Aspirin for Primary Prevention of Cardiovascular Events in People With Diabetes

A Position Statement of the American Diabetes Association, a Scientific Statement of the American Heart Association, and an Expert Consensus Document of the American College of Cardiology Foundation

Michael Pignone, MD, MPH, FACP, Writing Group Chair; Mark J. Alberts, MD; John A. Colwell, MD, PhD, MACP; Mary Cushman, MD, MSc; Silvio E. Inzucchi, MD; Deabrata Mukherjee, MD, MS, FACC; Robert S. Rosenson, MD, FACC, FAHA, FACP; Craig D. Williams, PharmD, FNLA; Peter W. Wilson, MD; M. Sue Kirkman, MD

The burden of cardiovascular disease (CVD) among patients with diabetes is substantial. Individuals with diabetes are at 2- to 4-fold increased risk of cardiovascular events compared with age- and sex-matched individuals without diabetes. In diabetic patients over the age of 65 years, 68% of deaths are from coronary heart disease (CHD) and 16% are from stroke.1 A number of mechanisms for the increased cardiovascular risk with diabetes have been proposed, including increased tendency toward intracoronary thrombus formation,2 increased platelet reactivity,3 and worsened endothelial dysfunction.4

The increased risk for cardiovascular events and mortality in patients with diabetes has led to considerable interest in identifying effective means for cardiovascular risk reduction. Aspirin has been shown to be effective in reducing cardiovascular morbidity and mortality in high-risk patients with myocardial infarction (MI) or stroke (secondary prevention).5 The Food and Drug Administration has not approved aspirin for use in primary prevention, and its net benefit among patients with no previous cardiovascular events is more controversial, for both patients with and without a history of diabetes.6 The U.S. Preventive Services Task Force recently updated its recommendation about aspirin use for primary prevention. The Task Force recommended encouraging aspirin use in men age 45–79 years and women age 55–79 years and not encouraging aspirin use in younger adults. They did not differentiate their recommendations based on the presence or absence of diabetes.6,7

In 2007, the American Diabetes Association (ADA) and the American Heart Association (AHA) jointly recommended that...
Aspirin therapy (75–162 mg/d) be used as a primary prevention strategy in those with diabetes at increased cardiovascular risk, including those who are over 40 years of age or who have additional risk factors (family history of CVD, hypertension, smoking, dyslipidemia, or albuminuria). These recommendations were derived from several older trials that included relatively small numbers of patients with diabetes. Results of 2 recent randomized controlled trials of aspirin performed specifically in patients with diabetes raised questions about the efficacy of aspirin for primary prevention in diabetes.9,10

Because of the scope of the problem of CVD in patients with diabetes and the conflicting evidence about the efficacy of aspirin for primary prevention in people with diabetes, the ADA, AHA, and the American College of Cardiology Foundation (ACCF) convened a group of experts to review and synthesize the available evidence and use this information to create updated recommendations. The group considered and organized this report around the following questions:

1. What is the evidence regarding aspirin to prevent initial cardiovascular events in people with diabetes?
2. How can we reconcile the results of the different primary prevention trials?
3. What are the risks of aspirin, and are these similar or different for people with diabetes compared to those without?
4. What do we know about the recommended dosage or dosage range?
5. How can we integrate potential benefits and risks of aspirin to determine which patients with diabetes should receive aspirin for the primary prevention of cardiovascular events?
6. What are the needs for future research?

1. What is the Evidence Regarding Aspirin to Prevent Initial Cardiovascular Events in People With Diabetes?

Several randomized trials have examined the effect of aspirin for primary prevention of cardiovascular events and have included patients with diabetes (Table). In this section, we examine those findings with respect to the ability of aspirin to prevent cardiovascular events, which typically include ischemic or CHD events (MI, sometimes unstable angina), stroke, and vascular death (usually sudden cardiac death or death from stroke).

Six trials—British Medical Doctors (BMD),11 Physicians’ Health Study (PHS),12 Thrombosis Prevention Trial (TPT),13 Hypertension Optimal Treatment (HOT),14 Primary Prevention Project (PPP),15,16 and Women’s Health Study (WHS)17—were population-based and did not focus specifically on patients with diabetes. The percentage of patients with diabetes in these studies ranged from 1–2% in TPT, BMD, and PHS to 22% in PPP. Two recent trials, the Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetes (JPAD)9 and the Prevention of Progression of Arterial Disease and Diabetes (POPADAD),10 and 1 older trial, the Early Treatment of Diabetic Retinopathy Study (ETDRS),18 enrolled only patients with diabetes. The available trials (except ETDRS) included mainly or exclusively patients with type 2 diabetes. ETDRS enrolled patients with both type 1 and type 2 diabetes (31% type 1, 31% type 2, and 38% unclassified).

Three trials (BMD, PHS, and TPT) did not include any women, and 1 (WHS) focused solely on women. The proportion of women in the remaining 5 trials varied from 44 to 56%. The dose of aspirin varied from 100 mg every other day to 650 mg daily. The 9 trials ranged from 3.7 to 10.1 years in mean duration, with most extending to 4–6 years. Each of the trials excluded potential participants at increased risk of gastrointestinal bleeding based on a history of peptic ulcer disease. Therefore, the findings of this meta-analysis, which are based on these trials, cannot be readily extended to patients with a history of gastrointestinal bleeding.

Only 2 of the 9 trials reported on use of statins or other lipid-lowering therapy. In JPAD, statin use was 26%, while in PPP lipid-lowering therapy use was 13%. Three trials (BMD, PHS, and ETDRS) were conducted prior to the availability of statins, and TPT and HOT were conducted well before the widespread use of statins for primary prevention. Rates of usage in the more recent POPADAD or WHS trials were not reported.

The PHS trial enrolled 533 men with diabetes and found a 41% relative risk (RR) reduction (RR 0.59, 95% CI 0.33–1.06) in fatal and nonfatal MI over 5 years for those assigned to 325 mg aspirin every other day compared with those assigned to placebo.12 The HOT trial examined the effect of 75 mg of aspirin daily versus placebo in 18,000 patients ages 50–80 years, of whom 1,501 had diabetes. Among those with diabetes, the RR reduction for CHD events was 23% (RR 0.77, 95% CI 0.44–1.36).14 The PPP trial enrolled 1031 patients with diabetes and found a nonsignificant reduction in the combined MI endpoint (fatal plus nonfatal MI) with 100 mg of aspirin daily compared with placebo (RR 0.50, 95% CI 0.17–1.46).15

The BMD and TPT studies enrolled relatively few patients with diabetes and did not identify important reductions in CVD risk for those with diabetes, but in each case confidence intervals were quite wide.11,13 The WHS trial, the only trial that focused exclusively on women and used the lowest dose of aspirin (100 mg every other day), did not find a reduction in risk for CHD with aspirin overall or for the subset with diabetes (N=1027; RR 1.34, 95% CI 0.85–2.12). They did, however, identify a reduction in stroke with aspirin for women with diabetes (RR 0.45, 95% CI 0.25–0.82).17

Three trials focused on the effect of aspirin exclusively among patients with diabetes. The ETDRS trial examined the effect of 650 mg of aspirin daily versus placebo among 3,711 patients with type 1 or type 2 diabetes between ages 18 and 70 years who had some degree of retinopathy. Approximately one-half of participants reported some history of CVD, although it should be noted that the definition of CVD included the use of antihypertensive medication. Fewer than 10% had had a previous MI or stroke, and 9% had claudication. Intervention patients experienced a decreased risk of nonfatal or fatal MI (RR 0.85, 95% CI 0.73–1.00). In contrast, stroke occurred more frequently with aspirin, although the difference was not statistically significant (RR 1.18, 99% CI 0.88–1.58). Men appeared to derive more benefit from aspirin than women for prevention of MI (RR for men 0.74, 99% CI 0.54–1.00; RR for women 0.91, 99% CI 0.65–1.28), but this difference was not statistically significant and could represent a chance finding.18

The POPADAD trial studied whether aspirin and/or antioxidant therapy was more effective than placebo in reducing the incidence of cardiovascular events in patients with diabetes and asymptomatic peripheral arterial disease. This
Table. Comparison of Primary Prevention Trials of Aspirin That Enrolled Patients With Diabetes (N=11 787)

Study/YearRef	Aspirin Dose (Study Design)	Follow-Up, y	Number Enrolled With Diabetes	% Female	Age, y (Minimum/Mean)	CHD End Point
PHS DM/1989\(^{12}\)	325 mg every other day (2 × 2 factorial design with 50 mg beta carotene)	5.0	533	0	>40/NA	Fatal + nonfatal MI
EDRS/1992\(^{18}\)	650 mg daily	5.0	3711	44	>18/NA	Fatal + nonfatal MI
PPP DM/2003\(^{16,6}\)	100 mg daily (2 × 2 design with 30 mg vitamin E)	3.7	1031	52	>50/64	Fatal + nonfatal MI
WHS DM/2005\(^{17}\)	100 mg every other day (2 × 2 factorial design with 600 IU vitamin E every other day)	10.1	1027	100	>45/55	Fatal + nonfatal MI
JPAD/2008\(^{10}\)	81–100 mg daily (open label treatment assignment, blinded end-point assessment)	4.4	2539	46	>30/65	Fatal + nonfatal MI
POPADAD/2008\(^{9}\)	100 mg daily (2 × 2 factorial design including antioxidants)	6.7	1276	56	>40/60	CHD death + nonfatal MI
TPT DM/1998 (data from ATT)\(^{5}\)	75 mg daily	6.7	68	0	>45/58	MCE
BMD/1988 (data from ATT)\(^{5}\)	500 mg daily	5.6	101	0	>50/NA	MCE
HOT DM/1998 (data from ATT)\(^{5}\)	75 mg daily (co-randomized to 1 of 3 diastolic BP goals)	3.8	1501	47	>50/62	MCE

ATT indicates Antithrombotic Trialists’ (ATT) Collaboration; BMD, British Medical Doctors; BP, blood pressure; CHD, coronary heart disease; DM, diabetes mellitus; EDRS, Early Treatment of Diabetic Retinopathy Study; HOT, Hypertension Optimal Treatment; IU, international unit; JPAD, Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetes; MCE, major coronary event (CHD death + nonfatal MI + sudden death); MI, myocardial infarction; NA, not available; PHS, Physicians’ Health Study; POPADAD, Prevention of Progression of Arterial Disease and Diabetes; PPP, Primary Prevention Project; PT, Thrombosis Prevention Trial; RR, relative risk; WHS, Women’s Health Study.

