Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism

Kory, Nora; Grond, Susanne; Kamat, Siddhesh S; Li, Zhihuan; Krahmer, Natalie; Chitraju, Chandramohan; Zhou, Ping; Fröhlich, Florian; Semova, Ivana; Ejsing, Christer; Zechner, Rudolf; Cravatt, Benjamin F; Farese, Robert V; Walther, Tobias C

Published in:
Journal of Lipid Research

DOI:
10.1194/jlr.M072538

Publication date:
2017

Document version
Final published version

Citation for published version (APA):
Kory, N., Grond, S., Kamat, S. S., Li, Z., Krahmer, N., Chitraju, C., Zhou, P., Fröhlich, F., Semova, I., Ejsing, C., Zechner, R., Cravatt, B. F., Farese, R. V., & Walther, T. C. (2017). Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism. Journal of Lipid Research, 58(1), 226-235. https://doi.org/10.1194/jlr.M072538

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:
• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version
If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism

Nora Kory, Susanne Grond, Siddhesh S. Kamat, Zhihuan Li, Natalie Krahmer, Chandramohan Chitraju, Ping Zhou, Florian Fröhlich, Ivana Semova, Christer Ejsing, Rudolf Zechner, Benjamin F. Cravatt, Robert V. Farese, Jr., and Tobias C. Walther

Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA; Institute of Molecular Biosciences, University of Graz, Graz, Austria; Department of Chemical Physiology and Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany; Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA; Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Department of Cell Biology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; and Howard Hughes Medical Institute, Boston, MA

Abstract

Variations in the gene LDAH (C2ORF43), which encodes lipid droplet-associated hydrolase (LDAH), are among few loci associated with human prostate cancer. Homologs of LDAH have been identified as proteins of lipid droplets (LDs). LDs are cellular organelles that store neutral lipids, such as triacylglycerols and sterol esters, as precursors for membrane components and as reservoirs of metabolic energy. LDAH is reported to hydrolyze cholesterol esters and to be important in macrophage cholesterol ester metabolism. Here, we confirm that LDAH is localized to LDs in several model systems. We generated a murine model in which LDAH is disrupted but found no evidence for a major function of LDAH in cholesterol ester or triacylglycerol metabolism in vivo, nor a role in energy or glucose metabolism. Our data suggest that LDAH is not a major cholesterol ester hydrolase, and an alternative metabolic function may be responsible for its possible effect on development of prostate cancer.—Kory, N., S. Grond, S. S. Kamat, Z. Li, N. Krahmer, C. Chitraju, P. Zhou, F. Fröhlich, I. Semova, C. Ejsing, R. Zechner, B. F. Cravatt, R. V. Farese, Jr., and T. C. Walther. Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism. J. Lipid Res. 2017. 58: 226-235.

Supplementary key words lipase • lipoprotein metabolism • cholesterol efflux • triglycerides • animal models

Lipid droplets (LDs) are cellular organelles that are important for energy and lipid metabolism (1, 2). LD accumulation is a hallmark of obesity and is linked to the metabolic syndrome and type II diabetes. LD accumulation is central to atherosclerosis development, in which macrophages in arterial walls accumulate cholesterol esters (CEs) in LDs to become foam cells. Finally, LDs accumulate in many carcinomas (3), and LDs and lipid metabolism are connected to renal clear cell carcinoma and prostate cancer (4-8).

Abbreviations: ATGL, adipose triglyceride lipase; BAT, brown adipose tissue; CE, cholesterol ester; ER, endoplasmic reticulum; HFD, high-fat diet; HSL, hormone sensitive lipase; LD, lipid droplet; LDAH, lipid droplet-associated hydrolase; TG, triacylglycerol; WAT, white adipose tissue.

1 Present address of S. S. Kamat: Department of Biology and Chemistry, Indian Institute of Science Education and Research, Pune, India.

2 Present address of F. Fröhlich: Molecular Membrane Biology Section, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.

3 R. V. Farese, Jr., and T. C. Walther contributed equally to this work.

4 To whom correspondence should be addressed.

5 The online version of this article (available at http://www.jlr.org) contains a supplement.

Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Among genes that encode LD proteins, LDAH is associated with prostate cancer. The SNP rs13385191 in intron 6 of LDAH is associated with increased prostate cancer risk (9–12). A rare A>G variant is associated with a difference in LDAH mRNA abundance, and prostate cancer risk is inversely correlated with its expression (13, 14). In addition, rs13385191 is associated with nonfatal outcome of prostate cancer (9, 12). Linkage of the LDAH locus with prostate cancer suggests that loss of the lipid droplet-associated hydrolyase (LDAH) function has a role in prostate tumorigenesis.

The single polypeptide encoded by LDAH is predicted to be a serine hydrolase of the α/β-fold type (15, 16). Homologs in multiple species, including yeast (YPR147C), suggest a conserved function at LDs; however, LDAH’s molecular function remains uncertain but has recently been investigated. Goo et al. reported that LDAH is a CE hydrolyase (17). This finding is intriguing inasmuch as recent studies have linked accumulation of CEs in LDs to prostate and breast cancer aggressiveness (18, 19). Supporting a function in CE metabolism, two other SNPs in LDAH are associated with changes in LDL cholesterol (20, 21). However, LDAH is near APOB on chromosome 2, and these SNPs were originally linked to APOB, a confounding factor because APOB is involved in cholesterol metabolism.

Besides LDAH, other lipases have been implicated in CE hydrolysis. NCEH1 has been reported to hydrolyze CEs (22), but at least in mice, it has also been reported to hydrolyze ether lipid 2-acetyl monoalkylglycerol (23). The LD-localized hormone-sensitive lipase (HSL) contributes to CE hydrolysis (23–25). Whether HSL has a major role in CE hydrolysis in macrophages is debated because CE hydrolysis still occurs in its absence (26). Lysosomal acid lipase also contributes to cellular CE metabolism and regulates macrophage cholesterol efflux, potentially through lipophagy (27–29), but whether it has access to LDs under normal conditions is not clear. Thus, the enzymes that hydrolyze CEs at LDs are uncertain.

