Introduction

One of the special cases of forensic identification is the identification of the dead based on the analysis of certain signs. Conventionally, forensic medical identification of the dead has a narrow focus. It is focused on the search for an individual set of physical characteristics for each person, such as gender, age, race, anatomical and morphological features, and measurement indicators [1, 2]. Bony skeleton is less susceptible to destructive changes and is a source of important information for a forensic medical expert. The human skull is a complex object with a large number of anatomical variations in different populations and racial groups [3, 4]. Currently, when conducting forensic medical examination on the territory of the CIS countries, including Kazakhstan, unified craniometric criteria developed by Pashkova and Reznikov are used [5]. These criteria are recognized as common for geographically and genetically remote populations. However, the literature presents the results of scientific research confirming the influence of the environment (in a broad sense) on the shape of the skull [4], [6], [7]. A number of studies have noted the low heritability of most craniometric signs [8], [9]. The data of population genetics researchers indicate that the morphological and genetic classifications of workforce significantly differ...
from each other [10], [11], [12], [13]. The question of the relative role of human skull variability factors - genetic, environmental, stochastic - remains actual [14], [15], [16], while most researchers have no doubts about the influence of environmental factors on the variability of the human skull [2], [8], [14], [15]. The researchers note that their relative value and expression vary under the influence of (among others) local environmental or genetic influences [3], [9], [11], [13], [16]. In this case, the accuracy of identification when applying standards used on the territory of the CIS (Commonwealth of Independent States) that do not relate to specific populations and standards, specific for population, may be questionable. This underlines the importance and necessity of forming standards aimed at the population of Kazakhstan as a whole and its regions separately. In Kazakhstan, forensic medical identification of a person does not yet have a good anthropometric base, and the lack of clear ideas about the parameters and proportions of the skull of the population living in various territories of modern Kazakhstan creates a certain gap when conducting medical forensic and criminalistic researches. The presence of national characteristics of craniometry among the population of Kazakhstan involves a detailed study of the characteristics of craniometric indicators and the development of specific reference values for them.

Aim of the research

The aims is to evaluate the osteometric dimensions of the human skull in different regions of Kazakhstan, to establish the limits of variability of craniometric indicators in the process of human adaptation to environmental conditions and to detect identification criteria for forensic medical identification.

Materials and Methods

Sampling area and sample collection

The craniometric parameters of well-preserved 187 male and 114 female adult skulls found on the territory of Central and South Kazakhstan were examined. Retrospective researches from 1998 to 2015 were conducted according to archival samples and forensic medical reports. In the period from 2016 to 2021, the research was carried out on the basis of current expert studies conducted in the regional branches of the Center for Forensic Examinations of the Ministry of Justice of the Republic of Kazakhstan. All the samples studied belonged to persons in the age category from 22 to 70 years. Persons with obvious congenital or acquired cranial pathology, due to possible influence on normal physiology or inability to accurately determine the required cranial landmarks, were excluded from this research. The quantitative characteristics of the conducted researches are presented in Table 1.

Data acquisition

For osteometric measurements, researches of archival and actual samples, in accordance with the standard legal procedure in the Republic of Kazakhstan, in all cases, a written permission of law enforcement bodies was obtained.

The research was approved by the Committee on Bioethics of Scientific Research of the NP JSC “Medical University of Karaganda” (Record No.4 of 06.12.2021) for the use of human tissues. The material was collected in accordance with the rules adopted by the Ethical Commission of Karaganda Medical University (Republic of Kazakhstan).

Sample preliminary processing procedures

Preliminary processing of the studied samples from soft tissues and soil overlays was carried out by mechanical cleaning. Then cleaned samples were dried at room temperature. Dried bone objects, if necessary, were degreased in chloroform in an alcohol-ether mixture (1:1). If necessary, bone fragments of the skull were glued together with water-soluble glue (polyvinyl acetate). The samples prepared in this way were packed, labeled, and stored in a dry place at room temperature until the research was carried out.

Research methods

Each skull was measured using 23 standard craniometric points. Measurements were carried out on 25 craniometric indicators. A unified craniometric technique was used to determine the size of the skull and its individual formations, recorded in numerical values using standard anthropological craniometric instruments. Reaching adulthood was established on the basis of fusion of basal occipital synchondrosis and, additionally, the stage of the eruption of the 3\(^{rd}\) molar. The results were entered into an electronic database containing the medical and biological characteristics of the studied persons. To determine

Table 1: Quantitative description of the conducted research (by region)

Person's gender	Central Kazakhstan	South Kazakhstan										
	Skull shape	Race	Skull shape	Race								
	Dolichocranes	Mesocranes	Dolichocranes	Mesocranes								
	Mesocranes	Brachyocranes	Caucasoid	Mongolian								
				Mestizoes								
Men	18	34	54	35	38	33	31	32	38	7	65	9
Women	12	20	39	23	28	20	9	32	40	9	61	11
In total	30	54	53	58	66	53	20	64	78	16	125	20

https://oamjms.eu/index.php/mjms/index
the sex of the skull, data from the summary table of reference values of the sizes of male and female skulls were used [17]. To determine the shape of the skull, a cranial index was used, representing the percentage ratio between the transverse and longitudinal dimensions of the cranial vault and calculated by the formula: \(\frac{b}{a} \times 100/Z \), where \(b \) – transverse size of the skull, \(a \) – its longitudinal size. The diagnosis of race was carried out according to cranio metric signs using a one-dimensional discriminant model of mature persons based on the calculation of the size of angles and cranial pointers [17].

