THE EQUALITY CASE IN A POINCARÉ-WIRTINGER TYPE INEQUALITY

B. BRANDOLINI, F. CHIACCHIO, D. KREJČÍŘÍK AND C. TROMBETTI

Abstract. In this paper, generalizing to the non smooth case already existing results, we prove that, for any convex planar set Ω, the first non-trivial Neumann eigenvalue $\mu_1(\Omega)$ of the Hermite operator is greater than or equal to 1. Furthermore, and this is our main result, under some additional assumptions on Ω, we show that $\mu_1(\Omega) = 1$ if and only if Ω is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.

1. Introduction

Let $\Omega \subset \mathbb{R}^2$ be a convex domain and let us denote by γ and dm_γ the standard Gaussian function and measure in \mathbb{R}^2 respectively, that is

$$\gamma(x, y) := \exp \left(-\frac{x^2 + y^2}{2} \right) \quad \text{and} \quad dm_\gamma := \gamma(x, y) \, dx \, dy.$$

In this paper we consider the following Neumann eigenvalue problem for the Hermite operator

$$\begin{aligned}
\begin{cases}
- \text{div}(\gamma \nabla u) = \mu_\gamma u & \text{in } \Omega, \\
\frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega,
\end{cases}
\end{aligned}$$

where n stands for the outward normal to $\partial \Omega$. As usual, we understand (1.1) as a spectral problem for the self-adjoint operator T in the Hilbert space $L^2_\gamma(\Omega) := L^2(\Omega, dm_\gamma)$ associated with the quadratic form $t[u] := \|\nabla u\|^2$, $D(t) := H^1_\gamma(\Omega)$. Here $\| \cdot \|$ denotes the norm in $L^2_\gamma(\Omega)$ and

$$H^1_\gamma(\Omega) := \{ u \in L^2_\gamma(\Omega) \mid \nabla u \in L^2_\gamma(\Omega) \}$$

is a weighted Sobolev space equipped with the norm $\sqrt{\| \cdot \|^2 + \| \nabla \cdot \|^2}$. Since the embedding $H^1_\gamma(\Omega) \hookrightarrow L^2_\gamma(\Omega)$ is compact (see Remark 2.1 below), the spectrum of T is purely discrete. We arrange the eigenvalues of T in a non-decreasing sequence $\{ \mu_n(\Omega) \}_{n=0}^{+\infty}$ where each eigenvalue is repeated according to its multiplicity. The first eigenfunction of (1.1) is clearly a constant with eigenvalue $\mu_0(\Omega) = 0$ for any Ω. We shall be interested in the first non-trivial eigenvalue $\mu_1(\Omega)$ of (1.1), which admits the following variational characterization

$$\mu_1(\Omega) = \min \left\{ \frac{\int_{\Omega} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega} u^2 \, dm_\gamma} \mid u \in H^1_\gamma(\Omega) \setminus \{ 0 \}, \int_{\Omega} u \, dm_\gamma = 0 \right\}.$$

A classical Poincaré-Wirtinger type inequality which goes back to Hermite (see for example [1, Chapter II, p. 91 ff]) states that

$$\mu_1(\mathbb{R}^2) = 1$$

and therefore

$$\int_{\mathbb{R}^2} \left(u - \int_{\mathbb{R}^2} u \, dm_\gamma \right)^2 \, dm_\gamma \leq \int_{\mathbb{R}^2} |\nabla u|^2 \, dm_\gamma, \quad \forall u \in H^1_\gamma(\mathbb{R}^2).$$

Key words and phrases. Hermite operator; Neumann eigenvalues; thin strips.
Very recently an inequality analogous to (1.3) raised up in connection with the proof of the “gap conjecture” for bounded sets (see [2]). In [3] the authors prove that if \(\Omega \) is a bounded, convex set then
\[
\mu_1(\Omega) \geq \mu_1\left(\frac{-\frac{d(\Omega)}{2}}{2}, \frac{d(\Omega)}{2}\right)
\]
where \(d(\Omega) \) is the diameter of \(\Omega \) and, here and throughout, \(\mu_1(a, b) \) will denote the first nontrivial eigenvalue of the Sturm-Liouville problem
\[
\begin{cases}
- \left(\gamma_1 v'\right)' = \mu \gamma_1 v & \text{in } (a, b), \\
v'(a) = v'(b) = 0,
\end{cases}
\]
with \(-\infty \leq a < b \leq +\infty\) and
\[
\gamma_1(x) := \exp\left(-\frac{x^2}{2}\right).
\]
Again, we understand (1.5) as a spectral problem for a self-adjoint operator with compact resolvent in \(L^2_{\gamma_1}((a, b)) \). It is well-known that
\[
\mu_1(a, b) \geq 1 \quad \text{with} \quad \mu_1(a, b) = 1 \quad \text{if and only if} \quad (a, b) = \mathbb{R}.
\]
As first result of this paper we extend the validity of (1.4) to any convex, possibly unbounded, planar domain (see [6] for the smooth case).

Theorem 1.1. Let \(\Omega \subset \mathbb{R}^2 \) be any convex domain. Then
\[
\mu_1(\Omega) \geq \mu_1(\mathbb{R}) = 1.
\]
The result is sharp in the sense that the equality in (1.7) is achieved for \(\Omega \) being any two-dimensional strip. It is natural to ask if the strips are the unique domains for which the equality in (1.7) is achieved.

We provide a partial answer to the uniqueness question via the following theorem, which is the main result of this paper.

Theorem 1.2. Let \(\Omega \) be a convex subset of \(S_{y_1, y_2} := \{(x, y) \in \mathbb{R}^2 : y_1 < y < y_2\} \) for some \(y_1, y_2 \in \mathbb{R}, y_1 < y_2 \). If \(\mu_1(\Omega) = 1 \), then \(\Omega \) is a strip.

Inequality (1.4) is a Payne-Weinberger type inequality for the Hermite operator. We recall that the classical Payne-Weinberger inequality states that the first nontrivial eigenvalue of the Neumann Laplacian in a bounded convex set \(\Omega \), \(\mu_1^\Delta(\Omega) \), satisfies the following bound
\[
\mu_1^\Delta(\Omega) \geq \frac{\pi^2}{d(\Omega)^2},
\]
where \(\pi^2/d(\Omega)^2 \) is the first nontrivial Neumann eigenvalue of the one-dimensional Laplacian in \((−d(\Omega)/2, d(\Omega)/2)\) (see [19]). The above estimate is the best bound that can be given in terms of the diameter alone in the sense that \(\mu_1^\Delta(\Omega) d(\Omega)^2 \) tends to \(\pi^2 \) for a parallelepiped all but one of whose dimensions shrink to zero (see [17, 21]).

Estimate (1.7) is sharp, not only asymptotically, since the equality sign is achieved when \(\Omega \) is any strip \(S \). Indeed, it is straight-forward to verify that \(\mu_1(S) = \mu_1(\mathbb{R}) = 1 \) for any strip \(S \). Hence the question faced in Theorem 1.2 appears quite natural.

The paper is organized as follows. Section 2 contains the proof of Theorem 1.1 while Section 3 is devoted to the proof of Theorem 1.2. The latter consists in various steps. We firstly deduce from (1.7) that any optimal set must be unbounded; then we show that it is possible to split an optimal set \(\Omega \) getting two sets that are still optimal and have Gaussian area \(m(\Omega) \). Repeating this procedure we obtain a sequence of thinner and thinner, optimal sets \(\Omega_k \) and we finally prove that there exists \(a \in \mathbb{R} \) such that \(\mu_1(\Omega_k) \) converges as \(k \to +\infty \) to \(\mu_1(a, +\infty) \), which is strictly greater than 1 unless \(a = -\infty \). This circumstance implies that \(\Omega \) contains a straight-line, and hence \(\Omega \) is a strip.
The convexity of \(\Omega \) ensures there exists a constant \(\Omega \). Set
\[
\|u\|_{H^1(\Omega)} = \max_{x,y} |u(x,y)|.
\]
In other words, we get
\[
\beta u \quad \text{with} \quad L > 0 \quad \text{holds} \quad |(2.2)\|.
\]
We distinguish two cases: 0
\[
\text{Next, we assume that } \Omega \text{ is unbounded and we adapt the argument in [14] to treat our case.}
\]
So, from now on, we assume that \(\Omega \) is unbounded and we adapt the arguments in [14] to treat our case. We distinguish two cases: 0 \(\in \Omega \) and 0 \(\notin \Omega \).

Case 1: 0 \(\in \Omega \). The convexity of \(\Omega \) ensures there exists a constant \(L > 0 \) such that, for every \((x_0, y_0) \in \partial \Omega \), up to a rotation, there exist \(r > 0 \) and an \(L \)-Lipschitz continuous function \(\beta : [0, +\infty) \to [0, +\infty) \) such that, if we set \(Q(x_0, y_0, r) := \{ (x, y) \in \mathbb{R}^2 : |x - x_0| < r, |y - y_0| < r \} \), it holds
\[
\Omega \cap Q(x_0, y_0, r) = \{ (x, y) \in \Omega : |x - x_0| < r, y_0 - r < y < \beta(x) \}, \quad \max_{|x-x_0|<r} |\beta(x) - y_0| < \frac{r}{2}
\]
In other words,
\[
(2.2) \quad |\beta'(x)| \leq L \quad \text{for a.e. } x \in (x_0 - r, x_0 + r),
\]
with \(L \) independent from \(x_0, y_0, r \).

