REVIEW ARTICLE

Ultrasound elastography and ultrasound tissue characterisation for tendon evaluation

Neal Washburn a, Kentaro Onishi a,b,*, James H-C. Wang c

a Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Center, Kaufman Building, 3471 Fifth Avenue, Suite 201, Pittsburgh, PA, 15213, USA
b Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Kaufman Building, 3471 Fifth Avenue, Suite 1011, Pittsburgh, PA, 15213, USA
c MechnanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 210 Lothrop Street, BST, E1640, Pittsburgh, PA 15213, USA

Received 10 February 2018; received in revised form 4 June 2018; accepted 7 June 2018
Available online 4 July 2018

KEYWORDS
Elastography; Strain elastography; Shear wave elastography; Ultrasound; Ultrasound tissue characterisation

Abstract Ultrasound elastography (UE) and ultrasound tissue characterisation (UTC) are two newer modes of ultrasound (US) which have begun to attract scientific interests as ways to improve tendon characterisation. These modes of US show early promise in improved diagnostic accuracy, prediction of at-risk tendons and prognostication capability beyond conventional grey-scale US. Here, we provide a review of the literature on UE and UTC for Achilles, patellar and rotator cuff tendons.

The translational potential of this article: The present literature indicates that UE and UTC could potentially increase the clinician’s ability to accurately diagnose the extent of tendon pathology, including preclinical injury.

© 2018 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Tendinopathy poses a large socioeconomic burden as one of the most common musculoskeletal injuries [1,2]. Tendonopathies comprise the majority of upper-limb musculoskeletal disorders in the work place, resulting in high economic costs [1]. For example, absenteeism from work in the United Kingdom in 2012 due to lateral
epicondylitis/tennis elbow alone was estimated to result in £27 million in lost productivity [2]. Today, grey-scale sonography is widely used for evaluation of suspected tendon injury [3]. In many tendons, such as the Achilles tendon, the diagnostic accuracy and sensitivity using grey-scale ultrasound (US) have been shown to be more than 90% for each [4]. Structural details gained through US (e.g., tendinopathy vs. a moderate-sized tear) have allowed the trained clinician to characterise and prognosticate injuries beyond the information gained from history and physical examinations alone. Recently, ultrasound elastography (UE) and ultrasound tissue characterisation (UTC) have been applied to tendons with the potential of increasing the diagnostic capability of US.

UE was first introduced in 1991 by Dr Jonathan Ophir with his work on foam blocks and bacon slabs [5]. Based largely on the work done by Hans Oestriecher, who had studied the physics of vibration in soft tissue, UE is able to measure the stiffness of biological tissues [5–7]. UE has been historically used in the assessment of internal organ pathology, and more recently, its clinical application to tendon tissue has been a growing area of interest.

Computerised UTC was first developed by van Schie et al for the assessment of equine tendon integrity and later applied to the Achilles tendon [8,9]. The technology evaluates tendon integrity based on a custom-designed algorithm that quantifies the three-dimensional stability of echo patterns [8,9].

In the present article, we aim to provide a comprehensive review of these newer diagnostic US methods in their clinical application to tendon tissue, including their technical strengths and limitations.

UE technology and tendon-specific basic knowledge

The two most common forms of UE are strain elastography (SE) and shear wave elastography (SWE). Both forms of UE assess the stiffness of the material, which is measured by Young’s modulus. The basic premise of UE is that an external force or stress is applied to a tissue, which induces certain strain on the deformed structure. Young’s modulus can be calculated by the following equation:

\[E = \frac{\sigma}{\varepsilon} \]

where \(E \) is the Young’s modulus measured in pascals (Pa), \(\sigma \) is the force externally applied (“stress” measured in Pa), and \(\varepsilon \) is the strain, which is a unitless measure of relative tissue elongation [10,11].

Physics of SE and SWE

SE technology was the first form of UE developed by Ophir et al in the early 1990s [5]. The operator exerts an external force by means of repetitive compressions using the US probe. The inability to accurately measure the applied force limits the ability to calculate Young’s modulus [10,11]. Instead, analysis of the deformed tissue is displayed as a strain map, commonly referred to as an elastogram, which allows for a qualitative assessment of tissue stiffness (Figure 1) [10]. Most elastograms help to differentiate among three levels of stiffness—hard, medium and soft tissue—as compared to a nearby reference image point, typically subcutaneous fat, by means of a colour scale [12]. In contrast to SE, SWE involves a force created by a US pulse to form shear waves with measurable velocity, which allows for the calculation of Young’s modulus [10,11,13]. In SWE, Young’s modulus can be estimated based on the adjusted formula:

\[E \equiv 3\rho v_s^2 \]

where \(E \) represents Young’s modulus (kPa), \(\rho \) is the density of the tissue (believed to be constant at 1000 kg/m³ with the assumption that tissue is purely elastic and isotropic), and \(v_s \) is the shear wave velocity (SWV) (m/s) [10,11,13].

Comparing SE and SWE: advantages and limitations

The advantage of SE is that it tends to be more readily available in mobile cart-based systems as the hardware can be compact. The largest limitation to SE is that the technology generates a qualitative outcome without generating an actual stiffness value.

The most significant advantage of SWE is that it can quantify the stiffness of the tissue. The “stress” is generated by a US pulse as opposed to human pressure, which allows for quantification of tissue stiffness with Young’s modulus [10]. Limitations of SWE include the following: (1) the necessity of a depth of about 0.4 cm for shear waves to be generated [13]; (2) structures deeper than 9 cm from the surface of the skin are not assessed properly due to US pulse attenuation [14]; and (3) inaccurate assessment of fluid filled structures as shear waves are not generated within fluids [15]. A potential limitation shared by both

![Figure 1](image_url)
forms of UE is the inability to evaluate soft tissue embedded within harder, incompressible tissue [16].

There are a number of complicating, procedural factors with both forms of UE which can potentially influence the assessment of tendon stiffness. These factors include: (1) anisotropic changes due to the angulation of the probe; (2) the amount of physical pressure exerted through the US probe on the area of interest; (3) joint positioning, and/or muscle activation, which influences the tension of the tendon; (4) orientation of the probe in relation to the tendon (i.e., long vs. short axis); and (5) the specific location of the tendon being analysed (enthesis vs. midportion vs. myotenous junction) [14,17–24]. These factors are more influential on SWE in contrast to SE because of the quantitative nature of SWE. As such, subtle changes in the probe and tendon placement alter the values obtained for SWV and Young’s modulus and therefore the measured tendon stiffness. For example, values for SWV and Young’s modulus have been shown to significantly increase (i.e., stiffer tendon) as the ankle progresses from a more relaxed, plantarflexed position to a dorsiflexed position [19,25–27].

UE for tendon: fundamental knowledge

It is generally agreed that injured Achilles and rotator cuff (RTC) tendons are softer than healthy, asymptomatic tendon tissue (Tables 1 and 3) [4,18,21,22,24,28–39]. Of the four studies that had compared tendinopathic Achilles tendons with normal tendon using SE, pathological tendons were found to be softer than healthy tendon tissue in three studies (n = 545 tendon thirds), whereas one study by Sconfienza et al (n = 48) showed opposite results [4,29,31,40]. The discrepancy in these findings may be due in part to the low-frequency-range transducer (10–6 MHz) that Sconfienza et al used as compared to the high-frequency-range transducers (14- or 13–6 MHz) used in other studies [4,29,31,40]. The low-frequency-range transducer could potentially degrade the resolution of the elastogram and affect the observed tendon stiffness [4].

