Supplementary Materials for

Coral reef diversity losses in China’s Greater Bay Area were driven by regional stressors

Jonathan D. Cybulski, Stefan M. Husa, Nicolas N. Duprey, Briony L. Mamo, Toby P. N. Tsang, Moriaki Yasuhara, James Y. Xie, Jian-Wen Qiu, Yusuke Yokoyama, David M. Baker*

*Corresponding author. Email: dmbaker@hku.hk

Published 2 October 2020, Sci. Adv. 6, eabb1046 (2020)
DOI: 10.1126/sciadv.abb1046

This PDF file includes:

Supplementary Methods
Figs. S1 to S5
Tables S1 to S5
Supplementary Materials

Supplementary Methods

Core processing methods
Each 5-cm segment was dried, weighed, and wet-sieved to separate fine-grained (<0.063 mm), sand-sized (>2 mm), and coarser clastic materials (>4 mm). The coarse (>4 mm) fraction was then oven-dried and retained for sub-fossil collection and analysis. Taxonomic analysis to generic level identification followed procedures outlined in Johnson et al. (46), with identifications checked using local coral taxonomy guide book (63) as well as Corals of the World (64). Over 5,000 individual coral specimens (~ 55 kg of coral carbonate material) were recovered and identified.

Core Accretion Rates
Estimates for core accretion rates were calculated based on the AMS-\(^{14}\)C dates, using the global marine reservoir correction. First, the cores were re-expanded based on their measured penetration depth vs. their measured recovery depth. To calculate estimates of vertical reef accretion, the expanded length of an interval was then divided by the time over which that interval had accreted. Throughout the cores, there were numerous age reversal (particularly in the East Region). To account for this, age anomalies (older ages resting above younger ages) were removed before linear accretion was calculated. Accretion rates were also determined for the core as a whole: the bottom segment depth was divided by the measured age to get an average core accretion rate. In all cases, the most recent accretion rate and entire core accretion rate was within an order of magnitude of one another (Table. S1).

Acropora sub-fossil collection
Although Hong Kong waters experience variable hydraulic conditions controlled by tides, runoff, wind, large heat fluxes and coastal currents, the major annual forces controlling water and sediment transport are changes in the Pearl River discharge during the wet (March – October) and dry (November – February) seasons, and typhoons. In general, the wet season is characterized by a strong discharge of river water, causing a strong west-to-east current throughout the study area (49, 74, 75). Though this gradient changes during the dry season and currents shift to an east-to-west pattern, the velocity is greatly reduced (74, 75). If post-mortem transport of Acropora skeletons were to occur laterally at the scale of our study site, it seems likely that they would be transported during the strongest currents in the wet season, moving them from west-to-east; this could therefore result in an under-representation of the historical range. Typhoons are another possible cause of skeleton transport within the study area. Although the province of our study area is impacted by about six typhoons per year (data from the Hong Kong Observatory, accessed Jan 2020: https://www.hko.gov.hk/en/informtc/tcStatTable4c.htm), we do not think this would cause a major lateral shift in skeletal fragments that would explain our observed pattern. More likely, the typhoons would create high wave energy within the individual sheltered bays and beaches that would transport coral skeletons from their in situ resting place and deposit them up the beach (76). Though skeletal transport varies amongst different coral morphologies (77), we only collected branching Acropora, which would have been transported uniformly around the study site. Therefore, even if coral skeletons were transported from their in-situ mortality location to the adjacent beach during a typhoon, they would still have been collected which would indicate their presence in that area. Finally, the general geography of Hong Kong’s shorelines, comprised of numerous small ways and spits would also inhibit the lateral transport of skeletons over long distances.
Fig. S1. iNEX rarefaction curves for South and East region, respectively, and sampling completeness curve for historical and modern datasets.
Fig. S2. nMDS plots of historical and modern datasets, plotted separately. The same data was used here as was plotted in Fig. 4, except historical and modern were analyzed in two separate nMDS plots. The separation of the East and South Region in the modern data, and the overlap in the sub-fossil data remains the same.
Fig. S3. Maps showing EPD water sampling stations around Hong Kong, and the grids used to pool coral and water quality data.
Fig. S4. Core composition by depth. Cores are presented in raw, un-expanded depths showing the composition is *Acropora* vs. all other genera combined. All cores from the East and South Regions are shown in Panel A, labeled by site abbreviations and replicate (A-D). Cores selected for 14C are in Panel B; dates are in year before present (1950) and highlighted in bold/italicized font.
Fig. S5. nMDS of coral community composition. nMDS of the same community composition data presented in Panel A, but split into three temporal bins and re-ordinated; sub-fossil (black) representing the lower sections of the cores, recently dead coral (dark grey) representing the top 10cm of each core, and modern (light grey). Called out to the right are stress vectors created using `envfit` with the coral genera scores, shown only for genera that are statistically significant in driving the spread shown in the nMDS.
Table. S1. Radiometric 14C dating results.
*Accretion rates listed were determined by dividing the expanded depth at that interval listed by the corrected YBP age. Average accretion rates for the entire core based on just the bottom date are underlined; other listed accretion dates are those calculated when possible for intervals ignoring age-reversals (See Supplementary Methods).

