Supplemental Materials
for
A Small-Group Activity Introducing the Use and Interpretation of BLAST

Peter D. Newell¹, Ashwana D. Fricker², Constance Armanda Roco²,
Pete Chandrangsu², and Susan M. Merkel²*
Departments of ¹Entomology, and ²Microbiology, Cornell University, Ithaca, NY 14853

Table of Contents
(Total pages 19)

Appendix 1: Student handout part 1
Appendix 2: Instructor handout part 1, answers and misconceptions
Appendix 3: Student handout part 2
Appendix 4: Instructor handout part 2, answers and misconceptions
Appendix 5: Part 2 sequence
Appendix 6: Pre- and posttest questions, answers and misconceptions
Appendix 7: BLAST tutorial

*Corresponding author. Mailing address: Department of Microbiology,
111 Wing Hall, Cornell University, Ithaca, NY 14853. Phone:
607-254-2767. Fax: 607-255-3904. E-mail: smm3@cornell.edu.

©2013 Author(s). Published by the American Society for Microbiology. This is an Open Access article distributed under the terms of the a Creative
Commons Attribution – Noncommercial – Share Alike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/), which permits
unrestricted non-commercial use and distribution, provided the original work is properly cited.
Appendix 1: Student handout part 1.

PRINT & COMPLETE THIS BEFORE YOU COME TO CLASS

Learning objectives. *After completing this small group activity, you should be able to* …

- Label and explain the function of key components in Gram positive and Gram negative bacteria
- Determine the predicted function of a protein sequence using BLAST
- Determine if a gene product is present in a specific organism using BLAST
- Evaluate sequence similarity based on BLAST outputs: E-values, % query cover, and % max identity

This activity introduces BLAST (Basic Local Alignment Search Tool), a valuable tool for analyzing nucleic acid and protein sequence data. In addition, this activity highlights some important differences between the cell envelopes of Gram positive and Gram negative bacteria.

Please note: you need to complete Part I to obtain information for the in-class activity (Part II).

Completion of Part I will be checked at the beginning of class. Please bring laptops to class!

Part 1 (2 points)

A) **Cell Envelope Review: Look at the diagrams below of Gram (+) and Gram (-) type cell envelopes.**

i) Label each cell envelope as being from a Gram (+) or Gram (-) cell type

ii) Label the components of each cell envelope using the list below

Note: not all cell-types have all the structures.

- cytoplasmic membrane
- outer membrane
- membrane-bound proteins
- peptidoglycan layer
- periplasmic space
- porins

Cell wall type _____________

[Diagram of Gram-positive cell envelope]

Outside cell

Inside cell

Cell wall type _____________

[Diagram of Gram-negative cell envelope]

Outside cell

Inside cell
B) BLAST review: One of the bioinformatic tools that you will use is **BLAST** (*Basic Local Alignment Search Tool*), that can be found at the National Center for Biotechnology Information site: http://blast.ncbi.nlm.nih.gov/.

As the name implies, BLAST makes alignments between sequences. Alignment is the process (or result) of matching up the nucleotide or amino acid residues of two or more biological sequences to achieve the best possible match. BLAST identifies sequences similar to your query sequence in the NCBI database by making alignments and assessing how well the sequences match.

Please view the **BLAST Video Tutorial** (https://www.youtube.com/watch?v=x_dAyY5-VNc) or the **BLAST PDF Tutorial** to answer the questions below.

Below is the amino acid sequence of a protein associated with some bacterial cell envelopes. Use a protein BLAST (**BLASTP**) search to obtain information about it, and answer the questions below.

```
MKLKNTLGVGSLVAASAMNAFAQGQNSVEIEAFGKRYFTDSVRNMKNADLYGGSIGYFLTDDVELALSYGHEYH DVRGTYETGNKVKVHGNLTSLDAYSQHPGVPGLRYPYVSAGLAHQNITNINSQGQRMNTANAGLKYYFTENF AKASLDGQYGLEKRDNGHQGEWMAGLGVGFNFGGSKAAPAPEPVADVCSDSDNVDGVCDNVKCPDTPANVTVDANGCPAVAEVVRQLVDFDFDKSYK SYADIKNAFREDKQYPSSTSTTVGEHTDSVGTDAYNQKLSSRRANAVRDLVNEYVGVEGGRVNAVYGESRPVADVNATAEGRARINRRVIAEVEAEAK`
```

Questions:

1. Identify the Top BLAST hit and fill in the box to answer questions 1-3.

 1) What kind of protein does this sequence encode, based on the name given (annotation)?
 2) From what organism did it come?
 3) What is the BLAST % query cover, E value and % Max Identity for the top hit?

