I shortly review the present status of the theoretical estimates of ε'/ε. I consider a few aspects of the theoretical calculations which may be relevant in understanding the present experimental results. I discuss the role of higher order chiral corrections and in general of non-factorizable contributions for the explanation of the $\Delta I = 1/2$ selection rule in kaon decays and ε'/ε. Lacking reliable lattice calculations, the $1/N$ expansion and phenomenological approaches may help in understanding correlations among theoretical effects and the experimental data. The same dynamics which underlies the CP conserving selection rule appears to drive ε'/ε in the range of the recent experimental measurements.

Presented at the

5th International Symposium on Radiative Corrections
(RADCOR–2000)
Carmel CA, USA, 11–15 September, 2000
1 Introduction

The results announced during the last year by the KTeV [1] and NA48 [2] collaborations have marked a great experimental achievement, establishing 35 years after the discovery of CP violation in the neutral kaon system [3] the existence of a much smaller violation acting directly in the decays.

While the Standard Model (SM) of strong and electroweak interactions provides an economical and elegant understanding of indirect (ϵ) and direct (ϵ') CP violation in term of a single phase, the detailed calculation of the size of these effects implies mastering strong interactions at a scale where perturbative methods break down. In addition, CP violation in $K \to \pi\pi$ decays is the result of a destructive interference between two sets of contributions, which may inflate up to an order of magnitude the uncertainties on the hadronic matrix elements of the effective four-quark operators. All that makes predicting ϵ'/ϵ a complex and subtle theoretical challenge [4].

The status of the theoretical predictions and experimental data available before the KTeV announcement in February 1999 is summarized in Fig. 1.

The gray horizontal bands show the one-sigma average of the old (early 90's) NA31 (CERN) and E731 (Fermilab) results. The vertical lines show the ranges of the published theoretical predictions (before February 1999), identified with the cities where most of the group members reside. The range of the naive Vacuum Saturation

![Figure 1: The 1-σ results of the NA31 and E731 Collaborations (early 90's) are shown by the gray horizontal bands. The old München, Roma and Trieste theoretical predictions for ϵ'/ϵ are depicted by the vertical bars with their central values. For comparison, the VSA estimate is shown using two renormalization schemes.](image)
Figure 2: The latest theoretical calculations of ε'/ε are compared with the combined 1-σ average of the NA31, E731, KTeV and NA48 results ($\varepsilon'/\varepsilon = 19.2 \pm 4.6 \times 10^{-4}$), depicted by the gray horizontal band (the error is inflated according to the Particle Data Group procedure when averaging over data with substantially different central values).

Approximation (VSA) is shown for comparison.

The experimental and theoretical scenarios have changed substantially after the first KTeV data and the subsequent NA48 results. Fig. 2 shows the present experimental world average for ε'/ε compared with the revised or new theoretical calculations that appeared during the last year.

Notwithstanding the complexity of the problem, all theoretical calculations show a remarkable overall agreement, most of them pointing to a non-vanishing positive effect in the SM (which is by itself far from trivial).

On the other hand, if we focus our attention on the central values, many of the predictions prefer the 10^{-4} regime, whereas only a few of them stand above 10^{-3}. Is this just a "noise" in the theoretical calculations?

The answer is no. Without entering the details of the various estimates, it is possible to explain most of the abovementioned difference in terms of a single effect: the different size of the hadronic matrix element of the gluonic penguin Q_6 obtained in the various approaches.

While some of the calculations, as the early München and Rome predictions, assume for $\langle \pi\pi|Q_6|K\rangle$ values in the neighborhood of the leading $1/N$ result (naive factorization), other approaches, first of which the Trieste and Dortmund calculations and more recently the Lund and Valencia analyses, find a substantial enhancement of this matrix element with respect to the simple factorization result. The bulk of such
an effect is actually a global enhancement of the $I = 0$ components of the $K \to \pi\pi$ amplitudes, which affects both current-current and penguin operators, and it can be at least partially understood in terms of chiral dynamics (final-state interactions).

2 Final State Interactions

As a matter of fact, one should in general expect an enhancement of ε'/ε with respect to the naive VSA due to final-state interactions (FSI). As Fermi first argued, in potential scattering the isospin $I = 0$ two-body states feel an attractive interaction, of a sign opposite to that of the $I = 2$ components thus affecting the size of the corresponding amplitudes. This feature is at the root of the enhancement of the $I = 0$ amplitude over the $I = 2$ one and of the corresponding enhancement of ε'/ε beyond factorization.

