Synthesis and Ambiphilic Reactivity of Metalated Diorgano-Phosphonite Boranes

Thomas D. Hettich,[a] Richard Rudolf,[a] Christoph M. Feil,[a] Nicholas Birchall,[a] Martin Nieger,[b] and Dietrich Gudat*[a]
Experimental Procedures

If not stated otherwise, all manipulations were performed in flame-dried glassware under inert conditions using purified argon. Chlorophosphites and diethoxyphosphine borane were prepared as described elsewhere.[1]-[4] LiBH₄, metal hexamethyldisilazides (MHMDS, M = Li, K), Ph₃SnCl and 1,4-diazabicyclo(2.2.2)octane (DABCO) were purchased from Sigma Aldrich and stored under inert atmosphere. DABCO was sublimed prior to use. NMR spectra were recorded on Bruker Avance 250 (¹H: 250.0 MHz, ¹³C: 62.9 MHz, ³¹P: 101.2 MHz, ¹¹⁹Sn: 93.2 MHz) or Bruker Avance 400 (¹H: 400.1 MHz, ¹³C: 155.4 MHz, ¹¹B: 128.4 MHz, ¹⁰²P: 100.5 MHz, ¹¹⁹Sn: 161.9 MHz) NMR spectrometers at 293 K if not stated otherwise.¹H Chemical shifts were referenced to TMS using the signals of the residual protons of the deuterated solvent (δ¹H = 7.27 (CDCl₃), 7.15 (CD₂Cl₂), 2.09 (toluene-d₈), 1.73 (THF-d₈)) as secondary reference. Spectra of heteronuclei were referenced using the ⁴⁺⁻scale[5] employing 85 % H₃PO₄ (Ξ = 40.480747 MHz, ³¹P), SnMe₄ (Ξ = 37.290655 MHz, ¹¹⁹Sn), BF₃·OEt₂ (Ξ = 32.083974 MHz, ¹¹B) and LiCl (Ξ = 38.863797, ¹³C) as secondary reference, respectively.¹¹⁹Sn NMR spectra were recorded using the DEPT pulse sequence. Coupling constants involving boron and tin nuclei refer to the isotopes ¹¹B and ¹¹⁹Sn if not stated otherwise and prefixes i-, o-, m-, p- denote the atomic positions in aromatic rings. FTIR spectra were recorded with a Thermo Scientific/Nicolet iS5 instrument equipped with an iD5 ATR accessory. Mass spectra were obtained with a Bruker Daltonics MicroToF-Q mass spectrometer. Given masses refer to the peak representing the most abundant isotope combination. Elemental analyses were performed with an Elementar Micro Cube elemental analyser.

D(iisopropoxy)phosphine borane (2c)

A solution of chlorodiisopropylphosphite (8.24 g, 4.46 mmol) in THF (80 mL) was cooled to -78 °C. Solid LiBH₄ (2.90 g, 4.46 mmol) representing the most abundant isotope combination. Elemental analyses were performed with an Elementar Micro Cube elemental analyzer.

Bis(2,6-diisopropoxy)phosphine borane (2b)

A solution of chloro-bis(2,6-diisopropoxy)phosphine (4.18 g, 10.7 mmol) in THF (30 mL) was cooled to -78 °C. LiBH₄ (4 M solution, 2.920 g, 21.48 mmol) was added dropwise, resulting in precipitation of the phosphide. The suspension was warmed to room temperature and filtered. The filtrate was evaporated to approx. 5 mL and stored at -25 °C to afford colourless crystals (1.533 g, 3.830 mmol, 36 %). – ¹H NMR (C₆D₆): δ = 7.27 (CDCl₃), 7.15 (C₆D₆), 1.27 (OCH, 1.19 (d, 3Jₖ = 6.7 Hz, 12 H, CH₃), 0.57 (broad dq, 1J₂ = 96 Hz, 3J₁ = 13 Hz, 3 H, BH₂). – ³¹P NMR (CDCl₃): δ = 119.3 (broad dq, 1J₂ = 444 Hz, 1J₁ = 76 Hz). – ¹⁵C(¹H) NMR (CDCl₃): δ = 148.4 (d, 1J₁ = 11 Hz, o-C), 142.0 (d, 1J₂ = 3 Hz, o-C), 126.4 (d, 1J₂ = 2 Hz, p-C), 124.5 (d, 1J₁ = 2 Hz, m-C), 27.5 (s, CH), 23.5 (s, CH₂), 23.1 (s, CH₃). – IR (cm⁻¹): ν = 2939, 2346 (νP, νBH). – (+)ESI-MS: m/z = 187.1028 (MNa⁺, calcld. 187.1031). – ¹1B NMR (CD₂Cl₂): δ = 302.3 (q, 1J₂ = 88 Hz, 3 H, BH). – (+)ESI-MS: m/z = 423.2581 (MNa⁺, calcld. 423.2599). – C₂₄H₃₈BO₂P (163.99 g mol⁻¹): calcd. C 43.94 H 11.06, found C 43.66 H 10.85.

