SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval 2020)

Marcos Zampieri¹, Preslav Nakov², Sara Rosenthal³, Pepa Atanasova⁴, Georgi Karadzhov⁵
Hamdy Mubarak⁶, Leon Derczynski⁶, Zeses Pitenis⁷, Çağrı Çöltekin⁸

¹Rochester Institute of Technology, USA, ²Qatar Computing Research Institute, Qatar
³IBM Research, USA, ⁴University of Copenhagen, Denmark, ⁵University of Cambridge, UK
⁶IT University Copenhagen, Denmark, ⁷University of Wolverhampton, UK
⁸University of Tübingen, Germany
marcos.zampieri@rit.edu

Abstract

We present the results and main findings of SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval 2020). The task involves three subtasks corresponding to the hierarchical taxonomy of the OLID schema (Zampieri et al., 2019a) from OffensEval 2019. The task featured five languages: English, Arabic, Danish, Greek, and Turkish for Subtask A. In addition, English also featured Subtasks B and C. OffensEval 2020 was one of the most popular tasks at SemEval-2020 attracting a large number of participants across all subtasks and also across all languages. A total of 528 teams signed up to participate in the task, 145 teams submitted systems during the evaluation period, and 70 submitted system description papers.

1 Introduction

Given the multitude of terms and definitions used in the literature, a few recent studies have investigated the common aspects of different abusive language detection subtasks (Waseem et al., 2017; Wiegand et al., 2018). The precursor to this shared task, SemEval-2019 Task 6: OffensEval (Zampieri et al., 2019b) is one such example. OffensEval 2019 used the Offensive Language Identification Dataset (OLID) (Zampieri et al., 2019a), which contains over 14,000 English tweets annotated using a hierarchical three-level annotation schema that takes both the target and the type of offensive content into account. The assumption behind this annotation schema is that the target of offensive messages is an important variable that allows us to discriminate between, for example, hate speech, which often consists of insults targeted toward a group and cyberbullying which is typically targeted toward an individual. A number of related shared tasks feature subtasks corresponding to similar hierarchical models have been recently organized. Examples include HASOC 2019 (Mandl et al., 2019) for English, German, and Hindi, HatEval 2019 (Basile et al., 2019) for English and Spanish, GermEval 2019 for German (Struß et al., 2019), and TRAC 2020 (Kumar et al., 2018b) for Bengali, Hindi, and English.

OffensEval 2019 attracted nearly 800 teams and received 115 submissions evidencing the interest of the community in this topic. Therefore, we organized OffensEval 2020 (SemEval-2020 Task 12), described in this report to build off the success of the prior task with several improvements. We use the same aforementioned three-level taxonomy to annotate new datasets.

Each level in the taxonomy corresponds to a subtask in the competition:

- subtask A: Offensive language identification;
- subtask B: Automatic categorization of offense types;
- subtask C: Offense target identification.

Our new contributions are as follows:

http://creativecommons.org/licenses/by/4.0/
We provided the participants with a large-scale semi-supervised training dataset containing over 9 million English tweets (Rosenthal et al., 2020).

We use larger datasets for all subtasks during the evaluation period.

We introduce shared tasks and multilingual datasets in four new languages for sub-task A: Arabic (Mubarak et al., 2020b), Danish (Sigurbergsson and Derczynski, 2020), Greek (Pitenis et al., 2020), and Turkish (Coltekin, 2020). This opens the possibility for cross-lingual training and analysis.

OffensEval 2020 has been an extremely successful task. The significant interest continued from last year, with 528 teams participating in the task and 145 of them submitting results. Furthermore, OffensEval 2020 received 70 system description papers, an all-time record for a SemEval task.

The remainder of this paper is organized as follows: Section 2 describes the annotation schema and 3 presents the five datasets that were used in the competition. Sections 4-9 present the results and analysis of the five languages included in the competition. Finally, Section 10 concludes this paper and presents avenues for related work.

2 Annotation Schema

OLID’s annotation schema proposes a hierarchical modeling of offensive language. It classifies each example using the following three-level hierarchy:

- **Level A - Offensive Language Detection**
 Is a text is offensive (OFF) or not (NOT)?
 - NOT: content that is neither offensive, nor profane;
 - OFF: content containing inappropriate language, insults, or threats.

- **Level B - Categorization of Offensive Language**
 Is the offensive text targeted (TIN) or untargeted (UNT)?
 - TIN: targeted insult or threat towards a group or an individual;
 - UNT: text containing untargeted profanity or swearing.

- **Level C - Offensive Language Target Identification**
 Who or what is the target of the offensive content?
 - IND: the target is an individual explicitly or implicitly mentioned in the conversation;
 - GRP: hate speech, targeting group of people based on ethnicity, gender, sexual orientation, religious belief, or other common characteristic;
 - OTH: targets that do not fall into any of the previous categories, e.g., organizations, events, and issues.

3 Data

In this section, we describe our datasets for the five languages: English, Arabic, Danish, Greek, and Turkish.

All of the languages follow the OLID annotation schema and all the dataset have been pre-processed using the same methods, for example, all user mentions were substituted to @USER for anonymization. The introduction of new languages using a standardised schema with the purpose of detecting offensive and targeted speech should improve dataset consistency. This strategy is in line with current best practices in abusive language data collection (Vidgen and Derczynski, 2020). All languages contain data for Subtask A, and only English contains data for task B and C. The distribution of the data for all languages for Subtask A is shown in Table 1 and for English B and C is shown in Table 2 and 3 respectively. Examples of the labels for each dataset are shown in Table 4.
Table 1: Distribution of label combinations for Task A in the data.

Language	Training	Test	
	OFF	NOT	Total
	1,448,861	7,640,279	9,089,140
English	1,090	2,807	3,897
Arabic	1,589	6,411	8,000
Danish	384	2,577	2,961
Greek	2,486	6,257	8,743
Turkish	6,131	25,625	31,756

Table 2: Distribution of label combinations for Task B in the data.

Language	Training	Test	
	TIN	UNT	Total
	149,550	39,424	188,974
English	850	1,072	1,922

Table 3: Distribution of label combinations for Task C in the data.

Language	Training	Test		
	IND	GRP	OTH	Total
	120,330	22,176	7,043	149,549
English	580	190	80	850

Table 4: Tweet examples from the dataset, with their corresponding labels for each subtask of the annotation schema.

Language	Tweet	A	B	C
English	This account owner asks for people to think rationally.	NOT	—	—
Arabic	لعنة الله عليك يا ساءك يا حيان يا ابن الكلب.	OFF	—	—
Danish	Du glemmer Østeuropaer som er de værste	OFF	—	—
Greek	Παραδέξου το, είσαι αγάμητη εδώ και καιρό...	OFF	—	—
Turkish	Bøyie devam et seni gerizekahi	OFF	—	—
English	this job got me all the way fucked up real shit	OFF	UNT	—
English	wtf ari her ass tooo big	OFF	TIN	IND
English	@USER We are a country of morons	OFF	TIN	GRP

English The English dataset provided to the OffensEval 2020 participants is the Semi-Supervised Offensive Language Identification Dataset (SOLID). SOLID contains over nine million English tweets, and it is, to the best of our knowledge, the largest dataset of its kind. The data in SOLID was collected from Twitter using the 20 most common English stopwords such as the, of, and, to, etc. to ensure that random tweets were collected. SOLID was then labeled in a semi-supervised manner using democratic co-training and OLID as a seed dataset. Four models with different inductive biases were used: PMI (Turney and Littman, 2003), FastText (Joulin et al., 2016), LSTM (Hochreiter and Schmidhuber, 1997), and BERT (Devlin et al., 2019). The OFF tweets for the test set were selected using the semi-supervised process and then annotated manually for all subtasks. 2,500 NOT tweets were included using this process without being annotated. Inter-Annotator Agreement (IAA) was computed on a small subset of instances that were predicted to be OFF. IAA is 0.988 for Level A (almost perfect agreement), 0.818 for Level B (substantial agreement), and 0.630 for Level C (moderate agreement). Agreement in Level C is more challenging to achieve because of its 3-way annotation and because a tweet may target more than one label, but only one label can be chosen in the
annotation. More details about the dataset can be found in [Rosenthal et al. (2020)].

