A transition mass for black holes to show broad emission lines

Susmita Chakravorty1,2, Martin Elvis2*, Gary Ferland3*

1Harvard University, Department of Astronomy, schakravorty@head.cfa.harvard.edu
2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
3Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506.

5 May 2014

ABSTRACT

Although the super-massive (AGN) and stellar mass (XRBs) black holes have many properties in common, the broad emission lines (BELs) are exclusively signatures of the AGN. Based on the detection of these lines from SDSS data bases, there seems to be no AGN with mass $M_{\text{BH}} \lesssim 10^{5} M_{\odot}$. In this paper we investigate if such low mass black holes are really non-existent or if they are undetected because the BELs in them are not produced efficiently. Using the ionizing spectral energy distribution for a wide range of black hole mass, $10^{-4} - 10^{9} M_{\odot}$, spanning XRBs to AGN, we calculate the equivalent widths (EWs) of ultraviolet and optical lines $\text{Ly} \alpha 1216 \, \AA$, $\text{H} \beta 4861 \, \AA$, CIV $1549 \, \AA$ and MgII $2798 \, \AA$. The LOC (locally optimally emitting cloud) model has been used to describe the broad emission line region (BELR) for the calculations. We find that the hardening of the SED shape with decreasing mass does not decrease the BEL EWs. However, finite size of the BELR, as measured by the line widths, which is controlled by the mass of the black hole, regulates the production of these emission lines. There seems to be a peak in the EWs of the emission lines for typical AGN black holes of $\sim 10^6 M_{\odot}$, below which the lines become intrinsically fainter with a sharp fall-off below $\sim 10^5 M_{\odot}$. This may be the cause of the absence of low mass AGN in SDSS.

Key words: Galaxies - quasars: emission lines, galaxies: active, Seyfert, Physical Data and Processes - accretion, accretion discs, black hole physics, line: formation

1 INTRODUCTION

Active galactic nuclei (AGN) and X-ray binaries (XRBs) share many properties, but broad emission lines (BELs) are not among them. The absence of BELs in XRB spectra are often ascribed to the harder spectrum that is emitted by the accretion disk around the $\lesssim 10^{5}$ times smaller black holes. Here we investigate the predicted BEL equivalent widths (EWs) over a wide range of black hole masses, $10^{-4} - 10^{9} M_{\odot}$ to see if there is a threshold mass below which BELs are not expected. The possibility of a threshold mass for strong BEL production has become interesting from recent observational results, which seem to suggest that there are no broad line emitting black holes below $M_{\text{BH}} \lesssim 10^5 M_{\odot}$ [Greene & Ho 2004]. Is this because there are no such black holes, or is it that, even when accreting at substantial rates, such black holes cannot produce BELs with detectable EWs?

Most existing photoionization calculations for the broad emission lines in AGN, study the line strengths as a function of the overall shape of the ionizing continuum [Osterbrock & Ferland 2006; Leighly & Casebeer 2007] and the luminosity of the AGN. However, mostly, these studies do not take the further step of directly relating the emission line properties to M_{BH} and \dot{m}. On the other hand, dynamical measurements of M_{BH}, from the widths of the broad lines, and/or using the reverberation mapping techniques, (Peterson 1993, Netzer & Peterson 1997, Kaspi et al. 2000) consider an average $R_{\text{BELR}} \sim L_{\text{AGN}}^{1/2}$ relationship and do not need to delve into the details of the line strengths and ratios. In this study we shall use the LOC model, where the broad lines are due to locally, optimally emitting clouds, first suggested by Baldwin et al. (1995). We calculate the line strengths of the strongest broad lines, $\text{Ly} \alpha 1216 \, \AA$, $\text{H} \beta 4861 \, \AA$, CIV $1549 \, \AA$ and MgII $2798 \, \AA$, as a function of the black hole mass ranging from $10^{-4} - 10^{9} M_{\odot}$.

