FAST TRACK COMMUNICATION

Exact quantization of a PT-symmetric (reversible) Liénard-type nonlinear oscillator

V Chithiika Ruby, M Senthilvelan and M Lakshmanan
Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620024, India
E-mail: velan@cnld.bdu.ac.in

Received 25 May 2012, in final form 13 August 2012
Published 5 September 2012
Online at stacks.iop.org/JPhysA/45/382002

Abstract
We carry out an exact quantization of a PT-symmetric (reversible) Liénard-type one-dimensional nonlinear oscillator both semiclassically and quantum mechanically. The associated time-independent classical Hamiltonian is of nonstandard type and is invariant under a combined coordinate reflection and time reversal transformation. We use the von Roos symmetric ordering procedure to write down the appropriate quantum Hamiltonian. While the quantum problem cannot be tackled in coordinate space, we show how the problem can be successfully solved in momentum space by solving the underlying Schrödinger equation therein. We explicitly obtain the eigenvalues and eigenfunctions (in momentum space) and deduce the remarkable result that the spectrum agrees exactly with that of the linear harmonic oscillator, which is also confirmed by a semiclassical modified Bohr–Sommerfeld quantization rule, while the eigenfunctions are completely different.

PACS numbers: 02.30.Hq, 03.65.Ge, 03.65.Sq

1. Introduction
In a previous paper [1], Chandrasekar and two of the present authors have presented a conservative description for the Liénard-type one-dimensional nonlinear oscillator, namely

\[\ddot{x} + k\dot{x} + \frac{k^2}{9} x^3 + \omega^2 x = 0, \]

where the overdot denotes differentiation with respect to \(t \), and \(k \) and \(\omega^2 \) are real parameters. Expressing (1) as a system of first-order equations, \(\dot{x} = y \equiv F_1(x, y) \), \(\dot{y} = -kxy - \frac{k^2}{9} x^3 - \omega^2 x \equiv F_2(x, y) \), one can note that the divergence of the flow function \(\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} \) of (1) is nonzero \(\nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} = -kx \). Also equation (1) is invariant under the PT or reversible
transformation, \(x \rightarrow -x \) and \(t \rightarrow -t \) [2]. In spite of these, the system (1) admits a time-independent Hamiltonian of the form

\[
H(x, p) = \frac{9\omega^4}{2k^2} \left[2 - \frac{2k}{3\omega^2} p - 2 \left(1 - \frac{2k}{3\omega^2} p \right)^\frac{3}{2} + \frac{k^2x^2}{9\omega^2} \left(1 - \frac{2k}{3\omega^2} p \right) \right], \quad -\infty < p \leq \frac{3\omega^2}{2k},
\]

which is of nonstandard type; that is the coordinates and potentials are mixed so that the Hamiltonian cannot be written just as the sum of the kinetic and potential energy terms alone, including velocity-dependent terms. The corresponding Lagrangian \(L \) is given by

\[
L = \frac{27\omega^6}{2k^2} \left(\frac{1}{kx + \frac{k^2}{3}x^2 + \omega^2} \right) + \frac{3\omega^2}{2k} - \frac{9\omega^4}{2k^2},
\]

and the conjugate momentum is

\[
p = \partial L / \partial \dot{x} = -\left(\frac{27\omega^6}{2k(kx + \frac{k^2}{3}x^2 + \omega^2)^2} \right) + \frac{3\omega^2}{2k}.
\]

We note here that the system (1) also admits an alternative Lagrangian/Hamiltonian (see for example [1]). However, we only consider the Hamiltonian given in the form (2) since as \(k \to 0 \) the Hamiltonian (2) reduces to the linear harmonic oscillator Hamiltonian, as equation (1) does. We mention here that the parameters \(k \) and \(\omega^2 \) can be rescaled with appropriate scaling in \(x \) and \(t \). However, to describe the physical properties of this system in the classical, semiclassical and quantum levels, we retain the parameters \(k \) and \(\omega^2 \) and do not scale them away. We also note here that the Hamiltonian (2) with the definition of \(p \) given by (4) is also invariant under the combined action of coordinate reflection and time reversal (PT), \(x \rightarrow -x \) and \(t \rightarrow -t \).

