**Diferenças raciais na relação entre níveis normais-elevados de 25-hidroxivitamina d e hormônio da paratireóide na doença renal crônica em estágio inicial**

Racial differences in the relationship between high-normal 25-hydroxy vitamin d and parathyroid hormone levels in early stage chronic kidney disease

**Resumo**

Objetivo: as diretrizes atuais não abordam a variabilidade entre as pessoas nos marcadores do metabolismo ósseo e mineral em subgrupos de pacientes, nem traçam estratégias de tratamento com base em tais fatores.

Métodos: realizamos um estudo transversal para analisar dados de 20.494 veteranos de guerra dos Estados Unidos e verificar a variabilidade nos níveis de vitamina D (25 (OH) D) e hormônio da paratireóide (PTH) entre a raça e o estágio da doença renal crônica.

Resultados: os níveis de PTH foram maiores em americanos negros (AN) do que em americanos brancos (AB) em todos os níveis de 25 (OH) D e em todos os estratos de eGFR. Houve um declínio progressivo nos níveis de PTH do quartil mais baixo (25 (OH) D < 20) para o quartil mais alto (25 (OH) D > 40) em AN (134,4 v 90 pg/mL, respectivamente) e AB (112,5 v 71,62 pg/mL) (p < 0,001 para todas as comparações).

Conclusão: nesta análise, níveis de 25 (OH) D acima do normal foram bem tolerados e associados a valores mais baixos do hormônio da paratireóide em negros e brancos. Os americanos negros tinham valores de PTH mais altos em todos os níveis de eGFR e 25 (OH) D, sugerindo que uma única meta de PTH não é apropriado.

Palavras-chave: Hormônio da Paratireóide; Insuficiência Renal Crônica; Afro-Americanos; Distúrbio Mineral e Ósseo na Doença Renal Crônica.

**Resumo**

Aim: Current guidelines do not address between-person variability in markers of bone and mineral metabolism across subgroups of patients, nor delineate treatment strategies based upon such factors.

Methods: A cross sectional study was carried out to analyze data from 20,494 United States Veterans and verify the variability of Vitamin D (25(OH)D) and parathyroid hormone (PTH) levels across race and stage of chronic kidney disease.

Results: PTH levels were higher in Black Americans (BA) than White Americans (WA) at all levels of 25(OH)D and across eGFR strata. There was a progressive decline in PTH levels from the lowest (25(OH)D < 20) to highest quartile (25(OH)D > = 40) in both BA (134.4 v 90 pg/mL, respectively) and WA (112.5 v 71.62 pg/mL) (p<0.001 for all comparisons).

Conclusion: In this analysis, higher than normal 25(OH)D levels were well tolerated and associated with lower parathyroid hormone values in both blacks and whites. Black Americans had higher PTH values at every level of eGFR and 25(OH)D levels suggesting a single PTH target is not appropriate.

Keywords: Parathyroid Hormone; Renal Insufficiency, Chronic; African Americans; Chronic Kidney Disease-Mineral and Bone Disorder.
Existem evidências de diferenças raciais nos marcadores do metabolismo mineral. Em uma análise de adultos residentes na comunidade (aproximadamente 6% com TFGe <60 mL/min/1,73m²), Powe et al. mostraram níveis mais baixos de proteína de ligação à vitamina D e níveis mais baixos de PTH em negros em comparação com brancos. Entre esses pacientes, os negros tinham valores de PTH ligeiramente mais elevados do que os brancos (39 vs. 34 pg/mL, p <0,001). Além disso, a densidade mineral óssea era maior entre negros do que em brancos, em qualquer nível de 25 (OH) D, questionando a segmentação de um único nível de 25 (OH) D para a saúde óssea entre grupos raciais. No entanto, a suplementação de 25 (OH) D também é utilizada para supressão de PTH na DRC. A avaliação da variação da resposta do PTH à 25 (OH) D também sugeriu diferenças entre os grupos raciais. Um estudo dos níveis de vitamina D e PTH de um conjunto de dados do National Health and Nutrition Examination Survey aludiu que o PTH pode ser suprimido ao máximo em níveis mais baixos de 25 (OH) D em negros do que em brancos. Wright et al. também descobriram que as reduções no PTH foram diminuídas no nível de 25 (OH) D de ~20 ng/mL em afro-americanos contra ~30 ng/mL em caucasianos. Ennis et al. concluíram que os níveis de PTH em negros eram significativamente mais altos do que em brancos nos estágios 2 a 5 da DRC, com apenas um componente moderado explicado pelos níveis de 25 (OH) D. Gutierrez et al. observaram um aumento nos níveis de PTH entre os negros, independentemente dos níveis séricos de 25 (OH) D. Assim, nosso objetivo foi avaliar se a 25 (OH) D supranormal leva à supressão do PTH em estágios iniciais da DRC (DRC G3a) em comparação com a anterior (CKD G3b) e a influência da raça nessa relação. Nossa hipótese é que os níveis supranormais (>40 ng/mL) de 25 (OH) D estão associados a uma menor concentração de PTH. O efeito deve ser: a) mais pronunciado na DRC (DRC G3a) em comparação com a anterior (CKD G3b) e b) em qualquer nível de 25 (OH) D, os negros americanos (NA) teriam concentrações de PTH mais altas do que os americanos brancos (AB).

