Asteroseismic modelling of the metal-poor star \(\tau\) Ceti

Y. K. Tang\(^1,2\) and N. Gai\(^3,4\)

1 Department of Physics, Dezhou University, Dezhou 253023, PR China
e-mail: tyk4580163.com
2 Key Lab of Biophysics in Universities of Shandong, Dezhou 253023, PR China
3 Department of Astronomy, Beijing Normal University, Beijing 100875, PR China
e-mail: gaining@mail.bnu.edu.cn
4 Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520-8101, USA

Received 29 April 2010 / Accepted 6 October 2010

ABSTRACT

Context. Asteroseismology is an efficient tool not only for testing stellar structure and evolutionary theory but also constraining the parameters of stars for which solar-like oscillations are presently detected. As an important southern asteroseismic target \(\tau\) Ceti, is a metal-poor star. The main features of the oscillations and some frequencies of \(\tau\) Ceti have been identified. Many scientists propose to comprehensively observe this star as part of the Stellar Observations Network Group.

Aims. Our goal is to obtain the optimal model and reliable fundamental parameters for the metal-poor star \(\tau\) Ceti by combining all non-asteroseismic observations with these seismological data.

Methods. Using the Yale stellar evolution code (YREC), a grid of stellar model candidates that fall within all the error boxes in the HR diagram have been constructed, and both the model frequencies and large- and small- frequency separations are calculated using the Guenther’s stellar pulsation code. The \(\chi^2\) minimization is performed to identify the optimal modelling parameters that reproduce the observational constraints within their errors. The frequency corrections of near-surface effects to the calculated frequencies using the empirical law, as proposed by Kjeldsen and coworkers, are applied to the models.

Results. We derive optimal models, corresponding to masses of about 0.775–0.785 \(M_\odot\) and ages of about 8–10 Gyr. Furthermore, we find that the quantities derived from the non-asteroseismic observations (effective temperature and luminosity) acquired spectroscopically are more accurate than those inferred from interferometry for \(\tau\) Ceti, because our optimal models are in the error boxes B and C, which are derived from spectroscopy results.

Key words. asteroseismology – stars: individual: \(\tau\) Ceti – stars: oscillations – stars: low-mass

1. Introduction

The solar five-minute oscillations have led to a wealth of information about the internal structure of the Sun. These results have stimulated various attempts to detect solar-like oscillations for a handful of solar-type stars. Solar-like oscillations have been confirmed for several main-sequence, subgiant and red giant stars by a handful of solar-type stars. Solar-like oscillations have been con-stimulated various attempts to detect solar-like oscillations for a number of stars, and the results have been published in various papers. The observational constraints available to \(\tau\) Ceti are summarized in Sect. 2, while the details of the evolutionary models are presented in Sect. 3. The seismic analyses are carried out in Sect. 4. Finally, the discussion and conclusions are given in Sect. 5.

\(\tau\) Ceti (HR 509, HD 10700) is a G8 V metal-poor star, belonging to population II. Extensive analyses of this star have been performed by many scientists who have provided different non-seismic observational results (such as effective temperature \(T_{\text{eff}}\) and luminosity \(L\)), depending on the different methods used, i.e. interferometry and spectroscopy. Teixeira et al. (2009) detected solar-like oscillations on \(\tau\) Ceti, identified some possible existing frequencies, and obtained the large separation around \(\Delta v = 169\ \mu\text{Hz}\) with HARPS. These seismological data will provide a constraint on the fundamental parameters of \(\tau\) Ceti. Moreover, \(\tau\) Ceti will be one of the most promising southern asteroseismic targets of the seismology programme of Stellar Observations Network Group (Metcalfe et al. 2010).

In this work, using a mixture of conventional and asteroseis-mic observed constraints, we try to determine modelling parameters of \(\tau\) Ceti with YREC. The observational constraints available to \(\tau\) Ceti are summarized in Sect. 2, while the details of the evolutionary models are presented in Sect. 3. The seismic analyses are carried out in Sect. 4. Finally, the discussion and conclusions are given in Sect. 5.
Table 1. Non-asteroseismic observational data of τ Ceti.