2 THEORY

2.1 The accretion disk spectral energy distribution

The radiation from the thin accretion disc (α-disk) may be modeled as a sum of local blackbodies emitted from the different annuli of the disc at different radii [Shakura & Sunyaev 1973, hereafter SS73]. The temperature of the annulus at radius R is

\[T(R) = 6.3 \times 10^{5} \left(\frac{\dot{m}}{\dot{m}_{\text{Edd}}} \right)^{1/4} \left(\frac{M_{\text{BH}}}{10^{8} M_{\odot}} \right)^{-1/4} \left(\frac{R}{R_{s}} \right)^{-3/2} \, \text{K} \quad (1) \]

[Peterson 1997, Frank et al. 2002] where \dot{m} is the accretion rate of the central black hole of mass M_{BH}, \dot{m}_{Edd} is its Eddington accretion rate and $R_{s} = 2GM_{\text{BH}}/c^{2}$ is the Schwarzschild radius (G is the gravitational constant and c is the velocity light). The normalisation constant A_{db} for this spectral component is given by
We have labeled some of the important energy values (accompanied by the relative normalisations of the SEDs are according to their mass ratios. We plot the iso-contours of the predicted EW (in $\log \Phi(A)$) for the $M_{BH} = 10^2$, 10^3, 10^4, 10^5, and $10^6 M_\odot$ at steps of 0.5, $\log n_H$ in steps from 7–14 in steps of 0.5 and $\log N_H$ in steps of 0.5, assuming a Solar metallicity ([Fe/H] = −2.3). We calculate the equivalent widths (EWs) of the 42 more prominent quasar emission lines (see Korista et al. 1997a, for the entire list). However, we demonstrate the results for only four of the strongest lines ($\lambda\lambda$ 1216, 1549, 2798 Å and Hb 4861 Å) in this paper, which is adequate for the issues discussed here.

We plot the iso-contours of the predicted EW (in $\log \Phi$) for the $M_{BH} = 10^2$, 10^3, 10^4, 10^5, and $10^6 M_\odot$ in steps of 0.5, $\log n_H$ from 7–14 in steps of 0.5 and $\log N_H$ from 21–23 in steps of 0.5. We will discuss the successes and limitations of the LOC model. Among limitations they mention that (a) some of the parameters of the model like the indices of the density and radial distribution of the clouds cannot be physically interpreted and (b) the model does not include some physical effects like self-shielding.

2.2 The LOC model for the BELR
Baldwin et al. (1995) and Korista et al. (1997a) show that, for a given SED, any particular emission line is dominated by emission from a fairly narrow range of gas density (n_H) and incident flux $\Phi(H) = [Q(H)/\pi R^2$, where $Q(H)$ is the number of hydrogen ionizing photons and R is the distance of the cloud from the source of the ionizing radiation]. This narrow range of the n_H and $\Phi(H)$ is different for different emission lines. However, as long as there are enough clouds distributed over the relevant density and distance ranges, all the observed emission lines can be formed with the observed line ratios. This is, a model, which does not require any extreme fine-tuning of n_H and $\Phi(H)$ to produce all the observed emission lines. Leighly & Casebeer (2007) discuss both the successes and limitations of the LOC model. Among limitations they mention that (a) some of the parameters of the model like the indices of the density and radial distribution of the clouds cannot be physically interpreted and (b) the model does not include some physical effects like self-shielding.

3 CALCULATIONS

3.1 Unrestricted BELR

For each model SED we use version C08.00 of CLOUDY (Ferland et al. 1998) to calculate the emission line spectrum for a three dimensional parameter grid of $\Phi(H)$, n_H and column density (N_H). $\log \Phi(H)$ is varied from 17–24 in steps of 0.5, $\log n_H$ from 7–14 in steps of 0.5 and $\log N_H$ from 21–23 in steps of 0.5. We calculate the equivalent widths (EWs) of the 42 more prominent quasar emission lines (see Korista et al. 1997a for the entire list). However, we will discuss the results for only four of the strongest lines ($\lambda\lambda$ 1216, 1549, 2798 Å and Hb 4861 Å) in this paper, which is adequate for the issues discussed here.

