Load-displacement Relationship Modeling with Power Function on Cylindrical Underreamed Ground Anchor

Gang Guo1,2*, Zhong Liu1, Aiping Tang2 and Xiaochen Hu1

1 Central Research Institute of Building and Construction of MCC Group, Beijing 100088, China
2 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
*Corresponding author’s e-mail: charlie4322@163.com

Abstract. An underreamed ground anchor technique is developed for high anchorage force demand based on shaft anchors worldwide. Engineers and scholars invented various types of underreamed ground anchors, such as those based on jet grouting, mechanical reaming, and blasting. To guarantee the quality of anchorage section and reduce cost, a new type of cylindrical underreamed ground anchor with geotextile bag was developed and applied throughout China. Through 33 Q–s curves in the field tests of underreamed anchor with geotextile bag, a power function model was established for describing the relationship between the load and displacement of a cylindrical underreamed anchor. Finally, the high precision of the function model was verified.

1. Introduction

Compared to other geotechnical reinforcement and supporting techniques, ground anchors are advantageous because they utilize the mechanical properties of rock and soil. They change the rock and soil from a total applied load to a partial carrier. Therefore, ground anchors not only guarantee the stability and safety of engineering projects, but also reduce engineering cost and shorten the construction period.

In ground anchor engineering, bearing capacity is an important indicator of an anchor. Improving the capacity of anchors yields more economic benefits. Function 1 can address the influence factors of an anchor directly [1~3].

\[F = 2\pi \cdot R \cdot L \cdot \mu \] (1)

In function 1, the friction parameter \(\mu \) between the anchorage section and soil is determined when the soil properties and grouting process are known. Subsequently, the capacity of a ground anchor is determined by the anchor radius \(R \) and length \(L \). Meanwhile, the capacity is limited when lengthening the anchor length \(L \) [4]. Therefore, expanding the radius of the anchor is an efficient method to improve the anchor capacity.

The reaming technique of the ground anchor is from pile technology [5]. A conical anchor in series with high capacity was applied in hard clay in England in 1967. Since then, underreamed ground anchor has been accepted and applied worldwide. Some geotechnical engineering companies developed various types of underreamed anchors in succession. Liao [6,7] in Taiwan described a cone-shaped anchor with mechanical reaming technology; Hobst and Zajic [5] reported a blasting anchor method; Cheng [8] produced a type of deep mixing anchor; Massarsch [9] developed the Soilex
anchor system in which its capacity can reach 300 kN; Zeng [10] reported a bit expanded anchor by jet grouting.

The primary underreamed ground anchor technologies can be classified into three types: with jet grouting, with mechanical reaming, and with blasting. In the first two reaming techniques, it is difficult to guarantee the clarity in the borehole; therefore, the anchor section is mixed with soil chips and the strength becomes low. Regarding the blasting anchor, many counties forbid blasting in cities because of safety.

To present an underreamed ground anchor technology with low cost, high quality, and safety, a new type of underreamed anchor with geotextile bag (short for GB anchor) was developed in China at the beginning of the 21st century, as shown in Figure 1 and Figure 2. Through many years of application, the new anchor technology has been welcomed by Chinese construction companies because of its high capacity, low deformation, and quick installation.

The GB anchor exhibits the same mechanical properties as most other underreamed anchors. Underreamed anchors not only improve the anchor capacity, but also have a completely different mechanism from traditional shaft anchors. The expanded section of an underreamed anchor produces an end-bearing force to endure the uplift force similar to a reversed pile. Therefore, the total resistance of an underreamed anchor includes friction and end-bearing force, as shown in Figure 3. Because of the whole new bearing form, there is a vast difference between the bearing mechanism in underreamed anchors and normal shaft anchors. In [11~12], the bearing mechanism of underreamed anchors is described using model tests and numerical simulations. Articles [13~14] discussed different calculation methods and forecasting methods. However, different theories produced different results in confirming the capacity of an underreamed anchor. Overall, the theoretical research findings related to underreamed anchors lag the engineering practice. One of the most important issue in the research is that most of in-situ tests of underreamed anchor can’t be loaded to the bearing status which designers concerned.

