Protein subunit interfaces: heterodimers versus homodimers

Cui Zhanhua, Jacob Gah-Kok Gan, Li lei, Meena Kishore Sakharkar, Pandjassarame Kangueane
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
Pandjassarame Kangueane* - Email: mcpandjassarame@ntu.edu.sg; Phone: +65 6790 5836; Fax: +65 6774 4340; * Corresponding author

received July 09, 2005; revised August 05, 2005; accepted August 10, 2005; published online August 11, 2005

Abstract:
Protein dimers are either homodimers (complexation of identical monomers) or heterodimers (complexation of non-identical monomers). These dimers are common in catalysis and regulation. However, the molecular principles of protein dimer interactions are difficult to understand mainly due to the geometrical and chemical characteristics of proteins. Nonetheless, the principles of protein dimer interactions are often studied using a dataset of 3D structural complexes determined by X-ray crystallography. A number of physical and chemical properties govern protein dimer interactions. Yet, a handful of such properties are known to dominate protein dimer interfaces. Here, we discuss the differences between homodimer and heterodimer interfaces using a selected set of interface properties.

Keywords: dimer; heterodimer; homodimer; interface; interaction; molecular recognition; interface properties; interface area; hydrogen bonds; hydrophobicity; interface residues

Background:
Protein subunit interaction (either homodimer or heterodimer) is an important phenomenon in regulation and catalysis. Thousands of such interactions are theoretically possible in a combinatorial manner. The task of documenting each of these interactions is laborious. Therefore, prediction of subunit interaction sites either from folded structures or from primary sequences is required. However, this objective is currently ambitious due to the limited knowledge on the principles of protein subunit interactions using structural data. Therefore, it is our interest to study the nature of subunit interactions. Several studies report on these interactions. Jones & Thornton (used 59 protein complexes) [1], Xu & colleagues (used 319 protein-protein interfaces) [2], Tsai & colleagues (used 362 protein-protein interfaces) [3], Lo Conte & colleagues (used 75 hetero-complexes) [4], Chakrabart & Janin (used 70 hetero-complexes) [5], Brinda & colleagues (used 20 homodimers) [6], Bahadur & colleagues (used 122 homodimers) [7], Nooren & Thornton (used 39 protein dimers) [8], Caffrey & colleagues (used 64 protein-protein interfaces) [9] and Zhanhua & colleagues (used 65 heterodimers) [10], utilized a dataset of protein complexes determined by X-ray crystallography to examine the properties of subunit interaction. Protein subunit interfaces in these studies have been characterized using geometrical properties (interface size, planarity, sphericity and complementarity) and chemical properties (the types of amino acid chemical groups, hydrophobicity, electrostatic interactions and H-bonds). These studies are influenced by dataset size and their characteristics. However, the analyses are based on limited datasets consisting of heterogeneous (disproportionate mixture of homodimers and heterodimers) data.

The analyses report on the role of inter-subunit H-bonds in protein subunit association. The numbers of H-bonds vary in different studies. [2, 4, 7, 8, 11] On average, Bahadur & colleagues show 9.0 H-bonds per homodimer interface with an r value of 0.75 (Pearson correlation coefficient) between H-bonds and interface area. [7] Jones & Thornton (used 32 homodimers) shows 0.88 H-bonds per 100 Å² interface area with an r value of 0.77 between H-bonds and interface area. [11] Lo Conte et al., show an average of 10.1 H-bonds with one H-bond per 170 Å² interface area and an r value of 0.84 between H-bonds and interface area. [4] Xu & colleagues also show 11 H-bonds per subunit with an r value of 0.89 between H-bonds and interface area. [2] The r value between H-bonds and interface area in these studies varies from 0.75 to 0.89. This variation is influenced primarily by dataset size and nature of data.

Previous studies also show that hydrophobic effect plays an important role in protein association [3, 7, 12], yet not as much as in protein folding. [3] There studies showed that protein interfaces are more hydrophobic than surfaces, but less than interior. Hydrophobic effect was measured by the buried non-polar surface area (or percent burial) of residue types. [3] The study showed that the ratio between buried hydrophobic and buried hydrophilic residues is approximately 1.5. [3] Hydrophobic residues (except ALA) and the charged residue ARG are predominantly present at protein-protein interfaces with TYR and TRP having highest propensity. [4, 6, 7, 12, 13]
Interface size is yet another important property widely used to describe protein-protein interfaces and it is usually characterized by interface area. The number of interface residues is linearly correlated to interface area \(r \geq 0.96 \) in several studies. \[5,7\] However, the mean number of interface residues varies between these studies. It is shown that the mean is 52 [7], 57 [5], 53.7 [14], 44.4 (for homodimers) and 42.2 (for heterodimers). [9] Thus, the number of interface residues vary within a narrow rang of 42 and 57 in these studies.

Here, we created two extended datasets of mutually exclusive homodimers and heterodimers. We believe that these exclusive datasets can reduce data bias to differentiate heterodimer and homodimer interfaces.