Fix \((x_0, y_0) \in \partial \Omega \) and set \(\Omega^c := Q(x_0, y_0, r) \cap \Omega \) and \(\Omega^e := Q(x_0, y_0, r) \setminus \Omega^c \). Let \(u \in C^1(\Omega^e) \) and suppose for the moment that the support of \(u \) is contained in \(Q(x_0, y_0, r) \cap \Omega \). Set
\[
u^e(x, y) := u(x, 2\beta(x) - y) \quad \text{if } (x, y) \in \Omega^e.
\]
We get
\[
\int_{\Omega^e} u^e(x, y)^2 \exp \left(-\frac{x^2 + y^2}{2} \right) \, dxdy
\]
\[
= \int_{\Omega^e} u(x, 2\beta(x) - y)^2 \exp \left(-\frac{x^2 + y^2}{2} \right) \, dxdy
\]
\[
= \int_{\Omega^e} u(s, t)^2 \exp \left(-\frac{s^2 + (2\beta(s) - t)^2}{2} \right) \, dsdt
\]
\[
= \int_{\Omega^e} u(s, t)^2 \exp \left(\frac{s^2 + (2\beta(s) - t)^2}{2} + \frac{s^2 + t^2}{2} \right) \exp \left(-\frac{s^2 + t^2}{2} \right) \, dsdt.
\]
By elementary geometric considerations, taking into account the assumption $0 \in \Omega$, it is easy to verify that
\begin{equation}
\exp\left(-\frac{s^2 + (2\beta(s) - t)^2}{2} + \frac{s^2 + t^2}{2}\right) \leq 1, \quad \forall (s, t) \in \Omega^t.
\end{equation}
Thus
\begin{equation}
\int_{\Omega^t} u^e(x, y)^2 \exp\left(-\frac{x^2 + y^2}{2}\right) \, dx \, dy \leq \int_{\Omega^t} u(s, t)^2 \exp\left(-\frac{s^2 + t^2}{2}\right) \, ds \, dt.
\end{equation}
On the other hand, by (2.2) and (2.3) it holds
\begin{align*}
\int_{\Omega^t} |\nabla u^e(x, y)|^2 \exp\left(-\frac{x^2 + y^2}{2}\right) \, dx \, dy & \leq \int_{\Omega^t} \left[(\partial_s u(s, t) + 2\partial_t u(s, t)\beta'(s))^2 + (\partial_t u(s, t))^2 \right] \exp\left(-\frac{s^2 + (2\beta(s) - t)^2}{2}\right) \, ds \, dt \\
& \leq C(L) \int_{\Omega^t} |\nabla u(s, t)|^2 \exp\left(-\frac{s^2 + t^2}{2}\right) \, ds \, dt.
\end{align*}
Define
\[\tilde{u} := \begin{cases} u & \text{on } \overline{\Omega^t}, \\ u^e & \text{on } \overline{\Omega^t}, \\ 0 & \text{on } \mathbb{R}^2 \setminus (\Omega^t \cup \Omega^e). \end{cases} \]
If Ω contains the origin and the support of u is contained in $Q(x_0, y_0, r) \cap \Omega$, then (2.4) and (2.5) imply (2.1) with $C = C(L)$.

Now assume that $u \in C^1(\overline{\Omega})$ and drop the restriction on its support. Clearly $\partial \Omega$ is not compact, but we can cover $\partial \Omega$ with a countable family of squares $\{Q_{2k-1}\} = \{Q(x_0^k, y_0^k, r_1^k)\}_{k=1}^{\infty}$, with $(x_0^k, y_0^k) \in \partial \Omega$ and $r_1^k > 0$ such that (2.2) holds true for each k. Analogously, we can cover the set $\Omega \setminus \bigcup_{k=1}^{\infty} Q_{2k-1}$ with a countable family of squares $\{Q_{2k}\} = \{Q(x_1^k, y_1^k, r_1^k)\}_{k=1}^{\infty}$ with $(x_1^k, y_1^k) \in \Omega$ and $r_1^k > 0$. For the countable cover $\{Q_l\}_{l=1}^{\infty}$ of Ω there is a partition of unity φ_l subordinate to Q_l with φ_l smooth for each l (see for instance [1, Thm. 3.14]). Define $\tilde{\varphi_l} \tilde{u}$ as above when l is odd and set
\[\tilde{u} := \sum_{l \text{ odd}} \tilde{\varphi}_l \tilde{u} + \sum_{l \text{ even}} \varphi_l \tilde{u}. \]
Clearly \tilde{u} satisfies (2.1).

Finally if $u \in H^1_2(\Omega)$, the claim follows by approximation arguments and the proof of Case 1 is accomplished.

Case 2: $0 \notin \Omega$. Suppose now that $0 \notin \Omega$ and denote $d_0 := \text{dist}(0, \partial \Omega)$. Let us fix a vector (δ_1, δ_2), with $\sqrt{\delta_1^2 + \delta_2^2} > d_0$, in such a way that the translation $\Phi : \mathbb{R}^2 \to \mathbb{R}^2 : \{(x, y) \to (x - \delta_1, y - \delta_2)\}$ maps Ω onto a set $\Phi(\Omega)$ containing the origin. Defining
\[v(x, y) := u(x + \delta_1, y + \delta_2) \exp\left(-\frac{x \delta_1}{2} - \frac{\delta_1^2}{4}\right) \exp\left(-\frac{y \delta_2}{2} - \frac{\delta_2^2}{4}\right), \]
for every $(x, y) \in \Phi(\Omega)$, we have
\[\int_{\Omega} u^2 \, dm_\gamma = \int_{\Phi(\Omega)} v^2 \, dm_\gamma. \]
Since by construction $\Phi(\Omega)$ contains the origin, there exists a function $\tilde{v} \in H^1_2(\mathbb{R}^2)$ such that $\tilde{v} |_{\Phi(\Omega)} = v$ and
\[\|\tilde{v}\|_{H^1_2(\mathbb{R}^2)} \leq C(L) \|v\|_{H^1_2(\Phi(\Omega))}. \]
Letting
\[\tilde{u}(x, y) := \tilde{v}(x - \delta_1, y - \delta_2) \exp\left(\frac{x \delta_1}{2} - \frac{\delta_1^2}{4}\right) \exp\left(\frac{y \delta_2}{2} - \frac{\delta_2^2}{4}\right), \]
we finally get that $\tilde{u}_\Omega = u$ and
\[
\|\tilde{u}\|_{H^1_2(\mathbb{R}^2)} \leq C(L, d_0) \|u\|_{H^1_1(\Omega)}.
\]
This completes the proof of the theorem. \qed

Remark 2.1. Using the fact that $H^1_2(\mathbb{R}^2)$ is compactly embedded into $L^2_2(\mathbb{R}^2)$ (see for example [12]) and the above extension theorem one can easily deduce the compact embedding of $H^1_1(\Omega)$ into $L^2_2(\Omega)$ (see also [13] [6]). Therefore, by the classical spectral theory on compact self-adjoint operators, $\mu_1(\Omega)$ satisfies the variational characterization (1.2).

3. Proof of Theorem 1.2

The main ingredient in our proof of Theorem [1.2] is the following lemma, which tells us that cutting the optimiser of (1.7) in two convex, unbounded sets with equal Gaussian area, we again get two optimisers.

