Patterns of practice in palliative radiotherapy for bleeding tumours in the Netherlands; a survey study among radiation oncologists

Jennifer Strijbos a, Yvette M. van der Lindend, Hanneke Vos-Westermanc, Angela van Baardwijk a,⇑, for the Dutch Platform Palliation, Radiotherapy

⇑Corresponding author at: MAASTRO Clinic, Postbox 1345, 6201 BH Maastricht, The Netherlands.
E-mail address: angela.vanbaardwijk@maastro.nl (A. van Baardwijk).

1. Introduction

Bleeding occurs in approximately 6–10% of patients with (locally) advanced cancer [1]. Bleeding tumours can present in several ways, including hematemesis, haemoptysis, haematuria, rectal bleeding or vaginal bleeding. It can have a significant impact on the quality of life of both patients and their caregivers, causing anxiety and distress and may result in hospitalization and/or the need for blood transfusions. Depending on the anatomical localization, there are several treatment options to manage bleeding, such as stopping coagulants, pressure bandages, surgery or embolization [1].

There is substantial evidence that palliative radiotherapy (RT) is effective in the management of bleeding, with reported treatment response (i.e. that bleeding would stop or diminish) varying from 45% to 100% [2–25]. It is, however, not clear which RT schedule, with regard to fractionation and total dose, is most ‘optimal’ (with as less fractions and less toxicity for the patient and as much as possible effect on symptom control) to manage bleeding. The presence of complaints other than bleeding (e.g. pain or obstruction) and the aim to reduce tumour volume can influence the chosen fractionation and total dose. Therefore, RT schedules described in literature vary considerably between studies (total dose ranged from 5 to 76 Gray [Gy], number of fractions ranged from 1 to 39), consisting of only a few randomized controlled trials (RCTs) that compared different RT schedules, mainly with limited numbers of patients [2–13,16–18,20,22,23]. Table 1 summarizes the main studies on palliative radiotherapy in the management and fractionation schemes used, the bleeding control rate and/or duration response (i.e. that bleeding would stop or diminish) varying from 45% to 100% [2–25].
of bleeding control. In general, reviews for hematemesis, rectal bleeding and vaginal bleeding show response rates between 50% and 90% [6–8,16]. For haemoptysis and haematuria limited RCT data are available, showing no difference in treatment response rates: for haemoptysis response rates vary between 54% and 86% for different RT schedules (range 10–60 Gy in 1–39 fractions) [2–3,22]. For haematuria no difference in treatment response was observed comparing 10 × 3.5 Gy and 3 × 7 Gy (response rate at three months 65% and 63%, respectively) [10]. The interval between start of radiotherapy and achieving hemostasis is only a couple of days [26].

In the Netherlands, there is fair agreement on the most optimal treatment for other palliative indications, e.g. for painful bone metastases a single fraction of 8 Gy is generally accepted [27,28]. However, no consensus exists on the palliative RT schedules used for bleeding tumours.

The primary aim of this study is to examine the current patterns of practice of palliative RT for bleeding tumours (i.e. hematemesis, haemoptysis, haematuria, rectal bleeding and vaginal bleeding) in the Netherlands. Because of less frequent occurrence in daily practice, other bleeding tumors (e.g. bleeding brain metastases or skin lesions) are not subject of this study. Secondly, this study aims to examine the considerations for deciding on palliative RT treatment, for choosing a specific RT schedule in hematemesis, haemoptysis, haematuria, rectal bleeding and vaginal bleeding, and the expected treatment response.

