MOTIVIC CLASSES OF CLASSIFYING STACKS OF SOME SEMI-DIRECT PRODUCTS

IVAN MARTINO AND FEDERICO SCAVIA

Abstract. Let k be a field, let G be a finite group, and let T be a split k-torus on which G acts multiplicatively. For every $m \geq 1$ denote by $T[m]$ the m-torsion subgroup of T. Under a suitable assumption on m, we show that the motivic class of $B(T[m] \rtimes G)$ in $K_0(\text{Stacks}_k)$ equals that of BG. As a consequence, we prove that the motivic class of BW is trivial for a large class of complex reflection groups W.

1. Introduction

Let k be a field, and let G be a finite group scheme over k. This paper contributes to the computation of the motivic class $\{BG\}$ of the classifying stack of G in the Grothendieck ring of algebraic stacks $K_0(\text{Stacks}_k)$. More specifically, we are interested in the triviality of $\{BG\}$, following up on work of Ekedahl [8, 7], the computations of the first author [13], and the results of [1, 6, 22, 23].

Before we go any further, we provide the context where our results are relevant and several motivations to tackle this motivic computations.

The Noether Problem. Let V be a faithful G-representation, finite-dimensional over k. The Noether Problem for G and V is the question of whether the quotient variety V/G is k-rational, that is, birational to some affine space over k. In 1917, Noether [16] studied this question in the case when G is constant (i.e. a finite group). In this case, the problem amounts to determine whether the field of invariants $k(V)^G$ is rational (i.e. purely transcendental) over k. It is not hard to produce many examples for which the answer is affirmative. However, no negative examples were found for more than fifty years.

The first example of a group for which the Noether Problem has negative answer is due to Swan [21], who proved that over $k = \mathbb{Q}$ the field of invariants of the regular representation of $\mathbb{Z}/47\mathbb{Z}$ is not rational.

Over an algebraically closed field k of characteristic zero, the first negative example is due to Saltman [18]; his methods were subsequently refined by Bogomolov [2]. The examples of Saltman and Bogomolov are certain p-groups of order p^9 and of order p^6, respectively. More recently Hoshi, Kang and Kunyavskiǐ [9] found examples of order p^5, where p is odd.

2010 Mathematics Subject Classification. Primary 14D23, 20C10.

Ivan Martino has been partially supported by the Swiss National Science Foundation Professorship grant PP00P2_150552/1; he has been partially supported by the Zelevinsky Research Instructor Fund. Currently, he is supported by the Knut and Alice Wallenberg Fundation and by the Royal Swedish Academy of Science.

Federico Scavia was partially supported by a graduate fellowship from the University of British Columbia.
The strategy of Saltman is as follows. If K/k is a field extension, one can consider the unramified Brauer group $\text{Br}_{nr}(K) := H^2_{nr}(K, \mathbb{Q}/\mathbb{Z}(1))$. It is an abelian group, and it is trivial if K/k is rational. To find a negative example to the Noether Problem, Saltman exhibited G and V for which he was able to show that $\text{Br}_{nr}(k(V)^G) \neq 0$. Later, Bogomolov [2] described $\text{Br}_{nr}(k(V)^G)$ purely in terms of the group cohomology of G, as a subgroup of the Schur multiplier $H^3(G, \mathbb{Z})$. For this reason the group $\text{Br}_{nr}(k(V)^G)$ is also known as the Bogomolov multiplier of G, and is sometimes denoted by $B_0(G)$.

Triviality of the motivic class of BG. In 2009, Ekedahl [8] considered the motivic class $\{BG\}$ in the Grothendieck ring of stacks $K_0(\text{Stacks}_k)$. Furthermore, when k has characteristic zero, he used the refined Euler characteristic introduced in [8] to construct geometric invariants of G, one for each integer $n \geq 1$. For $n = 2$, his construction recovers $B_0(G)$. These invariants are called the Ekedahl invariants of G in [13, 14], to which we refer for an overview of this topic.

We say that BG has trivial motivic class if $\{BG\} = 1$ in $K_0(\text{Stacks}_k)$. Triviality of the class $\{BG\}$ entails triviality of the Ekedahl invariants and, in particular, of the Bogomolov multiplier; see [8, Theorem 5.1]. This implies that in the aforementioned negative examples to the Noether Problem over an algebraically closed field of characteristic zero, $\{BG\}$ is not trivial in $K_0(\text{Stacks}_k)$. The connection between the triviality of $\{BG\}$ and the Noether Problem is intriguing, but so far remains largely unexplained.

A further point of interest in the triviality of $\{BG\}$ comes from recent work of Totaro [23], which suggests that it might be related to five other interesting properties of finite groups: stable rationality of BG, triviality for the birational motive of the quotient varieties V/G, the Chow Künneth property of BG, the Chow Künneth property of BG and the mixed Tate property of BG. As explained by Totaro, it is entirely possible that all these properties are equivalent, when k is algebraically closed of characteristic zero. For example, if the Bogomolov multiplier $B_0(G)$ is non-trivial, then all the above properties fail for G.

