METHODS

Cytokines and reagents

SCF, thrombopoietin, TNF-α, GM-CSF, FLT3L, IL-6, IFN-γ, IL-4, and macrophage colony-stimulating factor were purchased from PeproTech (Rocky Hill, NJ). TGF-β1 was from R&D Systems (Minneapolis, Minn). PanCSK4 was purchased from InvivoGen (San Diego, Calif). The recombinant extracellular domain of Notch ligand Delta-1 (Delta-1ext–IgG) was kindly provided by I. Bernstein (Seattle, Wash). Coating of Delta-1ext–IgG was performed, as previously described.

Sources of cells and skin tissue

CD34+ cells were obtained from cord blood samples from healthy donors. Blood samples were collected during healthy full-term deliveries and prepared, as previously described. CD34+ hematopoietic progenitors were isolated by means of immunomagnetic positive selection (EasySep; STEMCELL Technologies, Vancouver, British Columbia, Canada). For the microarray screen, CD34+CD19+ cells were subsorted into CD45RAlow/−, CD45RA+ and CD45RA− subsets by means of FACS and analyzed separately. For all differentiation experiments, the total CD34+ cell fraction was used.

Isolation of immune cells for microarray studies

Epidermal LCs and keratinocytes, as well as dermal cell populations, were isolated from healthy human skin. Briefly, after separation of dermal and epidermal sheets by means of incubation with Dispase I (3 U/mL; Roche), single cells were released from epidermal sheets by using 0.25% trypsin/EDTA (Invitrogen) for 30 minutes at 37°C. CD11b+CD1a+ LCs (n = 4) and CD11b+CD1a− keratinocytes (n = 1) were sorted from epidermal cell suspensions on a FACSAria (BD Biosciences). For preparation of dermal cell suspensions, dermal sheets were dissociated with 0.5 U/mL collagenase IV (Worthington Biochemical, Lakewood NJ) for 90 minutes at 37°C. Dermal cells were sorted into CD1a−dDCs (CD1a+CD1b+CD14+, n = 3), and CD14+ dDCs (CD14+CD1b+CD1a−, n = 3). Monocytes were isolated from buffy coats obtained from the Austrian Red Cross. Briefly, after Ficoll Hypaque (Pharmacia, Uppsala, Sweden) density gradient centrifugation, PBMCs were depleted of Lin− cells (CD3, CD16, CD34, CD56, and glycoporphin A), and CD14+CD11b+CD19−CD1c+ monocytes were sorted by using a FACSAria. The purity of all cell populations used was at least 98%. Sorted cells were pelleted and lysed in TRI Reagent (Sigma-Aldrich), and RNA was isolated, according to the manufacturer’s recommendations.

mRNA microarray and data analysis

Cells were collected at indicated time points (0, 6, and 24 hours after addition of TGF-β1). Total RNA from 6 independent donors was isolated by using the RNeasy Micro Kit (Qiagen). RNA samples were then combined into 2 separate pools (each containing RNA from 3 independent donors), labeled, and hybridized onto U133 Plus 2.0 Affymetrix GeneChips (Affymetrix, Santa Clara, Calif). Top hundred nanograms of total RNA per sample was processed by using Ambion’s MessageAmp II Biotin Enhanced Labeling Kit (Ambion, Thermofisher, Waltham, Mass). Gene chips were cleaned, washed, and scanned according to Affymetrix standard procedures. The probe level data (CEL files) were processed for local normalization, and expression values were generated by using the robust multiarray average algorithm of the “affy package” in the R software environment (http://www.R-project.org). The microarray data have been deposited in the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo) and can be accessed as GSE31318. For mRNA profiling of immune cells isolated from skin, total RNA was subjected to 2 rounds of linear amplification, as previously described. Biotin-labeled ribonucleotides were incorporated by using the ENZO Bio-Array High-Yield RNA Transcript Labeling Kit (Affymetrix) during the second round of in vitro transcription. Fragmented cDNA (10 μg) was hybridized to Human Genome U133 Plus 2.0 Array (Affymetrix). Microarray data were normalized by using the robust multiarray analysis, as implemented in Bioconductor.

