Corneal nerve loss in children with type 1 diabetes mellitus without retinopathy or microalbuminuria

Hoda Gad1, Bara Al-Jarrah2, Saras Saraswathi2, Ioannis N Petropoulos3, Georgios Ponirakis1, Adnan Khan1, Parul Singh3, Souhaila Al Khodor3, Mamoun Elawad2, Wesam Almasri2, Hatim Abdelrahman2, Ahmed Elawwa4, Amel Khalifa4, Ahmed Shamekh4, Fawziya Al-Khalaf4, Goran Petrovski4, Mahmoud Al Zyoud4, Maryam Al Maadheed4, Mohamed A Hendaus5, Khalid Hussain4, Anthony K Akobeng2†, Rayaz A Malik1,6,*

1Medicine Department, Weill Cornell Medicine-Qatar, Doha, Qatar, 2Gastroenterology Department, Sidra Medicine, Doha, Qatar, 3Research Department, Sidra Medicine, Doha, Qatar, 4Endocrinology Department, Sidra Medicine, Doha, Qatar, 5General Pediatrics Department, Sidra Medicine, Doha, Qatar, and 6Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK

Keywords
Child, Small fiber neuropathy, Type 1 diabetes mellitus

*Correspondence
Rayaz A Malik
Tel: +974-4492-8256
Fax: +974-7000-4243
E-mail address: ram2045@qatar-med.cornell.edu

J Diabetes Investig 2020; 11: 1594–1601
doi: 10.1111/jdi.13313

INTRODUCTION
Type 1 diabetes mellitus affects over half a million children worldwide1,2. Diabetes is associated with chronic microvascular complications in adults, which increase morbidity and all-cause mortality3. Diabetes is the main cause of distal symmetric polyneuropathy (DSPN)4–6. Adults with DSPN present with a combination of symptoms, such as numbness, pain and tingling in the feet7. The American Diabetes Association endorses screening for DSPN at diagnosis of type 2 diabetes, 5 years after the diagnosis of type 1 diabetes and annually thereafter8. Children and adolescents with type 1 diabetes rarely complain of neuropathic symptoms. However, a study of children with type 1 diabetes showed reduced motor and sensory nerve
conduction velocities (24%), and at least one neuropathic symptom (60%) or sign (58%)\(^9\). In another study, symptomatic neuropathy was present in 13.5% of patients, whereas 22.5% of patients had neurophysiological evidence of neuropathy\(^10\) and 18% had impaired vibrotactile sense\(^11\). Furthermore, in one study, 36% of patients had more than two abnormal autonomic function tests, and 18.8% had severe autonomic neuropathy\(^12\).

In a prospective study, abnormal nerve conduction velocity was found in 31.6% at baseline, which increased to 63.2% after 5 years\(^13\). In another study, over a period of 10 years, the prevalence of clinical neuropathy increased from 6.5% to 16.1%, whereas nerve conduction velocity abnormalities increased from 17.7% to 46.8%\(^14\). Although neurophysiological assessments are highly sensitive, they are not easily carried out in children\(^15\). Vibration perception threshold and tactile perception tests are easy to carry out, but lack sensitivity for the early detection of DSPN\(^16\). There is a need for non-invasive sensitive screening tools for the early detection of neuropathy in children with diabetes.

Corneal confocal microscopy (CCM) is a rapid, non-invasive and well-tolerated technique to detect and quantify neuropathy in adults with type 1 diabetes\(^17\)–\(^24\). An early study found no significant changes in CCM parameters among children with

Table 1 | Clinical and laboratory measures in patients with type 1 diabetes and controls