We plot the iso-contours of the predicted EW (in $\log \Phi$) for the $M_{BH} = 10^2$, 10^3, 10^4, 10^5, and $10^6 M_\odot$ in steps of 0.5, $\log n_H$ from 7–14 in steps of 0.5 and $\log N_H$ from 21–23 in steps of 0.5. We will discuss the successes and limitations of the LOC model. Among limitations they mention that (a) some of the parameters of the model like the indices of the density and radial distribution of the clouds cannot be physically interpreted and (b) the model does not include some physical effects like self-shielding.

1. http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
2. URL: http://www.nublado.org/
that the contours form well-defined diagonal ridges (collection of constant U lines) in the \(\log \Phi(H) - \log n_H \) plane with significant EW (> 1). In each panel of Figure 2, we have also labeled the limiting values of \(\log U \), within which CIV line is efficiently produced with \(1 \leq \text{EW} \leq 10^{5.75} \) for \(M_{BH} = 10^{2.0} M_\odot \), \(1 \leq \text{EW} \leq 10^{5.25} \) for \(M_{BH} = 10^{4.0} M_\odot \), \(1 \leq \text{EW} \leq 10^{4.75} \) for \(M_{BH} = 10^{6.0} M_\odot \), and \(1 \leq \text{EW} \leq 10^{5.75} \) for \(M_{BH} = 10^{8.0} M_\odot \).

Deviations (of any contour) from the \(45^\circ \) lines show where thermal heating of the gas begins to be more important than photoionization, usually at high \(n_H \) and high \(\Phi(H) \) (upper right, each panel). For example, taking the example of the \(\log(\text{EW}) = 4 \) contour for \(M_{BH} = 10^{2.0} M_\odot \), we see that it ‘turns over’ from high \(\log U (= -0.99, \log n_H \geq 12 \) and \(\log \Phi(H) \geq 21.5 \) and becomes diagonal again at a lower \(\log U (= -3.24) \).

The contours for \(\log N_H = 21 \) and 23, show that the low ionization ridge (lower-right) of the iso-contours remain unaffected. However, the high ionization ridge (upper-left) is pushed to lower \(U \), e.g. by 1.23 dex for the \(M_{BH} = 10^{8.0} M_\odot \) SED. Thus for any given SED, lower column density restricts efficient line production to a tighter range of \(U \).

To assess the contribution from all the clouds of different density and column density and at different distances, we have to take a weighted average of EW:

\[
\mathcal{E}W = f \int \int \int \text{EW}(\Phi(H), n_H, N_H) \frac{d\Phi(H)}{\Phi(H)} \frac{d n_H}{n_H} \frac{d N_H}{N_H} \tag{3}
\]

over \(21 \leq \log N_H \leq 23, 8 \leq \log n_H \leq 14 \) and \(18 \leq \log \Phi(H) \leq 24 \) all in steps of 0.5. \(f = 0.2 \) is the constant covering fraction adopted in this paper. \(\mathcal{E}W \) (in log) as a function of \(M_{BH} \) for Ly\(\alpha \), CIV, Mg\(\text{II} \) and H\(\beta \) is shown in Figure 3 (dotted black line). For each of the emission lines, the average \(\mathcal{E}W \) rises monotonically with the decrease in mass.

We further calculate the line ratios \(\text{Mg\(\text{II}/\text{CIV} \) and Mg\(\text{II}/\text{H}\beta \) and plot them against each other in Figure 3 (dotted black line). The labeled solid black circles along the line mark the black hole masses in units of \(\log(M_{BH}/M_\odot) \).

