Wind waves in the North Atlantic from ship navigational radar: SeaVision development and its validation with Spotter wave buoy and WaveWatch III

Natalia Tilinina1,2, Dmitry Ivonin1, Alexander Gavrikov1, Vitali Sharma2, Sergey Gulev3,4, Alexander Suslov1, Vladimir Fadev4, Boris Trofimov4, Sergey Bargman4, Leysan Salavatova5, Vasilisa Koshkina5, Polina Shishkova1, Elizaveta Ezhova5, Mikhail Krinitsky1, Olga Razorenova1, Klaus Peter Koltermann6, Vladimir Tereschenkov1 and Alexey Sokov5

Shirshov Institute of Oceanology, RAS, Nakhimovsky ave. 36, 117997, Moscow, Russia
2Université Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l’Environnement, 70 rue de la Physique, 38400, Grenoble, France
3A.M. Obukhov Institute of Atmospheric Physics, RAS, Pyzhevskiy Lane 3, Moscow, 109017, Russia
4Joint stock company "Marine Complexes and Systems", Aleksandrovskoy Fermy ave. 2 office 2H, 192174, Saint-Petersburg, Russia
5Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, 141701, Dolgoprudny, Moscow Region, Russia
6Lomonosov Moscow State University, Moscow Russia

Correspondence to: Natalia Tilinina (tilinina@sail.msk.ru) and Alexander Gavrikov (gavr@sail.msk.ru)

Abstract

Wind waves play an important role in the climate system, modulating the energy exchange between the ocean and the atmosphere and affecting ocean mixing. However, existing ship-based observational networks of wind waves are still sparse, limiting therefore the possibilities of validating satellite missions and model simulations. In this paper we present data collected on three research cruises in the North Atlantic and Arctic in 2020 and 2021 and the SeaVision system for measuring wave wind characteristics over the open ocean with a standard marine navigation X-band radar. Simultaneously with SeaVision wind wave characteristics measurements we also collected data from the Spotter wave buoy in the same locations and ran the WaveWatch III model in a very high-resolution configuration over the observational domain. After the quality control, SeaVision measurements were validated against co-located Spotter wave buoy data and intercompared with the output of WaveWatch III simulations. Observations of the wind waves with the navigation X-band radar were found to be in agreement with buoy data and model simulations with the best match for the wave propagation directions. Supporting datasets consist of significant wave heights, wave periods and wave energy frequency spectra derived from both SeaVision and Spotter wave buoy measurements.
and the Spotter buoy. All supporting data are available through the PANGAEA repository (Gavrikov et al., 2022) at https://doi.pangaea.de/10.1594/PANGAEA.939620. The dataset can be further used for validation of satellite missions and regional wave model experiments. Our study shows the potential of ship navigation X-band radars (when assembled with SeaVision or similar systems) for the development of a new near-global observational network providing a much larger amount of wind wave observations compared to e.g. Voluntary Observing Ship (VOS) data and research vessel campaigns.

1 Introduction

Ocean wind waves play a critically important role in air-sea energy and gas exchanges (Gulev and Hasse, 1998; Andreas et al., 2015; Blomquist et al., 2017; Ribas-Ribas et al., 2018; Cronin et al., 2019; Xu et al., 2021 among many others) and in ocean surface mixing (McWilliams and Fox-Kemper, 2013; Buckingham et al., 2019; Studholme et al., 2021), thus being an important active component of the coupled climate system (Cavaleri et al., 2012; Fan and Griffies, 2014). At the same time, massive long-term observations of wind waves over global oceans still have an insufficient coverage and quality compared to other surface variables (e.g. air and sea surface temperatures). Visual wave observations from Voluntary Observing Ships (VOS) while providing the longest time coverage (formally going back to the mid 19th century) suffer from space- and time-dependent sampling biases as well as from both random and systematic biases and require continuous validation (Gulev et al., 2003). Remote sensing datasets of wind waves go back to 1985 (Ribal and Young, 2019), when the first satellite radar altimeters were launched and started to provide ocean surface elevations with high temporal and spatial resolution. However, remote sensing data have to be validated against in situ measurements, typically available from buoys (such as NDBC buoys, Swail et al., 2010 or NOWPHAS, Nagai et al., 2005). Buoys measure vertical and horizontal displacements of the ocean surface (such as Spotter or Datawell buoys with up to 2.5 Hz sampling frequency, Raghukumar et al., 2019) and provide highly accurate estimates of wind waves characteristics, effectively assimilated into Numerical Weather Prediction (NWP) models. However, buoy networks are sparse with most deployments being in the coastal regions and can only effectively serve for verification of all other dataset rather than for developing global or regional climatologies.

Starting from the 1980s considerable progress in wind wave modelling (WAMDI, 1988; Hasselmann et al., 1985; Cavaleri et al., 2020) resulted over the last decade in the development of multiple global and regional wind wave hindcasts generated by spectral wave models such as WAM (WAMDI 1988) or WAVEWATCH (WW3DG, 2019) forced by atmospheric analyses or climate models and providing multidecadal wind wave fields with high temporal and spatial resolution (Casas-Prat et al., 2018; Semedo et al., 2018; Morim et al., 2020, 2022; Sharmar et al., 2021 among others). Being currently a widely accepted source for estimating long-term climate variability in wave characteristics, wind wave hindcasts also suffer from the inaccuracy of modelling of many aspects of wind wave dynamics, including e.g. extremely high wave peaks at high wind speeds during the storm passage (Cavaleri et al., 2020).

Summarizing, all three sources of global wind wave information (VOS, satellite data and model hindcasts) require data for extensive validation. Existing wave buoys deployed in a few locations can not solve this problem to a full extent. Thus,
investigating alternative sources of massive wind wave data remains a challenge. In this respect ship navigation radars represent an option whose potential, especially in open ocean regions, is not yet explored to a full extent. Here we present the results of the development and validation of the SeaVision system for wind wave observations in the open ocean using standard navigation marine X-band radars which allows for real time monitoring of wind wave characteristics along the commercial ship tracks.

Applicability of the navigation radars for measurements of the wind wave characteristics was first noted by Young et al. (1985). Radar images of the ocean surface, known as sea clutter, are generated by the Bragg scattering (Crombie, 1955) of the electromagnetic signal by the ripples on the ocean surface produced by the wind. Being emitted from the radar, an electromagnetic signal reaches the ocean surface and further, being reflected by ripples on the ocean surface, is received back by the radar antenna when the ocean surface is rough enough (i.e. ripples are developed). Under a wind speed > 3 m/s and waves height > 0.5 m the surface waves field becomes detectable on the radar image of the sea clutter (Hatten et al., 1998; Hessner and Hanson, 2010). Time sequences of these images are further analyzed for estimating of wind wave characteristics. The associated retrieval procedures can be based on various approaches, which include signal-to-noise ratio derived from the image spectrum (Nieto-Borge et al., 1999; Nieto-Borge et al., 2008; Zeemann et al., 1997), statistical analysis of the island-to-trough ratio on the sea clutter images (Buckley and Alter, 1997; Buckley and Alter, 1998), analysis of the image texture (Gangeskar, 2000), wavelet technique (Huang and Gill, 2015), the least square approach (Huang et al., 2014) and shadowing analysis (Gangeskar, 2014; Liu et al., 2015). Methodologies may also be based on the combination of these methods with the use of artificial neural networks (Vicen-Bueno et al., 2012). This may also include the analysis of the Doppler shift of the received radar signal that is based on the well-defined relationship between orbital velocities and wave height for linear gravity waves (Plant, 1997; Plant et al., 1987; Johnson et al., 2009; Hwang et al., 2010; Hackett et al., 2011; Chen et al., 2019). There are many aspects of the sea clutter radar images analysis. Nieto Borge and Guedes Soares (2000) for example proposed an approach considering superpositions of swell and wind sea components, that allows to derive wind waves and swell contributions to the total wave field, along with directional characteristic. There are also attempts to use images of the sea clutter revealed from X-band radars for estimating the current-depth profiles with a Eulerian approach (Campana et al., 2017), to retrieve wind speed and wind direction (Chen et al., 2015; Dankert and Horstmann, 2007; Dankert et al., 2003; Vicen-Bueno et al., 2013) and to derive surface characteristics (Senet et al., 2001).

