Expansion of endothelial surface by an increase of vessel diameter during tumor angiogenesis in experimental hepatocellular and pancreatic cancer

Eduard Ryschich, Eduard Schmidt, Sasa-Marcel Maksan, Ernst Klar, Jan Schmidt

INTRODUCTION
Angiogenesis, defined as proliferation of endothelial cells and subsequent formation of new blood vessels from pre-existing vessels, is a characteristic feature of numerous pathological processes, including cancer. Tumor growth depends on a continuous blood supply to cover increasing requirements for nutrients and oxygen. During tumor neovascularization, new capillaries are recruited from the existing microvasculature, a process that is controlled by positive and negative regulators of blood vessel growth. In contrast to the angiogenesis occurring in wound healing, the tumor angiogenesis is characterized by a discordance between pro- and anti-angiogenic factors. This discordant process of tumor angiogenesis leads to the formation of a microvascular system with a typically distorted vessel architecture, and consequently irregular flow patterns and heterogeneous oxygen supply resulting in hypoxia. These parameters contribute to a unique tumor microenvironment which in turn modulates the therapeutic responsiveness of solid tumors, e.g., towards chemotherapeutic agents or radiation therapy.

Our previous studies reported that the increased vessel diameter was an important feature of tumor microangiogenesis in pancreatic and hepatocellular cancer of the rat. This feature was not only specific for transplantable tumor models and was found in spontaneous pancreatic tumors in transgenic mice. We showed that the vessel dilation was the first detectable stage of ongoing angiogenesis during multistep tumorigenesis which preceded vessel sprouting. These observations encouraged us to start a detailed investigation of tumor blood vessels by a combination of different techniques including intravital microscopy and immunohistochemistry. We hypothesized that the vessel dilation indicated a possible adaptive process, which may help the tumor to expand their diffusion surface of endothelium and to compensate for the inadequate supply with oxygen and nutrients. In the present study, we used intravital microscopy and immunohistochemistry to investigate this phenomenon in normal and malignant pancreatic tissues as well as in hepatic tissue of rats. The present study demonstrated that the decrease of vessel density in experimental pancreatic and liver carcinoma was accompanied with an increase of vessel diameter.

MATERIALS AND METHODS

Tumor inoculation
Established cell lines of pancreatic duct-like (DSL6A) and hepatocellular carcinoma (Morris-hepatoma MH-3924A) of rats were used. Since the expression profile of tumor cells was strongly dependent on the site of growth, e.g., implantation, we decided to inoculate the tumors orthotopically which ensured the appropriate microenvironment for tumor cell growth. Twelve male Lewis rats (160-180 g) were used for the inoculation of pancreatic carcinoma. Hepatocellular carcinomas were inoculated on 12 male ACI rats (220-250 g). Each animal was anaesthetized with intramuscular injection of xylazin (10 mg/kg, Rompun®, Bayer, Leverkusen, Germany) and ketamin (40 mg/kg, Ketanest®, Parke Davis, Berlin, FRG).

Tumor implantation was performed as previously described.
for pancreatic\cite{12} and hepatocellular\cite{13} carcinoma. For the inoculation of pancreatic cancer, two sterile polymethylmethacrylat (PMMA)-plates (\(11\ mm\), Glasflex, Stirling, NJ, USA) were applied in "sandwich-technique" on both sides of the pancreatic head. The tumor of approximately 1 mm\(^3\) was harvested from a subcutaneous parent tumor of a syngeneic rat and interposed intrapancreatically between the plates. Hepatocellular carcinomas were induced by a subcapsular injection of tumor cells (Morris hepatoma MH-3924A, 0.01 mL, 0.5\times10^5\ cells) into the left upper liver lobe. Major steps of both models are summarized in Table 1.

Table 1	Summary of tumor models used in present study	
Tumor cell line	Pancreatic cancer	Hepatocellular cancer
Syngeneic strain	DSL6A	Morris hepatoma 3924A
Tumor inoculation	Solid tumor fragment	Cell suspension
Time after inoculation	6 wk	12 d

Intravital microscopy

Intravital microscopy was performed 12 d after inoculation for hepatocellular carcinoma and 6 wk after inoculation for pancreatic cancer when tumors reached a diameter of 8-10 mm. All animals were re-anæsthetized as described above. A teflon catheter (I.D. 0.5 mm, B.Braun AG, Melsungen, FRG) was inserted into the right internal jugular vein for venous access. Another catheter was placed into the left carotid artery for blood sampling and monitoring of cardiovascular parameters. The abdomen was opened by midline incision. The animal was placed on a special stage automatically maintained at 37°C. The tumor was macroscopically identified. The tumor bearing pancreatic head was immobilized in a temperature-controlled (37°C) immersion chamber containing Ringer's solution. For the intravital microscopy of hepatocellular carcinoma, the tumor bearing liver lobe was placed on a rubber stage and superfused with Ringer's solution (37°C).

