Abstract: The biological network plays a key role in protein function annotation, protein superfamily classification, disease diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years, researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.

1 Introduction

Network motifs are basic building blocks of various biological networks such as metabolic network, gene regulatory network, and protein interaction network [1]. These are not only studied in a biological network, but also key features in many other networks such as social network, ecological network (food web), World Wide Web (the Internet), etc. Network motifs are over-represented patterns in a target network like a sequence motif in a protein sequence. But network motif discovery requires computationally expensive isomorphic testing and repeated frequency computation for the statistical significance measure. Network motifs act as a key feature in a wide range of applications of biological networks. Most of the biological networks possess two critical motifs: feed-forward-loop and Bifan [2]. However, motifs like autoregulation, feedback loops, and dense overlapping regulons, etc. [3] are functionally important. Proulj et al. [4] distinguish different protein–protein interaction networks by using network motifs as a feature. These are also used for network model selection. Based on motif significance profiles, Milo et al. [5] classified networks of the various domains into superfamilies. Albert and Albert [6] used these features successfully to predict protein–protein interactions. Gupta et al. [7] used network motifs for cancer disease diagnosis. These are also used for network superfamily classification [5] and artificial network model for a real-world network, prediction of breast cancer survival outcome, analysis of functional network in diabetes patients, etc. A three-node network motif found in the human waving network helps recognize breast cancer patients from regular patients [8].

Network motif discovery algorithms broadly classified into two categories: (i) network-centric and (ii) motif-centric [9]. Depending on frequency computation again, they can be classified as exact search and sampling. Some of the network-centric algorithms are enumerate subgraphs (ESU) [10], MFinder [11], MAVisto [12], NetMoFinder [13], Kavosh [14] and FANMOD [15]. Out of these algorithms, MFinder and FANMOD use a sampling approach for counting motif frequency, whereas other algorithms use the exact census. Two popular motif-centric algorithms are Grochow and Kellis [16] and MODA [17]. Both of these algorithms follow the exact census approach. A brief introduction to some of the existing algorithms is given in the next paragraph.

The first significant contribution in network motif discovery by Milo et al. [1], published in 2002. To measure the statistical significance, the frequency of a motif in a real network is compared with a set of random networks having the same degree distribution as the real network. A backtracking algorithm name as MFinder is used for discovering network motifs. The exponential space complexity of this algorithm made this method incapable of dealing with large motifs. Kashani et al. [18] improved the execution time of motif detection algorithm by sampling approach, but the results obtained are biased. Wernicke [10] proposes a specialised algorithm ESO that could avoid redundancy in computation through proper enumeration. This method uses a third-party algorithm NAUTY [19] for checking isomorphism. A lot of redundant subgraph isomorphism check is involved in this method as it is not able to handle automorphism. The flexible pattern finder algorithm [20] proposed a pattern growth approach for computing pattern frequency. However, the number of patterns grows rapidly concerning increase pattern size. Therefore, searching all patterns systematically is a time-consuming task, even for a medium-size pattern. Grochow and Kellis [16] proposed a motif-centric algorithm, where frequency counting is done on a specific isomorphic class. This algorithm avoids unnecessary and redundant searches by mapping the query graph only on one representative of its equivalence class. The symmetry conditions are removed by adding constraints on the labelling of the vertices. These conditions reduce the number of isomorphic checks significantly. However, subgraph isomorphism is still a significant concern in this method. Kashani et al. [14] proposed a new network-centric algorithm named as Kavosh. This algorithm generates all combinations with the desired number of nodes through an implicit tree rooted at the chosen vertex. Omidi et al. [17] proposed MODA, which is based on a pattern growth methodology. This is a subgraph-centric algorithm. The core idea of this algorithm is first to find the frequency of acyclic subgraphs, save the respective embeddings in memory and then use those embeddings to quickly find out the frequencies of cyclic subgraphs. MODA introduces the concept of expansion tree, which is static and built at the beginning of the algorithm. A novel algorithm named as CoMoFinder proposed by Liang et al. [21]. Composite network motifs present in co-regulatory networks are identified accurately and efficiently by this method. Parallel
The existing methods face significant challenges when the network size increases [25, 26]. The performance of most of the existing algorithms that follow the exact census significantly decreases with increase motif size. The performance of algorithms which follow sampling approaches is biased and hence unreliable. Further, some methods are applicable only for finding overlapping motif instances. Network motif discovery in a large and complex biological network is time consuming, as the number of alternative motif topologies increases exponentially and it involves a subgraph isomorphism check. Furthermore, the number of alternative topologies increases exponentially with the increase of subgraph size. For this reason, existing methods only focus on motifs of small size. This limitation prevents further investigation in this field. In this paper, we adopt a pattern join method to identify large network motifs in a biological network efficiently. The central idea of this algorithm is to use some basic building patterns and find their embeddings. This is followed by an iterative joining of parent patterns with these basic building patterns. As a result, child patterns of higher order are obtained. Non-overlapping motif instances are obtained by using the maximum independent set (MIS) finding [22] algorithm. The proposed algorithm significantly reduces the computationally expensive isomorphic test and avoids unnecessary growth of pattern which does not have any statistical significance.

The remaining of the paper is organised as follows: Section 2 presents an overview of the motif discovery process. Section 3 presents the proposed network motif discovery algorithm. Implementation, results, and discussion are presented in Section 4. Finally, Section 5 presents a brief conclusion with the future scope of this paper.

