Title
NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana.

Permalink
https://escholarship.org/uc/item/39z9r113

Journal
Proceedings of the National Academy of Sciences of the United States of America, 115(46)

ISSN
1091-6490

Authors
Qi, Tiancong
Seong, Kyungyong
Thomazella, Daniela PT
et al.

Publication Date
2018-11-01

DOI
10.1073/pnas.1814856115

Peer reviewed
NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in *Nicotiana benthamiana*

Tiancong Qi², Kyungyong Seong³, Daniela P. T. Thomazella⁴, Joonyoung Ryan Kim⁴, Julie Pham⁴, Eunyoung Seo⁴, Myeong-He Cho⁴, Alex Schultink⁴, and Brian J. Staskawicz²,³,¹

²Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; and ³Innovative Genomics Institute, University of California, Berkeley, CA 94720

Contributed by Brian J. Staskawicz, September 21, 2018 (sent for review August 30, 2018; reviewed by Sheng Yang He and Hailing Jin)

Effector-triggered immunity (ETI) in plants involves a large family of nucleotide-binding leucine-rich repeat (NLR) immune receptors, including Toll/IL-1 receptor-NLRs (TNLs) and coiled-coil NLRs (CNLs). Although various NLR immune receptors are known, a mechanistic understanding of NLR function in ETI remains unclear. The TNL Recognition of XopQ 1 (Roq1) recognizes the effectors XopQ and HopQ1 from *Xanthomonas* and *Pseudomonas*, respectively, which activates resistance to *Xanthomonas euvesicatoria* and *Xanthomonas gardneri* in an Enhanced Disease Susceptibility 1 (EDS1)-dependent way in *Nicotiana benthamiana*. In this study, we found that the *N. benthamiana* N requirement gene 1 (NRG1), a CNL protein required for the tobacco TNL protein N-mediated resistance to tobacco mosaic virus, is also essential for immune signaling [including hypersensitive response (HR)] triggered by the TNLs Roq1 and Recognition of *Peronospora parasitica* 1 (RPP1), but not by the CNLs Bs2 and Rps2, suggesting that NRG1 may be a conserved key component in TNL signaling pathways. Besides EDS1, Roq1 and NRG1 are necessary for resistance to *Xanthomonas* and *Pseudomonas* in *N. benthamiana*. NRG1 functions downstream of Roq1 and EDS1 and physically associates with EDS1 in mediating XopQ-Roq1-triggered immunity. Moreover, RNA sequencing analysis showed that XopQ-triggered gene-expression profile changes in *N. benthamiana* were almost entirely mediated by Roq1 and EDS1 and were largely regulated by NRG1. Overall, our study demonstrates that NRG1 is a key component that acts downstream of EDS1 to mediate various TNL signaling pathways, including Roq1 and RPP1-mediated HR, resistance to *Xanthomonas* and *Pseudomonas*, and XopQ-regulated transcriptional changes in *N. benthamiana*.

Plants employ nucleotide-binding leucine-rich repeat (NLR) immune receptors to recognize pathogen effectors and to activate effector-triggered immunity (ETI). The Toll/IL-1 receptor-NLR (TNL) protein (Roq1) recognizes the effectors XopQ and HopQ1 in an Enhanced Disease Susceptibility 1 (EDS1)-dependent way in *Nicotiana benthamiana*. Interestingly, we found that the coiled-coil NLR protein N requirement gene 1 (NRG1) is required for activation of ETI by the TNLs Roq1 and Recognition of *Peronospora parasitica* 1. NRG1 interacts with EDS1 and acts downstream of Roq1 and EDS1 to mediate XopQ/HopQ1-triggered ETI. In addition, Roq1, EDS1, and NRG1 mediate XopQ-triggered transcriptional changes in *N. benthamiana* and regulate resistance to *Xanthomonas* and *Pseudomonas* species that carry the effectors XopQ or HopQ1. This study suggests that NRG1 may be a conserved key component in TNL-mediated signaling pathways.

Significance

Plants employ nucleotide-binding leucine-rich repeat (NLR) immune receptors to recognize pathogen effectors and to activate effector-triggered immunity (ETI). The Toll/IL-1 receptor-NLR (TNL) protein (Roq1) recognizes the effectors XopQ and HopQ1 in an Enhanced Disease Susceptibility 1 (EDS1)-dependent way in *Nicotiana benthamiana*. Interestingly, we found that the coiled-coil NLR protein N requirement gene 1 (NRG1) is required for activation of ETI by the TNLs Roq1 and Recognition of *Peronospora parasitica* 1. NRG1 interacts with EDS1 and acts downstream of Roq1 and EDS1 to mediate XopQ/HopQ1-triggered ETI. In addition, Roq1, EDS1, and NRG1 mediate XopQ-triggered transcriptional changes in *N. benthamiana* and regulate resistance to *Xanthomonas* and *Pseudomonas* species that carry the effectors XopQ or HopQ1. This study suggests that NRG1 may be a conserved key component in TNL-mediated signaling pathways.

