Sustained high trough factor IX activity levels with continued use of rIX-FP in adult and paediatric patients with haemophilia B

Bleeding severity in haemophilia usually correlates with the levels of circulating clotting factor. Patients with mild (factor levels 6%-40% of normal activity) or moderate haemophilia (1%-5%) bleed infrequently, predominantly due to trauma or after surgery, while individuals with severe disease (<1%) experience frequent spontaneous bleeding, particularly into joints and muscles, or after minor trauma. In patients with haemophilia B, prophylaxis with factor IX (FIX) aims to maintain appropriate trough levels to reduce the incidence of bleeds. In severe cases, lower trough levels are associated with an increase in total bleeding events and haemarthroses.

rIX-FP (albutrepenonacog alfa, IDELVION®, CSL Behring, King of Prussia, PA, US) is a fusion protein genetically linking recombinant human coagulation FIX with recombinant human albumin and has an extended half-life compared with standard products, allowing a prolonged dosing interval. The safety and efficacy of rIX-FP was demonstrated in adults/adolescents (7-, 10- and 14-day prophylaxis treatment regimens) and paediatrics (7-day prophylaxis only) in two phase III trials of previously treated patients (PTPs) with severe haemophilia B (FIX activity [FIX:C] ≤2%).

The aim of this analysis was to evaluate mean steady-state and observed trough FIX:C levels during prophylaxis with rIX-FP in these two clinical trials and to assess the impact of treatment with rIX-FP on patients with haemophilia B. The detailed study designs of the adult/adolescent (NCT0101496274) and paediatric (NCT01662531) rIX-FP phase 3 studies have been described previously. Subjects were male PTPs with haemophilia B (FIX ≤2%) without inhibitors, and informed consent was acquired from all patients. Adult and adolescent patients (≥12 years) received prophylaxis with 35-50 IU/kg rIX-FP every 7 days or 50-75 IU/kg every 10 or 14 days; paediatric patients (<12 years) received prophylaxis with 35-50 IU/kg rIX-FP every 7 days. This analysis is limited to 7- and 14-day regimens.

FIX:C was measured at a central laboratory using a validated one-stage clotting method with Pathromtin SL (Siemens Healthcare Diagnostics, Marburg, Germany) as an activator agent, as previously described. Adult/adolescent trough FIX:C levels were measured every 4 weeks before each infusion over a maximum period of approximately 70 weeks; paediatric trough FIX:C levels were measured at 4, 12, 24 and 36 weeks.

Steady-state trough FIX:C included only FIX trough measurements after three consecutive doses on the 7-day regimen and two consecutive doses on the 14-day regimen; if unscheduled doses of FIX product were administered, subsequent trough FIX measurements occurring within 21 and 28 days for the 7-day and 14-day regimens, respectively, were excluded. Thus, steady-state trough FIX:C levels reflect the FIX:C values achieved after repeated dosing, where FIX:C levels have reached their maximum plasma concentration for a dosing regimen.

Observed trough reflects the measured FIX:C levels at a given time point and includes data from all patients with at least one measurement obtained at observed trough during prophylaxis treatment. Observed trough FIX:C measured during pharmacokinetic (PK), repeated PK or surgical periods, or during an unscheduled visit was not included; if an additional dose was given (eg to treat a bleed) between two prophylaxis doses, the observed FIX:C measurement was excluded.

Ninety adult/adolescent (n = 63) and paediatric (n = 27) patients with severe haemophilia B (≤2% FIX) were enrolled in the studies. Two paediatric patients did not participate in the PK analysis. The majority of patients had previously received prophylaxis (71.1%). Baseline demographic data have previously been published.

Adults/adolescents (n = 33) receiving 35-50 IU/kg rIX-FP prophylaxis every 7 days had a mean steady-state trough FIX:C level of 20.90% (Table 1, Figure 1A), with a mean dose of 41.3 IU/kg. Adults/adolescents (n = 16) receiving 50-75 IU/kg rIX-FP prophylaxis every 14 days had a mean steady-state trough FIX:C level of 12.76% (Table 1, Figure 1B), with a mean dose of 73.5 IU/kg. Including all dose levels, the mean FIX:C trough levels were 22.26% and 12.48% for 7-day and 14-day regimens, respectively. Nearly all (96.2%) steady-state trough measurements were above 5% across all doses and dose intervals. The observed trough values were similar, with mean levels of 22.09% and 12.37% for 7-day and 14-day regimens, respectively. Adults/adolescents had a median (IQR) annualized bleeding rate (ABR) of 0.00 (0.00, 1.87) on weekly prophylaxis and 1.08 (0.00, 2.70) on the 14-day dosing interval. The median annualized spontaneous bleeding rate (AsBR) on all dosing regimens was...
TABLE 1 Summary of steady-state and observed trough FIX:C across rIX-FP dosing regimens

