Association between host wing morphology polymorphism and *Wolbachia* infection in *Vollenhovia emeryi* (Hymenoptera: Myrmicinae)

Pureum Noh1,2 | Seung-Yoon Oh3 | Soyeon Park2,4 | Taesung Kwon5 | Yongwan Kim6 | Jae Chun Choe1,2 | Gilsang Jeong1,2

Abstract

Many eusocial insects, including ants, show complex colony structures, distributions, and reproductive strategies. In the ant *Vollenhovia emeryi* Wheeler (Hymenoptera: Myrmicinae), queens and males are produced clonally, while sterile workers arise sexually, unlike other ant species and Hymenopteran insects in general. Furthermore, there is a wing length polymorphism in the queen caste. Despite its evolutionary remarkable traits, little is known about the population structure of this ant species, which may provide insight into its unique reproductive mode and polymorphic traits.

We performed in-depth analyses of ant populations from Korea, Japan, and North America using three mitochondrial genes (COI, COII, and Cytb). The long-winged (L) morph is predominant in Korean populations, and the short-winged (S) morph is very rare. Interestingly, all L morphs were infected with *Wolbachia*, while all Korean S morphs lacked *Wolbachia*, demonstrating an association between a symbiont and a phenotypic trait. A phylogenetic analysis revealed that the S morph is derived from the L morph. We propose that the S morph is associated with potential resistance to *Wolbachia* infection and that *Wolbachia* infection does not influence clonal reproduction (as is the case in other ant species).

KEYWORDS

divergence, population structure, *Vollenhovia emeryi*, wing polymorphism, *Wolbachia* infection

1 | INTRODUCTION

Population structure analyses using genetic data provide extensive information about populations, including genetic distribution, genetic diversity, gene flow, and selection. Furthermore, these analyses can be used to evaluate relationships between secondary traits such as phenotype, reproductive strategy, and symbiotic bacterial communities. Among secondary traits, wing morph is the principal phenotype associated with direct dispersal, distribution, and reproductive strategies in insects (Ikeda, Nishikawa, & Sota, 2012; Lin, Yao, Wang, Emlen, & Lavine, 2016; McCulloch et al., 2019; Roff, 1986). In ants, wings play a salient role in nuptial flight, which determines dispersal and breeding success. However, the wing is not
Vollenhovia emeryi Wheeler (Hymenoptera: Myrmicinidae) is a common ant species endemic to East Asia; this species has invaded North America (Kjar & Suman, 2007; Wetterer, Guenard, & Booher, 2015; Wright & Kubik, 2011). It is polymorphic for normal long and aberrant short wing length in queens. The two morphs are not thought to coexist in nature, and colonies of the long-winged (L) morph are typically monogynous, while short-winged (S) morph colonies are polygynous (Kinomura & Yamauchi, 1994). Unlike other ant species and Hymenopteran insects in general, queens and males are produced clonally, while sterile workers arise sexually (Kobayashi, Hasegawa, & Ohkawara, 2008, 2011; Ohkawara, Nakayama, Satoh, Trindl, & Heinze, 2006). This unusual clonal reproduction system is very similar to the system first found in some populations of the little fire ant *Wasmannia auropunctata* (Foucaud, Estoup, Loiseau, Rey, & Orivel, 2010; Foucaud et al., 2006, 2007; Fournier et al., 2005) and in the highly invasive longhorn crazy ant *Paratrechina longicornis* (Pearcy, Goodisman, & Keller, 2011). Selfish clonal reproduction in both sexes might evolve without allowing genetic contamination by the opposite sex, thereby giving rise to genetically homogenized clonal lineages, despite the cost for abandoning genetic diversity and thus the ability to tolerate environmental changes (Fournier et al., 2005; Matsuura, 2010; Pigneur, Hedtke, Etoundi, & Van Doninck, 2012). In some other hymenopteran insects, reproductive manipulators such as *Wolbachia* cause host’s clonal reproduction (Jeong & Stouthamer, 2004; Pannebakker, Pijnacker, Zwaan, & Ito, 2001; Tinaut & Heinze, 1992; Villet, 1991).

The *Wolbachia* bacterium is a maternally-inherited endosymbiont that infects a wide variety of invertebrates such as insects (including ants) and other arthropods (Bourtzis & Miller, 2008; Correa & Ballard, 2016; Hilgenboecker, Hammerstein, Schlattmann, Telschow, & Werren, 2010; Kautz, Rubin, Russell, & Moreau, 2013; Werren, 1997; Zientz, Feldhaar, Stoll, & Gross, 2005; Zug & Hammerstein, 2015). Infection induces various types of reproductive alterations in the host, including cytoplasmic incompatibility, feminization, male-killing, and parthenogenesis (Fujii, Kubo, Ishikawa, & Sasaki, 2004; Jeong & Suh, 2008; Stouthamer, Breeuwer, & Hurst, 1999). The ants are attractive taxa as the host of *Wolbachia* due to their eusocial haplodiploids with generally female-biased sex ratios (Russell, 2012). Approximately 30% of ant species have been estimated to be facultatively infected with *Wolbachia* due to their eusocial haplodiploids with generally female-biased sex ratios (Russell, 2012; Russell et al., 2012). Recent studies reported the evidence for *Wolbachia*-associated sex-, caste-ratio, and colony life cycle changing in ants (de Bekker, Will, Das, & Adams, 2018; Pontieri, Schmidt, Singh, Pedersen, & Links, 2017; Singh & Links, 2020; Wenseleers, Sundström, & Billen, 2002). However, the effect of *Wolbachia* infection is still poorly understood in their host ants.