Potassium diethoxyphosphate borane (K[3b])

KHMDS (4.285 g, 21.48 mmol) was dissolved in hexane/Et₂O (80 mL/10 mL). Diethoxyphosphine borane 2b (2.920 g, 21.48 mmol) was added dropwise, resulting in precipitation of the phosphide. The suspension was warmed to room temperature and filtered. The precipitate was washed with hexane (50 mL) and dried in vacuum to afford K[3b] as colourless solid (2.417 g, 13.89 mmol, 65 %). – ¹H NMR (THF-d₈): δ = 3.95-3.70 (m, 4 H, OCH), 1.19 (t, 1J₁ = 7.0 Hz, 6 H, CH₃), 0.29 (q, 1J₂ = 88 Hz, 3 H, BH₂). – ³¹P[¹H] NMR (THF-d₈): δ = 302.3 (q, 1J₁ = 37 Hz). – ¹₁B[¹H] NMR (THF-d₈): δ = -27.4 (d, 1J₁ = 37 Hz). – IR (cm⁻¹): ν = 2394, 2340(sh) (νBH). – (+)ESI-MS: m/z = 432.2 (MNa⁺, calcld. 432.2599). – C₂₄H₃₉BO₂P (400.35 g mol⁻¹): calcd. C 72.00 H 9.57, found C 71.70 H 9.50.

Potassium diisopropoxyphosphate borane (K[3c])

The synthesis was performed as described for K[3b] using KHMDS (4.087 g, 20.49 mmol) and 2c (3.360, 20.49 mmol) in hexane/Et₂O (80 mL/10 mL). Colourless solid (2.303 g, 11.96 mmol, 55 %). – ¹H NMR (THF-d₈): δ = 3.95 (sept, 3J₁ = 6.7 Hz, 12 H, CH₃), 1.14 (d, 1J₂ = 6.7 Hz, 12 H, CH₃). – ³¹P[¹H] NMR (THF-d₈): δ = -290.9 (b). – ¹₁B[¹H] NMR (THF-d₈): δ = -30.3 (d, 1J₁ = 36 Hz). – ¹³C¹H NMR (THF-d₈): δ = 72.9 (b, OCH), 25.5 (s, CH₂), 25.4 (s, CH₃). – IR (cm⁻¹): ν = 2325, 2279 (νBH).

In situ preparation of potassium bis(2,6-diisopropoxyphenox)phosphate borane (K[3d])

A NMR tube was charged with bis(2,6-diisopropoxyphenox)phosphate (2d) (40 mg, 50 µmol) and KHMDS (22 mg, 60 µmol) and cooled to -78°C. Toluene-d₈ (0.6 mL) was slowly added maintaining the temperature. After homogenization, the mixture was investigated by NMR-spectroscopy. – ¹H NMR (Toluene-d₈): δ = 7.12-6.86 (m, aryl-H, 6 H), 3.73 (sept, 1J₁ = 6.7 Hz, CH, 4 H), 1.26 (d, 1J₂ = 7.0 Hz, CH₃, 12 H), 1.23 (d, 1J₂ = 6.8 Hz, CH₂, 12 H). – ³¹P[¹H] NMR (Toluene-d₈): δ = 325.8 (br). – ¹₁B[¹H] NMR (Toluene-d₈):
In situ preparation of lithium diethoxyphosphide borane (Li[3b])

LiHMDS (25 mg, 0.15 mmol) was dissolved in THF-d8 (0.6 mL) in an NMR tube. The solution was cooled to -78 °C and 2b (20 mg, 0.15 mmol) was added carefully. The sample was transferred into a precooled NMR spectrometer and characterised by multinuclear NMR spectra recorded at 203 K. 1H NMR (THF-d8): δ = 3.54 (broad, 4 H, OCH2), 1.69 (broad, 6 H, CH3). 11B{1H} NMR (THF-d8): δ = -10.7 (q, J_{BH} = 87 Hz). Li[3b]·1H NMR (THF-d8): δ = 4.08-3.87 (m, 8 H, OCH2), 0.20 (t, J_{BH} = 7.0 Hz, 6 H, CH3). 31P{1H} NMR (THF-d8): δ = -18.5 (d, J_{PP} = 449 Hz, P-BH3), 127.4 (t, J_{PP} = 449 Hz, P-BH3). – 11B{1H} NMR (THF-d8): δ = -31.4 (d, J_{BH} = 70 Hz). – 119Sn{1H} NMR (C6D6): δ = 68.7 (s, OCH2), 22.1 (d, J_{PC} = 4 Hz, CH3), 22.0 (d, J_{PC} = 4 Hz, CH3).

ReACTION of lithium diethoxyphosphide borane Li[3b] with BuLi

A solution of Li[3b] was prepared by dropwise addition of 2b (75 mg, 0.55 mmol) to a solution of LiHMDS (92 mg, 0.55 mmol) in THF (4 mL) at -78 °C. After the solution had been stirred for an additional 15 minutes, BuLi (1 mL of a 2.5 M solution in hexanes, 2.48 mmol) was added dropwise. 31P reaction monitoring disclosed the formation of a new product in an instantaneous reaction at -50 °C. The mixture was then allowed to warm to room temperature. Volatiles were removed under reduced pressure and the residue dissolved in CD2Cl2 (0.6 mL). NMR studies revealed the presence of a mixture of Li[6c] and Et3NBH3.

