Produção de nisina em leite desnatado diluído por *Lactococcus lactis* subsp. *lactis* ATCC 11454 em biorreator

Luciana Juncioni de Arauz

Tese para a obtenção do grau de DOUTOR

Orientadora:
Profa. Dra. Thereza Christina Vessoni Penna

São Paulo
2011
Produção de nisina em leite desnatado diluído por *Lactococcus lactis* subsp. *lactis* ATCC 11454 em biorreator

Luciana Juncioni de Arauz

Tese para a obtenção do grau de DOUTOR

Orientadora:
Profa. Dra. Thereza Christina Vessoni Penna

São Paulo
2011
Ficha Catalográfica
Elaborada pela Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP.

Arauz, Luciana Juncioni de
A663p Produção de nisina em leite desnatado diluído por Lactococcus lactis subsp. lactis ATCC 11454 em bioreator / Luciana Juncioni de Arauz. -- São Paulo, 2011.
148p.

Tese (doutorado) - Faculdade de Ciências Farmacêuticas da Universidade de São Paulo. Departamento de Tecnologia Bioquímico-Farmacêutica.
Orientador: Vessoni Penna, Thereza Christina

1. Lactococos : Microbiologia de alimentos 2. Proteína : Biotecnologia I. T. II. Vessoni Penna, Thereza Christina, orientador.
Luciana Juncioni de Arauz

Produção de nisina em leite desnatado diluído por *Lactococcus lactis* subsp. *lactis* ATCC 11454 em biorreator

Comissão Julgadora
da
Tese para obtenção do grau de Doutor

Profa. Dra. Thereza Christina Vessoni Penna
orientadora/presidente

Profa. Dra. Júlia Baruque Ramos
1º. examinador

Dr. Wagner Quintilio
2º. examinador

Profa. Dra. Susana Marta Isay Saad
3º. examinador

Prof. Dr. Pedro de Alcântara Pessôa Filho
4º. examinador

São Paulo, 17 de março de 2011.
Aos meus pais, Inez e Aramis, pelo incentivo, apoio e compreensão, em todos os momentos desta e de outras caminhadas.
AGRADECIMENTOS

A Profa. Titular Dra. Thereza Christina Vessoni Penna, pela dedicada orientação, confiança e permanente incentivo.

A Rosilene de Almeida Casartelli, Diretora Técnica da Divisão de Serviços Básicos do Instituto Adolfo Lutz, pela compreensão e oportunidade para o desenvolvimento deste trabalho.

A Profa. Dra. Júlia Baruque Ramos pelos ensinamentos, disponibilidade e pelas valiosas contribuições para a elaboração deste trabalho.

A Profa. Dra. Priscila Gava Mazzola pelo convívio agradável, colaboração e sugestões que melhoraram o desenvolvimento deste projeto.

A Dra. Angela Faustino Jozala, pela amizade e por todas as sugestões que valorizaram este trabalho.

Aos colegas do Departamento de Tecnologia Bioquímico-Farmacêutica, pelo convívio e amizade.

A equipe do Departamento de Tecnologia Bioquímico-Farmacêutica, Irene, Elza, Gledson, Juarez, Miriam e Ricardo e também aos funcionários da Secretaria de Pós-Graduação, Jorge e Elaine, pelos auxílios prestados.

A todos os professores, funcionários e estagiários da Faculdade de Ciências Farmacêuticas/USP, que de maneira direta ou indireta contribuíram para a realização deste trabalho.

A FAPESP, CAPES e CNPq pelo apoio financeiro para a realização desta pesquisa.
RESUMO

ARAÚZ, L. J. Produção de nisina em leite desnatado diluído por Lactococcus lactis subsp. lactis ATCC 11454 em biorreator. 2011. 148 f. Tese (Doutorado) – Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2011.

Nisina é um peptídeo antimicrobiano natural produzido por Lactococcus lactis subsp. lactis ATCC 11454 durante a fase exponencial de crescimento. A bacteriocina é usada como conservante natural de alimentos, uma vez que mostra atividade antimicrobiana contra bactérias Gram-positivas e esporos. Tem potencial aplicação em inúmeros campos (farmacêutico, veterinário e cosméticos). O objetivo deste trabalho foi estudar a cinética de crescimento bacteriano e a produção de nisina em biorreator, utilizando leite desnatado diluído, como um meio de cultura a baixo custo. Também foram avaliados os consumos de açúcar e proteína, formação de ácido láctico e adsorção de nisina nas células produtoras durante os processos de produção de nisina. Pré-cultivos com \(10^7\) UFC.mL\(^{-1}\) de Lactococcus lactis foram cultivados em biorreator de 2 L contendo 25% de leite desnatado diluído em água (1,5 L, pH 6,7). Os ensaios foram desenvolvidos a 30ºC por 52 horas, variando a agitação e aeração: (i) 200 rpm (0,0, 0,5, 1,0 e 2,0 L.min\(^{-1}\)) e (ii) 100 rpm (0,0 e 0,5 L.min\(^{-1}\)). A atividade de nisina foi avaliada pelo método de difusão em ágar, utilizando Lactobacillus sakei ATCC 15521 como microrganismo sensível à ação de nisina. A melhor concentração de nisina (62,68 mg.L\(^{-1}\) ou 2511,89 AU.mL\(^{-1}\)), foi obtida em 16 horas, 200 rpm e sem aeração (\(k_a = 5,29 \times 10^{-3}\) h\(^{-1}\)). A adsorção de nisina nas células produtoras foram baixas (6,8 - 15,1%), quando comparadas com a atividade do sobrenadante. Estes resultados mostraram que o meio de cultivo composto por leite desnatado diluído favoreceu o crescimento celular e produção associada ao crescimento da nisina. Foram realizados estudos preliminares de liofilização (bioconservação) e purificação por cromatografia da nisina produzida em biorreator. A liofilização apresentou perda da atividade de nisina (24,8%), enquanto a purificação por cromatografia de interação hidrofóbica com resina Butyl-Sepharose, recuperou 40% da atividade da biomolécula, mostrando que ambos os processos poderão ser aplicados à bacteriocina.

Palavras-chaves: Lantibiótico. Antimicrobiano. Bacteriocina. Conservante de alimentos. Bactéria ácido láctica.
ABSTRACT

ARAÚZ, L.J. Nisin production in diluted skimmed milk utilizing Lactococcus lactis subsp. lactis ATCC 11454 in bioreactor. 2011. 148 f (Tese Doutorado)– Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2011.

Nisin is a natural antimicrobial peptide produced by Lactococcus lactis subsp. lactis ATCC 11454 during its exponential growth phase. The bacteriocin is used as natural food preservative due to its antimicrobial activity against Gram-positive bacteria and outgrowth of spores. This property allows its application in numerous fields (pharmaceutical, veterinary and cosmetic). The aim of this work was to study the bacterial growth kinetics of L. lactis and respective nisin production in bioreactor, using diluted skimmed milk as an inexpensive medium. During the production, the consumption of sugar and protein, lactic acid formation and nisin adsorption on the producer strain cells were evaluated. Pre-cultivation with 10^7 UFC.mL^-1 of L. lactis were expanded in a 2 L bioreactor containing 25% diluted skimmed milk in water (1.5 L, pH 6.7). The assays were performed at 30°C for 52 hours, varying agitation and airflow rate: (i) 200 rpm (0.0, 0.5, 1.0 and 2.0 L.min^-1) and (ii) 100 rpm (0.0, 0.5 L.min^-1). Nisin activity was evaluated through diffusion assays using Lactobacillus sakei ATCC 15521 as sensitive strain. The best nisin concentration (62.68 mg.L^-1 or 2511.89 AU.mL^-1), was achieved at 16 hours, 200 rpm and with no airflow rate (k_La = 5.29 x 10^-3 h^-1). The quantity of nisin adsorbed by the producer cells were low (6.8 -15.1%) when compared to the quantity released in the supernatant. These results showed that diluted skimmed milk supported cell growth and growth-associated nisin. Preliminary assays of lyophilization (biopreservation) and purification by chromatography of nisin produced in bioreactor were performed. Lyophilization presented a loss of nisin activity (24.8%) while purification by hydrophobic interaction chromatography with Butyl-Sepharose column recovered 40% of the activity, showing that both processes can be applied to the bacteriocin.

Keywords: Lantibiotic. Antimicrobial. Bacteriocin. Food preservative. Lactic acid bacteria.
LISTA DE ILUSTR&AÇÕES

Figura 2.1 - Esquema geral da fermentação da glicose pelas bactérias ácido lácticas.. 06

Figura 2.2 - Representação esquemática da estrutura primária de nisina A, produzida por Lactococcus lactis subsp. lactis ATCC 11454. Ala-S-Ala representa lantionina, Abu-S-Ala β-metil-lantionina, Dha dehidroalanina e Dhb dehidrobutirina... 09

Figura 2.3 - Mecanismo de ação de bacteriocinas das classes I (nisina) e classe IIa (pediocina) em bactérias Gram-positivas... 12

Figura 4.1 - Vista superior do biorreator New Brunswick Scientific Bioflo 110... 29

Figura 4.2 - Vista lateral do biorreator New Brunswick Scientific Bioflo 110... 30

Figura 4.3 - Curva padrão relacionando as concentrações da atividade de nisina comercial com o diâmetro da área de inibição (zonas sem crescimento de L. sakei), obtida usando o método de difusão em ágar, por meio de diluições de nisina em HCl 0,02 N. Equação log (AU.mL⁻¹) = 0,2408.(Halo)-0,8745 e R² = 0,9806.. 37

Figura 4.4 - Estruturas da lactose, galactose e glicose... 39

Figura 5.1 - Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina (log AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL⁻¹) experimentais do ensaio 1... 44

Figura 5.2 - Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina (log AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL⁻¹) experimentais dos ensaios 2 e 3... 46

Figura 5.3 - Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina (log AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL⁻¹) experimentais dos ensaios 4, 5 e 6... 49

Figura 5.4 - Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina (log AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL⁻¹) experimentais do ensaio 7... 50

Figura 5.5 - Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina (Log AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL⁻¹) experimentais do ensaio 8... 51

Figura 5.6 - Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina (log AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL⁻¹) experimentais do ensaio 9... 52

Figura 5.7 – Curvas de atividade de nisina (log AU.mL⁻¹) extraída das células por solução ácida ... 56
Figura 5.8 - Perfil cromatográfico da eluição de nisina em coluna de Butyl-Sepharose® por CIH, contendo solução tampão de fosfato de sódio 20 mM, pH 5,3 em gradiente salino de (NH₄)₂SO₄ 2 M, 1,5 M, 1 M e solução tampão. (-++) Absorbância, (........) Gradiente salino e (—■—) Atividade de nisina (AU.mL⁻¹).............

Figura 6.1 - Correlações entre kₐ e aeração. Os processos de aeração foram respectivamente: 200 rpm (●) (equação = - 7,2103.(aeração)² + 16,6198.(aeração); e R² = 0,9905) e 100 rpm (x) (equação kₐ = 7,2200.(aeração); R² =1)...

Figura 9.2.1 – Curvas de log UFC.mL⁻¹ versus log AU.mL⁻¹, com as linhas de tendência, equação e coeficiente de correlação...
LISTA DE TABELAS

Tabela 2.1 - Principais características que diferenciam bacteriocinas de antibióticos

Tabela 4.1 - Composição do meio de cultivo Caldo MRS

Tabela 4.2 - Composição do meio de cultivo leite desnatado

Tabela 5.1 - Resumo dos ensaios realizados em biorreator

Tabela 5.2 - Resultados experimentais do ensaio 1 (100 rpm e sem aeração) em biorreator

Tabela 5.3 - Resultados experimentais do ensaio 2 (100 rpm e 0,5 L.min⁻¹) em biorreator

Tabela 5.4 - Resultados experimentais do ensaio 3 (100 rpm e 0,5 L.min⁻¹) em biorreator

Tabela 5.5 - Resultados experimentais do ensaio 4 (200 rpm e sem aeração) em biorreator

Tabela 5.6 - Resultados experimentais do ensaio 5 (200 rpm e sem aeração) em biorreator

Tabela 5.7 - Resultados experimentais do ensaio 6 (200 rpm e sem aeração) em biorreator

Tabela 5.8 - Resultados experimentais do ensaio 7 (200 rpm e 0,5 L.min⁻¹) em biorreator

Tabela 5.9 - Resultados experimentais do ensaio 8 (200 rpm e 1 L.min⁻¹) em biorreator

Tabela 5.10 - Resultados experimentais do ensaio 9 (200 rpm e 2 L.min⁻¹) em biorreator

Tabela 5.11 - Resultados experimentais dos ensaios 1, 2 e 3 da extração de nisina adsorvida das células produtoras

Tabela 5.12 - Resultados experimentais dos ensaios 4, 5 e 6 da extração de nisina adsorvida das células produtoras

Tabela 5.13 - Resultados experimentais dos ensaios 7, 8 e 9 da extração de nisina adsorvida das células produtoras

Tabela 5.14 - Resultados experimentais do coeficiente volumétrico de transferência de oxigênio (kLa)

Tabela 5.15 - Resultados experimentais de nisina liofilizada reconstituída em 1 mL e
concentrada 10 vezes (100 µL) com água destilada e HCl, produzida em bioreator
(200 rpm/ sem aeração) por *L. lactis* em leite desnatado diluído... 58

Tabela 5.16- Purificação preliminar de nisina produzida por *L. lactis* em bioreator... 59

Tabela 6.1 - Resumo dos resultados experimentais obtidos nos cultivos descontínuos... 61

Tabela 6.2- Resumo da adsorção de nisina pelas células produtoras... 66

Tabela 9.1.1 – Resultados suavizados do ensaio 1 (100 rpm/sem aeração)................................. 94

Tabela 9.1.2 – Resultados suavizados do ensaio 2 (100 rpm/0,5 L.min⁻¹).. 94

Tabela 9.1.3 – Resultados suavizados do ensaio 3 (100 rpm/0,5 L.min⁻¹).. 95

Tabela 9.1.4 – Resultados suavizados do ensaio 4 (200 rpm/sem aeração)................................. 95

Tabela 9.1.5 – Resultados suavizados do ensaio 5 (200 rpm/sem aeração)................................. 96

Tabela 9.1.6 – Resultados suavizados do ensaio 6 (200 rpm/sem aeração)................................. 96

Tabela 9.1.7 – Resultados suavizados do ensaio 7 (200 rpm/0,5 L.min⁻¹).. 97

Tabela 9.1.8 – Resultados suavizados do ensaio 8 (200 rpm/1 L.min⁻¹).. 97

Tabela 9.1.9 – Resultados suavizados do ensaio 9 (200 rpm/2 L.min⁻¹).. 98

Tabela 9.3.1 – Resultados suavizados dos ensaios 1, 2 e 3 da extração de nisina das células produtoras... 102

Tabela 9.3.2 – Resultados suavizados dos ensaios 4, 5 e 6 da extração de nisina das células produtoras... 103

Tabela 9.3.3 – Resultados suavizados dos ensaios 7, 8 e 9 da extração de nisina das células produtoras... 104

Tabela 9.4.1 - Resultados da purificação preliminar de nisina em coluna de interação hidrofóbica.. 106
LISTA DE SIGLAS E ABREVIATURAS

ADI – *Acceptable Daily Intake*
Adso. – Adsorção
ATCC – *American Type Culture Collection*
AU – Unidade Arbitrária (“Arbitrary Units”)
BAL – Bactérias Ácido Lácticas
BCA – Ácido Bicincônimico
BSA – Albumina de Soro Bovino
CIH – Cromatografia de Interação Hidrofóbica
DETEN – Departamento de Técnicas Normativas
DL50 – Dose Letal (concentração de uma substância administrada, capaz de inativar 50% da população em estudo)
DO – densidade óptica
FDA – *Food and Drug Administration*
FAO – *Food and Agriculture Organization*
GRAS – *Generally Regarded As Safe*
IU – Unidades Internacionais
L. lactis – *Lactococcus lactis*
LPS – Lipopolissacarídeo
L. sakei – *Lactobacillus sakei*
MRS – Man Rogosa Sharp
Oxig. Dissol. – Oxigênio Dissolvido
rpm – rotação por minuto
SDS-PAGE – gel de poliacrilamida-dodecil sulfato de sódio
subsp., spp – subspécie
UAT – Ultra Alta Temperatura
UFC – Unidades Formadoras de Colônias
UHT - *ultra high temperature*
Viab. Celular – Viabilidade celular
WHO – *World Health Organization*
LISTA DE NOMENCLATURAS

% - porcentagem

°C – graus Celsius
dt – intervalo de tempo (h)
dX – concentração celular formada em dt (UFC.mL⁻¹)
g – grama
h – hora
HCl – ácido clorídrico
kDa – Kilodalton
Kg -Quilograma
kL.a – coeficiente volumétrico de transferência de massa
L – Litro
L.min⁻¹ – Litro por minuto
M – Molar
min. - minuto
mg - miligrama
mL – Millilitro
mm – milímetro
(NH₄)₂SO₄ – Sulfato de amônio
N – Normal
Pₘₐₓₙ isina - concentração máxima de nisina (mg.L⁻¹)
Prodₙ isina - produtividade de nisina (mg.L⁻¹.h⁻¹)
Prodₓ - Produtividade celular (UFC.mL⁻¹.h⁻¹)
R² – coeficiente de correlação
tᵢ – tempo de início de fase estacionária correspondente a Xₘₐₓ (h)
Xₘₐₓ – concentração celular máxima (UFC. mL⁻¹)
X – concentração celular no meio de fermentação (UFC. mL⁻¹)
Yₐₙ/X – coeficiente angular da correlação entre atividade de nisina e concentração celular
((Log AU.mL⁻¹)/(Log UFC.mL⁻¹))
µL –microlitro
µm – micrômetro
µₘₐₓ – velocidade específica máxima de crescimento (h⁻¹)
SUMÁRIO

1. INTRODUÇÃO... 01

2. REVISÃO BIBLIOGRÁFICA... 03
 2.1 Histórico.. 03
 2.2 Características e classificação das bactérias ácido lácticas.............................. 04
 2.3 A bacteriocina nisina... 08
 2.4 Mecanismo de ação antimicrobiana... 10
 2.5 Regulamentação Toxicológica... 12
 2.6 Distinção entre bacteriocinas e antibióticos... 13
 2.7 Aplicações Industriais.. 14
 2.7.1 Bioconservante de alimentos... 14
 2.7.2 Aplicações Clínicas... 16
 2.8 Produção de nisina em meios de cultura alternativos... 18
 2.9 Leite bovino... 20
 2.10 Liofilização para a conservação de nisina.. 21
 2.11 Cromatografia de Interação Hidrofóbica (CIH).. 22

3. OBJETIVOS... 25
 3.1 Objetivo principal.. 25
 3.2 Objetivos específicos.. 25

4. MATERIAL E MÉTODOS.. 26
 4.1 Microrganismos.. 26
 4.2 Meios de cultivo.. 26
 4.3 Preparo do inóculo para o biorreator.. 28
 4.4 Descrição do biorreator... 28
 4.4.1 Preparo do biorreator e do meio de cultivo.. 31
 4.4.1.1 Condições dos cultivos... 31
 4.4.2 Calibração do eletrodo de oxigênio dissolvido... 32
 4.4.3 Determinação do kLa... 32
 4.4.4 Calibração do eletrodo de pH.. 33
 4.5 Amostragem.. 33
 4.6 Metodologias Analíticas... 34
 4.6.1 Viabilidade Celular (UFC.mL⁻¹).. 34
 4.6.2 Dosagem de proteínas.. 35
 4.6.3 Determinação da acidez em ácido láctico... 35
 4.6.4 Análise do sobrenadante e pellet dos cultivos... 36
 4.6.4.1 Detecção da atividade de nisina... 36
 4.6.4.2 Extração de nisina adsorvida das células produtoras................................. 38
 4.6.5 Concentração de lactose.. 38
 4.6.6 Técnica de coloração de Gram... 39
 4.6.7 Determinação das curvas suavizadas... 40
 4.6.8 Determinação dos parâmetros cinéticos... 40
4.6.9 Liofilização preliminar para conservação de nisina .. 41
4.6.10 Purificação preliminar de nisina por cromatografia de interação hidrofóbica 42

5. RESULTADOS .. 43
5.1 Resultados experimentais obtidos em biorreator.. 43
5.2 Resultados experimentais da extração de nisina adsorvida das células produtoras ... 53
5.3 Resultados experimentais do coeficiente volumérico de transferência de oxigênio (kL.a) .. 57
5.4 Liofilização preliminar para conservação de nisina ... 57
5.5 Purificação preliminar de nisina por cromatografia de interação hidrofóbica 59

6. DISCUSSÃO .. 60
6.1 Crescimento celular - Xmáx ... 60
6.2 Produtividade celular - ProdX .. 61
6.3 Concentração máxima de nisina – P mánisina.. 62
6.4 Adsorção de nisina pelas células produtoras .. 65
6.5 Efeito do pH ... 67
6.6 Produtividade de nisina – Prodnisina .. 68
6.7 Valores de kL.a .. 68
6.8 Valores de oxigênio dissolvido .. 70
6.9 Correlação entre atividade de nisina e concentração celular (YN/X)...................... 70
6.10 Consumo de açúcares e proteínas ... 71
6.11 Liofilização preliminar para a conservação de nisina ... 72
6.12 Purificação preliminar de nisina por cromatografia de interação hidrofóbica 74

7. CONCLUSÕES ... 78

8. REFERÊNCIAS ... 79

9. ANEXOS ... 93
Anexo 9.1 Tabelas de resultados suavizados ... 93
Anexo 9.2 Curvas de log UFC.mL⁻¹ versus log AU.mL⁻¹ .. 99
Anexo 9.3 Tabelas de extração de nisina adsorvida das células produtoras – pontos suavizados .. 101
Anexo 9.4 Purificação preliminar de nisina em coluna de interação hidrofóbica 105
Artigo 9.5 Artigos publicados ... 107
Artigo 9.5.1 Nisin biotechnological production and application: a review 108
Artigo 9.5.2 Nisin expression production from Lactococcus lactis in milk whey medium ... 118
Artigo 9.5.3 Nisin production utilizing skimmed milk aiming to reduce process cost... 123
Anexo 9.6 Currículo Lattes ... 138
Anexo 9.7 Histórico Acadêmico .. 143
Anexo 9.8 Declaração do Comitê de Ética em Pesquisa e Informações para membros de bancas julgadoras ... 146
1. INTRODUÇÃO

As bactérias ácido lácticas (BAL) são empregadas na fermentação de alimentos como iogurtes e queijos. Estas bactérias também melhoram a qualidade microbiológica destes alimentos por meio da produção de uma variedade de compostos antimicrobianos como ácidos orgânicos, peróxido de hidrogênio, diacetil, acetaldeído e bacteriocinas. As bacteriocinas são proteínas ou complexos protéicos biologicamente ativos que apresentam atividade bactericida contra espécies geneticamente relacionadas. A bacteriocina nisina é um peptídeo antimicrobiano composto por 34 resíduos de aminoácidos, massa molar de 3,5 KDa e produzido pelo *Lactococcus lactis* subsp. *lactis* ATCC 11454. Este peptídeo apresenta capacidade de inibir a germinação de esporos e o desenvolvimento de bactérias Gram-positivas, assim como de bactérias Gram-negativas na presença de agentes quelantes.

Atualmente, nisina é a única bacteriocina amplamente utilizada como bioconservante natural de alimentos, principalmente em laticínios e aprovada pelas legislações nacionais e internacionais. Apresenta as características ideais para um aditivo alimentício, não apresentando efeito sobre a microbiota normal do intestino, é atóxica, não afeta a cor e o sabor dos alimentos e apresenta estabilidade térmica à temperatura de esterilização. Devido a estas propriedades, pesquisadores vêm realizando estudos para ampliar o potencial uso desta biomolécula nas áreas farmacêutica, veterinária e de cosméticos.

As BAL são bactérias extremamente exigentes do ponto de composição do seu meio de cultura. Para o seu crescimento, esses microrganismos necessitam de um meio de cultura rico em aminoácidos, peptídeos, vitaminas, etc. Geralmente, os meios de cultura empregados em escala laboratorial são o caldo MRS e caldo M17. No entanto os altos custos destes meios tornam inviáveis a sua utilização na produção comercial dessas bactérias e bacteriocinas. O elevado custo desses meios é devido à presença de fontes complexas de nitrogênio (peptonas, extrato de carne e levedura), porém estas fontes são capazes de suprir as necessidades para crescimento das bactérias e para a produção de bacteriocinas.

Atualmente, o Brasil importa nisina a preços elevados, o que dificulta a sua aplicação imediata no mercado consumidor. Devido ao alto custo desta
biomolécula, é importante promover a produção economicamente viável de nisina, buscando meios de cultura alternativos e reduzindo custos de produção. Deste modo, o presente estudo de pesquisa objetivará o estudo quantitativo da produção do antimicrobiano nisina em leite desnatado diluído UHT por *Lactococcus lactis* subsp. *lactis* ATCC 11454 em biorreator. Estudos preliminares e complementares como a liofilização (bioconservação) e a purificação (cromatografia de interação hidrofóbica) desta biomolécula produzida em escala laboratorial, também foram desenvolvidos.
2. REVISÃO BIBLIOGRÁFICA

2.1 Histórico

Os primeiros registros sobre bacteriocinas datam de 1925, quando André Gratia publicou um estudo referente ao antagonismo promovido por uma linhagem de *Escherichia coli* sobre outras linhagens da mesma espécie. As substâncias responsáveis por esse efeito inibitório foram denominadas de “colicinas” em referência ao microrganismo produtor original. Com a descoberta de que a produção desses compostos não se limitava ao grupo dos coliformes, Jacob et al. 1953 propuseram o termo “bacteriocina” para as proteínas antimicrobianas produzidas por microrganismos Gram-positivos e Gram-negativos (NASCIMENTO; MORENO; KUAYE, 2008).

Em 1928, Roger e Whittier na Inglaterra observaram que certas linhagens de *Lactococcus* tinham a capacidade de inibir o crescimento de outras bactérias ácido lácticas. Após cinco anos, o antagonismo microbiano também foi observado na Nova Zelândia por Whitehead e colaboradores (WHITEHEAD, 1933; WHITEHEAD; RIDDET, 1933). Eles observaram o desenvolvimento de acidez, durante o armazenamento do leite pelas culturas *starters* (iniciadoras), no processo de fabricação de queijo *Cheddar* e isolaram e identificaram sua natureza protéica. Porém somente Meanwell (1943) na Inglaterra e Hunter e Whitehead (1944) na Nova Zelândia, comprovaram que o desenvolvimento desta acidez foi realmente causado pelas culturas *starters*. Shatock e Mattick (1943) identificaram estas linhagens como “estreptococos lácticos” do grupo sorológico “N” (DE VUYST; VANDAMME, 1994).

Devido à escassez de penicilina durante a Segunda Guerra Mundial e a necessidade de controlar mastite bovina, Mattick e Hirsch (1944) concentraram o composto inibitório isolado por Meanwell (1943) para testar sua atividade antagônica. Descobriram que este composto inibiu muitas bactérias patogênicas e denominaram estes compostos como “antibióticos”. A denominação “nisina” derivou da frase “Group N Inhibitory Substance” e o sufixo “in” foi atribuído à
nomenclatura dos antibióticos. Atualmente, as linhagens de estreptococos são denominadas lactococos (DE VUYST; VANDAMME, 1994).

2.2 Características e classificação das bactérias ácido lácticas

As bactérias ácido lácticas (BAL) são cocos ou bastonetes Gram-positivas, anaeróbias facultativas ou microaerófilas, catalase-negativas, não formadoras de esporos; apresentam carência de citocromos (o que reflete na ausência de metabolismo respiratório gerador de energia) e produzem ácido lático como principal produto da fermentação de carboidratos. São comensais naturais do trato gastrointestinal de humanos e muitos animais. Este grupo é composto por espécies dos gêneros Lactococcus, Streptococcus, Vagococcus, Leuconostoc, Pediococcus, Aerococcus, Tetragenococcus, Enterococcus, Lactobacillus, Carnobacterium e Bifidobacterium (DE VUYST; VANDAMME, 1994). Do ponto de vista morfológico, as bactérias lácticas podem estar distribuídas em cocos, bacilos ou bastões regulares e bacilos ou bastões irregulares. Os cocos são de forma esférica mais ou menos alargada entre 0,5 e 2 µm, se apresentam em pares, tetrades ou cadeias de número variado. Os bastões regulares podem ter um diâmetro variável entre 0,5 e 2 µm e comprimento até maior que 10 µm, se apresentado isolados, em pares ou cadeias longas. Os Lactobacillus pertencem a este grupo. Os bastões irregulares são características das bactérias lácticas do gênero Bifidobacterium e são típicos por seus aspectos extremadamentem variáveis de uma espécie à outra (TORO, 2005).

BAL são reconhecidas pelo FDA (US-Food and Drug Administration) como generally regarded as safe (GRAS) e têm sido empregadas na fermentação de alimentos como o iogurte (Streptococcus spp. e Lactobacillus spp.) e queijo (Lactococcus spp.), conferindo sabores e texturas características. Estes microrganismos também melhoram a qualidade microbiológica destes alimentos por meio da produção de uma variedade de compostos antimicrobianos tais como, ácidos orgânicos, peróxido de hidrogênio, diacetil, acetaldeído e bacteriocinas (CHEIGH; PYUN, 2005). O peróxido de hidrogênio é produzido como mecanismo de proteção frente ao oxigênio pela ação das oxidases ou NADH peroxidases.
acúmulo de peróxido de hidrogênio nos produtos fermentados ocorre devido ao fato de que os lactobacilos não possuem a enzima catalase. A ação bactericida desse composto é atribuída ao seu efeito altamente oxidante, mediante a peroxidação dos lipídeos da membrana e a destruição da estrutura básica molecular das proteínas celulares (TORO, 2005). Bacteriocinas são proteínas ou complexos protéicos biologicamente ativos, que apresentam atividade bactericida contra espécies geneticamente relacionadas. São classificadas de acordo com o espectro bacteriano, massa molar, estrutura química e modo de ação (SVETOSLAV; DICKS, 2009). Com o fim de retardar a deterioração e preservar alimentos através de fermentações naturais, estas bactérias têm sido usadas em aplicações comerciais como culturas starters em indústrias de laticínios e carnes.

Além de inibir o crescimento de bactérias potencialmente patogênicas nos produtos fermentados, acredita-se que as BAL proporcionem efeitos benéficos à saúde. Isso fortaleceu o marketing de muitos alimentos contendo culturas vivas de bactérias lácticas, incluindo leite não fermentado, leite fermentado, iogurte, culturas secas, bebidas e doces. Esses alimentos com bactérias promotoras de benefícios à saúde são denominados probióticos (RICHARDSON, 1996).

As BAL possuem alta tolerância ácida e sobrevivem em pH 5 ou inferior. A tolerância ácida confere a essas bactérias uma vantagem competitiva sobre outros microrganismos. A temperatura ótima de crescimento varia entre 20 e 45ºC, dependendo do microrganismo considerado (HOFVENDAHL; HAHN-HAGERDAL, 2000).

Em relação ao metabolismo de carboidratos, BAL podem ser divididas em três grupos distintos, sendo as duas principais vias metabólicas ilustradas na Figura 2.1. As homolácticas, incluindo Lactococcus, Pediococcus, Enterococcus, Streptococcus e alguns Lactobacillus, as quais usam a via glicolítica (Embden-Meyerhof-Parnas) para converter 1,0 mol de glicose em 2,0 moles de lactato; e as bactérias heterolácticas, que produzem quantidades equimolares de lactato, CO₂ e etanol a partir da glicose, usando a via das pentoses ou via da hexose monofosfato. Fazem parte deste grupo o gênero Leuconostoc e alguns Lactobacillus (PRADO, 2007). Dependendo das condições de cultivo (aumento de valor de pH, decréscimo da temperatura, entre outros), o metabolismo de açúcares pode ser alterado pelas BAL homolácticas, formando subprodutos de ácidos mistos.
como etanol, acetato e formato, além do lactato (HOFVENDAHL; HAHNHAGERDAL, 2000).

Figura 2.1. Esquema geral da fermentação da glicose pelas bactérias ácido lácticas. (PRADO, 2007).

A proporção entre os isômeros de lactato, L (+) e D (-), obtidos durante a fermentação varia com gênero e espécie das BAL. Ácido L (+) lático é produzido por Aerococcus, Carnobacterium, Enterococcus, Lactococcus, Tetragenococcus, Streptococcus, e Vagococcus. Ácido D (-) lático é produzido por Leuconostoc e Oenococcus. Os gêneros Lactobacillus, Pediococcus e Weissella produzem ambas
as formas isoméricas, isolada ou conjuntamente, dependendo da espécie considerada e das condições de cultivo (LIU, 2003).

As bacteriocinas de bactérias ácido lácticas são divididas em quatro classes (CLEVELAND et al. 2001):

Classe I (lantibióticos): constituídas por peptídeos termoestáveis de baixa massa molar (<5 kDa), com 19-38 resíduos de aminoácidos e que apresentam em sua composição aminoácidos altamente específicos como lantionina e β-metilantionina. A classe I pode ser dividida em subclasses com base na estrutura e no modo de ação da bacteriocina: tipo A (moléculas lineares) como nisina, subtilina e epidermina e tipo B (molécula globular), como mersacidina e mutacina.

Classe II: constituídas por peptídeos de baixa massa molar (<10kDa), também termoestáveis. Foram propostas três subdivisões para esta classe. A classe IIa é composta por bacteriocinas que apresentam alta especificidade contra *Listeria monocytogenes*. Seus representantes possuem de 37 (leucocina A e mesentericina Y105) a 48 (carnobacteriocina B2) resíduos de aminoácidos. A classe IIb requer a combinação de dois peptídeos para que as bacteriocinas apresentem atividade. São membros deste grupo a lactacina F e lactococina G. As bacteriocinas pertencentes à classe IIc apresentam uma união covalente das terminações C e N, resultando em uma estrutura cíclica. Pertencem a esta classe: enterocina AS48, circularina A e reutericina 6.

Classe III: constituída por bacteriocinas termolábeis de alta massa molar (>30 kDa), de natureza complexa quanto à atividade e à estrutura protéica. Seu mecanismo de ação é distinto de outras bacteriocinas, uma vez que, promovem a lise da parede celular nas células sensíveis. Apresentam um domínio N-terminal homóloga à endopeptidases e um domínio C-terminal responsável pelo reconhecimento da célula sensível à sua ação. São exemplificadas pelas lactacinas A e B, helveticinas J e V-1829 e acidophilucina A.

Classe IV: De acordo com Klaenhammer et al. (1993), esta classe consiste de estruturas complexas que contém aminoácidos, carboidratos ou lípídeos em sua composição. Porém, esta classe não é reconhecida por outros autores (CLEVELAND et al., 2001; SAVADOGO et al. 2006) porque não foram adequadamente purificadas. As informações relacionadas com esta classe são muito limitadas.
Cotter, Hill e Ross (2005) propuseram uma nova classificação, em que as bacteriocinas são divididas em duas categorias: lantibióticos (classe I) e não lantibióticos (classe II) enquanto as proteínas de elevada massa molar, compostas pela classe III, deveriam receber uma designação separada de “bacteriolisinas”. Os autores também sugerem a extinção da classe IV.

2.3 A bacteriocina nisina

Nisina, lantibiótico (classe Ia), é sintetizada nos ribossomos como um peptídeo precursor de 57 aminoácidos, todos comuns, sendo 23 resíduos na região líder e 34 resíduos na região estrutural. Posteriormente, por meio de modificações enzimáticas de pós-translocação, a região líder é removida, serina e treonina da região estrutural sofrem desidratação, resultando na formação de dehidroalanina (Dha) e dehidrobutirina (Dhb), respectivamente. A subsequente reação das cadeias laterais sulfidril de cisteínas com Dha e Dhb, resultam nas estruturas de anéis tioéter lantionina (Ala-S-Ala) e metil-lantionina (Aba-S-Aba). Finalmente, a nisina ativa é liberada e secretada por clivagem proteolítica do peptídeo líder (23 aminoácidos) (SONOMOTO et al., 2000).

O lantibiótico nisina é produzido por espécies de Lactococcus lactis subsp. lactis. É composta de 34 resíduos de aminoácidos, de massa molar 3,353 kDa, tendo como aminoácidos terminais a isoleucina (NH$_2$) e a lisina (COOH) (Figura 2.2).
Figura 2.2 - Representação esquemática da estrutura primária da nisina A, produzida por *Lactococcus lactis* subsp. *lactis* ATCC 11454. Ala-S-Ala representa lantionina, Abu-S-Ala β-metil-lantionina, Dha dehidroalanina e Dhb dehidrobutirina. (DE VUYST; VANDAMME, 1994)

A bacteriocina apresenta em sua composição aminoácidos raramente encontrados na natureza, tais como dehidroalanina (Dha – 02 resíduos), dehidrobutirina (Dhb - 01 resíduo), lantionina (Lan – 01 resíduo) e metil-lantionina (Melan – 04 resíduos), que podem ser responsáveis por importantes propriedades funcionais da biomolécula como termoestabilidade e ação bactericida (DE VUYST; VANDAMME, 1992). O caráter catiónico é devido à combinação de três resíduos de lisina e um ou mais resíduos de histidina (BHATTI VEERAMACHANENI; SHELEF, 2004). Uma molécula anfipática, devido à presença de resíduos hidrofóbicos na região N-terminal e hidrofílicos na região C-terminal (DE VUYST; VANDAMME, 1994).