MÉTODOS

FORMATAÇÃO DO ESTUDO E DADOS

Este foi um estudo transversal utilizando dados do Veterans Administration (VA) Corporate Data Warehouse (CDW) acessado através da Veterans Administration Informática e Infraestrutura de Computação (VINCI). Todos os veteranos com valores de taxa de filtração glomerular estimada (TFGe), 25 (OH) D e hormônio da paratireóide (PTH) entre março a agosto de 2013 foram elegíveis para inclusão. Pacientes com TFGe entre 30 e 60 mL/min/1,73m² no início deste período de tempo foram incluídos. Um dos objetivos desta análise foi avaliar as interações entre os níveis de 25 (OH) D e o efeito da raça nos níveis de PTH. Dada a representação limitada de americanos não negros ou brancos no sistema VA, analisamos apenas os pacientes listados como brancos ou negros ou afro-americanos. Para esta avaliação, veteranos com DRC estágio 4 ou superior, não caucasianos e não afro-americanos ou de etnia desconhecida ou com hiperparatireoidismo primário foram excluídos. Usando o primeiro nível de 25 (OH) D dentro deste período de tempo, realizamos uma avaliação da correlação transversal dos valores de PTH de 25 (OH) D e contemporâneos (em nível individual). As variáveis adicionais extraídas incluíram a presença de comorbidades, tais com diabetes, hipertensão e distúrbio convulsivo. Os medicamentos de interesse incluíram cinacalcet, colecalciferol, ergocalciferol, doxercalcifero, paricalcitol, medicamentos com efeitos potenciais no metabolismo da vitamina D (rifampicina, dilantina, carbamazepina), bem como prednisona. Os pacientes em uso de cinacalcet foram excluídos.

ANÁLISE ESTATÍSTICA

As variáveis basais, demográficas e clínicas, foram avaliadas por meio de estatística descritiva. Os pacientes foram divididos por quartil de nível de 25 (OH) D dentro da coorte atual. Dentro de cada quartil 25 (OH) D, os pacientes foram comparados com base na raça (AN e AB). Para comparações descritivas, as variáveis contínuas foram comparadas usando testes paramétricos ou não paramétricos com base na distribuição subjetiva; variáveis categóricas foram comparadas usando testes de qui-quadrado ou exato de Fisher, com base no número de eventos em cada célula de observação. A análise de variância foi utilizada para comparar os valores de PTH entre os níveis de 25 (OH) D em cada categoria racial, bem como pelo tratamento com 25 (OH) D nutricional. Todas as análises estatísticas foram realizadas usando o software estatístico R (versão 3.5.1, R Foundation for Statistical Computing). As funções utilizadas para análise incluíram glm no pacote base, CreateTableOne no pacote TableOne e hist3d no pacote plot3D. O valor bicaudal de p <0,05 foi definido como o limite de significância estatística.
RESULTADOS

CARACTERÍSTICAS GERAIS DA COORTE

Um total de 5.065 AN e 15.429 AB foram analisados após a aplicação dos critérios de inclusão e exclusão. A Tabela 1 demonstra as características demográficas no momento da avaliação, com base no nível de 25 (OH) D. Havia menos AN com 25 (OH) D > 40 ng/mL (16%) do que AB (23%) e, inversamente, mais AN com níveis de 25 (OH) D mais baixos (<20ng/mL) do que AB (30,4% vs 15,7%, respectivamente; valor de p <0,001). Houve um aumento significativo na idade à medida que os níveis de 25 (OH) D aumentaram, tanto em AN quanto AB; em cada quartil de 25 (OH) D, AN eram mais velhos que os AN (p <0,001).

