Syntheses and structures of two new lithium–heptamolybdates

Savita S. Khandolkara, Christian Nätherb, Wolfgang Benschb, Bikshadarkoiril R. Srinivasana,
aDepartment of Chemistry, Goa University, Goa 403206, India Email: srini@unigoa.ac.in
bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel
Max-Eyth Straße 2, D-24098 Kiel, Germany

SUPPLEMENTARY MATERIAL FOR ONLINE VERSION

Table S1. List of structurally characterized heptamolybdate compounds.

No	Compound	Space Group	Binding mode of $\{\text{Mo}_7\text{O}_{24}\}$	Ref
1	(H$_2$DABCO)$_2$[Mo$_3$O$_{24}$]-4H$_2$O	Cc	Counterion	6
2	(3-amp)$_2$[Co(H$_2$O)$_6$Mo$_5$O$_{23}$]-9H$_2$O	Pnma	Monodentate	9
3	[Zn(3-ampy)[H$_2$O]$_5$]Mo$_5$O$_{23}$]-4H$_2$O	Cc	Monodentate	15
4	[Zn(3-ampy)[H$_2$O]$_5$]Mo$_5$O$_{23}$]-4H$_2$O	Cc	Monodentate	15
5	Na(NH$_2$)$_2$(bppy)$_2$[Mo$_5$O$_{23}$]-8H$_2$O	P2$_1$/m	Tridentate	8
6	Na$_2$(Ru(DMSO)$_2$)Mo$_5$O$_{23}$]-6.5H$_2$O	C2/c	Tridentate	14
7	Na$_2$(Ox(DMSO)$_2$)Mo$_5$O$_{23}$]-4.8H$_2$O	C2/c	Tridentate	14
8	(Im)$_3$[Ca(H$_2$O)$_6$][Mo$_5$O$_{23}$]-2 (Im)-3H$_2$O	C2/m	μ_2-bidentate	17
9	(NH$_4$)$_2$[Cu$_2$C$_4$I$_4$][Mo$_5$O$_{23}$]-9H$_2$O	P2$_1$/c	μ_2-bidentate	18
10	hmH$_2$[Mg(H$_2$O)$_6$][Mo$_5$O$_{23}$]-3H$_2$O	C2/c	μ_2-bidentate	10
11	hmH$_2$[Zn(H$_2$O)$_6$][Zn(H$_2$O)$_6$][Mo$_5$O$_{23}$]-2H$_2$O	C2/c	μ_2-tridentate	11
12	hmH$_2$_[Nm$_2$(H$_2$O)$_6$][Mo$_5$O$_{23}$]-2H$_2$O	C2/c	μ_2-tridentate	12
13	hmH$_2$_[Fe$_2$(H$_2$O)$_6$][Mo$_5$O$_{23}$]-2H$_2$O	C2/c	μ_2-tridentate	12
14	(NH$_4$)$_2$[Cu(en)$_2$][Na(en)Cu(en)$_2$][H$_2$O]Mo$_5$O$_{23}$]-4H$_2$O	P1	μ_2-tridentate	19
15	(GuaNH$_2$)$_2$NaCo[Co(H$_2$O)$_6$][Mo$_5$O$_{23}$]-8H$_2$O	P2$_1$/c	μ_2-tetradeinate	13
16	[(CH$_3$_)$_3$N][NH$_4$H$_2$][Mo$_4$(H$_2$O)$_6$(Mo$_5$O$_{23}$)$_1$]-12H$_2$O	T$_{3d}$	μ_2-tetradenate	21
17	[NH$_4$]$_2$[Cr$_2$(Mo$_5$O$_{23}$)-3H$_2$O]	P1	μ_2-tetradenate	21
18	[NH$_4$]$_2$[Pr$_4$(Mo$_5$O$_{23}$)-29H$_2$O]	C2/c	μ_2-tetradenate	21
19	[NH$_4$]$_2$[Cr$_3$(Mo$_5$O$_{23}$)-16H$_2$O]	C2/c	μ_2-hexadentate	21
20	[nh$_2$(hmt)$_2$[Cu$_2$(H$_2$O)$_6$][Mo$_5$O$_{23}$]-16H$_2$O	Pnma	μ_2-pentadentate	16
21	[hmH$_2$_[hmH$_2$_[hmH$_2$]$_{1.5}$][Na$_2$(H$_2$O)$_6$][Mo$_5$O$_{23}$]-4H$_2$O	Pnma	μ_2-pentadentate	12
22	(NH$_4$)$_2$[Ca$_2$(Mo$_5$O$_{23}$)-74H$_2$O	P1	μ_2-pentadentate, μ_4-pentadentate, μ_6-pentadentate	20
23	(NH$_4$)$_2$[Co$_2$(Mo$_5$O$_{23}$)-54H$_2$O	P1	μ_2-pentadentate, μ_4-pentadentate, μ_6-pentadentate	20
24	(NH$_4$)$_2$[Nd$_2$(Mo$_5$O$_{23}$)-19H$_2$O	P1	μ_2-pentadentate, μ_4-pentadentate, μ_6-pentadentate	20
25	(NH$_4$)$_2$[Pr$_2$(Mo$_5$O$_{23}$)-3H$_2$O]	P1	μ_2-pentadentate, μ_4-pentadentate, μ_6-pentadentate	20
26	Na$_2$[Mo$_6$O$_{24}$]-7H$_2$O	P2/n	μ_6-pentadentate	7
27	[K$_2$(Mo$_5$O$_{23}$)-14H$_2$O	P2/n	μ_6-pentadentate	5
28	Na$_2$(Mo$_5$O$_{23}$)-OH]	P2/n	μ_6-pentadentate	23
29	(NH$_4$)$_2$[Li$_2$(H$_2$O)$_6$][Mo$_5$O$_{23}$]-2H$_2$O	Pnma	μ_6-hexadentate	This work
30	(NH$_4$)$_2$[Li$_2$(H$_2$O)$_6$][Mo$_5$O$_{23}$]-H$_2$O	Pnma	μ_6-hexadentate	This work
31	(NH$_4$)$_2$[Li$_2$(H$_2$O)$_6$][Mo$_5$O$_{23}$]-H$_2$O	Pnma	μ_6-hexadentate	This work
32	(NH$_4$)$_2$[Li$_2$(H$_2$O)$_6$][Mo$_5$O$_{23}$]-H$_2$O	Pnma	μ_6-hexadentate	This work
Abbreviations used: DABCO = 1,4-diazabicyclo[2.2.2]octane; 2-amp = 2-aminopyridine; 3-amp = 3-aminopyridine; bpp = 1,3-bis(4-pyridyl)propane; DMSO = dimethylsulfoxide; Im = imidazole; hmt = hexamethylenetetramine; en = ethylenediamine; GuaNH = guanidinium; hex = hexamethylenetetramine; PyrNH = pyrrolidinium; PrNH = propan-1-amine; PentNH = pentan-1-amine; HexNH = hexan-1-amine; tert-ButNH = tert-butylamine; Temed = N,N,N',N-tetramethylethylenediamine; 4-ap = 4-aminopyridine; dien = diethylentriamine; 2,3-diamp = 2,3 diaminoypyridine.