On this basis several commercial systems such as WaMoS II (http://www.oceanwaves.de), SeaDarQ (Greenwood et al., 2018) and WaveFinder (Park et al., 2006) were developed. The most widely used system nowadays is WaMoS II (software and hardware details provided in Reichert at al., 1999) is focused on the operational monitoring of the sea state (wind waves and surface currents) and operational management of oil platforms and ships using nautical X-band radars. In combination with other sources of the data (glitmetric wave radar, vessel hydrodynamic simulator) wind waves estimates from navigational radar can be used managing security of the offshore systems, assessing ship fatigue due to mechanical environmental influence (Drouet et al., 2013) or for the real-time prediction of ship balling (Hilmer and Thornhill, 2015).
We present the design and pre-processing methodology of the SeaVision system along with the dataset collected during three research cruises (Fig. 1). SeaVision was developed in collaboration between the Shirshov Institute of Oceanology of the Russian Academy of Sciences (IORAS, https://ocean.ru/) and the Joint stock company "Marine Complexes and Systems" ("MC&S" J.S.C., https://www.mcs.ru/). SeaVision is developed in the basis of the sea ice monitoring system with navigational marine radar – IceVision (https://ice.vision/en). The pilot version of SeaVision was tested and validated in two North Atlantic cruises in 2020 and 2021 and in the Arctic cruise in 2021 (Fig. 1). The major advantage of the presented dataset is the provision of the co-located Spotter wave buoy data with SeaVision records at almost 50 locations and outputs of WaveWatch III (WW3) model experiments forced by ERA5 reanalysis (Hersbach et al., 2020) for the corresponding domains. We present in this study the SeaVision system and dataset of the measurements of the wind waves in the open ocean and its comprehensive analysis.

The paper is organized as follows. In the Section 2 we provide details of research cruises, technical specifications of the SeaVision system, data collection and analysis principles as well as the description of the WW3 model setup. Section 3 presents the results of the analysis and validation of the SeaVision dataset against Spotter buoy data and comparison with WW3 model output. The concluding section 4 summarizes the results and discusses the perspectives of the use of ship navigation radars for a massively enhanced collection of wind wave information in the open ocean.

2 Data collection and analysis

We provide definition of all parameters in the published dataset in Appendix C.

2.1 Ship cruises
Figure 1: Ship tracks of the three cruises of the research vessels (R/V) *Academik Sergey Vavilov* (a) and *Academik Ioffe* (b,c). Green dots indicate locations where only SeaVision radar data were collected, orange dots show the locations for which SeaVision records were co-located with Spotter wave buoy measurements. Cruise numbers are counted from the beginning of the R/V operation.

Figure 1 demonstrates ship tracks of three research cruises, during which wind wave data were collected. Research cruises were carried out by IORAS research vessels (R/Vs) “Academik Sergey Vavilov” and “Academik Ioffe”. Table 1 provides a general information about the cruises and detailed information on the coordinates and dates and is provided in Appendix A. The two cruises in the subpolar North Atlantic (Figure 1a, b) were focused on the regular survey of the 59.5°N oceanographic cross-section and cross-sections in the Denmark Strait (Verezemskaya et al., 2021). During these cruises the R/V makes full-depth CTD profiling. The distances between the hydrographic stations vary from ~30 km in the open ocean to a few km near the East Greenland coast with time allocated for each station (ship is drifting) varying from 2 to 6 hours. Between the stations the R/V travels at a speed of approximately 6 to 10 kn. During the cruise of R/V “Academik Ioffe” in the Kara Sea (Figure 1c) stations were somewhat shorter in time (2-3 hours). During all cruises wave observations were carried out after completing hydrographic profiling. For operating solely SeaVision the R/V position was strictly stationary being controlled by bow and stern thrusters of the R/V. When SeaVision was used together with the free drifting Spotter buoy, the thrusters were off to provide also free drifting of the R/V. This allowed for measurements of the background wave field by both SeaVision and Spotter buoy. At each station we first released the Spotter buoy with a supplementary floating buoy dumping cable vibrations. Such design allows for maintenance of at least 300 m distance between the buoys and the R/V. Next, both buoys were in the free-floating mode for at least 30 min during which the recording was performed by both
SeaVision and the Spotter buoy (Figure 4, top panel). Then both buoys were pulled back onboard. The Spotter buoy measured vertical and horizontal displacements starting from its release until getting back onboard. After completing measurements at each station only the data recorded during the free-floating mode were used for the joint analysis of SeaVision and Spotter buoy records. During all SeaVision and Spotter buoy measurements standard meteorological parameters were measured using onboard the meteostation.

Table 1: Research cruises during which wind waves observations were carried out by R/Vs “Akademik Sergey Vavilov” (ASV) and “Academik Ioffe” (AI). Adjacent numbers in the first column correspond to the R/V cruise numbers counted from the beginning of the R/V operation.

Cruise	Start date and location	End date and location	Distance sailed	Number of stations (with Spotter buoy)
ASV50	08/08/2020 Kaliningrad	08/09/2020 Kaliningrad	10465 km	21
AI57	02/08/2021 Kaliningrad	08/09/2021 Kaliningrad	7745 km	11
AI58	06/09/2021 Kaliningrad	06/09/2021 Kaliningrad	10611 km	16

2.2 SeaVision system

2.2.1 Ship navigation radar signal retrieval and preprocessing

Development of the SeaVision system was based on a commonly accepted approach of the recording and analysis of the sea clutter images. Using a similar approach to commercial systems such as WaMoS II (http://www.oceanwaves.de), SeaDarQ (Greenwood et al., 2018) and WaveFinder (Park et al., 2006) were developed. These commercial systems provide customers with their original software and hardware (sometimes including the X-band radar itself). In our approach we are focused on the development of an independently operating and low cost system compatible with the existing navigation radars with which ships are already equipped.

Research vessels Academik Sergey Vavilov (r/v ASV) and Academik Ioffe (r/v AI) are equipped with the standard navigation X-band radar JRC JMA-9110-6XA and JMA-9122-6XA. Technical details of radar transmission and backscatter characteristics are given in Table 2. Both radars operate at 9.41 GHz frequency (wavelength ~3 cm), and are equipped with a 6 feet antenna with the directional horizontal resolution of 1.2° (Table 2). Radars can optionally operate at the pulse lengths of 0.08 μs, 0.25 μs, 0.5 μs, 0.8 μs, 1.0 μs. For our purposes we used the smallest possible pulse length of 0.08 μs (at the so-called “short-pulse” mode - SP1) providing the highest possible resolution of the image (thus the best resolution of the ocean surface). Our X-band radars are characterized by a 3.18 cm wave length of the emitted electromagnetic waves (Table 2).
pulse length is the emission time of the wave beam, thus the number of the emitted waves and the area of the reflection at the ocean surface (defining spatial resolution) increase with increasing pulse length.

The SeaVision system (Fig. 2) is connected to the radar via splitter. It provides digitizations and further recording of the directionally stabilized (northward) radar sea clutter image resulting from each single full turn of the radar antenna. By doing this, SeaVision converts the sea clutter image into a digital format with further recording the data onto the external storage. SeaVision is also connected to the ship navigation package and simultaneously records geographical coordinates from GPS, speed over ground (SOG) and course over ground (COG). Each full turn of antenna results in ASCII file (~16 MB) consisting of the 4096x4096 matrix (1.875 m discretization at 4096 beam directions) representing the sea clutter digitized image with GPS information, SOG and COG in the file header. These files are further consolidated and converted into NetCDF format at the post-processing stage.

Table 2: JRC JMA-9110-6XA (R/V ASV) and JMA-9122-6XA (R/V AI) transmission and reception characteristics.

Research vessel	Akademik Sergey Vavilov	Akademik Ioffe
Radar type	JRC JMA-9110-6XA	JMA-9122-6XA
Radar frequency/Wave length	9.41 GHz / 3.18 cm	9.41 GHz / 3.18 cm
Antenna rotation speed	27 rpm	24 rpm
Impulse power	10 kW	25 kW
Antenna size	6 ft	6 ft
Pulse length mode	0.08 µs (short pulse)	0.07 µs (short pulse)
Analog-digital converter (ADC) frequency/size of output matrix for one antenna turn	80 MHz / 4096x4096	80 MHz / 4096x4096
Azimuthal coverage/resolution	0 – 360°/1.2°	0 – 360°/1.2°
Distance range	231.5 – 2778 m	231.5 – 2778 m
Analysis of the sea clutter images

Figure 2: SeaVision integration to the ship’s navigational equipment together with an example of the series of the geographically stabilized (northward) sea clutter images, one for each antenna turn (right column). Image of the JRC radar scanner (top left) is taken from the http://www.jrc.co.jp/eng/index.html.
After the sea clutter images are collected and digitized, the next step is the postprocessing focused on the computation of significant wave height (H_s), wave period (T_w), and spectrum (S_w) and wave direction (D). Here we provide a short condensed description of the algorithm as given in Appendix B. The subset collected at each station (Fig. 1) consists of 20 minutes SeaVision record, which is equivalent to at least 540 images of the sea clutter (27 antenna full turns per minute for JRC JMA-9110-6XA radar).

