The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS₂, one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity.

We measure ultralow thermal conductivities in the through-plane direction for MoS₂ (57 ± 3 mW m⁻¹ K⁻¹) and WS₂ (41 ± 3 mW m⁻¹ K⁻¹) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS₂ films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.

Anisotropic thermal conductors, in which heat flows faster in one direction than in another, can be characterized by the thermal conductivity anisotropy ratio \(\rho = k_f/k_s \) between the thermal conductivities along the fast axis \((k_f) \) and the slow axis \((k_s) \). One common way to engineer \(\rho \) in fully dense solids is via nanostructuring, such as fabricating inorganic superlattices or designing symmetry-breaking crystal architectures in a single material. However, such engineered materials have relatively small values of less than 20 at room temperature. Conversely, some natural crystalline materials have an intrinsically large \(\rho \) (for example, graphite and hexagonal boron nitride (hBN), with \(\rho \approx 340 \) and 90 respectively), but they are often difficult to process scalably for thin film integration. Some of these films may also lack the electrical or optical properties necessary for functional device applications.

To design materials with higher \(\rho \) that are also suitable for real-world applications, an approach needs to be developed to include three key features: (1) a candidate material with intrinsically high \(k_f \), usually one with efficient phonon-mediated thermal transport; (2) a method to substantially reduce \(k_s \) without affecting \(k_f \); and (3) facile, scalable production and integration of such a material with precise control of the material dimensions (for example, film thickness). Layered van der Waals (vdW) materials such as graphite and transition metal dichalcogenides (TMDs) provide an ideal material platform for designing such high-\(\rho \) materials. They generally have excellent intrinsic in-plane thermal conductivities \((k_f) \) in single-crystalline form. Previous studies have also measured record-low thermal conductivities in nanocrystalline vdW films (for example, WSe₂) and heterostructures. One currently missing capability, however, is an approach for significantly decreasing the out-of-plane thermal conductivity \((k_s) \) while maintaining high \(k_f \).

TMD films with interlayer rotations

Here we show that such capability is provided by interlayer rotations, as illustrated in Fig. 1a. Interlayer rotation breaks the through-plane translational symmetry at the atomic scale while retaining in-plane long-range crystallinity in each monolayer, thereby providing an effective means for suppressing only \(k_s \). For this, we produce large-area TMD films without interlayer registry (referred to here as r-TMD), which possess long-range crystallinity in-plane and relative lattice rotations at every interlayer interface (Fig. 1b). The films are produced in large-scale using two steps: wafer-scale growth of continuous TMD monolayers (polycrystalline; domain size \(D \)) and layer-by-layer stacking in vacuum using previously reported methods (see Methods).
The transmission electron microscopy (TEM) diffraction (Fig. 1c, left) and darkfield (inset) images from a representative MoS₂ monolayer show that it comprises large (D = 1 μm), randomly oriented crystalline domains, which connect laterally to form a continuous polycrystalline film. The vacuum stacking generates r-TMD films with a precise layer number (N) and high-quality interfaces with interlayer rotation at every stacked interface. The TEM diffraction pattern of N = 10 r-MoS₂ (Fig. 1c, right) shows a ring-like pattern due to the significant increase in the number of diffraction spots, emphasizing the random crystalline orientation in the through-plane direction. Clean and well-defined interfaces can be seen from the cross-sectional high-angle annular darkfield scanning TEM (HAADF-STEM) images of r-MoS₂ (Fig. 1d and Extended Data Fig. 1; see Methods). The monolayers have a uniform interlayer spacing d = 6.4 Å (see Methods and Extended Data Fig. 2), which is close to the expected value (6.5 Å) for twisted MoS₂ multilayers. Both the growth and stacking steps are scalable, as shown by the optical images of N = 1 and N = 10 r-MoS₂ films (1 cm²) in Fig. 1e and as demonstrated later in Fig. 4. The large-scale uniformity of these films also enables precise and reproducible measurements with minimal spatial variation (Extended Data Fig. 3a–c). In our experiments, r-MoS₂ or r-WS₂ films with different N (up to 22) are transferred onto a sapphire wafer for the measurements of κ⊥ or suspended over a holey TEM grid (Fig. 3a) for the measurements of κ∥.

Ultralow out-of-plane conductivity

In Fig. 2, we illustrate κ⊥ of r-TMD films, which is measured using time domain thermoreflectance (TDTR; Fig. 2a, inset; see Methods). A stream of laser pulses (pump) heats up the surface of an Al pad deposited on an r-TMD film on sapphire and produces a temperature-sensitive thermoreflectance signal (−Vout/Vin in Fig. 2a), which is measured with a probe pulse after a varying time delay (for cooling). Figure 2a shows three representative curves measured from r-MoS₂ with N = 1, 2 and 10. The curves flatten with increasing N, suggesting that heat dissipation slows down significantly. Fitting these curves using a heat diffusion model (solid lines, Fig. 2a) enables us to obtain RTDTR, the total thermal resistance between the Al transducer layer and sapphire across the r-TMD film for different N.

Figure 2b shows RTDTR versus N for r-MoS₂ (N ≤ 10; solid circles) and r-WS₂ (N ≤ 10; open circles) measured under ambient conditions. We make two observations. First, RTDTR monotonically increases with N. Second, RTDTR varies linearly with N for r-MoS₂ (Fig. 2b). These observations confirm that the plane-of-plane thermal transport in r-TMD films is diffusive in nature, in contrast to the ballistic transport reported in few-layer single-crystal MoS₂ (as thick as 240 nm). A single parameter κ⊥ characterizes the thermal resistance across r-MoS₂ (or r-WS₂) using the equation RTDTR = R̄ + Nd/κ⊥, where N is the total film thickness, and R̄ is a constant corresponding to the total interface resistance (r-TMD/Al and r-TMD/sapphire; see Extended Data Table 1). Therefore, we apply linear fitting to the data (N ≥ 2) in Fig. 2b (solid lines) to determine κ⊥ of r-MoS₂ alone, regardless of the quality and chemical nature of the top and bottom interfaces (see Methods and Extended Data Fig. 3d), which can potentially be altered by metal deposition. We measure κ⊥ = 57 ± 3 mW m⁻¹ K⁻¹ for r-MoS₂, and κ⊥ = 41 ± 3 mW m⁻¹ K⁻¹ for r-WS₂, which are similar to the lowest values observed in a fully dense solid and comparable to the thermal conductivity of ambient air (26 mW m⁻¹ K⁻¹). These values are approximately two orders of magnitude smaller than those of single-crystal MoS₂ (2–5 W m⁻¹ K⁻¹) or WS₂ (~3 W m⁻¹ K⁻¹), despite the r-TMD films having the same chemical composition as their bulk counterparts as well as clean interfaces (Fig. 1d). This strongly suggests that the main difference, in the interlayer rotation, is the principal cause for the ultralow κ⊥ in these r-TMD films. Furthermore, repeating similar TDTR experiments on r-MoS₂ at different temperatures (7) produces a relatively flat κ⊥ (7) curve (green stars, Fig. 2c), a behaviour different from the decreasing κ⊥ with T seen in bulk MoS₂ (blue squares, lower Fig. 2c).

