Bicovariant Quantum Algebras and Quantum Lie Algebras

Peter Schupp, Paul Watts and Bruno Zumino

Department of Physics
University of California
and
Theoretical Physics Group
Physics Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

Abstract

A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from \(\text{Fun}(\mathfrak{g}_q) \) to \(U_q\mathfrak{g} \), given by elements of the pure braid group. These operators — the ‘reflection matrix’ \(Y \equiv L^+SL^- \) being a special case — generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for \(Y \) in \(SO_q(N) \).

*This work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098 and in part by the National Science Foundation under grant PHY90-21139.
Disclaimer

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof of The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
Contents

1 Introduction 2
 1.1 Quasitriangular Hopf Algebras 3
 1.2 Dual Quantum Groups 5

2 Quantized Algebra of Differential Operators 7
 2.1 Actions and Coactions 8
 2.2 Commutation Relations 10
 2.3 Bicovariant Calculus 12
 2.4 Invariant Maps and the Pure Braid Group 15

3 R - Gymnastics 19
 3.1 Higher Representations and the \(\bullet \)-Product 20
 3.2 Multiple \(\bullet \)-Products 21
 3.3 Quantum Determinants 22
 3.4 An Orthogonality Relation for \(Y \) 25
 3.5 About the Coproduct of \(Y \) 26

4 Quantum Lie Algebras 27
 4.1 Bicovariant generators for \(e_q(2) \) 32

5 Conclusion 34
1 Introduction

In the classical theory of Lie algebras we start the construction of a bicovariant calculus by introducing a matrix $\Omega = A^{-1}dA \in \Gamma$ of one-forms that is invariant under left transformations,

$$A \rightarrow A'A : \ d \rightarrow d, \ \Omega \rightarrow \Omega,$$

and covariant under right transformations,

$$A \rightarrow AA' : \ d \rightarrow d, \ \Omega \rightarrow A'^{-1}\Omega A'.$$

The dual basis to the entries of this matrix Ω form a matrix X of vector fields with the same transformation properties as Ω:

$$\langle \Omega^i_j, X^k_l \rangle = \delta^i_l \delta^k_j \quad (\text{classical}).$$

We find,

$$X = (A^T \frac{\partial}{\partial A})^T \quad (\text{classical}).$$

Woronowicz [1] was able to extend the definition of a bicovariant calculus to quantum groups. His approach via differential forms has the advantage that coactions (transformations) $\Delta : \Gamma \rightarrow \mathcal{A} \otimes \Gamma$ and $\Delta \mathcal{A} : \Gamma \rightarrow \Gamma \otimes \mathcal{A}$ can be introduced very easily through,

$$\Delta \mathcal{A}(da) = (\text{id} \otimes d)\Delta a, \quad (5)$$

$$\Delta \mathcal{A}(da) = (d \otimes \text{id})\Delta a, \quad (6)$$

where \mathcal{A} is the Hopf algebra of ‘functions on the quantum group’, $a \in \mathcal{A}$ and Δ is the coproduct in \mathcal{A}. Equations (5,6) rely on the existence of an invariant map $d : \mathcal{A} \rightarrow \Gamma$ provided by the exterior derivative. A construction of the bicovariant calculus starting directly from the vector fields is much harder because simple formulae like (5,6) do not seem to exist. We will show that in the case of a quasitriangular Hopf algebra \mathcal{A} invariant maps from
A to the quantized algebra of differential operators \(\mathfrak{A} \times \mathfrak{A} \) can arise from elements of the pure braid group on two strands. Using these maps we will then construct differential operators with simple transformation properties and in particular a bicovariant matrix of vector fields corresponding to (4).

Before proceeding we would like to recall some useful facts about quasi-triangular Hopf algebras and quantum groups. A thorough introduction to these topics and additional references can be found in [2].

1.1 Quasitriangular Hopf Algebras

A Hopf algebra \(\mathfrak{A} \) is an algebra \((\mathfrak{A}, \cdot, +, k)\) over a field \(k\), equipped with a coproduct \(\Delta : \mathfrak{A} \to \mathfrak{A} \otimes \mathfrak{A} \), an antipode \(S : \mathfrak{A} \to \mathfrak{A} \), and a counit \(\epsilon : \mathfrak{A} \to k \), satisfying

\[
(\Delta \otimes \text{id})\Delta(a) = (\text{id} \otimes \Delta)\Delta(a), \quad \text{(coassociativity),} \tag{7}
\]

\[
\cdot(\epsilon \otimes \text{id})\Delta(a) = \cdot(\text{id} \otimes \epsilon)\Delta(a) = a, \quad \text{(counit),} \tag{8}
\]

\[
\cdot(S \otimes \text{id})\Delta(a) = \cdot(\text{id} \otimes S)\Delta(a) = 1\epsilon(a), \quad \text{(coinverse),} \tag{9}
\]

for all \(a \in \mathfrak{A} \). These axioms are dual to the axioms of an algebra. There are also a number of consistency conditions between the algebra and the coalgebra structure,

\[
\Delta(ab) = \Delta(a)\Delta(b), \tag{10}
\]

\[
\epsilon(ab) = \epsilon(a)\epsilon(b), \tag{11}
\]

\[
S(ab) = S(b)S(a), \quad \text{(antihomomorphism),} \tag{12}
\]

\[
\Delta(S(a)) = \tau(S \otimes S)\Delta(a), \quad \text{with} \quad \tau(a \otimes b) \equiv b \otimes a, \tag{13}
\]

\[
\epsilon(S(a)) = \epsilon(a), \quad \text{and} \tag{14}
\]

\[
\Delta(1) = 1 \otimes 1, \quad S(1) = 1, \quad \epsilon(1) = 1_k, \tag{15}
\]

for all \(a, b \in \mathfrak{A} \). We will often use Sweedler’s \([3]\) notation for the coproduct:

\[
\Delta(a) \equiv a_{(1)} \otimes a_{(2)} \quad \text{(summation is understood).} \tag{16}
\]
Note that a Hopf algebra is in general non-cocommutative, i.e. $\tau \circ \Delta \neq \Delta$.

A quasitriangular Hopf algebra U is a Hopf algebra with a universal $R \in U \hat{\otimes} U$ that keeps the non-cocommutativity under control,

$$\tau(\Delta(a)) = R\Delta(a)R^{-1}, \quad (17)$$

and satisfies,

$$(\Delta \otimes \text{id})R = R^{13}R^{23}, \quad \text{and} \quad (18)$$

$$(\text{id} \otimes \Delta)R = R^{13}R^{12}, \quad (19)$$

where upper indices denote the position of the components of R in the tensor product algebra $U \hat{\otimes} U \hat{\otimes} U$; if $R \equiv \alpha_i \otimes \beta_i$ (summation is understood), then e.g. $R^{13} \equiv \alpha_i \otimes 1 \otimes \beta_i$. Equation (19) states that R generates an algebra map $\langle R, \cdot \otimes \text{id} \rangle: U^* \to U$ and an antialgebra map $\langle R, \text{id} \otimes \cdot \rangle: U \to U^*$.\‡ The following equalities are consequences of the axioms:

$$R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12}, \quad \text{(quantum Yang-Baxter equation)}, \quad (20)$$

$$(S \otimes \text{id})R = R^{-1}, \quad (21)$$

$$(\text{id} \otimes S)R^{-1} = R, \quad \text{and} \quad (22)$$

$$(\epsilon \otimes \text{id})R = (\text{id} \otimes \epsilon)R = 1. \quad (23)$$

An example of a quasitriangular Hopf algebra that is of particular interest here is the deformed universal enveloping algebra $U_q g$ of a Lie algebra g. Dual to $U_q g$ is the Hopf algebra of “functions on the quantum group” $\text{Fun}(\mathfrak{g}_q)$; in fact, $U_q g$ and $\text{Fun}(\mathfrak{g}_q)$ are dually paired. We call two Hopf algebras U and A dually paired if there exists a non-degenerate inner product $\langle , \rangle: U \otimes A \to k$, such that:

$$\langle xy, a \rangle = \langle x \otimes y, \Delta(a) \rangle = \langle x, a_{(1)} \rangle \langle y, a_{(2)} \rangle, \quad (24)$$

\‡Notation: “.” denotes an argument to be inserted and “\text{id}” is the identity map, e.g. $\langle R, \text{id} \otimes f \rangle \equiv \alpha_i \langle \beta_i, f \rangle$; $R \equiv \alpha_i \otimes \beta_i \in U \hat{\otimes} U$, $f \in U^*$.\4
\[
<br, ab> = <\Delta(x), a \otimes b> \equiv <x_{(1)}, a><x_{(2)}, b>, \quad (25)
\]
\[
<br, S(a)> = <x, S(a)>, \quad (26)
\]
\[
<br, 1> = \epsilon(x), \quad \text{and} \quad <1, a> = \epsilon(a), \quad (27)
\]
for all \(x, y \in \mathfrak{U}\) and \(a, b \in \mathfrak{A}\). In the following we will assume that \(\mathfrak{U}\) (quasitriangular) and \(\mathfrak{A}\) are dually paired Hopf algebras, always keeping \(U_q\mathfrak{g}\) and \(\text{Fun}(\mathfrak{G}_q)\) as concrete realizations in mind.

In the next subsection we will sketch how to obtain \(\text{Fun}(\mathfrak{G}_q)\) as a matrix representation of \(U_q\mathfrak{g}\).

1.2 Dual Quantum Groups

We cannot speak about a quantum group \(\mathfrak{G}_q\) directly, just as “phase space” loses its meaning in quantum mechanics, but in the spirit of geometry on non-commuting spaces the (deformed) functions on the quantum group \(\text{Fun}(\mathfrak{G}_q)\) still make sense. This can be made concrete, if we write \(\text{Fun}(\mathfrak{G}_q)\) as a pseudo matrix group \(\mathbb{E}\), generated by the elements of an \(N \times N\) matrix \(A \equiv (A^i_j)_{i,j=1..N} \in M_N(\text{Fun}(\mathfrak{G}_q))\). We require that \(\rho_{i,j} \equiv <., A^i_j>\) be a matrix representation of \(U_q\mathfrak{g}\), i.e.

\[
\rho_{i,j} : U_q\mathfrak{g} \rightarrow k, \quad \rho_{i,j}(xy) = \sum_k \rho_{k}(x)\rho^k_{j}(y), \quad \text{for } \forall x, y \in U_q\mathfrak{g}, \quad (28)
\]

just like in the classical case\(\mathbb{F}\). The universal \(\mathcal{R} \in U_q\mathfrak{g} \hat{\otimes} U_q\mathfrak{g}\) coincides in this representation with the numerical \(R\)-matrix:

\[
<br, A^i_k \otimes A^j_l> = R^{ij}_{kl}. \quad (29)
\]

\(^5\)We are automatically dealing with \(GL_q(N)\) unless there are explicit or implicit restrictions on the matrix elements of \(A\).

