REMARKS ON UHLENBECK’S DECOMPOSITION THEOREM

PAWEL GOLDSTEIN AND ANNA ZATORSKA-GOLDSTEIN

Abstract. We present a self-contained proof of Uhlenbeck’s decomposition theorem for \( \Omega \in L^p(\mathbb{B}^n, so(m) \otimes \Lambda^1 \mathbb{R}^n) \) for \( p \in (1, n) \) with Sobolev type estimates in the case \( p \in [n/2, n) \) and Sobolev-Morrey type estimates in the case \( p \in (1, n/2) \). We also prove an analogous theorem in the case when \( \Omega \in L^p(\mathbb{B}^n, TCO_+ (m) \otimes \Lambda^1 \mathbb{R}^n) \), which corresponds to Uhlenbeck’s theorem with conformal gauge group.

1. Introduction

In 2006 Tristan Rivière published a solution to the so-called Heinz-Hildebrandt conjecture on regularity of solutions to conformally invariant nonlinear systems of partial differential equations in dimension 2 [12]. The key tool he used was a theorem originally due to Karen Uhlenbeck, on the existence of the so-called Coulomb gauges, in which the connection of a line bundle takes particularly simple form [17]. One should mention that Coulomb gauges appeared earlier in the theory of geometrically motivated systems of PDE, namely in important papers of F. Hélein on regularity of harmonic mappings between manifolds ([4, 5]).

The power of Rivière’s idea was in the fact that he used Uhlenbeck’s theorem to antisymmetric differential forms, which \textit{a priori} were not interpreted as connection forms, even if the problem had clear geometric motivation. Moreover, he reformulated the theorem in a language more suited for PDE applications. Simplifying, any antisymmetric matrix \( \Omega \) of 1-forms on a ball

\[ \Omega : \mathbb{B}^n \to so(m) \otimes \Lambda^1 \mathbb{R}^n \]

with sufficiently small norm can be transformed by an orthogonal change of coordinates (gauge transformation)

\[ P : \mathbb{B}^n \to SO(m) \]

to an antisymmetric matrix of co-closed forms (up to a rather regular term)

\[ P^{-1} dP + P^{-1} \Omega P = *d\xi, \]

i.e.

\[ \Omega = P(*d\xi) P^{-1} - dP P^{-1}. \]

Here \( \xi \) is an orthogonal matrix of \((n-2)\)-forms:

\[ \xi : \mathbb{B}^n \to so(m) \otimes \Lambda^{n-2} \mathbb{R}^n. \]

Such a decomposition of \( \Omega \) is often referred to as Uhlenbeck’s decomposition.

Date: March 26, 2018.

The research of both authors has been supported by the National Science Center grant no. 2012/05/E/ST1/03232 (years 2013 - 2017).
The original result of Uhlenbeck was stated for $\Omega \in W^{1,p}(\mathbb{R}^n)$, with $n/2 \leq p < n$. Since then, Uhlenbeck’s decomposition appeared in numerous papers on nonlinear PDE’s and variational problems, each time adapted to a specific system, function spaces and dimensions:

- Rivière [12]: $\Omega \in L^2$, $n = 2$;
- Rivière & Struwe [13]: $\Omega \in L^2$, $n - 2 > n > 2$;
- Lamm & Rivière [7]: $\Omega \in W^{1,2}$, $n = 4$;
- Meyer & Rivière [9] and Tao & Tian [16]: $\Omega \in W^{1,2} \cap L^4$, $d\Omega \in L^2$, $n - 4$ for $n \geq 4$;
- Müller & Schikorra [11]: $\Omega \in W^{1,2}$, $n = 2$;

All the proofs of the above results (with the exception of [12]) are, up to details, adaptations of the original approach of Uhlenbeck and most of them refer the reader for certain parts of the reasoning to the original paper [17]. The latter, however, is written in the language of differential geometry (the result was used there in the context of the existence theory for Yang-Mills fields). Translating the results to Rivière’s setting and filling all the sketched details was not trivial, which is probably why this extremely useful result went overlooked by the PDE community for over two decades.

All the proofs naturally split into two parts:

- proving the existence of the decomposition for any sufficiently small perturbation of a co-closed form $*d\zeta$ provided certain norm of $d\zeta$ is small;
- proving that once we have $\Omega$, $P$ and $\xi$ which satisfy the equation

\[
P^{-1}dP + P^{-1}\Omega P = *d\xi
\]

and additionally certain norms of $\Omega$, $dP$ and $d\xi$ are sufficiently small, the presumed estimates hold (the norms of $P$ and $\xi$ are bounded in terms of the norm of $\Omega$).

In the results mentioned above, two strategies of proving the existence of decomposition of $\Omega$ were used. The original strategy used by Karen Uhlenbeck was to solve the equation for $P$

\[
* d * (P^{-1}dP + P^{-1}(*d\zeta + \lambda)P) = 0
\]

for a given perturbation $\lambda$ of some fixed co-closed form. To do this, we look for $P$ of the form $P = e^u$, add a boundary condition on $u$ and define the nonlinear operator

\[
T(u, \lambda) = *d * (e^{-u}de^u + e^{-u}(*d\zeta + \lambda)e^u)
\]

acting on appropriate Banach spaces; in our case

\[
T(u, \lambda) : B \times W^{1,p} \rightarrow L^p
\]

where $B = W^{2,p} \cap W^{1,p}_0$. One can apply then the Implicit Function Theorem to show that $T(u, \lambda) = 0$ has a solution $u_\lambda$ continuously depending on $\lambda$. To do this, one has to show that the linearization of $T$ at $(u, \lambda) = (0,0)$ with respect to the first argument,

\[
H(u) = \Delta u + *[d\zeta, du],
\]
is an isomorphism $\mathcal{B} \rightarrow L^p$. This strategy works in Sobolev spaces for $p \in (n/2; n)$, but it fails when $1 < p < n/2$.

Another strategy was used by T. Tao and G. Tian in [16]. Again, one looks for $P = e^u$ and assumes $u$ has zero boundary data. The equation

$$
* d (P^{-1} dP + P^{-1} (*d \zeta + \lambda) P) = 0
$$

is transformed into the form

$$
\Delta u = *d (du - e^{-u} de^{u} - e^{-u} (*d \zeta + \lambda)e^{u}) = *d F(u, \zeta, \lambda).
$$

Then, an iteration scheme is set to provide a solution:

$$
u_0 = 0, \quad \Delta u^{k+1} = *d F(u^k, \zeta, \lambda).
$$

We apply this strategy when $1 < p < n/2$.

In 2009 A. Schikorra gave an alternative, variational proof of the existence of Uhlenbeck’s decomposition ([14]). His approach was inspired by a similar variational construction of a moving frame by F. Hélein [5]. Schikorra’s methods, however, provided the gauge transformation $P$ only in $W^{1,2}$, even for $\Omega \in L^p$ with $p > 2$ (while Uhlenbeck’s and Rivièr’s approach gave $P \in W^{1,p}$). On the other hand, his method was much simpler and allowed him to give alternative regularity proofs for systems studied by Rivièr [12] and Rivièr & Struwe [13].

We begin the paper by recalling the definitions and basic properties of Morrey and Morrey-Sobolev spaces we use (Section 2).

Next, we present a self-contained, complete proof of Uhlenbeck’s decomposition in Rivièr’s form with both Sobolev- and Morrey-Sobolev type estimates, adapted to the abstract setting of PDE’s. Namely, if we assume $\Omega \in W^{1,p}$, then

- for $n/2 \leq p < n$: the smallness condition for $\Omega$ is in the $L^n$ norm and estimates are given in the Sobolev norms, $P$ and $\xi \in W^{2,p}$ (Section 3);
- for $1 < p < n/2$: the smallness condition is expressed in the suitable Morrey space and estimates for norms of $P$ and $\xi$ are given in Morrey-Sobolev-type spaces (Section 4).

We express the results and the proofs in the language of differential forms, which allows applications to higher-dimensional problems (c.f. [13]). Like in all the other existing proofs, we follow the original scheme of Uhlenbeck’s proof; we adapt arguments used in various adaptations of Uhlenbeck’s proof mentioned above, in particular in papers [13] and [16].

Finally, we study a version of Uhlenbeck’s decomposition for a larger gauge group $CO_+ (n)$ (i.e. conformal transformations), which gives the decomposition theorem for a larger class of matrix-valued differential forms $\Omega$ (Section 5).

2. Morrey spaces

Let $\Omega \subset \mathbb{R}^n$ be an open and bounded set.
Recall that the Morrey space $L^{p,s}(\Omega)$ is a collection of all functions $f \in L^p(\Omega)$ such that
\[ ||f||_{L^{p,s}(\Omega)} = \sup_{x_0 \in \Omega, r > 0} \left( \frac{1}{r^n} \int_{B_r(x_0) \cap \Omega} |f(y)|^p \, dy \right) < \infty. \]

When $s = 0$, the Morrey space $L^{p,0}(\Omega)$ is the same as the usual Lebesgue $L^p(\Omega)$ space. When $s = n$, the dimension of the ambient space, the Morrey space $L^{p,n}(\Omega)$ is equivalent to $L^\infty(\Omega)$, due to the Lebesgue differentiation theorem. Morrey spaces are Banach spaces.

For $1 \leq p \leq q < \infty$ and $s, \sigma \geq 0$ such that $s - np \leq \sigma - nq$ we have
\[ L^{q,\sigma}(\Omega) \hookrightarrow L^{p,s}(\Omega), \]

in particular
\[ L^{q,n-q}(\Omega) \hookrightarrow L^{p,n-p}(\Omega). \]

**Definition 2.1.** We define the Morrey-Sobolev space $L^{p,n-kp}(\Omega)$ as
\[ L^{p,n-kp}(\Omega) = \left\{ f \in W^{k,p}(\Omega) : \nabla^j f \in L^{p,n-jp}(\Omega) \text{ for } j = 1, \ldots, k \right\} \]
with the norm
\[ ||f||_{L^{p,n-kp}(\Omega)} = ||f||_{L^p(\Omega)} + \sum_{j=1}^k ||\nabla^j f||_{L^{p,n-jp}(\Omega)} \]

Note that with this definition, $f \in L^{p,n-kp}(\Omega)$ does not imply Morrey estimates for $f$ itself. However, the inclusion $L^{p,n-kp}(\Omega) \subset BMO(\Omega)$ holds.

**Definition 2.2.** We say that $f \in BMO(\Omega)$ if
\[ [f]_{BMO(\Omega)} = \sup_{x_0 \in \Omega, r > 0} \left( \frac{1}{r^n} \int_{B_r(x_0) \cap \Omega} |f(y) - f_{x_0,r}| \, dy \right) < \infty, \]
where $f_{x_0,r}$ denotes the average of $f$ on the set $B_r(x_0) \cap \Omega$.