To understand the microscopic mechanisms that give rise to the dramatic reduction in κ⊥, we carry out homogeneous nonequilibrium molecular dynamics (HNEMD) simulations for the model structures of r-MoS₂ and bulk MoS₂ (see Methods and Extended Data Table 2). Figure 2c shows κ∥ and κ⊥ of r-MoS₂ (solid circles) and bulk MoS₂ (empty circles) calculated from our molecular dynamics (MD) simulations at different temperatures. The calculated κ⊥ drops by a factor of more than 20, from 3.7 ± 0.5 W m⁻¹ K⁻¹ in bulk MoS₂ to 0.16 ± 0.04 W m⁻¹ K⁻¹ in r-MoS₂ at 300 K, and also does not decrease with T, suggesting a transition away from the phonon-limited thermal transport mechanism observed in bulk MoS₂.

Fig. 1 Structure of r-TMD films. a, Conceptual strategy for engineering thermal anisotropy in a single material system, using random interlayer rotation in polycrystalline vdW layered materials. b, Schematic of an r-MoS₂ film with random crystalline orientation. c, Greyscale-inverted TEM electron diffraction patterns probed from a 500 nm × 500 nm area of a monolayer and an N = 10 r-MoS₂ film. Inset: darkfield TEM image of a monolayer; the scale bar denotes 400 nm and the colours denote different domain orientations from different crystal domains. d, HAADF-STEM image of a cross-section of an N = 10 r-MoS₂ film on AlO₃ coated with Al, with an interlayer spacing of 6.4 Å. e, Large-area MoS₂ film transferred onto 1-inch diameter fused silica substrates.
Overall, the strongly suppressed TA modes, indicating a temperature-independent conduction mechanism. In-plane conductivity and anisotropy make of polycrystalline monolayers. This result is further supported by our additional measurements on continuous r-MoS₂ films with a smaller D = 400 nm (open dots, dashed lines, Fig. 3c inset; Extended Data Fig. 5e). The measured value of κₚ = 44 ± 6 W m⁻¹ K⁻¹ is within the margin of error of that of the D = 1 μm films. This suggests that the phonon mean free path is smaller than 400 nm, which is consistent with previous reports [25,38–42]. Furthermore, the measured in-plane conductance decreases with T (Extended Data Fig. 6a). This further confirms the phonon-mediated simulations originate from the simulation uncertainties. The dotted lines connecting the individual data points are guides to the eye. d, LA (top) and TA (bottom) phonon dispersion curves of r-MoS₂ along the Γ–A direction. The dotted lines denote the acoustic curves corresponding to bulk MoS₂. e, Lifetime of LA and TA phonons parallel to the Γ–A direction in bulk and r-MoS₂. The dashed line is the LA mode vibration period derived from the dispersion curve.

Figure 2a shows that the estimated mean free path $l = \nu_g \tau$ for the LA modes is about 2 nm, suggesting that the heat-carrying LA modes are strongly scattered and that a larger D is unlikely to significantly affect κ_\parallel since $D >> l$. Overall, the strongly suppressed TA modes, indicating a loss of resistance to lateral shear, and the overdamping of the LA modes as the main heat carriers, lead to extremely inefficient thermal transport along the through-plane direction in r-MoS₂. Along with the nearly temperature-independent κ_\perp, this result suggests a glass-like conduction mechanism.

In-plane conductivity and anisotropy

In contrast to κ_\perp, κ_\parallel remains high in our simulations with only a modest reduction compared to the ideal bulk crystal (less than a factor of two at 300 K; Fig. 2c). This is indeed what we observe in our Raman thermometry experiments as discussed in Fig. 3 (see Methods). We direct a focused laser spot (λ = 532 nm) at the centre of a suspended r-MoS₂ film (35–84 W m⁻¹ K⁻¹) at room temperature [27]. The slope of the linear fit ($\partial(\Delta \omega)/\partial P_{abs}$), which is inversely proportional to the in-plane thermal conductance of the film, is plotted in the inset (solid dots; $D = 1 \mu m$). We again observe a linear relation, which indicates that κ_\parallel is well defined for r-MoS₂ independent of N, similar to the case of κ_\perp. Using a simple diffusion model with radial symmetry (see Methods and Extended Data Fig. 5c for calculation details and other input measurements), we calculate a high κ_\parallel value of $50 ± 6 \ W \ m^{-1} \ K^{-1}$. This value is similar to the predictions of our MD simulations (Fig. 2c) and consistent with previous reports of Raman thermometry on single-crystalline monolayer MoS₂ [35–84 W m⁻¹ K⁻¹] at room temperature [34]. The κ_\parallel of these r-MoS₂ films is close to the intrinsic phonon-limited value despite the films being made of polycrystalline monolayers. This result is further supported by our additional measurements on continuous r-MoS₂ films with a smaller D = 400 nm (open dots, dashed lines, Fig. 3c inset; Extended Data Fig. 5e). The measured value of $\kappa_\parallel = 44 ± 6 \ W \ m^{-1} K^{-1}$ is within the margin of error of that of the D = 1 μm films. This suggests that the phonon mean free path is smaller than 400 nm, which is consistent with previous reports [25,38–42]. Furthermore, the measured in-plane conductance decreases with T (Extended Data Fig. 6a). This further confirms the phonon-mediated
thermal transport mechanism in-plane, in contrast to the glass-like thermal conduction along the through-plane direction.

Our experiments and calculations confirm that interlayer rotation in r-TMD films results in highly directional thermal conductivity and a direction-dependent thermal conduction mechanism. The rotation significantly reduces \(\kappa \parallel \) while maintaining high \(\kappa \perp \), leading to an ultrahigh value of \(\rho \). We estimate \(\rho = 880 \pm 110 \) at room temperature for the r-MoS\(_2\) films, higher than that of pyrolytic graphite (PG), which is considered to be one of the most anisotropic thermal conductors \((\rho = 340)^{10}\). In Fig. 3d, we compare our result with other previously reported values of \(\rho \) in phonon-based solids \(^{13,15,41,16}\) (for a full comparison, see Extended Data Fig. 6b). Compared to a bulk MoS\(_2\) crystal \((\rho = 20)^{17}\) or disordered layered WSe\(_2\) \((\rho = 30)^{15,44}\), r-MoS\(_2\) has a significantly larger \(\rho \) because interlayer rotation reduces only \(\kappa \perp \), as denoted by the grey arrow parallel to the equi-\(\kappa \) lines. This also suggests that \(\rho \) can be made even larger by starting with the monolayers of a layered vdW material with a higher \(\kappa \parallel \) value such as graphene.

