Original Research Article

Antioxidant and Antibacterial Activities of *Terminalia superba* Engl. and Diels (Combretaceae) Bark Extracts

Kougnimon Fifamè Espérance Elvire¹, Akpovi Dewanou Casimir¹, Dah-Nouvlessounon Durand², Boya Bawa², Baba Moussa Lamine² and Loko Frédéric¹

¹Laboratoire de Recherche en Biologie Appliquée (LARBA/ EPAC/UAC) 01BP 2009 Cotonou, Bénin
²Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, 05 BP 1604 Cotonou, Bénin

*Corresponding author

A B S T R A C T

Terminalia superba (*T. superba*) is locally used for the treatment of various diseases, including diabetes mellitus, gastroenteritis, female infertility, abdominal pains, bacterial, fungal and viral infections. This study aimed to ascertain the antioxidant and antimicrobial activities of ethanolic and hydro-ethanolic extracts of *T. superba* barks. Total phenols, flavonoids, and tannins were measured in the extracts by a spectrophotometry method. The DPPH method was used to evaluate extracts antioxidant activity. The antibacterial activity was evaluated using broth micro-dilution method *in vitro* on *Staphylococcus aureus* isolated clinical strains from three skin infections (buriul ulcer, furuncles and abscesses) and a *Staphylococcus aureus* reference strains (*Staphylococcus aureus* ATCC 29213). Clinical strains were multi drug resistant with or without a virulence factor (Panton-Valentine Leukocidin (PVL)). The phytochemical screening of ethanolic and hydro-ethanolic extracts of *T. Superba* barks revealed the presence of tannins (catechic and gallic), flavonoids, saponins, free anthracene derivatives, reducing compounds, mucilage. Ethanolic and hydro-ethanolic extracts showed antioxidant activities. Both extracts had antibacterial activities on *Staphylococcus aureus* ATCC 29213 and *S. aureus* isolated from skin infections. This study shows that *T. superba* has high antibacterial and antioxidant activities.

Keywords

Terminalia superba, barks, Antibacterial activity, Antioxidant activity

Article Info

Accepted: 20 June 2018
Available Online: 10 July 2018

Introduction

Medicinal plants are recognized as the most popular form of alternative medicine (Ogbonnia *et al.*, 2011). Herbal prescriptions and natural remedies are commonly employed in developing countries for the treatment of various diseases, this practice being an alternative way to compensate for some perceived deficiencies in orthodox pharmacotherapy (Zhu *et al.*, 2002). In Benin, they offer a wider available and affordable alternative to pharmaceutical drugs and natural food supplements.
To face the increase in many microbial pathogens resistance against conventional antibiotics, it is essential to seek other drugs with wide spectrum anti-microbial activities. Therefore, research must be directed to biologically active extracts and compounds from plant species to fight microbial diseases (Chanda et al., 2011). A high number of medicinal plants have been recognized as an important resource of natural antimicrobial compounds (Mahady, 2005). Moreover, many medicinal plants have an antioxidant activity that is attracting more and more the attention of several research teams for its role in the fight against several diseases such as cancer, atherosclerosis, cerebro-vascular condition, diabetes, hypertension, and Alzheimer's disease (Vârban et al., 2009). Numerous physiological and biochemical processes produced oxygen-centered free radicals and other reactive oxygen species (Stankovic et al., 2011). Antioxidants are capable of scavenging free radicals, which can oxidize many biological macromolecules (DNA, proteins, and lipids) in cells and tissues. Phytochemical compounds exhibit several activities such as antioxidant, anti-inflammatory, anti-hepatotoxic, anti-tumoral and anti-microbial (Zengin et al., 2011).

This study is focused on *Terminalia superba* Engl. & Diels (Combretaceae) which is used by various traditional healers for the treatment of bacterial, fungal and viral infections. The main objective of this work is to perform a phytochemical screening in order to evaluate the phenolic composition and determine the potential anti-radical activity and antibacterial activity of two extracts of *T. superba*.