We note that over non-algebraically closed fields the above properties are in general not equivalent. For example, if k is a field of characteristic zero admitting a biquadratic field extension, there exist non-constant finite group schemes G over k such that $\{BG\} \neq 1$ and BG is stably rational; see [19].

The known instances of triviality for $\{BG\}$ mainly come from work of Ekedahl. They are:

- the group schemes μ_n of n-th roots of unity, for every $n \geq 1$ (see [8, Proposition 3.2]);
- the symmetric groups S_n, $n \geq 1$ (see [8, Theorem 4.3]);
- all finite subgroups of the group of affine transformations of \mathbb{A}^1_k, assuming k algebraically closed (see [8, p. 8, Example ii) on page 8]).

Subsequently, when k is algebraically closed of characteristic zero, the first author proved triviality of $\{BG\}$ in $K_0(\text{Stacks}_k)$ for

- the finite subgroups of GL_3, [13, Theorem 2.4].

The proofs of all of these results run along similar lines: one considers a faithful representation V of G, stratifies V according to the stabilizer, computes $\{U/G\}$ as a polynomial in $L := \{A^1_k\}$, where $U \subseteq V$ is the open subset where G acts freely, and inductively computes the other strata.
Semi-direct products. We now come to the new results of this paper. We devise a new method for establishing the triviality of the classes of the classifying stacks of certain finite groups, based on integral representation theory.

Let G be a finite constant group, and let M be a G-lattice, that is, M is a finitely generated free abelian group on which G acts additively. Consider a short exact sequence

$$0 \to N \to P \to M \to 0$$

where P is a permutation G-lattice and N is a coflasque G-lattice. Recall that a G-lattice is permutation if it admits a basis which is stable under the G-action, and that it is coflasque if $H^1(H, N) = 0$ for every subgroup H of G. We refer the reader to [4, Proposition 1.3] for the construction of a sequence (1.1).

We denote by $e(M)$ the period of the class of (1.1) in $\text{Ext}^1_G(M, N)$. The invariant $e(M)$ has a very interesting geometric interpretation: if L/F is a finite Galois extension with Galois group G, and U is an F-torus split by L and whose character G-lattice is isomorphic to M, by a theorem of Merkurjev [15] the number $e(M)$ equals the period of a generic U-torsor $X \to \text{Spec} K$, as an element of the group $H^1(K, U)$; see [15] for the precise definitions. In particular, $e(M)$ does not depend on the choice of (1.1). It is clear that $e(M)$ is a divisor of $|G|$.

Theorem 1.1. Let k be a field, let G be a finite group, let $T \cong \mathbb{G}_m^n$ be a split k-torus on which G acts multiplicatively, and let \hat{T} be the character lattice of T, viewed as a G-lattice via the induced action. Let $m \equiv \pm 1 \pmod{e(\hat{T})}$ be a non-negative integer, and denote by $T[m]$ the m-torsion subgroup of T.

Then we have $\{B(T[m] \rtimes G)\} = \{BG\}$ in $K_0(\text{Stacks}_k)$.

In particular, if $\{BG\} = 1$ in $K_0(\text{Stacks}_k)$, then $\{B(T[m] \rtimes G)\} = 1$. We note that Theorem [11] makes no assumptions on the base field k: the group scheme $T[m]$ is allowed to be non-constant and even non-reduced.

As we have already mentioned, all previous results on the triviality of $\{BG\}$ have been proved by choosing a faithful representation V of G and by computing the class of $[V/G]$ using a suitable stratification. Theorem [11] is of a different nature: its proof is arithmetic, and makes use of multiplicative invariant theory, the theory of (non-split) algebraic tori, and Galois cohomology.

Finite reflection groups. As an application of Theorem [11] we prove the triviality of a large number of motivic classes of classifying stacks of finite complex reflection groups.

Recall that a finite constant group G is called a complex reflection group if there exists a faithful complex representation V of G such that G is generated by pseudoreflections (i.e. elements which fix some complex hyperplane of V pointwise); a useful reference on the subject is [17]. If G is a complex reflection group, and V is a reflection representation for V, it follows from the Chevalley-Shephard-Todd Theorem that the Noether Problem for G and V has affirmative answer, and so BG is stably rational. It is then natural to wonder if some of the other properties listed by Totaro are also true. In particular, do we have $\{BG\} = 1$? If $G = S_n$, then the answer is affirmative by [8, Theorem 4.3], however the proof does not seem to generalize to other reflection groups.
For every field k and all integers $m, p, n \geq 1$ such that p divides m, consider the k-group scheme

$$G(m, p, n) := \{(\zeta_1, \ldots, \zeta_n, \sigma) \in \mu_m^n \rtimes S_n : \prod_{i=1}^n \zeta_i^{m/p} = 1\}.$$

If $k = \mathbb{C}$, the $G(m, p, n)$ form the infinite family of irreducible finite complex reflection groups.

Corollary 1.2. Let k be a field. Assume that $p = 1$, or that $p = m \equiv \pm 1 \pmod{n}$. Then we have $\{BG(m, p, n)\} = 1$ in $K_0(\text{Stacks}_k)$.

