Data on the draft genome sequence of *Caryocar brasiliense* Camb. (Caryocaraceae): An important genetic resource from Brazilian savannas

Rhewter Nunes a, *, Ariany Rosa Gonçalves a, Mariana Pires de Campos Telles a, b

a Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas - UFG, Goiânia, 74690-900, Brazil
b Escola de Ciências Agrárias e Biológicas, PUC-GO, Goiânia, Brazil

A B S T R A C T

Caryocar brasiliense (Caryocaraceae) is a Neotropical tree species widely distributed in Brazilian savannas. This species is very popular in central Brazil mainly due to the use of its fruits in the local cuisine and their anti-inflammatory properties, and indeed it is one of the candidates, among Brazilian native plants, for fast track incorporation into cropping systems. Considering the importance of *Caryocar brasiliense*, little is known about its genetics and genomics, and determination of a reference genome sequence could improve the understanding of its evolution, as well as the development of tools for domestication. Here, we provide the first draft genome of *C. brasiliense*, the raw sequencing data and some multiplex sets of high quality microsatellite primers. Data on the genome project can be obtained from the BioProject at NCBI (https://www.ncbi.nlm.nih.gov/bioproject/?term=caryocar).

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The pequi (*Caryocar brasiliense* Camb.) belongs to the family Caryocaraceae (Malpighiales order) and is an important genetic resource from Brazilian savannas mainly because of the use of its fruits in local cuisine and their anti-inflammatory proprieties. We present the first draft genome of *C. brasiliense* using high-throughput DNA sequencing, the raw sequencing data used in the genome assembly analysis and a set of primers to amplify candidate microsatellite markers. The draft genome recovered 45.69% of the estimated genome size (464,365,380 bp) distributed in 55,248 contigs (Table 1). The draft genome is available at: https://www.ncbi.nlm.nih.gov/nuccore/STGP00000000.1/. The raw reads dataset was obtained from a run using Illumina HiSeq2000 equipment. A total of 293,621,819 sequencing reads of 100 base pairs each were generated. Sequencing data are available at: https://www.ncbi.nlm.nih.gov/sra/?term¼SRX5692978. Additionally, 5 multiplex with 5 to 7 high-quality microsatellite primers (total of 30 pairs of primers) were designed and are available in this paper (Table 2).

2. Experimental design, materials, and methods

2.1. Total DNA sampling and sequencing

Fresh leaves were collected from a tree at Escola de Agronomia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil (16°35′49.8″S 49°16′45.4″W). The total DNA was extracted from leaves using the CTAB protocol [1]. The quality of DNA was determined by a Nanodrop device, and the quantity was measured by a Qbit and 1% agarose gel. The sample was sent to Centro de Genômica Funcional ESALQ-
USP core facility for sequencing. An Illumina paired-end 2 × 100 bp library was constructed and forwarded for sequencing using an Illumina HiSeq2000 platform.

2.2. Sequencing quality control and assembly

Raw reads were evaluated for base quality sequencing and sequencing adapter presence using FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Quality control was performed using Trimmomatic software v0.39 [2] with the options ILLUMINACLIP: TruSeq3-PE.fa:2:30:10:5:1:N:

Table 1	Genome assembly statistics of the draft genome of *Caryocar brasiliense*.
Metric	Value
Number of contigs	55,248
Number of contigs ≥1000 bp	43,286
Total length	212,172,521
Largest contig	64,707
Shortest contig	500
N50	6005
N75	3615
L50	10,532
L75	21,784
GC%	34.84

