Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys

Anh Tran,1,2 Julien Tranchida,2 Tim Wildey,1 and Aidan P. Thompson2
1) Optimization and Uncertainty Quantification, Center for Computing Research, Sandia National Laboratories
2) Computational Multiscale, Center for Computing Research, Sandia National Laboratories

(Dated: 3 June 2020)

We present a scale-bridging approach based on a multi-fidelity (MF) machine-learning (ML) framework leveraging Gaussian processes (GP) to fuse atomistic computational model predictions across multiple levels of fidelity. Through the posterior variance of the MFGP, our framework naturally enables uncertainty quantification, providing estimates of confidence in the predictions. We used Density Functional Theory as high-fidelity prediction, while a ML interatomic potential is used as low-fidelity prediction. Practical materials design efficiency is demonstrated by reproducing the ternary composition dependence of a quantity of interest (bulk modulus) across the full aluminum-niobium-titanium ternary random alloy composition space. The MFGP is then coupled to a Bayesian optimization procedure and the computational efficiency of this approach is demonstrated by performing an on-the-fly search for the global optimum of bulk modulus in the ternary composition space. The framework presented in this manuscript is the first application of MFGP to atomistic materials simulations fusing predictions between Density Functional Theory and classical interatomic potential calculations.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Materials design can be seen as an inverse problem in the structure-property relationship. In the context of modern random alloys, such as medium- and high-entropy alloys, optimizing functional performance can require the exploration of vast composition spaces. It is therefore highly desirable to develop numerical tools to enable the prediction of optimal concentrations of the different components, in order to optimize a set of materials properties. Such predictive tools could greatly reduce experimental testing and manufacturing costs, and are of great interest.

High-accuracy first-principles approaches, such as Density Functional Theory (DFT), are an efficient tool to complement experiments in this optimization process. However, their predictive capabilities are limited by their computational cost and \(O(N^3) \) scaling, making them impractical for the optimization of multiple properties across large composition spaces, particularly for properties requiring more than a few hundred atoms to resolve.

Machine learning (ML) interatomic potentials (IAPs) are emerging as a promising solution to run large-scale problems, while preserving a level of accuracy close to first-principles methods. Trained on extensive datasets of atomic configurations (usually extracted from DFT calculations), ML-IAPs are computationally efficient and preserve the \(O(N) \) linear scaling of computational cost with atom count. This leads to prediction costs orders of magnitude cheaper than ab initio calculations, allowing to effectively bridge the gap between nano- and meso-scale models with a controlled level of accuracy.

However, MD performed with ML-IAPs loses some of its prediction accuracy (and thus materials design and discovery capabilities) when configurations and compositions departing from the training set are considered.

While a lot of effort has been concentrated on training and validating ML-IAPs, the use of DFT and MD predictions mostly remains segregated: in the context of ML-IAPs, the latter is used to build training and testing sets, and the former is used to run statistical averaging and large scale simulations. Although they form a natural pair of high- and low-fidelity computational models, there seems to be a lack of research effort to fuse their information.

In the field of materials science, few studies have sought to exploit the correlation between low- and high-fidelity levels to obtain high-accuracy multi-fidelity (MF) predictions, thus fusing the information across multiple levels of fidelity hierarchically. Batra et al. recently wrote a comprehensive review of different levels of fidelity used to obtain forces in atomistic materials modeling. Pilania et al. developed a MF co-kriging ML framework enabling low-cost accurate quantum mechanical predictions of bandgaps by fusing the information obtained from DFT calculations performed with different exchange correlation functionals. Other recent studies have been aiming at fusing information and predictions across multiple levels of fidelity for materials study and design.

Gaussian processes (GP) and associated Bayesian optimization (BO) methods are among popular approaches that have been employed extensively in computational materials science, most notably in the construction

a) Corresponding authors: anhtran, jtranch@sandia.gov.
A.T. and J.T. contributed equally to this work.
of Gaussian Approximation Potential (GAP) ML-IAP.23 This includes studies of shape memory alloy16, polymer dielectric24, polymer bandgaps15, dopant formation energies in hafnia9, search for saddle points on high-dimensional potential energy surfaces19,21, fusing MD simulation with different time-steps15, and calibrating coarse-grain MD potential22.

Our previous work developed a data-driven MF-ML method leveraging a multi-fidelity Gaussian-process (MFGP) approach23,24 and utilized it to fuse the predictions of the same quantity of interest (QoI) from multiple levels of fidelity. Here we apply the approach to atomistic materials simulation. The high- (HF) and low-fidelity (LF) models are DFT and a SNAP ML-IAP25 respectively. A MF Bayesian optimization is then applied to optimize the QoI with respect to chemical composition. The goal of this work is to demonstrate the applicability of our MF framework to applications in atomistic materials simulation.

To the knowledge of the authors, this work presents the first MF-ML framework exploiting the respective strengths of DFT and ML-IAP (i.e. high-accuracy but expensive predictions versus low-cost and scalable but less accurate predictions) and to fuse their predictions.

This manuscript is organized as follows. In Section II, we describe the details of DFT simulations (Section II A) and MD simulations (Section II B) for AlNbTi system. Section III briefly formulates the MFGP framework and its MF BO extension. Section IV presents the results for AlNbTi system. Section V discusses and concludes the paper.

II. HIGH- AND LOW-FIDELITY BULK MODULUS CALCULATIONS

In this section, we describe the \textit{ab initio} and classical calculations used to build the high- and low-fidelity models, respectively. The high-fidelity model relies on Density Functional Theory (DFT) and is presented in section II A. The low-fidelity model is based on a ML-IAP and is presented in II B.

As a proof of concept calculation, the bulk modulus is chosen to be the physical quantity of interest for the multi-fidelity prediction. It is known to converge more rapidly with respect to the k-point sampling than other elastic properties, such as the shear modulus26 which made our high-fidelity calculations more tractable. However, our MF approach is easily transferable to any other QoI that can be evaluated by both \textit{ab initio} and classical calculations.

A. Density functional theory

\textit{Ab initio} calculations were carried out using plane-wave density functional theory as implemented in the Quantum ESPRESSO package27,28 within the framework of the PBE formalism29. The interactions between the electrons and ions were represented using projector augmented wave (PAW) pseudopotentials. We used a kinetic energy cutoff of 55 Ry for the wave function and 600 Ry for the charge density. The Brillouin zone was sampled using a 2x2x2 k-point grid and Gaussian smearing with a smearing value of 0.025 eV. For all calculations, the convergence threshold for self-consistency was set to 10^{-8}.

Initial body-centered cubic (bcc) cells are generated following the approach described in30 The atoms of the cell are randomly selected to be Al, Nb, or Ti, subject to the constraint of a particular total number of atoms of each element. The number of distinct chemical compositions that can be generated with configurations of N atoms and E elements is given by the multiset coefficient $\binom{N + E - 1}{E}$. The total number of distinct compositions achievable with 54 atoms and 3 elements is then 1540. The number of expensive DFT calculations to be performed is reduced by considering atom counts that are multiples of 3, leading to 190 distinct compositions. For each composition, one random coloring is generated. It is shown in Ref.30 that for 54 atom cells, the particular random coloring does not strongly modify the bulk modulus calculation. We leverage that result to reduce the number of expensive calculations to be performed. For each of these 199 structures, an equation of state (EOS) is computed by ranging its volume through eight points. The volume variation corresponds to an approximate compression and expansion of 6%. Fig. 1 displays the results of eight of those EOS calculations at the equicomposition point.

The EOS results were interpolated with a Birch-Murnaghan equation, using a third order polynomial31,32 This procedure allowed us to extract the high-fidelity bulk modulus corresponding to a given composition.

B. Classical potential calculations

Classical potential calculations were carried out using the LAMMPS package33 and a SNAP machine learning potential25 whose training set contained information at the equicomposition point, and for each of the single-element phases. Details of the training and testing of the SNAP potential are provided in Tranchida \textit{et al.}33

The bulk modulus is computed following the same approach as described in section II A above. However, as the computational cost of the LF calculations is very small compared to the HF calculations, we densified the number of LF points in three ways. First, we computed the LF bulk modulus for all 1540 possible compositions of 54 atom cells. Then, instead of varying the cell volume through eight points, we use 100 points. This ensures a better convergence of the Birch-Murnaghan polynomials. Finally, for each composition point, the bulk modulus is
averaged over 10 initial cells, each one corresponding to different random coloring for the given composition.

In this proof-of-concept study, we decide to keep the same cell size across the two levels of fidelity (54 atoms). This simplified the comparison between the LF and HF models. However, it is straightforward and almost computationally transparent to largely increase the LF cells. This could for example enable the discovery of correlations between large scale effects and information extracted from small DFT cells. This path would increase the scale-bridging aspect of our work, and will be explored in future studies.

Fig. 1 displays the comparison of eight LF EOS calculations compared to the HF ones, at the equicomposition point.

Fig. 1: Equation of state calculations for six configurations. The red circles and blue lines display the high-fidelity DFT and low-fidelity SNAP results, respectively.

As detailed in Tranchida et al.\(^{30}\), about 70% of the training set of the SNAP potential contains equicomposition information. This explains the excellent agreement displayed on Fig. 1. Inferior agreement is expected when large departures from the equicomposition point are observed.

III. MULTI-FIDELITY GAUSSIAN-PROCESS AND MULTI-FIDELITY BAYESIAN OPTIMIZATION

In this section, we briefly review the formulation of GP, particularly the MF extension of the classical GP, and the relevant MF BO method.\(^{23,24}\)

A. Gaussian Processes

Gaussian process regression is an efficient and flexible framework to approximate a response surface for a single-fidelity, single-objective function. We briefly summarize the GP theoretical formulation for the sake of completeness.\(^{33}\) Let \(D = (x_i, y_i)_{i=1:n}\) denote the dataset of \(n\) observations with output \(y\) and \(d\)-dimensional input \(x \in \mathcal{X} \subseteq \mathbb{R}^d\). A GP is a nonparametric model characterized by its prior mean function \(\mu(x) : \mathcal{X} \to \mathbb{R}\) and a covariance function \(k(x, x') : \mathcal{X} \times \mathcal{X} \to \mathbb{R}\). Assuming that the observations \(f = f_{1:n}\) are jointly Gaussian, and the observation \(y\) is normally distributed given \(f\), i.e.

\[
f|x \sim N(m, K),
\]

\[
y|f, \sigma^2 \sim N(f, \sigma^2 I),
\]

where \(m_i := \mu(x_i)\) and \(K_{i,j} := k(x_i, x_j)\).

The classical GP regression formulation assumes a stationary covariance matrix and only considers the weighted distance \(r^2(x, x') = (x - x')^T \Lambda (x - x')\), where \(\Lambda\) is a diagonal matrix of squared length scales \(\theta_i^2\). Matérn kernels offer a broad class for stationary kernels, controlled by a smoothness parameter \(\nu > 0\) (cf. Section 4.2)\(^{35}\), including the square-exponential (\(\nu \to \infty\)) and exponential (\(\nu = 1/2\)) kernels widely used in the literature. The \(\nu = 3/2\) Matérn kernel \(k(x, x') = \theta_0^2 \exp(-\sqrt{3r})/(1 + \sqrt{3r})\) is used in this work. At a known sampling point \(x \in \mathcal{X}\), the posterior mean \(\mu(x)\) is calculated by

\[
\mu(x) = \mu_0(x) + k(x)^T(K + \sigma^2 I)^{-1}(y - m),
\]

and the posterior variance \(\sigma^2(x)\) is given by

\[
\sigma^2(x) = k(x, x) - k(x)^T(K + \sigma^2 I)^{-1}k(x),
\]

where \(k(x)\) is a vector of covariance \(k(x_i) = k(x, x_i)\), \(\sigma^2 = 1/n(y - \mu_0(x))^T K^{-1}(y - \mu_0(x))\) is the intrinsic variance. To obtain the hyper-parameter \(\theta = (\theta_i)_{i=1:d}\), we maximize the log marginal likelihood, which is computed as

\[
\log p(y|x_{1:n}, \theta) = -1/2 (y - m)^T(K^\theta + \sigma^2 I)^{-1}(y - m) - \frac{1}{2} \log |K^\theta + \sigma^2 I| - \frac{n}{2} \log (2\pi).
\]

Here, \(K^\theta\) is emphasized to be strongly dependent on \(\theta\).

B. Multi-fidelity Gaussian Processes

We assume that the prediction at highest level of fidelity, i.e. level \(s\), can be written as an auto-regressive model.\(^{36}\)

\[
f_H(x) = pf_L(x) + \delta(x),
\]
where \(f_H(x) \) and \(f_L(x) \) denote the high- and low-fidelity predictions, respectively. \(\rho \) is the scaling factor, and \(\delta(x) \) is the discrepancy between the high- and low-fidelity model. The dataset \(\mathcal{D} \) is divided into \(\mathcal{D}_L = (x_i, y_i)_{i=1:n_L} \) and \(\mathcal{D}_H = (x_i, y_i)_{i=1:n_H} \), corresponding to low-fidelity and high-fidelity datasets, respectively. Our multi-fidelity formulation is closely related to Crouzy et al. \cite{27,39} and Forrester et al. \cite{40}. Following the autoregressive scheme described in Equation \ref{eq:8}, the main idea of MFGP in two levels of fidelity is to model \(f_L \) as the first GP and the discrepancy \(\delta(x) \) as the second GP, before fusing both of them together.

In the MFGP, the covariance matrix \(\tilde{K} \) is computed as

\[
\tilde{K} = \begin{pmatrix}
\sigma_H^2 K_L(x_L, x_L) & \rho \sigma_H^2 K_L(x_L, x_H) \\
\rho \sigma_H^2 K_L(x_H, x_L) & \rho^2 \sigma_H^2 K_L(x_H, x_H) + \sigma_D^2 K_D(x_H, x_H)
\end{pmatrix}.
\]

C. Multi-fidelity Bayesian Optimization

In the traditional BO method, the next sampling location is determined by maximizing an acquisition function, i.e.,

\[
x^* = \arg\max_{x \in \mathcal{X}} a(x),
\]

where \(a(x) \) denotes the acquisition function and \(x^* \) is the next sampling location. The acquisition function is deeply connected to an underlying utility function, which corresponds to a reward scheme for performance of the new sampling point relative to previous samples. There are three acquisition functions that are widely used: the probability of improvement (PI), the expected improvement (EI), and the upper-confident bounds (UCB), but other forms also exist.

The UCB acquisition function\cite{32,33} is defined as

\[
a_{UCB}(x; \{x_i, y_i\}_{i=1:n}, \theta) = \mu(x; \{x_i, y_i\}_{i=1:n}, \theta) + \kappa \sigma(x; \{x_i, y_i\}_{i=1:n}, \theta),
\]

where \(\kappa \) is a hyper-parameter describing the acquisition exploitation-exploration balance. We adopt the \(\kappa \) computation from Daniel et al.\cite{34} which is based on Srinivas et al.\cite{32,33} instead of fixing \(\kappa \) as a constant.

Regarding the fidelity selection criteria, we adopt the approach developed in \cite{24} by choosing level \(t^* \) such that

\[
t^* = \arg\min_t \left(C_t \int_{\mathcal{X}} \sigma^2(x)dx \right),
\]

where \(C_t \) is the computational cost at level \(t \), \(t \) can be low- or high-fidelity level. The term \(\int_{\mathcal{X}} \sigma^2(x)dx \) is sometimes referred to as the integrated mean square error, as opposed to the conventional mean square error \(\sigma^2(x) \), to reduce the number of sampling points on the boundary of \(\mathcal{X} \) for further efficiency improvement. To facilitate information at the high-fidelity level when the computational cost are comparable, we impose a hard condition that if \(C_L n_L \geq C_H n_H \), meaning that some of the computational budget for building the low-fidelity dataset \(\mathcal{D}_L \) could be traded for building the high-fidelity dataset \(\mathcal{D}_H \), then the high-fidelity is chosen.

For further details, readers are referred to previous work in literature\cite{23,24,28,31}.
IV. RESULTS

A. Fusing low- and high-fidelity bulk modulus predictions

As explained in section II A and II B, 190 HF and 1540 LF calculations of bulk modulus at different compositions were performed to build the dataset. Figure 2 displays the LF (Fig. 2a) and HF (Fig. 2b) data sets, as well as the MF predictions using the MFGP approach (Fig. 2c).

As can be seen by comparing Fig. 2b and Fig. 2c, starting from a sparse HF ternary composition map, the MFGP approach is able to leverage the LF-HF correlations to produce a high-resolution diagram predicting the composition dependence of the bulk modulus with an accuracy almost equal to DFT.

Fig. 3 assesses the accuracy evolution of the approach by displaying the numerical predictions of the SNAP ML-IAP and of the MFGP results at various sizes of training datasets, with respect to the DFT predictions. For the MFGP, it also provides us with a measure of uncertainty quantification by displaying the posterior Gaussian process prediction of $\mu \pm 1.0 \sigma$ (vertical bars).

Across the full ternary composition range, the SNAP potential predictions correlate with the DFT results with $R^2 = 0.7122$ (Fig. 3a). Fig. 3a highlights the SNAP bulk modulus results of the pure element and equicomposition points. As explained in section II B, about 70% of the training set of the SNAP potential consisted in data at the equicomposition point, which explains the very good agreement observed for that particular composition. Figs. 3b-3f display the rapid convergence of the MFGP towards the DFT results with an increasing training dataset size. The dataset size was varied by randomly choosing a fraction of the full HF dataset. The remaining HF points were used as a testing dataset and are plotted in Figs. 3b-3f.

With a 10% training dataset (19 LF and 19 HF data points, Fig. 3b) to train the MFGP model, the MFGP performs on a par with the LF SNAP model ($R^2 = 0.7235$). Increasing the training dataset to 30% (57 LF and 57 HF data points, Fig. 3c) and 50% (95 LF and 95 HF data points, Fig. 3d) considerably improved the accuracy of the prediction ($R^2 = 0.9813$ and $R^2 = 0.9933$, respectively) and reduced the uncertainty.

Additional increases to 70% (133 LF and 133 HF data points, Fig. 3e) and 90% (171 LF and 171 HF data points, Fig. 3f) of the training dataset do not significantly improve the predictions (i.e. the posterior mean) as there is almost no change in the correlation coefficients R^2, but increase the confidence in those predictions by reducing the uncertainty (i.e. the posterior variance).

B. Multi-fidelity Bayesian optimization of bulk modulus

We demonstrate the application MF BO for practical materials design by searching for the chemical composition optimizing the QoI across the ternary AlNbTi compositions.
FIG. 3: Comparison of the low-fidelity (SNAP, Figure 3a) and multi-fidelity (MFGP, Figs. 3b-3f) models against the high-fidelity model (DFT) estimates of bulk modulus (GPa). For the SNAP model, estimates for all the AlNbTi ternary compositions in Figure 2b are shown. The random fraction of the DFT data used in training is indicated in the subcaption, with remaining DFT points shown in the figure. Vertical blue bars indicate the associated uncertainty quantification $\mu \pm 1.0 \sigma$. The legends indicate the squared correlation coefficients R^2.

composition range, and using the MFGP framework to couple the SNAP and DFT predictions. The computational cost ratio between DFT and MD simulations is set to 10.0, and the UCB acquisition function is used.

The concept of using the acquisition function described in Section IIIC allows the MF BO to sequentially sample at the most informative point. Four sampling points, including 2 LF and 2 HF points around the equicomposition point, are used to build the initial MFGP, as shown in Fig. 4a. At iteration 24, the MF BO queries another HF evaluation (Fig. 4b) in the vicinity of the global maximum given by the LF predictions, as shown in Fig. 2a, and corrects itself after obtaining the corresponding HF sampling value. The global maximum is obtained at iteration 35 (Fig. 4c) after only four HF and 31 LF evaluations.

V. CONCLUSIONS

This work presented and applied a scale-bridging MFGP framework fusing information from DFT and MD calculations performed with a SNAP ML-IAP.

Equation-of-state (EOS) calculations were performed with DFT and the SNAP potential across the full AlNbTi ternary composition range. The EOS data allowed us to extract 190 high- and 1540 low-fidelity predictions of the QoI, the bulk modulus. This full dataset (HF + LF predictions) is used as a training set. The HF configurations are also used as reference values to probe the validity of our approach (testing set).

The MFGP framework is then applied to this dataset to build a MF model. Its efficiency is demonstrated through the construction of a high-resolution and highly accurate ternary composition diagram for the QoI using only 50% of the HF data points (corresponding to 95 EOS evaluations performed with DFT) with an excellent
correlation coefficient of $R^2 = 0.9933$ and low prediction uncertainty. Additional increase of the training dataset size allowed even lower prediction uncertainty.

By leveraging LF-HF correlations, our framework drastically reduces the amount of expensive first principles calculations necessary to obtain a dense and highly accurate ternary composition diagram for the property of interest.

An MF BO algorithm is finally presented and tested by performing an optimization of the QoI. After only 4 HF and 31 LF evaluations, the MF BO algorithm was able to locate the QoI optimum value across the composition space. Performed on the fly, the computational cost associated with materials property optimization and design would be drastically reduced.

For the QoI we used in this study, the optimization problem was trivial, as pure niobium has the highest value of bulk modulus across the AlNbTi composition space. However, reapplying the same framework to a different material composition space and QoI is straightforward.

In future work, our framework will be extended to perform multi-objective, constrained mixed-integer MF calculations, allowing to search for optimum compromises between different materials properties in an asynchronously parallel manner.

Our results demonstrated the efficiency of our a MFGP framework to fuse in the predictions and therefore bridge the gap between two of the most commonly employed atomistic simulation approaches (DFT and molecular dynamics), each of them acting at very different length and time scales. The same methodology remains valid for different scales, and could be leveraged to build materials modelling road-maps by understanding the existing correlations between atomistic methods and associated higher scale coarse-grained or continuum numerical models.
ACKNOWLEDGMENT

A.T. and J.T. contributed equally to this work. This research was supported by the U.S. Department of Energy, Office of Science, Early Career Research Program, under award DE-NA0003525. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

1. K. Gubaev, E. V. Podryabinkin, G. L. Hart, and A. V. Shapeev, Computational Materials Science 156, 148 (2019).
2. T. Kostinchenko, F. Körmann, J. Neugebauer, and A. Shapeev, npj Computational Materials 5, 1 (2019).
3. C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, and Y. Su, Acta Materialia 170, 109 (2019).
4. C. F. Guerra, J. Sniijders, G. t. te Velde, and E. J. Baerends, Theoretical Chemistry Accounts 99, 391 (1998).
5. A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Physical review letters 104, 136403 (2010).
6. Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. V. Shapeev, A. P. Thompson, M. A. Wood, et al., The Journal of Physical Chemistry A 124, 731 (2020).
7. C. Chen, Z. Deng, R. Tran, H. Tang, I.-H. Chu, and S. P. Ong, Physical Review Materials 1, 043603 (2017).
8. M. A. Wood, M. A. Cusentino, B. D. Wirth, and A. P. Thompson, Physical Review B 99, 184305 (2019).
9. R. Batra and S. Sankaranarayanan, arXiv preprint arXiv:2004.06232 (2020).
10. G. Pilan, J. E. Gubernatis, and T. Lookman, Computational Materials Science 129, 156 (2017).
11. P. Acar, Integrating Materials and Manufacturing Innovation 7, 186 (2018).
12. G. Sun, G. Li, M. Stone, and Q. Li, Computational Materials Science 49, 500 (2010).
13. M. Razi, A. Narayan, R. Kirby, and D. Bedrov, Computational Materials Science 152, 125 (2018).
14. C. Chen, Y. Zuo, W. Ye, X. Li, and S. P. Ong, arXiv preprint arXiv:2005.04338 (2020).
15. R. Ramprasad, R. Batra, G. Pilan, A. Mannodi-Kannikhodi, and C. Kim, npj Computational Materials 3, 1 (2017).
16. D. Xue, P. V. Balachandran, J. Hogden, J. Theiler, D. Xue, and T. Lookman, Nature communications 7, 1 (2016).
17. A. Mannodi-Kannikhodi, G. Pilan, T. D. Huan, T. Lookman, and R. Ramprasad, Scientific reports 6, 20952 (2016).
18. A. Patra, R. Batra, A. Chandrasekaran, C. Kim, T. D. Huan, and R. Ramprasad, Computational Materials Science 172, 109286 (2020).
19. A. Tran, D. Liu, L. He-Bitoun, and Y. Wang, in Uncertainty Quantification in Multiscale Materials Modeling (Elsevier, 2020).
20. A. Tran, L. He, and Y. Wang, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering 4, 011006 (2018).
21. O.-P. Koistinen, V. Asgeirsson, A. Vehtari, and H. Jönsson, Journal of Chemical Theory and Computation (2019).
22. M. Razi, A. Narayan, R. Kirby, and D. Bedrov, Computational Materials Science 176, 109518 (2020).
23. A. Tran, T. Wildey, and S. McCann, in Proceedings of the ASME 2019 IDETC/CIE, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. Volume 1: 39th Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2019) v001T02A073.
24. A. Tran, T. Wildey, and S. McCann, Journal of Computing and Information Science in Engineering, 1 (2020).
25. A. P. Thompson, L. P. Swiler, C. R. Trotz, S. M. Foiles, and G. J. Tucker, Journal of Computational Physics 285, 316 (2015).
26. A. E. Mattsson, P. A. Schultz, M. P. Desjarlais, T. R. Mattsson, and K. Leung, Modelling and Simulation in Materials Science and Engineering 13, R1 (2004).
27. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., Journal of physics: Condensed matter 21, 395502 (2009).
28. P. Giannozzi, O. Andreussi, T. Brume, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, et al., Journal of Physics: Condensed Matter 29, 465901 (2017).
29. J. P. Perdew, K. Burke, and M. Ernzerhof, Physical review letters 77, 3865 (1996).
30. J. Tranchida, P. A. Schultz, A. Tran, M. E. Chandross, and A. P. Thompson, (2020), to be published.
31. F. Birch, Journal of Geophysical Research: Solid Earth 83, 1257 (1978).
32. F. D. Murnaghan, American Journal of Mathematics 59, 235 (1937).
33. F. Plimpton, Journal of Computational Physics 117, 1 (1995).
34. B. Shahraei, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, Proceedings of the IEEE 104, 148 (2016).
35. C. E. Rasmussen, Gaussian processes in machine learning (MIT Press, 2006).
36. M. Xiao, G. Zhang, P. Breitkopf, P. Villon, and W. Zhang, Applied Mathematics and Computation 323, 120 (2018).
37. T. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, Advances in Engineering Software 49, 1 (2012).
38. T. Couckuyt, T. Dhaene, and P. Demeester, Universiteit Gent , 3 (2013).
39. T. Couckuyt, T. Dhaene, and P. Demeester, The Journal of Machine Learning Research 15, 3183 (2014).
40. A. I. Forrester, A. Søbester, and A. J. Keane, Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences 463, 3251 (2007).
41. X. Yang, X. Zhu, and J. Li, SIAM Journal on Scientific Computing 42, A220 (2020).
42. N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, arXiv preprint arXiv:0912.3995 (2009).
43. N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, IEEE Transactions on Information Theory 58, 3250 (2012).
44. C. Daniel, M. Viering, J. Metz, O. Kroemer, and J. Peters, in Robotics: Science and Systems (2014).
45. A. Tran, M. Eldred, Y. Wang, and S. McCann, ASME IDETC/CIE 2020 (2020).
46. L. Shu, P. Jiang, X. Shao, and Y. Wang, Journal of Mechanical Design 127, 1 (2020).
47. A. Tran, M. Tran, and Y. Wang, Structural and Multidisciplinary Optimization , 1 (2019).
48. A. Tran, J. Sun, J. M. Furlan, K. V. Pagaltcharvarthi, R. J. Visintainer, and Y. Wang, Computer Methods in Applied Mechanics and Engineering 347, 827 (2019).
49. A. Tran, J. A. Mitchell, L. P. Swiler, and T. Wildey, Acta Materialia 194, 80 (2020).
50. E. van der Giessen, P. A. Schultz, N. Bertin, V. V. Bulaev, W. Cai, G. Csányi, S. M. Foiles, M. Geers, C. González, M. Hütter, et al., Modelling and Simulation in Materials Science and Engineering 28, 043001 (2020).
51. V. Bulaev, F. P. Abraham, L. Kubin, B. Devincere, and S. Yip, Nature 391, 669 (1998).
52. J. Tranchida, S. Plimpton, P. Thibaud, and A. P. Thompson, Journal of Computational Physics 372, 406 (2018).
53. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V. V.
Bulatov, Nature 550, 492 (2017).
54 J. Tranchida, P. Thibaudeau, and S. Nicolis, Physical Review E 98, 042101 (2018).
55 A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce, and V. V. Bulatov, Modelling and Simulation in Materials Science and Engineering 15, 553 (2007).
56 F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler, and D. Raabe, Acta Materialia 58, 1152 (2010).