Anaphylaxis and Related Events Following COVID-19 Vaccination: A Systematic Review

Pradipta Paul, Emmad Janjua, Mai AlSubaie, Vinutha Ramadorai, Beshr Mushannen, Ahamed Lazim Vattoth, Wafa Khan, Khalifa Bshesh, Areej Nauman, Ibrahim Mohammed, MD, Imane Bouhali, Mohammed Khalid, and Dalia Zakaria, PhD

Abstract

The coronavirus disease 2019 (COVID-19), induced by the severe acute respiratory syndrome coronavirus 2, is responsible for a global pandemic following widespread transmission and death. Several vaccines have been developed to counter this public health crisis using both novel and conventional methods. Following approval based on promising efficacy and safety data, the AstraZeneca, Janssen, Moderna, Pfizer/BioNTech, and Sinovac vaccines have been administered globally among different populations with various reported side effects. Reports of life-threatening anaphylaxis following administration were of particular concern for both health care providers and the public. A systematic literature search using PubMed, Embase, Scopus, Web of Science, Science Direct, MedRxiv, and Lens.org databases identified relevant studies reporting anaphylaxis following vaccine administration. This systematic review includes 41 studies reporting anaphylaxis. A total of 7942 cases, including 43 deaths, were reported across 14 countries. Most cases occurred following the administration of the first dose. Importantly, the benefits of vaccination outweigh the risks of anaphylaxis. Subsequently, as populations continue to get vaccinated, it is important for health care providers to be able to recognize individuals at risk of developing anaphylaxis. Furthermore, they must be familiar with both the clinical hallmarks and treatment of anaphylactic reactions to minimize long-term sequelae and prevent death in vaccinated individuals.

Keywords

anaphylaxis, coronavirus, COVID-19, COVID-19 vaccine, inflammation, SARS-CoV-2
The Pfizer/BioNTech (BNT162b2) SARS-CoV-2 vaccine, distributed commercially as Comirnaty in Europe and Fosun Pharma in China, is composed of a nucleoside-modified mRNA coding for a mutated spike protein that is encapsulated and delivered in lipid nanoparticles through an intramuscular injection. The vaccine primarily induces CD4+ and CD8+ T-cell responses, resulting in high neutralizing antibody titers. Early approval from the United Kingdom’s Medicines and Healthcare Products Regulatory Agency on December 2, 2020, was followed by similar directions from the regulatory bodies of Canada and Bahrain, while the US Food and Drug Administration (FDA) approved it under emergency-use authorization on December 11, 2020. The European Medicines Agency granted a conditional marketing authorization on December 21, 2020, and the WHO authorized it for emergency use on December 31, 2020. Since then, the vaccine has been distributed in various regions under emergency and full approvals. Outside clinical trials, the first dose of the vaccine was administered in the United Kingdom on December 8, 2020, the United States on December 14, 2020, and Israel soon followed on December 20, 2020. As of June 2022, over 350 million doses of the Pfizer/BioNTech vaccine have been administered across the United States.

The Moderna (mRNA-1273) vaccine, distributed under the trade name Spikevax in Europe, is similar with respect to its structural components to the Pfizer/BioNTech vaccine. It consists of an spike protein-coding nucleoside-modified mRNA delivered using lipid nanoparticles and is also administered intramuscularly. It was approved under emergency-use authorization by the US FDA on December 18, 2020, and by Health Canada on December 23, 2020; the WHO followed suit on April 30, 2021. Official recommendations of 2 doses at an interval of 28 days, compared to 21 days for the Pfizer/BioNTech regimen, were found to induce CD4+ and CD8+ T-cell responses, leading to effective neutralizing antibody production. While the first dose of the vaccine outside of clinical trials was administered in the United States on December 21, 2020, over 223 million doses have been administered across the nation as of June 2022.

The Oxford/AstraZeneca (AZD1222) vaccine, distributed under the trade names of Covishield in the Indian subcontinent and Vaxzevria in Europe, consists of a replication-deficient chimpanzee adenovirus vector containing the coding sequence for the SARS-CoV-2 spike protein, in addition to a tissue plasminogen activator leader sequence. The UK Medicines and Healthcare Products Regulatory Agency first approved the vaccine for emergency use on December 30, 2020; India and the EU followed on January 1, 2021, and January 29, 2021, respectively. The vaccine has not yet been approved in the United States. Since administration of the first dose of the Oxford/AstraZeneca vaccine in the United Kingdom on January 4, 2021, the country has since ordered about 100 million doses from the manufacturer, while AstraZeneca has reported orders of more than two billion as of November, 2021. The recommended dosage by the WHO is 2 doses delivered intramuscularly with an interval of 8–12 weeks.

Johnson and Johnson’s “Janssen” (Ad26.COV2.S) vaccine consists of a replication-incompetent adenovirus type 26 (Ad26) vector encoding the gene for the SARS-CoV-2 spike protein in addition to other inactive stabilizers. The US FDA and the EU approved the vaccine for emergency use on February 27, 2020, and March 11, 2020, respectively, followed by the WHO and the United Kingdom on March 29, 2020, and May 28, 2020, respectively. It is recommended as a 1-dose vaccine administered intramuscularly. Since its rollout in March 2021, over 18 million doses have been administered across the United States alone.

CoronaVac, also known as Sinovac COVID-19 vaccine, involves a whole inactivated SARS-CoV-2 virus prepared by isolating a CN2 strain of virus from a patient’s bronchoalveolar lavage fluid, which was then purified, adapted, and cultured en masse using Vero cells, inactivated using β-propiolactone, and finally mixed with an adjuvant of aluminum hydroxide. China approved the vaccine for emergency use among its health care workers by late August 2020, followed by a general-use green light in early February 2021. On June 1, 2021, the WHO validated the emergency use of the vaccine with high safety confidence among healthy adults. As of October 2021, Sinovac accounted for the largest number of vaccine deliveries around the globe, with figures just shy of 2 billion doses.

With over 6.33 million doses of COVID-19 vaccines being administered daily, 12 billion doses have been administered as of June 2022, with about 66.3% of the world having received at least 1 dose of any vaccine. Extensive clinical trials were held to test the efficacy and safety of the new COVID-19 vaccines. Across
all age groups, the Pfizer/BioNTech and Moderna vaccines were initially shown to have efficacy rates of 95% and 94.1%, respectively, while the AstraZeneca vaccine was shown to be 70.4% effective following the administration of 2 doses.22,45,46 Furthermore, the Sinovac vaccine was shown to be 83.5% effective against polymerase chain reaction–confirmed symptomatic cases, while the Janssen vaccine was reported to have an efficacy of 66% for the same.47,48

A protocol regarding the “Background Rates of Adverse Events of Special Interest (AESIs) for COVID-19 Vaccine Safety Monitoring” was published by the US FDA’s Center for Biologics Evaluation and Research. Possible side effects listed included acute myocardial infarction, transverse myelitis, appendicitis, Bell palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain-Barre syndrome, both hemorrhagic and nonhemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, and anaphylaxis.49

Anaphylaxis refers to an acute, systemic type I hypersensitivity reaction mediated by release of mast cell and basophil contents in response to an allergen that is potentially fatal without rapid treatment. Anaphylactoid reactions, on the other hand, produce similar clinical manifestations as anaphylaxis without IgE mediation.50 Anaphylaxis in response to vaccination remains to be a rare event, reported to have an incidence of 1.31 (95% CI, 0.90–1.84) per million doses, that usually occurs within an hour of exposure to allergens found in drugs, toxins, food, and vaccines.51 According to Nokleby,52 anaphylactic reactions have been reported following administration of almost all vaccines, including the measles-mumps-rubella, diphtheria, human papillomavirus (HPV), hepatitis, and rabies vaccines. Importantly, reports of anaphylaxis following administration of vaccines against COVID-19 have also emerged in months following vaccine rollout.53

This systematic review compiles and analyzes data concerning reports of anaphylaxis or anaphylactoid reactions following COVID-19 vaccination as published in literature. As most studies used the Brighton Collaboration Criteria (BCC)54 to classify a reaction as anaphylaxis, this was used as the primary sorting factor to warrant inclusion of cases; if not explicitly stated, clinical symptoms were graded using the BCC. Although first introduced in 2003, the BCC has been widely used by clinicians worldwide to report vaccine-associated adverse events; although we acknowledge the presence of World Allergy Organization 2020 guidelines and the recent move away from the use of the BCC,55 primary reevaluation of these symptoms would likely lead to inaccuracies and inconsistencies that would render their reporting of little value. Future primary studies reporting vaccine-associated anaphylaxis should use more recent guidelines (such as the World Allergy Organization) while reporting cases; for this, compatible and updated reporting systems must be first put in place.

