Duration distributions for gamma-ray bursts registered in various experiments since VENERA11/KONUS up to Fermi/GBM.

I V Arkhangel'skaja
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow, 115409, Russia
E-mail: irene.belousova@usa.net

Abstract. Gamma-ray bursts duration distributions properties for events registered by experiments CGRO/BATSE, VENERA11/KONUS, VENERA12/KONUS, Swift/BAT, GRANAT/PHEBUS, Suzaku/WAM, RHESSI and Fermi/GBM are considered. GRBs observed since 1967 and now several thousands of events were listed in more than 30 catalogues. Gamma-ray bursts duration distribution was the first analysed using data of BATSE instrument onboard the CGRO. The GRBs duration distribution analysis had shown the existence of two bursts classes: long and short separated by $t_{90} = 2$ s. But results of similar distributions for bursts observed by other detectors have shown shifting of boundary between short and long events from value of 2 s. For example, Swift/BAT GRBs subset analysis gives the value of ~ 1 s for this separator point. Moreover, t_{90} has dependence from instrument registered this burst – it is function of detector sensitivity threshold and operation energy band. For instance, the duration of GRB060418 burst t_{90} is ~ 52 s according to Swift/BAT data and only 36 s according to RHESSI data. Therefore, the type of GGB (whether it short or long) should be defined only taking into account distinctive features of instrument detected this event. Also attributes of third intermediate GRBs subgroup appearance in events subsets for various detectors are discussed. Firstly this subgroup was found some years ago in BATSE GRB duration and duration-hardness distributions.

1. Introduction
Gamma-ray bursts (GRBs) were first registered by Vela series satellites launched in 1969 and 1970 [1]. The first GRB with duration ~ 1s was observed on July 2, 1967 by detectors onboard Vela-4A in energy range 0.1 - 1 MeV [2]. GRBs characteristics vary in very large intervals. For example, bursts duration lies in the interval $10^{-2} - 10^3$ s, registered near the Earth fluence varies in the range $10^{-8} - 10^{-3}$ erg/(cm2\timess). Several thousand GRBs were detected up to now (see, for example, [3]) by more than 30 instruments onboard various satellites in both hear-Earth and interplanetary space.

2. GRBs properties based on various satellite data
The examples of GRBs subsets observed in several experiments are presented in table 1.

The first detailed GRB catalogue (1B) was obtained as a result of BATSE experiment onboard the Compton Gamma Ray Observatory (CGRO) [4]. Gamma-ray bursts duration distribution was the first analysed using its data.
Satellite	Operation period	Detector name	Energy band	Time resolution	Number of GRBs detected
Vela satellite series [1, 2, 5]	October 1963 - March 1972	CsI scintillator counter	0.2 – 1.0 MeV (Vela 5a, 5b) 0.3 – 1.5 MeV (Vela 6a, 6b)	0.05s	73
VENERA [3, 6]	September 1978 - April 1980	KONUS	50.0-200 keV	15.625 ms	141
Pioneer Venus Orbiter [3, 7]	December 1978 - August 1992	Gamma Ray Burst Detector (OGBD)	0.2 to 2.0 MeV	64 ms	~270
Ulysses [11]	October 1990 - June 2009	Solar X-Rays and Cosmic Gamma Ray Bursts (HUS/GRB)	15.0 - 150 keV (scintillation counters) 5.0 - 15 keV (solid state detectors)	From 0.25 to 2s depending on telemetry rate 2 μs	1889
CGRO [12]	April 1991 - June 2000	BATSE (LAD and SD)	20 keV-2.0 MeV	4 ms	Several GRBs ~30
Wind [16]	November 1994 - operated	OSSE [13]	50 keV-10 MeV	1s	~50
HETE-2 [17]	October 2000 - March 2006	Fregate	7 - 4×10^2 keV	20 ms	~300
INTERGRAL [18]	October 2002 - operated	Spectrometer SPI	20 keV - 15 MeV	single photon counting	~300
Suzaku [19]	operated	Imager IBIS	15 keV - 10 MeV	-	Several GRBs
RHESSI [20]	February 2002 - February 2010	RHESSI	3 keV–20 MeV	2 ms	522 [20, 21]
Swift [22, 23]	November 2004 - operated	BAT	15.0 - 150 keV	200 μs	1128
Agile [24]	April, operated	GRID	30 MeV – 30 GeV	10 ms	Several
2007 MCAL 18 – 60 keV tens GRBs
Fermi [25] July, 2008 operated GBM [26] –8 keV ÷ ~ 30 2 µs 1710 MeV
LAT [27] ~ 20 MeV to >300 26.5 µs 104 GeV

a For RHESSI interval of processed data is listed.
b This table lists total amount of observed GRBs while figures 3 – 5 shows only bursts with defined duration t_{90}.