In this study, the power function model for describing the load against displacement relationship of the GB anchor is established based on the Q~s~ curves from field tests across China. With the mathematical model, designers can forecast the bearing capacity value corresponding to a concerned displacement of an underreamed anchor based on a few experimental data.

2. Capacity forecasting method for underreamed anchor based on power function model
Compared to theoretical calculations, a field test can yield more accurate mechanical parameters of the ground anchors. The actual load against displacement curve was obtained for determining the ultimate
capacity and ultimate displacement of an anchor. In fact, the Q–s curve is a synthesis of the anchor and foundation soil, which contains friction, end-bearing capacity, anchor size, and soil mechanical parameters. It comprehensively states the operating characteristics of the anchor–soil system.

![Diagram of the force distribution of an underreamed anchor](image)

Figure 3. Diagram of the force distribution of an underreamed anchor with (d) diameter of the normal anchor section; (H) embedment depth; (L) length of underreamed section; (D) diameter of underreamed section; (1) friction of normal section; (2) end bearing force; (3) friction of underreamed section.

Because the GB anchor has a much higher capacity than the shaft anchor, the steel-bar strength, and the measuring capacity and strength of the test equipment can hardly satisfy the high capacity of the GB anchor in practice. When added to the effects of test objective and budget, few field tests acquired the ultimate capacities of GB anchors. Accordingly, the method to determine the ultimate capacity and ultimate displacement based on the data obtained is important for engineering practice and theoretical research. An efficient method to solve this problem is to establish a mathematical model describing the Q–s relationship. Typical mathematical models for describing the Q–s curves of geotechnical components contain hyperbolic models [15], trilinear models [16], and exponential curve models [1]. To describe the relationship between the load and displacement of the GB anchor, this study summarized 33 Q–s curves from eight field tests throughout China and established a power function model. The mathematical model is shown in Formula 2.

$$y = \frac{x^c}{A + Bx^c}$$ \hspace{1cm} (2)

When the numerator and denominator are divided by x^c in the right hand of Formula 2, we obtain

$$y = \frac{1}{\frac{A}{x^c} + B}$$ \hspace{1cm} (3)

Because C is greater than zero in the model, Formula 4 can be acquired from Formula 3.

$$\lim_{x \to \infty} y = \frac{1}{B}$$ \hspace{1cm} (4)

Therefore, the theoretical ultimate capacity Q' of the GB anchor is $1/B$. Substituting $x = 1/B$ into Formula 2, the ultimate displacement can be obtained. Figure 4 to Figure 7 display fourteen of the 33 Q–s curves from eight field tests separately and the corresponding fitting curves by Formula 2.
Figure 4. The Q–s curves and fitting curves of GB anchors tested in Beijing.

To explain the reasonability and accuracy of the power function model, Table 1 lists the fitting parameters, the correlation coefficients and theoretical ultimate bearing capacity Q’ of the anchors.

Table 1. Fitting factors and correlation coefficients of the Q–s curves of GB anchors.