The question is how to make of a qualitative statement a quantitative one. A dispersive analysis of the $K \to \pi\pi$ amplitudes has been recently presented in ref. The Omnès-Mushkelishvili representation

$$M(s + i\epsilon) = P(s) \exp\left(\frac{1}{\pi} \int_{4m^2_\pi}^{\infty} \frac{\delta(s')}{s' - s - i\epsilon} ds'\right)$$

is used in order to resum FSI effects from the knowledge of the $\pi\pi$ rescattering phase $\delta(s)$ in the elastic regime ($s < 1 \text{ GeV}^2$). $P(s)$ is a polynomial function of s which is related to the factorized amplitude. A solution of the above dispersive relation for the $A_{0,2}$ amplitudes can be written as

$$A_I(s) = A'_I(s - m^2_\pi) \mathcal{R}_I(s) e^{i\delta_I(s)} ,$$

where A'_I is the derivative of the amplitude at the subtraction point $s = m^2_\pi$. The coefficient \mathcal{R} represents the rescaling effect related to the FSI. By replacing A'_I with the value given by LO chiral perturbation theory, Pich and Pallante found $\mathcal{R}(m^2_\pi)_{0,2} \simeq 1.4, 0.9$ thus confirming via the resummation of the leading chiral logs related to FSI the enhancement of the $I = 0$ amplitudes, together with a mild depletion of the $I = 2$ components.

The numerical significance of these results has been questioned on the basis that the precise size of the effect depends on boundary conditions of the factorized amplitude which are not unambiguously known, due to higher order chiral corrections. As a matter of fact, while the choice of a low subtraction scale minimizes the effect of momentum dependent chiral corrections the result of ref. cannot account for polynomial corrections due to contact interaction terms whose size is unknown (and renormalization-scheme dependent).
The analysis of ref. [6] shows non-perturbatively the presence of a potentially large departure from factorization which affects the $I = 0 \to \pi\pi$ matrix elements. Nevertheless, the question whether the FSI rescaling of the factorized isospin amplitudes leads by itself to a satisfactory calculation of ε'/ε remains open.

3 CP conserving versus CP violating amplitudes

Given the possibility that common systematic uncertainties may affect the calculation of ε'/ε and the $\Delta I = 1/2$ rule (see for instance the present difficulties in calculating on the lattice the “penguin contractions” for CP violating as well as for CP conserving amplitudes [3]) a convincing calculation of ε'/ε must involve at the same time a reliable explanation of the $\Delta I = 1/2$ selection rule, which is still missing. FSI effects alone are not enough to account for the large ratio of the $I = 0, 2$ CP conserving amplitudes. Other sources of large non-factorizable corrections are needed, which may affect the determination of ε'/ε as well.

The $\Delta I = 1/2$ selection rule in $K \to \pi\pi$ decays is known since 45 years [10] and it states the experimental evidence that kaons are 400 times more likely to decay in the $I = 0$ two-pion state than in the $I = 2$ component. This rule is not justified by any general symmetry consideration and, although it is common understanding that its explanation must be rooted in the dynamics of strong interactions, there is no up to date derivation of this effect from first principle QCD.

The ratio of $I = 2$ over $I = 0$ amplitudes appears directly in the definition of ε'/ε:

$$\frac{\varepsilon'}{\varepsilon} = \frac{1}{\sqrt{2}} \left\{ \frac{\langle (\pi\pi)_{I=2} | H_W | K_L \rangle}{\langle (\pi\pi)_{I=0} | H_W | K_L \rangle} - \frac{\langle (\pi\pi)_{I=2} | H_W | K_S \rangle}{\langle (\pi\pi)_{I=0} | H_W | K_S \rangle} \right\} .$$

As a consequence, a self-consistent calculation of ε'/ε must also address the determination of the CP conserving amplitudes.

The way we approach the calculation of the hadronic $K \to \pi\pi$ transitions in gauge theories is provided by the Operator Product Expansion which allows us to write the relevant amplitudes in terms of the hadronic matrix elements of effective $\Delta S = 1$ four quark operators (at a scale μ) and of the corresponding Wilson coefficients, which encode the information about the dynamical degrees of freedom heavier than the chosen renormalization scale:

$$H_{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud}V_{us}^* \sum_i \left[z_i(\mu) + \tau y_i(\mu) \right] Q_i(\mu) .$$

The entries V_{ij} of the 3×3 Cabibbo-Kobayashi-Maskawa matrix describe the flavour mixing in the SM and $\tau = -V_{td}V_{ts}^*/V_{ud}V_{us}^*$. For $\mu < m_c$ ($q = u, d, s$), the relevant
quark operators are:

\[
\begin{align*}
Q_1 & = \left(\sigma_{\alpha \beta} u_{\beta} \right)_{V-A} \left(\tau_{\beta} d_{\alpha} \right)_{V-A} \\
Q_2 & = \left(\tau u \right)_{V-A} \left(\tau d \right)_{V-A}
\end{align*}
\]

Current-Current

\[
\begin{align*}
Q_{3,5} & = \left(\sigma d \right)_{V-A} \sum_q \left(\bar{q} q \right)_{V+} \\
Q_{4,6} & = \left(\sigma_{\alpha \beta} d_{\beta} \right)_{V-A} \sum_{q} (\bar{q}_{\beta} q_{\alpha})_{V+}
\end{align*}
\]