The proof of Corollary 1.2 in the case $p = 1$ is particularly simple, and it implies that $\{BG\} = 1$ for every finite reflection group G of type B_n; this case may also be deduced from the Symm formalism of $[3]$.

Acknowledgements

We thank Emanuele Delucchi and Emanuele Ventura for helpful comments, and the anonymous referee for suggesting various improvements on the exposition. We are grateful to Emanuele Delucchi for his input to earlier stages of this research project.

2. Motivic classes of classifying stacks

We begin by recalling that the Grothendieck ring of algebraic varieties $K_0(\text{Var}_k)$ is the group generated by the isomorphism classes $\{X\}$ of k-schemes of finite type X, subject to the relation $\{X\} = \{Y\} + \{X \setminus Y\}$ for every closed embedding $Y \hookrightarrow X$. We define a product on $K_0(\text{Var}_k)$ by setting $\{X\} \cdot \{Y\} := \{X \times Y\}$ and extending by bilinearity. This makes $K_0(\text{Var}_k)$ into a commutative ring with identity $1 = \{\text{Spec } k\}$. We denote by \mathbb{L} the class of the affine line \mathbb{A}_k^1 in $K_0(\text{Var}_k)$.

In $[7]$, Ekedahl constructed a Grothendieck ring of algebraic stacks as follows.

Definition 2.1. Let \mathcal{S} be an algebraic stack of finite type over k. The Grothendieck ring of algebraic stacks over \mathcal{S}, denoted $K_0(\text{Stacks}_\mathcal{S})$, is the quotient of the free abelian group generated by equivalence classes $\{X\}$ of algebraic stacks X finitely presented over \mathcal{S} and with affine stabilizers by the following relations:

1. $\{X\} = \{Z\} + \{X \setminus Z\}$ for every closed embedding $Z \hookrightarrow X$;
2. $\{E\} = \{X \times_\mathcal{S} E\}$ for every vector bundle E of constant rank n over X.

The product on $K_0(\text{Stacks}_\mathcal{S})$ is defined by $\{X\}\{Y\} := \{X \times_\mathcal{S} Y\}$. The class $\{\mathbb{A}_\mathcal{S}^1\}$ in $K_0(\text{Stacks}_\mathcal{S})$ is denoted by L, or by $L_\mathcal{S}$ if reference to \mathcal{S} is necessary.

We will be especially interested in the cases, when $\mathcal{S} = \text{Spec } k$ or $\mathcal{S} = BG$ for some finite group scheme G over k. There is a natural ring homomorphism $K_0(\text{Var}_k) \rightarrow K_0(\text{Stacks}_k)$, which by $[7]$ Theorem 4.1 induces an isomorphism:

$$K_0(\text{Stacks}_k) \cong K_0(\text{Var}_k)[L^{-1}, \{(L^n - 1)^{-1}, n \geq 1\}].$$

If $f : \mathcal{S}' \rightarrow \mathcal{S}$ is a morphism of stacks, we get a natural ring homomorphism $f^* : K_0(\text{Stacks}_\mathcal{S}') \rightarrow K_0(\text{Stacks}_\mathcal{S})$ by pulling back stacks along f. In particular, $f^*(L_\mathcal{S}) = L_{\mathcal{S}'}$. If f is finitely presented, we also have a group homomorphism $f_* : K_0(\text{Stacks}_\mathcal{S}') \rightarrow K_0(\text{Stacks}_\mathcal{S})$, which sends the class of a stack $X \rightarrow \mathcal{S}'$ to the
class of $\mathcal{X} \to S'$ \xrightarrow{f} S$. Note that f_* is not a ring homomorphism, however there is a projection formula

$$f_*(f^*C \cdot C') = C \cdot f_*C', \quad C \in K_0(\text{Stacks}_S), C' \in K_0(\text{Stacks}_{S'})$$

To prove it, one may reduce to the case when $C = \{\mathcal{X}\}$ and $C' = \{\mathcal{X}'\}$, where \mathcal{X} is a stack over S and \mathcal{X}' is a stack over S', in which case the claim follows from the S-isomorphism $\mathcal{X} \times S' \times S. \mathcal{X}' \cong \mathcal{X} \times S' \mathcal{X}'$.

Let S be an algebraic stack and let G be a linear algebraic group scheme over S, that is, G is flat over S and is a closed subgroup of $\text{GL}_{n,S}$ for some $n \geq 1$. We denote by $B_S G$ the classifying stack of G over S. If T is a scheme over S, then by definition $B_S G(T)$ is the groupoid whose objects are G_T-torsors $P \to T$, and whose arrows are isomorphisms of G_T-torsors over T. If $S = S$ is a scheme, this is the usual quotient stack $[S/G]$, where G acts trivially on S. If $S = \text{Spec} k$, then we relax our notation and simply write $B G$ instead of $B_{\text{Spec} k} G$.

The structure morphism $B_S G \to S$ sends a G_T-torsor $P \to T$ to its base T. The natural morphism $S \to B_S G$, sending a scheme $T \to S$ to the split G_T-torsor, is a G-torsor.

The next lemma is an immediate generalization to an arbitrary base stack S of results that are well-known when $S = \text{Spec} k$.

