Spectrophotometric evaluation of color errors generated in the visual color duplication procedure for current ceramic veneers

Xue-Dong Bai †, Yu-Zhu Yan †, Qing Li*

Department of Prosthodontics, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China

Received 20 June 2020; Final revision received 29 June 2020
Available online 4 July 2020

Abstract Background/purpose: Color errors associated with the visual color duplication approach for ceramic laminate veneers are still challenging in esthetic dentistry. The aim of this study is to evaluate color errors generated during traditional visual shade matching approach.

Materials and methods: Eighteen tooth-shaped veneer discs (shade A2 and 0.7 mm in thickness) were fabricated using six veneer materials. The veneer specimens placed on five extracted teeth with nominal shade A2 formed veneer-tooth combinations. Color coordinates of the A2 shade tab, the extracted teeth, and the veneer-tooth combinations were measured using a spectrophotometer. Then, the veneers were reduced to 0.5 mm, and 0.3 mm in thickness consecutively. Color measurements were performed repeatedly. Color differences of the extracted teeth to veneer-tooth combinations (ΔEt-v), veneer-tooth combinations to shade tab (ΔEv-s), and translucency parameter (TP) values were calculated and analyzed using Two-way ANOVA.

Results: ΔEt-v ranged from 2.0937 to 5.0603 (mean of 3.1833/1.5485). Mean of ΔEv-s was 4.0103/1.8508. ΔEt-v and ΔEv-s values were significantly influenced by veneer material and thickness (P<0.05). TP values decreased gradually with the lessening of veneers thickness.

Conclusion: Acceptable color duplication of ceramic veneers cannot be achieved by routine visual shade replica protocols, when the thickness of veneers is less than 0.7 mm. Specified color matching standards for the ceramic veneers are needed.
Introduction

The use of ceramic laminate veneers as an alternative to full-coverage crowns is clinically prevalent because of its minimal invasion and aesthetic superiority.1 As a more conservative restoration modality, ceramic laminate veneer offers further advantages in terms of remarkable biocompatibility with surrounding tissues, natural light transmission, color stability and suitable thermal expansion coefficient.1,2 For ceramic veneer restorations, durable bonding and ideal color matching are of crucial importance to achieve clinical success.3,4 The concept of non-preparation or minimal-preparation of tooth tissue5 using ceramic veneers with thicknesses around 0.3 mm–0.7 mm, followed the evolution of appropriate enamel bonding which has been verified as a reliable bonding.6–8 A number of clinical studies have found that laminate veneers bonded upon enamel substrates delivered positive clinical outcomes over a period of 10 years or more.9,10 The majority failure of ceramic veneer restorations was observed in the form of unsatisfied color matching.11 To create a naturally looking, practically indistinguishable veneer, blending harmoniously with the surrounding tissues, has been probably the biggest stumbling block in the application of ceramic veneers.12,13

Routine color duplication contains two steps in sequence: shade selection using shade guides, then color reproduction using matched porcelain powder materials.16 It is called visual color matching method and remains the dominating color replica approach in clinical practice. No upgraded color selection schemes, or color replica protocols have been established in dentistry for all-ceramic materials to date. More and more studies have proved that the visual color reproduction procedure is unreliable and unpredictable for usage of all ceramic materials.17 Moreover, the color of underlying tooth tissue makes the color replica of ceramic laminate veneers even more complicated.16 Color duplication has been considered as one of the weakest links in aesthetic dentistry.17,18

Manufacturers have been striving to improve the optical properties of all-ceramic materials for better aesthetic outcomes.19 Several all-ceramic veneer products are still emerging recently.19 The compositions of these products are of various crystalline contents, such as lithium disilicate, fluorapatite or leucite, and different sizes of the crystal particles.20 It has been declared that various chemical components of these novel products could provide more choices for optical properties, such as opalescence and translucency.21 However, few literatures have been available for investigating the clinical performance of these products. Moreover, previous studies usually used composite resins as the backgrounds. Color replica ability of these products has not been fully demonstrated in clinical situation. Furthermore, ultra-thin ceramic veneer has been highly favored as the mainstream of aesthetic restoration for anterior teeth, but related optical properties research is still insufficient.

The aim of this study was to evaluate the shade matching ability of these newly-developed ceramic veneer materials with various thicknesses using traditional visual shade matching approach. And extracted teeth were used as the abutment teeth to simulate the clinical color replica process more practically. The null hypotheses were as follows: (1) under the current color duplication protocols, all-ceramic veneers could achieve ideal color matching to the corresponding teeth, and (2) color errors would not be affected by the ceramic material and veneer thickness.

