Capecitabine in hormone-resistant metastatic prostatic carcinoma – a phase II trial

R Morant*, 1 J Bernhard, D Dietrich, S Gillessen, M Bonomo, M Borner, J Bauer, T Cerny, C Rochlitz, M Wernli, A Gschwend, S Hanselmann, F Hering and H-P Schmid for the Swiss Group for Clinical Cancer Research

1Zentrum für Tumordiagnostik und Prävention (ZeTuP), Rorschacherstrasse 150, St. Gallen CH-9006, Switzerland

The objective of the trial is to evaluate the efficacy of capecitabine in patients with metastatic hormone-resistant prostate carcinoma (HRPC), in terms of prostate-specific antigen (PSA) response and clinical benefit (decrease of pain or analgesic score) and its safety profile. In all, 25 patients with HRPC were enrolled on a phase II trial of capecitabine (Xeloda®) at a dose of 1250 mg m⁻² orally twice daily on days 1–14 every 21 days. The inclusion criteria were PSA serum levels >3 x upper limit of normal, a WHO performance status 0–2, age <85 years and adequate bone marrow, liver and renal function. In patients with grade 2 or higher haematological toxicity on day 1 of the treatment cycle, therapy was first delayed, and then continued at a lower dose. Trial end points were PSA response and clinical benefit defined by quality of life (QL) data and analgesic consumption. The median age of patients was 70 years (range 54–85 years). A median of three cycles of capecitabine was administered (range 1–8). PSA response was observed in three patients (12%, 95% CI 3–31%), with times to tumour progression of 18, 21 and 35 weeks, respectively. In these patients, the response durations were 12, 17 and 32 weeks, respectively. Minor PSA regression was also seen in two further patients. The median time to tumour progression of all patients was 12 weeks (95% CI 9–15 weeks). Haematological toxicity was minor; with leucopenia grade 3 observed in one patient. There were three deaths during trial treatment, respectively, due to sepsis following mucositis and leukopenia, presumed sepsis with mucositis induced by chemotherapy and concomitant radiotherapy and cerebral dysfunction progressing to coma. Hand–foot syndrome grades 2 and 3 were observed in four patients each. Clinical benefit was observed in five patients (20%, CI 7–41%). Based on toxicity data, we recommend a lower starting dose of 1000 mg m⁻² orally twice daily. While capecitabine has some activity in HRPC, as suggested by observed PSA responses, we conclude that it is not worthwhile to investigate capecitabine monotherapy in a phase III trial. Combinations of capecitabine with other agents, such as vinorelbine or docetaxel, may prove to be more effective.

British Journal of Cancer (2004) 90, 1312–1317. doi:10.1038/sj.bjc.6601673 www.bjcancer.com

Keywords: prostatic carcinoma; hormone resistance; capecitabine; prostate-specific antigen (PSA); quality of life; clinical benefit

The role of chemotherapy in patients with hormone-resistant prostate cancer (HRPC) has been re-evaluated in recent years (Goodin et al, 2002). The median survival of patients with HRPC remains, however, at 9–12 months despite medical advances and new approaches. Chemotherapy in patients with HRPC has been shown to decrease the serum levels of prostate-specific antigen (PSA), to shrink soft tissue metastases, to improve bone scans and, most importantly, to enhance aspects of quality of life (QL), especially pain (Tannock et al, 1996; Fields-Jones et al, 1999). Prolongation of survival by chemotherapy, however, has not been demonstrated in phase III trials conducted to date (Tannock et al, 1996; Hudes et al, 1999; Kantoff et al, 1999), although adequately powered randomised trials are now underway comparing mitoxantrone/prednisone with newer treatments including docetaxel alone or in combination with estramustine.

