Demographic Predictors of Urinary Arsenic in a Low-Income Predominantly Hispanic Pregnancy Cohort in Los Angeles

Shohreh F Farzan, PhD1,*, Caitlin G Howe, PhD1,*, Thomas A Chavez, MS1, Tahlia L Hodes, MS1, Jill E Johnston, PhD1, Rima Habre, ScD1, Genevieve Dunton, PhD1, Theresa M Bastain, PhD1, Carrie V Breton, ScD1
1Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90032, USA

Abstract

Background: Arsenic (As) is a contaminant of top public health concern, due to its range of detrimental health effects. Arsenic exposure has not been well-characterized among U.S. Hispanic populations and has been particularly understudied in this population during pregnancy.

Methods: As part of the MADRES ongoing pregnancy cohort of predominantly lower-income, Hispanic women in Los Angeles, CA, we examined levels of maternal 1st trimester urinary arsenic (As), including total As and As metabolites (inorganic (iAs), monomethylated (MMA) and dimethylated As (DMA)), in relation to participant demographics, lifestyle characteristics, and rice/seafood consumption, to identify factors that may influence As exposure and its metabolites during pregnancy (N=241).

Results: Total As concentrations ranged from low to high (0.8–506.2 μg/L, mean: 9.0μg/L, SD: 32.9) in our study population. Foreign-born Hispanic women had 8.6% higher %DMA (95% CI: 3.3%, 13.9%) and −7.7% lower %iAs (95% CI: −12.6%, −2.9%), than non-Hispanic women. A similar trend was observed for U.S.-born Hispanic women. Additionally, maternal age was associated with 0.4% higher %iAs (95% CI: 0.1%, 0.6%) and 0.4% lower %DMA (95% CI: −0.7%, −0.1%) per year, which may indicate poor As methylation capacity.

Conclusion: Individual factors may predict As exposure and metabolism in pregnancy, and in turn, greater risk of adverse health effects.

Keywords

pregnancy; arsenic; environment; cohort; Hispanic; health disparities
Introduction

Pregnancy is a vulnerable period for environmental exposures for both a mother and her growing child. Prenatal exposures to environmental contaminants are widely recognized as important contributors to a multitude of adverse impacts on the *in utero* development and subsequent long-term health of the child.\(^1\)\(^-\)\(^3\) While developing children are uniquely vulnerable to prenatal exposures, a growing body of evidence suggests that such exposures may also increase the risk of health effects for the mother, including pregnancy complications such as gestational diabetes and elevated blood pressure.\(^4\)\(^-\)\(^8\)

Arsenic (As) is a contaminant of top public health concern due to its range of detrimental effects on the health of both adults and children.\(^9\)\(^-\)\(^11\) Mounting evidence indicates that, even at relatively low levels of exposure, As may have profound neurological, cardiovascular and developmental effects.\(^9\)\(^-\)\(^11\) Individuals are most commonly exposed to inorganic As (iAs) via drinking and staple foods, such as rice\(^12\)\(^-\)\(^15\). However, living in urban industrial environments can also contribute to exposure.\(^16\)\(^,\)\(^17\) Socially and economically-disadvantaged communities tend to be disproportionately burdened by environmental contaminants and may be concentrated in closer proximity to possible industrial sources of As, such as toxic waste sites, legacy contamination, and dense roadway networks.\(^18\)\(^-\)\(^21\) In California, there is evidence of significant environmental exposure disparities, with Hispanic populations being at greatest risk of living in communities burdened by harmful exposures.\(^22\)\(^,\)\(^23\) Thus, Hispanic individuals living in California have a high risk for toxic chemical exposures and may bear a larger proportion of the health-related impacts. Further, these groups tend to be underrepresented in epidemiological studies and may have greater barriers to participation.\(^24\)\(^,\)\(^25\)

Exposure to As can be easily and non-invasively assessed using urine samples, which reflects recent exposure, generally within the last few days.\(^15\) Several studies have characterized urinary As and major sources of exposure in the general U.S. population\(^26\)\(^-\)\(^28\) and in certain subpopulations in the U.S.\(^13\)\(^,\)\(^29\)\(^-\)\(^32\) Further, characterizing As metabolites in urine may help identify those at increased risk for adverse health effects, as As metabolic profiles can vary greatly between individuals and differences in methylation efficiency have been related to As toxicity.\(^33\) However, levels of total urinary As and its metabolites have not been well studied among Hispanic populations in the urban U.S. and have been particularly understudied in these populations during pregnancy.

Given the increasing awareness of the need to account for the potential impact of sociodemographic, lifestyle and dietary factors as predictors of environmental exposure burdens and in turn, health disparities, we have conducted cross-sectional analyses to examine predictors of urinary As and its metabolites during pregnancy in the Maternal and Developmental Risks from Environmental and Social Stressors (MADRES) study, a low-income, predominantly Hispanic pregnancy cohort in Los Angeles. We hypothesized that the distribution of urinary As and its metabolites would vary by sociodemographic factors, such as ethnicity and acculturation, as well as by dietary factors, such as rice consumption.
Methods

The MADRES cohort

The MADRES study is an ongoing pregnancy cohort of low-income, primarily Hispanic women living in Southern California during pregnancy. Recruitment for the study is ongoing and began in 2015, and the details of this cohort have been described elsewhere. Briefly, pregnant women, age 18 and older, are recruited for participation until 30 weeks gestation from three partner community health care facilities serving primarily low-income, Hispanic obstetric patients in urban Los Angeles. Women are not eligible to participate if they have any of the following conditions: 1) HIV positive status; 2) physical, mental, or cognitive disabilities that prevent participation; 3) current incarceration; 4) multiple gestation pregnancy. All study procedures are completed in either English or Spanish, by trained study staff members fluent in both languages, depending on the primary language of the participant. Informed consent and HIPAA authorization to obtain medical records from each participant is obtained at study entry. All protocols and study materials were approved by the University of Southern California’s Institutional Review Board.

In-clinic assessment and questionnaires

In this analysis, we focused only on women who enrolled in MADRES prior to 20 weeks gestation, who upon enrollment, completed an initial in-person assessment during the first half of pregnancy with a trained research coordinator to obtain anthropometric measures, biological samples and information on health and lifestyle by interviewer-administered questionnaire. All participants recruited between November 2015 and January 2019 who provided a urine specimen at the initial visit were included in the current analysis (n=241). Maternal standing height was measured twice by stadiometer (Perspectives Enterprises Model PE-AIM-101). A third measurement of weight and/or height was taken if the first two measurements differed by more than 0.1 pounds (0.05 kg) or 1 cm, respectively. Height measures, with self-reported pre-pregnancy weight, were used to calculate pre-pregnancy body mass index (BMI; kg/m^2) according to CDC guidelines.

During the initial study visit, participants completed a series of questionnaires, which were verbally administered by a research coordinator in either English or Spanish to accommodate the varying levels of literacy among this population. Baseline questionnaire measures included assessment of covariates used in these analyses, such as health history, prior pregnancy history, ever smoking status, second hand smoke exposure during the pregnancy, and demographics (e.g., race and ethnicity, country of origin, household income, education level, employment and occupation, marital status and number of children).

Dietary assessment

Rice and seafood consumption patterns during pregnancy were determined by a questionnaire, administered during the second trimester in either English or Spanish, depending on the preferred language of the participant. Questions were designed to capture usual dietary patterns. Participants were asked if they had ever consumed rice during the index pregnancy. If a participant responded yes, she was subsequently asked how frequently she typically consumed rice to understand general rice consumption patterns: 1–6 times per
year, 7–11 times per year, 1 time per month, 2–3 times per month, 1 time per week, 3–4 times per week, 5–6 times per week, 1 time per day, or 2 or more times per day. Additionally, she was asked the amount of rice that she typically consumed: <0.5 cups, 0.5 to 1.5 cups, or >1.5 cups. Participants were also asked if they had ever consumed any of the following types of fish or seafood during the pregnancy: fish sticks, fresh oily fish, other fresh fish, canned tuna, shellfish, or fried shellfish, selecting from the following options: yes, no, or don’t know. If a participant responded yes to this first question, she was additionally asked how frequently she consumed that type of fish or seafood: daily, weekly, monthly, rarely, or don’t know. Fish sticks were defined as any commercially prepared frozen, boneless, white fish crumbled and fried in oil. Fresh oily fish was defined as fish containing more than 2% fat, such as blue-eyed cod, silver bream, gemfish, blackfish, mullet, orange roughy, pilchards, redfish, yellowtail, Atlantic salmon, southern Bluefin, tuna, blue grenadier, tailor, blue mackerel, tarwhine, and rainbow trout. Other fresh fish was defined as flounder and shark. Shellfish was defined as shrimp, lobster, crabs, crayfish, clams, mussels, and scallops.