\(^\dagger\)The quintessence of this construction is that the coalgebra of \(\text{Fun}(\mathfrak{G}_q)\) is undeformed i.e. we keep the familiar matrix group expressions of the classical theory.
It immediately follows from (24) and (28) that the coproduct of A is given by matrix multiplication \[5, 6\],

$$\Delta A = A \hat{\otimes} A,$$

i.e. $\Delta(A^i_j) = A^i_k \otimes A^k_j$. \hspace{1cm} (30)

Equations (17), (25), and (28) imply \[4, 6\],

$$< x, A^j_s A^i_r > = < \Delta x, A^j_s \otimes A^i_r >$$
$$= < \tau \circ \Delta x, A^i_r \otimes A^j_s >$$
$$= < \mathcal{R}(\Delta x) \mathcal{R}^{-1}, A^i_r \otimes A^j_s >$$
$$= R^{ijl}_{klm} < \Delta x, A^k_m \otimes A^l_n > (\mathcal{R}^{-1})^m_n r_s$$
$$= < x, R^{ijl}_{klm} A^k_m A^l_n (\mathcal{R}^{-1})^m_n r_s >,$$

i.e. the matrix elements of A satisfy the following commutation relations,

$$R^{ijl}_{klm} A^k_m A^l_n = A^j_s A^i_r R^{r_s m}_{l n},$$

which can be written more compactly in tensor product notation as:

$$R_{12} A_1 A_2 = A_2 A_1 R_{12};$$
$$R_{12} = (\rho_1 \otimes \rho_2)(\mathcal{R}) \equiv < \mathcal{R}, A_1 \otimes A_2 > .$$ \hspace{1cm} (34)

Lower numerical indices shall denote here the position of the respective matrices in the tensor product of representation spaces (modules). The contragredient representation \[8\] $\rho^{-1} = < . , SA >$ gives the antipode of Fun(\mathfrak{G}_q) in matrix form: $S(A^i_j) = (A^{-1})^j_i$. The counit is: $\epsilon(A^i_j) = < 1, A^i_j >= \delta^i_j$.

Higher (tensor product) representations can be constructed from A: $A_1 A_2, A_1 A_2 A_3, \ldots, A_1 A_2 \cdots A_m$. We find numerical R-matrices \[3\] for any pair of such representations:

$$R_{1',2',\ldots,n',1,2,\ldots,m} \equiv < \mathcal{R}, A_{1'} A_{2'} \cdots A_{n'} \otimes A_1 A_2 \cdots A_m >$$

$$= R_{1'1}, R_{1'(m-1)}, \ldots, R_{1'1}$$
$$\cdot R_{2'2}, R_{2'(m-1)}, \ldots, R_{2'2}$$
$$\vdots$$
$$\cdot R_{n'1}, R_{n'(m-1)}, \ldots, R_{n'1}$$

\hspace{1cm} (35)
Let $A_I \equiv A_1 A_2 \cdots A_n$ and $A_{II} \equiv A_1 A_2 \cdots A_m$, then:

$$R_{I,II} A_I A_{II} = A_{II} A_I R_{I,II}.$$ \hspace{1cm} (36)

$R_{I,II}$ is the “partition function” of exactly solvable models. We will need it in section 3.

We can also write $U_q g$ in matrix form [6, 8] by taking representations ρ — e.g. $\rho = < \ldots, A >$ — of R in its first or second tensor product space,

$$L^+_\rho \equiv (\id \otimes \rho)(R), \quad L^+ \equiv < R^{21}, A \otimes \id >,$$ \hspace{1cm} (37)

$$SL^-_\rho \equiv (\rho \otimes \id)(R), \quad SL^- \equiv < R, A \otimes \id >,$$ \hspace{1cm} (38)

$$L^-_\rho \equiv (\rho \otimes \id)(R^{-1}), \quad L^- \equiv < R, SA \otimes \id >. \hspace{1cm} (39)$$

The commutation relations for all these matrices follow directly from the quantum Yang-Baxter equation, e.g.

$$0 = < R^{23} R^{13} R^{12} > - < R^{12} R^{13} R^{23} >, \quad \id \otimes A_1 \otimes A_2 >$$

$$= R_{12} L^+_2 L^+_1 - L^-_1 L^+_2 R_{12}, \hspace{1cm} (40)$$

where upper “algebra” indices should not be confused with lower “matrix” indices. Similarly one finds:

$$R_{12} L^-_2 L^-_1 = L^-_1 L^-_2 R_{12}, \hspace{1cm} (41)$$

$$R_{12} L^+_2 L^-_1 = L^-_1 L^+_2 R_{12}. \hspace{1cm} (42)$$

2 Quantized Algebra of Differential Operators

Here we would like to establish the connection between the actions of differential operators [7], written as commutation relations of operator-valued matrices and the more abstract formulation of the calculus in the Hopf algebra language.
2.1 Actions and Coactions

A left action of an algebra A on a vector space V is a bilinear map, $\triangleright : A \otimes V \to V : x \otimes v \mapsto x \triangleright v$, such that: $(xy) \triangleright v = x \triangleright (y \triangleright v)$. V is called a left A-module. In the case of the left action of a Hopf algebra H on an algebra A' we can in addition ask that this action preserve the algebra structure of A', i.e. $x \triangleright (ab) = (x_{(1)} \triangleright a) (x_{(2)} \triangleright b)$ and $x \triangleright 1 = 1 \epsilon(x)$, for all $x \in H$, $a, b \in A'$. A' is then called a left H-module algebra. Right actions and modules are defined in complete analogy. A left action of an algebra on a (finite dimensional) vector space induces a right action of the same algebra on the dual vector space and vice versa, via pullback. Of particular interest to us is the left action of U on A induced by the right multiplication in U:

$$< y, x \triangleleft a > = < y, a \otimes x, \Delta a > = < y, a_{(1)} \otimes x, a_{(2)} >, \quad \Rightarrow \quad x \triangleleft a = a_{(1)} \otimes x, a_{(2)} >, \quad \text{for } \forall x, y \in U, a \in A,$$

(43)

where again $\Delta a \equiv a_{(1)} \otimes a_{(2)}$. This action of U on A respects the algebra structure of A, as can easily be checked. The action of U on itself given by right or left multiplication does not respect the algebra structure of U; see however (62) as an example of an algebra-respecting “inner” action.

In the same sense as comultiplication is the dual operation to multiplication, right or left coactions are dual to left or right actions respectively. One therefore defines a right coaction of a coalgebra C on a vector space V to be a linear map, $\Delta_C : V \to V \otimes C : v \mapsto \Delta_C(v) \equiv v^{(1)} \otimes v^{(2)}$, such that, $(\Delta_C \otimes \text{id}) \Delta_C = (\text{id} \otimes \Delta) \Delta_C$. Following [2] we have introduced here a notation for the coaction that resembles Sweedler’s notation (16) of the coproduct. The prime on the second factor marks a right coaction. If we are dealing with the right coaction of a Hopf algebra H on an algebra A, we say that the coaction respects the algebra structure and A is a right H-comodule algebra, if $\Delta_H(a \cdot b) = \Delta_H(a) \cdot \Delta_H(b)$ and $\Delta_H(1) = 1 \otimes 1$, for all $a, b \in A$.

If the coalgebra C is dual to an algebra A in the sense of (24), then a

*

$x \triangleright$ is called a generalized derivation.
right coaction of \(C \) on \(V \) will induce a left action of \(A \) on \(V \) and vice versa, via

\[
x \triangleright v = v^{(1)} < x, v^{(2)'} >, \quad (\text{general}),
\]

for all \(x \in A, \ v \in V \). Applying this general formula to the specific case of our dually paired Hopf algebras \(\mathfrak{U} \) and \(\mathfrak{A} \), we see that the right coaction \(\Delta_{\mathfrak{A}} \) of \(\mathfrak{A} \) on itself, corresponding to the left action of \(\mathfrak{U} \) on \(\mathfrak{A} \), as given by (43), is just the coproduct \(\Delta \) in \(\mathfrak{A} \), i.e. we pick:

\[
\Delta_{\mathfrak{A}}(a) \equiv a^{(1)} \otimes a^{(2)'} = a_{(1)} \otimes a_{(2)}, \quad \text{for } \forall a \in \mathfrak{A}. \tag{45}
\]

To get an intuitive picture we may think of the left action (43) as being a generalized specific left translation generated by a left invariant “tangent vector” \(x \in \mathfrak{U} \) of the quantum group. The coaction \(\Delta_{\mathfrak{A}} \) is then the generalization of an unspecified translation. If we supply for instance a vector \(x \in \mathfrak{U} \) as transformation parameter, we recover the generalized specific transformation (43); if we use \(1 \in \mathfrak{U} \), i.e. evaluate at the “identity of the quantum group”, we get the identity transformation; but the quantum analog to a classical finite translation through left or right multiplication by a specific group element does not exist.

The dual quantum group in matrix form stays very close to the classical formulation and we want to use it to illustrate some of the above equations. For the matrix \(A \in M_N(\text{Fun}(\mathfrak{G}_q)) \) and \(x \in U_q \mathfrak{g} \) we find,

\[
\begin{align*}
\text{Fun}(\mathfrak{G}_q) \to \text{Fun}(\mathfrak{G}_q) \otimes \text{Fun}(\mathfrak{G}_q) : \quad & \Delta_{\mathfrak{G}} A = AA', \quad (\text{right coaction}), \tag{46} \\
\text{Fun}(\mathfrak{G}_q) \to \text{Fun}(\mathfrak{G}_q) \otimes \text{Fun}(\mathfrak{G}_q) : \quad & \Delta_{\mathfrak{G}} A = A'A, \quad (\text{left coaction}), \tag{47} \\
U_q \mathfrak{g} \otimes \text{Fun}(\mathfrak{G}_q) \to \text{Fun}(\mathfrak{G}_q) : \quad & x \triangleright A = A < x, A >, \quad (\text{left action}), \tag{48}
\end{align*}
\]

where matrix multiplication is implied. Following common custom we have used a prime to distinguish copies of the matrix \(A \) in different tensor product
spaces. We see that in complete analogy to the classical theory of Lie algebras, we first evaluate $x \in U_q \mathfrak{g}$, interpreted as a left invariant vector field, on $A \in M_n(\text{Fun}(\mathfrak{g}_q))$ at the "identity of \mathfrak{g}_q", giving a numerical matrix $< x, A > \in M_n(k)$, and then shift the result by left matrix multiplication with A to an unspecified "point" on the quantum group. Unlike a Lie group, a quantum group is not a manifold in the classical sense and we hence cannot talk about its elements, except for the identity (which is also the counit of $\text{Fun}(\mathfrak{g}_q)$). For $L^+ \in M_N(U_q \mathfrak{g})$ equation (48) becomes,

$$L^+_2 \triangleright A_1 = A_1 < L^+_2, A_1 > = A_1 R_{12}, \quad (49)$$

and similarly for $L^- \in M_N(U_q \mathfrak{g})$:

$$L^-_2 \triangleright A_1 = A_1 < L^-_2, A_1 > = A_1 R_{21}^{-1}. \quad (50)$$

2.2 Commutation Relations

The left action of $x \in \mathfrak{U}$ on products in \mathfrak{A}, say bf, is given via the coproduct in \mathfrak{U},

$$x \triangleright bf = (bf)_{(1)} < x, (bf)_{(2)} >$$

$$= b_{(1)} f_{(1)} < \Delta(x), b_{(2)} \otimes f_{(2)} >$$

$$= \Delta x \triangleright (b \otimes f) = b_{(1)} < x_{(1)}, b_{(2)} > x_{(2)} \triangleright f. \quad (51)$$