2.1. The dependence of burst duration from detector distinctive features
According to [4], bursts duration was described by the time intervals t_{50} and t_{90} in which the integrated counts from the burst increase from 25% to 75% and from 5% to 95% correspondingly. The GRBs duration distribution analysis had shown the existence of two bursts classes: long and short separated by $t_{50} = 2$ s.

![Temporal profiles for GRB060418 on RHESSI and SWIFT data.](image1)

Figure 1. Temporal profiles for GRB060418 on RHESSI [20] and SWIFT [22] data. The duration of this burst $t_{90, GRB060418, SWIFT/BAT} \approx 52$ s and $t_{90, GRB060418, RHESSI} \approx 36$ s.

![GRBs duration on SWIFT/BAT and Fermi/GBM data.](image2)

Figure 2. GRBs duration on SWIFT/BAT and Fermi/GBM data for subset of bursts simultaneously registered by these instruments.

Unfortunately t_{50} depends on instrument registered this burst. The detector sensitivity threshold and operation energy band influences to its value. Figure 1 presents the temporal profiles for GRB060418 by RHESSI and SWIFT data as illustration of this fact. The duration of this burst was $t_{90, GRB060418, SWIFT/BAT} \approx 52$ s according to SWIFT data [22] and $t_{90, GRB060418, RHESSI} \approx 36$ s according to
RHESSI data [20]. This difference was caused by GRB spectral behavior and differences of sensitivity threshold and operation energy band between RHESSI and SWIFT.

The other example of burst duration ambiguity is shown at the figure 2. The subset of 28 GRBs observed simultaneously by SWIFT/BAT and Fermi/GBM was analysed; for 14 of them \(t_{90, \text{SWIFT/BAT}} > t_{90, \text{Fermi/GBM}} \), for 9 bursts the opposite situation occurred and only for 5 GRB these values are comparable [22, 26]. So, we must take into account these differences in our investigation of various GRBs distributions in duration.

2.2. Short and long GRBs on data of various satellites

The GRBs duration distribution analysis on BATSE data since 1B catalogue [4] up to finally updated 5B [12] has shown the existence of 2 bursts classes: long and short separated by \(t_{90} = 2 \) s – see figure 3a.

![Figure 3](image)

Figure 3. Duration distributions for bursts from subsets registered by BATSE (a), WIND/VENERA_11-12 (b), RHESSI (c), Suzaku/HXD-WAM (d), Swift/BAT (e), Fermi/GBM (f).

Taking into account obtained in subsection 2.1 ambiguity of GRBs duration we suppose for bursts observed in other experiments this boundary shifting. Figure 3 also shows duration distributions for bursts from subsets registered by WIND/VENERA_11-12 (b), RHESSI (c), Suzaku/HXD-WAM (d), Swift/BAT (e), Fermi/GBM (f). The analysis of several subset duration distributions presented at figure 3 allows concluding the difference of boundary between short and long events from value of 2 s obtained from CGRO/BATSE bursts catalogue. Durations of 1 s more likely correspond to this separator point for Swift/BAT and RHESSI GRBs subsets distributions.

2.3. The dependence of burst duration from redshift

Figure 4 presents duration distributions for Swift GRBs with known redshift (274 bursts from 1128) without and with events \(t_{90} \) correction to \(z \). The analysis of figure 3 shows that value of 1 s more likely correspond to this separator point for Swift/BAT GRBs subset duration distributions without correction on redshift.
However real cosmological sources time properties should be investigated only taking into account its redshift. The figure 4 indicates value ~ 0.6 s more likely as separator point between short and long GRBs after its duration correction on redshift for Swift/BAT catalogue events.

