Materials Research Express

PAPER

Sol gel combustion derived monticellite bioceramic powders for apatite formation ability evaluation

Sivasankar Koppala1,2a, Renita Mishal D Souza3, Poornima Sivanandam4, Sai Kumar Tammina5, Lei Xu6,7, Kangqiang Li8, Quan Chen3, Ramdas Balan9, Kishore Kumar Devarepally10 and Sasikumar Swamiappan11b

1 Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, People’s Republic of China
2 Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
3 Key Laboratory of Unconventional Metallurgy, Ministry of Education, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, People’s Republic of China
4 Centre of Excellence in Materials Science, Department of Physics, CMR Institute of Technology, Bengaluru 560037, Karnataka, India
5 Department of Physics, University of Hradec Králové, Kokitanskehlo 62, Hradec Králové 50003, Czech Republic
6 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
7 Authors to whom any correspondence should be addressed.

E-mail: pepvisa9@gmail.com, xulei_kmust@aliyun.com, kqlikust@126.com and ssasikumar@vit.ac.in

Keywords: Sol-gel, combustion, monticellite, bioactivity, hydroxyapatite

Abstract

Sol-gel combustion was employed for the synthesis of monticellite (CaMgSiO\textsubscript{4}) ceramic powders using various fuels. Citric acid, succinic acid, tartaric acid, sucrose, urea, glycine, and L-alanine were used as fuels. Influence of calcination temperature on the phase evolution was investigated. Prepared monticellite powders were characterized using powder-XRD, FT-IR, and DLS techniques. XRD pattern reveals that the L-alanine is a suitable fuel among all the fuels studied and confirms the formation of pure monticellite. FT-IR spectra confirm the presence of characteristic functional groups associated with monticellite. DLS measurements show the particle size of the monticellite powders. Finally, Apatite formation ability studies were carried out by immersing the monticellite and monticellite-polymer (chitosan/chitin) composites in the SBF solution. Pure monticellite shows higher bioactivity than the composites and its surface analysis (SEM and EDS) reveals the deposition of spherical hydroxyapatite particles.

1. Introduction

Calcium magnesium silicates have potential biomedical, wear resistance, thermo-mechanical, ceramic coating and luminescent applications in the field of material science. Calcium magnesium silicate CaO-MgO-SiO\textsubscript{2} ternary system on crystallization exist in different phases such as monticellite (CaMgSiO\textsubscript{4}), diopside (CaMg\textsubscript{2}Si\textsubscript{2}O\textsubscript{6}), akermanite (Ca\textsubscript{2}MgSi\textsubscript{2}O\textsubscript{5}), merwinite (Ca\textsubscript{3}Mg\textsubscript{2}Si\textsubscript{2}O\textsubscript{8}), bredigite (Ca\textsubscript{2}Mg\textsubscript{3}Si\textsubscript{4}O\textsubscript{16}), serendibite (CaMg\textsubscript{2}Si\textsubscript{4}O\textsubscript{10}) and tremolite (Ca\textsubscript{2}Mg\textsubscript{5}Si\textsubscript{8}O\textsubscript{24})[1–5] Among all, monticellite gains more research attention due to the salient features of the crystal structure. It is a naturally occurring mineral form during metamorphism of siliceous dolostones and named after Italian mineralogist Teodoro Monticelli. The first crystal structure reported by Bragg and Brown (1926) and subsequently refined by Brown (1970). Monticellite has olivine-type crystal structure exist in orthorhombic crystal system with the space group Pmn\textsubscript{b} [6–8].

Considering the biomedical applications of monticellite, the first biomedical applications of monticellite ceramics reported in the year 2008. Monticellite possesses excellent bending strength (159.7 MPa), fracture toughness (1.63 MPa m1/2) and Young’s modulus (51 GPa). The coefficient of thermal expansion (10.76 × 10-6 °C-1) is close to that of Ti-6Al-4V alloy (10.03 × 10-6 °C-1). Monticellite induces the formation of bone-like apatite in physiological solution as well as promotes the osteoblasts cell growth and proliferation[9].