Materials and methods

The study protocol was reviewed and approved by the Ethics Committee of the School and Hospital of Stomatology, Wuhan University. Patients (ranging in age from 14 to 21 years), who donated their teeth for orthodontic reasons, were asked to read and sign a consent form prior to teeth extraction.

Visual color determination of the extracted teeth

Fifteen freshly extracted non-carious premolars, free from enamel defect, bleaching treatment, and restorative replacement, were collected for this study. All the teeth were scaled and polished with rubber cups, and stored in 0.01% sodium azide (Sigma, St. Louis, MO, USA) solution in a humid environment at 37°C for less than 3 weeks. Three prosthodontists, with a negative history of visual color deficiency, performed the visual color assessment of the extracted teeth using Vita Lumin Vacuum shade guide (VITA Zahnfabrik, Bad Säckingen, Germany). The observers selected the best match shade tab to the middle third region of the extracted teeth, and recorded the results independently. Then the results were assessed, and five teeth, determined as A2 by all three of the prosthodontists, were involved in the study. The buccal enamel surface of the selected teeth was flattened using water-cooled silicon carbide paper and polished using 0.5 mm aluminum oxide slurry to obtain a standardized enamel surface (around 2.0 mm in diameter). The teeth were embedded into a 16 mm × 16 mm × 16 mm cube mold using epoxy resin (XIONGYING Testing Equipment Ningbo, Zhejiang, China). After the epoxy resin cubes completely cured, silicon carbide paper was used to grind off the residual epoxy resin and unveil the flatten surface (Fig. 1).
Fabrication of ceramic veneer specimens

A CAD-CAM system (Roland DWX-50CAD/CAM, Tokyo, Japan) was employed to fabricate the veneers. A total of 18 ceramic veneers, with nominal shade A2, were fabricated using six commercial veneer materials (Vita Mark II; Vita Sprinity; Vita Enamic; 3M Ultimate; IPS e.max HT; IPS e.max LT) according to the recommended fabrication protocols (Table 1). For the uniformity and accuracy of fabrication procedures, the veneers were simplified as flat disks with tooth-shape, fabricated by a custom designed CAD program (Fig. 1) The thickness of each veneer was achieved by using silicon carbide paper and controlled with a digital micrometer (WDGAGE, Zhejiang, China) to 0.7 ± 0.05 mm.

Finally, a self-glazing process was performed at the temperatures recommended by manufacturers. No internal or external staining was used in the fabrication procedure.

Spectrophotometric assessments of veneer specimens

The veneers were placed on the flat surface of the extracted teeth to form veneer–tooth combinations. For the convenience of separation, no luting agents were applied between the veneers and teeth, replaced by a refractive liquid (n = 1.50, Suzhou Chemical Inc., Suzhou, China) to fulfill an optical connection. A spectrophotometer (PR-655 Spectra Scan, equipped with MS-75 and SL-0.5X lens; Photo Research, Chatsworth, CA, USA) was used for the color measurements. Standardized illumination source D65, and two fiber optic cables (Model OL 53, Optronic Laboratories, Orlando, FL, USA) were used to provide an optical configuration of 0° observation and 45° illumination, recommended by Bolt et al. for measuring the color of translucent materials (Fig. 1). The distance between the measured objects and the spectrophotometer was standardized to 91.4 mm, and the measurement aperture size was 1.5 mm in diameter. 2° observer angle configuration and 380—780 nm measurement wavelengths with a 2 nm interval were applied. The reflected spectrum statistics were converted and recorded in accordance with the CIE L*a*b* system established by the Commission Internationale de l’Eclairage (CIE). Prior to each series of color measurements, an internal instrument calibration was performed with a standardized calibration tile (L* = 99.9300, a* = −0.0100, b* = 0.0500).

The color coordinates of an A2 shade tab (mid 1/3 region), the involved teeth, and the veneer–tooth combinations were registered from 3 measurements. The means of color coordinates were recorded as L*s/t/v, a*s/t/v, and b*s/t/v, where the subscript letters “s”, “t” and “v” refer to color coordinates of the A2 shade tab, the involved teeth, and the veneer–tooth combinations, respectively.