	Healthy (n = 20)	T1DM (n = 20)	P-value
Age (years)	12.83 ± 1.91	14.47 ± 2.43	0.02
Duration of T1DM	-	4.08 ± 2.91	NA
Height (m)	1.45 ± 0.13	1.54 ± 0.09	0.02
Weight (kg)	47.87 ± 18.63	51.65 ± 13.46	0.467
BMI (kg/m\(^2\))	22.26 ± 5.47	21.68 ± 5.09	0.733
Hba\(_{1c}\) (%)	-	9.3 ± 2.1	NA
Bilirubin (\(\mu\)mol/L)	10.54 ± 5.4	13.22 ± 5.92	0.206
AST (IU/L)	24.83 ± 5.45	20.44 ± 4.23	0.02
ALT (IU/L)	15.08 ± 4.03	16.44 ± 3.74	0.339
25(OH)D (ng/mL)	23.88 ± 8.96	18.16 ± 8.56	0.085
Microalbuminuria, n (%)			
Yes	-	0	NA
No	-	11 (55.0%)	
Diabetic retinopathy, n (%)			
Yes	-	0	NA
No	-	8 (40.0%)	

Bold signifies the statistically significant comparisons. Data are presented as mean ± SD. 25(OH)D, 25\(\text{hydroxy vitamin D; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; Hba}_{1c}\), glycated hemoglobin; NA, not available; T1DM, type 1 diabetes.

Figure 1 | Central corneal sub-basal nerve plexus and inferior whorl. (a) Schematic presentation of the sub-basal nerve plexus (SBNP) at the central and inferior whorl. (b) Nerve fibers at the central cornea, (c) tracing of the nerves using CCMetrics, (d) nerve fibers at the inferior whorl and (e) tracing of the inferior whorl using CCMetrics.
However, a more recent study has shown a significant reduction in corneal nerve fiber measures in young children with type 1 diabetes with and without diabetic retinopathy. The aim of the present study was to quantify corneal nerve morphology in the central cornea and inferior whorl of children with type 1 diabetes compared with age-matched healthy controls using CCM.

METHODS

A total of 20 participants with type 1 diabetes and 20 age-matched healthy controls underwent CCM. Patients with a history of any other cause of neuropathy, malignancy, deficiency of vitamin B₁₂ or folate, chronic renal failure, liver failure, connective tissue or systemic disease (rheumatoid arthritis, systemic lupus erythematosus, dermatomyositis, systemic scleroderma,
RESULTS

A total of 20 participants with type 1 diabetes and 20 healthy controls underwent CCM. Participants with type 1 diabetes were slightly older (P < 0.02) and taller (P < 0.02), but had comparable weight and body mass index (BMI). They also had a lower aspartate aminotransferase (AST; P < 0.02), but comparable bilirubin and alanine aminotransferase (Table 1).

Just four (20%) of the patients met the American Diabetes Association criteria (aged >10 years and >5 years of diabetes) to undergo screening for microvascular complications. Eight (40.0%) underwent assessment for retinopathy, and 11 (55.0%) underwent assessment for microalbuminuria, of whom none had retinopathy or microalbuminuria.

CNFD (22.73 ± 8.84 vs 32.92 ± 8.59; P = 0.001), CNBD (26.19 ± 14.64 vs 47.34 ± 20.01; P < 0.001) and CNFL (13.26 ± 4.06 vs 19.52 ± 4.54; P < 0.001) were lower in patients with type 1 diabetes compared with healthy controls (Figure 2a–c). CNFT did not differ between groups (14.88 ± 5.28 vs 13.52 ± 3.01; P = 0.323; Figure 3d). IWL was significantly lower in patients with type 1 diabetes (n = 19) compared with controls (n = 19; 15.50 ± 5.48 vs 23.42 ± 3.94; P < 0.0001; Figure 3a–c). CNFD, CNBD, CNFL and IWL were more than two standard deviations lower than the mean of controls in 15, 10, 30 and 50% of patients with type 1 diabetes.

DISCUSSION

In the present study, there was evidence of significant corneal nerve loss in children with type 1 diabetes without retinopathy. Raynaud’s phenomenon, previous corneal trauma or systemic disease that affects the cornea, surgery and a history of or current contact lens wear were excluded from the study. All participants provided assent and parental informed consent. The research adhered to the tenets of the Declaration of Helsinki, and was approved by Sidra Medicine and the Weill Cornell Medicine Research Ethics Committee.