© 2020 IOP Publishing Ltd
Various synthetic methods used in the past for the preparation of ceramic materials [10–13]. Especially, monticellite prepared by the solid-state method, sol-gel method and floating zone method, which require either higher calcination temperatures or special reduced atmospheric conditions [9, 14, 15]. Hence, it is worth attempting to prepare monticellite by a sol-gel combustion method, which doesn’t require special atmosphere or high calcination temperatures [16, 17]. As the material and its composites not explored, it is interesting to investigate the bioactivity properties in in-vitro conditions, which may be helpful in identifying monticellite as a biomedical material.

2. Experimental work

2.1. Materials

In the present investigation, the materials/chemicals were procured from commercial sources and used as such without further purification. The materials/chemicals used in the experiments are Calcium nitrate tetrahydrate (98.0%, Pure, SDFCL), magnesium nitrate hexahydrate (99.0%, Qualigens), tetra ethyl ortho silicate (98.0%, Acros organics), nitric acid 1.42 (69.0%–71.0%, AR, SDFCL), citric acid anhydrous (99.5%–101%, AR, SDFCL), succinic acid (99%, Qualigens), Tartaric acid, sucrose (99.5%, AR, SDFCL), urea (99%, Himedia), Glycine, L-alanine (99%, CHR, SDFCL), sodium chloride (99.9%, AR, SDFCL), sodium bicarbonate (99%, LR, Nice chemicals), potassium chloride (99.5%, AR, SDFCL), potassium hydrogen phosphate trihydrate (SDFCL), magnesium chloride hexahydrate (98%–100.5%, Qualigens), hydrochloric acid (35.4% (1.18), AR, SDFCL), calcium chloride (90%, LR, SDFCL), sodium sulphate (99.5%, AR, SDFCL), Tris buffer (99.8%, AR, SDFCL), chitin (Himedia), and chitosan (Sigma-Aldrich). Lattice parameters were calculated using powder X software.

2.2. Sol-gel combustion synthesis

Sol-gel combustion method [16, 17] employed for the synthesis of monticellite in pure phase. As shown in the figure 1, aqueous solutions of calcium nitrate, magnesium nitrate and fuel were mixed thoroughly. (A) Citric acid, (B) Succinic acid, (C) Tartaric acid, (D) Sucrose, (E) Urea, (F) Glycine, and (G) L-alanine were used as fuels. Later, TEOS added slowly to the reaction mixture and then nitric acid carefully added. The reaction was continued until the formation of a gel with heating at 70 °C. Obtained gel was dried in hot air oven at 70 °C. Dried gel samples decomposed in a preheated furnace at 400 °C for 30 min. After decomposition, the precursor obtained found to be in different colors for different fuels. Thus obtained precursor samples calcined at 1300 °C/5 h to obtain monticellite. For phase evolution study, L-alanine assisted precursor compound calcined at different temperatures (600 °C, 900 °C & 1300 °C/5 h).

2.3. Apatite formation ability

All the calcined monticellite powders (prepared by using various fuels) made as compact pellets of 13 mm diameter and 3 mm thickness by using hydraulic pellet press. Similarly, ceramic-polymer composite pellets were also prepared by taking different ceramic to polymer proportions (100, 90:10 and 80:20). L-alanine derived pure monticellite, (chitin and chitosan) biopolymers used to prepare the composites.

2X SBF solution was prepared as per Kokubo procedure [18, 19]. In brief, all the necessary reagents (NaCl, NaHCO₃, KCl, K₂HPO₄·3H₂O, MgCl₂·6H₂O, HCl, CaCl₂, Na₂SO₄, (CH₂OH)₂CNH₂) were dissolved in 500 ml of double distilled water one by one at 37 °C with continuous stirring. After the stepwise dissolution of the reagents, double distilled water again added to increase the total volume of SBF solution to 1 L. Finally, the pH adjusted to 7.4 using hydrochloric acid solution. The resultant solution filtered and stored in the refrigerator.

