Novel LanT Associated Lantibiotic Clusters Identified by Genome Database Mining

Mangal Singh, Dipti Sareen*
Department of Biochemistry, Panjab University, Chandigarh, India

Abstract

Background: Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics.

Methodology/Findings: Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin.

Conclusion: This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and 3 with LanBC genes. Putative lantibiotic clusters identified here hold the potential for the discovery of novel lantibiotic(s).

Citation: Singh M, Sareen D (2014) Novel LanT Associated Lantibiotic Clusters Identified by Genome Database Mining. PLoS ONE 9(3): e91352. doi:10.1371/journal.pone.0091352

Editor: Indranil Biswas, University of Kansas Medical Center, United States of America
Received October 30, 2013; Accepted February 10, 2014; Published March 12, 2014
Copyright: © 2014 Singh, Sareen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: M.S. acknowledges the independent Junior Research Fellowship (JRF) No. 3/1/3/JRF-2011/HRD-99(11005), awarded by the Indian Council of Medical Research (ICMR; http://icmr.nic.in/), Government of India (New Delhi). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: diptisare@pu.ac.in

Introduction

Antibiotic compounds are in use for many decades in treating various bacterial infections and their continuous use has led to the development of drug resistant bacterial strains [1]. MRSA (methicillin resistant Staphylococcus aureus), VRE (vancomycin resistant Enterococci), MDR-TB (multi drug resistant Mycobacterium tuberculosis) and MDR-SP (Streptococcus pneumoniae) are some of the antibiotic resistant bacterial strains that are difficult to treat, therefore posing a need for new antimicrobial compounds. Lantibiotics are emerging as more promising drugs against these bacteria. Nisin was the first “lantibiotic” discovered from Lactococcus lactis [2] and is being used in food preservation since then due to its broad activity against many food spoiling and pathogenic bacteria such as Bacillus cereus, Listeria monocytogenes, Enterococci, Staphylococci and Streptococci. More than 40 years of its use in food industry has not led to any significant resistance [3], justifying the need and importance of study on lantibiotics.

Lantibiotics are Lanthionine containing antibiotics having a characteristic lanthionine ring responsible for their stability. The lanthionine ring is formed by dehydration and cyclization in the core peptide region of a 50-100 amino acid residues long precursor peptide from which the N-terminal leader peptide is cleaved off. The serine and threonine residues are dehydrated to form didehydroalanine (Dha) and didehydrobutyrine (Dhb) residues, respectively. Following dehydration, cyclization occurs by linking cysteine to Dha or Dhb residues thus forming a thioether linkage called as lanthionine or β-methylthianthionine. Lantibiotics exhibit their antibacterial activity by capturing lipid II precursor of peptidoglycan, thus, inhibiting cell wall formation [4], or by pore formation which leads to leakage and disruption of the membrane potential [5]. Nisin exhibits both of these activities. The leader peptide of lantibiotics helps in the recognition and interaction of lantipeptide with different enzymes of its biosynthetic machinery [6,7]. It is the leader peptide which keeps the lantipeptide inactive, when present inside the cell [7,8] and is also required for its extracellular transport [9,10]. Lantibiotic biosyn-
Lantibiotic machinery is organized into gene clusters, in single or multiple operons encoding the precursor peptide(s), modification enzymes, immunity proteins, a protease and a transporter. Following post-translational modifications, the lantipeptide is exported outside the cell by an ABC (ATP binding cassette) transporter and the leader peptide is cleaved off by a protease. The cleavage is either concomitant with the export [11] or after the transport, by an extracellular protease that may (e.g. nisin) or may not (e.g. subtilin) be encoded in the cluster [12,13]. Due to a diversity in the lantibiotic compounds, several classification schemes have been proposed [14–17]. The widely used bacteriocin mining tool, BAGEL2 [18] is based upon the classification given by Cotter et al., who have classified the lantibiotics into two major classes. Class I lantibiotics includes lantibionine containing lantibiotics and class II includes small non-lantibionine bacteriocins. Class I lantibiotics are further classified into three subgroups [19]. Type IA lantibiotics like nisin [20] and microbicyclin [21] are modified by two separate enzymes LanB and LanC. LanB is responsible for the dehydration of selective serine and threonine residues in the core peptide region and LanC for cyclization leading to lantibionine formation. Type IA precursor peptides have a highly conserved proline at -2 position, which is a characteristic of LanBC modified precursor peptides. In Type IB clusters, lantibionine formation is carried out by a single LanM protein, which carries out both the dehydration and cyclization. Type IC lantibiotics are also modified by a single protein, LanL [22]. In most of the class I clusters, besides the precursor peptide and lantibionine synthetases, a two-component response regulator system (LanRK) is present, same as in quorum sensing, for concentration dependent biosynthesis of the lantibiotic [23]. To ensure that the producer organism is not affected by its own lantibiotic, immunity proteins LanI, LanF, LanE and LanG are also present which provide self-resistance. LanI is a lipoprotein and LanFEG are ABC transporters, which pump the lantibiotic outside, thus, preventing from self-damage [24,25].

Type IB lantibiotic cluster can further be either a single or two-component lantibiotic encoding cluster. Single component lantibiotics like meracin [26] and lacticin 401 [9] have a single-antimicrobial peptide. The two-component lantibiotics like haloduracin [27,28] and lichenicidin [29,30] consist of two peptides designated as α and β peptides, which show antimicrobial activity through a synergistic effect. The two peptides are highly antimicrobial together but show little or no activity separately. In case of two-component lantibiotic, where the two precursor peptides show high sequence identity, like in case of cytolysin (i.e. 43%) from Enterococcus faecalis [31], there is a single LanM to process both the precursor peptides (Table 1). In examples where the precursor peptides show low sequence identity, like 17% in case of lichenicidin [29] and 12% in haloduracin [27], two separate LanM enzymes process the respective precursor peptides. Some unique clusters have also been identified which contain more than two precursor peptides for a single LanM. For example, up to 29 precursor peptides (with 37–84% sequence identity) have been identified in Prochlorococcus marinus MIT9315, of which 17 were experimentally found to be processed by a single LanM only [32], showing the highly promiscuous nature of the LanM.

Here, we adopted a strategy of using HalT transporter as a query sequence to identify novel type IB lantibiotic clusters by microbial genome database mining. The strategy resulted in identification of 54 strains, from the top 72 hits that were encoding novel HalT homologs in the genome. Out of these 54 strains, we could identify 24 novel lantibiotic clusters that were encoding genes for precursor peptides, modification enzyme, quorum sensing, transport and immunity.

Methods

Screening of genome database

Lantibiotic clusters were identified using PSI-BLAST, by taking the C39 peptidase domain containing transporter of haloduracin, HalT (Protein ID: NP_241317.1) as the driver sequence against genomic database on NCBI. PSI-BLAST was carried out using the default parameters, and the top 72 hits were taken for analysis.