Data for Li[6c]: 1H NMR (CD2Cl2): δ = 5.05-4.83 (m, 4 H, OCH2), 1.32 (d, J_{BH} = 6 Hz, 6 H, CH3), 1.31 (d, J_{BH} = 6 Hz, 6 H, CH3). 31P{1H} NMR (CD2Cl2): δ = 180.2 (broad d, J_{PP} = 449 Hz, P-P). – 11B{1H} NMR (CD2Cl2): δ = -33.2 (d, J_{BH} = 70 Hz). – 119Sn{1H} NMR (CD2Cl2): δ = 65.7 (s, OCH2), 22.1 (d, J_{PC} = 4 Hz, CH3), 22.0 (d, J_{PC} = 4 Hz, CH3).

Diisoproxytriphenylstannylphosphine borane (9c)

The synthesis was performed as described for 9b with K[3c] (210 mg, 1.04 mmol) and Ph2SnCl (400 mg, 1.04 mmol). Colourless solid (200 mg, 391 µmol, 38%; m.p.(dec.) 99 °C). Single crystals suitable for X-Ray crystallography were grown from a concentrated hexane solution. 1H NMR (CD2Cl2): δ = 7.92-7.70 (m, 6 H, Ph), 7.30-7.04 (m, 9 H, Ph), 4.72 (dsept, J_{Jpc} = 6 Hz, J_{Jpp} = 10 Hz, 2 H, 2 H).
Phosphine borane 2d (250 mg, 0.62 mmol) and KHMDS (125 mg, 0.62 mmol) were dissolved in toluene (12 mL) at -78°C. The mixture was stirred for 1h at -78°C and then allowed to warmed to room temperature until it became homogeneous. After re-cooling to -78°C, a solution of Ph₃SnCl (241 mg, 0.62 mmol) in toluene (2 mL) was slowly added. The mixture was stirred for 1 h at -78°C and then for 1 h at room temperature. Volatiles were removed in vacuum and the residue treated with hexane (5 mL). The resulting suspension was filtered. Evaporation of the filtrate to dryness afforded a colourless solid (285 mg, 85% yield, 60%). Single crystal suitable for X-Ray crystallography were grown from a saturated hexane solution.

Dielophenoxytrihexylstannylphosphine boreane 9b (25 mg, 52 μmol) and DABCO (27 mg, 258 μmol) were dissolved in C₆D₆ (0.6 mL). The solution was heated to 50 °C in an oil bath and NMR spectra were measured after 0, 30, 60 and 90 minutes. Reaction products were identified in situ by their NMR data. – ²³P{¹²¹H} NMR: δ = 236.0 (s, J₉Sn = 860 Hz), 2.0 (s, EIO₃pPO(OEt₃)). – ¹³⁵Sn{¹²¹H} NMR: δ = 189.8 (s, J₉Sn = 860 Hz), 10b. – ¹³¹P{¹²¹H} NMR: δ = 231.3 (s, J₉Sn = 830 Hz), 10c. – ¹³¹P{¹²¹H} NMR: δ = 179.5, δJ₉Sn = 830 Hz, 10c. – ¹³¹P{¹²¹H} NMR: δ = -141.3 (s, J₉Sn = 860 Hz), 10b. – ¹³¹P{¹²¹H} NMR: δ = -10.2 (s, DABCO-BH₃).

Bis(2,6-diisopropoxyphenoxy)trihexylstannylphosphine boreane 10d

A solution of 9d (50 mg, 67 μmol) in toluene (3 mL) and NET₃ (1.5 mL) was stirred for 16 h. Volatiles were removed under reduced pressure and the residue treated with pentane (3 mL). Insoluble components were removed by filtration and the volume of the filtrate was reduced to 0.5 mL. The product separated as colourless crystals (40 mg, 54 μmol, 82%). – ¹¹HNMR (C₆D₆): δ = 7.91-7.68 (m, 6 H, SnPh), 7.25-6.99 (m, 15 H, SnPh and Oaryl), 3.45 (sept, J₉Sn = 6.8 Hz, 4 H, CH), 1.01 (d, J₉Sn = 6.8 Hz, 12 H, CH₃), 0.97 (d, J₉Sn = 6.8 Hz, 12 H, CH₃). – ³¹P{¹²¹H} NMR (C₆D₆): δ = 273.0 (s, J₉Sn = 770 Hz). – ¹³⁵Sn{¹²¹H} NMR (C₆D₆): δ = -185.2 (d, J₉Sn = 770 Hz). – ¹³¹C{¹²¹H} NMR (C₆D₆): δ = -152.3 (d, J₉Sn = 1 Hz, Oaryl), 140.7 (d, J₉Sn = 2 Hz, m-Oaryl), 139.8 (d, J₉Sn = 3 Hz, o-SnPh), 138.0 (s, J₉Sn = 38 Hz i-SnPh), 129.3 (s, m-SnPh), 129.1 (s, o-SnPh), 125.2 (d, J₉Sn = 1 Hz, p-Oaryl), 124.5 (d, J₉Sn = 1 Hz, m-Oaryl), 28.2 (d, J₉Sn = 6 Hz, CH), 24.0 (d, J₉Sn = 1 Hz, CH₃), 23.9 (broad, CH₃). – (+)ESI-MS: m/z 775.2123 (MK⁺, calcd. 775.2131). – C₁₂H₁₈O₃P₃Sn (735.54 g mol⁻¹): calcd. C 68.58 H 6.72, found C 68.60 H 6.72.

