Partial Franel sums

R. Tomás
CERN
CH 1211 Geneva 23, Switzerland
E-mail: rogelio.tomas@cern.ch

March 15, 2022

Abstract

Analytical expressions are derived for the position of irreducible fractions in the Farey sequence F_N of order N for a particular choice of N. The asymptotic behaviour is derived obtaining a lower error bound than in previous results when these fractions are in the vicinity of $0/1, 1/2$ or $1/1$.

Franel’s famous formulation of Riemann’s hypothesis uses the summation of distances between irreducible fractions and evenly spaced points in $[0,1]$. A partial Franel sum is defined here as a summation of these distances over a subset of fractions in F_N. The partial Franel sum in the range $[0,i/N]$, with $N = \text{lcm}(1, 2, ..., i)$ is shown here to grow as $O(\log(N)\delta_B(\log N))$, where $\delta_B(x)$ is a decreasing function.

Other partial Franel sums are also explored.

1 Introduction and main results

The Farey sequence F_N of order N is an ascending sequence of irreducible fractions between 0 and 1 whose denominators do not exceed N [1]. Riemann’s hypothesis implies that the irreducible fractions tend to be regularly distributed in $[0,1]$. A formulation of this statement follows [2],

$$
\left| \sum_{n=1}^{|F_N|} \left| F_N(n) - \frac{n}{|F_N|} \right| \right| = O\left(N^{\frac{3}{2}} + \epsilon\right),
$$

where $F_N(n)$ is the n^{th} irreducible fraction in F_N. Here we define the partial Franel sum in the range $[a_1/b_1, a_2/b_2]$ as

$$
P\left(\frac{a_1}{b_1}, \frac{a_2}{b_2}\right) = \sum_{n=I_N(a_2/b_2)}^{I_N(a_1/b_1)} \left| F_N(n) - \frac{n}{|F_N|} \right|,
$$

where $I_N(a/b)$ is the position that a/b occupies in F_N. In [3] the upper bound of the distance $|F_N(n) - n/|F_N||$ is established to be $1/N$ and to be located at $F_N(2) = 1/N$. This motivates the study of partial Franel sums in ranges including $1/N$. Furthermore, another equivalent formulation of the Riemann’s hypothesis involving sums over irreducible fractions in the range $[0,1/4]$ follows [4],

$$
\sum_{n=1}^{I_N(1/4)} \left(F_N(n) - \frac{I_N(1/4)}{2|F_N|} \right) = O\left(N^{\frac{3}{2}} + \epsilon\right),
$$

showing again the relevance of the vicinity of $1/N$.

In [5], Chapter 6, it is attempted to find a closed expression for the i^{th} fraction in F_N ending in an “analytical hole”. This paper achieves this goal for fractions in the range $[0,i/N]$, with $N = \text{lcm}(1, 2, ..., i)$ as explained in the following. Note
that \(N = \text{lcm}(1, 2, \ldots, i) = e^{\psi(i)} \), where \(\psi(i) \) is the second Chebyshev function that fulfills the property \(\psi(i) = (1 + o(1))i \), and hence \(i = (1 + o(1))\log N \).

Let the subsequence \(F_{N}^{a/b_1, a_2/b_2} \) of \(F_N \), contain all the fractions of \(F_N \) in \([a_1/b_1, a_2/b_2]\). The cardinality of \(F_{N}^{a_1/b_1, a_2/b_2} \) is well known to be \(N \)

\[
\left| F_{N}^{a_1/b_1, a_2/b_2} \right| = \frac{3}{\pi^2} \left(\frac{a_2}{b_2} - \frac{a_1}{b_1} \right) N^2 + O(N \log N).
\]

As \(I_N (a_2/b_2) \) is the position that \(a_2/b_2 \) occupies in \(F_N \), it follows that

\[
I_N \left(\frac{a_2}{b_2} \right) = \frac{3}{\pi^2} \left(\frac{a_2}{b_2} - \frac{a_1}{b_1} \right) N^2 + O(N \log N).
\]

