FIRST KARYOTYPE REPORT ON *Colocasia oresbia*: A COMPARATIVE CYTOGENETIC STUDY BETWEEN TWO VARIETIES

Begum Kazi N., Dash Chandan K., Sultana Syeda S.

ABSTRACT

Karyotypes of two *Colocasia oresbia* botanical varieties from Bangladesh were analyzed and compared with orcein, chromomycin A3 (CMA) and 4′-6 diamidino-2-phenylindole (DAPI). Both varieties had 2n = 2x = 26 chromosomes (karyotypic formula: 20m+6sm) and a pair of satellites each. Total chromosome length was 144.18 ± 2.45 μm in *C. oresbia* var. *oresbia* and 133.02 ± 2.75 μm in *C. oresbia* var. *stolonifera*. The karyotype of *Colocasia oresbia* var. *oresbia* is 2A whereas that of *C. oresbia* var. *stolonifera* is 1A. Six CMA and four DAPI bands were observed in *C. oresbia* var. *oresbia* and eight CMA and six DAPI bands in *C. oresbia* var. *stolonifera*. However, in these two morphologically distinct *C. oresbia* varieties of two different ecological zones, the same somatic chromosome number, diversification in various karyotypic parameters and CMA/DAPI-banding patterns were observed. In addition to taxonomic characters, the studied karyotype features will contribute to the characterization of these two *C. oresbia* varieties and to establish a base for future research.

Key words: chromosome banding; CMA; DAPI; Karyotype.

RESUMEN

Se analizaron y compararon los cariotipos de dos variedades botánicas de *Colocasia oresbia* de Bangladesh con orceína, chromomicina A3 (CMA) y 4′-6 diamidino-2-phenilindol (DAPI). Ambas variedades presentaron 2n = 2x = 26 cromosomas (fórmula cariotípica: 20m+6sm) y un par de satélites cada una. La longitud total de cromosomas fue 144.18 ± 2.45 μm en *C. oresbia* var. *oresbia* y 133.02 ± 2.75 μm en *C. oresbia* var. *stolonifera*. El cariotipo de *Colocasia oresbia* var. *oresbia* es 2A, y 1A el de *C. oresbia* var. *stolonifera*. Se observaron seis bandas CMA y cuatro DAPI en *C. oresbia* var. *oresbia* y ocho bandas CMA y seis DAPI en *C. oresbia* var. *stolonifera*. Sin embargo, en estas dos variedades morfológicamente distintas se observó el mismo número cromosómico somático, diversificación en varios parámetros cariotípicos y en patrones de bandeo CMA/DAPI. En adición a los caracteres taxonómicos, las características de los cariotipos estudiados contribuirán a la caracterización de estas dos variedades de *C. oresbia* y a establecer una base para futuras investigaciones.

Palabras clave: bandeo cromosómico; CMA; DAPI; cariotipo
INTRODUCTION

The genus Colocasia Schott belonging to the Araceae family, comprises about 20 species over the world (Li and Boyce, 2010). A total of nine of these species has been reported for Bangladesh so far, such as C. affinis Schott, C. esculenta (L.) Schott, C. falcata Schott, C. gigantea (Blume) Hook. f., C. heterochroma H. Li et Z.X. & Wei, C. lhengiae C.L. Long et K.M. Liu, C. mannii Hook. f., C. oresbia A. Hay and C. virosa Kunth. (Ara and Hassan, 2019). This genus is popular because it is edible and has medicinal, ornamental and cultural importance. Ara and Hassan (2019) reported and differentiated two varieties of C. oresbia from Bangladesh viz. C. oresbia A. Hay var. stolonifera H. Ara & M.A. Hassan, var. nov. and C. oresbia A. Hay var. oresbia based on several prominent morphological features. In fact, most species of this genus are morphologically distinct although the morphological features of a few of them are very confusing. In those cases, karyo-morphological information can open a new direction for evaluating the relationship among them. The nature and degree of karyotype differences obtained from conventional and fluorescent banding techniques could be useful to discuss plant phylogeny. In addition, the cytogenetical information will be useful for development of successful breeding programs in this crop. So far C. oresbia is unexplored cytogenetically. Therefore, in the present study, the basic chromosome number of C. oresbia was found and collected only from Rangamati district (hilly regions), Bangladesh whereas C. oresbia var. stolonifera was collected from Chittagong, Cox’s Bazar, Khagrachari, Moulibazar, Rangamati, Kaptai, Rajbari area, Shubalong and Dhaka (flat regions) of Bangladesh.