Crystallographic studies

X-ray diffraction data were collected on a Bruker Kappa Apex II Duo diffractometer equipped with an APEX II CCD-detector and a KRYO-FLEX cooling device with Mo-Kα radiation (λ = 0.71073 Å) at 130(2) K (K(3d)[K[Ni(SiMe₃)₃]_3(THF)]²⁺), 135(2) K (2d, Li[5c], 9b-d or 140(2) K (Li[6b], 10d), respectively. The structures were solved with direct methods (SHELXS-2014 [17]) and refined with a full-matrix least squares scheme on F² (SHELXL-2014 [17]). Semi-empirical or numerical absorption corrections (see Table S1) were applied. Non-hydrogen atoms were refined anisotropically and hydrogen atoms except those bound to phosphorus and boron using a riding model. One SiMe₃ moiety and the THF moieties in K(3b)-KNTM₃b, the ethoxy groups in 9b, and two iPr-groups in 9d as well as all iPr-groups in 10d are disordered. Further details on the refinement of the disorder is given in the cif-files and the incorporated res-files. CCDC-2046650 to CCDC-2046657 contain the crystallographic data for this paper, which can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Table S1 Crystallographic data for 2d, [K(THF)][3d][K(THF)][N(SiMe3)]2, Li[5c], Li[6b], 9b-d, 10d.

	2d	K[3d][K(N(SiMe3))2][THF]	Li[5c]	Li[6b]
CCDC	2046654	2046650	2046652	2046657
Empirical formula	C24H38BO2P	C18H47BK2NO4PSi2	C20H53B3LiO6P3	C8H26B2LiO4P3
Formula weight/g mol⁻¹	400.32	517.72	521.90	307.76
Wavelength/Å	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	monoclinic	monoclinic	triclinic
Space group	P1	P2₁/n	P2₁/c	P1
a/Å	9.4978(4)	12.4127(4)	16.6630(5)	8.7094(5)
b/Å	10.8815(5)	10.6275(3)	9.6999(3)	10.1661(6)
c/Å	12.4747(6)	23.2684(8)	19.8825(6)	10.7159(6)
α/°	74.228(3)	90	90	108.372(2)
β/°	88.499(2)	101.947(2)	103.554(2)	99.768(3)
γ/°	77.850(2)	90	90	103.710(3)
V/Å³	1212.27(10)	3002.99(17)	3161.59(17)	843.49(9)
Z	2	4	4	2
ρcalcd/Mg m⁻³	1.097	1.145	1.145	1.212
F(000)	436	1120	1136	328
Crystal size/mm³	0.571 x 0.443 x 0.428	0.602 x 0.552 x 0.294	0.340 x 0.270 x 0.220	0.366 x 0.226 x 0.206
Θ-range for data	1.697 to 25.242	1.729 to 28.375	2.107 to 28.338	2.077 to 30.681
Refl. collected	35409	51893	31949	26856
Independent refl.	9113	7488	7851	5198
Completeness to θ = 25.242°	97.7%	99.6%	99.6%	99.2%
Abs. correction	semi-empirical	semi-empirical	semi-empirical	semi-empirical
Max. and min. transmission	0.7465 and 0.7163	0.7457 and 0.6633	0.7457 and 0.7002	0.7461 and 0.7107
Refinement method	Full-matrix least-squares on F²			
Data / restraints / parameters	9113 / 3 / 265	7488 / 841 / 379	7851 / 9 / 325	5198 / 6 / 187
G.o.f. on F²	1.035	1.066	1.021	1.044
Final R indices	R₁ = 0.0453	R₁ = 0.0367	R₁ = 0.0328	R₁ = 0.0305
[I > 2σ(I)]	wR₂ = 0.1175	wR₂ = 0.0849	wR₂ = 0.0769	wR₂ = 0.0711
R indices	R₁ = 0.0609	R₁ = 0.0545	R₁ = 0.0507	R₁ = 0.0461
(all data)	wR₂ = 0.1296	wR₂ = 0.0946	wR₂ = 0.0834	wR₂ = 0.0774
Largest diff. peak and hole/e Å⁻³	0.697 and -0.422	0.573 and -0.278	0.314 and -0.243	0.390 and -0.280
	9b	9c	9d	10d
--------	------------	------------	------------	------------
CCDC	2046651	2046655	2046653	2046656
Empirical formula	C_{22}H_{28}BO_2PSn	C_{24}H_{32}BO_2PSn	C_{42}H_{52}BO_2PSn	C_{42}H_{49}O_2PSn
Formula weight/g mol^{-1}	484.91	512.96	749.30	735.47
T/K	135(2)	135(2)	135(2)	140(2)
Wavelength/nm	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	triclinic	triclinic	Monoclinic
Space group	P_2_1/n	P_bar_1	P_bar_1	P_2_1/n
a/A	10.4232(5)	9.6946(4)	12.8287(6)	17.5903(9)
b/A	16.3193(6)	10.8325(5)	73.894(2)	74.358(3)
c/A	13.5035(6)	12.8287(6)	79.830(2)	73.428(2)
α/°	90	73.894(2)	72.892(3)	70.064(2)
β/°	90	74.358(3)	73.428(2)	92.342(2)
γ/°	90	90	90	90
V/Å^3	2246.81(18)	1230.44(10)	1967.96(18)	3753.9(4)
Z	4	2	2	4
ρ calc/Mg m^{-3}	1.434	1.385	1.265	1.301
Absorption coeff./mm^{-1}	1.222	1.120	0.722	0.756
F(000)	984	524	780	1528
Crystal size/mm^3	0.812 x 0.276 x 0.174	0.476 x 0.257 x 0.130	0.938 x 0.583 x 0.468	0.200 x 0.175 x 0.166
θ-range for data collection/°	1.984 to 25.026	1.661 to 30.583	1.957 to 33.274	1.602 to 25.027
Refl. collected	26536	34158	63478	30664
Independent refl.	3962	7552	14987	6591
Completeness to θ = 25.242°/66.548°	99.9%	99.8%	98.9%	99.4%
Absorption correction	numerical	semi-empirical	numerical	semi-empirical
Max. and min. transmission	0.8512 and 0.5041	0.6421 and 0.7461	0.8082 to 0.6540	0.9605 to 0.8431
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	3962 / 117 / 291	7552 / 3 / 271	14987 / 153 / 470	6591 / 142 / 451
G.o.f. on F2	1.124	1.043	1.125	1.090
Final R indices	R1 = 0.0178	R1 = 0.0188	R1 = 0.0267	R1 = 0.0363
[I > 2σ(I)]	wR2 = 0.0378	wR2 = 0.0417	wR2 = 0.0619	wR2 = 0.0810
R indices	R1 = 0.0224	R1 = 0.0232	R1 = 0.0339	R1 = 0.0599
(all data)	wR2 = 0.0405	wR2 = 0.0436	wR2 = 0.0666	wR2 = 0.0937
Largest diff. peak and hole/e Å^{-3}	0.301 and -0.422	0.464 and -0.298	0.949 and -0.522	1.445 and -0.516
Figure S1: Representation of a section of the coordination polymeric structure in crystalline \([\text{K(THF)}][3b][\text{K(THF)}][\text{N(SiMe}_3)]\). Thermal ellipsoids are drawn at the 50% probability level. For clarity, carbon atoms are drawn using a wire model, hydrogen atoms except those in BH$_3$-units are omitted, and only one orientation of disordered fragments (one SiMe$_3$ group and one THF) is shown.