Dropping the "\triangleright" we can write this for arbitrary functions f in the form of commutation relations,

$$x \cdot b = \Delta x \triangleright (b \otimes \text{id}) = b_{(1)} < x_{(1)}, b_{(2)} > x_{(2)}. \quad (52)$$

This commutation relation provides $\mathfrak{A} \otimes \mathfrak{U}$ with an algebra structure via the cross product,

$$\cdot : (\mathfrak{A} \otimes \mathfrak{U}) \otimes (\mathfrak{A} \otimes \mathfrak{U}) \to \mathfrak{A} \otimes \mathfrak{U} :$$

$$ax \otimes by \mapsto ax \cdot by = a b_{(1)} < x_{(1)}, b_{(2)} > x_{(2)} y. \quad (53)$$

10
That $\mathfrak{A} \otimes \mathfrak{U}$ is indeed an associative algebra with this multiplication follows from the Hopf algebra axioms; it is denoted $\mathfrak{A} \ltimes \mathfrak{U}$ and we call it the \textit{quantized algebra of differential operators}. The commutation relation (52) should be interpreted as a product in $\mathfrak{A} \ltimes \mathfrak{U}$. (Note that we omit \(\otimes\)-signs wherever they are obvious, but we sometimes insert a product sign \(\cdot\) for clarification of the formulas.) Right actions and the corresponding commutation relations are also possible: $b \triangleright x = \langle x, b \rangle$ and $\delta \triangleright x = \langle x, b \rangle$.

Equation (52) can be used to calculate arbitrary inner products of \mathfrak{U} with \mathfrak{A}, if we define a \textit{right vacuum} \(\rangle\) to act like the counit in \mathfrak{U} and a \textit{left vacuum} \(\langle\) to act like the counit in \mathfrak{A},

$$< x b > = < b(1) < x(1), b(2) > x(2) > = \epsilon(b(1)) < x(1), b(2) > \epsilon(x(2)) = \langle \epsilon \delta \otimes \epsilon \rangle \Delta(x), \langle \epsilon \otimes \epsilon \delta \rangle \Delta(b) > = \langle x, b >, \quad \text{for } \forall \ x \in \mathfrak{U}, b \in \mathfrak{A}. \quad (54)$$

Using only the right vacuum we recover formula (43) for left actions,

$$x b > = b(1) < x(1), b(2) > x(2) > = b(1) < x(1), b(2) > \epsilon(x(2)) = b(1) < x, b(2) > = x \triangleright b, \quad \text{for } \forall \ x \in \mathfrak{U}, b \in \mathfrak{A}. \quad (55)$$

As an example we will write the preceding equations for A, L^+, and L^-:

$$L_2^+ A_1 = A_1 R_1 L_2^+, \quad \text{(commutation relation for } L^+ \text{ with } A), \quad (56)$$

$$L_2^- A_1 = A_1 R_2 L_2^-, \quad \text{(commutation relation for } L^- \text{ with } A), \quad (57)$$

$$< A = I <, \quad \text{(left vacuum for } A), \quad (58)$$

$$L^+ > = L^- > = > I, \quad \text{(right vacua for } L^+ \text{ and } L^-). \quad (59)$$

Equation (52) is not the only way to define left actions of \mathfrak{U} on \mathfrak{A} in terms of the product in $\mathfrak{A} \ltimes \mathfrak{U}$. An alternate definition utilizing the coproduct and
antipode in \(\mathfrak{U} \),

\[
x_{(1)} b S(x_{(2)}) = b_{(1)} < x_{(1)}, b_{(2)} > x_{(2)} S(x_{(3)})
\]

is in a sense more satisfactory because it readily generalizes to left actions of \(\mathfrak{U} \) on \(\mathfrak{A} \ltimes \mathfrak{U} \),

\[
x \triangleright b := x_{(1)} b S(x_{(2)})
\]

where we have introduced the left adjoint (inner) action in \(\mathfrak{U} \) :

\[
x \triangleright y = x_{(1)} y S(x_{(2)}), \quad \text{for } \forall \ x, y \in \mathfrak{U}.
\]

Having extended the left \(\mathfrak{U} \)-module \(\mathfrak{A} \) to \(\mathfrak{A} \ltimes \mathfrak{U} \), we would now like to also extend the definition of the coaction of \(\mathfrak{A} \) to \(\mathfrak{A} \ltimes \mathfrak{U} \), making the quantized algebra of differential operators an \(\mathfrak{A} \)-bicomodule.

2.3 Bicovariant Calculus

In this subsection we would like to study the transformation properties of the differential operators in \(\mathfrak{A} \ltimes \mathfrak{U} \) under left and right translations, i.e. the coactions \(\Delta_{\mathfrak{A}} \) and \(\Delta_{\mathfrak{A}} \) respectively. We will require,

\[
\Delta_{\mathfrak{A}}(by) = \Delta_{\mathfrak{A}}(b) \Delta_{\mathfrak{A}}(y) = \Delta(b) \Delta_{\mathfrak{A}}(y) \quad \in \mathfrak{A} \otimes \mathfrak{A} \ltimes \mathfrak{U},
\]

\[
\Delta_{\mathfrak{A}}(by) = \Delta_{\mathfrak{A}}(b) \Delta_{\mathfrak{A}}(y) = \Delta(b) \Delta_{\mathfrak{A}}(y) \quad \in \mathfrak{A} \ltimes \mathfrak{U} \otimes \mathfrak{A},
\]

\[
\Delta \otimes \text{id} \Delta(x) = (\text{id} \otimes \Delta) \Delta(x) = x_{(1)} \otimes x_{(2)} \otimes x_{(3)} = \Delta^2(x),
\]

\[
ex_{(1)} \otimes x_{(2)} \otimes x_{(3)} \otimes x_{(4)} = \Delta^3(x), \quad \text{etc., see }[2].
\]
for all $b \in \mathfrak{A}$, $y \in \mathfrak{U}$, so that we are left only to define $\mathfrak{A}\Delta$ and $\Delta \mathfrak{A}$ on elements of \mathfrak{U}. We already mentioned that we would like to interpret \mathfrak{U} as the algebra of left invariant vector fields; consequently we will try

$$\mathfrak{A}\Delta(y) = 1 \otimes y \quad \in \mathfrak{A} \otimes \mathfrak{U}, \quad (65)$$

as a left coaction. It is easy to see that this coaction respects not only the left action (13) of \mathfrak{U} on \mathfrak{A},

$$\mathfrak{A}\Delta(x \triangleright b) = \mathfrak{A}\Delta(b_{(1)}) < x, b_{(2)} >$$

$$= 1 b_{(1)} \otimes b_{(2)} < x, b_{(3)} >$$

$$= x^{(1)} b_{(1)} \otimes (x^{(2)} \triangleright b_{(2)})$$

$$=: \mathfrak{A}\Delta(x) \triangleright \mathfrak{A}\Delta(b), \quad (66)$$

but also the algebra structure (52) of $\mathfrak{A} \rtimes \mathfrak{U}$,

$$\mathfrak{A}\Delta(x \cdot b) = \mathfrak{A}\Delta(b_{(1)}) < x_{(1)}, b_{(2)} > \mathfrak{A}\Delta(x_{(2)})$$

$$= b_{(1)} 1 \otimes b_{(2)} < x_{(1)}, b_{(3)} > x_{(2)}$$

$$= 1 b_{(1)} \otimes b_{(2)} < x_{(1)}, b_{(3)} > x_{(2)}$$

$$= x^{(1)} b_{(1)} \otimes (x^{(2)} \cdot b_{(2)})$$

$$=: \mathfrak{A}\Delta(x) \cdot \mathfrak{A}\Delta(b). \quad (67)$$

The right coaction, $\Delta \mathfrak{A} : \mathfrak{U} \to \mathfrak{U} \otimes \mathfrak{A}$, is considerably harder to find. We will approach this problem by extending the commutation relation (52) for elements of \mathfrak{U} with elements of \mathfrak{A} to a generalized commutation relation for elements of \mathfrak{U} with elements of $\mathfrak{A} \rtimes \mathfrak{U}$,

$$x \cdot by =: (by)^{(1)} < x_{(1)}, (by)^{(2)} > x_{(2)}, \quad (68)$$

for all $x, y \in \mathfrak{U}$, $b \in \mathfrak{A}$. In the special case $b = 1$ this states,

$$x \cdot y = y^{(1)} < x_{(1)}, y^{(2)} > x_{(2)}, \quad x, y \in \mathfrak{U}, \quad (69)$$

and gives an implicit definition of the right coaction $\Delta \mathfrak{A}(y) \equiv y^{(1)} \otimes y^{(2)'}$ of \mathfrak{A} on \mathfrak{U}. Let us check whether $\Delta \mathfrak{A}$ defined in this way respects the left
action \((\text{[13]}\)) of \(\mathfrak{U}\) on \(\mathfrak{A}\):

\[
< z \otimes y, \Delta_{\mathfrak{A}}(x \triangleright b) > = < zy, x \triangleright b >
\]
\[
= < zy, b(1) > < x, b(2) >
\]
\[
= < zyx, b >
\]
\[
= < z(x^{(1)} < y^{(1)}, x^{(2)'} > y^{(2)}) , b >
\]
\[
= < zx^{(1)} \otimes y^{(1)} \otimes y^{(2)} , b(1) \otimes x^{(2)'} \otimes b(2) >
\]
\[
= < zy , \Delta_{\mathfrak{A}}(x) \triangleright \Delta_{\mathfrak{A}}(b) >,
\]
for all \(x, y, z \in \mathfrak{U}, b \in \mathfrak{A}\), q.e.d. .

