In-plane anisotropic response to the uniaxial pressure in the hidden order state of URu$_2$Si$_2$

Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Jing Guo, Liling Sun, Wen Zhang, Xinhun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
4State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China
5Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China

We studied the uniaxial-pressure dependence of the resistivity for URu$_{2-x}$Fe$_x$Si$_2$ samples with $x = 0$ and 0.2, which host a hidden order (HO) and a large-moment antiferromagnetic (LMAFM) phase, respectively. For both samples, the elastoresistivity shows a seemingly divergent behavior above the transition temperature T_0 and a quick decrease below it. We found that the temperature dependence of ζ for both samples can be well described by assuming the uniaxial pressure effect on the gap or certain energy scale except for $\zeta_{(110)}$ of the $x = 0$ sample, which exhibits a non-zero residual value at 0 K. We show that this provides a qualitative difference between the HO and LMAFM phases. Our results suggest that there is an in-plane anisotropic response to the uniaxial pressure that only exists in the hidden order state without necessarily breaking the rotational lattice symmetry.

The hidden order (HO) in URu$_2$Si$_2$ has raised great interests in the last three decades. The mystery is that a large specific-heat anomaly is observed at the HO transition temperature ($T_0 = 17.5$ K), unambiguously suggesting a second-order transition, but no consensus on the order parameter has yet been reached. An antiferromagnetic (AFM) order has been found at T_0, but the ordered moment is too small to account for the large entropy released by the HO phase. Recently, a compelling scenario for the origin of the HO has been proposed based on the in-plane rotational symmetry breaking. Accordingly, the HO order parameter should spontaneously break the four-fold symmetry and a tetragonal-orthorhombic structural change is expected at T_0, which is similar to the nematic order observed in iron-based superconductors. However, more recent studies suggest that there is no evidence for either the structural transition or nematic fluctuations. What seems to be consensus now is that URu$_2$Si$_2$ indeed shows in-plane anisotropic properties under uniaxial strain or magnetic field. It is thus crucial to ask whether there is some kind of anisotropy that is unique to the HO and if it is, whether it can exist without breaking the rotational symmetry.

In the URu$_2$Si$_2$ system, the so-called large-moment antiferromagnetic (LMAFM) phase has been found to be intimately related to HO. In this phase, the magnetic order has the same ordering vector as the AFM order in HO but with much larger ordered moment. The first-order transition from the HO to the LMAFM phase is first found in URu$_2$Si$_2$ under hydrostatic pressure and later in Fe-doped samples. Surprisingly, transport and thermodynamic properties have very similar behaviors in both phases although their order parameters are presumably different. Moreover, the Fermi surfaces of these two phases and magnetic excitations are rather similar. The crossover between these two phases has been referred to as "adiabatic continuity" since they are intimately related. It is thus intriguing to check the anisotropic behaviors in both the HO and LMAFM phases to find out the unique one of the former, if it does exist.

In this work, we studied the uniaxial elastoresistance ζ in URu$_{2-x}$Fe$_x$Si$_2$ ($x = 0$ and 0.2). The divergent behavior of ζ above T_0 was observed in both samples and the amplitude of ζ shows no significant difference among these samples. We provide a simple explanation based on the uniaxial pressure effect on certain energy scales and thus rule out the existence of nematic fluctuations. Interestingly, a large residual ζ at 0 K along the (110) direction is only observed in the $x = 0$ sample, which cannot be described by the above scenario. Our results thus provide a unique property associated with the HO state, which does not necessarily break the lattice rotational symmetry.

