NON-LIPSCHITZ FLOW OF THE NONLINEAR SCHröDINGER EQUATION ON SURFACES

W.-M. Wang

Abstract. We construct non-Lipschitz flow in H^s for the cubic nonlinear Schrödinger equation on the 2-torus of revolution with a Lipschitz or smooth metric. The non-Lipschitz property holds for all $s < 2/3$ for Lipschitz metric and $s < 1/2$ for smooth metric. Both coincide with the Sobolev exponents for uniform local well-posedness.

1. Introduction

We consider the Cauchy problem for the cubic nonlinear Schrödinger equation on compact Riemannian surfaces without boundary:

$$
\begin{aligned}
&i \frac{\partial}{\partial t} u = -\Delta u + |u|^2 u, \\
&u(t = 0) = u_0,
\end{aligned}
$$

with either a smooth or Lipschitz metric g and Δ is the corresponding Laplace-Beltrami operator. (Surfaces with smooth boundary are included in Lipschitz g.) We say that the Cauchy problem (1) is uniformly locally well-posed in H^s if for all $R > 0$, there exists $T > 0$ and a Banach space X_T included in $C^0((-T,T), H^s)$ such that for all $f \in H^s$ with $\|f\|_{H^s} \leq R$, (1.1) has a unique solution $u \in X_T$ and the flow map is uniformly continuous in C^0. The problem is globally well-posed if T can be arbitrary large (without the uniformity requirement).

On the flat torus, using multiple space-time Fourier series, Bourgain [B] proved that (1) is locally well-posed in H^s for all $s > 0$. Later Burq, Gerard and Tzvetkov [BGT1] proved local well-posedness in H^s for $s > 1/2$ for smooth g; Blair, Smith and Sogge proved $s > 2/3$ for Lipschitz g (cf. also [A]). The latter two use dispersive estimates valid on short time intervals. So (1.1) is energy subcritical and has global solutions in H^s for $s \geq 1$. Recently, Hani [H] proved moreover that (1) has global solutions in H^s for $s > 2/3$ and smooth g.

On the flat 2-torus, it is known [B, CCT] that $s > 0$ is optimal. On the 2-sphere, it is known [BGT2, 3] that $s > 1/4$ is optimal instead of $1/2$. The purpose of this note is to present a simple construction valid for smooth as well as Lipschitz g to exhibit
non-Lipshitz flow for \(s < 1/2, 2/3 \) respectively. For Lipshitz \(g \), we assume that the singularities are of type \(|x| \).

Concretely, on the 2-torus of revolution we prove

Proposition. Let \(ds^2 = dx^2 + g(x)dy^2 \) with \(g \in C^3 \) or Lipshitz with isolated singularities and admitting a unique global maximum. Then there are initial data, which are eigenfunctions of the Laplacian, such that the flow map is not Lipshitz in \(H^s \) for \(s < 1/2 \) when \(g \) is \(C^3 \) and \(s < 2/3 \) when \(g \) is only Lipshitz.

Remark. We relate the time scale and the Sobolev scale when this non-Lipshitz behavior is manifest. The proposition uses data at single high frequency \(k \gg 1 \) and non-Lipshitz behavior is observed at time scale \(t \approx k^{1/2} \) for smooth \(g \) and \(t \approx k^{2/3} \) for Lipshitz \(g \). For \(t \) up to \(O(1) \), non-Lipshitz flow is observed for \(s < 1/4 \) and \(1/3 \) respectively.

We note that this transition from \(1/4 \) to \(1/2 \) also occurs on the 2-sphere. So the Sobolev exponent \(1/4 \) obtained in [BGT2, 3] is strictly local.

Previously, for smooth \(g \), non-Lipshitz flow is known [T] for \(s < 1/4 \) under the assumption of a stable non-degenerate periodic geodesic for \(t \to 0 \) as a negative power of \(k \) using semi-classical constructions. The fact that \(1/2 \) and \(2/3 \) are observed on the torus of revolution, but at a longer time scale essentially reflects the stability of high frequency data, cf. [H] in the present context and [W1, 2] (also the review paper [W3]) in the energy supercritical context.