Starting in 1991, the Swiss Group for Clinical Cancer Research (SAKK) conducted four consecutive phase II trials within the framework of a master protocol to evaluate carboplatin (Jungi et al, 1998), idarubicin (Schmid et al, 1997), gemcitabine (Morant et al, 2000) and vinorelbine (Morant et al, 2002b), in patients with HRPC. The goal of these studies was to find promising new drugs for further testing in phase III trials. These multicentre trials included similar end points, but during the trials requirements with respect to documentation of response, toxicity, QL and PSA measurements (Schmid et al, 2003) have evolved. The fifth substance to be tested as a part of this programme was capecitabine (Xeloda®), an oral fluoropyrimidine carbamate that delivers 5-FU predominantly to tumour cells. Capecitabine is rapidly and extensively absorbed through the gut as an intact molecule, and is then metabolised to 5-FU in three steps (Budman et al, 1998; Miwa et al, 1998; Schüller et al, 2000). Firstly, it is converted to 5'-deoxy-5-fluorocytidine (5'-DFCR) by carboxylesterase (primarily in the liver). Secondly, it is converted to 5'-deoxy-5-fluorouridine (5'-DFUR) by cytidine deaminase (in tumour cells and in the liver). Finally, it is converted to 5-FU by thymidine phosphorylase (TP), which is significantly more active in tumour
tissue than in adjacent healthy tissue (Ishikawa et al., 1998). The increasing specificity for tumour cells occurring with each successive conversion step potentially reduces systemic 5-FU exposure while increasing the 5-FU dose within tumour tissue.

Capecitabine is currently approved in over 80 countries worldwide (including Japan, the USA and EU) as monotherapy for the treatment of advanced or metastatic breast cancer patients who have failed previous anthracycline and taxane chemotherapy. In addition, the combination of capecitabine and docetaxel is approved for the treatment of patients with advanced or metastatic breast cancer after failure of cytotoxic chemotherapy including an anthracycline (or when further anthracycline therapy is not possible). Capecitabine is also approved for the first-line treatment of patients with metastatic colorectal cancer.

The objective of the present trial was to evaluate both the efficacy, in terms of PSA response and clinical benefit, and the safety profile of capecitabine in patients with HRPC. The primary end point of the trial was PSA response according to the guidelines by the PSA Working Group (Bubley et al., 1999). Quality of life and clinical benefit were secondary end points. In the subset of patients with measurable disease, tumour response following treatment with capecitabine was also documented according to standard WHO criteria.

PATIENTS AND METHODS

Between March 2000 and June 2001, 25 patients with histologically or cytologically proven metastatic prostatic carcinoma, progressing after orchectomy or medical castration, were enrolled. Eligibility criteria included an age limit of <85 years, a life expectancy of >12 weeks, a WHO performance status of 0–2 and the absence of known brain metastases. No previous cytotoxic therapy, including estramustine, was allowed. Requirements for laboratory values included a serum PSA of at least three times the upper limit of normal (ULN), leucocytes (WBC) ≥3.5 × 10^9/l or granulocytes ≥2 × 10^9/l, platelets ≥100 × 10^9/l, haemoglobin ≥90 g/l, serum creatinine ≤1.5 × ULN, bilirubin ≤1.5 × ULN and SGOT ≤2.5 × ULN. Measurable or nonmeasurable metastatic disease was allowed. Bone metastases alone were considered to be nonmeasurable.

Patients received oral capecitabine at a dose of 1250 mg m⁻² twice daily for 14 days, repeated every 21 days. Treatment was stopped after a maximum of eight cycles or in the event of tumour progression or severe toxicity. Toxicity was assessed according to the National Cancer Institute of Canada Common Toxicity Criteria (NCIC CTC) and a special toxicity scale for severity of skin toxicity, especially of palms and plants (hand–foot syndrome). Dose reductions and treatment delays were specified in the protocol. In an amendment dated March 2001, the initial capecitabine dose was adapted according to creatinine clearance values.

The trial had a two-stage Gehan design with a sample size of 25 patients in order to estimate the PSA response rate with a standard error of <0.10. If capecitabine had a PSA response rate of less than 20%, then the drug would not be considered worth to be tested in a phase III trial. The trial was designed to be stopped if there were no PSA responses among the first 14 patients. Since two PSA responses were seen, the trial continued beyond the initial 14 patients.

Treatment with antiandrogens, however, had to be stopped at least 1 month before trial enrollment in order not to falsely attribute an antiandrogen withdrawal response (Scher and Kelly, 1993) to the trial drug. Prior radiation therapy was given to 12 patients. Palliative radiation therapy was not allowed within 1 month prior to the start of the study treatment. Previously irradiated metastases were not used for response evaluation.
worsening in physical functioning, measured from baseline, for at least two consecutive cycles (i.e., 6 weeks).

