ON THE SMALE CONJECTURE FOR DIFF(S^4)

SELMAN AKBULUT

Abstract. Recently Watanabe disproved the Smale Conjecture for S^4, by showing Diff(S^4) \neq SO(5). He showed this by proving that their higher homotopy groups are different. Here we prove this more directly by showing \pi_0 Diff(S^4) \neq 0, otherwise a certain loose-cork could not possibly be a loose-cork.

0. AN EXOTIC Diffeomorphism

Here we prove \pi_0 Diff(S^4) \neq 0, by showing that if this is not true, then the loose-cork defined in [A2] could not possibly be a loose-cork. The group \pi_0 Diff(S^4) = \pi_0 Diff(B^4, S^3) can be calculated from the homotopy exact sequence of the following fibration (where I = [0, 1], \dot{I} = \partial I)

(1) Diff(S^3 \times I, S^3 \times \dot{I}) \to Diff(B^4, S^3) \to Emb(B^4, IntB^4)

as the free part part of \pi_0 Diff(S^3 \times I, S^3 \times \dot{I}) = \pi_0 Diff(B^4, S^3) \oplus \mathbb{Z}_2. Emb(B^4, IntB^4) is path connected, and the \mathbb{Z}_2 summand comes from Dehn twisting S^3 \times I = B^4 - Int(B^4) along S^3 by using \pi_1 SO(4).

A nontrivial element of \pi_0 Diff(B^4, S^3) can be described as follows: Let T \subset S^3 be a tubular neighborhood of the figure-8 knot K lying inside of the 3-ball B^3. Call C = T \times J \approx S^3 \times B^2 \times J \subset B^3 \times J \subset S^3 \times J, where J = [-1, 1]. Define a diffeomorphism f_n : C \to C (where n \in \mathbb{N})

f_n(x, y, t) = \left(xe^{-2\pi in^2 t}, y, t \right)

As t runs from -1 to 1, f_n rotates T forward (and f_n^{-1} backwards) Let \bar{C} = C \cup S^3 \times N(J) \subset S^3 \times J, where N(J) is a small closed neighborhood of the boundary \dot{J} \subset J. After resizing J and extending domain of definition we extend f_n : \bar{C} \to \bar{C}.

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{dehn_twist.png}
\caption{Dehn twist}
\end{figure}

2020 Mathematics Subject Classification. 58D27, 58A05, 57R65.
is a fibered knot with fibration $S^3 - T \to S^1$, and the fiber punctured torus S. Let $\delta_s : S \to S$ be Dehn twisting diffeomorphism along the boundary parallel curve. That is, if we identify a collar N of ∂S with $N \approx S^1 \times (0, 1]$, then $\delta_s : N \to N$, is given by $\delta_s(x, r) = (xe^{2\pi is}, r)$. Since δ_s commutes with monodromy of the fibration $S^3 - T \to S^1$, it induces a diffeomorphism $\bar{\delta}_s : S^3 - T \to S^3 - T$, which is $e^{2\pi is}$ rotation along ∂T in K direction. Clearly $\bar{\delta}_s$ is supported near T.

Now define $g_n : (S^3 - T) \times J \to (S^3 - T) \times J$ by $g_n(x, t) = (\bar{\delta}_s(x), t)$ where $s = t^2 n^2$. By considering orientations, we can decompose $S^4 = (S^3 - T) \times J \sim -(T \times J)$ and extend g_n to a diffeomorphism $\phi_n : S^3 \times J \to S^3 \times J$ by letting it to be f_n^{-1} on $-(T \times J)$ (accounting the change of orientation in gluing). So, as t runs from -1 to 1, at each t level ϕ_n simultaneously Dehn twists the pages of the fibration $S^3 - T \to S^1$ by $2\pi n^2 t^2$ amount to left, while rotating T in the longitudinal direction $-2\pi n^2 t^2$ to the right.