Note that whenever $\Omega$ supports the Poincaré inequality, e.g. if $\Omega$ has the interior cone property (see \textbf{[S]}), we have
\[ \int_{B_r(x_0) \cap \Omega} |f - f_{x_0,r}|^p \, dx \leq r^p \int_{B_r(x_0) \cap \Omega} |\nabla f|^p \, dx, \]
thus
\[ [f]_{BMO(\Omega)} \leq C ||\nabla f||_{L^{p,n-p}(\Omega)}. \]

We say that a domain $\Omega$ is of type (A) if there exists a constant $C > 0$ such that for any $x_0 \in \Omega$ and $0 < r < \text{diam}(\Omega)$
\[ |B_r(x_0) \cap \Omega| \geq C r^n. \]

This excludes domains with infinitely sharp cusps. For domains of type (A) we have the following generalization of Sobolev’s embedding theorem (see \textbf{[10]}).
Proposition 2.3 (Morrey-Sobolev embedding). Let $\Omega \subset \mathbb{R}^n$ be of type (A); assume that $1 \leq p < \infty$ and $\alpha \in (0, p)$. If $f \in W^{1,p}(\Omega)$ is such that $\nabla f \in L^{p,n-p+\alpha}(\Omega)$, then $f \in C^{0,n/p}(\Omega)$. 

The following Gagliardo-Nirenberg type estimate is a slight adaptation of [15, Proposition 3.2], with virtually no change in the proof.

Proposition 2.4. For any $1 < p \leq n/2$ there exists a constant $C = C(n,p)$ such that for any $\alpha \in [0, p]$, any ball $B \subset \mathbb{R}^n$ and any $f \in L^{p,n-2p+2\alpha}(B)$ there holds

$$\| \nabla f \|^2_{L^{p,n-2p+2\alpha}(B)} \leq C \| \nabla f \|_{L^{p,n-1}(B)} \left( \| \nabla^2 f \|_{L^{p,n-2p+2\alpha}(B)} + \| \nabla f \|_{L^{p,n-p+\alpha}(B)} \right).$$

In particular, for $f \in L^{p,n-2p+2\alpha}(B)$ this implies

$$\| \nabla^2 f \|^2_{L^{p,n-2p+2\alpha}(B)} = C \| \nabla f \|^2_{L^{p,n-1}(B)} \left( \| D^2 f \|_{L^{p,n-2p+2\alpha}(B)} + \| \nabla f \|_{L^{p,n-p+\alpha}(B)} \right) \leq C \| f \|^2_{L^{p,n-2p+2\alpha}(B)}.$$ (2.1)

3. Uhlenbeck’s decomposition, the case $n/2 \leq p < n$

We first state and prove the theorem in the case $p \in (n/2, n)$, recovering the original result of Uhlenbeck. The case $p = n/2$ follows by approximation (see Corollary 3.7 at the end of this section).

Theorem 3.1. Let $\frac{n}{2} < p < n$. There exists $\epsilon > 0$ such that for any antisymmetric matrix $\Omega \in W^{1,p}(\mathbb{B}^n, so(m) \otimes \Lambda^1 \mathbb{R}^n)$ of 1-differential forms on $\mathbb{B}^n$ such that

$$\| \Omega \|_{L^n} < \epsilon$$

there exist $P \in W^{2,p}(\mathbb{B}^n, SO(m))$ and $\xi \in W^{2,p} \cap W^{1,p}_0(\mathbb{B}^n, so(m) \otimes \Lambda^{n-2} \mathbb{R}^n)$ satisfying the system

$$P^{-1}dP + P^{-1}\Omega P = *d\xi \quad \text{on } \mathbb{B}^n,$$

$$(3.1) \quad d \ast \xi = 0 \quad \text{on } \mathbb{B}^n,$$

$$\xi = 0 \quad \text{on } \partial \mathbb{B}^n;$$

and such that

$$\| d\xi \|_{L^p} + \| dP \|_{L^p} \leq C(n,m,p)\| \Omega \|_{L^p},$$

$$\| d\xi \|_{L^n} + \| dP \|_{L^n} \leq C(n,m)\| \Omega \|_{L^n},$$

$$\| d\xi \|_{W^{1,p}} + \| dP \|_{W^{1,p}} \leq C(n,m,p)\| \Omega \|_{W^{1,p}}.$$ (3.2a)

Remark 3.2. In what follows, we write, to keep the notation simple, $\Omega \in W^{1,p}(P, \xi \in W^{2,p}$ etc.), instead of $\Omega \in W^{1,p}(\mathbb{B}^n, so(m) \otimes \Lambda^1 \mathbb{R}^n)$.

We shall break the proof of Theorem 3.1 into several lemmata. Following Riviére, we introduce sets

$$V_\epsilon = \{ \Omega \in W^{1,p} : \| \Omega \|_{L^n} < \epsilon \}$$

$$U_\epsilon = \{ \Omega \in W^{1,p} : \| \Omega \|_{L^n} < \epsilon \text{ and there exist } P \text{ and } \xi$$

satisfying the system (3.1) and the estimate (3.2).
We show that for \( \epsilon \) sufficiently small the set \( U_\epsilon \) is closed and open in \( V_\epsilon \), and since the latter is path connected (it is star-shaped in \( W^{1,p} \)), it follows that \( U_\epsilon = V_\epsilon \), which proves Theorem 3.1.

**Lemma 3.3.** The set \( U_\epsilon \) is closed in \( V_\epsilon \).

*Proof.* Suppose \( (\Omega_k) \) is a sequence in \( U_\epsilon \), convergent in \( W^{1,p} \) to some \( \Omega \). With every \( \Omega_k \) we associate \( P_k \) and \( \xi_k \) that satisfy (3.1):

\[
\begin{align*}
P_k^{-1}dP_k + P_k^{-1}\Omega_k P_k &= *d\xi_k & \text{on } \mathbb{B}^n, \\
d*\xi_k &= 0 & \text{on } \mathbb{B}^n, \\
\xi_k &= 0 & \text{on } \partial\mathbb{B}^n,
\end{align*}
\]

and the estimates (3.2) hold for \( P_k, \xi_k \) and \( \Omega_k \), in particular

\[
\|d\xi_k\|_{W^{1,p}} + \|dP_k\|_{W^{1,p}} \leq C(n,m)\|\Omega_k\|_{W^{1,p}}.
\]

The boundary condition on \( \xi_k \) and boundedness of \( P_k \) (recall that \( |P_k| = 1 \)) allow us to interpret (3.3) as boundedness of \( P_k \) and \( \xi_k \) in \( W^{2,p} \), since the sequence \( (\Omega_k) \), being convergent, is necessarily bounded in \( W^{1,p} \). We can thus assume (after passing to subsequences) that \( P_k \) and \( \xi_k \) are weakly convergent in \( W^{2,p} \) to some \( P \) and \( \xi \).

Both the boundary condition \( \xi|_{\partial\mathbb{B}} = 0 \) and the condition \( d*\xi = 0 \) are conserved when passing to the weak limit. Moreover, possibly after passing to a subsequence, we have

\[
\begin{align*}
\Omega_k &\to \Omega & \text{in } W^{1,p} & \Rightarrow & \Omega_k &\to \Omega & \text{in } L^{\frac{mp}{n-p}}, \\
P_k &\to P & \text{in } W^{2,p} & \Rightarrow & dP_k &\to dP & \text{in } L^{\frac{mp}{n-p}}, \\
\xi_k &\to \xi & \text{in } W^{2,p} & \Rightarrow & d\xi_k &\to d\xi & \text{in } L^{\frac{mp}{n-p}},
\end{align*}
\]

and for any small \( \delta > 0 \), \( \Omega_k, dP_k \) and \( d\xi_k \) converge strongly (to \( \Omega, P \) and \( \xi \), respectively) in \( L^s \), with \( s = \frac{mp}{n-p} - \delta \), in particular in \( L^n \), since \( np/(n-p) > n \).

Also, \( P_k \) are uniformly bounded in \( L^\infty \) and strongly convergent, by Sobolev embedding theorem, in \( L^q \) for any \( q \). This is enough to show the strong convergence of \( \Omega_k P_k \) to \( \Omega P \) in \( L^s \); altogether, we may pass to the strong limit in \( L^s \) in the system (3.3), showing that the equation

\[dP + \Omega P = P * d\xi \quad \text{in } \mathbb{B}^n\]

is satisfied in the sense of distributions.

The estimates (3.2) for \( P \) and \( \xi \) are obvious. \( \Box \)

**Remark.** For any \( P \) and \( \xi \) in \( W^{1,p} \) that satisfy (3.3) we have that \( d\xi \in W^{1,p} \) implies \( P \in W^{2,p} \). Indeed, we have \( dP = P * d\xi - \Omega P \), and for \( p > n/2 \) the right hand side is in \( W^{1,p} \).

Now we proceed to prove the openness of \( U_\epsilon \). In contrast with the previous lemma this is more delicate; we split the reasoning again into several lemmata.
Lemma 3.4. There exists a constant \( \kappa = \kappa(n) > 0 \) such that for any \( \zeta \in W^{2,p}(\mathbb{R}^n, so(m) \otimes \Lambda^{n-2}\mathbb{R}^n) \) with \( \|d\zeta\|_{L^p} \leq \kappa \) there exists \( \eta > 0 \) such that for any \( \lambda \in W^{1,p}(\mathbb{R}^n, so(m) \otimes \Lambda^1\mathbb{R}^n) \) with \( \|\lambda\| \leq \eta \) the equation
\[
(3.5) \quad *d*(Q^{-1}dQ + Q^{-1}(sd\zeta + \lambda)Q) = 0
\]
has a solution \( Q = Q(\lambda) \in W^{2,p}(\mathbb{R}^n, SO(m)) \). Moreover, \( Q(\lambda) \) depends continuously on \( \lambda \).

Note that (3.5) implies, through Poincaré’s lemma, that the term in parentheses is of the form \(*d\zeta\), for some antisymmetric \((n-2)\)-form \( \zeta \). The above Lemma should be understood as follows: Uhlenbeck’s decomposition (i.e. \( Q \) and \( \tilde{\zeta} \)) exists if our matrix is a small (in \( W^{1,p} \)) perturbation of a co-closed form \(*d\zeta\), provided \( \|d\zeta\|_{L^n} \) is sufficiently small.

Proof. Since we are interested in finding any \( Q \in W^{2,p}(\mathbb{R}^n, SO(m)) \) satisfying (3.5), we shall look for one of the form \( e^u \), where \( u \in \mathcal{B} = W^{2,p}(\mathbb{R}^n, so(m)) \cap W^{1,p}(\mathbb{R}^n, so(m)) \) (this adds boundary restrictions on \( Q \)). We define the operator
\[
T : \mathcal{B} \times W^{1,p}(\mathbb{R}^n, so(m) \otimes \Lambda^1\mathbb{R}^n) \to L^p(\mathbb{R}^n)
\]
by
\[
T(u, \lambda) = *d*(e^{-u}de^u + e^{-u}(*d\zeta + \lambda)e^u).
\]
This is a well defined, smooth operator. Using Implicit Function Theorem, we prove that for any sufficiently small \( \lambda \) the equation \( T(u, \lambda) = 0 \) has a solution \( u_\lambda \), continuously depending on \( \lambda \). To this end we linearize \( T \) at \((u, \lambda) = (0, 0)\) with respect to the first argument:
\[
H(\psi) = *d*(d\psi + [sd\zeta, \psi]) = \Delta\psi + *[d\zeta, d\psi], \quad H : \mathcal{B} \to L^p(\mathbb{R}^n),
\]
where the commutator \([\cdot, \cdot]\) denotes a commutator of two \( so(m) \) matrices.