Protein	Organism	% Query Coverage	E-value	% Max Identity

4) What is the function of this kind of protein?

5) Based on what this protein does and where it is found, do you think this organism is a Gram positive or Gram negative bacterium? Explain your logic.

6) Look at the BLAST tutorial (or look at the glossary section in the BLAST website at http://www.ncbi.nlm.nih.gov/books/NBK62051/) and fill in these definitions:

 - **E-value:**
 - **% Max Identity:**
7) When running a BLAST search, often times the sequences returned will align with only **part** of your query sequence. NCBI defines query coverage as the percent of the query sequence length that is included in the alignment. This number is significant because it figures into the calculation of the E value—the greater the query coverage, the lower the E value, and the better the match. **Place an asterisk next to the BLAST hit (A or B) below with the higher query coverage (the two examples are different hits using the same query sequence):**

A)

> putative outer membrane lipoprotein [Escherichia coli O25:H11 str. CVM952]

Range: 113 to 213	GenProt Graphics	Next Match	Previous Match	
Score	Expect Method	Identities	Positives	Gaps
81.3 bits (199)	96/17 Compositional matrix adjust. 41/102 (40%)	62/102 (60%)	1/102 (0%)	

Query

- Query 241: +V TD + +K + +A +KYP T + V +TD G + N +S+R+A+V

Subject

- Subject 113: NVCRTSARXKAFAGATTCGAVMNLKTFYFTPDNYVTGTVSTDSGTGIDNLSQGRADYV

Query

- Query 301: MVLVNEYVQEGGNYPRMVAVNADNASAGRINKGRVE3AAK

Subject

- Subject 173: ASALTQ-OVEAEERTQGFLANPAITNADSTARKNQRA3QV

B)

> Major porin and structural outer membrane porin OmpF precursor [Pseudomonas sp. M1]

Range: 1 to 351	GenProt Graphics	Next Match	Previous Match	
Score	Expect Method	Identities	Positives	Gaps
666 bits (1718)	0.0 Compositional matrix adjust. 317/351 (90%)	339/351 (96%)	1/351 (0%)	

Query

- Query 61: IVDVEALSYGKEHIVQGKVHNLGDLSTOA1HYFPTCQLFRVYSAEMHQ

Subject

- Subject 61: IVDVEALSYGKEHIVQGKVHNLGDLSTOA1HYFPTCQLFRVYSAEMHQ

Query

- Query 121: ITUSNGCQGQTQNMICAGILYYTPFNFLFDHCLQQGKRONGIXQENMDLGV

Subject

- Subject 121: ITUSNGCQGQTQNMICAGILYYTPFNFLFDHCLQQGKRONGIXQENMDLGV

Query

- Query 181: GNF-E-CCGEEAEADMTLVANCDVSNDEFVKDPDEPAVTPVDANCDCPAE3VRR

Subject

- Subject 181: GNF-E-CCGEEAEADMTLVANCDVSNDEFVKDPDEPAVTPVDANCDCPAE3VRR

Query

- Query 24: LDVFKFYDSDKRXKNTNADNLDFKQXPSSTTYVEGHTDSVDGYTNYQKLSERANA

Subject

- Subject 241: LDVFKFYDSDKRXKNTNADNLDFKQXPSSTTYVEGHTDSVDGYTNYQKLSERANA

Query

- Query 300: VHRDLVNYGVEGQGRVAVGNVYGRSEMPVADNAMZAEGRINKGRVE3AAK

Subject

- Subject 301: VHRDLVNYGVEGQGRVAVGNVYGRSEMPVADNAMZAEGRINKGRVE3AAK
Appendix 2: Instructor handout part 1, answers and misconceptions.