Methods

Information Sources and Search Strategy
A comprehensive search strategy has been summarized in Table 1.

Eligibility Criteria
We made no restrictions with regard to country of vaccination, age, or sex. Duplicated articles and articles that did not have any primary data, such as review articles, were excluded from the study.

Study Selection and Data Collection
During the screening phase, the studies that reported anaphylaxis or anaphylactoid reactions after COVID-19 vaccination were selected regardless of country, age, or sex. Studies that were not in English or those that did not have primary clinical data were also excluded. Title, abstract, and full-text screening were conducted by 2 different reviewers for each study using Covidence, and disagreements were resolved by consensus. Demographic and clinical data of patients reported in each study (where available) were extracted independently by 2 different reviewers, and disagreements were resolved by consensus.

Data Items
Extracted data included age, sex, comorbidities, treatment/interventions, and clinical progress. Categorical variables were expressed as percentages, while continuous variables were expressed as mean and standard deviation or range of results.

Risk of Bias and Quality Assessment
The quality of the included studies was assessed using the different methods depending on the type of study. The Newcastle-Ottawa Quality Assessment Scale57 was used to assess the cohort studies. The Jadad scale58,59 was used to assess the randomized clinical trials, and the scale developed by Murad et al60 was used to assess the case reports and case series. Quality assessment was conducted by 2 independent reviewers.

Results
The screening protocol involved multistep inclusion criteria. Excluding duplicates, 19,908 imported inclusion papers were screened, with 381 qualifying for full-text screening. Of these, 186 lacked data of interest, 107 lacked primary data, and 3 lacked enough primary data. Another 8 were not in English, 6 were ongoing studies,
Table 1. Summary of Search Strategy, Inclusion and Exclusion Criteria, and Quality Assessment Methodology

Databases searched	PubMed, Medline (Ovid, 1946–April 2021), Embase (Ovid, 1974–2021), Scopus, Web of Science, Science Direct, MedRxiv, and Lens.org. The search was updated in April 2022 using PubMed
Search strategy	("severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR severe-acute-respiratory-syndrome-coronavirus-2[Title/Abstract] OR 2019-ncov[Title/Abstract] OR covid-19[Title/Abstract] OR covid19[Title/Abstract] OR covid2019[Title/Abstract] OR ncov2019[Title/Abstract] OR ncov-2019[Title/Abstract] OR sars-cov-2[Title/Abstract] OR coronavirus[Title/Abstract] OR coronaviruses[Title/Abstract] OR corona-virus[Title/Abstract] OR corona-viruses[Title/Abstract] OR covid[Title/Abstract] OR hcov[Title/Abstract] OR "Wuhan Coronavirus"[Title/Abstract] or "coronavirus"[MeSH Terms] or "COVID-19"[MeSH] or "SARS-CoV-2"[MeSH]) AND (Vaccin*[Title/Abstract] or "Vaccination"[MeSH] or "COVID-19 Vaccines"[MeSH])

Inclusion criteria: Studies that reported anaphylaxis or anaphylactoid reactions following COVID-19 vaccination were selected regardless of country, age, or sex. Only studies that followed the Brighton Collaboration Criteria for reporting anaphylaxis were included.

Exclusion criteria: Duplicated articles and articles that did not have any primary data such as review articles, and studies that were not in English or those that did not have primary clinical data were also excluded.

Quality assessment scales for corresponding type of studies:
- Newcastle-Ottawa Quality Assessment Scale for cohort studies
- Jadad scale for randomized controlled trial
- Murad Scale for case reports/series

Figure 1. Flowchart of screening and study selection protocol.

16 were duplicates, 1 study was performed in animal models, 3 studies were still unpublished, and 10 did not meet the criteria for anaphylaxis, ultimately leaving 41 included studies (Figure 1).

Types of Studies

Only 41 studies met our inclusion criteria; these consisted of 18 case series/reports, 18 cohort studies without control groups, and 4 cohort studies with control groups, one of which was a double-blinded randomized clinical trial. The last study, Kaplan et al., contained both a cohort analysis and a case series.

Of the 18 case series/reports, 7 were from the United States, 2 of which were from the Vaccine Adverse Event Reporting System (VAERS), 2 were from the United Kingdom, Canada, and Singapore each, while Lebanon, Nepal, Turkey, Sweden, and Thailand each had 1. Of the 22 cohort studies, 13 were from the United States, 3 of which used the VAERS database; 3 were from the Republic of South Korea, and 2 were from Japan, while Poland, Australia, Ecuador, and Singapore each had 1. The clinical trial was from the United States.

There were 6 studies that used the US VAERS database and derived their data at different periods of time. One study also had independent data from the European EudraVigilence database, which was included in the main analysis of this review. To avoid repetition of reporting cases of anaphylaxis from the same database and from other independent studies reporting cases across the United States, the VAERS-based data from these 6 were analyzed in isolation. The specific demographics of each study and the quality assessment results can be found in Table S1.

Demographic and Clinical Data

Table S1 summarizes the demographic and clinical data of the reported cases in the 41 included studies. A total of 7942 cases of anaphylaxis were reported among these studies, not including the data from the VAERS...
Figure 2. Total number of cases of anaphylaxis or related events following COVID-19 vaccination segregated according to vaccine manufacturer and sex of recipients. From 7942 total reported events, a total of 5288 (295F, 99M, 4894NR) individuals received the Pfizer/BioNTech vaccine; 1073 (74F, 23M, 976NR) received the Moderna vaccine; 3 (3NR) received either the Moderna or Pfizer/BioNTech vaccines; 1435 (102F, 17M, 1316NR) received the AstraZeneca vaccine; 16 (15F, 1M) received the Sinovac vaccine; and 127 (15M, 6F, 106NR) received the Janssen vaccine. *The studies did not clarify the number of recipients of each vaccine. F, female; M, male; NR, not reported.

database. In total, 5288 cases of anaphylaxis occurred following administration of the Pfizer/BioNTech vaccine, 1073 after the Moderna vaccine, 3 after either the Pfizer/BioNTech or Moderna vaccine, 1435 after the AstraZeneca vaccine, 127 after the Janssen vaccine, and 16 after the Sinovac vaccine (Table S2–S4).

The numbers from McMurry et al100 were not compiled with the above results, as that cohort has been presented in a person-days format, which cannot be distinguished from the results of other studies compiled in this review. They are still available to view in Table S1.

Participants covered a wide age range, including data from participants aged <18 years, with various studies reporting ages as a range or a mean, with or without reporting the interquartile ranges or standard deviations. The eldest subjects were 95 and 68 among the cohort and case studies, respectively. The reported cases of anaphylaxis included 501 females, 146 males, and 7295 cases for which sex was not reported (Figure 2).

Some studies did not report whether anaphylaxis developed after the first or the second dose, which included 7734 cases, while 176 reactions were reported following the first dose, 30 after the second dose, and 2 after the third dose (Figure 3A). Furthermore, Figure 3B illustrates the time between vaccination and the onset of the symptoms.

Across the studies, there are 43 cases of known death. In all others, the subjects either recovered or their clinical outcome was unreported (Figure 4).