All analyses were performed with log2-transformed data. The Ingenuity Pathway Analysis (http://www.ingenuity.com) tool was used to assign microarray data sets to common biological pathways and to define gene sets attributed to Notch signaling. Analysis was performed for genes showing regulated expression under TGF-β1–supplemented versus nonsupplemented conditions after 6 and 24 hours (cutoff: fold change, 1.3). Differential expression of Notch was determined by using a heat map with Spotfire software (http://www.spotfire.com/).

Transfection of packaging cell lines and gene transduction

Gene transduction was performed, as previously described. Briefly, the packaging cell line Phoenix-Gag-Pol (Ph-GP) was used for generating GALV envelope-containing retroviral particles. Target cells were plated on RetroNectin (Takara Bio, Shiga, Japan)-coated non-tissue culture plates coated with virus (3-5 hours) in specific growth medium. Infections were repeated 2 to 3 times at intervals of 12 to 24 hours. CD34+ cells were infected in expansion mix (SCF, FLT3L, and thrombopoietin; each 50 ng/mL). The retroviral tetracycline-inducible system (tet-on system) was described previously. Briefly, the first vector encoded the Tet activator TA-mCD8a. The second vector encoded human KLF4-ires-GFP under the control of a Tet-responsive element. CD34+ cells were first infected with TA-mCD8a, followed by infection with the Tet-response vector. Expression of the KLF4 transgene was induced by addition of 1 μg/mL doxycycline. Fresh doxycycline was added every 2 to 3 days of LC differentiation culture to sustain KLF4 expression (GM-CSF, TNF-α, and TGF-β1; secondary cultures).

Retroviral vectors

RV-GFP and RV-KLF4-GFP vectors were kindly provided by M. W. Feinberg. KLF4-coding DNA was inserted into the BglII/XhoI sites of the MCV-IRES-GFP vector. Cutting RV-KLF4 with BglII and XhoI and inserting it into MCV-IRES-NGFR vector generated MIN-KLF4. MIC-RUNX3 was kindly provided by S. Sakaguchi (Vienna, Austria). HR-KLF4-IGFP was generated by cutting RV-KLF4-GFP with BglII and XhoI and inserting it into the BamHI/XhoI site of the pHR-IGFP vector (kindly provided by F. Rossi, Vancouver, British Columbia, Canada).

Immunohistochemistry staining

Double-labeled immunohistochemical staining was performed on paraffin-embedded sections or cytospin preparations by using the LabVision MultiVision Polymer Detection System (anti-mouse AP; anti-rabbit horseradish peroxidase), according to the commercial protocol (Thermo Fisher Scientific). The following primary antibodies were used: monoclonal mouse anti-CD1a (Novus Biologicals, Littleton, Colo), polyclonal rabbit anti-activated Notch-1 (Abcam, Cambridge, Unite Kingdom), and polyclonal rabbit anti-KLF4 (Sigma-Aldrich).

Confocal microscopy

Multicolor immunofluorescent staining procedures were performed on frozen sections, as previously described. Negative controls were obtained in all staining experiments by substituting primary antibody with the isotype-matched IgG. Slides were mounted in Permafluor (Thermo Fisher Scientific) or VECTASHIELD (Vector Laboratories, Burlingame, Calif). Immunofluorescently labeled sections were analyzed with a Zeiss LSM 510 confocal microscope (×40/1.3 NA; Zeiss, Oberkochen, Germany), and
images were captured with Zen 2008 Software (Zeiss). The following primary antibodies were used: polyclonal rabbit anti-KLF4 (Sigma-Aldrich); mouse anti-CD207 (Immunotec, Vaudreuil-Dorion, Quebec, Canada), fluorescein isothiocyanate (FITC)–conjugated mouse anti-CD11b (Immunotec), FITC-labeled mouse anti–HLA-DR (BD Biosciences), polyclonal rabbit anti-activated Notch-1 (Abcam), monoclonal mouse anti-CD1a (Novus Biologicals), polyclonal goat anti-CD14 (Novus Biologicals), and FITC-labeled mouse anti-CD14 (BioLegend, San Diego, Calif). Alexa Fluor 488–conjugated anti–Laminin-5 (Millipore, Temecula, Calif) was used to visualize the dermal-epidermal junction. Anti-FITC polyclonal goat IgG (Invitrogen) and anti-rabbit polyclonal goat F(ab)2 fragment (Jackson ImmunoResearch, West Grove, Pa) or goat anti-rabbit Alexa Fluor 647 (Jackson ImmunoResearch) antibodies served as secondary reagents. All secondary antibodies have been cross-absorbed to avoid cross-reactivity with IgG of other species.

