How many reconstructive urologists do we have in the US?

There is no direct way to know how many qualified practitioners are providing reconstructive urology in the USA, or their distribution nationally. However, there are indirect means to estimate the number of active reconstructive urologists, and even estimate their distribution. We performed one revealing analysis using the indirect measure of case number reports by urologists applying for board certification or recertification (1). In that analysis, the number of urethroplasties performed in any given US state varied hugely. The proportion of patients who had urethroplasty (versus dilation or urethrotomy) ranged from 0-17%, depending on the state. Five US states reported no urethroplasties at all, despite the fact that the series contained more than 4,800 urologists reporting over a 5-year period (Figure 1). Eliminating those states with zero urethroplasties, the rate of urethroplasties could vary by as much as 150-fold between geographic areas. There was one hopeful trend: the younger urologists who were certifying had a 300% higher rate of urethroplasty than the older urologists that were recertifying (12% vs. 4%). These data represent only a snapshot in time, and in no way capture the surgical activity of doctors not certifying/recertifying in that 5-year period, but they are useful nonetheless. This dataset shows deep regional deficiencies in the number of reconstructive urologists in the US. Clearly, our population is not being served by adequate numbers of reconstructive urologists. This is no surprise, as the nation is short of urologists in general and there has been a further decreasing supply of urologists in relation to population. In the last decade, 24% of all the counties in the US lost urologists relative to their population growth (2).

Considering that the incidence of urethral stricture rises sharply (6-fold) after age 55 (3), the future should require even more practitioners with knowledge of urethroplasty. Considering that the US will have about 14 million more men age over 60 in 2020 compared to 2010 (http://www.aoa.gov/AoARoot/Aging_Statistics/future_growth/docs/By_Age_and-Gender_Persons_60_and_over.xls), we can expect that over the next decades, the number of patients in need of reconstructive urology will also grow. The problem of inadequate numbers and distribution of reconstructive-
trained urologists will worsen further over the next decade.

Why it matters: most patients are getting repeat dilations instead of potentially curative urethroplasties

These data also show that most patients do not get curative reconstructive surgery when they have strictures, proving at least the need for more urologic expertise/training in open urethroplasty. On average in our country, patients with stricture are treated only 6% of the time with urethroplasty and 94% of the time with dilation/DVIU (4). In some series, dilation/DVIU x2 is 50 times more commonly performed than urethroplasty (5), despite the fact that these procedures were deemed by Anger et al. (5) “neither curative nor cost effective” (6-10). Clearly most US patients are not getting the best treatment for their strictures, and most practitioners do dilation/DVIU, despite that fact that the cure rate for dilation is an appalling 12% (8) and for first urethrotomy is at best 50% (6-8) and may be closer to 0% (4). The cure rate for second urethrotomies is thought, in fact, to approach zero (4) and the cure rate for anything but the shortest strictures <1 cm is very poor. Strictures longer than 1 cm have a 390% higher failure rate after dilation/urethrotomy than short strictures <1 cm long (6). Because most strictures are in fact longer than 1 cm worldwide, the expected cure rate of DVIU is generally poor.

This lack of urologic reconstruction expertise is further proven by the work of Ferguson et al. (11). They showed that the majority of polled urologists (80%) favored repeated “neither curative nor cost effective (5)” dilations for recurrent strictures, instead of doing potentially curative urethroplasty. Too many of the urologist responding to the poll (25%) also did not ascribe to the very concept that initially failed dilation/DVIU x2 is often best followed by urethroplasty. Clearly, urologic reconstruction expertise and knowledge is lacking in our country.

How many urethral stricture patients are there?

The true number of urethral stricture patients in the US is also unknown. However, the Urologic Diseases in America project used ten public and private patient registries, interpreted by expert health epidemiologists, to
estimate the burden of stricture disease (3). In that 2,000
dataset, there were 5,000 inpatient visits and 1.5 million
office visits for urethral stricture yearly. For perspective,
realize that both of these figures are higher than that for
so called “common” urologic problem such as urolithiasis.
In fact, outpatient hospital or surgicenter visits for urethral
stricture were actually twice as common as those for urinary
lithiasis. In 2001, there were almost 20,000 dilations per
100,000 Medicare beneficiaries, a number that exceeded the
number of ureteroscopies by almost double. It is a common
problem!

Another way to thumbnail estimate the number of
urethral stricture patients in the US is to estimate of the
number of urethral stricture patients seen by an average
urologist. In a 2011 survey, Ferguson et al. (11) determined
that the average urologist treated five urethral strictures a
year. It is of course unknown how many patients were seen
during those five stricture treatment visits, as some patients
may present more than once a year. However, if we calculate
that there are approximately 9,775 active urologists in the
US (2) one can speculate approximately 9,775 × 5 = 48,875
urethral strictures visits a year in the US. We are a busy
reconstructive urology center, but we tend to perform about
150 urethroplasties a year and maintain a patient load that
generally exceeds our capacity by about 10%. Many more
busy reconstructive urologists will be needed before this
large number of stricture patients can be treated properly.