The present study focused on the association between the ant species, *V. emeryi* with unusual clonal reproduction system, and *Wolbachia*. The specific aims of this study were to examine (a) the population genetic structure of the mitochondrial genes of *V. emeryi*; (b) the phylogeographic relationships among the two winged morphs from Korea and Japan; (c) the approximate divergence time of the two winged morphs; (d) the ubiquity of *Wolbachia* infection in this ant species; and (e) potential relationships between host phenotype and *Wolbachia* infection.
Kit (iNtRON Biotechnology, Seongnam, Korea) was used for each amplification along with 16 µl of distilled water, 1 µl of each primer (10 pmol), and 5 ng of template DNA. PCR amplification was conducted using either a PTC-100 Programmable Thermal Controller (MJ Research, Inc.) or a PeqSTAR Universal Gradient Thermocycler (Peqlab Gmbh). The PCR ampli-cons were visualized in a 1% agarose gel dyed with TopGreen Nucleic Acid Gel Stain (Genomic Base) and purified using a commercial kit (QIAquick PCR Purification Kit; Qiagen) prior to sequencing. In all cases, sequences were read in both directions for maximum clarity.

2.3 Data analysis

2.3.1 Population genetic structure and demographic analyses

The resultant sequences were aligned and analyzed using ClustalW embedded in MEGA (ver. 5.2; Kumar, Nei, Dudley, & Tamura, 2008; Kumar, Tamura, & Nei, 1994; Thompson, Higgins, & Gibson, 1994). The aligned sequences were submitted to GenBank along with the translated amino acid sequences. GenBank accession numbers are shown in Table S1. Haplotypes were determined using DnaSP (ver. 5.10; Librado & Rozas, 2009).

A good correlation has been reported between ground vegeta-tion and ant community diversity (Andersen, 1995, 1997; Lubertazzi & Tschinkel, 2003). Hence, sequence data were grouped according to regions on a vegetation map of the Korean peninsula overlaid with isothermal lines (Yi, 2011). Within the range of deciduous broad-leaved forests (temperate zone), the central area was designated region A, the southwestern area was designated region B, and the southeastern area was designated region C. Region D represented the evergreen broad-leaved forest (subtropical-warm temperate zone), and region E represented Yeosu-si, a central spot on the southern coast, based on the unique characteristics of the sample collected at this site. Jeju Island, a volcanic island far from the mainland of Korea, was labeled region F. Regions G and H were the USA and Japan, respectively.

Molecular diversity indices were calculated for all eight regions and each gene. Analysis of molecular variance (AMOVA) among regions, including the overall fixation index statistics (F_{ST}) and pairwise F_{ST}, was performed with 1,000 permutations. To test the model of evolution and demographic expansion for the COI gene, neutrality tests (Tajima’s D and Fu’s F_{S}; Fu, 1997; Tajima, 1989) and mismatch distribution tests were performed with 1,000 replicates using Arlequin (ver. 3.5.1.2; Excoffier & Lischer, 2010). Based on the mismatch distribution, demo-graphic expansion patterns for seven regions (excluding region G, i.e., the USA, which lacks variation) were determined using DnaSP and ed-ited using Microsoft PowerPoint 2013.

Genetic distances among haplotypes were calculated after se-lecting the best-fit substitution model in MEGA. The median-joining algorithm was employed to infer phylogenetic relationships among the haplotypes using Network (ver. 4.6.10), with a fixed connection limit at 1,000 steps between haplotypes (Bandelt, Forster, & Röhl, 1999). The haplotype network was edited manually and reconstructed with the regional distribution data using Adobe Illustrator CS6 (Adobe Inc.).

