Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria1[C][W][OA]

Thimmajra Rudrappa, Kirk J. Czymmek, Paul W. Paré, and Harsh P. Bais*

Department of Plant and Soil Sciences (T.R., H.P.B.) and Department of Biological Sciences (K.J.C.), University of Delaware, Newark, Delaware 19716; Delaware Biotechnology Institute, Newark, Delaware 19711 (T.R., K.J.C., H.P.B.); and Departments of Chemistry/Biochemistry and Biology, Texas Tech University, Lubbock, Texas 79409 (P.W.P.)

Beneficial soil bacteria confer immunity against a wide range of foliar diseases by activating plant defenses, thereby reducing a plant's susceptibility to pathogen attack. Although bacterial signals have been identified that activate these plant defenses, plant metabolites that elicit rhizobacterial responses have not been demonstrated. Here, we provide biochemical evidence that the tricarboxylic acid cycle intermediate \(l \)-malic acid (MA) secreted from roots of Arabidopsis (Arabidopsis thaliana) selectively signals and recruits the beneficial rhizobacterium Bacillus subtilis FB17 in a dose-dependent manner. Root secretions of \(l \)-MA are induced by the foliar pathogen Pseudomonas syringae pv. tomato (Pst DC3000) and elevated levels of \(l \)-MA promote binding and biofilm formation of FB17 on Arabidopsis roots. The demonstration that roots selectively secrete \(l \)-MA and effectively signal beneficial rhizobacteria establishes a regulatory role of root metabolites in recruitment of beneficial microbes, as well as underscores the breadth and sophistication of plant-microbial interactions.

Many bacterial and fungal pathogens are not restricted to infecting aerial or root tissues exclusively. As such, communication between aboveground and belowground components can confer a survival advantage and potentially limit or prevent diseases. Current literature suggests that the metabolic levels of low-\(M_c \) compounds play a significant role in triggering plant innate defense responses (Klessig et al., 2000; Hückelhoven, 2007). A corresponding induced defense response initiating intraplant signaling between leaves and roots has been implicated in herbivory (van Tol et al., 2001; Rasmann et al., 2005). Indeed, plant basal levels of shoot defenses were significantly altered following not only root herbivory, but also artificial damage and application of plant defense hormones (van Dam et al., 2003; Soler et al., 2005; Rasmann and Turlings, 2007). Others have shown that shoot herbivory attack resulted in an increase in root concentrations of nicotine and protease inhibitors in Nicotiana attenuata and glucosinolates in Brassica campestris (Baldwin et al., 1994; Ludwig-Müller et al., 1997; van Dam et al., 2003; Soler et al., 2007). The importance of chemical signals as distress indicators has greatly benefited from pioneering work on volatile signaling (De Moraes et al., 1998, 2001; Kessler and Baldwin, 2001). Under herbivory attack, plants relay compounds such as hormones, exogenous volatile organic compounds, and non-hormonal sary metabolites as long-distance root-to-shoot signals (Erb et al., 2008). Wounding of plant tissues by insect feeding triggers the release of well-characterized volatile signals that attract natural enemies of insect herbivores (De Moraes et al., 2001; Kessler and Baldwin, 2001). Additionally, leaves of the donor plants also perceive intraplant volatile signals to adjust their defensive phenotype (Heil and Silva-Bueno, 2007). Apart from these studies on volatile distress signaling, there are very few studies (van Tol et al., 2001; Rasmann et al., 2005; Hiltpold and Turlings, 2008) on how plants respond by secreting chemicals in response to herbivore attack to recruit beneficial entomopathogenic nematodes to the rhizosphere. While considerable data exist on the occurrence of aboveground/belowground communication in the case of plant herbivory, evidence of similar phenomena in plant-pathogenic bacteria interactions is lacking.

Plants use an array of metabolites to defend themselves against harmful organisms and to attract others that are beneficial. For example, it has been widely documented in the case of root-rhizobial and root-arbuscular mycorrhizal interactions that roots secrete secondary metabolites that act as messengers to attract Rhizobium and arbuscular mycorrhizal fungi (Kent Peters and Long, 1988; Besserer et al., 2006). Despite progress

1 This work was supported by the University of Delaware Research Foundation and a National Science Foundation award (grant no. IOS-0814477 to H.P.B.), and in part by the Welch Foundation and a National Science Foundation award (grant no. D-1478 P.W.P.).

