STRUCTURE OF WORDS WITH SHORT 2-LENGTH IN A FREE PRODUCT OF GROUPS.

I. CHINYERE

Abstract. Howie and Duncan observed that a word in a free product with length at least two and which is not a proper power can be decomposed as a product of two cyclic subwords each of which is uniquely positioned. Using this property, they proved various important results about one-relator product of groups. In this paper, we show that similar results hold in a more general setting where we allow elements of order two.

1. INTRODUCTION

Let \(R \) be a cyclically reduced word which is not a proper power and has length at least two in the free group \(F = F(X) \). In \([5]\), Weinbaum showed that some cyclic conjugate of \(R \) has a decomposition of the form \(UV \), where \(U \) and \(V \) are non-empty cyclic subwords of \(R \), each of which is uniquely positioned in \(R \) i.e. occurs exactly once as a cyclic subword of \(R \). Weinbaum also conjectured that \(U \) and \(V \) can be chosen so that neither is a cyclic subword of \(R^{-1} \). A stronger version of his conjecture was proved by Duncan and Howie \([7]\). In this paper, a cyclic subword is uniquely positioned if it is non-empty, occurs exactly once as a subword of \(R \) and does not occur as a subword of \(R^{-1} \).

From now on \(R \) is a word in the free product of groups \(G_1 \) and \(G_2 \), which is not a proper power and has length at least two. Before we can continue, we need to define the notion of \(n \)-length of a word. We do this in the special case when \(n = 2 \) and the word is \(R \), but of course the definition can be generalised for any \(n > 1 \) and any word in a group.

For each element \(a \) of order 2 involved in \(R \), let \(D(a) \) denote its number of occurrence in \(R \). In other words suppose \(R \) has free product length of \(2k \) for some \(k > 0 \). Then, \(R \) has an expression of the form

\[
R = \prod_{i=1}^{k} a_ib_i,
\]

with \(a_i \in G_1 \) and \(b_i \in G_2 \). If \(a^2 = 1 \), then we define \(D(a) \) to be the cardinality of the set \(\{i \in \{1,2,\ldots,k\} \mid a_i = a\} \). Denote by \(S_R \) the symmetrized closure of \(R \) in \(G_1 \ast G_2 \) i.e. the smallest subset of \(G_1 \ast G_2 \) containing \(R \) which is closed under cyclic permutations and inversion. Since \(D(a) \) is unchanged by replacing \(R \) with any other element in \(S_R \), we make the following definition.

Definition 1.1. The 2-length of \(S_R \), denoted by \(D_2(S_R) \), is the maximum \(D(a) \), such that \(a \) is a letter of order 2 involved in \(R \).

In this paper, we will be mostly concerned with the element \(R' \) in \(S_R \) of the form

\[
R' = \prod_{i=1}^{D_2(S_R)} aM_i,
\]

Date: April 17, 2018.

Key words and phrases. One-relator product, Unique position, Pictures.
We refer to Theorem 1.3. Let this paper.

As mentioned in the abstract, the authors of [7] observed that in the case when $D_2(S_R) = 0$, the word R can be decomposed as a product of two uniquely positioned subwords. Using that they showed that every minimal picture over a one-relator product with relator R^2 satisfies $C(6)$, from which important results about the group were proved. In this paper we work in a more general setting where $D_2(S_R) \leq 2$. It is no longer always possible that R has a decomposition into uniquely positioned subwords. However, we can show that R has a certain structure which allows us to obtain similar results. This idea is captured in the following theorem.

Theorem 1.2. Let R be a word in a free product of length at least 2 and which is not a proper power. Suppose also that $D_2(S_R) \leq 2$. Then either a cyclic conjugate of R has a decomposition of the form UV such that U and V are uniquely positioned or one of the following holds:

(a) $D_2(S_R) = 1$ and R has a cyclic conjugate of the form $aXbX^{-1}$ or aM, where a, b are letters of order 2 and M does not involve any letter of order 2.

(b) $D_2(S_R) = 2$ and R has a cyclic conjugate of the form $aXbX^{-1}$ where a is a letter of order 2.