Remark: If we know a linear basis \(\{e_i\}\) of \(\mathfrak{U}\) and the dual basis \(\{f^j\}\) of \(\mathfrak{A} = \mathfrak{U}^*\), \(< e_i, f^j > = \delta^j_i\), then we can derive an explicit expression for \(\Delta_{\mathfrak{A}}\) from (\ref{eq:69}):

\[
\Delta_{\mathfrak{A}}(e_i) = e_j \text{ad} \triangleright e_i \otimes f^j,
\]

or equivalently, by linearity of \(\Delta_{\mathfrak{A}}\):

\[
\Delta_{\mathfrak{A}}(y) = e_j \text{ad} \triangleright y \otimes f^j, \quad y \in \mathfrak{U}.
\]

It is then easy to show that,

\[
(\Delta_{\mathfrak{A}} \otimes \text{id})\Delta_{\mathfrak{A}}(e_i) = (\text{id} \otimes \Delta)\Delta_{\mathfrak{A}}(e_i),
\]
\[
(\text{id} \otimes e)\Delta_{\mathfrak{A}}(e_i) = e_i,
\]

proving that \(\Delta_{\mathfrak{A}}\) satisfies the requirements of a coaction on \(\mathfrak{U}\), and,

\[
\Delta_{\mathfrak{A}}(e_ie_k) = \Delta_{\mathfrak{A}}(e_i)\Delta_{\mathfrak{A}}(e_k),
\]

showing that \(\Delta_{\mathfrak{A}}\) is an \(\mathfrak{U}\)-algebra homomorphism. Note however that \(\Delta_{\mathfrak{A}}\) is in general not a \(\mathfrak{U}\)-Hopf algebra homomorphism.

In the next subsection we will describe a map, \(\Phi : \mathfrak{A} \rightarrow \mathfrak{U}\), that is invariant under (right) coactions and can hence be used to find \(\Delta_{\mathfrak{A}}\) on specific elements \(\Phi(b) \in \mathfrak{U}\) in terms of \(\Delta_{\mathfrak{A}}\) on \(b \in \mathfrak{A}\): \(\Delta_{\mathfrak{A}}(\Phi(b)) = (\Phi \otimes \text{id})\Delta_{\mathfrak{A}}(b)\).
2.4 Invariant Maps and the Pure Braid Group

A basis of generators for the pure braid group B_n on n strands can be realized in U, or for that matter $U_q \mathfrak{g}$, as follows in terms of the universal R:

$$
R^{21}R^{12}, \quad R^{21}R^{31}R^{12} \equiv (\hat{id} \otimes \Delta)R^{21}R^{12}, \quad \ldots ,
$$

$$
R^{21} \ldots R^{n1}R^{1n} \ldots R^{12} \equiv (\hat{id}^{(n-2)} \otimes \Delta)(\hat{id}^{(n-3)} \otimes \Delta) \ldots (\hat{id} \otimes \Delta)R^{21}R^{12},
$$

and their inverses; see Figure 1 and ref.[8]. All polynomials in these generators are central in $\Delta^{(n-1)}U \equiv \{\Delta^{(n-1)}(x) \mid x \in U\}$; in fact we can take,

$$
\text{span}\{B_n\} := \{Z_n \in \hat{U} \otimes U \otimes (n-1) \mid Z_n \Delta^{(n-1)}(x) = \Delta^{(n-1)}(x)Z_n, \text{ for } \forall x \in U\}, \quad (76)
$$

as a definition.

Remark: Elements of $\text{span}\{B_n\}$ do not have to be written in terms of the universal R, they also arise from central elements and coproducts of central elements. This is particularly important in cases where U is not a quasitriangular Hopf algebra.

There is a map, $\Phi_n : \mathfrak{A} \rightarrow \mathfrak{A} \otimes \mathfrak{A} \otimes^{(n-1)} \rightarrow (\mathfrak{A} \times \mathfrak{A}) \otimes^{(n-1)}$, associated to each element of $\text{span}\{B_n\}$:

$$
\Phi_n(a) := Z_n \triangleright (a \otimes \hat{id}^{(n-1)}), \quad \text{with } Z_n \in \text{span}\{B_n\}, \quad a \in \mathfrak{A}. \quad (77)
$$

We will first consider the case $n = 2$. Let $\mathfrak{y} \equiv \mathfrak{y}_1 \otimes \mathfrak{y}_2$ be an element of $\text{span}\{B_2\}$ and $\Phi(b) = \mathfrak{y} \triangleright (b \otimes \hat{id}) = b_{(1)} < \mathfrak{y}_1, b_{(2)} > \mathfrak{y}_2$, for $b \in \mathfrak{A}$. We compute,

$$
x \cdot \Phi(b) = \Delta(x) \triangleright \Phi(b) = \Delta(x) \triangleright (b \otimes \hat{id}) = \mathfrak{y} \Delta(x) \triangleright (b \otimes \hat{id}) = \mathfrak{y} \triangleright (x \cdot b) = \Phi(b_{(1)}) < x_{(1)}, b_{(2)} > x_{(2)}, \quad (78)
$$

which, when compared to the generalized commutation relation (78), i.e.

$$
x \cdot \Phi(b) = [\Phi(b)]^{(1)} < x_{(1)} [\Phi(b)]^{(2)'} > x_{(2)}, \quad (79)
$$

15
Figure 1: Generators of the pure braid group.

gives,
\[
\Delta_{\mathfrak{A}}(\Phi(b)) \equiv [\Phi(b)]^{(1)} \otimes [\Phi(b)]^{(2)} = \Phi(b_{(1)}) \otimes b_{(2)}
\]
\[
\Rightarrow \Delta_{\mathfrak{A}}(\Phi(b)) = (\Phi \otimes \text{id})\Delta_{\mathfrak{A}}(b),
\]
(80)
as promised. However we are especially interested in the transformation properties of elements of \(\mathfrak{A} \), so let us define,
\[
Y_b := \langle Y, b \otimes \text{id} > = \langle Y_{1_i}, b \rangle_{Y_{1_i}},
\]
(81)
for \(Y \in \text{span}(B_2), b \in \mathfrak{A} \). From (64,80) we find:
\[
\Delta_{\mathfrak{A}}(Y_b) = Y_{b_{(2)}} \otimes S(b_{(1)})b_{(3)}.
\]
(82)

Here are a few important examples: For the simplest non-trivial example, \(Y_{R} \equiv R^{21}R^{12} \) and \(b \equiv A^{i,j} \), we obtain the “reflection-matrix” \(Y \in M_n(\mathfrak{A}) \), which has been introduced before by other authors \([9, 10, 11]\) in connection with integrable models and the differential calculus on quantum groups,
\[
Y_{ij}^{i,j} := Y_{A^{i,j}} = \langle R^{21}R^{12}, A^{i,j} \otimes \text{id} > = \langle R^{31}R^{23}, A \otimes A \otimes \text{id} >)^i_j
= (L^+SL^-)^i_j,
\]
(83)

16
with transformation properties,

\[
A \to AA' : \quad Y^i_j \to \Delta_\mathfrak{g}(Y^i_j) = Y^k_i \otimes S(A^i_k)A'^j_l \\
\equiv ((A')^{-1}Y A')^i_j ,
\]

(84)\[
A \to A' A : \quad Y^i_j \to \mathfrak{g} \Delta(Y^i_j) = 1 \otimes Y^i_j .
\]

(85)

The commutation relation (52) becomes in this case,

\[
Y_2 A_1 = L_2^+ S L_2^- A_1 \\
= L_2^+ A_1 S L_2^- R_{21} \\
= A_1 R_{12} L_2^+ S L_2^- R_{21} \\
= A_1 R_{12} Y_{21} R_{21} ,
\]

(86)

where we have used (56), (57), and the associativity of the cross product (53); note that we did not have to use any explicit expression for the coproduct of \(Y\). The matrix \(\Phi(A^i_j) = A'^i_k Y^k_j\) transforms exactly like \(A\), as expected, and interestingly even satisfies the same commutation relation as \(A\),

\[
R_{12}(AY)_1(AY)_2 = (AY)_2(AY)_1 R_{12} ,
\]

(87)
as can be checked by direct computation.

The choice, \(\gamma \equiv (1 - R^{21} R^{12})/\lambda\), where \(\lambda \equiv q - q^{-1}\), and again \(b \equiv A^i_j\) gives us a matrix \(X \in M_n(\mathfrak{g})\),

\[
X^i_j := \langle (1 - R^{21} R^{12})/\lambda, A^i_j \otimes \mathbb{I} > = ((I - Y)/\lambda)^i_j ,
\]

(88)

that we will encounter again in section 4. \(X\) has the same transformation properties as \(Y\) and is the quantum analog of the classical matrix (4) of vector fields.

Finally, the particular choice \(b \equiv \det_q A\) in conjunction with \(\gamma \equiv R^{21} R^{12}\) can serve as the definition of the quantum determinant of \(Y\),

\[
\text{Det}Y := Y_{\det_q A} = \langle R^{21} R^{12}, \det_q A \otimes \mathbb{I} > ;
\]

(89)
we will come back to this in the next section, but let us just mention that this definition of Det_Y agrees with,

\[
\text{det}_q(AY) = \text{det}_q(A < R^{21} R^{12}, A \otimes \text{id} >) = \text{det}_q A < R^{21} R^{12}, \text{det}_q A \otimes \text{id} > = \text{det}_q A \text{Det}_Y.
\]

(90)

Before we can consider maps Φ_n for $n > 2$ we need to extend the algebra and coalgebra structure of $\mathcal{A} \rtimes U$ to $(\mathcal{A} \rtimes U)^{\otimes (n-1)}$. It is sufficient to consider $(\mathcal{A} \rtimes U)^{\otimes 2}$; all other cases follow by analogy. If we let

\[
(a \otimes b)(x \otimes y) = ax \otimes by,
\]

for $\forall a, b \in \mathcal{A}, x, y \in \mathfrak{u}$, (91) then it follows that

\[
x \cdot a \otimes y \cdot b = (a \otimes b)(x \otimes y)
\]

(92) as expected from a tensor product algebra. If we coact with \mathcal{A} on $\mathcal{A} \rtimes \mathfrak{u}^{\otimes 2}$, or higher powers, we simply collect all the contributions of $\Delta_{\mathcal{A}}$ from each tensor product space in one space on the right:

\[
\Delta_{\mathcal{A}}(ax \otimes by) = (ax)^{(1)} \otimes (by)^{(1)} \otimes (ax)^{(2')} (by)^{(2')},
\]

for $\forall a, b \in \mathcal{A}, x, y \in \mathfrak{u}$.