Methodology:

Creation of heterodimer and homodimer dataset:
A total of 2488 heterodimer candidates and 1324 homodimer candidates were downloaded from PDB (Protein Databank) and PQS (Protein Quaternary Structure Server). We then created a non-redundant dataset of 156 heterodimers and 170 homodimers (Table 1) such that they satisfy the following conditions. These include: (1) each chain \(\geq 50 \) residues; (2) structures determined by x-ray crystallography; (3) resolution \(\leq 2.5 \) Å; (4) the structure with the highest resolution was selected where more than one structure was available; (5) redundant entries were removed at a sequence similarity cut-off of \(\geq 30\% \). [15]

Calculation of interface parameters:

Interface area
ASA (accessible surface area) was calculated using NACCESS [16] with a probe radius of 1.4 Å and interface area is defined by \(\Delta \text{ASA} \) (change in ASA upon complexation from monomer to dimer state) as described elsewhere. [10]

Inter-subunit H-bonds
A hydrogen bond is a polar interaction between two electronegative atoms, where a donor and an acceptor participate. The number of H-bonds formed between subunits was calculated using the program HBPLUS. [17]

Hydrophobicity
Interface hydrophobicity was estimated using the equation \(\sum_{i=1}^{N} \frac{(HV)}{N} \) [18], where \(N \) is the number of interface residues, and \(HV \) is the hydrophobicity scale for each residue. [18]

Interface residues propensity
Interface residues show an \(\Delta \text{ASA} \) (change in accessibility) of \(\geq 5\% \) upon complexation. Interface residue propensities were calculated using the percentage frequencies of 20 residues using the following functions:

\[
P_{IS}(i) = \frac{f_{\text{interface}}(i)}{f_{\text{surface}}(i)}
\]

\[
P_{IH}(i) = \frac{f_{\text{interface}}(i)}{f_{\text{interior}}(i)}
\]

where \(P_{IS}(i) \) is residue interface propensity compared to protein surface, \(P_{IH}(i) \) is residue interface propensity compared to protein interior, \(f_{\text{interface}}(i) \) is residue frequency at the protein interface, \(f_{\text{surface}}(i) \) is residue frequency at the protein surface, \(f_{\text{interior}}(i) \) is residue frequency at the protein interior.

Results and Discussion:

Dimer interactions are characterized by a large combination of physical-chemical parameters. Analysis of dimer structures can provide insight into the principles of protein-protein complexation and help develop models to predict interaction sites. The multi dimensional scaling method applied in a recent study reduced a large pool of interface parameters to a small set of six critical properties for heterodimers. [10] Zhanhua et al., 2005, showed that the six selected parameters were sufficient to describe subunit interfaces instead of the complete parameter space. Here, we use these selected set of properties to discuss the interface differences between 156 heterodimers and 170 homodimers. The properties used in this study are (1) interface residues, (2) interface H-bonds, (3) interface hydrophobicity, (4) interface residue-composition.
Table 1: Dataset Creation

PDB code	Resolution (Å)	Chain one	Name of chain one	Length Chain one	Chain two	Name of chain two	Length
1YCS	2.2	B	53BP2	193	A	P53	191
1ABR	2.1	B	Abrin-A	267	A	Carbohydrate	251
1KU6	2.5	A	Acetylcholinesterase	535	B	Fasciculin 2	61
1LFD	2.1	B	Active ras protein	167	A	Ras-interacting domain of ralgds	87
1JJW	1.7	P	Alkaline metalloproteinase	470	I	Proteinase inhibitor	105
1BPL	2.2	B	Alpha-amylase	290	A	Alpha-amylase	179
1KXV	1.6	A	Alpha-amylase	496	C	Camellid VHH domain cab10	119
1TMQ	2.5	A	Alpha-amylase	470	B	Ragi bifunctional inhibitor	117
1BVN	2.5	P	Alpha-amylase	496	T	Tendamistat	71
1ACB	2.0	E	Alpha-chymotrypsin	241	I	Eglin C	63
1CHO	1.8	E	Alpha-chymotrypsin	238	I	Turkey ovomucoid third domain	53
1CGI	2.3	E	Alpha-chymotrypsinogen	245	I	Trypsin inhibitor	56
1SLU	1.8	B	Anionic trypsin	216	A	Ectoin	131
1RE0	2.4	B	ARF guanine-nucleotide exchange factor 1	195	A	ADP-ribosylation factor 1	162
1KSH	1.8	A	ARF-like protein 2	164	B	Cyclic phosphodiesterase delta-subunit	141
1MG9	2.3	B	ATP dependent CLP protease	143	A	Protein YLJA	84
1BRL	2.4	A	Bacterial luciferase	340	B	Bacterial luciferase	319
1AVA	1.9	A	Barley alpha-amylase 2	403	C	barley alpha-amylase/subtilisin inhibitor	181
1B27	2.1	A	Barnase	110	D	Barstar	90
1LUJ	2.5	A	Beta-catenin	501	B	Beta-catenin-interacting protein ICAT	71
1ISW	2.3	A	Beta-lactamase tem	263	C	Beta-lactamase inhibitory protein	165
1BND	2.3	A	Brain derived neurotrophic factor	109	B	Neurotrophin 3	108
1D4X	1.8	A	C. elegans actin 1/3	368	G	Gelsolin	124
1G4Y	1.6	R	Calmodulin	147	B	Calcium-activated potassium channel RSK2	81
1DTD	1.7	A	Carboxypeptidase A2	303	B	Metallo-carboxypeptidase inhibitor	61
1NW9	2.4	B	Catalytic domain of caspase-9	238	A	Inhibitor of apoptosis protein 3	91
1OKK	2.1	D	Cell division protein	265	A	Signal recognition particle protein	290
1HIS	2.0	A	Cell division protein kinase 2	296	B	Cyclin A2	258
1OHZ	2.2	A	Cellulosomal scaffolding protein A	140	B	Endo-1,4-beta-xylanase Y	56
1HL6	2.5	A	CG8781 protein	119	B	Mago nashi protein	137
1P5V	1.7	A	Chaperone protein CAF1M	191	B	F1 capsule antigen	136
1PDK	2.4	A	Chaperone protein PAPD	296	B	Protein PAPK	258
1NOL	2.3	A	Chaperone protein PAPD	212	B	Mature fimbrial protein PAPE	116
1FFG	2.1	B	Chemotaxis protein chea	68	A	Chemotaxis protein chey	128
1EAY	2	C	Chey	128	C	Chea	67
1P2M	1.8	A	Chymotrypsinogen A	238	B	Pancreatic trypsin inhibitor	58
1HCG	2.2	A	Coagulation factor	236	B	Coagulation factor	51
1V74	2.0	B	Colicin D	107	B	Colicin D immunity protein	87
1E44	2.4	B	Colicin E3	96	A	Immunity protein	84
1FR2	1.6	B	Colicin E9	131	A	Colicin E9 immunity protein	83
1F5Q	2.5	A	Cyclin dependent kinase 2	296	B	Gamma herpesvirus cyclin	247

