Research

Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1) from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference

Rajinder Kumar, Brian Adams, Anja Oldenburg, Alla Musiyenko and Sailen Barik

Address: Department of Biochemistry and Molecular Biology (MSB 2370), University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, U.S.A

E-mail: Rajinder Kumar - rkumar@usamail.usouthal.edu; Brian Adams - badams@bbl.usouthal.edu; Anja Oldenburg - anja.oldenburg@gmx.net; Alla Musiyenko - musiyenkoalla@hotmail.com; Sailen Barik* - sbarik@jaguar1.usouthal.edu

*Corresponding author

Abstract

Background: Reversible protein phosphorylation is relatively unexplored in the intracellular protozoa of the Apicomplexa family that includes the genus Plasmodium, to which belong the causative agents of malaria. Members of the PP1 family represent the most highly conserved protein phosphatase sequences in phylogeny and play essential regulatory roles in various cellular pathways. Previous evidence suggested a PP1-like activity in Plasmodium falciparum, not yet identified at the molecular level.

Results: We have identified a PP1 catalytic subunit from P. falciparum and named it PfPP1. The predicted primary structure of the 304-amino acid long protein was highly similar to PP1 sequences of other species, and showed conservation of all the signature motifs. The purified recombinant protein exhibited potent phosphatase activity in vitro. Its sensitivity to specific phosphatase inhibitors was characteristic of the PP1 class. The authenticity of the PfPP1 cDNA was further confirmed by mutational analysis of strategic amino acid residues important in catalysis. The protein was expressed in all erythrocytic stages of the parasite. Abrogation of PP1 expression by synthetic short interfering RNA (siRNA) led to inhibition of parasite DNA synthesis.

Conclusions: The high sequence similarity of PfPP1 with other PP1 members suggests conservation of function. Phenotypic gene knockdown studies using siRNA confirmed its essential role in the parasite. Detailed studies of PfPP1 and its regulation may unravel the role of reversible protein phosphorylation in the signalling pathways of the parasite, including glucose metabolism and parasitic cell division. The use of siRNA could be an important tool in the functional analysis of Apicomplexan genes.
Background
Reversible protein phosphorylation is gaining recognition as a potentially important mechanism of post-translation al regulation in protozoan parasites, especially those belonging to the Apicomplexan family. The dephosphorylation of phosphoproteins is universally catalyzed by protein phosphatases that are classified into two major functional groups, protein tyrosine phosphatase (PTP) and protein serine/threonine phosphatase (PP) although enzymes with various degrees of dual-specificity are also encountered [1–5]. The majority of Ser/Thr phosphatases belong to three classical groups, namely PP1, PP2A, and PP2B (calcineurin), and possess similar primary structures in their catalytic cores [2,3,6]. PP1, in particular, exhibits an extremely high degree of sequence conservation through evolution, and its orthologs and isoforms are found in all eukaryotic cells [6,7]. In various organisms, PP1 regulates such diverse cellular processes as cell cycle progression, protein synthesis, carbohydrate metabolism, transcription, and neuronal signaling [3,7], underscoring its profound importance in biology. The PP1 and PP2A phosphatases are differentially affected by natural toxins such as okadaic acid (OA) and microcystin-LR. For example, the characteristic IC$_{50}$ values for OA fall in the range: PP2A, 1–5 nM, PP1, 20–80 nM, whereas PP2B is highly resistant to both [2,3,7]. In contrast, tautomycin affects PP1 and PP2A nearly equally, but fails to inhibit other phosphatases [8].

In the past few years, a number of phosphatase activities and putative sequences have been reported in P. falciparum[9]. These include a PP2A [10], a PP2B-like activity [10], a unique chimeric PP2C [11], two putative sexual-stage phosphatases – PPα [12] and PPβ [13], and a tetraicopeptide repeat-containing phosphatase, PP5 [14]. Preliminary studies revealed the presence of a protein phosphatase activity in crude extracts of RBC-grown P. falciparum that exhibited toxin-sensitivity resembling that of PP1 [15]. Uninfected RBC, in contrast, possessed mainly a PP2A-like activity. Because of its potential importance in a variety of signalling pathways of the parasite, we have turned our attention to defining the PP1 phosphatase and its regulation in P. falciparum.

