Rank-Aware Dynamic Migrations and Adaptive Demotions for DRAM Power Management

Yanchao Lu, Donghong Wu, Bingsheng He, Xueyan Tang, Jianliang Xu and Minyi Guo

Abstract—Modern DRAM architectures allow a number of low-power states on individual memory ranks for advanced power management. Many previous studies have taken advantage of demotions on low-power states for energy saving. However, most of the demotion schemes are statically performed on a limited number of pre-selected low-power states, and are suboptimal for different workloads and memory architectures. Even worse, the idle periods are often too short for effective power state transitions, especially for memory intensive applications. Wrong decisions on power state transition incur significant energy and delay penalties. In this paper, we propose a novel memory system design named RAMZzz with rank-aware energy saving optimizations including dynamic page migrations and adaptive demotions. Specifically, we group the pages with similar access locality into the same rank with dynamic page migrations. Ranks have their hotness: hot ranks are kept busy for high utilization and cold ranks can have more lengthy idle periods for power state transitions. We further develop adaptive state demotions by considering all low-power states for each rank and a prediction model to estimate the power-down timeout among states. We experimentally compare our algorithm with other energy saving policies with cycle-accurate simulation. Experiments with benchmark workloads show that RAMZzz achieves significant improvement on energy-delay and energy consumption over other energy saving techniques.

Index Terms—Demotion, Energy consumption, Main memory systems, In-memory processing, Page migrations

1 INTRODUCTION

Energy consumption has become a major factor for the design and implementation of computer systems. Inside many computing systems, main memory (or DRAM) is a critical component for the performance and energy consumption. As processors have moved to multi-/many-core era, more applications run simultaneously with their working sets in the main memory. The hunger for main memory of larger capacity makes the amount of energy consumed by main memory approaching or even surpassing that consumed by processors in many servers [1], [2]. For example, it has been reported that main memory contributes to as much as 40–46% of total energy consumption in server applications [2], [3], [4]. For these reasons, this paper studies the energy saving techniques of main memory.

Current main memory architectures allow power management on individual memory ranks. Individual ranks at different power states consume different amounts of energy. There have been various energy-saving techniques on exploiting the power management capability of main memory [5], [6], [7], [8]. The common theme of those research studies is to exploit the transition of individual memory ranks to low-power states (i.e., demotion) for energy saving. Fan et al. concluded that immediate transitions to the low-power state save the most energy consumption for most single-application workloads [9]. However, the decision can be wrong for more memory intensive workloads such as multi-programmed executions. Huang et al. [6] has shown that only sufficiently long idle periods can be exploited for energy saving because state transitions themselves take non-negligible amount of time and energy. Essentially, the amount of energy saving relies on the distributions of idle periods and the effectiveness of how power management techniques exploit the idle periods. Existing techniques are suboptimal in the following aspects: (1) they do not effectively extend the idle period, either with static page placement [9], [10] or with heuristics-based page migrations [5], [6]; (2) the prediction on the power-down timeout (the amount of time spent since the beginning of an idle period before transferring to a low-power state) for a state transition is limited and static, either with heuristics [5], [6] or regression-based model [9]; (3) most of the demotion schemes are statically performed on a limited number of pre-selected low-power states (e.g., Huang et al. [6] selects two low-power states only, out of five in DDR3). The static demotion scheme is suboptimal for different workloads and different memory architectures.

To address the aforementioned issues, we propose a novel memory design named RAMZzz with rank-aware power management techniques including dynamic page migrations and adaptive demotions. Instead of having static page placement, we develop dynamic page migration mechanisms to exploit the access locality changes in the workload. Pages are placed into different ranks according to their access locality so that the pages in the same rank have roughly the same hotness. As a result, ranks are categorized into hot and cold ones.
The hot rank is highly utilized and has very short idle periods. In contrast, the cold rank has a relatively small number of long idle periods, which is good for power state transitions for energy saving.

Instead of adopting static demotion schemes, we develop adaptive demotions to exploit the power management capabilities of all low-power states for individual ranks. The decisions are guided by a prediction model to estimate the idle period distribution. The prediction model combines the historical page access frequency and historical idle period distribution, and is specifically designed with the consideration of page migrations among ranks. Based on the prediction model, RAMZzz is able to optimize for different goals such as energy saving and energy-delay\(^2\) (ED\(^2\)). In this paper, we focus on the optimization goal of minimizing ED\(^2\) (or energy consumption) of the memory system while keeping the program performance penalty within a given budget. The budget is a pre-defined performance slowdown relative to the maximum performance without any power management (e.g., 10\% performance loss).

We evaluate our design using detailed simulations of different workloads including SPEC 2006 and PARSEC [11]. We evaluate RAMZzz in comparison with representative power saving policies [6], [10], [12] and an ideal oracle approach. Our experiments with the optimization goal of ED\(^2\) (for a maximum acceptable performance degradation of 4\%) on three different DRAM architectures show that (1) both page migrations and adaptive demotions well adapt to the workload. Page migrations achieve an average ED\(^2\) improvement of 17.1–21.8\% over schemes without page migrations, and adaptive demotions achieve an average ED\(^2\) improvement of 22.4–36.4\% over static demotions; (2) with both page migrations and adaptive demotions, RAMZzz achieves an average ED\(^2\) improvement of 63.0–64.2\% over the basic approach without power management, and achieves only 3.7–5.7\% on average larger ED\(^2\) than the ideal oracle approach. The experiments with the optimization goal of energy consumption have demonstrated similar results.

**Organization.** The rest of the paper is organized as follows. We introduce the background on basic power management of DRAM and review related work in Section 2. Section 3 gives an overview of RAMZzz design, followed by detailed implementations in Section 4. The experimental results are presented in Section 5. We conclude this paper in Section 6.

## 2 BACKGROUND AND RELATED WORK

### 2.1 DRAM Power Management

In this paper, we use the terminology of DDR-series memory architectures (e.g., DDR2 and DDR3 etc) to describe our approach. We will evaluate RAMZzz on different DDR-series memory architectures in the experiments. DDR is usually packaged as modules, or DIMMs. Each DIMM contains multiple ranks. In power management, a rank is the smallest physical unit that we can control. Individual ranks can service memory requests independently and also operate at different **power states**. The power consumption of a memory rank can be divided into two main categories: active power and background power. Active power consists of the power that is required to activate the banks and service memory reads and writes. Background power is the power consumption without any DRAM accesses. Background power is a major component in the total DRAM power consumption, and tends to be more significant in the future [6], [13]. For example, Huang et al. [6] found that the background power contributes to 52\% of the total DRAM power in their evaluation. Memory capacity and bandwidth will become larger and is usually provisioned with peak usage, which causes severe under-utilization [14]. Therefore, we focus on reducing the background power consumption.

Different power states have different power consumptions. Entering a low-power state, when a rank is idle reduces the background power consumption. To exit from a low-power state, the disabled hardware components need to be reactivated and the rank needs to be restored to the active state. State transitions among different power states cause latency and energy penalties.

Depending on which hardware components are disabled, modern memory architectures support a number of power states with complicated transitions [15], [16]. Each state is characterized with its power consumption and the time that it takes to transition back to the active state (resynchronization time). Typically, the lower power consumption the low-power state has, the higher the resynchronization time is. Table 1 summarizes the major power state transitions of three typical DRAM architectures: DDR3, DDR2, and LPDDR2. We do not consider some advanced power management modes in LPDDR2, like Deep Power-down (DPD) and Partial Array Self Refresh (PASR), because data retention cannot be kept when the LPDDR2 enters those states. For each state, we show its dynamic power consumption.

| Power State | Normalized Power | Resynchronization Time (ns) |
|-------------|------------------|-----------------------------|
| DDR3 DRx3 at 1333 MHz [15] | | |
| ACT | 1.0 | 0 |
| ACT_PDN | 0.612 | 6 |
| PRE_PDN_FAST | 0.520 | 18 |
| PRE_PDN_SLOW | 0.299 | 24 |
| SR_FAST | 0.170 | 768 |
| SR_SLOW | 0.104 | 6/68 |
| DDR2 DRx8 at 800 MHz [15] | | |
| ACT | 1.0 | 0 |
| ACT_PDN_FAST | 0.619 | 5 |
| ACT_PDN_SLOW | 0.325 | 18 |
| PRE_PDN | 0.237 | 25 |
| SR | 0.178 | 500 |
| LPDDR2 DRx16 at 800 MHz [17] | | |
| ACT | 1.0 | 0 |
| ACT_PDN | 0.523 | 8 |
| PRE_PDN | 0.303 | 26 |
| SR | 0.194 | 100 |

**TABLE 1**

Power states for three typical DRAM architectures.
(normalized to that of ACT) and the resynchronization times back to ACT. The power consumption values are calculated with DRAM System Power Calculator \cite{19}. The resynchronization times are obtained from DRAM manufacturers’ data sheets \cite{13, 14, 15}.

From Table 1 we have the following observations on state demotions on different memory architectures.

First, on a specific memory architecture, power states have quite different latency and energy penalties as well as different power consumptions. Take DDR3 as an example. Pre-charge power-down with fast exit state (PRE\_PDN\_FAST) consumes 52\% of the power of active idle state (ACT), with relatively small latency as well as energy penalties. In contrast, self-refresh with fast exit state (SR\_FAST) consumes only 17\% of the power of ACT, with much higher latency and energy penalties. The resynchronization time of SR\_FAST is over an order of magnitude higher than that of PRE\_PDN\_FAST.

Second, different memory architectures have their own specifications on power states as well as power state energy consumption and resynchronization time. First, different memory architectures may have different sets of power states. For example, DDR3 has a special low-power state, i.e., self-refresh with slow exit state (SR\_SLOW), whereas DDR2 and LPDDR2 do not have any equivalent state. SR\_SLOW has a very high resynchronization time and consumes only 10\% of the power of ACT. Second, the energy consumption or the resynchronization time of the same power state can vary for different memory architectures. Take self-refresh states (SR) as an example. While SR consumes a similar normalized power consumption for the three architectures (about 17–19\%), the resynchronization time varies significantly. The resynchronization times on DDR3, DDR2, and LPDDR2 are 768ns (SR\_FAST), 500ns (SR) and 100ns (SR), respectively.