ISSN 0973-2063
Bioinformation 1(2): 28-39 (2005)
accession	fold change	antigen	description	E-value	accession	fold change	antigen	description
FIN	2.3	A	Cyclin-dependent kinase	298	B	Cyclin A		
BLX	1.9	A	Cyclin-dependent kinase 6	305	B	P19ink4D		
M9E	1.7	A	Cyclophilin A	164	D	HIV-1 capsid		
S6V	1.9	A	Cytochrome C peroxidase	294	B	Cytochrome C		
R8S	1.5	E	Cytohesin 2	187	A	ADP-ribosylation factor 1		
UJZ	2.1	B	Designed colicin E7 dsnase	127	A	Designed colicin E7 immunity protein		
NLV	1.8	A	Dictostelium discoideum actin	364	G	Gelsolin		
H31	1.5	A	Diheme cytochrome C	260	B	Cytochrome C		
EM8	2.1	A	DNA polymerase III CHI subunit	147	B	DNA polymerase III PSI subunit		
JQL	2.5	A	DNA polymerase III, beta chain	366	B	DNA polymerase III delta subunit		
EAI	2.4	A	Elastase	240	C	Chymotrypsin isochoerin 1		
EFD	2.1	A	Electron transfer flavoprotein alpha chain	312	B	Electron transfer flavoprotein beta chain		
EF6	1.7	A	Elongation factor EEF1A	440	B	Elongation factor EEF1B		
TA3	1.7	B	Endo-1,4-beta-xylanase	301	A	Xylanase inhibitor protein I		
TE1	2.5	B	Endo-1,4-xylanase	190	A	Xylanase inhibitor protein I		
3FAP	1.9	A	FK506-binding protein	107	A	FKBP12-rapamycin associated protein		
FCD	2.5	A	Flavocytochrome C sulfide dehydrogenase	401	C	Flavocytochrome C sulfide dehydrogenase		
NF3	2.1	A	G25k GTP-binding protein	194	C	PAR-6B		
NQI	2.5	A	Galactosyltransferase	272	A	Alpha lactalbumin		
WQ1	2.5	G	Gpatette	320	R	Harvey-RAS		
ORO	2.0	B	Glutaryl acylosin beta subunit	510	A	Glutaryl acylosin alpha subunit		
AX1	2.1	B	Growth hormone receptor	191	A	Growth hormone		
2NGR	1.9	A	Gtpase activating protein	196	A	GTP binding protein		
TX4	1.7	A	Gtpase-activating protein rhogap	196	B	Transforming protein RHOA		
AY7	1.9	A	Heat shock cognate 71 KDA	377	B	Bag-family molecular chaperone regulator-1		
USU	2.2	A	Heat shock protein HSP82	246	B	AHA1		
HBE	2.0	A	Hemoglobin	146	A	Hemoglobin		
GPW	2.4	A	Hif protein	253	B	Amidotransferase HIF		
CXZ	2.2	A	His-tagged transforming protein RHOA	182	B	PKN		
US7	2.3	A	HSP90 chaperone protein kinase	194	A	Heat shock protein HSP92		
KKP	2.1	D	Human vitamin D-binding protein	438	A	Actin, alpha skeletal muscle		
H2A	1.8	L	Hydrogenase	534	S	Hydrogenase		
KAK	2.3	F	Imidazole glycerol phosphate synthase	251	H	Imidazole glycerol phosphate synthase		
IBR	2.3	B	Importin beta-1 subunit	458	A	GTP-binding nuclear protein ran		
PVH	2.5	A	Interleukin 6 signal transducer	201	B	Leukemia inhibitory factor		
IAR	2.3	B	Interleukin-4 receptor alpha chain	188	A	Interleukin		
IIR	2.4	A	Interleukin-6 receptor beta chain	301	B	Viral IL-6		
OES	1.8	A	Inulinin A	461	B	E-cadherin		
K11	2.3	B	Intersectin long form	342	A	G25k GTP-binding protein		
2KN	1.9	A	Kinesin	238	B	Kinesin		
PPF	1.8	E	Leukocyte elastase	218	I	Ovomucoid inhibitor		
OP9	1.9	B	Lysozyme C	130	A	Hf6 camel VHH fragment		
UUZ	1.8	D	Lysozyme C	129	A	Inhibitor of vertebrate lysozyme		
OO0	1.9	A	Mago nashi protein	144	B	Drosophila Y14		
SVX	2.2	B	Maltose-binding periplasmic protein	369	A	Ankyrin repeat protein OFF7		
PQZ	2.1	A	MCMV M144	238	B	Beta-2-microglobulin		
MEE	2.0	A	Mesentericopeptidase	275	I	Eglin-C		
JIW9	1.7	B	Molybdopterin biosynthesis moeb protein	240	D	Molybdopterin converting factor		
PDB Code	Description	Value 1	Value 2					
----------	-------------	---------	---------					
1Q40	Mrna export factor MEX67	2.0	B					
1SHW	Neural kinase	2.2	B					
1QAV	Neuronal nitric oxide synthase	1.9	B					
1E96	Neutrophil cytosol factor 2	2.4	B					
1NPE	Nidogen	2.3	A					
1GL4	Nidogen-1	2.0	A					
1M4U	Noggin	2.4	A					
1FYH	Interferon-gamma	2.0	A					
1STF	Papain	2.4	E					
1F34	Pepsin A	2.5	A					
1UBK	Periplasmic hydrogenase large subunit	1.2	L					
1LJT	Phospholipase A2	1.4	B					
1L4Z	Plasminogen	2.3	A					
1DHK	Ephrin-A5	1.9	A					
3YG5	Neuronal nitric oxide synthase	2.5	P					
1FT1	Protein farnesyltransferase	2.3	B					
1G4U	Protein tyrosine phosphatase SPTP	2.3	S					
1CT4	Proteinase	1.6	E					
1VG0	Rab escort protein 1	2.2	A					
1F2T	Rad50 abc-atpase N-terminal domain	1.6	A					
1GUA	Rap1A	2.0	A					
1HE1	Ras-related C3 botulinum toxin substrate 1	2.0	C					
1DS6	Ras-related C3 botulinum toxin substrate 2	2.4	A					
1C1Y	Ras-related protein	1.9	A					
1DFJ	Ribonuclease A	2.5	E					
1DZB	SCFV fragment 1F9	2.0	A					
1H2S	Sensory rhodopsin II	1.9	A					
1PS7	Serine protease hepsin heavy chain	1.8	B					
4SGB	Serine protease hepsin B	2.1	E					
1SNP	Serratia metallo proteinase	2.3	E					
1NRJ	Signal recognition particle receptor	1.7	B					
1RJ9	Signal recognition protein	1.9	A					
1JTP	Single-domain antibody	1.9	A					
1SGD	Streptogrisin B	1.8	E					
1L6W	Subtilisin BPN	1.5	E					
2SIC	Subtilisin BPN	1.8	E					
1SPB	Subtilisin BPN	2.0	S					
1ROR	Subtilisin carlsberg	1.1	E					
1CSE	Subtilisin carlsberg	1.2	E					
1SCJ	Subtilisin E	2.0	A					
2SN1	Subtilisin novo	2.1	E					
1EUC	Succinyl-coa synthetase, beta chain	2.1	B					
1ONQ	T-cell surface glycoprotein CD1A	2.2	A					
1JTD	Tem-1 beta-lactamase	2.3	A					
1K7Z	TGF-beta II receptor	2.2	B					
2TEC	Thermitase	2.0	E					
1JKG	Tip associating protein	1.9	B					
1D4V	TNF-related apoptosis inducing ligand	2.2	B					
1AVW	Trypsin	1.8	A					