The nonlinear oscillator (2) admits a general periodic solution of the form

\[
x(t) = A \sin(\omega t + \delta) \left(1 - \frac{kA}{3\omega} \cos(\omega t + \delta) \right), \quad 0 \leq A < \frac{3\omega}{k},
\]

where \(A \) and \(\delta \) are arbitrary constants. Note that for \(0 \leq A < \frac{3\omega}{k} \) (while \(-\infty < x < \infty \)), the system (1) admits isochronous oscillations of frequency \(\omega \), which is the same as that of the linear harmonic oscillator. For \(A \geq \frac{3\omega}{k} \), the solution becomes singular whenever the phase \((\omega t + \delta) \) takes the value \(\cos^{-1} \left(\frac{2n\pi}{\omega} \right) + 2n\pi \), \(n \) : any integer, even though \(x(t) \) given by the function in (5) is periodic of period \(T = \frac{2\pi}{\omega} \), while the corresponding momentum \(p \) is bounded and periodic (see equation (7)). For more details on the classical dynamics of this system, one may refer to [1].

Exactly solvable quantum mechanical problems, particularly the ones involving nonlinear potentials, are rare, even in one dimension. The few examples include Pöschl–Teller, Morse, Scarf and isotonic oscillator potentials [3]. Also, there exist a few velocity-dependent potentials, for example the Mathews–Lakshmanan oscillator and its generalizations [4, 5]. The quantization of (1) is a challenging problem since the obstacles in this task are many. For example, the quantization of the damped linear harmonic oscillator itself is a quite complicated procedure requiring a rigged Hilbert space [6] description, whereas the system under consideration is a nonlinear one. In addition to this, the associated time-independent Hamiltonian is nonstandard [7]. To the authors’ knowledge there exists no nonstandard Hamiltonian system which is quantum mechanically exactly solvable. Such a system also...
cannot be quantized using the standard techniques of canonical quantization [8–10]. In this paper, we completely solve the quantum mechanical problem of the Liénard-type oscillator (1) possessing the nonstandard Hamiltonian structure (2), by associating it with a position-dependent mass Hamiltonian where the variables x and p are now interchanged. We then consider a general symmetric-ordered form of the Hamiltonian proposed by von Roos [11] and solve the underlying Schrödinger equation in the momentum space. Since allowable choices of symmetric ordering lead to a singular/unbounded solution, we transform the symmetric-ordered Hamiltonian suitably in such a way that the associated Schrödinger equation possesses acceptable eigenfunctions. It is worth noting that the transformed Hamiltonian is now a non-symmetric ordered one as well as non-Hermitian. But it admits a real energy spectrum since the Hamiltonian and the corresponding eigenfunctions are invariant under the action of PT operation when $-\infty < p < \frac{3\omega^2}{2k}$. Our results reveal that the eigenvalues of (2) exactly match with that of the linear harmonic oscillator, though the eigenfunctions are of a more complicated nature in the momentum space. The explicit form of the eigenfunctions is also presented. We also obtain the energy level spectrum through a semiclassical modified Bohr–SOMERFELD quantization rule for the regular periodic solution (5) which agrees with the quantum mechanical results. Additionally, we point out the existence of a negative energy spectrum in the quantum case corresponding to the sector $p > \frac{3\omega^2}{2k}$.

We also note here the interesting fact that while the standard PT-symmetric systems considered extensively in the recent literature [12–14] all correspond to PT-invariant complex potentials involving complex-valued dynamical variables, the present Hamiltonian system (2) is PT symmetric and real where the dynamical variables are also real. The motivation here is more of exact quantization of a nonlinear dynamical system. Consequently, the analysis of the corresponding quantum system in the momentum space discussed below will also be different in spirit from the modified normalization scheme of complexified PT-symmetric schemes [15].

2. Semiclassical quantization

To start with, let us consider the semiclassical aspects. To quantize the system semiclassically, we use the modified Bohr–SOMERFELD quantization rule [16], namely

$$\oint p \, dx = \left(n + \frac{1}{2} \right) h,$$

where h is Plank’s constant and n is any nonnegative integer, and the integration is carried out over a closed orbit in the (x, p) space.