Location	Region	Depth (cm)	Expanded depth (cm)	Core ID	Sample	Conventional Age	Error +/-	Calendar Age (95%)	Corrected YBP	Lab	Accretion rate (mm/year)*
Bluff Island	East	95-100	300	BluffIsland_1	Coral, Acropora sp.	960	30	1328 – 1447 AD	563	BETA Analytic	5.3
Bluff Island	East	65-70	205	BluffIsland_1	Coral, Acropora sp.	520	30	1695 – 1900 AD	153	BETA Analytic	2.3
Bluff Island	East	30-35	95	BluffIsland_1	Coral, Acropora sp.	920	30	1348 – 1472 AD	540	BETA Analytic	-
Sham Wan	South	130-135	300	ShamWan_1	Coral, Acropora sp.	4700	30	3073 – 2889 BC	4930	BETA Analytic	0.61
Sham Wan	South	85-90	196	ShamWan_1	Coral, Acropora sp.	3920	30	2067 – 1856 BC	3911	BETA Analytic	1.0
Sham Wan	South	40-45	92	ShamWan_1	Coral, Acropora sp.	3290	30	1278 – 1061 BC	3119	BETA Analytic	1.3
Bluff Island	East	40-45	120	BluffIsland_2	Marine bivalve	536	30	1633 AD	317	Japan – YSAMS	3.8
Bluff Island	East	30-35	90	BluffIsland_2	Marine bivalve	1374	30	895 AD	1055	Japan – YSAMS	-
Bluff Island	East	15-20	45	BluffIsland_2	Marine bivalve	modern	-	modern	-	Japan – YSAMS	-
Bluff Island	East	0-5	0	BluffIsland_2	Marine bivalve	1667	35	609 AD	1341	Japan – YSAMS	-
North Soko	South	75-80	150	NorthSoko_1	Marine bivalve	4952	44	3489 BC	5439	Japan – YSAMS	0.28
North Soko	South	55-60	110	NorthSoko_1	Marine bivalve	4815	41	3334 BC	5284	Japan – YSAMS	0.21
North Soko	South	25-30	50	NorthSoko_1	Marine bivalve	5009	43	3551 BC	5501	Japan – YSAMS	-
North Soko	South	0-5	0	NorthSoko_1	Marine bivalve	modern	-	modern	-	Japan – YSAMS	-
Table S2. Water quality parameters table: 1986 – 2013, dates inclusive.
Data show are the means ± standard deviation (total combined measurements).

