Genome sequences of two clinical *Escherichia coli* isolates harboring the novel colistin-resistance gene variants *mcr*-1.26 and *mcr*-1.27

Bernd Neumann1*, Wiebke Rackwitz1, Klaus-Peter Hunfeld2, Stephan Fuchs1, Guido Werner1 and Yvonne Pfeifer1

Abstract

Background: Colistin is still a widely used antibiotic in veterinary medicine although it is a last-line treatment option for hospitalized patients with infections caused by multidrug-resistant Gram-negative bacteria. Colistin resistance has gained additional importance since the recent emergence of mobile colistin resistance (*mcr*) genes. In the scope of a study on colistin resistance in clinical *Escherichia coli* isolates from human patients in Germany we characterized the *mcr*-1 gene variants.

Results: Our PCR-based screening for *mcr*-carrying *E. coli* from German patients revealed the presence of *mcr*-1-like genes in 60 isolates. Subsequent whole-genome sequence-based analyses detected one non-synonymous mutation in the *mcr*-1 gene for two isolates. The mutations were verified by Sanger sequencing and resulted in amino acid changes Met1Thr (isolate 803-18) and Tyr9Cys (isolate 844-18). Genotyping revealed no relationship between the isolates. The two clinical isolates were assigned to sequence types ST155 (isolate 803-18) and ST69 (isolate 844-18). Both *mcr*-1 variants were found to be located on IncX4 plasmids of 33 kb size; these plasmids were successfully conjugated into sodium azide resistant *E. coli* J53 Azir in a broth mating experiment.

Conclusions: Here we present the draft sequences of *E. coli* isolate 803-18 carrying the novel variant *mcr*-1.26 and isolate 844-14 carrying the novel variant *mcr*-1.27. The results highlight the increasing issue of transferable colistin resistance.

Keywords: Colistin-resistance, *mcr*-1, *Escherichia coli*, IncX4

Background

The spread of multidrug-resistant Gram-negative bacteria with resistance to carbapenem antibiotics is a serious threat for public health globally and has led to the re introduction of colistin, also known as polymyxin E, as a treatment option of last resort [1]. The emergence of colistin resistance in *Escherichia coli* (*E. coli*), a gut commensal of humans and animals, also appearing as opportunistic pathogen, is due to chromosomal mutations or plasmid-mediated genes (*mcr*) that were first described in 2015 [2–4]. So far, a total of 10 different *mcr* genes (*mcr*-1–*mcr*-10) are known; each gene has its origin in a specific bacterial species [5]. The gene *mcr*-1 is most prevalent and 25 different *mcr*-1 variants based on single amino acid substitutions have been submitted to the NCBI database, as of March 2020.
In 2015, the prevalence of colistin resistance in *E. coli* from livestock animals and meat products in Germany was 5–10%; and this colistin resistance was mainly caused by the presence of resistance gene *mcr-1* [6]. In contrast, there is no routine testing of colistin susceptibility in human medicine; often only multidrug resistant isolates are occasionally tested. To assess the extent of spread of *mcr-1* genes we collected in cooperation with several laboratories, colistin-resistant *E. coli* isolates from human patients in German hospitals over a 4-year-period (2016-2019). MCR-1 producing isolates were identified by PCR screening, and for the isolates described in this study the transferability of *mcr-1* genes was tested in broth mate conjugation experiments. Finally, whole-genome sequencing and subsequent in silico analyses were performed. Here, we present the draft genome sequences of *E. coli* human isolates 803-18 and 844-18, harboring the novel variants *mcr-1.26* and *mcr-1.27*, each located on an IncX4 33 kb plasmid.

Methods

Bacterial isolates

In 2018, the two colistin-resistant *E. coli* isolates 803-18 and 844-18 were sent from two hospitals in the federal state of Hesse, Germany, to the Robert Koch Institute for confirmation of colistin resistance and identification of the genetic resistance determinant. The *E. coli* isolate no. 803-18 was isolated from blood culture of a 79 years old male patient presenting fever. The second *E. coli* (no. 844-18) was isolated from an intraoperative swab of a 48 years old female patient.