*10-year extrapolated CHD event rate calculated by (10 ÷ study duration) × event rate.
†Calculated based on event counts.
‡Values slightly different from original PHS report based on updated ICD-9 coding information obtained by the ATT trialists.
§Data used from 2003 PPP diabeticsubstudy; number with diabetes is discrepant from original PPP publication due to continued enrollment and follow-up of diabetic patients beyond the original study period.
¶Event rates slightly different than original 2005 report due to 11 extra MI/CHD deaths (6 in aspirin group and 5 in placebo) reported to the ATT study group vs. original publication.

randomized, multicenter, double-blind, placebo-controlled trial involved 1276 adults over age 40 years with either type 1 or type 2 diabetes. All subjects had an ankle brachial pressure index less than 0.99 but no symptomatic CVD. They were randomized in a 2 × 2 factorial design to aspirin 100 mg daily, an antioxidant supplement daily, both, or neither. Two composite primary end points were 1) death from CHD or stroke, nonfatal MI or stroke, or amputation above the ankle for critical limb ischemia; and 2) death from CHD or stroke. Study medication discontinuation rates were high: 14% at 1 year and 50% at 5 years. Overall, 116 of 638 (18.2%) primary events occurred in patients assigned to aspirin therapy versus 117 of 600 (19.5%) in those on placebo (HR 0.98, 95% CI 0.76–1.26). There were 43 CHD or stroke deaths in the aspirin group and 35 in the placebo group (6.7% vs. 5.5%; HR 1.23, 95% CI 0.79–1.93). The rates of a wide variety of secondary end points and adverse events also did not differ between groups. Outcomes were also similar with or without the antioxidants; there was no interaction between the 2 active therapies.\(^{10}\)

In JPAD, investigators examined the efficacy of low-dose aspirin for primary prevention of cardiovascular events in a randomized, open-label trial conducted in 2539 Japanese patients with type 2 diabetes but no history of CVD. Patients were assigned to either aspirin (81–100 mg daily) or no aspirin and were followed for an average of 4.4 years. The primary end point was a composite of fatal or nonfatal ischemic heart disease, fatal or nonfatal stroke, and peripheral arterial disease. A total of 154 events occurred: 68 (5.4%) in the aspirin group and 86 (6.7%) in the nonaspirin group (HR 0.80, 95% CI 0.58–1.10). The combined secondary end point of coronary and cerebrovascular mortality occurred in 1 patient (stroke) in the aspirin group and 10 patients (5 fatal MIs and 5 fatal strokes) in the nonaspirin group (HR 0.10, 95% CI 0.01–0.79). Other secondary end points did not differ importantly between groups. Overall, mortality occurred in 34 patients in the aspirin group and 38 patients in the nonaspirin group (HR 0.90, 95% CI 0.57–1.14). According to prespecified subgroup analyses, however, in subjects over 65 years of age (n=1363), the incidence of the primary end point was lower with aspirin (HR 0.68, 95% CI 0.46–0.99).\(^{9}\)

In summary, the currently available evidence on aspirin for CVD prevention includes 3 trials conducted specifically in patients with diabetes and 6 other trials in which patients with
diabetes constitute subgroups within broader trials of aspirin prophylaxis. No single trial provides definitive results. As such, we sought, in question 2, to use meta-analysis to try to reconcile the available data.

2. How Can We Reconcile the Results of the Different Trials?
In order to synthesize and reconcile the results of the available trials, we examined existing meta-analyses of aspirin prevention trials (including those that focused on all patients and those that examined only patients with diabetes) and performed new meta-analyses with updated data.

The Antithrombotic Trialists’ (ATT) Collaboration recently published an individual patient-level meta-analysis of the 6 large trials of aspirin for primary prevention in the general population. This trials collectively enrolled over 95,000 participants, including almost 4000 with diabetes. Overall, the meta-analysis found that aspirin reduced the risk of vascular events by 12% (RR 0.88, 95% CI 0.82–0.94). The largest reduction was for nonfatal MI (RR 0.77, 95% CI 0.67–0.89). Aspirin had little effect on CHD death (RR 0.95, 95% CI 0.78–1.15) or total stroke (RR 0.95, 95% CI 0.85–1.06). The net effect on total stroke reflected a relative reduction in risk of ischemic stroke (−14%) and a relative increased risk of hemorrhagic stroke (+32%).

There was some evidence of a difference in aspirin effect by sex. Aspirin reduced CHD events in men (RR 0.77, 95% CI 0.67–0.89) but not in women (RR 0.95, 95% CI 0.77–1.17). Conversely, aspirin had no effect on stroke in men (RR 1.01, 95% CI 0.74–1.39) but reduced stroke in women (RR 0.77, 95% CI 0.59–0.99). These potential differences in effect by sex were of borderline statistical significance, were affected strongly by the results of 1 trial (WHS), and cannot be considered definitive. Notably, sex differences in aspirin’s effects have not been observed in studies of secondary prevention. The ATT collaborators did not identify other clear sources of heterogeneity of effect, although there was some suggestion that current smokers derived less benefit from aspirin than nonsmokers.

In the 6 trials examined by the ATT, the effect of aspirin on major vascular events was similar for patients with and without diabetes: RR 0.88, 95% CI 0.67–1.15, and RR 0.87, 95% CI 0.79–0.96, respectively. The CI was wider for those with diabetes because of the smaller number of participants with diabetes and their smaller total numbers of CVD events.

We performed a new meta-analysis that added data from 3 trials performed specifically in patients with diabetes (JPAD, POPADAD, and ETDRS) to the data from the subgroups of patients with diabetes from the 6 trials included in the ATT meta-analysis (Figure). Using a random-effects model, we found that aspirin was associated with a 9% decrease in risk of CHD events (nonfatal and fatal MI) that was not statistically significant (RR 0.91, 95% CI 0.79–1.05). We did not identify important heterogeneity ($\chi^2 = 8.71$, $P = 0.367$, $I^2 = 8.2\%$), but a large portion of the summary estimate depended on the ETDRS trial. Excluding this trial, the estimate of effect for CHD events was smaller.

For stroke, our random-effects meta-analysis of the 9 trials found a reduction in the risk of stroke of 15% (RR 0.85, 95% CI 0.67–1.11) that was not statistically significant. There was some heterogeneity ($\chi^2 = 12.48$, $P = 0.131$, $I^2 = 35.9\%$). The results of these diabetes-specific analyses are consistent with the findings of the ATT meta-analysis and suggest that aspirin likely produces a modest reduction in CVD risk, but
limitations in the amount of available data preclude a precise estimate of effect. We also do not have access to sufficient patient-level data in patients with diabetes to consider whether the effect of aspirin on CHD events and stroke differs by sex, the dose of aspirin used, or other clinical factors.

Other recent meta-analyses have examined the effect of aspirin on CVD events in patients with diabetes. DeBerardis and colleagues included 6 of the 9 trials included in our analysis (they did not include HOT, BMD, or TPT due to lack of data on patients with diabetes in the original publications) and found estimates of effect with aspirin similar to those of our analysis: for MI, RR 0.86 (95% CI 0.61–1.21) with moderate heterogeneity ($I^2 = 62.2\%$), mainly due to inclusion of WHS and PHS. For stroke, they included 5 trials (excluding PHS) and calculated a summary RR of 0.83 (95% CI 0.60–1.14) and also noted moderate heterogeneity ($I^2 = 52.5\%$), mainly due to inclusion of WHS. They also identified potentially important effect modification by sex: aspirin reduced MI for men (RR 0.57, 95% CI 0.34–0.94) but not for women (RR 1.08, 95% CI 0.71–1.65).

Zhang and colleagues included 7 trials in their meta-analysis (they did not include BMD or TPT) and also found similar results (for MI, RR 0.85, 95% CI 0.65–1.11; for stroke, RR 0.83, 95% CI 0.63–1.10). They performed meta-regression and identified important differences in outcomes by sex. They found no evidence of publication bias based on funnel plots using Begg and Egger tests. Calvin and colleagues included 7 trials from our meta-analysis of patients with diabetes (they did not include TPT or BMD) and for MI found RR 0.86 (95% CI 0.67–1.11) using the 7 trials. For ischemic stroke, they found RR 0.62 (95% CI 0.31–1.24) using only the results of WHS and JPAD for their analysis.

The trials pooled in all of the meta-analyses varied widely in the CHD event rates in the control group. If the RR reduction (the metric being pooled) is consistent across patients of differing underlying absolute risk, as suggested by secondary prevention trials and the individual patient-level meta-analysis, then such analyses seem to be reasonable. Taken together, the other meta-analyses reinforce our main findings: aspirin appears to produce a modest-sized reduction in MI and stroke in patients with diabetes, but current evidence is not conclusive because there have been too few events in the available trials to precisely estimate its effects and because our findings rely on analyses of subgroups within larger

Figure. Meta-analysis of trials examining the effects of aspirin on risk of cardiovascular disease events in patients with diabetes. A. Effect of aspirin on coronary heart disease events. Tests for heterogeneity: $\chi^2 = 8.71$, $P = 0.367$, $I^2 = 8.2\%$. B. Effect of aspirin on risk of stroke in patients with diabetes. Tests for heterogeneity: $\chi^2 = 12.48$, $P = 0.131$, $I^2 = 35.9\%$. BMD indicates British Medical Doctors; CI, confidence interval; ETDRS, Early Treatment of Diabetic Retinopathy Study; HOT, Hypertension Optimal Treatment; JPAD, Japanese Primary Prevention of Atherosclerosis With Aspirin for Diabetics; PHS, Physicians’ Health Study; POPADAD, Prevention of Progression of Arterial Disease and Diabetes; PPP, Primary Prevention Project; TPT, Thrombosis Prevention Trial; WHS, Women’s Health Study.
trials, which have more potential for bias. The currently available data also reinforce that the possible differences in outcomes for men and women require further study.