Observable	Value	Source
Effective temperature T_{eff}(K)	5264 ± 100	(1)
Luminosity L/L_\odot	5525 ± 12	(3)
Metallicity [Fe/H]	0.52 ± 0.03	(4)
Surface heavy-element abundance $[Z/X]_S$	0.0073 ± 0.0005	(5)
Radius R/R_\odot	0.773 ± 0.024	(5)

References. (1) Soubiran et al. (1998); (2) Teixeira et al. (2009); (3) Pijpers et al. (2003); (4) Pijpers (2003); (5) this paper.

2. Observational constraints

2.1. Non-asteroseismic observational constraints

The metallicity derived from observations is [Fe/H] = −0.5 ± 0.03 (Soubiran et al. 1998). The mass fraction of heavy-elements, Z, was derived assuming log[Z/X] = [Fe/H] + log[Z/X]$_\odot$, and [Z/X]$_\odot$ = 0.0230 (Grevesse & Sauval 1998), for the solar mixture. We can therefore deduce that [Z/X]$_\odot$ = 0.0068−0.0078. The radius, as an important parameter for constraining stellar models, was first measured by Pijpers et al. (2003) using interferometry. They determined the radius of τ Ceti corresponding to 0.773 ± 0.004(int)± 0.02/ext R_\odot. The measurement of the radius was then improved by Di Folco et al. (2004) and Di Folco et al. (2007). Finally, Di Folco et al. (2007) determined the radius R = 0.790 ± 0.005R_\odot. In our work, we use a large value of radius R = 0.773 ± 0.024R_\odot which includes all the surrounding observational radius.

The effective temperature and luminosity of τ Ceti are both derived from spectroscopy (5264±100 K and 5.2±0.03 L_\odot), and by ensuring that we reproduce the measured radius (5525±12 K, 0.500±0.006 L_\odot), using interferometry (Soubiran et al. 1998; Pijpers et al. 2003). In addition the luminosity of a star can be obtained by combining our knowledge of the magnitude and distance. For τ Ceti, the apparent magnitude V = 3.50 ± 0.01, with the revised parallax, gives an absolute magnitude M_V = 5.69 ± 0.01. Teixeira et al. (2009) derived a luminosity for τ Ceti of L/L_\odot = 0.488 ± 0.010, using bolometric correction for τ Ceti B.C. = −0.17 ± 0.02 (Casagrande et al. 2006) and adopting an absolute bolometric magnitude for the Sun of M_{\odot} = 4.74 (Bessell et al. 1998).

Using above different effective temperatures and luminosities, we can obtain three error boxes, which error box A (5255±12 K, 0.50 ± 0.06 L_\odot) are denoted by crosses, error box B (5264 ± 100 K, 0.52 ± 0.03 L_\odot) denoted by triangles, and error box C (5264 ± 100 K, 0.488 ± 0.010 L_\odot) denoted by diamonds, shown in Fig. 1d, respectively. Meanwhile, we decided to increase all errors by a factor of 1.5, so that our calibration of the star is only weakly constrained by these values.

All non-asteroseismic observational constraints are listed in Table 1.

2.2. Asteroseismic constraints

Solar-like oscillations of the G8V star τ Ceti were detected by Teixeira et al. (2009) with the HARPS spectrograph. Thirty-one individual modes are identified (see Table 1 in Teixeira et al. 2009). The large frequency separation is about $\Delta \nu$ = 169 μHz.

Variable	Minimum value	Maximum value	δ
Mass M/M_\odot	0.770	0.795	0.005
Mixing length α	0.8	1.8	0.2
Initial heavy element abundance Z	0.001	0.008	0.0005
Initial hydrogen abundance X	0.70	0.75	0.01

Notes. The value δ defines the increment between minimum and maximum parameter values used to create the model array.

3. Stellar models

We calculated many evolutionary tracks using Yale stellar evolution code (YREC; Demarque et al. 2008) by inputting different parameters shown in Table 2.