Phenotypic and PCR-based analyses

In the Robert Koch Institute species identification and antimicrobial susceptibility testing was performed by broth microdilution according to EUCAST (clinical breakpoints (v 10.0) or epidemiological cut-off values (ECOFFs), (http://www.eucast.org)). The following antibiotic substances and substance combinations were tested: ampicillin, cefotaxime, ceftazidime, cefoxitin, meropenem, gentamicin, amikacin, streptomycin, nalidixic acid, ciprofloxacin, chloramphenicol, tetracycline, sulfamethoxazole-trimethoprim and colistin.

PCR screening for the presence of colistin resistance gene *mcr-1* and in *E. coli* frequently occurring β-lactamase genes (*bla*_{TEM}, *bla*_{SHV}, *bla*_{CTX-M-groups 1-2-9}) was performed as previously described [4, 7]. Furthermore, a PCR-based method to determine phylogenetic groups of *E. coli* was applied [8].

Conjugation experiments

The transferability of *mcr-1* genes of isolates 803-18 and 844-18 was investigated by broth mate conjugation experiments; the sodium azide-resistant strain *E. coli* J53 Azi⁺ served as the recipient. Transconjugants were selected on Luria–Bertani agar plates containing sodium azide (200 mg/L) and a colistin disk (10 µg). Antimicrobial susceptibilities and presence of *mcr-1* and β-lactamase genes were tested for selected transconjugants. To further verify the transfer of plasmids, general plasmid content and plasmid size were determined by S1-nuclease restriction and pulsed-field gel electrophoresis (PFGE) as described before [9].

Whole-genome sequencing and downstream bioinformatic analyses

DNA extraction was performed using the DNeasy Blood & Tissue kit (Qiagen) and extracted DNA was quantified using the Qubit dsDNA HS Assay Kit (Invitrogen), both according to the manufacturer’s protocols. Genomic libraries were generated with the NexteraXT kit (Illumina). Whole-genome sequencing (WGS) was carried out using the Illumina HiSeq 1500 (2 × 250 bp; HiSeq Rapid SBS Kit v2) benchtop device in ‘Rapid Run Mode’.

Raw reads were processed using the pipeline QCumber (v 2.1.1), where the FastQC (v 0.11.5), Trimmomatic (v 0.36; options ‘sliding window 4:20’, ‘MINLEN: 50 bp’) and Kraken (v 1.0.0) algorithms were included (https://gitlab.com/RKIBioinformaticsPipelines/QCumber/). The draft de novo reconstruction was done using the SPAdes algorithm (v 3.12.0) with default parameters. In a subsequent filtering step, all contigs<200 bp were excluded. Using the QUAST algorithm without a reference sequence, the quality of draft genome sequences was investigated [10].

The de novo reconstructed sequences were used to extract multilocus sequence types (MLST; Achtmann scheme) and complex types (CT), based on core genome multilocus sequence typing (cgMLST; 2513 allele targets) by utilizing the SeqSphere[®] software (v 6.0.0, Ridom GmbH) as described before [11, 12]. Gene annotation was determined by the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) [13]. To predict plasmid content in silico, the PlasmidFinder web tool (v 2.1) was used [14]. The NCBI blastn database was used to search for known replicon types, in case of contigs carrying a predicted replicon. Further, the SerotypeFinder (v 2.0) and the VirulenceFinder (v 2.0) web tools were used to characterize the isolates [15, 16].

Identifying mcr genes and variants

Using raw reads, the tool ResFinder (v 3.1.0) was used to identify *mcr* genes [17]. Identified *mcr-1-like* genes were extracted from the contigs and aligned to a *mcr-1.1* reference sequence (gene accession no: NG_050417.1) to calculate a gene-based phylogeny using PhyML.
(Jukes-Cantor; 500 bootstraps) [4, 18]. Sequences were translated and checked for synonymous and non-synonymous mutations using the Geneious Prime software (v 2020.0.5). To verify identified non-synonymous mutations, primers were designed (Mcr-1a FWD 5′-CAG TATGGGATTGCCGCAATGA-3′, Mcr-1a REV 5′-GGG CATT'TTGAGCATGGTC-3′; product size 482 bp, Tm = 59 °C) to perform Sanger sequencing after PCR amplification. The resulting mcr-1-like gene sequences were submitted to NCBI (National Center for Biotechnology Information)/NLM (National Library of Medicine) to determine novel allele numbers (https://www.ncbi.nlm.nih.gov/pathogens/submi t-beta-lactamase/) as it has been proposed [19]. Contigs, on which the mcr-1-like genes were located, were investigated by BLAST for known plasmid origins of replication (as of December 2019; https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Quality assurance
To ensure pure cultures and to phenotypically verify the species, single colonies were repeatedly cultivated on different media (Müller-Hinton agar with sheep blood and Bile-Chrysoidin-Glycerol agar). Further, automated species identification (VITEK 2 GN) was performed. For DNA extraction, single colonies were used. After sequencing, the Kraken algorithm results, also implemented in the QCumber pipeline, were inspected for potential contaminations [20]. De novo assembled genome sequences were quality checked using QUAST.