Gluon “penguins”

\[
\begin{align*}
Q_{7,9} & = \frac{3}{2} \left(\sigma d \right)_{V-A} \sum_q \bar{e}_{q} \left(\bar{q} q \right)_{V+} \\
Q_{8,10} & = \frac{3}{2} \left(\sigma_{\alpha \beta} d_{\beta} \right)_{V-A} \sum_q \bar{e}_{q} \left(\bar{q}_{\beta} q_{\alpha} \right)_{V+}
\end{align*}
\]

Electroweak “penguins”

Current-penguin operators are induced by tree-level W-exchange whereas the so-called penguin (and “box”) diagrams are generated via an electroweak loop. Only the latter “feel” all three quark families via the virtual quark exchange and are therefore sensitive to the weak CP phase. Current-current operators control instead the CP conserving transitions. This fact suggests already that the connection between \(\varepsilon'/\varepsilon\) and the \(\Delta I = 1/2\) rule is by no means a straightforward one.

Using the effective \(\Delta S = 1\) quark Hamiltonian we can write \(\varepsilon'/\varepsilon\) as

\[
\varepsilon'/\varepsilon = e^{i\phi} \frac{G_F\omega}{2|\varepsilon|} \text{Re} A_0 \left[\Pi_0 - \frac{1}{\omega} \Pi_2 \right]
\]

where

\[
\begin{align*}
\Pi_0 &= \frac{1}{\cos \delta_0} \sum_i y_i \text{Re} \langle Q_i \rangle_0 (1 - \Omega_{\eta+\eta'}) \\
\Pi_2 &= \frac{1}{\cos \delta_2} \sum_i y_i \text{Re} \langle Q_i \rangle_2
\end{align*}
\]

and \(\langle Q_i \rangle \equiv \langle \pi \pi | Q_i | K \rangle\). The rescattering phases \(\delta_{0,2}\) can be extracted from elastic \(\pi - \pi\) scattering data [11] and are such that \(\cos \delta_0 \approx 0.8\) and \(\cos \delta_2 \approx 1\). Given that the phase of \(\varepsilon\), \(\theta_{\varepsilon}\), is approximately \(\pi/4\), as well as \(\delta_0 - \delta_2, \phi = \frac{\pi}{2} + \delta_2 - \delta_0 - \theta_{\varepsilon}\) turns out to be consistent with zero.

Two key ingredients appear in eq. [6]:

1. The isospin breaking \(\pi^0 - \eta - \eta'\) mixing, parametrized by \(\Omega_{\eta+\eta'}\), which is estimated to give a positive correction to the \(A_2\) amplitude of about 15-35%. The complete inclusion of NLO chiral corrections to the \(\pi^0 - \eta - \eta'\) mixing [12,13] and of additional isospin breaking effects (\(\Delta I = 5/2\) [14,15,16]) in the extraction of the isospin amplitudes may sizeably affect the determination of \(\varepsilon'/\varepsilon\). Although a partial cancellation of the new terms in \(\varepsilon'/\varepsilon\) reduces their numerical impact, we must await for further analyses in order to confidently assess their relevance.

2. The combination of CKM elements \(\text{Im} \lambda_t \equiv \text{Im}(V_{ts}^* V_{td})\), which affects directly the size of \(\varepsilon'/\varepsilon\) and the range of the uncertainty. The determination of \(\text{Im} \lambda_t\) depends on B-physics constraints and on \(\varepsilon\) [17]. In turn, the fit of \(\varepsilon\) depends on
the theoretical determination of B_K, the $K^0 - K^0$ hadronic parameter, which should be consistently determined within every analysis. The theoretical uncertainty on B_K affects substantially the final uncertainty on $\text{Im} \lambda_t$. A better determination of the unitarity triangle is expected from the B-factories and the hadronic colliders. In K-physics, the decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$ gives the cleanest “theoretical” determination of $\text{Im} \lambda_t$, albeit representing a great experimental challenge.

4 Summary of theory results

A satisfactory approach to the calculation of ε'/ε should comply with the following requirements:

A: A consistent definition of renormalized operators leading to the correct scheme and scale matching with the short-distance perturbative analysis.

B: A self-contained calculation of all relevant hadronic matrix elements (including B_K).

C: A simultaneous explanation of the $\Delta I = 1/2$ selection rule and ε'/ε.

None of the existing calculations satisfies all previous requirements. I summarize very briefly the various attempts to calculate ε'/ε which have appeared so far leading to the estimates shown in Figs. 1 and 2.

