UPGRADATION OF UNSATURATED POLYESTER RESIN USING NANOCLAYS AND THE EFFECT OF PROCESS VARIABLES ON MECHANICAL PROPERTIES OF POLYESTER/CLAY NANOCOMPOSITES

Nevil Johnson
MA College of Engineering, Kothamangalam, Kerala, NevilJohnson@gmail.com

Deviprasad Varma P.R
MA College of Engineering, Kothamangalam, Kerala., DeviprasadVarmaP.R@gmail.com

Manoj George
CUSAT, Kerala., ManojGeorge@gmail.com

K.E George
CUSAT, Kerala., K.EGeorge@gmail.com

Follow this and additional works at: https://www.interscience.in/ijmie

Part of the Manufacturing Commons, Operations Research, Systems Engineering and Industrial Engineering Commons, and the Risk Analysis Commons

Recommended Citation
Johnson, Nevil; Varma P.R, Deviprasad; George, Manoj; and George, K.E (2014) "UPGRADATION OF UNSATURATED POLYESTER RESIN USING NANOCLAYS AND THE EFFECT OF PROCESS VARIABLES ON MECHANICAL PROPERTIES OF POLYESTER/CLAY NANOCOMPOSITES," International Journal of Mechanical and Industrial Engineering: Vol. 4 : Iss. 2 , Article 9. Available at: https://www.interscience.in/ijmie/vol4/iss2/9

This Article is brought to you for free and open access by Interscience Research Network. It has been accepted for inclusion in International Journal of Mechanical and Industrial Engineering by an authorized editor of Interscience Research Network. For more information, please contact sritampatnaik@gmail.com.
UPGRADATION OF UNSATURATED POLYESTER RESIN USING NANOCLAYS AND THE EFFECT OF PROCESS VARIABLES ON MECHANICAL PROPERTIES OF POLYESTER.CLAY NANOCOMPOSITES

Nevil Johnson¹, Dr Deviprasad Varma P.R², Manoj George³, Dr K.E George⁴

¹PG Scholar, MA College of Engineering, Kothamangalam, Kerala
²Department of Mechanical Engineering, MA College of Engineering, Kothamangalam, Kerala.
³Department of Mechanical Engineering, School of Engineering, CUSAT, Kerala.
⁴Department of Polymer science and Rubber Technology, CUSAT, Kerala.

Abstract

This paper addresses the effects of operating variables on mechanical properties of polyester/clay nanocomposites including tensile strength, percentage elongation etc. The variables were clay type, clay content, and prepolymer–clay mixing type. The experiments were carried out based on the design of experiments using statistical methods. The nanocomposites were synthesized via in situ polymerization of polyester and clay (dissolved using styrene monomer) with Methyl-ethyl ketone peroxide (MEKP) as catalyst in Cobalt base accelerator. Unmodified Kaolinite clay and Vinyl silane modified clay are the two types of clay examined. The parameters studied, clay type and mixing method are found to have significant effects on mechanical properties. Polyester nanocomposites showed larger improvements in mechanical properties compared to pristine polyester, especially when sonicator type of mixing is employed due to the favorable shear forces exerted by polymer matrix on clay aggregates during polymer–clay mixing. It is observed that the stress and elongation at break of the nanocomposite samples can be optimized with a particular percentage of clay loading. Characterizations of the nanocomposites were also made using techniques like SEM.

Keywords: Polyester, Nanocomposites, Clay, Exfoliation, Mechanical properties

INTRODUCTION

In recent years polymer nanocomposites have attracted extensive interests around the world due to the many superior properties they offer compared to traditional micro-size composites [1–3]. One of the most promising polymer nanocomposite systems is a hybrid based on organic polymers and inorganic clay minerals consisting of layered silicates. Crystal lattice of montmorillonite (MMT), widely used in nanocomposites, consists of two-dimensional layers in which a central octahedral sheet of alumina or magnesia is fused to two external silica tetrahedrons. Many studies involving MMT clay has been done so far. This paper is based on study conducted using Kaolinite clay, which is much more difficult to intercalate or exfoliate do to it’s low swelling and shrinkage capacity.

Obviously the studies done so far using kaolinite clay are less. Due to its difficulty in dispersion, we try to introduce a higher degree of dispersive technique using Sonicator, where in which we try to achieve intercalation to exfoliation (or near exfoliation) of clay dispersion. Kaolinite is a clay mineral, part of the group of industrial minerals, with the chemical composition Al₄Si₄O₁₀(OH)₄. It is a layered silicate mineral, with one tetrahedral sheet linked through oxygen atoms to one octahedral sheet of alumina octahedra. Also the effect of vinyl silane, a coupling agent modified clay on the polyester resin is examined. Thus the clay is supposed to be made more hydrophobic.