Chromatin immunoprecipitation assay

CD14+ peripheral blood monocytes were induced to differentiate with GM-CSF (100 ng/mL) and IL-4 (25 ng/mL) into moDCs. KLF4 chromatin immunoprecipitation was performed with the KLF4 ExactaChIP Kit (R&D systems), according to the manufacturer’s protocol. Briefly, moDCs (6 × 10^6) were treated for 15 minutes at 37°C with 1% (vol/vol) formaldehyde, followed by addition of glycine (final concentration, 125 mmol/L). Cells were pelleted, resuspended in lysis buffer, lysed on ice, and sonicated to obtain chromatin fragments of 0.5 to 1 kb in length. Equal amounts (5 μg) of goat anti-human KLF4 antibody or of normal goat IgG were used per reaction. The following primers were used for detection of the RUNX3 promoter region: 5′-GCAGCCCCAGAACAAATC-3′ and 5′-GGTGCTACGACCGAGGAGG-3′. The abundance of distinct DNA fragments was quantified by means of semiquantitative PCR; PCR products were resolved by using 2% agarose gel electrophoresis.

REFERENCES

E1. Varnum-Finney B, Wu L, Yu M, Brashem-Stein C, Staats S, Flowers D, et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J Cell Sci 2000;113:413-8.
E2. Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD, et al.flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood 1997;90:1425-34.
E3. Stary G, Klein I, Brüggen M-C, Kohlhofer S, Brunner PM, Spazierer D, et al. Host defense mechanisms in secondary syphilitic lesions. Am J Pathol 2010;177:2421-32.
E4. Gold D, Coombs K, Medhane D, Ramaswamy A, Ju Z, Strong L, et al. A comparative analysis of data generated using two different target preparation methods for hybridization to high-density oligonucleotide microarrays. BMC Genomics 2004;5:2.
E5. Hutter C, Kauer M, Simonitsch-Klupp I, Jug G, Schwentner R, Leitner J, et al. Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells. Blood 2012;120:2599-208.
E6. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003;31:e15.
E7. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004;5:R80.
E8. Jörgl A, Platter B, Taschner S, Heinz LX, Hocher B, Reiser PM, et al. Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells. Blood 2007;109:185-93.
E9. Platter B, Jörgl A, Taschner S, Höcher B, Strobl H. RelB regulates human dendritic cell subset development by promoting monocyte intermediates. Blood 2004;104:3655-63.
E10. Feinberg MW, Wara AK, Cao Z, Lebedeva MA, Rosenbauer F, Iwasaki H, et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J 2007;26:4138-48.
E11. Schuster C, Vaculik C, Fiala C, Meindl S, Brandl O, Imhof M, et al. HLA-DR+ leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigen-presenting cells. J Exp Med 2009;206:166-81.