3. What are the Potential Harms of Aspirin, and are These Similar or Different for People With Diabetes Compared to Those Without?

The major adverse effects of aspirin therapy include intracranial bleeding (hemorrhagic stroke) and extracranial bleeding, principally gastrointestinal. Based on data from primary and secondary prevention trials conducted in mixed populations of patients with and without diabetes, low-dose aspirin appears to be associated with an absolute risk of hemorrhagic stroke of ≈ 1 in 10,000 people annually. Analyses that examined the primary prevention trials separately have reached similar results. These hemorrhagic strokes are incorporated in the estimate of the effect of aspirin on all stroke volumes considered above in question 2.

For extracranial (mainly gastrointestinal) bleeding, aspirin use is associated with a 54% increase in risk based on meta-analysis of the 6 primary prevention trials (RR 1.54, 95% CI 1.30–1.82). The absolute increase in risk was on the order of 3 in 10,000 per year in mainly middle-aged adults enrolled in the aspirin primary prevention trials. The ATT collaboration authors found that several risk factors for CVD also increased the risk for extracranial bleeding from aspirin, suggesting that those at higher CVD risk are also at higher risk for aspirin-related adverse effects. Those with diabetes taking aspirin experienced a 55% increased risk (RR 1.55, 95% CI 1.30–1.82) compared with those without diabetes. Since the primary prevention trials used by the ATT collaboration and by this meta-analysis excluded patients with a history of peptic ulcer disease, the risk calculations for bleeding cannot be extended to that population.

Notably, the absolute excess risk of gastrointestinal bleeding with aspirin is likely higher among free-living older adults, with rates of 1–10 per 1000 annually reported in a large cohort study. While evidence supports that use of proton-pump inhibitors (PPIs) can decrease the risk of recurrent aspirin-related gastrointestinal bleeding, it is not clear whether routine use of a PPI is cost-effective or should be recommended for primary prevention of gastrointestinal bleeding.

4. What Do We Know About the Recommended Dosage or Dosage Range?

The optimal dosage of aspirin for prevention of cardiovascular events is not clearly established from the outcomes literature. The average daily dose used in the primary prevention trials involving participants with diabetes ranged from 50 to 650 mg daily (Table 1). Indirect evidence from the ATT collaboration suggests that the risk reductions achieved with low doses (75–162 mg/d) are as large as those obtained with higher doses (500–1500 mg/d) and larger than those in the few trials that have used doses below 75 mg/d. The failure of higher doses to produce greater reductions in thrombotic events may in part be due to the fact that the inhibitory effects of aspirin on the platelet are permanent. Thus, even low doses will achieve a full effect after several days of dosing. Additionally, the effects of aspirin begin in the portal circulation and are thereby presystemic. This removes the variability of hepatic metabolism, which accounts for much of the pharmacodynamic variability with other agents such as clopidogrel.

Although platelets from patients with diabetes have altered function, it is unclear what, if any, impact that finding has on the required dose of aspirin for cardioprotective outcomes in the diabetic patient. Many alternate pathways exist for platelet activation and aggregation (adenosine diphosphate, thrombin, epinephrine, von Willebrand factor) that are independent of thromboxane A$_2$ and thus not sensitive to the effects of aspirin. Therefore, while aspirin resistance appears higher in the diabetic patients when measured by a variety of ex vivo and in vitro methods (platelet aggregometry, measurement of thromboxane B$_2$), these observations alone are insufficient to empirically recommend higher doses of aspirin be used in the diabetic patient at this time.

5. How Can We Integrate Potential Benefits and Harms of Aspirin to Determine Which Patients With Diabetes Should or Should not Receive Aspirin for the Primary Prevention of CV Events?

On the basis of the currently available evidence, aspirin appears to have a modest effect on cardiovascular events (RR reduction of $\approx 10\%$), with the absolute decrease in events depending on the underlying CVD risk (those with higher baseline risk should have greater absolute benefit). The main adverse effects appear to be an increased risk of gastrointestinal bleeding. The excess risk may be as high as 1–5 per 1000 per year in real-world settings. In adults with CVD risk greater than 1% per year, the number of CVD events prevented will be similar to or greater than the number of bleeding events induced, although the events considered (MI, stroke, and gastrointestinal bleeding) do not have equal effects on long-term health. We have developed recommendations based on these data.

The effect of aspirin for primary prevention of CVD events in adults with diabetes is currently unclear. Trials to date have reached mixed results, but overall suggest that aspirin modestly reduces risk of cardiovascular events. More research is needed to better define the specific effects of aspirin in diabetes, including any sex-specific differences. For now, we recommend the following:

- **Low-dose (75–162 mg/d) aspirin use for prevention is reasonable for adults with diabetes and no previous history of vascular disease who are at increased CVD risk (10 year risk of CVD events over 10%) and who are not at increased risk for bleeding (based on a history of previous gastrointestinal bleeding or peptic ulcer disease or concurrent use of other medications that increase bleeding risk, such as NSAIDs or warfarin). Those adults with diabetes at increased CVD risk include most men over age 50 years and women over age 60 years who have 1 or more of the following additional major risk factors: smoking, hypertension, dyslipidemia, family history of premature CVD, and albuminuria. (ACCF/AHA Class IIa, Level of Evidence: B) (ADA Level of Evidence: C)
- **Aspirin should not be recommended for CVD prevention for adults with diabetes at low CVD risk (men under age 50
years and women under 60 years with no major additional CVD risk factors; 10-year CVD risk under 5%) as the potential adverse effects from bleeding offset the potential benefits. (ACCF/AHA Class III, Level of Evidence: C) (ADA Level of Evidence: C)

- Low-dose (75–162 mg/d) aspirin use for prevention might be considered for those with diabetes at intermediate CVD risk (younger patients with 1 or more risk factors, or older patients with no risk factors, or patients with 10-year CVD risk of 5–10%) until further research is available. (ACCF/AHA Class IIb, Level of Evidence: C) (ADA Level of Evidence: E)

Cardiovascular Risk Assessment

These recommendations depend on the accurate assessment of cardiovascular risk as part of the decision-making process about aspirin use. All patients with diabetes do not have high cardiovascular risk, despite the assumptions of some previous guidelines.35 We have provided treatment guidance based on either a combination of age, sex, and other risk factors or on an estimate of absolute cardiovascular risk. An important consideration is that patients may acquire additional risk factors over time, which would necessitate a reassessment of their overall risk profile. The absolute risk-based recommendations require the use of a risk prediction tool. Tools that can be used in patients with diabetes are available from several sources, for example:

1. UKPDS Risk Engine: http://www.dtu.ox.ac.uk/riskengine/index.php
2. ARIC CHD Risk Calculator: http://www.aricnews.net/riskcalc/html/RC1.html
3. American Diabetes Association Risk Assessment Tool, Diabetes PHD: http://www.diabetes.org/pha

Concurrent Therapies

Whether patients have sufficient CVD risk to warrant aspirin use under these assumptions will also depend on the use of other effective techniques for CVD risk reduction, including statins, blood pressure control, and smoking cessation.36,37 Each of these therapies also lowers the risk of CVD events and should be considered when deciding about aspirin use. If these other effective treatments are adopted first, then fewer patients with diabetes will remain at sufficient risk to warrant aspirin use, in light of its potential adverse effects. For example, a patient at 20% 10-year risk based on elevated blood pressure and suboptimal lipid levels would have his risk reduced from 20 to 13% by taking a statin and from 13 to 10% based on effective blood pressure control, which makes the decision about whether to take aspirin more complex. Although the risk reduction with these additional therapies does not occur immediately, their effects can be assumed to occur with rapidity sufficient to incorporate them in the initial decision-making process.

6. What are the Needs for Future Research?

Two ongoing studies will provide additional information on the role of low-dose aspirin for the prevention of cardiovascular events specifically in patients with diabetes. Aspirin and Simvastatin Combination for Cardiovascular Events Prevention Trial in Diabetes (ACCEPT-D) is an open-label Italian primary prevention trial comparing aspirin 100 mg daily to no aspirin among adults over age 50 years with diabetes who are also taking simvastatin.38 The planned enrollment is 5170, and the investigators will examine several prespecified subgroups to detect differences in effect of aspirin, including men versus women and older versus younger age, as well as baseline lipid levels and use of statins. A second trial, A Study of Cardiovascular Events in Diabetes (ASCEND), is being conducted in the U.K. and will also examine the effects of 100 mg aspirin daily versus placebo among men and women over age 40 years who have either type 1 or type 2 diabetes but no previous vascular events.39 It uses a double-blind placebo-controlled and 2 × 2 factorial design that will also examine the effects of ω-3 fatty acid supplements. The planned enrollment is 10 000, which was designed to provide adequate power to detect a 20% reduction in major vascular events including both MI and stroke.

Although these trials will provide important additional information, it is possible that they will not definitively determine whether aspirin is effective for prevention of CHD events in people with diabetes. This may be especially true for important subgroups such as patients on statins, women, and patients with type 1 diabetes. Although ASCEND is powered for a 20% RR reduction, an RR reduction of 10% among patients with an underlying incidence of 10% in the control group would require over 36 000 participants if 90% power is desired and 26 000 for 80% power. To achieve this event rate among moderate-risk patients with diabetes (annual event rates of 1–2%), a trial would need to be 5–10 years in duration. Thus, while the ongoing trials may not provide definitive answers, their combined enrollment of over 15 000 patients will add important new information on the role of aspirin for primary prevention in patients with diabetes.