2. Materials and methods

2.1. Participants, questionnaire construction and distribution

An internet-based questionnaire (in Dutch), using SurveyWorld (Syncforce®, Eindhoven, The Netherlands), was developed to explore the patterns of practice in palliative RT for bleeding tumours (hematemesis, haemoptysis, haematuria, rectal bleeding and vaginal bleeding) in the Netherlands. This questionnaire was filled in anonymously and included general questions about the respondents’ characteristics, factors influencing the choice of RT schedules, and expected effectiveness of RT (Appendix A Supplementary data). In addition, five patient cases including eight clinical scenarios were developed to study individual treatment preferences. Given the length of the questionnaire, we have limited the clinical cases to the most frequent types of bleeding. The questionnaire was designed using the Dillman method [29–31]. The concept questionnaire was reviewed by two independent radiation oncologists (ROs) and subsequently tested by eight additional ROs to establish ease of completion, completion time and relevance. Feedback was asked in person and by e-mail. All these ROs were members of the Dutch Platform for Palliation and Radiotherapy, a nationwide platform consisting of all Dutch Radiation Oncology departments. Subsequently, the questionnaire (Appendix) was distributed among all members (N = 374, 275 ROs and 99 residents) of the Dutch Society of Radiation Oncology (NVRO, Nederlandse Vereniging voor Radiotherapie en Oncologie). A reminder was sent after two weeks. The questionnaire was closed after five weeks. No reimbursement was offered.

2.2. Statistical analysis

Data obtained from all respondents were analysed using descriptive statistics for categorical variables. Results are displayed as frequency tables, both for influencing factors and preferred RT schedules for all five patient cases.

The study was reviewed by the internal review board of MAASTRO clinic. No ethics board approval was required for this study.
3. Results

3.1. Respondents

A total of 125 members (33.4%) of the NVRO responded: 103 ROs (37.5%) and 22 residents (22.2%). Responses were obtained from 20 out of 21 RT departments with a median of five responders per department (range 1–19). Of the 103 ROs, 72 (70%) works five or more years in clinical oncology practice. A median of 5–10 patients with bleeding tumours are seen per respondent on a yearly base, with an equal distribution between all types of bleeding tumours. Fifty-eight respondents (46%) mentioned palliative RT as one of their specialties in RT.

3.2. Influencing factors

Fifteen factors influencing the choice of an RT schedule were analysed. Results are shown in Table 2. Performance status (PS), prognosis, patients’ comfort and patients’ choice were mostly reported as influencing factors. Tumour volume and primary tumour were mentioned less often. Factors that did not contribute to preferred schedules were: expected late toxicity, time between registration and RT, and the availability of linear accelerators. An RT schedule of less than ten fractions was most often preferred when patient’s life expectancy was considered less than six months. Ten or more fractions were preferred if the patients’ life expectancy was considered more than six months, no distant metastases were identified and a long-term response was aimed to achieve.

3.3. Treatment response of RT

Respondents were asked about the expected effectiveness of RT considering treatment response, time to treatment response and duration of treatment response. Only a limited number of RO’s answered these questions (20–37% of the 125 respondents). Most respondents (74%, n = 26/35) mentioned an expected treatment response of 70–80%. Four respondents mentioned a treatment response between 60% and 70%, only one expected a treatment response of <60%. All respondents (n = 26) expected diminished bleeding within eight weeks after RT, eleven of these within four weeks. There was a wide range in expected duration of response, mainly several weeks to months. A few respondents (7%, n = 3/46) expected that the response could last for more than one year. Some of the respondents noted that the expected treatment response might be influenced by RT schedule, primary tumour, location of RT, extent of disease and systemic treatment.

3.4. Patient cases

The questionnaire contained five patient cases with a total of eight scenarios. Case 1 until 3 are divided in two clinical scenarios each. The results of the all scenarios are described below and summarized in Fig. 1a–h for all eight clinical scenarios of bleeding separately.

Hematemesis-1: Eighty year old man, PS 1, ulcerating oesophageal carcinoma (no obstruction), liver metastases, hematemesis for three days, patient’s wishes were no chemotherapy but stop hematemesis, no previous RT.

RT was the preferred treatment in 98% of respondents. The preferred treatment options were: 84% external beam RT, 14% brachytherapy and in 2% RT was not otherwise specified. Most often 1 × 8 Gy (37%) (Fig. 1a) was chosen. Some respondents mentioned a second fraction of 8 Gy when the effect of the first fraction is unsatisfactory.

