On the fourth moment of a random determinant

Dominik Beck

Faculty of Mathematics and Physics, Charles University, Prague
beckd@karlin.mff.cuni.cz

November 15, 2022

Abstract

In this paper, we generalise the formula for the fourth moment of a random determinant to account for entries with asymmetric distribution. We also derive the second moment of a random Gram determinant.

Contents

1 Introduction
2 Proof of Theorem 1
 2.1 NRR’s generating function
 2.2 Matrix determinant lemma
 2.3 Second summand
 2.4 Third summand
 2.5 Fourth summand
 2.6 Fifth summand
 2.7 Conclusion
3 Proof of Theorem 2
 3.1 Generating function expansion
 3.2 Cauchy-Binet formula
 3.3 Dembo’s generating function
 3.4 Matrix resolvents
 3.5 Auxiliary moments and their recurrences
 3.6 Auxiliary generating functions
 3.7 The remaining ansatz coefficients and the final conclusion
4 Final remarks

References

A Matrix symbols

1 Introduction

Let X_{ij}’s be i.i.d. (independent and identically distributed) random variables and $A = (X_{ij})_{n \times n}$ a random square matrix having these variables as its entries. We are interested in expressing the moments of the determinant $|A|$, that is

$$f_k(n) = E|A|^k,$$ \hspace{1cm} (1)
as a function of moments \(m_r = \text{EX}_{ij}^r \). It is easy to see that \(f_k(n) \) is a polynomial in \(m_1, m_2, \ldots, m_k \). Moreover, when \(k \) is odd (and \(n > 1 \)), then \(f_k(n) \) is automatically zero due to the anti-symmetric property of a determinant. The only nontrivial cases are hence when \(k \) is even. An equivalent formulation of the problem is to find the generating function

\[
F_k(t) = \sum_{n=0}^{\infty} \frac{t^n}{(n!)^2} f_k(n),
\]

from which one could deduce \(f_k(n) \) by its Taylor expansion. However, this definition of the generating function makes sense only for \(k \leq 5 \), otherwise it does not in general define an analytic function of \(t \) on an interval containing zero. Although, treated formally, it satisfies

\[
\frac{\partial F_k(t)}{\partial \mu_k} = t F_k(t).
\]

Sometimes, we restrict the distribution of \(X_{ij} \)’s:

- We say \(X_{ij} \)’s follow a **symmetric** distribution, if the odd moments are equal to zero up to the order \(k \) (that is, \(m_{2l+1} = 0 \) for \(2l + 1 \leq k \)). We denote \(f_{sym}^k(n) \) and \(F_{sym}^k(t) \) the corresponding \(k \)-th moment of the random determinant formed by those random variables, and its generating function, respectively.

- We say \(X_{ij} \)’s follow a **centered** distribution (or equivalently, we say \(X_{ij} \)’s are centered random variables) if \(m_1 = 0 \). For those variables, we consider \(f_{cen}^k(n) \) and \(F_{cen}^k(t) \) in the same way.

The problem of finding the moments of a random determinant was studied extensively in a series of papers published in the 1950s \[4\][3][7][13]. For \(k = 2 \), there is a well known general formula

\[
f_2(n) = n! (m_2 + m_2^2 (n-1))(m_2 - m_1^2)^{n-1}
\]

attributed originally to Fortet \[4\] as a special case of a more general setting, although the formula itself could be derived in a much more elementary way \[11\].

However, no such formula was available for higher moments given \(X_{ij} \)’s being generally distributed, although there are three notable special cases:

1. Nyquist, Rice and Riordan \[7\] derived

\[
F_{sym}^4(t) = \frac{e^{t(m_4 - 3m_2^2)}}{(1 - m_2^2 t)^3}.
\]

from which they obtained

\[
f_{sym}^4(n) = (n!)^2 m_2^{2n} \sum_{j=0}^{n} \frac{1}{j!} \left(\frac{m_4}{m_2} - 3 \right)^j \left(\frac{n-j+2}{2} \right).
\]

In fact, this formula holds even if \(X_{ij} \)’s follow just a centered distribution. That is, \(f_{cen}^4(n) = f_{sym}^4(n) \). This is due to the fact that \(m_3 \) appears always as a product \(m_1 m_3 \) in the \(f_4(n) \) polynomial.

2. In the same paper, they also derived that if \(X_{ij} \)’s follow a standard normal distribution, then \(f_k(n) \) could be expressed for any even \(k = 2m \) as

\[
f_{2m}(n) = (n!)^m \prod_{r=0}^{m-1} \left(\frac{n+2r}{2r} \right).
\]

A more elementary derivation of this result was later given by Prékopa \[8\].
3. Just recently, Lv and Potechin \([3]\) also obtained an explicit formula for \(f_{6}^{\text{sym}}(n)\). After some simplifications, their result is equivalent to

\[
f_{6}^{\text{sym}}(n) = (n!)^2 m_2^{3n} \sum_{j=0}^{n} \sum_{i=0}^{j} \frac{(1+i)(2+i)(4+i)!}{48(n-j)!} \left(\frac{14+j+2i}{j-i}\right) \left(\frac{m_6}{m_2^3} - 15 \frac{m_4}{m_2^2} + 30\right)^{n-j} \left(\frac{m_4}{m_2^2} - 3\right)^{j-i}. \tag{8}\]

However, due to nontrivial \(m_3^2\) terms, \(f_{6}^{\text{sym}}(n)\) and \(f_{6}^{\text{cen}}(n)\) do not generally coincide. Luckily, using the same methods as in their paper, it can be easily derived that

\[
f_{6}^{\text{cen}}(n) = (n!)^2 m_2^{3n} \sum_{j=0}^{n} \sum_{i=0}^{j} \frac{(1+i)(2+i)(4+i)!}{48(n-j)!} \left(\frac{10}{k}\right) \left(\frac{14+j+2i}{j-i}\right) n_6^{n-j-k} n_4^{j-i} n_3^{k}. \tag{9}\]

where

\[
n_6 = \frac{m_6}{m_2^3} - 10 \frac{m_3^2}{m_2^2} - 15 \frac{m_4}{m_2^2} + 30, \quad n_4 = \frac{m_4}{m_2^2} - 3, \quad n_3 = \frac{m_3^2}{m_2^2}. \tag{10}\]

More generally, denote \(U = (X_{ij})_{n \times p}\) a rectangular matrix with i.i.d. random variable entries \(X_{ij}\). This time, we are interested in expressing the moments of the determinant \(|U^T U|\) as a polynomial of the moments \(m_r = \mathbb{E} X_{ij}^r\) of the entries. For even \(k\), we denote

\[
f_k(n, p) = \mathbb{E}|U^T U|^{k/2} \quad \text{and} \quad F_k(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^n \omega^n - pf_k(n, p) \tag{11}\]

with \(f_k(n, 0) = 1\) by definition (we put \(|U^T U| = 1\) when \(p = 0\)). Notice that, when \(n = p\), we get by the multiplicative property of determinant

\[
f_k(n, n) = f_k(n) \quad \text{and thus} \quad F_k(t, 0) = F_k(t). \tag{12}\]

Again, restricting the distribution of \(X_{ij}\)'s, we write

- **(centered distribution)** \(f_k(n, p) = f_k^{\text{cen}}(n, p)\) and \(F_k(t, \omega) = F_k^{\text{cen}}(t, \omega)\) if \(m_1 = 0\); and similarly
- **(symmetrical distribution)** \(f_k(n, p) = f_k^{\text{sym}}(n, p)\) and \(F_k(t, \omega) = F_k^{\text{sym}}(t, \omega)\) if \(m_1 = m_3 = m_5 = \ldots = 0\).

