ÍNDICE DE MASSA CORPÓREA DO TRONCO: NOVA REFERÊNCIA PARA AVALIAÇÃO DA DISTRIBUIÇÃO DA MASSA CORPORAL

Trunk body mass index: new reference for the assessment of body mass distribution

Mariane Takesian1, Marco Aurelio Santos2, Alexandre Vieira Gadducci1, Gabriela Correia de Faria Santarém3, Julia Greve1, Paulo Roberto Silva1, Roberto de Cleva1

ABSTRACT – Background: Body mass index (BMI) has some limitations for nutritional diagnosis since it does not represent an accurate measure of body fat and is unable to identify predominant fat distribution. Aim: To develop a BMI based on the ratio of trunk mass and height. Methods: Fifty-seven patients in preoperative evaluation to bariatric surgery were evaluated. The preoperative anthropometric evaluation assessed weight, height and BMI. The body composition was evaluated by bioimpedance, obtaining the trunk fat free mass and fat mass, and trunk height. Trunk BMI (tBMI) was calculated by the sum of the measurements of the trunk fat free mass (tFFM) and trunk fat mass (tFM) in kg, divided by the trunk height squared (m^2). For the correction and adjustment of the tBMI and tfBMI, it was calculated the relation between trunk extension and height, multiplying by the obtained indexes. Results: The mean data was: weight 125.3±19.5 kg, height 1.63±0.1 m. The trunk BMI was calculated as 47.5±5 kg/m^2 and trunk height was 29.05±4.8 kg, trunk fat mass was 27.2±3.7 kg. In 93% of the patients there was an increase in obesity class using the tBMI. In patients with grade III obesity the tBMI altered the classification for super-obesity in 72% of the patients and for super-super obesity in 24% of patients. Conclusion: The trunk BMI is a simple and allows a new reference for the evaluation of the BMI distribution, and therefore a new reclassification of the obesity class, evidencing the severity of obesity in a more objectively way.

RESUMO – Racional: O índice de massa corporal (IMC) para diagnóstico nutricional apresenta limitações, pois não representa medida precisa da adiposidade corporal, podendo assim subestimar a presença de obesidade. Objetivo: Desenvolver um índice de massa corporal baseado entre a relação da massa e altura do tronco. Método: Cinquenta e sete pacientes em preparo pré-operatório para cirurgia bariátrica foram submetidos à avaliação antropométrica (peso, altura e índice de massa corporal). Para cálculo do IMC do tronco foi avaliada a composição corporal pela bioimpedância, obtendo-se a massa livre de gordura e massa de gordura do tronco; a medida do tronco foi calculada pela diferença entre a altura e a partir da sétima vértebra cervical e a extensão dos membros inferiores. O cálculo do IMC do tronco (IMCt) foi a soma das medidas da massa livre de gordura do tronco (MLGt) e massa de gordura do tronco (MGt), em kg, dividindo-se pelo quadrado da altura do tronco (m^2). O IMC de gordura do tronco (IMCgt) foi calculado utilizando a MGt, em kg, dividindo-a pelo quadrado da altura do tronco (m^2). Para correção e ajuste do IMCt e IMCgt foi calculada a relação entre os valores de extensão do tronco e da altura, multiplicando-se pelo valor dos índices obtidos. Resultados: As médias do peso e altura foram de 125,3±19,5 kg e 1,63±0,1 m, respectivamente, e do IMC de 47,5±5 kg/m^2. A média da altura do tronco foi de 0,52±0,01 m, da MLGt de 29,05±4,8 kg, da MGt de 27,2±3,7 kg, do IMCt de 66,6±10,3 kg/m^2, e do IMCgt 32,3±5,8 kg/m^2. Em 93% dos pacientes houve aumento da classificação da gravidade da obesidade com o cálculo do IMCt. Nos pacientes com obesidade grau III, o IMCt alterou a classificação para super-obesidade em 72% dos pacientes e para super-super-obesidade em 24% dos pacientes. Conclusão: O IMC do tronco é método antropométrico acessível e prático, que permite a reclassificação do IMC baseado na distribuição da massa do tronco, evidenciando de forma mais clara a gravidade da obesidade.

INTRODUÇÃO

A Organização Mundial de Saúde (OMS) considera a obesidade a maior ameaça à saúde pública da atualidade. Aproximadamente 400 milhões de adultos são obesos e 1,6 bilhões apresentam excesso de peso corporal. A obesidade é doença multifatorial caracterizada principalmente por gordura corporal excessiva que está relacionada com o desenvolvimento de importantes comorbidades como diabetes melito tipo 2, dislipidemia, doença cardiovascular, hipertensão arterial e síndrome metabólica. A obesidade grave é caracterizada por excesso de gordura corporal, aumento da água corporal total e redução de massa magra. O índice de massa corporal (IMC) é método antropométrico desenvolvido no ano...
MÉTODOS

Todos os participantes assinaram o termo de consentimento livre e esclarecido. O protocolo do estudo foi aprovado pelo Comitê de Ética do Hospital das Clínicas da Universidade de São Paulo (número 01038912.6.0000.0068).