Color difference (ΔE) was determined by the following formula:

$$\Delta E = [(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2]^{1/2}$$

ΔE_{t-v}, ΔE_{t-s}, and ΔE_{v-s} were registered as the color differences of the tooth to the veneer, the tooth to the shade tab, and the veneer to the shade tab. Furthermore, color parameters of each veneer based on a white (CIE L* = 99.99, a* = 0.16, and b* = −0.03) and a black (CIE L* = 2.24, a* = 0.47, and b* = 0.53) backing were measured and applied to determine the translucency parameter (TP). Correspondingly, the TP values of the veneers were defined as:

$$TP = [(L_B - L_W)^2 + (a_B - a_W)^2 + (b_B - b_W)^2]^{1/2}$$

where the subscript letters “B” and “W” refer to color coordinates recorded against the black and the white backing separately. After the first session of measurements, the ceramic veneers and the teeth were separated. The thickness of the veneers was reduced to 0.5 ± 0.05 mm, and then 0.3 ± 0.05 mm using silicon carbide paper. Subsequently, the above-mentioned measurements were performed repeatedly.

Figure 1 Veneer specimens, extracted teeth and PR655. (a) Veneer specimens; (b) extracted teeth; (c) PR-655 Spectra Scan.
Two-way analysis of variance (ANOVA) was used to analyze the effects of the two main factors (ceramic material, veneer thickness) to the \(D_{Et-v}\) and TP values. Afterwards, Tukey multiple comparison tests were performed to evaluate the difference among ceramic materials. Linear regression analysis was applied to evaluate the possible relationships between \(D_{Et-s}\) and \(D_{Et-v}\) values. SPSS statistical software (SPSS 25.0 for Windows, SPSS, Chicago, IL, USA) was used for statistics analysis. The significance test level was preset as \(\alpha = 0.05\).

Results

Color differences between extracted teeth and A2 shade tab (\(D_{Et-s}\))

Color differences of the tooth to shade tab (\(D_{Et-s}\)) were listed in Table 4. The mean of \(D_{Et-s}\) values was 5.0103 ± 1.3521 (ranged from 3.0130 to 7.1811). The results of linear regression analysis were exhibited in Fig. 2a–f. No significant association between \(D_{Et-s}\) and \(D_{Et-v}\) was found in all groups (\(R^2 = 0.006, 0.051, 0.242, 0.446, 0.367, \) and 0.063 for group EMLT, EMHT, VE, VM, MU, and VS, respectively.)

Color differences between veneers and A2 shade tab (\(D_{Ev-s}\))

Color differences of veneer to shade tab were displayed in Fig. 3. All of the \(D_{Ev-s}\) values were greater than 4.0 with the mean of 4.0103 ± 1.8508, except for that of group EMLT, at thickness of 0.7 mm (\(D_{Ev-s} = 2.3658\)). The highest value of \(D_{Ev-s}\) was 5.7461 in group EMHT, at thickness of 0.5 mm.

Translucency parameter (TP)

Translucency parameter (TP) values of different ceramic veneer systems were illustrated in Fig. 4. The TP values decreased gradually with the lessening of thickness. The lowest TP values were presented in group VS at all of the three thicknesses. TP values of group EMHT and MU were relatively higher than that of other groups at three thicknesses.
Discussion

The esthetic and restorative dentistry has long been hampered by the shade matching problem of all ceramic materials. Inadequate technologies to aid the dentist and technician in the appropriate color replica procedure has rendered this part of dentistry more art than science.

The purpose of the present study was to evaluate the color errors generated in the routine color replica protocols using the newly-developed veneer products. Therefore, the traditional visual color replica procedures were still adopted.

To obtain a durable bonding strength for ceramic veneers, tooth reduction should remain within the enamel layer, which was described as 0.7–0.8 mm in thickness. Therefore, the buccal region of the extracted teeth was prepared to get a flat surface around 2.0 mm in diameter, which could ensure the tooth

![Figure 2](image.png)

Figure 2 Linear regression analysis of relationship between values of ΔE_{t,s} and ΔE_{t,v}. ΔE_{t,s}: color difference between the tooth and the shade tabs. ΔE_{t,v}: color difference between the tooth and the veneers. (a),(b),(c),(d),(e),(f): Relationship between values of ΔE_{t,s} and ΔE_{t,v} for IPS e.max LT, IPS e.max HT, Vita Enamic, Vita Mark II, 3M Ultimate, and Vita Sprinity group, respectively.)
reduction less than 0.5 mm and increase the accuracy of the color measurements.