The fact that \(f_k(n, p)\) is a polynomial in \(m_p\) leads to the important equality

\[
f_k^{\text{cen}}(n, p) = f_k^{\text{sym}}(n, p) \quad \text{valid for} \quad k = 2, 4. \tag{13}\]

When \(k \geq 6\), \(f_k^{\text{cen}}(n, p)\) contains extra products of even powers of odd moments \((m_2^2, \ldots)\). Let us have a quick overview of some special cases. As a simple consequence of Cauchy-Binet formula \([10]\), we have

\[
f_2(n, p) = p! \binom{n}{p} (m_2 + m_2^2 (p-1))(m_2^2 - m_2^2)^{p-1} \tag{14}\]

It turns out, this was the only known general formula. Although, as a special case, Dembo \([1]\) showed

1. For any even \(k\), formally,

\[
\frac{\partial F_k(t, \omega)}{\partial \mu} = t F_k(t, \omega). \tag{15}\]

2. If \(X_{ij}\)'s follow the standard normal distribution, then \((k = 2m \text{ even})\)

\[
f_{2m}(n, p) = p! m^{m-1} \prod_{r=0}^{m-1} \binom{n+2r}{n-p+2r}. \tag{16}\]

However, this result is older and there had even been a generalization of it based on known properties of the non-central Wishart distribution: Let \(X_{ij} \sim \mathcal{N}(\mu, \sigma^2)\), then (see Theorem 10.3.7 in \([6]\))

\[
f_{2m}(n, p) = p! m^{2m} \sigma^{2m} \prod_{r=0}^{m-1} \binom{n+2r}{n-p+2r} \sum_{s=0}^{m} \binom{m}{s} \binom{n-2}{n+2s-2}! \left(\frac{np\mu^2}{\sigma^2}\right)^s. \tag{17}\]
3. For symmetrical distribution of \(X_{ij}\)’s,

\[
 F_{4}^{\text{sym}}(t, \omega) = \frac{e^{t(m_4 - 3m_2^2)}}{(1 - m_2^2 t)^2 (1 - \omega - m_2^2 t)}, \quad f_{4}^{\text{sym}}(n, p) = p^2 \binom{n}{p} m_2^p \sum_{j=0}^{p} \frac{1}{j!} \left(\frac{m_4}{m_2^2} - 3 \right)^j \binom{n-j+2}{2}.
\]

(18)

Note that, letting \(\omega = 0\) (or \(p = n\)), we recover the formulae of Nyquist, Rice and Riordan \([7]\).

\[
 F_{4}^{\text{sym}}(t) = \frac{e^{t(m_4 - 3m_2^2)}}{(1 - m_2^2 t)^3}, \quad f_{4}^{\text{sym}}(n) = (nt)^2 m_2^n \sum_{j=0}^{n} \frac{1}{j!} \left(\frac{m_4}{m_2^2} - 3 \right)^j \binom{n-j+2}{2}.
\]

(19)

Main results

The aim of this paper is to generalize the result of Nyquist, Rice and Riordan \([7]\) to express the full \(f_4(n)\). That is, with \(X_{ij}\)’s being generally distributed. Furthermore, we aim to generalize the result of Dembo \([1]\) to express the full \(f_4(n, p)\). We present the following theorems and their corollaries:

Theorem 1.

\[
 F_4(t) = \frac{e^{t(\mu_4 - 3\mu_2^2)}}{(1 - \mu_2^2 t)^3} \left(1 + \sum_{k=1}^{6} p_k t^k \right),
\]

(20)

where

\[
 p_1 = m_4^4 + 6m_2^2m_4^2 - 2m_2^4 + 4m_1m_3, \quad p_2 = 7m_4^3 - 6m_2^2m_4^3 + \mu_2^4 + 12m_1m_2m_3 - 8m_1m_2^2m_3 + 6m_1^2m_3^2, \\
 p_3 = 2m_1(2m_4^2 - 6m_2^2m_4 + 2m_2^4m_3 + 3m_1m_2^2m_3^2 - 6m_1m_2^2m_3^2 + 2m_1^2m_3^3), \\
 p_4 = m_2^2(3m_1^2m_3^2 - 6m_1m_2^2m_3 + 6m_1^2m_3^2), \quad p_5 = 2m_1m_2m_3^2(2m_2 - m_1m_3), \quad p_6 = m_1^4m_3^4.
\]

and (central moments)

\[
 \mu_2 = m_2 - m_1^2, \quad \mu_3 = -3m_1m_2 + 2m_3^3, \quad \mu_4 = -4m_1m_3 + 6m_1^2m_2 - 3m_4.
\]

Corollary 1.1. Defining \(\mu_j\) as above, we have, by Taylor expansion,

\[
 f_4(n) = (nt)^2 \mu_2^n \sum_{j=0}^{n} \frac{1}{j!} \left(\frac{\mu_4}{\mu_2^2} - 3 \right)^j \sum_{i=2}^{4} q_i \left(\frac{n-j+i}{i} \right).
\]

(21)

where

\[
 q_{-2} = \frac{m_4^4}{\mu_2^8}, \quad q_{-1} = -4m_2^2m_4^3 \frac{(\mu_2^2 + m_1m_3)}{\mu_2^2}, \quad q_0 = 6m_1^2m_3^2 \frac{(\mu_2^4 + 2m_1m_2m_3 + m_1^2m_3^2 - m_2^2m_3^2)}{\mu_2^2}, \\
 q_1 = 2m_1 \left(6m_1^2m_3^2m_5 - 2m_1m_2^2m_3^2 - 2m_1^2m_2m_3^2 + 3m_1^2m_3^2m_3 - 6m_1m_2m_3^3 - 6m_1^2m_2m_3^3 - 2m_1^3m_5 \right), \\
 q_2 = 1 + m_1 \left(19m_1^3m_5 - 6m_1m_2^2 - 24m_1^2m_2m_3^2 + 4m_1^2m_2m_3^2 - 18m_1m_2m_3^3 + 6m_1m_2m_3^3 + 4m_1^2m_2m_3^3 + m_1^3m_5 \right), \\
 q_3 = \frac{3m_1^2(2m_2^3 - 9m_1m_2m_3^2 + 4m_1m_2m_3^2 + 2m_1^2m_3^2)}{\mu_2^5}, \quad q_4 = \frac{12m_1^4}{\mu_2^2}.
\]

Remark 1. By definition we put \(\binom{-2}{2} = \binom{-1}{1} = 1\), \(\binom{-1}{-2} = -1\) and \(\binom{j}{-2} = \binom{-1}{j} = 0\), \(j \geq 0\).

Example 1 (General Gaussian distribution). If \(X_{ij} \sim N(\mu, \sigma^2)\), we have \(m_1 = \mu\), \(m_2 = \mu_2\), \(m_3 = \mu_3\), \(m_4 = \mu_4\), \((q_{-2}, q_{-1}, q_0, q_1, q_2, q_3, q_4) = (0, 0, 0, -4\mu^4, 19\mu^4 - 6\mu^2\sigma^2 + \sigma^4, 6\mu^2\sigma^2 - 27\mu^4, 12\mu^4) / \sigma^4\), from which we get

\[
 f_4(n) = \frac{1}{2}(nt)^2(1 + n)^{\sigma^4(k-1)}(n^3\mu^4 + (2 + n)\sigma^2(2n\mu^2 + \sigma^2)).
\]

(22)
Example 2. \(((0, 2)\) matrices). Let \(X_{ij} = 0.2\) with equal probability, thus \((m_1, m_2, m_3, m_4) = (1, 2, 4, 8)\) and \((\mu_2, \mu_3, \mu_4) = (1, 0, 1)\). As pointed out by Terence Tao [12], the determinant of a random \(n \times n\) \((-1, +1)\) matrix is equal to the determinant of a random \(n - 1 \times n - 1\) \((0, 2)\) matrix for which \((m_1, m_2, m_3, m_4) = (0, 1, 0, 1)\). In terms of generating functions, that means

\[
F_4(t) = \frac{\partial}{\partial t} \left(t \frac{e^{sym}(t)}{4} \right) = \frac{\partial}{\partial t} \left(t \frac{e^{-2t}}{(1 - t)^3} \right) = \frac{e^{-2t} \left(1 + 5t + 2t^2 + 4t^3 \right)}{(1 - t)^5},
\]

where in \(e^{sym}(t)\) we put \((m_1, m_2, m_3, m_4) = (0, 1, 0, 1)\). This result coincides exactly with our general formula for \(F_4(t)\) with \((m_1, m_2, m_3, m_4) = (1, 2, 4, 8)\).

Example 3 (Exponential distribution). If \(X_{ij} \sim \text{Exp}(1)\), that is if \(m_j = j!\), we have \((\mu_2, \mu_3, \mu_4) = (1, 2, 9)\) and \((q_1, q_2, q_0, q_1, q_2, q_3, q_4) = (16, -96, 192, -124, -26, 27, 12)\). Using Mathematica, we get an asymptotic behaviour for large \(n\),

\[
f_4(n) \approx \frac{1}{2} e^{6(n!)^2} (450 + 141n - 27n^2 - 5n^3 + n^4).
\]

(24)

The first ten exact moments are shown in Table 1 below.

\[
\begin{array}{cccccccc}
\hline
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
f_4(n) & 24 & 960 & 51840 & 3511872 & 287953920 & 27988001280 & 27988001280 \\
\hline
n & 8 & 9 & 10 \\
\hline
f_4(n) & 418846663065600 & 6339954982846460 & 10964925305310412800 \\
\hline
\end{array}
\]

Table 1: Fourth moment of a random determinant with entries exponentially distributed.

These tabulated numbers are of particular interest in the field of random geometry. Let us have a \(d\)-dimensional simplex with unit \(d\)-volume, from which we select \(d + 1\) points uniformly and independently. A convex hull of those random points forms a smaller simplex with \(d\)-volume \(V_d\), which is now a random variable. As shown by Reed [9], the even moments of \(V_d\) are given by

\[
EV_d^{2l} = \left(\frac{dt}{(d + 2)!} \right)^{d+1} f_{2l}(d + 1),
\]

(25)

our result applied on \(X_{ij} \sim \text{Exp}(1)\) thus implies an explicit formula for the fourth moment of \(V_d\).