2 Network motif discovery process

Network motif discovery is the process of finding statistically significant patterns within a target network. The target network and all the potential motifs are represented as graphs. The subgraph in a graph with a frequency higher than the predefined threshold is considered to be a potential motif. The major steps in the network motif discovery process consist of (i) pattern frequency computation, (ii) random graph generation, and (iii) statistical testing. The block diagram of the motif discovery process is shown in Fig. 1. In Fig. 2, hypothetical data demonstrates that out of six non-isomorphic subgraphs of size-4, three patterns are determined as network motifs.

The frequency of patterns in a target network is measured by using three different frequency measures F_1, F_2, and F_3. These frequencies are defined concerning the overlapping of graph elements in subgraph instances. F_1 measure, both vertices and edges can be shared among different instances of the subgraph. F_2 measure computes edge-disjoint instances of the subgraph where only vertices can be shared. F_3 measure is completely restrictive, in which no sharing of vertices or edges are allowed. Frequency measure F_2 is used in the proposed algorithm as it counts edge-disjoint subgraphs, which satisfy downward closure property [27]. The downward closure property ensures that the frequency of child patterns (i.e. patterns obtained from parent after join operation) is monotonically decreasing with increasing size of the pattern. Based on this property, the search space of patterns can be reduced by pruning of infrequent patterns in the iterative joining process. Hence it reduces the search space for finding frequent patterns and therefore ensures fast computation. In Fig. 3, a hypothetical network and a size-3 candidate motif with all its embeddings for this process is shown.
some randomly generated networks, which preserve the required properties are shown in Fig. 5.

The last key step in the motif discovery process is a statistical significance measure of a potential motif. There are three important measures such as P-value, z-score, and significance profile (SP) used for this purpose. The z-score of a motif M is defined as

\[z(M) = \frac{f_{\text{real}} - \mu_{\text{rand}}}{\sigma_{\text{rand}}} \]

where \(f_{\text{real}} \) is the frequency of motif in the target network, \(\mu_{\text{rand}} \) and \(\sigma_{\text{rand}} \) are the mean frequency and standard deviation of frequencies of a set of random networks. The P-value of a motif is defined as \(n/N \), where \(n \) is the number of times \(f_{\text{rand}} \geq f_{\text{real}} \) and \(N \) is the total number of random networks. A vector representing the z-scores of a set of motifs is called a significance profile (SP). Motifs found in a biological network are not necessarily functionally important. But they are always statistically significant.

3 Network motif discovery using the pattern-join method

In this paper, we adopt a pattern join method to identify large network motifs in biological networks efficiently. The central idea of this algorithm is to use some basic building patterns and find their embeddings. This is followed by an iterative joining of parent patterns with these basic building patterns. As a result, child patterns of higher order are obtained. The proposed algorithm significantly reduces the computationally expensive isomorphic test and avoids unnecessary growth of pattern, which does not have any statistical significance. A proposed motif discovery algorithm is a motif centric algorithm. The basic patterns can generate all possible patterns through iterative joining and hence called basic building patterns. The basic building patterns of undirected and directed graphs are shown in Figs. 6 and 7, respectively. There are four basic building patterns selected for an undirected graph, and seven basic building patterns are selected for a directed graph. The proposed algorithm initialises the current set of patterns with these basic building patterns. Iteratively, each pattern present in the current set is joined with basic building patterns to construct a new set of patterns. At the end of an iteration, the new set of patterns becomes the current set for the next iteration.

During the joining process, two subgraphs can be joined if they share at least one edge. To avoid unnecessary checking on join operation, self-joining is not allowed in the proposed algorithm. As a result, computational cost decreases. The proposed method finds the disjoint motif instances, and self-join will never happen on disjoint motif instances. The joining of two subgraphs either yields an existing subgraph in the new set or a new subgraph. Existing subgraph generated is treated as a duplicate subgraph and discarded by the proposed algorithm. The pattern of the newly created subgraph is either isomorphic to one of the existing patterns or a new one. In the former case, we consider the generated subgraph as an embedding of its corresponding pattern, and the algorithm increments the pattern frequency. In the case of the new pattern, it is added to the current set, and its frequency is initialised to 1. Subgraph isomorphism is checked by comparing the canonical order of subgraph with the canonical order of all the patterns present in the current set. Nauty toll [19] is used for this purpose. Figs. 8 and 9 demonstrate the pattern-join operation in the undirected graph and directed graph, respectively.

The critical observations in this pattern-join method are

Fig. 5 Random networks preserving degree distribution of the original network

Fig. 6 Basic building patterns for undirected graph

Fig. 7 Basic building patterns for directed graph

Fig. 8 Pattern-join operation in undirected graph

Fig. 9 Pattern-join operation in directed graph
which belongs to M1 (see Fig. 6). Failure to accomplish the join in (a), either

it is generated by joining the parent pattern

with the subgraph \{ (x, y), (y, a) \} which belongs to M4 (see Fig. 6) or

\begin{itemize}
 \item[i.] The two sets of basic building patterns, as shown in Figs. 6 and 7 are unique. There exist no other equivalent set of basic patterns. Therefore, these two sets represent minimal or irreducible sets of patterns.
 \item[ii.] If anyone of the patterns is removed from the set of basic building patterns, then that cannot be generated without self-joining.
 \item[iii.] Any pattern with \(k + 1 \) edges can be obtained from a parent pattern with \(k \) edges by joining with one of the basic patterns.
\end{itemize}

The above observations are further justified below.

