The Role of Ingenane Diterpenes in Cancer Therapy: From Bioactive Secondary Compounds to Small Molecules

Ana Laura V. Alves1,*, Luciane S. da Silva1,*, Camila A. Faleiros1, Viviane A. O. Silva1 and Rui M. Reis1,2,3

Abstract
Diterpenes are a class of critical taxonomic markers of the Euphorbiaceae family, representing small compounds (eg, molecules) with a wide range of biological activities and multi-target therapeutic potential. Diterpenes can exert different activities, including antitumor and multi-drug resistance-reversing activities, and antiviral, immunomodulatory, and anti-inflammatory effects, mainly due to their great structural diversity. In particular, one polycyclic skeleton has been highlighted: ingenane. Besides this natural diterpene, promising polycyclic skeletons may be submitted to chemical modification—by in silico approaches, chemical reactions, or biotransformation—putatively providing more active analogs (eg, ingenol derivatives), which are currently under pre-clinical investigation. This review outlines the current mechanisms of action and potential therapeutic implications of ingenol diterpenes as small cancer molecules.

Keywords
diterpenes, ingenol, Euphorbiaceae, natural products, small molecules, cancer therapy

Introduction
Folk or traditional medicine is considered a summation of health practices and approaches, popular knowledge, and beliefs which comprise plants, fungi, minerals, and animal-based products employed either singly or in combination in the maintenance of health, as well as for diagnosis, treatment, or prevention of illnesses, and may be found in diverse regions of the world.1,2 Medicinal plants and other natural products have been used to treat various ailments in folk medicine systems.3 Importantly, natural products, particularly derived from plants (ie, “secondary” metabolites), are the primary sources of chemical diversity and, as such, play essential roles in the field of cancer pharmaceutical discovery.4-6 These natural compounds are classified according to their biological function, biosynthetic origin, or main structural characteristics. Secondary metabolites have four main classes: terpenoids, polyketides, phenylpropanoids, and alkaloids.7

Over 60% of the antineoplastic drugs are directly or indirectly related to natural products.8 Vinca alkaloids, such as vincristine and vinblastine, isolated from leaves of the periwinkle plant (Catharanthus roseus L.) are the best-known examples.9 Teniposide, etoposide, and etoposide phosphate (Etopophos®), which are semi-synthetic derivatives of epipodophyllotoxin, have also been used as clinically active agents.10 Topotecan, belotecan, and irinotecan (CPT-11) are semi-synthetic camptothecin derivatives, isolated from the Chinese ornamental tree Camptotheca acuminata Decne. and used in clinical practice.11 Furthermore, paclitaxel (Taxol®), a plant-derived anticancer drug, was found in Taxus species.12 Taxol is a natural diterpene alkaloid, a family of small molecules with a wide range of pharmacological activities. Nevertheless, the vast majority of the more than 350,000 known plant species remain uninvestigated.5,13

Ingenol 3-angelate (Picato®), a diterpenoid structure isolated from Euphorbia peplus L., was approved for the treatment of actinic keratosis (a pre-cancerous skin condition) by the U.S. Food and Drug Administration (FDA) in 2012, and the European Medicines Agency (EMA) in 2013. However, it was withdrawn from the EU in 2020, due to the observed development of skin cancer in ∼6% of patients using Picato®.14-19 Several studies regarding the isolation, synthesis, and anticancer

1Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
2Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
3ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal

*Contributed equally to this paper.

Corresponding Author:
Rui M. Reis, Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil.
Email: ruireis.hcb@gmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
effects of diterpenoids from Euphorbia species have been published. These diterpenoids were reported to have antiproliferative, cytotoxic, antimicrobial, and antipyretic–analgesic activities.23

Other species have also been studied for their antitumor effect. The ethanolic and methanolic crude extracts of Boerhaavia diffusa L., belonging to the Nyctaginaceae family, showed antitumor activity against cervical, prostate, and breast cancers, and inhibited metastases in vitro and in vivo, as well as the extract of Tabebuia pallida Lindl. leaves, which showed inhibition of the growth of tumor cells through induction of apoptosis.25

Furthermore, a literature review highlighted flavonoids that have very interesting palliative effects on clinical symptoms, such as diarrhea, mucositis, neuropathic pain, and others, often associated with chemotherapy treatment of colorectal cancer.26

Emodin (13,8-trihydroxy-6-methyl-anthraquinone), a natural anthraquinone derivative found in species of Rhamnaceae, Polygonaceae, Rubiaceae, and Fabaceae, has been suggested to be effective in pancreatic cancer by modulating tumor growth, angiogenesis, invasion, and metastasis.27 Other biological studies performed on furanocoumarins and coumarin derivatives revealed that these compounds have antitumor effects.28,29

However, the biological activities of natural compounds are not limited only to antitumor activity. The ethanol extract of Opthorhiza rugea L. leaves demonstrated analgesic and anti-inflammatory potential in different animal and computational models.30 Prominent antidiabetic properties have been reported for Gymnura species through in vitro and in vivo studies.31 Clinical trials have evaluated the anti-infection activity of Andrographis paniculata Burm. F. against URTIs, influenza, and HIV, as well as its effectiveness in treating osteoarthritis and multiple sclerosis.32 Phytochemicals exert potent actions throughout the body. Data report their high therapeutic potential to treat the diseased gastrointestinal tract, from functional to organic pathologies.33

In summary, compounds of plant origin have been extensively researched to find a better and safer alternative treatment, mainly for neurological diseases. Experimental studies have shown that phytochemicals such as alkaloids, terpenes, flavonoids, and phe- nocic acids, as well as lipids, have significant potential in in vitro and in vivo models of psychiatric disorders.34-37 This review addresses, in the cancer context, the mechanisms of action of macrocyclic diterpenes, such as ingenane and their synthetic/semi-synthetic derivatives, from Euphorbiaceae, plants with wide application in traditional medicine. We highlight the in vitro and in vivo anticancer effects of natural, semi-synthetic, and synthetic derivatives, as well as the in silico approaches involved in developing anticancer agents from ingenane. Additionally, we summarize the available information concerning these ingenane small molecules to support future antitumor drug discovery.

Euphorbiaceae

The Euphorbiaceae family (also known as spurge) is considered one of the largest plant families, having about 300 genera. Within this family, the Euphorbia genus is one of the richest, exhibiting a great chemical diversity among circa 2000 species. Plants of this genus have a cosmopolitan distribution, are found in all tropical and temperate regions,38,39 and have been widely used in traditional medicine.40-42 To date, 33 species have been reported in folk medicine.43 An array of applications can be found, such as the treatment of gonorrhea, migraine, intestinal parasites, purgative agents, digestive and respiratory disorders, skin diseases, inflammation, disorders of the respiratory system, and wart cures.42,44 Moreover, several studies using extracts derived from Euphorbia species have also demonstrated their anti-inflammatory, immunomodulatory, and antiproliferative action in tumor cell cultures.4,45-49

Although the milky latex is the most relevant and useful product obtained from Euphorbia species, roots, seeds, wood, barks, and leaves have been used for the applications and properties mentioned above,40,42,43 as well as the essential oils (EOs).43

Six major classes form the chemical structures of the Euphorbia genus; namely, sesquiterpenoids, flavonoids, triterpenoids (including steroids), phenolics, cerebrosides, and a wide diversity of macro- and poly-cyclic diterpenoids.44,47,51 Diterpenoids constitute an extensive class of isoprenoid compounds, one of the widest families of natural molecules. These compounds are classified according to their biogenesis, reaching up to 126 distinct carbon skeletons.42

Traditional Uses of Euphorbiaceae Plants

Over the decades, the literature has indicated several traditional uses of Euphorbiaceae plants. The roots of Euphorbia kansuiensis Prokh., a perennial herbaceous plant known as “lang-du,” have been commonly used in traditional Chinese medicine (TCM) for thousands of years to cure immune diseases.52 It is also used to treat cancer, ascites, edema, indigestion, skin ulceration, asthma, and tuberculosis.53-55 This species contains diterpenoids as its major chemical constituents, followed by triterpenoids, steroids, and phenolic acids.56,57

Lathyrane diterpenoids and some triterpenoids are present in the roots of Euphorbia kansuiensis Prokh., which are used as a purgative and to treat apocynosis, chologogue, and pyreto-lysis.58 This same class of diterpenes, including ingenanes, are the main constituents of Euphorbia lathyris L. Its seeds possess biological activities to treat hydropsy, constipation, amenorrhea, ascites, migraine, and snakebites.59

The Chinese herbal medicine, Euphorbia esula L., has been used to treat cancer, warts, edema, diarrhea, vomiting, and fever, and as a diuretic remedy.60,61 Previous phytochemical studies on this genus have led to the identification of numerous diterpenoid classes, such as jatrophane and lathyrane, but mainly ingenane.62

Diterpenoids and terpenoids are also commonly found in species such as Euphorbia helioscopia L. and Euphorbia rossiana Berg, which are used in traditional medicine to treat malignant tumors and chronic obstructive pulmonary diseases,63 and to
suppress chronic pain and tuberculosis, respectively.64 The roots of the perennial herb, *Euphorbia stracheyi* Boiss. are used to treat hemostasis, muscular regeneration, and analgesia.65

Previous research reported diterpenoids, sesquiterpenes, flavonoids, steroids, and phenolic compounds as responsible for several of these bioactivities.65-67

E. peplus L. is commonly known as “petty spurge.” The sap from these plants has been used to treat asthma, as a topical treatment for warts and corns, tumors, and as a purgative.68 An active ester diterpene extracted from *E. peplus* was clinically approved for treating actinic keratosis69,70; however, its use was suspended due to its risks outweighing its benefits.19

The latex of *Euphorbia candelifolia* Haines, also known as "danda thor,” is used in popular medicine for treating bleeding and wounds. Furthermore, it has been used to cure cutaneous eruptions and earache.71 *Euphorbia canariensis* L. was also described as having vascular properties.72

The latex of *Euphorbia antiquorum* L. has been used for the treatment of skin sores, toothache, scabies, palsy, and bronchitis,73,74 and the fresh stem is applied as a purgative, diuretic, and emetic.75

The shrub of *Euphorbia tirucalli* L., named “avolez” or “pencil-tree” by Brazilian indigenous communities, has been used in traditional medicine as a remedy for rheumatism, asthma, and stomach ailments.76 Depending on the region, *E. tirucalli* is reported to be used in the treatment of warts, toothache, hemorrhoids, snake and scorpion bites, epilepsy, cough, swellings, asthma, dropsy, colic, sexual impotence, and a remedy against syphilis, among others.77

In traditional medicine, *Euphorbia trigona* Mill. has been used to heal constipation and epilepsy,78 inflammation, and infections, mainly in the urinary tract,79 while *Euphorbia palustris* L. is used to treat hydrophobia.80 Other *Euphorbia* species, such as *Euphorbia marginata* Pursh. and *Euphorbia birta* L., are used to treat inflammatory conditions, as well as respiratory system disorders and afflictions of the skin and mucous.81,82

Belonging to the Euphorbiaceae family, *Croton tiglium* L. is spread in tropical and subtropical regions and is one of the most used plants in folk medicine.82 Its seeds are popularly known as “badou.” In TCM, their fruits are used to treat gastrointestinal diseases (eg, stomachache, abdominal pain, abscesses, constipation, and ulcer), inflammation, malaria, and rheumatism.82,83 *Homalanthus nutans* is indicated to treat back pain, abdominal swelling, yellow fever (hepatitis), diarrhea, and gonorrhea.84,85

Euphorbia cornigera Boiss. is described as one of the most toxic species in this family. Nevertheless, its leaves, roots, shoots, and fruits are used in the treatment of various ailments. Esters of ingenol and phorbol have been reported in this species.86 With regards to toxic properties, *Euphorbia pekinensis* Rupr. is known as a toxic Chinese medicinal herb, which is used for edema distention, hydrothorax, and ascites.87

Previous reports assume that the toxicity may be related to many diterpenoids present in this species.88-90

Lastly, *Euphorbia serrata* L. has been used in Nigeria to treat skin diseases, migraines, intestinal parasites, gonorrhea, warts, asthma, bronchitis, and dysentery,91,92 whereas *Euphorbia granulate* Forssk. is described with diuretic properties and is capable of purifying the blood. Besides, it has been used as an anthelmintic and purgative.93

As evidenced, the literature has shown that the Euphorbiaceae is abundant in diterpenoids, which are believed to be responsible for several properties indicated in traditional medicine as described above. Many extensive and detailed studies of extracts and molecules derived from Euphorbiaceae plants are proving to be promising for the treatment of several diseases.

Diterpenes

Structural Diversity and Classification

Natural products are classified based on their biogenic origins (terpenoid/isoprenoid, phenylpropanoid, polyketides, and alkaloid). Within terpenoids, diterpenes and diterpenoids are of particular interest. Diterpenoids are compounds comprising 20 carbon atoms, formed by a head and tail (ie, isopropylidene and alcoholic ends, respectively) of four isoprene building blocks (C₅H₈) units. They form part of a large class of polycyclic compounds which can be widely found in plants, fungi, bacteria, and the animal kingdoms, in both terrestrial and marine environments.12,31,94,95 Numerous interactions with living organisms are created, due to the large variability of diterpene skeletons and acylation patterns, which have been potentially investigated for treating different diseases.12 Briefly, the structure of this class originates from the isomeric five-carbon building blocks of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Both are synthesized through the cytosolic mevalonate (MEV) and plastidial methyl-erythritol phosphate (MEP) pathways.96

The known diterpenes constitute a variety of approximately 18,000 (or more) compounds derived from (E,E)-geranylgeranyl diphosphate (GGPP),97 and their classification can be based on the biogenetic construction origin of the hydrocarbon ring. Therefore, they are classified and represented as acyclic, monocyclic, bicyclic, tricyclic, tetracyclic, and pentacyclic, in which the ingenanes can be found, and macrocyclic diterpenes (Table 1).