	Adult and adolescent patients	Paediatric patients			
	7-day regimen	14-day regimen			
	25-40 IU/kg	35-50 IU/kg	50-75 IU/kg	All doses	
N subjects	20 (89)	33 (156)	41 (230)	16 (83)	18 (106)
Mean (SD)	19.63 (5.81)	20.90 (6.39)	22.26 (7.08)	12.76 (6.80)	12.48 (6.36)
Median, max	20.70, 5.0, 33.4	21.75, 5.0, 38.6	22.60, 5.0, 50.4	12.40, 5.0, 50.2	12.40, 5.0, 50.2
			3.1, 5.0, 50.2	3.1, 5.0, 50.2	5.0, 24.1
			11.02 (4.09)	12.80 (4.17)	12.59 (4.27)
			11.50, 5.0, 24.1	12.60, 5.0, 24.1	12.90, 5.0, 24.1
			8 (18)	19 (41)	19 (43)
			10.39 (4.12)	12.40 (4.36)	12.57 (4.41)
			10.50	11.70	12.10
			3.1, 5.0, 24.1	5.0, 24.1	0.7, 24.1

FIX, factor IX; min, minimum; max, maximum; N, number; SD, standard deviation.

The extravascular space may act as a store for FIX; provide additional protection from bleeds. Indeed, clinical studies, depending on the trough level required, therapy can be individualized to suit a patient's lifestyle and requirements.

16 pediatric patients received 35-50 IU/kg rIX-FP prophylaxis every 7 days with a mean dose of 43.8 IU/kg and a mean steady-state FIX:C trough level of 12.40% (Table 1). Figure 1C). The median (IQR) ABR was 0.01 (0.01-0.01) on a 7-day regimen and 0.00 (0.00-0.00) on a 14-day regimen.

One limitation of studying FIX trough levels is that FIX enters the extravascular space, and only plasma FIX levels can currently be measured. The extravascular space may act as a store for FIX, resulting in FIX trough levels >0%, suggesting that in adult patients, FIX levels may not correlate directly with the amount of FIX present in tissues nor the ability of FIX to prevent bleeds. In the extravascular space, only plasma FIX levels can currently be measured. The extravascular space may act as a store for FIX, resulting in FIX trough levels >0%, suggesting that in adult patients, FIX levels may not correlate directly with the amount of FIX present in tissues nor the ability of FIX to prevent bleeds. In

Further study is required to confirm whether this also applies to human tissues. However, this difference in distribution may explain the higher FIX levels seen with increasing trough levels to target trough levels of 1%–3%, and lower bleeding rates were directly compared, due to differences in the study populations. An extended half-life product, glycopegylated rFIX (N9-GP, Refixia®; Biogen Idec, Inc, Cambridge, MA) produces a low ABR with prolonged haemostatic efficacy of rFIX at extended dosing intervals, whereas conventional recombinant FIX (rFIX) was not visible after 24 hours. The excel lent biodistribution of FIX present in tissues nor the ability of FIX to prevent bleeds. In the extravascular space, only plasma FIX levels can currently be measured. The extravascular space may act as a store for FIX, resulting in FIX trough levels >0%, suggesting that in adult patients, FIX levels may not correlate directly with the amount of FIX present in tissues nor the ability of FIX to prevent bleeds. In

11 pediatric patients received 35-50 IU/kg rIX-FP prophylaxis every 7 days with a mean dose of 43.8 IU/kg and a mean steady-state FIX:C trough level of 12.40% (Table 1). Figure 1C). The median (IQR) ABR was 0.01 (0.01-0.01) on a 7-day regimen and 0.00 (0.00-0.00) on a 14-day regimen.

