COLLABORATIVE MISSION OPTIMIZATION FOR SHIP RAPID SEARCH BY MULTIPLE HETEROGENEOUS REMOTE SENSING SATELLITES

QIAN ZHAO, BITAO JIANG*, XIAOGANG YU AND YUE ZHANG
Beijing Institute of Remote Sensing Information
Beijing 100089, China

(Communicated by Bin Li)

ABSTRACT. Multiple heterogeneous satellites mission optimization is a typical kind of non-deterministic polynomial-time hard (NP-hard) problem, and some complicated scenarios bring new challenges. A novel method of missing ship rapid search using multiple grouped heterogeneous satellites is introduced in this paper. The focus is on optimization of collaborative mission optimization for various satellites including low-earth orbit (LEO) satellite and geostationary orbit (GEO) satellites. A fast coverage of the wide sea area using imaging satellites with narrow coverage range has become the most important part to tackle this problem. However, due to different imaging mechanisms of heterogeneous satellites and other constraints, it brings a great challenge to construct the optimization model. A constrained optimization problem model considering the cooperation between LEO and GEO satellites is constructed. A solution strategy based on bi-level metaheuristic algorithm is designed. The time optimal solution of the collaborative task planning between LEO and GEO satellites can be obtained based on the optimal attitude maneuver path of GEO satellites. Thus, wide-area search for missing ships can be conducted in an effective way. The effectiveness of the proposed method is verified by an example.

1. Introduction. Remote sensing satellite is a kind of satellite that uses remote sensing technology and equipment to observe the surface cover and natural phenomena. The demand for remote sensing satellite data in various fields has been growing rapidly, and the task demand presents a diversified and complicated development trend. Satellite images can be exploited in many fields of human life, including meteorology, agriculture, environmental monitoring, energy exploration, iceberg monitoring, disaster relief and so on.

Satellite mission planning plays an important role in the process of remote sensing satellite observation. Its results directly affect the mission execution and efficiency of remote sensing satellite system. Remote sensing satellites usually use optical cameras or synthetic aperture radar sensors to acquire images. Mission planning of satellite was originally performed manually, but with the increasing
demand for satellite images, researchers and task managers have successfully improved the utilization of single satellite and small satellite constellation by applying operational research and optimization methods to satellite business [16, 6, 7]. With the increasing number and variety of remote sensing satellites, the task planning of multi-satellite cooperation has been paid more and more attention by researchers. This problem has been proved to be a NP-Hard problem, which is usually solved by metaheuristic algorithms such as simulated annealing and genetic algorithm. At present, there are many researches on collaborative mission planning for a single class of multiple low-earth orbit (LEO) satellites. Bianchesi et al. [1] put forward a tabu search element heuristic algorithm to solve the problem of multi-satellite image acquisition and scheduling for optical agile satellites, which is simulated and verified by the French Pleiades constellation. Hwang et al. [8] proposed a genetic algorithm for scheduling multiple agile satellites. Malladi et al. [10, 11] studied the task scheduling of synthetic aperture radar satellite constellation, which consists of three identical non-agile satellites. Zhang et al. [18] solved the multi-satellite mission planning problem based on genetic algorithm. Liu et al. [17] designed a scheduling algorithm for multiple satellites based on merging mechanism.

Heterogeneous satellites refer to satellite clusters composed of satellites with different orbits, different functions and different imaging mechanisms. Collaborative task planning of heterogeneous satellites brings greater challenges to the design of planning models and algorithms. Snezana [13] et al. built a task planning model for multi-regional target coverage for different types of LEO satellites, including agile satellites and non-agile satellites.

High-orbit satellite is usually referred to geostationary orbit (GEO) satellite, which is a kind of satellite with an orbit height of about 36000km and a relatively fixed sub-satellite point. GEO remote sensing satellite mainly relies on attitude maneuver to image different places, which is different from LEO satellite imaging process. Although researchers have studied the task planning of single or multiple GEO satellites [20, 9], there are few studies considering the cooperative tasks of LEO and GEO satellites. Most of the existing researches focus on guiding cooperation in time series [19]. To solve the problem of wide-area search for missing ships on the sea surface, a fast coverage of the wide sea area using imaging satellites with narrow coverage range has become the most important part to tackle this problem. However, due to different imaging mechanisms of heterogeneous satellites and other constraints, it brings a great challenge to construct the optimization model and algorithms. In this paper, a constrained optimization model considering the cooperation between LEO and GEO satellites is constructed. The optimization variables are constructed as meta-task selection sequence of LEO satellites and observation sequence of GEO satellite. The objective function is mission duration of LEO and GEO satellite. Complex constrains are considered, such as contain on-board energy, image interval, attitude angular velocity and so on. A solution method based on bi-level hybrid metaheuristic algorithm is hereby designed, which consists of genetic algorithm and ant colony optimization. In the inner layer, ant colony algorithm is used to solve the optimal maneuvering path problem of GEO satellite at a given target point. In the outer layer, genetic algorithm is used to solve the optimal time required for parallel implementation of observation tasks by LEO and GEO satellites. The time optimal solution of the collaborative task planning between LEO and GEO satellites can be obtained based on the optimal attitude maneuver path.
HETEROGENEOUS SATELLITES MISSION OPTIMIZATION

of GEO satellites, thus providing an effective way for the wide-area rapid search of lost ships.

