Original Research Article (Experimental)

In vitro flowering in Oldenlandia umbellata L.

Shuvra Kanta Behera a, Chandrasekaran Rajasekaran a, S. Payas a, Devanand P. Fulzele b, C. George Priya Dossa a, Ramamoorthy Siva a, *

a School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
b Plant Biotechnology and Secondary Metabolites Section, NABTD Bhabha Atomic Research Centre, Mumbai, 400 094, India

1. Introduction

Oldenlandia umbellata L., belonging to Rubiaceae is an antique Ayurvedic Indian herb known to yield red dye from its roots [1]. O. umbellata flowers are white to lilac in axillary or terminal pedunculate umbels, fruits are loculicidal capsule with reticulate seeds obscurely angled [2]. Heterostylism with distylous pedunculate umbels, fruits are loculicidal capsule with reticulate fl

leaves is used to treat poisonous bites, roots are used in asthma, bronchitis, and bronchial catarrh treatment [5,6] and also considered as good expectorant. In addition, the dye obtained from its roots has been used in diverse applications since ancient times. The red dye from its roots has been used in diverse applications for medicinal and dye extraction purposes [8]. Rapid industrialization, urbanization and global warming are the major causes in alteration of phenology, which laid tremendous pressure on natural habitat of O. umbellata. As a result, the natural stands of O. umbellata (Fig. 1a) are fast disappearing and listed under threatened category [11]. In addition, the above said causes also influencing the poor or non-flowering and seed formation pattern. O. umbellata grows wild in forests, barren rocky areas, and there is no propagation system available to replenish these stands [1]. We have reported a reliable protocol for induction of somatic embryogenesis and organogenesis for O. umbellata [8]. We have also made successful antheraquinones dye production using the root culture of this plant [11]. But there is no report about the in vitro flowering studies on any of the species of Oldenlandia till date. Thus, here, an effort has been made to develop an efficient protocol for in vitro flowering in O. umbellata.

* Corresponding author.
E-mail: siva.ramamoorthy@gmail.com
Peer review under responsibility of Transdisciplinary University, Bangalore.

http://dx.doi.org/10.1016/j.jaim.2017.02.011
0975-9476/© 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Materials and methods

2.1. Plant material

Plants of *O. umbellata*, located in the vicinity of the VIT University campus were used in this study. The taxonomic identity of the species was confirmed at the Rapinet Herbarium (Tiruchirapalli, India). Young emerging leaves, shoot apices, slender stems, and roots were collected from these plants, and used as source of explants.

2.2. Initiation of cultures

The calli were established as per our previous report [8]. For embryogenic callus induction, MS medium [12] supplemented with NAA (0.3 mg/l), BA (0.5 mg/l), and CM (0.1%) was used. Embryogenic calli were further subcultured on MS medium fortified with different combination and composition of NAA (0.15–3 mg/l), BA (1.5–5 mg/l) and CM (1%) was used respectively for root and shoot development.

For *in vitro* flowering, organogenic calli were subcultured onto MS medium supplemented with various concentrations of NAA (0.15–1.0 mg/l), BA (0.5–1.5 mg/l) with and without CM (0.4%). All cultures were incubated under 16 h photoperiod provided by 40 W fluorescent tubes (Philips India Ltd, Mumbai), 45 lmol m⁻² s⁻¹, at 22 ± 2 °C and 65% relative humidity. The cultures were maintained on similar media compositions and subcultured after every six weeks.

Each treatment consisted of five replications, and the whole experiment was repeated thrice. All data were subjected to one-way ANOVA using SIGMA-STAT 3.0 Version. Mean separation comparisons were made using Holm–Sidak test at P value of >0.05.

3. Results

All the experiments were conducted using slender stem explants. The callus induction and organogenesis was established from our previous report as mentioned in Table 1 [8].

Somatic embryogenic calli were subcultured onto a freshly prepared MS media supplemented with different concentrations of NAA and CM to induce root development. It was observed that within 6 weeks, roots were developed. In our previous report, we have used NAA (0.05–0.3 mg/l) with CM (0.5–1%) for root development and it was observed that 0.3 mg/l NAA with 1.0% CM resulted in maximum conversion of embryogenic calli to produce 18.8 roots per calli with 93% of response. In the present study, treatment with higher concentration of NAA ranging from 0.15 mg/l to 1.0 mg/l was carried out. Among the various concentrations used, NAA (0.7 mg/l), CM (0.4%) alone and with combination resulted in the highest number of roots (47.2) per embryogenic calli with 100% of response (Fig. 1b–d; Table 2).