Uma variante natural, nisina A produzida por *Lactococcus lactis* subsp. *lactis* ATCC 11454 difere de nisina Z, produzido por outras espécies de *L. lactis*, pela substituição de um resíduo de aminoácido posição 27, histidina em nisina A e asparagina em nisina Z (BENECH et al., 2002). Ambas as biomoléculas são amplamente distribuídas entre as espécies produtoras e esta substituição não afeta a atividade antimicrobiana, porém resulta em melhores propriedades de difusão na nisina Z (LARIDI et al., 2003). Nisina Z parece ser mais solúvel do que nisina A em pH acima de 6, uma vez que a cadeia lateral de asparagina é mais polar do que a cadeia lateral de histidina (MATSUSA KI et al., 1996).
A solubilidade, estabilidade e atividade biológica são altamente dependentes do pH, temperatura e da natureza do substrato. A solubilidade e estabilidade da nisina aumentam com o aumento da acidez. Assim, em condições neutras ou alcalinas, nisina é quase insolúvel. Esta biomolécula apresenta estabilidade em tratamentos térmicos, podendo ser autoclavada a 121°C por 15 minutos, em pH 2-3, sem desnaturação e com perda de atividade inferior a 10% (DELVES-BROUGHTON, 2005).

A liberação de nisina das células para o meio de propagação é dependente do pH deste ambiente. Em pH inferiores a 6, mais de 80% da nisina produzida é liberada extracelularmente e em pH superiores a 6, a maioria da nisina está associada à membrana celular ou intracelularmente (PENNA et al., 2006). Nisina também pode ser reversivelmente adsorvida por algumas proteínas ou pela própria célula produtora. Em geral, entre 93% e 100% das bacteriocinas são adsorvidas em pH próximos de 6,0, e a mais baixa (≤ 5%) adsorção está ao redor de pH 1,5 e 2,0. As bacteriocinas também são altamente sensíveis à ação de enzimas proteolíticas (YANG; JOHNSON; RAY, 1992; CLEVELAND; CHIKINDAS; MONTVILLE, 2002).

2.4 Mecanismos de ação antimicrobiana

Nisina tem efeito antimicrobiano contra um amplo espectro de bactérias Gram-positivas e germinação de esporos, mas mostra pouca ou nenhuma atividade em bactérias Gram-negativas, fungos e vírus. Tanto os esporos como as células vegetativas são sensíveis à nisina, porém os esporos são normalmente bem mais sensíveis que as bactérias na forma vegetativa. Dependendo de sua concentração, as bacteriocinas podem ser bactericidas ou bacteriostáticas. Apesar das diferenças, os mecanismos de ação dos diversos peptídeos antimicrobianos, envolvem a associação com os lipídeos da membrana plasmática, levando à formação de poros e resultando em alteração na permeabilidade da mesma, com efluxo de metabólitos pequenos das células sensíveis (Figura 2.3).

Nas células vegetativas, nisina interfere na síntese da parede celular e sendo a bacteriocina carregada positivamente com partes hidrofóbicas, ocorrem
interações eletrostáticas com o grupamento fosfato da membrana celular, carregado negativamente, promovendo o início da ligação de nisina com a célula-alvo. Ocorre a formação de poros na membrana, resultando em alteração na permeabilidade da mesma, com efluxo de moléculas essenciais (íons K+, aminoácidos e ATP), acarretando morte celular. Estudos demonstraram que nisina também interfere na biossíntese da parede celular, pela habilidade de ligar-se ao lipídeo II, um peptideoglicano precursor, então inibindo a biossíntese da parede celular bacteriana (CLEVELAND et al. 2001; VON STASZEWSKI; JAGUS, 2008).

Nas bactérias Gram-negativas, uma camada externa composta de lipopolissacarídeos (LPS) age como uma barreira para a ação de nisina na parede citoplasmática. Porém, a adição de agentes quelantes como EDTA, confina o magnésio bivalente e íons cálcio do LPS e desestabiliza a camada de LPS. Então, a bacteriocina pode ser transportada através da camada de LPS e criar poros na membrana citoplasmática, causando a perda da força próton-motriz e a saída de nutrientes intracelulares (MILLETTE; SMORAGIEWICZ; LACROIX, 2004). O mecanismo de formar poros é reconhecidamente utilizado por outros lantibióticos como lacticina 3147, subtilina, epidermina, entre outros.

O mecanismo pelo qual nisina impede a germinação de esporos é diferente das células vegetativas. Acredita-se que o resíduo de deidroalanina (Dha) na posição 5 da nisina, interaja com grupos sulfidril vitais presentes na membrana de esporos recém-germinados e exerça um profundo efeito bacteriostático, resultando na inibição subsequente do esporo. Assim, a nisina permite a germinação do esporo, mas inibe as etapas posteriores do processo de formação de novas células (ASADUZZAMAN; SONOMOTO, 2009).
Figura 2.3 - Mecanismo de ação de bacteriocinas das classes I (nisina) e classe IIa (pediocina) em bactérias Gram-positivas. (NASCIMENTO; MORENO; KUAYE, 2008)

2.5 Regulamentação Toxicológica

Inicialmente, nisina foi comercializada na Inglaterra em 1953 e, nas décadas seguintes, foi aprovada para uso em mais de 48 países. Esta bacteriocina foi considerada segura para aplicação em alimentos pela Joint Food and Agriculture Organization/World Health Organization (FAO/WHO) Expert Committee on Food Additives em 1969. Em 1983, nisina foi adicionada à lista de aditivos alimentícios da União Européia como número E234 e em 1988 foi aprovado pelo US Food and Drug Agency (FDA) como Generally Regarded As Safe (GRAS), para uso em produtos pasteurizados e queijos processados (COTTER; HILL; ROSS, 2005).

Estudos toxicológicos realizados com a nisina demonstraram que a sua ingestão não causa efeitos tóxicos ao organismo humano, sendo reportada uma DL50 de 6950 mg.kg⁻¹, similar ao sal, quando administrada oralmente. Pesquisas realizadas na microflora oral demonstraram que 01 minuto após o consumo de chocolate ao leite contendo nisina, somente 1/40 de atividade da concentração original de nisina foi detectada na saliva (CLEVELAND et al., 2001). Com base no nível no effect observado nas avaliações toxicológicas realizadas em animais e permitido para humanos, a Organização Mundial da Saúde recomenda a Ingestão Diária Aceitável (“Acceptable Daily Intake” – ADI, que apresenta a quantidade
máxima do aditivo que poderia ser ingerida diariamente, sem causar quaisquer danos à saúde do consumidor) de 33000 Unidades Internacionais (UI) (0,825 mg) por quilo de peso corpóreo (JOZALA, 2005).

No Brasil, nisina tem seu uso permitido pelo DETEN (Departamento de Técnicas Normativas) do Ministério da Saúde como conservante natural para queijos pasteurizados no limite máximo de 12,5 mg.kg⁻¹ (Portaria nº 29/1996). Em 1998, a Divisão de Operações Industriais do Departamento de Inspeção de Produtos de Origem Animal, pertencente ao Ministério da Agricultura e do Abastecimento, aprovou o uso de nisina em solução de 200 ppm (0,02%) para emprego em superfícies externas de salsichas (MARTINIS; SANTAROSA; FREITAS, 2003).

Apesar da ampla aplicação de nisina como bioconservante natural de alimentos, principalmente em laticínios, não há uma concordância nos níveis máximos da bacteriocina permitida entre os países, onde seu uso foi aprovado legalmente. Por exemplo, nisina pode ser adicionada em queijos sem limite no Reino Unido (SOBRINO-LOPEZ; MARTÍN-BELLOSO, 2008).

2.6 Distinções entre bacteriocinas e antibióticos

Bacteriocinas são frequentemente confundidas na literatura com antibióticos. Antibióticos são metabólitos secundários sintetizados por enzimas e apresentam aplicação clínica. O uso de antibióticos em alimentos não é permitido legalmente. Já as bacteriocinas são proteínas ribosomicamente sintetizadas e não alteram a microbiota do trato intestinal, já que são inativadas por enzimas digestivas. A Tabela 2.1 mostra as principais diferenças entre bacteriocinas e antibióticos com base na síntese, modo de ação, espectro antimicrobiano, toxicidade e mecanismos de resistência (CLEVELAND et al., 2001).
Tabela 2.1- Principais características que diferenciam bacteriocinas de antibióticos (CLEVELAND et al., 2001).

Característica	Bacteriocina	Antibiótico
Aplicação	Alimentos	Clínica
Síntese	Ribossômica	Sintetizado por enzimas
Fase de produção	Metabolismo primário	Metabolismo secundário
Atividade	Espectro limitado	Espectro variado
Mecanismo de ação	Membrana citoplasmática	Diversos
Toxicidade	Desconhecido	Sim
Resistência microbiana	Existem cepas resistentes	Existem cepas resistentes

2.7 Aplicações industriais

2.7.1 Bioconservante de alimentos

Os conservantes químicos artificiais são empregados para manter a vida de prateleira desejada, limitando o número de microrganismos deteriorantes e/ou patogênicos capazes de se desenvolverem nos alimentos, porém aumentam os riscos à saúde humana. Deste ponto de vista, têm sido crescente a procura por alimentos minimamente processados, que mantenham suas características mais próximas do natural. Conseqüentemente, diversos pesquisadores buscam novas tecnologias de processamento que fornecem alimentos microbiologicamente estáveis.

Diversos agentes antimicrobianos naturais são encontrados em animais, plantas e microrganismos, que são frequentemente utilizados como agentes de defesa nos organismos que os sintetizam. Exemplos típicos incluem lactoperoxidases (leite), lisozima (clara do ovo), saponinas e flavonóides (ervas e especiarias), quitosana (camarão) e bacteriocinas (BAL) (DEVLIEGHERE; VERMEIREN; DEBEVERE, 2004). Entretanto, existem vários requisitos legais para a aplicação em escala industrial.
De acordo com Deegan et al. (2006), as bacteriocinas comercializadas são a nisina produzida por *Lactococcus lactis* e a pediocina PA-1, produzida por *Pediococcus acidilactici*, denominadas Nisaplin™ e ALTA 2431™, respectivamente.

As bacteriocinas podem ser utilizadas de três formas em um alimento: (i) inoculação do alimento com cepas de bactérias lácticas produtoras de bacteriocinas, (ii) adição de bacteriocinas purificadas ou semi-purificadas, e (iii) adição de um ingrediente fermentado com cepas de bacteriocinogênicos (BARBOSA, 2009).

As preparações semi-purificadas são processadas por técnicas de grau alimentício. Por exemplo, a preparação comercial Nisaplin® é obtida a partir de uma fermentação de *Lactococcus lactis* em um meio à base de leite. O fermentado resultante é subseqüente concentrado e separado, processado por secagem em *spray dryer* e transformado em partículas pequenas. O produto final consiste de 2,5% de nisina contida em NaCl e sólidos desnaturados do leite (DEEGAN et al., 2006). A quantidade de 1g deste produto é padronizada com uma atividade de 10^6 IU (Unidades Internacionais). Assim, 1g de nisina pura contém 40×10^6 IU. Uma atividade biológica de 40 IU corresponde a 1 µg de nisina pura (DE VUYST; VANDAMME, 1994). Porém, o Brasil atualmente importa nisina a preços elevados (US$ 770,00, em 25g do produto, com concentração de 2,5% de nisina; cotação da marca Sigma), o que dificulta a sua aplicação imediata em escala comercial.

Devido à sua natureza protéica, todas as bacteriocinas são inativadas por uma ou mais enzimas proteolíticas, incluindo as de origem pancreática (tripsina e α-quimiotripsina) e algumas de origem gástrica como a pepsina (DE VUYST; VANDAMME, 1994). Esta característica é muito interessante quando se refere à sua utilização em produtos alimentícios.

A eficiência da atividade das bacteriocinas produzidas por diferentes espécies de BAL podem ser afetadas pelas composições químicas e propriedades físicas dos alimentos. Esta atividade é reduzida devido à ligação das bacteriocinas aos componentes dos alimentos, à adsorção à célula ou às proteínas, à ação do pH e à atividade das proteases e outras enzimas (NASCIMENTO et al., 2008). A nisina é muito ativa em pH ácido, mas perde atividade em pH acima de 7. Esta bacteriocina também não é efetiva na biopreservação de carnes devido à interferência de componentes como fosfolipídeos, que limitam a atividade da
nisina. O alto conteúdo de gordura também pode afetar a distribuição uniforme de nisina no alimento (DEEGAN et al., 2006). Moderadas concentrações de NaCl, presentes em muitos alimentos, são responsáveis pela neutralização de ação das bacteriocinas (DEVLEEGHERE; VERMEIREN; DEBEVERE, 2004). Aditivos alimentares como metabissulfito de sódio (antioxidante) e dióxido de titânio (corante), são frequentemente usados em alimentos e também afetam a atividade antimicrobiana de nisina (DELVES-BROUGHTON et al., 1996).

Nisina é aplicada como bioconservante natural em alimentos à base de leite como queijos, manteiga e requeijão, enlatados, bebidas alcoólicas, salsichas, ovo líquido pasteurizado, molhos para saladas, entre outros (DELVES-BROUGHTON et al., 1996), isoladamente ou em combinação com outros métodos de conservação. Outras tecnologias de bioconservação com a aplicação de bacteriocina incluem o desenvolvimento de embalagens ativas antimicrobianas (GUIGA et al., 2009) e lipossomas (COLAS et al., 2007).

O status “GRAS” atribuído às BAL enfatiza seu uso nos alimentos tradicionais e também na ampliação de novos alimentos e produtos, elaborados para um conteúdo nutricional específico ou proporcionarem benefícios à saúde (nutracêuticos, prebióticos, probióticos).

Poucas pesquisas têm sido desenvolvidas em relação a outras bacteriocinas. Entre elas, pediocina 5, uma bacteriocina produzida por P. acidilactici UL5, reduziu contagem viáveis de L. monocytogenes em leite. Reuterina, que é produzida por Lb. reuteri, inibiu o crescimento de L. monocytogenes e E. coli em queijo cottage e leite, quando adicionado na forma liofilizada (SOBRINO-LÓPEZ; MARTÍN-BELLOSO, 2008).

2.7.2 Aplicações clínicas

Apesar da principal aplicação da nisina na área de alimentos, principalmente em laticínios, pesquisas verificaram o seu potencial uso para finalidades terapêuticas como no tratamento de dermatite atópica (VALENTA; BERNKOP-SCHNÜRCH; RIGLER, 1996), agente antibacteriano para prevenção de cáries dentais (TONG et al, 2010), úlceras estomacais e infecções de cólon intestinal para
pacientes com imunodeficiência (DUBOIS, 1995; SAKAMOTO; IGARASHI; KIMURA, 2001). Pesquisadores mostraram a eficácia da atividade antimicrobiana da nisina no controle de infecções do trato respiratório causada por *Staphylococcus aureus* em um modelo animal (DE KWAADSTENIET; DOESCHATE; DICKS, 2009). FERNÁNDEZ et al. 2008, estudaram a aplicação de nisina como uma alternativa eficiente a antibióticos para o tratamento de mastite estafilocócica durante lactação em mulheres.

Outra aplicação farmacêutica interessante da nisina poderá ser o futuro desenvolvimento de um potencial contraceptivo vaginal para humanos (ARANHA; GUPTA; REDDY, 2004). Gupta et al. (2008) continuaram a investigação e mostraram que nisina não revelou evidências de toxicidade nos estudos, sugerindo sua potencial aplicação clínica como um contraceptivo profilático vaginal para mulheres, que apresentam riscos de adquirir infecções transmitidas sexualmente por vírus da imunodeficiência humana (STI/HIV), por meio de transmissão vaginal heterossexual. Este antimicrobiano também tem sido avaliado em produtos cosméticos (LIU et al., 2004) e pasta de dente (KIM, 1997).

Na área veterinária, nisina tem sido utilizada no tratamento de mastite bovina (CAO et al., 2007).

Dentre os integrantes das BAL, *Lactococcus lactis* é um microrganismo considerado modelo por possuir muitos instrumentos genéticos disponíveis, ser de fácil manipulação, e pelo fato de seu genoma já ter sido completamente seqüenciado. Além disso, é economicamente importante devido à sua ampla utilização na fabricação de produtos lácteos. Por isso, pode ser utilizada para a expressão de proteínas heterólogas com importantes aplicações biotecnológicas e possuem potencial para serem veículos de apresentação de antígenos, como no desenvolvimento de vacinas vivas de mucosa (MARGOLLES et al., 2009; MERCENIER; MÜLLER-ALOUF; GRANGETTE, 2000).
2.8 Produção de nisina em meios de cultura alternativos

A rigor, o termo fermentação é aplicado para descrever um processo estrito de fermentação anaeróbica. Porém, hoje em dia, parece haver um consenso de que o termo envolva processos aeróbicos e anaeróbicos de metabolismo de carboidratos (CAPLICE; FITZGERARD, 1999).

O desenvolvimento de um processo biotecnológico requer o cultivo de células microbianas em meio de cultivo adequado. Esse meio deve suprir todas as necessidades nutritivas do microrganismo, para a síntese do material celular e a produção de metabólitos de interesse industrial. As BAL são fastidiosas e exigem meios de cultura complexos com alto valor nutricional, que contêm compostos como carboidratos, minerais, vitaminas e principalmente, aminoácidos, proteínas ou proteínas hidrolisadas, que melhoram o crescimento celular e a produção de bacteriocinas (VÁSQUEZ; MURADO, 2008). A exigência na composição do meio de cultura destas bactérias é também devido à sua habilidade biossintética limitada de sintetizar vitaminas do complexo B e aminoácidos (HOFVENDAHL; HAHN-HÄGERDAL, 2000).

A produção de nisina é afetada por vários fatores como espécie produtora, composição nutricional do meio de cultura, pH, temperatura, agitação e aeração, adsorção de nisina pelas células produtoras e degradação enzimática (PONGTHARANGKU; DEMIRCI, 2007).

Em escala laboratorial, utilizam-se meios de cultivo comerciais como caldo MRS e caldo M17, porém o custo elevado destes meios torna-os inviáveis para a produção em larga escala. Além disso, os meios de cultura geralmente contêm excesso de proteínas (triptona, peptona, extrato de carne e extrato de levedura), uma proporção substancial das quais não consumidas, envolvendo custos supérfluos e dificultando processos de purificação da bacteriocina (VÁSQUEZ; GANZÁLEZ; MURADO, 2006). O custo dos componentes do meio de cultura pode variar de 38 a 73% do custo total de produção, sendo a fonte de carbono o maior componente do custo do processo (SCHMIDELL et al., 2001). Por isto, é interessante melhorar o uso comercial de nisina, uma biomolécula com amplas aplicações, utilizando substratos alternativos a baixo custo e reduzindo os custos de produção (ARAUZ et al., 2009).
Nesse sentido, resíduos industriais têm despertado o interesse para serem utilizados como matéria-prima para a produção de bacteriocinas. O soro de leite, um subproduto do leite, descartado por indústrias de laticínios, foi utilizado em pesquisas para a produção de bacteriocinas (GUERRA; RUA; PASTRANA, 2001; ARAUZ et al., 2008). Mondragón-Parada et al. (2006), suplementaram o soro de leite com sais minerais e com pequenas quantidades de extrato de levedura, visando à obtenção da produção de biomassa de BAL. Outros autores (LIU et al., 2004) também estudaram o soro de leite suplementado para obtenção simultânea de nisina e ácido lático. O ácido lático é utilizado na indústria de alimentos e na produção de um biopolímero biodegradável, o poli ácido lático. Porém, a pequena quantidade de ácido lático obtida por esses autores, tornou economicamente inviável o processo de separação. Pesquisas utilizaram resíduos de processamento de mexilhão suplementado com nutrientes (GUERRA; PASTRANA, 2002) e extrato de cevada fermentado, um subproduto de uma bebida alcoólica japonesa, suplementado com glicose, para a produção de nisina (FURUTA et al., 2008).

Por outro lado, Trinetta, Rollini e Manzoni (2008) desenvolveram um meio alternativo ao caldo MRS para a produção de sakacina A (bacteriocina produzida por L. sakei), contendo componentes aplicáveis em escala industrial e a custo reduzido. Um meio alternativo, a baixo custo e de fácil obtenção é o leite desnatado UHT, que é comercializado em supermercados locais, não exigindo o deslocamento a longas distâncias e transporte especializado, para a aquisição da matéria-prima.

Estudos foram realizados por Penna et al. (2005), onde os cultivos em agitador rotativo de L. lactis, que continham formulações a 25% de leite, adicionados a 25% de caldo MRS ou 25% de caldo M17, constituíram um processo satisfatório para a produção de nisina. Jozala et al. (2007), levando em conta o conteúdo nutritivo do leite bovino, estudaram cultivos de L. lactis em leite desnatado, utilizando diferentes concentrações deste. Os resultados mostraram que a atividade de nisina, em leite desnatado a 25% da concentração padrão, foi maior do que em estudos utilizando leite desnatado a 12,5% e 50% da concentração padrão. Assim, o planejamento experimental deste estudo foi baseado nos estudos de Jozala et al. (2005 e 2007) e em dados da literatura científica.
2.9 Leite bovino

A biossíntese do leite ocorre na glândula mamária sob controle hormonal. Muitos constituintes são sintetizados nas células secretoras e alguns têm acesso ao leite diretamente a partir do sangue e do epitélio glandular. Provavelmente, o leite possui em torno de 100.000 constituintes distintos, embora a maioria deles não tenha ainda sido identificada. A composição do leite varia com a espécie, raça, individualidade, alimentação, estações do ano, período de lactação e muitos outros fatores (PEREIRA et al., 2001). O leite em média é constituído por água e substâncias sólidas, o qual se denomina Extrato Seco Total e representa a parte nutritiva do leite, podendo ser representada aproximadamente da seguinte maneira: água, lactose 4,9%, lipídeos 3,5%, proteína 3,4%, sais minerais 0,9% e outros componentes (vitaminas, enzimas, etc.) (SALMINEN; WRIGHT; OUWEHAND, 2004).

O pH varia entre 6,6-6,8, com média de 6,7 a 20°C ou 6,6 a 25°C. No caso da secreção após o parto (colostrro), o pH varia de 6,25 no 1º dia até 6,46 no 3º dia. O leite possui considerável efeito tampão, especialmente em pH entre 5-6, em razão da presença de dióxido de carbono, proteínas, citratos, lactatos e fosfatos (PEREIRA et al., 2001). O processo térmico é aplicado para eliminar microrganismos patogênicos do leite cru, sem contudo modificar significativamente as características físicas, químicas e organolépticas do produto.

Leite “ultra high temperature” UHT ou Ultra Alta Temperatura UAT, usualmente denominado de leite “longa vida”, é aquele homogeneizado e submetido durante (2-4) segundos a uma temperatura de 130-150°C, mediante um processo térmico de fluxo contínuo, imediatamente resfriado a uma temperatura inferior a 32°C e envasado sob condições assépticas em embalagens estéreis e hermeticamente fechadas. Este processo possibilita a estocagem em temperatura ambiente. Esse processo distinguiu-se da pasteurização, na qual o leite é submetido ao aquecimento de 72-75°C por 15-20 segundos. Na refrigeração subsequente, a temperatura de saída do leite não deve ser superior a 4°C (ZENEBON et al., 2008).

O processo por “UHT”, contrariamente à interpretação corrente, não é um tratamento esterilizante, pois o termo esterilização refere-se à inativação dos
microrganismos. A indústria alimentícia utiliza uma terminologia mais realística, como a “esterilização comercial”, onde o produto não é necessariamente livre de todos os microrganismos, porém aqueles que sobrevivem ao processo térmico, não se desenvolvem durante a estocagem e não causam danos ao produto. Deve ser mais adequadamente compreendido, como um processo de pasteurização à temperatura ultra-elevada 130°C-150°C que, aplicado em matérias-primas adequadas, possui elevada eficiência. Considera-se o termo “ultra” porque “alta” já foi reservada à pasteurização rápida (SOUZA et al., 2004).

2.10 Liofilização para a conservação de nisina

A liofilização é o processo de remoção da maior parte da água contida em um material previamente congelado por sublimação, ou seja, a água passa diretamente do estado sólido para vapor, sem passar pelo estado líquido. A liofilização divide-se em três etapas: na primeira, o material é congelado, a seguir a água é sublimada sob pressão reduzida e, na terceira etapa, a água é removida por dessorção, ou seja, uma secagem a vácuo (pressão reduzida).

O termo liófilo significa amigo do solvente, o que define as características dos produtos liofilizados, produtos altamente higroscópicos e de fácil dissolução em água. Este processo, quando comparado a outros meios de desidratação que utilizam temperaturas elevadas, reduz de modo significativo a concentração do produto, a decomposição térmica, a perda de voláteis, nutrientes, ações enzimáticas, a desnaturação de proteínas, bem como alterações da morfologia inicial do material. Hoje em dia, é rotineiramente liofilizada uma grande variedade de substâncias, como: antibióticos, anticoagulantes, bactérias, vírus, enzimas, hormônios e frações do sangue (PESSOA JR.; KILIKIAN, 2005).

Os materiais liofilizados são apresentados na forma de pó e as atividades biológicas se mantêm estáveis por muito mais tempo, quando comparada com a conservação em solução aquosa. Embora seja uma técnica amplamente empregada na conservação de muitos materiais, em sua maioria biológicos, há uma série de fatores envolvidos na liofilização, que devem ser manipulados de forma a obter-se um material de boa qualidade (SCHMIDELL et al., 2001).
Estudos (TATTINI Jr.; PARRA; PITOMBO, 2006) demonstraram a influência da taxa de congelamento no comportamento físico-químico e estrutural da albumina de soro bovino durante o processo de liofilização. Observou-se que a albumina liofilizada em congelamento lento (*ultrafreezer*), apresentou maior alteração estrutural quando comparada à albumina liofilizada por congelamento rápido (nitrogênio líquido).

Na área de alimentos, a técnica de congelamento da polpa do açaí provoca danos irreversíveis ao alimento, como perdas vitamínicas e alterações reológicas e de cor, que modificam as propriedades originais. Por isso, a polpa de açaí foi liofilizada e avaliada quanto à sua composição nutricional. O processo de liofilização mostrou ser uma excelente alternativa à conservação dessa polpa devido aos importantes componentes nutricionais que foram conservados (MENEZES; TORRES; SRUR, 2008).

A resistência à liofilização foi testada em bacteriocina já descrita na literatura científica, como a pisciococina (AZUMA et al., 2007) e em outras, que estão sendo descobertas por pesquisadores (KAMOUN et al., 2005; XIE et al., 2009), já que o processo de liofilização permite seu armazenamento para estudos e aplicações posteriores.

2.11 Cromatografia de Interação Hidrofóbica (CIH)

O interesse crescente pelos processos de purificação de biomoléculas deve-se principalmente ao desenvolvimento da biotecnologia e à demanda das indústrias farmacêuticas, químicas e de alimentos por produtos com alto grau de pureza.

Há uma variedade de procedimentos para processos de purificação de peptídeos antimicrobianos produzidos por bactérias. Esta grande variedade se deve à natureza extremamente heterogênea destes peptídeos (LISBÔA, 2006). A natureza catiônica e hidrofóbica das bacteriocinas é utilizada para sua recuperação dos meios de cultura.

Embora existam diversas técnicas para a purificação de proteínas, têm-se aplicado diferentes tipos de cromatografias devido ao seu alto poder de resolução. O termo cromatografia refere-se a um grupo de técnicas de separação as quais...
são caracterizadas pela distribuição das moléculas a serem separadas entre duas fases, sendo uma estacionária e a outra móvel. A seleção do tipo de cromatografia depende das características biológicas e físico-químicas da proteína: massa molar (cromatografia de exclusão molecular ou filtração em gel), carga elétrica (cromatografia de troca iônica), características bioespecíficas (cromatografia de afinidade) e hidrofobicidade (cromatografia de interação hidrofóbica) (QUEIROZ; TOMAZ; CABRAL, 2001).

A CIH é uma metodologia aplicada na purificação de biomoléculas, sendo uma forma de cromatografia de interação multivalente, complementar a outras técnicas de separação (PASSARINHA; BONIFÁCIO; QUEIROZ, 2007).

A interação hidrofóbica tem grande importância nos sistemas biológicos. É a força dominante na estabilização da estrutura biológica da proteína e têm um papel importante em outros processos biológicos como reações antígeno-anticorpo, reações substrato-enzima e na manutenção da estrutura da bicamada lipídica da membrana biológica (QUEIROZ; TOMAZ; CABRAL, 2001).

O método da CIH baseia-se na interação hidrofóbica ou na associação entre região apolar da proteína e ligantes hidrofóbicos imobilizados em suporte sólido. A ligação é induzida sob elevadas concentrações salinas, as quais reduzem a solubilidade de proteínas, bem como aumentam o nível de entropia na camada de moléculas de água que envolvem grupos hidrofóbicos. As proteínas são eluídas da matriz hidrofóbica por redução da força da ligação hidrofóbica mediante mudanças na fase móvel, como diminuição do teor salino, ou por alteração da conformação da proteína (por exemplo, detergentes suaves ou baixas concentrações de agentes desnaturantes) (PESSOA JR.; KILIKIAN, 2005).

A CIH é uma técnica não desnaturante para proteínas, pois não requer o uso de solventes orgânicos na eluição, como na cromatografia de fase reversa. Utiliza fases estacionárias moderadas, e o sal presente no eluente geralmente tem um efeito estabilizador nas moléculas; assim, a manutenção da integridade estrutural da biomolécula é a principal vantagem desta técnica (DIOGO et al., 2003).

A fase estacionária e a fase móvel fluida na coluna têm fundamental importância na eficácia da cromatografia. Os ligantes largamente utilizados na constituição da coluna de CIH diferem no tipo, no comprimento da cadeia e na densidade do ligante, como também no tipo de matriz. As características da fase
móvel fluida que interferem nos resultados da cromatografia são: o tipo e a concentração do sal, o pH, a temperatura e os aditivos. Sais como cloreto de sódio ou sulfato de amônio são os mais efetivos para promover a interação ligante-proteína devido ao efeito da precipitação salina ou aumento da tensão superficial molar (CHIARINI, 2002).

As técnicas cromatográficas estão presentes em inúmeros processos de purificação de biomoléculas. Ahmad et al. (2010) utilizaram cromatografia de troca-iônica e fase-reversa para a purificação de uma nova bacteriocina, bifidina I, produzida por B. infantis, possibilitando posterior análise em espectrometria de massa para determinação da sequência de aminoácidos primários. Pesquisadores (OH et al, 2006) purificaram, em cromatografia de interação hidrofóbica, uma bacteriocina produzida por Lactococcus sp. HY 449 para avaliar sua atividade antimicrobiana em bactérias que causam inflamação na pele, como Propionibacterium acnes.
3. OBJETIVOS

3.1 Objetivo principal:

Produção do lantibiótico nisina em leite desnatado diluído UHT por *Lactococcus lactis* subsp. *lactis* ATCC 11454, em biorreator.

3.2 Objetivos específicos:

- Estudo quantitativo da produção de nisina por *Lactococcus lactis* utilizando leite bovino desnatado diluído UHT, na concentração de 25% (2,27 g sólidos totais) com relação a padrão, em cultivos descontínuos a 30°C por 52 horas.
- Avaliar os parâmetros de agitação e aeração em biorreator, para estabelecer as melhores variáveis estudadas para a produção nisina: (i) 100 rpm – sem aeração e 0,5 L.min⁻¹ e (ii) 200 rpm – sem aeração, 0,5, 1,0 e 2,0 L.min⁻¹.
- Determinar o *k_La* em leite desnatado diluído como condição operacional de *scale-up* no cultivo de células de *L. lactis* e produção de nisina.
- Avaliar o fenômeno de adsorção de nisina pelas células produtoras durante os cultivos.
- Estudo preliminar da atividade biológica de nisina produzida em biorreator posterior ao processo de liofilização.
- Estudo preliminar da atividade de nisina após purificação por cromatografia de interação hidrofóbica.
4. MATERIAL E MÉTODOS

4.1 Microrganismos

A cepa de Lactococcus lactis subsp. lactis ATCC 11454, bactéria produtora de nisina e a cepa de Lactobacillus sakei ATCC 15521, bactéria sensível à ação de nisina, foram mantidas a -80ºC em caldo MRS (De Man, Rogosa, Sharpe; Difco, Detroit, EUA) (DE MAN; ROGOSA; SHARPE, 1960) adicionado de 40% de glicerol. Ambas as cepas foram adquiridas da Coleção de Culturas Tropical (CCT) da Fundação André Tosello - Pesquisa e Tecnologia (Campinas/SP) e estão disponíveis no American Type Culture Collection.

4.2 Meios de cultivo

Foi utilizado o meio Caldo MRS (Tabela 4.1) para o preparo do inóculo, o meio ágar soft MRS, composto de Caldo MRS adicionado com 0,8% de ágar bacteriológico, para a detecção da atividade de nisina pelo método de difusão em ágar, e o ágar MRS, para estudos da viabilidade celular. Todos os meios de cultura foram adquiridos da DIFCO LABORATORIES (Detroit, EUA) e preparados conforme especificações do fabricante. Leite desnatado UHT “ultra high temperature” Dietalat Premium (Parmalat, Brasil) na concentração padrão de 9,09 g de sólidos totais por 100 mL, foi diluído em água destilada, para uma concentração de 25% (2,27 g de sólidos totais por 100 mL), pH 6,7 e utilizado para cultivo em biorreator em todos os ensaios (Tabela 4.2).
Tabela 4.1- Composição do meio de cultivo Caldo MRS (informação fornecida pelo fabricante do Caldo MRS - DIFCO).

Composição	g.100mL⁻¹
Proteose peptona nº03	1,0
Extrato de carne	1,0
Extrato de levedura	0,5
Dextrose	2,0
Tween 80	0,1
Citrato de amônio	0,2
Acetato de sódio	0,5
Sulfato de magnésio	0,010
Sulfato de manganês	0,005
Fosfato dipotássio	0,2
Sólidos totais	**5,5**

Tabela 4.2- Composição do meio de cultivo leite desnatado (informação fornecida pelo fabricante do leite desnatado UHT *Dietalat* da Parmalat, Brasil).

Composição	Concentração Padrão (g.100 mL⁻¹)	25% da concentração Padrão (g.100 mL⁻¹)
Carboidratos	5,0	1,25
Proteínas	3,0	0,75
Gorduras totais	0,33	0,0025
Gorduras saturadas	0,05	0,03
Colesterol	0,0025g	0,0625
Fibra Alimentar	---	---
Cálcio	0,20	0,05
Ferro	0,001	0,12
Sódio	0,5	0,0125
Vitamina A	0,006	0,0015
Vitamina D	0,00038	0,000095
Sólidos totais	**9,09**	**2,27**
4.3 Preparo do inóculo para o biorreator

As células de *L. lactis* foram descongeladas e o conteúdo de 300 µL (10^7 UFC.mL^-1) foi adicionado em erlenmeyer de 500 mL contendo 160 mL de caldo MRS. O meio de cultivo inoculado foi incubado em agitador rotacional (Tecnal TE-424, Brasil) a 100 rpm, por 36 horas, a 30ºC. Parte do inóculo (10 mL) foi alíquotado para análises e o restante (150 mL) foi utilizado para a inoculação do biorreator Bioflo 110 (New Brunswick Scientific, New Jersey, EUA).

4.4 Descrição do biorreator

O biorreator New Brunswick Scientific (modelo Bioflo 110), com dorna de vidro de borossilicato, capacidade nominal total de 2,0 L e tampa de aço inox, tem sua agitação garantida por duas turbinas do tipo *Rushton*, com aeração submersa (Figuras 4.1 e 4.2). Para medir o pH e o oxigênio dissolvido durante o cultivo, o biorreator possui um eletrodo de vidro esterilizável modelo 405-DPAS-SC-K8S/225 (Mettler Toledo, Alphaville-Barueri, Brasil) e um eletrodo polarográfico autoclavável modelo InPro 6110/220 (Mettler-Toledo, Alphaville-Barueri, Brasil), respectivamente. Uma sonda de temperatura, que envia sinal para o sistema de controle, foi acoplada internamente ao biorreator. Este, por sua vez, ativa a manta de aquecimento elétrica, instalada ao redor da dorna do biorreator ou promove seu resfriamento, com água da rede pública (devidamente filtrada com filtro de carvão ativado) que fluia pela serpentina de aço inox existente no interior do biorreator. A regulagem on-off dos dois sistemas mantinha a temperatura em seu set-point, ou seja, na temperatura ajustada para o cultivo.

A retirada de amostras foi realizada por uma saída própria, uma mangueira de silicone com sua extremidade conectada a um amostrador.
Figura 4.1- Vista superior do biorreator New Brunswick Scientific Bioflo 110. (NEW BRUNSWICK, 2002)
Figura 4.2- Vista lateral do biorreator New Brunswick Scientific Bioflo 110. (NEW BRUNSWICK, 2002).
4.4.1 Preparo do biorreator e do meio de cultivo

O leite desnatado foi alíquotado em frasco esterilizado e aquecido em autoclave a 111°C por 5 minutos. A dorna devidamente montada e contendo 1125 mL de água destilada no seu interior, foi esterilizada em autoclave a 121°C, durante 30 min. Após resfriamento da dorna, à temperatura ambiente, 375 mL de leite desnatado foi introduzido assepticamente para o interior da dorna, por meio de uma abertura da tampa de inox e com o auxílio de um funil esterilizado. Foi adicionado 0,3 mL do anti-espumante dimetilpolisiloxane (Sigma-Aldrich, Saint Louis, MO, USA). Todo o manuseio foi realizado em cabine de segurança biológica.