Bioinformatic analysis of LanT homolog containing gene clusters

In cases where novel LanT-like genes were identified, the arrangement of adjacent genes was visualized using the genome viewer on NCBI. The individual ORFs obtained were subjected to both, BLAST with known lantibiotic clusters and analysis with the Conserved Domain Database (www.ncbi.nlm.nih.gov/structure/cdd/cdd.shtml), to identify potential genes involved in lantibiotic production, immunity and quorum sensing. LanRK system was also located using Microbial Signal Transduction database (MiST, http://mistdb.com). Immunity and transporter proteins were analyzed with TMHMM [http://www.cbs.dtu.dk/services/TMHMM] and CELLO [33] to ensure their membrane association. The selected genomes were also analyzed using BAGEL2 [18], a web based bacteriocin mining tool. In clusters, where most of the genes were found to be present but LanA encoding genes were not annotated, intergenic regions were inspected using ORF finder (www.ncbi.nlm.nih.gov). Properties of the identified precursor peptides (Table S1) were analyzed with APD2 [34].

Phylogenetic analysis

Alpha and beta precursor peptides in a putative two-component lantibiotic cluster were identified by multiple sequence alignment with ClustalW2 and their phylogenetic analysis with known alpha and beta precursor peptides, of well-known lantibiotics. The evolutionary history was inferred using the neighbour-joining method in MEGA5 [35].

Results

Using LanT as a mining tool, an in silico approach was followed to identify novel type IB lantibiotic clusters in bacterial genome. LanT is a conserved C39 peptidase domain containing lantibiotic transporter and is an integral part of the Type IB clusters i.e. clusters encoding LanM and double glycine motif containing precursor peptide(s). HalT protein of haloduracin biosynthetic cluster [27,28] was selected as a driver sequence for PSI-BLAST search of the NCBI database. The top 72 hits obtained had a significantly low e-value (<6e-127) including those involved in the production of the lantibiotics like lichenicidin, g_sp_G11MC16, geobacillin, salivaricin (Table 2), and some putative lantibiotic clusters [18,30,36], thus, proving the effectiveness of our mining approach. Besides the proven ones, 59 novel LanT homologs were identified in 54 bacterial strains (having 34–50% identity with HalT), among the representatives of actinobacteria, firmicutes, cyanobacteria, proteobacteria and chloroflexi, which have not been documented earlier for having any association with the lantibiotic production (Table 2). Out of the 54 strains, we could identify 24 novel lantibiotic clusters. In rest of the strains, the identified HalT homolog was either orphan or a complete cluster could not be established. All these 24 clusters are discussed here...
and the identified lantibiotic precursor peptide sequences are given in detail (Table S1) along with their ClustalW alignment (Fig. 1). They include 13 clusters having a single LanM and 8 encoding two LanM determinants. Three of the LanT homologs have been identified previously, like type IB lantibiotics ancovenin [37] and duramycin C [38]. We have identified novel clusters, both with single and two LanM determinants, in four representatives of Streptomyces complex secondary metabolites. A number of lantibiotics associated with LanM, thus, marking a probable threshold value in the identity of their homologs. The analysis indicated that, probably the precursor peptides are processed by a single LanM. In case of prochlorococcins also, a single LanM has been shown to process 17 out of 29 proposed precursor peptides, having 37–84% identity [32]. Therefore, it can be hypothesized that with an intermediate identity of 37%, they would be processed by a single LanM, thus, marking a probable threshold value in the identity of precursor peptides, in light of the examples of experimentally proven lantibiotics. A comparison of the sequence identity of the precursor peptides identified in this study, including those of the well-known lantibiotics, bhtA, smb, lacticin 3147, haloduracin, staphylococcin C55, lichenicidin, procAs and cytolysin with the number of LanM processing enzymes required. Upto ~20% sequence identity among the precursor peptides, two LanMs are required and 37% and above, a single LanM is sufficient for the processing.

Table 1. Sequence identity among the precursor peptides vs. the number of LanM.

Lantibiotic/lantibiotic producer identified by genome mining	No. of precursor peptides/ types	% identity Among precursor peptides	Number of LanM.	Reference
Synechocystis sp. PCC 7509	9/9	6	2	This work
Streptomyces hygroscopicus ATCC 53653	2/2	7	2	This work
Ruminococcus flavefaciens FD-1	12/7	7–99	2	This work
Bacillus sp. 7_6_55CFAA_CT2	3/3	9–21	2	This work
BhtA	2/2	10	2	[51]
Smb	2/2	10	2	[52]
Lacticin 3147	2/2	10	2	[53]
Bacillus cereus FRI-35	8/4	11–68	2	This work
Haloduracin	2/2	12	2	[27]
Staphylococcin C55	2/2	13	2	[54]
Streptococcus pneumoniae SP23-B572	2/2	14	2	[30]
Lichenicidin	2/2	17	2	[30]
Chamaesiphon minutus PCC6605	3/3	19–80	2	This work
Streptomyces viridochromogenes DSM 40736	2/2	17	2	This work
Streptomyces bingchengensis BCW-1	2/2	20	2	This work
ProcAs	29/29	37–84	1	[32]
Streptomyces roseosporus NRRL 11379	2/2	37	1	This work
Bacillus cereus VD 166	3/3	41–51	1	This work
Cytolysin	2/2	43	1	[31]
Herpetosiphon aurantiacus ATCC 23779	6/6	47–84	1	[30]
Ktedonobacter racemifer DSM 44963	6/6	48–86	1	This work
Bacillus cereus SJ1	3/2	80	1	This work

A comparison of the sequence identity of the precursor peptides identified in this study, including those of the well-known lantibiotics, bhtA, smb, lacticin 3147, haloduracin, staphylococcin C55, lichenicidin, procAs and cytolysin with the number of LanM processing enzymes required. Upto ~20% sequence identity among the precursor peptides, two LanMs are required and 37% and above, a single LanM is sufficient for the processing.

doi:10.1371/journal.pone.0091352.t001

Lantibiotic gene clusters identified in actinobacteria

Identification of novel Streptomyces associated lantibiotic gene clusters. Streptomyces are Gram-positive bacteria with a unique capacity for the production of a multitude of varied and complex secondary metabolites. A number of lantibiotics associated with Streptomyces have been identified previously, like type IB lantibiotics ancovenin [37] and duramycin C [38]. We have identified novel clusters, both with single and two LanM determinants, in four representatives of Streptomyces (Fig. 2), which are discussed here.

Streptomyces roseosporus NRRL 11379.

S. roseosporus produces the antibiotic daptomycin, which is effective against vancomycin and methicillin-resistant *Staphylococcus aureus*. The draft genome sequence of *S. roseosporus*, revealed a cluster (Fig. 2) with two putative precursor peptides (SrosN1_010100020955 and 60), a single LanM determinant (SrosN1_010100020965, 24% identical to HalM of haloduracin) and putative immunity genes (SrosN1_010100020980, 85 and 90). The precursor peptides had 37% identity, which was intermediate between haloduracin (22%) and cytolysin precursor peptides (~43%), that are processed by two and single LanM, respectively (Table 1). No other LanM encoding gene was present in the whole genome. In order to have an idea of the relation between the percent identity among the precursor peptides and the number of LanMs that can process them, the putative precursor peptides identified in this biosynthetic cluster were compared with those of the well-known lantibiotics, for their identity score (Table 1). The analysis indicated that, probably the precursor peptides are processed by a single LanM.
Table 2. LanT homologs identified by PSI-BLAST of the NCBI database.