Healthy, asymptomatic patellar tendon tissue, however, has been shown to be more consistent with softer, more elastic tissue than tendinopathic patellar tendons (Table 2) [24,41,42]. These findings may be explained by the fact that the patellar tendon spans two bony end points, thus increasing the inherent elasticity of the tendon (i.e., the ability to return to original length after deformation) [41]. In contrast, the Achilles and RTC tendons are directly attached to compliant structures (muscle), which may result in a decreased inherent elasticity of the muscle—tendon system and its ability to return to its original shape (i.e., stiffer tendon) [41]. However, a couple of studies have demonstrated the opposite, finding tendinopathic changes in the patellar tendon more consistent with softer tissue [22,43]. The discrepancy among these studies may be explained by spatial differences in stiffness within the patellar tendon as the proximal portion has been shown to be significantly stiffer than the distal portion [41,44]. For reasons previously mentioned, the distal portion of the tendon has a less compliant end point (tibial tuberosity) than the proximal attachment (patella and quadriceps tendon), which may result in increased distal elasticity (i.e., softer tendon).

Several factors are known to influence the findings of UE for the patellar tendon, such as sex, body mass index (BMI) and quadriceps strength [45]. In a study of 67 healthy, sedentary individuals, Tas et al found patellar tendon stiffness to be significantly lower in females and obese (BMI > 25 kg/m²) individuals [45]. The authors suggested that these findings may be due to hormonal and metabolic differences [45]. Furthermore, the study found increased quadriceps strength to be significantly correlated with stiffer tissue on SWE [45].

Normative SWE values for healthy Achilles, patellar, and RTC tendons have been studied (Tables 1–3). The measured elasticity modulus and SWV for the Achilles tendon have ranged from 74.4 to 779.5 kPa and 5.1–12.0 m/s, respectively [17,19,22,25–27]. SWV for the RTC has been shown to range from 2.9 to 9.0 m/s, with one study measuring the elasticity modulus at 31.2 kPa [17,36–38]. SWE studies for the patellar tendon have found the elasticity modulus to range from 25.8 to 157.20 kPa and the SWV to range from 6.9 to 7.24 m/s [22,24,42]. The wide variability in these quantitative measurements can be attributed to procedural factors previously described, such as joint positioning and probe placement.

Age-related tendinopathic changes on UE

Age-related degeneration of tendon seems to result in a stiffer Achilles tendon with SE [31,46]. In a study of 45 elderly individuals, Turan et al found significantly stiffer Achilles tendons (p < 0.001) as compared to 42 younger individuals at all three thirds of the tendon [46]. However, age-related thickening of the Achilles tendon does not appear to affect SWE measurements [47]. In a large prospective study of 652 healthy tendons, Fu et al found a gradual increase in the thickness of the Achilles tendon with age, but no significant correlation between age and tendon stiffness with SWE [47]. These findings were consistent with those of other studies that found no correlation between SWE and age-related changes in tendon stiffness [17,25,48]. Slane et al demonstrated age-related spatial variation in elasticity of the Achilles tendon as measured by SWV, which may explain the lack of consensus for UE findings in the ageing Achilles tendon [27].

Age-related tendinopathic changes with UE for the RTC have also demonstrated mixed results in the literature [17,37]. In Arda et al’s study of 127 participants, ranging in age from 17 to 63 years, there was no significant correlation between tendon stiffness and age [17]. However, in a smaller study, Baumer et al found a significant increase in tendon stiffness with increasing age [37]. The lack of standard shoulder positioning and probe orientation may explain the differences in these studies. For example, a short axis view and an abducted shoulder will both result in decreased tendon stiffness for reasons previously discussed [17,37].