In addition, development of reliable surrogate testing for platelet reactivity and response to antiplatelet therapies would be helpful in the management of patients for whom concerns have been raised about aspirin resistance, such as those with diabetes.27,28 Such testing could also allow more precise determination of the dose-response relationship for aspirin in patients both with and without diabetes and better inform the design of large outcomes studies. However, while some encouraging epidemiologic and retrospective data exists for current methods of surrogate platelet testing for aspirin, these data lack sufficient rigor to inform clinical decision making, particularly in the setting of primary prevention,32,33,40

Acknowledgments

The authors thank the ATT Collaboration Secretariat for generously sharing diabetic subgroup data; and Dan Jonas, MD, MPH, RTI-UNC Evidence-Based Practice Center, for his assistance with the meta-analyses.

Disclosures

M.P. has previously received research support (before 2007), including travel funds, from Bayer, Inc., and has collaborated with other Bayer-funded investigators for aspirin-related modeling work. No other potential conflicts of interest relevant to this article were reported.

References

1. Centers for Disease Control and Prevention. National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the
United States, 2007. Atlanta, Ga: US Department of Health and Human Services, Centers for Disease Control and Prevention, 2008.
2. Silva JA, Escobar A, Collins TJ, Ramee SR, White CJ. Unstable angina: a comparison of angiographic findings between diabetic and non-diabetic patients. Circulation. 2005;92:1751–6.
3. Natarajan A, Zaman AG, Marshall SM. Platelet hyperactivity in type 2 diabetes: role of antiplatelet agents. Dia Vasc Dis Res. 2008;5:138–44.
4. Reusch JE. Diabetes, microvascular complications, and cardiovascular complications: what is it about glucose? J Clin Invest. 2003;112:986–8.
5. Antithrombotic Trials’ (ATT) Collaboration, Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Buring J, Hennekens C, Kearney P, Meade T, Paterson C, Roncaglioni MC, Zanchetti A. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–60.
6. Wolf T, Miller T, Ko S. Aspirin for the primary prevention of cardiovascular events: an update of the evidence for the U.S. Preventive Services Task Force Ann Intern Med. 2009;150:405–10.
7. US Preventive Services Task Force. Aspirin for the prevention of cardiovascular disease: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2009;150:396–404.
8. Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, Fonseca V, Gerstein HC, Grundy S, Nisteo RW, Pignone MP, Plutzky J, Porte D, Redberg R, Stitzel KF, Stone NI. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation. 2007;115:114–26.
9. Ogawa H, Nakayama M, Morimoto T, Nakauchi M, Doi N, Jinnouchi H, Sugiyama S, Saito Y. Japanese Prevention of Atherosclerosis With Aspirin for Diabetes (JPAD) Trial Investigators. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2008;300:2134–41.
10. Belch J, MacCuish A, Campbell I, Cobbe S, Taylor R, Prescott R, Lee R, Bancroft J, MacEwan I, Shepherd J, Macfarlane P, Morris A, Jung R, Walter R. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ. 2008;337:a1840.
11. Peto R, Gray R, Collins R, Wheatley K, Hennekens C, Janrozik K, Warlow C, Hafner B, Thompson E, Norton S. Randomised trial of prophylactic daily aspirin in British male doctors. BMJ. 1988;296:313–6.
12. Final report on the aspirin component of the ongoing Physicians’ Health Study. Steering Committee of the Physicians’ Health Study Research Group. N Engl J Med. 1988;321:129–35.
13. Thrombosis prevention trial: randomised trial of low-intensity oral anticoagulant therapy in patients with diabetes mellitus. Early treatment diabetic retinopathy study 14. ETDRS Investigators. JAMA. 1992;268:1292–1300.
14. de Gaetano G, Collaborative Group of the Primary Prevention Project. Primary prevention of cardiovascular events in patients with diabetes: meta-analysis of randomised controlled trials. BMJ. 2005;330:1392–4.
15. de Gaetano G, Collaborative Group of the Primary Prevention Project. Primary prevention of cardiovascular events in patients with diabetes: meta-analysis of randomised controlled trials. BMJ. 2005;330:1392–4.
16. Sacco M, Pellegrini F, Roncaglioni MC, Avanzini F, Tognoni G. Low-dose aspirin and vitamin E in people at cardiovascular risk: a cost-utility analysis. Ann Intern Med. 2006;144:326–36.
17. Watala C, Golanski J, Pluta J, Boncler M, Rozalski M, Luzak B, Kropnicka A, Drzewoski J. Reduced sensitivity of platelets from type 2 diabetic patients to acetylsalicylic acid (aspirin)–its relation to metabolic control. Thromb Res. 2004;113:101–13.
18. Lev EI. Aspirin resistance transient laboratory finding or important clinical entity? J Am Coll Cardiol. 2009;53:678–80.
19. Santilli F, Rocca B, De Cristofaro R, Lattanzio S, Pietrangelo L, Habib A, Pettinella C, Recchiuti A, Ferrante E, Ciabattoni G, Davì G, Patrono C. Platelet cyclooxygenase inhibition by low-dose aspirin is not reflected consistently by platelet function assays: implications for aspirin “resistance.” J Am Coll Cardiol. 2009;53:667–77.
20. Pignone M, Earnshaw S, Tice JA, Pletcher MJ. Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis. Ann Intern Med. 2006;144:326–36.
21. Calvin AD, Aggarwal NR, Murad MH, Shi Q, Elamin MB, Geske JB, Fernandez-Balsells MM, Albuquerque FN, Lamproullos JF, Erwin PJ, Smith SA, Montori VM. Aspirin for the primary prevention of cardiovascular events: a systematic review and meta-analysis comparing patients with and without diabetes. Diabetes Care. 2009;32:2300–6.
22. He J, Whelton PK, Vu B, Klag MJ. Aspirin and risk of hemorrhagic stroke: a meta-analysis of randomized controlled trials. JAMA. 1998;280:1930–5.
23. Berger JS, Roncaglioni MC, Avanzini F, Pargazzi I, Tognoni G, Brown DL. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006;295:300–10.
24. Hernández-Díaz S, García Rodríguez LA. Cardioprotective aspirin users and their excess risk of upper gastrointestinal complications. BMC Med. 2006;4:22.
25. Lai KC, Lam SK, Chu KM, Wong BC, Hui WM, Lau GK, Wong WM, Yuen MF, Chan AO, Lai CL, Wong J. Lansoprazole for the prevention of recurrences of ulcer complications from long-term low-dose aspirin use. N Engl J Med. 2002;346:2035–38.
26. Antithrombotic Trials’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86.
27. Erratum in: BMJ. 2002;324:141.
28. Pedersen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase N Engl J Med. 1984;312:1066–7.
29. Pignone M. Aspirin as an antiplatelet drug. N Engl J Med. 1994;330:1287–94.
30. Colwell JA, Halushka PV, Sarji K, Levine J, Sagar J, Nair RM. Altered platelet function in diabetes mellitus. Diabetes. 1976;25(suppl 2):826–31.
31. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357:2482–94.
32. Watala C, Golanski J, Pluta J, Boncler M, Rozalski M, Luzak B, Kropnicka A, Drzewoski J. Reduced sensitivity of platelets from type 2 diabetic patients to acetylsalicylic acid (aspirin)–its relation to metabolic control. Thromb Res. 2004;113:101–13.
33. Santilli F, Rocca B, De Cristofaro R, Lattanzio S, Pietrangelo L, Habib A, Pettinella C, Recchiuti A, Ferrante E, Ciabattoni G, Davì G, Patrono C. Platelet cyclooxygenase inhibition by low-dose aspirin is not reflected consistently by platelet function assays: implications for aspirin “resistance.” J Am Coll Cardiol. 2009;53:667–77.
34. Pignone M, Earnshaw S, Tice JA, Pletcher MJ. Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis. Ann Intern Med. 2006;144:326–36.
35. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.
36. Cholesterol Treatment Trials’ (CTT) Collaborators, Kearney PM, Blackwell L, Collins R, Simes J, Pettinger M, Sjöström I, Bagger C. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomized trials of statins: a meta-analysis. Lancet. 2008;371:117–25.
37. Turnbull F, Neal B, Albert C, Chalmers J, Chapman N, Cutler J, Woodward M, MacMahan S, Blood Pressure Lowering Treatment Trials’ Collaboration. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005;165:1410–19.
38. De Berardis G, Sacco M, Avanzini F, Tognoni G, Nobiletti C, Valentini U, Nicolucci A; ACCEPT-D Study Group. Aspirin and primary prevention of cardiovascular events in patients with diabetes: meta-analysis of randomised controlled trials. JAMA. 2005;393:130–1.
39. Eikelboom JW, Hirsh J, Weitz JI, Yi Q, Yusuf S. Aspirin-resistant thrombomune biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation. 2002;105:1650–5.