Firstly, we determine the energy of the system $E = H$ using the general solution (5) in (2). Plugging the expression (5) into (4), we obtain

$$p = A\omega \cos(\omega t + \delta) \left(1 - \frac{kA^2}{6\omega} \cos(\omega t + \delta) \right).$$

Note that for regular (non-singular bounded) periodic oscillations in $x(t)$ given by equation (5), the amplitude is restricted to the range $0 \leq A < \frac{\omega}{2k}$, while the range of p is restricted to $-\frac{9\omega^2}{2k} < p < \frac{3\omega^2}{2k}$. As we mentioned earlier (below (5)) when $A \geq \frac{\omega}{2k}$, one has singular periodic solution and there is no lower bound on p. Substituting now the expressions (5) and (7) into (2), we find that the energy of the system turns out to be

$$E = \frac{1}{2}A^2\omega^2.$$ (8)

Now, to evaluate the integral (6), we use (7) for p, and express dx from (5) in the form

$$dx = \frac{\left(A \cos \phi - \frac{kA^2}{6\omega} \right)}{(1 - \frac{kA^2}{6\omega} \cos \phi)^2} \, d\phi, \quad \phi = \omega t + \delta,$$

$$\int p \, dx = \left(n + \frac{1}{2} \right) h,$$
so as to obtain the quantization condition for the regular periodic orbits,

$$ \omega A^2 \int_0^{2\pi} \left(\cos \phi - \frac{kA}{3\omega} \cos^2 \phi \right) \left(\cos \phi - \frac{kA}{3\omega} \right)^2 d\phi = \left(n + \frac{1}{2} \right) \hbar. $$

(Eq. 10)

Evaluating the above integral, we arrive at

$$ A^2 \omega = 2 \left(n + \frac{1}{2} \right) \hbar, \quad 0 \leq A < \frac{3\omega}{k}. $$

(Eq. 11)

Finally, from equations (8) and (11), we obtain the allowed energy eigenvalues with an appropriate upper bound N on n corresponding to the regular periodic orbits of (2) as

$$ E_n = \left(n + \frac{1}{2} \right) \omega, \quad n = 0, 1, 2, \ldots, N $$

(Eq. 12)

which agrees with that of the linear harmonic oscillator for this part of the spectrum. The semiclassical approach motivates us to prove that the energy of the nonlinear oscillator (2) can be quantized exactly as given in equation (12). In the following, we proceed to solve the time-independent Schrödinger equation associated with the system (2) analytically, not in the coordinate space but in the momentum space.

3. Quantum exact solvability

Next we observe that the classical Hamiltonian $H(x, p)$ given in (2) is of the nonstandard type, that is,

$$ H(x, p) = \frac{1}{2} f(p)x^2 + U(p), $$

(Eq. 13)

where

$$ f(p) = \omega^2 \left(1 - \frac{2k}{3\omega^2} p \right), \quad U(p) = \frac{9\omega^4 k^2}{2} \left(\sqrt{1 - \frac{2k}{3\omega^2} p} - 1 \right)^2. $$

(Eq. 14)

The $(x - p)$ phase space structure is shown schematically in figure 1. Note the deformed nature of the bounded periodic orbits around the origin and $-\frac{3\omega^2}{2k} < p < \frac{3\omega^2}{2k}$. The remaining trajectories only have an upper bound at $p = \frac{3\omega^2}{2k}$.

Note that in the limit $k \to 0$, $f(p) \to \omega^2$, $U(p) \to \frac{p^2}{2}$, so that

$$ H = \frac{p^2}{2} + \frac{\omega^2 x^2}{2} $$

(Eq. 15)

as it should be. Now the first term in the Liénard oscillator Hamiltonian (13) contains both the position and momentum variables, while the second term turns out to be a function of momentum alone. To quantize the Hamiltonian of this nature, one has to adopt a suitable ordering procedure. Since x and p are non-commuting variables in the quantum case, one may consider different ways of ordering between x and $f(p)$ in order to quantize this Hamiltonian. After performing a detailed analysis, we find that the nonstandard classical Hamiltonian given in (2) can also be equivalently considered in the form

$$ H(x, p) = \frac{x^2}{2 m(p)} + U(p), \quad -\infty < p \leq \frac{3\omega^2}{2k}, $$

(Eq. 16)

where

$$ m(p) = \frac{1}{\omega^2 \left(1 - \frac{2k}{3\omega^2} p \right)} \quad \text{and} \quad U(p) = \frac{9\omega^4 k^2}{2k^2} \left(\sqrt{1 - \frac{2k}{3\omega^2} p} - 1 \right)^2. $$