Region	EPD stations	Grid	Chla (mg.l⁻¹)	PSM (mg.l⁻¹)	DIN (μM)	DIP (μM)	DO (mg.l⁻¹)	Salinity (psu)	Turbidity (NTU)	Temperature (°C)	pH
East HK	MM3, MM4	25	2.4 ± 2.4 (451)	1.9 ± 1.8 (452)	2.1 ± 2.2 (452)	0.09 ± 0.06 (452)	6.9 ± 1.2 (452)	31.8 ± 1.7 (450)	4.8 ± 3.9 (452)	24.0 ± 4.7 (452)	8.2 ± 0.21
East HK	MM2, MM7	24	3.3 ± 3.2 (450)	1.8 ± 1.6 (452)	2.4 ± 2.7 (452)	0.08 ± 0.06 (452)	6.9 ± 1.4 (452)	31.5 ± 1.8 (450)	5.0 ± 4.5 (226)	24.2 ± 4.6 (226)	8.2 ± 0.21
East HK	MM5	21	1.8 ± 1.7 (227)	1.7 ± 1.9 (227)	1.9 ± 2.3 (227)	0.09 ± 0.06 (227)	6.9 ± 1.2 (227)	31.9 ± 1.5 (227)	4.6 ± 3.7 (227)	23.8 ± 4.6 (227)	8.2 ± 0.21
East HK	MM17	20	2.4 ± 3.7 (380)	1.9 ± 2.5 (380)	2.0 ± 2.3 (378)	0.09 ± 0.08 (380)	7.1 ± 1.3 (379)	31.7 ± 1.6 (378)	3.7 ± 3.7 (381)	23.4 ± 4.8 (381)	8.2 ± 0.23
East HK	PM1, PM2, PM3, PM6	14	3.1 ± 2.9 (1293)	2.1 ± 2.2 (1292)	2.4 ± 2.0 (1291)	0.11 ± 0.09 (1294)	6.8 ± 1.3 (1284)	31.5 ± 2.0 (1290)	4.0 ± 3.2 (1298)	23.9 ± 4.9 (1293)	8.2 ± 0.22
East HK	MM15	13	1.6 ± 1.2 (196)	1.5 ± 1.6 (196)	1.8 ± 1.2 (196)	0.09 ± 0.06 (196)	6.9 ± 1 (196)	32.0 ± 1.9 (196)	5.8 ± 10.1 (196)	23.8 ± 4.4 (196)	8.2 ± 0.28
East HK	PM8, PM9, PM11	12	1.9 ± 1.7 (913)	1.7 ± 2.5 (911)	2.0 ± 1.4 (914)	0.10 ± 0.07 (914)	6.9 ± 1 (913)	32.0 ± 1.7 (914)	4.4 ± 3.5 (243)	23.6 ± 4.6 (243)	8.2 ± 0.21
East HK	PM7	11	1.9 ± 2.1 (335)	1.9 ± 3.5 (335)	2.0 ± 1.6 (336)	0.10 ± 0.1 (336)	7.0 ± 1.2 (334)	31.8 ± 1.7 (336)	3.7 ± 3.1 (336)	23.7 ± 4.8 (336)	8.2 ± 0.23
East HK	MM19	10	3.3 ± 4.3 (155)	1.6 ± 1.1 (155)	2.1 ± 1.3 (155)	0.08 ± 0.05 (155)	7.0 ± 1.2 (155)	32.3 ± 1.6 (155)	6.3 ± 8.1 (155)	23.6 ± 4.2 (155)	8.2 ± 0.21
South HK	SM1	8	3.7 ± 4.6 (252)	2.9 ± 2.1 (250)	3.1 ± 2.9 (251)	0.10 ± 0.08 (251)	7.0 ± 1.3 (253)	31.1 ± 3.4 (254)	5.3 ± 3.9 (254)	23.7 ± 4.4 (255)	8.2 ± 0.24
South HK	MM8	7	4.0 ± 4.5 (239)	1.9 ± 1.4 (240)	2.8 ± 2.2 (240)	0.11 ± 0.09 (240)	7.1 ± 1.1 (239)	31.7 ± 2.7 (240)	5.2 ± 7.1 (239)	23.7 ± 4.1 (240)	8.1 ± 0.25
South HK	SM5, SM6, SM18	5	4.7 ± 6.5 (737)	4.0 ± 3.3 (738)	4.7 ± 3.8 (736)	0.13 ± 0.12 (736)	7.1 ± 1.3 (739)	30.2 ± 4.5 (745)	6.5 ± 5.9 (745)	23.9 ± 4.4 (745)	8.2 ± 0.24
South HK	SM9, SM10	4	5.6 ± 7.1 (486)	7.1 ± 5.9 (486)	9.0 ± 4.0 (486)	0.22 ± 0.17 (486)	6.6 ± 1.3 (486)	29.9 ± 3.4 (489)	8.9 ± 6.1 (250)	23.6 ± 4.7 (250)	8.1 ± 0.26
South HK	SM11, SM12	3	6.8 ± 8.3 (500)	6.9 ± 6.9 (496)	7.0 ± 3.8 (496)	0.18 ± 0.14 (496)	7.0 ± 1.4 (499)	30.0 ± 3.6 (500)	8.0 ± 5.6 (501)	23.8 ± 4.3 (501)	8.1 ± 0.25
Table S3. **PERMANOVA results.** A) PERMANOVA analysis to test for differences in past (sub-fossil) and modern (coral transect) datasets. Post-hoc pairwise analysis to test for differences in: B) modern data (South vs. East region); and C) historical data (South vs. East region). D) PERMANOVA analysis to test for difference in three time bins: modern (transect data), recently dead (top of cores), sub-fossil (lower portions of cores). Post-hoc pairwise analysis to test for differences in: E) modern data (East vs. South); F) recently dead data (East vs. South); G) sub-fossil data (East vs. South); H) recently dead vs. sub-fossil (South Region); and I) recently dead vs. sub-fossil (East Region).