Foram selecionados 77 pacientes no período de janeiro a outubro de 2016, com idade de 18 a 60 anos e IMC entre 40-60 kg/m², admitidos na Unidade de Cirurgia Bariátrica e Metabólica da Disciplina de Cirurgia do Aparelho Digestivo do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil.

Foram excluídos 20 pacientes devido à doença aguda ou crônica que determinava retenção hídrica excessiva (n=2), pacientes acamados ou com limitação funcional (n=16) ou cirurgia bariátrica prévia (n=2).

Dados antropométricos e composição corporal

Os participantes foram pesados com vestimentas leves, sem portar objetos pesados, em posição ortostática, com os membros inferiores paralelos, sem calçados, olhar ao horizonte, sem portar objetos pesados, em posição ortostática, com os membros superiores ao lado do corpo e sem se movimentar no centro da balança microeletrônica instalada em superfície lisa para se evitar oscilação (InBody 230®; GE Healthcare, EUA com capacidade de 250 kg, com intervalos de 100 g). A estatura foi feita com os pés e calcanares paralelos, ombros e glúteos encostados no estadiômetro portátil graduado em milímetros (Sanny®, American Medical do Brasil Ltda). Foi calculado o IMC26, utilizando-se como referência os pontos de corte sugeridos pela OMS27. A composição corporal foi realizada através de método não invasivo indireto de bioimpedância (BIA, InBody 230®), onde o participante foi posicionado em posição ortostática, sem se movimentar e sem dialogar, sobre uma plataforma que possui apoios especiais (eletrodos inferiores) para os pés descalços e com os membros superiores estendidos segurando com as mãos dois apoios (eletrodos superiores). A balança utilizada media diretamente a impedância de cada segmento corporal a 20 KHz e 100 KHz de frequência amostral, levando a resultados altamente precisos. A composição química da massa livre de gordura corporal (MLG) era convencionalmente assumida como constante, com uma densidade de 1,1 kg/m³, com temperatura de 37° C e concentração de água de 73%. Assim, a MLG das extremidades superiores, tronco e membros inferiores foram calculados multiplicando o valor de volume de água das extremidades superiores (a soma da direita e esquerda), tronco e membros inferiores (a soma das extremidades direita e esquerda) por 1,3731.

Foram obtidos os seguintes dados: massa livre de gordura do tronco (MLGt) e massa de gordura do tronco (MGT), em valores absolutos e porcentagem.

Para obtenção da medida do tronco, os pacientes permaneceram com membros inferiores paralelos, sem calçados, onde foram feitas as medições, utilizando fita métrica inelástica de dois metros de comprimento. Foi aferida pelo examen físico a distância da sétima vértebra cervical (C7) localizada na fase posterior do pescoço até o chão e da crista ilíaca (localizada na parte posterior do quadril) pelo exame físico) até o chão, subtraindo-se a segunda da primeira medida, obtendo-se a medida da altura do tronco.

O IMC do tronco (IMCt) foi calculado utilizando a soma das medidas da massa livre de gordura do tronco (MLGt) e massa de gordura do tronco (MGT), em kg, dividindo-se pelo quadrado da altura do tronco (m²).

O IMC de gordura do tronco (IMCGt) foi calculado utilizando a MGT, em kg, dividindo-a pelo quadrado da altura do tronco (m²).

Fator de correção dos índices

Para correção e ajuste do IMCT e IMCGt foi calculada a relação entre os valores de extensão do tronco e da altura, multiplicando-se pelo valor dos índices obtidos: a) fator de correção do IMCT: tronco (m) / Altura (m) e IMCT e b) fator de correção do IMCGt: tronco (m) / altura (m) x IMCGt

RESULTADOS

A amostra foi constituída por 57 pacientes, sendo 39 mulheres. A média do peso e estatura foi de 125,3±19,5 kg e 1,63 m±0,09 respectivamente. O IMC apresentou média de 47,5±5 kg/m². A média da extensão do tronco dos pacientes foi de 0,52 m, sendo de 0,56 m nos homens e 0,49 m nas mulheres. A média da MLGT foi de 29,1 kg e da MGt de 27,2 kg (Tabela 1).

TABELA 1 – Dados antropométricos e composição corporal do tronco

Variáveis (n=57)	Média ± DP	Mínima	Máxima
Tronco (m)	0,52 ± 0,1	0,29	0,68
MLG tronco (kg)	29,1 ± 4,8	20,3	43,5
MG tronco (kg)	27,2 ± 3,7	17,3	34,7
MLG tronco + MG tronco (kg)	56,2 ± 7,7	38,7	75,1

MLG=massa livre de gordura; MG=massa de gordura

Os resultados do IMC encontram-se na Tabela 2. Aplicando o fator de correção dos índices, obteve-se média do IMCT corrigido de 66,62 (kg/m²), e 32,32 (kg/m²) para o IMCGt corrigido.
TABELA 2 - Índices de massa corporal

