Spatial Mixture-of-Experts

NEURIPS 2022

This project received funding from the European Research Council under grant agreement MAELSTROM.
Data Has Spatial Structure
Data Has Spatial Structure

Weather

Geometric meshes

Registered data

Approximate alignment

And more...
Data Has Spatial Structure

Weather
Geometric meshes
Registered data
Approximate alignment
And more…
Data Has Spatial Structure

Weather

Geometric meshes

Registered data

Approximate alignment

And more...

Convolution
Data Has Spatial Structure

Weather
Geometric meshes
Registered data
Approximate alignment
And more...

Convolution
Locally-connected
Data Has Spatial Structure

- Weather
- Geometric meshes
- Registered data
- Approximate alignment
- And more…

Convolution

Locally-connected

Spatial Mixture-of-Experts

Experts	Learned Gate
![Experts](image)	![Learned Gate](image)
Data Has Spatial Structure

- Weather
- Geometric meshes
- Registered data
- Approximate alignment
- And more...

Convolution

Locally-connected

Spatial Mixture-of-Experts

Experts

Learned Gate
Data Has Spatial Structure

- Weather
- Geometric meshes
- Registered data
- Approximate alignment
- And more…

Convolution

Locally-connected

Spatial Mixture-of-Experts

Experts

Learned Gate
Data Has Spatial Structure

- Weather
- Geometric meshes
- Registered data
- Approximate alignment
- And more...

Convolution

Locally-connected

Spatial Mixture-of-Experts

Experts

Learned Gate
Data Has Spatial Structure

Weather
Geometric meshes
Registered data
Approximate alignment
And more...

Convolution

Low-rank locally-connected

Locally-connected

Spatial Mixture-of-Experts

Experts

Learned Gate
Data Has Spatial Structure

Weather
Geometric meshes
Registered data
Approximate alignment
And more...

Convolution

Low-rank locally-connected
Mixture-of-Experts

Spatial Mixture-of-Experts

Experts
Learned Gate
Spatial Mixture-of-Experts
Spatial Mixture-of-Experts

\[H \]

\[W \]

\(C = 1 \text{ input channels} \)
Spatial Mixture-of-Experts

Experts \mathcal{E}

H

W

$C = 1$ input channels
Spatial Mixture-of-Experts

Experts \mathcal{E}

H

W

$C = 1$ input channels
Spatial Mixture-of-Experts

Experts \mathcal{E}

G, tensor routing

$D \sim |\mathcal{E}| \times H \times W$
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing $\mathcal{D} \sim |\mathcal{E}| \times H \times W$

$G \sim |\mathcal{E}| \times H \times W$

$E \cdot F = 1$ output channels

top_E sparse routing
Select $E = 1$ experts per pixel
Apply experts at locations

$D \sim |\mathcal{E}| \times H \times W$
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing
$D \sim |\mathcal{E}| \times H \times W$

\mathcal{E}

top$_E$ sparse routing
Select $E = 1$ experts per pixel
Apply experts at locations

$E \cdot F = 1$ output channels

$H \times W$ channels
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing
$D \sim |\mathcal{E}| \times H \times W$

$H \times W$

$C = 1$ input channels

$E \cdot F = 1$ output channels

$\text{top}_{E} \text{ sparse routing}$
Select $E = 1$ experts per pixel
Apply experts at locations

Routing Classification Loss
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing $\mathcal{D} \sim |\mathcal{E}| \times H \times W$

$E \cdot F = 1$ output channels

top_E sparse routing
Select $E = 1$ experts per pixel
Apply experts at locations

Routing Classification Loss

Select $E = 1$ experts per pixel
Apply experts at locations
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing $\mathcal{D} \sim |\mathcal{E}| \times H \times W$

$H \cdot W = |\mathcal{E}|$ input channels

$E \cdot F = 1$ output channels

top$_E$ sparse routing
Select $E = 1$ experts per pixel
Apply experts at locations

Routing Classification Loss
Identify incorrect routings with error signal magnitude
Spatial Mixture-of-Experts

Experts \mathcal{E}

H W

Gate G, tensor routing $\mathcal{D} \sim |\mathcal{E}| \times H \times W$

$E \cdot F = 1$ output channels

MSE loss $L = \frac{1}{N} \sum (X - Y)^2$

top_E sparse routing
Select $E = 1$ experts per pixel
Apply experts at locations

Routing Classification Loss
Identify incorrect routings with error signal magnitude
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing
$\mathcal{D} \sim |\mathcal{E}| \times H \times W$

top_E sparse routing
Select $E = 1$ experts per pixel
Apply experts at locations

$E \cdot F = 1$ output channels

MSE loss
$L = \frac{1}{N} \sum (X - Y)^2$

Error signal
$\frac{dL}{dX} = \frac{2}{N} (X - Y)$

Routing Classification Loss
Identify incorrect routings with error signal magnitude
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing $D \sim |\mathcal{E}| \times H \times W$

