Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata

Paul K Lunga1,3, Xu-Jie Qin2, Xing W Yang2, Jules-Roger Kuiate1, Zhi Z Du2* and Donatien Gatsing1*

Abstract

Background: Paullinia pinnata L. (Sapindaceae) is an African woody vine, which is widely used in traditional medicine for the treatment of human malaria, erectile dysfunction and bacterial infections. A phytochemical investigation of its methanol leaf and stem extracts led to the isolation of seven compounds which were evaluated for their antimicrobial properties.

Methods: The extracts were fractionated and compounds were isolated by chromatographic methods. Their structures were elucidated from their spectroscopic data in conjunction with those reported in literature. The antimicrobial activities of the crude extracts, fractions and compounds were evaluated against bacteria, yeasts and dermatophytes using the broth micro-dilution technique.

Results: Seven compounds: 2-O-methyl-L-chiro-inositol (1), β-sitosterol (2), friedelin (3), 3β-(β-D-Glucopyranosylxy) stigmast-5-ene (4), (3β)-3-O-(2′-Acetamido-2′-deoxy-β-D-glucopyranosyl) oleanolic acid (5), (3β,16α-hydroxy)-3-O-(2′-Acetamido-2′-deoxy-β-D-glucopyranosyl) echinocystic acid (6) and (3β)-3-O-[β-D-glucopyranosyl-(1′-3′)-2′-acetamido-2′-deoxy-β-D-galactopyranosyl]oleanolic acid (7) were isolated. Compounds 5 and 7 showed the best antibacterial and anti-yeast activities respectively (MIC value range of 0.78-6.25 and 1.56-6.25 µg/ml), while 6 exhibited the best anti-dermatophytic activity (MIC value range of 6.25-25 µg/ml).

Conclusion: The results of the present findings could be considered interesting, taking into account the global disease burden of these susceptible microorganisms, in conjunction with the search for alternative and complementary medicines.

Keywords: Paullinia pinnata, Sapindaceae, Steroidal saponin, Oleanane triterpenoid saponins, Antimicrobial activities

Background

Paullinia pinnata L. (Sapindaceae), an African woody vine, whose leaves and roots are widely used in traditional medicine for the treatment of human malaria [1] and erectile dysfunction [2]. In the West Region of Cameroon, its leaf decoction is used for the treatment of bacterial infections like typhoid fever, syphilis, gonorrhea, diarrhea, and symptoms like stomach-ache and waist pain. In East Africa, the leaves are reported to be used in the treatment of gonorrhea, wounds and microbial infections [3]. Previous phytochemical investigations have shown the presence of triterpene saponins, cardiotonic catechol tannins [4,5], flavone glycosides [6], steroids, steroidal glycosides [7], cerebrosides and ceramides [8], as well as fatty acids [1] in P. pinnata collected from different parts of Africa.

There is a very limited biological investigation of the chemical constituents from the title species P. pinnata. As a result of our interest in the chemical and biological investigation of this plant, a methylinositol (1), steroidal terpenoids (2 and 4), and oleanane triterpenoids (3, 5–7) were isolated from its leaf and stem methanol extracts. In our previous studies, the antityphoid and antioxidant properties of these compounds were evaluated [9]. The extracts, fractions and all the compounds were evaluated for their antimicrobial activities against eight bacteria, five yeasts and five dermatophytes species and the results are reported herein. Compounds 2 (β-sitosterol) and 4 (dau-costeryl) were formally isolated from P. pinnata leaves...
collected from Cameroon [7]. To the best of our knowledge, 1, 3 and 5–7 are isolated from P. pinnata for the first time, and the antimicrobial properties of 5–7 are presented here for the first time.

Methods

Plant material

The air-dried leaves and stems of P. pinnata were obtained from Dschang, West Region of Cameroon, in January 2009. The identification of plant specimens was done at the Cameroon National Herbarium in Yaounde by Mr Tadjouteu Fulbert, where a voucher specimen was deposited under the reference number 10702/SRFCam.