Figure S2: Representation of the molecular structure of 2d in the crystal. Thermal ellipsoids are drawn at the 50% probability level. For clarity, hydrogen atoms except those in PH- and BH$_3$-units are omitted. Selected distances [Å]: P1–O2 1.5903(7), P1–O1 1.5987(7), P1–B1 1.8697(11), P1–H1 1.347(13).
Figure S3: Representation of the molecular structure of 9b in the crystal. Thermal ellipsoids are drawn at the 50% probability level. For clarity, hydrogen atoms except those in BH3-units are omitted. Selected distances [Å] and angles [°]: P1–O2 1.5927(14), P1–O1 1.6007(15), P1–B1 1.890(2), P1–Sn1 2.5324(5), O1–P1–Sn1 99.95(5), O2–P1–Sn1 109.44(5), O1–P1–O2 106.64(8).

Figure S4: Representation of the molecular structure of 9c in the crystal. Thermal ellipsoids are drawn at the 50% probability level. For clarity, hydrogen atoms except those in BH3-units are omitted. Selected distances [Å] and angles [°]: P2–O2 1.5946(10), P2–O1 1.6015(9), P2–B1 1.8946(15), P2–Sn1 2.5193(3), O1–P2–Sn1 96.49(4), O2–P2–Sn1 112.88(4), O1–P2–O2 107.76(5).
NMR-Spectra

Figure S5: 1H NMR spectrum of 2c in CDCl$_3$.

Figure S6: 31P{1H} NMR spectrum of 2c in CDCl$_3$.
Figure S7: 31P NMR spectrum of 2c in CDCl₃.

Figure S8: 11B(1H) NMR spectrum of 2c in CDCl₃.
Figure S9: 13C(1H) NMR spectrum of 2c in CDCl$_3$.

Figure S10: 1H NMR spectrum of 2d in C$_6$D$_6$.
Figure S11: 31P(1H) NMR spectrum of 2d in C6D6.

Figure S12: 31P NMR spectrum of 2d in C6D6.
Figure S13: 11B(1H) NMR spectrum of 2d in C$_6$D$_6$.

Figure S14: 13C (1H) NMR spectrum of 2d in C$_6$D$_6$.
Figure S15: 1H NMR spectrum of in-situ generated Li[3b] at 203 K in THF-d$_8$ (● LiHMDS/HMDS; ♯ (EtO)$_3$P(BH$_3$) (impurity)).

Figure S16: 31P{1H} NMR spectrum of in-situ generated Li[3b] at 203 K in THF-d$_8$. (♯ (EtO)$_3$P(BH$_3$), impurity)
Figure S17. 11B(1H) NMR spectrum of in-situ generated Li[3b] at 203 K in THF-d$_8$ (\neq (EtO)$_3$P(BH$_3$))

Figure S18. 13C(1H) NMR spectrum of in-situ generated Li[3b] at 203 K in THF-d$_8$.
Figure S19. 1H,7Li gs-HOESY NMR spectrum of in-situ generated Li[3b] at 203 K in THF-d_8 with the 1H and 7Li NMR spectra as horizontal and vertical projections, respectively.