Polyesters have widespread applications as fibers, clothing’s, ropes Bottles etc. These polymers possess good mechanical properties such as high abrasion resistance, tear strength, flexibility and elasticity and outstanding oil resistance [12, 13]; however, it is possible that these properties could even more be improved by using organophilic nanofillers. The various processing methods used to prepare polyester nanocomposites cause different filler distribution and exfoliation of the clay layers. The structure of polyester matrix as well as the type of hydrophobic cation in the clay can alter the variety of properties in Polyester/clay systems [5].

Thus the clay dispersion in the Polyester matrix, and therefore the ultimate properties of nanocomposite could be influenced by the factors including the process...
variables such as the type or molecular weight of polyol in Polyester structure, the type of cation (modifier) and the content of clay,[3,9,10] and mixing parameters.[10–12] The experimental design using the Design of Experiments (DOE) method is a statistical approach for investigating the effects of various parameters on the product quality and/or quantity. This method also screens the significant factors affecting the response from those with less significance, and gives the optimum condition to attain the most desirable performance [13]. There are less reports available regarding the application of experimental design for comparative analysis of the effects of operating variables on the mechanical properties of Polyester/clay nanocomposites. In this study, the influences of prepolymer type (A), clay content (B), mixing type (C) and clay cation (D), on the mechanical properties of Polyester/clay nanocomposites have been investigated.

EXPERIMENTAL

Unsaturated polyester resin, MEKP and Cobalt accelerator is obtained from Sharon Nest Engineering, Kochi and is used in the ratio of 100:1:1 percent weight. The clay unmodified and modified (90mequiv/100g clay) were obtained from Alpha chemicals, Kochi. The lab grade styrene monomer used to dissolve clay has been imported from USA through chemical point, Kochi. The supplementary data as received from the supplier is also available.

Design of experiments

The first important step in the design of experiment is the proper selection of factors and their levels. In this study, the operating factors like mixing method, clay content, and clay type were considered. The factors and their levels have been chosen according to the literature review on previous publications, the practical aspects, and some screening experiments.

Preparation of Polyester/clay Nanocomposites

For the preparation of nanocomposites, 100g of polyester resin was first degassed and then poured into a flask equipped with a mechanical stirrer/sonicator and a constant temperature water bath. Specified amount of dried clay (unmodified/vinyl modified dissolved in styrene monomer) powder was dispersed in the resin under vigorous stirring. The mixing time in this step was set to the designed value of 15min. The specified amount of MEKP and Cobalt base accelerator was then added as a chain extender to the prepolymer/clay mixture under vigorous stirring for the specified time.

The system was degassed and immediately poured into a Teflon coated mold where the curing was performed for 24hrs at room temperature. Post curing for a standard time of 10hrs at a standard temperature of 80C is also employed. The Polyester/clay nanocomposite specimen was finally removed from the mold. A same procedure was applied in the preparation of pristine polyurethane without adding any clay. Also sets of specimen utilizing ordinary stirring have also been molded.

Characterization and property measurements

The tensile test has been performed on high precision machines according to ASTM standards. SEM characterization technique has been employed to understand the clay dispersion.

RESULTS AND DISCUSSION

Characterization

Characterization done using SEM shows significant improvements in clay dispersion to achieve exfoliated or near exfoliated structure when higher degrees of mixing methods has been employed. Analyzing the micrographs given below, it is clear that an exfoliated structure has been achieved by using sonicator dispersive technique (Figure 1.1 c) when compared to intercalative dispersion using mechanical stirrer technique (Figure 1.1 b). Figure 1.1a shows the SEM for a manually dispersed nanoclay/polyester structure where an absence of a proper dispersive technique is evident.
UPGRADATION OF UNSATURATED POLYESTER RESIN USING NANOCLAYS AND THE EFFECT OF PROCESS VARIABLES ON MECHANICAL PROPERTIES OF POLYESTER/CLAY NANOCOMPOSITES

Influence of operating variables

The trends in which the mechanical properties are influenced when the factors are varied on their levels are shown on main effects (Table 1.1 and Table 1.2) as well as interaction plots. (Figure 1.2 - Figure 1.5).

Clay content

It is observed that the stress at break and percent elongation represent the highest improvement with a particular percent of clay loading (1%). The silicate layers of clay play their reinforcing action in the polymer matrix, and this is increased with clay content up to the percent the clay cannot be exfoliated anymore.