3.2 Restriction on the radius of the BELR

3.2.1 Limits from velocity of the clouds

Reverberation mapping has established that the time lag between the variation in the continuum flux and the line flux \(t_{\text{lag}} \) is propor-
The weighted average (\overline{EW}) for four of the strongest broad lines, as a function of blackhole mass is given by the dotted black line in each panel. The filled black triangle at $M_{BH} = 10^{8.0}\, M_\odot$ shows the value of \overline{EW} if we consider an SED with a disk blackbody plus a X-ray power-law, instead of just a disk blackbody SED. The mass distribution of \overline{EW} is modified if a cut-off is applied on the maximum allowed radius of the BELR; the solid red curves (with different minimum velocity of the BELR clouds, in km\, s^{-1}) if the cut-off is determined using Keplerian mechanics (Equation 4) and the dashed blue curve if the cut-off is determined from the considerations of the gravitational instability radius of the accretion disk (Equation 5). The filled red circle and the filled blue square denote the value of \overline{EW} for the disk+power-law SED for $M_{BH} = 10^{8.0}\, M_\odot$ when the respective radius cut-off schemes (as described above) are assumed. Note that for the Keplerian cut-off mechanism, we have shown the filled circle only for the $v_{\text{min}} = 3000\, \text{km\, s}^{-1}$ case.

FIGURE 3. The weighted average (\overline{EW}) for four of the strongest broad lines, as a function of black hole mass is given by the dotted black line in each panel. The filled black triangle at $M_{BH} = 10^{8.0}\, M_\odot$ shows the value of \overline{EW} if we consider an SED with a disk blackbody plus a X-ray power-law, instead of just a disk blackbody SED. The mass distribution of \overline{EW} is modified if a cut-off is applied on the maximum allowed radius of the BELR; the solid red curves (with different minimum velocity of the BELR clouds, in km\, s^{-1}) if the cut-off is determined using Keplerian mechanics (Equation 4) and the dashed blue curve if the cut-off is determined from the considerations of the gravitational instability radius of the accretion disk (Equation 5). The filled red circle and the filled blue square denote the value of \overline{EW} for the disk+power-law SED for $M_{BH} = 10^{8.0}\, M_\odot$ when the respective radius cut-off schemes (as described above) are assumed. Note that for the Keplerian cut-off mechanism, we have shown the filled circle only for the $v_{\text{min}} = 3000\, \text{km\, s}^{-1}$ case.

Table 1. The ratio of the weighted equivalent widths \overline{EW} for different black hole masses. We have considered the finite size of the BELR, cut-off corresponding to the two Keplerian velocities $v_{\text{min}} = 3000$ and 10000 km\, s^{-1}.

Cut-off used (v_{min}, km/s)	CIV − 1549Å	MgII − 2798Å	Hβ − 4861Å
$v_{\text{min}} = 3000$	17.52	-	720
$v_{\text{min}} = 1000$	4.83	0.96	79.31
$v_{\text{min}} = 1000$	0.96	79.31	5.27
$v_{\text{min}} = 3000$	79.31	5.27	39.37
$v_{\text{min}} = 10000$	5.27	39.37	6.27
The detection of the lines by SDSS would however, depend on the intrinsic luminosity in the emission lines, in addition to their equivalent widths. The intrinsic luminosity in the lines, in turn, depend on the mass of the black hole. When no limit is imposed on the outer radius of the BELR, our calculations indicate that using the SDSS filters, the Mg II 2798 Å line should be detected up to a redshift of 0.67 and the H β 4861 Å line up to 0.27 for a 10^6 M⊙ black hole. This is not what is observed. On the other hand, when limits on the size of the BELR are imposed, a 10^6 M⊙ black hole cannot be detected (for both v_{min} = 1000 km s^{-1}) using either of Mg II 2798 Å or H β 4861 Å lines, a situation more in line with the observations.