Other, non-urethral stricture related diseases
also require reconstructive expertise

This chapter has discussed the burden of urethral stricture
disease, and its urethroplasties common inadequate
treatment in the US, partly because of lack of qualified
experts. However, the burden of reconstructive urology
is not limited to urethral stricture. At our center, we do
surgery for many other problems: buried penis, penile
trauma, Peyronie’s disease, vesicovaginal fistula, vesicorectal
fistula, colovesical fistula, ureteral obstruction, incontinence
(artificial urinary sphincter AUS and male sling), post-
Fournier’s reconstruction and others. The burdens of these
diseases are unknown, but they add to the already significant
numbers of patients that require a reconstructive urologist.

Trends in training

The most obvious trend in urologic reconstruction today is
an explosion in the number of qualified fellowship training
centers nationally and even internationally. When I finished
my fellowship in 2000, there were perhaps three bona fide
fellowships in reconstructive urology in the country. Now
in the Society for Genitourinary Reconstruction match
(http://www.societygurs.org/fellowship.html), there are at
least 13 fellowship programs in the US, and another notable
two in foreign countries (India, England) that can train
US urologists—a 500% increase in 13 years. This number
should grow modestly in the next years as more programs
with high volumes of reconstructive patients and excellent
reconstructive skills/training open up even more fellowship
programs. While some have worried that this means we may
over train reconstructionists and flood the market, it is clear
that huge geographic swaths of America lack reconstructive
experts and that the risk of this will remain low for the
foreseeable future.

At every US reconstruction center, residents are also
presumably performing/learning a larger number of cases
than in the past. My residents perform about 50 cases a
year as primary surgeon. After training, they can reliably
perform most urethroplasty, and tend to do so when they
are out in practice. (I must editorialize that when our
residents do these cases, they make every cut and throw
every stitch: they do not merely observe and thus are well-
trained in the subtleties of the procedures. Your mileage
may vary). Training residents properly should create even
more practitioners that can perform urethroplasty. It is my
unscientific opinion that a buccal urethroplasty is about
1/3 as difficult as a radical prostatectomy: it is something
that can and should be taught widely. In past years, many
operations that were the sole territory of “super experts”
went mainstream and now are done by many nonspecialty
urologists: ureteroscopy, neobladder, laparoscopy, robotics,
and more. It is my dream that cases as simple as most
anastomotic or buccal urethroplasties can be done by
general practitioners, just as many technically demanding
surgeries are done by them today.

The future

In summary, there are too many “neither cost effective nor
curative” dilations and urethrotomies occurring in the US,
and a dearth of potentially curative urethroplasties. There
are three major reasons: (I) lack of knowledge of how to do
urethroplasty among urologists (12); (II) lack of access to
experts to refer patients to (1); and (III) lack of knowledge
that urethroplasty is superior than DVIU/dilation for long,
or recurrent strictures (12). Recent increases in the number
of centers of excellence that are training both residents and fellows in reconstructive techniques should go a long way to remedying this deficiency.

Acknowledgements

None.

Footnote

Conflicts of Interest: The author has no conflicts of interest to declare.

References

1. Burks FN, Salmon SA, Smith AC, et al. Urethroplasty: a geographic disparity in care. J Urol 2012;187:2124-7.
2. Neuwahl S, Thompson K, Fraher E, et al. HPRI data tracks. Urology workforce trends. Bull Am Coll Surg 2012;97:46-9.
3. Santucci RA, Joyce GF, Wise M. Male urethral stricture disease. J Urol 2007;177:1667-74.
4. Santucci R, Eisenberg L. Urethrotomy has a much lower success rate than previously reported. J Urol 2010;183:1859-62.
5. Anger JT, Buckley JC, Santucci RA, et al. Trends in stricture management among male Medicare beneficiaries: underuse of urethroplasty? Urology 2011;77:481-5.
6. Pansadoro V, Emiliozzi P. Internal urethrotomy in the management of anterior urethral strictures: long-term followup. J Urol 1996;156:73-5.
7. Greenwell TJ, Castle C, Andrich DE, et al. Repeat urethrotomy and dilation for the treatment of urethral stricture are neither clinically effective nor cost-effective. J Urol 2004;172:275-7.
8. Heyns CF, Steenkamp JW, De Kock ML, et al. Treatment of male urethral strictures: is repeated dilation or internal urethrotomy useful? J Urol 1998;160:356-8.
9. Rourke KF, Jordan GH. Primary urethral reconstruction: the cost minimized approach to the bulbous urethral stricture. J Urol 2005;173:1206-10.
10. Wright JL, Wessells H, Nathens AB, et al. What is the most cost-effective treatment for 1 to 2-cm bulbar urethral strictures: societal approach using decision analysis. Urology 2006;67:889-93.
11. Ferguson GG, Bullock TL, Anderson RE, et al. Minimally invasive methods for bulbar urethral strictures: a survey of members of the American Urological Association. Urology 2011;78:701-6.
12. Bullock TL, Brandes SB. Adult anterior urethral strictures: a national practice patterns survey of board certified urologists in the United States. J Urol 2007;177:685-90.

Cite this article as: Santucci RA. The reconstructive urology work force: present and future. Transl Androl Urol 2014;3(2):205-208. doi: 10.3978/j.issn.2223-4683.2014.04.08