Adaptive State Feedback Control of Electromagnetic Levitation System
for Uncertain Ball Mass

Gyu-Man Park1,a, Won-Jae Hwang1,b, and Ho-Lim Choi1,c

1Department of Electrical Engineering, Dong-A University, 840 Hadan2-Dong, Saha-gu, Busan, Korea

apgm3134@daum.net, bmysyle4315@nate.com, chlchoi@dau.ac.kr (corresponding author)

Keywords: input-output feedback linearization, adaptive state feedback control, electromagnetic levitation system

Abstract. For the last several decades, many results have been presented for controlling nonlinear systems that have parameter uncertainty. In this paper, we propose an adaptive state feedback controller based on input-output feedback linearization for electromagnetic levitation system (EMS) with unknown ball mass. We analytically show the regulation of the controlled electromagnetic levitation system by the proposed adaptive state feedback controller. We show the experiment results of electromagnetic levitation system and where there is uncertain ball mass.

Introduction

In recent years, many contributions have been presented in control literature that solve the control design problem for a class of nonlinear systems. Input-output feedback linearization is one of the well-known popular nonlinear control schemes to deal with nonlinear systems. For the exactly known system dynamics, the stability, regulation, and tracking problem have been successfully solved in the literature of [1],[3],[5],[7]. However, in real practice, since there exists parameter uncertainty, it is difficult to use exact feedback linearization directly. To overcome this limitation, many adaptive and robust schemes have been developed [2],[4],[6],[9]. In this paper, we propose an adaptive control under input-output feedback linearization for electromagnetic levitation system where there is uncertain ball mass. We provide the stability analysis of the controlled system. We use the Quanser's electromagnetic levitation system to show experimental results to verify the validity of our proposed method. The proposed adaptive controller is derived based on the feedback linearization method and adaptive function is engaged in order to deal with the uncertain ball mass.

Modeling

The EMS (Quanser) can be modeled as [10]

\[V = RI + L \frac{d}{dt} I \]

\[\ddot{x} = -\frac{1}{2} \frac{K_m}{Mx^2} I^2 + g \] (1)

where \(x \) is the position of steel ball, \(R \) is the coil resistance, \(I \) is the coil current, \(L \) is the coil inductance, \(M \) is the mass of ball and \(g \) is the gravitational constant. We define the system states as follows

\[x = x_1, \quad \dot{x} = x_2, \quad I = x_3, \quad V = u, \quad y = x_1 \] (2)

where \(u \) is the system input and \(y \) is the system output. Then, the state equation is given by
\[
\dot{x}_1 = x_2
\]
\[
\dot{x}_2 = g - \frac{1}{2} \frac{K_m x_3^2}{M x_1'}
\]
\[
\dot{x}_3 = -\frac{R}{L} x_3 + \frac{1}{L} u
\]
\[
y = x_1 \tag{3}
\]

Since the ball mass is not known exactly, we let
\[
M = M_o + \Delta M \tag{4}
\]

where \(M_o \) is the nominal ball mass and \(\Delta M \) is the uncertain ball mass. We obtain following the equation from the equation (3).
\[
\dot{x}_1 = x_2
\]
\[
\dot{x}_2 = g - \frac{1}{2} \frac{K_m x_3^2}{(M_o + \Delta M) x_1^2} = g - \frac{1}{2} \frac{K_m x_3^2}{M_o x_1^2} \frac{1}{(1 + \Delta M/M_o)} = g - \frac{1}{2} \frac{K_m x_3^2}{M_o x_1^2} \frac{\Delta M}{M_o (M_o + \Delta M)}
\]
\[
\dot{x}_3 = -\frac{R}{L} x_3 + \frac{1}{L} u
\]
\[
y = x_1 \tag{5}
\]

Adaptive controller design

In this section, we propose an adaptive control for the EMS where is uncertain ball mass. We let
\[
y = z_1 = x_1.
\]
\[
z_1 = x_1
\]
\[
z_2 = x_2
\]
\[
z_3 = g - \frac{1}{2} \frac{K_m x_3^2}{M_o x_1^2} + \frac{1}{2} \frac{K_m x_3^2}{M_o x_1^2} \theta \tag{6}
\]