TABLE 1 Primers used in this study

Locus	Primer name	Primer sequences (5′−3′) Purpose	Annealing temperature (°C)	Reference
COI	F: LCO-a	CCYCGWATAAAAYATAAGTTTGA TAAACTTGDGTRGWC CAAAAAATACA	45–50	Designed to be specific for V. emeryi
	R: HCO-a	GAGGAGGACCCCATTTTAT TCAATGCATAATCTGCCCATTATA	45–50	Designed to be specific for V. emeryi
	F: Engel	ATATTCAAAATGTTGATGAGTAGA AGCTCGGGCTTCAAATCCA	PCR and Sequencing	Simon et al. (1994)
	R: Pat	ATGTACATTTTGGAAGGCACTACG GAAGCTTGAGGTATAGGGCCAATTC	PCR and Sequencing	Kobayashi, Tamura, Okamoto, Hasegawa, and Ohkawara, (2012)
COII	F: Ve13-sF1	ATATGGGAGGAGCCTATCCAG AAGCTTGAGGGGCGAGATCC	Sequencing	—
	R: Ve13-sR1	AAGTCAAAATATTTGATGGGATAGA AGTACCTGGAAGGATAGC	—	Designed to be specific for V. emeryi
	F: Ve13-sF2	ATTAACCGGCCCTGAATATTT TTGTTAGAGATGGGACACAA	—	—
	R: Ve13-sR2	TTGTTAGAGATGGGACACAA	—	—
Cytb	F: VeCB-F1	TGCCTGAATCTCAATAGGGCCCTT	PCR and Sequencing	Designed to be specific for V. emeryi
	R: VeCB-R1	TGTATGGGGATCTAAATCTTGTG	52–60	—
16s rRNA	F: WspecF	CATACCTATCGAAGGGGATAG AGCTGCGGCTTCAAATCCA	Wolbachia-specific diagnostic PCR	Designed to be specific for V. emeryi
	R: WspecR	—	—	—
ftsZ	F: ftsZ_F1	ATYATGGARCATATAAARGATAG TCRAGYATGGGATGATAT	Wolbachia-specific diagnostic PCR	Designed to be specific for V. emeryi
	R: ftsZ_R1	ATATGGGAGGAGCCTATCCAG AAGCTTGAGGGGCGAGATCC	—	—

Abbreviations: F, forward primer; R, reverse primer.

The relaxed clock method was used to estimate the approximate divergence date of the S gyne from the L queen. Three sets of
monophyletic lineages, thought to have diverged approximately 1 MYA (million years ago), 2 MYA, and 3 MYA, were used, that is, *Myrmica excelsa* and *M. taediosa*, *M. sulcinodis* and *M. xavieri*, and *M. tobiasi* and *M. georgica*, respectively (GenBank Accession No: FJ824432, GQ255131, GQ255141, GQ255197, GQ255192, and GQ255145; Jansen & Savolainen, 2010). Jansen and Savolainen (2010) estimated the divergence time of holarctic *Myrmica* ants using mitochondrial and nuclear genes; the COI data and their estimates were extracted.

The HKY + G + I model (gamma distribution shape value: 1.26247; proportion of invariant sites: 0.61287) was selected as the best fit evolutionary substitution model based on the Bayesian information criterion, as determined using MEGA (Kumar et al., 1994, 2008). For the clock method, Bayesian Markov chain Monte Carlo was run for 100 million generations. Trees were sampled every 1,000 generations using BEAST (ver. 1.8.0; Drummond & Rambaut, 2007). Posterior distributions for parameter estimates and likelihood scores were visualized using Tracer (ver. 1.5) to examine tree appropriateness. The trees were consolidated to a maximum clade credibility tree with median heights after discarding the first 15,000 trees as burn-in. The resultant tree was visualized, with 95% HPD (highest posterior density), using FigTree (ver. 1.40). It was further edited with additional data using Adobe Illustrator CS6 (Adobe Inc.).

2.3.3 Association between wing morphology and *Wolbachia* infection status

The chi-square independence test in SPSS (Release 17.0) was used to examine whether there is a relationship between wing morph and *Wolbachia* infection. For statistical analysis, the three USA individuals were excluded owing to uncertainty with respect to their wing morphology.

3 RESULTS

3.1 Molecular diversity

We analyzed the mitochondrial COI (1,224 bp), COII (663 bp), and Cytb (839 bp) genes for a specimen from each of the 145 ant colonies. We identified 37 (COI), 25 (COII), and 26 (Cytb) unique haplotypes (Table S2). Overall molecular diversity indices for eight regions and for each gene are shown in Table 2 (COI) and Table S3 (COII and Cytb). Both nucleotide diversity (\(\pi \)) and haplotype diversity (\(h \)) decreased in the order COI (\(\bar{\pi} = 0.086 \pm 0.078; h = 0.557 \pm 0.289 \)), Cytb (\(\bar{\pi} = 0.078 \pm 0.090; h = 0.455 \pm 0.233 \)), and COII (\(\bar{\pi} = 0.062 \pm 0.062; h = 0.430 \pm 0.278 \)) and were highest in region \(F \) (Jeju island; \(\bar{\pi} = 0.233, h = 0.867 \) for COI; \(\bar{\pi} = 0.261, h = 0.733 \) for Cytb; \(\bar{\pi} = 0.202, h = 0.733 \) for COII).

