I believe that the right way to understand matrix multiplication is **columns times rows**:

\[
AB = \begin{bmatrix}
a_1 & \ldots & a_n
\end{bmatrix}
\begin{bmatrix}
b_1^T \\
\vdots \\
b_n^T
\end{bmatrix} = a_1b_1^T + \cdots + a_nb_n^T. \quad (1)
\]

Each column \(a_k\) of an \(m\) by \(n\) matrix multiplies a row of an \(n\) by \(p\) matrix. The product \(a_kb_k^T\) is an \(m\) by \(p\) matrix of rank one. The sum of those rank one matrices is \(AB\).

All columns of \(a_kb_k^T\) are multiples of \(a_k\), all rows are multiples of \(b_k^T\). The \(i, j\) entry of this rank one matrix is \(a_{ik}b_{kj}\). The sum over \(k\) produces the \(i, j\) entry of \(AB\) in "the old way."

Computing with numbers, I still find \(AB\) by **rows times columns** (inner products)!

The central ideas of matrix analysis are perfectly expressed as matrix factorizations:

\[
\begin{array}{l}
A = LU \\
A = QR \\
S = QΛQ^T \\
A = XΛY^T \\
A = UΣV^T
\end{array}
\]

The last three, with eigenvalues in \(Λ\) and singular values in \(Σ\), are often seen as column-row multiplications (a sum of outer products). The spectral theorem for \(S\) is a perfect example. The first two are Gaussian elimination (\(LU\)) and Gram-Schmidt orthogonalization (\(QR\)). We aim to show that those are also clearly described using rank one matrices.

The **spectral theorem** \(S = QΛQ^T\) A real symmetric matrix \(S\) is diagonalized by its orthonormal eigenvectors. The eigenvalues \(λ_i\) enter the diagonal matrix \(Λ\). They multiply the eigenvectors \(q_i\) in the columns of \(Q\). Then \(λ_iq_i\) is a column of \(QΛ\). The column-row multiplication \((QΛ)Q^T\) has the familiar form

\[
S = λ_1q_1q_1^T + \cdots + λ_nq_nq_n^T. \quad (2)
\]

To see that \(S\) times \(q_j\) produces \(λ_jq_j\), multiply every term \(λ_iq_iq_i^T\) by \(q_j\). By orthogonality, the only surviving term has \(i = j\). That term is \(λ_jq_j\) because \(q_j^Tq_j = 1\).

Of course the proof of the spectral theorem requires construction of the \(q_j\).

Elimination \(A = LU\) is the result of Gaussian elimination in the usual order, starting with an invertible matrix \(A\) and ending with an upper triangular \(U\). The key idea is that the matrix \(L\) linking \(U\) to \(A\) contains the **multipliers** — the numbers \(ℓ_{ij}\) that multiply row \(j\) when it is subtracted from row \(i > j\) to produce \(U_{ij} = 0\).

The "magic" is that those separate steps do not interfere, when we undo elimination and bring \(U\) back to \(A\). The numbers \(ℓ_{ij}\) fall into place in \(L\)—but that key fact can take patience to verify in a classroom. Here we look for a different approach. The column-times-row idea makes the steps of elimination transparently clear.
Step 1 of elimination Row 1 of U is row 1 of A. Column 1 of L is column 1 of A, divided by the first pivot a_{11} (so that $\ell_{11} = 1$). Then the product $\ell_1 u_1^T$ extends the first row and column of A to a rank-one matrix. So the difference is a matrix A_2 of size $n - 1$ bordered by zeros row 1 and column 1:

$$A = \ell_1 u_1^T + \begin{bmatrix} 0 & 0^T \\ 0 & A_2 \end{bmatrix} \quad (3)$$

Step 2 acts in the same way on A_2. The row u_2^T and the column ℓ_2 will start with a single zero.

The essential point is that elimination on column 1 removed the matrix $\ell_1 u_1^T$ from A.