Anisotropic vdW heat diffuser

In Fig. 4, we show that the extreme anisotropy of our r-MoS\(_2\) films can lead to excellent heat dissipation in-plane from a heat source and drastic thermal insulation in the through-plane direction. Using the COMSOL software, we perform thermal finite-element simulations of a 10-nm-thick r-MoS\(_2\) film draped over a nanoscale Au electrode (15 nm tall, 100 nm wide) on a 50 nm SiO\(_2\)/Si substrate (Fig. 4a). Our simulation results show that for a fixed power of 8 mW supplied to the Au electrode (near thermal breakdown), the temperature rise \(\Delta T \) of the Au electrode covered by r-MoS\(_2\) is 50 K lower than that of the bare electrode, thereby demonstrating our film’s effectiveness at spreading heat due to its excellent \(\kappa \parallel \) (Fig. 4b, c). Interestingly, the extreme thermal anisotropy of our r-MoS\(_2\) films provides thermal insulation in the through-plane direction, with much lower MoS\(_2\) surface \(\Delta T \) values that are only one-third of the value of the bare Au electrode. While single-crystal MoS\(_2\) displays similar properties, the insulation effect is stronger in r-MoS\(_2\) (Extended Data Fig. 7a). This implies that heat is efficiently directed away from the hot Au electrode laterally through r-MoS\(_2\) but not to the surface of r-MoS\(_2\), making the surface of the entire device significantly cooler.

Our experiments corroborate these simulation results. For this, we fabricate nanoscale Au electrodes with the same geometry and substrate as in our simulation (image shown in Fig. 4d, inset) and transfer \(N = 16 \) r-MoS\(_2\) (-10 nm thick) using the vacuum stacking process. Both bare and coated Au electrodes show similar resistance at low currents. At higher currents, current-induced Joule heating leads to the thermally activated electromigration process, which causes the electrodes to fail\(^{45}\). Figure 4d compares representative current–voltage (I–V) curves measured from a bare and coated Au electrode, which shows that the Au electrode with r-MoS\(_2\) can carry a larger current without breaking. The histogram of critical current \(I_c \) (maximum current a Au electrode sustains for at least 20 s) measured from 20 electrodes (10 bare and 10 with r-MoS\(_2\)) reveals a -50% increase in the median \(I_c \) values (Fig. 4e). These results demonstrate our r-MoS\(_2\) film’s ability to efficiently dissipate Joule heat and keep the electrodes cool, as our simulation predicts. As the electromigration process is dominated by the temperature, the observed increase of \(I_c \) and maximum power before breaking is in good agreement with our simulation in Fig. 4c. Furthermore, we note that the r-MoS\(_2\) film can be integrated with the Au electrodes using mild conditions that do not affect their electrical properties (Extended Data Fig. 7b).

Outlook

We expect interlayer rotation to be an effective and generalizable way to reduce \(\kappa \perp \) and potentially engineer anisotropic thermal properties.
in a variety of layered materials. Our results call for a systematic study of the exact relation between κ_\perp and rotation angle, which could reveal unexpected relationships analogous to the studies of electrical transport in twisted bilayer graphene. Interlayer rotations can be combined with other parameters (such as pressure or interlayer spacing) and advanced structures (superlattices and heterostructures) to realize highly tunable κ_\perp, allowing for the customization of thermal transport properties with an unprecedented level of directional and spatial control.

Online content

Any methods, additional references, Nature Research reporting summary, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-021-03867-8.

1. Minnich, A. J. Exploring the extremes of heat conduction in anisotropic materials. *Nanoscale Microscale Thermophys. Eng.* **20**, 1–21 (2016).
2. Cui, Y., Li, M. & Hu, Y. Emerging interface materials for electronics thermal management: experiments, modeling, and new opportunities. *J. Mater. Chem. C* **8**, 5005–5013 (2020).
3. Moore, A. L. & Shi, L. Emerging challenges and materials for thermal management of electronics. *Nanoscale Microscale Thermophys. Eng.* **20**, 1–21 (2016).
4. Norley, J., Zheng, J.-W., Getz, O., Klug, J. & Fedor, B. The development of a natural graphite heat-spreader. In *Nanotechnology* (eds. S. V. N. Mosciski, et al.) 107–110 (IEEE, 2001).
5. Chung, D. D. L. & Takizawa, Y. Performance of isotropic and anisotropic heat spreaders. *J. Electron. Mater.* **41**, 2580–2587 (2012).
6. Termentzidis, K. Thermal conductivity anisotropy in nanostructures and nanostructured materials. *J. Phys. Appl. Phys.* **51**, 084003 (2018).
7. Lee, S.-M., Cahill, D. G. & Venkatasubramanian, R. Thermal conductivity of Si–Ge superlattices. *Appl. Phys. Lett.* **70**, 2957–2959 (1997).
8. Luckyanova, M. N. et al. Anisotropic of the thermal conductivity in GaAs/AlAs superlattices. *Nano Lett.* **13**, 3975–3977 (2013).
9. Borca-Tasciuc, T. et al. Thermal conductivity of symmetrically strained Si/Ge superlattices. *Superlattices Microstruct.* **28**, 199–206 (2000).
10. Lee, W.-Y. et al. Anisotropic temperature-dependent thermal conductivity of an Al$_2$O$_3$/ZnO superlattice films. *Nanotechnology* **28**, 105401 (2017).
11. Rawat, V., Koh, Y. K., Cahill, D. G. & Sands, T. D. Thermal conductivity of (Zr,W)N/ScN superlattices. *Nanotechnology* **18**, 105639 (2007).
12. Sun, B. et al. Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films. *Nat. Mater.* **18**, 136–140 (2019).
13. Jiang, P., Qian, X., Yang, R. & Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. *Phys. Rev. Mater.* **2**, 64005 (2018).
14. Chiritescu, C. et al. Low thermal conductivity in nanoscale layered materials synthesized by the method of modulated elemental reactants. *J. Appl. Phys.* **104**, 033533 (2008).
15. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe$_2$ crystals. *Science* **315**, 351–353 (2007).
16. Hadland, E. C. et al. Ultralow thermal conductivity of turbostratically disordered MoSe$_2$ ultra-thin films and implications for heterostructures. *Nanotechnology* **30**, 285401 (2019).
17. Hadland, E. et al. Synthesis, characterization, and ultralow thermal conductivity of a lattice-mismatched SnSe$_2$/MoSe$_2$ heterostructure. *Chem. Mater.* **31**, 5699–5705 (2019).
18. Varzi, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. *Sci. Adv.* **5**, eaaz1325 (2019).
19. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. *Nature* **520**, 656–660 (2015).
20. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. *Nature* **550**, 229–233 (2017).
21. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. *Nat. Commun.* **5**, 4966 (2014).
22. Good, A. et al. Quasi-ballistic thermal transport across MoS$_2$ thin films. *Nano Lett.* **19**, 2434–2442 (2019).
23. Li, Z. et al. Size dependence and ballistic limits of thermal transport in anisotropic layered two-dimensional materials. Preprint at arXiv https://arxiv.org/abs/1711.02772 (2017).
24. Schauble, K. et al. Uncovering the effects of metal contacts on monolayer MoS₂. ACS Nano 14, 14798–14808 (2020).
25. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).
26. Liu, J., Choi, G.-M. & Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014).
27. Jiang, P., Qian, X., Gu, X. & Yang, R. Probing anisotropic thermal conductivity of transition metal dichalcogenides MX₂ (M=Mo, W and X=S, Se) using time-domain thermoreflectance. Adv. Mater. 29, 1701068 (2017).
28. Evans, D. J. Homogeneous NEMD algorithm for thermal conductivity—application of non-canonical linear response theory. Phys. Lett. A 91, 457–460 (1982).
29. Fan, Z., Chen, W., Vierimaa, V. & Harju, A. Efficient molecular dynamics simulations with many-body potentials on graphics processing units. Comput. Phys. Commun. 218, 10–16 (2017).
30. Xu, K. et al. Thermal transport in MoS₂ from molecular dynamics using different empirical potentials. Phys. Rev. B 99, 054303 (2019).
31. Li, D., Schleife, A., Cahill, D. G., Mitchson, G. & Johnson, D. C. Ultralow shear modulus of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. Phys. Lett. A 556, 43–50 (2018).
32. Huang, S. et al. Probing the interlayer coupling of twisted bilayer MoS₂ using photoluminescence spectroscopy. Nano Lett. 14, 5500–5508 (2014).
33. Erhart, P., Hylgaard, P. & Lindroth, D. O. Microscopic origin of thermal conductivity reduction in disordered van der Waals solids. Chem. Mater. 27, 5511–5518 (2015).
34. Yan, R. et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986–993 (2014).
35. Sahoo, S., Gaur, A. P. S., Ahmadi, M., Guinel, M. J.-F. & Katyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS₂. J. Phys. Chem. C 117, 9042–9047 (2013).
36. Zhang, X. et al. Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS₂ and MoSe₂ using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 7, 25923–25929 (2015).
37. Tauru, A., Jukutė, J., Lapiška, A. & Zdrojek, M. Temperature-dependent thermal properties of supported MoS₂ monolayers. ACS Appl. Mater. Interfaces 7, 5061–5065 (2015).
38. Lindroth, D. O. & Erhart, P. Thermal transport in van der Waals solids from first-principles calculations. Phys. Rev. B 94, 115205 (2016).
39. Jo, I., Pettes, M. T., Ou, E., Wu, W. & Shi, L. Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett. 104, 201902 (2014).
40. Wei, X. et al. Phonon thermal conductivity of monolayer MoS₂: a comparison with single layer graphene. Appl. Phys. Lett. 105, 103902 (2014).
41. Cai, Y., Lan, J., Zhang, G. & Zhang, Y. W. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS₂. Phys. Rev. B 89, 035438 (2014).
42. Liu, X., Zhang, G., Pei, Q.-X. & Zhang, Y.-W. Phonon thermal conductivity of monolayer MoS₂ sheet and nanoribbons. Appl. Phys. Lett. 103, 133113 (2013).
43. Ho, C. Y., Powell, R. W. & Liley, P. E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279–421 (1972).
44. Mavrokefalos, A., Nguyen, N. T., Pettes, M. T., Johnson, D. C. & Shi, L. In-plane thermal conductivity of disordered layered WSe₂ and (W₄)₂(WS₆)₂ superlattice films. Appl. Phys. Lett. 91, 171912 (2007).
45. Ho, P. & Kwok, T. Electromigration in metals. Rep. Prog. Phys. 52, 301–348 (1989).
46. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
47. Goodson, K. E. & Donadio, D. Strongly tunable anisotropic thermal transport in MoS₂ by strain and lithium intercalation: first-principles calculations. 2D Mater. 6, 025033 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
We used a mode-locked Ti:sapphire laser, which produced a train of pulses at a repetition rate of 74.86 MHz, with wavelength centred at 785 nm and a total power of 18 mW. The steady-state temperature rise at the surface of the samples was <4 K for all temperatures. For the low temperature TDTR measurements, anNSTEC stage was used with liquid nitrogen cooling; the other beam conditions were the same. The laser beam was split into pump and probe beams. A mechanical delay stage was used to delay the arrival of the probe with respect to the pump on the sample surface by changing their optical path difference, before they were focused onto the sample surface through an objective lens. The 1/e radius of the focused laser beams was 10.7 μm. For our measurements, we modulated the pump beam at a frequency of 9.3 MHz so that the thermoreflectance change at the sample surface could be detected by the probe beam through lock-in detection. The ratio of the in-phase and out-of-phase signals from the lock-in was fitted to a thermal diffusion model. The full details of the TDTR measurement can be found elsewhere.