At the patellar tendon, UE has shown increased softening with increasing age [49]. In a study of individuals older than 60 years, Hsiao et al found increased softness at the patellar tendon when compared with younger individuals [49].
Primary author	Year	Form of US	Sample size	Study type	Tendon location	Joint position	Key findings
De Zordo	2009	SE	225 tendons	Validity	All 3 tendon thirds	Neutral	93.7% sensitivity and 99.23% specificity using clinical examination as the gold standard
Drakonaki	2009	SE	50 tendons	Reliability	Middle third	Neutral	Reliability of SE is good to excellent, highest in the long axis view versus short axis
Sconfienza	2010	SE	48 tendons	Descriptive	All 3 tendon thirds	Neutral	Symptomatic tendons are stiffer than healthy controls
Klauser	2013	SE	13 tendons	Validity	Middle & Distal thirds	Neutral	100% accuracy for detecting histological degeneration in a cadaveric study
Ooi	2015	SE	240 tendons	Validity & Reliability	All 3 tendon thirds	Neutral	97.5% sensitivity and 94.5% specificity using clinical examination as the gold standard, with good interoperator agreement (0.70)
Ooi	2015	SE	83 tendons	Descriptive	Greatest AP distance	Neutral	Decreased tendon stiffness occurs after marathon; decreased baseline tendon stiffness correlated with postrace Achilles tendon pain
Turan	2015	SE	174 tendons	Descriptive	All 3 tendon thirds	Neutral	Achilles tendon was stiffer in elderly individuals than in young individuals in all parts of the tendon
Balaban	2016	SE	84 tendons	Descriptive	All 3 tendon thirds	Neutral	Softening in the midportion of Achilles tendon of volleyball players compared with healthy, matched controls
Busilacchi	2016	SE	25 tendons	Descriptive	All 3 tendon thirds	Neutral	Increased stiffness at the site of the sutured tendon (myotendinous junction) correlated with improved symptom scores
Ooi	2016	SE	42 athletes	Descriptive	Middle third	Neutral	Intratendinous softening at baseline associated with pain onset during the season
Arda	2011	SWE	127 individuals	Descriptive	Unclear	Neutral	Normative values for Young’s modulus in longitudinal (74.4 ± 45.7 kPa) and transverse (51.5 ± 25.1 kPa) planes
Aubry	2011	SWE	60 tendons	Descriptive & reliability	Unclear	Dorsiflexed, neutral and plantarflexed Max plantarflexed, 45° plantarflexed, neutral and 45° dorsiflexed	Mean elasticity: 104 ± 46 kPa with extension, 464 ± 144 kPa in neutral, 410 ± 196 kPa with maximum dorsiflexion; Good reliability with ankle extension (Intraclass CC: 0.8)
Aubry	2013	SWE	160 tendons	Descriptive & reliability	Middle third	Increase in Young’s modulus (i.e., stiffer tendon) as the angle of the ankle moves from maximum plantarflexion to dorsiflexion	
Chen	2013	SWE	50 tendons	Descriptive	Middle & distal thirds	Neutral	Healthy Achilles tendons are stiffer than ruptured tendons
DeWall	2014	SWE	10 individuals	Descriptive	Entire tendon length	15° plantarflexion, neutral and 15° dorsiflexion Max plantarflexion and 0° flexion	Tendon stiffness increases in dorsiflexed position compared with neutral and plantarflexed positions; Distal tendon is stiffer than proximal tendon
Aubry	2015	SWE	210 tendons	Validity & descriptive	Middle third	Max plantarflexion and 0° flexion	Specificity ranges 91.5—75.6%; Sensitivity ranges 66.7—41.7%; Softer tissue in tendinopathic tendons than in healthy tendons in both positions
Dirrichs	2016	SWE	82 tendons	Descriptive	Variable	Neutral	Symptomatic tendons are softer than asymptomatic tendons
Name	Year	Location	Tendon Number	Methodology	Location	Stiffness	Findings
-----------	------	----------	---------------	-------------	----------	-----------	--
Fu	2016	SWE	652 tendons	Descriptive & reliability	Middle third	Neutral	No correlation between tendon stiffness and age; No difference in tendon stiffness between men and women; Excellent reliability (intraclass CC: 0.923–0.870)
Petrescu	2016	SWE	80 tendons	Descriptive	Middle third	0° plantarflexion	No correlation between tendon stiffness and age, sport and body mass index. Increased tendon stiffness in individuals who perform frequent weight-bearing exercise (≥6 h per week)
Siu	2016	SWE	72 tendons	Descriptive	Greatest AP distance	0° plantarflexion	Increased tendon stiffness in individuals who perform frequent weight-bearing exercise (≥6 h per week). Longitudinal increase in tendon stiffness in repaired tendons at 12, 24 and 48 weeks postoperatively. Achilles tendon is softer than healthy tendon; Distal tendon is stiffer than the middle third.
Zhang	2016	SWE	26 tendons	Descriptive	Middle third	Neutral	Excellent reliability (intraclass CC: 0.870)
Coombes	2017	SWE	50 tendons	Descriptive & reliability	Middle & distal thirds	Neutral	Achilles tendon is softer than healthy tendon; Distal tendon is stiffer than the middle third. Increased stiffness at the slack tendon compared with both aponeuroses. Decreased stiffness at the stretched aponeuroses in older individuals.
Leung	2017	SWE	45 tendons	Descriptive & reliability	Middle third	30° plantarflexion	Increased stiffness at the slack tendon compared with both aponeuroses; Decreased stiffness at the stretched aponeuroses in older individuals. 88% sensitivity, 77% specificity and interobserver CC of 0.95 using clinical examination as the gold standard. Increase in echo types I & II with PRP and exercise therapy at 1-year follow-up, but no difference from sham treatment. Increase in echo types I & II with PRP and exercise therapy at 24-week follow-up, but no difference from sham treatment. Increased echo type III & IV in symptomatic tendons. Increase in echo types III + IV in DM-II individuals compared with matched controls. Reduction in echo type I in Australian football players after a single match. 5 months of intense, preseason training induces changes in all four echo types in Australian football players. Echo type I + II consistent with healthy tendon; Excellent reliability.
Slane	2017	SWE	35 tendons	Descriptive	Slack tendon and Gastroc & Soleus aponeuroses	15° plantarflexed and dorsiflexed from resting	Increased stiffness at the slack tendon compared with both aponeuroses. Decreased stiffness at the stretched aponeuroses in older individuals. 88% sensitivity, 77% specificity and interobserver CC of 0.95 using clinical examination as the gold standard. Increase in echo types I & II with PRP and exercise therapy at 1-year follow-up, but no difference from sham treatment. Increase in echo types I & II with PRP and exercise therapy at 24-week follow-up, but no difference from sham treatment. Increased echo type III & IV in symptomatic tendons. Increase in echo types III + IV in DM-II individuals compared with matched controls. Reduction in echo type I in Australian football players after a single match. 5 months of intense, preseason training induces changes in all four echo types in Australian football players. Echo type I + II consistent with healthy tendon; Excellent reliability.
van Schie	2009	UTC	52 tendons	Validity & reliability	Greatest AP distance	Max dorsiflexion	Increased stiffness at the slack tendon compared with both aponeuroses. Decreased stiffness at the stretched aponeuroses in older individuals. 88% sensitivity, 77% specificity and interobserver CC of 0.95 using clinical examination as the gold standard. Increase in echo types I & II with PRP and exercise therapy at 1-year follow-up, but no difference from sham treatment. Increase in echo types I & II with PRP and exercise therapy at 24-week follow-up, but no difference from sham treatment. Increased echo type III & IV in symptomatic tendons. Increase in echo types III + IV in DM-II individuals compared with matched controls. Reduction in echo type I in Australian football players after a single match. 5 months of intense, preseason training induces changes in all four echo types in Australian football players. Echo type I + II consistent with healthy tendon; Excellent reliability.
de Jonge	2011	UTC	54 tendons	Descriptive	Greatest AP distance	15° dorsiflexion	Increased stiffness at the slack tendon compared with both aponeuroses. Decreased stiffness at the stretched aponeuroses in older individuals. 88% sensitivity, 77% specificity and interobserver CC of 0.95 using clinical examination as the gold standard. Increase in echo types I & II with PRP and exercise therapy at 1-year follow-up, but no difference from sham treatment. Increase in echo types I & II with PRP and exercise therapy at 24-week follow-up, but no difference from sham treatment. Increased echo type III & IV in symptomatic tendons. Increase in echo types III + IV in DM-II individuals compared with matched controls. Reduction in echo type I in Australian football players after a single match. 5 months of intense, preseason training induces changes in all four echo types in Australian football players. Echo type I + II consistent with healthy tendon; Excellent reliability.
de Vos	2011	UTC	54 tendons	Descriptive	Greatest AP distance	15° dorsiflexion	Increased stiffness at the slack tendon compared with both aponeuroses. Decreased stiffness at the stretched aponeuroses in older individuals. 88% sensitivity, 77% specificity and interobserver CC of 0.95 using clinical examination as the gold standard. Increase in echo types I & II with PRP and exercise therapy at 1-year follow-up, but no difference from sham treatment. Increase in echo types I & II with PRP and exercise therapy at 24-week follow-up, but no difference from sham treatment. Increased echo type III & IV in symptomatic tendons. Increase in echo types III + IV in DM-II individuals compared with matched controls. Reduction in echo type I in Australian football players after a single match. 5 months of intense, preseason training induces changes in all four echo types in Australian football players. Echo type I + II consistent with healthy tendon; Excellent reliability.
de Jonge	2015	UTC	27 tendons	Descriptive	Entire length of tendon	Unclear	Increased stiffness at the slack tendon compared with both aponeuroses. Decreased stiffness at the stretched aponeuroses in older individuals. 88% sensitivity, 77% specificity and interobserver CC of 0.95 using clinical examination as the gold standard. Increase in echo types I & II with PRP and exercise therapy at 1-year follow-up, but no difference from sham treatment. Increase in echo types I & II with PRP and exercise therapy at 24-week follow-up, but no difference from sham treatment. Increased echo type III & IV in symptomatic tendons. Increase in echo types III + IV in DM-II individuals compared with matched controls. Reduction in echo type I in Australian football players after a single match. 5 months of intense, preseason training induces changes in all four echo types in Australian football players. Echo type I + II consistent with healthy tendon; Excellent reliability.
Wezenbeek	2017	UTC	140 tendons	Descriptive & reliability	Entire length of tendon	5–10° dorsiflexion	Increased stiffness at the slack tendon compared with both aponeuroses. Decreased stiffness at the stretched aponeuroses in older individuals. 88% sensitivity, 77% specificity and interobserver CC of 0.95 using clinical examination as the gold standard. Increase in echo types I & II with PRP and exercise therapy at 1-year follow-up, but no difference from sham treatment. Increase in echo types I & II with PRP and exercise therapy at 24-week follow-up, but no difference from sham treatment. Increased echo type III & IV in symptomatic tendons. Increase in echo types III + IV in DM-II individuals compared with matched controls. Reduction in echo type I in Australian football players after a single match. 5 months of intense, preseason training induces changes in all four echo types in Australian football players. Echo type I + II consistent with healthy tendon; Excellent reliability.