The above-mentioned observations have significant implications to DRAM power management design.

First, the above-mentioned observations clearly show the deficiency of the static demotion schemes \cite{3, 6, 7, 9}. The static demotion schemes are performed on the pre-selected low-power states (even for all ranks in the same architecture, and for different memory architectures). On a specific memory architecture, the static decision loses the opportunities for demoting to the most energy-effective low-power state for different idle period lengths. Moreover, since the latency and energy consumption penalties and power consumption of a low-power state vary with different memory architectures, the static decision loses the opportunities for adapting to different memory architectures.

Second, because the latency and energy penalty for switching from deeper low-power states is substantially higher than the penalty of switching from shallower states, entering deep power-down states for short idle times could in fact hurt energy efficiency because the power savings might not be able to offset the high latency penalty of switching back to the active state. Thus, the effective use of deeper low-power state is contingent on having long idle periods on a rank. That naturally leads to two problems for reducing background power consumption: 1) how to create longer idle periods without modifying the application, and 2) how to make correct decisions on state transitions.

The design of RAMZzz are guided by the aforementioned two implications. It embraces dynamic migrations and adaptive demotions, adapting to different workloads and different memory architectures.

2.2 Related Work

We briefly review the related work on energy saving with power states and with other hardware and software approaches.

Saving energy by transiting memory power states has attracted many research efforts, covering memory controller design, compilers and operating systems.

Different power state transition approaches have been developed for DRAM systems. Hur et al. \cite{19} developed adaptive history-based scheduling in the memory controller. Based on page migration, Huang et al. \cite{6} stored frequently-accessed pages into hot ranks and left infrequently-used and unmapped pages on cold ranks. Their decisions on page migrations are based on heuristics. Lebeck et al. \cite{12} studied different page allocation strategies. Their approach does not have any analytical model to guide the decision, or utilize both recency and frequency to capture rank hotness. Diniz et al. \cite{10} limited the energy consumption by adjusting the power states of DRAM. Our prediction model offers a novel way of power management on guiding page migrations and power state transitions. Fan et al. \cite{9} developed an analytic model on estimating the idle time of DRAM chips using an exponential distribution. Their model does not consider page migrations. Kshittij et al. \cite{20} used a similar page migration mechanism between cold and hot ranks, but always set cold ranks with a pre-selected low-power state. Instead of relying on the presumed knowledge of distribution, our prediction model combines the historical information on idle period distribution and page access locality. More importantly, compared with all previous studies that pre-define a number of fixed states for all ranks \cite{6, 9, 10, 12, 19, 20}, this paper develops adaptive demotions to exploit the energy-saving capabilities of all power states, and the adaptation is on the granularity of individual ranks for different memory architectures.

DRAM power state transitions have been implemented in operating systems and compilers. Delaluz et al. \cite{7} present an operating system based solution letting the scheduler decide the power state transitions. This approach requires the interfaces of exposing and controlling the power states. Huang et al. \cite{5} proposed power-aware virtual memory systems. For energy efficient compilations, Delaluz et al. \cite{21} proposed compiler optimizations for memory energy consumption of
array allocations. They further combined the hardware-directed approach and compiler-directed approaches [22] for more energy saving.

There are other approaches for reducing the DRAM power consumption. We review three representative categories. The first category is to reduce the active power consumption. Zheng et al. [23] suggested the subdivision of a conventional DRAM rank into mini-ranks comprising of a subset of DRAM devices to improve DRAM energy efficiency. Anh et al. [24] proposed Virtual Memory Devices (VMDs) comprising of a small number of DRAM chips. Decoupled DIMMs [25] proposed the DRAM devices at a lower frequency than the memory channel to reduce DRAM power. The second category is to reduce the power consumption of power state transitions. Bi et al. [26] took advantage of the I/O handling routines in the OS kernel to hide the delay incurred by memory power state transitions. Balis et al. [27] proposed finer grained memory state transition. The third category is to adjust the voltage and frequency of DRAM. Memory voltage and frequency scaling (DVFS) is a recent approach to reduce DRAM energy consumption [28], [29]. Those approaches are complementary to the state transition-based energy saving approaches.

Recently, different architectural designs of DRAM systems [13], [24], [30], [31] are explored on multicore processors for performance, energy, reliability and other issues. Cache-centric optimizations (either cache-conscious [32] or cache-oblivious [33], [34]) reduce memory access and create more opportunities for energy saving. Besides optimizations targeting at general DRAM systems, some researchers have also proposed energy saving techniques for specific applications such as databases [8], [35] and video processing [35].

A preliminary version of RAMZzz has been presented in a previous paper [36]. This paper improves the previous paper in many aspects, with two major improvements. First, we have enhanced RAMZzz with adaptive demotions, which further increases the effectiveness of state demotions on individual ranks. Second, we have evaluated the effectiveness of RAMZzz on different memory architectures, and demonstrated the self-tuning feature of RAMZzz for different workloads and different memory architectures.

3 Design Overview
In this section, we give an overview of the design rationales and workflow of RAMZzz.

3.1 Motivations
Our goal is to reduce the background power of DRAM. Due to the inherent power management mechanisms of DRAM, there are three obstacles in the effectiveness of reducing the background power.

First, due to the latency and power penalty of transitioning from low-power state to active state, it requires a minimum length threshold for an idle period that is worthwhile to make the state transition. Furthermore, the threshold value varies with the amount of energy and delay penalties of different state transitions. Since there is a length threshold for an idle period, an energy saving technique needs to determine whether an idle period on a rank is longer than threshold or not. Ideally, if the idle period is longer than the threshold value, the rank should jump to the low-power state at the beginning of the idle period; otherwise, we should keep the rank in the active state. However, it is not easy to predict the length of each idle period, due to dynamic memory references.

Second, the state transition-based power saving approaches cannot take full advantage of idle periods, especially for memory intensive workloads. In memory intensive workloads, the number of idle periods is large, and many of the idle periods are too short to be exploited for power saving. It is desirable to reshape the page references to different ranks so that the idle periods become longer and the number of idle periods is minimized.

Third, static demotion schemes cannot adapt to different workloads and different memory architectures. With page migrations, we further need adaptation for power management on individual ranks (differentiating the rank hotness).

3.2 Workflow of RAMZzz
We propose a novel memory design RAMZzz with dynamic migrations and adaptive demotions to address the aforementioned obstacles. We develop a dynamic page placement policy that is likely to create longer idle periods. The policy takes advantage of recency and frequency of pages stored in the ranks, and ranks are categorized into hot and cold ones. The hot ranks tend to have very short idle periods, and the cold ranks with relatively long idle periods. Page migrations are periodically performed to maintain the rank hotness (the period is defined as epoch). With dynamic page migrations, short idle periods are consolidated into longer ones and the number of idle periods is reduced on the cold ranks. On the other hand, the configuration for adaptive demotions is determined periodically (the period is called slot). For each slot, a demotion configuration (i.e., the power-down timeouts for all power states) is used to guide the demotion within the slot.

We further develop an analytical model to periodically estimate the idle period distribution of one slot. Our analytical model is based on the locality of memory pages and the idle period distribution of the previous slot. Given an optimization goal (such as minimizing energy consumption or minimizing ED^2), we use the prediction model to determine the demotion configuration for the
new slot. Since the prediction has much lower overhead than the page migration, a slot is designed to be smaller than an epoch. In our design, an epoch consists of multiple slots. Figure 1 illustrates the relationship between slot and epoch. RAMZzz performs demotion configuration and prediction at the beginning of each slot and performs page migration at the beginning of each epoch.

The overall workflow of RAMZzz is designed as shown in Algorithm 1. RAMZzz maintains the performance model by updating the data structures used in the prediction model (Section 4.2). As the idle period length increases, actions of the adaptive demotion scheme may be triggered. At the beginning of each epoch, RAMZzz decides the page migration schedule and starts to migrate the pages to the destination ranks (Section 4.1). At the beginning of each slot, RAMZzz performs prediction and determines the demotion configuration for the new slot (Section 4.3). The next section will describe the design and implementation details of each component.

Algorithm 1Workflow of RAMZzz

1: if any memory reference to rank \( r \) then
2: if rank \( r \) is in the low-power state then
3: Set \( r \) to be ACT; /*Section 4.3*/
4: Maintain the prediction model; /*Section 4.2*/
5: else
6: Update the current idle period of rank \( r \);
7: Perform demotions (if necessary) according to the demotion configuration of rank \( r \); /*Section 4.3*/
8: if the current cycle is the beginning of an epoch then
9: Run page migration algorithm and schedule page migrations; /*Section 4.3*/
10: if the current cycle is the beginning of a slot then
11: Determine the demotion configuration for the new slot; /*Section 4.3*/

4 Design and Implementation Details

After giving an overview on RAMZzz, we describe the details for the following components in rank-aware power management: dynamic page migration, prediction model and adaptive demotions. Finally, we discuss some other implementation issues in integrating RAMZzz into memory systems.

4.1 Dynamic Page Migration

When an epoch starts, we first group the pages according to their locality and each group maps to a rank in the DRAM. Next, pages are migrated according to the mapping from groups to ranks.

