Drug-susceptible tuberculosis treatment success and associated factors in Ethiopia from 2005 to 2017: a systematic review and meta-analysis

Mohammed Assen Seid, Mohammed Biset Ayalew, Esileman Abdela Muche, Eyob Alemayehu Gebreyohannes, Tadesse Melaku Abegaz

ABSTRACT

Objectives The main aim of this study was to assess the overall tuberculosis (TB) treatment success in Ethiopia and to identify potential factors for poor TB treatment outcome.

Design A systematic review and meta-analysis of published literature was conducted. Original studies were identified through a computerised systematic search using PubMed, Google Scholar and Science Direct databases. Heterogeneity across studies was assessed using Cochrane’s Q test and I² statistic. Pooled estimates of treatment success were computed using the random-effects model with 95% CI using Stata V.14 software.

Results A total of 230 articles were identified in the systematic search. Of these 34 observational studies were eligible for systematic review and meta-analysis. It was found that 117,750 patients reported treatment outcomes. Treatment outcomes were assessed by World Health Organization (WHO) standard definitions of TB treatment outcome. The overall pooled TB treatment success rate in Ethiopia was 86% (with 95% CI 83%–88%). TB treatment success rate for each region showed that, Addis Ababa (93%), Oromia (84%), Amhara (86%), Southern Nations (83%), Tigray (85%) and Afar (86%). Mainly old age, HIV co-infection, retreatment cases and rural residence were the most frequently identified factors associated with poor TB treatment outcome.

Conclusion The result of this study revealed that the overall TB treatment success rate in Ethiopia was below the threshold suggested by WHO (90%). There was also a discrepancy in TB treatment success rate among different regions of Ethiopia. In addition to these, HIV co-infection, older age, retreatment cases and rural residence were associated with poor treatment outcome. In order to further improve the treatment success rate, it is strategic to give special consideration for regions which had low TB treatment success rate for both quantitative and qualitative synthesis was considered as the major strength of this study.

INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by a bacteria called Mycobacterium tuberculosis. It is a preventable and curable disease mainly transmitted through air from person to person. Majorly, it affects the lungs, but it can also damage other organs in the body. Common symptoms of active lung TB are cough with sputum and blood, chest pains, weakness, weight loss, fever and night sweats.1–2

TB is the ninth leading cause of death globally and the leading cause from a single infectious agent, ranking above HIV/AIDS. In 2016, it was responsible for an estimated 1.3 million and 374,000 deaths among HIV-negative and HIV-infected people, respectively.3 It is also the number one cause of death among HIV-infected individuals with an estimated two-fifth deaths among HIV-infected individuals being due to TB.1

Ethiopia is among the countries where TB is highly prevalent. WHO prepared three lists of countries based on the burden of TB, TB/HIV co-infection and multidrug-resistant TB (MDR-TB). Accordingly, Ethiopia is among the 14 countries where there is high burden of TB, TB/HIV co-infection and MDR-TB. Even though the incidence of TB decreased by 54% and mortality because of TB decreased by 72% in the country in 2015,4 4000 deaths among HIV-infected individuals and 26000 deaths among HIV-negative individuals still occurred in 2016.5 The decline in the incidence and mortality could in part be attributed to improvement in the
TB detection rate,4 provision of isoniazid preventive therapy for HIV-infected individuals5 and early initiation of antiretroviral therapy (ART),6 a community-based package involving health extension workers.7

Since the discovery of the first anti-TB drug, streptomycin, in 19438 and the few drugs that followed (isoniazid, rifampicin, ethambutol and pyrazinamide), drug development for drug-susceptible TB has lagged.8,9 As a result, the same anti-TB drug regimen that was first introduced half a century ago is being used today in the management of active, drug-susceptible TB.10 A 6-month course of four anti-TB drugs is used as a standard treatment for active, drug-susceptible TB disease. Isoniazid and rifampicin serve as the backbone of this regimen, with ethambutol and pyrazinamide given in the first 2 months of treatment.1,3,11 However, treatment success could be compromised by poor adherence mainly due to the long treatment period and the development of drug-resistant TB ultimately from the inadequate treatment of active TB.9,11 In Ethiopia, this four-drug, 6-month and 9–12-month regimen is also recommended as a first-line drug for the treatment of active drug-susceptible pulmonary TB and extrapulmonary TB (EPTB), respectively.12

Currently, the global TB treatment success rates were 83% for drug-susceptible TB, 78% for HIV-associated TB, 54% for MDR-TB and 30% for extensively drug-resistant TB.3 The WHO Global Plan aimed to achieve three 90-(90)−90 TB control program targets at least by 2025, such as: reach 90% of all people who need TB treatment, including 90% of people in key populations, and achieve at least 90% TB treatment success rate.13

According to the WHO report, Ethiopia is among the four countries where treatment outcomes of more than 10% of TB cases were not evaluated and documented.3 Even though there has been a recent systematic review on TB treatment outcome in Ethiopia,14 it doesn’t clearly assess the overall drug-susceptible TB treatment outcome independently and it also emphasis only on limited factors which associated with TB treatment outcome. In addition to this, there have also been several single studies published on TB treatment outcome in Ethiopia. However, there is a paucity of evidence regarding