Since almost all of the participants (98.1%) reported ever consuming rice during their pregnancy, women were classified into two categories: those who reported consuming rice on a weekly basis, who also reported that they typically consumed at least 0.5 cups of rice, versus all others.

A combined variable with three categories was created to capture any consumption of fish or seafood during the pregnancy: 1) consumed any type of fish or seafood at least weekly, 2) consumed any type of fish or seafood at least monthly, and 3) never or rarely consumed any type of fish or seafood during the pregnancy. A very small number of women reported not knowing whether they had consumed a specific type of fish or seafood during their pregnancy, but reported never consuming all other types of fish; these women were included in the never/rarely consumed fish or seafood category.

Urinary Metals Biomarker Assessment

Women were asked to provide a spot urine sample upon enrollment (median collection time: 12.4 weeks gestation; interquartile range: 10.1–16.6 weeks) and at a 3rd trimester follow-up visit (median: 33.6 weeks gestation; interquartile range: 32.4–34.6 weeks), in a sterile 90-ml specimen container. Of women who enrolled in their 1st trimester, 91.7% provided a urine specimen. Samples were transported to the laboratory for processing within approximately one hour of collection, where they were stored at 4°C for up to 24 hours prior to processing, before being aliquoted and frozen at −80°C until analysis. Urine samples collected at 1st and 3rd trimester were analyzed for bulk unspeciated levels of As, as well as for As species, including arsenite (iAsIII), arsenate (iAsV), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB) by high-performance liquid chromatography (HPLC) inductively coupled plasma mass spectrometry (ICP-MS) at the University of Arizona Hazard Identification Core.36–38 Total urinary As was calculated by summing inorganic (iAs = iAsIII+iAsV) and organic (DMA, MMA) metabolites.39 Arsenobetaine, a form of As found in fish and seafood was excluded, as it is thought to be non-toxic and is excreted into urine unmetabolized.40% As metabolites were calculated as
follows: %iAs: iAs/(iAs+MMA+DMA), %MMA: MMA/(iAs+MMA+DMA), %DMA: DMA/(iAs+MMA+DMA). Limits of detection (LOD) ranged from 0.004 to 0.1302 μg/L for bulk As, while limits of detection for iAs, MMA and DMA metabolites ranged from 0.0879 to 1.6874 μg/L. The % of samples below the LOD for each As species and metabolites were as follows: AsIII, 58.5%; AsV, 53.9%; MMA, 23.7%; DMA, 1.2%; and AsB 29.9% (Supplemental Table 1). Values that were below detection were imputed as LOD divided by the square root of 2. Specific gravity, measured by refractometer (Itago), was used to account for urine dilution, using the following formula:
\[A_c = A \times \left(\frac{SG_{\text{mean}} - 1}{SG - 1} \right), \]
where \(A \) = the raw As or As metabolite concentration value, \(A_c \) = the SG-adjusted As or As metabolite concentration, \(SG_{\text{mean}} \) = the mean SG value for the study sample, and \(SG \) = the SG value of the participant.

Statistical Methods

For the purposes of this analysis, we only included women who were recruited prior to 20 weeks gestation with complete covariate information and a urine sample collected during the first half of pregnancy and available for As analysis as of January 28, 2019, for a total of 241 women. Urinary As and metabolites were measured on all 241 women. We also measured As and its metabolites in urine samples collected during the third trimester of pregnancy for a subset of women (N=25). All women had information on maternal age and preferred language (English or Spanish) at minimum. Statistical analyses were conducted in July 2019.

We calculated descriptive statistics for total urinary As excluding AsB and for each of the four major As metabolites (iAs, MMA, DMA, and AsB) at 1st and 3rd trimester and also for demographic and dietary information. We examined Spearman correlations between 1st and 3rd trimester concentrations of total As and each of the As metabolites and also evaluated potential differences between the paired time points using a Wilcoxon test for paired samples. Additionally, given evidence that the greatest changes in As metabolism occur in the 1st trimester, we examined Spearman correlations between the GA at urine sample collection and 1st trimester measures of total As and each of the As metabolites.

In our primary analyses, we ran separate linear regression models to examine the relationship between log-transformed total urinary As (no AsB) and each of the following demographic covariates: age (continuous), pre-pregnancy BMI (continuous), pre-pregnancy BMI (categorical: underweight/normal, overweight, obese), recruitment site (clinic sites A, B or C), marital status, place of birth (U.S. versus not U.S.), preferred language (Spanish versus English), ethnicity, ethnicity by birth place (including foreign-born non-Hispanic participants), ethnicity by birth place (excluding foreign-born non-Hispanic participants), education, employment status during pregnancy, ever smoking status, whether or not the participant was living with a smoker during the pregnancy, and total household income. Then, we ran a multivariable linear regression model including demographic and lifestyle covariates simultaneously in one model. Models were further adjusted either for first trimester tertiles of AsB, a biomarker of fish/seafood consumption, or for rice and fish/seafood consumption where indicated. Variables for preferred language, years living in the U.S., employment status during pregnancy, and total household income were excluded from
the final multivariable models because they either were 1) not strongly related to urine As or
the % metabolites in unadjusted models, or 2) not hypothesized to be potential predictors of
urine As. Additional variables were excluded, including pre-pregnancy BMI (continuous),
place of birth, ethnicity, ethnicity by birth place (excluding foreign-born non-Hispanic
participants) because they were closely related to another demographic variable that was
included in final models. For example, we chose to only include the ethnicity by birth place
(including foreign-born non-Hispanic participants) variable in final adjusted models, as this
variable accounts for both ethnicity and place of birth and was strongly related to preferred
language (Chi-Square p-value = 2.2 × 10^{-16}). Secondary analyses evaluated the same linear
regression models (unadjusted and adjusted), but examined the %As metabolites
(untransformed) as the outcome variables.

In sensitivity analyses, models were run 1) excluding outliers or influential points and 2)
restricting to participants who reported never or rarely consuming seafood during the
pregnancy. Outliers and influential points were determined using the outlierTest() and
influencePlot() functions in the “car” package in R, and regression coefficients were
compared after including versus excluding these observations from each model.

Statistical significance was determined at p<0.05 (two-sided). All analyses were performed
in R version 3.5.0.

Results

Demographics

Table 1 presents the demographic characteristics of 241 women who provided a urine
specimen prior to 20 weeks gestation and for whom we had assessed urine metals at the time
of this analysis. Women were, on average, 28 (SD: 6) years of age upon enrollment. Mean
maternal pre-pregnancy BMI was 28.6 (SD: 6.2) kg/m^2, with approximately two-thirds
(67%) of women falling into the overweight or obese categories, according to CDC
guidelines. Our study sample was predominantly Hispanic (85.5%) and white (86.2%), and about half
of participants (48.5%) reported that they were born outside of the US. Most foreign-born
women reported their birthplace as Mexico (30.3%) or Central America (15.4%). There was
a wide distribution of length of time living in the US, with 14% of foreign-born women
having lived in the US for 10 years or less, 18% for 11 to 20 years and 15% for 20 or more
years. Spanish was the preferred language of a third (35.3%) of women.

Approximately half (55.2%) of women in our study had a high school education or less. The
majority of women reported that they were either married (29.5%) or living with a partner
(48.5%). Half of participants reported working during their pregnancy, and 59% reported an
annual household income of less than $30,000. Approximately one-quarter (26.6%) of
women in our sample reported ever smoking, and 7.1% reported living with a smoker during
their pregnancy, but few (3.3%) reported personal smoking during their pregnancy.
Exposure biomarkers

Table 2 shows descriptive statistics for 1st trimester concentrations of total urinary As and As metabolites among women in our study. Concentrations are shown with and without adjustment for specific gravity. Specific gravity adjustment for urinary dilution only minimally changed mean concentrations of all measures.

Median total As, calculated by summing metabolites and excluding AsB, was 5.7 μg/L, with values ranging from 0.8–506.2 μg/L. The median iAs concentration was 1.1 μg/L, with values ranging from 0.2–59.0 μg/L, and iAs represented 15.8% of the total metabolites in urine. MMA had a median concentration of 0.5 μg/L and represented the smallest proportion of As metabolites in urine (8.0%). DMA represented the greatest percentage of As metabolites in urine (74.8% of the total), with a median concentration of 4.0 μg/L and a range of 0.4–420.3 μg/L. AsB, a metabolite resulting from seafood consumption, which was excluded from the calculation of total As, had the greatest variability, with a median value of 0.4 μg/L, and a range of 0.1 to 482.9 μg/L.