Calculation of κ

The modelling required material parameters such as heat capacity (C), thickness (h), interface conductance (G) and thermal conductivity (κ) for each layer. Our TDTR samples have three chemically distinct layers with the following structure (from the top): Al/r-TMD/sapphire.

In our fitting process, the heat capacities of all materials were adopted from literature. The thickness of Al layer was obtained from picosecond acoustics using a longitudinal speed of sound of 6.42 nm ps⁻¹. The thickness of r-TMD films was calculated from the product of N and the interlayer spacing (d). The latter was measured by performing grazing-incidence wide-angle X-ray spectroscopy (GIWAXS; see GIWAXS section below in the Methods and Extended Data Fig. 2) on the r-TMD films, which gave d = 0.64 nm. The total thicknesses of the r-MoS₂ films were <15 nm; thus, this layer was treated as part of the Al–sapphire interface as a single thermal layer characterized by a single thermal conductance value G₁. We used the bulk value of the volumetric heat capacity of 1.89 J K⁻¹ cm⁻³ for the r-MoS₂ layer. The thermal conductivity of the Al layer was calculated from the Wiedemann–Franz law using the typical growth condition. N₂ and H₂ were used as carrier gases. Typical growth times were 15–20 h for MoS₂ at a growth temperature of 325 °C. Typical growth times for WS₂ were 2 h at a temperature of 650 °C.

To make the r-TMD films, a TMD monolayer was spin-coated with PMMA A8 (poly-methyl methacrylate, 495 K, 4% diluted in anisole) at 200 rpm for 60 s and then baked at 180 °C for 3 min. The PMMA-coated monolayer was stacked onto TMD monolayers layer by layer to a target number (N) and transferred to the desired substrates using a previously reported programmed vacuum stacking method.

Raman thermometry samples

Raman experiments were performed on a different set of films from the TDTR-measured films. First, holey SiN₃ transmission electron microscopy (TEM) grids were cleaned in a N₂/H₂ plasma at 100 °C and 180 mtorr for 3 min, followed by the transfer of stacked MoS₂ films onto the TEM grids. During the transfer process, the PMMA-coated r-MoS₂ was suspended on holey thermal release tape before contacting the TEM grid. The extra PMMA-MoS₂ not on the TEM grid was cut away at 180 °C so the PMMA layer was softening. PMMA was removed from r-MoS₂ on the TEM grid via annealing the film in 400/100 SCCM Ar/H₂ at 350 °C for 4 h.

Cross-sectional STEM

The N = 10 films were coated with Al that was electron beam evaporated onto the surface, whereas the top surface of N = 20 films was bare. The r-MoS₂ cross-section was prepared using a Thermo Scientific Strata 400 focused ion beam. Protective layers of carbon (-200 nm) and platinum (-1 μm) were deposited on the sample. A cross-section was milled at a 90° angle from the sample using a Ga ion beam at 30 kV. The cross-section was then polished to -150 nm thickness with the ion beam at 5 kV.