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram showing the selection of studies for a systematic review on tuberculosis treatment success in Ethiopia, 2017. MDR, multidrug resistant; TB, tuberculosis.
Table 1 Tuberculosis (TB) treatment outcomes according to WHO and National Tuberculosis and Leprosy Control Programme (NTLCP) guidelines

Outcome	Definition
Cured	A patient with TB with bacteriologically confirmed TB at the beginning of treatment who was smear-negative or culture-negative in the last month of treatment and on at least one previous occasion.
Treatment completed	A patient with TB who completed treatment without evidence of failure, but with no record to show that sputum smear or culture results in the last month of treatment and on at least one previous occasion were negative, either because the tests were not done or because results are unavailable.
Treatment failed	A patient with TB whose sputum smear or culture is positive at month 5 later during treatment.
Died	A patient with TB who dies for any reason before starting or during the course of treatment.
Defaulter	A patient who has been on treatment for at least 4 weeks and whose treatment was interrupted for eight or more consecutive weeks.
Not evaluated	A patient with TB for whom no treatment outcome is assigned. This includes cases “transferred out” to another treatment unit as well as cases for whom the treatment outcome is unknown to the reporting unit.
Treatment success	The sum of cured and treatment completed.

Outcomes were reported according to the WHO definition of treatment success (cure or treatment completion), failure, default and death.\cite{15}

Exclusion criteria
The following articles were excluded from this review: studies that focus on treatment outcome of patients with MDR-TB; studies that focus on both MDR-TB cases and drug-susceptible TB cases together; studies where full articles were no longer accessed and studies done outside Ethiopia. The selection of articles for review was done in three stages: looking at the titles alone, then abstracts and then the full text (figure 1).

Definitions of TB treatment outcomes
To classify treatment outcomes of patients with TB, the WHO and National Tuberculosis and Leprosy Control Programme (NTLCP) guidelines' standard definitions were used\cite{15, 16} (table 1).

Data extraction and review process
All of the research articles that were identified from searches of the electronic databases were imported into the ENDNOTE software V.X5 (Thomson, Thomson Reuters, USA) and duplicates were removed. Before data extraction had begun, full-length articles of the selected studies were read to confirm the fulfilment of the inclusion criteria. Then, data extraction was performed by three authors (MAS, MBA and EAM) independently. The selected studies were reviewed to extract data like: year of publication; author(s); study design; sample size; type of TB (smear-negative pulmonary TB (PTB), smear-positive pulmonary TB (PTB\x27) and EPTB); HIV status; TB treatment outcomes; geographical location of the study area, and factors affecting TB-treatment outcome (p value of <0.05). When there was a disagreement in data extraction between the reviewers, it was resolved through discussion and mutual agreement between the investigators.

Methodological quality assessment
All reviewers (MAS, MBA, EAM, EAG and TMA) independently assessed the methodological quality of included studies by using the Newcastle-Ottawa Scale (NOS).\cite{17, 18} The studies which have at least five NOS criteria were considered to be high-quality studies (online supplementary file 2).

Statistical analysis and heterogeneity
Statistical analyses were carried out by using Stata V.14 (Stata Corp, College Station, Texas, USA) software\cite{19} to estimate the pooled treatment success rate. Statistical heterogeneity between studies was evaluated using Cochran’s Q test and the I² statistic.\cite{20} Random-effects meta-analyses were used to combine the results of included studies, and was measured as proportions of treatment outcomes with 95% CIs. The detailed description of the original studies was presented in a table and forest plot.

the overall drug-susceptible TB treatment success at the country level. Therefore, we aimed to get stronger evidence from the available literature regarding drug-susceptible TB treatment success and to identify all potential factors reported that are associated with poor TB treatment outcome in Ethiopia.

MATERIALS AND METHODS

Study design and search strategies
A systematic review and meta-analysis of published observational studies was conducted. Original studies providing information on the treatment outcomes of patients with TB were identified through a computerised systematic search using PubMed, Google Scholar and Science Direct databases. A combination of keywords and phrases like: ‘tuberculosis OR TB’, ‘treatment OR management’, ‘Anti-TB’, ‘outcomes’, ‘treatment success’, ‘smear-positive’, ‘smear-negative’, ‘Extra-pulmonary-TB’ and ‘Ethiopia’ were used to search articles in the databases (online supplementary file 1). The literature search, review and data extraction were performed from February to September 2017. Articles were retrieved up to 15 March 2017. Only those articles written in English language and conducted in Ethiopia were considered for this review.

Inclusion criteria
Observational studies fulfilling the following criteria were included in this study: studies reported as original articles; studies done on TB treatment outcomes; studies conducted in Ethiopia and written in English. References from the selected studies were also cross-checked to confirm that no relevant studies were excluded.
Patient and public involvement
This is a systematic review and meta-analysis, there were no direct involvement of patients and/or the public in this study.

Ethical consideration
This study was carried out in strict accordance with the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Since it is a systematic review and meta-analysis, ethics committee or institutional review board permission was not sought.

RESULTS

Literature search results
An electronic search gave a total of 230 articles. Among these 70 were found to be duplicated. Then the titles of 160 articles were checked and 121 were found irrelevant. Five articles were excluded after checking their abstracts. Finally, 34 articles were selected for inclusion in the meta-analysis (figure 1).