Human eye is very efficient in detecting even tiny differences in the color between two objects,11,17,22 whereas, determining tooth color by visual is considered highly subjective.27 Despite considerable effort, the identification of a clinically acceptable difference is a very difficult task and the establishment of a widely accepted limit remains controversial.27 In the present study, the threshold of $\Delta E = 2.72$ has been considered as a clinically acceptable color difference.28 And $\Delta E = 3.7$ has been regarded as a clinically unacceptable color difference.21,29,30

It was obvious that $3/18 \Delta E_{t-v}$ values fell into the range of clinically unacceptable color difference ($\Delta E > 3.7$). Meanwhile, favorable color replica was still occasionally achieved, for $5/18 \Delta E_{t-v}$ values were less than 2.72. Based on these criteria, the first null hypothesis that all ceramic veneers could achieve ideal color matching to the corresponding teeth was partially rejected.

According to the results of Two-way ANOVA analysis, ΔE_{t-v} values were significantly influenced by the ceramic material and veneer thickness. No interaction effects between two factors were found. At the thickness of 0.7 mm, no significant differences among six veneer systems were observed. But with the decreasing of veneer thickness, the influences of ceramic material to ΔE_{t-v} values were detected. Similar results were also noted in a previous study.31 With respect to the effects of veneer thickness, Tukey post hoc analysis revealed that the ΔE_{t-v} values were higher in thickness of 0.3 mm, whereas, there were no obvious differences between thickness of 0.7 mm and 0.5 mm. All these conclusions rejected the second null hypothesis that color errors would not be affected by the ceramic material and veneer thickness.

The values of ΔE_{t-s} and ΔE_{v-s} were used to represent the errors generated in the step of color selection and specimen fabrication, respectively. The mean of ΔE_{t-s} values was 5.0103, which fell into unacceptable color difference range. It indicated that the visual color selection using shade guide was unreliable, which was consistent with several previous studies.32,33 Most of the ΔE_{v-s} values

\begin{table}[h]
\centering
\caption{\label{table2} ΔE_{t-v} value and the results of Tukey post hoc analysis.}
\begin{tabular}{|c|c|c|}
\hline
Thickness (mm) & Code* & ΔE_{t-v} & Intervals of Tukey \\
\hline
0.7 & VS & 2.6407 ± 1.0000 a & \\
 & VE & 3.8255 ± 1.4136 a & \\
 & VM & 2.8930 ± 1.3316 a & \\
 & MU & 2.8342 ± 1.3532 a & \\
 & EMLT & 3.3147 ± 0.9277 a & \\
 & EMHT & 2.6646 ± 0.5069 a & \\
0.5 & VS & 2.0937 ± 0.8380 a & b \\
 & VE & 3.6050 ± 1.9481 b & \\
 & VM & 3.3296 ± 0.6888 a & \\
 & MU & 2.7996 ± 1.1764 a & \\
 & EMLT & 3.5241 ± 1.4410 b & \\
 & EMHT & 2.6955 ± 1.5455 a & \\
0.3 & VS & 2.1117 ± 1.1240 a & c \\
 & VE & 5.0603 ± 1.4826 c & \\
 & VM & 3.1970 ± 1.5716 b & \\
 & MU & 3.1450 ± 1.4937 a & \\
 & EMLT & 3.2853 ± 1.7953 b & \\
 & EMHT & 4.2798 ± 2.4143 c & \\
\hline
\end{tabular}
\end{table}

* ΔE_{t-v}: color differences between the tooth and the veneer. VS: Vita Sprinity; VE: Vita Enamic; VM: Vita Mark II; MU: 3M Ultimate; EMLT: IPS e.max HT; EMHT: IPS e.max LT.

\begin{table}[h]
\centering
\caption{\label{table3} Two-way ANOVA analysis of ΔE_{t-v} a.}
\begin{tabular}{|l|c|c|c|c|}
\hline
Source & df & Sum of Squares & Mean Squares & F & P \\
\hline
Ceramic system (C) & 5 & 84.544 & 16.909 & 8.349 & 0.000 \\
Thickness (T) & 2 & 14.712 & 7.356 & 3.632 & 0.028 \\
C x T & 10 & 35.340 & 3.534 & 1.745 & 0.071 \\
Error & 252 & 510.389 & 2.025 & \\
Total & 270 & 3381.009 & \\
\hline
\end{tabular}
\end{table}

* ΔE_{t-v}: color differences between the tooth and the veneer.

