Research on Water Cone Behavior in a Heavy Oil Reservoir with Bottom Water Considering the Starting Pressure Gradient
Kai Wang,* Ke Li, Yufei Gao, Yue Pan, Xianwen Zhang, and Qing You*

ABSTRACT: Aiming at the unclear reorganization of the water cone shape and its flooding scope for a horizontal well in a heavy oil reservoir with bottom water, a new method was proposed in this paper to establish a numerical model with the starting pressure gradient (SPG) by commercial software to study water cone behavior. The results show that there exists SPG in heavy oil reservoirs ranging from 10^{-4} to 10^{-3} magnitude with mobility under 30 $\mu m^2/mPa\cdot s$. With a mobility of 33 $\mu m^2/mPa\cdot s$, the water cone and flooding scope from the model with SPG is 120 m shorter than that without SPG. Upon increasing the mobility from 11 to 90 $\mu m^2/mPa\cdot s$, the flooding scope of the model with SPG changes from 125 to 315 m, showing a power exponential form. The new method proposed in this paper was significant for the water cone behavior study and has broad applications in heavy oil reservoir development in the future.

1. INTRODUCTION

The development of heavy oil reservoirs with bottom water is one of the big challenges in the oil and gas exploitation field worldwide.1,2 Developing reservoirs in these types often shows early water appearance, short water-free period, high water cut ratio, and even violent water cut ratio after water breakthrough, which reduces oil recovery and increases oilfield production risk.3,4

Currently, the application of a horizontal well has been widely known as an effective technology to enhance oil recovery for heavy oil reservoirs with bottom water, especially for those with thin layers.5–7 Compared with a vertical well, a horizontal well has the advantages of a larger contact area with the reservoir and smaller production pressure drop, which results in larger water cone, higher sweeping efficiency, lower drawdown, higher improved oil recovery, and better economics.4

The core technology for developing this type of reservoirs using horizontal wells exists in the description of the water cone. The evolution of water cone and its sweeping scope has a deep influence on the developing and adjusting project design. In the past decades, many researchers have conducted experimental, analytical, and numerical studies on water cone behavior of horizontal wells.8–10 However, the results of different research methods varied largely, especially for the heavy oil reservoir. For example, the sweeping scope from the laboratory experiments is much lower than that from numerical simulations. Based on vast literature research, we found that, in the porous medium, the heavy oil reservoir is similar to the low permeability reservoir, which is a non-Darcy flow with a starting pressure gradient (SPG).11 So, to heavy oil reservoirs, seepage can occur only if the production pressure gradient is greater than the SPG.12−14 However, the existing commercial numerical simulation software, such as Eclipse CMG and Petrel Re, are all based on the Darcy seepage model and cannot directly characterize the non-Darcy flow in heavy oil reservoirs. The theoretical formula cannot yet take complex geological and production conditions into consideration besides SPG. The existing laboratory experiment results were also unreal although considering SPG because they were largely limited by the model size. All the problems mentioned above seriously influence the exact description of water cone behavior and sweeping scope in heavy oil reservoirs with bottom water, which have an impact on further development and adjustment of this type of reservoirs (Tables 1 and 2).15−17

In this paper, we propose a new equivalent simulation method to achieve the equivalent characterization of the SPG in the commercial numerical simulation software of heavy oil reservoirs. Then, we construct a numerical model based on the new method to observe the evolution of water cone behavior and sweeping scope in heavy oil reservoirs with bottom water. Meanwhile, we also expanded the physical model size to remove the influence of the model size on the experimental
results. Finally, we comprehensively compared the results from the new method with that from a laboratory experiment with a full-size physical model and logging interpretation to verify its correctness. The new method proposed in this paper was significant in the water cone behavior study and has broad applications in heavy oil reservoir development in the future (Figures 1-3).

2. RESULTS AND DISCUSSION

2.1. Starting Pressure Gradient under Different Mobilities. The core samples listed in Table 3 were used to measure the SPG under different mobility conditions. The results are shown in Table 3 and Figure 4.

From Table 3, the SPG ranges from 0.00030 to 0.00141 MPa/m, while the mobility ranges from 0.637 to 33.557 10^{-3} μm2/mPa·s. Based on the results, a fitting curve was obtained to describe the relationship between SPG and mobility, as shown in Figure 4. The formula is as follows

$$G_p = 0.001 \left(\frac{k}{u} \right)^{-0.352}$$

In the formula, G_p is the starting pressure gradient, MPa/m; K is the permeability, 10^{-3} μm2; and u is the crude oil viscosity, mPa·s.