Arabic The Arabic dataset consists of 10,000 tweets that were manually annotated by a native speaker who is familiar with several Arabic dialects. To increase the chance of having offensive content, only tweets having two or more vocative particles (“yA” in Arabic) were considered for annotation. This increased offensive tweets in the final dataset to 20%. The vocative particle is used mainly to direct the speech to a person or a group (similar to “O” in English), and it’s widely observed in offensive communications in almost all Arabic dialects. The IAA was 0.92 (using Fleiss’ \(\kappa \) coefficient). More details can be found in [Mubarak et al., 2020b].

Danish The Danish dataset consisted of 3,600 comments drawn from Facebook, Reddit, and comments in a local newspaper, Ekstra Bladet[^3]. Collection of the dataset was partially seeded from abusive terms gathered during a crowd-sourced lexicon compilation; this seeding was limited to half the data, to ensure sufficient data diversity. The data is not divided into distinct train and development splits, but rather, system builders are encouraged to perform cross-validation, in an attempt to reduce the artefacts that standard splits can introduce [Gorman and Bedrick, 2019]. Annotation was performed at the individual post level by males aged 25-40. A full description of the dataset and an accompanying data statement [Bender and Friedman, 2018] is in Sigurbergsson and Derczynski (2020).

Greek The Offensive Greek Twitter Dataset (OGTD) used in this task is a compilation of 10,287 tweets. The tweets were sampled using popular and trending hashtags, including television programs such as series, reality and entertainment shows, along with some politically related tweets. Another portion of the dataset was fetched using pejorative terms and “you are” as keywords. This particular strategy was adopted with the hypothesis that TV and politics would gather a handful of offensive posts, along with tweets containing vulgar language for further investigation. A team of volunteer annotators participated in the annotation process, with each tweet being judged by three annotators. In cases of disagreement, labels with majority agreement above 66% were selected as the actual tweet labels. The IAA was 0.78 (using Fleiss’ \(\kappa \) coefficient). A full description of the dataset collection and annotation is detailed in [Pitenis et al. (2020)].

Turkish The Turkish dataset consists of over 35,000 tweets sampled uniformly from the Twitter stream filtered by a list of most frequent words in the language, as identified by Twitter. The tweets were annotated by volunteers. Most tweets are annotated by a single annotator. The annotation agreement calculated with 5,000 doubly-annotated tweets is 92.3% (Cohen’s \(\kappa = 0.761 \)). An interesting aspect of this data set is its sampling, which did not include any specific method for spotting offensive language, e.g., filtering by offensive words, or following usual targets of offensive language. As a result, the distribution closely resembles the actual offensive language use on Twitter and contains more non-offensive tweets than offensive tweets (approximately 4:1). The details of the sampling and the annotation process can be found in [Çöltekin (2020)].

4 Task Participation

A total of 528 teams signed up to participate in the task, and 145 of them submitted results across the five languages. Of the latter, a total of 6 teams made submissions for all five languages, 19 did so for four languages, 11 worked on three languages, 13 on two languages, and 96 focused on just one language. Tables [13][14] and [15] show a summary of which team participated in which task. A total of 70 teams submitted system description papers, and Table [12] provides links to these papers for the teams that submitted one. Below, we analyze the representation and models used for all language tracks.

Representation The vast majority of teams used some pre-trained embeddings, including context-ualized BERT-style Transformers [Vaswani et al., 2017] or ELMo [Peters et al., 2018], or context-independent embeddings from word2vec [Mikolov et al., 2013] or GloVe [Pennington et al., 2014], including language-specific embeddings such as Mazajak [Farha and Magdy, 2019] in Arabic. Some
teams used other techniques: word n-grams character n-grams lexicons for sentiment analysis and lexicon of offensive words Other representations included emoji priors extracted from the weakly supervised dataset, and sentiment analysis using NLTK (Bird et al., 2009), Vader (Hutto and Gilbert, 2014) and FLAIR (Akbik et al., 2018). While most teams used a transformer-based word embedding, with BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and mBERT (Devlin et al., 2019) being popular, the latter is known to have problems processing some Danish characters, e.g., the ð/aa mapping (Strømberg-Derczynski et al., 2020).

Machine learning models In terms of learning models, most teams used some kind of pre-trained Transformers: typically BERT, but some other models were also tried such as RoBERTa, XLM-RoBERTa (Conneau et al., 2019) Albert (Lan et al., 2019), and GPT-2 (Radford et al., 2019). Other popular models included CNNs (Fukushima, 1980), RNNs (Rumelhart et al., 1986), and GRUs (Cho et al., 2014). Older models such as SVMs (Cortes and Vapnik, 1995), fell out of fashion, but were still used by many teams, typically as part of ensembles that also used Transformers. Ensembles were also very popular.

5 English Track

A total of 87 teams made submissions for the English subtasks (23 of them participated in the 2019 edition of the task): 27 teams participated in all three English subtasks, 18 teams participated in two English subtasks, and 42 focused on one English subtask only.

Pre-processing and normalization Most teams performed some kind of pre-processing (67 teams) or text normalization (26 teams), which are typical steps when working with tweets. Text normalization included various text transformations such as converting emojis to plain text, segmenting hashtags, general tweet text normalization (Satapathy et al., 2019), abbreviation expansion, bad word replacement, error correction, lowercasing, stemming, and/or lemmatization. Other techniques included the removal of @user mentions, URLs, hashtags, emojis, emails, dates, numbers, punctuation, consecutive character repetitions, offensive words, and/or stop words.

Additional data Most teams found the weakly supervised SOLID dataset useful, and 58 teams ended up using it in their systems. Another six teams gave it a try, but could not benefit from it, and the remaining teams only used the manually annotated training data. Some teams used additional datasets from HASOC 2019 (Mandl et al., 2019), the Kaggle competitions on Detecting Insults in Social Commentary and Toxic Comment Classification, TRAC 2018 shared task on Aggression Identification (Kumar et al., 2018a; Kumar et al., 2018c), Wikipedia Detox dataset (Wulczyn et al., 2017), and the datasets from (Davidson et al., 2017) and (Wulczyn et al., 2017), as well as some lexicons such as HurtLex (Bassignana et al., 2018), and Hatebase. Finally, one team created their own dataset.

5.1 Subtask A

A total of 82 teams made submissions for Subtask A, and the results can be seen in Table 5. This was the most popular subtask among all subtasks and across all languages. The best team UHH-LT achieved an F1 score of 0.9204 using an ensemble of ALBERT models of different sizes. The second team was UHH-LT with an F1 score of 0.9204, and it used RoBERTa-large that was fine-tuned on the SOLID dataset in an unsupervised way, i.e., using the MLM objective. The third team, Galileo, achieved an F1 score of 0.9198, using an ensemble that combined XLM-RoBERTa-base and XLM-RoBERTa-large trained on the subtask A data for all languages. The top-10 teams used BERT, RoBERTa or XLM-RoBERTa, sometimes as part of ensembles that also included CNNs and LSTMs (Hochreiter and Schmidhuber, 1997). Overall, the competition for this subtask was very strong, and the scores are very close: the teams ranked 2–16

http://github.com/carpedm20/emoji
http://github.com/grantjenks/python-wordsegment
http://www.kaggle.com/c/detecting-insults-in-social-commentary
http://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
http://hatebase.org/
are within one point in the third decimal place, and those ranked 2–59 are within two absolute points in
the second decimal place from the winner. All but one team beat the majority baseline (we expect the
team flipped the labels).