Lemma 3.1. Let Ω be a convex subset of S_{y_1,y_2} with $\mu_1(\Omega) = 1$. Let $\bar{y} \in (y_1,y_2)$ be such that the straight-line $\{y = \bar{y}\}$ divides Ω into two convex subsets with equal Gaussian area $m_\gamma(\Omega)$. Then
\[
\mu_1(\Omega \cap \{y < \bar{y}\}) = \mu_1(\Omega \cap \{y > \bar{y}\}) = 1.
\]

Proof. Let u be an eigenfunction of (1.1) corresponding to $\mu_1(\Omega)$. By (1.2), we know that $\int_\Omega u \, dm_\gamma = 0$ and
\[
1 = \frac{\int_\Omega |\nabla u|^2 \, dm_\gamma}{\int_\Omega u^2 \, dm_\gamma}.
\]

For each $\alpha \in [0,2\pi]$ there is a unique straight-line r_α orthogonal to $(\cos \alpha, \sin \alpha)$ such that it divides Ω into two convex sets $\Omega'_\alpha, \Omega''_\alpha$ with equal Gaussian measure. Let $I(\alpha) := \int_{\Omega'_\alpha} u \, dm_\gamma$. Since $I(\alpha) = -I(\alpha + \pi)$, by continuity there is $\bar{\alpha}$ such that $I(\bar{\alpha}) = 0$. Now we claim that $r_{\bar{\alpha}}$ is parallel to the x-axis. Note firstly that Ω'_α and Ω''_α are obviously convex and by (1.4), (1.6) and (1.7) we have
\[
\mu_1(\Omega'_\alpha) \geq 1, \quad \mu_1(\Omega''_\alpha) \geq 1.
\]
Moreover, it is immediate to verify that
\[
1 = \mu_1(\Omega) = \frac{\int_{\Omega'_\alpha} |\nabla u|^2 \, dm_\gamma + \int_{\Omega''_\alpha} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega'_\alpha} u^2 \, dm_\gamma + \int_{\Omega''_\alpha} u^2 \, dm_\gamma} \geq \min \left\{ \frac{\int_{\Omega'_\alpha} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega'_\alpha} u^2 \, dm_\gamma}, \frac{\int_{\Omega''_\alpha} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega''_\alpha} u^2 \, dm_\gamma} \right\},
\]
with equality holding if and only if
\[
\frac{\int_{\Omega'_\alpha} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega'_\alpha} u^2 \, dm_\gamma} = \frac{\int_{\Omega''_\alpha} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega''_\alpha} u^2 \, dm_\gamma}.
\]
Without loss of generality we can assume that
\[
\min \left\{ \frac{\int_{\Omega'_\alpha} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega'_\alpha} u^2 \, dm_\gamma}, \frac{\int_{\Omega''_\alpha} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega''_\alpha} u^2 \, dm_\gamma} \right\} = \frac{\int_{\Omega'_\alpha} |\nabla u|^2 \, dm_\gamma}{\int_{\Omega'_\alpha} u^2 \, dm_\gamma}.
\]
Finally, (3.1) ensures that
\[
1 = \mu_1(\Omega) = \mu_1(\Omega'_\alpha) = \mu_1(\Omega''_\alpha).
\]
Now we want to show that both Ω'_α and Ω''_α are unbounded, and hence $r_{\bar{\alpha}}$ is parallel to the x-axis. Suppose by contradiction that, for instance, Ω'_α is bounded. In such a case (1.4) yields
\[
\mu_1(\Omega'_\alpha) \geq \mu_1 \left(-\frac{d(\Omega'_\alpha)}{2}, \frac{d(\Omega''_\alpha)}{2} \right).
\]
Taking into account (3.2) and (1.6), we get that
\[
\mu_1 \left(-\frac{d(\Omega'_\alpha)}{2}, \frac{d(\Omega''_\alpha)}{2} \right) = 1
\]
that is \(d(\Omega'_\alpha) = +\infty \), which is a contradiction.

\[\Box \]

Proof of Theorem 1.2. By contradiction, let us assume that \(\Omega \subset S_{y_1,y_2} \) is a convex domain different from a strip and \(\mu_1(\Omega) = 1 \). Let us denote

\[\Omega = \{(x,y) \in \mathbb{R}^2 : y_1 < y < y_2, p(y) < x\}, \]

where \(p \) is a convex, non-trivial function. From (1.4) and (1.6) it follows that \(\Omega \) is necessarily unbounded. By employing a separation of variables, we also deduce from (1.4) and (1.6) that \(\Omega \) cannot be a semi-strip. Finally, we may assume that \(\inf \{ x : \exists y \in [y_1,y_2], (x,y) \in \Omega \} \) is finite (otherwise, we would have the finite supremum, which can be transferred to our situation by a reflection of the coordinate system).

Repeating the procedure described in the above lemma, since at any step we are dividing into two convex subsets with equal Gaussian area, we can obtain a sequence of unbounded convex domains

\[\Omega_k := \{(x,y) \in \mathbb{R}^2 : y_0 < y < d_k, p(y) < x\} = \{(x,y) \in \Omega : y_0 < y < d_k\} \]

such that

\[\mu_1(\Omega_k) = 1, \quad e_k := d_k - y_0 \xrightarrow{k \to +\infty} 0. \]

Here the point \(y_0 \) is chosen in such a way that \(p'(y_0) \neq 0 \), which is always possible because the situation of semi-strips has been excluded. Without loss of generality (reflecting again the coordinate system if necessary), we may in fact assume

\[p'(y_0) > 0, \]

so that \(\phi \) is increasing on \([y_0,d_k]\) whenever \(k \) is sufficiently large. Applying now a more general convergence result for eigenvalues in thin Neumann domains that we shall establish in the following section (Theorem 4.1), we have

Lemma 3.2. \(\lim_{k \to \infty} \mu_1(\Omega_k) = \mu_1(p^{-1}(y_0),+\infty). \)

Since \(\mu_1(\Omega_k) \) equals 1 for every \(k \), we conclude that

\[\mu_1(p^{-1}(y_0),+\infty) = 1. \]

However, from (1.6), we then deduce that \(p^{-1}(y_0) = -\infty \), which contradicts our assumptions from the beginning of the proof. In other words, \(\Omega \) contains a straight-line and the theorem immediately follows. \(\Box \)

It thus remains to establish Lemma 3.2.

4. Eigenvalue asymptotics in thin strips

In this section we establish Lemma 3.2 as a consequence of a general result about convergence of all eigenvalues of \(T \) in thin domains of the type (3.3).

4.1. The geometric setting.

Let \(f : [0, +\infty) \to [0, +\infty) \) be a concave non-decreasing continuous non-trivial function such that \(f(0) = 0 \) (the case \(f(0) > 0 \) is actually much easier to deal with). Given a positive number \(\varepsilon < \sup f \), we put

\[f_\varepsilon(x) := \min\{\varepsilon, f(x)\} \]

and define an unbounded domain

\[\Omega_\varepsilon := \{(x,y) \in \mathbb{R}^2 : 0 < x, 0 < y < f_\varepsilon(x)\}. \]

Clearly, (3.3) can be cast into this form after identifying \(f = p^{-1} \) and a translation. However, keeping in mind that the problem (1.1) is not translation-invariant, we accordingly change the definition of the Gaussian weight throughout this section

\[\gamma(x,y) := \exp\left(-\frac{(x_0 + x)^2 + (y_0 + y)^2}{2}\right). \]
Here y_0 is primarily thought as the point from (3.3) and x_0 is then such that $(x_0, y_0) \in \Omega_{\varepsilon_0}$. For the results established in this section, however, x_0 and y_0 can be thought as arbitrary real numbers. For our method to work, it is only important to assume (3.4), which accordingly transfers to

\[(4.1)\]

\[f'(0) < +\infty.\]

4.2. **The analytic setting and main result.** Keeping the translation we have made in mind, instead of (1.1) we equivalently consider the eigenvalue problem

\[
\begin{cases}
-\text{div}(\gamma \nabla u) = \mu \gamma u & \text{in } \Omega_{\varepsilon}, \\
\frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega_{\varepsilon}.
\end{cases}
\]

We understand (4.2) as a spectral problem for the self-adjoint operator T_{ε} in the Hilbert space $L^2_{\gamma}(\Omega_{\varepsilon})$ associated with the quadratic form $t_{\varepsilon}[u] := \|\nabla u\|_{\varepsilon}^2$, $D(t_{\varepsilon}) := H^1_{\gamma}(\Omega_{\varepsilon})$. Here $\| \cdot \|_{\varepsilon}$ denotes the norm in $L^2_{\gamma}(\Omega_{\varepsilon})$. We arrange the eigenvalues of T_{ε} in a non-decreasing sequence $\{\mu_n(\Omega_{\varepsilon})\}_{n \in \mathbb{N}}$ where each eigenvalue is repeated according to its multiplicity. In this paper we adopt the convention $0 \in \mathbb{N}$. We are interested in the behaviour of the spectrum as $\varepsilon \to 0$, particularly $\mu_1(\Omega_{\varepsilon})$ because of Lemma (3.2).

It is expectable that the eigenvalues will be determined in the limit $\varepsilon \to 0$ by the one-dimensional problem

\[
\begin{cases}
-(\gamma_0 u')' = \nu \gamma_0 u & \text{in } (0, +\infty), \\
u'(0) = 0,
\end{cases}
\]

where

\[
\gamma_0(x) := \gamma(x, 0) = \exp\left(-\frac{(x_0 + x)^2 + y_0^2}{2}\right).
\]

Again, we understand (4.3) as a spectral problem for the self-adjoint operator T_0 in the Hilbert space $L^2_{\gamma_0}((0, +\infty))$ associated with the quadratic form $t_0[u] := \|\nabla u\|_{0}^2$, $D(t_0) := H^1_{\gamma_0}((0, +\infty))$, where $\| \cdot \|_{0}$ denotes the norm in $L^2_{\gamma_0}((0, +\infty))$. As above, we arrange the eigenvalues of T_0 in a non-decreasing sequence $\{\nu_n\}_{n \in \mathbb{N}}$ where each eigenvalue is repeated according to its multiplicity.

By construction, for each $n \in \mathbb{N}$, ν_n coincides with the eigenvalue $\mu_n(x_0, +\infty)$ defined in (1.3).