S.No.	Organism	Protein ID	Locus tag*	I	Lantibiotic	Associated protein/ modification enzyme
1	*Bacillus halodurans* C-125	NP_241317	BH0451	100	Haloduracin	LanM
2	*Bacillus cereus* FRI-35	YP_006601542.1	BCK_27663	50	Unknown	LanM
3	*Bacillus mycoides* Rock3–17	ZP_04160688	Bmyco0003_57320	50	Unknown	LanM
4	*Bacillus cereus* BAG3X2-1	ZP_17399291.1	IE3_05674	50	Unknown	LanM
5	*Bacillus cereus* ATCC 4342	ZP_04287173.1	bcere010_52930	50	Unknown	LanM
6	*Bacillus sp.* 7_6_55CFAA_CT2	ZP_09359395.1	HMPREF1014_04858	52	Unknown	LanM
7	*Bacilluslicheniformis* DSM 13= ATCC 14580	YP_081202.1	BL00929	50	Lichenicidin	LanM
8	*Geobacillus* sp. G11MC16	ZP_03149641	G11MC16DRAFT_3400	47	Unknown	LanM
9	*Geobacillus thermodenitrificans* NG80-2	YP_00126158.1	GTNCG_2061	47	Unknown	LanM
10	*Bacillus cereus* Rock 1–3	ZP_04248716.1	bcere017_56490	46	Unknown	LanM
11	*Bacillus mojavensis*	ZP_17620816.1	IE9_04709	45	Unknown	LanM
12	*Bacillus cereus* VD166	ZP_04085253.1	Bthur0011_29240	42	Unknown	LanM
13	*Staphylococcus* epidermidis* plasmid	YP_00939047.1	SAP106A_001	41	Unknown	LanM
14	*Caldicellulosiruptor* bescii	ZP_04248716.1	bcere017_56490	46	Unknown	LanM
15	*Bacillus cereus* VD102	ZP_04085253.1	Bthur0011_29240	42	Unknown	LanM
16	*Cystobacter* fuscus* DSM 2262	ZP_01349801	CGS3p238572_03643	39	Unknown	LanM
17	*Clostridium* cellulovorans* 743B	YP_002532848.1	BCQ_4951	39	Unknown	LanM
18	*Streptococcus pneumoniae SPNA45*	YP_006701771.1	SPNA45_01356	39	Unknown	LanM
19	*Streptococcus pneumoniae* SP23-B572	ZP_01834980.1	CGS3p238572_03643	39	Unknown	LanM
20	*Streptococcus pneumoniae* 2070035	ZP_15686142.1	AMCSPO3_001176	39	Unknown	LanM
21	*Bacillus cereus* VD102	ZP_04085253.1	Bthur0011_29240	42	Unknown	LanM
22	*Clostridium* cellulovorans* 743B	YP_002532848.1	BCQ_4951	39	Unknown	LanM
23	*Streptococcus pneumoniae* SPNA45*	YP_006701771.1	SPNA45_01356	39	Unknown	LanM
24	*Bacillus cereus* VD102	ZP_04085253.1	Bthur0011_29240	42	Unknown	LanM
25	*Bacillus cereus* Q1	YP_002532848.1	BCQ_4951	39	Unknown	LanM
26	*Streptococcus pneumoniae* SPNA45*	YP_006701771.1	SPNA45_01356	39	Unknown	LanM
27	*Bacillus cereus* VD102	ZP_04085253.1	Bthur0011_29240	42	Unknown	LanM
28	*Clostridium* cellulovorans* 743B	YP_002532848.1	BCQ_4951	39	Unknown	LanM
29	*Streptococcus* mitis* SK616	YP_00154905.1	pLVPl401_35	38	Unknown	LanM
30	*Bacillus cereus* FRI-35	YP_006601542.1	BCK_27663	50	Unknown	LanM
31	*Streptococcus* mitis* SK616	YP_00154905.1	pLVPl401_35	38	Unknown	LanM
32	*Herpetosiphon aurantiacus* DSM 785	YP_001544640.1	Haur_1869	38	Unknown	LanM
33	*Cystobacter* fuscus* DSM 2262	YP_21238522.1	D187_01268	36	Unknown	LanB, LanC, LanO
34	*Streptococcus* mitis* SK616	YP_00154905.1	pLVPl401_35	38	Unknown	LanM
35	*Streptococcus* aurantiacus* DSM 785	YP_001544640.1	Haur_1869	38	Unknown	LanM
36	*Ktedonobacter racemifer* DSM 14365	YP_003270258.1	Hoch_5839	36	Unknown	LanM
37	*Synechocystis* sp. PCC 7509	YP_21238522.1	D187_01268	36	Unknown	LanB, LanC, LanO
38	*Paenibacillus polymyxa* SC2	YP_00949757.1	PPSC2_c4567	39	Paenibacillin	LanM
39	*Synechocystis* sp. PCC 7509	YP_21238522.1	D187_01268	36	Unknown	LanB, LanC, LanO
40	*Streptococcus* sp. M334	YP_00805296.1	HMPREF0851_01906	37	Unknown	LanM
41	*Ktedonobacter racemifer* DSM 14365	YP_003270258.1	Hoch_5839	36	Unknown	LanM
42	*Cystobacter* fuscus* DSM 2262	YP_21238522.1	D187_01268	36	Unknown	LanB, LanC, LanO
43	*Chondromyces apiculatus* DSM 436	YP_003270258.1	Hoch_5839	36	Unknown	LanM
44	*Myxococcus xanthus* DK 1622	YP_631064.1	MXAN_2853	36	Unknown	LanM
45	*Haliangium ochraceum* DSM 14365	YP_003270258.1	Hoch_5839	36	Unknown	LanM
46	*Chamaesiphon minutus* PCC 6605	YP_00796826.1	YP_00796826.1	38	Unknown	LanM
precursor peptides were found to have an identity of 20% among
originally annotated as hypothetical proteins, and a LanT
two putative precursor peptides (SBI_06989 and 90), that were
a LanM determinant (SBI_06988; 18% identical to HalM) and
enough, for it to be just a transport protein (as cytolysin B transport protein. The size of LanT appeared large
resulted in the identification of a cluster (gensis
producing capabilities [39]. Our genome analysis of
pentapeptides and is thus interesting for its secondary metabolite
compounds), other insecticidal antibiotics, and a few cyclic
milbemycins (commercially important anthelmintic macrolide
soil bacterium isolated from Harbin, China. It produces
for a two-component lantibiotic. Features led us to conclude that the identified cluster might encode
precursor peptides of two-component lantibiotics. Both of these
precursor peptides (the LanT homolog. Phylogenetic analysis of both the putative

Table 2. Cont.