The methodology for estimation of wind wave characteristics relies on a well-established Fourier Transform (FT) technique (Nieto-Borge and Guedes Soares, 2000; Borge et al., 2004; Borge et al., 2008 among others). For each station preprocessing of the data begins from the choice of the processing squared area (squared area of 720x720 m²). For now we locate the processing area visually by taking the area of the most apparent wave signal at the image and requiring this area to be deviated from the ship by 300 m to avoid a potential impact of the ship on the wave field and the effects of the reflection and modulation of the radar signal by the ship superstructure. When the processing area is selected, we consolidate the data captured in this area from all 540 images for the further analysis. Note that data initially sampled in the polar coordinates are re-gridded at this step to the Cartesian grid of 384x384 grid points with 1.875 m spatial resolution for each subset.

The sequence of 540 matrices with 384x384 grid points each is then split into 16 sectors (22.5° width each). Further, to obtain the directional spectra estimates, we transformed the data into a 3D spectral domain by using FT and applying the Welch method with a half-width overlapping Hanning window (Fig. 3). This returns for each sector the three-dimensional spectrum $S_{3D} (k_x, k_y, f)$, where $f = \omega / 2\pi$ is the frequency (Hz) and ω is the angular frequency, k_x and k_y, (rad/m) are the components of the wave vector $\mathbf{k} (k_x, k_y)$. Then for each sector we capture the spectrum power within the band along the line satisfying the linear dispersion relation for ocean waves (Fig. 3):

$$\omega = \sqrt{gk + ku\cos\theta} \quad \quad (1)$$

where k is the wave number (rad/m), u is gravity (m/s²), U is the surface velocity (m/s) which includes surface current velocity and ship drift, and θ is the angle between the wave vector \mathbf{k} and velocity vector \mathbf{U}. This procedure is applied to the bands corresponding to the first and the second spectral harmonics (see Appendix B for the definition of band width). The spectral power outside the bands for the two harmonics is assumed to be a background speckle-noise ($\sigma_{speckle}$) (Kanevsky, 2008). Integrated spectral power outside of the bands matching the wave dispersion relation (1) is further used for estimation of the signal-to-noise ratio (SNR) as described in Appendix B and outlined in many works (Nieto-Borge et al., 1999; Hessner et al., 2002; Young et al. 1985; Nieto-Borge and Guedes Soares 2000, Iovin et al. 2016). Following Nieto-Borge et al. (1999, 2004) SNR is then converted to significant wave height H_s using the linear regression equation:

$$H_s = A + B \sqrt{\text{SNR}}, \quad \quad \quad \text{(2)}$$

The sequence of these images is then transformed to the 3D spectral domain using fast Fourier transform (FFT, Fig. 3).
where A and B are empirical calibration coefficients which are individual for each radar. In this study these coefficients were computed by fitting a linear regression (2) to the significant wave height measured by the Spotter wave buoy. Derived numerical values of A and B coefficients are given in Table 2 for both X-band radars. Wave period $T_{\text{m01,SeaVision}}$ was estimated conventionally using zeroth and first spectral moments:

$$m_1,\text{SeaVision} = \int S_{w,\text{SeaVision}}(f) df \quad (3)$$

$$T_{\text{m01,SeaVision}} = \frac{m_0}{m_1} \quad (4)$$

where $S_{w,\text{SeaVision}}(f)$ is the estimate of the wave energy spectrum from SeaVision:

$$S_{w,\text{SeaVision}}(f) = \left(\frac{H_{s,\text{image}}}{H_{s,\text{image}}} \right)^2 \cdot S_{\text{image}}(f) \quad (5)$$

$$T_{\text{m01,SeaVision}} = \frac{m_0}{m_1} \quad (5)$$

where $S_{w,\text{SeaVision}}$ is the estimate of the wave energy spectrum from SeaVision:

$$S_{w,\text{SeaVision}}(f) = \left(\frac{H_{s,\text{image}}}{H_{s,\text{image}}} \right)^2 \cdot S_{\text{image}}(f) \quad (6)$$

where $H_{s,\text{image}}$ is $H_{s,\text{image}} = 4 \sqrt{m_{0,\text{image}}}$, thus being the estimate of significant wave height using the raw sea clutter image before calibration.
2.3 Spotter wave buoy data

To calibrate and validate SeaVision wave observations we performed simultaneous measurements with the Spotter wave buoy (https://www.sofarocean.com/products/spotter) in the locations shown in Figure 1 and specified in Table A1. Once the ship was drifting at the location of the measurements, the Spotter buoy was deployed and started moving away from the ship. Note that the ship drift is always faster compared to that of the buoy, thus the distance between the buoy and the ship was progressively increasing. When the distance between the ship and the buoy reached at least 300 m, the “free floating” mode of SeaVision and Spotter buoy operation was initiated for at least 30 minutes as described in section 2.1. The longest free floating mode time period at some stations reached up to 1.5 hours. To ensure homogeneity of the analysis we used 20-minute segments from “free floating” mode time series for further computations of significant wave height, wave spectra and directional moments following Raghukumar et al. (2019): $H_s = 4 \sqrt{E}$, where $E = \int_{\theta=0}^{\pi} E(\theta) d\theta$ - the surface elevations.
Further use wave parameters derived from the Spotter buoy as a “ground truth” for the calibration of SeaVision data and derivation of A and B calibration coefficients in (2) (Table 2).

2.4 Meteorological data

During all cruises the AIRMAR WeatherStation 220WX was installed on the main ship mast at 30 m height above the sea. The weather station provided an output consisting of standard output parameters (barometric pressure, wind speed and direction, air temperature and relative humidity). Wind characteristics were recalculated from the relative wind to the true wind in real-time mode.

Figure 4: Spotter wave buoy timeseries of vertical displacements at the station #3946 in the A158 cruise (a), corresponding wave energy spectrum (b) and location of the station #3946 (c).

Natalia 26.6.2022 15:25
Удалено: More details on calculation of the mean wave direction, directional spread, wave directional spectrum and other parameters on the basis of the Spotter time series can be found in (Raghukumar et al., 2019), together with evaluation of the buoy ability for wave characteristics measurement.

Natalia 26.6.2022 15:25
Удалено: buoy as the

Natalia 26.6.2022 15:26
Удалено: calibration and estimation of the radar calibration coefficients A and B, these coefficients are further used to rescale SeaVision wave energy spectrum to match buoy spectrum with least squares.

Natalia 26.6.2022 15:28
Удалено: th

Natalia 26.6.2022 15:29
Удалено: of R/V Academic Ioffe

Natalia 27.6.2022 21:43
Удалено: top

Natalia 26.6.2022 15:29
Удалено: together with significant wave height

Natalia 26.6.2022 15:30
Удалено: bottom left

Natalia 26.6.2022 15:30
Удалено: directional wave spectrum (bottom right)

Natalia 26.6.2022 15:30
Удалено: Along

Natalia 26.6.2022 15:31
Удалено: mounted at the height of 30 m

Natalia 26.6.2022 15:31
Удалено: to avoid the impact of the ship on the local meteorology.

Natalia 26.6.2022 15:31
Удалено: points
We run WaveWatch III (WW3DG, version 6.07, WW3) spectral wave model forced by ERA5 reanalysis (Hersbach et al., 2020) over the domain and the time period of the research cruises (Table 3). The experiments were performed for the outer domain at 0.1° spatial and 1-h temporal resolution and for the inner domain with 0.03° (~1 km) resolution (see Table 3). The outer domain solution was used for setting lateral boundary conditions for the inner domain. These experiments returned two - dimensional wave spectra co-located with SeaVision and Spotter buoy observations. In the WW3 experiments we used the ST6 parameterization (Bababin, 2006; Bababin, 2011; Rogers et al., 2012; Zieger et al., 2015) for wave energy input and dissipation and the discrete interaction approximation (DIA) scheme for nonlinear wave interactions (Hasselmann and Hasselmann 1985). This WW3 setting is close to that used in Sharmar et al. (2021) for the global wind wave hindcasting.

Cruise	ASV50	A157	A158
Region	North Atlantic polygon	North Atlantic polygon	Arctic polygon
Grid type	Regular, nested grid	Regular, nested grid	Curvilinear grid
Outer domain spatial resolution	30°-75°N and 80W-10E	30°-75°N and 80W-10E	36°-90°N and 0°-360°
Inner domain spatial resolution	54°-68°N and 45°W-1°E	54°-68°N and 45°W-1°E	-
Time coverage	2020.08.01-2020.09.06	2021.06.01-2021.07.12	2021.08.01-2021.09.30

Validation of SeaVision data was provided for wind speeds from 2 to approximately 20 m/s and for significant wave heights from few tens of centimeters to 4.2 meters. Figure 5 demonstrates the results of the intercomparison of significant wave height (Hs) estimates retrieved from SeaVision data and those measured by Spotter buoy and simulated with WaveWatch III. The Hs differences ‘Spotter minus SeaVision’ (Fig. 5a) and ‘WW3 minus SeaVision’ (Fig. 5b) are plotted as a function of wind speed recorded by the ship weather station (Table A1). Table 4 provides comparative estimates of differences in Hs for the three cruises. On average WW3 yields lower wave heights than SeaVision, by 28 cm, while the agreement between SeaVision and Spotter buoy data is better with Hs measured by Spotter being 9 cm higher than retrieved from SeaVision. For low wind speeds SeaVision tends to underestimate Hs up to 50 cm and for moderate and strong wind...
We also note that both evidence of the dependence of the magnitude or sign of H_s and scatterplots for the H_s demonstrate a generally better agreement between different data sources for H_s (1.06 and 1.02 regression coefficients) than for T_m (1.05 and 0.86 regression coefficients) (Fig. 6). There is no robust evidence of the dependence of the magnitude or sign of H_s and T_m differences on the magnitude of parameters themselves. We also note that both SeaVision and Spotter show higher waves and slightly longer periods compared to WW3 (Fig. 6). We

Table 4: Differences in significant wave height estimates for three expeditions.