Single crystals of URu$_{2-x}$Fe$_x$Si$_2$ were grown by the Czochralski method in a tetra-arc furnace with a continuously purified Ar atmosphere and subsequently annealed at 900 °C under ultrahigh vacuum for 10 days. The samples were cut into thin plates by a wire saw machine with the desired directions determined by the Laue technique. With the tetragonal notation, the (100) direction corresponds to a or b axis of the lattice while the (110) direction corresponds to the diagonal direction of a and b axes. The elastoresistance was measured by a home-made uniaxial-pressure device based on piezoben-
the same temperature dependence. The sharp peak at the sample. In the following, we will use p as defined when the sample is compressed. Since the resistance linearly depends on p, we define $\zeta = R(0) - dR/dp$, where $R(0)$ is the resistance at zero pressure and $\Delta R = R(p) - R(0)$. For all the samples measured here, the maximum uniaxial pressure applied is smaller than 10 MPa. Hydrostatic pressure resistance measurements were performed in a piston/cylinder-type high-pressure cell with Silicone oil as pressure transmitting medium. Pressure is determined by the pressure dependence superconducting transition temperature T_C of Pb that is placed in the Teflon capsule together with the sample. In the following, we will use p and P to denote the uniaxial pressure and hydrostatic pressure, respectively.

Figure 1(a) shows the temperature dependence of ζ for URu$_2$Si$_2$ with the uniaxial pressure p applied along the (100) and (110) directions. For both directions, ζ exhibits the same temperature dependence. The sharp peak at T_0 is associated with the change of T_0 under pressure.

![Figure 1](image1.png)

FIG. 1. (a) The temperature dependence of ζ for URu$_2$Si$_2$. The solid lines are fitting results by the Curie-Weiss-like function, as described in the text. (b) Temperature dependence of $\Delta\zeta$ (circles) and $|A_{2\phi}|/V$ (sold line) for URu$_2$Si$_2$. The data around T_0 for $\Delta\zeta$ have been omitted for clarification.

Similar to previous reports, the data above T_0 can be fitted by a Curie-Weiss-like function $A/(T - T') + y_0$, where A, T' and y_0 are all temperature-independent parameters. The values of T' for both fittings are about 6 K, which is well below T_0. It should be pointed out that T' can change significantly for different temperature fitting ranges.

A significant difference between $\zeta_{(110)}$ and $\zeta_{(100)}$ is that the former has a finite value at 0 K while the latter tends to go to zero, as shown in Fig. 1(a). This difference has also been observed in the uniaxial strain dependence of the elastostrain ζ of HO state from that above T_0. On the other hand, $\Delta\zeta$ always shows a residual value at 0 K no matter what value of α is chosen. Its temperature dependence seems to be similar to that of the two-fold oscillation amplitude $|A_{2\phi}|/V$ observed in torque measurements.

![Figure 2](image2.png)

FIG. 2. (a) and (b) The temperature dependence of $\zeta_{(100)}$ and $\zeta_{(110)}$, respectively, for the $x = 0.2$ sample. The solid lines are the calculated results of Eq. (1) with $|A_2\phi|/V(\ldots)$ for URu$_2$Si$_2$. (c) The temperature dependence of the resistance for the 0.2 sample under different hydrostatic pressures. The inset shows the change of T_{max} under pressure. (d) The temperature dependence of ζ_{hydro} for the $x = 0.2$ sample.

We will demonstrate that the residual $\Delta\zeta$ at 0 K represents the true anisotropic properties of the HO state. Figures 2(a) and 2(b) show the temperature dependence of $\zeta_{(100)}$ and $\zeta_{(110)}$, respectively, for the $x = 0.2$ sample. The overall features are similar to those in the x
\[\zeta(100) \times 10^{-4} \text{ MPa}^{-1} \]

\[\zeta(110) \times 10^{-4} \text{ MPa}^{-1} \]

Before further discussing the non-zero \(\zeta(110) \) at 0 K, we address the behaviors of \(\zeta \) above \(T_0 \) first. Previous studies have invoked nematic fluctuations to account for the increase of elastoresistivity with decreasing temperature \([10]\), which would require the breaking of the in-plane rotational symmetry in the HO state. It was later pointed out that the change of resistivity in URu\(_2\)Si\(_2\) under hydrostatic pressure shows very similar behaviors with that under uniaxial strain, which was attributed to the volume effect \([20]\). Here we also carried out the resistivity measurements on the \(x = 0.2 \) sample under hydrostatic pressure, as shown in Fig. 2(c). Accordingly, we can define \(\zeta_{\text{hydro}} = R(0)^{-1} \Delta R/\Delta P \), which is shown in Fig. 2(d). Similar to URu\(_2\)Si\(_2\) \([20]\), the overall features and values are comparable with the uniaxial results, which is against the existence of nematic fluctuations. Even if the elastoresistivity above \(T_0 \) does come from nematic fluctuations, nematicity should play little role in the formation of the HO since it results in similar behaviors of \(\zeta \) above \(T_0 \) for the LMAFM state.