In this study, we tested the reported role for LDAH in CE hydrolysis and the metabolism of other neutral lipids by generating and analyzing a knockout mouse model lacking this enzyme.

MATERIALS AND METHODS

Amino acid sequence analysis

CG9186 (dLDAH) secondary structure was predicted with JPred4 (30) and PSIPRED (31, 32).

Cell culture and transfection

HeLa cells were cultured in DMEM with 10% FBS and Pen-Strep. S2 cell culture was performed as described (33). HeLa and S2 cells were transfected using FuGENE HD (Promega, Madison, WI) and Effectene (Qiagen, Germantown, MD) transfection reagents, respectively, according to the manufacturer’s instructions. LDs were induced and stained as described (33–35). S2 cells were induced with 1 mM oleic acid-BSA, and HeLa cells were induced with 0.5 mM oleic acid coupled to BSA. For colocalization experiments, a C-terminally tagged ADRP-YFP fusion construct or dsRed2-ER (Clontech, Mountain View, CA) was cotransfected into HeLa cells or GFP-Sec61β for S2 cells. For localization studies in mammalian cells we generated expression plasmids containing human full-length LDAH with N-terminal mCherry- or GFP-tag under the CMV promoter. For LD-targeting studies, we expressed Drosophila full-length CG9186 with C-terminal mCherry-tag, or the LD domain alone (amino acids (aa) 152–201 of Drosophila CG9186 (CG9186aa152-201)), or Drosophila CG9186 with aa157–200 replaced by a AAAAGGSGSSGGS-linker (Δ aa157–200) under the actin promoter.

Fluorescence microscopy and image analysis

Immunofluorescence and spinning-disk confocal microscopy (100 × 1.4 NA oil immersion objective [Olympus], iMIC [Till], CSU22 [Yokogawa], iXonEM 897 [Andor]) were described (33). LD area per cell was quantified as described (35).
Isolation of bone marrow-derived macrophages

Femurs and tibia were dissected, and muscle was removed. Bone marrow was flushed with 5 ml of DMEM/F12 (Thermo Fisher Scientific, Waltham, MA) with a 5 ml syringe and a 25 gauge needle. Cells were centrifuge at 500 rpm for 10 min, resuspended in medium (DMEM/F12 + 20% HI-FBS + 20% L929 conditioned medium), and plated on petri dishes. On day 4, fresh medium was added to the plates. Experiments were performed on day 7.

Cholesterol ester quantification and turnover measurement

Cells were seeded in 6-well plates, and medium was changed to contain 1% FBS and loaded with 30 µg/ml of acetylated low-density lipoproteins (acLDLs) (Alfa Aesar, Ward Hill, MA) for 18 h. For quantification of total CEs, lipids were extracted. Cells were washed in PBS, and 750 µl of hexane/isopropanol (2:5) were added to each well and incubated rocking for 10 min at room temperature. The organic solvent phase was collected and dried. Lipids were resuspended in 40 µl of chloroform, spotted on a TLC plate, and developed in hexanecyclohexanetric acid (80:20:1). Cholesterol esters were quantified by charring with CuSO4 and densitometry. Values were normalized to protein content determined by BCA assay.

To measure cholesterol ester turnover, cells were loaded with 50 µCi/ml AcLDL for 12 h and subsequently labeled with 0.25 µCi/ml 14C-oleate (Perkin-Elmer, Waltham, MA) for 6 h. The medium was changed, and 10 µg/ml Sandoz 84935 ACAT inhibitor and 2 µg/ml methyl-β-cyclodextrin (both from Sigma Aldrich, St. Louis, MO) were added. Lipids were extracted after 0, 8, and 24 h and separated by TLC as described above. The CE band was scraped and quantified by scintillation counting.

Metabolite and hormone measurements

Blood glucose levels were measured using a FreeStyle Lite glucometer (Abbott Diabetes Care, Alameda, CA). Serum leptin levels and liver glycogen levels were determined by the Yale Mouse Metabolic Phenotyping Center Analytical Core. Testosterone and corticosterone assays were performed by the Vanderbilt University Medical Center Hormone Assay and Analytical Services Core.

Lipidomics

Lipidomics analysis of white adipose tissue (WAT), brown adipose tissue (BAT), and liver of 4-week ad libitum-fed animals fed a high-fat diet (HFD) was performed as described (39). For liquid chromatography-mass spectrometer analysis of lipids from livers of 22-week HFD ad libitum-fed animals, lipids were extracted from liver corresponding to 75 µg of protein by chloroform/methanol extraction (38). Detected lipids were identified using LipidSearch (MIK, Tokyo, Japan). Peaks were defined through raw files, product ion, and precursor ion accurate masses. Lipid species were identified by database (>1,000,000 entries) search of positive and negative ion adducts. The accurate mass-extracted ion chromatograms were integrated for each identified lipid species and peak areas obtained for quantitation. An internal standard for phosphatidylchinositol (PI 17:0-20:4; Avanti Polar Lipids, Alabaster, AL), which spiked prior to extraction, was used for normalization.

Lipid hydrolyase activity assays

Mouse tissues were homogenized in buffer A (0.25 M sucrose, 1 mM EDTA, 1 mM DTT, 20 µg/ml leupeptin, 2 µg/ml antipain, 1 µg/ml pepstatin) followed by centrifugation at 20,000 g for 30 min at 4°C. The protein content of the 20,000 g infranatant was then determined by the Bio-Rad Protein Assay Kit with BSA as a standard.