For intravital microscopy, the entire preparation was placed under a fluorescence microscope (Leica GmbH, Wetzlar, FRG). The fluorescence filter with excitation 450-490 nm and emission 520 nm was used. After the preparation was completed, all animals received an intravenous injection of 50 mg/kg of FITC-labeled albumin (Sigma Chemicals Co., St.Louis, MO, USA) dissolved in 1 mL saline. This fluorescent plasma marker ensured the maximal contrast of blood vessels and was utilized for the measurement of vessel diameter and vessel density. The microcirculatory images were transmitted by a video camera (CF 8/1, Kappa GmbH, Wetzlar, FRG). The measurement of vessel density either by intravital microscopy or by immunohistochemistry demonstrated different results (Tables 2, 3). The vessel density of all tissues measured by intravital microscopy was significantly higher than that measured by immunohistochemistry (\(P<0.05\), Tables 2, 3). The vessel density in healthy pancreas was significantly higher compared to pancreatic cancer (\(P<0.001\), Table 2). Healthy liver showed also a significantly higher vessel density compared to liver carcinoma (\(P<0.01\), Table 3). The low vessel density of both pancreatic and hepatocellular carcinomas was accompanied with the development of tumor necrosis, which appeared frequently in the central area of the tumors and represented a characteristic feature of the tumors showing a cross-sectional diameter of more than 10 mm as opposed to smaller tumors.

Immunohistochemistry

After intravital microscopy, the tumors were removed for further histological analysis. The tissue was snap frozen in liquid nitrogen. Five \(\mu\)m thick sections were cut, air-dried and fixed in aceton. Immunohistochemical staining of endothelium was performed using monoclonal antibodies recognizing RECA-1 rat endothelial antigen (Clone HIS52, Serotec, Germany) and the LSAB-kit (Dako, Hamburg, Germany). In addition, the slides were counterstained with Mayer’s acid hemalum (Fluka, Steinheim, Germany). Quantitative analysis of immunohistochemical staining was performed by computer-assisted image analysis. For this aim, three microscopic fields of 3.18 mm\(^2\) were randomly chosen by light microscope (Leica DMRB, Leica GmbH, Germany), digitalized by a colour video camera (CF 20/4DX, Kappa GmbH, Gleichen, Germany) to histological images and saved on a computer. The number of blood vessels was counted and expressed as per 1 mm\(^2\) of surface.

Statistical analysis

All data were given as mean±SD. Mann-Whitney-U test was used to compare the differences between groups as appropriate. \(P<0.05\) was considered statistically significant.

RESULTS

The intravital microscopy after injection of fluorescent plasma marker ensured the excellent contrast of all blood vessels in normal (Figure 1A, E) and in tumoral (Figure 1B, F) tissues. The microvascular system in healthy pancreas showed a capillary network of high density, the single arterifer and efferent blood vessels were identified within normal pancreatic tissue (Figure 1A). Healthy liver showed a dense network of hepatic sinusoids which were drained by hepatic venules (Figure 1E). In contrast, the microangioarchitecture of both pancreatic and hepatocellular carcinomas was characterized by lost of normal vascular hierarchy “capillaries-arterioles (sinusoids) -venules”, chaotic arrangement of blood vessels, irregular vessel diameters and formation of lacunar blood vessels (Figure 1B, F). In contrast to vascular systems of normal pancreatic and hepatic tissues, there were no specific features discriminating the microangiarchitecture of pancreatic cancer from that of hepatocellular carcinoma (Figure 1).

The measurement of vessel density either by intravital microscopy or by immunohistochemistry demonstrated different results (Tables 2, 3). The vessel density of all tissues measured by intravital microscopy was significantly higher than that measured by immunohistochemistry (\(P<0.05\), Tables 2, 3). The vessel density in healthy pancreas was significantly higher compared to pancreatic cancer (\(P<0.001\), Table 2). Healthy liver showed also a significantly higher vessel density compared to liver carcinoma (\(P<0.01\), Table 3). The low vessel density of both pancreatic and hepatocellular carcinomas was accompanied with the development of tumor necrosis, which appeared frequently in the central area of the tumors and represented a characteristic feature of the tumors showing a cross-sectional diameter of more than 10 mm as opposed to smaller tumors.