- VSA: A simple and naive approach to the problem is the VSA, which is based on two drastic assumptions: the factorization of the four quark operators in products of currents or densities and the saturation of the completeness of the intermediate states by the vacuum. As an example:

$$
\langle \pi^+ \pi^- | Q_6 | K^0 \rangle = 2 \langle \pi^- | \bar{u} \gamma_5 d | 0 \rangle \langle \pi^+ | \bar{s} u | K^0 \rangle - 2 \langle \pi^+ \pi^- | \bar{d} d | 0 \rangle \langle 0 | \bar{s} \gamma_5 d | K^0 \rangle + 2 \left[\langle 0 | s s | 0 \rangle - \langle 0 | \bar{d} d | 0 \rangle \right] \langle \pi^+ \pi^- | \bar{s} \gamma_5 d | K^0 \rangle
$$

The VSA does not allow for a consistent matching of the scale and scheme dependence of the Wilson coefficients (the HV and NDR results are shown in Fig. 1) and it carries potentially large systematic uncertainties. It is best used for LO estimates.

- Taipei’s: Generalized factorization represents an attempt to parametrize the hadronic matrix elements in the framework of factorization without a-priori assumptions. Phenomenological parameters are introduced to account for non-factorizable effects. Experimental data are used in order to extract as much
information as possible on the non-factorizable parameters. This approach has
been applied to the $K \to \pi \pi$ amplitudes in ref. [19]. The effective Wilson co-
efficients, which include the perturbative QCD running of the quark operators,
are matched to the factorized matrix elements at the scale μ_F which is arbi-
trarily chosen in the perturbative regime. A residual scale dependence remains
in the penguin matrix elements via the quark masses. The analysis shows that
in order to reproduce the $\Delta I = 1/2$ rule and ε'/ε sizable non-factorizable
contributions are required both in the current-current and the penguin matrix
elements. However, some assumptions on the phenomenological parameters
and ad hoc subtractions of scheme-dependent terms in the Wilson coefficients
make the numerical results questionable. The quoted error does not include any
short-distance uncertainty.

- München’s: In the München approach (phenomenological $1/N$) some of the
 matrix elements are obtained by fitting the $\Delta I = 1/2$ rule at $\mu = m_c = 1.3$
 GeV. On the other hand, the relevant gluonic and electroweak penguin $\langle Q_6 \rangle$
 and $\langle Q_8 \rangle_2$ remain undetermined and are taken around their leading $1/N$ values
 (which implies a scheme dependent result). In Fig. 2 the HV (left) and NDR
 (right) results are shown [20]. The dark range represents the result of gaussian
treatment of the input parameters compared to flat scanning (complete range).

- Dortmund’s: In the recent years the Dortmund group has revived and improved
 the approach of Bardeen, Buras and Gerard [21] based on the $1/N$ expansion.
 Chiral loops are regularized via a cutoff and the amplitudes are arranged in
 a p^{2n}/N expansion. A particular attention has been given to the matching
 procedure between the scale dependence of the chiral loops and that arising
 from the short-distance analysis [22]. The renormalization-scheme dependence
 remains and it is included in the final uncertainty. The $\Delta I = 1/2$ rule is
 reproduced, but the presence of the quadratic cutoff induces a matching scale
 instability (which is very large for B_K). The NLO corrections to $\langle Q_6 \rangle$
 induce a substantial enhancement of the matrix element (right bar in Fig. 2)
 compared to the leading order result (left bar). The darker ranges correspond to central
 values of $m_s, \Omega_{\eta+\eta'}, \text{Im} \lambda_t$ and Λ_{QCD}.

- Dubna’s: In the Nambu, Jona-Lasinio (NJL) modelling of QCD [23] the Dubna
group [24] has calculated ε'/ε including chiral loops up to $O(p^6)$ and the effects
 of scalar, vector and axial-vector resonances. Chiral loops are regularized via the
 heat-kernel method, which leaves unsolved the problem of the renormalization-
scheme dependence. A phenomenological fit of the $\Delta I = 1/2$ rule implies
deviations up to a factor two on the calculated $\langle Q_6 \rangle$. The reduced (dark) range
 in Fig. 2 corresponds to taking the central values of the NLO chiral couplings
 and varying the short-distance parameters.
• Trieste’s: In the approach of the Trieste group, based on the Chiral Quark Model (\(\chi\)QM) \([25]\), all hadronic matrix elements are computed up to \(O(p^4)\) in the chiral expansion in terms of the three model parameters: the constituent quark mass, the quark condensate and the gluon condensate. These parameters are phenomenologically fixed by fitting the \(\Delta I = 1/2\) rule \([26]\). This step is crucial in order to make the model predictive, since there is no a-priori argument for the consistency of the matching procedure (dimensional regularization and minimal subtraction are used in the effective chiral theory). As a matter of fact, all computed observables turn out to be very weakly dependent on the scale (and the renormalization scheme) in a few hundred MeV range around the matching scale, which is taken to be 0.8 GeV as a compromise between the ranges of validity of perturbation theory and chiral expansion. The \(I = 0\) matrix elements are strongly enhanced by non-factorizable chiral corrections and drive \(\varepsilon'/\varepsilon\) in the \(10^{-3}\) regime. The dark (light) ranges in Fig. 2 correspond to Gaussian (flat) scan of the input parameters. The bar on the left represents the result of ref. \([28]\) which updates the 1997 calculation \([27]\). That on the right is a new estimate \([29]\), similarly based on the \(\chi\)QM hadronic matrix elements, in which however \(\varepsilon'/\varepsilon\) is computed by including the explicit computation of \(\varepsilon\) in the ratio as opposed to the usual procedure of taking its value from the experiments. This approach has the advantage of being independent from the determination of the CKM parameters \(\text{Im}\lambda_t\) and of showing more directly the dependence on the long-distance parameter \(\hat{B}_K\) as determined within the model.