Authors	Year of publication	Study design	Duration in years	Study area	Sample size	HIV (%)
Ali et al	2016	Cross-sectional study	1	Addis Ababa	575	29.4
Amante et al	2015	Case-control study	5	Oromia	976	18.3
Asebe et al	2015	Retrospective cohort study	2.5	SNNPR	1156	24.2
Asres et al	2016	Cross-sectional study	7	SNNPR	846	9.1
Balcha T et al	2015	Cohort study	3	Oromia	439	100
Belayneh et al	2016	Retrospective cohort study	5	Amhara	403	38.5
Belayne et al	2015	Cross-sectional study	2.7	Tigray	342	100
Berhe et al	2012	Cross-sectional study	3	Tigray	407	8.6
Birle et al	2015	Retrospective cohort study	5	North-East Ethiopia	810	17.4
Dangisso et al	2014	Retrospective trend analysis	10	Southern Ethiopia	37070	–
Ejeta et al	2015	Retrospective cohort study	5	Western Ethiopia	1175	17.1
Endris et al	2014	Cross-sectional study	5	Amhara	417	5.8
Gebreeziabher S et al	2016	Prospective cohort	1.7	Amhara	706	11.6
Gebremariam et al	2016	Retrospective cohort study	6	Oromia	1649	9.5
Gebregeziabher et al	2016	Cross-sectional study	5.4	SNNPR	1537	–
Getahun et al	2013	Retrospective cohort study	5	Addis Ababa	6450	–
Haiu et al	2014	Cross-sectional study	5	Addis Ababa	2708	12.0
Hamusse et al	2015	Retrospective cohort study	15	Central Ethiopia	14221	2.0
Ketema et al	2014	Retrospective cohort study	3	Oromia	2226	9.7
Mekonnen et al	2016	Cross-sectional study	4	Amhara	949	23.9
Meiese et al	2016	Cross-sectional study	5	Amhara	339	12.7
Moses et al	2015	Cross-sectional study	5	Amhara	181	–
Mokenen D. et al	2015	Cross-sectional study	4	Amhara	990	23.8
Munoz-Sellart et al	2009	Cross-sectional study	5	SNNPR	851	–
Munoz-Sellart et al	2010	Retrospective audit	5.8	SNNPR	6547	–
Shargie et al	2005	Retrospective trend analysis	7	SNNPR	19971	–
Sinshaw et al	2017	Cross-sectional study	5.5	Amhara	308	100
Teferra et al	2016	Cross-sectional study	5	Amhara	1280	20.5
Tesfahuneygn et al	2015	Cross-sectional study	5.5	North-East Ethiopia	4275	13.7
Tessama et al	2009	Cross-sectional study	5	Amhara	4000	–
Tilahun et al	2016	Retrospective cohort study	5	Addis Ababa	491	16.7
Workneh et al	2016	Prospective cohort study	1.6	Amhara	1314	19.9
Zenebe T et al	2016	Cross-sectional study	2	Afar	380	47.6
Zenebe Y et al	2016	Cross-sectional study	5	Amhara	1761	3.5

SNNPR, Southern Nations, Nationalities, and Peoples’ Region.
Study Id	Authors	Successful treatment outcome	Unsuccessful treatment outcome	Successful treatment outcome (%)	Cured	Treatment completed	Defaulted	Treatment failure	Died	Transferred out
1.	Ali et al²²	526	49	91.5	106	420	15	7	27	0
2.	Amante et al⁵⁵	646	330	66.2	NR	NR	100	18	212	0
3.	Asebe et al⁴	814	144	85	262	552	97	4	43	198
4.	Asres et al²³	695	88	88.8	162	533	41	1	46	0
5.	Balcha T et al⁸²	349	59	85.5	NR	NR	32	0	27	31
6.	Belayneh et al²⁵	318	29	91.6	76	242	7	2	20	56
7.	Belayneh et al⁶⁴	242	100	70.7	43	199	7	5	88	0
8.	Berhe et al⁵⁵	361	44	89.1	343	18	13	15	16	6
9.	Birie et al⁴⁶	685	68	91	103	582	2	6	60	57
10.	Dangisso et al²⁶	30300	4552	87	14147	16153	3263	92	1197	2087
11.	Ejeta et al⁴⁹	832	181	82	170	662	84	2	95	162
12.	Endris et al²⁷	379	21	94.8	77	302	5	2	14	17
13.	Gebregziabher S et al⁴³	656	49	93	310	346	11	10	28	0
14.	Gebremariam et al⁴⁸	1437	94	93.9	421	1016	28	7	59	115
15.	Gebrezgabher et al²⁶	1310	227	85.2	181	1129	171	4	52	0
16.	Getahun et al⁹	5331	590	90	1167	4164	328	26	236	351
17.	Hailu et al²⁹	2193	188	92.1	169	2024	99	6	83	184
18.	Hamusse et al⁴⁰	11888	2333	83.6	9608	2280	1215	70	1048	0
19.	Ketema et al⁵¹	2043	114	94.7	1906	137	27	24	63	69
20.	Mekonnen et al³⁰	853	96	89.9	132	721	28	21	47	0
21.	Melese et al³¹	264	39	87.1	67	197	8	12	19	36
22.	Moges et al²²	127	13	90.7	36	91	9	3	1	41
23.	Mokenen D et al³³	853	107	88.9	NR	NR	NR	NR	NR	30
24.	Munoz-Sellart et al⁴⁴	655	139	82.5	NR	NR	NR	NR	NR	49
25.	Munoz-Sellart et al⁴⁵	4900	1095	81.7	NR	667	24	404	552	0
26.	Shargie et al³⁶	8268	3708	69	NR	NR	3152	110	446	2000
27.	Sinshaw et al³⁷	238	70	77.3	32	206	37	2	31	0
28.	Tefera et al⁴⁸	1016	129	88.7	203	813	23	4	102	135
29.	Tesfahuneygn et al³⁹	3853	215	94.7	491	3362	76	13	126	207
30.	Tessema et al⁴³	1181	1139	50.9	NR	NR	730	6	403	1680
31.	Tilahun et al³³	420	14	96.8	NR	NR	3	2	9	55
Clinical characteristics of patients