Hematemesis-2: The primary tumour in this case scenario changed into a carcinoma of the stomach. In this scenario 97% opted for RT. Again, 1 × 8 Gy (34%) (Fig. 1b) was the most common schedule chosen.

Hemoptysis-1: Seventy year old woman, PS 2, non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease. Haemoptysis for one month caused by a tumour in the main bronchus. Stereotactic RT four years ago in the right upper lobe (T1N0). Since three months loco-regional recurrence, adrenal and bone metastases. Patient suffers from haemoptysis and fatigue (Hemoglobin (Hb) 5.2 mmol/l).

RT was preferred by 99% of the respondents. All respondents opted for external beam RT. Most often preferred schedules were 1 × 8 Gy (31%) and 5 × 4 Gy (30%) (Fig. 1c). Some respondents would consider a second fraction of 8 Gy in case of insufficient response after the initial fraction.

Hemoptysis-2: In this case scenario, the patient had a T1N2 NSCLC in the right upper lobe with positive lymph nodes in station 4 right and 7, treated with concurrent chemo radiation to a total dose of 66 Gy, four years ago.

In this scenario 97% of the respondents preferred RT, mainly 1 × 8 Gy (35%) (Fig. 1d). Several respondents added that the preferred scheme was dependent on the previous and actual dose in the organs at risk (e.g. spinal cord, total lung dose).

Table 2

Influencing factors	Very important	Important	Reasonably important	Less important	Not important
n (%)	n (%)	n (%)	n (%)	n (%)	n (%)
Performance status	83 (66)	32 (26)	3 (2)	4 (3)	3 (2)
Prognosis	56 (45)	53 (42)	8 (6)	5 (4)	2 (2)
Patient’s comfort	56 (45)	51 (41)	13 (10)	1 (1)	3 (2)
Patient’s choice	34 (27)	50 (40)	25 (20)	12 (10)	3 (2)
Re(irradiation (same volume)	30 (24)	53 (42)	21 (17)	16 (13)	3 (2)
Stable vs non(stable Hb)	22 (18)	59 (47)	17 (14)	16 (13)	10 (8)
Additional symptoms (e.g. pain, obstruction)	13 (10)	64 (51)	31 (25)	13 (10)	3 (2)
Multiple metastases	12 (10)	54 (43)	28 (22)	26 (21)	4 (3)
Time between registration and radiotherapy	10 (8)	45 (36)	12 (10)	21 (17)	36 (29)
Tumor volume	8 (6)	47 (38)	36 (29)	27 (22)	6 (5)
Department policy	8 (6)	59 (47)	40 (32)	15 (12)	2 (2)
Guidelines	8 (6)	55 (44)	36 (29)	19 (15)	4 (3)
Age	7 (6)	32 (26)	30 (24)	33 (26)	21 (17)
Late toxicity	4 (3)	13 (10)	16 (13)	60 (48)	29 (23)
Availability linear accelerators	2 (2)	13 (10)	11 (9)	31 (25)	67 (54)

n = absolute number of respondents, % = the number of respondents in percentages. This table shows fifteen influencing factors and its importance for the choice of a fractionation scheme for palliative RT in bleeding tumors (hematemesis, hemoptysis, hematuria, rectal bleeding and vaginal bleeding).
Hematuria-1: Sixty-three year old man, PS 1, bladder carcinoma with metastases, urine with blood clots and fatigue. Hb 4.8 mmol/l and blood transfusion is performed. Hb not stable and decreases again.

Almost all respondents (99%) opted for RT, most often 5 in 2 Gy (39%) (Fig. 1e).

Hematuria-2: The non-stable Hb in this case scenario changed into a stable Hb after one blood transfusion. Because of the stable Hb, 33% (n = 41) of the respondents indicated not to irradiate, while 66% (n = 82) stated that a stable Hb had no influence on the decision to irradiate (1% non-responders). An RT schedule of 5 x 4 Gy (25%) (Fig. 1f) was preferred most often.