Let us consider the basic building patterns of the undirected graph first. The minimum order (number of vertices) of the basic pattern is chosen as 3. Because the order-2 graph represents an edge and the method will no longer be a pattern-join method. It will be a simple edge addition process. There are two possible patterns of order-3, represented by M1 and M2, as shown in Fig. 6. Both M1 and M2 must be considered in the basic building patterns as one cannot be generated from others without self-joining. Now consider all possible connected patterns of order-4 as shown in Fig. 10. M3 cannot be generated from M1 and M2 without self-joining, and M4 cannot be generated from M1, M2, and M3 without self-joining. Hence M3 and M4 must be included in the set of basic building patterns. Now consider an instance of P5 that can be generated by joining instances of M1 and M2 as shown in Fig. 11. An instance of P5 can also be generated by joining instances of M1 and M3 or M1 and M4 or M2 and M3 or M2 and M4 or M3 and M4. Similarly, instances of P6, P7, and P8 can be generated by joining instances of basic patterns among themselves or by joining an instance of basic pattern with an instance of the already generated pattern. Generation of an instance from each of the above patterns is shown in Fig. 11. The pattern of higher order can be generated by the pattern-join operation as stated in the third observation, and that is explained below.

Let us consider an undirected graph \(G \) and pattern P1 of size \(k \) edges in \(G \). Also, consider pattern P2 with \(k + 1 \) edges such that P2 contains P1 and an additional edge \((x, y)\). It is required to show that P2 can be obtained from P1 by joining it with one of the four basic building patterns. Since both P1 and P2 are connected graphs, let us assume that \(y \) has an edge \((y, a)\) present in pattern P1. Fig. 12 illustrates the two edges \((x, y)\) and \((y, a)\). First, basic building pattern M1 (Fig. 6) is considered for the join operation. In this case, a copy of M1, \{ (x, y), (y, a) \} and pattern P1 joined together to form pattern P2. However, this join occurs only if the subgraph \{ (x, y), (y, a) \} is included in the \(F_2 \) counts of M1. If the above condition fails, then depending on the degree of the nodes \(y \) and \(a \) in pattern P1, there may exist an edge \((y, b)\) or \((a, b)\) as shown in Fig. 12. If \((a, b)\) exist then join a copy of the motif M4 (Fig. 6), \{ (x, y), (y, a), (a, b) \} with P1 to obtain P2. Otherwise, if \((y, b)\) exist then join a copy of the motif M3 (Fig. 6), \{ (x, y), (y, a), (y, b) \} with P1 to obtain P2.

Now consider the basic building patterns of the directed graph. Similar to the undirected graph, the order of basic building patterns for a directed graph is also started with 3. Because the order-2 graph represents an edge and it leads to edge addition process in place of the pattern-join operation. Let us consider all possible connected patterns of order-3, as shown in Fig. 13. The patterns M1, M2, M3, and M4 must be considered in the basic building patterns as one cannot be generated from others without self-joining. However, P5 can be generated by joining an instance of M1 with M3, as shown in Fig. 14. Thus P5 is not included in the basic building patterns.

Now consider all possible digraph patterns of order-4 as shown in Fig. 15. M5 cannot be generated from M1, M2, M3, and M4 without self-joining and M6 cannot be generated from M1, M2, M3, M4, and M5 without self-joining. Hence M5, M6, and M7 must be included in the set of basic building patterns. Now consider an instance of P8 that can be generated by joining instances of M1 and M3. An instance of P9 and P10 can be generated by joining instances of M2 and M3. An instance of P11 can be generated by joining instances of M1 and M3. An instance of P12 can be generated by joining instances of M1 and M2.
the pattern of higher order can be generated by the
P2 can be obtained from P1 by joining it with one of the seven
obtained by joining the parent pattern with the subgraph {((
M2 (see Fig. 7). Failure to accomplish the above joins, either
basic building patterns. Since both P1 and P2 have connected
an edge (x, y) in the parent pattern, the child pattern is generated as a result of joining the parent pattern with the subgraph {{(x), (y), (a), (b)}} which belongs to M7 (see Fig. 7), {((x), (a), (b))} with P1 to obtain P2. If (b, a) and (a, x) exist then join a copy of the basic pattern M7 (Fig. 7), {((a), (b), (x), (y))} with P1 to obtain P2. If (y, a) and (a, b) exist then join a copy of the basic pattern M7 (Fig. 7), {((a), (y), (x), (a))} with P1 to obtain P2. If (a, y) and (b, y) exist then join a copy of the basic pattern M6 (Fig. 7), {((b), (a), (x), (y))} with P1 to obtain P2. If (y, a) and (a, b) exist then join a copy of the basic pattern M7 (Fig. 7), {((a), (y), (x), (a), (b))} with P1 to obtain P2.
In summary, any pattern P2 with k + 1 edges can be constructed by joining pattern P1 with k edges (or k - 1 edges) with one of the basic building patterns.
Hence it can be concluded that the above four patterns in the undirected graph and seven patterns in the directed graph act as
similarly, instances of P13–P38 can be generated by joining instances of basic patterns among themselves or by joining an
instance of basic pattern with an instance of the already generated
pattern, the child pattern is generated as a result of joining the parent pattern with the subgraph {{(x), (y), (a), (b)}} which belongs to M7 (see Fig. 7) or (b)} is generated by joining the parent pattern with the subgraph {{(x), (y), (a), (b)}} which belongs to M7 (see Fig. 7) or (g) it is generated by joining the parent pattern with the subgraph {{(x), (y), (a), (b)}} which belongs to M6 (see Fig. 7) or (h) it is generated by joining the parent pattern with the subgraph {{(x), (y), (a), (b)}} which belongs to M7 (see Fig. 7)