Lemma 2.2. Let S be an algebraic stack of finite type over k. Then:

(a) $\{\text{GL}_{n,S}\} = \prod_{i=0}^{n-1} (L^n - L^i)$ in $K_0(\text{Stacks}_S)$;

(b) if $\mathcal{X} \to \mathcal{Y}$ is a $\text{GL}_{n,S}$-torsor of algebraic stacks over S, then $\mathcal{X} = \{\text{GL}_{n,S}\}\{\mathcal{Y}\}$ in $K_0(\text{Stacks}_S)$;

(c) we have $\{B_S \text{GL}_{n,S}\}\{\text{GL}_{n,S}\} = 1$ in $K_0(\text{Stacks}_S)$. In particular $\{\text{GL}_{n,S}\}$ is invertible in $K_0(\text{Stacks}_S)$.

Proof.

(a) By [1 Proposition 1.1(i)], the relation $\{\text{GL}_{n,k}\} = \prod_{i=0}^{n-1} (L^n - L^i)$ holds in $K_0(\text{Stacks}_k)$. The desired formula follows by pulling back along the structure morphism $S \to \text{Spec} k$ of S.

(b) Assume first that $\{\mathcal{X}\} = \{\text{GL}_{n,Y}\}\{\mathcal{Y}\}$ in $K_0(\text{Stacks}_Y)$, and denote by $f : \mathcal{Y} \to S$ the structure morphism. Then, using the projection formula, we deduce

$$f_*(\{\mathcal{X}\}) = f_*(f^*\{\text{GL}_{n,Y}\}\{\mathcal{Y}\}) = f_*(f^*\{\text{GL}_{n,S}\}\{\mathcal{Y}\}) = \{\text{GL}_{n,S}\} f_*\{\mathcal{Y}\},$$

showing that $\{\mathcal{X}\} = \{\text{GL}_{n,S}\}\{\mathcal{Y}\}$ in $K_0(\text{Stacks}_S)$. Therefore, we may assume that $\mathcal{Y} = S$, and the claim becomes $\{\mathcal{X}\} = \{\text{GL}_{n,S}\}$ in $K_0(\text{Stacks}_S)$. In this case, even though in [1 Proposition 2.2] and [7 Proposition 1.1(ii)] it is claimed that $\{\mathcal{X}\} = \{\text{GL}_{n,S}\}$ in $K_0(\text{Stacks}_k)$, both proofs show that the equality holds in $K_0(\text{Stacks}_S)$ as well.

(c) The natural map $S \to B_S \text{GL}_{n,S}$ is a $\text{GL}_{n,S}$-torsor, hence the conclusion follows from (b). \qed

The next lemma will be essential to derive the results of Section 3. It will allow us to reduce questions about classes in $K_0(\text{Stacks}_{BG})$ of representable stacks over BG to questions about schemes.
Lemma 2.3. Let k be a field, and let G be a linear algebraic group over k. Then there exist a k-variety X and a morphism $f : X \to BG$ such that the pullback map $f^* : K_0(\text{Stacks}_{BG}) \to K_0(\text{Stacks}_X)$ is injective.

Proof. Choose an embedding of $G \hookrightarrow \text{GL}_n$ for some $n \geq 1$, and set $X := \text{GL}_n / G$. The variety X is a homogeneous space under GL_n and has a k-point with stabilizer isomorphic to G, hence $[X / \text{GL}_n] \cong BG$. The canonical map $f : X \to [X / \text{GL}_n] = BG$ is a GL_n-torsor. For a stack $\varphi : \mathcal{X} \to BG$, let $f^* \mathcal{X} := \mathcal{X} \times_{\varphi, BG, f} X$, so that $f^* \{ \mathcal{X} \} = \{ f^* \mathcal{X} \}$ in $K_0(\text{Stacks}_X)$. The first projection $f^* \mathcal{X} \to \mathcal{X}$ is a GL_n-torsor, hence by Lemma 2.2(b)

(2.1) $f_* f^* \{ \mathcal{X} \} = f_* \{ f^* \mathcal{X} \} = \{ \mathcal{X} \} \{ \text{GL}_n \}$ in $K_0(\text{Stacks}_{BG})$.

Let $C \in K_0(\text{Stacks}_{BG})$. We may write $C = \sum_i \{ \mathcal{X}_i \} - \sum_j \{ \mathcal{Y}_j \}$, for some algebraic stacks \mathcal{X}_i and \mathcal{Y}_j over BG. Using (2.1) on each term, we get

$$f_* f^* C = \sum \{ \mathcal{X}_i \} \{ \text{GL}_n \} - \sum \{ \mathcal{Y}_j \} \{ \text{GL}_n \} = \sum \{ (\mathcal{X}_i) - \{ \mathcal{Y}_j \} \} \{ \text{GL}_n \} = C \{ \text{GL}_n \}$$

in $K_0(\text{Stacks}_{BG})$. In other words, $f_* f^* : K_0(\text{Stacks}_{BG}) \to K_0(\text{Stacks}_{BG})$ is the map of multiplication by $\{ \text{GL}_n \}$. By Lemma 2.3(c) $\{ \text{GL}_n \}$ is invertible, hence f^* is injective. \square

Let S be a scheme, and let G be a linear algebraic group scheme over S. We say that G is special if $H^1_{\text{fppf}}(T, G) = H^2_{\text{zar}}(T, G)$ for every S-scheme T, that is, if G-torsors are Zariski-locally trivial over any S-scheme. The following result has been proved in [1] in the case, when $S = \text{Spec } k$ for some field k.