(93)

Let Φ_n be defined as in (77) and compute in analogy to (78):

\[
\Delta^{(n-2)}(x) \cdot \Phi_n(b) = [\Phi_n(b)]^{(1)} < x^{(1)}; [\Phi_n(b)]^{(2')} > x^{(2)} \otimes \ldots \otimes x^{(n)}.
\]

Compare this to the generalized commutation relation,

\[
\Delta^{(n-2)}(x) \cdot \Phi_n(b) = [\Phi_n(b)]^{(1)} < x^{(1)}; [\Phi_n(b)]^{(2')} > x^{(2)} \otimes \ldots \otimes x^{(n)},
\]

(95)
to find:
\[
\Delta_{A}(\Phi_n(b)) \equiv [\Phi_n(b)]^{(1)} \otimes [\Phi_n(b)]^{(2)} = \Phi_n(b_{(1)}) \otimes b_{(2)}
\]
\[
\Rightarrow \Delta_{A}(\Phi_n(b)) = (\Phi_n \otimes \text{id})\Delta_{A}(b) \in (\mathfrak{A} \times \mathfrak{U}) \otimes^{(n-1)} \mathfrak{A}.
\]

Following the \(n = 2 \) case we also define \(Z_{n,b} := \langle Z_n, b \otimes \text{id}^{(n-1)} \rangle \) and get:
\[
\Delta_{A}(Z_{n,b}) = Z_{n,b} \otimes S(b_{(1)})b_{(3)}.
\]

As an example for \(n = 3 \) consider \(Z_3 \equiv R_{21}R_{31}R_{32} \) and \(b = A^i_j \), then
\[
Z_{3,A^i_j} = \langle R_{21}R_{31}R_{13}, A^i_j \otimes \text{id}^2 \rangle = \langle (\text{id} \otimes \Delta)R_{21}R_{12}, A^i_j \otimes \text{id}^2 \rangle = \Delta(Y^i_j),
\]
is nothing but the coproduct of \(Y \) which, as we can see from equation (97), transforms exactly like \(Y \) itself. We see that \(\Delta_{A} \) is actually a \(\mathfrak{U} \)-coalgebra homomorphism on the subset \(\{ Y_b | b \in \mathfrak{A} \} \).

3 \(\mathcal{R} \) - Gymnastics

In this section we would like to study for the example of \(Y \in M_N(\mathfrak{U}) \) the matrix form of \(\mathfrak{U} \) as introduced at the end of section 1.2. Let us first derive commutation relations for \(Y \) from the quantum Yang-Baxter equation (QYBE): Combine the following two copies of the QYBE,
\[
R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}, \quad \text{and} \quad R_{21}R_{31}R_{32} = R_{32}R_{31}R_{21},
\]
resulting in,
\[
R_{21}R_{31}R_{32}R_{12}R_{13}R_{23} = R_{32}R_{31}R_{21}R_{23}R_{13}R_{12},
\]
and apply the QYBE to the underlined part to find,
\[
R_{21}(R_{31}R_{13})R_{12}(R_{32}R_{23}) = (R_{32}R_{23})R_{21}(R_{31}R_{13})R_{12},
\]
which, when evaluated on \(\langle . , A_1 \otimes A_2 \otimes \text{id} \rangle \), gives:
\[
R_{21}Y_1R_{12}Y_2 = Y_2R_{21}Y_1R_{12}.
\]
3.1 Higher Representations and the ●-Product

As was pointed out in section 1.2, tensor product representations of \mathfrak{U} can be constructed by combining A-matrices. This product of A-matrices defines a new product for \mathfrak{U} which we will denote “●”. The idea is to combine Y-matrices (or L^+, L^- matrices) in the same way as A-matrices to get higher dimensional matrix representations,

\begin{align}
Y_1 \cdot Y_2 &:= \langle \mathcal{R}^{21}, A_1 A_2 \otimes id \rangle, \\
L_1^+ \cdot L_2^+ &:= \langle \mathcal{R}^{21}, A_1 A_2 \otimes id \rangle, \\
SL_1^- \cdot SL_2^- &:= \langle \mathcal{R}^{12}, A_1 A_2 \otimes id \rangle.
\end{align}

Let us evaluate (100) in terms of the ordinary product in \mathfrak{U},

\begin{align}
Y_1 \cdot Y_2 &= \langle (\Delta \otimes id)\mathcal{R}^{21}, \mathcal{R}^{12}, A_1 \otimes A_2 \otimes id \rangle \\
&= \langle \mathcal{R}^{32} \mathcal{R}^{31} \mathcal{R}^{13} \mathcal{R}^{23}, A_1 \otimes A_2 \otimes id \rangle \\
&= \langle (\mathcal{R}^{-1})^{12} \mathcal{R}^{31} \mathcal{R}^{13} \mathcal{R}^{12} \mathcal{R}^{32} \mathcal{R}^{23}, A_1 \otimes A_2 \otimes id \rangle \\
&= R_{12}^{-1} Y_1 R_{12} Y_2,
\end{align}

where we have used,

\begin{align}
\mathcal{R}^{32} \mathcal{R}^{31} \mathcal{R}^{13} \mathcal{R}^{23} &= (\mathcal{R}^{-1})^{12} \mathcal{R}^{31} \mathcal{R}^{13} \mathcal{R}^{12} \mathcal{R}^{32} \mathcal{R}^{23} \\
&= (\mathcal{R}^{-1})^{12} \mathcal{R}^{31} \mathcal{R}^{32} \mathcal{R}^{12} \mathcal{R}^{13} \mathcal{R}^{23} \\
&= (\mathcal{R}^{-1})^{12} \mathcal{R}^{31} \mathcal{R}^{13} \mathcal{R}^{12} \mathcal{R}^{32} \mathcal{R}^{23}.
\end{align}

Similar expressions for L^+ and SL^- are:

\begin{align}
L_1^+ \cdot L_2^+ &= L_2^+ L_1^+, \\
SL_1^- \cdot SL_2^- &= SL_1^- SL_2^-.
\end{align}

All matrices in $M_N(\mathfrak{U})$ satisfy by definition the same commutation relations (33) as A, when written in terms of the ●-product,

\begin{align}
R_{12} L_1^+ \cdot L_2^+ &= L_2^+ L_1^+ R_{12} \Leftrightarrow R_{12} L_2^+ L_1^+ = L_1^+ L_2^+ R_{12},
\end{align}

20
\[R_{12}S L_1^+ \cdot S L_2^+ = S L_2^+ \cdot S L_1^+ R_{12} \iff R_{12}S L_1^+ S L_2^+ = S L_2^+ S L_1^+ R_{12}. \]
(107)

\[R_{12}Y_1 \cdot Y_2 = Y_2 \cdot Y_1 R_{12} \iff R_{12}(R_{12}^{-1}Y_1 R_{12} Y_2)
= (R_{21}^{-1}Y_2 R_{21} Y_1) R_{12} \]
\[\iff R_{21} Y_1 R_{12} Y_2 = Y_2 R_{21} Y_1 R_{12}. \]
(108)

Remark: Equations incorporating the \(\cdot \)-product are mathematically very similar to the expressions introduced in ref. [12] for braided linear algebras — our analysis was in fact motivated by that work — but on a conceptual level things are quite different: We are not dealing with a braided algebra with a braided multiplication but rather with a rule for combining matrix representations that turns out to be very useful, as we will see, to find conditions on the matrices in \(M_N(\mathfrak{A}) \) from algebraic relations for matrices in \(M_N(\mathfrak{A}) \).

3.2 Multiple \(\cdot \)-Products

We can define multiple (associative) \(\cdot \)-products by,

\[Y_1 \cdot Y_2 \cdot \ldots \cdot Y_k := \left< R^{21} R^{12}, A_1 A_2 \ldots A_k \otimes id \right>, \]
(109)

but this equation is not very useful to evaluate these multiple \(\cdot \)-products in practice. However, the “big” \(R \)-matrix of equation (35) can be used to calculate multiple \(\cdot \)-products recursively: Let \(Y_I \equiv Y_1 \cdot Y_2 \cdot \ldots \cdot Y_m \) and \(Y_{II} \equiv Y_1 \cdot Y_2 \cdot \ldots \cdot Y_m \), then:

\[Y_I \cdot Y_{II} = R_{I,II}^{-1} Y_I R_{I,II} Y_{II}; \]
(110)

compare to (36) and (103). The analog of equation (108) is also true:

\[R_{I,II} Y_I \cdot Y_{II} = Y_{II} \cdot Y_I R_{I,II} \]
\[\iff R_{II,I} Y_I R_{I,II} Y_{II} = Y_{II} R_{II,I} Y_I R_{I,II}. \]
(111)

(112)
The •-product of three Y-matrices, for example, reads in terms of the ordinary multiplication in \mathfrak{U} as,

\[
Y_1 \cdot (Y_2 \cdot Y_3) = R_{1(23)}^{-1} Y_1 R_{1(23)} (Y_2 \cdot Y_3) = (R_{12}^{-1} R_{13}^{-1} Y_1 R_{13} R_{12})(R_{23}^{-1} Y_2 R_{23}) Y_3.
\]

(113)

This formula generalizes to higher •-products,

\[
Y_{(1\ldots2)} \equiv \prod_{i=1}^{k} \cdot Y_i = \prod_{i=1}^{k} Y_{1\ldots k}^{(i)}; \quad \text{where:}
\]

\[
Y_{1\ldots k}^{(i)} = \left\{ \begin{array}{ll}
R_{i(i+1)}^{-1} R_{i(i+2)}^{-1} \cdots R_{ik}^{-1} Y_i R_{ik} \cdots R_{i(i+1)} , & 1 \leq i < k, \\
Y_k , & i = k.
\end{array} \right.
\]

(114)

3.3 Quantum Determinants

Assuming that we have defined the quantum determinant $\det_q A$ of A in a suitable way — e.g. through use of the quantum ε_q-tensor, which in turn can be derived from the quantum exterior plane — we can then use the invariant maps Φ_n for $n = 2$ to find the corresponding expressions in \mathfrak{U}; see (89). Let us consider a couple of examples:

\[
\begin{align*}
\text{Det} Y &:= < R_{21} R_{12} , \det_q A \otimes \text{id} > , \\
\text{Det} L^+ &:= < R_{21} , \det_q A \otimes \text{id} > , \\
\text{Det} SL^- &:= < R_{12} , \det_q A \otimes \text{id} > .
\end{align*}
\]

(115) (116) (117)

Because of equations (104) and (105) we can identify,

\[
\text{Det} L^+ \equiv \det_{q^{-1}} L^+ , \quad \text{Det} SL^- \equiv \det_q SL^- .
\]

(118)

\footnote{All products are ordered according to increasing multiplication parameter, e.g.}

\[
\prod_{i=1}^{k} \cdot Y_i \equiv Y_1 \cdot Y_2 \cdot \ldots \cdot Y_k
\]
Properties of $\det_q A$, namely:

\[A \det_q A = \det_q A A \quad (central), \]
\[\Delta(\det_q A) = \det_q A \otimes \det_q A \quad (group-like), \]

translate into corresponding properties of "Det". For example, here is a short proof of the centrality of $\text{Det} Y \equiv Y_{\det_q A}$ based on equations (69) and (82):\footnote{This proof easily generalizes to show the centrality of any (right) invariant $c \in \mathfrak{U}$, \[\Delta Q(c) = c \otimes 1, \] an example being the invariant traces $\text{tr}(D^{-1} Y^k) \footnote{The invariant traces are central only in \mathfrak{U} because they are not group-like.}$.