S.No.	Organism	Protein ID	Locus tag*	I	Lantibiotic	Associated protein/ modification enzyme
47	Bacillus amylofiquefaciens subsp. plantarum YAU B9601-Y2	YP_005423188.1	BANAU_3852	36	Unknown	LanM
48	Bacillus sp. HIL-Y85/54728	CA60262.1	mrsT	36	Mersacidin	LanM
49	Bacillus sp. 5B6	ZP_01004966.1	MY7_3676	36	Unknown	LanM
50	Plesioctys pacifica SIR-1	ZP_01907120.1	PPSIR1_22636	35	Unknown	None
51	Cystobacter fuscus DSM 2262	ZP_21321682.1	D187_03026	36	Unknown	HyID
52	Myxococcus fulvus HW-1	YP_004667385.1	LIILAB_22040	36	Unknown	LanM
53	Bacillus cereus Hub4-10	ZP_17519727.1	IGK_05428	34	Unknown	LanM
54	Chondromyces apiculatus DSM 436	ZP_11024563.1	A176_0694	36	Unknown	LanM
55	Coralloccocus coralloides DSM 2259	YP_005371187.1	COCOR_05231	35	Unknown	LanB, LanC, LanO
56	Stigmatella aurantiaca DW43-1	ZP_01462269.1	STIAU_4626	36	[30]	HyID
57	Streptomyces hygroscopicus ATCC 53653	ZP_07297428.1	SSOG_05511	35	Unknown	LanM
58	Bacillus cereus F65185	YP_04206898.1	bcere0025_58960	35	Unknown	LanM
59	Bacillus cereus VDO45	YP_17565749.1	IIE_05074	35	Unknown	LanM
60	Streptococcus pneumoniae 2080913	ZP_15697159.1	AMCSLP17_001014	38	Unknown	LanC
61	Streptococcus pneumoniae 2061617	ZP_15690681.1	AMCSLP02_001061	38	Unknown	None
62	Streptococcus pneumoniae GA41277	ZP_128110048.1	SPAR67_1039	38	Unknown	None
63	Bacillus cereus VD156	ZP_17615132.1	IK7_05888	35	Unknown	LanM
64	Streptomyces viridochromogenes DSM 40736	ZP_07035308.1	SSOG_04195	34	Unknown	LanM
65	Anaeromyxobacter sp. Fw109-5	YP_003830320.1	Ana109_3122	34	Unknown	HyID
66	Clostridium perfringens B str. ATCC 3626	ZP_02636759.1	AC1_A0446	33	[30]	LanM
67	Mycobacterium tuberculosis IS617	ZP_09685921.1	MyctuR3647_5975	32	Unknown	LanB
68	Microcystis aeruginosa NIES-843	YP_006165899.1	MAE_35850	35	Unknown	HyID
69	Microcystis aeruginosa PCC 9717	ZP_18819417.1	MICAB_840008	36	Unknown	HyID
70	Acaryochloris sp. CCMEC S410	ZP_09249140.1	ACCMS_010100017748	34	Unknown	LanM
71	Microcystis aeruginosa PCC 9808	ZP_18838817.1	MICAG_730010	35	Unknown	LanM
72	Streptomyces bingchenguensis BCW-1	YP_004965238.1	SBI_06987	34	Unknown	LanM

*as on 15 February 2013.
*DUF4135 – N-terminal conserved domain of LanM proteins.

I- Percentage identity with HalT.

doi:10.1371/journal.pone.0091352.t002

determinant (23% identical to HalM; Fig. 2) with a rather shorter precursor peptide encoding ORF than SSOG_05510, adjoining the LanT homolog. Phylogenetic analysis of both the putative precursor peptides (Fig. 3) showed that these are homologs of the precursor peptides of two-component lantibiotics. Both of these features led us to conclude that the identified cluster might encode for a two-component lantibiotic.

Streptomyces bingchengensis BCW-1. *S. bingchengensis* is a soil bacterium isolated from Harbin, China. It produces milbemycins (commercially important antihelmithic macrolide compounds), other insecticidal antibiotics, and a few cyclic pentapeptides and is thus interesting for its secondary metabolite producing capabilities [39]. Our genome analysis of *S. bingchengensis* resulted in the identification of a cluster (Fig. 2) consisting of a LanM determinant (SBI_06988; 18% identical to HalM) and two putative precursor peptides (SBI_06989 and 90), that were originally annotated as hypothetical proteins, and a LanT homolog (SBI_06987) of ~1600 amino acid residues, annotated as cytolysin B transport protein. The size of LanT appeared large enough, for it to be just a transport protein (Table 3). Also the precursor peptides were found to have an identity of 20% among themselves, which being very low (Table 1), suggested that the cluster should have two LanMs [27]. Phylogenetic analysis (Fig. 3) also suggested that this cluster might encode for a two-component lantibiotic cluster. Using CDD, we could identify a second LanM, fused with the C39 protease and the ABC transporter domain, in this large protein sequence (Fig. 4). Though the cluster was also analyzed by BAGEL2, it predicted this single ORF as LanM and could not identify the hidden transporter. It will be interesting to know with wet lab experiments, if this tri-domain protein is operative in the formation of an active lantibiotic. When this long putative transporter sequence was subjected to BLAST, no other similar example could be identified on NCBI Entrez database. The second LanM could only be identified by using a consolidation of BLAST, CDD and BAGEL2, as it was fused with the LanT.

Streptomyces viridochromogenes DSM 40736. *S. viridochromogenes* is a producer of avilamycin A, an oligosaccharide antibiotic. Its genome analysis revealed a lantibiotic cluster (Fig. 2) with two putative precursor peptides (SSOG_04192 and 93) and two LanM determinants (SSOG_04194 and 96, showing 18% and 17% identity with HalM), besides the LanT homolog
The two LanM genes were found to be flanking the transporter. The cluster might encode for a two-component lantibiotic, as suggested by the phylogenetic analysis of the precursor peptides (Fig. 3). Downstream to the cluster, many transcriptional regulators (TR) were present next to the hypothetical protein (SSQG_04197) and the flavin utilizing monoxygenase gene (SSQG_04198).

Mycobacterium tusciae JS617. *M. tusciae* is a slow growing scotochromogenic mycobacterium that has been found in tapwater. This organism was isolated from the lymph node of an immunocompromised patient and from the respiratory sample of cystic fibrosis patient. Unexpectedly, the cluster identified in *M. tusciae* turned out to be a type IA cluster instead of a type IB cluster (Fig. 2). It had a LanT homolog (MyctuDRAFT_5975), a LanB determinant (MyctuDRAFT_5976) and a putative LanA precursor peptide (MyctuDRAFT_5977). The core-peptide region of the identified precursor peptide had a high amount of glycines (~43%) with serine and threonine residues, but no cysteine at all. Interestingly, the LanC cyclase, which links the cysteine to Dha and Dhb residues for cyclization, was neither found anywhere near the cluster and nor in the bacterial genome.

Lantibiotic gene clusters identified in firmicutes

Identification of novel *Bacillus cereus* associated lantibiotic clusters. *Bacillus* species are rod-shaped, endospore-forming aerobic or facultatively anaerobic, Gram-positive bacteria that are ubiquitous in nature. The many species of the genus exhibit a wide range of physiologic abilities that allow them to live in every natural environment. Many lantibiotics have been discovered from the phyla including lichenicidin, haloduracin, amylolysin etc.

Bacillus cereus FRI-35 plasmid p03. Genome analysis of FRI-35 revealed the presence of a two-component lantibiotic cluster (Fig. 5) with two LanM determinants (BCK_27583 and BCK_27638, 33% and 25% identical to HalM, respectively) and as many as eight putative double glycine motif containing precursor peptides, with 11–68% identity among them (Table 1). The whole biosynthetic cluster was present on the plasmid p03 (Sequence: NC_018499.1), of its four plasmids. Eight precursor peptide encoding genes were identified, which included 5 identical copies each of α (BCK_27608, 13 and 18) and β peptides (BCK_27623, 28 and 33) and two more peptides (BCK_27598 and 03), that fall within the β peptides in the phylogenetic analysis (Fig. 3). All the three immunity proteins, LanF (BCK_27648), LanE (BCK_27653) and LanG (BCK_27658) with the LanT homolog (BCK_27663) and an additional LanP, S8 peptidase were also present in the cluster (BCK_27643).