From Figure 4, we can see that the starting pressure gradient increases with decreasing mobility. With the mobility smaller than 5×10^{-3} μm2/mPa·s, the SPG decreases quickly from 10^{-3} to 10^{-4} magnitude. When the mobility is larger than 5×10^{-3} μm2/mPa·s, the SPG decreases slowly and is maintained at 10^{-4} magnitude. The relationship between them is a power exponent form, and the relative coefficient is up to 0.9604.

Table 1. Core Sample Parameter Analysis

number	viscosity (mPa·s)	Swcr (%)	permeability (10^{-3} μm2)
K30	266.2	17.24	336.03
K64	266.2	15.86	1385.42
K61	266.2	15.2	1565.24
K31	513.1	23.12	331.83
K54	513.1	18.21	1384.3
K12	154.3	26.48	337.43
K21	154.3	27.34	625.36
K19	154.3	24.4	3679.01
K51	70.6	23.25	550.46
K67	70.6	16.71	867.99
K75	70.6	22.15	2085.95
K28	266.2	20.27	350.01
K72	266.2	22.13	1446.4
K36	513.1	20.48	326.74
K65	513.1	21.26	1334.98
K61	154.3	23.05	1671.38
K78	154.3	27.44	3331.34
K45	70.6	20.59	2369.12

Table 2. Main Parameters of the Conceptual Model

parameter	value
datum top depth (ft)	5150
oil–water interface depth (ft)	5190
oil–water interface pressure (psi)	2248.4
crude oil viscosity (mPa·s)	50–200
formation water viscosity (mPa·s)	0.4
permeability (10^{-3} μm2)	4500
porosity (%)	27.0
original oil saturation (%)	4.2
formation oil volume factor	1.038
Table 3. Starting Pressure Gradient Measurement

number	viscosity (mPa·s)	permeability (10^{-13} μm²)	mobility (10^{-3} μm²/mPa·s)	SPG (MPa/m)
K30	266.2	336.03	1.262	0.00095
K64	266.2	1385.42	5.204	0.0005
K61	266.2	1565.24	5.879	0.00049
K31	513.1	331.83	0.647	0.00141
K54	513.1	1384.3	2.698	0.00061
K12	154.3	337.43	2.187	0.00082
K21	154.3	625.36	4.053	0.00065
K19	154.3	3679.01	23.843	0.00036
K51	70.6	550.46	7.797	0.00048
K67	70.6	867.99	12.294	0.00042
K75	70.6	2085.95	29.546	0.00031
K28	266.2	350.01	1.315	0.00079
K72	266.2	1446.4	5.433	0.00055
K36	513.1	326.74	0.637	0.00125
K65	513.1	1334.98	2.602	0.00065
K61	154.3	1671.38	10.832	0.00042
K78	154.3	3331.34	21.59	0.00036
K45	70.6	2369.12	33.557	0.00030

Figure 4. Relationship between mobility and starting pressure gradient.

2.2. Water Cone Behavior with and without Considering the Starting Pressure Gradient. The conceptual model with the main parameters listed in Table 2 was established to explore the influence of mobility on water cone behavior and production curves accordingly. The crude oil viscosity was fixed at 135 mPa·s. The results are shown in Figures 5–7.

Figure 5 illustrates the evolution of the water cone with and without considering SPG. During the flooding process, the water cone both grew quickly for the water cut before 85% and then grew slowly after that. For example, the two models at every water cut stage, there always exists differences in the water cone size, shape, and flooding scope. For the existence of SPG, the water cone size, shape, and flooding scope are much smaller in model with SPG than those in model without SPG. Finally, at the water cut stage of 98%, the flooding scope with SPG is 450 m and that without SPG is 570 m.

Figures 6 and 7 show the changes in oil production rate and water cut during the evolution of the water cone. During the flooding process, both the oil production rate and water cut vary quickly first for the water cut before 85% and then become slow after that. This is according to the water cone behavior shown in Figure 5, which is the water cone grew quickly for the water cut before 85% and then grew slowly after that. Compared with those in the model without SPG, the oil production rate decreases much faster and the water cut increases much faster in the model with SPG. Moreover, from Figure 7, we can see that the oil production cumulative of the model without SPG is much more than that with SPG. The reason lies in that the existence of SPG limited the growing and flooding scope of the water cone, which leads to more water production and unstarting oil.

