First study of $B \to \pi$ semileptonic decay form factors using NRQCD

H. Matsufurua, S. Hashimotob,†, K-I. Ishikawaa, T. Onogia, and N. Yamadaa

a Department of Physics, Hiroshima University, Higashi-Hiroshima 739, Japan
b High Energy Accelerator Research Organization (KEK), Tsukuba 305, Japan

We present a quenched calculation of the form factors of the semileptonic weak decay $B \to \pi l\bar{v}$ with $O(1/m_Q)$ NRQCD heavy quark and Wilson light quark on a $16^3 \times 32$ lattice at $\beta = 5.8$. The form factors are evaluated at six heavy quark masses, in the range of $m_Q \sim 1.5 - 8$ GeV. $1/m_Q$ dependence of matrix elements are investigated and compared with HQET predictions. We observe clear signal for the form factors near q_{max}^2, even at the b-quark mass range. $f_0(q_{max}^2)$ is compared with f_B/f_{π} based on the soft pion theorem and significant difference is observed.

1. Introduction

Lattice study of B decay matrix elements is important for the determination of Cabibbo-Kobayashi-Maskawa matrix elements, and for investigations of applicability of Heavy quark effective theory (HQET) which is extensively applied to phenomenological studies. In this work, we calculate $B \to \pi$ form factors using the heavy quark described by $O(1/m_Q)$ NRQCD and Wilson light quark $[1]$. $G_\varphi(t+1) = \left(1 - \frac{1}{2n} H_0 \right)^n U_4 \left(1 - \frac{1}{2n} H_0 \right)^n G_\varphi(0)$

\begin{equation}
G_\varphi(t+1) = \left(1 - \frac{1}{2n} H_0 \right)^n U_4 \left(1 - \frac{1}{2n} H_0 \right)^n G_\varphi(t).
\end{equation}

\begin{equation}
H_0 = -\frac{1}{2m_Q} \Delta^{(2)}, \quad \delta H = -\frac{1}{2m_Q} \vec{\sigma} \cdot \vec{B},
\end{equation}

where $\Delta^{(2)}$ denotes the lattice Laplacian and B is the chromomagnetic field. The stabilizing parameter n should satisfy $n > 3/2m_Q$.

For the heavy quark, eight values of mass and stabilizing parameter are used: $(m_Q, n) = (5.0, 1), (2.6, 1), (2.1, 1), (2.1, 2), (1.5, 2), (1.2, 2), (1.2, 3),$ and $(0.9, 2)$. $m_Q = 2.6$ and 0.9 roughly correspond to the b- and c-quark masses. The mean-field improvement $[2]$ is applied to the heavy quark evolution equation with $u_0 = \langle \frac{1}{3} U_{\text{plaq}} \rangle^{1/4} = 0.867994(13)$.

The matrix elements are extracted from three point correlation functions,

\begin{equation}
\langle \mu | \langle x_f | \sum_{\bar{t}} \langle \bar{x}_f, t | O_B(x_f) V_\mu^\dagger (x_\pi) O_\pi (t_0, 0) \rangle \rangle.
\end{equation}

We use 20 rotationally nonequivalent sets of (\vec{p}, π) with $|\vec{p}|, |\vec{k}| \leq \sqrt{3} \cdot 2\pi/16$. The source and the current operators are set on the time slices $t_s = 4$ and $t_s = 14$ respectively. The matrix elements are extracted in the region $t_f = 23 - 28$.

*Presented by H. Matsufuru. H.M. would like to thank the JSPS for Young Scientists for a research fellowship.
†S.H. is supported by Ministry of Education, Science and Culture under grant number 09740226.
Numerical simulations were carried out on Intel Paragon XP/S at INSAM (Institute for Numerical Simulation and Applied Mathematics) in Hiroshima University.

We estimate the effect of perturbative corrections to the heavy quark self-energy and the current. In some cases, we use larger values of \(n \) for the perturbation than those in the simulation: \((m_Q, n) = (5.0, 1), (2.6, 2), (2.1, 2), (1.5, 3), (1.2, 3), \) and \((0.9, 6)\). This is because of the singularities encountered in the perturbative expressions for some set of \((m_Q, n)\) with small \(n \). The multiplicative part of the current renormalization constant is calculated with massless Wilson quark for vanishing external momenta. Two scales \(q^* = \pi/a \) and \(1/a \) are considered to define the expansion parameter \(g_V^2 \).