The mass range are $M = 0.770$–0.795 M_\odot with the increment value 0.005 M_\odot. Initial heavy element abundance range are Z_\odot (0.001–0.008) with the increment value 0.0005 and initial hydrogen abundance X_\odot (0.70–0.75) with the increment value 0.01. Energy transfer by convection is treated according to the standard mixing-length theory, and the boundaries of the convection zones are determined by the Schwarzschild criterion (see Demarque et al. 2008, for details of the YREC). We set the mixing length parameter $\alpha = 0.8−1.8$ with the increment value 0.2. Using these parameter space, we created the model array. The initial zero-age main sequence (ZAMS) model used for τ Ceti is created from pre-main-sequence evolution calculations. These models are calculated using the updated OPAL equation-of-state tables EOS2005 (Rogers & Nayfonov 2002). We used OPAL high temperature opacities (Iglesias & Rogers 1996)
supplemented with low temperature opacities from Ferguson et al. (2005). The NACRE nuclear reaction rates (Angulo et al. 2005) supplemented with low temperature opacities from Ferguson 1999) were used. The Krishna-Swamy Atmosphere T- relation (refer to the values from Teixeira et al. 2009) as constraint, we using the temperature, luminosity, radius, and larger separation (Kjeldsen & Bedding 1995; Miglio et al. 2009a, b). Furthermore, the temperature, luminosity, radius, and larger separation, which are also given in Table 1. We also decided to adopt a large error (all errors are increased by a factor of 1.5), so that our calibration of the star is only weakly constrained by these values, which is not precisely determined. Figure 2a presents the values χ^2 versus age t of selected models that are shown in Fig. 1d. We find that we cannot select an optimal model from Fig. 2a. From Fig. 2a, we find that it is difficult to select an optimal model depending mainly on the non-seismic constraints and Δν, which was estimated by simply scaling from solar value using Eq. (1). Hence, a detailed pulsation analysis are needed in the next step.

\[
\Delta \nu = \sqrt{\frac{M/M_\odot}{(R/R_\odot)}^2} \times 134.9 \mu Hz.
\]

(1)

We now consider a function that describes the agreement between the observations and the theoretical results

\[
\chi_1^2 = \sum_{i=1}^{5} \frac{(\delta \nu_i - \Delta \nu_i)^2}{\sigma_C^{obs}_i}.
\]

(2)

Table 3. The observational frequencies and the theoretical frequencies for model M1 & M2 before and after correction for near-surface offset, respectively.

n	l = 0	l = 1	l = 2	l = 3	l = 0	l = 1	l = 2	l = 3	l = 0	l = 1	l = 2	l = 3
18	3293.4	3296.149	3377.700	3455.831	3529.092	3296.276	3377.775	3455.826	3529.043	
19	3461.7	3692.9	3465.623	3547.268	3625.910	3699.994	3645.717	3547.304	3625.854	3699.900
20	3634.5	3863.7	3635.309	3717.485	3796.205	3870.802	3635.352	3717.479	3691.199	3870.664
21	3799.3	3885.3	...	4030.3	3805.155	3878.715	3967.102	4042.136	3805.169	3966.871	4041.987	3804.971
22	3976.1	4046.8	4126.1	4202.5	3975.769	4058.363	4138.126	4213.984	3975.764	4058.279	4137.957	4213.769
23	4139.9	4222.7	4298.2	...	4146.398	4229.669	4305.760	4385.981	4146.331	4229.539	4305.577	4385.721
24	...	4388.3	4469.5	4545.1	...	4317.694	4401.101	4481.820	...	4317.566	4400.922	4481.566
25	...	4481.8
26	...	4548.1
27	...	4652.3
28	...	4816.1
29	...	5072.3
30	...	5240.0
31	...	5497.9

\[
\Delta \nu = \sqrt{\frac{M/M_\odot}{(R/R_\odot)}^2} \times 134.9 \mu Hz.
\]

(1)

We now consider a function that describes the agreement between the observations and the theoretical results

\[
\chi_1^2 = \sum_{i=1}^{5} \left(\frac{\delta \nu_i - \Delta \nu_i}{\sigma_C^{obs}_i} \right)^2.
\]

(2)

4. Asteroseismic constraints of fundamental parameters

Using Guenther’s pulsation code (Guenther 1994), we calculate the adiabatic low-\(l \)-mode frequencies, the large- and small- frequency separations (\(\Delta \nu_{l,l} \equiv \nu_{l,l} - \nu_{l-1,l} \) and \(\Delta \nu_{l,l,l} \equiv \nu_{l,l,l} - \nu_{l-1,l,l} \), defined by Tassoul 1980) of all the selected models. We compare
Fig. 2. a) χ^2_1 values derived from Eq. (2), plotted as a function of age; b) χ^2_ν values derived from Eq. (3), plotted as a function of age; c) $\chi^2_{\nu,c}$ values derived from Eq. (6), plotted as a function of age; d) $|r_0 - 1|$ values plotted as a function of age.