Note that in Theorem 1.2, the requirement that $D_2(S_R) \leq 2$ is optimal in the sense that there is no hope to obtain such result when $D_2(S_R) > 2$. To see why this is true, consider the word $S = \prod_{i=1}^{n} ab_1$, with $a \in G_1$ and $b_1 \in G_2$. Suppose that $b_i \neq b_j$ for $i \neq j$ and $a^2 = b_i^2 = 1$ for $i = 1, 2, \ldots, n$. It is easy to verify that $D_2(S_R) = n$ and Theorem 1.2 fails for $n > 2$. In other words, S does not have a decomposition into two uniquely positioned subwords, nor does it have a decomposition of the form $xXyX^{-1}$ such that $x^2 = 1$.

Further analysis of the structure of R leads us to the following theorem which is our main result in this paper.

Theorem 1.3. Let R satisfy the conditions of Theorem 1.2. Then either any minimal picture over G satisfies $C(6)$ or R has the form (up to cyclic conjugacy) $aXbX^{-1}$ with $a^2 = 1 \neq b^2$.

The rest of the paper is arranged as follows. We begin in Section 2 by providing some literature on related results. We also recall only the basic ideas about pictures. In Section 3 we prove a number of Lemmas about word combinatorics and pictures. In particular we deduce Theorem 1.2. Furthermore, these Lemmas are applied in Section 4 to prove the main result and deduce a number of applications.

2. PRELIMINARIES

Let G_1 and G_2 be nontrivial groups and $w \in G_1 * G_2$ a cyclically reduced word. Let G be the quotient of the free product $G_1 * G_2$ by the normal closure of w, denoted $N(w)$. Then G is called a one-relator product and denoted by

$$G = (G_1 * G_2)/N(w).$$

We refer to G_1, G_2 as the factors of G, and w as the relator. For us, $w = R^m$ such that R is a cyclically reduced word which is not a proper power and $m \geq 3$. If $m \geq 4$, a number of results were proved in [2, 3, 4], about G. These results were also proved in [7] when $m = 3$ but not without the extra condition that R involves no letter of order 2. We also mention that the case when $m = 2$ is largely open. For partial results in this case see [9, 10, 11]. The aim of this paper is to extend the result in [7] by allowing letters of order 2 in R. Also we require results about pictures over G, in particular the fact that R^m satisfies the small cancellation condition $C(2m)$ when R has a certain form. Pictures can be seen as duals of van Kampen diagrams and have been widely used to prove results about one-relator

with $D(a) = D_2(S_R)$ and $M_i \in G_1 * G_2$. It follows that each M_i has odd length (as a reduced but not cyclically reduced word in the free product) and does not contain any letter equal to a. When we use the notation “=” for words, it will mean identical equality. We will use $\ell()$ to mean then length of a reduced free product word which is not necessarily cyclically reduced.
groups and one-relator products. Below, we recall only basic concepts on pictures over a one-relator product as given in [10]. For more details, the reader can see [2, 3, 4, 7, 11].

2.1. PICTURES. A picture Γ over G on an oriented surface Σ is made up of the following data:

- a finite collection of pairwise disjoint closed discs in the interior of Σ called vertices;
- a finite collection of disjoint closed arcs called edges, each of which is either: a simple closed arc in the interior of Σ meeting no vertex of Γ, a simple arc joining two vertices (possibly same one) on Γ, a simple arc joining a vertex to the boundary $\partial \Sigma$ of Γ, a simple arc joining $\partial \Sigma$ to $\partial \Sigma$;
- a collection of labels (i.e words in $G_1 \cup G_2$), one for each corner of each region (i.e connected component of the complement in Σ of the union of vertices and arcs of Γ) at a vertex and one along each component of the intersection of the region with $\partial \Sigma$. For each vertex, the label around it spells out the word $R_1^{\pm m}$ (up to cyclic permutation) in the clockwise order as a cyclically reduced word in $G_1 * G_2$. We call a vertex positive or negative depending on whether the label around it is R_1^m or R_1^{-m} respectively.

For us Σ will either be the 2-sphere S^2 or 2-disc D^2. A picture on Σ is called spherical if either $\Sigma = S^2$ or $\Sigma = D^2$ but with no arcs connected to ∂D^2. If Γ is not spherical, ∂D^2 is one of the boundary components of a non-simply-connected region (provided, of course, that Γ contains at least one vertex or arc), which is called the exterior. All other regions are called interior.