Similarly, instances of P13–P38 can be generated by joining instances of basic patterns among themselves or by joining an
instance of basic pattern with an instance of the already generated
pattern. The pattern of higher order can be generated by the
pattern-join operation as stated in the third observation and that is explained below.
Let us consider a directed graph G and pattern $P1$ of size k
edges in G. Also, consider pattern $P2$ with $k + 1$ edges such that $P2$
contains $P1$ and an additional edge (x, y). It is required to show that $P2$
can be obtained from $P1$ by joining it with one of the seven
basic building patterns. Since both $P1$ and $P2$ have connected
graphs, let us assume that either either x or y has an edge (x, a) or (a, x) or y has an edge (y, a) or (a, y) or (a, x) present in pattern $P1$. Fig. 16 illustrates these scenarios. First, the basic patterns $M1$, $M2$, and $M3$ (Fig. 7) are considered in the join operation. In these cases, either a copy of
$M1$, $M2$, or a copy of $M3$, $M6$, or $M7$ (Fig. 7) is generated as a result of joining two subgraphs (Lines 11–17). The
algorithm extracts the edge-disjoint embeddings of each pattern (Line 3) using an MIS finding algorithm, which is explained in
Section 3.4. The current set of patterns is initialised to four basic
patterns in the case of the undirected graph and seven basic patterns in the case of the directed graph. The new set is initialised
to an empty set. The size of the current motif set increases in each successive iteration.

This algorithm joins the instances of each sub-graph present in the current set with the instances of basic building pattern set (Line 10). Two subgraphs can be joined if they share at least one edge and joining of subgraphs belonging to the same pattern is not allowed. Either a new pattern is created or an existing pattern is

The pseudo-code of the proposed method is represented by Algorithm 1 (see Fig. 17). The inputs to the algorithm are a graph G, motif $-size m$, and the threshold frequency f_{th}. This algorithm first finds all the embeddings of basic building patterns (Line 2). The detail of this process is present in Sections 3.2 and 3.3. Then the algorithm extracts the edge-disjoint embeddings of each pattern (Line 3) using an MIS finding algorithm, which is explained in
Section 3.4. The current set of patterns is initialised to four basic
patterns in the case of the undirected graph and seven basic patterns in the case of the directed graph. The new set is initialised
to an empty set. The size of the current motif set increases in each successive iteration.

This algorithm joins the instances of each sub-graph present in the current set with the instances of basic building pattern set (Line 10). Two subgraphs can be joined if they share at least one edge and joining of subgraphs belonging to the same pattern is not allowed. Either a new pattern is created or an existing pattern is generated as a result of joining two subgraphs (Lines 11–17). The detail of the pattern-join operation is explained in Section 3.5. In

![Fig. 16](image1.png) Generation of a pattern with $k + 1$ edges from a pattern with k
edges. (a) Assuming an existing edge (x, a) in the parent pattern, the child pattern is generated as a result of joining the parent pattern with the subgraph $\{(x), (y), (a), (b)\}$ which belongs to M7 (see Fig. 7), (b) Assuming an existing edge (a, x) in the parent pattern, the child pattern is generated as a result of joining the parent pattern with the subgraph $\{(x), (y), (a), (b)\}$ which belongs to M7 (see Fig. 7), (c) Assuming an existing edge (a, y) in the parent pattern, the child pattern is generated as a result of joining the parent pattern with the subgraph $\{(x), (y), (a), (b)\}$ which belongs to M7 (see Fig. 7), (d) Assuming an existing edge (x, y) in the parent pattern, the child pattern is generated as a result of joining the parent pattern with the subgraph $\{(x), (y), (a), (b)\}$ which belongs to M7 (see Fig. 7).

![Fig. 17](image2.png) Algorithm 1: motif discovery using pattern-join method

Algorithm 1: motif discovery using pattern-join method

```
Input: m: motif size, $f_{th}$: threshold frequency,
$G = \langle V, E \rangle$: input network
Output: MotifList
1 Initialize BasicPat
2 BasicEmbeddings = Get-Subgraphs-Isomorphic-to-Basic-Patterns(BasicPat)
3 BasicDisjointEmbeddings = Maximum-Independent-Set-Finding(BasicEmbeddings)
4 CurrentSet = BasicPat
5 NewSet = \emptyset
6 while CurrentSet \neq \emptyset do
7     foreach pattern $p1$ in CurrentSet do
8         foreach pattern $p2$ in BasicPat where $p2 \neq p1$ do
9             $s3 = $ Pattern-Join($s1$, $s2$)
10            if $p$ in NewSet is the pattern of $s3$ and $s3 \not\in p$ then
11                Add $s3$ to $p$
12            end
13        else
14            Create $p_{new}$ in NewSet with $s3$ topology
15                Add $s3$ to $p_{new}$
16            end
17        end
18    CurrentSet = NewSet
19    CurrentEmbeddings = Maximum-Independent-Set-Finding(NewEmbeddings)
20    foreach pattern $p \in$ CurrentSet do
21        if $p_{new} \not\subseteq f_{th}$ then
22            Delete $p$ from CurrentSet
23        end
24    else if number of nodes of $p$ = $m$ then
25        Add $p$ in the output MotifList
26        Delete $p$ from CurrentSet
27    end
28    NewSet = \emptyset
29 end
```