AP = anteroposterior; CC = correlation coefficient; DM = diabetes mellitus; kPa = kilopascals; PRP = platelet-rich plasma; SE = strain elastography; SWE = shear wave elastography; US = ultrasound; UTC = ultrasound tissue characterisation.
Table 2 Summary table for patellar tendon.

Primary author	Year	Form of US	Sample size	Study type	Tendon location	Joint position	Key findings
Porta	2014	SE	22 tendons	Reliability & descriptive	All 3 thirds	Flexed to 30°	Excellent reliability; Asymptomatic tendon consistent with soft tissue increased tendon stiffness with passive extension and isometric extension
Berko	2015	SE	56 tendons	Descriptive	Proximal tendon	Flexed to 30°, full extension, resisted extension at 90°	
Ooi	2016	SE	70 tendons	Validity	Variable	Full extension	Sensitivity 70% and specificity 53.5% using clinical examination as the gold standard
Ozcan	2016	SE	148 tendons	Descriptive	Distal & proximal	Flexed to 20–30°	No difference in tendon stiffness between athletes and healthy volunteers; Soft patellar tendon compared with quadriceps tendon Painful tendons are stiffer and larger than the nonpainful side
Zhang	2014	SWE	66 tendons	Descriptive	Proximal	Flexed to 30°	Excellent correlation with VISA-A score; Asymptomatic tendon is stiffer than healthy tendon
Hsiao	2015	SWE	122 tendons	Reliability	All 3 thirds	Flexed to 90°	Reliability ranged from good to excellent, with highest reliability occurring in the middle third
Dirrichs	2016	SWE	51 tendons	Validity & descriptive	All 3 thirds	Fully extended	
Coombes	2017	SWE	45 tendons	Validity & descriptive	Proximal & middle thirds	Flexed to 30°	Excellent correlation with VISA-A score; Asymptomatic tendon is stiffer than healthy tendon
Tas	2017	SWE	24 tendons	Reliability	Middle third	Flexed to 30°	Good to excellent reliability
Tas	2017	SWE	67 tendons	Descriptive	Middle third	Flexed to 30°	
Docking	2016	UTC	50 tendons	Descriptive	Entire length of tendon	"Lunge" position	Pathological tendon contains greater amounts of disorganised structure
van Ark	2016	UTC	41 tendons	Reliability & descriptive	Entire length of tendon	Flexed to 100°	Good reliability for echo types I and II; No change in echo types I and II in volleyball players during tournament competition
Esmaeili	2017	UTC	52 tendons	Descriptive	Entire length of tendon	"Lunge" position	Patellar tendons show small improvements (increase in echo type I) over an 18-week training period in Australian football players

SE = strain elastography; SWE = shear wave elastography; US = ultrasound; UTC = ultrasound tissue characterisation; VISA-A = Victorian Institute of Sports Assessment—Achilles score.

UE for prediction of at-risk tendon

UE has been used to predict at-risk Achilles tendons in athletes such as volleyball players, soccer players and marathon runners [50–52]. In a study of 21 asymptomatic professional volleyball players, Balaban et al found the majority of athletes (26 of 42) to have intermediate and soft tissue on SE at the middle third of the tendon, which was different from a matched cohort of healthy volunteers who predominantly (40 of 42) had hard tissue [52]. The authors of this study concluded that SE could be useful in identifying early tendon degeneration [52]. In a study of asymptomatic football players at baseline, preseason softening of the Achilles tendon on SE was found to be a significant predictor for the development of symptoms post-season [51]. Ooi et al replicated similar findings in marathon runners who demonstrated softening within the Achilles tendon after a marathon run, suggesting that softening is a subclinical finding that might predict at-risk tendon [50].

SWE has been used to assess the physical properties of the RTC in athletes as they correlate to functional scores [53]. In a study of 18 collegiate swimmers, Dischler et al found a decrease in stiffness at the supraspinatus tendon with increased years of participation, which corresponded to increased tendon thickness on grey-scale US and a self-
reported decline in function with the Western Ontario Rotator Cuff score [53]. These findings indicate progressive softening of the supraspinatus tendon with years of participation and further elucidate the potential mechanical changes at the RTC tendon in overuse sports.

At the patellar tendon, Ozcan et al found no difference in tissue stiffness with SE between professional athletes and age-matched healthy individuals [44]. However, this study did not control for sport participation, and the size of the subgroups resulted in weak statistical power [44].

Table 3 Summary table for rotator cuff tendon.

Primary author	Year	Form of US	Sample size	Study type	Tendon location	Joint position	Key findings
Lalitha 2011	SE	3 tendons	Descriptive	Varied	Hand on back	Asymptomatic tendon is associated with increased stiffness on SE	
Liu 2015	SE	60 tendons	Validity	Varied	Prone	Tendon softening on SE correlates with symptoms of RTC	
Muraki 2015	SE	23 tendons	Reliability	Superior facet of greater tuberosity	Abducted arm to 10°	Excellent reliability (intraclass CC: 0.931–0.998)	
Tudisco 2015	SE	100 tendons	Validity & descriptive	Varied	Forearm behind back, palm facing posterior	Positive correlation between tendon stiffness and Constant—Murley and ASES scores	
Kocyigit 2016	SE	50 tendons	Reliability	Supraspinatus fossa	Hand on back	Excellent reliability (interclass CC: 0.92)	
Lee 2016	SE	39 tendons	Validity	Anterior to AC joint	Internally rotated, hyperextended arm	Increase in tendon softness correlates with increased grade of tendinosis on MRI	
Arda 2011	SWE	127 individuals	Descriptive	Unclear	Hand on back	No significant correlation between age and tendon stiffness	
Rosskopf 2016	SWE	8 tendons	Reliability & descriptive	Supraspinous fossa	Forearm resting on thigh	Excellent reliability (intraclass CC: 0.89; intraclass CC: 0.7–0.8); Stiffer tendon in controls than in patients	
Baumer 2017	SWE	30 tendons	Descriptive	Anterior to the tendon, medial to acromion	Passive at 30° & active scapular plane abduction	Tendon stiffness positively associated with age under passive and active conditions; Softer tendon resulted from muscle activation	
Dischler 2017	SWE	18 swimmers (no specified form)	Descriptive	Midway between the acromion and medial border of the scapula	Forearm resting on thigh	Years of participation is negatively associated with tendon stiffness and WORC score and positively associated with tendon thickness	
Hou 2017	SWE	53 tendons	Descriptive	Greater tuberosity	Mild shoulder extension and internal rotation	Decrease in tendon stiffness in the proximal tendon in symptomatic patients; No difference seen in the distal tendon	
Krepkin 2017	SWE	9 tendons	Validity	Superior facet of greater tuberosity	Crass or modified Crass	Negative correlation between T2 MRI and tendon stiffness	

UE for postintervention prognostication

UE may have utility in assessing the healing tendon after surgical repair. A study of 25 individuals who had undergone Achilles tendon repair for tendon rupture showed increased tendon stiffness at the site of the sutured tendon at the 1-year follow-up on SE [54]. The increased stiffness was found to be inversely correlated with improved Achilles tendon total rupture scores. Similarly, a progressive increase in Achilles tendon stiffness has been demonstrated with SWE.
on postoperative patients completing a rehabilitation pro-
gram for a torn tendon, which correlated with improved
functional scores [55].