For *in vitro* flowering, embryogenic calli were transferred to fresh media containing varying concentrations of BA, NAA and CM alone as well as with the combination. It was found that *in vitro* flowers were developed within three weeks, when MS media supplemented with NAA (0.7 mg/l), BA (1.5 mg/l) and 0.4% CM (Table 3). This combination yielded the highest number of flowers (22.8) per calli and best response (92.73%) (Fig. 1e–f). The *in vitro* regenerated plants were subjected to hardening (Fig. 1g).

4. Discussion

In vitro flowering facilitates understanding the physiology of flower and there are many physio-chemical factors influencing the *in vitro* flowering. According to Heylen and Vendrig [13], various important factors such as carbohydrates, growth regulators, light
Table 1
Influence of various growth regulators towards callus induction and organogenesis from slender stem explants of *Oldenlandia umbellata* L. (Siva et al., 2009).

Growth regulator	Concentration (mg/l)	Duration required for callus induction	% response	Duration required for organogenesis	% of Organogenesis induction
				Stem	Root
Control	–		–	–	–
NAA	3.0	8 weeks	25.3 ± 1.3	–	–
BA	5.0	6 weeks	89.76 ± 0.7	–	–
NAA	0.15	–	–	–	–
CM	1.0%	–	–	–	–
NAA + CM	0.05 + 1.0%	–	–	–	–
BA	1.5	–	–	6 weeks	93.42 ± 0.3
NAA + BA	0.3 ± 1.5	–	–	6 weeks	82.47 ± 0.6
NAA + BA + CM	0.3 + 1.5 + 1.0%	–	–	6 weeks	86.87 ± 0.6

– No response; # Root initiation was observed at the end of 4th week.

In the present study, when embryogenic calli grown in depletion of required nutrition transferred onto a fresh media induce more flowering. This finding is in accordance with other studies [15,16].

The nature of carbon source is an important factor for *in vitro* flowering. It has been reported by many researchers that sucrose is the best carbon source for formation of flowering [17,18]. Sucrose is not only a source of carbon and energy for plant growth and development, but also has a signaling function and modulates expression of genes that encodes enzymes, transporter and storage proteins [19]. In addition, sucrose controls growth [20] and flowering [21]. For analyzing the effect of sucrose on *in vitro* flowering, 2% to 5% of sucrose concentrations were used (Table 4). Among that, 2% showed maximum flower production (22.8) and good response (92.73%). The results of this study are in agreement with earlier reports [22,23].

The *in vitro* flowers were compared with *in vivo* flowers based on various parameters viz., days required for bud generation, length, breadth, bud color, flower color, calyx and corolla. As mentioned in Table 5, the *in vitro* flowers are like those in *in vivo* except the number of days required for bud generation, which is shorter (20.67 days) under *in vitro* condition. This too was observed before in species as wide apart as pea [19] and *Arabidopsis* [24] and was used to accelerate generation cycles for a faster breeding.

Table 2
Effect of NAA and Coconut milk on organogenesis of roots in *O. umbellata* L.

Growth regulator	Concentration (mg/l)	Duration required	% of Organogenesis induction	No. Root formed
Control	–	–	–	–
NAA	0.15	6 weeks	93.5 ± 0.5	15 ± 0.7
CM	4.0	6 weeks	96.7 ± 0.7	4.0
NAA + CM	0.05 + 0.2%	6 weeks	92.1 ± 1.9	5.4 ± 0.6
BA	1.0	6 weeks	98.2 ± 1.8	9.1 ± 0.8
NAA + BA	0.3 ± 1.5	6 weeks	97.1 ± 1.2	8.8 ± 0.3
NAA + BA + CM	0.3 + 1.5 + 1.0%	6 weeks	100.0 ± 0.3	47.2 ± 0.2

Values are mean ± SE, five cultures per treatment, repeated thrice. Within a column, means having the same letters are not significantly different at the 5% level according to Holm–Sidak test.

and pH of the culture medium responsible for *in vitro* flowering. In accordance, Kolar and Senkova [14] noted that *in vitro* flowering in *Arabidopsis thaliana* was accelerated by reduced mineral nutrient availability in medium. Similarly, our studies demonstrated that depletion of essential nutrients in culture medium boosted more flowering in *O. umbellata*.

Table 3
Effect of growth regulators for *in vitro* flowering in *O. umbellata* L.