the theoretical frequencies with the corresponding observational frequencies using the function χ^2_1

$$\chi^2_1 = \frac{1}{N} \sum_{n,l} \left(\frac{\nu_{\text{theo}}(n) - \nu_{\text{obs}}(n)}{\sigma} \right)^2,$$

(3)

where, $N = 31$ is the total number of modes, and $\nu_{\text{theo}}(n)$ and $\nu_{\text{obs}}(n)$ are the theoretical and observed frequencies respectively, for each spherical degree l and the radial order n, where $\sigma = 2 \, \mu Hz$ (Teixeira et al. 2009) represents the uncertainty in the observed frequencies and χ^2_1 values, plotted as function of age, are shown in Fig. 2b.

Since existing stellar models fail to accurately represent the near-surface layers of the solar-like stars, where the turbulent convection take place, the systematic offset between the observed and model frequencies appears. Furthermore, this offset between observed and best model frequencies turns out to be closely fitted by a power law (Christensen-Dalsgaard & Gough 1980; Kjeldsen et al. 2008; Metcalfe et al. 2009; Doğan et al. 2009, 2010; Bedding et al. 2010; Christensen-Dalsgaard et al. 2010). In other words, this offset increases with increasing frequency shown in Fig. 3. This power law can be expressed using the equation

$$\nu_{\text{obs}}(n) - r_l \nu_{\text{theo}}(n) = a_l [\nu_{\text{obs}}(n)/\nu_{\text{max}}]^b,$$

(4)

where ν_{obs} are the observed frequencies of radial and non-radial order, $\nu_{\text{best}} = r_l \nu_{\text{theo}}(n)$ are the corresponding calculated frequencies of the best-fit model, and ν_{max} is a constant frequency corresponding to the peak power in the spectrum, which is taken as $4490 \, \mu Hz$ for τ Ceti and r_l, a_l, and b are parameters described in detail by Kjeldsen et al. (2008), (for a different spherical degree l, the values of r and a are denoted by r_l and a_l, respectively). For the Sun and a solar-like star, the exponent $b = 4.90$ is appropriate, as has been proven by many scientists. We use
the Kjeldsen et al. (2008) prescription to correct the theoretical frequencies from near surface effects.

According to Eq. (4), we can use the following equation to obtain the corrected frequencies of models:

\[\nu_{\text{correct}}(n) = r_l \nu_{\text{theo}}(n) + d_l \nu_{\text{obs}}(n)/\nu_{\text{max}}. \]

We define the function \(\chi^2_{\text{fc}} \) in a similar way to Eq. (3) as

\[\chi^2_{\text{fc}} = \frac{1}{N} \sum_{n,l} \left(\frac{\nu_{\text{correct}}(n) - \nu_{\text{obs}}(n)}{\sigma(\nu_{\text{obs}}(n))} \right)^2. \]

The values of \(\chi^2_{\text{fc}} \), plotted as a function of age are shown in Fig. 2c. From Fig. 2c, we can see that the values of \(\chi^2_{\text{fc}} \) are lower than \(\chi^2_{\text{f}} \) and their lowest values correspond to model ages from 8 to 10 Gyr. We conclude that the optimal model corresponds to the lower values of \(\chi^2_{\text{fc}} \) and \(r_\ell = 1 \). From Figs. 2c and 2d, we infer that only two models M1 and M2 can be accurately described by the observational constraints. The difference between the observed and uncorrected model frequencies of M1 and M2 are shown in Fig. 3. The uncorrected and corrected frequencies of the optimal models M1 and M2 and the observational frequencies are shown in Table 3.