The cross-section was imaged in a Thermo Scientific Titan Themis scanning transmission electron microscope at 120 kV with a probe convergence angle of 21.4 mrad. The N = 10 film was imaged at a beam voltage of 120 kV, whereas the N = 20 film was imaged at 300 kV. All images were analysed using the open-source software Cornell SpectrImager. The high-angle annular dark field (HAADF) image of the sample (see ‘TMD films with interlayer rotation’ in the main text; Fig. 1d) shows, from top to bottom, the Al crystal lattice along the [110] zone axis, ten layers of MoS₂ (bright bands), followed by an AlO₃ layer.

TDTR

We used TDTR to measure the thermal conductivity of our r-TMD films. We used a mode-locked Ti:sapphire laser, which produced a train of pulses at a repetition rate of 74.86 MHz, with wavelength centred at 785 nm and a total power of 18 mW. The steady-state temperature rise at the surface of the samples was <4 K for all temperatures. For the low temperature TDTR measurements, anNSTEC stage was used with liquid nitrogen cooling; the other beam conditions were the same. The laser beam was split into pump and probe beams. A mechanical delay stage was used to delay the arrival of the probe with respect to the pump on the sample surface by changing their optical path difference, before they were focused onto the sample surface through an objective lens. The 1/e radius of the focused laser beams was 10.7 μm. For our measurements, we modulated the pump beam at a frequency of 9.3 MHz so that the thermoreflectance change at the sample surface could be detected by the probe beam through lock-in detection. The ratio of the in-phase and out-of-phase signals from the lock-in was fitted to a thermal diffusion model. The full details of the TDTR measurement can be found elsewhere.

Calculation of κ

The modelling required material parameters such as heat capacity (C), thickness (h), interface conductance (G) and thermal conductivity (κ) for each layer. Our TDTR samples have three chemically distinct layers with the following structure (from the top): Al/r-TMD/sapphire.

In our fitting process, the heat capacities of all materials were adopted from literature. The thickness of Al layer was obtained from picosecond acoustics using a longitudinal speed of sound of 6.42 nm ps⁻¹. The thickness of r-TMD films was calculated from the product of N and the interlayer spacing (d). The latter was measured by performing grazing-incidence wide-angle X-ray spectroscopy (GIWAXS; see GIWAXS section below in the Methods and Extended Data Fig. 2) on the r-TMD films, which gave d = 0.64 nm. The total thicknesses of the r-MoS₂ films were <15 nm; thus, this layer was treated as part of the Al–sapphire interface as a single thermal layer characterized by a single thermal conductance value G₁. We used the bulk value of the volumetric heat capacity of 1.89 J K⁻¹ cm⁻³ for the r-MoS₂ layer. The thermal conductivity of the Al layer was calculated from the Wiedemann–Franz law using the typical growth condition. N₂ and H₂ were used as carrier gases. Typical growth times were 15–20 h for MoS₂ at a growth temperature of 525 °C.

Calculation of κ

The modelling required material parameters such as heat capacity (C), thickness (h), interface conductance (G) and thermal conductivity (κ) for each layer. Our TDTR samples have three chemically distinct layers with the following structure (from the top): Al/r-TMD/sapphire. In our fitting process, the heat capacities of all materials were adopted from literature. The thickness of Al layer was obtained from picosecond acoustics using a longitudinal speed of sound of 6.42 nm ps⁻¹. The thickness of r-MoS₂ films was calculated from the product of N and the interlayer spacing (d). The latter was measured by performing grazing-incidence wide-angle X-ray spectroscopy (GIWAXS; see GIWAXS section below in the Methods and Extended Data Fig. 2) on the r-TMD films, which gave d = 0.64 nm. The total thicknesses of the r-MoS₂ films were <15 nm; thus, this layer was treated as part of the Al–sapphire interface as a single thermal layer characterized by a single thermal conductance value G₁. We used the bulk value of the volumetric heat capacity of 1.89 J K⁻¹ cm⁻³ for the r-MoS₂ layer. The thermal conductivity of the Al layer was calculated from the Wiedemann–Franz law using the typical growth condition. N₂ and H₂ were used as carrier gases. Typical growth times were 15–20 h for MoS₂ at a growth temperature of 525 °C.
distance, 50× objective lens (numerical aperture (NA) = 0.5). The r-MoS$_2$
A$_d$ peak shift (ω) versus temperature (T) relation was calibrated using a
temperature-controlled, low-vacuum-compatible Linkam stage. For all
our Raman measurements, we used the A$_d$ peak since this out-of-plane
vibrational mode is less sensitive to in-plane strain6. The ω–T
calibration measurements were performed at atmospheric pressure and with
low laser powers. The stage was purged with dry N$_2$ gas throughout the
calibration step to prevent oxidative damage to the film at high
temperatures. Extended Data Fig. 3d shows representative ω–T
calibration curves for $N = 2$ and $N = 4$ r-MoS$_2$ films, where a linear fit was performed to
obtain the temperature-dependent Raman coefficients. This process
was repeated for r-MoS$_2$ films with different domain sizes D (400 nm and 1 μm) for $N = 1$–3 (Extended Data Fig. 5e).

To measure the in-plane thermal conductivity (κ_i) of our films, the
laser power (P) was varied and the corresponding $\Delta \omega$ values were
recorded. The in-plane thermal conductance was obtained from the
reciprocal of the slope of the $\Delta \omega$–P linear fit, which is illustrated for
r-MoS$_2$ films with $N = 2$–5 and $D = 1$ μm in Fig. 3c and for r-MoS$_2$ films
with $N = 1$–3 and $D = 400$ nm in Extended Data Fig. 3b. As thermal conduc-
duity changes with temperature, laser powers were kept below 250 μW to induce a relatively small ΔT in the film and ensure that the value of κ_i remained relatively constant. This was verified from the observation of a linear $\Delta \omega$–P regime for $P < 250$ μW. Any higher laser
powers caused the $\Delta \omega$–P curve to deviate from the linear regime with
$\frac{d \omega}{dP} < 0$. This indicates that the local film temperature increased faster
at higher $P > 250$ μW, which signified that the thermal conductivity
could no longer be assumed to be constant. Instead, the thermal conduc-
duity decreased with increasing temperature, consistent with the
T-dependent Raman measurements.

The $\Delta \omega$–P measurements were conducted at a pressure of 15 torr to
eliminate any heat loss to air. We verified that a lower pressure down
to 4 mtorr gave rise to similar $\Delta \omega$ values as the measurements at 15 torr (Extended Data Fig. 5a), weighted by the beam spot size.