We also compared As concentrations in the 1st versus 3rd trimester among the 25 women for whom we had analyzed paired urine samples (Supplemental Table 2). Median concentrations for total As and its metabolites, expressed as concentrations and percentages, were similar across the two pregnancy time points, and no significant differences were observed. Correlations between As measures from the two time points ranged from weak to moderate (Supplemental Table 3). We also evaluated correlations between GA at urine collection and each of the 1st trimester As measures (N=241). However, no statistically significant correlations were observed (Supplemental Table 4).

Dietary sources of As exposure

Given that rice and fish/seafood consumption are common potential sources of As exposure, we also explored dietary consumption patterns of these major food types during pregnancy (Supplemental Table 5). Rice consumption was very prevalent in this study population, with 98% of women reporting that they had ever consumed rice during their pregnancy and 60% reporting consumption 2 times per week or more (Supplemental Table 5). Most women (56%) reported typically eating servings of 0.5 to 1.5 cups rice. Fish/seafood consumption were less common, with 73.1% of women reporting never or rarely eating fish/seafood during their pregnancy, 16% reporting monthly consumption and 10.8% reporting weekly consumption (Supplemental Table 5). Among women who reported eating fish/seafood during their pregnancy, canned tuna and shellfish were the most commonly consumed.

Predictors of urinary As concentrations

To begin to explore the relationship of maternal demographic and lifestyle characteristics with urinary As concentrations and %As metabolite profiles in mothers’ 1st trimester urine samples, we used unadjusted linear regression models (Supplemental Table 6). Then, we further examined urinary As levels in relation to a subset of these demographic and lifestyle variables in multivariable adjusted models, with versus without additional adjustment for any rice or seafood consumption during pregnancy (Tables 3 and 4).
Age.—Maternal age at enrollment was positively, albeit not significantly, related to levels of total As (excluding AsB), such that each year of age was associated with a 1.4% (95% CI: −0.1, 2.8) higher total As concentration (Table 3). This association was attenuated when either AsB or rice and fish/seafood consumption were included in the model. Maternal age was also positively and significantly related to %iAs, with each year of age associated with a 0.4% (95% CI: 0.1, 0.6) higher iAs% and a corresponding −0.4% (95% CI: −0.7, −0.1) lower %DMA (Table 4).

Acculturation, Ethnicity and Place of Birth.—We explored differences in total As (excluding AsB) and %As metabolites by a number of variables that may be proxies for acculturation in this population. In unadjusted models, women who were born in the US were observed to have 3.3% (95% CI: 0.5, 6.1) higher %iAs and correspondingly, a 3.7% (95% CI: −6.8, −0.6) lower %DMA, as compared to those who were foreign-born (Supplemental Table 6). Similarly, in adjusted models, compared to non-Hispanic women, foreign-born Hispanic women had significantly lower %iAs and higher %DMA in their urine. We observed that foreign-born Hispanic women had 7.7% (95% CI: −12.6, −2.9) lower %iAs in their urine and a corresponding 8.6% (95% CI: 3.3, 13.9) higher %DMA (Table 4). These associations remained statistically significant after additional adjustment for AsB (Supplemental Tables 7-9) or for rice and seafood consumption (Supplemental Table 10). Similar trends were observed for US-born Hispanic women, as compared with non-Hispanic women. However, these associations did not reach statistical significance.

Living with a smoker.—Women who reported living with a smoker during their pregnancy had significantly lower %iAs in their urine (−6.5, 95% CI: −12.3, −0.6), with a borderline statistically significant increase in % DMA (6.4, 95% CI: 0.0, 12.8), as compared to women who did not live with a smoker (Table 4). This association remained significant after additional adjustment for AsB (Supplemental Table 7), and after excluding influential observations as part of a sensitivity analysis (Supplemental Table 11), but was attenuated after adjusting for rice and seafood consumption (Supplemental Table 10). We did not observe any statistically significant differences in total uAs or %MMA between women living with smokers and those who did not.

Parity and Marital Status.—Women who reported that this was not their first pregnancy had significantly lower %MMA in their urine (−1.6, 95% CI: −2.9, −0.2), as compared to women in their first pregnancy (Table 4). Women who identified as single or never married had significantly lower %DMA (−4.9, 95% CI: −9.5, −0.3), as compared to individuals who were married (Table 4).

Rice, fish and seafood consumption.—We examined the influence of dietary sources of As on levels of total As and As metabolites in urine. Although rice and seafood consumption were not significantly associated with total urinary As (excluding AsB) (Table 3), women who reported consuming 0.5 cups or more rice at least weekly had 3.5% (95% CI: 0.1, 6.8) higher %DMA levels, compared to women who reported eating less than 0.5 cups of rice weekly or who reported eating rice less frequently (Supplemental Table 10). We also examined the influence of AsB and found that individuals with higher levels of urinary
AsB also had higher levels of total As (tertile 2: 21.6, 95% CI: 3.3, 43.1; tertile 3: 68.2 95% CI: 42.9, 98.0), as compared to individuals with lower tertiles of AsB (Table 3). However, AsB was not related to levels of % metabolites and additional adjustment for AsB in sensitivity analyses did not substantially alter estimates (Supplemental Tables 7-10).

Other covariates.—We also examined the relationship between total As, as well as the %As metabolites, with other variables including employment status, income, pre-pregnancy BMI category, and level of education. However, while some associations were found to be statistically significant in the unadjusted models (Supplemental Table 6), none remained significant in multivariable regression models (Tables 3 and 4).

Sensitivity Analyses.—We performed a number of sensitivity analyses to test the robustness of our results. We identified several outliers and influential points, which consisted of participants with higher total urine As (excluding AsB) concentrations or very high or low %As metabolite levels. The exclusion of these participants from regression models did not impact our estimates or alter our primary findings (Supplemental Table 11 and 12). Given that the majority of participants reported rarely or never consuming fish or seafood during their pregnancy, we also examined whether limiting our analyses to individuals who rarely or never consumed seafood impacted the estimates. However, the results were very similar in this restricted set of participants (Supplemental Table 13).

Discussion

In a sample of the MADRES pregnancy cohort of primarily low-income Hispanic women living in urban Los Angeles, we observed variation in the distribution of urinary As and As metabolites by several demographic predictors. Specifically, we found that maternal age and ethnicity by birthplace were consistently associated with differences in urinary As and/or its metabolites. We found that total As and As metabolite profiles varied significantly by several indicators of ethnicity and acculturation in this population. For example, as compared to non-Hispanic women, both U.S.-born and foreign-born Hispanic women had urinary As metabolite profiles that may be indicative of more efficient As metabolism (i.e., lower %iAs and higher %DMA). We did not observe that rice or fish/seafood consumption were related to total uAs levels in this population. However, rice consumption was associated with some of the %As metabolites (i.e., higher %DMA). While other studies have begun to show that sociodemographic factors are related to differences in As exposure, few studies have focused on urban, primarily Hispanic populations. Given that prenatal As exposure in pregnant women and their children has been related to long-term health consequences, characterizing the levels and predictors of urinary As and its metabolites is of particular importance for public health. This study suggests that consistent with prior evidence that Hispanic individuals living in California have a high risk for toxic chemical exposures, women within our predominantly Hispanic study population may have somewhat higher levels of exposure, as compared to other US and Canadian studies of pregnant women. However, the overall levels of As exposure are predominately low to moderate, suggesting that women in our study are not widely exposed to disproportionately higher levels of As.
When iAs is ingested, the majority is metabolized via two sequential methylation reactions, yielding first MMA, then DMA, which is rapidly excreted into urine. Arsenic metabolism varies greatly between individuals, and in populations exposed to high levels of iAs in drinking water, a greater proportion of DMA in urine is considered an indicator of more efficient As methylation and therefore As excretion, whereas a higher proportion of MMA is indicative of inefficient methylation. Arsenic methylation capacity has been related to As toxicity. In support of this, numerous observational studies have observed that a higher proportion of MMA and/or a lower proportion of DMA in urine is associated with increased risk for many adverse health effects, although the opposite has also been observed for certain outcomes such as diabetes and metabolic syndrome. In the current study, when compared to non-Hispanic women, foreign-born Hispanic women had significantly higher %DMA in their urine and a corresponding trend toward lower %iAs. Similar trends were observed for US-born Hispanic women. One potential explanation is that Hispanic women may have more efficient As metabolism than their non-Hispanic counterparts due to a higher prevalence of genetic variants which improve As metabolism. Indeed, recent work among women of the Argentinian Andes has observed a higher prevalence of genetic variants in the As methyltransferase among populations that originate from As-endemic regions, such as parts of Central and South America, which may help accelerate As metabolism. It is possible that such variants are more common in Hispanic women and may be protective against some adverse health effects of As exposure. Differences in diet or nutritional status could also play a role, as certain dietary factors (especially folate) have been related to an increased As methylation capacity. However, it is also possible that the %As metabolites do not reflect As metabolism, but rather organic arsenicals from dietary sources, in this population, as some foods, such as rice and seafood, can be sources of specific As species, such as iAs and DMA. However, in the current study, %iAs and %DMA remained significantly associated with ethnicity by birth place even after additional adjustment for rice and seafood consumption, and also after restricting to participants who reported rarely or never consuming fish or seafood.

