Healthy neonate born to a SARS-CoV-2 infected woman: A case report and review of literature

Rong-Yue Wang, Ke-Qiong Zheng, Bo-Zhong Xu, Wei Zhang, Jin-Ge Si, Chong-Yong Xu, Hua Chen, Zhang-Ye Xu, Xin-Mei Wu

ORCID number: Rong-Yue Wang 0000-0001-7358-8691; Ke-Qiong Zheng 0000-0002-7083-134X; Bo-Zhong Xu 0000-0001-8228-6492; Wei Zhang 0000-0002-1665-3028; Jin-Ge Si 0000-0003-2942-9161; Chong-Yong Xu 0000-0002-7603-3613; Hua Chen 0000-0001-9660-0550; Zhang-Ye Xu 0000-0003-4269-4488; Xin-Mei Wu 0000-0001-7841-5001.

Author contributions: Wang RY, Zheng KQ, Xu BZ, and Wu XM made substantial contributions to the study ideas and design; Wu XM was responsible for the manuscript; Wang RY, Zheng KQ, Xu BZ, Zhang W, and Xu CY collected samples and confirmed data accuracy; Wang RY and Chen H participated in drafting the manuscript; Wang RY, Si JG, Xu ZY, and Wu XM made substantial revisions to the manuscript; all of the authors read and approved the final manuscript.

Supported by the Zhejiang Provincial Natural Science Foundations, No. LY19H040006 and LQ15H040006.

Informed consent statement: Written consent for publication was acquired from the patient, and the signed consent will be provided upon request.

Conflict-of-interest statement: The

Abstract

BACKGROUND
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered coronavirus that has generated a worldwide outbreak of infections. Many people with coronavirus disease-2019 (COVID-19) have developed severe illness, and a significant number have died. However, little is known regarding infection by the novel virus in pregnant women. We herein present a case of COVID-19 confirmed in a pregnant woman delivering a neonate who was negative for SARS-CoV-2 and related it to a review of the literature on pregnant women and human coronavirus infections.

CASE SUMMARY
The patient was a 36-year-old pregnant woman in her third trimester who had developed progressive clinical symptoms when she was confirmed as infected with SARS-CoV-2. Given the potential risks for both the pregnant woman and the...
fetus, an emergency cesarean section was performed, and the baby and his mother were separately quarantined and cared for. As a result, the baby currently shows no signs of SARS-CoV-2 infection (his lower respiratory tract samples were negative for the virus), while the mother completely recovered from COVID-19.

CONCLUSION
Although we presented a single case, the successful result is of great significance for pregnant women with SARS-CoV-2 infection and with respect to fully understanding novel coronavirus pneumonia.

Key Words: Novel coronavirus pneumonia; SARS-CoV-2; Pregnant woman; Neonate; Case report

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We achieved successful outcomes for both the severe acute respiratory syndrome coronavirus 2 infected mother and the neonate. Even though this is a single successful case, the identification, diagnosis, clinical course, and management are of significance for understanding the clinical manifestation, transmission, and related risks among special populations due to the ongoing outbreak of coronavirus disease-2019 pneumonia.

INTRODUCTION
Since the first reports of pneumonia cases caused by a new coronavirus were confirmed in Wuhan, China in December 2019[1] the disease has erupted and proliferated across China and around the world as a pandemic in a relatively short time[2].

The pathogen isolated from clinical samples during this outbreak was a new species of coronavirus similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)[3], and it is now officially labeled SARS-CoV-2[4]. It is known that this novel coronavirus can infect various animals and human[5-7,8], and most individuals exhibit mild, self-limited, upper respiratory tract syndromes. Similar to two members of this viral family—SARS[6] and Middle East respiratory syndrome (MERS)[8], the novel coronavirus can cause fever, cough, and shortness of breath. Some serious cases manifested severe pneumonia, respiratory failure, acute respiratory distress syndrome (ARDS), cardiac injury, and even life-threatening outcomes[8-10].

Given that most coronaviruses have zoonotic origins, SARS-CoV-2 is most likely derived from wild animals, and common cross-species infections and periodic spillover events may explain the sporadic emergence in humans. Epidemiologic data indicate that spreading of the new coronavirus among the human population is primarily through respiratory tract droplets as well as close contact[11-12]. It is unknown whether aerosols and the digestive tract are two other paths of transmission. The incubation period for SARS-CoV-2 is estimated to be between 3 d and 7 d[13].