Among the six VAERS studies, a minimum of 195.5 million doses of the Pfizer/BioNTech vaccine, 139.97 million doses of the Moderna vaccine, and 13.6 million doses of the Janssen vaccine were administered from December 14, 2020, to August 6, 2021. Anaphylaxis was reported following a minimum of 965 Pfizer/BioNTech doses, 646 Moderna doses, and 101 Janssen doses. More details are presented in Table 2.

Discussion

Beyond being an acute, life-threatening condition, anaphylaxis is associated with a wide range of clinical presentations and triggering mechanisms. Subsequently, it is difficult to establish strict diagnostic criteria for anaphylaxis.101 Furthermore, as corticosteroids and antihistamines are generally insufficient to counter anaphylaxis due to their slow action onset time, it is important to identify it so that epinephrine can be administered, preventing serious complications and death.101

In most of the studies with diagnostic methodologies available, anaphylaxis was diagnosed either according to symptoms and treatment or patient self-report, excluding Rodriguez-Nava et al,62 where the EVANS criteria was used. Several studies used the BCC anaphylaxis criteria or a clinical panel to assess whether patients met the criteria for anaphylaxis.

Anaphylaxis Following COVID-19 Vaccination

Clinical Trials. Anaphylaxis has not been noted to be a side effect for any of the vaccine trials excluding the mRNA-1273/Moderna trial,22 which reported 1 case among the vaccination cohort of 15,166 participants; this was found to be insignificant compared to the placebo group as well as other vaccines. Drug trials for Pfizer/BioNTech and Moderna also suggested that while there would be a higher prevalence of side effects, they would be of lower severity, while severe side effects (like anaphylaxis) are expected to be rarer.

Cohort Studies. A total of 7858 (425 male, 138 female, 7295 not reported) cases of anaphylaxis were reported across the cohort studies.

Subjects throughout these studies generally depicted statistically equivalent anaphylactic rates among the vaccines. For example, Klein et al80 reported a rate of 5.1 per million doses and 4.8 per million doses for the Pfizer/BioNTech and Moderna vaccines, respectively, noting that they were comparable. However, Arroliga et al91 noted an increased risk of anaphylaxis following administration of the Pfizer/BioNTech vaccine compared to Moderna, citing rates of 11.1 per million and 2.5 per million, respectively. For the AstraZeneca vaccine, most cases developed within the first 30 minutes after administration. No patient deaths were reported among these data. Song et al63 reported 23 of 2426 cases following the AstraZeneca vaccine and 1 of 52...
The Journal of Clinical Pharmacology / Vol 62 No 11 2022

Figure 3. Total number of cases of anaphylaxis or related events following COVID-19 vaccination segregated according to vaccine manufacturer and the timing of anaphylaxis: (a) Total number of cases of anaphylaxis following COVID-19 vaccination segregated according to dose number before the episode. A total of 5288 (116 first, 19 second, 2 third, 5151 NR) individuals received the Pfizer/BioNTech vaccine; 1073 (42 first, 8 second, 1023 NR) received the Moderna vaccine; 3 (3 first) received either the Moderna or Pfizer vaccines*; 1435 (2 first, 1433 NR) received the AstraZeneca vaccine, 16 (13 first, 3 second) received the Sinovac vaccine, and 127 (127 NR) participants received the Janssen vaccine. (b) Total number of cases of anaphylaxis following COVID-19 vaccination segregated according to vaccine manufacturer and time interval until the display of symptoms among all studies. A total of 5288 (353 ≤ 30m, 71 > 30m, 4864 NR) individuals received the Pfizer/BioNTech vaccine; 1073 (78 ≤ 30m, 16 > 30m, 979 NR) received the Moderna vaccine; 3 (3 NR) received either the Moderna or Pfizer/BioNTech vaccines*; 1435 (91 ≤ 30m, 28 > 30m, 1316 NR) received the AstraZeneca vaccine; 16 (10 ≤ 30m, 6 > 30m) received the Sinovac vaccine; and 127 (20 ≤ 30m, 1 > 30m, 106 NR) received the Janssen vaccine.*The studies did not clarify the number of recipients of each vaccine. ≤ 30m: onset of symptoms within 30 minutes, > 30m, onset of symptoms after 30 minutes; NR, not reported.

Table 2. Summary of Studies Reporting Cases of Anaphylaxis Following COVID-19 Vaccine Administration in the United States Based on Data From the VAERS Database

Reference	Initial Date	Final Date	Vaccine Manufacturer	Reported Cases	Doses Administered (in Millions)	Rate of Cases per Million Doses
Shimabukuro et al, 2021	December 14, 2020	December 23, 2020	Pfizer/BioNTech	21	1.89	11.1
CDC, 2021	December 21, 2020	January 10, 2021	Moderna	10	4.04	2.5
Shimabukuro et al, 2021	December 14, 2020	January 18, 2021	Pfizer/BioNTech	47	9.94	4.7
Nava et al, 2021	December 1, 2020	March 5, 2021	mRNA vaccines (Pfizer/BioNTech AND Moderna)	185	-	-
Singh et al, 2022	January 1, 2021	April 30, 2021	Pfizer/BioNTech	297	127.13	2.34
			Moderna	392	104.61	8.23
Maltezou et al, 2021	December 21, 2020	August 6, 2021	Pfizer/BioNTech	965	195.90	4.93*
			Moderna	646	139.97	4.62*
			Janssen	101	13.60	7.43*

*Calculated on the basis of number of cases (of anaphylaxis) and total doses (of each vaccine type) administered reported in paper.

following the Pfizer/BioNTech vaccine in a cohort of health care workers from 3 institutions in South Korea, that is, incidences of 0.9% and 1.9%, respectively, which was found to be insignificant between the 2 (P = 0.447); however, these adverse events are self-reported and hence may not be fully accurate. Furthermore, only the single Pfizer/BioNTech case fit the BCC for anaphylaxis. In addition, the incidence may be overstated, as those who experienced adverse events were more likely to respond to the survey in the study than those who did not.

Interestingly, Wentrors et al.82 a cohort study with controls, reported 2 cases of severe anaphylactic reaction and 1 case of anaphylactic shock among its Pfizer control group (subjects with no allergic history) and 1 case of severe anaphylactic reaction among its AstraZeneca control group (subjects with no allergic history) but not its test groups (subjects with an allergic
Figure 4. The total number of cases of anaphylaxis following COVID-19 vaccination segregated according to vaccine manufacturer and clinical outcome. A total of 5288 (4952R, 28D, 308NR/NS) individuals received the Pfizer/BioNTech vaccine; 1073 (1014R, 3D, 56NR/NS) received the Moderna vaccine; 3 (3R) received either the Moderna or Pfizer/BioNTech vaccines; 1435 (1331R, 10D, 94NR/NS) received the AstraZeneca vaccine; 16 (16R) received the Sinovac vaccine; and 127 (104R, 2D, 21NR/NS) received the Janssen vaccine. The studies did not clarify which vaccine each participant received. Additionally, Shimabukuro et al98 did not provide enough data to distinguish between which vaccine led to recovery and which were not reported (61R, 5NR) so all are included in the not recovered group. D, died; NR/NS, not reported/not specified; R, recovered.

history). Among other cohorts with controls, there was no significant difference in anaphylaxis rates between groups.

Case Reports and Case Series. The case reports/series reported a total of 84 cases (76 female, 8 male) of patients who experienced anaphylaxis.