Apatite formation ability of monticellite and the composites were investigated by immersing in 2X SBF solution for 10 days and incubated at 37 °C. After 10 days the pellets were removed from SBF, washed with deionized water and dried at room temperature. The dried pellets were analyzed by using XRD, SEM and EDS techniques to detect hydroxypatite formation on the immersed pellet surface.

2.4. Characterization techniques

Bruker D8 advance X-Ray Diffractometer (Germany) was employed for the phase analysis by using Cu Kα, Ni-filtered radiation (wavelength = 1.540600 Å). Shimadzu IR Affinity-1 CE FTIR Spectrophotometer used to record FT-IR spectra of the samples. DLS particle size distribution curves obtained by using Horiba scientific nanopartica nano particle analyzer SZ-100 by dispersing the powder samples in the ethylene glycol medium. Surface morphology and EDS spectrum of the pellet recorded by using EVO 18 Research (Zeiss India).
3. Results and discussion

3.1. Sol-gel combustion synthesis
The addition of metal nitrate solution (calcium nitrate and magnesium nitrate) to fuel solution leads to the formation of metal-fuel complex and TEOS upon acid hydrolysis results in the formation of silanol group along with ethanol. All these complexes help in the formation of polymeric network gel (fuel-Ca-Mg-silanol-ethanol-nitric acid-water) through the sequential steps such as hydrolysis, condensation, polymerization, and gelation. Different polymeric network structures will form depending on the type of fuel used [20]. Type and number of functional groups present on the fuel will affect the various parameters (Thermochemistry, Enthalpy, time duration, type of gases (nitrates, carbonates) evolves, the amount of carbon content and color of the precursor compound) of the combustion reaction through the formation of different polymeric network structures. Thus, different fuels take different time durations to complete the combustion reaction and the color of obtained precursors varies. However, calcination of precursor prepared using various fuels at high temperature (1300 °C) results in the formation of a white color compound, which may be due to the formation of monticellite.

3.2. XRD analysis
The figure 2 shows the XRD pattern of the precursor sample (L-alanine derived) calcined at different temperatures for phase evolution study. Dual phases corresponding to diopside and merwinite was observed after calcination of monticellite precursor at 600 °C. The presence of these materials commonly noticed during the preparation of tertiary system silicates (calcium magnesium silicate) due to non-stoichiometric calcium-rich sites in the heated sample [21]. The absence of monticellite phase in the XRD pattern was due to the lack of optimum temperature required to achieve its crystallization. Hence, to initiate the phase formation of monticellite the precursor was further calcined at a higher temperature. After calcination at 900 °C, characteristic monticellite peaks emerged as dominant phase. The diopside and merwinite phases were found to be highly unstable in the temperature range of 700 to 900 °C, leading to their complete elimination. Moreover,
akermanite as minor phase was also observed along with monticellite at 900 °C. When the calcination temperature of the sample increased to 1300 °C, the akermanite phase was found to be completely removed and single monticellite phasic pure monticellite was obtained. The required temperature for the synthesis of pure monticellite by sol-gel combustion method was optimized at 1300 °C. This temperature was found to be very low as compared to existing reports [9, 22]. The XRD pattern of the sample calcined at 1300 °C was matched with standard JCPDS (Card No: 035-0590) and formation of single phasic monticellite in orthorhombic crystal system with space group Pmnb (62) was confirmed.

The monticellite powders prepared using different fuels were calcined at 1300 °C and compared XRD pattern shown in figure 3. It was observed that the XRD patterns were composed of dual phases with the existence of monticellite as well as akermanite peaks. This might be due to the formation of stable akermanite when prepared by citric acid, succinic acid, tartaric acid, sucrose, urea, and glycine as fuels. Hence, it can be suggested that the akermanite phase can be eliminated either by increasing the calcination time or temperature. This finding also indicates that the L-alanine is a suitable fuel for the synthesis of pure monticellite.