Materials and Methods

Plant material

The *T. superba* barks were collected in Itchédé, Toffo Forest at Adja-Ouère (Benin). The identification of the plant was confirmed at the National Herbarium in Benin. The barks dried at 25°C were ground into a fine powder.

Microorganisms

The antimicrobial activity of *T. superba* extracts was tested against a standard strain (*Staphylococcus aureus* ATCC 29213) and *Staphylococcus aureus* strains isolated from various types of skin infections such as buruli ulcer, furuncles and abscesses. Sixteen (16) clinical strains were Multi Drug Resistant and produced Panton Valentine Leukocidin (PVL) virulence factor. Twenty-three (23) clinical strains were Multi Drug Resistant without Panton Valentine Leukocidin (PVL) virulence factor (Sina et al., 2013). The tested strains were initially cultured in Muller-Hinton broth containing 20% glycerol and were stored at -80°C. These microorganisms were obtained from the Laboratory of Biology and Molecular Typing in Microbiology (University of Abomey-Calavi, Benin, West Africa).

Preparation of crude extracts

The extracts were prepared according to the method described by Talbi et al., (2015). Fifty grams (50 g) of powder were dissolved in 500 ml ethanol 96% (ethanolic extract) and 500 ml ethanol 70% (hydro-ethanolic extract). Seventy-two hours (72h) after, the macerate was filtered with hydrophilic cotton and Whatman filter paper and was evaporated to dryness at 40°C using a Rotavapor. The resulting powder was stored in a refrigerator at 8°C until use.

Phytochemical analysis

Qualitative phytochemical screening of *T. superba* was carried out on the extracts (ethanolic and hydro-ethanolic), using the standardly employed precipitation and coloration reactions as described by Houghton and Raman (1998).
Antioxidant activity: DPPH free radical scavenging assay

The quantitative evaluation of antioxidant activity was based on the methodology proposed by Brand-Williams et al., (1995). DPPH nitrogen radical scavenging assay was performed based on reduction of 2, 2-diphenyl-1-picrylhydrazl (DPPH) recorded at 517 nm according to a standard method. Ascorbic acid was used as standard. Percentage of inhibition/ scavenging (% AA) was calculated by the following formula:

\[
\text{% AA} = \left(\frac{A_{\text{white}} - A_{\text{sample}}}{A_{\text{white}}} \right) \times 100
\]

Where, A white is the absorbance of the white reaction mixture, and A sample is the absorbance of the sample.

The percentage of inhibition of DPPH was plotted against the extracts concentration to obtain IC₅₀. IC₅₀ is the concentration of extracts which can decrease the initial DPPH concentration by 50 %. Lower IC₅₀ value shows higher radical scavenging activity.

Antibacterial activity of ethanolic and hydro-ethanolic extracts of _T. superba_

Antimicrobial susceptibility testing

Antimicrobial susceptibility was evaluated using the Kirby-Bauer disk diffusion method on agar Mueller-Hinton (bioMérieux, Marcy l’Etoile, France) in accordance with The Clinical and Laboratory Standards Institute [CLSI] (2015), the following 18 antimicrobial agents were tested: Penicillin G (6µg), oxacillin (5µg), Ofloxacin (5µg), cefoxitin (30µg), gentamicin (10µg), tobramycin (10µg), kanamycin (30µg), vancomycin (5µg), teicoplanin (15µg), fusidic acid (10µg), fosfomycin (50µg), rifampicin (5µg), trimethoprim/ sulfamethoxazole (1.25/23.75µg), erythromycin (15µg), lincomycin (30µg), pristinamycin (15µg), linezolid (30µg) and tetracyclin (30 µg).

Panton-Valentine Leukocidin (PVL) identification

All _S. aureus_ isolates were investigated for the carriage of PVL. For the phenotypic detection of toxins radial gel immunodiffusion was performed. The production of Panton-Valentine Leukocidin (PVL) were evidenced from culture supernatants after 18 h of growth in Yeast Casamino-acid Pyruvate (YCP) medium (Gauduchon et al., 2001) by radial gel immunodiffusion in 0.6% (wt/vol) agarose with component-specific rabbit polyclonal and affinity-purified antibodies (Prévost et al., 1995 Gravet et al., 1998).

Determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of _T. superba_ stem bark extracts

Hydro-ethanolic and ethanolic extracts of _T. superba_ bark were reconstituted in distilled water at 80 mg/ml. The prepared solutions were sterilized by filtration using filtersyringes on 0.22 µm Millipore membrane. The sterility of the stock solutions was verified by culturing aliquots of each solution on Mueller Hinton media, incubated at 37°C for 24 up to 48 hours.

The microdilution method (quantitative activity) was used for the determination of MIC. The MIC was defined as the lowest concentration of extracts inhibiting visible bacterial growth after 18 or 20 h incubation at 37°C (Kouitcheu et al., 2013). Into each well, 100 µL of broth Muller Hinton enriched with glucose solution 1% and 5% red phenol solution was added. Then, 100 µL of each extract was added in every first well of the microplate.
Geometric dilutions ranging from 80 to 0.078 mg/ml were carried out and subsequently, 100μL of media containing 10^6 UFC/ml of the indicator strain was added to all wells to yield 40 to 0.039 mg/ml of concentration. The plates were then incubated at 37°C for 24 h. The experiment was done in triplicate. A color change from red to yellow was indicative of bacterial growth.

To obtain the MBC, 20 μL of each well colored red was spotted on Muller Hinton agar and incubated at 37°C for 24 h. The MBC were determined by the minimum concentration that allowed less than 0.01% of bacterial growth.

The antibiotic power (AP) of each extract was thereafter calculated with the formula CMB/CMI. According to the values obtained in inhibition tests, the extracts was classified as bactericidal when MBC/MIC ≤ 4 and bacteriostatic when MBC/MIC >4

Statistical analysis

The data were analyzed with excel and SPSS 17 software. Calibration curves were carried out with Excel. Means and standard deviations were determined. For the comparison of the variances and means of the different modalities, the Student Levene and t tests were used respectively after verification of normality (Skewness and Kurtosis).

In the case where the normality hypothesis is not verified, a non-parametric test has been carried out in order to compare the modalities of variables. P values<0.05 were significant.

Results and Discussion

Phytochemical screening

Table 1 illustrated the phytochemical screening of *T. superba* bark crude extracts (ethanol, hydro-ethanol).

Qualitative analysis of *T. superba* barks crude extracts (ethanol, hydro-ethanol) reveals various phytochemicals compounds: tannins (Cathetic, Gallie), flavonoids, saponins, free anthracenics, reducing compounds and mucilage.

Previous phytochemical studies on *T. superba* bark identified several compounds, including tannins, flavonoids (Dongmo et al., 2006; Kouakou et al., 2013; Goze et al., 2014; Ahon et al., 2011), saponosides (Kouakou et al., 2013; Goze et al., 2014; Ahon et al., 2011) and many reducing compounds (Kouakou et al., 2013; Goze et al., 2014).

Contrary to our findings, coumarins and quinone (Kouakou et al., 2013; Goze et al., 2014), triterpenoids and sterols (Kouakou et al., 2013; Goze et al., 2014; Ahon et al., 2011), alkaloids (Ahon et al., 2011) were reported in *T. superba* bark. The environment, periods of harvest of organs, stocking conditions of organs and extract solvents may influence the synthesis and expression of phytochemical components in the plant (Sauvion et al., 2013).

Antioxidant activity

Table 2 shows IC₅₀ of *T. superba* extracts and standards.