| TABELA 1 | VARIÁVEIS DEMOGRAFICAS E CLÍNICAS |
|----------|----------------------------------|
|          | 25(OH)D < 20 | 25(OH)D 20–29 | 25(OH)D 30–39 | 25(OH)D >=40 |
|          | AN | AB | AN | AB | AN | AB | AN | AB | p |
| N        | 1542 | 2240 | 1557 | 3464 | 1151 | 4604 | 805 | 3541 |   |
| Sexo (masculino: N (%)) | 1479 (95,9) | 2327 (96,2) | 1509 (96,3) | 4686 (96,3) | 1098 (95,4) | 4428 (96,2) | 743 (92,3) | 3375 (95,3) | <0,001 |
| Idade (anos) (média (dp)) | 64,2 (11,1) | 69 (10,2) | 66,5 (11,1) | 71 (10,3) | 679 (11) | 72,2 (10,2) | 69,1 (10,6) | 72,5 (10,3) | <0,001 |
| Comorbidades (N (%)) |          |          |          |          |          |          |          |          |   |
| HTN      | 806 (55,7) | 1215 (53,0) | 867 (57,2) | 2552 (54,4) | 651 (58,5) | 2455 (55,1) | 459 (59,1) | 1860 (54,4) | 0,01 |
| Diabetes Mellitus | 625 (43,2) | 1087 (47,4) | 659 (43,4) | 2008 (42,8) | 497 (44,7) | 1723 (38,7) | 297 (38,2) | 1106 (32,3) | <0,001 |
| Osteoporose | 67 (4,6) | 120 (5,2) | 82 (5,4) | 324 (6,9) | 56 (5,2) | 426 (9,6) | 55 (7,1) | 427 (12,5) | <0,001 |
| Convulsões | 12 (0,8) | 7 (0,3) | 10 (0,7) | 23 (0,5) | 5 (0,4) | 19 (0,4) | 5 (0,6) | 12 (0,4) | 0,315 |
| Medicamentos |          |          |          |          |          |          |          |          |   |
| Corticosteróides | 456 (29,8) | 665 (27,9) | 407 (26,2) | 1174 (24,5) | 331 (29,1) | 1104 (24,4) | 212 (26,6) | 801 (23,2) | <0,001 |
| Terapia antiretroviral | 46 (3,0) | 7 (0,3) | 29 (1,9) | 21 (0,4) | 20 (1,8) | 21 (0,5) | 12 (1,5) | 20 (0,6) | <0,001 |
| Drogas antiépilepticas | 21 (1,4) | 49 (2,1) | 24 (1,5) | 95 (2,0) | 13 (1,1) | 77 (1,7) | 10 (1,3) | 6 (1,7) | 0,321 |
| Rifampina | 4 (0,3) | 9 (0,4) | 1 (0,1) | 7 (0,1) | 1 (0,1) | 4 (0,1) | 0 (0,0) | 4 (0,1) | 0,065 |
| Ergocalciferol 50.000 IU | 665 (44,8) | 990 (41,6) | 390 (25,1) | 1063 (22,2) | 171 (15,0) | 441 (9,6) | 158 (19,8) | 329 (9,5) | <0,001 |
| Colecálculo 1000 IU | 576 (37,7) | 888 (37,3) | 667 (43,0) | 1847 (38,6) | 518 (45,6) | 1411 (31,2) | 331 (41,5) | 968 (28,0) | <0,001 |
| Doxicalcioler | 2 (0,1) | 2 (0,1) | 2 (0,1) | 7 (0,1) | 0 (0,0) | 5 (0,1) | 2 (0,3) | 6 (0,2) | 0,532 |
| Paricalcitol | 3 (0,2) | 2 (0,1) | 2 (0,1) | 3 (0,1) | 1 (0,1) | 7 (0,2) | 0 (0,0) | 4 (0,1) | 0,779 |
| Vitamina D (400 IU) | 127 (8,3) | 205 (8,6) | 149 (9,6) | 497 (10,4) | 136 (12,0) | 459 (10,2) | 116 (14,6) | 343 (9,9) | <0,001 |
| Calcitriol | 194 (12,7) | 243 (10,2) | 240 (15,5) | 492 (10,3) | 156 (13,7) | 520 (11,5) | 131 (16,4) | 370 (10,7) | <0,001 |
| Dados laboratoriais |          |          |          |          |          |          |          |          |   |
| PTH (média (DP)) (pg/mL) | 134,35 (151,97) | 112,52 (104,13) | 111,81 (96,78) | 91,55 (74,25) | 100,93 (121,02) | 79,89 (95,32) | 90,02 (86,26) | 71,62 (66,51) | <0,001 |
| 25-hidroxi Vitamina D (média (DP)) (ng/mL) | 14,11 (3,87) | 15,01 (3,70) | 24,92 (2,84) | 25,10 (2,61) | 34,33 (2,76) | 34,52 (2,82) | 50,68 (14,16) | 50,16 (19,86) | <0,001 |
| Albumina (média (DP)) (g/dL) | 3,67 (0,62) | 3,70 (0,59) | 3,80 (0,49) | 3,85 (0,47) | 3,86 (0,45) | 3,91 (0,43) | 3,90 (0,46) | 3,92 (0,42) | <0,001 |
| Cálcio (média (DP)) (mg/dL) | 9,20 (0,81) | 9,21 (0,91) | 9,41 (0,73) | 9,37 (0,73) | 9,42 (0,63) | 9,42 (0,70) | 9,45 (0,61) | 9,47 (0,72) | <0,001 |
| Taxa de Filtração Glomerular (média (DP)) (ml/min/1,73m²) | 44,24 (8,29) | 43,41 (8,26) | 44,10 (8,67) | 43,73 (8,32) | 44,30 (8,51) | 43,54 (8,23) | 44,26 (8,24) | 43,46 (8,20) | <0,001 |