A total of 117,750 patients with TB were included in the 34 studies. Of these, 51% (59,916) patients with TB had PTB+, 21% (24,428) had PTB− and 17.3% (20,400) had EPTB. In this review around 5,357 patients had TB-HIV co-infection which is reported by 26 studies. The remaining studies did not provide evidence for TB-HIV co-infection. The detailed description of individual study characteristics is mentioned in Table 2.

TB treatment outcome in Ethiopia

This review showed that TB treatment success rate varies from 51% to 95%. Table 3 shows the detailed description of cure, treatment completed, defaulted, treatment failure, died and transferred out from individual included studies (table 3).

Meta-analysis

The Funnel plot depicted in figure 2 showed that there is symmetry between the studies and no significant publication bias was seen, or small study effect was insignificant. The sensitivity analysis also showed the absence of an excessive influence of individual studies. The point estimates calculated after omission of each study one by one lies within the CI of the ‘combined’ analysis (online supplementary file 3) (figure 2).

The overall estimate of TB treatment success

As indicated in the following forest plot the overall drug-susceptible TB treatment success rate in Ethiopia is 86% (95% CI 83% to 88%) (figure 3). Subgroup analysis based on the study area showed that Addis Ababa (93%), Oromia (84%), Amhara (86%), SNNPR (83%), Tigray (85%) and Afar (86%) had TB treatment success rate (figure 4). The finding of this study also showed that TB
treatment outcome in Ethiopia was improving over time. The subgroup analysis showed that TB treatment success from 2005 to 2010 was 71%, from 2011 to 2015 it was 87% and from 2016 to 2017 it was 89% (figure 5).

Factors significantly associated with poor treatment outcome

As indicated in table 4, different demographic and clinical characteristics were reported by the reviewed studies as having a significant association with poor TB treatment outcome (p < 0.05). Among these the most frequently mentioned were old age, HIV co-infection, retreatment case and rural residence.

DISCUSSION

TB treatment outcome is one of the performance indicators of the effectiveness of TB control programmes.40
Study, Region	ES	[95% Conf. Interval]	% Weight	
Addis Ababa				
Ali et al.	0.91	0.89	0.93	2.95
Getahun et al.	0.90	0.89	0.91	3.01
Mailu et al.	0.92	0.91	0.93	3.00
Tilahun et al.	0.97	0.95	0.98	2.98
Sub-total				
Random pooled ES	0.93	0.90	0.95	11.95
Oromiya				
Amante et al.	0.66	0.63	0.69	2.91
Balcha T et al.	0.86	0.82	0.89	2.87
Ejeta et al.	0.82	0.80	0.84	2.95
Gebremaryam et al.	0.94	0.93	0.95	3.00
Hamusse et al.	0.84	0.83	0.84	3.01
Ketema et al.	0.95	0.94	0.96	3.01
Sub-total				
Random pooled ES	0.84	0.78	0.91	17.75
SNNPR				
Asebe et al	0.85	0.83	0.87	2.95
Aseer et al.	0.89	0.86	0.91	2.96
Dangisse et al.	0.87	0.87	0.87	3.02
Gebresgabher et al.	0.85	0.83	0.87	2.98
Munos-Sellart et al.	0.82	0.80	0.85	2.93
Munos-Sellart et al.	0.82	0.81	0.83	3.01
Sharige et al.	0.69	0.68	0.70	3.01
Sub-total				
Random pooled ES	0.83	0.76	0.89	20.85
Amhara				
Belayneh et al.	0.92	0.88	0.94	2.91
Birli et al.	0.91	0.89	0.93	2.96
Endris et al.	0.95	0.92	0.97	2.96
Gebregziabher et al.	0.93	0.91	0.95	2.97
Mekonnen et al.	0.90	0.88	0.92	2.97
Melesse et al.	0.87	0.83	0.90	2.84
Moges et al.	0.91	0.85	0.94	2.75
Mokenen D. et al.	0.89	0.87	0.91	2.97
Sinshaw et al.	0.77	0.72	0.82	2.76
Tefera et al.	0.89	0.87	0.90	2.97
Tessema et al.	0.51	0.49	0.52	2.97
Workneh et al.	0.93	0.92	0.95	2.99
Zenebe et al.	0.81	0.78	0.84	2.91
Sub-total				
Random pooled ES	0.86	0.79	0.93	37.94
Tigray				
Belayneh et al.	0.71	0.66	0.75	2.74
Berhe et al.	0.89	0.86	0.92	2.90
Tesfahuneygn et al.	0.95	0.94	0.95	3.01
Sub-total				
Random pooled ES	0.85	0.74	0.96	8.66
Afar				
Zenebe et al.	0.86	0.82	0.89	2.87
Overall				
Random pooled ES	0.86	0.83	0.88	100.00