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 11 \end{bmatrix} \quad u_1^T = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \quad \ell_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \ell_1 u_1^T = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$$

When elimination reaches A_k, there are $k - 1$ zeros at the start of each row and column. Those zeros in u_k and ℓ_k produce an upper triangular matrix U and a lower triangular L. The diagonal entries of U are the pivots (not zero). The diagonal entries of L are all 1’s.

The linear system $Ax = b$ is reduced to two triangular systems governed by L and U:

Solve $Lc = b$ and solve $Ux = c$. Then $Ax = LUx = Lc = b$.

Forward elimination leaves $Ux = c$, and back-substitution produces x. To assure nonzero pivots, this LU decomposition requires every leading square submatrix of A (from its first k rows and columns) to be invertible.

Gram-Schmidt orthogonalization $A = QR$ The algorithm combines independent vectors a_1, \ldots, a_n to produce orthonormal vectors q_1, \ldots, q_n. Subtract from a_2 its component in the direction of a_1. Normalize at each step to unit vectors q:

$$q_1 = \frac{a_1}{\|a_1\|} = \frac{a_1}{r_{11}} \quad q_2 = \frac{a_2 - (q_1^T a_2) q_1}{\|a_2 - (q_1^T a_2) q_1\|} = \frac{a_2 - r_{12} q_1}{r_{22}}.$$

As with elimination, this is clearer when we recover the original vectors a_1 and a_2 from the final q_1 and q_2:

$$a_1 = r_{11} q_1 \quad a_2 = r_{12} q_1 + r_{22} q_2.$$

(4)

In this order we see why R is triangular. At each step, q_1 to q_k span the same subspace as a_1 to a_k. We can establish the Gram-Schmidt factorization $A = QR = q_1 r_1^T + \cdots + q_n r_n^T$ as follows:

The first column q_1 is the first column a_1 divided by its length r_{11}

The first row r_1^T contains the inner products $q_1^T a_k$.

2
Subtracting the rank one matrix $q_1r_1^T$ leaves a matrix A_2 whose columns are all orthogonal to q_1:

$$A = q_1r_1^T + \begin{bmatrix} 0 & A_2 \end{bmatrix}. \quad (5)$$

This is the analog of equation (3) for elimination. There we had a row of zeros above A_2. Here we have columns of A_2 orthogonal to q_1. In two lines, this example reaches equation (5):

$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 8 & 6 \end{bmatrix}$$

has $r_{11} = ||a_1|| = 10$ and unit vector $q_1 = \frac{a_1}{10}$

$$r_{12} = q_1^Ta_2 = \begin{bmatrix} 0.6 & 0.8 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} = 6$$

and $A = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} 10 & 6 \\ 0 & 1.2 \end{bmatrix}$

That last column has length $r_{22} = 2$ and $A = \begin{bmatrix} 6 & 2 \\ 8 & 6 \end{bmatrix}$.

This product $A = QR$ or $Q^TA = R$ confirms that every $r_{ij} = q_i^Ta_j$ (row times column). The mysterious matrix R just contains inner products of q's and a's. R is triangular because q_i does not involve a_j for $j > i$. Gram-Schmidt uses only a_1, \ldots, a_i to construct q_i.

The next vector q_2 is the first column of A_2 divided by its length. The next vector r_2^T contains (after a first zero) the inner products of q_2 with columns of A_2:

$$A = q_1r_1^T + q_2r_2^T + \begin{bmatrix} 0 & 0 & A_3 \end{bmatrix}. \quad (6)$$

All columns of A_3 are orthogonal to q_1 and q_2.

After n steps this is $A = QR$. Only the order of the orthogonalization steps has been modified—by subtracting components (projections) from the columns of A as soon as each new q_i direction has been found.

Now come the last two factorizations of A.