Early observations suggested that the new mutant virus could infect individuals of all ages, with the elderly and individuals with chronic diseases developing serious conditions and even dying[14]. Therefore, it is imperative that certain groups, such as pregnant women and those with underlying risks, be given greater attention. Previous studies have reported that pregnancy in women infected by the other two coronavirus, SARS and MERS, was associated with adverse maternal and perinatal outcomes[15-24]. Therefore, we wished to investigate whether the same situation existed for SARS-CoV-2.

Herein, we present the clinical course of the first cohort of live births from pregnant
women infected with SARS-CoV-2 at 36 wk of gestation in Wenzhou, China. This report specifically describes the clinical characteristics, diagnosis, clinical process, and neonatal outcomes of the first case of SARS-CoV-2 infection during pregnancy confirmed in China.

CASE PRESENTATION

Chief complaints
A 36-year-old pregnant woman (G3P1) at 34 4/7 wk of gestation returned to Wenzhou from Wuhan on January 20, 2020. Due to her residence history in Wuhan, she was asked to self-quarantine at home. She revealed that she had run a business in Hubei Province, but said that she had not visited the Huanan Seafood wholesale market in Wuhan, which is where most experts believe the coronavirus infected humans.

History of present illness
On January 30, 2020, 9 d after returning to Wenzhou, the woman at 36 wk of pregnancy was hospitalized in the Yueqing People’s Hospital because of the emergence of a dry cough and fever.

History of past illness
No history of past illness.

Personal and family history
No personal and family history.

Physical examination
The patient did not exhibit chest pain, shortness of breath, or coarse rales in either lung. Physical examination was as follows: a temperature of 38.5 °C, a pulse rate of 104 beats/min, a respiratory rate of 20 breaths/min, and a blood pressure of 101/76 mm of Hg.

Laboratory examinations
Laboratory examination showed low lymphocyte counts and elevated concentrations of C-reactive protein (Table 1).

Imaging examinations
Computed tomography (CT) examination indicated that both lungs possessed multiple patchy, ground-glass-like fuzzy shadows that were primarily distributed under the pleurae (multifocal ground-glass opacities bilaterally, especially in the apical posterior segment of the left-upper lobe) (Figure 1A and 1B).

FINAL DIAGNOSIS
In view of her residence in Hubei Province, SARS-CoV-2 infection was suspected. The differential diagnosis excluded the likelihood of influenza A, influenza B, respiratory syncytial virus, or adenovirus infections. SARS-CoV-2 was ultimately confirmed in oropharyngeal swab samples taken from the pregnant woman.

TREATMENT
Given the unknown risks for SARS-CoV-2 infection of the fetus (and with the fetus approaching full term), an emergency cesarean section was performed on January 31, 2020. The delivered male neonate weighed 2500 g with Apgar scores of 9 and 10 at 1 min and 5 min, respectively. After delivery, the baby and his mother were managed and cared for separately.
Table 1 The patient’s clinical laboratory examination results on January 30

Measure	Reference range	Patient
White blood cell count (per microliter)	4000-10000	8130
Absolute lymphocyte count (per microliter)	800-4500	510
Proportion of neutrophils (%)	50.0-70.0	90.7
Proportion of lymphocytes (%)	20.0-45.0	6.3
Random glucose (mmol/L)	4.40-6.70	11.55
Triglyceride (mmol/L)	0.60-1.70	2.73
Fibrinogen concentration (g/L)	2.00-4.00	6.24
Activated partial thromboplastin time (s)	28.0-43.5	46.0
Procalcitonin (ng/mL)	0-0.5	0.5
C reactive protein (mg/L)	0-5.0	80.2
Alkaline phosphatase (U/L)	30-162	113
Alanine aminotransferase (U/L)	0-55	30
D-dimer (mg/liter)	0-0.5	1.2
Analysis of blood gas		
PCO₂	35.0-45.0	27.1
pH	7.35-7.45	7.41
PO₂	80.0-100.0	91.2
BE	±3	-6
Toxoplasma antibody IgG		Positive
Mycoplasma pneumoniae antibody IgG (AU/mL)	0-36.0	86.6
Rubella antibody IgG		Positive
Toxoplasma antibody IgG		Positive