We also observed that maternal age was associated with a higher iAs% and a lower %DMA. While not statistically significant, maternal age was also associated with higher total As concentrations in urine. Similar trends have been previously reported in the Maternal-Infant Research on Environmental Chemicals (MIREC) pregnancy cohort of Canadian women, such that statistically significant associations between women’s age and increased urinary and blood As were observed. Age-related increases in urinary As and iAs have been observed in other adult populations in the U.S., including in a population of older low-income Hispanic adults in New Mexico and a population of older adults residing in Nevada.

In order to put the levels of exposure in our cohort into a broader context, we compared the levels of urinary As in MADRES to those measured in other pregnancy cohorts in the US and around the world. Total urinary As (excluding AsB) levels in MADRES participants (mean 9.0 μg/L, range 0.8–506.2 μg/L) were, on the whole, considerably lower than those observed in pregnancy cohorts in As-endemic regions of the world, such as Bangladesh and Chile, where average total urinary As levels have been observed in the 50–100 μg/L range, with some values reaching upwards of 3000 μg/L. Among Mexican women in the
Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, levels of total urinary As measured just prior to delivery were higher on average (mean 37.5 μg/L) than those observed in MADRES (mean: 9.0 μg/L), with some individuals’ urinary As levels falling within the 100–300 μg/L range.71 Bulk levels of urinary As (including AsB) that were reported among pregnant women from Mexico City as part of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort were also generally higher (median 18.7 μg/L)72 than in MADRES participants (median 6.2 μg/L). However, urinary As levels in MADRES participants were on par with, if not slightly higher than, several studies in other pregnancy populations in the US. For example, MADRES urinary levels of total As (no AsB) were very similar to those reported in the New Hampshire Birth Cohort Study (NHBCS) (mean 6.05 ± SD: 13.19), which includes women exposed to a wide range of environmental As via well water.49 Studies from the NHBCS have observed associations between these low to moderate levels of As exposure and numerous maternal and newborn health effects, including gestational diabetes, elevated blood pressure, birth outcomes, and infant health.45, 73–76 Mean total urinary As levels (including AsB) observed in MADRES were also similar to those of post-partum Mexican-American women living in Texas50 and to women in their 1st trimester of pregnancy in the Seattle-Tacoma area Omega cohort.51 Additionally, very similar levels of As metabolites were observed in 1st trimester urine samples from the Spanish Infancia y Medio Ambiente (INMA) pregnancy cohort (median iAs: 0.4 μg/L, MMA: 0.3 μg/L, DMA: 5.7 μg/L).77 Lower overall 1st trimester urinary As was reported in MIREC, a pregnancy cohort of Canadian women, with a high percentage (50–92.5%) of As metabolites below the limit of detection (0.75 μg/L), with the exception of DMA, which was detectable, but low in most women (median 2.4 μg/L).52 Lastly, the %As metabolite levels observed in MADRES were within the range of what has been observed previously in samples from pregnant women prior to 20 weeks gestation in other studies, including in populations where overall As exposures were greater than those observed in MADRES.42, 68, 70

Evidence from previous studies suggest that As methylation efficiency and urinary As excretion increase in pregnancy.42, 68, 70 We therefore also examined possible trends in urinary As across gestation. In a subset of 25 individuals who contributed samples in both early and late pregnancy, we observed no statistically significant differences in As concentrations or the %As metabolites across trimesters. While small, the sample size for this analysis was similar to a previous study in Chile, which did find significant changes in As metabolism across pregnancy.70 Given prior evidence suggesting that the largest changes in As metabolism occur in early pregnancy42, we additionally examined correlations between GA at urine collection and the 1st trimester As measures in the larger sample of participants (N=241), as urine samples were collected across a relatively wide range of GAs (median: 12.4, interquartile range: 10.1–16.6 weeks gestation). However, none of the correlations were statistically significant. Although the null findings for MADRES contrast with several previous studies that were conducted in more highly exposed populations, such as in Bangladesh and Chile42, 68, 70, they are consistent with the INMA cohort in Spain, which is characterized by low levels of exposure and did not observe differences in total urinary As by trimester.78, 79 It is therefore possible that pregnancy-related improvements in As metabolism and urinary As excretion are less pronounced in populations exposed to low levels of As.
levels of As, possibly due to greater confounding from dietary sources. Consistent with this, a study of pregnant women in Bangladesh observed that GA-associated differences in %MMA and %DMA were stronger after restricting to participants with urine As concentrations (≥50 μg/L).42

Strengths of our study included evaluation of a traditionally research and medically-underserved, sensitive population of pregnant women; collection of biospecimens early in pregnancy; and the availability of a broad range of key covariates, collected by individual interview. Importantly, we cannot rule out the possibilities of confounding by unmeasured covariates, including dietary sources of As that were not captured in our questionnaires, such as rice-based cereals and other rice products. Another limitation of this study is that, although we observed reasonably consistent levels of exposure in both the first and third trimesters of pregnancy, urinary levels of As and metabolites primarily reflect recent exposures and these analyses were performed in a small subset of participants (n=25). Thus, our study cannot account for possible variability over time due to differences in environmental or dietary exposures. Urinary levels of As also reflect total exposure; therefore, it is not possible to differentiate between potential routes or sources of exposure. Further work is needed to identify the sources of As exposure for this population. Since this study focused on participants seeking prenatal care in urban Los Angeles, private well use is expected to be very low. MADRES participants are therefore likely to be drinking bottled and/or publicly supplied water, so we would not expect drinking water to be a major contributor to As exposure in this population, but we cannot rule out that some exposure may result from drinking tap water and/or using it for other purposes that may lead to consumption, such as cooking, making ice, etc. Los Angeles county water quality reports for 2016 through 2018 indicate that As levels measured at each of the source water plants that supply the county water system were all below the 10 μg/L maximum contaminant limit and ranged from below the 2 μg/L detection limit for reporting up to 7 μg/L.80 However, water from various sources are commonly mixed to reduce exposures before the water reaches individual home taps. We did not capture information on drinking water source or consumption habits, so a limitation of this work is that we currently cannot account for drinking water exposures in our analyses. Growing evidence indicates that diet is a major source of As exposure, particularly when levels in drinking water are low.13, 81, 82 Although we were able to account for women’s reported usual intake of rice and fish/seafood, we did not observe significant associations between these major food sources and total urinary arsenic among MADRES participants in our primary analysis. In secondary analyses, which evaluated maternal characteristics associated with As metabolites in models accounting for rice and fish/seafood intake (Supplemental Table 10) we did observe some evidence that rice intake was associated with significantly higher %DMA and a suggestively lower %iAs. Since most participants in this study (~90%) consume rice at least 2–3 times per month or more, differences may only be apparent in those consuming rice very frequently. Further, although dietary questions were designed to capture ‘usual diet’, rather than actual consumption, these questions were not measured using validated measures. Also, these dietary questions were asked in the second trimester, which may not reflect diet during the first trimester, when urine samples were collected for metals analysis. It is therefore possible that we are not fully capturing the variability and contribution of these dietary sources of As.
in our population. Lastly, a large percentage of individuals in our study population had undetectable levels of iAs in their urine, so observations pertaining to iAs levels must be interpreted with caution.

There are a number of key future directions and research needs that will further our understanding of contributors to As exposure among urban Latina women. While we focused the current study on As exposure in early pregnancy, given the hypothesized importance of exposures during this time period for maternal and child health, we are currently collecting samples at the third trimester paired with more detailed dietary information, to examine the contribution of a range of dietary factors to As exposure in pregnancy. Further, while drinking water is not expected to be a primary source of exposure among urban populations that rely primarily on municipal water, we did not collect information on participants’ drinking water and future studies should account for this potential exposure source. Additional assessment of other toxic metals and environmental contaminant exposures, which may contribute to adverse health outcomes and health disparities, is an important area of future work as well.