Theorem 2. Defining \(p_k\) and \(\mu_i\) as above, we have

\[
F_4(t, \omega) = \frac{e^{t(\mu_4 - 3\mu_2^2)}}{(1 - \mu_2^2)^4} \left(1 + \frac{\omega}{1 - \mu_2^2} \sum_{k=1}^{6} \mu_k t^k + \frac{\omega m_1^2}{1 - \omega - \mu_2^2} \sum_{k=1}^{4} \bar{\mu}_k t^k + \frac{2 \omega^2 m_1^4 \mu_2^2 t^2}{(1 - \omega - \mu_2^2)^2} \right).
\]

(26)

where

\[
\bar{\mu}_1 = m_1^2 + 2\mu_2, \quad \bar{\mu}_2 = 5m_1^2 \mu_2^2 + 4m_1 \mu_2 \mu_3 - 2\mu_2^2, \quad \bar{\mu}_3 = 2m_1^2 \mu_2^4 - 4m_1 \mu_2 \mu_3^2 + 2m_1^2 \mu_2 \mu_3 ^2, \quad \bar{\mu}_4 = -2m_1^2 \mu_2^3.
\]

Remark 2. Letting \(\omega = 0\), we recover \(F_4(t)\). On the other hand, letting \(m_1 = 0\), we get \(F_4^{\text{sym}}(t, \omega)\).

Corollary 2.1. Defining \(q_i\) and \(\mu_i\) as above, we get, by Taylor expansion,

\[
f_4(n, p) = p^{2} \mu_2^2 \sum_{i=0}^{p} \frac{1}{i!} \left(\frac{\mu_4}{\mu_2^2} - 3 \right)^i \sum_{j=-2}^{4} \binom{n}{p} \frac{q_i (n-p) + \bar{q}_i (n-p)(n-p+7)}{(n-p+i+1)}.
\]

(27)

where

\[
q_0 = \frac{2 m_1^4}{\mu_2^2}, \quad q_1 = \frac{2 m_1^2 (2 \mu_2^2 \mu_3 + 3 m_1 \mu_2^2 - m_1 \mu_3^2)}{\mu_2^2}, \quad q_2 = \frac{m_1^2 (3 m_1^2 \mu_3^2 - 2 \mu_4 - 8 m_1 \mu_2 \mu_3 - 6 m_1^2 \mu_3^2)}{\mu_2^2},
\]

\[
q_3 = \frac{2 m_1^4}{\mu_2^2}, \quad q_4 = \frac{m_1^4}{\mu_2^2}
\]

and \(q_i, \bar{q}_i\) otherwise zero.
Example 4 (General Gaussian distribution). If $X_{ij} \sim N(\mu, \sigma^2)$, we have $m_1 = \mu$, $(\mu_2, \mu_3, \mu_4) = (\sigma^2, 0, 3\sigma^4)$, which gives, after series of simplifications,

$$f_4(n, p) = \frac{n!(n+1)!\sigma^4(p-1)}{(n-p)!(n-p+2)!} \left(np^2\mu^4 + (n+2) (2p\mu^2\sigma^2 + \sigma^4) \right).$$ \hspace{1cm} (28)

This formula agrees with the general case given by Equation 17.

Example 5 (Exponential distribution). If $X_{ij} \sim \text{Exp}(1)$, that is if $m_j = j!$, we have $(\mu_2, \mu_3, \mu_4) = (1, 2, 9)$ and $(q-2, q-1, q_0, q_1, q_2, q_3, q_4, q_0, q_1, q_2, q_3, q_4, q_5, q_6) = (16, -96, 192, -124, -26, 27, 12, -8, 30, -39, 17, 1, -2, 1)$. The exact moments $f_4(n, p)$ for low n and p are shown in Table 2 below.

$f_4(n, p)$	1	2	3	4	5	6
$n-p$						
0	24	960	51840	3511872	287953920	27988001280
1	56	3744	297216	27708480	3004024320	375698373120
2	96	9432	1022400	124675200	17182609920	2675406827520
3	144	19320	2724480	419207040	71341240320	13491506810880
4	200	34920	6189120	1169602560	240336875520	54144163584000
5	264	57960	12579840	2858913792	696776048640	18409928343360
6	336	90384	23538816	6325119360	1801876285440	551197391754240
7	416	134352	41299200	12939696000	4256462960640	1491202996208640

Table 2: Second moment of a random Gram determinant with entries exponentially distributed
2 Proof of Theorem

2.1 NRR’s generating function

We briefly discuss what we believe is a simpler derivation of \(F_{\text{sym}}^4(t) \) of Nyquist, Rice and Riordan [7]. We were inspired by the paper of Lv and Potechin [5].

Lemma 3. Let \(S_n \) be the set of all permutations of order \(n \) and \(D_n \) the set of all derangements of the same order (that is, \(D_n \) is a subset of those permutations in \(S_n \) which have no fixed points). Denote \(C(\pi) \) the number of cycles in a permutation \(\pi \), then

\[
\sum_{n=0}^{\infty} \frac{x^n}{n!} \sum_{\pi \in D_n} u^{C(\pi)} = \frac{e^{-ux}}{(1-x)^u}, \tag{29}
\]

Proof. See [2], chapter on Bivariate generating function. ■

Proposition 4.

\[
f_4(n) = E |A|^2 = E \sum_{\pi_1, \pi_2, \pi_3, \pi_4 \in S_n} \prod_{r=1}^{4} \left(sgn(\pi_r) \prod_{i=1}^{n} X_{i\pi_r(i)} \right). \tag{30}
\]

Proof. Follows from the definition of determinant. ■

The summation above is carried over all permutation fours \((\pi_r)_{r=1}^{4} \), which can be viewed, the same way as it is in the original article of Nyquist, Rice and Riordan [7], as a sum over all possible permutation tables. Since we assume \(X_{ij} \) follow symmetric distribution, many of the terms vanish.

Definition 1 (Permutation tables). We say \(t \) is a permutation four-table of length \(n \) if its rows are exactly the permutations \(\pi_r \) of length \(n \). A table \(t \) is called symmetric, if its columns fall into the admissible categories below. Furthermore, we assign weight to each column. The weight \(w(t) \) of the table \(t \) is then simply a product of weights of its columns. Similarly we define sign of a table as a product of sign of the permutations in each row. The admissible columns in symmetric four-tables are:

- 4-columns: four copies of a single number (weight \(m_4 \))
- 2-columns: two pairs of distinct numbers (weight \(m_2^2 \))

We denote \(T_{4,n}^{\text{sym}} \) the set of all symmetric four-tables of length \(n \).

Remark 3. To distinguish between tables, we sometimes write \(t_r \) instead of \(\pi_r \) for the rows of \(t \).

Proposition 5.

\[
f_4^{\text{sym}}(n) = \sum_{t \in T_{4,n}^{\text{sym}}} w(t) \text{sgn}(t). \tag{31}
\]

Proof. Follows from the definitions above. ■

We group the summands according to number of 2-columns in \(t \). Those columns form a subtable \(s \) and the rest of the columns form another, a complementary subtable \(t' \). The signs of those tables are related as

\[
\text{sgn}(t) = \text{sgn}(s) \text{sgn}(t'). \tag{32}
\]

Denote \([n] = \{1, 2, 3, \ldots, n\} \). For a given \(J \subset [n] \), we define \(T_{4,j}^{\text{sym}} \) a set of all symmetric four-tables of length \(j = |J| \) composed with numbers in \(J \). The set \(T_{4,n}^{\text{sym}} \) coincide then with \(T_{4,[n]}^{\text{sym}} \). Denote \(D_{4,J} \) the set of all four-tables composed only from 2-columns of numbers in \(J \). We can write our sum, since the selection \(J \) does not depend on position in table \(t \), as

\[
f_4^{\text{sym}}(n) = \sum_{J \subset [n]} \binom{n}{j} \sum_{t' \in T_{4,[n]}^{\text{sym}} / J} w(t) \text{sgn}(t) \sum_{s \in Q_{4,J}} w(s) \text{sgn}(s). \tag{33}
\]
No matter which numbers \(j \) are selected, as long as we select the same amount of them, the contribution is the same. Hence,

\[
f_4^{\text{sym}}(n) = \sum_{j=0}^{n} \binom{n}{j}^2 \sum_{t' \in T_{4,n-j}} w(t) \text{sgn}(t) \sum_{s \in D_{4,j}} w(s) \text{sgn}(s),
\]