Figure 4 Subgroup analysis of success of tuberculosis treatment in the different regions of Ethiopia.
This systematic review and meta-analysis was conducted mainly to estimate the pooled treatment success rate of patients with drug-susceptible TB in Ethiopia. This review identified 34 studies (from 2005 to 2017) that assessed the treatment outcomes of drug-susceptible TB. All the studies included were observational studies which were conducted in different regions of Ethiopia; Amhara, Addis Ababa, Tigray, Oromia, Afar and Southern Nations, Nationalities and Peoples’ Region (SNNPR). The inclusion of studies conducted in various parts of Ethiopia makes this review representative to figure out the overall TB treatment success rate in the country. We analysed data from these studies which reported on treatment outcomes for a total of 117,750 patients with TB. All the included studies used NTLCP guidelines to define TB treatment outcomes which were adopted from WHO.15 16

The result of this study showed that the pooled estimate of TB treatment success rate of drug-susceptible TB in Ethiopia is 86% (95% CI 83% to 88%). This pooled TB treatment success rate was lower than the Ethiopian National Strategic Plan (2010–2015) treatment success target of 90%56 and WHO 2030 international target of ≥90%.3 This study result is relatively higher compared with a recent review done in Ethiopia which was 83.7%.14 According to the 2017 WHO global TB report, Ethiopia achieved a TB treatment success rate of only 84% for new TB cases when compared with the

![Figure 5](http://bmjopen.bmj.com/)

Subgroup analysis of success of tuberculosis treatment based on year of publication.
Table 4 Factors which had a significant association with poor tuberculosis treatment outcome

Authors	Reported factors
Ali et al	Age >65 years, PTB*
Amante et al	Lack of person to be contacted at a time of treatment interruption, sputum smear-negative diagnosis, HIV-positive status
Asebe et al	The age group 45–64 years had significantly lower treatment success rate
Asres et al	Older, rural dwellers and HIV-positive
Balcha T et al	Low mean upper arm circumference (MUAC)
Belayneh et al	NR
Belayneh et al	Having low baseline CD4 count (less than 200 cells/L), to be at WHO stage IV
Berhe et al	Older age, family sizes greater than five persons, unemployed and retreatment cases
Birlie et al	Old age, of low baseline body weight and in TB/HIV co-infected patients
Dangisso et al	PTB− cases, older than 65 years, retreatment cases
Ejeta et al	HIV sero-status, smear result follow-up at the second, fifth and seventh months
Endris et al	No significantly associated factors
Gebreegziabher et al	HIV-positive
Gebremariam et al	Patients without known HIV status, HIV-positive patients with TB
Gebrezgabiher et al	PTB−, rural residence, EPTB, 55–64 years old
Getahun et al	NR
Hailu et al	PTB−, HIV co-infection and unknown HIV sero-status
Hamusse et al	Patients aged 25–49 years, >50 years, retreatment cases and TB/HIV co-infection
Ketema et al	HIV-positive patients who remained sputum smear-positive at the end of month 2 and patients who reported missed doses
Mekonnen et al	PTB−, HIV-positive
Melese et al	Female, rural resident, negative smear result at the second month of treatment
Moges et al	NR
Mokenen D. et al	NR
Munoz-Sellart et al	Age <5 years, living in a rural area, lack of smear conversion in the second month
Munoz-Sellart et al	Having a positive smear at the second month of follow-up, PTB−, age >55 years, and being male

All the factors included in this table had a p value <0.05 in each study report.

EPTB, extrapulmonary tuberculosis; NR, not reported; PTB, pulmonary tuberculosis; PTB−, smear-positive PTB; PTB−, smear-negative PTB.

High TB burden countries reached or exceeded a 90% treatment success rate such as; Cambodia (94%), China (94%), Pakistan (93%), Bangladesh (93%), Vietnam (92%), Philippines (91%) and Korea (90%).3 Even though the treatment success rate was below the target, this systematic review and meta-analysis result was good compared with the WHO report. This might be a clue indicating that Ethiopia is within the track of WHO treatment success target currently. However, a collaborative effort among healthcare providers and policy makers is crucial for achieving both national and international treatment targets. The success rate of TB treatment in the different regions of Ethiopia was also evaluated in this study. Pooled estimate results showed that the lowest treatment success rate of 83% (95% CI 76% to 89%) was in the SNNPR region of Ethiopia.23 26 28 34–36 44 and the highest success rate was in Addis Ababa (capital city of Ethiopia), that is, 93% (95% CI 90% to 95%).22 29 49 53 This might be due to the differences in the quality of healthcare facilities, the health-seeking behaviour/awareness of the population towards TB in each region, the emphasis given by regional governments and policy makers towards TB control programmes, and so on.57 58 Therefore, close supervision of each TB control programme is required to achieve effective nationwide TB control.