\[x Y_b = Y_{b(2)} < x_{(1)}, S(b_{(1)})b_{(3)} > x_{(2)}, \quad \forall x \in \mathfrak{U}; \]
\[\Rightarrow x Y_{\det_q A} = Y_{\det_q A} < x_{(1)}, S(\det_q A)\det_q A > x_{(2)} \]
\[= Y_{\det_q A} < x_{(1)}, 1 > x_{(2)} \]
\[= Y_{\det_q A} x, \quad \forall x \in \mathfrak{U}. \]

The determinant of Y is central in the algebra, so its matrix representation must be proportional to the identity matrix,

\[< \text{Det} Y, A > = \kappa I, \]

with some proportionality constant κ that is equal to one in the case of special quantum groups; note that (122) is equivalent to:

\[\det_1(R_{21} R_{12}) = \kappa I_{12}, \]

where \det_1 is the ordinary determinant taken in the first pair of matrix indices. We can now compute the commutation relation of $\text{Det} Y$ with A \footnote{This proof easily generalizes to show the centrality of any (right) invariant $c \in \mathfrak{U}$, \[\Delta Q(c) = c \otimes 1, \] an example being the invariant traces $\text{tr}(D^{-1} Y^k) \footnote{The invariant traces are central only in \mathfrak{U} because they are not group-like.}$.

\[\text{Det} Y A = A < \text{Det} Y, A > \text{Det} Y \]
\[= \kappa A \text{Det} Y, \]

showing that in the case of special quantum groups the determinant of Y is actually central in $\mathfrak{A} \times \mathfrak{U}$.}
Using (120) in the definition of Det\(_Y\),
\[
\text{Det}Y = <\mathcal{R}^{21}\mathcal{R}^{12}, \det_q A \otimes \mathbb{1}> \\
= <\mathcal{R}^{31}\mathcal{R}^{23}, \Delta(\det_q A) \otimes \mathbb{1}> \\
= <\mathcal{R}^{31}\mathcal{R}^{23}, \det_q A \otimes \det_q A \otimes \mathbb{1}> \\
= \det_{q-1}L^+ \cdot \det_q SL^-,
\]
we see that “Det\(_Y\)” coincides with the definition of the determinant of \(Y\) given in [13].

A practical calculation of Det\(_Y\) in terms of the matrix elements of \(Y\) starts from,
\[
\det_q A \varepsilon_{i_1 \ldots i_N} = \left(\prod_{k=1}^{N} A_k \right)_{i_1 \ldots i_N}^{i_1 \ldots i_N} = \det_q A \otimes \mathbb{1},
\]
and uses Det\(_Y\) = det\(_q \bullet Y\), i.e. the q-determinant with the \(\bullet\)-multiplication:
\[
\text{Det}Y \varepsilon_{i_1 \ldots i_N} = \left(\prod_{k=1}^{N} \bullet Y_k \right)_{i_1 \ldots i_N}^{i_1 \ldots i_N} = \det_q \bullet Y,
\]
Now we use equation (114) and get:
\[
\text{Det}Y \varepsilon_{i_1 \ldots i_N} = \left(\prod_{k=1}^{N} Y_k^{(i)} \right)_{i_1 \ldots i_N}^{i_1 \ldots i_N} = \det_q \bullet Y,
\]
where:
\[
Y_k^{(i)} = \begin{cases}
R^{-1}_{i(i+1)} & i = k, \\
R^{-1}_{i(i+1)} \cdots R^{-1}_{i(k-1)}Y_iR_{i(k)} \cdots R_{i(i+1)} & 1 \leq i < k,
\end{cases}
\]
It is interesting to see what happens if we use a matrix \(T \in M_N(\mathfrak{A})\) with determinant \(\det_q T = 1\), e.g. \(T := A/(\det_q A)^{1/N}\), to define a matrix \(Z \in M_N(\mathfrak{M})\) (1) in analogy to equation (114),
\[
Z := <\mathcal{R}^{21}\mathcal{R}^{12}, T \otimes \mathbb{1}>,
\]
we find that \(Z\) is automatically of unit determinant:
\[
\text{Det}Z := <\mathcal{R}^{21}\mathcal{R}^{12}, \det_q T \otimes \mathbb{1}> \\
= <\mathcal{R}^{21}\mathcal{R}^{12}, 1 \otimes \mathbb{1}> \\
= (\epsilon \otimes \mathbb{1})(\mathcal{R}^{21}\mathcal{R}^{12}) = 1.
\]
3.4 An Orthogonality Relation for Y

If we want to consider only such transformations

$$x \mapsto \mathfrak{A} \Delta(x) = A \otimes x, \quad x \in C_q^N, A \in M_N(\mathfrak{A}),$$

(131)

of the quantum plane that leave lengths invariant, we need to impose an orthogonality condition on A; see [6]. Let $C \in M_N(k)$ be the appropriate metric and $x^T C x$ the length squared of x then we find,

$$A^T C A = C \quad \text{(orthogonality)},$$

(132)

as the condition for an invariant length,

$$x^T C x \mapsto \mathfrak{A} \Delta(1 \otimes C x) = 1 \otimes x^T C x.$$

(133)

If we restrict $A —$ and thereby $\mathfrak{A} —$ in this way we should also impose a corresponding orthogonality condition in \mathfrak{U}. Use of the \bullet-product makes this, as in the case of the quantum determinants, an easy task: we can simply copy the orthogonality condition for A and propose,

$$(L^+)^T \bullet C L^+ = C \quad \Rightarrow \quad L^+ C^T (L^+)^T = C^T,$$

(134)

$$(S L^-)^T \bullet C S L^- = C \quad \Rightarrow \quad (S L^-)^T C S L^- = C,$$

(135)

$$Y^T \bullet C Y = C, \quad \text{(matrix multiplication understood),}$$

(136)

as orthogonality conditions in \mathfrak{U}. The first two equations were derived before in [5] in a different way. Let us calculate the condition on Y in terms of the ordinary multiplication in \mathfrak{U},

$$C_{ij} = Y^k_i \bullet C_{kl} Y^l_j = C_{kl} (Y_1 \bullet Y_2)^k l_{ij} = C_{kl} (R_{12}^{-1} Y_1 R_{12} Y_2)^k l_{ij},$$

(137)

or, using $C_{ij} = q^{(N-1)} R_{kj} q C_{kl}$:

$$C_{ij} = q^{(N-1)} C_{mn} (Y_1 R_{12} Y_2)^m n_{ij}.\quad \text{(138)}$$
Remark: Algebraic relations on the matrix elements of Y like the ones given in the previous two sections also give implicit conditions on R; however we purposely did not specify R, but rather formally assume its existence and focus on the numerical R-matrices that appear in all final expressions. Numerical R-matrices are known for most deformed Lie algebras of interest and many other quantum groups. One could presumably use some of the techniques outlined in this article to actually derive relations for numerical R-matrices or even for the universal R.

3.5 About the Coproduct of Y

It would be nice if we could express the coproduct of Y, \[\Delta(Y) = (\mathbb{I} \otimes \Delta)^{R_{21}R_{12}} A \otimes \mathbb{I} >, \] (139)
in terms of the matrix elements of the matrix Y itself, as it is possible for the coproducts of the matrices L^+ and L^-. Unfortunately, simple expressions have only been found in some special cases; see e.g. [14, 15, 16]. A short calculation gives, \[\Delta(Y^{ij}) = (R^{-1})^{12}(1 \otimes Y^{ik})R^{12}(Y^{kj} \otimes 1); \] (140)
this could be interpreted as some kind of braided tensor product [12, 17], \[\Delta(Y^{ij}) =: Y^{i_{\tilde{k}}}Y^{k_{\tilde{j}}}, \] (141)
but for practical purposes one usually introduces a new matrix, \[O_{ij}^{(kl)} := (L^+)^i_{k}S(L^-)^l_{j} \in M_{N \times N}(\mathfrak{g}), \] (142)
such that, \[\Delta(Y_A) = O_A^B \otimes Y_B, \] (143)
where capital letters stand for pairs of indices. The coproduct of $X^{ij} = (I - Y)^{ij}/\lambda$ is in this notation: \[\Delta(X_A) = X_A \otimes 1 + O_A^B \otimes X_B. \] (144)
We will only use O_A^B in formal expressions involving the coproduct of Y. It will usually not show up in any practical calculation, because commutation relation (86) already implicitly contains $\Delta(Y)$ and all inner products of Y with strings of A-matrices following from it.

4 Quantum Lie Algebras

Classically the (left) adjoint actions of the generators χ_i of a Lie algebra \mathfrak{g} on each other are given by the commutators,

$$\chi_i \overset{\text{ad}}{\triangleright} \chi_j = [\chi_i, \chi_j] = \chi_k f^{k}_{ij}, \quad (145)$$

expressible in terms of the structure constants f^{k}_{ij}, whereas the (left) adjoint action of elements of the corresponding Lie group \mathfrak{g} is given by conjugation,

$$h \overset{\text{ad}}{\triangleright} g = hgh^{-1}, \quad h, g \in \mathfrak{g}. \quad (146)$$

Both formulas generalize in Hopf algebra language to the same expression,

$$\chi_i \overset{\text{ad}}{\triangleright} \chi_j = \chi_{i(1)} \chi_j S(\chi_{i(2)}), \quad \text{with: } S(\chi) = -\chi,$$

$$\Delta(\chi) \equiv \chi_{(1)} \otimes \chi_{(2)} = \chi \otimes 1 + 1 \otimes \chi, \quad \text{for } \forall \chi \in \mathfrak{g}, \quad (147)$$

$$h \overset{\text{ad}}{\triangleright} g = h(1) g S(h(2)), \quad \text{with: } S(h) = h^{-1},$$

$$\Delta(h) \equiv h_{(1)} \otimes h_{(2)} = h \otimes h, \quad \text{for } \forall h \in \mathfrak{g}, \quad (148)$$

and agree with our formula (62) for the (left) adjoint action in \mathfrak{u}. We can derive two generalized Jacobi identities for double adjoint actions,

$$x \overset{\text{ad}}{\triangleright} (y \overset{\text{ad}}{\triangleright} z) = (xy) \overset{\text{ad}}{\triangleright} z \quad = ((x_{(1)} \overset{\text{ad}}{\triangleright} y) x_{(2)}) \overset{\text{ad}}{\triangleright} z \quad = (x_{(1)} \overset{\text{ad}}{\triangleright} y) \overset{\text{ad}}{\triangleright} (x_{(2)} \overset{\text{ad}}{\triangleright} z), \quad (149)$$

and,

$$(x \overset{\text{ad}}{\triangleright} y) \overset{\text{ad}}{\triangleright} z = (x_{(1)} y S(x_{(2)})) \overset{\text{ad}}{\triangleright} z \quad = x_{(1)} \overset{\text{ad}}{\triangleright} (y \overset{\text{ad}}{\triangleright} (S(x_{(2)}) \overset{\text{ad}}{\triangleright} z)). \quad (150)$$
Both expressions become the ordinary Jacobi identity in the classical limit and they are not independent: Using the fact that ad is an action they imply each other.