A first result of this paper is the derivation of an analytical expression for \(I_N (1/q) \) where \(N = \text{lcm}(1, 2, \ldots, i) \) and \(N/i \leq q \leq N \) as

\[
I_N \left(\frac{1}{q} \right) = 2 + N \sum_{j=1}^{i} \frac{\varphi(j)}{j} - q\Phi(i),
\]

where \(\varphi(i) \) is the Totient function and \(\Phi(i) \) is the summatory Totient function. To reach this relation a series of bijections between \(F_{i'} \), with \(i' \leq i \), and subsequences of \(F_N \) are established covering all elements in \(F_{N}^{0, 1/q} \). Thanks to these bijections the cardinality of \(F_{N}^{0, 1/q} \) can be expressed as function of all \(|F_{i'}| \). These bijections are illustrated in Table 1 for \(N = \text{lcm}(1, 2, \ldots, 5) = 60 \). This result is used to derive the equivalent asymptotic estimate of \(\Phi(i) \) with a smaller residual error:

\[
I_N \left(\frac{1}{q} \right) = \frac{3}{\pi^2} q \left(\frac{N^2}{q^2} - \left\{ \frac{N}{q} \right\}^2 \right) + O \left(N \delta_A \left(\left\{ \frac{N}{q} \right\} \right) \right),
\]

where \(\{x\} = x - \lfloor x \rfloor \) and \(\delta_A(x) \) is a decreasing function defined as

\[
\delta_A(x) = \exp \left(-A \frac{\log^{0.6} x}{(\log \log x)^{0.2}} \right),
\]

where \(A > 0 \).

Using this result the partial Franel sum in the range \([0, 1/(N/i)]\) is shown to be

\[
P \left(\frac{0}{1}, \frac{1}{N/i} \right) = O(\log(N)\delta_B(\log N)),
\]

with \(0 < B < A \) and again \(N = \text{lcm}(1, 2, \ldots, i) \). This partial Franel sum, therefore, grows strictly slower than \(O(\log N) \). If we would assume the Riemann hypothesis and a uniform distribution density of Farey elements in \([0, 1]\) we would expect this partial Franel sum to actually decrease as \(O(\log(N)/N^{1/2+\epsilon}) \). An equivalent result is obtained for partial Franel sums in ranges including \(1/2\). The generalization to compute partial Franel sums in the vicinity of any irreducible fraction is explored. Earlier results of this work were applied to resonance diagrams [7, 8].

2 Definitions

We say that two elements of a Farey sequence, \(a_1/b_1 \) and \(a_2/b_2 \), form a Farey pair if \(|a_1b_2 - a_2b_1| = 1\). In this report we exceptionally allow \(0/1 \) and \(1/0 \) to form a Farey pair even if \(1/0 \) is not a proper fraction. The mediant of a Farey pair, \(a_1/b_1 \) and \(a_2/b_2 \), is given by

\[
\frac{a_1 + a_2}{b_1 + b_2},
\]

which is an irreducible fraction existing between \(a_1/b_1 \) and \(a_2/b_2 \) and forms two Farey pairs with \(a_1/b_1 \) and \(a_2/b_2 \).
Table 1: Correspondance between elements in N and u/l. Partial Franel sums are given by $F(q) = \frac{1}{N\lambda} \sum_{n=0}^{N-1} e^{2\pi i n q}$. The Franel sums with u/l and $1/0$ are given. Note that the number of elements in N and l are equal, and only the first 90 elements in N are given.
3 Results

Theorem 3.1. Let a_1/b_1 and a_2/b_2 be a Farey pair with $b_1 > b_2$. Let N be multiple of $b_1(i+1)$ with i being a natural number such $0 < i < N$. Let q be an integer fulfilling
\[\frac{N}{b_1(i+1)} < q \leq \frac{N}{b_1i} \quad \text{and} \quad b_1q + b_2 \leq N . \]

Let F'_i be defined as
\[F'_i = \left\{ \frac{h}{k} : \frac{h}{k} < F_i, \ k(b_1q + b_2) - b_1h \leq N \right\} . \]

There is a bijective map M between F'_i and $F_N^{a_1+a_2}_{b_1+b_2}, F_N^{a_1(q-1)+a_2}_{b_1(q-1)+b_2}$, given by
\[
M : F'_i \to F_N^{a_1+a_2}_{b_1+b_2}, \quad \frac{h}{k} \mapsto \frac{k(a_1q + a_2) - a_1h}{k(b_1q + b_2) - b_1h} .
\]

$M^{-1} : F_N^{a_1+a_2}_{b_1+b_2}, F_N^{a_1(q-1)+a_2}_{b_1(q-1)+b_2} \to F'_i$, \quad \frac{u}{l} \mapsto \frac{q(b_1u - la_1) + b_2u - la_2}{b_1u - la_1} .