In conclusion, our study is the first to describe urinary biomarkers of As, indicating low to moderate levels of exposure, in a low-income, primarily Latina urban population. These exposure levels indicate that while women within our predominantly Hispanic study population are not likely to be widely exposed to disproportionately higher levels of As, they are exposed to levels that are similar to those observed in other US pregnancy cohorts, such as the New Hampshire Birth Cohort Study, which have linked low to moderate As exposure to maternal and child health outcomes, such as elevated blood pressure during pregnancy, gestational diabetes, birth weight and early life infant infection risk.45, 73, 74, 76 Future work should focus on better understanding why the demographic factors identified in the current study are significant predictors of urine As and As metabolites and identifying potential sources of exposure and strategies that can be implemented to modify exposures, particularly during pregnancy, in this vulnerable population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We would like to thank the MADRES participants, our community clinic partners and our study staff for their many contributions to this work. Thank you to the Arizona Laboratory for Emerging Contaminants (ALEC) at the University of Arizona, Tucson, AZ, which performed the urinary metals analyses.

Funding Sources

Funding for this study was provided by NIH grants P50 ES026086, and 4UH3OD023287-03 and an EPA grant 83615801-0. Dr. Farzan is supported by a NIEHS Pathway to Independence Grant (R00 ES024144) and a USC Provost’s Fellowship. Dr. Howe is supported by a NIEHS Pathway to Independence Award (K99 ES030400). The funding agencies that supported this work had no role in the planning, design or execution of this study, nor any role in data analysis or manuscript preparation.
References

1. Farzan SF, Karagas MR, and Chen Y, In utero and early life arsenic exposure in relation to long-term health and disease. Toxicology and applied pharmacology, 2013.
2. Landrigan PJ, Children’s Environmental Health: A Brief History. Acad Pediatr, 2016 16(1): p. 1–9. [PubMed: 26498257]
3. Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, and Gray KA, Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol, 2017 68: p. 34–48. [PubMed: 27871864]
4. Ettinger AS, Zota AR, Amarasingriwardena CJ, Hopkins MR, Schwartz J, Hu H, et al., Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environmental health perspectives, 2009 117(7): p. 1059–64. [PubMed: 19654913]
5. Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, et al., Blood Pressure Changes in Relation to Arsenic Exposure in a U.S. Pregnancy Cohort. Environ Health Perspect, 2015.
6. Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, et al., Air pollution exposure and abnormal glucose tolerance during pregnancy: the Project Viva cohort. Environ Health Perspect, 2012 124(4): p. 378–83. [PubMed: 24508979]
7. Lee PC, Talbott EO, Roberts JM, Catov JM, Bilonick RA, Stone RA, et al., Ambient air pollution exposure and blood pressure changes during pregnancy. Environ Res, 2012 117: p. 46–53. [PubMed: 22835955]
8. Robledo CA, Mendola P, Yeung E, Mannisto T, Sundaram R, Liu D, et al., Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus. Environ Res, 2015 137: p. 316–22. [PubMed: 25601734]
9. Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, and De Silva PM, Arsenic and human health effects: A review. Environ Toxicol Pharmacol, 2015 40(3): p. 828–46. [PubMed: 26476885]
10. Rodriguez-Barranco M, LacaSana M, Aguilar-Garduno C, A1guacil J, Gil F, Gonzalez-Alzaga B, et al., Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ, 2013 454–455: p. 562–77.
11. Agency for Toxic Substances and Disease, A., Toxicological Profile for Arsenic. 2007, US Dept of Health and Human Services.
12. Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, and Karagas MR, Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Perspect, 2012 120(10): p. 1418–24. [PubMed: 23008276]
13. Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarah V, Gandolfi AJ, et al., Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci U S A, 2011 108(51): p. 20656–60. [PubMed: 22143778]
14. Jackson BP, Taylor VF, Karagas MR, Punshon T, and Cottingham KL, Arsenic, organic foods, and brown rice syrup. Environ Health Perspect, 2012 120(5): p. 623–6. [PubMed: 22336149]
15. National Research Council, N., Critical Aspects of EPA’s IRIS Assessment of Inorganic Arsenic: Interim Report. . 2014, National Research Council: Washington, DC.
16. Durand C, Sauthier N, and Schwoebel V, Assessment of exposure to soils contaminated with lead, cadmium, and arsenic near a zinc smelter, Cassiopee Study, France, 2008. Environ Monit Assess, 2015 187(6): p. 352. [PubMed: 25971522]
17. Kafaei R, Tahmasbi R, Ravanipur M, Vakilabadi DR, Ahmad M, Omrani A, et al., Urinary arsenic, cadmium, manganese, nickel, and vanadium levels of schoolchildren in the vicinity of the industrialised area of Asaluyeh, Iran. Environ Sci Pollut Res Int, 2017 24(30): p. 23498–23507. [PubMed: 28849418]
18. Anderton DL, Anderson AB, Oakes JM, and Fraser MR, Environmental equity: the demographics of dumping. Demography, 1994 31(2): p. 229–48. [PubMed: 7926187]
19. Carter-Pokras O, ZambraRe RE, Poppell CF, Logie LA, and Guerrero-Preston R, The environmental health of Latino children. J Pediatr Health Care, 2007 21(5): p. 307–14. [PubMed: 17825728]
20. Hipp JR and Lakon CM, Social disparities in health: disproportionate toxicity proximity in minority communities over a decade. Health Place, 2010 16(4): p. 674–83. [PubMed: 20227324]

21. Bell ML and Ebisu K, Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect, 2012 120(12): p. 1699–704. [PubMed: 22889745]

22. Office of Environmental Health Hazard Assessment California Environmental Protection Agency, Analysis of Race/Ethnicity, Age, and CalEnviroScreen 3.0 Scores. 2018.

23. Cushing L, Faust J, August LM, Cendak R, Wieland W, and Alexeeff G, Racial/Ethnic Disparities in Cumulative Environmental Health Impacts in California: Evidence From a Statewide Environmental Justice Screening Tool (CalEnviroScreen 1.1). Am J Public Health, 2015 105(11): p. 2341–8. [PubMed: 26378826]

24. Ceballos RM, Knerr S, Scott MA, Hohl SD, Malen RC, Vilchis H, et al., Latino beliefs about biomedical research participation: a qualitative study on the U.S.-Mexico border. J Empir Res Hum Res Ethics, 2014 9(4): p. 10–21. [PubMed: 25747293]

25. Velasco-Mondragon E, Jimenez A, Palladino-Davis AG, Davis D, and Escamilla-Cejudo JA, Hispanic health in the USA: a scoping review of the literature. Public Health Rev, 2016 37: p. 31. [PubMed: 29450072]

26. Caldwell KL, Jones RL, Verdon CP, Jarrett JM, Caudill SP, and Osterloh JD, Levels of urinary total and speciated arsenic in the US population: National Health and Nutrition Examination Survey 2003–2004. J Expo Sci Enviro Epidemiol, 2009 19(1): p. 59–68. [PubMed: 18523458]

27. Paschal DC, Ting BG, Morrow JC, Pirkle JL, Jackson RJ, Sampson EJ, et al., Trace metals in urine of United States residents: reference range concentrations. Environ Res, 1998 76(1): p. 53–9. [PubMed: 9466897]

28. Shim YK, Lewin MD, Ruiz P, Eichner JE, and Mumtaz MM, Prevalence and associated demographic characteristics of exposure to multiple metals and their species in human populations: The United States NHANES, 2007–2012. J Toxicol Environ Health A, 2017 80(9): p. 502–512. [PubMed: 28703686]

29. Rivera-Nunez Z, Meliker JR, Meeker JD, Slotnick MJ, and Nriagu JO, Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water. J Expo Sci Environ Epidemiol, 2012 22(2): p. 182–90. [PubMed: 21878987]

30. Awata H, Linder S, Mitchell LE, and Delclos GL, Biomarker Levels of Toxic Metals among Asian Populations in the United States: NHANES 2011–2012. Environ Health Perspect, 2017 125(3): p. 306–313. [PubMed: 27517362]

31. Cleland B, Tsuchiya A, Kalman DA, Dills R, Burbacher TM, White JW, et al., Arsenic exposure within the Korean community (United States) based on dietary behavior and arsenic levels in hair, urine, air, and water. Environ Health Perspect, 2009 117(4): p. 632–8. [PubMed: 19440504]

32. Jones MR, Tellez-Plaza M, Vaidya D, Grau-Perez M, Post WS, Kaufman JD, et al., Ethnic, geographic and dietary differences in arsenic exposure in the multi-ethnic study of atherosclerosis (MESA). J Expo Sci Environ Epidemiol, 2018.