Since ϕ_n is supported near C, it fixes some small neighborhood of a vertical arc $p \times J$, where $p \in S^3 - T$. Let $N(p) \approx B^3$ be a small ball neighborhood of p, then by the identifications $B^4 \approx B^3 \times J \approx (S^3 - N(p)) \times J$. Then by restriction, we get a diffeomorphism $\phi_n^0 : (B^4, S^3) \to (B^4, S^3)$

![Figure 2. $\phi_n^0 : B^3 \times J \to B^3 \times J$](image)

The vertical outer boundary of the wall of Figure 2 corresponds to the vertical outer boundary of $N(p) \times J$, where ϕ_n^0 is identity. We will call ϕ_n^0 Dehn twisting diffeomorphism of B^4 along C. More generally, when $K \subset S^3$ is any fibered knot and T^2 is the boundary of its tubular neighborhood, we will also refer the resulting $\phi_n^0 : B^3 \times J \to B^3 \times J$ Dehn twisting of B^4 along T^2. We will show that ϕ_n^0 is not isotopic to identity fixing the boundary, but if we allow it to move the boundary it is isotopic to identity by the so called “swallow-follow isotopy”.
Theorem 1. The diffeomorphisms $\phi^0_n : (B^4, S^3) \to (B^4, S^3)$ are not isotopic to each other fixing the boundary, for distinct integers $n > 0$.

Proof. We will prove this theorem by constructing a properly imbedded disk $D \subset B^4$ which can not be isotopic to $\phi^0_n(D)$ rel boundary, otherwise certain associated cork (which we will define in the next section) would not be a cork: Let K_0 be the punctured K, and let $D = K_0 \times J$ be the obvious disk in $B^4 = B^3 \times J$, which $K\# - K$ bounds.

Figure 3 is the same as Figure 2, drawn by bending the figure. Then take D_n be the image of this disk D under ϕ_n. D_n is the union of a concordance H_n from $K\# - K$ to $\bar{K}\# - \bar{K}$ induced by ϕ_n, and the disk $\bar{D}_n = \bar{K}_0 \times I$, where \bar{K} is the other end of the concordance H_n as shown in the second picture of Figure 3. So we have $\phi_n^o : (B^4, D) \to (B^4, \bar{D}_n)$.

We shall see, although D and \bar{D}_n are not isotopic fixing their boundaries on ∂B^4, they are isotopic moving the boundaries, through an isotopy which is called ‘swallow-follow’. This isotopy is a composition of two isotopies of $K\# - K$: By first moving $-K$ along K in its tubular neighborhood, then moving K along $-K$ in its tubular neighborhood, than capping the resulting $K\# - K$ by the obvious disk it bounds in B^4. Various pictures of these moves are described in Figures 4, 5).

We can also explain swallow-follow isotopy from Figure 3 by first constructing two disjoint 2-toruses T_1 and T_2 in $\partial(B^3 \times J)$, enclosing K and $-K$ respectively, not intersecting D. This can be done by piping boundaries of the tubular neighborhoods T_1, T_2, of K and $-K$ to large disjoint spheres S_1 and S_2, enclosing them. That is $T_i = T_i' \# S_i$, with $i = 1, 2$ as shown in Figure 3. There is an isotopy $S_1 \simeq S_2$, indicated by the arrows of Figure 3. This has an affect of replacing the core K in its tubular neighborhood by $K\# - K$, and then replacing the core $-K$ in its tubular neighborhood by $-K\# K$.

![Figure 3. $\phi_n^o : B^3 \times J \to B^3 \times J$](image-url)
T_1 and T_2 are the two ends of an imbedded copy of $T \times J \subset B^3 \times J$, which is disjoint from D. Here we can take this T to be solid torus. Dehn twisting diffeomorphism of $B^3 \times J$ along $T \times J$ takes D to D_n. This induces diffeomorphism between $B^3 \times J$ with D removed (carved) and $B^3 \times J$ with D_n removed. As can be seen from Figure 4 this diffeomorphism amount to gluing two isotopies, each taking place in tubular neighborhoods of K and $-K$ respectively. The effect of this is to tie a small copy of $-K$ to K, and move along K, then tie a small copy of K to $-K$ and move along $-K$.