Furthermore, diterpenoids can also be classified into higher and lower diterpenoids. The higher diterpenoids include ent-abietanes, ent-atisanes, ent-kauranes, ent-isopimaranes, and lower diterpenoids. The higher diterpenoids include ent-abietanes, ent-atisanes, ent-kauranes, ent-isopimaranes, and lower diterpenoids. While lower diterpenoids comprise casabanes, jatrophanes, lathyranes, myrsinanes, tiglianes, ingenanes, segetanes, paralanes, pepluanes, and euphoracines. Both include the most-studied diterpenoids isolated from *Euphorbia* species 44 (Figure 1).

Diterpene Biological Activity

The structural diversity of diterpenes enables a wide array of biological activities, including antioxidant, anti-inflammatory,
Diterpene class	Name of compounds	Resource	Properties	References
Acyclic Diterpenoids	Phytol	Present as the ester attached to the chlorophyll molecule	Metabolic effects and anti-inflammatory activities	98
	Aphanamoxene A, B, and C	*Aphananicos polysphysa* Wall. (Melieaceae)	Relative significant anti-inflammatory activity	99
	Elegantidil, Bifurcane, and Bifurcatriol	*Bifurcaria bifurcata* Ross. (Sargassaceae)	Antiprotozoal and antimycobacterial activities	100-102
Monocyclic Diterpenoids	Tagetones A and B	*Tagetes minuta* L. (Asteraceae)	Biological properties such as α-amylase inhibitory, antimicrobial, anti-spasmodic, anti-parasitic, anti-septic, insecticidal, sedative, anti-inflammatory, and acaridal effects	103
Bicyclic Diterpenes	Labdane skeleton	*Juniperus* L. (Cupressaceae)	Antitumor, antibacterial, hypolipidemic activities, used as a muscle relaxant, and in the fragrance industry	104,105
	Coleonol (Forskolin)	*Coleus forskohlii* Poir. (Lamiaceae)	Cardiovascular and bronchospasmolytic activity	104
	Selareol	*Salvia idaea* L. (Lamiaceae)	Antimicrobial and antifungal activities, apoptosis inducer, and used in the fragrance industry	106
	Marrubiin	*Marrubium vulgare* L. (Lamiaceae)	Antihypertensive, vasodilator, analgesic, antidiabetic, hypoglycemic, anti-inflammatory activities, and against respiratory infections (coughs, asthma bronchitis)	107
	Salvinorin A	*Salvia divinorum* Epling. (Lamiaceae)	Hallucinogen and inhibits excess intestinal motility (eg, diarrhea)	108
	Casbene	*Raimus communis* L. (Euphorbiaceae)	Antifungal activities	109
	Heliojatrones A and B	*Euphorbia helioscopa* L. (Euphorbiaceae)	Antiviral (HSV-1), neuroprotective, and permeability glycoprotein (P-glycoprotein) inhibitory activities	110
Tricyclic Diterpenes	Totarol	*Podocarpus totara* Benn. (Podocarpaceae)	Potentiates methicillin against resistance to *Staphylococcus aureus*	111,112
	Abietic acid	*Pinus sylvestris* L. (Pinaceae)	Emulsion stabilizer, fibrin modulating, free radical scavenger and fibrinolytic agents, antioxidiant, cardiovascular, and anti-inflammatory activities	113
	Carnosic acid	*Salvia officinalis* L and *Rasmarinus officinalis* L. (Lamiaceae)	Antioxidant and photoprotective activities	114
	Tanshinone I	*Salvia milthiorhiza* Bunge. (Lamiaceae)	Anti-inflammatory, anti-oxidation, antitumor, vasodilation, phytoestrogenic, neuroprotective activities, and regulates metabolic function	115
Tetracyclic Diterpenes	Steviol	*Stevia rebaudiana* Bert. (Asteraceae)	Commercialized as sweetener	116
	Gibberellin A3	*Gibberella fujikuroi* (Sawada Wollenw. (Nectriaceae)	Food industries	117
Pentacyclic Diterpenes	Ginkgolides	*Ginkgo biloba* L. (Ginkgoaceae)	Against peripheral and cerebrovascular diseases	118
Macroyclic Diterpenes	Paclitaxel (Taxol)	*Taxus brevifolia* bort. (Taxaceae)	Antitumor activity in ovarian, breast, non-small-cell, and small-cell lung, head, and neck cancer cell lines	119
	Euphorkanlide A	*Euphorbia kansuiensis* Prokh. (Euphorbiaceae)	Treatment of pyrolysis, chologague, and apocenosis as and purgative	58,120
	10-Deacetylbaccatin III	*Taxus baccata* Hook. (Taxaceae)	Derivative of Paclitaxel with antitumor activities	121
	Resiniferatoxin (RTX)	*Euphorbia resinifera* O.Berg (Euphorbiaceae)	Removes warts and used as cathartic (asthma and bronchial catarrh) and in clinical trials for bladder hypertreflexia and diabetic neuropathy. Purgative activities	104
antimicrobial, wound-healing, antihypertensive, analgesic, neuropharmacological, and antineoplastic activities. Diterpenoids are significant components of *E. fischeriana* Steud. and exhibit various pharmacological properties, such as antiviral, immune-enhancing, sedative, analgesic, and anticancer. These diterpene-associated antineoplastic mechanisms include cell cycle arrest, modulation of apoptosis, and inhibition of tumor cell metastasis by interfering with multiple signaling pathways in several tumor types. Moreover, studies have reported that diterpenoids from *Euphorbia* spp. also induce different immune responses, through the modulation of the protein kinase C (PKC) pathway, as well as the release of prostaglandins and proinflammatory cytokines such as TNF-α, interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta).

Due to the extensive bioactivities of diterpenes, they have garnered attention in the drug discovery industry. Paclitaxel, also known under its commercialized name Taxol, is used for chemotherapy in ovarian, prostate, breast, esophageal, melanoma, lung, and other solid tumors. In the same manner, like Taxol, another compound used in cancer therapy is TPI287, a synthetic derivative of the taxane diterpenoid drugs (taxonomic), and which has been related to passage through the blood–brain barrier. Other examples are ingenol mebutate, from *E. peplus*, which was used for the treatment of actinic keratosis, and forskolin, isolated and activity of ABCB1 in the ef of MDR in cancer cells has been linked to the high expression of this transporter in many tumor types. Moreover, studies have reported that diterpenoids from *E. peplus* also induce different immune responses, through the modulation of the protein kinase C (PKC) pathway, as well as the release of prostaglandins and proinflammatory cytokines such as TNF-α, interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta).

In order to overcome the barrier of the production limitation of diterpenes, a synthetic derivative, ingenol 3,20-dibenzoate (IDB), has been shown to activate the classical isoforms of PKCs. Ingenol has raised great interest due to its atypical structure, holding an ingenol scaffold. Picato®, also called PEP005 or ingenol mebutate, presents low quantities when obtained from plants, therefore making its production inefficient; thus, alternative synthesis sources are desirable for such compounds.

Ingenane Diterpenoids

Natural Occurrence

Ingenols are diterpenic compounds derived from *Euphorbia* members. Ingenol was identified for the first time in 1968, in *Euphorbia ingens* E.Mey. Formerly, it had been isolated from the seed oil of *Croton tiglium*, belonging to the Euphorbiaceae family. In plants, ingenol is commonly present in a conjugated form and can be altered by several carboxylic acids. The main types and their species are compiled in Table 2.

Another essential feature of ingenols is their intrinsic affinity with PKCs. The most descriptive molecular exploration of the interaction of ingenols with PKC was performed using ingenol 3-benzoate, which has been considered a potent PKC modulator and anticancer compound. One ingenol derivative, ingenol 3,20-dibenzoate (IDB), has been shown to activate the classical isoforms of PKCs.

Semi-Synthetic Molecules

To improve the clinical efficacy and decrease the side effects, such as drug resistance and cytotoxicity to normal cells, semi-synthetic analogs can be designed from an original compound. Semi-synthetic ingenols have been conceived to enhance their latent activity. The first complete ingenol synthesis, through the use of an intramolecular de Mayo reaction, was accomplished by Winkler. Other successful synthetic approaches, such as those of Wood and Tanino/Kuwajima, have also been reported. One of the reasons ingenol has raised great interest is due to its atypical structure, holding an “inside-outside” bridged BC ring, and its broad spectrum of pharmacological activities. However, the downsizing of ingenanes, such as ingenol mebutate, presents low quantities when obtained from plant sources, therefore making its production inefficient; thus, alternative synthesis sources are desirable for such compounds.

In order to overcome the barrier of the production limitations mentioned above, Nakamura et al, in 1997, carried out an efficient method for synthesizing ingenane in tandem with the complete C and D ring structure of ingenol. Thereafter, using the same approach with alternative commercial compounds, the authors described another complete ingenol synthesis. Rigby et al, in 2002, developed a competent form of access to the ingenane core through Lewis acid-catalyzed intramolecular [6 + 4] cycloaddition. The major hurdles regarding the synthesis are the strained “in-out” bicyclocdecanec ring and a heavily oxygenated and functionalized molecule part. Picato®, also called PEP005 or ingenol mebutate, which can be obtained from the sap of *E. peplus*, was formed through a semi-synthetic method designed by Liang et al in 2012. Although complete synthesis of the critical precursor—ingenol—has been reported, its possible use in industrial applications remains unclear.
Table 2. Main Ingenane-Type Diterpenoids Found and Their Respective species.

Ingenane-types diterpenoids	Euphorbia Species	References
13, 16-Dibenzoxyloxy-20-deoxyingeno-3-benzoate	E. esula	62,142
13,17-Dibenzoxyloxy-3-O-(2,3-dimethylbutanoyloxy)ingenol	E. esula	62,143
13,17-Dibenzoxyloxy-3-O-(2,3-dimethylbutanoyloxy)-20-deoxyingenol	E. esula	144,145
13,19-Dihydroxyingenol	E. esula	144
13-Hydroxyingenol	E. esula	146-148
13-O-Dodecanoylingenol	E. esula	149,151
16-Benzoxyloxy-20-deoxyingenol 5-benzoate	E. esula	152,153
16-Hydroxyingenol	E. esula	153,155
17-[(2Z,4E,6Z)-Deca-24,6-trienoyloxy]ingenol	E. esula	152,153
17-Acetoxyingenol-20-acetate-3-angelate	E. esula	153,155
17-Acetoxyingenol-5,20-diacetate-3-angelate	E. esula	152
17-Acetoxy-3-O-angeloyl-ingenol	E. esula	62,143
17-Benzyloxoyloxy-13-octanoyloxyingenol	E. esula	62,143,153
17-Benzyloxoyloxy-20-O-(2,3-dimethylbutanoyloxy)-13-octanoyloxyingenol	E. esula	118,142
17-Benzyloxoyloxy-20-O-(2,3-dimethylbutanoyloxy)-13-(2,3-dimethylbutanoyloxy)ingenol	E. esula	62,142,143
17-Benzyloxoyloxy-20-O-(2,3-dimethylbutanoyloxy)-13-octanoyloxyingenol	E. esula	62,152
17-Benzyloxoyloxy-3-O-(2,3-dimethylbutanoyloxy)-13-octanoyloxyingenol	E. esula	62,143
17-Benzyloxoyloxy-3-O-(2,3-dimethylbutanoyloxy)-13-(2,3-dimethylbutanoyloxy)-20-deoxyingenol	E. esula	62,143
17-Benzyloxoyloxy-3-O-(2,3-dimethylbutanoyloxy)-13-(2,3-dimethylbutanoyloxy)ingenol	E. esula	62,143
17-Benzyloxoyloxy-3-O-(2,3-dimethylbutanoyloxy)-20-deoxyingenol	E. esula	143,154
17-Hydroxyingenol 17-benzoate 20-angelate	E. canariensis	153,155
17-Hydroxyingenol 3-angelate-17-benzoate	E. canariensis	154
17-Hydroxyingenol 3-angelate-20-acetate-17-benzoate	E. canariensis	153,154
17-O-Acetyl-3-O-[Z]-2-methyl-2-butenoyl-20-deoxy-17-hydroxy-ingenol	E. trigona	156,157
20-Acetyl-ingenol-3-decadienoate	E. broteri Daveau.	153,158
20-Deoxy-13,16-dihydroxyingenol	E. palustris	159
20-Deoxy-16-16-acetate-3-angelate hydroxyingenol	E. antiquorum	159
20-Deoxy-16-3,16-dibenzoate hydroxyingenol	E. antiquorum	159
20-Deoxy-16,5,16-dibenzoate hydroxy ingenol	E. antiquorum	159
20-Deoxy-16-hydroxyingenol	E. antiquorum	159
20-Deoxy-16-hydroxyingenol	E. antiquorum	159
20-Deoxy-13,16-dihydroxyingenol	E. antiquorum	159
20-Deoxyzingenol	E. antiquorum	159
20-Deoxyzingenol 3,5-dibenzoate	E. antiquorum	159
20-Deoxyzingenol 3-angelate	E. antiquorum	159
20-Deoxyzingenol 5-angelate	E. antiquorum	159
20-Deoxyzingenol 5-benzoate	E. antiquorum	159
20-Deoxyzingenol 5-benzoate-3-hexanoate	E. antiquorum	159
20-Deoxyzingenol 5-decatrienoate	E. antiquorum	159
20-Deoxyzingenol 5-hexanoate	E. antiquorum	159
20-Deoxy-13,16-dihydroxyingenol	E. antiquorum	159
20-Eicosanoate	E. lehleri Boiss.	164
20-O-Acetyl-3-O-[Z]-2-methyl-2-butenoyl-ingenol	E. trigona	153,156,157
20-O-Acetyl-3-O-angeloyl-17-benzyloxoyingenol	E. canariensis	152
20-O-Acetyl-3-O-angeloyl-17-hydroxyingenol	E. canariensis	152,153
20-O-Acetyl-ingenol-3-decadienoate	E. petiolata Banks.	147,165
20-O-Benzoyl-17-benzyloxoy-13-octanoyloxyingenol	E. esula	62,143,153
20-Tetradecanoato-ingenol-3,5-diacetate	E. broteri	153,158
20-O-acetyl-ingenol-3-angelate	E. peplus	166,167
20-O-Diacetoxygenol 5-O-[2,4’Z]-tetradecadienoate	E. petiolata	66,168
3,5,20-0-Triaecetyl ingenol	E. kansi	148
3-O-(2,3-Dimethylbutanoyloxy)-13-O-decanoylingenol	E. kansi and E. cyparissias	148,169
3-O-(2,3-Dimethylbutanoyloxy)-13-O-decanoylingenol	E. kansi and E. cyparissias	148,170
3-O-Acetyl-20-O-angeloyl-17-hydroxyingenol	E. canariensis	152
3-O-Angeloyl-17-(benzyoxoy)ingenol	E. canariensis	152
3-O-Anglelosyloxy-ingenol	E. canariensis	152,153
3-O-Angelesyloxy-ingenol	E. antiquorum	171,172
3-O-Benzyloxy-13,17-dibenzyloxyingenol	E. esula	62,142,173

(Continued)
Table 2. Continued.

