Assessment of Sedimentation Problem in Kenyir Hydropower Reservoir

CHOW M.F., SUBBRAMANIAM P., SIDEK L.M.

*Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia

*Chowmf@uniten.edu.my

Abstract. Sedimentation issue is becoming an emerging challenge in hydropower dam due to land use changes and frequent heavy storm in the recent decades. This study carried out an assessment on sedimentation problem in Kenyir hydropower reservoir in Malaysia based on hydrological, land use, topographic, soil erosion and dam capacity data. The results showed that the average live storage for Kenyir reservoir could be sustained at least for another 6774 years while dead storage can survive more than 5675 years. The number of year required for Kenyir reservoir to be fully deposited with sediment will be shorten to 3784 years for dead storage if 50% reduction in forest coverage.

1. Introduction
The growing need for renewable energy makes necessary to improve the management of hydropower dams in order to extend their lifespan and maintain the hydropower contribution to the global electricity production [1]. Understanding and management of sediment is very important for hydropower reservoirs in order to provide sustainable, long-term service at acceptable levels of environmental impact [2]. Accumulation of sediment in the dam impoundment (e.g., sedimentation) is considered as the major and most common threat to existing dam infrastructure. Uncontrolled human encroachment and drastic land use changes are the prominent factors that have contributed to the sedimentation problems in the reservoir [3,4,5,6]. The consequences of sedimentation problems that are expected are (1) loss of dead or/and life storage, (2) damages to turbines of hydropower plants and (3) impact to the river, especially downstream of the dam. Sediment coarser than 0.1 mm may greatly accelerate the erosion of turbines parts; even smaller grain sizes may cause damages if containing quartz [7,8,9]. It may be the main siltation problem for high head hydropower. It is evident that most hydropower schemes are located in the mountainous area with courser bed materials in the inflowing rivers. Consequently, the monitoring of sedimentation in hydropower dams is considered as a priority and immediate solutions must be implemented to improve the management of existing reservoirs, particularly those used for hydropower. Guo and Cao [2] provided the experience of Sanmenxia
Reservoir showing that the having optimal operation mode and cascade dams upstream greatly reduces the sedimentation in the downstream reservoirs and in the long run prolongs the lifespan of the downstream reservoirs. Sumi [10] present their finding on the effect of sediment flushing and environmental mitigation measures in the Kurobe River for two major dams namely Unazuki and Dashidaira. It was concluded that drawing sediment while operating at low water level significantly improves the flushing efficiency. Assessments of the rates of reservoir sedimentation are crucial for calculating a dam’s life expectancy and for optimizing dam operations, whether for purposes of irrigation, hydroelectricity or flood control [11]. Sedimentation issue is becoming an emerging challenge in hydropower dam in Malaysia due to land use changes and frequent heavy storm in the recent decades [12,13,14]. Therefore, this assessment study is aimed to provide sedimentation analysis in Kenyir hydropower dam in Malaysia based on present and future land use change scenarios.

2. Methodology

2.1. Study Area
Kenyir Dam is approximately 40 km inland from Kuala Terengganu and is located at approximate latitude 5º 1’ 20” North and longitude 102º 54’ 30” East. The Kenyir dam is built between 1978 until 1986 as a rockfill clay core dam. Kenyir Dam used to be the largest dam in Malaysia in terms of reservoir surface area and gross storage before Bakun Dam’s impoundment in 2011, with a large man-made lake surface area of approximately 369 km² at Full Supply Level (FSL), and gross storage volume of 13.6 billion m³ at FSL. The distance of dam from the main inflowing river mouth is around 60 km. In addition, Kenyir Dam commands a catchment area of 2,600 km². Kenyir reservoir has six major tributaries, namely Sg. Terengganu as the main river, Sg. Terengan, Sg. Cacing, Sg. Petang, Sg. Tembat and Sg. Petuang. Further details of Kenyir Dam are shown in Table 1 below. Kenyir reservoir catchment consists of 21 sub-catchments and the area size for each sub-catchment is summarized in Table 2. The average annual rainfall in Kenyir reservoir catchment is 4245 mm while annual evaporation rate is 1500 mm with temperature ranges between 21°C to 34°C. The time series of annual rainfall from 1987 to 2014 at Kenyir reservoir is shown in Figure 1. There are three major soil series in Kenyir reservoir catchment, which consists of 82.5% of steep land soil, 14.3% of Kuala Brang-Kedah-Serdang and 3.2% of Rengam-Bukit Temiang. The land use distribution of Kenyir catchment consists of 52.83% of natural forest, 34.23% of water body, 5.19% of transportation and road reserves, 5.0% of public utilities, 0.46% of residential, 0.33% of leisure and recreational area, 0.2% of infrastructure and utility and 1.74% of industrial area, respectively.