AN: americanos negros; AB: americanos brancos.
AN apresentaram maior proporção de hipertensão em todos os quartis de 25 (OH) D (p < 0,001). No quartil inferior de 25 (OH) D, o diabetes foi mais comum entre AB do que AN (47,4% vs 43,2%, p < 0,001), e no 3º quartil, o diabetes foi maior entre AN do que AB (44,7% vs 38,7%, p < 0,001). A osteoporose foi mais comum entre AB do que AN em todos os quartis de 25 (OH) D. A função renal foi semelhante entre os grupos, com AN tendo uma TFGe marginalmente mais alta.

USO DE MEDICAMENTOS

Compostos da vitamina D: doxercalciferol e paricalcitol não foram comumente prescritos. Ergocalciferol foi prescrito com mais frequência nos níveis mais baixos de 25 (OH) D; no quartil mais alto, AN tiveram maior probabilidade de terem uma prescrição de ergocalciferol do que AB (19,8% vs 9,5%, respectivamente; p < 0,001). Entre os AN, as prescrições de colecalciferol, 400 UI de vitamina D e calcitriol foram mais comuns nos quartis 25 (OH) D maiores (p < 0,001 para tendência).

Medicamentos que podem afetar o metabolismo da vitamina D: esteróides foram mais comumente prescritos entre AN do que AB (p < 0,001 em todos os quartis de 25 (OH) D). O uso de terapia antirretroviral foi baixo em geral, mas significativamente maior entre AN do que entre AB. O uso de drogas antiepilépticas e rifampicina foi baixo em geral; as diferenças entre os grupos não foram significativas.

DADOS DE LABORATÓRIO: ANÁLISE DE PTH PRIMÁRIA

Houve um declínio progressivo nos níveis de PTH, do quartil mais baixo (25 (OH) D < 20) para o quartil mais alto (25 (OH) D > 40) em AN (134,4 vs 90 pg/mL, respectivamente) e AB (112,5 vs 71,62 pg/mL) (p < 0,001 para todas as comparações) (Tabela 1, Figuras 1a, 1b). AN tiveram níveis de PTH mais altos do que AB em todos os níveis de 25 (OH) D. O efeito de níveis mais elevados de 25 (OH) D nos níveis de PTH foi maior nas TFGe 45–59 em comparação com 30–44 (Figuras 1a, 1b).

A ANOVA demonstrou efeito significativo da raça (p < 0,001) e quartil de vitamina D (p < 0,001), mas não da interação entre raça e quartil 25 (OH) D, sugerindo que níveis mais altos de 25 (OH) D estão associados a PTH mais baixo, independente da raça, apesar de AN terem níveis de PTH mais altos do que AB em cada quartil de 25 (OH) D.

As Figuras 2a e 2b exibem graficamente a ANOVA listada acima. Além disso, os gráficos demonstram que os pacientes que não estão em terapia farmacológica com vitamina D têm níveis mais baixos de PTH a cada quartil de 25 (OH) D.