We shall be interested mainly in connected pictures. A picture is connected if the union of its vertices and arcs is connected. In particular, no arc of a connected picture is a closed arc or joins two points of $\partial \Sigma$, unless the picture consists only of that arc. In a connected picture, all interior regions Δ of Γ are simply-connected, i.e topological discs. Just as in the case of vertices, the label around each region — read anticlockwise — gives a word which in a connected picture is required to be trivial in G_1 or G_2. Hence it makes sense to talk of G_1-regions or G_2-regions. Each arc is required to separate a G_1-region from a G_2-region. This is compatible with the alignment of regions around a vertex, where the labels spell a cyclically reduced word, so must come alternately from G_1 and G_2.

A vertex is called exterior if it is possible to join it to the exterior region by some arc without intersecting any arc of Γ, and interior otherwise. For simplicity we will indeed assume from this point that our Σ is either S^2 or D^2. It follows that reading the label round any interior region spells a word which is trivial in G_1 or G_2. The boundary label of Γ on D^2 is a word obtained by reading the labels on ∂D^2 in an anticlockwise direction. This word (which we may be assumed to cyclically reduced in $G_1 * G_2$) represents an identity element in G. In the case where Γ is spherical, the boundary label is an element in G_1 or G_2 determined by other labels in the exterior region.

Two distinct vertices of a picture are said to cancel along an arc e if they are joined by e and if their labels, read from the endpoints of e, are mutually inverse words in $G_1 * G_2$. Such vertices can be removed from a picture via a sequence of bridge moves (see Figure 1 and [7] for more details), followed by deletion of a dipole without changing the boundary label. A dipole is a connected spherical sub-picture that contains precisely two vertices, does not meet $\partial \Sigma$, and such that none of its interior regions contain other components of Γ. This gives an alternative picture with the same boundary label and two fewer vertices.

We say that a picture Γ is reduced if it cannot be altered by bridge moves to a picture with a pair of cancelling vertices. A picture Γ on D^2 is minimal if it is non-empty and has the minimum number of vertices amongst all pictures over G with the same boundary label as Γ. Clearly minimal pictures are reduced. Any cyclically reduced word in $G_1 * G_2$ representing the identity element of G occurs as the boundary label of some reduced picture on D^2.
Definition 2.1. Let Γ be a picture over G. Two arcs of Γ are said to be parallel if they are the only two arcs in the boundary of some simply-connected region Δ of Γ.

We will also use the term parallel to denote the equivalence relation generated by this relation, and refer to any of the corresponding equivalence classes as a class of ω parallel arcs or ω-zone. Given a ω-zone with $\omega > 1$ joining vertices u and v of Γ, consider the $\omega - 1$ two-sided regions separating these arcs. Each such region has a corner label x_u at u and a corner label x_v at v, and the picture axioms imply that $x_u x_v = 1$ in G_1 or G_2. The $\omega - 1$ corner labels at v spell a cyclic subword s of length $\omega - 1$ of the label of v. Similarly the corner labels at u spell out a cyclic subword t of length $\omega - 1$ of the label of u. Moreover, $s = t^{-1}$. If we assume that Γ is reduced, then u and v do not cancel. In the spirit of small-cancellation-theory, we refer to t and s as pieces.

As in graphs, the degree of a vertex in Γ is the number of zones incident on it. For a region, the degree is the number corners it has. We say that a vertex v of Γ satisfies the (local) $C(m)$ condition if it is joined to at least m zones. We say that Γ satisfies $C(m)$ if every interior vertex satisfies $C(m)$.

3. TECHNICAL RESULTS

In this section we give a number of results on the structure of R when $D_2(S_R) \leq 2$, from which Theorem 1.2 follows. It is assumed throughout that no element of S_R has the form UV, where U and V are both uniquely positioned. In particular if $D(a) \geq 2$, there exists at most one $i \in \{1, 2, \ldots, D(a)\}$ such that M_i uniquely positioned in the decomposition $R = \prod_{i=1}^{D(a)} aM_i$. We begin with the proof of part (a) of Theorem 1.2.