Counterion	1	2	3	4	5	6	7	8	9	10
P2/c	22, 23	24	4	To be published	27	4, 27	27	28	29	30
C2/c	31	31	32	17	33	34	4			
P2/a	15									

Table S2. Metric parameters (Å, °) of $(\text{Mo}_7\text{O}_{24})^{6-}$ unit in $(\text{NH}_4)_4[(\text{Li}_2(\text{H}_2\text{O})_2)][\text{Mo}_7\text{O}_{24}]\cdot\text{H}_2\text{O}$.

Bond lengths

Bond	1 Å	2 Å	3 Å	4 Å	5 Å	6 Å	7 Å	8 Å	9 Å	10 Å
Mo(1)-O(2)	1.721(3)	Mo(4)-O(20)	1.897(3)							
Mo(1)-O(3)	1.733(3)	Mo(4)-O(5)	1.899(3)							
Mo(1)-O(4)	1.931(3)	Mo(4)-O(3)	2.267(3)							
Mo(1)-O(5)	1.990(3)	Mo(4)-O(8)	2.282(3)							
Mo(1)-O(6)	2.158(3)	Mo(5)-O(16)	1.722(3)							
Mo(1)-O(7)	2.244(3)	Mo(5)-O(15)	1.742(3)							
Mo(1)-O(8)	3.2110(5)	Mo(5)-O(10)	1.913(3)							
Mo(2)-O(2)	1.713(3)	Mo(5)-O(23)	1.917(3)							
Mo(2)-O(3)	1.7213(3)	Mo(5)-O(8)	2.152(3)							
Mo(2)-O(4)	1.944(3)	Mo(6)-O(18)	1.716(3)							
Mo(2)-O(5)	1.9913(3)	Mo(6)-O(19)	1.737(3)							
Mo(2)-O(6)	2.1493(3)	Mo(6)-O(21)	1.936(3)							
Mo(2)-O(7)	2.284(3)	Mo(6)-O(17)	1.949(3)							
Mo(2)-O(8)	1.7223(3)	Mo(6)-O(3)	2.156(3)							
Mo(3)-O(2)	1.7283(3)	Mo(6)-O(20)	2.272(3)							
Mo(3)-O(3)	1.924(3)	Mo(7)-O(24)	1.706(3)							
Mo(3)-O(4)	1.926(3)	Mo(7)-O(22)	1.730(3)							
Mo(3)-O(5)	2.159(3)	Mo(7)-O(21)	1.929(3)							
Mo(3)-O(6)	1.722(3)	Mo(7)-O(23)	1.985(3)							
Mo(4)-O(1)	1.740(3)	Mo(7)-O(8)	2.146(3)							
Mo(4)-O(2)	1.757(3)	Mo(7)-O(20)	2.277(3)							

