The ADP-ribosylation factor (ARF) family of low molecular weight guanine-nucleotide-binding (G) proteins controls membrane traffic and organelle structure, and each member is regulated through a cycle of GTP binding and GTP hydrolysis, which activate and inactivate the G protein, respectively. ARFs have several important functions, including the recruitment of coat proteins that promote sorting of cargo into vesicles, the recruitment and activation of enzymes, such as the phosphatidylinositol (PtdIns) kinases, that alter membrane lipid composition, and interaction with cytoskeletal factors.

There are six mammalian ARF proteins that can be divided into three classes based on sequence homology: Class I (ARF1, ARF2 and ARF3), Class II (ARF4 and ARF5) and Class III (ARF6) (FIG. 1). The Class II ARFs arose late in animal cell evolution, possibly in Drosophila melanogaster and Caenorhabditis elegans, each class has a single ARF orthologue, but yeast lacks the Class II ARFs. Plants have Class I ARFs, and potentially also Class III ARFs (BOX 1).

In addition, there are over 20 ARF-like (ARL) proteins, which seem to have broader roles than ARFs. Some ARL proteins, including ARL1, ARL2 and ARL-related protein 1 (ARFRP1), are ancient and have homologues in plants, yeast and metazoans, whereas others, such as ARL11, arose later in evolution and are present only in vertebrates. SAR1, which is present in all eukaryotes examined to date, is also considered to be a member of the ARF family, owing to the presence of an amino-terminal amphipathic helix and the functional similarity of this protein to ARF1 in recruiting a coat complex during vesicle budding.

The study of ARF protein function was aided greatly by the early discovery of the regulators of ARF GTP binding and GTP hydrolysis. The ARF guanine nucleotide exchange factors (GEFs) contain a conserved SEC7 domain that catalyses GDP release from, and GTP binding to, their substrate ARFs. The GTPase-activating proteins (GAPs) catalyse the hydrolysis of GTP-bound ARFs and are critically important because ARFs have negligible intrinsic GTP-hydrolysis activity. ARF GAPs contain a conserved zinc-finger GAP catalytic domain. The conserved, signature catalytic domains in the GEFs and GAPs are what facilitated the identification of these ARF regulators in all organisms from yeast to man. However, the ARF substrate specificity for these GEFs and GAPs remains unclear, and whether they also work on ARL proteins has yet to be determined.

In the past, G protein activity was viewed as a linear signalling pathway, with the GDP-bound form being inactive and the GTP-bound form initiating effector functions until it returned to the inactive, GDP-bound state. The GEFs and GAPs were thought of as ‘activators’ and ‘inactivators’, respectively, that controlled this on–off switch (FIG. 1c). However, work on ARF and ARL proteins over the past decade has revealed that their
Guanine nucleotide exchange factors (GEFs). Proteins that promote the release of GDP from guanine-nucleotide-binding (G) proteins, which allows GTP to bind. These proteins often stabilize the nucleotide-free form and then are released upon GTP binding.

GTPase-activating proteins (GAPs). Proteins that promote GTP hydrolysis on GTP-bound guanine-nucleotide-binding (G) proteins. For ADP-ribosylation factor (ARF) proteins, GAPs are critical, as ARFs have negligible intrinsic GTPase activity. The catalytic regions of GAPs often include an Arg-finger motif that inserts into the GTP-binding pocket to stimulate hydrolysis of GTP.

signalling is more complex and that GEFs and GAPs can initiate their own physiological responses. We see evidence of ARF proteins acting in pairs or in series in the endoplasmic reticulum (ER)–Golgi system and at the plasma membrane. In this Review, we emphasize how ARF proteins function as a network in which the ARF regulators participate. These regulators also integrate ARF activities with other G protein signalling networks, as well as initiating their own distinct signalling pathways. We highlight new ARF and ARL activities, discuss

Table 1	ARF and ARL effectors		
Coat complexes	**ARF**	**Location**	**ARF-interacting region**
COPII	SAR1	ER exit sites	SEC23
COPI	ARF1,3	Golgi, ERGIC	γ-COP, β-COP
AP1–clathrin	ARF1,3	TGN, endosomes	γ-AP1, β-AP1
GGA1,2,3–clathrin	ARF1,3	TGN, endosomes	GAT domain
AP3	ARF1,3	Endosomes, TGN	–
AP4	ARF1,3	TGN	ε-AP4, µ-AP4 (also binds GDP-bound form)
BBSome	ARL6	PM	–
Lipid-modifying enzymes			
FAPP1,2	ARF1	Golgi	PH domain
CERT	ARF1	Golgi	PH domain
PtdIns4K	ARF1	Golgi	–
PtdIns4P5K	ARF1–6	PM (ARF6)	–
PLD	ARF1–6, ARL1	PM (ARF6)	–
Tethers			
GMAP210	ARF1	cis-Golgi	C-terminal GRAB domain
CC golgins*	ARL1	TGN	C-terminal GRIP domain
Exocyst	ARF6	PM	SEC10
GARP (VFT)	ARL1	TGN, endosome	–
G protein regulators			
ARHGAP21	ARF1,6	Golgi, PM	PH domain, C-terminal helix
Cytohesin (ARNO)	ARF6, ARL4	PM	PH domain
Scaffolding proteins			
JIP3,4	ARF6	Endosomes, intercellular bridge	LZII
FIP3,4	ARF5,6	Recycling endosomes, midbody	CC domain
Tubulin folding chaperone			
Cofactor D	ARL2	Cytosol	–
Cargo			
Rhodopsin	ARF4	TGN	VXPX targeting motif
Other			
NM23-H1	ARF6	PM, cell junctions	–
PDE6	ARL2,3	Recruitment of prenylated proteins	β-sheet region
Hrg4	ARL2,3	–	–
ARFPTIN1.2	ARF1, ARL1	Golgi, TGN	BAR domain
ScoCo	ARL1	Golgi	CC
Bart2	ARL2	Mitochondria, nucleus	α-helices 3, 4 and 5 of BART2

AP, adaptor protein; ARF, ADP-ribosylation factor; ARFAPTN, ARF-interacting protein; ARHGAP21, Rho GTPase-activating protein 21; ARL, ARF-like; BAR, Bin–amphiphysin–Rvs; CC, coiled-coil; CERT, ceramide transfer; COP, coatomer protein; ER, endoplasmic reticulum; ERGIC, ER–Golgi intermediate compartment; GGA, Golgi-localized, γ-ear-containing, ADP-ribosylation factor-binding protein; GMAP210, Golgi-associated microtubule-binding protein 210; GRAB, GTP-related ARF-binding; JIP, JNK-interacting protein; LZII, Leu zipper domain II; PDE6, phosphodiesterase-6; PLD, phospholipase D; PH, pleckstrin homology; PM, plasma membrane; PtdIns4K, phosphatidylinositol 4-kinase; PtdIns4P5K, phosphatidylinositol 4-phosphate 5-kinase; TGN, trans-Golgi network. *Including golgin 245, golgin 97, GCC88, GCC185 (mammalian cells) and Imh1 (yeast).
How GEFs and GAPs can act as scaffolds, both as effectors and in initiating signalling responses, and describe how they participate in development and disease. The reader is referred to two excellent prior reviews: one deals comprehensively with ARF1 and ARF6 function and the other more broadly with ARF, ARL, GEF and GAP proteins.