Table 1 represents the lattice parameters, unit cell volume and crystalline sizes calculated for monticellite samples prepared by using various fuels. The crystallites size was calculated by using Scherer’s formula for highest intense (131) plane. It was found to be in the range of 16–44 nm. The unit cell volume was found to be in the range of 339.44723–342.37023 (Å³).

3.3. Vibrational spectra
The internal modes of SiO₄ are almost independent of lattice vibrations in monticellite crystal structure and these SiO₄ vibrational levels split due to symmetry. Earlier, Handke and Urban determined the splitting modes of the SiO₄ for orthosilicate structures. FT-IR spectra (figure 4) of the precursor calcined at 1300 °C (prepared by using various fuels) shows a sharp band at 826 cm⁻¹ which attributed to A₁ (v₁) stretching mode, the bands appeared at 993, 961, 866 cm⁻¹ assigned to the F₃ (v₂) stretching mode, sharp bands appeared at 601, 516 cm⁻¹ assigned to F₂ (v₄) bending mode and bands appeared at 482,436 cm⁻¹ assigned to E(v₂) bending modes. All the observed vibrational frequencies in good agreement with the Handke and Urban reports [23]. No significant vibrational variations observed in the FT-IR spectra of the monticellite prepared by using various fuels, which indicates the formation of monticellite phase.
3.4. DLS analysis

Figure 5 shows the DLS particle size distribution curves of the monticellite prepared by using various fuels. From the results, it was clear that all the samples in the particle size range of 2162 to 2731 nm. There is no significant variation observed in the particle size distribution of the monticellite prepared by using various fuels.

3.5. Apatite formation ability

Apatite formation ability of the monticellite pellets (prepared by using various fuels) was tested by immersing in the 2X SBF solution for 10 days (figure 6(i)). This was done to analyze the influence of fuels on the apatite formation ability of the monticellite. Urea derived monticellite shows crystalline hydroxyapatite deposition and other fuel derived samples shows the amorphous apatite phase. This observation indicates that monticellite samples have potential to induce apatite formation when exposed to the physiological environment. The rapid exchange of alkaline earth ions from urea derived monticellite sample with H\(^+\) ions from SBF might lead to the formation of the silica-rich layer at a very faster rate. This process resulted in the rapid consumption of Ca\(^{2+}\) and P ions from the SBF to initiate hydroxyapatite deposition. Previous studies suggest that the formation of the silica-rich layer at the interface of materials is the major step to induce apatite nucleation [24]. The overall mechanism of apatite deposition is explained elsewhere [25]. The pure monticellite shows improved bioactivity within 10 days as compare to earlier reports. Previous articles reveal that the hydroxyapatite deposition on monticellite surface takes place after immersing in SBF for 15 days [9].

![Figure 3. XRD patterns of monticellite prepared by using various fuels (A) Citric acid (B) Succinic acid (C) Tartaric acid (D) Sucrose (E) Urea (F) Glycine (G) L-alanine.](image)

Table 1. Lattice parameters and particle sizes of the monticellite prepared by using various fuels (A) Citric acid (B) Succinic acid (C) Tartaric acid (D) Sucrose (E) Urea (F) Glycine (G) L-alanine.

S. No	a	b	c	Cell volume (Å\(^3\))	Crystalline size (nm)
Standard	6.366000	11.074000	4.822000	340.000000	—
A	6.37210	11.10683	4.84081	342.60203	25.11
B	6.36011	11.08163	4.81897	339.64287	23.43
C	6.37134	11.10375	4.82477	341.33174	44.32
D	6.36621	11.08795	4.81939	340.19233	44.64
E	6.37103	11.08790	4.82173	340.61353	16.88
F	6.37952	11.10489	4.83274	342.37023	40.10
G	6.35790	11.09052	4.81401	339.44723	34.78
Figure 4. FT-IR spectra of monticellite prepared by using various fuels (A) Citric acid (B) Succinic acid (C) Tartaric acid (D) Sucrose (E) Urea (F) Glycine (G) L-alanine.