Lemma 3.1. If $D_2(S_R) = 1$, then R has a cyclic conjugate of the form aM or $aXbX^{-1}$, where a, b are letters of order 2 and M does not involve any letter of order 2.

Proof. Since $D_2(S_R) = 1$, we can assume without loss of generality that $R = aM$, where M is a word in $G_1 \ast G_2$ which does not involve a. We now proceed to show that either M does not involve any letter of order 2 or M can be decomposed in the form XbX^{-1}, where $b \in G_1 \cup G_2$ is a letter of order 2 and X is a (possibly empty) word in $G_1 \ast G_2$.

Suppose by contradiction that M has a decomposition of the form XbY with $b^2 = 1$ and $X \neq Y^{-1}$. Note that we can assume without loss of generality that $0 < \ell(X) < \ell(Y)$. Clearly, if $\ell(X) = \ell(Y) > 0$, then both aX and bY are uniquely positioned which is a contradiction. There is nothing to prove if $\ell(X) = \ell(Y) = 0$. Also if $\ell(X) = 0 \neq \ell(Y)$, we get a contradiction since ab and Y will be uniquely positioned. Hence the inequality $0 < \ell(X) < \ell(Y)$ holds.

Suppose that $X^2 = 1$ and $Y^2 = 1$ holds simultaneously. Then by setting $X = X_1 p X_1^{-1}$ and $Y = Y_1^{-1} q Y_1$, where $X_1, Y_1 \in G_1 \ast G_2$ and p, q are distinct letters of order 2 in $G_1 \cup G_2$, we can replace R with

$$R' = pX' q Y',$$
where $X' = (Y_1 b X_1)^{-1}$ and $Y' = Y_1 a X_1$. Since $a \neq b$, we have that $X' \neq Y'^{-1}$. Given that $\ell(X') = \ell(Y')$, we easily conclude that $p X'$ and $q Y'$ are uniquely positioned. This is a contradiction.

Suppose that $X^2 = 1 \neq Y^2$. By the assumption that $D_2(S_R) = 1$, we know that X can not be equal to a segment of Y. Hence aX and bY are both uniquely positioned. This is a contradiction. Similarly, suppose that $X^2 \neq 1 = Y^2$. Since $\ell(X) < \ell(Y)$ and $D_2(S_R) = 1$, we have that both bY and Ya are uniquely positioned. Hence, neither aX nor Xb is uniquely positioned. This means that X^{-1} is identically equal to an initial and a terminal segment of Y. Therefore, $X^2 = 1$. This is a contradiction.

Finally if $X^2 \neq 1 \neq Y^2$, then aXb and Y are both uniquely positioned. This contradiction completes the proof. \hfill \Box

Lemma 3.2. Suppose that $D_2(S_R) = 2$. Then R has a cyclic conjugate of the form $aXbX^{-1}$ where a is a letter of order 2.

Proof. Since $D_2(S_R) = 2$, we can assume without loss of generality that

$$R = a M_1 a M_2,$$

where $M_1, M_2 \in G_1 \ast G_2$, and neither involves the letter a. By assumption M_1 and M_2 can not be uniquely positioned simultaneously. If $M_1^2 = 1$ and $M_2^2 = 1$ hold simultaneously, then by replacing R with a cyclic conjugate, it can be shown that R has the desired form. Without loss of generality, we can assume that $1 \leq \ell(M_1) \leq \ell(M_2)$.

Suppose that $\ell(M_1) = \ell(M_2)$. We can not have $M_1 = M_2$ since R is not a proper power. Also if $M_1 = M_2^{-1}$, then there is nothing to prove. So we assume without loss of generality that $M_1^2 = 1$ and M_2 is uniquely positioned. If $\ell(M_1) = 1$, then there is nothing to prove since M_1 has order 2 and so R has the desired form. Hence we assume that $\ell(M_1) = \ell(M_2) \geq 3$. Let $M_1 = XpX^{-1}$ and $M_2 = YqZ$, with $p, q \in G_1 \cup G_2$, $p^2 = 1$, $\ell(Y) = \ell(Z)$ and $Y \neq Z^{-1}$ (as otherwise there is nothing to prove). Then

$$R = a X p X^{-1} a Y q Z.$$

Set

$$U = a Y q, \quad U' = q Z a, \quad V = Z a X p X^{-1}, \quad V' = X p X^{-1} a Y.$$