OUTCOME AND FOLLOW-UP

Chest X-ray of the neonate showed no abnormalities (Figure 2). Lower respiratory tract samples from the newborn were collected on February 2, 4, and 6 of 2020; all of the three tests were negative for SARS-CoV-2. A CT scan on the second day after cesarean section showed progressive ground-glass opacities in both lungs of the mother (Figure 1C and 1D). On February 6, 2020, the woman was positive for SARS-CoV-2 RNA by oropharyngeal samples. Although they were negative on February 23, 2020, the patient remained in hospital isolation. However, she was afebrile and showed stable vital signs.

DISCUSSION

SARS-CoV-2 is a novel coronavirus that was first identified in late December of 2019 in Wuhan, China[1]. SARS-CoV-2 infections have now resulted in a worldwide pandemic and global public health emergency[2]. The virus generally infects people of all ages, which includes the pregnant population. The most important questions regarding pregnant women with SARS-CoV-2 infection are whether the virus adversely affects subsequent maternal health and perinatal developmental processes.

We know of only two publications on pregnant groups with SARS-CoV-2 infection. The newborns from the first study were negative for SARS-CoV-2, but showed adverse neonatal outcomes[27], and the other study reported a neonate confirmed with coronavirus disease-2019 who possessed mild symptoms and showed a favorable prognosis[28].

As a newly discovered virus, there are not enough data currently available on SARS-CoV-2 causing disease in pregnant individuals. However, we can draw lessons
Figure 1 Transverse and coronal chest computed tomography of the woman. A and B: Images were examined on January 30, 2020 showing bilateral multifocal ground-glass opacity were visible in the basal segment of the lower lobe (arrows); C and D: Images were performed on February 2, 2020 showing progressive ground glass opacities in bilateral basilar lungs (arrows).

Figure 2 Posteroanterior chest radiograph, January 31, 2020. No thoracic abnormality was noted.

from the pathogenesis observed in pregnant women, which can be attributed to the other members of the coronavirus family. Seven human coronaviruses (HCoVs) have been identified, including two α-CoV members (HCoV-229E and HCoVNL63) and five β-CoV members (HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and now SARS-CoV-2)\(^1,2\).

With PubMed as our primary search database, we examined the literature for the other six HCoVs (HCoV-229E, HCoVNL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, and MERS-CoV) with respect to infections in pregnant women and found 17 publications from 1989 to February 25, 2020 relating to the topic (we assume that some of the same patients were likely involved in more than 1 article). Nevertheless, as summarized in Table 2, 26 SARS-CoV-infected patients from six publications demonstrated that SARS coronavirus infection was associated with severe maternal conditions, maternal death, spontaneous abortion, and preterm deliveries\(^13\)\(^-\)\(^18\).

Similarly, a cohort study from Hong Kong revealed that the clinical outcomes among pregnant women with SARS-CoV infection were worse than in infected women who were not pregnant\(^2\)\(^1\).

Regarding MERS-CoV infection, Table 3 depicts eleven reported cases from six publications involving pregnancy; of these cases, ten women had negative perinatal outcomes, with six (54%) neonates requiring intensive care unit admission, and three (27%) dying during their hospitalizations\(^2\)\(^2\)\(^-\)\(^9\). The other four human coronavirus
Table 2 Summary of reports on pregnancies associated with severe acute respiratory syndrome infection

Ref.	SS	Nationality	GAAI (wk)	ICUA	Maternal comorbid conditions	Maternal outcome	Fetal outcome	Delivery details	Journal
Wong et al(19), 2004	6	China	Second trimester; Third trimester	Unknown	Premature rupture of membranes; Nephrotic syndrome	Survived 6; Died 1	Survived 7; Died 1	Preterm 3; Term 4	Chin J Perinat Med
Shek et al(13), 2003	5	Hong Kong	Unknown	Yes 4; Unknown	Oligohydramnios and fetal growth restriction 2	Died 2; Survived 2; Unknown 1	Survived 5	Preterm 4; Term 1	Pediatrics
Robertson et al(13), 2004	1	United States	Second trimester	Yes	Gestational diabetes	Survived	Survived	Term	Emerg Infect Dis
Stockman et al(13), 2004	1	United States	First trimester	No	Premature rupture of membranes	Survived	Survived	Delivery at 36 wks gestation	Emerg Infect Dis
Yudin et al(13), 2005	1	Canada	Third trimester	No	No	Survived	Survived	Term	Obstet. Gynecol
Wang et al(19), 2004	12	Hong Kong	First trimester; Second trimester; Third trimester	Unknown	Premature rupture of membranes; Nephrotic syndrome	Survived 6; Died 1	Survived 7; Died 1	Preterm 3; Term 4	American J Obstet Gynecol

SS: Sample size; GAAI: Gestational age at infection; ICUA: Intensive care unit admission.