$E \cdot F = 1$ output channels

MSE loss $L = \frac{1}{N} \sum (X - Y)^2$

Error signal $\frac{dL}{dX} = \frac{2}{N} (X - Y)$

Routing Classification Loss

Identify incorrect routings with error signal magnitude

Select $E = 1$ experts per pixel
Apply experts at locations

top$_E$ sparse routing
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing $D \sim |\mathcal{E}| \times H \times W$

top_E sparse routing
Select $E = 1$ experts per pixel
Apply experts at locations

Routing Classification Loss
Construct labels
Identify incorrect routings with error signal magnitude

MSE loss
$L = \frac{1}{N} \sum (X - Y)^2$

Error signal
$\frac{dL}{dX} = \frac{2}{N} (X - Y)$
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing $D \sim |\mathcal{E}| \times H \times W$

$E \cdot F = 1$ output channels

$\text{MSE loss } L = \frac{1}{N} \sum (X - Y)^2$

$\text{Error signal } \frac{dL}{dX} = \frac{2}{N} (X - Y)$

$\text{Select } E = 1 \text{ experts per pixel}$

$\text{Apply experts at locations}$

$\text{Routing Classification Loss}$

Construct labels

Identify incorrect routings with error signal magnitude

$1 \frac{1}{2}$ 0 1

$0 \frac{1}{2}$ 0 0

1 0 0 0

✓ ✓ X

✓ ✓ ✓
Spatial Mixture-of-Experts

Experts \mathcal{E}

Gate G, tensor routing $\mathcal{D} \sim |\mathcal{E}| \times H \times W$

top$_E$ sparse routing
Select $E = 1$ experts per pixel
Apply experts at locations

Routing Classification Loss

Compute Loss
Construct labels
Identify incorrect routings with error signal magnitude

Binary cross-entropy

MSE loss
$L = \frac{1}{N} \sum (X - Y)^2$

Error signal
$\frac{dL}{dX} = \frac{2}{N} (X - Y)$
Spatial Mixture-of-Experts

Experts \mathcal{E}

- Gate G, tensor routing $\mathcal{D} \sim |\mathcal{E}| \times H \times W$

Expert Error Damping

- Damp error signals for incorrect routings
- α

top$_E$ sparse routing

- Select $E = 1$ experts per pixel
- Apply experts at locations

Routing Classification Loss

- Compute Loss
- Construct labels
- Identify incorrect routings with error signal magnitude

MSE loss

$$L = \frac{1}{N} \sum (X - Y)^2$$

Error signal

$$\frac{dL}{dX} = \frac{2}{N}(X - Y)$$
Weather
Weather

Medium-range weather prediction **WeatherBench**

[Rasp et al., 2020; Rasp & Thuerey, 2021; Ashkboos et al., 2022; Elsayed et al., 2020; Dosovitskiy et al., 2021]
Weather

Medium-range weather prediction \textit{WeatherBench}

\[T = 0 \quad \rightarrow \quad T + 3 \text{ or } 5 \text{ days} \]

[Rasp et al., 2020; Rasp & Thueray, 2021; Ashkboos et al., 2022; Elsayed et al., 2020; Dosovitskiy et al., 2021]
Medium-range weather prediction **WeatherBench**

\[T = 0 \quad \rightarrow \quad T + 3 \text{ or } 5 \text{ days} \]

Model	Z500 [m²s⁻²]	T850 [K]		
	3 days	5 days	3 days	5 days
Rasp & Thuerey	316±2.4	563±3.1	1.80±0.02	2.84±0.03
2x wide	310±2.0	555±2.8	1.76±0.03	2.78±0.01
LRLCN	290±1.4	549±1.9	1.73±0.03	2.79±0.01
ViT	438±2.8	638±3.1	2.24±0.04	2.88±0.03
SMoE	270±2.0	525±2.0	1.66±0.02	2.60±0.01

[Rasp et al., 2020; Rasp & Thuerey, 2021; Ashkboos et al., 2022; Elsayed et al., 2020; Dosovitskiy et al., 2021]
Weather

Medium-range weather prediction **WeatherBench**

![Diagram: WeatherBench]

\[T = 0 \quad \rightarrow \quad T + 3 \text{ or } 5 \text{ days} \]

Model	Z500 [m²s⁻²]	T850 [K]		
	3 days	5 days	3 days	5 days
Rasp & Thuerey	316±2.4	563±3.1	1.86±0.02	2.84±0.03
➔ 2x wide	310±2.0	555±2.8	1.76±0.03	2.78±0.01
LRLCN	290±1.4	549±1.9	1.73±0.03	2.79±0.01
ViT	438±2.8	638±3.1	2.24±0.04	2.88±0.03
SMoE	270±2.0	525±2.0	1.66±0.02	2.60±0.01
R&T (pretrained)	267±1.8	500±2.4	1.66±0.03	2.43±0.02
SMoE (pretrained)	253±2.1	488±1.7	1.57±0.02	2.34±0.02
➔ + extra ERA5	232±1.5	440±1.2	1.46±0.02	2.19±0.01
➔ + 1.4°	198±1.6	382±2.0	1.42±0.00	2.06±0.02

[Rasp et al., 2020; Rasp & Thuerey, 2021; Ashkboos et al., 2022; Elsayed et al., 2020; Dosovitskiy et al., 2021]
Weather