We have, by Hölder’s inequality
\[
\|\Delta\psi\|_{L^p} \leq \|H(\psi)\|_{L^p} + \|*[d\zeta, d\psi]\|_{L^p} \leq \|H(\psi)\|_{L^p} + 2\|d\zeta\|_{L^n} \|d\psi\|_{L^{np/(n-p)}},
\]
thus
\[
\|H(\psi)\|_{L^p} \geq \|\Delta\psi\|_{L^p} - 2\|d\zeta\|_{L^n} \|d\psi\|_{L^{np/(n-p)}} \geq \|\Delta\psi\|_{L^p} - 2C_S\|d\zeta\|_{L^n} \|d\psi\|_{W^{1,p}} \geq C(\|d\psi\|_{W^{1,p}} - 2\kappa\|d\psi\|_{W^{1,p}}) = C(1 - 2\kappa)\|d\psi\|_{W^{1,p}},
\]
where the constant \( C_S \) comes from the Sobolev embedding. Therefore, for \( \kappa \) small, \( H \) is injective.

Showing surjectivity of \( H \) amounts to showing that the system
\[
(3.6) \quad H(\psi) = \Delta\psi + *[d\zeta, d\psi] = f
\]
has a solution in \( \mathcal{B} \) for arbitrary \( f \in L^p \).

Let us consider an operator \( K : \mathcal{B} \to \mathcal{B} \), with \( K(\psi) \) defined as a solution to the system
\[
(3.7) \quad \begin{cases}
\Delta K(\psi) = -*[d\zeta, d\psi] & \text{in } \mathbb{B}^n, \\
K(\psi) = 0 & \text{on } \partial\mathbb{B}^n.
\end{cases}
\]
Using Hölder’s and Sobolev’s inequalities and the fact that the Newtonian potential \( \Delta^{-1} : L^p \to B \) is continuous, we get
\[
\|K(\psi)\|_B \leq \|\Delta^{-1}\|_{L^p \to B} \|\ast [d\zeta, d\psi]\|_{L^p} \\
\leq 2\|\Delta^{-1}\|_{L^p \to B} \|d\zeta\|_{L^p} \|d\psi\|_{L^{np/(n-p)}} \\
\leq 2\|\Delta^{-1}\|_B \|\kappa\|_B.
\]
For \( \kappa \) sufficiently small we can have \( \|K\|_{B \to B} \) small and \( Id - K : B \to B \) invertible.

Let now \( \phi = (Id - K)\psi \). If \( \psi \) is a solution to (3.6), then
\[
\Delta \phi = \Delta \psi - \Delta K(\psi) = \Delta \psi + \ast [d\zeta, d\psi] = f,
\]
and we can solve (3.6) for any \( f \in L^p \) by solving the above Poisson equation and applying to its solution the inverse mapping to \( Id - K \).

Altogether, \( H : B \to L^p \) is an isomorphism, and we can apply the Implicit Function Theorem to get \( u_\lambda \) as a continuous function of \( \lambda \).

To end the proof of the lemma, we take \( Q(\lambda) = e^{u_\lambda} \).

**Lemma 3.5.** Suppose \( n/2 < p < n \). There exists \( \kappa = \kappa(p, n) \) such that for any \( \Omega \in V_n \) and \( P, \xi \) in \( W^{2,p} \) satisfying the system (3.1) and additionally the estimate
\[
(3.8) \quad \|dP\|_{L^n} + \|d\xi\|_{L^n} < \kappa
\]
the estimates (3.2) hold.

**Proof.** The lemma follows from rather standard elliptic estimates, but we include them here for the sake of completeness.

We have
\[
\Delta \xi = (\ast d \ast d + \ast d) \xi = \ast (\ast d\xi)
\]
(3.9)
\[
= \ast (dP^{-1}dP + P^{-1}\Omega P)
\]
\[
= \ast (dP^{-1} \wedge dP + d(P^{-1} \Omega P)).
\]

Note that for \( q = p/(p-1) \), \( \|d\xi\|_{L^p} \) is equivalent to
\[
\sup_{\|d\phi\|_{L^q} \leq 1} \int_{\mathbb{B}^n} d\xi \cdot d\phi,
\]
where \( \phi \) is a smooth, compactly supported (in particular with null boundary values) \((n-2)\)-form on \( \mathbb{B}^n \). The inequality
\[
\|d\xi\|_{L^p} = \sup_{\|\eta\|_{L^q} \leq 1} \int_{\mathbb{B}^n} d\xi \cdot \eta \geq \sup_{\|d\phi\|_{L^q} \leq 1} \int_{\mathbb{B}^n} d\xi \cdot d\phi
\]
is obvious. Applying the Hodge decomposition to the \((n-1)\)-form \( \eta : \eta = d\phi + \psi \) with \( \delta \psi = 0 \), \( \|d\phi\|_{L^q} \leq C_q \|\eta\|_{L^s} \), we get
\[
\|d\xi\|_{L^p} = \sup_{\|\eta\|_{L^q} \leq 1} \int_{\mathbb{B}^n} d\xi \cdot \eta \leq \sup_{\|\eta\|_{L^q} \leq 1} \left( \int_{\mathbb{B}^n} d\xi \cdot d\phi + \int_{\mathbb{B}^n} d\xi \cdot \psi \right)
\]
\[
= C_q \sup_{\|\eta\|_{L^q} \leq 1} \left( \int_{\mathbb{B}^n} d\xi \cdot d\tilde{\phi}_{\kappa} - \int_{\mathbb{B}^n} d\psi \cdot \tilde{\phi}_{\kappa} \right) \leq C_q \sup_{\|d\phi\|_{L^q} \leq 1} \int_{\mathbb{B}^n} d\xi \cdot \tilde{\phi}_{\kappa},
\]
where \( \tilde{\phi} = \phi/C_q \).
Denote by \( \bar{P} \) the mean value of \( P \) over \( \mathbb{B}^n \): \( \bar{P} = \frac{1}{\mathbb{B}^n} P \). For any \( \phi \) as above, with \( \|d\phi\|_{L^p} \leq 1 \),

\[
\int_{\mathbb{B}^n} d\xi \cdot d\phi = - \int \Delta \xi \cdot \phi
= - \int_{\mathbb{B}^n} \left[ \ast \left( d(P^{-1} \wedge d(P - \bar{P})) + \ast d \left( P^{-1} \Omega P \right) \right) \right] \cdot \phi
= - \int_{\mathbb{B}^n} \left[ dP^{-1}(P - \bar{P}) + P^{-1} \Omega P \right] \wedge d\phi
\leq C \|dP^{-1}\|_{L^p} \|P - \bar{P}\|_{BMO} \|d\phi\|_{L^q} + \|P^{-1} \Omega P\|_{L^p} \|d\phi\|_{L^q}
\leq C \|dP\|_{L^p} \|dP\|_{L^q} + \|\Omega\|_{L^p}
\leq \kappa C \|dP\|_{L^p} + \|\Omega\|_{L^p},
\]

thus

\((3.10)\)

\[\|d\xi\|_{L^p} \leq C_q (\kappa C \|dP\|_{L^p} + \|\Omega\|_{L^p}),\]

with the constants \( C \) (possibly different in every line) dependent only on \( n \) and \( p \). Note that, since \( P \) is an orthogonal matrix, \( |P| = |P^{-1}| = 1 \) and \( |dP^{-1}| = |dP| \). In the estimate above we use, for the first summand, the Coifman-Lions-Meyer-Semmes div-curl inequality \((\|\|)\) and later the standard inclusion \( W^{1,n} \hookrightarrow BMO \); the second summand is estimated by Hölder’s inequality.

On the other hand, taking \( L^p \) norms of both sides of the equation

\((3.11)\)

\[dP = P \ast d\xi + \Omega P\]

(c.f \((3.1)\)) gives

\((3.12)\)

\[\|dP\|_{L^p} \leq \|d\xi\|_{L^p} + \|\Omega\|_{L^p}.
\]

Putting \((3.10)\) and \((3.12)\) together we get

\[
\|d\xi\|_{L^p} + \|dP\|_{L^p} \leq 2 \|d\xi\|_{L^p} + \|\Omega\|_{L^p}
\leq C_1(n,p)\kappa \|dP\|_{L^p} + C_2(n,p)\|\Omega\|_{L^p},
\]

and for \( \kappa < \frac{1}{C_1} \) this implies that the estimate \((3.2a)\) holds.

The above calculation is valid also for \( p = n \), which yields the estimate \((3.2b)\).

To show the estimate \((3.2c)\), by taking \( \ast d\ast \) of both sides of \((3.11)\), we see that

\[
\Delta P = \ast d \ast dP = \ast d \ast (P \ast d\xi + \Omega P)
= (dP \wedge d\xi) + \ast d \ast (\Omega P),
\]

thus

\((3.13)\)

\[
\|dP\|_{W^{1,p}} = \|dP\|_{L^p} + \|\Delta P\|_{L^p}
\leq \|dP\|_{L^p} + \|dP \wedge d\xi\|_{L^p} + \|d\Omega P\|_{L^p} + \|\Omega \wedge dP\|_{L^p}
\leq \|dP\|_{L^p} + \|dP\|_{L^p} \|d\xi\|_{L^{np/(n-p)}} + \|d\Omega\|_{L^p} + \|\Omega\|_{L^{np/(n-p)}} \|dP\|_{L^n}
\leq \|dP\|_{L^p} + C\kappa \|d\xi\|_{W^{1,p}} + (1 + C\kappa)\|\Omega\|_{W^{1,p}},
\]

with the constant \( C \) coming from the Sobolev embedding \( W^{1,p} \hookrightarrow L^{np/(n-p)} \), thus dependent only on \( p \) and \( n \).
Lemma 3.6. \[ \text{The set } \] 
\[ \parallel \xi \parallel_{W^{1,p}} + \parallel \Delta \xi \parallel_{L^p} = \parallel d\xi \parallel_{L^p} + \parallel (dP^{-1} \wedge dP) + d(P^{-1}\Omega P) \parallel_{L^p} \]
\[ \leq \parallel d\xi \parallel_{L^p} + \parallel dP \parallel_{L^p} \parallel dP \parallel_{L^{np/(n-p)}} + \parallel dP \parallel_{L^n} \parallel \Omega P \parallel_{L^{np/(n-p)}} \]
\[ + \parallel P^{-1}d\Omega P \parallel_{L^p} + \parallel P^{-1}\Omega \parallel_{L^{np/(n-p)}} \parallel dP \parallel_{L^n} \]
\[ \leq \parallel d\xi \parallel_{L^p} + \kappa C \parallel dP \parallel_{W^{1,p}} + (2\kappa + 1)\parallel \Omega \parallel_{W^{1,p}}. \]

Composing (3.13) and (3.14) with the already proved estimate (3.2a) we get
\[ \parallel dP \parallel_{W^{1,p}} + \parallel d\xi \parallel_{W^{1,p}} \leq \kappa C \parallel dP \parallel_{W^{1,p}} + \kappa C \parallel d\xi \parallel_{W^{1,p}} + (\kappa + 1)\parallel \Omega \parallel_{W^{1,p}}, \]
which, for \( \kappa \) sufficiently small, yields the estimate (3.2a).