#	Team	Score
1	UHH-LT	0.9204
2	Galileo	0.9198
3	Rouges	0.9187
4	GUR	0.9166
5	KS@LTH	0.9162
6	kungfupanda	0.9151
7	TysonYU	0.9146
8	AlexU-BackTranslation-TL	0.9139
9	SpurthiAH	0.9136
10	amsqr	0.9135
11	m20170548	0.9134
12	Coffee_Latte	0.9132
13	wac81	0.9129
14	hwijeen	0.9129
15	UJNLP	0.9128
16	ARA	0.9119
17	Ferryman	0.9115
18	ALT	0.9114
19	SINAI	0.9105
20	MindCoders	0.9105
21	IRLab.AIICICT	0.9104
22	erfan	0.9103
23	Light	0.9103
24	KAFK	0.9099
25	PALI	0.9098
26	PRHLT-UPV	0.9097
27	YNU_oxz	0.9097
28	IITP-AINLPML	0.9094

#	Team	Score
29	UTFPR	0.9094
30	IU-UM@LING	0.9094
31	talhaanwar	0.9093
32	SSN_NLP	0.9092
33	Hitachi	0.9091
34	kathrync	0.9091
35	XD	0.9090
36	UoB	0.9090
37	PAI-NLP	0.9089
38	PingANPAI	0.9089
39	VerifiedXiaoPAI	0.9089
40	nlpUP	0.9089
41	NLP_Passau	0.9088
42	TheNorth	0.9087
43	problemConquero	0.9085
44	Lee	0.9084
45	Wu427	0.9081
46	ITNLTP	0.9078
47	Better Place	0.9077
48	IITG-ADBU	0.9075
49	*doxaAI	0.9075
50	NTU_NLP	0.9067
51	FERMI	0.9065
52	mdherath	0.9063
53	INGEOTEC	0.9061
54	PGSG	0.9060
55	SRIB2020	0.9048
56	tcaselli	0.9036
57	OffensSzeged	0.9032
58	aprosio	0.9032
59	RGCL	0.9006
60	byteam	0.8994
61	jpmerez	0.8990
62	PUM	0.8973
63	shardul007	0.8927
64	12C	0.8919
65	sonal.kumari	0.8900
66	JIS	0.8887
67	IR3218	0.8843
68	TeamKGP	0.8822
69	UNT Linguistics	0.8820
70	janecek1	0.8744
71	Team Oulu	0.8655
72	TECHSSN	0.8655
73	KDELAB	0.8653
74	HateLab	0.8617
75	IASBS	0.8577
76	IUST	0.8288
77	Duluth	0.7714
78	RTNLU	0.7665
79	KarthikaS	0.6351
80	Bodensee	0.4954
81	Majority Baseline	0.4193
82	IRLab@IITV	0.0728

Table 5: Results for English Subtask A. Teams are ranked in decreasing order of macro-averaged F1.

5.2 Subtask B

A total of 41 teams made submissions for Subtask B, and the results can be seen in Table 6. The winner
is Galileo (which were third on subtask A), whose ensemble model achieved an F1 score of 0.7462. The
second place team, PGSG, used a complex teacher-student architecture built on top of a BERT-LSTM
model, which was fine-tuned on the SOLID dataset in an unsupervised way, i.e., optimizing for the MLM
objective. NTU_NLP ranked 3rd with an F1 score of 0.69063. They solved Subtasks A, B, and C as part
of a multi-task BERT-based model. The differences in the scores for subtask B are much larger than A.
For example, the 4th team is two points behind the third one and seven points behind the 1st one. The
top ranking teams is again dominated by BERT-based Transformer models. All but four teams beat the
majority baseline.

5.3 Subtask C

A total of 37 teams made submissions for Subtask C and the results are available in Table 7. The best team is once again Galileo with an F1 score of 0.7145. LT@Helsinki is in second place with an F1 score of 0.6700. They used fine-tuned BERT with oversampling to improve class imbalance. The third best system is PRHLT-UPV with an F1 score of 0.6692, which combines BERT with hand-crafted features; it is followed very closely by LT2 at rank 4, which achieved an F1 score of 0.6683. This subtask is also dominated by BERT-based models. All teams beat the majority baseline. The absolute
#	Team	Score	#	Team	Score	#	Team	Score
1	Galileo	0.7462	15	Wu427	0.6208	29	PALI	0.5533
2	PGSвлек	0.7362	16	UNT Linguistics	0.6174	30	HoangDung	0.5524
3	NTU_NLP	0.6906	17	I2C	0.6012	31	KAFK	0.5518
4	UoB	0.6734	18	PRHLT-UPV	0.5987	32	PAI-NLP	0.5451
5	TysonYU	0.6687	19	SRIB2020	0.5805	33	VerifiedXiaoPAI	0.5451
6	GUIR	0.6650	20	FERMI	0.5804	34	Duluth	0.5382
7	UHH-LT	0.6598	21	IU-UM@LING	0.5746	35	Bodensee	0.4926
8	Ferryman	0.6576	22	PingANPAI	0.5687	36	TECHSSN	0.3894
9	IITG-ADBU	0.6528	23	nlpUP	0.5678	37	KarthikaS	0.3741
10	kathrync	0.6445	24	Team Oulu	0.5676		Majority Baseline	0.3741
11	IRLab_DAIICT	0.6412	25	KDELAB	0.5638	38	IRLab@IITV	0.2950
12	INGEOTEC	0.6321	26	wac81	0.5627	39	SSN_NLP	0.2912
13	HateLab	0.6303	27	IITP-AINLPML	0.5569	40	IJS	0.2841
14	AlexU-BackTranslation-TL	0.6300	28	problemConquero	0.5569	41	KEIS@JUST	0.2777

Table 6: Results for English Subtask B.

#	Team	Score	#	Team	Score
1	Galileo	0.7145	14	KAFK	0.6168
2	LT@Helsinki	0.6700	15	ssn_nlp	0.6116
3	PRHLT-UPV	0.6692	16	IJS	0.6094
4	UHH-LT	0.6683	17	PALI	0.6015
5	ITNLP	0.6543	18	FERMI	0.5882
6	wac81	0.6489	19	problemConquero	0.5871
7	PUM	0.6473	20	Ferryman	0.5809
8	PingANPAI	0.6394	21	AlexU-BackTranslation-TL	0.5761
9	IITP-AINLPML	0.6388	22	IITG-ADBU	0.5756
10	PAI-NLP	0.6347	23	Duluth	0.5744
11	GUIR	0.6319	24	KDELAB	0.5720
12	IU-UM@LING	0.6265	25	NTU_NLP	0.5695
13	mdherath	0.6232	26	INGEOTEC	0.5626

Table 7: Results for English Subtask C.

F1-scores obtained by the best teams in English Subtasks A and C are substantially higher than the scores obtained by the best teams in OffensEval 2019: 0.9223 against 0.829 in A and 0.7145 against 0.6600 in C. This suggests that the much larger English dataset made available in OffensEval 2020 (SOLID [Rosenthal et al., 2020]) helps the models making more accurate predictions.

Furthermore, it confirms that the weakly supervised method used to compile and annotate SOLID is a viable alternative to popular manual annotation approaches. A more detailed analysis of the systems’ performances will be carried out to determine the impact of this large dataset in the results.