* Corresponding author; e-mail hbais@udel.edu.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Harsh P. Bais (hbais@udel.edu).

\[C \] Some figures in this article are displayed in color online but in black and white in the print edition.

\[W \] The online version of this article contains Web-only data.

\[OA \] Open Access articles can be viewed online without a subscription.

www.plantphysiol.org/cgi/doi/10.1104/pp.108.127613

\[\text{Plant Physiology, November 2008, Vol. 148, pp. 1547–1556, www.plantphysiol.org © 2008 American Society of Plant Biologists 1547} \]
toward understanding the symbiotic-plant microbe interactions, little headway has been made in identifying the genetic and biochemical changes responsible for the attraction of nonsymbiotic rhizospheric microbes to plants. Plant associations with plant growth-promoting rhizobacteria (PGPR) provide protection from soil-borne plant pathogens by antagonistic mechanisms (Bais et al., 2004; Cavaglié et al., 2005). Such bacteria, by colonizing the root surface, can also trigger induced systemic resistance (ISR) in aerial portions of the plant (Ryu et al., 2004). ISR by rhizobacteria was demonstrated using both Gram-negative and Gram-positive bacteria (Baker et al., 1985; Maurhofer et al., 1994; Zhou and Paulitz, 1994; Liu et al., 1995; Leeman et al., 1996; Benhamou and Belanger, 1998; Pieterse et al., 1998; Kloepper et al., 2004). Bacillus subtilis not only has been reported to trigger ISR (Kloepper et al., 2004; Ryu et al., 2004), but also has been implicated in promoting plant growth and protection from fungal infection (Dal-Soo et al., 1997; Emmert and Handelsman, 1999; Bacon et al., 2001; Estevez de Jensen et al., 2002; Ryu et al., 2003). Bacterial signals have been identified that activate plant defense responses through the ethylene pathway, independent of the salicylic acid (SA) pathway or the jasmonic acid pathway (Ryu et al., 2004). However, no plant metabolites involved in a positive feedback mechanism have been identified.

Although evidence exists for intraplant communication, to date there have been no reports demonstrating whether plants exude specific chemical signals through their roots to attract beneficial bacteria in the rhizosphere. Furthermore, it is unknown whether shoot infection by pathogenic bacteria induces recruitment of beneficial rhizobacteria to the root surface. Links between interorganism signaling under distress conditions, especially between aboveground and belowground tissues, are poorly understood. Such signaling, although potentially complex due to the involvement of significant physical distances, may be an important and effective strategy in plant defense that has thus far been overlooked. In an effort to address this deficiency, we used Pseudomonas syringae pv tomato (Pst DC3000)-Arabidopsis (Arabidopsis thaliana) and B. subtilis strain FB17 model systems. Here, we report that Pst DC3000-infected Arabidopsis foliage relay chemical signals below ground through root secretions. The root-secreted chemical specifically attracts and enhances FB17 root binding and biofilm formation on infected seedlings. We also show that the chemotraction and biofilm promotion activity of a secreted component is an enantiomeric-dependent response.

RESULTS
Rhizobacteria Colonization of Roots Stimulated by Leaf Pathogen

To probe how plant pathogen attack may influence the recruitment of beneficial rhizosphere bacteria, root symbiont colonization was measured in the presence and absence of a foliar pathogen. Twenty-day-old Arabidopsis plants were rhizoinoculated with FB17. Subsequently, the plants were infected with Pst DC3000 by pressure infiltration into the leaves. By 5 d postinoculation, leaves infected by Pst DC3000 stimulated biofilm formation of the beneficial rhizobacteria FB17 both qualitatively as determined by confocal microscopy (Fig. 1A) and quantitatively by colony-forming units (CFU; Fig. 1B). In fact, within 5 d of Pst DC3000 leaf inoculation, a 4-fold increase in FB17 colonization was observed in the roots compared...
with mock or nonpathogenic \textit{P. syringae pv phaseolicola} (NPS3121) treatments \([F_{(3,20)} = 114.5; P < 0.05]\). This observation that aerial infection with Pst DC3000 caused change in root symbiont colonization implicated root exudate involvement in the beneficial microbe recruitment.

Leaf Infection Induces Malic Acid Root Secretions

To examine whether leaf infection can trigger changes in the composition of metabolites from root secretions, the root secretions from ecotype Columbia (Col-0) plants subjected to different aerial bacterial infection treatments, such as Pst DC3000, untreated (control), water-injected (mock), or treated with nonpathogenic strain NPS3121, were collected. The root secretions were chemically analyzed by HPLC. Profiles of the concentrated root exudates from Pst DC3000-infected plants revealed a peak that exhibited a significant increase under the Pst DC3000 infection regime. The peak was further characterized by liquid chromatography-mass spectrometry analysis and retention time overlap and determined to be malic acid (MA; Fig. 2A); MA quantification from root exudates of differently treated plants indicated a 7-fold increase \([F_{(3,20)} = 212.1; P < 0.05]\) in MA accumulation under aerial infection with Pst DC3000 than in untreated (control), water-injected (mock), or nonpathogenic NPS3121-inoculated leaves as observed by HPLC analysis with representative HPLC profiles (arrow indicates MA elution position; A) and MA peak-area quantification (B). Different letters indicate significant difference between the treatments \((P < 0.05; \text{ANOVA test})\).