(Eq. 17)
Interestingly, this form is similar to a position-dependent mass Hamiltonian, \(H = \frac{p^2}{2m(x)} + V(x) \), discussed extensively recently \([11, 17–19]\) but with an important difference that the variables \(x \) and \(p \) are now interchanged. Once this fact is recognized, one can consider a general symmetric-ordered form of the quantum Hamiltonian proposed by von Roos in order to quantize the position- (but now actually momentum-) dependent mass Schrödinger equation \([11]\) as

\[H(\hat{x}, \hat{p}) = \frac{1}{4}[m^\alpha(\hat{p})\hat{x}m^\beta(\hat{p}) + m^\gamma(\hat{p})\hat{x}m^\delta(\hat{p})] + U(\hat{p}), \tag{18} \]

where the parameters \(\alpha, \beta \) and \(\gamma \) which remain to be fixed have to satisfy the condition \(\alpha + \beta + \gamma = -1 \). Obviously now in (18) \(\hat{x} \) and \(\hat{p} \) are linear Hermitian operators satisfying the commutation rule

\[[\hat{x}, \hat{p}] = i\hbar. \tag{19} \]

We note here that since the variables \(\hat{x} \) and \(\hat{p} \) are interchanged, we solve the Schrödinger equation corresponding to the Hamiltonian (18) in momentum space with \(\hat{x} = i\hbar \frac{\partial}{\partial p} \) and obtain the time-independent one-dimensional Schrödinger equation in the form

\[H(\hat{x}, \hat{p})\psi(x, p) = E\psi(x, p), \tag{20} \]

or

\[-\frac{\hbar^2}{2m} \left[\psi'' - \frac{m}{m'} \psi' + \left(1 + \frac{\beta}{2} \right) \left(\frac{m^2}{m''} - \frac{m'}{m} \right) \psi + \frac{\alpha(\alpha + \beta + 1)m^2}{m^2} \psi \right] + U(p)\psi = E\psi, \tag{21} \]

where the prime stands for differentiation with respect to \(p \). Since we are looking for bound states (even when \(U(p) \) becomes complex for \(p > \frac{3\omega^2}{2k} \)), we can choose

\[\psi = 0, \quad \text{for} \quad p \geq \frac{3\omega^2}{2k}. \tag{22} \]
and concentrate on the region $-\infty < p \leq \frac{3\omega^2}{2k}$ alone in this section. We will also impose the boundary conditions

$$\psi(-\infty) = \psi\left(\frac{3\omega^2}{2k}\right) = 0$$

(23)
on the eigenfunctions for continuity and boundedness.

Substituting now the expression for $m(p)$ from (17) and its derivatives into equation (21) and simplifying the resultant expression, we arrive at

$$\psi' - \frac{2k}{3\omega^2 (1 - \frac{2k}{3\omega^2} p)} \psi' + \frac{4k^2 \alpha(\alpha + \beta + 1)}{9\omega^4 (1 - \frac{2k}{3\omega^2} p) \psi} - \frac{2E k^2 - 9\omega^4 (\sqrt{1 - \frac{2k}{3\omega^2} p} - 1)^2}{\hbar^2 \omega^2 k^2 (1 - \frac{2k}{3\omega^2} p)} \psi = 0, \quad -\infty < p \leq \frac{3\omega^2}{2k}.$$

(24)

Equation (24) can be further simplified by introducing a transformation $y^2 = (1 - \frac{2k}{3\omega^2} p)$ or $y = \sqrt{1 - \frac{2k}{3\omega^2} p}$. Since $-\infty < p \leq \frac{3\omega^2}{2k}$, we have $0 \leq y < \infty$. The resulting simplification of (24) yields

$$\frac{d^2 \psi}{dy^2} + \frac{1}{y} \frac{d \psi}{dy} + \left(\tilde{E} + \frac{4\alpha(\alpha + \beta + 1)}{y^2} - a(y - 1)^2\right) \psi = 0, \quad 0 \leq y < \infty,$$

(25)

where we have defined $\frac{3\omega^2}{2k} E = \tilde{E}$, and $\frac{3\omega^2}{2k} = a$.