The obtained data were processed using statistical software packages Statistica 13.3 (StatSoft Inc., USA) and SPSS 12.0.2. Methods of descriptive, parametric (Welch’s \(t \)-test for two independent samples, Pearson’s Chi-square test) and non-parametric statistics (the Mann–Whitney criterion for comparing quantitative features in two independent samples when analyzing quantitative data by region, the Kruskal–Wallis criterion and the median test for comparing three independent groups when conducting quantitative data comparison by race) were used. Differences in values were considered statistically significant at a probability level of more than 95% (\(p < 0.05 \)) for two comparison groups, \(p < 0.0170 \) for three comparison groups [18].

Results and Discussion

Results

Descriptive statistical data were calculated, and sexual dimorphism was estimated for 25 cranio metric indicators studied in two regions of Kazakhstan after the exclusion of outliers. The data of descriptive statistics of the sizes of male and female skulls found in the southern and central parts of Kazakhstan are presented in Table 2. Further, comparative studies and analysis were carried out depending on the normality of the distribution for men and women separately. The analysis of 25 cranio metric indicators under research showed that the size of the skull, regardless of gender, found in the territories of the Central region and the Southern region of Kazakhstan, differ.

When evaluating quantitative data, it was found that only 7 indicators in men and 13 indicators in women out of 25 cranio metric indicators studied obey the law of normal distribution. Further statistical studies on these criteria were carried out using the Welch \(t \)-criterion for two independent samples. In the process of studying the differences between these seven cranio metric indicators of male skulls found in different regions of Kazakhstan, statistically significant differences were revealed only by two cranio metric indicators: full face height (\(gn-n \)) and mandible body height (\(gn-id \)). Hence, the size of full face height (\(gn-n \)) at male skulls found in the southern part of Kazakhstan 123.4±7.7 mm (\(\text{M±SD} \)), which statistically significantly exceeds the similar size of 119.0 ± 8.9 mm in the skulls of men found on the territory of the central part of the Republic of Kazakhstan (\(t \)-value = −2.515; \(df = 90; \ p = 0.014 \)). The size of the mandible body height (\(gn-id \)) of male skulls in the southern region is 33.6 ± 2.8 mm (\(\text{M±SD} \)), the same size in the central region is 31.9 ± 3.4 mm (\(t \)-value = −2.471; \(df = 68; \ p = 0.015 \)). Figure 1 presents the craniological characteristics of these parameters of male skulls found in the Central and South regions of Kazakhstan.

In a pairwise comparison of 13 cranio metric indicators obeying the law of normal distribution, it was found in women that the sizes of female skulls found on the territory of Central Kazakhstan, 5 of them, are statistically significantly smaller than the corresponding sizes of female skulls found on the territory of Southern Kazakhstan. Table 3 presents comparative statistical data of the Welch test for five cranio metric indicators of the size of female skulls in the two regions studied.

Next, quantitative cranio metric indicators having a different distribution from normal were analyzed using the Mann–Whitney criterion. The comparative analysis of cranio metric indicators of male skulls in the two studied regions statistically significantly differs in 3 indicators. Thus, the upper face height (\(n-al \)), the medium face width (\(zm-zm \)), and the nose height (\(n-ns \)) in male skulls found in the central part of Kazakhstan are significantly less than the corresponding parameters in male skulls found in the southern part. The results of the corresponding statistical analysis of the studied cranio metric indicators are presented in Table 4.

As shown in Table 5, the median values of parameters in the skulls of women in the central and southern parts of Kazakhstan (\(p < 0.05 \)) differ significantly. This applies to such cranio metric indicators of female skulls as the height diameter (\(b-ba \)), the foramen magnum breadth, and the bizygomatic diameter (\(zy-zy \)).

Attention is drawn to the fact that, in general, the sizes of skulls found on the territory of the southern part of Kazakhstan are larger in men by 5, and in women by 8 cranio metric indicators. Figure 1 shows the difference in the size of the skull in the two studied regions in men, Figure 2 shows similar parameters for women. It is obvious that the size of the skulls, regardless of gender, found on the territory of Southern Kazakhstan is much larger than that of their counterparts from Central Kazakhstan.
Table 2: Descriptive statistics of craniometric indicators by region (mm)