In this communication, we report the exact sequence of a PP1 cDNA in P. falciparum, the corresponding gene sequence in P. falciparum chromosome 14, the enzymatic properties of the recombinant enzyme, and its inhibition by mammalian physiological PP1-inhibitors, namely, inhibitor-1 (I-1) and inhibitor-2 (I-2). Post-transcriptional gene silencing using synthetic short interfering RNA (siRNA) molecules has been recently used to ablate specific mRNAs and thus, produce phenotypic mutations in specific genes [16,17]. We have adopted this technology to knockdown specific gene products in RNA viruses that are obligatory intracellular parasites [18]. In the present study, we have successfully used a similar strategy to generate phenotypic PP1-deficient P. falciparum parasites.

Results and Discussion
Identification of the PfPP1 cDNA sequence
Various pairs of oligodeoxynucleotide primers were designed on the basis of the PlasmoDB-predicted mRNA sequence (Gene chr14_1.phat_133), and employed in reverse transcription-PCR (RT-PCR) amplification using Pf3D7 total mRNA as template. Based on the prediction, primers 5’ ATGGCATTAAGATAGATATAATG 3’ (primer A in Fig. 1, the start codon in bold) and 5’ TTATT- TCCGACAAAAAGAAATATATGG 3’ were first tested, but no product was obtained. Since there was no other ATG within a reasonable distance upstream that was in the same reading frame, we proceeded on the assumption that the 3’-end of the mRNA might be different. Thus, the second primer was replaced by a series of nested primers (based on the genomic sequence), each of which was paired with primer A in RT-PCR. The combination of primer A and the primer 5’ TTTTITATTTGTCCIT- TCITTITTTCC 3’ (Fig. 1) eventually produced a RT-PCR product that was cloned into pGEM-T vector and sequenced. The cDNA sequence contained a 915-nucleotide long open reading frame corresponding to a polypeptide of 304 amino acid in length and ending with a TAA stop codon.

Comparison of the cDNA sequence with the genomic sequence (in Chromosome 14 at TIGR) revealed that the coding sequence is divided into five exons, of which the first two are the largest and contain most of the catalytic core of the phosphatase (Fig. 1 and 2). The intron sequences are pronouncedly more AT-rich than exons, and contained homopolymeric repeats, a feature which, in our experience, is common in Plasmodium genes.

BLAST analysis of the predicted primary structure of the protein revealed its clear identity with the PP1 class (Fig. 2). It is to be mentioned that among all the Ser/Thr phosphatases, PP1 has been subjected to the most extensive structure-function analysis [19–26]. In fact, it was one of the first phosphatases for which the three-dimensional structure was solved [26,27]. A representative alignment in Fig. 2 demonstrates the high sequence conservation between the human and Plasmodium PP1 sequences. The catalytic core of all members of the PP1 and PP2 families are very conserved, and roughly corresponds to residues 5–260 of PfPP1 (Fig. 2). This region contains all the signature motifs and conserved residues that have been shown to be important for the fundamental steps of catalysis, including substrate binding, metal ion coordination, and interaction with the phosphate group [19,26–28]. It is to be noted that at 304 amino acid residues, PfPP1 is the
shortest PP1 known to date, and lacks a short proline-rich stretch at the C-terminal end (Fig. 2).

Expression and catalytic properties of PfPP1

In order to characterize the PfPP1 cDNA we subcloned it into pET-15b such that the protein is expressed with an N-terminal (His)\(_6\)-tag. As shown in Fig. 3, a protein band of approximately 37,000 Mr was produced from the pET-15b-PfPP1 clone, which is in agreement with the predicted molecular weight of 34,904 of PfPP1 and roughly another 2,000 added for the (His)\(_6\) region of pET-15b (Novagen: Madison, WI). The protein specifically reacted with a monoclonal anti-His antibody and also with a polyclonal antibody against full-length human PP1 (Transduction Laboratories: Lexington, KY). The recombinant protein was purified through nickel-chelation chromatography and tested for phosphatase activity. It dephosphorylated the small substrate \(\text{pNPP} \), as well as histone, labelled at Ser residues. Interestingly, it also showed decent activity on a Tyr-phosphorylated synthetic peptide. The \(V_{\text{max}}\) values (\(\mu\)mol Pi liberated / mg enzyme/ min) against these three substrates (pNPP, phosphoserine-histone, phosphotyrosine peptide) were, respectively: 12 +2, 8 +1, and 2 +0.5. An equivalent protein fraction, obtained from *E. coli* containing vector alone (without insert), showed no activity against any of these substrates.
been recently shown that rabbit PP1, expressed in *E. coli*, also possessed Tyr phosphatase activity. In contrast, native PP1 isolated from rabbit muscle or expressed in Sf9 insect cells contained only Ser/Thr phosphatase activity but no Tyr phosphatase activity [24]. It was concluded that this apparent difference might be due to subtle changes in protein folding in eukaryotic versus prokaryotic cellular environments. It remains to be seen whether this is a general feature of all PP1.

