Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read [Reporting Life Sciences Research](#).

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).

- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.

- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.

- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.

- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

FIGURE NUMBER	WHICH TEST?	SECTION & PARAGRAPH	EXACT VALUE	DEFINED?	SECTION & PARAGRAPH	REPORTED?	SECTION & PARAGRAPH	EXACT VALUE	P VALUE	DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE
1a	one-way ANOVA	Fig. legend	9, 9, 10, 15	mice from at least 3 litters/group	Methods para 8	error bars are mean +/- SEM	Fig. legend	p = 0.044	F(3, 36) = 2.97	Fig. legend
results para 6	unpaired t-test	Results para 6	15	slices from 10 mice	Results para 6	error bars are mean +/- SEM	Results para 6	p = 0.0006	t(28) = 2.808	Results para 6
FIGURE	SECTION & PARAGRAPH	WHICH TEST?	n	DESCRiptive Stats (Average, Variance)	P VALUE	Degrees of Freedom & F/t/z/R/etc Value				
--------	----------------------	-------------	---	--------------------------------------	---------	--------------------------------------				
1d	Meth. para 10	Repeated Measures ANOVA + post hoc bonferroni test on log transformed data	eArch3.0: 12; eNpHR3.0: 0; ctrl: 8 imaging regions	Error bars indicate +/- SEM	Fig 1 legend	Baseline (BL) vs (L); BL vs. post light (PL); L vs PL: eArch3.0: P = 1.84*10^-11; 9.3*10^-12; eNpHR3.0: P=1;1;1 ctrl: P=1;1;1				
1e	Meth. para 10	One-way ANOVA + post hoc bonferroni test on log transformed data	eArch3.0: 12; eNpHR3.0: 0; ctrl: 8 imaging regions	Error bars indicate +/- SEM	Fig 1 legend	eArch3.0 vs eNpHR3.0: P = 1.27*10^-4; eArch3.0 vs ctrl: P = 2.2*10^-5; eNpHR3.0 vs ctrl: P = 0.1				
1g	Meth. para 10	Repeated Measures ANOVA + post hoc bonferroni test on log transformed data	eArch3.0: 12; eNpHR3.0: 0; ctrl: 11 recorded neurons	Error bars indicate +/- SEM	Fig 1 legend	BL vs L; BL vs PL; L vs PL: eArch3.0: P = 1.3*10^-3; 5.7*10^-2; 1 eNpHR3.0: P=1;1;1 ctrl: P=1;1;1				
1h	Meth. para 10	One-way ANOVA + post hoc bonferroni test on log transformed data	eArch3.0: 12; eNpHR3.0: 0; ctrl: 11 recorded neurons	Error bars indicate +/- SEM	Fig 1 legend	eArch3.0 vs eNpHR3.0: P = 1.49*10^-3; eArch3.0 vs ctrl: P = 5*10^-6; eNpHR3.0 vs ctrl: P = 0.13				
2c	Meth. para 10	two-tailed t-test for dependent samples	recorded neurons from 10 slices	Error bars indicate +/- SEM; individual measurements	Fig 2 legend	t(23) = -2.53				
2d	Meth. para 10	two-tailed t-test for dependent samples	recorded neurons from 10 slices	Error bars indicate +/- SEM	Fig 2 legend	t(23) = -1.86				
2e	Meth. para 10	Repeated Measures ANOVA + post hoc bonferroni test with Huyn-Feldt Correction	recorded neurons from 10 slices	Error bars indicate +/- SEM	Fig 2 legend	BL vs L; BL vs PL; L vs PL: 7.18*10^-3; 5.78*10^-2; 1 Main effect of light: F(1, 9, 9) = 6.66, P = 0.026				