**Lemma 3.6.** The set \( U_\epsilon \) is, for \( \epsilon \) sufficiently small, open in \( V_c \).

**Proof.** Choose \( \Omega_o \in U_\epsilon \) and let \( P_o \) and \( \xi_o \) be the orthogonal transformation and antisymmetric \( (n-2) \)-form associated with \( \Omega_o \), so that Theorem 3.1 holds for \( \Omega_o, P_o \) and \( \xi_o \).

Take now \( \Omega \in V_c \) close to \( \Omega_o \) in \( W^{1,p} \): we ask that for \( \lambda = P_o^{-1}(\Omega - \Omega_o)P_o \) we have \( \parallel \lambda \parallel_{W^{1,p}} < \eta \) (the conjugation with \( P_o \in W^{2,p} \) is continuous in \( W^{1,p} \)). Applying Lemma 3.4 with \( \zeta = \xi_o \), we find \( Q \in W^{2,p}(\mathbb{B}^n, SO(m)) \) such that
\[ *d * \left( Q^{-1}dQ + Q^{-1}(d\xi_o + P_o^{-1}(\Omega - \Omega_o)P_o)Q \right) = 0. \]

Setting \( P = P_oQ \) we see that (3.15) reduces to
\[ *d * (P^{-1}dP + P^{-1}\Omega P) = 0. \]

By Poincaré’s Lemma, this implies that \( P^{-1}dP + P^{-1}\Omega P \) is a coexact form, i.e. there exists an antisymmetric \( (n-2) \)-form \( \xi \) such that
\[ *d \xi = P^{-1}dP + P^{-1}\Omega P, \]
thus \( P \) and \( \xi \) give Uhlenbeck’s decomposition of \( \Omega \).

Note that \( Q \) and \( P_o \in W^{2,p} \cap L^\infty \) imply that \( P \in W^{2,p} \). By the Hodge decomposition theorem we can choose \( \xi \) to be coclosed \( (d* \xi = 0 \text{ on } \mathbb{B}^n) \) and to have zero boundary values \( (\xi |_{\partial \mathbb{B}^n} = 0) \). Finally, the right hand side of (3.16) is in \( W^{1,p} \), which gives \( \xi \in W^{2,p} \).

What remains to prove is that \( P, \xi \) and \( \Omega \) satisfy the estimates (3.2a). Observe that if \( \parallel \Omega - \Omega_o \parallel_{W^{1,p}} \) is small enough, then by continuity of the mapping \( \lambda \mapsto u_\lambda \) so is \( \parallel P - P_o \parallel_{W^{1,p}} \) and \( \parallel \xi - \xi_o \parallel_{W^{1,p}} \); choosing \( \eta \) (which measures the distance \( \parallel \Omega - \Omega_o \parallel_{W^{1,p}} \)) sufficiently small we may have
\[ \parallel P - P_o \parallel_{W^{1,p}} + \parallel \xi - \xi_o \parallel_{W^{1,p}} < \epsilon. \]

We also know that
\[ \parallel d\xi_o \parallel_{L^n} + \parallel dP_o \parallel_{L^n} \leq C \parallel \Omega_o \parallel_{L^n} \leq C \epsilon \]
(this follows from \( \Omega_o \in U_\epsilon \)).

Taking \( \epsilon \) sufficiently small, we may ensure that
\[ \parallel d\xi \parallel_{L^n} + \parallel dP \parallel_{L^n} \leq \parallel d\xi - d\xi_o \parallel_{L^n} + \parallel P - P_o \parallel_{L^n} + \parallel d\xi_o \parallel_{L^n} + \parallel dP_o \parallel_{L^n} < (C + 1)\epsilon < \kappa, \]
with $\kappa$ as in Lemma 3.5. Applying this lemma we show that the estimates (3.2) hold. 

Altogether, $\Omega \in U_\epsilon$, which proves the openness of $U_\epsilon$.

Proof of Theorem 3.7. Since, by Lemmata 3.3 and 3.6 for $\epsilon$ sufficiently small the set $U_\epsilon$ is closed and open in $V_\epsilon$, and since the latter is path connected (it is star-shaped in $W^{1,p}$), it follows that $U_\epsilon = V_\epsilon$, which proves Theorem 3.1.

It is worth noting that, for $\Omega \in W^{1,n/2}$, the proof of existence of the decomposition, i.e. Lemma 3.4, fails. However, we can proceed by a standard density argument: approximate $\Omega$ in $W^{1,n/2}$ with $\Omega_k$ in $W^{1,p}$ for $p > n/2$ and argue as in Lemma 3.3 (see also the proof of Theorem 4.1), obtaining

Corollary 3.7. Let $\Omega \in W^{1,n/2}$. There exists $\epsilon > 0$ such that if $\Omega$ is an antisymmetric matrix of 1-differential forms on $\mathbb{B}^n$ such that

$$\|\Omega\|_{L^n} < \epsilon$$

then there exist $P \in W^{2,n/2}(\mathbb{B}^n, SO(m))$ and $\xi \in W^{2,n/2}(\mathbb{B}^n, so(m) \otimes \Lambda^{n-2}\mathbb{R}^n)$ satisfying the system

$$\begin{cases}
P^{-1}dP + P^{-1}\Omega P = *d\xi & \text{on } \mathbb{B}^n, \\
d\star \xi = 0 & \text{on } \mathbb{B}^n, \\
\xi = 0 & \text{on } \partial\mathbb{B}^n;
\end{cases}$$

and such that

$$\|d\xi\|_{W^{1,n/2}} + \|dP\|_{W^{1,n/2}} \leq C(n, m)\|\Omega\|_{W^{1,n/2}};$$

$$\|d\xi\|_{L^n} + \|dP\|_{L^n} \leq C(n, m)\|\Omega\|_{L^n} < C\epsilon.$$
Remark. Observe that for $n=2p$, by the Sobolev Embedding Theorem we have automatically $\Omega \in L^n$. The Morrey space $L^{2p,n-2p}$ equals $L^n$ and the smallness condition for the norm of $\Omega$ agrees with the original, Sobolev space version of Uhlenbeck’s theorem.

As previously, we shall break the proof of Theorem 4.1 into several lemmata. The proof of existence of $P$ and $\xi$ (Lemma 3.4) cannot be adapted to the present situation. To avoid this difficulty we first prove the Uhlenbeck result under more stringent regularity assumptions (see Lemma 4.2 below). To prove the existence of the elements of decomposition we follow the strategy of Tao and Tian [16]. At a certain moment of the proof (Lemma 4.4) we use the fact that due to the Morrey-Sobolev embedding (Proposition 2.3), for $\alpha>0$,

$$L^{p,n-2p} \hookrightarrow C^0_0.$$

This is not true for $L^{p,n-2p}$. Also, as pointed out in [18], $C^0_0$ is not dense in $L^{p,s}$.

Lemma 4.2. Let $1<p<n/2$. There exists $\epsilon>0$ such that for every $\alpha>0$ and for every $\Omega \in L^{2p,n-2p+2\alpha}$ such that $d\Omega \in L^{p,n-2p}$, if $\Omega$ satisfies the smallness condition

$$\|\Omega\|_{L^{2p,n-2p}} < \epsilon$$

then there exist $P, \xi \in L^{p,n-2p+2\alpha}$ satisfying the system (4.1) and the estimates

\begin{align}
(4.3a) \quad \|d\xi\|_{L^{p,n-2p}} + \|dP\|_{L^{p,n-2p}} & \leq C(n,m) \|\Omega\|_{L^{2p,n-2p}} < \epsilon, \\
(4.3b) \quad \|d\xi\|_{L^{p,n-2p+\alpha}} + \|dP\|_{L^{p,n-2p+\alpha}} & \leq C(n,m) \|\Omega\|_{L^{2p,n-2p+2\alpha}}, \\
(4.3c) \quad \|\Delta \xi\|_{L^{p,n-2p}} + \|\Delta P\|_{L^{p,n-2p}} & \leq C(n,m) (\|\Omega\|_{L^{2p,n-2p}} + \|d\Omega\|_{L^{p,n-2p}}).
\end{align}

Proof of the Lemma 4.2. As in the Sobolev case, for $\alpha, \epsilon>0$ we introduce sets

$$V_\epsilon^\alpha = \{\Omega \in L^{2p,n-2p+2\alpha} \cap L^{p,n-2p}_1 : \|\Omega\|_{L^{2p,n-2p}} < \epsilon\}$$

and there exist $P$ and $\xi$ satisfying the system (4.1) and estimates (4.3)

In Lemmata 4.3 and 4.7 below we show that for $\epsilon$ sufficiently small the set $V_\epsilon^\alpha$ is closed and open in $V_\alpha$, and since the latter is path connected (it is star-shaped), it follows that $U_\epsilon^\alpha = V_\epsilon^\alpha$. This (up to the proofs of these lemmata) completes the proof of the lemma.

\[ \square \]

Lemma 4.3. The set $U_\epsilon^\alpha$ is closed in $V_\epsilon^\alpha$.

Proof. Suppose $(\Omega_k)$ is a sequence in $U_\epsilon^\alpha$ convergent in $L^{p,n-2p}_1$ to some $\Omega$. Observe that $L^{p,n-2p}_1$ embeds continuously in $W^{1,p}$. Therefore the sequence $(\Omega_k)$ is convergent in $W^{1,p}$. 


With every \( \Omega_k \) we have associated a pair \( P_k, \xi_k \) that satisfy (4.1):

\[
\begin{align*}
P_k^{-1} dP_k + P_k^{-1} \Omega_k P_k &= *d\xi_k & \text{on } \mathbb{B}^n, \\
d \ast \xi_k &= 0 & \text{on } \mathbb{B}^n, \\
\xi_k &= 0 & \text{on } \partial \mathbb{B}^n.
\end{align*}
\]

We also have the estimates (4.3), in particular

\[
\begin{align*}
\|d\xi\|_{L^p,n-p+\alpha} + \|dP\|_{L^p,n-p+\alpha} &\leq C(n, m) \|\Omega\|_{L^{2p,n-2p+2\alpha}}, \\
\|\Delta \xi\|_{L^p,n-2p} + \|\Delta P\|_{L^p,n-2p} &\leq C(n, m)(\|\Omega\|_{L^{2p,n-2p}} + \|d\Omega\|_{L^{2p,n-p}}).
\end{align*}
\]

The inclusion of \( L^{p,n-p+\alpha}_s \) in \( W^{1,p} \), the boundary condition on \( \xi_k \) and boundedness of \( P_k \) (\( |P_k| = 1 \)) allow us to interpret the above as boundedness of \( P_k \) and \( \xi_k \) in \( W^{2,p} \). We can thus assume (after passing to subsequences) that \( P_k \) and \( \xi_k \) are weakly convergent in \( W^{2,p} \) to some \( P \) and \( \xi \).