Localization and activity of ARFs and ARLs
ARFs localize to membranes throughout the cell, including the plasma membrane and the membranes of the secretory, endosomal and lysosomal pathways. A distinguishing feature of ARF family G proteins is the presence of an N-terminal amphipathic helix that is critical for membrane binding (Fig. 1a, b). In addition, all ARF proteins are modified by myristoylation at the N terminus and this co-translational modification is required for membrane recruitment and biological activity. The myristoylated group and associated N-terminal amphipathic helix are inserted into the membrane upon GTP binding. Thus, in addition to changes in the effector-binding regions upon exchange of GDP for GTP, ARF proteins undergo a secondary change in conformation that brings them into very close contact with the membrane (Fig. 1). This distinguishes them from other small G proteins of the Ras superfamily, including the Ras, Rho and Rab families, which have a long carboxy-terminal linker to which their lipid membrane anchor is attached. ARF effectors are thus constrained to a position close to the membrane surface, in contrast to those of Rab and Rho, which can be located some distance from the membrane. Some ARL proteins are myristoylated but most seem to lack this modification. In ARL8B, loss of hydrophobic residues in the amphipathic helix abolishes lysosomal localization. Interestingly, ARFRP1 (Arl3 in Saccharomyces cerevisiae) and ARL8B are acetylated rather than myristoylated at their N termini. In SAR1, the N-terminal amphipathic helix binds directly to membranes and induces membrane curvature.

Unlike for Rab and Rho G proteins, no GDP dissociation inhibitor (GDI) proteins have been identified for ARFs or ARLs. ARF1 and ARF3 appear to be released from membranes on GTP hydrolysis in cells. ARF6, however, remains bound to membranes in its GDP-bound conformation, and there is evidence that ARF4 and ARF5 remain bound to ER–Golgi intermediate compartment (ERGIC) membranes in their GDP-bound form. This raises the possibility that ARF proteins that are bound to membranes in their GDP-bound form might interact with membrane-localized partners and mediate signalling. Evidence for this idea is emerging for ARF6 (see below, and suggests that distinct signalling pathways might be coordinated through the nucleotide state of these constitutively membrane-bound ARF family proteins. SAR1 and some of the ARLs, such as ARL4, ARL5A and ARL8B, are cytosolic when GDP-bound, similar to ARF1 (REFS 2, 9), and it remains to be determined whether this is true for other ARL proteins.

In humans, there are 15 ARF GEFs, which are divided into six subfamilies, as well as the SAR1 GEF SEC12 (TABLE 2). No specific ARL GEFs have yet been identified, although the ARF1 GEF Syt1 (suppressor of Ypt31) in yeast apparently also has activity towards ARL1 (REF. 10). The 31 identified mammalian ARF GAPs fall into nine major subgroups based on their domain structure (TABLE 2). Two ARL GAPs have been identified (see below). GEFs and GAPs are recruited to very specific sites within cells to not only catalyse GTP exchange and hydrolysis, but also to assemble protein complexes at these sites independently of their catalytic activity (FIG. 1c). In this way, versatile signalling networks can be assembled that can respond dynamically to extracellular and intracellular signals.
Box 1 | ARF function in plants and protists

Plants have numerous ADP-ribosylation factors (ARFs) that are homologous to human ARF1 (REF. 125) and were originally thought to lack Class III ARF6-like proteins. However, in Arabidopsis thaliana, ARF8 (also called ARF81A) localizes to the plasma membrane and lacks the Golgi-targeting motif (MXXE) that is found in other ARF1 homologues in plants126 and in mammals11. Nevertheless, only the GBF and BIG subfamilies of ARF guanine nucleotide exchange factors (GEFs) seem to be present in plants, and these function in both endocytic and Golgi trafficking pathways127. A. thaliana GOM (also known as EMB30) is a homologue of mammalian GBF1 but acts at endosomes and the plasma membrane during the polar transport of the plant hormone auxin during development127,128. Another GBF-like protein in A. thaliana, GOM-like 1 (CNL1), functions at the Golgi similarly to mammalian GBF1, but it is also involved in endosomal trafficking129. BIG5 (also known as BEN1 and ATMIN7) was identified in a screen for A. thaliana mutants defective for internalization of the PIN auxin transporter from the plasma membrane. This ARF GEF is most closely related to BIG1 and BIG2 in mammalian cells, localizes predominantly to the trans-Golgi network (TGN) and early endosomes, and is involved in early endosomal trafficking130. Interestingly, BIG5 is targeted for degradation by a plant bacterial pathogen, Pseudomonas syringae, to protect the latter from host defense systems at the cell wall131.

A. thaliana ARF GAPs include four members of a family of mammalian ACAP homologues that are known as VASCULAR NETWORK 3 (VAN3)-like after the first member to be characterized132. VAN3 (also known as SCARFACE and AGD3) regulates formation of plant vascular networks132,133. In addition to its roles on endosomes, VAN3 cooperates with GOM during clathrin-mediated endocytosis of the PIN auxin transporter132. Another ARF GAP in A. thaliana, ARF GAP DOMAIN 5 (AGD5; also known as NEVERSHEED), is a homologue of yeast ARF GAP effector 2 (Age2) and mammalian SMAP family ARF GAPs that localizes to the TGN134. AGDS is required for floral organ cell separation135 and regulates membrane trafficking through TGN–early endosomal compartments to trigger organ abscission135.

Interestingly, the protozoan parasite Trypanosoma brucei expresses a single ARF protein that has characteristics of both ARF1 and ARF6. T. brucei ARF1 is a basic protein with a calculated isoelectric point (pl) value of 9.1, which is similar to that of human ARF6, but T. brucei ARF1 contains the Golgi-targeting motif MXXE136 that is found in human ARF1 and ARF3 (REF. 17). Depletion of T. brucei ARF1 by small interfering RNA causes a major decrease in endocytosis and the formation of intracellular flagella, but the Golgi remains intact137. Trypanosomes also express an ARF-like 2 (ARL2) homologue, which is involved in microtubule biogenesis and cytokinesis138, and an AR1 homologue, which is important for Golgi structure and exocytosis of glycosyl phosphatidylinositol (GPI)-anchored proteins139. ARF and ARL proteins in trypanosomes are myristoylated, a modification that is required for their activity. Trypanosomes cause African sleeping sickness, a disease with no successful therapy. A selective inhibitor of trypanosomal N-myristoyl transferase has been shown to be effective in blocking trypanosome viability in a mouse model of this disease139.

New functions for Golgi-associated ARFs. The five ARF proteins in humans, ARF1, ARF3, ARF4, ARF5, and ARF6, are ubiquitously expressed. Studies to date have focused mainly on ARF1 at the Golgi and ARF6 at the plasma membrane, but ARF3, ARF4 and ARF5 are also present on Golgi membranes (FIG. 2a). Surprisingly, depletion experiments using RNA interference (RNAi) show that no single ARF, including ARF1, is required for Golgi function; instead, ARFs function in pairs at particular steps in Golgi transport14. For example, ARF1 and ARF4 act redundantly during transport in the early secretory pathway15. Consistent with this observation, ARF4 localizes to the ERGIC and cis-Golgi16 and, together with ARF1 at the cis-Golgi, it organizes trafficking between these compartments16.