Measurement of in vitro triacylglycerol (TG) hydrolyase activity was as described (42). Briefly, 10 µg of WAT protein or 100 µg of liver protein in a total volume of 100 µl buffer A were incubated with 100 µl of a phospholipid-emulsified triolein substrate solution. The substrate for the measurement of TG-hydrolytic activity in WAT contained 1.67 mM triolein, 190 µM phosphatidylcholine/phosphatidylinositol (ratio 3:1), and 10 µCi/ml 3H-triolein and was prepared by sonication in 100 mM potassium phosphate buffer, pH 7.0 with 2% fatty acid-free BSA. For measurement of TG hydrolyase activity in the liver, the substrate solution consisted of 0.32 mM triolein, 45 µM phosphatidylcholine/phosphatidylinositol (ratio 3:1), and 10 µCi/ml [9,10-3H]triolein and was prepared as described above. After 1 h at 37°C, released free fatty acids (FFAs) were extracted and quantified by liquid scintillation counting.

The measurement of in vitro CE hydrolyase activities in WAT and liver was performed according to the measurement of TG-hydrolyase activity using a phospholipid-emulsified cholesterol oleate substrate solution, which consisted of 0.45 mM cholesterol oleate, 0.45 mM PC/PI (ratio 3:1), and 1 µCi/ml 13C-cholesterol oleate.

To measure hydrolyase activity of LDASH in protein, we used lysates of cells overexpressing LDASH or CG9186 for the lipid hydrolyase activity assays.

Western blots

Tissues were lysed in RIPA buffer with a dounce homogenizer and sonicated. For Western blot analysis, 50 µg protein of lysates were loaded. LDASH was detected using a polyclonal antibody directed against the C terminus of murine LDASH at a dilution of 1:500 (17). The tubulin antibody was purchased from Sigma-Aldrich (Cat. no. T5168) and used at a dilution of 1:2000.

qRT-PCR analysis

The following primers were used in qRT-PCR analysis. Expression was normalized to the average of β-actin and cyclophilin levels.

mLDASH: 5′-CTTTTCAGGTGATGAGCGATG-3′ (forward primer), 5′-AGGTTGGAAAGACGGAAAGGG-3′ (reverse primer); mHSL: 5′-AGGAGACAGGCTAGTGTA-3′ (forward primer), 5′-CCACGTCCATGGTTCA-3′ (reverse primer); mATGL: 5′-GACGCCCCGGTTGAAACAGATG-3′ (forward primer), 5′-AAAAGTGTGTCGGCAGAGTAGG-3′ (reverse primer); bActin: 5′-CATCTGTGGGCCGCCCTGAGT-3′ (forward primer), 5′-CCACCATAGGAGTCCTTCGTG3′ (reverse primer); mCyclophilin: 5′-TGGAAGAGCCAAGACAAACA-3′ (forward primer), 5′-TGTCGGAAGTCGAAATTGATG-3′ (reverse primer).

Statistics

Statistical significance was tested using Student t-test. For experiments with multiple time points, a two-way ANOVA was used (GraphPad Prism Software).

Value less than 0.05 would have been considered significant in all statistical analyses.
RESULTS

LDAH/C2Orf43 orthologs localize to lipid droplets via a hydrophobic domain

In *Drosophila* S2 cells and *Saccharomyces cerevisiae*, LDAH homologs copurify with LD proteins (43, 44). *Drosophila* CG9186 (referred to as dLDAH hereinafter) was highly enriched in the top fraction of a sucrose gradient used to separate cellular proteins, a purification profile typical of bona fide LD proteins, such as HSL (Fig. 1A). Consistent with this result, *Drosophila* and human LDAH localize to LDs (17, 45).

To confirm the cellular localization of human LDAH, also known as C2ORF43 (17), we expressed the protein fused to an *mCherry* or GFP-tag and examined its localization by confocal microscopy. *mCherry*-tagged LDAH colocalized with the LD marker ADRP in oleate-loaded HeLa cells (Fig. 1B). In the absence of LDs, LDAH localized to the endoplasmic reticulum (ER) (Fig. 1C).

Many LD proteins bind to LDs via a hydrophobic, membrane-embedded sequence (class I binding proteins) or an amphipathic helix (class II binding proteins) (46, 47). dLDAH contains a short hydrophobic motif (amino acids 152–201), predicted to be mostly α-helical but containing prolines (Fig. 1D), conserved among species, suggesting a hydrophobic hairpin, class I LD-binding motif. To examine this, we expressed a fusion construct of amino acids 152–201 with an N-terminal *mCherry*-tag in S2 cells. This protein localized to LDs in cells treated with oleic acid (Fig. 1E). In contrast, dLDAH in which amino acids 157–200 were deleted in frame failed to localize to LDs (Fig. 1E).

Fig. 1. LDAH homologs localize to LDs with a hydrophobic hairpin. A: The *Drosophila* homolog of LDAH has the purification profile of a LD protein. Normalized purification factors of different organelle markers across a cellular fractionation are plotted. HSL is the LD marker; protein disulfide isomerase is the ER marker; alcohol dehydrogenase is the cytosolic marker; lamin is the nuclear marker. B, C: LDAH localizes to LDs or to the ER in the absence of LDs. B: *mCherry*-tagged LDAH colocalizes with ADRP in HeLa cells in the presence of LDs. Cells were transfected with constructs and treated with 0.5 mM oleic acid overnight. Representative images are shown. Scale bar, 10 μm. C: GFP-tagged LDAH localized to the ER in the absence of LDs. Cells were transfected with constructs and imaged the next day. Representative images are shown. Scale bar, 10 μm. D, E: A hydrophobic hairpin motif localizes LDAH to LDs. D: A hydrophobic segment comprising amino acids 160–195 of *Drosophila* CG9186/LDAH is predicted to have a hairpin structure and is responsible for LD binding. The α/β-hydrolase fold and the catalytic GxSxG motif are indicated. α-Helices predicted by PSIPRED and JPred 4 are shown in pink. E: Full-length *mCherry*-tagged dLDAH and amino acids 152–201 of dLDAH localize to LDs after oleic acid treatment, while deletion of amino acids 157–200 results in ablation of LD binding. *GFP-Sec61β* was used to visualize the ER. Cells were transfected with constructs and treated with 1 mM oleic acid overnight. LDs were stained with AUTOdot (blue). Representative images are shown. Scale bar, 5 μm. F: LDAH overexpression does not affect cholesterol esterase, retinol esterase, or triacylglycerol hydrolysis activity. Nanomoles of free fatty acids (FFA) per (hour per milligram protein) ± SD. Values are means (n = 4). Activities were determined in lysates of WT HeLa or S2 cells and cells overexpressing the LDAH homologs using phospholipid-emulsified 3H-labeled lipids at neutral pH. S2 cells overexpressing HSL were used as a positive control. ALDH, alcohol dehydrogenase; PDI, protein disulfide isomerase.
replaced by a generic linker sequence (N-AAAGGGSGCGGG- GS-C) did not target LDs.