One limitation of studying FIX trough levels is that FIX enters the extravascular space, and only plasma FIX levels can currently be measured. The extravascular space may act as a store for FIX, resulting in FIX trough levels >0%, suggesting that in adult patients, FIX levels may not correlate directly with the amount of FIX present in tissues nor the ability of FIX to prevent bleeds. In the extravascular space, only plasma FIX levels can currently be measured. The extravascular space may act as a store for FIX, resulting in FIX trough levels >0%, suggesting that in adult patients, FIX levels may not correlate directly with the amount of FIX present in tissues nor the ability of FIX to prevent bleeds. In
but comparable efficacy observed with N9-GP; both N9-GP and rIX-FP have AsBRs of 0 in adult and paediatric patients. Of patients treated with rIX-FP, >95% maintained a mild haemophilia phenotype (FIX:C > 5%) at all time points and on all regimens. Patients may find that an extended dosing regimen would still provide protection from bleeds but be easier to maintain.
rIX-FP provides consistently high steady-state trough FIX:C levels with 7- and 14-day prophylaxis regimens contributing to median AsBRs of 0. These findings demonstrate the successful transition of the majority of patients with severe haemophilia to a mild haemophilia phenotype. With rIX-FP, patients benefit from flexible dosing with very high protection against bleeds.

ACKNOWLEDGEMENTS

The authors would like to thank the PROLONG-9FP clinical study investigators and patients for their contribution. We would like to thank Jeanine Jochems for contributing to the formal analysis and validation of the data and Wilfried Seifert for supervision of the project and reviewing of the manuscript. Editorial support for the writing of this manuscript was provided by Meridian HealthComms and was funded by CSL Behring. CSL Behring reviewed and provided feedback on the paper. The authors had full editorial control of the paper and provided their final approval of all content.

DISCLOSURES

This work was supported by CSL Behring. GC and JCG have served on advisory boards for CSL Behring. JR and YL are employees of CSL Behring. GC has served on advisory boards or as a meeting speaker for Kedrion, Pfizer, Shire, Bayer, Novo Nordisk, Roche, Uniqure and Sobi.

AUTHOR CONTRIBUTION

JR and YL contributed to the investigation and formal analysis of the data; GC and JCG contributed to the investigation and resourcing of the study; all authors were involved in preparing the original draft of the manuscript and revising it critically and gave final approval of the version to be published.

DATA ACCESSIBILITY

Individual participant data will not be shared as patient anonymity cannot be ensured.

REFERENCES

1. Srivastava A, Brewer AK, Mauser-Bunschoten EP, et al. Guidelines for the management of haemophilia. Haemophilia. 2013;19:e1-e47.
2. Shapiro A, Potts J, Li S, et al. Association of bleeding tendency with time under target FIX activity levels in severe hemophilia B patients treated with recombinant factor IX Fc fusion protein. Blood. 2013;122:Abstract:2349.
3. Santagostino E, Martinowitz U, Lissitchkov T, et al. Long-acting recombinant coagulation factor IX albumin fusion protein (rIX-FP) in hemophilia B: results of a phase 3 trial. Blood. 2016;127:1761-1769.
4. Kenet G, Chambost H, Male C, et al. Long-acting recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in children. Results of a phase 3 trial. Thromb Haemost. 2016;116:659-668.
5. Iorio A, Fischer K, Blanchette V, et al. Tailoring treatment of haemophilia B: accounting for the distribution and clearance of standard and extended half-life FIX concentrates. Thromb Haemost. 2017;117:1023-1030.
6. Herzog E, Harris S, Henson C, et al. Biodistribution of the recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in rats. Thromb Res. 2014;133:900-907.
7. Hoy SM. Eftrenonacog alfa: a review in haemophilia B. Drugs. 2017;77:1235-1246.
8. Tiede A, Abdul-Karim F, Carcao M, et al. Pharmacokinetics of a novel extended half-life glycoPEGylated factor IX, nonacog beta pegol (N9-GP) in previously treated patients with haemophilia B: results from two phase 3 clinical trials. Haemophilia. 2017;23:547-555.
9. Salas J, Van der Flier A, Hong VP, et al. Extravascular distribution of conventional and EHL FIX products using in vivo spect imaging analysis in hemophilia B mice. Blood. 2017:130:Abstract 1061.
10. Syed YY. Nonacog beta pegol: a review in haemophilia B. Drugs. 2017;77:2003-2012.