Results and discussion
Antibiotic resistance and mcr-1 transferability
Both E. coli isolates 803-18 and 844-18 were resistant to colistin (MIC = 4 mg/L), ampicillin, sulfamethoxazole/trimethoprim, nalidixic acid, ciprofloxacin and tetracycline (Table 1). Isolate 803-18 was additionally resistant to streptomycin, and isolate 844-18 was additionally resistant to chloramphenicol. Both isolates remained fully susceptible to cephalosporins and carbapenems (Table 2).

The PCR-confirmed mcr-1-like genes in both isolates could be transferred in conjugation experiments. Transconjugant 803-18 Tc1 harbored two plasmids (ca. 33 kb and 90 kb) and showed a colistin MIC of 2 mg/L. Additional resistance to streptomycin and ampicillin was detected; presence of mcr-1-like and β-lactamase gene blaTEM was confirmed by PCR. Transconjugant 844-18 Tc1 was positive for the mcr-1-like gene, showed a colistin MIC of 2 mg/L and harbored one plasmid of ca. 33 kb size. Additional resistance to chloramphenicol, tetracycline and sulfamethoxazole-trimethoprim was detected (Table 2). These resistances might be encoded on smaller plasmids but plasmids smaller than 20 kb were not detectable by S1-PFGE.

General genome features of E. coli isolates 803-18 and 844-18
A total of 1,349,261 raw reads were obtained for E. coli no. 803-18 and 1,700,507 for E. coli no. 844-18. After de novo reconstruction of isolate 803-18, 154 scaffolds (155 contigs) were assembled, with N50: 119,280 bp and L50: 13. On average, the assembled draft genome was covered 84x. The draft genome size was determined as 4.92 Mb, with 50.6% GC content; and 4854 genes, encoding 4516 proteins, were predicted. The draft assembly of isolate 844-18 resulted in 192 scaffolds (193 contigs), with N50: 145,421 bp and L50: 12; with 45 × genome coverage. The determined draft genome size was 5.31 Mb, with 50.6% GC content; and 5228 genes, encoding 4923 proteins, were predicted.

Resistance and virulence gene predictions
ResFinder detected the presence of several resistance genes in isolates 803-18 and 844-18, respectively (Table 1) contributing to resistance to colistin (mcr-1-like), penicillins (blaTEM,β), sulfonamides (sul1, sul2), trimethoprim (dfrA1, dfrA14-like), aminoglycosides (str-A-like, str-B-like, aadA1), tetracyclines (tetA) and phenicols (catA1-like) (Table 1). These results corresponded to the phenotype of the isolates, which highlights the general applicability of WGS-based data also for antibiotic resistance predictions, as it was discussed before [21].

VirulenceFinder detected genes in both isolates that were associated with fitness or virulence traits (colonization and fitness factors) in E. coli, named iroN, gad, lpfA and iss encoding enterobactin siderophore receptor protein, glutamate decarboxylase, long polar fimbriae and increased serum survival, respectively (Table 1). For isolate 844-18 three further genes were detected: cma, encoding the bacteriocin colicin M, air encoding the adhesin enteroaggregative immunoglobulin repeat protein and its regulator eilA (hilA homolog in Salmonella) [22, 23]. However, virulence genes (e.g. eae and stx) that are associated with a specific pathotype (e.g. EAEC and EHEC) were not detected in the two isolates.