The bijective map is order-preserving when $a_2/b_2 > a_1/b_1$ and order-inverting when $a_2/b_2 < a_1/b_1$.

Proof. We first demonstrate that M is injective. $\frac{a_1+a_2}{b_1+b_2}$ and $\frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}$ form a Farey pair since a_1/b_1 and a_2/b_2 form a Farey pair:
\[
|(a_1q + a_2)(b_1(q-1) + b_2) - (b_1q + b_2)(a_1(q-1) + a_2)| = |b_2a_1 - a_2b_1| = 1 .
\]

Let u/l be the image of h/k under M,
\[
\frac{u}{l} = \frac{k(a_1q + a_2) - a_1h}{k(b_1q + b_2) - b_1h} .
\]

By virtue of this expression u/l is obtained by applying the mediant operation successively between $\frac{a_1+a_2}{b_1+b_2}$ and $\frac{a_1(q-1)+a_2}{b_1(q-1)+b_2}$ in the same fashion as h/k is obtained by applying the mediant between $0/1$ and $1/1$, meaning
\[
\frac{h}{k} = \frac{(k - h) \cdot 0 + h \cdot 1}{(k - h) \cdot 1 + h \cdot 1} , \quad \frac{u}{l} = \frac{(k - h) \cdot (a_1q + a_2) + h \cdot (a_1(q-1) + a_2)}{(k - h) \cdot (b_1q + b_2) + h \cdot (b_1(q-1) + b_2)} .
\]

Therefore u/l is a Farey fraction in the interval of interest:
\[
\frac{[a_1q + a_2, a_1(q-1)+a_2]}{[b_1q + b_2, b_1(q-1)+b_2]} .
\]

u/l belongs to F_N by definition of the domain F'_i, meaning that h/k belongs to F'_i if $l \leq N$.

Now we demonstrate that M^{-1} is also injective. Let u/l belong to $F_N^{a_1+a_2}_{b_1+b_2}, F_N^{a_1(q-1)+a_2}_{b_1(q-1)+b_2}$ and assume $a_2/b_2 > a_1/b_1$, so that
\[\frac{a_1q + a_2}{b_1q + b_2} \leq \frac{u}{l} \leq \frac{a_1(q-1) + a_2}{b_1(q-1) + b_2} .
\]

Let h/k be the image of u/l under M^{-1},
\[\frac{h}{k} = \frac{q(b_1u - la_1) + b_2u - la_2}{b_1u - la_1} .
\]

This equality implies $\gcd(h,k) = \gcd(b_2 - la_2, b_1u - la_1)$. Since $\gcd(u,l) = \gcd(a_1,b_1) = \gcd(a_2,b_2) = 1$
and \(a_2 b_1 - a_1 b_2 = 1 \) then \(\gcd(h, k) = 1 \) according to the property in \([9]\) and, hence, \(h/k \) is an irreducible fraction. Furthermore, operating with the inequalities in \([3]\):

\[
q(b_1 u - l a_1) \geq -(a_2 - l a_2) \geq (b_1 u - l a_1)(q - 1)
\]

and therefore \(0 \leq h \leq k \).

From relations \([3]\) and \([4]\)

\[
k = b_1 u - l a_1 \leq b_1 l \frac{a_1(q - 1) + a_2}{b_1(q - 1) + b_2} - l a_1 = \frac{l}{b_1(q - 1) + b_2}
\]

and using that \(l \leq N \) and \(q > \frac{N}{b_1(i + 1)} \), hence \(b_1(q - 1) \geq \frac{N}{i + 1} \).

\[
k \leq \frac{N}{b_1(i + 1) + b_2} = \frac{i + 1}{1 + \frac{1}{N} b_2} < i + 1.
\]

If \(b_2 > 0 \) this implies \(k \leq i \) and gathering the above results \(0 \leq h \leq k \leq i \) and \(\gcd(h, k) = 1 \), hence \(h/k \in F_i \). To demonstrate that \(h/k \) belongs to \(F_i' \) it is easy to verify that \(k(b_1 q + b_2) = b_1 h \leq N \).