Extraction and isolation

The air-dried leaves (2.04 Kg) and stems (2.02 kg) of P. pinnata were powdered and extracted with MeOH (7 l x 2, 48 h each) at room temperature to give crude extracts (233.8 g and 152.17 g respectively) after concentration under reduced pressure. The leaf extract (230 g) was exhaustively and successively washed with n-hexane and acetone to afford the hexane (45.2 g), acetone (8 g) and methanol residue (156.8 g) fractions while the stem extract was partitioned into petroleum ether, ethyl acetate and water to obtain the PE fraction (8.08 g), EtOAc fraction (9.13 g) and aqueous residue fraction (109.89 g).

One hundred and fifty grams of the methanol residue fraction was applied to neutral silica gel 60 (0.2-0.5 mm) column (60 x 8 cm) and eluted with mixtures of n-hexane-ethyl acetate and ethyl acetate-methanol of increasing polarity (100:0 → 0:100 with constant polarity increase of 5%). This gave 60 fractions which were grouped on the basis of their TLC band pattern similarities into 5 fractions (F1 to F5). Further column purification of F2 (eluted with EtOAc-MeOH, 90:10) on silica gel yielded six fractions denoted F2.1 to F2.6. Nix-like crystals, formed in F2.3 (EtOAc-MeOH, 95:5) and F2.4 (EtOAc-MeOH, 90:10) were collected and purified on a sephadex gel (LH-20), eluted with an isocratic system of CHCl₃-MeOH (4:6) to afford friedelin (3, 18 mg).

The EtOAc fraction (7.07 g) was subjected to column chromatography on Rp-18 gel (MPLC, MeOH-H₂O 50:50 → 100:0) to afford 3β-[(β-D-glucopyranosyl)stigmast-5-en-3-ol (4, 119 mg), (3β)-3-O-(2′-Acetamido-2′-deoxy-β-D-glucopyranosyl) oleanolic acid (5, 170 mg) and 8 fractions. Similarly, F4 (3.60 g) was chromatographed on silica gel column and eluted with CHCl₃-MeOH (9:1 → 7:3) to give 4 fractions. F4.4 (448 mg) was subjected to sephadex LH-20 gel column chromatography and eluted with CHCl₃-MeOH (1:1) to afford (3β, 16α-hydroxy)-3-O-(2′-Acetamido-2′-deoxy-β-D-glucopyranosyl) echinocystic acid (6, 45 mg). The aqueous residue fraction (76.79 g) was mounted on a D101 macroporous resin column and eluted successively with H₂O-EtOH (10:0; 7:3; 5:5; 3:7; 0:10) to obtain 5 fractions denoted F1 to F5 respectively. F5 (946 mg) was purified on a silica gel column, eluted with a stepwise gradient mixture of CHCl₃-MeOH-H₂O (8:2:0.5 → 6:4:0.5) to afford (3β)-3-O-[β-D-glucopyranosyl-(1′→3′)-2′-acetamido-2′-deoxy-β-D-galactopyranosyl] oleanolic acid (7, 40 mg).