4.4.1.1 Condições dos cultivos

As condições de cultivo utilizadas pré-estabelecidas foram:

Condição	Valor
Temperatura	30°C
Duração	52 h
Volume inicial do meio sem inóculo	1,5 L
Volume do inóculo	150 mL
pH do meio de cultura	6,7 ± 0,2
Agitação e Vazão de ar	100 rpm (0,0 e 0,5 L.min⁻¹) e 200 rpm (0,0, 0,5, 1,0 e 2,0 L.min⁻¹)
Anti-espumante	0,3 mL
4.4.2 Calibração do eletrodo de oxigênio dissolvido

O monitoramento da concentração de oxigênio dissolvido foi realizado por meio de eletrodo polarográfico, descrito no item 4.4, durante o processo de cultivo.

A sonda de oxigênio foi calibrada antes do início de cada cultivo, em zero e 100%. A calibração da sonda de oxigênio em zero foi realizada com o ajuste da agitação a 200 rpm e temperatura de 30 ± 0,5ºC, seguida por borbulhamento do gás nitrogênio no meio de cultura, até o oxigênio atingir valores estáveis próximos de zero. O ponto zero também poderia ser realizado por ajuste do zero eletrônico, com a desconexão do cabo do eletrodo até atingir zero.

A calibração da sonda em 100% foi realizada, no meio de cultura, sob a agitação mantida em 200 rpm e borbulhando ar comprimido (1,5 L.min⁻¹), por cerca de 30 minutos ou até que o valor de oxigênio dissolvido atingisse valor constante. Quando necessário, o ajuste em 100% foi feito manualmente (SANTOS, 2007). Para a calibração do eletrodo foi utilizado o “Guia de Operações” Bioflo 110 Fermentor manual nº M1273-0054 – (New Brunswick Scientific Co., New Jersey, EUA).

4.4.3 Determinação do K_{La}

Adotou-se a técnica do gassing-out (PIRT, 1975) para determinar o produto entre o coeficiente global de transporte de massa relativo à fase líquida (“k_L”) e a área de interface (gás/líquido) por unidade de volume de líquido (“a”). O método consiste na eliminação, com nitrogênio, do oxigênio dissolvido no meio de cultura. Após certo tempo, ligava-se a aeração no biorreator, anotavam-se os valores crescentes da concentração de oxigênio dissolvido com o tempo (BARUQUE-RAMOS, 2000). Considerando-se a concentração de saturação de oxigênio dissolvido (c^*) e a concentração de oxigênio dissolvido (c), o referido valor (K_{La}) é dado pela equação:
Material e Métodos

\[\ln \left(1 - \frac{c}{c^*}\right) = - K_{L}a \cdot \theta \quad (01) \]

sendo que \(c = 0 \) quando \(\theta = 0 \)

Uma regressão semi-logarítmica de \((1-c/c^*)\) com o tempo \((\theta) \) fornecia o valor de \(K_{L}a \).

As determinações de \(K_{L}a \) foram realizadas antes de cada ensaio, no meio de cultura, sob as mesmas condições de cultivo no biorreator (item 4.4.1.1).

4.4.4 Calibração do eletrodo de pH

O eletrodo autoclavável descrito no item 4.4, foi calibrado por meio da solução tampão de pH=7,0 e tampão de pH=4,0. A calibração do eletrodo de pH foi realizada antes da esterilização da dorna, para que ambos fossem esterilizados em conjunto (dorna e eletrodo de pH). As determinações de pH foram confirmados com o potenciômetro de bancada (Mettler Toledo, modelo MPC0227, Alphaville-Barueri, Brasil).

4.5 Amostragem

Parâmetros como temperatura, pH, agitação e oxigênio dissolvido (\%OD) foram anotados antes de cada coleta de amostra. Os volumes das amostras retiradas totalizaram aproximadamente 10% do volume total de cultivo do biorreator, de modo a evitar alterações significativas nas condições do cultivo. Um volume de aproximadamente 10 mL de suspensão bacteriana foi coletado, em geral, a cada 4 horas do cultivo. As amostras foram utilizadas para monitorar o crescimento celular, por meio da determinação da viabilidade celular (item 4.6.1) e determinação de dosagem de proteínas totais e ácido lático, conforme item 4.6.2 e
4.6.3, respectivamente. A suspensão bacteriana foi centrifugada a 13.201 g durante 10 minutos e 10ºC, em dois eppendorfs contendo 01 mL cada um.

O precipitado contendo a massa bacteriana e proteínas do leite foram utilizadas para determinação da extração de nisina adsorvida das células produtoras, conforme descrito no item 4.6.4.2. O sobrenadante foi armazenado a 2-8ºC e posteriormente utilizado para determinação das concentrações de nisina e açúcares totais.

4.6 Metodologias Analíticas

4.6.1 Viabilidade celular (UFC.mL⁻¹)

O número de células viáveis mensuradas por unidades formadoras de colônias (U.F.C.) foi determinado pelo método direto, que quantifica o crescimento bacteriano por meio da diluição seriada. Aliquotas de 1 mL do cultivo bacteriano foram diluídas em 9 mL de solução salina de concentração 0,85% esterilizada. A partir desta amostra foi feita uma diluição seriada de 10⁻¹ a 10⁻⁸. De cada diluição, utilizou-se 1 mL para distribuir nas placas de Petri previamente esterilizadas. O ágar MRS fundido foi resfriado a 45ºC (em Banho-Maria) e vertido sobre a placa de Petri contendo a suspensão diluída da amostra. O material foi homogeneizado girando-se a placa através de movimentos circulares no sentido horário e anti-horário. Após a solidificação do meio, as placas tampadas foram invertidas e incubadas em estufa bacteriológica na temperatura de 30ºC. Ao final do período de incubação, 48 horas, as colônias foram contadas e o resultado de cada diluição foi registrado e multiplicado pelo fator da diluição, que é a recíproca da diluição. As placas adequadas para contagem devem ter entre 30 a 300 colônias. O resultado final foi registrado em UFC (Unidades Formadoras de Colônias).
4.6.2 Dosagem de proteínas

A determinação de proteínas totais foi determinada pelo método descrito por Lowry et al. (1951). Foi utilizado 0,5 mL da amostra e completado com água destilada para um volume final de 1 mL em tubos de ensaio. Posteriormente, foram adicionados 5 mL do reagente, constituído de 1 mL de tartarato de sódio e potássio 4% (m/v) e 1 mL de solução sulfato de cobre 2% (m/v), diluídos 1:100 em solução de carbonato de sódio 2% (m/v) e hidróxido de sódio 0,1M, os quais foram incubados durante 10 minutos à temperatura ambiente. A seguir foram adicionados, 0,5 mL do reagente fenol de Folin Ciocalteau 2N (Fluka, Buchs, Suíça), na proporção de 1:4, permanecendo em repouso por 30 minutos à temperatura ambiente. O conteúdo foi transferido para uma cubeta de vidro, e a absorbância foi lida em espectrofotômetro Shimadzu UV 1650PC (Kioto, Japão) a 660 nm.

Para a determinação da curva padrão, foi utilizada albumina de soro bovino (BSA) em concentrações variando de 0,1 a 0,8 mg.mL\(^{-1}\). Com base nestes cálculos, foram calculadas a regressão linear e a equação da reta. Os valores da concentração de proteína total foram expressos em mg.mL\(^{-1}\) de cultivo, levando-se em consideração as respectivas diluições.

4.6.3 Determinação da acidez em ácido lático

A determinação da acidez foi realizada pela metodologia de Pereira et al. (2001). Aliquota de 1 mL da amostra foi transferida para um erlenmeyer e completado para um volume final de 10 mL (diluição 1:10) de água destilada livre de dióxido de carbono. Foi adicionado 10 mL do mesmo tipo de água destilada e 1 mL de solução fenolftaleína 1% (m/v) alcoólica, como indicador. A amostra foi titulada com solução hidróxido de sódio 0,01M até a viragem, observada pela alteração da cor branca para róseo claro. O percentual do ácido lático foi obtido pela fórmula e posteriormente convertido em mg.mL\(^{-1}\):
Material e Métodos

\[
A = \frac{C_i \times V_s \times 9}{V_a}
\]
(02)

Onde:

- A: acidez expressa em percentual de ácido lático (m.v\(^{-1}\)), ou seja, g ácido lático / 100 mL de amostra;
- \(C_i\): concentração da solução de hidróxido de sódio (mol.L\(^{-1}\))
- \(V_s\): volume da solução de hidróxido de sódio gasto na titulação da amostra;
- 9: fator de conversão para ácido lático
- \(V_a\): volume da amostra

4.6.4 Análise do sobrenadante e pellet dos cultivos

Amostras do cultivo contendo 1 mL foram centrifugadas a 13.201 \(g\) por 10 minutos a 10\(^{\circ}\)C. O pellet foi separado do sobrenadante para as análises descritas abaixo.

4.6.4.1 Detecção da atividade de nisina

A atividade de nisina excretada nos meios de cultivo foi quantificada pelo método de difusão em ágar (ARAUZ, 2008; JOZALA et al., 2007; PENNA, MORAES, 2002), utilizando Lactobacillus sakei ATCC 15521 como microrganismo sensível à ação da nisina (PONGTHARANGKUL; DEMIRCI, 2004). O volume de 100 \(\mu\)L de células de L. sakei \((10^7\) UFC.mL\(^{-1}\)) foi inoculado em erlenmeyer de 250 mL contendo 50 mL de caldo MRS e incubado em agitador rotativo a 100 rpm, por 30\(^{\circ}\)C durante 24 horas. Uma alíquota de 600 \(\mu\)L \((10^7\) UFC.mL\(^{-1}\)) deste cultivo, previamente diluído 1.000 vezes foi transferido e homogeneizado em 100 mL de ágar soft MRS. Cada 20 mL de meio inoculado foi adicionado em placas de Petri (100 x 15 mm).
Após a solidificação do meio, foram feitos orifícios com o auxílio de um tubo metálico estéril, de aproximadamente 4 mm de diâmetro na superfície do ágar. Para a detecção da atividade da nisina, alíquotas de 50 µL do sobrenadante da amostra foram transferidas para os orifícios e as placas foram incubadas sem inversão a 30ºC. Após 24 horas, os diâmetros dos halos (mm) formados foram medidos em quatro direções diferentes, com o paquímetro. Os resultados foram comparados com a curva padrão de nisina comercial.

Para obtenção da curva padrão (Figura 4.3), uma solução de nisina foi preparada com 1 g de nisina comercial (Nisin®, Sigma, St. Louis, MO – padrão para uma atividade de 10^6 AU ou 25000 µg de nisina por grama) em 10 mL de uma solução 0,02 N de HCl. A relação entre unidades arbitrárias (AU.mL$^{-1}$) e diâmetro do halo (mm) foi determinada usando concentrações da solução de nisina padrão ($10^1 - 10^5$ AU.mL$^{-1}$). Baseado na curva de calibração entre AU.mL$^{-1}$ e IU.mL$^{-1}$, 1,09±0,17 AU corresponde a 1,0 IU (40 IU = 1 µg de nisina). A nisina expressa em AU.mL$^{-1}$ foi convertida para nisina em miligramas por litros (mg.L$^{-1}$), por meio da relação: Nisina (mg.L$^{-1}$) = (z x 0,025), onde z = AU.mL$^{-1}$ e 0,025 é um fator de conversão relacionado a 2,5% de nisina pura.

Figura 4.3- Curva padrão relacionando as concentrações da atividade de nisina comercial com o diâmetro da área de inibição (zonas sem crescimento de *L. sakei*), obtida usando o método de difusão em ágar, por meio de diluições de nisina em HCl 0,02 N. Equação log (AU.mL$^{-1}$) = 0,2408. (Halo) - 0,8745 e R^2 = 0,9806.
4.6.4.2 Extração de nisina adsorvida das células produtoras

Esta metodologia foi baseada em Yang et al. (1992). O pellet foi ressuspensido em 200 µL de uma solução esterilizada de NaCl 100 mM, pH 2,0. Após homogeneização em agitador de tubos (tipo vortex) por 15 minutos, a suspensão celular foi novamente centrifugada nas mesmas condições iniciais e o sobrenadante foi armazenado a 2 – 8ºC para detecção de nisina adsorvida pelas células.

4.6.5 Concentração de lactose

As concentrações de lactose foram determinadas indiretamente pelas concentrações de glicose por meio de reação enzimática, de acordo com Sánchez-Manzanares et al. (1993). Para a análise enzimática, foram utilizados 160 µL do sobrenadante da amostra, 40 µL de água destilada, 400 µL de solução tampão citrato de sódio 0,1 M (pH 7,0) e 100 µL de uma lactase de Kluyveromyces lactis, β-galactosidase (Lactozym® 3000L HP-G, Novozymes, Brasil). Esta mistura foi homogeneizada e incubada a 35ºC em banho de água por 30 minutos, para converter a lactose em D-glicose e D-galactose (Figura 4.4).

Para a dosagem de glicose, foi utilizado o método da glicose-oxidase, utilizando um reagente preparado pela dissolução dos componentes do "Kit" enzimático colorimétrico da Laborlab (Guarulhos, Brasil). Em um tubo eppendorf de 2 mL foram colocados 1 mL deste reagente e adicionados 10 µL da amostra. A amostra foi homogeneizada e incubada em banho de água a 37ºC (por 10 min). A leitura da absorbância foi realizada em espectrofotômetro UV 1650PC (Shimadzu, Kioto, Japão) a 505 nm.
Figura 4.4 - Estruturas da lactose, galactose e glicose. (SERIQUE; CEYLÃO; SANTIAGO, 2008).

4.6.6 Técnica de coloração de Gram

Para se constatar a ausência de contaminantes no inóculo, foi utilizada a técnica de coloração de Gram (PELCZAR; CHAN; KRIEG, 1996).

O procedimento consistiu em fixar o esfregaço sobre uma lâmina limpa, na proximidade da chama do bico de Bunsen. Em seguida, o esfregaço foi coberto com uma solução de cristal violeta fenicada, por 1 minuto. Após escorrer o excesso deste corante, Lugol foi aplicado à preparação com mais 1 minuto de contato. O excesso de Lugol foi eliminado e, a lâmina, lavada com álcool 95% e depois com água. Finalmente, a preparação foi coberta com fuccina (1:10) por 30 segundos e, após mais uma lavagem, a lâmina foi seca para o exame microscópico.

Ao exame microscópico, como os lactococos eram Gram-positivos se apresentava violetas, ao passo que as bactérias Gram-negativas, exibiam a cor vermelha.
4.6.7 Determinação das curvas suavizadas

Foram efetuados ajustes de curva nos resultados experimentais, com o auxílio de papel milimetrado e curva francesa, para o cálculo das viabilidades celulares, formação de produto (nisina) e nisina adsorvida pelas células produtoras.

4.6.8 Determinação dos parâmetros cinéticos

Com base nos valores suavizados, foram determinados parâmetros de velocidade específica máxima de crescimento ($\mu_{\text{máx}}$), relação entre a atividade de nisina e concentração celular ($Y_{\text{N/X}}$), concentração celular máxima ($X_{\text{máx}}$), produtividade celular ($\text{Prod}._x$), concentração máxima de nisina ($P_{\text{máx nisina}}$) e produtividade de nisina ($\text{Prod}_{\text{nisina}}$).

A velocidade específica de crescimento é representada pela seguinte equação:

$$\mu_{\text{máx}} = \frac{1}{X} \cdot \frac{\text{d}X}{\text{d}t} \quad (03)$$

Onde:
- X – concentração celular no meio de fermentação;
- $\text{d}X$ – concentração celular formada em $\text{d}t$;
- $\text{d}t$ – intervalo de tempo.

A produtividade de biomassa e produtividade de produto foi calculada segundo as expressões:

$$\text{Prod}._x = \frac{X_{\text{máx}}}{t_f} \quad (04)$$
Material e Métodos

\[\text{Prod.}_{\text{nísina}} = \frac{P_{\text{máx}}}{t_f} \]

(05)

Onde:

- \(X_{\text{máx}}\) – concentração máxima de \(X\);
- \(P_{\text{máx}}\) – concentração máxima de nísina em mg.L\(^{-1}\);
- \(t_f\) – tempo de início de fase estacionária correspondente a \(X_{\text{máx}}\);

A relação entre a atividade de nísina e concentração celular é dada por:

- \(Y_{\text{NX}}\) – Coeficiente angular da correlação entre atividade de nísina (log \(\text{AU.mL}^{-1}\)) e concentração celular (log \(\text{UFC.mL}^{-1}\));

4.6.9 Liofilização preliminar para conservação de nísina

Amostra contendo nísina produzida em biorreator (200 rpm/sem aeração) por \(L.\) lactis, foi centrifugada em tubo cônico de polipropileno, com capacidade de 50 mL, contendo 45 mL de cultivo bacteriano a 8000 g por 45 minutos (Jouan BR4, Winchester, VA, USA). O sobrenadante foi filtrado em membrana de poro de 0,45 \(\mu\)m e cada 1 mL foi alíquotado em criotubos. As amostras foram congeladas em ultrafreezer (Kelvinator série 100, Manitowoc, WI, USA) com temperatura de -80°C ± 1°C, sendo liofilizados após 48 horas. A liofilização das amostras foi conduzida em liofilizador (marca Edwards modelo L4kr118, Brasil), em condições de condensação a -40°C e secagem a 15°C sob vácuo de 10^-1 mbar, por 48 horas. Posteriormente, as amostras foram armazenadas em temperatura de 2 – 8°C por 24 horas.

As amostras foram ressuspensidas com 1 mL ou 100 \(\mu\)L (concentrada 10 vezes) de água destilada esterilizada e HCl 0,02 N e homogeneizadas, para posterior avaliação da atividade biológica pelo método de difusão em ágar (item 4.6.4.1).
4.6.10 Purificação preliminar de nisina por cromatografia de interação hidrofóbica

Foi utilizada uma coluna cromatográfica de interação hidrofóbica contendo 5 mL do gel Butyl-Sepharose 4 Fast Flow em matriz agarose (GE Healhtcare, Uppsala, Suécia), acoplado em uma bomba peristáltica (modelo P1, Amersham Biosciences, Uppsala, Suécia). A cromatografia foi realizada em solução tampão fosfato de sódio 20 mM, pH 5,3, contendo (NH₄)₂SO₄ em concentrações de 2 M, 1,5 M e 1 M. Nisina foi eluída com 15 mL de solução tampão fosfato de sódio 20 mM, pH 5,3.

Uma alíquota de 3 mL do sobrenadante do cultivo, produzido em biorreator (200 rpm/sem aeração), previamente filtrado em membrana de poro de 0,45 µm, foi equilibrado a uma concentração final de (NH₄)₂SO₄ 2 M. A matriz da coluna também foi previamente equilibrada com 15 mL de solução tampão fosfato de sódio 20 mM, pH 5,3, contendo (NH₄)₂SO₄ 2 M. A amostra foi aplicada na coluna e eluída com o gradiente descrito acima. Frações de 1 mL foram coletadas manualmente em tubos de microcentrífuga a uma vazão de 1 mL.min⁻¹ e a absorbância foi determinada em espectrofotômetro a 280 nm. Todas as frações foram analisadas quanto à atividade antimicrobiana por meio do método de difusão em ágar (item 4.6.4.1). As proteínas eluídas da coluna foram quantificadas pelo Kit QuantiPro ácido bicinconínico (BCA) da Sigma-USA (faixa 0,5 – 30 µg/mL). As proteínas aplicadas na coluna foram quantificadas pelo Kit colorimétrico para dosagem de proteínas BCA da BioAngency–Brasil (faixa 20-2000 µg/mL). A curva de calibração para proteínas foi feita utilizando albumina de soro bovino (BSA) como padrão.
5. RESULTADOS

5.1 Resultados experimentais obtidos em biorreator

Foram realizados 9 ensaios de cultivos de *Lactococcus lactis* subsp. *lactis* ATCC 11454 em biorreator com duração de 52 h.
Os ensaios foram realizados conforme as condições descritas na Tabela 5.1.

Tabela 5.1 – Resumos dos ensaios realizados em biorreator

Ensaios	Agitação (rpm)	Aeração (L.min⁻¹)
1	100	-----
2	100	0,5
3	100	0,5
4	200	-----
5	200	-----
6	200	-----
7	200	0,5
8	200	1,0
9	200	2,0

Os valores experimentais da cinética dos cultivos, bem como o perfil de crescimento celular, pH, atividade de nisina e formação de ácido lático de nove cultivos descontínuos dos ensaios realizados estão ilustrados nas Tabelas 5.2 a 5.10, e, os valores suavizados, calculados com o auxílio de uma curva francesa, nas Tabelas 9.1.1 – 9.1.9 do anexo 9.1. As curvas de viabilidade celular e atividade de nisina, assim como as curvas de pH e ácido lático, são apresentados nas Figuras 5.1 – 5.6.
Tabela 5.2 – Resultados experimentais do ensaio 1 (100 rpm e sem aeração) em biorreator.

Tempo (h)	pH	Oxig. (%)	Dissol.	Viab. celular (UFC.mL\(^{-1}\))	log Nisina (AU.mL\(^{-1}\))	Ác. Lático (mg.mL\(^{-1}\))	Proteínas (mg.mL\(^{-1}\))	Açúcares (mg.mL\(^{-1}\))
0	5,56	99,2	1,29 x10\(^7\)	7,11	-----	1,17	2,38	12,60
4	5,61	89,6	1,88 x10\(^7\)	7,27	0,31	2,16	2,54	13,99
8	5,27	50,0	6,60 x10\(^7\)	7,82	1,25	2,21	2,67	13,64
12	4,69	-0,8	7,40 x10\(^7\)	7,87	2,27	2,45	2,64	12,43
14	4,70	0,8	5,80 x10\(^7\)	7,76	1,10	15,47	2,25	12,68
24	4,69	72,9	2,75 x10\(^7\)	7,44	1,58	2,30	2,75	12,57
28	4,73	70,6	7,40 x10\(^7\)	7,87	2,84	28,09	2,30	12,39
32	4,73	62,8	2,95 x10\(^7\)	7,47	1,20	15,91	2,12	12,49
36	4,69	53,7	3,70 x10\(^7\)	7,57	1,25	49,92	2,25	12,47
48	4,73	72,0	5,80 x10\(^7\)	7,76	2,25	7,32	2,34	12,75
52	4,73	74,9	8,30 x10\(^7\)	7,92	2,78	6,74	2,52	12,44

Figura 5.1 – Curvas de viabilidade celular (log UFC.mL\(^{-1}\)) e atividade de nisina (log AU.mL\(^{-1}\)), com resultados experimentais e suavizados e curvas de pH e ácido láctico (mg.mL\(^{-1}\)) experimentais do ensaio 1.
Tabela 5.3 - Resultados experimentais do ensaio 2 (100 rpm e 0,5 L.min\(^{-1}\)) em biorreator.

Tempo (h)	pH	Oxig. (%)	Dissol. (UFC.mL\(^{-1}\))	Viab. celular (log (UFC.mL\(^{-1}\))	log Nisina (AU.mL\(^{-1}\))	0,025 (mg.L\(^{-1}\))	Ác. Lático (mg.mL\(^{-1}\))	Proteínas (mg.mL\(^{-1}\))	Açúcares (mg.mL\(^{-1}\))
0	6,00	95,0	1,86 x10\(^7\)	7,27	1,40	0,626	0,90	2,40	15,38
4	5,50	91,7	6,80 x10\(^7\)	7,83	2,00	2,50	1,62	2,87	15,62
8	4,84	64,7	1,10 x10\(^8\)	8,04	2,95	22,25	2,07	2,66	13,54
12	4,72	73,4	2,00 x10\(^8\)	9,30	3,00	25,00	2,07	2,59	13,85
16	4,69	80,0	1,35 x10\(^8\)	8,13	3,10	31,55	2,07	2,29	14,11
20	4,69	92,8	2,23 x10\(^8\)	8,35	2,50	7,89	2,16	2,79	14,39
24	4,67	92,6	1,37 x10\(^8\)	8,14	2,65	11,19	2,07	2,47	13,87
28	4,71	92,2	2,07 x10\(^8\)	8,32	2,15	3,53	2,07	2,81	13,37
32	4,67	92,3	1,42 x10\(^8\)	8,15	1,90	1,98	2,16	2,36	12,92
36	4,69	93,0	1,45 x10\(^8\)	8,16	2,00	2,50	2,07	2,82	13,48
48	4,70	93,6	1,01 x10\(^8\)	8,00	1,75	1,41	2,16	2,65	12,93
52	4,71	93,4	1,48 x10\(^8\)	8,17	1,50	0,79	2,07	2,54	12,92

Tabela 5.4 - Resultados experimentais do ensaio 3 (100 rpm e 0,5 L.min\(^{-1}\)) em biorreator.

| Tempo (h) | pH | Oxig. (%) | Dissol. (UFC.mL\(^{-1}\)) | Viab. cellular (log (UFC.mL\(^{-1}\)) | Halo (mm) | log Nisina (AU.mL\(^{-1}\)) | 0,025 (mg.L\(^{-1}\)) | Ác. Lático (mg.mL\(^{-1}\)) | Proteínas (mg.mL\(^{-1}\)) | Açúcares (mg.mL\(^{-1}\)) |
|----------|------|-----------|----------------------------|---------------------------------|-----------|-----------------|-----------------|----------------|----------------|----------------|----------------|
| 0 | 5,8 | 98,2 | 2,46 x10\(^7\) | 7,39 | 10,12 | 1,56 | 0,91 | 2,39 | 2,68 | 14,32 |
| 4 | 5,38 | 88,5 | 6,70 x10\(^7\) | 7,83 | 1,86 | 2,71 | 1,29 | 2,81 | 2,81 | 13,38 |
| 8 | 4,75 | 40,9 | 2,09 x10\(^8\) | 8,32 | 14,90 | 2,71 | 12,92 | 2,39 | 2,81 | 13,38 |
| 12 | 4,8 | 90,6 | 1,09 x10\(^8\) | 8,04 | 15,76 | 2,92 | 20,85 | 2,48 | 2,70 | 12,86 |
| 16 | 4,8 | 91,7 | 1,45 x10\(^8\) | 8,16 | 13,06 | 2,27 | 4,65 | 2,43 | 2,84 | 12,86 |
| 20 | 4,81 | 90,9 | 1,92 x10\(^8\) | 8,28 | 11,56 | 2,03 | 2,03 | 2,57 | 2,80 | 13,14 |
| 24 | 4,80 | 93,4 | 1,51 x10\(^8\) | 8,18 | 12,45 | 2,12 | 3,32 | 2,48 | 2,66 | 13,10 |
| 28 | 4,79 | 95,9 | 1,41 x10\(^8\) | 8,15 | 12,32 | 2,09 | 3,08 | 2,48 | 2,82 | 13,22 |
| 32 | 4,81 | 95,9 | 1,86 x10\(^8\) | 8,27 | 11,64 | 1,93 | 2,12 | 2,70 | 2,78 | 12,99 |
| 36 | 4,79 | 96,7 | 1,56 x10\(^8\) | 8,19 | 10,85 | 1,74 | 1,37 | 2,75 | 2,68 | 13,30 |
| 48 | 4,78 | 98,4 | 2,35 x10\(^7\) | 7,37 | 11,19 | 1,82 | 1,65 | 2,57 | 2,78 | 12,68 |
| 52 | 4,79 | 99,00 | 2,12 x10\(^7\) | 7,33 | 10,13 | 1,57 | 0,92 | 2,57 | 2,79 | 12,47 |
Figura 5.2 – Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina log (AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL⁻¹) experimentais dos ensaios 2 e 3.
Tabela 5.5 - Resultados experimentais do ensaio 4 (200 rpm e sem aeração) em biorreator.

Tempo (h)	pH	Oxig. (%)	Dissol. (UFC.mL\(^{-1}\))	Viab. celular log (UFC.mL\(^{-1}\))	log Nisina (AU.mL\(^{-1}\))	0,025 (mg.mL\(^{-1}\))	Ác. Lático (mg.mL\(^{-1}\))	Proteína (mg.mL\(^{-1}\))	Açúcares (mg.mL\(^{-1}\))
0	5,55	98,5	4,30 x10\(^7\)	7,63	1,99	2,42	2,30	2,73	13,40
4	5,17	80,0	8,50 x10\(^7\)	7,93	3,15	35,30	2,43	2,74	12,40
8	4,69	5,1	1,67 x10\(^8\)	8,22	3,51	80,54	2,34	2,76	11,92
12	4,65	58,3	1,93 x10\(^8\)	8,29	3,45	70,11	2,48	2,80	12,10
14	4,67	67,2	1,59 x10\(^8\)	8,20	3,70	125,50	2,48	2,95	12,01
24	4,69	69,8	1,00 x10\(^8\)	8,00	3,46	72,59	2,48	2,94	12,38
28	4,66	70,9	1,05 x10\(^8\)	8,02	3,42	65,42	2,52	2,66	11,96
32	4,67	71,4	2,12 x10\(^8\)	8,33	3,52	82,23	2,48	2,66	12,19
36	4,66	73,1	2,22 x10\(^8\)	8,35	3,48	75,14	2,48	2,70	12,27
48	4,69	77,9	8,90 x10\(^7\)	7,95	3,03	26,94	2,48	2,83	12,12
52	4,71	79,8	1,16 x10\(^8\)	8,06	2,64	11,02	2,52	2,69	12,96

Tabela 5.6 - Resultados experimentais do ensaio 5 (200 rpm e sem aeração) em biorreator.

Tempo (h)	pH	Oxig. (%)	Dissol. (UFC.mL\(^{-1}\))	Viab. celular log (UFC.mL\(^{-1}\))	log Nisina (AU.mL\(^{-1}\))	0,025 (mg.mL\(^{-1}\))	Ác. Lático (mg.mL\(^{-1}\))	Proteína (mg.mL\(^{-1}\))	Açúcares (mg.mL\(^{-1}\))
0	5,77	98,4	2,07 x10\(^7\)	7,32	----	----	1,17	2,31	12,85
4	5,54	81,7	2,92 x10\(^7\)	7,47	1,73	1,34	2,21	2,53	16,21
8	4,97	12,6	1,06 x10\(^8\)	8,03	3,22	41,69	2,30	2,45	13,82
12	4,73	0,3	1,23 x10\(^8\)	8,09	3,46	72,08	2,34	2,48	13,25
16	4,75	29,6	8,90 x10\(^7\)	7,95	3,35	56,48	2,48	2,47	13,51
20	4,8	23,6	8,00 x10\(^7\)	7,90	3,39	61,46	2,48	2,47	13,10
24	4,79	40,8	8,60 x10\(^7\)	7,93	3,28	47,56	2,52	2,46	13,36
28	4,81	57,6	9,50 x10\(^7\)	7,98	3,30	49,58	2,48	2,48	13,06
32	4,68	59,1	1,00 x10\(^8\)	8,00	2,99	24,62	2,48	2,59	13,33
36	4,81	60,5	1,19 x10\(^8\)	8,08	2,95	22,34	2,52	2,64	12,84
48	4,78	63,9	6,20 x10\(^7\)	7,79	2,52	8,24	2,52	2,66	13,11
52	4,74	65,3	1,01 x10\(^8\)	8,00	2,40	6,24	2,48	2,70	12,77
Tabela 5.7 - Resultados experimentais do ensaio 6 (200 rpm e sem aeração) em biorreator.

Tempo (h)	pH	Oxig. (%)	Dissol. (UFC.mL\(^{-1}\))	log Nisina (AU.mL\(^{-1}\))	log 0,025 (mg.L\(^{-1}\))	0,025 (mg.mL\(^{-1}\))	Ác. Lático (mg.mL\(^{-1}\))	Proteína (mg.mL\(^{-1}\))	Açúcares (mg.mL\(^{-1}\))
0	5,81	98,3	2,55 \(\times 10^7\)	7,41	1,95	2,25	1,80	2,67	12,15
4	5,70	89,8	2,26 \(\times 10^7\)	7,35	2,82	16,59	2,34	2,83	12,12
8	5,42	66,8	3,00 \(\times 10^7\)	7,48	2,31	5,05	2,43	2,90	13,61
12	4,88	0,3	9,00 \(\times 10^7\)	7,95	3,63	105,97	2,52	2,98	12,91
16	4,78	25,9	1,04 \(\times 10^8\)	8,02	3,12	32,85	2,52	3,03	12,49
20	4,77	26,6	6,20 \(\times 10^7\)	7,79	3,22	41,35	2,70	2,87	12,76
24	4,76	38,7	8,00 \(\times 10^7\)	7,90	3,13	33,86	2,66	2,86	12,79
28	4,76	57,8	6,60 \(\times 10^7\)	7,82	2,95	22,19	2,97	2,65	12,61
32	4,78	58,8	2,04 \(\times 10^8\)	8,31	2,98	23,72	3,20	2,88	12,82
36	4,77	58,3	2,50 \(\times 10^8\)	8,40	2,72	12,98	3,24	2,93	12,40
48	4,75	60,1	2,81 \(\times 10^8\)	8,45	2,57	9,28	3,17	2,89	11,89
52	4,76	59,8	3,00 \(\times 10^8\)	8,48	2,28	4,78	3,16	3,06	12,23
Figura 5.3 – Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina (log AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido láctico (mg.mL⁻¹) experimentais dos ensaios 4, 5 e 6.
Tabela 5.8 - Resultados experimentais do ensaio 7 (200 rpm e 0,5 L.min⁻¹) em bioreator.

Tempo (h)	pH	Oxig. (%)	Dissol. (UFC.mL⁻¹)	Viab. celular (log Nisina 0,025 (UFC.mL⁻¹))	log Nisina (AU.mL⁻¹)	0,025 (mg.mL⁻¹)	Âc. Lático (mg.mL⁻¹)	Proteína (mg.mL⁻¹)	Açúcares (mg.mL⁻¹)
0	5,77	97,0	2,38 x10⁷	7,38	-----	1,08	2,87	13,29	
4	5,65	96,1	2,71 x10⁷	7,43	1,00	0,25	1,26	2,96	13,64
8	5,49	93,7	5,90 x10⁷	7,77	1,13	0,34	1,89	2,68	13,36
12	4,96	75,7	1,00 x10⁸	8,00	2,41	6,42	2,07	2,76	12,38
16	4,79	84,4	2,75 x10⁸	8,44	2,88	18,79	2,07	1,99	12,08
20	4,77	87,0	2,21 x10⁸	8,34	3,02	26,02	2,16	3,01	12,47
24	4,75	92,1	2,17 x10⁸	8,34	2,99	24,62	2,16	2,27	12,10
28	4,81	95,3	1,23 x10⁸	8,09	2,78	14,95	1,98	1,85	12,19
32	4,79	94,7	2,06 x10⁸	8,31	2,59	9,79	1,98	2,46	12,10
36	4,76	94,8	3,56 x10⁸	8,55	2,62	10,50	2,16	2,12	12,16
48	4,78	94,7	1,57 x10⁸	8,20	2,45	7,07	2,07	2,14	12,42
52	4,82	94,4	1,59 x10⁸	8,20	2,34	5,43	2,07	2,18	12,24

Figura 5.4 – Curvas de viabilidade celular (log UFC.mL⁻¹) e atividade de nisina (log AU.mL⁻¹), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL⁻¹) experimentais do ensaio 7.
Tabela 5.9 - Resultados experimentais do ensaio 8 (200 rpm e 1 L.min\(^{-1}\)) em biorreator.

Tempo (h)	pH	Oxiq. Dissol. (%)	Viab. celular (log UFC.mL\(^{-1}\))	log Nisina (AU.mL\(^{-1}\))	0,025 mg/L	Ác. Lático (mg.mL\(^{-1}\))	Proteína (mg.mL\(^{-1}\))	Açúcares (mg.mL\(^{-1}\))
0	5,74	99,1	1,69 x10\(^7\)	7,23	-----	1,17	2,54	12,26
4	5,61	90,7	6,10 x10\(^7\)	7,79	1,18	0,38	1,71	12,58
8	4,96	79,6	1,68 x10\(^8\)	8,23	2,61	10,28	1,89	11,11
12	4,83	76,0	2,26 x10\(^8\)	8,35	2,47	7,42	1,89	11,14
16	4,84	90,7	1,20 x10\(^8\)	8,08	3,01	25,84	1,98	11,57
20	4,85	91,4	1,13 x10\(^8\)	8,05	2,61	10,28	2,07	11,49
24	4,76	91,2	2,03 x10\(^8\)	8,31	3,05	27,89	2,07	11,48
28	4,7	90,0	1,06 x10\(^8\)	8,03	2,54	8,65	2,07	11,16
32	4,86	89,4	2,48 x10\(^8\)	8,39	2,02	2,59	2,07	12,23
36	4,88	90,0	1,50 x10\(^8\)	8,18	1,06	0,29	2,07	12,21
48	4,76	90,5	1,11 x10\(^8\)	8,05	1,83	1,68	2,16	11,98
52	4,73	91,2	1,33 x10\(^8\)	8,12	1,56	0,90	1,98	12,29

Figura 5.5 – Curvas de viabilidade celular (log UFC.mL\(^{-1}\)) e atividade de nisina (log AU.mL\(^{-1}\)), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL\(^{-1}\)) experimentais do ensaio 8.
Tabela 5.10 - Resultados experimentais do ensaio 9 (200 rpm e 2 L.min\(^{-1}\)) em biorreator.