The hydro-ethanolic extract (IC₅₀ = 11.60 μg/ml) has a higher DPPH free radical-scavenging activity than the ethanolic extract (IC₅₀ = 34.72 μg/ml); however, the scavenging activity of the hydro-ethanolic extract is lower than that of the antioxidant standard ascorbic acid (9.62 μg/ml). The IC₅₀ of the hydro-ethanolic extract is 2.99-fold lower than that of ethanolic extract and 1.20-fold higher than that of ascorbic acid. The free radical-scavenging capacity of the hydro-ethanolic extract of *T. superba* bark is higher than that of the ethanolic extract. This can be attributed
to the higher concentration of phenolic compounds in the hydro-ethanolic extract of *T. superba* barks. Previous reports showed a correlation between the antioxidant activity and the amount of total phenolic content (Negro *et al.*, 2003). Phenolic compounds are hydrogen donors capable of directly scavenging free radicals and reducing oxidative damage (Wintola *et al.*, 2015). In other medicinal plant extracts, these compounds also activated endogenous antioxidant systems and inhibited the lipid per oxidation of human erythrocytes (Ribeiro *et al.*, 2015). The antioxidant activity of *T. superba* bark was also determined by Momo *et al.*, (2009).

Table 1. Phytochemical analysis *T. superba* bark extracts (ethanolic and hydro-ethanolic)

Chemical groups	EE	HEE
Alkaloids	-	-
Catechin tannins	++	+++
Gallic tannins	++	+++
Flavonoids	+	++
Anthocyanins	-	-
Leucoanthocyanins	-	-
Coumarin	-	-
Quinone derivatives	-	-
Mucilages	++	++
Reducing compound	++	++
Saponins	+	++
H = 1.5 cm IM = 4/10	+	+
H = 1.9 cm IM = 4/10	+	+
Triterpenes	-	-
Steroids	-	-
Cyanogenic derivate	-	-
Free anthracenic	+	+
Combine anthracenic	-	-
o-hétérosides	-	-
c- hétérosides	-	-
Cardiotonic glycoside	-	-

- : absence; +: present in low concentration; ++: present in moderate concentration; +++ present in high concentrations; EE: ethanolic extract; HEE: Hydro-ethanolic extract, H: Height of the foam; IM: Foam Index.
Table 2 IC$_{50}$ of the ethanolic and hydro-ethanolic extracts of *T. superba* barks compared with the antioxidant standards ascorbic acid

	IC$_{50}$ (µg/ml)	Calibration curve	R2
EE	34.72	Y= 18.80 ln (x) -16.69	0.947
HEE	11.60	Y= 14.27 ln (x) + 14.63	0.935
AA	9.62	Y= 14.16 ln (x) -17.91	0.885

EE = Ethanolic extract; HEE= Hydro-ethanolic extract; AA = Ascorbic acid; IC$_{50}$: Concentration of extracts can inhibit 50% of DPPH radicals

Table 3 Antimicrobial susceptibility

Drug(s)	PVL + (n = 16)	PVL – (n= 23)	Total (n= 39)	P
	Number (%)	Number (%)	Number (%)	
Fusidicacid (10µg)	0	0	0	-
Cefoxitin (30µg)	5 (31,25)	6 (26,09)	11 (28,21)	0.725
Erythromycin (15µg)	12 (75)	14 (60,87)	26 (67,67)	0.357
Fosfomycin (50µg)	0	0	0	-
Gentamicin (10µg)	6 (37,5)	16 (69,57)	22 (56,41)	0.047
Kanamycin (30µg)	12 (75)	8 (34,78)	20 (51,28)	0.013
Lincomycin (15µg)	5 (31,25)	7 (30,43)	12 (30,77)	0.957
Linezolid (10µg)	0	0	0	-
Ofloxacin (5µg)	4 (25)	6 (26)	10 (26)	0.939
Oxacillin (5µg)	13 (81,25)	6(26,09)	19 (48,71)	0.001
PenicillinGG (6µg)	16 (100)	23 (100)	39 (100)	-
Pristinamycin (15µg)	4 (25)	5 (22)	9 (23)	0.812
Rifampicin (5 µg)	4 (25)	11 (47,83)	15 (38,46)	0.150
Teicoplanin (15µg)	2 (12,5)	4 (17,39)	6 (15,38)	0.677
Tetracyclin (30 µg)	3 (18,75)	5(21,74)	8 (20,51)	0.820
Tobramycin (10µg)	9(56,25)	4(17,39)	13(33,33)	0.011
Trimethoprim/sulfamethoxazole (1,25/23,75 µg)	7 (43,75)	10 (43,48)	17 (43,59)	0.987
Vancomycin (5µg)	0	0	0	-