Ingenane-types diterpenoids	Euphorbia Species	References
3-O-Benzoyl-13-octanoyloxyingenol	E. esula	62,173
3-O-Benzoyl-17-benzyloxy-13-(2,3-dimethylbutanoyloxy)ingenol	E. esula	62,143
3-O-benzoyl-17-benzyloxy-13-octanoyloxy-20-deoxyingenol	E. esula	62,173
3-O-benzoyl-17-benzyloxy-13-octanoyloxyingenol	E. esula	62,173
3-O-tetradecanoylingenol	E. petiolata	174,175
3-Tetradecanoate-ingenol-5,20-diacetate	E. petiolata	153,158
5,17,20-O-Triacetyl-3-O-[(Z)-2-methyl-2-butenoyl]-17-hydroxyingenol	E. trigona	156,197
5,20-O-Diacetyl-3-O-(2',3'-dimethylbutanoyl)-13-O-dodecanoylingenol	E. kansui	148
5,20-O-Diacetylingenol-3-angelate-20-acetate	E. petiolata	153,168
5-Dodecanoylingeno-3-angelate-20-acetate	E. petiolata	153,168
Ingenol	E. kansui	154
Ingenol-20-acetate-3-angelate	E. kansui and E. parahis L.	148,176
Ingenol-3-decadienoate	E. antiguo	139,162,177
Ingenol-3-decatrienoate,5,20-dodecadienoate	E. antiguo	139
Ingenol-3,20-dibenzoate	E. antiguo	139
Ingenol-3-angelate	E. esula	178-181
Ingenol-3-angelate-5,20-diacetate	E. peplus and E. canariensis	134,183,184
Ingenol-3-hexanoate	E. caranciensis	185,186
Ingenol-3-dodecanoate	E. trincailla	185,187
Ingenol-3-trans-cinnamate	E. trincailla	185,186
Ingenol-3-O-(2',4'-Z')-tetradecadieno	E. petiolata	168

Other macrocyclic compounds include resiniferatoxin (RTX), a daphnane diterpene from the latex of *E. resinifera*, for which the first total synthesis was reported by Wender et al in 1997. To date, a few synthetic efforts towards the partial synthesis of RTX have also been documented. In 2008, Wender et al created analogs of prostratin for actinic keratosis and super basal cell carcinoma, and sensitized leukemia cell lines. Nonetheless, mouse model studies are missing to demonstrate their in vivo antitumor activity and primary acute myeloid leukemia blasts.

At present, ingenol 3-angelate (Picalo®, PEP005, ingenol mebutate), isolated from *E. peplus*, was the only ingenol diterpene which has been approved for clinical use by the FDA and the EMA. Despite, it having shown promising chemotherapeutic effects for skin cancer treatment, including topical therapy for actinic keratosis and superficial basal cell carcinoma, this drug had its use suspended in 2020 due to the occurrence of skin cancers in a circa 6% of patients. Ingenol 3-angelate is considered a PKC activator and has shown antiproliferative activity against human melanoma cell lines, inducing apoptosis and cell cycle arrest, and suppressing the growth of PAM212 and B16 subcutaneous tumors in mice. Moreover, it also appears to have antineoplastic effects in leukemia cell lines and primary acute myeloid leukemia blasts.

20-O-Acetyl-ingenol-3-angelate (PEP008) is considered a novel ingenol ester, which is a structural analog of PEP005. Both are derived from *E. peplus* and are PKC activator diterpenes. This compound induced permanent growth arrest and senescence in a panel of breast, melanoma, and colon cancer cells, and sensitized leukemia cell lines in vitro. Nonetheless, mouse model studies are missing to demonstrate their in vivo antitumor activity.

According to Dang et al, the diterpenes EK-1A, EK-5A, and EK-15A, isolated from *Euphorbia kansui*, can reactivate latent HIV-1 infection in a primary CD4+T-cell model and Jurkat cell lines at a nanomolar level of concentration. Moreover, four diterpenes isolated from *E. kansui*, 13-undecanoyl-3-(2,4-dimethylbutanoyl) ingenol, 3-(2,4-dodecaneayl) ingenol,
kansuiphorin A, and kansuinin A increased the cytoimmunity of an organism resulting in declining virus levels. These associations among bioactivities and structural features have been determined to be due to the ingenol derivatives holding acetyl groups on C-13 and C-20, which seems essential for their antiviral activity.208 Ingenol-3-hexanoate (ingenol B), isolated from \textit{E. tirucalli}, effectively promoted HIV LTR-induced gene expression through the activation of PKCs.209 Generally, most ingenol derivatives function as PKC agonists.185

Furthermore, the ingenane diterpenes 3-O-angeloyl-17-angeloyloxy-20-deoxyingenol and 20-O-acetyl-3-O-angeloyl-17-angeloyloxyingenol can be used as MDR modulators but have toxic effects. In another study, the ingenanes called 6 and 7 from \textit{Euphorbia taurinensis}. All have demonstrated remarkable MDR modulating effects at 20 μM.202

Miyata et al explored the biological effects of ingenol diterpenes isolated from the roots of \textit{E. kansui} on the proliferative capacity of \textit{Xenopus} W.Roelofs’ embryo cells.213 Eight of the analyzed diterpenes—that is, 20-O-(2′(E),4′(E)-decadienoyl) ingenol, 20-O-(2′(E),4′(Z)-decadienoyl) ingenol, 3-O-(2′(E),4′(Z)-decadienoyl) ingenol, 3-O-(2′(E),4′(E)-decadienoyl) ingenol, 20-O-decanoyl ingenol, 5-O-(2′(E),4′(E)-decadienoyl) ingenol, 5-O-benzoyl-20-deoxyingenol, and 3-O-(2′(E),4′(E)-decadienoyl) ingenol—were selected as MDR modulators at 20 μM.

Figure 1. Representation of diterpenoid classification: higher diterpenoids (abietane, atisane, kaurene, and rosane) and lower diterpenoids (ingenane, tigliane, lathyrane, casbane, daphane, mirsinane, and jatrophone). The image was created using the biorender platform (https://biorender.com/).

Major Ingenane Compounds and Anticancer Effect

The shift from cytotoxic chemotherapy-based treatment to the discovery and development of new antitumor drugs based on well-defined molecular targets has resulted in an intensifying number of successful therapies, which have a direct impact on the lives of cancer patients.210 Many studies have reported the antitumor activities of \textit{Euphorbia} spp. diterpenes in recent years, and studies have shown diterpenes to have excellent antitumor effects in both \textit{in vivo} and \textit{in vitro} models.43,53

Diterpenes isolated from \textit{E. kansui} (ie, tigliane-, ingenane-, and daphane-type diterpenoids) have been shown to possess anti-allergy, antiviral, and antitumor activities.211 Some constituents have even shown selective cytotoxicity to melanoma (SK-MEL-5), lung (H-322), breast (MDA-MB-435), and colorectal (Colo205) cancer cells.212 Most of the compounds evaluated showed inhibitory and antiproliferative activity against MDA-MB-435 and Colo205 cells.

Miyata et al explored the biological effects of ingenol diterpenes isolated from the roots of \textit{E. kansui} on the proliferative capacity of \textit{Xenopus} W.Roelofs’ embryo cells. Eight of the analyzed diterpenes—that is, 20-O-(2′(E),4′(E)-decadienoyl) ingenol, 20-O-(2′(E),4′(Z)-decadienoyl) ingenol, 3-O-(2′(E),4′(Z)-decadienoyl) ingenol, 3-O-(2′(E),4′(E)-decadienoyl) ingenol, 20-O-decanoyl ingenol, 5-O-(2′(E),4′(E)-decadienoyl) ingenol, 5-O-benzoyl-20-deoxyingenol, and 3-O-(2′(E),4′(E)-decadienoyl) ingenol—were selected as MDR modulators at 20 μM.
20-deoxingenol—significantly inhibited cellular proliferation at low concentrations. Furthermore, most of these diterpenes also inhibited topoisomerase II activity.214 Previously, Yoshida et al reported that 20-O-(2′(E),4′(Z)-decadienoyl) ingenol inhibited topoisomerase II through cell cycle arrest in the G2/M phase without activating γ-H2AX, due to breaks in the DNA molecules in mouse mammary tumor cells.215

Khiev et al reported that two ingenane-type diterpenoids, 20-O-acetylingenol-3-O-(2′E,4′Z)-decadienoate and 3-O-(2,3-dimethylbutanoyl)-13-O-dodecanoylingenol, isolated from \textit{E. kansui}, exhibited the most significant response in interferon-gamma (IFN-γ) production.147 IFN-γ proteins are critical in the early innate defense against tumor control, viral, and bacterial infections, as they are responsible for the production of immune cells.216 These findings indicated that ingenane-type diterpenoids might be promising anticancer compounds.53

20-O-D-ingenol Z isolated from \textit{E. kansui} Liou inhibited cell entrance into the S- and M-phase sub-stages. On the other hand, 20-O-D-ingenol E induced a growth arrest of 75–80% in embryonic cells and suppressed mitosis progress.217

Moreover, using \textit{in vitro} models, 14 diterpenoids derived from \textit{E. fischeriana} have been shown to inhibit cancer cell proliferation with promising IC$_{50}$ values. Among them, 13 (including 3 ingenanes: ingenol-3-myristinate, ingenol-3-palmitate, and

\textbf{Figure 2.} Molecular properties of compounds from ingenol sub-structure search in clarivate analytics integrity (accession date: Oct 20, 2020): (A) ingenol molecule (CHEMBL ID: 2165402); (B) total molecular weight against eLogP; (C) frequency of H-acceptors and H-donors; and (D) distribution of drug-likeness score of ingenol derivatives. Colors highlight the latest phase, as described by the Integrity database: Launched drug (red), pre-clinical stage (yellow), phase III (green), and biological testing (blue). Molecular properties were calculated using the DataWarrior software (version 5.2.1).
ingol-20-myristinate) demonstrated inhibition of the formation of mammospheres using human breast cancer cells (MCF-7 cell line).125 These results demonstrated the potential of these bioactive diterpenoids for the further investigation of cancer stem cells. Another study evaluated the cytotoxicity of 11 compounds extracted and isolated from the roots of \textit{E. fischeriana} using the MTT method. Exposure to three diterpenes (ingenol 6,7-epoxy-3-tetradecanoate, ingenol 3-palmitate, and ingenol-3-myristinate) proved effective in the A549 human lung cancer cell line.125 Moreover, studies have revealed that \textit{E. fischeriana} has the potential to produce further diterpenoids, of which 24 have been identified as having antitumor activities.53

Yan et al extracted and isolated the root constituents of \textit{E. kansuensis} Prokh. in 2019, resulting in a highly modified compound named euphorkanlside A,58 a diterpene of the ingenane type. This compound may induce cell-cycle interruption by generating ROS and apoptosis in cells of the HCT-15/5-fluoracil (5-FU)-resistant cell line. In the study by Fallahian et al in 2017, a tetrahydroingenol diterpene, identified as 7,13-diacytetyl-5-angeloyl-20-nicotinyl-3-propionyl-1,2,6,7-tetrahydroingenol (DANPT), was extracted and isolated from the aerial part of \textit{Euphorbia erythraedna} Bios. and assessed for its anticancer potential and its mechanisms of action in human melanoma tumor lines (A375 and HMCB).49 Two new ingenol derivatives from \textit{E. cornigera}, called 214 and 215, have been isolated by Baloch et al.218 In vitro, compound 214 showed cytotoxicity in mouse macrophage cells (RAW) and a colon cancer cell line (HT-29). In contrast, compound 215 was more effective than amrubicin hydrochloride (used as positive control), but demonstrated moderate cytotoxic activity against both cell lines.218

Diterpenes derived from \textit{Euphorbia royleana} Boiss. have also been evaluated, in which ingol-3,7,12-triaceate-8-benzoate stood out as a potent MDR modulator, acting as an inhibitor of P (gp-P) transport, thus influencing the efficacy of doxorubicin.219

Three new diterpenoids have recently been isolated from the roots of \textit{E. stracheyi} Boiss., while the cytotoxicity of 19 known diterpenoids was evaluated in human cancer cell lines in the study by Ye et al (2020). Of the new compounds evaluated, the ingenane-type diterpene 3β,20-diacectoxy-5β-deca-2′E,4′E,6′E,6′E-trien-4β-hydroxyl-1-one and 20-O-acetyl-[3-O-(2′E, 4′Z)-decadienoyl]-ingenol both showed significant toxicity against the tumor cell line.220