Key Words: AHA Scientific Statements • aspirin • cardiovascular diseases • diabetes mellitus • myocardial infarction • prevention • stroke
Aspirin for Primary Prevention of Cardiovascular Events in People With Diabetes: A Position Statement of the American Diabetes Association, a Scientific Statement of the American Heart Association, and an Expert Consensus Document of the American College of Cardiology Foundation
Michael Pignone, Mark J. Alberts, John A. Colwell, Mary Cushman, Silvio E. Inzucchi, Debrarata Mukherjee, Robert S. Rosenson, Craig D. Williams, Peter W. Wilson and M. Sue Kirkman

Circulation. 2010;121:2694-2701; originally published online May 27, 2010;
doi: 10.1161/CIR.0b013e3181e3b133
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/121/24/2694

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2016/12/26/CIR.0b013e3181e3b133.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
アスピリンによる心血管イベントの一次予防
糖尿病患者の科学ステートメント

米国糖尿病学会ポジショニングステートメント/AHA 科学ステートメント/ACCF エキスパートコンセンサスドキュメント

Michael Pignone, MD, MPH, FACP (執筆グループ委員長); Mark J. Alberts, MD; John A. Colwell, MD, PhD, MACP; Mary Cushman, MD, MSc; Silvio E. Inzucchi, MD; Debabrata Mukherjee, MD, MS, FACC; Robert S. Rosenson, MD, FACC, FAHA, FACP; Craig D. Williams, PharmD, FNLA; Peter W. Wilson, MD; M. Sue Kirkman, MD

略語表

ACCEwT-D	Aspirin and Simvastatin Combination for Cardiovascular Events Prevention Trial in Diabetes
ACC (F)	American College of Cardiology (Foundation)
ADA	米国糖尿病学会
AHA	American Heart Association
ARIC	Atherosclerosis Risk in Communities Study
ASCEND	A Study of Cardiovascular Events in Diabetes
ATT	Antithrombotic Trialists
BMD	British Male Doctors
CHD	冠動脈疾患
DM	糖尿病
ETDRS	Early Treatment Diabetic Retinopathy Study
FDA	米国食品医薬品局
HOT	Hypertension Optimal Treatment
HR	ハザード比

各執筆者の所属は以下のとおり。ノースカロライナ大学医学部、チャペルヒル（M.P.）、ノースウェスタン大学神経科、イリノイ州シカゴ（M.J.A.）、サウスカロライナ大学医学部内分泌・遺伝医学部門（名誉教授）、チャールストン（J.A.C.）、バーモント大学医学部、バーントン（M.C.）、エール大学医学部内分泌科（名誉教授）、テキサステック大学医学部循環器内科ポールフォスター医学部、エルパソ（S.E.I.）、テキサステック大学医学部循環器内科ボルトフォスター医学部、エルパソ（D.M.）、マウントサイナイ医科大学マウントサイナイハート、ニューヨーク州ニューヨーク（M.S.R.）、オレゴン州立大学医学部およびオレゴン健康科学大学、ポートランド（C.D.W.）、エモリー大学医学部心臓科、ジョージア州アトランタ（P.W.W.）、米国糖尿病学会（American Diabetes Association, ADA）、ピクトリア州アレクサンドリア（M.S.K.）。

ADA, American Heart Association（AHA）、およびAmerican College of Cardiology Foundation（ACCF）は、執筆者の個人的、職業的、営業的利害や外部との関係の結果として起こる現実の利害相反、あるいはその可能性を避けるためにあらゆる努力を払っている。具体的には、執筆グループの全メンバーに対して、実際の利害相反あるいはその可能性があると認められるすべての関係について開示することを求めている。

本ステートメントは2009年11月にAHA、ADA、ACCFのピア・レビューを受け、2010年1月に改訂され、2010年3月に上記3組織により承認された。

本ステートメントの引用に際して、AHAは以下の形式を使用することを要請する：Pignone M, Alberts MJ, Colwell JA, Cushman M, Inzucchi SE, Mukherjee D, Rosenson RS, Williams CD, Wilson PW, Kirkman MS. Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, ADA, and the American Heart Association, 2010; 126:2694–2701.

本ステートメントは、Diabetes CareとJournal of the American College of Cardiologyに共に発表された。

別途、本ステートメントは、AHA (care.diabetesjournals.org)、AHA (my.americanheart.org)、およびACC（www.acc.org）のウェブサイトに入手可能である。また本ステートメントの複写は、http://www.americanheart.org/presenter.html?identifier=3003999にて“topic list”または“chronological list”リンクを選択して入手することができる（No. KB-0039）。2部以上購入する場合は、電話1-843-216-2533または電子メールkelle.ramsay@wolterskluwer.comへ請求する。

専門家によるAHA科学ステートメントのピア・レビューは、AHAナショナルセンターで行っている。AHAのステートメントガイドラインの作成に関する詳細については、http://www.americanheart.org/presenter.html?identifier=3023366を参照のこと。

転載許可:本ステートメントの複写、修正、改変、転載、およびまたは配布については、AHAから明示された転載許可なく行ることはできない。許可の申請方法については、http://www.americanheart.org/presenter.html?identifier=4431を参照のこと。画面右側の“Permissions Request Form”をクリックすると、申請画面が表示される。
糖尿病患者では心血管疾患リスクが増大しており、年齢、性別をマッチさせた非糖尿病患者に比べて心血管イベントリスクが2~4倍高い。65歳以上の糖尿病患者では、死因の68%を冠動脈疾患、16%を脳卒中が占める1)。糖尿病により心血管リスクが増大する機序として、冠動脈内血栓の易成形性増大2)、血小板反応性の亢進3)、内皮機能不全の増大4)などが提唱されている。

このように、糖尿病患者では心血管イベントリスクと死亡リスクが増大していることから、心血管リスクを効果的に低減する方法が大きな関心が寄せられるようになった。高リスクの心肺機能障害患者または脳卒中患者では、アスピリンが心血管系の合併症と死亡を抑制すること（二次予防）が示唆されている5)。

米国食品医薬品局（Food and Drug Administration, FDA）は一次予防におけるアスピリンの使用を承認しており、糖尿病患者の有無が明らかでない患者におけるアスピリンの有用性については意見が一致していない6)。U.S. Preventive Services Task Force（米国予防医療特別委員会）は一次予防におけるアスピリンの使用に対する勧告を最近改訂した。同委員会は、アスピリンの服用を45~79歳の男性と55~79歳の女性に推奨したが、それより若く成人には推奨しておらず、糖尿病の有無によりその勧告を区別しなかった7)。

2007年に米国糖尿病学会（American Diabetes Association, ADA）とAmerican Heart Association（AHA）は再び、40歳を超えるあるいはそれ以外の危険因子（心血管疾患家族歴、高血圧、喫煙、脂質異常症、アルブミン尿のいずれか）を有する、心血管リスクの高い糖尿病患者の一次予防戦略として、アスピリン投与（75~162mg/日）を推奨している8)。これらは、比較的小人数の糖尿病患者を対象とした過去のいくつかの試験結果に基づいた勧告である。糖尿病患者を対象に、アスピリンの一次予防効果を検討する目的で最近実施された2件の無作為化比較試験では、どちらに糖尿病のあるアスピリンの一次予防効果に疑問を投げかける結果が得られた9)。

糖尿病患者における心血管疾患の問題は大きく、また糖尿病患者の一次予防におけるアスピリンの効果に関するエビデンスが一致していないことから、ADA、AHA、およびAmerican College of Cardiology Foundation（ACCF）は専門家グループを招集して、エビデンスを検討・総括し、こうして得られた情報に基づいて勧告を改訂した。そして、以下の課題について本報告を考察した。

1. 糖尿病患者において初回の心血管イベントを予防したアスピリンに関するエビデンスとは
2. 一次予防試験から得られた異なる成績をどのように調整できるか
3. アスピリンのリスクとは、また糖尿病の有無により違いがあるか
4. 推奨用量または用量範囲についてわかっていることは何か
5. 心血管イベントの一次予防としてアスピリンを投与すべき糖尿病患者を決定するために、アスピリンの潜在的有用性とリスクをどのように統合できるか
6. 今後の研究に必要な課題

1. 糖尿病患者において初回の心血管イベントを予防したアスピリンに関するエビデンスとは

アスピリンの心血管イベントの一次予防効果を検討し、糖尿病患者を対象に含むいくつかの無作為化試験がある（表）。本セクションでは、アスピリンの心血管イベント予防効果に関するこれらの所見を考察する。心血管イベントには、通常、虚血性イベントあるいは冠動脈疾患イベント（心筋梗塞、時に

1) Primary Prevention of Cardiovascular Diseases in People With Diabetes Mellitus (Circulation, Vol.115 No.1 2010 114~26)は本シリー

2) No.41, 2007

3) DOI: 10.1161/CIR.0b013e3181e3b133

4) http://circ.ahajournals.org からアクセスできる。
表 糖尿病患者に対するアスピリンの一次予防効果を検討した試験の比較（11,787例）

試験 / 年	アスピリン用量（試験デザイン）	避難期間（年）	糖尿病患者数（%）	女性（%）	年齢（歳）（最小値 / 平均値）	冠動脈疾患エンドポイント
PHS DM/1989[12]	325 mg/日（βカロチン 50 mgと組み合わせた 2×2 要因デザイン）	5.0	533	0	>40/NA	致死性 + 非致死性心筋梗塞
ETDRS/1992[13]	650 mg/日	5.0	3,711	44	>18/NA	致死性 + 非致死性心筋梗塞
PPP DM/2003[14-15]	100 mg/日（ビタミンE 30 mgと組み合わせた 2×2 要因デザイン）	3.7	1,031	52	>50/64	致死性 + 非致死性心筋梗塞
WHS DM/2005[16-17]	100 mg/日（ビタミンE 600 IU 隔日と組み合わせた 2×2 要因デザイン）	10.1	1,027	100	>45/55	致死性 + 非致死性心筋梗塞
JPAD/2008[18]	81〜100 mg/日（治療割り付け非盲検法、エンドポイント評価は盲検法）	4.4	2,539	46	>30/65	致死性 + 非致死性心筋梗塞
POPADAD/2008[19-20]	100 mg/日（2×2 要因デザイン、抗酸化薬を含む）	6.7	1,276	56	>40/60	冠動脈疾患 + 非致死性心筋梗塞
TPT DM/1998（ATTからのデータ）	75 mg/日	6.7	68	0	>45/58	MCE
BMD/1988（ATTからのデータ）	500 mg/日	5.6	101	0	>50/NA	MCE
HOT DM/1998（ATTからのデータ）	75 mg/日（1〜3の目標および血圧に同時無作為化）	3.8	1,501	47	>50/62	MCE