A) PERMANOVA between past and modern

Source	Df	SS	MS	F.Model	Pr(>F)
Age	1	6.0326	6.0326	24.1220	0.0001***
Location	2	1.4839	0.7419	2.9667	0.0004***
Residuals	94	23.5081	0.2501		
Total	97	31.0246			

B) East vs. South, modern

Source	Df	SS	MS	F.Model	Pr(>F)
Region	1	1.3963	1.3963	5.1955	0.0002***
Residuals	67	18.0065	0.26875		
Total	68	19.4028			

C) East vs. South, past

Source	Df	SS	MS	F.Model	Pr(>F)
Region	1	0.0875	0.08754	0.4296	0.9135
Residuals	27	5.5017	0.20376		
Total	28	5.5892			

D) PERMANOVA between modern, recently dead, and sub-fossil

Source	Df	SS	MS	F.Model	Pr(>F)
Age	2	8.756	4.3780	16.9771	0.0001***
Location	3	1.869	0.6319	2.4505	0.0013**
Residuals	119	30.687	0.2579		
Total	124	41.339			

E) East vs. South, modern

Source	Df	SS	MS	F.Model	Pr(>F)
Region	1	1.3963	1.3963	5.1955	0.0005***
Residuals	67	18.0065	0.26875		
Total	68	19.4028			
F) East vs. South, recently dead

Source	Df	SS	MS	F.Model	Pr(>F)
Region	1	0.2890	0.28899	0.99108	1.00
Residuals	27	7.2897	0.29159		
Total	28	7.5787			

G) East vs. South, sub-fossil

Source	Df	SS	MS	F.Model	Pr(>F)
Region	1	0.2121	0.21207	1.0615	1.00
Residuals	27	5.3942	0.19978		
Total	28	5.6063			

H) South, recently dead vs. sub-fossil

Source	Df	SS	MS	F.Model	Pr(>F)
Region	1	0.1473	0.14725	0.82258	1.00
Residuals	19	3.4013	0.17902		
Total	20	3.5486			

I) East, recently dead vs. sub-fossil

Source	Df	SS	MS	F.Model	Pr(>F)
Region	1	0.2370	0.23697	0.84244	1.00
Residuals	33	9.2826	0.28129		
Total	34	9.5196			
Table. S4. *Lmer* results. A-E) Multiple comparison of means results with Tukey contrasts, for five mixed linear models run with Time as the fixed effect and Site as a random effect. A) Coral generic richness in Northwest Mirs Bay region; B) Coral cover in Northwest Mirs Bay region; C) Coral generic richness in Tolo Harbor; D) Coral cover in Tolo Harbor; E) *Acropora* presence/absence over time.

A) Northwest Mirs Bay
Fit: `lmer(formula = Generic.Richness ~ Time + (1 | Site), data = nehk)`

| Linear Hypotheses: | Estimate | Std. Error | z value | Pr(>|z|) |
|--------------------|----------|------------|---------|----------|
| 1981-1989 - 1980 == 0 | -1.4545 | 1.2122 | -1.200 | 0.691 |
| 1990-2009 - 1980 == 0 | -0.6943 | 1.4364 | -0.483 | 1.00 |
| 2010 - 1980 == 0 | -4.4736 | 1.3527 | -3.307 | 0.006 ** |
| 1990-2009 - 1981-1989 == 0 | 0.7602 | 1.4364 | 0.529 | 1.00 |
| 2010 - 1981-1989 == 0 | -3.0190 | 1.3527 | -2.232 | 0.103 |
| 2010- 1990-2009 == 0 | -3.7793 | 1.4311 | -2.641 | 0.041 * |

B) Northwest Mirs Bay
Fit: `lmer(formula = Coral.Cover ~ Time + (1 | Site), data = nehk)`

| Linear Hypotheses: | Estimate | Std. Error | z value | Pr(>|z|) |
|--------------------|----------|------------|---------|----------|
| 1981-1989 - 1980 == 0 | -25.727 | 7.143 | -3.602 | 0.002 ** |
| 1990-2009 - 1980 == 0 | -23.794 | 8.251 | -2.884 | 0.016 * |
| 2010 - 1980 == 0 | -30.166 | 7.635 | -3.951 | < 0.001 *** |
| 1990-2009 - 1981-1989 == 0 | 1.933 | 8.251 | 0.234 | 1.00 |
| 2010 - 1981-1989 == 0 | -4.438 | 7.635 | -0.581 | 1.00 |
| 2010- 1990-2009 == 0 | -6.371 | 8.168 | -0.780 | 1.00 |