5.4 Best Systems

We provide some more details about the approaches used by the top teams for each subtask. We use sub-indices to show their rank for each subtask. Additional summaries of some of the best teams can be found in the Appendix [A]

Galileo (A:3,B:1,C:1) This team was ranked 3rd, 1st, and 1st on the English Subtasks A, B, and C, respectively. This is also the only team ranked among the top-3 across all languages. For Subtask A, they used multi-lingual pre-trained Transformers based on XLM-RoBERTa, followed by multi-lingual fine-tuning using the OffensEval data. Ultimately, they submitted an ensemble that combined XLM-RoBERTa-base and XLM-RoBERTa-large, achieving an F1 score of 0.9198. For Subtasks B and C, they used knowledge distillation in a teacher-student framework, using Transformers such as ALBERT.
and ERNIE 2.0 (Sun et al., 2019) as teacher models, achieving an F1 score of 0.7462 and 0.7145, for Subtasks B and C respectively.

LT2 (A:1) This team was ranked 1st on Subtask A with an F1 score of 0.9223. They fine-tuned different Transformer models on the OLID training data, and then combined them into an ensemble. They experimented with BERT-base and BERT-large (uncased), RoBERTa-base and RoBERTa-large, XLM-RoBERTa, and four different ALBERT models (large-v1, large-v2, xxlarge-v1, and xxlarge-v2). In their official submission, they submitted an ensemble using only the ALBERT models. They did not use the labels of the SOLID dataset, but found the tweets it contained nevertheless useful for unsupervised fine-tuning (i.e., using the MLM objective) of the pre-trained Transformers.

6 Arabic Track

The total number of users registered for the Arabic track was 108. Ultimately, 53 teams entered the competition with at least one valid submission. Among them, 10 teams participated only in the Arabic track while the rest participated in other languages in addition to Arabic. This is the second shared task for Arabic after the one at the 4th workshop on Open-Source Arabic Corpora and Processing Tools (Mubarak et al., 2020a), which had different settings and few participating teams.

#	Team	Score	#	Team	Score	#	Team	Score
1	ALAMIHamza	0.9017	21	SaiSakethAluru	0.8455	41	thanirdu	0.7881
2	alt	0.9016	22	will_go	0.8440	42	PRHLT-UPV	0.7868
3	Galileo	0.8989	23	erfan	0.8418	43	anitasaroj	0.7793
4	alisafaya	0.8972	24	jimperez	0.8402	44	yemen2016	0.7721
5	AMR-KELEG	0.8958	25	Bushr	0.8395	45	saroarj	0.7474
6	fte10kso	0.8902	26	klaraling	0.8241	46	kxkjava	0.7306
7	iaf7	0.8778	27	zohor_orabe	0.8221	47	frankakorpel	0.7251
8	sabino	0.8744	28	mircea.tanase	0.8220	48	COMA	0.5436
9	aialharbi	0.8714	29	machouz	0.8216	49	JCT	0.4959
10	yasserotiey	0.8691	30	orabia	0.8198	50	aprosio	0.4642
11	SAJA	0.8655	31	Taha	0.8183	51	sonal.kumari	0.4536
12	Ferryman	0.8592	32	hamadanayel	0.8182	52	sayanta95	0.4466
13	SAFA	0.8555	33	kathrync	0.8176	53	SpurthiAH	0.4451
14	hhaddad	0.8520	34	fatemah	0.8147	54	Majority Baseline	0.4441
15	talhaanwar	0.8519	35	jberm	0.8125			
16	saradhiy	0.8500	36	zahra.raj	0.8057			
17	lukez	0.8498	37	12C	0.8056			
18	tanvidadu	0.8480	38	jlee24282	0.8024			
19	TysonYU	0.8474	39	karishmaslaud	0.8021			
20	hwijeen	0.8455	40	asking28	0.8002			

Table 8: Results for Arabic Subtask A.

Pre-processing and normalization Most teams performed some kind of pre-processing or text normalization (e.g. Hamza shapes, Alif Maqsoura, Taa Marbouta, diacritics, non-Arabic characters, etc.), and only one team replaced emojis with their textual meanings.

6.1 Results

Table 8 shows the teams and their F1-scores for the Arabic Subtask A. The majority baseline score is 0.4441, assuming that all tweets are not offensive. Most teams achieved almost double the baseline score. The top team is ALAMIHamza from Université Sidi Mohamed Ben Abdellah-Fès (Morocco) which achieved an F1-score of 0.9017. The alt team from Qatar Computing Research Institute (Qatar) came in a close second place with an F1-score of 0.9016 and the Galileo team from Baidu Inc. (China) earned the third place with an F1-score of 0.8989. Note, Galileo was also the best performing team overall for the English subtasks.
The team obtained the highest F1-score using BERT to encode Arabic tweets with a sigmoid classifier and they performed translations of the meaning of emojis. A summary of the other top teams can be found in Appendix A.

7 Danish Track

The total number of users registered for the Danish track was 72. Ultimately, 39 teams entered at least one valid submission out of 72 users registered for the task. This is the first shared task with this language, and only the second time that offensive language detection has been run over it (Sigurbergsson and Derczynski (2020)).

The results are detailed in Table 9. All but one team beat the FastText baseline score of 0.5148 F1 and most reached an F1 of 0.7. Interestingly, one of the top ranked teams, JCT, used entirely non-neural methods.

LT@Helsinki The team used a NordicBERT-based approach, provided by BotXO, which is customised to Danish, and avoids some of the preprocessing noise and ambiguity introduced by other popular BERT implementations. On top of this, they reduced orthographic lengthening to maximum two repeated characters, converted emojis to “sentiment scores”, and counted incidences of hashtags and username references. Tuning was done with 10-fold cross validation, to find reliable results; this showed that the NordicBERT system gave them the best results of the classifiers they tried.

#	Team	Score	#	Team	Score	#	Team	Score
1	LT@Helsinki	0.8119	14	Rouges	0.7587	27	TeamKGP	0.6973
2	Galileo	0.8021	14	Smatgrisene	0.7587	28	Stormbreaker	0.6842
3	NLPDove	0.7923	16	machouz	0.7561	29	talhaanwar	0.6819
4	aprosio	0.7766	17	IU-UM@LING	0.7553	30	Sonal	0.6711
5	KS@LTH	0.7750	18	Ferryman	0.7525	31	RGCL	0.6556
6	JCT	0.7741	19	MindCoders	0.7380	32	PRHLT-UPV	0.6369
7	jmperez	0.7723	20	ARA	0.7267	33	IUST	0.6226
8	TysonYU	0.7685	21	INGEOTEC	0.7237	34	SRIIB2020	0.6127
9	FERMI	0.7685	22	KUISAIL	0.7231	35	IR3218	0.5736
10	NLP_Passau	0.7673	23	JAK	0.7086	36	SSN_NLP	0.5678
11	GruPaTo	0.7620	24	LIR	0.7019	37	Team Oulu	0.5587
12	KEIS@JUST	0.7612	25	MeisterMorxrc	0.6998	38	IJS	0.4913
13	will_go	0.7596	26	problemConquero	0.6974			

Table 9: Results for Danish Subtask A.

Pre-processing and normalization Many teams used the pre-processing included in the relevant embedding model (e.g. BPE (Heinzerling and Strube, 2018)). Beyond that, transformations included emoji normalisation, spelling correction, sentiment tagging, lexical and regex-based term and phrase flagging, hashtag segmentation and WordPieces.

7.1 Results

The results are detailed in Table 9. All but one team beat the FastText baseline score of 0.5148 F1 and most reached an F1 of 0.7. Interestingly, one of the top ranked teams, JCT, used entirely non-neural methods.

LT@Helsinki The team used a NordicBERT-based approach, provided by BotXO, which is customised to Danish, and avoids some of the preprocessing noise and ambiguity introduced by other popular BERT implementations. On top of this, they reduced orthographic lengthening to maximum two repeated characters, converted emojis to “sentiment scores”, and counted incidences of hashtags and username references. Tuning was done with 10-fold cross validation, to find reliable results; this showed that the NordicBERT system gave them the best results of the classifiers they tried.