3.2 Population genetic structure and demographic analyses

The observed \(F_{ST} \) values for COI, COII, and Cytb were 0.781, 0.687, and 0.803, respectively, indicating that the regional populations are genetically isolated. For COI, the estimated migration rate (\(N_{m} \), where \(N_{e} \) is the effective population size and \(m \) is the proportion of the population that migrates in each generation) was 0.07 migrants per generation (Slatkin, 1987; Slatkin & Barton, 1989). All three genes showed greater variation among regions (73.25%-75.90%) than within regions (0%-4.37%; Table 3; Table S4). We detected high \(F_{ST} \) in pairwise combinations between regions \(E, F, G, \) and \(H \) (Table 4; Tables S5 and S6). For the COI gene, 23 out of 28 pairwise combinations showed significant differentiation, and the highest pairwise \(F_{ST} \) was 0.91731 for the comparison between region \(C \) and region \(G \) (Table 4).

Neutrality and population expansion parameters for each gene are summarized in Table 5, Tables S7 and S8. For COI, we detected negative Tajima’s \(D \) values for regions \(A (-2.1452), \) \(C (-2.6215), \) and \(D (-2.0640) \) with 99% statistical significance, indicating that the current haplotype diversity resulted from selection on certain genotypes. Tajima’s \(D \) for regions \(B, E, F, \) and \(H \) was not statistically significant, indicating neutral evolution. The \(\tau \) values that represent the estimated time of expansion were very low in regions \(A, B, C, \) and \(D \) (min = 0.0 in region \(B \) and max = 1.6 in region \(D \)), indicating sudden and recent population growth (Table 5). The \(\tau \) values in regions \(E, F, \) and \(H \) were comparatively high (min = 9.2 in region \(E \) and max = 46.2 in region \(F \)), indicating that population growth was slower than that in regions \(A-D \). The observed mismatch distribution was used to evaluate the demographic expansion history. The raggedness indexes for all regions except region \(E \) were not significant.

TABLE 2 Molecular diversity indices for eight regions of mitochondrial COI

Region (N)	A (36)	B (14)	C (24)	D (17)	E (23)	F (6)	G (3)	H (22)	Total (145)
\(N_{h} \)	12	3	5	9	4	4	1	7	37
\(nTi/nTv \)	12.2	24.5	47	13.5	—	10.5	—	17	20.783 ± 13.769
\(\bar{\pi} \)	0.063	0.176	0.040	0.069	0.043	0.233	0	0.061	0.086 ± 0.078
\(h \)	0.560	0.473	0.377	0.853	0.549	0.867	0	0.779	0.557 ± 0.289

Abbreviations: \(h \), haplotype diversity; \(N_{h} \), number of haplotypes; \(N_{s} \), number of samples examined; \(nTi/nTv \), the ratio of transitions to transversions; \(\bar{\pi} \), nucleotide diversity.
suggesting that the expansion model could not be rejected, except in region E (Table 5). The analysis of region G, that is, the USA population, was not informative because the samples showed no haplotype variation.

3.3 Haplotype network

In the haplotype network for COI, haplotype 1 was predominant in the Korean L morph samples, accounting for 40.0% of samples (58 individuals), including 41.4% of samples in region A, 32.8% in region C, 17.2% in region B, and 8.6% in region D (Figure 1). The USA samples belonged to haplotype 36 (Figure 1). Six haplotypes (haplotypes 1, 2, 4, 7, 17, and 34) were distributed in two or more regions and the other haplotypes were restricted to unique regions. Seventeen haplotypes were derived from haplotype 1, and 16 of these differed by a singleton mutation (Figure 1). Haplotype networks for COII and Cytb showed similar haplotype distribution patterns to that for COI (Figure S1). For all three genes, the Korean S morph haplotypes were more closely related to Japanese haplotypes than to the dominant L morph haplotypes in Korea (Figure 1; Figure S1).

3.4 Phylogenetic relationships and divergence time estimates

In the phylogenetic tree, we observed that the haplotypes were clearly divided into two clades, that is, clade 1 and clade 2, and the S morph was derived from the ancestral L morph (Figure 2). Clade 1 included only Korean L morph haplotypes, while clade 2 included haplotypes from Korea, Japan, and the USA, as well as both L and S morph haplotypes. The Korean and Japanese S morph haplotypes were monophyletic, implying that the wing transformation event took place only once in the history of the species. The USA haplotype (Hap 36) diverged earlier and was not monophyletic with the S morph haplotypes. Based on molecular dating, the two clades diverged approximately 2.7078 MYA (95% HPD: 0.0053–9.278 MYA), and the divergence of the S morph from the L morph occurred around 0.2 MYA (95% HPD: 0.0003–0.7164 MYA; Figure 2).

TABLE 3 AMOVA for mitochondrial COI of V. emeryi

Source of variation	df	Percentage of variation
Among regions	7	74.81
Among populations within	53	3.27
regions		
Within populations	84	21.92
Total	144	100.00

Abbreviation: df, degrees of freedom.