*（10−試験期間）×イベント発生率で算出した 10年推定冠動脈疾患イベント発生率
†イベント発生回数より算出
‡ATT trialists が入手した改訂ICD-9コード情報に基づくものとの PHS報告とは数値がやや異なる。
§2003年PPP糖尿病サブ試験からのデータ使用。数値と推移が経時で異なるため（患者数が増え）糖尿病患者数はもとのPPP報告とは異なる。
¶ATT試験グループに11例の心筋梗塞・冠動脈疾患死亡例（アスピリン群5例、プラセボ群5例）の追加が報告されたため、ATTの報告と同様の2005年の報告とはイベント発生率がやや異なる。

MCE：主要冠動脈イベント（冠動脈疾患死 + 非致死性心筋梗塞 + 突然死）

（次頁に続く）

不安定狭心症、脳卒中、血管死（通常、心臓突然死または脳卒中による死亡）などがある。

BMD（British Male Doctors）[10]、PHS（Physicians’ Health Study）[12]、TPT（Thrombosis Prevention Trial）[15]、HOT（Hypertension Optimal Treatment）[14]、PPP（Primary Prevention Project）[15-16]、WHS（Women’s Health Study）[17]の6試験は地域住民を対象とした試験であり、糖尿病患者のみを対象にしたものですわけではない。これらの試験に占める糖尿病患者の割合はTPT、BMD、PHSで1〜2%、PPPで22%であった。最近実施された2試験とPOPADAD（Prevention of Progression of Arterial Disease and Diabetes）[19-20]と過去の試験であるETDRS（Early Treatment Diabetic Retinopathy Study）[18]は、糖尿病患者のみを対象とした試験である。ETDRS以外の2試験では、おもに2型糖尿病患者あるいは2型糖尿病患者のみを対象としており、ETDRSでは1型、2型糖尿病患者の両方を対象としている（1型31%、2型31%、不明38%）。

3試験（BMD、PHS、TPT）は女性を対象としておらず、1試験（WHS）は女性のみを対象としてい
のはスタチンや他の脂質低下薬の投与を報告している血の既往歴のある患者にそのまま適用できない。の試験を用いたメタアナリシスの結果は、消化管出
と考えられる患者は除外した。したがって、これら
化性潰瘍の既往歴に基づき消化管出血リスクが高い
いた。最近実施された
次予防薬として普及するよりもかなり前に実施されて
る。残り5試験では、女性の占める割合は44～
56%であった。使用したアスピリンの用量は100 mg
隔日投与から650 mg連日投与まで、さまざまな
あった。9試験の平均投与期間は3.7～10.1年で、
ほとんどの試験で4～6年であった。各試験で、消化
化性潰瘍の既往歴に基づき消化管出血リスクが高い
と考えられる患者は除外した。したがって、これら
の試験を用いたメタアナリシスの結果は、消化管出
血の既往歴のある患者にそのまま適用できない。

スタチンや他の脂質低下薬の投与を報告しているの
は9試験のうち2試験のみで、JPAD試験ではスタチ
ン使用率は26%であったが、PPP試験では脂質低下薬使用率
は13%であった。3試験（BMD、PHS、ETDRS）は、スタチンが登場する前に実施さ
れており、TPT試験とHOT試験は、スタチンが一
次予防薬として普及するよりかなり前に実施されて
いた。最近実施されたPOPADAD試験とWHS試験
では、スタチン使用率は報告されていない。

男性糖尿病患者533例を対象としたPHS試験で
は、アスピリン325 mg隔日投与群における5年間
の致死性および非致死性心筋梗塞の相対リスク（relative risk, RR）が、プラセボ群より41%低いことが
示された（RR：0.59、95%信頼区間：0.33～1.06）。
HOT試験では、50～80歳の患者18,000例を対象
にアスピリン75 mg連日投与群とプラセボ群を比
較検討しており、このうち1,501例は糖尿病患者で
あった。この糖尿病患者における冠動脈疾患イベント
のRR低下率は23%であった（RR：0.77、95%
信頼区間：0.44～1.36）。PPP試験は糖尿病患者
1,031例を対象とし、アスピリン100 mg連日投与
群では心筋梗塞の複合エンドポイント（致死性およ
び非致死性心筋梗塞）がプラセボ群より有意ではない
ものの、低下することが示された（RR：0.50、
95%信頼区間：0.17～1.46）。

冠動脈疾患イベント発生率	10年推定冠動脈疾患イベント発生率	RR（95%信頼区間）	致死性および非致死性心筋梗塞の相対リスク（relative risk, RR）
冠動脈疾患発症リスク	10年推定冠動脈疾患発症リスク	RR（95%信頼区間）	致死性および非致死性心筋梗塞の相対リスク（relative risk, RR）

糖尿病患者の心血管イベント一次予防におけるアスピリン
BMD 試験と TPT 試験では、対象とした糖尿病患者数が少なく、糖尿病患者における心血管疾患リスクの低下は観察されなかった。ただ、個々の症例をみると信頼区間の幅はかなり広かった11)。唯一女性のみを対象とし、アスピリン最小用量（100 mg 隔日投与）を用いた試験である WHS 試験では、冠動脈疾患リスクの低下は全体、また糖尿病患者サブセットでも認められなかった（1,027 例、RR：1.34、信頼区間：0.85～2.12）。脳卒中リスクの低下は女性糖尿病患者で認められた（RR：0.45、信頼区間：0.25～0.82）11)。

対象を糖尿病患者に限定してアスピリンの効果を検討した 3 試験のうち、EDTRS 試験では、ある程度の網膜症を有する 18～70 歳の 1 型および 2 型糖尿病患者 3,711 例を対象に、アスピリン 650 mg 連日投与の効果をプラセボと比較した。患者の約半数には何らかの心血管疾患の既往歴があったが、この試験では心血管疾患の発症は血圧降下薬服用を含めたことに注意が必要である。心筋梗塞または脳卒中の既往歴があったのは 10% 未満で、9% に陰性が認められた。アスピリン群では非致死性および致死性心筋梗塞リスクが低下した（RR：0.85、信頼区間：0.73～1.00）。一方、脳卒中の発症頻度はアスピリン群のほうが高かったが、この差は統計学的に有意ではなかった（RR：1.18、信頼区間：0.88～1.58）。アスピリンの心筋梗塞予防効果は、男性のほうが女性よりも高かった（男性：RR：0.74、信頼区間：0.54～1.00；女性：RR：0.91、信頼区間：0.65～1.28）。この差は統計学的に有意ではなかったため、偶に得られた所見（chance finding）である可能性がある11)。

POPADAD 試験では、無症候性非梢動脈疾患を含む糖尿病患者の心血管イベント発生率が、プラセボと比較して、アスピリンおよび/または抗酸化薬により減少するかどうか検討された。本試験は多施設プラセボ対照無作為化二重盲検試験で、40 歳超の 1 型または 2 型糖尿病患者 1,276 例を対象とした。全例が足関節上腕血圧比 0.99 未満であったが症候性心血管疾患はみられなかった。患者を 2 × 2 要因デザインにより、アスピリン 100 mg 連日投与群、抗酸化サプリメント連日投与群、両方を投与する群、いずれも投与しない群に無作為に割り付け、2 つの複合一次エンドポイント（1）冠動脈疾患または脳卒中による死亡、非致死性心筋梗塞または非致死性脳卒中、重症下肢虚血による足関節より上部の切断術、（2）冠動脈疾患または脳卒中による死亡を用いて検討した。服薬中止率は高く、1 年後に 14%、5 年後に 50% であった。全体として、主要イベントが発生したのはアスピリン群 638 例中 116 例 (18.2%)、プラセボ群 638 例中 117 例 (18.3%) であった（ハザード比【hazard ratio】：HR：0.98、信頼区間：0.76～1.26）。冠動脈疾患または脳卒中による死亡はアスピリン群 43 例（6.7%）、プラセボ群 35 例（5.5%）であった（HR：1.23、信頼区間：0.79～1.93）。各種の二次エンドポイントと有害事象の発現率も両群間で差は認められなかった。患者の転帰は抗酸化サプリメント投与の有無によって変わらず、アスピリンと抗酸化サプリメントとの相互作用は認められなかった11)。

JPAD は心血管疾患の既往歴がない日本人の 2 型糖尿病患者 2,539 例を対象に、低用量アスピリンの心血管イベント一次予防効果を検討した非盲検無作為化試験である。患者をアスピリン群（81～100 mg 連日投与）または非アスピリン群に割り付け、平均 4.4 年間追跡した。一次エンドポイントは、致死性または非致死性虚血性心筋発症、致死性または非致死性脳卒中、末梢動脈疾患の複合エンドポイントであった。計 154 件のイベントが発生し、内訳は、アスピリン群 68 件（5.4%）、非アスピリン群 86 件（6.7%）であった（HR：0.80、信頼区間：0.58～1.10）。複合二次エンドポイント（冠動脈または脳血管疾患による死亡）は、アスピリン群 1 例（脳卒中）、非アスピリン群 10 例（致死性心筋梗塞 5 例、致死性脳卒中 5 例）に発生した（HR：0.10、信頼区間：0.01～0.79）。その他の二次エンドポイントは両群間で差はなかった。全体では、アスピリン群 34 例、非アスピリン群 38 例に死亡した（HR：0.90、信頼区間：0.57～1.14）が、事前に設定したサブグループ解析では、65 歳超の患者（1,363 例）の一次エンドポイント発生率はアスピリン群のほうが低かった（HR：0.68、信頼区間：0.46～0.99）。
まとめると、アスピリンの心血管疾患予防効果に関するエビデンスは、対象を糖尿病患者に限定した3試験と、糖尿病患者のほかあらゆる患者を対象としてアスピリンの予防効果を検討した6試験から得られている。1件の試験からは決定的な成績が得られないことから、課題2ではメタアナリシスを用いて、これまでに得られたデータの調整を試みた。