	AVS50	AV57	AV58
Spotter - SeaVision	0.27	0.05	-0.06
WW3 - SeaVision	0.24	-0.24	-0.36

Scatterplots for the H_s and wave period (T_m, see Table A1) demonstrate a generally better agreement between different data sources for H_s (1.06 and 1.02 regression coefficients) than for T_m (1.05 and 0.86 regression coefficients) (Fig. 6). There is no robust evidence of the dependence of the magnitude or sign of H_s and T_m differences on the magnitude of parameters themselves.

We also note that both SeaVision and Spotter show higher waves and slightly longer periods compared to WW3 (Fig. 6). We
note however, that simulated wind waves with WW3 strongly depend on the atmospheric forcing (choice of reanalysis). Difference in climatological mean values over the North Atlantic obtained with WW3 but with different forcing functions can reach few tens of centimeters (Sharmar et al. 2021).

Figure 6: Scatterplots of the significant wave height (H_s) and wave period (T_m01) revealed by SeaVision and measured by Spotter (a,c) as well as revealed by SeaVision and simulated with WW3 (b,d) for all stations.
Overall, the analysis of significant wave heights among these three sources of data (Spotter, SeaVision and WW3) shows that the highest H_s values are measured by the Spotter buoy, lowest are simulated by WW3, with SeaVision being in between. These results are intuitively correct as wave buoys measure the actual elevations of ocean surface, SeaVision provides a proxy of local wave conditions from image analysis (thus imposing averaging over the domain) and is not expected to be as accurate as wave buoy data.

Figure 7 shows comparisons of wave directions along with corresponding H_s values (simplified approximation of directional spectra) for six stations (see Table A1). Generally all three data sources demonstrate very good agreement on directions (differences in waves direction do not exceed 10°) with corresponding wave height estimates being underestimated in model simulations as already mentioned above (Figures 5 and 6).

Figure 7: Diagrams (roses) of wave direction (from) and H_s on the basis of the three data sources: SeaVision (blue), Spotter (gray) and WW3 (red) at the stations: #2787, #2833, #2928, #3870, #3884, #3899 (see Table A1).
We also performed comparisons of SeaVision and Spotter H_s estimates with satellite altimeter missions (Figures 8, 9). Figure 8 shows overpasses of all available satellite tracks of Jason-3, CFOSAT, Sentinel-3A, Sentinel-3B, SARAL, and HaiYang-2B which are suitable for comparisons with our dataset. Altimeter data were used for comparisons when they satisfied two conditions: an overpass was within 2° latitude and within ±30 minutes from the measurement time (Table A1). In total we selected 20 cases that satisfied these conditions.

![Satellite Overpasses](image)

Figure 8: Overpasses of satellite altimeter missions (Jason-3, CFOSAT, Sentinel-3A, Sentinel-3B, SARAL, or HaiYang-2B) over the observational domains. Black dots indicate locations where wave parameters were measured simultaneously with Spotter wave buoy and SeaVision (Table A1).

The average H_s for these 20 locations measured by satellite altimeters is 1.47 m, with Spotter buoy is 1.38 m and SeaVision giving 1.26 m. There is a general agreement for most stations among these three sources of data and differences do not exceed 50 cm except for two cases: stations 2937 and 2901, where H_s is underestimated by SeaVision comparing to Spotter and altimeter by more than 100 cm. These two outliers were already mentioned above (Figure 5) and large differences were
attributed to a very strong drift of the ship for these locations.

Figure 9: Significant wave height estimates for the locations of satellite altimeters overpasses for three research cruises. Numbers on the horizontal axis correspond to the station numbering in Table A1.

Conclusions

To open a new avenue for widely needed broad-scale high-quality observations of ocean wind wave estimates we used a conventional navigation X-band ship radar equipped with a SeaVision recorder and software package and here present the evaluation of the instrument package for measuring wind wave parameters and comparing them with in-situ observations and model results. The data were collected on three cruises in the subpolar North Atlantic and in the Kara Sea. All SeaVision records were co-located with in-situ Spotter buoy measurements used for validation. We demonstrate an overall agreement of the estimates of significant wave height and wave period measured by SeaVision with Spotter buoy measurements and with simulations with the WW3 spectral wave model. Estimates of significant wave height between SeaVision, WW3 and Spotter buoy are in a better agreement than those for the wave periods. In the ranges of H_s up to 4.2 m the average difference between the Spotter buoy and SeaVision is 9 cm for H_s, while WW3 simulations are higher than SeaVision H_s by 28 cm. We note, however, that comparisons with WW3 should be considered with caution, as the model results are significantly dependent on the choice of forcing function (atmospheric reanalysis). SeaVision tends to underestimate mean wave periods by ~0.5 s compared to the Spotter buoy while the differences in periods with WW3 simulations may amount to more than 2 sec. Also, a very good agreement was found for the wave directions whose spread across all three data sources does not exceed 10°.
A newly developed SeaVision system for digitizing and recording of the analog signals from navigation radars and further quantitative estimation of wind wave characteristics promises to enhance massive observations of wind waves over the open ocean. SeaVision is currently mounted onboard two R/Vs operated by IORAS, but in 2022 five more IORAS R/Vs will be supplied with SeaVision systems. Data records will become operationally available at an open source web page. In 2023 we also plan to develop a portable and cheap version of SeaVision that can be easily mounted on any ship with navigational radar operating in the open ocean, on the platform, lighthouse or any coastal infrastructure. After further validation SeaVision can be easily upgraded to incorporate all post-processing procedures into the internal software package that will make it possible for commercial ships on which the system is installed to provide real-time reporting of wind wave parameters though the Global Telecommunication System (GTS). Theoretically the estimated data flow is formally one estimate per 2–3 seconds (1 full turn of the radar antenna). Even with a reporting frequency once per minute the potential of the SeaVision data flow overestimates the current VOS data flow by hundred times. Contrasting to exiting commercial systems for wind waves monitoring with navigational marine radars, such as WaMoS II (http://www.oceanwaves.de), SeaDarQ (http://www.seadarq.com/) and WaveFinder (Park et al., 2006), SeaVision is focused on the use of information of conventional navigation ship radars representing potentially a low cost alternative. Wide use of such a system at commercial ships can drastically increase the amount of sea state observations available to users, including National Meteorological Offices using this information as data assimilation input for NWP models and reanalyses.

The Global Climate Observing System (GCOS) and associated Global Ocean Observing System (GOOS) are considering sea state to be a critical climate variable highly demanded by global observing modules. We hope that SeaVision with its perspective to provide exceptionally high global coverage with on-line wave measurements will meet this urgent demand and help to satisfy GCOS given its mandate for systematic observations under the UN Framework Convention on Climate Change (UNFCCC), including also GCOS and GOOS responsibilities under the Subsidiary Body for Scientific and Technological Advice (SBSTA) and the Subsidiary Body for Implementation (SBI). We demonstrate an overall agreement of the estimates of significant wave height and wave period with the same time W winds waves is crucially important dynamical components of the interaction between the ocean and the atmosphere and play important role into the climate system, however in situ observational network for the wind waves is still sparse. We also present a newly developed SeaVision system for digitizing and recording of the analogous marine radar signal and further analysis of the data to obtain wind waves’ parameters such as significant wave height, wave period and wave energy spectrum. The potential usage of the dataset is validation of the satellite missions and outputs from the wave models.

Data availability

Datasets that contains significant wave height, wave period, wave direction, wave energy frequency spectrum, meteorological data and other related parameters from both SeaVision and the Spotter buoy at the locations of every station (Table A1, Gavrikov et al., 2021) is available through the PANGAEA repository (https://doi.pangaea.de/10.1594/PANGAEA.939620). In this dataset we only provide wind waves statistics, disregarding separation of the swell and wind waves at this stage of the SeaVision development. We plan to include this procedure into the next studies. At the same time, we provide one dimensional spectrum that potentially allows to see first and seconds peaks associated with winds waves and swell (an example is shown in Figure 4b). Users interested in the analysis of the raw
Appendix A: List of the locations (stations) of the wind waves measurements during three research cruises

Table A1: Stations list: geographical locations and time of all stations where the wind waves measurements were performed simultaneously with SeaVision and Spotter buoy. In the last column letters stand for the name of the research vessel (ASV – Akademic Sergey Vavilov, AI – Akademic Ioffe) and numbers stand for the sequence number of research cruise since the beginning of the research vessel operation.