This is an open access article published by the IET under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/)
i. To find out embeddings of pattern M_1, select all possible combinations of any two outgoing edges from each node $v_i \in V$ of a network G. The number of such embeddings will be \[\sum_{v_i \in V} \binom{d_i(v)}{2} \], where $d_i(v)$ represents the out-degree of the vertex v_i.

ii. To find out embeddings of pattern M_2, select all possible combinations of any two incoming edges to each node $v_i \in V$ of a network G. The number of such embeddings will be \[\sum_{v_i \in V} \binom{d_i(v)}{2} \], where $d_i(v)$ represents the in-degree of the vertex v_i.

iii. To find out embeddings of pattern M_3, select all possible combinations of an incoming edge and an outgoing edge for each node $v_i \in V$ of a network G. The number of such embeddings will be \[\sum_{v_i \in V} d_i(v) \cdot d_i(v_i) \].

iv. To find out embeddings of pattern M_4, select all possible combinations of an outgoing edge ($v_i \rightarrow v_j$) and an incoming edge ($v_i \leftarrow v_j$) for each node $v_i \in V$ of the network G then check for an edge ($v_j \rightarrow v_i$). The number of such embeddings will be less than \[\sum_{v_i \in V} d_i(v_j) \cdot d_i(v_i) \].

v. To find out embeddings of pattern M_5, select all possible combination of any three outgoing edges from each node $v_i \in V$ of a network G. The number of such embeddings will be \[\sum_{v_i \in V} \binom{d_i(v)}{3} \].

vi. To find out embeddings of pattern M_6, select all possible combinations of any three incoming edges to each node $v_i \in V$ of a network G. The number of such embeddings will be \[\sum_{v_i \in V} \binom{d_i(v)}{3} \].

vii. To find out embeddings of pattern M_7, select an edge ($v_i \rightarrow v_j$) then select all possible combinations of an incoming edge to v_i ($v_i \leftarrow v_j$) and an outgoing edge from v_i ($v_j \rightarrow v_i$) of the network G then check the condition ($v_i \neq v_j$). The number of such embeddings will be \[\sum_{v_i, v_j \in E} d_i(v_j) \cdot d_i(v_i) \].

3.4 MIS finding algorithm

This algorithm has two phases, (i) construction of overlap graph, (ii) finding an MIS of non-overlapping subgraphs. Algorithm 2 (see Fig. 18) constructs the overlap graph in Lines 1–9. Each node in the overlap graph represents an embedding of a pattern in the target network. Overlapped embeddings of a pattern in the target network are connected through edges in the overlap graph. Lines 4–8 perform this task. Once the overlap graph is created, a node with the minimum number of neighbours is selected from the overlap graph (Line 12). The embedding corresponding to this node is added in the edge-disjoint set (Line 17). Then, this node is deleted with its neighbour from the overlap graph (Lines 13–16). Then this algorithm updates the degree of all the nodes which were connected to deleted nodes. The process of picking and shrinking continue until the overlap graph becomes empty.

3.5 Pattern-join operation

In pattern-join operation, two subgraphs of a given network join only if they share at least one edge. Algorithm 3 (see Fig. 19) contains the pseudo-code of the joining procedure. This algorithm checks the existence of the same edge in both the subgraphs from Lines 1 to 3. A new graph G, which is supergraph of both G_1 and G_2, is created when an edge appeared in both the subgraphs. This task is performed in Lines 4–6. When there is no common edge found in the subgraphs, Line 10 returns an empty graph.

3.6 Computational complexity

In this section, the computational complexity of each module is formally analysed.
Input: $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$: input graphs
Output: $G = (V, E)$: output graph

1. foreach edge $e_1 \in G_1.E$ do
 // $G_1.E$: Set of all edges of G_1

 2. foreach edge $e_2 \in G_2.E$ do
 if $e_1 == e_2$ then
 create a new graph $G = (V, E)$

 $G.V = G_1.V \cup G_2.V$ // $G_1.V$: Set of all vertices of G_1
 $G.E = G_1.E \cup G_2.E$
 return G

end

end

return ϕ

Fig. 19 Algorithm 3: pattern-join operation

Finding embeddings of basic building patterns: For an undirected graph, the computational complexity of this step can be expressed as

$$T(n) = \sum_{v \in V} \left(\sum_{(v, i) \in E} d(v_i) \right) + \sum_{v \in V} d(v) d(v_i)$$

For a directed graph, the computational complexity of this step can be expressed as

$$T(n) = \sum_{v \in V} \left(\sum_{(v, i) \in E} d(v_i) \right) + \sum_{v \in V} d(v) d(v_i)$$

The worst-case scenario happens when $d(v_i) = O(n)$. In this scenario, the computational complexity of this step becomes $O(n^2)$. MISP finding algorithm: Let m represents the number of overlapping embeddings. For basic building patterns $m = O(n^4)$. However, the value of m reduces significantly in the successive iteration. The computational complexity of constructing the overlapping graph is $O(n^5)$. A min-heap is created based on their degree from the nodes of the overlapping graph. The cost of constructing the min-heap is $O(m)$. Disjoint embeddings are obtained by deleting the nodes one by one from the min-heap and adjusting the rest of the nodes. This process has complexity equal to $O(m \log(m))$.

