Presumptive Contamination: A New Approach to PFAS Contamination Based on Likely Sources

Dr. Alissa Cordner
Associate Professor, Whitman College
Co-Director, PFAS Project Lab,
Northeastern University and Whitman College
(she/her)

Dr. Kimberly Garrett
Postdoctoral Research Associate
PFAS Project Lab
Northeastern University
(she/her)
The PFAS Project Lab studies social, scientific, and political factors related to Per- and Polyfluoroalkyl substances (PFAS).

We produce rigorous, accessible research about the PFAS contamination crisis through collaborations with impacted communities, leading interdisciplinary researchers, and nonprofits.

We share this PFAS research with impacted communities and a broad range of other stakeholders.
Presumptive Contamination: A New Approach to PFAS Contamination Based on Likely Sources

Derrick Salvatore, Kira Mok, Kimberly K. Garrett, Grace Poudrier, Phil Brown, Linda S. Birnbaum, Greta Goldenman, Mark F. Miller, Sharyle Patton, Maddy Poehlein, Julia Varshavsky, and Alissa Cordner*

Cite This: https://doi.org/10.1021/acs.estlett.2c00502

ACCESS | Metrics & More | Article Recommendations | Supporting Information

ABSTRACT: While research and regulatory attention to per- and polyfluoroalkyl substances (PFAS) has increased exponentially in recent years, data are uneven and incomplete about the scale, scope, and severity of PFAS releases and resulting contamination in the United States. This paper argues that in the absence of high-quality testing data, PFAS contamination can be presumed around three types of facilities: (1) fluorinated aqueous film-forming foam (AFFF) discharge sites, (2) certain industrial facilities, and (3) sites related to PFAS-containing waste. While data are incomplete on all three types of presumptive PFAS contamination sites, we integrate available geocoded, nationwide data sets into a single map of presumptive contamination sites in the United States, identifying 57,412 sites of presumptive PFAS contamination: 49,145 industrial facilities, 4,255 wastewater treatment plants, 3,493 current or former military sites, and 519 major airports. This conceptual approach allows governments, industries, and communities to rapidly and systematically identify potential exposure sources.

KEYWORDS: per- and polyfluoroalkyl substances (PFAS), presumptive contamination, PFAS testing and investigation, AFFF, PFAS waste and disposal
PFAS in the Environment

- **Point sources**: industrial facilities, airports, military bases
- **Non-point sources**: Landfills, wastewater treatment plants (WWTPs)
- Not removed by standard WWTP methods
- Environmentally persistent
- Mobile through water cycle
- Globally ubiquitous in rainwater

Image Source: AAAS EpiCenter
PFAS and Environmental Justice

- Tribal water systems and populations underrepresented in federal testing, and many Tribal lands are close to presumptive PFAS contamination sites (Mok et al. conditional acceptance, *Environmental Health Perspectives*)

- BIPOC, low income, and limited English populations disproportionately exposed to PFAS in New Jersey (Mueller et al. in preparation)

- Approximately ½ of U.S. carceral facilities are proximate to a presumptive PFAS contamination site (Poirier et al. under review)
What we know:

- Currently no enforceable federal standards (MCLs) for PFAS, so no systematic federal testing and treatment
 - UCMR3 (2013-15) - small number of PFAS, high reporting levels, large water systems
 - UCMR5 (2023-25) requires public water systems serving >10,000 people to test for 29 PFAS

- Environmental PFAS testing occurs on a state-by-state basis
 - Some states have implemented enforceable drinking water limits for certain PFAS
Where are PFAS?
Where are PFAS?
Filling the gaps: a *presumptive PFAS Contamination* model

- Increasing public and scientific interest in PFAS means more interest in PFAS testing
- EPA regulatory action and funding for PFAS research and remediation

- Where should states start their testing?
- Are certain industries more likely to emit PFAS than others?
- Could a presumptive contamination model reveal environmental justice concerns?
Presumptive PFAS Contamination Model

- AFFF Discharge
- Industry Facilities
- PFAS – Related Waste

Operationalization
Presumptive PFAS Contamination

Conceptual Model:

- **AFFF Discharge Sites**
 - AFFF-Certified Airports (FAA Dataset of Part 139 Airports)
 - Military Sites (MIRTA and FUDS datasets)

- **Industrial Facilities that Produce and/or Use PFAS**
 - 38 NAICS codes used by at least four regulatory agencies and/or academic researchers to identify and/or verify PFAS contamination sites (facility list downloaded from EPA Facility Registry Service by primary NAICS code, with geolocation accuracy <1,000 meters)

- **Sites Related to PFAS-Containing Waste**
 - Wastewater Treatment Plans (Clean Watershed Needs Survey)

Observable: Nationwide, Publicly Available Data Included in Map

Expected: Types of Sites Not Included in Map

- Other AFFF discharge sites, including airplane crash sites, firefighting training site, petroleum refinery fires, and others
- Facilities with FRS geolocation scores ≥1,000
- Facilities using or emitting PFAS whose NAICS code is not included in our model
- Sludge land application sites
- PFAS-burning incinerators
Industry facilities?