2.3. Water Cone Behavior from Numerical Model Simulations under Different Mobilities. The conceptual model with the main parameters listed in Table 2 was established to explore the influence of mobility on water cone behavior and production curves accordingly. The permeability was fixed at 4500 mD, and the crude oil viscosity ranges from 50 to 400 mPa·s. The results are shown in Figures 8–11 and Table 4.

Figure 8 illustrates the final shape and flooding scope of water cones under different mobility conditions. With the increase of crude oil viscosity and decrease of mobility accordingly, the water cone size and flooding scope decrease from 315 to 125 m. Besides, from Figure 9a,b, we can see that the oil production rate decreases much quickly and the water cut increases fastly. The reason lies in two aspects. First, with the increment of crude oil viscosity, the fingering phenomenon is significant, which results in a quick breakthrough in bottom water. Second, with the increment of crude oil viscosity, the mobility decreases accordingly, which leads to a higher SPG, as described in Figure 4 and Formula 7. The higher the SPG, the smaller the water cone and the flooding scope. Both of the reasons mentioned above contribute to the quicker increment of water cut and decrement of oil production rate. Finally, mobility has a significant influence on the cumulative oil production, as shown in Figure 10.

Based on the results shown in Table 4, a fitting curve was obtained to describe the relationship between the water cone flooding radius and mobility and between the water cone flooding radius and viscosity, as shown in Figure 11 a,b. The formula is as follows:

\[Y = 92.567*\ln(X) - 98.302 \]

In the formula, \(Y \) is the water cone flooding radius, \(m \), and \(X \) is the mobility, \(10^{-3} \mu m^2/\text{mPa·s} \).

From Figure 11, we can see that the water cone flooding radius increases with increasing mobility and decreases with increasing viscosity from 315 to 125 m. The relationship between them is a power exponent form, and the relative coefficient is up to 0.9988.

2.4. Grid Size Sensitivity Analysis. In the conventional numerical models, the grid size has a deep influence on numerical results. In this part, a series of conceptual models were built to analyze the grid sensitivity for models with and without SPG. The grid size varies from 1 to 30 m, respectively, and the results are shown in Figure 12.

From Figure 12a,b, with the increment of grid size, the water cone radii of models with and without SPG both increase. Differently, the models considering SPG increases slowly, while that of models without considering SPG increases rapidly. The reason lies in that conventional models without considering
SPG belong to liner seepage, the oil saturation degree changes where the pressure changes, and the grid size is the main factor to influence the water cone radius. However, in the model with SPG in this paper, the SPG is related to the grid size; the bigger the grid, the higher the SPG; with considering SPG, the water cone radius changes slightly with the increment of grid size, from 220 to 232, which meets the field application requirements.

3. CONCLUSIONS

A new method was proposed in this paper to establish a numerical model with considering a starting pressure gradient (SPG) to study the water cone behavior. From what we studied above, the conclusions could be summarized as follows:

1. There exists SPG in a heavy oil reservoir, with values ranging from 10^{-4} to 10^{-3} magnitude with mobility under 30 μm2/mPa·s.

Figure 5. Water cone behavior with and without considering SPG.

Figure 6. Production curves with and without considering the SPG Oil production rate (a) and water cut (b).

Figure 7. Oil production cumulative with and without considering SPG.
The SPG could be considered in commercial simulation software with the new method proposed in this paper. The SPG influences the water cone behavior significantly. With a mobility of 33 μm²/mPa·s, the water cone and flooding scope from a model with SPG is 120 m shorter than that without SPG.

4. EXPERIMENTAL AND MODEL SECTION

4.1. Materials. Crude oil was obtained from the Panyu oilfield. Oil viscosity was measured using a Brookfield viscometer (DV-II+, Brookfield) at a reservoir temperature of 75 °C. The cone samples were collected from heavy oil reservoirs of the Panyu oilfield. The parameter analyses of cone samples are shown in Table 1.

4.2. Models. Based on the new method in this paper, a conceptual model considering a starting pressure gradient was established by Petrel Re. The number of grids is 500 × 500 × 15; the grid step lengths in the X, Y, and Z directions are all 4 ft. The water body size was infinite and controlled by Fetchovich. A horizontal well was arranged in the upper part of the reservoir. The main parameters of the conceptual model are shown in Table 2.

4.3. Starting Pressure Gradient Measurement. In this paper, the constant current method is used to determine the starting pressure gradient of the core sample. The experimental flow is shown in Figure 1.