![Figure 4. Forming D_n by swallow-follow isotopies](image)

![Figure 5. Swallow-follow isotopies of $K\# - K$](image)
1. **Forming the infinite order cork**

Next, from \(\phi_n \) we form an infinite order cork \((W, \tau_n)\): We do this by removing the slice disk \(D \) from \(B^4 \) then attaching \(-1\) framed 2-handle to the meridian linking circle \(\gamma \) (Figure 6), i.e. \(W^* := B^4 - N(D) \) and

\[
W = W^* + h^2_{\gamma^{-1}}
\]

Figure 6. W

The cork twisting map \(\tau_n : \partial W \to \partial W \) is given by \(f_n \) (Figures 8, 9) which is induced from the diffeomorphism \(\phi_n : W^* \to W^*_n \), which keeps \(\gamma \) fixed and twists \(\partial W^* \) by \(f_n \). When viewed \(\phi_n \) as a self map of \(W^* \), \(f_n \) becomes visible as a combination of two Dehn twists in \(\partial W^* \) opposite direction. This appears as a rotation along the connecting torus in the middle of Figure 3 as indicated in Figure 7 (recall that \(\partial W^* \) consists of two copies of \(S^3 - N(K) \) glued along their boundary toruses \([A1]\)). This rotation \(\tau_n \) on the boundary can not extend inside \(W \).

Figure 7. Rotating \(K# - K \)

Next we will describe the images of the handles of \(S^3 \times J \) by \(\phi_n \). Figure 8 describes \(\bar{C} \) and \(f_n(\bar{C}) \). Here \(\bar{C} \) is drawn as a round 2-handle attachment to two disjoint copies of \(S^3 \times I \) (0- and 4- handles are not drawn since hey are attached uniquely). Handlebody of \(f_n(\bar{C}) \) is constructed similarly as a round 2-handle attachment, except in this case while attaching the round 2-handle, we rotate \(T \times J \) in \(J \) direction. That is, rotate \(n \) and \(-n\)-times near each of its boundary components. Recall that, \(W_n \) is carved from \(S^3 \times J \) by using \(f_n(C) \).
Figure 8 describes the complement $S^3 \times J - C \approx (S^3 - T) \times J$, and its image $g_n(S^3 \times J - C)$. The left picture of Figure 8 is the complement of the left picture of Figure 8 in $S^3 \times J$. The right picture of Figure 8 is the complement of the right picture of Figure 8 (recall decomposing S^4 using a slice knot, by attaching and carving 2-handles from the two hemispheres B^4_{\pm} as in 14.3 of [A1]). Here ϕ_n is the important part, which is used in the construction of the cork.

The two right pieces are the nontrivial diffeomorphism induced by the “swallow-folllow” isotopy. $\phi_n|_{C}$ is longitudinal rotation of T along J, and $g_n(S^3 \times J - C)$ describes a carved out disk $D_n \subset B^4$ bounded by $K\# - K$, which is the disk obtained by concatenating a swallow-follow concordance of $K\# - K$, followed by the standard disk D which $K\# - K$ bounds in B^4 and $D_n = \phi_n(D)$.

2. Constructions and proofs

Let M^4 be a smooth 4-manifold, and $S^2 \times D^2 \subset M^4$ be the tubular neighborhood of an imbedded 2-sphere S, denoted as 0-framed circle in the left picture of Figure 10. Gluck twisting of M along S is the operation of cutting out $S^2 \times D^2$ from M, and regluing by the nontrivial diffeomorphism of $S^2 \times S^1$. The affect of this operation on the
handlebody is indicated in Figure 10 (\[A1\]). This is the operation of arbitrarily separating 2-handle strands going through \(S\) into two groups, and applying 1 twist across one group and \(-1\) twist across the other. If \(H \subset M\) is an imbedded cylinder with boundary components \(\delta_1, \delta_1'\) away from the 2-handles, this operation corresponds to twisting \(M\) along \(H\).

![Figure 10. Gluck twisting to \(M\) along \(S\)](image)

Now recall the infinite order loose-cork \((W, h)\), defined in \([A2]\) and \([G]\). As discussed in \([A2]\), \(W\) is the contractible manifold of Figure 11 and the cork automorphism \(h : \partial W \to \partial W\) is given by the “\(\delta\)-move”, which is indicated in Figure 11. This operation is similar to Gluck twisting, where \(S\) is replaced by the unknotted circle \(\delta\). Main difference is, here we allow 1-handles (circle-with-dots) go through the circle \(\delta\).