WGS-based typing
The different typing approaches showed that the two isolates were genomically dissimilar; at core-genome level (cgMLST-analysis) the isolates showed a distance of 2362 alleles to each other. Isolate 803-18 was assigned to phylogenetic group B1, serotype H45, sequence type ST155 and cgMLST-based complex type CT7500; isolate 844-18 was identified as phylogenetic group D, serotype O15:H18, ST69 and CT7508 (Table 1). Phylogenetic
Table 1 Typing results and gene detections of the *E. coli* strains 803-18 and 844-18

Strain no.	Genotyping/phylogeny	Resistance gene detection	Antibiotic susceptibility testing	Plasmid content analyses	Virulence gene detection
803-18					
		bla_{TEM}-_{mcr-1}-like	AMP, PIP, CST, STR, NAL, MOX, CIP, TET, SXT	Inc^fFIC(Ap001918), Inc^cI, Inc^cX4, ColRNA1, Col(MG828)	**gad** (glutamate decarboxylase), iiroN (enterobactin siderophore receptor protein), iss (increased serum survival), lpfA (long polar fimbriae)
	B1	**bla**_{TEM}-_{mcr-1}-like, **aadA1**-like, **mpfB**-like, **dfrA1**, **tetA**-like, **cma**-like	AMP, PIP, CST, STR, NAL, MOX, CIP, TET, SXT	Inc^fFIC(Ap001918), Inc^cI, Inc^cX4, ColRNA1, Col(MG828)	**air** (enteroaggregative immunoglobulin repeat protein), cma (colicin M), eilA (Salmonella HiiA homolog), gad (glutamate decarboxylase), iiroN (enterobactin siderophore receptor protein), iss (increased serum survival), lpfA (long polar fimbriae)
		bla_{TEM}-_{mcr-1}-like, **aadA1**-like, **mpfB**-like	AMP, PIP, CST, STR, NAL, MOX, CIP, TET, SXT	Inc^fFIC(Ap001918), Inc^cI, Inc^cX4, Col(B551.2), ColRNA1, Col(MG828)	**33 kb, 80 kb, 160 kb**
	ST155	CT7500			
844-18					
	D	**bla**_{TEM}-_{mcr-1}-like, **aadA1**-like, **mpfB**-like	AMP, PIP, CST, STR, NAL, MOX, CIP, TET, SXT	Inc^fFIC(Ap001918), Inc^cI, Inc^cX4, Col(B551.2), ColRNA1, Col(MG828)	**33 kb, 80 kb, 160 kb**
		bla_{TEM}-_{mcr-1}-like, **aadA1**-like	AMP, PIP, CST, STR, NAL, MOX, CIP, TET, SXT	Inc^fFIC(Ap001918), Inc^cI, Inc^cX4, Col(B551.2), ColRNA1, Col(MG828)	**100 kb**
	ST69	CT7508			

^a PCR according to Clermont et al. [8];^b information extracted from whole-genome sequence (WGS) data (Illumina, HiSeq), using the SeqSphere[®] software suite (v 6.0.0) with integrated MLST and cgMLST schemes (https://enterobase.warwick.ac.uk/species/index/ecoli; http://www.ridom.de/seqsphere/Task_Template_Sphere.html);^c information extracted from WGS data, ResFinder (v 3.2)/PlasmidFinder (v 2.1)/VirulenceFinder (v 2.0) (http://www.genomicepidemiology.org/);^d Broth microdilution and automated testing (VITEK 2, card AST N248) according to EUCAST (v 10.0);^e abbreviations of antibiotics: ampicillin (AMP), piperacillin (PIP), colistin (COL), sulfamethoxazole-trimethoprim (SXT), nalidixic acid (NAL), moxifloxacin (MOX), ciprofloxacin (CIP), oxytetracycline (OTE), streptomycin (STR).^f S1-nuclease restriction of whole genomic DNA and pulsed-field gel electrophoresis (PFGE) according to Barton et al. [9]. For these substance only epidemiological cut-off values (ECOFFs) are available to separates microorganisms without (wild type) and with acquired resistance mechanisms (non-wild type) to the agent in question (http://www.eucast.org/). In bold print: plasmid replicon type (incompatibility group) of plasmids that carry the colistin resistance gene *mcr-1-like*.
group B1 is known to mainly comprise environmental and animal isolates, whereas phylogenetic group D is known to include more (urogenital-) pathogenic *E. coli* [24]. This result seems to be concordant with MLST, since *E. coli-ST155* has been described as sequence type with zoonotic potential and plasmid-mediated spread of antibiotic resistance, whereas *E. coli-ST69* was described as a pandemic and pathogenic lineage [25, 26]. The latter is supported by the presence of additional virulence genes in *E. coli-ST69* isolate 844-18 that are involved in adherence to epithelial cells and biofilm formation (adherence and biofilm formation), and the fitness factor (virulence factor). The presence of additional virulence genes in *E. coli* isolate 844-18 is supported by the presence of additional virulence genes in *E. coli* isolate from raw milk cheese in Egypt. For our isolate, the IncX4 plasmid could be reconstructed with S1-PFGE analysis and were not further analyzed in the present study.