ARF1 and ARF3 are identical except for seven amino acid differences in their N-terminal and C-terminal regions, and previously they were thought to function and localize identically. However, a Golgi-targeting sequence contained within the α3 helix of ARF1 and ARF3 targets a chimera of ARF6 and ARF1 to the early Golgi17. Furthermore, ARF3 localizes specifically to the TGN (FIG. 2a), and this localization depends on four ARF3-specific amino acids contained in the N-terminal amphathetic helix, which are conserved among ARF3 homologues18. ARF3, but not ARF1, becomes cytosolic at 20°C, the temperature at which exit from the TGN is blocked18. Thus, ARF3 might have an additional crucial role during exit from the Golgi.

Several important functions for Class II ARFs at the TGN have now been defined (FIG. 2a). In an elegant series of studies, ARF4 was found to specifically recognize the VXPX cytosolic targeting motif in retinal rhodopsin to facilitate its transport into the rod outer segment, which is a specialized cilium19 (FIG. 2b). This ciliary targeting complex includes, in addition to ARF4, Rab11, FIP3 (a shared ARF and Rab11 effector) and ASAP1 (ARF GAP containing SH3, ankyrin repeat and PH domains)19. Exactly how this complex facilitates the packaging of rhodopsin into post-Golgi carriers has yet to be determined but, interestingly, rhodopsin itself initiates complex formation by recruiting ARF4. The rhodopsin-binding site on ARF4 is in the α3 helix19, the same region that in ARF1 binds the SNAP25 protein membrin (also known as GOSR2) to mediate targeting to the early Golgi19; thus, this region might generally allow ARF protein binding to membrane receptors. ARF4 and ARF5 can also directly bind to CAPS (calcium-dependent activator protein for secretion), which regulates exocytosis of dense core vesicles from nerve terminals20. It is the GDP-bound form of the ARF that binds to the PH domains of CAPS proteins, and knockdown of CAPS, ARF4 or ARF5 causes retention of chromagranin (a marker for dense core vesicles) in the Golgi, suggesting that ARF4 and ARF5, together with CAPS, regulate the release of dense core vesicles from the Golgi (FIG. 2a). How these roles of ARF4 and ARF5 at the TGN in specialized cells can be reconciled

Cilium
A slender extension on the cell surface. A non-motile, primary cilium is present on nearly all epithelial cells in the body and serves as a sensory organ that is important for regulating cell differentiation and division.

Proteins (GGAs), GGA1, GGA2 and GGA312. These various coat proteins specifically bind cargo proteins and incorporate them into newly forming vesicles for sorting and transport to their correct destinations. ARFs can also recruit and activate enzymes that alter membrane lipid composition. Phospholipase D (PLD), which hydrolyses phosphatidylycholine to generate phosphatic acid, is activated by all ARF proteins and also by ARL1 (REF. 13). All ARF proteins can both recruit and activate PtdIns-4-phosphate 5-kinase (PtdIns4P5K), an enzyme that phosphorylates PtdIns4P at the 5-position to generate PtdIns-4,5-bisphosphate (PtdIns4,5(P)2). For example, ARF6 at the cell periphery directly affects the activity of PtdIns4P5K at the plasma membrane, and thus regulates PtdIns4,5(P)2 levels there1. At the Golgi, ARF1 recruits and stimulates the activity of PtdIns-4-kinase (PtdIns4K), forming PtdIns4P, which is an important membrane lipid for Golgi function14. ARF1 also binds to PtdIns4P-specific pleckstrin homology (PH) domains contained in a family of oxysterol-binding proteins that are believed to function in lipid homeostasis at the Golgi14.
Table 2 | ARF family GEF and GAP proteins

Name	Substrate	Location	Motifs and domains	Interactors
GEF1	ARF1,3,5	ERGIC, Golgi, DMB	p115 tether, Rab1, γCOP, Drs2 (with Gea2)	
BIG1	ARF1,1	TGN, endosome, nucleus, DMB, KAP	Myosin 1Bα, Exo70	
BIG2	ARF1,3	TGN, endosome, DMB, KAP	GABA receptor	
Cytohesin 1	ARF1,6	PM, endosome, CC, PH, Polybasic	ARFRP1, CASP, ARL4, CNK1	
Cytohesin 2	ARF1,3,6	PM, endosome, CC, PH, Polybasic	CASP, GRASP (tamalin), THR, ARL4, ARL6, CNK1	
Cytohesin 3	ARF1,3,6	PM, endosome, CC, PH, Polybasic		
Cytohesin 4	PSCL4	–	CC, PH, Polybasic	–
BRAG1	IQSEC2, IQARFGEF, Loner (Dm), Schizo (Dm)	ARF6, PSD	PH, CC, IQ	IRSp53
BRAG2	GEP100, IQSEC1, Loner (Dm), Schizo (Dm)	ARF6, PM, endosome, nucleus	PH, CC, IQ	AMPA receptor
BRAG3	IQSEC3, SYNARFGEF, Loner (Dm), Schizo (Dm)	ARF6, PSD	PH, CC, IQ	PSD95, Homer, utrophin (dystrophin), S-SCAM

ARF GAPS

Name	Substrate	Location	Motifs and domains	Interactors	
ARFGAP1	Gcs1 (Sc)	ARF1–5, Golgi, ALPS	–		
ARFGAP2,3	ZNF289, Glo3 (Sc)	ARF1–5, Golgi, Polybasic, Glo3 (ISS repeat)	COPI coat		
ADAP1,2	Centaurin α1,β	–	–	Two PH	
SMAP	ARF1,6	Clathrin box, CALM	–		
AGFG1,2	HRB1,2	FGS repeats	–		
GIT1,2	CAT1,2, p95APP1,2, Git1 (Dm)	ARF6, PM	ANK, SHD, CC, PBS	PIX, PLCγ, MEK1, FAK, GPCR kinase	
ASAP1–3	AMAP1,2, DEF1, PAG2,3, PAR, ASAP (Dm)	ARF1,5,6, PM, FA	BAR, PH, ANK, Pro, SH3	CIN85 (SH3KB1), cortactin, CRK, SRC, FAK, PYK2	
ACPA1–3	Centaurin β1,β2,β5	ARF6, PM, endosome, BAR, PH, ANK	β1 integrin, cellubrevin, transferrin R		
AGAP1–11	Centaurin-γ	–	–	GLD, PH, ANK	
ARAP1–3	Centaurin δ1,δ2,δ3	–	–	SAM, five PH, ANK, RhoGAP, RA	RhoA, CIN85, Rap1

ARL GAPS

Name	Substrate	Location	Motifs and domains	Interactors
RP2	Cin2 (Sc), XRP2	ARL3, PM, periciliary ridge, cilial basal body	–	
ELMOD2	–	ARL2,3	–	

