Interplay between s-d exchange interaction and Rashba effect: spin-polarized transport

W. Yang, Kai Chang and X.G. Wu, and H.Z. Zheng
SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, 100083, Beijing, China

F. M. Peeters
Department of Physics, University of Antwerp (Campus Drie Eiken), B-2610 Antwerp, Belgium

We investigate the spin-polarized transport properties of a two-dimensional electron gas in a n-type diluted magnetic narrow gap semiconductor quantum well subjected to a perpendicular magnetic and electric field. Interesting beating patterns in the magneto-resistance are found which can be tuned significantly by varying the electric field. A resonant enhancement of spin-polarized current is found which is induced by the competition between the s-d exchange interaction and the Rashba effect [Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984)].

Recently, spin related phenomena in semiconductors have acquired a renewed interest because of the possibility of using the spin degree of freedom of carriers to construct spintronic devices. One of the central issues in semiconductor spintronics is the creation of spin polarized current. In a diluted magnetic semiconductor (DMS), the large s-d exchange interaction between the conduction electrons and the localized magnetic ions provides the possibility of tailoring the electron spin splitting and consequently modify significantly the transport property of spin polarized electrons. Via vertical tunnelling through DMS and ferromagnetic metallic junctions, efficient spin injection into semiconductors has been demonstrated. The motion of an electron spin in a DMS or conventional semiconductor may also be modified by the so-called Rashba spin-orbit interaction (SOI). This interaction offers the opportunity to manipulate electron spin in a two-dimensional electron gas (2DEG) via an external electric field instead of a magnetic field. The coupling may lead to interesting effects, e.g., the recently demonstrated spin-Hall effect. Experimentally, it was found that the Rashba SOI can modify significantly the magneto-transport property of 2DEG in a InGaAs/InAlAs heterostructure.

In this Letter, we investigate theoretically the spin transport properties of a 2DEG in a paramagnetic DMS in the presence of a perpendicular magnetic and electric field. We include both the s-d exchange interaction, which can be tuned by a perpendicular electric field, and the Rashba SOI, whose strength can be modified by a perpendicular electric field. We found that a strong resonant-enhanced spin-polarized current may appear at a critical Rashba SOI strength even at low magnetic fields.

Let us consider a 2DEG confined in a Mn-based DMS quantum well in the presence of perpendicular magnetic and electric fields. The Hamiltonian of the conduction electron including the SOI and the s-d exchange interaction is given by

$$\hat{H} = \frac{(p + eA)^2}{2m_e} + \frac{\alpha}{\hbar} [(p + eA) \times \mathbf{e}_z] \cdot \sigma + \hat{H}_z + \hat{H}_{ex},$$

where \(\alpha\) is the Rashba SOI strength, \(\hat{H}_z = g_e \mu_B B \sigma_z/2\) is the intrinsic Zeeman term, and \(\hat{H}_{ex} = -\sum_j J(r - \mathbf{R}_j) \sigma_j \cdot \mathbf{S}_j\) is the s-d exchange interaction between the conduction electron spin \((\sigma/2)\) and the localized spins \(\mathbf{S}_j\). Within the mean-field approximation, \(\hat{H}_{ex} = -N_0 \alpha_{ex} x \langle S_z \rangle \sigma_z/2\), where \(N_0 \alpha_{ex}\) describes the strength of the s-d exchange interaction, \(x\) is the fractional occupancy of the Mn ions on cation sites, and \(\langle S_z \rangle\) is the thermal average of the Mn spin.

The eigenvalues and eigenstates of the electron are

$$E_n^{(\pm)} = (n \pm \delta)\hbar\omega_c, \quad E_0 = (\hbar\omega_c - \Delta_Z)/2,$$

$$\delta = \sqrt{[\Delta_Z/(\hbar\omega_c) - 1]^2/4 + 2n|\alpha/\langle l_B \hbar\omega_c \rangle|^2},$$

$$\psi_{n,k_y}^{(\pm)} = e^{i k_y y} \sqrt{T_{gy}} \overline{C}_n^{(\pm)} \phi_{n-1} |\uparrow\rangle + D_n^{(\pm)} \phi_n |\downarrow\rangle,$$ \quad \(n = 1, 2, \ldots\)