**Figura 1.** a. Hormônio da paratireóide (PTH) e vitamina D por taxa estimada de filtração glomerular em americanos negros; b. PTH e Vitamina D por TFGe em americanos brancos.

**Figura 2.** a. Relação entre o hormônio da paratireóide (PTH) e os níveis de 25-OH vitamina D em americanos brancos com e sem suplementação de vitamina; b. relação entre os níveis de PTH e 25-OH vitamina D em americanos negros com e sem suplementação de vitamina D.
Diferenças raciais no distúrbio mineral ósseo na DRC inicial

**DADOS DE LABORATÓRIO: POTENCIAIS EFEITOS ADVERSOS**

Níveis mais elevados de 25 (OH) D não foram associados a um aumento na hipercalemia (> 10,5 mg/dL - corrigido para albumina sérica). OR (intervalo de confiança de 95%) versus o quartil mais baixo de 25 (OH) D foram: 20–29 ng/mL, 0,94 (0,8–1,1); 30–39 ng/mL, 0,78 (0,65–1,49); > = 40 ng/mL, 0,81 (0,68-0,97). Níveis mais altos de 25 (OH) D também não foram associados a um aumento na hiperfosfatemia (> 3,4 mg/dL, a mediana da coorte): OR (intervalo de confiança de 95%) versus o quartil mais baixo de 25 (OH) D: 20 –29 ng/mL, 0,87 (0,79–0,95); 30–39 ng/mL, 0,89 (0,80–0,98); > = 40 ng/mL, 0,86 (0,77–0,95).

**DISCUSSÃO**

A análise atual sugere que no estágio 3 da DRC, níveis maiores do que o normal de 25 (OH) D estão associados a níveis mais baixos de PTH. Este efeito foi semelhante entre AN e AB. Níveis de 25 (OH) D acima do normal também não foram associados à hipercalemia ou hiperfosfatemia. Em contraste, AN tiveram níveis mais altos de PTH do que AB em cada categoria de 25 (OH) D com ou sem suplementação de vitamina D. Portanto, a suplementação nutricional de vitamina D que aumenta os níveis de 25 (OH) D para níveis mais altos do que o normal pode ser um tratamento seguro e eficaz de HPTS na DRC em estágio inicial. O estabelecimento de um nível-alvo apropriado para PTH deve levar em consideração as diferenças de grupo que podem ser representadas por características como raça.

Em um esforço para reverter ou prevenir o impacto do hiperparatireoidismo no esqueleto, a suplementação de vitamina D tem sido prescrita em pacientes com DRC por mais de três décadas¹⁰. O PTH tem sido o indicador primário para a adequação do tratamento no controle do hiperparatireoidismo secundário na DRC. Vários estudos examinaram a capacidade de elevar os níveis de 25 (OH) D a níveis supranormais (> 40 ng/mL) e a influência desse aumento nos parâmetros de HPTS em pacientes com DRC. Sprague et al. examinaram duas coortes separadas nos Estados Unidos (EUA) submetidas a ensaios clínicos idênticos de reposição de calcifediol nos estágios 3 e 4¹¹ da DRC. Dentro dessas coortes, o tratamento com calcifediol resultou em um aumento do valor médio de 20 ng/mL no início do estudo para 70 ng/mL na semana 25. Este tratamento também resultou em redução de 30% nos valores de PTH em quase 60% dos indivíduos na semana 26, e pelo menos 10% de redução em quase 70% dos participantes. Poucos efeitos colaterais foram evidentes neste estudo. Westerberg et al. demonstraram resultados semelhantes em uma análise de uma coorte europeia, com elevação dos níveis de 25 (OH) D de 23 para 65 ng/mL em 12 semanas com tratamento com colecalciferol em altas doses¹². Houve uma redução significativa nos níveis de PTH, embora a redução média (~ 6,6 pg/ml) tenha sido modesta. Da mesma forma, esses autores não observaram nenhum efeito colateral com esses níveis mais elevados de 25 (OH) D. A análise atual é consistente com essas descobertas. Além disso, a eficácia é evidente e aparentemente mais pronunciada em níveis mais elevados de TFGe.