There are so many challenges stated as factors that affect TB treatment outcomes.57–59 The results of this review showed that different demographic and clinical characteristics were reported to have significant association with poor TB treatment outcome in
older age and retreatment were significantly associated with poor outcome of TB treatment. In the current study around 33% patients with TB were HIV-positive. Being HIV-positive lowered the chances of successful treatment outcome. Globally, the treatment success rate of HIV-positive new and relapse TB cases was 78% and HIV significantly affects the overall TB treatment success rate which is reported by other similar studies done in Ethiopia, Somalia, Uzbekistan and Turkey. Furthermore similar studies done in Ethiopia, Finland and South Korea also reported that older age and retreatment were significantly associated with poor TB treatment outcome.

In spite of such imperative findings, this study is not without limitations; all the included studies were observational studies; there were differences in the study design among the studies; and studies included were limited to Addis Ababa, Amhara, Oromia, SNNPR, Tigray and Afar. Therefore, interpretation of the results of this review should take into consideration of these limitations.

CONCLUSION

This systematic review and meta-analysis revealed that the success rate of drug-susceptible TB treatment in Ethiopia is below the WHO global target (90%) and there is also a discrepancy in TB treatment success rate among different regions of Ethiopia. In addition to these, HIV co-infection, older age, retreatment cases and rural residence were factors reported most frequently that had a significant association with poor outcome of TB treatment. The overall TB treatment success rate obtained in this study, which is closer to the WHO target, is an indicator of the good efforts in the country initiated against TB. In order to further improve the success rate of TB treatment, it is necessary to make a strategic plan for improving the treatment outcome in patients with TB with HIV co-infection, older patients, patients residing in rural areas and retreatment cases. Special consideration should also be given to regions that had a lower TB treatment success rate.

Contributors MAS and MBA conceptualised the research, developed the protocol, conducted the literature search, assessed potentially relevant studies for inclusion into the review, assessed the methodological quality of the included studies, independently extracted the data, performed the statistical analysis, and drafted the manuscript. MAS critically reviewed the manuscript, and wrote the final manuscript. Details are available from the corresponding author on request.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All data generated and research materials used during this systematic review and meta-analysis are available from the corresponding author on reasonable request.

REFERENCES

1. World Health Organization. 2017. Tuberculosis, fact sheet http://www.who.int/mediacentre/factsheets/fs104/en/ (updated Oct 2017).
2. Churchyard G, Kim P, Shah NS, et al. What we know about tuberculosis transmission: an overview. *J Infect Dis* 2017;216:S62–S635.
3. World Health Organization. Global tuberculosis report 2017. Geneva: World Health Organization, 2017.
4. Atieno HT, Mourek MS, Debrey TP, et al. Isoniazid prophylactic therapy for the prevention of tuberculosis in HIV infected adults: a systematic review and meta-analysis of randomized trials. *PLoS One* 2015;10:e0142290.
5. Abay SM, Deribe K, Reda AA, et al. The effect of early initiation of antiretroviral therapy in TB/HIV-coinfected patients: a systematic review and meta-analysis. *J Int Assoc Provid AIDS Care* 2015;14:560–70.
6. Datoiko DG, Yassin MA, Theobald SJ, et al. Health extension workers improve tuberculosis care finding and treatment outcome in Ethiopia: a large-scale implementation study. *BMJ Glob Health* 2017;2:e000390.
7. Keshavjee S, Farmer PE. Tuberculosis, drug resistance, and the history of modern medicine. *N Engl J Med* 2012;367:901–6.
8. Tiberi S, Buchanan R, Caminer L, et al. The challenge of the new tuberculosis drugs. *La Presse Médicale* 2017;46:e41–51.
9. Vasava MS, Bhoi MN, Rathwa SK, et al. Drug development against tuberculosis: past, present and future. *Indian J Tuberc* 2017;64:252–75.
10. Ma Z, Liennhardt C, McIlneron H, et al. Global tuberculosis drug development pipeline: the need and the reality. *Lancet* 2010;375:2100–9.
11. Food, Medicine and Healthcare Administration and Control Authority of Ethiopia. Standard Treatment Guidelines for General Hospital. 3rd edn. Addis Ababa, Ethiopia, 2014.
12. Stop TB Partnership. The paradigm shift, Global Plan to End TB, 2016–2020. Geneva: Switzerland: WHO, 2016.
13. Esthebe S, Gizachew M, Abeleb M, et al. Tuberculosis treatment outcomes in Ethiopia from 2003 to 2016, and impact of HIV co-infection and prior drug exposure: a systematic review and meta-analysis. *PLoS One* 2018;13:e0194675.
14. World Health Organization. Definitions and reporting framework for tuberculosis–2013 revision. Geneva, 2016. (updated Dec 2014).
15. Federal Ministry of Health. Guidelines for clinical and programmatic management of TB, HIV and Leprosy in Ethiopia. Addis Ababa, 2012.
16. Wells G, Shea B, O’connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa (ON): Ottawa Hospital Research Institute, 2009.
17. Herzog R, Álvarez-Pasquin MJ, Díaz C, et al. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. *BMJ Public Health* 2013;13:154.
18. StataCorp L. Stata Statistical Software: Release 14 computer program: StataCorp LP, 2015.
19. Huedo-Medina TB, Sánchez-Meca J, Marin-Martínez F, et al. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? *Psychol Methods* 2006;11:193–206.
20. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009;6:e1000097.
21. Ali SA, Mavundla TR, F Anita, R, et al. Outcomes of TB treatment in HIV co-infected TB patients in Ethiopia: a cross-sectional analytic study. *BMCI Infect Dis* 2016;16:640.
22. Asres A, Jerene D, Deressa W. Tuberculosis treatment outcomes of six and eight month treatment regimens in districts of Southwestern Ethiopia: a comparative cross-sectional study. *BMCI Infect Dis* 2016;16:653.
23. Belayneh M, Giday K, Lemma H. Treatment outcome of human immunodeficiency virus and tuberculosis co-infected patients in Ethiopia. 22–31 34–37 39–44 46 47 50–55