Mixing Method

The mixing method and its intensity are vital in the preparation of exfoliated morphology in polymer clay nanocomposites; it seems that the intensity of mixing with a high shear impeller used in this work has accelerated enough the kinetics of intercalation of polyester chains into the galleries and even the vicinity of optimal clay loading range, when compared to unmodified nano clay composites.

Figure 1.1 Scanning electron micrograph for specimen prepared using (a) Manual dispersion, (b) Mechanical dispersion and (c) Sonicator dispersion

Figure 1.2 Graph showing variation in Tensile strength for various percentage of unmodified clay content

Figure 1.3 Graph showing percentage elongation for both Vinyl modified and unmodified clay contents

Clay type

It is implied that the original pristine sample results in weak improvements in tensile properties compared to that of organoclay. Properties of Vinyl modified samples shows slight improvement especially in the vicinity of optimal clay loading range, when compared to unmodified nano clay composites.

Figure 1.4 Graph showing variation in strain energy for various percentage of unmodified clay content
exfoliation of silicate layers throughout the polymer matrix.

Figure 1.5 Graph showing variation in Tensile strength for various percentage of unmodified and Vinyl modified clay content

Table 1.1 Table showing Tensile strength data and Strain energy for various percentage of unmodified clay contents prepared using various mixing methods

Table 1.2 Table showing Tensile strength data and Strain energy for various percentage of Vinyl modified clay contents prepared using various mixing methods
CONCLUSIONS

The influences of various operating variables on the mechanical properties of Polyester/clay nanocomposites were statistically analyzed. The main conclusions that are valid in the range of levels considered in this study are as follows:

- The mechanical properties strongly depend on the prepolymer type, the clay cation, the clay content and mixing method investigated in this study.
- Polyester nanocomposites show more improvements in mechanical properties compared to pristine ones due to higher shear forces exerted by polymer matrix on clay aggregates during polymer–clay mixing.

ACKNOWLEDGEMENTS

The authors thank Chemical point company, Kochi for kindly supplying the materials and equipments.

REFERENCES

[1] I Mironi Harpaz, M Narkis, “A Siegmann; Synthesis Of Unsaturated -Polyester/ Organo-Clay Nanocomposites : A Fundamental Approach”; Journal Of Nanostructured Polymers And Nanocomposites1 (2005) 35-43.

[2] Xiaoan Fu, Syed Qutubuddin; “Synthesis Of Polystyrene–Clay Nanocomposites”; Materials Letters 42 _2000. 12–15.

[3] Ju-Young Kim A, Kyo-Jin Ihn B, Jae-Sik Na; “Synthesis Of Silver Nanoparticles Within Intercalated Clay/Polymer Nanocomposite Via In Situ Electron Transfer Reaction”; Journal Of Industrial And Engineering Chemistry.

[4] Pankil Singla; “Organic Modification of Clay”.

[5] Austin Samakande; “Synthesis and Characterization of Surfmers for the Synthesis of Polystyrene-Clay Nanocomposites”.

[6] G. W. Brindley 2 And J. J. Comer, “The Structure And Morphology Of A Kaolin Clay From Les Eyzies”, The Pennsylvania State University, University Park, Pennsylvania.

[7] Soo Gyeong Cho and One Kwon Rim, ‘Rotational Barriers of Vinylisilane
Derivatives : Ab Initio and MM2 Studies”
Agency for Defence Development.

[8] Praveen Bhimaraj, C. Gregory Toney, Richard W. Siegel, Linda S. Schadler, “Scheme for surface treatment of nanoparticles and method for producing polyester nanocomposites with higher glass transition temperature and lower crystallization temperature”, Materials Science and Engineering Department and Rensselaer Nanotechnology Center.

[9] Giuliana Gorrasia, Mariarosaria Tortoraa, Vittoria Vittoriaa, Eric Polletteb, Be’ne dicte Lepoittevinb, Michael Alexandreb, Philippe Duboisb, “Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion”, Polymer 44 (2003) 2271–2279.

[10] Michael Alexandre, Philippe Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”, A Review Journal, Materials Science and Engineering, 28 (2000) 1±63.

[11] H.N. Dhakal_, Z.Y. Zhang, M.O.W Richardson, “Nanoindentation behaviour of layered silicate reinforced unsaturated polyester Nanocomposites”, Polymer Testing 25 (2006) 846–852.

[12] Diane Lim, Alkenyl Silanes, “Synthesis and Applications”.

[13] Mehrnaz Joulazadeha and Amir. H. Navarchian “Effect of process variables on mechanical properties of polyurethane/clay nanocomposites”. Published online in Wiley InterScience