The line ratios Mg II/ H β vs Mg II/CIV, for the size limited BELR, using Keplerian cut-offs, are plotted using the solid red lines in Figure 4. The profiles are very different from the case of the unrestricted BELR (dotted black lines). For a 10^6 M⊙, the values for Mg II/ H β are almost same for the size limited and the unrestricted BELR, but the line ratio Mg II/CIV is very different in the two cases. This line ratio varies from the unrestricted BELR case by 0.25 dex for v_{min} = 1000 km s^{-1} and by 0.74 dex for v_{min} = 3000 km s^{-1}. For a 10^6 M⊙, black, even the Mg II/ H β ratio varies from the unrestricted BELR case by 0.47 dex in the v_{min} = 3000 km s^{-1} limited BELR. The Mg II/CIV line ratio varies from the unrestricted BELR case by 0.59 dex for v_{min} = 1000 km s^{-1} and by 1.24 dex for v_{min} = 3000 km s^{-1}. Such variations in the line ratios for different physical scenarios of the BELR, would act as diagnostics in our future publications when we shall compare our theoretical results with observations from SDSS or the likes of it, not only for these three emission lines, but for many more appropriately chosen broad emission lines.

3.2.2 Gravitational disk instability

The outer parts of the α-disk becomes self-gravitating and breaks up. This radius has been suggested as the outer boundary of the BELR and the beginning of the “torus” Suganuma et al.

\[R_{\text{instability}} = 1.31 \times 10^2 \alpha_{\text{disk}} \left(\frac{\dot{m}}{M_{\text{Edd}}} \right)^{\frac{1}{2}} \left(\frac{M_{\text{BH}}}{M_{\odot}} \right)^{\frac{3}{2}} \right]^{\frac{1}{\alpha}} \]

where \(f = 1 - \left(\frac{M_{\text{BH}}}{M_{\odot}} \right)^{\frac{1}{2}} \). The much weaker mass evolution of \(R_{\text{instability}} \) (compared to \(R_{\text{Keplerian}} \)) is shown as a dashed blue line in Figure 5.

Using the \(R_{\text{instability}} \) cut off, below \(M_{\text{BH}} \sim 10^6 M_{\odot} \), the \(\mathcal{E}W \) distribution is same as when no radius restriction is applied, leading to the unobserved increase in \(\mathcal{E}W \) with decreasing mass (dashed blue curves in Figure 5). The line corresponding line ratios Mg II/ H β vs Mg II/CIV are shown by the dashed blue line in Figure 5 further showing that the line fluxes are exactly the same as that for an unrestricted BELR for \(M_{\text{BH}} \leq 10^6 M_{\odot} \).

3.2.3 Tidal disruption by stellar mass black holes

According to Hills (1975); Gezari et al. (2003),

\[R_{\text{Tidal}} = 1.1 R_{\text{sch}} \left(\frac{M_{\text{BH}}}{10^8 M_{\odot}} \right)^{-2/3} \]

for solar mass disrupted stars. Thus the disruption does not happen for \(M_{\text{BH}} > 1.1 \times 10^8 M_{\odot} \) – the stars are swallowed whole. Thus we use Equation 6 to calculate \(R_{\text{Tidal}} \) for a black hole of \(M_{\text{BH}} = 10 M_{\odot} \) having a solar mass binary companion. The tidal disruption is plotted as a black star in Figure 5 and we find that \(R_{\text{Tidal}} \sim R_{\text{Keplerian}} \) for \(v_{\text{min}} = 3000 \). Our calculations for \(\mathcal{E}W \) suggest zero flux in the emission lines for such low mass black holes (see Figure 5) when the BELR size limit is imposed with \(v_{\text{min}} = 3000 \) km s^{-1}. No high sensitivity search for these emission lines have been conducted for stellar mass black holes to corroborate or contradict these theoretical results.

\(\odot \) 2000 RAS, MNRAS 000, 000–000

Figure 4. The line ratios Mg II/CIV and Mg II/H β are plotted against each other for the three different BELR. The case of Unrestricted BELR (Section 3.1), with no upper limits on its size, is represented by the dotted black line. When the BELR is truncated using limits from observed Keplerian velocities (Section 3.2) we have line ratio profiles given by the solid red lines, for the two different velocities of the clouds, namely, \(v_{\text{min}} = 1000 \) and 3000 km s^{-1}. The dashed blue line corresponds to BELR with size limitations imposed by the gravitational instability (Section 3.2.2). The solid circles represent the points on the line ratio profiles for different black hole masses (as labeled) in units of \(\log(M_{\text{BH}}/M_{\odot}) \).