2. 異なる試験成績をどのように調整できるか
これまでに得られた試験成績を統合して調整する目的で、アスピリンの予防効果を検討した試験（あらゆる患者を対象とした試験と、対象を糖尿病患者に限定した試験を含む）に関するこれまでに発表されたメタアナリシスを検討し、新たにメタアナリシスを実施した。

Antithrombotic Trialists Collaborationの研究者らは、喫煙者では、非喫煙者よりもアスピリンの効果が低いことを示唆したもの。アスピリンの効果の異質性に関するその他の明確な原因を特定得なかった。
タ量が少ないことから、効果を正確に推定することはできない。また、糖尿病患者について患者レベルの十分なデータが入手できないため、冠動脈疾患イベントおよび脳卒中に対するアスピリンの効果が性別、アスピリン投与量、その他の臨床的因子により異なるのかどうかを検討することはできない。最近、他のメタアナリシスにより糖尿病患者の心血管疾患イベントリスクに対するアスピリンの効果を検討した試験のメタアナリシス

A：冠動脈疾患イベントに対するアスピリンの効果
非対立検定：χ² = 8.71, p = 0.367, I² = 8.2%
B：糖尿病患者の脳卒中リスクに対するアスピリンの効果
非対立検定：χ² = 12.48, p = 0.131, I² = 35.9%

図 糖尿病患者の心血管疾患イベントリスクに対するアスピリンの効果を検討した試験のメタアナリシス

試験

A 試験

試験	リスク比 (95%信頼区間)	% Weight
PHS	0.59 (0.39〜1.06)	5.7
ETDRS	0.85 (0.73〜1.00)	48.2
PPP	0.49 (0.17〜1.43)	1.8
WHS	1.34 (0.85〜2.12)	9.1
JPAD	0.87 (0.40〜1.87)	3.4
POPADAD	1.09 (0.82〜1.43)	21.5
TPT	0.90 (0.28〜2.89)	1.5
BMD	1.00 (0.42〜2.40)	2.6
HOT	0.77 (0.44〜1.36)	6.2

全試験リスク比（95%信頼区間）| 0.91 (0.79〜1.05) |

B 試験

試験	リスク比 (95%信頼区間)	% Weight
ETDRS	1.18 (0.88〜1.58)	24.1
PPP	0.90 (0.38〜2.03)	7.3
WHS	0.45 (0.25〜0.82)	12.0
JPAD	0.65 (0.39〜1.11)	14.1
POPADAD	0.74 (0.49〜1.12)	18.6
HOT	0.91 (0.52〜1.61)	12.9
TPT	0.67 (0.06〜7.06)	1.2
PHS	1.50 (0.69〜3.25)	8.5
BMD	1.39 (0.15〜12.86)	1.3

全試験リスク比（95%信頼区間）| 0.85 (0.66〜1.11) |

糖尿病患者の糖尿病を解説対象から除外）を検討し、アスピリンの効果推定値が著者らの成績と同様であることを示した。心筋梗塞の RR は 0.86（95%信頼区間：0.61〜1.21）で、主として WHS 試験と PHS 試験を含めたことにより中等度の異質性（I²=62.2%）が認められた。脳卒中については 5 試験を解析し（PHS 試験を除外）、要約 RR は 0.83（95%信頼区間：0.60〜1.14）で、主として WHS 試験を含めたことにより中等度の異質性（I²=52.5%）が認められた。また、効果は潜在的に重要な性差がある可能性が示された。男性ではアスピリンにより心筋梗塞が減少した
（RR：0.57, 95% 信頼区間：0.34～0.94）が、女性では減少しなかった（RR：1.08, 95% 信頼区間：0.71～1.65）。

Zhangら（20）は、7試験（BMD 試験、TPT 試験を除く）のメタアナリシスを実施し、同様の結果を得た（心筋梗塞の RR：0.85, 95% 信頼区間：0.65～1.11；脳卒中の RR：0.83, 95% 信頼区間：0.63～1.10）。さらにメタ回帰分析を実施して、結果に重要な性差があることを示した。Begg検定とEgger検定を用いたファンネル・プロットからは出版バイアスは認められなかった。

3. アスピリンの副作用とは、また糖尿病病の有無により違いがあるか
アスピリンの主要な副作用には、頭盖内出血（出血性脳卒中）と頭蓋外出血（おもに消化管出血）がある。糖尿病患者と非糖尿病患者が混在する被験者群を対象とした一次および二次予防試験のデータに基づくと、低用量アスピリンによる出血性脳卒中の絶対リスクは年間1万人当たり約1例と考えられる（21）。一次予防試験を個別に解析した成績でも同様の結果が得られている（22）。このような出血性脳卒中は、前述の課題2で考察した全脳卒中に対するアスピリンの効果推定値に組み込まれている。

6件の一次予防試験のメタアナリシスによると、アスピリン投与により頭蓋外出血（おもに消化管出血）リスクが54%上昇したことが示されている（RR：1.54, 95% 信頼区間：1.30～1.82）。アスピリンの一次予防試験に登録された中年患者を対象とした症例群では、絶対リスクの増加は年間1万人当たり約3例であった。ATT Collaborationの研究者らは、いくつかの心血管疾患危険因子がアスピリンによる頭蓋外出血リスクを増大させることを示しており、心血管疾患リスクが高いとアスピリンによる副作用リスクも高くなることを示唆している。アスピリンの服用している糖尿病患者では、非糖尿病患者と比較してリスクが55%上昇した（RR：1.55, 95% 信頼区間：1.13～2.14）。

心血管イベント予防に使用するアスピリンの至適用量については、試験成績を報告した文献からは明
確に確立されていないが、糖尿病患者を対象とした一次予防試験で用いられた平均1日用量は50〜650mgであった（表1）。ATT Collaborationの間接的エビデンスからは、低用量（75〜162mg/日）で得られるリスク低減効果は、高用量（500〜1,500mg/日）の場合と同程度であり、75mg/日未満の用量を検討したいくつかの試験でみられた効果より高いことが示唆されている26。用量が高いほど血栓イベント発生抑制効果が大きいことが示唆されている27,28。

糖尿病患者の血小板機能には変化がみられるが、糖尿病患者の心保護に対するアスピリンの必要量がこの変化により影響があるとすれば、どのような影響を受けるのかは明らかにされていない29。血小板の活性化と凝集にはトロンボリンA4、トロンビン、エピネフリン、von Willebrand因子、アスピリン作用に感受性がない30。したがって、各種のex vivoおよびin vitro検査（血小板凝集能測定、トロンボキサンB2測定）で測定すると、糖尿病患者ではアスピリン抵抗性が増大しているようにみえるが、現時点ではこれらの所見だけで糖尿病患者に、より高用量のアスピリンを経験的に推奨するには十分とはいえないと31-33。

現在あるエビデンスからみると、アスピリンは心血管イベントに対するアスピリンの効果は、現在まだ不明である。これまでに実施された試験の成績は一致していないが、全体としてはアスピリンが心血管イベントリスクを軽度に抑制することが示唆されている。性差も含めて糖尿病におけるアスピリンの特定の効果をさらに明確にするための試験が今後必要とされる。以下に、現時点の勧告を示す。

5.心血管イベントの一次予防としてアスピリンを投与すべき糖尿病患者を決定するために、アスピリンの潜在的な有益性と有害性をどのように統合できるか

現在あるエビデンスからみると、アスピリンは心血管イベントに対する軽度の効果を示し（RR低下率約10%）、そのイベントの絶対減少率は基礎の心血管疾患リスクにより異なりと思われる（ベースラインのリスクが高いほうが、絶対的利点が大きいはずである）。主要な副作用は消化管出血リスクの上昇と考えられ、実臨床では過剰リスクは年間1,000人当たり1〜5例にのぼる可能性がある。心血管疾患リスクが年間1%を超える成人では、予防される心血管疾患イベント発生数は、誘発される出血イベント発生数とほぼ同様あるいはそれよりも多くなるが、考慮されるイベント（心筋梗塞、脳卒中、消化管出血）の長期的な健康への影響は同様ではない34。著者らは、これらのデータに基づいて勧告を作成した。

成人糖尿病患者の心血管疾患イベントの一次予防に対するアスピリンの効果は、現在まだ不明である。これまでに実施された試験の成績は一致していないが、全体としてはアスピリンが心血管イベントリスクを軽度に抑制することが示唆されている。性差も含めて糖尿病におけるアスピリンの特定の効果をさらに明確にするための試験が今後必要とされる。以下に、現時点の勧告を示す。

• 血管疾患の既往歴がない成人糖尿病患者で、心血管疾患リスクが高い（心血管疾患イベントの10年リスクが10%を超える）、出血リスクが高い場合（消化管出血や消化性潰瘍の既往歴、非ステロイド系抗炎症薬やワルファリンなど出血リスクを高める他の薬剤の現在の服用の有無に基づき判断）、低用量アスピリン（75〜162mg/日）の予防投与は妥当である。心血管疾患リスクが高い成人糖尿病患者とは、50歳超の男性および60歳超の女性で、以下に示す他の主要心血管疾患リスク因子（喫煙、高血圧、脂質異常症、若年性心血管疾患の家族歴、アルブミン尿）を1つ以上有する大部分の患者である。（ACCF/AHAクラスIIa。エビデンスレベル：B）（ADA エビデンスレベル：C）

• 出血により起こる可能性がある副作用が、達成しようとする効果と相殺するため、成人糖尿病患者で心血管疾患リスクが低い（50歳未満の男性および60歳未満の女性で、他の主要心血管疾患リスク因子が少なく、10年心血管疾患リスクが5%未満）場合、心血管疾患予防としてアスピリンを推奨すべきでない。（ACCF/AHAクラスIII。エビデンスレベル：C）（ADA エビデンスレベル：C）
さらなる試験成績が得られるまでは、心血管疾患リスクが中等度（若年で危険因子を１つ以上有する、あるいは高齢で危険因子がない、あるいは10年心血管疾患リスクが5〜10%）の糖尿病患者に対して低用量アスピリン（75〜162 mg/日）の予防投与を考慮してもよい。（ACCF/AHAクラスIIb、エビデンスレベル：C）（ADAエビデンスレベル：E）