To obtain biochemical evidence for the identity of the recombinant PfPP1, we tested the effect of specific phosphatase inhibitors and selected mutations on the phosphatase activity. Mutation of Asn122 to Asp by site-directed mutagenesis destroyed the phosphatase activity, confirming the essential role of this residue of PP1 in catalysis [19]. PfPP1 was inhibited by NaF, inorganic orthophosphate, and pyrophosphate at respective IC50 values of 2.5 mM, 10 mM, and 90 µM (data not shown). Similar values were recently obtained for *Arabidopsis* PP1 [8]. PfPP1 was also inhibited by tautomycin, I-1, I-2, and OA with IC50 values of 0.8, 400, 7, and 100 nM, respectively (Fig. 4). These values are comparable to those obtained with various PP1 isoforms recombinantly expressed in *E. coli* [25,29]. The sensitivity of PfPP1 to these natural toxins is consistent with the fact that the loop sequence between the β12 and β13 regions plays a direct role in binding these toxins [23,26], and this sequence is entirely conserved in PfPP1 (Fig. 2). Recently, a few additional residues that are closer to the N-terminus in the PP1 sequence have also been shown to be important in the interaction with I-2 [24]; in PfPP1 numbers, these residues are: E52, E54, D164, E165, K166 (Fig. 2). In yeast PP1 (Glc7p), the double mutant E52A/E54A and the triple mutant D164A/E165A/K166A showed IC50 values for I-2 that were respectively 8 and 300 times the wild type enzyme values [24]. As shown in Fig. 4, a similar loss of inhibition by I-2 was also observed when the corresponding muta-
tions were introduced into PfPP1, although they did not affect the catalytic activity (specific activity) (data not shown). Together, these results provide experimental confirmation of the catalytic identity of PfPP1.

Expression of native PfPP1

As mentioned earlier, inhibition studies using OA and calyculin A suggested the existence of a PP1-like activity in *P. falciparum* extracts [15]. However, our attempts to purify the native PfPP1 enzyme by chromatographic procedures resulted in only small amounts of activity, probably due to rapid inactivation during fractionation. To determine if PfPP1 is expressed in *Plasmodium*, we have, therefore, taken an immunological approach. First, cell-free extracts of different erythrocytic stages of *P. falciparum* were subjected to Western blot using a monoclonal antibody that was raised against nearly full-length human PP1 and showed broad species specificity (see Materials and Methods). As shown in Fig. 5A, a major band of the expected size of 35 k was observed in all stages including gametes. A peptide antibody, specific for human PP1 (Materials and Methods), did not detect the band. The gametogenesis was confirmed by the appearance of Pfg27, an early gamete-specific protein [30]. Having demonstrated that the monoclonal antibody was specific for PP1, we used it in an attempt to inhibit PfPP1 activity in vitro. At optimal concentrations, the antibody almost completely inhibited (90% inhibition) recombinant PfPP1 (including its Tyr phosphatase activity), and also inhibited the phosphatase activity of the *P. falciparum* extract by about 70% (data not shown). Under the same conditions, the human-specific antibody had no effect. Finally, it has been shown that affinity resins containing immobilized microcystin specifically bind toxin-sensitive phosphatases such as PP1 and PP2A [31]. Thus, we passed soluble cytosolic Pf extract through microcystin-Sepharose, and the bound proteins were analyzed on SDS-PAGE followed by immunoblot using the anti-PP1 antibody. The blot revealed that the 35 kDa PfPP1 polypeptide indeed specifically bound to microcystin (Fig. 5B), correlating the antigenic reactivity of PfPP1 with its affinity for the toxin. Pre-incubation of the