Value 3	Value 4
Mrna transport regulator MTR2	163
Epherin-A5	138
Alpha-1 syntrophin	90
Ras-related C3 botulinum toxin substrate 1	178
Laminin gamma-1 chain	164
Proteoglycan core protein	89
Osteogenic protein 1	112
Interferon-gamma receptor alpha chain	201
Interferon-gamma receptor alpha chain	201
Major pepsin inhibitor PI-3	138
Periplasmic hydrogenase small subunit	267
Phospholipase A2 inhibitor	122
Phospholipase A2 inhibitor	122
Streptokinase	125
Ephrin-A5	90
Alpha-1 syntrophin	90
Ras-related C3 botulinum toxin substrate 1	178
Laminin gamma-1 chain	164
Osteogenic protein 1	112
Interferon-gamma receptor alpha chain	201
Interferon-gamma receptor alpha chain	201
Major pepsin inhibitor PI-3	138
Periplasmic hydrogenase small subunit	267
Phospholipase A2 inhibitor	122
Phospholipase A2 inhibitor	122
Streptokinase	125
Ephrin-A5	90
Alpha-1 syntrophin	90
Ras-related C3 botulinum toxin substrate 1	178
Laminin gamma-1 chain	164
Osteogenic protein 1	112
Interferon-gamma receptor alpha chain	201
Interferon-gamma receptor alpha chain	201
Major pepsin inhibitor PI-3	138
Periplasmic hydrogenase small subunit	267
Phospholipase A2 inhibitor	122
Phospholipase A2 inhibitor	122
Streptokinase	125

ISSN 0973-2063
Bioinformation 1(2): 28-39 (2005)
Hypothesis

PDB	Resolution (Å)	Name of homodimer	Scientific source	Chain one	Length	Chain two	Length
1BRB	2.1	Trypsin		I	BPTI		51
1F5R	1.7	Trypsin II		I	Pancreatic trypsin inhibitor	57	
1K9O	2.3	Trypsin II anionic		I	Alaspin		376
1D6R	2.3	Trypsinogen		I	Bowman-birk proteinase inhibitor	58	
1OPH	2.3	Trypsinogen		A	Alpha-1 protease inhibitor	375	
1P2J	1.4	Trypsinogen		I	Pancreatic trypsin inhibitor	56	
1S1Q	2.0	A Tumor susceptibility gene 101 protein		B	Ubiquitin		71
1HTB	2.5	Type 1 interleukin-1 receptor		A	Interleukin-1 beta	153	
1J7D	1.9	Ubiquitin-conjugating enzyme E2-17 KDA		A	MMS2		140
1EUV	1.3	ULP1 protease		B	Ubiquitin-like protein SMT3	79	
1UGH	1.9	Uracil-DNA glycosylase		I	Uracil-DNA glycosylase inhibitor	82	
1UXZ	1.9	Vacular protein sorting-associated protein		B	Ubiquitin	75	
1JTT	2.1	VH single-domain antibody		L	Lysozyme	129	
1RK E	2.4	Vinculin		B	VCL protein	176	
1MA A	2.4	Vitamin D-binding protein		B	Actin, alpha skeletal muscle	356	
1YVN	2.1	Yeast actin		G	Gelsolin	125	
1OXB	2.3	YDP1P		B	Osmolarity two-component system protein	124	