Item	Unit	Value
Length of Dam	[m]	800
Height of Dam	[m]	150
Spillway Length	[m]	140
Dam Crest Elevation	[mRL]	+155
Maximum Flood Level	[mRL]	+153
Full Supply Level	[mRL]	+145
Minimum Operating Level	[mRL]	+120
Lake Area	[km²]	369
Catchment Area	[km²]	2612
Gross Storage	[m³]	13.6 x 10⁹
Live Storage	[m³]	7.4 x 10⁹
Name of Power Station		Sultan Mahmud
Installed Capacity	MW	4 x 100
Average Annual Energy Output	GWh	1,600

Table 1. Details of Kenyir Dam
Table 2. Area size for each sub-catchment of Kenyir reservoir

Sub-Catchment	Area (KM2)	Sub-Catchment	Area (KM2)
K1	426	K12	37
K2	117	K13	55
K3	281	K14	151
K4	211	K15	74
K5	69	K16	38
K6	100	K17	98
K7	141	K18	139
K8	127	K19	126
K9	117	K20	13
K10	96	K21	4
K11	192		

Total sub-catchments area = 2612 km2

Figure 1. Time series of annual rainfall from 1987 to 2014 at Kenyir reservoir

The design rainfall of specific average recurrence interval (ARI) at Kenyir reservoir catchment is estimated and the results are presented in Table 4. The Universal Soil Loss Equation (USLE) is used to calculate the catchment soil erosion rates in this study. The USLE is shown in Equation 1 as below:

$$A = R \times K \times L \times S \times C \times P$$

Where,

- A = Soil loss in ton/ha/yr
- R = Rainfall erosivity factor (MJ mm ha$^{-1}$hr$^{-1}$)
- K = Soil erodibility factor
- LS = Topographic factor where L is the length and S is slope steepness in dimensionless unit
- C = Crop management factor (represent the degree of soil erosion under crop cover compared to bare earth) in dimensionless unit
- P = Conservation practice factor (represent mitigation and conservation measures taken compared to no measures taken) in dimensionless unit

For this study, the Sediment Delivery Ratio (SDR) curve proposed by Balamurugan was used to determine the sediment yield for each sub-catchment. The SDR curve is applied for whole catchments which are predominantly forested with similar sediment delivery characteristics. The SDR is inversely proportional to the catchment size. The sediment yields are computed as the product of soil erosion rate from each sub-catchment with the corresponding SDR values.

From the total sediment yield rates, the estimation of year required to fully deposit of sediment in Kenyir reservoir can be calculated by using Equation 2 below:
Year required to fully deposit of sediment = \(\frac{\text{Volume of Storage (m}^3\text{)}}{\text{Total Sediment (m}^3\text{/yr)}} \)

(2)

3. Results and Discussion

The results of sediment yield for each sub-catchment of Kenyir reservoir catchment is presented in Table 3. For the present situation, estimation of the catchment erosion rate was based on current land use conditions. The average erosion rate across the catchment is 2.4 tonnes/ha/yr. The average erosion rate is considered as ‘low’ according to Department of Agriculture (DOA) soil erosion rankings and within expectation for a predominantly forested region of moderate elevation and slope. The estimated total annual flow and sediment transport for return periods of 2, 5, 10, 50 and 100 ARIs are summarized in Table 4. The number of years required to be fully deposited with sediment in Kenyir reservoir for dead, live and gross storages are calculated and the results are presented in Table 4. For ARIs between 2 and 100 years, the number of years required for Kenyir reservoir to be full deposited with sediment ranges from 12449 to 30212 years. The results show that the average live storage for Kenyir reservoir can be sustained at least for another 6774 years while dead storage can survive more than 5675 years.

Table 3. Estimated sediment yield for each sub-catchments of Kenyir reservoir catchment

Sub-Catchment	Sediment yield	Sediment yield		
	tonnes/yr	tonnes/ha/yr	tonnes/yr	tonnes/ha/yr
K1	60114	1.4	11188	3.0
K2	22770	1.9	11040	2.0
K3	57749	2.1	31287	2.1
K4	35884	1.7	22806	3.1
K5	18248	2.6	8041	2.1
K6	25443	2.6	22796	2.3
K7	39528	2.8	29365	2.1
K8	24434	1.9	27151	2.2
K9	25779	2.2	5096	3.9
K10	23904	2.5	1537	4.1
K11	34532	1.8		

Total sub-catchments area = 2612 km²

Table 4. Estimated sediment yield for each sub-catchments of Kenyir reservoir catchment

Condition	Present catchment condition					
Return period ARI	2	5	10	50	100	
Catchment rainfall	411	582	712	975	1087	
Peak flow (m³/s)	3718	5277	6466	8880	9899	
Total flow (MCM)	1236	1679	2018	2706	2997	
Total Sediment	693238	853227	998355	1437772	1682334	
	m³/yr	450155	554043	648283	933618	1092425
Year required to be fully deposited	Gross storage (m³)	30212	24547	20978	14567	12449
	Live storage (m³)	16439	13356	11415	7926	6774
	Dead storage (m³)	13773	11190	9564	6641	5675
The future land use change conditions on runoff and sediment transports into the Kenyir reservoir are also investigated in this study. Table 5 shows the estimations of flow and sediment yield under the future land use scenario. The result show that if 10% of the forest have been converted to other purposes, the increase in peak flow and peak water elevation is minimal. However, when the conversion increases to 50%, the peak flow increased by another 370 m3/yr and water level increased by about 0.1 m. The number of year required for Kenyir reservoir to be fully deposited with sediment will be shorten to 3784 years for dead storage if 50% reduction in forest coverage. Even though it seen like the Kenyir reservoir still can sustain for more than 3500 years, but it is important to conserve the catchment especially near the dam site in order to prevent the high soil erosion occurred and deposit the sediment at the water intake point of Kenyir dam.