Figure 3

Recombinant expression of PfPP1 in bacteria. The following proteins / extracts were analyzed by SDS-PAGE followed by staining with Coomassie Brilliant Blue R250: approximately 30 µg (protein) of total extract [14] of IPTG-induced *E. coli* BL21(DE3) containing the RIG plasmid and pET-15-PfPP1 (lane 2) or pET-15 without insert (lane 1); 4 µg of the purified recombinant (His)6-tagged PfPP1 (lane 3). Lane 4 shows an immunoblot in which 80 µg of 100,000 × g extract of Pf [10] was probed using a PP1 antibody described under Materials and Methods. Parasitic PfPP1 and the recombinant His-tagged PfPP1 bands are indicated by open and closed arrowheads, respectively. Protein markers (lane M) are indicated by Mr in thousands.
Figure 5
Constitutive expression of parasitic PfPP1. (A) Western blot: Total protein (80 µg) from the ring (R), Trophozoite (T), schizont (S), and early (G1) and late (G2) sexual stages of Pf were probed with a mixture of anti-PP1 and anti-Pfg27 antibodies as described [14]. (B) Microcystin-sepharose chromatography: About 500 µg of the following extracts was subjected to microcystin affinity chromatography and the bound proteins analyzed by Western blot using PP1 antibody: extract of uninfected RBC processed identically (lane 1); Pf extract (lane 2); Pf extract pre-incubated with 1 µM microcystin-LR at room temperature for 5 min (lane 3); unbound fraction (a double-pass flow-through from the column) (lane 4). Recombinant His-tagged PfPP1 is displayed in lane 5 for comparison. The native and recombinant PP1 bands are marked by open and closed arrows, respectively. Sizes of protein standards are indicated on the left. Two non-PP1 proteins are also seen in the blot in panel B. The ~25 kDa band (common in lanes 1, 2, and 3) is evidently a RBC protein. The ~40 kDa band (lanes 2, 3), on the other hand, is a *Plasmodium* protein, since it is absent in the RBC fraction. We speculate that these proteins non-specifically bound to the Sepharose matrix, since they could not be competed out by microcystin (lane 3).
extract with microcystin specifically prevented binding of PfPP1 to the column.

Generation of phenotypic PfPP1 mutants by PTGS using RNAi

RNA interference (RNAi), mediated by short interfering double-stranded RNA molecules (siRNA or dsRNA), is now recognized as a major mechanism of post-transcriptional gene silencing (PTGS) in essentially all eukaryotes [16]. Recently, the technique has been successfully applied to cultured mammalian cells, whereby introduction of 21-nucleotide long synthetic dsRNA molecules corresponding to specific mRNA sequences effectively and specifically degraded the cognate mRNAs and abrogated the expression of the corresponding proteins [17,18]. This prompted us to test a similar approach to knockdown PfPP1 function in the erythrocytic *P. falciparum* stages.

Our initial attempts with standardized transfection procedures using OligofectAMINE (Life Technologies: Bethesda, MD) with the dsRNA did not produce an appreciable loss of PfPP1. We then resorted to the electroporation procedure originally developed for DNA transfection in *Plasmodium* by Wellems and co-workers [32], as detailed under Materials and Methods. A representative set of results shown in Fig. 6 clearly demonstrates loss of PfPP1 by the RNAi procedure, while the control PP2A was not significantly affected. Loss of PfPP1 resulted in concomitant inhibition of parasite growth as evidenced by the drastic reduction in 3H-hypoxanthine incorporation. These results suggest that PfPP1 plays an essential role in *Plasmodium* replication. The facts that the parasite culture was asynchronous, i.e., contained all three major stages (ring, trophozoite, and schizont) (data not shown) and that the effect of dsRNA was severe, suggest that PfPP1 is required for cell cycle progression at all stages of the parasite. This is further supported by the expression of PP1 protein in all the parasitic stages (Fig. 5). Taken together, this is consistent with the established role of PP1 in eukaryotic DNA synthesis and cell cycle progression, as discussed below.