Author contributions: T.Q. and B.J.S. designed research; T.Q., J.R.K., J.P., M.-J.C., and A.S. performed research; T.Q., K.S., D.P.T.T., and E.S. analyzed data; and T.Q. wrote the paper.

The authors declare no conflict of interest.

This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The data reported in this paper have been deposited in the National Center for Biotechnology Information Sequence Read Archive, https://www.ncbi.nlm.nih.gov/submit/prjNA/4011783.

¹To whom correspondence should be addressed. Email: stask@berkeley.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814856115/-/DCSupplemental.

Published online October 29, 2018.
The bacterial pathogens *Xanthomonas* and *Pseudomonas* cause severe diseases in various plants. These pathogens are Gram-negative bacteria and employ the type III secretion system (TTSS) to deliver their effector proteins into host cells. The pathogenic ability of a particular pathovar of *Xanthomonas* or *Pseudomonas* is often dependent on its specific repertoire of TTSS effectors (22, 23). Interestingly, *N. benthamiana* is resistant to the species of *Xanthomonas* and *Pseudomonas* that carry the homologous effectors XopQ and HopQ1, respectively (24, 25). We have previously shown that the TNL protein Recognition of XopQ 1 (Roq1) interacts with XopQ and HopQ1 and is required for XopQ/HopQ1-triggered HR in *N. benthamiana* (26). As for other TNL proteins, Roq1-mediated perception of XopQ is dependent on EDS1 (26–28), but the molecular mechanism for how Roq1 activation leads to ETI is largely unknown.

Recently, it has been shown that some NLR proteins function as helper NLRs for TNL- and CNL-mediated ETI signaling pathways. Examples of helper NLRs are the CNLs Activated Disease Resistance 1 (ADR1) and N requirement gene 1 (NRG1). These two NLRs are part of a subclass of CNLs whose CC domain has the closest sequence similarity to the non-NLR R protein RPWS8 from *A. thaliana*. In contrast to the canonical CC domain that contains the motif “EDVID,” RPWS8-like CC domains do not contain this motif. In *Arabidopsis*, proteins of the ADR1 family (i.e., ADR1, ADR1-L1, and ADR1-L2) are reported to act downstream of some CNL (e.g., RPS2) and TNL (e.g., RPP2, RPP4, SNC1, CHS2) immune receptors (29, 30). On the contrary, NRG1 is reported to be required for N-mediated resistance to TMV (31). In addition to the full-length gene, a truncated version of NRG1 has also been identified in the tobacco genome but is not functional in N-mediated resistance (31). Interestingly, NRG1 is absent in some plants lacking TNLs, such as the dicot species *Aquilegia coerulea*, the dicotyledonous order Lamiales, as well as monocotyledonous species (32). Thus, it would be interesting to determine whether NRG1 serves as a common component for TNL-mediated resistance response.

In this study, we investigated the role of NRG1 in several TNL-mediated ETI pathways. We showed that NRG1 is essential for Roq1-mediated HR response and disease resistance in response to XopQ/HopQ1. In addition to N and Roq1, NRG1 is also required for the TNL protein RPP1-mediated HR triggered by ATR1 but not for the two CNL proteins Bs2- and Rps2-mediated HR, indicating that NRG1 is most likely a conserved key component in TNL-mediated immune signaling pathways. We also found that NRG1 physically associates with EDS1 and functions downstream of Roq1 and EDS1 to regulate XopQ/HopQ1-triggered ETI. Analysis of RNA sequencing (RNA-seq) data revealed that transient expression of XopQ results in substantial changes in *N. benthamiana* gene expression that are primarily mediated by Roq1, EDS1, and NRG1.

Results

NRG1 Is Required for Several TNL-Mediated HR Pathways in *N. benthamiana*. To explore the molecular roles of NRG1 in ETI, especially Roq1-mediated ETI, we introduced CRISPR/Cas9-mediated mutations into the Roq1 (*SI Appendix, Fig. S1 A–C*) and NRG1 (*SI Appendix, Fig. S1 D–G*) genes of *N. benthamiana*. Independent frame-shift mutations including deletions and insertions were introduced into both genes, and the ETI phenotypes of the generated mutant lines including roq1-1, roq1-2, nrg1-1, nrg1-2, and nrg1-3 were evaluated (*SI Appendix, Fig. S1*). Interestingly, keeping the infiltrated *N. benthamiana* leaves under dark conditions enhanced the effector-triggered HR; therefore, the infiltrated leaves were covered in aluminum foil during the following experiments for better observation of the HR phenotype.