Notes:
- **Fig. 1 legend**: Error bars indicate +/- SEM.
- **Supp. Table 1**: Light x opsin interaction: F(4,58) = 21.24, P = 7.9*10^-11.
- **Supp. Table 1**: Main effect of opsin: F(2,29) = 18.40, P = 7*10^-6.
- **Supp. Table 1**: Main effect of light: F(1, 9, 9) = 6.66, P = 0.026.
| # | Method | Condition | Sample Size | Neurons | Error Bars | p-Value | Test | Description | | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Repeated Measures ANOVA with Bonferroni Correction | Meth. para 10 | 14 | recorded neurons from 14 slices | Error bars indicate +/- SEM | 0.12 | Supp. Table 1 | Main effect of light: F(1,50) = 27.55, p = 1.3x10^-7 |
| 2 | 2f | Two-tailed t-test for dependent samples | Meth. para 10 | 28 | recorded neurons from 12 slices | Error bars indicate +/- SEM; individual measurements | 1.03x10^-4 | Fig. 2 legend | t(27) = -4.55 | Supp. Table 1 |
| 3 | 2g | Two-tailed t-test for dependent samples | Meth. para 10 | 28 | recorded neurons from 12 slices | Error bars indicate +/- SEM | 3.14x10^-3 | Fig. 2 legend | t(27) = -3.24 | Supp. Table 1 |
| 4 | 2h | Repeated Measures ANOVA + post hoc Bonferroni test with Huynfeldt Correction | Meth. para 10 | 14 | recorded neurons from 14 slices | Error bars indicate +/- SEM | 0.12 | Supp. Table 1 | Main effect of light: F(1,16) = 2.55 |
| 2j | Repeated Measures ANOVA + post hoc Bonferroni test with Huynfeldt Correction | Meth. para 10 | 9 | imaged regions from 9 slices of eArch3.0 expressing mice | Error bars indicate +/- SEM | 0.12 | Supp. Table 1 | Main effect of light: F(1,25,10.04) = 12.37, p = 3.99x10^-3 |
| 2k | Repeated Measures ANOVA + post hoc Bonferroni test with Huynfeldt Correction | Meth. para 10 | 13 | recorded neurons from 13 slices of eArch3.0 expressing mice | Error bars indicate +/- SEM | 0.12 | Supp. Table 1 | Main effect of light: F(2,24) = 4.01, p = 3.14x10^-2 |
| 2l | Repeated Measures ANOVA + post hoc Bonferroni test with Huynfeldt Correction | Meth. para 10 | 10 | recorded neurons from 10 slices of eNhR3.0 expressing mice | Error bars indicate +/- SEM | 0.65 | Supp. Table 1 | Main effect of light: F(2,18) = 0.44 |
| 2m | Repeated Measures ANOVA + post hoc Bonferroni test with Huynfeldt Correction | Meth. para 10 | 13 | recorded neurons from 13 slices of eArch3.0 expressing mice | Error bars indicate +/- SEM | 0.12 | Supp. Table 1 | Main effect of light: F(2,24) = 6.85, p = 4.43x10^-3 |
| 2n | Repeated Measures ANOVA + post hoc Bonferroni test with Huynfeldt Correction | Meth. para 10 | 10 | recorded neurons from 10 slices of eNhR3.0 expressing mice | Error bars indicate +/- SEM | 0.12 | Supp. Table 1 | Main effect of light: F(2,24) = 4.01, p = 3.14x10^-2 |
| 3c | Two-tailed t-test for dependent samples | Meth. para 10 | 10 | imaged regions | Error bars indicate +/- SEM | 6.21x10^-3 | Fig. 3 legend | t(9) = -3.55 | Supp. Table 1 |
| 3d | Two-tailed t-test for dependent samples | Meth. para 10 | 10 | imaged regions | Error bars indicate +/- SEM | 0.24 | Fig. 3 legend | t(4) = 1.39 | Supp. Table 1 |
| 3g | Repeated Measures ANOVA + post hoc Bonferroni test | Meth. para 10 | TTX: 10 | imaged regions in TTX or TTX and Lactate | Error bars indicate +/- SEM | TTX baseline vs TTX light: 2.02x10^-6 | Fig. 3 legend | Supp. Table 1 | Main effect of light: F(1,16) = 79.22, p = 1.35x10^-7 |