Analyses of *mcr*-1-like genes

Alignment of the extracted *mcr*-1-like genes of isolates 803-18 and 844-18 and known *mcr*-1 variants (as of December 2019) to the reference sequence of *mcr*-1.1 (NG_050417.1) revealed putative point mutations (Fig. 1). These point mutations were confirmed by PCR amplification and Sanger sequencing. Subsequent translation revealed these point mutations were non-synonymous mutations, resulting in amino acid substitutions Met1Thr (isolate 803-18) and Tyr9Cys (isolate 844-18) (Fig. 1B). The substitution Met1Thr in isolate 803-18 was due to the ACG (Thr) codon that has been reported by Hecht et al. for its potential role in non-canonical initiation in *E. coli* [31]. It is important to note that in *mcr*-1.26 an ATG (Met) is present immediately after ACG (Thr) and therefore we are uncertain of the actual effect of Met1Thr on the translation initiation of *mcr*-1.26 in isolate 803-18. This warrants further investigation.

Antibiotic susceptibility testing

Antibiotic susceptibility testing was performed by broth microdilution with MIC interpretation of minimum inhibitory concentrations (MICs) according recommendations of the European Committee on Antimicrobial Susceptibility testing (EUCAST v 10.0). Tc1, transconjugants; *E. coli* phylogenetic group determined by PCR according Clermont et al. [8], and multilocus sequence type (ST) according to the MLST scheme of Achtmann (Wirth et al. [12]). For these substance only epidemiological cut-off values (ECOFFs) are available to separates microorganisms without (wild type) and with acquired resistance mechanisms (non-wild type) to the agent in question (http://www.eucast.org).

Table 2 Antibiotic susceptibilities of *mcr*-1-like positive donor strains and transconjugants (MICs in mg/L)

| Strain no. | AMP | CTX | CAZ | FOX⊗ | GEN | AMK | STR⊗ | CMP | TET⊗ | NAL⊗ | CIP | MER | TRS | COL |
|------------|-----|-----|-----|------|-----|-----|------|-----|------|------|-----|-----|-----|-----|-----|
| 803/18 *E. coli* (B1, ST155)a | > 16 | ≤ 1 | ≤ 2 | 4 | 1 | ≤ 2 | > 64 | 8 | > 8 | > 32 | 0.5 | ≤ 0.063 | > 128 | 4 |
| 803/18 Tc1 *E. coli* J53 Azr (A, ST10)b | > 16 | ≤ 1 | ≤ 2 | 8 | 4 | 16 | > 64 | ≤ 4 | 1 | 16 | 0.063 | ≤ 0.063 | ≤ 4 | 2 |
| 844/18 *E. coli* (D, ST69)b | > 16 | ≤ 1 | ≤ 2 | 8 | 2 | 4 | 16 | > 32 | > 8 | > 32 | 0.5 | ≤ 0.063 | > 128 | 4 |
| 844/18 Tc1 *E. coli* J53 Azr (A, ST10)b | 4 | ≤ 1 | ≤ 2 | 4 | 0.5 | ≤ 2 | ≤ 4 | 32 | > 8 | 8 | 0.063 | 0.125 | > 128 | 2 |
| *E. coli* J53 Azr (A, ST10)a recipient 4 | ≤ 1 | ≤ 2 | 2 | 0.5 | ≤ 2 | 4 | ≤ 4 | 8 | 1 | 8 | 0.063 | ≤ 0.063 | ≤ 4 | 0.125 |

Antibiotic susceptibility testing was performed by broth microdilution with MIC interpretation of minimum inhibitory concentrations (MICs) according recommendations of the European Committee on Antimicrobial Susceptibility testing (EUCAST v 10.0). Tc1, transconjugants; *E. coli* phylogenetic group determined by PCR according Clermont et al. [8], and multilocus sequence type (ST) according to the MLST scheme of Achtmann (Wirth et al. [12]).

- | AMP ampicillin, CTX cephalaxine, CAZ cefazidime, FOX cefoxitin, GEN gentamicin, AMK amikacin, STR streptomycin, NAL nalidixic acid, CMP chloramphenicol, TET tetracycline, CIP ciprofloxacin, MER meropenem, TRS trimethoprim/sulfamethoxazole, COL colistin |
the conjugation experiment confirmed an increase in colistin MIC of the transconjugant (2 mg/L, Table 2).