RESULTS AND DISCUSSION

Morphological investigation

The two studied varieties of Colocasia oresbia show some prominent morphological dissimilarities. Colocasia oresbia var. stolonifera has stolons, which are absent in C. oresbia var. oresbia. They also show differences in inflorescence formation: the inflorescence of C. oresbia var. stolonifera is normally formed in group of up to 3 but in C. oresbia var. oresbia inflorescence occurred in group of up to 8 (never less than 4).

Somatic chromosome number and karyotype analysis

This present study provides detailed chromosomal information of C. oresbia for the first time. The two varieties are found to possess 2n= 26 chromosomes (Figure 1A, B; Table 1). Somatic chromosome numbers 2n= 28 and 42 have been reported for most of the studied species of this genus. Besides, some infrequent records such as 2n= 26 in C. gigantea and C. esculenta, 2n= 38 in C. antiquorum, and 2n= 56 (tetraploid) in C. esculenta have also been reported (Wang et al., 2017). Previous literature has stated the basic chromosome number of Colocasia is x=14 since most of the species belonging to this genus have 2n= 28 chromosomes (Yang et al., 2003). Other researchers have suggested that chromosomal variation regarding ploidy levels and aneuploidy occurred frequently in this genus (Fedorov, 1974; Kumar and Subramanian, 1979; Cao and Long, 2004; Huang et al., 2012). Moreover, the presence of euploid and aneuploid cytotypes in different species represents inconstancy in the basic chromosome number. The reported basic chromosome numbers are x= 13, 14, 19, present in 2x, 3x, and 4x cytotypes (Wang et al., 2017). Previous studies concerning genus Colocasia showed that x= 14 should be considered as ancestral basic chromosome number (Yang et al., 2003; Wang et al., 2017). In two varieties of C. oresbia of the present study, the basic chromosome number was observed under a Nikon (Eclipse 50i) fluorescent microscope with a blue violet (BV) filter cassette for CMA and an ultraviolet (UV) one for DAPI-banding. CMA binds with GC (Guanine-Cytosine)–rich repetitive sequences of the genome expressing yellow fluorescence, and DAPI binds to AT (Adenine-Thymine)–rich repeats giving a characteristic blue color (Schweizer, 1976).

For every staining, at least 50 cells were observed in each variety. The idigrams were made on the basis of chromosome size in decreasing order. Levan et al. (1964) was followed for determining centromeric type of chromosomes. Karyotype asymmetry index (AI) was also calculated to determine the degree of karyotype heterogeneity (Paszko, 2006).

MATERIALS AND METHODS

Two varieties of Colocasia oresbia viz. C. oresbia A. Hay var. stolonifera H. Ara & M.A. Hassan, var. nov. and C. oresbia A. Hay var. oresbia were studied. Colocasia oresbia var. oresbia was collected from Chittagong, Cox’s Bazar, Khagrachari, Moulibazar, Rangamati, Kaptai, Rajbari area, Shubalong and Dhaka (flat regions) of Bangladesh whereas C. oresbia var. stolonifera was found and collected only from Rangamati district (hilly regions), Bangladesh. For cytogenetic investigation, healthy roots of ten individuals of each variety were collected and pretreated with 2 mM 8-hydroxyquinoline for 3 h at room temperature followed by 15 min fixation in 45% acetic acid at 4 °C, then hydrolyzed in a mixture of 1 N HCl and 65% acetic acid (2:1 v/v) at 60 °C for 3 min. The root tips were stained and squashed in 1% aceto-orcein. For CMA– and DAPI–banding, Alam and Kondo’s (1995) method was used with slight modifications. Slides were prepared using a Nikon microtome (SMZ1000) and observed under a Nikon (Eclipse 50i) fluorescent microscope with a blue violet (BV) filter cassette for CMA and an ultraviolet (UV) one for DAPI-banding.
number is \(x=13\). Other previously reported basic chromosome numbers of \(x=13\) and \(x=19\) indicate that these two basic numbers probably originated from \(x=14\) by secondary modifications (Leong-Škorničková et al., 2007).