Rank-aware page grouping. We place the pages with similar hotness into the same rank. We adopt the main memory management policy named MQ [37]. We briefly describe the idea of MQ, and refer the readers to the original paper for more details. MQ has \( M \) LRU queues numbered from 0 to \( M - 1 \). We assume \( M = 16 \) following previous studies [37], [38]. Each queue stores the page descriptor including the page ID, a frequency counter and a logical expiration time. The queue with a larger ID stores the page descriptors of those most frequently used pages. On the first access, the page descriptor is placed to the head of queue zero, with initialization on its expiration time. A page descriptor in Queue \( i \) is promoted to Queue \( i + 1 \) when its frequency counter reaches \( 2^{i+1} \). On the other hand, if a page in Queue \( i \) is not accessed recently based on the expiration time, its page descriptor will be demoted to Queue \( i - 1 \). We use a modified MQ structure to group physical memory pages [38]. The updates to the MQ structure are performed by the memory controller, which is designed to be off the critical path of memory accesses. More implementation details are described in Appendix A of the supplementary file.

An observation in MQ is that MQ has clustered the pages with similar access patterns into the same queue. Moreover, unlike LRU, MQ considers both frequency and recency in page accesses (we study how the locations of pages in the MQ queues correlate with their access patterns in Appendix F of the supplementary file).

As a result, we have a simple yet effective approach to place the pages in the ranks. Suppose each rank has a distinct hotness value. We assign the rank that a page is placed in a manner such that: given any two pages \( p \) and \( p' \) with the descriptors in Queues \( q \) and \( q' \), \( p \) and \( p' \) are stored in ranks \( r \) and \( r' \) (\( r \) is hotter than \( r' \)) if and only if \( q > q' \) or if \( q = q' \) and \( p \) is ahead of \( p' \) in the queue. That means, the pages whose descriptors are stored in a higher queue in MQ are stored in hotter ranks. Within the same queue in MQ, the more recently accessed pages are stored in hotter ranks. Algorithm 2 shows the process of grouping the pages into \( R \) sets, and each set of pages is stored in a memory rank. Each rank has a capacity of \( C \) pages.

Algorithm 2 Obtain \( R \) page groups in the increasing hotness

1: initiate \( R \) empty sets, \( S_0, S_1, \ldots, S_{R-1} \);
2: \( curSet = 0 \);
3: for Queue \( i = M - 1, M - 2, \ldots, 0 \) in MQ do
4: for Page \( p \) from head to tail in Queue \( i \) do
5: Add \( p \) to \( S_{curSet} \);
6: if \( |S_{curSet}| = C \) then
7: \( curSet + + \);

Figure 2 illustrates an example of page placement onto the ranks. There are four ranks in DRAM, and each rank can hold two pages. At epoch \( i \), we run Algorithm 2 on the MQ structures, and obtain the page placement on the right. For example, \( P_0 \) and \( P_7 \) belong to \( Q_3 \), which are the hottest pages, and they are placed into the hottest rank (here \( r_0 \)). At epoch \( i + 1 \), there are some changes in the MQ (the underlined page descriptors) and the update page placement is shown on the right.

Page migrations. To update page placement at each epoch, we first need to determine the mappings from groups to ranks, i.e., which rank stores which set (or group) of pages determined in Algorithm 2. According to the current page placement among ranks, different
At the start of epoch $i$

\[
\begin{align*}
Q_0 &\rightarrow p_1 \rightarrow p_2 \\
Q_1 &\rightarrow p_3 \\
Q_2 &\rightarrow p_4 \\
Q_3 &\rightarrow p_5 \\
Q_4 &\rightarrow p_6 \\
Q_5 &\rightarrow p_7 \\
Q_6 &\rightarrow p_8
\end{align*}
\]

Fig. 2. An example of page placement on ranks.

At the start of epoch $i+1$

\[
\begin{align*}
Q_0 &\rightarrow p_1 \rightarrow p_2 \\
Q_1 &\rightarrow p_3 \\
Q_2 &\rightarrow p_4 \\
Q_3 &\rightarrow p_5 \\
Q_4 &\rightarrow p_6 \\
Q_5 &\rightarrow p_7 \\
Q_6 &\rightarrow p_8
\end{align*}
\]

Fig. 3. An example of page migrations: (a) calculate the maximum matching on the bipartite graph; (b) calculate Eulerian cycle for page migrations.

Each strongly connected component of $G_m$ has Eulerian cycles. According to graph theory, a directed graph has a Eulerian cycle if and only if every vertex has equal in degree and out degree, and all of its vertices with nonzero degree belong to a single strongly connected component. By definition, each strongly connected component of $G_m$ satisfies both properties, and thus we can find Eulerian cycles in $G_m$. The page migration follows the Eulerian cycle. We divide the Eulerian cycle into multiple segments so that each segment is a simple path or cycle. Then, the page migrations in each segment can be performed concurrently. Figure 3(b) illustrates one example of Eulerian cycle according to the maximum matching on the left. The three migrations form a Eulerian cycle, and they are performed in one segment.

To facilitate concurrent page migrations according to the Eulerian cycle, each rank is equipped with one extra row-buffer for storing the incoming page. When migrating a page, a rank first writes the outgoing page to the buffer of the target rank, and then reads the incoming page from its buffer. We provide more implementation details and overhead analysis in Appendix A of the supplementary file.

4.2 Prediction Model

When a new slot starts, we run a prediction model against each rank. The model predicts the idle period distribution. Our estimation should be adapted to the potential changes in the page locality as well as the set of pages in each rank.

We use the histogram to represent the idle period distribution. Suppose the slot size is $T$ cycles, and the histogram has $T$ buckets. We denote the histogram to be Hist[$i$], $i = 0, 1, ..., T$. The histogram means there are Hist[$i$] number of idle periods with the length of $i$ cycles each. One issue is the storage overhead of the histogram. A basic approach is to store the histogram into an array, and each bucket is represented as a 32-bit integer. However, the storage overhead of this basic approach is too high. Consider a slot size of $10^8$ cycles in our experiments. The basic approach consumes around 400MB per rank. In practice, the histogram is usually very sparse, and there are at most $\sqrt{T}$ idle periods longer than $\sqrt{T}$ cycles. Thus, we develop a simple approach to store the short and the long idle periods separately. In particular, we maintain two small arrays: the histogram counters for the short idle periods no longer than $\sqrt{T}$ cycles, and another array of $\sqrt{T}$ integers to store the actual lengths of the long idle periods that are longer than $\sqrt{T}$ cycles. This simple approach reduces the storage overhead to $2\sqrt{T}$ integers. It takes only 80KB per rank to support a slot size of $10^8$ cycles. We calculate the histogram for idle periods longer than $\sqrt{T}$ cycles with just one scan on the array.

Our estimation specifically consider page migrations. If the new slot is not the beginning of an epoch, there is no page migration and we use the actual histogram.
in the previous slot, $\text{Hist}^t[i]$, to be the prediction of the current slot, i.e., $\text{Hist}[i] = \text{Hist}^t[i] \ (0 \leq i \leq T)$. Otherwise, we need to combine the access locality of the migrated pages with the historical histogram.

Our estimation after page migration works as follows. We model the references to the same page conforming to a Poisson distribution. Suppose a page $i$ is accessed with $f$ times in a slot. Under the Poisson distribution, the probability of having one access to page $i$ within a cycle is $p_i = \frac{f}{W_i}$, where $g$ is the memory access latency. In our implementation, we take advantage of the frequency counter and the expiration time in the MQ structure (as described in the previous section) to approximate $p_i$. This already offers a sufficiently accurate approximation in practice. Given a rank consisting of $N$ pages (pages 0, 1, ..., $N-1$), the probability of an idle cycle in the rank is $Q = (1 - p_0) \cdot (1 - p_1) \cdots (1 - p_{N-1})$. Based on $Q$, we can estimate the probability of forming an idle period with length of $k$ cycles (followed by a busy cycle in $(k+1)^{th}$ cycle). That is, the probability of having an idle period of $k$ cycles is $W_k = Q^k \cdot (1 - Q)$.

We denote the old values of those probability values in the previous epoch to be $W'_{k}$ ($k=0, 1, 2, ... , T$). After page migrations, we calculate $W_k$ ($k=0, 1, 2, ... , T$) according to the updated pages in the rank. Given the actual histogram in the previous slot, $\text{Hist}^t[i]$, we can estimate the histogram of the new slot with the ratio $W_i/W'_i$, that is, $\text{Hist}^{t+1}[i] = W'_i/W_i \cdot \text{Hist}^t[i]$. Finally, we normalize the histogram so that the histogram represents the total time length of a slot. Denote $s' = \sum_{i=0}^{T} (\text{Hist}^{t+1}[i] \cdot (i + g))$. We normalize the histogram with the value of $s$, i.e., $\text{Hist}[i] = \frac{\text{Hist}^{t+1}[i]}{s'}$. We use $\text{Hist}[i]$ as the prediction on the idle period distribution for the new slot.

Based on the prediction model, we will estimate the power-down timeout for the new slot in the next subsection.

### 4.3 Adaptive Demotions

With the predicted idle period distribution, there are opportunities to avoid the state transitions upon those short idle periods, and to have instant state transitions for long idle periods. For example, if we know all the idle periods are expected to be very long, we can set the power-down timeout to be zero, thus performing instant state transitions. Thus, we have developed a simple approach to reduce the total penalty of state transitions. The basic idea is, for each low-power state, we can use one power-down timeout to determine the state transition within the entire slot. Suppose a DDR-series memory architecture has $M$ low-power states, denoted as $S_1, ..., S_M$ in the descending order of their power consumptions. For each low-power state $S_i$, RAMZzz performs the state transition to $S_i$ after an idle period threshold $\Delta_i$. If the idle period is shorter than $\Delta_i$, RAMZzz does not make the state transition to $S_i$.

Since we need to exploit all power states in order to adapt to different workloads and different memory architectures, a naive approach is to consider all the possible state transitions. However, the demotion configuration of the naive approach is too complex to derive. Instead of considering all state transitions, we view multiple state transitions as a chain of state transitions from higher-power states to lower-power states. We will show that our adaptive demotion scheme can identify the unnecessary power states in a chain of states, and thus further simplify the demotion scheme. We define the demotion configuration to be a vector of demotion times $\Delta = (\Delta_1, \ldots, \Delta_M)$ where $\Delta_i$ represents the power-down timeout of low-power state $S_i$, $i = 1, \ldots, M$. In the chain, when the idle period length is longer than $\Delta_i$, we perform state transitions from $S_{i-1}$ to $S_i$.