A2AR, adenosine A2A receptor; ADAP, ARF GAP with dual PH domain-containing; AGFG, ARF GAP domain and FG repeats-containing; AKAP, A kinase-anchoring protein; ALPS, amphiphatic lipid packing sensor; ANK, ankyrin repeat; ARF, ADP-ribosylation factor; ARL, ARF-like; ASAP, ARF GAP containing SH3, ankyrin repeat and PH domains; At, Arabidopsis thaliana; BAR, Bin-amphiphysin–Rvs; CALM, clathrin assembly lymphoid myeloid; CASP, cytohesin-associated scaffolding protein; CC, coiled-coil; CIN2, chromosome instability protein 2; CIN85, CBL-interacting protein 85; COPI, coatomer complex I; DMB, dimerization and cyclophilin-binding domain; Dm, Drosophila melanogaster; ERGIC, ER–Golgi intermediate compartment; FA, focal adhesion; FAK, focal adhesion kinase; FG, phenylalanine, glycine repeats; GABA, γ-aminobutyric acid; GAP, GTPase-activating protein; Gea, ARF guanine nucleotide exchange factor; GEF, guanine nucleotide exchange factor; GNL1, guanine nucleotide-binding protein-like 1; GPCR, G protein-coupled receptor; GRASP, GRP1-associated scaffold protein; IPCEF, interaction protein for cytohesin exchange factors; IQ, IQ motif; MEK, MAPK/ERK kinase; MPA, ARF GAP with dual PH domain-containing; PGAP, ARF GAP with dual PH domain-containing; PAG2,3, PAP, ASAP (Dm); PM, periciliary ridge, cilial basal body; Pro, proline-rich; PSD, post-synaptic density; PYK, proline-rich tyrosine kinase; RA, Ras association motif; RP2, retinitis pigmentosa 2; SAM, sterile motif; Sc, Saccharomyces cerevisiae; SH3, SRC homology 3; SHD, SRC homology domain; S-SCAM, synaptic scaffolding molecule; TGN, trans-Golgi network; THR, thyroid hormone receptor; TWK1, tandem of P domains in a weak inward-rectifying K+ channel 1; ZNF289, zinc-finger 289. *Consensus name used from REF. 140, ‡ASAPs work better on ARF1 and ARFs than on ARF6.
with findings of ARF4 localization to, and ARF4 and ARF5 functioning at, the early Golgi in other cells14,15,16 is not known.

Recent discoveries show that ARF1 regulates lipid transfer proteins within the Golgi and promotes the formation of lipid droplets at the ERGIC (Fig. 2a). At the Golgi, ARF1 recruits the lipid transfer proteins ceramide transfer (CERT) and FAPP2 (Ref. 14) through interaction with their PH domains, which can also bind PtdIns4P. CERT mediates the non-vesicular transport of ceramide from the ER to the Golgi and FAPP2 mediates the transfer of glucosylceramide from the cytosolic side of the early Golgi to the trans-Golgi25,26. Exactly how the directionality of this transfer occurs, and the role that ARF1 has, is not yet clear. The finding that ARF1 associates with GBF1 and COPI during lipid droplet formation was unexpected. These proteins were identified in an RNAi screen of lipid droplet formation in \textit{D. melanogaster}23 and also appeared in proteomic analyses of lipid droplets along with other trafficking proteins, which led to the idea that lipid droplets interface with multiple membrane trafficking pathways24. In particular, the delivery of two proteins, adipose triglyceride lipase (ATGL) and adipose differentiation-related protein (ADRP, also known as adipophilin), to the surface of lipid droplets requires ARF1, GBF1 and COPI, and possibly the COPII machinery, in mammalian cells25; similar results were obtained in \textit{D. melanogaster} S2 cells26. Another ARF family member, ARFRP1, is highly expressed in adipocytes, and mice that lack ARFRP1 in adipose tissue show severe defects in lipid storage and enhanced lipolysis27. Finally, in some cell types ARF1 at the plasma membrane affects endocytosis of proteins anchored to the membrane by a glycosyl PtdIns (GPI) linkage28. This may also require the ARF GEF GBF1 (Ref. 29) and could be related to the other lipid-regulating functions of ARF1.

New understanding of ARF6 function. A great deal of work on ARF6 function has been summarized in a previous review1, so here we focus on more recent advances. In mammals, ARF6 is not required for early embryonic development, but ARF6-knockout mice die at
mid-gestation and shortly after birth and exhibit impaired liver development. This phenotype suggests that the critical physiological roles of ARF6 take place after birth and is consistent with reported effects of ARF6 on cell adhesion, cell migration, wound healing and metastasis. ARF6 is present at the plasma membrane and influences both the cortical actin cytoskeleton and endosomal membrane recycling (Fig. 3). At the plasma membrane, ARF6 changes the membrane lipid composition through activation of PtdIns(4)P5K and PDL, resulting in the generation of PtdIns(4,5)P2 and phosphatidic acid. These lipids are important for sorting proteins within the membrane, for the formation of clathrin-coated pits during endocytosis, and for the recruitment and activation of Rho family G proteins, such as Rac, to alter actin polymerization. There is some evidence that ARF6 can interact with AP2 (REF. 51) and clathrin during G protein-coupled receptor (GPCR) cell signalling. A recent study has found that ARF6 enters cells in clathrin-coated vesicles to facilitate the rapid recycling of the transferrin receptor back to the plasma membrane through interaction with the microtubule motor adaptor protein JNK-interacting protein 4 (JIP4) after clathrin uncoating. In some cells, ARF6 associates with endosomal membranes derived from clathrin-independent forms of endocytosis and mediates recycling of this membrane back to the plasma membrane. Recycling endosomes return membrane proteins that are important for cell adhesion and migration back to the plasma membrane. ARF6 regulation of such endosomal membrane trafficking is required for the polarized delivery of CDC42, Rac and the PAR6 complex to the leading edge of migrating cells, which can alter adhesion to the extracellular matrix through focal adhesions and actin-based protrusions. Hence, regardless of the mode of endocytosis, ARF6 is important for membrane recycling.

The crucial functions of ARF6 in membrane lipid modification, establishment of cell polarity and promotion of endocytic recycling are conserved in yeast and D. melanogaster. Arf3, the yeast ARF6 homologue, contributes to PtdIns(4,5)P2 levels at the plasma membrane and also affects polarization events, such as bud site selection in S. cerevisiae and new end take-off growth in Schizosaccharomyces pombe. ArfB, the ARF6 homologue in the filamentous fungi Aspergillus nidulans, localizes to both the plasma membrane and endomembranes, and regulates endocytosis and polarity establishment during hyphal growth. In D. melanogaster,
deletion of the ARF6 homologue blocks the rapid endocytic recycling required for cytokinesis in spermatocytes, resulting in male sterility, but no other phenotypes were reported\(^41\). Interestingly, in mammalian cells ARF6 interacts with JIP4 to control a motor switch mechanism regulating endosomal trafficking in cytokinesis\(^42\). The crystal structure of ARF6 in complex with JIP4 shows that residues adjacent to the switch regions are structural determinants for the specific binding of JIP4 to ARF6 (REF. 43).

ARF6 has been implicated in both the assembly and disassembly of adherens junctions in polarized epithelial cells\(^1\) (FIG. 3). During adherens junction formation, PAR3 recruits a scaffolding protein, FRMD4A, that binds to cytohesin GEFs, which leads to activation of ARF6 (REF. 44). Treatment of fully polarized epithelial cells with hepatocyte growth factor leads to activation of ARF6, most likely through the ARF GEF BRAG2 (REF. 45), and activation of Rac, which causes disassembly of adherens junctions by stimulating endocytosis of epithelial cadherin (E-cadherin). Hence, depending on the signalling complex assembled, either formation or disassembly of adherens junctions can be achieved through activation of ARF6. There is also some evidence that the ARF6 GEF EFA6 affects tight-junction assembly\(^46\). ARF6 activation has also been reported at the onset of tubulogenesis (a developmental progression from polarized epithelia to tubular structures), and perturbation of the ARF6 GTP–GDP cycle inhibits tube formation\(^47\).