In order to solve (25) subject to the boundary conditions corresponding to (23), namely $\psi(-\infty) = \psi(0) = 0$, we first note the admissible asymptotic behaviour, $\psi(y) \to e^{-\frac{2k}{3\omega^2} y + \sqrt{3\omega^2}} \phi(y)$ as $y \to \infty$. So we introduce another transformation, namely

$$\psi(y) = e^{-\frac{2k}{3\omega^2} y + \sqrt{3\omega^2}} \phi(y)$$

(26)
in (25) so that it can be rewritten as

$$\frac{d^2 \phi}{dy^2} + \left(2\sqrt{a} - 2\sqrt{a} y + \frac{1}{y}\right) \frac{d \phi}{dy} + \left(\frac{4\alpha(\alpha + \beta + 1)}{y^2} + \sqrt{a} + \tilde{E} - 2\sqrt{a}\right) \phi = 0.$$

(27)

Equation (27) can now be transformed to the Hermite differential equation under the change of variables

$$\phi(y) = y^{-1/2} \chi(z), \quad z = a^{1/4}(y - 1),$$

(28)

with the condition $4\alpha(\alpha + \beta + 1) = -\frac{1}{2}$. The transformed equation turns out to be of the form

$$\frac{d^2 \chi}{dz^2} - 2z \frac{d \chi}{dz} + \left(\tilde{E} - \sqrt{a}\right) \chi = 0.$$

(29)

With the restriction of the constant $\frac{E - \sqrt{a}}{\hbar^2} = 2n, n = 0, 1, 2, \ldots$, equation (29) becomes the standard differential equation for the Hermite polynomials,

$$\frac{d^2 \chi}{dz^2} - 2z \frac{d \chi}{dz} + 2n \chi = 0, \quad n = 0, 1, 2, \ldots,$$

(30)
where $\chi = H_{d}(z)$, which are nothing but the Hermite polynomials [20]. Then the eigenfunctions and eigenvalues can be readily written down as

$$\psi_{n}(p) = N_{n} \exp\left(-\frac{m\omega^{2}}{2}\left(1 - \frac{2k}{3\omega^{2}}p - 2\sqrt{1 - \frac{2k}{3\omega^{2}}p}\right)\right) \times H_{n}\left[\frac{3m\omega^{3/2}}{\sqrt{h}k}\left(\sqrt{1 - \frac{2k}{3\omega^{2}}p} - 1\right)\right], \quad -\infty < p \leq \frac{3m\omega^{2}}{2k}, \quad (31)$$

and

$$E_{n} = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n = 0, 1, 2, \ldots \quad (32)$$

Here N_{n} are constants.

Note that the above eigenfunction is singular at the boundary $p = \frac{3m\omega^{2}}{2k}$ due to the denominator term on the right-hand side of equation (31) and so the eigenfunction becomes unbounded. To avoid this singularity in the eigenfunction, we modify the starting Hamiltonian, $H(\hat{x}, \hat{p})$, suitably and solve the associated Schrödinger equation. For this purpose we can rewrite the time-independent Schrödinger equation $H\psi = E\psi$ as

$$H(m^{-d}\Phi) = E(m^{-d}\Phi), \quad (34)$$

so that we have

$$\tilde{H}\Phi = (m^{d}Hm^{-d})\Phi = E\Phi \quad \text{and} \quad \Phi = m^{d}\psi, \quad m(p) = \frac{1}{\omega^{2}\left(1 - \frac{2k}{3\omega^{2}}p\right)}. \quad (35)$$

With the choice $d = -\frac{1}{4}$, one can have bounded, continuous and single-valued wavefunction for the Hamiltonian \tilde{H}.

As a simple choice we consider a specific set of the values of the ordering parameters $\alpha = \gamma = -\frac{1}{4}$ and $\beta = -\frac{1}{4}$ that satisfy the conditions $\alpha + \beta + \gamma = -1$ and $4\alpha(\alpha + \beta + 1) = -\frac{1}{4}$ so that $d = -\frac{1}{4}$. Hence the Hamiltonian $H(\hat{x}, \hat{p})$ in (18) becomes

$$H(\hat{x}, \hat{p}) = \frac{1}{2}[m^{-1/4}(\hat{p})\hat{x}m^{-1/2}(\hat{p})\hat{x}m^{-1/4}(\hat{p})] + U(\hat{p}), \quad (36)$$

which admits the solution as given in (31). Now we transform the Hamiltonian, given in (36), to the form

$$\tilde{H} = \frac{1}{\sqrt{m}}H\sqrt{m} = \frac{1}{2}[m^{-3/4}(\hat{p})\hat{x}m^{-1/2}(\hat{p})\hat{x}m^{1/4}(\hat{p})] + U(\hat{p}), \quad (37)$$

$$= -\frac{\hbar^{2}}{2\omega^{2}} \left(1 - \frac{2k}{3\omega^{2}}p\right) \left[\frac{d^{2}}{dp^{2}} + \frac{k^{2}}{12\omega^{4}} \frac{1}{\left(1 - \frac{2k}{3\omega^{2}}p\right)^{2}}\right] + \frac{9\omega^{4}}{2k^{2}} \left(\sqrt{1 - \frac{2k}{3\omega^{2}}p} - 1\right)^{2}. \quad (38)$$