Lemma 2.4. Let S be a scheme and G be a special S-group.

(a) If $\pi : X \to Y$ is a G-torsor of S-schemes, then $\{ X \} = \{ G \} \{ Y \}$ in $K_0(\text{Stacks}_S)$.

(b) If $\mathcal{X} \to \mathcal{Y}$ is a G-torsor of S-stacks, then $\{ \mathcal{X} \} = \{ G \} \{ \mathcal{Y} \}$ in $K_0(\text{Stacks}_S)$.

(c) We have $\{ B_S G \} \{ G \} = 1$ in $K_0(\text{Stacks}_S)$.

Proof. (a) The proof of [1] Proposition 2.1] immediately generalizes; we include it for completeness. Since G is special, there exists a non-empty open subscheme X_1 of X such that $Y_1 := \pi^{-1}(X_1)$ is isomorphic to $X_1 \times_S G$. Iterating this procedure, we eventually obtain a stratification $X = \coprod_i Y_i$, such that $Y_i := \pi^{-1}(X_i) \cong X_i \times_S G$. By the scissor relation, we have $\{ X \} = \sum \{ X_i \}$ and $\{ Y \} = \sum \{ Y_i \}$. Since $\{ Y_i \} = \{ X_i \} \{ G \}$ for every i, we conclude that

$$\{ Y \} = \sum \{ Y_i \} = \sum \{ X_i \} \{ G \} = \left(\sum \{ X_i \} \right) \{ G \} = \{ X \} \{ G \}.$$

(b) [1] Proposition 2.2], the proof of [1] Proposition 2.3] adapts without difficulties. Assume that Z is a closed substack of \mathcal{Y}, with open complement \mathcal{U}, and that the claim holds for $\mathcal{X}_Z \to Z$ and $\mathcal{X}_U \to \mathcal{U}$. Then, by the scissor relation

$$\{ \mathcal{X} \} = \{ \mathcal{X}_U \} + \{ \mathcal{X}_Z \} = \{ \mathcal{U} \} \{ G \} + \{ Z \} \{ G \} = \{ \mathcal{Y} \} \{ G \}.$$

By noetherian induction, it is enough to show the claim for a non-empty open substack of \mathcal{X}. By [1] Proposition 3.5.9], \mathcal{Y} is stratified by stacks of the form
\[[U/ \text{GL}_{n,S}], \text{ where } U \text{ is a scheme over } S. \] Hence we may assume that \(\mathcal{Y} = [Y/ \text{GL}_{n,S}] \), where \(n \geq 1 \) and \(Y \) is a scheme. We have a cartesian diagram

\[
\begin{array}{ccc}
\mathcal{X}_Y & \xrightarrow{\varphi} & \mathcal{X} \\
\downarrow & & \downarrow \\
\mathcal{Y} & \xrightarrow{f} & \mathcal{Y}'
\end{array}
\]

where the horizontal maps are \(\text{GL}_{n,S} \)-torsors. It follows from Lemma 2.2 that
\(\{Y\} = \{\text{GL}_{n,S}\}\{Y\} \) and \(\{\mathcal{X}_Y\} = \{\text{GL}_{n,S}\}\{\mathcal{X}\} \). Since \(Y \) is a scheme, by (a) we have
\(\{\mathcal{X}_Y\} = \{\text{GL}_{n,S}\}\{Y\} \). Combining these relations, we arrive to
\(\{\text{GL}_{n,S}\}\{\mathcal{X} - \mathcal{G}\}\{Y\} = 0. \)

By Lemma 2.2(c) \(\{\text{GL}_{n,S}\} \) is invertible, hence \(\{\mathcal{X} - \mathcal{G}\}\{Y\} = 0. \)

If \(T \) is a scheme and \(T \to B_SG \) is a morphism, corresponding to a \(G \)-torsor \(P \to T \), by (a) we have \(\{P\} = \{G\}\{T\} \). Applying (b) to \(S \to B_SG \) and \(C = \{G\} \), we get \(1 = \{S\} = \{B_SG\}\{G\} \) in \(K_0(\text{Stacks}_S) \).

3. Groups of multiplicative type over stacks

Let \(G \) be a finite group and \(M \) be a \(G \)-module of rank \(n \). We define \(T_M := [\text{Spec } k[M]/G] \) and \(B_M := B(\text{Spec } k[M] \times G) \).

The representable morphism \(T_M \to BG \) exhibits \(T_M \) as a group object over \(BG \).

If \(f : X \to BG \) is a morphism, corresponding to a \(G \)-torsor \(\pi : Y \to X \), then
\(T_M := X \times f, BG, \pi T_M \) is a group of multiplicative type split by \(Y \). It is obtained by twisting \(\text{Spec } k[M] \times X \) by \(\pi \) (using the \(G_X \)-action on \(\text{Spec } k[M] \times X \)). We will be mostly interested in the case, when \(M \) is torsion-free. In that case \(T_M \) is a relative torus over \(X \).