Then through the input-output feedback linearization, we obtain
\[
\dot{z}_1 = \dot{x}_1 = x_2 = z_2
\]
\[
\dot{z}_2 = \dot{x}_2 = z_3
\]
\[
\dot{z}_3 = \left(\frac{x_2 K_m}{x_1} \right) + \frac{R K_m}{L} \left(\frac{x_3}{x_1} \right)^2 \left(\frac{1}{M_o} - \theta \right) \left(\frac{1}{M_o} - \theta \right) u
\]
\[
\quad = \alpha(x) + \beta(x) u
\]
\[
\alpha(x, \theta) = \left(\frac{x_2 K_m}{x_1} \right) + \frac{R K_m}{L} \left(\frac{x_3}{x_1} \right)^2 \left(\frac{1}{M_o} - \theta \right), \quad \beta(x) = -\frac{K_m}{L} \frac{x_3}{x_1^2} \left(\frac{1}{M_o} - \theta \right) u \tag{7}
\]

Hence, the state equation is
\[
\dot{z} = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} z + \begin{bmatrix}
0 \\
0 \\
\beta(x)
\end{bmatrix} u + \begin{bmatrix}
0 \\
0 \\
\alpha(x, \theta)
\end{bmatrix} \delta(x, \theta)
\]
\[
y = \begin{bmatrix}
1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
z \\
\beta(x) \\
\delta(x, \theta)
\end{bmatrix} \tag{9}
\]
where \(u \) is a control input to the EMS. Hence
\[
u = \frac{1}{\beta(x)}(-\alpha(x) + v)
\]
(10)
and \(v \) is given by
\[
v = \frac{k_1}{\Delta^3} z_1 + \frac{k_2}{\Delta^2} z_2 + \frac{k_3}{\Delta} z_3
\]
(11)
Note that \(z_3 \) contains the uncertain parameter \(\theta \). We set \(\hat{z}_3 \) as
\[
\hat{z}_3 = g - \frac{1}{2} K_m x_3^2 \frac{1}{2} M_o + \frac{1}{2} K_m x_3^2 \hat{\theta}
\]
(12)
where \(\hat{\theta} \) is the estimate of \(\theta \), we let
\[
\xi_3 = \int_0^t \hat{\theta} d\tau
\]
(13)
Based on (13), an adaptation law of \(\hat{\theta} \) is defined by
\[
\hat{\theta} = \frac{\eta \xi_3}{\Omega_3 + c}
\]
(14)
where \(\eta \) is an adaptive to be chosen gain and \(\Omega_3 = \frac{\partial \theta(x, M_o)}{\partial z_3} \).

Convergence of \(\hat{\theta} \)

We let \(\psi(x, \theta) = z \), where \(z \) includes the uncertain ball mass \(\theta \) such that \(\frac{\partial z(x, \theta)}{\partial \theta} \). In order to estimate \(\theta \), we define
\[
\xi_i = \int_0^t \psi_i(x, \hat{\theta}) d\tau, \quad 1 \leq i \leq m
\]
(15)
where \(\hat{\theta} \) is the estimate of \(\theta \). Based on (15), an adaptation law of \(\hat{\theta} \) is defined by
\[
\dot{\hat{\theta}} = \hat{\theta} + \sum_{i=1}^m \phi_i \quad \text{with} \quad \phi_i = -\frac{\eta_i}{\Omega_i} \xi_i
\]
(16)
where \(\eta_i \) is an adaptive gain and \(\Omega_i = \frac{\partial \psi_i(x, \theta)}{\partial \hat{\theta}} \). To proceed further, we provide an intuition of the adaptation law (16) by considering the case when \(m = 1 \) for simplicity. Then, we note that from (16) if \(\lim_{i \to \infty} \phi_i = \theta - \theta_o \) is achieved, \(\eta_i \) also converges to \(\eta_i^{eq} = -\frac{(\theta - \theta_o)\Omega_1}{\xi_1} \) as \(t \to \infty \). Taylor series expansion of (15) about \(\hat{\theta} = \theta_o \) gives
\[
\dot{\xi}_1 = \psi(x, \theta_o) + \frac{\partial \psi_1(x, \theta_o)}{\partial \hat{\theta}} (\hat{\theta} - \theta_o) + o(\hat{\theta} - \theta_o)
\]
(17)
where \(o(\phi) \) is
\[
o(\phi_i) = \psi_1(x, \hat{\theta}) - \psi_1(x, \theta_o) - \frac{\partial \psi_1(x, \theta_o)}{\partial \hat{\theta}} (\phi_i)
\]
(18)
Since \(\psi_1(x, \theta_0) - \eta_i \hat{\xi}_i + o(\hat{\theta} - \theta_0) = 0 \) at the equilibrium point, \(\bar{\xi}_i = \xi_i^{eq} \) at \(t \to \infty \) from (18), by choosing a sufficiently large \(\eta_i \), it can be derived that
\[
\begin{align*}
\psi_1(x, \theta_0) - \psi_1 \bar{\xi}_i + o(\hat{\phi}_i) &= 0 & \text{if } & \bar{\xi}_i = \xi_i^{eq} \\
\psi_1(x, \theta_0) - \psi_1 \bar{\xi}_i + o(\hat{\phi}_i) &> 0 & \text{if } & \bar{\xi}_i < \xi_i^{eq} \\
\psi_1(x, \theta_0) - \psi_1 \bar{\xi}_i + o(\hat{\phi}_i) &< 0 & \text{if } & \bar{\xi}_i > \xi_i^{eq}
\end{align*}
\]
(19)
Thus, \(\lim_{t \to \infty} \phi_i = \theta - \theta_0 \) is achieved from \(\lim_{t \to \infty} \xi_i = \xi_i^{eq} \).