The rest of this paper is as follows. The basic model of the system is presented in Section 2, including satellite orbit and attitude model, satellite observation model. Then in Section 3, the optimization problem model is constructed, which includes optimization variables, objective functions, constraints and so on. In Section 4, the structure of solution method is introduced, which constructs a hybrid solution strategy based on genetic algorithm and ant colony algorithm. The results are given in Section 5, and effectiveness of the method is verified. The conclusion and future research are finally shown in Section 6.

2. System model.

2.1. Satellite orbit and attitude model. In this paper, the collaborative mission optimization of LEO and GEO satellites is studied. Firstly, the orbit and attitude dynamic models of satellites are given. In order to calculate the access time to the observation area. This paper adopts the orbit dynamics model considering the J_2 perturbation is used[2]. The formula is given as follows

\[
\begin{align*}
\dot{x} &= v_x \\
\dot{y} &= v_y \\
\dot{z} &= v_z \\
\dot{v}_x &= -\frac{\mu}{r^3} \left(1 + \frac{3}{2} J_2 \left(\frac{R_e}{r} \right)^2 \left(1 - z^2 r^2 \right) \right) \\
\dot{v}_y &= -\frac{\mu y}{r^3} \left(1 + \frac{3}{2} J_2 \left(\frac{R_e}{r} \right)^2 \left(1 - z^2 r^2 \right) \right) \\
\dot{v}_z &= -\frac{\mu z}{r^3} \left(1 + \frac{3}{2} J_2 \left(\frac{R_e}{r} \right)^2 \left(3 - 5 z^2 r^2 \right) \right)
\end{align*}
\]

where μ is the constant of gravity, x, y and z are the position of the satellite in the J2000 geocentric inertial coordinate system, v_x, v_y and v_z are the velocity of the satellite in the J2000 geocentric inertial coordinate system, r is the geocentric distance, R_e is earth radius, and J_2 is the perturbation constant of the earth’s oblateness.

The kinematic equation of satellite defined by Modified Rodrigues parameter (MRP) [14], which described the attitude with respect to the orbit frame, is given by

\[
\dot{\sigma} = G(\sigma) \left(\omega - \omega_0(\sigma) \right)
\]

where ω is the angular rate of satellite, $\omega_0(\sigma)$ is the orbit angular rate. $G(\sigma)$ is defined as

\[
G(\sigma) = \frac{1}{2} \left(1 - \frac{\sigma^T \sigma}{2} E_3 + \sigma^T \sigma + [\sigma^\times] \right)
\]

where $[\sigma^\times]$ represents the skew cross product matrix, and E_3 is 3×3 identity matrix.

2.2. Satellite observation model. LEO satellites are usually deployed at an orbital altitude of several hundred kilometers, thus the orbital period is usually less than 2 hours. The orbit of the sub-satellite point is affected by the rotation of the satellite around the earth and the rotation of the earth, and presents a continuous trace on the earth surface. Due to the influence of orbital dynamics, LEO satellites are usually unable to observe designated ground task areas immediately. The accurate access time to the task area can be calculated based on formula (1). In order to increase the imaging range of LEO Earth observation satellites, satellites usually have the ability of attitude maneuver. LEO satellite usually images the area within
a certain field of view through attitude maneuver in pitch and roll directions. Due to the limitation of satellite attitude maneuverability, and considering the influence of satellite yaw on imaging quality, the yaw angle is usually limited in a certain range. Usually, multiple satellites work together to achieve regional coverage as shown in Figure 1.

![LEO satellite observation](image)

Figure 1. LEO satellite observation

According to the number of initial orbit of satellites, payload capacity constraints and the position of target points, the access window of satellites to targets can be calculated. The meta-task model of satellites can be obtained, as shown in the following formula

\[
m_k = \langle s(k), g(k), t_0(k), t_f(k), t_m(k), \phi(k) \rangle
\]

where \(s(k) \) indicates the satellite executing the meta-task, \(g(k) \) indicates the target point code, \(t_0(k) \) indicates the start time of the meta-task, \(t_f(k) \) indicates the end time of the meta-task, \(t_m(k) \) indicates the center time of the meta-task, and \(\phi(k) \) is the attitude side swing angle. The value of \(m_k \) is 0 or 1. If \(m_k=1 \), it means the meta-task \(m_k \) will be executed. If \(m_k=0 \), it means the meta-task \(m_k \) won’t be executed.

GEO satellites are usually deployed in geostationary orbit with an altitude of about 36000 km. The orbital period of this kind of orbit is consistent with the earth rotation period, so its sub-satellite point is fixed. The GEO satellite can observe the craft through continuous attitude maneuver, as shown in figure 2.