Figure 2. Root exudate composition with pathogen and nonpathogen leaf treatments. Greater MA was detected with aerial infection with Pst DC3000 than in untreated (control), water-injected (mock), or nonpathogenic NPS3121-inoculated leaves as observed by HPLC analysis with representative HPLC profiles (arrow indicates MA elution position; A) and MA peak-area quantification (B). Different letters indicate significant difference between the treatments \((P < 0.05; \text{ANOVA test})\).

Figure 3. MA-specific chemotactic motility of \textit{B. subtilis} strain FB17 measured by following capillary chemotactic assay. \textit{L}-MA showed a dose-dependent chemotactic attraction of FB17 (A); structure-dependent chemotactic attraction of FB17 (B); and bacterial species-specific attraction to MA (C). Bacterial strains used in the chemotactic assay included \textit{B. subtilis} strain FB17, \textit{A. tumefaciens} strain LBA4404, \textit{E. carotovora} strain AH2, \textit{A. rhizogenes} strain Arqua-1, \textit{A. brasilense} strain Cd, \textit{P. fluorescens} (Pf01), and \textit{P. syringae} (Pst DC3000). Data are the average of six replicates from two experiments conducted separately.
Pst DC3000 leaf infection compared to control, mock, and NPS3121 treatments (Fig. 2B). This pattern of MA accumulation in root secretions raised the question whether the recruitment of higher populations of FB17 to Pst DC3000-infected plants was caused by the MA root secretions or simply a secondary effect of the interaction itself.

FB17 Exhibits Positive MA Chemotaxis

To evaluate MA’s ability to selectively recruit FB17, microbial motility at varying MA doses was measured by capillary chemotaxis assay (Gordillo et al., 2007). FB17 exhibits positive chemotactic behavior in a concentration-dependent manner within the dose range of 5 to 30 μM (Fig. 3A). The concentration range of 5 to 30 μM falls within the biological titers of MA secreted in planta through the root exudates (Fig. 2B). The non-natural D-MA, as well as the 4-carbon oxalic acid assayed at the high I-MA response level of 30 μM, exhibited significantly [F(4,25) = 119.12; P < 0.05] lower efficacies compared to the natural L-MA form, albeit still significantly higher than the water control (Fig. 3B) with D-MA. To establish whether L-MA specifically chemoattracts FB17, other beneficial bacteria, such as Pseudomonas fluorescens strain Pf01 and Azospirillum brasilense strain Cd, and pathogenic bacteria, such as Pst DC3000, Erwinia carotovora strain AH2, Agrobacterium rhizogenes strain Arqua-1, and Agrobacterium tumefaciens strain LBA4404, were assayed for MA. Our results revealed that none of the bacteria shows any significant motility toward I-MA [F(2,25) = 119.12; P < 0.05] compared to FB17 (Fig. 3C), establishing the specific chemotactic role of I-MA in attracting PGPR strain FB17.

MA Transporter Mutant Fails to Recruit B. subtilis onto the Root Surface

Arabidopsis T-DNA knockout mutant Atalmt1 for MA transporter AtALMT1 deficient in root MA secretion (Hoekenga et al., 2006) was assayed to confirm the role of MA secretions in recruiting FB17. The amount of malate secreted from Atalmt1 was highly reduced [F(3,20) = 152.62; P < 0.05] either with or without Pst DC3000 aerial infection (Fig. 4A). Moreover, FB17 failed to colonize the root surface of Atalmt1 under both infected and noninfected conditions as shown by both microscopic root binding and CFU data [F(2,25) = 100.23; P < 0.05; Fig. 4, B and C]. To establish the role of AtALMT1 conclusively, we exploited a previously reported approach (Hoekenga et al., 2006) and generated F1 plants (genetically complemented for AtALMT1) from the cross Atalmt1 × Landsberg erecta.
The F1 generated lines were subsequently used for FB17 colonization studies under a Pst DC3000 infection regime. As expected, FB17 was able to colonize the F1 line of *Atalmt1* × Ler-0 in a similar fashion to wild-type Col-0 roots especially when leaf infected with Pst DC3000 (Fig. 4, B and C). In our hands, the *Atalmt1* × Ler-0 F1 line also restored malate release under Pst DC3000 infection (data not shown) as reported previously for aluminum (Al) treatment (Hoekenga et al., 2006).

Leaf Infection Induces Root AtALMT1 Expression

To check whether aerial leaf infection with Pst DC3000 transcriptionally regulates *AtALMT1* expression, we employed an Arabidopsis transgenic line carrying an *AtALMT1* promoter::GUS fusion construct (Kobayashi et al., 2007). The 20-d-old *AtALMT1* promoter::GUS Arabidopsis lines were leaf infiltrated with Pst DC3000, NPS3121, *Pseudomonas aeruginosa* PAO1, *Escherichia coli* OP50, and also roots treated with 4 μM AlCl3 as a positive control. The data showed significantly higher *AtALMT1::GUS* expression in the treatments with Pst DC3000 leaf infection similar to the AlCl3 positive control in both root central elongation zone and mature region (Fig. 5). However, leaf infiltration with other bacteria, such as PAO1, OP50, and nonpathogenic NPS3121, showed no induction. These data indicated that the *AtALMT1* expression may be specific to leaf pathogenic interactions.