For nonruptured Achilles tendinopathy, UE has revealed
increased tendon stiffness in response to long-term therapy
[23]. These changes can be observed immediately after a
therapy session [56]. Specifically, eccentric loading of the
Achilles tendon has been shown to immediately induce
increased tendon stiffness with SWE [56].

Ultrasound tissue characterisation

UTC was first developed for tendons in equine medicine
with the goal of quantifying tendon integrity [57]. The
procedure entails translation of the US probe over the
length of the tendon, which is held in a fixed position, while
transverse images are taken at even distances of 0.2 mm
[9]. Although the US probe was initially moved manually,
recent developments have made it possible to move the
probe automatically by means of a motor-driven device
[9,58]. This advancement controls for variation in trans-
ducer angle and minimises the operator-dependent nature
of transducer movements [9,58]. Factors such as transducer
tilt, gain, focus and depth are therefore standardised
throughout the procedure [58].

Physics of UTC

UTC images are compiled into a three-dimensional data
volume block. The echo patterns that result from the US
waves within the sample block are categorised into echo
types by unique algorithms depending on the stability of
the image pixels [9]. There are four echo types established,
which are based on the stability of the echo pattern in
contiguous transverse images [9]. These echo types are
dependent on the integrity of the tendon and are classified
as (I) highly stable, (II) medium stable, (III) highly variable
and (IV) constantly low intensity echo types with variable
distribution [8,9,57]. Echo type I indicates intact and
continuous fibres, whereas echo type IV indicates disinte-
gration of the tendon and an amorphous matrix (i.e.,
“diseased” tissue) [8,9,57]. Echo type II has been differen-
tiated from type I by less waving tendon bundles, and
echo type III has been defined as having decreased fibrillar
integrity [8,9,57,59].

Tendon-specific findings with UTC

In general, both echo type I and echo type II are thought to
be the characteristics of normal healthy tendon when eval-
uated with UTC [9,58–62]. More unstable echo types, III and
IV, have also been shown to exist in healthy Achilles and
patellar tendons, however comprising a very low percentage
[9,58–60,63]. In a study of 50 pathologic patellar tendons,
the investigators found an increase in the cross-sectional
area of echo type I/II, which altogether correlated with a
greater anteroposterior patellar tendon thickness [63]. The
authors suggested that such an increase in stable echo types
may be adaptive and that thickening may not simply be a
pathological response of a tendon irritation [63].

UTC evaluation of tendon response to loading

The proposed advantage of UTC over grey-scale US is its
ability to detect subtle tissue changes and adaptations by
evaluating echo stability. Alterations in the echo pattern
within the Achilles tendon have been studied after physical
stimuli [60,64]. Baseline UTC examinations were performed
on 18 professional Australian football players with no
known history of tendinopathy before a match. After a
single match, the same tendon was examined using UTC,
which demonstrated a decrease in echo type I and a
reciprocal increase in echo type II, suggesting negative
changes in tendon integrity. However, such alteration was
temporary and was normalised by day 4. The authors spec-
ulated the transient changes to be secondary to a cellular
response to tendon loading [60]. Furthermore, a general
trend towards an increase in echo type I has been demon-
strated in Australian football players after 5 months of
intensive preseason training [64]. UTC may therefore allow
observation of adaptations within the Achilles tendon in
response to loading and training [60,64].

UTC has also been used to evaluate adaptations within
the patellar tendon in response to loading [61,62]. In a
study of 26 elite Australian football players, there was ev-
idence of increased echo type I after an 18-week preseason
training period [62]. Improvement in the structural integ-
rety of the patellar tendon may be sport and/or time
dependent as there was no significant change in echo type
in the patellar tendons of 41 volleyball players after a 5-day
tournament [61].

Metabolic effect on UTC findings

The integrity of the Achilles tendon has been studied in the
diabetic population using UTC [65]. Individuals with type 2
diabetes mellitus have been found to have a significantly
higher percentage of unstable echo patterns (echo type III
and IV) than healthy controls [65]. Furthermore, there ap-
pears to be a strong association between unstable echo
patterns and a larger BMI [65]. The authors hypothesised
that the accumulation of advanced glycation end products
in the tendon of diabetics may contribute to these changes
[65].

Effect of orthobiologics on UTC findings

UTC has been used to study the architectural response of
the Achilles tendon to orthobiologics in the treatment of
tendinopathy [66,67]. In a double-blind, randomised con-
trol study of individuals with midportion Achilles tendin-
opathy, individuals who received a platelet-rich plasma
(PRP) injection in addition to exercise therapy demon-
strated an increase in echo types I and II at the 6-month and
1-year marks [66,67]. However, this improvement was not
significantly different from the group that received a sham
treatment and exercise therapy [66,67]. The UTC findings
in these studies correlated to the clinical improvement noted
in both groups, as well as the degree of neovascularization
on Doppler US imaging [66,67].
Diagnostic accuracy of tendons using SE

Achilles tendon

SE for the Achilles tendon has been validated in four studies, which examined a total of 945 Achilles tendon thirds (Table 1) [4,28,29,31]. The diagnostic accuracy of SE ranges from 97 to 100% with sensitivity ranging from 94% to 97.5% and specificity ranging from 94.5% to 99% when using clinical examination as the gold standard [4,29]. The highest sensitivity has been reported at the distal tendon third, whereas the specificity tends to be the lowest at the middle tendon third [4,29]. Histological findings were used as the gold standard in a cadaveric study of 13 Achilles tendons, which found 100% sensitivity, specificity, positive predictive value and negative predictive value with SE [31]. It should be noted that the sensitivity and specificity of SE are influenced by the degree of softening/stiffness that is deemed pathological [29].

SE has been shown to have good/excellent correlation with grey-scale US findings [4,29,31]. De Zordo et al demonstrated the highest correlation (κ = 0.95) between grey-scale US and SE at the distal third of the Achilles tendon [29]. When compared to the overall diagnostic accuracy of grey-scale US (94.7%) or colour Doppler US (82.5%) alone, SE (97.8%) has been shown to be superior [4]. The diagnostic specificity and accuracy of SE are increased when combined with grey-scale US [4]. Furthermore, the mean diagnostic sensitivity, specificity and accuracy of SE combined with grey-scale US (95.9%, 95.8% and 98.3% respectively) have been shown to be significantly higher (p < 0.001) for the Achilles tendon than those of the more conventional combination of grey-scale and Doppler US (67.2%, 94.6% and 83.9% respectively) [4].