In this section we prove the following convergence result.

Theorem 4.1. Let $f : [0, +\infty) \to [0, +\infty)$ be a concave non-decreasing continuous non-trivial function such that $f(0) = 0$. Assume in addition (1.1). Then

\[
\forall n \in \mathbb{N}, \quad \mu_n(\Omega_{\varepsilon}) \xrightarrow[\varepsilon \to 0]{} \nu_n.
\]

We shall also establish certain convergence of eigenfunctions of T_{ε} to eigenfunctions of T_0.

Clearly, Lemma (3.2) is the case $n = 1$ of this general theorem.

The rest of this section is devoted to a proof of Theorem (4.1).

4.3. **From the moving to a fixed domain.** Our main strategy is to map Ω_{ε} into a fixed strip Ω. We introduce a refined mapping in order to effectively deal with the singular situation $f(0) = 0$.

Let

\[a_{\varepsilon} := \inf f_\varepsilon^{-1}(\{\varepsilon\}).\]

By the definition of f_ε and since f is non-decreasing, $a_{\varepsilon} \to 0$ as $\varepsilon \to 0$ and $f_\varepsilon(x) = \varepsilon$ for all $x > a_{\varepsilon}$. If $f(0) > 0$, then there exists $\varepsilon_0 > 0$ such that $a_{\varepsilon} = 0$ for all $\varepsilon \leq \varepsilon_0$. On the other hand, if $f(0) = 0$, then $a_{\varepsilon} > 0$ for all $\varepsilon > 0$. The troublesome situation is the latter, to which we have restricted from the beginning. In this case, we introduce an auxiliary function

\[g_\varepsilon(s) := \begin{cases} a_{\varepsilon}s + a_{\varepsilon} & \text{if } s \in [-1, 0), \\ s + a_{\varepsilon} & \text{if } s \in [0, +\infty). \end{cases}\]
Assume (4.1) and the concavity. \(h_{\varepsilon} \) is differentiable almost everywhere, as it is supposed to be concave). In this way, we obtain a convenient parameterisation of \(\Omega_{\varepsilon} \) via the coordinates \((s,t)\in\Omega\) whose Jacobian is

\[
J_{\varepsilon}(s,t) = g_{\varepsilon}(g_{\varepsilon}(s))\,.
\]

Note that the Jacobian is independent of \(t \) and singular at \(s = -1 \). Now we reconsider (4.2) in \(\Omega \). With the notation

\[
\gamma_{\varepsilon}(s,t) := (\gamma \circ L_{\varepsilon})(s,t) = \exp\left(-\frac{[x_0 + g_{\varepsilon}(s)]^2 + [y_0 + f_{\varepsilon}(g_{\varepsilon}(s))t]^2}{2}\right),
\]

introduce the unitary transform

\[
U_{\varepsilon} : L^2(\Omega_{\varepsilon}) \to L^2(\gamma_{\varepsilon}\Omega_{\varepsilon}) : \{u \mapsto \sqrt{\varepsilon} u \circ L_{\varepsilon}\}.
\]

Here, in addition to the change of variables (4.1), we also make an irrelevant scaling transform (so that the renormalised Jacobian \(j_{\varepsilon}/\varepsilon \) is 1 in \(\Omega_{\varepsilon} \)). The operators \(H_{\varepsilon} := U_{\varepsilon} T_{\varepsilon} U_{\varepsilon}^{-1} \) and \(T_{\varepsilon} \) are isospectral. By definition, \(H_{\varepsilon} \) is associated with the quadratic form \(h_{\varepsilon}[\psi] := t_{\varepsilon}(U_{\varepsilon}^{-1}\psi), \)

Proposition 4.1. Assume (4.1). Then

\[
(4.7) \quad h_{\varepsilon}[\psi] = \int_{\Omega} \left[\left(\frac{\partial_x \psi}{g_{\varepsilon}} - \frac{f_{\varepsilon}}{f_{\varepsilon} \circ g_{\varepsilon}} t \cdot \partial_t \psi \right)^2 + \frac{(\partial_t \psi)^2}{g_{\varepsilon}^2} \right] + \frac{\gamma_{\varepsilon} g_{\varepsilon}^2}{\varepsilon} \left| \psi \right|^2 \, ds \, dt,
\]

\[
(4.8) \quad D(h_{\varepsilon}) \subset H^1(\gamma_{\varepsilon}\Omega_{\varepsilon}).
\]

Here we have started to simplify the notation by suppressing arguments of the functions.

Proof. The space \(D_{\varepsilon} := C^1_c(\mathbb{R}^2) \cap \Omega_{\varepsilon} \) is a core of \(t_{\varepsilon} \). The transformed space \(D := U_{\varepsilon} D_{\varepsilon} \) is a subset of \(C^1_c(\mathbb{R}^2) \cap \Omega \) consisting of Lipschitz continuous functions on \(\Omega \) which belong to \(C^1(\overline{\Omega}_{\varepsilon}) \cap C^1(\overline{\Omega}_0) \) (we do not have \(C^1 \) globally, because \(g_{\varepsilon} \) and \(f_{\varepsilon} \) are not smooth). For any \(\psi \in D \), it is easy to check (4.1); this formula extends to all \(\psi \) from the domain

\[
D(h_{\varepsilon}) = \overline{D} \|h_{\varepsilon} \|, \quad \|h_{\varepsilon} \| := \sqrt{h_{\varepsilon}[\cdot] + \| \cdot \|^2},
\]

where \(\| \cdot \| \) denotes the norm of \(L^2(\gamma_{\varepsilon}\Omega_{\varepsilon}) \). Let \(\psi \in D \). Using elementary estimates, we easily check

\[
(4.9) \quad h_{\varepsilon}^{-}[\psi] \leq h_{\varepsilon}[\psi]
\]

where

\[
h_{\varepsilon}^{-}[\psi] := \delta \int_{\Omega} \left(\frac{\partial_x \psi}{g_{\varepsilon}} \right)^2 \, ds \, dt + \left(1 - \frac{\delta}{\| f_{\varepsilon} \|_{L^\infty(0,1)}^2} \right) \int_{\Omega} \left(\frac{\partial_t \psi}{f_{\varepsilon} \circ g_{\varepsilon}} \right)^2 \, ds \, dt
\]

with any \(\delta \in (0,1) \). Note that \(f_{\varepsilon}^2 \) is bounded under the assumption (4.1) and the concavity. For any \(\delta > 0 \), we can choose \(\delta \) so small that \(h_{\varepsilon}^{-}[\psi] \) is composed of a sum of two non-negative terms (\(\delta \) can be made independent of \(\varepsilon \) if we restrict the latter to a fixed bounded interval, say \((0,1) \), because \(\| f_{\varepsilon} \|_{L^\infty(0,1)} \leq \| f_{\varepsilon}^2 \|_{L^\infty((0,1))} \), but this assumption is not needed for the property we are proving). Using that \(g_{\varepsilon}^2 \) is bounded for any fixed \(\varepsilon \) and the estimate \(f_{\varepsilon} \circ g_{\varepsilon} \leq \varepsilon, \)
we thus deduce from (4.8) that there is a positive constant \(c_{\varepsilon,\delta} \) (again, this constant can be made independent of \(\varepsilon \) if \(\varepsilon \leq 1 \)) such that
\[
 c_{\varepsilon,\delta} \| \psi \|^2_{H^1_{\gamma_j,\varepsilon}/(\Omega)} \leq \| \psi \|_{h_{\varepsilon}}.
\]
This proves (4.8) because \(D \) is dense in \(H^1_{\gamma_j,\varepsilon}/(\Omega) \).

4.4. **The eigenvalue equation.** Recall that we denote the eigenvalues of \(T_{\varepsilon} \) (and hence \(H_{\varepsilon} \)) by \(\mu_n(\Omega_{\varepsilon}) \) with \(n \in \mathbb{N} = \{0,1,\ldots\} \). The \((n+1)^{th}\) eigenvalue can be characterised by the Rayleigh-Ritz variational formula
\[
 \mu_n(\Omega_{\varepsilon}) = \inf_{\dim L_{\varepsilon} = n+1} \sup_{\psi \in \mathcal{L}_n} \left(\frac{h_{\varepsilon}[\psi]}{\| \psi \|^2} \right).
\]

Proposition 4.2. For any \(n \in \mathbb{N} \), there exists a positive constant \(C_n \) such that for all \(\varepsilon \leq 1 \),
\[
 \mu_n(\Omega_{\varepsilon}) \leq C_n.
\]