Learning objectives. *After completing this small group activity, you should be able to*
- Label and explain the function of key components in Gram positive and Gram negative bacteria
- Determine the predicted function of a protein sequence using BLAST
- Determine if a gene product is present in a specific organism using BLAST
- Evaluate sequence similarity based on BLAST outputs: E-values, % query cover, and % max identity

This activity introduces BLAST (Basic Local Alignment Search Tool), a valuable tool for analyzing nucleic acid and protein sequence data. In addition, this activity highlights some important differences between the cell envelopes of Gram positive and Gram negative bacteria.

Note: students needed to complete Part I to obtain information for the in-class activity (Part II). Part I was checked at the beginning of class for completion. Students were asked to bring laptops to class.

Part 1 (2 points)

NOTE: We did not grade these in detail, but gave students 1 point for labeling the cell, and 1 point for answering the BLAST questions. The 2 points were meant as a small incentive to complete the assignment.

A) Cell Envelope Review: Look at the diagrams below of Gram (+) and Gram (-) type cell envelopes.

- Label each cell envelope as being from a Gram (+) or Gram (-) cell type
- Label the components of each cell envelope using the list below

 Note: not all cell-types have all the structures.

- cytoplasmic membrane
- outer membrane
- membrane-bound proteins
- peptidoglycan layer
- periplasmic space
- porins

Cell wall type **GRAM (+)**

Cell wall type **GRAM (-)**

Diagram:
- Peptidoglycan layer
- Cytoplasmic membrane
- Membrane-bound proteins
- Porins
- Periplasmic space
- Outer membrane
B) BLAST review: One of the bioinformatic tools that you will use is BLAST (Basic Local Alignment Search Tool), that can be found at the National Center for Biotechnology Information site: http://blast.ncbi.nlm.nih.gov/

As the name implies, BLAST makes alignments between sequences. Alignment is the process (or result) of matching up the nucleotide or amino acid residues of two or more biological sequences to achieve the best possible match. BLAST identifies sequences similar to your query sequence in the NCBI database by making alignments and assessing how well the sequences match.

Students were asked to view the BLAST Video Tutorial (https://www.youtube.com/watch?v=x_dAyY5-VNc) or the BLAST PDF Tutorial to answer the questions below.

Below is the amino acid sequence of a protein associated with some bacterial cell envelopes. Use a protein BLAST (BLASTP) search to obtain information about it, and answer the questions below.

MKLKNLGVVIGSLVAASAMNAGQGOSSXIEEAFGKRYFTDSVRNKMKNADLYGGSIGYF LTTDDVEDALSRYGEYHDVRGTYETGNNKVEHLGTVGGLNPDROYVSAAGLAIHQLNI TINISDQSQQMRTIANIGALKYFTENFFAKASLDGQYGLEKRDNGHQQEGWAMAGLV GNFPGGSKAPAPEVTADVCSDSNDVDGVDNVDKCPDTPANVTVDANGCPAVAEVRVQ LDVKFDFDKSKVKENSYADIKNADFMKQYPSTSTTVEGHTDSVGTDAYNQKLRSERRANA VRDVPLVNEYVEGGRVNAVYGSRPVADNATAEGRAINRRVEAEVAEAEAK

Questions:

Identify the Top BLAST hit and fill in the box to answer questions 1-3.

1) What kind of protein does this sequence encode, based on the name given (annotation)?
2) From what organism did it come?
3) What is the BLAST % query cover, E value and % Max Identity for the top hit?

Protein	Organism	% Query Coverage	E-value	% Max Identity
PORIN	PSEUDOMONAS	100	0.0	100

4) What is the function of this kind of protein?

Porins are membrane proteins that allow for diffusion of molecules in the cell. They can be specific to a specific type of molecule and are found in the outer membrane of GRAM (-) bacteria.

5) Based on what this protein does and where it is found, do you think this organism is a Gram positive or Gram negative bacterium? Explain your logic.

GRAM (-) because only Gram(-) bacteria have porins

6) Look at the BLAST tutorial (or look at the glossary section in the BLAST website (http://www.ncbi.nlm.nih.gov/books/NBK62051/) and fill in these definitions:

E-value:
The **E-value** represents how well the alignment of your query sequence is to the database sequences. The lower the E-value, or the closer it is to zero, the more significant the alignment and match are.