FIG E1. Immunohistochemical analysis of healthy human skin and *in vitro*-generated LCs. **A**, Paraffin sections of healthy human skin were stained for CD1a (red) and aN1 (blue). *Bars* = 10 μm. **B**, p-LCs and moLCs were sorted by using anti-CD207 mAb with magnetic beads. Cells were spun on slides, fixed, permeabilized and stained for CD1a and aN1. *Bars* = 10 μm.
FIG E2. Analysis of the inhibitory role of KLF4 on LC-like cell differentiation. A and B, KLF4-IRES-GFP–, RUNX3-IRES-GFP–, or control-transduced day 5 precursors were cultured under LC-promoting conditions (+TGF-β1). GFP⁺CD1a⁺-gated cells were analyzed for expression of CD207, DC-specific intercellular adhesion molecule–grabbing nonintegrin (DC-SIGN; CD209), CD11b, and CD14. C, KLF4-IRES-GFP– or control-transduced cells were cultured under LC-promoting cytokine conditions (+TGF-β1). After 24 hours, GFP⁺ cells were sorted, and quantitative PCR analysis for ID2 mRNA expression was performed. Bar diagrams represent mean ± SEM values of 3 independent experiments.
Primer name	Orientation	Sequence
RFX2	Forward	ATA GAT GTC TCC CAC TGC TTC
	Reverse	TCT CGA TGT AGT GGA ACT GGA G
TIEG	Forward	CCA GGA TGT GGC AAG ACA TAC
	Reverse	TTC ACA ACC TTT CCA GCT ACA G
BLIMP-1	Forward	CGG CAA GAT CAA GTA CGA ATG
	Reverse	GAG CTG AGT AAA GCC CTT GTT G
ETS-2	Forward	TTG TGG GTG ACA TTC TCT GG
	Reverse	ATG AGG AAC GGA GGT GAG G
DEC2	Forward	CCT ACC GTC CCA CAG ATT G
	Reverse	CCT TGG TGT CGT CTC GTT TC
DEC1	Forward	TGA CCG GAT TAA CGA GTG C
	Reverse	GAG CAG AAC ATC TCT TGA CCT G
KLF4	Forward	GCC GCT CCA TTA CCA AGA G
	Reverse	GTG CCT TGA GAT GGG AAC TC
PPARδ	Forward	TCA CAC AGT GGC TTC TGC TC
	Reverse	TCT ACA GGG TGG TTC CCA TC
RXRα	Forward	CGA CCC TGT CAC CAA CAT TTG C
	Reverse	GAG CAG CTC ATT CCA GCC TGC C
VDR	Forward	AGA TGA CCC TTC TGT GAC CC
	Reverse	AGC TTG TTC AGT CCC ACC TG
HPRT	Forward	GAC CAG TCA ACA GGG GAC AT
	Reverse	AAC ACT TCG TGG GGT CCT TTT C
Antigen	Conjugate	Distributor
-----------	-----------	------------------------------
CD34	FITC	BD Biosciences
CD14	FITC	BD Biosciences
HLA-DR	FITC	BD Biosciences
CD1a	FITC	BD Biosciences
CD1c	FITC	Miltenyi Biotec GmbH
CD11b	FITC	Immunotech
CD207	PE	Miltenyi Biotec GmbH
CD203	PE	Immunotech
CD1a	PE	BD Biosciences
CD14	PE	BD Biosciences
HLA-DR	PE	BD Biosciences
CD45RA	PE	BD Biosciences
CD11c	PE	BD Biosciences
Lactoferrin	PE	Caltag/An der Grub
CD14	PE	ImmunoTools
Jagged-2	PE	BioLegend
CD19	PerCP	BD Biosciences
NGFP	PerCP-Cy5.5	BD Biosciences
CD45	ECD	Immunotech
CD117	CyChrome	BD Biosciences
CD1a	APC	BD Biosciences
CD14	APC	BD Biosciences
E-Cadherin	APC	BioLegend
Notch-1	APC	BioLegend
E-Cadherin	AF647	BD Biosciences
CD11b	PE-Cy7	BioLegend
CD11b	APC-Cy7	BD Biosciences
CD80	Biotinylated	BD Biosciences
CD86	Biotinylated	BD Biosciences
CD209	Biotinylated	BD Biosciences
CD11b	Biotinylated	BD Biosciences
CD1a	BV412	BD Biosciences
CD1a	Pacific Blue	BioLegend

The second-step reagent for biotinylated antibodies was streptavidin-PerCP (BD Biosciences).