NAICS code	Title
313320	Fabric Coating Mills
325510	Paint and Coating Manufacturing
322220	Paper Bag and Coated and Treated Paper Manufacturing
313210	Broadwoven Fabric Mills
322121	Paper (except Newprint) Mills
332813	Electroplating, Plating, Polishing, Anodizing, and Coloring
324110	Petroleum Refineries
325612	Polish and Other Sanitation Good Manufacturing
334413	Semiconductor and Related Device Manufacturing
326113	Unlaminated Plastics Film and Sheet (except Packaging) Manufacturing
332812	Metal Coating, Engraving (except Jewelry and Silverware), and Allied Services to Manufacturers
333318	Other Commercial and Service Industry Machinery Manufacturing
334419	Other Electronic Component Manufacturing
562212	Solid Waste Landfill
325199	All Other Basic Organic Chemical Manufacturing
323111	Commercial Printing (except Screen and Books)
313110	Fiber, Yarn, and Thread Mills
314110	Carpet and Rug Mills
316110	Leather and Hide Tanning and Finishing
325211	Plastics Material and Resin Manufacturing
324191	Petroleum Lubricating Oil and Grease Manufacturing
325998	All Other Miscellaneous Chemical Product and Preparation Manufacturing
562211	Hazardous Waste Treatment and Disposal
562213	Solid Waste Combustors and Incinerators
313310	Textile and Fabric Finishing Mills
322219	Other Paperboard Container Manufacturing
323120	Support Activities for Printing
313220	Narrow Fabric Mills and Schiffli Machine Embroidery
313230	Nonwoven Fabric Mills
322130	Paperboard Mills
332999	All Other Miscellaneous Fabricated Metal Product Manufacturing
424690	Other Chemical and Allied Products Merchant Wholesalers
314910	Textile Bag and Canvas Mills
326112	Plastics Packaging Film and Sheet (including Laminated) Manufacturing
335999	All Other Miscellaneous Electrical Equipment and Component Manufacturing
562112	Hazardous Waste Collection
562219	Other Nonhazardous Waste Treatment and Disposal
325611	Soap and Other Detergent Manufacturing
Connecting Knowns to Unknowns

Known PFAS Contamination Sites

Presumptive PFAS Contamination Sites
Model Validation

- 5 states with highest number of known PFAS contamination sites
- 5 states with median number of known PFAS contamination sites
- 4 counties within each state; two with highest and two with median known sites
Predictive Power

NH Known

NH Presumptive

TN Known

TN Presumptive

NH Validation = 52 - 61% accuracy

TN Validation = 100%
State	Known contamination sites, n	Consolidated county known contamination^b	Known contamination sites, n	Observed matches^c, n (%)	Expected matches (not observed)^d, n (%)	Total matches^e, n (%)
New Hampshire	469	2 Highest	189	30 (16%)	69 (37%)	99 (52%)
		2 Median	76	14 (18%)	32 (42%)	46 (61%)
California	253	2 Highest	52	39 (75%)	11 (21%)	50 (96%)
		2 Median	8	6 (75%)	2 (25%)	8 (100%)
Michigan	188	2 Highest	57	30 (53%)	22 (39%)	52 (91%)
		2 Median	2	0 (0%)	2 (100%)	2 (100%)
Minnesota	101	2 Highest	17	9 (53%)	6 (35%)	15 (88%)
		2 Median	2	2 (100%)	0 (0%)	2 (100%)
Maine	99	2 Highest	28	9 (32%)	11 (39%)	20 (71%)
		2 Median	11	2 (18%)	7 (64%)	9 (82%)
Vermont	62	2 Highest	30	15 (50%)	15 (50%)	30 (100%)
		2 Median	7	2 (29%)	5 (71%)	7 (100%)
Mississippi	9	2 Highest	5	5 (100%)	0 (0%)	5 (100%)
		2 Median	2	2 (100%)	0 (0%)	2 (100%)
Rhode Island	8	2 Highest	5	1 (20%)	3 (60%)	4 (80%)
		2 Median	3	2 (67%)	1 (33%)	3 (100%)
Washington	8	2 Highest	2	2 (100%)	0 (0%)	2 (100%)
		2 Median	2	1 (50%)	1 (50%)	2 (100%)
Tennessee	6	2 Highest	3	3 (100%)	0 (0%)	3 (100%)
		2 Median	2	2 (100%)	0 (0%)	2 (100%)
Total	**503**		**176** (*35%*)	**187** (*37%*)	**363** (*72%*)	
Missed Connections

Our model is conservative and underestimates the number of PFAS-contaminated sites

- Sites with very possible PFAS contamination outside of our presumptive criteria (septic ponds, dry cleaners)

Accuracy of conceptual model is higher than observed in the map; the map is an underestimation

- Geolocation issues
- Land use & ownership changes
- Lack of high-quality and nationwide datasets

| Table S-6. Presumptive contamination model validation – known contamination data⁶¹ |
|-------------------|----------------|----------------|----------------|
| **State** | **County** | **Site name** | **Source** | **Observed match, presumptive site name(s)** | **Expected match, Type** |
| ME | Kennebec | Oakland Landfill | Landfill | No | Yes, Landfill |
| ME | Kennebec | Pat Jackson Septic Compost Facility | WWTP | No | No |
Presumptive Contamination Sites (n=57,412)