Legend:
- **Table 1:** Main effect of light: F(2,10) = 2.64
- **Fig. 2:** t(27) = -4.55
- **Fig. 3:** t(27) = -3.24
- **Fig. 4:** t(9) = -3.55
- **Fig. 5:** t(4) = 1.39
- **Fig. 6:** t(27) = -3.24
- **Fig. 7:** t(27) = -3.24
- **Fig. 8:** t(27) = -3.24
- **Fig. 9:** t(27) = -3.24
- **Fig. 10:** t(27) = -3.24
- **Fig. 11:** t(27) = -3.24
- **Fig. 12:** t(27) = -3.24
- **Fig. 13:** t(27) = -3.24
- **Fig. 14:** t(27) = -3.24
| Group | Meth. | Deplicate | n | Recorded neurons | Test | Error bars | legend | F(1,16) | P | Main effect | Supp. | F(1,16) | P | Main effect |
|-------|-------|-----------|---|------------------|------|------------|--------|----------|---|-------------|-------|----------|---|-------------|
| 3i | para 10 | 9 recorded neurons in TTX or TTX and L-lactate | Fig. 3 | Error bars indicate +/- SEM | Fig. 3 | L-lactate baseline vs L-lactate baseline: | Supp. Table 1 | | | | | | | |
| 4b | para 10 | 10 recorded neurons from 10 slices | SFig 2 | Error bars indicate +/- SEM | SFig 2 | Light x L-lactate interaction: | Supp. Table 1 | | | | | | | |
| 2d | para 10 | 17 recorded neurons from 10 slices | SFig 2 | Error bars indicate +/- SEM | SFig 2 | BL vs L: BL vs PL; L vs PL: 4.6x10^{-4}; 1.73x10^{-5}; | Supp. Table 1 | | | | | | | |
| 2g | para 10 | 33 recorded neurons from 12 slices | SFig 2 | Error bars indicate +/- SEM | SFig 2 | BL vs L; BL vs PL; L vs PL: 2.3x10^{-2}; 0.48; 0.48 | Supp. Table 1 | | | | | | | |
| 2h | para 10 | 32 recorded neurons from 12 slices | SFig 2 | Error bars indicate +/- SEM | SFig 2 | BL vs L; BL vs PL; L vs PL: 2.3x10^{-2}; 0.48; 0.48 | Supp. Table 1 | | | | | | | |
| 2c | para 10 | 17 recorded neurons from 10 slices | SFig 2 | Error bars indicate +/- SEM | SFig 2 | BL vs L; BL vs PL; L vs PL: 4.6x10^{-4}; 1.73x10^{-5}; | Supp. Table 1 | | | | | | | |
| 2e | para 10 | 10 recorded neurons from 10 slices | SFig 2 | Error bars indicate +/- SEM | SFig 2 | BL vs L; BL vs PL; L vs PL: 4.6x10^{-4}; 1.73x10^{-5}; | Supp. Table 1 | | | | | | | |
| 2i | para 10 | 14 recorded neurons from 14 slices | SFig 2 | Error bars indicate +/- SEM | SFig 2 | BL vs L; BL vs PL; L vs PL: 2.3x10^{-2}; 0.48; 0.48 | Supp. Table 1 | | | | | | | |
| 3c | para 10 | 8 recorded neurons from 8 slices | SFig 3 | Error bars indicate +/- SEM | SFig 3 | no light vs 5 ms off ramp: 1.62x10^{-12}; no light vs 10 ms off ramp: 2.03x10^{-5}; no light vs 15 ms off ramp: 2.19x10^{-2}; no light vs 20 ms off ramp: 0.81; no light vs > 20 ms off ramps: 1 | Supp. Table 1 | | | | | | | |
| 4c | para 10 | 10 recorded neurons from 10 slices | SFig 4 | Error bars indicate +/- SEM | SFig 4 | Main effect of light: F(3.78,34) = 7.80 | Supp. Table 1 | | | | | | | |
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?
 If so, what figure(s)?
 Yes; Fig 1 a–b
 Fig 3 a
 Supplementary Fig 6 a

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?
 If so, where is this reported (section, paragraph #)?
 Fig 1 a: Online methods paragraph 10 (Data analysis and statistical methods)
 Fig 1 b: quantified in Fig 1c and d, described in Fig 1 legend.
 Fig 3 a: quantified in Fig 3b and c, described in Fig 3 legend.
 Supplementary Fig 6 a: quantified in Supplementary Fig 6 b and c, described in Supplementary Fig 6 legend.
Statistics and general methods