Fig. 1 shows the general nature of convergence by (19). If the condition \(\frac{\partial e^2(x, \theta_0)}{\partial \theta} \neq 0 \) does not hold, we cannot apply the adaptation law in (16) directly. So, in that case, we modify our estimator slightly and still make the whole system asymptotically stable. Instead of our previous choice, we choose the parameter estimator as
\[
\hat{\theta} - \theta_0 = \Delta \hat{\theta} = \sum_{i=1}^{m} \phi_i \quad \text{with} \quad \hat{\phi}_i = -\frac{\eta_i}{\Omega_i + c_i} \bar{\xi}_i
\]
(20)
where \(\Omega_i + c_i \neq 0 \). We only consider the case \(m = 1 \). Then the adaptation dynamic becomes
\[
\dot{\bar{\xi}}_i = \psi_1(x, \theta_0) - \overline{\eta}_i \bar{\xi}_i + o(\hat{\phi}_i) \quad \text{with} \quad \overline{\eta}_i = \frac{\Omega_i \eta_i}{\Omega_i + c_i}
\]
(21)
As shown in Fig. 2, \(\xi_i^{eq} \) is shifted to \(\xi_i^{eq'} \) but the steady-state still remains as a constant. Therefore \(\dot{\bar{\xi}}_i = z_i \to 0 \) again.

![Fig. 1. Determination of \(\xi_i^{eq} \) by setting \(\eta_i \bar{\xi}_i \) ![Fig. 2. Convergence by modified estimator with \(c_i \)]

Analysis of system stability

The closed-loop dynamics is
\[
\dot{z} = A(\varepsilon)z + \delta(x, \theta)
\]
(22)
where \(A(\varepsilon) = A + BK(\varepsilon) \), we denote \(E(\varepsilon) = \text{diag}[1, \varepsilon, \varepsilon^2] \).
\[
\varepsilon A(\varepsilon) = E(\varepsilon)^{-1} AE(\varepsilon)
\]
(23)
By Lyapunov equation \(A^T P + PA = -I \), then we have the following equation
\[
\begin{align*}
A^T(\varepsilon)P(\varepsilon) + P(\varepsilon)A(\varepsilon) &= -\varepsilon^{-1} E(\varepsilon)^2 \\
P(\varepsilon) &= E(\varepsilon)PE(\varepsilon)
\end{align*}
\]
(24)
We set \(V(z) = z^T P(\varepsilon)z \) for (22). Then, along the trajectory of (22)
\[\dot{V}_c(z) = z^T P(\varepsilon) z + z^T P(\varepsilon) \dot{z} \]
\[= [A(z) + \delta(x, \theta)]^T P(\varepsilon) z + z^T P(\varepsilon) [A(z) + \delta(x, \theta)] \]
\[= z^T [A^T(\varepsilon) P(\varepsilon) + P(\varepsilon) A(z)] z + 2z^T P(\varepsilon) [\delta(x, \theta)] \]
\[\leq -\varepsilon^{-1} \| E(\varepsilon) z \|^2 + 2z^T P(\varepsilon) [\delta(x, \theta)] \]
\[\leq -\varepsilon^{-1} \| E(\varepsilon) z \|^2 + 2 \| P \| \| E(\varepsilon) z \| \| E(\varepsilon) \delta(x, \theta) \| \]
\[(25) \]

We note that \(\| E(\varepsilon) \delta(x, \theta) \| \leq \gamma(\varepsilon) \| E(\varepsilon) z \| \) where \(\gamma(\varepsilon) = 2 \| P \| \alpha(x, \theta) \).

\[\dot{V}_c(z) \leq -\varepsilon^{-1} \| E(\varepsilon) z \|^2 + 2 \| P \| \| E(\varepsilon) z \| \| E(\varepsilon) \delta(x, \theta) \| \leq -(\varepsilon^{-1} - \gamma(\varepsilon)) \| E(\varepsilon) z \|^2 \]

\[(26) \]

\[\dot{V}_c(z) \] is negative definite when \(\varepsilon^{-1} - \gamma(\varepsilon) > 0 \).