\begin{table}[h]
\centering
\caption{\label{table4} Color coordinates of the selected teeth and color differences of tooth to shade tab (ΔE_{t-s}).}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Code & L* & a* & b* & L* & a* & b* \\
\hline
1 & 70.6734 & 3.7371 & 16.1516 & 74.8736 & 4.5047 & 17.5685 & 4.4987 \\
2 & 72.9190 & 2.6029 & 10.9254 & 7.1811 \\
3 & 71.2422 & 3.0906 & 14.4812 & 4.9717 \\
4 & 71.8220 & 2.7505 & 13.4904 & 5.3871 \\
5 & 73.5807 & 3.9029 & 20.2226 & 3.0130 \\
\hline
\end{tabular}
\end{table}

* ΔE_{t-s}: color differences between the tooth and shade tab.
were higher than 3.7 with the mean of 4.0103. It suggested that the traditional color reproduction protocol was not suitable for all ceramic veneers which have been proven by several previous studies.15,33,34 Although the same nominal A2 was selected, the color differences of A2 shade tab and A2 shade veneers, fabricated from A2 ingots, were higher than clinically acceptable color difference. Regression analysis was performed to assess the possible relationship between $\Delta E_{v,s}$ and $\Delta E_{v,v}$ values but weak to no correlations were found. It revealed that there was no remarkable relevance between color errors generated in two steps of color replica.

Translucency is identified as the most primary factor in controlling aesthetics and a critical consideration in the selection of materials for veneers.24,35–37 In order to obtain a natural-looking esthetic restoration, the TP values of veneer materials should be close to that of natural enamel.38 At the thickness of 0.7 mm, TP values of the veneer materials ranged from 41.6259 to 51.0927, with a mean of 45.8135 ± 3.4155, which was similar to the TP value of enamel in a prior study.39 However, while the thickness of veneers decreased, TP values were significantly enhanced, which might remarkably affect the optical properties of esthetic restoration.

The limitations of this study included the fabrication of the flattened specimens rather than tooth-shaped veneers might decrease the relevance to the actual clinical situation. Additionally, only one dentin shade background was
References

1. Tasin S, Celik G, Ismatullaev A, Usumez A. The effect of artificial accelerated aging on the color stability, microhardness, and surface roughness of different dental laminate veneer materials. J Esthetic Restor Dent 2020;1:7.

2. Beier US, Kapferer I, Burtscher D, Dumfahrt H. Clinical performance of porcelain laminate veneers for up to 20 years. Int J Prosthodont 2012;25:79–85.

3. Azer SS, Rosenstiel SF, Johnston WM. Effect of sub-base shades on the color of ceramic laminate veneers. J Prosthet Dent 2011;106:179–83.

4. Morimoto S, Albanesi R, Sesma N, Braga M. Main clinical outcomes of feldspathic porcelain and glass-ceramic laminate veneers: a systematic review and meta-analysis of survival and complication rates. Int J Prosthodont 2016;29:38–49.

5. Magne P, Hanna J, Magne M. The case for moderate “guided prep” indirect porcelain veneers in the anterior dentition. The pendulum of porcelain veneer preparations: from almost no-prep to over-prep to no-prep. Eur J Esthetic Dent 2013;8:376–88.

6. Gresnigt MM, Kalk W, Ozcan M. Clinical longevity of ceramic laminate veneers bonded to teeth with and without existing composite restorations up to 40 months. Clin Oral Invest 2013;17:823–32.

7. Menini M, Pera F, Barberis F, Rosenberg G, Bagnasco F, Pesce P. Evaluation of adhesion between carbon fiber frameworks and esthetic veneering materials. Int J Prosthodont 2018;31:453–5.

8. Swain MV, Gee C, Li KC. Influence of ageing on glass and resin bonding of dental glass-ceramic veneer adhesion to zirconia: a fracture mechanics analysis and interpretation. Acta Biomater 2018;74:454–63.

9. Layton DM, Walton TR. The up to 21-year clinical outcome and survival of feldspathic porcelain veneers: accounting for clustering. Int J Prosthodont 2012;25:604–12.

10. Layton DM, Clarke M, Walton TR. A systematic review and meta-analysis of the survival of feldspathic porcelain veneers over 5 and 10 years. Int J Prosthodont 2012;25:590–603.

11. Igel C, Weyhrauch M, Wentaschek S, Scheller H, Lehmann KM. Dental color matching: a comparison between visual and instrumental methods. Dent Mater J 2016;35:63–9.

12. Freire A, Arcegas LR. Porcelain laminate veneer on a highly discoloured tooth: a case report. J Can Dent Assoc 2010;76:126–7.