Since LDs store neutral lipids, such as CE, TG, and retinol esters, we measured hydrolase activity toward these substrates in lysates from cells overexpressing LDAH versus control cells (Fig. 1F). Consistent with a previous report (45), overexpression of mammalian or Drosophila LDAH did not increase hydrolase activity, whereas overexpression of HSL increased CE and TG hydrolysis activities.

LDAH protein is absent in mice with a targeted gene-disruption allele

To investigate the physiological function of LDAH/C2ORF43, we generated an Ldah knockout mouse and evaluated it for metabolic phenotypes. Sequencing of the Ldah knockout mouse and C2ORF43, we generated an disruption allele. A: A gene knockout cassette disrupts exons 2 and 3 of the Ldah gene. B–E: Ldah mRNA and protein are absent in Ldah KO animals. Schematic of the Ldah gene locus and targeting cassette (Knockout Mouse Project). Genotype of animals was confirmed with SD30636, NeoF, and SD primers. B: Ldah mRNA is reduced to 50% of the gene product in heterozygous mice and absent in Ldah KO animals. Relative Ldah mRNA abundance ± SD in different tissues of Ldah WT (black bars), heterozygous (gray bars), and KO mice (white bars) determined by qPCR. Ldah values were normalized to the average of β-actin and cyclophilin. Values are means (n = 3–4). C: Western blots against Ldah in liver tissue from male and female Ldah WT and KO animals confirmed loss of LDAH protein. Tubulin was used as a loading control. D: LDAH protein is undetectable in tissues of male Ldah KO animals by Western blot. Low and high exposures are shown for tubulin. E: Mass spectrometry (MS) analysis confirmed absence of LDAH in Ldah KO animals. Peptides that were identified by MS for Ldah (top) or ATGL (bottom) in WT or Ldah KO animals are mapped to the protein sequence. For ATGL, peptides were identified in both WT and KO tissue across the length of the protein. For LDAH, no peptides were identified in KO animals, and peptides from various parts of the protein were detected in lysates from WT tissue. Data from WAT and livers of two animals per genotype were combined for the graph.

Fig. 2. LDAH is absent in mice with a targeted gene-disruption allele. A: A gene knockout cassette disrupts exons 2 and 3 of the Ldah gene. B–E: Ldah mRNA and protein are absent in Ldah KO animals. Relative Ldah mRNA abundance ± SD in different tissues of Ldah WT (black bars), heterozygous (gray bars), and KO mice (white bars) determined by qPCR. Ldah values were normalized to the average of β-actin and cyclophilin. Values are means (n = 3–4). C: Western blots against Ldah in liver tissue from male and female Ldah WT and KO animals confirmed loss of LDAH protein. Tubulin was used as a loading control. D: LDAH protein is undetectable in tissues of male Ldah KO animals by Western blot. Low and high exposures are shown for tubulin. E: Mass spectrometry (MS) analysis confirmed absence of LDAH in Ldah KO animals. Peptides that were identified by MS for Ldah (top) or ATGL (bottom) in WT or Ldah KO animals are mapped to the protein sequence. For ATGL, peptides were identified in both WT and KO tissue across the length of the protein. For LDAH, no peptides were identified in KO animals, and peptides from various parts of the protein were detected in lysates from WT tissue. Data from WAT and livers of two animals per genotype were combined for the graph.

Bone marrow-derived macrophages (BMDM) of Ldah knockout mice (Fig. 2C, D, supplemental Fig. S1A). To further confirm the absence of the LDAH protein in knockout mice, we performed mass-spectrometry analysis of lysates from WAT and livers of wild-type and Ldah knockout mice. No LDAH peptides were detected in tissues of knockout mice, whereas five different, unique peptides covering different parts of the protein were detected in the wild-type samples (Fig. 2E). In contrast, the abundance of peptides derived from the TG lipase adipose triglyceride lipase (ATGL) were found at similar levels in each genotype. Consistent with these observations, we found that LDAH deletion did not result in a compensatory up-regulation of the major neutral lipid lipases ATGL or HSL, as determined by qPCR (supplemental Fig. S1B, C).

Ldah knockout animals were born at the expected Mendelian ratio (data not shown) and displayed no gross phenotypic changes or alterations in tissue morphology at 8–12 weeks of age (Fig. 3, supplemental Fig. S2). The size of adipocytes and amount of oil red O-staining of livers and adipose tissues of knockout mice, whereas five different, unique peptides covering different parts of the protein were detected in the wild-type samples (Fig. 2E). In contrast, the abundance of peptides derived from the TG lipase adipose triglyceride lipase (ATGL) were found at similar levels in each genotype. Consistent with these observations, we found that LDAH deletion did not result in a compensatory up-regulation of the major neutral lipid lipases ATGL or HSL, as determined by qPCR (supplemental Fig. S1B, C).

Ldah knockout animals were born at the expected Mendelian ratio (data not shown) and displayed no gross phenotypic changes or alterations in tissue morphology at 8–12 weeks of age (Fig. 3, supplemental Fig. S2). The size of adipocytes and amount of oil red O-staining of livers and adipose tissues of knockout mice, whereas five different, unique peptides covering different parts of the protein were detected in the wild-type samples (Fig. 2E). In contrast, the abundance of peptides derived from the TG lipase adipose triglyceride lipase (ATGL) were found at similar levels in each genotype. Consistent with these observations, we found that LDAH deletion did not result in a compensatory up-regulation of the major neutral lipid lipases ATGL or HSL, as determined by qPCR (supplemental Fig. S1B, C).