Bond angles

Bond	1°	2°	3°	4°	5°	6°	7°	8°	9°	10°
O(2)-Mo(1)-O(4)	105.19(17)	O(16)-Mo(5)-O(23)	97.74(15)							
O(2)-Mo(1)-O(6)	96.99(15)	O(15)-Mo(5)-O(23)	102.34(15)							
O(4)-Mo(1)-O(6)	100.94(15)	O(10)-Mo(5)-O(23)	147.09(13)							
O(2)-Mo(1)-O(1)	98.83(15)	O(16)-Mo(5)-O(8)	106.04(14)							
O(4)-Mo(1)-O(1)	92.52(15)	O(15)-Mo(5)-O(8)	147.79(14)							
O(6)-Mo(1)-O(1) 155.75(14) O(10)-Mo(5)-O(8) 74.14(12)
O(2)-Mo(1)-O(3) 95.73(14) O(23)-Mo(5)-O(8) 73.95(12)
O(4)-Mo(1)-O(3) 156.38(15) O(18)-Mo(6)-O(19) 104.19(17)
O(6)-Mo(1)-O(3) 87.01(12) O(18)-Mo(6)-O(21) 96.72(14)
O(1)-Mo(1)-O(3) 73.24(12) O(19)-Mo(6)-O(21) 98.90(14)
O(2)-Mo(1)-O(5) 165.72(14) O(18)-Mo(6)-O(17) 100.86(15)
O(4)-Mo(1)-O(5) 87.96(14) O(19)-Mo(6)-O(17) 94.05(14)
O(6)-Mo(1)-O(5) 74.66(12) O(21)-Mo(6)-O(17) 154.88(13)
O(1)-Mo(1)-O(5) 85.88(13) O(18)-Mo(6)-O(3) 95.14(14)
O(3)-Mo(1)-O(5) 72.60(11) O(19)-Mo(6)-O(3) 158.76(14)
O(7)-Mo(2)-O(9) 105.20(16) O(21)-Mo(6)-O(3) 87.32(12)
O(7)-Mo(2)-O(6) 100.42(15) O(17)-Mo(6)-O(3) 73.43(11)
O(9)-Mo(2)-O(6) 97.25(14) O(18)-Mo(6)-O(20) 164.12(14)
O(7)-Mo(2)-O(10) 91.16(15) O(20)-Mo(4)-O(3) 77.29(12)
O(9)-Mo(2)-O(10) 101.09(15) O(5)-Mo(4)-O(3) 76.90(12)
O(6)-Mo(2)-O(10) 154.92(13) O(14)-Mo(4)-O(8) 82.91(14)
O(7)-Mo(2)-O(8) 155.21(14) O(13)-Mo(4)-O(8) 171.88(13)
O(9)-Mo(2)-O(8) 96.50(14) O(20)-Mo(4)-O(8) 76.92(12)
O(6)-Mo(2)-O(8) 88.38(12) O(5)-Mo(4)-O(8) 75.98(12)
O(10)-Mo(2)-O(8) 72.74(12) O(3)-Mo(4)-O(8) 88.30(10)
O(7)-Mo(2)-O(5) 88.73(14) O(16)-Mo(5)-O(15) 106.17(17)
O(9)-Mo(2)-O(5) 164.66(14) O(16)-Mo(5)-O(10) 98.55(15)
O(6)-Mo(2)-O(5) 73.49(12) O(15)-Mo(5)-O(10) 100.28(15)
O(10)-Mo(2)-O(5) 84.72(12) O(19)-Mo(6)-O(20) 89.86(14)
O(8)-Mo(2)-O(5) 71.48(11) O(21)-Mo(6)-O(20) 73.45(12)
O(11)-Mo(3)-O(12) 105.71(16) O(17)-Mo(6)-O(20) 85.22(12)
O(11)-Mo(3)-O(17) 99.50(15) O(3)-Mo(6)-O(20) 72.37(11)
O(12)-Mo(3)-O(17) 97.60(15) O(24)-Mo(7)-O(22) 105.35(17)
O(11)-Mo(3)-O(1) 98.17(16) O(24)-Mo(7)-O(21) 97.53(15)
O(12)-Mo(3)-O(1) 104.64(15) O(22)-Mo(7)-O(21) 100.14(15)
O(17)-Mo(3)-O(1) 146.53(13) O(24)-Mo(7)-O(23) 100.38(15)
O(11)-Mo(3)-O(3) 104.01(14) O(22)-Mo(7)-O(23) 92.72(15)
O(12)-Mo(3)-O(3) 150.05(15) O(21)-Mo(7)-O(23) 154.31(13)
O(17)-Mo(3)-O(3) 73.83(12) O(24)-Mo(7)-O(8) 93.34(14)
O(1)-Mo(3)-O(3) 74.43(12) O(22)-Mo(7)-O(8) 158.30(14)
O(14)-Mo(4)-O(13) 105.19(16) O(21)-Mo(7)-O(8) 87.99(12)
O(14)-Mo(4)-O(20) 100.26(15) O(23)-Mo(7)-O(8) 72.78(12)
O(13)-Mo(4)-O(20) 101.77(15) O(24)-Mo(7)-O(20) 163.13(14)
O(14)-Mo(4)-O(5) 101.16(15) O(22)-Mo(7)-O(20) 90.47(14)
O(13)-Mo(4)-O(5) 101.48(15) O(21)-Mo(7)-O(20) 73.46(12)
O(20)-Mo(4)-O(5) 142.80(13) O(23)-Mo(7)-O(20) 84.37(12)
O(14)-Mo(4)-O(3) 171.20(13) O(8)-Mo(7)-O(20) 72.47(11)
O(13)-Mo(4)-O(3) 83.60(13)
Table S3. Geometric parameters of the O–H⋯O, O–H⋯N and N–H⋯O hydrogen bonds length (Å) and (°) in the crystal structure of (NH₄)₄[Li₂(H₂O)₇][Mo₇O₂₄]·H₂O 1.