In animal models, IDB derived from \textit{E. esula} attenuated the anemia induced by the cytotoxicity of the drug 5-FU, exhibiting a synergistic effect on erythropoietin (EPO) at low concentrations. However, IDB has also been used as a potential antitumor agent at higher concentrations, in which apoptosis was the endpoint in Jurkat cells, and an antagonistic effect was discovered.221 Systematic fractionation of an extract of \textit{E. esula} L. led to the characterization of diester IDB as a compound with significant inhibitory activity against P-388 lymphocytic leukemia in mice.138 Several \textit{in vitro} and \textit{in vivo} pre-clinical studies have indicated the antitumor activity of ingenol 3-angelate through a double mechanism of action: the first is a cytotoxic effect (tumor cells death promoting necrosis),222 while the second consists of the activation of the immune system, mediated by neutrophils causing antibody-dependent cellular cytotoxicity (ADCC).223 Regarding antitumor activity, Setova et al have demonstrated that, in colon cancer cells (Colo205), both the AKT and Ras/Raf/MAPK pathways are modulated by ingenol 3-angelate; however, only the MAPK pathway is mediated by PKC signaling.224 Thus, these findings suggest that ingenol 3-angelate has both antitumor and proinflammatory activities.205

Recently, Silva et al (2019) addressed the antitumor potential of novel ingenol semi-synthetic esters derived from compounds extracted from the latex of \textit{E. tirucalli}. Ingenols A, B, and C exhibited dose-dependent cytotoxic effects in 70 commercial human tumor cell lines comprising 15 different tumor types. Ingenol C was the most efficacious for esophageal and pancreatic cancer cell lines. Furthermore, ingenol A revealed effective activities in esophageal, lung, melanoma, and colon cancer cell lines. In contrast, ingenol B was less effective than the other semi-synthetic compounds and demonstrated no significant activity against any cell line.185 Additionally, the authors described the cytotoxic activity of ingenol C in glioma cell lines. The semi-synthetic compound showed potential for inhibiting colony formation, promoting the overexpression of cell cycle regulatory proteins, and inhibiting PKC activity.187

Ingenols Acting as Chemotherapeutic Drug Sensitizers

Ingenols can be applied uniquely or in combination with existing chemotherapeutic agents to achieve a synergistic effect. This effect can increase cytotoxicity in target cells, and can have additional effects on the tumor microenvironment and the immune response to tumors.225 \textit{In vitro} and \textit{in vivo} studies have shown that ingenol derivatives can act efficiently, both in monotherapy and with other drugs (eg, JQ1 and vorinostat).70,186,226-228

Gillespie et al (2004) presented the results for treatment of melanoma with PEP005 (Picato20, ingenol 3-angelate) alone, or by other treatments depending on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). PEP005 could enhance or inhibit melanoma sensitivity to treatment with TRAIL, depending on the activities of PKC isoforms in the melanoma of individual patients. However, the combination of TRAIL and PEP005 may also increase the toxicity against normal cells.229 The treatment effect with ingenol C has also demonstrated a synergistic effect when used in combination with paclitaxel, a chemotherapeutic agent used to treat esophageal cancer.185 The combined effect of macrocyclic diterpenes and antineoplastic drugs (eg, doxorubicin or epirubicin) has also been investigated, using a checkerboard microplate method.230-232

As drug-associated toxicity remains one of the main barriers to the action of chemotherapeutic and chemopreventive drugs at present, the use of natural compounds as adjuvant therapy
may reduce such drug-associated toxicities. By sensitizing conventional therapies synergistically, it may be possible to observe better responses to the treatment.233

Ingenane/Diterpenes Toxicities and Tumor Promotion Effects

Despite the fact that diterpenes have demonstrated several biological activities, some may present toxicity to humans, culminating in acute or chronic impacts in multiple tissues and organs, as well as immunostimulatory effects when combined with chemotherapeutic drugs.234 These components have also been described as being responsible for caustic, mucosal irritative, and promoting activities, some may present toxicity to humans, culminating in acute or chronic impacts in multiple tissues and organs, as well as immunostimulatory effects when combined with chemotherapeutic drugs.234 These components have also been described as being responsible for caustic, mucosal irritative, and promoting activities, as well as as nausea, vomiting, and diarrhea.235 The diterpenes, especially those that are responsible for many cellular functions, including uncontrolled cancerous growth.235

PKC, an essential enzyme that is responsible for many cellular functions, including uncontrolled cancerous growth.235

The development of peripheral neurotoxicity is a well-known side effect of paclitaxel chemotherapy,236 which can be enhanced when administered with other drugs.237

In the investigations by Baloch et al (2008), seven diterpene compounds from an *Euphorbia caudata* extract were obtained and tested as possible tumor-promoters. These compounds were 17-\{[2Z,4E,6Z]-deca-24,6-trienoyloxy\} ingenol, 3-O-angeloyl-17-\{[2Z,4E,6Z]-deca-24,6-trienoyloxy\} ingenol, 3-O-acetyl-20-O-angeloyl-17-hydroxygenol, 17-(acetyloxy)-3-O-angeloyl-ingenol, 20-O-acetyl-3-O-angeloyl-17-hydroxygenol, 3-O-angeloyl-17-(benzoyloxy) ingenol, and 20-O-acetyl-3-O-angeloyl-17-(benzoyloxy) ingenol. When evaluated on the back skin of NMRI mice, these compounds all resulted in high toxic activity. All compounds were considered to be tumor promoters, although only with weak activity.86

In the study conducted by Tsai et al (2016), the authors described that diterpenes derived from plants belonging to the Euphorbiaceae family, phorbol esters 12-myristate 13-acetate (TPA) and 16-angeloyloxy-13α-isobutanoyloxy-20-acetoxy-4β, and 9α-dihydroxytrigla-1,6-dien-3-one, are inducers of PKCs, showing tumor-promoting and platelet aggregation properties.245

These reports of toxicity and tumor-promoting activities in natural products/derivatives showing potential for anticancer treatment suggest that precautions should be taken, including assessing the best fit between possible adverse effects and anti-tumor efficacy, in terms of clinical practice.233

Clinical Trials in Diterpene-Based Therapy

The use of alternative medicines has increased in recent years. Besides being used as alternatives, the use of natural-origin medicines is also common as complementary medicine in cancer treatment, as well as to improve the side-effects of conventional therapies. They have also been used in patients with either progressive disease or those who have undergone several treatments without a positive response. Moreover, the use of natural compounds in clinical trials has also expanded.

According to the official clinical trials website [https://www.clinicaltrials.gov/], up to December 2019, about 540 natural compound studies have been presented. This ever-growing number is due to the fact that researchers have increasingly focused their efforts on the potential use of natural products in the treatment of cancer. However, in order to be used by patients, more clinical evidence of the pharmacokinetic parameters of these products is necessary.

At present, clinical trials related to cancer and diterpenes can be found, such as one assessing the treatment of acute myeloid leukemia using the Minnelide drug; however, this study was withdrawn. Minnelide (Minne = Minnesota and -lide = triptolide) has been shown to be exceptionally useful in pancreatic...
and liver cancer, after synthesis (at the University of Minnesota) by adding a phosphate ester group, which generated a chemically unstable compound, due to its limited in vivo solubility.

Clinical studies have evaluated the effect of a supplement based on diterpenes from Rosmarinus officinalis L. and alkylglycerols targeting the immune system and related disorders. On the other hand, studies using bevacizumab, a humanized monoclonal antibody known as Avastin, and TP1287, a synthetic derivative of the taxane diterpenoid (abec-taxane) drugs, for glioblastoma treatment were performed. However, these studies were also canceled.

Clinical trials from natural products can present several difficulties, mainly in relation to commercial availability, structural complexity of the compounds, and the fact that the potency, selectivity, and pharmacokinetic characteristics are not optimized for the clinic.

With regard to diterpenes, the limited number of clinical trials can also be related to previous studies that report the expressed toxicity of the compounds. Structural modifications through biotransformation using enzymes or by the chemical route can produce relevant compounds for clinical use.

In silico approaches and use of bioengineering to explore the potential of ingenane-based compounds

The characterization of ingenol-based compounds from synthetic or natural sources may boost the target identification, hit discovery, and lead optimization for clinical practice through in silico approaches. Computational methods have been applied extensively to accelerate drug discovery and to reduce drug development costs in both academia and industry, mainly due to the continuous increase in the amount of molecular data and public chemical databases, such as PubChem and ChEMBL.

Target identification is an essential step in drug development, for which several computational target prediction strategies have been developed, using different methods, such as traditional ligand- and structure-based applications or machine learning models. Moreover, virtual screening techniques allow for the identification of new hit compounds for a specified target using large chemical libraries. However, classical structural-based virtual screening requires the identified target’s three-dimensional structure, while ligand-based screening relies on significant sets of ligands–target interactions. Along with several chemoinformatic tools, computational information can lead to insights into the rational drug design of ingenol derivatives.

The ingenol structure (Figure 2A) was submitted to a substructure search in Clarivate Analytics Integrity (accession date: Jun 20, 2020), a commercial database for drug discovery that integrates biological, chemical, and pharmacological data. This search resulted in 57 small molecule compounds, as presented in Table 3 and detailed in Table S1. The selected compounds, of which 13 were indicated as natural products, have a molecular weight ranging from 430.5 to 726.9 Daltons, including one phase III compound (ingenol disoxate), and three at the pre-clinical stage (ingenol-3-hexanoate, GSK-445A, and ingenol 3,20-dibenzoate). Clarivate Analytics Integrity classified 13 compounds as protein kinase C activators, although 42 compounds were associated with undesirable molecular mechanisms. Regarding the cellular mechanisms, 42 were described as not specified, 11 as signal transduction modulators, four as HIV latency-reversing agents, three as apoptosis inducers, two as angiogenesis inhibitors, and one as an antimimetic drug.

The molecular properties of the 57 ingenol derivatives were calculated using DataWarrior, a cheminformatics software for data visualization and analysis (Figure 2 and Table S2). According to Lipinski’s rule of five, orally administered drugs are more likely to have low absorption or permeation if they present a molecular weight of more than 500 Daltons, a cLogP over 5, more than 10 hydrogen-bond acceptors, or more than five hydrogen-bond donors. In practical applications for drug discovery, compounds usually should not violate more than one of Lipinski’s rules of five. However, natural products may account for most of the favorable exceptions to this rule. As shown in Figure 2B, most of the compounds have a cLogP below 5.0, while around 54% exhibit molecular weight below 500 Daltons. No violations of Lipinski’s rules regarding the number of hydrogen donors or acceptors were identified for ingenol derivatives (Figure 2C).

Additionally, the fragment-based drug-likeness, for which traded drugs tend to have more positive values, was calculated, as shown in Figure 2D and Table S2. In this analysis, we observed a group of around 70% of compounds with higher drug-likeness, encompassing Picato, ingenol disoxate, ingenol 3,20-dibenzoate, and GSK-445A. These molecular property data reinforce the potential of ingenol-based compounds for therapeutic applications.

The discovery of a novel and effective drug, once identified, has scientific and technical hurdles to overcome as establishing and isolating the best targets can be very challenging. The association of the suggested target to the behavior of the clinical disease, and the consequences of this modulation, must be studied, to deliver an appropriate biological and therapeutic effect in applicable experimental models.

Hanson et al described that biotransformation processes use biological systems to promote chemical transformations from unnatural substrates. In this sense, the biotransformation of diterpenoids through the metabolic engineering of relevant biosynthetic pathways plays a vital role in drug discovery and has attracted increased attention in recent years, becoming a viable alternative strategy. Inexpensive screening technologies, such as the available high-throughput transcriptomics and metabolomics technologies, have made this approach increasingly easy.

The study of biotransformation processes applying in silico approaches is a potential way to analyze molecules and the metabolism of medicines in a computational manner. These computational methods are favorable for the
Table 3. Summary of Small Molecule Compounds Retrieved from Substructure Search of Ingenol in Clarivate Analytics Integrity. The Structure of Current Drugs, Molecular, Cellular Mechanism, and Therapeutic Group of 57 Small Molecules are Reported.

Chemical Structure*	Integrity ID/ drug name*	Molecular/cellular mechanism	Therapeutic group
![Chemical Structure](image1)	328987 Ingenol-3-angelate	Protein kinase C (PKC) activators	Basal cell carcinoma therapy; bladder cancer therapy; anti-papilloma virus drugs; treatment for genital warts; antiviral drugs; myeloid leukemia therapy; squamous cell carcinoma therapy; agents for actinic keratoses; leukemia therapy; skin cancer therapy; melanoma therapy
![Chemical Structure](image2)	345206 Not specified	Not specified	Oncolytic drugs; antiarthritic drugs
![Chemical Structure](image3)	345208 20-OD-Ingenol Z	Not specified	Oncolytic drugs; antiarthritic drugs
![Chemical Structure](image4)	345209 Not specified	Not specified	Oncolytic drugs; antiarthritic drugs
![Chemical Structure](image5)	345210 Not specified	Not specified	Oncolytic drugs; antiarthritic drugs
![Chemical Structure](image6)	345215 20-OD-Ingenol E	Not specified Antimitotic drugs; HIV latency-reversing agents	Oncolytic drugs; anti-HIV agents; antiarthritic Drugs
![Chemical Structure](image7)	667586 Not specified	Not specified Angiogenesis inhibitors	Oncolytic drugs

(Continued)
Table 3. Continued.