The maneuver angle of GEO satellite can be approximately calculated by cosine formula

\[
\theta_1 = \arccos \frac{l_{OA}^2 + l_{OB}^2 - l_{AB}^2}{2l_{OA}l_{OB}}
\]

\[
\theta_2 = \arccos \frac{l_{OB}^2 + l_{OC}^2 - l_{BC}^2}{2l_{OB}l_{OC}}
\]
where l_{OA} is the distance between the GEO satellite and location A. l_{OB} is the distance between the GEO satellite and location B. l_{OC} is the distance between the GEO satellite and location C. l_{AB} is the distance between location A and location B. l_{BC} is the distance between location B and location C.

3. Optimization problem. In this paper, focusing on solving the problem of rapid coverage of target areas, a mission optimization model for cooperative observation of LEO and GEO satellites is established.

3.1. Optimization variables. For the collaborative observation mission of the LEO and GEO satellites, the optimization variables are different because of the different imaging process of the LEO and GEO satellites. For the LEO satellites, according to the calculation results of satellite target area access, whether each meta-task is selected as an optimization variable. Assuming that there are p meta-tasks in a given time period, then the meta-task selection sequence of LEO satellites is shown as follows

$$M_{LEO} = [m_1 \ m_2 \ \ldots \ \ldots \ m_k \ \ldots \ m_p] \quad (7)$$

In which m_k is a variable from 0 to 1. If $m_k=1$, it means that the k meta-task will be executed. If $m_k=0$, it means that the k meta-task will not be executed.

For GEO satellites, it is assumed that there are q meta-areas to be observed, and the observation sequence of each grid in the target area is selected as the optimization variable, as shown in the following formula

$$M_{GEO} = [s_1 \ s_2 \ \ldots \ s_q] \quad (8)$$

Figure 2. GEO satellite observation
3.2. **Objective function.** In order to cover the target area rapidly, the total time to complete the task is selected as the objective function as shown

\[
\min f(x) = \text{Max } (T_{\text{LEO}}, T_{\text{GEO}})
\]

where \(T_{\text{LEO}} \) is the mission time of the LEO satellites, and \(T_{\text{GEO}} \) is the mission time of the GEO satellites.

For the meta-task selection sequence, the duration of LEO satellite tasks can be obtained by the following formula, which depends on the earliest start time and the latest end time of all executed meta-tasks

\[
T_{\text{LEO}} = \max t_f(k) - \min t_0(k)
\]

The time for the GEO satellite to complete the whole task areas can be estimated by the following formula

\[
T_{\text{GEO}} = q \times d_{\text{single}} + \frac{q-1}{\omega_{\text{max}}} \sum \alpha_i
\]

where \(q \) is the number of areas, \(d_{\text{single}} \) is the time required for GEO satellite to complete imaging once, \(\omega_{\text{max}} \) is the maximum angular velocity of satellite attitude rotation, \(\alpha_i \) is the attitude maneuver angle after completing the \(i \)th imaging action, which is determined by the target observation sequence of GEO satellite.

3.3. **Constraints.** Limited by the on-board energy constraint, the imaging times of LEO satellite in a period of time are limited. For all the meta-tasks of the \(i \)th satellite, the following constraint should be satisfied

\[
k=p,s(k)=i \sum m_k \leq \frac{E_{\text{max}}}{E_{\text{single}}} \quad (i = 1 \ldots n)
\]

where \(E_{\text{max}} \) is the maximum energy constraint of a single satellite, and \(E_{\text{single}} \) is the energy required for imaging once.

There is a certain interval constraint between the two imaging action of LEO satellite, which depends on the attitude angle of the two imaging action. The constraint can be expressed as follows

\[
|t_m(i) - t_m(j)| \geq f_\phi(|\phi(i) - \phi(j)|) \quad (s(i) = s(j))
\]

where \(f_\phi(x) \) is a nonlinear function, which depends on the attitude maneuver speed of LEO satellite.

In order to ensure that observation resources are not wasted, all LEO satellites only observe the grid to be observed once at most as given

\[
k=p,g(k)=i \sum m_k \leq 1 \quad (i = 1 \ldots n)
\]

The attitude angular velocity constraint of GEO satellite is

\[
\omega \leq \omega_{\text{max}}
\]

Considering the motion of moving ships at sea, in order to ensure the capture of ships, two adjacent mosaic images should meet the following constraints. In this way, even if the craft sails at the maximum speed, as long as the craft is within the range of two images, the satellite can certainly capture it.

\[
L_{\text{blend}} \geq v_{\text{max}} \cdot d_{\text{image}}
\]
where \(L_{blend} \) is the overlapping width of mosaic area, \(v_{max} \) is the maximum speed of the ships, and \(dt_{image} \) is the time interval between two image action.

Figure 3. The relationship between ship speed and coverage area

Furthermore, the above formula is also applicable to the task of regional coverage in large sea areas. For spliced images, the overlapping area and imaging time interval of any two adjacent images satisfy the above formula, which means the ships in this area can be captured. In order to make the grid division more standardized, the problem can be simplified furthermore. Set the total time to complete all grid imaging as \(T_{dur} \), and the overlapping interval of all spliced images can be calculated by the following formula.

\[
L_{blend} \geq v_{max} \cdot T_{dur} \tag{17}
\]

Then, the distance between the center points of adjacent regional grids can be calculated according to the following formula

\[
D_{interval} \equiv D_{image} - v_{max} \cdot T_{dur} \tag{18}
\]

where \(D_{image} \) is the imaging width of the satellite.