Loss of LDAH does not affect body mass, body composition, glucose tolerance, or tissue lipid composition

To analyze and challenge the metabolism of Ldah knockout animals, we placed male mice on rodent chow or...
as determined by oral glucose tolerance test, was also not affected on chow or HFD (Fig. 4C).

We assayed for a role of LDAH in lipid metabolism, but found no changes between genotypes on a HFD in serum lipids or levels of major lipid species in liver, WAT or BAT (Table 1, supplemental Fig. S5A, B). Neither did we detect differences in the accumulation of neutral lipids in the livers of Ldah knockout and control mice on chow or HFD as determined by oil red O staining (Fig. 3B). Major metabolic parameters and lipid classes were not changed in Ldah knockout mice on HFD (Fig. 3, supplemental Figs. S3–S5).

Because phenotypes related to lipid metabolism were not observed on chow diet or with short-term HFD, we further challenged the metabolism of the Ldah knockout mice by feeding them a 60% HFD for 22 weeks. Despite the longer dietary challenge, body weight gain was not affected by LDAH loss (Fig. 4D). Neither was the percentage of body fat (Fig. 4E), fasted serum glucose, leptin, TG, or ketone bodies (Table 1). There were no apparent changes in total TG, CEs, or other major lipid species as determined by thin layer chromatography and lipidomics (Fig. 4F, G). Liver glycogen content was comparable between genotypes (supplemental Fig. S5C). The histology of liver, WAT and BAT, and heart tissues were not affected in Ldah knockout mice after 22 weeks on HFD (Fig. 3B, supplemental Fig. S2).

In an overnight fasting experiment, with subsequent cold exposure without access to food, knockout animals tolerated this stress slightly better than wild-type animals by maintaining their body temperature in the cold. However, the differences were minor and only significant at some time points, and overall both genotypes maintained blood glucose levels and body weight (supplemental Fig. S6).

Lard-based 60% kcal% fat-containing diet. While all mice gained body weight more rapidly when feeding a high-fat diet (HFD), knockout mice gained weight at a rate similar to their wild-type littermates (Fig. 4A). After 4 weeks on an HFD, we evaluated their energy metabolism. There were no differences in body composition (Fig. 4B), energy expenditure, locomotor activity, water or food intake, respiratory exchange ratio, oxygen consumption, or carbon dioxide production (supplemental Figs. S3, S4). Glucose homeostasis,
DISCUSSION

We show here that the LD-localized putative lipase LDAH does not have a major, physiologically detectable role in murine CE metabolism. These findings contrast with previous in vitro studies that reported LDAH functions as a CE hydrolase (17). In our animal studies, LDAH deletion did not change CE levels, CE hydrolysis activity, or the metabolism of TGs or other major lipid classes. Moreover, we found no evidence for CE hydrolysis activity in in vitro assays of lysates with the overexpressed enzyme. We also found no evidence for a role of LDAH in whole-body energy metabolism.

Because we found no changes in CE metabolism in LDAH-deficient mice, it is unlikely that LDAH has CE hydrolase activity and any role in macrophage cholesterol efflux. The previous report (17) had limitations. For example, the CE hydrolysis activity reported was minimal in comparison with the activity of the known CE hydrolase HSL, and the differences shown for overexpression of LDAH in comparison with a catalytically dead enzyme were negligible. Our results are consistent with another study that detected loss of LDAH does not affect cholesterol ester turnover or hydrolysis.

Since LDAH had been implicated in CE hydrolysis and efflux from macrophages (17), we assayed CE metabolism in Ldah knockout mice. We isolated macrophages from bone marrow of wild-type and knockout mice and tested CE accumulation and turnover after acetylated LDL (acLDL) treatment. After overnight incubation with 50 µg/ml acLDL, Ldah wild-type and knockout cells had similar amounts of LDs and CEs (Fig. 5A–C). Using radioactive oleic acid to label lipids, we determined the turnover of CEs with ACAT1 inhibitor and β-cyclodextrin as a cholesterol acceptor in the medium and found no differences in macrophages lacking LDAH (Fig. 5D). Consistent with these results, we observed no changes in CE hydrolysis activity in WAT or liver lysates from Ldah knockout animals (Fig. 5E, F). TG hydrolysis activity was also similar (supplemental Fig. S7). Corticosterone and testosterone levels were similar in wild-type and knockout mice, suggesting it is unlikely that LDAH affects murine steroid hormone metabolism (Table 1).

Loss of LDAH does not affect cholesterol ester turnover or hydrolysis

Since LDAH had been implicated in CE hydrolysis and efflux from macrophages (17), we assayed CE metabolism in Ldah knockout mice. We isolated macrophages from bone marrow of wild-type and knockout mice and tested CE accumulation and turnover after acetylated LDL (acLDL) treatment. After overnight incubation with 50 µg/ml acLDL, Ldah wild-type and knockout cells had similar amounts of LDs and CEs (Fig. 5A–C). Using radioactive oleic acid to label lipids, we determined the turnover of CEs with ACAT1 inhibitor and β-cyclodextrin as a cholesterol acceptor in the medium and found no differences in macrophages lacking LDAH (Fig. 5D). Consistent with these results, we observed no changes in CE hydrolysis activity in WAT or liver lysates from Ldah knockout animals (Fig. 5E, F). TG hydrolysis activity was also similar (supplemental Fig. S7). Corticosterone and testosterone levels were similar in wild-type and knockout mice, suggesting it is unlikely that LDAH affects murine steroid hormone metabolism (Table 1).