% Max Identity:
% Maximum identity is the percentage of residues that, after alignment of two sequences are in the same position in the alignment and match up.
7) When running a blast search, often times the sequences returned will align with only part of your query sequence. NCBI defines query coverage as the percent of the query sequence length that is included in the alignment. This number is significant because if figures into the calculation of the E value, the greater the query coverage, the lower the E value, the better the match. **Place an asterisk next to the blast hit (A or B) below with the higher query coverage** (the two examples are different hits using the same query sequence):

A)

putative outer membrane lipoprotein [Escherichia coli O28:H11 str. CV9952]
Sequence ID: ref[ZP_14641000.1]
Length: 219
Number of Matches: 1

Range: 113 to 213	GenPept	Graphics
Score: 81.3 (bits 199)	**Expect Method**: 41/102 (40%)	**Identities**: 62/102 (60%)
Compositional matrix adjust: 1/102 (0%)		**Positives**: 1/102 (0%)
Gaps: +V TD +k +a +KYP T+ +G +TD G	+N +S+RA+ +V	
Query ID: 133	**Subject ID**: 113	
Query: NVYDSSSAATFSGAAGANLGVMLRKGTYTFVAVVWTDGTTSAEADNLGLSQRADFV	**Subject**: NVYDSSSAATFSGAAGANLGVMLRKGTYTFVAVVWTDGTTSAEADNLGLSQRADFV	

Place an asterisk next to the blast hit **A)** with the higher query coverage.

B)

Major porin and structural outer membrane porin OprF precursor [Pseudomonas sp. M1]
Sequence ID: ref[ZP_19204629.1]
Length: 383

Range: 1 to 351	GenPept	Graphics
Score: 666 bits (1718)	**Expect Method**: 317/351 (99%)	**Identities**: 339/351 (98%)
Compositional matrix adjust: 1/351 (0%)		**Positives**: 1/351 (0%)
Gaps:	+V TD +k +a +KYP T+ +G +TD G	+N +S+RA+ +V
Query ID: 1	**Subject ID**: 1	
Query: JKLiKNGVCIGE51N[ASAM][NAF][Q]VE1EFBAGKYP60R[NKAL][L]GG6GIGYF	**Subject**: JKLiKNGVCIGE51N[ASAM][NAF][Q]VE1EFBAGKYP60R[NKAL][L]GG6GIGYF	

Place an asterisk next to the blast hit **B)** with the higher query coverage.
Appendix 3: Student handout part 2.

You should have your completed Part I & a laptop computer with you!

Pseudomonas aeruginosa is a pathogenic (disease causing) bacterium that can infect a wide variety of animals. *P. aeruginosa* is particularly devastating to patients suffering from Cystic Fibrosis (CF), a genetic disease that causes the buildup of thick mucus in the lungs. The dysfunctional lungs of CF patients are chronically infected with *P. aeruginosa*, which is well adapted to survive in this habitat, in part because it can efficiently utilize amino acids for carbon and energy.

While working in a clinical microbiology lab, you isolate a new strain of *P. aeruginosa* that thrives especially well in CF patients. Comparing its protein expression patterns to previous, non-CF isolates, you find that one protein is highly expressed in your isolate relative to other *P. aeruginosa* strains.

The amino acid sequence is pasted below. An electronic version can be found in the accompanying file: Part 2.sequence.doc

```
MRTYFERLSAGMALALCTASAAWADEADAKEGFIGEGLQLLTRNYYFNHRHASSGHDSKWEA
QGFIATFQSGYTPGTVGVGFDAYGMLGLKLDGGGTGGTGSILPTSKDGYESGKAPDEFSSGGA
LLKIRADTEKLGLDQFLSNPVVAGGESRMLPQTFRGVSLTNNSFEDLTTAQVSVFTKYYNQS
GSHRRLGSYYGYELPGDRDSHHLWSWGGTWGIEGTSSLYAAELQNVWQYYADVYTYEIDDNW
SLNPGAHYKTVDSGDSLGLGDRIDNTYSLHFAVGYRQHTVTAVLQKVNGNTPGDYINQGF
ISFLDNSQYSDFNPPNEKSWKLQDYDVFVALGLPLGSASASYSRGLDLTRVDPSPGYGGWYS
ADGKAHKWERDLDLQYVQGPPAKDLSLRLRWATHRGTTGGYSAVNDIDEYRVTSGLKASDTG
```

To find out what the function of this protein might be, you perform a BLAST (Basic Local Alignment Search Tool) search of its amino acid sequence. Go to the National Center for Biotechnology Information site (http://blast.ncbi.nlm.nih.gov/) to do a BLASTP search to determine a potential identity of this protein, following the same procedures as Part I and in the BLAST tutorial.