- Industrial Facilities (n=49,145)
- Major Airports (n=519)
- Military Sites (n=3,493)
- Wastewater Treatment Plants (n=4,255)
Applications and Next Steps

- Allows regulators, researchers, residents, and other decision-makers to identify presumptive PFAS contamination locations
- Identify and prioritize locations for monitoring, regulation, and remediation

Possible future work:
- Adding more data at smaller geographic scales
- Hazard- or risk-based weighting
- Proximity to other types of locations, such as water supplies, Tribal lands, EJ communities, public parks, or population-dense areas
- Extend to exposure pathways (hydrologic flows, airborne emissions)
- Extend to presumptive PFAS exposure based on occupation, residential location, and consumer products
Ongoing work at the PFAS Project Lab, including…

- PFAS Sites and Community Resources Map
- Environmental justice and unequal exposure to PFAS
- PFAS effects on children’s immune response (PFAS REACH)
- Health professionals information
- PFAS Advertising and a focus on DuPont’s history
- Social costs of PFAS contamination
- PFAS on Indigenous Lands (collaboration with Tribal PFAS Working Group)
- Studying PFAS advocacy and activism
- Studying PFAS governance
- PFAS and regrettable substitution
- PFAS definitions in legislation and regulation
Improving governance of “forever chemicals” in the US and beyond

Kimberly K. Garrett 1,2,3, Phil Brown 1,3,4, Julia Varshavsky 1,4,5, Alissa Cordner 1,2,3, R. Brian Martin 1,6

Figure 2. An intersecting system of PFAS management

Download: Download high-res image (889KB) Download: Download full-size image
Presumptive Contamination: A New Approach to PFAS Contamination Based on Likely Sources

Derrick Salvatore, Kira Mok, Kimberly K. Garrett, Grace Poudrier, Phil Brown, Linda S. Birnbaum, Gretta Goldenman, Mark F. Miller, Sharyle Patton, Maddy Poehlein, Julia Varshavsky, and Alissa Cordner*

Cite This: https://doi.org/10.1021/acs.estlett.2c00502

ABSTRACT: While research and regulatory attention to per- and polyfluoroalkyl substances (PFAS) has increased exponentially in recent years, data are uneven and incomplete about the scale, scope, and severity of PFAS releases and resulting contamination in the United States. This paper argues that in the absence of high-quality testing data, PFAS contamination can be presumed around three types of facilities: (1) fluorinated aqueous film-forming foam (AFFF) discharge sites, (2) certain industrial facilities, and (3) sites related to PFAS-containing waste. While data are incomplete on all three types of presumptive PFAS contamination sites, we integrate available geocoded, nationwide data sets into a single map of presumptive contamination sites in the United States, identifying 57,412 sites of presumptive PFAS contamination: 49,145 industrial facilities, 4,255 wastewater treatment plants, 3,493 current or former military sites, and 519 major airports. This conceptual approach allows governments, industries, and communities to rapidly and systematically identify potential exposure sources.

KEYWORDS: per- and polyfluoroalkyl substances (PFAS), presumptive contamination, PFAS testing and investigation, AFFF, PFAS waste and disposal
PFAS Project Lab – www.pfasproject.com

Co-Directors
Phil Brown – Northeastern University
Alissa Cordner – Whitman College

Collaborating Faculty and Scientists
• Rosie Mueller – Whitman College
• Lauren Richter – University of Toronto
• Julia Varshavsky – Northeastern
• Loretta Fernandez – Northeastern
• Jennifer Ohayon – Silent Spring Institute
• Laurel Schaider – Silent Spring Institute
• Ruthann Rudel – Silent Spring Institute
• Julie Brody – Silent Spring Institute
• Otak Conroy-Ben – Arizona State University

Current Students
• Grace Poudrier – Northeastern
• Marina Atlas – Northeastern
• Miranda Dotson – Northeastern
• Berty Lakjohn – Whitman College
• Daniel Bloor – Whitman College
• Alli Shinn – Whitman College
• Kira Mok – Northeastern
• Esme Getto – Northeastern
• Mya Heard – Northeastern
• Ricky Salvatore – Northeastern alumna

Community and Organizational Collaborators
Testing for Peace
Massachusetts Breast Cancer Coalition
Slingshot
Environmental Working Group
Green Science Policy Institute
Sitting Bull College and the Standing Rock Sioux Tribe
Safer States

Postdoctoral Research Fellows
• Kim Garrett – Northeastern
• Abigail Bline – Northeastern and Silent Spring
www.pfasproject.com
@pfasproject

Sign up to receive our monthly newsletters!
https://pfasproject.com/newsletters/

Dr. Alissa Cordner
cordneaa@whitman.edu
www.alissacordner.com

Dr. Kimberly Garrett
k.garrett@northeastern.edu
www.kkgarrett.com
@kimkgarrett