The main experimental steps are as follows:

(4) The mobility has a significant influence on the evolution of water cone. By increasing the mobility from 11 to 90 μm²/mPa·s, the flooding scope of the model with SPG changes from 125 to 315 m, showing a power exponential form.

Table 4. Flooding Scope of Water Cone under Different Mobility Conditions

permeability (×10⁻³ μm²)	viscosity (mPa·s)	M (×10⁻³ μm²/mPa·s)	R (m)
4500	50	90	315
4500	70	64	291
4500	135	33	225
4500	200	22	190
4500	250	18	170
4500	400	11	125

Figure 8. Water cone behavior with considering SPG under different mobilities (K = 4500 mD).

Figure 9. Production curves with considering SPG under different mobilities (K = 4500 mD): oil production rate (a) and water cut (b).

Figure 10. Oil production cumulative with considering SPG under different mobilities (K = 4500 mD).
(1) prepare the core samples according to SY/T 5336-2006;
(2) establish the critical water saturation by the oil flooding method according to SY/T 5345-2007;
(3) pump the oil to drive the core sample with the flow rate ranging from 0.001 to 0.5 mL/min and then record the corresponding pressure when the flow is stable; and
(4) replace the core and repeat the above steps to get 18 cores.

4.4. Equivalence Principle and Balance Zone Setup. Based on the current mature numerical simulation software Petrel Re, we reset the balance areas and the interarea threshold pressures through the new method in this paper to achieve the starting pressure gradient model. The formula is as follows

\[\nu = 0 \quad (\Delta p \leq G) \]
\[\nu = \frac{k}{\mu} \left(\frac{\Delta p - G}{L} \right) \quad (\Delta p \geq G) \]

The seepage velocity formula for the starting pressure gradient model is as follows

\[\nu = 0 \quad \left(\frac{\Delta p}{L} \leq c \right) \]
\[\nu = \frac{k}{\mu} \left(\frac{\Delta p}{L} - c \right) \left(\frac{\Delta p}{L} \geq c \right) \]

In the formula, \(\nu \) is the seepage velocity, \(\mu \) is the permeability, \(10^{-3} \mu m^2 \); \(\mu \) is the crude oil viscosity, mPa·s; \(c \) is the starting pressure gradient, MPa/m; \(G \) is the threshold pressure, MPa; \(L \) is the distance between the injection end and the production end, m; and \(\Delta p \) is the pressure drawdown between the injection end and the production end, MPa.

For the grid model, “fluids only flow between adjacent grids” is the most basic principle. On this basis, we designed the staggered looping method to set the balance areas, as shown in Figure 2. From Figure 2, adjacent to the balance area 1 is the balance area 2, and vice versa. With this new method, it is easy to achieve the equivalent characterization of the starting pressure gradient through setting the threshold pressure among balance areas.\(^{19}\)

In Petrel Re, we can set the balance areas, as shown in Figure 2, through the following formulas in the calculator section of Petrel-Re. The conceptual model was divided into three areas, as shown in Figure 3. There exists a starting pressure gradient between area 1 and area 2, both of which belong to the oil layer. There does not exist a starting pressure gradient inside area 3 since it belongs to the water layer. There also does not exist a starting pressure gradient between area 3 and area 1 and area 2.

\[\text{region } 1 = \text{If } (\text{Int}((I + J + K)/2)) \]
\[= ((I + J + K)/2, 2, 1) \]
\[\text{region } 2 = \text{If } (K > = 11, 3, \text{region}) \]
AUTHOR INFORMATION

Corresponding Authors
Kai Wang — School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China; Development Research Institute, China National Offshore Oil Corporation Research Institute, Beijing 100028, China; State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China; orcid.org/0000-0002-9005-4437; Email: wangkaiupc@163.com
Qing You — School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China; orcid.org/0000-0002-0959-9502; Email: youqing@cugb.edu.cn

Authors
Ke Li — Development Research Institute, China National Offshore Oil Corporation Research Institute, Beijing 100028, China; State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China
Yufei Gao — Development Research Institute, China National Offshore Oil Corporation Research Institute, Beijing 100028, China; State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China
Yue Pan — Development Research Institute, China National Offshore Oil Corporation Research Institute, Beijing 100028, China; State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China
Xianwen Zhang — Development Research Institute, China National Offshore Oil Corporation Research Institute, Beijing 100028, China; State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c02036

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The author is particularly grateful to all staff in the Development Research Institute of CNOOC Research Institute for their continuous support in this work. The author is also grateful to future editors and reviewers for their selfless contribution and constructive suggestion for this work. This work is sponsored by The National Science and Technology Major Project of China (2017ZX05009), Fundamental Research Funds for the Central Universities (2652019103) and Key Projects of CNOOC during the 13th Five Year Plan “Basic Research on Enhanced Oil Recovery of Marine Sandstone Heavy Oil Reservoir” (YXKY-2017-ZY-11-01).