Table 2 Vessel density in normal and malignant tissue

Vessel density (n/mm\(^2\))	Healthy pancreas	Pancreatic cancer	\(P\)
Intravital microscopy	565±89	116±36	<0.001
Immunohistochemistry	91±22	35±10	<0.001

Table 3 Vessel density in normal and malignant liver tissue

Vessel density (n/mm\(^2\))	Healthy liver	Liver carcinoma	\(P\)
Intravital microscopy	689±36	286±32	<0.01
Immunohistochemistry	196±30	49±13	<0.01

The frequency analysis of vessel diameters showed that the most frequent diameters in normal pancreas and liver were considerably smaller compared to the most frequent diameters in pancreatic and hepatocellular carcinomas (Figures 2, 3). Ninety-four percent of blood vessels in normal pancreas, 41% of blood vessels in pancreatic carcinoma and less than 9% of blood vessels in non-malignant and malignant hepatocellular tissues showed a diameter less than 10 \(\mu\)m. The most frequent diameter was between 10 and 20 \(\mu\)m (59%) in pancreatic carcinoma and more than 20 \(\mu\m) in hepatocellular carcinoma (59%).
Figure 1 Microangiography investigated by intravital microscopy and immunohistochemical staining of endothelium of normal pancreas (A,B), liver (E,F), pancreatic (C,D) and hepatocellular (G,H) carcinoma: The microvascular system in healthy pancreas showed a dense network mainly consisting of capillaries in normal pancreas (A) and sinusoids in the liver (E). Both pancreatic (B) and hepatocellular (F) carcinomas showed a chaotic anatomy with irregular diameters of blood vessels. Either intravital microscopy or immunohistochemical staining of endothelium turn up lower density and higher diameters of microvessels in both tumor types than in corresponding normal tissue (bar 50 µm).

Figure 2 Frequency of vessel diameter in normal pancreas and experimental duct-like pancreatic carcinoma (DSL6A) — normal pancreas, □ — pancreatic carcinoma.

Figure 3 Frequency of vessel diameter in normal liver and experimental hepatocellular carcinoma (Morris-hepatoma) ■ — normal liver, □ — hepatocellular carcinoma.
DISCUSSION

Using intravital microscopy, we investigated the microvascular systems of pancreatic and liver carcinoma and performed a quantitative analysis of vessel density and vessel diameter. The present study demonstrated that the mean vessel density in both types of experimental malignant tumors was lower than that in the corresponding normal tissues. This hypovascularity was regarded as a main cause of hypoxia in tumor tissue which is responsible for the development of necrotic areas within solid tumors[18,21] as it has been observed in the present models of pancreatic and hepatocellular carcinoma once diameters exceeded 10 mm. As it was shown in the present study, tumor angiogenesis could compensate in part for this insufficient vascularisation by other mechanisms than growth of new blood vessels. Although vessel sprouting has been accepted as the main mechanism of angiogenesis, some pathological processes might display an angiogenic phenotype characterized by an extensive vessel dilatation[18,50]. Previous data demonstrated in a model of multistep tumorigenesis in mouse malignant insulinoma[18,21] and in the model of thyroid hyperplasia[21] that vessel dilatation was the first detectable stage of ongoing angiogenesis which preceded vessel sprouting and extended transformation of the cells. The results of the present study allowed to transfer these findings to solid murine tumors and demonstrated that the “non-sprouting” angiogenesis might accompany vessel sprouting during growth of solid pancreatic and hepatocellular cancer in rats. We suggested that the observed vessel dilatation during tumor development and growth could cause an increase of endothelial surface for the diffusion of oxygen and nutrition, representing a possible adaptive mechanism to compensate for the insufficient vascularisation.

In the present study, both tumor types were induced by an implantation of tumor cells and did not arise spontaneously. It is known that tumor blood vessels in transplantable tumor models develop from surrounding tissues[18,21], whereas the growth of autochthonous blood vessels forms the vascular system in spontaneous tumors[22,23]. However, the vessel dilatation as an initial step of the vascular transformation has been reported previously in spontaneous tumor model also and seems to be a feature which is likely to be a common feature in both transplanted and spontaneous tumors.

In a previous study we analysed the percentage of vascularization in both transplanted and spontaneous tumors. The present study demonstrated that the mean vessel density in both types of experimental malignant tumors was lower than that in the corresponding normal tissues. This hypovascularity was regarded as a main cause of hypoxia in tumor tissue which is responsible for the development of necrotic areas within solid tumors[8,11] as it has been observed in the present models of pancreatic and hepatocellular cancer in rats. We suggested that the observed vessel sprouting during growth of solid pancreatic and hepatocellular carcinoma once diameters exceeded 15 mm. However, as it was shown in the present study, tumor angiogenesis could compensate in part for this insufficient vascularisation by other mechanisms than growth of new blood vessels. Although vessel sprouting has been accepted as the main mechanism of angiogenesis, some pathological processes might display an angiogenic phenotype characterized by an extensive vessel dilatation[18,50]. Previous data demonstrated in a model of multistep tumorigenesis in mouse malignant insulinoma[18,21] and in the model of thyroid hyperplasia[21] that vessel dilatation was the first detectable stage of ongoing angiogenesis which preceded vessel sprouting and extended transformation of the cells. The results of the present study allowed to transfer these findings to solid murine tumors and demonstrated that the “non-sprouting” angiogenesis might accompany vessel sprouting during growth of solid pancreatic and hepatocellular cancer in rats. We suggested that the observed vessel dilatation during tumor development and growth could cause an increase of endothelial surface for the diffusion of oxygen and nutrition, representing a possible adaptive mechanism to compensate for the insufficient vascularisation.