Serial number	Craniometric indicators	Abbreviation	Value	Male Central Kazakhstan	Female Central Kazakhstan	Male South Kazakhstan	Female South Kazakhstan									
1	Longitudinal diameter (glabella-opisthokranion)	g-op	Maximum	197	188	187	182	168	145	150	161	187	134	135	137	
2	Transverse diameter (euryon-euryon)	eu-eu	Maximum	180/177–185	186/182–186	172/166.5–176	173/163–175	135	125	130	135	130	130	135	135	
3	Height diameter (basion-bregma)	ba-b	Maximum	170	148	133	133	110	87	110	120	136	133	130	127	
4	Skull base length (basion-nasion)	ba-n	Maximum	141	155	104	107	36	36.5	34.8–37	36	36.5	34.8–37	36	36.5	
5	Minimal forehead width	fl-ft	(frontotemporale-frontotemporale)	Maximum	130	123	124	124	112	114	108	112	112	112	112	112
6	Skull base width (auriculare-auriculare)	au-au	Maximum	144	143	130	131	86	90	83	84	86	90	83	84	
7	Asterion width (asterion-asterion)	ast-ast	Minimum	140	138	116	117	77	84	98	94	77	80	98	94	
8	Mastoid width (mastoideol-mastoideol)	m-m	Maximum	124	120	112	115	90	96	96	96	90	96	96	96	
9	Skull circumference (by glabella)	-	Maximum	595	560	550	525	50	54	48	48	50	54	48	48	
10	Sagittal chord (nasion-opistion)	n-o	Maximum	183	184	145	188	39	40	41	41	39	40	41	41	
11	Frontal chord (nasion-bregma)	n-b	Maximum	128	130	117	119.7	97	100	90	100	97	100	90	100	
12	Bregma-chord (bregma-lambda)	b-l	Minimum	140	135	152	133	97	84	80	94.3	97	84	80	94.3	
13	Foramen magnum length (basion-opistion)	ba-o	Minimum	49	47	41	41	31	31	30	31	31	30	31	30	
14	Foramen magnum breadth	-	Maximum	37/36–38	36.5/34.8–37	34.3/33–35	35.3/34.2–36	36	35	35	35	35	34	35	34	
15	Bivymgomatic diameter (zygion-zygion)	zy-zy	Maximum	150	150	137	137	92	92	106	121	106	121	106	121	
16	Face base length (basion-prostenio)	ba-pr	Minimum	114	108	110	98	84	63	83	82.5	84	63	83	82.5	
17	Upper face height (nasion-allelveol)	n-al	Median	7268–75	73.45/70–76	64.5/63–67.5	68.3/64–70.1	121	114	125	125	108	125	125	125	
18	Full face height (ignation-nasion)	gn-n	Median	140	141.2	124	122	57	63	52	62	57	63	52	62	
19	Upper face width	(frontotemporale-frontotemporale)	fntfnt	Median	120	125	108	108.5	94	95	95	95	94	95	95	95
20	Middle face width (zygomaillare-zygomaillare)	zm-zm	Median	134	134	113.2	99	71	89	98	89	98	71	89	98	
21	Nose height (nasion-nasospinale)	n-ns	Median	95/91.25–99	97/94–101	98/95–102	98/95–102	95	95	95	95	95	95	95	95	
22	Orbit width (left) (maxillofrontale-ektokonzione)	mf-ek	Median	51	49	42	42	36	37	32	36	36	32	36	32	
23	Condylar width (between the external surfaces of mandible condyles)	-	Minimum	116	116	116	116	89	89	84	84	89	84	84	84	
24	Bigonal width (gonion-gonion)	go-go	Minimum	104	104	107	107	32	32	32	32	32	32	32	32	
25	Mandible body height (gnathon-infradental)	gn-id	Median	103/100–100	105/100–105	99/91–98	94.7/92–102	103	103	106	106	103	106	106	106	

Data on the ethnicity of each examined skull were obtained during the research, but the sample as a whole was taken as representative of the "typical" population of Central and Southern Kazakhstan for specific frequency statistics. For all the studied skulls of both genders, regardless of the region of detection, the predominance of brachycephaly and mesocrane forms of the skull was noted. The cranial index in brachycephaly was > 81.1% in men, >83% in women, in mesocephaly in men - 76% to 81%, in women - from 75% to 83%. The predominant width of the skull width was > 81.1% in men, >83% in women, in mesocephaly in women - from 75% to 83%.
Table 3: Comparative characteristics of craniometric indicators of female skulls depending on the region (Welch-test)

Craniometric indicators	Mean ± SD	t	df	p	Mean 1 - Mean 2	Confidence 95.00%	Confidence 95.00%
Transverse diameter (eu-eu)	137.7 ± 4.7	-3.483	59	0.001	-4.35806	-6.86211 to -1.85402	
Skull base width (au-au)	119.7 ± 4.9	-2.390	56	0.020	-3.04249	-5.99758 to -0.45289	
Mastoid width (m-m)	100.7 ± 6.2	-2.140	53	0.037	-3.02262	-5.85571 to -0.19852	
Upper face height (n-al)	64.5 ± 4.4	-2.798	51	0.007	-3.36029	-5.77159 to -0.94899	
Nose height (n-m)	47.9 ± 3.1	-3.176	56	0.002	-2.88621	-5.43806 to -0.39181	

Table 6 presents data on descriptive statistics of skulls found in the territories of Central and Southern Kazakhstan, according to the shape of the skull and races. The research showed that race affects the size of the skull base width (au-au) (U = 105.8, Z = 4.49, p = 0.00289), the bizygomatic diameter (zy-zy) (U = 111.8, Z = 5.53, p < 0.001) and the average width of the face (zm-zm) (U = 115.0, Z = 4.2, p = 0.00005) in men. Pairwise comparison of independent groups using the Mann–Whitney U-test shows statistically significant differences between the Mongolian and Caucasoid races according to these craniometric indicators. Male skulls also have statistically significant differences in the size of the condylar width and mastoid width (m-m) between races.