Given the estimated histogram on idle periods, we estimate the demotion configuration of each rank for a given optimization goal. We use energy consumption as the optimization goal to illustrate our algorithm design on estimating the demotion configuration. One can similarly extend it to other goals such as $ED^2$. Since the choice on different power-down timeouts does not affect the energy consumption of memory reads and writes, our metric can be simplified as the total energy consumption of background power and the state transition penalty.

We analyze the energy consumption on different demotions over an idle period. Suppose the idle period length is $t$ cycles, and the power consumption of active state $ACT$ and a low-power state $S_i$ are $P_{ACT}$ and $P_{S_i}$ ($i = 1, \ldots, M$, respectively. Given a demotion configuration $\Delta$, if $t < \Delta_i$, there is no state transition to low-power states. Otherwise, denote $I(i)$ to be the maximum $i$ such that $\Delta_i < t (i = 1, \ldots, M)$. In the chain, there are at most $I(i)$ state transitions, from $S_1$ to $S_{I(i)}$. At the end of the idle period, a memory access comes and the rank transits from low-power state $S_{I(i)}$ back to ACT. Thus, the energy consumption of the idle period can be calculated as $B(\Delta, t)$ in Eq. (1).

$$B(\Delta, t) = P_{ACT} \cdot \Delta_1 + \sum_{j=1}^{I(i)-1} (P_{S_j} \cdot (\Delta_{j+1} - \Delta_j)) + P_{S_{I(i)}} \cdot (t - \Delta_{I(i)}) + E_{S_{I(i)}}$$

(1)

where $E_{S_{I(i)}}$ is resynchronization energy penalty from low-power state $S_{I(i)}$ back to ACT.

Given the histogram $\text{Hist}[t]$ ($t = 0, 1, \ldots, T$), each $\text{Hist}[t]$ means there are $H_{S_{I(t)}}$ idle periods with length $t$ cycles. We can calculate the total energy consumption for all the idle periods, as $E(\Delta)$ in Eq. (2).

$$E(\Delta) = \sum_{t=0}^{\Delta_1} (P_{ACT} \cdot t \cdot \text{Hist}[t]) + \sum_{t=\Delta_1+1}^{T} (B(\Delta, t) \cdot \text{Hist}[t])$$

(2)

RAMZzz also allows users to specify a delay budget to limit the delay penalty incurred by state resynchronization. We can calculate the total resynchronization delay as $D(\Delta)$ in Eq. (3).

$$D(\Delta) = \sum_{t=\Delta_1+1}^{T} (R_{S_{I(t)}} \cdot \text{Hist}[t])$$

(3)

where $R_{S_{I(t)}}$ is resynchronization delay from low-power state $S_{I(t)}$ back to ACT. Our goal is to determine the
suitable demotion configuration $\Delta$ so that $E(\Delta)$ is minimized. If a delay budget is given, we choose the $\Delta$ value that minimizes $E(\Delta)$ with the constraint that the total delay $D(\Delta)$ is no larger than the given delay budget.

We note that $E(\Delta)$ is neither concave nor monotonic. Therefore, we have to iterate all the possible values for $\Delta_i=0, 1, \ldots, T$ ($i = 1, \ldots, M$), and find the best combination of $\Delta_i$ ($i = 1, \ldots, M$). The complexity of this naive approach of increases exponentially with the number of low-power states in the DRAM architecture. In the following, we develop an efficient greedy algorithm to find a reasonably good demotion configuration (illustrated in Algorithm 3).

We start by assuming that only one low-power state is used in the entire slot, and select the best suitable low-power state and its power-down timeout which leads to a smallest estimated $E(\Delta)$ among all $M$ low-power states. Then, we keep the estimated demotion time of the selected low-power state unchanged, and select a new low-power state and its power-down timeout from the rest $M-1$ low-power states, which results in a smallest estimated $E(\Delta)$. We repeat this process to add one more new low-power state into the previous selected subset of low-power states together with its power-down timeout in each step. Algorithm 3 has much lower computational complexity than the naive approach.

Algorithm 3 has a low runtime overhead in most cases. First, it does not need to iterate through all values from $0$ to $T$ ($T$ is the slot size). Instead, it only searches those values with non-zero frequencies in the predicted histogram. This number is far smaller than $T$ in practice. Second, as more low-power states are selected during the process (one state per step), the search space for rest low-power states is further reduced since the power-down timeout of $S_i$ is bounded by that of $S_{i-1}$ and $S_{i+1}$, i.e., $\Delta_{i-1} \leq \Delta_i \leq \Delta_{i+1}$. Moreover, we further optimize Algorithm 3 in two ways. First, we adopt the branch-bound optimization in order to further reduce the search space (That is, we try possible values from the highest to the lowest until the program performance penalty violates the given budget). Second, we use an exponential search approach by iterating in the form of $2^i$ ($0 \leq i \leq \log_2 T$) for each power-down timeout. On the current architectures, the greedy algorithm has a low runtime overhead and provides near-optimal demotion configurations, as shall be shown in our evaluation (Section 5).

The adaptive demotion scheme is applied on each rank at the beginning of a slot. The demotion configurations can be different among different ranks and at different slots. This is a distinct feature of adaptive demotion, in comparison with the previous work on static demotion schemes [5, 6, 7, 9].

### 4.4 Other Implementation Issues

RAMZZZ can be implemented with a combination of modest hardware and software supports. First, RAMZZZ adds a few new components to the memory controller and operating system. Following the previous study [38], RAMZZZ extends a programmable controller [39] by adding its own new components. Four new modules including MQ, Migration, Remap and Demotion are added into the memory controller for implementing the functionality of page grouping, page migration, page remapping and power state control in RAMZZZ, respectively. Other functionalities including page grouping and the prediction model are offloaded to the OS (like previous studies [3, 38]). Second, we note that the structure complexity and storage overhead of RAMZZZ are similar to the previous proposals, e.g., [6, 9, 10, 29, 40]. For example, our design has small DRAM space requirement (less than 2% of the total amount of DRAM). We have included both performance and energy penalties of these new modules in our simulation and evaluation, and demonstrated that their overheads are acceptable in current architectures in Section 5.

In Appendix A of the supplementary file, we provide more discussions on implementation details, including energy/performance/storage overhead analysis and optimizations of RAMZZZ.

### 5 Evaluation

In this section, we evaluate our design using ED2 and energy consumption as metrics. We have conducted a number of experiments. We compare the behavior of RAMZZZ and its alternatives in order to show the effectiveness of RAMZZZ on different memory architectures, and the impact of individual techniques. We focus on the DRAM component. For the space interests, we present the results with ED2 as the optimization goal in this paper, and leave the results with the total energy consumption as the optimization metric to Appendix C of the supplementary file. We also study the impact of RAMZZZ on full system energy savings in Appendix D of the supplementary file.

---

**Algorithm 3** The greedy algorithm to find the suitable demotion configuration $\Delta$

Input:
All low-power states set $S = (S_1, \ldots, S_M)$, and associated power consumptions set $P = (P_{S_1}, \ldots, P_{S_M})$;

Initialization:
$\Delta = \phi$, $S_{select} = \phi$;
1: while $|S_{select}| \neq M$ do
2: for all $S_i \in S$ do
3: Add $S_i$ into $S_{select}$;
4: for each possible $\Delta_i$ value do
5: Calculate $E(\Delta)$ using Eq. 2 with selected low-power states subset $S_{select}$;
6: Find the suitable $\Delta_i$ that has the best $E(\Delta)$;
7: Remove $S_i$ from $S_{select}$;
8: Find the low-power state $S_k$ that has a best $E(\Delta)$;
9: Add $\Delta_i$ into $\Delta$;
10: Remove $S_k$ from $S$;
Output:
power-down timeout set $\Delta$
5.1 Methodology

Our evaluation is based on trace-driven simulations. In the first step, we use cycle-accurate simulators to collect memory access traces (last-level cache misses and writebacks) from running benchmark workloads. In the second step, we replay the traces using our detailed memory system simulator. Our simulation models all the relevant aspects of the OS, memory controller, and memory devices, including page replacements, memory channel and bank contention, memory device power and timing, and row buffer management. The memory controller exploits the page interleaving mechanism. More implementation details can be found in Appendix A of the supplementary file.

We evaluate workloads from SPEC 2006 and PARSEC [11]. We use two different approaches to collect their memory traces: one with PTLSim [11] simulator and the other with Sniper [42] simulator. On the one hand, the memory footprints of SPEC 2006 are usually smaller than those of PARSEC. On the other hand, PARSEC cannot run on PTLSim, which we use to collect the memory trace from SPEC 2006. Also, PTLSim can offer more control on the hardware configurations for sensitivity studies.

SPEC 2006 Workloads. We use PTLSim [11] to collect memory access traces of SPEC 2006 workloads. The main architectural characteristics of the simulated machine are listed in Table 2. We model and conduct the evaluation with an in-order processor following previous studies [29], [38]. More complex and recent processors are studied with Sniper-based simulations. We evaluate our techniques with three different memory architectures, as shown in Table 1. Those memory architectures are used in different computing systems. We simulate different capacities (1GB, 2GB and 4GB) and different numbers of ranks (4, 8, 12 and 16) for the memory system. All the ranks have the same configurations (DRAM parameters) and capacities. By default, we assume a 2GB DRAM with 8 ranks. We pick these small memory sizes to match the footprint of the workloads’ simulation points. We calculate the memory power consumption following Micron’s System Power Calculator [18], with the power and delay illustrated in Table 1. The energy and performance overheads caused by new MC and OS modules (e.g., remapping, migration and demotion) are derived from our analysis in Appendix A of the supplementary file, which are consistent with those of other authors [38], [40], [43].