PP1 is one of the major protein phosphatases found in all eukaryotic cells. The activity of the catalytic subunit of PP1 is controlled by its interaction with a large number of regulatory subunits, many of which also target it to specific subcellular compartments [7,24,33]. The major ones include the glycogen-targeting subunits (G_M, G_L) [34], myofibrillar-targeting subunit (M_{110}) [34], nuclear inhibitor of PP1 (NIPP-1) [35], PP1 nuclear targeting subunit (PNUTS) [36,37], mitosis-regulating subunit Sds22 [38–40], ribosomal protein L5 [41] and small cytosolic inhibitory proteins, I-1, I-2, and DARRP-32 (Dopamine and cAMP-regulated phosphoprotein, Mr 32,000) [7,23,25]. The physiological role of many of these interactions has been revealed in recent studies. A temperature-sensitive mutant of the yeast PP1 (Glc7), for example, exhibits a
block in the M phase of the cell division cycle, and elevated expression of Sds22 suppresses this defect [38]. Structure-function analysis of recombinant mammalian PP1 has recently begun to map specific residues involved in interaction with other molecules. Interestingly, all these residues are conserved in PfPP1, and a few examples are presented here. Co-crystal structure of PP1 and a G\textsubscript{M} peptide [42], as well as mutagenesis studies [43] of the yeast PP1 ortholog, Glc7, have demonstrated a role of specific PP1 residues in PP1-G\textsubscript{M} interaction. In the PfPP1 sequence, these residues are: I167, L241, F255, L264, C289, and F291 (Fig. 2). As mentioned, the \(\beta\)12-loop-\(\beta\)13 region, important in interaction with natural toxins [23], is fully conserved in PfPP1 (Fig. 2). Two residues, recently shown to be important for interaction with DARPP-32 [22], are also conserved in PfPP1; these are: Met288 and Cys289 (Fig. 2). We have provided experimental evidence of an important role of a number of invariant residues of PfPP1 in the interaction with I-2 (Fig. 2 and 4). Based on such overwhelming conservation of functionally important residues, we propose that orthologs of many of these PP1-interacting proteins may also exist in Plasmodium and function in similar roles. The use of recombinant PfPP1 and protein-protein interaction techniques should aid in characterizing these physiological regulatory subunits of PfPP1. Our ability to generate PP1-deficient \textit{P. falciparum} parasites will allow us to study the “mutant” phenotype in further detail and understand the role of this highly conserved phosphatase in malarial biochemistry and pathophysiology. These studies are in progress.

As mentioned earlier, Li and Baker [12] described a putative phosphatase DNA sequence in \textit{Plasmodium}, the mRNA of which was detected in the sexual stages of the parasite. The predicted protein, named PP\(\alpha\), was 889 amino acid long, and contained a unique N-terminal extension of about 500 amino acids. The C-terminal 345 amino acids, containing the putative catalytic domain, had 5 unique peptide stretches that were called “inserts”. When these inserts were omitted from the alignment, the rest of the sequence showed significant similarity with PP1 phosphatases [12]. Clearly, further studies are needed to identify the PP\(\alpha\) protein and characterize its potentially interesting identity.

While our manuscript was being written, McRobert and McConkey [44] achieved similar success in using the RNAi strategy to ablate dihydroorotate dehydrogenase (DHODH) of \textit{P. falciparum}. Although the protein level was not directly monitored, the loss of DHODH mRNA was confirmed by RT-PCR. This resulted in inhibition of parasite growth, consistent with the role of DHODH in pyrimidine biosynthesis, essential for parasite DNA replication. These authors introduced the double-stranded RNA by electroporation also, using conditions very similar to ours. Thus, although the exact mechanism of the RNA uptake remains to be elucidated, the electroporation procedure must have allowed the dsRNA to traverse the various erythrocytic and parasitic membranes to enter the parasitic cells.

The success in ablating PfPP1 is particularly gratifying to us on a number of accounts. As mentioned, PP1 is a highly conserved enzyme, and toxin-sensitive Ser/Thr phosphatase activities are also found in erythrocytes [15]. Thus, use of PP1 inhibitors, such as okadaic acid or tautomycin (Fig. 4) would affect the parasite as well as the host, making conclusions difficult. The dsRNA, in contrast, is known to be extremely specific for its intended target, such that a single nucleotide mismatch prevents its action [17]. This has allowed us to create specific phenotypic loss of PfPP1. Moreover, RNAi will permit the ablation of essential gene products, at any time point in infection, or on a desired parasitic stage following synchronization. Lastly, traditional genetic manipulation in eukaryotes, including the Apicomplexa, is a relatively difficult and elaborate procedure [45,46]. Thus, we believe that the RNAi strategy will become a powerful and convenient tool in \textit{Plasmodium} functional genomics, particularly in the studies of phylogenetically conserved signalling molecules.