Plant Infected Root Exudates and L-MA Induce *B. subtilis* Biofilm Operons

Microscopic analysis demonstrated increased binding and biofilm formation of FB17 on the root surface. To examine whether biofilm formation was transcriptionally regulated by root secretions, we tested a key operon *yqxM* required for *B. subtilis* biofilm formation. We utilized *B. subtilis* strain Marburg carrying the...
FB17 Root Colonization Triggers ISR and Protects Arabidopsis from Pst DC3000 Infection

To test whether plants associated with FB17 extend protection from disease, we inoculated the FB17 root-colonized Arabidopsis plants with the pathogen *Pst DC3000*. Consistent with our data on FB17 root colonization following *Pst DC3000* leaf infection, the root colonization of FB17 resulted in protection of plants from *Pst DC3000* infection. The *Pst DC3000*-infected FB17-colonized plants revealed reduced disease incidence, symptom development (chlorosis), and pathogen multiplication. The results were highly significant (*P < 0.05; t test*) compared to the control plants not colonized with FB17 and treated with *Pst DC3000* (Supplemental Fig. S1, A and B).

To further test whether this protection offered by FB17 was due to the induction of ISR, we checked for known systemic resistance markers such as *PR1* gene expression and free SA levels in the leaves of FB17 root-colonized plants. We utilized Arabidopsis lines carrying *PR1::GUS* fusions to study the *PR1* expression. Plant roots colonized with FB17 showed higher *PR1::GUS* expression in the leaves on par with leaf SA-treated positive controls compared to uninoculated control plants. Other controls, where plants were root inoculated with OP50 and *Pf01*, failed to induce *PR1::GUS* expression in the leaves (Supplemental Fig. S2).

P. fluorescens (Pf01) Fails to Bind to the Root Surface of Aerially Infected Arabidopsis Col-0

To test the specificity of the Arabidopsis FB17 interaction, *Pf01* root-inoculated plants were monitored with and without aerial infection. Consistent with chemotaxis assay data, infected plants failed to recruit *Pf01* to the root surface as observed previously for FB17. The *Pst DC3000*-infected Col-0 plants showed poor binding of *Pf01*, indistinguishable from the untreated and *Pf01*-only treatments (Supplemental Fig. S3A). Further, the *Pf01* root inoculation failed to protect plants from *Pst DC3000* infection (Supplemental Fig. S3, B and C). This result suggested that plants specifically engaged with FB17 under foliar bacterial infection.

DISCUSSION

Certain beneficial rhizobacteria activate plant defenses and thereby mitigate the impact of foliar diseases (Ryu et al., 2004); however, plant recruitment of such soil microbes has yet to be established. Here, we showed that inducible defense responses triggered by plant pathogenesis included the induction of root secretions that effectively recruited beneficial rhizobacteria. Specifically, the major inducible root-secreted metabolite MA selectively activated FB17 chemotactic mobility in a dose-dependent manner (Fig. 7). Correspondingly, reduction in MA root secretions with the *AtAlmt1* mutation was genetically complemented. Furthermore, the leaf infection of *AtAlmt1::GUS* fusion line with *Pst DC3000* was able to induce root *AtAlmt1* expression and it has been reported that *AtAlmt1* expression was also induced in response to Al (Hoekenga et al., 2006). However, in this study, we showed *AtAlmt1* induction in response to...
to Pst DC3000 leaf infection occurred even in the absence of Al. The induction of AtALMT1 and the efflux of MA in response to Pst DC3000 infection independent of Al revealed the multifunctional role of AtALMT1. It will be interesting to further elucidate the key pathogenic determinants, which are specifically involved in triggering AtALMT1 induction. These results establish MA as the first member of a novel class of plant signals operative in rhizosphere attraction of beneficial microbes.

The enantiomeric specificity of naturally produced l-MA in triggering chemotactic mobility implicates receptor-mediated activation of bacterial directed chemotaxis. In addition to stereoselective chemical signals, B. subtilis motility is mediated by the pH and electrical potential of the cell exterior. Bacterial flagellar movement is driven by the motor protein complex Mot (Blair and Berg, 1990). The membrane-embedded MotAB complexes and their homologs constitute ion channels and couple flagellar rotation by proton motive or sodium motive forces across the cytoplasmic membrane (Manson et al., 1977; Blair and Berg, 1990; Berry and Armitage, 1999; McCarter, 2001). Interestingly, MotPS-dependent motility is greater in the presence of MA than in the presence of Glc (Ito et al., 2004).