Table 3 Summary of pregnancies associated with Middle East respiratory syndrome infection

Ref.	SS	Nationality	GAAI (wk)	ICUA	Maternal comorbid conditions	Maternal outcome	Fetal outcome	Delivery details	Journal
Memish et al(21), 2019	2	Saudi	First trimester 1; Second trimester 1	No	Hypertension 1	Survived	Survived 2	Term 2	J Microbiol, Immunol Infect
Assiri et al(22), 2016	5	Saudi	Second trimester 3; Third trimester 2	Yes 5	Premature rupture of membranes; Asthma; Pulmonary fibrosis 1	Survived 3; Died 2; Survived 3	Survived 3; Died 3	Intrauterine fetal death at 34 wk; Preterm 1; Term 3	Clin Infect Dis
Payne et al(23), 2015	1	Jordanian	Second trimester	No	None	Survived	Still birth	Still birth at 5 mo	J Infect Dis
Malik et al(24), 2016	1	United Arab Emirates	Third trimester	Yes	None	Died	Survived	Caesarean section at 32 wk	Emerg Infect Dis
Jeong et al(25), 2017	1	South Korean	Third trimester	No	Gestational diabetes	Survived	Survived	Term	J Korean Med Sci
Alserahi et al(26), 2016	1	Saudi	Third trimester	Yes	Hypothyroidism	Survived	Survived	Caesarean section at 32 wk	BMC Infect Dis

Note: SS: Sample size; GAAI: Gestational age at infection; ICUA: Intensive care unit admission.

members merely elicit common colds. Fortunately, even if the majority of the related literature constitutes possible cases, there were no signs of vertical transmission identified between pregnant women and their corresponding neonates(29,30).

It has been reported that SARS-CoV-2 is closely related molecularly to SARS-CoV, with a 79.5% nucleotide sequence identity(3,5). Additionally, the novel virus shares the same cell-binding receptor-angiotensin-converting enzyme 2(31) with SARS-CoV, which is a key step in the pathogenic invasion of cells. SARS-CoV-2, like SARS-CoV and MERS-CoV, also leads to severe acute respiratory illness associated with a high
mortality risk[20,21]. Combining the aforementioned presentations, one can reasonably conclude that adverse maternal and perinatal outcomes will likely emerge in pregnant women infected with SARS-CoV-2.

In contrast to the adverse maternal and perinatal outcomes resulting from SARS or MERS infections, we achieved beneficial results for both the SARS-CoV-2 infected mother and the neonate. Importantly, due to her Wuhan-residence history and results of her CT scan, the patient was suspected of being infected with SARS-CoV-2, promptly isolated, and the related medical staffs and workers took protective measures to prevent themselves from infection. The results of nucleic acid testing then further confirmed our suspicions. Subsequently, given the confirmation of SARS-CoV-2 infection, her worsening clinical presentations, and the possible risks for both the pregnant woman and fetus, an emergency cesarean section was performed under negative pressure. In addition, the baby and his mother were separately quarantined and cared for after delivery. While still hospitalized, the patient became seronegative for SARS-CoV-2 and went into recovery with stable vital signs. Although the baby was healthy and did not show any signs of SARS-CoV-2 infection after three examinations of his lower respiratory tract samples, assessing the risk for SARS-CoV-2 infection and coronavirus disease-2019 COVID-19 in pregnant women and their fetuses cannot be based solely on the success of one case.

Because it is a newly discovered coronavirus, there are currently no antiviral therapies or vaccines for SARS-CoV-2, and therefore, good medical care (primarily supportive treatments) may be the mainstay of management in the near term. Early observations revealed that the elderly and those with chronic diseases were prone to bearing the greatest burden of the disease, which may be due to the low immunocompetence of these individuals[21]. For this reason, the outcomes of SARS-CoV-2-infected patients depend on their own immunities to an extent.