TABLE 4 Population pairwise F_{ST} values between regions for COI

Region	A	B	C	D	E	F	G	H
Region A	—							
Region B	0.09915*	—						
Region C	—0.01541	0.09881*	—					
Region D	—0.00838	0.04035	—0.01882	—				
Region E	0.88699**	0.75978**	0.91318**	0.88401**	—			
Region F	0.76830**	0.50484**	0.80042**	0.72167**	0.69558**	—		
Region G	0.87031**	0.64864**	0.91731**	0.86393**	0.83311**	0.54368	—	
Region H	0.87579**	0.74100**	0.89815**	0.86605**	0.29224**	0.66380**	0.77577**	—

* $p < .05$; ** $p < .01$.

TABLE 5 Neutrality test for COI

Region	A (36)	B (14)	C (24)	D (17)	E (23)	F (6)	G (3)	H (22)	Mean ± SD
Tajima's D	−2.1452**	0.6124	−2.6215**	−2.4064**	1.6972	1.4576	—	1.0687	−0.2922 ± 1.8168
Tau (τ)	0.7	0.0	3.0	1.6	9.2	46.2	—	11.9	9.0728 ± 15.6562
SSD	0.0161	0.3451**	0.0124	0.0178**	0.1672	0.1568**	—	0.0854**	0.1001 ± 0.1192
Raggedness index	0.1052	0.3843	0.1952	0.1103	0.3297**	0.1867	—	0.1293	0.1801 ± 0.1253

Abbreviations: N_s, number of samples; SSD, sum of squared deviation.

** $p < .01$.**
3.5 | Wing morphology and Wolbachia infection

All of the L morph individuals proved to be infected with Wolbachia. However, Wolbachia infection was polymorphic in the S morph individuals. None of the Korean S morph populations (Hap 7) harbored Wolbachia, but the Japanese S morph populations collected from the mid-northern part of Japan, that is, Ishikawa and Toyama (Hap 22), were completely infected whereas populations from Tokyo (Hap 25, 26) and Gifu (Hap 24) were free of Wolbachia (Figure 2). The wing development pattern correlated strongly with Wolbachia infection status in this ant species ($n = 142$, Pearson $\chi^2 = 100.339$, df = 1, $p < .001$). These results also suggest that Wolbachia is not involved in clonal reproduction in the ant species because clonal reproduction occurs in both wing morphs (Kobayashi et al., 2011).

3.6 | COI clade and haplotype frequencies in the eight regions

The COI haplotypes were divided into two clades in the Bayesian phylogenetic tree (Figure 2). The demarcated vegetation maps, with clade and haplotype composition data, are shown in Figure 3a. Regions A, C, and D showed similar ratios of clade 1 to clade 2. Clade 2 was slightly more highly represented in regions B and F than in regions A, C, and D. Even though region E belongs to the Korean peninsula, all haplotypes from the region formed a group with region H (Japan) and region G (USA) haplotypes in clade 2. Moreover, the ratio of the L morph to the S morph in region E was similar to that in region H (Japan).

Hap 1 was a dominant haplotype in regions A, B, and C. In region D, the frequency of hap 1 was lower than that in the other regions (Figure 3b). In Korean populations, region E (Yeosu-si), in which the S morph can be found, and region F (Jeju), which is isolated from the mainland of the Korean peninsula, had haplotype compositions distant from those of regions A to D. The haplotype compositions and frequencies in region H (Japan) were different from those in Korea (Figure 3b).

4 | DISCUSSION

The strong genetic isolation among regions (overall fixation index for COI: 0.781) indicates an extremely low dispersal rate after
NOH et al. regional colonization, similar to the situation in Japan (Miyakawa & Mikheyev, 2015). In the Korean populations, other than the island (region F), pairwise F_{ST} values indicated more limited dispersal in the region E population than in the other populations; the S morph is found in this region, and its mating almost always occurs in the natal nest (Table 4; Ohkawara, Ishii, Fukushima, Yamauchi, & Heinze, 2002). The haplotype network and pairwise F_{ST} results indicate that populations in region E (the Korean S morph population) are closely related to populations in region H (Japan; Figure 1 and Table 4). In the COI phylogenetic tree, we detected a migration event(s) between region E and region H (Japan) after the S morph divericated from the L morph (Figure 2). Our divergence estimation indicates that the emergence of S morph and loss of infection are evolutionarily very recent events (Figure 2). However,
when interpreting these divergence data, caution is necessary because Hymenopteran insects show lineage-specific variation with respect to mitochondrial evolution (Dowton, Cameron, Austin, & Whiting, 2009).

Populations in three regions (region A, C, and D) seem to be undergoing purifying selection, although mitochondrial DNA is a neutral marker (but see Morales, Pavlova, Joseph, & Sunnucks, 2015; Mossman, Jennifer, Navarro, & Rand, 2019; Table 5). Our results may be explained by the reproductive strategy and sib-mating behavior. Selfish clonal reproduction forms strong maternal nuclear-mitochondrial bonds in gynes, and sib-mating behavior enhances paternal nuclear-mitochondrial bondage in males, similar to linkage disequilibrium. Therefore, the signature of selection on a neutral marker may reflect selection for linked loci or nonrandomly associated genotypes.