Identification of compounds

Optical rotations were measured with a JASCO P-1020 digital polarimeter. UV spectra were obtained using a Shimadzu UV-2401 PC spectrophotometer. IR spectra were recorded on a Bruker Tensor-27 infrared spectrophotometer using KBr pellets. 1 day and 2D NMR spectra (BrukerBioSpinGmbH, Rheinstetten, Germany) with TMS as the internal standard. ESIMS spectra were recorded on a Bruker HTC/Esquire spectrometer. HREIMS was recorded on a Waters AutoSpec Premier F776 spectrometer. Column Chromatography (CC) was performed on silica gel (200–300 mesh, Qingdao Marine Chemical Ltd., Qingdao, China), Rp-18 (40–63 μm, Merk). Fractions were monitored by TLC (GF254, Qingdao Marine Chemical Ltd., Qingdao, China), and by heating silica gel plates sprayed with 10% H₂SO₄ in ethanol. GC analysis was performed on an HP5890 gas chromatograph equipped with a H₂ flame ionization detector.
Acidic hydrolysis of 4–7, and GC analysis
Compounds 4–7 (2 mg) were each refluxed with 2 M HCl (1,4-dioxane/H2O 1:1, 2 ml) on water bath for 2 h. After cooling, the reaction mixture was extracted with CHCl3 (3 × 5 ml). The aqueous layer was evaporated to dryness with MeOH until neutral. The dried residue (sugar) was dissolved in 1 ml anhydrous pyridine and treated with L-cysteine methyl ester hydrochloride (1.5 mg), and stirred at 60°C for 1 h. Trimethylsilylimidazole (1.0 ml) was added to the reaction mixture, and this was kept at 60°C for 30 min. The resulting supernatant (4 μl) was analyzed by GC under the following conditions: H2 flame ionization detector; Column: 30QC2/AC-5 quartz capillary column (30 m × 0.32 mm); Column temperature: 180–280°C at the rate of 3°C/min; carrier gas: N2 (1 ml/min); injector temperature: 250°C; split ratio: 1/50. The configurations of D-glucose and D-galactose for compounds 4–7 were determined by comparison of the retention times of their corresponding derivatives with those of standard D-glucose and D-galactose giving a single peak at 10.669 and 10.969 min, respectively.

Antimicrobial assays
Microorganisms and culture media
The microorganisms used in this study were obtained from the American Type Culture Collection (ATCC), “EcoleNationaleVétérinaire’d’Alfort” (E), “centre Pasteur” of Yaounde-Cameroon and “Institut Pasteur” of Paris-France (IP). They included eight bacteria strains: Salmonella typhi ATCC 6539, Staphylococcus aureus ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 13883, Escherichia coli ATCC 10536, Enterococcus faecalis ATCC 10541, Enterobacter aerogenes ATCC 13048, Providencia smartii ATCC 29916; five yeasts: Candida albicans ATCC 2991, Candida guilliermondii, Cryptococcus neoformans IP 90526, Candida lutei- teniae ATCC 200950 and Candida parapsilosis ATCC 22019 and five dermatophytes: Trichophyton equinum E1424, Microsporum audouini E1421, Trichophyton men- tagrophytes E1425, Microsporum gypseum E1420 and Epi- dermophyton floccosum.

The culture media, Nutrient Agar (NA, Conda) and Sabouraud Dextrose Agar (SDA, Conda), were used for culturing bacteria and fungi respectively, while Mueller Hinton Broth (MHB, Conda), and Sabouraud Dextrose Broth (SDB, Conda) were used for the determination of minimum inhibitory and minimum microbicidal concentrations.

Preparation of microbial inocula
The inocula of bacteria and yeasts were prepared from 24 h and 48 h old agar cultures respectively. The absorbance was read at 600 nm (Jenway 6105 UV/Vis spectrophotometer-50 Hz/60 Hz) and adjusted with sterile physiological solution to match that of a 0.5 McFarland standard solution. From the prepared microbial solutions, other dilutions with sterile physiological solution were prepared to give a final concentration of 106 colony- forming units (CFU) per milliliter for bacteria and 2 × 105 spores per milliliter for yeasts [10].

Conidia suspensions of dermatophyte species were prepared from 10 days old cultures. The number of conidia was determined using a spectrophotometer and adjusted with sterile saline (NaCl) solution (0.9%) to an absorbance of 0.600 at 450 nm, corresponding to a final concentration of about 1 × 105 spores/ml [11].

Determination of minimum inhibitory concentration (MIC) and minimum microbicidal concentration (MMC)
The MICs of the samples were determined by the broth microdilution method in 96-well micro-titre plates as described in the literature elsewhere [12]. The 96-well plates were prepared by dispensing into each well 100 μl of Mueller Hinton broth for bacteria and Sabouraud Dextrose broth for fungi. The test substances were initially prepared in 10% DMSO in broth medium and 100 μl of each test sample was added into the first wells of the micro-titre plate (whose wells were previously loaded with 100 μl of broth medium). Serial two-fold dilutions of the test samples were made and 100 μl of inoculum were then added into each well. This gave final concentration ranges of 12500 to 6.10 μg/ml for extract and fractions, 100 to 0.78 μg/ml for the compounds and 12.5 to 0.09 μg/ml for reference substances. The plates were sealed with parafilm, then agitated with a plate shaker to mix their contents and incubated at 35°C for 24 h for bacteria, 48 h for yeast and at 28°C for 7 days for dermatophytes.