![Figure 11. \(\delta\)-move diffeomorphism \(W \approx W\)](image)

Remark 1. At first glance reader might think the right and left twists of \(\delta\)-move in Figure 11 would cancel each other and nothing happens. But this is not so, this induces a nontrivial diffeomorphism of the boundary of \(W\) (which is the cork automorphism). For example, the delta move in Figure 26 of \([A3]\), alters the position of \(\gamma\) in a nontrivial way. \(\gamma\) could be the attaching circle of a 2-handle on top of the cork.

Figure 6 is an equivalent definition of \(W\), which is the contractible manifold obtained by blowing down \(B^4\) (6.2 of \([A1]\)) along the obvious ribbon disk \(D \subset B^4\) bounding \(K\# - K\), where \(K\) is the figure 8 knot.
Figure 6 version of W can be obtained from Figure 11 by ignoring the middle dotted circle (1-handle) of the left picture of Figure 11, then canceling other two circles-with-dots with the -1 framed 2-handles. This process takes the middle 1-handle circle to the dotted $K\# - K$.

Figure 12 indicates to where this process takes the curve δ_1 from left to the right picture of this figure (this is a very crucial observation). In the left picture δ-move corresponds twisting along two parallel copies of δ_1 in the opposite direction. To see this in the right picture of Figure 12 we have to perform this operation along two parallel copies of the curve corresponding δ_1, which is a copy of figure-8 knot. One of the copies of the knot can be slid over the ribbon 1-handle (shown in the figure) to put in the position of the left picture of Figure 13.

So oppositely twisting W along δ_- and δ_+ curves of Figure 13 will result the desired δ-move. This corresponds to altering the position of the standard ribbon disk $D \subset B^4$ which $K\# - K$ bounds to another ribbon disk D_n, which is obtained by concatenating the concordance induced by the isotopy with D. From our construction $D_n = \phi_n(D)$. If ϕ_n was isotopic to identity relative to boundary, the infinite order cork automorphism $h : \partial W \to \partial W$ (as $n \to \infty$) would extend as a smooth diffeomorphism inside W, which is a contradiction.\qed
Remark 2. Diffeomorphism type of the carved-out B^4, carved along a properly imbedded disk $D \subset B^4$, does not change if we isotope $\partial D \subset S^3$ before carving, however blowing down isotopic disks $D, D' \subset B^4$, fixing ∂D and $\partial D'$, can give corks as in ([A4]), and as in this example.

Acknowledgements: I thank Michael Freedman for being a supportive friendly ear, and giving helpful suggestions while discussing this article. I would also like to thank Eyel Yildiz and Burak Ozbagci for helpful remarks; and thank Robion Kirby and Allen Hatcher for catching flaws in the previous versions of this article.

References

[A1] S. Akbulut, 4-Manifolds, Oxford Univ Press. ISBN-13: 978-0198784869
[A2] S. Akbulut, On infinite order corks, PGGT, IP Paperback (2017) 151-157, ISBN: 9781571463401. [https://arxiv.org/pdf/1605.09348.pdf]
[A3] S. Akbulut, Homotopy 4-spheres associated to an infinite order loose cork, [https://arxiv.org/pdf/1901.08299.pdf]
[A4] S. Akbulut, Corks and exotic ribbons in B^4, European Journal of Math (2022) [https://arxiv.org/pdf/2103.13967.pdf]
[G] R. E. Gompf, Infinite order corks, G&T, vol.21, no.4 (2017) 2475-2484.
[W] T. Watanabe, Some exotic nontrivial elements of the rational homotopy groups of $\text{Diff}(S^4)$, [https://arxiv.org/pdf/1812.02448.pdf]

Gokova Geometry Topology Institute, Akyaka, Mehmet Gokovali Sokak, No:53, Ula, Mugla, Turkey
Email address: akbulut.selman@gmail.com