Then, we argue as in Lemma 3.3. Both the boundary condition \( \xi|_{\partial \mathbb{B}} = 0 \) and the condition \( d \ast \xi = 0 \) are conserved when passing to the weak limit. Moreover, since \( n > 2p > p \), after passing to a subsequence,

\[
\begin{align*}
\Omega_k &\rightarrow \Omega \quad \text{in } W^{1,p} \\
P_k &\rightarrow P \quad \text{in } W^{2,p} \\
\xi_k &\rightarrow \xi \quad \text{in } W^{2,p}
\end{align*}
\]

and for any small \( \delta > 0 \), \( \Omega_k, dP_k \) and \( \xi_k \) converge strongly (to \( \Omega, P \) and \( \xi \), respectively) in \( L^s \), for any \( s < \frac{np}{n-p} \). We also know that \( P_k \) are uniform bounded in \( L^\infty \) and strongly convergent, by Sobolev embedding theorem, in \( L^q \) for any \( q \). This is enough to show the strong convergence of \( \Omega_k P_k \) to \( \Omega P \) in \( L^s \); altogether, we may pass to the strong limit in \( L^s \) in the system (3.3), showing that the equation

\[dP + \Omega P = P \ast d\xi \quad \text{in } \mathbb{B}^n\]

is satisfied in the sense of distributions.

The estimates (4.3) for \( P \) and \( \xi \) are then obvious.

\[ \square \]

**Lemma 4.4.** Let

\[
\begin{align*}
\zeta: \mathbb{B}^n &\rightarrow \text{so}(m) \otimes \Lambda^{n-2}\mathbb{R}^n \\
\lambda: \mathbb{B}^n &\rightarrow \text{so}(m) \otimes \Lambda^1\mathbb{R}^n \\
Q: \mathbb{B}^n &\rightarrow \text{SO}(m).
\end{align*}
\]

Assume \( \zeta \) belongs to the Morrey space \( L^{p,n-2p+2\alpha}_2 \). There exists a constant \( \kappa = \kappa(p, n) > 0 \) such that if the following smallness condition is satisfied\(^1\)

\[\|d\zeta\|_{L^{2p,n-2p}} \leq \kappa,\]

then there exists a constant \( \eta > 0 \) such that

if \( \lambda \in L^{2p,n-2p+2\alpha}_1 \cap L^{p,n-2p+2\alpha}_1 \) with

\[\|\lambda\|_{L^{2p,n-2p+2\alpha}} + \|d\lambda\|_{L^{p,n-2p+2\alpha}} \leq \eta\]

then there exists a solution \( Q \in L^{p,n-2p+2\alpha}_2 \) of the equation

\[d \ast (Q^{-1} dQ + Q^{-1} (d\zeta + \lambda) Q) = 0.\]

\(^1\)Proposition 2.4 shows that the smallness condition on \( d\zeta \) is reasonable.
Note that (4.4) implies, through Poincaré’s lemma, that the term in parentheses is of the form $\ast d\tilde{\zeta}$, for some antisymmetric $(n - 2)$-form $\tilde{\zeta}$.

Proof. Since we are interested in finding any $Q$ satisfying (4.4), we shall look for one of the form $e^u$, where

$$u : \mathbb{B}^n \to \text{so}(m), \quad u \in L^{p,n-2p+2\alpha}_2$$

This adds boundary restrictions on $Q$ – since $Q(x) \in SO(m)$, we may assume it is close to identity at the boundary of $\mathbb{B}^n$, so $u$ has zero boundary values.

The equation (4.4), together with the boundary condition, can be rewritten as

$$\Delta u = \ast d \ast (du - e^{-u}de^u - e^{-u}(\ast d\zeta + \lambda)e^u), \quad u = 0 \quad \text{on} \quad \partial\mathbb{B}^n.$$  

We follow the proof of Tao and Tian [16], setting up the iteration scheme

$$\Delta u^{k+1} = \ast d \ast F(u^k, \zeta, \lambda), \quad u^{k+1} = 0 \quad \text{on} \quad \partial\mathbb{B}^n,$$

where

$$F(u, \zeta, \lambda) = du - e^{-u}de^u - e^{-u}(\ast d\zeta + \lambda)e^u.$$  

Some calculations need more subtle justification though, since we work in noncommutative setting. We will show that there exists $\delta > 0$ such that in each step of the recurrence

$$\text{if} \quad \|u^k\|_{L^{p,n-2p+2\alpha}_2} \leq \delta \quad \text{then} \quad \|u^{k+1}\|_{L^{p,n-2p+2\alpha}_2} \leq \delta.$$

We start with an easy observation. Since

$$L^{p,n-2p+2\alpha}_2 \hookrightarrow L^{p,n-p+\alpha}_1 \hookrightarrow C^{0,\gamma} \quad \text{for some} \quad \gamma$$

and Hölder-continuous functions on the bounded domain $B$ are bounded, it follows that if $f \in L^{p,n-p+\alpha}_1(B)$ with $f = 0$ on $\partial\Omega$, then

$$\|f\|_{\infty} \leq [f]_{C^{0,\gamma}} \leq C_M \|f\|_{L^{p,n-p+\alpha}_1(B)} \leq C_M \|f\|_{L^{p,n-2p+2\alpha}_2(B)},$$

where $C_M$ is the constant from the Morrey–Sobolev Embedding Lemma (see Proposition 2.3).

Therefore, for some $\beta \in (0, 1/2)$ to be fixed later, there exists $\delta$, dependent on $\beta$, $\delta < \frac{\beta}{C_M}$, such that

$$\text{if} \quad \|f\|_{L^{p,n-2p+2\alpha}_2(B)} < \delta, \quad \text{then} \quad \|f\|_{\infty} \leq \beta.$$  

We now can start the induction, assuming

$$\|u^k\|_{L^{p,n-2p+2\alpha}_2(B)} < \delta < \text{an absolute constant (to be specified later)}.$$
We will show first that the following pointwise estimates hold
\begin{equation}
|\ast d*F(u^k, \zeta, \lambda)| \leq C(n) \left( |u^k||D^2u^k| + |du^k|^2 + |(d\zeta) + |\lambda||du^k| + |d\lambda| \right).
\end{equation}
Indeed, applying the Campbell-Hausdorff-Baker formula we obtain
\begin{equation}
e^{-u}de^u = du - \frac{1}{2!}[u, du] + \frac{1}{3!}[u, [u, du]] - (\ldots)
\end{equation}
Therefore, taking the structure of the right hand side of (4.6) into account (see (1.7)), we obtain
\begin{align*}
\ast d*F(u^k, \zeta, \lambda) &= \ast d* \left( \sum_{j=2}^{\infty} \frac{(-1)^j}{j!} [u^k, [u^k, \ldots [u^k, du^k]] \ldots] \right) \ast d* (e^{-u} (\ast d\zeta + \lambda)e^u)
\end{align*}
\begin{align*}
&= R_1 + R_2.
\end{align*}
We easily see that
\begin{align*}
|R_1| &\leq C(n) \sum_{j=2}^{\infty} \frac{2^j}{j!} \left( |D^2u^k||u^k|^{j-1} + (j - 1)|du^k|^2 |u^k|^{j-2} \right),
|R_2| &\leq C(n) \left( |de^u| (|d\zeta| + |\lambda|) + |d\lambda| \right).
\end{align*}
Since (4.11) holds, we obtain
\begin{align*}
|R_1| &\leq C(n) \left( |D^2u^k||u^k| + |du^k|^2 \right)
\end{align*}
and
\begin{align*}
|R_2| &\leq C(n) \left( |du^k| (|d\zeta| + |\lambda|) + |d\lambda| \right),
\end{align*}
which proves the pointwise estimates (4.12) hold true, i.e.
\begin{equation}
|\ast d*F(u^k, \zeta, \lambda)| \leq C(n) \left( |u^k||D^2u^k| + |du^k|^2 + (|d\zeta| + |\lambda|)|du^k| + |d\lambda| \right).
\end{equation}
Passing from pointwise to $L_{p,n-2p+2\alpha}$ estimates and using (4.11) we obtain
\begin{align*}
||\ast d*F(u^k, \zeta, \lambda)||_{L_{p,n-2p+2\alpha}} &\leq C_1(n, p) \left( ||u^k||_{L^\infty} ||D^2u^k||_{L_{p,n-2p+2\alpha}} + ||du^k||^2_{L_{p,n-2p+2\alpha}} \\
&+ (\kappa||\zeta||_{L_{p,n-2p+2\alpha}}+\eta^2)^{1/2}||u^k||_{L_{p,n-2p+2\alpha}} + \eta \right) \\
&\leq C_2(n, p, C_M) \left( ||u^k||_{L_{p,n-2p+2\alpha}}^2 + (\kappa||\zeta||_{L_{p,n-2p+2\alpha}}+\eta^2)^{1/2}||u^k||_{L_{p,n-2p+2\alpha}} + \eta \right),
\end{align*}
where the last inequality follows from (1.8), with $u^k$ in place of $f$. Regularity estimates for linear elliptic systems yield
\begin{align*}
||u^{k+1}||_{L_{p,n-2p+2\alpha}} &\leq C_3(n, p, C_M) \left( ||u^k||_{L_{p,n-2p+2\alpha}}^2 + (\kappa||\zeta||_{L_{p,n-2p+2\alpha}}+\eta^2)^{1/2}||u^k||_{L_{p,n-2p+2\alpha}} + \eta \right)
\end{align*}
W.l.o.g. we may assume $C_3 > 1$. Let us choose $\eta$ and $\kappa$ such that
\begin{equation}
\eta < \frac{1}{8C_3},
\end{equation}
and
\[ \kappa \| \zeta \|_{L^p_n - 2p + 2\alpha} < \frac{3}{64C_3}. \]

Set
\[ \delta = 2C_3\eta. \]

Then, if
\[ \| u^k \|_{L^p_n - 2p + 2\alpha} \leq \delta, \]
we have
\[ \| u^{k+1} \|_{L^p_n - 2p + 2\alpha} \leq C_3 \left( \delta^2 + (\kappa \| \zeta \|_{L^p_n - 2p + 2\alpha} + \eta^2)\delta + \eta \right) \leq \delta. \]

Now, let us apply the same scheme to differences of \( u^k \).

Fix a constant \( \beta \in (0, 1/2) \) (it will be specified at the end). We adjust \( \delta \) if necessary, i.e. we take
\[ (4.14) \quad \delta < \min \left\{ 2C_3\eta; \frac{\beta}{C_M} \right\} \]
where \( C_M \) is the constant in (4.8). Then, we assume that \( u, v \in L^p_n - 2p + 2\alpha \), \( \| u \|_{L^p_n - 2p + 2\alpha} < \delta, \| v \|_{L^p_n - 2p + 2\alpha} < \delta \) and \( u, v = 0 \) on \( \partial \Omega \). This, in particular, implies (by (4.9)), that \( \| u \|_{L^\infty} \) and \( \| v \|_{L^\infty} \) are at most \( \beta \).