(34)

where \(Q_{4,j} = Q_{4,|j|} \). For the first inner sum, notice that table \(t' \) is composed of only four-columns, so \(w(t') = m_{4-j}^4 \) and \(\text{sgn}(t') = (\pm 1)^4 = 1 \). Also note that \(|T_{4,n-j}| = (n-j)! \). For the second inner sum, by symmetry, we can fix the first permutation in \(s \) to be identity, giving us the factor of \(j! \). Upon noticing also that \(w(s) = m_2^{2j} \) and \(\text{sgn}(s) = (\pm 1)^2 = 1 \), we get,

\[
f_4^{\text{sym}}(n) = \sum_{j=0}^{n} \binom{n}{j}^2 (n-j)!m_{4-j}^4 m_2^{2j} \sum_{s \in D_{4,j}\atop s_1 = \text{id}} 1.
\]

(35)

We group the summands according to the following permutation structure: Let \(b \) be a number in the first row of a given column of table \(s \). Since it is a 2-column, we denote the other number in the column as \(b' \). We construct a permutation \(\pi(s) \) to a given table \(s \) as composed from all those pairs \(b \to b' \). Note that since \(b \) and \(b' \) are allways different, the set off all \(\pi(s) \) corresponds to the set \(D_1 \) of all derangements. Since there are 3 possibilities how to arrange the leftover 3 numbers in the 2-columns corresponding to a given cycle of \(\pi(s) \), we get

\[
\sum_{s \in D_{4,j}\atop s_1 = \text{id}} 1 = \sum_{\pi \in D_1} 3^{C(\pi)}.
\]

(36)

Hence, in terms of generating functions,

\[
F_4^{\text{sym}}(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} f_4^{\text{sym}}(n) = \sum_{n=0}^{\infty} \sum_{j=0}^{n} \binom{n}{j}^2 \frac{(m_4 t)^{n-j} (m_2 t)^j}{(n-j)! j!} \sum_{\pi \in D_1} 3^{C(\pi)} = \sum_{j=0}^{\infty} \frac{(m_4 t)^j}{j!} \sum_{\pi \in D_1} 3^{C(\pi)} = \sum_{j=0}^{\infty} \frac{(m_4 t)^j}{j!} \sum_{\pi \in D_1} 3^{C(\pi)} = e^{m_4 t} \sum_{j=0}^{\infty} \frac{(m_2 t)^j}{j!} e^{-3m_2^2 t} = e^{m_4 t} (1 - m_2^2 t)^{-3}.
\]

(37)

The final equality is a special case of Lemma 6.

2.2 Matrix determinant lemma

The proof of Theorem 1 relies on the fact that \(f_4^{\text{even}}(n) = f_4^{\text{sym}}(n) \) combined with the following key lemma:

Lemma 6. Let \(C = (c_{ij})_{n \times n} \) be any real matrix, \(u = (u_i)_{n \times 1} \), \(v = (v_i)_{n \times 1} \) real vectors and \(\lambda \in \mathbb{R} \), then

\[
|C + \lambda uv^T| = |C| + \lambda v^T C^\text{adj}u,
\]

(38)

where \((C^\text{adj})_{ij} = (-1)^{i+j} |C|_{ij} \) is called the adjugate matrix of \(C \) and \(C_{ij} \) denotes a matrix formed from \(C \) by deleting its \(j \)-th row and \(i \)-th column, as usual.

Proof. In fact, the lemma is a special case of the **Weinsteins–Aronszajn identity**. To see this, consider

\[
|C + \lambda uv^T| = |C| |I + \lambda C^{-1} uv^T| = |C| |I + \lambda v^T C^{-1} u| = |C| (1 + \lambda v^T C^{-1} u) = |C| + \lambda v^T C^\text{adj}u.
\]

(39)

By continuity, we conclude that the lemma holds even for \(C \) being noninvertible. \(\blacksquare \)

Definition 2 \((Y_{ij}, \mu_r)\). We denote \(Y_{ij} = X_{ij} - m_1 \) and \(\mu_r = EY_{ij}^T \).

Remark 4. Clearly, \(Y_{ij}'s \) are centered i.i.d. random variables with moments depending on \(m_j \) as such

\[
\mu_1 = 0, \quad \mu_2 = m_2 - m_1^2, \quad \mu_3 = m_3 - 3m_1 m_2 + 2m_1^3, \quad \mu_4 = m_4 - 4m_1 m_3 + 6m_1^2 m_2 - 3m_1^4,
\]

(40)

and so on.
Definition 3 (B, g_k(n), G_k(t)). Given Y_i j’s, we form a matrix \(B = (Y_{ij})_{n \times n} \) and denote \(g_k(n) = E |B|^k \) and

\[
G_k(t) = \sum_{n=0}^{\infty} \frac{t^n}{(n!)^2} g_k(n). \tag{41}
\]

Remark 5. Since the moments of a random determinant are dependent only on moments of its random entries, we get that \(g_k(n) \) is equal to \(f_k^{\text{cen}}(n) \) in which we replace \(m_i \) by \(\mu_i \). So, for \(k = 4 \),

\[
G_4(t) = \frac{e^{t(\mu_4 - 3\mu_2^2)}}{(1 - \mu_2^2 t)^3}. \tag{42}
\]

Proposition 7.

\[
|A| = |B| + m_1 S, \quad \text{where} \quad S = \sum_{ij} (-1)^{i+j} |B_{ij}|. \tag{43}
\]

Proof. By definition of \(Y_{ij} \)’s and \(B \), we can write

\[
A = B + m_1 u u^T, \tag{44}
\]

where \(u \) is a column vector with \(n \) rows having all components equal to one. Hence, by Lemma 6,

\[
|A| = |B + m_1 u u^T| = |B| + m_1 u^T B \text{adj} u = |B| + m_1 \sum_{ij} u_i (-1)^{i+j} |B_{ij}| u_j = |B| + m_1 S. \tag{45}
\]

\[\blacksquare\]

Corollary 7.1. We thus get an expression for \(f_4(n) \) in terms of the following summands

\[
f_4(n) = E |A|^4 = E (|B| + m_1 S)^4 = E |B|^4 + 4 m_1 E |B|^3 S + 6m_1^2 E |B|^2 S^2 + 4 m_1^3 E |B| S^3 + m_1^4 E S^4. \tag{46}
\]

Remark 6. The first summand is trivial, since we already know that \(E |B|^4 = g_4(n) \). The goal of the rest of our paper is to express the other summands in terms of \(g_4(n) \) as well. This was be possible due to the crucial fact that \(B \) now has only centered random entries \(Y_{ij} \)’s. The main tool to obtain such relations is using the Laplace expansion of determinants via their rows (or columns) repeatedly.

Definition 4 (\(B_{ij,k,l} \), matrix symbols). We denote \(B_{ij,k,l} \) a matrix \(B \) from which the rows \(i, j \) and columns \(k, l \) were deleted. To improve readability, we adopt a graphical notation (matrix symbols) for determinants \(|B_{ij}| \) and \(|B_{ij,k,l}| \). We write, for example,

\[
\begin{bmatrix}
\end{bmatrix} = |B_{22}|, \quad \begin{bmatrix}
\end{bmatrix} = |B_{23,24}|, \quad \begin{bmatrix}
\end{bmatrix} = \begin{bmatrix}
\end{bmatrix} = |B_{12}|.
\]

A row painted in black (or a column as in the example above) shows where the Laplace expansion is being performed in the next step.

Remark 7. Table 6 in the appendix shows all matrix symbols used in this paper.

2.3 Second summand

Proposition 8.

\[
E |B|^3 S = n^2 \mu_3 g_4(n - 1). \tag{47}
\]

Proof. By symmetry, \(E |B|^3 S = n^2 E |B|^3 |B_{11}| \), that is\[
E |B|^3 S = n^2 E \left(\begin{bmatrix}
\end{bmatrix} \right)^3 \begin{bmatrix}
\end{bmatrix} = n^2 \mu_3 E \left(\begin{bmatrix}
\end{bmatrix} \right)^4 - n^2 (n - 1) \mu_3 E \left(\begin{bmatrix}
\end{bmatrix} \right)^3 \begin{bmatrix}
\end{bmatrix} = n^2 \mu_3 g_4(n - 1). \tag{48}\]

\[\blacksquare\]
2.4 Third summand

Proposition 9.

\[E|B|^2 S^2 = n^2 h_0(n) + n^2(n - 1)^2 \mu_3^2 g_4(n - 2), \]

where \(h_0(n) \) satisfies the recurrence relation

\[h_0(n) = \mu_2 g_4(n - 1) + (n - 1)^2 \mu_2 h_0(n - 1). \]

Proof. By definition of \(S \), we have

\[E|B|^2 S^2 = \sum_{ijkl} (-1)^{i+j+r+t} E|B|^2 |B_{ij}||B_{kl}|. \]