The other relevant input quantities for our thermal calculations were
obtained as follows: the beam spot radius (r_0) was estimated using the
knife-edge method, whereby a one-dimensional Raman map was taken across a gold step edge on an Au-patterned silicon chip, and the spatial
distribution of the integrated peak intensities was fitted to an error
function. We measured $r_0 = 0.71 \pm 0.09$ μm. The laser powers were measured using a Thorlabs standard silicon photodiode power sensor.
The r-MoS$_2$ absorbance $A = \frac{\text{incident light intensity}}{\text{absorbed light intensity}}$ was measured at room
temperature on a white-light microscope with a 532 nm band-pass
filter and a low-NA condenser aperture. We measured the light intensity
transmitted through and reflected from a r-MoS$_2$ film suspended on a
TEM grid, then compared it against a blank TEM grid. The data were
collected using a 12-bit SensiCam QE CCD camera. The pixel intensities
were analysed using ImageJ. The values for A were calculated using the
formula $A = 1 - T - R$. We measured $A(N)$ for $N = 1$–5, then fitted A to a
power law. $A(N)$ was found to follow the relation $A = 1 - 0.92^{2N}$ (Extended
Data Fig. 5c), which matched previous reports30. We use the value A
measured at room temperature for our Raman analysis.

Calculation of κ_i. To obtain the value of κ_i, we used the two-dimensional thermal diffusion equation with a radial symmetry, following previous reports of Raman thermometry of two-dimensional films44,45. We assumed
a Gaussian laser profile $q(r) = \frac{pa}{\sqrt{\pi}\omega_0^2} \exp\left(-\frac{r^2}{\omega_0^2}\right)$. We solved for κ_i
numerically using the following equations:

\[
\kappa_i \frac{1}{r} \frac{d}{dr} \left(r \frac{dT_{\text{supp}}(r)}{dr} \right) + q(r) = 0; r < R
\]

\[
\kappa_i \frac{1}{r} \frac{d}{dr} \left(r \frac{dT_{\text{supp}}(r)}{dr} \right) - \frac{G}{T} [T_{\text{supp}}(r) - T_0] = 0; r > R
\]

where r is the distance from TEM hole centre, P is the laser power, t is
the film thickness, R is the TEM hole radius, T is the film temperature
where $T_{\text{supp}} \leq \mu \leq R$, T_0 is the ambient temperature, Δ is the fraction of laser power absorbed, and $G = 10 \text{ MW m}^{-2} \text{K}^{-1}$ is the interfa-
cultural thermal conductance between r-MoS$_2$ and SiN$_x$.

We solved for the expression of $T(r)$ and obtained an expression for the
average temperature measured by the Raman shift

\[
T_m = \frac{\int_0^R r \times \exp\left(-\frac{r^2}{\omega_0^2}\right) dr}{\int_0^R \exp\left(-\frac{r^2}{\omega_0^2}\right) dr}
\]

κ_i was obtained by substituting the experimentally measured value for
T_m and solving the above equation numerically for κ_i. We calculated κ_i
for each N, and we reported the average value in the main text.

The total measurement uncertainty reported in the main text was
calculated based on the error assessment for individual parameters.
We used an approximate analytical solution

\[
\Delta T = T_m - T_a = -\frac{P_{\text{abs}}}{\kappa_i} \left[\frac{1}{2mr} \ln \frac{R}{r_0} \right]
\]

κ_i was the uncertainty originated from the uncertainty in the monolayer, and d is the thickness of a monolayer. The difference
between the full numerical solution and this analytical formic is below
3%. We identified the following independent quantities that carry unc-
ertainty for consideration in our overall uncertainty estimation of κ_i.

1. $\frac{\Delta P}{\Delta T} = \left(\frac{\Delta A}{\Delta T}\right)\left(\frac{\Delta \omega}{\Delta T}\right)$: the associated uncertainty was derived from the error in the linear fit of $\Delta A/\Delta T$ and $\Delta \omega/\Delta T$ for every sample measured.

2. $\left(\frac{\omega_0}{2md}\right)$: the uncertainty in A_0 from the $A(N)$ fit was 4%.

3. $\left(\frac{g}{D^2}\right)$: the uncertainty originated from the uncertainty in r_0. From 14 repeated measurements of the beam spot size using the knife-edge method, we calculated the standard deviation of r_0 to be 12%, which translated to an uncertainty in the expression $\frac{\omega}{D}$ to be 9%.

Total uncertainty in κ_i: 13% (for both $D = 1$ μm and $D = 400$ nm).

Variable pressure Raman thermometry measurements. Previous
Raman thermometry measurements on graphene films37 and carbon
nanotubes38 had shown an appreciable difference between measure-
ments performed in air and at lower pressures, as well as in different
gaseous environments. We extended the same precaution and re-
peated our Raman thermometry measurements at low pressures to
reduce heat dissipation to air, an extra heat loss channel that would
lead to an overestimation of the thermal conductivity of the r-MoS$_2$
films.

Our $\Delta \omega$–P measurements in Fig. 3 were conducted at a pressure of
15 torr. In Extended Data Fig. 5a, we compared the $\Delta \omega$ values of $N = 2$
r-MoS$_2$ at three different $P (1$ atm, 15 torr and 4 mtorr), after correcting
for the different laser spot sizes.
Temperature-dependent Raman thermometry for κ_0. We performed Raman thermometry while varying the ambient temperature T_a using a Linkam stage. No oxidation or sample damage was detected for any of the temperatures used. We performed the same $\Delta \omega - P$ measurements and calculated the κ_0 value of for each T_a. We plot a κ_0 versus T curve, where the x-axis is $T - T_a$ (Extended Data Fig. 6a).

We note that the measured values of κ_0 here were lower than the room temperature values reported in the main text. We ascribe this to the sub-optimal growth conditions for the constituent monolayers used for this sample.

r-MoS$_2$ heat spreader experiments (electromigration of Au nanoelectrodes)

All Au electrodes were fabricated on Si substrates with 50 nm dry SiO$_2$ in three nanopatterning and deposition layers: (A) the nanoelectrodes (10 µm long, 100 nm wide, 15 nm thick); (B) the contact pads that would interface with the external electronics (200 µm long, 300 µm wide, 100 nm thick); and (C) the leads connecting the nanoelectrodes and the contact pads (~1,000 µm long, 50 µm wide, 15 nm thick).

We first defined the leads (B) and then the contact pads (C) using standard photolithography, and electron-beam evaporation of Ti (1 nm)/Au and lift-off. The final step was defining the nanoelectrodes (A) using electron-beam lithography, deposition of 15 nm Au, and lift-off.

Electron-beam lithography. We used a bilayer of resists: copolymer P(MMA-MAA 11%) in ethyl lactate and 950 K PMMA A4. The writing was executed with a Raith EBPG 5000 Plus E-beam writer with the beam conditions of 25 nA current, dose of 1,200 μC cm$^{-2}$, 300 μm aperture size, 100 kV accelerating voltage.

Film transfer. After the nanoelectrodes, leads and pads were fabricated, the device was cleaned with an O$_3$ plasma for 30 s to remove any resist residue and to promote adhesion of the r-MoS$_2$ film to the Au electrodes and the SiO$_2$ surface. A PMMA coated $N = 16$ r-MoS$_2$ film was transferred onto the electrodes using the same process as the stacking method as outlined above. The PMMA on the r-MoS$_2$ film was removed by immersing the entire chip in toluene at 60 °C for 1 h.

Electrical measurements. All measurements were performed in ambient conditions with a home-built probe station in a two-probe geometry. To measure I_c in Fig. 4d, we swept the voltage bias in only one direction at a rate such that the rate in current increase is 0.05 mA per 20 s.