Seid MA, et al. BMJ Open 2018;8:e022111. doi:10.1136/bmjopen-2018-022111
public hospitals of eastern and southern zone of Tigray region, Ethiopia. *Braz J Infect Dis* 2015;19:47–51.

25. Berhe G, Enquelasalasie F, Aseffa A. Treatment outcome of smear-positive pulmonary tuberculosis patients in Tigray Region, Northern Ethiopia. *BMC Public Health* 2014;14:2023.

26. Danku E, Ladjou D, Lindtjorn B. Trends of tuberculosis case notification and treatment outcomes in the Sidama Zone, southern Ethiopia: ten-year retrospective trend analysis in urban-rural settings. *PLoS One* 2014;9:e114225.

27. Endris M, Moges F, Belyahu Y. et al. Treatment outcome of tuberculosis patients at Enfraz health center, northwest ethiopia: a five-year retrospective study. *Tuberc Res Treat* 2014;2014:1–7.

28. Gebregziabher G, Romha G, Ejeta E. et al. Treatment Outcome of Tuberculosis Patients under Directly Observed Treatment Short Course (DOTS) in Northern Ethiopia: A Retrospective Study. *Tuberc Res Treat* 2014;2014:1–8.

29. Moges B, Amare B, Yismaw G. et al. Prevalence of tuberculosis and treatment outcome among university students in Northeast Ethiopia: a retrospective study. *BMC Public Health* 2015;15:15:15.

30. Melese A, Debebe M, Deribe A. et al. Factors associated with tuberculosis treatment outcome in Addis Ababa: a 5-years retrospective study. *BMC Pediatr* 2014;14:61.

31. Moges M, Debebe A, Mekonnen H. et al. Profile and treatment outcomes of patients with tuberculosis in Northeastern Ethiopia: a cross sectional study. *Afri Health Sci* 2016;16:663–70.

32. Melese A, Zeleke B, Ewene B. Treatment Outcome and Associated Factors among Tuberculosis Patients at Arusha Health Center, Arusha, Tanzania. *BMC Public Health* 2016;16:62.

33. Moges B, Amare B, Yismaw G. et al. Prevalence of tuberculosis and treatment outcome among university students in Northwest Ethiopia: a retrospective study. *BMC Public Health* 2015;15:15:15.

34. Mekonnen D, Deribe A, Mekonnen H. et al. Cross-sectional study of Tuberculosis co-infections and associated factors among patients on directly observed treatment short course in Northeastern Ethiopia: a 4 years retrospective study. *BMC Res Notes* 2015;8:666.

35. Muñoz-Sellart M, Yassin MA, Tumato M. et al. Treatment outcome in children with tuberculosis disease in Ethiopia. *Scand J Infect Dis* 2009;41:416-7:450–5.

36. Muñoz-Sellart M, Cueva LE, Tumato M. et al. Factors associated with poor tuberculosis treatment outcome in the Southern Region of Ethiopia, *Int J Tuberc Lung Dis* 2010;14:973–9.

37. Shargie EB, Lindtjorn B. DOTS Improve in Treatment outcomes and service coverage for tuberculosis in South Ethiopia: a retrospective trend analysis. *BMC Public Health* 2005;5:62.

38. Sinhaw D, Alleme S, Tekfud A. et al. Successful TB treatment outcome and its associated factors among TB/HIV co-infected patients attending Gondar University Referral Hospital, Northwest Ethiopia: an institution based cross-sectional study. *BMC Infect Dis* 2017;17:132.

39. Tefera F, Dejene T, Tewelde T. Treatment outcomes of tuberculosis patients at Debretabor Hospital, Amhara Region, Ethiopia. *Ethiop J Health Sci* 2016;26:65–72.

40. Tesfahunegn G, Medhin G, Legesse M. Adherence to anti-tuberculosis treatment and treatment outcomes among tuberculosis patients in Amhara region, Northwest Ethiopia. *BMC Infect Dis* 2015;8:503.

41. Tessema B, Muche A, Bekele A. et al. Treatment outcome of tuberculosis patients at Gondar University Teaching Hospital, Northwest Ethiopia. A five-year retrospective study. *BMC Public Health* 2009;9:371.

