Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams

Joao Gonçalves-Pereira and Pedro Póvoa

Abstract

Introduction: Several reports have shown marked heterogeneity of antibiotic pharmacokinetics (PK) in patients admitted to ICUs, which might potentially affect outcomes. Therefore, the pharmacodynamic (PD) parameter of the efficacy of β-lactam antibiotics, that is, the time that its concentration is above the bacteria minimal inhibitory concentration (T > MIC), cannot be safely extrapolated from data derived from the PK of healthy volunteers.

Methods: We performed a full review of published studies addressing the PK of intravenous β-lactam antibiotics given to infected ICU patients. Study selection comprised a comprehensive bibliographic search of the PubMed database and bibliographic references in relevant reviews from January 1966 to December 2010. We selected only English-language articles reporting studies addressing β-lactam antibiotics that had been described in at least five previously published studies. Studies of the PK of patients undergoing renal replacement therapy were excluded.

Results: A total of 57 studies addressing six different β-lactam antibiotics (meropenem, imipenem, piperacillin, cefpirome, cefepime and ceftazidime) were selected. Significant PK heterogeneity was noted, with a broad, more than twofold variation both of volume of distribution and of drug clearance (Cl). The correlation of antibiotic Cl with creatinine clearance was usually reported. Consequently, in ICU patients, β-lactam antibiotic half-life and T > MIC were virtually unpredictable, especially in those patients with normal renal function. A better PD profile was usually obtained by prolonged or even continuous infusion. Tissue penetration was also found to be compromised in critically ill patients with septic shock.

Conclusions: The PK of β-lactam antibiotics are heterogeneous and largely unpredictable in ICU patients. Consequently, the dosing of antibiotics should be supported by PK concepts, including data derived from studies of the PK of ICU patients and therapeutic drug monitoring.

Keywords: administration, dosage, β?β?-lactam antibiotics, microdialysis, pharmacodynamics, pharmacokinetics, ICU

Introduction

Infection and sepsis, whether community- or hospital-acquired, are important causes of morbidity and mortality in ICU patients [1,2]. Despite all of the research, sepsis therapy continues to depend on supportive management of the different organ dysfunctions and failures and on specific therapy for infection with timely and appropriate antibiotics and/or focus control.

The β-lactam antibiotics, because of their large antimicrobial spectrum and low toxicity, are among the first-line therapies for critically ill patients, especially when a Gram-negative infection is suspected. However, the efficacy of antibiotics is not easily evaluated, since the clinical response is usually unnoticeable before 48 hours of therapy [3]. Moreover, the unavailability of routine therapeutic drug monitoring for the great majority of these drugs makes it difficult to distinguish clinical failure due to underdosing from lack of in vivo organism susceptibility.

Considerable evidence demonstrates that free drug time above bacteria minimal inhibitory concentration (f T > MIC) is the measure of drug exposure most closely linked to the ability of β-lactam antibiotics to kill the target bacteria [4]. T > MIC is dependent on the half-life (T1/2) of β-lactam antibiotics and their serum concentration.
The serum concentration of an antibiotic depends on the dose delivered, its bioavailability and its volume of distribution \((V_d)\). \(V_d\) is a mathematical construct and refers to the size of a compartment necessary to account for the total amount of the drug, assuming that its concentration in the whole body is equal to that measured in plasma. Drugs that distribute essentially in the extracellular fluid (mainly hydrophilic) have low \(V_d\), whilst drugs that have rapid cellular uptake (lipophilic) have high \(V_d\) [5,6].

Both \(V_d\) and drug clearance (Cl) may be increased in ICU patients [7]. Therapeutic procedures, notably large-volume and blood products infusions, positive pressure ventilation, surgical procedures, capillary leak and reduction in albumin serum concentration all contribute to alter the concentration-time relationship of many drugs. A rise in the \(V_d\), although it reduces drug concentration, might proportionally increase \(T_{1/2}\), since \(T_{1/2} = V_d/(Cl \times 0.693)\) [7]. On the contrary, a high Cl may reduce the exposure of antibiotics to bacteria (Figure 1).

Renal Cl may be increased in septic patients because of increased renal blood flow. This has recently been shown to be a common finding in ICU patients, particularly surgical and trauma patients [8] but also septic medical patients [9]. Besides, in the study by Baptista et al. [9], the authors showed that commonly used formulas used to calculate glomerular filtration rate usually underestimate creatinine (Cr) Cl. Consequently, these authors recommended direct Cr Cl measurement.

Moreover in ICU patients, maldistribution of blood flow in the microcirculation [10], namely, in patients in septic shock, may further decrease the drug concentration in the infected tissue [11]. These pharmacokinetic (PK) changes are sometimes influenced by the clinical course of the infection itself [12]. Consequently, PK parameters measured in healthy volunteers may not correctly predict concentrations in septic ICU patients, particularly early in the course of a severe infection [13,14].

Ideally, individualized dosing strategies should account for the altered PK and pathogen susceptibility in each patient. Despite the fact that some studies addressed this issue, this information had not yet been aggregated. Furthermore, β-lactam antibiotic PK are rarely analysed outside clinical trials. Therefore, we performed a systematic review of studies that addressed the PK parameters of β-lactam antibiotics in ICU patients to assess the relationship between dose and schedule of β-lactam antibiotics and their adequacy according to pharmacodynamic (PD) end points. We also reviewed studies assessing the concentrations of β-lactam antibiotics in different tissues. Our primary intention was to aggregate PK information in this particular population and to contribute to the design of individualized dosing regimens of these drugs.

We also included studies that involved the development of PD models using PK of ICU patients and bacterial MICs. These techniques allow the calculation of the presumed \(T > MIC\) and therefore the percentage of patients in which the antibiotic will achieve its PD
target: that is, the antibiotic’s probability of target attainment (PTA) [15,16]. The cumulative fraction of response (CFR) is calculated by multiplying the PTA obtained for each MIC by the MIC distribution according to a microbiological database [16].

Materials and methods
The data for this review were identified by a search of PubMed (January 1966 to December 2010) as well as bibliographic references from relevant articles, including reviews on this subject and all selected studies. The search terms used were ‘antibiotic’ or ‘carbapenem’ or ‘penicillins’ or ‘cephalosporins’, and ‘intensive care’ or ‘critically ill’ or ‘critical care’ or ‘severe sepsis’ or ‘septic shock’, and ‘pharmacokinetics’ or ‘pharmacodynamics’. All relevant studies in the English-language literature that described antibiotic PK in critically ill patients were assessed (Figure 2).
Only studies that described PK of antibiotics given intravenously to infected patients were selected. Studies referring to prophylactic antibiotics or to PK in patients under any type of renal replacement therapy were excluded. In fact, these studies are mainly directed to the measurement of CI during renal replacement therapy to determine the ideal antibiotic dose and therefore are not easily compared with studies addressing the intrinsic PK of ICU patients. Furthermore, a full revision of those studies has recently been published [17].

For the purpose of our systematic review, we analysed only studies of antibiotics with at least five published references. This threshold of five referenced studies was arbitrarily chosen so that we could derive more representative and consistent data on the PK of each antibiotic. The weighted mean of the V_d was calculated so that we could present a graphic representation of each analysed antibiotic (Figure 3).

Results

A total of 57 studies assessing an aggregate of six different β-lactam antibiotics were selected.

Carbapenem

Meropenem

Several studies have addressed meropenem PK in ICU septic patients. High V_d and CI have usually been reported, as well as a low binding fraction: < 10% [18]. Consequently, a large heterogeneity of PK parameters was found, exceeding a twofold variation (Table 1 and Figure 3). The larger reported V_d, a mean of 34.4 L, was noted on the second day of therapy in eight ventilator-associated pneumonia (VAP) patients [19] with a mean body weight of 73 kg. In a Thai VAP population ($N = 9$) with a lower mean body weight (only 54.2 kg), the mean V_d was 6.0 L despite also being measured after 48 hours of therapy with meropenem [20]. This supports the hypothesis of a potential relationship between body weight and V_d.

Meropenem CI ranged from a mean of 4.7 L/hour to a mean of 15.4 L/hour and was generally found to be closely correlated to Cr CI. In fact, in patients with severe sepsis, the six patients with the lower Cr CI (< 50 mL/minute) had the higher $T > MIC$ and area under the concentration time curve (AUC) (230.2 mg × hour/L vs.