Bacillus cereus VD107. Genome analysis of VD107 revealed a complete cluster (Fig. 5) containing two identical precursor peptides (IIM_05226 and IIM_05227), all the immunity protein determinants, LanE (IIM_05222), LanF (IIM_05221) and LanG (IIM_05223), a LanM protein (IIM_05225, 31% identical to HalM) besides the LanT homolog (IIM_05224). Two-component response regulator elements, LanR (IIM_05229) and LanK (IIM_05228) were also located in the cluster. The putative precursor peptide had 84% similarity with varacin, a lantibiotic produced in an entirely different phyla, actinobacteria.

Bacillus cereus MSX-A1. Genome analysis of MSX-A1 led to the identification of a lantibiotic cluster (Fig. 5) having four almost identical precursor peptides (80–95% identity; I5_05392, 93, 94 and 95), a LanM determinant (I5_05396, having 27%
identity with HalM, a LanT homolog (IIE_05402) and a LanP (IIE_05403). A LanR determinant (IIE_05397) of two-component response regulatory system was also present. The cluster was intermediated by an unrelated gene annotated as hypothetical protein, the trans-isoprenyl diphosphate synthase (IIE_05400). Two putative ABC transporter genes (IIE_05404 and 05) were also found downstream to the cluster next to LanP, which might have a role in immunity.

Bacillus cereus VD045. Bioinformatic analysis of the draft sequence of VD045 revealed the presence of two putative lantibiotic biosynthetic clusters (Fig. 5), present in the vicinity, on the three contigs (contig34, 1.35 and 1.36), with their dedicated transporters and immunity genes. First cluster had a single putative precursor peptide (IIE_05053), a LanM (IIE_05054, 19% identical to HalM) and a LanT determinant (IIE_05055), with the putative immunity proteins LanF (IIE_05056), LanE (IIE_05057) and MutE homolog (IIE_05058). In the second cluster, there were six putative precursor peptides (IIE_05066, 67, 68, 69, 70 and 71) with almost identical leader sequence, variation in the core-peptide region only. Similar to MSX-A1, there was an additional LanP determinant (BCS[1]_09343) present in the cluster, near the LanT homolog (BCS[1]_09338). A cytolysin immunity protein (CylI; BCS[1]_09298) was also found to be present in the cluster.

Mycobacterium tusciae JS617

![Diagram of Mycobacterium tusciae JS617](image)

Figure 2. Cluster organization of the putative lantibiotic biosynthetic genes identified in actinobacteria, Streptomyces and Mycobacterium. *S. hygroscopicus* ATCC 53653, *S. bingchengensis* BCW-1, *S. viridochromogenes* DSM 40736 are shown here, encoding two LanM determinants and the phylogenetic analysis (Fig. 3) of the precursor peptides suggested that these clusters might encode a putative two-component lantibiotic. LanA1 and LanA2 represents alpha and beta precursors. In *Mycobacterium tusciae*, the double glycine motif containing precursor peptide was found to be encoded with the LanB determinant, enzyme for dehydration of type IA precursor peptides. HP - Hypothetical Protein; TR - Transcriptional Regulator; immunity genes which cannot be assigned as LanF/E/G are shown in red color.

doi:10.1371/journal.pone.0091352.g002
sequences (74–97% identity), a LanM (IIE_05073, 24% identical to HalM), a LanT (IIE_05074) and a LanP (IIE_05075) determinant. An intermediate NADPH dependent FMN reductase protein was also present in this cluster.

Bacillus cereus VD166. VD166 genome was found encoding a lantibiotic cluster (Fig. 5) comprising of three putative precursor peptides (IK9_05148, 49 and 50), a LanM determinant (IK9_05147, 24% identical to HalM) and a LanT homolog (IK9_05143). Using BAGEL2, only a single putative immunity protein, LanE (IK9_05146) could be identified near the cluster. Since, the immunity genes are normally clustered together, therefore, when the two nearby ORFs (IK9_05144 and 45) were analyzed by TMHMM, CELLO and CDD, they turned out to be transmembrane proteins. Also, the size of these proteins was in the range of the immunity proteins (Table 3) which led us to speculate that these ORFs might be encoding for the two immunity proteins, LanG and LanE.

Bacillus cereus Rock1–3. Genome analysis of Rock1–3 revealed a cluster (Fig. 5) with three putative precursor peptides (bcre0017_56480, 60 and 70) besides the LanM (bcre0017_56480, 24% identical to HalM) and LanT determinants (bcre0017_56490) with only two putative immunity proteins, LanE (bcre0017_56500) and LanN (bcre0017_56501). A transposase protein (bcre0017_56520) was also present just downstream of the cluster.

Identification of novel lantibiotic clusters in other firmicutes. Ruminococcus flavefaciens FD-1. *R. flavefaciens* is a Gram-positive cocci in the order ‘Clostridiales’ of firmicutes, which is a predominant anaerobic cellulolytic rumen bacterium. It was isolated from bolus containing ruminal microorganisms, which improve rumen function in calves. The bacterium. It was isolated from bolus containing ruminal microorganisms, which improve rumen function in calves.

Clostridium perfringens B str. ATCC 3626. *C. perfringens* is a rod-shaped, motile mesophilic pathogen belonging to firmicutes, which causes dysenteria, enterocolitis, enterotoxemia, food poisoning and gas gangrene. It was isolated from the intestinal contents of a lamb. Its genome analysis revealed a lantibiotic biosynthetic cluster (Fig. 6) with two putative precursor peptides (AC1_A0448 and 49), a LanM determinant (AC1_A0450) and a LanT homolog (AC1_A0446). An atypical NADPH-dependent FMN reductase gene (AC1_A0447), as found in some of the other clusters, discussed elsewhere, was also present.

Bacillus sp. 7.6.53CFAA CT2. This culture has been isolated from the healthy gut biopsy tissue from a patient with Cronh’s disease. Its genome was found to contain a cluster (Fig. 6) with three putative precursor peptides (HMPREF1014_04854, 55 and 56) and two LanM determinants (HMPREF1014_04853 and 57, 26% and 33% identical to HalM, respectively). Phylogenetic analysis suggested that the cluster might encode for a putative two-component lantibiotic cluster (Fig. 3) associated with a single LanM determinant (HMPREF1014_04862) and two hypothetical proteins, besides the bifunctional LanT homolog (HMPREF1014_04858).

Bacillus mojavensis RO-H-1. Analysis of draft genome sequence of *B. mojavensis* revealed a lantibiotic biosynthetic cluster (Fig. 6) comprising of two identical putative precursor peptides (BmojR_01000015733 and 38) associated with a single LanM determinant (BmojR_010100015743, 25% identity with HalM). An associated LanN homolog (BmojR_010100015748) and two immunity protein determinants, LanE (BmojR_01000015753) and LanN (BmojR_010100015758) were also located in the cluster.

Lantibiotic gene clusters identified in cyanobacteria. Chaamaesiphon minutus PCC 6605. *C. minutus* is a free living mesophilic cyanobacteria belonging to order Chroococcales, which was isolated from freshwater at Berkeley, USA. Its genome was found to encode a putative two-component lantibiotic cluster (Fig. 7) with three putative precursor peptides (Cha6605_2219, 21 and 23) and two LanM determinants (Cha6605_2218 and 22, 29% and 24% identical to HalM), besides the identified LanT homolog (Cha6605_2216).