D-H	d(D-H)	d(H⋯A)	<DHA	d(D⋯A)	A	Symmetry codes
O31-H1O	0.850	1.948	156.47	2.749	O4	[x-1/2, -y+3/2, z+1/2]
O32-H3O	0.850	1.865	163.66	2.691	O6	[-x+3/2, y-1/2, -z+3/2]
O32-H4O	0.850	1.989	145.03	2.729	O22	
O34-H7O	0.850	2.096	147.56	2.850	O18	[-x+1/2, y-1/2, -z+3/2]
O34-H8O	0.850	2.148	153.73	2.934	O9	[-x+3/2, y-1/2, -z+3/2]
O35-H9O	0.850	2.009	147.14	2.762	O5	[-x+1, -y+1, -z+1]
O35-H10O	0.850	2.355	2.896	O15	[x-1, y, z]	
O36-H11O	0.850	2.029	161.32	2.847	O13	[-x+1, -y+1, -z+1]
O36-H12O	0.850	2.196	130.31	2.821	O20	
O37-H13O	0.850	2.023	168.83	2.861	O9	[-x+3/2, y-1/2, -z+3/2]
O37-H14O	0.850	2.205	144.83	2.941	N3	
N1-H1N1	0.900	2.222	155.45	3.064	O16	
N1-H2N1	0.900	2.075	160.67	2.939	O2	[-x+3/2, y-1/2, -z+3/2]
N1-H3N1	0.900	2.340	174.59	3.237	O1	[x+1/2, -y+3/2, z+1/2]
N1-H4N1	0.900	2.209	137.86	2.939	O11	[-x+3/2, y-1/2, -z+3/2]
N2-H2N2	0.900	2.394	123.46	2.986	O4	
N2-H2N2	0.900	2.623	136.08	3.330	O35	[-x+1, -y+1, -z+1]
N2-H3N2	0.900	2.280	143.19	3.049	O15	[-x+2, -y+1, -z+1]
N2-H4N2	0.900	2.130	147.77	2.931	O19	[x+1/2, -y+3/2, z-1/2]
N2-H1N2	0.900	2.107	150.51	2.925	O38	[x+1, y, z]
N3-H1N3	0.900	1.848	164.90	2.727	O21	[-x+3/2, y-1/2, -z+3/2]
N3-H2N3	0.900	1.952	157.88	2.806	O12	[-x+1, -y+1, -z+1]
N3-H4N3	0.900	1.886	162.86	2.759	O23	
N4-H4N4	0.900	2.140	165.00	3.019	O36	
N4-H3N4	0.900	2.209	129.81	2.870	O10	[x-1, y, z]
N4-H4N4	0.900	2.570	135.27	3.271	O15	[-x+1, -y+1, -z+1]
N4-H4N4	0.900	2.587	140.11	3.328	O12	
Table S4. Metric parameters (Å, °) of (Mo\textsubscript{7}O\textsubscript{24})6- unit in (NH\textsubscript{4})\textsubscript{2}Li\textsubscript{3}(H\textsubscript{2}O)\textsubscript{4}(μ\textsubscript{6}-Mo\textsubscript{7}O\textsubscript{24})·2H\textsubscript{2}O 2.