• Roma’s: Lattice regularization of QCD is the consistent approach to the problem. On the other hand, there are presently important numerical and theoretical limitations, like the quenching approximation and the implementation of chiral symmetry, which may substantially affect the calculation of the weak matrix elements. In addition, chiral perturbation theory is needed in order to obtain \(K \rightarrow \pi\pi\) amplitudes from the computed \(K \rightarrow \pi\) transitions. As summarized in ref. \([30]\) lattice cannot provide us at present with reliable calculations of the \(I = 0\) penguin operators relevant to \(\varepsilon'/\varepsilon\), as well as of the \(I = 0\) components of the hadronic matrix elements of the current-current operators (penguin contractions), which are relevant to the \(\Delta I = 1/2\) rule. This is due to large renormalization uncertainties, partly related to the breaking of chiral symmetry on the lattice. In the recent Roma re-evaluation of \(\varepsilon'/\varepsilon\) \(\langle Q_6 \rangle\) is taken at the VSA value with a 100% uncertainty \([30]\). The result is therefore scheme dependent (the HV and NDR results are shown in Fig. 2). The dark (light) ranges correspond to Gaussian (flat) scan of the input parameters.

• Montpellier’s: The analysis in ref. \([31]\) is based on QCD Sum Rules and uses recent data on the \(\tau\) hadronic total decay rates. The value of the \(Q_8\) matrix element thus found is substantially larger than the leading \(1/N\) result. At the
same time, the matrix element of the Q_6 gluonic penguin, computed assuming scalar meson dominance, is found in agreement with leading order $1/N$. The combined effect is a strong cancellation between electroweak and gluonic penguins which leads to a vanishingly small ε'/ε. Various sources of uncertainties in the calculation and the comparison with other analyses are discussed in [31].

- Lund’s: The $\Delta I = 1/2$ rule and B_K have been studied in the NJL framework and $1/N$ expansion by Bijnens and Prades [32] showing an impressive scale stability when including vector and axial-vector resonances. The same authors have recently produced a calculation of ε'/ε at the NLO in $1/N$ [33]. The calculation is done in the chiral limit and it is eventually corrected by estimating the largest $SU(3)$ breaking effects. Particular attention is devoted to the matching between long- and short-distance components by use of the X-boson method [34,35]. The couplings of the X-bosons are computed within the ENJL model which improves the high-energy behavior. The $\Delta I = 1/2$ rule is reproduced and the computed amplitudes show a satisfactory renormalization-scale and -scheme stability. A sizeable enhancement of the Q_6 matrix element is found which brings the central value of ε'/ε at the level of 3×10^{-3}.

- Valencia’s: The standard model estimate given by Pallante and Pich is obtained by applying the FSI correction factors obtained using a dispersive analysis à la Omnès-Mushkelishvili [7] to the leading (factorized) $1/N$ amplitudes. The detailed numerical outcome has been questioned on the basis of ambiguities related to the choice of the subtraction point at which the factorized amplitude is taken [8]. Large corrections may also be induced by unknown local terms which are unaccounted for by the dispersive resummation of the leading chiral logs. Nevertheless, the analysis of ref. [6] confirms the crucial role of higher order chiral corrections for ε'/ε, even though FSI effects alone leave the problem of reproducing the $\Delta I = 1/2$ selection rule open.

Other attempts to reproduce the measured ε'/ε using the linear σ-model, which include the effect of a scalar resonance with $m_\sigma \simeq 900$ MeV, obtain the needed enhancement of $\langle Q_6 \rangle$ [36]. However, it is not possible to reproduce simultaneously the experimental values of ε'/ε and of the CP conserving $K \to \pi\pi$ amplitudes.

Studies on the matching between long- and short- distances in large N QCD, with the calculation of the Q_7 penguin matrix element and of B_K at the NLO in the $1/N$ expansion have been presented in ref. [37]. However, a complete calculation of the $K \to \pi\pi$ matrix elements relevant to ε'/ε is not available yet.

It has been recently emphasized [38] that cut-off based approaches should pay attention to higher-dimension operators which become relevant for matching scales below 2 GeV and may represent one of the largest sources of uncertainty in present calculations. On the other hand, the calculations based on dimensional regularization
Figure 3: Predicting ε'/ε: a (Penguin) Comparative Anatomy of the München (dark gray) and Trieste (light gray) results in Fig. 1 (in units of 10^{-3}).

(for instance the Trieste one) may be safe in this respect if phenomenological input is used in order to encode in the hadronic matrix elements the physics at all scales.