Chemical Structure*	Integrity ID/ drug name**	Molecular/cellular mechanism	Therapeutic group
![Chemical Structure](image1)	667591 Not specified	Not specified Angiogenesis inhibitors	Oncolytic drugs
![Chemical Structure](image2)	781158 Ingenol disoxate	Not specified Not specified	Acne therapy; agents for actinic keratoses; premalignant conditions therapy
![Chemical Structure](image3)	781160 Not specified	Not specified Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image4)	781170 Not specified	Not specified Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image5)	781171 Not specified	Not specified Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image6)	781172 Not specified	Not specified Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image7)	781174 Not specified	Not specified Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image8)	781175 Not specified	Not specified Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
Chemical Structure*	Integrity ID/ drug name*	Molecular/cellular mechanism	Therapeutic group
---------------------	--------------------------	-----------------------------	-------------------
![Chemical Structure](image1)	781177 Not specified	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image2)	781179 Not specified	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image3)	781193 Not specified	Protein kinase PKC delta activators Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image4)	781194 Not specified	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image5)	781196 Not specified	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image6)	781197 Not specified	Protein kinase C (PKC) activators Signal transduction modulators	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image7)	781198 Not specified	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image8)	781199 Not specified	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs

(Continued)
Chemical Structure*	Integrity ID/drug name**	Molecular/cellular mechanism	Therapeutic group
![Image](image1)	781200	Protein kinase PKC delta activators	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Image](image2)	781201	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Image](image3)	781265	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Image](image4)	781268	Protein kinase C (PKC) activators	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Image](image5)	781270	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Image](image6)	795830 3EZ,20Ac-Ingenol	Interferon inducers; DNA topoisomerase I inhibitors; DNA-intercalating drugs Signal transduction modulators; HIV latency-reversing agents; apoptosis inducers	Immunomodulators; oncolytic drugs; anti-hiv agents
![Image](image7)	822155 Ingenol-3-palmitate	Not specified	Antiarthritic drugs

(Continued)
Chemical Structure*	Integrity ID/ drug name**	Molecular/cellular mechanism	Therapeutic group
![Chemical Structure](image1)	822159 Ingenol-3-myristate	Not specified	Anti-HIV agents; antiarthritic drugs
![Chemical Structure](image2)	824968 Ingenol A	Not specified	Oncolytic drugs; anti-HIV agents
![Chemical Structure](image3)	824969 Ingenol B	Protein kinase C (PKC) activators	Oncolytic drugs; anti-HIV agents
![Chemical Structure](image4)	824970 Ingenol C	Not specified	Oncolytic drugs; anti-HIV agents
![Chemical Structure](image5)	824971 Not specified	Not specified	anti-HIV agents
![Chemical Structure](image6)	827985 Not specified	Protein kinase C (PKC) activators	Oncolytic drugs; agents for actinic keratoses
![Chemical Structure](image7)	827991 Not specified	Not specified	Oncolytic drugs; agents for actinic keratoses
![Chemical Structure](image8)	836431 Not specified	Not specified	Agents for actinic keratoses
Table 3. Continued.

Chemical Structure	Integrity ID/ drug name	Molecular/cellular mechanism	Therapeutic group
![Chemical Structure](image1)	836433 Not specified	Not specified	Agents for actinic keratoses
![Chemical Structure](image2)	839064 Not specified	Protein kinase PKC delta activators Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image3)	839065 Not specified	Not specified	Treatment for genital warts; oncolytic drugs; agents for actinic keratoses; dermatologic drugs
![Chemical Structure](image4)	954250 GSK-445A	Protein kinase C (PKC) activators Signal transduction modulators	Anti-HIV agents
![Chemical Structure](image5)	970286 Not specified	Not specified	Anti-HIV agents
![Chemical Structure](image6)	970287 Not specified	Not specified	Anti-HIV agents
![Chemical Structure](image7)	970288 Not specified	Not specified	Anti-HIV agents
![Chemical Structure](image8)	970289 Not specified	Not specified	Anti-HIV agents
Table 3. Continued.

Chemical Structure*	Integrity ID/ drug name**	Molecular/cellular mechanism	Therapeutic group
![Chemical Structure](image1)	970290 Not specified	Not specified	Anti-HIV agents
![Chemical Structure](image2)	975157 Ingenol 3,20-dibenzoate	Protein kinase PKC epsilon activators Signal transduction modulators; apoptosis inducers	Antianemias; antiviral drugs; oncolytic drugs; anti-hiv agents; anti-thrombocytopenic
![Chemical Structure](image3)	1018203 3-(2-Naphthoyl)ingenol	Not specified	Anti-HIV agents
![Chemical Structure](image4)	1024344	Not specified	Anti-HIV agents
![Chemical Structure](image5)	1024441 Ingenol-3-(3-methylbutenoate)	Protein kinase C (PKC) activators Signal transduction modulators	Anti-HIV agents
![Chemical Structure](image6)	1024445 Ingenol-3-cyclohexanecarboxylate	Protein kinase C (PKC) activators Signal transduction modulators	Anti-HIV agents
![Chemical Structure](image7)	1028053 3-O-(2′E,4′E-Decadienoyl)ingenol	Nitric oxide (NO) production inhibitors	Inflammation, treatment of
![Chemical Structure](image8)	1052982 Euphorkanlde A	Not specified	Oncolytic drugs

(Continued)
The intensive availability of sequenced genomes in the Euphorbiaceae family, enhanced bioinformatics pipelines for genome assembly, and the evidently conserved clustering of macrocyclic diterpenoid pathways in these species is likely to facilitate novel pathway discoveries, making this platform a reality. The combination of the analysis of metabolite profiling and transcriptome of *E. lathyris* seeds, which are rich in ingenanes, has been performed by Luo et al, in 2007, to investigate better the associated biosynthetic pathways.

Conclusions and Future Research

The active bioconstituents derived from popular medicinal plants have been commonly exploited in the pharmaceutical industry, as active principles for the development of new medicines. Diterpenes are a class of taxonomic markers of the Euphorbiaceae family, representing small molecule compounds with multi-target therapeutic biological activities. Thereby, structural diversity investigations considering diterpenoids from *Euphorbia* species are considered very promising. At present, approximately 100 *Euphorbia* species have been explored so far, which is less than 5% of the species belonging to this genus. Moreover, this percentage is further lowered when the target is restricted to the ingenane-type diterpenoids.

The only clinical data on ingenol derivatives are those of I3A, introduced into the pharmaceutical market as a gel for managing actinic keratosis. Despite being withdrawn due to risks that outweigh benefits, it has been a considerable time since a natural product without structural modification has been introduced into clinical practice.

Generally, the active constituents of natural products, such as diterpenoids, are obtained mainly from plants. Although plant biomass recovery is limited due to taxonomic distribution and depressed availability, techniques that allow for the complete chemical synthesis of these molecules despite being laborious, due to the great structural complexity of the members of the diterpene class, are efficient. In this sense, the biomanufacturing of diterpenoids by metabolic engineering has been widely explored.

Virtual screening or *in silico* simulations have gained prominence in the development of new drugs for use in clinical practice. Using these computational approaches better allows for the determination of compounds that exhibit several physiological activities, thus reducing the associated time and cost. *In silico* approaches to study biotransformation makes it possible to investigate metabolic pathways and obtain new chemical structures and active compounds.
Once identified, these new bioactive molecules require extensive in vitro and in vivo studies to verify their effectiveness in biological models. These tests are essential to validate and provide basic knowledge about the pharmacodynamics of the newly discovered drug. In addition, they are significant in facilitating comprehension of the selectivity of the compound and its possible interactions with the therapeutic target.

Considering the results presented in this review, Euphorbia spp. plants have shown great potential as sources of bioactive extracts and compounds, such as ingenane-type diterpenes. Understanding both the biological activities and the roles of these compounds in nature and their optimization through computational methods may accelerate the development of safe and effective new drugs for clinical use.

Acknowledgments
This study was supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) (2019/05142-4—A.L.VA.) and (2019/23245-5—C.A.F.), Public Ministry of Labor Campinas (Research, Prevention and Education of Occupational Cancer)—L.S.S, CAPES and Barretos Cancer Hospital, all from Brazil. We thank Caio Fernando Oliveira for the assistance in using the Biorender platform and CAPES to access Integrity through the periodic CAPES portal.

Author Contributions
A.L.V.A.—conception or design of the work, writing—original draft preparation, review and editing, and final approval; L.S.S.—conception or design of the work, writing—original draft preparation, review and editing, and final approval; C.A.F.—conception or design of the work and final approval; V.A.O.S.—conception or design of the work, critical review, and final approval; and Rui M. Reis (corresponding author)—conception or design of the work, critical review, and final approval.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Hospital de Câncer de Barretos, Fundação de Amparo à Pesquisa do Estado de São Paulo, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and Public Ministry of Labor Campinas (grant number 2019/05142-4, 2019/23245-5).

Ethical Approval
Not applicable, because this article does not contain any studies with human or animal subjects.

Informed Consent
Not applicable, because this article does not contain any studies with human or animal subjects.

Trial Registration
Not applicable, because this article does not contain any clinical trials.

ORCID iD
Rui M. Reis https://orcid.org/0000-0001-8672-3768

Supplemental Material
Supplemental material for this article is available online.

References
1. Ajazuddin SS. Legal regulations of complementary and alternative medicines in different countries. Pharmacog Rev. Jul 2012;6(12):154-160. doi:10.4103/0973-7847.99950
2. Fokunang CN, Ndikum V, Tabi OY, et al. Traditional medicine: past, present and future research and development prospects and integration in the National Health System of Cameroon. Afr J Tradit Complement Altern Med. 2011;8(3):284-295. doi:10.4314/ajtcam.v8i3.65276
3. Wangkeirakpam S. Traditional and folk medicine as a target for drug discovery. In: Natural Products and Drug Discovery. Elsevier; 2018:29-56.
4. Calixto JB. The role of natural products in modern drug discovery. Anais da Academia Brasileira de Ciências. 2019;91(Suppl.3):1-7. doi:10.1590/0001-3765201920190105
5. De Luca V, Salim V, Atsumi SM, Yu F. Mining the biodiversity of plants: a revolution in the making. Science. 2012;336(6089):1658-1661. doi:10.1126/science.1217410
6. Raskin I, Ribnický DM, Komarnytsky S, et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20(12):522-531. doi:10.1016/s0167-7799(02)02080-2
7. Thirumurugan D, Cholarajan A, Raja SS, Vijayakumar R. An introductory chapter: secondary metabolites. Second Metab-Sources Appl. 2018;1(1):1-21. doi: 10.5772/intechopen.79766
8. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75(3):311-335. doi:10.1021/np200906s
9. Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med. 2013;4(11):1231-1235.
10. Cragg GM, Kingston DG, Newman DJ. Anticancer Agents from Natural Products. CRC press; 2011.
11. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830(6):3670-3695. doi:10.1016/j.bbabio.2013.02.008
12. Mafu S, Zerbe P. Plant diterpenoid metabolism for manufacturing the biopharmaceuticals of tomorrow: prospects and challenges. Phytochem Rev. 2018;17(1):113-130.
13. Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemestry set of the future. Science. 2016;353(6305):1232-1236. doi:10.1126/science.aad2062
14. Lebwohl M, Swanson N, Anderson LL, Melgaard A, Xu Z, Berman B. Ingenol mebutate gel for actinic keratoses. N Engl J Med. 2012;366(11):1010-1019. doi:10.1056/NEJMoai1111170
15. Gras J. Ingenol mebutate: a new option for actinic keratosis treatment. *Drug Today (Barc).* 2013;49(1):15-22. doi:10.1385/2013.49.11910723

16. Saraiva MR, Portocarrero LKL, Vieira M, Swiczar BCC, Westin AT. Ingenol mebutate in the treatment of actinic keratoses: clearance rate and adverse effects. *An Bras Dermatol.* 2018;93(4):529-534. doi:10.1590/abd1806-4841.20186982

17. Righi V, Tarentini E, Mucci A, et al. Field cancerization therapy with ingenol mebutate contributes to restoring skin-metabolism to normal-state in patients with actinic keratosis: a metabolomic analysis. *Sci Rep.* 2019;9(1):11515. doi:10.1038/s41598-019-47984-x

18. Hanke CW, Albrecht I, Skov T, Larsson T, Osterald ML, Spelman L. Efficacy and safety of ingenol mebutate gel in field treatment of actinic keratosis on full face, balding scalp, or approximately 250 cm(2) on the chest: a phase 3 randomized controlled trial. *J Am Acad Dermatol.* 2020;82(3):642-650. doi:10.1016/j.jaad.2019.07.083

19. (EMA) EMA. EMA Suspends licence for ingenol mebutate (Picato). *Drug Ther Bull.* 2020;58(4):51. doi:10.1136/dtb.2020.000112

20. Xu Z-H, Sun J, Xu R-S, Qin G-W. Casbane diterpenoids from *Euphorbia bracteolata* Phytomarkers. 1998;49(1):149-151.

21. Fatope MO, Zeng L, Ohayaga JE, Shi G, McLaughlin JL. Selectively cytotoxic diterpenes from *Euphorbia poissonii*. *J Med Chem.* 1996;39(4):1005-1008.

22. Murugan S, Anand R, Devi U. Efficacy of *Euphorbia millii* and *Euphorbia paludicruina* on aflatoxin producing fungi (*Aspergillus flavus* and *Aspergillus parasiticus*). *Afr J Biotechnol.* 2007;6(6):718-719.

23. Ma Q-G, Liu W-Z, Wu X-Y, Zhou T-X, Qin G-W. Diterpenoids from *Euphorbia fischeriana*. Phytomarkers. 1997;44(4):663-666.