Importance of turning off ARF6. ARF proteins carry out their actions through a regulated cycle of GTP binding and hydrolysis. This allows ARFs to engage and disengage with their effectors with spatial and temporal specificity, and in some cases may allow ARF•GDP to bind other classes of effector. ARF6•GDP binds several TBC (Tre2–Bub2–Cdc16) domain-containing proteins, which often have Rab GAP activity\(^48\). ARF6•GDP binds both TBC1 domain family member 24 (TBC1D24; a protein mutated in familial infantile myoclonic epilepsy\(^49\)) and the TRE17 oncogene\(^50\). TRE17 binding to ARF6 increases its activation\(^50\); although TRE17 does not itself have GEF activity towards ARF6, it may facilitate interaction of ARF6 with another GEF. ARF6•GDP also binds to the Kalirin family of Rho GEFs, through their spectrin-like repeat domain\(^51\), and recruits Kalirin to the membrane, where it subsequently activates Rac and RhoG to regulate actin dynamics\(^52\) (FIG. 3). Hence, ARF6•GDP and ARF6•GTP both interact with regulatory proteins of other small G proteins, allowing alternative signalling pathways to be activated depending on which nucleotide is bound (FIG. 1c). This raises the intriguing possibility that other GDP-bound ARF or ARL proteins might also bind unique effector proteins.

Turning off ARF6 is important for its biological function. In some cells, expression of the constitutively active mutant of ARF6, Q67L, leads to the accumulation of early endosomes containing plasma membrane proteins that enter cells independently of clathrin; failure to inactivate ARF6 blocks further trafficking of this membrane towards recycling or to other destinations\(^52\). Immediately upon platelet activation, ARF6•GTP levels fall, and this inactivation precedes, and is required for, the subsequent activation of Rac\(^53\). ARF6 is important for the disassembly of adherens junctions\(^1\) and, more recently, active ARF6 was shown to disrupt the formation of epithelial cysts\(^54\). The Slit2–ROBO4 signalling pathway is important for maintaining barrier function in the vascular network, and ROBO4 interacts with paraxillin to recruit ARF GAP proteins, such as GIT1, to inactivate ARF6 (REF. 55); this ARF6 inactivation suppresses protractive activity of the endothelial cells and neovascularization. GIT2 and ARF6 inactivation are also important for maintaining the podosome, an actin-rich sealing zone in osteoclasts\(^56\). Finally, non-canonical ubiquitylation of ARF6, catalysed by FBX8 (an F-box and SEC7 domain-containing protein) seems to be another, unusual, way to turn off ARF6 (REF. 57). FBX8 is diminished or lacking in several cancer cell lines, which is consistent with roles for ARF6 in cancer cell metastasis\(^58\).

Insights into ARL function. Similarly to ARF1, ARL1 and ARL2 arose early in evolution and share common effectors in plants, yeast and mammals. ARL1 recruits GRIP-domain golgins to the TGN\(^7\). It also mediates TGN-localization of ARF-interacting proteins (ARFAPTs), which contain Bin–amphiphysin–Rvs (BAR) domains that induce the formation of tubules and vesicles at the TGN\(^9\). Whereas ARL1 functions in vesicle trafficking similarly to ARFs, ARL2 has a highly conserved function in regulating microtubule-based processes\(^2\). ARL3 is closely related to ARL2, but is found only in cells with cilia, where it regulates microtubule-based processes at the ciliary basal body\(^20\) (FIG. 2b). ELMOD2 has been reported to be a GAP for ARL2, but also has activity against ARF1 and ARF6, which is surprising given that it has no homology to ARF GAPs\(^61\); the physiological relevance of this activity remains to be determined.

Retinitis pigmentosa 2 (RP2; also known as XRP2) acts as a GAP for ARL3, which drives specific activity of the endothelial cells and neovascularization. GIT2 and ARF6 inactivation are also important for maintaining the podosome, an actin-rich sealing zone in osteoclasts\(^56\). Finally, non-canonical ubiquitylation of ARF6, catalysed by FBX8 (an F-box and SEC7 domain-containing protein) seems to be another, unusual, way to turn off ARF6 (REF. 57). FBX8 is diminished or lacking in several cancer cell lines, which is consistent with roles for ARF6 in cancer cell metastasis\(^58\).

ARL3, ARL6 and ARL13 affect intraflagellar transport and ciliogenesis (FIG. 2c). Cilia are vital for cell signalling and differentiation, and their impaired formation is responsible for many genetic disorders\(^8\). Bardet–Biedl syndrome is a complex genetic disease that can be caused by mutation in any one of 14 genes associated with ciliogenesis. Transport of membrane proteins into the cilium is driven by a complex of proteins, called the BBSome. BBSome subunits have ‘coat-like’ attributes and similar structural folds to those found in COPI and adaptor protein complexes, suggesting that the BBSome can sort specific cargo for transport (FIG. 2c). ARL6 is a BBS subunit (BBS3) and is required in its GTP-bound form to recruit the BBSome onto the plasma membrane to drive cargo sorting into cilia\(^53\). Structural and biochemical analyses have shown that one of the mutations in ARL6 that causes Bardet–Biedl syndrome, T31R, leads to a non-functional ARL6 that cannot bind GTP\(^64\). This supports the idea that ARL6 recruits the BBSome complex to membranes for formation of BBSome-coated vesicles. ARL13 is mutated in patients with Joubert syndrome,
which is a rare, complex cerebral disorder that is characterized by developmental delays and cognitive disability. It is also involved in intraflagellar transport (FIG. 2c) and, in C. elegans, ARL-13 associates with the doublet segment of the cilium and its loss results in shortened cilia.

Retinitis pigmentosa is a retinal degeneration disease, and mutations in the RP2 gene are responsible for a large fraction of the most severe X-linked form. RP2 was identified as a GAP for ARL3, and mutations associated with retinitis pigmentosa compromise ARL3 GAP activity. ARL3 localizes to the photoreceptor segment connecting to the cilia (FIG. 2b), and ARL3+/− mice have abnormal kidney and photoreceptor development, indicating the importance of this protein in primary cilia. RP2 localizes to the basal body and centriole at the base of the photoreceptor cilium, but also to the adjacent Golgi and apical plasma membrane. Furthermore, RP2 promotes vesicle trafficking from the Golgi to the base of the cilia in mammalian cells, presumably acting together with ARF4, ASAP1 and FIP3. Intriguingly, D. melanogaster ARL3 (also called Dead end) regulates actin polymerization and vesicular trafficking to the plasma membrane, which are important for tracheal morphogenesis. Hence, ARL3 appears to link microtubule-based processes and vesicular trafficking during development.

ARL8 might also coordinate microtubule and vesicular trafficking. ARL8 localizes to late endosomes and lysosomes (FIG. 3) in both humans and worms, and mediates transport of endocytic proteins between these two compartments. ARL8 also facilitates the axonal transport of presynaptic cargo proteins in vesicles, preventing their premature aggregation. Exactly how these two functions of ARL8 are related is not clear but they might both involve transport along microtubules.