We have used 19 applications from SPEC 2006 with the ref inputs. These workloads have widely different memory memory access rates, footprints and localities. Due to space limitations, we do not present the results for single applications; instead, we report their geometric mean (GM), and also four particular applications with different memory intensiveness. They are omnetpp, cactusADM, mcf and lbm (denoted as S1, S2, S3 and S4, respectively). To assess our algorithm under the context of multi-core CPUs, we study mixed workloads of four different applications from SPEC 2006 (Table3). The four workloads start at the same time. The mixed workloads form multi-programmed executions on a four-core CPU, ordered by the average number of memory accesses (Mean). The standard deviation and mean values are calculated based on memory access statistics per 5 × 10^8 CPU cycles. For each workload, we select the simulation period of 15 × 10^8 cycles in the original PTLSim simulation, which represents a stable and sufficiently long execution behavior.

PARSEC Workloads. Since current PTLSim cannot support PARSEC benchmarks, we use another simulator—Sniper [42] to collect memory access traces of PARSEC. We also note that, some workloads in PARSEC like dedup, facesim, canneal cannot run successfully. In this study, we focus on the results for four applications including blackscholes, bodytrack, ferret and streamcluster. By default, we use the simulated CPU architecture as shown in Table 3 (Intel’s Gainestown CPUs), which simulates a four-core processor running at 2.66 GHz based on the Intel’s Nehalem micro architecture. By default, we simulate a four-core CPU, and 2GB DRAM with 8 ranks. The memory architecture has the same power consumption and performance configurations as the PTLSim-based simulations. Also, we conduct simulation studies with main-stream servers with a large number of cores and large memory capacity in Section 5.5. Each PARSEC workload runs with four threads, and each thread is assigned to one core. We use the sim-medium inputs for PARSEC workloads, and perform the measurement on the specified Region-of-Interest (ROI) of PARSEC workloads [11].

Comparisons. In our previous study [36], we have already shown that the preliminary version of RAMZzz
TABLE 4
Architectural configurations of Sniper. The default setting is highlighted.

| Component       | Features                                      |
|-----------------|------------------------------------------------|
| CPU             | Out-order cores running at 2.566GHz            |
| Cores           | 4, 8, 16                                       |
| DTLB/ITLB       | 64/128 entries                                 |
| L1 D cache (per core) | 32KB/32KB   |
| L2 cache (per core) | 256KB    |
| L3 cache (shared) | 8MB      |
| Cache line/OS page size | 64B/4KB |
| DRAM            | DDR3-1333                                      |
| Channels        | 4                                              |
| Ranks           | 8, 16                                          |
| Capacity (GB)   | 2, 32, 64                                      |
| Delay and Power | see Table 4                                    |

significantly outperforms other power management techniques [6, 9, 12] in terms of both ED² and energy consumption. Due to the space limitation, we focus on evaluating the impact of individual techniques developed in this paper. In particular, we consider two RAMZzz variants namely RZ–SP and RZ–SD. They are the same as RAMZzz except that RZ–SP uses the static page management scheme without page migrations, whereas RZ–SD uses the static demotion scheme. The static demotion scheme simply transits a rank to a pre-selected low-power state according to the prediction model.

In addition to RAMZzz variants, we also simulate the following techniques for comparison. All the metrics reported in this paper are normalized to those of BASE.

- **No Power Management** (BASE): no power management technique is used, and ranks are kept active even when they are idle.
- **Ideal Oracle Approach** (ORACLE): ORACLE is the same as RAMZzz, except the power-down timeout in ORACLE is determined with the future information, instead of history. Specifically, at the beginning of each slot, we perform an offline profiling on the current slot, and get the real histogram of idle periods. Based on the histogram, we calculate the optimal power-down timeout.

RAMZzz allows users to specify the slot and epoch sizes and delay budgets. By default, the slot size is 10⁸ cycles and an epoch consists of ten slots (10⁹ cycles), and delay budget is set to be 4% of the slot size. We evaluate the impacts of these parameters in Appendix E of the supplementary file.

**Idle Period Distribution.** We study the distribution of idle periods. Figure 4 shows the histogram of idle period lengths of the collected traces on Rank 0 on DDR3 under BASE approach. Many idle periods are too short to be exploited for state transitions, e.g., shorter than the threshold idle period length for demoting to SR_FAST (2500 cycles on DDR3). We observed similar results on other ranks.

### 5.2 Results on SPEC 2006 Workloads

We first compare the algorithms with the optimization goal of ED² on SPEC 2006 workloads, because ED² is a widely used metric for energy efficiency.

We study the overall impact of RAMZzz in comparison with BASE and ORACLE. The comparison with BASE shows the overall effectiveness of energy saving techniques of RAMZzz, and the comparison with ORACLE shows the effectiveness of our prediction model.

Figure 5 presents normalized ED² results for RAMZzz and ORACLE approaches on three different DRAM architectures (more randomly-mixed workloads, which are chosen from SPEC 2006, are evaluated in Appendix B of the supplementary file). If the normalized ED² of an approach is smaller than 1.0, the approach is more energy efficient than BASE.

Thanks to the rank-aware power management, RAMZzz is significantly more energy-efficient than BASE. Compared with BASE, the reduction on ED² is 64.2%, 63.3% and 63.0% on average on DDR3, DDR2 and LPDDR2, respectively. The reduction is more significant on the workloads of single applications (e.g., S1–S4) than the mixed workloads. There are two main reasons. First, since the single-application workload has a smaller memory footprint, the page migration has a smaller overhead and the number of cold ranks is larger. The number of page migrations becomes very small after the first few epochs. In contrast, the execution process of the workloads with a large memory footprint (such as M5 and M6) consistently has a fair amount of page migrations at all epochs. Secondly, on single-application workloads, there are more opportunities for saving background power using lower-power states (such as SR_FAST and SR_SLOW in DDR3, SR in DDR2 and LPDDR2). Figure 6 shows the breakdown of time stayed in different power states for RAMZzz on DDR3, DDR2 and LPDDR2. In Figure 6 each power state represents the percentage of time when ranks are in this state during the total simulation period. And Others represents the percentage of time that includes DRAM operations, page remapping delay, page migration delay and resynchronization delay. As the workload becomes more memory-intensive, the portion of time that a rank is in lower-power states becomes less significant, indicating that many idle periods are too short and they are not worthwhile to perform state transitions into lower-power states (even with page migration). For the less memory-intensive workloads like S1–4 and M1, lower-power states have very significant portions in the total simulation time, indicating significant energy saving.
compared with BASE.

It can also be seen from Figure 5 that RAMZzz achieves a very close $ED^2$ to ORACLE on all workloads and memory architectures. RAMZzz achieves 5.7%, 4.4% and 3.7% on average larger $ED^2$ than ORACLE on DDR3, DDR2 and LPDDR2, respectively. This good result is because our histogram-based prediction model is able to accurately estimate the suitable power-down timeout for the sake of minimizing $ED^2$. Figure 7 compares RAMZzz’s estimated power-down timeouts to SR_FAST with ORACLE on ranks 0 and 2 of executing M4 on DDR3. Our estimation is very close to the optimal value on the two ranks. We observe similar results for different ranks and different workloads and also for the power-down timeouts of other low-power states and other DRAM architectures. We also find that our model has high accuracy in predicting rank idle period distribution (detailed results are presented in Appendix G of the supplementary file).

We have further made the following observations on the result of breakdown in Figure 6. First, on a specific memory architecture, the portion of time for different low-power states varies significantly across different workloads. Different workloads have different choices on the most energy-effective low-power state. For most single-application workloads, RAMZzz makes the decision to demote into SR_SLOW on DDR3 in most idle periods, whereas the decision of demotion is to SR_FAST or PRE_PD N SLOW for the mixed workloads. Second, on different DRAM architectures, the portion of time for different low-power states varies significantly, even for the same workload. SR on LPDDR2 has a much higher significance in all workloads than on DDR3 and DDR2. That is because, as we have seen in Table 1, SR on LPDDR2 consumes a similar normalized power consumption but a relative smaller resynchronization time when compared with the other two DRAM architectures.

These two observations have actually demonstrated the effectiveness of adaptive demotions of RAMZzz for different workloads and different memory architectures. We will experimentally study the impact of adaptive demotions in Section 5.3.2.

Figures 8 and 9 show the breakdown of time stayed in different power states for BASE and ORACLE on DDR3, respectively. Compared with Figure 6(a), RAMZzz has a very similar power state distribution to ORACLE on all workloads, which again demonstrates the effectiveness of our estimation. Compared to BASE, both RAMZzz and ORACLE significantly reduce the percentage of time when ranks are in the ACT state by the adaptive use of all available low-power states. We observe similar results for other workloads and DRAM architectures.

Next, we study the performance delay in detail. Figure 10 shows the breakdown of performance delay for RAMZzz on DDR3. We divide the delay into three parts: resynchronization delay (caused by state transitions), migration delay (caused by page migrations) and remapping delay (caused by Remapping Table lookup and address remapping). The performance delay of RAMZzz is well controlled under the pre-defined penalty budget (i.e., 4% in this experiment). The results demonstrate that our model is able to limit the performance delay within the pre-defined threshold. The resynchronization delay contributes the largest portion of performance delay on most workloads. Due to concurrent migrations, the migration delay is kept within an acceptable range (i.e., less than 1.5% on all workloads). The remapping delay only accounts for a very small portion of the performance delay on all workloads. This observation is consistent with our analysis in Appendix A of the supplementary file. The remapping operation is performed when a request is added to the MC queues and does not extend the critical path in the common case because queuing delays at the MC are substantial.
As seen from Figure 10, the migration delay is higher on the workloads with a large memory footprint (such as S3, M5 and M6). To further study the migration delay, Figure 11 presents the total migration delay of RAMZzz with/without our graph-based optimizations on DDR3. Thanks to our graph-based optimizations (as described in Section 4.1), the total migration delay is significantly decreased, with the reduction of 50.0% to 74.4%. Concurrent migrations prevent significant performance degradation in all workloads.