42. Zenebe Y, Adem Y, Mekonnen D. et al. Profile of tuberculosis and its response to anti-TB drugs among tuberculosis patients treated under the TB control programme at Felege-Hiwot Referral Hospital, Ethiopia. *BMC Public Health* 2016;16:688.

43. Zenebe T, Tefera E. Tuberculosis treatment outcome and associated factors among smear-positive pulmonary tuberculosis patients in Afar, Eastern Ethiopia: a retrospective study. *Braz J Infect Dis* 2016;20:635–6.

44. Gebreegziabher SB, Bjune GA, Yimer SA. Total delay is associated with unfavorable treatment outcome among pulmonary tuberculosis patients in west gojam zone, Northwest Ethiopia: a prospective cohort study. *PLoS One* 2016;11:e0150979.

45. Asebo G, Dissasa H. Treatment outcome of tuberculosis patients at Gambella Hospital, Southwest Ethiopia: three-year retrospective study. *J Int Dis Ther* 2015:03.

46. Belayneh T, Kassu A, Tigabu D. et al. Characteristics and treatment outcomes of "transfer-out" pulmonary tuberculosis patients in Gondar, Ethiopia. *Tuberc Res Treat* 2016;2016:1–6.

47. Birle A, Tesfaw G, Dejene T. et al. Time to death and associated factors among patients in Addang Woreda, Northwest Ethiopia. *PLoS One* 2015;10:e0144244.

48. Ejeta E, Chala M, Arega G. et al. Outcome of tuberculosis patients under directly observed short course treatment in western Ethiopia. *J Infect Dev Ctries* 2015;9:752–9.

49. Gebremariam G, Athiyeh M, Hussen M. et al. Impact of HIV status on treatment outcome of tuberculosis patients registered at Arsi Negele Health Center, Southern Ethiopia: a six year retrospective study. *PLoS One* 2016;11:e0153239.

50. Getahun B, Ameni G, Medhin G. et al. Treatment outcome of tuberculosis patients under directly observed treatment in Addis Ababa, Ethiopia. *Braz J Infect Dis* 2013;17:521–8.

51. Hamusse SD, Demissie M, Teshome D. et al. Fifteen-year trend in treatment outcomes among patients with pulmonary smear-positive tuberculosis and its determinants in Arsi Zone, Central Ethiopia. *Glob Health Action* 2014;7:25382.

52. Ketema KH, Raya J, Workineh T. et al. Does decentralisation of tuberculosis care influence treatment outcomes? The case of Oromia Region, Ethiopia. *Public Health Action* 2014;4(Suppl 1):61–7.

53. Balcha TT, Skogsmar S, Sturegård E. et al. Outcome of tuberculosis treatment in HIV-positive adults diagnosed through active versus passive case-finding. *Glob Health Action* 2015;8:27048.

54. Tilahun G, Gebre-Selassie S. Treatment outcomes of childhood tuberculosis in Addis Ababa: a five-year retrospective analysis. *BMC Public Health* 2016;16:612.

55. Workneh MH, Bjune GA, Yimer SA. Diabetes mellitus is associated with increased mortality during tuberculosis treatment: a prospective cohort study among tuberculosis patients in South-Eastern Amhara Region, Ethiopia. *BMC Public Health* 2016;16:612.

56. Amante TD, Ahermed TA. Risk factors for unsuccessful tuberculosis treatment outcome (failure, default and death) in public health institutions, Eastern Ethiopia. *Pan Afr Med J* 2015;20:247.

57. World Health Organization. *Global tuberculosis report 2012*. World Health Organization, 2014.

58. Vasankari T, Holmström P, Ollgren J. et al. Risk factors for poor tuberculosis treatment outcome in Finland: a cohort study. *BMC Public Health* 2007;7:291.

59. Centers for Disease Control and Prevention (CDC). *Emergence of M ycobacterium tuberculosis with extensive resistance to second-line drugs—worldwide, 2000–2004*. MMWR Morb Mortal Wkly Rep 2006;55:301–5.

60. Laserson KF, Wells CD. Reaching the targets for tuberculosis control: the impact of HIV. *Bull World Health Organ* 2007;85:377–81.

61. Ali MK, Karanja S, Karama M. Factors associated with tuberculosis treatment outcomes among tuberculosis patients attending tuberculosis treatment centres in 2016-2017 in Mogadishu, Somalia. *Pan Afr Med J* 2017;28.

62. Sengul A, Akturk UA, Aydemir Y. et al. Factors affecting successful treatment outcomes in pulmonary tuberculosis: a single-center experience in Turkey, 2006–2011. *J Infect Dev Ctries* 2015;9:821–8.

63. Gadooei J, Asadov D, Tillashaykhov M. et al. Factors associated with unfavorable treatment outcomes in new and previously treated tuberculosis patients in Uzbekistan: a five year countrywide study. *PLoS One* 2015;10:e0128907.

64. Choi H, Lee M, Chen RY. et al. Predictors of pulmonary tuberculosis treatment outcomes in South Korea: a prospective cohort study, 2005-2012. *BMC Infect Dis* 2014;14:360.