Conclusion

\textit{P. falciparum} contains a PP1 protein phosphatase that is virtually identical to its orthologs in other species in both sequence and biochemical properties. Based on the established physiological role of PP1 in other organisms such as mammals and yeast, PfPP1 may regulate a variety of parasitic pathways, including glycogen metabolism, glucose repression, and cell cycle progression. Indeed, the successful use of RNA interference to ablate PfPP1 confirms its essential role on parasitic growth. The catalytic subunit of PfPP1 is expressed in all the erythrocytic stages of the parasite and is specifically inhibited by mammalian physiological inhibitors, inhibitor-1 and inhibitor-2. Thus, an in-depth study of PfPP1 and its interacting subunits may shed light on the regulation of the relevant pathways in this clinically important family of parasites.

Materials and methods

Materials

Histone and the catalytic subunit of PKA were purchased from Sigma (St. Louis, MO), and rabbit I-2, the \(\nu\)-abl protein tyrosine kinase, and its peptide substrate EAYAAPFKKKK were from New England Biolabs (Bedford, MA). Okadaic acid (OA) and recombinant I-1 [22] were kind gifts from R. Honkanen and S. Shenolikar (Duke University), respectively. The monoclonal anti-PP1 antibody was raised against a 25.6 kDa fragment of human PP1\(\alpha\) (residue 5–226), and was purchased from Transduction Laboratories (Lexington, KY). This antibody reacts with all
mammalian and avian PP1 tested, but does not react with other PP classes. The other PP1 antibody (a kind gift from R. Honkanen) was specific for human PP1, and was raised in rabbit against a synthetic peptide corresponding to the last 13 residues of human PP1 (PITPRNSAKKK; Fig. 2). The anti-PfPP2A antibody was raised in rabbit against the peptide MLIFKDTPDSRNSIK, corresponding to residue 285–300 of the previously described PfPP2A [10]. The RIG plasmid was kindly provided by W. Hol (University of Washington, Howard Hughes Medical Institute) [47]. Monoclonal antibody against the early sexual-stage P. falciparum antigen Pfg27 [30] was a generous gift from N. Kumar (Johns Hopkins University, Baltimore, MD). Microcystin-coupled sepharose was purchased from Upstate Biotechnology, Inc. (Lake Placid, NY).

Amplification, cloning, and mutagenesis of PfPP1 cDNA
Total RNA was isolated from asynchronous P. falciparum 3D7 cells grown in human A-positive erythrocytes essentially as before [48,49]. Various pairs of primers were designed on the basis of the relevant sequences of chromosome 14. Tm values of the primers were in the range of 65–72°C in order to achieve high specificity in reverse transcription (RT) as well as PCR. RT reaction was carried out at 60°C for 1.5 hrs using the C. therm. polymerase kit (Roche Molecular Biochemicals, Cat. No. 2016311). The RT reaction was incorporated into PCR, carried out using a mixture of Taq (Roche) and Pfu (Stratagene) polymerases (20:1) to ensure high fidelity [50]. The RIG plasmid was purified through Ni +2-chelation chromatography as described previously [14,48]. Reactions were followed with an enzyme-free reaction. The liberated 32P was quantitated by a phosphomolybdate extraction assay as described previously [14]. Reactions were followed with time, and results were corrected by subtraction of the corresponding values from an enzyme-free reaction.

Expression and assay of recombinant PfPP1 phosphatase
Growth and induction of E. coli BL21(DE3) containing pET-15b-PfPP1 and the RIG plasmid were carried out using procedures described earlier [14,48], except that the culture was grown at 18°C in the presence of 2 mM MnCl2, and IPTG concentration was lowered to 0.4 mM. The (His)6-tagged PfPP1 expressed from pET-15b-PfPP1 was purified through Ni2+-chelation chromatography as described by the manufacturer (Novagen), with 1 mM MnCl2 being present in all the buffers. The imidazole-eluted His-tagged PfPP1 was dialyzed against 50 mM Tris-Cl (pH 7.5), 100 mM NaCl, 25% glycerol, 1 mM DTT (buffer A), and stored in small portions at -80°C. Phosphatase activities were assayed essentially as described [14,19,52]. Unless otherwise mentioned, 80 µl reactions contained 2 mM of MnCl2 and requisite amount of recombinant enzyme in buffer A. Where mentioned, OA was directly added to the reaction. When I-2 was used, it was pre-incubated with PfPP1 at 32°C for 30 min. I-1 was prephosphorylated by PKA in a standard kinase reaction containing 200 µM γ-thiophosphorylated ATP. 32P-labelled histone was prepared by phosphorylation with PKA in the presence of γ-[32P]ATP essentially as described, followed by removal of the free ATP by gel filtration [19,52]. The resultant phosphohistone is exclusively phosphorylated at Ser residues [53]. 32P-labeled peptide EAI(Yp)AAPFKKK, phosphorylated at the single Tyr residue by pp43v-abl kinase, was prepared essentially as described [19,52]. Phosphatase reactions were initiated by the addition of the substrate. The liberated 32P was quantitated by a phosphomolybdate extraction assay as described previously [14]. Reactions were followed with time, and results were corrected by subtraction of the corresponding values from an enzyme-free reaction.