Question	Answer
1. Is there a justification of the sample size?	No statistical tests were run to predetermine sample size, but sample sizes were similar to those commonly used in the field (Ref. 19, 27) - stated in online methods paragraph 10 (Data analysis and statistical methods).
If so, how was it justified?	Yes, online methods paragraph 10 (Data analysis and statistical methods)
Where (section, paragraph #)?	Yes, online methods paragraph 10 (Data analysis and statistical methods)
Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.	Yes and appropriate corrections were performed as described in online methods paragraph 10 (Data analysis and statistical methods)
2. Are statistical tests justified as appropriate for every figure?	Yes, online methods paragraph 10 (Data analysis and statistical methods)
Where (section, paragraph #)?	Yes, online methods paragraph 10 (Data analysis and statistical methods)
a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?	Yes, online methods paragraph 10 (Data analysis and statistical methods)
b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?	Appropriate corrections were performed as described in online methods paragraph 10 (Data analysis and statistical methods)
Where is this described (section, paragraph #)?	Yes and appropriate corrections were performed as described in online methods paragraph 10 (Data analysis and statistical methods)
c. Is there any estimate of variance within each group of data?	Yes, two sided. Online methods paragraph 10 (Data analysis and statistical methods)
Is the variance similar between groups that are being statistically compared?	Yes, post hoc Bonferroni tests were used.
Where is this described (section, paragraph #)?	Yes, online methods paragraph 10 (Data analysis and statistical methods)
d. Are tests specified as one- or two-sided?	Yes, online methods paragraph 10 (Data analysis and statistical methods)
e. Are there adjustments for multiple comparisons?	No randomization was used. Stated in online methods paragraph 10 (Data analysis and statistical methods).
3. Are criteria for excluding data points reported?	Blinding was not performed, however automated analysis was used whenever possible. Stated in online methods paragraph 10 (Data analysis and statistical methods)
Was this criterion established prior to data collection?	Yes, online methods paragraph 10 (Data analysis and statistical methods)
Where is this described (section, paragraph #)?	No randomization was used. Stated in online methods paragraph 10 (Data analysis and statistical methods).
4. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data.	No randomization was used. Stated in online methods paragraph 10 (Data analysis and statistical methods).
If no randomization was used, state so.	No randomization was used. Stated in online methods paragraph 10 (Data analysis and statistical methods).
Where does this appear (section, paragraph #)?	No randomization was used. Stated in online methods paragraph 10 (Data analysis and statistical methods).
5. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?	Blinding was not performed, however automated analysis was used whenever possible. Stated in online methods paragraph 10 (Data analysis and statistical methods)
6. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included?
 Where (section, paragraph #)?
 Yes, online methods paragraph 5 (Stereotactic injection of viral vectors for acute brain slice experiments)

7. Is the species of the animals used reported?
 Where (section, paragraph #)?
 Yes, online methods paragraph 3 (Primary hippocampal neuron culture and viral transduction) and online methods paragraph 5 (Stereotactic injection of viral vectors for acute brain slice experiments)

8. Is the strain of the animals (including background strains of KO/ transgenic animals used) reported?
 Where (section, paragraph #)?
 Yes, online methods paragraph 3 (Primary hippocampal neuron culture and viral transduction) and online methods paragraph 5 (Stereotactic injection of viral vectors for acute brain slice experiments)

9. Is the sex of the animals/subjects used reported?
 Where (section, paragraph #)?
 Yes, online methods paragraph 3 (Primary hippocampal neuron culture and viral transduction) and online methods paragraph 5 (Stereotactic injection of viral vectors for acute brain slice experiments)

10. Is the age of the animals/subjects reported?
 Where (section, paragraph #)?
 Yes, online methods paragraph 3 (Primary hippocampal neuron culture and viral transduction) and online methods paragraph 5 (Stereotactic injection of viral vectors for acute brain slice experiments)

11. For animals housed in a vivarium, is the light/dark cycle reported?
 Where (section, paragraph #)?
 Yes, online methods paragraph 5 (Stereotactic injection of viral vectors for acute brain slice experiments)

12. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 Where (section, paragraph #)?
 Yes, online methods paragraph 5 (Stereotactic injection of viral vectors for acute brain slice experiments)

13. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 n/a

14. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 n/a

15. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 No animals were excluded from analysis.

 a. How were the criteria for exclusion defined?
 Where is this described (section, paragraph #)?
 n/a
b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.

