Nuclear Structure Relevant to Neutrinoless Double β Decay: 76Ge and 76Se.

J.P. Schiffer, S.J. Freeman, J.A. Clark, C. Deibel, C.R. Fitzpatrick, S. Gros, A. Heinz, D. Hirata, C.L. Jiang, B.P. Kay, A. Parikh, P.D. Parker, K.E. Rehm, A.C.C. Villari, V. Werner, and C. Wrede

1Physics Division, Argonne National Laboratory, Argonne, IL 60439
2University of Manchester, Manchester M13 9PL, U.K.
3Yale University, New Haven, CT 06520
4GANIL (IN2P3/CNRS -DSM/CEA), B.P. 55027 14076 Caen Cedex 5, France
5The Open University, Dept. of Physics and Astronomy, Milton Keynes, MK7 6AA, U.K.

(Dated: February 2, 2008)

PACS numbers: 23.40.Hc, 25.40.Hs, 27.50.+e, 23.40-s

An essential step in studying the nature of the neutrino is the attempt to observe neutrinoless double beta decay [1] and major efforts are being undertaken with this objective in mind. Observation of such a process would immediately show that neutrinos are their own antiparticles, and its rate may well give the first direct measure of the neutrino mass if the corresponding nuclear matrix element can be reliably calculated. As an example, for one of the likely candidates (76Ge), theoretical calculations have yielded answers that are spread over more than an order of magnitude. This prompted the statement by Bahcall et al. [2] “The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principal obstacle to answering some basic questions about neutrinos”. There have been suggestions that relate the neutrinoless double-beta-decay matrix elements to those for ordinary single beta decay, or to the ‘normal’ two-neutrino modes which have been observed experimentally [3]. However, neutrinoless decay proceeds by the virtual excitation of states in the intermediate nucleus with a momentum transfer much larger than that for these other processes. It will thus involve all possible virtual intermediate states (up to about 100 MeV of excitation), and so will include giant resonances. There is no other experimentally accessible process that could directly determine the matrix element.

Although there is still considerable discussion regarding the best theoretical approach, what unquestionably matters is knowing the population of the valence orbits for the nucleons that switch from neutrons to protons. We have therefore undertaken a set of measurements to determine this quantity experimentally, and report here on the valence neutron populations and the differences in these populations for 76Ge and 76Se. In a previous experiment we determined that the neutron pair correlations in these two nuclei are quantitatively very similar [4].

The Macfarlane-French [5] sum rules for nucleon transfer state that the summed spectroscopic strength for neutron-adding reactions with a given set of quantum numbers is equal to the vacancies in that target orbit, while the sum over states for neutron-removing reactions will determine the occupancy. Here we have measured the cross sections and extracted spectroscopic factors of significantly populated states, for both neutron-adding and neutron-removing reactions. The summed spectroscopic factors for both reactions can be added and used to provide a normalization, allowing occupation numbers for orbitals to be extracted.

The nucleon transfers reported here have been measured previously [6, 7], but not with the same experimental methods, and using different parameters in each DWBA analysis for extracting spectroscopic factors. The aim of the present measurement is to analyze all the results in a consistent manner to permit the extraction of more accurate occupation numbers with a common experimental approach.

The active orbits for neutrons in these nuclei, with 42 and 44 neutrons, are $1p_{3/2}$, $0f_{5/2}$, $1p_{1/2}$, and $0g_{9/2}$. We have made systematic measurements to obtain accurate cross sections for the neutron-adding (d,p) and ($\alpha,^{3}$He) reactions, as well as for neutron-removing (p,d) and (3He,α) reactions. The momentum matching in (d,p) reactions for transitions with $\ell=3$ and 4 is not optimal and thus the cross sections are rather weak. Therefore helium-induced reactions were used to obtain data with improved momentum matching and larger cross sections for the higher-ℓ transitions. This selectivity is illustrated in Figure 1.

Deuteron, proton, alpha, and 3He beams from the Yale tandem accelerator were used to bombard isotopically

*correspondence to schiffer@anl.gov
enriched Ge and Se targets of about 200-300 μg/cm² evaporated on thin, 50 μg/cm² C foils. The momenta of the reaction products were determined and the particles identified with the Yale Enge spectrograph and gas-filled focal-plane detector backed by a scintillator.