2. Proof

Let the torus be the set \([-\pi, \pi)^2\] with the metric \(g \) and identify the end points. From separation of variables, the spectrum of the Laplacian decomposes into:

\[
\sigma(\Delta) = \bigoplus_k \sigma\left(-\frac{d^2}{dx^2} + k^2 g^{-1}\right),
\]

where \(k \in \mathbb{Z} \) is the Fourier dual of \(y \). We investigate, in the high frequency limit: \(|k| \gg 1 \), the ground state eigenfunction and the first two eigenvalues of the Schrödinger operator defined in the right side of (2). Below we assume \(k \) is positive, as negative \(k \) works likewise.

Assume \(g \) is only Lipshitz, \(g \) smooth works similarly, cf. [C]. Since \(g \) has only isolated singularities and a unique global maximum and we are interested in the semi-classical limit \(k \gg 1 \), it suffices to take \(g = (|x| + 1)^{-1} \) with the unique singularity and global maximum at \(x = 0 \). Other cases can be reduced to this.
The Schrödinger operator is then
\[H = -\frac{d^2}{dx^2} + k^2 |x| + k^2, \] (3)
on \(L^2[-\pi, \pi]\) with periodic boundary conditions. The reference operator is therefore
\[A = -\frac{d^2}{dx^2} + k^2 |x| \] (4)
on \(L^2(\mathbb{R})\). It is classical that \(A\) has eigenvalues \(\alpha_n\), which are deduced from the zeroes of the Airy function or its derivative and that its eigenfunctions \(\psi_n\) are obtained from the Airy function for positive arguments so that the \(n\)th eigenfunction has parity \((-1)^n\), \(n = 0, 1\ldots\)

More precisely, \(\psi_n\) can be written as
\[
\psi_n(x) = C_n Ai(k^{2/3} |x| - a_n), \quad x \geq 0,
\]
\[
= (-1)^n C_n Ai(k^{2/3} |x| - a_n), \quad x < 0,
\]
where \(C_n\) is a normalizing constant and for \(n\) even, \(a_n\) is the \(n/2 + 1\) zero of the derivative of the Airy function \(Ai'(x)\) and for \(n\) odd, \(a_n\) is the \((n + 1)/2\) zero of the Airy function \(Ai(x)\).

Below \(k\) is large, \(k \gg 1\). For us, it suffices to know that
\[
\alpha_0, \text{ and } \alpha_1 - \alpha_0 = O(k^{4/3}),
\] (5)
\[
\|\psi_0\|_\infty = k^{1/3} \|\psi_0\|_2,
\] (6)
and
\[
|\psi_0(x)| \sim k^{1/6} e^{-k|x|^{3/2}} \frac{1}{|x|^{1/4}}, \quad |x| > k^{-2/3}.
\] (7)

Let \(\phi_0\) be the ground state eigenfunction, \(\lambda_0\) and \(\lambda_1\) the first two eigenvalues of \(H\). Using (5, 7) and standard perturbation theory, we then obtain
\[
\lambda_0 = k^2 + O(k^{4/3}) + O(e^{-k/2}) = k^2 + O(k^{4/3})
\] (8)
\[
\lambda_1 - \lambda_0 = O(k^{4/3}),
\] (9)
and
\[
\phi_0 = \psi_0 + O(e^{-k/2}),
\] (10)
where the \(O\) is in \(L^2\), which in turn gives
\[
\|\phi_0\|_\infty \sim k^{1/3} \|\phi_0\|_2
\] (11)
using (6) and Sobolev embedding in one dimension.