Finally, we discuss the overhead of calculating the migration information (Eulerian cycle) and the demotion configuration. We find that the number of those values with non-zero frequencies in the predicted histogram is far smaller than the slot size (10^9) in our evaluation. Thus, the search space of Algorithm 3 is acceptable at runtime. The average time for calculating of the demotion configuration is around several milliseconds on current architectures. Such calculation is performed only once per slot (around 40 ms by default). Moreover, the calculation of the migration information is performed only once per epoch (around 400 ms by default). Thus, their overheads are low on current architectures. The results are consistent with previous studies [20, 29, 38, 40].

5.3 Individual Impacts

We now study the individual impact of dynamic migrations and adaptive demotions on RAMZzz with the optimization goal of ED^2 on SPEC 2006 workloads. Due to the space limitation, we present the figures for DDR3 memory architecture only and comment on other architectures without figures when appropriate.

5.3.1 Studies on Dynamic Migrations

We study the impact of dynamic migrations, comparing RAMZzz and RZ–SP (RZ–SP uses the adaptive demotion scheme with no page migration). Figure 12 presents ED^2 results for RAMZzz and RZ–SP on DDR3. RAMZzz has much lower ED^2 than RZ–SP, with an average reduction of 21.8%. The reduction depends on the memory footprint and memory access intensiveness. The reduction is more significant on memory-intensive workloads (such as M4) or workloads with small memory footprint (such as S3 and S4). If a workload has a small memory footprint, the page migration has a small overhead on both the delay and the energy consumption, and the portion of cold ranks is higher. If the memory access of a workload is more intensive, many idle periods are too short and RZ–SP has less opportunities for saving background power (even with our proposed adaptive demotion scheme). On those two kinds of workloads, page migration is important for the effectiveness of power management. In contrast, when the memory access is less intensive or has a large memory footprint, RZ–SP is quite competitive to RAMZzz. The example workloads include S1 and M2.

Figure 13 shows the breakdown of time stayed in different power states for RZ–SP on DDR3. Comparing with Figure 6(a), the portion of time of those lower-power states with a higher resynchronization time are much smaller. RZ–SP demotes the ranks into PRE_PD_N_FAST and PRE_PD_N_SLOW states in most times, whereas RAMZzz demotes into even lower-power states, i.e., SR_FAST and SR_SLOW. That is because dynamic page migration is able to create longer idle periods. For example, the percentage of SR_SLOW is almost zero in RZ–SP for memory intensive workloads, such as S3, S4 and M2–4, while SR_SLOW has a significant portion in RAMZzz for those workloads. Since page migrations are disabled in RZ–SP, the total delay of RZ–SP is slightly smaller than that of RAMZzz, less than 2.5% for all workloads. We show that RAMZzz is still more energy-efficient than RZ–SP on full system ED^2 (or energy consumption) in Appendix D of the supplementary file.

To summarize the impact of dynamic page migrations, we observe RAMZzz has much lower ED^2 than RZ–SP on three DRAM architectures, with an average reduction of 21.8%, 15.8% and 17.1%, and a range of 5.2–45.1%, 2.8–
TABLE 5
Comparing ED$^2$ of RAMZzz with different number of low-power states on three DRAM architectures on M1.

| Number of low-power states | DDR3 | DDR2 | LPDDR2 |
|---------------------------|------|------|--------|
|                           | 1    | 2    | 3      | 4    | 5    |
| DDR3                      | 0.67 | 0.59 | 0.40   | 0.31 | 0.27 |
| DDR2                      | 0.68 | 0.43 | 0.35   | 0.30 | N/A  |
| LPDDR2                    | 0.59 | 0.41 | 0.33   | N/A  | N/A  |

39.6% and 1.7–41.1% on DDR3, DDR2 and LPDDR2 respectively. The reduction is more significant on memory-intensive workloads or workloads with small memory footprint on DDR2 and LPDDR2.

5.3.2 Studies on Adaptive Demotions

In this section, we study the impact of adaptive demotions, that is to compare the performance of RAMZzz and RZ–SD (RZ–SD uses the dynamic page migration without the adaptive demotion).

Figure 14 presents the comparison of ED$^2$ for RAMZzz and RZ–SD on DDR3. We compare the performance of RAMZzz with every possible RZ–SD approach on all workloads. That is, we use every available low-power state as the pre-selected low-power state in the RZ–SD approach. Since DDR3 has five low-power states, we have five RZ–SD approaches where each approach is denoted as the name of pre-selected low-power state Figure 13 (such as SR$_{\text{FAST}}$ represents the RZ–SD approach which uses SR$_{\text{FAST}}$ as the pre-selected low-power state).

We observe that RAMZzz outperforms all RZ–SD approaches on all workloads, with the reduction from 26.4% to 51.1% (36.4% on average). Moreover, different workloads have different choices on the most energy-efficient RZ–SD approach, indicating that the static demotion scheme cannot adapt to different workloads. The efficiency of the static demotion scheme is closely related to the decision on the pre-selected low-power state, justifying the necessity of adaptive demotions. The total delay of RZ–SD is close to that of RAMZzz, less than 3% for all workloads. We observe that RAMZzz is also more efficient than RZ–SD on full system ED$^2$ (or energy consumption) in Appendix D of the supplementary file.

Finally, we study the impact of the number of available low-power states. In Table 5, we change the number of available low-power states used on DDR3, DDR2 and LPDDR2 on M1 from 1 to 5, 1 to 4 and 1 to 3, respectively. We add a low-power state with smaller power consumption when increasing the number of available low-power states. As the number of available low-power states increases, the normalized ED$^2$ becomes smaller. The improvement in normalized ED$^2$ by increasing the number of available low-power states from 1 to the maximum is 59.8%, 54.1% and 45.2% on DDR3, DDR2 and LPDDR2, respectively. This further proves the self-adapting feature brought by our proposed adaptive demotion scheme.

To summarize the impact of adaptive demotions, we observe RAMZzz has much lower ED$^2$ than RZ–SD on three DRAM architectures, and with the reduction of 26.4–51.1% (36.4% on average), 12.0–48.7% (25.0% on average) and 5.0–41.9% (22.4% on average) on DDR3, DDR2 and LPDDR2, respectively.

5.4 Results on PARSEC workloads

Figure 15 shows the normalized ED$^2$ results of RAMZzz and ORACLE approaches on DDR3 architecture using PARSEC workloads. We use the default experimental setting (e.g., the delay budget is 4%). RAMZzz is also significantly more energy-efficient than BASE on PARSEC workloads. We observe similar results to those on the SPEC 2006 workloads. For example, the reduction is more significant for the workloads with less intensive memory accesses (such as blackscholes). RAMZzz achieves a very close ED$^2$ to ORACLE on PARSEC workloads (as shown in Figure 15).

5.5 Results on More Powerful Computer Systems

We also perform the simulation studies on more powerful computer systems with a larger number of CPU cores and large memory capacity. We use Sniper to collect memory access traces of multi-threaded/multi-programmed workloads from SPEC 2006 and PARSEC benchmarks. With the default simulated CPU architecture, we run mixed workloads of 8 (and 16) applications from SPEC 2006 and four PARSEC workloads (i.e., blackscholes, bodytrack, ferret and streamcluster) executed with 8 (and 16) threads on a 8-core (and 16-core) processor with 32 (and 64) GB DDR3 with 8 (and 16) ranks memory system.

Figures 16 and 17 present the comparison of normalized ED$^2$ of BASE, ORACLE, RAMZzz, RZ–SP and RZ–SD (SR$_{\text{FAST}}$ is used as the pre-selected low-power state) with the optimization goal of ED$^2$ and with delay budget of 4%. We make the following observations. First, RAMZzz has very significant ED$^2$ reduction compared with BASE. The reduction in ED$^2$ is 60.7% and 67.2% on average on the 8-core and 16-core systems, respectively. Second, RAMZzz achieves only 6.0% higher ED$^2$ on average than ORACLE on all workloads and systems. For the impact of dynamic page migrations, RAMZzz has an average ED$^2$ reduction of 45.4% and 61.2% over RZ–SP on the 8-core and 16-core systems, respectively. For adaptive demotions, RAMZzz has an average ED$^2$ reduction of 40.5% and 49.2% over RZ–SD on the 8-core and 16-core systems, respectively.

6 Conclusion

In this paper, we have proposed a novel memory design RAMZzz to reduce the DRAM energy consumption. It embraces two rank-aware power saving techniques to address the major obstacles in state transition-based power saving approaches: dynamic page migrations and adaptive demotions. A cost model is developed to guide the optimizations for different workloads and different
memory architectures. We evaluate RAMZzz with SPEC 2006 and PAESEC benchmarks in comparison with other power saving techniques on three main memory architectures including DDR3, DDR2 and LPDDR2. Our simulation results demonstrate significant improvement in ED$^2$ and energy consumption over other power saving techniques. Moreover, RAMZzz performs very close to the ideal oracle approach for different workloads and memory architectures.

APPENDIX A
DETAILED IMPLEMENTATION ISSUES

Fig. 18. Memory controller and operating system with RAMZzz’s new modules highlighted.

RAMZzz adds a few new components to the memory controller and operating system. Following the previous study [35], RAMZzz extends a programmable controller [39] by adding its own new components (shaded in Figure 18). Other functionalities including page grouping and the prediction model are offloaded to operating systems (like previous studies [15, 35]).

Memory Controller Structure. The memory controller (MC) receives read/write requests from the cache controller via the CMD FIFOs. The Arbiter dequeues requests from those FIFO queues, and the controller converts those requests into the necessary instructions and sequences required to communicate with the memory. The Datapath module handles the flow of reads and writes between the memory devices. The physical interface converts the controller instructions into the actual timing relationships and signals required for accessing the memory device.