To clearly compare all of the theoretical frequencies of the models with observational frequencies, we provide echelle diagrams of models M1 and M2 in Fig. 4. An Echelle diagram is a useful tool for comparing stellar models with observations. This diagram presents the mode frequencies along the ordinate axis, and the same frequencies modulo the large separations in abscissae. From Figs. 4a and 4d, it can be seen that the uncorrected theoretical frequencies are not closely in agreement with the observed frequencies. The corrected theoretical frequencies indicated by Eq. (5) fit perfectly the observation shown in Figs. 4b and 4e. Because the observed frequencies of orders \(n \) are not consecutive and the values of \(\nu_{\text{obs}}(n) \) are very close to those of \(\nu_{\text{theo}}(n) \), we substitute the \(\nu_{\text{theo}}(n)/\nu_{\text{max}} \) for \(\nu_{\text{obs}}(n)/\nu_{\text{max}} \). Hence Eq. (5) becomes

\[\nu_{\text{correct}}(n) = r_l \nu_{\text{theo}}(n) + d_l \nu_{\text{theo}}(n)/\nu_{\text{max}}. \]

From Figs. 4b, 4c, 4e, and 4f, it can be seen that corrected frequencies given by Eqs. (5) and (7) respectively are uniform and reproduce the observed frequencies perfectly. Furthermore, we can use the function \(\chi^2_{\text{fc}} \) to select the fitting model parameters. As we all know, the suitable model parameters correspond to the lowest values of \(\chi^2_{\text{fc}} \), which can be clearly seen in Fig. 5. From Fig. 5, we can conclude that the mass is in the range 0.775–0.785 \(M_\odot \), \(\delta \nu \) is in the range 1.6–1.8, and \(X_i \) is 0.0065–0.0075, and \(X_i \) is 0.73–0.75. Hence, the model parameters of \(\tau \) Ceti can be constrained to within these narrow ranges. Finally, we list the model parameters and characteristics of models M1 and M2 in Table 4.

5. Discussion and conclusions

Using the asteroseismic analysis and the empirical frequency correction for the near-surface offset presented by Kjeldsen et al. (2008) to correct our theoretical frequencies, we have derived the optimal model of \(\tau \) Ceti and now list our main conclusions:

1. Using the latest asteroseismic observations, we have attempted to construct the optimal model of \(\tau \) Ceti. We have only considered the models M1 and M2, which can closely describe the observations, as the optimal models. Furthermore, the model parameters of \(\tau \) Ceti have been constrained to within narrow intervals by the function \(\chi^2_{\text{fc}} \), where the mass is in the range \(M = 0.775–0.785 \ M_\odot \), the mixing length parameter in the range \(\alpha = 1.6–1.8, \) the initial metallicity in the range \(Z_i = 0.0065–0.0075, \) the initial hydrogen abundance in the range \(X_i = 0.73–0.75, \) and the age in the range \(t = 8–10 \) Gyr.

Table 4. Final model-fitting results for \(\tau \) Ceti.

Modelling parameters	Model M1	Model M2
Mass \(M/M_\odot \)	0.775	0.785
Mixing length \(\alpha \)	1.6	1.6
\(Z_i \)	0.007	0.007
\(X_i \)	0.740	0.750
\(\Delta \nu \) (\(\mu \)Hz)	170.8621	170.8381
\(\Delta \nu \) (\(\mu \)Hz)	170.9222	170.9106
\(\Delta \nu \) (\(\mu \)Hz)	171.0332	170.9106
\(\Delta \nu \) (\(\mu \)Hz)	171.5120	171.4870
\(\Delta \nu \) (\(\mu \)Hz)	10.111	10.111
\(\Delta \nu \) (\(\mu \)Hz)	18.136	18.136

Using the asteroseismic analysis and the empirical frequency correction for the near-surface offset presented by Kjeldsen et al. (2008) to correct our theoretical frequencies, we have derived the optimal model of \(\tau \) Ceti, and now list our main conclusions:

1. Using the latest asteroseismic observations, we have attempted to construct the optimal model of \(\tau \) Ceti. We have only considered the models M1 and M2, which can closely describe the observations, as the optimal models. Furthermore, the model parameters of \(\tau \) Ceti have been constrained to within narrow intervals by the function \(\chi^2_{\text{fc}} \), where the mass is in the range \(M = 0.775–0.785 \ M_\odot \), the mixing length parameter in the range \(\alpha = 1.6–1.8, \) the initial metallicity in the range \(Z_i = 0.0065–0.0075, \) the initial hydrogen abundance in the range \(X_i = 0.73–0.75, \) and the age in the range \(t = 8–10 \) Gyr.
Fig. 4. Echelle diagrams for the optimal models M1 (upper panel) and M2 (lower panel). Left panel shows the case before applying near-surface corrections. Middle panel shows the case after applying near-surface corrections, according to Eq. (5). Right panel shows the case after applying near-surface corrections, according to Eq. (7). Open symbols refer to the theoretical frequencies, and filled symbols refer to the observable frequencies. Squares are used for $l = 0$ modes, diamonds for $l = 1$ modes, triangles for $l = 2$ modes, and circles for $l = 3$. The observable frequencies correspond to the average large separation about 170 μHz (see text for details).