Table 5: Comparative characteristics of craniometric indicators of female skulls depending on the region (Mann–Whitney criterion)

Craniometric indicators	Mean ± SD	t	df	p	Mean 1 - Mean 2	Confidence 95.00%	Confidence 95.00%
Height diameter (ba-b)	127.22±122-129	282/27-30	258	-2.18733	0.028719	-2.9848 to -0.98238	
Foramen magnum breadth	130/127-133	251	3.0879	0.002016	-3.0879	-5.9201 to -0.2573	
Bizygomatic diameter	127.21±126-131	122	-2.9848	0.002838	-2.9848	-5.9201 to -0.2573	

Pairwise comparison of the skull base length (ba-n) in men, there were no statistical differences between the Mongolian, Caucasoid races, and mestizoes. At the same time, it should be noted that in female skulls found in the studied territories, the differences in the size of the skull between the races is less expressed. A comparative analysis of female skulls revealed statistically significant differences in 4 craniometric indicators out of the studied 25: foramen magnum breadth (N = 10.5, df = 3, p = 0.0146) (χ² = 11.4, df = 3, p = 0.0099), skull circumference (N = 10.9, df = 3, p = 0.0125) (χ² = 9.3, df = 3, p = 0.0255), medium face width (zm-zm) (N = 16.0, df = 3, p = 0.0012) (χ² = 16.1, df = 3, p = 0.0011) and the mandible body height (gn-id) (N = 12.0, df = 3, p = 0.077) (χ² = 8.8, df = 3, p = 0.0323) in the Kruskal–Wallis test and in the Median test.

Discussion

The main hypothesis adopted in this work is the presence in human populations of morphological features of the skull structure with changes in craniometric parameters depending on the place of residence in the territory of the Republic of Kazakhstan due to climatic, ecological, nutritional characteristics,
Table 6: Descriptive statistics of craniometric indicators depending on the shape of the skull and race

Serial number	Craniomteric indicators	Abbreviation	Value	Men	Mesztizes	Mongolian	Caucasian	Women	Mesztizes	Mongolian	Caucasian	
1	Longitudinal diameter (glabella-opisthokranion)	g-op	Maximum	197	152	198	182	176	187	155	168	174
2	Transverse diameter (eurony-euryon)	eu-eu	Maximum	158	157	168	150	143	149	139	140	146
3	Height diameter (basion-bregma)	ba-b	Maximum	144	170	155	139	130	132	134	132	134
4	Skull base length (basion-nasion)	ba-n	Maximum	575	130	132	125	123	119	125	125	125
5	Minimal forehead width (frontotemporale-frontotemporale)	ft-ft	Maximum	112	130	110	100.6	95	113	109	111	111
6	Skull base width (auriculare-auriculare)	au-au	Maximum	136	143	144	131	127	127	127	127	127
7	Asterion width (asterion-asterion)	axt-axt	Maximum	128	125	125	117	111	115	113	115	115
8	Mastoid width (mastoidale-mastoidale)	m-m	Maximum	124	122	122	112	105	108	105	108	108
9	Skull circumference (by glabella)	-	Maximum	559	575	595	525	523	550	495	490	507
10	Sagittal chord (nasion-opistion)	n-o	Maximum	149	184	183	139	130	148	123	133	138
11	Frontal chord (nasion-bregma)	n-b	Maximum	120	127	130	114	107	111	113	111	113
12	Bregma chord (bregma-lambda)	b-l	Maximum	124	125	140	112.4	107	152	152	152	152
13	Foramen magnum length (basion-opistion)	ba-o	Maximum	42	47	44	40	34	41	30	30	30
14	Foramen magnum breadth	-	Maximum	41	38	37	35	28	33	26	26	26
15	Bizygomatic diameter (zygion-zygion)	zy-zy	Maximum	141	150	148	137	132	130	130	130	130
16	Face base length (basion-proston)	ba-pr	Maximum	106	108	114	97	93	100	93	93	93
17	Upper face height (nasion-alveolare)	n-al	Minimum	77	89.3	91	72.2	71	76	65	63	68
18	Full face height (gnathion-nasion)	gn-n	Minimum	65	63	58	60	66	52	62	62	62
19	Upper face width (frontotemporale-frontotemporale)	fmt-fmt	Minimum	117	125	118	100	100	98	92	92	92
20	Medium face width (zygomaticaxial-zygomaticaxial)	zm-zm	Minimum	108	134	112.2	99.2	99	99	99	99	99
21	Nose height (nasion-nasospinale)	n-ns	Minimum	49	42	36	45	44	41	41	41	41
22	Orbit width (left) (maxillofrontale-ektokonchion)	m-ek	Minimum	39	38	36	36	37	35	35	35	35