For bacteria, MICs were determined upon addition of 50 μl (0.2 mg/ml) p-iodonitrotetrazolium chloride (INT, Sigma-Aldrich, South Africa). Viable bacteria reduced the yellow dye to a pink color. For yeasts and dermatophytes, MICs were determined by visualizing the turbidity of the wells. The MIC corresponded to the lowest well concentration where no color/turbidity change was observed, indicating no growth of microorganism. All tests were performed in triplicates.

Minimum microbicidal concentrations were determined by adding 50 μl (for bacteria and yeasts) or 5 μl (for dermatophytes) aliquots of the preparations (without INT for bacteria), which did not show any visible color/turbidity change after incubation during MIC assays, into 150 or 195 μl of sample-free broth. These preparations were further incubated and revealed as above to obtain the MMCs. Gentamycin, nystatin and griseofulvin were used as positive controls for bacteria, yeast and dermatophytes respectively.
Results and discussion

The following known compounds: 2-O-methyl-L-chiro-inositol (1) [13] whose 13C NMR data were very close to those of L-quebrachitol [14,15], β-sitosterol (2) [16], frie- delin (3) [17,18] (Figure 1) were isolated and identified in the leaves of P. pinnata. From the MeOH stem- extract, 3β-(β-D-Glucopyranosyloxy) stigmast-5-ene or daucosterol (4) [19], 3-O-(2'-acetamido-2'-deoxy-β-D-glucopyranosyl) olean-12-en-28-oic acid or aridanin (5) [20,21], 3-O-(2'- acetamido-2'-deoxy-β-D-glucopyranosyl)-16α-hydroxyolean- 12-en-28-oic acid or lotoidoside E (7) [22] were iso- lated and identified (Figure 1). The compounds isolated in the present study were formerly isolated from other plants and the biological activities of some were demonstrated [23,24]. Besides, in our previous investigation, their antity- phoid and antioxidant properties were demonstrated [9]. P. pinnata extract have been proven to possess antioxi- dant [25] and vascular relaxation [2] properties.

The antimicrobial properties of the extracts, fractions and isolated compounds of the leaves and stems of P. pinnata are presented in Tables 1 and 2 respectively. In general, the crude extract of the leaves presented a bet- ter antibacterial activity compared to the stem extract; both of whose activities were comparable and not sig- nificant on fungi especially on dermatophytes. The re- sults show that Compound 5 and 7 exhibited significant antibacterial and anti-yeast activities respectively (MIC value range of 0.78-6.25 and 1.56-6.25 μg/ml), while 6 exhibited the best anti-dermatophytic activity (MIC value range of 6.25-25 μg/ml). 1 was the most active antibacterial compound from the leaves, but was less ac- tive compared to 5. No compound from the leaves ex- hibited antifungal activity at the tested concentration. This probably explains why P. pinnata is not used by the local population in the treatment of fungal infections, since the leaf is the part locally used. β-sitosterol (2) was formally isolated from Citrus grandis fruits and shown to possess activity against gram-positive (Bacillus cereus, Bacillus subtilis and Staphylococcus aureus) and gram- negative (Escherichia coli and Salmonella enteritidis) bacteria, with MIC value of 300 μg/ml [26]. Friedelin (3), isolated from the stem bark of Vismia rubescens demon- strated antibacterial activity against Salmonella typhi, Staphylococcus aureus, Pseudomonas aeruginosa with MIC values of 25–200 μg/ml [27]. Besides, daucosterol (4) is a known antibacterial compound [28].