We have
\[ F(u, \zeta, \lambda) - F(v, \zeta, \lambda) \]
\[ = (d(u - v) - e^{-u}de^u + e^{-v}de^v) + \left( -e^{-u}(d\zeta + \lambda)e^u + e^{-v}(d\zeta + \lambda)e^v \right) \]
\[ = S_1 + S_2. \]

By (4.13), we have
\[ S_1 = d(u - v) \]
\[ - \left( du - \frac{1}{2!}[u, du] + \frac{1}{3!}[u, [u, du]] + \cdots + \frac{(-1)^{k-1}}{k!}[u, \ldots, [u, [u, du]]] + \cdots \right) \]
\[ + \left( dv - \frac{1}{2!}[v, dv] + \frac{1}{3!}[v, [v, dv]] + \cdots + \frac{(-1)^{k-1}}{k!}[v, \ldots, [v, [v, dv]]] + \cdots \right) \]
\[ = \frac{1}{2!}([u - v, du] + [v, d(u - v)]) \]
\[ - \frac{1}{3!}([u - v, [u, du]] + [v, [u - v, du]] + [v, [v, d(u - v)]) + \cdots \]
\[ + \frac{(-1)^k}{k!}([u - v, [u, \ldots, [u, du]]] + [v, [u - v, [u, [u, du]]] + \cdots + [v, \ldots, [v, [u - v, du]]] + [v, \ldots, [v, d(u - v)]) \ldots]. \]

Likewise, \( S_2 \) can be rewritten as
\[ S_2 = -e^{-u}(d\zeta + \lambda)e^u + e^{-v}(d\zeta + \lambda)e^v \]
\[ = -(e^{-v} - e^{-u})(d\zeta + \lambda)e^u - e^{-v}(d\zeta + \lambda)(e^u - e^v). \]
Next, we want to estimate (pointwise) $|* d * S_1|$. Keeping in mind that an $\ell$-tuple commutator $[a_1, [a_2, \ldots, [a_{\ell-1}, a_\ell] \ldots]]$ stands for a sum of $2^{\ell-1}$ products of the form $a_1 a_2 \cdots a_\ell$, we obtain

\[
| * d * S_1 | \leq \sum_{\ell=2}^{\infty} \frac{2^{\ell-1}}{\ell!} \left( |d(u-v)||u|^{\ell-2}|du| \right.
\]

\[
+ (\ell-2)|u-v||u|^{\ell-3}|du|^2 + |u-v||u|^{\ell-2}|D^2u|
\]

\[
+ \sum_{j=1}^{\ell-3} \left( j|dv||v|^{j-1}|u-v||u|^{\ell-j-2}|du| + |v|^{j-1}|d(u-v)||u|^{\ell-j-2}|du| \right.
\]

\[
+ (\ell-j-2)|v|^j|u-v||u|^{\ell-j-3}|du|^2 + |v|^j|u-v||u|^{\ell-j-2}|D^2u| \bigg)
\]

\[
+ (\ell-2)|v|^{\ell-3}|dv||u-v||du| + |v|^{\ell-2}|d(u-v)||du| + |v|^{\ell-2}|u-v||D^2u|
\]

\[
+ (\ell-1)|v|^{\ell-2}|dv||u-v||du| + |v|^{\ell-1}|D^2(u-v)|). \]

Using the fact that $|u|, |v| < \beta$ and $2\beta < 1$, we estimate further

\[
| * d * S_1 | \leq |d(u-v)||du| \sum_{\ell=2}^{\infty} \frac{4(\ell-1)}{\ell!}
\]

\[
+ |u-v||du|^2 \sum_{\ell=2}^{\infty} \frac{2(\ell-1)(\ell-2)}{\ell!}
\]

\[
+ |u-v|D^2u| \beta \sum_{\ell=2}^{\infty} \frac{4(\ell-1)}{\ell!}
\]

\[
+ |dv||u-v| \sum_{\ell=2}^{\infty} \frac{2}{\ell!}
\]

\[
+ |D^2(u-v)| \sum_{\ell=2}^{\infty} \frac{(2\beta)^{\ell-1}}{\ell!}
\]

\[
\leq C \beta \left( |d(u-v)||du| + |u-v||D^2u| + |D^2(u-v)| \right)
\]

\[
+ C|u-v| \left( |du|^2 + |dv| |dv| \right),
\]

where $C$ is a universal constant.

To estimate $| * d * S_2 |$, note that

\[
|e^u - e^v| \leq \sum_{\ell=1}^{\infty} \frac{1}{\ell!} |(u^\ell - (v)^\ell)|
\]

\[
= \sum_{\ell=1}^{\infty} \frac{1}{\ell!} \left( (u-v)(u)^{\ell-1} + v(u-v)(u)^{\ell-2} + \cdots + (v)^{\ell-2}(u-v)u + (v)^{\ell-1}(u-v) \right)
\]

\[
\leq |u-v| \sum_{\ell=1}^{\infty} \frac{\ell}{\ell!} = \sqrt{e}|u-v|.
\]
and
\[
|d(e^u - e^v)| = |e^u du - e^v dv| \leq |e^u - e^v||du| + e^v|d(u - v)|
\leq \sqrt{e}|u - v||du| + \sqrt{e}|d(u - v)|.
\]

Thus
\[
|d * S_2| \leq |d(e^{-u} - e^{-v})|(|d\zeta| + |\lambda|)|e^u|
+ |e^{-u} - e^{-v}|d\lambda||e^u| + |e^{-u} - e^{-v}|(|d\zeta| + |\lambda|)|e^u du|
+ |e^{-v} dv|(|d\zeta| + |\lambda|)|e^u - e^v| + |e^{-v}||d\lambda||e^u - e^v|
\]
\[
+ |e^{-v}|(|d\zeta| + |\lambda|)|d(e^u - e^v)|
\leq C|u - v|(|d\lambda| + (|du| + |dv|)((|d\zeta| + |\lambda|))
+ C|d(u - v)|((|d\zeta| + |\lambda|))
\]
(4.16)

Altogether, adding up the estimates (4.15) and (4.16), we obtain the following pointwise estimate
\[
|d * (F(u, \zeta, \lambda) - F(v, \zeta, \lambda))|
\leq C|u - v|\left(|du|^2 + |D^2 u| + |du||dv| + |d\lambda| + (|du| + |dv|)((|d\zeta| + |\lambda|))\right)
+ C|d\zeta||d(u - v)|
+ C|\zeta||d(u - v)|,
\]
(4.17)

with C a universal constant.

Passing from the pointwise to $L^{p,n-2p+2\alpha}$ estimates, using (4.8), (4.10) and (2.1) and keeping in mind all smallness conditions, i.e.
\[
\|d\zeta\|_{L^{p,n-2p+2\alpha}} \leq \kappa \|\zeta\|_{L^{p,n-2p+2\alpha}},
\]
\[
\|\zeta\|_{L^{p,n-2p+2\alpha}} \leq \eta,
\]
\[
\|u\|_{L^{p,n-2p+2\alpha}} \leq \delta,
\]
\[
\|v\|_{L^{p,n-2p+2\alpha}} \leq \delta,
\]
\[
\|u\|_{L^\infty} < \beta,
\]
\[
\|v\|_{L^\infty} < \beta
\]

we obtain
\[
\|d^* (F(u, \zeta, \lambda) - F(v, \zeta, \lambda))\|_{L^{p,n-2p+2\alpha}}
\leq C|u - v|\left(\delta^2 + \delta + \eta + \delta \kappa^{1/2} + \eta\right) + \|u - v\|_{L^{p,n-2p+2\alpha}} (\beta + \kappa^{1/2} + \eta)
\leq C|u - v|\|d^* F\|_{L^{p,n-2p+2\alpha}} (\delta^2 + \delta + \eta + \delta \kappa^{1/2} + \delta \eta + \beta + \kappa^{1/2} + \eta).
\]

If we denote $H(u^k) = u^{k+1}$, where $u^{k+1}$ is a solution to (4.6), then
\[
\|H(u) - H(v)\|_{L^{p,n-2p+2\alpha}}
\leq C \|u - v\|_{L^{p,n-2p+2\alpha}} (\delta^2 + \delta + \eta + \delta \kappa^{1/2} + \delta \eta + \beta + \kappa^{1/2} + \eta),
\]
where $C_E$ is an absolute constant from elliptic estimates (see [3]). Now, in order to show that $H$ is a contraction, we choose $\beta$ and $\kappa$ and $\eta$ sufficiently small. The choice of $\beta$ and $\eta$ results in the choice of $\delta$. Therefore, by the Banach fixed point theorem, the iteration scheme (4.6) converges and we obtain the desired solution of the system (4.5).

□

The rest of the proof mimics the proof in the Sobolev case, and the Lemmata 4.5 and 4.7 are direct counterparts of Lemmata 3.5 and 3.6 from Section 3.

**Lemma 4.5.** Suppose $p < n/2$. There exists $\kappa = \kappa(p,n)$ with the following property: suppose that for $\Omega \in \mathcal{V}_\alpha^{\epsilon}$ there exist $P$ and $\xi$ in $L^{p,n-2p+2\alpha}(\mathbb{B}^n)$ satisfying the system (4.1) and additionally the estimate

$$
\|dP\|_{L^{2p,n-2p}(\mathbb{B}^n)} + \|d\xi\|_{L^{2p,n-2p}(\mathbb{B}^n)} < \kappa.
$$

Then the estimates (4.3) hold.

**Remark 4.6.** Note that the fact that $dP$, $d\xi \in L^{2p,n-2p}$ follows from Proposition 2.4.

**Proof of Lemma 4.5.** We have in the ball $\mathbb{B}^n$

$$
\Delta \xi = (\ast d \ast (dP + d\xi)) = \ast (\ast d\xi)
$$

$$
(4.19)\quad \ast (dP^{-1}dP + P^{-1}\Omega P) = \ast (dP^{-1} \wedge dP) + \ast (P^{-1}\Omega P).
$$

Let $B = B_r(x_0)$ be a fixed ball. On the set $B \cap \mathbb{B}^n$ we split $\xi$ into a sum of two functions $\xi = u + v$, satisfying

$$
\Delta u = \ast (dP^{-1} \wedge dP) \quad \text{on } B \cap \mathbb{B}^n,
$$

$$
u = 0 \quad \text{on } \partial (B \cap \mathbb{B}^n)
$$

(we may assume $\text{supp } u \subset B \cap \mathbb{B}^n$) and

$$
\Delta v = \ast (P^{-1}\Omega P) \quad \text{on } \mathbb{B}^n,
$$

$$
v = 0 \quad \text{on } \partial \mathbb{B}^n.
$$

Thus $\xi = u + v$ on $B \cap \mathbb{B}^n$.