Patellar tendon

SE has been validated for the patellar tendon in an assessment of 70 patellar tendons (Table 2) [43]. Using the clinical presentation as the gold standard, the diagnostic accuracy of SE for the patellar tendon has been reported at 62.9%, with a sensitivity and specificity of 70% and 53.3%, respectively [43]. In comparing SE with conventional US methods, the diagnostic accuracy and negative predictive value of SE (62.9% and 57.1%, respectively) were shown to be superior over grey-scale US (60.0% and 54.2%, respectively) and power Doppler US (50.0% and 46.2%, respectively) [43]. However, SE was found to be less sensitive than grey-scale US (70.0% vs. 72.5%) and less specific than power Doppler US (53.3% vs. 100%) [43]. The sensitivity of SE or grey-scale US alone increased from 70.0% and 72.5%, respectively, to 82.5% when combined [43]. The authors hypothesised that the lower diagnostic percentages for SE in the patellar tendon as compared to the Achilles tendon may be due to a higher percentage of subclinical patellar tendinopathic cases, resulting in higher false positive results [43].

RTC tendon

Softening of the RTC tendon with SE has been shown to agree with findings of the shoulder on magnetic resonance imaging [35]. Findings on SE have also been shown to correlate with the visual analogue scale for pain, in addition to other various functional scores for the shoulder, including the Constant–Murley score, the American Shoulder and Elbow Surgeons Shoulder Score, the Simple Shoulder Test and the University of California at Los Angeles (UCLA) shoulder score [34].

Diagnostic accuracy of tendons using SWE

Achilles tendon

SWE has been validated for the assessment of Achilles tendon pathology when using the clinical presentation as the gold standard [18,21,22,24]. The specificity of SWE ranges from 68.2% to 91.5%, with the sensitivity ranging from 35.3% to 66.7% [21,24]. The lower sensitivity and specificity of SWE have been attributed to the methodological factors previously discussed. Given the relatively low sensitivity scores for SWE alone, SWE may not be as good as conventional grey-scale US in early detection of Achilles tendinopathy [21]. SWE has been shown to have good agreement with grey-scale US for the assessment of symptomatic Achilles tendon [18,21,22]. When combined with SWE, the combined diagnostic sensitivity of grey-scale US and Doppler imaging has been shown to increase from 73% to 96% [22]. Furthermore, lower symptom scores have been shown to correlate with decreased stiffness with SWE [22].

Patellar tendon

The diagnostic sensitivity and specificity of SWE for patellar tendinopathy range from 35.3% to 76.5% and 82.1%—92.9%, respectively [24]. Similar to the findings in the Achilles tendon, these diagnostic values are dependent on both the cutoff SWV value used for the diagnosis of tendinopathy as well as the specific location of the tendon being analysed [24]. When added to the conventional combination of grey-scale and power Doppler US, SWE for the patellar tendon has been shown to significantly increase the diagnostic sensitivity, but not the specificity [22]. In a study of 51 symptomatic patellar tendons, Dirrichs et al demonstrated an increase in sensitivity from 71% to 100% when SWE was added to the combination of grey-scale and power Doppler US [22]. The same authors found pathologic changes in 13 symptomatic patellar tendons with SWE that had failed to demonstrate any notable abnormality with combined grey-scale and power Doppler US [22]. SWE has also been shown to have a good correlation [correlation coefficient (CC): 0.81] with the Victorian Institute of Sports Assessment—Achilles score [22].

RTC tendon

SWE has become increasingly more popular in the assessment of RTC pathology due to its validity in assessing the tendon [36,39]. Abnormal findings on SWE for the RTC have been validated and correlated to findings on magnetic resonance imaging and grey-scale US [36,38,39].
Specifically, Rosskopf et al demonstrated decreasing stiffness for the supraspinatus with increasing fat content at the supraspinatus [36]. In a study of 21 symptomatic shoulders due to RTC pathology, Hou et al demonstrated a strong correlation between findings on SWE and grey-scale US imaging [38].

Diagnostic accuracy of tendons using UTC

Achilles tendon

In the Achilles tendon, UTC has been shown to have a diagnostic accuracy of 83% when clinical symptoms are used as the gold standard, and a threshold of 75% in echo types I + II is selected [9,58]. Using the same standards and thresholds, UTC has a diagnostic sensitivity of 88% and a specificity of 77% for the Achilles tendon [9].

Patellar tendon

Studies using UTC for the patellar tendon are much more limited than those for the Achilles tendon. Nevertheless, there has been some literature that indicates good agreement between findings on UTC and grey-scale US for the patellar tendon [61].

Reliability of UE and UTC for tendons

UE and UTC have been shown to have fair to excellent reliability for tendon assessment (Tables 1–3) [4,9,28,33,36,41,49,58,61,68,69]. SE has been shown to have fair to excellent interobserver and intraobserver agreement (CC: 0.41–0.95) for the Achilles tendon, with the highest agreement in the long axis view [4,28]. SE has also been shown to have excellent intraobserver (CC range: 0.850–0.919) and good interobserver (CC range: 0.527–0.644) agreement for all three portions of the patellar tendon (proximal, middle and distal), with the highest CC values recorded for the proximal portion [41]. SE has also been shown to be a reliable diagnostic tool for the RTC tendon, with the intraobserver reliability reported at 0.953 [33,68].

SWE for the Achilles tendon has fair to excellent interobserver agreement (CC: 0.43–0.987) and excellent intraobserver agreement (CC: 0.870–0.978) [25,26,47,56]. At the patellar tendon, SWE has been shown to have excellent intraobserver (CC: 0.831–0.966) and interobserver (CC: 0.71–0.821) agreement [49,69]. These results, however, may be influenced by the location of the tendon being tested, with the middle portion of the patellar tendon resulting in the highest intrarater and interrater reliability [49]. SWE has also demonstrated excellent test–retest reliability at the supraspinatus (CC: 0.7–0.8) with excellent interexaminer CC reported at 0.89 [36].

UTC has demonstrated excellent reliability, with both interobserver and intraobserver CC reported at >0.92 for the Achilles tendon [9,58]. Similarly, at the patellar tendon, UTC has been shown to have excellent reliability with the intraobserver reliability CC reported at 0.82 and interobserver reliability CC of 0.73 for echo types I and II [61].

Conclusions

UE and UTC are two forms of advanced US imaging that are becoming more widely used in the assessment of tendon injury. In review of the present literature, these newer forms of US can offer improved characterisation of tendons beyond grey-scale and power Doppler US, which are heavily dependent on the user’s experience and level of training. UE and UTC offer various advantages, including the prediction of tendon injury risk, assessment of tendon healing and provision of further insight into tendon physiology. The clinical application of UE and UTC for tendon injury needs to incorporate the tendon-specific nature of these newer US methods. The noninvasive and resource-sensitive nature of UE and UTC make these technologies viable evaluation tools for tendon-related research. Future research with UE and UTC may focus on explaining why some forms of tendinopathies are more prevalent in certain patient populations or recalcitrant to existing treatments.

Conflict of interest

The authors have no conflicts of interest to disclose in relation to this article.

Acknowledgement/Funding

The authors have no acknowledgements to disclose and they received no funding for the work described in this article.