Proof. Assuming \(\varepsilon \leq 1 \), we have the following two-sided \(\varepsilon \)- and \(t \)-independent bound
\[
 (4.11) \quad \gamma_-(s) \leq \gamma_\varepsilon(s,t) \leq \gamma_+(s)
\]
valid for every \((s,t) \in \Omega_+\) with
\[
 \gamma_-(s) := \exp \left(-\frac{(|x_0| + s + 1)^2 + (|y_0| + 1)^2}{2} \right), \quad \gamma_+(s) := \exp \left(-\frac{(|x_0| + s)^2 - 2|y_0|}{2} \right).
\]
Using in addition that \(g'_\varepsilon = 1 \) and \(f_\varepsilon \circ g_\varepsilon = \varepsilon \) in \(\Omega_+ \), we obviously have
\[
 \forall \psi \in C_0^\infty((0, +\infty)) \otimes \{1\}, \quad \frac{h_{\varepsilon}[\psi]}{\| \psi \|^2} \leq \frac{\int_{\Omega_+} (\partial_s \psi)^2 \gamma_+(s) \, ds \, dt}{\int_{\Omega_+} \psi^2 \gamma_-(s) \, ds \, dt}.
\]
It then follows from (4.10) that the inequality of the proposition holds with the numbers
\[
 C_n := \inf_{\dim L_{\varepsilon} = n+1} \sup_{\psi \in \mathcal{L}_n} \left(\int_0^{+\infty} \psi'(s)^2 \gamma_+(s) \, ds \right)^{\frac{1}{2}} \left(\int_0^{+\infty} \psi(s)^2 \gamma_-(s) \, ds \right)^{-\frac{1}{2}},
\]
which are actually eigenvalues of the one-dimensional operator \(-\gamma_\varepsilon^{-1}\partial_s \gamma_\varepsilon \partial_t \) in \(L^2_{\gamma_\varepsilon}((0, +\infty)) \), subject to Dirichlet boundary conditions.

Let us now fix \(n \in \mathbb{N} \) and abbreviate the \((n+1)^{th}\) eigenvalue of \(H_{\varepsilon} \) by \(\mu_\varepsilon := \mu_n(\Omega_{\varepsilon}) \). We denote an eigenfunction corresponding to \(\mu_\varepsilon \) by \(\psi_\varepsilon \) and normalise it to 1 in \(L^2_{\gamma_{j,\varepsilon}/\varepsilon}(\Omega) \), i.e.,
\[
 (4.12) \quad \| \psi_\varepsilon \| = 1.
\]
for every admissible \(\varepsilon > 0 \).

The weak formulation of the eigenvalue equation \(H_{\varepsilon} \psi_\varepsilon = \mu_\varepsilon \psi_\varepsilon \) reads
\[
 (4.13) \quad \forall \phi \in D(h_{\varepsilon}), \quad h_{\varepsilon}(\phi, \psi_\varepsilon) = \mu_\varepsilon (\phi, \psi_\varepsilon),
\]
where \((\cdot, \cdot)\) stands for the inner product in \(L^2_{\gamma_{j,\varepsilon}/\varepsilon}(\Omega) \) and \(h_{\varepsilon}(\cdot, \cdot) \) denotes the sesquilinear form corresponding to \(h_{\varepsilon}[\cdot] \), that is \(\forall \phi \in D(h_{\varepsilon}) \),
\[
 (4.14) \quad \int_\Omega \left[\left(\partial_\phi \psi_\varepsilon - \frac{f_\varepsilon'}{f_\varepsilon} \partial_t \psi_\varepsilon \right) \frac{\partial_\phi}{g_\varepsilon'} - \frac{f_\varepsilon'}{f_\varepsilon} \partial_\phi \right] + \frac{(\partial_t \psi_\varepsilon)}{f_\varepsilon} \frac{(\partial_t \phi)}{f_\varepsilon} \gamma_\varepsilon \frac{g_\varepsilon'}{\varepsilon} \, ds \, dt \quad = \mu_\varepsilon \int_\Omega \psi_\varepsilon \phi \gamma_\varepsilon \frac{g_\varepsilon'}{\varepsilon} \, ds \, dt.
\]
4.5. What happens in Ω_+. Using $|t| \leq 1$, we easily verify
\begin{equation}
\forall (s,t) \in \Omega_+ \ , \quad \gamma_0 (s,t) \geq \rho_\varepsilon (s) \gamma_0 (s) ,
\end{equation}
where the function
\[\rho_\varepsilon (s) := \exp \left(- \frac{a_\varepsilon^2 + 2|a_0|a_\varepsilon + \varepsilon^2 + 2|y_0|\varepsilon}{2} \right) \exp(-a_\varepsilon s) \]
is converging pointwise to 1 as $\varepsilon \to 0$.

Choosing $\phi = \psi_\varepsilon$ as a test function in (4.13) and using (4.15) together with Proposition 4.12 and (4.12), we obtain
\begin{equation}
\int_{\Omega_+} (\partial_s \psi_\varepsilon)^2 \rho_\varepsilon \gamma_0 \, ds \, dt + \int_{\Omega_+} (\partial_t \psi_\varepsilon)^2 \rho_\varepsilon \gamma_0 \, ds \, dt \leq h_{\varepsilon} [\psi_\varepsilon] = \mu_\varepsilon \| \psi_\varepsilon \| ^2 \leq C .
\end{equation}
Here and in the sequel, we denote by C a generic constant which is independent of ε and may change its value from line to line. Writing
\begin{equation}
\psi_\varepsilon (s) = \varphi_\varepsilon (s) + \eta_\varepsilon (s,t) ,
\end{equation}
where
\begin{equation}
\int_0^1 \eta_\varepsilon (s,t) \, dt = 0 \quad \text{for a.e. } s \in (0,+\infty) ,
\end{equation}
we deduce from the second term on the left hand side of (4.16)
\begin{equation}
\pi^2 \int_{\Omega_+} \eta_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt \leq \int_{\Omega_+} (\partial_t \eta_\varepsilon)^2 \rho_\varepsilon \gamma_0 \, ds \, dt \leq C \varepsilon^2 .
\end{equation}
Differentiating (4.18) with respect to s, we may write
\[\int_{\Omega_+} (\partial_s \psi_\varepsilon)^2 \rho_\varepsilon \gamma_0 \, ds \, dt = \int_{\Omega_+} \varphi_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt + \int_{\Omega_+} (\partial_s \eta_\varepsilon)^2 \rho_\varepsilon \gamma_0 \, ds \, dt \]
and putting this decomposition into (4.16), we get from the first term on the left hand side
\begin{equation}
\int_0^{+\infty} \varphi_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \leq C , \quad \int_0^{+\infty} (\partial_s \eta_\varepsilon)^2 \rho_\varepsilon \gamma_0 \, ds \leq C .
\end{equation}
At the same time, from (4.12) using (4.15), we obtain
\begin{equation}
\int_{\Omega_+} \varphi_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt + \int_{\Omega_+} \eta_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt = \int_{\Omega_+} \psi_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt \leq \| \psi_\varepsilon \| ^2 = 1 ,
\end{equation}
where the first equality employs (4.18). Consequently,
\begin{equation}
\int_0^{+\infty} \varphi_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \leq 1 .
\end{equation}
Finally, employing the first inequality from (4.20) and (4.22), we get
\begin{equation}
\int_0^{+\infty} (\sqrt{\rho_\varepsilon \varphi_\varepsilon})^2 \gamma_0 \, ds \leq C .
\end{equation}
From (4.22) and (4.23), we see that $\{ \sqrt{\rho_\varepsilon \varphi_\varepsilon} \}_{\varepsilon > 0}$ is a bounded family in $H^1_{\gamma_0}((0,+\infty))$ and therefore precompact in the weak topology of this space. Let φ_0 be a weak limit point, i.e. for a decreasing sequence of positive numbers $\{ \varepsilon_i \}_{i \in \mathbb{N}}$ such that $\varepsilon_i \to 0$ as $i \to +\infty$,
\begin{equation}
\sqrt{\rho_{\varepsilon_i} \varphi_{\varepsilon_i}} \xrightarrow{i \to +\infty} \varphi_0 \quad \text{in} \quad H^1_{\gamma_0}((0,+\infty)) .
\end{equation}
Since $H^1_{\gamma_0}((0,+\infty))$ is compactly embedded in $L^2_{\gamma_0}((0,+\infty))$, we may assume
\begin{equation}
\sqrt{\rho_{\varepsilon_i} \varphi_{\varepsilon_i}} \xrightarrow{i \to +\infty} \varphi_0 \quad \text{in} \quad L^2_{\gamma_0}((0,+\infty)) .
\end{equation}
4.6. **What happens in \(\Omega_- \).** Here \(\gamma_\varepsilon \) can be estimated from below just by an \(\varepsilon \)-independent positive number, *e.g.*,

\[
(4.26) \quad \forall (s,t) \in \Omega_- \ , \quad \gamma_\varepsilon (s,t) \geq \exp \left(-\frac{(|x_0| + 1)^2 + |y_0| + 1)^2}{2} \right).
\]

On the other hand, we need a lower bound to \(f_\varepsilon \). Employing that \(f \) is concave and non-decreasing, we can use

\[
(4.27) \quad \forall s \in (-1,0) , \quad f_\varepsilon (g_\varepsilon (s)) \geq \varepsilon (s + 1).
\]

Recall also that \(g'_\varepsilon = a_\varepsilon \) on \((-1,0)\).