24. Sinan KI, Akpulat U, Aldahish AA, et al. LC-MS/HRMS analysis, anti-cancer, anti-enzymatic and anti-oxidant effects of *Boerhavia hispida* leaves: potential raw material for functional foods. *Antioxidants (Basel)*. 2021;10(12):2003. doi:10.3390/antioxidants10122003

25. Shahbaz A, Abbasi BA, Iqbal J, et al. Chemical composition of *Gastronoma bisipida* (Forsk.) Bunge and Helipterum crispum Desf. and evaluation of their multiple in vitro biological potentials. *Saudi J Biol Sci.* 2021;28(11):6086-6096. doi:10.1016/j.jsbs.2021.09.040

26. Fernandez J, Silvan B, Entrialgo-Cadierno R, et al. Antiproliferative and palliative activity of flavonoids in colorectal cancer. *Biomed Pharmacother.* 2021;143:112241. doi:10.1016/j.biopharm.2021.112241

27. Akkol EK, Tati II, Karatoprak GS, et al. Is emodin with antican- cera effects completely innocent? Two sides of the coin. *Cancers (Basel).* 2021;13(11):2733. doi:10.3390/cancers13112733

28. Ahmed S, Khan H, Aschner M, Mirzae H, Kupeli AE, Capasso R. Anticancer potential of furanoconumarins: mechanistic and therapeutic aspects. *Int J Mol Sci.* 2020;21(16):5622. doi:10.3390/ijms21165622

29. Kupeli A, Gene E, Karpuz Y, Sobotar-Sanchez E B, Capasso R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. *Cancers (Basel).* 2020;12(7):1959. doi:10.3390/cancers12071959

30. Chy MNU, Adnan M, Chowdhury MR, et al. Central and peripheral pain intervention by *Ophiorrhiza rugosa* leaves: potential underlying mechanisms and insight into the role of pain modulators. *J Ethnopharmacol.* 2021;276(5):141182. doi:10.1016/j.jep.2021.114182

31. Bari MS, Khandokar I, Haque E, et al. Ethnomedical uses, phytochemistry, and biological activities of plants of the genus Gynura. *J Ethnopharmacol.* 2021;271:113834. doi:10.1016/j.jep.2021.113834

32. Hossain S, Urbi Z, Karuniaiati H, et al. *Andrographis paniculata* (Burm. f.) wall. Ex nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. *Life (Basel).* 2021;11(4):348. doi:10.3390/life11040348

33. Martinez V, De-Hond AI, Borrelli F, Capasso R, Del Castillo MD, Abalo R. Cannabidiol and other non-psychoactive cannabinoids for prevention and treatment of gastrointestinal disorders: useful nutraceuticals? *Int J Mol Sci.* 2021;22(9):3067. doi:10.3390/ijms22093067

34. Akkol EK, Cankaya IT, Karatoprak GS, Carparr E, Sobotar-Sanchez E, Capasso R. Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. *Front Pharmacol.* 2021;12:669368. doi:10.3389/fphar.2021.669368

35. Freitas MA, Vasconcelos A, Goncalves ECD, et al. Involvement of opioid system and TRPM8/TRPA1 channels in the antinoce- ceptive effect of *Spirulina platensis*. *Biomolecules.* 2021;11(4):592. doi:10.3390/biom11040592

36. Rahman J, Tareq AM, Hossain MM, et al. Biological evaluation, DFT calculations and molecular docking studies on the antide- pressant and cytotoxic activities of *Cycas pectinata* Buch.-Ham. compounds. *Pharmaceuticals (Basel).* 2020;13(9):232. doi:10.3390/ph13090232

37. Goni O, Khan MF, Rahman MM, et al. Pharmacological insights on the antidepressant, anxiolytic and aphrodisiac potentials of *Aglonema botherianum* Schott. *J Ethnopharmacol.* 2021;268:113664. doi:10.1016/j.jep.2021.113664

38. Horn JW, van Ee BW, Morawetz JJ, et al. Phylogenetics and the evolution of major structural characters in the giant genus *Euphorbia* L. (Euphorbiaceae). *Mol Phylogenet Evol.* 2012;63(2):305-326. doi:10.1016/j.ympev.2011.12.022

39. Horn JW, Xi Z, Riina R, et al. Evolutionary bursts in the Euphorbiaceae are linked with photosynthetic pathway. *Evolution.* 2014;68(12):3485-3504. doi:10.1111/evo.12534

40. Ernst M, Grace OM, Salsis-Lagoudakis CH, Nilsson N, Simonsen HT, Ronsted N. Global medicinal uses of *Euphorbia L.* (Euphorbiaceae). *J Ethnopharmacol.* 2015;176:90-101. doi:10.1016/j.jep.2015.10.025

41. Kumar S, Malhotra R, Kumar D. *Euphorbia hirta*: its chemistry, traditional and medicinal uses, and pharmacological activities. *Pharmascope Rev.* 2010;4(7):58-61. doi:10.4103/0973-7847.65327

42. Pascal OA, Bertrand AEV, Essaë T, Sylvie H-AM, Elói AY. A review of the ethnomedical uses, phytochemistry and pharmacology of the *Euphorbia* genus. *The Pharma Innovation.* 2017;6(1, Part A):34.
43. Salehi B, Iriti M, Vinali S, et al. Euphorbia-derived natural products with potential for use in health maintenance. Biomolecules. 2019;9(8):337. doi:10.3390/biom9080337
44. Shi QW, Su XH, Kiyota H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem Rev. 2008;108(10):4295-4327. doi:10.1021/cr078350s
45. Qiao W, Li C, Mosongo I, Liang Q, Liu M, Wang X. Comparative transcriptome analysis identifies putative genes involved in steroid biosynthesis in Euphorbia tirucalli. Genes (Basel). 2018;9(1):1-14. doi:10.3390 Genes9010038
46. Zhang CY, Wu YL, Zhang P, Chen ZZ, Li H, Chen LX. Anti-inflammatory lathyrene diterpenoids from Euphorbia lathyris. J Nat Prod. 2019;82(4):756-764. doi:10.1021/acs.jnatprod.8b00600
47. Vasas A, Hohmann J. Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008-2012). Chem Rev. 2014;114(17):8579-8612. doi:10.1021/cr400541j
48. Yu F, Lu S, Yu F, Shi J, McGuire PM, Wang R. Cytotoxic activity of an octadecenoic acid extract from Euphorbia canavina (Euphorbiaceae) on human tumour cell strains. J Pharm Pharmacol. 2008;60(2):253-259. doi:10.1211/jpp.60.2.0015
49. Fallahian F, Ghanadian M, Aghaei M, Zarei SM. Induction of G2/M phase arrest and apoptosis by a new tetrahydroginol diterpenoid from Euphorbia erythraedia Biois. In melanoma cancer cells. Biomed Pharmacother. 2017;86:334-342. doi:10.1016/j.biopha.2016.12.029
50. Hua J, Liu Y, Xiao CJ, Jing SX, Luo SH, Li SH. Chemical profile and defensive function of the latex of Euphorbia peplus. Phytochemistry. 2017;136:56-64. doi:10.1016/j.phytochem.2016.12.021
51. Appendino G. Ingenane diterpenoids. Prog Chem Nat Prod. 2016;102:1-90. doi:10.1007/978-3-319-33172-0_1
52. Wang Y, Ma X, Yan S, et al. 17-hydroxy-jolkonolide B inhibits signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induces apoptosis of human cancer cells. Cancer Res. 2009;69(18):7302-7310. doi:10.1158/0008-5472.CAN-09-0462
53. Jian B, Zhang H, Han C, Liu J. Anti-cancer activities of diterpenoids derived from Euphorbia fischeriana Steud. Molecules. 2018;23(2):387. doi:10.3390/molecules2302387
54. Liu WZ, He FL, Ruan ZY, Gu XF, Wu XY, Qin GW. Studies on chemical constituents from Euphorbia fischeriana Steud. Zhongguo Zhong Yao Za Zhi. 2001;26(3):180-182.
55. Wang HB, Chu WJ, Wang Y, et al. Diterpenoids from the roots of Euphorbia fischeriana. J Asian Nat Prod Res. 2010;12(12):1038-1043. doi:10.1080/10286020.2010.532490
56. Tong G, Ding Z, Liu Z, et al. Total synthesis of prostratin, a bio-active tigliane diterpenoid: access to multi-stereocenter cyclohexanes from a phenol. J Org Chem. 2020;85(7):4813-4837. doi:10.1021/acs.joc.0c00022
57. Sun YX, Liu JC. Chemical constituents and biological activities of Euphorbia fischeriana Steud. Chem Biodivers. 2011;8(7):1205-1214. doi:10.1002/cbdi.201000115
58. Yan XL, Sang J, Chen SX, et al. Euphorankalide A, a highly modified ingenane diterpenoid with a C24 appendage from Euphorbia kansuius. Org Lett. 2019;21(11):4128-4131. doi:10.1021/acs.orglett.9b01315
59. Lu J, Li G, Huang J, et al. Lathyrene-type diterpenoids from the seeds of Euphorbia lathyris. Phytochemistry. 2014;104:79-88. doi:10.1016/j.phytochem.2014.04.020
60. Yuan S, Hua P, Zhao C, et al. Jatrophone diterpenoids from Euphorbia esula as inhibitors of RANKL-induced osteoclastogenesis. J Nat Prod. 2020;83(4):1005-1017. doi:10.1021/acs.jnatprod.9b00929
61. Hohmann J, Vasas A, Gunther G, et al. Macrocyclic diterpene polyesters of the jatrophone type from Euphorbia esula. Acta Pharm Hung. 1998;68(3):175-182. Jatrofan vazas makrokıklusos diterpen-polieszterek az Euphorbia esula Bol.
62. Lu ZQ, Yang M, Zhang JQ, et al. Ingenane diterpenoids from Euphorbia esula. Phytochemistry. 2008;69(3):812-819. doi:10.1016/j.phytochem.2007.09.013
63. Ghen Y, Tang ZJ, Jiang FX, Zhang XX, Lao AN. Studies on the active principles of Ze-Qi (Euphorbia helioscopia L.), a drug used for chronic bronchitis (I) (author’s transl). Yao Xue Xue Bao. 1979;14(2):91-95.
64. Wang SY, Li FY, Zhang K, et al. New ingol-type diterpenes from the latex of Euphorbia resinifera. J Asian Nat Prod Res. 2019;21(11):1075-1082. doi:10.1080/10286020.2018.1498084
65. Liu T, Liang Q, Xiong NN, et al. A new ent-kaurene diterpen from Euphorbia stracheyi Boiss. Nat Prod Res. 2017;31(2):233-238. doi:10.1080/14786419.2016.1222385
66. Yang DS, Peng WB, Li ZL, et al. Chemical constituents from Euphorbia stracheyi and their biological activities. Fitoterapia. 2014;97:211-218. doi:10.1016/j.fitote.2014.06.013
67. Ma Z, Dai Y, Zhang B, Liao Z. Study on chemical constituents of Euphorbia stracheyi Boiss. N Pharm J. 2012;27(1):1-4.
68. Ogborne SM, Parsons PG. The value of nature’s natural product library for the discovery of new chemical entities: the discovery of ingenol mebutate. Fitoterapia. 2014;98:36-44. doi:10.1016/j.fitote.2014.07.002
69. Li L, Shukla S, Lee A, et al. The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. Cancer Res. 2010;70(11):4509-4519. doi:10.1158/0008-5472.CAN-09-4602
70. Miranda FJ, Alabadi JA, Orti M, et al. Comparative analysis of the vascular actions of diterpenes isolated from Euphorbia tirucalli Boiss. In melanoma Euphorbia erythradenia, a vascular agents from Jodhpur district of Thar desert. Int J Pharmacol. 2011;7(3):335-339. doi:10.3923/ijp.2011.335.339
71. Min Z-d, Mizuo M, Toshiyuki T, Munekazu I, Xu G-Y, Huang Q. A diterpen from Euphorbia antiquorum. Phytochemistry. 1989;28(2):553-555. doi:10.1016/0031-9422(89)80049-4
74. Akihisa T, Wijeratne EMK, Tokuda H, et al. Eupha-7,9(11),24-trien-3beta-ol ("antiquol C") and other triterpenes from Euphorbia antiquorum latex and their inhibitory effects on Epstein-Barr virus activation. *J Nat Prod*. 2002;65(2):158-162. doi:10.1021/np010377y

75. Prashant Y, Kritika S, Anurag M. A review on phytochemical, medicinal and pharmacological profile of Euphorbia antiquorum. *Int J Pharm Pharm, Human*. 2015;4(1):56-67.

76. Khan AQ, Malik A. A new macrocyclic diterpene ester from the latex of *Euphorbia tirucalli*. *J Nat Prod*. 1990;53(3):728-731. doi:10.1021/np50069a035

77. Mali PY, Panchal SS. *Euphorbia tirucalli* L.: review on morphology, medicinal uses, phytochemistry and pharmacological activities. *Asian Pac J Trop Med*. 2011;4(7):603-613. doi:10.1016/j.apjtm.2011.06.002

78. Schmelzer GH, Gurib-Fakim A. Medicinal plants. *An Plant Resources of Tropical Africa Foundation; 2008, (11):788–790.*

79. Upadhyay M, Nashikkar N, Begde D, et al. Study of antimicrobial, antioxidant and antiinflammatory properties of *Euphorbia trigona*. *Global J Res Med*. 2013;2(9):630-641.