Figure 5. DLS curves of monticellite prepared by using various fuels (A) Citric acid (B) Succinic acid (C) Tartaric acid (D) Sucrose (E) Urea (F) Glycine (G) L-alanine.
Figure 6 shows the XRD pattern of monticellite (L-alanine derived) and its composite pellets after immersing in 2X SBF. After 10 days of immersion, monticellite peaks became less intense and partially disappeared with the appearance of characteristic hydroxyapatite peaks as a major phase. A comparative apatite deposition behavior of monticellite-chitosan and monticellite-chitin composites were also analyzed. It was found that chitosan favors the deposition of hydroxyapatite whereas chitin was unable to induce hydroxyapatite formation on the surface of composites figure 6(ii). This behavior was found similar to the existing report [26]. This study shows that the content as well as the compositional dependent bioactivity of the samples in a physiological environment. Also, as the chitosan content was decreased in the composites an increase in the rate of apatite deposition was noticed. But the monticellite/chitosan composites did not exhibit better apatite
deposition ability than pure monticellite. Hence, this analysis indicates that the bioactivity of ceramics can be influenced by fabricating their composites with biopolymers. Literature survey shows that the monticellite composites are very rarely studied while its composites with biopolymers are still unexplored [27].

Figure 7 shows the SEM and EDS analysis data of the pure monticellite pellet after immersing in 2X SBF solution. From the SEM images, the morphological appearance of monticellite pellet surface observed to cover with spherical shaped hydroxyapatite particles, which evenly spread throughout the surface. The appearance of characteristic peaks corresponding to Ca, Mg, Si, O, and P proves the apatite formation ability of monticellite.

4. Conclusion

For the first time, monticellite powders were synthesized by employing sol-gel combustion method and studied the effect of fuel on the phase formation. The methodology used in current work assisted in reducing the calcination temperature of monticellite by ~150 °C. Phase evolution study indicates that the formation of the monticellite from diopside, merwinite, and akermanite. XRD pattern confirms the formation of pure monticellite phase when L-alanine used as a fuel. In the case of other fuels, the existence of akermanite as a secondary phase observed, which indicates that L-alanine is a suitable fuel for the synthesis of monticellite phase. Vibrational spectra confirm the presence of monticellite functional groups and DLS data reveals the particle size range from 2162 to 2731 nm. Apatite formation ability studies show the bioactive characteristics of the pure monticellite within 10 days. Previous reports reveal that the hydroxyapatite deposition on monticellite surface takes place after immersing in SBF for 15 days. Thus, monticellite may be a potential candidate material for bone regeneration and tissue engineering applications.

Acknowledgments

Authors acknowledge the support of Panjin Institute of Industrial Technology, Vellore Institute of Technology, and Kunming University of Science and Technology.

ORCID iDs

Sivasankar Koppala https://orcid.org/0000-0002-4086-030X
Ramdas Balan https://orcid.org/0000-0002-8817-7155
Kishore Kumar Devarepally https://orcid.org/0000-0003-0125-1517
Sasikumar Swamiappan https://orcid.org/0000-0003-2533-4923