Several case reports detailed presentations that are representative of the array of symptoms possibly fitting an anaphylactoid or anaphylaxis-like reaction and the demographic of patients generally shown to have anaphylaxis following vaccination. Park et al94 reported anaphylaxis in a 34-year-old woman with a history of childhood asthma and eczema after the Pfizer/BioNTech vaccine. Following diagnosis of moderate cholinergic urticaria, they concluded that the anaphylaxis was likely due to a severe episode of cholinergic urticaria and that with prior vaccine reactions and a history of cholinergic urticaria, the patient was predisposed to developing allergic reactions. Two days after the event, C-reactive protein (1.27 mg/dL) and normal immunoglobulin E (IgE) levels (74.98 IU/mL) were noted. She later received the second dose without premedication. Similarly, Csatth et al87 reported anaphylaxis in 7 female patients, 3 without any allergic history and 4 with allergies (most of them anaphylactic) to substances including food, wasp stings, latex, and drugs, and 1 male patient with a history of obesity, diabetes, cardiovascular disease, and anaphylactic allergy to multiple vaccines. These patients all had similar symptoms including respiratory symptoms (dyspnea, throat closure and swelling, and hoarseness), cardiovascular symptoms (tachycardia, hypotension), gastrointestinal symptoms (nausea, vomiting, generalized discomfort), and inflammatory symptoms (angioedema, pruritis, erythema). Therefore, while most reported cases involved patients with extensive or severe allergic histories, several also reported cases in patients with otherwise no allergic history. Furthermore, most cases of anaphylaxis occurred within the first 30 minutes, with no deaths reported. Patients were typically administered steroids (methylprednisolone), antihistamines (diphenhydramine), epinephrine, and other medication like salbutamol, plus other necessary supportive treatment.

Vaccine Adverse Event Reporting System Studies. From December 21, 2020 to August 6, 2021, the VAERS database recorded 195.9 million and 139.97 million doses for the Pfizer/BioNTech and Moderna vaccines, respectively, with 965 and 646 cases of anaphylaxis each.69 In the same time period, 13.6 million doses of the Janssen vaccine with 101 cases of anaphylaxis were reported.69 However, throughout these periods the anaphylaxis rates reported have fluctuated greatly. Shimabukuro et al72, 98 initially reported rates of 11.1 and 4.7 cases of anaphylaxis per million doses while Singh et al80 more recently reported a rate of 2.34 for the Pfizer/BioNTech vaccine. Around the same time frame, Shimabukuro et al98 and the CDC97 reported a rate of 2.5 cases of anaphylaxis per million doses with respect to the Moderna vaccine; however, Singh et al80 now report a rate of 8.23. For the Janssen vaccine, a rate of 7.05 anaphylactic cases per million doses has been reported.80 Recently, Maltezou et al69 did not present rates, but rates of 4.93, 4.62, and 7.43 anaphylactic cases per millions of doses can be calculated for the Pfizer/BioNTech, Moderna and Janssen vaccines, respectively, using the presented data. It is difficult to ascertain the cause of these fluctuations. It could be attributed to increased reporting of adverse events leading to inflation of rates, administration of doses to a larger population, increased administration of doses to younger populations with healthy immune systems capable of triggering anaphylactic reactions, or just increased administration among patients who would be at risk for allergic reactions as more data about the vaccine and its reactions became available.

Which Vaccine Ingredients May Induce Anaphylaxis?

Anaphylaxis following vaccination is frequently thought to be linked to stabilizers, preservatives, antibiotics, or other vaccine components not including the vaccine antigen, such as gelatin, formaldehyde,
and egg protein. For example, in the AstraZeneca vaccine, the suspected allergen is polysorbate 80, which is meant to function as an excipient, while the mRNA vaccines use polyethylene glycol to stabilize the lipid nanoparticles. Three different potential allergens in the COVID-19 vaccines are described below.

Polysorbates. Polysorbates, like PEGs, are polymers of ethylene oxide, but are lower in MW, and thus less commonly trigger allergic reactions. Furthermore, they are also commonly used as excipients in vaccines, such as diphtheria-tetanus-pertussis, hepatitis B, HPV, pneumococcal conjugate, herpes zoster, and influenza vaccines. In addition, polysorbates are used in drugs such as amiodarone and antineoplastic agents. Due to the similarity in structure between polysorbate 80 and PEGs used in other products, there is potential for cross-reactivity, which was clinically observed. Reported cases of anaphylaxis due to polysorbate 80 are very rare, despite its widespread use. One such example has been seen in response to Gardasil, the HPV vaccine, in 1 patient, which may potentially be due to polysorbate 80. Other cases of anaphylaxis due to polysorbate 80 were reported in Korea. Furthermore, the reported cases of anaphylaxis following the Janssen COVID-19 vaccine could be attributed to the presence of polysorbate 80 as an excipient.

Polyethylene Glycol. Polyethylene glycols, also known as macrogols or PEGs, are a group of polymers of ethylene oxide of various molecular weights (MWs) that are extensively used as stabilizing agents in the cosmetic, food, and medicinal industries. Depending on the polymer length, the MW of the PEG may vary, and hence different PEGs are classified according to their MWs, with the PEGs used in both the Moderna and Pfizer/BioNTech vaccines being 2000 PEG. PEGs are used as an inactive ingredient in some drugs such as penicillins, intravenous corticosteroids, antacids, laxatives, and PEGylated liposomal doxorubicin. However, PEGs have been shown to cause potential allergic reactions in the past, with 3 PEG-containing drugs being withdrawn from the market due to severe side effects: pegnivacogin, pegloticase, and peginesatide. The mRNA vaccines are the first vaccines to contain PEGs as excipients with 2000 MW. As such, the PEGs have been suspected as the main culprit behind the anaphylactic reactions observed in certain recipients of the Moderna and Pfizer/BioNTech vaccines, with both classical and nonclassical mechanisms being suggested. Of note, the allergic reactions caused by PEGs are more commonly attributed to higher-MW PEGs.

Spike Protein. Another hypothesis is the involvement of the spike protein as a causative agent of anaphylaxis following vaccination. Upon vaccination, the mRNA vaccine penetrates human cells and is translated into various protein fragments. These are then displayed on the surface of antigen-presenting cells, which exhibits fragments of spike protein on major histocompatibility complex class II molecules. The major histocompatibility complex class II–antigen complex is then recognized by T-helper cells, thereby initiating an adaptive cell-mediated immune response. This immune cascade includes the production of interleukins involved in the activation of allergen-specific B cells. These then stimulate the release of IgE antibodies that initiate an allergic immune response. It is postulated that fragments of water-soluble glycoprotein confined within the spike protein of SARS-CoV-2 is the major element that triggers anaphylactic events following vaccination. This hypothesis could be supported by the computationally predicted allergenicity of the spike protein using AllerTOP version 2.0 and AllergenFP version 1.0, which are used for subunit vaccine design. The findings indicate that the receptor-binding domain of the SARS-CoV-2 spike protein that binds to the angiotensin-converting enzyme 2 receptor is likely to be an allergen.

Vaccine-Induced Anaphylactic Reactions and Associated Risk Factors

Of 84 case report subjects, 69 individuals had a history of prior allergy or asthma, with a history of anaphylaxis in 19 of them. Furthermore, a large proportion of subjects with anaphylactic reactions among the cohorts also had an allergic or anaphylactic history, such as Iguchi et al reporting 78% (35/47) of patients. Anaphylaxis was also more common in women, with 76 of the case series being female. Cohort studies, such as Arroliga et al and Klein et al also reported that the vast majority of anaphylactic cases occurred in females. Moreover, they suggested that this difference in adverse events could be due to genetic differences, hormonal influences, environmental or immunological variance between men and women. This is supported by data from other studies that suggests that anaphylaxis may occur more frequently in individuals with preexisting allergic conditions and (in the case of adults) women, possibly due to increased estrogen levels. In other cases, such as that of Sellaturay et al and Wentrlys et al, an allergy to a vaccine component such as PEG or polysorbate 80 can be assumed to be causative. Furthermore, Hashimoto et al suggested that the Pfizer BNT162b2 mRNA vaccine may have an ethnic bias in Japanese populations, citing a rate of 204.2 cases per million doses or 38.6 cases per million doses when considering studies that met the BCC for
Possible mechanisms of anaphylaxis following COVID-19 vaccination. In individuals who were previously exposed to the allergen, the IgE-mediated mast cell degranulation is a possible mechanism. It was also found that the IgG antibodies may directly bind to the platelets and granulocytes leading to degranulation and the release of various inflammatory mediators. Furthermore, the CARPA is a potential mechanism when the IgM/IgG mediate the allergic reaction by activating the classical pathway of the complement leading to mast cell degranulation due to the production of anaphylatoxins. Anaphylaxis following vaccination could be also triggered by CARPA in unsensitized individuals through the activation of the alternative pathway of the complement system. CARPA, complement activation-related pseudo-allergy; COVID-19, coronavirus disease 2019; IgE, immunoglobulin E; IgG, immunoglobulin G; IgM, immunoglobulin M.