In fact, we can give a simple explanation for the temperature dependence of \(\zeta \) above \(T_0 \). As seen in Figs. 2(a) and 2(b), \(\zeta \) becomes significant only below about 80 K. It is well known that the resistivity across this temperature is associated with the coherence temperature \(T^* \) \([35]\). Supposing that the resistivity takes the form \(\rho = f(T/T^*) \) and the change of \(T^* \) by a small pressure \(\rho \) leads to \(T^* \rightarrow (1 - \delta)T^* \), the change of the resistivity is thus \(f[T/(1 - \delta)T^*] - f(T/T^*) \), which is approximately equal to \(f[(1 + \delta)T/T^*] - f(T/T^*) \) as \(\delta \) is small. Therefore, we can simply change the temperature \(T \) to \((1 + \delta)T \) in the \(R(T) \) data and have the following equation to obtain the elastoresistance,

\[
\zeta^* = \frac{R[(1 + \delta)T] - R(T)}{R(T)}.
\tag{1}
\]

where the unit of \(\zeta^* \) is set to MPa\(^{-1}\). It is interesting to note that similar method has been used in removing the phonon contribution of the specific heat if its temperature dependence is only associated with the Debye temperature \([32,33]\). We also note that Eq. (1) also suggests a close connection between \(\zeta \) and \(dR/dT \) according to its Taylor expansion \([39]\).

It is clear that this method describes the temperature dependence of \(\zeta \) above \(T_0 \) of the \(x = 0.2 \) sample for both the (100) and (110) directions, as shown in Figs. 2(a) and 2(b), respectively. What is rather surprising is that \(\zeta \) below \(T_0 \) and even right at the transition can also be well described by Eq. (1). According to Eq. (1), the value of \(\delta \) is associated with the relative change of \(T^* \) under the uniaxial pressure. Treating \(T^* \) roughly as \(T_{\text{max}} \), which corresponds to the temperature where the resistance is maximum, the value of \(\delta T_{\text{max}}/\rho \), where \(\rho \) is 1 MPa, should be close to \(dT_{\text{max}}/dp \). We find that \(\delta T_{\text{max}}/\rho \) is about 6.1 and 10.8 K/GPa for the (100) and (110) directions, respectively, which are indeed close to the value of \(dT_{\text{max}}/dP \sim 16 \text{ K/GPa} \) under the hydrostatic pressure, as shown in the inset of Fig. 2(c).

Now we apply the above analysis to the uniaxial elastoresistivity in the \(x = 0 \) sample, as shown in Figs. 3(a) and 3(b). Using Eq. (1), the data above \(T_0 \) can be again nicely replicated. The value of \(\delta T_{\text{max}}/\rho \) is about 4.6 and 8 K/GPa for the (100) and (110) directions, respectively, which are again close to the value of \(dT_{\text{max}}/dP \) under the hydrostatic pressure (~14 K/GPa) \([40]\). Different from
the $x = 0.2$ sample, Eq. (1) cannot describe $\zeta_{(100)}$ for the whole temperature range using just one δ. Rather, we have to change the value of δ to reproduce $\zeta_{(100)}$ below T_0, which seems to be associated with the change of the gap in the HO state under pressure $[31, 39, 41]$. However, we can never describe $\zeta_{(110)}$ below T_0 by Eq. (1) due to the existence of the residual 0-K value. This again demonstrates the unique connection between $\Delta \zeta$ and the HO.