REFERENCES
(1) You, Q.; Wen, Q.; Fang, J.; et al. Experimental study on lateral flooding for enhanced oil recovery in bottom-water reservoir with high water cut. J. Pet. Sci. Eng. 2019, 174, 747–756.
(2) Zakarian, A.; Sarafraz, S.; Tabzar, A.; et al. Numerical modeling and simulation of drilling cutting transport in horizontal wells. J. Pet. Explor. Prod. Technol. 2018, 8, 455–474.
(3) Wang, H.; Liao, X.; Lu, N.; et al. A study on development effect of horizontal well with SRV in unconventional tight oil reservoir. J. Energy Inst. 2014, 87, 114–120.
(4) Zhao, Y. L.; Zhang, L. H.; Luo, J. X.; Zhang, B. N. Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir. J. Hydrol. 2014, 512, 447–456.
(5) Zeng, Y. C.; Su, Z.; Wu, N. Y. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy 2013, 56, 92–107.
(6) Kai, W.; Yan, Z.; Wensheng, Z.; et al. Study on the time-variant rule of reservoir parameters in sandstone reservoirs development. Energy Sources, Part A 2019, 42, 194–211.
(7) Dai, C.; Kai, W.; Liu, Y.; et al. Reutilization of Fracturing flowback fluids in surfactant flooding for enhanced oil recovery. Energy Fuels 2015, 29, 2304–2311.
(8) Chen, C.; Wan, J.; Zhan, H. Theoretical and experimental studies of coupled seepage-pipe flow to a horizontal well. J. Hydrol. 2003, 281, 159–171.
(9) Zhu, R.; Tao, L. Boundary element method of free boundary issues of stationary water cone for gas well. Nat. Gas Ind. 2004, 24, 93–95.
(10) Ghannam, M. T.; Esmail, N. Flow Enhancement of Medium-Viscosity Crude Oil. Pet. Sci. Technol. 2006, 24, 985–999.
(11) Zeng, J.; Wang, X.; Guo, J.; Zeng, F. Composite linear flow model for multi-fractured horizontal wells in tight sand reservoirs with threshold pressure gradient. J. Pet. Sci. Eng. 2018, 165, 892–912.
(12) Xu, J.; Cheng, L.; Li, C. Starting pressure gradient calculation and its application in conventional heavy oil reservoir. Spec. Oil Gas Reservoirs 2006, 13, 53–57.
(13) Zhang, L.; Liu, C.; Chen, J. Calculating threshold pressure gradient of heavy oil reservoir with the dynamic data. China Offshore Oil Gas 2016, 28, 101–105.
(14) Xu, J.; Sun, F.; Tian, J. An analytic solution method of nonlinear seepage models with ordinary heavy oil when taking threshold pressure gradient into consideration. China Offshore Oil Gas 2011, 23, 32–35.
(15) Tu, X.; Peng, D. L.; Chen, Z. Research And Field Application Of Water Coning Control With Production Balanced Method In Bottom-Water Reservoir 2007, SPE 1 S.
(16) Yue, P.; Du, Z.; Chen, X.; Liang, B. The critical rate of horizontal wells in bottom-water reservoirs with an impermeable barrier. Pet. Sci. 2012, 9, 223–229.
(17) Yue, P.; Du, Z. M.; Chen, X. F.; Zhu, S. Y.; Jia, H. Critical parameters of horizontal well influenced by semi-permeable barrier in bottom water reservoir. J. Cent. South Univ. 2015, 22, 1448–1455.
(18) Yao, T.; Huang, Y.; Li, J. Nonlinear flow equations for heavy oil in porous media. CTAM 2012, 44, 106–110.
(19) Tian, J.; Xu, J.; Cheng, L. The method of characterization and physical simulation of starting pressure gradient for ordinary heavy oil. J. Southwest Pet. Univ., Sci. Technol. Ed 2009, 31, 158–162.