No.	Name	A	B	C	R²	Q’ (kN)
1	Beijing No.A1	9.52E-03	1.79E-05	0.61	0.994	55892
2	Beijing No.A2	8.34E-03	1.36E-05	0.55	0.984	73534
3	Beijing No.A3	7.34E-03	5.95E-06	0.53	0.995	167935
4	Fujian No.E1	8.10E-02	7.61E-04	1.08	0.993	1314
5	Fujian No.E2	3.41E-02	7.48E-04	0.88	0.999	1337
6	Fujian No.E3	4.26E-01	9.20E-04	1.63	0.994	1086
7	Hebei No.A1	2.93E+00	1.26E-03	2.63	0.986	794
8	Hebei No.A2	2.40E-02	1.21E-03	1.18	0.983	827
9	Hebei No.A3	1.88E-02	1.37E-03	1.03	0.982	729
10	Hebei No.A4	1.42E-02	1.67E-03	1.20	0.986	600
11	Hebei No.A5	1.64E-01	7.42E-04	1.61	0.995	1349
12	Hebei No.A6	4.14E-01	9.03E-04	1.71	0.988	1108
13	Hebei No.A7	1.13E-01	8.43E-04	1.44	0.98	1187
14	Hebei No.A8	2.21E-01	7.78E-04	1.64	0.995	1285
15	Henan No.A1	4.87E-02	5.87E-04	0.96	0.996	1703
16	Henan No.A2	1.54E-02	3.01E-05	0.53	0.983	33195
17	Henan No.A3	3.20E-02	7.64E-04	0.85	0.994	1310
18	Henan No.A4	1.73E-02	6.84E-04	0.60	0.97	1461
19	Henan No.E1	3.83E-02	1.23E-03	0.89	0.958	811
Analyzing the factor C in Formula 2 referring to the Q–s curves, it is found that C controls the opening size between the Q–s curve and the X-axis. Referring to the C-related ultimate bearing capacity Q’ when the C value is smaller, the asymptote of the Q–s curve becomes higher. When the C value is higher than 1.0, the Q’ value becomes approximately the real ultimate bearing capacity of the GB anchor. However, when the C value is less than 1.0, the Q’ value becomes larger than the real value. In this case, the Q’ value cannot be used as the ultimate capacity, such as the Beijing No.A1 to No.A3 anchors in Table 1; however, the designer can forecast the bearing capacity of a pointed displacement, such as that shown in Table 2.

Table 2. Corresponding bearing capacity values of pointed displacement values on the fitting curves of GB anchors.

No.	Name	A	B	C	R²	s_u/mm	Q_u/kN	Q_c/kN	Error
1	Beijing No.A1	9.77E-03	9.54E-06	0.61	0.993	73	1360	1386	1.96%
2	Beijing No.A2	8.46E-03	8.97E-06	0.56	0.978	84	1360	1381	1.59%
3	Beijing No.A3	6.94E-03	7.92E-06	0.52	0.977	83	1458	1397	-4.18%
4	Fujian No.E1	4.77E-02	3.19E-04	0.85	0.997	134	840	952	13.36%
5	Fujian No.E2	2.94E-02	5.75E-04	0.80	1.000	124	800	838	4.79%
6	Fujian No.E3	1.04E+00	1.06E-03	1.93	1.000	132	950	875	-7.93%
7	Hebei No.A1	1.66E+00	1.41E-03	4.00	0.980	84	781	708	-9.40%
8	Hebei No.A2	3.68E-02	1.49E-03	1.50	0.995	99	781	656	-15.98%
9	Hebei No.A3	1.42E-02	8.59E-04	0.77	0.994	98	639	789	23.41%
10	Hebei No.A4	1.15E-02	1.10E-03	0.87	0.999	79	568	737	29.76%
11	Hebei No.A5	1.73E-01	7.55E-04	1.63	0.992	61	1045	1038	-0.69%
12	Hebei No.A6	4.69E-01	9.19E-04	1.75	0.981	179	1045	1030	-1.44%
13	Hebei No.A7	9.04E-02	7.99E-04	1.36	0.973	170	1092	1131	3.61%
14	Hebei No.A8	2.78E-01	8.06E-04	1.72	0.994	132	1183	1152	-2.65%
15	Henan No.A1	5.76E-02	5.41E-04	0.98	0.987	143	1000	1007	0.75%
16	Henan No.A2	2.73E-02	9.79E-06	0.67	0.995	82	650	712	9.57%
17	Henan No.A3	2.91E-02	6.17E-04	0.77	0.991	213	900	930	3.35%
18	Henan No.A4	3.86E-02	1.18E-03	0.90	0.982	281	800	703	-12.16%
19	Henan No.E1	2.85E-02	5.26E-06	0.63	0.956	116	550	711	29.33%
20	Henan No.E2	1.70E-02	4.77E-05	0.51	0.965	164	550	770	40.00%
21	Henan No.E3	1.73E-02	3.44E-05	0.50	0.994	133	550	658	19.62%
22	Jiangsu No.A1	7.90E-02	1.92E-03	1.33	0.979	96	450	474	5.39%
23	Jiangsu No.A2	6.78E-01	3.33E-03	2.15	0.979	103	375	297	-20.77%
It is supposed the last Q–s tested points of all the 33 GB anchors are unknown. Table 2 lists the fitting parameters A, B, C, and the correlation coefficients of the 33 GB anchors without the supposed unknown points. Besides, the displacements of ‘unknown’ points are arranged to the pointed displacements \(s_0 \), they are also listed in Table 2 together with the tested real capacities \(Q_0 \) corresponding to the pointed displacements \(s_0 \). Subsequently, the calculated capacities \(Q \) from the pointed displacements and the calculation errors are all shown. From the data in Table 2, the calculation errors range from -22.07%–40.00%. Therefore, when considering the load corresponding to a pointed displacement on the Q–s curve as the ultimate bearing capacity of a GB anchor, it is safe setting the safety factor of working load to 1.5. It can be concluded that the capacity calculation results of the pointed displacements out of the tested range are reasonable.