We carried out *Agrobacterium*-mediated transient expression of several TNLs, CNLs, and/or their recognized effectors, including XopQ, HopQ1, RPP1+ATR1, N+p50, Bs2+AavrBs2, and Rps2 in WT *N. benthamiana*, the roq1 and nrg1 mutants, as well as the previously generated eds1 mutant (26). As shown in Fig. 1A,

Fig. 1. Roles of Roq1 and NRG1 in effector-triggered HR and plant resistance to bacterial pathogens. (A) Phenotypes of HR (gray) in leaves of *N. benthamiana* (*N. b*) WT, roq1-1, eds1-1, or nrg1-1 with *Agrobacterium*-mediated transient expression of the empty vector control (EV), XopQ, HopQ1, RPP1+ATR1, N plus p50, Bs2 plus AavrBs2, and Rps2. The infiltrated leaves were wrapped with aluminum foil, and images were taken 2 d postinfiltration (dpi). (B–G) Disease symptoms (**G**), yellow/dark brown color) and bacterial populations (**C** and **D**) in leaves of *N. benthamiana* WT, roq1-1, eds1-1, or nrg1-1 after syringe infiltration with *X. euvesicatoria* (Xe) and the XopQ KO (XeΔXopQ) (**B and C**, *X. gardneri* (Xg) and the XopQ KO (XgΔXopQ) (**D and E**) or *P. syringae* pv. *tomato* DC3000 and the HopQ1 KO (DC3000ΔHopQ1) (**F and G**) at low inocula (OD600: 0.001). The disease symptoms were recorded at 12 dpi (**B**), 10 dpi (**D**), or 8 dpi (**F**), and the bacterial growth was assayed at 6 dpi (**C** and **D**) or 5 dpi (**F**). Data are means (±SD) of three biological replicates. Asterisks represent significant differences (Student’s t test) between *N. benthamiana* and roq1-1, eds1-1, or nrg1-1 with infiltration of X. euvesicatoria (**C**, X. gardneri (**E**), or DC3000 (**G**) (****P < 0.01).
transient overexpression of XopQ, HopQ1, RPP1+ATR1, N+p50, Bs2+AvrBs2, and Rps2 triggered HR in WT N. benthamiana. Consistent with and in support of our previous conclusion that Roq1 recognizes XopQ and HopQ1 (26), the transient overexpression of XopQ and HopQ1 failed to activate HR in the eds1 background, whereas RPP1+ATR1, N+p50, Bs2+AvrBs2, and Rps2 activated HR in the eds1 mutant background (Fig. 1A and SI Appendix, Fig. S2), suggesting that Roq1 is specific for XopQ- and HopQ1-triggered ETI.

In agreement with previous findings that EDS1 is required for TNLs-mediated ETI (27, 28), our result showed that the eds1 mutant disrupted the HR activated by the TNL-related perception pathways for XopQ, HopQ1, N+p50, and RPP1+ATR1, but not by the CNL-related pathways for Bs2+AvrBs2 and Rps2 (Fig. 1A). Interestingly, we found that all nrg1 mutants also prevented HR mediated by the TNL-related N+p50 (31), XopQ, HopQ1, and RPP1+ATR1, but not by the CNL-related Bs2+AvrBs2 or Rps2 (Fig. 1A and SI Appendix, Fig. S2), suggesting that NRG1 is probably a key component in TNL-mediated ETI signaling. Consistent results of HR phenotypes were observed in virus-induced gene-silencing plants of NRG1 and EDS1 (SI Appendix, Fig. S3). The expressions of TNLS, CNLS, and/or their recognized effectors were detected by immunoblotting (SI Appendix, Fig. S4), indicating that the absence of HR is not caused by a lack of protein expression.

Roq1 and NRG1 Are Required for Resistance to Xanthomonas and Pseudomonas in N. benthamiana. Having shown that XopQ/HopQ1-triggered HR was abolished in roq1 and nrg1, we then performed bacterial growth assays to examine whether Roq1 and NRG1 are required for resistance to Xanthomonas and Pseudomonas species and their XopQ or HopQ1 bacterial mutants.