Homodimers

PDB	Resolution (Å)	Name of homodimer	Scientific source	Chain one	Length	Chain two	Length
1CNZ	1.8	3-isopropylmalate dehydrogenase	Salmonella typhimurium	A	363	B	363
1AFW	1.8	3-ketoacetyl-coa thiolase	Saccharomyces cerevisiae	A	390	B	393
1M4I	1.5	Acetyltransferase	Escherichia coli	A	181	B	176
1LQ9	1.3	Actva-orfb monoxygenase	Streptomyces coelicolor	A	112	B	112
1ADE	1.9	Adenylosucinate synthetase	Escherichia coli	A	431	B	431
1M7H	2.0	Adenylylsulfate kinase	Penicillium chrysonogenum	A	203	B	200
1NA8	2.3	ADP-riboasalbinding protein	Homo sapiens	A	151	B	145
1OR4	2.2	Aerotactic transducer hemat	Bacillus subtilis	A	169	B	158
1BD0	1.6	Alanine racemase	Bacillus steatorhophilus	A	381	B	380
1A4U	2.4	Alcohol dehydrogenase	Drosophila lebanonensis	A	254	B	254
1ALK	2.3	Alkaline phosphatase	Escherichia coli	A	449	B	449
1LK9	1.5	Alliin lyase	Allium sativum	A	425	B	427
1HSS	2.1	Alpha-amylase inhibitor	Triticum aestivum	A	111	B	111
1S2Q	2.1	Amine oxidase B	Homo sapiens	A	499	B	494
1EKP	2.5	Amino acid aminotransferase	Homo sapiens	A	365	B	365
2GSA	2.4	Aminotransferase	Synechococcus sp	A	427	B	427
1QT	2.2	Antigen	Mus musculus	A	117	B	117
1BJW	1.8	Aspartate aminotransferase	Thermus thermophilus	A	381	B	381
1JFL	1.9	Aspartate racemase	Escherichia coli	A	228	B	228
1MJH	1.7	Atp-binding protein	Methanococcocus jannaschii	A	143	B	144
1HRT	2.4	Autocrine motility factor	Homo sapiens	A	557	B	557
1LR5	1.9	Auxin binding protein	Zea mays	A	160	B	160
1N80	2.5	Baseplate structural protein	Bacteriophage T4	A	328	B	328
1EZW	2.4	Beta lactamase oxa-10	Pseudomonas aeruginosa	A	243	C	243
1EBL	1.8	Beta-ketoacyl-acp Synthase III	Escherichia coli	A	309	B	309
1N1B	2.0	Bornyl diphosphate synthase	Salvia officinalis	A	516	B	519
1KSO	1.7	Calcium-binding protein A3	Homo sapiens	A	93	B	93
1JD0	1.5	Carbonic anhydrase	Homo sapiens	A	260	B	259
ID	Description	Species	A	B			
-----	---	------------------------------	----	-----			
1AUO	1.8 Carboxylesterase	Pseudomonas fluorescens	A218	B218			
1CDC	2 CD2	Rattus norvegicus	A96	B96			
1F13	2.1 Cellular coagulation factor	Homo sapiens	A722	B719			
1NW1	2 Choline kinase	Caenorhabditis elegans	A365	B357			
1RSP	2.2 Circadian oscillation regulator	Anabaena SP	A90	B93			
1G64	2.1 Cob(I) alamin adenosyltransferase	Salmonella typhimurium	A169	B190			
1OTV	2.1 Coenzyme pqq synthesis protein C	Klebsiella pneumoniae	A254	B254			
1HR0	1.5 Conserved hypothetical protein	Archaeoglobus fulgidus	A161	B168			
1OAC	2 Copper amine oxidase	Escherichia coli	A719	B722			
1EAJ	1.4 Coxaackie virus	Homo sapiens	A124	B120			
1CHM	1.9 Creatinase	Pseudomonas putida	A401	B401			
1S44	1.6 Crustacyanin A1 subunit	Homarus gammarus	A180	B180			
1GD7	2 CSAA protein	Therms thermophilus	A109	B109			
1L5B	2 Cyanovirin-N	Nostoc ellipsosporum	A101	B101			
1SO2	2.4 Cyclic Phosphodiesterase B	Homo sapiens	A363	B363			
1P3W	2.1 Cysteine desulfurase	Escherichia coli	A385	B385			
1COZ	2 Cyridyllytransferase	Bacillus subtilis	A126	B126			
1P6O	1.1 Cytosine deaminase	Saccharomyces cerevisiae	A156	B161			
2DAB	2 D-amino acid aminotransferase	Thermophilic bacillus	A280	B282			
1F17	2.3 Dehydrogenase	Homo sapiens	A293	B291			
2NAC	1.8 Dehydrogenase	Methylotrophic bacterium pseudomonas	A374	B374			
1NFZ	2 Delta-isomerase	Escherichia coli	A176	B180			
1D1G	2.1 Dihydrofolate reductase	Thermotoga maritima	A164	B164			
1DOR	2 Dihydroorotate dehydrogenase A	Lactococcus lactis	A311	B311			
1AD1	2.2 Dihydropoetate synthetase	Staphylococcus aureus	A264	B251			
1NU6	2.1 Dipeptidyl peptidase	Homo sapiens	A728	B728			
1PE0	1.7 DJ-1	Homo sapiens	A187	B187			
1G1A	2.5 DTDP-D-glucose 4,6-Dehydratase	Salmonella enterica	A352	B352			
1BBH	1.8 Electron transport	Chromatium vinosum	A131	B131			
1Q8R	1.9 Endodeoxyribonuclease rusa	Escherichia coli	A118	B109			
1RVE	2.5 Endonuclease	Escherichia coli	A244	B244			
1M9K	2 Endothelial nitric-oxide synthase	Homo sapiens	A400	B401			
1P43	1.8 Enolase 1	Saccharomyces cerevisiae	A436	B436			
1JR8	1.5 Erv2 protein mitochondrial	Saccharomyces cerevisiae	A105	B105			
1V26	2.5 Fatty-acid-coa synthetase	Thermus thermophilus	A489	B510			
1LBQ	2.4 Ferrochelatase	Saccharomyces cerevisiae	A356	B354			
1RYA	1.3 Gdp-mannose mannosyl hydrolase	Escherichia coli	A160	B160			
1QFH	2.2 Gelation factor	Dictyostelium discoideum	A212	B212			
1VJ3	2.2 Glcnacl1p uridytransferase	Homo sapiens	A490	B484			
1DPG	2 Glucose 6-phosphate dehydrogenase	Leuconostoc mesenteroides	A485	B485			
1QXR	1.7 Glucose-6-phosphate isomerase	Pyrococcus furiosus	A187	B187			
1EOG	2.1 Glutathione S-transferase	Escherichia coli	A208	B208			
1N2A	1.9 Glutathione S-transferase	Escherichia coli	A201	B187			
1MOW	1.8 Glutathione synthetase	Saccharomyces cerevisiae	A481	B479			
1R9C	1.8 Glutathione transferase	Mesorhizobium loti	A125	B118			
1F4Q	1.9 Granacalin	Homo sapiens	A161	B165			
1DQP	1.8 Guanine phosphoribosyltransferase	Giardia lamblia	A230	B230			
3SDH	1.4 Hemoglobin	Scapharca inaequalvis	A145	B145			
1PI	2.2 Holliday junction resolvase	Pyrococcus furiosus	A114	B114			
Protein ID	Description	Organism	Accession A	Accession B			
------------	-----------------------------------	---------------------------------	-------------	-------------			
1FWL	Homoserine kinase	Methanococcus jannaschii	296	296			
2HHM	Hydrolase	Homo sapiens	272	272			
1PP2	Hydrolase	Crotalus atrox	R	122			
1FJH	Hydroxysteroid dehydrogenase	Comamonas testosteroni	236	236			