Bacteria also form sessile communities called biofilms that are morphologically and physiologically differentiated from free-living bacteria (Bais et al., 2004; Rudrappa et al., 2007). The process of biofilm formation starts at the late exponential phase of bacterial growth. In addition to bacterial cell-to-cell signaling involvement in the development of such structures, FB17 colonizes and forms continuous biofilms on the roots of Arabidopsis plants aerially infected with Pst DC3000 unlike the nonhost strain NPS3121, which does not infect or produce disease symptoms with Arabidopsis (van Wees and Glazebrook, 2003). This establishes the specificity of biofilm formation with specific pathogen-infection regimes. Plant-generated MA was also specifically induced with Pst DC3000 and positively induced the biofilm operon yqxM. MA was also specifically induced with Pst DC3000 and specifically pathogen-infection regimes. Plant-generated MA was also specifically induced with Pst DC3000 and positively induced the biofilm operon yqxM. The operon yqxM is a member of a three-gene operon yqxM-sipW-tasA, where tasA encodes for a protein that is a major component of the biofilm matrix and yqxM is important for the proper localization of TasA to the matrix (Brandt et al., 2006). In plants, increased accumulation of l-MA can be triggered by elevated biosynthesis of one or more of the tricarboxylic acid MA precursors, fumarate, oxaloacetate, or pyruvate, by fumarase, malate dehydrogenase, and malic enzyme, or by reduced MA turnover to pyruvate or oxaloacetate by malic enzyme and malate dehydrogenase, respectively (Casati et al., 1999). Alternatively, up-regulation of the malate transporter (AtALMT1) augments root MA secretions (Kobayashi et al., 2007). Future lines of study will investigate the involvement of MA secretion on induction of bacterial volatile signaling in B. subtilis, which has been reported to be involved in the induction of ISR in B. subtilis-colonized plants (Ryu et al., 2004). Concomitantly, others have reported that a few organic acids, especially oxaloacetate, trigger the operon for Bacillus acetoin production alsSD (Schilling et al., 2007).

To establish the specificity of exuded malate toward FB17, other bacteria, including the PGPR Pf01, were assayed for chemotaxis. We speculated that the poor colonization patterns of Pf01 under aerial pathogen infection regimes dictates that infected plants exhibit positive feedback specifically for FB17. In fact, aerially infected plants failed to show increased Pf01 binding to the root surface. Our data showed restriction of pathogen multiplication through the induction of ISR by triggering the expression of the PR1 gene in an SA-mediated mechanism following FB17 root colonization. Several studies had previously reported the induction of ISR by root-colonized PGPR (Ryu et al., 2004) or targeted inhibition of pathogen genes in a standard biocontrol setup (Duffy et al., 2004). Most of these studies were linked to production of a pathogen antagonist by the biocontrol strain. Thus far, the best example of chemical-based intraplant signaling was established recently, where the volatile compounds emitted by one plant part elicited defense responses in other parts of the same plant (Gershenzon, 2007; Heil and Silva-Bueno, 2007). There is no evidence that shows that plants are capable of selectively populating its rhizosphere with beneficial microbes to induce a typical ISR response. Our results showed evidence of the importance of interorganism signaling, although their ecological relevance needs to be examined. Understanding the two-way signaling event in terms of a bacterial metabolite component that malate elicits underscores the evolutionary development of acquired responses in plants to recruit beneficial microbes in its rhizosphere. Subsequent studies should reveal new gene-for-gene interactions that exist among plants and microbes.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Arabidopsis (Arabidopsis italiana) wild-type Columbia (Col-0) seeds were procured from Lehle Seeds. Arabidopsis T-DNA knockout mutant line Atalmt1 was obtained from the Arabidopsis Biological Resource Center (ABRC). The plants were sown for four generations to achieve homozygosity and the homozygous plants were used in this study. Arabidopsis transgenic lines carrying the AtALMT1 promoter-GUS fusion construct were obtained from Dr. Hiroyuki Koyama. The AtALMT1 genetic complemented F1 line was generated by crossing Atalmt1 × Ler-0 by following a published protocol (Hoekenga et al., 2006). Crossing was performed between Atalmt1 (Col-0 background) and Arabidopsis Ler-0 ecotype (as a pollen donor). In the F1 generation, the AtALMT1 allele from Ler-0 restored the AtALMT1 phenotype in terms of Al-activated malate release (Hoekenga et al., 2006). Seeds were cultured on Murashige and Skoog (1962) solid medium with 3% Suc and allowed to germinate for 3 to 4 d until the roots and shoot emerged by incubating at 25°C ± 2°C under a 16-h-light/8-h-dark photoperiod. The plates were illuminated with cool-white fluorescent light with an intensity of 24 μmol m⁻² s⁻¹.