The terms \(E|B|^2 |B_{ij}||B_{kl}| \) in the sum above form equivalence classes in which each member has the same contribution (up to a sign). Each class is characterised by having the same relative arrangement of pairs of indices \((ij)\) and \((kl)\) in the \(n \times n \) matrix grid. Representants drawn from each class together with their signs and values denoted \(h_i(n) \) are shown in Table 3 below (the diagrams represent the relative arrangement of indices for a given representant). The table also shows the total number of terms in the same equivalence class (size of a class).

sign	+	-	+
class	[]	[]	[]
size	\(n^2 \)	\(2n^2(n - 1) \)	\(n^2(n - 1)^2 \)
value	\(h_0(n) \)	\(h_1(n) \)	\(h_2(n) \)

Table 3: Classes of equivalent terms in the third summand

Thus, \(E|B|^2 S^2 = n^2 h_0(n) - 2n^2(n - 1)h_1(n) + n^2(n - 1)^2h_2(n) \) (52)

with \(h_0(n) = E|B|^2 |B_{11}|^2, \quad h_1(n) = E|B|^2 |B_{11}| |B_{12}|, \quad h_2(n) = E|B|^2 |B_{11}| |B_{12}|. \) (53)

We shall now perform the Laplace expansion on those terms until we get a recurrence relation.

\[h_0(n) = E|B|^2 |B_{11}|^2 = E \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{array} \right)^2 \left(\begin{array}{c} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{array} \right)^2 = \mu_2 E|B_{11}|^4 + (n - 1)\mu_2 E \left(\begin{array}{c} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \end{array} \right)^2 \left(\begin{array}{c} \delta_1 \\ \delta_2 \\ \delta_3 \\ \delta_4 \end{array} \right)^2 = \]

\[= \mu_2 g_4(n - 1) + (n - 1)^2 \mu_2 E \left(\begin{array}{c} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \end{array} \right)^2 \left(\begin{array}{c} \zeta_1 \\ \zeta_2 \\ \zeta_3 \\ \zeta_4 \end{array} \right)^2 = \mu_2 g_4(n - 1) + (n - 1)^2 \mu_2 h_0(n - 1). \]

\[h_1(n) = E|B|^2 |B_{11}| |B_{12}| = E \left(\begin{array}{c} \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \end{array} \right)^2 \left(\begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{array} \right)^2 = \]

\[= \mu_2 E \left(\begin{array}{c} \kappa_1 \\ \kappa_2 \\ \kappa_3 \\ \kappa_4 \end{array} \right)^3 \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{array} \right) + \mu_2 E \left(\begin{array}{c} \mu_1 \\ \mu_2 \\ \mu_3 \end{array} \right)^3 \left(\begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \end{array} \right) + (n - 2)\mu_2 E \left(\begin{array}{c} \nu_1 \\ \nu_2 \\ \nu_3 \end{array} \right)^2 \left(\begin{array}{c} \pi_1 \\ \pi_2 \\ \pi_3 \end{array} \right)^2 = \]

\[= (n - 1)(n - 2)\mu_2 \mu_3 E \left(\begin{array}{c} \rho_1 \\ \rho_2 \\ \rho_3 \end{array} \right)^2 \left(\begin{array}{c} \sigma_1 \\ \sigma_2 \\ \sigma_3 \end{array} \right)^2 = 0. \]

\[h_2(n) = E|B|^2 |B_{11}| |B_{12}| = E \left(\begin{array}{c} \zeta_1 \\ \zeta_2 \\ \zeta_3 \\ \zeta_4 \end{array} \right)^2 \left(\begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \end{array} \right)^2 = \]

\[= \mu_3 E \left(\begin{array}{c} \kappa_1 \\ \kappa_2 \\ \kappa_3 \end{array} \right)^3 \left(\begin{array}{c} \lambda_1 \\ \lambda_2 \end{array} \right) - (n - 2)\mu_3 E \left(\begin{array}{c} \nu_1 \\ \nu_2 \end{array} \right)^2 \left(\begin{array}{c} \pi_1 \\ \pi_2 \end{array} \right)^2 = \mu_3 \left[E|B|^3 |B_{11}| \right]_{n \rightarrow n - 1} = \mu_3 g_4(n - 2). \]

\[\blacksquare \]
2.5 Fourth summand

Proposition 10.

\[\mathbb{E}|B|^3 = 3n^2(n-1)^2 \mu_3 h_0(n-1) + n^2(n-1)^2(n-2)^2 \mu_3 g_4(n-3). \]

(57)

Proof.

\[\mathbb{E}|B|^3 = \sum_{ijklrs} (-1)^{i+j+k+l+r+s} |E|B_{ij}|B_{kl}|B_{rs}|. \]

(58)

The following Table 4 summarizes all the possible classes of terms according to the arrangement of \((ij),(kl),(rs)\) indices. Note that there are some representants whose value is trivially zero (they contain a row or a column such that the expansion in which gives zero). Thus

\[\mathbb{E}|B|^3 = 3n^2(n-1)^2 h_3(n) + 6n^2(n-1)^2 h_4(n) + 6n^2(n-1)^2(n-2) h_5(n) + n^2(n-1)^2(n-2)^2 h_6(n). \]

(59)

sign	class	size	value
+		\(n^2\)	0
-		\(6n^2(n-1)\)	0
+		\(3n^2(n-1)^2\)	\(h_3(n)\)
+		\(6n^2(n-1)^2\)	\(h_4(n)\)
+		\(6n^2(n-1)^2(n-2)\)	\(h_5(n)\)
+		\(n^2(n-1)^2(n-2)^2\)	\(h_6(n)\)
-		\(2n^2(n-1)(n-2)\)	0

Table 4: Classes of equivalent terms in the fourth summand

We now proceed to expand the values of the nontrivial representants until we get recurrence relations.

\[h_3(n) = \mathbb{E}|B||B_{11}|^2|B_{22}| = \mathbb{E} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^2 = \mu_3 \mathbb{E} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^2 = \mu_3 \left[\mathbb{E}|B|^2|B_{11}|^2 \right]_{n\to n-1} = \mu_3 h_0(n-1). \]

(60)

\[h_4(n) = \mathbb{E}|B||B_{12}||B_{21}||B_{22}| = \mathbb{E} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = (n-2)\mu_3 \mathbb{E} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = 0, \]

(61)

\[h_5(n) = \mathbb{E}|B||B_{11}||B_{13}||B_{22}| = \mathbb{E} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = (n-2)\mu_3 \mathbb{E} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = 0, \]

(62)

\[h_6(n) = \mathbb{E}|B||B_{11}||B_{22}||B_{33}| = \mathbb{E} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \mu_3 \mathbb{E} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \mu_3 h_2(n-1) = \mu_3 g_4(n-3). \]

(63)

2.6 Fifth summand

Proposition 11.

\[\mathbb{E}S^4 = n^2 g_4(n-1) + 6n^2(n-1)^2 \mu_2 h_0(n-1) + 3n^2(n-1)^2 h_0(n) + 6n^2(n-1)^2 h_10(n) + + 6n^2(n-1)^2(n-2)^2 \mu_2^2 h_0(n-2) + n^2(n-1)^2(n-2)^2(n-3)^2 \mu_3^3 g_4(n-4), \]

(64)

where \(h_9(n)\) and \(h_{10}(n)\) satisfy the recurrence relations

\[h_9(n) = \mu_2 h_0(n-1) + (n-2)^2 \mu_2^2 h_0(n-2) + (n-2)^2 \mu_2^2 h_9(n-1), \]

(65)

\[h_{10}(n) = (n-2)^2 \mu_2^3 h_0(n-2) + (n-2)^2 \mu_2^3 h_{10}(n-1). \]
Proof.

\[\mathbb{E} S^4 = \sum_{ijklrstuv} (-1)^{i+j+k+l+r+s+u+v} \mathbb{E} |B_{ij}||B_{kl}||B_{rs}||B_{uv}|. \] (66)

As in the previous cases, we have summarised the representatives of all classes in Table 5. Again note that the values of some of them are trivially zero.

sign class	size value
+	\(n^2 \)
+	\(6n^2(n-1) \)
+	\(3n^2(n-1)^2 \)
+	\(6n^2(n-1)^2 \)
-	\(12n^2(n-1)(n-2) \)
-	\(12n^2(n-1)^2(n-2) \)
+	\(6n^2(n-1)^2(n-2)^2 \)
+	\(24n^2(n-1)^2(n-2)^2 \)

sign class	size value
-	\(24n^2(n-1)^2(n-2) \)
+	\(6n^2(n-1)^2(n-2)^2 \)
+	\(6n^2(n-1)^2(n-2)(n-3) \)
-	\(12n^2(n-1)^2(n-2)(n-3) \)
+	\(2n^2(n-1)(n-2)(n-3) \)
+	\(n^2(n-1)^2(n-2)^2(n-3)^2 \)
+	\(24n^2(n-1)^2(n-2)(n-3)^2 \)
+	\(8n^2(n-1)^2(n-2)(n-3) \)

sign class	size value
-	\(0 \)
+	\(0 \)
+	\(0 \)
-	\(0 \)
+	\(0 \)
+	\(0 \)
+	\(0 \)
-	\(0 \)