Bond lengths			
Mo(1)-O(1)	1.720(3)	Mo(3)-O(13)	2.477(4)
Mo(1)-O(3)	1.721(3)	Mo(3)-O(12)	1.753(4)
Mo(1)-O(5)	1.939(2)	Mo(4)-O(2)#1	1.919(3)
Mo(1)-O(2)	1.965(2)	Mo(4)-O(14)	1.735(4)
Mo(1)-O(4)	2.2207(7)	Mo(4)-O(13)	1.745(4)
Mo(1)-O(6)	2.237(2)	Mo(4)-O(6)#1	1.900(3)
Mo(2)-O(9)	1.723(3)	Mo(4)-O(6)	1.900(3)
Mo(2)-O(7)	1.725(3)	Mo(4)-O(8)	2.259(3)
Mo(2)-O(5)	1.932(2)	Mo(5)-O(4)	2.280(3)
Mo(2)-O(10)	1.972(2)	Mo(5)-O(15)	1.709(4)
Mo(2)-O(8)	2.1457(9)	Mo(5)-O(16)	1.748(4)
Mo(2)-O(6)	2.249(2)	Mo(5)-O(10)	1.907(3)
Mo(2)-Mo(5)	3.1851(4)	Mo(5)-O(10)#1	1.907(3)
Mo(3)-O(11)	1.715(4)	Mo(5)-O(8)	2.158(3)
Mo(3)-O(2)	1.919(3)	Mo(2)#1-O(8)	2.1457(9)
Mo(3)-O(4)	2.118(3)		

Bond angles			
O(1)-Mo(1)-O(3)	104.38(14)	O(11)-Mo(3)-O(12)	105.81(17)
O(1)-Mo(1)-O(5)	96.35(12)	O(11)-Mo(3)-O(2)#1	99.64(8)
O(3)-Mo(1)-O(5)	101.68(12)	O(12)-Mo(3)-O(2)#1	99.60(8)
O(1)-Mo(1)-O(2)	99.91(12)	O(11)-Mo(3)-O(2)	99.64(8)
O(3)-Mo(1)-O(2)	94.63(12)	O(12)-Mo(3)-O(2)	99.60(8)
O(5)-Mo(1)-O(2)	153.30(11)	O(2)#1-Mo(3)-O(2)	147.82(15)
O(1)-Mo(1)-O(4)	95.11(13)	Mo(2)#1-O(8)-Mo(2)	151.62(18)
O(3)-Mo(1)-O(4)	158.29(12)	Mo(2)#1-O(8)-Mo(5)	95.48(9)
O(5)-Mo(1)-O(4)	85.29(12)	Mo(2)#1-O(8)-Mo(4)	101.56(9)
O(2)-Mo(1)-O(4)	72.34(12)	Mo(2)-O(8)-Mo(4)	101.56(9)
O(1)-Mo(1)-O(6)	164.51(12)	Mo(5)-O(8)-Mo(4)	102.22(14)
O(3)-Mo(1)-O(6)	89.63(11)	Mo(5)-O(10)-Mo(2)	110.36(12)
O(5)-Mo(1)-O(6)	73.99(9)	Mo(4)-O(13)-Mo(3)	105.04(16)
O(2)-Mo(1)-O(6)	85.23(10)	O(2)-Mo(3)-O(13)	78.77(8)
O(4)-Mo(1)-O(6)	72.38(11)	O(4)-Mo(3)-O(13)	71.45(12)
O(1)-Mo(1)-Mo(3)	88.62(10)	O(11)-Mo(3)-Mo(1)#1	91.45(10)
O(3)-Mo(1)-Mo(3)	128.60(9)	O(12)-Mo(3)-Mo(1)#1	134.23(4)
O(5)-Mo(1)-Mo(3)	126.45(8)	O(2)#1-Mo(3)-Mo(1)#1	34.93(7)
O(2)-Mo(1)-Mo(3)	33.99(8)	O(2)-Mo(3)-Mo(1)#1	119.22(7)
O(4)-Mo(1)-Mo(3)	41.19(8)	O(4)-Mo(3)-Mo(1)#1	43.66(17)
O(6)-Mo(1)-Mo(3)	87.66(7)	O(2)-Mo(3)-O(13)	78.77(8)
O(9)-Mo(2)-O(7)	107.37(14)	O(13)-Mo(3)-Mo(1)#1	83.11(6)
O(9)-Mo(2)-O(5)	96.05(12)	O(11)-Mo(3)-Mo(1)	91.45(10)
O(7)-Mo(2)-O(5)	100.30(12)	O(12)-Mo(3)-Mo(1)	134.23(4)
O(9)-Mo(2)-O(10)	101.60(11)	O(2)#1-Mo(3)-Mo(1)	119.22(7)
O(7)-Mo(2)-O(10)	91.96(13)	O(2)-Mo(3)-Mo(1)	34.93(7)
O(5)-Mo(2)-O(10)	154.45(11)	O(4)-Mo(3)-Mo(1)	43.66(17)
O(9)-Mo(2)-O(8)	91.27(14)	O(13)-Mo(3)-Mo(1)	83.11(6)
Table S5. Geometric parameters of the N–H⋯O and O–H⋯O, hydrogen bonds length (Å) and (°) in the crystal structure of (NH₄)₃[Li₃(H₂O)₄(µ₆-Mo₇O₂₄)]·2H₂O.