Tempo (h)	pH	Oxig. Dissol.	Viab. celular	log Nisina	0,025	Ác. Lático	Proteína	Açúcares	
			(UFC.mL\(^{-1}\))	(AU.mL\(^{-1}\))	(mg.L\(^{-1}\))	(mg.mL\(^{-1}\))	(mg.mL\(^{-1}\))		
0	5,72	97,5	1,83 x10\(^7\)	7,26	1,76	1,43	1,26	1,02	12,84
4	5,71	96,7	4,90 x10\(^7\)	7,69	2,42	6,60	1,44	1,07	14,66
8	5,60	98,4	5,40 x10\(^7\)	7,73	2,45	7,07	2,07	1,02	14,31
12	5,18	96,0	8,90 x10\(^7\)	7,95	2,31	5,07	2,34	1,07	12,81
16	4,84	88,6	1,75 x10\(^8\)	8,24	3,06	28,87	2,34	1,07	12,11
20	4,81	87,7	1,10 x10\(^9\)	9,04	3,07	29,08	2,43	1,14	11,97
24	4,70	89,5	1,44 x10\(^8\)	8,16	2,83	17,05	2,34	1,09	12,18
28	4,72	92,4	2,39 x10\(^8\)	8,38	3,13	33,86	2,34	1,08	12,04
32	4,71	94,4	1,39 x10\(^8\)	8,14	2,66	11,33	2,25	1,11	12,06
36	4,72	106,0	9,90 x10\(^7\)	8,00	1,06	0,29	2,43	1,47	12,14
48	4,76	97,5	1,22 x10\(^8\)	8,09	------	------	2,52	1,42	12,34
52	4,70	94,9	1,51 x10\(^8\)	8,18	------	------	2,61	1,47	12,30

Figura 5.6 – Curvas de viabilidade celular (log UFC.mL\(^{-1}\)) e atividade de nisina (log AU.mL\(^{-1}\)), com resultados experimentais e suavizados e curvas de pH e ácido lático (mg.mL\(^{-1}\)) experimentais do ensaio 9.
5.2 – Resultados experimentais da extração de nisina adsorvida das células produtoras.

O resumo dos resultados da extração de nisina adsorvida das células de *L. lactis*, em valores de pH 5,8 - 4,7, são apresentados nas Tabelas 5.11, 5.12 e 5.13 e Figura 5.7. Os valores suavizados da adsorção de nisina pelas células produtoras estão ilustrados na Figura 9.2.1 do anexo 9.2

Tabela 5.11 – Resultados experimentais dos ensaios 1, 2 e 3 da extração de nisina adsorvida das células produtoras

ENSAIO 1	ENSAIO 2	ENSAIO 3													
Tempo (h)	Halo (mm)	log (AU.mL⁻¹)	0,025 (mg.L⁻¹)	Halo (mm)	log (AU.mL⁻¹)	0,025 (mg.L⁻¹)	Halo (mm)	log (AU.mL⁻¹)	0,025 (mg.L⁻¹)						
0	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------
4	-----	-----	-----	------	------	------	------	------	------	------	------	------	------	------	------
8	-----	-----	-----	8,62	1,2	0,40	9,43	1,81	1,61	9,43	1,81	1,61			
12	10,66	1,69	1,23	12,35	2,1	3,14	11,24	1,83	1,70	11,24	1,83	1,70			
14	9,43	1,40	0,62	*	*	*	*	*	*	10,03	1,54	0,87	11,51	1,90	1,97
16	*	*	*	10,11	1,8	1,58	10,04	1,54	0,87	10,04	1,54	0,87			
20	*	*	*	11,73	1,95	2,23	11,14	1,81	1,61	11,14	1,81	1,61			
24	11,45	1,88	1,91	11,73	1,95	2,23	11,14	1,81	1,61	11,14	1,81	1,61			
28	9,99	1,53	0,85	10,90	1,75	1,41	11,22	1,83	1,68	11,22	1,83	1,68			
32	11,33	1,85	1,78	11,11	1,80	1,58	11,15	1,81	1,61	11,15	1,81	1,61			
36	11,98	2,01	2,55	9,86	1,50	0,79	10,50	1,65	1,12	10,50	1,65	1,12			
48	10,88	1,74	1,39	9,03	1,30	0,50	9,41	1,39	0,62	9,41	1,39	0,62			
53	10,93	1,76	1,43	-----	-----	-----	8,75	1,23	0,43	8,75	1,23	0,43			

* Pontos não coletados.

---- valores não detectados.
Tabela 5.12 – Resultados experimentais dos ensaios 4, 5 e 6 da extração de nisina adsorvida das células produtoras

	ENSAIO 4		ENSAIO 5		ENSAIO 6																																																																																																																																																																																																																																																																																																																																																																																																																									
Tempo (h)	Halo (mm)	log (AU.mL⁻¹)	0,025 (mg.L⁻¹)	Halo (mm)	log (AU.mL⁻¹)	0,025 (mg.L⁻¹)	Halo (mm)	log (AU.mL⁻¹)	0,025 (mg.L⁻¹)																																																																																																																																																																																																																																																																																																																																																																																																																					
0	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
Tabela 5.13 – Resultados experimentais dos ensaios 7, 8 e 9 da extração de nisina adsorvida das células produtoras

	ensaio 7		**ensaio 8**		**ensaio 9**				
	Tempo (h)	Halo (mm)	log (AU.mL⁻¹)	0,025 (mg.L⁻¹)	Halo (mm)	0,025 (mg.L⁻¹)	Halo (mm)	0,025 (mg.L⁻¹)	
0	----	----	----	----	----	----	----	----	
4	----	----	----	----	----	----	11,68	1,94	2,16
8	10,15	1,57	0,93	10,86	1,74	1,38	11,98	2,01	2,55
12	14,55	2,63	10,64	11,39	1,87	1,84	11,52	1,90	1,98
16	12,93	2,24	4,32	11,05	1,79	1,53	12,85	2,22	4,15
20	13,18	2,30	4,98	9,68	1,46	0,71	12,56	2,15	3,53
24	12,09	2,04	2,72	10,85	1,74	1,37	13,48	2,37	5,86
28	12,31	2,09	3,08	10,35	1,62	1,04	11,52	1,90	1,98
32	12,89	2,23	4,23	10,48	1,65	1,11	11,72	1,95	2,22
36	9,69	1,46	0,72	10,15	1,57	0,93	----	----	----
48	12,05	2,03	2,66	----	----	----	----	----	----
51	----	----	----	----	----	----	----	----	----

* Pontos não coletados.

---- valores não detectados.
Figura 5.7- Curvas de atividade de nisina (log AU.mL\(^{-1}\)) extraída das células por solução ácida.
5.3 Resultados experimentais do coeficiente volumétrico de transferência de oxigênio (k_{La}).

Os valores do coeficiente volumétrico de transferência de oxigênio (k_{La}), determinados em leite desnatado diluído, sob diferentes condições de agitação e aeração, são apresentados na Tabela 5.14. Foi realizada uma determinação de k_{La} para cada condição experimental de agitação e aeração.

Tabela 5.14- Resultados experimentais do coeficiente volumétrico de transferência de oxigênio (k_{La}).

Ensaio	Agitação	Aeração	k_{La} (h^{-1})
1	100 rpm	-----	6,45 x 10^{-3}
2	100 rpm	0,5 L.min^{-1}	3,61
3	100 rpm	0,5 L.min^{-1}	3,61
4	200 rpm	-----	5,29 x 10^{-3}
5	200 rpm	-----	5,29 x 10^{-3}
6	200 rpm	-----	5,29 x 10^{-3}
7	200 rpm	0,5 L.min^{-1}	5,96
8	200 rpm	1,0 L.min^{-1}	9,82
9	200 rpm	2,0 L.min^{-1}	4,33

5.4 Liofilização preliminar para a conservação de nisina

A Tabela 5.15 mostra a atividade de nisina, posterior ao processo de liofilização. O liofilizado foi ressuspensão com 1 mL e concentrado 10 vezes (100 µL) em água destilada esterilizada e solução de HCl 0,02 N. Todas as determinações foram realizadas em triplicata.
Tabela 5.15

Resultados experimentais de nisina liofilizada reconstituída em 1 mL e concentrada 10 vezes (100 µL) com água destilada e HCl, produzida em biorreator (200 rpm/ sem aeração) por *L. lactis* em leite desnatado diluído.

Diluente	Atividade (AU.mL⁻¹)	Média Atividade (AU.mL⁻¹)	Log Atividade (AU.mL⁻¹)	Concentração Média Concentração (mg.L⁻¹)
Água destilada (1 mL)	568,80	516,92	652,46	14,22 14,48
		579,39	2,75	
			12,92	
			16,31	
Água destilada (100 µL)	6706,84	7943,28	7079,46	167,67 181,08
		7243,19	3,83	
			198,58	
			176,99	
HCl 0,02 N (1 mL)	665,25	795,50	361,00	16,63 15,18
		607,25	2,90	
			19,89	
			9,02	
HCl 0,02 N (100 µL)	8912,51	7079,46	8511,38	222,81 204,19
		8167,78	3,85	
			176,98	
			212,78	
5.5 Purificação preliminar de nisina por cromatografia de interação hidrofóbica (CIH)

Os resultados da purificação preliminar de nisina, por meio da eluição em coluna CIH, podem ser observados na Tabela 5.16 e na Tabela 9.4.1 do anexo 9.4 e o perfil de eluição desta bacteriocina é mostrado na Figura 5.8.

Tabela 5.16- Purificação preliminar de nisina produzida por *L. lactis* em biorreator.

Etapa	Vol. (mL)	Proteínas totais (mg)*	Atividade (AU.mL⁻¹)	Atividade total (AU)	Recuperação (%)
Sobrenadante do cultivo celular	03	10,92	171,01	513	100
Amostra eluída da coluna Butyl-Sepharose	04	65,51 x 10⁻³	51,14**	205	40

*As amostras, no sobrenadante e na amostra eluída, contendo proteínas totais, em valores absolutos, continham respectivamente 12,84 x 10⁻³ mg e 5,12 x 10⁻³ mg de nisina, detectados pelo método de difusão em ágar.

**Valor médio da atividade antimicrobiana, detectado pelo método difusão em ágar, de 04 alíquotas de 1 mL cada, eluídas da coluna Butyl-Sepharose.

Figura 5.8- Perfil cromatográfico da eluição de nisina em coluna de Butyl-Sepharose® por CIH, contendo solução tampão de fosfato de sódio 20 mM, pH 5,3 em gradiente salino de (NH₄)₂SO₄ 2 M, 1,5 M, 1 M e solução tampão. (-•-) Absorbância, (------) Gradiente salino e (----) Atividade de nisina (AU.mL⁻¹).
6. DISCUSSÃO

6.1 Crescimento celular - $X_{\text{máx}}$

As medidas de biomassa foram realizadas em base de viabilidade celular. Medidas baseadas em massa seca, por filtração ou centrifugação, tornaram-se inviáveis devido à precipitação das proteínas do leite juntamente com as células e também devido ao baixo volume de amostragem retiradas dos cultivos (10 mL). Já medidas indiretas de biomassa por absorvância em espectrofotômetro, sofrem a interferência da turbidez do leite. A cor branca do leite resulta da dispersão da luz refletida pelos glóbulos de gordura (quando presentes) e pelas partículas coloidais de caseína e de fosfato de cálcio. A homogeneização torna o leite mais branco, pela maior dispersão da luz (PEREIRA et al., 2001). Por esses motivos, a determinação por viabilidade celular, expressa em unidade formadoras de colônias por mililitro (UFC.mL$^{-1}$) foi o único método utilizado para estimar a concentração celular.

As curvas de crescimento apresentadas nas Figuras 5.1-5.6 mostram que a produção de nisina está relacionada com o crescimento, desde que a sua formação ocorra durante a fase exponencial de crescimento, mostrando cinética de metabolismo primário (PIRT, 1975). Assim, as maiores concentrações de nisina foram alcançadas no final da fase exponencial de crescimento ou no início da fase estacionária e estão relacionadas com a biomassa máxima. Este comportamento já foi observado por outros autores (LV et al., 2005; CABO et al., 2001; DE VUYST, VANDAMME, 1992). A ausência da fase "lag" sugere que as células do inóculo se adaptaram ao meio, como observado nos valores de concentrações de biomassa (X) e o tempo de cultivo (t), nos resultados dos ensaios 1 a 9 (Figuras 5.1-5.6). Nestes gráficos, nota-se claramente uma fase exponencial de crescimento entre o tempo zero e a 14ª ou 16ª hora. Em todos os ensaios, no início da fase estacionária havia um número máximo de células viáveis ($X_{\text{máx}}$) ao redor de 10^7 - 10^8 UFC.mL$^{-1}$, permanecendo assim até o final dos cultivos (Tabela 6.1).

Esse resultado está de acordo com o observado por Nascimento et al. (2008), os quais também obteram população máxima de *L. lactis* em caldo MRS.
de 8,98 log UFC.mL⁻¹, após 12 horas, mantendo-se em fase estacionária até 48h de incubação. Esses mesmos autores observaram que o cultivo em leite desnatado reconstituído a 10%, *L. lactis* apresentou população máxima após 9h (8,54 log UFC.mL⁻¹), mantendo-se praticamente constante até 48h. No presente estudo, os resultados obtidos nos diferentes cultivos mostram que as células adaptaram-se ao meio de cultivo proposto. Assim, esse meio de cultivo apresenta potencial para ser utilizado para a obtenção de biomassa de *L. lactis* ou outras BAL, destinadas a outras aplicações, como modificações genéticas, culturas starters, etc.

Tabela 6.1 - Resumo dos resultados experimentais obtidos nos cultivos descontínuos.

Número do ensaio	Agitação (rpm)	Aeração (L.min⁻¹)	Início da fase estacionária (h)	μ_{max} (h⁻¹)	X_{max} (UFC.mL⁻¹)	P_{max massa} (mg.L⁻¹)	Prod.x (UFC.mL⁻¹.h⁻¹)	Prod. massa (mg.L⁻¹.h⁻¹)	Y_{sub}	k_{a} (h⁻¹)
1	100 rpm	------	14	0,12	5,75 x 10⁷	12,53	4,11 x 10⁶	0,89	4,88	6,45 x 10⁻³
2	100 rpm	0,5 L.min⁻¹	16	0,18	1,66 x 10⁸	13,43	1,04 x 10⁷	0,84	1,60	3,61
3	100 rpm	0,5 L.min⁻¹	16	0,14	1,45 x 10⁸	9,95	9,06 x 10⁶	0,62	2,07	3,61
4	200 rpm	------	14	0,09	1,38 x 10⁶	84,71	9,86 x 10⁶	6,05	4,67	5,29 x 10⁻³
5	200 rpm	------	16	0,12	9,55 x 10⁷	49,88	5,97 x 10⁶	3,12	5,64	5,29 x 10⁻³
6	200 rpm	------	16	0,10	1,05 x 10⁸	53,45	6,54 x 10⁶	3,34	4,32	5,29 x 10⁻³
7	200 rpm	0,5 L.min⁻¹	16	0,13	2,00 x 10⁸	15,77	1,25 x 10⁷	0,99	3,16	5,96
8	200 rpm	1,0 L.min⁻¹	16	0,17	1,66 x 10⁸	17,70	1,04 x 10⁷	1,11	2,88	9,82
9	200 rpm	2,0 L.min⁻¹	16	0,16	1,58 x 10⁸	17,70	9,91 x 10⁶	1,11	2,33	4,33

6.2 Produtividade celular - Prod.x

De acordo com os dados expressos na Tabela 6.1, as produtividades celulares (Prod.x) foram em média 10⁵ – 10⁷ UFC.mL⁻¹.h⁻¹, valores dos ensaios 1 a 9. Assim, com base nos dados acima, os ensaios apresentaram valores semelhantes de produtividade de biomassa por hora de cultivo, o que indica também uma boa adaptação celular no meio de cultivo.
6.3 Concentração máxima de nisina – \(P_{\text{max nisina}} \)

Em cada ensaio, antes da inoculação, foi retirada uma amostra controle para verificar uma eventual formação de halo em função da hipótese do leite já ter uma pequena quantidade de nisina ou algum antibiótico presente. A metodologia empregada nessas amostras controles é a mesma que a descrita no item 4.6.4.1. No presente estudo, como não houve formação de halo em qualquer uma das amostras controle, foi concluído que as amostras do leite não tinham atividade antimicrobiana.

Como mostrado nas Tabelas 5.5, 5.6 e 5.7 e Figura 5.3 (ensaios 4, 5 e 6), a atividade mais elevada de nisina foi observada nesses ensaios, com condição de cultivo de 200 rpm, sem aeração, em 16 horas, alcançando uma concentração média de 62,68 mg.L\(^{-1}\) (2511,89 AU.mL\(^{-1}\) ou 3,40 log AU.mL\(^{-1}\)) e decaindo após 32 horas de cultivo. Por outro lado, esses cultivos apresentaram a mais baixa velocidade específica de crescimento com valor médio de 0,10 h\(^{-1}\) (Tabela 6.1). Neste caso, sob condições de microaerofilia (\(k_{L,a} = 5,29 \times 10^{-3} \) h\(^{-1}\)) as células tiveram disponíveis somente o oxigênio residual contido no interior do biorreator.

López et al. (2007) estudaram a produção da bacteriocina Enterocina EJ97 em leite bovino (integral, semi-desnatado e desnatado) e obtiveram altas concentrações desta bacteriocina, 18 AU.mL\(^{-1}\) ou 11,25 mg.L\(^{-1}\), em um período de 8 horas de incubação em leite semi-desnatado, o qual foi seis vezes menor do que os resultados obtidos nos ensaios 4, 5 e 6. As menores atividades de enterocina foram detectadas no leite integral, sugerindo que EJ97 pode interagir com a gordura do leite. Os autores também afirmam que incubações prolongadas destas culturas (por 24 horas), resultam em menores concentrações finais de bacteriocinas. Esta observação está em concordância com os resultados obtidos no presente trabalho. Entretanto, aquele estudo foi realizado com leite não diluído, ao passo que no presente estudo foi utilizado leite diluído na proporção de 1:4.

Outras pesquisas (JOZALA et al., 2007), reportam a melhor concentração de nisina obtida, 31,38 mg.L\(^{-1}\) (1255,16 AU.mL\(^{-1}\) ou 3,10 log AU.mL\(^{-1}\)), durante um intervalo de 20 a 30 horas, em processo descontínuo usando leite desnatado diluído UHT com 2,27 g sólidos totais. Ainda comparando os resultados daqueles autores com os do presente estudo, melhores resultados foram obtidos no
presente estudo em 14-16 h (Tabela 6.1), os quais foram aproximadamente 50% maiores.

A menor atividade de nisina produzida foi detectada em ensaios com baixa agitação (100 rpm), com aeração de 0,5 L.min\(^{-1}\) e sem aeração, correspondendo às concentrações de nisina de 11,72 mg.L\(^{-1}\) (467,74 AU.mL\(^{-1}\) ou 2,67 log AU.mL\(^{-1}\)) e 12,53 mg.L\(^{-1}\) (501,19 AU.mL\(^{-1}\) ou 2,7 log AU.mL\(^{-1}\)), respectivamente. Este fato pode estar relacionado com a baixa homogenização do meio, devido à baixa agitação, tornando não disponíveis os compostos necessários para o metabolismo celular.

Espécies BAL são classificadas na literatura como anaeróbias facultativas ou microaeróbias, porque estas espécies não possuem catalase, a qual é amplamente distribuída em bactérias aeróbias (SAKAMOTO et al., 1998; SAKAMOTO; KOMAGATA, 1996). A toxicidade do oxigênio nas células é atribuída à atividade reativa das espécies de oxigênio (peróxido de hidrogênio e radicais hidroxilas) que afetam proteínas, lipídeos e ácidos nucléicos. Porém, sua aerotolerância está relacionada à sua habilidade de induzir superóxido dismutase e NADH oxidase (JIANG; BOMMARIUS, 2004). Oxigenação de cultivos resulta em um alterado estado de redox e maior atividade de NADH oxidase; como conseqüência, o metabolismo de açúcar é direcionado para uma fermentação mista, e são produzidos ácido acético, ácido fórmico, CO\(_2\), etanol, tão bem como ácido acético (DUWAT et al., 2001). Apesar destas considerações, *L. lactis* têm sido estudado em condições anaeróbicas (Lv et al., 2005) e aeróbicas (LIU et al., 2006; LIU et al., 2004; CABO et al., 2001). Sob condições aeróbicas, foi relatado que adição de catalase exógena (DUWAT et al., 1995) ou hemina no meio de cultivo (BERLEC et al., 2008) melhoraram a sobrevivência das células de *L. lactis* expostas ao oxigênio. Adicionalmente, condições de aeração para a produção máxima de biomassa e bacteriocinas, nem sempre coincidentes, podem diferir das espécies consideradas (VÁSQUEZ et al., 2004). É interessante mencionar que, considerando as produções biofarmacêuticas e de vacinas, processos aeróbicos geralmente são considerados mais seguros e econômicos do que os processos anaeróbicos.

Visando estudar o comportamento aeróbio do crescimento celular de *L. lactis* e a liberação de nisina para o meio de cultivo, dois ensaios foram realizados com agitação de 200 rpm e aeração de (i) 1 L.min\(^{-1}\) e (ii) 2 L.min\(^{-1}\),
Discussão

respeitivamente. As Tabelas 5.9 e 5.10 e Figuras 5.5 e 5.6, mostram que a produção de nisina foi fortemente afetada pela aeração do meio. Em ambos os cultivos, após atingirem os valores máximos de crescimento celular e atividade de nisina (ao redor de 16 h), a atividade de nisina diminuiu rapidamente e desapareceu completamente ao redor de 48 h. Foi observado que a concentração celular máxima (X_máx) alcançou 10^8 UFC.mL^{-1} até o final do processo. Apesar de diferentes condições de aeração 200 rpm - 1 L.min^{-1} (k_{L_A} = 9,82 h^{-1}) e 200 rpm - 2 L.min^{-1} (k_{L_A} = 4,33 h^{-1}), a concentração máxima de nisina (P_máx nisina) de 17,70 mg.L^{-1} (707,95 AU.mL^{-1} ou 2,85 log AU.mL^{-1}) apresentou os mesmos valores em ambos os ensaios, provavelmente devido aos valores semelhantes de saturação de oxigênio no meio. Resultados similares de concentração máxima de nisina 15,77 mg.L^{-1} (630,96 AU.mL^{-1} ou 2,80 log AU.mL^{-1}), foram obtidos com a mesma agitação (200 rpm), mas com aeração de 0,5 L.min^{-1} (k_{L_A} = 5,96 h^{-1}).

Os processos sem aeração e com agitação de 100 rpm e 200 rpm, apesar de apresentarem diferenças significativas nas concentrações máximas de nisina, 12,53 e 62,68 mg.L^{-1} respectivamente, parecem apresentar em seus perfis (ensaios 1, 4, 5 e 6 e Figuras 5.1 e 5.3) uma estabilidade maior de atividade de nisina durante o período de 14 ou 16 h até aproximadamente 32 h. Isso provavelmente se dê devido à limitação do oxigênio.

De acordo com as Figuras 5.1 a 5.6 e Tabelas 5.2 a 5.10, o decaimento da atividade de nisina pode ter sido causado pela adsorção celular ou por degradação proteolítica. Apesar de uma protease específica para nisina (nisinase) ter sido relatada em muitas espécies bacterianas, incluindo *Streptococcus thermophilus* e *Bacillus cereus*, um estudo conclusivo indicando a presença de nisinase em *L. lactis*, ainda é desconhecido. Por outro lado, o fenômeno de adsorção de nisina pelas células produtoras é um conceito que já foi previamente estudado e parece ser dependente do pH do caldo de cultura (PONGTHARANGKU; DEMIRCI, 2007). Yang et al. (1992) observaram que as bacteriocinas, em geral, tem alta adsorção nas células em pH 6,0 e liberação máxima das células em pH 2,0. Além destes fatores, a produção de nisina também é afetada pela espécie produtora, composição do meio de cultura, pH, temperatura, agitação e aeração (PONGTHARANGKU; DEMIRCI, 2007).

Assim, pelo que foi constatado no presente estudo, o tempo do processo de cultivo em bioreator pode ser reduzido para 16-20 h, visto que as concentrações
máximas de nisina foram obtidas no final da fase exponencial de crescimento do microrganismo, não havendo necessidade de 52 horas de cultivo.

6.4 Adsorção de nisina pelas células produtoras

O resumo dos resultados de adsorção de nisina pelas células de *L. lactis*, em valores ao redor de pH 5,8 - 4,7, são apresentados na Tabela 6.2. Os valores experimentais da adsorção de nisina pelas células produtoras estão ilustrados nas Tabelas 5.11, 5.12 e 5.13 e Figura 5.7, e os valores suavizados nas Tabelas 9.3.1-9.3.3 do anexo 9.3. Apesar da faixa de pH estudado ser estreita (variação de pH de 1,1), todos os ensaios apresentaram detecção de nisina. Porém a atividade de nisina liberada após o tratamento das células com solução ácida foi mais baixa do que quando comparadas com a atividade do sobrenadante durante o cultivo (Tabelas 5.2 a 5.10 e Figuras 5.1 a 5.6). Este fato pode ser explicado pelo pH relativamente baixo da cultura durante o crescimento. De maneira geral, nisina foi detectada após 8 horas de cultivo e permanecem em valores constantes até o final dos cultivos, porém em 48-52 horas, a atividade parece diminuir, com tendência a desaparecer. A detecção máxima de nisina ocorreu no ensaio que apresentou a melhor produtividade de nisina, 200 rpm e sem aeração (ensaio 4, 5 e 6). Nestes ensaios, as maiores concentrações de nisina adsorvida foram obtidas próximo do início da fase estacionária (14 ou 16 horas), pH 4,7, com valores médios de 5,18 mg.L\(^{-1}\) (204,17 AU.mL\(^{-1}\) ou 2,31 log AU.mL\(^{-1}\)), correspondendo a uma média de 8,3% de nisina adsorvida em relação à atividade detectada no sobrenadante (62,68 mg.L\(^{-1}\)). Os demais ensaios apresentaram concentrações inferiores, com variações de 0,85 a 2,68 mg.L\(^{-1}\), correspondendo a 6,8 – 15,1% de nisina adsorvida em relação aos valores detectados no sobrenadante.

Em estudos envolvendo o efeito do pH na adsorção da bacteriocina pela espécie produtora, Yang et al. (1992) mostraram que a adsorção máxima de nisina pelas células produtoras ocorreu em pH 6,5, e completa perda da adsorção em pH 3,0 ou abaixo. Porém, para sakacina A, a adsorção máxima foi observada em pH 5,5 e perda de adsorção em pH 2,0.
Alguns estudos (SCOTT; TAYLOR, 1981; CLEVELAND et al., 2002) relataram que as proteínas do leite presentes nas preparações comerciais (Nisaplin® e nisina pura) ligam-se à nisina, limitando sua atividade antimicrobiana. A adição de caseína em um nível de 1 g.L⁻¹ em caldo MRS modificado reduziu a atividade de sakacin K e nisina (GANZLE et al. 1999). Adicionalmente, Aasen et al. (2003), afirmam que as bacteriocinas podem ser adsorvidas às proteínas na matriz do alimento por ligações iônicas ou hidrofóbicas. Em concordância com essas informações, no presente estudo, no processo de extração, pode ter ocorrido também a extração de nisina das proteínas do leite.

Deste modo, os resultados no presente estudo mostraram que houve adsorção de nisina com variação de 5,63 a 15,14% (Tabela 6.2).

Por outro lado, Penna et al. (2005) verificou que o ajuste de pH para 2,5 nos cultivos finais reduziram a atividade de nisina quando comparados com os cultivos sem ajuste de pH. Ivanova e colaboradores (1998), também observaram que a liberação da atividade de uma bacteriocina, produzida por S. thermophilus 81, após o tratamento das células com solução pH 2, foi muito inferior quando comparado a atividade do sobrenadante.

Cabe ressaltar que o presente estudo mostra o primeiro trabalho de monitoramento de adsorção de nisina durante uma cinética de cultivo. Assim, esses resultados são preliminares, constituinte um primeiro indicativo de quantificação do fenômeno de adsorção de nisina pelas células produtoras.

Tabela 6.2 – Resumo da adsorção de nisina pelas células produtoras

Número do ensaio	Tempo (h)	log (AU.mL⁻¹) adso.	0,025 mg.L⁻¹ adso.	Adsorção (%)
1	14	1,53	0,85	6,78
2	16	1,78	1,51	11,24
3	16	1,73	1,34	13,47
4	14	2,43	6,73	7,94
5	16	2,05	2,81	5,63
6	16	2,38	6,00	11,22
7	16	1,65	1,12	7,10
8	16	1,60	1,00	5,65
9	16	2,03	2,68	15,14
6.5 Efeito do pH

O pH do meio é um importante parâmetro no crescimento microbiano de *L. lactis* e produção de nisina. As células convertem açúcares em ácido lático, causando um decréscimo no pH e acentuando a liberação de nisina das células para o meio. Neste estudo, o pH do meio, em todos os cultivos, iniciou em 6,7 e decaiu após 8 a 16 horas de processo, para valores em média de 4,7, mantendo-se nesse valor até o fim do cultivo (Tabelas 5.2 - 5.10 e Figuras 5.1 - 5.6). Cabe ressaltar que o ensaio 9, realizado com a maior agitação (200 rpm) e aeração (2 L.min⁻¹), atingiu valores de pH abaixo de 5 somente após 16 horas de cultivo. Provavelmente a alta oxigenação do meio afetou o metabolismo celular, ocasionando um atraso na acidificação do meio.

Muitos estudos relatam que o pH ótimo para a produção de bacteriocinas está ao redor de 5,5 – 6,0 (PARENTE; RICCIARDI, 1999), porém algumas bacteriocinas são produzidas em valores inferiores a 5,0 (YANG; RAY, 1994). O pH ótimo para a produção de bacteriocinas mostrou ser afetado pelo meio de cultura e espécies. A produção de nisina Z com *L. lactis* espécie IO-1 foi ótimo em pH 6,0 em meio contendo xilose, porém esse valor mudou para pH 5,5 em meio contendo glicose. O máximo de acidocina J foi produzido em pH 5,0 por *Lactobacillus acidophilus* JCM 1132, porém o pH 6,0 é o ótimo para *Lactobacillus plantarum* (CHEIGH et al., 2002).

O leite bovino à concentração padrão contém aproximadamente 3,5% de proteína, que pode ser fracionada em dois grupos principais. Durante a acidificação do leite em pH 4,6 a 20°C, cerca de 80% de proteína total, fração essa constituída de caseína, precipita na solução. As proteínas que permanecem solúveis sob estas condições são conhecidas como proteínas do soro (ROBINSON, 2002). No presente estudo, este fenômeno de precipitação de caseína foi observado no final do cultivo ou em amostras com pH abaixo de 5.
6.6 Produtividade de nisina - Prod_{nisina}

Os ensaios com 200 rpm e sem aeração (ensaios 4, 5 e 6), apresentaram os melhores valores de produtividade (valor médio de 4,17 mg.L^{-1}.h^{-1}). Os outros ensaios apresentaram valores inferiores, variando entre 0,73 a 1,11 mg.L^{-1}.h^{-1}, ou seja, mais de quatro vezes menores.

6.7 Valores de k_{La}

O principal interesse na determinação do k_{La}, antes do início de cada ensaio, foi o de garantir a uniformidade de transferência do oxigênio da fase gasosa para a líquida em todos os experimentos. Esta preocupação se justifica, principalmente, em virtude desses experimentos terem ocorrido sem o controle de concentração de oxigênio dissolvido no meio.

Meios complexos ou com altos níveis de proteínas promovem o desenvolvimento de espuma, que pode ser reduzida com a adição de agentes anti-espuma (surfactantes). Se não houver um controle, a espuma pode causar perda do caldo de cultivo (o qual se perde em forma de espuma) e gerar problemas de assepsia devido a eventuais entupimentos nas entradas e saídas do biorreator e da presença de bactérias mortas na espuma. Os anti-espumantes são efetivos em reduzir a formação de espuma, porém diminuem a taxa de transferência de oxigênio, inibem o crescimento celular e causam problemas na purificação posterior do produto, devido à sua toxicidade. Por estes motivos, foram adicionados, em todos os cultivos, uma quantidade mínima de anti-espumante (0,3 mL), suficiente para o controle de espuma durante todo o processo.

A finalidade da aeração e agitação em biorreatores é fornecer oxigênio aos microrganismos e homogeneizar o caldo de cultivo, de modo a, manter uniforme a suspensão de microrganismos e a transferência de massa acelerada do produto metabólico (AIBA; HUMPHREY; MILLIS, 1973). A transferência de oxigênio é um fator importante em bioprocessos aeróbicos devido à baixa solubilidade de oxigênio no meio. A concentração de oxigênio dissolvido em uma suspensão de
microrganismos aeróbicos depende da proporção da transferência de oxigênio gás-líquido. Na fase líquida, o oxigênio é transportado para as células (onde é consumido), e essa transferência ocorre na proporção de oxigênio consumido pelo microrganismo para crescimento, manutenção e produção. Desta forma, a medida correta e/ou previsão do coeficiente volumétrico de transferência de massa \((k_{La})\) é um passo importante para projeto, operação e ampliação de escala (scale up) de biorreatores (GARCIA-OCHOA ; GOMEZ, 2009).

De acordo com a figura 6.1, os valores de \(k_{La}\) aumentaram com o aumento da aeração e agitação. O valor máximo foi aproximadamente em 1 L.min\(^{-1}\) \((k_{La} = 9,82 \text{ h}^{-1})\). Acima deste valor, aeração de 2 L.min\(^{-1}\) \((k_{La} = 4,33 \text{ h}^{-1})\), houve um excesso de gás no interior do biorreator. Provavelmente a elevada aeração e agitação causaram um efeito negativo na transferência de massa do oxigênio. A hipótese mais plausível é a de, que nessas condições, haja baixo tempo de permanência do oxigênio na dorna, implicando na diminuição da transferência de massa desse gás.

Os menores valores de \(k_{La}\) foram obtidos nos ensaios 1, 4, 5 e 6 (Tabelas 5.2, 5.5, 5.6 e 5.7 e Figuras 5.1 e 5.3), cujos processos foram sem aeração e com agitação de 100 rpm \((k_{La} = 6,45 \times 10^{-3} \text{ h}^{-1})\) e 200 rpm \((k_{La} = 5,29 \times 10^{-3} \text{ h}^{-1})\). Esses valores de \(k_{La}\) foram muito próximos e parecem ser os mais indicados para o cultivo de \(L. lactis\), pois representam uma condição de microaerofilia. Porém a condição de baixa agitação (100 rpm) no ensaio Tabela 5.2 e Figura 5.1 não representaram uma condição melhor de cultivo para obtenção de nisina, pois provavelmente implicou em uma homogenização no meio insuficiente para o fornecimento de metabólitos e compostos necessários para a produção de nisina pelas células.
Discussão

Figura 6.1 – Correlações entre k_La e aeração. Os processos de aeração foram respectivamente: 200 rpm (●) (equação $= -7,2103.(aeração)^2 + 16,6198. (aeração)$; e $R^2 = 0,9905$) e 100 rpm (x) (equação $k_La = 7,2200. (aeração)$; e $R^2 = 1$).

6.8 Valores de oxigênio dissolvido

Em concordância com o que já foi observado, com relação aos valores de k_La, em todos os ensaios também não foram observadas variações significativas nas concentrações de oxigênio dissolvido no meio de cultura. Esta observação indica que as quantidades de oxigênio consumidas pelo microrganismo em condições de microaerofilia, não são passíveis de leitura pelo sensor polarográfico (Tabelas 5.2 – 5.10).

6.9 Correlação entre atividade de nisina e concentração celular ($Y_{N/X}$)

As equações de reta e os coeficientes de correlação (R^2) entre os valores da atividade de nisina (log AU.mL$^{-1}$) e os da concentração celular (log UFC.mL$^{-1}$), foram calculados utilizando o programa Excel (Microsoft, Brasil). Os melhores valores de $Y_{N/X}$, determinados pelos coeficientes angulares das retas indicam as
melhores relações entre biomassa celular e quantidade de nisina produzida (expressa por sua atividade). Esses valores \(\frac{Y_{N/X} = 4,88 \text{ (log AU.mL}^{-1})}{\text{(log UFC.mL}^{-1})} \) foram obtidos nos ensaios 4, 5 e 6 (200 rpm - sem aeração), o qual também apresentou os melhores valores de nisina produzida (62,68 mg.L\(^{-1}\)) (Figura 5.3, Tabelas 5.5, 5.6 e 5.7 e Anexo 9.2). O ensaio 1 (100 rpm e sem aeração), também em condição de microaerofilia, revelou um valor próximo ao ensaio anterior, \(\frac{Y_{N/X} = 4,88 \text{ (log AU.mL}^{-1})}{\text{(log UFC.mL}^{-1})} \). Por outro lado, o valor inferior, com valor médio de 1,84 \(\frac{\text{log AU.mL}^{-1}}{\text{UFC.mL}^{-1}} \), foi obtido nos ensaios 2 e 3 (100 rpm, 0,5 L.min\(^{-1}\)). A esse valor, seguiram-se os de 2,88 e 2,33 \(\frac{\text{log AU.mL}^{-1}}{\text{UFC.mL}^{-1}} \), obtidos nos ensaios 8 e 9, com maiores valores de agitação (200 rpm) e de aeração (1 e 2 L.min\(^{-1}\), respectivamente). Esses resultados mostram que a injeção de fluxo de ar comprimido no biorreator não favoreceu o aumento da produção de nisina com relação à biomassa.

6.10 Consumo de açúcares e proteínas

O leite bovino contém vários compostos nitrogenados, dos quais aproximadamente 95% ocorrem como proteínas e 5% como compostos nitrogenados não-protéicos (uréia, creatina, creatinina, ácido úrico, amônia, etc). Em torno de 80% do nitrogênio protéico do leite constitui-se de nitrogênio caseínico e 20% de nitrogênio não-caseínico (PEREIRA et al., 2001; WALSTRA et al., 1999). Assim, todos os compostos nitrogenados do leite poderão ser consumidos pelas bactérias ácido lácticas.

Bactérias ácido lácticas possuem exigências nutricionais complexas, devido à sua habilidade biossintética limitada de sintetizar vitaminas do complexo B e aminoácidos (Hofvendahl; Hahn-Hägerdal, 2000). A quantidade de aminoácidos exigida para o crescimento é baixa, e estes podem não serem somente assimilados, mas algumas vezes obtidos de proteínas decompostas (CARR et al., 1975).