4. Solution method.

4.1. General structure. In this paper, a bi-level hybrid solution method based on ant colony algorithm and genetic algorithm is proposed to solve the large-scale search problem of ships. In the inner layer, ant colony algorithm is used to solve the optimal maneuvering path problem of GEO satellite for given areas. In the outer layer, genetic algorithm is used to solve the optimal time required for parallel implementation of observation tasks by LEO and GEO satellite. Considering the image width of satellite and the maximum speed of moving target at sea, the calculation formula (18) is used to divide the regional grid. Based on the LEO satellite orbit dynamics model of formula (1), the access calculation is carried out for each meta-area of the whole task area. The access time and attitude angle of
Figure 4. Mesh generation considering ship moving

all LEO satellites to the each meta-area in a given time can be obtained, thus the observation meta-tasks of LEO satellites can be obtained.

4.2. Outer layer: Genetic algorithm optimization. The core idea of genetic algorithm is to select the gene sequence with the best fitness function by using the strategies of selection, crossover and mutation[15, 12]. Genetic algorithm usually uses 0-1 coding gene sequence as optimization variable, which is consistent with LEO satellite’s choice of meta-task as optimization variable.

It is assumed that within a given planning period H, there are p meta-tasks, and the sequence of meta-tasks is $M_{LEO} = [m_1 \ m_2 \ ... \ m_p]$. For the meta-task selection sequence, the duration of LEO satellite task can be calculated by formula (10). All meta-areas of the LEO satellites is

$$M_{LEO} = unique ([s(1) \ s(2) \ ... \ s(p)])$$

(19)

where k_{forbid} is the weight coefficient of penalty function. Then, all the solutions in the population are selected, crossed and mutated, and the new population is obtained by iterative update. Further, the unselected remaining areas are taken as the meta-areas to be observed for GEO satellites. T_{GEO} will be determined by inner layer optimization calculation.

$$f(x) = Max ([T_{LEO}, T_{GEO}]) + k_{forbid} \left(\frac{\sum_{i=1}^{s(k)} (m_k - \frac{E_{max}}{E_{single}})}{T} \sum_{i=1}^{s(k)} f_0 (|\phi(i) - \phi(j)| - |t_m(i) - t_m(j)| + \sum_{i=1}^{s(k)} (m_k - 1)) \right)$$

(20)
Figure 5. General structure of solution method
4.3. Inner layer: Ant colony optimization. Ant colony optimization (ACO) was first proposed by Marco Dorigo in 1992, which is a typical metaheuristic algorithm[5, 3, 4]. Its core idea is to determine the probability of selecting optimized variables based on constantly updated pheromones, and it has been widely used in various optimization scheduling problems. In this paper, ant colony algorithm is used to solve the inner optimization problem, which means the optimal attitude maneuver path of GEO satellite can be observed.

For a given meta-areas, ants are randomly placed on the center points of meta-areas. Assume that the number of meta-areas is N, and the number of ants is M. The probability of moving from point i to point j can be calculated by the following formula

$$P_{ij}(t) = \begin{cases} \frac{\left[\tau_{ij}(t)^\alpha [dt_{single} + \theta_{ij}(t)/\omega_{max}]^2\right]}{\sum_{j \in allowed_k(i)} \left[\tau_{ij}(t)^\alpha [dt_{single} + \theta_{ij}(t)/\omega_{max}]^2\right]^{\beta} j \in allowed_k(i)} \\ 0 \end{cases}$$

When the next point j is in the taboo table, this probability is 0 below the formula. When j is in the allowable table, probability can be calculated as the formula. In the molecule, τ_{ij} is the pheromone from meta-area i to meta-area j, and $\theta_{ij}(t)$ is the attitude angle of GEO satellite from center point of meta-area i to center point of meta-area j. $\theta_{ij}(t)/\omega_{max}$ is the maneuvering time from center point of meta-area i to center point of meta-area j. dt_{single} is the single imaging time of GEO satellite.

And so on, ants can finish accessing meta-areas. After all of the ants finish moving, it forms a set of access sequences, and the iteration of this generation is finished. Then the pheromones can be updated. The updated value of pheromone is calculated from the maneuver time of each ant in the ant colony and then summed up.

For the k_{th} ant in the ant colony, if he passes the $\theta_{ij}(t)$, then the pheromone increment from i to j caused by the k_{th} ant is the total pheromone of an ant divided by the total angle of the ant. If not, the increment caused by the ant is 0.

$$\tau_{ij}(t + 1) = (1 - \rho)\tau_{ij}(t) + \Delta \tau_{ij}(t)$$

$$\Delta \tau_{ij}(t) = \sum_{k=1}^{m} \Delta \tau^k_{ij}(t)$$

$$\Delta \tau^k_{ij}(t) = \begin{cases} Q\omega_{max}/\theta_{ij}(t) & \text{The } k_{th} \text{ ant has passed the } \theta_{ij} \\ 0 & \text{The } k_{th} \text{ ant has not passed the } \theta_{ij} \end{cases}$$

where ρ is the volatilization coefficient of pheromone. Q is a constant and can be taken as 1. pheromone update matrix, add the attenuated value of the current pheromone matrix, which is the pheromone matrix used in the next iteration. This is repeated until the maximum number of iterations is reached or the optimal value converges.