33. Watanabe T and Hirano S, Metabolism of arsenic and its toxicological relevance. Arch Toxicol, 2013 87(6): p. 969–79. [PubMed: 22811022]

34. Bastain TM, Chavez T, Hahre R, Girgus MS, Grubbs B, Toledo-Corrall C, et al., Study Design, Protocol and Profile of the Maternal And Developmental Risks from Environmental and Social Stressors (MADRES) Pregnancy Cohort: a Prospective Cohort Study in Predominantly Low-Income Hispanic Women in Urban Los Angeles. BMC Pregnancy Childbirth, 2019 19(1): p. 189. [PubMed: 31146718]

35. Prevention, C.F.D.C.a. Body Mass Index (BMI). 2018; Available from: https://www.cdc.gov/healthyweight/assessing/bmi/.

36. Le XC, Lu XF, Ma MS, Cullen WR, Apostion HV, and Zheng BS, Speciation of key arsenic metabolic intermediates in human urine. Analytical Chemistry, 2000 72(21): p. 5172–5177. [PubMed: 11080860]

37. Wei HY, Brockhoff-Schwegel CA, and Creed JT, A comparison of urinary arsenic speciation via direct nebulization and on-line photo-oxidation-hydride generation with IC separation and ICP-MS detection. Journal of Analytical Atomic Spectrometry, 2001 16(1): p. 12–19.

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 January 27.
38. Larsen EH, Pritzl G, and Hansen SH, Speciation of 8 arsenic compounds in human urine by high-performance liquid-chromatography with inductively-coupled plasma-mass spectrometric detection using antimonate for internal chromatographic standardization. Journal of Analytical Atomic Spectrometry, 1993 8(4): p. 557–563.

39. Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, et al., Rice consumption contributes to arsenic exposure in US women. Proceedings of the National Academy of Sciences of the United States of America, 2011 108(51): p. 20656–60. [PubMed: 22143778]

40. Tseng CH, A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol, 2009 235(3): p. 338–350. [PubMed: 19168087]

41. Boeniger MF, Lowry LK, and Rosenberg J, Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: a review. Am Ind Hyg Assoc J, 1993 54(10): p. 615–27. [PubMed: 8237794]

42. Gardner RM, Nermell B, Kippler M, Grander M, Li L, Ekström EC, et al., Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reprod Toxicol, 2011 31(2): p. 210–8. [PubMed: 21078382]

43. Fox J and Weisberg S, An R companion to applied regression. Third edition / ed. 2019, Thousand Oaks, California: Sage Publications, Inc. pages cm.

44. Team RC, R: A language and environment for statistical computing, R.F.f.S. Computing, Editor. 2018: Vienna, Austria

45. Farzan SF, Gossai A, Chen Y, Chasan-Taber L, Baker E, and Karagas M, Maternal arsenic exposure and gestational diabetes and glucose intolerance in the New Hampshire birth cohort study. Environ Health, 2016 15(1): p. 106. [PubMed: 27825389]

46. Farzan SF, Karagas MR, and Chen Y, In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol, 2013 272(2): p. 384–90. [PubMed: 23859881]

47. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudcova D, et al., Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol, 2011 31(2): p. 95–107. [PubMed: 21321970]

48. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al., The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect, 2013 121(3): p. 295–302. [PubMed: 23458756]

49. Farzan SF, Brickley EB, Li Z, Gilbert-Diamond D, Gossai A, Chen Y, et al., Maternal and infant inflammatory markers in relation to prenatal arsenic exposure in a U.S. pregnancy cohort. Environ Res, 2017 156: p. 426–433. [PubMed: 28410520]

50. Brender JD, Suarez L, Felkner M, Gilani Z, Stinchcomb D, Moody K, et al., Maternal exposure to arsenic, cadmium, lead, and mercury and neural tube defects in offspring. Environ Res, 2006 101(1): p. 132–9. [PubMed: 16171797]

51. Osorio-Yanez C, Gelaye B, Enquobahrie DA, Qiu C, and Williams MA, Dietary intake and urinary metals among pregnant women in the Pacific Northwest. Environ Pollut, 2018 236: p. 680–688. [PubMed: 29438954]

52. Ettinger AS, Arbuckle TE, Fisher M, Liang CL, Davis K, Cirriu CM, et al., Arsenic levels among pregnant women and newborns in Canada: Results from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. Environ Res, 2017 153: p. 8–16. [PubMed: 27880879]

53. Kuo CC, Howard BV, Umans JG, Gribble MO, Best LG, Francesconi KA, et al., Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study. Diabetes Care, 2015 38(4): p. 620–7. [PubMed: 25583752]

54. Spratlen MJ, Grau-Perez M, Best LG, Yracheta J, Lazo M, Vaidya D, et al., The Association of Arsenic Exposure and Arsenic Metabolism with the Metabolic Syndrome and its Individual Components: Prospective Evidence from the Strong Heart Family Study. Am J Epidemiol, 2018.

55. Steinmaus C, Moore LE, Shipp M, Kalman D, Rey OA, Biggs ML, et al., Genetic polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and metabolism of arsenic. J Toxicol Environ Health A, 2007 70(2): p. 159–70. [PubMed: 17365577]

56. Engstrom K, Vahter M, Mlakar SJ, Concha G, Nermell B, Raqib R, et al., Polymorphisms in arsenic(+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism. Environ Health Perspect, 2011 119(2): p. 182–8. [PubMed: 21247820]
57. Schlebusch CM, Gattemaille LM, Engstrom K, Vahter M, Jakobsson M, and Broberg K, Human adaptation to arsenic-rich environments. Mol Biol Evol, 2015 32(6): p. 1544–55. [PubMed: 25739736]

58. Gamble MV, Liu X, Ahsan H, Piltsner JR, Iliyevski V, Slavkovich V, et al., Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid-supplementation trial in Bangladesh. Am J Clin Nutr, 2006 84(5): p. 1093–101. [PubMed: 17093162]

59. Heck JE, Gamble MV, Chen Y, Graziano JH, Slavkovich V, Parvez F, et al., Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. Am J Clin Nutr, 2007 85(5): p. 1367–74. [PubMed: 17490975]

60. Howe CG, Li Z, Zens MS, Palys T, Chen Y, Channon JY, et al., Dietary B Vitamin Intake Is Associated with Lower Urinary Monomethyl Arsenic and Oxidative Stress Marker 15-F2t-Isoprostane among New Hampshire Adults. J Nutr, 2017 147(12): p. 2289–2296. [PubMed: 29070711]

61. Kurzius-Spencer M, da Silva V, Thomson CA, Hartz V, Hsu CH, Burgess JL, et al., Nutrients in one-carbon metabolism and urinary arsenic methylation in the National Health and Nutrition Examination Survey (NHANES) 2003–2004. Sci Total Environ, 2017 607–608: p. 381–390.

62. deCastro BR, Caldwell KL, Jones RL, Blount BC, Pan Y, Ward C, et al., Dietary sources of methylated arsenic species in urine of the United States population, NHANES 2003–2010. PLoS One, 2014 9(9): p. e108098. [PubMed: 25251890]

63. Navas-Acien A, Francesconi KA, Silbergeld EK, and Guallar E, Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res, 2011 111(1): p. 110–8. [PubMed: 21093857]

64. Signes-Pastor AJ, Vioque J, Navarrete-Munoz EM, Carey M, Garcia de la Hera M, Sunyer J, et al., Concentrations of urinary arsenic species in relation to rice and seafood consumption among children living in Spain. Environ Res, 2017 159: p. 69–75. [PubMed: 28772151]

65. Lewin A, Arbuckle TE, Fisher M, Liang CL, Marro L, Davis K, et al., Univariate predictors of maternal concentrations of environmental chemicals: The MIREC study. Int J Hyg Environ Health, 2017 220(2 Pt A): p. 77–85. [PubMed: 28109710]

66. Adams SV, Barrick B, Christopher EP, Shaffer MM, Song X, Vilchis H, et al., Urinary heavy metals in Hispanics 40–85 years old in Dona Ana County, New Mexico. Arch Environ Occup Health, 2016 71(6): p. 338–346. [PubMed: 26666397]

67. Hudgens EE, Drobna Z, He B, Le XC, Styblo M, Rogers J, et al., Biological and behavioral factors modify urinary arsenic metabolic profiles in a U.S. population. Environ Health, 2016 15(1): p. 62. [PubMed: 27230915]

68. Broberg K, Ahmed S, Engstrom K, Hossain MB, Jurkovic Mlakar S, Bottai M, et al., Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis, 2014 5(4): p. 288–98. [PubMed: 24965135]

69. Hall M, Gamble M, Slavkovich V, Liu X, Levy D, Cheng Z, et al., Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ Health Perspect, 2007 115(10): p. 1503–9. [PubMed: 17938743]