8 Greek Track

The total number of users registered for the Greek track was 71. Ultimately, 37 teams entered at least one valid submission out of 72 users registered for the track. This is the first shared task for offensive language detection to include Greek. The dataset offered to OffensEval participants is an extended version of the one created and experimented on by Pitenis et al. (2020).

Pre-processing and normalization Most participants performed pre-processing or text normalization techniques and only one team reported emoji replacement with their textual meanings.

9See https://github.com/botxo/nordic_bert
Table 10: Results for Greek Subtask A.

#	Team	Score	#	Team	Score	#	Team	Score
1	NLPDove	0.8522	14	kathrync	0.8147	27	IUST	0.7756
2	Galileo	0.8507	15	talhaanwar	0.8141	28	KEIS@JUST	0.7730
3	KS@LTH	0.8481	16	IU-UM@LING	0.8140	29	aprosio	0.7700
4	KUISAIL	0.8432	17	MindCoders	0.8137	30	Team Oulu	0.7615
5	IJS	0.8329	18	RGCL	0.8135	31	JCT	0.7568
6	SU-NLP	0.8317	19	problemConquer	0.8115	32	IRlab@ITV	0.7181
7	LT@Helsinki	0.8258	20	Rouges	0.8030	33	TeamKGP	0.7041
8	FERMI	0.8231	21	TysonYU	0.8022	34	SSN_NLP	0.6779
9	Ferryman	0.8222	22	Sonal	0.8017	35	fatemah	0.6036
10	INGEOTEC	0.8197	23	JAK	0.7956	36	CyberTronics	0.4265
11	will_go	0.8176	24	ARA	0.7828	37	Stormbreaker	0.2688
12	jmperez	0.8153	25	machouz	0.7820			
13	LIIR	0.8148	26	PRHLT-UPV	0.7763			

8.1 Results

The detailed leader board is available in Table [10]. The top team, NLPDove, achieved an F1 score of 0.852, with Galileo coming close at second place with an F1 score of 0.851. The KS@LTH team earned third place with an F1 score of 0.848. It is no surprise that the majority of high ranking submissions and participants make use of the widely-acclaimed Transformers models, BERT being the most prominent among them, along with pre-trained word embeddings in their systems.

NLPDove (A:1) The team achieved the highest F1 score using pre-trained word embeddings (mBERT) fine-tuned with the labels provided by the dataset. A domain specific vocabulary was generated by running the WordPiece algorithm (Schuster and Nakajima, 2012) and using embeddings for extended vocabulary to pre-train and fine-tune the model.

9 Turkish Track

The total number of users registered for the Turkish track was 86. Ultimately, 46 teams entered at least one valid submission. All teams except for one participated in at least one other OffensEval subtask. This is the first shared track on detecting Turkish offensive language.

9.1 Results

The overview of the macro-averaged F1 scores are presented in Table [11]. The team Galileo obtained the best macro-averaged F1 score 0.8258, followed by SU-NLP and KUI-SAIL with F1 scores of 0.8167 and 0.8141 respectively. The second and third place teams are from Turkey, suggesting that some language specific resources and tuning may be effective. All teams except two score higher than the majority class baseline (an F1 score of 0.44), most results lie in the interval 0.70 to 0.80.

Galileo (A:1) The first team in Turkish Subtask A was Galileo, who also obtained top results in other subtasks. The system used is language agnostic, and it is based an ensemble of pre-trained multilingual models further trained on the multi-lingual OffensEval data.

10 Conclusion

We present the results of OffensEval 2020, which featured datasets in five languages (English, Arabic, Danish, Greek, and Turkish). English consists of the three Subtasks (A, B, and C) representing each level of the OLID hierarchy. The other four languages consist only of Subtask A. The competition attracted a total of 528 teams and 145 teams submitted results across all languages and subtasks. Finally, 70 teams submitted system description papers. To the best of our knowledge, OffensEval 2020 is the most popular SemEval task of all times in terms of the number of system description papers.
#	Team	Score	#	Team	Score	#	Team	Score
1	Galileo	0.8258	18	LT@Helsinki	0.7719	35	PRHLT-UPV	0.7127
2	SU-NLP	0.8167	19	NLP_Passau	0.7676	36	SRIB2020	0.6993
3	KUISAIL	0.8141	20	will_go	0.7653	37	Team Oulu	0.6868
4	KS@LTTH	0.8101	21	FERMI	0.7578	38	ARA	0.6381
5	NLPDove	0.7967	22	problemConquero	0.7553	39	aprosio	0.6268
6	TysonYU	0.7933	23	pin_code_	0.7496	40	f_shahaby	0.5730
7	RGCL	0.7859	24	talhaanwar	0.7477	41	CyberTronics	0.5420
8	Rouges	0.7815	25	IUST	0.7476	42	IASBS	0.5362
9	tcaselli	0.7790	26	alaeddin	0.7473	43	JCT	0.5099
10	Mind Coders	0.7789	27	fatemah	0.7469	44	machouz	0.4518
11	INGEOTEC	0.7758	28	kathrync	0.7461	45	jooyeon Lee	0.4435
12	Ferryman	0.7737	29	Sonal	0.7422	46	Stormbreaker	0.3109
13	ANDES	0.7737	30	MeisterMorxrc	0.7398			
14	I2C	0.7735	31	JAK	0.7334			
15	IU-UM@LING	0.7729	32	KEIS@JUST	0.7330			
16	IJS	0.7724	33	TeamKGP	0.7301			
17	LIIR	0.7720	34	TOBB ETU	0.7154			

Table 11: Results for Turkish Subtask A.

The participation and response OffensEval 2020 received confirm the interest of the community in this topic and allowed us to compare a variety of different methods on different languages and datasets. We received a large number of submissions in all five language tracks ranging from 37 teams in the Greek track to 81 teams in the English track Subtask A. We observed that 96 teams of the 145 teams chose to participate in only one of the languages while only 6 teams submitted results for all languages. 43 teams participated in 2-4 language tracks. We observed similar trends to OffensEval 2019, particularly that the best teams in all languages and subtasks used models with pre-trained contextual embeddings, most notably BERT.

OffensEval 2020 provides us with several avenues for future work. We would like to have Subtasks B and C organized for all languages as well as additional languages which are typically under-represented. Another interesting aspect to explore is code-mixed datasets, for example, Arabic written in both Arabic and Latin script.

Acknowledgements

This research was partly supported by the IT University of Copenhagen’s Abusive Language Detection project. It is also supported by the Tanbih project at the Qatar Computing Research Institute, HBKU, which aims to limit the effect of “fake news,” propaganda and media bias by making users aware of what they are reading.

References

Hwijeen Ahn, Jimin Sun, Chan Young Park, and Jungyun Seo. 2020. NLPDove at SemEval-2020 Task 12: Improving Offensive Language Detection with Cross-lingual Transfer. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string embeddings for sequence labeling. In Proceedings of the International Conference on Computational Linguistics (COLING).

Hamza Alami, Said Ouatik El Alaoui, Abdessamad Benlahbib, and Noureddine En-nahnahi. 2020. LISAC FSDM-USMBA Team at SemEval 2020 Task 12: Overcoming AraBERT’s pretrain-finetune discrepancy for Arabic offensive language identification. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Abdullah I. Alharbi and Mark Lee. 2020. BhamNLP at SemEval-2020 Task 12: An Ensemble of Different Word Embeddings and Emotion Transfer Learning for Arabic Offensive Language Identification in Social Media. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).
Kovacs Alonso, Saini. 2020. TheNorth at SemEval-2020 Task 12: Hate Speech Detection using RoBERTa. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Talha Anwar and Omer Baig. 2020. TAC at SemEval-2020 Task 12: Ensembling Approach for Multilingual Offensive Language Identification in Social Media. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Aymé Arango, Juan Manuel Pérez, and Franco Luque. 2020. ANDES at SemEval-2020 Task 12: A single BERT multilingual model for offensive language detection. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Pınar Arslan. 2020. pin code at SemEval-2020 Task 12: Injecting Lexicons into Bidirectional Long Short-Term Memory Networks to Detect Turkish Offensive Tweets. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Arup Baruah, Kaushik Das, Ferdous Barbhuiya, and Kuntal Dey. 2020. IIITG-ADBU at SemEval-2020 Task 12: Comparison of BERT and BiLSTM in Detecting Offensive Language. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel Rangel Pardo, Paolo Rosso, and Manuela Sanguinetti. 2019. SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Elisa Bassignana, Valerio Basile, and Viviana Patti. 2018. Hurtlex: A multilingual lexicon of words to hurt. In Proceedings of the Fifth Italian Conference on Computational Linguistics, Torino, Italy.