We investigated the changes in QL measures from baseline to subsequent time points. Although the transformation of the QLQ-C30 scales results in scores ranging from 0 to 100, these measures are still categorical in nature. Given the small sample, we focused on median values, instead of means. That is, changes that were present in means but not in medians (i.e. median = 0) were not considered relevant. Accordingly, we used the exact Wilcoxon signed rank test (based on Hodges–Lehmann (HL) medians), (Lehmann, 1975). All tests were two-sided. No adjustment was made for multiple testing.

RESULTS

Patient characteristics are shown in Table 1. The 25 men entered on the trial had a median age of 70 years (range 54–85 years) and generally had a good performance status (84% having a PS of 0 or 1). All patients had documented PD (rising PSA levels and/or new or growing metastases) while on continued androgen ablation: 11 patients had undergone bilateral orchiectomy, 13 had received a luteinising hormone – releasing hormone (LH–RH) agonist, and in one patient LH–RH agonists were erroneously stopped before trial enrolment. A total of 15 patients had been treated during the course of their disease with an androgen receptor blocker either concomitantly or as a second-line hormonal therapy.

Nearly all patients suffered from bone metastases (24 out of 25). In nine patients lymph node metastases were found, in two patients liver metastases and in two lung metastases.

The median number of capecitabine cycles was 3 (range 1–8). The median dose density of capecitabine dropped from 2471 mg m\(^{-2}\) during cycle 1 \((n = 25)\) to 1875 mg m\(^{-2}\) during cycle 4 \((n = 11)\). Dose reductions were necessary in 10 patients, due to hand–foot syndrome \((n = 3)\), diarrhoea \((n = 2)\), and in one patient each due to haematological reasons, weight loss, moderate renal function impairment, vomiting and symptoms of vertebral fracture with spinal cord compression (the latter were signs of tumour progression).

Treatment with capecitabine was subjectively well tolerated in the vast majority of patients. The most common clinical treatment-related adverse events \((\text{grade } 2, 3 \text{ or } 4, \text{ see Table 2})\) were nausea (32%), hand–foot syndrome (32%) and diarrhoea (16%). Anaemia was the most commonly observed haematological toxicity (40%), although the majority of cases (36%) were no greater than grade 2 in severity. Other grade 2/3 haematological adverse events were granulocytopenia (12%), leukaemia (12%) and thrombocytopenia (8%), although no grade 4 haematological toxicity was noticed.

Three patients died during the trial: one patient developed mucositis during the first course of chemotherapy and underwent radiation therapy involving the already inflamed oral mucosa. The event was classified as probably related to trial treatment. The patient was admitted to a regional hospital with sepsis, suspected to be related to the injured oropharyngeal mucosa. No agranulocytosis was found. The patient’s clinical condition rapidly deteriorated and he died due to a presumed septic shock.

The second patient died during the second course after somnolence progressed into coma with a clinical diagnosis of brain metastases or cerebral infarction. Due to the poor clinical status at hospital admission, no further work-up had been done. The third patient died during the first course due to treatment-related toxicity. This 60-year-old obese patient with extensive osseous and hepatic metastases was treated with 5 g of capecitabine daily. He developed mucositis and diarrhoea and was then admitted to the hospital 10 days after starting chemotherapy. Administration of capecitabine was stopped. He was neutropenic and was treated with antibiotics. He succumbed to infection on the tenth day of hospitalisation.

The median time to tumour progression of the 21 patients completing at least two cycles was 12 weeks (95% CI 9–15 weeks, Figure 1) and median time to treatment failure of all the 25 patients was 9 weeks (95% CI 7–15 weeks, Figure 2). Treatment failure was recorded in 20 patients as a result of PD (clinical tumour progression in eight cases, PSA progression in 12 cases), in three patients because of death and in one patient each by patient refusal and unacceptable toxicity.

PSA levels of all trial patients before and during treatment with capecitabine are plotted in Figure 3. A PSA response according to standardised criteria was seen in three patients (12%, 95% CI 3–31%). Response durations and times to tumour progression in these patients were 12, 17 and 32 weeks and 18, 21 and 35 weeks, respectively for two patients and 12 weeks for the third patient.