If \(b_2 = 0 \) we are in the exceptional case included in this report of \(a_1/b_1 = 0/1 \) and \(a_2/b_2 = 1/0 \), that implies \(h/k = (qu - l)/u \), note that \(k = u \). We only need to show that \(k \leq i \) also in this case. From the inequalities in \([3]\) and \(\frac{N}{i} \geq q > \frac{N}{i + 1} \),

\[
\frac{i}{N} < \frac{1}{q} < \frac{u}{l} \leq \frac{1}{q - 1} < \frac{i + 1}{N}.
\]

\((i + 1)/N\) is not an irreducible fraction, as \(N \) is taken as a multiple of \(i(i + 1) \), and therefore it does not belong to \(F_N \). Similarly for \(i/N \) when \(i > 1 \). In the range \([i/N, (i + 1)/N]\) there cannot be fractions with denominator \(N \) other than \(1/N \) when \(i = 1 \). Therefore if \(i = 1 \) we directly have \(k = u \leq i \) and for \(i > 1 \) we have that \(l \leq N - 1 \) and hence

\[
k = u \leq l \frac{i + 1}{N} \leq i.
\]

\(\square\)

Corollary 3.2. The cardinalities of \(F_i \), \(F_i' \) and \(F_N \) are related as follows:

- If \(q = N/(b_1 i) \) then

\[
|F_i| \geq |F_i'| = \begin{vmatrix} a_1 a_2 + a_2 & a_1(q - 1) + a_2 \\ b_1(q - 1) + b_2 & b_1(q - 1) + b_2 \end{vmatrix} > |F_i| - i
\]

- If \(q < N/(b_1 i) \) or \(b_2 = 0 \) then

\[
|F_i| = |F_i'| = \begin{vmatrix} a_1 a_2 + a_2 & a_1(q - 1) + a_2 \\ b_1(q - 1) + b_2 & b_1(q - 1) + b_2 \end{vmatrix}
\]

Proof. The first inequality is evident from the definition of \(F_i' \). The first equality derives from the the bijective map in Theorem 3.1.

If \(q = N/(b_1 i) \), let \(u/l \) be the image of \(h/k \) via the map \(M \) in Theorem 3.1 then \(l = k(N/i + b_2) - b_1 h \). To prove that \(|F_i'| > |F_i| - i \) we should count how many \(h/k \in F_i \) fulfill \(k(N/i + b_2) - b_1 h > N \). Dividing both sides of the later inequality by \(k \) and operating we obtain

\[
b_2 - b_1 \frac{h}{k} > \frac{N}{k} - \frac{N}{i} = N \frac{i - k}{k i},
\]

\[
(5) \quad b_2 \geq b_2 - b_1 \frac{h}{k} > N \frac{i - k}{k i} \geq 0.
\]
To fulfill these inequalities it is required that \(k = i \), otherwise for any \(k < i \) and recalling that \(N \) is a multiple of \(b_1(i + 1) \):

\[
N \frac{i - k}{k_1} \geq b_1 \frac{i + 1}{k} (i - k) > b_1 ,
\]

and inequalities in (3) cannot be fulfilled as \(b_2 < b_1 \) (from assumption in Theorem 3.1). Then \(k = i \) implies \(h/i < b_2/b_1 < 1 \) and in \(F_i \) there are fewer than \(i \) irreducible fractions of the form \(h/i \) below \(b_2/b_1 \), hence \(|F'_i| > |F_i| - i \).