Pattern-join operation: In this step, we analyse the complexity of join iteration. Let x_i denotes the number of patterns in iteration i. For an undirected graph, x_i starts at 4 and this starts at 7 in the case of a directed graph. In each iteration, the size of the pattern is increased by 1 or 2 edges. The initial size is either 2 or 3. Thus, the minimum size of each pattern at the ith iteration is $i + 2$ and the number of non-overlapping embeddings of a pattern is at most $\frac{|E|}{i + 2}$, where $|E|$ represents the number of edges present in the input network. The total number of disjoint embeddings of all the basic building patterns for both undirected and directed graph is $O(|E|)$. During joining, embeddings of each pattern joined with all the

embeddings of basic building patterns. Thus, the total number of join operations performed at iteration i is $O\left(\frac{|E|}{i + 2}x_i\right)$. For each join, resulting subgraph is compared against each pattern in that iteration and the cost of this operation is $O(x_i)$. The complexity of removing duplicate embeddings is $O\left(\log\left(\frac{|E|}{i + 2}\right)\right)$. Collectively, the complexity of performing all the joins at iteration i is obtained by multiplying the above three complexities. This is computed as $O\left(\frac{|E|}{i + 2}x_i\log\left(\frac{|E|}{i + 2}\right)\right)$ which equals $O\left(\frac{|E|^2}{i + 2}\log\left(\frac{|E|}{i + 2}\right)\right)$.

4 Results and discussion

The performance of the proposed motif discovery algorithm is evaluated on a real dataset for both undirected and directed networks. The runtime and the number of significant motifs are two primary criteria for evaluation of the proposed motif discovery algorithm. The runtime of the proposed motif discovery algorithm is compared against existing algorithms by varying both motif size and network size. Frequency measure $F2$ is used to compute motif frequency and z-score is used to measure the statistical significance of the identified network motif. The performance of the proposed algorithm is compared against MFinder, ESU, Grochow–Kellis, and MODA algorithms.

4.1 Data set and computational environment

The proposed algorithm is tested in both undirected and directed networks. The transcription regulatory network of Escherichia coli (Eco) [28] is used for the directed network. This database contains 578 interactions between 116 TFs and 428 operons. The data is presented in a simple interaction format (SIF) with three columns. For the undirected network, MIPS mammalian protein–protein interaction database of Saccharomyces cerevisiae (See) [29] and Molecular INTeraction (MINT) database of Human herpesvirus-8 (Hhv8) [30] is used. The See network contains 1815 interactions among 858 proteins, and Hhv8 network contains only 170 interactions among 92 proteins. The proposed algorithm is implemented in C++ with Intel(R) Xeon(R) E5-2670 Processor 2.3 GHz CPU, 64 GBs of main memory running Redhat Linux operating system.

4.2 Performance evaluation

The performance of the proposed motif discovery algorithm is evaluated based on runtime, statistically significant motifs and z-score of most abundant motifs.

4.2.1 Runtime: In this section, the runtime of the proposed motif discovery algorithm is computed on directed and undirected biological networks specified above. During this computation, the
frequency threshold is set as 5% of the size of the network and the threshold for z-score is set as 2. The F2 measure is used to compute motif frequency. The effect of motif size on the runtime is observed by varying the motif sizes from 3 to 15 and the results obtained are shown in Fig. 20. The behaviour of the result is a clear indication of the scalability of the proposed algorithm concerning the motif size. The proposed algorithm takes only a few minutes to run for motif sizes 3–10 for both directed and undirected networks and it is limited to a few hours for motif sizes 11–15. For higher motif size, the runtime is influenced by the motif size. This behaviour is observed due to the number of alternative patterns increases exponentially toconcerning motif size. Irrespective of this limitation the proposed method can discover motifs up to size-15 within a practical runtime.

4.2.2 Statistically and biologically significant motifs

Table 1 contains the number of significant motifs found by setting the frequency threshold as 5% of the size of the network. The experiment is performed on the transcription regulatory network of *Escherichia coli* (Eco) and protein–protein interaction network of *Saccharomyces cerevisiae* (Sce) and Human herpesvirus-8 (Hhv8). The identified motifs are statistically significant as they are over-represented in the target network. Some of these motifs may not be biologically significant. One of the biologically significant motifs found in the PPI network of *Human herpesvirus-8* is shown in Fig. 21. This network motif of 10 nodes causes Kaposi sarcoma disease. Another biologically significant motif found in *S. cerevisiae* consists of 15 nodes, as shown in Fig. 21. This network motif is responsible for transcriptional machinery and cell-cycle regulation in the said network.

![Fig. 21](http://creativecommons.org/licenses/by/3.0/) Motif of 10 nodes in the left found in the PPI network of *Human herpesvirus-8* [22] and a motif of 15 nodes in the right found in the PPI network of *S. cerevisiae* [31]

Table 2

Motif size	3	4	5	6	7	8	9	11	13	15
Eco	2.32	3.56	5.29	6.63	6.24	5.10	7.21			
Sce	2.73	4.31	4.45	8.22	6.54	7.58	9.29			
Hhv8	4.91	6.12	5.24	7.25	9.47	8.58	10.27			

Table 1 Number of significant motifs in transcription regulatory network of *Escherichia coli* (Eco) and protein–protein interaction network of *Saccharomyces cerevisiae* (Sce) and Human herpesvirus-8 (Hhv8)

Motif size	3	6	10
Eco	759	2932	6025
Sce	588	2209	5218
Hhv8	685	2861	5914

Table 2 z-scores that represent the significance of the most abundant motif against 100 random networks in each specified network using seven motif sizes