Em todos os ensaios do presente estudo, não foram observados, no meio, variações significativas nas concentrações de açúcares e proteínas durante os cultivos (Tabelas 5.2 – 5.10).
De acordo com Pereira et al. (2001), a acidez do leite bovino fresco, após a ordenha, deve-se à presença de caseínas, fosfatos, albumina, dióxido de carbono e citratos. A concentração de ácidos naturais do leite varia entre 1,3 – 1,7 mg.mL⁻¹ (0,13 - 0,17%), expressa como ácido lático. A elevação da acidez é determinada pela hidrólise da lactose por enzimas microbianas, com formação de ácido láctico, caracterizando a acidez desenvolvida do leite. Tanto a acidez natural quanto a acidez desenvolvida são quantificadas simultaneamente, em titulações por soluções alcalinas.

Durante a hidrólise da lactose em glicose e galactose, também poderá ocorrer a formação de di- e oligossacarídeos (WALSTRA et al., 1999).

A lactose é o açúcar fermentável encontrado no leite bovino em níveis de 40-50 g.L⁻¹. A fração de glicose presente na lactose é utilizada mais rápido do que a fração de galactose por Lactococci. No final da fase de crescimento, menos de 0,5% da lactose é usada por Lactococci (SALMINEN; VON WRIGHT; OUWEHAND, 2004). Petrov, Urshev e Petrova (2008), obtiveram 5,5 mg.mL⁻¹ de ácido láctico, utilizando um cultivo de *Lactococcus lactis* subsp. *lactis* B84 em caldo MRS (sem extratos de carne e levedura) com amido de batata como fonte de carbono, 33°C, 200 rpm e pH 6,0 por 6 dias.

Neste teste preliminar, foi utilizado o sobrenadante do cultivo, contendo nisina, produzido em biorreator (200 rpm/ sem aeração), conforme item 4.6.9.
apresentando concentração de nisina de 59,91 mg.L\(^{-1}\) (2396,59 AU.mL\(^{-1}\) ou 3,38 Log AU.mL\(^{-1}\)).

Após processo de liofilização, as amostras foram ressuspensas com 1 mL e 100 µL (concentrada 10 vezes) de água destilada esterilizada e solução HCl 0,02 N. Os resultados apresentados na Tabela 5.15 indicaram que as amostras ressuspensas com água destilada e solução HCl 0,02 N praticamente não apresentaram diferenças na atividade de nisina. Esta observação é demonstrada pelos valores médios das concentrações de nisina ressuspensadas com 1 mL de água destilada, 14,48 mg.L\(^{-1}\) e solução de HCl 0,02 N, 15,18 mg.L\(^{-1}\). Nas ressuspensões 10 vezes concentradas (100 µL), foram encontrados concentrações médias de 181,08 mg.L\(^{-1}\) para água destilada e 204,19 mg.L\(^{-1}\) para solução de HCl 0,02 N. As variações dos valores obtidos para as ressuspensões 10 vezes concentradas e suas respectivas concentrações das ressuspensões de 1 mL, pode ter ocorrido devido a erros experimentais. Assim, considera-se que ambos os diluentes não afetaram a atividade da biomolécula. A atividade não foi alterada pelo diluente, provavelmente porque a faixa de pH ácido foi estreita (pH 4,6 a 5,3 para água destilada e pH 2,5 para solução HCl 0,02N) e nisina é ativa em pH ácidos. Porém, em relação à atividade inicial de nisina, 59,91 mg.L\(^{-1}\) (2396,59 AU.mL\(^{-1}\)), houve um decréscimo de aproximadamente 24,8% para ambos os diluentes de 1mL, após liofilização.

No presente estudo a nisina liofilizada foi preparada diretamente do sobrenadante do cultivo, com filtração em membrana de poro 0,45 µm. Outros trabalhos citados em literatura utilizaram etapas e processos adicionais distintos. Por exemplo, Kamoun et al. (2005) realizaram uma purificação parcial no sobrenadante de um cultivo bacteriano, contendo bacteriocina (Bacthuricin F4), com sulfato de amônio, centrifugação, diálise e filtração. Na avaliação quanto à resistência da liofilização, a amostra mostrou ser estável. Em outro estudo (XIE et al., 2009), o sobrenadante de um cultivo, contendo uma substância tipo bacteriocina, teve o seu pH ajustado para 6,8 e filtrado em membrana de 0,45 µm. Liofilização e ressuspensão desta amostra não afetaram a atividade antimicrobiana, indicando que esta bacteriocina é atrativa para potencial aplicação biotecnológica.

Nesse estudo, pelo fato do sobrenadante do cultivo somente ter sido tratado com filtração em membrana de poro 0,45 µm, há a possibilidade de que algumas
células produtoras do meio de cultivo não terem sido completamente eliminadas pela centrífugação. A não eliminação destas células pode haver ocasionado um fenômeno de adsorção de nisina pelas mesmas, visto que o pH ácido é favorável a esta condição.

A simples obtenção de uma proteína com conformação estrutural nativa em amostras reidratadas imediatamente após a liofilização não é necessariamente indicativo de estabilização adequada durante liofilização ou armazenamento. Muitas proteínas apresentam desdobramento estrutural durante a liofilização, mas logo são restauradas se hidratadas imediatamente. As proteínas raramente podem ser liofilizadas sem perda da atividade, geralmente associadas a alterações em suas conformações (TATTINI JR., 2004).

A liofilização também é utilizada para concentração de amostras, utilizadas em diversos estudos e, entre eles, pode-se citar a visualização da proteína por meio de eletroforese em gel de poliacrilamida (SDS-PAGE).

Outros autores relataram a aplicação de bacteriocinas em pó como bioconservantes. Azuma et al. (2007), demonstraram o potencial de uma bacteriocina, piscicocina CS526 liofilizada, produzida por Carnobacterium piscicola CS526 em cultivos, sugerindo sua potencial aplicação em alimentos. Neste estudo, os cultivos bacterianos finais foram pasteurizados a 100°C por 15 minutos e então submetidos ao processo de liofilização. Uma solução de 10% (m/v) do liofilizado ressuspendedo em água esterilizada, mostrou estabilidade da atividade antimicrobiana, após estocagem a 4°C, por 3 meses.

Uma vez que esta metodologia de liofilização reduz significantemente a desnaturação protéica, minimizando a perda da atividade biológica, torna-se atrativo delinear outros estudos.

6.12 Purificação preliminar de nisina por cromatografia de interação hidrofóbica

Nesta etapa do trabalho, foi realizado um teste preliminar de purificação parcial de nisina produzida por L. lactis em biorreator, com meio de cultivo a custo reduzido. Para isto, foi utilizado o sobrenadante do cultivo bacteriano (item 4.6.10),
para avaliar a possibilidade de purificação por CIH, em uma coluna de 5 mL com resina Butyl. A precipitação prévia com sulfato de amônio, amplamente utilizada na literatura para precipitação de proteínas do sobrenadante (TODOROV; DICKS, 2009), não foi utilizada no presente estudo de nisina devido à baixa concentração dessa biomolécula presente na amostra (171,01 AU.mL⁻¹ ou 4,28 mg.L⁻¹). A amostra foi eluída da coluna por diferentes concentrações de soluções contendo (NH₄)₂SO₄. A utilização do sulfato de amônio foi devida à sua alta solubilidade, baixa viscosidade e ação estabilizante sobre as proteínas.

Inialmente, a amostra foi equilibrada lentamente com a mesma concentração de sal ((NH₄)₂SO₄ 2M) da solução de equilíbrio da coluna. A concentração de sal das amostras ficou igual à concentração de sal do leito da coluna, de modo a tornar possíveis as interações hidrofóbicas da nisina com as regiões hidrofóbicas da coluna.

Os resultados preliminares da purificação preliminar da nisina por meio da eluição em CIH estão ilustrados na Figura 5.8, Anexo 9.4 e Tabela 9.4.1. No perfil cromatográfico, a atividade de nisina foi observada nas frações finais eluídas sem (NH₄)₂SO₄, pelo método de difusão em ágar e BCA. A nisina ligada à matriz da coluna foi eluída com solução tampão fosfato de sódio 20 mM, pH 5,3, uma vez que essa biomolécula possui característica hidrofóbica.

Observa-se que o pico de atividade de nisina coincide com o aumento do nível de proteína a 280 nm, conforme ilustrado na Figura 5.8 no último pico de eluição correspondente ao final do gradiente. A amostra inicial injetada na coluna continha 10,92 mg de proteínas totais (valor absoluto total presente nos 3 mL de amostra), onde estavam presentes 12,84 µg de nisina (detectada pelo método de difusão em ágar). No último pico, correspondente à eluição de nisina, foi detectado 65,51 µg de proteína (valor absoluto total presente nos 4 tubos coletados, onde foi observada a presença de nisina pelo método de difusão em ágar e quantificado pelo método de BCA). A atividade inicial foi de 171,01 AU.mL⁻¹ e a absoluta (nos 3 mL de alíquota) foi de 513 AU. A atividade média final nos 4 tubos onde foi detectada a nisina foi de 51,14 AU.mL⁻¹ e a absoluta foi de 205 AU, corresponde a 40% da atividade de nisina na alíquota injetada na coluna.

A quantidade de proteínas totais eluídas (65,51 µg) foi significativamente maior que a quantidade de nisina na alíquota injetada na coluna (12,84 µg). Isso provavelmente ocorreu devido ao fato de que, além da nisina estar ligada à matriz
da coluna, outras proteínas indesejadas (contaminantes) também estavam ligadas à matriz. No entanto, a quantidade desses contaminantes foi muito baixa com relação à quantidade presente na alíquota inicial (10,92 mg). Adicionalmente, a massa molar pequena das bacteriocinas frequentemente dificulta a separação dos componentes de proteínas hidrolisadas presentes no meio de cultura (LÓPEZ et al., 2007).

Os resultados indicam que a utilização da coluna de interação hidrofóbica com resina Butyl parece promover purificação desejável para o propósito do estudo, ainda que haja a necessidade da melhora do processo para a obtenção do extrato protéico. Deste modo, a melhora do processo de purificação de nisina, associado ao de produção desta biomolécula, possibilitará aumento de produtividade desta bacteriocina. Porém, vale ressaltar que a produtividade estará condicionada ao processo de purificação, o qual por sua vez deverá ser delineado de acordo com o propósito final do produto. Produtos destinados a usos terapêuticos são, obviamente, os que requerem maior nível de pureza e, portanto, a complexidade do processo de purificação é elevada (SCHMIDELL et al, 2001).

Em adição, existem relatos na literatura indicando que, quanto maior o grau de pureza da bacteriocina, maior será sua instabilidade. Como exemplos, podemos citar a mesentericina Y105 e a leucocina A-UAL 187, que depois de purificadas tornam-se instáveis. O problema com estabilidade de atividade não foi devido à proteólise. A inativação possivelmente resultou de um efeito específico no sítio catalítico, como a perda de cofatores ou modificações covalentes (CAROLISSEN-MACKAY; ARENDSE; HASTINGS, 1997).

Considerando que há inúmeros meios de cultura para a produção de bacteriocinas, não há um consenso de como associar a quantificação de proteínas à atividade antimicrobiana. Por isso, vários autores consideram os cálculos de recuperação baseados na atividade final e inicial (DERAZ et al, 2005; GUJARATHI, BANKAR, ANANTHANARAYAN, 2008).

Apesar da baixa quantidade inicial de nisina presente na alíquota injetada na coluna, a atividade recuperada de nisina, aproximadamente 40%, está de acordo com os dados mencionados na literatura. Em estudos de purificação de nisina, Gujarathi, Bankar e Ananthanarayan (2008) obtiveram uma recuperação de 50% em matriz Fenil-Sepharose CL 4B. De modo análogo, Deraz et al (2005), purificando a bacteriocina acidocina DSM 20079 e empregando uma coluna de
Carboximetil-Sepharose, atingiu uma recuperação intermediária de 65% e uma recuperação final de 16% após eluição em coluna de Octyl-Sepharose. Uma bacteriocina produzida por *Lactococcus* sp. HY 449 e purificada em coluna de Octyl-Sepharose, alcançou recuperação final total de 5% (Oh et al., 2006).

Existem vários protocolos para a purificação de bacteriocina na literatura (Saint-Hubert et al. 2009; López et al. 2007), incluindo precipitação com sulfato de amônio, seguido por combinações de técnicas cromatográficas como troca-iônica, gel filtração e interação hidrofóbica. usualmente, mas não como regra, os rendimentos obtidos são baixos. Provavelmente devido às várias etapas do protocolo, demandando tempo e subsequentemente baixos rendimentos (Parada et al., 2007).

Cabe ressaltar que, no presente estudo, somente foi realizada uma análise preliminar do processo de purificação. Desse modo, considerando a baixa concentração de nisina presente na amostra utilizada, não foi viável efetuar passos adicionais de purificação além daquele já realizado. Desse modo, este estudo preliminar de purificação mostrou a viabilidade do emprego da coluna Butyl por cromatografia de interação hidrofóbica como técnica de recuperação de nisina. Os dados obtidos poderão ser utilizados para o desenvolvimento de uma metodologia completa de purificação a se realizar em trabalhos futuros.
7. CONCLUSÕES

- Leite desnatado diluído UHT constitui meio apropriado para crescimento celular e produção de nisina por *Lactococcus lactis* em processo descontínuo;
- Baixas concentrações de oxigênio (condição de microaerofilia) e agitação de 200 rpm promoveram um efeito positivo na liberação extracelular de nisina pelo microrganismo.
- O tempo de cultivo das células de *L. lactis* pode ser reduzido para 16 a 20 horas (início da fase estacionária de cultivo), visto que correspondem às maiores concentrações de nisina;
- Durante os cultivos, estima-se que um máximo de 15% de nisina foi adsorvido pelas células em pH 4,7.
- O fator de diluição no leite desnatado foi capaz de diminuir as concentrações de compostos em excesso no meio, promovendo melhor absorção e desorção celular e, portanto, maior produção de nisina. Isto é importante para reduzir custos e facilitar processos de purificação posteriores (*downstream process*).
- O leite bovino desnatado e diluído constitui meio de cultivo com grande potencial para substituir meios comerciais padrões para a produção de nisina em larga escala.
- A liofilização preliminar do sobrenadante do cultivo, contendo nisina, indicou a perda de 24,8% de atividade.
- A utilização da coluna de interação hidrofóbica com resina Butyl-Sepharose parece promover purificação desejável para o propósito do estudo (atividade recuperada de 40%), ainda que haja a necessidade da melhora do processo para a obtenção do extrato protéico em estudos futuros.
8. REFERÊNCIAS

AASEN, I.M.; MARKUSSEN, S.; MORETRO, T.; KATLA, T.; AXELSSON, L.; NATERSTAD, K. Interactions of the bacteriocins sakacin P and nisin with food constituents. International Journal of Food Microbiology, v. 87, p. 35-43, 2003.

AHMAD, C.; NATASCHA, C.; HAIQIN, C.; JIANXIN, Z., JIAN, T.; HAO, Z.; WEI, C. Bifidin I - A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence. Food control, v. 21, p. 746-753, 2010.

AIBA, S.; HUMPHREY, A.E.; MILLIS, N.F. Biochemical Engineering. 2 ed., University of Tokyo Press, Japan, 1973.

ARANHA, C.; GUPTA, S.; REDDY, K.V.R. Contraceptive efficacy of antimicrobial peptide Nisin: in vitro and in vivo studies. Contraception, v. 69, p. 333-338, 2004.

ARAUZ, L.J.; JOZALA, A.F.; PINHEIRO, G.S.; MAZZOLA, P.G.; PESSOA. JR. A.; PENNA, T.C.V. Nisin expression production from Lactococcus lactis in milk whey medium. Journal of Chemical Technology and Biotechnology, v. 83, n. 3, p. 325-328, 2008.

ARAUZ, L.J.; JOZALA, A.F.; MAZZOLA, P.G.; PENNA, T.C.V. Nisin biotechnological production and application: a review. Trends in Food Science & Technology, n. 20, p. 146-154, 2009.

ASADUZZAMAN, S.M.; SONOMOTO, K. Lantibiotics: Diverse activities and unique modes of action. Journal of Bioscience and Bioengineering, v. 107, n.5, p. 475–487, 2009.

AZUMA, T.; BAGENDA, D. K.; YAMAMOTO, T.; KAWAI, Y., YAMAZAKI, K. Inhibition of Listeria monocytogenes by freeze-dried piscicocin CS526 fermentate in food. Letters in Applied Microbiology, n. 44, p. 138-144, 2007.

1De acordo com a Associação Brasileira de Normas Técnicas. NBR 6023.
BARBOSA, M. S. Avaliação da ação de ingredientes da matriz alimentar na atividade antilisteria das bacteriocinas produzidas por *Lactobacillus sakei* subsp. *sakei* 2a. 95f. Dissertação (Mestrado em Bromatologia). Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2009.

BARUQUE RAMOS, J. Estudo comparativo entre os processos descontínuo e descontínuo alimentado na produção de polissacarídeo de *Neisseria meningitidis* SOROGRUPO C. 274 f. Tese (Doutorado em Engenharia). Escola politecnica, Universidade de São Paulo, São Paulo, 2000.

BENECH, R.O.; KHEADR, E.E.; LACROIX, C.; FLISS, I. Antibacterial activities of nisin Z encapsulated in lipososomes or produced in situ by mixed culture during cheddar cheese ripening. *Applied and Environmental Microbiology*, v. 68, n. 11, p. 5607-5619, 2002.

BERLEC, A.; TOMPA, G.; SLAPAR, N.; FONOVIC, U.P.; ROGELJ, L.; STRUKELJ, B., 2008. Optimization of fermentation conditions for the expression of sweet-tasting protein brazzein in *Lactococcus lactis*. *Letters in Applied Microbiology*, v. 46, n. 2, 227-231, 2008.

BHATTI, M.; VEERAMACHANENI, A.; SHELEF, L.A. Factors affecting the antilisterial effects of nisin in milk. *International Journal of Food Microbiology*, v. 97, p. 215-219, 2004.

CABO, M.L.; MURADO, M.A.; GONZÁLEZ, M.P.; PASTORIZA, L. Effects of aeration and pH gradient on nisin production. A mathematical model. *Enzyme and Microbial Technology*, v. 29, 264-273, 2001.

CAO, L.T.; WU, J.Q.; XIE, F.; HU, H.S.; MO, Y. Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. *Journal of Dairy Science*, v. 90, n. 8, p. 3980-3985, 2007.

CAPLICE, E.; FITZGERALD, G.F. Food fermentations: role of microorganisms in food production and preservation. *International Journal of Food Microbiology*, v. 50, p. 131-149, 1999.

CARR, J.G.; CUTTING, C.V.; WHITING, G.C. Lactic acid bacteria in beverages and food. Academic Press Inc., London, 1975.
CARROLISEN-MACKAY, V.; ARENDSE, G.; HASTINGS, J.W. Purifications of bacteriocins of lactic acid bacteria: problems and pointers. International Journal of Food Microbiology, v. 34, p. 1-16, 1997.

CHEIGH, C-I; PYUN, Y-R. Nisin biosynthesis and its properties. Biotechnology Letters, v. 27, p.1641-1648, 2005.

CHEIGH, C-I; CHOI, H-J; PARK, H.; KIM, S-B; KOOK, M-C; KIM, T-S; HWANG, J-K; PYUN, Y-R. Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi. Journal of Biotechnology, v. 95, p. 225-235, 2002.

CHIARINI, E. Comparação entre os métodos físico e químico de permeação e de extração da proteína verde fluorescente (GFPuv) de culturas e de Eschericia coli DH5-α. 64f. Dissertação (Mestrado em Tecnologia de Alimentos). Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 2002.

CLEVELAND, J.; MONTVILLE, T.J.; NES, I.F.; CHIKINDAS, M.L. Bacteriocins: safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, v. 71, p. 1-20, 2001.

CLEVELAND, J.; CHIKINDAS, M.; MONTVILLE, T.J. Multimethod assessment of commercial nisin preparations. Journal of Industrial Microbiology and Biotechnology, v. 29, p. 228-232, 2002.

COLAS, J-C; SHI, W.; RAO, V.S.N.M.; OMRI, A.; MOZAFARI, M.R.; SINGH, H. Microscopic investigations of nisin-loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron, v. 38, p. 841-847, 2007.

COTTER, P.D.; HILL, C.; ROSS, R.P. Bacteriocins: developing innate immunity for food. Nature Reviews, v. 3, p.777-786, 2005.

DEEGAN, L.H.; COTTER, P.D.; HILL, C.; ROSS, P. Bacteriocins: biological tools for bio-preservation and shelf-life extension. International Dairy Journal, v. 16, p. 1058-1071, 2006.
DE KWAADESTENIET, M.; DOESCHATE, K.T.; DICKS, L.M.T. Nisin F in the treatment of respiratory tract infections caused by *Staphylococcus aureus*. *Letters in Applied Microbiology*, v. 48, n. 1, p. 65-70, 2009.

DELVES-BROUGHTON, J. Nisin as a food preservative. *Food Australia*, v. 57, n. 12, p. 525-527, 2005.

DELVES-BROUGHTON, J.; BLACKBURN, P.; EVANS, R.J.; HUGENHOLTZ, J. Applications of the bacteriocin, nisin. *Antonie van Leeuwenhoek*, v. 69, p. 193-202, 1996.

DE MAN, J.C.; ROGOSA, M.; SHARPE, E. A medium for the cultivation of *Lactobacilli*. *The Journal of Applied Bacteriology*, v. 23, p.130-135, 1960.

DERAZ, S. F.; KARLSSON, E. N.; HEDSTRÖM, M.; ANDERSON, M. M.; MATTIASSON, B. Purification and characterization of acidocin D20079, a bacteriocin produced by *Lactobacillus acidophilus* DSM 20079. *Journal of Biotechnology*, v. 117, p. 343-354, 2005.

DEVLIEGHERE, F.; VERMEIREN, L.; DEBEVERE, J. New preservation technologies: Possibilities and limitations. *International Dairy Journal*, v. 14, p. 273-285, 2004.

DE VUYST, L.; VANDAMME, E.J. Influence of the carbon source on nisin production in *Lactococcus lactis* subsp. *lactis* batch fermentations. *Journal of General Microbiology*, v.138, p. 571-578, 1992.

DE VUYST, L.; VANDAMME, E.J. Bacteriocins of lactic acid bacteria. Londres: Blackie Academic & Professional, 1994. 539 p.

DIOGO, M.M.; PRAZERES, D.M.F.; PINTO, N.G.; QUEIROZ, J.A. Hydrophobic interaction chromatography of homo-oligonucleotides on derivatized Sepharose CL-6B: Using and relating two different models for describing the effect of salt and temperature on retention. *Journal of Chromatography A*, v. 1006 (1-2), p. 137-148, 2003.

DUBOIS, A. Spiral bacteria in the human stomach: the gastric Helicobacter. EID-Digestive Diseases Division, v.1, p. 79-85, 1995.
DUWAT, P.; EHRlich, S.D.; GRUSS, A. The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Molecular Microbiology, v. 17, p. 1121–1131, 1995.

DUWAT, P.; SOURICE, S.; CESSELIN, B.; LAMBERET, G.; VIDO, K.; GAUDU, P.; LE LOIR, Y.; VIOLET, F.; LOUBIE’RE, P.; GRUSS, A. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. Journal of Bacteriology, v. 183, n. 15, p. 4509-4516, 2001.

FERNÁNDEZ, L.; DELGADO, S.; HERRERO, H.; MALDONADO, A.; RODRÍGUEZ, J.M. The bacteriocin nisin, an effective agent for the treatment of Staphylococcal mastitis during lactation. Journal of Human Lactation, v. 24, n. 3, p. 311-316, 2008.

FURUTA, Y.; MARUOKA, N.; NAKAMURA, A.; OMORI, T.; SONOMOTO, K. Utilization of fermented barley extract obtained from a by-product of barley Shochu for nisin production. Journal of Bioscience and Bioengineering, v. 106, n. 4, p. 393-397, 2008.

GÄNZLE, M.G.; WEBER, S.; HAMMES, W.P. Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. International Journal of Food Microbiology, v. 46, p. 207-217, 1999.

GARCIA-OCHOA, F.; GOMEZ, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, v. 27, p. 153–176, 2009.

GUERRA, N.P.; RUA, M.L.; PASTRANA, L. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. International Journal of Food Microbiology, v. 70, p. 267-281, 2001.

GUERRA, N. P.; PASTRANA, L. Nisin and pediocin production on mussel-processing waste supplemented with glucose and five nitrogen sources. Letters in Applied Microbiology, v. 34, p. 114–118, 2002.

GUIGA, W.; GALLAND, S.; PEYROL, E.; DEGRAEVE, P.; CARNET-PANTIEZ, A.; SEBTI, I. Antimicrobial plastic film: physico-chemical characterization and nisin
desorption modeling. *Innovative Food Science and Emerging Technologies*, v. 10, p. 203-207, 2009.

GUJARATHI, S. S; BANKAR, S.B.; ANANTHANARAYAN, L. A. Fermentative production, purification, characterization of nisin. *International Journal of Food Engineering*, v. 4, n. 5, p.1 - 21, 2008.

Gupta, S.M.; Aranha, C.C.; Reddy, K.V.R. Evaluation of developmental toxicity of microbicide nisin in rats. *Food and Chemical Toxicology*, v. 46, p. 598-603, 2008.

HOFVENDAHL, K.; HAHN-HÄGERDAL, B. Factors affecting the fermentative lactic acid production from renewable resources. *Enzyme and Microbial Technology*, v. 26, p. 87-107, 2000.

HUNTER, G. J. E.; WHITEHEAD, H. R. The influence of abnormal ('non-acid') milk on cheese starter cultures. *Journal of Dairy Research*, v. 13, p. 123-126, 1943.

IVANOVA, I.; MITEVA, V.; STEFANOVA, Ts; PANTEV, A; BUDAKOV, I.; DANNOVA, S.; MONCHEVA, P.; NIKOLOVA, I.; DOUSSET, X.; BOYAVAL, P. Characterization of a bacteriocin produced by *Streptococcus thermophilus* 81. *International Journal of Food Microbiology*, v. 42, p. 147-158, 1998.

JACOB, F.; LWOFF, A; SIMINOVITCH, A.; WOLLMAN, E. Definition of some terms relative to lysogeny. *Annales de l’Institut Pasteur*, v. 84, n.1, 222-224, 1953.

JIANG, R.; BOMMARIUS, A.S. Hydrogen peroxide-producing NADH oxidase (nox-1) from *Lactococcus lactis*. *Tetrahedron Asymmetry*, v. 15, n. 18, p. 2939-2944, 2004.

JOZALA, A. F. *Produção de nisina por Lactococcus lactis* subsp. lactis ATCC 11454 utilizando meio sintético e leite desnatado, com ou sem suplementação de componentes extras, como meio de cultivo. 97 f. Dissertação (Mestrado em Tecnologia de Alimentos), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 2005.
JOZALA, A.F.; ANDRADE, M.S., ARAUZ, L.J.; PESSOA JR, A.; PENNA, T.C.V. Nisin production utilizing skimmed milk aiming to reduce process cost. *Applied Biochemistry and Biotechnology*, v.136-140, p. 515-528, 2007.

KAMOUN, F.; MEJDOUB, H.; AOUSSAOUI, H.; REINBOLT, J.; HAMMAMI, A.; JAOUA, S. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by *Bacillus thuringiensis*. *Journal of Applied Microbiology*, v. 98, p. 881-888, 2005.

KIM, W.S. Nisin production by *Lactococcus lactis* using two-phase batch culture. *Letters in Applied Microbiology*, v. 25, p. 169-171, 1997.

KLAENHAMMER, T.R. Genetics of bacteriocins produced by lactic acid bacteria. *FEMS Microbiology Reviews*, v. 12, n. 1-3, p. 39-85, 1993.

LARIDI, R.; KHEADR, E.E.; BENECH, R.O.; VUILLEMARD, J.C.; LACROIX, C.; FLISS, I. Liposome encapsulated nisin Z: optimization, stability and release during milk fermentation. *International Dairy Journal*, v.13, p. 325-336, 2003.

LISBÔA, M. P. *Caracterização de um peptídeo antimicrobiano produzido por uma linhagem de Bacillus amyloliquefaciens isolada de solo*. 86f. Dissertação (Mestrado em Microbiologia Agrícola e do Ambiente), Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, 2006.

LIU, S.Q. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. *International of Journal of Food Microbiology*, v. 83, p.115-131, 2003.

LIU, C.; LIU, Y.; LIAO, W.; WEN, Z.; CHEN, S. Simultaneous production of nisin and lactic acid from cheese whey. *Applied Biochemistry and Biotechnology*, v. 113-116, p. 627-638, 2004.

LIU, C.; HU, B.; LIU, Y.; CHEN, S. Stimulation of nisin production from whey by a mixed culture of *Lactococcus lactis* and *Saccharomyces cerevisiae*. *Applied Biochemistry and Biotechnology*, v. 129-132, p. 751-761, 2006.

LÓPEZ, R.L.; GARCÍA, M.T.; ABRIQUEL, H.; OMAR, N.B.; GRANDE, M.J.; MARTÍNEZ-CÂÑAMERO, M.; GÁLVEZ, A. Semi-preparative scale purification of
enterococcal bacteriocin enterocin EJ97, and evaluation of substrates for its production. Journal of Industrial Microbiology & Biotechnology, v. 34, p. 779-785, 2007.

LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.L., RANDALL, R.J. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, v. 270, p. 27299-27304, 1951.

LV, W.; ZHANG, X.; CONG, W. Modelling the production of nisin by Lactococcus lactis in fed-batch culture. Applied Microbiology and Biotechnology, v. 68, 322-326, 2005.

MARGOLLES, A.; MORENO, J.A.; RUIZ, L.; MARELLI, B.; MAGNI, C.; DE LOS REYES-GAVILÁN, C.G.; RUAS-MADIEDO, P. Production of human growth hormone by Lactococcus lactis. Journal of Bioscience and Bioengineering, v.109, n. 4, p. 322-324, 2010.

MARTINIS, E.C.P.; SANTAROSA, P.R.; FREITAS, F.Z. Caracterização preliminar de bacteriocinas produzidas por seis cepas de bactérias lácticas isoladas de produtos cárneos embalados a vácuo. Ciência e Tecnologia de Alimentos, v. 23, n. 2, 2003.

MATSUSAKI, H.; ENDO, N.; SONOMOTO, K.; ISHIZAKI, A. Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: relationship between production of the lantibiotic and lactate and cell growth. Applied Microbiology and Biotechnology, v. 45, p. 36-40, 1996.

MATTICK, A. T. R.; HIRSCH, A. A powerful inhibitory substance produced by group N streptococci. Nature, v. 154, p. 551-552, 1944.

MEANWELL, L.J. The influence of raw milk quality on “slowness” in cheesemaking. Proceedings of the society Agriculture Bacteriology, p. 19, 1943.

MENEZES, E. M. S.; TORRES, A. T.; SRUR, A. U. S. Valor nutricional da polpa de açaí (Euterpe Oleracea Mart) liofilizada. Acta Amazonica, v. 38, n. 02, p. 311-316, 2008.
MERCENIER, A.; MÜLLER-ALOUF, H.; GRANGETTE, C. Lactic acid bacteria as live vaccines. *Current Issues in Molecular Biology*, v. 2(1), p. 17-25, 2000.

MILLETTE, M.; SMORAGIEWICZ, W.; LACROIX, M. Antimicrobial potential of immobilized *Lactococcus lactis* subsp. *lactis* ATCC 11454 against selected bacteria. *Journal of Food Protection*, v.67 (6), p. 1184-1189, 2004.

MONDRAGÓN-PARADA, M.E.; NÁJERA-MARTÍNEZ, M.; JUÁREZ-RAMÍREZ, C.; GALÍNDEZ-MAYER, J.; RUIZ-ORDAZ, N.; CRISTIANI-URBINA, E. Lactic acid bacteria production from whey. *Applied Biochemistry and Biotechnology*, v. 134, p. 223-232, 2006.

NASCIMENTO, M.S.; MORENO, I.; KUAYE, A.Y. Bacteriocinas em alimentos: uma revisão. *Brazilian Journal of Food Technology*, v. 11, n. 2, p.120-127, 2008.

NASCIMENTO, M.S., FINATTI, D.P., MORENO, I., KUAYE, A.Y. Atividade antimicrobiana de *Lactococcus lactis* subsp. *lactis* ATCC 11454 produtor de nisina sobre patógenos gram-positivos. *Brazilian Journal of Food Technology*, v.11, n.4, p.322-328, 2008.

NEW BRUNSWICK, *Guia de Operações Bioflo 110 Fermentor*: manual nº M1273-0054, New Brunswick Scientific Co., New Jersey, EUA, 2002, 159p.

OH, S.; KIM, S.-H.; KO, Y.; SIM, J.-H.; KIM, K. S.; LEE, S.-H.; PARK, S.; KIM, Y. J. Effect of bacteriocin produced by *Lactococcus* sp. HY 449 on skin-inflammatory bacteria. *Food and Chemical Toxicology*, v. 44, p. 1184 – 1190, 2006.

PARADA, J.L.; CARON, C.R.; MEDEIROS, A.B.P.; SOCÇOL, C.R. Bacteriocins from Lactic Acid bacteria: purification, properties and use as biopreservatives. *Brazilian Archives of Biology and Technology*, v. 50, n.30, p. 521-542, 2007.

PARENTE, E.; RICCIARDI, A. Production, recovery and purification of bacteriocins from lactic acid bacteria. *Applied Microbiology and Biotechnology*, v. 52, p. 628-638, 1999.

PASSARINHA, L.A.; BONIFÁCIO, M.J.; QUEIROZ, J.A. Comparative study on the interaction of recombinant human soluble catechol-O-methyltransferase on some hydrophobic adsorbents. *Biomedical Chromatography*, v. 21, p. 430-438, 2007.
PELCZAR Jr., M.J., CHAN, E.C.S., KRIEG, N.R. Microbiologia: conceitos e aplicações. 2 ed. São Paulo. Makron books. 1996, 524p.

PENNA, T.C.V.; MORAES, D. A. Optimization of nisin production by *Lactococcus lactis*. *Applied Biochemistry and Biotechnology*, v. 98-100, 2002.

PENNA, T.C.V.; JOZALA, A.F.; NOVAES, L.C.L.; PESSOA JR., A.; CHOLEWA, O. Production of nisin by *Lactococcus lactis* in media with skimmed milk. *Applied Biochemistry and Biotechnology*, v. 121-124, p. 619-637, 2005.

PENNA, T.C.V.; JOZALA, A.F.; GENTILLE, T.R.; PESSOA, JR. A, CHOLEWA, O. Detection of nisin expression by *Lactococcus lactis* using two susceptible bacteria to associate the effects of nisin with EDTA. *Applied Biochemistry and Biotechnology*, v. 121-124, p. 334-346, 2006.

PEREIRA, D.B.C.; SILVA, P.H.F.; COSTA JÚNIOR, L.C.G.; OLIVEIRA, L.L. Físico-química do leite e derivados: Métodos Analíticos. 2 ed, Minas Gerais: EPAMIG, 2001, 234p.

PESSOA JR., A.; KILIKIAN, B. V. *Purificação de produtos biotecnológicos*. Barueri, SP: Manole, 2005, 988p.

PETROV, K.; URSHEV, Z.; PETROVA, P. L(+)-Lactic acid production from starch by a novel amylolytic *Lactococcus lactis* subsp. *lactis* B84. *Food Microbiology*, v. 25, p. 550-557, 2008.

PIRT, J. Principles of microbe and cell cultivation. New York, John Wiley, 1975.

PONGTHARANGKUL, T.; DEMIRCI, A. Evaluation of agar diffusion bioassay for nisin quantification. *Applied Microbiology and Biotechnology*, v.65, p. 268-272, 2004.

PONGTHARANGKU, T.; DEMIRCI, A. Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor. *Applied Microbiology and Biotechnology*, v. 74, n. 3, p. 555-562, 2007.
PRADO, F.C. Desenvolvimento de bioprocesso para produção de bebida probiótica à base de água de caco. 165 f. Tese (Doutorado em Processos Biotecnológicos) – Universidade Federal do Paraná, Curitiba, 2007.

QUEIROZ, J.A.; TOMAZ, C.T.; CABRAL, J.M.S. Hydrophobic interaction chromatography of proteins. Journal of Biotechnology, v. 87, 143-159, 2001.

RICHARDSON, D. Probiotics and products innovation. Nutrition and Food Science, London, n.4, p. 27-33, 1996.

ROBINSON, RK. Dairy microbiology handbook. Third edition, New York: John Wiley and Sons, Inc, 2002, 784p.

ROGERS, L.A.; WHITTIER, E.O. Limiting factors in lactic fermentation. Journal of Bacteriology, v. 16, p. 211-214, 1928.

SAINT-HUBERT, C.; DURIEUX, A.; BODO, E.; SIMON, J.P. Large scale purification protocol for carnocin KZ 213 from Carnobacterium piscicola. Biotechnology Letters, v.31, p. 519-523, 2009.

SAKAMOTO, M.; KOMAGATA, K. Aerobic growth of and activities of NADH Oxidase and NADH peroxidase in lactic acid bacteria. Journal of Fermentation and Bioengineering, v. 82, n. 3, p. 210-216, 1996.

SAKAMOTO, M.; TANO, Y.; UCHIMURA, T.; KOMAGATA, K. Aerobic growth of some lactic acid bacteria enabled by the external addition of peroxidase (Horseradish) to the culture medium. Journal of Fermentation and Bioengineering, v. 85, n. 6, p. 627-629, 1998.