Figure 5. The outer radius of BELR as a function of black hole mass. Various methods of determining this cut-off radius are demonstrated: considering (a) a phenomenological approach based on the observed velocities of the emission lines (solid red lines) and (b) gravitational instability of the accretion disk (dashed blue line). For stellar mass black hole (\(M_{\text{BH}} = 10 M_{\odot} \)), the black star shows the tidal disruption radius.
4 DISCUSSION AND FUTURE WORK

- Additional components of the AGN SED:
 Both the AGN (super-massive black holes) and the XRBs (solar mass black holes) are powered by the active matter accretion into the black hole. However, the emission from the accretion disk is not the only component of the observed SED from the AGN or the XRBs. In both cases we also observe power-law emission at higher energies ($\gtrsim 500$ eV for AGN and $\gtrsim 3$ keV for XRBs). The power-law is thought to be due to inverse comptonisation of some of the disk photons by the hot coronal plasma surrounding the black hole, or due to the jet (particularly for XRBs). In case of AGN of type 1, sometimes we see an additional component, the soft-excess at $\lesssim 1$ keV, which may be comptonized disk emission or an entirely separate component altogether. Often the soft excess can be modeled as a blackbody of temperature $100 \sim 200$ keV. However, for all the calculations presented in this paper, we ignore the power-law and the soft-excess components of the SED, because their shape or strength are independent of the mass of the black hole.

The strengths of the lines are determined by the available number of photons close to the ionization potential (IP) of the relevant ions. In this paper we have restricted our studies to black holes with $M_{BH} \lesssim 10^9 M_\odot$ because it was sufficient to consider only the mass dependent accretion disk component of the SED. In this mass range, the accretion disk is hot enough that the energy ranges of the ionization or excitation potentials ($\lesssim 50$ eV) required to produce the lines Hβ 4861 Å, CIV 1549 Å and MgII 2798 Å are dominated by the disk emission and the power-law or the soft excess would contribute less than 1% of the radiation from the accretion disk.

To be thorough, we investigated the effect of adding a X-ray power-law with spectral index $\alpha = 0.8$ and $\alpha_{OX} = 1.2$ for $M_{BH} = 10^8.0 M_\odot$. In each panel of Figure 3 the resultant $\mathcal{E}W$s are shown as filled black triangles, for an unrestricted BELR, as filled red circle for the $v_{\min} = 3000$ km s$^{-1}$ Keplerian limit on the BELR and as filled blue squares for the BELR restricted by gravitational instablity. In each case these points lie exactly on the line for the $\mathcal{E}W$ distribution, generated using only the accretion disk component, showing that the addition of the power-law and the soft-excess component is redundant for these emission lines in the black hole mass range considered.

However, while considering similar studies for higher mass black holes, one has to carefully account for the other aforementioned components of the AGN SED because, the high energy tail of the accretion disk SED for $M_{BH} \geq 10^9 M_\odot$ may cut-off at less than 50 eV.

Similar considerations are required for constructing the AGN SED required to correctly predict the $\mathcal{E}W$ for OVI 1034 Å, which is an important BEL in the UV. The IP of OV is 113.90 eV, an energy range dominated by the power-law for quasar-like ($M_{BH} \gtrsim 10^9.0 M_\odot$) SED. Thus $\mathcal{E}W$ calculations for OVI would require an AGN SED including all the components, and not just the accretion disk emission. We will study such emission lines in details in our future publications.