In general, the antifungal activities of isolated comp-ounds were relatively lower than their antibacterial activ- ities. However 7 exhibited significant anti-yeast activity (MIC value range of 0.78-6.25 μg/ml), while 6 exhibited the best anti-dermatophytic activity (MIC value range of 6.25-25 μg/ml). Compounds 6 and 7 showed a wide spectrum of action on all the three types of microor- ganisms tested. Compounds 1, 3 and 5–7 are isolated from P. pinnata for the first time and the antimicrobial activities of 5–7 are reported herein for the first time. Though

Figure 1 Chemical structures of compounds from the leaves (1–3) and stems (4–7) of P. pinnata.
the best antibacterial compound, 5 did not show good antifungal activities. The structure-activity relationship of compound 5 and its analogue 6, shows that the introduction of an \(-\text{OH}\) group at C-16 in compound 6 considerably reduced its antibacterial activity, and increased its antifungal activities against the above mentioned microbial strains. The structures of 5 and 7 are similar, 7 showed more antifungal activity compared to 5 against the tested fungal species. This suggests that the introduction of a \(\beta\)-D-galactopyranose group at C-3 of the sugar moiety.

Table 1 Minimum inhibitory and cidal concentrations (µg/ml) of the extract, fractions and compounds from the leaves of P. pinnata against bacteria and fungi

Microorganism	Extract	Hf	Af	MRf	1	2	3	RD	
Bacteria									
S. aureus	MIC	390	97	195	48	50	/	/	0.781
	MBC	390	390	390	97	/	/	/	3.125
P. aeruginosa	MIC	390	195	781	781	6.25	/	100	0.781
	MBC	1562	781	1562	1562	50	/	100	1.562
K. pneumonia	MIC	195	390	97	781	12.5	/	50	6.25
	MBC	390	1562	781	1562	100	/	100	6.25
E. coli	MIC	48	24	12	12	0.781	100	50	0.781
	MBC	195	97	48	24	12.5	/	50	0.781
E. faecalis	MIC	195	390	390	1562	12.5	/	/	6.25
	MBC	195	781	1562	1562	50	/	/	6.25
E. aeroginese	MIC	97	195	24	48.8	50	25	50	1.562
	MBC	390	390	97	195	/	100	50	1.562
P. smartii	MIC	48	48	97	12	6.25	100	50	0.781
	MBC	195	390	390	48	100	/	50	0.781
Yeasts									
C. albicans	MIC	3125	1562	3125	/	/	/	/	3.125
	MFC	12500	6250	6250	/	/	/	/	3.125
C. guillermondii	MIC	3125	781	781	3125	/	/	/	6.25
	MFC	12500	6250	6250	/	/	/	/	12.5
C. neoformans	MIC	1562	195	97	3125	/	/	/	1.562
	MFC	6250	390	390	/	/	/	/	3.125
C. luciteniae	MIC	3125	195	195	3125	/	/	/	3.125
	MFC	12500	390	781	/	/	/	/	6.25
C. parapsilosis	MIC	6250	781	781	/	/	/	/	3.125
	MFC	12500	6250	6250	/	/	/	/	3.125
Dermatophytes									
T. equinum	MIC	12500	390	390	/	/	/	/	6.25
	MFC	/	1562	3125	/	/	/	/	12.5
M. audouinii	MIC	6250	390	781	/	/	/	/	6.25
	MFC	12500	1562	3125	/	/	/	/	6.25
T. mentagrophytes	MIC	/	781	781	/	/	/	/	3.125
	MFC	/	3125	3125	/	/	/	/	6.25
M. gypseum	MIC	12500	390	781	/	/	/	/	6.25
	MFC	/	1562	3125	/	/	/	/	12.5
E. flocosum	MIC	12500	390	781	/	/	/	/	3.125
	MFC	/	1562	3125	/	/	/	/	6.25