Table 1 Patient characteristics \((n = 25)\)

Category	Number	%
Performance status (WHO)	0	32
1	1	4
2	2	8
Previous radiation therapy	No	13
1	13	52
2	4	16
Orchiectomy	No	14
1	14	56
2	11	44
LH-RH analogues	No	12
1	12	48
2	13	52
Antiandrogens	No	10
1	10	40
2	15	60
Measurable disease	No	13
1	13	52
2	12	48
Tumor metastases*	Bone	24
Lymph nodes	9	36
Lung	2	8
Liver	2	8

*Each patient may have more than one tumour localisation.

Table 2 Grade 2, 3 and 4 adverse events following treatment with capecitabine in 25 patients and 88 treatment cycles

Toxicity	Grade	Number of cycles (% of cycles)	Number of patients (% of patients)
Anaemia	2	17 (19%)	9 (36%)
3	1 (1%)	1 (4%)	
Leukopenia	2	4 (5%)	2 (8%)
3	1 (1%)	1 (4%)	
Granulocytopenia	3	2 (2%)	2 (8%)
Thrombocytopenia	2	2 (2%)	2 (8%)
Diarrhoea	2	4 (5%)	3 (12%)
3	1 (1%)	1 (4%)	
Neurological	2	4 (5%)	3 (12%)
Nausea	2	10 (11%)	6 (24%)
3	2 (2%)	2 (8%)	
Stomatitis	2	1 (1%)	1 (4%)
4	1 (1%)	1 (4%)	
Hand–foot syndrome	2	9 (10%)	4 (16%)
3	5 (6%)	4 (16%)	
respectively. Minor reductions in PSA (38 and 41%) were seen in two additional patients. There were no objective tumour responses of measurable disease.

Of all 113 expected pre-failure QL forms, 99 (88%) were received and correctly timed, 24 (96%) at baseline and 75 (85%) during treatment; the submission rate at failure was lower (73%). The reasons for missing QL data were mainly local administrative failure (45%); in 40% of all missing data, there was no reason given. QL data were evaluated up to the beginning of cycle 4; thereafter, too few patients were left on the trial treatment.

At baseline, patients reported a considerably impaired health status/QL \((n = 24, \text{median} = 50)\), role functioning \((n = 23, \text{median} = 66.7)\), coping \((n = 24, \text{median} = 58.3)\) and emotional functioning \((n = 24, \text{median} = 75)\). Pain was the most severe symptom \((n = 23, \text{median} = 50)\), followed by fatigue \((n = 24, \text{median} = 33.3)\) and sleeping disorders \((n = 24, \text{median} = 33.3)\).

At day 8 of the first capecitabine cycle, short-term toxicity did not result in worsening in any of the QL measures. Patients reported better emotional functioning \((n = 17, \text{HL median change} = 12.5, \ P = 0.003)\) and coping \((n = 18, \text{HL median change} = 8.3, \ P = 0.02)\), and less pain \((n = 17, \text{HL median change} = -16.7, \ P = 0.02)\) and sleeping disorders \((n = 18, \text{HL median change} = -16.7, \ P = 0.05)\). Besides this early improvement, there was no substantial change over the observation period (up to the beginning of cycle 4).

Physician-rated pain indicated deterioration at the beginning of cycles 3 \((n = 16, \text{median change} = -1, \ P = 0.04)\) and 4 \((n = 9, \text{median change} = -1, \ P = 0.03)\), when compared to baseline \((n = 25, \text{median} = 2)\). The pain treatment score indicated a stable consumption of analgesics (baseline: \(n = 24, \text{median} = 4.6\)).

In all, 22 patients reported pain at baseline. Five of these (20%) met our criteria for clinical benefit following treatment with capecitabine, and in one case clinical benefit could not be evaluated because of missing data. For at least two consecutive cycles, these patients indicated either a decrease of \(\geq 50\%\) response categories in the pain scale from baseline without an increase in analgesics, or a decrease by \(\geq 50\%\) in analgesics without an increase in pain. One of these patients had also a PSA response. The two cases without baseline pain did not meet our criteria for palliation based on physical functioning and global health/QL.