![Figure 3](http://ccforum.com/content/15/5/R206)

Figure 3 Heterogeneity of volume of distribution in litres of β-lactam antibiotics in ICU patients. Open circles: volume of distribution in healthy volunteers [44,51,89-92]; filled squares: weighted means of volume of distribution in the studies; straight lines: ranges of the means of volume of distribution in the studies.
Antibiotic drug classes and drugs	PK parameters	Cl, L/hour	T_{1/2}, hours	Patient demographics	Study types [93]	References
Carbapenems						
Meropenem	21.2 ± 4.7^b 11.3 ± 4^b 1.4 ± 0.4^b N = 11	Age 63.1 years [23 to 81] Mild to severe intraabdominal sepsis	Descriptive	Lovening et al., 1995 [22]		
Meropenem	26.6 ± 3.2^c 94 ± 12^c 2.0 N = 15	Age 55.3 ± 14.3 years Severe sepsis	Randomized, controlled cross-over	Thalhammer et al., 1999 [27]		
Meropenem	34.4 ± 15.9 11 ± 4 0.4 ± 0.12 N = 8	Age 55 ± 8 years VAP	Descriptive	de Stoppelaar et al., 2000 [19]		
Meropenem	19.7 ± 5 73 ± 3 3.1 ± 1.5 N = 14	Age 73.3 ± 8.1 years Severe sepsis	Descriptive	Kitzes-Cohen et al., 2002 [21]		
Meropenem	160.0 ± 3.7^d 85 ± 3.2^d 1.4 ± 0.6^d N = 9	Age 39.6 ± 15.7 years VAP	Not randomized, controlled cross-over	Jaruratanasirikul et al., 2005 [20]		
Imipenem	17.7 ± 4 Imipenem 115.5 ± 3.1 Meropenem 21.0 ± 0.5 N = 10	Age 65 ± 19 years	Randomized, parallel controlled	Novelli et al., 2005 [29]		
Meropenem	27.1 ± 7.7 Meropenem 115.5 ± 3.1 Meropenem 21.0 ± 0.5 N = 10	Age 67 ± 19 years Severe sepsis	Randomized, parallel controlled	Roberts et al., 2009 [24]		
Meropenem	23.8 ± 4.9 6.7 ± 4 3.7 ± 1.9 N = 6	Age 65.7 ± 11.2 years Peritonitis	Descriptive	Karjagin et al., 2008 [25]		
Meropenem	22.7 136.0 ± 1.3 NR N = 10	Age range 48 to 63 years Severe sepsis	Randomized, parallel controlled	Roberts et al., 2009 [24]		
Meropenem	30.1 [21.7 to 53.9]^e 8 [5 to 10.99]^e 2.1 [1.7 to 3.4] N = 16	Age 67 ± 19 years Severe sepsis	Cross-sectional	Taccone et al., 2010 [23]		
Piperacillin	26.6 [20.3 to 30.1]^e 8.4 [5.5 to 18.1]^e 2.6 [1.5 to 3.8] N = 27					
Ceftazidime	33.6 [25.2 to 49.7]^e 3.8 [2.5 to 5.5]^e 5.8 [4.1 to 7.4] N = 18					
Cefepime	25.2 [23.1 to 30.8]^e 5.5 [4.6 to 8.4]^e 3.4 [2.3 to 5.3] N = 19	All patients: median age 63 years Severe sepsis or septic shock				
Imipenem	31.4 ± 11.7 144 ± 4.5 1.6 ± 1.3 N = 10	Age 44 ± 12.2 years Severe sepsis	Descriptive	McKindley et al., 1996 [34]		
Imipenem	18.5 63 ± 0.8 2.0 N = 6	Age 63.5 ± 16.7 years Severe sepsis	Not randomized, parallel, controlled	Tegeder et al., 2002 [32]		
Imipenem	45.5 ± 47.2 121 ± 12.0 2.9 ± 1.7 N = 50	Age 45.2 ± 17 years Presumed Gram-negative sepsis	Cross-sectional	Belzberg et al., 2004 [28]		
Table 1 Pharmacokinetic parameters of ββ-lactam antibiotics (Continued)

Drug	T1/2 (h) ± SD	Cl (ml/min) ± SD	Vd (l/kg) ± SD	N	Study Details
Imipenem	12.2 ± 9.9	12.3 ± 4.2	NR	20	Randomized, parallel, controlled
	Age 60.5 years VAP				Sakka et al., 2007 [31]
Imipenem	27.2 ± 6.5	13.3 ± 5.2	1.4 ± 0.2	6	Not randomized, parallel, controlled
	Age 53.3 ± 19.9 years Severe sepsis				Dahyot et al., 2008 [33]
Imipenem	16.7 ± 5.3	8.7 ± 5.3	1.5 ± 0.7	9	Not randomized, controlled, cross-over
	Age 63.3 ± 14.9 years VAP				Jaruratanasirikul and Sudsai, 2009 [30]

Penicillins

Drug	T1/2 (h) ± SD	Cl (ml/min) ± SD	Vd (l/kg) ± SD	N	Study Details
Piperacillin	25.0 ± 17.2	23.8 ± 17.2	15 ± 2.1	11	Not randomized, parallel, controlled
	Age 43.6 ± 15.9 years Surgical patients				Shikuma et al., 1990 [36]
Piperacillin	19.5 ± 3.4	8.4 ± 1.4	18 ± 0.3	10	Not randomized, parallel, controlled
	Age 37.7 ± 2.8 years Burn patients				Bourget et al., 1996 [38]
Piperacillin	40.7 ± 8.7	8.2 ± 2	4.1 ± 1.3	6	Not randomized, parallel, controlled
	Age 64 ± 7 years Septic shock				Joukhadar et al., 2001 [44]
Piperacillin	34.6 ± 6.8	11.8 ± 4.3	2.4 ± 1.2	7	Not randomized, controlled, cross-over
	Age range 45 to 76 years Severe sepsis				Langgartner et al., 2007 [39]
Piperacillin	11.7	17.2	0.4	13	Randomized, parallel, controlled
	Age 37.5 ± 19.4 years Severe sepsis				Roberts et al., 2009 [45]

Cephalosporins

Drug	T1/2 (h) ± SD	Cl (ml/min) ± SD	Vd (l/kg) ± SD	N	Study Details
Cefpirome	23.6 ± 8.0	8.0 ± 3.0	2.2 ± 0.5	9	Not randomized, parallel, controlled
	Age 31 years [19 to 53] Severe sepsis				Jacolot et al., 1999 [47]
Cefpirome	26.4 ± 7.9	8.8 ± 3.4	3.1 ± 1.2	12	Descriptive
	Age 41.2 ± 19 years Severe sepsis				Lipman et al., 2001 [48]
Cefpirome	25.9 ± 7.1	4.5 ± 0.7	3.3 ± 0.5	12	Not randomized, parallel, controlled
	Age 67 ± 8.1 years Severe sepsis or septic shock				Joukhadar et al., 2002 [52]
Cefpirome	21.9 ± 4.5	48 ± 1.6	3.1 ± 0.9	11	Not randomized, parallel, controlled
	Age 66 ± 8 years Severe sepsis				Sauermann et al., 2005 [51]
Cefepime	32.6 ± 17.5	7.5 ± 3.1	3.5 ± 1.1	7	Descriptive
	Age 73.7 ± 4.9 years Severe sepsis				Kieft et al., 1993 [53]
Cefepime	21.8 ± 5.1	7.6 ± 2.0	3 ± 1.2	13	Descriptive
	Age 55 years Severe sepsis				Lipman et al., 1999 [56]
Cefepime	36.1 ± 11.8	8.8 ± 2.4	2.8 ± 0.6	12	Descriptive
	Age 41 ± 13 years Burn patients				Bonapace et al., 1999 [57]
Cefepime	26.0	9.1 ± 1.5	2.5 ± 0.6	6	Descriptive
	Age 39.8 ± 11.3 years Burn patients				Sampol et al., 2000 [61]
Cefepime	19.6	7.1 ± 3.6	7.1 ± 3.1	29	Cross-sectional
	Cefepime	13	48.2 ± 21.2 years		
Cefepime	28.8	7.5 ± 3.8	3.1 ± 2.1	17	Cefepime
	Cefepime	13	48.2 ± 21.2 years		
Cefepime	28.7 ± 13.3	9.1 ± 5.6	4.3 ± 4.2	21	Cross-sectional
	Cefepime	13	55.1 years (median) Nosocomial pneumonia		

Footnotes:
- SD: Standard Deviation
- NR: Not reported
- VAP: Ventilator-associated pneumonia
119.4 mg \times \text{hour/L}; P = 0.001), despite a reduction in the dose administered, from 1 g every 8 h (tid) to 1 g every 12 h (bid) [21].

One study addressed the variability of individual meropenem PK between the first and fourth days of therapy in 11 surgical patients [22]. Despite an increase in Cr Cl from a mean of 63.9 to 79.1 mL/minute during the study period, meropenem V_d, Cl and AUC remain unchanged. Nevertheless, in another study, by Taccone et al. [23], predefined targets were reached in only 75% of severe sepsis and septic shock patients after the first dose of 1 g of meropenem (Table 2), despite the inclusion of patients with acute renal failure (22%) who did not receive renal replacement therapy. These authors concluded that PK changes induced by sepsis were largely unpredictable and that none of the evaluated clinical parameters were predictive of PK adequacy: namely, age, severity, presence of shock, use of vasopressors and mechanical ventilation. Also, Roberts et al. [24] showed that the V_d in patients with severe sepsis had great variability, both in the same patient (especially the central compartment: roughly 45%) and in different patients (nearly 27%). In their study, despite the fact that all patients had a serum Cr < 1.36 mg/dL, the meropenem Cl variability (in the same patient and between patients) still ranged between 10% and 20%.