We assume the MC exploits page interleaving. Page interleaving exploits higher data locality but also makes accesses to multiple banks less uniform, which may cause row-buffer conflicts in some cases. However, it is better for grouping and migrating physical pages based on the frequency and recency of accesses, as described in Section 4 (the hot ranks are more likely to have very short idle periods, and the cold ranks have relatively long idle periods). A further optimization is to use the permutation-based page interleaving scheme [44], which retains high data locality and reduces row-buffer conflicts. Other interleaving schemes, such as cache line interleaving (which maps consecutive cache lines to different memory banks), may not effectively exploit the data locality. In such situation, a possible approach is to make migration decisions based on other locality indicators (e.g., row buffer misses as exploited by Wang et al. [45]) rather than LLC misses/writebacks. We leave the optimization and evaluation on other interleaving schemes as our future work. Memory requests are handled on a FCFS basis. There are more sophisticated access scheduling optimizations like finite queue length, critical-word-first optimization, and prioritizing reads. Those techniques are orthogonal to our study, and we do not include them into the simulations.

Four new modules including MQ, Migration, Remap and Demotion are added into the memory controller for implementing the functionality of page grouping, page migration, page remapping and power state control in RAMZzz, respectively. All the logics of the new modules are performed by the memory controller, and are designed off the critical path of memory accesses, giving the priority to the memory accesses from applications. We add a flag bit to indicate whether this request is from applications or new modules. The total on-chip storage of new MC modules in our design is 112KB (as described in the following).

MQ Module. To avoid performance degradation, MQ module contains the small on-chip cache (64KB with 4K entries) to store the MQ structure and a separate queue (10KB) for the updates to the MQ structure. To find the MQ entry of a physical page, MC uses hashing with the corresponding page number. Misses in the entry cache produce requests to DRAM. MQ module’s logic snoops the CMD FIFO queue, creating one update per new request. The updates to the MQ structure are performed by the MC off the critical path of memory accesses (via the aforementioned flag bit). The update queue is
implemented as a small circular buffer, where a new update precludes any currently queued update to the same entry. In our design, each physical page descriptor in the MQ queues takes 124 bits. Each descriptor contains the corresponding page number (22 bits), the reference counter (14 bits), the queue number in MQ (4 bits), the last-access time (27 bits), the pointers to other descriptors (54 bits), and the reserved bit for flags (3 bits). The space overhead of our design is low. For the 2GB DRAM, the total space taken by the descriptors is about 8MB (only 0.4% of the total DRAM space).

**Migration Module.** The Migration module contains the queue of scheduled migrations. The migrations are enqueued in a manner such that concurrent migrations of a Eulerian cycle are put in consecutive positions. At the beginning of each epoch, the OS accesses the current MQ structure to perform grouping and calculate the Eulerian cycle. Then, the OS updates the queue of scheduled migrations (10KB) which is stored in the Migration module. Page migrations start from the beginning of an epoch, and is scheduled once there are idle periods. Priority is given to longer segments because they involve more pages. Memory requests are buffered until the migration is concluded. To facilitate concurrent page migrations according to the Eulerian cycle, each rank is equipped with one extra row-buffer for storing the incoming page. When migrating a page, a rank first writes the outgoing page to the buffer of the target rank, and then reads the incoming page from its buffer.

**Remap Module.** Similar to the previous design [38], we introduce a new layer of translation between physical addresses assigned by the OS (and stored in the OS page table) and those used by the MC to access DRAM devices. Specifically, the MC maintains the *Remapping Table*, a hash table for translating physical page addresses coming from the LLC to actual remapped physical page addresses. The OS can access the *Remapping Table* as well. After the migration is completed at the beginning of an epoch, the *Remapping Table* is updated accordingly. Periodically or when the table fills up (at which point the MC interrupts the CPU), the OS commits the new translations to its page table and invalidates the corresponding TLB entries. For example, if the OS uses a hashed inverted page table, e.g., UltraSparc and PowerPC architectures, it considerably simplifies the commit operation. Then, the OS sets a flag in a memory-mapped register in the MC to make sure that the MC prevents from migrating pages during the commit process, and clears the *Remapping Table*.

When a memory request (with physical address assigned by the OS) arrives at the MC, it searches the address in the *Remapping Table*. On a hit, the new physical page address is used by the MC to issue the appropriate commands to retrieve the data from its new location. Otherwise, the original address is used. In terms of access latency, the remapping operation happens when a request is added to the MC queues and does not extend the critical path in the common case because queuing delays at the MC are substantial. For memory-intensive workloads, memory requests usually wait in the MC queues for a long time before being serviced. The above translation can begin when the request is queued and the delay for translation can be easily hidden behind the long waiting time. The notion of introducing the *Remapping Table* for the MC has been widely used in the past [20], [38], [40].

The Remap module maintains the *Remapping Table* (28KB with 4K entries) and the logic to remap target addresses. At the end of migration, the Migration module submits the migration information to the Remap module, which creates new mappings in the *Remapping Table*. The Remap module snoops the CMD queue to check if it is necessary to remap its entries. We assume each *Remapping Table* lookup and each remapping take 1 memory cycle. However, these operations only delay a memory request if it finds the CMD queue empty (which is not the common case). Note that the migration and remapping of a segment blocks the accesses to only the pages involved, and concurrent accesses to other pages are still possible.

**Demotion Module.** The Demotion module performs the demotion to control the power state of each rank according to its demotion configuration. The demotion configuration of each rank is updated by the OS at the beginning of a slot.

**OS Modules.** Two major new components Grouping and Prediction Model are added to the memory management sub-system in operating system. The Grouping module performs grouping and calculates the Eulerian cycle according to the MQ structure at the beginning of an epoch. At the beginning of each epoch, the OS accesses the current MQ structure to perform grouping and calculate the Eulerian cycle. Then, the OS updates the queue of scheduled migrations which is stored in the Migration module. The Prediction Model module runs the prediction model and obtains the demotion configuration for memory controller at the beginning of each slot.

Note that the structure complexity and storage overhead of RAMZzz are similar to the previous proposals, e.g., [6], [9], [10], [29], [40]. For example, our design has small DRAM space requirement (less than 2% of the total amount of DRAM).

**APPENDIX B**

**EXPERIMENTAL RESULTS ON MIXED WORKLOADS**

Figure 19 presents the experimental results of RAMZzz for twenty additional mixed workloads with the optimization goal of ED$^2$ on DDR3. The memory trace of each mixed workload is collected by executing four randomly chosen SPEC 2006 applications concurrently on PTLSim. RAMZzz has much lower ED$^2$ than BASE on all these workloads, with an average reduction of 46.2%,
Fig. 19. Comparing ED$^2$ of RAMZzz and ORACLE with the optimization goal of ED$^2$ on DDR3.

and a range of 30.5–63.9%. RAMZzz also achieves very close ED$^2$ to ORACLE on all twenty workloads.

**APPENDIX C**

**RESULTS ON ENERGY-ORIENTED OPTIMIZATIONS OF SPEC 2006 WORKLOADS**

In this section, we present results of SPEC 2006 workloads when RAMZzz’s optimization metric is set to energy consumption. We set a relatively high delay budget (10%, 2.5 times of that used in the ED$^2$ experiment) to unleash the potential of energy saving. Other system settings of DRAM system and RAMZzz are the same as those used in Section 5.2 (e.g., 2GB DRAM with 8 ranks).

Figure 20 compares the energy consumption of RAMZzz, ORACLE and BASE on different memory architectures. Figure 21 shows the breakdown of time stayed in different power states for RAMZzz on DDR3, DDR2 and LPDDR2. We make the following observations. Firstly, RAMZzz is still more energy-efficient than BASE. The reduction on energy consumption is 66.9%, 65.8% and 65.3% on average on DDR3, DDR2 and LPDDR2, respectively. The reduction is also more significant on the workloads of single applications than the mixed workloads. This is consistent with our observations in the ED$^2$ experiment.

RAMZzz consumes only 5.8%, 4.1% and 3.5% on average more energy than ORACLE on all workloads on DDR3, DDR2 and LPDDR2, respectively. Our study on the power-down timeout shows that our prediction model is very close to ORACLE. RAMZzz achieves the effectiveness and flexibility in different optimization goals. While the optimization metric is set to energy consumption, the total delay of RAMZzz, including remapping delay, migration delay and resynchronization delay, is less than 7.5% for all three DRAM architectures as well as all workloads. Recall that our delay budget for energy-oriented optimizations is 10%.

We briefly present results of the individual impact of dynamic migrations and adaptive demotions on RAMZzz with the optimization goal of energy consumption. For dynamic page migrations, we observe RAMZzz has an average reduction of 18.4%, 11.7% and 11.1% over RZ–SP, and with a range of 5.6–38.0%, 3.4–29.8% and 2.1–30.0% on DDR3, DDR2 and LPDDR2, respectively. For adaptive demotions, we observe RAMZzz has the reduction of 29.7–53.8% (39.5% on average), 11.6–51.0% (25.6% on average) and 5.2–43.7% (23.6% on average) over RZ–SD on DDR3, DDR2 and LPDDR2, respectively.

**APPENDIX D**

**STUDIES ON FULL SYSTEM ED$^2$ AND ENERGY CONSUMPTION**

In this section, we evaluate the impact of RAMZzz on full-system energy consumption and performance with SPEC 2006 workloads. We start by performing back-of-envelop calculations, following previous studies [29], [46]. We assume that the average power consumption of the DRAM system accounts for 40% of the total system power in the baseline policy (i.e., BASE), and compute a fixed average power estimate (i.e., the remaining 60%) for all other components. Thus, the energy consumption of all other components (excluding DRAM) scales with the program execution time, which is usually consistent with the real-world case [29], [46]. This ratio has been identified as the current contribution of DRAM system to entire system power consumption [1], [47], [48]. We also study the impact of varying this ratio in this evaluation. Architectural characteristics and experimental parameters for ED$^2$-oriented and energy-oriented optimizations are the same as those used in Section 5.2 and Appendix C, respectively.