Lattice, as a regularization of QCD, is the first-principle approach to the problem. Presently, very promising developments are being undertaken to circumvent the technical and conceptual shortcomings related to the calculation of weak matrix elements (for a recent survey see ref. [39]). Among these are the Domain Wall Fermion approach [40,41] which allows us to decouple the chiral symmetry from the continuum limit, and the possibility to circumvent the Maiani-Testa theorem [42] using the fact that lattice calculations are performed in finite volume [43]. All these developments need a tremendous effort in machine power and in devising faster algorithms. Preliminary results for the calculations of both ε'/ε and the $\Delta I = 1/2$ selection rule are expected during the next year.

5 The $\Delta I = 1/2$ selection rule

Without entering into the details of the various calculations I wish to illustrate with a simple exercise the crucial role of higher order chiral corrections (in general of non-factorizable contributions) for ε'/ε and the $\Delta I = 1/2$ selection rule. In order to do that I focus on two semi-phenomenological approaches.

A commonly used way of comparing the estimates of hadronic matrix elements in different approaches is via the so-called B factors which represent the ratio of the model matrix elements to the corresponding VSA values. However, care must be
Figure 4: Anatomy of the $\Delta I = 1/2$ rule in the χQM. See the text for explanations. The cross-hairs indicate the experimental point.

taken in the comparison of different models due to the scale dependence of the B’s and the values used by different groups for the parameters that enter the VSA expressions. An alternative pictorial and synthetic way of analyzing different outcomes for ε'/ε is shown in Fig. 3, where a “comparative anatomy” of the early Trieste and München predictions is presented.

From the inspection of the various contributions it is apparent that the different outcome on the central value of ε'/ε is almost entirely due to the difference in the size of the Q_6 contribution.

In the München approach the $\Delta I = 1/2$ rule is used in order to determine phenomenologically the matrix elements of $Q_{1,2}$ and, via operatorial relations, some of the matrix elements of the left-handed penguins. The approach does not allow for a phenomenological determination of the matrix elements of the penguin operators which are most relevant for ε'/ε, namely the gluonic penguin Q_6 and the electroweak penguin Q_8. These matrix elements are taken around their leading $1/N$ values (factorization).

In the semi-phenomenological approach of the Trieste group the size of the effects on the $I = 0, 2$ amplitudes is controlled by the phenomenological embedding of the $\Delta I = 1/2$ selection rule which determines the ranges of the model parameters: the constituent quark mass, the quark and the gluon condensates. In terms of these parameters all matrix elements are computed.

Fig. 4 shows an anatomy of the χQM contributions which lead to the experimental value of the $\Delta I = 1/2$ selection rule for central values of the input parameters.
Point (1) represents the result obtained by neglecting QCD and taking the factorized matrix element for the tree-level operator Q_2, which is the leading electroweak contribution. The ratio A_0/A_2 is thus found equal to $\sqrt{2}$: by far off the experimental point (8). Step (2) includes the effects of perturbative QCD renormalization on the operators $Q_{1,2}$ [4]. Step (3) shows the effect of including the gluonic penguin operators [5]. Electroweak penguins [6] are numerically negligible in the CP conserving amplitudes and are responsible for the very small shift in the A_2 direction. Therefore, perturbative QCD and factorization lead us from (1) to (4): a factor five away from the experimental ratio.

Non-factorizable gluon-condensate corrections, a crucial model dependent effect entering at the leading order in the chiral expansion, produce a substantial reduction of the A_2 amplitude (5), as it was first observed by Pich and de Rafael [7]. Moving the analysis to $O(p^4)$, the chiral loop corrections, computed on the LO chiral lagrangian via dimensional regularization and minimal subtraction, lead us from (5) to (6), while the finite parts of the NLO counterterms calculated in the χQM approach lead to the point (7). Finally, step (8) represents the inclusion of π-η-η' isospin breaking effects [8].

This model dependent anatomy shows the relevance of non-factorizable contributions and higher-order chiral corrections. The suggestion that chiral dynamics may be relevant to the understanding of the $\Delta I = 1/2$ selection rule goes back to the work of Bardeen, Buras and Gerard [21] in the $1/N$ framework with a cutoff regularization. A pattern similar to that shown in Fig. 4 for the chiral loop corrections to A_0 and A_2 was previously obtained, using dimensional regularization in a NLO chiral lagrangian analysis, by Missimer, Kambor and Wyler [19]. The Trieste group has extended their calculation to include the NLO contributions to the electroweak penguin matrix elements [20].

Fig. 5 shows the contributions to ε'/ε of the various penguin operators, providing us with a finer anatomy of the NLO chiral corrections. It is clear that chiral-loop dynamics plays a subleading role in the electroweak penguin sector (Q_{8-10}) while enhancing by 60% the gluonic penguin ($I = 0$) matrix elements. The NLO enhancement of the Q_6 matrix element is what drives ε'/ε in the χQM to the 10^{-3} ballpark.