For comparison, we deposited SiN on Au electrodes (10 µm long, 10 nm thick, 100 nm wide) using plasma-enhanced chemical vapour deposition with the following conditions: 10 s deposition at 90 °C and 10 torr and 1,000 W plasma power, with 25 SCCM/35 SCCM SiH$_4$ and N$_2$ as the precursors. The film thickness was measured via ellipsometry to be 16 nm.

Computational methodology

Structural models. Structural models were created according to an algorithm previously described in literature39, which was implemented in Python using the atomic simulation environment package40. The structure models were subsequently relaxed using an analytic bond-order potential41 and implemented in the LAMMPS package42.

The main r-MoS$_2$ model used in the simulations described here comprised 10 randomly stacked layers with a total of 10,152 atoms. The 10 layers came in pairs; each pair was related by a 60° rotation. The four primitive axes present in the stack are 16.1, 25.28, 34.72 and 43.9°. Due to strain, each layer contained a different number of atoms in accordance with strains of around 10%.

The bulk structure used in the MD simulations comprised 40 layers (20 conventional unit-cells) with a total of 26,880 atoms and cell vectors of 44.44, 43.98 and 243.57 Å.

HNEMD simulations. The interatomic potential in our simulations produces the expected slight increase in the interlayer spacing in r-MoS$_2$, and yields thermal conductivities and phonon dispersions of bulk MoS$_2$ that agree with previous experimental observations and Boltzmann transport calculations based on density functional theory43, confirming our MD model’s suitability for this study. The structures described above were driven by an optimized driving force (Extended Data Fig. 5a) and subsequently relaxed, after which the thermal conductivity was computed using HNEMD simulations44 and implemented in the graphics processing units molecular dynamics (GPUMD) package45. We also included the effects of thermal expansion in the simulations (Extended Data Fig. 5b). The calculated κ_0 values of r-MoS$_2$ are higher than the experimental values. We attribute the discrepancy to our neglecting any quantum effects and all boundary scattering in our simulations. Including such effects could further improve results from simulations. Statistics and averages were gathered from ten independent simulation runs for each system and temperature. The other parameters used in these simulations are compiled in Extended Data Table 2.

Phonon dispersion and lifetimes. We first generated the bulk MoS$_2$ phonon dispersion in the harmonic limit as a reference to phonon dispersion calculations using MD simulations. We computed the harmonic (0 K) phonon dispersion using the PHONOPY package46. Forces were computed for 6 × 2 × 2 supercells using the LAMMPS code. Lifetimes were calculated using the lowest applicable order of perturbation theory using the PHONOPY package46, which also provided us with the thermal conductivity as obtained from a direct solution of the Boltzmann transport equation47. In these calculations, the Brillouin zone was sampled using a 10 × 10 × 10 centred q-point mesh, which was chosen for consistency with the supercell used in the HNEMD simulations.

Next, we compared the dispersion of bulk MoS$_2$, to that calculated using MD simulations to verify the accuracy of our MD simulations for calculating the phonon dispersion of r-MoS$_2$. For both bulk and r-MoS$_2$, we extracted the phonon dispersions and lifetimes at 300 K by analysing the longitudinal and transverse current correlation functions generated by MD simulations in the microcanonical (NVE) ensemble using dynasor48. The MD simulations detailed were otherwise identical to the HNEMD simulations. The obtained correlation functions were Fourier transformed and fitted to peak shape functions corresponding to (over)damped harmonic oscillators using the full expressions given in the dynasor paper48 to obtain phonon frequencies and lifetimes.

Finite-element analysis. We used the COMSOL software to simulate the steady-state temperature distribution in a Au electrode on a Si/SiO$_2$ substrate. Our geometry contains an Au electrode that is 100 nm wide, 15 nm thick, and 10 µm long on a 50-nm-thick SiO$_2$ layer on a Si substrate. We layer a 10-µm-thick MoS$_2$ film onto the Au electrode and the SiO$_2$ layer. For the thermal anisotropy consideration, we define the thermal conductivity slow axis direction to always be perpendicular to the film’s bottom surface in contact with the substrate or the Au electrode, including the Au electrode side walls.

We supply the Au electrode with 8 mW uniformly over the entire volume as the heat source, matching the power conditions at which the Au electrode fails in our experiments. As the boundary condition, we set the bottom surface on the Si substrate to be at 293.15 K. We also account for all the interfacial thermal resistances between heterogeneous surfaces in our calculations, which include r-MoS$_2$/Au, r-MoS$_2$/SiO$_2$, Au/SiO$_2$, SiO$_2$/Si (refs. 68–71). All effects of radiation are neglected as they do not affect the temperature values in our simulations.

Low-frequency Raman measurements

The low-frequency Raman spectra of $N = 2$, 3 and 4 r-MoS$_2$ films, along with the spectrum for MoS$_2$, are shown in Extended Data Fig. 4a. From the layer-dependence of the peak positions, we assigned these to be
the breathing modes of MoS2 (ref. 72). We did not observe any peaks corresponding to shear modes in r-MoS2. Our findings agree with theoretical studies of low-frequency Raman modes of twisted MoS2 bilayers, which showed that the shear mode peaks redshift to below the detection capabilities (2 cm−1)73. The positions of the breathing mode peaks of the r-MoS2 films were close to those in exfoliated few-layer MoS2 (Extended Data Fig. 4b) as reported in literature72,74. This observation agreed with our MD simulations that suggested that the transverse vibrational mode was suppressed by interlayer rotation, while the longitudinal vibrational mode was retained.

GIWAXS
The GIWAXS measurement was performed using SAXSLAB (XENOCS)’s GANESHA (lab-source Cu Kα, photon flux ~108 photons s−1) to characterize the interlayer spacing of r-MoS2 films. An N = 10 r-MoS2 film was prepared on a SiO2/Si substrate. The incidence angle of the X-ray beam was 0.2° and the integration time was ~60 s. Radially integrating the two-dimensional diffraction images along the out-of-plane direction produced the diffraction spectrum along the c axis shown in Extended Data Fig. 2.

The peak position of 14° corresponded to an interlayer spacing of 6.4 Å in the [001] direction, which matched previous reports of r-TMD films75.

Data availability
The data that support the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability
All code used in this work is available from the corresponding authors on reasonable request.