Clearly, $V^2 \neq 1 \neq V'^2$ since $D(a) = 2$. Also since $Y \neq Z^{-1}$, it follows that V and V' are simultaneously uniquely positioned. Hence neither U nor U' is uniquely positioned. It is easy to see that this means that $U^2 = 1$ or $U'^2 = 1$ or $U' = U \pm 1$. However, any such occurrence will imply that $a = q$ or $Y = Z^{-1}$. This is a contradiction.

Now suppose that $\ell(M_i) \neq \ell(M_j)$, where $i, j \in \{1, 2\}$ with $i \neq j$. Note that it is not possible to have $M_i^2 \neq 1$ and $M_j^2 \neq 1$ holding simultaneously since that will imply that $a M_i a$ and M_j are both uniquely positioned, assuming $\ell(M_i) < \ell(M_j)$. Suppose that $M_i^2 = 1$. Let $M_i = X p X^{-1}$ and $M_j = Y q Z$, with $p, q \in G_1 \cup G_2$, $p^2 = 1$, $\ell(Y) = \ell(Z)$ and $Y \neq Z^{-1}$. We claim that exactly one of $a Y$ or $Z a$ is uniquely positioned. This is because if both are uniquely positioned, then there is nothing to prove. Also if neither is uniquely positioned, then $Y = Z^{-1}$. In both cases we get a contradiction.

By symmetry we assume that $a Y$ is uniquely positioned, and hence $q Z a M_i$ is not. This leads to a contradiction when $\ell(Y) \geq \ell(M_i)$ since that will mean $Y = Z^{-1}$. Suppose then that $\ell(Y) < \ell(M_i)$. This implies that M_i is an initial or terminal segment of M_j. Hence, we have that $M_j = M_j W$ or $M_j = W M_i$ for some $W \in G_1 \ast G_2$, depending on whether M_i is an initial or terminal segment of M_j. Note that $\ell(W) = 2n$ for some integer $n > 0$. Now we replace R by

$$R' = p M_p N,$$
where $M = X^{-1}aX$ and $N = X^{-1}WaX$ or $N = X^{-1}aWX$. We consider first the case when $N = X^{-1}WaX$. In this case, the initial segment $X^{-1}W$ of N has length $\ell(X^{-1}W) \geq \ell(X) + 2$. Since $D_2(S_R) = 2$, $X^{-1}W$ neither involves a nor p. It follows that $aXpXaX^{-1}p$ is uniquely positioned. Hence, $X^{-1}W$ is not uniquely positioned. The length condition on $X^{-1}W$ implies that $(X^{-1}W)^2 = 1$. Again since $D_2(S_R) = 2$, X does not involve a letter of order 2. So $W = SzS^{-1}X$, for some (possibly empty) word S and some letter x of order 2. Hence

$$R' = pX^{-1}aXpX^{-1}SzS^{-1}XaX.$$

Consider the cyclic subwords $W_1 = S^{-1}XaXpX^{-1}aX$ and $W_2 = pX^{-1}Sz$. Clearly, $W_1^2 \neq 1$ as otherwise S is empty and more importantly $X^2 = 1$, which is a contradiction. Also, $W_2^2 \neq 1$ since $p \neq x$. In fact, it is easy to see that both W_1 and W_2 are uniquely positioned. This is a contradiction. Similar argument works when $N = X^{-1}aWX$ by replacing W_1 and W_2 with their inverses. This completes the proof.

By combining Lemmas 3.1 and 3.2 we obtain Theorem 1.2.

The remaining results in this section are consequences of results about a picture Γ over G. First, we give a necessary and sufficient condition under which the word R has a decomposition into a pair of uniquely positioned subwords when $D_2(S_R) = 1$.

Lemma 3.3. Let r be a cyclically reduced word which is not a proper power in the free product $G_1 * G_2$ such that $D_2(S_r) = 1$. Then, r has a decomposition into two uniquely positioned subwords if and only if $\ell(r) > 2$ and there exists $r' \in S_r$ such that $r' = aXxYyX^{-1}$ with $X, Y, x, y, a \in G_1 * G_2$, $\ell(Y) \geq 1$, $\ell(x) = \ell(y) = \ell(a) = 1$, $x \neq y^{-1}$ and $a^2 = 1$.

