26(2):208–14. https://doi.org/10.1002/pds.4150 PMID: 28028914