Similarly, physiologic adaptations of the respiratory tract and immune system that occur during pregnancy increase susceptibilities to pulmonary infections[22,23]. Moreover, specific humoral and cell-mediated immunologic functions are inhibited during pregnancy, making pregnant women more susceptible to viral infection. Hence the severity of viral pneumonia during pregnancy is closely associated with these normal immune changes. Such hypotheses can be confirmed by previous epidemiologic data from other viruses, and the risks for developing viral pneumonia among pregnant women are significantly higher than for other general populations. Pregnant women infected with SARS appeared to have worse clinical manifestations and a higher fatality rate compared with nongravid women[21]. Viral pneumonias resulting from influenza-A, virus H1N1, and SARS have also all contributed to elevated rates of maternal mortality, stillbirth, spontaneous abortion, and preterm delivery[24]. Although there is no direct evidence that infection with this new coronavirus results in severe maternal or perinatal outcomes, we need to continue to be vigilant to prevent this from occurring.

In addition, there are other aspects that may also contribute to a poor prognosis in pregnant women. A preliminary study revealed that SARS-CoV generally became transmissible after fever, so that fever was defined as a key marker to track. In contrast, current data indicate that the transmissibility of SARS-CoV-2 occurs throughout the entire infectious period-including asymptomatic, mild, and treatment courses[25]. Also, it is conceivable that pregnant women are unknowingly and unpredictably exposed to infectious environments, and thus, the only way for them to remain safe is to distance themselves from the external milieu until after the basic reproductive ratio (R_0) falls below 1.

Because our current understanding of the clinical features of SARS-CoV-2 infection is largely confined to severe pneumonia, respiratory failure, ARDS, cardiac injury, and fatal outcomes, diagnosis protocols on the basis of these case pneumonias may bias reporting toward more severe outcomes. However, the initial presentations of mild cough and fever in the progression of SARS-CoV-2 infection are not specific and cannot be clinically distinguished from other common infectious diseases. This may also lead SARS-CoV-2-infected individuals with low immunity to miss the timing of appropriate treatment(s). The effectiveness of some antiviral drugs is occasionally based only on the success of a few severe cases. Thus, when antiviral drugs are applied to pregnant patients, we need to carefully balance the efficacy and safety for both the mother and fetus. Our patient was fortunate to receive a favorable prognosis. Accordingly, the key steps in preventing the spread of the epidemic and allowing for potentially poor outcomes are to identify individuals at high risk of SARS-CoV-2 infection. This allows for prompt isolation and subsequent laboratory confirmation of infection as well as for admission of the confirmed cases for further assessment and appropriate treatment[26].

CONCLUSION

We achieved successful outcomes for both the SARS-CoV-2-infected mother and the neonate. Given the ongoing outbreak of COVID-19 pneumonia (although here only a single case), the identification, diagnosis, clinical course, management, and especially the positive outcomes are of significance for understanding the clinical manifestation, transmission, and related risks among special populations.

ACKNOWLEDGEMENTS

The authors are very grateful to all personnel of the Department of Obstetrics and Gynecology, The Yueqing People’s Hospital for their work in caring for and managing the patient and her baby.

REFERENCES

1 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733 [PMID: 31978945 DOI: 10.1056/NEJMoa2001017]

2 Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect Genet Evol 2020; 79: 104211 [PMID: 32007627 DOI: 10.1016/j.meegid.2020.104211]

3 Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9: 221-236 [PMID: 31987001 DOI: 10.1080/22221751.2020.1719902]

4 Wu Y, Ho W, Huang Y, Jin DY, Li S, Liu SL, Liu X, Qiu J, Sang Y, Wang Q, Yuen KY, Zheng ZM. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet 2020; 395: 949-950 [PMID: 32153234 DOI: 10.1016/S0140-6736(20)30557-2]

5 Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kölesiokova L, Fouchier RA, Berger A, Burguière AM, Cinatl J, Eickmann M, Escrivò N, Grywna K, Kramme S, Manuguerra JC, Müller S, Rickerts V, Stürmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348: 1967-1976 [PMID: 12690097 DOI: 10.1056/NEJMoa0307474]