Proof. Suppose that r has a decomposition into two uniquely positioned subwords U and V. Since $D(S_r) = 1$, we have that $\ell(r) > 2$. Without loss of generality, it follows that a cyclic conjugate of r has the form

$$r' = aU_2VU_1,$$

where $U = U_1aU_2$ and $a^2 = 1$. Hence $U_2VU_1 = XYX^{-1}$ for some words $X, Y \in G_1 * G_2$, where X is possibly empty. Since U and V are uniquely positioned in r, we conclude that $\ell(Y) \geq 3$ and the first and last letters of Y are not inverses. The result follows.

For the other direction, suppose $r' = aXxYyX^{-1}$ with $X, Y, x, y, a \in G_1 * G_2$, $\ell(x) = \ell(y) = \ell(a) = 1$, $x \neq y^{-1}$ and $a^2 = 1$. Then aXx is clearly uniquely positioned in r since $x \neq y^{-1}$. For the same reason, we deduce from part (a) of Theorem 1.2 that $XxYyX^{-1}$ has no element of order 2. In particular, this means that YyX^{-1} and its inverse do not intersect (in an initial or terminal segment). We claim that this means that YyX^{-1} is also uniquely positioned. We prove this by contradiction by assuming that YyX^{-1} is not uniquely positioned and showing that $XxYyX^{-1}$ contains an element of order 2.

Let $XxYyX^{-1} = x_1x_2 \cdots x_n$, with $X = x_1x_2 \cdots x_p$. Suppose that YyX^{-1} is not uniquely positioned. Then, $(YyX^{-1})^{\pm 1}$ is identically equal to some segment of $XxYyX^{-1}$. This segment must intersect YyX^{-1}. By above discussion, we have that YyX^{-1} is identically equal to the segment

$$x_kx_{k+1} \cdots x_{\ell(YyX^{-1})-1},$$

with $k \leq p$. Hence, we have that the terminal segment of $XxYyX^{-1}$ of length $n + 1 - k$ has period $\lambda = p + 2 - k$. Consider the initial segment of this periodic segment given by

$$W_k = x_kx_{k+1} \cdots x_{n+1-k-(p+2)}.$$

In particular W_k is of length $n - (p + 1)$. Note that $X^{-1} = x_p^{-1}x_{p-1}^{-1} \cdots x_1^{-1} = x_{n+1-p}x_{n+2-p} \cdots x_n$. If $x_i = x_i^{-1}$ for some $k \leq i \leq p$, then we are done. Suppose not. If x_p (alternatively x_k) is identified
with \(x_i^{-1} \) for some \(k \leq i \leq p \), then \(x_{j+i}^{-1} = x_{j+i}^{-1} \) (alternatively \(x_{j+i} = x_{j+i}^{-1} \)). This is a contradiction. Otherwise, both \(x_k \) and \(x_p \) are identified with \(x_i^{-1} \) and \(x_i^{-1} \) respectively, where \(1 \leq j \leq i < k-1 \) (since we are in a free product). In fact, \(j = i + k - p < 2k - 1 - p \). Choose \(j \) such that under this periodicity, \(x_j^{-1} \) is the letter that provides the first identification with \(x_p \). We claim that \(j + \lambda \) lies between \(k \) and \(p \). To verify this claim, it is enough to show that \(p \geq j + \lambda \). We have that \(j + \lambda < 2k - 1 - p + \lambda = k + 1 \). Therefore, \(j + \lambda \leq k \leq p \). Hence \(x_p = x_{j+\lambda}^{-1} \) and \(j + \lambda \leq p \). By the choice of \(j \), we must have that \(k \leq j + \lambda \leq p \). This is a contradiction. Hence \(Y Y X^{-1} \) is uniquely positioned. This completes the proof.

Lemma 3.4. Let \(\Gamma \) be a reduced picture over \(G \) on \(D^2 \) where \(R = aXbX^{-1} \) and \(a^2 = b^2 = 1 \). Then either \(\Gamma \) is empty or \(\Gamma \) satisfies \(C(6) \).