DISCUSSION

The SAKK has performed five consecutive phase II trials in patients with HRPC, the latest using capecitabine. Capecitabine has demonstrated consistently high single-agent activity and a favourable safety profile in taxane and anthracycline-based regimens.
pretreated metastatic breast cancer (Blum et al, 1999, 2001; Fumoleau et al, 2001; Talbot et al, 2002) and improved overall survival when added to docetaxel in the anthracycline-failure setting (O’Shaughnessy et al, 2002). In addition, randomised phase III trials comparing the efficacy and tolerability of 3-weekly intermittent capecitabine with i.v. bolus 5-FU/LV as first-line treatment of advanced colorectal cancer showed that capecitabine was more active than 5-FU/LV in the induction of tumour response, and at least equivalent in terms of time to progression and overall survival (Hoff et al, 2001; Van Cutsem et al, 2001; Twelves, 2002). In addition to the extensive experience with capecitabine in patients with breast and colorectal cancer, the drug has been investigated in a variety of other cancers, such as pancreatic carcinoma (Hess et al, 2003), whereas there is only a single recent case report (El-Rayes et al, 2003) describing an impressive response to capecitabine in a patient with HRPC.

Experience with 5-FU in patients with HRPC has been mixed with no responses seen in phase II trials with 5-FU and leucovorin given as bolus injections (Singh et al, 1992), high dose infusions every 2 weeks (Atkins et al, 1996) or continuous infusion over 5 days (Kuzel et al, 1993). However, 5-FU given as a continuous infusion of 300 mg m⁻² (Hansen et al, 1991) showed a significant palliative effect. In prostatic carcinoma, there are significantly higher levels of TP (Mori et al, 2000), which is likely to result in higher levels of 5-FU in tumour tissue following administration of capecitabine. The previous benefit of a continuous low dose infusion of 5-FU combined with increased drug accumulation in tumour tissue provided the rationale for this phase II trial.

In this first phase II trial of capecitabine in HRPC, the drug has demonstrated a confirmed PSA response rate of 12% (three of 25 patients) and a mean response duration of 20 weeks (12, 17 and 32 weeks). In addition, two further minor PSA responses were seen. Comparison of PSA values before and after the start of chemotherapy shows that the slope of rising PSA values became less steep in the majority of patients, even if there were no responses (Figure 3). This temporary stabilisation of disease translates into a median time to progression of 12 weeks and a median time to treatment failure of 9 weeks.

Subjective toxicity of capecitabine was mild in the majority of the patients. The most common clinical treatment-related adverse events (grades 2, 3 or 4) were nausea (32%), hand–foot syndrome (32%) and diarrhoea (16%). Anaemia was the most commonly observed haematological toxicity (40%), although no grade 4 haematological toxicity was recorded. Diarrhoea and mucositis were observed in two of the three patients who died during the trial. Considering the observed toxicity and the frequent dose reduction, we recommend a lower starting dose of 1000 mg m⁻² orally twice daily and to adapt dosages in cases of decreased creatinine clearance.

These results, although not directly comparable, are not substantially different from those of many other phase II trials in HRPC, such as our previous trials with gemcitabine or vinorelbine. However, they do not match the higher response rates reported with docetaxel (Picus and Schultz, 1999) alone or in combinations with estramustine (Petrylak et al, 1999) or other agents targeting microtubule functions, such as vinblastine (Hudes et al, 1999).

Overall, the QL results indicate that capecitabine was relatively well tolerated. In particular, there was no worsening of QL by short-term toxicity. The improvement in several QL measures over the first 8 days may reflect the beneficial impact of the pain treatment and general support given by the treating physician at baseline, because we do not expect a beneficial effect of chemotherapy on tumour load at this early time point. However, considering the whole observation period, there was no overall improvement in patient- or physician-rated pain. Similarly, the QL measures did not suggest an overall improvement during capecitabine treatment. This is an indication of limited palliation as described in our previous trial of vinorelbine (Morant et al, 2002b), which showed a comparable rate of clinical benefit (23%).

In summary, capecitabine monotherapy has proven to be a substance with some activity in patients with HRPC and with generally good tolerability. Careful clinical supervision by an experienced oncologist is, however, necessary, because potentially life-threatening complications, such as stomatitis, leukopenia or diarrhoea may develop, necessitating treatment interruption or dose reduction.