Both varieties of \(C. oresbia\) display relatively homogeneous karyotype arrangement with metacentric and submetacentric chromosomes with a KF of 20m + 6sm, and have one pair of satellites in chromosome pair III (Figure 1G, H). However, these two varieties show differences in other karyotype parameters. \(C. oresbia\) var. \(oresbia\) and \(C. oresbia\) var. \(stolonifera\) has TCL of \(144.18 \pm 2.45\) \(\mu m\) and \(133.02 \pm 2.75\) \(\mu m\), respectively (Table 1). The ACL is lower in \(C. oresbia\) var. \(stolonifera\) (5.12 \(\mu m\)) than \(C. oresbia\) var. \(oresbia\) (5.55 \(\mu m\)). The RCL is 4.23–7.02 \(\mu m\) in \(C. oresbia\) var. \(stolonifera\) and 4.05–6.75 \(\mu m\) in \(C. oresbia\) var. \(stolonifera\). The RL is 2.93–4.87\% in \(C. oresbia\) var. \(oresbia\) whereas 3.04–5.07\% in \(C. oresbia\) var. \(stolonifera\).

When evolutionary positions are taken into consideration in relation to the karyotypic nature, symmetric karyotypes are usually regarded as primitive and asymmetrical as advanced, since karyotype asymmetry can be considered to be the dynamic force behind speciation (Stebbins, 1971). Furthermore, a higher AI value represents more asymmetric karyotypes (Paszko, 2006). The studied asymmetry index of karyotype reveals that the karyotype of \(C. oresbia\) var. \(oresbia\) is more asymmetric than the karyotype of \(C. oresbia\) var. \(stolonifera\). Thus, \(C. oresbia\) var. \(oresbia\) is more advanced from an evolutionary point of view. Chromosome number and size along with karyotypic

Figure 1. Metaphase chromosomes and idiograms of two Colocasia oresbia varieties. A. Orcein-stained mitotic metaphase of \(C. oresbia\) var. \(oresbia\), B. Orcein-stained mitotic metaphase of \(C. oresbia\) var. \(stolonifera\), C. CMA-stained mitotic metaphase of \(C. oresbia\) var. \(oresbia\), D. CMA-stained mitotic metaphase of \(C. oresbia\) var. \(stolonifera\), E. DAPI-stained mitotic metaphase of \(C. oresbia\) var. \(oresbia\), F. DAPI-stained mitotic metaphase of \(C. oresbia\) var. \(stolonifera\), G. Idiogram of \(C. oresbia\) var. \(oresbia\), H. Idiogram of \(C. oresbia\) var. \(stolonifera\). Arrows indicate satellites. Bars=10 \(\mu m\).
features are subjected to evolutionary change (Lavia et al., 2009). Chromosome evolution can take place either by increasing or decreasing chromosomal length (Brandham and Doherty, 1998; Martel et al., 2004). In this case, the total length of the chromosome complements increase in the course of evolution, since both varieties have similar 2n numbers and karyotype formula. *Colocasia oresbia* var. *oresbia* and *C. oresbia* var. *stolonifera* have 2A and 1A karyotypes, respectively, which also correlate with the asymmetric index (Table 1).

Fluorescent banding

Each variety exhibited distinct CMA banding pattern (Figure 1C, H; Table 1). Six and eight CMA bands were found in *C. oresbia* var. *oresbia* and *C. oresbia* var. *stolonifera*, respectively, with 5.31% GC-rich repeats in *C. oresbia* var. * oresbia* and 6.79% in *C. oresbia* var. *stolonifera*. Six chromosomes (pairs VII, X and XII) of *C. oresbia* var. * oresbia* and four chromosomes (pairs II and VI) of *C. oresbia* var. *stolonifera* exhibited terminal CMA bands. In addition, two chromosomes (pair I) of *C. oresbia* var. *stolonifera* had a peculiar CMA banding pattern. In this variety, two chromosomes possess a pair of interstitial bands that may be used as chromosome markers. Four and six DAPI bands were observed in *C. oresbia* var. *oresbia* and *C. oresbia* var. *stolonifera*, respectively. The DAPI-banded regions are 3.12% and 5.41% of the total chromosome complements in *C. oresbia* var. * oresbia* and *C. oresbia* var. *stolonifera*, respectively. Four terminal DAPI bands (pairs VI and XI) in *C. oresbia* var. * oresbia* and two terminal DAPI bands (pair VIII) in *C. oresbia* var. *stolonifera* were found. In addition, two centromeric (pair IX) and two intercalary DAPI bands (pair VII) were also observed in *C. oresbia* var. *stolonifera* (Figure 1G, H). The mentioned findings suggest that each variety has a characteristic CMA and DAPI banded pattern with different number, location, total banded regions and percentage of GC- and AT-rich segments. Most of the bands are present at the terminal regions of the short arms of the respective chromosomes (Figure 1C, H). The presence of terminal bands indicated the tendency of accumulating GC- and AT-rich repetitive sequences at the chromosomal ends. Even though both varieties have the same chromosome number, diversification in karyotypic features and reshuffling of GC- and AT-rich.