The time of infusion of meropenem has also been shown to influence its $T > \text{MIC}$. In a cross-over study of nine Thai VAP patients [20], after 48 hours of therapy, 1 g of meropenem tid in 30-minute infusions provided an adequate $T > \text{MIC}$ in 74.7% of the patients, for a MIC of 1 mg/L. However, with a MIC of 16 mg/L, only the meropenem regimen of 2 g tid given in an extended infusion (two hours) led to a $T > \text{MIC} > 40\%$ [20].

Meropenem tissue PK have been evaluated by microdialysis in several studies (Table 3). The tissue-to-plasma meropenem mean ratio on the first day of antibiotic therapy was found to be 0.74 in the peritoneum [25] and 0.44 in subcutaneous fat [24]. The meropenem CFR was calculated for the 10 patients for whom serum levels were measured in this study according to the Mystic microbiological database [26]. The CFRs were 100% for Enterobacteriaceae and 40.6% for Pseudomonas

Table 1 Pharmacokinetic parameters of $\beta\beta\beta\beta$-lactam antibiotics (Continued)

Antibiotic	V_d	Cl	AUC	$N=16$	Descriptive	Rondanelli et al., 1986 [64]
Ceftazidime	24.5	7.5	2.1			
Ceftazidime	49.3 ± 18.2	15.5 ± 2.5	18 ± 0.5	$N=5$	Not randomized, controlled, cross-over	Langer et al., 1991 [76]
Ceftazidime	29.5 ± 8.7	4.2 ± 1.9	6.1 ± 2.5	$N=12$	Not randomized, controlled, cross-over	Bressolle et al., 1992 [77]
Ceftazidime	18.9 ± 9 c	5.1c	3.5 ± 1.6c	$N=12$	Not randomized, controlled, cross-over	Benko et al., 1996 [67]
Ceftazidime	15.0 ± 4.3	5.2 ± 2.2	1.3 ± 1.2	$N=10$	Descriptive	Young et al., 1997 [65]
Ceftazidime	26.9 ± 25.9	9.1 ± 4.8	4.8 ± 1.9	$N=15$	Descriptive	Gómez et al., 1999 [66]
Ceftazidime	22.9 [11.8 to 28.1]	2.8 [0.2 to 7.8]	7.7 [2 to 44.7]	$N=21$	Not randomized, parallel, controlled	Angus et al., 2000 [71]
Ceftazidime	25.6 ± 11.2	11.0 ± 5.3	1.7 ± 0.7	$N=14$	Not randomized, parallel, controlled	Hanes et al., 2000 [70]
Ceftazidime	19.6 [14 to 28] c	5.1 [2.3 to 8.9]	4.2 [1.3 to 12.3]	$N=6$	Not randomized, parallel, controlled	Buijk et al., 2002 [74]

aCl: clearance; NR: not reported; PK: pharmacokinetics; $T_{1/2}$: half-life; VAP: ventilator-associated pneumonia; V_d: volume of distribution. bfirst-day PK; cPK after bolus dosing; dPK after 1-g bolus dosing; efor 70 kg; fcentral compartment; gPK after 500-mg bolus dosing. Except where otherwise indicated, data are means, means ± standard deviations or medians [interquartile ranges].
Antibiotics	PD targets	Percentage of patients achieving targets	References
Meropenem, 1 g tid or 3 g/day CI	40% $\text{T} > \text{MIC}$, with f assumed to be 98% CI 40%	PTA for MIC = 2 mg/L: bolus 100%, CI 100%	Roberts et al., 2009 [24]
Meropenem, 1 g tid or 3 g/day CI	40% $\text{T} > \text{MIC}$, with f assumed to be 98% CI 40%	CFR according to Mystic database	
Meropenem, 1 g tid or 3 g/day CI	40% $\text{T} > 4 \times \text{MIC}$, with f assumed to be 98%	CFR for EC: bolus 100%, CI 100%	
Meropenem, 1 g tid or 3 g/day CI	40% $\text{T} > 4 \times \text{MIC}$, with f assumed to be 98%	CFR for PA: bolus 40.6%, CI 100%	
Ceftazidime, 2 g	70% $\text{T} > 4 \times \text{MIC}$	28%	Taccone et al., 2010 [23]
Ceftazidime, 2 g	70% $\text{T} > 4 \times \text{MIC}$	16%	
Meropenem, 1 g	40% $\text{T} > 4 \times \text{MIC}$	75%	
Piperacillin/tazobactam, 4.5 g	50% $\text{T} > 4 \times \text{MIC}$	44%	
Imipenem 1 g tid or 2 g/day CI	40% $\text{T} > \text{MIC}$, with f assumed to be 80%	MIC = 2 mg/L bolus dosing 88%, CI 100%	Sakka et al., 2007 [31]
Piperacillin/tazobactam 4.5 g qid or 13.5 g CI	50% $\text{T} > \text{MIC}$		Roberts et al., 2009 [46]
Piperacillin/tazobactam 4.5 g qid or 13.5 g CI	CFR according to Mystic database		
Cefepime 2 g bid	60% $\text{T} > \text{MIC}$	PTA for MIC = 4 mg/L: bolus 60%, CI 100%	
Cefepime 2 g bid	60% $\text{T} > \text{MIC}$	PTA for MIC = 4 mg/L: bolus 60%, CI 100%	
Cefepime 2 g bid	60% $\text{T} > \text{MIC}$ plasma and tissue	PTA for MIC = 4 mg/L: plasma 100%, tissue 100%	
Cefepime 2 g bid	60% $\text{T} > \text{MIC}$ plasma and tissue	PTA for MIC = 4 mg/L: plasma 100%, tissue 100%	
Cefepime 2 g bid	60% $\text{T} > \text{MIC}$ plasma and tissue	PTA for MIC = 4 mg/L: plasma 87.5%, tissue 75%	
Cefepime 2 g	65% $\text{T} > \text{MIC}$, with f assumed to be 90%	CFR according to EUCAST database	
Cefepime 2 g	65% $\text{T} > \text{MIC}$, with f assumed to be 90%	CFR according to EUCAST database	
Cefepime 2 g	65% $\text{T} > \text{MIC}$, with f assumed to be 90%	CFR for EC: 2 g bid 78.9%, CI (4 g/day) 96.9%	Roos et al., 2006 [60]
Cefepime 2 g	65% $\text{T} > \text{MIC}$, with f assumed to be 90%	CFR for EC: 2 g bid 78.9%, CI (4 g/day) 96.9%	
Ceftazidime 1 g every 4 hours	100% $\text{T} > 4 \times \text{MIC}$ (isolated pathogens; if negative cultures 100% $\text{T} > 16 \text{mg/L}$)	Ceftazidime 47.8%	Conil et al., 2007 [54]
Ceftazidime 1 g every 4 hours	100% $\text{T} > 4 \times \text{MIC}$ (isolated pathogens; if negative cultures 100% $\text{T} > 16 \text{mg/L}$)	PTA with 1 g every 3 hours 88.2%	
Ceftazidime 1 g every 4 hours	100% $\text{T} > 4 \times \text{MIC}$ (isolated pathogens; if negative cultures 100% $\text{T} > 16 \text{mg/L}$)	Ceftazidime 47.8%	
Ceftazidime 1 g every 4 hours	100% $\text{T} > 4 \times \text{MIC}$ (isolated pathogens; if negative cultures 100% $\text{T} > 16 \text{mg/L}$)	PTA with 1 g every 3 hours 88.2%	
Ceftazidime 1 g every 4 hours	100% $\text{T} > 4 \times \text{MIC}$ (isolated pathogens; if negative cultures 100% $\text{T} > 16 \text{mg/L}$)	Ceftazidime 47.8%	
Ceftazidime 1 g every 4 hours	100% $\text{T} > 4 \times \text{MIC}$ (isolated pathogens; if negative cultures 100% $\text{T} > 16 \text{mg/L}$)	PTA with 1 g every 3 hours 88.2%	
Ceftazidime 1 g every 4 hours	100% $\text{T} > 4 \times \text{MIC}$ (isolated pathogens; if negative cultures 100% $\text{T} > 16 \text{mg/L}$)	Ceftazidime 47.8%	
Table 2 Pharmacodynamic targets of β-β-lactam antibiotics