Figure S20: 1H DOSY spectrum of in-situ generated Li[3b] recorded at 203 K in THF-d_8 (top) and extracted signal integral decays for the resonances at 1.33 ppm (bottom left) and 1.35 ppm (bottom right) attributable to the CH$_3$-signals of Li[3b] and 4, respectively. Evaluation of the decay curves gave D(Li[3b]) = 1.3 m2s$^{-1}$ and D(4) = 1.8 m2s$^{-1}$, respectively.
Figure S21: 1H NMR spectrum of K[3b] in THF-d$_8$. The signal at 0.05 ppm is due to HMDS.

Figure S22: 31P NMR spectrum of K[3b] in THF-d$_8$.
Figure S23: 11B{H} NMR spectrum of K[3b] in THF-d$_8$.

Figure S24: 1H NMR spectrum of K[3c] in THF-d$_8$.
Figure S25: ^{31}P NMR spectrum of K[3c] in THF-d$_8$. The signal at 99 ppm is assigned to K[(iPrO)$_2$PO(BH$_3$)].

Figure S26: $^{11}\text{B}'{\text{H}}$ NMR spectrum of K[3c] in THF-d$_8$. The signal at -37 ppm is assigned to K[(iPrO)$_2$PO(BH$_3$)].
Figure S27: 1H-13C-HSQC spectrum of K[3c] in THF-d$_8$.

Figure S28: 1H NMR spectrum of in situ generated K[3d] in Toluene-d$_8$. The signal at 0.1 ppm is due to HMDS.

Figure S29: 31P NMR spectrum of in situ generated K[3d] in toluene-d$_8$.
Figure S30: 11B(1H) NMR spectrum of in situ generated K[3d] in toluene-d_8.

Figure S31: 13C(1H) NMR spectrum of in situ generated K[3d] in toluene-d_8. The signal at 2.6 ppm is due to HMDS.
Figure S32: 1H NMR spectrum of 9b in C$_6$D$_6$.

Figure S33: 31P(1H) NMR spectrum of 9b in C$_6$D$_6$.
Figure S34: 11B\{1H\} NMR-spectrum of 9b in C$_6$D$_6$.

Figure S35: 13C NMR-spectrum of 9b in C$_6$D$_6$.
Figure S36: 135Sn-DEPT spectrum of 9b in C$_6$D$_6$.

Figure S37: 1H NMR spectrum of 9c in CDCl$_3$.
Figure S38: 31P{1H} NMR spectrum of 9c in CDCl$_3$.

Figure S39: 11B{1H} NMR-spectrum of 9c in CDCl$_3$.
Figure S40: 13C (^1H) NMR spectrum of 9c in CDCl₃.

Figure S41: 119Sn-DEPT spectrum of 9c in CDCl₃.
Figure S42: 1H NMR spectrum of 9d in C$_6$D$_6$.

Figure S43: 31P{1H} NMR spectrum of 9d in C$_6$D$_6$.
Figure S44: 11B(1H) NMR spectrum of 9d in C$_6$D$_6$.

Figure S45: 13C(1H) NMR spectrum of 9d in C$_6$D$_6$.
Figure S46: ^{119}Sn-DEPT spectrum of 9d in C₆D₆.

Figure S47: ^1H NMR spectrum of Li[6b] in THF-d₈.
Figure S48: 31P{1H} NMR spectrum of Li[6b] in THF-d_8.

Figure S49: 11B{1H} NMR spectrum of Li[6b] in THF-d_8.
Figure S50: 1H, 11B HSQC spectrum of Li[6b] in THF-d$_8$.

Figure S51: 1H, 7Li HOESY spectrum of Li[6b] in THF-d$_8$ with the 7Li NMR spectrum as vertical projection.
Figure S52: 1H NMR spectrum of Li[6c] in C$_6$D$_6$.

Figure S53: 31P{^1}H NMR spectrum of Li[6c] in C$_6$D$_6$.
Figure S54: $^{11}B(1H)$ NMR spectrum of Li[6c] in C$_6$D$_6$.

Figure S55: 1H NMR spectrum of Li[5c] in C$_6$D$_6$.
Figure S56: $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of Li[5c] in C$_6$D$_6$.

Figure S57: $^{11}\text{B}\{^1\text{H}\}$ NMR spectrum of Li[5c] in C$_6$D$_6$.
Figure S58: 1H NMR spectrum of the reaction of 9b with DABCO in C$_6$D$_6$ after 90 minutes at 50 °C.

Figure S59: 119Sn-DEPT spectrum of the reaction of 9b with DABCO in C$_6$D$_6$ after 90 minutes at 50 °C.
Figure S60: 31P{1H} NMR spectra of the reaction of 9b with DABCO in C$_6$D$_6$ after 0, 30, 60, 90 minutes at 50 °C.

Figure S61: 11B{1H} NMR spectra of the reaction of 9b with DABCO in C$_6$D$_6$ at 50°C after 0, 30, 60, 90 minutes at 50 °C.
Figure S62: 1H NMR spectrum of the reaction of \(9c\) with DABCO in C\(_6\)D\(_6\) after 90 minutes at 50°C.