Consistent with previous results, the XopQ KO of Xanthomonas euvesicatoria (XeΔXopQ) grew dramatically more than X. euvesicatoria and caused disease symptoms in WT N. benthamiana (Fig. 1B and C) (26, 28). X. euvesicatoria and XeΔXopQ growth on roq1, nrg1, and eds1 lines (26, 28) was similar to XeΔXopQ growth on WT plants. Moreover, all mutants exhibited disease symptoms (Fig. 1B and C), indicating that Roq1 and NRG1 are required for resistance to X. euvesicatoria. Similar results were observed for WT and XopQ/HopQ1 KOs of Xanthomonas gardneri and Pseudomonas syringae pv. tomato DC3000 (Fig. 1D-G). Based on these data (Fig. 1B-G), we conclude that Roq1 and NRG1, together with EDS1, are collectively required for resistance to Xanthomonas and Pseudomonas in N. benthamiana, and function in the same ETI pathway that is triggered by XopQ/HopQ1 effectors.

XopQ Triggers Roq1 Oligomerization in an EDS1/NRG1-Independent Manner. We noticed that transient expression of Roq1 alone did not trigger HR in WT N. benthamiana and in the roq1 line, whereas transient coexpression of XopQ and Roq1 in roq1 did (Fig. 2A). As several effectors/ligands were reported to be able to trigger oligomerization of NLR receptors in plants and animals (14, 33–35), we next performed communoprecipitation (co-IP) to investigate whether XopQ induces oligomerization of Roq1. As shown in Fig. 2B, Roq1 does not form oligomers in the absence of XopQ, whereas Roq1 oligomerization occurred when coexpressed with XopQ in N. benthamiana (Fig. 2B). Moreover, XopQ triggered Roq1 oligomerization in the eds1 and nrg1 lines. These results indicate that XopQ-triggered Roq1 oligomerization is an early event of ETI, and it is not dependent on EDS1 and NRG1.

Mutation in P-Loop Motif of Roq1 Abolishes Oligomerization but Not Interaction with XopQ. Roq1 has the typical domain structure of TNLs, with a TIR domain at its N terminus, an Apaf-1, Resistance protein, CED-4 (NB-ARC) domain (referred to as NB domain hereafter) in the middle region, and 14 putative LRRs at its C terminus (Fig. 3A and SI Appendix, Fig. S5). The NB domain contains several motifs, including the P-loop, Kin-2, RNBS-B, and the PHD zinc finger. The P-loop motif of Roq1 is critical for oligomerization, but not for interaction with XopQ.

Fig. 2. Roq1 exhibits oligomerization in response to XopQ in an EDS1/NRG1-independent way. (A) Phenotypes of HR in leaves of N. benthamiana (N. b) WT, roq1-1, eds1-1, or nrg1-1 with Agrobacterium-mediated transient expression of XopQ, Roq1, XopQ plus Roq1, or a mutated Roq1 harboring two amino acid substitutions (G223A, K224A) in the P-loop motif (Roq1 P-loop m). Images were taken 2 dpi. (B) Co-IP assay showed that Roq1 displays oligomerization in response to XopQ in an EDS1/NRG1-independent way. Roq1-3HA and Roq1-3Flag were transiently coexpressed without or with XopQ-Acv5 in leaves of N. benthamiana WT, eds1-1, and nrg1-1. Total proteins were extracted for co-IP experiments by using α-Flag agarose beads and analyzed by protein gel blotting with anti-HA, anti-Flag, or anti-Acv5 antibody. Staining of RuBisCO with Ponceau S was used as a loading control. IP, immunoprecipitation; WB, Western blot. The asterisk marks the cleaved XopQ fragment. (C) Co-IP assay showed that the P-loop motif of Roq1 is required for its dimerization. Roq1-3HA was transiently coexpressed with Roq1-3Flag, XopQ-Acv5 plus Roq1-3Flag, or Roq1 P-loop m-3Flag in leaves of N. benthamiana. The co-IP procedure was the same as in B. The asterisk marks the cleaved XopQ fragment.
TIR of Roq1 Triggers HR in an EDS1/NRG1-Dependent Manner. Previous studies suggested that TIR domains of some NLR proteins are responsible for NLR-mediated HR and cell death (36, 38, 39). To investigate the role of Roq1 domains, we truncated Roq1 into different fragments containing TIR, NB, and/or LRR and performed transient expression assays in N. benthamiana (Fig. 3A). We found that the short TIR fragments Roq1-TIR-A (Roq1\(^1\text{-}^{185}\)) and Roq-TIR-B (Roq1\(^1\text{-}^{206}\)) were unable to cause a clear HR phenotype, whereas the TIR fragments with the C-terminal–adjacent region Roq1-TIR-C (Roq1\(^1\text{-}^{222}\)) and Roq1-TIR-D (Roq1\(^1\text{-}^{239}\)) triggered HR in N. benthamiana (Fig. 3A), suggesting that the TIR domain of Roq1, together with the C-terminal adjacent region, is essential for triggering HR.