Image selection and quantification

Six central sub-basal nerve plexus images were selected from the central cornea and corneal nerve fiber density (CNFD; n/mm²), corneal nerve branch density (CNBD; n/mm²), corneal nerve fiber length (CNFL; mm/mm²) and corneal nerve fiber tortuosity (CNFT) were quantified using manual CCMetrics (The University of Manchester, Manchester, UK). Six images centered on the inferior whorl and adjacent areas (upper right/left corner and lower right/left corners) were selected, and the inferior whorl length (IWL) (mm/mm²) was quantified utilizing the manual CNFL mode in CCMetrics (Figure 1)²⁶. The investigator was blind to the study group when carrying out CCM and analyzing CCM images.

Statistical analysis

All statistical analyses were carried out using IBM srs Statistics software version 26 (IBM Corporation, Armonk, NY, USA), and P < 0.05 was considered statistically significant. Normally distributed data were expressed as the mean ± standard deviation, and the means were compared using an independent sample t-test. Pearson’s correlation was undertaken to investigate the association between clinical parameters and corneal nerve fiber parameters. GraphPad Prism version 8 (La Jolla, CA, USA) was used to build the plots.
Table 2 Correlations between corneal confocal microscopy parameters and clinical and metabolic parameters

Parameters	BMI (kg/m²)	25(OH)D (ng/mL)	Bilirubin (µmol/L)	AST (IU/L)	ALT (IU/L)	Age (years)	Duration of disease (years)	HbA₁c (%)	Height (m)	CNFD (n/mm²)	CNBD (n/mm²)	CNFL (mm/mm²)	CNFT (TC)	IWL (mm/mm²)
Correlation	-0.109 (0.11)	0.686 (0.10)	-0.300 (0.23)	0.027 (0.92)	0.029 (0.92)	-0.121 (0.51)	0.489 (0.039)	0.028 (0.91)	-0.137 (0.62)	-0.396 (0.08)	0.072 (0.78)	-0.207 (0.41)	0.207 (0.41)	-0.300 (0.22)

Bold signifies the statistically significant comparisons. 25(OH)D, 25-hydroxy vitamin D; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CNFD, corneal nerve fiber density; CNBD, corneal nerve branch density; CNFL, corneal nerve fiber length; CNFT, corneal nerve fiber tortuosity; HbA₁c, glycated hemoglobin; IWL, inferior whorl length; TC, tortuosity coefficient.

Previous studies of adults with type 1 diabetes have found a significant reduction in central CNFD, CNBD and CNFL compared with healthy controls3,8,28–35 and in type 1 diabetes patients without retinopathy or microalbuminuria44. Corneal nerve loss has good diagnostic utility for both diabetic somatic and autonomic neuropathy22. Furthermore, a lower CNFL is associated with the development of clinical diabetic neuropathy31,36,37, and a more rapid reduction in CNFL predicts the development and progression of diabetic neuropathy28. Significant improvements in CNFD, CNBD and CNFL have been observed in type 1 diabetes patients after simultaneous pancreas and kidney transplantation39,40, omega-3 supplementation41, and an improvement in multiple risk factors for diabetic neuropathy42.

In the present study, a significant reduction in central corneal nerve fiber parameters in young children with type 1 diabetes has been shown, which is comparable to a previous study of children and young adolescents with type 1 diabetes25. Established risk factors for diabetic neuropathy, such as age, height, glycated hemoglobin and BMI, were not associated with the reduction in corneal nerve parameters, consistent with previous findings in adults with type 1 diabetes43. A reduction in corneal nerves occurs, regardless of diabetes duration, in young patients with type 1 diabetes35 and adults with type 2 diabetes45.

The American Diabetes Association has recommended initial screening for albuminuria and retinopathy in patients with type 1 diabetes aged >10 years, after 3–5 years of diabetes46. Although 20% of this cohort fulfilled the criteria for screening, none had microalbuminuria or retinopathy. Indeed, the significant corneal nerve loss in these children with type 1 diabetes without retinopathy or microalbuminuria agrees with previous findings in adults with type 1 diabetes28,34, and supports the thesis that neuropathy might precede retinopathy47. It also argues for earlier screening of diabetic neuropathy in children with type 1 diabetes using CCM. AST was lower in the present cohort with type 1 diabetes, and correlated with CNFD, CNBD and CNFL. No relationship between AST and CCM has been observed in studies in adults with diabetes21,22,30,48. Although the association between BMI and elevated AST is well established as a marker for liver injury in obese adults49–52, in the present study, AST was inversely correlated with BMI.