Emily M. Bender and Batya Friedman. 2018. Data statements for natural language processing: Toward mitigating system bias and enabling better science. Transactions of the Association for Computational Linguistics, 6:587–604.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with Python: analyzing text with the natural language toolkit. O'Reilly.

Marcos Boriola and Gustavo Paetzold. 2020. UTFPR at SemEval-2020 Task 12: Identifying Offensive Tweets with Lightweight Ensembles. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Camilla Casula, Stefano Menini, Alessio Palmero Aprosio, and Sara Tonelli. 2020. DH-FBK at SemEval-2020 Task 12: Using Multi-channel BERT for Multilingual Offensive Language Detection. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

 Çağrı Cöltekin. 2020. A Corpus of Turkish Offensive Language on Social Media. In Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC).

Kathryn Chapman, Johannes Bernhard, and Dietrich Klakow. 2020. CoLi @ UdS at SemEval-2020 Task 12: Offensive Tweet Detection with Ensembling. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Po-Chun Chen, Hen-Hsien Huang, and Hsin-Hsi Chen. 2020. NTU_NLP at SemEval-2020 Task 12: Identifying Offensive Tweets Using Hierarchical Multi-Task Learning Approach. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Kyunghyun Cho, Bart Van Merriënboer, Çaglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

Davide Colla, Tommaso Caselli, Valerio Basile, Jelena Mitrović, and Michael Granitzer. 2020. GruPaTo at SemEval-2020 Task 12: Retraining mBERT on Social Media and Fine-tuned Offensive Language Models. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Visrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.

Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning, 20(3):273–297.

Tanvi Dadu and Kartikay Pant. 2020. Team Rouges SemEval-2020 Task 12: Cross-lingual Inductive Transfer to Detect Offensive Language. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Wenliang Dai, Tiezheng Yu, Zihan Liu, and Pascale Fung. 2020. Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for Offensive Language Detection. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Kaushik Amar Das, Arup Baruah, Ferdous Ahmed Barbhuiya, and Kuntal Dey. 2020. KAFK at SemEval-2020 Task 12: Checkpoint Ensemble of Transformers for Hate Speech Classification. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).
Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated hate speech detection and the problem of offensive language. In Proceedings of the 11th International AAAI Conference on Web and Social Media, ICWSM ’17.

Gretel Liz De la Peña Saracén and Paolo Rosso. 2020. PRHLT-UPV at SemEval-2020 Task 12: BERT for Multilingual Offensive Language Detection. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Xiangjue Dong and Jinho D. Choi. 2020. XD at SemEval-2020 Task 12: Offensive Language Identification in Social Media with Transformer-based Ensemble Model. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Ibrahim Abu Farha and Walid Magdy. 2019. Mazajak: An online Arabic sentiment analyser. In Proceedings of the Fourth Arabic Natural Language Processing Workshop.

Jared Fromknecht and Alexis Palmer. 2020. UNT Linguistics at Offenseval 2020: Linear SVC with Pre-trained Word Embeddings as Document Vectors and Targeted Linguistic Features. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Kunihiko Fukushima. 1980. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202.

Avishek Garain. 2020. Garain at SemEval-2020 Task 12: Sequence based Deep Learning for Categorizing Offensive Language in Social Media. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Erfan Ghadery and Marie-Francine Moens. 2020. LIIR at SemEval-2020 Task 12: A Cross-Lingual Augmentation Approach for Multilingual Offensive Language Identification. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Soumitra Ghosh, Asif Ekbal, and Pushpak Bhattacharyya. 2020. IITP-AINLPML at SemEval-2020 Task 12: Offensive Tweet Identification and Target Categorization in a Multitask Environment. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Kyle Gorman and Steven Bedrick. 2019. We Need to Talk About Standard Splits. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.

Ehab Hamdy, Jelena Mitrović, and Michael Granitzer. 2020. nlpUP at SemEval-2020 Task 12: A Blazing Fast System for Offensive Language Detection. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Keisuke Hanahata and Masaki Aono. 2020. KDELAB at SemEval-2020 Task 12: A System for Estimating Aggression of Tweets Using Two layers of BERT Features. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Sabit Hassan, Younes Samih, Hamdy Mubarak, and Ahmed Abdelali. 2020. ALT at SemEval-2020 Task 12: Arabic and English Offensive Language Identification in Social Media. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Benjamin Heinzerling and Michael Strube. 2018. BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages. In Proceedings of the 11th International Conference on Language Resources and Evaluation.

Peter Juel Henrichsen and Marianne Rathje. 2020. Offense detection by AI – with a pinch of real I. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Mahen Herath, Thushari Atapattu, Dung Anh Hoang, Christoph Treude, and Katrina Falkner. 2020. AdelaideCyC at SemEval-2020 Task 12: Ensemble of Classifiers for Offensive Language Detection in Social Media. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Fatemah Husain, Jooyeon Lee, Samuel Henry, and Ozlem Uzuner. 2020. SalamNET at SemEval-2020 Task 12: Deep Learning Approach for Arabic Offensive Language Detection. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Omar Hussein, Hachem Sfar, Jelena Mitrović, and Michael Granitzer. 2020. NLP_Passau at SemEval-2020 Task 12: Multilingual Neural Network for Offensive Language Detection in English, Danish and Turkish. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Clayton J Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Eighth international AAAI conference on weblogs and social media.
Mai Ibrahim, Marwan Torki, and Nagwa El-Makky. 2020. AlexU-BackTranslation-TL at SemEval-2020 Task 12: Improving Offensive Language Detection using Data Augmentation and Transfer Learning. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Md Saroar Jahan and Mourad Oussalah. 2020. Team Oulu at SemEval-2020 Task 12: Multilingual Identification of Offensive Language, Type and Target of Twitter Post Using Translated Datasets. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Piotr Janiszewski, Mateusz Skiba, and Urszula Walińska. 2020. PUM at SemEval-2020 Task 12 OffensEval 2 Multilingual Offensive Language Identification in Social Media. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759.

Li Junyi, Zhou Xiaobing, and Zhang Zichen. 2020. Lee at SemEval-2020 Task 12: A BERT model based on the maximum self-ensemble strategy for identifying offensive. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

A. Kalaivani and D. Thenmozhi. 2020. SSN NLP MLRG at SemEval-2020 Task 12: Offensive Language Identification in English, Danish, Greek using BERT and Machine Learning Approach. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and Marcos Zampieri. 2018a. Benchmarking Aggression Identification in Social Media. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC), Santa Fe, USA.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and Marcos Zampieri. 2018b. Evaluating Aggression Identification in Social Media. In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC), Santa Fe, USA.

Ritesh Kumar, Aishwarya N. Reganti, Akshit Bhatia, and Tushar Maheshwari. 2018c. Aggression-annotated Corpus of Hindi-English Code-mixed Data. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).