Choosing \(\phi = \psi_\varepsilon \) as a test function in \((4.13)\) and using \((4.26)\) and \((4.27)\), we obtain

\[
(4.28) \quad \int_{\Omega_-} \left(\frac{\partial \psi_\varepsilon}{a_\varepsilon} - \frac{f'_\varepsilon \circ g_\varepsilon}{f_\varepsilon \circ g_\varepsilon} t \partial_t \psi_\varepsilon \right)^2 a_\varepsilon (s + 1) \, ds \, dt + \int_{\Omega_-} \frac{(\partial \psi_\varepsilon)^2}{(f_\varepsilon \circ g_\varepsilon)^2} a_\varepsilon (s + 1) \, ds \, dt \leq C .
\]

Assume \((4.1)\). Using elementary estimates as in the proof of Proposition \((1.1)\) this inequality implies

\[
(4.29) \quad \delta \int_{\Omega_-} \left(\frac{\partial \psi_\varepsilon}{a_\varepsilon} \right)^2 a_\varepsilon (s + 1) \, ds \, dt + \left(1 - \frac{\delta}{1 - \delta} \| f'_\varepsilon \|_\infty^2 \right) \int_{\Omega_-} \frac{(\partial \psi_\varepsilon)^2}{(f_\varepsilon \circ g_\varepsilon)^2} a_\varepsilon (s + 1) \, ds \, dt \leq C
\]

with any \(\delta \in (0,1) \). We can choose \(\delta \) (independent of \(\varepsilon \) due to \((4.4)\)) so small that the left hand side of \((4.29)\) is composed of a sum of two non-negative terms. Using in addition \(f_\varepsilon \circ g_\varepsilon \leq \varepsilon \), we thus deduce from \((4.29)\)

\[
\frac{1}{a_\varepsilon} \int_{\Omega_-} (\partial \psi_\varepsilon)^2 (s + 1) \, ds \, dt + \frac{a_\varepsilon}{\varepsilon^2} \int_{\Omega_-} (\partial \psi_\varepsilon)^2 (s + 1) \, ds \, dt \leq C .
\]

Moreover, it follows from \((4.1)\) and the convexity bound

\[
(4.30) \quad \forall s \geq 0 , \quad f(s) \leq f'(0)s
\]

that

\[
(4.31) \quad \varepsilon \leq f'(0) a_\varepsilon .
\]

Hence

\[
(4.32) \quad \int_{\Omega_-} |\nabla \psi_\varepsilon|^2 (s + 1) \, ds \, dt \leq C a_\varepsilon .
\]

Now we write \((\varphi_\varepsilon \text{ is constant!})\)

\[
(4.33) \quad \psi_\varepsilon (s,t) = \varphi_\varepsilon + \eta_\varepsilon (s,t) ,
\]

where

\[
(4.34) \quad \int_{\Omega_-} \eta_\varepsilon (s,t) (s + 1) \, ds \, dt = 0 .
\]

Then we deduce from \((4.32)\)

\[
(4.35) \quad \pi^2 \int_{\Omega_-} \eta_\varepsilon^2 (s + 1) \, ds \, dt \leq \int_{\Omega_-} |\nabla \eta_\varepsilon|^2 (s + 1) \, ds \, dt \leq C a_\varepsilon .
\]

Note that \(\pi^2 \) is indeed the minimum between the first non-zero Neumann eigenvalue in the interval of unit length and the first non-zero Neumann eigenvalue in the unit disk.

At the same time, from \((4.12)\) using \((4.20)\) and \((4.27)\), we obtain

\[
(4.36) \quad \int_{\Omega_-} \varphi_\varepsilon^2 a_\varepsilon (s + 1) \, ds \, dt + \int_{\Omega_-} \eta_\varepsilon^2 a_\varepsilon (s + 1) \, ds \, dt = \int_{\Omega_-} \psi_\varepsilon^2 a_\varepsilon (s + 1) \, ds \, dt \leq C ,
\]

where the first equality employs \((4.33)\). Consequently, recalling that \(\varphi_\varepsilon \) is constant,

\[
(4.37) \quad \varphi_\varepsilon^2 a_\varepsilon \leq C \quad \text{on} \quad \Omega_- .
\]
4.7. The limiting eigenvalue equation in Ω_+. Now we consider \((4.13)\) for the sequence \(\{\varepsilon_i\}_{i \in \mathbb{N}}\) and a test function $\phi(s, t) = \varphi(s)$, where $\varphi \in C_0^\infty(\mathbb{R})$ is such that $\varphi' = 0$ on $[-1, 0]$, and take the limit $i \to +\infty$.

We shall need a lower bound analogous to the upper bound \((4.31)\). From the fundamental theorem of calculus, we deduce

\[
\forall s \in [0, a_\varepsilon], \quad f(s) \geq \left(\inf_{(0, a_\varepsilon)} f' \right) s.
\]

Note that the infimum cannot be zero unless f is trivial (we assume from the beginning $\varepsilon < \sup f$ and that f is non-decreasing) and that it converges to $f'(0) > 0$ as $\varepsilon \to 0$. Consequently, for all sufficiently small ε, we have

\[
\varepsilon \geq \frac{1}{2} f'(0) a_\varepsilon.
\]

At the same time, in analogy with \((4.15)\), we have

\[
\forall (s, t) \in \Omega_+, \quad \gamma_\varepsilon(s, t) \leq c_\varepsilon \rho_\varepsilon(s) \gamma_0(s),
\]

where

\[
c_\varepsilon := \exp \left(\frac{2|x_0|a_\varepsilon + \varepsilon^2 + 2|y_0|\varepsilon}{2} \right)
\]

is converging to 1 as $\varepsilon \to 0$.

We first look at the right hand side of \((4.13)\). Using the decompositions \((4.17)\) and \((4.33)\), we have

\[
(\varphi, \psi_\varepsilon) = \int_{\Omega_+} \varphi \varphi_\varepsilon \gamma_\varepsilon a_\varepsilon f_\varepsilon \circ g_\varepsilon ds dt + \int_{\Omega_+} \varphi \eta_\varepsilon \gamma_\varepsilon a_\varepsilon f_\varepsilon \circ g_\varepsilon ds dt + \int_{\Omega_+} \varphi \varphi_\varepsilon \gamma_\varepsilon ds dt + \int_{\Omega_+} \varphi \eta_\varepsilon \gamma_\varepsilon ds dt.
\]

Estimating $\gamma_\varepsilon \leq 1$ and using \((4.30)\) and \((4.39)\), we get

\[
\left| \int_{\Omega_+} \varphi \eta_\varepsilon \gamma_\varepsilon a_\varepsilon f_\varepsilon \circ g_\varepsilon ds dt \right| \leq a_\varepsilon^2 f'(0) \int_{\Omega_+} |\varphi| |\eta_\varepsilon| (s + 1) ds dt \leq 2a_\varepsilon \int_{\Omega_+} |\varphi| |\eta_\varepsilon| (s + 1) ds dt,
\]

where the right hand side tends to zero as $\varepsilon \to 0$ due to the Schwarz inequality and \((4.35)\). At the same time, recalling that φ_ε is constant in Ω_-,

\[
\left| \int_{\Omega_-} \varphi \varphi_\varepsilon \gamma_\varepsilon a_\varepsilon f_\varepsilon \circ g_\varepsilon ds dt \right| \leq a_\varepsilon^2 f'(0) \int_{\Omega_-} |\varphi| |\varphi_\varepsilon| (s + 1) ds dt \leq 2a_\varepsilon |\varphi_\varepsilon| \int_{\Omega_-} |\varphi| (s + 1) ds dt,
\]

where the right hand side tends to zero as $\varepsilon \to 0$ due to \((4.37)\). Using \((4.40)\), we also get

\[
\left| \int_{\Omega_+} \varphi \eta_\varepsilon \gamma_\varepsilon ds dt \right| \leq c_\varepsilon \int_{\Omega_+} |\varphi| |\eta_\varepsilon| \rho_\varepsilon \gamma_0 ds dt \leq c_\varepsilon \sqrt{\int_{\Omega_+} \varphi^2 \gamma_0 ds dt} \sqrt{\int_{\Omega_+} \rho_\varepsilon^2 \gamma_0 ds dt},
\]

where the right hand side tends to zero as $\varepsilon \to 0$ due to \((4.19)\). Finally, we write

\[
\int_{\Omega_+} \varphi \varphi_\varepsilon \gamma_\varepsilon ds dt = \int_{\Omega_+} \varphi \varphi_\varepsilon \sqrt{\rho_\varepsilon \gamma_0} ds dt + \int_{\Omega_+} \varphi \varphi_\varepsilon \sqrt{\rho_\varepsilon \gamma_0} \left(\frac{\gamma_\varepsilon - 1}{\sqrt{\rho_\varepsilon \gamma_0}} \right) ds dt.
\]