70. Hopenhayn C, Huang B, Christian J, Peralta C, Ferreccio C, Atallah R, et al., Profile of urinary arsenic metabolites during pregnancy. Environ Health Perspect, 2003 111(16): p. 1888–91. [PubMed: 14644662]

71. Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobna Z, et al., Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect, 2015 123(2): p. 186–92. [PubMed: 25325819]

72. Lewis RC, Meeker JD, Basu N, Gauthier AM, Cantoral A, Mercado-Garcia A, et al., Urinary metal concentrations among mothers and children in a Mexico City birth cohort study. Int J Hyg Environ Health, 2018 221(4): p. 609–615. [PubMed: 29703512]

73. Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, et al., Blood Pressure Changes in Relation to Arsenic Exposure in a U.S. Pregnancy Cohort. Environ Health Perspect, 2015 123(10): p. 999–1006. [PubMed: 25793356]
74. Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, et al., Infant Infections and Respiratory Symptoms in Relation to in Utero Arsenic Exposure in a U.S. Cohort. Environ Health Perspect, 2016 124(6): p. 840–7. [PubMed: 26359651]

75. Nadeau KC, Li Z, Farzan S, Koestler D, Robbins D, Fei DL, et al., In utero arsenic exposure and fetal immune repertoire in a US pregnancy cohort. Clinical Immunology, 2014(0).

76. Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, and Karagas MR, Relation between in Utero Arsenic Exposure and Birth Outcomes in a Cohort of Mothers and Their Newborns from New Hampshire. Environ Health Perspect, 2016 124(8): p. 1299–307. [PubMed: 26955061]

77. Signes-Pastor AJ, Carey M, Vioque J, Navarrete-Munoz EM, Rodriguez-Dehli C, Tardon A, et al., Urinary Arsenic Speciation in Children and Pregnant Women from Spain. Expo Health, 2017 9(2): p. 105–111. [PubMed: 28553665]

78. Forns J, Fort M, Casas M, Caceres A, Guxens M, Gascon M, et al., Exposure to metals during pregnancy and neuropsychological development at the age of 4 years. Neurotoxicology, 2014 40: p. 16–22. [PubMed: 24211492]

79. Fort M, Cosin-Tomas M, Grimalt JO, Querol X, Casas M, and Sunyer J, Assessment of exposure to trace metals in a cohort of pregnant women from an urban center by urine analysis in the first and third trimesters of pregnancy. Environ Sci Pollut Res Int, 2014 21(15): p. 9234–41. [PubMed: 24710728]

80. Los Angeles Department of Water and Power. L.A Drinking Water Quality Report. 2018 27 3 2020; Available from: https://www.ladwp.com/ladwp/faces/ladwp/aboutus/a-water/a-wwqreport?_afrLoop=139261385798997&_afrWindowMode=0&_afrWindowId=null-%40%-3F_afrWindowId%3Dnull%26_afrLoop%3D139261385798997%26_afrWindowMode%3D0%26_adf.ctrl-state%3DF4i552xtz_4.

81. Mantha M, Yeary E, Trent J, Creed PA, Kubachka K, Hanley T, et al., Estimating Inorganic Arsenic Exposure from U.S. Rice and Total Water Intakes. Environ Health Perspect, 2017 125(5): p. 057005. [PubMed: 28572075]

82. Xue J, Zartarian V, Wang SW, Liu SV, and Georgopoulos P, Probabilistic Modeling of Dietary Arsenic Exposure and Dose and Evaluation with 2003–2004 NHANES Data. Environ Health Perspect, 2010 118(3): p. 345–50. [PubMed: 20194069]
Table 1.

Participant Characteristics (N = 241)

Variable	Mean ± SD or N (%)
Age, years	28 ± 6
Pre-Pregnancy BMI, kg/m²	28.6 ± 6.2
Pre-Pregnancy BMI Category	
Underweight (≤18.5 kg/m²)	6 (2.5)
Normal weight (18.5–24.9 kg/m²)	73 (30.3)
Overweight (25.0–29.9 kg/m²)	75 (31.1)
Class I Obese (30.0–34.9 kg/m²)	56 (23.2)
Class II or III Obese (≥35.0 kg/m²)	31 (12.9)
Born in the U.S.	
Yes	124 (51.5)
No	117 (48.5)
Years Lived in the U.S.	
1–10 Years	34 (14.2)
11–20 Years	44 (18.3)
>20 Years	36 (15.0)
Lifetime U.S. Resident	124 (51.7)
Inconsistent Response	2 (0.8)
Preferred Language	
English	156 (64.7)
Spanish	85 (35.3)
Ethnicity by Birth Place	
Non-Hispanic	35 (14.5)
U.S. Born Hispanic	94 (39.0)
Foreign Born Hispanic	112 (46.5)
Birth Place	
U.S.	124 (51.5)
Mexico	73 (30.3)
Central America	37 (15.4)
South America	2 (0.8)
Other	5 (2.1)
Race	
White	206 (86.2)
Black	24 (10.0)
American Indian or Alaska Native	3 (1.3)
Variable	Mean ± SD or N (%)
--	--------------------
Asian	2 (0.8)
More than One Race	4 (1.7)
Education	
Less than 12th grade	72 (29.9)
Completed 12th grade	61 (25.3)
Some college/technical school	82 (34.0)
Completed college and/or some graduate training	26 (10.8)
Marital Status	
Married	71 (29.5)
Living together, not married	117 (48.5)
Never married, single	53 (22.0)
Working Status During Pregnancy^a	
Ever Worked	121 (50.4)
Never Worked	119 (49.6)
Employment Status During Pregnancy	
Homemaker	72 (29.9)
Student	18 (7.5)
Employed	113 (46.9)
Temporary Medical Leave	1 (0.4)
Unemployed	37 (15.4)
Birth Order of Baby	
1st	83 (34.4)
2nd	74 (30.7)
3rd	45 (18.7)
4th or more	39 (16.2)
Lifetime Cigarette Smoking Status	
Ever Smoked	64 (26.6)
Never Smoked	177 (73.4)
Cigarette Smoking Status During Pregnancy	
Ever Smoked	8 (3.3)
Never Smoked	233 (96.7)
Living with Cigarette Smoker During Pregnancy	
Yes	17 (7.1)
No	224 (92.9)
Total Household Income	
Don’t Know	43 (17.8)
<$15,000	64 (26.6)
$15,000–$29,000	78 (32.4)
$30,000–$49,999	44 (18.3)
Variable

Variable	Mean ± SD or N (%)
$50,000–$99,999	11 (4.6)
$100,000	1 (0.4)

Sample sizes vary due to missingness or restriction.

\[a N=240, \quad b N=239\]
Table 2.

First Trimester Arsenic and Arsenic Metabolite Concentrations (N = 241)

Arsenic Measure	Mean ± SD	Min.	5th	25th	50th	75th	95th	Max.
Total As (no AsB)\(^a\) \(\mu g/L\)	9.0 ± 32.9	0.8	2.2	3.7	5.7	8.0	18.0	506.2
SG-Adjusted Total As (no AsB)\(^b\)	8.2 ± 21.4	1.7	3.1	4.4	5.6	7.5	14.0	323.6
iAs, \(\mu g/L\)	1.4 ± 4.5	0.2	0.2	0.6	1.1	1.2	2.2	59.0
SG-Adjusted iAs	1.5 ± 3.9	0.2	0.3	0.6	1.0	1.3	2.9	55.5
MMA, \(\mu g/L\)	0.8 ± 3.1	0.1	0.2	0.2	0.5	0.7	1.4	47.8
SG-Adjusted MMA	0.7 ± 2.0	0.1	0.2	0.3	0.5	0.7	1.3	30.6
DMA, \(\mu g/L\)	6.9 ± 27.1	0.4	1.2	2.5	4.0	6.2	15.4	420.3
SG-Adjusted DMA	6.0 ± 17.3	0.8	2.0	3.0	4.1	5.6	11.4	268.7
AsB, \(\mu g/L\)	5.4 ± 33.6	0.1	0.1	0.1	0.4	1.7	13.9	482.9
SG-Adjusted AsB	5.2 ± 32.5	0.0	0.1	0.2	0.5	1.9	14.7	480.2
%iAs	18.4 ± 11.1	3.3	5.5	10.0	15.8	23.3	39.0	64.8
%MMA	8.8 ± 4.4	1.5	3.8	6.0	8.0	10.3	17.1	26.5
%DMA	72.8 ± 12.3	22.5	51.4	65.9	74.8	81.6	89.1	93.7

Abbreviations used: As, arsenic; AsB, arsenobetaine; DMA, dimethyl arsenic; iAs, inorganic arsenic; MMA, monomethyl arsenic; SG, specific gravity; SD, standard deviation

\(^a\)Total As is calculated as the sum of As metabolites iAs, MMA and DMA, excluding AsB.
Table 3.