Our results show that the large non-zero value of $\zeta_{(110)}$ at zero K represents the intrinsic anisotropic response of the resistivity to the uniaxial pressure in the HO state. We note that this behavior is different from that of the uniaxial-pressure-induced AFM moment, which shows no difference between the (100) and (110) directions $[42]$. It is commonly believed that the resistivity below T_0 can be described by gap functions for both the HO and LMAFM phases $[31, 41]$. This is consistent with Eq. (1) as the gap Δ in the functions is always coupled to the temperature as $\Delta/T^{[39]}$. Our results of $\zeta_{(110)}$ for the $x = 0$ sample suggest that there should exist a component of the resistivity, which can be only invoked under uniaxial pressure along the (110) direction, that is beyond any kind of gap functions $[31, 41]$. This suggests that the unique information of the HO state may be only revealed under uniaxial pressure.

Previous studies have shown some quantitative differences between the HO and LMAFM states $[23, 24, 30, 31]$. Our results show that the HO state can be qualitatively distinguished from the LMAFM state by their response to the uniaxial pressure along the (110) direction. It is particularly needed to emphasize that contrary to some previous results $[8, 11]$, the above uniaxial-pressure-induced anisotropy does not require breaking the rotational symmetry $[17–20]$. We note that in the case when the sample is not free-standing, the local residual stress induced by glue, etc., may effectively provide uniaxial pressure or strain to give rise to results that should be absent at zero strain $[43]$. This could explain the similar behaviors between $\Delta \zeta$ and $|A_{2\delta}|/V$ in Fig. 1(b). Our results may thus suggest a somehow strange property of the HO. On the one hand the HO does not break the rotational symmetry, so our results are not conclusive to those theoretical proposals that require the rotational symmetry breaking $[14, 48]$. But on the other hand the proposed HO order parameter should be coupled to the $B_{2\delta}$ channel due to the symmetry constraint revealed by our measurements. It may be a requisition for a theory to study the proposed order parameter in the presence of a slight lattice distortion along the (110) direction.

In conclusion, we show that there are no nematic fluctuations in URu$_2$Si$_2$ and a large residual $\zeta_{(110)}$ exists at 0 K. The latter is the unique feature to the HO since it is not found in the LMAFM state. Our results suggest that the HO can exhibit large anisotropic response to the uniaxial pressure or strain without rotational symmetry breaking, which could provide an interesting perspective in searching the order parameter of the HO.

This work is supported by the National Key Research and Development Program of China (Grants No. 2017YFA0302903, No. 2017YFA0303100, No. 2020YFA0406003, No. 2021YFA1400401), the National Natural Science Foundation of China (Grants No. 11961160699, No. 11874401, 11974397), the Strategic Priority Research Program(B) of the Chinese Academy of Sciences (Grants No. XDB33000000, No. XDB25000000), the K. C. Wong Education Foundation (GJTD-2020-01).

* tanshiyong@caep.cn
 yifeng@iphy.ac.cn
 slli@iphy.ac.cn

1. T. T. M. Palstra, A. A. Menovsky, J. v. d. Berg, A. J. Dirkmaat, P. H. Kes, G. J. Nieuwenhuys, and J. A. Mydosh, Superconducting and magnetic transitions in the heavy-fermion system URu$_2$Si$_2$, *Phys. Rev. Lett.* **55**, 2727 (1985).

2. M. B. Maple, J. W. Chen, Y. Dalichaouch, T. Kohara, C. Rossel, M. S. Torkachvili, M. W. McElfresh, and J. D. Thompson, Partially gapped Fermi surface in the heavy-electron superconductor URu$_2$Si$_2$, *Phys. Rev. Lett.* **56**, 185 (1986).

3. W. Schlubitz, J. Baumann, B. Pollit, U. Rauchschwalbe, H. M. Mayer, U. Ahlheim, and C. D. Bredl, Superconductivity and magnetic order in a strongly interacting fermi-system: URu$_2$Si$_2$, *Z. Phy. B Condens. Matter* **62**, 171 (1986).

4. J. A. Mydosh and P. M. Oppeneer, Colloquium: Hidden order, superconductivity, and magnetism: The unsolved case of uru$_2$si$_2$, *Rev. Mod. Phys.* **83**, 1301 (2011).

