LOWER BOUNDS FOR THE LEAST PRIME IN CHEBOTAREV

ANDREW FIORI

Abstract. In this paper we show there exists an infinite family of number fields L, Galois over \mathbb{Q}, for which the smallest prime p of \mathbb{Q} which splits completely in L has size at least $(\log(|D_L|))^{2+o(1)}$. This gives a converse to various upper bounds, which shows that they are best possible.

1. Introduction

The purpose of this note is to prove the following result.

Theorem 1. There exists an infinite family of number fields L, Galois over \mathbb{Q}, for which the smallest prime p of \mathbb{Q} which splits completely in L has size at least

$$(1 + o(1)) \left(\frac{3e^\gamma}{2\pi} \right)^2 \left(\frac{\log(|D_L|) \log(2 \log \log(|D_L|))}{\log \log(|D_L|)} \right)^2$$

as the absolute discriminant D_L of L over \mathbb{Q}, tends to infinity.

The result is independent of the Generalized Riemann Hypothesis. The result complements the existing literature on what is essentially a converse problem, stated generally as

Problem. Let K be a number field, and L be a Galois extension of K, for any conjugacy class C in $\Gamma(L/K)$, the Galois group of L/K, show that the smallest (in norm) unramified degree one prime p of K for which the conjugacy class Frob_p is C is small relative to $|D_L|$, the absolute discriminant of L/K.

Solutions to this problem have important applications in the explicit computation of class groups (see [3]) where smaller is better. Some of the history of just how small we can get is summarized below:

- Lagarias and Odlyzko showed $N_{K/\mathbb{Q}}(p) < (\log(|D_L|))^{2+o(1)}$ conditionally on GRH (see [8]).
- Bach and Sorenson gave an explicit constant C so that $N_{K/\mathbb{Q}}(p) < C (\log(|D_L|))^2$ conditionally on GRH (see [2]).
- Lagarias, Montgomery, and Odlyzko showed there is a constant A such that $N_{K/\mathbb{Q}}(p) < |D_L|^A$ (see [7]).
- Zaman showed $N_{K/\mathbb{Q}}(p) < |D_L|^{10}$ for D_L sufficiently large (see [12]).
- Kadiri, Ng and Wong improved this to $N_{K/\mathbb{Q}}(p) < |D_L|^{16}$ for D_L sufficiently large (see [6]).
- Ahn and Kwon showed $N_{K/\mathbb{Q}}(p) < |D_L|^{12577}$ for all L (see [1]).

By the above, Theorem 1 and the GRH bound above are best possible up to the exact $o(1)$ term.

Remark. The family under consideration will be a subfamily of the Hilbert class fields of quadratic imaginary extensions of \mathbb{Q}. All of the Galois groups will be generalized dihedral groups, and in the family the degree of the extensions goes to infinity.

We also would like to point out the work of Sandari (see [11, Sec. 1.3]) where some similar features of this family are remarked on in a different context.

2010 Mathematics Subject Classification. Primary 11R44; Secondary 11R29.

The author thanks the University of Lethbridge for providing a stimulating environment to conduct this work and in particular Nathan Ng and Habiba Kadiri for directing him towards this project. The author would also like to thank the referee whose suggestions simplified the proof of our main result.
2. Proofs

We first recall a few basic facts from algebraic number theory and class field theory.

Lemma 2. Let $K = \mathbb{Q}(\sqrt{-d})$ where $d = |\text{disc}(K)|$, let \mathfrak{p} be a principal prime ideal of K. If we have $N_{K/\mathbb{Q}}(\mathfrak{p}) = (p)$ then p is a norm of \mathcal{O}_K and hence $p \geq d/4$.

Proof. Assuming \mathfrak{p} is principally generated by x, then $N_{K/\mathbb{Q}}(\mathfrak{p})$ is principally generated by $N_{K/\mathbb{Q}}(x)$. As norms from K are positive, this gives that p must be a norm.