As a consequence, the χQM analysis shows that the same dynamics that is relevant to the reproduction of the CP conserving A_0 amplitude (Fig. 4) is at work in the CP violating sector, albeit with a reduced strength.

In order to ascertain whether these model features represent real QCD effects we must wait for future improvements in lattice calculations [39]. On the other hand, indications for such a dynamics follow also from the analytic properties of the $K \to \pi\pi$ amplitudes [9]. It is important to notice however that the size of the effect so derived is generally not enough to fully account for the $\Delta I = 1/2$ rule. Other non-factorizable contributions are needed to further enhance the CP conserving $I = 0$ amplitude, and to reduce the large $I = 2$ amplitude obtained from perturbative QCD
and factorization. In the χQM approach, for instance, the fit of the $\Delta I = 1/2$ rule is due to the interplay of NLO chiral corrections and non-factorizable soft gluonic contributions (at LO in the chiral expansion).

6 Conclusions

In summary, those semi-phenomenological approaches which reproduce the $\Delta I = 1/2$ selection rule in $K \to \pi \pi$ decays, generally agree in the pattern and size of the $I = 2$ hadronic matrix elements with the existing lattice calculations. On the other hand, the $\Delta I = 1/2$ rule forces upon us large deviations from the naive factorization for the $I = 0$ amplitudes: B–factors of $O(10)$ are required for $\langle Q_{1,2}\rangle_0$. Here is were lattice calculations presently suffer from large sistematic uncertainties.

In the Trieste and Dortmund calculations, which reproduce the CP conserving $K \to \pi \pi$ amplitudes, non-factorizable effects (mainly due to final-state interactions) enhance the hadronic matrix elements of the gluonic penguins, and give $B_6/B_8^{(2)} \approx 2$. Similar indications stem from recent $1/N$ and dispersive approaches. The direct calculation of $K \to \pi \pi$ amplitudes and unquenching are needed in the lattice calculations in order to account for final state interactions. Promising and exciting work in this direction is in progress.
Acknowledgments

I wish to thank the organizers for their invitation to this interesting meeting hosted in a most enjoyable environment.

References

[1] A. Alavi-Harati et al., *Phys. Rev. Lett.* **83** (1999) 22; A. Barker, these Proceedings.

[2] V. Fanti et al., *Phys. Lett. B* **465** (1999) 335; J. Ocariz, *JHEP Proc.*, Third Latin American Symposium on High Energy Physics, Cartagena de Indias, Colombia, 2-8 April 2000 [PREHEP-silafae-III/027].

[3] J.H. Christenson et al., *Phys. Rev. Lett.* **13** (1964) 138.

[4] S. Bertolini, J.O. Eeg and M. Fabbrichesi, *Rev. Mod. Phys.* **72** (2000) 65.

[5] E. Fermi, *Suppl. Nuovo Cim.* **2** (1955) 17.

[6] E. Pallante and A. Pich, *Phys. Rev. Lett.* **84** (2000) 2568; *Nucl. Phys. B* **592** (2000) 294; A. Pich, these Proceedings.

[7] N.I. Mushkelishvili, *Singular Integral Equations* (Noordhoff, Gronigen, 1953), p. 204; R. Omnès, *Nuovo Cim.* **8** (1958) 316.

[8] A. J. Buras et al., *Phys. Lett. B* **480** (2000) 80.

[9] M. Ciuchini and G. Martinelli, [hep-ph/0006056](http://arxiv.org/abs/hep-ph/0006056).

[10] M. Gell-Mann and A. Pais, *Proc. Glasgow Conf.* (1955) 342.

[11] J. Gasser and U.G. Meissner, *Phys. Lett. B* **258** (1991) 219; E. Chell and M.G. Olsson, *Phys. Rev. D* **48** (1993) 4076.

[12] S. Gardner and G. Valencia, *Phys. Lett. B* **466** (1999) 355.

[13] G. Ecker et al., *Phys. Lett. B* **467** (2000) 88.

[14] S. Gardner and G. Valencia, *Phys. Rev. D* **62** (2000) 094024.

[15] K. Maltman and C. Wolfe, *Phys. Lett. B* **482** (2000) 77; *Phys. Rev. D* **63** (2001) 014008.
[16] V. Cirigliano, J.F. Donoghue and E. Golowich, Phys. Lett. B 450 (1999) 241; Phys. Rev. D 61 (2000) 093001; Phys. Rev. D 61 (2000) 093002; Eur. Phys. J. C 18 (2000) 83.

[17] M. Ciuchini et al., hep-ph/0012308.

[18] M. Neubert and B. Stech, in "Heavy Flavours", edited by A.J. Buras and M. Lindner (World Scientific, Singapore), hep-ph/9705292.

[19] H.Y. Cheng, Chin. J. Phys. 38 (2000) 1044.

[20] A.J. Buras, Proceedings of the Kaon 99 Conference, Chicago, USA, hep-ph/9908395.