Sonal Kumari. 2020. Sonal.kumari at SemEval-2020 Task 12: Social Media Multilingual Offensive Text Identification and Categorization using Neural Network Models. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Sandy Kurniawan, Indra Budi, and Muhammad Okky Ibrohim. 2020. IR3218-UI at SemEval-2020 Task 12: Emoji Effects on Offensive Language Identification. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

Karishma Laud, Jagriti Singh, Randeep Kumar Sahu, and Ashutosh Modi. 2020. problemConquero at SemEval-2020 Task 12: Transformer and Soft label-based approaches. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Wah Meng Lim and Harish Tayyar Madabushi. 2020. UoB at SemEval-2020 Task 6: Boosting BERT with Corpus Level Information. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.

Thomas Mandl, Sandip Modha, Pra senjit Majumder, Daksh Patel, Mohana Dave, Chintak Mandlia, and Aditya Patel. 2019. Overview of the HASOC Track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages. In Proceedings of the 11th Forum for Information Retrieval Evaluation (FIRE).

Abir Messaoudi, Hatem Haddad, and Moez Ben Haj Hmia. 2020. Compass at SemEval-2020 Task 12: From a Syntax-ignorant N-gram Embeddings Model to a Bidirectional Language Model. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Proceedings of Advances in Neural Information Processing Systems (NIPS).

Sabino Miranda-Jiménez, Eric S. Tellez, Mario Graff, and Daniela Mocetzuma. 2020. INGEOTEC at SemEval-2020 Task 12: Multilingual Classification of Offensive Text. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Alejandro Mosquera. 2020. amsqr at SemEval-2020 Task 12: Offensive language detection using neural networks and anti-adversarial features. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).
Hamdy Mubarak, Kareem Darwish, Walid Magdy, Tamer Elsayed, and Hend Al-Khalifa. 2020a. Overview of OSACT4 Arabic Offensive Language Detection Shared Task. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection.

Hamdy Mubarak, Ammar Rashed, Kareem Darwish, Younes Samih, and Ahmed Abdelali. 2020b. Arabic Offensive Language on Twitter: Analysis and Experiments. arXiv preprint arXiv:2004.02192.

Hamada A. Nayel. 2020. NAYEL at SemEval-2020 Task 12: TF-IDF-Based Approach for Automatic Offensive Language Detection in Arabic Tweets. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Zoher Orabe, Bushr Haddad, Nada Ghneim, and Anas Al-Abood. 2020. DoTheMath at SemEval-2020 Task 12: Deep Neural Networks with Self Attention for Arabic Offensive Language Detection. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Yasser Otiefy, Ahmed Abdelmalek, and Islam El Hosary. 2020. WOLI at SemEval-2020 Task 12: Arabic Offensive Language Identification on Different Twitter Datasets. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Xiaozhi Ou, Xiaobing Zhou, and Xuejie Zhang. 2020. YNUoxz at SemEval-2020 Task 12: Bidirectional GRU with Capsule for Identifying Multilingual Offensive Language. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Apurva Parikh, Abhimanyu Singh Bisht, and Prasenjit Majumder. 2020. IRLab DAIICT at SemEval-2020 Task 12: Machine Learning and Deep Learning Methods for Offensive Language Identification. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Ted Pedersen. 2020. Duluth at SemEval-2020 Task 12: Offensive Tweet Identification in English with Logistic Regression. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word representation. In Empirical Methods in Natural Language Processing (EMNLP).

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of NAACL-HLT.

Bao-Tran Pham-Hong and Setu Chokshi. 2020. PGSG at SemEval-2020 Task 12: BERT-LSTM with Tweets’ pretrained model and Noisy Student training method. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Manikandan Ravikiran, Amin Ekant Muljibhai, Toshinori Miyoshi, Hiroaki Ozaki, Yuta Koreeda, and Sakata Masayuki. 2020. Hitachi at SemEval-2020 Task 12: Offensive Language Identification with Noisy Labels using Statistical Sampling and Post-Processing. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Marcos Zampieri, and Preslav Nakov. 2020. A large-scale semi-supervised dataset for offensive language identification. arXiv preprint arXiv:2004.14454.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning representations by back-propagating errors. nature, 323(6088):533–536.

Ali Safaya, Moutasem Abdullatif, and Deniz Yuret. 2020. KUISAIL at SemEval-2020 Task 12: BERT-CNN for Offensive Speech Identification in Social Media. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Anita Saroj, Supriya Chanda, and Sukomal Pal. 2020. IRIlab@IITV at SemEval-2020 Task 12 - Multilingual Offensive Language Identification in Social Media using SVM. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).
Michael Wiegand, Melanie Siegel, and Josef Ruppenhofer. 2018. Overview of the GermEval 2018 Shared Task on the Identification of Offensive Language. In Proceedings of the GermEval 2018 Workshop (GermEval).

Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017. Ex machina: Personal attacks seen at scale. In Proceedings of the 26th International Conference on World Wide Web (WWW).

Yinnan Yao, Nan Su, and Kun Ma. 2020. UJNLP at SemEval-2020 Task 12: Detecting Offensive Language Using Bidirectional Transformers. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019a. Predicting the type and target of offensive posts in social media. In Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technology (NAACL-HLT).

Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019b. SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social Media (OffensEval). In Proceedings of the 13th International Workshop on Semantic Evaluation (SemEval).

Victoria Pachón Álvarez, Jacinto Mata Vázquez, José Manuel López Betanzos, and José Luis Arjona Fernández. 2020. I2C in SemEval2020 Task 12: Simple but Effective Approaches to Offensive Speech Detection in Twitter. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).

Anıl Özdemir and Reyyan Yeniterzi. 2020. SU-NLP at SemEval-2020 Task 12: Offensive Language Identification in Turkish Tweets. In Proceedings of the International Workshop on Semantic Evaluation (SemEval).
A Top Teams

Below is a description of additional top teams for all subtasks and languages.

LT2 (EN A:2) This team was ranked 2nd on subtask A with an F1 score of 0.9204. It uses RoBERTa-large that was fine-tuned on the SOLID dataset in an unsupervised way i.e., using the MLM objective.

PGSG (EN B:2) The team was ranked 2nd on Subtask B with an F1 score of 0.73623. They first fine-tuned the BERT-Large, Uncased (Whole Word Masking) checkpoint using the tweets from SOLID, but ignoring their labels. For this, they optimized for the MLM objective only, without the Next Sentence Prediction loss in BERT. Then, they built a BERT-LSTM model using this fine-tuned BERT, and adding LSTM layers on top of it, together with the [CLS] token. Finally, they used this architecture to train a Noisy Student model using the SOLID data.

NTU_NLP (EN B:3) The team is 3rd on subtask B with an F1 score of 0.69063. They proposed a hierarchical multi-task learning approach that solves Subtasks A, B, and C simultaneously, following the hierarchical structure of the annotation schema of the OLID dataset. Their architecture has three layers. The input of the first layer is the output of BERT, and its output (D1-OUT) is directly connected to the output layer for Subtask A. The second layer’s input is the BERT output concatenated with D1-OUT, and its output (D2-OUT) is directly connected to the output layer for Subtask B. The third layer’s input is the BERT output concatenated with D2-OUT, and its output is directly connected to the output layer for Subtask C.

LT@Helsinki (EN C:2) The team was ranked 2nd on English Subtask C with an F1 score of 0.6700. They used a very simple approach: over-sample the training data to overcome the class imbalance, and then fine-tune BERT-base-uncased.

PRHLT-UPV (EN C:3) The team was ranked 3rd on English Subtask C with an F1 score of 0.6692. They used a combination of BERT and hand-crafted features, which were concatenated to the [CLS] representation from BERT. The features include the length of the tweets, the number of misspelled words, and the use of punctuation marks, emoticons, and noun phrases.

alt (AR A:2) The ‘alt’ team was second place for Arabic subtask A. They used ensemble of SVM, CNN-BiLSTM and Multilingual BERT. The SVMs used character n-grams + word n-grams + word embeddings as features. CNN-BiLSTM used learned character embeddings and pretrained word embeddings as features.