The product of target thickness and spectrometer solid angle was found by measuring elastic scattering in the Coulomb regime at 30° for each target used. The beam energies used for this calibration were 6-MeV protons and 10-MeV alphas. For the transfer reactions, the same spectrometer aperture and beam integrator settings were used to minimize potential systematic errors. The beam energies chosen were 15 MeV for the (d,p) reaction and 23 MeV for the (p,d) to keep the energies in each channel comparable. Similarly, (α,3He) was studied at 40 MeV and (3He,α) at 26 MeV. Measurements were also carried out on targets of 74Ge and 78Se to provide an additional check. The energy resolution obtained was ~40 keV for the deuteron and proton-induced reactions, and ~70 keV for the 3,4He reactions.

The (d,p) angular distributions have been studied previously and ℓ values were assigned [6,7]. In the current work, the yields were therefore measured only at the angles that correspond to the peaks in the angular distributions for the ℓ values of interest: 11°, 28° and 37° for ℓ=1, 3 and 4 respectively. The helium-induced reactions are forward peaked and so the most practical forward angles were chosen: 5° for (α,3He) and 8° for its inverse. The previous ℓ-value assignments [6,7] were confirmed, as may be seen in Figure 2. Our results also agree approximately with the previous relative spectroscopic factors for states populated with a particular target.

We used the finite-range code PTOLEMY [9] for the DWBA calculations. The normalization depends somewhat on the choice of distorting parameters. The extracted relative spectroscopic factors also vary slightly and this is a source of some of the uncertainty at the level of a few %. For the projectile bound-state wave function, the Reid potential was used for the deuteron, and a Woods-Saxon one for the α particle and for the various target bound states.

Absolute spectroscopic factors are notoriously difficult to obtain. The values of spectroscopic factors for ‘good’ single-particle states in doubly-magic nuclei are usually around 0.5 - 0.6 because of short-range correlations. Such correlations are expected to be a uniform property of nuclei, not changing between nearby nuclei or configurations. Since the overall effect in depleting absolute strength is expected to be uniform, it can be compensated for by a renormalization of strength and examining the relative strengths of spectroscopic factors through the
sum rules. Since the sums of the strengths for neutron adding or removing are proportional to the vacancies or occupancies, together they should add up to the \((2J+1)\) degeneracy of the orbits and can serve as such a normalization. A check is provided, in that the summed spectroscopic factors for a given orbit should add up to the same value for each of the targets. The mean normalization factors with the potentials adopted for the \(\ell=1,3\), and 4 transitions are 0.53, 0.56, and 0.57 respectively with rms fluctuations among the targets of 2, 12, and 7 %, indicating that the procedure is reasonable. This normalization constant for the two reactions is somewhat surprisingly close to the depletion that should be expected for ‘absolute’ spectroscopic factors.

Several points are to be noted in the above sums. Since not all the spins of the states seen in \(\ell=1\) transitions are known, we summed all \(\ell=1\) transitions, thus combining the \(j=1/2\) and 3/2 states. For the neutron-removal reactions a small correction was made for the unobserved \(T_2\) isobaric analog states, corresponding to proton removal. Also for neutron removal, in the \((p,d)\) reaction, some previously determined \(\ell=1\) transitions at high excitation energy were beyond the energy range measured here. A correction was made for these states by normalizing the previously determined spectroscopic factors to ones determined in the present work. There were no known missed states for the neutron-adding measurements or for the other \(\ell\) values.

Finally, for the \(f_{5/2}\) states, no \(5/2^-\) state was known in \(^{77}\)Ge, while all other nuclei in this region have such a state well below 1 MeV in excitation energy. In attempting to find such a state in the \((\alpha,^{3}\text{He})\) reaction, the intensity of the peak around 500 keV excitation was stronger than expected for a known \(\ell=2\) transition to a \(5/2^+\) state at 504.8 keV, but the centroid of this peak seemed lower than the accepted value – around 492 keV. In fact, a tentative state is reported in the compilations at 491.9 keV from unpublished work with the \((^{13}\text{C},^{12}\text{C})\) reaction, and we have assumed that this is the missing \(5/2^-\) state. Its strength was included in the sums.