SAKAMOTO, I., IGARASHI, M., KIMURA, K. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans. J. Antimicob. Chemother, v.47, p. 709-710, 2001.

SALMINEN, S.; VON WRIGHT, A.; OUWEHAND, A. Lactic acid bacteria: microbiological and functional aspects. 3rd. ed. New York: Marcel Dekker, 2004. 633p.
SANTOS, S. *Cinética do cultivo em bioreactor de Neisseria meningitidis sorogrupo C*. 155 f. Tese (Mestrado em Biotecnologia). Instituto de Ciências Biomédicas, Universidade de São Paulo, 2007.

SÁNCHEZ-MANZANARES, J.A.; FERNÁNDEZ-VILLACANÃS, M.R.; MARÍN-INIESTA, F.; LAENCINA, J. Determination of lactose by an enzymatic method. *Food Chemistry* v. 46, p. 425-427, 1993.

SAVADOGO, A.; OUATTARA, C.A.T.; BASSOLE, I.H.N.; TRAORE, S.A. Bacteriocins and lactic acid bacteria – a minireview. *African Journal of Biotechnology*, v. 5, n. 9, p. 678-683, 2006.

SCHMIDELL, W.; LIMA, U.A.; AQUARONE, E.; BORZANI, W. Biotecnologia industrial. V. 02, São Paulo: Editora Edgard Blücher LTDA, 2001, 541p.

SCOTT, V.N.; TAYLOR, S.L. Effect of nisin on the outgrowth of *Clostridium botulinum* spores. *Journal of Food Science*, v. 46, p.121-126, 1981.

SERIQUE, A.; CEYLÃO, C.; SANTIAGO, E. Galactosemia. Disponível em <http://galactosemia-biobio.blogspot.com/>. Acesso em: 25/03/10.

SHATTOCK, P. M.F.; MATTICK, A. T. R. *Journal of Hygiene Combinatorial*, v. 43, p. 173, 1943.

SOBRINO-LÓPEZ, A.; MARTÍN-BELLOSO, O. Use of nisin and other bacteriocins for preservation of dairy products. *International Dairy Journal*, v. 18, p. 329-343, 2008.

SONOMOTO, K.; CHINACHOTI, N.; ENDO, N.; ISHIZAKI, A. Biosynthetic production of nisin Z by immobilized *Lactococcus lactis* IO-1. *Journal of Molecular Catalysis. B Enzymatic*, v. 10, p. 325-334, 2000.

SOUZA, L.G.; SANTOS, G.T.; SAKAGUTI, E.S.; DAMASCENO, J. C.; MATSUSHITA, M.; HORST, J. A; VILALBA, R.G. Avaliação da composição do leite UHT proveniente de dois laticínios das regiões Norte e Noroeste do Estado do Paraná. *Acta Scientiarum. Animal Sciences Maringá*, v.26, n.2, p.259-264, 2004.
SVETOSLAV, D. T.; DICKS, L. M. T. Bacteriocin production by *Pediococcus pentosaceus* isolated from marula (*Sclerocarya birrea*). *International Journal of Food Microbiology*, v. 132, p. 117-126, 2009.

TATTINI JR. *Estudo da liofilização sobre a estrutura e mudanças de fase da albumina bovina modificada por reação com metoxi-polietilenoglicol*. 67 f. Dissertação (Mestrado em Tecnologia de Fermentações). Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 2004.

TATTINI JR., V.; PARRA, D. F.; PITOMBO, R. N. M. Influência da taxa de congelamento no comportamento físico-químico e estrutural durante a liofilização da albumina bovina. *Revista Brasileira de Ciências Farmacêuticas*, v. 42, n. 01, p. 127-136, 2006.

TODOROV, S.D.; DICKS, L.M.T. Effect of modified MRS medium on production and purification of antimicrobial peptide ST4SA produced by *Enterococcus mundtii*. *Anaerobe*, v.15, n. 3, p. 65-73, 2009.

TORO, CR. *Uso de bactérias lácticas probióticas na alimentação de camarões Litopenaeus vannamei como inibidoras de microrganismos patogênicos e estimulantes do sistema imune*. 173 f, Tese (Doutorado em Processos Biotecnológicos) - Universidade Federal do Paraná, Curitiba, 2005.

TONG, Z.; DONG, L.; ZHOU, L.; TAO, R.; NI, L. Nisin inhibits dental caries-associated microorganism in vitro. *Peptides*, v. 31, n. 11, p. 2003-2008, 2010.

TRINETTA, V.; ROLLINI, M.; MANZONI, M. Development of a low cost culture medium for sakacin A production by *L. sakei*. *Process Biochemistry*, v.43, p. 1275-1280, 2008.

VALENTA, C.; BERNKOP-SCHNÜRCH, A.; RIGLER, H.P. The antistaphylococcal effect of nisin in a suitable vehicle: a potential therapy for atopic dermatitis in man. *Journal of Pharmacy and Pharmacology*, v. 48, n. 9, p. 988-991, 1996.

VÁSQUEZ, J. A.; CABO, M. L.; GONZÁLEZ, M. P.; MURADO, M. A. The role of amino acids in nisin and pediocin production by two lactic acid bacteria, A factorial study. *Enzyme and Microbial Technology*, v. 34, p. 319-325, 2004.
VÁSQUEZ, J.A.; MURADO, M.A. Enzymatic hydrolysates from food wastewater as a source of peptones for lactic acid bacteria productions. *Enzyme and Microbial Technology*, v. 43, p. 66-72, 2008.

VÁSQUEZ, J.A.; GONZÁLEZ, M.P.; MURADO, M.A. Preliminary tests on nisin and pediocin production using waste protein sources. Factorial and kinetic studies. *Bioresource Technology*, v. 97, p. 605-613, 2006.

VON STASZEWSKI, M.; JAGUS, R.J. Natural antimicrobials: Effect of Microgard™ and nisin against *Listeria innocua* in liquid cheese whey. *International Dairy Journal*, v. 18, n. 3, p. 255-259, 2008.

WALSTRA, P.; GEURTS, T.J.; NOOMEN, A.; JELLEMA, A.; VAN BOEKEL, M.A.J.S. Dairy technology: Principles of milk properties and processes. New York: Marcel Dekker, 1999, 727p.

WHITEHEAD, H. R. A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. *Biochemical Journal*, v. 27, p. 1793-1800, 1933.

WHITEHEAD, H. R.; RIDDET, W. Slow development of acidity in cheese manufacture. *New Zealand Journal of Agriculture*, v. 46, p. 225-229, 1933.

XIE, J.; ZHANG, R.; SHANG, C.; GUO, Y. Isolation and characterization of a bacteriocin produced by an isolated *Bacillus subtilis* LFB 112 that exhibits antimicrobial activity against domestic animal pathogens. *African Journal of Biotechnology*, v. 8, n. 20, p. 5611-5419, 2009.

YANG, R.; JOHNSON, M.C.; RAY, B. Novel method to extract large amounts of bacteriocins from lactic acid bacteria. *Applied and Environmental Microbiology*, v. 58, n. 10, p. 3355-3359, 1992.

YANG, R.; RAY, B. Factors influencing production of bacteriocins by lactic acid bacteria. *Food Microbiology*, v. 11, p. 281-291, 1994.

ZENEBON, O.; PASCUELT, N. S.; TIGLEA, P. Métodos físico-químicos para a análise de alimentos. Ed. IV, São Paulo: Instituto Adolfo Lutz, 2008. 1020 p.
9. ANEXOS

Tabelas 9.1- Tabelas de resultados suavizados
Tabela 9.1.1 – Resultados suavizados do ensaio 1 (100 rpm / sem aerivação).

Tempo (h)	\log_{suav} (AU.mL$^{-1}$)	$0,025_{suav}$ (mg.L$^{-1}$)	Viab. celular$_{suav}$ (UFC.mL$^{-1}$)	Log (UFC.mL$^{-1}$)
0	-----	-----	$1,26 \times 10^7$	7,10
4	1,05	0,28	$2,63 \times 10^7$	7,42
8	1,95	2,22	$3,98 \times 10^7$	7,60
12	2,53	8,48	$5,25 \times 10^7$	7,72
14	2,70	12,50	$5,75 \times 10^7$	7,76
24	2,90	19,81	$5,75 \times 10^7$	7,76
28	2,90	19,81	$5,75 \times 10^7$	7,76
32	2,90	19,81	$5,75 \times 10^7$	7,76
36	2,90	19,81	$5,75 \times 10^7$	7,76
48	2,28	4,76	$5,75 \times 10^7$	7,76
52	1,55	0,88	$5,75 \times 10^7$	7,76

Tabela 9.1.2 – Resultados suavizados do ensaio 2 (100 rpm / 0,5 L.min$^{-1}$).

Tempo (h)	\log_{suav} (AU.mL$^{-1}$)	$0,025_{suav}$ (mg.L$^{-1}$)	Viab. celular$_{suav}$ (UFC.mL$^{-1}$)	Log (UFC.mL$^{-1}$)
0	1,20	0,40	$1,91 \times 10^7$	7,28
4	1,95	2,23	$5,75 \times 10^7$	7,76
8	2,43	6,72	$1,15 \times 10^8$	8,06
12	2,68	11,96	$1,58 \times 10^8$	8,20
16	2,73	13,43	$1,66 \times 10^8$	8,22
20	2,68	11,96	$1,66 \times 10^8$	8,22
24	2,55	8,86	$1,66 \times 10^8$	8,22
28	2,38	5,98	$1,66 \times 10^8$	8,22
32	2,20	3,97	$1,66 \times 10^8$	8,22
36	2,03	2,68	$1,66 \times 10^8$	8,22
48	1,25	0,44	$1,66 \times 10^8$	8,22
52	0,88	0,19	$1,66 \times 10^8$	8,22
Tabela 9.1.3 – Resultados suavizados do ensaio 3 (100 rpm / 0,5 L.min⁻¹).

Tempo (h)	log_{suav} (AU.mL⁻¹)	0,025_{suav} (mg.L⁻¹)	Viab. celular_{suav} (UFC.mL⁻¹)	Log (UFC.mL⁻¹)
0	1,0	0,25	2,51 x 10⁷	7,40
4	1,85	1,77	6,92 x 10⁷	7,84
8	2,28	4,76	1,10 x 10⁸	8,04
12	2,50	7,89	1,38 x 10⁸	8,14
16	2,60	9,90	1,45 x 10⁸	8,16
20	2,58	9,47	1,45 x 10⁸	8,16
24	2,50	7,89	1,45 x 10⁸	8,16
28	2,38	5,98	1,45 x 10⁸	8,16
32	2,25	4,43	1,45 x 10⁸	8,16
36	2,08	2,99	1,45 x 10⁸	8,16
48	1,48	0,76	1,45 x 10⁸	8,16
52	1,15	0,35	1,45 x 10⁸	8,16

Tabela 9.1.4 – Resultados suavizados do ensaio 4 (200 rpm / sem aeração).

Tempo (h)	log_{suav} (AU.mL⁻¹)	0,025_{suav} (mg.L⁻¹)	Viab. celular_{suav} (UFC.mL⁻¹)	Log (UFC.mL⁻¹)
0	----	----	4,17 x 10⁷	7,62
4	2,53	8,43	8,32 x 10⁷	7,92
8	3,23	42,33	1,15 x 10⁸	8,06
12	3,50	79,21	1,32 x 10⁸	8,12
14	3,53	84,66	1,38 x 10⁸	8,14
24	3,60	99,43	1,38 x 10⁸	8,14
28	3,58	95,11	1,38 x 10⁸	8,14
32	3,55	88,50	1,38 x 10⁸	8,14
36	3,45	70,50	1,38 x 10⁸	8,14
48	2,75	14,04	1,38 x 10⁸	8,14
52	2,30	4,98	1,38 x 10⁸	8,14
Tabela 9.1.5 – Resultados suavizados do ensaio 5 (200 rpm / sem aeração).

Tempo (h)	log_{suav}	0,025_{suav}	Viab. celular_{suav}	Log (UFC.mL^{-1})
0	----	----	2,09 x 10^7	7,32
4	1,83	1,69	5,25 x 10^7	7,72
8	2,78	15,09	7,59 x 10^7	7,88
12	3,18	37,68	9,12 x 10^7	7,96
16	3,30	49,99	9,55 x 10^7	7,98
20	3,38	60,03	9,55 x 10^7	7,98
24	3,35	55,86	9,55 x 10^7	7,98
28	3,33	53,43	9,55 x 10^7	7,98
32	3,28	47,56	9,55 x 10^7	7,98
36	3,15	35,25	9,55 x 10^7	7,98
48	2,40	6,29	9,55 x 10^7	7,98
52	1,90	1,98	9,55 x 10^7	7,98

Tabela 9.1.6 – Resultados suavizados do ensaio 6 (200 rpm / sem aeração).

Tempo (h)	log_{suav}	0,025_{suav}	Viab. celular_{suav}	Log (UFC.mL^{-1})
0	----	----	1,58 x 10^7	7,20
4	2,10	3,14	3,39 x 10^7	7,53
8	2,83	16,86	5,75 x 10^7	7,76
12	3,18	37,89	8,32 x 10^7	7,92
16	3,33	53,43	1,05 x 10^8	8,02
20	3,38	59,70	1,15 x 10^8	8,06
24	3,38	59,70	1,15 x 10^8	8,06
28	3,33	53,43	1,15 x 10^8	8,06
32	3,25	44,50	1,15 x 10^8	8,06
36	3,13	33,72	1,15 x 10^8	8,06
48	2,38	5,98	1,15 x 10^8	8,06
52	1,90	1,98	1,15 x 10^8	8,06
Tabela 9.1.7 – Resultados suavizados do ensaio 7 (200 rpm / 0,5 L.min⁻¹).

Tempo (h)	log_{suav} (AU.mL⁻¹)	0,025_{suav} (mg.L⁻¹)	Viab. celular_{suav} (UFC.mL⁻¹)	Log (UFC.mL⁻¹)
0	-----	2,40 x 10⁷	7,38	
4	0,95	5,01 x 10⁷	7,70	
8	1,80	9,12 x 10⁷	7,96	
12	2,50	1,51 x 10⁸	8,18	
16	2,80	2,00 x 10⁸	8,30	
20	2,90	2,00 x 10⁸	8,30	
24	2,93	2,00 x 10⁸	8,30	
28	2,93	2,00 x 10⁸	8,30	
32	2,88	2,00 x 10⁸	8,30	
36	2,78	2,00 x 10⁸	8,30	
48	2,00	2,00 x 10⁸	8,30	
52	1,50	2,00 x 10⁸	8,30	

Tabela 9.1.8 – Resultados suavizados do ensaio 8 (200 rpm / 1 L.min⁻¹).

Tempo (h)	log_{suav} (AU.mL⁻¹)	0,025_{suav} (mg.L⁻¹)	Viab. celular_{suav} (UFC.mL⁻¹)	Log (UFC.mL⁻¹)
0	-----	1,66 x 10⁷	7,22	
4	1,18	5,50 x 10⁷	7,74	
8	2,05	9,55 x 10⁷	7,98	
12	2,60	1,38 x 10⁸	8,14	
16	2,85	1,66 x 10⁸	8,22	
20	2,95	1,66 x 10⁸	8,22	
24	2,85	1,66 x 10⁸	8,22	
28	2,52	1,66 x 10⁸	8,22	
32	1,98	1,66 x 10⁸	8,22	
36	1,35	1,66 x 10⁸	8,22	
48	-----	1,66 x 10⁸	8,22	
52	-----	1,66 x 10⁸	8,22	
Tabela 9.1.9 – Resultados suavizados do ensaio 9 (200 rpm / 2 L.min⁻¹).

Tempo (h)	log_{subv}	0,025_{subv}	Viab. celular_{subv}	Log (UFC.mL⁻¹)
0	0,60	0,10	1,82 x 10⁷	7,26
4	1,78	1,50	4,17 x 10⁷	7,62
8	2,35	5,59	8,32 x 10⁷	7,92
12	2,68	11,96	1,26 x 10⁸	8,10
16	2,85	17,73	1,58 x 10⁸	8,20
20	2,90	19,81	1,58 x 10⁸	8,20
24	2,88	18,95	1,58 x 10⁸	8,20
28	2,78	15,09	1,58 x 10⁸	8,20
32	2,53	8,48	1,58 x 10⁸	8,20
36	1,98	2,38	1,58 x 10⁸	8,20
48	----	----	1,58 x 10⁸	8,20
52	----	----	1,58 x 10⁸	8,20
Anexo 9.2 – Curvas de log UFC.mL$^{-1}$ versus Log AU.mL$^{-1}$				
Ensaio 1	Ensaio 2			
---------	---------			
![Graph](image1.png)	![Graph](image2.png)			
$y = 4.8763x - 35.124$				
$R^2 = 0.9996$ |

Ensaio 3	Ensaio 4
![Graph](image3.png)	![Graph](image4.png)
$y = 2.0662x + 14.31$	
$R^2 = 0.9971$ |

Ensaio 5	Ensaio 6
![Graph](image5.png)	![Graph](image6.png)
$y = 5.836x - 41.668$	
$R^2 = 0.9987$ |

Ensaio 7	Ensaio 8
![Graph](image7.png)	![Graph](image8.png)
$y = 3.1642x - 23.462$	
$R^2 = 0.9978$ |

Ensaio 9
![Graph](image9.png)
$y = 2.3275x - 18.155$
$R^2 = 0.9913$ |

Figura 9.2.1 – Curvas de log UFC.mL\(^{-1}\) versus log AU.mL\(^{-1}\), com as linhas de tendência, equação e coeficiente de correlação.
Anexo 9.3 - Tabelas extração de nisina adsorvida das células produtoras

- pontos suavizados
Tabela 9.3.1 – Resultados suavizados dos ensaios 1, 2 e 3 da extração de nisina das células produtoras.

Tempo (h)	ENSAIO 1 adso.	ENSAIO 2 adso.	ENSAIO 3 adso.						
	Tempo Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)	Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)	Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)
0	-----	-----	-----	------	------	------	------	------	------
4	-----	-----	-----	------	------	------	------	------	------
8	-----	-----	-----	8,61	1,20	0,40	8,32	1,13	0,34
12	9,15	1,33	0,53	10,19	1,58	0,95	10,07	1,55	0,89
14	9,98	1,53	0,84	*	*	*	10,07	1,55	0,89
16	*	*	*	11,02	1,78	1,50	10,82	1,73	1,35
20	*	*	*	11,23	1,83	1,69	11,07	1,79	1,55
24	10,65	1,69	1,22	11,23	1,83	1,69	11,07	1,79	1,55
28	10,65	1,69	1,22	11,23	1,83	1,69	11,07	1,79	1,55
32	10,65	1,69	1,22	11,23	1,83	1,69	11,07	1,79	1,55
36	10,65	1,69	1,22	11,23	1,83	1,69	11,07	1,79	1,55
48	9,65	1,45	0,70	7,78	1	0,25	9,03	1,30	0,50
52	8,32	1,13	0,34	-----	-----	-----	6,74	0,75	0,14

*Ponto não coletado

--- Valores não detectados
Tabela 9.3.2 – Resultados suavizados dos ensaios 4, 5 e 6 da extração de nisina das células produtoras.

Tempo (h)	ENSAIO 4 adso.		ENSAIO 5 adso.		ENSAIO 6 adso.				
	Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)	Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)	Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)
0	-----	-----	-----	-----	-----	-----	-----	-----	-----
4	-----	-----	-----	-----	-----	-----	-----	-----	-----
8	11,64	1,93	2,12	9,57	1,43	0,67	10,9	1,75	1,41
12	13,18	2,30	4,98	11,31	1,85	1,77	12,68	2,18	3,77
14	13,72	2,43	6,72	*	*	*	*	*	*
16	*	*	*	12,14	2,05	2,80	13,51	2,38	5,98
20	*	*	*	12,35	2,10	3,14	13,8	2,45	7,02
24	14,13	2,53	8,43	12,35	2,10	3,14	13,8	2,45	7,02
28	14,13	2,53	8,43	12,35	2,10	3,14	13,8	2,45	7,02
32	14,13	2,53	8,43	12,35	2,10	3,14	13,8	2,45	7,02
36	14,13	2,53	8,43	12,35	2,10	3,14	13,8	2,45	7,02
48	12,98	2,25	4,46	10,89	1,75	1,40	11,85	1,98	2,38
52	11,85	1,98	2,38	9,15	1,33	0,53	10,6	1,68	1,19

*Ponto não coletado

--- Valores não detectados
Tabela 9.3.3 – Resultados suavizados dos ensaios 7, 8 e 9 da extração de nisina das células produtoras.

	ENSAIO 7 adso.		ENSAIO 8 adso.		ENSAIO 9 adso.						
Tempo (h)	Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)	Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)	Halo suav (mm)	Log suav (AU.mL⁻¹)	0,025 suav (mg.L⁻¹)		
0	----	----	----	----	----	----	----	----	----	----	----
4	----	----	----	----	----	----	----	----	----	----	----
8	----	----	----	----	7,91	1,03	0,27	----	----	----	----
12	8,53	1,18	0,38	9,44	1,40	0,63	----	----	----	----	----
16	10,48	1,65	1,11	10,28	1,60	1,00	----	----	----	----	----
20	11,52	1,9	1,98	10,48	1,65	1,11	----	----	----	----	----
24	12,06	2,03	2,68	10,48	1,65	1,11	----	----	----	----	----
28	12,31	2,09	3,07	10,48	1,65	1,11	----	----	----	----	----
32	12,31	2,09	3,07	10,48	1,65	1,11	----	----	----	----	----
36	12,31	2,09	3,07	10,48	1,65	1,11	----	----	----	----	----
48	10,9	1,75	1,41	9,03	1,30	0,50	----	----	----	----	----
51	9,40	1,39	0,61	7,08	0,83	0,17	----	----	----	----	----

*Ponto não coletado

--- Valores não detectados
Anexo 9.4 – Purificação preliminar de nisina em coluna de interação hidrofóbica
Tabela 9.4.1 – Resultados da purificação preliminar de nisina em coluna de interação hidrofóbica

AMOSTRA	280 nm	Atividade AU.mL\(^{-1}\)	Proteínas mg.L\(^{-1}\)	AMOSTRA	280 nm	Atividade AU.mL\(^{-1}\)	Proteínas mg.L\(^{-1}\)
1	0	0	0	46	0,025	0	0
2	0	0	0	47	0,017	0	0
3	0	0	0	48	0,011	0	0
4	0	0	0	49	0,008	0	0
5	0,032	0	0	50	0,005	0	0
6	0,346	0	0	51	0,008	0	0
7	1,266	0	0	52	0,095	0	0
8	2,251	0	0	53	0,157	52,64	5,83
9	2,571	0	0	54	0,107	84,33	28,48
10	2,094	0	0	55	0,052	40,17	23,31
11	1,238	0	0	56	0,018	27,45	7,89
12	0,620	0	0	57	0	0	0
13	0,321	0	0	58	0	0	0
14	0,186	0	0	59	0	0	0
15	0,124	0	0	60	0	0	0
16	0,09	0	0			0	0
17	0,072	0	0			0	0
18	0,06	0	0			0	0
19	0,054	0	0			0	0
20	0,046	0	0			0	0
21	0,04	0	0			0	0
22	0,038	0	0			0	0
23	0,039	0	0			0	0
24	0,042	0	0			0	0
25	0,065	0	0			0	0
26	0,073	0	0			0	0
27	0,067	0	0			0	0
28	0,057	0	0			0	0
29	0,048	0	0			0	0
30	0,041	0	0			0	0
31	0,036	0	0			0	0
32	0,03	0	0			0	0
33	0,026	0	0			0	0
34	0,023	0	0			0	0
35	0,021	0	0			0	0
36	0,021	0	0			0	0
37	0,02	0	0			0	0
38	0,03	0	0			0	0
39	0,06	0	0			0	0
40	0,074	0	0			0	0
41	0,067	0	0			0	0
42	0,053	0	0			0	0
43	0,043	0	0			0	0
44	0,034	0	0			0	0
45	0,031	0	0			0	0
Artigo 9.5 – Artigos publicados
Artigo 9.5.1 – Nisin biotechnological production and application: a review
Review

Nisin biotechnological production and application: a review

Luciana Juncioni de Arauz a, Angela Faustino Jozala a,*, Priscila Gava Mazzola b and Thereza Christina Vessoni Penna a

a Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo/SP, 05508-900 São Paulo, Brazil (Tel.: +55 11 3091 3719; e-mail: angelafj@usp.br)
b Department of Clinical Pathology, School of Medical Sciences, State University of Campinas/SP, 13081-970 Campinas, Brazil (Tel.: +55 19 3521 8884).

Nisin is a natural antimicrobial peptide produced by strains of Lactococcus lactis subsp. lactis that effectively inhibits Gram-positive and Gram-negative bacteria and also the outgrowth of spores of Bacilli and Clostridia. Additionally it has been used as a biopreservative and a potential agent in pharmaceutical, veterinary and health care products. This review focuses on the nisin production in batch cultures utilizing milk skimmed and milk whey as an inexpensive medium for cultivation of L. lactis, aiming to reduce the process cost. At the same time, the exploitation of milk whey as a bacterial substrate can be considered economically advantageous method to help diminish environment pollution problems.

Introduction

Lactic acid bacteria are Gram-positive, non-sporulating microaerophilic bacteria whose main fermentation product from carbohydrates is lactate (De Vuyst & Vandamme, 1994) and they occur naturally as natural microflora in raw milk (Rodríguez, González, Gaya, Núñez, & Medina, 2000). Bacteriocins produced by lactic acid bacteria (LAB) are a heterogeneous group of anti-bacterial proteins that vary in spectrum of activity, mode of action, molecular mass, genetic origin and biochemical properties (Abee, Krockel, & Hill, 1995). The production of antimicrobial peptides is a first line of defense, and also part of the innate immunity, found in a variety of species. Sometimes the peptides act against a specific group of competing organisms, other times their broad spectrum of activity acts as a more general defense mechanism. Bacteriocins are often confused with antibiotics, however the main differences is that antibiotics are not ribosomally synthesized, they also differentiate from antibiotics on the basis mode of action, antimicrobial spectrum, toxicity and resistance mechanisms (Cleveland, Montville, Nes, & Chikindas, 2001).

The bacteriocin nisin (or group N inhibitory substance), discovered in England by Rogers and Whittier in 1928, is produced by certain strains of Lactococcus lactis subsp. lactis (Ross, Morgan, & Hill, 2002). Its biosynthesis occurs during the exponential growth phase and completely stops when cells enter the stationary growth (Pongtharangkul & Demirci, 2004). Structurally, it is a 34 amino acid polypeptide, presenting cationic and hydrophobic characteristics, (Chandrapati & O’Sullivan, 1998) with a molar mass of 3500 Da, belongs to the lantibiotic family as it contains lanthionine and methyllanthionine groups. In addition, the unusual amino acids might be responsible for the important functional properties of nisin, i.e. acid tolerance, thermo stability at low pH and a specific bactericidal mode of action (De Vuyst & Vandamme, 1992).

Nisin exists as two variants (A and Z), which differ by a single amino acid substituting histidine at position 27 in nisin A and asparagines in nisin Z. The structural modification has no effect on the antimicrobial activity, but it gives nisin Z higher solubility and diffusion characteristics compared with nisin A, which are important characteristics for food applications (De Vos, Mulders, Hugenholdt, & Kuipers, 1993; Laridi et al., 2003).

Nisin production is affected by several cultural factors such as producer strain, nutrient composition of media, pH, temperature, agitation and aeration, as also by other factors, for example, substrate and product inhibition, adsorption of nisin onto the producer cells, and enzymatic degradation (Parente & Ricciardi, 1999).
A dramatic decrease in nisin level after reaching the peak value was suspected to be a result of proteolytic degradation and/or adsorption of nisin by producer cells. Although nisin-specific protease (nisinase) was reported in several bacterial strains, a conclusive study indicating the presence of nisinase in *L. lactis* is still missing (Pongtharangku & Demirci, 2007). The adsorptions of nisin by the producer cells are dependent on the pH of the culture broth (Lee & Kim, 1985). In general, a single protocol could usually be used among the bacteriocins, namely pH 6.0 for high adsorption onto the cell and pH 2.0 for maximum release from the cells (Yang, Johnson, & Ray, 1992). Additionally, the solubility, stability and biological activity of nisin are dependent on the pH of the solution. In fermentation process, at pH < 6.0, more than 80% of nisin produced is released into the medium, at pH > 6.0, most of the nisin is associated with the cellular membrane, but not the cytoplasm. Solubility and stability increase drastically with the lowering of pH, in addition, nisin is stable at pH 2.0 and, at this pH, can be autoclaved at 121 °C for 15 min without inactivation (Vessoni Penna, Jozala, Novaes, Pessoa, & Cholewa, 2005), on the other hand, in neutral and alkaline conditions nisin is almost insoluble. Thus, in this review the main proposal is to discuss the different culture media for nisin production. In addition the main characteristics of nisin, its applications and purifications process will also be addressed.

Mechanism of antimicrobial action

Nisin is an effective bactericidal agent against Gram-positive bacteria including strains of *Lactococcus*, *Streptococcus*, *Staphylococcus*, *Micrococcus*, *Pediococcus*, *Lactobacillus*, *Listeria* and *Mycobacterium* (Sahl, Jack, & Bierbaum, 1995). Gram-positive spores like *Bacillus* and *Clostridium* spp. are particularly susceptible to nisin, with spores being more sensitive than vegetative cells (Delves-Broughton, Blackburn, Evans, & Hugenholtz, 1996). In contrast, many Gram-positive bacteria have been shown to be resistant to nisin due their ability to synthesize an enzyme, *nisinase*, which could inactivate nisin (Abee, Krockel, & Hill, 1995). The bacteriocin nisin is not generally active against Gram-negative bacteria, fungi and virus (Boziaris & Adams, 1999). There are many discussions about the action mechanism against spores and vegetative cells (Hasper et al., 2006; Breukink et al., 2003; Hansen, 1994).

The effect of nisin on the target bacteria in vegetative cells is exerted at the cytoplasmic membrane. Nisin forms pores that disrupt the proton motive force and the pH equilibrium causing leakage of ions and hydrolysis of ATP resulting in cell death. Other lantibiotics that also form pores include lactacin 3147, Pep5, subtilin and epidermin. Other mechanism of action well recognized and reported by different authors, show that nisin also interferes with cell wall biosynthesis, this phenomenon is mediated by the ability of nisin to bind lipid II, a peptidoglycan precursor, thus inhibiting cell wall biosynthesis. Such binding is also intrinsic to the ability of nisin to form pores (Bauer & Dicks, 2005; Deegan, Cotter, Hill, & Ross, 2006).

Normally, Gram-negative cells are resistant to nisin due to lipopolysaccharidic (LPS) composition of its outer layer which acts as a barrier to the action of the nisin on the cytoplasmatic wall. On the other hand, chelating agents, such as EDTA, confine the divalent magnesium and calcium ions of the LPS causing destabilization of the layer. Thus, the bacteriocin can be transported through the LPS layer and create pores in the cytoplasmic membrane, causing a loss of the proton motive force and a leakage of intracellular nutrients (Millette, Smoragiewicz, & Lacroix, 2004).

The chelating effect EDTA was confirmed by Vessoni Penna, Jozala, Gentille, Pessoa, and Cholewa (2006) reporting that the presence of EDTA was essential to improve nisin activity on *E. coli* DH5-α expressing the recombinant green fluorescent protein (Gram-negative) growth inhibition. Others studies have reported the nisin anti-bacterial activity in combination with chelating agent toward Gram-negative bacteria (Ukuku & Fett, 2004; Belfiore, Castellano, & Vignolo, 2007).

Nisin action against spores is caused by binding to sulfhydryl groups of protein residues (Morris, Walsh, & Hansen, 1984). It was observed that spores became more sensitive to nisin the more heat damaged they are, and it is an important factor in the use of nisin as a food preservative in heat processed foods. For example, spores of the *Clostridium* anaerobe PA3679 which have survived heat treatment of 3 min at 121.1 °C are 10 times more sensitive to nisin than those which have not been heat damaged (Delves-Broughton, Blackburn, Evans, & Hugenholtz, 1996).

Sensibility of spores to nisin varies, those of species like *Bacillus steareotherophilus* and *Clostridium thermosacharolyticum* being particularly susceptible, as are all spores which open their coats by mechanical rupture. Otherwise, spores can be sensitized towards nisin by heat treatment (Immonen, 1999).

Sensitivity to nisin to both vegetative cells and spores can vary between genera and even between strains of the same species (Delves-Broughton, Blackburn, Evans, & Hugenholtz, 1996).

Nisin production using synthetic and natural medium in batch fermentations

Nisin is manufactured via fermentation of fluid milk or whey by strains of *Lactococcus lactis* subsp. *lactis*. The resulting fermentation broth is subsequently concentrated and separated, spray dried and milled to yield small particles. The final product, may be purchased commercially from different suppliers (e.g. Sigma—Aldrich, St. Louis, MO, and Aplin and Barrett Ltd.) and generally contains the balance of solids consisting of dairy proteins and salts: 2.5% nisin, 74.4% sodium chloride, 23.8% denatured milk solids and 1.7% moisture (Deegan, Cotter, Hill, & Ross, 2006; Taylor, Davidson, & Zhong, 2007).
This product is standardized to an activity of 1×10^6 IU/g, whereas 1 g pure nisin contains 40×10^6 IU. A biological activity of 40 IU hence corresponds to 1 µg of pure nisin (De Vuyst & Vandamme, 1994). However, these preparations generally contain only 2.5% of pure nisin in 25 g and a high cost of US$770.00. Due to high cost of this biomolecule, it is important to promote the commercial utilization of nisin, reducing production costs using cheaper cultivation substrates.

Optimal nisin production usually requires complex media and well-controlled parameters such as temperature and pH (Lv, Zhang, & Cong, 2005). A lowering of pH due to lactic acid accumulation seemed to be the growth-limiting factor (De Vuyst & Vandamme, 1994). Thus, for the cultivation of Lactococcus lactis the use of commercial media is recommended. However, their high cost makes them unsuitable for a large-scale production. Additionally, the recommended media for LAB culture usually contains a surplus of proteins (tryptone, peptone, meat extract, yeast extract), a substantial proportion of which remain unconsumed, involving superfluous cost and hindering bacteriocin purification (Vásquez, González, & Murado, 2006). For this reason, the search for cheaper formulations for nisin production is attractive. Possible alternatives include residual media such as: whey (Mondragón-Parada et al., 2006), sugar molasses and mussel-processing wastes for bacteriocins productions (Guerra & Pastrana, 2003).

Milk is commonly heated to provide stability during storage and assure microbiological safety to consumers. From a hurdle approach, nisin is known to influence the thermal resistance of microorganisms (Sobrino-López & Martín-Belloso, 2008). Following this line of reasoning, Vessoni Penna and Moraes (2002a) verified that the D value of Bacillus cereus in milk was reduced in the presence of nisin by up to 40% at temperatures in the range of 80—100°C. Additionally, Vessoni Penna, Moraes, and Fajardo (2002) verified the influence of nisin on the kinetics of growth from B. cereus spores germinated in milk formula and cooked rice.

Aiming the production this important bacteriocin, Vessoni Penna and Moraes (2002b) studied the influence of sucrose with asparagines (7.5—75 g/L), potassium phosphate (6—18 g/L), and Tween-80 (1—6 g/L) added to MRS broth on nisin production by L. lactis. The formulations that improved nisin expression by L. lactis indicated that 5 g/L of sucrose with 29 g/L of asparagine in MRS was equivalent to the expression derived with a composition of 12.5 g/L of sucrose with 75 g/L of asparagines in MRS.

There is an extensive background of earlier work done to optimize nisin expression in Lactococcus lactis, and many of these studies, have described MRS and M17 broth for optimal cellular growth and expression (Cheigh et al., 2002; Parente & Ricciardi, 1994). Thus, Vessoni Penna, Jozala, Novaes, Pessoa, and Cholewa (2005) studied the nisin production in both M17 and MRS standard broth media supplemented with sucrose (1.0—12.5 g/L), potassium phosphate (0.13 g/L), asparagine (0.5 g/L) and sucrose (0.24 g/L) and also diluted 1:1 with skimmed milk. Skimmed milk undiluted, also was used as a medium for cultivation. Surprising, the best nisin activities were detected in the culture media with milk, 25% of milk added to either 25% M17 or 25% MRS, providing better conditions for L. lactis growth.

Exploring the high nutritive content of cow’s milk, generating reducing production costs, Jozala, Andrade, Arauz, Pessoa, and Vessoni Penna (2007) studied the cultivation of L. lactis utilizing skimmed milk as culture media in shaker, using different concentrations. This result showed that nisin activity in skimmed milk at 25% of standard concentration was up to 3-fold higher than studies in skimmed milk at 50% of standard concentration and was 85-fold higher than studies in skimmed milk at 12.5% of standard concentration, proving that the dilutions in water promoted high levels of nisin detection. Based on proportions of diluted skimmed milk (25% of standard concentration), the authors also try to evaluate which nutrient influenced more nisin activity, formulating artificially the compounds of media. However, artificial compounded media did not favor cell adaptation and, consequently, failed nisin production.

Most milk plants do not have proper treatment systems for the disposal of whey and biological wastewater treatment technologies are expensive. Although several possibilities of whey utilization have been explored, a major part of the world whey production is discarded as effluent. Its disposal as waste poses serious pollutions problems for the surrounding environment, since it affects the physical and chemical structure of soil, resulting in a decrease in crop yield and when released into water bodies, reduces aquatic life by depleting the dissolved oxygen. To overcome this problem, it’s interesting to use to take advantage of its high nutritional content to produce value-added products, which may contribute wholly or partially to the disposal costs (Panesar, Kennedy, Gandhi, & Bunko, 2007).

