Phrase Reordering for Statistical Machine Translation Based on Predicate-Argument Structure

Mamoru Komachi, Yuji Matsumoto
Nara Institute of Science and Technology
Masaaki Nagata
NTT Communication Science Laboratories
Overview of NAIST-NTT System

• Improve translation model by phrase reordering
Motivation

- Translation model using syntactic and semantic information has not yet succeeded

 Improve statistical machine translation by using predicate-argument structure

- Improve distortion model between language pairs with different word orders

 Improve word alignment by phrase reordering
Outline

• Overview
• Phrase Reordering by Predicate-argument Structure
• Experiments and Results
• Discussions
• Conclusions
• Future Work
Phrase Reordering by Predicate-argument Structure

- Phrase reordering by morphological analysis (Niessen and Ney, 2001)
- Phrase reordering by parsing (Collins et al., 2005)
Predicate-argument Structure Analyzer: SynCha

- Predicate-argument structure analyzer based on (Iida et al., 2006) and (Komachi et al., 2006)
 - Identify predicates (verb/adjective/event-denoting noun) and their arguments
 - Trained on NAIST Text Corpus
 http://cl.naist.jp/nldata/corpus/
 - Can cope with zero-anaphora and ellipsis
- Achieves F-score 0.8 for arguments within a sentence
 Predicate-argument Structure
Analysis Steps

住所 を ここ に 書いて て 下さい
address-ACC here -LOC write please

WO-ACC
NI-LOC
predicate
Phrase Reordering Steps

- Find predicates (verb/adjective/event-denoting noun)
- Use heuristics to match English word order
Preprocessing

• Japanese side
 • Morphological analyzer/Tokenizer: ChaSen
 • Dependency parser: CaboCha
 • Predicate-argument structure: SynCha

• English side
 • Tokenizer: tokenizer.sed (LDC)
 • Morphological analyzer: MXPOST
 • All English words were lowercased for training
Aligning Training Corpus

• Manually aligned 45,909 sentence pairs out of 39,953 conversations

かしこまりました。この用紙に記入して下さい。

sure. please fill out this form.

かしこまりました。

sure.

この用紙に記入して下さい。

please fill out this form.
Training Corpus Statistics

	# of sent.
Improve alignment	33,874
Degrade alignment	7,959
No change	4,076
Total	45,909

	# of sent.
Reordered	18,539
Contain crossing	39,979

Add each pair to training corpus

Learn word alignment by GIZA++
Experiments

• WMT 2006 shared task baseline system trained on normal order corpus with default parameters
• Baseline system trained on pre-processed corpus with default parameters
• Baseline system trained on pre-processed corpus with parameter optimization by a minimum error rate training tool (Venugopal, 2005)
Translation Model and Language Model

• Translation model
 • GIZA++ (Och and Ney, 2003)

• Language model
 • Back-off word trigram model trained by Palmkit (Ito, 2002)

• Decoder
 • WMT 2006 shared task baseline system (Pharaoh)
Minimum Error Rate Training (MERT)

- Optimize translation parameters for Pharaoh decoder
 - Phrase translation probability (JE/EJ)
 - Lexical translation probability (JE/EJ)
 - Phrase penalty
 - Phrase distortion probability

- Trained with 500 normal order sentences
Results

ASR 1-BEST	System	BLEU	NIST
Baseline		0.1081	4.3555
Proposed (w/o MERT)		0.1366	4.8438
Proposed (w/ MERT)		0.1311	4.8372

Correct recognition	System	BLEU	NIST
Baseline		0.1170	4.7078
Proposed (w/o MERT)		0.1459	5.3649
Proposed (w/ MERT)		0.1431	5.2105
Results for the Evaluation Campaign

• While it had high accuracy on translation of content words, it had poor results on individual word translation
 • ASR: BLEU 12/14, NIST 11/14, METEOR 6/14
 • Correct Recognition: BLEU 12/14, NIST 10/14, METEOR 7/14
• Pretty high WER
Discussion

• Better accuracy over the baseline system
 • Improve translation model by phase reordering
• Degrade accuracy by MERT
 • Could not find a reason yet
 • Could be explained by the fact that we did not put any constraints on reordered sentences (They may be ungrammatical on Japanese side)
• Predicate-argument structure accuracy
 • SynCha is trained on newswire sources (not optimized for travel conversation)
Discussion (Cont.)
• Phrase alignment got worse by splitting a case marker from its dependent verb

住所 を
address-ACC
ここ に
here-LOC
書いて 下さい
write please

書いて 下さい
write please
住所 を
address-ACC
ここ に
here-LOC
please write down your address here
Conclusions

• Present phrase reordering model based on predicate-argument structure

• The phrase reordering model improved translation accuracy over the baseline method
Future work

• Investigate the reason why MERT does not work
 • Make reordered corpus more grammatical (reorder only arguments)
• Use newswire sources to see the effect of correct predicate-argument structure
• Reorder sentences which have crossing alignments only
• Use verb clustering and map arguments automatically