Here the first term on the right hand side converges to $\int_{\Omega_+} \varphi \varphi_\varepsilon \gamma_0 ds dt$ as $i \to +\infty$ due to \((4.24)\), while the second term vanishes in the limit because of

\[
\left| \int_{\Omega_+} \varphi \varphi_\varepsilon \sqrt{\rho_\varepsilon \gamma_0} \left(\frac{\gamma_\varepsilon - 1}{\sqrt{\rho_\varepsilon \gamma_0}} \right) ds dt \right| \leq \sqrt{\int_{\Omega_+} \varphi^2 \gamma_0 ds dt} \sqrt{\int_{\Omega_+} \rho_\varepsilon^2 \gamma_0 ds dt} \left(\frac{\gamma_\varepsilon - 1}{\sqrt{\rho_\varepsilon \gamma_0}} \right)^2 ds dt.
\]

12
Indeed the second term on the right hand side is bounded by (4.21), while first term tends to zero as \(i \to +\infty \) by the dominated convergence theorem. Summing up,

\[
(4.41) \quad \lim_{i \to +\infty} (\varphi, \psi_{\varepsilon_i}) = \int_0^{+\infty} \varphi \varphi_0 \gamma_0 \, ds .
\]

Employing that the test function \(\varphi \) is constant on \([-1,0]\) and the decomposition (4.17), we have

\[
(4.42) \quad h_{\varepsilon}(\varphi, \psi_{\varepsilon}) = \int_{\Omega_+} \varphi' \varphi_{\varepsilon} \gamma_\varepsilon \, ds \, dt + \int_{\Omega_+} \varphi' \partial_s \eta_\varepsilon \gamma_\varepsilon \, ds \, dt .
\]

Here the first term on the right hand side can treated in the same way as above with the conclusion

\[
\int_{\Omega_+} \varphi' \varphi_{\varepsilon} \gamma_\varepsilon \, ds \, dt \xrightarrow{i \to +\infty} \int_{\Omega_+} \varphi' \varphi_0 \gamma_0 \, ds \, dt = \int_0^{+\infty} \varphi' \varphi_0 \gamma_0 \, ds ,
\]

while we integrate by parts to handle the second term,

\[
\int_{\Omega_+} \varphi' \partial_s \eta_\varepsilon \gamma_\varepsilon \, ds \, dt = -\int_{\Omega_+} \varphi'' \eta_\varepsilon \gamma_\varepsilon \, ds \, dt - \int_{\Omega_+} \varphi' \eta_\varepsilon \partial_s \gamma_\varepsilon \, ds \, dt .
\]

Notice that the boundary terms vanish because \(\varphi \) has a compact support in \(\mathbb{R} \) and \(\varphi'(0) = 0 \). As above, the first term on the right hand side vanishes as \(\varepsilon \to 0 \) due to (4.19). Similarly,

\[
\left| \int_{\Omega_+} \varphi' \eta_\varepsilon \partial_s \gamma_\varepsilon \, ds \, dt \right| \leq c_\varepsilon \int_{\Omega_+} |\varphi| |\eta_\varepsilon| \rho_\varepsilon \gamma_0 (x_0 + s + a_\varepsilon) \, ds \, dt
\]

\[
\leq c_\varepsilon \sqrt{\int_{\Omega_+} \varphi^2 \gamma_0 (x_0 + s + a_\varepsilon)^2 \, ds \, dt} \sqrt{\int_{\Omega_+} \eta_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt} ,
\]

where the right hand side tends to zero as \(\varepsilon \to 0 \) due to (4.19). Summing up,

\[
(4.42) \quad \lim_{i \to +\infty} h_{\varepsilon_i}(\varphi, \psi_{\varepsilon_i}) = \int_0^{+\infty} \varphi' \varphi_0 \gamma_0 \, ds .
\]

Since the set of functions \(\varphi \in C_0^\infty(\mathbb{R}) \) satisfying \(\varphi'(0) = 0 \) is a core for the form domain of the operator \(T_0 \), we conclude from (4.42) and (4.11) that \(\varphi_0 \) belongs to \(D(T_0) \) and solves the one-dimensional problems

\[
(4.43) \quad T_0 \varphi_0 = \mu_0^+ \varphi_0 , \quad \mu_0^+ := \limsup_{i \to +\infty} \mu_{\varepsilon_i} ,
\]

\[
\varphi_0 = \mu_0^- \varphi_0 , \quad \mu_0^- := \liminf_{i \to +\infty} \mu_{\varepsilon_i} .
\]

If \(\varphi_0 \neq 0 \) on \((0, +\infty) \), then \(\mu_0^+ \) must coincide with some eigenvalues of \(T_0 \). It remains to check that indeed \(\varphi_0 \neq 0 \) on \((0, +\infty) \).

4.8. The limiting problem in \(\Omega_- \): a crucial step. Define

\[
\Omega_- := (-1/2, 0) \times (0, 1) , \quad \Omega'_- := (0, 1/2) \times (0, 1) , \quad \Omega' := (-1/2, 1/2) \times (0, 1) .
\]

From (4.32) and (4.36), we respectively have

\[
(4.44) \quad \int_{\Omega'_-} |\nabla \psi_\varepsilon|^2 \, ds \, dt \leq 2Ca_\varepsilon , \quad \int_{\Omega'_-} \psi_\varepsilon^2 \, ds \, dt \leq \frac{2C}{a_\varepsilon} .
\]

At the same time, denoting \(m_0 := \min_{[0,1/2]} \gamma_0 \) and assuming \(\varepsilon \leq 1 \), from (4.16) and (4.21), we respectively get

\[
(4.45) \quad \int_{\Omega'_+} |\nabla \psi_\varepsilon|^2 \, ds \, dt \leq \frac{C}{m_0 \rho_\varepsilon(1/2)} , \quad \int_{\Omega'_+} \psi_\varepsilon^2 \, ds \, dt \leq \frac{1}{m_0 \rho_\varepsilon(1/2)} .
\]

Consequently, \(\psi_\varepsilon \in H^1(\Omega') \) for any \(\varepsilon \leq 1 \) (although, in principle, \(\| \psi_\varepsilon \|_{H^1(\Omega')} \) might not be uniformly bounded in \(\varepsilon \)).
It follows that the boundary values \(\psi_\varepsilon(0-,t) \) and \(\psi_\varepsilon(0+,t) \) exist in the sense of traces in \(\Omega_- \) and \(\Omega_+ \), respectively, and they must be equal as functions of \(t \) in \(L^2((0,1)) \). Using the decompositions (4.17) and (4.33), we therefore have, for almost every \(t \in (0,1) \),

\[
[\varphi_\varepsilon(0-) - \varphi_\varepsilon(0+)]^2 = [\eta_\varepsilon(0+,t) - \eta_\varepsilon(0-,t)]^2 \leq 2[\eta_\varepsilon(0+,t)]^2 + 2[\eta_\varepsilon(0-,t)]^2
\]

\[
\leq 2C \int_0^{1/2} \left([\eta_\varepsilon(s,t)]^2 + [\partial_s \eta_\varepsilon(s,t)]^2 \right) ds + 2C \int_{1/2}^0 \left([\eta_\varepsilon(s,t)]^2 + [\partial_s \eta_\varepsilon(s,t)]^2 \right) ds ,
\]

where \(C \) is a constant coming from the Sobolev embedding theorem. Recall that \(\varphi_\varepsilon \) is constant on \((-1,0)\) and \(\varphi_\varepsilon \in H^1((0,1/2)) \leftrightarrow C^0([0,1/2]) \); more specifically, the first inequality of (4.40) and (4.22) respectively yield

\[
(4.46) \quad \int_0^{1/2} \varphi_\varepsilon^2 ds \leq \frac{C}{m_0 \rho_\varepsilon(1/2)} , \quad \int_0^{1/2} \varphi_\varepsilon^2 ds \leq \frac{1}{m_0 \rho_\varepsilon(1/2)} .
\]

Integrating with respect to \(t \) above, we deduce

\[
[\varphi_\varepsilon(0-) - \varphi_\varepsilon(0+)]^2 \leq 2C \int_{\Omega_-} \left[\eta_\varepsilon^2 + (\partial_s \eta_\varepsilon)^2 \right] ds dt + 2C \int_{\Omega_-} \left[\eta_\varepsilon^2 + (\partial_s \eta_\varepsilon)^2 \right] ds dt .
\]

Applying (4.19), the second inequality of (4.20) and (4.33), we may write

\[
(4.47) \quad [\varphi_\varepsilon(0-) - \varphi_\varepsilon(0+)]^2 \leq C ,
\]

where \(C \) is a constant (different from the above) independent of \(\varepsilon \), provided that (4.44) holds. Finally, applying (4.46) and the Sobolev embedding \(H^1((0,1/2)) \leftrightarrow C^0([0,1/2]) \), we deduce from (4.47) the following improvement upon (4.37)

\[
(4.48) \quad \varphi_\varepsilon^2 \leq C \quad \text{on} \quad \Omega_- .
\]

4.9. As \(\varepsilon \to 0 \) only \(\Omega_+ \) matters: convergence of eigenvalues and eigenfunctions. Estimate (4.48) provides a crucial information whose significance consists in that what happens in \(\Omega_- \) is insignificant.