#	Station #	Start UTC time	End UTC time	Latitude° N	Longitude° E	Cruise #		
1	2868	27.08.2020 13:53	27.08.2020 14:13	65.67	-25.26	ASV50		
2	2881	28.08.2020 10:45	28.08.2020 11:05	66.49	-28.89	ASV50		
3	2885	28.08.2020 19:05	28.08.2020 19:25	66.84	-30.43	ASV50		
4	2763	11.08.2020 11:25	11.08.2020 11:45	59.50	-10.00	ASV50		
5	2777	13.08.2020 18:15	13.08.2020 18:35	59.50	-19.32	ASV50		
6	2782	14.08.2020 18:42	14.08.2020 19:02	59.50	-22.66	ASV50		
7	2787	15.08.2020 18:10	15.08.2020 18:30	59.50	-25.99	ASV50		
8	2797	17.08.2020 10:12	17.08.2020 10:32	59.50	-32.67	ASV50		
9	2803	18.08.2020 12:17	18.08.2020 12:37	59.50	-36.67	ASV50		
	ID	Date	Time	Date	Time	Value	Deviation	Type
---	------	------------	--------------	------------	--------------	--------	-----------	--------
10	2809	19.08.2020	13:26	19.08.2020	13:46	59.50	-40.34	ASV50
11	2821	20.08.2020	13:44	20.08.2020	14:04	59.90	-42.32	ASV50
12	2833	22.08.2020	15:26	22.08.2020	15:46	55.81	-34.47	ASV50
13	2841	23.08.2020	12:31	23.08.2020	12:51	56.78	-33.53	ASV50
14	2849	24.08.2020	14:00	24.08.2020	14:26	58.53	-31.43	ASV50
15	2856	25.08.2020	12:42	25.08.2020	13:02	60.30	-29.04	ASV50
16	2863	26.08.2020	11:45	26.08.2020	12:05	62.40	-25.73	ASV50
17	2901	30.08.2020	13:05	30.08.2020	13:25	65.94	-26.49	ASV50
18	2903	01.09.2020	13:05	01.09.2020	13:25	64.82	-12.49	ASV50
19	2913	02.09.2020	10:17	02.09.2020	10:37	63.35	-10.38	ASV50
20	2928	03.09.2020	19:24	03.09.2020	19:44	61.31	-8.25	ASV50
21	2937	04.09.2020	21:16	04.09.2020	21:36	59.50	-9.31	ASV50
22	3831	29.06.2021	19:49	29.06.2021	20:09	59.50	-4.60	AI57
23	3841	01.07.2021	09:26	01.07.2021	09:46	59.49	-11.33	AI57
24	3847	02.07.2021	10:33	02.07.2021	10:53	59.50	-15.33	AI57
---	---	---	---	---	---			
25	3853	03.07.2021 12:38	03.07.2021 12:55	59.50	-19.33	AI57		
26	3858	04.07.2021 11:38	04.07.2021 11:58	59.50	-22.67	AI57		
27	3863	05.07.2021 10:05	05.07.2021 10:25	59.50	-26.00	AI57		
28	3870	06.07.2021 16:29	06.07.2021 16:49	59.50	-30.67	AI57		
29	3875	07.07.2021 15:57	07.07.2021 16:17	59.52	-33.98	AI57		
30	3880	08.07.2021 17:32	08.07.2021 17:52	59.50	-37.33	AI57		
31	3884	09.07.2021 13:51	09.07.2021 14:11	59.50	-40.00	AI57		
32	3899	11.07.2021 12:45	11.07.2021 13:05	59.90	-42.48	AI57		
33	3911	12.08.2021 13:27	12.08.2021 13:47	70.37	58.04	AI58		
34	3929	14.08.2021 21:43	14.08.2021 22:03	75.15	75.09	AI58		
35	3930	15.08.2021 06:40	15.08.2021 07:00	73.98	72.66	AI58		
36	3939	16.08.2021 12:40	16.08.2021 13:00	73.75	73.66	AI58		
37	3946	17.08.2021 04:53	17.08.2021 05:13	73.31	79.35	AI58		
38	3956	18.08.2021 12:52	18.08.2021 13:12	75.14	79.54	AI58		
39	3972	21.08.2021 12:27	21.08.2021 12:47	82.14	78.88	AI58		
#	Code	Date/Time	Date/Time	Averaged Value	Value			
---	------	-----------	-----------	----------------	-------			
40	3982	22.08.2021 15:48	22.08.2021 16:08	81.93	73.70			
41	3990	23.08.2021 14:43	23.08.2021 15:03	81.44	67.25			
42	3997	24.08.2021 08:02	24.08.2021 08:22	81.04	72.66			
43	4013	25.08.2021 19:28	25.08.2021 19:48	79.93	72.11			
44	4020	26.08.2021 13:20	26.08.2021 13:40	79.51	65.06			
45	4025	27.08.2021 03:05	27.08.2021 03:25	78.28	65.33			
46	4029	27.08.2021 12:39	27.08.2021 12:59	77.67	65.45			
47	4031	27.08.2021 18:30	27.08.2021 18:50	77.86	64.85			
48	4040	28.08.2021 11:11	28.08.2021 11:31	78.84	61.62			

Appendix B: Methodology for the computation of wave parameters from sea clutter images

We stated above (section 2.2.2) that to relate the signal to the wind waves, we assume that components of the spectrum outside of the dispersion relation are related to the background speckle-noise and components of the spectrum that satisfy the dispersion relation (1) related to the signal, associated with the wind waves. Eq. (1) presents the dispersion relation for the first harmonic and can be also easily extended to the second harmonic as follows:

\[
\omega_n(k) = \sqrt{2gk + 2k \cdot U \cdot \cos \theta_n} \quad \text{(B.1)}
\]

The curve associated with the second harmonic is clearly seen in Figure 3. The rest of the signal lying in the spectral domain outside the bands associated with dispersion curves and attributed to speckle-noise (Kanevsky, 2009) is needed to be properly quantified. This depends on the algorithm used for the quantification of bands associated with dispersion relation curves. Speckle-noise is used for normalization of the radar spectrum and removing the impulse power impact on the radar.
signal modulations by the sea waves (Kanevsky, 2009). The 2D normalized spectrum $S_{n,2d,norm}(k, f)$ of the signal at each wavenumber k can be calculated as:

$$S_{n,2d,norm}(k, f) = \frac{s_{n,2d,image}(k, f)}{f_{n,2d,image}[spectr(k, f)]/1}$$

(B.2)

where the speckle frequency is:

$$\omega_{spec} = \{ f \notin \omega_{n,1}/2\pi \text{ and } f \notin \omega_{n,2}/2\pi \}$$

(B.3)

Then the full image spectrum $S_{n,1,o}(f)$ needs to be filtered to obtain the power corresponding to the band capturing the first $\omega_{n,1}$ harmonic for the direction n:

$$S_{n,1,o}(f) = \int_{f_{n,1}+\Delta k}^{f_{n,1}+\Delta k} S_{n,2d,norm}(k, f)dk$$

(B.4)

Here $k_{n,1}$ is the dispersion relation (1) solution for the first harmonic $\omega_{n,1}(k_{n,1}) = 2nf$ and Δk is related to the size of the processing area (720 m) as $\Delta k = 2 \cdot 2\pi/720$ (rad/m). Similarly for the second harmonic $\omega_{n,2}$, we obtain:

$$S_{n,2,o}(f) = \int_{f_{n,2}+\Delta k}^{f_{n,2}+\Delta k} S_{n,2d,norm}(k, f)dk$$

(B.5)

where $k_{n,2}$ is the dispersion relation (B1) solution for the second harmonic $\omega_{n,2}(k_{n,2}) = 2nf$.