The inferior whorl is distal to the central nerves, and might allow the identification of earlier nerve damage26,53. Studies of adults with type 1 diabetes and type 2 diabetes have shown a greater reduction in IWL48,54, especially in those with painful diabetic neuropathy55,56. This is the first study of children with type 1 diabetes showing a marked reduction in IWL, with 50%
having a reduction greater than two standard deviations lower than the mean in controls.

A limitation of the current study was the cross-sectional design, relatively small number of participants studied and the lack of additional measures of diabetic neuropathy. Prospective studies are required to assess progression of corneal nerve abnormalities in relation to other complications and risk factors for diabetic neuropathy.

Significant corneal nerve loss has been shown in the central cornea and inferior whorl indicative of neuropathy in children with type 1 diabetes without microalbuminuria or retinopathy. This suggests that CCM could be used to screen for early subclinical neuropathy and to assess disease progression in children with type 1 diabetes.

ACKNOWLEDGMENTS
This publication was made possible by a grant from the Sidra Internal Research Fund (SIRF): 2017 and a Biomedical Research Program (BMRP-5726113101) grant from Qatar Foundation. The statements made herein are solely the responsibility of the authors.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Fox DA, Islam N, Sutherland J, et al. Type 1 diabetes incidence and prevalence trends in a cohort of Canadian children and youth. Pediatr Diabetes 2018; 19: 501–505.
2. Dabelea D, Stafford JM, Mayer-Davis EJ, et al. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 2017; 317: 825–835.
3. Xu G, Liu B, Sun Y, et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. BMJ 2018; 362: k1497.
4. Johannsen L, Smith T, Havsager AM, et al. Evaluation of patients with symptoms suggestive of chronic polyneuropathy. J Clin Neuromusc Dis 2001; 3: 47–52.
5. Lubec D, Mullbacher W, Finsterer J, et al. Diagnostic work-up in peripheral neuropathy: an analysis of 171 cases. Postgrad Med J 1999; 75: 723–726.
6. Callaghan BC, Kerber KA, Lisabeth LL, et al. Role of neurologists and diagnostic tests on the management of distal symmetric polyneuropathy. JAMA Neurol 2014; 71: 1143–1149.
7. Callaghan BC, Price RS, Feldman EL. Distal symmetric polyneuropathy: a review. JAMA 2015; 314: 2172–2181.
8. Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care 2017; 40: 136–154.
9. Ghaemi N, Hasanabadi H, Ashrafzadeh F, et al. Peripheral neuropathy in children and adolescents with insulin-dependent diabetes mellitus. Iran J Child Neurol 2018; 12: 83–90.
10. Turkylmaz H, Guzel O, Edizer S, et al. Evaluation of polyneuropathy and associated risk factors in children with type 1 diabetes mellitus. Turk J Med Sci 2017; 47: 942–946.
11. Ising E, Dahlen LB, Elding Larsson H. Impaired vibrotactile sense in children and adolescents with type 1 diabetes - Signs of peripheral neuropathy. PLoS One 2018; 13: e0196243.
12. Metwalley KA, Hamed SA, Farghaly HS. Cardiac autonomic function in children with type 1 diabetes. Eur J Pediatr 2018; 177: 805–813.
13. Walter-Holiner I, Barbarini DS, Lutschg J, et al. High prevalence and incidence of diabetic peripheral neuropathy in children and adolescents with type 1 diabetes mellitus: results from a five-year prospective cohort study. Pediatr Neurol 2018; 80: 51–60.
14. Hajas G, Kissova V, Tirpakova A. A 10-yr follow-up study for the detection of peripheral neuropathy in young patients with type 1 diabetes. Pediatr Diabetes 2016; 17: 632–641.
15. Sellers EA, Clark I, Tavakoli M, et al. The acceptability and feasibility of corneal confocal microscopy to detect early diabetic neuropathy in children: a pilot study. Diabet Med 2013; 30: 630–631.
16. Nelson D, Mah JK, Adams C, et al. Comparison of conventional and non-invasive techniques for the early identification of diabetic neuropathy in children and adolescents with type 1 diabetes. Pediatr Diabetes 2006; 7: 305–310.
17. Xiong Q, Lu B, Ye HY, et al. Corneal confocal microscopy as a non-invasive test to assess diabetic peripheral neuropathy. Diabetes Res Clin Pract 2018; 136: 85–92.
18. Alam U, Jeziorska M, Petropoulos IN, et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS One 2017; 12: e0180175.
19. Tavakoli M, Begum P, McLaughlin J, et al. Corneal confocal microscopy for the diagnosis of diabetic autonomic neuropathy. Muscle Nerve 2015; 52: 363–370.
20. Jiang MS, Yuan Y, Gu ZX, et al. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol 2016; 100: 9–14.
21. Khan A, Petropoulos IN, Ponirakis G, et al. Corneal confocal microscopy detects severe small fiber neuropathy in diabetic patients with Charcot neuroarthropathy. J Diab Invest 2018; 9: 1167–1172.
22. Perkins BA, Lovblom LE, Bril V, et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia 2018; 61: 1856–1861.
23. Papanas N, Ziegler D. Corneal confocal microscopy: recent progress in the evaluation of diabetic neuropathy. J Diab Invest 2015; 6: 381–389.
24. Tavakoli M, Petropoulos IN, Malik RA. Corneal confocal microscopy to assess diabetic neuropathy: an eye on the foot. J Diab Sci Technol 2013; 7: 1179–1189.