D-H	d(D-H)	d(H⋯A)	<DHA	d(D⋯A)	A	Symmetry codes
N1-H1N1	0.840	2.049	178.60	2.889	O16	
N1-H2N1	0.840	2.361	134.82	3.012	O3 [-x+1/2, -y+1 , z-1/2]	
N1-H2N2	0.840	2.361	134.82	3.012	O3 [-x+1/2, y-1/2 , z-1/2]	
N1-H3N1	0.840	2.018	163.48	2.833	O5 [x-1/2 , -y+1/2 , -z+3/2]	
N2-H1N2	0.840	2.146	168.02	2.973	O9 [-x+1 , y-1/2 , -z+1]	
N2-H2N2	0.840	2.175	130.25	2.792	O10 [-x+1/2 , y-1/2 , z-1/2]	
N2-H3N1	0.840	2.292	141.54	2.995	O11 [x , y , z-1]	
N2-H3N2	0.840	2.362	123.42	2.910	O1 [x , -y+1/2 , z-1]	
N2-H4N2	0.840	2.182	148.31	2.930	O12 [x+1/2 , y , -z+3/2]	
O21-H21A	0.880	1.998	144.79	2.764	O2 [-x+1/2 , -y+1 , z-1/2]	
O21-H21B	0.880	2.470	121.86	3.028	O14 [x+1/2 , y , -z+3/2]	
O22-H22A	0.880	1.865	176.60	2.744	O1 [-x+1 , y+1/2 , -z+2]	
Figure S1. Calculated and experimental powder patterns of 1(top) & 2 (bottom).
Figure S2. Coordination sphere of \{\text{LiO}_4\} tetrahedra around Li1 and Li2 showing μ_2-bridging bidentate coordination of O34 resulting in a water bridged dinuclear cationic unit [Li$_2$(H$_2$O)$_7$]$^{2+}$ in 1.

Figure S3. The hydrogen bonding situation around ammonium cations ‘N1’ (left) and ‘N2’ (right) showing intramolecular and intermolecular N–H···O interactions (black dotted lines). Symmetry codes: iii) 3/2-x, 1/2+y, 3/2- iv) 1-x, 1-y, 1-z vi) -1/2+x, 3/2-y, 1/2+z vii) 1+x, y, z viii) 1-x, 1-y, 1-z.
Figure S4. A view along 'a' axis of the unit cell packing showing only heptamolybdate anions (top left), ammonium cations (top right), [Li$_2$(H$_2$O)$_7$]$^{2+}$ cationic unit (bottom left) and [Li$_2$(H$_2$O)$_7$][Mo$_7$O$_{24}$]$^{4-}$ unit (bottom right) in compound 1. Colour codes: Mo, maroon; Li, pink; O, red; N, blue; H, medium grey; heptamolybdate anions are shown as polyhedra.

Figure S5. The coordination sphere of Li1 (left) and Li2, Li3 (right) in compound 2. Symmetry codes: i) x, 1/2-y, z ii) x, 3/2-y, z iii) -1/2+x, 1/2-y, 3/2- z iv) 1/2-x, 1-y, -1/2+ z v) 1/2-x, -1/2+y, -1/2+z vi) -1/2+x, 3/2-y, 1/2+z.
Figure S6. The hydrogen bonding situation around Li1 (left) and Li2, Li3 (right) showing O–H···O interactions (black dotted lines). Symmetry codes: iii) -1/2+x, 1/2-y, 3/2-z iv) 1/2-x, 1-y, -1/2+z vi) 1/2-x, 1/2+y, 1/2+z xii) 1-x, -1/2+y, 2-z.