Synechocystis sp. PCC 7509. *Synechocystis* sp. is a free living Gram-negative mesophilic cyanobacteria of the order Chroococcales.
isolated from Switzerland. Analysis of the draft sequence of *Synechocystis* sp. revealed the presence of a lantibiotic cluster (Fig. 7) containing as many as nine putative precursor peptides (Syn7509-DRAFT_00038120, 130, 140, 160, 170, 200, 210 and 220) with two LanM determinants (Syn7509-DRAFT_00038110 and 80, 31% and 23% identical to HalM, respectively) and a LanT homolog (Syn7509-DRAFT_00038090). Phylogenetic analysis of the precursor peptides (Fig. 3) suggested the cluster to be a putative two-component lantibiotic cluster.

Table 3. Approximate size of the lantibiotic biosynthetic proteins.

Lantibiotic cluster protein	Approximate length (Amino acids)
LanA	50–100
LanB	600–1000
LanC	~400
LanT (ABC Transporter)	~600
LanT (ABC Transporter + C39 Peptidase)	~700
LanT^ (ABC transporter + C39 Peptidase + LanM)	~1600
LanM	900–1000
LanFGE	200–300
LanR	200–250
LanK	400–600

Lantibiotic gene clusters identified in proteobacteria. Myxococcus xanthus DK 1622. *M. xanthus* is an aerobic mesophilic terrestrial proteobacteria. It has a large genome (9.14 Mb) containing more than 1500 gene duplications. These gene duplications more commonly involve genes used in cell to cell signaling, molecule sensing and transcription control. A lantibiotic cluster (Fig. 7) with two putative precursor peptides (MXAN_2855 and 56), a LanM determinant (MXAN_2857, having 27% identity with HalM) and the LanT (MXAN_2853) homolog was identified in its genome. Two more peptides,

Fig. 4. Comparison of BAGEL2 and CDD results for the ORF SBI_06987 encoded in the Streptomyces bingchenggensis BCW-1 genome. (A) BAGEL2 showing SBI_06987 as LanM only, while the hidden transporter could not be identified by the software. (B) CDD showing the conserved domain for LanM (LanC like superfamily) as well as C39 protease domain (peptidase_C, ATPase domain and ABC_membrane domain) containing transporter, LanT.

doi:10.1371/journal.pone.0091352.g004
encoded as hypothetical proteins (MXAN_2854 and 38), have been identified in this cluster which though are of the precursor peptide length, do not possess the characteristic features of the lantibiotic precursor peptide.

Cystobacter fuscus DSM 2262. *C. fuscus* is a Gram-negative aerobic bacterium of the order *Mycococcales*. Similar to *M. tusciae* JS617, its genome also identified a putative type IA lantibiotic cluster (Fig. 7) comprising of a putative precursor peptide (D187_01267), a LanB (D187_01271) and a LanC determinant (D187_01270) associated with the LanT homolog (D187_01268). Two more LanT homologs without any associated modification enzymes were also identified elsewhere in the genome (Table 2), which might also be involved in processing of the double glycine motif containing precursor peptides. The precursor peptides processed by LanBC proteins generally have a proline at -2 position, but here instead, double glycine motif was present. Noteworthy here is the presence of as many as eight cysteine residues of the total sixteen modifiable residues in the core peptide region (Fig. 1), maximum in any lanthipeptide discovered till date. These eight cysteine residues may contribute to form eight lantionine rings, thus, probably making it more stable.

Corallococcus coralloides DSM 2259. *C. coralloides* is an aerobic terrestrial mesophilic Gram-negative bacteria of phylum *Bacteroidetes*. Genome analysis of *C. coralloides* DSM 2259 also revealed the presence of a novel type IA cluster associated with the C39 containing LanT protein (Fig. 7). Three modification enzymes, LanB (COCOR_05225), LanC (COCOR_05228) and LanO (COCOR_05227) determinants were present in the cluster, along with the double glycine motif containing precursor peptide (COCOR_05226), as was in *M. tusciae* and *C. fuscus* discussed above.

Lantibiotic gene cluster identified in chloroflexi.

Ktedonobacter racemifer DSM 44963. *K. racemifer* is an aerobic, filamentous, non-motile, spore-forming Gram-positive heterotroph, which was isolated from a soil sample in Italy and represents a new phylogenetic class *Ktedonobacteria*, though it shares some morphological features with the actinobacteria. This culture is of special interest because it was the first cultivated representative of a deep branching unclassified lineage of otherwise unclassified environmental phylootypes, tentatively located within the phylum 'chloroflexi' [42]. The draft genome sequence of *K. racemifer* revealed the presence of a lantibiotic biosynthetic cluster (Fig. 7) with as many as ten putative precursor peptides (Krac_11033, 37, 38, 39, 40, 41, 42, 46, 47 and 50), two LanM determinants (Krac_11032 and 36, showing 30% and 27% identity with HalM) and the LanT homolog (Krac_11043). A second LanT homolog (Krac_11099; not shown) not associated with any lantibiotic precursor peptide was also present in the genome. Since there are two LanMs present in the cluster, so it was expected that the phylogenetic analysis would distribute the putative precursor peptides among the two clades of α and β precursors. Instead, the precursor peptides formed a separate group, unrelated with α and β precursor peptides (Fig. 8), suggesting that the cluster is probably not a two-component lantibiotic cluster.

Discussion

Genome mining is being extensively and successfully done these days using bioinformatic tools, to identify novel genes and gene clusters. Recently, many lantibiotic biosynthetic clusters have been identified using microbial genome database mining approach, by taking advantage of the conserved nature of the genes encoded in the lantibiotic clusters. For example, LanC has been used as a query for the identification of type IA lantibiotic clusters [43], LanM for type IB clusters [30,44], C39 protease domain for double glycine motif containing precursor peptides [45] and recently Gly and LanT was used for the identification of bacteriocins in cytophagia [45]. In the present study, a similar approach was followed to identify novel lantibiotic biosynthetic clusters. HalT transporter of haloduracin biosynthetic cluster was taken as a query to screen the bacterial genomes on NCBI Entrez. HalT has a N-terminal C39 protease and a C-terminal ABC-transporter, for haloduracin precursor peptides. This strategy resulted in the identification of 59 novel LanT homologs in 54 bacterial genomes (more than one in a single genome; Table 2). The detailed characterization of all these LanT homologs and the nearby genome sequence, led to the identification of 24 novel lantibiotic clusters, described here. The bacteria encoding these clusters were the representatives of actinobacteria, firmicutes, cytophagia, proteobacteria and chloroflexi.

Many examples of actinobacteria have been reported earlier for producing lantibiotics [46]. This study led to the identification of five more actinobacteria (Fig. 2) encoding lantibiotic clusters namely *S. hygromyceticus* ATCC 53653, *S. bingchenguensis* BCW-1, *S. viridochromogenes* DSM 40736, *S. rososporus* NRRL 11379 and *Mycobacterium tusciae* JS617. The three actinobacteria, ATCC 53653, BCW-1 and DSM 40736 were found encoding a putative two-component lantibiotic cluster, as suggested by the phylogenetic analysis of the precursor peptides (Fig. 3) and the presence of two LanMs. In ATCC 53653, the ORF encoding a second LanM was missed out in the genomic annotation while in BCW-1, it was hidden and fused with the LanT homolog (Fig. 4). It was only the sequence identity among the precursor peptides (7% and 20%), that gave us a clue for the possible presence of a second LanM. To draw a relation between the sequence identity among the precursor peptides and number of LanMs that are required for the processing, examples of already known and putative lantibiotic clusters were taken and analysed (Table 1). We could conclude therefrom that for upto 20% sequence identity, two LanMs are required for processing of the precursor peptides and above 37% identity, a single LanM is sufficient.