Growth regulator	Concentration (mg/l)	Duration required	No. of flowers	% flower formed
Control	–	–	–	–
NAA	0.15	5 weeks	–	–
0.50	2.2 ± 0.4	62.34 ± 0.8		
0.70	2.1 ± 0.2	63.89 ± 1.6		
1.0	4.5 ± 0.5	67.43 ± 1.3		
0.4%	4.2 ± 0.2	68.91 ± 0.7		
BA	0.5	–	–	–
1.0	3.7 ± 0.3	70.12 ± 1.7		
1.5	5.5 ± 0.7	74.33 ± 1.2		
NAA + CM	0.7 + 0.4%	6 weeks	–	–
1.0	3.4 ± 0.2	69.22 ± 1.4		
BA + CM	0.5 + 0.4%	4 weeks	–	–
1.0	4.6 ± 0.3	69.87 ± 1.3		
1.5 + 0.4%	12.3 ± 0.8	78.65 ± 0.6		
NAA + BA + CM	0.7 + 1.0 + 0.4%	3 weeks	–	–
0.7 + 1.5 + 0.4%	22.8 ± 0.7	92.73 ± 1.4		
1.0 + 1.0 + 0.4%	15.8 ± 0.4	85.14 ± 0.8		
1.5 + 0.4%	18.7 ± 0.3	86.67 ± 1.1		

Values are mean ± SE, five cultures per treatment, repeated thrice. Within a column, means having the same letters are not significantly different at the 5% level according to Holm–Sidak test.

In the present study, when embryogenic calli grown in depletion of required nutrition transferred onto a fresh media induce more flowering. This finding is in accordance with other studies [15,16].

The nature of carbon source is an important factor for *in vitro* flowering. It has been reported by many researchers that sucrose is the best carbon source for formation of flowering [17,18]. Sucrose is not only a source of carbon and energy for plant growth and development, but also has a signaling function and modulates expression of genes that encodes enzymes, transporter and storage proteins [19]. In addition, sucrose controls growth [20] and flowering [21]. For analyzing the effect of sucrose on *in vitro* flowering, 2% to 5% of sucrose concentrations were used (Table 4). Among that, 2% showed maximum flower production (22.8) and good response (92.73%). The results of this study are in agreement with earlier reports [22,23].

The *in vitro* flowers were compared with *in vivo* flowers based on various parameters viz., days required for bud generation, length, breadth, bud color, flower color, calyx and corolla. As mentioned in Table 5, the *in vitro* flowers are like those in *in vivo* except the number of days required for bud generation, which is shorter (20.67 days) under *in vitro* condition. This too was observed before in species as wide apart as pea [19] and *Arabidopsis* [24] and was used to accelerate generation cycles for a faster breeding.

Table 4
Effect of sucrose on *in vitro* flowering in *O. umbellata* L.

Sugrose (%)	In vitro	
	% of cultures producing flower buds	Number of flowers per culture
Control (2%)	92.73	22.8 ± 0.7
3	90.73	13.2 ± 0.3
4	85.73	13.5 ± 0.2
5	72.73	10.6 ± 0.5

Table 5
Comparison of *in-vivo* and *in-vitro* flowers in *O. umbellata* L.

Characters	In-vivo	In-vitro
	Days required for bud generation	
Length	3.5 ± 0.3	3.7 ± 0.1
Breath	1.8 ± 0.2	1.9 ± 0.3
Bud color	Pinkish white	Pinkish white
Flower color	White	White
Calyx	1.2 ± 0.5	1.3 ± 0.3
Corolla	2.3 ± 0.3	2.4 ± 0.2
Flowering is a major event in the plant life cycle that has to be precisely timed for reproductive success. Both physiological and genetic studies have revealed the complexity of the mechanisms that tightly control the apical meristem switch from vegetative to reproductive growth [25]. This distinctive phase in plant developmental stage is controlled by various abiotic factors [26,27]. The transformation of a vegetative meristem into a reproductive/flowering meristem involves various molecular and hormonal changes; this can be studied under an established in vitro flowering system [28]. Flower induction and regulation of flowering in in vitro condition helps us to study the flowering mechanism [29]. In vitro flowering depends on various abiotic and genetic factors [27]. Insights on flower physiology and development can be easily accessed by in vitro flowering study [30,31] and premature seed setting and self-incompatibility can also be studied. An ideal system to develop in vitro flowering if established can lead to rapid breeding of new varieties [32,33] and it has been reported in a number of plant species, for example in Withania somnifera [32], Kinnow mandarin [33], Streptocarpus nobiles [34], Parabitis nil [35], Ammi majus [36], Hypericum brasiliense [37], Bambusa edulis [38,39] and Psymorchis pusilla [40]; however, there is no report to date on any species of Oldenlandia. A flowering system in vitro is considered to be a suitable tool to understand the detailed aspects of flowering, floral initiation, floral organ development, and floral senescence [17,41].