Figure S7. The hydrogen bonding situation around ammonium cations ‘N1’ (left) and ‘N2’ (right) shown by black dotted lines. Symmetry codes: iii) -1/2+x, 1/2-y, 3/2-z iv) 1/2-x, 1-y, -1/2+z v) 1/2-x, 1/2+y, 1/2+z vii) 1/2+x, y, 3/2-z ix) 1-x, 1/2+y, 1-z x) x, 1/2-y, -1+z xi) x, y, 1+z.
Figure S8. The binding modes of heptamolybdate in Cs₆[Mo₇O₂₄]·7H₂O (top), NaCs₃[Mo₇O₂₄]·5H₂O (bottom)
Figure S9. IR (top) and Raman spectra (bottom) of $(\text{NH}_4)_4[\text{Li}_3(\text{H}_2\text{O})_2][\text{Mo}_7\text{O}_{24}]\cdot\text{H}_2\text{O}$ (1), $(\text{NH}_4)_3[\text{Li}_4(\text{H}_2\text{O})_4(\mu_6-\text{Mo}_7\text{O}_{24})] \cdot 2\text{H}_2\text{O}$ (2) and $(\text{NH}_4)_6[\text{Mo}_7\text{O}_{24}] \cdot 4\text{H}_2\text{O}$ (3).
Figure S10. IR and Raman spectra of \((\text{NH}_4)_4[\text{Li}_2(\text{H}_2\text{O})_3(\text{Mo}_7\text{O}_{24})] \cdot \text{H}_2\text{O}\) 1 (top) and \((\text{NH}_4)_3[\text{Li}_3(\text{H}_2\text{O})_4(\mu_6-\text{Mo}_7\text{O}_{24})] \cdot 2\text{H}_2\text{O}\) 2 (bottom).
Figure S11. IR spectra of the residue obtained after heating $(\text{NH}_4)_2[\text{Li}_2(\text{H}_2\text{O})_2][\text{Mo}_7\text{O}_{24}]\cdot\text{H}_2\text{O}$ (1), $(\text{NH}_4)_3[\text{Li}_3(\text{H}_2\text{O})_4(\mu_6-\text{Mo}_7\text{O}_{24})] \cdot 2\text{H}_2\text{O}$ (2) at 600 °C.

Figure S12. UV-Vis spectra of compound 1, 2 and $(\text{NH}_4)_6[\text{Mo}_7\text{O}_{24}]\cdot4\text{H}_2\text{O}$.
checkCIF/PLATON report (NH₄)₄[Li₂(H₂O)₇][Mo₇O₂₄]·H₂O

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: srini903

Bond precision:	Mo–O = 0.0030 Å	Wavelength=0.71073	
Cell:	a=10.5894(8)	b=15.8542(8)	c=18.7820(14)
	alpha=90	beta=101.473(9)	gamma=90
Temperature:	200 K		
Volume	Calculated	Reported	
	3090.2(4)	3090.2(4)	
Space group	P 21/n	P 21/n	
Hall group	-P 2yn	-P 2yn	
Moiety formula	N), 2(Li)	N), 2(Li)	
Sum formula	H₃₀ Li₂ Mo₇ N₄ O₃₂	H₃₂ Li₂ Mo₇ N₄ O₃₂	
Mr	1283.74	1285.76	
Dx,g cm⁻³	2.759	2.764	
Z	4	4	
Mu (mm⁻¹)	2.866	2.866	
F000	2456.0	2464.0	
F000'	2409.00		
h,k,lmax	13,20,24	13,20,24	
Nref	7442	7408	
Tmin,Tmax	0.696,0.818		
Tmin'	0.682		
Correction method= Not given			
Data completeness= 0.995	Theta(max)= 28.000		
R(reflections)= 0.0427(6720)	wR2(reflections)= 0.1143(7408)		
S = 1.059	Npar= 416		

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**.

Click on the hyperlinks for more details of the test.
Alert level B

PLAT430_ALERT_2_B Short Inter D...A Contact O11 .. O38 .. 2.74 Ang.
PLAT430_ALERT_2_B Short Inter D...A Contact O11 .. O38' .. 2.80 Ang.

Alert level C

PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ Please Check
PLAT043_ALERT_1_C Calculated and Reported Mol. Weight Differ by .. 2.02 Check
PLAT052_ALERT_1_C Info on Absorption Correction Method Not Given Please Do!
PLAT057_ALERT_3_C Correction for Absorption Required RT(exp) ... 1.18 Do!
PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... Please Check

Alert level G

FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format.
Atom count from _chemical_formula_sum: H32 Li2 Mo7 N4 O32
Atom count from _chemical_formula_moiety: H30 Li2 Mo7 N4 O32

FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site data. Atom count from _chemical_formula_sum: H32 Li2 Mo7 N4 O32
Atom count from the _atom_site data: H30 Li2 Mo7 N4 O32