Analysis of native PfPP1
P. falciparum 3D7 was grown on A-positive human erythrocytes in the presence of homologous serum as described earlier [48,49]. When needed, cultures were synchronized in two steps [49,54]: (i) schizonts were purified by flotation over 65% (v/v) Percoll (Pharmacia) followed by incubation with fresh erythrocytes (5% haematocrit); (ii) the cultures were then left to mature into rings and treated with 5% D-sorbitol for 15 min at 37°C. The purity of individual stages was greater than 95% as confirmed by microscopic observation of a stained thin smear of the culture. Sexual stage parasite was generated as described [30].

Transfection by inhibitory dsRNA
The following 21-mer RNA molecules, corresponding to the underlined sequence in Fig. 1, were synthesized as described [18] and deprotected according to the manufacturer’s protocol (Dharmacon Research, Lafayette, CO):

Sense: (5’) GAGGUAACCACGAAUUCGCGCdTdT (3’)

Antisense: (5’) GCCGCAUUCGUUGUUACCUCdCdTdT (3’)

The negative control luciferase RNA was the same as the double-stranded GL3 RNA described previously [17]. The RNAs were annealed in vitro to form double-stranded RNA (dsRNA) [18] and electroporation was carried out essentially as described [32]. In brief, 3 μg dsRNA in 800 μl of incomplete cytotox [32] was added to infected RBC (at 10–15% parasitemia), and electroporation was performed using a Bio-Rad Gene Pulsar unit at settings of 200 Ω, 2 kV, and 25 μF. Control cells were identically electro-
porated without RNA. The cells were then grown in 12-well plates in triplicate wells, and measurement of ^{3}H-hy-
poxanthine incorporation was carried out at 24 hr post-
electroporation using standard procedures [49], except that parasitc were liberated with saponin, pelleted, and
counts in the pellet measured following solubilization.
Parasites from unlabelled but otherwise identical cultures
were analyzed in Western blot using a mixture of anti-PP1
and anti-PP2A antibodies (see Materials and Methods).

Acknowledgements

This research was supported in part by a grant (AI45803) from the National
Institute of Allergy and Infectious Diseases, National Institutes of Health,
USA. S. B. is a recipient of a Burroughs Wellcome New Initiatives in Malaria
Research Award. We sincerely thank the members of the Malaria Genome
Project and the PlasmoDB web site for providing free access to the se-
quences. Thanks are also due to Dr. Wim G. J. Hol for the RIG plasmid, Dr.
Richard E. Honkanen for OA and the monospecific human PP1 antibody,
and anti-PfPP2A antibodies (see Materials and Methods).