Abbreviation: q25–q75 - q25, q75; Median/Minimum - Median/Minimum; Maximum - Maximum; Minimum - Minimum; Median - Median; g-op - g-op; eu-eu - eu-eu; ba-b - ba-b; ba-n - ba-n; ft-ft - ft-ft; au-au - au-au; axt-axt - axt-axt; m-m - m-m; zy-zy - zy-zy; ba-pr - ba-pr; fmt-fmt - fmt-fmt; q25–q75 - q25, q75; Median/Minimum - Median/Minimum.
and other endo- or exogenous factors. According to Francisco HW D’P [7] and von Cramon-Taubadel [15], the good preservation of the skull, provided by the strength of the bone structure, makes craniometry of the skull a unique tool for both archaeological and forensic medical research. The proportions of the human skull in both men and women are not only strictly individual but also extremely stable [1], [10], [19], [20]. However, the results obtained by studying the size of skulls found on the territory of the two largest regions of Kazakhstan clearly show the dependence of the size of the skull in permanent residents of a particular area. Analysis of the obtained data indicates that some craniometric indicators in the skull samples of residents of the two regions of Kazakhstan differ from those reported by other authors for different regions of Europe [21], Asia [2], [11], [22], [23], [24], Africa [25], USA [26], CIS [27], [28], and others [1], [29], [30], [31]. A characteristic feature of the craniometry of the population of the central region of Kazakhstan is the smaller size of the facial skeleton depending on latitude and is characteristic only for inhabitants of the Southern region and, according to some authors [23], [28], is most likely due to the special predominance in the ethnic composition of the nationalities of the Mongolian race, which, as a rule, is accompanied by an increase in the size of the width of the face. On the other hand, the size of the nose height varies greatly in different populations [19], [31], [34], [35]. In many countries and populations, different research formats have been carried out in different years to understand the morphological parameters of the ethnic nose, which made it possible to develop special indicators in regions with typical Korean, Chinese, Japanese, Mediterranean, African-American craniometric indicators [2], [25], [30], [31]. In addition, Maddux et al. [36] and some other researchers have substantiated the relationship between the nasal index and climate [15], [23]. It is possible that the detected differences in the size of certain craniometric indicators are associated with completely different climatic conditions in the two studied regions of Kazakhstan. The climate in the central part of Kazakhstan is sharply continental with hot temperate summers and cold, snow-free winters, and the southern part is continental with moderately warm winters and hot, long summers. According to the literature data, when a person moves from southern latitudes to the north, the shape of the nose changes [37], [38], what is consistent with the results of our research.

It should be noted that according to Iscan, the size of the facial skeleton depends on latitude and is partly related to temperature diversity [3]. Nutritional characteristics and altitude above sea level are also variables that mainly explain variations in the shape of the skull, while the average annual temperature also plays a role [7], [10], [39]. However, the relationship between climatic factors and variations of the skull ranges from low to moderate, while the average annual temperature explains almost 40% of the variations in the shape of the entire skull, facial skeleton, and cranial vault, according to some researches [13], [40]. Moreover, according to several studies, changes in the nutrition depending on the characteristics of the national cuisine were associated with the gracilization of the chewing apparatus [14], [15]. Okkesim and Sezen Erhamza HWD Q[41] suggested that a decrease or increase in loads explains the morphological differences of the mandible in modern people. Our results indicate
that climatic factors could also have a partial influence on the shape of the face and arch and, consequently, moderately contribute to the diversification of the population of the southern part of Kazakhstan. It is possible that cranial variability in Kazakhstan was formed under the influence of a complex of factors.

It is also necessary to take into account the dependence of the size, general shape of the person on age, gender, race, constitutional and individual characteristics of the organism. The latter are formed under the influence of hereditary factors and also depend on the physical condition, the presence or absence of pathological changes, social status (nutrition, speech), and other factors [16], [20]. There is a correlation between the development of the face and the degree of development of the visual organ, upper respiratory tract, jaw apparatus, and oral organs [32], [39]. The proportions of the parts of the face vary depending on age. According to Noble et al. [29], while aging, one of the main factors of changing the proportions of the face is changes in the maxillary apparatus associated with atrophy of the alveolar processes of the upper and lower jaws after tooth loss, as a result, the height of the upper and lower jaws decreases. As a result of complete loss of teeth, the face becomes much wider, and the general trend of face change with age is expressed by a decrease in the height of the facial skull [35], [40], [41].

Our results show that the average absolute size of the cranium in the compared ethnic groups does not differ very much. According to the literature data, Tuvinians and Bashkirs are noticeably distinguished by their large size of the skull [33], [42], while the cranial box in the form of both they and Kazakhs is usually medium-high in shape with the dominance of meso- or brachycranian, which is fully confirmed by the conducted researches.