Extract*: leaf extract; Hf: Hexane fraction; Af: Acetone fraction; MRf: Methanol residue fraction; RD: reference drug (Gentamycin, Nystatine and Griseofulvin for bacteria, yeasts and dermatophytes respectively); /: not active (at 12500 µg/ml for extract and fractions, and 100 µg/ml for compounds).
of C-3 increased the antifungal activity. In addition, comparing the MIC and MMC values of compounds 2 and 4, it is seen that the presence of the C-3-β-D-glucopyranose group in 4 considerably increased the antimicrobial activity of the latter. Thus, the presence or absence of C-16-OH, C-3′- or C-3-β-D-hexopyranosyl groups play a critical role in determining the specific antimicrobial property of these types of oleanane triterpenoids and steroidal terpenes. The

Microorganism	Test substance	MIC	PE	EA	AR	4	5	6	7	RD
S. aureus	extract	781	1562	195	390	25	1.562	6.25	3.125	0.781
	MBC	781	3125	390	1562	100	1.562	6.25	6.25	3.125
P. aeruginosa	extract	781	781	390	781	100	3.125	50	6.25	0.781
	MBC	1562	3125	781	1562	/	6.25	100	12.5	1.562
K. pneumonia	extract	781	781	390	781	25	6.25	12.5	6.25	6.25
	MBC	781	3125	781	1562	25	6.25	12.5	6.25	6.25
E. coli	extract	24	781	97	195	25	0.781	3.125	3.125	0.781
	MBC	390	781	97	195	25	0.781	6.25	6.25	0.781
E. faecalis	extract	390	3125	781	1562	/	6.25	12.5	25	6.25
	MBC	3125	6250	1562	1562	/	6.25	12.5	100	6.25
E. aerogine	extract	390	390	97	195	25	0.781	6.25	12.5	1.562
	MBC	781	781	195	390	50	1.562	12.5	25	1.562
P. martii	extract	97	390	48.8	390	6.25	0.781	3.125	1.562	0.781
	MBC	195	1562	195	781	12.5	0.781	6.25	3.125	0.781
Yeasts	*C. albicans*	MIC	/	1562	781	3125	/	/	3.125	3.125
	MFC	/	3125	781	3125	/	/	6.25	6.25	3.125
C. guilliermandii	MIC	12500	1562	195	3125	/	/	3.125	1.5625	6.25
	MFC	12500	6250	195	6250	/	/	12.5	1.5625	12.5
C. neoformans	MIC	3125	3125	195	3125	/	/	3.125	1.5625	1.562
	MFC	6250	3125	390	3125	/	/	12.5	6.25	3.125
C. luciteniae	MIC	3125	1562	97.7	781	/	/	3.125	3.125	3.125
	MFC	6250	1562	195	1562	/	/	3.125	6.25	6.25
C. parapsilosis	MIC	6250	1562	390	1562	/	/	6.25	6.25	3.125
	MFC	12500	3125	390	1562	/	/	25	12.5	3.125
Dermatophytes	*T. equinum*	MIC	12500	390	390	3125	50	50	25	50
	MFC	/	1562	390	3125	100	100	25	50	12.5
M. audouinii	MIC	12500	781	390	3125	25	/	6.25	12.5	6.25
	MFC	/	1562	781	/	25	/	12.5	25	6.25
T. mentagrophytes	MIC	12500	390	390	781	25	50	25	50	3.125
	MFC	/	390	781	1562	50	/	25	50	6.25
M. gypseum	MIC	12500	390	195	781	12.5	25	6.25	25	6.25
	MFC	12500	1562	195	195	50	25	25	25	12.5
E. flocosum	MIC	12500	390	195	781	25	/	12.5	50	3.125
	MFC	12500	781	390	3125	25	/	25	100	6.25

Extract: stem extract; PE: Petroleum ether fraction; EA: ethylacetate fraction; AR: aqueous residue fraction; RD: reference drug (Gentamycin, Nystatine and Griseofulvin for bacteria, yeasts and dermatophytes respectively); /: not active (at 12500 μg/ml for extract and fractions, and 100 μg/ml for compounds).
ratio MMC/MIC of compounds 4–7 was generally ≤ 4 with respect to all the microorganisms studied, indicative of a possible bactericidal nature of these compounds [29]. Moreover, the activities of compounds 6 and 7 were comparable to or better than the reference antibiotics on a considerable number of the tested microorganisms.