Antibiotic	Dosage	T > MIC (mean)	References
Ceftazidime 1.5 g tid or 4.5 g/day CI	T > 4 × MIC plasma and peritoneum (isolated pathogens)	CI 100%	Buijk et al., 2002 [74]
Ceftazidime 2 to 6 g/day CI	T > 5 × MIC. MIC = 8 mg/L (PA break point) Target concentration 40 ± 10 mg/L	35.9%	Aubert et al., 2010 [72]
Meropenem 2 g tid or 3 g CI	T > MIC (isolated susceptible pathogens)	Bolus T = 100%; CI T = 100%	Thalhammer et al., 1999 [27]
Meropenem 1 g tid	T > MIC (isolated pathogens)	T = 90.8%	de Stoppelaar et al., 2000 [19]
Meropenem 1 g bid or 1 g tid	T > MIC (isolated pathogens)	T = 80.9% (Cr Cl > 50 ml/minute; 1 g tid)	Kitzes-Cohen et al., 2002 [21]
Imipenem 1 g tid	T > MIC (isolated sensitive [MIC ≤ 2 mg/L] pathogens)	T = 91.7% (Cr Cl < 50 ml/minute; 1 g bid)	Novelli et al., 2005 [29]
Meropenem 1 g tid	T > MIC (isolated sensitive [MIC ≤ 2 mg/L] pathogens)	T = 100%; T > 4 × MIC T = 87.5%	
Meropenem 1 g tid (bolus or 3-hour infusion) or 2 g tid (3-hour infusion)	T > MIC	For MIC = 1 mg/L: 1 g tid bolus T = 74.7%, 1 g tid 3 hours T = 93.6%; 2 g tid 3 hours T = 98.6% For MIC = 16 mg/L: 1 g tid bolus T = 28.3%, 1 g tid 3 hours T = 37.8%, 2 g tid 3 hours T = 57.9%	Jaruratanasirikul et al., 2005 [20]
Meropenem 1 g tid	T > MIC	For MIC = 4 mg/L: plasma T = 87%, peritoneum T = 87%	
Meropenem 1 g tid	T > MIC	For MIC = 16 mg/L: plasma T = 55%, peritoneum T = 43%	
Imipenem 500 mg qid (30 minutes or 2-hour infusion) or 1 g qid (2-hour infusion)	T > MIC	For MIC = 1 mg/L: 500 mg qid 30 minutes T = 64.7%, 500 mg qid 2 hours T = 76.5%, 1 g qid 2 hours T = 93.4% For MIC = 4 mg/L: 500 mg qid 30 minutes T = 20.3%, 500 mg qid 2 hours T = 17.1%, 1 g qid 2 hours T = 60.3%	Jaruratanasirikul and Sudsai, 2009 [30]
Piperacillin 3 g qid or 8 g/day CI	T > MIC	For MIC = 16 mg/L: bolus dosing T = 62%, CI T = 100%	Rafati et al., 2006 [40]
Cefepime 2 g bid	T > MIC	For MIC = 7 mg/L (MIC50 of PA)	
Cefazidime 2 g tid or 3 g/day CI	T > MIC	Bolus T = 92%; CI T = 100%	
Cefazidime 2 g tid or 60 mg/kg/day CI	T > MIC (isolated pathogens)	Bolus T = 92.9%; CI T = 100%	

aAB: Acinetobacter baumannii; bid: dose every 12 hours; CFR: cumulative fraction of response; CI: continuous infusion; Cr Cl: creatinine clearance; EC: Escherichia coli; EUCAST: European Committee on Antimicrobial Susceptibility Testing; f: free drug fraction; KP: Klebsiella pneumoniae; MIC: minimal inhibitory concentration; MIC90: 90th percentile of MIC in a bacteria population; NCCLS: National Committee for Clinical Laboratory Standards; PA: Pseudomonas aeruginosa; PD: pharmacodynamics; PTA: probability of target attainment; qid: dose every 6 hours; SA: Staphylococcus aureus; T > MIC: time that antibiotic concentration is above bacteria MIC; tid: dose every 8 hours.

aeruginosa after bolus dosing, whilst with continuous infusion they were 100% for both bacteria, despite the use of a small daily dose (2 g/day) [27].

Imipenem

In ICU patients, increased V_d and CI of imipenem have also been reported (Table 1). Therefore, its $T_{1/2}$ and $T > MIC$ may be difficult to predict, depending on the relative changes of these two parameters. This difficulty was shown by Belzberg et al. [28] in a cohort of ICU surgical and trauma patients with presumed Gram-negative sepsis. In this relatively young population (mean age 45.2 ± 17 years and mean body weight 79.7 ± 17.7 kg), 44% of patients presented trough levels lower than the intended 4 mg/L at steady state. A mean Cr Cl of 103.8 ml/minute was found, but with large variability: two patients had renal failure and nineteen patients had a Cr Cl >
Table 3 Tissue penetration of β-lactams

Antibiotics	Samples	Patient demographics	Concentration ratios	References
Meropenem	Microdialysis in subcutaneous tissue	N = 10 severe sepsis, 5 continuous infusion	Bolus 0.44 Continuous infusion 0.57 (day 2)	Roberts et al., 2009 [24]
Imipenem	Microdialysis in muscle and subcutaneous tissue	N = 11 (6 patients) Severe sepsis	Patients	Tegeder et al., 2002 [32]
			• Muscle 0.1 Subcutaneous 0.14 Volunteers	
			• Muscle 0.5 Subcutaneous 0.43	
Imipenem	Microdialysis in muscle	N = 12 (6 patients) Severe sepsis	Patients 1 Volunteers 0.97	Dahyot et al., 2008 [33]
Piperacillin	Microdialysis in muscle and subcutaneous tissue	N = 12 (6 patients) Septic shock	Patients	Joukhadar et al., 2001 [44]
			• Muscle 0.19 Subcutaneous 0.1 Volunteers	
			• Muscle 0.55 Subcutaneous 0.31	
Piperacillin	Microdialysis in subcutaneous tissue	N = 13 Severe sepsis	Bolus 0.21 Continuous infusion 0.2	Roberts et al., 2009 [45]
Cefpirome	Microdialysis in muscle	N = 18 (12 patients) Severe sepsis or septic shock	Patients 0.63 Volunteers 0.83	Joukhadar et al., 2002 [52]
Cefpirome	Microdialysis in subcutaneous tissue	N = 18 (11 patients) Severe sepsis	Patients 0.43 Volunteers 0.79	Sauermann et al., 2005 [51]
Burned skin	Biopsy of burned area	N = 6 Burn patients	Day 3 1.52 (point concentration 3 to 5 hours after dose)	Sampol et al., 2000 [61]
Peritoneum	Microdialysis in peritoneum	N = 6 Surgical peritonitis	0.74	Karjagin et al., 2008 [25]
Meropenem	Microdialysis in peritoneum	N = 6 Surgical peritonitis	Continuous infusion 0.56 • Bolus 0.35	
Ceftazidime	Peritoneal drainage	N = 18 Surgical peritonitis	Day 2	Buijk et al., 2002 [74]
Imipenem	ELF (bronchoscopy)	N = 8 Pneumonia	0.20 (point concentration ratio 2 hours after dose)	Muller-Serieys et al., 1987 [35]
Imipenem	Bronchial secretions (tracheal aspirate)	N = 10 Trauma patients with VAP	NR	McKindley et al., 1996 [34]
Piperacillin	ELF (bronchoscopy)	N = 10 VAP	0.57 (point concentration ratio 5 hours after dose)	Boselli et al., 2004 [41]
Piperacillin	ELF (bronchoscopy)	N = 40 VAP	0.44 (point concentration ratio 4 hours after dose)	Boselli et al., 2008 [43]
Piperacillin	Bronchial secretions (tracheal aspirate)	N = 8 VAP	0.36	Jehl et al., 1994 [42]
Cefepime	ELF (bronchoscopy)	N = 20 VAP	1.04 (point concentration ratio)	Boselli et al., 2003 [63]
Cefepime or ceftazidime	Bronchial secretions (tracheal aspirate)	N = 5 cefepime VAP	Cefepime < 0.02	Klekner et al., 2006 [62]
		N = 4 ceftazidime VAP	Ceftazidime < 0.05	
Ceftazidime	Bronchial secretions (tracheal aspirate)	N = 5 Pneumonia	0.12	Langer et al., 1991 [76]
Ceftazidime	Bronchial secretions (tracheal aspirate)	N = 12 Nosocomial pneumonia	0.76	Bressolle et al., 1992 [77]
Ceftazidime	ELF (bronchoscopy)	N = 15 VAP	0.21 (point concentration ratio at steady state)	Boselli et al., 2004 [69]

ELF: epithelial lining fluid; NR: not reported. Mean area under the concentration time curve (AUC) tissue-to-plasma ratio unless otherwise stated.
120 mL/minute. Nevertheless, no correlation was found between PK and body weight, severity of disease, blood pressure or renal function [28].