1GOS	Hypothetical Protein	Escherichia coli	201	202			
1JOG	Hypothetical protein	Haemophilus influenzae	129	129			
1PT5	Hypothetical protein	Escherichia coli	415	415			
1QYA	Hypothetical Protein	Escherichia coli	293	307			
1FUX	Hypothetical protein	Escherichia coli	164	163			
1J30	Hypothetical ruberythrin	Homo sapiens	272	137			
1LHZ	Immunoglobulin lambda	Homo sapiens	213	213			
1AA7	Influenza virus matrix protein	Influenza virus	282	282			
8PRK	Inorganic pyrophosphatase	Saccharomyces cerevisiae	272	264			
1R8J	Kaia	Synecococcus elongatus	124	124			
1CQS	Ketosteroid isomerase	Pseudomonas putida	124	124			
1AQ6	L-2-haloacid dehalogenase	Xanthobacter autotrophicus	245	245			
1H2W	Lactamase	Bacillus licheniformis	255	256			
1BH5	Lactoylglutathione lyase	Homo sapiens	177	182			
1QMJ	Lectin	Gallus gallus	132	132			
1K75	L-histidinol dehydrogenase	Escherichia coli	425	425			
1EHI	Ligase	Leuconostoc mesenteroides	360	347			
1NWW	Limonene-1,2-epoxide hydrolase	Rhodococcus erythropolis	145	146			
1UC8	Lysine biosynthesis enzyme	Thermus thermophilus	240	239			
1EN5	Manganese superoxide dismutase	Escherichia coli	205	205			
1A4I	Methyleneterahydrofolate	Homo sapiens	285	295			
1FC5	Molybdopterin biosynthesis	Escherichia coli	397	396			
1JYS	Mta/sah nucleosidase	Escherichia coli	226	226			
1LNW	Multidrug resistance operon repressor	Pseudomonas aeruginosa	137	135			
1FP3	N-acetyl-d-glucosamine	Sus scrofa	402	402			
1FYD	NAD(+) Synthetase	Bacillus subtilis	271	246			
1HJ3	Nitrite reductase	Paracoccus pantotrophus	544	542			
1G1M	Nitrogenase iron protein	Azotobacter vinelandii	287	289			
1GRT	Nuclease SM2 isoform	Seratia marcescens	241	241			
1EYV	N-utilizing substance protein	Mycobacterium tuberculosis	131	133			
1M98	Orange carotenoid protein	Arthrosira maxima	316	314			
1ORO	Orotate phosphoribosyltransferase	Escherichia coli	213	206			
1DVJ	Orotidine 5'-phosphate decarboxylase	Methanobacterium thermoautotrophicum	239	211			
1GGQ	Outer surface protein C	Borrelia burgdorferi	162	162			
1AOR	Oxidoreductase	Pyrococcus furiosis	605	605			
1BMD	Oxidoreductase	Thermus flavus	327	327			
1HDI	Oxidoreductase	Homo sapiens	374	374			
1N2O	Pantheonate synthetase	Mycobacterium tuberculosis	279	279			
1RN5	Peptide deformylase	Leptospira interrogans	177	177			
1PN2	Peroxisomal hydratase	Candida tropicalis	269	267			
1PN0	Phenol 2-monoxygenase	Trichosporon cutaneum	652	656			
1BXG	Phenylalanine dehydrogenase	Rhodococcus SP	349	347			
1M6P	Phosphate receptor	Bos Taurus	146	146			
1ROL	Phosphonoacetaldelyde hydrolase	Bacillus cereus	257	257			
1O4U	Phosphoribosyltransferase	Thermotoga maritima	265	266			
ID	Enzyme Family	Protein	Organism	A	B		
-----	--------------	---------	----------	----	----		
1EZ2	1.9 Phosphotriesterase	Pseudomonas diminuta	A	328	B	328	
1EXQ	1.6 Pol polyprotein	Escherichia coli	A	147	B	145	
1MNA	1.8 Polyketide synthase	Streptomyces venezuelae	A	276	B	278	
1C6X	2.5 Protease	Escherichia coli	A	99	B	99	
1FL1	2.2 Protease	Escherichia coli	A	192	B	207	
1F89	2.4 Protein YLC351C	Saccharomyces cerevisiae	A	271	B	271	
1LHP	2.1 Pyridoxal kinase	Ovis aries	A	306	B	309	
1CBK	2 Pyrophosphokinase	Haemophilus influenzae	A	160	B	160	
1QR2	2.1 Quinone reductase type 2	Homo sapiens	A	230	B	230	
1EN7	2.4 Recombination endonuclease	Bacteriophage T4	A	157	B	157	
1EV7	2.4 Restriction endonuclease	Nocardia aerosolonigenes	A	295	B	293	
1HKX	2 Ribonuclease	Homo sapiens	A	125	B	125	
1H4S	2.2 Ribonuclease III	Aquifex aeolicus	A	147	B	147	
1KGN	1.9 Ribonucleotide reductase protein	Corynebacterium ammoniagenes	A	296	B	296	
1TLU	1.6 S-adenosylmethionine decarboxylase	Themotoga maritima	A	117	B	117	
1K6Z	2 Secretion chaperone syce	Yersinia pestis	A	120	B	119	
1K3S	1.9 Sige	Salmonella enterica	A	106	B	104	
1PQJ	2.2 Siroheme synthase	Salmonella typhimurium	A	447	B	454	
1HJR	2.5 Site-specific recombinase	Escherichia coli	A	158	C	158	
3LYN	1.7 Sperm lysine	Halococcus fulgens	A	122	B	124	
2SQC	2 Squalene-hopene Cyclase	Alicyclobacillus acidocaldarius	A	623	B	623	
1SCF	2.2 Stem cell factor	Homo sapiens	A	116	B	118	
1OX8	2.2 Stringent starvation protein B	Escherichia coli	A	105	B	105	
1M3E	2.5 Succinyl-coa	Sus scrofa	A	459	B	460	
1RTA	1.8 Sucrose phosphorylase	Bifidobacterium adolescentis	A	503	B	503	
1SOX	1.9 Sulfite oxidase	Gallus gallus	A	463	B	458	
1L5X	2 Survival protein E	Pyrobaculum aerophilum	A	270	B	272	
1REG	1.9 T4 rega	Bacteriophage T4	X	122	Y	120	
1MKB	2 Thiol ester dehydrase	Escherichia coli	A	171	B	171	
1QHI	1.9 Thymidylate kinase	Herpes simplex virus	A	304	B	308	
1HSJ	2.3 Transcription/sugar binding protein	Escherichia coli	A	487	B	487	
1NY5	2.4 Transcriptional regulator	Aquifex aeolicus	A	384	B	385	
1ON2	1.6 Transcriptional regulator	Bacillus subtilis	A	135	B	135	
1SMT	2.2 Transcriptional repressor	Synechococcus	A	98	B	101	
1TRK	2 Transferase	Saccharomyces cerevisiae	A	678	B	678	
7ATA	1.9 Transferase	Gallus gallus	A	401	B	401	
1K1Y	2.4 Trichodiene synthase	Fusarium sporotrichioides	A	354	B	354	
1H8T	2.4 Udp-galactopyranose mutase	Escherichia coli	A	367	B	367	
1F6D	2.5 Udp-n-acetylglucosamine	Escherichia coli	A	366	B	363	
1JP3	1.8 Undecaprenyl pyrophosphate synthase	Escherichia coli	A	210	B	207	
1JM1	1.9 Universal stress protein A	Haemophilus influenzae	A	140	B	137	
1HQO	2.3 URE2 protein	Saccharomyces cerevisiae	A	221	B	217	
9WGA	1.8 Wheat germ agglutinin	Triticum vulgare	A	170	B	170	
1MI3	1.8 Xylose reductase	Candida tenuis	A	319	B	319	