Figure S63: 31P{\(^1\)H} NMR spectrum of the reaction of \(9c\) with DABCO in C\(_6\)D\(_6\) after 90 minutes at 50°C.
Figure S64: $^{11}B\{^1H\}$ NMR spectrum of the reaction of 9c with DABCO in C_6D_6 after 90 minutes at 50°C.

Figure S65: ^{119}Sn-DEPT NMR spectrum of the reaction of 9c with DABCO in C_6D_6 after 90 minutes at 50°C.
Figure S66: 13C(1H) NMR spectrum of the reaction of 9c with DABCO in C$_6$D$_6$ after 90 minutes at 50°C.

Figure S67: 1H NMR spectrum of 10d in C$_6$D$_6$.
Figure S68: 31P NMR spectrum of 10d in C$_6$D$_6$.

Figure S69: 119Sn-DEPT spectrum of 10d in C$_6$D$_6$.
Figure S70: 13C{'H} NMR spectrum of 10d in C$_6$D$_6$.

IR-Spectra

Figure S71: ATR-FTIR spectrum of 2c (liquid, bulk).
Figure S72 ATR-FTIR spectrum of 2d (solid).

Figure S73 ATR-FTIR spectrum of K[3b] (solid).
Figure S74 ATR-FTIR spectrum of K[3c] (solid).

Figure S75: ATR-FTIR spectrum of Li[5c] (solid).
Figure S76: ATR-FTIR spectrum of 9b (solid).

Figure S77: ATR-FTIR spectrum of 9c (solid).
Figure S78: ATR-FTIR spectrum of 9d (solid).

Figure S79: ATR-FTIR spectrum of 10d (solid).
Figure S80: Observed and calculated isotopic patterns of the (pseudo)molecular ions in (+)-ESI mass spectra of 2c,d (top row) and 9c, 10d (bottom row).

Computational Studies

General remarks. DFT calculations were performed with the Gaussian 16 program package\(^8\) using the B3LYP functional,\(^9\) which is an established standard in main group element chemistry, with basis sets from Weigend’s and Ahlrichs’ def2-family,\(^10\) and application of the D3 version of Grimme’s dispersion correction with Becke-Johnson damping\(^11\) and the PCM formalism (keyword scrf, solvent=THF) to model solvation. The molecular structures were established by full energy optimization at the PCM-B3LYP-D3BJ/def2-svp level and identified as local minima on the potential energy hypersurface by subsequent harmonic vibrational frequency calculations. Magnetic shieldings were obtained from single point calculations at the PCM-B3LYP-D3BJ/def2-tzvpp level at the optimised geometries. NBO population analyses of electron densities were carried out using the NBO module implemented in the Gaussian package. The analysis of magnetic shieldings was carried out with NBO6.\(^12\)
Chemical shifts were computed as $\delta_s = (\sigma_{\text{ref}} - \sigma_s - 266.1)$ relative to 85% H$_3$PO$_4$ \cite{13} using the magnetic shielding constants of PH$_3$ ($\sigma_{\text{ref}} = 590.5$ ppm) calculated at the same computational level for referencing.

Table S2 Computed 31P magnetic shielding parameters and HOMO-LUMO gaps for 2b, 3b−, HP(OEt)$_2$, and Me$_3$SnP(OEt)$_2$ (10bb).

Compound	ΔE$_{\text{HOMO-LUMO}}$/eV	δ^{31}P/ppm	σ_{iso}(31P)	σ_{dia}(31P)	σ_{para}(31P)
2b	8.43	206.4	121.4	961.2	-891.0
3b−	6.08	316.1	-86.7	965.2	-1004.7
HP(OEt)$_2$	7.16	155.2	70.2	960.3	-838.9
10bb	6.09	363.3	-39.5	960.6	-1047.3

a) calculated at the PCM-B3LYP-D3BJ/def2-tzvpp//PCM-B3LYP-D3BJ/def2-svp level of theory; b) σ_{iso}(31P) and δ^{31}P for 10b were calculated as -39.3 and 315.9 ppm but the limitations of the available NBO module precluded further analysis. ΔE$_{\text{HOMO-LUMO+6}}$ of 10b (the LUMO+6 is in this case the lowest unoccupied MO with a significant local contribution at phosphorus) was computed as 5.98 eV.

Table S3 Natural orbital contributions (in ppm) to the 31P paramagnetic shielding term in 2b, 3b−, HP(OEt)$_2$, and Me$_3$SnP(OEt)$_2$ (10bb).

Compound	σ(P–O)	σ(P–B)	σ(P–H)	l.p.(P)
2b	-125	-123	-315	-210
3b−	-103	-89	-398	-368
HP(OEt)$_2$	-111	-123	--	-231
10bb	-123	-125	--	-272b

a) σ(P–Sn) for 10bb.

Table S4 Computed energies and Gibbs enthalpy corrections (in Hartree) and atomic coordinates (in Å) for 2b, 3b−, HP(OEt)$_2$, and Me$_3$SnP(OEt)$_2$ (10bb).