Medium-range weather prediction

WeatherBench

![WeatherBench Diagram](https://via.placeholder.com/150)

\[T = 0 \quad \xrightarrow{\text{post-processing}} \quad T + 3 \text{ or } 5 \text{ days} \]

Model	Z500 [m²s⁻²]	T850 [K]		
	3 days	5 days	3 days	5 days
Rasp & Thuerey	316 ± 2.4	563 ± 3.1	1.86 ± 0.02	2.84 ± 0.03
2x wide	310 ± 2.0	555 ± 2.8	1.76 ± 0.03	2.78 ± 0.01
LRLCN	290 ± 1.4	549 ± 1.9	1.73 ± 0.03	2.79 ± 0.01
ViT	438 ± 2.8	638 ± 3.1	2.24 ± 0.04	2.88 ± 0.03
SMoE	270 ± 2.0	525 ± 2.0	1.66 ± 0.02	2.60 ± 0.01
R&T (pretrained)	267 ± 1.8	500 ± 2.4	1.66 ± 0.03	2.43 ± 0.02
SMoE (pretrained)	253 ± 2.1	488 ± 1.7	1.57 ± 0.02	2.34 ± 0.02
+ extra ERA5	232 ± 1.5	440 ± 1.2	1.46 ± 0.02	2.19 ± 0.01
+ 1.4°	198 ± 1.8	382 ± 2.0	1.42 ± 0.00	2.06 ± 0.02

[Rasp et al., 2020; Rasp & Thuerey, 2021; Ashkboos et al., 2022; Elsayed et al., 2020; Dosovitskiy et al., 2021]
Weather

Medium-range weather prediction WeatherBench

Model	Z500 [m2s$^{-2}$]	T850 [K]		
	3 days	5 days	3 days	5 days
Rasp & Thuerey	316±2.4	563±3.1	1.86±0.02	2.84±0.03
➡️ 2x wide	310±2.0	555±2.8	1.76±0.03	2.78±0.01
LRLCN	290±1.4	549±1.9	1.73±0.03	2.79±0.01
ViT	438±2.8	638±3.1	2.24±0.04	2.88±0.03
SMoE	270±2.0	525±2.0	1.66±0.02	2.60±0.01
R&T (pretrained)	267±1.8	500±2.4	1.66±0.03	2.43±0.02
SMoE (pretrained)	253±2.1	488±1.7	1.57±0.02	2.34±0.02
➡️ + extra ERA5	232±1.5	440±1.2	1.46±0.02	2.19±0.01
➡️ + 1.4°	198±1.8	382±2.0	1.42±0.00	2.06±0.02

[Rasp et al., 2020; Rasp & Thuerey, 2021; Ashkboos et al., 2022; Elsayed et al., 2020; Dosovitskiy et al., 2021]
Weather

Medium-range weather prediction **WeatherBench**

\[T = 0 \quad \rightarrow \quad T + 3 \text{ or } 5 \text{ days} \]

Model	Z500 [m²s⁻²]	T850 [K]		
	3 days	5 days	3 days	5 days
Rasp & Thuerey	316±2.4	563±3.1	1.86±0.02	2.84±0.03
2x wide	310±2.0	555±2.8	1.76±0.03	2.78±0.01
LRLCN	290±1.4	549±1.9	1.73±0.03	2.79±0.01
VIT	438±2.8	638±3.1	2.24±0.04	2.88±0.03
SMoE	270±2.0	525±2.0	1.66±0.02	2.60±0.01
R&T (pretrained)	267±1.8	500±2.4	1.66±0.03	2.43±0.02
SMoE (pretrained)	253±2.1	488±1.7	1.57±0.02	2.34±0.02
2x + extra ERA5	232±1.5	440±1.2	1.46±0.02	2.19±0.01
1.4°	198±1.8	382±2.0	1.42±0.00	2.06±0.02

[Emory et al., 2020; Rasp & Thuerey, 2021; Ashkboos et al., 2022; Elsayed et al., 2020; Dosovitskiy et al., 2021]

Ensemble post-processing ENS-10

Model	Z500 [m²s⁻²]	T850 [K]	T2M [K]			
	5 ens	10 ens	5 ens	10 ens	5 ens	10 ens
EMOS	79.12±0.12	78.80±0.21	0.721±0.01	0.706±0.04	0.720±0.00	0.711±0.03
U-Net	76.54±0.20	76.18±0.12	0.685±0.00	0.670±0.01	0.657±0.01	0.644±0.01
SMoE	68.94±0.14	67.43±0.12	0.612±0.01	0.590±0.02	0.601±0.02	0.594±0.02
CRPS	29.21±0.18	29.02±0.13	0.247±0.00	0.245±0.00	0.244±0.00	0.241±0.02
U-Net	27.78±0.11	27.55±0.19	0.230±0.01	0.229±0.01	0.225±0.00	0.220±0.01
SMoE (pretrained)	23.79±0.20	23.10±0.16	0.207±0.03	0.197±0.03	0.199±0.01	0.190±0.02