The activity of capecitabine in this patient population is limited concerning both PSA response and clinical benefit. Hence, capecitabine cannot be recommended as a single first-line drug in patients with metastatic HRPC, and we do not think that it is worthwhile to investigate capecitabine monotherapy in a phase III trial. Whether combinations of capecitabine with noncytotoxic agents or other cytostatic drugs, such as docetaxel or vinorelbine, which are combination regimens with proven efficacy in breast carcinoma, will also be useful in this patient population, will require further investigation.

ACKNOWLEDGEMENTS

The trial was supported by a grant from Roche Pharma Schweiz. Preliminary results of this phase II trial have been presented at ASCO 2002 (Morant et al, 2002a).

REFERENCES

Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, Filiberti A, Flechtner H, Fleishman SB, de Haes JC (1993) The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85: 365 – 376
Atkins JN, Muss HB, Case LD, Richards II F, Grote T, McFarland J (1996) Leucovorin and high-dose fluorouracil in metastatic prostate cancer. A phase II trial of the Piedmont Oncology Association. Am J Clin Oncol 19: 23 – 25
Bernhard J, Maibach R, Thurlimann B, Sessa C, Aapro MS (2002) Patients’ estimation of overall treatment burden: why not ask the obvious? J Clin Oncol 20: 65 – 83
Blum JL, Dieras V, Lo Russo PM, Horton J, Rutman O, Buzdar A, Osterwalder B (2001) Multicenter, phase II study of oral capecitabine in taxane-pre-treated metastatic breast carcinoma patients. Cancer 92: 1759 – 1768
Blum JL, Jones SE, Buzdar AU, LoRusso PM, Kuter I, Vogel C, Osterwalder B, Burger HU, Brown CS, Griffin T (1999) Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 17: 485 – 493
Bubley GJ, Carducci M, Dahut W, Dawson N, Daliani D, Eisenberger M, Figg WD, Freidlin B, Halabi S, Hudes G, Hussain M, Kaplan R, Myers C, Oh W, Petrylak DP, Reed E, Roth B, Sartor O, Scher H, Simons J, Sinibaldi V, Small EJ, Smith MR, Trump DL, Wilding G (1999) Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J Clin Oncol 17: 3461 – 3467
Budman DR, Meropol NJ, Reigner B, Creaven PJ, Lichtman SM, Berghorn E, Behr J, Gordon BJ, Osterwalder B, Griffin T (1998) Preliminary studies of a novel oral fluoropyrimidine carbamate: capecitabine. J Clin Oncol 16: 1785 – 1802
El-Rayes BF, Black CA, Ensley JF (2003) Hormone-refractory prostate cancer responding to capecitabine. Urology 61: 462
Fields-Jones S, Koletsky A, Wildin G, O’Rourke M, O’Rourke T, Eckardt J, Yates B, McGuirt C, Burris III HA (1999) Improvements in clinical

British Journal of Cancer (2004) 90(7), 1312 – 1317 © 2004 Cancer Research UK
benefit with vinorelbine in the treatment of hormone-refractory prostate cancer. Ann Oncol 18: 1307 – 1310
Fumoleau P, Largillier R, Trillet-Lenoir V (2001) Phase II study of capcitabine (Xeloda®) in pts with advanced breast cancer (ABC), previously treated with anthracyclines and taxanes. Breast Cancer Res Treat 69: 285 (abstract 435)
Goodin S, Rao K, DiPaolo R (2002) State-of-the-art treatment of metastatic hormone-refractory prostate cancer. Oncologist 7: 360 – 370
Hansen R, Moynihan T, Beatty P, Quebbemann E, Linboch J, Schulte W, Anderson T (1991) Continuous systemic 5-fluorouracil infusion in refractory prostate cancer. Urology 37: 358 – 361
Hess V, Salzberg M, Borner M, Morant R, Roth AD, Ludwig C, Herrmann R & 2004. Cancer Research UK
Fumoleau P, Largillier R, Trillet-Lenoir V (2001) Phase II study of capcitabine (Xeloda®) in pts with advanced breast cancer (ABC), previously treated with anthracyclines and taxanes. Breast Cancer Res Treat 69: 285 (abstract 435).