Westerberg e colegas sugerem um potencial para meta mais alta de 25 (OH) D para prevenir a progressão do HPTs. Um ensaio clínico randomizado demonstrou que em 3.883 pacientes em hemodiálise e terapia com cinacalcet, apesar de uma redução significativa nos níveis de PTH, não resultou em melhora estatisticamente significativa no desfecho cardiovascular primário¹³. Na análise de subgrupo, um tempo mais curto em diálise (<2 anos) foi associado a uma tendência de benefício com cinacalcet, embora não tenha sido significativo. Isso sugere que o tratamento de HPTS no estágio final da DRT é inadequado para reverter ou mitigar seus efeitos na saúde cardiovascular dos pacientes. O estágio apropriado da terapia não está claro. No entanto, a análise atual, bem como outras¹¹,¹⁴,¹⁵, sugere que o controle eficaz dos níveis mais elevados de 25 (OH) D é importante para prevenir a progressão do HPTs. Em estudos de longo prazo, a suplementação de vitamina D tem sido associada a um benefício no desfecho cardiovascular primário¹⁶. O tratamento com vitamina D pode ser um tratamento seguro e eficaz para prevenir a progressão do HPTs em pacientes com DRC.

Um crescente conjunto de evidências sugere que fatores adicionais precisam ser considerados, incluindo metas específicas para a raça. No entanto, hoje, os níveis de 25 (OH) D são usados como um indicador primário para a adequação do tratamento no controle do hiperparatireoidismo secundário na DRC. Vários estudos examinaram a capacidade de elevar os níveis de 25 (OH) D a níveis supranormais (> 40 ng/mL) e a influência desse aumento nos parâmetros de HPTS em pacientes com DRC. Sprague et al. examinaram duas coortes separadas nos Estados Unidos (EUA) submetidas a ensaios clínicos idênticos de reposição de calcifediol nos estágios 3 e 4¹¹ da DRC. Dentro dessas coortes, o tratamento com calcifediol resultou em um aumento do valor médio de 20 ng/mL no início do estudo para 70 ng/mL na semana 25. Este tratamento também resultou em redução de 30% nos valores de PTH em quase 60% dos indivíduos na semana 26, e pelo menos 10% de redução em quase 70% dos participantes. Poucos efeitos colaterais foram evidentes neste estudo. Westerberg et al. demonstraram resultados semelhantes em uma análise de uma coorte europeia, com elevação dos níveis de 25 (OH) D de 23 para 65 ng/mL em 12 semanas com tratamento com colecalciferol em altas doses¹². Houve uma redução significativa nos níveis de PTH, embora a redução média (~ 6,6 pg/ml) tenha sido modesta. Da mesma forma, esses autores não observaram nenhum efeito colateral com esses níveis mais elevados de 25 (OH) D. A análise atual é consistente com essas descobertas. Além disso, a eficácia é evidente e aparentemente mais pronunciada em níveis mais elevados de TFGe.

**DISCUSSÃO**

A análise atual sugere que no estágio 3 da DRC, níveis maiores do que o normal de 25 (OH) D estão associados a níveis mais baixos de PTH. Este efeito foi semelhante entre AN e AB. Níveis de 25 (OH) D acima do normal também não foram associados à hipercalemia ou hiperfosfatemia. Em contraste, AN tiveram níveis mais altos de PTH do que AB em cada categoria de 25 (OH) D com ou sem suplementação de vitamina D. Portanto, a suplementação nutricional de vitamina D que aumenta os níveis de 25 (OH) D para níveis mais altos do que o normal pode ser um tratamento seguro e eficaz de HPTS na DRC em estágio inicial. O estabelecimento de um nível-alvo apropriado para PTH deve levar em consideração as diferenças de grupo que podem ser representadas por características como raça.