Proof. Suppose \(\Gamma \) a non-empty picture over \(G \) which is reduced. Suppose also that \(\Gamma \) contains some interior vertex \(v \) of degree less than 6. Then \(v \) is connected to another vertex \(u \) by a zone containing \(a \) or \(b \). Using this zone, we can do bridge-moves so that \(u \) and \(v \) form a dipole. This contradicts the assumption that \(\Gamma \) was reduced.

We obtain from Lemmas 3.1, 3.3 and 3.4 the following corollary.

Corollary 3.5. Let \(D_2(S_R) \leq 2 \) and \(R \neq aXbX^{-1} \) with \(a^2 = 1 \neq b^2 \). Then any non-empty reduced picture on \(D^2 \) over \(G \) satisfies \(C(6) \).

Proof. By Lemma 3.3, either \(R \) has a decomposition \(UV \) with \(U, V \) uniquely positioned in \(R \) or \(R \) has the form (up to cyclic conjugation) \(aXbX^{-1} \) with \(a^2 = b^2 = 1 \). For the first case, the proof is exactly as it is in [7] Lemma 3.1. For the latter case, the result follows from Lemmas 3.4.

4. APPLICATIONS

In this section we deduce a number of applications of Theorem 1.3. But first, we recall the setting.

Let \(G_1 \) and \(G_2 \) be non-trivial groups and \(R \in G_1 * G_2 \) which is not a proper power and has length at least 2. We also require that no letter of order 2 involved in \(R \) appears more than twice i.e. \(D_2(S_R) \leq 2 \). For a natural number \(m \geq 3 \), \(G \) is the quotient of \(G_1 * G_2 \) by the normal closure of \(R^m \).

Proof of Theorem 1.3. This follows from Part (b) or Theorem 1.2 and Corollary 3.5.

When \(R \) has a conjugate of the form \(aXbX^{-1} \) and \(a^2 = 1 \neq b^2 \), we will call \(R \) exceptional. As mentioned earlier, there are results in the literature on the two classes and we list them without proof.

We begin the non-exceptional case. For this case the proofs can be found in [7].

Theorem 4.1. Suppose that \(G \) is as above and \(R \) is not exceptional. Then the following hold.

(a) Freiheitssatz. The natural homomorphisms \(G_1 \rightarrow G \) and \(G_2 \rightarrow G \) are injective.

(b) Weinbaum’s Theorem. No non-empty proper subword of \(R^m \) represents the identity element of \(G \).

(c) Word problem. If \(G_1 \) and \(G_2 \) are given by a recursive presentation with soluble word problem, then so is \(G \). Moreover, the generalized word problem for \(G_1 \) and \(G_2 \) in \(G \) is soluble with respect to these presentations.

(d) The Identity Theorem. \(N(R^m)/[N(R^m), N(R^m)] = ZG/(1 - R)ZG \) as a (right) \(ZG \)-module.
Corollary 4.2. There are natural isomorphisms for all $q > 3$:

$$H^q(G; -) \longrightarrow H^q(G_1; -) \times H^q(G_2; -) \times H^q(Z_m; -),$$

$$H_q(G; -) \leftarrow H_q(G_1; -) \oplus H^q(G_2; -) \oplus H^q(Z_m; -);$$

a natural epimorphism

$$H^2(G; -) \longrightarrow H^2(G_1; -) \times H^2(G_2; -) \times H^2(Z_m; -),$$

and a natural monomorphism

$$H^2(G; -) \leftarrow H^2(G_1; -) \oplus H^2(G_2; -) \oplus H^2(Z_m; -).$$

These are defined on the category of \mathbb{Z}_G-modules, \mathbb{Z}_m is the cyclic subgroup of order m generated by R, and all these maps are induced by restriction on each factor.

Next we consider the exceptional case. In this case, G is called a one-relator product induced from the generalized triangle group H, described as follows. Let $A := \langle a \rangle$ and $X^{-1}BX := \langle b \rangle$ be the cyclic subgroups of G_1 or G_2 generated by a and b respectively. Then $H := (A \ast B)/N(R^m)$. Note that G can be realized as a push-out of groups as shown in Figure 2.