Another study compared meropenem and imipenem first-dose PK in patients with normal renal function (serum Cr < 1.5 mg/dL). Again, both \(V_d \) and Cl were significantly elevated, although more so in the meropenem group [29]. However, their \(T > \text{MIC} \) for sensitive isolated pathogens were similar. Again, there was a relationship between Cr Cl and T1/2: Patients with a Cr Cl < 50 mL/minute had a significantly longer T1/2 for both antibiotics.

The PD efficacy of imipenem is also influenced by the dose and time of infusion [30]. Using PK data from a cross-over steady-state study of VAP patients, Jaruratana-sirikul and Sudsai [30] showed by modelling of imipenem PD that, for a MIC of 4 mg/L, a 500-mg dose delivered every 6 hours (qid) for 30 minutes achieved a T > MIC of 64.7% and increased to 76.5% with a 2-hour infusion. However, this study excluded shock and renal failure patients (Cr Cl < 60 mL/minute). With PD modelling of PK data derived from another 20 VAP patients [31], continuous infusion led to improved PTA despite the use of lower dosages (Table 2). In this latter study, all patients had \(f \) imipenem T > MIC of 100%, but three patients died.

Tissue microdialysis had been used to assess imipenem PK, but with very dissimilar results (Table 3): namely, the tissue-to-plasma ratio. This has been found to be markedly depressed in a cohort of severe critically ill patients compared to healthy volunteers (subcutaneous tissue-to-plasma 0.14 vs. 0.43 and muscle tissue-to-plasma 0.11 vs. 0.5, respectively) [32]. However, Dahyot et al. [33] disputed these results and found \(f \) imipenem in plasma and muscle to be virtually superimposed at any time, both in patients and in healthy volunteers. Some differences exist between these two studies. In the Tegeder et al. study [32], the patients had lower Cr Cl (medians 32.8 mL/minute vs. 156 mL/minute) and samples were collected at steady state and not after the first dose. Moreover, Dahyot et al. [33] accounted only for the \(f \) imipenem in plasma and found higher imipenem \(V_d \) and Cl. Different methods of calculating in vivo microdialysis recovery rates may also explain some of the diverse observed results. Nevertheless, low imipenem penetration ratios, as low as 0.06 [34,35], in bronchial secretions were reported in pneumonia patients (Table 3).

Penicillins

Piperacillin

Similarly to other \(\beta \)-lactams, piperacillin \(V_d \) and Cl have generally been found to be increased in ICU patients (Table 1). However, most studies have excluded renal failure patients. Piperacillin Cl and trough concentrations were strongly related to Cr Cl [36-38]. Taccone et al. [23] showed that only 15% of patients with high Cr Cl (> 50 mL/minute) maintained piperacillin concentrations > 50% of \(T > 4 \times \text{MIC} \) after the first antibiotic dose, as opposed to 71% of patients with lower Cr Cl (\(P = 0.03 \)). In contrast, in 10 young burn patients (mean total burned area 40.8 ± 3.1%) with a mean Cr Cl of 119.8 mL/minute and *Pseudomonas aeruginosa* infection, the authors found a 20% increase in T1/2 after the first dose of antibiotic compared to the third day of therapy, which was related to a larger \(V_d \) (mean of 19.6 L vs. 16.4 L) [38]. Overall, the piperacillin AUC was similar in the two measurements (mean of 640 mg × hour/L vs. 622 mg × hour/L).

Piperacillin is stable for at least 24 hours at room temperature, making it a suitable choice for continuous infusion. With this strategy, higher steady-state concentrations are expected, theoretically providing a higher \(T > \text{MIC} \) even with the use of a lower daily dose [39]. A study by Rafati et al. [40] also supports this strategy. These authors showed that, for a MIC = 16 mg/L, the \(T > \text{MIC} \) was higher with continuous infusions (8 g/day) than with bolus dosing (3 g tid) (100% vs. 62%, respectively). However, the mortality rate was similar.

In VAP patients, piperacillin showed good penetration in bronchial secretions [41-43]. Nevertheless, its epithelial lining fluid (ELF) steady-state concentration was lower than the MIC for *Pseudomonas aeruginosa* after a 4.5-g tid dose [41]. With continuous infusion, an increase in pulmonary concentration was found, at least in the subset of patients with moderate renal failure (measured Cr Cl < 50 mL/minute), about three times higher than in the patients with normal renal function [43]. However, no relationship was found between ELF piperacillin concentration and clinical success. Similar concentrations were found in the eight patients who died or had persistent infections and in those who experienced therapeutic success [43].

Subcutaneous tissue-to-plasma ratio and PK have been assessed in microdialysis studies. In six septic shock patients (mean norepinephrine dose 0.8 \(\mu \)g/kg/minute) [44], the subcutaneous tissue-to-plasma AUC ratio was only 0.1, one-third of that measured in healthy volunteers. Peak tissue concentration was also delayed in patients (122 minutes in patients compared with 27 minutes in healthy volunteers), and T1/2 in tissues was nearly nine times longer. In 13 younger patients with less severe sepsis [45], the AUC tissue-to-plasma ratio was roughly 0.2. In accordance with their serum PK (as well as PK of another five patients) [46], piperacillin/tazobactam CFR was calculated to be 92.3% with continuous infusion (13.5 g/day) and 53.4% with bolus dosing (4.5 g qid, or 18 g/day). Again, no correlation was found
between tissue concentration and outcomes. Despite the low tissue concentration levels, all patients in both groups survived [45].

Cephalosporins

Cefpirome

Cefpirome PK studies have produced heterogeneous results. A 2-g dose was adequate in young trauma patients (Cr Cl ≥ 50 mL/minute) and in similar healthy volunteers. After the first dose, the mean T > MIC were 75% and 80%, respectively (with a MIC of 4 mg/L, \(P = 0.76 \)) [47]. However, in 12 similar patients, a lower T > MIC (60%) was found, which was probably related to higher cefpirome Cl [48]. After four days of therapy, the cefpirome mean PK parameters remained similar (T > MIC 67% and AUC 242 mg × hour/L vs. 306 mg × hour/L at steady state). Further analyses [49] showed a strong correlation with Cr Cl and either cefpirome or cefepime Cl \((r^2 = 0.81) \). Patients with the lower range of T > MIC had a higher Cr Cl, usually above 144 mL/minute [49]. According to these measured PK data, the authors performed a simulation to demonstrate improved CFR of cefpirome given as a continuous infusion to treat *Pseudomonas aeruginosa* infection, from 56.1% to 84.4% (Table 2) [50].

Cefpirome tissue PK were evaluated on the basis of microdialysis. Sauermann *et al.* [51] found a low subcutaneous tissue concentration in patients with severe sepsis, almost half of healthy volunteers, despite a longer plasma \(T_{1/2} \) (183 minutes vs. 95 minutes; \(P < 0.05 \)). Similar results were reported by Joukhadar *et al.* [52], who found muscle-to-plasma ratios of 0.63 in patients and 0.83 in healthy volunteers (Table 3).

Cefepime

Roughly a twofold variation of cefepime \(V_d \) has been reported in PK studies (Table 1) of severe sepsis and septic shock patients [23], elderly septic patients [53], young burn patients [54] and nosocomial pneumonia patients [55]. Cefepime Cl has also been found to be closely correlated with Cr Cl in this last listed cohort \((r^2 = 0.77) \) [55], in another cohort of septic patients \((r^2 = 0.74) \) [56] and in burn patients \((r^2 = 0.58) \) [57]. Therefore, patients with renal dysfunction may experience toxicity.

In 21 septic patients receiving cefepime at a dose of 2 g bid, more than twofold peak variations and roughly 40-fold trough variations were observed. Again, the cefepime Cl correlated with Cr Cl \((r^2 = 0.77) \). Two patients with low Cr Cl (19 and 12 mL/minute) had trough levels > 20 mg/L despite dosage adjustment. They both had neurologic symptoms (namely, confusion and muscle jerks) that were not identified as toxicity but resolved promptly after drug arrest [55].

A cefepine bolus of 2 g bid was found to be insufficient to reach a high PD target after the first dose (Table 2), both in 80% of young burn patients (burn area 21.8%) with high mean Cr Cl (119.2 mL/minute) [54] and in the Taccone *et al.* study [23], in which only 16% of patients achieved the intended target.

Two other studies have evaluated cefepime PK, one of which addressed the first day of therapy for 55 nosocomial pneumonia or bacteraemia patients (67% trauma) [58] and the other of which described the status of 32 VAP patients on the second day of cefepime treatment [59]. Both studies unveiled a relationship between \(V_d \) and total body weight as well as between excretion, either elimination rate constant [59] or Cl [58], and Cr Cl. However, significant interpatient variability was again observed, with regard to both cefepime Cl (58%) and central compartment \(V_d \) (67%) [58].