Table 4 Comparative study of the bactericidal activity of ethanolic and hydroethanolic extracts on reference strain

	EE	HEE				
	MIC	MBC	AP	MIC	MBC	AP
S. aureus ATCC 29213	0.078	0.078	1	0.078	0.078	1

S. aureus ATCC 29213 = *Staphylococcus aureus* ATCC 29213; MIC = Minimal Inhibitory Concentration (mg/ml); MBC = Minimal Bactericidal Concentration (mg/ml); AP (CMB/CMI) = antibiotic power; EE: ethanolic extract; HEE: hydro-ethanolic extract.
Table 5: Comparative study of the bactericidal activity of ethanolic and hydroethanolic extracts on LPV + strains

S. aureus PVL+	EE	HEE				
	MIC	MBC	AP	MIC	MBC	AP
1	1.25	2.5	2	0.625	0.625	1
2	1.25	2.5	2	0.625	0.625	1
3	1.25	5	4	0.625	0.625	1
4	1.25	10	8*	0.625	1.25	2
5	1.25	10	8*	0.312	0.625	2
6	1.25	10	8*	0.312	0.625	2
7	1.25	2.5	2	0.312	0.625	2
8	1.25	5	4	0.312	0.625	2
9	0.625	5	8*	0.312	0.625	2
10	0.625	5	8*	0.312	0.625	2
11	0.625	5	8*	0.312	2.5	8*
12	0.625	2.5	4	0.312	0.625	2
13	2.5	20	8*	0.312	1.25	4
14	1.25	20	16*	0.625	5	8*
15	2.5	10	4	0.312	0.312	1
16	1.25	20	16*	0.312	2.5	8*

p=0.028

MIC = Minimal Inhibitory Concentration (mg/ml); MBC = Minimal Bactericidal Concentration (mg/ml); AP (CMB/CMI) = antibiotic power; AP without* = bactericidal power; AP With * = bacteriostatic power; S. aureusP VL+ = PVL positive Staphylococcus aureus; EE: ethanolic extract; HEE: hydro-ethanolic extract.

Table 6: Comparative study of the bactericidal activity of ethanolic and hydroethanolic extracts on LPV- strains

S. aureus MR/PVL-	EE	HEE				
	MIC	MBC	AP	MIC	MBC	AP
1	1.25	10	8*	0.312	2.5	8*
2	1.25	1.25	1	0.312	0.625	2
3	1.25	2.5	2	0.312	0.625	2
4	0.625	5	8*	0.312	0.625	2
5	0.625	1.25	2	0.312	0.625	2
6	0.625	1.25	2	0.312	0.625	2
7	0.625	5	8*	0.312	2.5	8*
8	0.625	5	8*	0.312	0.625	2
9	0.625	5	8*	0.312	0.312	1
10	0.312	0.625	2	0.312	0.312	1
11	0.312	0.625	2	0.312	0.312	1
12	0.312	2.5	8*	0.312	0.312	1
13	0.312	5	16*	0.312	2.5	8*
14	0.312	2.5	8*	0.312	0.312	1
15	0.312	0.625	2	0.312	0.312	1
Table 3 shows the antimicrobial Susceptibility Panton-Valentine Leukocidin is present in 16 S. aureus isolates.

There is a wide range in the susceptibility of the isolates to the various antibiotics examined. All of the strains are resistant to benzyl penicillin, while other antibiotics (vancomycin, fusidic acid, fosfomycin, and linezolid) are active against some of the strains (Table 3).