Galileo (AR A:3, GR: A:2) The Galileo team was in third place for Arabic and second place for Greek. They used multi-lingual fine-tuning with multi-lingual unsupervised models from Transformers (e.g., BERT, GPT-2, ALBERT). They were also the top performing team overall for English as described previously.

KS@LTH (GR: A:3) The KS@LTH team used Monolingual BERT, showing a slight gap in performance between the Multilingual and the Monolingual models compared to the second place team.
B Participants

Team	System Description Paper	Team	System Description Paper
AdelaideCyC	(Herath et al., 2020)	LISAC FSDM-USMBA	(Alani et al., 2020)
AlexU-BackTranslation-TL	(Ibrahim et al., 2020)	LT@Helsinki	(Pâumes et al., 2020)
ALT	(Hassan et al., 2020)	LT2	(Wiedemann et al., 2020)
anmsgr	(Mosquera, 2020)	NAYEL	(Nayel, 2020)
ANDES	(Arango et al., 2020)	NLP_Passau	(Hussein et al., 2020)
BhamNLP	(Alharbi and Lee, 2020)	NLPDove	(Ahn et al., 2020)
BIU-JCT	(Uzan and HaCohen-Kerner, 2020)	snlpUP	(Hamdy et al., 2020)
BRUMS	(Ranasinghe and Hettiarachchi, 2020)	Nova-Wang	(Wang and Marinho, 2020)
CoLi @ UdS	(Chapman et al., 2020)	NTU_NLP	(Chen et al., 2020)
CyberTronics	(Sayanta et al., 2020)	NUIG	(Suryawanshi et al., 2020)
DoTheMath	(Orabe et al., 2020)	Oulu	(Jahan and Oussalah, 2020)
Duluth	(Pedersen, 2020)	PGSF	(Pham-Hong and Choksi, 2020)
FBK-DH	(Casula et al., 2020)	pin_colo	(Arslan, 2020)
Ferryman	(Weilong et al., 2020)	PRHLT-UPV	(De la Peña Sarracén and Rosso, 2020)
Galileo	(Wang et al., 2020)	problemConquero	(Laud et al., 2020)
Garain	(Garain, 2020)	PUM	(Janiszewski et al., 2020)
GnuPaTo	(Colla et al., 2020)	Rouges	(Dadu and Pant, 2020)
GUIR	(Sotudeh et al., 2020)	SalamNET	(Husain et al., 2020)
Hitachi	(Ravikiran et al., 2020)	SINAI	(Plaza-del Arco et al., 2020)
I2C	(Alvarez et al., 2020)	Smatgrisene	(Henrichsen and Rathje, 2020)
iCompass	(Messaoudi et al., 2020)	Sonal.kumari	(Kumari, 2020)
IITG-ADBU	(Barua et al., 2020)	SSN_NLP_MLRG	(Kalanav and Thenmozhi, 2020)
IITP-AINLPM	(Chosh et al., 2020)	SU-NLP	(Ozdemir and Yemteri, 2020)
INGEOotec	(Miranda-Jiménez et al., 2020)	TAC	(Anwar and Bang, 2020)
IR3218-UI	(Kurniawan et al., 2020)	TECHSSN	(Srivastava et al., 2020)
IRLab@IITV	(Saroj et al., 2020)	TheNorth	(Alonso, 2020)
IRLab_DAICT	(Parikh et al., 2020)	UJNLP	(Yao et al., 2020)
KAFK	(Das et al., 2020)	UNT	(Fromknecht and Palmer, 2020)
KDELAB	(Hanahata and Aono, 2020)	UiB	(Lim and Madabushi, 2020)
KEIS@JUST	(Tawabeh et al., 2020)	UPB	(Tanase et al., 2020)
KS@LTH	(Sohil, 2020)	UTFPR	(Borjioa and Paetzold, 2020)
KUISAIL	(Safaya et al., 2020)	WOLI	(Oinly et al., 2020)
Kangfupanda	(Zia et al., 2020)	XD	(Dong and Cui, 2020)
Lee	(Junyi et al., 2020)	YNU_pzx	(Qi et al., 2020)
LIIR	(Chadery and Moens, 2020)		

Table 12: The teams that participated in OffensEval-2020 and submitted system description papers with the corresponding reference thereof.
Team	A-Arabic	A-Danish	A-Greek	A-Turkish	A-English	B-English	C-English
AlexU-BackTranslation-TL	✓				✓	✓	✓
ALT		✓					
aialharbi			✓				
alaeddin							
ALAMIHamza							
alisafaya							
AMR-KELEG							
amsqqr							✓
ANDIES							✓
anitasaroj							
aprosio							
ARA							
asking28							
Better Place							
Bodensee							
Bushr							
byteam							
Coffee_Latte							
COMA							
CyberTronics							
doxaAI							
Duluth							
erfan	✓						
shahaby							
fatemah							
FERMI							
Ferryman							
frankakorpel							
fte10kso							
Galileo							
GruPaTo							
GUIR							
hamadanayel							
HateLab							
hhaddad							
Hitachi							
HoangDung							
hwijeen							
I2C							
iaf7							
IASBS							
HITG-ABDU							
IITP-AINLPML							
IJS							
INGEOTEC							
IR3218							
IRlab@IITV							
IRLab2DAIICT							
IS							
ITNLP							
IU-UM@LING							
IUST							
JAK							
janecek1							
jbern							
JCT							
jlee24282							
jmperez							
jooyeon Lee							
KAFK							
karishmaslaud							
KarthikaS							
kathyrc							
KDELAB							
KEIS@JUST							

Table 13: Overview of team participation in the subtasks (part 1).
Team	A-Arabic	A-Danish	A-Greek	A-Turkish	A-English	B-English	C-English
klaralang	✓						
KS@LTH		✓	✓				
KUISAIL				✓			
kungfupanda							
kxkjava	✓						
Lee							
Light							
LIIR							
LT@Helsinki		✓	✓	✓			
LT2							
lukez							
m20170548							
machouz							
mdherath							
MeisterMorxrc		✓	✓				
MindCoders							
mircea.tanase							
NLP_Passau							
NLP_Dove							
nlpUP							
NTU_NLP							
OffensSzeged							
orabia							
Oulu							
PAI-NLP							
PALI							
PSG							
pin_codL							
PingANPAI							
PRHLT-UPV							
problemConquero	✓	✓	✓				
PUM							
RGCL							
Rouges							
RTNLU							
sabino							
SAFA							
SaiSakethAluru							
SAJA							
saradhix							
saroarj							
sayanta95							
shardul007							
SINAI							
Smatgrisene							
Sonal							
sonal.kumari							
SpurthiAH							
SRIB2020							
SSN_NLP							
Stormbreaker							
SU-NLP							
Taha							
talhaanwar							
tanvidadu							
tcaselli							
Team Oulu							
TeamKGP							
TECHSSN							
tharindu							
TheNorth							
TOBB ETU							
TysonYU							
UJNLP							

Table 14: Overview of team participation in the subtasks (part 2).
Team	A-Arabic	A-Danish	A-Greek	A-Turkish	A-English	B-English	C-English
ultraviolet	✓						✓
UNT Linguistics	✓						
UoB	✓						
UTFPR	✓						
VerifiedXiaoPAI	✓					✓	
wac81	✓	✓					✓
will.go	✓	✓	✓	✓	✓	✓	
KUISAIL	✓						
Wu427	✓						
XD	✓						
yasserotiefy	✓						
yemen2016	✓						
YNUoxz	✓						
zahra.raj	✓						
zoher_orabe	✓						

Table 15: Overview of team participation in the subtasks (part 3).