- Alternative models for the accretion disk:
 Instead of a radiatively efficient thin accretion disk (BBB, due to Shakura & Sunyaev [1973], SS73), sometimes black holes might have advection dominated, radiatively inefficient accretion flows, which would result in significantly different SEDs (see e.g. Hopkins et al. [2009] that the SS73 models (considered in this paper). These alternative prescriptions drastically change the shape of the SED in the energy range of the IP of the ions responsible for the BELs and the narrow emission lines (NELs). We intend to calculate the line strengths due to such ionizing SEDs and predict observable signatures, which might act as diagnostic tools.

Even for the BBB, more rigorous models exist for modeling the radiation from the accretion disk (BBB). For example, [Blaes et al. 2001], [Hubeny et al. 2006, 2001], [Hui et al. 2005] discuss the role of real radiative transfer in the accretion disc. The spin of the black hole is another physical parameter to be considered. Davis et al. [2005, Davis & Hubeny 2006]. Qualitatively speaking, for the same black hole mass and accretion rate, these models push the peak of the SED to higher energies than due to the SS73 model. We would like to calculate line strengths corresponding to these models and test if the observations of BELs and NELs are sensitive enough to differentiate these accretion disk models from BBB.

- Comparison with data:
 We intend to use the SDSS data base for Hβ 4861 Å, CIV 1549 Å and MgII 2798 Å and the HST and/or FUSE data base for OVI 1034 Å, to compare our predicted $\mathcal{E}W$ and line ratios with the observed line strengths. We would hope to draw constraints on other physical parameters (e.g. distance of the BELR) by such comparisons. Eventually we would want to extend our theoretical analysis to include other fundamental black hole parameters like the accretion rate. We would like to test if such systematic LOC modeling can explain observed effects like the “Balwin Effect” (Baldwin [1977]), where the equivalent width of the CIV emission line decreases with increasing continuum luminosity.

- Narrow Emission Lines:
 We intend to do similar studies for the NELs in the AGN spectrum. It would be interesting to see if they also show a mass dependence of the $\mathcal{E}W$, given that the NEL clouds are further away from the black hole and may be outside its sphere of influence (FWHM for BEL 1/6 of that for BELs) and/or their sizes are not governed by Keplerian dynamics.

5 CONCLUSIONS

- We wanted to investigate if there is a lower mass cut-off below which black holes cannot produce the broad emission lines (BELs) like Hβ 4861 Å, CIV 1549 Å and MgII 2798 Å typically used to detect and identify AGN activity from large optical data bases like the Sloan Digital Sky Survey.

- Using the standard LOC (locally optically emitting clouds) model for the broad emission line region (BELR) without any restrictions on the radius on its radius, photoionization calculations show an unobserved rise in the equivalent widths ($\mathcal{E}W$s) of the lines with decreasing mass.

- However, introducing a cut-off radius for the BELR produces sharp mass dependent drops in the $\mathcal{E}W$s, when the cut-off radius is determined from simple Keplerian mechanics, depending on the mass of the black hole (M_{BH}). Such drops are consistent with the observations including that below $M_{BH} = 10^5 M_\odot$ the above mentioned emission lines are not observed. Our findings conclude that these observations may not indicate the absence of black holes of such low mass, but the inability of such black holes to produce the observable (with our detectors) line strengths.

- Such a conclusion might have consequences for modifying the black hole mass function in the lower mass end. However, before we can attempt to address such issues, we need to carry out a more rigorous systematic study (listed above, in Section 4 of the $\mathcal{E}W$ work).
of BELs and NELs, as a function of other fundamental black hole parameters like its accretion rate and alternative accretion theory models.

6 ACKNOWLEDGMENTS

We thank Aneta Siemiginowska, Nirupam Roy and Yue Shen for helpful discussions and tips. We gratefully acknowledge the use of the Cosmology Calculator (Wright 2006).