If \(\pi \) is a geometric point of \(X \), then \(\pi \) corresponds to a surjection \(\pi_1(X, \pi) \to G \), and \(T_M \) corresponds to the representation of \(\pi_1(X, \pi) \to G \to \text{GL}(M) \).

The projection \(B_M \to BG \) admits a section, making \(B_M \) into a neutral gerbe over \(BG \). Its fibers are the twists of \(\text{Spec } k[M] \) using the \(G \)-action, as we now explain.

More generally, let us consider the semidirect product \(N \rtimes H \) of two linear algebraic \(k \)-groups \(N \) and \(H \). If \(f : X \to BH \) is a morphism, corresponding to an \(H \)-torsor \(\pi : Y \to X \), we have a cartesian diagram

\[
\begin{array}{ccc}
[X/\pi N] & \xrightarrow{\varphi} & B(N \rtimes H) \\
\downarrow & & \downarrow \\
X & \xrightarrow{f} & BH.
\end{array}
\]

Here \(\pi N_X \) is the twist of \(N_X \) by the torsor \(\pi : Y \to X \), using the \(H_X \)-action. It is a group scheme over \(X \). The morphism \(\varphi \) is constructed in the following way: twist the inclusion \(N_X \to (N \rtimes H)_X \) by the \((N \rtimes H)_X \)-torsor \(Y \times^H (N \rtimes H) \to X \) to obtain a morphism \(\pi N_X \to \pi (N \rtimes H)_X \). Since \(\pi (N \rtimes H)_X \) is an inner form of \((N \rtimes H)_X \), we have \([X/\pi (N \rtimes H)_X] \cong [X/(N \rtimes H)_X] \). We define \(\varphi \) as the composition

\[
[X/\pi N] \to [X/\pi (N \rtimes H)_X] \cong [X/(N \rtimes H)_X] \cong X \times B(N \rtimes H) \xrightarrow{pr_2} B(N \rtimes H).
\]
Specialization of diagram \((3.1)\) to our situation yields a cartesian diagram
\[
\begin{array}{ccc}
B_X T_M & \longrightarrow & B_M \\
\downarrow & & \downarrow \\
X & \longrightarrow & BG
\end{array}
\]
(3.2)
for every morphism \(f : X \to BG\).

Recall that, by definition, an invertible \(G\)-lattice \(M\) is a direct summand of a permutation lattice \([3][12]\).

Lemma 3.1. Let \(M\) be an invertible \(G\)-lattice (for example, a permutation \(G\)-lattice). Then:

(a) for every morphism \(f : X \to BG\), the \(X\)-torus \(f^* T_M\) is special;
(b) \(\{T_M\}\{B_M\} = 1\) in \(K_0(\text{Stacks}_{BG})\);

Proof. Let \(P\) be a permutation \(G\)-lattice such that \(M\) is a direct summand of \(P\).

Let \(Y \to X\) be the \(G\)-torsor corresponding to \(f\). Then \(f^* T_P = R_{Y/X}(\mathbb{G}_m,Y), f^* B_P = B_X(R_{Y/X}(\mathbb{G}_m,Y))\) and \(f^* T_M\) is a direct factor of \(f^* T_P\).

\([a]\) By Shapiro’s lemma for étale cohomology \([10]\) Lemma 29.6], the \(X\)-torus \(R_{Y/X}(\mathbb{G}_m,Y)\) is special. Since \(f^* T_M\) is a direct factor of \(f^* T_P\), the cohomology of \(f^* T_M\) is a direct summand of the cohomology of \(f^* T_P\), hence \(f^* T_M\) is also special.

For the rest of the proof we fix a \(k\)-variety \(X\) and a morphism \(f : X \to BG\) such that \(f^* : K_0(\text{Stacks}_{BG}) \to K_0(\text{Stacks}_X)\) is injective, by Lemma \([2][3]\)

\([b]\) By Lemma \([2][4]\) we obtain that
\[
f^*[\{T_M\}\{B_M\}] = \{f^* T_M\}\{f^* B_M\} = \{R_{Y/X}(\mathbb{G}_m,Y)\}\{B(R_{Y/X}(\mathbb{G}_m,Y))\} = 1
\]
in \(K_0(\text{Stacks}_X)\). Since \(f^*\) is injective, we conclude that \(\{T_M\}\{B_M\} = 1\). \(\square\)

Proposition 3.2. Let
\[
0 \to M' \to M \to M'' \to 0
\]
be a short exact sequence of \(G\)-modules. If either \(M\) or \(M''\) is an invertible \(G\)-lattice, then
\[
\{T_{M'}\} = \{T_M\}\{B_{M''}\}
\]
in \(K_0(\text{Stacks}_{BG})\).

Proof. Lemma \([2][3]\) gives a \(k\)-variety \(X\) and a morphism \(f : X \to BG\) such that \(f^* : K_0(\text{Stacks}_{BG}) \to K_0(\text{Stacks}_X)\) is injective. Fix a geometric point \(\pi\) of \(X\).