If \(q < N/(b_1i) \) we define \(g > 0 \) such that \(q = N/(b_1i) - g \), then \(l = k(N/i - gb_1 + b_2) - b_1h \) and we need to count how many \(h/k \) in \(F_i \) have \(l > N \),

\[
b_2 - b_1 \frac{h}{k} - b_1g > N \frac{i - k}{k_1} ,
\]

and there are no \(h/k \) which can fulfill this equation as \(b_2 - b_1g < 0 \), hence \(|F_i| = |F'_i| \) when \(q < N/(b_1i) \).

If \(b_2 = 0 \) we should show that there are no \(h/k \) in \(|F_i| \) fulfilling \(kb_1q - b_1h > N \). The largest possible value of \(q \) is \(N/(b_1i) \) and therefore \(kb_1q - b_1h \leq kN/i - b_1h < N \), for \(i > 1 \), so there is no \(h/k \) fulfilling the previous condition and \(|F_i| = |F'_i| \). Note that \(i = 1 \) and \(h/k = 0/1 \) would not have given \(kb_1q - b_1h > N \) as \(b_1q + b_2 \leq N \) from the assumptions in Theorem 3.1.

Theorem 3.3. Let \(N = b_1 \text{lcm}(1, 2, \ldots, i_{\text{max}}) \), \(\frac{N}{b_1(i + 1)} < q \leq \frac{N}{b_1i} \), with \(a_1/b_1 \) and \(a_2/b_2 \) forming a Farey pair, \(b_1 > b_2 \) and \(i < i_{\text{max}} \) then:

- For \(b_1 > 1 \):

 \[
 I_N \left(\frac{a_1q + a_2}{b_1q + b_2} \right) = I_N \left(\frac{a_1}{b_1} \right) + s \left(\frac{N}{b_1} \sum_{j=1}^{i} \frac{\varphi(j)}{j} - \varphi(i) \right) + O(i^2) ,
 \]

 with \(s = +1 \) when \(a_1/b_1 < a_2/b_2 \) and \(s = -1 \) otherwise.

- For \(a_1/b_1 = 0/1 \) and \(a_2/b_2 = 1/0 \):

 \[
 I_N \left(\frac{1}{q} \right) = 2 + N \sum_{j=1}^{i} \frac{\varphi(j)}{j} - \varphi(i) .
 \]

Proof. To simplify equations we assume \(s = +1 \) in the following. We count the number of elements in \(F_N^{a_1 a_2/b_1 b_2} \) using the bijective maps described in Theorem 3.1 and adding up the cardinalities of the sets involved from Corollary 3.2. Thanks to the fact that \(N \) is multiple of all natural numbers \(i' \) such that \(i' \leq i \) we can establish bijections between \(F_i \) and \(F_N^{a_1 a_2/b_1 b_2} \) where \(p \) can take all values fulfilling \(\frac{N}{b_1(i' + 1)} < p \leq \frac{N}{b_1i'} \), covering all elements in \(F_N^{a_1 a_2/b_1 b_2} \) when scanning over all \(i' \leq i \) and the corresponding \(p \). For a given \(i' \) the number of values \(p \) takes is given by

\[
\frac{N}{b_1i'} - \frac{N}{b_1(i' + 1)} = \frac{N}{b_1} \left(\frac{1}{i'} - \frac{1}{i' + 1} \right).
\]

In a first step we compute the number of elements in \(F_N^{a_1 a_2/q'/b_1 b_2} \) with \(q' = N/(b_1i) \),

\[
I_N \left(\frac{a_1q' + a_2}{b_1q' + b_2} \right) - I_N \left(\frac{a_1}{b_1} \right) = \frac{N}{b_1} \sum_{i'=1}^{i-1} \left(\frac{1}{i'} - \frac{1}{i' + 1} \right) (|F'_{i'}| - 1)
\]

\[
= \frac{N}{b_1} \sum_{i'=1}^{i-1} \left(\frac{1}{i'} - \frac{1}{i' + 1} \right) \Phi(i') + O(i') \]

\[
= \frac{N}{b_1} \sum_{j=1}^{i-1} \frac{\varphi(j)}{j} - \frac{N}{b_1} \Phi(i - 1) + O(i^2) .
\]
In particular, when \(b_2 = 0 \) the term \(O(i^2) \) does not appear according to Corollary 3.2.