A PD model was developed with this VAP population PK data: despite a 2-g tid dose, PTA > 90% was achieved only with a MIC ≤ 8 mg/L [59]. In another cefepime PD model, the CFR of a 2-g bid dose, used to treat both *Escherichia coli* and *Klebsiella pneumoniae*, was 78.9%. However, for *Pseudomonas aeruginosa*, CFR was only 53.6% (Table 2) and increased with either 2 g tid or continuous infusion (4 g/day or 6 g/day) to 84.9%, 91.7% and 94.8% respectively. Nevertheless, the CFR for *Acinetobacter baumanii* [60], even with a continuous infusion of 6 g/day, was only 75%, reemphasizing the importance of appropriate dosing and the potential benefit of continuous infusion against difficult-to-treat bacteria.

Also, the cefepime tissue concentration was assessed in biopsy samples collected from the skin of burn patients three to five hours after a bolus dose on day 3 of antibiotic therapy. A mean biopsy-to-plasma cefepime ratio of 1.5 (range 0.4 to 5.1) was found [61]. Klekner *et al.* [62] were unable to detect cefepime in bronchial secretions from any of the five studied patients six hours after an 80 mg/kg dose. However, using continuous infusion (4 g/day) to treat VAP patients, Boselli *et al.* [63] found, at steady state, higher and similar plasma and ELF concentrations (mean of 13.5 mg/L and 14.1 mg/L, respectively). Although different sampling methods may have influenced these differences, continuous infusion seems to prolong T > MIC in the lungs. Nevertheless, no correlation with therapeutic outcomes was reported.

Ceftazidime

Several studies have shown ceftazidime PK heterogeneity in ICU septic patients with *Pseudomonas* infections (mostly nosocomial pneumonia) [64], severe sepsis [65,66] and burns [54]. Similarly to other \(\beta \)-lactams, the authors noted a large variation of both \(V_d \) and Cl (Table 1) and consequently significant interpatient variability in
$T_{1/2}$ and trough concentrations. Also, a correlation between Cl and Cr Cl was usually reported [65,66].

Continuous infusion of ceftazidime was compared with bolus dosing in five different studies [67-71]. In all, there was an increase in $T > \text{MIC}$ with continuous infusion despite lower daily doses. However, only in severe melioidosis was this strategy associated with lower mortality (3 of 10 patients vs. 9 of 11 patients) [71]. Those patients had low Cr Cl (26.6 mL/minute) and received ceftazidime dosages adjusted to their body weight (4 mg/kg/hour or 40 mg/kg tid, for a mean body weight of 49.4 kg). Ceftazidime steady-state concentration was measured in another cohort of 92 patients receiving continuous infusions [72]. Therapeutic drug monitoring was performed on the second day of therapy. The mean serum concentration was 46.9 mg/L, but again with a very wide range of serum concentrations (7.4 to 162.3 mg/L). Therefore, dosage modification was common because of low serum levels (36.9%) and high serum levels (27.2%), with the latter being associated with lower Cr Cl (mean of 51 mL/minute compared with 103 mL/minute for patients with low serum levels). Similar results were shown in another large ceftazidime PK study assessing a mixed septic population with a higher mean Cr Cl (123 mL/minute) [73]. The lower $T > \text{MIC}$ was found in patients with the higher Cr Cl, especially after bolus dosing (Table 2).

Continuous infusion of ceftazidime (4.5 g/day) was also associated with a higher peritoneal AUC at day 2 compared to bolus dosing (1.5 g tid) in surgical patients with peritonitis (522 mg x hour/L vs. 316 mg x hour/L; $P = 0.01$) [74], despite similar serum AUC (and Cr Cl > 30 mL/minute). Therefore, although serum $T > 4 \times \text{MIC}$ was >90% in all patients, peritoneal $T > 4 \times \text{MIC}$ was still >90% with continuous infusion but only 44% with bolus dosing. Nevertheless, no difference in mortality was noted (25% vs. 33%; $P = 1.0$). A PD model of ceftazidime in ICU patients also showed higher PTA with continuous infusion (100% for MIC ≤ 8 mg/L) than with bolus dosing [75].

Ceftazidime concentration in bronchial secretions was measured in four studies of VAP patients. Very low concentrations, < 0.5 mg/L and < 0.3 mg/L, were found in two of them [62,76]. Bressole et al. [77] found a higher ratio between bronchial secretions and plasma concentration (0.76) in patients infected after abdominal surgery. A longer $T_{1/2}$ (6.1 hours) and a lower Cl (4.2 L/hour) may explain some of these differences. With continuous infusion, a ratio of 0.21 between ELF and serum was observed [69].

Discussion

In our systematic review, we have aggregated information from 57 prospective studies related to the PK of β-lactam antibiotics, which are among the most often agents used to treat sepsis in ICU patients [78]. Overall, an increased V_d of all the studied antibiotics was reported (Figure 3), which was related to total body weight [58,73], but with significant variability. Drug Cl was also increased and usually related to Cr Cl. Those changes were largely unpredictable, with important interpatient variability. However, the higher Cl values were noted in studies that excluded patients with renal dysfunction, a common strategy, which may limit the interpretation of the data reported.

Therapeutic drug monitoring was rarely performed. In addition, data on the daily variation of PK parameters in ICU patients, as well as the ideal frequency of this monitoring, are currently limited. Nevertheless, two of the reviewed studies [55,72] showed that inadequate dosing may be common in this population and may jeopardize β-lactam antibiotics efficacy or even lead to toxicity [79]. Roberts et al. [80] measured piperacillin/tazobactam concentrations and found that 50.4% of patients first measurement were low. The clinical efficacy of using drug levels to achieve adequate concentrations had never been properly evaluated. In a recent study, PD modelling was used to empirically treat 94 VAP in critically ill patients at high risk of infection with antibiotic-resistant *Pseudomonas aeruginosa* [81]. A three-hour infusion regimen of either cefepime or meropenem at a high dosage (2 g tid) was initiated, followed by both antibiotic and dose de-escalation whenever bacteria with a low MIC were identified. The infection-related mortality decreased from 21.6% to 8.5% ($P = 0.029$).

The PD targets of β-lactam antibiotics may be different in patients with severe bacterial infections. McKinnon et al. [82] evaluated ceftazidime and cefepime PD by using PK data from previous clinical trials [83]. Maintaining a $T > \text{MIC}$ as high as 100% was associated with a significantly greater clinical cure and bacteriologic eradication than a shorter time (ceftazidime: 82% vs. 33%, $P = 0.002$; cefepime: 97% vs. 44%, $P = 0.001$). Also, in a febrile neutropenia population of 60 patients treated with meropenem, a calculated $T > \text{MIC}$ of 83% was found in responders, whilst those with a poor clinical response had a $T > \text{MIC}$ of only 60% [84]. It has also been suggested that, at least in vivo, maximum killing of bacteria is achieved at higher concentrations, four to five times MIC [85], accounting for antibiotic penetration in infected tissues. As such, concentrations of β-lactam antibiotics may need to be maintained well above the MIC for extended periods, especially in patients with life-threatening infections. Accordingly, different PD targets have been proposed in the different studies addressing ICU patients, which sometimes make their comparison difficult.
An improved PD profile of β-lactams may be obtained by promoting a longer exposure with more frequent dosing, extended infusions or continuous infusions [86,87]. Several of the studies that we reviewed reported PD benefits of continuous infusions (even using small daily doses) (Table 2). Also, PD modelling tends to support this strategy. Nevertheless, almost none of the studies addressed reported a decrease in mortality. In addition, a recently published meta-analysis of 14 prospective studies did not show a significant benefit of using this strategy (odds ratio 1.00, 95% confidence interval 0.48 to 2.06; P = 1.00) [88].

An increasing number of studies have addressed β-lactam antibiotic tissue concentration. Despite the theoretical advantage of analysing the drug concentration at the site of infection, there are no data to support a relationship between these concentrations and outcomes. Furthermore, there are still controversial issues involved in interpreting these data, namely, microdialysis [32,33]. Therefore, we think that, at present, no recommendation can be made regarding antibiotic tissue PK.

Conclusions
The PK of β-lactam antibiotics are significantly changed in septic ICU patients. Dosage and schedule regimens based on data from healthy volunteers may be misleading. Therapeutic drug monitoring and PD modelling according to measured PK previously showed promising results. Continuous infusion, although theoretically useful, has not been shown to lead to improved outcomes. The clinical significance of tissue PK monitoring remains to be determined.