A majority of known lantibiotics are produced by firmicutes [46]. In this study, we have identified seven strains of *Bacillus cereus* (Fig. 5) namely FRI-35, VD107, MSX-A1, SJ1, VD045, VD166 and Rock1–3, encoding novel lantibiotic clusters with a diversity in the sequence of the precursor peptides. Earlier, Xiong et al had identified a cluster containing six identical precursor peptides in another strain of *B. cereus* Q1, which were named as cerecidins [36]. Other firmicutes that were identified included the anaerobic bacteria: *R. flaviguastrum* FD-1 and *C. bescii* DSM 6725; facultative anaerobe: *S. epidermidis* and aerobic bacteria: *C. perfringens*, *Bacillus Str. ATCC 3626*, *Bacillus sp. 7_6_55CFAA_CT2*. The strains FRI-35, FD-1 and 7_6_55CFAA_CT2 were found encoding a putative two-component lantibiotic cluster. FRI-35 was found to be encoding 8 and FD-1 as 12 precursor peptides, this being maximum in any firmicute identified till date, although multiple precursor peptides encoding clusters have been identified earlier in cyanobacteria [32,44] and chloroflexi [30]. The lantibiotic clusters...
Figure 6. Cluster organization of the putative lantibiotic biosynthetic genes identified in firmicutes other than B. cereus. Lantibiotic clusters identified in other Firmicutes besides the strains of Bacillus cereus. The clusters identified in R. flavefaciens FD-1 and Bacillus sp. 7_6_55CFAA_CT2 encode two LanM determinants and phylogenetic analysis of the identified precursor peptides suggested that these clusters might encode for a two-component lantibiotic. (Fig. 3). doi:10.1371/journal.pone.0091352.g006
identified in the firmicutes, FRI-35 and *S. epidermidis* were found on plasmids, like the previously characterized lantibiotics cytolysin, nisin, salivaricin etc.

Nine of the previously genetically characterized type IB clusters [46] and four of the clusters identified here in actinobacteria, completely rely on a bifunctional LanT. However, in six of the identified firmicutes, an additional LanP protease was found encoded in the cluster, namely in FRI-35, MSX-A1, SJ1, VD045 (Fig. 5), 7_6_55CFAA_CT2 and *S. epidermidis* (Fig. 6). The presence of two proteases in a single cluster suggests that there might be more than one cleavage site on the same precursor peptide [44]. While LanT processes and transports a precursor peptide with double glycine motif, the LanP is a membrane bound extracellular protease [20], which acts on the N-terminus of the P(QRS) motif of the precursor peptides. The latter motifs were found present in the leader region of the precursor peptides ([Text S1](#)) before the double glycine motif in the strains FRI-35, MSX-A1 and SJ1 while in VD045, it was present in the core peptide region. In 7_6_55CFAA_CT2 and *S. epidermidis*, the motif was not identified. So, it will be interesting to know how the presence of both the proteases fit into the sequence of events in lantibiotic biosynthesis.

Figure 7. Cluster organization of the putative lantibiotic biosynthetic genes identified in cyanobacteria, proteobacteria and chloroflexi. Putative lantibiotic cluster identified in cyanobacteria: *C. minutus* PCC 6605 and *Synechocystis* sp. PCC 7509; proteobacteria: *M. xanthus* DK 1622, *C. fuscus* DSM 2262, *C. coralloides* DSM 2259; chloroflexi; *K. racemifer* DSM 44963.
In 2009, Begley et al. reported the presence of lantibiotic clusters by in-silico analysis in the representatives of cyanobacteria, chloroflexi and proteobacteria, which had not been associated with lantibiotic production earlier [30]. Later, it was experimentally confirmed in cyanobacteria [32]. Thereafter, Wang et al. reported the widespread occurrence of bacteriocin gene clusters in cyanobacteria, suggesting the phyla to be a prolific source of bacteriocins [44]. Here, we have added two more representatives of cyanobacteria; Synechocystis sp. PCC 7509 and a new genus Chamaesiphon minutus PCC 6605 (Fig. 7), both encoding a putative two-component lantibiotic cluster (Fig. 3) and one more genus to chloroflexi, the Ktedonobacter racemifer encoding a lantibiotic cluster.

To the best of our knowledge, salivaricin is the only known example where the double glycine type precursor peptide is modified by LanBC (instead of LanM), processed and transported by a bifunctional LanT [47]. In our study, similar biosynthetic clusters were identified in an actinomycete, M. tusciae JS617 (Fig. 2) and in proteobacteria, C. coralloides DSM 2259 and C. fuscus DSM 2262 (Fig. 7). LanBC enzymes usually process the precursor peptides, which have a conserved proline at -2 position and FNLD motif around the position -20 and -15 in the leader, thus playing a crucial role in the post-translational modification [48]. Experimental evidences are therefore required to conclude that without the presence of these crucial motifs, as has been noticed in the above three clusters, the identified precursor peptides could still undergo post-translational modification by LanBC.

Many different kinds of post-translational modifications, other than the lanthionine formation have been reported recently in bacteriocins [41,49]. In the present study, besides the normal genes present in the lantibiotic cluster, some additional atypical genes were found like NADPH dependent FMN reductase in SJ1, VD045, C. bescii DSM 6725 and C. perfringens B str. ATCC 3626 and N-acetyltransferases were found in close proximity to the clusters in DSM 6725 and ATCC 53653. These atypical genes might be involved in additional post-translational modifications of the lantibiotics. N-terminal acetylation of proteins is believed to protect the proteins from degradation [50] and, thus, might provide an additional stability to the encoded lantibiotic, besides that by the lanthionine group.

Many of the previous, putatively [30] and experimentally characterized lantibiotics including nisin have been identified on transmissible genetic elements. Here also, the clusters identified in B. cereus VD045, B. cereus Rock1–3 and K. racemifer DSM 44963 were present in close proximity to the transposable genetic elements, which might be involved in mobilizing the cluster to other species and also for their mobility within the genome.

From several studies done on lantibiotics, it has been felt that the search for smaller antimicrobial peptides is difficult because of their small size and low homology, and are therefore missed out during the conventional genomic annotation. However, the
relatively larger transporter gene of the lantibiotic biosynthetic cluster i.e. LanT is rarely unannotated and can be identified by BLAST search. The in silico analysis of the nearby region for the lantibiotic modification genes can then lead to the identification of the precursor peptides. Thus, identifying lantipeptides using conserved regions of the large proteins of the large lantibiotic biosynthetic cluster proves out to be a better approach. The putative lantibiotic clusters identified here using the above said strategy is a major expansion to the already reported putative lantibiotics, and if taken for focussed wet lab experiments, it might expand our library of antimicrobial peptides against the drug resistant pathogens. The identified bacteria can be taken up for in vivo production of the lantibiotic or an in vitro reconstitution approach can be adopted. Some findings like the presence of LanBC modification enzymes for processing peptides with double glycine motif, fusion of the modification enzyme with the transporter and presence of unrelated genes like the FMN reductases and N-acetyltransferases in the lantibiotic biosynthetic cluster organization has further pointed towards the need of experimental characterization of these lantibiotic biosynthetic systems. The use of BAGEL2 poses limitations in identification of the whole biosynthetic cluster that can be overcome by a consolidation of well established analytical bioinformatic tools used here. In nutshell, our results provide a higher level of confidence in the novel identified clusters, to proceed for wet lab experiments, for the discovery of novel lantibiotic(s).