We next note that for $x + y\sqrt{-d} \in \mathcal{O}_K$ the expression $N_{K/\mathbb{Q}}(x + y\sqrt{-d}) = x^2 + dy^2$ cannot be prime if $y = 0$. Now, because $\mathcal{O}_K \subset \frac{1}{4}\mathbb{Z} + \frac{\sqrt{-d}}{4}\mathbb{Z}$ we conclude that if the norm is a prime, then $y \geq \frac{1}{2}$, from which it follows that if p is a norm then $p \geq d/4$. \qed

Lemma 3. Let $K = \mathbb{Q}(\sqrt{-d})$ where $d = |\text{disc}(K)|$, suppose that H is the Hilbert class field of K. If p is a prime of \mathbb{Z} which splits completely in H, then p splits in K as $(p) = \mathfrak{p}_1\mathfrak{p}_2$ where both \mathfrak{p}_1 and \mathfrak{p}_2 are principal and $N_{K/\mathbb{Q}}(\mathfrak{p}_i) = (p)$. In particular, by the previous lemma $p \geq d/4$.

Proof. The first claim is clear because ramification degrees, inertia degrees and hence splitting degrees are multiplicative in towers. That \mathfrak{p}_i must be principal is a consequence of class field theory. Principal ideals for \mathcal{O}_K map to the trivial Galois element for the Galois group of the Hilbert class field. However, for unramified prime ideals this map gives Frobenius. As the Frobenius element is trivial precisely when the inertial degree is 1, equivalently for Galois fields when the prime splits completely, we conclude the result. \qed

Remark 4. Denote by χ_d the quadratic Dirichlet character with fundamental discriminant $-d$. The main idea of the proof is to use the class number formula with lower bounds for $L(1, \chi_d)$. Using Siegel’s ineffective bound gives

$$d = h_K^{2+o(1)} = \log |D_H|^{2+o(1)}.$$

To obtain our precise result we refine the $o(1)$ term using extreme values of $L(1, \chi_d)$.

Lemma 5. Let $K = \mathbb{Q}(\sqrt{-d})$ where $d = |\text{disc}(K)| > 16$, suppose that H is the Hilbert class field of K. Then

$$\log |D_H| = h_K \log(d) = \frac{1}{\pi} L(1, \chi_d) \sqrt{d} \log(d)$$

where h_K is the class number of K, D_H is the discriminant of H and χ_d is the quadratic Dirichlet character with fundamental discriminant $-d$.

Proof. The first equality is immediate from the multiplicativity of the discriminant in towers, the second follows from the analytic class number formula

$$h_K = \frac{\sqrt{d}}{\pi} L(1, \chi_d).$$

The estimates on the extreme values of $L(1, \chi_d)$ which we need are the following.

Theorem 6. There exists a family of quadratic imaginary fields $K = \mathbb{Q}(\sqrt{-d})$ where $d = |\text{disc}(K)|$ such that for χ_d, the quadratic Dirichlet character with fundamental discriminant $-d$, we have

$$L(1, \chi_d) < (1 + o(1)) \frac{\pi^2}{6e\gamma \log \log(d)}.$$

A result of this sort was originally proven by Littlewood conditional on the generalized Riemann hypothesis (see [9]), his result was proven unconditionally by Paley (see [10]) the version stated here follows from the work of Chowla (see [4]). It is possible that the work of Granville and Soundararajan (see [5]) can further refine the constants in the above, and consequently those in Theorem [11].

The following proof includes several significant simplifications suggested by the referee. We would like to thank them for these valuable suggestions.
Proof of Theorem 1. We consider the family of fields $L = H_K$ where K is a field from the infinite family of Theorem 6 for which $d > 16$. To complete the proof we introduce some notation, define

$$x_d = L(1, \chi_d) \log \log(d) \quad \text{and} \quad f_d(x) = \frac{x\sqrt{d} \log(d)}{\pi \log \log(d)}.$$

Then by our choice of d we have

$$x_d < \frac{\pi^2}{6e^7} + o(1)$$

and by Lemma 5 we have

$$\log |D_L| = f_d(x_d).$$

Now because the function $y \mapsto \frac{y \log(2 \log(y))}{\log(y)}$ is increasing for $y > e$ and as

$$f_d(x_d) = \log |D_L| = h_K \log(d) \geq \log(16) > e$$

it follows that

$$\frac{\log |D_L|}{\log \log |D_L|} \leq \frac{f_d(x_d) \log(2 \log(f_d(x_d)))}{\log(f_d(x_d))} \leq \frac{f_d(x_d) \log(2 \log(f_d(x_d) + o(1)))}{\log(f_d(x_d) + o(1))} \leq (1 + o(1)) \frac{\pi^2}{3e^7} \sqrt{d}.$$

Combining the above with the bounds $p \geq \frac{4}{3}$ from Lemma 8 we obtain the result. \hfill \Box

3. NUMERICS

Table 1 illustrates the phenomenon by giving the ratio

$$\text{Ratio} = p/ \left(\frac{3e^7}{2\pi} \right)^2 \left(\frac{\log(|D_L|) \log(2 \log(|D_L|))}{\log \log(|D_L|)} \right)^2$$

for an example of a the Hilbert class field of a quadratic imaginary field of each class number less than 100 with large discriminant.