ARFGEFs in physiology and disease

A great deal of progress has been made in identifying ARFGEFs, and an unexpectedly broad range of roles has been revealed for these regulators, including both the coordination of membrane trafficking with lipid homeostasis and signalling at the plasma membrane (TABLE 2). Because GEFS ensure the precise temporal and spatial activation of ARFs, their own localization mechanisms are crucial for understanding their cellular roles. These mechanisms are turning out to be quite complex, even for the simplest of the ARFGEFs, the members of the cytohesin (also known as ARNO) family. Membrane trafficking is crucial to numerous developmental and physiological processes, and the specific functions of different ARFGEFs in these pathways and their links to disease are now being revealed.

Mechanisms of ARF GEF recruitment. There is particular interest in understanding how ARFGEFs are recruited to membranes to regulate ARF activation. BIG1 and BIG2 localize to the TGN and endosomes, where they have both distinct and overlapping functions. By contrast, GBF1 localizes predominantly to the cis-Golgi (FIG. 2a), where it controls transport of membrane proteins through the secretory pathway. The activity of phosphodiesterase 3A is important for recruitment of BIG1 and BIG2 to the trans-Golgi. However, Rab1 (REF. 77) and PtdIns4P generated by PtdIns4KIIα are involved in recruitment of GBF1 to membranes. Other close connections between Golgi ARFs and PtdIns4P have emerged recently. In yeast there is an interesting synergy observed between the ARF1 GEF Gea2 and PtdIns4P produced by Pik1 (the yeast homologue of PtdIns4KIIβ). Both are simultaneously required to activate the aminophospholipid translocase (flip/face) Drs2 at the TGN during formation of AP1–clathrin vesicles.

PtdIns4Ks are essential for viral replication, and notably produce the PtdIns4P-enriched membrane environment that recruits the enteroviral RNA polymerases. GBF1 is required for the replication of numerous viruses, including enteroviruses, hepatitis C virus and coronaviruses. In enteroviral systems, GBF1 and PtdIns4KIIβ are recruited coordinately to membranes by the viral 3A protein to promote formation of functional viral replication complexes near ER exit sites (FIG. 2a).

Yel1 is an EFA6-like GEF for the ARF6 orthologue ARL3 in yeast, and localizes to the plasma membrane of the emerging bud. Similarly to its mammalian orthologues, the PH domain of Yel1 is required for membrane targeting but, interestingly, multiple regions of the protein are important for precise spatial localization of this GEF.

BRAG2, an ARF6 GEF, also has a PH domain that is critical for membrane targeting and in breast cancer cells is specifically recruited to the EGF receptor upon EGF stimulation, through direct interaction of its PH domain with the EGF receptor. This interaction requires phosphorylation on specific Tyr residues and thus the recruitment of BRAG2 couples receptor activation to ARF6 activation. BRAG2 is overexpressed in many breast cancer cell lines and deletion of BRAG2 by small interfering RNA blocks cell invasion in vitro and in animal tumour models. These observations add to others that have implicated ARF6 and its activation in a number of models of cancer cell invasion and metastasis.

Autoinhibition of cytohesin GEFs. At the cell periphery, the cytohesin GEFs function in plasma membrane–endosomal membrane trafficking pathways, and in signal transduction pathways that are important for cell proliferation, immune response and growth control. Members of this GEF family can catalyse exchange on both ARF1 and ARF6 in vitro and in cells, although in vitro they are more efficient GEFs for ARF1 (REF. 87). Recent insights have been gained into how cytohesin activation is spatially regulated, and how its autoinhibition is relieved (FIG. 4). In addition to phosphoinositide binding at the membrane, the PH domains of cytohesin family members interact with the GTP-bound forms of ARF6 (REF. 89) and ARL4 (REFS 90,91), leading to cytohesin recruitment and further activation of ARF6 or ARF1 at the membrane. A crystal structure of the SEC7 domain in tandem with the PH domain of cytohesin 3 (also known as GRP1) revealed that it adopts an auto-inhibited conformation. The C-terminal helix that
There is also evidence that cytohesins might mediate a cascade of activation from ARF6 to ARF1. Cells expressing constitutively active ARF6Q67L have increased levels of ARF1•GTP98. ARF1 affects several processes at the plasma membrane, including recruitment of proteins to focal adhesions and during phagocytosis. In the forming phagocytic cup, ARF6•GTP is recruited earlier than ARF1•GTP, at a stage that requires rapid insertion of new membrane94. Hence, the ARF6–cytohesin–ARF1 cascade might ensure a high level of activated ARF protein here. ARF6 is less abundant than ARF1 in cells, and as both ARF1 and ARF6 can recruit effectors such as PtdIns4P5K and PLD, processes requiring acute activation of such effectors may rely on the more abundant ARF1 to provide an adequate supply. In support of this idea, both ARF1 and ARF6, through cytohesins, contribute to activation of PtdIns4P5K and PLD in the insulin signalling pathway95. In addition to ARF6–cytohesin–ARF1 or possible ARL4–cytohesin–ARF6 cascades, there is a conserved ARL cascade, in which yeast ARL3•GTP recruits ARL1 to TGN membranes2. In this case, it is not known whether an ARL GEF is involved. Hence, ARF family cascades could be common and could explain the Golgi ARFs that act in pairs.

ARF GEFs in scaffolding complexes. Use of the specific cytohesin inhibitor SecinH3 has revealed roles for this family of GEFs in the insulin and ERBB receptor Tyr kinase signalling pathways96–99. Cytohesins are positive activators of insulin signalling in both D. melanogaster and mammalian cells, and they are important for cell growth and for insulin sensitivity in human liver cells77,90. They regulate insulin signalling by binding CNK1, a scaffolding molecule that is important for Ras, phosphoinositide 3-kinase (PI3K) and AKT signalling98. CNK1 recruits cytohesins in an insulin-dependent manner to the plasma membrane, where they generate a PtdIns(4,5)P2-enriched microdomain that is essential for PI3K–AKT activation. Other scaffolding proteins interact with the coiled-coil domain of cytohesin; these proteins include Golgi reassembly-stacking protein (GRASP) and IPCEF (interactor protein for cytohesin exchange factors), which mediate the interaction of DOCK180 with cytohesin99. Interestingly, assembly of this scaffolding complex promotes Rac activation and cell migration, indicating that these scaffolds assemble a signalling complex that determines a specific downstream output upon ARF activation99. Cytohesins also affect integrin signalling in the immune system, and cytohesin 1 can activate β2 integrins in dendritic cells100, possibly through a scaffolding role of cytohesins.

GEFs in neuronal development and disease. Levels of ARF6 and the EFA6 and cytohesin family GEFs markedly increase in the mammalian brain after birth, suggesting important roles in postnatal nervous system development101. Experiments in isolated hippocampal neurons indicate that ARF6, EFA6 and the cytohesins might affect neurite and dendritic spine development102,103.

In humans, mutations in the ARF1 GEF BIG2 are linked to autosomal recessive periventricular heterotopia (ARPH), a disease in which the cerebral cortex is severely underdeveloped owing to failure of neurons in the lateral ventricular proliferative zone to migrate to the cortex104. This impaired migration arises from a cellular endocytic process for engulfing large particles, such as bacteria, and bringing them inside the cell.
defect in vesicular trafficking that alters the adhesive properties of these neurons106. Disease alleles include an early frameshift mutation that deletes most of the BIG2 protein104.