The vacancies and occupancies from the summed normalized spectroscopic factors are shown in Table I. Listed in the Table are the numbers of holes and particles from neutron adding and removing, their sum, and the best average value of the occupancy, all computed with a constant normalization. The \(\ell=1\) strength is best determined in the \((d,p)\) and \((p,d)\) reactions and the \(\ell=3\) and 4 transitions from the helium-induced reactions. As was noted, the sums of holes and particles for both \(\ell=1\) and 4 transfers are constant to better than 5% across the targets studied. For \(\ell=3\), the situation is somewhat worse, partly because these transitions are relatively weak in both reactions. As a result, components of strength could have been missed. Additionally, there is some ambiguity about the \(\ell=3\) strength in the pickup reactions since some of the transitions could be to \(7/2^-\) states at higher excitation energies. For cases where there is no evidence on the spins of higher \(\ell=3\) hole states we, somewhat arbitrarily, excluded all \(\ell=3\) transitions above 1 MeV excitation. As was noted, the summed strengths for \(\ell=3\) fluctuate more than the others.

Our measurements provide two determinations of the valence-orbit occupancies in the \(^{76}\)Ge and \(^{76}\)Se ground states, one from the neutron-adding data, and one from the neutron removal. We average these, weighting the former by a factor of two. There are two reasons for this. First, the major neutron shell between \(N=28\) and 50 is more than half filled, with about twice as many particles as holes. A given fractional error therefore leads to a bigger uncertainty in the particle number compared to the number of holes, at least for \(\ell=1\) and 3. Second, the sensitivity of the calculated DWBA cross sections to distorting parameters is larger for the \((^{3}\text{He},\alpha)\) reaction (\(\approx 15-25\%\)) than for its inverse (\(\approx 10\%\)).

The uncertainties in the final mean occupancy values are difficult to estimate. Statistical errors in the summed strength are less than 1% and relative systematic errors between targets are believed to be less than 3%. The biggest uncertainties stem from possible missed states, especially for the \(\ell=3\) transitions, and from uncertainties in the DWBA calculations. We estimate that the occupancy is determined to about 0.2 nucleons for the \(1p\), 0.3 for the \(0g_{9/2}\) orbits, and slightly worse, 0.4, for the \(0f_{5/2}\) orbit. These estimates of uncertainties are rather crude. However, there are several checks that give us some confidence:

Target	Holes	Particles	Holes + Particles	Occupancy
\(^{74}\)Ge \(\ell=1\)	1.15	4.83	5.98	4.85
\(^{76}\)Ge	1.12	4.83	5.95	4.87 ± 0.20
\(^{76}\)Se	1.63	4.49	6.12	4.41 ± 0.20
\(^{78}\)Se	0.94			5.06
\(^{74}\)Ge \(\ell=3\)	1.90	4.38	6.28	4.19
\(^{76}\)Ge	1.14	3.92	5.06	4.56 ± 0.40
\(^{76}\)Se	2.10	3.71	5.81	3.83 ± 0.40
\(^{78}\)Se	2.34	4.63	6.97	3.98
\(^{74}\)Ge \(\ell=4\)	4.37	5.83	10.20	5.69
\(^{76}\)Ge	3.41	6.27	9.68	6.48 ± 0.30
\(^{76}\)Se	4.36	6.13	10.49	5.80 ± 0.30
\(^{78}\)Se	2.80	7.31	10.11	7.24

- The normalization factors obtained for each target separately are similar.
- The mean normalizations for each \(\ell\) value and reaction type are also similar.
- The summed removing and adding strengths for \(^{74,76}\)Ge and \(^{76,78}\)Se, 22.5, 20.7, 22.4, and 23.1 respectively, are consistent with the expected value of 22.0.
- As an independent result, the neutron vacancies obtained for the four nuclei (from the adopted occupancies in the Table) are 7.3, 6.1, 7.9 and 5.7, in
The lower part of the figure shows the differences in neutron vacancy between the two nuclei to be mostly in the 0\textit{g}\textsubscript{9/2} orbit. The weak 5/2+ state in \textit{75}Ge is not resolved in our work, but using the results in
\textit{76}Se suggests that approximately 0.2 neutrons are in the 1\textit{d}\textsubscript{5/2} orbit. The weak 5/2+ state in \textit{75}Ge is not resolved in our work, but using the results in
\textit{76}Se, we obtain a roughly similar value.