3. Results

It is useful to define following quantity.

\[
\hat{V}_\mu(\vec{p}, \vec{k}) = \frac{\langle \pi(\vec{k}) | V_\mu | B(\vec{p}) \rangle}{\sqrt{2} E_\pi(k) \sqrt{2} E_B(p)}
\]

This expression can be entirely composed of numerical results, without any assumption such as a dispersion relation. It is also convenient for a comparison with HQET predictions. According to the heavy quark symmetry, for \(\vec{p} = 0 \), \(\hat{V}_\mu \) takes constant value in the leading order of \(1/m_Q \):

\[
\hat{V}_4(\vec{p} = 0, \vec{k}) = \hat{V}_4^{(0)} [1 + c_4^{(1)}/m_B + \cdots],
\]

\[
\hat{V}_k(\vec{p} = 0, \vec{k}) = \frac{\hat{V}_k^{(0)}}{k} [1 + c_k^{(1)}/m_B + \cdots],
\]

where \(\vec{k} = 2 \sin(k_i/2) \). Upper two of Figure 1 show the results of \(\hat{V}_4 \) for \(\vec{p} = \vec{k} = 0 \) and \(\hat{V}_k \) for \(|\vec{k}| = 2\pi/16 \) in the case of \(\kappa = 0.1570 \). They are evaluated at three renormalization scales, mean-field tree, \(q^* = \pi/a \) and \(1/a \). Both \(\hat{V}_4 \) and \(\hat{V}_k \) less depend on \(m_B \) in comparison with \(f_B \) case. The spacial component of \(\hat{V}_4 \) is more affected by the perturbative corrections than the temporal one is. It is also predicted that

\[
\hat{V}_p(\vec{p} = 0, \vec{k}) = \lim_{\vec{p}^2 \to 0} \frac{\vec{p} \cdot \vec{V}(\vec{p}, \vec{k})/\vec{p}^2}{\sqrt{2} E_\pi(k) \sqrt{2} E_B(p)}.
\]

We extrapolate \(\hat{V}_p \) at finite \(\vec{p} \) to \(\vec{p} = 0 \) linearly in \(\vec{p}^2 \) to determine \(\hat{V}_p(\vec{p} = 0, \vec{k}) \). \(\hat{V}_p(\vec{p} = 0, \vec{k}) \) multiplied by \(m_B \) is also displayed in Figure 1. Contrary to the cases of \(\hat{V}_4 \) and \(\hat{V}_k \), \(O(1/m_B) \) effect is significant for \(\hat{V}_p \).

The matrix elements are expressed in terms of two form factors, \(f^0 \) and \(f^+ \):

\[
\langle \pi(k) | V_\mu | B(p) \rangle = \left(p + k - \frac{m_B^2 - m^2}{q^2} \right) \frac{f^+(q^2)}{q}.
\]
Finally, we consider the implication of soft pion theorem \[\text{[7,6]} \]. For the massless pion limit, \(f^0(q^2_{\text{max}}) \) should equal to \(f_B/f_\pi \). This relation is examined in Figure 3, using our result on \(f_B \) determined with slightly different form of NRQCD \[\text{[5]} \]. Significant difference is observed in large \(m_B \) region. Similar result is obtained in the work using Fermilab action for the heavy quark \[\text{[8]} \]. The origin and physical meaning of this discrepancy remains as a future problem.

REFERENCES

1. S. Hashimoto et al., hep-lat/9709010
2. A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie, Phys. Rev. D55 (1997) 3933.
3. G. P. Lepage and P. B. Mackenzie, Phys. Rev. D48 (1993) 2250.
4. K. Ishikawa et al., hep-lat/9711005.
5. N. Yamada et al., hep-lat/9711010 and K. Ishikawa et al., Phys. Rev. D56 (1997) 7028 (hep-lat/9706008).
6. N. Kitazawa and T. Kurimoto, Phys. Lett. B323 (1994) 65.
7. G. Burdman and J. F. Donoghue, Phys. Lett. B280 (1992) 287, M. B. Wise, Phys. Rev. D45 (1992) 2188.
8. JLQCD Collaboration (S. Aoki et al.), hep-lat/9711021.