![Figure 2. Push-out diagram.](image)

This pushout representation of G is referred to as a generalized triangle group description of G, and we require it to be maximal in the sense [10]. Another technical requirement is that (a, b) be admissible: whenever both a and b belong to same factor, say G_1, then either the subgroup of G_1 generated by $\{a, b\}$ is cyclic or $\langle a \rangle \cap \langle b \rangle = 1$. It is very easy to verify that these conditions are satisfied in our setting. Hence the results in [8] hold.

Theorem 4.3. Suppose that G is as above and R is exceptional. Then the following hold.

(a) Freiheitssatz. The natural homomorphisms $G_1 \to G$ and $G_2 \to G$ are injective.

(b) Weinbaum’s Theorem. No non-empty proper subword of R^m represents the identity element of G.

(c) Membership problem. Assume that the membership problems for $\langle a \rangle$ and $\langle b \rangle$ in $G_1 \ast G_2$ are solvable. Then the word problem for G is also solvable.

(d) Mayer-Vietoris. The pushout of groups in Figure 2 is geometrically Mayer-Vietoris in the sense of [8]. In particular it gives rise to Mayer-Vietoris sequences

$$\cdots \to H_{k+1}(G, M) \to H_k(A \ast B, M) \to$$

$$H_k(G_1 \ast G_2, M) \oplus H_k(H, M) \to H_k(G, M) \to \cdots$$

and

$$\cdots \to H^k(G, M) \to H^k(G_1 \ast G_2, M) \oplus H^k(H, M)$$

$$\to H^k(A \ast B, M) \to H^{k+1}(G, M) \to \cdots$$

for any \mathbb{Z}_G-module M.
STRUCTURE OF WORDS WITH SHORT 2-LENGTH IN A FREE PRODUCT OF GROUPS.

References

[1] S. J. Pride, Small Cancellation Conditions Satisfied by One-Relator Groups, Math. Z. (2) 184 (1983) 283–286.

[2] J. Howie, The quotient of a free product of groups by a single high-powered relator, I. Pictures, Fifth and higher powers, Proc. London Math. Soc. (3) 59 (1989), 507-540.

[3] J. Howie, The quotient of a free product of groups by a single high-powered relator, II. Fourth powers, Proc. London Math. Soc. (3) 61 (1990), 33-62.

[4] J. Howie, The quotient of a free product of groups by a single high-powered relator. III. The word problem, Proc. London Math. Soc. (3) 62 (1991) 590–606.

[5] C. M. Weinbaum, On relators and diagrams for groups with a single defining relator. Illinois J.Math., 16 (1972) 308-322.

[6] C. M. Weinbaum, Unique subwords in nonperiodic words, Proc. Amer. Math. Soc., 109 (1990), 615-619.

[7] A. Duncan, & J. Howie, Weinbaum’s Conjecture on Unique Subwords of Nonperiodic Words. Proc. of the Amer. Math. Soc., 115(4) (1992), 947-954.

[8] J. Howie & R. Shwartz, One-relator products induced from generalised triangle groups. Comm. Algebra 32 (2004) 2505–2526.

[9] B. Fine, J. Howie, & G. Rosenberger, One-Relator Quotients and Free Products of Cyclics. Proc. of the Amer. Math. Soc., 102(2) (1988), 249-254.

[10] I. Chinyere & J. Howie, On one-relator products induced by generalised triangle groups I. Communications in Algebra, 46(3) (2018), 1464-1475.

[11] I. Chinyere & J. Howie, On one-relator products induced by generalised triangle groups II. Communications in Algebra, 46(4) (2018), 1138-1154.

[12] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Berlin, Heidelberg, New York: Springer-Verlag, (1977).

IHECHUKWU CHINYERE, DEPARTMENT OF MATHEMATICS, MICHAEL OKPARA UNIVERSITY OF AGRICULTURE, UMUDEKE, P.M.B 7267 UMUAHA, ABIA STATE, NIGERIA.
E-mail address: ihechukwu@aims.ac.za

AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES (AIMS), CAMEROON
E-mail address: ihechukwu.chinyere@aims-cameroon.org