The values of vacancies are shown in Figure 3 along with the QRPA results[10]. There is little question that the vacancies in the 1\textit{p} and, especially, in the 0\textit{f}\textsubscript{5/2} orbits are significantly larger in the data than in the calculations. For the neutrinoless double-beta-decay experiments it is the changes in occupancy that are important, and so in the lower part of Figure 3 we show the differences between \textit{76}Ge and \textit{76}Se: 0.46\textpm0.20 in 1\textit{p}, 0.73\textpm0.40 in 0\textit{f}\textsubscript{5/2} and 0.68\textpm0.30 in 0\textit{g}\textsubscript{9/2}.

While the QRPA results predict changes between the two nuclei to be mostly in the 0\textit{g}\textsubscript{9/2} orbit, the experiment shows quite clearly that the changes in the 1\textit{p} and 0\textit{f}\textsubscript{5/2} orbits are much larger than predicted. The qualitative feature that, in disagreement with QRPA, there are still large vacancies in 1\textit{p} and 0\textit{f}\textsubscript{5/2} is quite robust. It follows from the relatively large cross sections in the neutron-adding reactions and it cannot depend on the details of the analysis or the assumptions.

What the consequences may be, of this disagreement in neutron occupancy between QRPA and experiment, on the matrix element for neutrinoless double beta decay are not clear at present and will need to be investigated in more detail. Proton occupancies are similarly important and experiments to determine them are planned.

We are indebted to V.A. Rodin and A. Faessler for sending us the results of the QRPA calculations. We wish to acknowledge the help of the operating staff of the Yale tandem and of John Greene at Argonne for meticulous work on target preparation. The work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under contracts DE-FG02-91ER-40609 and DE-AC02-06CH11357, the UK Science and Technology Facilities Council, and IN2P3/CNRS-France.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{vacancies.png}
\caption{The deduced neutron vacancies for \textit{76}Ge and \textit{76}Se are shown in the three active valence orbits and compared to those from the QRPA calculations of Reference 10. The naive shell closure should give 6 and 8 vacancies for these two nuclei. The lower part of the figure shows the differences in these occupations (expected to be 2.0), again compared to the QRPA calculation.}
\end{figure}

\begin{thebibliography}{10}
\bibitem{1} S.R. Elliott and P. Vogel, Annu. Rev. Nucl. Part. Sci. \textbf{52}, 115 (2002); J. Suhonen and O. Civitarese, Phys. Rep. \textbf{300}, 123 (1998); A. Faessler and F. Šimkovic, J. Phys. G \textbf{24}, 2139 (1998).
\bibitem{2} J. N. Bahcall, H. Murayama, and C. Peña-Garay, Phys. Rev. D \textbf{70}, 033012 (2004).
\bibitem{3} J. Suhonen, Phys. Lett. B \textbf{607}, 87 (2005); V.A. Rodin, A. Faessler, F. Šimkovic and P. Vogel, Phys. Rev. C \textbf{68}, 044302 (2003).
\bibitem{4} S.J. Freeman \textit{et al.}, Phys. Rev. C \textbf{75}, 051301(R) (2007).
\bibitem{5} M. H. Macfarlane and J. B. French, Rev. Mod. Phys. \textbf{32}, 567 (1960).
\bibitem{6} A. Hasselgren, Nucl. Phys. \textbf{A198}, 353 (1972); W. A. Yoh, S. E. Darden, and S. Sen, Nucl. Phys \textbf{A263}, 419 (1976).
\bibitem{7} E. K. Lin, Phys. Rev. \textbf{139}, B340 (1965); L. A. Mon-"{t}estruque, M. C. Cobian-Rozak, G. Szaloky, J. D. Zum-\textstyle{bro} and S. E. Darden, Nucl. Phys. \textbf{A305}, 29 (1978).
\bibitem{8} A. R. Farhan and B. Singh, Nucl. Data Sheets \textbf{81}, 417 (1997); Evaluated Nuclear Structure Data File http://www.nndc.bnl.gov/ensdf/.
\bibitem{9} M.H. Macfarlane and Steven C. Pieper, ANL-76-11 Rev. 1, Argonne National Laboratory Report (1978), unpublished.
\bibitem{10} V.A. Rodin and A. Faessler, private communication, calculated within the method of QRPA and RQRPA as described in V.A. Rodin, A. Faessler, F. Šimkovic and P. Vogel, Phys. Rev. C \textbf{68}, 044302 (2003) and Nucl. Phys. \textbf{A766}, 107 (2006).
\end{thebibliography}