5. J. A. Mydosh and P. M. Oppeneer, Hidden order behaviour in URu$_2$Si$_2$, *Philos. Mag. , 3642* (2014).

6. J. A. Mydosh, P. M. Oppeneer, and P. S. Riseborough, Hidden order and beyond: an experimental— theoretical overview of the multifaceted behavior of URu$_2$Si$_2$, *J. Condens. Matter Phys.* **32**, 143002 (2020).

7. C. Broholm, J. K. Kjems, W. J. L. Buyers, P. Matthews, T. T. M. Palstra, A. A. Menovsky, and J. A. Mydosh, Magnetic excitations and ordering in the heavy-electron superconductor URu$_2$Si$_2$, *Phys. Rev. Lett.* **58**, 1467 (1987).

8. R. Okazaki, T. Shibauchi, H. J. Shi, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Ikeda, and Y. Matsuda, Rotational symmetry breaking in the hidden-order phase of URu$_2$Si$_2$, *Science* **331**, 439 (2011).

9. S. Tonegawa, S. Kasahara, T. Fukuda, K. Sugimoto, N. Yasuda, Y. Tsuruhara, D. Watanabe, Y. Mizukami, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Ikeda, Y. Matsuda, and T. Shibauchi, Direct observation of lattice symmetry breaking at the hidden-order transition in URu$_2$Si$_2$, *Nat. Commun.* **5**, 4188 (2014).

10. S. C. Riggs, M. Shapiro, A. V. Maharaj, S. Raghu, E. Bauer, R. Baumbach, P. Giraldo-Gallo, M. Wartenbe, and I. Fisher, Evidence for a nematic component to the hidden-order parameter in URu$_2$Si$_2$ from differential
elasto-resistance measurements, Nat. Commun. 6, 6425 (2015).

[11] S. Kambe, Y. Tokunaga, H. Sakai, and R. E. Walstedt, Distributed twofold ordering in URu$_2$Si$_2$, Phys. Rev. B 91, 035111 (2015).

[12] J.-H. Chu, H.-H. Kuo, J. G. Analytis, and I. R. Fisher, Divergent nematic susceptibility in an iron arsenide superconductor, Science 337, T10 (2012).

[13] H.-H. Kuo, J.-H. Chu, S. A. Kivelson, and I. R. Fisher, Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors, Science 352, 958 (2016).

[14] T. Xie, Z. Liu, Y. Gu, W. Zhang, D. Gong, H. Luo, and S. Li, Nematic quantum critical fluctuations in BaFe$_2$-$_{1-x}$Ni$_x$As$_2$, Phys. Rev. Lett. 117, 157002 (2016).

[15] Z. Liu, Y. Gu, W. Zhang, D. Gong, W. Zhang, T. Xie, X. Lu, X. Ma, X. Zhang, R. Zhang, J. Zhu, C. Ren, L. Shan, X. Qiu, P. Dai, Y.-f. Yang, H. Luo, and S. Li, Nematic quantum critical fluctuations in BaFe$_2$-$_{1-x}$Ni$_x$As$_2$, Phys. Rev. Lett. 119, 157001 (2017).

[16] C. Tabata, T. Inami, S. Michimura, M. Yokoyama, H. Hidaka, T. Yanagisawa, and H. Amitsuka, X-ray backscattering study of crystal lattice distortion in hidden order of URu$_2$Si$_2$, Philosophical Magazine 94, 3691 (2014).

[17] S. Kambe, Y. Tokunaga, H. Sakai, T. Hattori, N. Higa, T. D. Matsuda, Y. Haga, R. E. Walstedt, and H. Harima, Odd-parity electronic multipolar ordering in URu$_2$Si$_2$, Phys. Rev. B 98, 235142 (2018).

[18] J. Choi, O. Iwashki, N. Dennler, D. Aoki, K. von Arx, S. Gerber, O. Gutowski, M. H. Fischer, J. Stempfer, M. v. Zimmermann, and J. Chang, Pressure-induced rotational symmetry breaking in URu$_2$Si$_2$, Phys. Rev. B 98, 214113 (2018).

[19] L. Wang, M. He, F. Hardy, D. Aoki, K. Willa, J. Flouquet, and C. Meingast, Electronic nematicity in URu$_2$Si$_2$ revisited, Phys. Rev. Lett. 124, 257601 (2020).