The morphism \(f\) corresponds to a \(G\)-torsor \(Y \to X\), and as discussed this in turn corresponds to a surjection \(\pi_1(X,\pi) \to G\). The sequence \(0 \to M' \to M \to M'' \to 0\) is then a sequence of integral \(\pi_1(X,\pi)\)-representations, hence we obtain a short exact sequence of algebraic tori over \(X\):
\[
1 \to T_{M''} \to T_M \to T_{M'} \to 1.
\]
Since \(f^*\) is injective, it is enough to show that \(f^*\{T_{M'}\} = f^*[\{T_M\}\{B_{M''}\}]\), that is
\[
(3.3) \quad \{T_{M'}\} = \{T_M\}\{B_X T_{M''}\} \text{ in } K_0(\text{Stacks}_X).
\]
If \(M''\) is invertible, by Lemma \([3.1][b]\) \(T_{M''}\) is special. Since \(T_M \to T_{M'}\) is a \(T_{M''}\)-torsor, \((3.3)\) follows from Lemma \([3.1]\).

If \(M\) is invertible, then \((3.3)\) follows from \([1]\) Proposition 2.9]; we repeat the argument here. The map \(T_{M''} \to \{T_{M'/T_M}\}\) is a \(T_{M'}\)-torsor. Since \(T_M\) acts transitively on \(T_{M'}\) and \(T_{M'}\) admits an \(X\)-point with stabilizer \(T_{M''}\) (for example, the identity
section), we have \([T_{M'}/T_M] \cong B_X T_{M''}\). By Lemma 3.1(b), \(T_M\) is special. It follows that \(\{T_{M'}\} = \{T_M\}/(T_{M'}/T_M) = \{T_M\}/\{B_X T_{M''}\} \).

\[\square\]

4. PROOF OF THEOREM 1.1

In this section, we prove the main results of this paper. The proof of Theorem 1.1 was inspired by the second author’s previous work [20], where it was shown that if \(T\) is a non-split \(k\)-torus, the stable rationality of \(BT[n]\) has an answer that is periodic in \(n\), with period dividing the period of the generic \(T\)-torsor; see [15] for the definition. The period of the generic \(T\)-torsor equals the number \(e(M)\) that was defined in the Introduction.

Proof of Theorem 1.1. Let \(M\) be the character \(G\)-lattice of \(T\). Consider the following diagram with exact rows and columns

\[
\begin{array}{ccccccc}
0 & & & & & & 0 \\
& & & & & & \\
0 & \rightarrow & N & \rightarrow & P & \rightarrow & M & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & N_m & \rightarrow & P & \rightarrow & M/mM & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & M & \rightarrow & 0 & & \\
& & \downarrow & & \downarrow & & \\
& & 0 & & & & \\
\end{array}
\]

(4.1)

where the first row is (1.1). Denote by \(\alpha\) the class of (1.1) in \(\text{Ext}^1_G(M, N)\). By [20, Proposition 3.1] the class of

\[
0 \rightarrow N \rightarrow N_m \rightarrow M \rightarrow 0
\]

in \(\text{Ext}^1_G(M, N)\) is \(ma\). The order of \(\alpha\) in \(\text{Ext}^1_G(M, N)\) divides \(e(M)\) (it actually equals \(e(M)\), by [15, Theorem 3.1]). It follows that \(N_m \cong N_{m'}\) when \(e(M) \mid m - m'\).

Recall that if \(\gamma \in \text{Ext}^1_G(M, N)\) is the class of

\[
0 \rightarrow N \rightarrow Q \xrightarrow{\eta} M \rightarrow 0,
\]

then \(-\gamma\) is represented by

\[
0 \rightarrow N \rightarrow Q \xrightarrow{-\eta} M \rightarrow 0.
\]

It follows that \(N_m \cong N_{m'}\) when \(e(M) \mid m + m'\) as well.

Assume that \(m \equiv \pm 1\) (mod \(e(M)\)). Then \(N_m \cong N_1 \cong P\) and the second row of (4.1) becomes

\[
0 \rightarrow P \rightarrow P \rightarrow M/mM \rightarrow 0.
\]

Since \(P\) is a permutation \(G\)-lattice, by Proposition 3.2 we deduce that \(\{B(T[m] \rtimes G)\} = 1\) in \(K_0(\text{Stacks}_{BG})\). This implies that \(\{B(T[m] \rtimes G)\} = \{BG\}\) in \(K_0(\text{Stacks}_{k})\), as desired. \(\square\)
We now prove our main result concerning reflection groups $G(m, p, n)$. As we anticipated in the introduction, the case $p = 1$ contains all groups of type B_n and is particularly easy.

Proof of Corollary 1.2 Denote by U_n the S_n-lattice $\mathbb{Z}[S_n/S_{n-1}]$, and let e_1, \ldots, e_n be the standard basis of U_n.