Interface H-bonds:

Intermolecular hydrogen bonds between subunits are important in the association and stability of protein-protein interfaces. [3, 4] H-bonds in homodimers (range

ISSN 0973-2063
Bioinformation 1(2): 28-39 (2005)
0 - 51) and heterodimers (range 0 - 98) are different. The mean H-bonds are larger for homodimers (mean = 18) than heterodimers (mean = 12). Figure 1 A and B show that there is a high correlation between H-bonds and interface residues. The correlation coefficient is 0.83 in heterodimers and 0.85 in homodimers. This is similar to the previous reports in the range of 0.75 and 0.89. [2, 4, 7, 8, 11] However, there is a subtle difference with the previous studies and the variation is affected by structure resolution, dataset size and data type. The dataset used in this study contains structures with resolution ≤ 2.5Å and the data is either exclusively homodimer or heterodimer. However, previous datasets contain structures with resolution ≤ 3.0Å and the data is a mixture of heterodimers, homodimers and other oligomers. At low resolution there are fewer H-bonds and the correlation with interface area decreases. [4] Here, we show that the relation between H-bonds and interface residues is highly correlated for both heterodimers and homodimers. This is useful to evaluate inter-subunit H-bonds prediction and their involvement in interface stability. On average there are 0.24 H-bonds per interface residue in heterodimers and 0.22 H-bonds per interface residue in homodimer. The maximum number of H-bonds per interface residue is 0.65 in heterodimers and 0.44 in homodimers. Although there are more intermolecular H-bonds in homodimers, the density of H-bonds per interface residue is lower in homodimers than in heterodimers. [7]