Members of the BRAG (or IQSEC) family of ARF GEFs are extremely abundant in neuronal postsynaptic densities, and can serve as GEFs for ARF6 (REF. 87). BRAG1 (also known as IQSEC2) and BRAG2 are vital for neuronal development. BRAG1 is mutated in X-linked nonsyndromic intellectual disability (also referred to as mental retardation). Three point mutations isolated from patients map to the SEC7 domain and result in proteins that cannot activate ARF6 normally106. BRAG2 has been linked to alterations in synaptic content during long-term depression (LTD). Signalling through AMPA (\(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors facilitates LTD, and downregulation of activated AMPA receptors is normally regulated by AMPA receptor-mediated recruitment of BRAG2, which in turn activates ARF6 and endocytosis97. Thus, BRAG GEFs and ARF6 are vital for neuronal development and learning.

ARF-independent GEF functions. Cytosolins GEFs may affect signalling through epidermal growth factor (EGF) or ERBB receptor Tyr kinase receptors independently of their GEF activity. EGF receptors (EGFRs) undergo ligand-induced dimerization and subsequent trans-phosphorylation, mediated by conformational changes in their cytoplasmic portion. Cytosolins bind directly to these cytoplasmic domains and promote conformational changes that increase phosphorylation97. Furthermore, treatment of an EGF receptor-dependent lung cancer cell line with the cytohesin inhibitor SecinH3 reduced proliferation98. Surprisingly, this function of the cytosolins does not require their GEF activity. Similarly, in *C. elegans*, the GEF EF-A6 regulates microtubule dynamics at the cell cortex independently of its substrate ARF6 (REF. 108). Furthermore, essential functions of GBF1 in poliovirus replication are independent of ARF1 activation109. The extent to which other ARF GEFs may have broader roles beyond ARF activation warrants further investigation. There are also suggestions that some multidomain ARF GAP proteins have functions that are independent of their GAP activity.

ARF GAPs as scaffolding effectors

All ARF GAPs contain the conserved zinc-finger ARF GAP catalytic domain in addition to other domains responsible for membrane recruitment, regulation of GAP activity and other scaffolding functions (TABLE 2). ARFGAP1, the first ARF GAP to be cloned110, is Golgi-localized and, together with ARFGAP2 and ARFGAP3, mediates most ARF-bound GTP hydrolysis at the Golgi. The complex, multidomain structure of the other ARF GAP families has stimulated much research. Here, we highlight a few examples of how these multidomain ARF GAPs, by recognizing the GTP-bound form of their substrate ARF, act as downstream effectors in addition to signal terminators. Information about other ARF GAPs can be found in an excellent review article111.

The ASAP proteins are the prototypical multidomain GAPs that interact with many signalling molecules, including SRC and focal adhesion kinase112 (TABLE 2). ASAP1 resides in focal adhesions but, in response to SRC activation, it facilitates formation of podosomes112, which are discrete actin-based structures that are formed at the cell substratum to degrade matrix. The crystal structure of ARF6 in complex with the catalytic domain of ASAP3 revealed that a catalytic Arg-finger of ASAP3 is responsible for GTP hydrolysis113, similarly to many other GAPs, a finding that is consistent with an earlier structure of the GAP domain of ASAP2 (REF. 114). There is also some evidence that calcium might bind to the complex and regulate GAP activity113, although this needs to be confirmed with full-length ASAP3 and ARF6 and in cells. The ASAPs all have N-terminal BAR domains that can induce membrane curvature and tubule formation in transfected cells and in cell-free systems. The BAR domain in ASAP1 negatively regulates its GAP activity towards ARF1 (REF. 115), and binding of the Rab1 effector FIP3 to the BAR domain of ASAP1 stimulates its GAP activity114. As mentioned earlier, ASAP1 also promotes ciliary targeting together with ARF4 and FIP3 (REF. 20) (FIG. 2b). ASAP1 is upregulated in breast, pancreatic and colorectal cancer116. CBL-interacting protein 85 (CIN85; also known as SH3KBP1) binds to ASAP1, recruiting the E3 ubiquitin ligase CBL, to trigger the monoubiquitylation of ASAP1; this modification is important for invasion of breast cancer cells117 but the role for ubiquitylation of ASAP in cell invasion is not known. One caveat to observations made when ASAP is expressed in cells is that a study designed to systematically look at ARF GAP function and ARF specificity failed to detect an effect of ASAP1 expression on either ARF1-GTP or ARF6-GTP levels in cells118. This raises the possibility that the GAP activity of ASAP1 might not always be critical for some of ASAP1’s specific functions.

The ARF GAP GIT1, originally identified as a GPCR kinase-interacting protein, can coordinate signalling by acting as a scaffold. GIT1 and its substrate ARF6 affect ligand-stimulated endocytosis of several GPCRs through either clathrin-dependent or clathrin-independent endocytic pathways119. Among the proteins interacting with GIT1 are the CDC42 and Rac GEF PIX, focal adhesion kinase and paxillin. GIT1, similarly to ASAP1, is sometimes observed in focal adhesions and its influence on the activation of CDC42 and Rac suggests that ARF inactivation and Rac activation are coordinated (FIG. 3). *D. melanogaster* GIT is required for muscle morphogenesis120 and the GIT1-knockout mouse is defective in fear learning119, and dendritic spine formation121. Rac3 interacts with GIT1, disrupting GIT1 binding to paxillin; this in turn stimulates GIT1 GAP activity, presumably towards ARF6 (REF. 125), and inhibits cell spreading and neurtogenesis. In endothelial cells, ROBO4 interacts with paxillin, which recruits GIT1 to inactivate ARF6, and this leads to vascular stability, blocking cellular protrusions and neovascular leak122. Thus, these examples provide insights into how modular ARF GAPs promote spatially and temporally restricted assembly of signalling complexes, and allow a precise physiological output in response to a signal.
Intracellular pathogens can use a fascinating GAP-blocking mechanism to rewire the host cell's signalling network for their own purposes. Enterohaemorrhagic Escherichia coli produce the EspG protein, which binds to GTP-bound ARF1 and ARF6, blocking their access to GAPs and disrupting the function of both early Golgi and recycling endosomes. Moreover, EspG simultaneously binds to p21-activated kinase (PAK), an effector of a distinct G protein family member, CDC42, and promotes PAK localization at Golgi membranes rather than at the plasma membrane. This raises the possibility that EspG assembles its own signalling complex on intracellular membranes to subvert membrane trafficking and polarity processes in host cells.

Conclusions & perspectives

ARF activity is regulated in a spatiotemporal manner by the GEFs and GAPs, underlining the importance of precise localization of these regulators. In the case of cytohesins, such specificity can be achieved through a coincidence-detection mechanism, requiring both an activating ARF or ARL protein and a specific lipid composition. This example also reveals the existence of ARF family activation cascades and how release of autoinhibition can be coupled to precise spatial cues. It will be interesting to see how widespread these mechanisms are among ARF family members. ARF cascades, similarly to those demonstrated for Rab G proteins, could transform one membrane domain into another during highly dynamic membrane trafficking. These transformations involve coordinated changes in the lipid and protein composition of each membrane domain, a specialty of many ARF family members, which recruit both lipid-modifying enzymes and protein effectors such as coats and tethers. The signature feature of ARF family proteins, their N-terminal membrane-binding amphipathic helix, ensures that they are closely associated with the lipid bilayer in their GTP-bound form. Future studies on how ARF family proteins function will therefore require in vitro reconstitution on model membranes. There appears to be a particularly important link between ARF1 function and PtdIns4P, a lipid that has a central role in the function of the Golgi, which parallels the coordination of membrane trafficking and PtdIns(4,5)P2 signalling by ARF6 at the plasma membrane.