APC, Allophycocyanin; ECD, Phycoerythrin-Texas Red; PE, phycoerythrin; PerCP, peridinin-chlorophyll-protein complex.
TABLE E3. Microarray data: mRNAs induced in TGF-β1–stimulated versus nonstimulated cultures

Probe set	Gene symbol	0 h	6 h	24 h	0 h	6 h	24 h	Sum of calls	P value
201131_s_at	CDH1	13.3*	14.9	26.1	69.8	470.0	8	<.0001	
222549_at	CLDN1	8.8	11.2	12.8	34.6	253.8	6	<.0001	
220428_at	CD207	7.2	6.8	8.2	7.7	197.9	2	<.0001	
206337_at	CCR7	19.0	16.3	25.4	51.9	77.9	6	.0015	

*Microarray expression values generated by using the robust multiarray average algorithm and processed for global normalization.
TABLE E4. Microarray data: mRNAs repressed in TGF-β1–stimulated versus nonstimulated cultures

Probe set	Gene symbol	0 h	6 h	24 h	6 h	24 h	Sum of calls	P value
209555_s_at	CD36	312.3*	389.9	730.6	165.1	343.5	10	0.00007
206682_at	CLEC10A	217.2	295.3	517.1	214.7	350.1	10	0.00310
204438_at	MRC1	661.0	775.3	1771.1	372.7	93.6	10	0.00001
203305_at	FXIII X	75.7	73.8	73.8	64.4	42.1	7	0.00435

*Microarray expression values generated by using the robust multiaarray average algorithm and processed for global normalization.
TABLE E5. Microarray data: KLF family member mRNA regulation in TGF-β1–stimulated versus nonstimulated cultures

Probe set	Gene symbol	0 h	6 h	24 h	6 h	24 h	Sum of calls	P value
210504_at	KLF1	35.9*	34.7	38.9	55.6	41.8	10	.827
219371_s_at	KLF2	18.6	16.8	19.2	15.6	17.4	1	.531
222913_at	KLF3	65.8	63.0	67.0	63.1	67.2	10	.953
221841_s_at	KLF4	111.4	137.6	205.7	52.2	65.0	10	.057
209212_s_at	KLF5	31.5	38.4	31.7	26.6	32.9	7	.444
1555832_s_at	KLF6	442.8	411.8	605.6	352.4	555.3	10	.010
1555420_a_at	KLF7	28.8	32.0	29.9	30.3	29.5	10	.976
219930_at	KLF8	5.0	4.6	5.4	4.5	5.2	0	.295
203543_s_at	KLF9	4.8	5.0	6.2	4.7	7.5	5	.056
202393_s_at	KLF10	116.9	94.9	110.3	221.3	181.6	10	.014
218486_at	KLF11	52.0	47.1	55.7	47.2	63.4	10	.211
227261_at	KLF12	89.1	77.4	76.8	88.2	104.2	10	.062
225390_s_at	KLF13	490.0	458.2	578.2	586.3	635.8	10	.129
1552814_a_at	KLF14	9.9	8.9	9.7	8.4	9.4	0	.747
221302_at	KLF15	25.7	23.4	27.6	28.2	26.0	0	.668
226328_at	KLF16	51.8	50.6	60.8	46.5	58.4	2	.976
1553891_at	KLF17	6.7	7.4	7.3	5.9	5.9	0	.628

*Microarray expression values generated by using the robust multiarray average algorithm and processed for global normalization.
TABLE E6. Ingenuity Pathway Analysis: Notch pathway genes regulation in TGF-β1–stimulated versus nonstimulated cultures

Gene symbol	−TGF-β1 0 h vs 6 h	−TGF-β1 0 h vs 24 h	+TGF-β1 0 h vs 6 h	+TGF-β1 0 h vs 24 h
HES1	1	1	1.974	1.926
JAG1	1	1.365	−1.975	1.857
JAG2	1	1	1.764	1.814
MAML2	1	1	1.419	1.707
PSEN1	1	1.354	1.522	1.573
MAML3	1	1	1	1.319
NOTCH1	1	−1.341	1.446	1.316
ADAM17	1	1	1	1.3
CNTN1	1	1.304	1	1
PSEN2*	1	1	−1.356	1
MAG	−1.305	1	1	1
MFNG	1.342	1	1	1
PSEN2*	1.375	1	1	1
NOTCH2	1	−1.367	1	−1.545
DTX4	1	1.374	−2.293	−1.994

PSEN2 expression was detected by using 2 Affymetrix probe sets: 204261_s_at for “0 h vs 6 h −” and 211373_s_at for “0 h vs 6 h +.”