Where is this described (section, paragraph #)?

n/a

Reagents

1. Have antibodies been validated for use in the system under study (assay and species)?

a. Is antibody catalog number given?

Where does this appear (section, paragraph #)?

Yes, online methods paragraph 4 (Immunohistochemistry)

b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?

Where does this appear (section, paragraph #)?

Yes (ref. 8), main text and online methods paragraph 4 (Immunohistochemistry).

2. Cell line identity

a. Are any cell lines used in this paper listed in the database of commonly misidentified cell lines maintained by ICLAC and NCBI Biosample?

Where (section, paragraph #)?

b. If yes, include in the Methods section a scientific justification of their use--indicate here in which section and paragraph the justification can be found.

n/a

c. For each cell line, include in the Methods section a statement that specifies:

- the source of the cell lines
- have the cell lines been authenticated? If so, by which method?
- have the cell lines been tested for mycoplasma contamination?

Where (section, paragraph #)?

n/a
Data deposition

Data deposition in a public repository is mandatory for:

- Protein, DNA and RNA sequences
- Macromolecular structures
- Crystallographic data for small molecules
- Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse.

1. Are accession codes for deposit dates provided?
 Where (section, paragraph #)?
 n/a

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.
 n/a

2. If computer code was used to generate results that are central to the paper’s conclusions, include a statement in the Methods section under "Code availability" to indicate whether and how the code can be accessed. Include version information as necessary and any restrictions on availability.
 n/a

Human subjects

1. Which IRB approved the protocol?
 Where is this stated (section, paragraph #)?
 n/a

2. Is demographic information on all subjects provided?
 Where (section, paragraph #)?
 n/a

3. Is the number of human subjects, their age and sex clearly defined?
 Where (section, paragraph #)?
 n/a

4. Are the inclusion and exclusion criteria (if any) clearly specified?
 Where (section, paragraph #)?
 n/a
5. How well were the groups matched?
 Where is this information described (section, paragraph #)?
 n/a

6. Is a statement included confirming that informed consent was obtained from all subjects?
 Where (section, paragraph #)?
 n/a

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?
 Where (section, paragraph #)?
 n/a

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?
 n/a

 a. If yes, is the number rejected and reasons for rejection described?
 Where (section, paragraph #)?
 n/a

2. Is the number of blocks, trials or experimental units per session and/or subjects specified?
 Where (section, paragraph #)?
 n/a

3. Is the length of each trial and interval between trials specified?
 n/a

4. Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.
 n/a

5. Is the task design clearly described?
 Where (section, paragraph #)?
 n/a

6. How was behavioral performance measured?
 n/a

7. Is an ANOVA or factorial design being used?
 n/a

8. For data acquisition, is a whole brain scan used?
 If not, state area of acquisition.
 a. How was this region determined?
 n/a
| Question | Answer |
|---|--------|
| 9. Is the field strength (in Tesla) of the MRI system stated? | n/a |
| a. Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated? | n/a |
| b. Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated? | n/a |
| 10. Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated? | n/a |
| 11. Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)? | n/a |
| 12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)? | n/a |
| 13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.? | n/a |
| 14. Were any additional regressors (behavioral covariates, motion etc) used? | n/a |
| 15. Is the contrast construction clearly defined? | n/a |
| 16. Is a mixed/random effects or fixed inference used? | n/a |
| a. If fixed effects inference used, is this justified? | n/a |
| 17. Were repeated measures used (multiple measurements per subject)? | n/a |
| a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated? | n/a |
| 18. If the threshold used for inference and visualization in figures varies, is this clearly stated? | n/a |
| 19. Are statistical inferences corrected for multiple comparisons? | n/a |
| a. If not, is this labeled as uncorrected? | n/a |
20. Are the results based on an ROI (region of interest) analysis?
 a. If so, is the rationale clearly described?
 b. How were the ROI’s defined (functional vs anatomical localization)?

21. Is there correction for multiple comparisons within each voxel?

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?

Additional comments

Additional Comments