6 Lu L, Liu Q, Du L, Jiang S. Middle East respiratory syndrome coronavirus (MERS-CoV): challenges in identifying its source and controlling its spread. Microbes Infect 2013; 15: 629-639 [PMID: 23791956 DOI: 10.1016/j.micinf.2013.06.003]

7 Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comber JA, Lim W, Rollin SF, Lie AE, Humphrey LD, Guarnier J, Paddock CD, Rollin PE, Chanock SJ, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ; SARS Study Group. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. Lancet 2003; 361: 1353-1358 [PMID: 12690092 DOI: 10.1016/S0140-6736(03)12043-0]

8 de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, Galiano M, Gorbayeny AE, Memish ZA, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, Galiano M, Gorbayeny AE, Memish ZA, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki SR. SARS-CoV-2 is an appropriate name for the new coronavirus. Lancet 2020; 395: 1042-1043 [PMID: 32007628 DOI: 10.1016/S0140-6736(20)30211-7]

9 Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506 [PMID: 31986264 DOI: 10.1016/S0140-6736(20)30183-5]

10 Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SL, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK; Washington State 2019-nCoV Case Investigation Team. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med 2020; 382: 929-936 [PMID: 32004427 DOI: 10.1056/NEJMoa2001191]

11 Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513 [PMID: 32007143 DOI: 10.1016/S0140-6736(20)30211-7]

12 Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi HW, Lo
Wang RY et al. Healthy baby resulting from SARS-CoV-2 carrier

SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395: 514-523 [PMID: 31986261 DOI: 10.1016/S0140-6736(20)30154-9]

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020; 382: 1199-1207 [PMID: 31995857 DOI: 10.1056/NEJMoa2001316]

Wong SF, Chow KM, Leung TN, Ng WF, Ng TK, Shek CC, Ng PC, Lam PW, Ho LC, To WW, Lai ST, Yan WW, Tan PY. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol 2004; 191: 292-297 [PMID: 15295381 DOI: 10.1016/j.ajog.2003.11.019]

Chen Y, Peng H, Wang L, Zhao Y, Zeng L, Gao H, Liu Y. Infants Born to Mothers With a New Coronavirus (COVID-19). Front Pediatr 2020; 8: 104 [PMID: 32326184 DOI: 10.3389/fped.2020.00104]

Robertson CA, Lowther SA, Birch T, Tan C, Sorhage F, Stockman L, McDonald C, Lingappa JR, Bresnitz E. SARS and pregnancy: a case report. Emerg Infect Dis 2004; 10: 345-348 [PMID: 15030710 DOI: 10.3201/eid1002.030736]

Stockman LJ, Lowther SA, Coy K, Saw J, Parashar UD. SARS during pregnancy, United States. Emerg Infect Dis 2004; 10: 1689-1690 [PMID: 15503406 DOI: 10.3201/eid1004.040244]

Yudin MH, Steele DM, Sgro MD, Read SE, Kopplin P, Gough KA. Severe acute respiratory syndrome in pregnancy. Obstet Gynecol 2005; 105: 124-127 [PMID: 15625153 DOI: 10.1097/01.AOG.0000151598.49129.de]

Shek CC, Ng PC, Fung GP, Cheng FW, Chan PK, Peiris MJ, Lee KH, Wong SF, Cheung HM, Li AM, Hon EK, Yeung CK, Chow CB, Tam JS, Chiu MC, Fok TF. Infants born to mothers with severe acute respiratory syndrome. Pediatrics 2003; 112: e254 [PMID: 14523207 DOI: 10.1542/peds.112.4.e254]

Wong SF, Chow KM, de Swiet M. Severe Acute Respiratory Syndrome and pregnancy. BJOB 2003; 110: 641-642 [PMID: 12842052 DOI: 10.1016/S1470-0328(03)03008-8]

Alfaraj SH, Al-Tawfiq JA, Memish ZA. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection during pregnancy: Report of two cases & review of the literature. J Microbiol Immunol Infect 2019; 52: 501-503 [PMID: 29907538 DOI: 10.1016/j.jmii.2018.04.005]

Assiri A, Abedi GR, Al Masri M, Bin Saeed A, Gerber SI, Watson JT. Middle East Respiratory Syndrome Coronavirus Infection During Pregnancy: A Report of 5 Cases From Saudi Arabia. Clin Infect Dis 2016; 63: 951-953 [PMID: 27358348 DOI: 10.1093/cid/ciw412]