Then, after the optimization is completed, the optimal maneuver time T_{OptGEO} of GEO satellite can be obtained. It is not difficult to see that the optimal maneuver time T_{OptGEO} depends on the number and distribution of M_{GEO}. T_{OptGEO} can be regarded as the function of M_{GEO}, which is shown in the following formula

$$T_{OptGEO} = f_{opt}(M_{GEO})$$

Under the framework of the algorithm, the inner optimization can be calculated in parallel, and the number of calculation nodes is set to be consistent with the
population number of each generation of genetic algorithm, so as to improve the
calculation efficiency.

5. Results.

5.1. Problem. The scenario is that a transport ship is lost of communication in
the Pacific Ocean due to fault, and the satellite cluster is needed to search the area
where the ship appeared last time rapidly.

The mission scenario includes one GEO satellite and 24 LEO satellites. The
satellites orbit parameters are generated randomly. The orbit parameters are shown
in Table 1. The semi-major axis of the satellite is denoted by \(a \). The eccentricity of
satellite is denoted by \(e \), and the inclination of orbit is denoted by \(i \). Raan means
right ascension of ascending node, and \(w \) is the argument of perigee. These orbital
parameters can be converted by the position and speed of the satellite. The search
area is about 4000km \(^2\) 4000km.

Table 2 contains the constant parameter settings, mainly including orbit pertur-
bation constant \(J_2 \), earth sea level neutral acceleration \(g_n \), earth gravity constant \(\mu \),
earth radius \(R_e \), maximum speed of ship, imaging width of LEO satellite, imaging
width of GEO satellite, maximum angular velocity of GEO satellite.

Table 1. Satellite Orbit Parameters					
\(a (\text{km}) \)	\(e \)	\(i (\text{rad}) \)	\(\text{raan} (\text{rad}) \)	\(w (\text{rad}) \)	
GEO	42166.3	0	0	2.6180	0
LEO-1	6978	0	0.6981	0.7854	2.0944
LEO-2	6978	0	0.6981	0.7854	4.1888
LEO-3	6978	0	0.6981	0.7854	6.2832
LEO-4	6978	0	0.6981	1.5708	2.0944
LEO-5	6978	0	0.6981	1.5708	4.1888
LEO-6	6978	0	0.6981	1.5708	6.2832
LEO-7	6978	0	0.6981	2.3562	2.0944
LEO-8	6978	0	0.6981	2.3562	4.1888
LEO-9	6978	0	0.6981	2.3562	6.2832
LEO-10	6978	0	0.6981	3.1416	2.0944
LEO-11	6978	0	0.6981	3.1416	4.1888
LEO-12	6978	0	0.6981	3.1416	6.2832
LEO-13	6978	0	0.6981	3.9270	2.0944
LEO-14	6978	0	0.6981	3.9270	4.1888
LEO-15	6978	0	0.6981	3.9270	6.2832
LEO-16	6978	0	0.6981	4.7124	2.0944
LEO-17	6978	0	0.6981	4.7124	4.1888
LEO-18	6978	0	0.6981	4.7124	6.2832
LEO-19	6978	0	0.6981	5.4978	2.0944
LEO-20	6978	0	0.6981	5.4978	4.1888
LEO-21	6978	0	0.6981	5.4978	6.2832
LEO-22	6978	0	0.6981	6.2832	2.0944
LEO-23	6978	0	0.6981	6.2832	4.1888
LEO-24	6978	0	0.6981	6.2832	6.2832
Table 2. Constant Parameters

Parameters	Value	Unit
Orbit perturbation constant J_2	0.0010826298989052	
Gravity acceleration of earth’s sea level g_e	0.00980665	km/s²
Gravitational constant μ	3.98600.4418	km³/s²
Radius of the earth R_e	6.378137e3	km
Ship maximum speed v_{max}	20	km/hour
Imaging width of LEO satellite D_{LEO}	250km	km
Imaging width of GEO satellite D_{GEO}	250km	km
Maximum angular velocity of GEO satellite w_{max}	1e-4	deg/hour
Single imaging time of GEO satellite t_{single}	20	s

According to the satellite imaging width and the maximum speed of the ship, the center point distance of the grid can be estimated, which is about 220km. Then, the task area can be divided into 10 *10 meta-areas. Table 3 shows the access calculation results of 24 LEO satellites to 100 meta-areas. The table only gives the information of the first 20 meta tasks. See the appendix for the detailed calculation results.