We further observed that overexpression of Roq1 and transient expression of its NB, LRR, or NB-LRR domains did not activate HR. However, transient expression of a truncated version of Roq1 without its NB or LRR domains (Roq1-TIR-LRR and Roq1-TIR-NB) did (Fig. 3A), indicating that NB and LRR domains of Roq1 may prevent TIR-triggered HR. Moreover, we noticed that Roq1-TIR-C, Roq1-TIR-D, Roq1-TIR-NB, and Roq1-TIR-LRR could not trigger HR in the eds1 and nrg1 lines, suggesting that the TIR domain of Roq1 activates HR in an EDS1/NRG1-dependent manner. Our co-IP assay further showed that XopQ interacts with full-length Roq1 and its LRR domain, but not with its TIR or NB domains (Fig. 3B), implying that the LRR domain of Roq1 is responsible for XopQ perception.

NRG1 Exhibits Oligomerization/Dimerization and Depends on Its CC Domain to Trigger HR in N. benthamiana. To investigate the function of NRG1, we truncated NRG1 into fragments containing CC, NB, and/or LRR (Fig. 4A), and expressed these fragments in N. benthamiana. As shown in Fig. 4B, transient expression of the CC, CC plus NB, or LRR fragments of NRG1 clearly induced HR, but the same did not happen for the fragments NB, LRR, or NB plus LRR fragments (Fig. 4B), consistently demonstrating that the CC domain is necessary for NRG1 in triggering HR (31, 32). We further found that NRG1-3HA physically associates with NRG1-3Flag, but not with Flag-GFP or AvrBs2-3Flag in N. benthamiana (Fig. 4C). Also, NRG1 CC-6HA associates with NRG1 CC-3Flag but not with Flag-GFP (SI Appendix, Fig. S6), suggesting that NRG1 and its CC domain may function as oligomers/dimers when triggering HR.

We observed that the CC-triggered HR occurred earlier in comparison with the HR caused by the fragments CC-NB or CC-LRR or by the full-length NRG1 (Fig. 4B), implying that NB and LRR may inhibit the CC domain function. In addition, we observed that transient expression of NRG1 driven by its endogenous promoter (NRG1pro-NRG1) did not cause HR in the WT, nrg1, and eds1 lines, whereas transient expression of the NRG1 CC domain alone driven by its endogenous promoter (NRG1pro-NRG1-CC) led to a clear HR phenotype in those three lines (Fig. 4D). These results are consistent with the hypothesis that the NB and LRR domains of NRG1 inhibit CC-triggered HR.

The finding that the transient expression of NRG1pro-NRG1 does not cause HR in the WT, nrg1, and eds1 lines also suggests that HR occurs only when a sufficient level of functional NRG1 is present. Coexpression of NRG1pro-NRG1 with XopQ and Roq1 caused HR in WT and nrg1 lines, but not in the eds1-1 mutant (Fig. 4D). By contrast, transient coexpression of XopQ/Roq1 and NRG1 carrying mutations in its P-loop (G226A, K227A) and driven by its endogenous promoter (NRG1pro-NRG1-CC) failed to cause HR in WT and nrg1-1 lines (Fig. 4D), indicating that the P-loop motif of NRG1 is required for triggering HR (31).

NRG1 Is Epistatic to Roq1 and EDS1 in Triggering HR. Having shown that the TIR domain of Roq1 triggers HR via EDS1 and NRG1, we next investigated the genetic relations among Roq1, EDS1, and NRG1 in this process. Transient expression of XopQ or ATR1+RPP1 failed to trigger HR in eds1-1 and nrg1-1 mutants.
Fig. 4. NRG1 oligomerizes/dimerizes in N. benthamiana and depends on its CC domain to trigger HR. (A) Schematic diagram of NRG1 domain constructs with CC, NB, ARC, and/or LRR domains. (B) Phenotypes of HR in leaves of N. benthamiana (N. b) with Agrobacterium-mediated transient expression of the empty vector control (EV) and NRG1 and its domain constructs, including NRG1-CCNB, NRG1-CC, NRG1-CLRR, NRG1-NB, NRG1-NLRR, and NRG1-LRR. The images were taken 20 or 40 h postinfiltration. (C) Co-IP assay showed that NRG1 exhibits oligomerization/dimerization. NRG1-3HA was transiently coexpressed with Flag-fused NRG1, AvrBs2, or GFP in leaves of N. benthamiana. Total proteins were extracted for co-IP by using α-Flag agarose beads and analyzed by protein gel blotting with anti-HA or anti-Flag antibody. (D) Phenotypes of HR in leaves of N. benthamiana WT, eds1-1, or nrg1-1 with Aegrobacterium-mediated transient expression of the empty vector control and the indicated constructs. The endogenous NRG1 promoter-driven NRG1 (NRG1pro-NRG1), NRG1 with two amino acid substitutions (G226A, K227A) in the P-loop motif (NRG1pro-NRG1P-loop.), or CC domain of NRG1 (NRG1pro-NRG1-CC) and the strong OCS promoter-driven XopQ, Roq1, or NRG1 were transiently expressed as indicated. Images were taken 2 dp.
NRG1 associates with EDS1 in *N. benthamiana*