According to Lacruz et al., the specific features of the anthropological type of Kazakhs were formed and developed mainly on the basis of the ancient Kazakh Caucasian race with prolonged contact with the new coming Mongolians [16]. According to Ismagulov &WD0 [33], in the classification of races, Kazakhs are assigned to the central group of the Turkish subspecies of the Mongolian race, which have a brachiocephalic type of skull with a cephalic index from 85 to 87, the nose is straight and prominent, the face is oval, the zygomatic bones are prominent and expand laterally. In addition, according to some data, the Kazakh nose is quite wide, its width is greater than that of representatives of the Caucasian and Mongolian populations but less than that of the Negroid race [27], [28]. The conducted intergroup analysis of the complex of morphophysiological indicators of the modern population of the Republic of Kazakhstan as a whole demonstrates that, according to all anthropological signs of high taxonomic significance, the Kazakh population occupies an intermediate position between representatives of the Mongolian and Caucasian large races. The population of Kazakhstan, regardless of the region of residence, has been a representative of a biosocial community for many years; people constantly create a circle of consort relations in the same specific territory, thereby transferring population-genetic characteristics to subsequent generations. According to the conducted researches, the physical type of the population of Kazakhstan appears to be mixed and does not exclude belonging to a mixed Turanoid race according to the anthropological classification [33], within which it forms its own Kazakh version.

The present analysis of the data obtained is consistent with the data obtained by other authors [1], [8], [23] on the influence of the place of residence on the size of the skull in inhabitants of different countries and peoples, creating a certain characteristic picture of variations in craniometric indicators in a particular area. Thus, the craniometric indicators of the population of Kazakhstan have specific anthropometric differences and are not typically “Asian,” and some of their proportions turned out to be more characteristic of Caucasian. It can be assumed that the process of anthropological mixing (the process of craniological homogenization) in the populations of South Kazakhstan is less pronounced than in the central region of Kazakhstan. Summarizing the obtained data, it should be noted the increased size, regardless of gender, nose height, and upper face height in inhabitants of the southern region, which differ significantly from those in the central region. The revealed craniometric differences are quite specific, unchangeable, and allow the analysis of specific quantitative craniometric indicators to determine the region of permanent residence of a person.

This research has some limitations related to the limited number of skulls examined since craniometric studies were carried out only with respect to cadaveric material. In addition, restrictions are associated with a detailed study of the size of skulls found only in two regions of Kazakhstan. The absence of macro statistical data reflecting the reference values of craniometric indicators of the skull size of the population of Kazakhstan did not allow us to establish the difference between the regions in relation to the reference values. In addition, the limitations of the research also apply to comparative research. When assessing the conjugacy of some data, it should be noted that in the comparative evaluation of the results of the research, only those variables or their values that could be estimated by paired comparison were grouped and evaluated. These disproportions can be attributed to the objective limitations of the research.

Conclusion

In recent years, there has been increased awareness of the need for research toward the
development of anthropological standards focused on specific populations, resulting in a growing collection of published forensic anthropological standards for many different groups of the world’s population. At the same time, there is a general paucity of such researches concerning the modern population of Kazakhstan, especially with regard to statistically quantitative standards for assessing the size of the skull. The most practical solution to solve this shortcoming is to obtain the necessary biological data from medical modalities. This research is part of a broader ongoing research program aimed at strengthening the capabilities of Kazakhstani forensic practitioners by developing anthropological standards targeting specific populations by region.

Author’s Contribution

Anastasia Stoyan: Resources, collection of materials, writing of the initial version. Saule Mussabekova: Conceptualization, research, methodology, verification, formal analysis, visualization, writing of original and editing. Ksenia Mkhitaryan: Data processing, resources, preparation of graphic support.

References

1. Franklin D, Cardini A, Flavel A, Kuliukas A. The application of traditional and geometric morphometric analyses for forensic quantification of sexual dimorphism: preliminary investigations in a Western Australian population. Int J Legal Med. 2012;126(4):549-58. https://doi.org/10.1007/s00414-012-0684-8 PMid:22399102

2. Ogawa Y, Imaizumi K, Miyasaka S, Yoshino M. Discriminant functions for sex estimation of modern Japanese skulls. J Forensic Leg Med. 2013;20(4):234-8. https://doi.org/10.1016/j.jflm.2012.09.023 PMid:23622466

3. Iscan MY. Forensic anthropology of sex and body size. Forensic Sci Int. 2005;147(2-3):107-12. https://doi.org/10.1016/j.forsciint.2004.09.069

4. Hughes CE, Juarez C, Yim AD. Forensic anthropology casework performance: Assessing accuracy and trends for biological profile estimates on a comprehensive sample of identified decedent cases. J Forensic Sci. 2021;66(5):1602-16. https://doi.org/10.1111/1556-4029.14782 PMid:34160079

5. Pashkova VI, Reznikov BD. Forensic Identification of the Personality by Bone Remains. Saratov: Saratov University Press; 1978. p. 320.