Acknowledgements
We thank D. F. Ogletree, J. Jureller, A. J. Mannix, J.-U. Lee, K.-H. Lee and M. Lee for their helpful discussions. We also acknowledge J.-H. Kang, A. Ye and C. Liang for their help with materials preparation. Primary funding for this work comes from Air Force Office of Scientific Research MURI projects (FA9550-18-1-0480 and FA9550-16-1-0031). Material growth and characterisation by F.M. and C.P. are partially supported by the University of Chicago MRSEC (NSF DMR-2011854) and Samsung Advanced Institute of Technology. This work makes use of the characterization facilities of the University of Chicago MRSEC (NSF DMR-2011854) and the Pritzker Nanofabrication Facility at the University of Chicago, which receives support from the Office of Naval Research MURI grant N00014-16-1-2436 and are carried out in Frederic Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign. F.E. and P.E. are funded by the Knut and Alice Wallenberg Foundation (2014.0226), the Swedish Research Council (2015-04153 and 2018-06482), and the FLAG-ERA JTC-2017 project MECHANIC funded by the Swedish Research Council (VR 2017-06819), they acknowledge the computer time allocations for the University of California for the Characterization of Interfaces. The authors acknowledge the National Laser Centre for Materials Research, and the University of Chicago, which receives support from the NSF Graduate Research Fellowship Program under grant no. DGE-1746045. Y.Z. acknowledges support by the Camille and Henry Dreyfus Foundation, Inc., under the Dreyfus Environmental Postdoc award EP-16-094. Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-021-03867-8.
Extended Data Fig. 1 | Cross-sectional TEM images of $N = 20$ and 10 r-MoS$_2$ on AlO$_x$. Each set of N images are taken from the same sample at different locations. The $N = 10$ films are coated with Al that was electron beam evaporated onto the surface.
Extended Data Fig. 2 | GIWAXS data of $N = 10 \text{r-MoS}_2$. The peak position corresponds to a 2θ value of 14°, which translates to an interlayer spacing of 6.4 Å (scattering direction).
Extended Data Fig. 3 | Additional TDTR measurements and details.

a. Microscope image of an $N = 10$ r-MoS$_2$ film coated with a square grid of Al pads.
b. 4×4 TDTR map of R_{TDTR} of an $N = 10$ r-MoS$_2$ film. c. Histogram of R_{TDTR} array measurements.
d. TDTR measurements of $N \leq 10$ r-TMD films coated with Au or Al. The error bars denote s.d.; number of TDTR measurements per film sample, $n = 3$ for Au samples; $n = 3-5$ for the Al samples. e. Picosecond acoustics of a MoS$_2$ monolayer on thick sapphire substrate, coated with an Al transducer layer. The y axis V_n is the in-phase signal of the lock-in amplifier. The red arrows indicate the acoustic waves reflected at the Al/MoS$_2$ interface.
Extended Data Fig. 4 | Low-frequency Raman modes of r-MoS₂.

a, Raman spectra reflecting the breathing modes (BM) of r-MoS₂ (blue) and the shear mode (SM) for MoS₂.

b, The low-frequency Raman peak positions of r-MoS₂ and exfoliated MoS₂. The filled squares indicate the BM peak positions of r-MoS₂. The open squares indicate the BM peak positions of exfoliated MoS₂, and the open circles indicate the SM peak positions of exfoliated MoS₂.

"Extended Data Fig. 4 | Low-frequency Raman modes of r-MoS₂. a, Raman spectra reflecting the breathing modes (BM) of r-MoS₂ (blue) and the shear mode (SM) for MoS₂. b, The low-frequency Raman peak positions of r-MoS₂ and exfoliated MoS₂. The filled squares indicate the BM peak positions of r-MoS₂. The open squares indicate the BM peak positions of exfoliated MoS₂, and the open circles indicate the SM peak positions of exfoliated MoS₂."
Extended Data Fig. 5 | Raman thermometry on r-MoS$_2$ films. a, $\Delta \omega - P_{\text{abs}}$ curves of representative $N = 2$ r-MoS$_2$ films at different pressures. The P_{abs} values along the x-axis are normalized to account for the slight differences in beam spot sizes ($\Delta r = 20\%$). The results at 15 torr and 4 mtorr signify no effect of reducing the pressure to below 15 torr. $\Delta \omega$ was approximately five-fold smaller at atmospheric pressure due to the extra heat loss channel by air. b, $\Delta \omega - P_{\text{abs}}$ curves of r-MoS$_2$ films made up of $D = 400$ nm (grain size) monolayers. c, Optical absorption of suspended r-MoS$_2$ films, which follows the trend $A = 1 - (1 - A_0)^N$, where A_0 is the monolayer absorptance. From the fit, $A_0 = 0.08 \pm 0.003$. d, $\omega - T$ calibration measurements of suspended r-MoS$_2$ films ($D = 1 \mu$m), with the $N = 2$ and $N = 4$ data as the representative curves. e, $\omega - T$ slopes versus layer number for all films, with $D = 400$ nm or 1μm.
Extended Data Fig. 6 | $\kappa(T)$ and ρ of r-MoS$_2$. a, $\kappa(T)$ of r-MoS$_2$, with κ_\parallel measured using Raman thermometry of $N = 4$ r-MoS$_2$, and κ_\perp measured via TDTR as reported in Fig. 2c. The error bars are the propagated uncertainties from the calculation of the conductance value for each N. The error bars denote the propagated uncertainty of the calculations from the input parameters. We observed that κ_\parallel decreased with T, alluding to phonon-mediated heat transport and attesting to the long-range crystallinity of the r-MoS$_2$ films in-plane. This was in contrast with the $\kappa_\perp(T)$ behaviour (Fig. 2c), which showed a slightly increasing trend. b, Catalogue of experimentally measured anisotropy ratios at room temperature versus slow-axis thermal conductivity (κ_\parallel) of thermally anisotropic materials from literature, by category.
Extended Data Fig. 7 | r-MoS$_2$ efficacy as a heat spreader. a, Finite element simulations of the linear temperature profiles of Au electrodes covered with MoS$_2$ and r-MoS$_2$. b, SiN$_x$ as heat spreaders for Au electrodes. Electrical properties of 10-nm-thick, 100-nm-wide and 10-μm-long Au electrodes before and after 16 nm SiN$_x$ film deposition onto the electrodes using plasma-enhanced chemical vapour deposition. In contrast to r-MoS$_2$, the direct deposition of an ultrathin inorganic film such as SiN$_x$ with a comparable κ to κ_{r-MoS_2} of r-MoS$_2$ negatively affects the performance of the Au electrodes.
Extended Data Fig. 8 | Optimization of the MD simulations for κ calculations. a, Optimization of the driving force of the system, where the grey zone denotes the error. b, Effect of thermal expansion on κ.
Extended Data Table 1 | Comparison of literature thermal boundary resistances with experimentally measured values

General	
Time step	1 fs

Equilibration	
Run time	100 ps
Thermostat	Berendsen barostat (nvt.ber)
Thermostat coupling	0.01

Sampling	
Run time	1 ns
Thermostat	Nose-Hoover chains (nvt.nhc)
Thermostat coupling	500 fs
RTC interval	1000 steps
Driving force	$1 \times 10^4 \text{ eV/Å}; 5 \times 10^4 \text{ eV/Å}$ for r-MoS$_2$ in the z direction
Extended Data Table 2 | Parameters used in the calculations of the thermal conductivity using GPUMD

Interface	Thermal boundary resistance (m² K GW⁻¹)	Reference
Al/MoS₂, R₁	13-30	A. Sood et al., *Nano Lett.*, 2019
	20-29	P. Jiang et al., *Adv. Mater.*, 2017
MoS₂/sapphire, R₂	27-53	X. F. Yue et al., *J. Appl. Phys.*, 2020
R₁ + R₂	40-83	
This work (experiment)	61 ± 7 (r-MoS₂)	
	67 ± 3 (r-WS₂)	