Effectors of the XopQ/HopQ1 family are widely distributed and highly conserved among many species of the *Xanthomonas* and *Pseudomonas* genera. These effectors trigger an ETI response in *N. benthamiana*, which is resistant to *Xanthomonas* and *Pseudomonas* species (43, 44). Recently, the TNL immune receptor Roq1 was identified to mediate the recognition of XopQ/HopQ1 in *N. benthamiana*. Like other TNL proteins, Roq1 requires EDS1 to trigger an immune response (26, 28). In this study, we found that the CNL protein NRG1 is also required for XopQ/HopQ1-triggered ETI (Fig. 1). We demonstrated that Roq1, EDS1, and NRG1 are all required for resistance to *Xanthomonas* and *Pseudomonas* species (Fig. 1). In addition, transient expression of some TNLs, CNLs, and/or their related effectors in WT, roq1, eds1, and nrg1 mutants of *N. benthamiana* showed that Roq1 is specifically associated with XopQ/HopQ1-triggered HR, whereas both EDS1 (28, 45) and NRG1 are required for several TNL-activated ETI (e.g., Roq1, RPP1, N protein), but not for CNL-mediated ETI (e.g., Bs2, Rps2; Fig. 1). These results suggest a role of NRG1 as a helper NLR in the immune signaling pathway of many TNLs. Our result is also consistent with a previous report showing that NRG1 is absent in some plants lacking TNLs, indicating an association between the occurrence of NRG1 and TNLs (32). Therefore, we suggest that, like EDS1, NRG1 might integrate signals from multiple effectors/TNLs and probably acts as a key component in the ETI activation of many TNLs (Fig. 7F).

Discussion

To defend themselves against pathogen attacks, plants employ NLR immune receptors that mediate the recognition of diverse pathogen effectors and trigger the ETI immune response (9, 41, 42). Interestingly, some NLR proteins function as helpers and are required for some TNL and CNL-mediated ETI signaling pathways (29–31). Elucidation of the molecular mechanisms underpinning the ETI signaling pathway will support the development of novel strategies for disease control and crop breeding.

Fig. 5. NRG1 is epistatic to Roq1 and EDS1 in triggering HR. Phenotypes of HR in leaves of *N. benthamiana* (N. b) WT, roq1-1, eds1-1, or nrg1-1 with Agrobacterium-mediated transient expression of the empty vector control (EV), ATR1 plus RPP1, ATR1 plus RPP1 and EDS1, XopQ, XopQ plus EDS1, NRG1, or EDS1. Images were taken at 2 dpi.

80% of these changes, with many down-regulated transcripts being independent of NRG1 (Fig. 7 A and B). We also noticed that NRG1 expression itself is up-regulated upon XopQ expression in a Roq1/EDS1/NRG1-dependent manner, suggesting a positive feedback loop to enhance ETI. In addition, 216 transcripts are differentially expressed solely in the nrg1 mutant in response to XopQ. Among these transcripts, we verified that the CNL ADR1 is up-regulated, thus implying a functional relationship between NRG1 and ADR1.

The expression profiles of some defense-related genes, such as NRG1, ADR1, WRKY40, WRKY72, PRI, and PR5, were confirmed by quantitative real-time (qRT) PCR. In agreement with our RNA-seq results, qRT-PCR showed that expression of NRG1, WRKY40, and WRKY72 was clearly induced by XopQ in WT plants, whereas induction of these genes was attenuated or abolished in the roq1, eds1, and nrg1 lines (Fig. 7E). Moreover, consistent with our RNA-seq results, PRI and PR5 were significantly up-regulated upon XopQ expression exclusively in the WT and nrg1 lines, whereas ADR1 up-regulation was observed only in the absence of NRG1 in response to XopQ (Fig. 7E).