Answer the following questions, adding answers 1-4 to the table for P. aeruginosa:

1) What is the name/description of the top BLAST Hit? ______________________________________

2) What is the % query coverage? __

3) What is the E value? __

4) What is the % maximum identity? ______________________________________

Organism	Protein Name	% Query Coverage	E-value	% Max Identity
P. aeruginosa				

5) Based on the name, what do you think the function of this protein is? (1 point)

6) Why might expressing this protein at a high level help your clinical isolate thrive in patients’ lungs? (1 point)
As you scroll down the table giving descriptions of the BLAST hits, you notice that similar proteins occur in other *Pseudomonas* species besides *aeruginosa*. You are curious about how widespread this protein may be, so you decide to search the genomes of two well-studied bacteria for similar sequences: *Bacillus subtilis* (Gram positive) and *Escherichia coli* (Gram negative).

Use separate windows or browser tabs for each BLAST search to compare the results.

- Navigate to the BLASTP page and enter the sequence from your *Pseudomonas aeruginosa* isolate as query.
- Under “Choose Search Set” on the same page, find the box where it says “Enter organism name.”
- Type in “*Bacillus subtilis* (taxid: 1423).” Be sure your text matches this exactly! This will search the subset of sequences in the NCBI database that come from *B. subtilis*.
- Click the BLAST button
- Repeat these steps in another internet browser window, entering “*Escherichia coli* (taxid: 562)” into the “enter organism name” box, then clicking BLAST. This will search the subset of NCBI sequences from *E. coli*.

7) Fill in the table with your results (add your results from the on the previous page).

Organism	Protein Name	% Query Coverage	E-value	% Max Identity
P. aeruginosa				
B. subtilis 1423				
E. coli 562				

8) a) Look at your data table. Based on the E-value data, do you think that either *E. coli* or *B. subtilis* carries the gene for this protein? Explain your answer. (1 point)

b) Look at your data table. Based on the % Query Coverage data, do you think that either *E. coli* or *B. subtilis* carries the gene for this protein? Explain your answer. (1 point)

c) Do these data support what you know about the cell envelope structure of *E. coli* and *B. subtilis*? Explain why or why not. (2 points)

9) How can *Bacillus subtilis* have a higher % Max Identity than *E. coli* but a lower % Query Coverage? Explain this phenomenon. (2 points)
Appendix 4: Instructor handout part 2, answers and misconceptions.

Pseudomonas aeruginosa is a pathogenic (disease causing) bacterium that can infect a wide variety of animals. *P. aeruginosa* is particularly devastating to patients suffering from Cystic Fibrosis (CF), a genetic disease that causes the buildup of thick mucus in the lungs. The dysfunctional lungs of CF patients are chronically infected with *P. aeruginosa*, which is well adapted to survive in this habitat, in part because it can efficiently utilize amino acids for carbon and energy.

While working in a clinical microbiology lab, you isolate a new strain of *P. aeruginosa* that thrives especially well in CF patients. Comparing its protein expression patterns to previous, non-CF isolates, you find that one protein is highly expressed in your isolate relative to other *P. aeruginosa* strains. The amino acid sequence is pasted below. An electronic version can be found in the accompanying file: Part 2.sequence.doc

MRTYFERLSAGMALALCTASAAWADEADAKEGFIEGSSLQLLTRNYYNHSDRHSQHKEWAQGFIAETFQSGTYTPGVVFAGVDAAYMLGLKLDGGGTGTSILPTSKIDGYESGKAPDESSSGGAA

To find out what the function of this protein might be, you perform a BLAST (*Basic Local Alignment Search Tool*) search of its amino acid sequence. Go to the [National Center for Biotechnology Information](http://blast.ncbi.nlm.nih.gov/) site to do a BLASTP search to determine a potential identity of this protein, following the same procedures as Part I and in the BLAST tutorial.