Payne DC, Iblan I, Alqasrawi S, Al Nsour M, Rha B, Tohme RA, Abedi GR, Farag NH, Haddadin A, Al Sanhouri T, Jarour N, Swerdlow DL, Jamieson DJ, Pallansch MA, Haynes LM, Gerber SI, Al Abdallat MM; Jordan MERS-CoV Investigation Team. Stillbirth during infection with Middle East respiratory syndrome coronavirus. J Infect Dis 2014; 209: 1870-1872 [PMID: 24474813 DOI: 10.1093/infdis/jiu068]

Malik A, El Masry KM, Ravi M, Sayed F. Middle East Respiratory Syndrome Coronavirus during Pregnancy, Abu Dhabi, United Arab Emirates, 2013. Emerg Infect Dis 2016; 22: 515-517 [PMID: 26890613 DOI: 10.3201/eid2203.151049]

Jeong SY, Sung SI, Sung JH, Ahn SY, Kang ES, Chang YS, Park WS, Kim JH. MERS-CoV Infection in a Pregnant Woman in Korea. J Korean Med Sci 2017; 32: 1717-1720 [PMID: 28875620 DOI: 10.3346/jkms.2017.32.10.1717]

Alserehi H, Wali G, Alshukairi A, Alraddadi B. Impact of Middle East Respiratory Syndrome coronavirus (MERS-CoV) on pregnancy and perinatal outcome. BMC Infect Dis 2016; 16: 105 [PMID: 26936356 DOI: 10.1186/s12879-016-1437-y]

Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gao Q, Liao J, Yang H, Hou W, Zhang Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395: 809-815 [PMID: 32151335 DOI: 10.1016/S0140-6736(20)30360-3]

Wang S, Guo L, Chen L, Liu W, Cao Y, Zhang J, Feng L. A Case Report of Neonatal 2019 Coronavirus Disease in China. Clin Infect Dis 2020; 71: 853-857 [PMID: 32161941 DOI: 10.1093/cid/ciaa225]

Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol 2016; 24: 490-502 [PMID: 27012510 DOI: 10.1016/j.tim.2016.03.003]

Gagneur A, Dilouer S, Valtat S, Quillien MC, Baron R, Laurent Y, Collet M, Sizun J, Oger E, Payan C. Vertical transmission of human coronavirus. Prospective pilot study. Pathol Biol (Paris) 2007; 55: 525-530 [PMID: 17889450 DOI: 10.1016/j.patbio.2007.07.013]
31 Gagneur A, Dirson E, Audebert S, Vallet S, Legrand-Quillien MC, Laurent Y, Collet M, Sizun J, Oger E, Payan C. Materno-fetal transmission of human coronaviruses: a prospective pilot study. *Eur J Clin Microbiol Infect Dis* 2008; 27: 863-866 [PMID: 18373106 DOI: 10.1007/s10096-008-0505-7]

32 Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. *Nature* 2020; 579: 265-269 [PMID: 32015508 DOI: 10.1038/s41586-020-2008-3]

33 Maxwell C, McGeer A, Tai KFY, Sermer M. No. 225-Management Guidelines for Obstetric Patients and Neonates Born to Mothers With Suspected or Probable Severe Acute Respiratory Syndrome (SARS). *J Obstet Gynaecol Can* 2017; 39: e130-e137 [PMID: 28729104 DOI: 10.1016/j.jogc.2017.04.024]

34 Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. *Horm Behav* 2012; 62: 263-271 [PMID: 22406114 DOI: 10.1016/j.yhbeh.2012.02.023]

35 Sheffield JS, Cunningham FG. Community-acquired pneumonia in pregnancy. *Obstet Gynecol* 2009; 114: 915-922 [PMID: 19888052 DOI: 10.1097/AOG.0b013e3181b8e76d]

36 Komiya N, Gu Y, Kamiya H, Yahata Y, Yasui Y, Taniguchi K, Okabe N. Household transmission of pandemic 2009 influenza A (H1N1) virus in Osaka, Japan in May 2009. *J Infect* 2010; 61: 284-288 [PMID: 20670650 DOI: 10.1016/j.jinf.2010.06.019]