6. Stansfield E, Parker J, O’Higgins P. A sensitivity study of human mandibular biting simulations using finite element analysis. J Archaeol Sci Rep. 2018;22: 420-432. https://doi.org/10.1016/j.jasrep.2018.04.026

7. Francisco RA, Evison MP, Costa Junior ML, Silveira TC, Secchiere JM, Guimarães MA. Validation of a standard forensic anthropology examination protocol by measurement of applicability and reliability on exhumed and archive samples of known biological attribution. Forensic Sci Int. 2017;279:241-50. https://doi.org/10.1016/j.forsciint.2017.08.015 PMid:28926780

8. Martínez-Abadías N, Esparza M, Sjovold T, González-José R, Santos M, Hernández M, et al. Pervasive genetic integration directs the evolution of human skull shape. Evolution. 2012;66(4):1010-23. https://doi.org/10.1111/j.1558-5646.2011.01496.x PMid:22486686

9. Thomas RM, Parks CL, Richard AH. Accuracy rates of sex estimation by forensic anthropologists through comparison with DNA typing results in forensic casework. J Forensic Sci. 2016;61(5):1307-10. https://doi.org/10.1111/1556-4029.13137 PMid:27352918

10. Small C, Scheperzakt L, Hemingway J, Brits D. Three-dimensionally derived interlandmark distances for sex estimation in intact and fragmentary crania. Forensic Sci Int. 2018;287:127-35. https://doi.org/10.1016/j.forsciint.2018.02.012 PMid:29655098

11. Saini V, Srivastava R, Shamal SN, Singh TB, Kumar V, Kumar P, et al. Temporal variations in basicranium dimorphism of North Indians. Int J Legal Med. 2014;128(4):699-07. https://doi.org/10.1007/s00414-013-0957-x PMid:24374986

12. Austin D, King RE. The biological profile of unidentified human remains in a forensic context. Acad Forensic Pathol. 2016;6(3):370-90. https://doi.org/10.23907/2016.039 PMid:31239913

13. Noback ML, Harvati K. The contribution of subsistence to global human cranial variation. J Hum Evol. 2015;80:34-50. https://doi.org/10.1016/j.jhevol.2014.11.005 PMid:25661439

14. Noback ML, Harvati K, Spoor F. Climate-related variation of the human nasal cavity. Am J Phys Anthropol. 2011;145(4):599-614. https://doi.org/10.1002/ajpa.21523 PMid:21660932

15. von Cramon-Taubadel N. Evolutionary insights into global patterns of human cranial diversity: Population history, climatic and dietary effects. J Anthropol Sci. 2014;92:43-77. https://doi.org/10.4436/jass.91010 PMid:24038629

16. Lacruz RS, Stringer CB, Kimbel WH, Wood B, Harvati K, O’Higgins P, et al. The evolutionary history of the human face. Nat Ecol Evol. 2019;3(5):726-36. https://doi.org/10.1038/s41559-019-0865-7 PMid:30988489

17. Tomilina VV. Medico-forensic identification. Handbook of a forensic medical expert. M.: Publishing house‘NORMA-INFRA’. M; 2000. p. 472.

18. Grzybovsky AM, Ivanov SV, Gorbatova MA. Comparison of Quantitative Data of Two Independent Samples Using Statistica and SPSS Software: Parametric and Nonparametric Criteria. Science and Healthcare; 2016. p. 2. Available from: https://www.cyberleninka.ru/article/n/sravnenie-kolichestvennyh-dannyh-v-dvuh-nezavisimyh-vyborok-s-ispolzovaniem-programmogo-obespecheniya-statistica-i-spss. [Last accessed on 2020 Aug 05]

19. Katherine Spradley M, Jantz RL. Ancestry estimation in forensic anthropology: Geometric morphometric versus standard and nonstandard interlandmark distances. J Forensic Sci. 2016;61(4):892-7. https://doi.org/10.1111/1556-4029.13081 PMid:27364287

20. Bertzatos A, PapageorgopouloC, Valakos E, ChovalopouloME. Investigating the sex-related geometric variation of the human
21. Cappella A, Gibelli D, Vitale A, Zago M, Dolci C, Sforza C, et al. Preliminary study on sexual dimorphism of metric traits of cranium and mandible in a modern Italian skeletal population and review of population literature. Leg Med (Tokyo). 2020;44:101695. https://doi.org/10.1016/j.legalmed.2020.101695
PMID:32259691

22. Ekizoglu O, Hocaoglu E, Inci E, Can IO, Solmaz D, Aksoy S, et al. Assessment of sex in a modern Turkish population using cranial anthropometric parameters. Leg Med (Tokyo). 2016;21:45-52. https://doi.org/10.1016/j.legalmed.2016.06.001
PMID:27497333

23. Evteev A, Cardini AL, Morozova I, O’Higgins P. Extreme climate, rather than population history, explains mid-facial morphology of Northern Asians. Am J Phys Anthropol. 2014;153(3):449-82. https://doi.org/10.1002/ajpa.22444
PMID:24374801

24. Woo EJ, Jung H, Tansatit T. Cranial index in a modern people. J Forensic Sci. 2021;66(5):1617-26. https://doi.org/10.1111/1556-4029.14761
PMID:34180547

25. Liebenberg L, Krüger GC, L’Abbé EN, Stull KE. Postcranio metric sex and ancestry estimation in South Africa: A validation study. Int J Legal Med. 2020;134(2):823-32. https://doi.org/10.1007/s00414-019-02203-0
PMID:31897666

26. Kyllonen KM, Simmons-Ehrhardt T, Monson KL. Stature estimation using measurements of the cranium for populations. Forensic Sci Int. 2018;4:35-7. Available from: https://www.forens-med.ru/book.php?id=5695. [Last accessed on 2022 Feb 21].