Condition	Present	Future 100 yr ARI
Percentage reduction in forest from existing coverage	-	10%
		25%
		50%
Peak flow (m3/s)	9899	10011
		10132
		10267
Total flow (MCM)	2997	3001
		3007
		3018
Peak water elevation (m)	149.94	149.9
		150.0
		150.0
Total Sediment		
tonnes/yr	1682334	1850568
m3/yr	1092425	1201667
		1365531
		1638637
Year required to be fully deposited		
Gross storage (m3)	12449	11318
		9959
		8300
Live storage (m3)	6774	6158
		5419
		4516
Dead storage (m3)	5675	5159
		4540
		3784

4. Conclusion
The assessment of sedimentation problem in Kenyir hydropower reservoir has been carried out based on hydrological, land use, topographic, soil erosion and dam capacity data. The results showed that the average live storage for Kenyir reservoir could be sustained at least for another 6774 years while dead storage can survive more than 5675 years. The number of year required for Kenyir reservoir to be fully deposited with sediment will be shorten to 3784 years for dead storage if 50% reduction in forest coverage. Even though the sedimentation problem in Kenyir reservoir is not in critical stage but the development activities will contribute to the increasing level of sedimentation. A more comprehensive monitoring program is recommended so that the results can be used confidently in future flow and sediment load predictions.

References
[1] De Miranda, R. B. and Fábio Mauad, F(2015). Influence of Sedimentation on Hydroelectric Power Generation: Case Study of a Brazilian Reservoir. Journal of Energy Engineering, Volume 141 Issue 3 - September 2015.
[2] Guo, Q & Cao, W(2009): Reservoir Sedimentation And Its Control.
[3] M. F. Chow, J. C. Huang and F. K. Shiak, Phosphorus Dynamics along River Continuum during Typhoon Storm Events, Water 9(7), 537 (2017).
[4] M. F. Chow, F. K. Shiah, C.C. Lai., H. Y. Kuo., K. W. Wang., C. H. Lin., T. Y. Chen., Y. Kobayashi and C. Y. Ko, Evaluation of Surface Water Quality using Multivariate Statistical Techniques: a Case Study of Fei-Tsui Reservoir Basin, Taiwan, Environ. Earth Sci. 75, 1-15 (2016).

[5] M. F. Chow and Z. Yusop, Sizing the First Flush Pollutant Loading of Stormwater Runoff from Tropical Urban Catchments, Environ. Earth Sci. 72, 4047-4058 (2014).

[6] H. Haris, M. F. Chow, F. Usman, L. M Sidek, Z. A. and M. D. Norlida, Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices, IOP Conference Series: Earth and Environmental Science 32(1), 012022, (2016)

[7] P. R. Ghorpade, A. R. Chavan, H. P. Kadam and S. N. Patil, De-Silting Artifice for Dams, IRJET 5(4), 588-591 (2018).

[8] ICOLD. 2003. Dams and Floods. Bulletin 125.

[9] ICOLD Bulletin 144: Costs Savings In Dams (2010)

[10] Sumi, T., Kobayashi, K., Yamaguchi, K. and Takata,Y.(2009) Study On The Applicability Of The Asset Management For Reservoir Sediment Management.

[11] Morris, G.L. and Fan, J(1998): Reservoir Sedimentation Handbook : Design And Management Of Dams , Reservoir, and Watersheds For Sustainable Use.

[12] M. F. Chow, M. F. Abu Bakar, M. A. A. Roslan, F. A. Fadzailah, M. F. Z. Idrus, N. F. Ismail, L. M. Sidek and H. Basri, Hydrological Performance of Native Plant Species within Extensive Green Roof System in Malaysia, ARPN J. of Eng. and Appl. Sci. 10(15), 6419-6423 (2015)

[13] M. F. Chow, Z. Yusop and M. E. Toriman, Level and Transport Pattern of Faecal Coliform Bacteria from Tropical Urban Catchments, Water Sci. Technol. 67(8), 1822-1831 (2013).

[14] TNBR. “Final Report Sediment Transport Study of Sg. Senang Berangan and Sg. Kenyir into Kenyir Lake Intakes”, (Kajang, Selangor: TNB Research Sdn. Bhd. 2014).

Acknowledgments
The authors would like to acknowledge the BOLD2025 fund (RJO: 10436494) provided by Tenaga Nasional Berhad (TNB) and assistants provided by IRMC Universiti Tenaga Nasional.