Key messages
- Among ICU patients, the PK of β-lactam antibiotics are markedly unpredictable.
- A large volume of distribution is commonly observed in ICU patients and contributes to a lower antibiotic concentration, but also to a greater exposure time.
- An increased glomerular filtration rate is usually associated with a short half-life of β-lactam antibiotics, whilst renal failure is associated with a greater exposure and increased risk of accumulation.
- Continuous infusion of β-lactam antibiotics commonly increases the time that the antibiotic concentration exceeds its MIC and may therefore increase efficacy.
- Therapeutic drug monitoring of β-lactam antibiotic concentration may help to improve its efficacy and prevent toxicity, but currently is unavailable in most clinical settings.

Abbreviations
AUC: area under the concentration time curve; bid: dose every 12 hours; CFR: cumulative fraction of response; Cl: drug clearance; CrCl: creatinine clearance; ELF: epithelial lining fluid; f: free drug fraction; Ke: elimination rate constant; MIC: minimum inhibitory concentration; MIC90: 90th percentile of MIC in a bacteria population; PD: pharmacodynamics; PK: pharmacokinetics; PTA: probability of target attainment; qid: dose every six hours; T1/2: half-life; tid: dose every eight hours; T > MIC: antibiotic concentration time over bacteria MIC; VAP: ventilator-associated pneumonia; Vd: volume of distribution.

Author details
1Polyvalent Intensive Care Unit, São Francisco Xavier Hospital, Estrada do Forte do Alto do Duque, 1449-005 Lisboa, Portugal. 2CEDOC, Faculty of Medical Sciences, New University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal.

Competing interests
JGP has received honoraria from and served as an advisor for Pfizer, AstraZeneca, Gilead Sciences Inc., Abbott Laboratories, Wyeth Lederle, Janssen-Cilag and Merck Sharp & Dohme Corp. JGP also has received an unrestricted research grant from AstraZeneca. PP has received honoraria from and served as an advisor for AstraZeneca, Lilly Lilly and Co., Gilead Sciences Inc., Janssen-Cilag, Merck Sharp & Dohme Corp, Novartis and Pfizer Inc.

Received: 30 May 2011 Revised: 28 June 2011 Accepted: 13 September 2011
Published: 13 September 2011

References
1. Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med 2000, 26(Suppl 1):S64-S74.
2. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, EPIC II Group of Investigators: International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302:2323-2329.
3. Póvoa P. Serum markers in community-acquired pneumonia and ventilator-associated pneumonia. Curr Opin Infect Dis 2008, 21:157-162.
4. Craig WA: Basic pharmacodynamics of antibacterials with clinical applications to the use of β-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 2003, 17:479-501.
5. Estes L: Review of pharmacokinetics and pharmacodynamics of antimicrobial agents. Mayo Clin Proc 1998, 73:1114-1122.
6. Pea F, Viale P, Furlanut M: Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet 2005, 44:1009-1034.
7. Mehrotra R, De Gaudino R, Palazzo M: Antibiotic pharmacokinetic and pharmacodynamic considerations in critical illness. Intensive Care Med 2004, 30:2145-2156.
8. Puttner-Luch O, Gerónimo-Pardo M, Peyró-García R, Lizán-García M: Glomerular hyperfiltration and albuminuria in critically ill patients. Anesth Intensive Care 2008, 36:674-680.
9. Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, Lipman J: A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care 2011, 15:R139.
10. Verdant C, De Backer D: How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care 2005, 11:240-244.
11. Levitt DG: The pharmacokinetics of the interstitial space in humans. BMC Clin Pharmacol 2003, 3:3.
12. Triginer C, Izquierdo I, Fernandez R, Rello J, Torrent J, Benito S, Net A: Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med 1990, 16:303-306.
13. Hansen M, Christrup LL, Jarløv JO, Kampmann JP, Bonde J: Gentamicin dosing in critically ill patients. Acta Anaesthesiol Scand 2001, 45:734-740.
Rhomberg PR, Jones RN: 19
Thalhammer F, Traunmüller F, El Menyawi I, Frass M, Hollenstein UM,
Karjagin J, Lefeuvre S, Oselin K, Kipper K, Marchand S, Tikkerberi A,
Belzberg H, Zhu J, Cornwell EE, Murray JA, Sava J, Salim A, Velmahos GC,
Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J:
Lovering AM, Vickery CJ, Watkin DS, Leaper D, McMullin CM, White LO,
Kitzes-Cohen R, Farin D, Piva G, De Myttenaere-Bursztein SA:

comparator broad-spectrum agents: MYSTIC program report from the
severe peritonitis associated with septic shock. J Antimicrob Agents Chemother
2009, 53:137-139.

Lavinger MA, Vickerie CJ, Watkin DS, Leaper D, McMullin CM, White LQ,
Reeves DS, MacGowan AP: The pharmacokinetics of meropenem in surgical
patients with moderate or severe infections. J Antimicrob Chemother
1999, 36:165-172.

Taccone FS, Latere PF, Dugernier T, Spappen H, Delattre I, Witeboelle X, De
Backer D, Layeux B, Wallmaeges P, Vincent JL, Jacobs F: Insufficient β-
lactam concentrations in the early phase of severe sepsis and septic
shock. Crit Care 2010, 14:91-96.

Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J:
Meropenem dosing in critically ill patients with sepsis and without
renal dysfunction: intermittent bolus versus continuous administration? Monte
Carlo dosing simulations and subcutaneous tissue distribution. J
Antimicrob Chemother 2009, 64:142-150.

Karajan J, Leefseure S, Oixelin K, Kipper K, Marchand S, Tikkerberi A,
Starkopf J, Coetj W, Sawshuk RJ: Pharmacokinetics of meropenem determined
by microdialysis in the peritoneal fluid of patients with severe peritonitis associated with septic shock. Clin Pharmacol Ther 2008, 83:452-459.

Rhomberg PR, Jones RN: Contemporary activity of meropenem and comparator broad-spectrum agents: MYSTIC program report from the United States component (2005). Diagn Microbiol Infect Dis 2007, 57:207-215.

Thalhammer F, Traunmüller F, El Menyawi I, Frass M, Hollenstein UM,
Locke GJ, Steiser B, Staudinger T, Thalhammer-Scherrer R, Burgmann H:
Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother 1999, 43:523-527.

Belzberg H, Zhu J, Comwell EE, Murray JA, Sava J, Salim A, Velmasog GC,
Gill MA: Imipenem levels are not predictable in the critically ill patient. J
Trauma 2004, 56:111-117.

Novelli A, Adembri C, Livi P, Fallani S, Mazzelli T, De Gaudio AR:
Pharmacokinetic evaluation of meropenem and imipenem in critically ill patients with sepsis. Clin Pharmacokinet 2005, 44:539-549.

Jaranatanasiriuk S, Sudsa T: Comparison of the pharmacodynamics of imipenem in patients with ventilator-associated pneumonia following administration by 2 or 0.5 h infusion. J Antimicrob Chemother 2009, 63:560-563.

Sakka SG, Glauner AK, Bullita JB, Kinzig Schoppens M, Pfister W, Druzano GL,
Sorgel F: Population pharmacokinetics and pharmacodynamics of
continuous versus short-term infusion of imipenem-clastatin in critically
ill patients in a randomized, controlled trial. Antimicrob Agents Chemother
2007, 51:3304-3310.

Tegeder I, Schmidtke A, Brautgarm L, Kirshbaum A, Geisslinger G, Lötisch J:
Tissue distribution of imipenem in critically ill patients. Clin Pharmacol
Ther 2002, 71:325-333.

Dahoyt C, Marchand S, Bodin M, Debrane B, Mimaz O, Coetj W:
Application of basic pharmacokinetic concepts to analysis of microdialysis data: illustration with imipenem muscle distribution. Clin Pharmacokinet 2008, 47:181-189.

McKendle DS, Boucher BA, Hess MM, Croce MA, Fabian TC:
Pharmacokinetics of aztreonam and imipenem in critically ill patients with pneumonia. Pharmacotherapy 1996, 16:924-931.

Muller-Seney E, Bergogne-Berezin E, Rovan C, Dombret MC: Imipenem
penetration into bronchial secretions. J Antimicrob Chemother 1987,
20:618-619.

Shikuma LR, Ackerman BH, Veer RH, Solenk LD, Strate RG, Cerra FB,
Zaide DE: Effects of treatment and the metabolic response to injury on drug
clearance: a prospective study with piperacillin. Crit Care Med 1990,
18:37-41.

Conill JM, Georges B, Mimoz O, Dieye Y, Ruiz S, Cougot P, Sami K, Houin G,
Savin J: Influence of renal function on trough serum concentrations of
piperacillin in intensive care unit patients. Intensive Care Med 2006, 32:2063-2066.

Bourget P, Leine-Hulin A, Le Reveiller R, Le Bever H, Carsin H: Clinical
pharmacokinetics of piperacillin-tazobactam combination in patients with major burns and signs of infection. Antimicrob Agents Chemother
1996, 40:139-145.

Langgartner J, Lahn N, Glück T, Herzog H, Kees F: Comparison of the pharmacokinetics of piperacillin and sulbactam during intermittent and
continuous intravenous infusion. Chemotherapy 2007, 53:370-377.