27. Mergentay A, Dusentay B, Kulov DB, Bekembayeva GS, Zhienbayeva C, Talaspekova Y, et al. Anteroposterior length of the maxillary complex and its relationship with the anterior cranial base. Angle Orthod. 2021;91(1):88-97. https://doi.org/10.2319/020520-82.1
PMID:33289836

28. Ismagulov O, Ismagulova AO, Nadirbekov IO, Sataev MA. Dynamics of craniofacial indicators of ancient and medieval inhabitants of Kazakhstan in the light of ethnonogenesis Kazakh people. Proceedings of the Samara Scientific Center of the Russian Academy of Sciences: Social, Humanitarian, Medicobiological Sciences. 2018;5(62):59-72. Available from: https://cyberleninka.ru/article/n/dinamika-kraniologicheskix-pokazateley-drevnih-i-srednevekovyh-naselnikov-kazahstana-v-svete-etnogeneza-kazashskogo-naroda. [Last accessed 2022 Feb 20].

29. Noble J, Cardini A, Morozova I, O’Higgins P. Geometric morphometrics of craniometric variation and ancestry estimation in South Africa: Exploring age and sex variation in an Australian population. Forensic Sci Int. 2019;294:57-68. https://doi.org/10.1016/j.forsciint.2018.10.022
PMID:30543177

30. Merritt SD, Tallman SD. Cranio metric and ancestry estimation in two contemporary Caribbean populations. Forensic Sci Int. 2019;305:110013. https://doi.org/10.1016/j.forsciint.2019.110013
PMID:31710881

31. Kranoti EF, Garcia-Donas JG, Can IO, Ekizoglu O. Ancestry estimation of three Mediterranean populations based on cranial metrics. Forensic Sci Int. 2018;286:265.e1-8. https://doi.org/10.1016/j.forsciint.2018.02.014
PMID:29576396

32. Hartley S, Winburn AP. A hierarchy of expert performance as applied to forensic anthropology. J Forensic Sci. 2021;66(5):1505-14. https://doi.org/10.1111/1556-4029.14711
PMID:34180547

33. Savoldi F, Massetti F, Tsoi JK, Matlininna JP, Yeung AW, Tanaka R, et al. Anteroposterior length of the maxillary complex and its relationship with the anterior cranial base. Angle Orthod. 2021;91(1):88-97. https://doi.org/10.2319/020520-82.1
PMID:33289836

34. Gillet C, Costa-Mendes L, Rérölle C, Telmon N, Maret D, Savall F. Sex estimation in the cranium and mandible: A multislice computed tomography (MSCT) study using anthropometric and geometric morphometry methods. Int J Legal Med. 2020;134(2):823-32. https://doi.org/10.1007/s00414-019-02203-0
PMID:31897666

35. Savoldi F, Massetti F, Tsoi JK, Matlininna JP, Yeung AW, Tanaka R, et al. Anteroposterior length of the maxillary complex and its relationship with the anterior cranial base. Angle Orthod. 2021;91(1):88-97. https://doi.org/10.2319/020520-82.1
PMID:33289836

36. Maddux SD, Yokley TR, Sivon BM, Franciscus RG. Absolute humidity and the human nose: A reanalysis of climate zones and their influence on nasal form and function. Am J Phys Anthropol. 2016;161(2):309-20. https://doi.org/10.1002/ajpa.23032
PMID:27374937

37. Upapat V, Pattararchachai J, Uthamamkul S, Setabutr D. Nasal sidewall dimensions in the Asian nose: A Thai cadaveric study. Indian J Otolaryngol Head Neck Surg. 2022;74(1):5-9. https://doi.org/10.1007/s12070-020-02044-z
PMID:35070920

38. McDowell JL, Kenyhercz MW. Nasal bone and aperture shape among three South African populations. Forensic Sci Int. 2015;252:189.e1-7. https://doi.org/10.1016/j.forsciint.2015.04.016
PMID:25963274

39. Avent PR, Hughes CE, Garvin HM. Applying posterior probability informed thresholds to traditional cranial trait sex estimation methods. J Forensic Sci. 2022;67(2):440-9. https://doi.org/10.1111/1556-4029.14947
PMID:34799862

40. Pengyue L, Siyuan X, Yi J, Wen Y, Xiaoning L, Guohua G, et al. ANINet: A deep neural network for skull ancestry estimation. BMC Bioinformatics. 2021;22(1):550. https://doi.org/10.1186/s12859-021-04444-6
PMID:34866614

41. Okkesim A, Sezen Erhamza T. Assessment of mandibular ramus for sex determination: Retrospective study. J Oral Biol Craniofac Res. 2020;10(4):569-72. https://doi.org/10.1016/j.jobcr.2020.07.019
PMID:32993335

42. Petrov RV, Yagmurov OD, Bozhchenko AP. Identification significance of the dimensional characteristics of the Turkish saddle of the skull of an adult Caucasian. Bull Forensic Med. 2018;4:35-7. Available from: https://www.forens-med.ru/book.php?id=5695. [Last accessed on 2022 Feb 21].