4.3 Runtime comparison with existing methods by varying motif size

In this section, the runtime of the proposed motif discovery algorithm is measured on the transcription regulatory network of *Escherichia coli* and protein–protein interaction network of *Saccharomyces cerevisiae* and Human herpesvirus-8. The runtime of the proposed method is compared against MFinder, ESU, Grochow–Kellis, and MODA algorithms. The effect of varying motif size on the runtime of the algorithms is observed by varying motif sizes from 3 to 15. In this experiment, the frequency threshold is set as 5% of the size of the network. The effect of motif size on the runtime is observed the results obtained are shown in Figs. 22–24. Significant factors affecting the runtime are the number of alternative motif topologies and subgraph isomorphism check. Despite these factors, the runtime of the proposed algorithm increases in polynomial order concerning motif size. MFinder and ESU can find out motifs up to size-8 and size-10, respectively, in a practical time bound. Grochow–Kellis and MODA can find out motifs up to size-12 in a practical time bound. The proposed algorithm can find out motifs up to size-15. The behaviour of the result is a clear indication of the scalability of the proposed algorithm concerning motif size. The proposed algorithm takes only a few minutes to run for motif sizes 3–10, and it is limited to a few hours for motif sizes 11–15.

4.4 Runtime comparison with existing methods by varying network size

In this section, undirected networks of varying size from 100 to 858 and directed networks of varying size from 100 to 539 are generated from a real PPI network of *Saccharomyces cerevisiae* (Sce) and transcription regulatory network of *Escherichia coli* (Eco), respectively. The node set is selected in random order, and 10 sets are prepared for each size. The number of nodes and the average number of interactions is shown in Tables 3 and 4 for undirected and directed networks, respectively. The average runtime is reported for each subnetwork obtained by repeating the
experiment ten times, once for each set. The simulation results indicate that the proposed method is reliable and computationally feasible for the large network. The runtime of the proposed method for motif sizes 8, 10 and 12 is observed by varying network size, as shown in Tables 3 and 4. The measured runtime is compared with MFinder, ESU, Grochow–Kellis, and MODA as applicable. The results obtained are shown in Figs. 25–30. The results indicate that the proposed method is scalable as compared to existing methods.

Table 3 Each column represents a subset real PPI network of *Saccharomyces cerevisiae* (Sce)

number of nodes	100	200	300	400	500	600	700	800	858
number of interactions	97	219	384	580	807	981	1224	1653	1815

Table 4 Each column represents a subset of the transcription regulatory network of *Escherichia coli* (Eco)

number of nodes	100	200	300	400	500	539
number of interactions	87	192	294	407	523	578

Fig. 22 Runtime of MFinder, ESU, Grochow–Kellis, MODA and pattern-join method on a real network of Escherichia coli (Eco). The x-axis indicates the motif size and the y-axis shows the runtime in seconds.

Fig. 23 Runtime of MFinder, ESU, Grochow–Kellis, MODA and pattern-join method on a real network of Saccharomyces cerevisiae (Sce). The x-axis indicates the motif size and the y-axis shows the runtime in seconds.

Fig. 24 Runtime of MFinder, ESU, Grochow–Kellis, MODA and pattern-join method on a real network of Human herpesvirus-8 (Hhv8). The x-axis indicates the motif size and the y-axis shows the runtime in seconds.
5 Conclusion

In this paper, a motif discovery algorithm using pattern join method is proposed. The proposed method discovers the edge-disjoint embeddings of frequent patterns in two steps. Initially, it finds the embeddings of a pattern by joining its parent pattern with the basic building pattern. Finally, the edge-disjoint embeddings are obtained by applying the MIS finding algorithm. Isomorphic check through canonical representation significantly reduced the computational time of the proposed algorithm. Irrespective of the
exponential growth of the number of patterns concerning size, this algorithm does not expand too much in the successive iteration as most of the patterns failed to cross the threshold frequency and not consider for the next iteration. Hence the runtime does not increase exponentially. The runtime of the proposed algorithm is evaluated by varying motif size and network size. Our implementation results indicate that the proposed algorithm is significantly faster than the existing motif discovery algorithms, and it can able to discover large motifs up to size-15 within a few hours. In this proposed method, the F_2 frequency measure is used to find edge-disjoint subgraphs. A similar approach can be used to find completely disjoint subgraphs by using the F_3 frequency measure, which is taken as a future work of this paper.

6 Acknowledgments

The authors acknowledge the Bioinformatics Lab of IIT Bhubaneswar for providing computational resources. This lab is established under FIST project, Department of Science and Technology, Govt. of India.