Bacterial Strains

The PGPR Bacillus subtilis strain FB17 (obtained from Dr. Ray Fall, University of Colorado, Boulder, CO) was maintained on Luria-Bertani plates and Pseudo-
Effect of P. syringae Infection on B. subtilis Root Binding and Biofilm Formation on the Roots of Arabidopsis

Arabidopsis Col-0 plants grown on sterile pea pellets in a growth chamber set for a photoperiod of 16 h light/8 h dark at 23°C ± 2°C and illuminated with cool fluorescent light with an intensity of 24 μmol m⁻² s⁻¹ for a 20-d period. The plants were root inoculated with FB17 (0.5 OD₆₀₀) by drenching with 10 mL of the culture in water. All the fully expanded leaves were pressure infiltrated with 100 μL of 0.02 OD₆₀₀ culture of Pst DC3000. The cultures in sterile water were prepared by centrifuging the overnight cultures and washing the pellet to get rid of Luria-Bertani medium and resuspending the pellet in sterile water to obtain appropriate density. Different treatments included control root inoculated with FB17, mock (leaf infiltrated with sterile water + root inoculated with FB17), Pst DC3000 + FB17 (leaf infiltration of FB17 root-inoculated plants), and NPS3121 + FB17 (leaf infiltration of FB17 root-inoculated plants). The plants were transferred to sterile magenta boxes and incubated in the growth chamber for an additional 4 d. The experiment was terminated after 4 d and the cocultivated roots were collected and fixed in 4% paraformaldehyde to image for FB17 binding and biofilm formation. Similar experiments were carried out using the malate transporter mutant AtALMT1. Each treatment had six replicates and the experiment was repeated on two independent occasions.

Effect of P. syringae Infection on P. fluorescens (Pf01) Binding and Biofilm Formation on the Roots of Arabidopsis

All the conditions for this experiment were similar as explained above, except that all the inoculated plants were root inoculated with P. fluorescens Pf01 (0.5 OD₆₀₀) by drenching with 10 mL of the culture in water. All the observations that were recorded for the earlier experiment were recorded here also.

Collection and Analysis of Root Exudates from Aerially Infected Col-0 Plants

Individual Col-0 plants were grown on a sterile sponge pellet suspended into sterile 1% Murashige and Skoog liquid medium for 20 d. The fully expanded leaves of the 20-d-old plants were inoculated aseptically with 100 μL of 0.02 OD₆₀₀ culture of P. syringae Pf DC3000 (prepared as above). The spent liquid medium from the infected and uninfected plants containing root exudates was collected after 5 d and lyophilized. For HPLC analysis, 100 mg of the lyophilized powder of the root exudates were dissolved in 500 μL of 25 mM potassium phosphate buffer (pH 2.5) and filtered; 30 μL of the filtrate were injected for HPLC analysis. The separation was performed with an isocratic mobile phase of 25 mM potassium phosphate buffer (pH 2.5) on an Alltech organic acid column (Prevail, organic acid, 5 μm; 150 mm × 4.6 mm). The peaks obtained were compared with an array of standard organic acid peaks run under the same conditions. The major peak was identified by comparing the retention time with that of the matching standard. Root exudates collected similarly from the Arabidopsis malate transporter mutant Atalmt1 were also processed and analyzed using the same conditions. Each treatment had 12 replicates and the experiment was repeated on at least two independent occasions.

Chemotaxis Assay

The capillary assay was performed as per the published description (Gordillo et al., 2007) with slight modifications. Briefly, the assay setup consisted of a 200-μL pipette tip as a chamber for holding 100 μL of bacterial suspension (0.1 OD₆₀₀ prepared from overnight grown culture) in Luria-Bertani medium. A 4-cm 25-gauge needle (Becton-Dickinson) was used as the chemotaxis capillary and was attached to a 1-ml tuberculin syringe (Becton-Dickinson) containing 200 μL of the compound (5 μL of different MA isomers such as L-Ma, D-Ma, and also oxalic acid separately in Luria-Bertani liquid medium). After 3 h of incubation at room temperature, the needle syringe was removed from the bacterial suspension and the content diluted and plated on Luria-Bertani medium. Accumulation of bacteria in the capillaries was calculated as the average from the CFUs obtained in triplicate plates and the results were expressed as the mean of at least three separate capillary assays for each determination. The different bacterial strains assayed for chemotaxis included FB17, Pf01, Cd, Pf DC3000, Ah2, Arqua-1, and LBA4404.

Effect of Pst DC3000 Leaf Infection on Root AtALMT1::GUS Expression

Transgenic Arabidopsis (Col-0) plants carrying AtALMT1 promoter::GUS fusion construct for the experiments were grown on pea pellets in a growth chamber set for a photoperiod of 16 h light/8 h dark at 23°C ± 2°C and illuminated with cool fluorescent light with an intensity of 24 μmol m⁻² s⁻¹ for a 20-d period. The 20-d-old plants were leaf infiltrated with Pst DC3000, NPS3121, OP50, and PAO1 and a positive control of AlCl₃ root treatment was also included in addition to an untreated control. After 12 h of treatment, the roots were stained and imaged for the expression of AtALMT1::GUS according to published protocol (Kobayashi et al., 2007).