CELLZ01_ALERT_1_G Difference between formula and atom site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional?
From the CIF: _cell_formula_units_Z 4
From the CIF: _chemical_formula_sum H32 Li2 Mo7 N4 O32
TEST: Compare cell contents of formula and atom site data

atom Z*formula cif sites diff
H 128.00 120.00 8.00
Li 8.00 8.00 0.00
Mo 28.00 28.00 0.00
N 16.00 16.00 0.00
O 128.00 128.00 0.00

PLAT005_ALERT_5_G No Embedded Refinement Details found in the CIF Please Do!
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 30 Report
PLAT093_ALERT_1_G No s.u.'s on H-positions, Refinement Reported as mixed Check
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Mo5 -- O14 .. 5.3 s.u.
PLAT300_ALERT_4_G Atom Site Occupancy of >O38 is Constrained at 0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of <O38' is Constrained at 0.25 Check
PLAT302_ALERT_4_G Anion/Solvent Disorder Percentage = 7 Note
PLAT304_ALERT_4_G Non-Integer Number of Atoms (0.75) in Resd. # 9 Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms (0.25) in Resd. # 14 Check
PLAT311_ALERT_2_G Isolated Disordered Oxygen Atom (No H's) O38 Check
PLAT311_ALERT_2_G Isolated Disordered Oxygen Atom (No H's) O38' Check
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 16 Note
PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note

0 ALERT level A = Most likely a serious problem - resolve or explain
2 ALERT level B = A potentially serious problem, consider carefully
5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
17 ALERT level G = General information/check it is not something unexpected

8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
6 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
7 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
checkCIF/PLATON report of \((\text{NH}_4)_3[\text{Li}_3(\text{H}_2\text{O})_4(\mu_6-\text{Mo}_7\text{O}_{24})]\cdot2\text{H}_2\text{O}\)

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: srini903

Bond precision: \(\text{Mo- O} = 0.0026 \text{ A}\) Wavelength=0.71073

Cell	Calculated	Reported
a=14.0745(10)	b=10.8681(6)	c=17.2459(11)
alpha=90	beta=90	gamma=90
Temperature: 200 K		

Volume	2638.0(3)	2638.0(3)
Space group	P n m a	P n m a
Hall group	-P 2ac 2n	-P 2ac 2n
Moiety formula	Mo7 O24, H4 O2, 4(H2 O), Mo7 O24, H4 O2, 4(H2	3(H4 N), 3(Li)
Sum formula	H24 Li3 Mo7 N3 O30	H24 Li3 Mo7 N3 O30
Mr	1238.62	1238.62
D, g cm-3	3.119	3.119
Z	4	4
Mu (mm-1)	3.344	3.344
F000	2352.0	2352.0
F000'	2304.92	
h,k,lmax	18,14,22	18,14,22
Nref	3352	3327
Tmin,Tmax	0.704,0.765	0.765
Tmin'	0.685	

Correction method= Not given

Data completeness= 0.993 Theta(max) = 28.000

R(reflections)= 0.0309(2944) wr2(reflections)= 0.0768(3327)

\(S = 1.067 \) Npar= 229

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.
Alert level A
PLAT417_ALERT_2_A Short Inter D-H..H-D H23A .. H24A .. 1.35 Ang.

Alert level B
PLAT213_ALERT_2_B Atom Mo4 has ADP max/min Ratio 4.2 oblate

Alert level C
PLAT052_ALERT_1_C Info on Absorption Correction Method Not Given Please Do!
PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) Range 3.1 Ratio
PLAT417_ALERT_2_C Short Inter D-H..H-D H21B .. H24A .. 2.14 Ang.

Alert level G
PLAT005_ALERT_5_G No Embedded Refinement Details found in the CIF Please Do!
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 13 Report
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check
PLAT093_ALERT_1_G No s.u.'s on H-positions, Refinement Reported as mixed Check
PLAT300_ALERT_4_G Atom Site Occupancy of >O24 is Constrained at 0.75 Check
PLAT300_ALERT_4_G Atom Site Occupancy of <O24' is Constrained at 0.25 Check
PLAT302_ALERT_4_G Anion/Solvent Disorder Percentage = 20 Note
PLAT304_ALERT_4_G Non-Integer Number of Atoms (0.50) in Resd. # 8 Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms (0.50) in Resd. # 9 Check
PLAT304_ALERT_4_G Non-Integer Number of Atoms (0.50) in Resd. # 10 Check
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 7 Note
PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL 2014 Note

1 ALERT level A = Most likely a serious problem - resolve or explain 1
2 ALERT level B = A potentially serious problem, consider carefully 2
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight 3
12 ALERT level G = General information/check it is not something unexpected 12

3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
4 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
8 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