Founder effect and relaxed selection may result in the loss of Wolbachia infection in some invasive ant species while exploring new habitats (Bouwma, Ahrens, DeHeer, & Shoemaker, 2006; Reuter, Pedersen, & Keller, 2005; Rey et al., 2013; Tsutsui, Kauppinen, Oyafuso, & Grosberg, 2003). In the endemic V. emeryi population in East Asia, the phylogenetic tree of the COI haplotypes shows that Wolbachia infection is evident in the ancestral L morph, but disappeared in the S morph (Figure 2). The speculation that the loss of Wolbachia of the S morph was caused by the colony founding process is less plausible because the S morph populations are endemic and the malformed wings of S morph queen restrict dispersal to a new habitats.

Łukasiewicz, Sanak, and Węgrzyn (2016) reported the correlation between malformation of wings and the absence of Wolbachia in apollo butterfly, Parnassius apollo. Their result is correspond to the phenomenon of the loss of Wolbachia in V. emeryi we investigated. In light of these results, it is reasonable to argue that the presence of Wolbachia be associated with wing development in these species. Although the mechanism of this connection remains to be elucidated, we suggest hypothesis from two perspectives, host or Wolbachia as a main driver of evolutionary outcome. In the former perspective, there might be a positive relationship between short wing formation and evolution of resistance to Wolbachia infection in this species. Epigenetic factors might be involved in wing formation in this ant based on intermittent L gyne production from the S morph colonies (Noh, 2014; Noh, Park, Choe, & Jeong, 2018; Okamoto, Kobayashi, Hasegawa, & Ohkawara, 2015). If that is the case, it is possible that the gene(s) responsible for the wing formation, and the gene(s) resistant to Wolbachia infection, exhibit epistatic interactions. Wing polymorphism is regulated by hormones mainly the juvenile hormone titer and certain genes (Zera, 2016). Such genes may encode antigens-converting enzyme for bacterial immunity (Dani, Richards, Isaac, & Edwards, 2003). It will be meaningful to investigate such gene(s) to elucidate the prevalence of Wolbachia in insects from a mechanistic evolutionary perspective. Another speculation, in the latter perspective, is that Wolbachia might play a contributive role in the ontogenic stage of host wing development in these species, as suggested by Łukasiewicz et al. (2016). A further
study that examines the effects of elimination of Wolbachia infection on these host species by antibiotic treatment will provide more insightful explanation for this uncommon association between host wing morphology and Wolbachia infection.

The Wolbachia bacterium is known for its manipulative effects on host reproduction (Fuji et al., 2004; Jeong & Suh, 2008; Stouthamer et al., 1999). The Wolbachia-induced parthenogenesis is similar to queen developmental procedure in the ant V. emeryi. In the ant species, however, the clonal reproduction takes place in both Wolbachia-infected L morph and Wolbachia-free S morph. Therefore, Wolbachia may not contribute to clonal production system of the queen caste, as is the case in W. auropunctata (Rey et al., 2013).

In conclusion, all L morphs, the predominant ancestral form, were infected with Wolbachia, while the rare derived S morphs were free of Wolbachia, at least in Korean populations, and were partially infected in Japanese populations in parallel with the potential evolution of Wolbachia infection resistance. This is the significant report of an uncommon association between Wolbachia infection and host morphological characteristics.

ACKNOWLEDGMENTS
This research was supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT & Future Planning (Grant No: 2011-0030500) and by the National Institute of Ecology (Grant No: NIE-C-2020-22) and an Ewha Global Top5 Grant of Ewha Womans University. G. Jeong was supported by the National Research Foundation of Korea (NRF) (Grant No. C00027). Special thanks are given to Mr. Y. Jang, Dr. K. Kobayashi, W. Suehiro, N. Mizumoto, and Y. Namba (Kyoto University) and to Dr. M. Okamoto and Dr. S. Mihekeyev (OIST) for commenting on the results and providing Japanese specimens. We thank Dr. Elizabeth Kern (Ewha Womans University) for reviewing the manuscript.

CONFLICT OF INTEREST
The authors have no conflict of interest.

AUTHOR CONTRIBUTIONS
Pureum Noh: Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (lead); Writing-original draft (lead). Seung-Yoon Oh: Data curation (lead); Formal analysis (supporting); Investigation (supporting); Methodology (supporting); Resources (lead); Software (supporting); Writing-original draft (lead). Soyeon Park: Data curation (supporting); Investigation (supporting); Methodology (supporting); Resources (supporting); Software (supporting); Visualization (supporting); Writing-original draft (supporting). Taeung Kwon: Methodology (supporting); Resources (supporting). Yongsan Kim: Investigation (supporting); Methodology (supporting). Jae Chun Choe: Funding acquisition (supporting); Methodology (supporting); Project administration (supporting); Supervision (lead). Gilsang Jeong: Conceptualization (lead); Data curation (lead); Formal analysis (lead); Funding acquisition (lead); Investigation (lead); Methodology (lead); Project administration (lead); Resources (lead); Software (lead); Supervision (lead); Validation (lead); Writing-original draft (lead); Writing-review & editing (lead).