Multivariable linear regression models\(^a\) of maternal characteristics associated with total As in 1\(^{st}\) trimester urine samples.

Maternal Characteristics	Base Model\(^a\) (N=241)	Base Model + Adjustment for Urinary Arsenobetaine\(^b\) (N=241)	Base Model + Adjustment for Rice and Seafood Consumption\(^c\) (N=211)
	Estimated %Difference in Total As (95% CI)\(^d\)	Estimated %Difference in Total As (95% CI)\(^d\)	Estimated %Difference in Total As (95% CI)\(^d\)
	\(p\)	\(p\)	\(p\)
Maternal Age	1.4 (−0.1, 2.8)	1.1 (−0.2, 2.5)	1.4 (−0.3, 3.1)
	0.06	0.10	0.11
Maternal Ethnicity by Birthplace	Ref.	Ref.	Ref.
Non-Hispanic\(^f\)	Ref.	--	--
U.S. Born Hispanic	20.0 (−5.7, 52.7)	24.5 (−0.4, 55.6)	12.4 (−15.6, 49.8)
	0.14	0.05	0.42
Foreign-Born Hispanic	20.5 (−5.7, 53.9)	21.9 (−2.9, 52.9)	18.2 (−11.4, 57.7)
	0.13	0.09	0.25
Education			
Less than 12\(^{th}\) grade	Ref.	--	--
Completed grade 12	−10.5 (−26.6, 9.2)	−14.9 (−29.3, 2.3)	−6.5 (−25.5, 17.2)
	0.28	0.09	0.56
Some college/technical school	−3.2 (−19.9, 17.1)	−7.6 (−22.6, 10.2)	−3.5 (−22.0, 19.3)
	0.45	0.38	0.74
Marital Status			
Married	Ref.	--	--
Living Together, Not Married	12.3 (−6.0, 34.1)	17.9 (−0.1, 39.0)	15.4 (−5.2, 40.5)
	0.20	0.05	0.15
Never Married, Single	19.0 (−3.7, 47.1)	20.5 (−1.0, 46.6)	25.2 (−1.5, 59.2)
	0.11	0.06	0.07
Smoking Status			
Never	Ref.	--	--
Ever	−3.3 (−17.9, 13.9)	−4.9 (−18.3, 10.7)	3.0 (−14.5, 24.2)
	0.69	0.52	0.75
Living with a Smoker			
No	Ref.	--	--
Yes	10.0 (−18.1, 47.7)	6.4 (−19.0, 39.8)	−4.6 (−32.7, 35.3)
	0.53	0.65	0.79
BMI Category			
Normal/Underweight	Ref.	--	--
Overweight	3.7 (−13.7, 24.7)	2.1 (−14.0, 21.2)	0.6 (−17.9, 23.3)
	0.69	0.81	0.95
Obese	1.4 (−15.2, 21.2)	0.9 (−14.5, 19.0)	4.7 (−14.7, 28.4)
	0.88	0.92	0.66
Maternal Characteristics	Base Model^a (N=241)	Base Model + Adjustment for Urinary Arsenobetaine^b (N=241)	Base Model + Adjustment for Rice and Seafood Consumption^c (N=211)
--------------------------	-------------------------------	---	---
Parity			
First Pregnancy	Ref.	Ref.	Ref.
Not First Pregnancy	6.9 (−10.0, 27.0)	10.7 (−5.7, 29.9)	6.1 (−12.9, 29.3)
Urinary Arsenobetaine			
Tertile 1 (<0.23 μg/L)	Ref.	Ref.	Ref.
Tertile 2 (≥0.23 & <1.16 μg/L)	--	21.6 (3.3, 43.1)	--
Tertile 3 (≥1.16 μg/L)	--	68.2 (42.9, 98.0)	--
Rice Consumption			
<½ Cup Less Than Weekly	Ref.	Ref.	Ref.
½ Cup or More At Least Weekly	--	--	Ref.
Any Seafood Consumption			
Never, Rarely, or Don’t Know	Ref.	Ref.	Ref.
Monthly	--	--	6.1 (−16.1, 34.1)
At Least Weekly	--	--	−2.4 (−25.0, 27.0)

^aAll covariates were included simultaneously in the base model, including age, recruitment site, ethnicity by birthplace, education, marital status, smoking status, second hand smoke exposure, BMI category and parity.

^bBase model with additional adjustment for arsenobetaine.

^cBase model with additional adjustment for any rice or seafood consumption.

^dCoefficients reflect percent change in total As (excluding AsB). Outcomes were natural log-transformed. Regression coefficients were back-transformed to represent the % difference in the outcome for a unit difference in the predictor using the following formula: ((e^β−1)*100

^eBolded values are statistically significant at p<0.05.

^fIncludes foreign-born non-Hispanic women.
Table 4.

Multivariable linear regression models\(^a\) of maternal characteristics associated with percentage of As metabolites\(^b\) in 1\(^{st}\) trimester urine samples (n=241).

Maternal Characteristics	Estimated Difference in %iAs (95% CI)\(^c\)	P	Estimated Difference in %MMA (95% CI)\(^c\)	P	Estimated Difference in %DMA (95% CI)\(^c\)	P
Maternal Age	0.4 (0.1, 0.6)	0.01	0.0 (-0.1, 0.1)	0.93	-0.4 (-0.7, -0.1)	0.02
Maternal Ethnicity by Birthplace						
Non-Hispanic\(^e\)	Ref.	--	Ref.	--	Ref.	--
U.S. Born Hispanic	-4.1 (-8.8, 0.7)	0.09	-0.9 (-2.8, 0.9)	0.33	5.0 (-0.2, 10.3)	0.06
Foreign-Born Hispanic	-7.7 (-12.6, -2.9)	<0.01	-0.9 (-2.8, 1.1)	0.38	8.6 (3.3, 13.9)	<0.01
Education						
Less than 12\(^{th}\) grade	Ref.	--	Ref.	--	Ref.	--
Completed grade 12	0.3 (-3.7, 4.2)	0.89	-0.9 (-2.4, 0.7)	0.28	0.6 (-3.8, 4.9)	0.80
At least some college/technical school	-1.7 (-5.4, 2.1)	0.38	-1.0 (-2.5, 0.5)	0.20	2.6 (-1.5, 6.8)	0.21
Marital Status						
Married	Ref.	--	Ref.	--	Ref.	--
Living Together, Not Married	2.8 (-0.8, 6.3)	0.12	0.3 (-1.1, 1.7)	0.67	-3.1 (-6.9, 0.8)	0.12
Never Married, Single	4.2 (0.0, 8.4)	0.05	0.7 (-0.9, 2.4)	0.39	-4.9 (-9.5, -0.3)	0.04
Smoking Status						
Never	Ref.	--	Ref.	--	Ref.	--
Ever	1.3 (-1.9, 4.6)	0.42	0.5 (-0.8, 1.8)	0.47	-1.8 (-5.4, 1.8)	0.32
Living with a Smoker						
No	Ref.	--	Ref.	--	Ref.	--
Yes	-6.5 (-12.3, -0.6)	0.03	0.1 (-2.2, 2.4)	0.94	6.4 (0.0, 12.8)	0.05
BMI Category						
Normal/Underweight	Ref.	--	Ref.	--	Ref.	--
Overweight	0.5 (-3.2, 4.1)	0.79	-1.2 (-2.6, 0.3)	0.11	0.7 (-3.3, 4.7)	0.73
Obese	1.3 (-2.3, 4.8)	0.42	-0.9 (-2.3, 0.5)	0.20	-0.4 (-4.3, 3.5)	0.85
Parity						
First Pregnancy	Ref.	--	Ref.	--	Ref.	--
Maternal Characteristics	Estimated Difference in %iAs (95% CI)^c	P	Estimated Difference in %MMA (95% CI)^c	P	Estimated Difference in %DMA (95% CI)^c	P
-------------------------	---	-------	---	-------	---	-------
Not First Pregnancy	−0.7 (−4.1, 2.7)	0.68	−1.6 (−2.9, −0.2)	0.02	2.3 (−1.5, 6.0)	0.23

^aAll covariates were included simultaneously in one model (age, recruitment site, ethnicity by birthplace, education, marital status, smoking status, second hand smoke exposure, BMI category and parity).

^bPercentage of metabolites calculated percent of total As (excluding AsB).

^cCoefficients reflect the change in the %metabolites.

^dBolded values are statistically significant at p<0.05.

^eIncludes foreign-born non-Hispanic women.