Potential Mechanisms of Anaphylaxis Following COVID-19 Vaccination

Possible mechanisms of vaccine-induced anaphylaxis have been summarized in Figure 5. The classical model of anaphylaxis is defined as a type I hypersensitivity reaction in which previous exposure to an allergen leads to production of IgE by plasma cells. These IgE molecules then travel throughout the body and bind to fragment crystallizable region receptors, FcεRI, on mast cells and basophils. Upon subsequent exposure to the same allergen, IgE molecules bind to the epitopes of the antigen and cross link, leading to rapid degranulation of these cells and release of inflammatory and proinflammatory molecules and cytokines such as histamine, leukotrienes, prostaglandins, and proteases, all of which contribute to the acute state of anaphylactic shock. PEGs and polysorbate 80 have both been shown to induce IgE production, with patients who have a history of PEG-related anaphylaxis displaying anti-PEG IgE antibodies in serum. Additionally, IgE sensitization toward polysorbate 80 has also been detected, although without clinical reactivity. Complement activation–related pseudo-allergy (CARPA) is an alternative mechanism proposed for anaphylaxis that does not involve IgE. Rather, it involves the activation of the complement system, resulting in the production of the anaphylatoxins C3a and C5a. These molecules can then bind to mast cells and result in degranulation, leading to the identical anaphylactic presentation displayed in the classical IgE-mediated model. However, the mechanism by which the complement system is activated can differ.

Figure 5. Possible mechanisms of anaphylaxis or related events following COVID-19 vaccination. In individuals who were previously exposed to the allergen, the IgE-mediated mast cell degranulation is a possible mechanism. It was also found that the IgG antibodies may directly bind to the platelets and granulocytes leading to degranulation and the release of various inflammatory mediators. Furthermore, the CARPA is a potential mechanism when the IgM/IgG mediate the allergic reaction by activating the classical pathway of the complement leading to mast cell degranulation due to the production of anaphylatoxins. Anaphylaxis following vaccination could be also triggered by CARPA in unsensitized individuals through the activation of the alternative pathway of the complement system. CARPA, complement activation-related pseudo-allergy; COVID-19, coronavirus disease 2019; IgE, immunoglobulin E; IgG, immunoglobulin G; IgM, immunoglobulin M.
from one case to another. For example, the infusion of Doxil, the liposomal formulation of doxorubicin, resulted in the detection of sC5b-9 in serum ≈10 minutes after infusion in the absence of any anti-PEG antibodies, which may suggest direct activation of the alternative pathway. Such a mechanism may explain the phenomenon observed in which vaccine recipients who have no known prior exposures to PEGylated products may develop anaphylaxis, as no sensitization is required.

Another way in which CARPA may occur is via the classical pathway of complement activation, where either immunoglobulin M (IgM) or immunoglobulin G (IgG) antibodies may bind to PEGs, activate the complement, and produce the anaphylatoxins. To this effect, in vitro experiments have shown that PEG and lipid nanoparticles are capable of activating the complement. This mechanism is supported by the presence of anti-PEG antibodies in individuals that exhibit adverse side effects when given PEG-containing chemotherapies. However, IgG itself may potentially bind directly to platelets, mast cells and other granulocytes via Fcγ receptors and trigger release of proinflammatory molecules such as serotonin, cytokines, and leukotrienes, similar to the IgE-mediated mechanism proposed earlier. Another fact that may implicate CARPA as the major mechanism is the finding that binding avidity of IgG increases with increasing MW of PEGs, which is consistent with the increasing risk of hypersensitivity with higher MW PEGs. Additionally, Erdeljic Turk reported that individuals who had high levels of anti-PEG IgE also showed high IgG titers. In fact, 2 of the 3 PEGylated drugs mentioned earlier that were removed due to dangerous side effects, pegnivacogin and pegloticase, both show a strong association between anti-PEG IgG antibodies and severe (pseudo) allergic reaction.

Time Until Onset of Symptoms
Importantly, most symptoms appeared rapidly after the first dose. The case reports and case series reported more clinical details for the reported anaphylactic cases following vaccination. Shimabukuro et al reported 21 of 23 cases following administration of the Pfizer/BioNTech vaccine and 10 of 11 cases following administration of the Moderna vaccine occurred within the first hour. Similarly, Laisu et al reported that 8 of 10 cases following Sinovac administration also occurred within the first hour, with all 10 within 3 hours. Several repeat episodes were also reported. Frank et al reported a repeat episode in a patient 6 hours after her initial symptoms (which had developed 10 minutes after the first Pfizer/BioNTech dose), and Lim et al reported recurrence of anaphylactic symptoms within 8 and 27 hours after initial symptoms developed within 30 minutes in another female patient.

In general, the included studies reported 176 anaphylactic reactions occurred after the first dose, 30 after the second dose, and two after the third dose, while the dosage was not reported for most of the cases. For those with a known time interval following vaccination to onset of symptoms, 552 presented within 30 minutes, and 122 presented within 24 hours of vaccination. Those individuals could be either previously sensitized or the anaphylactic reaction may have developed through an antibody-independent mechanism such as the alternative pathway of the complement activation.

Although less common than following the first dose, a total of 19 cases following second doses of Pfizer/BioNTech, 3 following Moderna, and 3 following Sinovac vaccines were reported, signaling toward the high probability of these individuals not being sensitized to the allergic material before their first dose. PEG is present in skin creams, lotions, soaps, hair products, and shower gels, which also is found in both mRNA vaccines, but not Sinovac. Hence, the 19 individuals experiencing anaphylactic reactions following the second dose are most likely those who were not sensitized to the reactant, or at least not to those with similar MWs, until the first dose, followed by strong reactions following the second dose.

The Outcome of Anaphylaxis Following COVID-19 Vaccination
Despite the severity of anaphylaxis, the clinical outcome is generally positive. Out of the 7942 individuals with known outcomes, 7420 recovered. Excluding Maltezou et al who reported 43 deaths in the non-VAERS groups and 9 deaths among the VAERS groups, none of the studies reported any anaphylaxis-associated deaths. In general, outcomes appear to be favorable with most patients recovering within 21 days. This is a positive sign, suggesting that adequate treatment via corticosteroids, antihistamines, supportive treatment, and other medication, most anaphylactic cases do not result in death, especially given that deaths would likely be reported if occurred. This is an important reminder of the highly treatable nature of anaphylaxis, which supports continued administration of vaccines to fight the pandemic, rather than their discontinuation due to a small chance of anaphylaxis.