25. Deak EA, Szalai E, Thoth N, et al. Longitudinal changes in corneal cell and nerve fiber morphology in young patients with type 1 diabetes with and without diabetic retinopathy: a 2-year follow-up study. Invest Ophthalmol Vis Sci 2019; 60: 830–837.

26. Petropoulos IN, Ferdousi M, Marshall A, et al. The inferior whorl for detecting diabetic peripheral neuropathy using corneal confocal microscopy. Invest Ophthalmol Vis Sci 2015; 56: 2498–2504.

27. Tavakoli M, Kallinikos P, Iqbal A, et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathy. Diabet Med 2011; 28: 1261–1267.

28. Tesfaye S, Chatuvedi N, Eaton SE, et al. Longitudinal changes in corneal nerve fiber pathology in young patients with type 1 diabetes: a 2-year follow-up study. Invest Ophthalmol Vis Sci 2019; 60: 830–837.

29. Misra SL, Craig JP, Patel DV, et al. Corneal confocal microscopy best identifies the development and progression of neuropathy in patients with type 1 diabetes. J Diabetes Complications 2017; 31: 1325–1327.

30. Lovblom LE, Halpern EM, Wu T, et al. Corneal confocal microscopy detects improvement in corneal nerve morphology with measures of dry eye disease in type 1 diabetes. Invest Ophthalmol Vis Sci 2018; 59: 5525–5530.

31. Lovblom LE, Halpern EM, Wu T, et al. In vivo confocal microscopy of corneal nerves: an ocular biomarker for peripheral and cardiac autonomic neuropathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 2015; 56: 5060–5065.

32. Ahmed A, Bril V, Orszag A, et al. Detection of diabetic sensorimotor polyneuropathy by corneal confocal microscopy in type 1 diabetes: a concurrent validity study. Diabetes Care 2012; 35: 821–828.

33. Chen X, Graham J, Dabbah MA, et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 2015; 38: 1138–1144.

34. Petropoulos IN, Green P, Chan AW, et al. Corneal confocal microscopy detects neuropathy in patients with type 1 diabetes without retinopathy or microalbuminuria. PLoS One 2015; 10: e0123517.

35. Szalai E, Deak E, Modis L Jr, et al. Early corneal cellular and nerve fiber pathology in young patients with type 1 diabetes mellitus identified using corneal confocal microscopy. Invest Ophthalmol Vis Sci 2016; 57: 853–858.