Table 5: Classes of equivalent terms in the fifth summand

Employing the Laplace expansion on the nontrivial terms, we obtain

\[h_7(n) = \mathbb{E} |B_{11}|^4 \mathbb{E} |B_{12}|^4 \mathbb{E} |B_{22}|^4 \mathbb{E} |B_{11}|^2 |B_{12}|^2 |B_{22}|^2 = 94(n-1). \] (67)

\[h_8(n) = \mathbb{E} |B_{11}|^2 |B_{12}|^2 \mathbb{E} = (n-1)^2 |B_{11}|^2 |B_{12}|^2 |B_{22}|^2 = (n-1)^2 |B_{11}|^2 |B_{12}|^2 |B_{22}|^2. \] (68)

\[h_9(n) = \mathbb{E} |B_{11}|^2 |B_{22}|^2 = \mu_2 \mathbb{E} |B_{11}|^2 |B_{22}|^2 = \mu_2 |B_{11}|^2 |B_{22}|^2 = \mu_2 |B_{11}|^2 |B_{22}|^2. \] (69)

\[h_{10}(n) = \mathbb{E} |B_{11}| |B_{12}| |B_{22}| = (n-2)^2 |B_{11}| |B_{12}| |B_{22}| = (n-2)^2 |B_{11}| |B_{12}| |B_{22}|. \] (70)

\[h_{11}(n) = \mathbb{E} |B_{11}|^2 |B_{12}| |B_{13}| = -(n-1) |B_{11}|^2 |B_{12}| |B_{13}| = -(n-1) |B_{11}|^2 |B_{12}| |B_{13}| = 0. \] (71)

\[h_{12}(n) = \mathbb{E} |B_{11}|^2 |B_{22}| |B_{23}| = (n-2) |B_{11}|^2 |B_{22}| |B_{23}| = (n-2) |B_{11}|^2 |B_{22}| |B_{23}| = 0. \] (72)
\[
\begin{align*}
 h_{13}(n) &= E|B_{11}|^2|B_{22}|B_{33}| = E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 \\
 &= \mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 - (n-3)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = (n-3)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = 0, \\
 h_{14}(n) &= E|B_{11}|^2|B_{22}|B_{33}| = E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 - (n-3)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = 0, \\
 h_{15}(n) &= E|B_{11}|^2|B_{22}|B_{13} = E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 - (n-2)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = 0, \\
 h_{16}(n) &= E|B_{11}|^2|B_{22}|B_{13} = E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 - (n-3)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = 0, \\
 h_{17}(n) &= E|B_{11}|^2|B_{23} = E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 - (n-2)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = 0, \\
 h_{18}(n) &= E|B_{11}|^2|B_{23}|B_{14} = E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 - (n-3)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = 0, \\
 h_{19}(n) &= E|B_{11}|^2|B_{24} = E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 - (n-2)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = 0, \\
 h_{20}(n) &= E|B_{11}|^2|B_{23}|B_{14} = E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 - (n-4)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = (n-4)\mu_3 E \left(\begin{array}{c}
 H_1 \\
 H_2 \\
 H_3
 \end{array} \right)^2 = 0.
\end{align*}
\]

\subsection*{2.7 Conclusion}

\textbf{Definition 5} \((H_0(t), H_9(t), H_{10}(t))\). Given \(h_0(n), h_9(n), h_{10}(n)\) as before, we define auxiliary generating functions

\[
H_0(t) = \sum_{n=0}^{\infty} \frac{t^n}{(n!)^2} h_0(n), \quad H_9(t) = \sum_{n=0}^{\infty} \frac{t^n}{(n!)^2} (n-1)^2 h_9(n), \quad H_{10}(t) = \sum_{n=0}^{\infty} \frac{t^n}{(n!)^2} (n-1)^2 h_{10}(n).
\]

\begin{proposition}

\begin{align*}
 H_0(t) &= \frac{\mu_2 tG_4(t)}{1 - \mu_2^2 t}, \\
 H_9(t) &= \mu_2^2 t^3 \frac{(1 + \mu_2^2 t)G_4(t)}{(1 - \mu_2^2)^2}, \\
 H_{10}(t) &= \frac{\mu_2^3 t^4 G_4(t)}{(1 - \mu_2^2)^2}.
\end{align*}
\end{proposition}

\begin{proof}

By summing up the recurrence relations for \(h_0(n), h_9(n), h_{10}(n)\) in Propositions 9 and 11, we get

\[
\begin{align*}
 H_0(t) &= \mu_2 tG(t) + \mu_2^2 tH_0(t), \\
 H_9(t) &= \mu_2 tH_0(t) + \mu_2^3 t^2 H(t) + \mu_2^3 tH(t), \\
 H_{10}(t) &= \mu_2^3 t^2 H_0(t) + \mu_2^3 tH_10(t).
\end{align*}
\]

By using simple algebraic manipulations, we get the desired statement.
\end{proof}

\textbf{Corollary 12.1.} \textit{By using Corollary 7.1 and Propositions 8, 9, 10, 11 and 12, we get, by summation,}

\[
F_4(t) = G_4(t) + 4m_1 \mu_3 G_4(t) + 6m_1^2 (H_0(t) + \mu_3^2 tG_4(t)) + 4m_1^3 (3\mu_3 tH_0(t) + \mu_3^3 t^2 G_4(t)) + m_1^4 (tG_4(t) + 6\mu_2 tH_0(t) + 3H_0(t) + 6H_1(t) + 6\mu_3 t^2 H_0(t) + \mu_3^3 t^4 G_4(t)),
\]

\textit{from which Theorem 7 follows immediately.}
3 Proof of Theorem 2

3.1 Generating function expansion

We can expand \(F_4(t, \omega) \) in a form of a Taylor-like series in \(t \) and \(\omega \),

\[
F_4(t, \omega) = \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \Phi_j(t). \tag{85}
\]

We claim this is without loss of generality. To see this, perform the Taylor expansion of the bracket, write \(\Phi_j(t) \) as a series in \(t \) and then compare the \(t \) and \(\omega \) coefficients with \(f_4(n, p) \) in (11). This particular choice of expansion was made to make the binomial transform in \(\omega \) behave nicely, we have

\[
\mathbb{E} [F_4(t, \omega)] = \frac{1}{1 - \omega} F_4\left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) = \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \mu_2^j t^j \Phi_j(t). \tag{86}
\]

The proof of Theorem 2 relies on a crucial fact that \(\Phi_j(t) = 0 \) for \(j \geq 3 \). \tag{87}

That is,

\[
F_4(t, \omega) = \frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \left(\Phi_0(t) + \omega \frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \Phi_1(t) + \omega^2 \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^2 \Phi_2(t) \right). \tag{88}
\]

The remaining functions \(\Phi_0(t), \Phi_1(t), \Phi_2(t) \) can be then found just by the methods used proving 1. Specially,

\[
\Phi_0(t) = F_4(t, 0) = F_4(t) = \frac{e^{t (\mu_4 - 3 \mu_2^2)}}{(1 - \mu_2^2 t)^3} \left(1 + \sum_{k=1}^{6} p_k t^k \right). \tag{89}
\]

To show (87), we use Cauchy-Binet formula.

3.2 Cauchy-Binet formula

Proposition 13 (Cauchy-Binet formula). Let \(C = (c_{ij})_{n \times p} \) and \(D = (d_{ij})_{n \times p} \) be real matrices and \(C_{(i_1, i_2, \ldots, i_p)} \) and \(D_{(i_1, i_2, \ldots, i_p)} \) be square matrices formed from those by selecting the rows \(i_1, i_2, \ldots, i_p \), then

\[
|C^T D| = \sum_{1 \leq i_1 < i_2 < \ldots < i_p \leq n} |C_{(i_1, i_2, \ldots, i_p)}||D_{(i_1, i_2, \ldots, i_p)}|. \tag{90}
\]

Note that there is an equivalent formulation using deleting rows instead of selecting. Namely, denoting \(C_{(i_1, i_2, \ldots, i_p)} \) a matrix formed from \(C \) by deleting its rows \(i_1, \ldots, i_p \), we have then

\[
|C^T D| = \sum_{1 \leq i_1 < i_2 < \ldots < i_p < n} |C_{(i_1, i_2, \ldots, i_{n-p})}||D_{(i_1, i_2, \ldots, i_{n-p})}|. \tag{91}
\]

Remark 8. If \(p > n \), \(|C^T D| = 0 \) automatically. That means also that \(f_k(n, p) = 0 \) whenever \(p > n \). As stated earlier, the formula offers a simple derivation of \(f_2(n, p) \). This is done by choice \(C = D = U \), so

\[
|U^T U| = \sum_{1 \leq i_1 < i_2 < \ldots < i_p < n} |U_{(i_1, i_2, \ldots, i_p)}|^2. \tag{92}
\]