The GAPs and GEFs for the ARF family proteins are multidomain proteins that can assemble signalling complexes and so place the ARFs and ARLs into larger networks. These networks include cytoskeleton regulators, and it appears that some ARL proteins (ARL2, for example) have evolved exclusively to regulate the cytoskeleton. The role of ARF6 in networks linking membrane trafficking to the actin cytoskeleton also involves interaction of ARF6 with GEFs and GAPs of the Rac and Rho small G proteins, actin cytoskeleton regulators. Another emerging concept is that some ARF family members remain membrane-bound in their GDP-bound form so that they can interact with signalling complexes and promote alternative signalling pathways. Ultimately, these ARF family signalling networks will need to be studied through systems level analysis.

So far, no GEFs and only two GAPs that are specific for an ARL have been identified. Several ARL proteins affect ciliogenesis and, in some cases, ciliopathies; other ARLs function in neurons and have been associated with neurodegenerative disorders. Hence, increased understanding of ARLs and their regulators should inform both fundamental questions in cell biology and disease mechanisms.

Finally, the use of model organisms to complement studies in mammalian cells has already provided valuable insights into the physiological roles of ARF family proteins. This approach holds great promise for uncovering the unknown functions of most ARLs, as well as defining the full range of activities of all ARF and ARL proteins.
The ARF-like GTPase ARFRP1 is essential for lipid droplet growth and is involved in the regulation of lipolysis. Mol. Cell. Biol. 30, 1231–1242 (2010).

Kumari, S. & Mayor, S. ARF1 is directly involved in essential for lipid droplet growth and is involved in the supplementation of Arf6 COPI complex to membranes. J. Biol. Chem. 285, 21621–21666 (2005).

Poupart, M. E., Fessart, D., Cotton, M., Laporre, S. A. & Claing, A. ARF6 regulates angiotension type 1 receptor endocytosis and raft recycling. Cell. Chem. Biol. 28, 21621–21666 (2008).

Montagut, C. et al. Decoupling of activation and effector binding underlies ARF6 priming of fast endocytic recycling. J. Biol. Chem. 258, 574–579 (2011).

Grant, C. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nature Rev. Mol. Cell Biol. 10, 597–608 (2009).

Balkenende, E. W., Cramer, D. W., Castle, J. D., Casanova, J. E. & Schwartz, M. A. AR6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nature Cell Biol. 9, 1381–1391 (2007).

Qinnan, N. Pegion, F. Chavrier, P. & Etienne-Manneville, S. Cdk2 localization and cell polarity depend on membrane traffic. J. Cell Biol. 191, 1261–1269 (2010).

Smaczynska-de Rooij, I. J., Costa, R. & Ayscough, K. R. Yeast Arf5p modulates plasma membrane Pho85/Sml1p and swt1p endocytosis. Traffic 9, 559–575 (2008).

Huang, C. F., Liu, W. Y., Ting, L., Lin, C. H. & Lee, F. J. Rac1 in ARF6 for development, or not endocytosis, in neuronal process formation. Mol. Biol. Cell 14, 3835–3847 (2005).

Fujita, A. ADP-ribosylation factor Arf6 function may occur as a molecular switch that can shut endocytosis. Faseb J. 19, 193–198 (2004).

Lee, S. C., Schmidtke, S. N., Davoott, L. J. & Shaw, B. D. Aspergillus nidulans Arf6 plays a role in endocytosis and polarized growth. Eukaryot. Cell 7, 1278–1288 (2008).

Dyer, N. et al. Spermatocyte cytokinesis requires rapid membrane addition mediated by ARF6 on central spindle recycling endosomes. Development 134, 4467–4474 (2007).

Montagut, C. et al. ARF6 interacts with JIP4 to control a motor switch mechanism regulating microtubule dynamics and COPI association. Mol. Biol. Cell 16, 2618–2620 (2010).

Isabet, T. et al. The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4. EMBO J. 28, 2835–2845 (2009).

The crystal structure of ARF6 in complex with its effector JIP4, which acts as a microtubule motor adaptor, reveals that the specificity of the interaction requires residues at the borders of the ARF6 switch regions.

Ikeuchi, T. et al. The retinitis pigmentosa gene product RP2 links to the primary cilium. J. Cell Biol. 157, 515–528 (2002).

Demonstration that RP2 is an efficient GAP for ARL3, with crystallographic structures of ARL3 bound to RP2 revealing features that are similar to other RUGS GAPs. J. Biol. Chem. 285, 1039–1051 (2010).

Cevik, S. et al. Joubert syndrome Arl13b functions at the trans-Golgi network and endosomes. Mol. Biol. Cell 19, 1260–2660 (2010).

Boal, J. et al. The Arf-like GTPase ARF6 mediates delivery of endocytosed macromolecules to lysosomes in Caenorhabditis elegans. Mol. Biol. Cell 21, 1224–2242 (2010).

Ishizaki, R., Shin, H. W., Mitsuhashi, H. & Nakayama, K. Redundant roles of BRG1 and BRG2, nucleosome exchange factor subunits in ARF6-ribosylation factors in membrane traffic between the trans-Golgi network and endosomes. Mol. Biol. Cell 19, 1260–2660 (2008).

Journet, C., Segura, I., Menocal, T. & Cohen, L. A. Active Arf6 recruits ARNO/cytosine GEFs to the PM by binding their PH domain to cilia. Mol. Biol. Cell 22, 2124–2125 (2007).
Ferland, R. J. Vesicle trafficking in neural progenitor proliferation, development and maintenance of dendritic spines. Nature 468, 483–496 (2010).

Shoubridge, C. et al. Analysis of the small GTPase gene superfamily of Caenorhabditis elegans. Hum. Mol. Genet. 18, 21890–21895 (2010).

Koizumi, K. et al. VANS ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development 132, 1699–1711 (2005).

Sieburth, L. E. et al. Scarface encodes an ARF GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. Plant Cell 18, 1356–1411 (2006).

Fuss, B., Becker, T., Zinke, I. & Hoch, M. The cytohesin Arf6 exchange factors to the BAR domain in ASAP1. J. Biol. Chem. 284, 1652–1653 (2009).

Inoue, H. & Randazzo, P. A. Arf GAPs and their interacting proteins. Traffic 8, 1465–1475 (2007).

Bharti, S. et al. Inhibition of cytohesins by SecinH3. Nature Struct. Mol. Biol. 18, 6989–6996 (1999).

Jian, X. et al. Autoinhibition of Arf GAP-mediated protein activity by the BAR domain in ASAP1. J. Biol. Chem. 284, 1652–1653 (2009).

Because of the importance of cytohesins in cell biology, understanding the mechanism of their function is crucial. The recent discoveries have shed light on the regulatory mechanisms of cytohesins, which are crucial for cellular processes such as cell migration, adhesion, and intracellular transport. These studies have provided insights into the role of cytohesins in various cellular functions and have opened new avenues for the development of therapeutic strategies.
The authors would like to note that Catherine L. Jackson’s address was incomplete as it appeared in the original version of this article. This has been corrected in the online version.