Eigenvalue Decomposition $A = XAX^{-1} = XAY^T$

The effect of n independent eigenvectors x_1, \ldots, x_n is to diagonalize the matrix A. Those “right eigenvectors” are the columns of X. Column by column, we see $AX = X\Lambda$. Then $A = X^{-1}AX$ is the diagonal matrix of eigenvalues, as usual.

To keep the balance between columns and rows, recognize that the rows of X^{-1} are the “left eigenvectors” of A. This is expressed by $X^{-1}A = \Lambda X^{-1}$. Writing y_1^T, \ldots, y_n^T for the rows of X^{-1} we have $y_i^TA = \lambda_iy_i^T$. So the diagonalization $A = XAX^{-1}$ actually has the more symmetric form $A = XAY^T$:

Right and left eigenvectors

$$A = XAY^T = \lambda_1x_1y_1^T + \cdots + \lambda_nx_ny_n^T \quad (7)$$

Notice that these left eigenvectors y_i^T are normalized by $Y^T X = X^{-1} X = I$. This requires $y_i^T x_j = 1$ and confirms the biorthogonality $y_i^T x_j = \delta_{ij}$ of the two sets of eigenvectors.

A symmetric matrix has $y_j = x_j = q_j$ and orthonormal eigenvectors. Then $S = QAQ^T$.

3
Singular Value Decomposition \(A = UΣV^T \)

By comparing with the diagonalization \(A = XAX^{-1} = XΛY^T \), we see the parallels between a right-left eigenvector decomposition (for a diagonalizable matrix) and a right-left singular value decomposition \(A = UΣV^T \) (for any matrix):

The SVD with singular vectors \(A = UΣV^T = σ_1u_1v_1^T + \cdots + σ_ru_rv_r^T. \) (8)

For every matrix \(A \), the right singular vectors in \(V \) are orthonormal and the left singular vectors \(u_j = Av_j/||Av_j|| \) are orthonormal. Those \(v \)'s and \(u \)'s are eigenvectors of \(A^T A \) and \(AA^T \).

\[A^T Av_j = σ_j^2v_j \text{ and } (AA^T)Av_j = σ_j^2Av_j \text{ and } (AA^T)u_j = σ_j^2u_j. \] (9)

These matrices have the same nonzero eigenvalues \(σ_1^2, \ldots, σ_r^2 \). The ranks of \(A \) and \(A^T A \) and \(AA^T \) are \(r \). When the singular values are in decreasing order \(σ_1 ≥ σ_2 ≥ \cdots ≥ σ_r > 0 \), the most important piece of \(A \) is \(σ_1u_1v_1^T \):

\[||A|| = σ_1 \text{ and } ||A - σ_1u_1v_1^T|| = σ_2. \] (10)

The rank one matrix closest to \(A \) is \(σ_1u_1v_1^T \). The difference \(A - σ_1u_1v_1^T \) will have singular values \(σ_2 ≥ σ_3 ≥ \cdots ≥ σ_r \). At every step—not only this first step—the SVD produces the matrix \(A_k = σ_1u_1v_1^T + \cdots + σ_ku_kv_k^T \) of rank \(k \) that is closest to the original \(A \):

\[\text{(Eckart-Young)} \quad σ_{k+1} = ||A - A_k|| \leq ||A - B|| \text{ if } B \text{ has rank } k. \] (11)

Thus the SVD produces the rank one pieces \(σ_iu_iv_i^T \) in order of importance. This is a central result in data science. We are measuring all these matrices by their spectral norms:

\[||A|| = \text{ maximum of } ||Ax|| = \text{ maximum of } u^TAv \text{ with } ||x|| = ||u|| = ||v|| = 1. \]

In Principal Component Analysis, the leading singular vectors are “principal components”. In statistics, each row of \(A \) is centered by subtracting its mean value from its entries. Then \(S = AA^T \) is a sample covariance matrix. Its top eigenvector \(u_1 \) represents the combination of rows of \(S \) with the greatest variance.