The total power $S_{n,o}(f)$ falling in the bands along dispersion relation curves yields:

$$S_{n,o}(f) = S_{n,1,o}(f) + S_{n,2,o}(f)$$

(B.6)

Given that this procedure is applied to all 16 sectors of the image (see section 2.2.2), the omnidirectional image frequency spectrum $S_{image}(f)$ can be derived as follows:

$$S_{image}(f) = \frac{1}{16} \sum_{n=1}^{16} S_{n,o}(f)$$

(B.7)

Further integration over the frequency domain returns the zeroth moment $m_{o,image}$ of the $S_{image}(f)$ spectrum:

$$m_{o,image} = \int_{0}^{\infty} S_{image}(f)df$$

(B.8)

which provides us with the estimate of SNR being:

$$SNR \equiv m_{o,image} + 1$$

Formally, considering the $S_{image,o}(f)$ spectrum as a modulation analog of the real sea wave spectrum $S_{o}(f)$, the zeroth moment $m_{o,image}$ can be further converted to the magnitude of signal modulations H_{image} on the radar image which stands as a provisional measure of H_s:
Further the transform of the omnidirectional SeaVision image frequency spectrum \(S_{\text{Image}}(f) \) to the sea wave frequency (wave energy) spectrum \(S_w_{\text{SeaVision}}(f) \) visible by SeaVision is performed by applying the standard technique described in section 2.2.2 and resulting in Eq. (2) returning significant wave height \(H_{\text{SeaVision}} \) estimate based on the radar calibration coefficients A and B along with along with estimate for the wind wave period (4) derived from the zeroth and the first moments of the spectrum.

Appendix C: Definition of all the parameters in the manuscript and dataset.

Parameters	Short name	Definition	Range	Name in netcdf
Meteorological variables				
Wind Speed \((m \cdot s^{-1})\)	\(U_b\)	\(\int_{-\pi}^{\pi} S(f)df\) \(0.0391 - 1.25\) Hz	\(\text{meteo_wspd}\)	
Wind Direction \(^{\circ}\)	\(\theta_b\)	\(\int_{-\pi}^{\pi} S(f)df\) \(0 - 360\) (from)	\(\text{meteo_wdir}\)	
Atmospheric Pressure \(\text{hPa}\)	\(p\)	\(\int_{-\pi}^{\pi} S(f)df\) \(0 - 100\)	\(\text{meteo_pres}\)	
Atmospheric Temperature \(^{\circ}\)	\(T\)	\(\int_{-\pi}^{\pi} S(f)df\) \(0 - 100\)	\(\text{meteo_temp}\)	
Humidity \(\%\)	\(H\)	\(\int_{-\pi}^{\pi} S(f)df\) \(0 - 100\)	\(\text{meteo_humd}\)	
Spotter wave buoy variables				
1-D wave energy spectrum \((m^2 \cdot Hz^{-1})\)	\(S_{w\text{Spotter}}\)	\(\int_{-\pi}^{\pi} S(f)df\) \(0.0391 - 1.25\) Hz	\(\text{buoy_Szz}\), \(\text{buoy_freq}\)	
Significant Wave Height \((m)\)	\(H_{\text{Spotter}}\)	\(\int_{-\pi}^{\pi} S(f)df\) \(0.2 - 4.2\)	\(\text{buoy_hs}\)	
Energy Wave Period \((s)\)	\(T_{\text{mit,Spotter}}\)	\(\int_{-\pi}^{\pi} S(f)df\) \(1.85 - 8.85\)	\(\text{buoy_ts}\)	
Mean Wave Direction \(^{\circ}\)	\(D_{\text{Spotter}}\)	\(\frac{\pi}{180^\circ}\) \(\arctan\) \(2(b_a, a_b)\) \(0 - 360\) (from)	\(\text{buoy_ds}\)	
SeaVision variables				
1-D wave energy spectrum \((m^2 \cdot Hz^{-1})\)	\(S_{w\text{SeaVision}}\)	\(\int_{-\pi}^{\pi} S(k, f)dk\) \(0.0423 - 0.4069\) Hz	\(\text{radar_Szz}\), \(\text{radar_freq}\)	
Significant Wave Height \((m)\)	\(H_{\text{SeaVision}}\)	\(\int_{-\pi}^{\pi} S(k, f)dk\) \(0.3 - 3\)	\(\text{radar_hs}\)	
Energy Wave Period \((s)\)	\(T_{\text{mit,SeaVision}}\)	\(\int_{-\pi}^{\pi} S(k, f)dk\) \(3.7 - 8.5\)	\(\text{radar_ts}\)	
Mean Wave Direction (°)

\[D_{\text{SeaVision}} = \frac{180°}{\pi} \arctan \left(\frac{b_i}{a_i} \right) \]

0 – 360° (from) radar ds

Author contributions

NT, AG, DI, VS, AS, LS, VS and PS participated in research cruises and data collection. The leading role in field work program development and implementation belongs to AG and VS. DI made preprocessing, postprocessing and analysis of the radar (SeaVision) dataset. VS developed the configuration and ran the WW3 model for the period of cruises. AG analysed all Spotter buoy data. EE, AG and VS did validation with satellite missions. VF, BT and SB provided hardware development and mounting of the SeaVision to the research vessels. VT, OR and AS provided operational support for the research cruises. NT has a leading role in the project set up and manuscript writing. The initial idea of the research belongs to SG. The scoring of the manuscript was developed by NT, SG and KPK. All authors contributed to the discussion, interpretation of the results and writing.

Competing interests

The authors declare no conflict of interests.

Acknowledgements

We thank anonymous Reviewer 1 and Alamgir Hossan (Reviewer 2) for careful examination of the manuscript and useful comments and suggestions that allowed to improve the manuscript significantly. We also thank Ian Young and Vladimir Karaev for their comments during the open discussion stage. We acknowledge Igor Skvortsov and the Atlantic branch of the Shirshov Institute of Oceanology in Kaliningrad for the local support and the crews of research vessels “Akademik Sergey Vavilov” and “Akademik Ioffe” for their help in setting up buoy measurements in the open ocean. We are also thankful to Viktoriya Grigorieva and Igor Goncharenko of Shirshov Institute of Oceanology for their help with setting up the hardware for radar signal digitization and useful advice. We thank Takaya Uchida at Université Grenoble Alpes for final proofreading of the manuscript.

Financial support

We thank Anonymous Reviewer 1 and Alamgir Hossan as Reviewer 2 for careful examination of the manuscript and useful comments and suggestions that allowed to improve the manuscript significantly. We also thank Ian Young and Vladimir Karaev for their comments during the open discussion. We acknowledge Skvortsov Igor and the Atlantic branch of the Shirshov Institute of Oceanology in Kaliningrad for their local support and crew of research vessels akademik Sergey Vavilov and akademik Ioffe for their help in setting up buoy measurements in the open ocean. We are also thankful to Viktoriya Grigorieva and Igor Goncharenko of Shirshov Institute of Oceanology for their help with setting up hardware for radar signal digitization and useful advice. We also thank Takaya Uchida at Université Grenoble Alpes for final proofreading of the manuscript.
This study was funded by the Russian Foundation for Basic Research, project № 20-35-70025. VS and AG were also supported with grant № 17-77-20112-P from the Russian Science Foundation (WW3 setting for the period of the research cruises). SG was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement 075-15-2021-577, interpretation and analysis of observational biases).

References

An J., Huang W., and Gill E. W. : “A self-adaptive wavelet-based algorithm for wave measurement using nautical radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 1, pp. 567–577, 2015.

Andreas, E. L.: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. Journal of the Atmospheric Sciences, 68, 1435–1445, https://doi.org/10.1175/2011JAS3714.1, 2011.

Babanin, A. V.: On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett., 33, L20605. doi:10.1029/2006GL027308, 2006.

Babanin, A. V.: Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press, 2011.

Blomquist, B. W., Brumer, S. E., Fairall, C. W., Huebert, B. J., Zappa, C. J., Brooks, I. M., … Pascal, R. W.: Wind speed and sea state dependencies of air-sea gas transfer: Results from the high wind speed gas exchange study (HiWinGS). Journal of Geophysical Research: Oceans, 122, 8034–8062, https://doi.org/10.1002/2017JC013181, 2017.

Buckingham, C. E., Lucas, N. S., Belcher, S. E., Rippeth, T. P., Grant, A. L. M., Lesommer, J., et al.: The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer. Journal of Advances in Modeling Earth Systems, 11, 4066–4094. https://doi.org/10.1029/2019MS001801, 2019.

Buckley, J. R. and Aler, J.: Enhancements in the determination of ocean surface wave height from grazing incidence microwave backscatter, in International Geoscience and Remote Sensing Symposium (IGARSS), vol.5. https://doi.org/10.1109/IGARSS.1998.702254, 1998.

Buckley, J. R. and Aler, J.: Estimation of ocean wave height from grazing incidence microwave backscatter, in International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2., https://doi.org/10.1109/IGARSS.1997.615328, 1997.

Campana, J., Terrill, E. J. and Paolo, T. de: A new inversion method to obtain upper-ocean current-depth profiles using X-band observations of deep-water waves, Journal of Atmospheric and Oceanic Technology, 34(5), https://doi.org/10.1175/JTECH-D-16-0120.1, 2017.

Casas-Prat, M., Wang, X. L., and Swart, N.: CMIP5-based global wave climate projections including the entire Arctic Ocean, Ocean Modelling, 123, 66–85, 2018.
Cavaleri, L., Fox-Kemper B., and Hemer M.: Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc., 93, 1651-1661, 2012.