For $q = p/(p - 1)$ we have

$$
\|du\|_{L^q(B \cap \mathbb{B}^n)} \leq C_q \sup_{\|d\phi\|_{L^2} \leq 1} \int_{B \cap \mathbb{B}^n} du \cdot d\phi,
$$

where $\phi$ is a smooth, compactly supported (in particular with null boundary values) $(n-2)$-form on $B \cap \mathbb{B}^n$ (c.f. the proof of Lemma 3.3). Denote by $P$
the mean value of \( P \) over \( \mathbb{B}^n \): \( \bar{P} = \frac{1}{\mathbb{B}^n} \int_{\mathbb{B}^n} P \). For any \( \phi \) as above,

\[
\int_{B^c \cap \mathbb{B}^n} du \cdot d\phi = - \int_{B \cap \mathbb{B}^n} \Delta u \cdot \phi \\
= - \int_{\mathbb{B}^n} * (dP^{-1} \wedge d(P - \bar{P})) \cdot \phi \\
= - \int_{\mathbb{B}^n} dP^{-1}(P - \bar{P}) \wedge d\phi \\
\leq C \|dP^{-1} \wedge d\phi\|_{\mathcal{H}^1(\mathbb{B}^n)} \|P - \bar{P}\|_{BMO(\mathbb{B}^n)} \\
= C \|dP^{-1} \wedge d\phi\|_{\mathcal{H}^1(\mathbb{B}^n)} \|P - \bar{P}\|_{BMO(\mathbb{B}^n)} \\
\leq C \|dP\|_{L^p(B \cap \mathbb{B}^n)} \|d\phi\|_{L^q(B \cap \mathbb{B}^n)} \|dP\|_{L^p, n-p}(\mathbb{B}^n)
\]

with the constants \( C \) (possibly different in every line) dependent only on \( n \) and \( p \). Note that since \( P \) is an orthogonal matrix, \( |P| = |P^{-1}| = 1 \), \( |dP^{-1}| = |dP| \). In the estimate above we use the Coifman-Lions-Meyer-Semmes div-curl inequality \([1]\) and later the inclusion

\[ L^p_{1-n}(\mathbb{B}^n) \hookrightarrow BMO(\mathbb{B}^n). \]

We have then

\[
\|du\|_{L^p(B \cap \mathbb{B}^n)} \leq C \|dP\|_{L^p(B \cap \mathbb{B}^n)} \|dP\|_{L^p, n-p}(\mathbb{B}^n) \\
\leq C \|dP\|_{L^p(B \cap \mathbb{B}^n)} \|dP\|_{L^{2p, n-2p}(\mathbb{B}^n)} \\
\leq C \kappa \|dP\|_{L^p(B \cap \mathbb{B}^n)}
\]

due to the smallness assumption \([1.11]\). Therefore

\[ (4.20) \quad \|du\|_{L^p, n-p+\alpha}(\mathbb{B}^n) \leq C \kappa \|dP\|_{L^p, n-p+\alpha}(\mathbb{B}^n) \]

for \( \alpha \geq 0 \).

To estimate \( v \), where

\[
\Delta v = *d(P^{-1} \Omega P) \quad \text{on} \quad B \cap \mathbb{B}^n, \\
v = 0 \quad \text{on} \quad (\partial \mathbb{B}^n) \cap B,
\]

we use standard elliptic estimates, obtaining

\[ (4.21) \quad \|dv\|_{L^p, n-p+\alpha}(\mathbb{B}^n) \leq C \|\Omega\|_{L^p, n-p+\alpha}(\mathbb{B}^n). \]

Combining \([4.20]\) and \([4.21]\) we conclude with

\[ (4.22) \quad \|d\xi\|_{L^p, n-p+\alpha}(\mathbb{B}^n) \leq C \kappa \|dP\|_{L^p, n-p+\alpha}(\mathbb{B}^n) + C \|\Omega\|_{L^p, n-p+\alpha}(\mathbb{B}^n). \]

On the other hand, taking \( L^p \) norms of both sides of the equation

\[ (4.23) \quad dP = P \ast d\xi + \Omega P \quad \text{in} \quad \mathbb{B}^n \]

c.f \([1.1]\) gives

\[
\|dP\|_{L^p(B \cap \mathbb{B}^n)} \leq \|d\xi\|_{L^p(B \cap \mathbb{B}^n)} + \|\Omega\|_{L^p(B \cap \mathbb{B}^n)}
\]

and thus

\[ (4.24) \quad \|dP\|_{L^p, n-p+\alpha}(\mathbb{B}^n) \leq \|d\xi\|_{L^p, n-p+\alpha}(\mathbb{B}^n) + \|\Omega\|_{L^p, n-p+\alpha}(\mathbb{B}^n). \]

Putting \([4.22]\) and \([4.24]\) together we get

\[
\|d\xi\|_{L^p, n-p+\alpha}(\mathbb{B}^n) + \|dP\|_{L^p, n-p+\alpha}(\mathbb{B}^n) \leq C \kappa \|dP\|_{L^p, n-p+\alpha}(\mathbb{B}^n) + C \|\Omega\|_{L^p, n-p+\alpha}(\mathbb{B}^n),
\]
for \( \alpha \geq 0 \). Taking \( \kappa \) small enough we conclude the estimates \((4.3a)\) and \((4.3b)\) hold, i.e.

\[
\|d\xi\|_{L^p, n-\rho + \alpha(\mathbb{B}^n)} + \|dP\|_{L^p, n-\rho + \alpha(\mathbb{B}^n)} \leq C\|\Omega\|_{L^2, n-2p+2\alpha(\mathbb{B}^n)}
\]

for \( \alpha \geq 0 \).

To show the estimate \((4.3c)\), taking \( *d* \) of both sides of \((4.23)\), we see that

\[
\Delta P = *d* dP = *d* (P * d\xi + \Omega P)
\]

\[
= (dP \wedge d\xi) + *d* (\Omega P),
\]

and from \((4.19)\) we obtain

\[
\Delta \xi = *(dP^{-1} \wedge dP) + *d(P^{-1} \Omega P).
\]

Therefore, proceeding as in the proof of the estimates \((3.13)\) and \((3.14)\), we obtain

\[
\|\Delta P\|_{L^p, n-2p} \leq \|dP\|_{L^2, n-2p} \|d\xi\|_{L^2, n-2p} + \|d\Omega\|_{L^p, n-2p} + \|\Omega\|_{L^2, n-2p} \|dP\|_{L^2, n-2p}
\]

and

\[
\|\Delta \xi\|_{L^p, n-2p} \leq \|dP\|_{L^2, n-2p}^2 + 2\|dP\|_{L^2, n-2p} \|\Omega\|_{L^2, n-2p} + \|d\Omega\|_{L^p, n-2p}
\]

Applying \((4.18)\), we obtain

\[
\|\Delta P\|_{L^p, n-2p} + \|\Delta \xi\|_{L^p, n-2p} \leq 2\|d\Omega\|_{L^p, n-2p} + 3\kappa \|\Omega\|_{L^2, n-2p}
\]

which proves the estimate \((4.3c)\).

Observe that the inequality is a consequence of the equation \((4.23)\) and the Hölder inequality only, so the estimate holds in any Morrey space \(L^{p, \gamma}\) with \(\gamma > n - 2p\) in which both sides of the inequality are finite.

**Lemma 4.7.** The set \( U^\alpha_\epsilon \) is, for \( \epsilon \) sufficiently small, open in \( V^\alpha_\epsilon \).

**Proof.** Choose \( \Omega_o \in U^\alpha_\epsilon \) and let \( P_o \) and \( \xi_o \) be the orthogonal transformation and antisymmetric \((n-2)\)-form associated with \( \Omega_o \), so that Lemma \([1,2]\) holds for \( \Omega_o, P_o \) and \( \xi_o \).

Take now \( \Omega \in V^\alpha_\epsilon \) close to \( \Omega_o \) in \( L^{2p, n-2p+2\alpha} \cap L^{p, n-2p+2\alpha} \); we ask that for \( \lambda = P_o^{-1}(\Omega - \Omega_o)P_o \) we have

\[
\|\lambda\|_{L^{2p, n-2p+2\alpha}} + \|\lambda\|_{L^{p, n-2p+2\alpha}} < \eta
\]

(the conjugation with \( P_o \in L^{p, n-2p+2\alpha} \) is continuous in \( L^{p, n-2p+2\alpha} \)). Applying Lemma \([4.4]\) with \( \zeta = \xi_o \) we find \( Q \in L^{p, n-2p+2\alpha}(\mathbb{B}^n, SO(m)) \) such that

\[
* d * (Q^{-1} dQ + Q^{-1} \{ *d\xi_o + P_o^{-1}(\Omega - \Omega_o)P_o \} Q) = 0.
\]

Setting \( P = P_oQ \) we see that \((4.25)\) reduces to

\[
* d * (P^{-1} dP + P^{-1} \Omega P) = 0.
\]

By Poincaré’s lemma this implies that \( P^{-1} dP + P^{-1} \Omega P \) is a coexact form, i.e. there exists an antisymmetric \((n-2)\)-form \( \xi \) such that

\[
* d \xi = P^{-1} dP + P^{-1} \Omega P,
\]

thus \( P \) and \( \xi \) give Uhlenbeck’s decomposition of \( \Omega \).
Note that $Q$ and $P_o \in L^{p,n-2p+2\alpha}_2 \cap L^\infty$ imply that $P \in L^{p,n-2p+2\alpha}_2$. By Hodge decomposition theorem we can choose $\xi$ to be coclosed ($d * \xi = 0$ on $E^n$) and to have zero boundary values ($\xi|_{\partial E^n} = 0$). Finally, the right hand side of (4.25) is in $L^{p,n-2p+2\alpha}_2$, which gives $\xi \in L^{p,n-2p+2\alpha}_2$.

What remains to prove is that $P$, $\xi$ and $\Omega$ satisfy the estimates (4.23). Observe that if $\|\Omega - \Omega_o\|_{L^{p,n-2p+2\alpha}_1}$ is small enough, then by continuity of the mapping $\lambda \mapsto u_\lambda$ so is $\|P - P_o\|_{L^{p,n-2p+2\alpha}_1}$ and $\|\xi - \xi_o\|_{L^{p,n-2p+2\alpha}_1}$; choosing $\eta$ (which measures the distance $\|\Omega - \Omega_o\|_{L^{p,n-2p+2\alpha}_1}$) sufficiently small we get

$$\|P - P_o\|_{L^{p,n-2p+2\alpha}_1} + \|\xi - \xi_o\|_{L^{p,n-2p+2\alpha}_1} < \epsilon.$$ 

We also know that

$$\|d\xi_o\|_{L^{2p,n-2p}_2} + \|dP_o\|_{L^{2p,n-2p}_2} \leq C\|\Omega_o\|_{L^{2p,n-2p}_2} \leq C\epsilon$$

(this follows from $\Omega_o \in U_\epsilon$).

Taking $\epsilon$ sufficiently small we may ensure that

$$\|d\xi\|_{L^{2p,n-2p}_2} + \|dP\|_{L^{2p,n-2p}_2} \leq \|d\xi_o\|_{L^{2p,n-2p}_2} + \|dP_o\|_{L^{2p,n-2p}_2} + \|\xi - \xi_o\|_{L^{p,n-2p+2\alpha}_1} < (C + 1)\epsilon < \kappa,$$

with $\kappa$ as in Lemma 4.1. Applying this lemma we show that the estimates (4.13) hold.

Altogether, $\Omega \in U_{\epsilon}^{\alpha}$, which proves the openness of $U_{\epsilon}^{\alpha}$.

---

**Proof of Theorem 4.1** The proof mimics, in a way, the passage from Theorem 3.1 to Corollary 3.7, i.e., from the Uhlenbeck decomposition in $W^{1,p}$ for $p > n/2$ to the decomposition for $p = n/2$. There we could simply argue by approximation. In the Morrey space setting, however, neither $L^{p,n-2p+\alpha}_1$ embeds densely in $L^{p,n-2p}_1$, nor $L^{2p,n-2p+2\alpha}_2$ does into $L^{2p,n-2p}_2$.