[20] H. Amitsuka, M. Sato, N. Metoki, M. Yokoyama, K. Kuhwahara, T. Sakakibara, H. Morimoto, S. Kawasaki, Y. Miyako, and J. A. Mydosh, Effect of pressure on tiny antiferromagnetic moment in the heavy-electron compound URu$_2$Si$_2$, Phys. Rev. Lett. 83, 5114 (1999).

[21] J. R. Jeffries, N. P. Butch, B. T. Yukich, and M. B. Maple, Competing ordered phases in URu$_2$Si$_2$: Hydrostatic pressure and rhenum substitution, Phys. Rev. Lett. 99, 217207 (2007).

[22] Y. J. Jo, L. Balicas, C. Capan, K. Behnia, P. Lejay, J. Flouquet, J. A. Mydosh, and P. Schlottmann, Field-induced ferrimagnetic surface reconstruction and adiabatic continuity between antiferromagnetism and the hidden-order state in URu$_2$Si$_2$, Phys. Rev. Lett. 98, 166404 (2007).

[23] G. Motoyama, N. Yokoyama, A. Sumiyama, and Y. Oda, Electrical resistivity and thermal expansion measurements of URu$_2$Si$_2$ under pressure, J. Phys. Soc. Jpn. 77, 123710 (2008).

[24] N. P. Butch, J. R. Jeffries, S. Chi, J. B. Leão, J. W. Lynn, and M. B. Maple, Antiferromagnetic critical pressure in URu$_2$Si$_2$ under hydrostatic conditions, Phys. Rev. B 82, 060408 (2010).

[25] E. Hassinger, G. Knebel, T. D. Matsuda, D. Aoki, V. Taufour, and J. Flouquet, Similarity of the fermi surface in the hidden order state and in the antiferromagnetic state of URu$_2$Si$_2$, Phys. Rev. Lett. 105, 216409 (2010).

[26] N. Kanchanavatee, M. Janoschek, R. E. Baumbach, J. J. Hamlin, D. A. Zocco, K. Huang, and M. B. Maple, Twofold enhancement of the hidden-order/large-moment antiferromagnetic phase boundary in the URu$_2$Si$_2$ system, Phys. Rev. B 84, 245122 (2011).

[27] P. Das, N. Kanchanavatee, J. S. Helton, K. Huang, R. E. Baumbach, E. D. Bauer, B. D. White, W. V. Burnett, M. B. Maple, J. W. Lynn, and M. Janoschek, Chemical pressure tuning of URu$_2$Si$_2$ via isoelectronic substitution of Ru with Fe, Phys. Rev. B 91, 085122 (2015).

[28] J. S. Hall, M. R. Movassagh, M. N. Wilson, G. M. Luke, N. Kanchanavatee, K. Huang, M. Janoschek, M. B. Maple, and T. Timusk, Electrodynamics of the antiferromagnetic phase in URu$_2$Si$_2$, Phys. Rev. B 92, 195111 (2015).

[29] C. T. Wolowiec, N. Kanchanavatee, K. Huang, S. Rand, and M. B. Maple, Evolution of critical pressure with increasing Fe substitution in the heavy-fermion system URu$_2$-Fe$_x$Si$_2$, Phys. Rev. B 94, 085145 (2016).

[30] S. Ran, C. T. Wolowiec, I. Jeon, N. Pouse, N. Kanchanavatee, B. D. White, K. Huang, D. Martien, T. DaPron, D. Snow, M. Williamsen, S. Spagna, P. S. Riseborough, and M. B. Maple, Phase diagram and thermal expansion measurements on the system URu$_2$-Fe$_x$Si$_2$, Proc. Natl. Acad. Sci. U.S.A. 113, 13348 (2016).

[31] E. Frantzeskakis, J. Dai, C. Bareille, T. C. Rödel, M. Gätter, S. Ran, N. Kanchanavatee, K. Huang, N. Pouse, C. T. Wolowiec, E. D. L. Rienks, P. Lejay, F. Fortuna, M. B. Maple, and A. F. Santander-Syro, From hidden order to antiferromagnetism: Electronic structure changes in Fe-doped URu$_2$Si$_2$, Proc. Natl. Acad. Sci. U.S.A. 118, e2020750118 (2021).