Effect of B. subtilis Root Inoculation on the P. syringae (Pst DC3000) Infection

Arabidopsis Col-0 plants were grown on pea pellets in a growth chamber set for a photoperiod of 16 h light/8 h dark at 23°C ± 2°C and illuminated with cool fluorescent light with an intensity of 24 μmol m⁻² s⁻¹ for a 20-d period. The plants were root inoculated with B. subtilis FB17 (0.5 OD₆₀₀) by drenching with 10 mL of the culture in water. Fully expanded leaves were pressure infiltrated with 100 μL of 0.02 OD₆₀₀ culture of Pst DC3000 the next day. Different treatments included control (without Pst DC3000 infiltration), control root inoculated with FB17, mock (leaf infiltrated with sterile water + root inoculated with FB17), Pst DC3000 + FB17 (leaf infiltration of FB17 root-inoculated plants), and NPS3121 + FB17 (leaf infiltration of FB17 root-inoculated plants). The plants were transferred to sterile magenta boxes and incubated in the growth chamber for an additional 4 d. The experiment was terminated after 4 d and the observations such as disease symptom development in terms of chlorosis, number of CFUs of Pst DC3000/g fresh weight of the leaf were recorded by extracting a known fresh biomass of the leaf and plating on Luria-Bertani plates containing 50 mg mL⁻¹ rifampicin.

Effect of B. subtilis FB17 Root Inoculation on Whole-Plant PR1::GUS Expression

Transgenic Arabidopsis (Col-0) plants carrying PR1::GUS fusion construct were grown on pea pellets for a 20-d period. The 20-d-old plants were root inoculated with FB17 by drenching the pellet with 10 mL (0.5 OD₆₀₀) culture suspended in sterile distilled water. In addition, a separate set of PR1::GUS plants was also treated with other bacteria such as Pf01 and OP50 by drenching the pellet with 10 mL (0.5 OD₆₀₀) of culture suspended in sterile distilled water. Positive controls, such as SA (0.1 mM) treatment on leaves and roots were also performed by spraying a known concentration of SA on the leaves and roots of PR1::GUS plants. Four days after inoculation, the plants were stained for GUS assay using a GUS staining kit (obtained from Sigma-Aldrich) according to manufacturer’s instructions. The control and treated plants were imaged for the expression of PR1::GUS in the leaves as per the

Downloaded from https://academic.oup.com/plphys/article/148/3/1547/6107595 by guest on 06 November 2022

Rudrappa et al.
published protocol (Shapiro and Zhang, 2001). A representative image of at least 12 leaves was presented for each treatment. Each treatment had six replicates and the experiment was repeated on two independent occasions.

Microscopy

To view adherent FB17 cells and biofilm on the root surface by confocal scanning laser microscopy, the roots were stained at a dilution of 1:1,000 with SYTO13 (Invitrogen). Single median optical sections were captured with a Zeiss 10× Plan-Apochromat (numerical aperture 0.45) objective lens using a Zeiss LSM 510 NLO on an Axiovert 200M. The 488-nm laser line of the argon laser and a 505-nm long-pass filter were used for excitation and emission, respectively. All data were acquired 24 h post inoculation and post-treatment with B. subtilis FB17 (5-µL culture of 0.02 OD₅₆₀ of 10-d-old plants grown in 4 mL of liquid Murashige and Skoog medium with 1% Suc. Each experiment was repeated twice with three replicates each and a representative image of at least 20 roots imaged for each treatment was presented.

β-Galactosidase Assay

To study the effect of root exudates collected from Pst DC3000-infected Col-0 plants and MA on the transcription of the yqM promoter under biotin formation condition, B. subtilis strain Marburg carrying the yqM-lacz fusion (NRS1531) was utilized. The β-galactosidase units produced per minute were estimated as per the published protocol (Rudrappa et al., 2007). Each treatment had six replicates and the experiment was repeated on at least two independent occasions and a representative plot is shown.

Statistical Analysis

All data were averaged from two separate experiments unless mentioned otherwise and further analyzed for variance followed by a Student’s t-test and ANOVA with the Benjamini-Hochberg correction (Benjamini and Hochberg, 1995) for multiple testing when necessary using statistical package JMP 7.0 and Microsoft Excel XP. The data means were considered significantly different at the probability of P < 0.05.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Effect of B. subtilis FB17 root colonization on Pst DC3000 leaf infection.

Supplemental Figure S2. Effect of B. subtilis FB17 root colonization on Pst DC3000 leaf infection.

Supplemental Figure S3. Effect of P. fluorescens (P401) root colonization on Pst DC3000 leaf infection.

Received August 4, 2008; accepted September 15, 2008; published September 26, 2008.