References

[1] Chen X, Liao X, Huang Z, You P, Chen C, Kang Y and Yin G 2010 Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO-MgO-SiO2 system Journal of Biomedical Materials Research B: Applied Biomaterials 93 194–202
[2] Nonami T and Tsutsumi S 1999 Study of diopside ceramics for biomaterials Journal of Material Science: Materials in Medicine 10 475–9
[3] Ou J G F et al 2007 Preparation of merwinite with apatite-forming ability by sol-gel process Key Eng. Mater. 330 67–70
[4] Sun H L, Wu C T, Dai K R, Chang J and Tang T T 2006 Proliferation and osteoblastic differentiation of human bone marrow derived stromal cells on akermanite-bioceramic ceramics Biomaterials 27 5651–7
[5] Wu C T, Chang J, Ni S Y and Wang Y J Y 2006 In vitro bioactivity of akermanite ceramics Journal of Biomedical Material Research A 76 73–80
[6] Sharp Z, Hazen R and Finger L 1987 High-pressure crystal chemistry of monticellite CaMgSiO4 Am. Mineral. 72 748–55
[7] Bragg W L and Brown G B 1926 Die Struktur des Olivins Z. Kristallogr. 63 538–56
[8] Brown G E Jr 1970 Crystal chemistry of the olivines. Dissertation for the Doctoral Degree. (Virginia: Virginia Polytechnic Institute, Blacksburg)
[9] Chen X, Ou J, Kang Y, Huang Z, Zhu H, Yin G and Wen H 2008 Synthesis and characteristics of monticellite bioactive ceramic Journal of Material Science: Materials in Medicine 19 1257–63
[10] Sasikumar S and Vijayaraghavan R 2010 Synthesis and characterization of bioceramic calcium phosphates by rapid combustion synthesis Journal of Materials Science & Technology 26 1114–8
[11] Xu L, Srivinaskannan C, Peng J, Zhang L and Zhang D 2017 Synthesis of Cu-CuO nanocomposite in microreactor and its application to photocatalytic degradation J. Alloys Compd. 695 263–9
[12] Yang Q, Meng B, Lin Z, Zhu X, Yang F and Wu S 2017 Increased electrical conductivity and the mechanism of samarium-doped ceria/Al2O3 nanocomposite electrolyte J. Am. Ceram. Soc. 100 686–96
[13] Du F, Zuo X, Yang Q, Yang B, Li G, Ding Z, Wu M, Ma Y, Jin S and Zhu K 2016 Facile assembly of TiO2 nanospheres/SnO2 quantum dots composites with excellent photocatalyst activity for the degradation of methyl orange Ceram. Int. 42 12778–82
[14] Soubbotin K, Zharikov E, Iskhakova L and Lavrishchev S 2001 Growth of single crystals of monticellite CaMgSiO4: Cr from melt by floating zone technique and the study of their composition Crystallogr. Rep. 46 1030–8
[15] Li Y, Wang Y, Xu X, Yu G and Zhang F 2010 Photoluminescence properties and valence stability of Eu in CaMgSiO4 Journal of Electrochemical Society 157 739–43
[16] Koppala S and Swamiappan S 2015 Glowing combustion synthesis, characterization, and toxicity studies of Na2Ca3Si5O12 Powders Material and Manufacturing Processes 30 1476–81
[17] Choudhary R, Koppala S and Swamiappan S 2015 Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis Journal of Asian Ceramic Societies 3 173–7
[18] Kokubo T, Kusuhara N, Sakka S, Kitsugi T and Yamamura T 1996 Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3 J. Biomed. Mater. Res. 24 721–34
[19] Cho S B, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T and Yamamura T 1995 Dependence of apatite formation on silica gel on its structure; effect of heat treatment Journal of American Ceramic Society 78 1769–74
[20] Sasikumar S and Vijayaraghavan R 2008 Solution combustion synthesis of bioceramic calcium phosphates by single and mixed fuels—a comparative study Ceramic International 34 1373–9
[21] West A R 2003 Solid State Chemistry and Its Applications (Wiley)
[22] Chen X, Ou J, Wei Y, Huang Z, Kang Y and Yin G 2010 Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO-CaO-SiO2 System J. Mater. Sci., Mater. Med. 21 1461–73
[23] Handke M and Urban M 1982 IR and Raman spectra of alkaline earth metals orthosilicates J. Mol. Struct. 79 353–6
[24] Hench L L 1991 Bioceramics: from concept to clinic J. Am. Ceram. Soc. 74 1487–510
[25] Liu X, Ding C and Chu P K 2004 Mechanism of apatite formation on wollastonite coatings in simulated body fluids Biomaterials 25 1759–61
[26] Choudhary R, Koppala S, Srivastava A and Sasikumar S 2015 In vitro bioactivity of nanocrystalline and bulk larnite/chitosan composites: comparative study J. Sol-Gel Sci. Technol. 74631–40
[27] Shamoradi F, Emadi R and Ghomi H 2017 Fabrication of monticellite-akermanite nanocomposite powder for tissue engineering applications J. Alloys Compd. 693 601–5