36. Edwards K, Pritchard N, Dehghani C, et al. Corneal confocal microscopy best identifies the development and progression of neuropathy in patients with type 1 diabetes. J Diabetes Complications 2017; 31: 1325–1327.

37. Pritchard N, Edwards K, Russell AW, et al. Corneal confocal microscopy predicts 4-year incident peripheral neuropathy in type 1 diabetes. Diabetes Care 2015; 38: 671–675.

38. Lewis EJH, Lovblom LE, Ferdousi M, et al. Rapid corneal nerve fiber loss: a marker of diabetic neuropathy onset and progression. Diabetes Care 2020. https://doi.org/10.2337/dc20-0951

39. Tavakoli M, Mitu-Pretorian M, Petropoulos IN, et al. Corneal confocal microscopy detects early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation. Diabetes 2013; 62: 254–260.

40. Mehra S, Tavakoli M, Kallinikos PA, et al. Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 2007; 30: 2608–2612.

41. Lewis EJH, Perkins BA, Lovblom LE, et al. Effect of omega-3 supplementation on neuropathy in type 1 diabetes: a 12-month pilot trial. Neurology 2017; 88: 2294–2301.

42. Ishibashi F, Taniguchi M, Kosaka A, et al. Improvement in neuropathy outcomes with normalizing HbA1c in patients with type 2 diabetes. Diabetes Care 2019; 42: 110–118.

43. Liu L, Ding J, Leng X, et al. Guidelines for evaluation and management of cerebral collateral circulation in ischaemic stroke 2017. Stroke Vasc Neurol 2018; 3: 117–130.

44. Kallinikos P, Berhanu M, O’Donnell C, et al. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci 2004; 45: 418–422.

45. Yorek M, Malik RA, Calcutt NA, et al. Diabetic neuropathy: new insights to early diagnosis and treatments. J Diabetes Res 2018; 2018: 5378439.

46. American Diabetes Association. 13. Children and adolescents: standards of medical care in diabetes-2019. Diabetes Care 2019; 42(Suppl 1): S148–S164.

47. Jampol LM, Glassman AR, Sun J. Evaluation and care of patients with diabetic retinopathy. N Engl J Med. 2020; 382: 1629–1637.

48. Yan A, Issar T, Turmanapalli SS, et al. Relationship between corneal confocal microscopy and markers of peripheral nerve structure and function in Type 2 diabetes. Diabet Med 2020; 37: 326–334.

49. Robinson D, Whitehead TP. Effect of body mass and other factors on serum liver enzyme levels in men attending for well population screening. Ann Clin Biochem 1989; 26: 393–400.

50. Sull JW, Yun JE, Lee SY, et al. Body mass index and serum aminotransferase levels in Korean men and women. J Clin Gastroenterol 2009; 43: 869–875.

51. Salvaggio A, Periti M, Miano L, et al. Body mass index and liver enzyme activity in serum. Clin Chem 1991; 37: 720–723.

52. Loomba R, Bettencourt R, Barrett-Connor E. Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: the Rancho Bernardo Study. Aliment Pharmacol Ther 2009; 30: 1137–1149.
53. Utsunomiya T, Nagaoka T, Hanada K, et al. Imaging of the corneal subbasal whorl-like nerve plexus: more accurate depiction of the extent of corneal nerve damage in patients with diabetes. *Invest Ophthalmol Vis Sci* 2015; 56: 5417–5423.

54. Tummanapalli SS, Issar T, Kwai N, et al. A comparative study on the diagnostic utility of corneal confocal microscopy and tear neuromediator levels in diabetic peripheral neuropathy. *Curr Eye Res* 2019. https://doi.org/10.1080/02713683.2019.1705984

55. Kalteniece A, Ferdousi M, Petropoulos I, et al. Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy. *Sci Rep* 2018; 8: 3283.

56. Kalteniece A, Ferdousi M, Azmi S, et al. Corneal confocal microscopy detects small nerve fibre damage in patients with painful diabetic neuropathy. *Sci Rep* 2020; 10: 3371.