80. Mwine JT, Van Damme P. Why do Euphorbiaceae tick as medicinal plants? A review of Euphorbiaceae family and its medicinal uses, phytochemistry and pharmacological activities. *J Braz Chem Soc*. 2007;18(1):11-33. doi:10.1590/S0103-739X2007000100002

81. Hu J, Gao WY, Gao Y, Ling NS, Huang LQ, Liu CX. M3 muscarinic receptor- and Ca²⁺ influx-mediated muscle contractions induced by croton oil in isolated rabbit jejunal. *J Ethnopharmacol*. 2010;129(3):377-380. doi:10.1016/j.jep.2010.04.020

82. Korin YD, Brooks DG, Brown S, Korotzer A, Zack JA. Effects of prostratin on T-cell activation and human immunodeficiency virus latency. *J Virology*. 2002;76(16):8118-8123. doi:10.1128/JVI.76.16.8118-8123.2002

83. Gustafson KR, Cardellina JH, McMahon JB, et al. A nonpromoting phorbol from the Samoan medicinal plant *Homalanthus nutans* inhibits cell killing by HIV-1. *J Med Chem*. 1992;35(11):1978-1986. doi:10.1021/jm00089a006

84. Baloch JB, Baloch MK, Saqib QN. Anti-tumor 12-deoxyphorbol esters from *Euphorbia cornigera*. *Eur J Med Chem*. 2008;43(2):274–281. doi:10.1016/j.ejmech.2007.03.016

85. Commission CP. *Chineer pharmaeapoaia*. China Medical Science and Technology Press; 2015; 1:191–193.

86. Kong LY, Li Y, Wu XL, Min ZD. Cytotoxic diterpenoids from *Euphorbia pekinensis*. *Planta Med*. 2002;68(3):249-252. doi:10.1055/s-2002-23132

87. Tao WW, Duan JA, Tang YP, Yang NY, Li JP, Qian YF. Casbane diterpenoids from the roots of *Euphorbia pekinensis*. *Phytochemistry*. 2013;94:249-253. doi:10.1016/j.phytochem.2013.06.009

88. Kong LY, Li Y, Wu XL, Min ZD. Cytotoxic diterpenoids from *Euphorbia pekinensis*. *Planta Med*. 2002;68(3):249-252. doi:10.1055/s-2002-23132

89. Tao WW, Duan JA, Tang YP, Yang NY, Li JP, Qian YF. Casbane diterpenoids from the roots of *Euphorbia pekinensis*. *Phytochemistry*. 2013;94:249-253. doi:10.1016/j.phytochem.2013.06.009

90. Shao FG, Bu R, Zhang C, Chen CJ, Huang J, Wang JH. Two new Casbene diterpenoids from the roots of *Euphorbia pekinensis*. *J Asian Nat Prod Res*. 2011;13(9):805-810. doi:10.1080/10286020.2011.596828

91. Uzair M, Loothar BA, Choudhary BA. Biological screening of *Euphorbia helioscopia*. *Pak J Pharm Sci*. 2009;22(2):184-186.

92. Loh DS, Er HM, Chen YS. Mutagenic and antimutagenic activities of aqueous and methanol extracts of *Euphorbia birta*. *J Ethnopharmacol*. 2009;126(3):406-414. doi:10.1016/j.jep.2009.09.025

93. Baqar SR. Medicinal and poisonous plants of Pakistan. Karachi: *Printas*. 1989;115(1):343-344.

94. Zi J, Peters RJ. Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae. *Org Biomol Chem*. 2013;11(44):7650-7652. doi:10.1039/c3ob41885e

95. Corea G, Fattorussu E, Lanzotti V, et al. Discovery and biological evaluation of the novel naturally occurring diterpene pepluacine as antiinflammatory agent. *J Med Chem*. 2005;48(22):7055-7062. doi:10.1021/jm050321r

96. Chen F, Tholl D, Bohlmann J, Pichersky E. Hanilamide diterpenoids: sources, nomenclature and biological activities. *Nat Prod Rep*. 2018;35(9):955-991. doi:10.1039/c8np00016f

97. Carvalho AMS, Heimfarth I, Pereira EWM, et al. Phytol, a chlorophyll component, produces antihyperalgesic, antiinflammatory, and antiarthritic effects: possible NFkappaB pathway involvement and reduced levels of the proinflammatory cytokines TNF-alpha and IL-6. *J Nat Prod*. 2020;83(4):1107-1117. doi:10.1021/acs.jnatprod.9b01116

98. Xue S, Zhang P, Tang P, Wang C, Kong L, Luo J. Acyclic diterpenes and norsesquiterpene from the seed of *Aphamumicis pohystocha*. *Fitoerapia*. 2020;142:104518. doi:10.1016/j.fito.2020.104518

99. Smyrniotopoulos V, Merten C, Firsova D, Fearnhead H, Tasdemir D. Oxygenated acyclic diterpenes with anticancer activity from the Irish brown seaweed *Bifurcaria bifurcata*. *Mar Drugs*. 2020;18(11):581. doi:10.3390/md18110581

100. Orlato-Magne A, Culioli G, Valls R, Pucci B, Piovetti L. Polar acyclic diterpenoids from *Bifurcaria bifurcata* (Fucales, Phaeophyta). *Phytochemistry*. 2005;66(19):2316-2323. doi:10.1016/j.phytochem.2005.06.006

101. Smyrniotopoulos V, Merten C, Kaiser M, Tasdemir D. Bifurcartol, a new antiprotozoal acyclic diterpene from the brown alga *Bifurcaria bifurcata*. *Mar Drugs*. 2017;15(8):245. doi:10.3390/md15080245

102. Ibrahim SRM, Mohamed GAA. Tagetones A and B, new cytoxotonic monocyclic diterpenoids from flowers of *Tagetes minuta*. *Chin J Nat Med*. 2017;15(7):546-549. doi:10.1016/S1875-5364(17)30081-X
104. Lanzott V. Diterpenes for therapeutic use. *Natural Products. 2013;3:3173-3191. doi:10.1007/978-3-642-22144-6_192*

105. Sharifi-Rad J, Sureda A, Tenore GC, et al. Biological activities of essential oils: from plant chemocology to traditional healing systems. *Molecules. 2017;22(1):70. doi:10.3390/ molecules22010070*

106. Sultan N, Saify ZS. Enzymatic biotransformation of terpenes as bioactive agents. *J Enzyme Inhib Med Chem. 2013;28(6):1113-1128. doi:10.3109/14756366.2012.727411*

107. Boudjellal A, Henchiri C, Siracusa L, Sari M, Ruberto G. Compositional analysis and in vivo anti-diabetic activity of wild algerian *Marrubium vulgare* L. Infusion. *Fitoterapia. 2018;83(2):286-292. doi:10.1016/j.fitote.2011.11.005*

108. Coffeen U, Pellicer F. *Salvia divinorum* from recreational hallucinogenic use to analgesic and anti-inflammatory action. *J Pain Res. 2019;12:1069-1076. doi:10.2147/JPR.S188619*

109. Bruce RJ, West CA. Elicitation of casbene synthetase activity in elicitation by a fungal endopolygalacturonase. *Plant Physiol. 1982;69(5):1181-1188. doi:10.1104/pp.69.5.1181*

110. Mai ZP, Ni G, Liu YF, Li L, Li JY, Yu DQ. Heliojatrones A and B, two Jatrophane-derived diterpenoids with a 5/10 fused-ring skeleton from *Euphorbia helioscopia* cell suspension: structural elucidation and bio-mimetic conversion. *Org Lett. 2018;20(10):3124-3127. doi:10.1021/acs.orglett.8b01215*

111. Luna CM, Rodriguez-Noriega E, Bavestrello L, Gnazzo E. Treatment of methicillin-resistant *Staphylococcus aureus* in Latin America. *Br J Infect Dis. 2010;14(Suppl 2):S119-S127. doi:10.1016/j.bjid.2010.06.007*

112. Nicolson K, Evans G, O’Toole PW. Potentiation of methicillin activity against methicillin-resistant *Staphylococcus aureus* by diterpenes. *FEBS Microbiol Lett. 1999;179(2):233-239. doi:10.1111/j.1574-6968.1999.tb08733.x*

113. Ioanăidis K, Mellou E, Magáti P. High-throughput (1) H-nuclear magnetic resonance-based screening for the identification and quantification of heartwood diterpenic acids in four black pine (*Pinus nigra* Arn.) marginal provenances in Greece. *Molecules. 2019;24(19):3603. doi:10.3390/molecules24193603*

114. Petrak G, Del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin phototoxaging. *Oxid Med Cell Longev. 2018;2018:1454936. doi:10.1155/2018/1454936*

115. Wang X, Yang Y, Liu X, Gao X. Pharmacological properties of tanshinones, the natural products from *Salvia miltiorrhiza*. *Adv Pharmacol. 2020;87:43-70. doi:10.1016/bs.apha.2019.10.001*

116. Kobus-Morsson M, Gramza-Michalowska A. Directions on the use of stevia leaves (*Stevia Rebaudiana*) as an additive in food products. *Acta Sci Pol Technol Aliment. 2015;14(1):5-13. doi:10.17306/J. AFPS.2015.1.1*

117. Bou-Torrent J, Martinez-Garcia JF, Garcia-Martinez JL, Prat S. Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. *PLoS One. 2011;6(9):e24458. doi:10.1371/journal.pone.0024458*

118. McKenna DJ, Jones K, Hughes K. Efficacy, safety, and use of *Ginkgo biloba* in clinical and preclinical applications. *Altern Ther Health Med. 2001;7(5):70-86, 88-90.*

119. Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. *Cell Med Biol Lett. 2019;24:40. doi:10.1186/s11658-019-0164-y*

120. Yan XL, Fan RZ, Sang J, Xie XL, Tang GH, Yin S. Euphanoïds A and B, two new lathryane diterpenoids with nitric oxide (NO) inhibitory activity from *Euphorbia kansuiensis*. *Nat Prod Res. 2021;35(22):4402-4408. doi:10.1080/14786419.2020.1719491*

121. Li BJ, Wang H, Gong T, et al. Improving 10-deacetylbaccatin III-10-beta-O-acetyltanshinone catalytic fitness for taxol production. *Nat Commun. 2017;8:15544. doi:10.1038/ncomms15544*

122. Su JC, Cheng W, Song JG, et al. Macrocyclic diterpenoids from *Euphorbia helioscopia* and their potential anti-inflammatory activity. *J Nat Prod. 2019;82(10):2818-2827. doi:10.1021/acs.jnatprod.9b00519*

123. Mäver T, Kurečić M, Smrke DM, Kleinschek KS, Mäver U. Plant-Derived Medicines with Potential Use in Wound Treatment. *Herbal Medicine. IntechOpen; 2018.*

124. Islam MT, da Mata AM, de Agyptar RP, et al. Therapeutic potential of essential oils focusing on diterpenes. *Phytother Res. 2016;30(9):1420-1444. doi:10.1002/ptr.5652*

125. Wáng HB, Chen W, Zhang YI, et al. Four new diterpenoids from the roots of *Euphorbia fischeriana*. *Fitoterapia. 2013;91:211-216. doi:10.1016/j.fitote.2013.09.003*

126. Berman B. New developments in the treatment of actinic keratosis: focus on ingenol mebutate gel. *Clin Cancer Investig Dermatol. 2012;5:111-122. doi:10.2147/CCID.S28905*

127. Uto T, Qin GW, Morinaga O, Shoyama Y. 17-Hydroxy-jolkolinolide B, a diterpenoid from *Euphorbia fischeriana*, inhibits inflammatory mediators but activates heme oxygenase-1 expression in lipopolysaccharide-stimulated murine macrophages. *Int Immunopharmacol. 2012;12(1):101-109. doi:10.1016/j.intimp.2011.10.020*

128. Zerbe P, Bohlmann J. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering. *Trends Biotechnol. 2015;33(7):419-428. doi:10.1016/j.tibtech.2015.04.006*

129. Bohlmann J, Keeling CI. Terpenoid biomaterials. *Plant J. 2008;54(4):656-669. doi:10.1111/j.1365-313X.2008.03449.x*

130. Dewick PM. Medicinal natural products: a biosynthetic approach. *J Med Chem. 2002;45(10):2120-2121. doi:10.1021/jm010128m*

131. Samuelsson G, Bohlin L. Drug of Natural Origin: A Treatise of Drugs of Natural Origin: A Treatise of Biochemistry. CRC Press Inc; 2017.

132. Zhang JY, Lin MT, Yi T, et al. Apoptosis sensitization by *Euphorbia* factor L1 in ABCB1-mediated multidrug resistant K562/ADR cells. *Molecules. 2013;18(10):12793-12808. doi:10.3390/molecules181012793*

133. Zhang JY, Mi YJ, Chen SP, et al. Euphoroïds factor L1 reverses ABCB1-mediated multidrug resistance involving interaction with ABCB1 independent of ABCB1 downregulation. *J Cell Biochem. 2011;112(4):1076-1083. doi:10.1002/jcb.23021*

134. Memy S, Litaudon M. Macro cyclic diterpenoids from *Euphorbiaeae* as a source of potent and selective inhibitors of Chikungunya virus replication. *Molecules. 2019;24(12):2336. doi:10.3390/molecules24122336*

135. Kembol D, Sowe- Noundou X, Krause RLM, Langat MK, Tembu VJ. *Euphorbia diterpenes*: an update of isolation, structure,
pharmacological activities and structure-activity relationship. *Molecules*. 2021;26(16):5055. doi:10.3390/molecules26165055

136. Gruie-Sorensen G, Liang X, Mansson K, et al. Synthesis, biological evaluation and SAR of 3-benzoxazoles of ingenol for treatment of actinic keratosis and non-melanoma skin cancer. *Bioorg Med Chem Lett*. 2014;24(1):54-60. doi:10.1016/j.bmcl.2013.11.073

137. Luo D, Callari R, Hamberger B, et al. Oxidation and cyclization of casbene in the biosynthesis of *Euphorbia* factors from mature seeds of *Euphorbia lathyris* L. *Proc Natl Acad Sci U.S.A.* 2016;113(34):E5082-9. doi:10.1073/pnas.1607504113

138. Kupchan SM, Uchida I, Brandman AR, Dailey Jr. RG, Fei BY. Antileukemic principles isolated from Euphorbiaceae plants. *Sci. 1976;191(4227):571-572. doi:10.1126/science.1251193

139. Hecker E. Cocarcinogenic principles from the seed oil of *Croton tiglium* and from other Euphorbiaceae. *Cancer Res*. 1968;28(11):2338-2349.

140. Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM. Characterization of the interaction of ingenol 3-angelate with protein kinase C. *Cancer Res*. 2004;64(9):3243-3255. doi:10.1158/0008-5472.can-03-3403

141. Yang H, Li X, Yang X, et al. Dual effects of the novel ingenol derivatives on the acute and latent HIV-1 infections. *Antiviral Res*. 2019;169:255-268. doi:10.1016/j.antiviral.2019.104555

142. Yu-Bo W, Ping J, Hong-Bing W, Guo-Wei Q. Diterpenoids from *Euphorbia cauducifolia* Bunge. *J Cancer Res Clin Oncol*. 2008;63(1-2):59-65. doi:10.1515/znc-2008-1-211

143. Wang Y, Yu X, Wang L, Zhang F, Zhang Y. Research progress on chemical constituents and anticancer pharmacological activities of *Euphorbia linnuata* Bunge. *Biomed Res Int*. 2020;2020:3618941. doi:10.1155/2020/3618941

144. Ott H, Hecker EJE. Highly irritant ingenane type diterpene esters from *Euphorbia cyparissias* L. *Experientia*. 1981;37(1):88-91.

145. Schmidt RJ. The ingenane polyol esters. In: *A Naturally Occurring Phorbol Esters*. CRC Press; 2018:245-269.

146. Dang QL, Choi YH, Choi GJ, et al. Pesticidal activity of ingenane diterpenes isolated from *Euphorbia kansui* against *Nilaparvata lugens* and *Tetranychus urticae*. *J Asia-Pac Entomol*. 2010;13(3):51-54.

147. Khiev P, Kim JW, Sung SJ, et al. Ingenane-type diterpenes with a 17-hydroxyingenol ester from the latex of *Euphorbia kammerii*. Assignment of esters using 13C. NMR methods. *Tetrahedron Lett*. 1984;25(34):3773-3776.

148. Shi J, Li Z, Nitoda T, et al. Antinematodal activities of ingenane diterpenoids from the latex of *Euphorbia canadensis*. *Phytochemistry*. 1997;45(3):563-570.

149. Conolly JD, Facunle CO, Rycrofi DS. Five ingen esters and a 17-hydroxygenol ester from the latex of *Euphorbia kammerii*. *Mem Inst Oswaldo Cruz*. 2001;96(2):425-430.

150. Baloch HB, Baloch MK, Najam us Saqib Q. Tumor-promoting diterpene esters from latex of *Euphorbia canadensis* L. *Helv Chim Acta*. 2005;88(12):3145-3150.

151. Wu QC, Tang YP, Ding AW, You FQ, Zhang L, Duan JA. 13C-NMR Data of three important diterpenes isolated from *Euphorbia* species. *Molecules*. 2009;14(11):4454-4475. doi:10.3390/molecules14114454

152. Baloch IB, Baloch MK, Najam us Saqib Q. Tumor-promoting diterpene esters from latex of *Euphorbia canadensis* L. *Helv Chim Acta*. 2005;88(12):3145-3150.
214. Miyata S, Wang LY, Yoshida C, Kitanaka S. Inhibition of cellular proliferation and induces double-strand DNA breaks in BLM−/− cells. *Med Chem Comm.* 2011;2(9):824-827.

215. Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. *Front Immunol.* 2018;9:847. doi:10.3389/fimmu.2018.00847

216. Okouchi T, Abe T, Araki S, et al. Mechanism of proliferation arrest of embryonic cells of *Xenopus* by diterpene compounds. *Bioorg Med Chem.* 2005;13(11):3847-3851. doi:10.1016/j.bmc.2005.02.064

217. Baloch IB, Baloch MK. Isolation and characterization of cytotoxic compounds from *Euphorbia cornigera* Boiss. *J Asian Nat Prod Res.* 2010;12(11):985-991. doi:10.1080/10286020.2010.512007

218. Shaker S, Sang J, Yan XL, et al. Diterpenoids from *Euphorbia royena* reverse P-glycoprotein-mediated multidrug resistance in cancer cells. *Phytochemistry.* 2020;176:112395. doi:10.1016/j.phytochem.2020.112395

219. Ye Y, Liu G-H, Dawa D, Ding L-S, Cao Z-X, Zhou Y. Cytotoxic diterpenoids from the roots of *Euphorbia stracheyi*. *Phytochem Lett.* 2020;36:183-187.

220. Blanco-Molina M, Tron GC, Macho A, et al. Inogen esters induce apoptosis in Jurkat cells through an AP-1 and NF-κB independent pathway. *Chem Biol.* 2001;8(8):767-778.

221. Rosen RH, Gupta AK, Tyring SK. Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: rapid lesion necrosis followed by lesion-specific immune response. *J Am Acad Dermatol.* 2012;66(3):486-493. doi:10.1016/j.jaad.2010.12.038

222. Alchin DR. Ingenol mebutate: a succinct review of a succinct therapy. *Dermatol Ther (Heidel).* 2014;4(2):157-164. doi:10.1007/s13555-014-0061-2

223. Serova M, Ghoul A, Benhadji KA, et al. Effects of protein kinase C modulation by PEP005, a novel ingenol anaglate, on mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling in cancer cells. *Med Cancer Ther.* 2008;7(4):915-922.

224. Carvalho HA, Villar RC. Radiotherapy and immune response: the systemic effects of a local treatment. *Clinica.* 2018;73(Suppl 1): e557s. doi: 10.6061/clinics/2018/e557s

225. Darcis G, Kula A, Bouchat S, et al. An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-14+IQ1 and ingenol-B+JQ1 to potently reactivate viral gene expression. *PLoS Pathog.* 2015;11(7):e1005063. doi:10.1371/journal.ppat.1005063

226. Spivak AM, Bosque A, Balch AH, Smyth D, Martins I, Planelles V. Ex vivo bioactivity and HIV-1 latency reversal by ingenol dibenzooate and panobinostat in resting CD4+ T cells from aviremic patients. *Antimicrob Agents Chemother.* 2015;59(10): 5984-5991. doi:10.1128/AAC.01077-15

227. Gama I, Abreu CM, Shirk EN, et al. Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. *AIDS.* 2017;31(1):5-14. doi:10.1097/QAD.0000000000001267
229. Gillespie SK, Zhang XD, Hersey P. Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor–related apoptosis-inducing ligand–induced apoptosis in melanoma cells. *Mol Cancer Ther*. 2004;3(12):1651-1658.

230. Reis M, Ferreira RJ, Santos MM, dos Santos DJ, Molnar J, Ferreira MJ. Enhancing macromolecular diterpenes as multidrug-resistance reversers: structure-activity studies on jolkinol D derivatives. *J Med Chem*. 2013;56(3):748-760. doi:10.1021/jm301441w

231. Duarte N, Varga A, Cherepnev G, Radics R, Molnar J, Ferreira MJ. Apoptosis induction and modulation of P-glycoprotein mediated multidrug resistance by new macrocyclic lathyrane-type diterpenoids. *Biorg Med Chem*. 2007;15(1):546-554. doi:10.1016/j.bmc.2006.09.028

232. Duarte N, Ferreira MJ, Martins M, Viveiros M, Amaral L. Anticancer activity of natural compounds from Euphorbia lathyris: dependence upon system and medium employed. *Phytother Res*. 2007;21(7):601-604. doi:10.1002/ptr.2119

233. Lin SR, Chang CH, Hsu CF, et al. Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. *Br J Pharmacol*. 2020;177(6):1409-1423. doi:10.1111/bph.14816

234. Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. *Int J Mol Sci*. 2018;19(11):3533. doi:10.3390/ijms19113533

235. Cooke M, Magimaidas A, Casado-Medrano V, Kazanietz MG. Protein kinase C in cancer: the top five unanswered questions. *Med Care*. 2017;56(6):1531-1542. doi:10.1016/j.mcc.2017.04.020

236. Martin LGR, Silva MDP. Chemotherapy-induced peripheral neuropathy: a literature review. *Einstein (São Paulo)*. 2011;9(4):538-544.

237. Scripture CD, Figg WD, Sparreboom A. Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives. *Curr Neuropharmacol*. 2006;4(2):165-172. doi:10.2174/15701590677635968

238. de Sousa IP, Teixeira MVS, Furtado NAJC. An overview of natural compounds and toxicity of diterpenes. *Molecules*. 2018;23(6):1387. doi:10.3390/molecules23061387

239. Liu Z, Zeng Y, Hou P. Metabolomic evaluation of *Euphorbia pekinensis* induced nephrotoxicity in rats. *Pharm Biol*. 2018;56(1):145-153. doi:10.1080/13880209.2018.1435697

240. Adolf W, Hecker E. Further new diterpene esters from the iridoid-rich sapogenin fraction of *Euphorbia lathyris* L. *Experientia*. 1971;27(12):1393-1394.

241. Upadhyay R, Ansarin M, Zarintan M, Shakui P. Tumor promoting constituent of *Euphorbia serrata* L. latex. *Experientia*. 1976;32(9):1196-1197.

242. Itokawa H, Ichihara Y, Watanabe K, Takeya K. An antitumor principle from *Euphorbia lathyris*. *Planta Med*. 1989;55(3):271-272. doi:10.1055/s-2006-962001

243. Vogg G, Achaz S, Kettrup A, Sandermann Jr. H. Fast, sensitive and selective liquid chromatographic–tandem mass spectrometric determination of tumor-promoting diterpene esters. *J Chromatogr A*. 1999;855(2):563-573.

244. Vogg G, Mattes E, Polack A, Sandermann Jr. H. Tumor promoters in commercial indoor-plant cultivars of the Euphorbiaceae. *Environ Health Perspect*. 1999;107(9):753-756.

245. Tsai J-Y, Reede D, Forgo P, et al. Isolation of phorbol esters from *Euphorbia grandiflora* and evaluation of protein kinase C and human platelet-activating effects of Euphorbiaceae diterpenes. *J Nat Prod*. 2016;79(10):2658-2666.

246. Banerjee S, Saluja A. Minnelide, a novel drug for pancreatic and liver cancer. *Pancreatology*. 2015;15(4 Suppl):S39-S43. doi:10.1016/j.pan.2015.05.472

247. de Cedron MG, Laparra JM, Loria-Kohen V, et al. Tolerability and safety of a nutritional supplement with potential as adjuvant in colorectal cancer therapy: a randomized trial in healthy volunteers. *Nutrients*. 2019;11(9):2001. doi:10.3390/nu11092001

248. Iannitti T, Palmieri B. An update on the therapeutic role of alkylglycerols. *Mar Drugs*. 2010;8(8):2267-2300. doi:10.3390/md8082267

249. Goldlust SA, Nabors LB, Muhle N, et al. Phase 1/2 trial of bev-axizumab plus TPI 287, a brain penetrable anti-microtubule agent, in patients with recurrent glioblastoma. *J Clin Oncol*. 2016;34(15):2055. doi:10.1200/JCO.2016.34.15_suppl.2055

250. Atanasov AG, Zotech SB, Dirsch VM. Natural products in drug discovery: advances and opportunities. *Nat Rev Drug Discov*. 2021;20(3):200-216. doi:10.1038/s41573-020-00114-z

251. Kim S, Chen J, Cheng T, et al. Pubchem 2019 update: improved access to chemical data. *Nucleic Acids Res*. 2019;47(D1):D1102-D1109. doi:10.1093/nar/gky1033

252. Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. *Nucleic Acids Res*. 2017;45(D1):D945-D954. doi:10.1093/nar/gkw1074

253. Sydlow D, Burggraaff L, Szengel A, et al. Advances and challenges in computational target prediction. *J Chem Inf Model*. 2019;59(5):1728-1742. doi:10.1021/acs.jicim.8b00832

254. Lin X, Li X, Lin X. A review on applications of computational methods in drug screening and design. *Molecules*. 2020;25(6):1375. doi:10.3390/molecules25061375

255. Sander T, Freyss J, von Korff M, Rufener C. Datawarrior: an open-source program for chemistry aware data visualization and analysis. *J Chem Inf Model*. 2015;55(2):460-473. doi:10.1021/ cij500588j

256. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv Drug Deliv Rev*. 1997;23(1-3):3-25

257. Lipinski CA. Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. *Adv Drug Deliv Rev*. 2016;101:34-41. doi:10.1016/j.addr.2016.04.029

258. Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. *Mol Oncol*. 2012;6(2):155-176. doi:10.1016/j.molonc.2012.02.004

259. Hanson JR. Diterpenoids. *Nat Prod Rep*. 2004;21(2):312-320.

260. Hanson JR. Diterpenoids. *Nat Prod Rep*. 2009;26(9):1156-1171.
261. D’Argenio V. The high-throughput analyses era: are we ready for the data struggle? *High Throughput*. 2018;7(1):8. doi:10.3390/ht7010008

262. Jagadeesan B, Gerner-Smidt P, Allard MW, et al. The use of next generation sequencing for improving food safety: translation into practice. *Food Microbiol*. 2019;79:96-115.

263. Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C, Wishart DS. Biotransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. *J Cheminform*. 2019;11(1):1-25.

264. Luo K, Wu F, Zhang D, et al. Transcriptomic profiling of *Melilotus albus* near-isogenic lines contrasting for coumarin content. *Sci Rep*. 2017;7(1):4577. doi:10.1038/s41598-017-04111-y

265. Teng R-W, Teng R-W, McManus D, et al. Biotransformation of ingenol-3-angelate in four plant cell suspension cultures. *Biocatal Biotransformation*. 2009;27(3):186-194.