Answer the following questions, adding answers 1-4 to the table for *P. aeruginosa*:

1) **What is the name/description of the top BLAST Hit?** histidine porin OpdC

2) **What is the % query coverage?** 97%

3) **What is the E value?** 0%

4) **What is the % maximum identity?** 96%

Top BLAST hits for the sequence from your isolate

Organism	Protein Name	% Query Coverage	E-value	% Max Identity
P. aeruginosa	histidine porin OpdC	97	0	96

5) **Based on the name, what do you think the function of this protein is?** (1 point)

Answer: As a porin, it transports histidine through the outer membrane into the cell.

We gave ½ point for mentioning histidine transport and ½ point for noting the outer membrane

Misconceptions: A few students thought the porin was called a his porin because it was made of histidine

6) **Why might expressing this protein at a high level help your clinical isolate thrive in patients’ lungs?** (1 point)

Answer: It helps the bacterium to efficiently transport amino acids (histidine) for biosynthesis and energy, thus giving cells a growth advantage.

We gave 1 point for mentioning more efficient transport
As you scroll down the table giving descriptions of the BLAST hits, you notice that similar proteins occur in other *Pseudomonas* species besides *aeruginosa*. You are curious about how widespread this protein may be, so you decide to search the genomes of two well-studied bacteria for similar sequences: *Bacillus subtilis* (Gram positive) and *Escherichia coli* (Gram negative).

Use separate windows or browser tabs for each BLAST search to compare the results.

- Navigate to the BLASTP page and enter the sequence from your *Pseudomonas aeruginosa* isolate as query.
- Under “Choose Search Set” on the same page, find the box where it says “Enter organism name.”
- Type in “*Bacillus subtilis (taxid: 1423).*” Be sure your text matches this exactly! This will search the subset of sequences in the NCBI database that come from *B. subtilis*.
- Click the BLAST button
- Repeat these steps in another internet browser window, entering “*Escherichia coli (taxid: 562)*” into the “enter organism name” box, then clicking BLAST. This will search the subset of NCBI sequences from *E. coli*.

7) Fill in the table with your results (add your results from the on the previous page).

Organism	Protein Name	% Query Coverage	E-value	% Max Identity
P. aeruginosa	histidine porin OpdC	97	0	96
B. subtilis 1423	Hypothetical protein	7	8.8	34
E. coli 562	Outer membrane porin	93	6×10^{-4}	22

NOTE: Due to the dynamic nature of the BLAST database, the actual values could vary. Facilitators could ask: what do you think “hypothetical protein” means?

8) a) Look at your data table. Based on the E-value data, do you think that either *E. coli* or *B. subtilis* carries the gene for this protein? Explain your answer. (1 point)

Answer: *E. coli* should carry this gene because it has an E-value closer to 0, and the lower the E-value the more significant the score and the alignment. Therefore, the *E. coli* gene sequence has a better alignment to the porin sequence of *Pseudomonas*, while the *Bacillus* E-value is much higher and therefore the sequence is not as similar.

(1 point was given for answers that reflected an understanding of how to interpret the E-value.)

b) Look at your data table. Based on the % Query Coverage data, do you think that either *E. coli* or *B. subtilis* carries the gene for this protein? Explain your answer. (1 point)

Answers: *E. coli* more likely carries this gene because it has a higher % Query Coverage. This large number means that 93% of the *E. coli* sequence matches the query sequence. The *Bacillus* % Query Coverage is much lower. This small number means that only 7% of the *Bacillus* sequence matches the query sequence. Therefore, the *E. coli* gene sequence has a better alignment to the porin sequence of *Pseudomonas*.

(1 point was given for answers that reflected an understanding of how to interpret the % Query Coverage.)

NOTE: Students were referred to the graphical output on page 2 of Part 1 that shows Bacillus with a tiny bit of coverage and Ecoli with almost the entire coverage.
c) Do these data support what you know about the cell envelope structure of *E. coli* and *B. subtilis*? Explain why or why not. (2 points)

Answer: Yes, *E. coli* is Gram negative and therefore would have an outer membrane that would support porins, which are outer membrane proteins. *Bacillus* shouldn’t have porins because it is Gram positive and therefore lacks an outer membrane.