Rectal bleeding: Seventy year old man, PS 1, extensive cardiac history. Constipation and rectal bleeding caused by rectal carcinoma (invasion in bladder and prostate), six liver metastases, three lung metastases, positive lymph nodes para-aortic. Not eligible for palliative chemotherapy.

RT is preferred by 98% of the respondents, mainly 5 x 5 Gy (41%) (Fig. 1g). A reason to choose a more fractionated RT schedule is the lack of other treatment options besides RT and higher expected local control with a higher dose.
Vaginal bleeding: Fifty-five year old woman, PS 1, history of cervical carcinoma stage IB1 for which operative treatment. Three years later vaginal bleeding, no other symptoms, caused by tumour recurrence in the vaginal vault. Extensive lymphatic and lung metastases.

Most respondents (98%) preferred RT. The majority of respondents (81%) opted for external beam RT, while 16% would prefer brachytherapy and in three respondents RT was not otherwise specified. This specific case showed more variation in preferred RT schedules: 1 × 8 Gy (21%), 5 × 4 Gy (20%) and 10–13 × 3 Gy (20%) (Fig. 1h).

4. Discussion

Despite the lack of guidelines and comparative effectiveness of RT schedules used to achieve haemostatic response, 1 × 8 Gy, 2 × 8 Gy, 5 × 4 Gy, 5 × 5 Gy and 10–13 × 3 Gy were consistently preferred for all types of bleeding tumours in the Netherlands. This shows a wide range which is also observed in the literature. RT schedules mentioned in the literature include 1-3 × 6-10 Gy, 5 × 4-5 Gy, 10 × 3-4 Gy, 15 × 3 Gy and 16-30 × 2 Gy with treatment responses varying from 45% to 100%.[2–12,16,20,22,23] From the respondents which answered the open-ended questions in this study, most expected a treatment response of 70–80%. Only a few respondents expected that the response could have a prolonged effect over a year.

Most responders stated the duration of hemostasis could last several months and could vary significantly between patients and was expected to be influenced by several factors like RT schedule, primary tumour, location of RT, extent of disease and systemic treatment.

Performance status, prognosis, patients’ comfort and patients’ choice were mentioned as the most influencing factors for a preferred RT schedule. Consistently, it was also observed in the literature that PS most strongly influenced the preferred fractionation scheme.[5,9,11] However, other considerations for deciding on treatment or additional influencing factors for deciding on an specific RT schedule are lacking in the published papers. Overall, available studies mainly consist of small patient groups, including many retrospective studies and only a few RCTs.

To our knowledge, this is one of the first study on patterns of practice in bleeding tumours in general. Kosugi et al. conducted a survey in Japan focusing on hemostatic irradiation in gastrointestinal and genitourinary tumours and revealed that the number of patients treated was rather small and that the fractionation regimens varied markedly among the respondents, being 30 Gy in 10 fractions one of the most frequently used regimens.[32]

Applying a high single doses seems logical. Lacarrière et al. and Srinivasan et al. observed no dose-relationship in a group of 33 patients treated for gastric cancer with palliative intent, of whom 17 had bleeding as key symptom. The median biologically effective dose (BED) in this group was 39 Gy (10 times 3 Gy using a tumour α/β of 10). In the group of patients receiving a BED ≥ 39 Gy 7 out of 17 responded and in the group receiving a BED < 39 Gy 6 out of 7 showed a response (p = NS) [24]. In a recent publication of Sapienza et al, the authors describe the results of a single center study with a large group of patients [18]. In this cohort of 112 patients, bleeding control information was available for 100 patients. No effect of BED (BED ≥ 39 vs BED < 39 Gy) was observed on the primary bleeding control (p < 0.099) or on rebleeding rate (p = 0.36). Prospective studies to further investigate the effectiveness of currently used schedules are recommended. If single fraction or short course RT (5 fractions) is as effective as longer regimens (ten or more fractions), implementation of short RT schedules is recommended. Here, the comparison to bone metastases is applicable, were a single fraction is the standard RT scheme for relief of pain [27]. Furthermore, single fraction or short regimens are of benefit for both patients, their caregivers (less time consuming) and RT departments (resources).