References

[1] Roquelaure Y, Ha C, Leclerc A, Touranchet A, Sauteron M, Melchior M, et al. Epidemiologic surveillance of upper-extremity musculoskeletal disorders in the working population. Arthritis Rheum 2006;55(5):765–78.
[2] Hopkins C, Fu S-C, Chua E, Hu X, Rolf C, Mattila VM, et al. Critical review on the socio-economic impact of tendinopathy. Asia Pac J Sports Med Arthrosc Rehabil Technol 2016;4(Suppl C):9–20.
[3] Jacobson JA, Lancaster S, Prasad A, van Holsbeeck MT, Craig JG, Kolowich P. Full-thickness and partial-thickness supraspinatus tendon tears: value of US signs in diagnosis. Radiology 2004;230(1):224–42.
[4] Ooi CC, Schneider ME, Malliaras P, Chadwick M, Connell DA. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging. Ultrasound Med Biol 2015;41(1):15–25.
[5] Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991;13(2):111–34.
[6] Oestreicher HL. Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biophysics. J Acoust Soc Am 1951;23(6):707–14.
[7] Ophir J, Cespedes I, Garra B, Ponnekanti H, Huang Y, Maklad N. Elastography: ultrasonic imaging of tissue strain and elastic modulus in vivo. Eur J Ultrasound 1996;3(1):49–70.
Ultrasound elastography and tissue characterization

[8] van Schie HT, Bakker EM, Jonker AM, van Weeren PR. Efficacy of computerized discrimination between structure-related and non-structure-related echoes in ultrasonographic images for the quantitative evaluation of the structural integrity of superficial digital flexor tendons in horses. Am J Vet Res 2001; 62(7):1159–66.

[9] van Schie HT, de Vos RJ, de Jonge S, Bakker EM, Heijboer MP, Verhaar JA, et al. Ultrasonographic tissue characterisation of human Achilles tendons: quantification of tendon structure through a novel non-invasive approach. Br J Sports Med 2010; 44(16):1153–9.

[10] Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: principles and techniques. Diagn Interv Imaging 2013;94(5):487–95.

[11] Domenichini R, Pialat JB, Podda A, Aubry S. Ultrasound elastography: principles and techniques. Diagn Interv Imaging 2013; 94(5):487–95.

[12] Klauzer AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology 2014;272(3):622–33.

[13] Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 2004;51(4):396–409.

[14] Winn N, Lalam R, Cassar-Pullicino V. Sonoelastography in the musculoskeletal system: current role and future directions. World J Radiol 2016;8(11):868–79.

[15] Elkabet Hachemi M, Calié S, Remenieras JP. Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements. Ultrasensics 2006;44(Suppl 1):e221–5.

[16] Ponnekanti H, Ophir J, Huang Y, Céspedes I. Fundamental mechanical limitations on the visualization of elasticity contrast in elastography. Ultrasound Med Biol 1995;21(4):533–43.

[17] Arda K, Ciledag N, Aktas E, Aribas BK, Köse K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol 2011;197(3):532–6.

[18] Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn Achilles tendons: a pilot study. J Ultrasound Med 2013;32(3):49–55.

[19] DeWall RJ, Slane LC, Lee KS, Thelen DG. Spatial variations in Achilles tendon shear wave speed. J Biomech 2014;47(11):2685–92.

[20] Berko NS, Mehta AK, Levin TL, Schulz JF. Effect of knee position on the ultrasound elastography appearance of the patellar tendon. Clin Radiol 2015;70(10):1083–6.

[21] Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in Achilles tendinopathy: quantitative assessment by using real-time shear-wave elastography. Radiology 2015;274(3):821–9.

[22] Dirrichs T, Quack V, Gatz M, Kuhl CK, Schrading S. Pilot study. Skeletal Radiol 2017;46(2):191–9.

[23] Sconfienza LM, Silvestri E, Cimmino MA. Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol 2010;28(3):373–8.

[24] Ooi CC, Richards PJ, Maffulli N, Ede D, Schneider ME, et al. Real-time sonoelastography of the patellar tendon in vivo assessed by transient shear wave elastography. Skeletal Radiol 2013;42(8):1143–50.

[25] Slane LC, Martin J, DeWall R, Thelen D, Lee K. Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur Radiol 2017;27(2):474–82.

[26] Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol 2009;64(12):1196–202.

[27] De Zordo T, Chhem R, Smekal V, Feuchtner G, Reindl M, Fink C, et al. Real-time sonoelastography: findings in patients with symptomatic Achilles tendons and comparison to healthy volunteers. Ultraschall Med 2010;31(4):394–400.

[28] Lalitha P, Reddy MCh, Reddy KJ. Musculoskeletal applications of elastography: a pictorial essay of our initial experience. Korean J Radiol 2011;12(3):365–75.

[29] Klauser AS, Miyamoto H, Tamegge M, Faschingbauer R, Moriggl B, Klima G, et al. Achilles tendon assessed with sonoelastography: histologic agreement. Radiology 2013;267(3):837–42.

[30] Liu J, Zhan W, Zhou M, Zhang X. Ultrasound elastography of the supraspinatus tendon guided by US-MRI virtual navigation. Technol Health Care 2015;23(Suppl 1):S263–8.

[31] Muraki T, Ishikawa H, Morise S, Yamamoto N, Sano H, Itoi E, et al. Ultrasound elastography-based assessment of the elasticity of the supraspinatus muscle and tendon during muscle contraction. J Shoulder Elbow Surg 2015;24(1):120–6.

[32] Tudosco C, Biscchia S, Stefanini M, Antonicolli M, Masala S, Simonetti G. Tendon quality in small unilateral supraspinatus tendon tears. Real-time sonoelastography correlates with clinical findings. Knee Surg Sports Traumatol Arthrosc 2015;23(2):393–8.

[33] Lee SU, Joo SY, Kim SK, Lee SH, Park SR, Jeong C. Real-time sonoelastography in the diagnosis of rotator cuff tendinopathy. J Shoulder Elbow Surg 2016;25(5):723–9.

[34] Rosskopf AB, Ehrmann C, Buck FM, Bercher C, Flück M, Pfirrmann CW. Quantitative shear-wave US elastography of the supraspinatus muscle: reliability of the method and relation to tendon integrity and muscle quality. Radiology 2016;278(2):465–74.

[35] Baumer TG, Dischler J, Davis L, Babayev S, Siegel DS, van Holsbeeck M, et al. Effects of age and pathology on shear wave speed of the human rotator cuff. J Orthop Res 2018;36(1):282–8.

[36] Hou SW, Merkle AN, Babb JS, McCabe R, Gytopoulos S, Adler RS. Shear wave ultrasound elastographic evaluation of the rotator cuff tendon. J Ultrasound Med 2017;36(1):95–106.

[37] Kreppkin K, Bruno M, Raya JG, Adler RS, Gytopoulos S. Quantitative assessment of the supraspinatus tendon on MRI using T2/T2* mapping and shear-wave ultrasound elastography: a pilot study. Skeletal Radiol 2017;46(2):191–9.

[38] Sconfienza LM, Silvestri E, Cimmino MA. Sonoelastography in the evaluation of painful Achilles tendons in amateur athletes. Clin Exp Rheumatol 2010;28(3):373–8.