In summary, we compared the vessel density and vessel diameter of two experimental tumors by intravital microscopy. The present study demonstrates that the vessel dilatation is an integral part of the angiogenic activity which represents a possible mechanism by which the tumors expand their diffusion surface of endothelium to compensate for the inadequate neoangiogenesis.

REFERENCES

1 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249-257
2 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27-31
3 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenesis switch during tumorigenesis. Cell 1996; 86: 353-364
4 Konerding MA, van Ackern C, Steinberg F, Streefer C. Combined morphological and immunohistochemical approaches in the study of network formation in tumor angiogenesis. Steiner R, Weisz PB, Langer R eds. Angiogenesis: key principles-science-technology-medicine. Basel Birkhauser 1992: 40-58
5 Steinberg F, Konerding MA, Sandor A, Streffer C. Ultrastructural studies of tumour angiogenesis in human xenotransplanted tumours. Int J Radiat Biol 1991; 60: 161-168
6 Vaupel P, Thews O, Kelleher DK, Hoekel M. Oxygenation of human tumors: the Mainz experience. Strahlenther Onkol 1998; 174(Suppl 4): 6-12
7 Dewhirst MW, Tso CY, Oliver R, Gustafson CS, Secomb TW, Gross JF. Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys 1989; 17: 91-99
8 West CM, Cooper RA, Loncaster JA, Wilks DP, Bromley M. Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res 2001; 61: 2907-2910
9 Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000; 48: 919-922
10 Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis 2000; 21: 505-515
11 Brown JM, Le QT. Tumor hypoxia is important in radiotherapy, but how should we measure it? Int J Radiat Oncol Biol Phys 2002; 54: 1299-1301
12 Schmidt J, Ryschich E, Daniel V, Herzog L, Werner J, Herfarth CH, Longnecker DS, Gebhard MM, Klar E. Vascular structure and microcirculation of experimental pancreatic carcinoma in the rat. Eur J Surg 2000; 166: 328-335
13 Maksan SM, Paulo H, Ryschich E, Kunz C, Gebhard MM, Klar E, Schmidt J. In vitro assessment of angioarchitecture and microcirculation in experimental liver cancer: a new model in rats. Dig Dis Sci 2003; 48: 279-290
14 Ryschich E, Schmidt J, Klar E, Haemmerling GJ, Ganss R. Transformation of the microvascular system during multistage tumorigenesis. Int J Cancer 2002; 97: 719-725
15 Pettengill OS, Faris RA, Bell RHJ, Kuhlmann ET, Longnecker DS. Derivation of ductlike cell lines from a transplantable acinar cell carcinoma of the rat pancreas. Am J Pathol 1993; 143: 292-303
16 Gillino PM. Microenvionment and angiogenic response. Steiner R, Weisz PB, Langer R eds. Angiogenesis: key principles-science-technology-medicine. Basel Birkhauser 1992: 125-128
17 Fukumura D, Yuan F, Monsky WL, Chen Y, Jain RK. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol 1997; 151: 679-688
18 Many MC, Denef JF, Haumont S. Precocity of the endothelial microenvironment and angiogenic response. Steiner R, Weisz PB, Langer R eds. Angiogenesis: key principles-science-technology-medicine. Basel Birkhäuser 1992: 125-128
19 Bull RH, Bates RO, Mortimer PS. Intravital capillary-microscopy for the study of microcirculation in psoriasis. Br J Dermatol 1992; 126: 436-445
20 Skell A, Safabakhsh N, Dellant M, Jain RK. Primary tumor size-dependent inhibition of angiogenesis at a secondary site: an intravital microscopic study in mice. Cancer Res 1998; 58: 5866-5869
21 Vajkoczy P, Thurnher A, Hirth KP, Schilling L, Schmiedek P, Ulrich A, Menger MD. Measuring VEGF-Flik-1 activity and consequences of VEGF-Flik-1 targeting in vivo using intravital microscopy: clinical applications. Oncologist 2000; 5(Suppl 1): 16-19
22 Folkman J, Watson K, Inger D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989; 339: 58-61
23 Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 808-812

Edited by Wang XL. Proofread by Xu FM