TABLE 1. Serum parameters of Ldah WT and KO mice
WT (n)
Corticosterone (ng/ml)
(6)
Testosterone (ng/ml)
(7)
Cholesterol (mg/dl)
(6)
HDL (mg/dl)
(6)
LDL (mg/dl)
(6)
TG (mg/dl)
(6)
NEFA (mmol/L)
(6)
B-Hb (mmol/L)
(6)

Cholesterol (mg/dl) | 68.49 ± 8.14 | 67.46 ± 3.78 | 0.38 |
(6) | (7) | |
HDL (mg/dl) | 51.60 ± 3.86 | 51.20 ± 4.36 | 0.43 |
(6) | (7) | |
LDL (mg/dl) | 5.50 ± 0.80 | 5.73 ± 0.31 | 0.25 |
(6) | (7) | |
TG (mg/dl) | 65.38 ± 9.05 | 62.01 ± 10.84 | 0.28 |
(6) | (7) | |
NEFA (mmol/L) | 1.93 ± 0.28 | 1.81 ± 0.41 | 0.28 |
(6) | (7) | |
B-Hb (mmol/L) | 1.96 ± 0.41 | 2.19 ± 0.58 | 0.22 |
(6) | (7) | Fasted, cold-exposed |

Serum parameters measured in different experiments for WT and Ldah KO animals are reported. The number of animals of a certain genotype (n) used for each study is shown in parentheses. Measurements belonging to one experiment are grouped together, with different experiments being separated by double rules. The feeding state and, where applicable, additional treatments of animals in a given experiment are indicated in the last column. Student’s t-test was performed for statistical analysis. B-Hb, β-hydroxybutyrate; NEFA, nonesterified fatty acid.
no activity toward any major lipid species, including CEs in vitro assays (45). However, at present, it remains possible that under specific physiological or pathological conditions, LDAH might play a role in CE or TG hydrolisis, or both, in macrophages. We also cannot exclude possible redundancy of LDAH activity with other murine cholesterol esterases, which might compensate for LDAH loss in vivo.

LDAH will need to be tested for alternative activities. We ruled out lipase activity toward major species of CEs, Tgs, and other lipid classes. However, LDAH might hydrolyze a structurally similar, potentially low abundant or difficult-to-detect molecule, such as a modified sterol ester, oxysterol ester, or ether lipid. We found no differences in total sterols or oxysterols in WAT or liver from LDAH knockout mice and no activity toward ether TG in overexpression experiments (data not shown). Our efforts to reveal the substrate of LDAH by untargeted mass spectrometry-based lipidomics have been, thus far, unsuccessful.

LDAH homologs localize to LDs via a hydrophobic hairpin targeting motif, in agreement with previous reports (45). Accordingly, LDAH is a class I LD protein (i.e., targeting LDs from the ER). The hydrophobicity of LDAH's LD targeting motif and low propensity to be displaced from shrinking LDs during lipolysis (35) suggest that LDAH evolved for optimal substrate access to the hydrophobic LD core. However, whether LDAH has an enzymatic function on LDs is not known.

With no known function, the mechanism linking LDAH to human disease remains enigmatic. A SNP in the LDAH gene associated with reduced mRNA expression is also associated with an increased risk for prostate cancer (9, 10, 13, 14). Prostate cancer is one of the cancer types known to upregulate lipid metabolism, and CE accumulation in LDs is associated with increased prostate cancer aggressiveness (6, 18). An intriguing possibility is that cancer development could be linked to changes in LDAH enzymatic activity. Lower expression of LDAH in the prostate itself due to lower expression of LDAH in the prostate itself due to a sequence variation could result in remodeling of lipid metabolism to promote cancer growth. However, we did not find a role for LDAH in lipid metabolism or in prostate cancer development, because we have found no signs of prostate neoplasia or cancer in the knockout mice, albeit we analyzed only a small number of animals at 1 year of age (data not shown). One confounding factor in interpreting the human genetic studies and a potential connection among LDAH, lipid metabolism, and cancer is the proximity of the LDAH and APOB loci. The modest linkage disequilibrium found between the LDAH SNP and SNPs near APOB loci makes the effect of genetic variants of LDAH on lipid metabolism and cancer risk difficult to dissect from those which might be driven by apoB. SNPs can also exert regulatory effects over hundreds of kilobases (48). Thus, the LDAH SNP (or linked polymorphisms close by) could have an effect on APOB expression, which in turn might be responsible for the genetic associations observed for this locus.

The expression pattern of LDAH in humans suggests an additional link to prostate cancer. Although LDAH levels appear to be high in WAT in mice, LDAH levels are high in adrenal glands in humans (http://www.humanproteome-map.org; www.proteomicsdb.org; www.gtexportal.org), the primary production site of steroid hormones such as androgens from cholesterol (49). Many prostate cancer cells depend on androgenic signals from the adrenal gland (50, 51), and therefore, LDAH might affect risk for prostate cancer by affecting androgenic metabolism in adrenal gland LDs.
In summary, our data suggest that SNPs in LDAH affect prostate cancer risk through a mechanism other than CE hydrolysis activity and that LDAH has an alternative LD-associated metabolic function. Whether LDAH functions in the metabolism of lipids, other metabolites, or perhaps xenobiotics remains to be elucidated.

The authors thank members of the Farese and Walther laboratory and Drs. Lorelei Mucci, Ericka Abot, and Stefan Stender for advice and helpful discussions. We also thank Grisell Díaz-Ramírez and Drs. Huijing Wang and Carrie Grueter for experimental help. The authors thank Dr. Michael Jurczak and the Yale Mouse Metabolic Phenotyping Center for mouse in vivo metabolism analyses and Dr. Roderick Bronson (at the rodent pathology core at Harvard Medical School) for pathology expertise. We also thank Drs. Jeffrey McDonald and Sarah Martin for sterol and additional lipid analysis, Dr. Christoph Heier for ether lipid activity assays (data not shown), and Dr. Alan Saghatelian for advice on untargeted lipidomics. The authors thank Gary Howard for editorial assistance and Dr. Young-Hwa Goo for the generous gift of the LDAH antibody.