5. Conclusion

Flowering is an important stage of plant life and complicated to understand. Though this plant has been used since ancient time in Ayurvedic medicine, no attempt has been made on in vitro flowering and this is the first report on in vitro flowering of this precious medicinal cum dye yielding plant. This study will help to conserve and incessant deliver of plant material throughout the year by knowing its in vitro flowering nature. This study will also helpful to understand fruit formation and seed production. This protocol also can be extended to plant breeding studies for the purpose of quick flowering and fruit formation under in vitro conditions.

Sources of funding

We sincerely thank for the grant offered by BRNS, Mumbai, India [2013/35/14/BRNS] to carry out this research work.

Conflict of interest

None.

Acknowledgements

Our sincere gratitude to the VIT university management for the moral support and infrastructure.

References
[1] Siva R. Status of natural dyes and dye yielding plants in India. Curr Sci 2007;92:916 – 25.
[2] Puliaiah T, Ramakrishnaiah V, Sandhya Rani S. Flora of Guntur district Andhra Pradesh India. Regency Publication; 2000. p. 193.
[3] Bahadur Bir. Heterotyism in Oldenlandia umbellata L. J Genet 1963;58(3): 429 – 30.
[4] Bahadur Bir, Rajam MV, Sahijram L, Krishnamurthy KV. Plant biology and biotechnology. Plant genomics and biotechnology, vol. II. Springer, Science; 2015. p. 323.
[5] Rakesh S, Srinivasan V, Saradha V, Hamsaveni G. In the vitro antibacterial activity of Hedyotis umbellata. Indian J Pharm Sci 2006;68:236 – 8.
[6] Gupta M, Mazumder UK, Thamilselvan V, Manikandan L, Senthilkumar GP, Suresh R, et al. Potential hepatoprotective effect and antioxidant role of methanolic extract of Oldenlandia umbellata in carbon tetrachloride induced hepatotoxicity in Wistar rats. Indian J Pharmacol Ther 2007;6:5–9.
[7] Siva R, Mudgal G, Rajesh D, Khan FN, Vijaikumar V, Rajasekaran C. Characterization of novel pH indicator of natural dye Oldenlandia umbellata L. Nat Prod Res 2009a;23:1210–7.
[8] Siva R, Rajasekaran C, Mudgal G. Induction of somatic embryogenesis and organogenesis in Oldenlandia umbellata L., a dye-yielding medicinal plant. Cell Tiss Transplant 2009b;98:205–11.
[9] Siva R. Assessment of Genetic Variations in Some dye yielding plants using isozyme data. Ph.D. thesis submitted to the, Tiruchirappalli, India: Bharathidasan University; 2003.
[10] Krishnamurthy KV, Siva R, Senthil TK. The natural dye yielding plants of Shivarayy hills of Eastern Ghats. In: Proceedings of national seminar on the conservation of Eastern Ghats; 2002. p. 151–3.
[11] Siva R, Sean M, Shuvra Behera K, Rajasekaran C. Anthraquinones dye production using root cultures of Oldenlandia umbellata L. Ind Crop Prod 2012;37:251–5.
[12] Murashige, Skoog. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1962;15:743–97.
[13] Heylen C, Vandenbussche F. How to get high frequency early flowering and shoot regeneration of tobacco tissue cultures. Physiol Plant 1962;15:473–8.
[14] Kolar J, Senkova J. Reduction of mineral nutrient availability accelerates senescence of Arabidopsis. J Plant Physiol 2007;165:1601–9.
[15] Pignol M, Schlichting CD. Reaction norms of Arabidopsis (Brassicaceae), III. Response to nutrients in 26 populations from a worldwide collection. Am J Bot 1995;82:1117–25.
[16] Pigliucci M, Whitton J, Schlichting CD. Reaction norms of Arabidopsis. I. Plasticity of characters and correlations across water, nutrient and light gradients. J Evol Biol 1995;8:421–38.
[17] Sharma V, Barkha K, Nidhi S, Anoop Kumar D, Vikash Singh J. In vitro flower induction from shoots regenerated from cultured auxillary buds of endangered medicinal herb Swertia chirayita H. Karst. Biotechnol Res Int 2014;1:1–5.