Both mcr-1-like sequences were submitted to NCBI/ NLM and assigned with two novel mcr-1 allele numbers: mcr-1.26 (isolate 803-18; NCBI Reference Sequence: NG_068217.1; RefSeq CDS region in nucleotide: JAA-GSA010000042.1 3574-5196 (+); protein accession: WP_034169413.1) and mcr-1.27 (isolate 844-18; NCBI Reference Sequence: NG_068218.1; RefSeq CDS region in nucleotide: JAA-GSBO10000042.1 27547-29172 (-); protein accession: WP_163397051.1). The identification of two novel mcr-variants in hospitals in the same region and within 1 year shows that the spread of plasmid-mediated colistin-resistance seems to rapidly progress and new variants are constantly emerging [28].

Conclusions

Through collections and analysis of colistin-resistant E. coli from clinical samples two novel mcr-1 variants were identified, named mcr-1.26 and mcr-1.27. The IncX4 plasmids that carried these mcr-1 variants were 99.6% identical to previously described plasmids in E. coli from livestock and food samples. This raises the possibility that there might be a ‘plasmid reservoir’ outside hospital environments. However, the likelihood of an established plasmid clone circulating in the hospital can also not be excluded because both mcr-1 variants were identified on the widely disseminated IncX4 plasmids that are known for harboring mcr-1 genes. Further, these plasmids were found in two different E. coli isolates (ST155 and ST69) with the latter being described as one pandemic lineage circulating in hospitals. Future genome-based surveillance studies of large scale would help elucidating putatively plasmid-associated transmissions of mcr-1.

Abbreviations

CDS: Coding sequence; cgMLST: Core genome multilocus sequence typing; CT: Complex type; ECOFFs: Epidemiological cut-off values; PFGE: Pulsed-field gel electrophoresis; SNP: Single nucleotide polymorphism; ST: Sequence type; WGS: Whole-genome sequencing.

Acknowledgements

We want to thank Kirstin Ganske, Sibylle Müller-Bertling and Angelina Liedtke for excellent technical assistance and Andreas Thürmer and Aleksander Radonic on behalf of the genome sequencing core facility MF2 at the Robert Koch Institute.

Authors’ contributions

WS and YP performed phenotypical characterization, conjugation assays and PFGE analyses. BN and WR performed the WGS data based analyses. BN, WR and YP wrote the manuscript and designed the figures and tables. All authors made a substantial, direct and intellectual contribution to the work, in interpreting results, providing critical feedback and finalizing the manuscript. All authors read and approved the final manuscript.

Funding

BN was supported by a grant of the German Federal Ministry of Health as part of the GUCCI project (BMG Grant No. 1504-S4401). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Availability of data and materials

Raw reads, as well as de novo assembled draft genome sequences of the sequenced E. coli isolates of this study (n=2) were submitted to GenBank and the Sequence Read Archive database of the National Center for Biotechnology Information (NCBI) and are available under BioProject accession PRJNA605141 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA605141). The novel variants mcr-1.26 and mcr-1.27 were available under BioProject accession PRJNA313047 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047), with NCBI Reference Sequence: NG_068217.1 (mcr-1.26) and NG_068218.1 (mcr-1.27).

Ethics approval and consent to participants

Not applicable.
Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany. 2 Institute for Laboratory Medicine, Microbiology & Infection Control, Northwest Medical Centre, Frankfurt/Main, Germany.

Received: 16 April 2020 Accepted: 22 July 2020
Published online: 03 September 2020

References
1. Cui X, Zhang H, Du H. Carbapenemases in Enterobacteriaceae: detection and antimicrobial therapy. Front Microbiol. 2019;10:1823. https://doi.org/10.3389/fmicb.2019.01823.

2. Falagas ME, Rafailidis PI, Matthaiou DK. Resistance to polymyxins: mechanisms, treatment and treatment options. Drug Resist Updates. 2010;13(4):132–8.

3. Halaby T, Al Naiemi N, Kluytmans J, van der Palen J, Vandenbroucke‑Grauls CMJE. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother. 2013;57(7):3224–9.