In conclusion, the current patterns of practice of palliative RT for bleeding tumours in the Netherlands were investigated. The survey showed that a single fraction RT schedule was preferred, followed by a five-fraction RT schedule and that the choice of RT schedule is mainly influenced by patient related factors. However, no conclusion can be drawn from our study with regard to the most optimal RT schedule for bleeding tumours in terms of treatment response, time to treatment response and duration of treatment response. Therefore, it is recommended to further investigate the effectiveness of specific RT schedules, e.g. a prospective cohort study, with the ultimate goal to develop a guideline for bleeding tumours.

Acknowledgements

We like to thank all members of the Dutch Platform for Palliation and Radiotherapy for their contribution to the questionnaire and all members of the Dutch Society of Radiation Oncology for completing the questionnaire.

Conflict of interest

None.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ctro.2019.01.004.

References

[1] Pereira J, Phan T. Management of bleeding in patients with advanced cancer. Oncologist 2004;9:561–70.
[2] Inoperable non-small-cell lung cancer (NSCLC): a Medical Research Council randomised trial of palliative radiotherapy with two fractions or ten fractions. Report to the Medical Research Council by its Lung Cancer Working Party. Br J Cancer 1991;63:265–270.

[3] A Medical Research Council (MRC) randomised trial of palliative radiotherapy with two fractions or a single fraction in patients with inoperable non-small-cell lung cancer (NSCLC) and poor performance status. Medical Research Council Lung Cancer Working Party. Br J Cancer 1992;65:934–941

[4] Asakura H, Hashimoto T, Harada H, et al. Palliative radiotherapy for bleeding from advanced gastric cancer: is a schedule of 30 Gy in 10 fractions adequate? J Cancer Res Clin Oncol 2011;137:125–30.

[5] Chow CL, Niblock PG, Chaw CS, Adamson DJ. The role of palliative radiotherapy for haemostasis in unresectable gastric cancer: a single-institution experience. Eancermedicalscience 2014;8:384.

[6] Lee YH, Lee JW, Jang HS. Palliative external beam radiotherapy for the treatment of tumor bleeding in inoperable advanced gastric cancer. BMC Cancer 2017 Aug 12;17(1):541.

[7] Murakami N, Nakagawa K, Yamashita H, Nagawa H. Palliative radiation therapy for advanced gastrointestinal cancer. Digestion 2008;77(Suppl 1):29–35.

[8] Cameron MG, Kersten C, Vistad I, Fossa S, Guren MG. Palliative pelvic radiotherapy for symptomatic incurable rectal cancer – a systematic review. Acta Oncol 2014;53:164–73.

[9] Srinivasan V, Brown CH, Turner AG. A comparison of two radiotherapy regimens for the treatment of symptoms from advanced bladder cancer. Clin Oncol (R Coll Radiol) 1994;6:11–3.

[10] Duchesne GM, Bolger JJ, Griffiths GO, et al. A randomized trial of hypofractionated schedules of palliative radiotherapy in the management of bladder carcinoma: results of medical research council trial BA09. Int J Radiat Oncol Biol Phys 2000;47:379–88.

[11] Lacarrière E, Smaali C, Benyoucef A, Pfister C, Grise P. The efficacy of hemostatic radiotherapy for bladder cancer-related hematuria in patients unfit for surgery. Int Braz J Urol 2013;39:808–16.

[12] Cameron MG, Kersten C, Guren MG, Fossa SD, Vistad I. Palliative pelvic radiotherapy of symptomatic incurable prostate cancer – a systematic review. Radiother Oncol 2014;110:55–60.

[13] Dirix P, Vingerhoeds S, Joniau S, et al. Hypofractionated palliative radiotherapy for bladder cancer. Support Cancer 2016;24(1):181–6.

[14] Oporul M, Hagen B, Strickert T. 10-Gy single-fraction pelvic irradiation for palliation and life prolongation in patients with cancer of the cervix and corpus uteri. Gynecol Oncol 2001;82:167–71.