Table 3. Access calculation results

Meta Mission No.	Satellite No.	Grid No.	Observation Time (hour)
1	4	1	0.119444
2	4	2	0.113889
3	4	3	0.108333
4	4	11	0.125
5	4	12	0.122222
6	4	21	0.13333
7	7	7	1.625
8	7	8	1.619444
9	7	16	1.636111
10	7	17	1.63333
11	7	18	1.627778
12	7	26	1.641667
13	7	27	1.641667
14	7	35	1.655556
15	7	36	1.652778
16	7	37	1.644444
17	7	45	1.663889
18	7	46	1.658333
19	7	54	1.675
20	7	55	1.669444

5.2. Result analysis. As shown in Figure 6, the coverage ratio of the craft area over time when only LEO satellite constellation is used. When the mission time reaches about 3 hours, LEO satellite constellation has completed 100% coverage of the craft area.

As shown in Figure 7, the optimization result of the outer layer optimization problem is shown. Using genetic algorithm, the initial population is 50, and after about 30 generations of iteration, the objective function converges. The optimal
value of the objective function is 0.766692 (hour), which means that LEO satellite and GEO Satellite complete the task at the same time, taking about 46.0015 minutes. According to the craft’s maximum speed of 25km/h, the maximum sailing distance is 19.17km, which meets the observation grid overlap constraint and can achieve the acquisition of moving ships.

As shown in Figure 8, the grid observation task of LEO satellite constellation under the optimal outer layer optimization problem contains 63 grids. Then the other 37 grids are observed by GEO satellite.

The iterative process of the inner optimization problem is optimized by ant colony algorithm. The number of ants is 50, the pheromone factor is $\alpha = 1$, the heuristic factor is $\beta = 5$, the information evaporation coefficient is $\rho = 0.5$, and the pheromone enhancement coefficient is $q = 100$. In the 200 iterations, the objective function converges as shown in Figure 9.
Figure 8. LEO Mission Selected

As shown in Figure 10, it is the optimal observation sequence of the inner optimization problem. Under this observation sequence, the attitude maneuver time of GEO satellite is the shortest. According to formula (11), it can be calculated that the attitude maneuver time required by GEO satellite to complete all areas is 0.766692 hours, which is consistent with the mission duration of LEO satellites. It indicates that GEO satellite and LEO satellite have completed observation at the same time according to their respective selected meta-areas. Compared with using all LEO satellite constellations, the coverage time is 2.99 hours, and the time
consumption is reduced by 74.36%. Compared with only using GEO satellite, the coverage time is 1.21 hours, and the time consumption is reduced by 36.11%. There are as many as 24 LEO satellites in total. However, due to the orbital characteristics of LEO satellites, it is difficult to achieve rapid coverage of large areas, and the task takes a long time. Collaborative mission optimization can bring the comprehensive benefits of LEO satellite constellation and GEO satellite into full play, and realize the complementary advantages of different types of satellites. The example shows that the collaborative task planning is effective, and it can achieve more efficient observation of wide area coverage.

Based on the results and analysis of the numerical example, we can see that the proposed cooperative mission planning model and algorithm for moving ships can effectively solve the problem of rapid coverage of ship areas. In addition, the problem is calculated repeatedly, and the results are consistent, which shows good robustness.

6. Conclusion. This paper introduces a novel method of multiple heterogeneous satellite missions for the purpose of ship rapid search. A collaborative mission optimization model for area coverage using LEO and GEO satellites is established. Considering the characteristics of the problem, a novel task planning solution algorithm based on hybrid solution strategy is designed, which contains two-layer optimization model. Using this method, the optimal solution of space heterogeneous satellite coordination mission planning time can be obtained based on the optimal attitude maneuver path of GEO satellite. The results analysis shows that the model and algorithm can solve the ship rapid searching problem effectively.

In later research works, the impact of cloud and other factors should be considered, and the synthetic aperture radar satellite should be considered into the mission planning model. Thus the mission optimization model of multi-source information fusion can be established, so as to solve the problem of ship search in complex environment more effectively.
REFERENCES

[1] N. Bianchessi, J.-F. Cordeau, J. Desrosiers, G. Laporte and V. Raymond, A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites, European Journal of Operational Research, 177 (2007), 750–762.

[2] R. Deutsch, Orbital Dynamics of Space Vehicles, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1963.

[3] M. Dorigo and C. Blum, Ant colony optimization theory: A survey, Theoret. Comput. Sci., 344 (2005), 243–278.

[4] M. Dorigo and G. Di Caro, Ant colony optimization: A new meta-heuristic, In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 2 (1999), 1470–1477.

[5] M. Dorigo, M. Birattari and T. Stutzle, Ant colony optimization, IEEE Computational Intelligence Magazine, 1 (2006), 28–39.

[6] J. Dungan, J. Frank, A. Jönsson, R. Morris and D. Smith, Advances in planning and scheduling of remote sensing instruments for fleets of earth orbiting satellites, In Earth Science Technology Conference, 2002.

[7] S. D. Florio, T. Zehetbauer and T. Neff, Optimal operations planning for SAR satellite constellations [C], In Low Earth Orbit. 6th International Symposium on Reducing the Costs of Spacecraft Ground Systems and Operations, 2005.

[8] F. T. Hwang, Y. Y. Yeh and S. Y. Li, Multi-objective optimization for multi-satellite scheduling system, In Proceedings of 31st Asian Conference on Remote Sensing, 2010.

[9] J. Li, S. Zhang, X. Liu and R. He, Multi-objective evolutionary optimization for geostationary orbit satellite mission planning, Journal of Systems Engineering and Electronics, 28 (2017), 934–945.

[10] K. T. Malladi, S. M. Minic, D. Karapetyan and A. P. Punnen, Satellite constellation image acquisition problem: A case study, In Space Engineering, Springer, Cham, (2016), 177–197.

[11] K. T. Malladi, S. Mitrovic-Minic and A. P. Punnen, Clustered maximum weight clique problem: Algorithms and empirical analysis, Comput. Oper. Res., 85 (2017), 113–128.

[12] M. Mitchell, An Introduction to Genetic Algorithms, MIT press, 1998.

[13] S. Mitrovic-Minic, D. Thomson, J. Berger and J. Secker, Collection planning and scheduling for multiple heterogeneous satellite missions: Survey, optimization problem, and mathematical programming formulation, Modeling and Optimization in Space Engineering, 144 (2019), 271–305.

[14] M. D. Shuster, A survey of attitude representations. J. Astronaut. Sci., 41 (1993), 439–517.

[15] S. N. Sivanandam and S. N. Deepa, Genetic algorithms, In Introduction to Genetic Algorithms, Springer, Berlin, Heidelberg, (2008), 15–37.

[16] M. Vasquez and J.-K. Hao, A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an Earth observation satellite, Comput. Optim. Appl., 20 (2001), 137–157.

[17] X. Liu, B. Bai, Y. Chen and F. Yao, Multi satellites scheduling algorithm based on task merging mechanism, Appl. Math. Comput., 230 (2014), 687–700.

[18] Y. Zhang, J. Wang, B. Yuan, C. Wang and L. Shi, Research on multi-satellite observation multi-region task planning based on genetic algorithm, In IOP Conference Series: Materials Science and Engineering, 685 (2019), 012002.

[19] Y. Zhou, Y. Yan, X. Huang, Y. Yang and H. Zhang, Mission planning optimization for the visual inspection of multiple geosynchronous satellites, Engineering Optimization, 47 (2015), 1543–1563.

[20] X. Zhu, J. Chen, C. hang and B. Qiao, Optimal fuel station arrangement for multiple GEO spacecraft refueling mission. Advances in Space Research, 66 (2020), 1924–1936.

Received February 2021; revised March 2021.

E-mail address: zhaoqian_nudt@163.com
E-mail address: jiangbitao@bjirs.org.cn
E-mail address: yuxiaogangfly@126.com
E-mail address: zhangyue@bjirs.org.cn
Appendix. Data

Meta-task No.	Satellite No.	Grid No.	Observation Time (hour)
1	4	1	0.119444
2	4	2	0.113889
3	4	3	0.108333
4	4	11	0.125
5	4	12	0.122222
6	4	21	0.133333
7	7	7	1.625
8	7	8	1.619444
9	7	16	1.636111
10	7	17	1.633333
11	7	18	1.627778
12	7	26	1.641667
13	7	27	1.641667
14	7	35	1.655556
15	7	36	1.652778
16	7	37	1.644444
17	7	45	1.663889
18	7	46	1.658333
19	7	54	1.675
20	7	55	1.669444
21	7	56	1.666667
22	7	64	1.680556
23	7	65	1.675
24	7	73	1.694444
25	7	74	1.688889
26	7	75	1.686111
27	7	83	1.702778
28	7	84	1.697222
29	7	92	1.713889
30	7	93	1.708333
31	8	2	2.780556
32	8	3	2.775
33	8	4	2.772222
34	8	8	1.055556
35	8	9	1.052778
36	8	12	2.786111
37	8	13	2.780556
38	8	18	1.063889
39	8	19	1.058333
40	8	21	2.8
41	8	22	2.797222
42	8	23	2.791667
43	8	28	1.069444
44	8	29	1.066667
45	8	31	2.808333
---	---	---	---
46	8	32	2.802778
47	8	37	1.080556
48	8	38	1.075
49	8	41	2.813889
50	8	47	1.086111
51	8	48	1.086111
52	8	56	1.1
53	8	57	1.094444
54	8	58	1.091667
55	8	66	1.108333
56	8	67	1.102778
57	8	75	1.119444
58	8	76	1.113889
59	8	77	1.111111
60	8	85	1.125
61	8	86	1.119444
62	8	94	1.136111
63	8	95	1.133333
64	8	96	1.127778
65	9	5	2.197222
66	9	6	2.191667
67	9	9	0.486111
68	9	10	0.483333
69	9	14	2.211111
70	9	15	2.202778
71	9	16	2.2
72	9	19	0.491667
73	9	20	0.491667
74	9	24	2.216667
75	9	25	2.211111
76	9	29	0.502778
77	9	30	0.497222
78	9	33	2.227778
79	9	34	2.225
80	9	39	0.508333
81	9	40	0.505556
82	9	43	2.236111
83	9	44	2.230556
84	9	48	0.510667
85	9	49	0.513889
86	9	52	2.247222
87	9	53	2.241667
88	9	58	0.525
89	9	59	0.519444
90	9	61	2.261111
91	9	62	2.255556
---	---	---	---
92	9	63	2.25
93	9	68	0.530556
94	9	69	0.527778
95	9	71	2.269444
96	9	72	2.261111
97	9	77	0.544444
98	9	78	0.541667
99	9	81	2.275
100	9	87	0.552778
101	9	88	0.547222
102	9	96	0.563889
103	9	97	0.558333
104	9	98	0.552778
105	10	10	1.45
106	10	20	1.458333
107	10	30	1.463889
108	10	70	1.497222
109	10	80	1.502778
110	10	90	1.511111
111	10	100	1.516667
112	11	10	0.886111
113	11	20	0.891667
114	11	30	0.9
115	11	40	0.905556
116	11	50	0.913889
117	11	60	0.919444
118	11	69	2.630556
119	11	70	2.627778
120	11	79	2.638889
121	11	80	2.636111
122	11	89	2.647222
123	11	90	2.641667
124	11	99	2.652778
125	11	100	2.65
126	11	10	2.583333
127	11	20	2.591667
128	11	30	2.597222
129	11	40	2.608333
130	11	50	2.613889
131	11	60	2.619444
132	12	9	0.313889
133	12	10	0.319444
134	12	19	0.322222
135	12	20	0.325
136	12	30	0.330556
137	12	40	0.341667
---	---	---	---
138	12	50	0.347222
139	12	60	0.352778
140	12	70	0.361111
141	12	80	0.366667
142	12	90	0.377778
143	12	100	0.383333
144	12	30	2.030556
145	12	40	2.038889
146	12	50	2.044444
147	12	60	2.052778
148	12	70	2.058333
149	12	80	2.069444
150	12	90	2.075
151	12	100	2.080556
152	13	3	1.258333
153	13	4	1.263889
154	13	9	2.980556
155	13	10	2.986111
156	13	14	1.269444
157	13	15	1.275
158	13	19	2.991667
159	13	20	2.991667
160	13	24	1.277778
161	13	25	1.283333
162	13	35	1.291667
163	13	36	1.294444
164	13	45	1.297222
165	13	46	1.302778
166	13	56	1.308333
167	13	57	1.313889
168	13	66	1.316667
169	13	67	1.319444
170	13	77	1.327778
171	13	78	1.333333
172	13	87	1.336111
173	13	88	1.338889
174	13	97	1.341667
175	13	98	1.347222
176	13	99	1.35
177	14	1	0.680556
178	14	2	0.688889
179	14	7	2.408333
180	14	8	2.413889
181	14	11	0.691667
182	14	12	0.697222
183	14	18	2.419444
---	---	---	---
184	14	19	2.422222
185	14	22	0.702778
186	14	23	0.708333
187	14	28	2.427778
188	14	29	2.430556
189	14	32	0.711111
190	14	33	0.713889
191	14	34	0.722222
192	14	38	2.433333
193	14	39	2.438889
194	14	43	0.719444
195	14	44	0.725
196	14	49	2.447222
197	14	50	2.447222
198	14	54	0.733333
199	14	55	0.738889
200	14	59	2.452778
201	14	60	2.455556
202	14	64	0.741667
203	14	65	0.747222
204	14	69	2.458333
205	14	70	2.463889
206	14	75	0.752778
207	14	76	0.758333
208	14	79	2.466667
209	14	80	2.469444
210	14	85	0.761111
211	14	86	0.763889
212	14	90	2.477778
213	14	96	0.772222
214	14	97	0.777778
215	14	100	2.486111
216	15	5	1.833333
217	15	6	1.836111
218	15	7	1.841667
219	15	16	1.844444
220	15	17	1.847222
221	15	26	1.85
222	15	27	1.855556
223	15	31	0.138889
224	15	37	1.863889
225	15	38	1.866667
226	15	41	0.144444
227	15	42	0.152778
228	15	47	1.869444
229	15	48	1.875
-----	-----	-----	------
230	15	51	0.152778
231	15	52	0.158333
232	15	58	1.880556
233	15	59	1.886111
234	15	62	0.163889
235	15	63	0.169444
236	15	68	1.886111
237	15	69	1.891667
238	15	72	0.172222
239	15	73	0.177778
240	15	74	0.183333
241	15	78	1.894444
242	15	79	1.897222
243	15	83	0.186111
244	15	84	0.191667
245	15	88	1.902778
246	15	89	1.905556
247	15	90	1.908333
248	15	93	0.191667
249	15	94	0.197222
250	15	95	0.202778
251	15	99	1.913889
252	15	100	1.916667
253	16	51	2.019444
254	16	61	2.825
255	16	62	2.830556
256	16	71	2.836111
257	16	72	2.841667
258	16	82	2.847222
259	16	83	2.852778
260	16	92	2.852778
261	16	93	2.858333
262	16	94	2.863889
263	17	91	2.283333