This Hamiltonian (38) is invariant under PT symmetry [2] though it is non-symmetric and non-Hermitian. The Schrödinger equation corresponding to the Hamiltonian, $\tilde{H}(x, p)$ is

$$-\frac{\hbar^{2}a^{2}}{2} \left(1 - \frac{2k}{3\omega^{2}}p\right)\Phi'' + \frac{h^{2}k^{2}}{24\omega^{2}} \left(1 - \frac{2k}{3\omega^{2}}p\right)\Phi + \frac{9\omega^{4}}{2k^{2}} \left(\sqrt{1 - \frac{2k}{3\omega^{2}}p} - 1\right)^{2} \Phi = E\Phi, \quad \big(\frac{d}{dp}\big). \quad (39)$$
Equation (39) is now solved again by following the above procedure. The resulting bound state solutions turns out to be

$$\Phi_n(p) = \begin{cases} \hat{N}_n \left(1 - \frac{2k}{\omega p}\right)^{1/4} \exp \left(-\frac{9\omega^2}{2k^2} \left(1 - \frac{2k}{\omega p} - 2\sqrt{1 - \frac{2k}{\omega p}}\right)\right) \\ \times H_n \left[\frac{3\omega}{\sqrt{2k}} \left(\sqrt{1 - \frac{2k}{\omega p}} - 1\right)\right], \\ 0, \quad p \geq \frac{3\omega^2}{2k}, \end{cases} \quad (40)$$

and the corresponding energy eigenvalues continue to be

$$E_n = \left(n + \frac{1}{2}\right) \hbar \omega, \quad n = 0, 1, 2, \ldots \quad (41)$$

One can observe that the solution (40) is continuous, single valued and bounded in the entire region $-\infty < p < \infty$ and satisfy the boundary conditions $\Phi(\infty) = \Phi(3k/2\omega^2) = \Phi(-\infty) = 0$. Since the eigenfunctions $\Phi_n(p)$ are bounded and continuous in the region $-\infty < p \leq \frac{3\omega^2}{2k}$ and are zero outside this region, they are also normalizable. The normalization constants \hat{N}_n can be found using the integration

$$\int_{-\infty}^{\frac{3\omega^2}{2k}} \Phi_n^*(p) \Phi_n(p) \, dp = 1. \quad (42)$$

This can be evaluated as

$$\int_{-\infty}^{0} \Phi_n^*(p) \Phi_n(p) \, dp + \int_{0}^{\frac{3\omega^2}{2k}} \Phi_n^*(p) \Phi_n(p) \, dp = 1. \quad (43)$$

On evaluating, (43) becomes

$$\hat{N}_n^2 \sqrt{\hbar \omega} e^{\left(\frac{9\omega^2}{2k}\right)} \left(2^{n-1} \sqrt{n!} \left[1 + \frac{9\omega^3}{k^2 \hbar}\right] + g(a)\right) = 1, \quad (44)$$

where

$$g(a) = \int_{0}^{\frac{3\omega^2}{2k}} \Phi_n^*(p) \Phi_n(p) \, dp. \quad (45)$$

Hence the normalization constant is

$$\hat{N}_n = \left(\frac{e^{\left(\frac{9\omega^2}{2k}\right)}}{\sqrt{\hbar \omega} \left(2^{n-1} \sqrt{n!} \left[1 + \frac{9\omega^3}{k^2 \hbar}\right] + g(a)\right)}\right)^{1/2}. \quad (46)$$

We further note that in the limit $k \to 0$, equation (40) reduces to

$$\Phi_n(p) = \left(-\frac{1}{2\sqrt{\pi n!}}\right)^{1/2} \exp \left(-\frac{1}{2\hbar \omega p^2}\right) H_n \left[\frac{1}{\sqrt{\hbar \omega}} p\right], \quad -\infty < p < \infty, \quad (47)$$

which matches with the bound state solution of the harmonic oscillator in accordance with its classical counterpart (vide (15)).

Finally, one can also note that one can choose many possible non-symmetric Hamiltonians \hat{H} in (37) for a suitable choice of the set of parameters α, β, γ and d, all of which lead to the same eigenvalue spectrum but different sets of eigenfunctions.