Rafat MI, Rouini MR, Mota-Jahadezhohazeh M, Najafi A, Tavakoli H, Gholamri K, Fazeli MR: Clinical efficacy of continuous infusion of piperacillin compared with intermittent dosing in septic critically ill patients. Int J
Antimicrob Agents 2006, 28:122-127.

Boselli E, Breilh D, Cansinnosi M, Xuereb F, Rimméelle T, Chassard D,
Sauc MC, Allauuchiche B: Steady-state plasma and intrapulmonary concentrations of piperacillin/tazobactam 4 g/0.5 g administered to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 2004, 30:376-379.

Jehl F, Muller-Seney E, de Larminat V, Montiel H, Bergogne-Berezin E:
Penetration of piperacillin-tazobactam into bronchial secretions after multiple doses to intensive care patients. Antimicrob Agents Chemother
1994, 38:2780-2784.

Boselli E, Breilh D, Rimméelle T, Guillaume C, Xuereb F, Sauc MC, Bouvet L,
Chassard D, Allauuchiche B: Alveolar concentrations of piperacillin/
tazobactam administered in continuous infusion to patients with
ventilator-associated pneumonia. Clin Med 2008, 35:1500-1506.

Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Sostronzeck P,
Eichler HG, Müller M: Impaired target site penetration of β-lactams may
account for therapeutic failure in patients with septic shock. Crit Care Med 2001, 29:385-391.

Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J: Piperacillin
penetration into tissue of critically ill patients with sepsis: bolus versus
continuous administration? Crit Care Med 2009, 37:926-933.

Roberts JA, Kirkpatrick CM, Roberts MS, Dalley AJ, Lipman J: First-dose and
steady-state population pharmacokinetics and pharmacodynamics of
piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents 2009, 35:156-163.

Jacolet I, Incagnoli P, Edouard AR, Tod M, Petitjean O, Sami K, Mimaz O:
Pharmacokinetics of cefpirome during the posttraumatic systemic inflammatory response syndrome. Intensive Care Med 1999, 25:486-491.

Lipman J, Wallis SC, Rickard CM, Franekel D: Low cefpirome levels during
twice daily dosing in critically ill septic patients: pharmacokinetic
modelling calls for more frequent dosing. Intensive Care Med 2001,
27:363-370.

Lipman J, Wallis SC, Boots RJ: Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg 2003, 97:1149-1154.

Roos JF, Lipman J, Kirkpatrick CM: Population pharmacokinetics and pharmacodynamics of cefpirome in critically ill patients against Gram-
negative bacteria. Intensive Care Med 2007, 33:781-788.

Saueress R, Delle-Karth G, Marsik C, Steiner I, Zeitlinger M, Mayer-
Helm BH, Georgopoulous A, Muller M, Joukhadar C: Pharmacokinetics and pharmacodynamics of cefpirome in subcutaneous adipose tissue of
septic patients. Antimicrob Agents Chemother 2005, 49:650-653.

Joukhadar C, Klein N, Mayer BK, Kreischutz N, Delle-Karth G, Palkovits P,
Heinz G, Muller M: Plasma and tissue pharmacokinetics of cefpirome in
patients with sepsis. Crit Care Med 2002, 30:1478-1482.

Keef H, Hoepelman AI, Knupp CA, van Dijk A, Branger JM, Struyvenberg A,
Verhoef J: Pharmacokinetics of cefepime in patients with the sepsis
syndrome. J Antimicrob Chemother 1993, 32(Suppl B):117-122.
54. Conil JM, Georges B, Lavit M, Seguin T, Tack I, Sami K, Chabanon G, Houin G, Savin S. Pharmacokinetics of ceftazidime and cefepime in burn patients: the importance of age and creatinine clearance. Int J Clin Pharmacol Ther 2007, 45:529-538.

55. Chapuis TM, Gamoni E, Majcherczyk PA, Cholelo R, Schaller MD, Berger MM, Bolay S, Decoster LA, Bugnon D, Moreillon P. Prospective monitoring of cefepime in intensive care unit adult patients. Crit Care 2010, 14:R51.

56. Lipman J, Wallis SC, Rickard C. Low plasma cefepime levels in critically ill septic patients: pharmacokinetic modeling indicates improved troughs with revised dosing. Antimicrob Agents Chemother 1999, 43:2559-2561.

57. Bonapace CR, White RL, Friedrich LV, Norcross ED, Bosso JA. Pharmacokinetics of cefepime in patients with thermal burn injury. Antimicrob Agents Chemother 1999, 43:2848-2854.

58. Georges B, Conil JM, Seguin T, Deye E, Cougot P, Decun J, Lavit M, Sami K, Houin G, Savin S. Cefepime in intensive care unit patients: validation of a population pharmacokinetic approach and influence of covariables. Int J Clin Pharmacol Ther 2008, 46:157-164.

59. Nicasio AM, Ariano RE, Zelentzky SA, Kim A, Cordon JL, Kurt JL, Nicolaou DP. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically ill patients with ventilator-associated pneumonia. Antimicrob Agents Chemother 2009, 53:1476-1481.

60. Wuthier KA, Chapman J, Kirkpatrick CM. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother 2006, 58:987-993.

61. Sampel E, Jacquet A, Viggiano M, Bernini V, Manelli JC, Lacarelle B, Durand A. Plasma, urine and skin pharmacokinetics of cefepime in burn patients. J Antimicrob Chemother 2000, 46:315-317.

62. Klein A, Bägyi K, Bogár L, Gáspár A, Andrási M, Szabó J. Effectiveness of cephalosporins in the spuutm of patients with nosocomial bronchopneumonia. J Clin Microbiol 2006, 44:3418-3421.

63. Boseli E, Breiff D, Dulfo S, Saux MC, Debon R, Chassard D, Allauchie B. Steady-state plasma and intrapulmonary concentrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit Care Med 2003, 31:2102-2106.

64. Rondanelli R, Orzini RV, Regazzi MB, Maurelli M, Calvi M, Mapelli A. Cefazidime in the treatment of Pseudomonas infections in intensive care patients. Int J Clin Pharmacol Ther Toxicol 1989, 24:457-459.

65. Young RJ, Lipman J, Gin T, Gomerson CD, Joynt GM, Oh TE. Intermittent bolus dosing of cefepime in critically ill patients. J Antimicrob Chemother 1997, 40:269-273.

66. Gómez CM, Cordingly JJ, Palazzo MG. Altered pharmacokinetics of cefazidime in critically ill patients. Antimicrob Agents Chemother 1999, 43:1798-1802.

67. Benko AS, Cappelletty DM, Kruse JA, Rybak MJ. Continuous infusion versus intermittent administration of cefazidime in critically ill patients with suspected gram-negative infections. Antimicrob Agents Chemother 1996, 40:691-695.

68. Lipman J, Gomersall CD, Gin T, Joynt GM, Young RJ. Continuous infusion cefazidime in intensive care: a randomized controlled trial. J Antimicrob Chemother 1999, 43:309-311.

69. Boseli E, Breiff D, Rimmel ́e T, Poupelen JC, Saux MC, Chassard D, Allauchie B. Plasma and lung concentrations of cefazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 2004, 30:699-691.

70. Hanes SD, Wood GC, Herring V, Croce MA, Fabian TC, Pritchard E, Boucher BA. Intermittent and continuous cefazidime infusion for critically ill trauma patients. Am J Surg 2000, 179:636-440.

71. Angus BJ, Smith MD, Suputtamongkol Y, Mattei H, Walsh AL, Wuthierkanun V, Chawagul W, White NJ. Pharmacokinetic-pharmacodynamic evaluation of cefazidime continuous infusion vs intermittent bolus injection in septicamia meningitis. Br J Clin Pharmacol 2000, 50:184-191.

72. Aubert G, Campago A, Coutolet M, Guyomarch S, Auboyer C, Zeri F. Prospective determination of serum cefazidime concentrations in intensive care units. Ther Drug Monit 2010, 32:517-519.

73. Georges B, Conil JM, Seguin T, Ruiz S, Minville V, Cougot P, Decun JF, Gonzalez H, Houin G, Fourcade O, Savin S. Population pharmacokinetics of cefazidime in intensive care unit patients: influence of glomerular filtration rate, mechanical ventilation, and reason for admission. Antimicrob Agents Chemother 2003, 47:4483-4489.
single and multiple intravenous administrations in healthy subjects. Antimicrob Agents Chemother 1992, 36:552-557.

93. Dawson-Saunders B, Trapp RG: Basic & Clinical Biostatistics. 2 edition. Chicago: Appleton & Lange; 1994.

doi:10.1186/cc10441
Cite this article as: Gonçalves-Pereira and Póvoa. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Critical Care 2011 15:R206.