Note. For very large data matrices, the SVD is too expensive to compute. An approximation takes its place. That approximation often uses the inexpensive steps of elimination! Now elimination may begin with the largest entry of \(A \), and not necessarily with \(a_{11} \).

Geometrically, the singular values in \(Σ \) stretch the unit circle \(||x|| = 1 \) into an ellipse. The factorization \(UΣV^T = (orthogonal) \text{ times } (diagonal) \text{ times } (orthogonal) \) expresses any matrix (roughly speaking) as a rotation times a stretching times a rotation. The SVD has become central to numerical linear algebra [4].

It may surprise the reader (as it did the author) that the columns of \(X \) in \(A = XΛY^T \) are right eigenvectors, while the columns of \(U \) in \(A = UΣV^T \) are called left singular vectors. Perhaps this just confirms that mathematics is a human and fallible (and wonderful) joint enterprise of us all.
Factorizations can fail! Of the five principal factorizations, only two are guaranteed. Every symmetric matrix has the form \(S = Q \Lambda Q^T \) and every matrix has the form \(A = U \Sigma V^T \). The cases of failure are important too (or adjustment more than failure). \(A = LU \) now requires an “echelon form \(E \)” and diagonalization needs a “Jordan form \(J \)”. Matrix multiplication is still columns times rows.

Elimination to row reduced echelon form \(A = CE = (m \text{ by } r)(r \text{ by } n) \).

The rank of all three matrices is \(r \). \(E \) normally comes from operations on the rows of \(A \). Then it may have zero rows. If we work instead with columns of \(A \), the factors \(C \) and \(E \) have direct meaning.

\(C \) contains \(r \) independent columns of \(A \) (a basis for the column space of \(A \)).

\(E \) expresses each column of \(A \) as a combination of the basic columns in \(C \).

To choose those independent columns, work from left to right (\(j = 1 \) to \(j = n \)).

A column of \(A \) is included in \(C \) when it is not a combination of preceding columns.

The \(r \) corresponding columns of \(E \) contain the \(r \) by \(r \) identity matrix.

A column of \(A \) is excluded from \(C \) when it is a combination of preceding columns.

The corresponding column of \(E \) contains the coefficients in that combination.

Example

\[
A = \begin{bmatrix}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9 \\
\end{bmatrix}
= \begin{bmatrix}
1 & 4 \\
2 & 5 \\
3 & 6 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -1 \\
0 & 1 & 2 \\
\end{bmatrix} = CE
\]

The entries of \(E \) are uniquely determined because \(C \) has independent columns.
The remarkable point is that this \(E \) **coincides with the row reduced echelon form of** \(A \)—except that zero rows are here discarded. Each “1” from the identity matrix inside \(E \) is the first nonzero in that row of \(E \). Those 1’s appear in descending order in \(I \) and \(E \). The key to the rest of \(E \) is this:

The nullspace of \(E \) is the nullspace of \(A = CE \). (\(C \) has independent columns.)

Therefore the row space of \(E \) is the row space of \(A \).

Then our \(E \) must be the row reduced echelon form without its zero rows.

The nullspace and row space of any matrix are orthogonal complements. So the column construction and the row construction must find the same \(E \).

Gram-Schmidt echelon form \(A = QU = (m \text{ by } r)(r \text{ by } n) \).

When the columns of \(A \) are linearly dependent \((r < n)\), Gram-Schmidt breaks down. Only \(r \) orthonormal columns \(q_j \) are combinations of columns of \(A \). Those \(q_j \) are combinations of the independent columns in \(C \) above, because Gram-Schmidt also works left to right. Then \(A = CE \) is the same as Gram-Schmidt \(C = QR \) multiplied by \(E \):

\[
A = CE = (QR)E = Q(RE) = QU. \tag{12}
\]

\(Q \) has \(r \) orthonormal columns: \(Q^TQ = I \). The upper triangular \(U = RE \) combines an \(r \) by \(r \) invertible triangular matrix \(U \) from Gram-Schmidt and the \(r \) by \(n \) echelon matrix \(E \) from elimination. The nullspaces of \(U \) and \(E \) and \(A \) are all the same, and \(A = QU \).