[32] T. J. Williams, H. Barath, Z. Yamani, J. A. Rodriguez-Riveria, J. B. Leão, J. D. Garrett, G. M. Luke, W. J. L. Buyers, and C. Broholm, Gapped excitations in the high-pressure antiferromagnetic phase of URu$_2$Si$_2$, Phys. Rev. B 95, 195171 (2017).

[33] A. Eising and J. S. Schilling, Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300K and 0-10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In, J. Phys. F: Met. Phys., 623 (1981).

[34] Y. feng Yang, Z. Fisk, H.-O. Lee, J. D. Thompson, and D. Pines, Scaling the kondo lattice, Nature 454, 611 (2008).

[35] M. Bouvier, P. Lethuillier, and D. Schmitt, Specific heat in some gadolinium compounds, I. Experimental, Phys. Rev. B 43, 13137 (1991).

[36] D. Gong, T. Xie, X. Lu, C. Ren, L. Shan, R. Zhang, P. Dai, Y.-f. Yang, H. Luo, and S. Li, Electronic specific heat in BaFe$_2$-$_{1-x}$Ni$_x$As$_2$, Phys. Rev. B 93, 134520 (2016).

[37] P. Song, K. Zhu, F. Yang, Y. Wei, L. Zhang, H. Yang, X.-L. Sheng, Y. Qi, J. Ni, S. Li, Y. Li, G. Cao, Z. Y. Meng, W. Li, Y. Shi, and S. Li, Evidence for the random singlet phase in the honeycomb iridate Sr$_2$IrO$_6$, Phys. Rev. B 82, 060408 (2010).
See supplemental material for details.

[40] M. W. McElfresh, J. D. Thompson, J. O. Willis, M. B. Maple, T. Kohara, and M. S. Torikachvili, Effect of pressure on competing electronic correlations in the heavy-electron system URu$_2$Si$_2$, Phys. Rev. B 35, 43 (1987).

[41] M. W. McElfresh, J. D. Thompson, J. O. Willis, M. B. Maple, T. Kohara, and M. S. Torikachvili, Effect of pressure on competing electronic correlations in the heavy-electron system URu$_2$Si$_2$, Phys. Rev. B 35, 43 (1987).

[42] M. Yokoyama, H. Amitsuka, K. Watanabe, S. Kawarazaki, H. Yoshizawa, and J. A. Mydosh, Effects of uniaxial stress on antiferromagnetic moment in the heavy electron compound URu$_2$Si$_2$, J. Phys. Soc. Jpn. 71, 264 (2002).

[43] X. Ren, L. Duan, Y. Hu, J. Li, R. Zhang, H. Luo, P. Dai, and Y. Li, Nematic crossover in BaFe$_2$As$_2$ under uniaxial stress, Phys. Rev. Lett. 115, 197002 (2015).

[44] K. Haule and G. Kotliar, Arrested Kondo effect and hidden order in URu$_2$Si$_2$, Nat. Phys. 5, 796 (2009).

[45] F. Cricchio, F. Bultmark, O. Granás, and L. Nordström, Itinerant magnetic multipole moments of rank five as the hidden order in URu$_2$Si$_2$, Phys. Rev. Lett. 103, 107202 (2009).

[46] H. Ikeda, M.-T. Suzuki, R. Arita, T. Takimoto, T. Shibauchi, and Y. Matsuda, Emergent rank-5 nematic order in URu$_2$Si$_2$, Nat. Phys. 8, 528 (2012).

[47] J. G. Rau and H.-Y. Kee, Hidden and antiferromagnetic order as a rank-5 superspin in URu$_2$Si$_2$, Phys. Rev. B 85, 245112 (2012).

[48] C.-H. Hsu and S. Chakravarty, Superconductivity from fractionalized excitations in URu$_2$Si$_2$, Phys. Rev. B 90, 134507 (2014).