7 References

[1] Milo, R., Shen-Orr, S., Itzkovitz, S., et al.: ‘Network motifs: simple building blocks of complex networks’, *Science*, 2002, 298, (5594), pp. 824–827

[2] Mangan, S., Alon, U.: ‘Structure and function of the feed-forward loop network motif’, *Proc. Natl. Acad. Sci. USA*, 2003, 100, (21), pp. 11980–11985

[3] Alon, U.: ‘Network motifs: theory and experimental approaches’, *Nat. Rev. Genetics*, 2007, 8, (6), pp. 450–461

[4] Przulj, N., Corneil, D.G., Jurisica, I.: ‘Modeling interactome: scale-free or geometric?’, *Bioinformatics*, 2004, 20, (18), pp. 3508–3515

[5] Milo, R., Itzkovitz, S., Kashtan, N., et al.: ‘Superfamilies of evolved and designed networks’, *Science*, 2004, 303, (5663), pp. 1538–1542

[6] Albert, I., Albert, R.: ‘Conserved network motifs allow protein-protein interaction prediction’, *Bioinformatics*, 2004, 20, (18), pp. 3346–3352

[7] Gupta, R., Fazay, S.M., Singh, S.: ‘Identification of gene network motifs for cancer disease diagnosis’. Distributed Computing, VLSI, Electrical Circuits and Robotics (DESCOVER), Mangalore, India, January 2017, pp. 179–184

[8] Chen, L., Xu, X., Cao, M., et al.: ‘Identification of breast cancer patients based on human signaling network motifs’, *Sci. Rep.*, 2013, 3368, pp. 1–7

[9] Masoudi-Nejad, A., Schreiber, F., Kashani, Z.R.M., et al.: ‘Building blocks of biological networks: a review on major network motif discovery algorithms’, *IET Syst. Biol.*, 2012, 6, (5), pp. 164–174

[10] Wermicke, S.: ‘Efficient detection of network motifs’, *IEEE/ACM Trans. Comput. Biol. Bioinf.*, 2006, 3, (4), pp. 347–359

[11] Kashani, N., Itzkovitz, S., Milo, R., et al.: ‘Network motif detection tool: minfinder tool guide’. Technical report 2005, Departments of Molecular Cell Biology and Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, 2005

[12] Schreiber, F., Schwobbermeyer, H.: ‘MAVisto: a tool for the exploration of network motifs’. *Bioinformatics*, 2005, 21, (17), pp. 3572–3574

[13] Chen, J., Hsu, W., Lee, M.L., et al.: ‘Nemofinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs’. *Proc. of the 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining*, Philadelphia, PA, USA, 2006, pp. 106–115

[14] Kashani, Z.R.M., Ahrabian, H., Elahi, E., et al.: ‘Kavosh: a new algorithm for finding network motifs’, *BMC Biol.*, 2009, 10, (1), p. 318

[15] Wermicke, S., Rausche, F.: ‘FANMOD: a tool for fast network motif detection’, *Bioinformatics*, 2006, 22, (9), pp. 1152–1153

[16] Grochow, J.A., Kellis, M.: ‘Network motif discovery using subgraph enumeration and symmetry-breaking’. *Annual Int. Conf. on Research in Computational Molecular Biology*, Berlin, Heidelberg, 2007, pp. 92–106

[17] Omidi, S., Schreiber, F., Masoudi-Nejad, A.: ‘MODA: an efficient algorithm for network motif discovery in biological networks’, *Genes Genet. Syst.*, 2009, 84, (5), pp. 385–395

[18] Kashani, N., Itzkovitz, S., Milo, R., et al.: ‘Efficient sampling algorithm for estimating sub-graph concentrations and detecting network motifs’, *Bioinformatics*, 2004, 20, pp. 1746–1758

[19] McKay, B.D.: ‘Practical graph isomorphism’, *Congressus Numerantium*, 1981, 30, pp. 45–87

[20] Schreiber, F., Schwobbermeyer, H.: ‘Frequency concepts and pattern detection for the analysis of motifs in networks’. Transactions on Computational Systems Biology III, Berlin, Heidelberg, 2005, pp. 89–104

[21] Liang, C., Li, Y., Luo, J., et al.: ‘A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human’, *Bioinformatics*, 2015, 31, (14), pp. 2348–2355

[22] Elhesha, R., Kakhveci, T.: ‘Identification of large disjoint motifs in biological networks’, *BMC Bioinformatics*, 2016, 17, (1), p. 408

[23] Lin, W., Xiao, X., Xie, X., et al.: ‘Network motif discovery: a GPU approach’, *IEEE Trans. Knowl. Data Eng.*, 2017, 29, (3), pp. 513–528

[24] Chen, Y., Chen, Y.: ‘An efficient sampling algorithm for network motif detection’, *A Comput Graph. Stat.*, 2018, 27, (3), pp. 503–515

[25] Ciriello, G., Guerra, C.: ‘A review on models and algorithms for motif discovery in protein-protein interaction networks’, *Briefings in Functional Genomics Proteomics*, 2008, 7, (2), pp. 147–156

[26] Ribeiro, P., Silva, F., Kaiser, M.: ‘Strategies for network motifs discovery’. Fifth IEEE Int. Conf. on e-Science, Oxford, UK, 2009, pp. 80–87

[27] Kuramochi, M., Karypis, G.: ‘Finding frequent patterns in a large sparse graph’. *SIAM Int. Conf. on Data Mining (SDM-04)*, Lake Buena Vista, Florida, 2004
[28] Shen-Orr, S.S., Milo, R., Mangan, S., et al.: ‘Network motifs in the transcriptional regulation network of Escherichia coli’, Nat. Genet., 2002, 31, (1), pp. 64–68

[29] Pagel, P., Kovac, S., Oesterheld, M., et al.: ‘The MIPS mammalian protein-protein interaction database’, Bioinformatics, 2005, 21, (6), pp. 832–834

[30] Chatr-Aryamontri, A., Ceol, A., Palazzi, L.M., et al.: ‘MINT: the molecular INTeraction database’, Nucleic Acids Res., 2007, 35, pp. D572–D574

[31] Li, C., Kim, W.: ‘Discovering larger network motifs: network clustering for network motif discovery’