Em um esforço para reverter ou prevenir o impacto do hiperparatireoidismo no esqueleto, a suplementação de vitamina D tem sido prescrita em pacientes com DRC por mais de três décadas¹⁰. O PTH tem sido o indicador primário para a adequação do tratamento no controle do hiperparatireoidismo secundário na DRC. Vários estudos examinaram a capacidade de elevar os níveis de 25 (OH) D a níveis supranormais (> 40 ng/mL) e a influência desse aumento nos parâmetros de HPTS em pacientes com DRC. Sprague et al. examinaram duas coortes separadas nos Estados Unidos (EUA) submetidas a ensaios clínicos idênticos de reposição de calcifediol nos estágios 3 e 4¹¹ da DRC. Dentro dessas coortes, o tratamento com calcifediol resultou em um aumento do valor médio de 20 ng/mL no início do estudo para 70 ng/mL na semana 25. Este tratamento também resultou em redução de 30% nos valores de PTH em quase 60% dos indivíduos na semana 26, e pelo menos 10% de redução em quase 70% dos participantes. Poucos efeitos colaterais foram evidentes neste estudo. Westerberg et al. demonstraram resultados semelhantes em uma análise de uma coorte europeia, com elevação dos níveis de 25 (OH) D de 23 para 65 ng/mL em 12 semanas com tratamento com colecalciferol em altas doses¹². Houve uma redução significativa nos níveis de PTH, embora a redução média (~ 6,6 pg/ml) tenha sido modesta. Da mesma forma, esses autores não observaram nenhum efeito colateral com esses níveis mais elevados de 25 (OH) D. A análise atual é consistente com essas descobertas. Além disso, a eficácia é evidente e aparentemente mais pronunciada em níveis mais elevados de TFGe.
da DRC, bem como em indivíduos normais\textsuperscript{1,21}. Com nossos dados sobre as diferenças nos valores de PTH entre as raças e diferentes categorias de níveis de 25 (OH) D e valores de TFG\textsubscript{e}, se a otimização de HPTs depender da segmentação de uma faixa específica de valores de PTH, talvez a meta para os níveis de PTH precise ser específica para a raça, ou baseada em uma redução percentual do limite. No entanto, ao contrário de relatórios anteriores que sugeriram uma capacidade limitada de reduzir PTH em níveis mais elevados de 25 (OH) D\textsuperscript{8,9}, a análise atual corrobora o uso de 25 (OH) D supranormal para HPTs em estágio inicial de DRC, independentemente da raça.

Novamente, precisamos de análises prospectivas para confirmar essa hipótese. Houve limitações que precisam ser reconhecidas nesta análise. Primeiro, esta foi uma análise transversal de veteranos de guerra dos EUA, que são principalmente do sexo masculino. As discussões sobre o HPTs precisam considerar o fator de crescimento de fibroblastos 23 (FGF23) e o klotho para formar avaliações precisas das ligações com resultados importantes, como doença cardiovascular. Esses dados não estavam disponíveis para a análise atual. Análises anteriores não sugeriram nenhum efeito adverso de 25 (OH) D supranormal nos níveis de FGF23\textsuperscript{12}. Estudos prospectivos são necessários para avaliar os efeitos de longo prazo dos níveis de 25 (OH) D supranormais persistentes nos níveis de FGF23 na DRC em estágio inicial. Variáveis adicionais que afetam a saúde óssea, como p IMC e densidade óssea, não estavam disponíveis para esta análise.

Em conclusão, a análise atual corrobora tal achado, em uma grande coorte de veteranos dos EUA, com níveis de 25 (OH) D acima do normal estão associados a níveis mais baixos de PTH na DRC em estágio inicial. Além disso, essa análise demonstrou que esse efeito é semelhante em AN e AB. No entanto, a meta apropriada para PTH não está clara, pois AN demonstraram um PTH mais alto no mesmo nível de TFG ou 25 (OH) D que AB. Assim, estudos futuros de tratamento de HPTs na DRC, especialmente nos estágios iniciais de DRC (3a e 3b), devem considerar a suplementação de vitamina D em altas doses para diminuir ou estabilizar os níveis de PTH, mas precisarão considerar a raça, especificamente entre AB, ao estabelecer o tratamento metas para PTH.

AGRADECIMENTOS

Agradecemos ao VINCI que forneceu os dados, bem como ao VA Information Resource Center (ViREC) e aos pacientes cujos dados foram coletados como parte do atendimento de rotina normal. Este material é o resultado de trabalho apoiado com recursos e uso de instalações do Columbia Veterans Affairs Healthcare System.

DISCLOSURES

Todos os autores declararam não haver interesses conflitantes. As opiniões expressas neste artigo são de responsabilidade dos autores e não refletem necessariamente opinião pessoal ou política, nem representam as opiniões do Departamento de Assuntos de Veteranos ou do Governo dos Estados Unidos.

CONTRIBUIÇÕES DOS AUTORES

Concepção e implementação do estudo: MBW, ROM; esboço inicial: MBW, ROM; revisões críticas: MBW, AA, TV, DLM, JR, ROM; aprovação final do manuscrito: MBW, AA, TV, DLM, JR, ROM.

CONFLITO DE INTERESSE

Os autores declararam não haver conflito de interesses relacionado à publicação deste manuscrito.