(1 point was given for noting that *E. coli* (a Gram (-) bacterium) has porins and 1 point was given for noting that *Bacillus* (a Gram (+) bacterium) does not.)

Misconceptions:

The presence of the histidine porin protein suggests *E. coli* is a Gram negative organism (rather than saying *E. coli* is Gram negative, therefore has a porin)

The data are consistent since *E. coli* is Gram negative. [Some students did not state that Gram negative bacteria have an outer membrane that and will therefore have a porin, while Gram positive lack an outer membrane and therefore will lack a porin.]

9) How can *Bacillus subtilis* have a higher % Max Identity than *E. coli* but a lower % Query Coverage? Explain this phenomenon. (2 points)

Answer: The lower % Query Coverage of the *Bacillus* sequence indicates that there is not a lot of overlap (only 7%) with the *Pseudomonas* gene. However, higher % Max Identity (96%) indicates that what did overlap matched very well. So the *Bacillus* gene contained a small segment that matched well.

The higher % Query Coverage of *Ecoi* shows the sequence had much more overlap with the *Pseudomonas* gene, (93%). but the relatively lower %Max Identity (22%) shows that a fair number of the sequences did not match exactly. Still, the % query coverage indicates much more overall similarity. One should look at the % query coverage first, before considering % max identity.

(1 point was given for answers that reflected an understanding of how to interpret the % Query Coverage; another point was given for answers that reflected an understanding of how to interpret the % Max Identity.)

NOTE: Students were referred to the graphical output on page 2 of Part 1 that shows *Bacillus* with a tiny bit of coverage and *Ecoli* with almost the entire coverage.

Misconceptions:

- *Bacillus* has one big query that matches the sequence we have, which might lead to the high % max identity. *E. coli* found more match all across the query, but couldn’t find the one big area where the sequences exactly matches with each other, leading to lower % max identity. [Did not realize that *Bacillus* has a short alignment with the query sequence and that *E. coli* overall has a higher number of amino acids that match the query].

- It has a higher % identity due to chance, as the E value is relatively high. Chance results like that account for this phenomenon.[Does not understand how BLAST works]

- The queries for *B. subtilis* have a greater number of matching residues to the protein sequence we entered, however, *E. coli* results in a greater number of overall queries across the target sequences. This explains why *B. subtilis*, which it has a higher % max identity, has only one query and therefore a less significant E value and lower % query [Does not understand that it is amino acid matches and that *B. subtilis* has a small number of total amino acids that match]
Appendix 5: Part 2 amino acid sequence.

MRTYFERLSAGMALALCTASAAWADADAKEFGIEGSSLQLLTRNYYNFDHRRHASGHDSKEWAQG
FIATFQSGYTPGVVGVDAYGMLKLDGGGGTGGTSILPITSPTKDGYESGKAPDEFSSGGAALKIR
AFDTELKLGDQFSLNPVVAGGERSRMLPQTFRGVSLSLTNSFEDLTTAGQVSFTKYYNQSGHRRLSY
GELPGDREDSDHHLSWGGTWWGIESGFTSSLYAELQVNWKQYAADVDYTYEIDDNWSLNPAGHYYK
TDGDSLLGDIDNNTYSLHFADVYRQHTVTAQLKVGGNTPGDYINSQGSLDFNSQQYSDFNGPPN
EKSWKLQYDYDFVALGLPGLSASASYSGKLDLTRVDPDSPGYGGWYSADGKAKHWERDDLQYYV
VQGPAKLDSLRLRWATHRGTGGYSAVNDIDEYRTSSGLKASDTG
Appendix 6: Pre- and post-test questions, answers and misconceptions.

For our analysis, answers to these questions were marked as being either correct (+1) or incorrect (0)

PRE-TEST

_____ 1) Are you familiar with **BLAST**?
 A. I know what it is and how to use it.
 B. I have some idea of what it is, but I don’t know how to do it.
 C. I have heard of it, but I do not know what it is.
 D. I have never heard of it.

If you chose option A or B, explain for what **BLAST** is used.