Interface residues:
The number of interface residues is proportional to interface area. [5,7] Stronger protein subunit associations were generally associated with larger interface areas. [11] In our study, the range of heterodimer interface residues varies from 18 to 162 with a mean value of 51. While, the range of homodimer interface residues extends from 15 to 308 with a mean value of 81. Like H-bonds, interface residues also varied with different studies and are affected by dataset size and data type. [5, 7, 9, 14] Hence, we created mutually exclusive datasets of homodimers and heterodimers for this analysis to reduce bias due to data type heterogeneity. Thus, we show that the amount of interface residues is significantly different for homodimers and heterodimers. The results also suggest that the previous studies are based on datasets biased with heterodimers. The relation between number of interface residues and monomer length is shown in Figure 1 E and F. They show that interface residues increase with both heterodimer and homodimer monomer length. However, the relation is causal. Figure 1 C and D show a causal relationship between interface area and monomer length for both homodimers and heterodimers. The mean interface residues are larger in homodimers than heterodimers. This is consistent with previous studies. [7, 9]

Interface residue composition:
Several studies show the prevalence of certain types of residues at the dimer interfaces. [4,6,7,12,13] However, the significance of hydrophobic, hydrophilic, and charged residues at the interface of homodimers and heterodimers is not well documented. Figure 1G show the fractional distribution of hydrophobic, hydrophilic and charged residues in homodimer and heterodimer interfaces. Hydrophobic residues (M, F, P, A, B, L), except for I and G are dominant in homodimer interfaces. However, hydrophilic residues (W, C, H, Q, N, Y, S), except for T, are dominant in heterodimer interfaces. This observation is interesting and not surprising because homodimers being made of identical monomer subunits tend to associate by hydrophobic interactions. This is in contrast to the observation in heterodimer interfaces being made of non-identical monomer subunits, associating generally by hydrophilic interactions.

Figure 1H, shows the ration of interface/surface and interface/interior residue propensity difference between heterodimers and homodimers. Interestingly, the ratio of interface to interior charged residues (D, E, K, R) is significantly larger in heterodimers compared to homodimers (Figures 1H, 1I, 1J). On the other hand, the ratio of interface to interior hydrophobic residues (A, V, L, M, I, F) are prevalent in homodimers than in heterodimers (Figures 1H, 1I, 1J). Similarly, hydrophilic residues (N, Q, H, Y, S, T) are prevalent in heterodimer interfaces (Figures 1H, 1I, 1J). However, the propensity difference in the ratio of interface to surface hydrophobic/hydrophilic/charged for homodimers and heterodimers is almost zero (Figure 1H).
Figure 1: Difference between heterodimer and homodimer interface properties is shown.
(A) Hydrogen bonds in heterodimer interface; (B) Hydrogen bonds in homodimer interface; (C) Interface area in heterodimer interface; (D) Interface area in homodimer interface; (E) Interface residues in heterodimers; (F) Interface residues in homodimers; (G) Hydrophobic, hydrophilic and charged residue fraction in heterodimers and homodimers; (H) Propensity difference in heterodimers and homodimers (heterodimers – homodimers); (I) Ratio of interface to surface & interface to interior propensity in heterodimers; (J) Ratio of interface to surface & interface to interior propensity in homodimers. FBM = Fraction below mean value; FAM = Fraction above mean value.
Conclusion:
We performed a comprehensive analysis on the differences between 156 heterodimers and 170 homodimers. The homodimer and heterodimer datasets are mutually exclusive and is one of the unique features of the analysis. The analysis documents the differences between homodimer and heterodimer interfaces for the first time in a comprehensive manner. Homodimer interfaces have greater number of interface residues and H-bonds on average. However, the density of H-bonds per residue is greater for heterodimer interfaces. The study also shows that charged residues (D, E, K, R) and hydrophilic residues (N, T, S, Q, H, W, Y) are dominant at the heterodimer interfaces. Nonetheless, hydrophobic residues (A, V, L, M, I, F) are predominant at the homodimer interfaces. These data find utility in the development of independent models for the prediction of homodimer and heterodimer interaction sites.

Acknowledgement:
Cui Zhanhua acknowledges Nanyang Technological University, Singapore for support.

References:
[1] S. Jones & J.M. Thornton, Proc. Natl. Acad. Sci., 93:13 (1996) [PMID: 8552589]
[2] D. Xu et al., Protein Engineering, 10:999 (1997) [PMID: 9464564]
[3] C. J. Tsai, et al., Protein Science, 6:53 (1997) [PMID: 9007976]
[4] L. Lo Conte et al., J. Mol. Biol., 285:2177 (1999) [PMID: 9925793]
[5] P. Chakrabarti & J. Janin, Proteins, 47:334 (2002) [PMID: 11948787]
[6] K. V. Brinda et al., Protein Eng., 15:265 (2002) [PMID: 11983927]
[7] R. P. Bahadur et al., Proteins, 53:708 (2003) [PMID: 14579361]
[8] I. M. Nooren & J. M. Thornton, J. Mol. Biol., 325:991 (2003) [PMID: 12527304]
[9] D. R. Caffrey et al., Protein Sci., 13:190 (2004) [PMID: 14691234]
[10] C. Zhanhua et al., Frontiers in Bioscience, 10:844 (2005) [PMID: 15569623]
[11] S. Jones & J. M. Thornton, Prog. Biophys. Mol. Biol., 63:31 (1995) [PMID: 7746868]
[12] P. Lijnzaad & P. Argos, Proteins, 28:333 (1997) [PMID: 9223180]
[13] S. Dasgupta et al., Proteins, 28:494 (1997) [PMID: 9261866]
[14] W. S. Valdar & J. M. Thornton, J Mol Biol., 313:399 (2001) [PMID: 11800565]
[15] L. Li et al., Frontiers in Bioscience, 10:1977 (2005) [PMID: 15769678]
[16] B. Lee & E. M. Richard, J. Mol. Biol., 55:379 (1971) [PMID: 5551392]
[17] R. Rodriguez et al., Bioinformatics, 14:523 (1998) [PMID: 9694991]
[18] S. Jones & J. M. Thornton, J. Mol. Biol., 272:121 (1997) [PMID: 9299342]

Edited by K. Gunasekaran

Citation: Zhanhua et al., Bioinformation 1(2): 28-39 (2005)

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.