In a second step we compute the number of elements in \(\mathbb{F}_N^{a_1q + a_2 \over b_1q + b_2} \), that is \(\Phi(i)(q' - q) + O(i) \). Adding both contributions gives

\[
I_N \left(\frac{a_1q + a_2}{b_1q + b_2} \right) = I_N \left(\frac{a_1}{b_1} \right) = \frac{N}{b_1} \sum_{j=1}^{i-1} \varphi(j) + \Phi(i) \left(\frac{N}{b_1} - q \right) + O(i^2)
\]

which demonstrates the theorem for \(s = 1 \). For \(s = -1 \) following the same steps leads to the desired result.

Corollary 3.4. Let \(N = b_1 \text{lcm}(1, 2, \ldots, i_{\text{max}}) \) and \(\frac{N}{b_1(i + 1)} < q \leq \frac{N}{b_1} \), with \(i < i_{\text{max}} \) then

\[
I_N \left(\frac{a_1q + a_2}{b_1q + b_2} \right) = I_N \left(\frac{a_1}{b_1} \right) + s \frac{3}{\pi^2} q \left(\frac{N^2}{b_1^2 q^2} - \left\{ \frac{N}{q} \right\}^2 \right) + O(N \delta_A(i)) ,
\]

with \(\delta_A(x) \) defined in [4]. In particular for \(a_1/b_1 = 0/1 \) and \(a_2/b_2 = 1/0 \),

\[
I_N \left(\frac{1}{q} \right) = \frac{1}{\pi^2 q} \left(\frac{N^2}{q^2} - \left\{ \frac{N}{q} \right\}^2 \right) + O(N \delta_A(i)),
\]

and for \(a_1/b_1 = 1/2 \) and \(a_2/b_2 = 2/1 \),

\[
I_N \left(\frac{q + 1}{2q + 1} \right) = \frac{|N|}{2} + \frac{3}{\pi^2} q \left(\frac{N^2}{2q^2} - \left\{ \frac{N}{2q} \right\}^2 \right) + O(N \delta_A(i)) .
\]

Proof. The following known relations [10] [11] are needed:

\[
\sum_{k=1}^{N} \varphi(k) = \frac{3}{\pi^2} N^2 + E(N),
\]

\[
\sum_{k=1}^{N} \varphi(k) \frac{k}{N} = \frac{6}{\pi^2} N + H(N),
\]

\[
E(x) = O \left(x^{2/3} \log \log x \right),
\]

\[
E(x) = x H(x) + O(x \delta_A(x)),
\]

with \(A > 0 \) and \(\delta_A(x) \) is a decreasing factor. From the definition of \(i, q \) and \(N \) it follows that

\[
i = \left\lfloor \frac{N}{q b_1} \right\rfloor = \frac{N}{b_1} + O(1),
\]

\[
i < i_{\text{max}} = (1 + o(1)) \log N/b_1 .
\]

Inserting the above equalities in expression [6] of Theorem 3.3.

\[
I_N \left(\frac{a_1q + a_2}{b_1q + b_2} \right) = I_N \left(\frac{a_1}{b_1} \right) + \frac{6}{b_1} \frac{N}{\pi^2} + s \frac{3}{\pi^2} q + s \frac{\overline{N}}{b_1} H(i) - sq E(i) + O(i^2)
\]

\[
= I_N \left(\frac{a_1}{b_1} \right) + s \frac{6}{\pi^2} \frac{N}{b_1} + \frac{3}{\pi^2} q + i H(i) - E(i)) + O(i^2)
\]

\[
= I_N \left(\frac{a_1}{b_1} \right) + \frac{6}{b_1} \frac{N}{\pi^2} - sq \pi^2 + O(N \delta_A(i))
\]

\[
= I_N \left(\frac{a_1}{b_1} \right) + s \frac{3}{\pi^2} \frac{N^2}{b_1^2 q} - s \frac{3}{\pi^2} q \left\{ \frac{N}{b_1 q} \right\}^2 + O(N \delta_A(i)) .
\]
Theorem 3.5. Let \(N = b_1 \text{lcm}(1, 2, \ldots, i) \) then the partial Franel sum over all
Farey fractions in the range \(\left[a_1 \frac{i}{b_1}, a_1 \frac{i+1}{b_1} + a_2 \right] \) gives:

- For \(a_1/b_1 = 0/1, a_2/b_2 = 1/0 \) and for \(a_1/b_1 = 1/2, a_2/b_2 = 0/1 \):
 \[
P \left(\frac{0}{1} \frac{1}{N/1} \right) = \sum_{j=1}^{I_N \left(\frac{N}{N/1} \right)} \left| F_N(j) - \frac{j}{|F_N|} \right| = O(\log(N)\delta_B(\log N)) ,
 \]
 \[
P \left(\frac{1}{2} \frac{N/(2i)}{N/1+1} \right) = \sum_{j=I_N \left(\frac{N}{N/1+1} \right)}^{I_N \left(\frac{N/(2i)}{N/1+1} \right)} \left| F_N(j) - \frac{j}{|F_N|} \right| = O(\log(N)\delta_B(\log N)) ,
 \]
with \(0 < B < A \). The same result holds for \(a_1/b_1 = 1/2, a_2/b_2 = 1/1 \).
- For \(b_1 > 2 \) and \(b_2 < b_1 \):
 \[
P \left(a_1 \frac{i}{b_1} + a_2 \frac{i}{b_1} + b_2 \right) = \sum_{j=I_N \left(\frac{a_1}{b_1} \right)}^{I_N \left(\frac{a_1}{b_1} + a_2 \right)} \left| F_N(j) - \frac{j}{|F_N|} \right| < \frac{a_1}{b_1} - \frac{I_N \left(\frac{a_1}{b_1} \right)}{|F_N|} O(iN) + O(\delta_B(i)) ,
 \]
which cannot be further developed as no general expression for \(I_N (a_1/b_1) \) is known.

Proof. By virtue of Theorem 3.3, the partial Franel sum under study is written as

\[
P \left(\frac{a_1}{b_1} \frac{a_1 N}{b_1} + a_2 \frac{b_1}{b_1} + b_2 \right) = \sum_{i'=1}^{i-1} \sum_{q= \frac{b_1}{b_1(i'+1)}}^{\frac{b_1 N}{a_1}} \sum_{n=1}^{\left\lfloor \frac{b_1 N}{a_1} \right\rfloor} \left| F_{i'}(g) \right| \frac{k(a_1 q + a_2) - a_1 h}{k(b_1 q + b_2) - b_1 h} \frac{I_N \left(\frac{k(a_1 q + a_2) - a_1 h}{k(b_1 q + b_2) - b_1 h} \right)}{|F_N|}
\]

where the sum over \(n \) runs over the elements \(h/k \) in \(F_{i'} \), approximately \(n = I_{i'}(h/k) + O(i') \). By virtue of Theorem 6.1 and Corollary 6.3,

\[
I_N \left(\frac{k(a_1 q + a_2) - a_1 h}{k(b_1 q + b_2) - b_1 h} \right) = I_N \left(\frac{a_1 q + a_2}{b_1 q + b_2} \right) + s I_{i'} \left(\frac{h}{k} \right) + O(i')
\]

\[
= I_N \left(\frac{a_1}{b_1} \right) + s \frac{N^2}{b_1 q} - s \frac{N^2}{b_1 q} \left(\frac{N}{b_1 q} \right)^2 + s \frac{N^2}{b_1 q} \left(\frac{N}{b_1 q} \right)^2 + O(N \delta_A(i'))
\]

where we have used \(i' = \left\lfloor \frac{N}{b_1 q} \right\rfloor \). Furthermore

\[
I_N \left(\frac{k(a_1 q + a_2) - a_1 h}{k(b_1 q + b_2) - b_1 h} \right) = \frac{I_N \left(\frac{a_1}{b_1} \right)}{|F_N|} + s \frac{b_1 h}{b_1 q} - s \frac{N^2}{b_1 q} \left(\frac{N}{b_1 q} \right)^2 + s \frac{N^2}{b_1 q} \left(\frac{N}{b_1 q} \right)^2 + O \left(\frac{\delta_A(i')}{N} \right)
\]