[21] W.A. Bardeen, A.J. Buras and J.M. Gerard, Nucl. Phys. B 293 (1987) 787.

[22] T. Hambye et al., Phys. Rev. D 58 (1998) 014017; Nucl. Phys. B 564 (2000) 391.

[23] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345; J. Bijnens, Phys. Rept. 265 (1996) 369.

[24] A.A. Bel’kov et al., hep-ph/9907335.

[25] S. Weinberg, Physica A (327) 961979; A. Manhoar and H. Georgi, Nucl. Phys. B 234 (1984) 189.

[26] S. Bertolini et al., Nucl. Phys. B 514 (1998) 63.

[27] S. Bertolini et al., Nucl. Phys. B 514 (1998) 93.

[28] S. Bertolini, J.O. Eeg and M. Fabbrichesi, hep-ph/0002234 to appear in Phys. Rev. D 63 (2001) 0560xx.

[29] M. Fabbrichesi, Phys. Rev. D 62 (2000) 097902.

[30] G. Martinelli, Proceedings of the Kaon 99 Conference, Chicago, USA, hep-ph/9910237.

[31] S. Narison, Nucl. Phys. B 593 (2001) 3.

[32] J. Bijnens and J. Prades, JHEP 9901 (1999) 023.

[33] J. Bijnens and J. Prades, JHEP 0006 (2000) 035.
[34] W. A. Bardeen, J. Bijnens and J.-M. Gérard, Phys. Rev. Lett. 62 (1989) 1343; J. Bijnens, J.-M. Gérard and G. Klein, Phys. Lett. B 257 (1991) 191; J. P. Fatelo and J.-M. Gérard, Phys. Lett. B 347 (1995) 136.

[35] J. Bijnens and J. Prades, Phys. Lett. B 342 (1995) 331; Nucl. Phys. B 444 (1995) 523; JHEP 9901 (1999) 023; JHEP 0001 (2000) 002.

[36] Y.Y. Keum, U. Nierste and A.I. Sanda, Phys. Lett. B 457 (1999) 157; M. Harada et al., Phys. Rev. D 62 (2000) 014002; J.C.R. Bloch et al., Phys. Rev. C 62 (2000) 025206.

[37] S. Peris, M. Perrottet and E. de Rafael, JHEP 9805 (1998) 011; M. Knecht, S. Peris and E. de Rafael, Phys. Lett. B 443 (1998) 255, Phys. Lett. B 457 (1999) 227; S. Peris and E. de Rafael, Phys. Lett. B 490 (2000) 213.

[38] V. Cirigliano, J.F. Donoghue and E. Golowich, JHEP 0010 (2000) 048.

[39] L. Lellouch, Proceedings of Lattice 2000, Bangalore, India, hep-lat/0011088.

[40] D. Kaplan, Phys. Lett. B 288 (1992) 342.

[41] A. Soni, Proceedings of the B_{CP} 99 Conference, Taipei, Taiwan, hep-ph/0003092.

[42] L. Maiani and M. Testa, Phys. Lett. B 245 (1990) 585.

[43] L. Lellouch and M. Lüscher, hep-lat/0003023.

[44] M.K. Gaillard and B. Lee, Phys. Rev. Lett. 33 (1974) 108; G. Altarelli and L. Maiani, Phys. Lett. B 52 (1974) 413.

[45] M.A. Shifman, A.I. Vainshtein and V.I. Zacharov, JETP Lett. 22 (1975) 55; Nucl. Phys. B 120 (1977) 316; JETP 45 (1977) 670; J. Ellis et al., Nucl. Phys. B 131 (1977) 285, (E) 1325411978; F.J. Gilman and M.B. Wise, Phys. Lett. B 83 (1979) 83; Phys. Rev. D 20 (1979) 2392; R.S. Chivukula, J.M. Flynn and H. Georgi, Phys. Lett. B 171 (1986) 453.

[46] J. Bijnens and M.B. Wise, Phys. Lett. B 137 (1984) 245; A.J. Buras and J.M. Gerard, Phys. Lett. B 192 (1987) 156; M. Lusignoli, Nucl. Phys. B 325 (1989) 33; J.M. Flynn and L. Randall, Phys. Lett. B 224 (1989) 221.

[47] A. Pich and E. de Rafael, Nucl. Phys. B 358 (1991) 311.

[48] B. Holstein, Phys. Rev. D 20 (1979) 1187; J.F. Donoghue, E. Golowich, B.R. Holstein and J. Trampetic, Phys. Lett. B 179 (1986) 361; A.J. Buras and J.M. Gerard, in ref. [40].
[49] J. Kambor, J. Missimer and D. Wyler, *Nucl. Phys. B* **346** (1990) 17; *Phys. Lett. B* **261** (1991) 496.

[50] V. Antonelli et al., *Nucl. Phys. B* **469** (1996) 143; *Nucl. Phys. B* **469** (1996) 181; S. Bertolini, J.O. Eeg and M. Fabbrichesi, *Nucl. Phys. B* **476** (1996) 225;