[39] Porta F, Damjanov N, Galluccio F, Iagnocco A, Mautucci-Cerinic M. Ultrasound elastography is a reproducible and feasible tool for the evaluation of the patellar tendon in healthy subjects. Int J Rheum Dis 2014;17(7):762–6.

[40] Zhang ZJ, Ng GY, Lee WC, Fu SN. Changes in morphological and elastic properties of patellar tendon in athletes with unilateral patellar tendinopathy and their relationships with pain and functional disability. PLoS One 2014;9(10). e108337.

[41] Ooi CC, Richards PJ, Maffulli N, Ede D, Schneider ME, et al. Latissimus dorsi tendon in ultrasound elastography is associated with pain and functional deficit in volleyball players. J Sci Med Sport 2016;19(5):373–8.

[42] Ozcan AN, Tan S, Tangal NG, Ciraci S, Kudas S, Bektaser SB, et al. Real-time sonoelastography of the patellar and
quadriceps tendons: pattern description in professional athletes and healthy volunteers. Med Ultrason 2016;18(3):299–304.

[45] Taş S, Yilmaz S, Onur MR, Soylu AR, Altuntaş O, Korkusuz F. Patellar tendon mechanical properties change with gender, body mass index and quadriceps femoris muscle strength. Acta Orthop Traumatol Turc 2017;51(1):54–9.

[46] Turan A, Teber MA, Yakut ZI, Unlu HA, Hekimoglu B. SonoeLASTographic assessment of the age-related changes of the Achilles tendon. Med Ultrason 2015;17(1):58–61.

[47] Fu S, Cui L, He X, Sun Y. Elastic characteristics of the normal Achilles tendon assessed by virtual touch imaging quantification shear wave elastography. J Ultrasound Med 2016;35(9):1881–7.

[48] Petrescu PH, Izvernariu DA, Iancu C, Dinu GO, Crişan D, Popescu SA, et al. Evaluation of normal and pathological Achilles tendon by real-time shear wave elastography. Rom J Morphol Embryol 2016;57(2 Suppl):785–90.

[49] Hsiao MY, Chen YC, Lin CY, Chen WS, Wang TG. Reduced patellar tendon elasticity with aging: in vivo assessment by shear wave elastography. Ultrasound Med Biol 2015;41(11):2899–905.

[50] Ooi CC, Schneider ME, Malliaras P, Counsel P, Connell DA. Prevalence of morphological and mechanical stiffness alterations of mid Achilles tendons in asymptomatic marathon runners before and after a competition. Skeletal Radiol 2015;44(8):1119–27.

[51] Ooi CC, Schneider ME, Malliaras P, Jones D, Saunders S, McMahon A, et al. Sonoelastography of the Achilles tendon: prevalence and prognostic value among asymptomatic elite Australian rules football players. Clin J Sport Med 2016;26(4):299–306.

[52] Balaban M, Idilman IS, Ipek A, Ikiz SS, Bektasb E, Gumus M. Elastographic findings of Achilles tendons in asymptomatic professional male volleyball players. J Ultrasound Med 2016;35(12):2623–8.

[53] Dischler JD, Baumer TG, Finkelstein E, Siegal DS, Bey MJ. Association between years of competition and shoulder function in collegiate swimmers. Sports Health; 2017.

[54] Busilacchi A, Olivier M, Ulisse S, Gesuita R, Skrami E, Lording T, et al. Real-time sonoelastography as novel follow-up method in Achilles tendon surgery. Knee Surg Sports Traumatol Arthrosc 2016;24(7):2124–32.

[55] Zhang LN, Wan WB, Wang YX, Jiao ZY, Zhang LH, Luo YK, et al. Evaluation of elastic stiffness in healing Achilles tendon after surgical repair of a tendon rupture using in vivo ultrasound shear wave elastography. Med Sci Monit 2016;22:1186–91.

[56] Leung WKC, Chu KL, Lai C. Sonographic evaluation of the immediate effects of eccentric heel drop exercise on Achilles tendon and gastrocnemius muscle stiffness using shear wave elastography. PeerJ 2017;5:e3992.

[57] van Schie HT, Bakker EM, Jonker AM, van Weeren PR. Computerized ultrasonographic tissue characterization of equine superficial digital flexor tendons by means of stability quantification of echo patterns in contiguous transverse ultrasonographic images. Am J Vet Res 2003;64(3):366–75.

[58] Wezenbeek E, Mahieu N, Willems TM, Van Tiggelen D, De Muynck M, De Clercq D, et al. What does normal tendon structure look like? New insights into tissue characterization in the Achilles tendon. Scand J Med Sci Sports 2017;27(7):746–53.

[59] Docking SI, Rosengarten SD, Daffy J, Cook J. Structural integrity is decreased in both Achilles tendons in people with unilateral Achilles tendinopathy. J Sci Med Sport 2015;18(4):383–7.

[60] Rosengarten SD, Cook JL, Bryant AL, Cordy JT, Daffy J, Docking SI. Australian football players’ Achilles tendons respond to game loads within 2 days: an ultrasound tissue characterisation (UTC) study. Br J Sports Med 2015;49(3):183–7.

[61] van Ark M, Docking SI, van den Akker-Scheek I, Rudavsky A, Rio E, Zwaever J, et al. Does the adolescent patellar tendon respond to 5 days of cumulative load during a volleyball tournament? Scand J Med Sci Sports 2016;26(2):189–96.

[62] Esmaeili A, Stewart AM, Hopkins WG, Elias GP, Aughey RJ. Effects of training load and leg dominance on Achilles and patellar tendon structure. Int J Sports Physiol Perform 2017;12(Suppl 2):S2122–6.

[63] Docking SI, Cook J. Pathological tendons maintain sufficient aligned fibrillar structure on ultrasound tissue characterization (UTC). Scand J Med Sci Sports 2016;26(6):675–83.

[64] Docking SI, Rosengarten SD, Cook J. Achilles tendon structure improves on UTC imaging over a 5-month pre-season in elite Australian football players. Scand J Med Sci Sports 2016;26(5):557–63.

[65] de Jonge S, Rozenberg R, Vleypa B, Stamat JH, Aanstoot HJ, Weins U, et al. Achilles tendons in people with type 2 diabetes show mildly compromised structure: an ultrasound tissue characterisation study. Br J Sports Med 2015;49(15):995–9.

[66] de Vos RJ, Weir A, Tol JL, Verhaar JA, Weins MH, van Schie HT. No effects of PRP on ultrasonographic tendon structure and neovascularisation in chronic midportion Achilles tendinopathy. Br J Sports Med 2011;45(5):387–92.

[67] de Jonge S, de Vos RJ, Weir A, van Schie HT, Bierma-Zeinstra SM, Verhaar JA, et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med 2011;39(8):1623–9.

[68] Kocyiigt F, Kuyucu E, Kocyiigt A, Herek DT, Savkin R, Aslan UB. Investigation of biomechanical characteristics of intact supraspinatus tendons in subacromial impingement syndrome: a cross-sectional study with real-time sonoeLASTography. Am J Phys Med Rehabil 2016;95(8):588–96.

[69] Taş S, Onur MR, Yilmaz S, Soylu AR, Korkusuz F. Shear wave elastography is a reliable and repeatable method for measuring the elastic modulus of the rectus femoris muscle and patellar tendon. J Ultrasound Med 2017;36(3):565–70.