Fig. 5. a) χ^2_ν values derived from Eq. (6), plotted as function of mass; b) χ^2_ν values plotted as function of mixing length α; c) χ^2_ν values plotted as function of initial heavy element abundance Z_i; d) χ^2_ν values plotted as function of initial hydrogen abundance X_i.
Acknowledgements. We are grateful to the anonymous referee for his/her constructive suggestions and valuable remarks that helped us to improve the manuscript. We also thank Professor Shaolan Bi and Dr. Linghuai Li for many useful comments and discussions. This work was supported by the support of the Peoples Republic of China through grant 2007CB815406, and by NSFC grants 10773003, 10933002, and 10978010.

References
Arentoft, T., Kjeldsen, H., Bedding, T. R., et al. 2008, ApJ, 687, 1080
Angulo, C., Arnold, M., Rayet, M., et al. 1999, Nucl. Phys. A., 656, 3
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231
Bedding, T. R., Butler, R. P., Kjeldsen, H., et al. 2001, ApJ, 549, L105
Bedding, T. R., Kjeldsen, H., Butler, R. P., et al. 2004, ApJ, 614, 380
Bedding, T. R., Butler, R. P., Carrier, F., et al. 2006, ApJ, 647, 558
Bedding, T. R., Kjeldsen, H., Arentoft, T., et al. 2007, ApJ, 663, 1315
Bedding, T. R., Kjeldsen, H., Campanile, T. L., et al. 2010, ApJ, 713, 935
Bouchy, F., & Carrier, F. 2002, A&A, 390, 205
Bouchy, F., Baudin, F., & Tan Wire, Y. K. 2005, A&A, 440, 609
Brunt, H., Bedding, T. R., Quirion, P.-O., et al. 2010, MNRAS, 405, 1907
Brown, T. M., Gilliland, R. L., Noyes, R. W., & Ramsey, L. W. 1991, A&A, 368, 599
Carrier, F., & Bourban, G. 2003, A&A, 406, L23
Carrier, F., & Eggenberger, P. 2006, A&A, 450, 695
Carrier, F., Bouchy, F., & Eggenberger, P. 2001, A&A, 378, 142
Carrier, F., Bouchy, F., & Eggenberger, P. 2003, in Asteroseismology Across the HR Diagram, ed. M. J. Thompson, M.S. Cunha, & M. J. P. F. Monteiro (Kluwer), 311
Carrier, F., Eggenberger, P., D’Alessandro, A., & Weber, L. 2005a, New Astron., 10, 315
Carrier, F., Eggenberger, P., & Bouchy, F. 2005b, A&A, 434, 1085
Carrier, F., Kjeldsen, H., Bedding, T. R., et al. 2007, A&A, 470, 1059
Carrier, F., Morel, T., Miglio, A., et al. 2010, ApSS, 328, 83
Casagrande, L., Portinari, L., & Flynn, C. 2006, MNRAS, 373, 13
Christensen-Dalsgaard, J., & Gough, D. O. 1980, Nature, 288, 544
Christensen-Dalsgaard, J., Kjeldsen, H., Brown, T. M., et al. 2010, ApJ, 713, L164
Chaplin, W. J., Appourchaux, T., Elsworth, Y. K., et al. 2010, ApJ, 713, L169
Demarque, P., Guenther, D. B., Li, L. H., et al. 2008, ApSS, 316, 31
De Ridder, J., Barban, C., Carrier, F., et al. 2006, A&A, 448, 689