Features	*C. oresbia* var. *oresbia*	*C. oresbia* var. *stolonifera*
Orcein staining		
2n	26	26
No. of satellites	2	2
KF	20m+6sm	20m+6sm
TCL (µm)	144.18±2.45	133.02±2.75
RCL (µm)	4.23−7.02	4.05−6.75
RL (%)	2.93−4.87	3.04−5.07
ACL (µm)	5.55	5.12
AI	1.65	1.20
Karyotype category	2A	1A
CMA		
No. of bands	6	8
Total banded region (µm)	7.65±0.53	9.03±0.74
Banded region (%)	5.31	6.79
DAPI		
No. of bands	4	6
Total banded region (µm)	4.50±0.78	7.20±0.68
Banded region (%)	3.12	5.41

2n=Somatic chromosome number; KF=Karyotypic formula; TCL=Total chromosome length; RCL=Range of chromosomal length; RL=Relative length of chromosome; ACL=Average chromosome length; AI=Asymmetry index of karyotype.

Table 1. Comparative cytogenetical analysis of two *Colocasia oresbia* varieties.
banded regions were observed. The variation in karyotype indices and fluorescence banding patterns may be the result of inversions, deletions or unequal translocations, among other chromosomal aberrations. The diversity in karyotypes of these two varieties may have arisen due to the exposure to different environmental conditions.

This research is the first cytogenetical report for *C. oresbia*. The findings of the present study would be useful for future breeding programs and a contribution to the systematics of the species.

REFERENCES

Alam S.S., Kondo K. (1995) Differential staining with orcein, Giemsa, CMA and DAPI for comparative chromosome study of 12 species of Australian *Drosera* (Droseraceae). American J. Bot. 82: 1278–1286.

Ara H., Hassan M.A. (2019) Four new varieties of the family Araceae from Bangladesh. Bangladesh J. Plant Taxon. 26: 13–28.

Brandham P.E., Doherty M.J. (1998) Genome size variation in the Alnaceae, an angiosperm family displaying karyotypic orthoselection. Ann. Bot. 82: 67–73.

Cao L.M., Long C.L. (2004) Chromosome numbers of eight *Colocasia* taxa and karyotypes of five species occurring in China. Acta Bot. Yunnan 26: 310–316.

Fedorov A.N.A. (1974) Chromosome Numbers of Flowering Plants. Otto Koettz Science Publishers, N–624 W, Germany.

Huang X.F., Ke W.D., Liu Y.M., Ye Y.Y., Li S.M., Peng J., Liu Y.P., Li F. (2012) Chromosomal ploidy identification of Taro (*Colocasia*) germplasm resources. China Veget. 6: 42–46.

Kumar V., Subramaniam B. (1987) Chromosome atlas of flowering plants of the Indian subcontinent: Dicotyledons. Botanical Survey of India, Kolkata.

Leong-Škorničková J., Šída O., Jarolímová V., Sabu M., Fér T., Trávníček P., Suda J. (2007) Chromosome numbers and genome size variation in Indian species of *Curcuma* (Zingiberaceae). Ann. Bot. 100: 505–526.

Levan A., Fredga K., Sandberg A.A. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220.

Li H., Boyce P.C. (2010) *Colocasia*. In: Wu Z.Y., Raven P.H., Hong D.Y. (Eds.) Flora of China. Vol. 23. Science Press, St. Louis, pp. 73–75.

Martel E., Poncet V., Lamy F., Siljak-Yakovlev S., Lejeune B., Sarr A. (2004) Chromosome evolution of *Pennisetum* species (Poaceae): Implications of ITS phylogeny. Plant Syst. Evol. 249: 139–149.

Paszkó B. (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst. Evol. 258: 39–48.

Schweizer D. (1976) Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosoma 58: 307–324.

Stebbins G.L. (1971) Chromosomal Evolution in Higher Plants. University Park Press, Baltimore.

Wang G.Y., Zhang X.M., Qian M., Hu X.Y., Yang Y.P. (2017) Chromosome number and genome size variation in *Colocasia* (Araceae) from China. J. Plant Res. 130: 989–997.

Yang Z.Y., Yi T.S., Li H., Gong X. (2003) A cytological study on three species of *Colocasia* (Araceae) from Yunnan. Caryologia 56: 323–327.

ACKNOWLEDGEMENT

The authors are grateful to Dr. Hosene Ara, Ex-Director (In-charge), Bangladesh National Herbarium, Chiriakhana Road, Mirpur–1, Dhaka–1216, for providing the research materials and necessary information about *Colocasia oresbia*.