Tables 4, 5 and 6 show the comparative study of the antibacterial activity of ethanolic and hydro-ethanolic extracts on the clinical and reference strains. The minimum inhibitory concentration (MIC) values of both extracts against Staphylococcus aureus ATCC 29213 (reference strain) is 0.078 mg/ml.

The minimum bactericidal concentration (MBC) values of both extracts observed against Staphylococcus aureus ATCC 29213 (reference strain) is 0.078 mg/ml. AP (MBC/MIC)=1 for both T. superb extracts. Results shows that both ethanolic extract and hydro-ethanolic extract are bactericidal on the reference strain (Table 4). The minimum inhibitory concentration (MIC) values of ethanolic extract against Staphylococcus aureus PVL+ strains ranged from 0.625 to 2.5 mg/ml. The minimum inhibitory concentration (MIC) values of hydro-ethanolic extract against Staphylococcus aureus PVL+ strains ranged from 0.312 to 0.625 mg/ml.

Ethanolic extract is bacteriostatic on 9 (56.25%) S.aureus PVL+ strains and is bactericidal on 7 (43.75%) S.aureus PVL+ strains.

Hydro-ethanolic extract is bacteriostatic on 3 (18.75%) S.aureus PVL+ strains and is bactericidal on 13 (81.25%) S.aureus PVL+ strains. Hydro-ethanolic extract is more significantly more bactericidal than ethanolic extract (p=0.028) (Table 5).

The minimum inhibitory concentration (MIC) values of ethanolic extract observed against Staphylococcus aureus PVL- strains ranged from 0.312 to 1.25 mg/ml. The minimum inhibitory concentration (MIC) values of hydro-ethanolic extract observed against Staphylococcus aureus PVL- strains ranged from 0.156 to 0.312 mg/ml.

Ethanolic extract is bacteriostatic on 12
(52.17%) Staphylococcus aureus PVL -strains and is bactericidal on 11 (47.83%) Staphylococcus aureus PVL -strains. Hydroethanolic extract is bacteriostatic on 5 (21.74%) Staphylococcus aureus PVL- strains and is bactericidal on 18 (78.26%) Staphylococcus aureus PVL- strains. Hydroethanolic extract is significantly more bactericidal than ethanolic extract (p= 0.032) (Table 6).

T. superba bark extracts (ethanolic and hydroethanolic) possessed bactericidal activity. Flavonoids, saponins and tannins were reported to have antimicrobial activity. Phenolic compounds also have antimicrobial activity via several mechanisms, including adsorption and disruption of microbial membranes, ion deprivation, enzyme interaction, and interaction with membrane transporters (Favela-Hernandez et al., 2015; Cowan, 1999). Previous studies have indicated that T. superba has antimicrobial activities against several microorganisms (Kuete et al., 2010; Tabopda et al., 2009; Kra et al., 2015; Ahon et al., 2011).

In conclusion, T. superba contains chemical molecules such as tannins (catechins, gallic), alkaloids, flavonoids, saponosides, mucilages, reducing compounds, free anthracenics. These active ingredients are used in the treatment of certain human pathologies. We showed here that T. superb extracts had antibacterial activities on Staphylococcus aureus ATCC 29213 and S. aureus isolated from skin infections indicating that T. superba is a potential source of natural antioxidants and antimicrobials compounds.

Acknowledgements

The authors are grateful to Garcia Christopher (Montreal University, Faculty of Medicine) for his critical reading of this paper.

References

Ahon, M. G., J. M. Akapo-Akue, M. A. Kra, J. B. Ackah, N. G. Zirihi and Djaman J. A. 2011. Antifungal activity of the aqueous and hydro-alcoholic extracts of T. superb Engl and Diels on the in vitro growth of clinical isolates of pathogenic fungi. Agriculture and Biology Journal of North America. 2(2): 250-257.

Brand-Williams, W., M. E. Cuvelier and Beres C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-wissenschaft Technologie. 28: 25-30.

Chanda, S., K. Rakholiya and Nair R. 2011. Antimicrobial activity of Terminalia catappa L. leaf extracts against some clinically important pathogenic microbial strains. Chinese Medicine. 2: 171-177.