Índice de massa corporal	Média ± DPadrão	Máximo	Mínimo	
IMC (kg/m²)				
	47,0	5,0	39,4	58,9
IMC do tronco (kg/m²)	216,1	± 54,4	144,0	350,0
IMC do tronco (kg/m²) corrigido	66,6	± 10,3	36,5	87,0
IMC de gordura do tronco (kg/m²) corrigido	104,9	± 27,9	62,1	174,4
IMC de gordura do tronco (kg/m²)	32,3	± 5,8	18,8	44,2

IMC = índice de massa corporal

TABELA 3 – Reclassificação do índice de massa corporal dos pacientes após aplicação do fator de correção

Pacientes (n=57)	IMC (kg/m²)	Classificação	IMC (kg/m²)	Média Corrigido	Reclassificação
13	53,15	super obeso	69,95	super obeso	
3	54,65	super obeso	55,68	super obeso	
28	45,25	grau III	71,57	super super obeso	
9	43,58	grau III	56,06	super super obeso	
1	43,69	grau III	48,67	grau III	
1	48,06	grau III	36,52	grau II	
2	39,68	grau II	63,55	Super-super obeso	

IMC = índice de massa corporal; IMCt = índice de massa corporal do tronco

DISCUSSÃO

Um dos principais objetivos da determinação da composição corporal é estimar a quantidade de gordura corporal, relacionada com a presença de doenças sistêmicas, morbidade e mortalidade. Deve-se ressaltar que a simples medida da massa corporal não é capaz de identificar a carência ou excesso dos componentes corporais (massa gorda, massa muscular, água, e massa óssea). O IMC é recomendado por sua conveniência, segurança e simplicidade. Entretanto, devem ser consideradas as importantes limitações relacionadas às interpretações que dependem da idade, gênero e raça. Além disso, o IMC não estima a massa gorda corporal, limitando assim sua precisão no diagnóstico de obesidade.

Não há consenso sobre o melhor método para a avaliação corporal em pacientes com obesidade grave. Na literatura alguns estudos sugerem novos parâmetros para avaliação da composição corporal e classificação do estado nutricional pela porcentagem de gordura corporal como o índice de adiposidade corporal (IAC), que utiliza apenas medidas antropométricas como circunferência de cintura e do quadril. Um estudo com 433 artigos mostrou que a BIA (com equações específicas) e IAC são métodos baratos e não invasivos disponíveis, podendo ser usados rotineiramente para estimar a gordura corporal.

A obesidade corporal, caracterizada pelo acúmulo de gordura na região do tronco e abdome possui como um de seus componentes a gordura abdominal visceral, cuja medida de sua espessura é de grande importância para ser importante indicador de risco cardiovascular.

O desenvolvimento de um índice que evidencie de forma mais objetiva a relação de distribuição da massa e gordura no tronco pode trazer contribuição na classificação da obesidade e sua relação de favorecimento para doenças associadas. Nesta casuística 96% dos pacientes obesos grau III tiveram a classificação da gravidade da obesidade aumentada (para super e super-super obesidade) demonstrando a utilidade prática desta nova proposta do uso do IMC do tronco para avaliação de pacientes obesos em programação para cirurgia bariátrica.

CONCLUSÃO

O índice de massa corporal do tronco é método antropométrico acessível e prático, que permite a reclasificação do IMC baseado na distribuição da massa do tronco, evidenciando de forma mais clara a gravidade da obesidade.

REFERÊNCIAS

1. Barros F, Setúbal S, Martinho JM, Ferraz L, Gaudêncio A. Correlation of non-alcoholic fatty liver disease and features of metabolic syndrome in morbidly obese patients in the preoperative assessment for bariatric surgery. ABCD, arq. bras. cir. dig. 2016; 29(4): 260-263.
2. Belarmino G, Horie UM, Sala PC, Torrinhos RS, Heymsfield SB, Witzberg DL. Body adiposity performance in estimating body fat in a sample of severely obese Brazilian patients. Nutrition Journal. 2015; 14:130.
3. Bergman RN, Stefanoski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, Xiang AH, Watanabe RM. A Better index of body adiposity. Obesity, 2011; 19(5); 1083:1089.
4. Bernhard AB, Santo MA, Scabim VM, Serafim MP, de Cleva R. Body Composition Evaluation in Severe Obesity: A Critical Review. Advances in Nonalcoholic fatty liver disease and features of metabolic syndrome in morbidly obese patients in the preoperative assessment for bariatric surgery. ABCD, arq. bras. cir. dig. 2016; 29(4): 260-263.
5. Belarmino G, Horie UM, Sala PC, Torrinhos RS, Heymsfield SB, Witzberg DL. Body adiposity performance in estimating body fat in a sample of severely obese Brazilian patients. Nutrition Journal. 2015; 14:130.
6. Bergman RN, Stefanoski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, Xiang AH, Watanabe RM. A Better index of body adiposity. Obesity, 2011; 19(5); 1083:1089.
Retornar ao artigo