When the load applied to the GB anchor does not reach its ultimate capacity value in the field test, the ultimate bearing capacity value or the capacity value of a pointed displacement can be forecasted with the acquired test data based on the power function model of Formula 2. When the C value is higher than 1.0, the value of parameter \(1/B \) will be the ultimate capacity value. However, when the C value is less than 1.0, one can point to a concerned displacement to calculate the corresponding capacity value with Formula 2.

Actually, because ground anchors are flexible structure elements, the ultimate working condition of ground anchors are usually decided by displacements. Therefore, it has significance of engineering practice when the designers calculate the ultimate capacities of GB anchors by deciding their ultimate displacements with test data and Formula 2.

It is noteworthy that it is better to obtain the test data of a large displacement in field test when adopting Formula 2. Hence, the C value will be higher than 1.0. Therefore, the theoretical ultimate bearing capacity will be approximately the real value. Besides, though the field tests are based on GB anchors, the theoretical results are appropriate for other types of underreamed anchor with the same geometry.

3. Conclusions

An innovative anchor system of an underreamed ground anchor with GB was introduced herein. A reasonable power function model for describing the relationship between load and displacement was established based on 33 Q–s curves from the field test results of the GB anchor.

With regard to an innovative geotechnical technology such as the GB anchor, it was important to establish a simple and efficient mathematical model of the Q–s curve for determining its ultimate capacity and researching its mechanical property.

Based on 33 Q–s curves of the GB anchors, a power function model for describing the load against displacement the relationship of cylindrical anchor was established. The model exhibited a high fitting precision: the correlation coefficients were more than 0.929, and the average value reached 0.986. Using the model, the ultimate bearing capacity and the capacity value of the displacement that designers concerned could be acquired with a small number of test data.

24	Jiangsu No.A3	2.41E-01	1.93E-03	1.74	0.984	99	525	496	-5.55%
25	Shenzhen No.E1	2.79E-02	9.35E-04	0.98	0.992	53	699	664	-4.96%
26	Shenzhen No.E2	4.33E-02	7.36E-05	0.79	0.996	105	827	852	2.99%
27	Shenzhen No.E3	1.18E-02	3.72E-04	0.58	0.962	75	827	760	-8.13%
28	Guangdong No.1	9.21E-02	6.02E-04	1.30	0.997	48	827	838	1.25%
29	Guangdong No.2	3.76E-02	6.38E-06	0.78	0.871	76	827	775	-6.29%
30	Guangdong No.3	4.48E-02	2.60E-05	0.86	0.994	68	827	819	-0.93%
31	Guangdong No.4	4.12E-02	1.58E-04	0.90	1.000	117	1166	1375	18.01%
32	Guangdong No.5	3.54E-02	3.20E-05	0.85	0.998	71	1034	1014	-1.95%
33	Guangdong No.6	2.39E-02	1.38E-04	0.78	1.000	98	1166	1252	7.42%

It is noteworthy that it is better to obtain the test data of a large displacement in field test when adopting Formula 2. Hence, the C value will be higher than 1.0. Therefore, the theoretical ultimate bearing capacity will be approximately the real value. Besides, though the field tests are based on GB anchors, the theoretical results are appropriate for other types of underreamed anchor with the same geometry.
Acknowledgments
This work was supported by Beijing Natural Science Foundation (8184098).