C) Tolo Harbor
Fit: `lmer(formula = Generic.Richness ~ Time + (1 | Site), data = tolo)`

| Linear Hypotheses: | Estimate | Std. Error | z value | Pr(>|z|) |
|--------------------|----------|------------|---------|----------|
| 1981-1989 - 1980 == 0 | -4.00000 | 2.19893 | -1.819 | 0.276 |
| 1990-2009 - 1980 == 0 | -7.85886 | 2.37140 | -3.314 | 0.005 ** |
| 2010 - 1980 == 0 | -7.87184 | 2.37140 | -3.319 | 0.005 ** |
| 1990-2009 - 1981-1989 == 0 | 3.85886 | 2.37140 | -1.627 | 0.308 |
| 2010 - 1981-1989 == 0 | -3.87184 | 2.37140 | -1.633 | 0.308 |
| 2010- 1990-2009 == 0 | -0.01298 | 2.55515 | -0.005 | 0.996 |
D) Tolo Harbor
Fit: `lmer(formula = Coral.Cover ~ Time + (1 | Site), data = tolo)`

Linear Hypotheses:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|----------|
| 1981-1989 - 1980 == 0 | -28.200 | 13.175 | -2.140 | 0.130 |
| 1990-2009 - 1980 == 0 | -38.516 | 14.186 | -2.715 | 0.033 * |
| 2010 - 1980 == 0 | -45.510 | 13.175 | -3.227 | 0.008 ** |
| 1990-2009 - 1981-1989 == 0 | -10.316 | 14.186 | -0.727 | 0.934 |
| 2010 - 1981-1989 == 0 | -14.310 | 13.175 | -1.086 | 0.832 |
| 2010- 1990-2009 == 0 | -3.994 | 14.186 | -0.282 | 0.934 |

E)
Fit: `lmer(Acro_PA ~ Time + (1|Site), data = Coraldiv2)`

Linear Hypotheses:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|----------|
| 1981-1989 - 1980 == 0 | -0.2500 | 0.1188 | -2.1404 | 0.106 |
| 1990-2009 - 1980 == 0 | -0.4326 | 0.1323 | -3.269 | 0.005 ** |
| 2010 - 1980 == 0 | -0.5926 | 0.1229 | -4.825 | < 0.001 *** |
| 1990-2009 - 1981-1989 == 0 | -0.1826 | 0.1323 | -1.380 | 0.335 |
| 2010 - 1981-1989 == 0 | -0.3428 | 0.1229 | -2.790 | 0.021 * |
| 2010- 1990-2009 == 0 | -0.1602 | 0.1313 | -1.220 | 0.335 |
Table S5. Compilation of coral survey data for sites in Northeast Hong Kong and Tolo Harbour from 1980 to 2013.
For analysis, data were pooled by Region, and time bins. Citations used for analysis are included in the main text reference list.