4. The $p > \frac{3\omega^2}{2k}$ sector: broken symmetry

In addition to the above solutions, we can also identify a different set of solutions which is nonzero only in the regime $p > \frac{3\omega^2}{2k}$ with a different set of boundary conditions than (23). To realize this, we consider solutions with $\Phi = 0$, $-\infty < p \leq \frac{3\omega^2}{2k}$, and look for acceptable solutions in the region $\frac{3\omega^2}{2k} < p \leq \infty$, either bound states with the boundary condition
\[\Phi \left(\frac{3 \omega^2}{2k} \right) = 0 = \Phi(\infty) \] or continuum states or both. We also note that in the case of the classical nonlinear oscillator (1) with the Hamiltonian (2), there exists no real solution for \(p > \frac{3 \omega^2}{2k} \) due to the form of the conjugate momentum (4).

For the above purpose, we consider the Schrödinger equation (39) corresponding to the Hamiltonian (38), under the transformation \(\tilde{y} = \sqrt{\frac{2k}{3 \omega^2}} p - 1 \), as

\[
\frac{d^2 \Phi}{d \tilde{y}^2} - \frac{1}{\tilde{y}} \frac{d \Phi}{d \tilde{y}} + \left(-\tilde{E} + \frac{3}{4 \sqrt{\tilde{y}^2}} + a(\tilde{y} - 1)^2 \right) \Phi = 0, \quad 0 \leq \tilde{y} < \infty, \tag{48}
\]

where again we have defined \(\frac{18 \omega^2}{\hbar^2} E = \tilde{E}, \) and \(\frac{3 \omega^6}{\hbar^2} = a. \) Under the transformation \(\Phi(\tilde{y}) = \sqrt{\pi} e^{-\frac{\tilde{y}^2}{2}} \chi(z) \) with \(z = a^{1/4}(\tilde{y} + i) \), we obtain

\[
\frac{d^2 \chi(z)}{dz^2} - 2z \frac{d \chi(z)}{dz} - \frac{\tilde{E} + \sqrt{a}}{\sqrt{a}} \chi(z) = 0, \tag{49}
\]

so that the bounded solution (as \(|z| \to \infty \) or \(\tilde{y} \to \infty \)) can now be expressed (compared to (29)) as

\[
\chi(z) = \hat{H}_n(z), \quad \tilde{E} = \frac{18 \omega^2}{\hbar^2} E = -(2n + 1) \sqrt{a}, \quad n = 0, 1, 2, \ldots \tag{50}
\]

Thus the second set of solutions to the Schrödinger equation (39) can be written as

\[
\Phi_n(p) = \begin{cases}
\sqrt{N_n} \left(\frac{2k}{3 \omega^2} p - 1 \right)^{1/4} \exp \left(-\frac{9 \omega^3}{2 \hbar k} \left(\frac{2k}{3 \omega^2} p - 1 + i \frac{2k}{\sqrt{3 \omega^2}} \right) \right) \\
\times \hat{H}_n \left(\frac{3 \omega^3/2}{\sqrt{\hbar k}} \left(\sqrt{\frac{2k}{3 \omega^2}} p - 1 + i \right) \right), \quad p > \frac{3 \omega^2}{2k}, \\
0, \quad -\infty < p < \frac{3 \omega^2}{2k},
\end{cases} \tag{51}
\]

with energy eigenvalues without a lower bound

\[
E_n = -\left(n + \frac{1}{2} \right) \hbar \omega, \quad n = 0, 1, 2, 3, \ldots \tag{52}
\]

In (51) \(N_n \) is the normalization constant. Note that the eigenfunctions (51) are no longer PT symmetric, even though the Hamiltonian (38) is PT symmetric, leading to a negative energy spectrum that is unbounded below. Such a broken symmetry is obviously a consequence of the imposition of a different set of boundary conditions for the sector \(p > \frac{3 \omega^2}{2k} \) than (23), which is reminiscent of the situation in the case of the linear harmonic oscillator [12, 21] and the \(H = \hat{p}^2 - \hat{x}^4 \) oscillator [12].