Cowan, M. M. 1999. Plant products as antimicrobial agents. Clinical Microbiology Reviews. 12 (4): 564-582.

Dongmo, A. B., J. G. Beppe, T. Nole and Kamanyi A. 2006. Analgesic activities of the stem bark extract of Terminalia superba Engl. Et Diels (Combretaceae). Pharmacologyonline. 2: 171-177.

Favela-Hernandez, J. M., A. F. Clemente-Soto, I. Balderas-RenterõÂa, E. Garza-GonzaÂlez and Camacho-Corona M. R. 2015. Potential Mechanism of Action of 3'-Demethoxy-6-O-demethyl-isoguaiaacin on Methicillin Resistant staphylococcus aureus. Molecules. 20 (7): 12450-12458.

Gauduchon, V., S. Werner, G.Prévost, H.Monteil and Colin D. A. 2001. Flow cytometric determination of Panton-Valentine leucocidin S component binding. Infection and Immunity. 69(4): 2390-2395.

Goze, N. B., K. L. Kouakou, N. M. Bléyéré, B. A. Konan, K. A. Amonkan, K. J. C.
Abo and Ehilé E. E. 2014. Calcium antagonist of n-butanol fraction (BuF) from the stem bark of *Terminalia superba* Engl. et Diels (Combretaceae) on rabbit duodenum. Scholars Academic Journal of Pharmacy. 3 (1): 66-72.

Gravet, A., D. A. Colin, D. Keller, R. Girardot, H. Monteil and Prevost G. 1998. Characterization of a novel structural member, LukE-LukD, of the bi-component staphylococcal leucotoxins family. FEBS Letters. 436(2):202–208.

Houghton, P. J., and Raman A. 1998. Laboratory Handbook for the Fractionation of Natural Extracts. Chapman and Hall, New York, United States of America. p. 139.

Kouakou, K. L., N. B. Goze, N. M. Bleyere, B. A. Konan, K. A. Amonkan, K. J. C Abo, A. P. Yapo and Ehile E. E. 2013. Acute toxicity and anti-ulcerogenic activity of an aqueous extract from the stem bark of *Terminalia superb* Engl. and Diels (Combretaceae). World Journal of Pharmaceutical Sciences. 1(4): 117-129.

Kouitcheu, L. B. M., J. L. Tamesse and Kouam J. 2013. The anti-shigellosis activity of the methanol extract of *Picralima nitida* on *Shigella dysenteriae* type I induced diarrhoea in rat. BMC Complementary and Alternative Medicine. 13: 211

Kra, A. K. M., S. Siaka, G. M. Ahon, A. B. B. Kassi, S. Ouattara, A. W. Sadat, A. Coulibaly, Y. Soro and Djaman A. J. 2015. Antifungal activity of *Terminalia superba* (Combretaceae). Journal of Experimental Biology and Agricultural Sciences. 3(2): 162-173.

Kuete, V., T. K. Tabopda, B. Ngameni, F. Nana, T. E. Tshikalange and Njadui B. T. 2010. Antimycobacterial, antibacterial and antifungal activities of *Terminalia superba* (Combretaceae). South African Journal of Botany. 76(1):125-131.

Mahady, G. B. 2005. Medicinal plants for the prevention and treatment of bacterial infections. Current Pharmaceutical Design. 11(19): 2405-2427.

Momo, C. E. N., A. F. Ngwa, G. I. F. Dongmo and Oben JE. 2009. Antioxidant properties and α-amylase inhibition of *Terminalia superba*, *Albizia sp., Cola nitida, Cola odorata* and *Harungana madagascarensis* used in the management of diabetes in Cameroon. Journal of Health Science. 55(5): 732-738.

Negro, C., L. Tommasi and Miceli A. 2003. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresource Technology. 87(1): 41-44.