Thus, the data analysis allows concluding sufficiently changing of duration distribution and shifting the separator point between short and long GRBs again after bursts duration correction to redshift.

2.4. Intermediate GRB subgroup

The subgroup of intermediate GRBs was first found in 1999 [28] during 4B current BATSE catalogue (lately published as 5B one [12]) analysis. Later this type GRBs are widely discussed - see, for example, [29].

Intermediate GRBs subgroup appearance in events subsets for various detectors is presented at figure 5. This subgroup is absent in nontriggered event catalogue [30, 31] (see dotted histogram at panel a) but clearly seen in BATSE current catalogue distribution on hardness and duration (marked by orange ellipse), and Swift/BAT distribution on redshift and duration (this subgroup indicated by red colour).
3. Conclusion

GRBs observed since 1967 and now several thousands of events were listed in more than 30 catalogues. Gamma-ray bursts duration distribution was first analyzed using data of BATSE instrument onboard the CGRO. The GRBs duration distribution analysis has shown the existence of two bursts classes: long (t_{90} more than 2 s) and short (t_{90} less than 2 s). But results of similar distributions analysis for bursts observed by other detectors have shown shifting of boundary between short and long events from value of 2 s. For example, Swift/BAT and RHESSI GRBs subsets analysis gives the value of ~1 s for this separation point. Moreover, t_{90} depends on instrument registered this burst. The detector sensitivity threshold and operation energy band influences to its value. Therefore, the type of GRB (whether it short or long) should be defined only taking into account distinctive features of instrument detected this event and GRB redshift. After taking into account characteristics GRB duration correction on redshift third intermediate GRBs subgroup appears also in Swift/BAT burst subset too.

Acknowledgments

This work performed within the framework of the Center FRPP supported by MEPhI Academic Excellence Project (contract No. 02.a03.21.0005, 27.08.2013).

References

[1] Klebesadel P et al 1973 Astrophys. J. Lett. 182 85
[2] Strong I B et al 1974 Astrophys. J. Lett. 188 1
[3] http://nssdc.gsfc.nasa.gov/nmc/
[4] Fishman G J et al 1994 Astrophys. J. Suppl. Serie 92 229
[5] http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/vela6.html
[6] Mazets E P et al 1979 Soviet Astronomy Letters 5 (Mar.-Apr) 87
[7] Diachkov A V et al 1982 Advances in Space Research 3#4 211
[8] Colin L et al 1977 Space Sci. Rev. 20 451
[9] Tkachenko A Yu et al 2002 Astronomy Letters 28#6 353
[10] Burenin R A et al 2000 Astronomy Letters 26#7 413
[11] Hurley K et al 1992 Astron. Astrophys. Suppl. Series 92#2: 401
[12] Paciesas W S et al 1999 Astrophys. J. Suppl. Series 122: 465
[13] Share G H et al 1999 BAAS 31 711
[14] http://wwwgro.unh.edu/bursts/cgrbdata.html
[15] Dingus B L et al 1994 AIP Conf. Proc. 307 22
[16] Cline T L et al 2003 AIP Conf. Proc 662 143
[17] http://space.mit.edu/HETE/Bursts/
[18] Lonjou V et al 2005 Nuclear Instruments and Methods in Physics Research A 554 (1-3) 320
[19] http://www.astro.isas.jaxa.jp/suzaku/HXD-WAM/WAM-GRB/
[20] http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/498/399
[21] http://www.rhessi-grb.info/
[22] Barthelmy S D et al 2005 Space Sci. Rev. 120 143
[23] http://swift.gsfc.nasa.gov/archive/grb_table/fullview/
[24] Tavani M et al 2009 Astron. Astrophys. 502 995
[25] Atwood W B et al 2009 Astrophys. J. 697 1071
[26] http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigrbst.html
[27] http://fermi.gsfc.nasa.gov/ssc/observations/types/grbs/lat_grbs/
[28] Belousova I V et al 1999 Astronomy Reports 43 #11 734
[29] Horváth I et al. 2006 Astron. Astrophys. 447#1 23
[30] Kommers J M et al Preprint astro-ph/0012519v1 28Dec 2000
[31] Stern B E et al 2000 Astrophys.J.Lett. 538 L21