We now proceed to study the Cauchy problem (1) with the initial condition \(u_0 \):

\[
u_0(x, y) = ae^{iky}\phi_0(x),
\]

where \(\phi_0 \) is assumed to be normalized, \(\|\phi_0\|_2 = 1 \), \(a = O(k^{-s}) \), \(s \geq 0 \), so that \(\|u_0\|_{H^s} = O(1) \). The solution \(u \) can be written as

\[
u(x, y, t) = e^{iky}v(x, t)
\]

with \(v \) satisfying

\[
\begin{align*}
i \frac{\partial}{\partial t} v &= (-\frac{d^2}{dx^2} + k^2g^{-1})v + |v|^2v, \\
v(t = 0) &= a\phi_0.
\end{align*}
\]

We seek \(v \) in the form

\[
v(x, t) = a\gamma(t)e^{it(\lambda_0 + a^2\omega)}\phi_0(x) + \sum_{j=1}^{\infty} q_j(t)\phi_j(x),
\]

where \(\gamma(0) = 1 \), \(q_j(0) = 0 \),

\[
\omega = \frac{1}{2} \|\phi_0\|_4^4
\]

and \(\phi_j \) is the \(j \)th eigenfunction of the Schrödinger operator in (3). We note that \(\omega \) is the frequency modulation that is at the root of this non-Lipschitz flow.

From energy conservation, we have

\[
a^2\lambda_0 + \frac{1}{2}a^4\|\phi_0\|_4^4 = a^2\gamma^2(t)\lambda_0 + \sum_{j=1}^{\infty} \lambda_j|q_j(t)|^2 + \frac{1}{2}\|v\|_4^4,
\]

since \(\|\phi_0\|_2 = 1 \). Using \(L^2 \) conservation:

\[
a^2\gamma^2 + \sum |q_j|^2 := a^2\gamma^2 + \|q\|_2^2 = a^2,
\]

we then obtain from (16)

\[
\frac{1}{2}a^4\|\phi_0\|_4^4 = \sum (\lambda_j - \lambda_0)|q_j|^2 + \frac{1}{2}\|v\|_4^4
\]

\[
\geq k^{4/3}\|q\|_2^2 + \frac{1}{2}\|v\|_4^4,
\]
where we used (9) to reach the last estimate.

(18) gives the following estimates valid for all t:

\[\|q\|_4 \leq \|v\|_4 + a\|\phi_0\|_4 \leq 2a\|\phi_0\|_4, \]

(19) \[\|q\|_2 \leq k^{-2/3}a^2\|\phi_0\|_4^2. \]

(17, 20) then give for all t:

\[(1 - \gamma^2(t)) \leq k^{-4/3}a^2\|\phi_0\|_4^4, \]

(21) Further, the first line of (18) gives

\[\frac{1}{2}a^4\|\phi_0\|_4^4 \geq k^{4/3(1-s)}\sum(\lambda_j - \lambda_0)^s|q_j|^2 \geq k^{4/3(1-s)}(\|q\|_{H^s}^2 - \lambda_0\|q\|_2^2), \quad s < 1, \]

which leads to

\[\|q\|_{H^s} \leq a^2\|\phi_0\|_4^2k^{s-2/3}, \quad s < 1, \]

(22) where we also used (20).

To solve for γ, we project v onto ϕ_0 and obtain

\[\gamma(t) = a^{-1}e^{it(\lambda_0 + a^2\omega)}(v, \phi_0). \]

So time derivative satisfies

\[i\dot{\gamma}(t) = -a^{-1}(\lambda_0 + a^2\omega)e^{it(\lambda_0 + a^2\omega)}(v, \phi_0) + a^{-1}e^{-it(\lambda_0 + a^2\omega)}([(-\frac{d^2}{dx^2} + k^2g^{-1})v + |v|^2v], \phi_0), \]

where we used (14). The choice of ω cancels the leading order nonlinear term and we obtain

\[|\dot{\gamma}| \leq a^2\omega(1 - |\gamma|^2)|\gamma| + a^2\mathcal{O}(\|q\|_2\|\phi_0\|_6^3 + \|\phi_0\|_4^2\|q\|_2^2|\gamma| + \|\phi_0\|_\infty\|q\|_4^2\|q\|_2). \]

Using

\[a = \mathcal{O}(k^{-s}), \quad \|\phi_0\|_4 \asymp k^{1/6}, \quad \|\phi_0\|_6 \asymp k^{2/9} \text{ and } \|\phi_0\|_\infty \asymp k^{1/3}, \]

we obtain

\[\dot{\gamma} = \mathcal{O}(k^{-4s} + k^{-1/3}s^{-4s} + k^{-6s} + k^{-6s+1/3}), \quad s < 1. \]