[15] Mishra SK, Laskar S, Mueckden MA, Mohindra P, Shrivastava SK, Dinhaw KA. Monthly palliative pelvic radiotherapy in advanced carcinoma of uterine cervix. J Cancer Res Ther 2005;1:208–12.

[16] van Lankhuijzen L, Thomas G. Palliative radiotherapy for cervical carcinoma, a systematic review. Radiother Oncol 2011;98:287–91.

[17] Chioric N, Crowe S, Echimüller S, Aebersold DM, Ghadjar P. Clinically significant bleeding in incurable cancer patients: effectiveness of hemostatic radiotherapy. Radiother Oncol 2012;103(7):132.

[18] Sapienza LG, Ning MS, Jhingran A, et al. Short-course palliative radiation therapy leads to excellent bleeding control: a single centre retrospective study. Clin Transl Radiat Oncol 2018;22(14):40–6.

[19] Cross CK, Berman S, Buswell L, Johnson B, Baldini EH. Prospective study of palliative hypofractionated radiotherapy (8.5 Gy x 2) for patients with symptomatic non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;58:1098–105.

[20] Howell DD. The role of radiation therapy in the palliation of gastrointestinal malignancies. Gastroenterol Clin North Am 2006;35:125–30.

[21] Kim DH, Lee JH, Ki YK, et al. Short-course palliative radiotherapy for uterine cervical cancer. Radiat Oncol J 2013;31:216–21.

[22] Stevens R, Macbeth F, Toy E, et al. Palliative radiotherapy regimens for patients with thoracic symptoms form non-small cell lung cancer. Cochrane Database Syst Rev 2013;CD002143.

[23] Bevez L, Rueda JR, Cardona AF. Palliative endobronchial brachytherapy for non-small-cell lung cancer. Cochrane Database Syst Rev 2012;12:CD004284.

[24] Toy J, Back MF, Shakespeare TP, et al. The role of palliative radiation therapy in symptomatic locally advanced gastric cancer. Int J Radiat Oncol Biol Phys 2007;67:385–8.

[25] Yan J, Misloucovic M, Fyles A, Manchul L, Kelly V, Levin W. A hypofractionated radiotherapy regimen (0–7–21) for advanced gynaecological cancer patients. Clin Oncol (R Coll Radiol) 2011;23:476–81.

[26] Kondoh C, Shiizara K, Nomura M, et al. Efficacy of palliative radiotherapy for gastric bleeding in patients with unresectable advanced gastric cancer: a retrospective cohort study. BMC Palliat Care 2015;4(14):37. https://doi.org/10.1186/1472-6840-15-034x.

[27] Chow E, Zeng L, Salvo N, Dennis K, Tiao M, Lutz S. Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol) 2012;24:112–24.

[28] van der Linden YM, Lok J, Steenland E, et al. Single fraction radiotherapy is efficacious: a further analysis of the Dutch Bone Metastasis Study controlling for the influence of retreatment. Int J Radiat Oncol Biol Phys 2004;59:528–37.

[29] Dillman DA. The design and administration of mail surveys. Annu Rev Sociol 1991;17:225–49.

[30] Hoddinott SN, Bass MJ. The dillman total design survey method. Can Fam Physician 1986;32:2366–8.

[31] Fairchaid A, Barnes E, Ghosh S, et al. International patterns of practice in palliative radiotherapy for painful bone metastases: evidence-based practice? Int J Radiat Oncol Biol Phys 2009;75:1501–10.

[32] Kosugi T, Shikama N, Saito T, et al. A nationwide survey in Japan of Palliative Radiotherapy for Bleeding in Gastrointestinal and Genitourinary Tumor Patients. World J Oncol 2016;7(2–3):29–33.

[33] Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 2012;177:311–27.

[34] Song CW, Kim MS, Cho LG, Dusenberg K, Sperduto PW. Radiobiological basis of SBRT and SRS. Int J Clin Oncol 2014;19:570–8.