REFERENCES

1. Hashemi, H. F., and J. M. Goodman. 2015. The life cycle of lipid droplets. Curr. Opin. Cell Biol. 33: 119–124.
2. Krahmer, N., R. V. Farese, Jr., and T. C. Walther. 2013. Balancing the fat: lipid droplets and human disease. EMBO Mol. Med. 5: 973–985.
3. Straub, B. K., E. Herpel, S. Singer, R. Zimbellmann, K. Breuhahn, S. Macher-Goeppinger, A. Warth, J. Lehmann-Koch, T. Longricher, H. Heid, et al. 2010. Lipid droplet-associated PAT-proteins show frequent and differential expression in neoplastic steatogenesis. Mod. Pathol. 23: 480–492.
4. Hager, M. H., K. R. Solomon, and M. R. Freeman. 2006. The role of cholesterol in prostate cancer. Curr. Opin. Nutr. Metab. Care. 9: 379–385.
5. Schlaepfer, I. R., L. Rider, L. U. Rodrigues, M. A. Gijón, S. J. Sirintrapun, L. M. Gledó, R. H. Eckel, et al. 2014. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Evol. 13: 2561–2571.
6. Wu, X., G. Daniels, P. Lee, and M. E. Monaco. 2014. Lipid metabolism in prostate cancer. Am. J. Clin. Exp. Urol. 2: 111–129.
7. Tamura, K., A. Makino, F. Mullin-Matsuda, T. Kobayashi, M. Furihata, S. Chung, S. Ashida, T. Miki, T. Fujioka, T. Shuin, et al. 2009. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res. 69: 8133–8140.
8. Drabkin, H. A., and R. M. Geminiill. 2012. Cholesterol and the development of clear-cell renal carcinoma. Curr. Opin. Pharmacol. 12: 742–750.
9. Shui, I. M., S. Lindström, A. S. Kibiel, S. I. Berndt, D. Campbell, T. Gerke, K. L. Penney, D. Albanes, C. Berg, H. B. Bueno-de-Mesquita, et al. 2014. Prostate cancer (PCA) risk variants and risk of fatal PC in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Eur. Urol. 65: 1069–1075.
10. Takata, R., S. Akamatsu, M. Kubo, A. Takahashi, N. Hosono, T. Kawaguchi, T. Tsunoda, J. Inazawa, N. Katamatsu, O. Ogawa, et al. 2010. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42: 751–754.
11. Long, Q. Z., Y. F. Du, X. Y. Ding, X. Li, W. B. Song, Y. Yang, P. Zhang, J. P. Zhou, and X. G. Liu. 2012. Replication and fine mapping for association of the C2orf43, FOXP4, GPRC6A and RXF6 genes with prostate cancer in the Chinese population. Mol. Genet. 21: 212–216.
12. Penney, K. L., J. A. Sinnott, S. Trykucheva, T. Gerke, I. M. Shui, P. Kraft, H. D. Sesso, M. L. Freedman, M. Loda, L. A.ucci, et al. 2015. Association of prostate cancer risk variants with gene expression in normal and tumor tissue. Cancer Epidemiol. Biomarkers Prev. 24: 255–260.
13. Innocenti, F., G. M. Cooper, I. B. Stanaway, E. R. Gamazon, J. D. Smith, S. Mirkov, J. Ramirez, W. Liu, Y. S. Lin, C. Moloney, et al. 2011. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet. 7: e1002100.
14. Simon, G. M., and B. F. Cravatt. 2010. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285: 11051–11055.
15. Lenfant, N., T. Hotelier, E. Velluet, Y. Bourne, P. Marchot, and A. Chatonnet. 2013. ESTHER, the database of the alpha/beta-hydrolase fold superfamilies of proteins: tools to explore diversity of functions. Nucleic Acids Res. 41: D423–D429.
16. Goo, Y. H., S. H. Son, P. B. Kreienberg, and A. Paul. 2014. Novel lipid droplet-associated serine hydrolase regulates macrophage cholesterol mobilization. Arterioscler. Thromb. Vasc. Biol. 34: 386–396.
17. Yue, S., J. Li, S. Y. Lee, H. J. Lee, T. Shao, B. Song, L. Cheng, T. M. McDonald, X. Liu, T. L. Ratiliff, et al. 2014. Cholesterol ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19: 393–406.
18. de Gonzalo-Calvo, D., L. López-Vilaró, L. Nasarre, M. Pérez-Obalbarria, T. Vázquez, D. Escuin, L. Badimon, A. Barnadas, E. Lerma, and V. Llorente-Cortés. 2015. Intratumor cholesterol ester accumulation is associated with human breast cancer proliferation and aggressive potential: a molecular and clinicopathological study. BMC Cancer. 15: 460.
19. Lettre, G., C. D. Palmer, T. Young, K. G. Ejebe, H. Allayee, E. J. Benjamin, F. D. Bennett, D. W. Bowden, A. Chakravarti, A. Dreisbach, et al. 2011. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet. 7: e1001390.
20. Shen, H., C. M. Damcott, E. Rampersaud, T. I. Pollin, R. B. Horenstein, P. F. Mcardle, A. P. Perry, L. F. Bielak, W. S. Post, Y. P. Chang, et al. 2010. Familial defective apolipoprotein B-100 and increased low-density lipoprotein cholesterol and coronary artery calcification in the old order amish. Arch. Intern. Med. 170: 1850–1855.
21. Igarashi, M., J. Osuga, H. Uozaki, M. Sekiya, S. Nagashima, M. Takahashi, S. Takase, M. Takashan, Y. Li, K. Ohta, et al. 2010. The critical role of neutral cholesterol ester hydrolyase 1 in cholesterol removal from human macrophages. Circ. Res. 107: 1387–1395.
22. Buchbener, M., T. Pfeifer, N. Rathkhe, P. G. Chandak, A. Lass, R. Schreiner, A. Kräuter, R. Zimmermann, W. Sattler, H. Koefeler, et al. 2013. Cholesterol ester hydrolyase activity is abolished in HSL−/− macrophages but unchanged in macrophages lacking KIAA1363. J. Lipid Res. 54: 2896–2908.
23. Kraemer, F. B., and W. J. Shen. 2002. Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesterol ester hydrolysis. J. Lipid Res. 43: 1585–1594.
24. Sekiya, M., J. Osuga, N. Yabagi, H. Okazaki, Y. Tamura, M. Igarashi, S. Takase, K. Harada, S. Okazaki, Y. Iizuka, et al. 2008. Hormone-sensitive lipase is involved in hepatic cholesterol ester hydrolysis. J. Lipid Res. 49: 1829–1838.
25. Contreras, J. A. 2002. Hormone-sensitive lipase is not required for cholesterol ester hydrolysis in macrophages. Biochem. Biophys. Res. Commun. 292: 900–903.
26. Lohse, P., P. Lohse, S. Chahbrook-Zadeh, and D. Seidel. 1997. Human lysosomal acid lipase/cholesterol ester hydrolase and human gastric lipase: site-directed mutagenesis of Cys227 and Cys236 results in substrate-dependent reduction of enzymatic activity. J. Lipid Res. 38: 1896–1905.
27. Ouimet, M., and Y. L. Marcel. 2012. Regulation of lipid droplet cholesterol efflux from macrophase foam cells. Arterioscler. Thromb. Vasc. Biol. 32: 575–581.
28. Du, H., M. Duanmu, D. Witte, and G. A. Grabowski. 1998. Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesterol ester and triglyceride storage. Hum. Mol. Genet. 7: 1347–1354.
29. Drozdtskij, A., C. Cole, J. Procter, and G. J. Barton. 2015. JPrefid: a protein secondary structure prediction server. Nucleic Acids Res. 43: W389–W394.
31. Buchan, D. W., F. Minneci, T. C. Nugent, K. Bryson, and D. T. Jones. 2013. Scalable web services for the PSIPRED Protein Analysis Workbench. *Nucleic Acids Res.* 41: W349–W357.