Conclusion
The results of the present findings could be considered interesting, taking into account the global disease burden of these susceptible microorganisms, in conjunction with the search for alternative and complementary medicines. They also show that an antifungal formulation could henceforth be envisaged from the stems of *P. pinnata*.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PKL was the field investigator and drafted the manuscript. XWY analyzed the spectral data and elucidated the structures of the isolated compounds, JRK, ZZD and DG designed the isolation of compounds, XWY analyzed the spectral data and elucidated the structures of the isolated compounds, JRK, ZZD and DG designed the study and supervised the work. All authors read and approved the final manuscript.

Acknowledgements
Authors are grateful to the Academy of Science for Developing Countries (TWAS) in collaboration with the Chinese Academy of Sciences (CAS) for financial support. 2012 TWAS-CAS Postgraduate scholarship award to PKL, FR number: 3240267247.

Author details
1. Department of Biochemistry, Laboratory of Microbiology and Antimicrobial Substances, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
2. State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, P.R. China.
3. Department of Biochemistry, Laboratory of Phytochemistry and Medicinal Plants Study, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.

Received: 25 July 2014 Accepted: 30 September 2014 Published: 2 October 2014

References
1. Chabra SC, Makura RA, Makri EN: Plants used in traditional medicine in Eastern Tanzania. J Ethnopharmacol 1991; 33:143–157.
2. Zambrone A, Carpenter M, Kandoussi A, Sahpay S, Petrault O, Ouk T, Hennuyer N, Fruchart JC, Saels B, Bordet R, Duriez P, Bailleul F, Martin-Nizard F: *Paullinia pinnata* extracts rich in polyphenols promote vascular relaxation via endothelium-dependent mechanisms. J Cardiovas Phar 2006; 46:599–608.
3. Annan KGY, Adu F: Antibacterial and radical scavenging activity of fatty acids from *Paullinia pinnata*. L Pharmacogn Mag 2009; 5:119–123.
4. Bowden K: Isolation from *Paullinia pinnata* of material with action on the isolated frog heart. Brit J Pharmacol 1962; 16:173–174.
5. Kenhara J, Adam GC: La Pharmacotheque Senegalaise Traditionelle: Paris: Vigot; 1974.
6. Ebah AA, Ngheh JT, John CJ, Ikhas AK: Two New Flavone Glycosides from *Paullinia pinnata*. J Nat Prod 1999; 62:1179–1181.
7. Donge E, Hussain H, Miemangan SR, Tazoo D, Schulz B, Krohn K: Chemical constituents of *Rainingdox gabinones* and *Paullinia pinnata*. Rec Nat Prod 2009; 3:165–169.
8. Miemangan RS, Krohn K, Hussain H, Donge E: Paullinoside A and Paullinomide A: a new cerebroside and a new ceramide from leaves of *Paullinia pinnata*. Z Naturfor 2006; 61B:1123–1127.
9. Lunga PK, Tamokou JD, Fodouop SPC, Kuiate JR, Tchoumboue G, Gatsing D: Antityphoid and radical scavenging properties of the methanol extracts and compounds from the aerial part of *Paullinia pinnata*. SpringerPlus 2014; 3:302.
10. CLSI: Clinical and Laboratory Standards Institute: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standards-3rd Edition. CLSI document M27-A3 (ISBN 1-56238-666-2). 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1888 USA: CLSI; 2008. 28 (1623-7).
11. Venugopal PV, Venugopal TV: In vitro susceptibility of dermatomycosis to imidazoles. Indian J Dermatol 1992; 37:35–41.