REFERENCES

Allende Prieto, C., Lambert, D.L., & Asplund, M., 2001, ApJ, 556, L63
Allende Prieto, C., Lambert, D.L., & Asplund, M., 2002, ApJ, 573, L137
Arnaud, K. A. 1996, ASPC, 101, 17
Baldwin, J.; Ferland, G.; Korista, K.; Verner, D. 1995, ApJ, 455, L119
Baldwin, J. A. 1977, ApJ, 214, 679
Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Vestergaard, Marianne; Onken, Christopher A. 2006, ApJ, 644, 133
Binney J. & Tremaine S., 1987, “Galactic dynamic”, Princeton, NJ, Princeton University Press.
Blaes, O.; Hubeny, I.; Agol, E. & Krolik, J.H. 2001, ApJ, 563, 560
Davis, S.W.; Blaes, O.M.; Hubeny, I. & Turner, N.J. 2005, ApJ, 621, 372
Davis, S.W. & Hubeny, I. 2006, ApJS, 164, 530
Ferland, G.J.; Korista, K. T.; Verner, D. A.; Ferguson, J. W.; Kingdon, J. B. & Verner, E. M., 1998, PASP, 110, 761-778
Frank, J.; King, A. & Raine, D.J. 2002, Accretion Power in Astrophysics, Cambridge Univ. Press, Cambridge.
Gezari, S.; Halpern, J. P.; Komossa, S.; Grupe, D.; Leighly, K. M. 2003, ApJ, 592, 42
Greene, J.E.; Ho, L.C. ApJ, 610, 722
Grevesse, N., & Sauval, A.J., 1998, Space Science Review, 85, 161
Hao, L. et al. 2005, ApJ, 129, 1783
Hills, J. G. 1975, Natur, 254, 295
Holweger, H., 2001, Joint SOHO/ACE workshop “Solar and Galactic Composition”. Edited by Robert F. Wimmer-Schweingruber. Publisher: American Institute of Physics Conference proceedings, 598, 23
Hopkins, P. F.; Hickox, R.; Quataert, E.; Hernquist, L. 2009, MNRAS, 398, 333
Hubeny, I.; Agol, E.; Blaes, O. & Krolik, J.H. 2000, ApJ, 533, 710
Hubeny, I.; Blaes, O.; Krolik, J.H. & Agol, E. 2001, ApJ, 559, 680
Hui, Y.; Krolik, J.H. & Hubeny, I. 2005, ApJ, 625, 913
Kaspi, S.; Smith, P.S.; Netzer, H.; Maoz, D.; Jannuzi, B.T.; Giveon, U. 2000, AJ, 533 631
Korista, K.; Baldwin, J.; Ferland, G.; Verner, D. 1997, ApJS, 108, 401
Korista, K.; Ferland, G.; Baldwin, J., 1997, ApJ, 487, 555.
Leighly, K. M.; Casebeer, D. 2007, ASPC, 373, 365
Makishima, K.; Maejima, Y.; Mitsuda, K.; Bradt, H. V.; Remillard, R. A.; Tuohy, I. R.; Hoshi, R.; Nakagawa, M. 1986, ApJ, 308, 635
Mitsuda, K. et al. 1984, PASJ, 36, 741
Netzer, H. & Laor, A. 1993, ApJ, 404, L51
Netzer, H. 1987, MNRAS, 225, 55
Netzer, H.; Peterson, B. M. 1997, in Astronomical Time Series, eds., Maoz, D.; Sternberg, A.; Leibowitz, E. (Dordrecht: Kluwer), 85
Osterbrock, D.E. & Ferland, G.J. 2006, Astrophysics of gaseous nebulae and active galactic nuclei, University Science Press.
Peterson, B. M. 1993, PASP, 105, 207
Peterson, B. M. 1997, An Introduction to Active Galactic Nuclei, Cambridge Univ. Press, Cambridge.
Shakura, N. I.; Sunyaev, R. A. 1973, A&A, 24, 337
Stoughton, C. et al. 2002, AJ, 123, 485
Suganuma, M. et al. 2006, ApJ, 639, 46
Wright, E. L. 2006, PASP, 118, 1711

© 0000 RAS, MNRAS 000, 000–000