Cavaleri, L., Barbariol, F. and Benetazzo, A.: Wind-wave modeling: Where we are, where to go, Journal of Marine Science and Engineering, 8(4), https://doi.org/10.3390/JMSE8040260, 2020.

Chen, Z., He, Y., Zhang, B., & Qiu, Z. (2015). Determination of nearshore sea surface wind vector from marine X-band radar images. Ocean Engineering, 96, 79–85. https://doi.org/10.1016/J.OCEANENG.2014.12.019, 2015.

Chen, Z., Zhang, B., Kudryavtsev, V., He, Y., & Chu, X. (2019). Estimation of sea surface current from X-band marine radar images by cross-spectrum analysis. Remote Sensing, 11(9), https://doi.org/10.3390/rs11091031, 2019.

Chen, Z., He, Y., Zhang, B., & Qiu, Z. (2015). Determination of nearshore sea surface wind vector from marine X-band radar images. Ocean Engineering, 96, 79–85. https://doi.org/10.1016/J.OCEANENG.2014.12.019, 2015.

Chen, Z., He, Y., Zhang, B., & Qiu, Z. (2015). Determination of nearshore sea surface wind vector from marine X-band radar images. Ocean Engineering, 96, 79–85. https://doi.org/10.1016/J.OCEANENG.2014.12.019, 2015.

Crombie, D. D.: Doppler spectrum of sea echo at 13.56 Mc./s. [3], Nature, 175(4459), https://doi.org/10.1038/175681a0, 1955.

Cronin M.F., Gentemann C.L., Edson J., Uckelmann, S., Brown, S., Clayson, C.A., Fairall C.W., Farrar J.T., Gille S.T., Gulev S., Josey S.A., Kato S., Katsumata M., Kent E., Krug M., Minnett P.J., Parfitt R., Pinker R.T., Stackhouse P.W. Jr, Swart S., Tomita H., Vandemark D., Weller R.A., Yoneyama K., Yu L. and Zhang D.: Air-Sea Fluxes With a Focus on Heat and Momentum. Front. Mar. Sci. 6:430. doi: 10.3389/fmars.2019.00430, 2019

Dankert, H. and Horstmann, J.: A marine radar wind sensor. Journal of Atmospheric and Oceanic Technology, 24(9), https://doi.org/10.1175/JTECH2083.1, 2007.

Dankert, H., Horstmann, J. and Rosenthal, W.: Ocean wind fields retrieved from radar-image sequences. Journal of Geophysical Research: Oceans, 108(11), https://doi.org/10.1029/2003jc002056, 2003.

Derkani, M. H., Alberello, A., Nelli, F., Bennetts, L. G., Hessner, K. G., Machutchen, K., Reichert, K., Aouf, L., Khan, S. and Toffoli, A.: Wind, waves, and surface currents in the Southern Ocean: Observations from the Antarctic Circumnavigation Expedition, Earth System Science Data, 13(3), https://doi.org/10.5194/essd-13-1189-2021, 2021.

Drouet, C., Cellier, N., Raymond, J. and Martigny, D.: Sea state estimation based on ship motions measurements and data fusion, in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, vol. 5., Nantes, France, 9–14 June 2013, OMAE2013-10657, https://doi.org/10.1115/OMAE2013-10657, 2013.

Fan, Y., and Griffies, S. M.: Impacts of Parameterized Langmuir Turbulence and Nonbreaking Wave Mixing in Global Climate Simulations. Journal of Climate, 27, 12, 4752-4775. https://doi.org/10.1175/JCLI-D-13-00583.1, 2014.

Gangeskar, R.: An algorithm for estimation of wave height from shadowing in X-band radar sea surface images. IEEE Transactions on Geoscience and Remote Sensing, 52(6), http://dx.doi.org/10.1109/TGRS.2013.2272701, 2014.

Gangeskar, R.: Wave height derived by texture analysis of X-band radar sea surface images, in International Geoscience and Remote Sensing Symposium (IGARSS), vol. 7., https://doi.org/10.1109/IGARSS.2000.860301, 2000.
Gavrikov, Alexander; Ivonin, Dmitry; Sharmar, Vitaly; Tilinina, Natalia; Gulev, Sergey; Suslov, Alexander; Fadeev, Vladimir; Trofimov, Boris; Bargman, Sergey; Salavatova, Leysan; Koshkina, Vasilisa; Shishkova, Polina; Sokov, Alexey (2021): Wind waves in the North Atlantic and Arctic from ship navigational radar (SeaVision system) and wave buoy Spotter during three research cruises in 2020 and 2021. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.939620 (dataset in review)

Greenwood C., Vogler A., Morrison J., Murray A.: The approximation of a sea surface using a shore mounted X-band radar with low grazing angle. Remote Sensing of Environment, 204, 439-447, https://doi.org/10.1016/j.rse.2017.10.012, 2018.

Gulev, S.K. and Hasse L.: North Atlantic wind waves and wind stress from voluntary observing data. J. Phys.Oceanogr., 28, 1107-1130, 1998.

Greenwood, C., Vogler, A., Morrison, J., Murray, A.: The approximation of a sea surface using a shore mounted X-band radar with low grazing angle. Remote Sensing of Environment, 204, 439-447, https://doi.org/10.1016/j.rse.2017.10.012, 2018.

Hasselmann, K.: Theory of synthetic aperture radar ocean imaging: a MARSEN view., Journal of Geophysical Research, 90(C3), https://doi.org/10.1029/JC090iC03p04659, 1985.

Hasselmann, S., Hasselmann, K., Allender, J. H. and Barnett, T. P.: Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of the nonlinear energy transfer for application in wave models, J. PHYS. OCEANOGR., 15(11, Nov. 1985), https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2, 1985.

Hatten, H., Seemann, J., Horstmann, J. and Ziemer, F.: Azimuthal dependence of the radar cross section and the spectral background noise of a nautical radar at grazing incidence, in International Geoscience and Remote Sensing Symposium (IGARSS), vol. 5, https://doi.org/10.1109/IGARSS.1998.702255, 1998.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J.,... & Thépaut, J. N.: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049, https://doi.org/10.1002/qj.3803, 2020.

Hessner K., Reichert K., Dittrup J., Nieto Borge and Günther H. Ocean Wave Measurement and Analysis, https://doi.org/10.1061/40604(273)23, 2001.

Hessner, K. and Hanson, J. L.: Extraction of coastal wavefield properties from X-band radar, in International Geoscience and Remote Sensing Symposium (IGARSS), https://doi.org/10.1109/IGARSS.2010.5650134, 2010.

Hilmer, T. and Thornhill, E.: Observations of predictive skill for real-time Deterministic Sea Waves from the WaMoS II, in OCEANS 2015 - MTS/IEEE Washington, 2016.

Huang W., Gill E. W., and An J.: Iterative least-squares-based wave measurement using X-band nautical radar, JET Radar, Sonar & Navigation, vol. 8, no. 8, pp. 853–863, 2014.
Hwang, P. A., Sletten, M. A. and Toporkov, J. V.: A note on Doppler processing of coherent radar backscatter from the water surface: With application to ocean surface wave measurements, Journal of Geophysical Research: Oceans, 115(3), https://doi.org/10.1029/2009JC005870, 2010.

Ivonin, D. V., Telegin, V. A., Chernyshev, P. V. et al.: Possibilities of X-band nautical radars for monitoring of wind waves near the coast. Oceanology 56, 591–600, https://doi.org/10.1134/S0001437016030103, 2016.

Johnson, J. T., Burkholder, R. J., Toporkov, J. V., Lyzenga, D. R. and Plant, W. J.: A numerical study of the retrieval of sea surface height profiles from low grazing angle radar data, in IEEE Transactions on Geoscience and Remote Sensing, vol. 47., https://doi.org/10.1109/IGARSS.2010.5650134, 2009.

Kanevsky M. B.: Radar Imaging of the Ocean Waves, Elsevier, ISBN 9780444532091, https://doi.org/10.1016/B978-0-444-53209-1.00010-1. pp. 179-180, 2009

Karaev, V. Y., Kanevsky, M. B., Meshkov, E. M. et al.: Measurement of the variance of water surface slopes by a radar: Verification of algorithms. Radiophys Quantum E 51, 360 https://doi.org/10.1007/s11141-008-9042-6, 2008.

McWilliams, J., & Fox-Kemper, B.: Oceanic wave-balanced surface fronts and filaments. Journal of Fluid Mechanics, 730, 464-490. doi:10.1017/jfm.2013.348, 2013.

Morim, J., Trenham, C., Hemer, M. et al.: A global ensemble of ocean wave climate projections from CMIP5-driven models. Sci Data 7, 105. https://doi.org/10.1038/s41597-020-0446-2, 2020.