Ogbonnia, S.O., O.O. Obia, E. N.Anyika, J. E. Emordi and Nwakakwa N. 2011. An evaluation of acute and subchronic toxicities of a Nigerian polyherbal tea remedy. Pakistan Journal of Nutrition. 10: 1022-1028.

Prévost, G., P. Couppie, P. Prévost, S. Gayet, P. Petiau, B. Cribier, H. Monteil and Piemont Y. 1995. Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. Journal of Medical Microbiology. 42 (4):237–245.

Ribeiro, A. B., A. Berto, D. Ribeiro, M. Freitas, R. C. Chiste, J. V. Visentainer and Fernandes E. 2015. Stem bark and flower extracts of *Visnia cauliflora* are highly effective antioxidants to human blood cells by preventing oxidative burst in neutrophils and oxidative damage in erythrocytes. Pharmaceutical Biology. 53 (11): 1691-1698.

Sauvion, N., P. A. Calatayud and D. Thiéry, F. 2013. Marion-Poll. Interactions insectes-plantes. IRD, Quae. pp 224-226.

Sina, H., T. A. Ahoyo, W. Moussaoui, D.
Keller, H. S. Bankolé, Y. Barogui, Y. Stienstra, S. O. Kotchoni, G. Prévost and Baba-Moussa L. 2013. Variability of antibiotic susceptibility and toxin production of Staphylococcus aureus strains isolated from skin, soft tissue, and bone related infections. BMC Microbiology. 13:188.

Stankovic, M. S., M. G. Curcic, J. B. Zizic, M. D. Topuzovic, S. R. Solujic and Markovic S. D. 2011. Teucrium plant species as natural sources of novel anticancer compounds: antiproliferative, proapoptotic and antioxidant properties. International Journal of Molecular Sciences. 12(7): 4190-4205.

Talbi, H., A. Boumaza, K. El-mostafa, J. Talbi and Hilali A. 2015. Evaluation de l’activité antioxydante et la composition physico-chimique des extraits méthanolique et aqueux de la Nigella sativa. Journal of Materials and Environmental Science. 6 (4): 1111-1117.

Tabopda, T. K., J. Ngoupayo, T. S. A. Khan, A. C. Mitaine-Offer, B. T. Ngadjui, M. S. Ali, B. Luu, Lacaille-Dubois M. A. 2009. Antimicrobial pentacyclic triterpenoids from Terminalia superba. PlantaMedica. 75(5): 522-527.

The Clinical and Laboratory Standards Institute [CLSI] (2015). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Approved Standard-M02-A12. Wayne, PA: The Clinical and Laboratory Standards Institute.

Vârban, D. I., M. Duda, R. Vârban and Muntean S. 2009. Research Concerning the Organic Technology for Satureja hortensis L. Culture. Bulletin UASVM Agriculture. 66(2): 225-229.

Wintola O. A. and Afolayan, A. J. 2015. The antibacterial, phytochemicals and antioxidants evaluation of the root extracts of Hydnora Africana Thunb. used as antidysenteric in Eastern Cape Province, South Africa. BMC Complementary and Alternative Medicine. 15: 307.

Zengin, G., G. Guler and Cakmar Y. 2011. Antioxidant capacity and fatty acid profile of Centaurea kotschyi (Boiss. &Heldr.) Hayek var. persica (Boiss.). Wagenitz from Turkey. Grasas y aceites. 62(1): 90-95.

Zhu, M., K. T. Lew and Leung P. 2002. Protective effects of plant formula on ethanol-induced gastric lesions in rats. Phytotherapy Research. 16(3): 276-280.

How to cite this article:
Kougnimon Fifamè Espérance Elvire, Akpovi Dewanou Casimir, Dah-Nouvlessounon Durand, Boya Bawa, Baba Moussa Lamine and Loko Frédéric 2018. Antioxidant and Antibacterial Activities of Terminalia superba Engl. & Diels (Combretaceae) Bark Extracts. Int.J.Curr.Microbiol.App.Sci. 7(07): 2836-2846. doi: https://doi.org/10.20546/ijcmas.2018.707.332