Di Folco, E., Thivenin, F., Kervella, P., et al. 2004, A&A, 426, 601
Di Folco, E., Absil, O., Augereau, J.-C., et al. 2007, A&A, 475, 243
Eggenberger, P., Charbonnel, C., Talon, S., et al. 2004b, A&A, 417, 235
Eggenberger, P., Carrier, F., & Bouchy, F. 2005, New Astron., 10, 195
Eggenberger, P., Miglio, A., Carrier, F., et al. 2008, A&A, 482, 631
Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, ApJ, 623, 585
Gai, N., Bi, S. L., & Tang, Y. K. 2008, ChJAA, 8, 591
Gray, D. F., & Baliunas, S. L. 1994, ApJ, 427, 1042
Grevesse, N., & Sauval, A. J. 1998, SSRv, 85, 161
Guenther, D. B. 1994, ApJ 422, 400
Guenther, D. B., & Demarque, P. 2000, ApJ, 531, 503
Guenther, D. B., Demarque, P., Kim, Y.-C., et al. 1992, ApJ, 378, 372
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Judge, P. G., Saar, S. H., Carlsson, M., & Ayres, T. R. 2004, ApJ, 609, 392
Kallinger, T., Weiss, W. W., Barban, C., et al. 2010, A&A, 509, A77
Kervella, P., Thiévenin, F., Morel, P., et al. 2004, A&A, 413, 231
Kjeldsen, H., & Bedding, T. R. 1995, A&A, 293, 87
Kjeldsen, H., Bedding, T. R., Baldry, I. K., et al. 2003, AJ, 126, 1483
Kjeldsen, H., Bedding, T. R., Butler, R. P., et al. 2005, ApJ, 635, 1281
Kjeldsen, H., Bedding, T. R., & Christensen-Dalsgaard, J. 2008, ApJ, 683, L175
Li, L. H., Robinson, F. J., Demarque, P., Sota, S., & Guenther, D. B. 2002, ApJ, 567, 1192
Martí, M., Lebrun, J.-C., Appourchaux, T., & Korzennik, S. G. 2004a, A&A, 418, 295
Martí, M., Lebrun, J. C., Appourchaux, T., & Schmitt, J. 2004b, in SOHO 14/GONG 2004 Workshop, Helio- and Asteroseismology: Towards a Golden Future, ed. D. Danesy, ESA SP-559, 563
Metcalfe, T. S., Creevey, O. L., & Christensen-Dalsgaard, J. 2009, ApJ, 699, 373
Metcalfe, T. S., Judge, P. G., Basu, S., et al. 2010, AAS Meeting 215, 424.16
Miglio, A., & Montalbán, J. 2005, A&A, 441, 615
Miglio, A., Montalbán, J., Eggenberger, P., et al. 2009a, AIP Conf. Proc., 1170, 132
Miglio, A., Montalbán, J., Baudin, F., et al. 2009b, A&A, 503, L21
Mossier, B., Bouchy, F., Catala, C., et al. 2005, A&A, 431, L13
Pijpers, F. P. 2003, A&A, 400, 241
Pijpers, F. P., Teixeira, T., Garcia, P. J., et al. 2003, A&A, 406, L15
Provost, J., Martic, M., & Berthomieu, G. 2004, ESA SP-559, 594
Provost, J., Berthomieu, G., Martic, M., & Morel, P. 2006, A&A, 460, 759
Roberts, F. J., & Nayfonov, A. 2002, ApJ, 576, 1064
Robinson, F. J., Demarque, P., Li, L. H., et al. 2003, MNRAS, 340, 923
Samadi, R., Georgobiani, D., Trampedach, R., et al. 2007, A&A, 463, 297
Soubiran, C., Katz, D., & Cayrel, R. 1998, A&AS, 133, 221
Stello, D., Chaplin, W. J., Basu, S., et al. 2010, MNRAS, 400, L80
Soubiran, C., Katz, D., & Cayrel, R. 1998, A&AS, 133, 221
Tang, Y. K., Bi, S. L., & Gai, N. 2008a, ChJAA, 8, 421
Tassoul, M. 1980, ApJS, 43, 469
Teixeira, T. C., Kjeldsen, H., Bedding, T. R., et al. 2009, A&A, 494, 237
Thévenin, F., Provost, J., Morel, P., et al. 2002, A&A, 392, 9
Thoul, A. A., Bahcall, J. N., & Loeb, A. 1994, ApJ 421, 828