References
1. Graves JD, Krebs EG: Protein phosphorylation and signal trans-
duction. Pharmacol Ther 1999, 82:111-122.
2. Cohen PT: Novel protein serine/threonine phosphatases: vari-
ety is the spice of life. Trends Biochem Sci 1997, 22:245-251.
3. Wera S, Hemmings BA: Serine/threonine protein phosphatases.
Biochem J 1995, 311:17-29.
4. Fischer EH: Cell signaling by protein tyrosine phosphorylation.
Adv Enzyme Regul 1999, 39:359-369.
5. Guan KL, Dixon JE: Bacterial and viral protein tyrosine phos-
phatases. Semin Cell Biol 1993, 4:389-396.
6. Barton GJ, Cohen PT, Barford D: Conservation analysis and
structure prediction of the protein serine/threonine phos-
phatases. FEBS Lett 1994, 220:225-237.
7. Bollen M, Stalman W: The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol 1992,
27:227-281.
8. Stubbs MD, Tran HT, Atwell AJ, Smith CS, Olson D, Moorhead GB:
Purification and properties of Arabidopsis thaliana type 1 pro-
tein phosphatase (PP1). Biochim Biophys Acta 2001, 1550:52-63.
9. Wyler DJ: Malaria: overview and update. Clin Infect Dis 1996,
16:494-456.
10. Dobson S, May T, Berriman M, Del Vecchio C, Fairlamb AH, Chakra-
barti D, Barik S: Characterization of protein Ser/Thr phos-
phatases of the malaria parasite, Plasmodium falciparum: in-
hibition of the parasitic calcineurin by cyclophilin-cy-
clophilin complex. Mol Biochem Parasitol 1999, 99:167-181.
11. Manmou CB, Sullivan DJ Jr, Banerjee R, Goldberg DE: Identification
and characterization of an unusual double serine/threonine
protein phosphatase 2C in the malaria parasite Plasmodium
falciparum. J Biol Chem 1996, 271:1241-1247.
12. Li JL, Baker DA: A putative protein serine/threonine phos-
phatase from Plasmodium falciparum contains a large N-ter-
"
lator of protein phosphatase 1 activity. *FEBS Lett* 1997, 420:57-62
38. Ohkura H, Yanagida M: *S. pombe* gene sds22+ essential for a midmitotic transition encodes a leucine-rich repeat protein that positively modulates protein phosphatase-1. *Cell* 1991, 64:149-157
39. MacKelvie SH, Andrews PD, Stark Mj: The *Saccharomyces cerevisiae* gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase. *Mol Cell Biol* 1995, 15:3777-3785
40. Renouf S, Beullens M, Wera S, Van Eynde A, Sikela J, Stalmans W, Bollen M: Molecular cloning of a human polypeptide related to yeast sds22, a regulator of protein phosphatase-1. *FEBS Lett* 1995, 375:75-78
41. Hirano K, Ito M, Hartshorne Dj: Interaction of the ribosomal protein, LS, with protein phosphatase type 1. *J Biol Chem* 1995, 270:19786-19790
42. Egloff MP, Johnson DF, Moorhead G, Cohen PT, Cohen P, Barford D: Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. *EMBO J* 1997, 16:1876-1887
43. Wu X, Tatchell K: Mutations in yeast protein phosphatase type 1 that affect targeting subunit binding. *Biochemistry* 2001, 40:7410-7420
44. McRobert L, McConkey GA: RNA interference (RNAi) inhibits growth of *Plasmodium falciparum*. *Mol Biochem Parasitol* 2002, 119:273-278
45. Wellemes TE, Su XZ, Ferdig M, Fidock DA: Genome projects, genetic analysis, and the changing landscape of malaria research. *Curr Opin Microbiol* 1999, 2:415-419
46. Reynolds MG, Oh J, Roos DS: *In vitro* generation of novel pyrimethamine resistance mutations in the *Toxoplasma gondii* dihydrofolate reductase. *Antimicrob Agents Chemother* 2001, 45:1271-1277
47. Baca AM, Hol WG: Overcoming codon bias: a method for high-level over-expression of *Plasmodium* and other AT-rich parasite genes in *Escherichia coli*. *Int J Parasitol* 2000, 30:113-118
48. Barik S, Taylor RE, Chakrabarti D: Identification, cloning, and mutational analysis of the casein kinase 1 cDNA of the malaria parasite, *Plasmodium falciparum*. *J Biol Chem* 1997, 272:26132-26138
49. Barik S, Liechti-Ricard V, Barik S, DelVecchio C, Doering C, Chakrabarti R, Chakrabarti D: PIPKα, a novel cyclin-dependent kinase/mitogen-activated protein kinase-related protein kinase from *Plasmodium falciparum*. *Biochem J* 2000, 347:255-263
50. Barnes WM: PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. *Proc Natl Acad Sci USA* 1994, 91:12216-12220
51. Barik S: Site-directed mutagenesis by PCR: substitution, insertion, deletion, and gene fusion. *Methods in Neurosciences* 1995, 26:309-323
52. Barik S: Expression and biochemical properties of a protein serine/threonine phosphatase encoded by bacteriophage lambda. *Proc Natl Acad Sci USA* 1993, 90:10633-10637
53. Ganguly S, Singh M: Purification and characterization of a protein phosphatase from winged bean. *Phytochemistry* 1999, 52:239-246
54. Lambros C, Vanderberg JP: Synchronization of *Plasmodium falciparum* erythrocytic stages in culture. *J Parasitol* 1979, 65:418-420