Then, taking the expectation and by linearity, we get \(\binom{n}{p} \) identical terms, each attending the value \(1 \),

\[
\mathbb{E} |U_{(1, 2, \ldots, p)}|^2 = f_2(p) = p!(m_2 + m_1^2(p - 1))(m_2 - m_1^2)^{p-1}. \tag{93}
\]

hence

\[
\mathbb{E} |U^T U| = p!(\binom{n}{p})(m_2 + m_1^2(p - 1))(m_2 - m_1^2)^{p-1}. \tag{94}
\]

Somewhat similarly, to derive \(\mathbb{E} |U^T U|^2 \), we just square (92) and take the expectation repeatedly.
3.3 Dembo’s generating function

To illustrate the squaring technique, we rederive Dembo’s formula for $\Phi^\text{sym}_4(t, \omega)$. First, squaring (92),

$$|U^T U|^2 = \sum_{\scriptsize \begin{array}{c} 1 \leq i_1 < i_2 < \ldots < i_q \leq n \\ 1 \leq i'_1 < i'_2 < \ldots < i'_p \leq n \end{array}} |U_{(i_1, i_2, \ldots, i_q)}|^2 |U_{(i'_1, i'_2, \ldots, i'_p)}|^2.$$

(95)

Definition 6 ($c_{p,q}$). Given two identical copies of the set $\{1, 2, 3, \ldots, n\}$, we denote $c_{p,q}$ the number of ways how we can select p numbers from the first copy and other p numbers from the second copy, provided that exactly q numbers in both selections were chosen simultaneously. Using standard combinatorics,

$$c_{p,q} = \binom{n}{q} \binom{n-q}{p-q} \binom{n-p}{p-q} = \frac{n!}{q!(p-q)!(n-2p+q)!}.$$

(96)

Definition 7 ($\mathcal{U}^{[q]}$, $\check{\mathcal{U}}^{[q]}$). Denote $\mathcal{U}^{[q]} = (X_{ij})_{p \times p}$ and $\check{\mathcal{U}}^{[q]} = (\check{X}_{ij})_{p \times p}$ a random pair of p by p square matrices being identical in the first q columns, that is $X_{ij} = \check{X}_{ij}$ for $j \leq q$ and all i. Otherwise, in columns $j > q$, we assume \check{X}_{ij} are independent from each other and from all X_{ij}’s, following the same distribution.

Definition 8 (\mathbb{E}'). We denote \mathbb{E}' the conditional expectation taken with respect only to the entries in the $j > q$ columns of a random matrix pair. By properties of conditional expectations, $\mathbb{E} = \mathbb{E} \mathbb{E}'$.

Taking expectation of (95), transposing each matrix and collecting identical terms, we get

$$f_4(n, p) = \mathbb{E} |U^T U|^2 = \sum_{q=0}^{p} c_{p,q} \mathbb{E} |\mathcal{U}^{[q]}|^2 |\check{\mathcal{U}}^{[q]}|^2.$$

(97)

Now, we use the key assumption that X_{ij}’s follow a symmetrical distribution, that is $m_1 = m_3 = 0$ and $f_4(n, p) = \Phi^\text{sym}_4(n, p)$. Expanding the independent columns of $\mathcal{U}^{[q]}$ and $\check{\mathcal{U}}^{[q]}$, respectively and taking \mathbb{E}',

$$\mathbb{E}' |\mathcal{U}^{[q]}|^2 = \mathbb{E}' |\check{\mathcal{U}}^{[q]}|^2 = (p-q)! m_2^{p-q} \sum_{1 \leq i_1 < i_2 < \ldots < i_q \leq p} |\mathcal{U}^{[q]}_{(i_1, i_2, \ldots, i_q)}|^2 = (p-q)! m_2^{p-q} |\mathcal{U}^T \mathcal{U}|.$$

(98)

where in the last step we used Cauchy-Binet formula again and denoted \mathcal{U}' a $p \times q$ matrix formed from $\mathcal{U}^{[q]}$ by selecting its first q columns. Therefore

$$\mathbb{E} |\mathcal{U}^{[q]}|^2 |\check{\mathcal{U}}^{[q]}|^2 = \mathbb{E} \left[\mathbb{E}' |\mathcal{U}^{[q]}|^2 |\mathbb{E}' |\check{\mathcal{U}}^{[q]}|^2 \right] = (p-q)!^2 m_2^{2(p-q)} \mathbb{E} |\mathcal{U}^T \mathcal{U}'|^2 = (p-q)!^2 m_2^{2(p-q)} f_4(p, q).$$

(99)

Inserting the result into (97), we get the recurrence relation

$$\Phi^\text{sym}_4(n, p) = \sum_{q=0}^{p} \frac{n! m_2^{2(p-q)} f_4^{\text{sym}}(p, q)}{q!(n-2p+q)!}. $$

(100)

This is, inserting to (11) and by straightforward manipulations, equivalent to

$$\Phi^\text{sym}_4(t, \omega) = \frac{1}{1-\omega} \Phi^\text{sym}_4 \left(t, \frac{\omega m_2^2 t}{1-\omega} \right) = \mathbb{E} \left[\Phi^\text{sym}_4 \right](t, \omega).$$

(101)

Using our ansatz for generating functions, namely

$$\Phi^\text{sym}_4(t, \omega) = \frac{1}{1-\omega-m_2^2 t} \Phi^\text{sym}_4(t, 0) = \frac{1}{1-\omega-m_2^2 t} \Phi^\text{sym}_4(t, 0) = \frac{1}{1-\omega-m_2^2 t} F_4^\text{sym}(t, \omega) = \frac{e^{t(m_4-3m_2^2)}}{(1-m_2^2 t)^2(1-\omega-m_2^2 t)}.$$

(105)
3.4 Matrix resolvents

Definition 9 (\(V, V'\)). Similarly as for \(U\) and \(U'\), which are given as

\[
U = \begin{pmatrix}
X_{11} & \cdots & X_{1p} \\
\vdots & \ddots & \vdots \\
X_{n1} & \cdots & X_{np}
\end{pmatrix}
\quad \text{and} \quad
U' = \begin{pmatrix}
X_{11} & \cdots & X_{1q} \\
\vdots & \ddots & \vdots \\
X_{p1} & \cdots & X_{pq}
\end{pmatrix},
\]

we denote

\[
V = \begin{pmatrix}
Y_{11} & \cdots & Y_{1p} \\
\vdots & \ddots & \vdots \\
Y_{n1} & \cdots & Y_{np}
\end{pmatrix}
\quad \text{and} \quad
V' = \begin{pmatrix}
Y_{11} & \cdots & Y_{1q} \\
\vdots & \ddots & \vdots \\
Y_{p1} & \cdots & Y_{pq}
\end{pmatrix}.
\]

Definition 10 (\(\UP, \UPT, \V, \V'\)). Denote \(\UP\) an \(n \times (p + 1)\) matrix formed from \(U\) by attaching to it \((p+1)\)-th column filled with 1's. Similarly, \(\UPT\) be a \(p \times (q+1)\) matrix formed from \(U'\) by the same way. Symbolically,

\[
\UP = \begin{pmatrix}
X_{11} & \cdots & X_{1p} & 1 \\
\vdots & \ddots & \vdots & \vdots \\
X_{n1} & \cdots & X_{np} & 1
\end{pmatrix}
\quad \text{and} \quad
\UPT = \begin{pmatrix}
X_{11} & \cdots & X_{1q} & 1 \\
\vdots & \ddots & \vdots & \vdots \\
X_{p1} & \cdots & X_{pq} & 1
\end{pmatrix}.
\]

Similarly, we denote

\[
\V = \begin{pmatrix}
Y_{11} & \cdots & Y_{1p} & 1 \\
\vdots & \ddots & \vdots & \vdots \\
Y_{n1} & \cdots & Y_{np} & 1
\end{pmatrix}
\quad \text{and} \quad
\V' = \begin{pmatrix}
Y_{11} & \cdots & Y_{1q} & 1 \\
\vdots & \ddots & \vdots & \vdots \\
Y_{p1} & \cdots & Y_{pq} & 1
\end{pmatrix}.
\]

And finally, as a special case when \(p = 0\), we write

\[
\UP = \V = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}^T \quad \text{and} \quad \UPT = \V' = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}^T q.
\]

Lemma 14.

\[
\UP^T \UP = \V^T \V
\]

Proof. Using Cauchy-Binet formula,

\[
\|\UP^T \UP\| = \sum_{1 \leq i_1 < i_2 < \ldots < i_{p+1} \leq n} |\UP(i_{i_1}, i_{i_2}, \ldots, i_{i_{p+1}})|^2.
\]