$$\psi_{0,k_y} = e^{i k_y y} \sqrt{T_{gy} \phi_0} |\downarrow\rangle.$$

Here \(\Delta_Z = g_e \mu_B B - N_0 \alpha_{ex} x \langle S_z \rangle\), \(L_y\) is the sample length along the y axis, \(\{\phi_n\}\) are harmonic oscillator functions centered at \(x_0 = -k_B l_B^2 \mathcal{L}_{B} = \sqrt{\hbar/\langle eB \rangle}\), \(C_n^{(\pm)} = -D_n^{(-)} = P_n/\mathcal{A}_n, C_n^{(\pm)} = D_n^{(\pm)} = 1/\mathcal{A}_n\) for \(\Delta_Z < \hbar\omega_c, C_n^{(\pm)} = D_n^{(\pm)} = 1/\mathcal{A}_n, C_n^{(\pm)} = -D_n^{(-)} = -P_n/\mathcal{A}_n\) for \(\Delta_Z > \hbar\omega_c, P_n = \sqrt{2n\mathcal{L}_{B}} \alpha/[(\Delta_Z - \hbar\omega_c)/2 + \hbar\omega_c],\) and \(\mathcal{A}_n = \sqrt{1 + P_n^2}\). It is interesting to notice that the zeroth Landau level (LL) \(\{\psi_{0,k_y}\}\) is decoupled from other LL’s, and is always a spin-down eigenstate when the strength of the Rashba SOI \((\alpha)\) varies.

The broadening of the LL’s induced by impurity scattering is obtained from the Fermi golden rule \(\Gamma_{n,k_y\lambda} = \hbar \sum_{\lambda',k_y'} W_{n,k_y\lambda,n',k_y'} (\lambda, \lambda' = \pm),\) where \(W_{i,j}\) is the impurity scattering rate from initial state \(|i\rangle\) to final state.

*Author to whom the correspondence should be addressed. Electronic address: kchang@red.semi.ac.cn
Based on the quantum Boltzmann equation, the conductivity is given by

$$\sigma_{xx} = \frac{e^2}{2k_B T R} \sum_{i,j} f(E_i) [1 - f(E_j)] W_{ij} \langle \langle x \rangle_i - \langle x \rangle_j \rangle^2,$$

where $f(E_i)$ is the Fermi distribution function, $\langle \langle x \rangle_i$ is the cyclotron center of state $|i\rangle$. The resistivity is obtained from $\rho_{xx} = \sigma_{xx}/S$, where $S = (\sigma_{xx})^2 + (\sigma_{xy})^2 \approx (\epsilon_e/\epsilon_B)^2$.

In the presence of the SOI, the eigenstates of the electron are no longer pure spin-up or spin-down states, but a mixture of them (except $|\psi_{0,k_e}\rangle$). The most widely used definition of the current polarization, is

$$P_j = (\sigma^1_{xx} - \sigma^\dagger_{xx})/(\sigma^1_{xx} + \sigma^\dagger_{xx}),$$

with

$$\sigma^\dagger_{xx} = \eta \sum_{i,j} f(E_i) [1 - f(E_j)] W_{ij} \langle \langle x \rangle_i - \langle x \rangle_j \rangle^2 P_j^\dagger,$$

where $\eta = e^2/(2k_B T R)$, $P_j^\dagger = |C_j|^2$ ($P_j = |D_j|^2$) is the spin-up (spin-down) probability of the final state $|j\rangle$. The definition of the current polarization P_j is consistent with the usual definition in the case of zero SOI ($\alpha = 0$), and approaches zero in the case of strong SOI ($\alpha \rightarrow \infty$) as expected. In the case of $\alpha = 0$, our theoretical model can produce excellent agreement with recent experimental data demonstrating the validity of our theory.[15]

In order to investigate the interference between the s-d exchange interaction and the Rashba effect, we consider a narrow bandgap DMS 2DEG in $H_{50.88\text{Mn}_{12}\text{Te}}$, where the Rashba SOI strength could be strong.[18] The following parameters are used: $E_g = 0.2$ eV, $N_0\alpha_{ex} = 400$ meV, $g_e = -41$, $\alpha_{eff} = 0.02$, $m_e = 0.04m_0$ (m_0 is the free electron mass), $n_e = 3 \times 10^9$ cm$^{-2}$, and electron density $n_e = 4 \times 10^{11}$ cm$^{-2}$. The magnetoresistance ρ_{xx} is shown in Figs. 1 (a,b,c) for different perpendicular electric field, i.e., different Rashba SOI strengths ($\alpha = 0.5, 100$ meV cm) nm). The beating patterns, which are imposed on the Shubnikov-de Haas oscillations of ρ_{xx}, arise from the sweep of the (-) branch LL’s over the (+) branch LL’s. The behavior of ρ_{xx} is changed significantly by introducing the Rashba SOI [see Fig. 1(e,f)], since the interplay between the s-d exchange interaction and the Rashba SOI[18] changes the relative position of the two branches of LL’s [see Eq. (2)]. For very strong Rashba SOI, ρ_{xx} exhibits a very different behavior due to the separation of the two branches (\pm) of LL’s [see Figs. 1(c,f)].