4. Liu Y‑Y, Wang Y, Walsh TR, Yi L‑X, Zhang R, Spencer J, et al. Emergence of plasmid‑mediated colistin resistance mechanism MCR‑1 in animals and human beings in China. A microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.

5. Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z. Identification of novel mobile colistin resistance gene mcr‑10. Emerg Microb Infect. 2020;9(1):308–16.

6. Illegaard TO, Roschanskier N, Tenhagen BA, Grobbel M, Składnikiwicz‑Ziernier T, Thomas K, et al. Prevalence of mcr‑1 in E. coli from livestock and food in Germany, 2010‑2015. PLoS one. 2016;11(7):e0159863.

7. Schweizer C, Bischoff F, Bender J, Kola A, Gastmeier P, Hummel M, et al. Plasmid‑Mediated transmission of KPC‑2 Carbapenemase in Enterobacteriaceae in critically ill patients. Front Microbiol. 2019;10:276.

8. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4355.

9. Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing large plasmids. Anal Biochem. 1995;226(2):235–40.

10. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment and analysis tool for genome assemblies. Bioinformatics (Oxford, England). 2013;29(8):1072–5.

11. Weber RE, Pietsch M, Frühauf A, Pfeifer Y, Martin M, Luft D, et al. IS26‑mediated transfer of blaNDM‑1 as the main route of resistance transmission during a polyclonal, multispecies outbreak in a German Hospital. Front Microbiol. 2019;10:2817.

12. Writh T, Falush D, lan R, Colles F, Mensa P, Wieler LH, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006;60(5):1136–51.

13. Tatsuova T, DiGiuccio M, Baradettin A, Chetverin V, Navrotsky EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44(14):6614–24.

14. Carattoli A, Zanardi E, Garcia‑Fernandez A, Voldby Larsen M, Lund O, Villa L, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895‑903.

15. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, et al. Real‑time whole‑genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52(5):1501‑10.

16. Joensen KG, Tetzschner AM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole‑genome sequencing data. J Clin Microbiol. 2015;53(8):2410‑26.

17. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.

18. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(6):696‑704.

19. Partridge SR, Di Pilato V, Doi Y, Feldgarden M, Haft DH, Klimke W, et al. Proposal for assignment of allele numbers for mobile colistin resistance (mcr) genes. J Antimicrob Chemother. 2018;73(10):2625‑30.

20. Wood DE, Salzberg SL, Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.

21. Hendriksen RS, Bortolaia V, Tate H, Tyson GH, Aarestrup FM, McDermott PF. Using genomics to track global antimicrobial resistance. Front Public Health. 2019;7:242.

22. Shenk J, Dudley EG, Sui B, Tamboura B, Suleman A, Nataro JP, Elia, a NLR‑like regulator in enteraggregative Escherichia coli. Mol Microbiol. 2006;61(2):338–50.

23. Braun V, Heilig S, Patzer SI, Pramanik A, Romer C. Import and export of bacterial protein toxins. Int J Med Microbiol. 2015;305(2):238‑42.

24. Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM, Robeson MS, et al. What can we learn from over 100,000 Escherichia coli genomes? bioRxiv. 2020. https://doi.org/10.1101/708131.

25. Skurnik D, Clermont O, Guillard T, Launay A, Danilchanka O, Pons S, et al. Emergence of antimicrobial‑resistant Escherichia coli of animal origin spreading in humans. Mol Biol Evol. 2015;33(4):898‑914.

26. Riley LW. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect. 2014;20(5):380‑90.

27. Terveer BM, Nijhuis RT, Crobau M, Te Pas K, Veldkamp KE. Proposal for assignment of allele numbers for mobile colistin resistance (mcr) genes. J Antimicrob Chemother. 2018;73(10):2625‑30.

28. Bourrel AS, Poirel L, Royer G, Darty M, Vuillemin X, Kieffer N, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2013;68(6):1521‑30.

29. Su X, Zhang H, Wang Y, Walsh TR, Yi L‑X, Zhang R, et al. Genetic characterization of the E. coli genome using exact alignments. Genome Biol. 2014;15(3):R46.

30. Li R, Xie M, Zhang J, Yang Z, Liu L, Liu X, et al. Genetic characterization of the E. coli genome. mBio. 2018;9(1):e02381‑17.

31. Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, et al. An interactive tree of life (iTOL): v4, recent updates and new developments. bioRxiv. 2020. https://doi.org/10.1101/708131.

32. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256‑9.