References
[1] I. W. Farmer, 1975, “Stress distribution along a resin grouted rock anchor”. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 12, pp. 347-351.
[2] J. Chalmovsky and L. Mica, “Influence of pressure grouting on the anchors carrying capacity in fine grained soil,” in Proceedings of the 11th International Scientific Conference on Modern Building Materials, Structures and Techniques, MBMST 2013, pp. 222–231, Lithuania, May 2013.
[3] F. Ren, S. Wu, Y. Liu, and J. Liu, “Study on effective anchorage length of anchor cable based on Gauss’s function,” IOP Conference Series: Earth and Environmental Science, vol. 94, p. 012203, 2017.
[4] Barley A. D., 1995. Theory and Practice of the Single Bore Multiple Anchor System. Anchors in Theory and Practice, International Symposium on Anchors in Theory and Practice”, Salzburg, October 9-10.
[5] Hobst, L. and Zajic, J., 1986. Anchoring in rock and soil. Translated by Wang, S. J., Beijing: Central Research Institute of Building and Construction, Ministry of Metallurgical Industry. (in Chinese)
[6] Liao, H. J., Wu, K.W. and Shu, S.C., 1997. Uplift behaviour of a cone-shape anchor in sand. Ground Anchors and Anchored Structures, Proceedings of the International Conference Organized by the Institution of Civil Engineers and held in London, UK, pp. 401-410.
[7] H. J. Liao and S. T. Hsu, “Uplift behavior of blade-underreamed anchors in silty sand,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 129, no. 6, pp. 560–568, 2003.
[8] L. K. Cheng, J. L. Fan, J. Han, et al., 2000. Ground anchor. Beijing: China Architecture and Building Press, pp. 35-45. (in Chinese)
[9] Massarsch, K. R., Oikawa, K., Ichihashi, Y., et al., 1997. Design and practical application of soiex anchors. Ground Anchors and Anchored Structures, Proceedings of the International Conference Organized by the Institution of Civil Engineers and held in London, UK, pp. 20-21.
[10] Q Zeng, X Yang, C Yang. 2010. Mechanical mechanism and calculation method of bit expanded anchor rods. Rock and Soil Mechanics, 31(5). pp. 1359-1367.
[11] Guo,G., Liu, Z., Zhang, Y., et al., 2012. Model tests on mechanical behavior of underreamed ground anchor. Proceedings of 4th International Conference on New Development in Rock Mechanics and Engineering in Shenyang, China. pp. 217-223.
[12] S. T. Hsu, H. J. Liao. Uplift behaviour of cylindrical anchors in sand[J]. Canadian Geotechnical Journal. 1998, 35 (1): 70-80.
[13] The British Standards Institution, Code of Practice for Grouted Anchors, BSI Standards Limited, 2015.
[14] Chinese Code, “Technical specification for under-reamed anchor by jet grouting (JGJ/T282-2012),” Tech. Rep., Chinese Building and Construction Press., Beijing, China, 2012.
[15] Wong K S , Teh C I . Negative Skin Friction on Piles in Layered Soil Deposits[J]. Journal of Geotechnical Engineering. 1995, 121(6):457-465.
[16] Ren F , Yang Z , Chen J , et al. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model[J]. Construction & Building Materials, 2010, 24(3):361-370.
[17] Hou G. Y., Xie B. B., Jiang Y. S., Theoretical and experimental study of the relationship between optical fiber strain and settlement of roof based on BOTDR technology[J] Rock and Soil Mechanics, 2017, 38 (5): 1298-1304.