Note that in Table 1 we have $K = \mathbb{Q}(\sqrt{-d})$ and $|D_L| = d^{h_K}$.

REFERENCES

[1] Jeoung-Hwan Ahn and Soun-Hi Kwon, An explicit upper bound for the least prime ideal in the Chebotarev density theorem, preprint, arxiv.org/abs/1807.00508.

[2] Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, Math. Comp. 65 (1996), no. 216, 1717–1735.

[3] Karim Belabas, Francisco Diaz y Diaz, and Eduardo Friedman, Small generators of the ideal class group, Math. Comp. 77 (2008), no. 262, 1185–1197.

[4] S. Chowla, Improvement of a theorem of linnik and walfisz, Proc. Lond. Math. Soc. s2-50 (1948), no. 1, 423–429.

[5] Andrew Granville and K Soundararaj, The distribution of values of $L(1, \chi_d)$, Geometric and Functional Analysis 13 (2003).

[6] Habiba Kadiri, Nathan Ng, and Peng-Jie Wong, The least prime number represented by a binary quadratic for m, arXiv e-prints (2018), arXiv:1803.03218.

[7] Asif Zaman, Bounding the least prime ideal in the Chebotarev density theorem, Funct. Approx. Comment. Math. 57 (2017), no. 1, 115–142.
Table 1. Examples of smallest split primes in Hilbert class fields of \(\mathbb{Q}(\sqrt{-d})\)

\(h_K\)	\(d\)	\(p\)	Ratio	\(h_K\)	\(d\)	\(p\)	Ratio
1	163	41	4.1557	34	189883	47491	2.2528
2	427	107	2.4287	35	210907	52727	2.3373
3	907	227	2.1188	36	217627	54409	2.2819
4	1555	389	1.9476	37	158923	39733	1.6620
5	2683	673	2.0276	38	289663	72493	2.6454
6	3763	941	1.9222	39	253507	63377	2.2500
7	5923	1481	2.1071	40	260947	65239	2.2034
8	6307	1579	1.7569	41	296587	74149	2.3513
9	10627	2657	2.1729	42	280267	70067	2.1445
10	13843	3461	2.2386	43	300787	75209	2.1838
11	15667	3917	2.0939	44	319867	79967	2.2079
12	17803	4451	1.9938	45	308323	77081	2.0542
13	20563	5147	1.9503	46	462883	115727	2.7990
14	30067	7517	2.3373	47	375523	93887	2.2489
15	34483	8623	2.3173	48	335203	83813	1.9638
16	31243	7817	1.9050	49	393187	98297	2.1693
17	37123	9281	1.9719	50	389467	97367	2.0743
18	48427	12107	2.2225	51	546067	136519	2.6772
19	38707	9677	1.6747	52	439147	109789	2.1422
20	58507	14627	2.1572	53	425107	106277	2.0124
21	61483	15373	2.0614	54	532123	133033	2.3604
22	85507	21377	2.5024	55	452083	113021	1.9839
23	90787	22697	2.4308	56	494323	123581	2.0737
24	111763	27941	2.6847	57	618883	153991	2.4279
25	93307	23327	2.1425	58	586987	146749	2.2565
26	103027	25759	2.1714	59	474307	118583	1.8204
27	103387	25847	2.0351	60	662803	165701	2.3566
28	126043	31511	2.2543	61	606643	151667	2.1185
29	166147	41539	2.6760	62	647707	161947	2.1768
30	134467	33617	2.1037	63	991027	247759	3.0550
31	133387	33347	1.9698	64	693067	173267	2.1783
32	164803	41201	2.2263	65	703123	175781	2.1443
33	222643	55661	2.7216	66	958483	239623	2.7278

E-mail address: andrew.fiori@uleth.ca

Mathematics and Computer Science, 4401 University Drive, University of Lethbridge, Lethbridge, Alberta, T1K 3M4