Site	Region	Data	1980 surveys 58,71,72	1981-1989 58,68	1990-2009 58,66,67,69,117	2010-present 70, current study
Coral beach	NE HK	Coral Cover	75	75	81	63
Flat Island	NE HK	Coral Cover	52		43	
Moon Island	NE HK	Coral Cover	81	19	52	22
Sam Po Rock	NE HK	Coral Cover	51		27	
Green Point	NE HK	Coral Cover	56		52	
Porites Flat	NE HK	Coral Cover	76		8	
Hoi Ha Pier N.	NE HK	Coral Cover	71	51	43	89
Hoi Ha Pier	NE HK	Coral Cover	69		48	
WunPai (Crescent island)	NE HK	Coral Cover			54	44
Au yue Tsui	NE HK	Coral Cover			22	
Ta Ho Pai	NE HK	Coral Cover			13	
LaiChi Wo	NE HK	Coral Cover			36	
Ngau Si Wu Wan	NE HK	Coral Cover			28	
Wong Chuk Kok Tsui	NE HK	Coral Cover			22	
Wong Wan Chau	NE HK	Coral Cover			11	
Crescent Island	NE HK	Coral Cover			9	
Kat O (2)	NE HK	Coral Cover			54	
Kat O	NE HK	Coral Cover			32	
Gruff head 1	Tolo Harbor	Coral Cover	68	34	46	
Gruff head 2	Tolo Harbor	Coral Cover	57		16	
Gruff Head	Tolo Harbor	Coral Cover	70	70	38	24
Chek Chau	Tolo Harbor	Coral Cover	90	90	59	31
Knob Reef	Tolo Harbor	Coral Cover	80	5	2	1
Bush Reef	Tolo Harbor	Coral Cover	70	10	1	1
A Chau	Tolo Harbor	Coral Cover	5	0	0	
Taipo Kau	Tolo Harbor	Coral Cover	1	0	0	0
Coral beach	NE HK	Generic Richness	12	11	7	9
Flat Island	NE HK	Generic Richness	11		9	
Moon Island	NE HK	Generic Richness	13	6	11	2
Sam Po Rock	NE HK	Generic Richness	12	9		
Green Point	NE HK	Generic Richness	9	8		
Place	Location	Study	Generic Richness	Acropora P/A		
---------------------------	---------------	-------	------------------	--------------		
Porites Flat	NE HK	Generic Richness	5	8		
Hoi Ha Pier N.	NE HK	Generic Richness	11	9	12	12
Hoi Ha Pier	NE HK	Generic Richness	8	8		
WunPai (Crescent island)	NE HK	Generic Richness	15	9		
Au yue Tsui	NE HK	Generic Richness	14			
Ta Ho Pai	NE HK	Generic Richness	14			
LaiChi Wo	NE HK	Generic Richness	9			
Ngau Si Wu Wan	NE HK	Generic Richness	6			
Wong Chuk Kok Tsui	NE HK	Generic Richness	2			
Wong Wan Chau	NE HK	Generic Richness	1			
Crescent Island	NE HK	Generic Richness	5			
Kat O (2)	NE HK	Generic Richness	7			
Kat O	NE HK	Generic Richness	5			
Gruff head 1	Tolo Harbor	Generic Richness	11	14	11	
Gruff head 2	Tolo Harbor	Generic Richness	13	7		
Gruff Head	Tolo Harbor	Generic Richness	19	19	11	16
Chek Chau	Tolo Harbor	Generic Richness	19	19	17	10
Knob Reef	Tolo Harbor	Generic Richness	15	7	4	10
Bush Reef	Tolo Harbor	Generic Richness	17	12	1	5
A Chau	Tolo Harbor	Generic Richness	11	6	2	
Taipo Kau	Tolo Harbor	Generic Richness	2	0	0	0
Coral beach	NE HK	Acropora P/A	1	1	0	0
Flat Island	NE HK	Acropora P/A	1	1	0	
Moon Island	NE HK	Acropora P/A	1	1	1	0
Sam Po Rock	NE HK	Acropora P/A	0	1		
Green Point	NE HK	Acropora P/A	0	0		
Porites Flat	NE HK	Acropora P/A	1	0	0	
Hoi Ha Pier N.	NE HK	Acropora P/A	1	0	0	0
Hoi Ha Pier	NE HK	Acropora P/A	1	0	0	
WunPai (Crescent island)	NE HK	Acropora P/A	0	0		
Au yue Tsui	NE HK	Acropora P/A	0			
Place	Location	Acropora P/A	Count			
---------------	----------	--------------	-------			
Ta Ho Pai	NE HK	Acropora P/A	0			
LaiChi Wo	NE HK	Acropora P/A	0			
Ngau Si Wu Wan	NE HK	Acropora P/A	0			
Wong Chuk Kok Tsui	NE HK	Acropora P/A	0			
Wong Wan Chau	NE HK	Acropora P/A	0			
Crescent Island	NE HK	Acropora P/A	1			
Kat O (2)	NE HK	Acropora P/A	0			
Kat O	NE HK	Acropora P/A	0			
Gruff head 1	Tolo Harbor	Acropora P/A	1			
Gruff head 2	Tolo Harbor	Acropora P/A	1			
Gruff Head	Tolo Harbor	Acropora P/A	1			
Chek Chau	Tolo Harbor	Acropora P/A	1			
Knob Reef	Tolo Harbor	Acropora P/A	1			
Bush Reef	Tolo Harbor	Acropora P/A	1			
A Chau	Tolo Harbor	Acropora P/A	0			
Taipo Kau	Tolo Harbor	Acropora P/A	0			