Anaphylaxis Following COVID-19 Vaccination as a Rare Event
While anaphylaxis is a rare event, with an incidence of 1.31 cases per million doses, Klei et al reported a rate of 5.1 per million for Pfizer/BioNTech and 4.8 per million for Moderna, while Hwang et al reported a rate of 4.1 per million for AstraZeneca. These numbers
Figure 6. Graphical summary of the results detailing sex, time until onset of symptoms, most recent vaccine dose number, and clinical outcomes of subjects in a pooled analysis of 7942 reported anaphylaxis or related events following administration of either the Pfizer/BioNTech, Moderna, Janssen, AstraZeneca, or Sinovac vaccines. COVID-19, coronavirus disease 2019; F, female; M, male; NR, not reported.

could suggest a higher risk of anaphylaxis following administration of the mRNA vaccines compared to the traditional dead or live attenuated vaccines. However, most data such as that of Blumenthal et al.⁹⁹ disagrees, arguing that the risk is comparable to that of traditional vaccines. Additionally, reactions compared among the vaccines are also unclear, as demonstrated by Blumenthal et al.⁹⁹ and Song et al.⁶³ who found rates of anaphylaxis following vaccination among recipients of Pfizer and Moderna and Pfizer and AstraZeneca to be insignificant. Since there has never been such an accelerated or widespread global collaboration to counter a public health issue before COVID-19, it is important to understand the frequency of anaphylaxis while continuing to arm ourselves against the pandemic. Considering that the incidence of allergies and conditions like asthma has been increasing in Western countries,¹¹² the incidence of anaphylaxis may also see a concurrent increase. Therefore, it is possible that a larger number of cases may be seen due to either stricter reporting protocols due to rushed approvals, increasing allergy rates, or simply due to more widespread administration of the COVID-19 vaccines compared to their traditional counterparts. Additionally, while the VAERS database also depicts higher rates of anaphylaxis, Maltezou et al.,⁶⁹ the authors of the most updated VAERS data set, unified the VAERS and EudraVigilence data and concluded that the estimated mean rate of vaccine-associated anaphylaxis (10.67 cases per million doses) was still lower than the risk of other routine vaccination such as the measles-mumps-rubella, HPV, varicella, and rabies vaccines.

Limitations of the Study
The main limitation in this study was the possible overlap between the reported cases among some studies, especially those that obtained their data from the same databases. To overcome this problem, we did not compile the data extracted from 6 studies that all used VAERS as the source for their data. Furthermore, only 1 study reported data from the European EudraVigilence database, which was included in the main analysis of this review.

Conclusion and Recommendations
While the exact statistics for anaphylactic rates differ among the included studies, there is a consensus that the risk of anaphylaxis is not significant when compared to the risks posed by COVID-19 infection. A graphical summary of the findings of this review is provided in Figure 6. Much of the risk can be averted with careful screening and patient observation. In the case of the minority, educating patients on the signs and symptoms of anaphylaxis or similar severe reactions may minimize the negative outcomes. Due to the accelerated development and approval of these vaccines, as well as the relatively small cohort sizes compared to the rarity of anaphylaxis, it is possible that these side effects
did not have enough subjects to manifest in the clinical trials. Furthermore, these studies usually exclude participants with severe allergic histories, who are the usual at-risk group for anaphylaxis. Subsequently, it is important to meticulously report serious adverse events and remain alert following vaccination for serious side effects. To do so, the 41 included studies share 4 main recommendations. Primarily, taking note of allergic histories before vaccination will allow an efficient and speedy intervention in case of anaphylaxis. Therefore, the guidelines recommend a 30-minute watch period for those with a history rather than 15-minutes. This is generally consistent with our findings, as most cases occurred within the first hour after vaccination. It is also recommended to screen the high-risk individuals (defined as those with a history of multiple or severe allergic reactions) for PEG reactions before vaccination to avoid anaphylaxis. Some authors argue against receiving a second dose of the vaccine following the incidence of anaphylaxis after the first dose. However, Csuth et al.,87 Park et al.,94 and others recommend that such patients can undergo the skin prick tests and seek professional advice. Desensitization protocols such as that detailed by AlMuhizi et al.88 might also hold merit in allowing for more thorough vaccination in those with known allergies to the COVID-19 vaccines. Finally, the data strongly support that the preparedness of the medical staff and the correct administration of the vaccine may facilitate the management of anaphylaxis as a rare side effect.

Acknowledgments

The authors thank Mr. Sa’ad Laws for his help during the early phases of this project including developing the search strategy and importing papers and Weill Cornell Medicine-Qatar for the continuous support.

Conflicts of Interest

The authors declare no conflict of interest.

Data Sharing

The data that support the findings of this study are available in the Supplemental Information of this article.

Data Sharing

No funding has been received for this study.

References

1. World Health Organization. WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China; 2020. Accessed August 5, 2021. https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china

2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533-534.

3. Dhakal BP, Sweitzer NK, Indik JH, Acharya D, Williams P. SARS-CoV-2 infection and cardiovascular disease: COVID-19 heart. Heart Lung Circ. 2020;29(7):973-978.

4. Saed Aldien A, Ganesan GS, Wahbeh F, et al. Systemic inflammation may induce cardiac injury in COVID-19 patients including children and adolescents without underlying cardiovascular diseases: a systematic review. Cardiovasc Revascularization Med. Published online April 15, 2021.

5. Kaur SP, Gupta V. COVID-19 vaccine: a comprehensive status report. Virus Res. 2020;288;198114.

6. Kaul R, Paul P, Kumar S, Büsseg D, Dwivedi VD, Chaari A. Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: systematic review. Int J Mol Sci. 2021;22(20).

7. Kumar S, Paul P, Yadav P, et al. A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle. Comput Biol Med. 2022;142:105231.

8. Medicine LS of H and T. COVID-19 Vaccine Tracker. COVID-19 Vaccine Tracker. 2021;(279):1-20. Accessed August 5, 2021. https://vac-lishm.shinyapps.io/ncov_vaccine_landscape/

9. Public Health Agency of Canada (PHAC). An Advisory Committee Statement (ACS). National Advisory Committee on Immunization (NACI). Statement on recommended use of pneumococcal conjugate vaccine. Can Commun Dis Rep. 2002;28(ACS-2):1-32.

10. Al-Ali D, Elshafee A, Mushannen M, et al. Cardiovascular and haematological events post COVID-19 vaccination: a systematic review. J Cell Mol Med. 2022;26(3):636-653.

11. Shafiq A, Salameh MA, Laswi I, et al. Neurological immune-related adverse events after COVID-19 vaccination: a systematic review. J Clin Pharmacol. 2022;62(3):291-303.

12. Bshesh K, Khan W, Vattoth AL, et al. Lymphadenopathy post-COVID-19 vaccination with increased FDG uptake may be falsely attributed to oncological disorders: a systematic review. J Med Virol.

13. Mohammed I, Nauman A, Paul P, et al. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: a systematic review. Hum Vaccin Immunother. 1-20.

14. Walsh EE, French RW, Falsce AR, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439-2450.

15. Devore, Nicolette. Moderna COVID-19 Vaccine EUA Letter of Authorization 07072021. Published online 2021. Accessed August 5, 2021. https://www.gov.uk/government/news/uk-medicines-regulator-gives-approval-for-first-uk-covid-19-vaccine

16. Canada approves first COVID-19 vaccine, expects inoculations next week. Reuters. Accessed August 5, 2021. https://www.reuters.com/article/health-coronavirus-canada-vaccine-idUSKBN28J2AT

17. CDC, Ncird. Pfizer-BioNTech COVID-19 Vaccine Standing Orders for Administering Vaccine to Persons 12 Years of Age and Older Purpose. Published 2019. Accessed August 5, 2021. https://www.cdc.gov/vaccines/covid-19/info-by-vaccine/BioNTech-Pfizer-COVID-19-vaccine(BNT162-P-07302048).VaccinesandRelatedBiologicalProductsAdvisoryCommitteeDecember17,2020MeetingBriefingDocument-Sponsor. Published 2021. Accessed August 5, 2021. https://en.wikipedia.org/wiki/List_of_COVID-19_vaccine_authorizations#Convidecia
19. Triggle N. Covid-19 vaccine: First person receives Pfizer jab in UK. BBC News. BBC News. Published 2020. Accessed August 5, 2021. https://www.bbc.com/news/uk-55227325

20. Rosen B, Waitzberg R, Israeli A. Israel’s rapid rollout of COVID-19 vaccine doses administered by manufacturer, United States. Published 2020. Accessed August 5, 2021. https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer?country=USA

21. Ritchie H, Ortiz-Ospina E, Beltekian D, et al. COVID-19 vaccine doses administered by manufacturer, United States. Published 2020. Accessed August 5, 2021. https://ourworldindata.org/grapher/covid-vaccine-doses-by-manufacturer?country=USA

22. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403-416.

23. WHO. WHO lists Moderna vaccine for emergency use. https://www.who.int/news/item/30-04-2021-who-lists-moderna-vaccine-for-emergency-use. Published 2021. Accessed August 5, 2021.

24. Public Health Agency of Canada (PHAC). An Advisory Committee Statement (ACS) National Advisory Committee on Immunization (NACI): Statement on the Recommended Use of the Herpes Zoster Vaccine. Canada Commun Dis Rep. 2010;36;ACS-1. Accessed August 5, 2021. https://covid-vaccine.canada.ca/covid-19-vaccine-moderna/product-details

25. O’Shaughnessy, JA. Moderna COVID-19 Vaccine EUA Letter of Authorization 07072021. https://www.fda.gov/media/144636/download. Published June 17, 2022. Accessed June 20, 2022.

26. UK Government. UK medicines regulator gives approval for first UK COVID-19 vaccine. Med Healthc Prod Devices, Vector Control). Accessed: June 20, 2022.

27. WHO. WHO lists Moderna vaccine for emergency use. https://www.who.int/news-room/feature-stories/detail/the-oxford-astrazeneca-covid-19-vaccine-what-you-need-to-know?gclid=CjwKCAjwwqaGBhBKEinAMk-FtGgd2hPGq6-private-

28. UK Government. UK medicines regulator gives approval for first UK COVID-19 vaccine. Med Healthc Prod Regul Agency. Published 2020. Accessed August 5, 2021. https://www.ndtv.com/world-news/connecticut-nurse-one-of-first-to-get-moderna-vaccine-in-us-2341790

29. Watanabe Y, Mendonça L, Allen ER, et al. Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Cent Sci. 2021;7(4):594-602.

30. European Medicines Agency (EMA). Vaxzevria (previously COVID-19 Vaccine AstraZeneca) | European Medicines Agency. EMA. Published 2021. Accessed August 5, 2021. https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca

31. Biotech J. AstraZeneca: US to share up to 60m vaccine doses - BBC News. Published 2021. Accessed: August 5, 2021. https://www.bbc.com/news/world/us-us-canada-56893701

32. Covid: Brian Pinker, 82, first to get Oxford-AstraZeneca vaccine - BBC News. Accessed: August 5, 2021. https://www.bbc.com/news/health-55274833

33. AstraZeneca. Two billion doses of AstraZeneca’s COVID-19 vaccine supplied to countries across the world less than 12 months after first approval. AstraZeneca Websites. Published 2021. Accessed: June 22, 2022. https://www.astrazeneca.com/media-centre/press-releases/2021/two-billion-doses-of-astrazenecas-covid-19-vaccine-supplied-to-countries-across-the-world-less-than-12-months-after-first-approval.html

34. WHO. The Oxford/AstraZeneca COVID-19 vaccine: what you need to know. World Health Organization. Published 2021. Accessed: August 5, 2021. https://www.who.int/news-room/feature-stories/detail/the-oxford-astrazeneca-covid-19-vaccine-what-you-need-to-know?gclid=CjwKCAjwwqaGBhBKEinAMk-FtGgd2hPGq6-private-

35. Johnson & Johnson Announces the Initiation of a Rolling Submission for its Single-dose Janssen COVID-19 Vaccine Candidate with Health Canada | Janssen. Published 2020. Accessed August 5, 2021. https://www.jnj.com/our-company/johnson-johnson-announces-initiation-of-rolling-submission-for-its-single-dose-janssen-covid-19-vaccine-candidate-with-the-european-medicines-agency

36. Staff R, Staff R. China gives its first COVID-19 vaccine approval to Sinopharm. Reuters. Published online 2020. Accessed: August 5, 2021. https://www.cdc.gov/vaccines/covid-19/recs/summary-schedule-2021.html#dates

37. Public Health Agency of Canada (PHAC). An Advisory Committee Statement (ACS) National Advisory Committee on Immunization (NACI): Statement On The Recommended Use of the Herpes Zoster Vaccine. Canada Commun Dis Rep. 2010;36;ACS-1. Accessed August 5, 2021. https://www.gov.uk/government/publications/regulatory-approval-of-covid-19-vaccine-janssen

38. Covid-19 Vaccine AstraZeneca) | European Medicines Agency. EMA. Published 2021. Accessed August 5, 2021. https://www.cdc.gov/vaccines/covid-19/recs/summary-schedule-2021.html#dates

39. Johnson & Johnson Announces the Initiation of a Rolling Submission for its Single-dose Janssen COVID-19 Vaccine Candidate with Health Canada | Janssen. Published 2020. Accessed August 5, 2021. https://www.bbc.com/news/uk-55225542

40. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2602-2615.

41. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) an interim analysis of four
randomised controlled trials in Brazil, South Africa, and the UK. *Lancet*. 2021;397(10269):99-111.
47. Tanriover MD, Doğanay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. *Lancet (London, England)*. 2021;398(10296):213-222.
48. Gallagher J. Covid vaccine: single-dose Johnson & Johnson jab is 66% effective. *BBC News*. Published 2021. Accessed: August 5, 2021. https://www.bbc.com/news/health-55857530
49. FDA, CBER. CBER Surveillance Program Background Rates of Adverse Events of Special Interest for COVID-19 Vaccine Safety Monitoring Protocol. Published online 2020. Accessed: August 5, 2021. https://bestinitiative.org/wp-content/uploads/2021/01/C19-Vaccine-Safety-AESI-Background-Rate-Protocol-2020.pdf
50. Lagopoulos V, Gigi E. Anaphylactic and anaphylactoid reactions during the perioperative period. *Hippokratia*. 2011;15(2):138-140. Accessed: August 5, 2021. /pmc/articles/PMC3209676/
51. McNeil MM, Weintraub ES, Duffy J, et al. Risk of anaphylaxis after vaccination in children and adults. *J Allergy Clin Immunol*. 2016;137(3):868-878.
52. Nokleby H. Vaccination and anaphylaxis. *Curr Allergy Asthma Rep*. 2006;6(1):9-13.
53. Turner PJ, Ansotegui IJ, Campbell DE, et al. COVID-19 vaccine-associated anaphylaxis: a statement of the World Allergy Organization Anaphylaxis Committee. *World Allergy Organ J*. 2021;14(2).
54. Project Has Been Funded Whole By Cepi TI. Safety Platform for 1St Tier AESI Anaphylaxis Work Package: WP2 Standards and Tools.
55. Cardona V, Ansotegui IJ, Ebisawa M, et al. World Allergy Organization Anaphylaxis Guidance 2020. *World Allergy Organ J*. 2020;13(10).
56. Hurley S, Hourihane JO. We should abandon the Brighton Collaboration criteria for vaccine-associated anaphylaxis. *Ann Allergy, Asthma Immunol*. 2022;129(1):20-21.
57. Wells G, Shea B, Robertson J, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analysis.
58. Appendix: Jadad Scale for Reporting Randomized Controlled Trials. Evidence-based Obstet Anesth. Published online January 1, 2005:237-238.
59. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials*. 1996;17(1):1-12.
60. Murad MH, Sultana S, Haflir S, Bazerbachi F. Methodological quality and synthesis of case series and case reports. *BMJ Evid-Based Med*. 2018;23(2):60-63.
61. Sellaturay P, Nasser S, Islam S, Gurugama P, Ewan PW. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. *Clin Exp Allergy*. 2021;51(6):861-863.
62. Rodriguez-Nava G, Egoryan G, Trelles-Garcia DP, Yanez-Bello MA, Murguia-Fuentes R. Disproportionality analysis of anaphylactic reactions after vaccination with messenger RNA coronavirus disease 2019 vaccines in the United States. *Ann Allergy, Asthma Immunol*. 2021;127(1):139-140.
63. Song JY, Cheong HJ, Kim SR, et al. Early safety monitoring of COVID-19 vaccines in healthcare workers. *J Korean Med Sci*. 2021;36(15):e110.
64. Tay C, Lai D. Delayed-onset anaphylaxis after first dose of Pfizer-BioNTech COVID-19 vaccine. *Singapore Med J*. Published online January 2022.
65. Armstrong L, Maguire N. A case report of prolonged anaphylaxis after COVID-19 vaccine. *Clin Pract cases Emerg Med*. 2022;6(1):21-24.
66. Maron JS, Conroy M, Naranbai V, et al. Differential SARS-CoV-2 Antibody Profiles after Allergic Reactions to mRNA COVID-19 Vaccine. *J Infect Dis*. Published online March 2022.
67. Tan JTC, Tan C, Teoh J, et al. Adverse reactions and safety profile of the mRNA COVID-19 vaccines among Asian military personnel. *Ann Acad Med Singapore*. 2021;50(11):827-837.
68. Patel GB, Chhiba KD, Chen MM, et al. COVID-19 vaccine-related presumed allergic reactions and second dose administration by using a two-step graded protocol. *Allergy Asthma Proc*. 2021;42(6):515-521.
69. Maltezou HC, Anastassopoulou C, Hatziantoniou S, Poland GA, Tsakris A. Anaphylaxis rates associated with COVID-19 vaccines are comparable to those of other vaccines. *Vaccine*. 2022;40(2):183-186.
70. Gunusuburun R, Dalgic CT, Mete Gokmen EN, Sin AZ. CoronaVac/Sinovac COVID-19 vaccine-related hypersensitivity reactions and second-dose vaccine administration: tertiary allergy center experience. *Int Arch Allergy Immunol*. Published online April 2022;1-7.
71. Shrestha P, Bhattacharai S, Dhunganj J, Bhattacharai T. Delayed-onset anaphylaxis after mRNA-based COVID-19 vaccination in an adolescent male. *Pediatr Infect Dis J*. 2022;41(6):e271.
72. Shimabukuro T, Nair N. Allergic reactions including anaphylaxis after receipt of the first dose of pfizer-BioNTech COVID-19 vaccine. *JAMA - J Am Med Assoc*. 2021;325(8):780-781.
73. Abi Zeid Daou C, Natout MA, El Hadi N. Biphasic anaphylaxis after exposure to the first dose of Pfizer-BioNTech COVID-19 mRNA vaccine. *J Med Virol*. 2021;93(10):6027-6029.
74. Lim XR, Leung BP, Ng CYL, et al. Pseudo-anaphylactic reactions to pfizer BNT162b2 vaccine: report of 3 cases of anaphylaxis post pfizer BNT162b2 vaccination. *Vaccines*. 2021;9(9).
75. Niesen MJM, Pawlowski C, O’Horo JC, et al. Surveillance of safety of 3 doses of COVID-19 mRNA vaccination using electronic health records. *JAMA - J Am Med Assoc*. 2022;325(8):e227038.
76. Macy E, Pandya S, Sheikh J, et al. Population-based incidence, severity, and risk factors associated with treated acute-onset COVID-19 mRNA vaccination-associated hypersensitivity reactions. *J Allergy Clin Immunol Pract*. 2022;10(3):827-836.
77. Hwang I, Park K, Kim TE, Kwon Y, Lee Y-K. COVID-19 vaccine safety monitoring in Republic of Korea from February 26, 2021 to October 31, 2021. *Osong public Heal Res Perspect*. 2021;12(6):396-402.
78. Vanegas E, Robles-Velasco K, Osorio MF, et al. Adverse reactions following COVID-19 vaccination: an Ecuadorian population-based incidence analysis by using a two-step graded protocol. *Int Arch Allergy Immunol*. 2022;129(1):827-836.
79. Kaplan B, Farzan S, Coscia G, et al. Allergic reactions to coronavirus disease 2019 vaccines and addressing vaccine hesitancy: Northwell Health experience. *Ann Allergy, Asthma Immunol Off Publ Am Coll Allergy, Asthma, Immunol*. 2022;128(2):161-168.e1.
80. Singh A, Khillan R, Mishra Y, Khurana S. The safety profile of COVID-19 vaccinations in the United States. *Am J Infect Control*. 2022;50(1):15-19.
81. Halder A, Imamura H, Condon S, et al. Pfizer/BioNTech BNT162b2: adverse events and insights from an
Australian mass vaccination clinic for COVID-19. *Intern Med J.* 2022;52(1):121-124.

82. Wentrys L, Stopyra L. COVID-19 vaccination including 198 patients with history of severe anaphylactic reaction - own observations. *Przegl Epidemiol.* 2021;75(3):315-325.

83. Frank A, Radparvar S, Manasia A, Bassily-Marcus A, Kohli-Seth R. Prolonged anaphylaxis to pfizer coronavirus disease 2019 vaccine: a case report and mechanism of action. *Crit Care Explor.* 2021;3(4):e0397.

84. Cahill JA, Kan M. Successful administration of second dose of BNT162b2 COVID-19 vaccine in two patients with potential anaphylaxis to first dose. *Allergy.* 2022;77(1):337-338.

85. Mayfield J, Bandi S, Ganti L, Rubero J. Anaphylaxis after Moderna COVID-19 vaccine. *Ther Adv vaccines Immunother.* 2021;9:25151355211048416.

86. Laisuan W, Wongsa C, Chiewchalermsri C, et al. Coronavirus COVID-19 vaccine-induced anaphylaxis: clinical characteristics and revaccination outcomes. *J Asthma Allergy.* 2021;14:1209-1215.

87. Csuth A, Nopp A, Storsaeter J, Nilsson L, Jenmalm MC. COVID-19 vaccines and anaphylaxis-evaluation with skin prick testing, basophil activation test and Immunoglobulin E. *Clin Exp allergy J Br Soc Allergy Clin Immunol.* 2022;52(6):812-819.

88. AlMuhizi F, Ton-Leclerc S, Fein M, et al. Successful desensitization to mRNA COVID-19 vaccine in a case series of patients with a history of anaphylaxis to the first vaccine dose. *Front allergy.* 2022;3:825164.

89. McSweeney MD, Mohan M, Commins SP, Lai SK. Anaphylaxis to Pfizer/BioNTech mRNA COVID-19 vaccine in a patient with clinically confirmed PEG allergy. *Front allergy.* 2021;2:715844.

90. Klein NP, Lewis N, Goddard K, et al. Surveillance for adverse events after COVID-19 mRNA vaccination. *JAMA.* 2021;326(14):1390-1399.

91. Arroliga ME, Dhanani K, Arroliga AC, et al. Allergic re-actions and adverse events associated with administration of mRNA-based vaccines. A health-care system experience. *Allergy asthma Proc.* 2021;42(5):395-399.

92. Lee E, Lee Y-K, Kim TE, et al. Reports of anaphylaxis after coronavirus disease 2019 vaccination, South Korea, 26 February to 30 April 2021. *Euro Surveill Bull Eur sur les Mal Explores.* 2021;26(33).

93. Iguchi T, Umeda H, Kojima M, et al. Cumulative adverse event reporting of anaphylaxis after mRNA COVID-19 vaccine (Pfizer-BioNTech) injections in Japan: the first-month report. *Drug Saf.* 2021;44(11):1209-1214.

94. Park HJ, Montgomery JR, Boggs NA. Anaphylaxis after the Covid-19 vaccine in a patient with cholergic urticaria. *Mil Med.* Published online April 14, 2021.

95. Shimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA COVID-19 vaccines in the US-December 14, 2020-January 18, 2021. *JAMA - J Am Med Assoc.* 2021;325(11):1101-1102.

96. Blumenthal KG, Robinson LB, Camargo CA, et al. Acute allergic reactions to mRNA COVID-19 vaccines. *JAMA - J Am Med Assoc.* 2021;325(15):1562-1565.

97. CDC. Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna COVID-19 Vaccine — United States, December 21, 2020–January 10, 2021. *MMWR Morb Mortal Wkly Rep.* 2021;70(4):125-129.

Additional supplemental information can be found by clicking the Supplements link in the PDF toolbar or the Supplemental Information section at the end of web-based version of this article.