Arauz et al. (2008) collected raw milk whey (mixed with wash water) discarded by a dairy plant and obtained high quantities (444,805.35 AU mL$^{-1}$) of nisin, showing the cell adaptation in medium and release of nisin from cells. Similarly, Guerra, Rua, and Pastrana (2001) compared MRS broth with the utilization of whey obtained from dairy plant in two forms: as concentrated whey (the liquid remaining after the first cheese pressing) and as diluted whey (mixed with wash waters) for two bacteriocins production in batch cultures for 18 h. They observed that the best results for both bacteriocins were obtained on diluted whey, for example, high nisin production in diluted whey, 22.9 BU mL$^{-1}$ (BU = bacteriocin units) in relation to concentrated whey, 8.3 BU mL$^{-1}$. But biomass and bacteriocin levels were lower than those obtained in MRS broth. Other works (Mondragón-Parada et al., 2006) utilized filtrated whey-based medium supplemented with mineral salts and very low amounts of yeast extract to biomass production of lactic acid bacteria. Researchers applied a mixed culture of L. lactis and Saccharomyces cerevisiae for the purpose of
stimulating nisin production in a whey-based medium, obtaining value of 85% greater for nisin concentration than that in a pure culture of the bacteria (Liu, Hu, Liu, & Chen, 2006).

Some results obtained for nisin production utilizing media with skimmed milk and their byproduct of the dairy industry, milk whey, are presented in Tables 1 and 2, respectively.

Several researches have attempted to optimize production of bacteriocins both in commercial culture media as well as in food-grade substrates discarded by dairy industry. Commercial growth media, different combinations of commercials substrates used at low concentrations, cow milk (whole, half-skimmed, and skimmed), and milk whey (sterilized and pasteurized) has been tested at microaerophilic conditions for production of enterocin EJ97 bacteriocin. Highest bacteriocin activity was obtained by using pasteurized buffered milk whey as growth substrate (40 AU mL⁻¹, or 25 mg L⁻¹) (López et al., 2007). Recently, Trinetta, Rollini, and Manzoni (2008) studied the development of a low cost culture medium for sakacin A production by Lactobacillus sakei, at a submerged fermentation process. The cost of the formulated alternative medium was approximately half that of MRS and sakacin A production was increased from 180 to 480 AU mL⁻¹. Aiming to promote

Table 1. Nisin production from L. lactis for every transfer after 36 h of growth (30 °C/100 rpm) to fresh media containing milk

Media Composition	Preculture	pH	Transfer Halo (mm)	Log (AU mL⁻¹)	Nisin (mg L⁻¹)		
100% milk 1ᵃ (pH = 6.8)	MRSᵇ	5.1	1	8.25	4052.5	3.6	101.3
100% milk 2ᵃ (pH = 6.82)	M17ᵇ	6.2	1	10.5	16,321.1	4.2	408.0
25% M17+25% milkᶜ (pH = 6.17)	M17ᵇ	6.2	1	10.5	16,321.1	4.2	408.0
25% MRS+25% milkᶜ (pH = 6.12)	MRSᵇ	4.7	1	11.8	35,389.6	4.5	884.7
17.36% MRS+17.36% milk+0.13% suppl.ᵈ (pH = 6.35)	MRSᵇ	4.5	1	<0.1	26.1	1.42	0.7
17.36% M17+17.36% milk+0.13% suppl.ᵈ (pH = 6.76)	M17ᵇ	6.5	1	<0.1	26.1	1.4	0.7
17.86% M17+17.86% milk+0.14% sucroseᵈ (pH = 6.74)	M17ᵇ	5.7	1	<0.1	26.1	1.4	0.7

Source: Vessoni Penna, Jozala, Novaes, Pessoa, and Cholewa (2005).

ᵃ Skimmed milk (9.09% dry matter [DM], non-fat milk UHT; Premium, Parmalat, SP, Brazil).
ᵇ Synthetic MRS broth (Difco) and M17 broth (Oxoid) at their standard concentrations per the manufacturer's recommendations.
ᶜ MRS or M17 at 25% of their standard concentrations plus skimmed milk at 25% of its standard concentration.
ᵈ MRS or M17 at 17.36% of their standard concentrations plus 0.13% of supplements: 0.035% sucrose, 0.018% potassium phosphate and 0.075% asparagine.
ᵉ M17 at 17.86% of their standard concentration plus 17.86% of skimmed milk and supplemented with 0.14% sucrose.
Industrial waste recycling, researches utilized fermented barley extract obtained from a by-product of shochu (traditional Japanese alcoholic beverage) called shochu kasu, supplemented with glucose, as a new culture medium for nisin production (Furuta, Maruoka, Nakamura, Omori, & Sonomoto, 2008).

Nisin bacteriocin purifications

Bacteriocin-producers are lactic acid bacteria which need complex nutrition’s to grow, and this not only increases the production cost, but also gives rise to the difficulties for the purification (Li, Bai, Cai, & Ouyang, 2002). Although currently unavailable commercially, nisin has been purified using expanded bed ion exchange (Cheigh, Kook, Kim, Hong, & Pyun, 2004), immunoaffinity chromatography (Prioult, Turcotte, Labarre, Lacroix, & Fliss, 2000; Suarez, Azcona, Rodriguez, Sanz, & Hernandez, 1997) and reversed-phase high-performance liquid chromatography (López et al., 2007). However, these methodologies increase the cost of nisin and can introduce compounds that may be of regulatory concern for food applications. Alternatively, nisin extraction protocols using organic solvents such as, ethanol and methanol (Taylor, Davidson, & Zhong, 2007), ammonium sulfate precipitation and precipitation with acid solution pH 2.0 have been proposed (Yang, Johnson, & Ray, 1992).

Pongtharangku and Demirci (2007) suggested an online removal of nisin by silicic acid coupled with a micro-filter module was proposed as an alternative to reduce detrimental effects caused by adsorption of nisin onto producer, enzymatic degradation by protease, and product inhibition during fermentation.

In addition using liquid—liquid extraction of commercial and biosynthesized nisin by aqueous two-phase micellar systems, Jozala et al. (2008), obtained the successful implementation of protein partitioning, directly from a suspension containing the biomolecule and other unknown compounds. Previously unpublished, these results encourages further researches aiming to optimize the biomolecule extraction using simple tools as electrolytes addition, temperature variations, amongst others.

Advantage for using this technique is due to the low cost of process in comparison to chromatographic methods. The utilization of chromatographic techniques demands high-cost devices, like chromatographic columns (usually US$1500.00 per L) together with HPLC (usually US$50,000.00). On the other hand, aqueous two-phase micellar systems demand just a surfactant (about US$250.00 per L), a glass vessel, a thermostated bath (US$2500.00 for both) and a lower cost of chemicals (Jozala et al., 2008).

Nisin as food natural biopreservative

Nowadays, consumers prefer minimally processed foods of high quality, prepared without chemical preservatives, safe and possessing long shelf-life. Numerous natural antimicrobial agents exist in animals, plants as well as

Medium	pH	Transfers	Halo (mm)	$10^{0.2408x-0.8745}$ (AU mL$^{-1}$)	Log (AU mL$^{-1}$)	Nisin (mg L$^{-1}$)
Filtrated milk wheya	4.53	Preculture	29.75	1,946,704.35	6.29	48,667.61
3.61	1	13.75	273.21	2.44	6.83	
3.47	2	0	0	0	0	
3.45	3	0	0	0	0	
3.52	4	0	0	0	0	
0	5	0	0	0	0	
Milk whey without filtration 1b	4.53	Preculture	29.75	1,946,704.35	6.29	48,667.61
3.64	1	23	46,121.14	4.66	1153.03	
3.47	2	0	0	0	0	
3.45	3	14.25	360.50	2.56	9.01	
3.52	4	0	0	0	0	
0	5	0	0	0	0	
Milk whey without filtration 2c	4.2	Preculture	23.50	60,855.52	4.78	1521.39
5.39	1	26.4	303,822.55	5.48	7595.56	
5.89	2	27.09	444,805.35	5.65	11,120.13	
5.86	3	25.58	192,291.46	5.28	4807.29	
5.89	4	0	0	0	0	
5.86	5	0	0	0	0	

Source: Arauz et al. (2008).

a Filtrated milk whey: the medium was filtrated through a 1.20 μm membrane (to remove bigger insoluble proteins) followed by filtration in sterilizing membrane (0.22 μm).

b Milk whey without filtration 1: the insoluble proteins were removed by filtration (1.20 μm membrane), autoclaved at 121 ºC/30 min and the pH was not adjusted.

c Milk whey without filtration 2: the insoluble proteins were removed by filtration, autoclaved at 121 ºC/30 min and the pH was adjusted to 6.80.
microorganisms where they are often involved as host defense mechanisms. Typical examples of investigated compounds are lactoperoxidase (milk), lysozyme (egg white, figs), saponins and flavonoids (herbs and spices), bacteriocins (lactic acid bacteria, LAB) and chitosan (shrimp shells) (Devlieghere, Vermeiren, & Debevere, 2004). Concomitantly, it is crucially important to preserve the nutritive qualities of the raw material through the inhibition of spoilage and pathogenic bacteria. Although several bacteriocins from LAB have been characterized to date, the use of these as food preservatives is still very limited. Other bacteriocins, such as pediocin (class IIa, of which antilisterial activity is characteristic), may also have potential applications in food, but they are not currently approved as antimicrobial food additives (Naghmouchi, Kheadr, Lacroix, & Fliss, 2007).

The most extensively studied bacteriocin is nisin, it is the only one approved for food applications and it has gained widespread application in the food industry. The bacteriocin was first marketed in England in 1953 and since then has been approved for use in over 48 countries. Significantly, nisin was assessed to be safe for food by the Joint Food and Agriculture Organization/World Health Organization (FAO/WHO) Expert Committee on Food Additives in 1969. The FAO/WHO Codex Committee on milk and milk products accepted nisin as a food additive for processed cheese at a concentration of 12.5 mg pure nisin per kilogram product (Ross, Morgan, & Hill, 2002). However, there are major differences in national legislations concerning the presence and levels of nisin in various food products. For instance, nisin can be added to cheese without limit in the United Kingdom, while a maximum concentration of 12,500 mg g\(^{-1}\) in that food is allowed in Spain (Sobrino-López & Martín-Belloso, 2008). Table 3 shows some countries that permitted the use of nisin. This biopreservative was also added to the European food additive list where it was assigned the number E234 (EEC, 1983). The peptide is innocuous, sensitive to digestive proteases (can be hydrolyzed into amino acids in the intestine by \(\alpha\)-chymotrypsin) (Pongtharangkul & Demirci, 2004) and it does not produce changes in the organoleptic properties of the foods (Guerra, Agrasar, Macías, Bernárdez, & Castro, 2007). For these reasons, it has been proved to be an effective natural food biopreservative. There are numerous applications of nisin as a natural food preservative, including dairy products, canned foods and processed cheese. In these cases, the bacteriocin is incorporated into the product as a dried concentrated powder (O’Sullivan, Ross, & Hill, 2002), though not purified, preparation made with food-grade techniques (Deegan, Cotter, Hill, & Ross, 2006).

The chemical and physical properties of a food such as pH, proteins, fat and starch can alter the antimicrobial activity of natural compounds (Devlieghere, Vermeiren, & Debevere, 2004). An important property of nisin is their high activity at acid pH, but loses activity above pH 7 (Deegan, Cotter, Hill, & Ross, 2006). Nisin is relatively amphipatic because of the inclusion of hydrophobic residues (De Vuyst and Vandamme, 1994). This amphipatic nature limits widespread application of nisin to various products because of its interaction with fat and other food components and reduces the antimicrobial potential of nisin in a food matrix (Taylor, Davidson, & Zhong, 2007). This is exemplified by the fact that nisin is generally not as effective in the preservation of meat as it is in dairy products. This is though to be due to interference by meat components such as phospholipids that limits its activity, especially where there may be a high-fat content (Deegan, Cotter, Hill, & Ross, 2006).

Certain food additives have been shown to be antagonistic to nisin. For example, nisin is degraded in the presence of sodium metabisulphite (an antioxidant, bleaching and broad spectrum antimicrobial agent) and titanium dioxide (whitener) which are often used in foods. Nisin works best in liquid and homogenous foods rather than solid and heterogeneous foods products (Delves-Broughton, Blackburn, Evans, & Hugenholtz, 1996).

The inactivation of bacteriocins by enzymes proteolytic enzymes in foods, particularly in fresh meat products, has been suggested as one of the contributing factors that limits antimicrobial efficacy (Degnan, Buyong, & Luchansky, 1993). Research has been directed at enhancing the antimicrobial activity of nisin in systems liposome encapsulation (Laridi et al., 2003) and also at incorporation in micro-particles of calcium alginate (Wan, Gordon, Muirhead, Hickey, & Coventry, 1997). Recent advances in this field are the use of immobilized nisin in the development of antimicrobial packaging (Mauriello, De Luca, La Storia, Villani, & Ercolini, 2005).

Table 3. Examples of world-wide use of nisin
Country
Argentina
Australia
Belgium
Brazil
France
Italy
Mexico
Netherlands
Peru
Russia
UK
US

Source: Adapted from Cleveland, Montville, Nes, and Chikindas (2001).
Clinical applications

Over applications of nisin have been studied, due to their several favorable properties, phospholipids vesicles are being considered for the encapsulation and controlled release of food material, nutraceuticals, cosmetics and pharmaceuticals (Colas et al., 2007).

Although the main nisin application in foods as a natural agent preservative, researches have verified its potential use for therapeutic purposes, particularly in the treatment of atopic dermatitis (Valenta, Bernkop-Schnürch, & Rigler, 1996), stomach ulcers caused and colon infections for patients with immune deficiencies (Dubois, 1995; Kim et al., 2003). Additionally, researches showed the antimicrobial activity of nisin in the control respiratory tract infections caused by *Staphylococcus aureus* in a model animal (De Kwaadsteniet, Doeschate, & Dicks, in press). Fernández, Delgado, Herrero, Maldonado, and Rodríguez (2008) studied an application of bacteriocin nisin as an efficient alternative to antibiotics for the treatment of staphylococcal mastitis during lactation in women.

Other interesting pharmaceutical application of nisin, can be a future development of a potent vaginal contraceptive for humans (Aranha, Gupta, & Reddy, 2004). Gupta et al. (2008), continued the investigation and showed that nisin did not reveal any evidence of toxicity and has contraceptive properties together with a favorable toxicity profile, nisin shows unique clinical potential as a vaginal prophylactic contraceptive for women who are at high risk of acquiring STI/HIV by heterosexual vaginal transmission. It has also been used in health care products such as toothpaste and skin care products.

As veterinary use, nisin is currently used as sanitizer against mastitis pathogens (*Staphylococcus* and *Streptococcus* species) (Cao, Wu, Xie, Hu, & Mo, 2007; Wu, Hu, & Cao, 2007).

Future trends

Residual effluents from food industries as milk whey, can be considered an excellent growth medium for microorganisms. However, economical problems in transporting the whey have posed as obstacles to adopting any process or its utilization. This fact is due to its high water content and storage problems due to it being readily subjected to bacterial and fungal spoilage. These problems have been solved to a great extent with the development of reverse osmosis and ultrafiltration techniques used for the concentration of whey. Immobilization technology has been the convenient method to allow reutilization of cells, higher cell densities in bioreactor and easier purification of the final product (Panesar, Kennedy, Gandhi, & Bunko, 2007). Raw materials donated for dairy industry are important to the overall economy of the process, as they account for 50% of the final production cost and also reduce the expenses with waste treatment (Joshi et al., 2008; Makkar & Cameotra, 1999). Others authors consider that fermentation medium can represent almost 30% of the cost for a microbial fermentation (Rodrigues, Teixeira, & Oliveira, 2006).

There is no universal method for bacteriocin purification, since that it often differs substantially in their amino acid sequence and other properties such as net charge or hydrophobicity. Bacteriocins are small molecular size and they are often difficult to separate from the components of protein digests used in culture media. These components may interfere directly in nisin activity.

Nisin commercial preparations are available as powders and not completely soluble. Researchers (Cleveland, Chikindas, & Montville 2002; Scott & Taylor, 1981) showed differences in activity of the commercial preparation of Nisaplin (2.5% nisin) and pure nisin. They speculated that the milk proteins in the preparations bound nisin, limiting antimicrobial activity. So, the partially or whole purification of bacteriocin can increase its activity and performance.

The conventional chromatographic methods employed in bacteriocin purification process proposed in the literature, frequently produce satisfactory results only on a small scale. They are expensive, present low yield, difficult to handle, and unsuitable for large-scale industrial production (López et al., 2007). Methods based on hydrophobic interaction chromatography step using an octyl-sepharose or butyl-sepharose column, adsorption/desorption, aqueous two-phase systems, potentially could decrease the purification costs.

Renewable substrates from industrial wastes, represents potential use of alternative fermentative medium for a reduction in nisin production and an incentive in their application in large-scale. It could represent a promising advance for the microbiological safety and maintenance of sensory properties in dairy products. However, further research is needed to identify drawbacks that may affect their future applications, as the development of innovative researches in the pharmaceutical area.

Acknowledgements

The authors wish to thank the Brazilian Committees for the Scientific Technology Research (CNPq, FAPESP, CAPES), for financial support and scholarship. Special thanks are given to Instituto Adolfo Lutz (IAL/SP).

References

Abee, T., Krocel, L., & Hill, C. (1995). Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. *International Journal of Food Microbiology*, 28, 169–185.

Aranha, C., Gupta, S., & Reddy, K. V. R. (2004). Contraceptive efficacy of antimicrobial peptide nisin: in vitro and in vivo studies. *Contraception*, 69, 333–338.

Arauz, L. J., Jozala, A. F., Pinheiro, G. S., Mazzola, P. G., Pessoa Jr., A., & Vessoni Penna, T. C. (2008). Nisin expression production from *Lactococcus lactis* in milk whey medium. *Journal of Chemical Technology & Biotechnology*, 83, 325–328.

Bauer, R., & Dicks, L. M. (2005). Mode of action of lipid II-targeting lantibiotics. *International Journal of Food Microbiology*, 101(2), 201–216.
Belfiore, C., Castellano, P., & Vignolo, G. (2007). Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators. *Food Microbiology*, 24(3), 223–229.

Bozaris, I. S., & Adams, M. R. (1999). Effect of chelators and nisin produced in situ on inhibition and inactivation of gram negatives. *International Journal of Food Microbiology*, 53, 105–113.

Breukink, E., van Heusden, H. E., Vollmerhaus, P. J., Swiezewska, E., Brunner, L., Walker, S., Heck, A. J., & de Kruifff, B. (2003). Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. *Journal of Biological Chemistry*, 278(22), 19898–19903.

Cao, L. T., Wu, J. Q., Xie, F., Hu, S. H., & Mo, Y. (2007). Efficacy of nisin in treatment of clinical mastitis in lactating dairy cows. *Journal of Dairy Science*, 90(8), 3980–3985.

Chandrapati, S., & O’Sullivan, D. J. (1998). Procedure for quantifiable assessment of nutritional parameters influencing Nisin production by *Lactococcus lactis* subsp. *lactis*. *Journal of Biotechnology*, 63, 229–233.

Cheigh, C. I., Choi, H. J., Park, H., Kim, S. B., Kook, M. C., Kim, T. S., Hwang, J. K., & Pyun, Y. R. (2002). Influence of growth conditions on the production of a nisin-like bacteriocin by *Lactococcus lactis* subsp. *lactis* A164 isolated from kimchi. *Journal of Biotechnology*, 95(3), 225–235.

Cheigh, C. I., Kook, M. C., Kim, S. B., Hong, Y. H., & Pyun, Y. R. (2004). Simple one-step purification of nisin Z from unclarified culture broth of *Lactococcus lactis* subsp. *lactis* A164 using expanded bed ion exchange chromatography. *Biotechnology Letters*, 26, 1341–1345.

Cleveland, J., Chikindas, M., & Montville, T. J. (2002). Multimethod assessment of commercial nisin preparations. *Journal of Industrial Microbiology & Biotechnology*, 29, 228–232.

Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. *International Journal of Food Microbiology*, 71, 1–20.

Colas, J.-C., Shi, W., Rao, V. S. N. M., Omri, A., Mozafai, M. R., & Singh, H. (2007). Microscopical investigations of nisin-loaded nanoliposomes prepared by Mozafai method and their bacterial targeting. *Micron*, 38, 841–847.

De Kwaadsteniet, M., Doeschate, K. T., & Dicks, L. M. (2009). Nisin F from the treatment of respiratory tract infections caused by Staphylococcus aureus. *Letters in Applied Microbiology*, 48, 65–70.

De Vos, W. M., Mulders, J. W., Hugenholz, J., & Kuipers, O. P. (1993). Properties of nisin Z and distribution of its genes, nisZ, in *Lactococcus lactis*. *Applied and Environmental Microbiology*, 59, 213–218.

De Vuyst, L., & Vandamme, E. J. (1992). Influence of the carbon source on nisin production in *Lactococcus lactis* subsp. *lactis* batch fermentations. *Journal of General Microbiology*, 138, 571–578.

De Vuyst, L., & Vandamme, E. J. (1994). Nisin, a lantibiotic produced by *Lactococcus lactis* subsp. *lactis*: properties, biosynthesis, fermentation and applications. In: *Bacteriocins of Lactic acid bacteria* (pp. 1–221). London: Blackie Academic & Professional.

Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: biological tools for bio-preservation and shelf-life extension. *International Dairy Journal*, 16, 1058–1071.

Degnan, A. J., Buyong, N., & Luchansky, J. B. (1993). Antilisterial activity of pediocin AcH in model food systems in the presence of an emulsifier or encapsulated with liposomes. *International Journal of Food Microbiology*, 18(2), 127–138.

Delves-Broucha, J., Blackburn, P., Evans, R. J., & Hugenholz, J. (1996). Applications of the bacteriocin, nisin. *Antonie Van Leeuwenhoek*, 69, 193–202.

Devlieghere, F., Vermeiren, L., & Debever, J. (2004). New preservation technologies: possibilities and limitations. *International Dairy Journal*, 14, 273–285.

Dubois, A. (1995). Spiral bacteria in the human Stomach: the gastric Helicobacter. *EID-Digestive Diseases Division*, 1, 79–85.

EEC, 1983. EEC Commission Directive 83/463/EEC.
evaluation of substrates for its production. *Journal of Industrial Microbiology & Biotechnology, 34,* 779–785.

Lv, W., Zhang, X., & Cong, W. (2005). Modelling the production of nisin by *Lactococcus lactis* in fed-batch culture. *Applied Microbiology and Biotechnology, 68*(3), 322–326.

Makkar, R. S., & Cameotra, S. C. (1999). Biosurfactant production by microorganisms on unconventional carbon sources. *Journal of Surfactants and Detergents, 2*(2), 237–241.

Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. *Letters in Applied Microbiology, 41,* 464–469.

Millette, M., Smoragiewicz, W., & Lacroix, M. (2004). Antimicrobial potential of immobilized *Lactococcus lactis* subsp. lactis ATCC 11454 against selected bacteria. *Journal of Food Protection, 67*(6), 1184–1189.

Mondragón-Parada, M. E., Nájera-Martinez, M., Juárez-Ramírez, C., Galíndez-Mayer, J., Ruiz-Ordaz, N., & Cristiani-Urbina, E. (2006). Lactic acid bacteria production from whey. *Applied Biochemistry and Biotechnology, 134,* 223–232.

Morris, S. L., Walsh, R. C., & Hansen, J. N. (1984). Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. *Journal of Biological Chemistry, 259,* 13590–13594.

Naghmouchi, K., Kheadre, E., Lacroix, C., & Fliss, I. (2007). Class IIa bacteriocin cross-resistance phenomenon in *Listeria monocytogenes*. *Food Microbiology, 247*–8, 718–727.

O’Sullivan, L., Ross, R. P., & Hill, C. (2002). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. *Biochimie, 84,* 593–604.

Panesar, P. S., Kennedy, J. F., Gandhi, D. N., & Bunko, K. (2007). Bioutilization of whey for lactic acid production. *Food Chemistry, 105,* 1–14.

Parente, E., & Ricciardi, A. (1994). Influence of pH on the production of enterocin 1146 during batch fermentation. *Letters in Applied Microbiology, 19*(1), 12–15.

Parente, E., & Ricciardi, A. (1999). Production, recovery, and purification of bacteriocins from lactic acid bacteria. *Applied Microbiology and Biotechnology, 52,* 628–638.

Pongtharangkul, T., & Demirci, A. (2004). Evaluation of agar diffusion bioassay for nisin quantification. *Applied Microbiology and Biotechnology, 65,* 268–272.

Pongtharangkul, T., & Demirci, A. (2007). Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor. *Applied Microbiology and Biotechnology, 74*(3), 555–562.

Prioul, G., Turcotte, C., Labarre, L., Lacroix, C., & Fliss, I. (2000). Rapid purification of nisin Z using specific monoclonal antibody-coated magnetic beads. *International Dairy Journal, 10,* 627–633.

Rodrigues, L. R., Texeira, J. A., & Oliveira, R. (2005). Low-cost fer-}

"
Artigo 9.5.2 – Nisin expression production from *Lactococcus lactis* in milk whey medium
Nisin expression production from
* Lactococcus lactis * in milk whey medium

Luciana Juncioni de Arauz, Angela Faustino Jozala,* Gabriel Soares Pinheiro,
Priscila Gava Mazzola, Adalberto Pessoa Júnior and
Thereza Christina Vessoni Penna

Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, SP, Brazil

Abstract

BACKGROUND: Nisin is a commercially available bacteriocin produced by *Lactococcus lactis* ATCC 11454 and used as a natural agent in the biopreservation of food. In the current investigation, milk whey, a byproduct from dairy industries was used as a fermentation substrate for the production of nisin. *Lactococcus lactis* ATCC 11454 was developed in a rotary shaker (30 °C/36 h/100 rpm) using two different media with milk whey (i) without filtration, pH 6.8, adjusted with NaOH 2 mol L\(^{-1}\) and without pH adjustment, both autoclaved at 121 °C for 30 min, and (ii) filtrated (1.20 µm and 0.22 µm membrane filter). These cultures were transferred five times using 5 mL aliquots of broth culture for every new volume of the respective media.

RESULTS: The results showed that culture media composed of milk whey without filtration supplied *L. lactis* its adaptation needs better than filtrated milk whey. Nisin titers, in milk whey without filtration (pH adjusted), was 11120.13 mg L\(^{-1}\) in the second transfer, and up to 1628-fold higher than the filtrated milk whey, 6.83 mg L\(^{-1}\) obtained in the first transfer.

CONCLUSIONS: Biological processing of milk byproducts (milk whey) can be considered a profitable alternative, generating high-value bioproducts and contributing to decreasing river disposals by dairy industries.

© 2008 Society of Chemical Industry

Keywords: batch culture; milk whey; bacteriocin; cells adaptation; growth conditions

INTRODUCTION

The bioactive peptide, nisin, is synthesized by certain strains of *Lactococcus lactis* subsp. *lactis* during its exponential growth phase.\(^1\) It has a molar mass of 3.4 kDa and is composed of 34 amino acid residues, including unsaturated amino acids and lanthionine residues.\(^2\) The unusual amino acids could be responsible for important properties of the nisin molecule, i.e. thermostability and bactericidal action.\(^3\) Nisin also has other desirable characteristics, such as no toxicity, degradation by digestive enzymes, and absence of color and flavor.\(^4\)

The solubility, stability and biological activity of nisin are dependent on the solution pH.\(^5\) At pH values lower than 6.0, at least 80% of the expressed nisin is released into the growth medium. At pH values higher than 6.0, nisin is mostly retained within the cell membrane.\(^6,7\)

Nisin has a wide antimicrobial activity spectrum against Gram-positive bacteria and their spores, but shows little or no activity against Gram-negative bacteria, yeasts or moulds. However, Gram-negative bacteria can be sensitized to nisin by exposure to chelating agents (EDTA), sublethal heat, and freezing.\(^8,9\) This bacteriocin is commercially used as a natural agent for food biopreservation, and is considered safe by World Health Organization (WHO) and by Food and Drug Administration (FDA), also it has received the designation ‘Generally Recognized as Safe’ (GRAS).\(^5,1\) As a result of its antimicrobial properties, nisin has been accepted as a safe and natural preservative in different areas of the food industry and it has also been used in treatments for some health conditions (stomach ulcers, colon infections), cosmetic, and veterinary products.\(^9,10\)

Lactic acid bacteria are nutritionally fastidious and the production of bacteriocins are normally performed in complex growth media. Although these media promote exuberant growth and relatively high bacteriocin concentration levels, their high cost make them unsuitable for a large-scale production.\(^11\) On the other hand, some cheap raw materials such as whey, sugar molasses and mussel-processing wastes have also been reported as culture media for bacteriocins production.\(^12\)
Vessoni Penna and co-workers\(^7\) verified that skimmed milk in comparison to other synethics media, enhanced the expression of nisin from the cells into the medium. For process cost reduction, Jozała et al.\(^1\) observed that diluted skimmed milk, at 25% of standard concentration, improved nisin production.

Whey is a byproduct of the dairy industry and contains rich nutrients such as lactose, soluble proteins and minerals salts. Unfortunately, whey and its associated nutritional qualities have traditionally been treated as waste and represent an important disposal and pollution issue because of its high biological and biochemical oxygen demand.\(^10\) Consequently, it is treated as waste and represent an important disposal of a new volume of each medium was repeated five times (first, second, third, fourth and fifth transfers) consecutively.

After 36 h incubation, 5 mL cell suspensions were aseptically withdrawn from the flasks to determine pH and nisin concentration. Possible contaminations of cultures were monitored using a Gram staining technique.

Nisin activity assays

The activity of the expressed nisin was evaluated by the agar diffusion method. For detection of nisin activity, the cell suspension was centrifuged at 13.201 \(g\) for 10 min at 10 \(^\circ\)C, and the supernatant collected was filtered through a 0.22 \(\mu m\) membrane filter. The titers of nisin expressed and released in culture media were quantified and expressed in arbitrary units (AU mL\(^{-1}\) of medium) by agar diffusion\(^13,18\) using \(L.\) sakei as the sensitive microorganism. \(L.\) sakei was grown in MRS broth and incubated in the shaker (100 rpm at 30 \(^\circ\)C for 24 h).

The bioassay agar plates prepared for \(L.\) sakei were composed of 0.8% Bacto agar (Difco) and MRS broth. After autoclaving, the agar medium (100 mL) was cooled to 40 \(^\circ\)C and inoculated with 600 \(\mu L\) of the 24 h culture (50 mL) of the corresponding nisin-sensitive microorganism. The agar (20 mL) was aseptically poured into sterile Petri dishes (100 \(\times\) 15 mm) and after solidified, 3 mm wells were cut out with a sterile pipe of 5 mm total diameter.

From every sample, 50 \(\mu L\) of culture supernatant from centrifuged \(L.\) lactis suspension was transferred into the wells on the surface of the \(L.\) sakei inoculated agar.

The plates, without inversion, were incubated at 30 \(^\circ\)C for 24 h. Afterwards, the diameters of the growth inhibition zones were measured in four directions and the average diameters (\(\pm 5\) mm) of the halos were related to arbitrary units (AU mL\(^{-1}\)). The results were compared with a nisin standard curve.

For the standard curve, a stock solution of nisin was prepared by adding 1 g of commercial nisin (Nisin, Sigma, St Louis, MO - standard at an activity of 10\(^6\) AU, containing 25 000 \(\mu g\) of nisin per gram) into 10 mL of 0.02 mol L\(^{-1}\) HCl. The relationship between arbitrary units (AU mL\(^{-1}\)) and halo diameter (H, mm) was determined using concentrations of standard nisin (10\(^1\) to 10\(^9\) AU mL\(^{-1}\)). Based on calibration curves between AU mL\(^{-1}\) and IU mL\(^{-1}\), 1.09 \pm 0.17 AU corresponded to 1.0 IU (40 IU = 1 \(\mu g\) of pure nisin A). The activity of nisin expressed in AU mL\(^{-1}\) was converted to mg L\(^{-1}\), through the relation: Nisin (mg L\(^{-1}\)) = (\(z \times 0.025\)), where \(z =\) AU mL\(^{-1}\) and 0.025 is a conversion factor related to 2.5% of pure nisin. A standard curve plot based on the relationship of the width of the inhibition zones (mm) (X-axis) and log of nisin concentration in AU mL\(^{-1}\) (Y-axis) is shown in Fig. 1.

MATERIALS AND METHODS

Bacterial strains and media

The nisin-producing strain of \(L.\) lactis ATCC 11454 and the nisin-sensitive indicator strain of \(Lactobacillus\) sakei ATCC 15 521 were used in this study. Both microorganisms were maintained as frozen stock held at \(-80\) \(^\circ\)C in MRS broth (Difco, Detroit, MI) with 40% (v/v) glycerol.\(^17\) Diluted milk whey (mixed with wash water) pH 4.0 was generously provided by a local dairy plant (Brazil).

Batch cultures

Milk whey was split into two samples: (i) raw (without filtration) with no pH adjustment, and adjusted to pH 6.8 with 2 mol L\(^{-1}\) NaOH, both autoclaved at 121 \(^\circ\)C for 30 min; and (ii) filtrated milk whey with no pH adjustment. The filtration process had two steps: (1) filtration through a 1.20 \(\mu m\) membrane (to remove bigger insoluble proteins) followed by (2) filtration through a sterilizing membrane (0.22 \(\mu m\)).

A pre-culture with 100 \(\mu L\) of the stock culture of \(L.\) lactis (10\(^8\) CFU mL\(^{-1}\)) was inoculated into 50 mL of MRS broth in 250 mL flasks on the shaker (100 rpm/36 h/30 \(^\circ\)C).

From the pre-culture, 5 mL aliquots of bacterial suspension were transferred to 50 mL of the milk whey medium (filtrated or without filtration) in 250 mL flasks, which were incubated for another period of 36 h (100 rpm/30 \(^\circ\)C). The transfer and incubation activity of 5280 IU mL\(^{-1}\) after 9 h of processing (pH 4.9). Mondrígamon-Parada et al.\(^15\) verified that supplemented filtrated whey enhanced the biomass production of lactic acid bacteria. Some researchers applied a mixed culture of \(L.\) lactis and \(Saccharomyces\) cerevisiae to whey-based medium to stimulate the production of nisin.\(^16\)

In this work, nisin production by \(L.\) lactis was evaluated using milk whey (filtrated and without filtration) in batch cultures. This study utilized milk whey is no supplement to promote the growth of \(L.\) lactis or the production of nisin.
Nisin expression by *L. lactis* in milk whey medium

RESULTS AND DISCUSSION

To verify the influence of milk whey on *L. lactis* behavior, 5 mL from the growth culture cells were transferred to 50 mL of fresh media in 250 mL Erlenmeyer flasks. This process was repeated consecutively five times and each transfer was incubated under the same conditions (100 rpm/30 °C/36 h) as reported in previous work.\(^7\),\(^18\)

Table 1 shows the results for nisin activity (AU mL\(^{-1}\)), detected by inhibitions area, which was correlated to standard curve represented in Figure 1.

The pre-culture of *L. lactis* (10\(^8\) CFU mL\(^{-1}\)) in MRS, stimulated the expression of nisin in the first transfers (i) with no filtration (1153.03 and 7595.56 mg L\(^{-1}\)) and (ii) with filtration (6.83 mg L\(^{-1}\)).

The highest nisin activity, 11 120.13 mg L\(^{-1}\) was detected in the second transfer of milk whey without filtration at pH 5.89, containing the insoluble proteins from the medium. However, nisin expression decreased in the third transfer, reducing the cultivation time. The lowest value of nisin concentration was 6.83 mg L\(^{-1}\), achieved in the first transfer using filtrated milk whey at low pH 3.61, without HCl.

The decrease in pH is extremely important for the release of nisin into the media; this is caused by fermentation of lactose into lactic acid, stimulating the production of nisin by cells (pH < 6.0).\(^5\),\(^7\) In this work, the best nisin activity was detected at higher pH values (milk whey without filtration, pH 5.89), on the other hand the lowest (pH 3.50) nisin activity was observed in media without pH initially adjusted to 6.80. In these last cultures, high nisin levels could not be obtained, maybe because of an early sharp decrease in pH, possibly owing to lactic acid accumulation.

Of the two media (filtrated and without filtration), milk whey without filtration was better than filtrated milk whey; the higher nisin concentration was probably related to insoluble proteins released into the media. In the filtrated milk whey the insoluble proteins were removed in the filtration step, this being the single most important nutritional difference between the composition of the two media. Removal of the insoluble proteins affected the metabolism of the microorganisms, inhibiting the biosynthesis of nisin.

Guerra and co-workers\(^11\) studied the utilization of milk whey in batch cultures for 18 h, and observed higher nisin production in diluted whey (mixed with

![Figure 1. Standard curve relating nisin activity to diameter of inhibiting area (zones without *L. sakei* growth), obtained using the agar diffusion assay, through serial dilutions of nisin standards with HCl 0.02N.](image)

Table 1. Nisin production by *L. lactis* growth for transfers after 36 h to a new milk whey medium

Medium	pH	Transfers	Halo (mm)	\(10^{0.2408x-0.8745}\) (AU mL\(^{-1}\))	Log (AU mL\(^{-1}\))	Nisin (mg L\(^{-1}\))
aFiltrated milk whey	4.53	Preculture	29.75	1946 704.35	6.29	48 667.61
	3.61	1	13.75	273.21	2.44	6.83
	3.47	2	0	0	0	0
	3.45	3	0	0	0	0
	3.52	4	0	0	0	0
	0	5	0	0	0	0
Milk whey without filtration 1	4.53	Preculture	29.75	1946 704.35	6.29	48 667.61
	3.64	1	23	46 121.14	4.66	1153.03
	3.47	2	0	0	0	0
	3.45	3	14.25	360.50	2.56	9.01
	3.52	4	0	0	0	0
	0	5	0	0	0	0
Milk whey without filtration 2	4.2	Preculture	23.50	60 855.52	4.78	1521.39
	5.39	1	26.4	303 822.55	5.48	7 956.56
	5.89	2	27.09	444 805.35	5.66	11 120.13
	5.86	3	25.58	192 291.46	5.28	4807.20
	5.89	4	0	0	0	0
	5.86	5	0	0	0	0

\(^a\) Filtrated milk whey: the medium was filtrated through a 1.20 \(\mu\)m membrane (to remove large insoluble proteins) followed by filtration in sterilizing membrane (0.22 \(\mu\m).\n
\(^b\) Milk whey without filtration 1: the insoluble proteins were removed by filtration (1.20 \(\mu\m) membrane), autoclaved at 121 °C/30 min and pH not adjusted.