In the following we would like to derive the quantum version of (145) with “quantum commutator” and “quantum structure constants”. The idea is to utilize the (passive) transformations that we have studied in great detail in sections 2.3 and 2.4 to find an expression for the corresponding active transformations or actions. The effects of passive transformations are the inverse of active transformations, so here is the inverse or right adjoint action for a group:

$$h^{-1} \text{ad} \triangleright g = g \text{ad} \triangleleft h = S(h^{(1)}) gh^{(2)}. \quad (151)$$

This gives rise to a (right) adjoint coaction in $\text{Fun}(\mathcal{G})$:

$$A \mapsto S(A')AA', \quad \text{i.e.}$$

$$\text{Fun}(\mathcal{G}_q) \ni A^i_j \mapsto A^k_j \otimes S(A'_k)A'^j_i \in \text{Fun}(\mathcal{G}_q) \otimes \text{Fun}(\mathcal{G}_q); \quad (152)$$

where we have written “$\text{Fun}(\mathcal{G}_q)$” instead of “$\text{Fun}(\mathcal{G})$” because the coalgebra of $\text{Fun}(\mathcal{G}_q)$ is in fact the same undeformed coalgebra as the one of $\text{Fun}(\mathcal{G})$.

In section 2.4 we saw that the Y-matrix has particularly nice transformation properties:

$$A \mapsto S(A')A : \quad Y \mapsto 1 \otimes Y,$$

$$A \mapsto AA' : \quad Y \mapsto S(A')YA'.$$

It follows that:

$$A \mapsto S(A')AA' : \quad Y^i_j \mapsto Y^k_i \otimes S(A'^i_k)A'^j_i, \quad (153)$$

This is the “unspecified” adjoint right coaction for Y; we recover the “specific” left adjoint action,

$$x \triangleright Y^i_j = x^{(1)} Y^i_j S(x^{(2)}),$$

28
of an arbitrary \(x \in U_q\mathfrak{g} \) by evaluating the second factor of the adjoint coaction (153) on \(x \):

\[
x^{\text{ad}} Y_{ij} = Y_{kl}^x, \quad S(A^i_k) A^l_j >, \quad \text{for } \forall x \in U_q\mathfrak{g}.
\]

(154)

At the expense of intuitive insight we can alternatively derive a more general formula directly from equations (62), (69), and (82),

\[
x^{\text{ad}} Y_b = x^{(1)} Y_b S(x^{(2)}) = (Y_b)^{(1)} < x^{(1)}, (Y_b)^{(2)'} > x^{(3)} S(x^{(3)}) = (Y_b)^{(1)} < x, (Y_b)^{(2)'} > \epsilon(x^{(2)}) = (Y_b)^{(1)} < x, b^{(2)} > S(b^{(1)}) b^{(3)} >;
\]

(155)

note the appearance of the (right) adjoined coaction \(\mathbb{1} \) in \(\text{Fun}(\mathfrak{g}_q) \),

\[
\Delta^{\text{Ad}}(b) = b^{(2)} \otimes S(b^{(1)}) b^{(3)},
\]

(156)

in this formula.

We have found exactly what we were looking for in a quantum Lie algebra; the adjoint action (154) or (155) — which is the generalization of the classical commutator — of elements of \(U_q\mathfrak{g} \) on elements in a certain subset of \(U_q\mathfrak{g} \) evaluates to a linear combination of elements of that subset. So we do not really have to use the whole universal enveloping algebra when dealing with quantum groups but can rather consider a subset spanned by elements of the general form \(Y_b \equiv < y, b \otimes \text{id} >, y \in \text{span}\{B_2\} \); we will call this subset the “quantum Lie algebra” \(\mathfrak{g}_q \) of the quantum group. Now we need to find a basis of generators with the right classical limit.

Let us first evaluate (154) in the case where \(x \) is a matrix element of \(Y \). We introduce the shorthand,

\[
\mathcal{A}^{(kl)}(ij) \equiv S(A^i_k) A^l_j,
\]

(157)

for the adjoint representation and find,

\[
Y_A^{\text{ad}} Y_B = Y_C < Y_A, \mathcal{A}^C_B >, \quad \text{for } \forall A, B, C \in \mathfrak{g}_q.
\]

(158)
where, again, capital letters stand for pairs of indices. The evaluation of the inner product \(< Y, A^C_B > = C_A^C_B \) is not hard even though we do not have an explicit expression for the coproduct of \(Y \); we simply use the commutation relation (86) of \(Y \) with \(A \) and the left and right vacua defined in section 2.2:

\[
< Y_1, S A_T^T A_3 > = < Y_1 S A_T^T A_3 > = < S A_T^T (R_{21})^T A_3 R_{12}^{-1} > = (R_{21})^T A_3 R_{12}^{-1} \]

\[
\Rightarrow C_{(ij)}^{(kl)}_{(mn)} = ((R_{21})^T A_3 R_{12}^{-1})^{ikl} jmn.
\]

The matrix \(Y \) becomes the identity matrix in the classical limit, so \(X \equiv (I - Y)/\lambda \) is a better choice; it has the additional advantage that it has zero counit and its coproduct (144) resembles the coproduct of classical differential operators and therefore allows us to write the adjoint action (147) as a generalized commutator:

\[
Y_A \triangleright X_B = Y_{A(1)} X_B S(Y_{A(2)}) = O_A^D X_B S(Y_D) = O_A^D X_B S(O_D^E)(I_E - \lambda X_E + \lambda X_E)
\]

\[
= Y_A X_B + (O_A^E \triangleright X_B)\lambda X_E = Y_A X_B + \lambda < O_A^E, A^D_B > X_D X_E,
\]

with: \(O_D^E I_E = Y_D, \quad S(O_D^E)Y_E = I_D; \)

\[
\Rightarrow X_A \triangleright X_B = X_A X_B - < O_A^E, A^D_B > X_D X_E.
\]

Following the notation of reference [18] we introduce the \(N^4 \times N^4 \) matrix,

\[
\mathbb{R}_{AB}^{DE} := < O_A^E, A^D_B >, \quad \mathbb{R}_{(mn)(kl)}^{(pq)} = ((R_{31})^{-1} T_4 R_{41} R_{24} (R_{23} T_3) - 1)^{ikmn} jkpq,
\]

but realize when considering the above calculation that \(\mathbb{R} \) is not the “\(R \)-matrix in the adjoint representation” — that would be \(\mathbb{R}, A^E_A \otimes A^D_B > \)
— but rather the R-matrix for the braided commutators of g_q, giving the commutation relations of the generators a form resembling an (inhomogeneous) quantum plane.

Now we can write down the generalized Cartan equations of a quantum Lie algebra g_q:

\[
X_A \triangleright X_B = X_A X_B - \hat R^{DE}_{AB} X_D X_E = X_C f_A^{C_B},
\]

where, from equation (159),

\[
f_A^{C_B} = (I_A^{C_B} - C_A^{C_B})/\lambda.
\]

Equation (163) is strictly only valid for systems of N^2 generators with an $N^2 \times N^2$ matrix $\hat R$ because $X \in M_N(g_q)$ in our construction. Some of these N^2 generators and likewise some of the matrix elements of $\hat R$ could of course be zero, but let us anyway consider the more general case of equation (155). We will assume a set of n generators X_{b_i} corresponding to a set of n linearly independent functions \{b_i \in \text{Fun}(G_q) \mid i = 1, \ldots, n\} and an element of the pure braid group $\chi \in \text{span}(B_2)$ via:

\[
X_{b_i} = \langle \chi, b_i \otimes \text{id} \rangle. \tag{165}
\]

We will usually require that all generators have vanishing counit. A sufficient condition on the b_i’s ensuring linear closure of the generators X_{b_i} under adjoint action (155) is,

\[
\Delta^\text{Ad}(b_i) = b_j \otimes \hat M^j_i + k_l \otimes k^l_i, \tag{166}
\]

where $\hat M^j_i \in M_n(\text{Fun}(G_q))$ and $k_l, k^l_i \in \text{Fun}(G_q)$ such that $\langle \chi, k_l \otimes \text{id} \rangle = 0$. The generators will then transform like,

\[
\Delta^\chi(X_{b_i}) = X_{b_j} \otimes \hat M^j_i; \tag{167}
\]

from $(\Delta^\chi \otimes \text{id})\Delta^\chi(X_{b_i}) = (\text{id} \otimes \Delta)\Delta^\chi(X_{b_i})$ and $(\text{id} \otimes \epsilon)\Delta^\chi(X_{b_i}) = X_{b_i}$ immediately follows\[\epsilon(\hat M) = I \] and consequently $S(\hat M) = \PiThis assumes that the X_{b_i}'s are linearly independent.
M^{-1}. M is the adjoint matrix representation. We find,

$$X_{b_k} \overset{\text{ad}}{\triangleright} X_{b_i} = X_{b_j} < X_{b_k}, M_{ji}^j >,$$

(168)

as a generalization of (163) with structure constants $f_{k_i}^{j_i} = < X_{b_k}, M_{ji}^j >$. Whether $X_{b_k} \overset{\text{ad}}{\triangleright} X_{b_i}$ can be reexpressed as a deformed commutator should in general depend on the particular choice of X and $\{b_i\}$.

Equations (153) and (157) – (164) apply directly to $Gl_q(N)$ and $Sl_q(N)$ and other quantum groups in matrix form with (numerical) R-matrices. Such quantum groups have been studied in great detail in the literature; see e.g. [6, 18, 19] and references therein. In the next subsection we would like to discuss the 2-dimensional quantum euclidean algebra as an example that illustrates some subtleties in the general picture.