Table 2	Multiplex microsatellite primers designed for *Caryocar brasiliense*.					
Multiplex_ID	Primer_ID	SSR_Motif	Primer_Foward_5'-3'	Primer_reverse_5'_3'	Ta	PCR_Frag_len
1	Cbr_NGS_SSR1	TATG	gcctagtccgactctagactgtt	cacacagtctacagtgttgcgc	62	349
1	Cbr_NGS_SSR2	CATA	aaccgcgtttctttggaatctttc	ttcttcggtttcagctgcctagtgta	60	164
1	Cbr_NGS_SSR3	CT	cttctttttgctgttgatttcctg	cctattctttctttttctttcttttc	61	224
1	Cbr_NGS_SSR4	CT	actctgtccagcagctgccta	aacgccttttcttttcgctttcttttc	60	102
1	Cbr_NGS_SSR5	AG	ggtgcgtgtcatttcagctgccttctt	cctctttctttctttctttttcttttt.tc	60	584
1	Cbr_NGS_SSR6	TC	gttctgtt			
30:10 and SLIDEWINDOW: 4:30, which required at least a mean Phred score of 30 for every four bases. The best k-mer value was estimated using Kmergenie software [3]. The de novo assembly was performed using Platanus (PLATform for Assembling NUcleotide Sequences) software v1.2.4 [4].

2.3. Microsatellite identification and primer design

The microsatellite regions were identified in the genome using QDD software [5]. The program marks the primers for microsatellite regions that occur in the context of transposable elements. This allows the selection of the best primer pairs for the molecular marker test as it minimizes the occurrence of null alleles due to primer annealing problems. We used only contigs larger than 10 Kb in the microsatellite analysis. After identification of the microsatellite regions, we applied a rigorous filter to choose the best sets of primers for molecular marker tests. Among the 120,858 pairs of primers designed for 6885 identified microsatellite regions we applied the following filters: i) primers with a size between 20 and 24 base pairs; ii) PCR product size between 150 and 460 base pairs; iii) not including a region formed only by adenine and thymine bases; iv) at least 16 dinucleotide, 6 trinucleotide, 4 tetranucleotide and 4 pentanucleotide repeats and v) the difference in annealing temperature between the primers is less than 2 °C. For the resulting set of primers, the best pair for each microsatellite region was chosen based on the greatest possible distance between target regions and primers. We used FastPCR software to generate the multiplex sets [6]. The final set of primers we recommend for testing as molecular markers correspond to 30 microsatellite regions distributed in a set of 5 PCR multiplex.

Acknowledgments

This work was developed in the context of the National Institutes for Science and Technology in Ecology, Evolution and Biodiversity Conservation (INCT - EECBio), supported by MCTIC/CNPq (process #465610/2014-5) and the Foundation for Research Support of the State of Goiãs (FAPEG), in addition to support from PPGS CAPES/FAPEG (Public Call #08/2014) and the National Council for Scientific and Technological Development (CNPq) (Call MCTIC/CNPq #28/2018, process 435477/2018-8). R.N. and A.R.G. were supported by doctoral fellowships from Coordination for the Improvement of Higher Education Personnel (CAPES). M.P.C.T. was supported by productivity fellowships from CNPq.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] J. Doyle, J.J. Doyle, Doyle&Doyle_Focus_1990_CTAB.pdf, Focus 12 (1990) 13–15.
[2] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics 30 (2014) 2114–2120, https://doi.org/10.1093/bioinformatics/btu170.
[3] R. Chikhi, P. Medvedev, Informed and automated k-mer size selection for genome assembly, Bioinformatics 30 (2014) 31–37, https://doi.org/10.1093/bioinformatics/btt310.
[4] R. Kajitani, K. Toshimoto, H. Noguchi, A. Toyoda, Y. Ogura, M. Okuno, M. Yabana, M. Harada, E. Nagayasu, H. Maruyama, Y. Kohara, A. Fujiyama, T. Hayashi, T. Itoh, Efficent de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads, Genome Res. 24 (2014) 1384–1395, https://doi.org/10.1101/gr.170720.113.
[5] E. Meglécz, C. Costedoat, V. Dubut, A. Gilles, T. Malausa, N. Pech, J.F. Martin, QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects, Bioinformatics 26 (2009) 403–404, https://doi.org/10.1093/bioinformatics/btp670.
[6] R. Kalendar, D. Lee, A.H. Schulman, FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis, in: S. Valla, R. Lale (Eds.), DNA Cloning and Assembly Methods. Methods in Molecular Biology (Methods and Protocols), vol. 1116, Humana Press, Totowa, NJ, 2014.