Morim, J., Erikson, L. H., Hemer, M. et al. A global ensemble of ocean wave climate statistics from contemporary wave reanalysis and hindcasts. Sci Data 9, 358 https://doi.org/10.1038/s41597-022-01459-3, 2022.

Nagai, T., Satomi, S., Terada, Y., Kato, T., Nukada, K. and Kudaka, M.: GPS buoy and seabed installed wave gauge application to offshore tsunami observation, in Proceedings of the International Offshore and Polar Engineering Conference, vol. 2005. Seoul, Korea, 19–24 June, 2005 ISOPE-1-5-282, available at: https://onepetro.org/ISOPE/ISOPEC/proceedings/abstract/ISOPE05-AB-ISOPE05ISOPE-1-5-24294448, 2005.

Nieto Borge J. C., Reichert K., Dittmer, J.: Use of nautical radar as a wave monitoring instrument. Coastal Engineering, Vol.37, pp. 331-342, 1999.

Nieto-Borge, J. C. and Guedes Soares, C.: Analysis of directional wave fields using X-band navigation radar, Coastal Engineering, 49(4), https://doi.org/10.1016/S0378-3839(00)00019-3, 2000.

Nieto-Borge, J. C., Hessner, K., Jarabo-Amores, P., and De La Mata-Moya, D.: Signal-to-noise ratio analysis to estimate ocean wave heights from X-band marine radar image time series, IET Radar, Sonar and Navigation, 2(1), https://doi.org/10.1049/iet-rsn:20070027, 2008.

Nieto-Borge, J. C., Jarabo-Amores, P., De La Mata-Moya, D. and López-Ferreras, F.: Estimation of ocean wave heights from temporal sequences of X-band marine radar images, in European Signal Processing Conference, Lüneburg, Germany 4–9 June 2006, 35-41, https://doi.org/10.1115/GMAE2006.92015, 2006.
Park, G. I., Choi, J. W., Kang, Y. T., Ha, M. K., Jang, H. S., Park, J. S., Kwon, S. H.: The application of marine X-band radar to measure wave condition during sea trial. Journal of Ship and Ocean Technology, 10(4), 34-48, available at: https://www.koreascience.or.kr/article/JAKO200614539116884.page, 2006.

Plant, W. J., Keller, W. C., Reeves, A. B., Uliana, E. A. and Johnson, J. W.: Airborne microwave doppler measurements of ocean wave directional spectra, International Journal of Remote Sensing, 8(3), https://doi.org/10.1080/01431168708948644, 1987.

Plant, W. J.: A model for microwave Doppler sea return at high incidence angles: Bragg scattering from bound, Tilted waves, Journal of Geophysical Research: Oceans, 102(C9), https://doi.org/10.1029/97JC01225, 1997.

Raghukumar, K., Chang, G., Spada, F., Jones, C., Janssen, T. and Gans, A.: Performance characteristics of “spotter,” a newly developed real-time wave measurement buoy, Journal of Atmospheric and Oceanic Technology, 36(6), https://doi.org/10.1175/JTECH-D-18-0151.1, 2019.

Reichert, K., Hessner, K., Dannenberg, J. and Traenkmann, I.: X-Band radar as a tool to determine spectral and single wave properties, in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, vol. 2006., Hamburg, Germany, 4–9 June 2006, 683-688, https://doi.org/10.1115/OMAE2006-92015, 2006.

Ribal, A. and Young, I. R.: Publisher Correction: 33 years of globally calibrated wave height and wind speed data based on altimeter observations (Scientific Data, (2019), 6, 1, (77), 10.1038/s41597-019-0083-9), Scientific Data, 6(1), https://doi.org/10.1038/s41597-019-0108-4, 2019.

Ribas-Ribas M., Helleis F., Rahlff J and Wurl O.: Air-Sea CO2-Exchange in a Large Annular Wind-Wave Tank and the Effects of Surfactants. Front. Mar. Sci. 5:457. doi: 10.3389/fmars.2018.00457, 2018.

Rogers, W. E., Babanin, A. V. and Wang, D. W.: Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations, Journal of Atmospheric and Oceanic Technology, 29(9), https://doi.org/10.1175/JTECH-D-11-00092.1, 2012.

Seemann, J., Ziemer, F. and Senet, C. M.: Method for computing calibrated ocean wave spectra from measurements with a nautical X-band radar, in Oceans Conference Record (IEEE), vol. 2., Halifax, NS, Canada, 6-9 October 1997, https://doi.org/10.1109/OCEANS.1997.624154, 1997.

Semedo, A., Dobrynin, M., Lemos, G., Behrens, A., Staneva, J., de Vries, H., Murawski, J.: CMIP5-Derived Single-Forcing, Single-Model, and Single-Scenario Wind-Wave Climate Ensemble: Configuration and Performance Evaluation, Journal of Marine Science and Engineering, 6(3), 90. doi:10.3390/jmse6030090, 2018.

Senet, C. M., Seemann, J. and Ziemer, F.: The near-surface current velocity determined from image sequences of the sea surface, IEEE Transactions on Geoscience and Remote Sensing, 39(3), https://doi.org/10.1109/36.911108, 2001.
Sharmar, V., Markina M., Gulev S.K.: Global Ocean Wind-Wave Model Hindcasts Forced by Different Reanalyses: A Comparative Assessment Journal of Geophysical Research: Oceans, 126, e2020JC016710. https://doi.org/10.1029/2020JC016710, 2021.

Smit P.B., Houghton I.A., Jordanova K., Portwood T., Shapiro E., Clark D., Sosa M., Janssen T.T.: Assimilation of significant wave height from distributed ocean wave sensors Ocean Model, 15, p. 101738, https://doi.org/10.1016/j.ocemod.2020.101738, 2021.

Story, W. R., Fu, T. C. and Hackett, E. E.: Radar measurement of ocean waves, in Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, vol. 6., https://doi.org/10.1115/OMAE2011-49895, 2011.

Studholme, J., Fedorov A. V., Gulev S. K., Emanuel K. and Hodges K.: Poleward expansion of tropical cyclone latitudes in warming climates Nature Geoscience, https://doi.org/10.1038/s41561-021-00859-1, 2021.

Swail V., Jensen, R.E., Lee, B., Turton, J., Thomas, J., Gulev, S., Yelland, M., Etala, P., Meldrum, D., Birkemeier, W., Burnett B. and Warren G.: Wave Measurements, Needs and Developments for the Next Decade., available at: http://waveworkshop.org/11thWaves/Papers/Swail_etal_Wave%20Measurements.pdf, 2010.

WAMDI Group, T. W. (1988). The WAM Model—A Third Generation Ocean Wave Prediction Model. Journal of Physical Oceanography 18, 12, 1775-1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGM>2.0.CO;2.

The WAVEWATCH III Development Group (WW3DG), (2019): User manual and system documentation of WAVEWATCH III R version 6.07. Tech. Note 333. NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 465 pp. + Appendices., available at: https://github.com/NOAA-EMC/WW3/wiki/Manual, 2019.

Verezemskaya, P., Burnier, B., Gulev, S. K., Gladyshev, S., Molines, J. M., Gladyshev, V., Lellouche, J. M. and Gavrikov, A.: Assessing Eddying (1/12°) Ocean Reanalysis GLORYS12 Using the 14-yr Instrumental Record From 59.5°N Section in the Atlantic, Journal of Geophysical Research: Oceans, 126(6), https://doi.org/10.1029/2020JC016317, 2021.

Vicen-Bueno, R., Horstmann, J., Terril, E., de Paolo, T. and Dannenberg, J.: Real-time ocean wind vector retrieval from marine radar image sequences acquired at grazing angle, Journal of Atmospheric and Oceanic Technology, 30(1), https://doi.org/10.1175/JTECH-D-12-00027.1, 2013.

Vicen-Bueno, R., Lido-Muela, C. and Nieto-Borge, J. C.: Estimate of significant wave height from noncoherent marine radar images by multilayer perceptrons, Eurasip Journal on Advances in Signal Processing, 2013(1), https://doi.org/10.1186/1687-6180-2012-84, 2012.

Xu, J. and Wang, Y.: Potential Intensification Rate of Tropical Cyclones in a Simplified Energetically Based Dynamical System Model: An Observational Analysis. Journal of the Atmospheric Sciences 79, 4, 1045-1055, https://doi.org/10.1175/JAS-D-21-0217.1, 2022.
Young, I. R., Rosenthal, W. and Ziemer, F.: A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents., Journal of Geophysical Research, 90(C1), https://doi.org/10.1029/JC090iC01p01049, 1985.

Zieger S., Babarin A. V., Rogers W. E., and Young I. R. (2015), Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling., 96, 2-25.

Borge, J. C. N., Reichert, K. and Dittmer, J.: Use of nautical radar as a wave monitoring instrument, Coastal Engineering, 37(3–4), https://doi.org/10.1016/S0378-3839(99)00032-0, 1999.