5. Conclusion

We have shown that the non-Hermitian Hamiltonian \(\hat{H}(\hat{x}, \hat{p}) \) given by (37) admits the bound state solutions, \(\Phi_n(p) \) and real energy eigenspectrum, \(E_n \). The energy eigenvalues \(E_n \) also match with the energy values obtained through a semiclassical approach corresponding to regular periodic orbits. It is interesting to observe that the quantum system (36) possesses the energy eigenvalues \(E_n \), which are same as that of the linear harmonic oscillator, though the eigenfunctions are quite different from that of the linear harmonic oscillator. Our analysis shows that the underlying Liénard-type PT-invariant reversible nonlinear oscillator is exactly quantizable and leads to an interesting class of eigenfunctions and an energy spectrum. It is also possible to generalize the above results to more general class of Liénard-type nonlinear oscillators [22] and coupled nonlinear oscillators [23], which will be taken up elsewhere.
Acknowledgments

VCR wishes to thank the Council of Scientific and Industrial Research, Government of India, for providing a senior research fellowship. The work forms a part of a research project of MS, and an IRHPA project and a Ramanna Fellowship project of ML, sponsored by the Department of Science and Technology (DST), Government of India. ML also acknowledges the financial support under a DAE Raja Ramanna Fellowship.

References

[1] Chandrasekar V K, Senthilvelan M and Lakshmanan M 2005 Phys. Rev. E 72 066203
[2] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
 Fring A 2007 Acta Polytech. 47 44
[3] Belch 6 and Walton M A 2010 The Morse potential and phase-space quantum mechanics arXiv:1001.4816v1
 Zhu D 1987 J. Phys. A: Math. Gen. 20 4331
[4] Mathews P M and Lakshmanan M 1975 Nuovo Cimento A 26 299
 Mathews P M and Lakshmanan M 1974 Q. Appl. Math. 32 215
 Midya B and Roy B 2009 J. Phys. A: Math. Theor. 42 285301
[5] Lakshmanan M and Esvaran K 1975 J. Phys. A: Math. Gen. 8 1658
 Higgs P W 1979 J. Phys. A: Math. Gen. 12 309
[6] Chandrasekar V K, Senthilvelan M and Lakshmanan M 2007 J. Math. Phys. 48 032701
[7] Gladwin Pradeep R, Chandrasekar V K, Senthilvelan M and Lakshmanan M 2009 J. Math. Phys. 50 052901
[8] Dekker H 1977 Phys. Rev. A 16 2126
[9] Gzyl H 1983 Phys. Rev. A 27 2297
[10] Razavy M 2005 Classical and Quantum Dissipative Systems (London: Imperial College Press)
[11] van Roos O 1983 Phys. Rev. B 27 7547
 von Roos O and Mavromatis H 1985 Phys. Rev. B 31 2294
[12] Bender C M and Hook D W 2011 J. Phys. A: Math. Theor. 44 372001
 Bender C M 2007 Rep. Prog. Phys. 70 947
[13] Mostafazadeh A 2010 Int. J. Geom. Meth. Mod. Phys. 7 1191
[14] Langer H and Tretter C 2004 Czech. J. Phys. 54 1113
 Cavaglia A, Fring A and Bagchi B 2011 J. Phys. A: Math. Theor. 44 325201
[15] Bagchi B, Quesne C and Znojil M 2001 Mod. Phys. Lett. A 16 2047
[16] Marinov M S and Popov V S 1975 J. Phys. A: Math. Gen. 8 1575
[17] Bastard G 1992 Wave Mechanics Applied to Semiconductor Heterostructures (Les Ulis: Les Editions de Physique)
[18] Gönül B, Ozer O, Gönül B and Uzgu¨un F 2002 Mod. Phys. Lett. A 17 2453
[19] Koc R and Koca M 2003 J. Phys. A: Math. Gen. 36 8105
 Ju G-X, Cai C-Y and Ren Z-Z 2009 Commun. Theor. Phys. 51 797
[20] Brychkov Y A 2008 Handbook of Special Functions: Derivatives, Integral Series and Other Formulas (Boca Raton, FL: Chapman and Hall/CRC)
[21] Bender C M, Hook D W and Klevansky S P 2012 Negative-energy PT-symmetric Hamiltonians arXiv:1203.6590
[22] Gladwin Pradeep R, Chandrasekar V K, Senthilvelan M and Lakshmanan M 2010 J. Math. Phys. 51 033519
[23] Chandrasekar V K, Senthilvelan M and Lakshmanan M 2005 Proc. R. Soc. A 461 2451
 Gladwin Pradeep R, Chandrasekar V K, Senthilvelan M and Lakshmanan M 2009 J. Phys. A: Math. Theor. 42 135206