心血管リスクの評価
これらの勧告は、アスピリン投与を決定する過程の一環として行う心血管リスクの正確な評価に左右される。これまで発表されたいくつかのガイドラインで前提としていたことであるが35)、すべての糖尿病患者で心血管リスクが高いわけではない。著者らは、年齢、性別、その他の危険因子を統合して、あるいは絶対的心血管リスクの推定値に基づいて治療ガイドラインを作成した。ここで考慮すべき重要な点は、患者が時間経過とともに別の危険因子を獲得する可能性があるということであり、全体のリスクプロフィールを再評価する必要がある。絶対リスクを用いた勧告には、リスク予測ツールを用いる必要がある。糖尿病患者で用いられるツールを以下に示す。

1. UKPDS Risk Engine: http://www.dtu.ox.ac.uk/riskengine/index.php
2. ARIC CHD Risk Calculator: http://www.aricnews.net/riskcalc/html/RC1.html
3. ADA Risk Assessment Tool, Diabetes PHD: http://www.diabetes.org/living-with-diabetes/complications/diabetes-phd/

併用療法
患者がこれらの前提の下で、アスピリン投与の適応となるほどの心血管疾患リスクを有するかどうか、ステチン、血圧コントロール、禁煙など、他の心血管疾患リスクを低減する有効な方法を用いるかどうかに留める。これらの治療法もそれぞれ心血管疾患イベントリスクを低下させるので、アスピリン投与を判断する際に考慮すべきである。これらの有効な治療法を最初に行う場合は、アスピリンの副作用の可能性を考えるとアスピリン投与の適応となるためのリスクを有する糖尿病患者数は減少することになる。たとえば、血圧上昇と不適切な脂質レベルに基づいて判断した10年リスカが20%の患者では、ステチン投与によりリスクが20%から13%に、有効な血圧コントロールにより13%から10%に低下することになり、アスピリン投与の決定がさらに困難になる。これらの追加の治療法のリスク低減効果は即時には発現しないが、それでも最初の決断の際に取り入れるには十分な速度で効果が発現すると推定できる。

6. 今後の研究に必要な課題
現在進行中の2試験により、糖尿病患者の心血管イベント予防における低用量アスピリンの役割についてさらなる情報が得られると期待される。その1つ、ACCEPT-D（Aspirin and Simvastatin Combination for Cardiovascular Events Prevention Trial in Diabetes）では、シンバスタチンを服用している50歳未満の糖尿病患者を対象に、アスピリン100 mg/日投与群と非アスピリン投与群の一次予防効果を比較検討するインタリナの非盲検試験である36)。予定登録患者数は5,170例で、あらかじめ特定したいくつかのサブグループを検討し、アスピリンの効果の差を、男女、高齢者、若年者、ベースラインの脂質レベル、ステチン投与別の検討の予定である。もう1つ、英国で実施されているASCEND（A Study of Cardiovascular Events in Diabetes）試験でも、血管イベントの既往歴のない40歳未満の男女の1型・2型糖尿病患者を対象に、アスピリン100mg/日とプラセボの効果を検討している37)。同試験は2×2要因デザインを用いた二重盲検プラセボ対照試験で、ω-3脂肪酸サプリメントの効果も検討する予定である。予定登録患者数は1万例で、心筋梗塞と脳卒中の両方を含む主要血管イベントの20%の減少を確認できる適切な検出力をもつよう計画された。これらの試験により重要な追加情報が得られることが期待される。それらの結果に基づくところにより、糖尿病患者におけるアスピリンの冠動脈疾患イベント予防効果を最終的に決定するには至らない可能性がある。とくにステチン投与患者、女
性患者、1型糖尿病患者などの重要なサブグループではその可能性が強い。ASCEND 試験では RR の 20% 低下を検出できるよう設定されているが、10%の潜在的発生率をもつ対照群の患者において RR の低下が 10% であるとき、望まれる検出力が 90% の場合は 36,000 例超の患者が、80% の場合は 26,000例超の患者が必要となる。中等度リスクの糖尿病患者（年間イベント発生率 1 ～ 2%）においてこのイベント発生率を達成するには、5 ～ 10 年の試験期間が必要となるであろう。したがって、これら進行中の試験により最終的な回答が得られない可能性があるものの、2 試験合わせて 15,000 例超の患者が登録されるため、糖尿病患者の一次予防におけるアスピリンの役割について重要な新情報が得られるであろう。

また、糖尿病患者のようにアスピリン抵抗性が懸念される患者の管理には、血小板反応性と抗血小板薬に対する反応性を検査する信頼性の高い代替指標の開発が有用となる27-28。このような検査法により、糖尿病の有無にかかわらずアスピリンに対する用量反応関係がより正確に検討でき、大規模アウトカム試験のデザインに有用な情報をもたらすことができる。しかしながら、アスピリンに対する現在の代替血小板指標の測定法については有望な疫学的およびレトロスペクティブ研究のデータが得られているものの、これらデータには臨床的意義に十分な情報が示されていない32,33,40。

謝辞
糖尿病サブグループのデータを提供いただいた ATT Collaboration 事務局に感謝する。またメタアナリシスに関するサポートについて RTI-UNC Evidence-Based Practice Center の Dan Jonas MD, MPH に感謝する。

情報開示
執筆グループメンバーとの関係について、本誌 p72 を参照のこと。
G. Nicolucci A. Aspirin for primary prevention of cardiovascular events in people with diabetes: meta-analysis of randomised controlled trials. BMJ. 2009;339:b4531.

20. Zhang C, Sun A, Zhang P, Wu C, Zhang S, Fu M, Wang K, Zou Y, Ge J. Aspirin for primary prevention of cardiovascular events in patients with diabetes: a meta-analysis. Diabetes Res Clin Pract. 2010;87:211–8.

21. Calvis AD, Aggarwal NR, Murad MH, Shi Q, Elamin MB, Geske JB, Fernández-Halsells MM, Albuquerque PN, Lampropoulos JP, Erwin PI, Smith SA, Montori VM. Aspirin for the primary prevention of cardiovascular events: a systematic review and meta-analysis comparing patients with and without diabetes. Diabetes Care. 2009;32:2300–6.

22. He J, Whelton PK, Vu B, Klug MJ. Aspirin and risk of hemorrhagic stroke: a meta-analysis of randomized controlled trials. JAMA. 1998;280:1930–5.

23. Berger JS, Roncaglioni MC, Avanzini F, Pangrazzi I, Tognoni G, Brown DL. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006;295:306–13.

24. Hernández-Díaz S, García Rodríguez LA. Cardioprotective aspirin users and their excess risk of upper gastrointestinal bleeding. BMJ. 2006;333:622.

25. Lai KC, Lam SK, Chu KM, Wong BC, Hui WM, Hu WH, Lau GK, Wong WM, Yuen MF, Chan AO, Lai CL, Wong J. Lansoprazole for the prevention of recurrences of ulcer complications from long-term low-dose aspirin use. N Engl J Med. 2002;346:2003–8.

26. Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86. Erratum in: BMJ. 2002;324:141.

27. Federsen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase N Engl J Med. 1984;311:1206–11.

28. Patrono C. Aspirin as an antiplatelet drug. N Engl J Med. 1994;330:1287–94.

29. Colwell JA, Haleshka PV, Sarji K, Levine J, Sagel J, Nair RM. Altered platelet function in diabetes mellitus. Diabetes. 1976;25(suppl 2):826–31.

30. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357:2482–94.

31. Watala C, Golanski J, Pluta J, Boncher M, Rozalski M, Luzak B, Kropiwnicka A, Drzewoski J. Reduced sensitivity of platelets from type 2 diabetic patients to acetylsalicylic acid (aspirin)-its relation to metabolic control. Thromb Res. 2004;113:101–13.

32. Lev EI. Aspirin resistance transient laboratory finding or important clinical entity? J Am Coll Cardiol. 2009;53:678–80.

33. Santilli F, Rocca B, De Cristofaro R, Lattanzio S, Pietrangelo L, Habib A, Pettinella C, Recchiuti A, Ferrante E, Ciubatoni G, Davi G, Patrono C. Platelet cyclooxygenase inhibition by low-dose aspirin is not reflected consistently by platelet function assays: implications for aspirin “resistance.” J Am Coll Cardiol. 2009;53:667–77.

34. Pignone M, Earnshaw S, Tice JA, Fletcher MJ. Aspirin, statins, or both drugs for the primary prevention of coronary heart disease events in men: a cost-utility analysis. Ann Intern Med. 2006;144:326–36.

35. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

36. Cholesterol Treatment Trialists’ (CTT) Collaborators, Kearney PM, Blackwell L, Collins R, Kerech A, Simes J, Petro R, Armitage J, Baigent C. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25.

37. Turnbull F, Neal B, Algert C, Chalmers J, Chapman N, Cutler J, Woodward M, MacMahon S. Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med. 2005;165:1410–19.

38. De Berardis G, Sacco M, Evangelista V, Filippi A, Giorda CB, Tognoni G, Valenti U, Nicolucci A; ACCEP-D Study Group. Aspirin and Simvastatin Combination for Cardiovascular Events Prevention Trial in Diabetics (ACCEP-D): design of a randomized study of the efficacy of low-dose aspirin in the prevention of cardiovascular events in subjects with diabetes mellitus treated with statins. Trials. 2007;8:21.

39. British Heart Foundation. ASCEND. Available at: http://www.ptsu.ox.ac.uk/ascend. Accessed December 16, 2009.

40. Eikelboom JW, Hirsch J, Weitz JI, Johnston M, Yi Q, Yusuf S. Aspirin-resistant thromboxane biosynthesis and the risk of myocardial infarction, stroke, or cardiovascular death in patients at high risk for cardiovascular events. Circulation. 2002;105:1650–5.