The Jordan form \(A = GJG^{-1} = GJH^T \) **of a square matrix**

Now it is not the columns of \(A \) but its eigenvectors that fail to span \(\mathbb{R}^n \). We need to supplement the eigenvectors by “generalized eigenvectors”:

\[
Ag_j = \lambda_j g_j \quad \text{is supplemented as needed by} \quad Ag_k = \lambda_k g_k + g_{k-1}
\]

The former puts \(\lambda_j \) on the diagonal of \(J \). The latter produces also a “1” on the superdiagonal.

The construction of the Jordan form \(J \) is an elegant mess (and I believe that a beginning linear algebra class has more important things to do: the five factorizations).

The only novelty is to see **left generalized eigenvectors** \(h_i^T \) when we invert \(G \). Start from a 2 by 2 Jordan block:

\[
AG = A \begin{bmatrix} g_1 & g_2 \end{bmatrix} = \begin{bmatrix} \lambda g_1 & \lambda g_2 + g_1 \end{bmatrix} = \begin{bmatrix} g_1 & g_2 \end{bmatrix} \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} = GJ. \tag{13}
\]

Then \(AG = GJ \) gives \(G^{-1}A = JG^{-1} \). Write \(h_i^T \) for the rows of \(G^{-1} \) (the left generalized eigenvectors):

\[
\begin{bmatrix} h_1^T \\ h_2^T \end{bmatrix} A = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} h_1^T \\ h_2^T \end{bmatrix} \quad \text{is} \quad h_1^TA = \lambda h_1^T + h_2^T \quad \text{and} \quad h_2^TA = \lambda h_2^T. \tag{14}
\]

In the same way that \(A = XAX^{-1} \) became \(A = XAY^T \), the Jordan decomposition \(A = GJG^{-1} \) has become \(A = GJH^T \). We have rows times columns:

\[
A = \lambda g_1h_1^T + (\lambda g_2 + g_1)h_2^T = g_1(\lambda h_1^T + h_2^T) + \lambda g_2 h_2^T. \tag{15}
\]
Summary The first lines of this paper connect inner and outer products. Those are “rows times columns” and “columns times rows”: Level 1 multiplication and Level 3 multiplication.

Level 1 Inner product \(a^T b \): row times column \[
\begin{bmatrix}
 a_1 & \ldots & a_n
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 \vdots \\
 b_n
\end{bmatrix}
= \text{scalar}
\]

Level 2 Linear combination \(A b \):
\[
\begin{bmatrix}
 a_1 & \ldots & a_n
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 \vdots \\
 b_n
\end{bmatrix}
= \sum a_j b_j = \text{vector}
\]

Level 3 Outer product \(a b^T \): column times row
\[
\begin{bmatrix}
 a_1 \\
 \vdots \\
 a_n
\end{bmatrix}
\begin{bmatrix}
 b_1 & \ldots & b_n
\end{bmatrix}
= \text{matrix}
\]

The product \(AB \) of \(n \) by \(n \) matrices can be computed at every level, always with the same \(n^3 \) multiplications:
- Level 1 \((n^2 \text{ inner products})(n \text{ multiplications each}) = n^3 \)
- Level 2 \((n \text{ columns } A b)(n^2 \text{ multiplications each}) = n^3 \)
- Level 3 \((n \text{ outer products})(n^2 \text{ multiplications each}) = n^3 \)

These correspond to the three levels of Basic Linear Algebra Subroutines (BLAS). Those are the core operations in LAPACK at the center of computational linear algebra [1]. Our factorizations are produced by four of the most frequently used MATLAB commands: \text{lu}, \text{qr}, \text{eig}, and \text{svd}.