DATA AVAILABILITY STATEMENT
Data are available at the Dryad Digital Repository, https://doi.org/10.5061/dryad.j6q573n1b1. Sampling locations and GenBank accession numbers for the sequences of each sample are included in the Supporting information section (Table S1).

ORCID
Gilsang Jeong https://orcid.org/0000-0001-8297-3532

REFERENCES
Andersen, A. N. (1995). A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography, 22(1), 15–29. https://doi.org/10.2307/2846070
Andersen, A. N. (1997). Functional groups and patterns of organization in North American ant communities: A comparison with Australia. Journal of Biogeography, 24, 433–460. https://doi.org/10.1111/1365-2699.1997.00137
Baldo, L., Dunnig Hotopp, J. C., Jolley, K. A., Bordenstein, S. R., Biber, S. A., Choudhury, R. R., ... Werren, J. H. (2006). Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology, 72(11), 7098–7110. https://doi.org/10.1128/aem.00731-06
Bandelt, H.-J., Forster, P., & Rühl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Bourtzis, K., & Miller, T. A. (2008). Insect symbiosis. Boca Raton, FL: CRC Press.
Bouwma, A. M., Ahrens, M. E., DeHeer, C. J., & Shoemaker, D. (2006). Distribution and prevalence of Wolbachia in introduced populations of the fire ant Solenopsis invicta. Insect Molecular Biology, 15(1), 89–93. https://doi.org/10.1111/j.1365-2583.2006.00614.x
Buschinger, A., & Heinze, J. (1992). Polymorphism of female reproductives in ants. Paper presented at the First European Congress of Social Insects, Leuven (Belgium), 19–22 Aug 1991.
Correa, C. C., & Ballard, J. W. O. (2016). Wolbachia associations with insects: Winning or losing against a master manipulator. Frontiers in Ecology and Evolution, 3, 153. https://doi.org/10.3389/fevo.2015.00153
Dani, M. P., Richards, E. H., Isaac, R. E., & Edwards, J. P. (2003). Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). Journal of Insect Physiology, 49(10), 945–954. https://doi.org/10.1016/S0022-1910(03)00163-X
de Bekker, C., Will, I., Das, B., & Adams, R. M. (2018). The ants (Hymenoptera: Formicidae) and their parasites: Effects of parasitic manipulations and host responses on ant behavioral ecology. Myrmecological News, 28, 1–24. https://doi.org/10.25849/myrmecol.news_028:001
Dowton, M., Cameron, S. L., Austin, A. D., & Whiting, M. F. (2009). Phylogenetic approaches for the analysis of mitochondrial genome sequence data in the Hymenoptera–A lineage with both rapidly and slowly evolving mitochondrial genomes. Molecular Phylogenetics and Evolution, 52(2), 512–519. https://doi.org/10.1016/j.ympev.2009.04.001
Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. https://doi.org/10.1002/9780471650126.dob0817
Okamoto, M., Kobayashi, K., Hasegawa, E., & Ohkawara, K. (2015). Sexual and asexual reproduction of queens in a myrmicine ant, Vollenhovia emeryi (Hymenoptera: Formicidae). Myrmecol News, 21, 13–17.

Pannebakker, B. A., Pijman, L. P., Zwaan, B. J., & Beukeboom, L. W. (2004). Cytology of Wolbachia-induced parthenogenesis in Leptopilina claviger (Hymenoptera: Figitidae). Genome, 47(2), 299–303. https://doi.org/10.1139/g03-137

Pearcy, M., Goodisman, M. A., & Keller, L. (2011). Sib mating without inbreeding in the longhorn crazy ant. Proceedings of the Royal Society B: Biological Sciences, 278(1718), 2677–2681. https://doi.org/10.1098/rspb.2010.2562

Peeters, C. (1991). Ergatoid queens and intercastes in ants: Two distinct adult forms which look morphologically intermediate between workers and winged queens. Insectes Sociaux, 38(1), 1–15. https://doi.org/10.1007/bf01242708

Peeters, C. (2012). Convergent evolution of wingless reproductives across all subfamilies of ants, and sporadic loss of winged queens (Hymenoptera: Formicidae). Myrmecological News, 16, 75–91.