13. Li Q, Yu H, Wang YN. In vivo spectroradiometric evaluation of colour matching errors among five shade guides. J Oral Rehabil 2009;36:65–70.

14. Wang P, Wei J, Li Q, Wang YN. Evaluation of an optimized shade guide made from porcelain powder mixtures. J Prosthet Dent 2014;112:1553–8.

15. Okubo SR, Kanawati A, Richards MW, Childress S. Evaluation of visual and instrumental shade matching. J Prosthet Dent 1998;80:642–8.

16. Pires LA, Novais PM, Araujo VD, Pegoraro LF. Effects of the type and thickness of ceramic, substrate, and cement on the optical color of a lithium disilicate ceramic. J Prosthet Dent 2017;117:144–9.

17. Chu SJ, Trushkowsky RD, Paravina RD. Dental color matching instruments and systems. review of clinical and research aspects. J Dent 2010;38(Suppl 2):e2–16.

18. Corciolani G, Vichi A, Louca C, Ferrari M. Color match of two different ceramic systems to selected shades of one shade guide. J Prosthet Dent 2011;105:171–6.

19. Aloothman Y, Bamason SMD. The success of dental veneers according to preparation design and material type. Open Access Maced J Med Sci 2018;6:2402–8.

20. Luo XP, Zhang L. Effect of veneering techniques on color and translucency of Y-TZP. J Prosthodont 2010;19:465–70.

21. Raptis NV, Michalakis KX, Hirayama H. Optical behavior of current ceramic systems. Int J Periodontics Restor Dent 2006;26:31–41.

22. Seghi RR, Hewlett ER, Kim J. Visual and instrumental colorimetric assessments of small color differences on translucent dental porcelain. J Dent Res 1989;68:1760–4.

23. Bolt RA, Bosch JJ, Coops JC. Influence of window size in small-window colour measurement, particularly of teeth. Phys Med Biol 1994;39:1133–42.

24. Xu B, Chen X, Li R, Wang YN, Li Q. Agreement of try-in pastes and the corresponding luting composites on the final color of ceramic veneers. J Prosthodont 2014;23:308–12.

25. Friedman MJ. A 15-year review of porcelain veneer failure—a clinician’s observations. Comp Cont Educ Dent 1998;19:625–38.

26. Peumans M, Van Meerbeck B, Lambrechts P, Vanherle G. Porcelain veneers: a review of the literature. J Dent 2000;28:163–77.

27. Douglas RD, Steinhauser TJ, Wee AG. Intraoral determination of the tolerance of dentists for perceptibility and acceptability of shade mismatch. J Prosthet Dent 2007;97:200–8.

28. Ishikawa-Nagai S, Sato R, Furukawa K, KJIJoP Ishibashi. Using a computer color-matching system in color reproduction of porcelain restorations. Part 1: application of CCM to the opaque layer. Int J Prosthodont 1992;5:495–502.

29. O’Brien WJ. Double layer effect and other optical phenomena related to esthetics. Dent Clin 1985;29:667–72.

30. Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011;27:97–108.
Spectrophotometric evaluation of color error for veneer

31. Dozić A, Kleverlaan C, Meegdes M, van der Zel J, Feilzer A. The influence of porcelain layer thickness on the final shade of ceramic restorations. *J Prosthet Dent* 2003;90:563–70.

32. Paul S, Peter A, Pietrobon N, Hammerle CHF. Visual and spectrophotometric shade analysis of human teeth. *J Dent Res* 2002;81:578–82.

33. Wee AG, Monaghan P, Johnston WM. Variation in color between intended matched shade and fabricated shade of dental porcelain. *J Prosthet Dent* 2002;87:657–66.

34. Culpepper WD. A comparative study of shade-matching procedures. *J Prosthet Dent* 1970;24:166–73.

35. Arif R, Yilmaz B, Johnston WM. In vitro color stainability and relative translucency of CAD-CAM restorative materials used for laminate veneers and complete crowns. *J Prosthet Dent* 2019;122:160–6.

36. Lee YK. Translucency of human teeth and dental restorative materials and its clinical relevance. *J Biomed Optic* 2015;20:45002.

37. Yu B, Ahn JS, Lee YK. Measurement of translucency of tooth enamel and dentin. *Acta Odontol Scand* 2008;67:57–64.

38. Joiner A. Tooth colour: a review of the literature. *J Dent* 2004;32(Suppl 1):3–12.

39. Li Q, Xu BT, Li R, Wang YN. Spectrophotometric comparison of translucent composites and natural enamel. *J Dent* 2010;38:e117–22.