4.1 Bicovariant generators for $e_q(2)$

In [20] Woronowicz introduced the functions on the deformed $E_q(2)$, the corresponding algebra $U_q(e(2))$ was explicitly constructed in [21]; here is a short summary: m, \overline{m} and $\theta = \overline{\theta}$ are generating elements of the Hopf algebra $\text{Fun}(E_q(2))$, which satisfy:

$$m\overline{m} = q^2 mm, \quad e^{i\theta} m = q^2 me^{i\theta}, \quad e^{i\theta} \overline{m} = q^2 m e^{-i\theta},$$

$$\Delta(m) = m \otimes 1 + e^{i\theta} \otimes m, \quad \Delta(\overline{m}) = \overline{m} \otimes 1 + e^{-i\theta} \otimes \overline{m},$$

$$\Delta(e^{i\theta}) = e^{i\theta} \otimes e^{i\theta}, \quad S(m) = -e^{-i\theta} m, \quad S(\overline{m}) = -e^{i\theta} \overline{m},$$

$$S(\theta) = -\theta, \quad \epsilon(m) = \epsilon(\overline{m}) = \epsilon(\theta) = 0.$$

(169)

$\text{Fun}(E_q(2))$ coacts on the complex coordinate function z of the euclidean plane as $\Delta_{\mathfrak{A}}(z) = z \otimes e^{i\theta} + 1 \otimes m$; i.e. θ corresponds to rotations, m to translations. The dual Hopf algebra $U_q(e(2))$ is generated by $J = \mathcal{J}$ and $P_\pm = \overline{P}_\mp$ satisfying:

$$[J, P_\pm] = \pm P_\pm, \quad [P_+, P_-] = 0,$$

$$\Delta(P_\pm) = P_\pm \otimes q^J + q^{-J} \otimes P_\pm, \quad \Delta(J) = J \otimes 1 + 1 \otimes J,$$

$$S(P_\pm) = -q^{\pm 1} P_\pm, \quad S(J) = -J, \quad \epsilon(P_\pm) = \epsilon(J) = 0.$$

(170)
The duality between \(\text{Fun}(E_q(2)) \) and \(U_q(e(2)) \) is given by:

\[
<P^+_k P^-_l q^{mJ}, e^{i\theta a} m^b m^c> = (-1)^l q^{-1/2(k-l)(k+l-1)+l(k-1)} q^{(k+l-m)a}[k]_q [l]_q^{-1} \delta_{lb} \delta_{kc},
\]

where \(k, l, b, c \in \mathbb{N}_0, \ m, a \in \mathbb{Z} \), and,

\[
[x]_q! = \prod_{y=1}^{x} \frac{q^{2y} - 1}{q^2 - 1}, \quad [0]_q! = [1]_q! = 1.
\]

Note that \(P^+_k P^-_l \) is central in \(U_q(e(2)) \); i.e. it is a casimir operator. \(U_q(e(2)) \) does not have a (known) universal \(R \), so we have to construct an element \(X \) of \(\text{span}(B_2) \) from the casimir \(P^+_k P^-_l \):

\[
X := \frac{1}{q-q^{-1}} \{ \Delta(P^+_k P^-_l) - (P^+_k P^-_l \otimes 1) \} = \frac{1}{q-1} \{ P^+_k P^-_l \otimes (q^{2J} - 1) + P^+_k q^{-J} \otimes q^J P^-_l + P^-_l q^{-J} \otimes q^J P^+_k + q^{-2J} \otimes P^+_k P^-_l \}.
\]

\(X \) commutes with \(\Delta(x) \) for all \(x \in U_q(e(2)) \) because \(P^+_k P^-_l \) is a casimir. We introduced the second term \((P^+_k P^-_l \otimes 1) \) in \(X \) to ensure \((\partial \otimes e)X = 0 \) so that we are guaranteed to get bicovariant generators with zero counit. Now we need a set of functions which transform like (166). A particular simple choice is \(a_0 := e^{i\theta} - 1, a_+ := m, \) and \(a_- := e^{i\theta} \overline{m} \). These functions transform under the adjoint coaction as:

\[
\Delta^{Ad}(a_0, a_+, a_-) = (a_0, a_+, a_-) \otimes \begin{pmatrix} 1 & e^{-i\theta} \overline{m} & -e^{i\theta} m \\ 0 & e^{-i\theta} & 0 \\ 0 & 0 & e^{i\theta} \end{pmatrix}.
\]

Unfortunately we notice that \(a_0 \) and thereby \(X_{a_0} \) are invariant, forcing \(X_{a_0} \) to be a casimir independent of the particular choice of \(X \). Indeed we find \(X_{a_0} = qP^+_k P^-_l, \ X_{a_+} = -\sqrt{q/(q-q^{-1})} q^J P^+_k, \) and \(X_{a_-} = q/(q-q^{-1}) q^J P^-_l, \) making this an incomplete choice of bicovariant generators for \(e_q(2) \). An ansatz with four functions \(b_0 := (e^{i\theta} - 1)^2, b_1 := -me^{i\theta} \overline{m}, b_+ := -(e^{i\theta} - 1)m, \)
and \(b_- := q^{-2}(e^{i\theta} - 1)e^{i\theta m} \) gives:

\[
\Delta^\text{Ad}(b_0, b_1, b_+, b_-) = (b_0, b_1, b_+, b_-) \otimes \begin{pmatrix}
1 & \overline{m}m & -e^{-i\theta}m & -q^{-2}e^{i\theta\overline{m}} \\
0 & 1 & 0 & 0 \\
0 & -\overline{m} & e^{-i\theta} & 0 \\
0 & -m & 0 & e^{i\theta}
\end{pmatrix}.
\]

The corresponding bicovariant generators are:

\[
X_{b_0} = q(q^2 - 1)P_+P_-,
X_{b_+} = (q - q^{-1})^{-1}(q^{2j} - 1),
X_{b_+} = q^jP_+,
X_{b_-} = qq^jP_-.
\]

In the classical limit \((q \to 1)\) these generators become “zero”, \(J\), \(P_+\), and \(P_-\) respectively. The same generators and their transformation properties can alternatively be obtained by contracting the bicovariant calculus on \(SU_q(2)\).

The commutation relations of the generators follow directly from (170), their adjoint actions are calculated from (168), (171), and (174) and finally the commutation relations of the generators with the functions can be obtained from (52), (169) and (170).

5 Conclusion

In the first two sections we generalized the classical concept of an algebra of differential operators to quantum groups, combining the “functions on the quantum group” \(\text{Fun}({\mathfrak{g}}_q)\) and the universal enveloping algebra \(U_q{\mathfrak{g}}\) into a single algebra. This structure, called the cross product \(\text{Fun}({\mathfrak{g}}_q)\rtimes U_q{\mathfrak{g}}\), is a Hopf algebra version of the classical semidirect product of two algebras. We proceeded by extending the natural coaction of \(\text{Fun}({\mathfrak{g}}_q)\) i.e. its coproduct, to the combined algebra \(\text{Fun}({\mathfrak{g}}_q)\rtimes U_q{\mathfrak{g}}\), introducing a left and right \(\text{Fun}({\mathfrak{g}}_q)\)-coaction on \(U_q{\mathfrak{g}}\). This coactions are to be interpreted as giving the transformation properties of the elements of \(U_q{\mathfrak{g}}\). In our construction we chose all elements of \(U_q{\mathfrak{g}}\) to be left invariant \((\Delta(x) = 1 \otimes x)\) and give
a general formula (72) for the right coaction Δ_A. The problem with the right coaction is that it is hard to compute as it will generally give infinite power series in the generators of $U_q\mathfrak{g}$ and $\text{Fun}(\mathfrak{g}_q)$. At the end of section 2 we showed how a large subset of $U_q\mathfrak{g}$ with “nice” transformation properties arises via the use of invariant maps from $\text{Fun}(\mathfrak{g}_q)$ to $U_q\mathfrak{g}$, which are given by polynomials in elements of the pure braid group. In this article we were not interested in a possible extension of the $U_q\mathfrak{g}$-coaction from $U_q\mathfrak{g}$ to $\text{Fun}(\mathfrak{g}_q) \rtimes U_q\mathfrak{g}$. Such a program would likely lead to braided linear algebras as they are considered in [12]. In section 3 we utilized the invariant maps to translate (matrix) expressions known for $\text{Fun}(\mathfrak{g}_q)$ to corresponding relations in $U_q\mathfrak{g}$ that would be very hard to obtain directly. The subset of elements of $U_q\mathfrak{g}$ that we obtained through the use of invariant maps turns out to close into itself under adjoint actions and this leads naturally to the introduction of a class of generalized Lie algebras in section 4. The adjoint action in $U_q\mathfrak{g}$ is directly related to the transformation properties of its elements and so it comes as no surprise that a finite set of bicovariant generators can generate a closed quantum Lie algebra. It is the adjoint action that is important for physical applications as e.g deformed gauge theories. A general feature of these quantum Lie algebras is that they typically contain more generators than their classical counterparts. These extra generators are casimir operators that only decouple in the classical limit ($q \to 1$) as we illustrated at the example of the 2-dimensional quantum euclidean group.

Acknowledgements

We would like to thank Chryss Chryssomalakos for help in clarifying some of the topics treated. One of the authors (PS) wishes to thank Marc Rosso and N.Yu.Reshetikhin for helpful discussions and Claudia Herold for inspiration to section 3.
References

[1] S. L. Woronowicz, Commun. Math. Phys. 122 125 (1989)

[2] S. Majid, Int. J. Mod. Phys. A 5 1 (1990)

[3] M. E. Sweedler, Hopf Algebras, (Benjamin, 1969)

[4] V. G. Drinfel’d, Proc. Int. Congr. Math., Berkeley 798 (1986)

[5] S. L. Woronowicz, Commun. Math. Phys. 111 613 (1987)

[6] N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Leningrad Math. J. 1 193 (1990)

[7] P. Schupp, P. Watts, and B. Zumino, Lett. Math. Phys. 25 139 (1992)

[8] N. Yu. Reshetikhin, Leningrad Math. J. 1 (2) 491 (1990)

[9] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, Lett. Math. Phys. 19 (1990)

[10] B. Jurčo, Lett. Math. Phys. 22 177 (1991)

[11] P. P. Kulish, R. Sasaki, C. Schwiebert, Preprint YITP/U-92-07 (March 1992)

[12] S. Majid, Preprint, DAMTP/92-12

[13] B. Zumino, in: K. Schmüdgen (Ed.), Math. Phys. X, Proc. X-th IAMP Conf. Leipzig (1991), Springer-Verlag (1992)

[14] C. Chryssomalakos, Mod. Phys. Lett. A, and Preprint, LBL-32442

[15] C. Chryssomalakos, B. Drabant, M. Schlieker, W. Weich, B. Zumino, Commun. Math. Phys. 147 (3) 635 (1992)
[16] B. Drabant, B. Jurčo, M. Schlieker, W. Weich, B. Zumino, Preprint UCB-PTh 92/16 and LBL-32354

[17] S. Majid, Preprint, DAMTP/92-10

[18] D. Bernard, Prog. of Theoretical Phys. Supp. 102 49 (1990)

[19] P. Aschieri, L. Castellani, Preprint, CERN-TH.6565/92

[20] S.L. Woronowicz, Lett. Math. Phys. 23 251 (1991)

[21] P. Schupp, P. Watts, B. Zumino, Lett. Math. Phys 24 141 (1992)