We note that the precise value of the right side is not important as long as $\dot{\gamma}t$ is sufficiently small.
Let S_t be the flow at t (if it exists). We note that for u_0 of the form (12), the solution u_t exists globally in H^1. Let $s \sim 2/3^- := 2/3 - \delta$ for arbitrarily small $\delta > 0$. Choose two initial data as in (12) with $a_1 = k^{-2/3+\delta}$, $a_2 = a_1 + \epsilon$ with $\epsilon = k^{-2/3-2\delta}$ and $t \asymp k^{2/3}$.

Let $a = a_1$, a_2 and $q = q_1$, q_2 be the remainders, then using also (15, 22) we have

$$
\|q\|_{H^s} \leq k^{-1+\delta} \ll a \omega t \asymp k^{-\delta} \ll 1,
$$

$$
a^2 \omega t \asymp k^{2\delta} \gg 1.
$$

So

$$
\|S_t\|_{\text{Lip}} \geq \frac{\|u_t^{(2)} - u_t^{(1)}\|_{H^s}}{\|u_0^{(2)} - u_0^{(1)}\|_{H^s}} \asymp a^2 \omega t \asymp k^{2\delta} \gg 1
$$

for $t \asymp k^{2/3}$, $k \gg 1$.

Using exactly the same argument for smooth g but Hermite instead of Airy function gives

$$
\|S_t\|_{\text{Lip}} \geq k^{0^+}
$$

for $t \asymp k^{1/2}$ in $H^{1/2-}$, cf. [C]. □

References

[A] R. Anton, *Strichartz inequalities for Lipshitz metrics on manifolds and the nonlinear Schrödinger equation on domains*, Bull. SMF *136* (2008), 27-65.

[BSS] M. Blair, H. Smith, C. Sogge, *On Strichartz estimates for Schrödinger operators in compact manifolds with boundary*, Proc. Amer. Math. Soc. *138* (2008), 247-256.

[B] J. Bourgain, *Fourier transformation restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations*, Geom. and Func. Anal. *3* (1993), 107-156.

[BGT1] N. Burq, P. Gerard, N. Tzvetkov, *Strichartz inequalities and the nonlinear Schrödinger equations on compact manifolds*, Amer. J. Math. *126* (2004), 569-605.

[BGT2] N. Burq, P. Gerard, N. Tzvetkov, *Bilinear eigenfunction estimates and the nonlinear Schrödinger equations on surfaces*, Invent. Math. *159* (2005), 187-223.

[BGT3] N. Burq, P. Gerard, N. Tzvetkov, *An instability property of the nonlinear Schrödinger equation on S^d*, Math. Res. Lett. *9* (2002), 323-335.

[C] F. Catoire, *Équation de Schrödinger non-linéaire dans le tore plat générique et le tore de révolution*, Thèse Université Paris-Sud (2010).

[CCT] M. Christ, J. Colliander, T. Tao, *Asymptotics, frequency modulation and low regularity ill-posedness for canonical defocusing equations*, Amer. J. Math. *125* (2003), 1235-1293.

[H] Z. Hani, *Global well-posedness of the cubic nonlinear Schrödinger on compact manifolds without boundary*, Arxiv: 1008. 2826 (2010).
[T] L. Thomann, *The WKB method and geometric instability for nonlinear Schrödinger equations on surfaces*, Bull. SMF 136 (2008), 167-193.

[W1] W.-M. Wang, *Supercritical nonlinear Schrödinger equations I: Quasi-periodic solutions*, Arxiv: 1007.0154 (2010).

[W2] W.-M. Wang, *Supercritical nonlinear Schrödinger equations II: Almost global existence*, Arxiv: 1007.0156 (2010).

[W3] W.-M. Wang, *Spectral methods in PDE*, Milan J. Math., 78, no. 2 (2010), Arxiv: 1009.0993.

Département de Mathématique, Université Paris Sud, 91405 Orsay Cedex, FRANCE

E-mail address: wei-min.wang@math.u-psud.fr