Dolgopyat, Dmitry; Fayad, Bassam; Saprykina, Maria

Erratic behavior for 1-dimensional random walks in a Liouville quasi-periodic environment.

Summary: We show that one-dimensional random walks in a quasi-periodic environment with Liouville frequency generically have an erratic statistical behavior. In the recurrent case we show that neither quenched nor annealed limit theorems hold and both drift and variance exhibit wild oscillations, being logarithmic at some times and almost linear at other times. In the transient case we show that the annealed Central Limit Theorem fails generically. These results are in stark contrast with the Diophantine case where the Central Limit Theorem with linear drift and variance was established by Sinai.

MSC:
60F15 Strong limit theorems
60K37 Processes in random environments
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
37C05 Dynamical systems involving smooth mappings and diffeomorphisms

Keywords:
Liouville phenomena; localization; random walks in random environment; random walks in random potential

Full Text: DOI

References:
[1] S. Alili \textit{Asymptotic behaviour for random walks in random environments}, J. Appl. Prob. 36 (1999) 334-349.
[2] J. Brémont \textit{One-dimensional finite range random walk in random medium and stationary measure equation}, Ann. Inst. H. Poincaré Prob. Stat, 45 (2009) 70-105.
[3] J. Brémont \textit{Random walk in quasi-periodic random environment}, Stochastics and Dynamics, 9 (2009) 47-70.
[4] J.-P. Conze, Y. Guivarch, \textit{Marches en milieu aléatoire et mesures quasi-invariants pour un système dynamique}, Colloq. Math. 84/85 (2000) 457-480.
[5] D. Dolgopyat, I. Goldsheid \textit{Quenched limit theorems for nearest neighbour random walks in 1D random environment}, Comm. Math. Phys. 315 (2012) 241-277. · Zbl 1260.60187
[6] D. Dolgopyat, I. Goldsheid \textit{Central Limit Theorem for recurrent random walks on a strip with bounded potential}, Nonlinearity 31 (2018) 3381-3412. · Zbl 1392.60028
[7] D. Dolgopyat, I. Goldsheid \textit{Stationary measure for random walks on ergodic environments on a strip}, Ann. Prob. 47 (2019) 2494-2528. · Zbl 07114722
[8] D. Dolgopyat, I. Goldsheid \textit{Constructive approach to limit theorems for recurrent diffusive random walks on a strip}, Asymptotic Analysis 122 (2021) 271-325. · Zbl 07367968
[9] R. Durrett \textit{Probability: theory and examples.} 4th ed. Cambridge Univ. Press, Cambridge, 2010.
[10] N. Enriquez, C. Sabot, L. Tournier, O. Zindy \textit{Quenched limits for the fluctuations of transient random walks in random environment on \mathbb{Z}}, Ann. Appl. Probab. 23 (2013) 1148-1187. · Zbl 1279.60126
[11] I. Ya. Goldsheid \textit{Simple transient random walks in one-dimensional random environment: the central limit theorem}, Probab. Theory Related Fields 139 (2007) 41-64. · Zbl 1134.60065
[12] A. O. Golosov \textit{Localization of random walks in one-dimensional random environments}, Comm. Math. Phys. 92 (1984) 491-506. · Zbl 0534.60065
[13] A. Gut \textit{Stopped Random Walks}, Springer Series in Oper. Res. \& Financial Engineering, 2009.
[14] G. Lorden, \textit{On Excess Over the Boundary}, Annals of Math. Stat. 41, (1970), 520-527. · Zbl 0212.49703
[15] J. Neveu \textit{Bases mathématiques du calcul des probabilités}, 2nd ed., Masson, Paris, 1970.
[16] W. Feller \textit{An introduction to probability theory and its applications. Vol. II}, 2d ed. John Wiley \& Sons, New York-London-Sydney 1971 xxv+660 pp.
[17] H. Kesten \textit{The limit distribution of Sinai's random walk in random environment}, Phys. A 138 (1986) 299-309. · Zbl 0666.60065
[18] H. Kesten, M. V. Kozlov, F. Spitzer “Limit law for random walk in a random environment”, Composito Math. 30 (1975) 145-68. · Zbl 0388.60069

[19] J. Peterson “Limiting distributions and large deviations for random walks in random environments”, PhD Thesis - University of Minnesota, 2008.

[20] J. Peterson “Quenched limits for transient, ballistic, sub-gaussian one-dimensional random walk in random environment”, Ann. Inst. H. Poincare, Prob. Stat. 45 (2009) 685-709. · Zbl 1178.60188

[21] J. Peterson, G. Samorodnitsky “Weak quenched limiting distributions for transient one-dimensional random walk in a random environment”, Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013) 722-732. · Zbl 1277.60188

[22] J. Peterson, O. Zeitouni “Quenched limits for transient zero-speed one-dimensional random walk in random environment”, Ann. Prob. 37 (2009) 143-188. · Zbl 1179.60070

[23] D. Revuz, M. Yor “Continuous martingales and Brownian motion”, 3d edition. Grundlehren der Mathematischen Wissenschaften 293 (1999) Springer Berlin, xiv+602 pp.

[24] Ya. G. Sinai “The limiting behavior of a one-dimensional random walk in a random medium”, Theory Prob. Appl. 27 (1982) 256-268. · Zbl 0505.60086

[25] Ya. G. Sinai “Simple random walks on tori”, J. Statist. Phys. 94 (1999) 695-708. · Zbl 0948.60030

[26] F. Solomon “Random walks in a random environment”, Ann. Probab. 3 (1975) 1-31. · Zbl 0305.60029

[27] O. Zeitouni “Random walks in random environment”, Lecture Notes in Math. 1837 (2004) 193-312.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.