12. Tchakam PD, Lunga PK, Kowa TK, Longfouo AHN, Wabo HK, Tapondjou LA, Tane P, Kuiate JR: Antimicrobial and antioxidant activities of the extracts and compounds from the leaves of *Paerispernum anuanticum* Engl. and Hypericum licanotum Lam. BMC Complement Altern M 2012; 12:316.
13. Zafer U, Nazif B, Ećić T, Ömer K, Ihsan Y, Süheyla K: Flavonoid glycosides and methylinositol from *Ebenushus skneckii*. Nat Prod Res 2007, 20:999–1007.
14. De Almeida MV, Cout MRC, De Assis JV, Anconi CPA, Dos Santos HF, De Almeida WB: 1H-NMR analysis of O-methyl-inositol isolomers: a joint experimental and theoretical study. Mag Reson Chem 2012, 50:608–614.
15. Koltso L, Lassila M, Jarvenpaa E, Haraldsson GG, Jonsdottir S, Yanga B: Inositol and methylinositols in sea buckthorn (*Hippophaerhamnoides*) berries. J Chromatogr B 2009, 877:1426–1432.
16. Gupta R, Sharma K, Dobhal MP, Sharma MC, Gupta RS: Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes 2011, 3:29–37.
17. Mahato SR, Kandou AP: 13C NMR Spectra of pentacyclic triterpenoids - a compilation and some salient features. Phytochemistry 1994, 37:1517–1575.
18. Klass J, Tinto WF, McLean S, Reynolds WF: Friedelane triterpenoids from *Peritas scouma*: complete 1H-NMR and 13C-NMR assignments by 2D NMR spectroscopy. J Nat Prod 1992, 55:1626–1630.
19. Alam MS, Chopra N, Ali M, Niwa M: Oleanen and stigmasteral derivatives from *Ambrosia augusta*. Phytochemistry 1996, 41:197–1200.
20. Ngasapa O, Beecher WWC, Pezzuto MJ, Farnsworth RN: Isolation of echinocystic acid-3-O-sulfate, a new triterpene, from *Tetrapleura tetraptera*, and evaluation of the mutagenic potential of molluscidic extracts and isolates. J Nat Prod 1993, 56:1872–1877.
21. Abdel-Kader M, Hoch J, Berger MJ, Evans R, Miller SJ, Wise HJ, Mamber WS, Dalton MJ, Kingston GID: Two bioactive saponins from *Albizia submisiadita* from the Surinam rainforest. J Nat Prod 2001, 64:536–539.
22. Arafah IH, Sonia P, Giuseppe A, Stefania M, Cosimo P, Wlesow A: Antiproliferativehepovane and oleane glycosides from the roots of *Gilum lotoides*. Planta Med 2005, 71:554–560.
23. Lee JH, Lee JY, Park JH, Jung HS, Kim JS, Kang SS, Kim YS, Han Y: Immunoregulatory activity by daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine 2007, 25(19):3834–3840.
24. Jiang WD, Wang SY, Liu Y, Jiang J, Hu K, Li SH, Tang L: Effect of myo-inositol of proliferation, differentiation, oxidative status and antioxidant capacity of cap enterocytes of primary culture. Aquacult Nutr. 2013, 1945–53.
25. Jimoh FO, Sofidja MO, Afolayan AJ: Antioxidant properties of the methanol extracts from the leaves of *Paullinia pinnata*. J Med Food 2007, 10:707–711.
26. Matook SM, Fumio H: Evaluation of the antimicrobial activity of extract from *Buntan* (*Citrus grandis Osbeck*) fruit peel. Pakistan J Biol Sci 2005, 8:1090–1095.
27. Tamokou JDD, Tala MF, Wabo HK, Kuiate JR, Tane P: Antimicrobial activity of methanol extract and compounds from stem bark of *Vismia rubensens*. J Ethnopharmacol 2009, 1245:571–575.
28. Eun JC, YC, YH, Sanghyun: Isolation of antibacterial compounds from *Parasenciosepedaingolus*. Hortic Environ Biete 2012, 35:561–564.
29. Yarukazu O, Takuma S: Antioxidant and photo-antioxidant activities of chloracne derivatives. J Jpn Petrol Inst 2008, 51:298–308.

doi:10.1186/1472-6882-14-369

Cite this article as: Lunga et al.: Antimicrobial steroidal saponin and oleane-type triterpenoid saponins from *Paullinia pinnata*. BMC Complementary and Alternative Medicine 2014 14:369.