Answer: BLAST finds similar sequences in a sequence database by making alignments and assessing how well the sequences match; used to find genes or proteins in a genome

Misconceptions: Helps to visualize protein structures, used to study structure of biological molecules

__A__ 2) Which e-value would indicate a very good match for a protein sequence **BLAST**?
 A. 0.0
 B. 0.5
 C. 1.0
 D. I don’t know

POST-TEST

__C__ 1) **BLAST** is a tool that…
 A. applies sound energy to disrupt cell envelopes.
 B. builds a phylogenetic tree.
 C. finds regions of local similarity between sequences.
 D. removes gaps from sequence alignments.
 E. I don’t know.

__A__ 2) Which e-value would indicate a very good match for a protein sequence **BLAST**?
 A. 0.0
 B. 0.5
 C. 1.0
 D. I don’t know

3) The results below are from a **BLAST** search using the FunE protein of *E. comica*. Based on these data, which bacterium MOST likely contains a FunE protein? Pick one and explain your answer

Bacterium	% query coverage	% max identity
Y. Gabbagabbaea	20	80
H. simpsonius	30	30
P. Griffinia	80	50

Answer: *P. griffinia* has the best alignment with a higher percentage of the sequence (%QC)

Misconceptions: Y. Gabbagabbaea: has the highest % max identity; has the highest combined values, has the best alignment with a small part of the sequence.
Appendix 7: BLAST tutorial.

You are interested in finding out if this sequence codes for a protein with an interesting function!

To do this, you will use a Basic Local Alignment Search Tool on the National Center for Biotechnology Information.

Part 1A

1. Go to the BLAST website at NCBI: http://blast.ncbi.nlm.nih.gov/
2. Click on “protein blast”.
3. Enter the protein sequence into the box labeled “Enter accession number(s), gi(s), or FASTA sequence(s)”. You can copy + paste the sequence.
4. Under database, make sure “non-redundant protein sequence (nr)” is selected.
5. Click on “BLAST”.
6. Wait until sequence has been completely processed.
7. Scroll down to “Descriptions”.
8. Fill in the required information on your Small Groups sheet.

Part 1B

To find information on how BLAST works and definitions of the term.

1. Go to http://www.ncbi.nlm.nih.gov/Web/Newsltr/V15N2/BLView.html.
2. Find the required information on your Small Groups sheet.

Part II- You will need to know this for class.

1. Go to the BLAST website at NCBI: http://blast.ncbi.nlm.nih.gov/.
2. Click on “protein blast”.
3. Enter the protein sequence into the box labeled “Enter accession number(s), gi(s), or FASTA sequence(s)”. You can copy + paste the sequence.
4. Under “Database”, make sure “non-redundant protein sequence (nr)” is selected.
5. **Under “Organism”, type in the name indicated in your Small Groups packet.**
6. Click on “BLAST”.
7. Wait until sequence has been completely processed.
8. Scroll down to “Descriptions”.
9. Fill in the required information on your Small Groups sheet.
Detailed tutorial using the following protein sequence:

MKKIACLSALAAVLATAGTSVAAATSTVTGGYAAQSDAQGQMNGGMGFLKYRVEEDNSPLGVIGS
FTYTEKRTASSGDNQYYGITAGPAYRINDWASIVYGVGVVGKYQFTTEPHTYKHDTSYGFSS
YGAGLQFNPMEVVALDFSEYQSRRSVDVGTWIAVGVYRF

1. Go to the BLAST website at NCBI: http://blast.ncbi.nlm.nih.gov/.

2. On that page, click on protein blast.

3. Enter the protein sequence into the box labeled “Enter accession number(s), gi(s), or FASTA sequence(s)”. You can copy + paste the sequence.

4. Under database, make sure “non-redundant protein sequence (nr)” is selected.

5. Click on “BLAST”.

![BLAST website screenshot](image_url)
…wait…
6. Scroll down to “Descriptions”.

7. Fill in the required information on your Small Groups sheet.

Part 1B

To find information on how BLAST works and definitions of the term.

1. Go to http://www.ncbi.nlm.nih.gov/Web/Newsltr/V15N2/BLView.html.

2. Find the required information on your Small Groups sheet.
Part II

5. Under “Organism”, type in the name indicated in your Small Groups packet.