The Farey element inside the partial Franel sum is approximated as

\[
k(a_1 q + a_2) - a_1 h = k(b_1 q + b_2) - b_1 h = \frac{s}{b_1 q} \left(1 + b_2 q b_1 + \frac{h}{b_1 q} + \frac{a_1}{b_1} \right)
\]

where we have used \((b_1 a_2 - a_1 b_2) = s\). The partial Franel sum under study becomes

\[
\sum_{i'=1}^{i-1} \sum_{q= \frac{b_1}{b_1(i'+1)}}^{\frac{b_1 N}{a_1}} \left| F_{i'} \right| \frac{a_1}{b_1} - \frac{I_N \left(\frac{a_1}{b_1} \right)}{|F_N|} + s \frac{b_1 h}{b_1 q} + s \frac{N^2}{b_1 q} \left(\frac{N}{b_1 q} \right)^2 + O \left(\frac{\delta_A(i')}{N} \right)
\]
where the terms proportional to $1/q$ and h/k have canceled out leaving a negligible residue. The sum over n has been evaluated just by multiplying by $|F'_i|$ as the dependency on h/k disappeared. Evaluating the asymptotes of the sums of the individual terms within the absolute value gives:

$$
\sum_{q=1}^{N} \sum_{q'=1}^{N} \frac{|F'_i|}{q^4} = O\left(\frac{i^4}{N}\right),
$$

$$
\sum_{q=1}^{N} \sum_{q'=1}^{N} \frac{|F'_i|}{q^2} = O\left(\log i\right),
$$

$$
\sum_{q=1}^{N} \sum_{q'=1}^{N} |F'_i| \frac{\delta_A(i')}{N^2} = O\left(\log i\right),
$$

with $0 < B < A$. Keeping the two dominant terms gives

$$
P\left(\frac{a_1}{b_1}, \frac{a_1}{b_1} + \frac{a_2}{b_2}\right) \leq \left| \frac{a_1}{b_1} - \frac{I_N\left(\frac{a}{b_1}\right)}{|F_N|} \right| O(iN) + O(i\delta_B(i)),
$$

which is the searched result for $b_1 > 2$. For $1 \leq b_1 \leq 2$

$$
\frac{a_1}{b_1} = \frac{I_N\left(\frac{a}{b_1}\right)}{|F_N|} = 0
$$

and the theorem is demonstrated.

References

[1] G.H. Hardy and E.M. Wright, “An Introduction to the Theory of Numbers”, Fifth Edition, Oxford Science Publications, 1996.

[2] J. Franel, E. Landau, Les suites de Farey et le problème des nombres premiers; Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel, Göttinger Nachrichten, Vol. 1924 (1924), p. 198-201.

[3] F. Dress, Discrément des suites de Farey, Journal de Théorie des Nombres de Bordeaux 11, n° 2 (1999), p. 345-367.

[4] S. Kanemitsu and M. Yoshimoto, Farey series and the Riemann hypothesis, Acta Arithmetica LXXV.4 (1996), p. 351-374.

[5] S. B. Guthery, A Motif of Mathematics: History and Application of the Mediant and the Farey Sequence, Docent Press, Boston, Massachusetts, USA, 2011.

[6] C. Cobeli, M. Văjâitu and A. Zaharescu, On the intervals of a third between Farey fractions, Bull. Math. Soc. Sci. Math. Roumanie Tome 53(101) No. 3, 2010, p. 239–250.

[7] R. Tomás, From Farey sequences to resonance diagrams, Phys. Rev. ST Accel. Beams 17, 014001 (2014).

[8] R. Tomás, Asymptotic behavior of a series of Euler’s totient function $\phi(k)$ times the index of $1/k$ in a Farey sequence, arXiv:1406.0991v2 [math.NT], 2014.

[9] R. Tomás, Equalities between greatest common divisors involving three coprime pairs, Notes on Number Theory and Discrete Mathematics, Vol. 26, 2020, No. 3, 5–7.
[10] S. Kanemitsu, T. Kuzumaki and M. Yoshimoto, *Some sums involving Farey fractions II*, J. Math. Soc. Japan Vol. 52, No. 4, 2000.

[11] A. Walfisz, *Weylsche Exponentialsummen in der neueren Zahlentheorie*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963.