Supporting Information

Table S1 List of all the putative lantibiotic precursor peptides identified in this study. (XLSX)

Text S1 Processing sites present in the precursor peptides, identified in the clusters encoding two proteases, i.e. the C39 protease of the LanT transporter and the S8 peptidase, LanP. (DOCX)

Author Contributions

Conceived and designed the experiments: DS. Performed the experiments: MS. Analyzed the data: DS. Contributed reagents/materials/analyses tools: MS. Wrote the paper: MS.

References

1. Tomasz A (1994) Multiple-antibiotic resistant pathogenic bacteria. N Engl J Med 330: 1247–1251.
2. Mattick ATR, Hirsch A (1944) A powerful inhibitory substance produced by Bacillus subtilis. Nature 154: 551.
3. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Application of bacteriocin nisin. Antonie Van Leeuwenhoek 69: 193–202.
4. Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, et al. (2001) Specific binding of nisin to the pepidoglycan precursor lip II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276: 1772–1779.
5. Brotz H, Josten M, Wiedemann I, Schneider U, Götz F, et al. (1998) Role of lipid-bound pepidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30: 317–327.
6. Patton GC, Paul M, Cooper LE, Düsterhus S, Karas M, Entian K–D (2003) Activation of the S8 peptidase, LanP. Antonie Van Leeuwenhoek 83: 651–661.
7. Li B, Yu JPJ, Brunzelle JS, Moll GN, van der Donk WA, et al. (2006) Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311: 1464–1467.
8. Xie L, Miller LM, Chatterjee C, Averin O, Kellerer NL, et al. (2004) Lactococcus lactis nisin immunity genes nid and nidEG after coordinated expression in the surrogate host Bacterium subtilis. J Biol Chem 279: 22176–22182.
9. Kuipers A, de Boef E, Rink R, Kluskens LD, et al. (2004) NisT, the extracellular serine protease subtilisin Bacillus subtilis 168. Appl Environ Microbiol 63: 3965–3971.
10. Izaguirre G, Hansen JN (1997) Use of alkaline phosphatase as a reporter polypeptide to study the role of the subtilin leader segment and the SpaT transporter in the posttranslational modifications and secretion of subtilin in Bacillus subtilis. Appl Environ Microbiol 63: 3965–3971.
11. Haverstein LS, Diep DB, Nis IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16: 229–240.
12. Convey C, Stein T, Dusterhus S, Karas M, Entian K–D (2003) Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem Biophys Res Commun 304: 48–54.
13. Allena K, Guder A, Cramer C, Bierbaum G (2000) Biosynthesis of the lantibiotic melacin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 66: 2563–2571.
14. Cotter PD, Hill C, Ross RP (2007) Discovery of a novel two-peptide lantibiotic, holodermin, produced by the alkaliphilic Bacillus halodurans C-125. FEBS Microbiol Lett 267: 64–71.
15. Dischinger J, Josten M, Serkat C, Sah H-G, Bierbaum G (2009) Production of the novel two-peptide lantibiotic leuclinidien by Bacillus leucliniformans DSM 13. PLoS One 4: e6788.
16. Begley M, Cotter PD, Hill C, Ross RP (2009) Identification of a novel two-peptide lantibiotic, leuclinidien, following rational genome mining for LanM proteins. Appl Environ Microbiol 75: 3451–3460.
17. Xia J, Yu Y, Lu C, Wang J, (2003) The Lantibiotic Clusters Identified by Genome Mining. J Bacteriol 191: 1120–1121.
18. Priefer U, Schumann P, Leifheit-Lancias M, Döker F, Schlierf G, et al. (2001) Histochemically synchronized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. J Biotechnol 85: 649–651.
19. Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61: 477–501.
38. Fredenhagen A, Fendrich G, Marki F, Marki W, Gruner J, et al. (1990) Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A2. Structural revision of duramycin and cinnamycin. J Antibiot (Tokyo) 43: 1403–1412.

39. Wang X-J, Yan Y-J, Zhang B, An J, Wang J-J, et al. (2010) Genome sequence of the millenmycin-producing bacterium Steptomyces bingchengensis. J Bacteriol 192: 4526–4527.

40. Kataeva I a, Yang S-J, Dam P, Poole FL, Yin Y, et al. (2009) Genome sequence of the anaerobic, thermophile, and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725. J Bacteriol 191: 3760–3761.

41. He Z, Yuan C, Zhang L, Yousef AE. (2008) N-terminal acetylation in parahalclin, a novel lantibiotic. FEBS Lett 582: 2787–2792.

42. Chang Y-J, Land M, Hauser L, Chertkov O, Del Rio TG, et al. (2011) Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). Stand Genomic Sci 5: 97–111.

43. Marsh AJ, O’Sullivan O, Ross RP, Cotter PD, Hill C (2010) In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics 11: 679.

44. Wang H, Fewer DP, Sivonen K. (2011) Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria. PLoS One 6: e22384.

45. Dirix G, Monsieurs P, Dombrech B, Daniels R, Marchal K (2004) Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide screening for peptides containing a double-glycine leader sequence and their cognate transporters. Peptides 25: 1425–1440.

46. Li X, O’Sullivan DJ. (2012) Contribution of the actinobacteria to the growing diversity of lantibiotics. Biotechnol Lett 34: 2133–2145.

47. Upton M, Tagg JR, Wescombe P, Jenkins HF. (2001) Intra- and interspecies signaling between Staphylococcus aureus and Staphylococcus epidermidis mediated by SalA and SalAI lantibiotic peptides. J Bacteriol 183: 3931–3936.

48. Plat A, Klakshud LD, Kuipers A, Rink R, Mol GN. (2011) Requirements of the engineered leader peptide of nisin for inducing modification, export, and cleavage. Appl Environ Microbiol 77: 604–611.

49. Stepper J, Shastry S, Loo TS, Preston JC, Novak P, et al. (2011) Cysteine S-glycosylation, a new post-translation modification found in glycopeptide bacteriocins. FEBS Lett 585: 645–650.

50. Nusspaumer G, Remacha M, Ballota IP. (2008) Phosphorylation and N-terminal region of yeast ribosomal protein P1 mediate its degradation, which is prevented by protein P2. EMBO J 19: 6075–6084.

51. Hyink O, Balakrishnan M, Tagg JR (2005) Staphylococcus aureus strain BHT produces both a class I two-component lantibiotic and a class II bacteriocin. FEBS Microbiol Lett 252: 235–241.

52. Yonezawa H, Kuramitsu HK (2005) Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother 49: 541–546.

53. Ryan MP, Rea MC, Hill C, Ross RP. (1996) An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62: 612–619.

54. Navaratna MADB, Sahl H, John R (1998) Two-component anti-Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl Environ Microbiol 64: 4803–4808.