[18] Sri Rama Murthy K, Kondamudi K, Chalapathi R, Rao PV, Puliathu T. In vitro flowering – a review. J Agric Technol 2012;8:1517–36.
[19] Lunn JE, MacRae E. New complexities in the synthesis of sucrose. Curr Opin Plant Biol 2003;6:208–14.
[20] Ket NV, Hahn EJ, Park SY, Chakrabarty D, Peak KY. Micropropagation of an endangered orchid Anocetochilus forosanus. Biol Plant 2004;48:339–45.
[21] Ohta MA, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K. Effect of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 2001;127:525–61.
[22] Pignol M, Whitton J, Schlichting CD. Reaction norms of Arabidopsis. III. Plasticity of characters and correlations across water, nutrient and light gradients. J Evol Biol 1995;8:421–38.
[23] Tendolkar S, Grubisin D, Gaba Z, Missei D, Konjevic R. Sucrose effects on in vitro fruiting and seed production of Centaurea pulchellum. Biol Plant 2006;50:771–4.
[24] Sivakumar MV, Azeeza F, Palanisamy S, Kuttickattil A, Prosad K. Effect of sucrose on enhancing flower induction from shoot tip culture of Termitea curcuma. Plant Cell Tiss Organ Cult 2008;93:133–42.
[25] Dielen V, Lecouvet V, Dupont S, Kinet JM. In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant. J Expt Bot 2001;52:715 – 23.
[26] Sim GE, Loh CS, Ghai SP. High frequency early in vitro flowering of Dendrobium Madame Thong-In (Orchidaceae). Plant Cell Rep 2007;26:383–93.
[27] Junim HB, Ahmad M. High-frequency in vitro flowering of Marruya paniculata (L.) Jack. Plant Cell Rep 1999;18:764–8.
[28] Franklin G, Pius PK, Ignacimuthu S. Factors affecting in vitro flowering and fruiting of green pea (Pisum sativum L.). Euphytica 2000;115:65–73.
[29] Saxena SN, Kaushik N, Sharma R. Effect of abscisic acid and proline on in vitro flowering in Vigna aconitifolia. Biol Plant 2008;52(1):181–3.
[30] Carlson J, Leung WM. In vitro flowering and propagation of Lepidinella nan L. an endangered plant. N. J J Bot 1994;29:72–9.
[31] Kierkowska A, Havey MJ. In vitro flowering and production of viable pollen of cucumber. Plant Cell Tiss Organ Cult 2008;109:73–82.
[32] Singh B, Sharma S, Rani G, Virk GS, Zaidi AA, Nagpal A. In vitro flowering in embryogenic cultures of Kinnoun mandarin (Citrus nobilis Lour’ C. delicosa Tenora). Ath J Biotech 2006;5:1470–4.
[33] Saritha KV, Naidu CV. In vitro flowering of Withania somnifera Dunal. – an important antitumor medicinal plant. Plant Sci 2007;172:847–51.
[34] Floh EIS, Hando W. Effect of photoperiod and chlorogenic acid on morphogenesis in leaf discs of Streptocarpus nobilis. Biol Plant 2001;44:615–8.
[35] Groll R, E. Zapelhońka J, Jurkiewicz S, Kopcowiecz J. Induction and stimulation of in vitro flowering of Parbitis nil by cytokinin and gibberellins. Plant Growth Regul 2002;37:199–205.
[36] Pandre P, Purushott M, Srivastava PS. Variation in xanthotoxin content in Ammi majus L. cultures during in vitro flowering and fruited. Plant Sci 2002;162:583–7.
[37] Abreu IN, Azevede MTA, Solferini VM, Mazzafera P. In vitro propagation and isozyme polymorphism of the medicinal plant Hypericum brasiliense. Biol Plant 2003;47:629–32.

[38] Lin CS, Lin CC, Chung WC. In vitro flowering of Bambusa edulis and subsequent plantlet survival. Plant Cell Tiss Org Cult 2003;72:71–8.

[39] Lin CS, Lin CC, Chung WC. Effect of thidiazuron on vegetative tissue-derived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell Tiss Org Cult 2004;76:75–82.

[40] Vaz APA, de Cassia L, Riberiro F, Kerbauy GB. Photoperiod and temperature effects on in vitro growth and flowering of P. pusilla, an epiphytic orchid. Plant Physiol Biochem 2004;42:411–5.

[41] Goh CJ. Studies on flowering in orchids—A review and future directions. In: Proceeding of Nagoya International Orchid Show ’92 (NIOC); 1992. p. 44–9.