Assume first that $p = 1$. We have $BG(m, 1, n) = B_{U_n/mU_n}$. Applying Proposition 3.2 to the short exact sequence

$$0 \to U_n \xrightarrow{x_m} U_n \to U_n/mU_n \to 0,$$

we obtain $\{BG(m, 1, n)\} = 1$ in $K_0(\text{Stacks}_{BS_n})$. Since $\{BS_n\} = 1$ in $K_0(\text{Stacks}_k)$ by [8] Theorem 4.3, we conclude that $\{BG(m, 1, n)\} = 1$ in $K_0(\text{Stacks}_k)$.

Assume now that $p = m$. Let A_{n-1} be the S_n-module defined by the short exact sequence

$$0 \to \mathbb{Z} \xrightarrow{\epsilon} U_n \to A_{n-1} \to 0,$$

where $\epsilon(1) = \sum_{i=1}^{n} e_i$. Let S_n act on G^m_n by permutation of the coordinates, and consider the subtorus of G^m_n given by

$$T_n := \{(x_1, \ldots, x_n) \in G^m_n : \prod_{i=1}^{n} x_i = 1\}.$$

The character S_n-lattice of T_n is A_{n-1}, and $G(m, m, n) = T_n[m] \rtimes S_n$. In view of Theorem 1.1 to complete the proof it is enough to show that $\epsilon(A_{n-1}) = n$. Since $\{4.2\}$ is a coflasque resolution of A_{n-1}, it is enough to show that the class of $\{4.2\}$ in $\text{Ext}^1_{S_n}(A_{n-1}, \mathbb{Z})$ has order n. This is equivalent to showing that the class of the dual of $\{4.2\}$ has order n in $\text{Ext}^1_{S_n}(\mathbb{Z}, A'_{n-1})$, where A'_{n-1} is the S_n-lattice dual to A_{n-1}. This is well-known; see e.g. [15] Example 4.1. It follows from Theorem 1.1 that $\{BG(m, m, n)\} = \{BS_n\}$ in $K_0(\text{Stacks}_k)$ when $m \equiv \pm 1 \mod n$. We have $\{BS_n\} = 1$ by [8] Theorem 4.3, and the conclusion follows.

We conclude by stating the following conjecture.

Conjecture 4.1. Let W be a complex reflection group. Then $\{BW\} = 1$ in $K_0(\text{Stacks}_C)$.

This statement was claimed as the main theorem of the first online version of the preprint [5] of Emanuele Delucchi and the first author, but its proof was later shown to be defective.

References

[1] D. Bergh, *Motivic classes of some classifying stacks*, Journal of the London Mathematical Society, 93 (2015), pp. 219–243.

[2] F. A. Bogomolov, *The Brauer group of quotient spaces of linear representations*, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), pp. 485–516, 688.

[3] G. Cliff and A. Weiss, *Summands of permutation lattices for finite groups*, Proc. Amer. Math. Soc., 110 (1990), pp. 17–20.

[4] J.-L. Colliot-Thélène and J.-J. Sansuc, *Principal homogeneous spaces under flasque tori: applications*, J. Algebra, 106 (1987), pp. 148–205.

[5] E. Delucchi and I. Martino, *Subspace arrangements and motives of classifying stacks of reflection groups*, arXiv:1507.03486v1, (2015).

[6] A. Dhillon and M. B. Young, *The motive of the classifying stack of the orthogonal group*, Michigan Math. J., 65 (2016), pp. 189–197.
T. Ekedahl, The Grothendieck group of algebraic stacks, arXiv:0903.3143 (2009).

The Grothendieck group of algebraic stacks, arXiv:0903.3148 (2009).

A. Hoshi, M.-C. Kang, and B. E. Kunyavskii, Noether’s problem and unramified Brauer groups, Asian J. Math., 17 (2013), pp. 689–713.

M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, vol. 44 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits.

A. Kresch, Cycle groups for Artin stacks, Inventiones mathematicae, 138 (1999), pp. 495–536.

M. Lorenz, Multiplicative invariant theory, vol. 135, Springer Science & Business Media, 2006.

I. Martino, The Ekedahl invariants for finite groups, J. Pure Appl. Algebra, 220 (2016), pp. 1294–1309.

Introduction to the Ekedahl Invariants, Mathematica scandinavica, 120 (2017), pp. 211–224.

Introduction to the Ekedahl Invariants, Mathematica scandinavica, 120 (2017), pp. 211–224.

E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann., 78 (1917), pp. 221–229.

M. Broué, Introduction to complex reflection groups and their braid groups, vol. 1988 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.

D. J. Saltman, Noether’s problem over an algebraically closed field, Invent. Math., 77 (1984), pp. 71–84.

F. Scavia, On the motivic class of an algebraic group, arXiv:1808.09056 (2018).

Determinant of a group, arXiv:1812.05428 (2018).

R. G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math., 7 (1969), pp. 148–158.

M. Talpo and A. Vistoli, The motivic class of the classifying stack of the special orthogonal group, Bull. Lond. Math. Soc., 49 (2017), pp. 818–823.

B. Totaro, The motive of a classifying space, Geom. Topol., 20 (2016), pp. 2079–2133.

Department of Mathematics, Royal Institute of Technology, Stockholm, Sweden.

E-mail address: imartino@kth.se

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.

E-mail address: scavia@math.ubc.ca