32. Jones, D. T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. *J. Mol. Biol.* 292: 195–202.

33. Willfing, F., H. Wang, J. T. Haas, N. Krahmer, T. J. Gould, A. Uchida, J. X. Cheng, M. Graham, R. Christiano, F. Frohlich, et al. 2013. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocating from the ER to lipid droplets. *Dev. Cell.* 24: 384–399.

34. Krahmer, N., Y. Guo, F. Willfing, M. Hilger, S. Lingrell, K. Heger, H. W. Newman, M. Schmidt-Supprian, D. E. Vance, M. Mann, et al. 2011. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. *Cell Metab.* 14: 504–515.

35. Kory, N., A. R. Thiam, R. V. J. Farese, and T. C. Walther. 2015. Protein crowding is a determinant of lipid droplet composition. *Dev. Cell.* 34: 351–363.

36. Valenzuela, D. M., A. J. Murphy, D. Frendewey, N. W. Gale, A. N. Economides, W. Auerbach, W. T. Poueymirou, N. C. Adams, J. Rojas, J. Yasenchak, et al. 2003. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. *Nat. Biotechnol.* 21: 652–659.

37. Ayala, J. E., V. T. Samuel, G. J. Morton, S. Obici, C. M. Croniger, G. I. Shulman, D. H. Wasserman, and O. P. McGuinness, and NIH Mouse Metabolic Phenotyping Center Consortium. 2010. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. *Dis. Model. Mech.* 3: 525–534.

38. Folch, J., M. Lees, and G. H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. *J. Biol. Chem.* 226: 497–509.

39. Saghatelian, A., S. A. Trauger, E. J. Want, E. G. Hawkins, G. Siuzdak, and B. F. Cravatt. 2004. Assignment of endogenous substrates to enzymes by global metabolite profiling. *Biochemistry.* 43: 14332–14339.

40. Wiśniewski, J. R., A. Zougman, N. Nagaraj, and M. Mann. 2009. Universal sample preparation method for proteome analysis. *Nat. Methods.* 6: 359–362.

41. Tyanova, S., T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein, T. Geiger, M. Mann, and J. Cox. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. *Nat. Methods.* 13: 731–740.

42. Schweiger, M., T. O. Eichmann, U. Taschler, R. Zimmermann, R. Zechner, and A. Lass. 2014. Measurement of lipolysis. *Methods Enzymol.* 538: 171–193.

43. Krahmer, N., M. Hilger, N. Kory, F. Willfing, G. Stoehr, M. Mann, R. V. Farese, Jr., and T. C. Walther. 2013. Protein correlation profiles identify lipid droplet proteins with high confidence. *Mod. Cell. Proteomics.* 12: 1115–1126.

44. Currie, E., X. Guo, R. Christiano, C. Chirraju, N. Kory, K. Harrison, J. Haas, T. C. Walther, and R. V. Farese, Jr. 2014. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. *J. Lipid Res.* 55: 1465–1477.

45. Thiel, K., C. Heier, V. Haberi, P. J. Thul, M. Oberer, A. Lass, H. Jäckle, and M. Beller. 2013. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. *J. Cell Sci.* 126: 2198–2212.

46. Thiam, A. R., R. V. Farese, Jr., and T. C. Walther. 2013. The biophysics and cell biology of lipid droplets. *Nat. Rev. Mol. Cell Biol.* 14: 775–786.

47. Kory, N., R. V. Farese, Jr., and T. C. Walther. 2016. Targeting fat: mechanisms of protein localization to lipid droplets. *Trends Cell Biol.* 26: 535–546.

48. van Hemingen, V., and W. Bickmore. 2013. Regulation from a distance: long-range control of gene expression in development and disease. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 368: 20120372.

49. Parker, L. N. 1991. Control of adrenal androgen secretion. *Endocrinol. Metab. Clin. North Am.* 20: 401–421.

50. Chatterjee, B. 2003. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer. *Mod. Cell. Biochem.* 233: 89–101.

51. Huggins, C. 1942. Effect of orchiectomy and irradiation on cancer of the prostate. *Ann. Surg.* 115: 1192–1200.