Finally we verify the most important property of matrix multiplication.

The associative law is \((AB)C = A(BC)\)
Multiplying columns times rows satisfies this fundamental law. The matrices \(A, B, C \) are \(m \) by \(n \), \(n \) by \(p \), and \(p \) by \(q \). When \(n = p = 1 \) and \(B \) is a scalar \(b_{jk} \), the laws of arithmetic give two equal matrices of rank one:

\[
(a_j b_{jk}) c_k^T = a_j (b_{jk} c_k^T).
\]

(16)

The full law \((AB)C = A(BC)\) will follow from the agreement of double sums:

\[
\sum_{k=1}^{p} \sum_{j=1}^{n} (a_j b_{jk}) c_k^T = \sum_{j=1}^{n} \sum_{k=1}^{p} a_j (b_{jk} c_k^T).
\]

(17)

We are just adding the same \(np \) terms. After the inner sum on each side, this becomes

\[
\sum_{k=1}^{p} (AB)_k c_k^T = \sum_{j=1}^{n} a_j (BC)_j^T.
\]

(18)

With another column-row multiplication this is \((AB)C = A(BC)\). Parentheses are not needed in \(QΛQ^T \) and \(XΛY^T \) and \(UΣV^T \).
End notes A crucial part of any code for elimination is the choice of pivot rows. Usually the first pivot is the largest entry (say a_{31}) in column 1 of A. Then row 3 of A (and not row 1) is the first pivot row u_1^T. The first column ℓ_1 is column 1 of A divided by a_{31}. Now $A - \ell_1 u_1^T$ is zero in row 3 and column 1. The second pivot is the largest entry in column 2 of the remaining matrix A_2.

The effect is that $[1\ 0\ \ldots\ 0]$ is row 3 and not row 1 of L. The eventual matrix L in $A = LU$ is a permutation of a lower triangular matrix. This corresponds exactly to the usual “$PA = LU$” factorization for any invertible matrix $[3]$. That was partial pivoting. In complete pivoting, the first pivot is the largest entry a_{ij} in the whole matrix A. Now row i of A is u_1^T and column j (divided by a_{ij}) is ℓ_1. Both L and U will be permutations of triangular matrices. We have a row permutation P_1 and a column permutation P_2 to recover $P_1 A P_2$ as a product of truly triangular matrices.

Those paragraphs confirm that elimination as executed in practice is still expressed as a sum of rank one outer products. After completing this step, we learned that a much larger step had already been taken by Chu, Funderlic, and Golub $[2]$. They developed an idea that goes back to Wedderburn and Egervary and Householder and Stewart:

Subtracting any $\frac{A xy^T A^T}{y^T A x}$ of rank one reduces the rank of A.

This adds new factorizations to our list. We might imagine that we have here a complete linear algebra course. We do not. Something essential is missing: the applications. They reinforce the theory and they give new life to the course.

\[
\begin{align*}
Ax &= b & \text{lu} & \text{Graphs, incidence matrices } A, \text{Laplacians } A^T A \\
A^T A \hat{x} &= A^T b & \text{qr} & \text{Least squares solution } \hat{x} \text{ to } A x = b \\
S q &= \lambda q & \text{eig} & \text{Minimum and maximum of functions with } n \text{ variables} \\
A x &= \lambda x & \text{eig} & \text{Differential equations} \\
A v &= \sigma u & \text{svd} & \text{Low rank approximation, fitting data by subspaces}
\end{align*}
\]

Particular matrices are the lifeblood of linear algebra.
REFERENCES

1. E. Anderson et al., LAPACK Users’ Guide, 3rd edition, SIAM, 1999.

2. M. T. Chu, R. Funderlic, and G. Golub, A rank-one reduction formula and its applications to matrix factorizations, SIAM Review 37 (1995) 512-530.

3. G. Strang, Introduction to Linear Algebra, 5th edition, Wellesley-Cambridge Press, 2016.

4. L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.