However (cf. [13], proof of Lemma 3.1), one can easily prove that if $(\phi_r)$ is a standard mollifier and $f \in L^{q,n-q}_1(B)$, $q \geq 1$, then on any ball $B = B(x, \rho)$ such that $2B = B(x, 2\rho)$ we have for $r < \rho$, that $\|f * \phi_r\|_{L^{q,n-q}(B)} \leq \|f\|_{L^{q,n-q}(2B)}$. Reasoning like in the proof of Meyers-Serrin’s theorem and using a suitable decomposition of unity we can show then that there exists a sequence $f_k \in C^\infty(\mathbb{B})$ convergent to $f$ in $L^q$ (and in any other appropriate Lebesgue and Sobolev norm) such that $\|f_k\|_{L^{q,n-q}(B)} \leq C(n)\|f\|_{L^{q,n-q}(\mathbb{B})}$.

We thus proceed as follows: we approximate $\Omega$ in $W^{1,p}$ by a sequence of smooth $\Omega_k$ such that for all $k$

$$(4.27) \quad \|\Omega_k\|_{L^{2p,n-2p}(\mathbb{B})} \leq C(n)\|\Omega\|_{L^{2p,n-2p}(\mathbb{B})}.$$ 

Assuming that $\epsilon$ in the condition $\|\Omega\|_{L^{2p,n-2p}} < \epsilon$ is taken small enough we can ensure, through (4.27), that all $\Omega_k$ satisfy the analogous smallness condition in Lemma 4.2. This provides us with sequences of $P_k$ and $\xi_k$ that give the Uhlenbeck decomposition for $\Omega_k$, together with the uniform estimate

$$\|d\xi_k\|_{L^{p,n-p}} + \|dP_k\|_{L^{p,n-p}} \leq C(n,m)\|\Omega\|_{L^{2p,n-2p}} < C\epsilon.$$
Then we proceed as in the proof of closedness of $U^n_\varepsilon$ in Lemma 4.3, obtaining convergent subsequences of $P_k$ and $\xi_k$. As $\Omega_k$ are smooth, they satisfy the assumptions of Lemma 4.2, which gives us the estimates (4.3) for $P$ or, equivalently, the identity matrix.

Analysis, in particular in the study related to Liouville Theorem (see [6] for a detailed exposition). This is a non-compact group, defined as $CO_\Omega(\mathbb{R}^n)$, where $\Omega$ denotes the $n \times n$ identity matrix.

Our objective is the following analogue of Theorem 3.1:

$$TCO_+ = \{ K \in \mathcal{M}^{m \times m} : K + K^T = \frac{2Tr(K)}{m} \otimes I \},$$

or, equivalently,

$$TCO_+ = \{ A + \mu I : A \in so(m), \mu \in \mathbb{R} \},$$

see e.g. [2].

Our objective is the following analogue of Theorem 3.1:

**Theorem 5.1.** Let $\frac{n}{2} < p < n$. There exists $\varepsilon > 0$ such that for any $\Omega \in W^{1,p}(\mathbb{R}^n), TCO_+(m) \otimes \Lambda^1 \mathbb{R}^n)$ such that $\|\Omega\|_{L^\infty} < \varepsilon$ there exist $S : \mathbb{R}^n \to CO_+(m)$ satisfying $\ln |S| \in W^{2,p}(\mathbb{R}^n)$, $S/|S| \in W^{2,p}(\mathbb{R}^n, SO(m))$ and $\zeta \in W^{2,p}(\mathbb{R}^n, TCO_+(m) \otimes \Lambda^{n-2}\mathbb{R}^n)$ such that

$$S^{-1}dS + S^{-1}\Omega S = *d\zeta \quad \text{on } \mathbb{R}^n,$$

and such that

$$\|d\zeta\|_{W^{1,p}} + \|d(S/|S|)\|_{W^{1,p}} + \|d\ln |S|\|_{W^{1,p}} \leq C(n,m)\|\Omega\|_{W^{1,p}},$$

$$\|d\zeta\|_{L^p} + \|d(S/|S|)\|_{L^p} + \|d\ln |S|\|_{L^p} \leq C(n,m)\|\Omega\|_{L^p},$$

$$\|d\zeta\|_{L^n} + \|d(S/|S|)\|_{L^n} + \|d\ln |S|\|_{L^n} \leq C(n,m)\|\Omega\|_{L^n}.$$
Proof. We shall construct \( S : \mathbb{B}^n \to CO_+ (m) \) satisfying the above conditions. Let us first fix some notation:

We shall write \( S = \lambda P \), where \( \lambda = |S| \in \mathbb{R}_+ \) and \( P = S/|S| \in SO(m) \), we also decompose \( \Omega \) into its antisymmetric and diagonal part:

\[
\Omega = A + \frac{Tr(\Omega)}{m} \otimes I
\]

with \( A \in W^{1,p} (\mathbb{B}^n, so(m) \otimes \Lambda_1^1 \mathbb{R}^n) \).

Let \( \Omega^S = S^{-1} dS + S^{-1} \Omega S \); likewise \( \Omega^P = P^{-1} dP + P^{-1} \Omega P \) and \( A^P = P^{-1} dP + P^{-1} A P \).

We have

\[
\Omega^S = \lambda^{-1} P^{-1} (d\lambda \otimes P + \lambda dP + P^{-1} \Omega P)
\]

\[
= d\ln \lambda \otimes I + \Omega^P.
\]

Decomposing \( \Omega \) we have

\[
\Omega^P = P^{-1} dP + P^{-1} \left( A + \frac{Tr(\Omega)}{m} \otimes I \right) P
\]

\[
= A^P + \frac{Tr(\Omega)}{m} \otimes I,
\]

thus

\[
\Omega^S = A^P + \left( \frac{d\ln \lambda + Tr(\Omega)}{m} \right) \otimes I.
\]

Clearly, \( A \) satisfies all the assumptions on \( \Omega \) in Theorem 3.1, we can thus find \( P \in W^{2,p} (\mathbb{B}^n, SO(m)) \) and \( \xi \in W^{2,p} (\mathbb{B}^n, so(m) \otimes \Lambda^{n-2} \mathbb{R}^n) \) such that

\[
\begin{cases}
A^P = P^{-1} dP + P^{-1} A P = * d\xi & \text{on } \mathbb{B}^n, \\
* d\xi = 0 & \text{on } \mathbb{B}^n, \\
\xi = 0 & \text{on } \partial \mathbb{B}^n;
\end{cases}
\]

and such that

\begin{align}
(5.4a) & \quad \|d\xi\|_{W^{1,p}} + \|dP\|_{W^{1,p}} \leq C(n, m) \|A\|_{W^{1,p}} \leq C(n, m) \|\Omega\|_{W^{1,p}} \\
(5.4b) & \quad \|d\xi\|_{L^p} + \|dP\|_{L^p} \leq C(n, m) \|A\|_{L^p} \leq C(n, m) \|\Omega\|_{L^p}, \\
(5.4c) & \quad \|d\xi\|_{L^\infty} + \|dP\|_{L^\infty} \leq C(n, m) \|A\|_{L^\infty} \leq C(n, m) \|\Omega\|_{L^\infty}.
\end{align}

By Hodge decomposition we can find \( \alpha \in W^{2,p} (\mathbb{B}^n) \) and \( \beta \in W^{2,p} (\mathbb{B}^n, \Lambda^{n-2} \mathbb{R}^n) \) such that

\[
\frac{1}{m} Tr(\Omega) = d\alpha + * d\beta
\]

with \( \beta|_{\partial \mathbb{B}^n} = 0 \) and \( \|d\alpha\|_{W^{1,p}} + \|d\beta\|_{W^{1,p}} \leq \|\Omega\|_{W^{1,p}}. \)

This shows that if \( \lambda \) is such that \( d\ln \lambda = -d\alpha \), then \( S = \lambda P \) and \( \zeta = \xi + \beta \otimes I \) satisfy (5.1). The estimates (5.2) follow immediately from the estimates on Hodge decomposition and from (5.4). \( \square \)

The above theorem is rather simple, but it provides a new interpretation to gradient-like terms \( df \otimes I \) in nonlinear systems – we can incorporate them in antisymmetric expressions and perform Uhlenbeck’s decomposition on the resulting \( TC\mathcal{O}_+ \) matrix of differential forms instead of dealing with both kinds of terms separately. We also can ask a natural question.
Question. What is the largest Lie subgroup $G$ of $GL(n)$ that can be used in an analogue of Uhlenbeck’s theorem: for any matrix of 1-differential forms $\Omega \in T^1G$ there exists a gauge transformation $P \in G$ such that $\Omega P = P^{-1} dP + P^{-1} \Omega P$ is coclosed and certain integrability estimates on $P$, $\Omega P$ and their derivatives in terms of $\Omega$ hold?

References

[1] R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes. Compensated compactness and Hardy spaces. *J. Math. Pures Appl. (9)*, 72(3):247–286, 1993.

[2] D. Faraco and X. Zhong. Geometric rigidity of conformal matrices. *Ann. Sci. Norm. Super. Pisa Cl. Sci. (5)*, 4(4):557–585, 2005.

[3] M. Giaquinta. *Multiple integrals in the calculus of variations and nonlinear elliptic systems*. Annals of Mathematics Studies, 105. Princeton, New Jersey: Princeton University Press. VII, 296 p., 1983.

[4] F. Hélein. Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. *C. R. Acad. Sci. Paris Sér. I Math.*, 312(8):591–596, 1991.

[5] F. Hélein. *Harmonic maps, conservation laws and moving frames*, volume 150 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, second edition, 2002. Translated from the 1996 French original, With a foreword by James Eells.

[6] T. Iwaniec and G. Martin. *Geometric function theory and non-linear analysis*. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2001.

[7] T. Lamm and T. Rivière. Conservation laws for fourth order systems in four dimensions. *Comm. Partial Differential Equations*, 33(1-3):245–262, 2008.

[8] V. Maz’ya. *Sobolev spaces with applications to elliptic partial differential equations*, volume 342 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer, Heidelberg, augmented edition, 2011.

[9] Y. Meyer and T. Rivière. A partial regularity result for a class of stationary Yang-Mills fields in high dimension. *Rev. Mat. Iberoamericana*, 19(1):195–219, 2003.

[10] C. B. Morrey, Jr. *Multiple integrals in the calculus of variations*. Classics in Mathematics. Springer-Verlag, Berlin, 2008. Reprint of the 1966 edition.

[11] F. Müller and A. Schikorra. Boundary regularity via Uhlenbeck-Rivière decomposition. *Analysis (Munich)*, 29(2):199–220, 2009.

[12] T. Rivière. Conservation laws for conformally invariant variational problems. *Invent. Math.*, 168(1):1–22, 2007.

[13] T. Rivière and M. Struwe. Partial regularity for harmonic maps and related problems. *Comm. Pure Appl. Math.*, 61(4):451–463, 2008.

[14] A. Schikorra. A remark on gauge transformations and the moving frame method. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 27(2):503–515, 2010.

[15] M. Struwe. Partial regularity for biharmonic maps, revisited. *Calc. Var. Partial Differential Equations*, 33(2):249–262, 2008.

[16] T. Tao and G. Tian. A singularity removal theorem for Yang-Mills fields in higher dimensions. *J. Amer. Math. Soc.*, 17(3):557–593, 2004.

[17] K. K. Uhlenbeck. Connections with $L^p$ bounds on curvature. *Comm. Math. Phys.*, 83(1):31–42, 1982.

[18] C. T. Zorko. Morrey space. *Proc. Amer. Math. Soc.*, 98(4):586–592, 1986.

Pawel Goldstein
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

Anna Zatorska-Goldstein
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw