A synthesis of the evolutionary history of erymoid lobsters (Crustacea, Decapoda, Erymoidea)

Julien DEVILLEZ
Sylvain CHARBONNIER
Centre de Recherche en Paléontologie – Paris (CR2P, UMR 7207),
(CNRS, MNHN, Sorbonne Université), Muséum national d’Histoire naturelle,
case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France)
 julien.devillez@edu.mnhn.fr (corresponding author)
 sylvain.charbonnier@mnhn.fr

Submitted on 11 May 2020 | accepted on 22 September 2020 | published on 3 March 2022

ABSTRACT
A synthesis of our current knowledge of erymoid lobsters is presented. The superfamily Erymoidea includes two families, Erymidae Van Straelen, 1925 and Enoploclytiidae Devillez, Charbonnier & Barriel, 2019, together encompassing 81 species within six genera. Our examination of the palaeobiodiversity of this group and its evolution has revealed some variations through the Mesozoic with three important peaks, at the boundaries of: 1) Lower-Middle Jurassic; 2) Middle-Upper Jurassic; and 3) Lower-Upper Cretaceous. Whereas the origin of the first peak remains poorly known, the two others coincide with major modifications of the environment: the development of the European Jurassic carbonate platforms and the development of the European Chalk Sea and the partial flooding of North America during the mid- and Late Cretaceous. In addition to a notable peak of diversity, the Cretaceous is an important time interval in the evolutionary history of erymoids because the Early Cretaceous represented a long period of relatively low diversity and during the Late Cretaceous a strong decline of erymoid faunas is observed in Europe. However, the erymoids had already attained a worldwide distribution during the Early Cretaceous with occurrences in all oceans of the time. The analysis of the palaeobiogeographic distribution of these lobsters suggests the presence of important migratory paths, which probably favoured their spread and faunal exchanges between different areas across the globe.
INTRODUCTION

Erymoid lobsters are extinct decapod crustaceans that are considered to have been an important component of Mesozoic faunal assemblages because of their relative abundance and worldwide distribution (e.g., Reuss 1854; Beurlen 1933; Joleaud & Hsu 1935; Stenzel 1945; Roger 1946; Woods 1957; Bachmayer 1959; Aguirre-Ureta 1982, 1989; Garassino 1994; Schweitzer & Feldmann 2001; Garassino & Schweigert 2006; Feldmann & Haggart 2008; Karasawa et al. 2008; Charbonnier et al. 2012a, 2017; Vega et al. 2013).

These lobsters have been studied since the early nineteenth century. Indeed, the first descriptions of fossils, now considered to be erymoids, were produced by Mantell (1822, 1824, 1833), who studied the fauna found in the chalk formations of southern England, as well as by Desmarest (1817, 1822), Schlotheim (1822) and Münster (1839), who recorded material from the Solnhofen Lithographic Limestones in southern Germany. Those authors described Astacus leachi Mantell, 1822 (type species of Enoploctyta M’Coy, 1849), Astacus sussexiensis Mantell, 1824 (type species of Palaeastacus Bell, 1850), and Macrourites modestiformis Schlotheim, 1822 (type species of Eryma Meyer, 1840). The palaeontological studies of Meyer (1840a, b), Quenstedt (1854) and Bell (1850) constituted a second wave, during which several erymoid species were erected, including Eryma ventrosum (Meyer, 1840b), which is typical of the Middle - Late Jurassic of western Europe. Later, at the beginning of the second half of the nineteenth century numerous extinct species of decapod crustaceans, including several erymoids, have been recorded on the basis of material from France, Germany and England, by Bell (1857, 1863), Étallon (1857, 1859, 1861) and Oppel (1861, 1862). With the exception of the description of a small number of species by Trautschold (1866), Schlüter (1879) and Wright (1881), knowledge of erymoid faunas did not increase during the following twenty years. Important, yet mostly descriptive, contributions by Morièe (1888), Sauvage (1891) and Lahnisen (1894) appeared in print at the end of the nineteenth century. Following a study by Méchin (1901) on some crustacean fauna from the Lorraine region (eastern France), almost no work was done on erymoid lobsters at the start of the twentieth century. During the 1920s and early 1930s, our knowledge of European erymoid lobsters benefitted from important contributions by Van Straalen (1921, 1922, 1923, 1925), Beurlen (1928) and Woods (1930). Indeed, Van Straalen (1925) clearly recognised the intercalated plate as a diagnostic morphological feature of erymoids. Hence, he established the new family Erymidae to accommodate all lobsters that were characterised by the presence of such a plate. This family was accepted among subsequent workers, but its composition was strongly debated, as outlined in Devillez et al. (2019). The first important studies on extra-European crustacean faunas that included erymoid lobsters were those by Rathbun (1923, 1926a, b, 1935) for North America and by Secrétan (1964) for Madagascar. Soon after, a major contribution by Förster (1966) came out; this was an extensive study that included a taxonomic review, phylogenetic considerations and a palaeobiological synthesis as well as observations on allometric growth and palaeoenvironmental considerations. Since then, a limited number of papers have appeared during the 1970s to 1990s (e.g. Feldmann 1979; Taylor 1979; Feldmann & McPherson 1980; Förster & Seyed-Emami 1982; Secrétan 1984; Garassino 1996).

Since the beginning of the twenty-first century, research on ancient crustacean faunas has been flourishing anew. Indeed, many contributions on erymoid lobsters appeared in print during the past twenty years (Schweigert et al. 2000; Schweigert & Röper 2001; Garassino & Krolicki...
Fig. 1. — *Palaeastacus terraereginae* (Etheridge Jr, 1914) from Australia: A, B, holotype QM 3234 from the Barremian of the Barcoo river: general view (A), schema (B); C, D, specimen QM F3236: dorsal view (C), ventral view (D); E, F, holotype UQ F13410 of *Enoploclytia tenuidigitata* Woods, 1957 from the Aptian of Boomers: P1 chela (E), dorsal view of the carapace (F); G, H, specimen UQ F13417 from the Aptian of Boomers: carapace (G), schema (H). Abbreviations: a, branchiocardiac groove; b, antennal groove; b₁, hepatic groove; c, postcervical groove; d, gastro-orbital groove; e₁e, cervical groove; i, inferior groove; POA, post-orbital area; χ, attachment site of adductor testis muscle; ω, attachment site of mandibular muscle. Scale bars: 1 cm. Photographs: P. Waddington. Line drawings: J. Devillez.
2002; Jagt & Fraaije 2002; Schweigert & Garassino 2003; Amati et al. 2004; Crónier & Courville 2004; Etter 2004; Carpentier et al. 2006; Feldmann & Titus 2006; Vega et al. 2007; Charbonnier 2009; Garassino et al. 2009; Schweitzer et al. 2009; Charbonnier & Garassino 2012; Charbonnier et al. 2012b; Karasawa et al. 2013; Klompmaker et al. 2013; Schweigert 2013; Bravi et al. 2014; Charbonnier et al. 2014, 2015; Hyžný et al. 2015; Jagt et al. 2015; Devillez et al. 2016, 2017, 2019; Devillez & Charbonnier 2017, 2019; Fanțescu et al. 2018; Jagt et al. 2018; Feldmann et al. 2020; Schweigert & Härer 2020; Garassino et al. 2021; Metodiev et al. 2021). On the basis of these new studies, it is now possible to produce a meaningful synthesis of erymoid lobsters, which is the aim of the present paper.

MATERIAL AND METHODS

The overview of the palaeobiodiversity and palaeobiogeography presented here strongly relies on the most recent papers on erymoid lobsters. Indeed, Devillez et al. (2016, 2017, 2018) and Devillez & Charbonnier (2017, 2019, 2020) proposed an extensive review of these lobsters including novel descriptions of genera and most of the species, supported by an unambiguous use of characteristics of carapace groove pattern, the shape of P1 chela, and the ornamentation of both carapace and P1 chela. These studies were motivated by numerous uncertainties over the systematic and taxonomy of erymoid lobsters. For example, at the species level, Charbonnier et al. (2014) looked at the case of Eryma greppini Oppel, 1861, which was synonymised with Eryma bedeltum (Quenstedt, 1857) following Förster’s (1966) review. They identified a pair of dorsal domes in the former species that are missing in E. bedeltum and, on that evidence, concluded that E. greppini was a distinct species and questioned the validity of the synonyms established within the Erymidae by previous workers. Confusions also ruled at the genus level. Indeed, this persisted for a long time between Enoploclytia M'Coy, 1849 and Palaeastacus Bell, 1850. In this case, the confusion probably was the result of a combination of facts, revealed by the study of old literature sources. Originally, in 1824, Mantell described Asastus leachi on the basis of heterogeneous material: P1 chela with a globose propodus and long, slender fingers and other P1 chela with short, wide fingers and adorned with strong spines. Considering these facts, Mantell (1824) subdivided A. leachi in order to distinguish Asastus susseciensis. M’Coy (1849) later established the genus Enoploclytia, and designated A. leachi as type species. However, the illustration supplied for the genus shows a carapace groove pattern, a morphology of the P1 chela and an ornamentation that all correspond to that of A. susseciensis. Moreover, A. susseciensis was later designated type species of Palaeastacus by Glassner (1929). Thus, the combination of these elements probably explains the confusion between these two genera, well illustrated in Glassner (1969), who treated Palaeastacus as a subgenus of Enoploclytia, despite the strong differences between their carapace groove patterns.

We also note here that most of the erymoid records are from Europe, which means that this synthesis also reflects a strong bias in collection and literature records.

Finally, the present work uses the systematic framework recently proposed by Devillez et al. (2019) for erymoid lobsters, as follows:

MALACOSTRACA Latreille, 1802;
DECAPODA Latreille, 1802;
ASTACIDEA Latreille, 1802;
ERYMOIDEA Van Straelen, 1925;
ENOPLOCLYTIIDAE Devillez, Charbonnier & Barriel, 2019;
Enoploclytia M'Coy, 1849;
Pustulina Quenstedt, 1857;
Erymidea van Straelen, 1925;
Eryminae Van Straelen, 1925;
Eryna Meyer, 1835;
Palaeastacus Bell, 1850;
Stenodactylina Beurlen, 1928;
Tethysastacinae Devillez, Charbonnier & Barriel, 2019;
Tethysastacus Devillez, Charbonnier, Hyžný & Leroy, 2016.

INSTITUTIONAL ABBREVIATIONS
AMNH American Museum of Natural History, New York;
BAS British Antarctic Survey, Cambridge;
BM Booth Museum of Natural History, Brighton;
BSPG Bayerische Staatssammlung für Paläontologie und Geologie, Munich;
CPC Museo del Desierto, Saltillo;
FSL Université Claude Bernard Lyon 1, Lyon;
GPIT Palaeontological Collection, Eberhard-Karls-Universität, Tübingen;
GSC Geological Survey of Canada, Ottawa;
IGM Instituto de Geología, Universidad Nacional de Paleontología, Mexico;
MAN Musée-aquarium, Nancy;
MFN Museum für Naturkunde, Berlin;
MNHN Muséum national d’Histoire naturelle, Paris;
MSNM Museo di Storia Naturale di Milano, Milan;
MUZ Museo de Múzquiz, Coahuila;
NHMUK Natural History Museum, London;
NPL Non-Vertebrate Paleontology Laboratory, Jackson School of Geosciences, University of Texas, Austin;
OSUG Observatoire des Sciences de l’Univers, Grenoble;
PIN Palaeontological Institute, Moscow;
QM Queensland Museum, Brisbane;
SMNS Staatliches Museum für Naturkunde, Stuttgart;
UQ University of Queensland, Brisbane;
USNM United States National Museum of Natural History, Smithsonian Institution, Washington DC;
WMNH-GE Wakayama Prefectural Museum of Natural History, Wakayama.

PALAEOBIODIVERSITY

HISTORICAL STUDIES AND STATE OF THE ART

Our review of the literature has revealed that, to date, 174 described species have been assigned to an erymoid gen-
Fig. 2. — *Enoploclytia minor* Woodward, 1900 from the Upper Cretaceous of Hornby Island (Canada): A-C, holotype GSC 5971: general view of the specimen (A), line drawing (B), counterpart (C); D, E, holotype of *Eryma dawsoni* GSC 5969: general view of the specimen (D), counterpart (E), line drawing (F). Abbreviations: a, branchiocardiac groove; b, antennal groove; b1, hepatic groove; c, postcervical groove; d, gastro-orbital groove; e1e, cervical groove; i, inferior groove. Scale bars: 1 cm. Photographs: M. Coyne. Line drawings: J. Devillez.
era since the nineteenth century. However, the number of valid species has varied widely in subsequent studies. In the review proposed by Förster (1966), of the 139 species already described, less than 50% (i.e., 67 species) have been considered valid ones (Table 1). Indeed, some of the described species were wrongly assigned to erymoid genera or synonymized with other species. In the synthetic list of Schweitzer et al. (2010), which is not a taxonomic review, the number of species rose to 120, if only genera recognized to belong to the superfam

Genera	Förster’s (1966) review	Schweitzer et al.’s (2010) list	After reviews by Devillez et al. (2016, 2017), and Devillez & Charbonnier (2017, 2019, 2020)
Enoploclytia M’Coy, 1849	9	19	10
Eryma Meyer, 1840	36	60	24
Galicia Garassino & Krobicki, 2002	–	3	(synonymised with Eryma)
Protoclytiopsis Birsheit, 1958	1	1	(synonymised with Eryma)
Palaeastacus Bell, 1850	13	24	14
Pustulina Quenstedt, 1857	8	12	11
Stenodactylina Beurlen, 1928	–	1	21
Tethysastacus Devillez, Charbonnier, Hyžný & Leroy, 2016	–	–	1
Total	67	120	81

Fig. 3. — Erymoid lobsters from the Palaeozoic and the Paleogene: A, holotype PIN 1453 of Eryma antiquum (Birsheit, 1958) from the Changhsingian of Ust-Jenisseisk (Russia); B, C, Enoploclytia gardnerae (Rathbun, 1935) from the Selandian of Coahuila (Mexico): specimen CPC 1982 (B), specimen IGM-9095 (C). Scale bars: 1 cm. Photographs: F. Schram (A), F. Vega (B, C).
for the genus (Fig. 1). On evidence of these morphological similarities, we here consider *E. tenuidigitata* to be a junior synonym of *P. terracrinae*.

Devillez et al. (2017) maintained *Enoploclytia minor* Woodward, 1900 (Maastrichtian, Hornby Island, Canada) in *Enoploclytia* because the only known specimen has a subrectangular...
Fig. 5. — Early Jurassic erymid lobsters: A, B, Eryma amalthei (Quenstedt, 1854) from the Pliensbachian, lectotype GPIT/43/24/57 from Holzmaden (Germany) (A), specimen MAN unregistered from Nancy (France) (B); C, D, Eryma birdi Woods, 1930, from the Toarcian of Peak (United Kingdom): holotype NHMUK in.27125 (C), paratype NHMUK in.27123 (D); E, paratype MSNM 90450 of Eryma sinemurianum (Garassino, 1996), from the Sinemurian of Osteno (Italy); F, specimen GPIT unregistered of Eryma sp. from the Sinemurian of Ofterdingen (Germany); G, holotype MSNM 7606 of Palaeastacus meyeri (Garassino, 1996), from the Sinemurian of Osteno (Italy); H, specimen MAN 2015.0.227 of Stenodactylina guisei (Wright, 1881) (holotype of Eryma lemairei.
A synthesis of the evolutionary history of erymoid lobsters (Crustacea, Decapoda, Erymoidea)

Pa. foersteri
Er. ornatum
Er. mandelslohi
Er. compressum
Er. ociensis
Er. ventrosum
Pa. argoviensis
Pa. edwardsi
Pu. calloviensis
Pu. elegans
Pa. argoviensis
Pa. edwardsi
Er. compressum
Er. jungostrix
Er. lerasi
Er. major
Er. mandelslohi
Er. modestiforme
Er. punctatum
Er. veltheimii
Er. ventrosum
S. burgundiaca
S. deslongchampsii
S. guisei
S. lagardettei
S. rogerfurzei
Pu. calloviensis
Pu. elegans
S. walkerae

Fig. 6. — Distribution of Erymoidea during the Jurassic: A, palaeobiogeography of Middle Jurassic; B, palaeobiogeography of Late Jurassic. Colors: blue, Erymiidae; orange, Enoploclytiidae. Abbreviations: En., Enoploclytia; Er., Eryma; Pal., Palaeastacus; Pu., Pustulina; S., Stenodactylina. Source of maps: Scotese 2014c.

Méchin, 1901) from the Toarcian of Chavigny (France); I, holotype SMNS 7785 of Stenodactylina liasina Beurlen, 1928 from the Toarcian of Holzmaden (Germany); J, holotype FSL 170514 of Stenodactylina falsani (Dumortier, 1867). Scale bars: 1 cm. Photographs: L. Cazes (J), J. Devillez (A, C, D, F, H, I), A. Garassino (E, G), P. Loubry (B).
and globose P1 propodus with long and slender fingers. They also maintained *Pustulina dawsoni* (Woodward, 1900) (upper Campanian - lower Maastrichtian, Hornby Island, Canada) in *Pustulina*, however, but failed to mention any anatomical arguments in support of such an assignment. A careful examination of high-resolution pictures of the type specimens stored in the collections of the Geological Survey of Canada has now allowed their carapace groove pattern to be observed (Fig. 2); that of the holotype of *E. minor* is not preserved in its entirety: it has an elongated and bifurcated gastro-oral groove, joined at mid-length of the cervical groove, and a sinuous postcervical groove with a short extension at carapace mid-height (Fig. 2B). The carapace groove pattern of *P. dawsoni* is almost complete. An elongated and bifurcated gastro-oral groove is joined posteriorly at the mid-length of the cervical groove; the cervical groove is joined ventrally to a curved antennal groove; the postcervical groove is sinuous, with an extension at the level of carapace mid-height, and joined ventrally to a sinuous hepatic groove, joined anteriorly to the cervical groove; a short and isolated branchiocardiac groove is interrupted in the branchial region; a curved inferior groove is also joined to the posterior extremity of the hepatic groove. This specimen also has a rectangular P1 propodus bearing long fingers (Fig. 2F). This groove pattern and the morphology of P1 chelae of *P. dawsoni* are typical of *Enoploclytia*. Moreover, the type specimens of both *E. minor* and *P. dawsoni* have a very similar tuberculated ornamentation. These specimens also from localities on Hornby Island that are close in geography and stratigraphy. In conclusion, the morphological similarities as well as the geographic and stratigraphic arguments lead us to interpret *P. dawsoni* as a junior synonym of *E. minor*.

Considering the recent revisions of erymoid lobsters proposed by Devillez et al. (2016, 2017) and Devillez & Charbonnier (2017, 2019, 2020), the previous remarks made above and novel contributions by Schweigert & Härer (2020), Feldmann et al. (2020), Ando et al. (2020) and Garassino et al. (2021),
A synthesis of the evolutionary history of erymoid lobsters (Crustacea, Decapoda, Erymoidea)

wintoni Stenzel, 1945, from the Albian of Crowley (Louisiana, United States); J, original figure of Feldmann et al. (2020: fig. 1A) of the holotype of Stenodactyolina beardi Feldmann, Schweitzer & Haggart, 2020, from the upper Santonian - lower Campanian of Vancouver Island (Canada); K, lectotype NPL TMM-BEG 21127 of Stenodactyolina triglypta (Texas, United States); L, original figure of Feldmann & Haggart (2008: fig. 2) of the holotype of Stenodactyolina walkerae (Feldmann & Haggart, 2008), from the Middle Jurassic of McDonnell Lake (Canada). Scale bars: 1 cm. Photographs: T. Jorstad (F), Non-vertebrate Paleontology Laboratory, Jackson School of Geosciences, The University of Texas at Austin (E, G, I, K), L. O’Reilly (A-C), S. Thurston (D), F. Vega (H).
81 valid species are recognised here (Table 1), meaning a reduction of at least one third when compared to the list of Schweitzer et al. (2010).

According to the present review, the number of valid species of Pustulina (11 species, rather than 12) remains stable, while that of Enoploclytia and Palaeastacus has almost been halved (10 species [versus 19] and 14 [versus 24]; Table 1). Eryma shows the strongest reduction in number of species that are considered valid by us. This number was divided by almost three between the listing by Schweitzer et al. (2010) and the most recent review (i.e., 24 versus 60 species). This reduction is due to: 1) the numerous species now identified as synonyms of others (e.g., Eryma ventrosum is an extreme case with 23 synonyms recognised; Devillez & Charbonnier 2020); and 2) the species that have been reassigned to other genera, (e.g., Eryma foersteri Feldmann, 1979 is now regarded as a representative of Palaeastacus; Devillez & Charbonnier 2019). Stenodactylina is the sole genus to show an increase in the number of constituent species. This is due to reassignment of species earlier referred to Enoploclytia, Palaeastacus and, mainly, from Eryma. These changes result from a more detailed characterization of the genus that followed upon the publication of specimens with carapaces preserved in association with P1 chelae by Hyžný et al. (2015). Indeed, prior to that study, the genus Stenodactylina was known exclusively from a couple of isolated P1 chelae (Beurlen 1928; Schweigert 2013), so the carapace and its groove pattern remained unknown until 2015. All in all, Stenodactylina remains an uncommon genus, and Devillez et al. (2018) pointed out an important gap of almost 50 myr between the two Cretaceous occurrences of S. delphinensis (Moret, 1946) (Berriasian) and S. triglypta (Stenzel, 1945) (Coniacian).

Evolution of palaeobiodiversity

The palaeobiodiversity of the Erymoidea can be analysed at different temporal (systems, series and stages) and taxonomic (family, genus and species) levels. In view of the fact that there is only a single species each on record from the Late Permian (Changhsingian; Fig. 3A) and the Paleocene (Fig. 3B, C), and because there are no records of Triassic erymid lobsters, our discussion of erymid palaeobiodiversity is restricted to Jurassic and Cretaceous occurrences. Moreover, in consideration of the relatively low number of known species and biases in collection and literature records, the elements given in our analysis proposed here should be only regarded merely as general trends.

More erymid species have been recorded from the Jurassic strata (45 species) than from Cretaceous deposits (34 species). However, of those 45, ten species occur exclusively in Lagerstätten of Late Jurassic (Kimmeridgian-Tithonian). By removing the Lagerstätten effect, as discussed by Klompmaker et al. (2013), the Jurassic yields 35 species, a specific diversity that is very close to that of the Cretaceous (Fig. 4A, B). However, we have noted a marked change in the importance of the families Erymidae and Enoploclytiidae between the Jurassic and the Cretaceous. Indeed, the later family comprises fewer species during the entire Jurassic and an increase to almost half of the diversity of all Erymoidea during the Cretaceous.

At the generic level, Eryma (17 species) and Stenodactylina (17 species) are the most speciose during the Jurassic: they include 80% of the species known for this system. For the Cretaceous, Enoploclytia is the genus which comprises most species (nine), while the number of species of Palaeastacus remains stable (seven species in Jurassic and Cretaceous), and Pustulina is the sole genus to have an increased specific diversity compared to that of the Jurassic (four Jurassic species, seven Cretaceous ones). The number of species for other genera already recorded from the Jurassic is less important during the Cretaceous: 17 Jurassic species of Eryma and six for the Cretaceous, 17 Jurassic species of Stenodactylina and four for the Cretaceous.

Considering the stage-by-stage-evolution of erymid palaeobiodiversity, leaving out the taxa from Lagerstätten, three major peaks in specific diversity can be noted (Fig. 4C).

The first peak is seen at the boundary between the Lower and Middle Jurassic (Toarcian-Aalenian). This is strongly supported by the specific diversity of the genus Stenodactylina, which attains the highest number of species. This peak is followed by a reduction of 50% in species during the Bajocian. Subsequently, the specific diversity increases from the Bathonian to reach a second peak at the limit between Middle and Upper Jurassic (Callovian-Oxfordian). This coincides with the development of carbonate platforms across Europe, when Eryma reaches its maximum diversity. The Bathonian is also characterised by the rise of Eryma ventrosum, a common species in the Middle and Late Jurassic of western Europe, while there are no records anymore Eryma compressum (Eudes-Deslongchamps, 1842), which had been common since the Toarcian. A progressive reduction in the number of species starts during the Kimmeridgian-Tithonian. Indeed, from seven erymoid species on record from Oxfordian strata, the uppermost Jurassic has yielded only three reported species to date. This low specific diversity continues into the earliest of the Cretaceous, with only three reported species during the Berriasian, and characterises almost the entire Lower Cretaceous until the third peak at the boundary between the Lower and Upper Cretaceous (Albian-Cenomanian) is reached. However, contrary to the general trend, with five reported species, Pustulina reaches a higher specific diversity during the Early Cretaceous. The third peak coincides with the interval that witnesses the last occurrences of Eryma and Pustulina, while Enoploclytia, already present during the Oxfordian (Devillez et al. 2018) and Barremian (Devillez et al. 2016), flourishes and becomes the most diverse erymid genus of all the Late Cretaceous. The Albian-Cenomanian boundary also corresponds to the development of the Chalk Sea in western Europe and of the Western Interior Seaway of North America (United States and Canada) that provided new environments for erymid lobsters. Subsequent to the Cenomanian, erymid diversity decreases progressively in Europe up to the last occurrences, that have been assigned to Enoploclytia leachii (Mantell, 1822) in the Campanian of Belgium and Germany. Following the Campanian, the erymid lobsters seem to have disappeared except for North America, along both Pacific and Atlantic coasts during the Maastrichtian and only on the Atlantic side (Gulf of Mexico) during the Paleocene.
Fig. 9. — Erymoid fauna from Madagascar: A, B, Stenodactyliina granulifera (Secrétan, 1964) from the Kimmeridgian of Antsalova; holotype MNHN.F.R03975 (A), specimen MNHN.F.R.03974, holotype of Eryma madagascariensis Secrétan, 1964 (B); C, D, Stenodactyliina australis (Secrétan, 1964), from the Tithonian: specimen MNHN.F.A33228 from Marolalitra (C), holotype MNHN.F.R03972 from Analavelona Massif (D); E, F, Pustulina spinulata (Secrétan, 1964), from the Valanginian-Hauterivian of Soromaraina, holotype MNHN.F.R03961 (E), paratype MNHN.F.A33189 (F); G, H, paratype MNHN.F.A33132 of Enoploclytia collignoni Secrétan, 1964, from the Campanian of Bevaho; I, holotype MNHN.F.R03913 of Stenodactyliina annata (Secrétan, 1964), from the Campanian of Belo-sur-Tsiribihina. Scale bars: 1 cm. Preparation: C. Bouillet (G-H). Photographs: L. Cazes (C, G, H), C. Lenzaouda (A, B, D, E, I).
PALAEOBIOGEOGRAPHY

PALAEOZOIC AND TRIASSIC

There is only a single representative of the Erymoidea on record from the end of the uppermost Permian (Changhsingian), namely *Eryma antiquum* (Birshstein, 1958). Hiti et al. (2019: 32) have recently recorded the presence of erymoid lobsters in Triassic (Carnian) strata of the Julian Alps of Slovenia. However, the general shapes of the specimens illustrated, and the wide and rounded extremities of the pleonal pleurites in particular, are close to *Clytiopus* Bill, 1914, a genus already well known from the Triassic of Western Europe. *Clytiopus* is not an erymoid lobsters (Devillez et al. 2019). In consequence, there are no representatives of this group on record to date from the Triassic; it is therefore impossible to extract any palaeobiogeographic data.

JURASSIC

For the Lower Jurassic, Erymoidea are exclusively known in western Europe. Only the erymid genera *Eryma*, *Palaeastacus* and *Stenodactylina* have been recorded from the Sinemurian in France, Germany, Italy, and the United Kingdom (Devillez & Charbonnier 2019; Fig. 5). Moreover, an unidentifed species of *Pustulina*, originally referred to as *Eryma* sp. by Woods (1930), has also been noted from the uppermost Lower Jurassic of the United Kingdom (Förster 1966; Devillez & Charbonnier 2019). Considering the sheer number of palaeontological studies carried out across Europe since the nineteenth century, the bias in collection may be considered to be weak for this continent. It is then strongly speculative to assume that western Europe was a central spot from where erymoid lobsters spread out across the globe, since it is the only area from which the oldest Mesozoic representatives of the group have been reported.

All Erymoidea recorded from the Middle Jurassic strata were found in the Northern Hemisphere, in Europe, northwestern North America and in northeastern and northern Africa (Fig. 6A). The only two enoploclytiids, *Pustulina calliowensis* (Förster, 1966) and *Pustulina elegans* (Förster, 1966), are known from western Europe, while erymids are widely distributed. Of *Eryma compressum*, in particular, the commonest species in Europe during the Middle Jurassic, there two southerly occurrences, in present-day Iran (Förster & Seyed-Emami 1982; Fig. 7B) and Morocco (Secrétan 1984). This suggests that this species spread to nearly the entire European part of the Tethys Ocean, the Central Atlantic margin (which extend to the south). The Central Atlantic margin in the southern Tethys Ocean (occurrence in the Aalenian). A recently reported specimen of *E. compressum* and *Eryma ornatum* (Fig. 6A), another well-known western European species, extends the geographical distribution of the genus to eastern Europe (Pantešcu et al. 2018, Metodiev et al. 2021).

Some erymids have also been reported from northwestern North America, which was flooded during the Middle Jurassic: *Stenodactylina waikerii* (Feldmann & Haggart, 2008) (Fig. 8L) and *Palaeastacus fuersteri* (Feldmann, 1979) (Fig. 8D). Their presence could have resulted from migrations of European populations. Indeed, both *Stenodactylina* and *Palaeastacus* have been present in western Europe since the Early Jurassic. Western Europe was also the closest region from where the northwest of North America via the Boreal Ocean could have been reached.

The geographic distribution of erymoid lobsters looks to have been wider during the Late than during the Middle Jurassic. The few reported enoploclytiids on record – *Enoploclytia* sp. (Devillez et al. 2018), *Pustulina minuta* (Schlotheim, 1822) and *Pustulina suevica* (Quenstedt, 1857 – are still in western Europe, but erymids are distributed in both hemispheres: Asia, Europe, North America, and southeastern Africa (Madagascar, Tanzania; Fig. 6B and Fig. 9A, D). Representatives of *Eryma* are still very well represented in Europe. On other continents, *Eryma jungostrix* Feldmann & Titus, 2006 (Fig. 8A) documents the continued presence of the genus in North America after the Middle Jurassic, while an incomplete P1 chela indicates the presence of *Eryma* in the Far-East (Japan; Kato et al. 2010) and a specimen recently assigned to *Eryma ventrosum* has been described from Tanzania (Beuren 1933: as “Eryma cf. bedelsa”; Devillez & Charbonnier 2020; Fig. 7A). This species, already known in western Europe during the Bathonian (Devillez & Charbonnier 2020), extends the distribution of *Eryma* further to the south than *E. compressum* seems to have done during the Middle Jurassic. The presence of *E. ventrosum* so far south during the Late Jurassic strongly suggests the existence of migrations of erymoid populations from western Europe to the Southern Hemisphere. Moreover, the presence of *Stenodactylina* in Madagascar during the Kimmeridgian-Tithonian could be a result of such migrations. This genus already occurred in western Europe and North America during the Middle Jurassic. However, the North American inlet was only connected to the Boreal Ocean only far in the north during the Middle Jurassic and only to the Pacific Ocean in the west during the Late Jurassic, so it was closed to the south.

In western Europe, the Solnhofen-type Kimmeridgian-Tithonian lithographic limestones of southern Germany have yielded an exceptionally diverse erymoid fauna with eleven species in four genera: *Eryma modestiforme* (Schlotheim, 1822), *E. major* Oppel, 1861, *E. punctatum* Oppel, 1861, *E. veltheimii* (Münster, 1839), *E. westphali* Schweigert, Dietl & Röper, 2000, *Palaeastacus fuciformis* (Schlotheim, 1822), *P. rothgaengerae* Schweigert & Röper, 2001, *Pustulina minuta*, *P. suevica*, *Stenodactylina devillezi* Schweigert & Härer, 2020, and *S. geigerae* Schweigert & Härer, 2020 (Fig. 10).

FIG. 10. – Erymoid fauna from the Kimmeridgian-Tithonian “Plattenkalk” of Bavaria (Germany): A, specimen MIFN 2236 P1383/3 MBA-A.2891 of *Eryma modestiforme* (Schlotheim, 1822) from Solnhofen; B, holotype SMNS 3682 of *Eryma major* Oppel, 1861, from Nusplingen; C, holotype SMNS 24227 of *Eryma westphali* Schweigert, Dietl & Röper, 2000, from Nusplingen; D, holotype BSPG AS VII 186 of *Eryma veltheimii* (Münster, 1839), from Kelheim; E, specimen SMNS 64681 of *Eryma punctatum* Oppel, 1861, from Nusplingen; F, specimen SMNS 64521 of *Palaeastacus fuciformis* (Schlotheim, 1822), from Zandt; G, holotype BSPG
A synthesis of the evolutionary history of erymoid lobsters (Crustacea, Decapoda, Erymoidea)

1993 XXVIII 200 of Palaeastacus rothgaengerae Schweigert & Röper, 2001, from Brunn; H, holotype SMNS 70507 of Stenodactylina geigerae Schweigert & Härer, 2020, from Marxheim; I, holotype SMNS 64872 of Stenodactylina devillezi Schweigert & Härer, 2020, from Nusplingen; J, specimen SMNS 64319 of Pustulina suevica Quenstedt, 1857, from Nusplingen; K, specimen BSPG AS I 619 of Pustulina minuta (Schlotheim, 1822), from Solnhofen. Scale bars: 1 cm. Photographs: J. Devillez (A–F, J–K), G. Schweigert (G–I).
However, in contrast to *E. modestiforme* and *P. fuciformis*, the other species are far less common: indeed, except for *P. minuta*, of the other species only a very low number of specimens are available. Thus, in spite of the paucity of most of the reported species, these “Plattenkalks” have yielded the most diverse erymoid fauna of all times.
Fig. 12. — Early Cretaceous erymoid fauna from the extreme south: A, holotype BAS KG.50.4 of *Palaeastacus uranusiensis* Devillez & Charbonnier, 2019, from the Aptian of Alexander Island (Antarctica); B, Specimen BAS KG.103.134 of *Palaeastacus sussexiensis* Mantell, 1824, from the Aptian of Alexander Island (Antarctica); C, specimen BAS KG.11.4 of *Palaeastacus terraereginae* Etheridge Jr, 1914, from the Barremian of Antarctica; D, specimens BAS KG-2-214 of *Eryma* sp. from the Aptian of Alexander Island (Antarctica); E-H, Australian specimens of *P. terraereginae*: specimen QM F3235, from the Barremian of Currane (E), specimen UQ F13417 from the Aptian of Boomers (F), specimen QM F3235 from the Barremian of Currane (G), specimen QM F3236 from the Barremian of Currane (H). Scale bars: 1 cm. Photographs: H. Blagbrough (A-D), P. Waddington (E-H).
Cretaceous

With occurrences in Antarctica, Australia, Europe, Japan, Madagascar and North and South America, the erymoids seem to have extended their geographical distribution into the Southern Hemisphere. However, most specimens and species on record still originate from the Northern Hemisphere.

In Lower Cretaceous strata, thirteen (out of 21) species were found in western Europe (Fig. 11A). The main difference with the Late Jurassic is that the number of enoploclytiids has strongly increased. Indeed, in Europe and North America there is almost the same number of species assigned to this family than that assigned to the Erymidae.

The presence of *Eryma nippon* Karasawa, Ohara & Kato, 2008 (Barremian, Japan; Fig. 7C) and *Eryma moriedaorum* Ando, Hirose, Ugi & Shimada, 2020 (Cenomanian, Japan) suggests the persistence of an erymoid fauna in the Far-East since at least the Kimmeridgian-Tithonian (Kato et al. 2010). In addition, important during the Early Cretaceous is the presence of erymoid faunas at the extreme south of the globe (Antarctica, Australia, Patagonia [Argentina]). The erymoids recorded from there exclusively belong to the Erymidae and constitute the first occurrences of these lobsters in Antarctica (Taylor 1979; Aguirre-Urreta 1989; Devillez et al. 2017), in Australia (Etheridge Jr 1914; Woods 1957; Förster 1966; Devillez et al. 2017) and in Patagonia (Aguirre-Urreta & Ramos 1981; Aguirre-Urreta 1982, 1989). These occurrences concern mainly the genus *Palaeastacus* (Fig. 12). Some specimens from the Aptian of Patagonia were assigned to *Palaeastacus sussexiensis* (Mantell, 1824) by Aguirre-Urreta (1989: fig. 8). This assignment was accepted by Devillez et al. (2016, 2017). However, these specimens exhibit some differences with *P. sussexiensis*: the P1 propodus is rounded in shape, the basis of the dactylus is relatively thin, the carapace ornamentation is fine and lacks strong spines on the cephalic and cardiac regions, and there are no rows of strong spines on the dorsal surface of P1 propodus. The shape of the P1 chelae and the dense, fine ornamentation of the carapace and P1 chela of the Patagonian specimens are closely similar to those of *Palaeastacus terraeaegeiae* (Etheridge Jr 1914), a species recorded from the Barremian of Antarctica, Australia and Patagonia and from the Aptian of Queensland (Australia). Therefore, the Patagonian specimens recorded by Aguirre-Urreta (1989) are here considered to be conspecific with *P. terraeaegeiae*. Thus, among the erymoids of the extreme south of the globe, *P. terraeaegeiae* was widespread in this area of the world during the late Early Cretaceous.

Devillez et al. (2016) described an exceptional fauna from southeastern France. During the Early Cretaceous, this north-east oriented area of almost 350 × 300 km provided eight species assigned to five (out of six) erymoid genera currently known: *Eryma vocontii* Devillez, Charbonnier, Hyžný & Leroy, 2016, *Pustulina occitana* Devillez, Charbonnier, Hyžný & Leroy, 2016, *Eryma vocontii* Devillez, Charbonnier, Hyžný & Leroy, 2016, *Stenodactylina delphinensis* (Moret, 1946), and *Tetysastacus tithonius* Devillez, Charbonnier, Hyžný & Leroy, 2016 (Fig. 13). With eight species (of 21) on record, this area of limited extent is known to have yielded: 1) the most diverse erymoid fauna of the Lower Cretaceous; 2) the most diverse *Pustulina* assemblage; and 3) the two sole fossils of *Tetysastacus* currently known (holotype MNHN.FJ03351 of *T. tithonius* and cast MNHN.F.A70286 of another specimen from an unknown locality).

The only erymoid fauna known from the Southern Hemisphere during the Late Cretaceous (Fig. 11B) has been described from the Campanian of Madagascar (Sekrètan 1964; Charbonnier et al. 2012a; Devillez et al. 2017; Fig. 9). Sekrètan (1964) noted the affinities between erymoid faunas from Madagascar and Australia (Figs 1; 12), Europe and North America (Fig. 8) and deduced from this the existence of migratory paths that allowed exchanges between Madagascar and other continents. An isolated P1 chela from the Santonian of France assigned to *Stenodactylina cf. armata* (see Devillez et al. 2017; Fig. 14K) confirms the probable exchange of faunas between Europe and Madagascar.

In the south of the Northern Hemisphere, in present-day Lebanon, it is interesting to point out the presence of representatives of both enoploclytiids and erymoids: *Pustulina cretae* (Roger, 1946) (Fig. 7D) and *Eryma ovari* Charbonnier, Audo, Garassino & Hyžný, 2017 (Fig. 7E).

We have noted a spectacular change in erymoid distribution in the Upper Cretaceous. A shift of the pole of diversity from Europe to North America with the addition of an apparent reduction of specific diversity (21 species in the Lower Cretaceous, 15 in Upper Cretaceous). The flooding of the southern USA and northeastern Mexico since the Early Cretaceous (Scotese 2014a, b) could provided new environments favourable for the settlement and diversification of an erymoid fauna. In contrast, the development and relative stability of the western European Chalk Sea possibly did not provide enough changes in environmental conditions to enable a strong diversification and modification of the erymoid fauna (Fig. 14). Indeed, this stability could have allowed the persistence of well-adapted species – in this case, *Enoploclytia leachii* and *Palaeastacus sussexiensis* – without competitive pressure of too many immigrant forms.

Devillez et al. (2017) discussed in detail the absence of erymoids in North America between the Oxfordian and the Albanian. They proposed two hypotheses to explain this 50 myr hiatus: 1) a bias in collection or literature records; or 2) a genuine absence of erymoid lobsters in North America. As to the second hypothesis, the authors emphasised that the Cretaceous fauna in the Gulf of Mexico could have resulted from immigrations of populations from Eurasia. Indeed, the proximity of this continent at the end of the Early Creta-

Fig. 13. — Early Cretaceous erymoid fauna from the South-East Basin (France): A, cast MNHN.F.R10204 of the holotype of *Eryma glaesneri* (Van Straelen, 1936); B, specimen of *Eryna vocontii* Devillez, Charbonnier, Hyžný & Leroy, 2016, *Eryna glaesneri* (Van Straelen, 1936), *Palaeastacus loryi* (Van Straelen, 1923), *Pustulina colosea* Devillez, Charbonnier, Hyžný & Leroy, 2016, *Pustulina occitana* Devillez, Charbonnier, Hyžný & Leroy, 2016, *Eryma vocontii* Devillez, Charbonnier, Hyžný & Leroy, 2016, *Stenodactylina delphinensis* (Moret, 1946), and *Tetysastacus tithonius* Devillez, Charbonnier, Hyžný & Leroy, 2016 (Fig. 13). With eight species (of 21) on record, this area of limited extent is known to have yielded: 1) the most diverse erymoid fauna of the Lower Cretaceous; 2) the most diverse *Pustulina* assemblage; and 3) the two sole fossils of *Tetysastacus* currently known (holotype MNHN.F.J03351 of *T. tithonius* and cast MNHN.F.A70286 of another specimen from an unknown locality).
A synthesis of the evolutionary history of erymoid lobsters (Crustacea, Decapoda, Erymoidea)

2016, from the Berriasian of Leysse; F, holotype MNHN.F.A57459 of Pustulina colossea Devillez, Charbonnier, Hyžný & Leroy, 2016, from the Hauterivian of Castellane; G, holotype MNHN.F.A57460 of Pustulina occitana Devillez, Charbonnier, Hyžný & Leroy, 2016, from the Berriasian of Laciterne-Boisset; H, holotype OSUG.LUF-ID 11152 of Stenodactylina delphinensis (Moret, 1946), from the Berriasian of Noyarey; I, holotype MNHN.F.J03351 of Tethysastacus lithonius (Van Straelen, 1936), from the Valanginian of Laciterne-Boisset. Scale bars: 1 cm. Photographs: L. Cazes.
Fig. 14. — Erymoid fauna from the Chalk Sea (Late Cretaceous): A, specimen NHMUK 5918 of *Enoploclytia seitzi* Glaessner, 1932, from the Cenomanian of Dover (United Kingdom); B-D, *Enoploclytia leachi* (Mantell, 1822), from United Kingdom: specimen NHMUK 34404 from Arundel (B), specimen BM 016987 (C), reconstruction (D); E-J, *Palaeastacus sussexiensis* (Mantell, 1824): specimen BM 007757, from Glynde (United Kingdom) (E), specimen NHMUK unregistered, from Maidstone (United Kingdom) (F), specimen NHMUK 59924, from Lewes (United Kingdom) (G), specimen MNHN.F.S07674, from Couvrot (France) (H), specimen BM 016988, from United Kingdom (I), reconstruction (J); K, specimen MNHN.F.A66891 of *Stenodactylyna* cf. armata, from the Santonian of Cognac (France). Scale bars: 1 cm. Preparation: Y. Despres (H, K). Photographs: L. Cazes (H), J. Devillez (A–C, E–G, I), P. Loubry (K). Drawings: J. Devillez.
The clear definition of erymoid genera and the consistent application of the taxonomic criteria, as provided in the most recent papers, have brought to light numerous cases of synonymy and erroneous assignments. In short, the case of the erymoid lobsters is a very good example of the great importance of taxonomic reviews in order to provide useful data in the studies of past biodiversity study and of evolution at different systematic and geographic scales.

Acknowledgements

The present paper is the result of a synthesis of a large data set obtained with the help of numerous fellow researchers, curators, technicians or passionate amateurs who have granted us access, directly or through photographs, to many specimens stored in the collections at their respective institutions or in their personal collections, from all over the world, and who helped us to prepare and photograph them. We wish to thank Véronique Barriel, Colas Bouillet, Lilian Cazes, Yohan Despres, Christian Lemzaouda, Philippe Loubry and Jean-Michel Pacaud (Muséum national d’Histoire naturelle, Paris, France), Fabienne Giraud-Guillot (OSUG, Grenoble, France), Laurent Picot and Thomas Meschine (Paléospace l’Odyssée, Villers-sur-Mer, France), Sandra Delaunay and Thibault Keiernknecht (Musée Aquarium, Nancy, France), Philippe Couvillie and Damien Gendry (Université de Rennes 1, France), Jean-Philippe Pezy (Université de Caen, France), Denis Audo (Yunnan University, China), Annelise Folie (Institut Royal des Sciences naturelles de Belgique, Bruxelles, Belgium), Claire Mellish (Natural History Museum, London, United Kingdom), Liz Harper and Matt Riley (Sedgwick Museum, Cambridge, United Kingdom), Lee Ismail and John Cooper (Booth Museum, Brighton, United Kingdom), Günter Schweigert (Staatliches Museum für Naturkunde, Stuttgart, Germany), Bork Ilseman and Mike Reich (Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany), Angela Ehling and Tanja Wodtke (Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin, Germany), Christian Neumann and Andreas Abele (Museum für Naturkunde, Berlin, Germany), Georg Rehm, Georg Oleschinski and Jes Rust (Steinmann Institut für Geologie, Mineralogie und Paläontologie, Bonn, Germany), Ingmar Werneburg (Eberhard-Karls-Universität, Tübingen, Germany), Lionel Cavin and Pierre-Alain Proz (Muséum d’Histoire naturelle, Genève, Switzerland), Walter Etter (Naturhistorisches Museum, Basel, Switzerland), Alessandro Garassino and Giorgio Teruzzi (Museo di Storia Naturale di Milano, Milan, Italy), Matúš Hyžný (Comenius University in Bratislava, Slovakia), Martina Kočová Veselská (Charles University, Czech Republic), Rodney Feldmann and Carrie Schweitzer (Kent State University, Kent, United States), Adiél Klompmaker (University of Alabama, Tuscaloosa, United States), Frederick Schram (University of Washington, Seattle, United States), Angella Thompson and Ann Molineux (Non-vertebrate Paleontology Laboratory, Jackson School of Geosciences, University of Texas, Austin, United States), Neil...
Landman, Bushra Hussaini and Stephen Thurston (American Museum of Natural History, New York, United States), Thomas Jorstad, Matthew Miller and Laurence O’Reilly (Department of Paleobiology, Smithsonian Institution, Washington DC, United States), Francisco Vega (Instituto de Geología, Mexico City, Mexico), Javier Luque (University of Alberto, Canada), Michelle Coyne (Geological Survey of Canada, Ottawa, Canada), Kristen Spring, Andrew Rozefelds, Debra Lewis and Peter Waddington (Queensland Museum, Brisbane, Australia), Hiroaki Karasawa (Mizunami Fossil Museum, Mizunami, Japan) and Masaaki Ohara (Wakayama Prefectural Museum of Natural History, Wakayama, Japan).

We are also grateful to Günter Schweigert, Francisco Vega and John W.M. Jagt (Natuurhistorisch Museum Maastricht, the Netherlands) who kindly gave some of their precious time to review our manuscript in order to improve it.

REFERENCES

Aguirre-Urreta M. B. 1982. — Crustáceos Decápodos Barremianos de la región del Tucú-Tucú, Provincia de Santa Cruz. Revista de la Asociación Paleontológica Argentina 19 (3-4): 303-317.

Aguirre-Urreta M. B. 1989. — The Cretaceous decapod Crustacea of Argentina and the Antarctic Peninsula. Palaeontology 32 (3): 499-552.

Aguirre-Urreta M. B. & Ramos V. A. 1981. — Crustáceos Decápodos del Cretácico Inferior de la Cuenca Autral, Provincia de Santa Cruz, Argentina. Comité Sudamericano del Jurásico y Cretácico: Cuencas sedimentarias del Jurásico y Cretácico de América del Sur 2: 599-623.

Amati L., Feldmann R. M. & Zonneveld J.-P. 2004. — A new family of Triassic lobsters (Decapoda: Astacidea) from British Columbia and its phylogenetic context. Journal of Paleontology 78 (1): 150-168. https://doi.org/c8cd69

Ando Y., Hirose K., Ucâi H. & Shimada K. 2020. — New records for decapods from the Cretaceous Goshoura Group (Albian to Cenomanian), Amakusa City, Kyushu, Japan. Bulletin of Goshoura Cretaceous Museum 21: 21-33.

Bachmayer F. 1959. — Neue Crustaceen aus dem Jura von Straßberg (CSR). Sitzungsberichte der Österreichischen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Abteilung 1. Biologie, Mineralogie, Erdkunde, und verwandte Wissenschaften 168: 937-944.

BELL T. 1850. — Notes on the Crustacea of the Chalk Formation, in Dixon F. (ed.). The Geology and Fauna of the Tertiary and Cretaceous Formations of Sussex. Longman, Brown, Green and Longmans, London: 344-345. https://doi.org/10.5962/bhl.title.14790

BELL T. 1857. — Crustacea of the London clay. A Monograph of the Fossil Malacostracean Crustacea of Great Britain. Part I. Palaeontographical Society, London, 40 p. https://doi.org/10.5962/bhl.title.11701

BELL T. 1863. — Crustacea of the Gault and Greensand. A Monograph of the Fossil Malacostracean Crustacea of Great Britain. Part II. Palaeontographical Society, London, 40 p. https://doi.org/10.5962/bhl.title.11701

Beurlen K. 1928. — Die Decapoden des Schwäbischen Jura mit Ausnahme der aus den oberjurassischen Plattenkalken stammenden. Palaeontographica 70: 115-278.

Beurlen K. 1933. — Crustacea Decapoda aus den Tendagur-Schichten. Palaeontographica Suppl. 7 (2): 89-94.

Bill P.C. 1914. — Über Crustaceen aus dem Volziensandstein des Elsasses. Mitteilungen der Geologischen Landesanstalt von Elsaas-Lorëring 8 (3): 289-338.
Devillez J., Charbonnier S., Hýzny M. & Leroy L. 2016. — Review of the Early Cretaceous erymid lobsters (Crustacea: Decapoda) from the Western Tethys. *Geodiversitas* 38 (4): 515-541. https://doi.org/10.5252/g2016v4a4.

Devillez J., Charbonnier S., Kocová Veselská M. & Pezy J.-P. 2017. — Review of the Late Cretaceous erymid lobsters (Crustacea: Decapoda) from the Western Tethys. *Proceedings of the Geologists’ Association* 128: 779-797. https://doi.org/10.1016/j.pgaa.2018.01.003.

Devillez J., Charbonnier S. & Pezy J.-P. 2018. — First Jurassic occurrence of Enoplochytia M.Coy, 1849 (Crustacea: Decapoda: Erymidae). *Annales de Paléontologie* 104: 143-148. https://doi.org/10.1016/j.annpal.2018.01.003.

Devillez J., Charbonnier S. & Barriel V. 2019. — An attempt to clarify phylogenetic affinities of erymid lobsters (Decapoda) using morphological characters. *Arthropod Systematics & Phylogeny* 77 (3): 365-395. https://doi.org/10.26049/ASP77-3-2019-1.

Dumortier E. 1867. — *Études paléontologique sur les dépôts jurassiques du Bassin du Rhône*, deuxième partie, *Espace Inférieur*. F. Savy, Paris, 252 p.

Eicher D. L. & Diner R. 1989. — Origin of the Cretaceous Bridge Creek cycles in the Western Interior, United States. *Paleogeography, Palaeoclimatology, Palaeoecology* 74: 127-146. https://doi.org/10.1016/0031-0182(89)90023-0.

Étallon A. 1857. — *Esquisse d’une description géologique du Haut-Jura et en particulier des environs de St-Claude avec une carte géologique et une planche de coupes*. J.-B. Baillière et fils, Paris, 108 p.

Étallon A. 1859. — Description des crustacés fossiles de la Haute-Saône et du Haut-Jura. *Bulletin de la Société géologique de France* 16: 169-205.

Étallon A. 1861. — Notes sur les crustacés jurassiques du bassin du Jura. *Recueil agronomique, industriel et scientifique publié par la Société d’Agriculture de la Haute-Saône* 9: 129-171.

Etter W. 2004. — Decapod crustaceans from the Middle Jurassic Opalinus Clay of northern Switzerland, with comments on crustacean taphonomy. *Ecologie Geologica Helvetica* 97: 381-392. https://doi.org/10.1007/s00015-004-1137-2.

Etheridge R. Jr 1914. — The genus *Enoplochytia* in the Cretaceous rocks of Queensland. *Records of the Australian Museum* 10: 271-273. https://doi.org/10.3853/j.0067-1975.1914.1904.92.

Eudes-Deslongchamps E. 1842. — Mémoire pour servir à l’histoire naturelle des Crustacés fossiles. *Mémoire de la Société linnéenne de Normandie* 7: 53-60.

Fantescu O. D., Feldmann R. M., Schweitzer C. E., Lazar L. & Stoica M. 2018. — New lobsters and lobster-like decapods (Crustacea) from the Jurassic and Cretaceous of Romania. *Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen* 287 (1): 45-60. https://doi.org/10.1127/njgp/2018/0705.

Feldmann R. M. 1979. — *Eryma foersteri*, a new species of lobster (Decapoda) from the Jurassic (Callovian) of North America. *American Museum Novitates* 2668: 1-5. https://www.biodiversitylibrary.org/item/171215.

Feldmann R. M. & Haggart J. W. 2008. — A new species of lobster (Astacidea, Erymidae) from the Smithers Formation (Middle Jurassic) of British Columbia, Canada. *Canadian Journal of Earth Sciences* 44: 1791-1796. https://doi.org/10.1139/e07-058.

Feldmann R. M. & McPherson C. B. 1980. — Fossil decapod crustaceans of Canada. *Geological Survey of Canada Paper* 79-16: 1-20. https://doi.org/10.4095/106636.

Feldmann R. M. & Titus A. L. 2006. — *Eryma jugoslovia* n. sp. (Decapoda; Erymidae) from the Redwater Shale of the Stump Formation (Jurassic; Oxfordian) of Utah. *Journal of Crustacean Biology* 26 (1): 63-68. https://doi.org/10.1515/JS-26-44.1.

Feldmann R. M., Schweritz C. E. & Karasawa H. 2015. — Crustacea, in *Selden P. A.* (ed.), *Treatise on Invertebrate Paleontology*. Part R, Arthropoda. *Geological Society of America, Boulder, Colorado*, and University of Kansas Press, Lawrence, Kansas: 399-533.

Hjitj T., Gasparic R., Zaloher J., Jurkovský B. & Kolár-Jurkovský T. 2019. — Palaeontološko bogastvo Kozje dnine/ Palaeontological treasure of Kozja dnin. *Acta Triglavensia* 7: 5-42.

Hýzny M., Schlogl J., Charbonnier S., Schweitzer G., Ruleau L. & Gouttenoire M. 2015. — Intraspecific variation and taphonomy of a new erymid lobster (Crustacea: Decapoda) from the Middle Jurassic of Belmout (Beaulojais, France). *Geobios* 48: 371-384. https://doi.org/10.1016/j.geobios.2015.07.006.

Jagt J. W. M. & Fraaije R. H. B. 2002. — The erymid lobster *Enoplochytia lechii* (Mantell, 1822) from the Upper Campanian of northeast Belgium. *Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre* 72: 91-95.
A synthesis of the evolutionary history of erymoid lobsters (Crustacea, Decapoda, Erymoidea)

Schweigert G. & Roper M. 2001. — Neue Krebse der Gattung Palaeastacus (Crustacea: Decapoda: Erymidae) aus oberjurassischen Plattenkalken Süddeutschlands. Stuttgart Berichte zur Naturkunde, Serie B (Geologie und Paläontologie) 313: 1-10.

Schweitzer C. E. & Feldmann R. M. 2001. — New Cretaceous and Tertiary decapod crustaceans from western North America. Bulletin of the Mizunami Fossil Museum 28: 173-210.

Schweitzer C. E., Feldmann R. M., Lazar J. 2009. — Fossil Crustacea (excluding Cirripedia and Ostracoda) in the University of Bucharest collections, Romania, including two new species. Bulletin of the Mizunami Fossil Museum 35: 1-14.

Schweitzer C. E., Feldmann R. M., Garassino A., Karasawa H. & Schweigert G. 2010. — Systematic list of fossil decapod crustacean species. Crustaceana Monographs 10: 1-222. https://doi.org/10.1163/cej.9789004178915.i-222

Scotese C. R. 2014a. — Atlas of Late Cretaceous Maps. PALEOMAP Atlas for ArcGIS, vol. 2, The Cretaceous, Maps 16-22, Mollweide Projection. PALEOMAP Project, Evanston, Illinois.

Scotese C. R. 2014b. — Atlas of Early Cretaceous Maps. PALEOMAP Atlas for ArcGIS, vol.2, The Cretaceous, Maps 23-31, Mollweide Projection. PALEOMAP Project, Evanston, Illinois.

Scotese C. R. 2014c. — Atlas of Jurassic Paleogeographic Maps. PALEOMAP Atlas for ArcGIS, vol.4, The Jurassic and triassic, Maps 32-42, Mollweide Projection. PALEOMAP Project, Evanston, Illinois.

Secretan S. 1964. — Les Crustacés décapes du Jurassique supérieur et du Crétacé de Madagascar. Mémoires du Muséum national d’Histoire naturelle, Nouvelle série, Série C, Sciences de la Terre 14: 1-226. https://www.biodiversitylibrary.org/page/58227345

Secretan S. 1984. — Présence d’Eryna bedelta (Crustacea Decapoda) dans le Bajocien du Maroc oriental. Geobios 17 (4) : 515-518. https://doi.org/10.1016/s0016-6995(84)80024-8

Stenzel H. B. 1945. — Decapod Crustacea from the Cretaceous of Texas. Texas University Publications 4401: 401-476.

Taylor B. J. 1979. — Macrourus Decapoda from the Lower Cretaceous of South-Eastern Alexander Island. British Antarctic Survey Scientific Reports 81: 1-39.

Trautschold H. von 1866. — Zur Fauna des russischen Jura. Bulletin de la Société impériale des Naturalistes de Moscou 1: 1-24.

Van Straelen V. 1921. — Sur des crustacés du Jurassique de la Nièvre. Bulletin de la Société belge de Géologie, de Paléontologie et d’Hydrologie 30: 139-142.

Van Straelen V. 1922. — Les crustacés décapes du Callovien de la Voute-sur-Rhône (Arcôche). Comptes rendus des séances de l’Académie des Sciences, 175: 1224-1226. https://gallica.bnf.fr/ark:/12148/bpt6k3128v/f1224.item

Van Straelen V. 1923. — Description de Crustacé décapes macrourus nouveaux des terrains secondaires. Annales de la Société royale zoologique de Belgique 53: 84-93.

Van Straelen V. 1925. — Contribution à l’étude des crustacés décapes de la période jurassique. Mémoires de la Classe des Sciences de l’Académie royale de Belgique 7: 1-462.

Van Straelen V. 1936. — Crustacés décapes nouveaux ou peu connus de l’époque crétaque. Bulletin du Musée royal d’Histoire naturelle de Belgique 12 (45): 1-50.

Vega F. J., Garassino A. & Jaime R. Z. 2013. — Enoploclytia tepayacensis n. sp. (Crustacea, Decapoda, Erymidae) from the Creteceous (Campanian) of Coahuila, NE Mexico. Boletín de la Sociedad Geológica Mexicana 65 (2): 207-211. https://www.jstor.org/stable/24921216

Vega F. J., Nyrborg T., Fraaije H. B. & Espinosa B. 2007. — Palaeocene Decapod Crustacea from the Rancho Nuevo Formation (Parras Basin-Difunta Group), Northeastern Mexico. Journal of Paleontology 81 (6): 1432-1441. https://doi.org/10.1666/06-018R.1

Whittfeld R. P. 1883. — Articulata, in Hayden F. V. (ed.), Contribution to Invertebrate Paleontology, 2: Cretaceous fossils of the Western States and Territories. 12th Annual Report of the United States Geological and Geographical Survey of the Territories: a report of progress of the exploration in Wyoming and Idaho for the year 1878, Part I: 37-38.

Woods H. 1925-1931. — A monograph of the fossil macrourous crustacea of England. Monograph of the Palaeontographical Society London: 1-122.

Woods J. T. 1957. — Macrourous Decapods from the Cretaceous of Queensland. Memoirs of the Queensland Museum 13 (3): 155-175. https://www.biodiversitylibrary.org/page/48733649

Woodward H. 1900. — Further Notes on Podophthalmous Crustaceans from the Upper Cretaceous Formation of British Columbia. Geological Magazine 7: 302-401 and 433-435. https://doi.org/10.1017/S00167568000174515

Wright T. 1881. — On a new Astacomorphous crustacean from the middle coral reef of Leckhampton Hill. Proceedings of the Cotteswold Naturalists’ Field Club 8: 56-59.

Submitted on 11 May 2020; accepted on 22 September 2020; published on 3 March 2022.