3b−	2b
E1	-677.224537073
ΔG-corr.	-677.725397323
E2	-677.754113127
X Y Z	X Y Z
C -2.372450	-1.521249
C -2.478104	-0.039925
O -1.362260	0.704103
P 0.016333	0.926960
B 1.113519	2.206022
O 0.662237	-0.533951
C 1.442157	-1.223113
C 2.922404	-1.100121
H -0.413374	1.209651
H 2.079339	2.326840
H 0.416370	3.207994
H -0.413374	1.739807
H -2.55539	1.682085
H -1.514517	1.972577
H -3.288643	2.035633
H -3.369766	0.406890
H -1.514517	1.972577
H -3.288643	2.035633
H -3.369766	0.406890
H -1.514517	1.972577
H -3.288643	2.035633
H -3.369766	0.406890
H -1.514517	1.972577
H -3.288643	2.035633
H -3.369766	0.406890
H -1.514517	1.972577
H -3.288643	2.035633
H -3.369766	0.406890
H -1.514517	1.972577
H -3.288643	2.035633
H -3.369766	0.406890
H -1.514517	1.972577
H -3.288643	2.035633
H -3.369766	0.406890
H -1.514517	1.972577
H -3.288643	2.035633
H -3.369766	0.406890

a) E1, ΔG-correction and atomic coordinates calculated at the PCM-B3LYP-D3BJ/def2-svp level of theory and E2 at the PCM-B3LYP-D3BJ/def2-tzvpp//PCM-B3LYP-D3BJ/def2-svp level of theory.
Table S4 (continued)

10b'	HP(OEt)_2	
E1	-984.02098197	-650.569328329
ΔG-corr.	0.196403	0.115022
E2	-984.664687646	-651.064124698

X	Y	Z	X	Y	Z		
C	-2.493130	1.828993	-0.685015	C	-1.722146	1.768600	0.051215
Sn	-1.532947	0.027908	0.062831	C	-2.285109	0.361981	0.173559
C	-2.716395	-1.740659	-0.381305	O	-1.521920	-0.595370	-0.568411
P	0.780508	-0.197215	-0.993198	P	-0.197152	-1.374770	0.041584
O	1.316053	1.191800	-0.198419	O	0.880470	-0.168360	0.463360
C	2.526277	1.834061	-0.605599	C	1.810684	0.282177	-0.524863
C	3.324956	2.238582	0.619103	C	3.107230	0.677567	0.152950
C	-1.160793	0.187093	2.196146	H	-0.655455	-1.517554	1.397598
O	1.194488	-1.457682	0.050763	H	-1.636026	2.056774	-1.008266
C	2.344095	-2.257195	-0.234885	H	-0.726101	1.828255	0.512148
C	3.594920	-1.722527	-0.440960	H	-2.388164	2.489171	0.552211
H	2.113813	-3.271614	0.123966	H	-3.308787	0.314747	-0.231829
H	2.494197	-2.322266	-1.329008	H	-2.331853	0.513966	1.234446
H	4.437419	-2.417271	0.294184	H	3.953669	-0.186515	0.696226
H	3.885600	-0.745497	0.025539	H	2.930083	1.470283	0.896496
H	4.27786	-1.600711	1.522410	H	3.828777	1.053957	-0.589135
H	3.115371	1.159862	-1.254952	H	1.372901	1.142192	-1.062445
H	2.269571	2.722786	-1.209316	H	1.985892	-0.515988	-1.270988
H	4.242807	2.770934	0.322456	H	2.731059	2.905574	1.263185
H	3.607592	1.354133	1.210142	H	-2.106392	0.308358	2.744978
H	-0.648486	-0.722170	2.540797	H	-0.512306	1.054935	2.381690
H	-1.803323	2.679117	-0.580572	H	-2.756952	1.707019	-1.745734
H	-3.407254	2.033649	-0.107882	H	-2.141306	-2.640694	-0.119257
H	-3.647191	1.053957	-0.589135	H	-2.966180	-1.771616	-1.451942

References

1. S.-B. Chen, Y.-M. Li, S.-Z. Luo, G. Zhao, B. Tan, Y.-F. Zhao, Phosphorus, Sulfur, Silicon Rel. Elem. 2000, 164, 277–291.
2. D. J. Collins, P. F. Drygala, J. M. Swan, Aust. J. Chem. 1983, 36, 2517–36.
3. K. N. Gavrilov, V. N. Tsarev, M. G. Maksimova, O. G. Bondarev, E. A. Rastorguev, S. E. Lyubimov, P. V. Petrovskii, V. A. Davankov, J. Molec. Catal. A 2006, 259, 267–274.
4. Y. Belabassi, M. I. Antczak, J. Tellez, J.-L. Montchamp, Tetrahedron 2008, 64, 9181–9190.
5. R. H. Harris, E. D. Becher, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem., 2001, 73, 1795–1818.
6. G. Baccolini, C. Boga, M. Mazzacaruti, F. Sangiardi, Org. Lett. 2008, 8, 1677–1680.
7. G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8; b) G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
8. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, P. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, P. M. W. Gill, M. W. Gill, M. A. Streitwieser, Jr., Theory and Structure Calculations, 2016.
9. A. D. Becke, J. Chem. Phys. 1993, 98, 5646–5652.
10. F. Weigend R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
11. S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456–1465.
12. NB0 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohnmann, C. M. Morales, R. C. Landis, F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/
13. C. van Wüllen, Phys. Chem. Chem. Phys. 2000, 2, 2137–2144.