Proposition 4.3. One has

\[
\| \psi_\varepsilon \| \to \| \varphi_0 \|_{L^2_\varepsilon((0,+(\infty)))} .
\]

Proof. We have

\[
\| \psi_\varepsilon \|^2 = \int_{\Omega_-} \varphi_\varepsilon^2 \gamma_\varepsilon a_\varepsilon \frac{f_\varepsilon \circ g_\varepsilon}{\varepsilon} ds dt + \int_{\Omega_-} \eta_\varepsilon^2 \gamma_\varepsilon a_\varepsilon \frac{f_\varepsilon \circ g_\varepsilon}{\varepsilon} ds dt
\]

\[
+ \int_{\Omega_-} 2 \varphi_\varepsilon \eta_\varepsilon \gamma_\varepsilon a_\varepsilon \frac{f_\varepsilon \circ g_\varepsilon}{\varepsilon} ds dt
\]

\[
+ \int_{\Omega_+} \varphi_\varepsilon^2 \gamma_\varepsilon ds dt + \int_{\Omega_+} \eta_\varepsilon^2 \gamma_\varepsilon ds dt + \int_{\Omega_+} 2 \varphi_\varepsilon \eta_\varepsilon \gamma_\varepsilon ds dt .
\]

The right hand side of the first line together with the mixed term on the second line goes to zero as \(\varepsilon \to 0 \). Indeed, recalling (4.30), (4.39) and \(\gamma_\varepsilon \leq 1 \),

\[
\int_{\Omega_-} \varphi_\varepsilon^2 \gamma_\varepsilon a_\varepsilon \frac{f_\varepsilon \circ g_\varepsilon}{\varepsilon} ds dt \leq 2a_\varepsilon \varphi_\varepsilon^2 \int_{\Omega_-} (s+1) ds dt \xrightarrow{\varepsilon \to 0} 0
\]

due to (4.45);

\[
\int_{\Omega_-} \eta_\varepsilon^2 \gamma_\varepsilon a_\varepsilon \frac{f_\varepsilon \circ g_\varepsilon}{\varepsilon} ds dt \leq 2a_\varepsilon \int_{\Omega_-} \eta_\varepsilon^2 (s+1) ds \xrightarrow{\varepsilon \to 0} 0
\]

due to (4.35), and the mixed term goes to zero by the Schwarz inequality. Similarly, recalling (4.40),

\[
\int_{\Omega_+} \eta_\varepsilon^2 \rho_\varepsilon \gamma_0 ds dt \leq c_\varepsilon \int_{\Omega_+} \eta_\varepsilon^2 \rho_\varepsilon \gamma_0 ds dt \xrightarrow{\varepsilon \to 0} 0
\]
due to (4.13); while the Schwarz inequality yields
\[
\left| \int_{\Omega_+} 2 \varphi_\varepsilon \eta_\varepsilon \gamma_\varepsilon \, ds \, dt \right| \leq 2C \varepsilon \sqrt{\int_{\Omega_+} \eta_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt \sqrt{\int_{\Omega_+} \varphi_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt}} \to 0, \varepsilon \to 0 \]
where the second square root is bounded in \(\varepsilon \) due to (4.22). Finally, we write
\[
\int_{\Omega_+} \varphi_\varepsilon^2 \gamma_\varepsilon \, ds \, dt = \int_{\Omega_+} \varphi_\varepsilon^2 \rho_\varepsilon \gamma_0 \, ds \, dt + \int_{\Omega_+} \varphi_\varepsilon^2 (\gamma_\varepsilon - \rho_\varepsilon \gamma_0) \, ds \, dt
\]
and observe that the first term on the right hand side tends to the desired result \(\| \varphi_0 \|_{L^2_{\gamma_0}((0, +\infty))} \) as \(i \to +\infty \) by the strong convergence (4.25), while the second term vanishes in the limit. In more detail,
\[
\left| \int_{\Omega_+} \varphi_\varepsilon^2 (\gamma_\varepsilon - \rho_\varepsilon \gamma_0) \, ds \, dt \right| = \left| \int_{\Omega_+} (\varphi_\varepsilon^2 \rho_\varepsilon - \varphi_0^2) \left(\frac{\gamma_\varepsilon}{\rho_\varepsilon} - \gamma_0 \right) \, ds \, dt \right|
\leq \int_{\Omega_+} |\varphi_\varepsilon^2 \rho_\varepsilon - \varphi_0^2| (\varepsilon_\gamma, \gamma_0 \gamma + \gamma_0) \, ds \, dt + \int_{\Omega_+} \varphi_\varepsilon^2 \left(\frac{\gamma_\varepsilon}{\rho_\varepsilon} - \gamma_0 \right) \, ds \, dt,
\]
where the first term after the inequality tends to zero as \(i \to +\infty \) by the strong convergence again, while the second term vanishes by the dominated convergence theorem.

It follows from Proposition 4.3 that \(\varphi_0 \neq 0 \), so that it is indeed an eigenfunction of \(T_0 \) due to (4.13). In particular, \(\mu_0^+ = \mu_0 \).

Now, let \(\hat{\psi}_\varepsilon \) be a normalised eigenfunction corresponding to possibly another eigenvalue \(\hat{\mu}_\varepsilon := \mu_m(\varepsilon) \). Again, we use the decompositions (4.17) and (4.33) and distinguish the individual components by tilde. In the same way as we proved Proposition 4.3 we can establish

Proposition 4.4. One has
\[
(\hat{\psi}_{\varepsilon_i}, \hat{\psi}_{\varepsilon_j}) \xrightarrow{i,j \to +\infty} (\varphi_0, \varphi_0)_{L^2_{\gamma_0}((0, +\infty))}.
\]

If \(m \neq n \), then \((\hat{\psi}_{\varepsilon_i}, \hat{\psi}_{\varepsilon_j}) = 0 \) and thus \((\varphi_0, \varphi_0)_{L^2_{\gamma_0}((0, +\infty))} = 0 \). Hence \(\varphi_0 \) and \(\tilde{\varphi}_0 \) correspond to distinct eigenvalues of \(T_0 \). In particular, \(\varphi_0 \) is an eigenfunction corresponding to the \((n + 1)\)th eigenvalue \(\nu_n \) of \(T_0 \). Since we get this result for any weak limit point of \(\{ \varphi_\varepsilon \}_{\varepsilon > 0} \), we have the convergence results actually in \(\varepsilon \to 0 \) (no need to pass to subsequences).

This completes the proof of Theorem 4.4.

Acknowledgements. This paper was partially supported by the grants PRIN 2012 “Elliptic and parabolic partial differential equations: geometric aspects, related inequalities, and applications”, FIRB 2013 “Geometrical and qualitative aspects of PDE’s”, and STAR 2013 “Sobolev-Poincaré inequalities: embedding constants, stability issues, nonlinear eigenvalues” (SInECoSINE). D.K. was partially supported by the project RVO61389005 and the GACR grant No. 14-06818S.

References

[1] R. A. Adams, *Sobolev spaces*. Pure and Applied Mathematics, Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.

[2] B. Andrews, and J. Clutterbuck, *Proof of the fundamental gap conjecture*, J. Amer. Math. Soc. 24 (2011), no. 3, 899–916.

[3] B. Andrews and L. Ni, *Eigenvalue comparison on Bakry-Emery manifolds*, Comm. Partial Differential Equations 37 (2012), no. 11, 2081–2092.

[4] J. M. Arrieta, *Neumann eigenvalue problems on exterior perturbations of the domain*, J. Differential Equations 118 (1995), 54–103.

[5] J. M. Arrieta and A. N. Carvalho, *Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain*, J. Differential Equations 199 (2004), 143–178.
An optimal Poincaré-Wirtinger inequality in Gauss space, Math. Res. Lett. 20 (2013), no. 3, 449–457.

[7] B. Brandolini, F. Chiacchio and C. Trombetti, Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems, Proc. Roy. Soc. Edinburgh Sect. A, to appear.

[8] B. Brandolini, F. Chiacchio and C. Trombetti, A sharp lower bound for some Neumann eigenvalues of the Hermite operator, Differential Integral Equations 26 (2013), no. 5-6, 639–654.

[9] F. Brock, F. Chiacchio and A. Mercaldo, Weighted isoperimetric inequalities in cones and applications, Nonlinear Anal. 75 (2012), no. 15, 5737–5755.

[10] F. Chiacchio and G. di Blasio, Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space, Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012), no. 2, 199–216.

[11] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1, Interscience, New York, 1953.

[12] L. Esposito, C. Nitsch, and C. Trombetti, Best constants in Poincaré inequalities for convex domains, J. Convex Anal. 20 (2013), no. 1, 253–264.

[13] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.

[14] D. Jerison, Locating the first nodal line in the Neumann problem, Trans. Amer. Math. Soc. 352 (2000), 2301–2317.

[15] L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292.

[16] M. Schatzman, On the eigenvalues of the Laplace operator on a thin set with Neumann boundary conditions, Applicable Anal. 61 (1996), 293–306.

[17] D. Valtorta, Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal. 75 (2012), no. 13, 4974–4994.