Experimental results

The values of the parameters of the EMS are listed in Table 1. The experiment is carried out on the Quanser’s EMS. The composition of equipment is shown Fig 3. Also, the power module used is the Quanser VoltPAQ-X1 with \(\pm 24 \) and \(5A \) output.

Parameter	Description	Value
\(L \)	Coil Inductance	412.5mH
\(R \)	Resistance	11 \(\Omega \)
\(K_m \)	Electromagnet Force Constant	6.5308 \(\times 10^{-3} \) N.m/A
\(M_o \)	Nominal Mass of Ball	0.064kg
\(\Delta M \)	Uncertain Mass of Ball	\(\Delta M \leq 0.3 \)
\(T_a \)	Air gap	0.02m
\(g \)	Gravitational Constant	9.81m/s²

Table. 1 EMS parameter specifications

To evaluate the performance, experimental comparison is made between the proposed controller and a classical controller. The most popular classical design of the controllers for EMS systems is a feedback linearizing control. In [8], the classical feedback controller provides a linearized model about a nominal operating point and design procedures. The classical feedback controller takes the form

\[u = \frac{1}{\sigma(x)} (v - \rho(x)) \]

(27)

where \(\sigma(x) = -\frac{K_m x_3}{LM_o x_1} \), \(\rho(x) = \frac{K_m}{M_o} \left(\frac{x_3 x_2^2}{x_1^3} + \frac{R x_2^2}{L x_1^3} \right) \), \(v = k_1 z_1 + k_2 z_2 + k_3 z_3 \), and \(z_3 = g - \frac{1}{2} \frac{K_m x_2^2}{x_1 M_o} \) [8].

Here, we choose \(K = [-125050, -7500, -150] \). According to the design procedure given previously, we select \(K = [-421950, -16875, -225] \), \(\eta = 1 \), \(c = 0.01 \) in the proposed controller and our control goal is to regulate the ball at 8 mm. As shown in Fig. 4(a)-(b), we show that regulates the ball both methods where there is no mass uncertainty.

![Fig. 4(a) The classical controller : \(\Delta M = 0 \)](image-url)

![Fig. 4(b) Adaptive controller : \(\Delta M = 0 \)](image-url)
The effect of mass parameter uncertainty in the EMS is tested and is shown in Fig. 5(a)-(b). In Fig. 5(a), we show that the position of ball is off from the control reference. In Fig. 5(b), we observe that the proposed controller shows stable convergence with uncertain mass of ball. Thus, we find that the proposed controller achieves the control goal whereas the classical controller fails.

Conclusion

In this paper, we characterize the class of adaptive controller including uncertain nonlinear plants and we show that if a plant is included in this class, then the plant can be linearized and regulated using the adaptive controller. We analytically show that the controlled electromagnetic levitation system is regulated. We verify the validity of the proposed adaptive controller through experiment. In particular, it is shown that the proposed controller adaptively accommodates some unknown ball mass. The experimental results demonstrate the adaptive controller shows better performance than the classical controller.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2010-0007325).

References

[1] A. Isidori, Nonlinear control systems, 2nd ed. New York: Springer-Verlag, 1989.
[2] N. B. Almutaiti, and M. Zribi, “Sliding mode control of a magnetic levitation system,” Springer press Inc., 2004.
[3] C.I. Byrnes and A. Isidori, “Asymptotic stabilization of minimum phase nonlinear systems,” IEEE Trans. on Automat. Contr., vol. 36, no. 10, pp. 1122-1137, 1991.
[4] H.-L. Choi and J.-T. Lim, “Adaptive controller for feedback linearizable system using diffeomorphism,” KACC 2000, Yongin, pp. 35.1-35.3, 2000.
[5] H.-L. Choi and J.-T. Lim, “Output feedback stabilization for a class of Lipschitz nonlinear systems,” IEICE Trans. Fundamentals, vol. E88-A, no. 2, pp. 602-605, 2005.
[6] E. B. Kosmatopoulos and P. A. Ioannou, “A switching adaptive controller for feedback linearizable systems,” IEEE Trans. on Automat. Contr., vol. 44, no. 4, pp. 742-750. 1999.
[7] H.K. Khalil, Nonlinear system, 3rd, Prentice Hall Inc., 2002.
[8] P. K. Sinha, Electromagnetic Suspension: Dynamics & Control, Peter Peregrinus Ltd., London, 1987.
[9] R. Marino and P. Tomei, “Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems,” Automatica, vol. 29, no. 1, pp. 181-189, 1993.
[10] Quanser, Maglev user manuals, 2008.