In the absence of the Rashba SOI, a strong polarization of the current can be obtained by applying a strong magnetic field [see Fig. 2(a)]. It is interesting to find that the current polarization P_j oscillates with increasing magnetic fields and approaches ±100% at strong magnetic fields while the carrier polarization $P_c \equiv (n_t - n_\downarrow)/(n_t + n_\downarrow)$ is always much smaller. The physical reason is that P_j is related to the density-of-states polarization on the Fermi surface, while P_c is de-
FIG. 3: Spin polarization of current vs. the SOI strength for a fixed $B=0.5$ T at $T=1$ K. The inset shows the LL’s and the Fermi energy as a function of the SOI strength. The line type is the same as Fig. 1. $n_{e}=4\times 10^{11}$ cm$^{-2}$, and $x_{eff}=0.02$.

However, it is interesting to notice that the Rashba SOI could induce a resonant enhancement of the spin polarization of the current (see the deep dip at α_{m} in Fig. 3) for a fixed magnetic field. This interesting feature can be understood from the inset of Fig. 3. For strong Rashba SOI, the two branches (\pm) of LL’s consist of nearly equally spin-up and spin-down components, leading to a vanishingly small current polarization [see Eq. (2)] when they coincide with the Fermi energy. In contrast, the zeroth spin-down LL is a spin-down eigenstate and it contributes a pure spin-down current when it coincides with E_{F}. With increasing Rashba SOI, branch (-) [(+) LL’s] are shifted to lower (higher) energies while the energy of the zeroth spin-down LL keeps constant [see Eq. (2)]. Consequently, the Fermi energy decreases and coincides with the zeroth spin-down LL, leading to resonant enhancement of the spin polarization of the current.

In conclusion, the competition between the s-d exchange interaction and the Rashba SOI provides us with an interesting possibility to create spin-polarized current in low-dimensional semiconductor structures. Strong spin-polarized current can be achieved even when the polarization of carriers is very small. A large spin polarization of current induced by the Rashba effect is predicted at low magnetic field.

Acknowledgments

This work is partly supported by the NSF and MOST of China, and the Bilateral Cooperation programme between Flanders and China.

[1] G. A. Prinz, Science, 282, 1660 (1998).
[2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
[3] M. Oestreich, J. Hübner, D. Hägele, P. J. Klar, W. Heimbrot, W. W. Rühle, D. E. Ashenford, and B. Lunn, Appl. Phys. Lett. 74, 1251 (1999).
[4] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature (London) 402, 787 (1999).
[5] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature (London) 402, 790 (1999).
[6] A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).
[7] X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank, J. S. Harris, and S. S. P. Parkin, Phys. Rev. Lett. 94, 056601 (2005); R. Wang, X. Jiang, R. M. Shelby, R. M. Macfarlane, S. S. P. Parkin, S. R. Bank, and J. S. Harris, Appl. Phys. Lett. 86, 052901 (2005).
[8] Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[9] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
[10] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, 306, 1910 (2004).
[11] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
[12] J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999); S. Zhang, Phys. Rev. Lett 85, 393 (2000); S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
[13] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).
[14] J. K. Furdyna, J. Vac. Sci. Technol., 21, 220(1982); J. Appl. Phys. 64, 2120 (1989).
[15] P. Vasilopoulos and F. M. Peeters, Phys. Rev. Lett. 63, 220 (1989).
[16] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
[17] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, 306, 1910 (2004).
[18] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005).
[19] J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999); S. Zhang, Phys. Rev. Lett 85, 393 (2000); S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
[20] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).
[21] J. K. Furdyna, J. Vac. Sci. Technol., 21, 220(1982); J. Appl. Phys. 64, 2120 (1989).
[22] S. I. Erlingsson, J. Schliemann, and D. Loss, Phys. Rev. B 71, 035319 (2005).
[23] F. J. Teran, M. Potemski, D. K. Maude, Z. Wilamowski, A. K. Hassan, D. Plantier, J. Jaroszynski, T. Wojtowicz, and G. Karczewski, Physica E 17, 335 (2003); W. Yang, Kai Chang, and F. M. Peeters, Appl. Phys. Lett. 86, 192107 (2005).
[24] E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys. Rev. B 50, 8523 (1994).
[19] Y. S. Gui, J. Liu, K. Ortner, V. Daumer, C. R. Becker, H. Buhmann, and L. W. Molenkamp, Appl. Phys. Lett. 79, 1321 (2001).

[20] W. Yang and Kai Chang, Phys. Rev. B 73, 045303(2006).