REFERÊNCIAS

1. Pereira L, Meng C, Marques D, Frazão JM. Old and new calcimimetics for treatment of secondary hyperparathyroidism: impact on biochemical and relevant clinical outcomes. Clin Kidney J. 2018 Feb;11(1):80-8.
2. Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2009 Aug;76(Suppl 113):S1-130.
3. Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017 Jul;7(1):1-59.
4. Melamed ML, Chonchol M, Gutiérrez OM, Kalantar-Zadeh K, Kendrick J, Norris K, et al. The role of vitamin D in ckd stages 3 to 4: report of a scientific workshop sponsored by the National Kidney Foundation. Am J Kidney Dis. 2018 Dec;72(6):834-45.
5. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, et al. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med. 2013 Nov;369(21):1991-2000.
6. Gutiérrez OM, Farwell WR, Kermah D, Taylor EN. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. Osteoporos Int. 2011 Jun;22(6):1745-53.
7. Wright NC, Chen L, Niu J, Neogi T, Javiad K, Nevitt MA, et al. Defining physiologically “normal” vitamin D in African Americans. Osteoporos Int. 2012 Sep;23(9):2283-91.
8. Ennis J, Worcester E, Coe F. Contribution of calcium, phosphorus and 25-hydroxyvitamin D to the excessive severity of secondary hyperparathyroidism in African-Americans with CKD. Nephrol Dial Transplant. 2012 Jul;27(7):2847-53.
9. Gutiérrez OM, Isakova T, Andress DL, Levin A, Wolf M. Prevalence and severity of disordered mineral metabolism in Blacks with chronic kidney disease. Kidney Int. 2008 Apr;73(8):956-62.
10. Goldsmith DJ. Pro: Should we correct vitamin D deficiency/insufficiency in chronic kidney disease patients with inactive forms of vitamin D or just treat them with active vitamin D forms?. Nephrol Dial Transplant. 2016 May;31(5):698-705.
11. Sprague SM, Crawford PW, Melnick JZ, Strugnell SA, Ali S, Mangoo-Karim R, et al. Use of extended-release calcifediol to treat secondary hyperparathyroidism in stages 3 and 4 chronic kidney disease. Am J Nephrol. 2016;44(4):316-25.
12. Westerberg PA, Sterner G, Ljunggren Ö, Isaksson E, Elvarson E, Dezfoolian H, et al. High doses of cholecalciferol alleviate the progression of hyperparathyroidism in patients with CKD Stages 3-4: results of a 12-week double-blind, randomized, controlled study. Nephrol Dial Transplant. 2018 Mar;33(3):466-71.
13. Chertow GM, Block GA, Correa-Rotter R, Block GA, Correa-Rotter R, Düecke TB, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012 Dec;367(26):2482-94.
14. Moe SM, Saifullah A, LaClair RE, Usman SA, Yu Z. A randomized trial of cholecalciferol versus doxercalciferol for lowering parathyroid hormone in chronic kidney disease. Clin J Am Soc Nephrol. 2010 Feb;5(2):299-306.
15. Zisman AL, Hristova M, Ho LT, Sprague SM. Impact of ergocalciferol treatment of vitamin D deficiency on serum parathyroid hormone concentrations in chronic kidney disease. Am J Nephrol. 2007;27(1):36-43.
16. Malluche HH, Mawad HW, Monier-Faugere MC. Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res. 2011 Jun;26(6):1368-76.
17. Sawaya BP, Monier-Faugere MC, Ratanapanichkich P, Butros R, Wedlund PJ, Fanti P. Racial differences in parathyroid hormone levels in patients with secondary hyperparathyroidism. Clin Nephrol. 2002 Jan;57(1):51-5.
18. Vassalotti JA, Uribarri J, Chen SC, et al. Trends in mineral metabolism: Kidney Early Evaluation Program (KEEP) and the National Health and Nutrition Examination Survey (NHA- NES) 1999-2004. Am J Kidney Dis. 2008 Apr;51(4 Suppl 2):S56-68.
19. Owda A, Elhwairis H, Narra S, Towery H, Osama S. Secondary hyperparathyroidism in chronic hemodialysis patients: prevalence and race. Ren Fail. 2003 Jul;25(4):595-602.
20. Gupta A, Kallenbach LR, Zasuwa G, Divine GW. Race is a major determinant of secondary hyperparathyroidism in uraemic patients. J Am Soc Nephrol. 2000 Feb;11(2):330-4.
21. Bell NH, Greene A, Epstein S, Oexmann MJ, Shaw S, Shary J. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985 Aug;76(2):470-3.