\(^c\) Milk whey without filtration 2: the insoluble proteins were removed by filtration, autoclaved at 121 °C/30 min and pH adjusted to 6.80.
wash waters), 22.9 BU mL\(^{-1}\) (BU - bacteriocin units) in relation to concentrated whey (liquid remaining after the first cheese pressing), 8.3 BU mL\(^{-1}\).

Jozala et al.\(^{13}\) showed that nutritional components of diluted skimmed milk at 25% of standard concentration (maximum nisin 501.93 mg L\(^{-1}\)) influenced the expression of nisin from cells during batch culture, suggesting that milk whey can increase nisin production and reduce the production cost of this biomolecule. The maximum nisin titers obtained in the present study in milk whey without filtration (11120.13 mgL\(^{-1}\)) was 22-fold higher than that in the diluted skimmed milk mentioned. As a low cost culture medium, the high nutrient content of cow’s milk and milk whey provide for excellent growth of \(L.\) lactis and the expression of nisin.

The results obtained demonstrate that the utilization of milk whey, a byproduct of the dairy industry, can be utilized as a substrate for the formation and expression of nisin by \(L.\) lactis, as has been reported previously.\(^{13}\) This low-cost medium when used for microbial cultures, has economic advantages and reduces environmental pollution, which should stimulate research into its further use.

ACKNOWLEDGMENTS
The authors would like to thank the Brazilian Committees for the Scientific Technology Research (CNPq, FAPESP, CAPES), for financial support and scholarship. Special thanks are given to Instituto Adolfo Lutz (IAL/SP) and Danone Ltda. (dairy plant) for providing milk whey for the experiments.

REFERENCES
1 Vessoni Penna TC and Moraes DA, Optimization of nisin production by \(Lactococcus\) lactis. \(Appl\) Biochem Biotechnol 98-100:775–789 (2002).
2 Benech RO, Kheadr EE, Lacroix C and Fliss I, Antibacterial activities of nisin \(Z\) encapsulated in liposomes or produced in situ by mixed culture during cheddar cheese ripening. \(Appl\) Environ Microb 68:5607–5619 (2002).
3 De Vuyst L and Vandammen EJ, Influence of the carbon source on nisin production in \(Lactococcus\) lactis subsp. \(lactis\) batch fermentations. \(J\) Gen Microbiol 138:571–578 (1992).
4 Pongtharangkul T and Demirci A, Evaluation of agar diffusion bioassay for nisin quantification. \(Appl\) Microbiol Biotechnol 65:268–272 (2004).
5 De Vuyst and Vandamme EJ, Nisin, a lantibiotic produced by \(Lactococcus\) lactis subsp. \(lactis\): properties, biosynthesis, fermentation and applications, in \(Bacteriocins of Lactic Acid Bacteria\), ed. by De Vuyst and Vandammen EJ. Chapman & Hall, Glasgow, pp. 153–199 (1994).
6 Chandrapati S and O’Sullivan DJ, Procedure for quantifiable assessment of nutritional parameters influencing nisin production by \(Lactococcus\) lactis subsp. \(lactis\). \(J\) Biotechnol 63:229–233 (1998).
7 Vessoni Penna TC, Jozala AF, Novaes LCL, Pessoa Jr A and Cholewa O, Production of nisin by \(Lactococcus\) lactis in media with skimmed milk. \(Appl\) Biochem Biotechnol 121–124:619–637 (2005).
8 Vessoni Penna TC, Jozala AF, Gentille TR, Pessoa Jr A and Cholewa O, Detection of nisin expression by \(Lactococcus\) lactis using two susceptible bacteria to associate the effects of nisin with EDTA. \(Appl\) Biochem Biotechnol 121–124:334–346 (2006).
9 Delves-Broughton J, Blackburn P, Evans RJ and Hugenholtz J, Applications of the bacteriocin, nisin. \(Antonie\) Leuenhoek 69:193–202 (1996).
10 Liu C, Liu Y, Liao W, Wen Z and Chen S, Simultaneous production of nisin and lactic acid from cheese whey. \(Appl\) Biochem Biotechnol 113–116:627–638 (2004).
11 Guerra NP, Rua ML and Pastrana L, Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. \(Int\) \(J\) Food Microbiol 70:267–281 (2001).
12 Guerra NP and Pastrana L, Influence of \(pH\) drop on both nisin and pediocin production by \(Lactococcus\) lactis and \(Pediococcus\) acidilactici. \(Lett\) \(Appl\) Microbol 37:51–55 (2003).
13 Jozala AF, Andrade MS, Arauz LJ, Pessoa Jr A and Vessoni Penna TC, Nisin production utilizing skimmed milk aiming to reduce process cost. \(Appl\) Biochem Biotechnol 136–140:515–528 (2007).
14 Flores SH and Alegre RM, Nisin production from \(Lactococcus\) lactis A.T.C.C. 7962 using supplemented whey permeate. \(Biotechnol\) \(Appl\) Biochem 34:103–107 (2001).
15 Mondragón-Parada ME, Nájera-Martínez M, Juárez-Ramírez C, Galindo-Mayer J, Ruiz-Ordaz N and Cristiani-Urbina E, Lactic acid bacteria production from whey. \(Appl\) Biochem Biotechnol 134:223–232 (2006).
16 Liu C, Hu B, Liu Y and Chen S, Stimulation of nisin production from whey by a mixed culture of \(Lactococcus\) lactis and \(Saccharomyces\) cerevisiae. \(Appl\) Biochem Biotechnol 129–132:751–761 (2006).
17 Montrville TJ and Winkowski K, Biologically based preservation systems and probiotic bacteria. in \(Food Microbiology: Fundamentals and Frontiers\), ed. by Doyle MP, Beuchat LR and Montrville TJ. ASM Press, Washington, pp. 557–558 (1997).
18 Jozala AF, Novaes LCL, Cholewa O, Moraes D and Vessoni Penna TC, Increase of nisin production by \(Lactococcus\) lactis in different media. \(Afr\) \(J\) Biotechnol 4:262–265 (2005).
Artigo 9.5.3 – Nisin production utilizing skimmed milk aiming to reduce process cost
Nisin Production Utilizing Skimmed Milk Aiming to Reduce Process Cost

ANGELA FAUSTINO JOZALA, MAURA SAYURI DE ANDRADE, LUCIANA JUNCIONI DE ARAUZ, ADALBERTO PESSOA JR., AND THEREZA CHRISTINA VESSONI PENNA*

Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science, University of São Paulo, SP, Brazil, E-mail: tcvpenna@usp.br

Abstract

Nisin is a natural additive for conservation of food, pharmaceutical, and dental products and can be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Gram-negative bacteria. This study was performed to optimize large-scale nisin production in skimmed milk and subproducts aiming at low-costs process and stimulating its utilization. Lactococcus lactis American Type Culture Collection (ATCC) 11454 was developed in a rotary shaker (30°C/36 h/100 rpm) in diluted skimmed milk and nisin activity, growth parameters, and media components were also studied. Nisin activity in growth media was expressed in arbitrary units (AU/mL) and converted to standard nisin concentration (Nisaplin®; 25 mg of pure nisin is 1.0 × 10⁶ AU/mL). Nisin activity in skimmed milk 2.27 g total solids was up to threefold higher than transfers in skimmed milk 4.54 g total solids and was up to 85-fold higher than transfers in skimmed milk 1.14 g total solids. L. lactis was assayed in a New Brunswick fermentor with 1.5 L of diluted skimmed milk (2.27 g total solids) and airflow of 1.5 mL/min (30°C/36/200 rpm), without pH control. In this condition nisin activity was observed after 4 h (45.07 AU/mL) and in the end of 36 h process (3312.07 AU/mL). This work shows the utilization of a low-cost growth medium (diluted skimmed milk) to nisin production with wide applications. Furthermore, milk subproducts (milk whey) can be exploited in nisin production, because in Brazil 50% of milk whey is disposed with no treatment in rivers and because of high organic matter concentrations it is considered an important pollutant. In this particular case an optimized production of an antimicrobial would be lined up with industrial disposal recycling.

Index Entries: Artificial compounds; EDTA; fermentation processes; Gram-negative; Gram-positive; Lactococcus lactis; nisin.

*Author to whom all correspondence and reprint requests should be addressed.
Introduction

Nisin, a naturally occurring antimicrobial polypeptide, discovered in 1928 (1,2), is a monomeric pentacyclic subtype A antibiotic peptide (3.35 kDa with 34 amino acid residues), synthesized by Lactococcus lactis subsp. lactis (3,4) during exponential phase of bacteria growth (5,6). Nisin is used as a natural preservative in food and dairy industries, approved by Food and Drug Administration and GRAS (7), meeting the requirements of safe food with fewer chemical additives.

Applications of nisin include dental-care products (8), pharmaceutical products such as stomach ulcers and colon infection treatment and potential birth control (9–11). Nisin solubility and stability improves substantially with a decrease in pH values. Nisin is stable at pH 2.0, insoluble at pH 8.5, and can be autoclaved at 121°C without denaturation (12). The complete inactivation of nisin activity is observed after 30 min at 63°C and pH 11.0 (13).

Nisin is not generally active against Gram-negative bacteria, yeasts, and fungi. The outer membrane of Gram-negative bacteria prevents nisin from reaching the site of action. Outer membrane permeability can be altered by treatment with chelators, such as disodium ethylenediamine tetraacetate (EDTA) or high hydrostatic pressure, resulting in increased sensitivity toward nisin (14–20). The mechanism of growth inhibition by EDTA is not fully understood, but generally attributed to its chelating activity. EDTA binds primarily divalent cations (21) that are present in the supernatant obtained from the growth media, which salts decrease the amount of EDTA added. Therefore, we can imply that the washing of the cells should be enough to extract the majority of salts from the culture media, in order not to compete with EDTA main activity of destabilizing the membrane of some Gram-negative strains by chelating Ca and Mg salts, which are necessary for lipopolysaccharide to bind to cell wall (21–23).

In a system combining different antimicrobials, treatment with nisin/EDTA or nisin/potassium sorbate at 10°C showed a meaningful inhibition in Escherichia coli O157-α5 compared with samples treated with nisin, EDTA, or potassium sorbate alone (17,25). The inhibitory activity of nisin on Gram-negative organisms can be improved by combining nisin with EDTA in culture media (26). Vessoni Penna et al. (27) using L. lactis ATCC 11454 observed that nisin production was the highest in a growth medium containing 25% skimmed milk added to either 25% M17 or MRS, it was showed that nisin production depend on the nutrients concentration and the transfers renewed the media each at 36 h. The influence of milk compounds on nisin activity was observed in previous work (28) and skimmed milk (9.09% dry matter) increased nisin activity and release into the media for all five transfers. Although the formulations of skimmed milk diluted with MRS broth were found to stimulate optimal nisin production.

Lactic acid bacteria are fastidious microorganisms and require a medium containing nutrients, which enhance the growth and production of nisin (29).
In this study, diluted skimmed milk in different concentrations was used to improve nisin production and also examined the utilization of skimmed milk compounds (artificial reproduction) to determine which nutrient is essential to nisin production. With nisin activity related to growth conditions of *L. lactis*, the effects of culturing parameters such as media components were evaluated in this study to optimize the expression of nisin and release into media.

Material and Methods

The nisin-producing strain of *L. lactis* ATCC 11454 and the nisin-sensitive indicator strain of *L. sake* ATCC 15521 (Gram-positive) were used in this study. The cultures of *L. lactis* and *L. sake* were maintained at –80°C in MRS broth (Man Rugosa Shepeer-Bacto Lactobacilli MRS broth, DIFCO) with 40% (v/v) of glycerol (26–28).

Growth Medium and Inoculum

The influence of milk components on nisin activity was studied in previous work (27,28). In this present work different medium were elaborated with diluted skimmed milk to improve the growth conditions for *L. lactis*. Before inoculating experimental media, 100 µL of the stock culture of *L. lactis* was grown (preinoculum) in MRS broth (DIFCO) into 50 mL of broth in 250-mL Erlenmeyer flasks and incubated on a rotary shaker (100 rpm) at 30°C for 36 h. From the growth culture, 5-mL aliquots of bacterial suspension were transferred to 50 mL of the experimental medium in 250-mL flasks, which were incubated for another period of 36 h (100 rpm/30°C). The transfer and incubation of a new volume of each medium was repeated five times (first, second, third, fourth, and fifth transfers).

In the first group of assays, utilized skimmed milk (9.09 g total solids/standard concentration) was developed with following experimental medium: (a) skimmed milk at 50% of standard concentration (4.54 g total solids); (b) skimmed milk at 25% of standard concentration (2.27 g total solids); (c) skimmed milk at 12.5% of standard concentration (1.14 g total solids). All medium was diluted in sterile distilled water (Table 1).

In second group of assays, utilized skimmed milk compounds (artificial reproduction) was developed with following experimental medium: (a) casein (0.75 g) and lactose (1.25 g); (b) casein (0.75 g), lactose (1.25 g) plus calcium (0.06 g); (c) casein (0.75 g), lactose (1.25 g) plus sodium citrate (0.01 g); and (d) casein (0.75 g), lactose (1.25 g), calcium chloride (0.06 g) plus sodium citrate (0.01 g) (Table 2).

Fermentation Process

Preinoculum was prepared with 100 µL of the stock culture of *L. lactis* and was grown into 150 mL of MRS broth (36 h/100 rpm/30°C). The entire 150 mL of this culture was poured into 1.5 L of the diluted skimmed milk
Table 1
Nisin Production, Specific Production, Productivity, Proteins, and Sugar Consumption of *L. lactis* Growth for Every Transfer After 36 h to Diluted Skimmed Milk

Transfers	pH	Halo (mm)	10^{0.248(8x - 0.8745)}	LogNisin (AU/mL)	0.025 (mg/L)	Biomass gDCW/L	Productivity gDCW/h	Proteins gcasein/L	Sugars gLactose/L	
Compounds										
Preculture	4.5	17	1656.15	3.22	41.40	0.87	–	–	–	
	5.33	16.5	3312.07	3.52	82.80	1.58	<0.01	14.04	10.76	
4.54 g and pH 6.8	3	4.35	19	5019.96	3.70	125.50	1.43	0.0	14.86	22.74
	4	4.31	18.75	4370.19	3.64	109.25	1.64	<0.01	14.86	11.37
2.27 g and pH 6.8	3	4.36	18.25	3312.07	3.52	82.80	1.58	<0.01	14.04	10.76
	4	4.51	18.75	4370.19	3.64	109.25	1.64	<0.01	14.86	11.37
	5	4.34	21.5	20077.05	4.30	501.93	1.78	0.01	11.98	9.22
Preculture	4.55	12	103.54	2.02	2.59	0.84	–	–	–	–
1.14 g and pH 6.8	3	5.92	–	–	–	–	0.55	–	2.28	4.89
	4	6.47	9.5	25.89	1.41	0.65	0.41	–	3.70	4.18
	5	6.73	–	–	–	–	1.91	–	4.50	2.94
Table 2
Nisin Production, Specific Production, Productivity, Proteins, and Sugar Consumption of *L. lactis* Growth, for Every Transfer After 36 h to Artificial Compounds

Transfers	pH	Halo (mm)	Nisin production	Biomass	Productivity	Proteins	Sugars	
		(AU/mL)	10\(^{0.2408y - 0.8749x}\)	(AU/mL)	mg\(_{\text{niacin}}\)	mg\(_{\text{casein}}\)	(g DCW/L)	(g lactose/L)
Compounds			Log 0.025	0.025	mg DCW/h	(g DCW/L)	(g DM/L)	
1	3.9	14.5	414.10	2.62	10.35	0.15	–	13.41
2	6.29	9.75	29.74	1.47	0.74	0.42	–	16.19
Media A								
3	6.14	–	–	–	–	1.56	–	10.46
4	6.52	11.25	68.31	1.83	1.71	1.31	–	13.13
5	6.35	–	–	–	–	1.50	–	11.05
1	4.23	14.75	475.66	2.68	11.89	0.14	–	13.33
2	6.14	10.5	45.07	1.65	1.13	0.20	–	15.45
Media B								
3	6.27	–	–	–	–	0.26	–	9.91
4	6.64	–	–	–	–	0.23	–	13.70
5	6.43	–	–	–	–	0.19	–	14.80
1	4.36	11.25	68.31	1.83	1.71	0.18	–	13.41
2	6.61	10.5	45.07	1.65	1.13	0.15	–	8.32
Media C								
3	6.26	–	–	–	–	0.20	–	10.46
4	6.51	–	–	–	–	0.23	–	14.70
5	6.73	–	–	–	–	0.15	–	12.84
1	4.6	12.75	156.93	2.20	3.92	0.14	–	8.32
2	6.11	11	59.47	1.77	1.49	0.15	–	17.01
Media D								
3	5.9	–	–	–	–	0.19	–	6.53
4	6.37	–	–	–	–	0.26	–	13.48
5	6.43	–	–	–	–	0.24	–	14.75
(2.27 g\textsubscript{total solids}, pH 6.8) in a 2-L bench-scale fermentor (NBS-MF 105, New Brunswick Scientific, New Brunswick, NJ). The initial cell concentration in the fermentor was 0.58 ± 0.10 g/L. The total incubation time was 36 h at 30°C to observe variations of nisin activity associated with growth conditions. Foaming was controlled as needed by adding 0.5 mL of dimethylpolysiloxane (Sigma-Aldrich, Saint Louis, MO). Agitation and aeration were 200 rpm and 1.5 vvm, respectively. The airflow was measured by an online rotameter and set using a needle valve. The pH of the medium during cultivation was measured by an electrode (Ingold, Woburn, MA). Before the addition of inoculum to the fermentor, the propeller speed, aeration rate, and the temperature (30°C) were adjusted.

Analytical Procedures

Assays in rotator shaker in each transfer cell suspensions were aseptically withdrawn from the flasks and tested for pH, cellular density, colony number, and nisin concentrations. For this study, each fermentor culture was performed in triplicate. Samples were aseptically withdrawn from fermentor with interval of 4 h (10 sample points) and were collected and tested for biomass, nisin activity, and nutrients consumed. For this study, each sample was performed in triplicate.

Biomass, Total Sugars, and Total Proteins

The cellular biomass concentration, expressed in mg of dried cellular weight per liter of broth (mg · DCW/L), was determined from the optical density at 660 nm (OD\textsubscript{660}) by the calibration curve [biomass (mg · DCW/L) = 2.1042 × OD\textsubscript{660} + 0.124, \(R^2 = 0.998\)], as described in the previous work (26–28).

The lactose concentration, expressed in gram of lactose per liter of broth (g/L) was determined from the samples in the optical density at 540 nm (OD\textsubscript{540}) through colorimetric Somogyi-Nelson methodology (30). The standard curve [lactose g/L = (0.537 × OD\textsubscript{540 nm}) (0.0127], was developed for different concentrations (0.25–0.01 g/L) with standard lactose solution (Merk, Darmstadt, Germany).

The protein concentration, expressed in gram of casein per liter of broth (g/L) was determined from the samples in the optical density at 660 nm (OD\textsubscript{660}) through colorimetric Folin-phenol methodology described by Lowry (31). The standard curve [casein g/L = (0.9023 × OD\textsubscript{660 nm} − 0.0329] was developed for different concentrations (0.25–0.01 g/L) with the standard casein solution (Sigma, St. Louis, MO).

Nisin Activity

For nisin activity detection, the cell suspension was centrifuged at 12,000 rpm for 10 min at 25°C and the supernatant collected was filtered through a 0.22-μm membrane filter (Millipore®). The titers of nisin expressed
and released in culture media were quantified and expressed in arbitrary units (AU/mL of medium) by the agar diffusion assay (6,22) utilizing L. sake as a sensitive indicator microorganism. L. sake was grown in MRS broth and incubated (100 rpm/30°C/24 h). A 1.5-mL aliquot of the suspension (OD₆₆₀ = 0.7) was transferred and mixed with 250 mL of soft agar (MRS broth with 0.8% w/v of bacteriological grade agar). Each 20 mL of inoculated medium was transferred to Petri plates (100-mm diameter). After the agar solidified, 3-mm wells were cut out with a sterile metal pipe with 5 mm total diameter. The relation between (AU/mL) and international units (IU/mL) was determined by using Nisaplin® (a commercial purified nisin preparation containing 2.5 mg of nisin per gram of Nisaplin, corresponding to 10⁶ IU/g Nisaplin; Aplin & Barret Ltd, Beaminster, UK, distributed by Sigma Chemical). Standard solution of nisin were prepared by dissolving 1 g of Nisaplin into 10 mL of 0.02N HCl with 0.75% (w/v) NaCl (pH = 1.6–1.8).

The solution was autoclaved at 121°C for 15 min, and stored at 4°C. Further dilutions of the standard nisin solution were made as necessary by diluting in 0.02N HCl and water. With the standard curve (AU/mL = 10⁰.2408 H−0.8745), the concentrations of standard nisin (10⁰–10⁵ AU/mL) were related by the diameter of the inhibition halo (H, mm), and the activity of nisin from cells grown in the experimental media was determined and expressed in arbitrary units per mL (10⁰–10⁵ AU/mL). Based on the calibration curves between AU per mL and IU per mL, 1.09 ± 0.17 AU corresponded to 1.0 IU (40 IU = 1 µg of pure nisin A).

Using the standard solutions for calibration of nisin activity in all the assays, 10⁶ AU of nisin corresponded to 0.025 µgnisin/mL. The activity of nisin expressed in AU/mL was converted to nisin in milligrams per milliliters (mg/mL), through the relation: Nisin (mg/L) = (z × 0.025), where z = AU/mL. The concentration of nisin was also expressed in milligrams per liters (mg/L); and in the production of nisin (mg/L/h), the formation of nisin in milligrams per liters related to incubation time (h). The specific production of nisin (mg/mg) is the ratio between nisin concentration (mg/L) and the dry weight cell (mg · DCW/L). Productivity was expressed in milligrams nisin per milligram of DCW per hour as the ratio of the hourly milligrams of nisin (mg/L/h) and biomass (DCW).

Results and Discussion

L. lactis was transferred consecutively five times in the same growth medium and incubated under the same conditions (100 rpm/30°C/36 h) as proceeded in our previous works (26–28). Tables 1 and 2 show the results for nisin activity (AU/mL) and concentration (mg/L) in the analyzed samples.

Dilution of Milk

Vessoni Penna et al. (27) observed that milk at standard concentration (9.09% dry matter) increased nisin activity and released it into the media.
for all five transfers, from 408.02 to 884.74 mg/L, similar to that attained at the first transfer for both 25% MRS plus 25% milk and 25% M17 plus 25% milk. The highest nisin concentration (3563.20 mg/L) before the fifth transfer was observed for MRS 25% plus skimmed milk 25%. A dilution of both media (MRS plus milk and M17 plus milk) provided levels of nisin activity (63.68 mg/L for 17.36% M17 plus 17.36% milk and 161.19 mg/L for 17.36% MRS plus 17.36% milk) five times lower than detected relatively to 25% concentration for the media assayed.

Jozala et al. (28) indicated that the preculture growth in MRS allowed nisin release by \textit{L. lactis}; when compared with M17, nisin concentration was 1.7 times higher. Although nisin activity improved when milk was diluted with MRS and M17 broth to 25% of the original compounds. The nutrients and corresponding concentrations for three different media used in this work (Table 3), were shown to be correlated to the nisin activity data presented in Table 4. Nisin activity increased up to 97-fold from the first to the fifth transfer (90.14–8739.77 AU/mL) in milk diluted with water (4.54 g\text{total solids} at pH 6.8). Biomass (cells growth) increased up to threefold from the first to the fourth transfer (0.47–1.43 g/L) and in the fifth transfer decreased 1.5-fold (0.97g/L) (Fig. 1, Table 1).

Biomass (g\text{DCW/L}) and nisin activity (AU/mL) in diluted skimmed milk (2.27 g\text{total solids} at pH 6.8) increased gradually through the transfers (Table 1). The levels of \textit{L. lactis} biomass (0.49–1.78 g\text{DCW/L}) and nisin activity (1255.16–20077.05 AU/mL) ranged from first to fifth transfer for each period of 36 h. However, in diluted skimmed milk with half total solids (1.14 g\text{total solids}, pH 6.8), nisin activity reduced 11-fold from the first (273.21 AU/mL) to the fourth (25.89 AU/mL) transfers (Fig. 1, Table 1).

Comparing these results, the nisin activity through the transfers in the media with 2.27 g\text{total solids} was up to threefold and 85-fold higher than in those with 4.54 g\text{total solids} and 1.14 g\text{total solids}, respectively (Fig. 1). From culture media 2.27 g\text{total solids} the maximum biomass (1.78 g\text{DCW/L})
Table 4
Nisin Production, Specific Production, Productivity, Proteins, and Sugar Consumption of *L. lactis* Growth, After 36 h, in Fermentation Processes to Diluted Skimmed Milk 2.27 g_{0.0} total solids

Samples	Time (h)	Temperature (°C)	pH	O₂ (%)	rpm	Halo (mm)	Log AU/mL	mg/L	Biomass (g_{DCW}/L)	Proteins (g_{Cas}/L)	Sugars (g_{Lactose}/L)	
0	0	30	5.78	119.8	200	10.5	45.07	1.65	1.13	0.6	0.26	0.11
1	4	30	4.74	111.4	200	13.75	273.21	2.44	6.83	5.8	0.39	0.07
2	8	30	4.73	107.4	200	14.75	475.66	2.68	11.89	5.7	0.40	0.09
3	12	30	4.72	107	200	15.25	627.62	2.80	15.69	5.2	0.38	0.10
4	16	30	4.72	106.2	200	16.25	1092.70	3.04	27.32	6.5	0.40	0.20
5	20	30	4.72	104.5	200	16.5	1255.16	3.10	31.38	5.7	0.44	0.21
6	24	30	4.73	103.8	200	16.5	1255.16	3.10	31.38	6.4	0.44	0.21
7	28	30	4.73	103.3	200	16.5	1255.16	3.10	31.38	6.6	0.42	0.24
8	32	30	4.73	88.1	200	16.5	1255.16	3.10	31.38	5.9	0.28	0.23
9	36	30	4.74	88.5	200	18.25	3312.07	3.52	82.80	6.6	0.25	0.25
corresponded to the maximum nisin activity 20077.39 AU/mL = 501.93 mg/L, in the fifth transfer. However, in the same transfer from media with 4.54 g total solids, the maximum biomass did not correspond to the maximum nisin activity 8799.77 AU/mL = 218.93 mg/L (Fig. 1, Table 1).

Milk Components to Formulate Artificial Media

Four different groups of assays were developed utilizing artificial compounds based on proportions of skimmed milk with 2.27 g total solids to evaluate which nutrient influenced more nisin activity (Table 5). In the assay made up of casein (0.75 g) and lactose (1.25 g), nisin activity was reduced 14-fold from the first to the second transfer (414.10–29.70 AU/mL) and increased up to twofold from the second to the fourth transfer (29.70–68.31 AU/mL).

In the systems: (a) casein (0.75 g), lactose (1.25 g) plus calcium chloride (0.06 g); (b) casein (0.75 g), lactose (1.25 g) plus sodium citrate (0.01 g); and (c) casein (0.75 g), lactose (1.25 g), calcium chloride (0.06 g) plus sodium citrate (0.01 g), nisin activity was observed on the first and second transfers (Fig. 2, Table 2), the respective values were: (a) 475.66 and 45.07 AU/mL, (b) 68.31 and 45.07 AU/mL, and (c) 156.93 and 59.47 AU/mL.

The pH values on the assays with artificial compounds were high (ratio pH 6.5) and inhibited nisin activity. Release of intracellular nisin
Fig. 2. Relation between nisin activity (log AU/mL) and biomass (gDCW/L) through the transfers in rotatory shaker assays into media with artificial compounds media A; media B; media C; media D. AU/mL (log AU) and inhibition halo (H [mm]) was calculated through the equation: log [AU/mL] = 10(0.2408 × H − 0.8745).

Cheigh et al. (36) observed the highest nisin activity early in the stationary phase (20 h, 30°C) of L. lactis during batch fermentation in M17 broth (pH = 6.0) with 3% lactose added. In fact, M17 broth with 3% lactose resulted in eightfold greater nisin activity than either M17 supplemented with 0.5% glucose or in MRS broth. The authors confirmed low levels of nisin activity in both MRS and M17 broth, although these media favored cellular growth, with similar results obtained in this study (10^7–10^9 CFU/mL). Chandrapati and O’Sullivan (34) observed a 50% increment in nisin activity using sucrose as the carbon source in M17 broth for L. lactis culturing, over two transfers. The authors observed that glucose was the optimal carbon source tested, with glycerol the least suitable. They also
verified that the incorporation of either sodium or potassium phosphate into an artificial medium did not improve nisin production.

Single Batch Fermentation

In fermentation conditions, nisin activity was observed after 4 h (45.07 AU/mL) and stabilized in between 20 and 32 h process (1255.16 AU/mL). For the last 4 h fermentation (performing 36 h total process) the nisin production speeded up to threefold (3312.07 AU/mL). Oxygen demand was low in entire process and did not influence biomass or nisin production. The pH value was stabilized in 4 h cultivation (pH \(= 4.74 \pm 0.2\)) and was maintained through the process. (Fig. 3, Table 4).

Flóres and Monte Alegre (37) investigated nisin activity during the fermentation batch with \(L.\ lactis\) ATCC 7962, nisin bactericidal effect was detected after 4 h fermentation when 40% biomass had been produced. Furthermore, the maximum nisin activity was in 9 h fermentation (pH 4.9); however it decreased in the following 24 h process. Previous work (26) utilized in single batch fermentation culture media with skimmed milk plus MRS broth and the maximal nisin activity ranged from 1376.97 AU/mL (8 h fermentation) to 5934.03 AU/mL (16 h fermentation).

In the present work, the composition of the diluted skimmed milk (2.27 g\(_{\text{total solids}}\)) with no extra supplementation was verified to be enough for \(L.\ lactis\) growth with concomitant nisin production. Nisin activity in diluted skimmed milk (2.27 g\(_{\text{total solids}}\)) with no supplementation was similar to the activity of nisin expressed in the mixture of 25% skimmed milk
with 25% MRS broth in the previous work (27). Liu et al. (38) observed a specific nisin formation of 5.4×10^6 AU/g at pH 5.5 in M17 broth added with lactose as a carbon source, for immobilized L. lactis in continuous fermentation, where nisin formation was reported to be greatly influenced by medium dilution rate.

Conclusions

The culture media made up of diluted skimmed milk ($2.27 \text{ g}_{\text{total solids}}$) was shown to support better conditions for nisin production and activity by L. lactis. The mechanism for this improvement is unclear. Quality of a natural product cannot be reproduced in an artificial way, because milk composition is an extremely complex group of the natural nutrients. In this work L. lactis cells developed in minimum concentration of diluted skimmed milk; however, artificial compounded media did not favor cell adaptation and, consequently, failed nisin production.

Besides that skimmed milk dilution for fermentation batch and nisin by L. lactis cells showed similar behavior when compared with fermentation with skimmed milk plus MRS broth (26). This research shows the utilization of a low-cost growth media (diluted skimmed milk) to antimicrobial production with wide applications. Furthermore, the utilization of milk sub-products can be exploited (milk whey), because milk whey contains considerable levels of casein and lactose and these nutrients are observed to improve nisin production. In Brazil, 50% of milk whey is disposed with no treatment in rivers and because of high-organic matter concentrations milk whey is considered an important pollutant. In this particular case, an optimized production of an antimicrobial would be lined up with industrial disposal recycling.

Acknowledgment

The authors thank the Brazilian Committees for the Scientific Technology Research (CNPq, FAPESP, and CAPES) for financial support and scholarship.

References

1. Hurst, M. (1981), Appl. Microbiol. 27, 85–123.
2. Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001), Int. J. Food Microbiol. 71, 1–20.
3. Jung, G. (1991), Angew. Chem. Int. Ed. Engl. 30, 1051–1192.
4. de Vuyst, L. and Vandamme, E. J. (1992), J. Gen. Microbiol. 138, 571–578.
5. Buchman, G. W., Banerjee, S., and Hansen, J. N. (1988), J. Biol. Chem. 263, 16,260–16,266.
6. Vessoni Penna, T. C. and Moraes, D. A. (2002), Appl. Biochem. Biotechnol. 98–100, 775–789.
7. Hansen, J. N. (1994), Crit. Rev. Food Sci. Nutr. 34, 69–93.
8. Turner, S. R., Love, R. M., and Lyons, K. M. (2004), Int. Endodontic J. 37, 664–671.
9. Aranha, C., Gupta, S., and Reddy, K. V. R. (2004), Contraception 69, 333–338.
10. Dubois, A. (1995), EID Dig. Dis. Div. 10(3), 79–88.
11. Sakamoto, I., Igarashi, M., and Kimura, K. (2001), *J. Antimicrob. Chemother.* 47, 709–710.
12. Biswas, S. R., Ray, P., Johnson, M. C., and Ray, B. (1991), *Appl. Environ. Microbiol.* 57, 1265–1267.
13. Hansen, J. N., Chung, Y., and Liu, W. (1991), *ESCOM Science Publishers*, pp. 287–302.
14. Stevens, K. A., Sheldon, B. W., Klapes, N. A., and Klaenhammer, T. R. (1991), *J. Food Protection.* 55, 763–776.
15. Ganzle, M. G., Hertel, C., and Hammes, W. P. (1999), *J. Food Microbiol.* 48, 37–50.
16. Thomas, L. V., Clarkson, M., and Delves-Broughton, J. (2000), In: *Natural Food antimicrobial systems*. Naidu, A. S. (ed.), CRC Press, Washington D.C., pp. 463–524.
17. Fang, T. J. and Hung-Chi Tsai. (2004), *J. Food Prot.* 67(10), 2143–2150.
18. Ukuku, D. O. and Fett, W. (2004), *J. Food Prot.* 67, 2143–2150.
19. Vaara, M. (1992), *Microbiol. Rev.* 56, 395–411.
20. Hauben, K. J. A., Wuytack, E. Y., Soontjens, C. C. F., and Michiels, C. W. (1996), *J. Food Protection.* 59, 350–355.
21. Shelef, L. A. and Seiter, J. (1993), In: *Antimicrobial in Foods*. Davidson, P. M. and Branen, A. L. (eds.), Marcel Dekker, New York, pp. 539–569.
22. Gray, G. W. and Willson, S. G. (1965), *J. Appl. Microbiol.* 28, 153.
23. Leive, L. (1965), *Biochem. biophys. Res. Commun.* 21, 290–296.
24. Vessoni Penna, T. C., Ishii, M., Pessoa Júnior, A., Nascimento, L. O. A., Souza, L. C., and Cholewa, O. (2003), *Appl. Biochem. Biotechnol.* 113–116, 453–468.
25. Gill, A. O. and Holley, R. A. (2003), *Int. J. Food Microbiol.* 80, 251–259.
26. Vessoni Penna, T. C., Jozala, A. F., Gentille, T. R., Pessoa Júnior, A., and Cholewa, O. (2006), *Appl. Biochem. Biotechnol.* (in press).
27. Vessoni Penna, T. C., Jozala, A. F., Novaes, L. C. L., Pessoa Júnior, A., and Cholewa, O. (2005), *Appl. Biochem. Biotech.* 121–124, 1–20.
28. Jozala, A. F., Novaes, L. C. L., Cholewa, O., Moraes, D., and Penna, T. C. V. (2005), *A. J. Biotech.* 4, 262–265.
29. Kim, W. S., Hall, R. J., and Dunn, N. W. (1997), *Appl. Microbiol. Biotech.* 48, 449–453.
30. Somogyi, M. (1952), *J. Biol. Chem.* 195, 19–23.
31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), *J. Biol. Chem.* 193, 265–275.
32. Hurst, A. and Kruse, H. (1972), *Antimicrob. Agents Chemother.* 1, 277–279.
33. Parente, E., Ricciardi, A., and Addario, G. (1994), *Appl. Microbiol. Biotechnol.* 41, 388–394.
34. Parente, E. and Ricciardi, A. (1994), *Lett. Appl. Microbiol.* 19, 12–15.
35. Chandrapatti, S. and O’Sullivan, D. J. (1998), *J. Biotech.* 63, 229–233.
36. Cheigh, C. I., Choi, H. J., Park, H., et al. (2002), *J. Biotech.* 95, 225–235.
37. Flôres, S. A. and Monte Alegre, R. (2001), *Biotech. Appl. Biochem.* 34, 103–107.
38. Liu, X., Yoon-Kyung Chung, Shang-Tian Yang, and Yousef, A. E. (2005), *Process Biochem.* 40, 13–24.
39. Cutter, C. N. and Siragusa G. R. (1995), *J. Food Prot.* 58, 977–983.
Anexo 9.6 – Currículo Lattes
Anexo 9.7 – Histórico Acadêmico
Anexo 9.8 – Declaração do Comitê de Ética em Pesquisa e Informações para membros de bancas julgadoras