Figure 22 presents full system ED$^2$ of RAMZzz, RZ–SP and RZ–SD (SR_FAST is used as the pre-selected low-power state) when the optimization metric is set to ED$^2$ on DDR3. All three approaches still outperform BASE on all workloads in terms of full system ED$^2$. Compared with BASE, the reduction in full system ED$^2$ is 23.0%, 18.0% and 17.8% on average for RAMZzz, RZ–SP and RZ–SD, respectively. RAMZzz outperforms both RZ–SP and RZ–SD in full-system ED$^2$, but leads to slightly higher performance degradations. We observe that RAMZzz has an average reduction of 4.8% (from 1.6% to 17.9%) and 5.3% (from 1.7% to 8.6%) over RZ–SP and RZ–SD in full system ED$^2$, respectively. When the optimization metric is set to energy consumption on DDR3, all three approaches are also energy-efficient than BASE in full system energy as shown in Figure 23. RAMZzz outperforms both RZ–SP and RZ–SD, with the average reduction of 4.3% (from 1.4% to 13.8%) and 5.9% (from 1.8% to 9.0%) in full system energy, respectively. We observe similar results on other DRAM architectures.

We further study the ratio of power consumption of the memory subsystem to the overall power consumption of the full system. Particularly, we vary the ratio from 30% to 50%. Figure 24 shows that the fraction of memory power has a significant effect on both full system ED$^2$ and energy consumption. Increasing the ratio from 30% to 50% (i.e., the power contribution of other components are reduced from 70% to 50%), the normalized full-system ED$^2$ and energy consumption of RAMZzz decrease from 0.84 to 0.70 and 0.83 to 0.68, respectively.
APPENDIX E
SENSITIVITY STUDIES

We use $ED^2$ as the optimization metric, DDR3 as the target memory architecture and SPEC 2006 workloads to conduct the sensitivity analysis. Since RAMZzz is very close to ORACLE, we present results for RAMZzz, RZ–SP and RZ–SD (choosing PRE_PDN_SLOW as the target low-power state) only. In those studies, we vary one parameter at a time and keep other parameters in their default settings. Due to the space limitation, we present the figures for M4 (a modest case among all those workloads) and comment on other workloads without figures when appropriate.

DRAM parameters. We study the impact of different numbers of ranks and memory capacities of DRAM. As the number of ranks increases, we observe a rather stable $ED^2$ for RAMZzz, RZ–SD and RZ–SP. For all three approaches, when the number of ranks increases from 2 to 4, $ED^2$ drops less than 1%, because of a finer grained power control on ranks. When the number of ranks increases from 4, 8 to 16, $ED^2$ increases less than 3%. The major reason for increasing $ED^2$ is the increased amount of page migrations caused by increasing number of ranks. Figure 25 shows the results for varying the memory capacity. As memory capacities increase, all three methods achieve a lower $ED^2$, and the $ED^2$ improvement of RAMZzz over RZ–SD and RZ–SP both becomes larger. That indicates the effectiveness of our approach on larger-memory systems.

RAMZzz parameters. We study the impact of different epoch/slot sizes and delay budgets of RAMZzz. Figure 26 shows the results of varying epoch size. RZ–SP is not sensitive to the epoch size, whereas the $ED^2$ of RAMZzz and RZ–SD both increases slightly. That is because, for a longer epoch, the rank hotness does not affect the changes in page access locality in time, and the
ED^2 improvement brought by page migrations is slightly reduced. We observed a similar result when varying the slot size in \((0.125 \times 10^8 \times 2^i)\) cycles \((i = 0, 1, ..., 3)\). The ED^2 of RAMZzz varies by less than 2%. In practice, we set the slot size to be \(10^8\) cycles, and the epoch size to be \(10^9\) cycles as a compromise on the prediction overhead and the accuracy.

Figure 27 compares ED^2 for varying delay budget. A small delay budget limits the potential for energy saving, whereas a large delay budget leads to too aggressive energy saving and exaggerates the delay incurred by miss-predictions. In practice, we set the delay budget within 1–4% for optimizing ED^2.

**APPENDIX F**

**STUDIES ON MQ STRUCTURE**

Figure 28 shows physical page access frequencies for pages stored in different levels of the MQ structure during an epoch after page migrations of RAMZzz on DDR3 architecture and M4 workload. We observe that pages stored in high MQ levels have higher access frequencies, while pages stored in low MQ levels have lower access frequencies. This shows that the MQ structure actually correlates with page access distribution. We have consistent observations on other workloads and memory architectures.

**APPENDIX G**

**STUDIES ON PREDICTION OF IDLE PERIOD DISTRIBUTION**

We compare the predicted idle histogram to the actual idle histogram of RAMZzz on Rank 0 on DDR3 architecture for a selected workload (M4) in this section. The predicted histogram is close to the actual histogram in our evaluation in both cases: 1) the slot is not the beginning of an epoch as shown in Figure 29 (in this case, the actual histogram in the previous slot is used as the prediction of the current slot); 2) the slot is the beginning of an epoch as shown in Figure 30 (in this case, the algorithm developed in Section 4.2 is used to estimate the predicted histogram). We have observed similar results on other workloads and memory architectures.

We also find that the confidence of the regression curve being an exponential function (i.e., \(R^2\)) on the actual histogram of idle periods is high (0.94 and 0.92 in Figures 29 and 30 respectively). Thus, our assumption that the inter-arrival times of memory requests follow a Poisson distribution is valid.

**REFERENCES**

[1] U. Hoeftle and L. A. Barroso, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, 1st ed. Morgan and Claypool Publishers, 2009.

[2] C. Lefurgy, K. Rajamani, F. Rawson, W. Feltzer, M. Kistler, and T. W. Keller, “Energy management for commercial servers,” IEEE Computer, vol. 36, no. 12, 2003.

[3] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powermap: eliminating server idle power,” in ASPLOS’09, 2009.

[4] S. M. Pham, A. R. Lebeck, “Power-aware memory architecture to address the memory power wall,” in ISLPED ’04, 2004.

[5] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Scheduling-based energy management,” in DAC ’02, 2002.

[6] X. Fan, C. Ellis, and A. Lebeck, “Memory controller policies for dram power management,” in ASPLOS ’01, 2001.

[7] Y. Delaluz, P. Pillai, and K. G. Shin, “Design and implementation of power-aware virtual memory,” in USENIX ATC ’03, 2003.

[8] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving energy efficiency by making dram less randomly accessed,” in ISLPED ’05, 2005.

[9] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Scheduling-based dram energy management,” in DAC ’02, 2002.

[10] C. Bae and T. Jamel, “Energy-aware memory management through database buffer management,” in WEED ’11, 2011.

[11] X. Fan, C. Ellis, and A. Lebeck, “Memory controller policies for dram power management,” in ASPLOS ’01, 2001.

[12] B. Diniz, D. Guedes, W. Meira, Jr., and R. Bianchini, “Limiting the power consumption of main memory,” in ISCA ’07, 2007.

[13] B. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton University, January 2011.

[14] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page allocation,” in ASPLOS ’00, 2000.

[15] H. Zheng and Z. Zhu, “Power and performance trade-offs in contemporary dram system designs for multicore processors,” IEEE Trans. on Comput., vol. 59, no. 8, 2010.

[16] K. T. Malladi, B. C. Lee, F. A. Nothaf, C. Kozyrakis, K. Periyathamby, and M. Horowitz, “Towards energy-proportional datacenter memory with mobile dram,” in ISCA ’12, 2012.

[17] Micron Tech., Inc., MT41J256M16P-15E Datasheet, 2010.

[18] Micron Tech., Inc., MT47H128M8CF-25E Datasheet, 2007.

[19] Micron Tech., Inc., MT42L128M32D1LF-25W Datasheet, 2011.

[20] Micron Tech., Inc., System Power Calculator, http://www.micron.com/products/support/power-calc, 2012.

[21] I. Hur and C. Lin, “A comprehensive approach to dram power management,” in HPCA ’08, 2008.

[22] K. Sudan, D. Guedes, W. Meira, Jr., and R. Bianchini, “Limiting the power consumption of main memory,” in ISCA ’07, 2007.

[23] B. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton University, January 2011.

[24] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page allocation,” in ASPLOS ’00, 2000.

[25] H. Zheng and Z. Zhu, “Power and performance trade-offs in contemporary dram system designs for multicore processors,” IEEE Trans. on Comput., vol. 59, no. 8, 2010.

[26] K. T. Malladi, B. C. Lee, F. A. Nothaf, C. Kozyrakis, K. Periyathamby, and M. Horowitz, “Towards energy-proportional datacenter memory with mobile dram,” in ISCA ’12, 2012.

[27] Micron Tech., Inc., MT41J256M16P-15E Datasheet, 2010.

[28] Micron Tech., Inc., MT47H128M8CF-25E Datasheet, 2007.

[29] Micron Tech., Inc., MT42L128M32D1LF-25W Datasheet, 2011.

[30] Micron Tech., Inc., System Power Calculator, http://www.micron.com/products/support/power-calc, 2012.

[31] I. Hur and C. Lin, “A comprehensive approach to dram power management,” in HPCA ’08, 2008.

[32] K. Sudan, D. Guedes, W. Meira, Jr., and R. Bianchini, “Limiting the power consumption of main memory,” in ISCA ’07, 2007.

[33] B. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Princeton University, January 2011.
Fig. 28. The average of page access frequencies for different MQ levels.

Fig. 29. Comparing the actual and predicted idle histogram of a slot that is not the start of an epoch.

Fig. 30. Comparing the actual and predicted idle histogram of a slot that is the start of an epoch.