LITERATURE CITED

Bacon CW, Yates IE, Hinton DM, Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109: 325–332
Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134: 307–319
Baker CJ, Staveyl JR, Mock N (1985) Biocontrol of bean rust by Bacillus subtilis under field conditions. Plant Dis 69: 770–772
Baldwin IT, Schmelz EA, Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris Spegazzini and Comes. J Chem Ecol 20: 2139–2157
Benhamou N, Belanger RR (1998) Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato. Plant Physiol 118: 1203–1212
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57: 289–300
Berry RM, Armitage JP (1999) The bacterial flagella motor. Adv Microb Physiol 41: 291–337
Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4: e226
Blair D, Berg HC (1990) The MotA protein of Escherichia coli is a proton-conducting component of the flagellar motor. Cell 60: 439–449
Brand B, Phillips K (1987) Assay of Nicotiana glutinosa cytokinin N-acetylase. Plant Physiol 85: 819–822
Casati F, Drinovich ME, Edwards GE, Andreo CS (1999) Malate metabolism by NADP-malic enzyme in plant defense. Photosynth Res 61: 89–95
Cavagneri L, Orlando J, Rodriguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticiloides in vitro and at the maize root level. Res Microbiol 156: 748–754
Dal-Soo K, Cook RJ, Weller DM (1997) Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87: 551–558
Delmas CM, Lewis WJ, Paré PW, Tumlinson JH (1998) Herbivore-induced insect plants selectively attract parasitoids. Nature 393: 570–574
De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577–580
Duffy B, Keel C, Défago G (2004) Potential role of pathogen signaling in multitype plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70: 1836–1842
Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a Gram-positive perspective. FEMS Microbiol Lett 171: 1–9
Erb M, Ton J, Degenhardt J, Turlings TJC (2008) Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol 146: 867–874
Estève de Jensen C, Percich JA, Graham PH (2002) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Field Crops Res 74: 107–115
Gershenzon J (2007) Plant volatiles carry both public and private messages. Proc Natl Acad Sci USA 104: 5257–5258
Gordillo F, Chavez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60: 322–328
Heil M, Silva-Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104: 5467–5472
Hilboldt J, Turlings TCJ (2008) Belowground chemical signaling in maize: when simplicity rhymes with efficiency. J Chem Ecol 34: 628–635
Hoekenga OA, Marong L, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, et al. (2006) AtLMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103: 9738–9743
Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45: 101–127
Ito M, Hicks DB, Henkin TM, Guftant AA, Powers BD, Zvi L, Uematsu K, Kruilwich TA (2004) MotP is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53: 1033–1049
Kent Peters N, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88: 396–400
Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144
Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Sah J, Zhang S, Kachroo P, et al. (2000) Colipooium paper: nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97: 8849–8855
Kloepper JW, Ryu MN, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259–1266
Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Moran LG, Piñeros MA, Kochian LV, Koyama H (2007) Characterization of AtLMT1 expression in aluminum-inducible malate release and...
its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145: 843–852

Leeman M, Van Pelt JA, Hendrickx MJ, Scheffer RJ, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 149–155

Liu L, Kloeper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85: 1064–1068

Ludwig-Müller J, Schubert B, Pieper K, Ihmig S, Hilgenberg W (1997) Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochemistry 44: 407–414

Manson MD, Tedesco P, Berg HC, Harold FM, Van der Drift C (1977) A proton motive force drives bacterial flagella. Proc Natl Acad Sci USA 74: 3060–3064

Maurhofer M, Hase C, Meauwly P, Metraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84: 139–146

McCarter LL (2001) Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65: 445–462

Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits N, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Physiol 117: 386–395

Rudrappa T, Quinn WJ, Stanley-Wall NR, Bais HP (2007) A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots. Planta 226: 283–97

Ryu CM, Farag MA, Hu CH, Reddy MS, Kloapper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134: 1–10

Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100: 4927–4932

Schilling O, Frick O, Herzberg A, Ehrenreich A, Heinze E, Wittmann C, Stülke J (2007) Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: transcription regulation is important but not sufficient to account for metabolic adaptation. Appl Environ Microbiol 73: 499–507

Scott IM, Clarke SM, Wood JE, Mur LAJ (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135: 1040–1049

Shapiro AD, Zhang C (2001) The role of NDR1 in a virulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiol 127: 1089–1101

Soler R, Bezemer TM, Cortesero AM, Van der Putten WH, Vet LEM, Harvey JA (2007) Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152: 257–264

Soler R, Bezemer TM, Van der Putten WH, Vet LEM, Harvey JA (2005) Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74: 1121–1130

van Dam NM, Harvey JA, Wackers FL, Bezemer TM, van der Putten WH, Vet LEM (2003) Interactions between aboveground and belowground induced responses against phytophages. Basic Appl Ecol 4: 63–77

van Tol RWHM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4: 292–294

Zhou T, Paulitz TC (1994) Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas in cucumber. J Phytopathol 142: 51–63