Fig. 6. NRG1 associates with EDS1 in *N. benthamiana* (N. b). (A) Co-IP experiment of NRG1 and EDS1. The indicated combinations of EDS1-3HA, Flag-GFP, RPS2-Flag, NRG1-3Flag, or EDS1-3Flag were transiently coexpressed in *N. benthamiana* leaves. Total proteins were extracted for co-IP experiments by using α-Flag agarose beads and analyzed by protein gel blotting with anti-HA or anti-Flag antibody. Staining of RubisCO with Ponceau S was used as a loading control. (B) Co-IP experiments of NRG1 domains and EDS1. EDS1-3HA was transiently coexpressed with Flag-fused GFP, full length or domains (CC, NB, or LRR) of NRG1, or AvrBs2. Total proteins were extracted for co-IP by using α-Flag agarose beads and analyzed by protein gel blotting with anti-Flag or anti-HA antibody. Staining of RubisCO with Ponceau S was used as a loading control.
Interestingly, plant NLRs show sequence similarity to animal nucleotide-binding oligomerization domain (NOD)-LRR protein family. This family of proteins includes important regulators of the inflammatory and immune responses in mammals (46, 47). The NOD domain includes a NB domain, a winged helix (WH), and helix domains (HD1 and HD2). In a closed conformation, ADP mediates the interaction between the NB domain and the WH. However, upon ligand binding to the LRR domain, conformational changes lead to ADP exchange by ATP, self-oligomerization, and downstream signaling (47). Similarly in plants, models of NLR immune function also propose that the central NB domain functions as a molecular switch between an "on-state" (i.e., ATP-bound) and "off-state" (i.e., ADP-bound). In the presence of pathogen effectors, the off-state changes to the on-state, and, subsequently, the N terminus of the NLR oligomerizes (46, 48, 49).

![Diagram](image_url)
that, upon perception of XopQ, Roq1 forms oligomers in an EDS1- and NRG1-independent manner (Fig. 2B). Interestingly, mutation of the P-loop motif (GxxxxGK[T/S]), which is required for NB (46), abolishes Roq1 oligomerization and XopQ-triggered HR, but not for Roq1–XopQ interaction (Fig. 2A and C).

We also verified that the NB and LRR domains of Roq1 prevent its TIR domain from triggering HR, and the TIR domain alone can trigger HR in the absence of XopQ/HopQ1 (Fig. 3A). It is speculated that, in the absence of XopQ, Roq1 exists as a monomer in a conformational self-inhibition state, in which the NB and LRR domains inhibit the TIR domain. Upon XopQ perception by the LRR domain of Roq1 (Fig. 3B), Roq1 undergoes conformational changes and forms oligomers. Subsequently, the TIR domain is released from the NB–LRR inhibition and activates the downstream ETI pathway. The XopQ–Roq1 working model is quite similar to some other cognate elicitor–TNL models, such as ATR1–RPP1 and p50–N, as, in all these three examples, perception of effectors (XopQ, ATR1, and p50) by TNLs (Roq1, RPP1, and N) results in TNL oligomerization and activation of ETI (33, 38).

An intact P-loop motif is also required for RPP1- and N-mediated HR (33, 38). Elucidation of the crystal structures of Roq1 protein and XopQ–Roq1 protein complex will help to understand the molecular mechanism by which XopQ–Roq1 initiates ETI.

Previous studies have shown that HopQ1 was cleaved when expressed in tomato and Nicotiana species (44, 50). Our co-IP assays showed that XopQ is also cleaved in N. benthamiana when its C-terminal region is fused to an Avc5 tag (Fig. 2B and C). After cleavage, the C terminus of XopQ (Fig. 2, asterisk) is unable to interact with Roq1 (Fig. 2 B and C), implying that the mechanisms of XopQ-triggered immune defense may be more complex than we previously hypothesized. The cleaved C terminus of XopQ could not interact with Roq1, suggesting that the cleaved XopQ may lose its avirulence function, becoming unable to trigger HR. XopQ and HopQ1 were reported to interact with 14–3–3 proteins, which affect HopQ1 virulence function (44, 51, 52). It would be very interesting to elucidate whether the cleaved XopQ is still able to interact with 14–3–3 proteins, and if it still maintains its virulence function.

Coexpression of XopQ with Roq1 triggered HR in WT and roq1 mutant in response to XopQ expression, indicating that NRG1 is not required for all defense-related transcriptional changes that occur in response to XopQ. Another interesting result is that proteins from the 14–3–3 family, which are up-regulated in the WT line upon XopQ expression, are no longer differentially expressed in the nrg1 mutant (Fig. 7D). Increasing evidence supports a role of these proteins in signal transduction during plant immune responses at diverse levels (55, 56), and our data suggest that NRG1 is required for their up-regulation during plant immune responses. Another interesting finding is that the helper NLR ADR1, which, along with NRG1, is part of the RPW8-like CC domain subclass, is up-regulated only in the nrg1 mutant upon XopQ expression (Fig. 7E). Given that hundreds of transcripts are still differentially regulated in the nrg1 mutant in response to XopQ, it would be interesting to know if these transcripts are regulated by another helper NLR, such as ADR1. Future experiments to understand additional details about NRG1 function in plant immunity and its transcriptional changes during ETI will shed light on the molecular mechanisms/events underpinning TNL-mediated ETI signaling pathway.