Peeters, C., & Ito, F. (2001). Colony dispersal and the evolution of queen morphology in social Hymenoptera. Annual Review of Entomology, 46(1), 601–630. https://doi.org/10.1146/annurev.ento.46.1.601

Pigneur, L. M., Hedtke, S. M., Etoundi, E., & Van Doninck, K. (2012). Androgenesis: A review through the study of the selfish shellfish Corbicula spp. Heredity, 108(6), 581–591. https://doi.org/10.1038/hdy.2012.3

Pontieri, L., Schmidt, A. M., Singh, R., Pedersen, J. S., & Links, R. A. (2017). Artificial selection on ant female caste ratio uncovers a link between female-biased sex ratios and infection by Wolbachia endosymbionts. Journal of Evolutionary Biology, 30(2), 225–234. https://doi.org/10.1111/jeb.13012

Reuter, M., Pedersen, J. S., & Keller, L. (2005). Loss of Wolbachia infection during colonization in the invasive Argentine ant Linepithema humile. Heredity, 94(3), 364–369. https://doi.org/10.1038/sj.hdy.6800601

Rey, O., Estoup, A., Facon, B., Loiseau, A., Aebi, A., Duron, O., ... Foucaud, J. (2013). Distribution of endosymbiotic reproductive manipulators reflects invasion process and not reproductive system polymorphism in the little fire ant Wasmannia auropunctata. PLoS One, 8(3), e58467. https://doi.org/10.1371/journal.pone.0058467

Roff, D. A. (1986). The evolution of wing dimorphism in insects. Evolution, 40(5), 1009–1020. https://doi.org/10.2307/2408759

Russell, J. A. (2012). The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts. Myrmecological News, 16, 7–23.

Russell, J. A., Funaro, C. F., Giraldo, Y. M., Goldman-Huertas, B., Suh, D., Kronauer, D. J. C., ... Pierce, N. E. (2012). A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: Broad genomic surveys and a systematic review. PLoS One, 7(12), e51027. https://doi.org/10.1371/journal.pone.0051027

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Floock, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the entomological Society of America, 87(6), 651–701. https://doi.org/10.1093/aesa/87.6.651

Singh, R., & Links, R. A. (2020). Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle. Journal of Experimental Biology, 223(Pt 9), jeb.220079. https://doi.org/10.1242/jeb.220079

Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science (Washington), 236(4803), 787–792. https://doi.org/10.1126/science.3576198

Slatkin, M., & Barton, N. H. (1989). A comparison of three indirect methods for estimating average levels of gene flow. Evolution, 43(7), 1349–1368. https://doi.org/10.2307/2409452

Stouthamer, R., Breeuwer, J. A., & Hurst, G. D. (1999). Wolbachia pipiens: Microbial manipulator of arthropod reproduction. Annual Reviews in Microbiology, 53(1), 71–102. https://doi.org/10.1146/annurev.micro.53.1.71

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595.

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Tinaut, A., & Heinze, J. (1992). Wing reduction in ant queen from arid habitats. Naturwissenschaften, 79(2), 84–85. https://doi.org/10.1007/bf01131809

Tsutsui, N. D., Kauppinnen, S. N., Oyafuso, A. F., & Grosberg, R. K. (2003). The distribution and evolutionary history of Wolbachia infection in native and introduced populations of the invasive Argentine ant (Linepithema humile). Molecular Ecology, 12(11), 3057–3068.

Villet, M. H. (1991). Colony foundation in Plectroctena mandibularis F. Smith, and the evolution of ergotoid queens in Plectroctena (Hymenoptera: Formicidae). Journal of Natural History, 25(4), 979–983. https://doi.org/10.1080/00222939100770641

Wenseleers, T., Sündström, L., & Billen, J. (2002). Deleterious Wolbachia in the ant Formica truncorum. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1491), 623–629. https://doi.org/10.1098/rspb.2001.1927

Werren, J. H. (1997). Biology of Wolbachia. Annual Review of Entomology, 42(1), 587–609. https://doi.org/10.1146/annurev.ento.42.1.587

Werren, J. H., & Windsor, D. M. (2000). Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proceedings of the Royal Society of London B: Biological Sciences, 267(1450), 1277–1285. https://doi.org/10.1098/rspb.2000.1139

Wetterer, J. K., Guenard, B., & Boother, D. B. (2015). Geographic spread of Vollenhovia emeryi (Hymenoptera: Formicidae). Asian Myrmecology, 7(1), 105–112.

Wright, J. B., & Kubik, E. (2011). A New Locality Record for Vollenhovia emeryi WM Wheeler (Hymenoptera: Formicidae) in Maryland, USA. Entomological News, 122(2), 170–172. https://doi.org/10.3157/021.122.0210

Yi, S. (2011). Holocene vegetation responses to East Asian monsoonal changes in South Korea. In J. Blanco, & H. Kheradmand (Eds.), Climate change–Geophysical foundations and ecological effects (pp. 157–178). Rijeka, Croatia: InTech.

Zera, A. J. (2016). Juvenile Hormone and the endocrine regulation of wing polymorphism in insects: New insights from circadian and functional-genomic studies in Gryllus crickets. Physiological Entomology, 41(4), 313–326. https://doi.org/10.1111/phen.12166

Zientz, E., Feldhaar, H., Stoll, S., & Gross, R. (2005). Insights into the microbial world associated with ants. Archives of Microbiology, 184(4), 199–206. https://doi.org/10.1007/s00203-005-0041-0

Zug, R., & Hammerstein, P. (2015). Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews, 90(1), 89–111. https://doi.org/10.1111/brv.12098

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.