Materials and Methods

Details of the materials and methods used in this paper, including generation of N. benthamiana mutants and plant growth conditions, virus-induced gene silencing, HR phenotype, in planta bacterial-growth assays, qRT-PCR analysis, co-IP assay, RNA-seq, and gene expression analysis, are provided in SI Appendix, Supplementary Information Text: Materials and Methods.

ACKNOWLEDGMENTS. This work was supported by the Tang Distinguished Scholarship at the University of California, Berkeley (to T.Q.), Pew Latin American Fellows Program in the Biomedical Sciences Fellowship 0002738 (to D.P.T.T.), and US Department of Agriculture Award US65P00011008 (to A.S.). The laboratory of B.J.S. is supported by the Two Blades Foundation.
1. Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349-357.

2. Tang D, Wang G, Zhou M (2017) Receptor kinases in plant-pathogen interactions: More than pattern recognition. Plant Cell 29:618-637.

3. Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345-351.

4. Xin XF, He SY (2013) Pseudomonas syringae pv. tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 51:473-498.

5. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from detection to deployment. Science 341:746-751.

6. Jones JDG, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395.

7. Khan M, Subramaniam R, Desveaux D (2016) Of guards, decoys, baits and traps: Pathogen perception in plants by type III effector sensors. Curr Opin Microbiol 29:49-55.

8. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: Shaping the evolution of the plant immune response. Cell 124:803-814.

9. Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: From pathogen perception to robust defense. Annu Rev Plant Biol 66:487-511.

10. Zhang X, Dodds PN, Bernoux M (2017) What do we know about NOD-like receptors in plants and animals. Cell Host Microbe 21:200-211.

11. Qi D, Innes RW (2013) Recent advances in plant NLR structure, function, localization, and signaling. Front Immunol 4:348.

12. Rehmann AP, et al. (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17:1829-1850.

13. Steinbrenner AD, Goritschnig S, Staskawicz BJ (2015) Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein. PLoS Pathog 11:e1004665.

14. Schreiber KJ, Bentham A, Williams SJ, Kobe B, Staskawicz BJ (2016) Multiple domain associations within the Arabidopsis immune receptor RPP1 regulate the activation of programmed cell death. PLoS Pathog 12:e1005769.

15. Erickson FL, et al. (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defense response in tobacco. Plant J 18:67-75.

16. Chahama IA, et al. (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci USA 92:6597-6601.

17. Century KS, et al. (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963-1965.

18. Innes RW (1998) Genetic dissection of R gene signal transduction pathways. Curr Opin Plant Biol 1:299-304.

19. Aarts N, et al. (1998) Different requirements for EDS1 and NDR1 by disease resistance genes. Science 280:1260-1263.

20. Parker JE, et al. (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400-5411.

21. Goswalia BC, Cali JP, Machado JPB, Santos AA, Fontes EPB (2017) Immune receptors and co-receptors in antiviral innate immunity in plants. Front Microbiol 7:2139.

22. Rajamuthiah R, Mylonakis E (2014) Effector triggered immunity. Virulence 5:697-702.

23. Ferrante P, et al. (2009) Contributions of the effector gene hopQ1-1 to differences in host range between Pseudomonas syringae pv. phaseolicola and P. syringae pv. tabaci. Mol Plant Pathol 10:837-842.

24. Li W, Yadeta KA, Elmore JM, Coaker G (2013) The Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner. Plant Physiol 161:2062-2074.

25. Bhattacharjee S, Halane MK, Kim SH, Gasmann W (2011) Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334:1405-1408.

26. Meunier E, Broz P (2017) Evolutionary convergence and divergence in NLR function and structure. Trends Immunol 38:744-757.

27. Caruso R, Warner N, Inohara N, Núñez G (2014) NOD1 and NOD2: Signaling, host defense, and inflammatory disease. Immunity 41:898-908.

28. Bentham A, Burdett H, Anderson PA, Williams SJ, Kobe B (2017) Animal NLRs provide a strategy to limit pathogen immune evasion. Plant Physiol 161:927-932.

29. van Loon LC, Rep M, Pieteree CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135-162.

30. Stintzi A, et al. (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75:687-706.

31. Lozano-Duran R, Robatsek S, Lozano-dur R (2015) 14-3-3 proteins in plant-pathogen interactions. Mol Plant Microbe Interact 28:511-518.

32. Ormancey M, Thuleau P, Mazars C, Cotelle V (2017) CDPKs and 14-3-3 proteins: Emerging duo in signaling. Trends Plant Sci 22:683-722.