By properties of determinant, note that, assuming \(m_i \neq 0, \)

\[
|\UP(i_{i_1}, i_{i_2}, \ldots, i_{i_{p+1}})| = \frac{1}{m_1} \begin{vmatrix}
X_{i_{i_1}} & \cdots & X_{i_{i_p}} & 1 \\
\vdots & \ddots & \vdots & \vdots \\
X_{i_{i_{p+1}}} & \cdots & X_{i_{i_{p+1}} & 1
\end{vmatrix}.
\]

By Lemma \(\square\), choosing \(\lambda = m_1, u = (1, \ldots, 1)^T\) and \(v = (1, \ldots, 1)^T\),

\[
\begin{vmatrix}
X_{i_1} & \cdots & X_{i_p} & m_1 \\
\vdots & \ddots & \vdots & \vdots \\
X_{i_{p+1}} & \cdots & X_{i_{p+1}} & m_1
\end{vmatrix} = \begin{vmatrix}
Y_{i_1} & \cdots & Y_{i_p} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
Y_{i_{p+1}} & \cdots & Y_{i_{p+1}} & 0
\end{vmatrix} + m_1 \sum_{ij} (-1)^{i+j} \det \begin{vmatrix}
Y_{i_1} & \cdots & Y_{i_p} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
Y_{i_{p+1}} & \cdots & Y_{i_{p+1}} & 0
\end{vmatrix}.
\]
The first Y determinant is automatically zero due to the last column filled with zeroes. Similarly, the only nonzero terms in the sum are those for $j = p + 1$, thus

$$|\mathbb{M}_{(i_1, i_2, \ldots, i_{p+1})}| = \sum_i (-1)^{i+p+1} \det \left(\begin{array}{ccc} Y_{i_1 1} & \cdots & Y_{i_1 p} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ Y_{i_{p+1} 1} & \cdots & Y_{i_{p+1} p} & 0 \\ \end{array} \right) = |\mathbb{M}_{(i_1, i_2, \ldots, i_{p+1})}|,$$ \hspace{1cm} (115)

which we have identified as the expansion of $|\mathbb{M}_{(i_1, i_2, \ldots, i_{p+1})}|$ in the last column. The proof of the proposition is finished by again employing the Cauchy-Binet formula. By continuity, the lemma holds even for $m_1 = 0$. \hspace{1cm} \blacksquare

Definition 11 ($O^{[q]}, V^{[q]}$). Denote

$$O^{[q]} = \begin{pmatrix} X_{11} & \cdots & X_{1q} & Y_{1,q+1} & \cdots & Y_{1,p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ X_{p1} & \cdots & X_{pq} & Y_{p,q+1} & \cdots & Y_{p,p} \end{pmatrix} \quad \text{and} \quad V^{[q]} = \begin{pmatrix} Y_{11} & \cdots & Y_{1q} & Y_{1,q+1} & \cdots & Y_{1,p} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ Y_{p1} & \cdots & Y_{pq} & Y_{p,q+1} & \cdots & Y_{p,p} \end{pmatrix}.$$

Proposition 15.

$$E'[O^{[q]}]^2 = (p-q)! \mu_2^{p-q} |U^{T}U'|, \quad E'[V^{[q]}]^2 = (p-q)! \mu_2^{p-q} |V^{T}V'|.$$

Proof. Thanks to Y_{ij}'s being central, the formulae are a direct consequence of (98). \hspace{1cm} \blacksquare

Proposition 16.

$$|U^{[q]}| = |O^{[q]}| + m_1 \sum_{i \in \{ 1, \ldots, p \}} (-1)^{i+1} |O^{[q]}_i|.$$

Proof. Use Lemma 6 with $\lambda = m_1$, $C = O^{[q]}$, $u = (1, \ldots, 1)^T$ and $v = (0, \ldots, 0, 1, \ldots, 1)^T$. \hspace{1cm} \blacksquare

Proposition 17. When X_{ij}'s follow general distribution, we have, in contrast to (98),

$$E'[U^{[q]}]^2 = (p-q)! \mu_2^{p-q} \left(|U^{T}U'| + \frac{m_1^2}{\mu_2} |\mathbb{M}^{T}\mathbb{M}'| \right)$$

Proof. Squaring the Proposition 16

$$|U^{[q]}|^2 = |O^{[q]}|^2 + 2m_1 \sum_{i \in \{ 1, \ldots, p \}} (-1)^{i+1} |O^{[q]}_i||O^{[q]}_i| + m_1^2 \sum_{l,t \in \{ 1, \ldots, p \}} \sum_{j,s \in \{ q+1, \ldots, p \}} (-1)^{i+j+s+t} |O^{[q]}_i||O^{[q]}_j||O^{[q]}_s||O^{[q]}_t|.$$ \hspace{1cm} (116)

We now take the E' expectation. Expanding $|O^{[q]}_i|$ in the j-th column, where $j > q$, we notice that

$$E'[O^{[q]}_i||O^{[q]}_i] = E' \sum_{k=1}^p (-1)^{k+1} Y_{kj} |O^{[q]}_k||O^{[q]}_i| = 0$$ \hspace{1cm} (117)

since $E'Y_{kj} = 0$. Similarly, by expanding $|O^{[q]}_i|$ in the s-th column, where $s > q$, we get

$$E'[O^{[q]}_i||O^{[q]}_s] = 0 \quad \text{when} \quad s \neq j.$$ \hspace{1cm} (118)

Only terms with $j = s$ survive. Therefore, by symmetry,

$$E'[U^{[q]}]^2 = E'[O^{[q]}]^2 + m_1^2 (p-q) E' \left(\sum_{i=1}^n (-1)^{i+j} |O^{[q]}_i| \right)^2.$$ \hspace{1cm} (119)
Notice that in (119), we can interpret the sum in the bracket as another expansion, namely
\[\sum_{i=1}^{\p} (-1)^{i+j} |O_{i,q+1}^{[q]}| = \begin{bmatrix} X_{11} & \ldots & X_{1q} & 1 & Y_{1,q+2} & \ldots & Y_{1p} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ X_{p1} & \ldots & X_{pq} & 1 & Y_{1,q+2} & \ldots & Y_{1p} \end{bmatrix}. \]
(120)

Thus, taking \(E' \) (that is, taking the expectation with respect to \(Y_{ij} \)'s), we get
\[E' \left(\sum_{i=1}^{\p} (-1)^{i+j} |O_{i,q+1}^{[q]}| \right)^2 = (p - q - 1)! \mu_2^{p-q-1}|\Upsilon'^T \Upsilon'|. \]
(121)

Together with Lemma 14, we have \(|\Upsilon'^T \Upsilon'| = |\Upsilon'^T \Upsilon'| \), which concludes the proof of the proposition.

Definition 12 (\(\Upsilon^{[q]}, \Upsilon^{[q]}', E' \)). Denote
\[\Upsilon^{[q]} = \begin{pmatrix} Y_{11} & \ldots & Y_{1q} & Y_{1,q+1} & \ldots & Y_{1,p-1} & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ Y_{p1} & \ldots & Y_{pq} & Y_{p,q+1} & \ldots & Y_{p,p-1} & 1 \end{pmatrix}, \]
\[\Upsilon^{[q]'} = \begin{pmatrix} Y_{11} & \ldots & Y_{1q} & Y_{1,q+1} & \ldots & Y_{1,p-1} & 1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ Y_{p1} & \ldots & Y_{pq} & Y_{p,q+1} & \ldots & Y_{p,p-1} & 1 \end{pmatrix} \]
(122)
a random pair of \(p \) by \(p \) square matrices being identical in the first \(q \) columns, that is \(Y_{ij} = \tilde{Y}_{ij} \) for \(j \leq q \) and all \(i \). Otherwise, in columns \(j > q \), we assume \(\tilde{Y}_{ij} \) are independent from each other and from all \(\tilde{Y}_{ij} \)'s, following the same distribution. For a reminder, the \(E' \) expectation is constructed such it acts only on those \(j > q \) columns.

Proposition 18.
\[E' |\Upsilon^{[q]}|^2 = (p - q - 1)! \mu_2^{p-q-1}|\Upsilon'^T \Upsilon'|. \]

Proof. Denoting
\[\Upsilon' = \begin{pmatrix} Y_{11} & \ldots & Y_{1q} & 1 & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ Y_{p1} & \ldots & Y_{pq} & 1 & 1 \end{pmatrix} \]
(123)
we have, shifting the 1's column to the left and by using Proposition 17
\[E' |\Upsilon^{[q]}|^2 = \left| \begin{array}{cccccc} Y_{11} & \ldots & Y_{1q} & 1 & Y_{1,q+1} & \ldots & Y_{1,p-1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\ Y_{p1} & \ldots & Y_{pq} & 1 & Y_{p,q+1} & \ldots & Y_{p,p-1} \end{array} \right|^2 = (p - q - 1)! \mu_2^{p-q-1} \left(\Upsilon'^T \Upsilon' \right) + \frac{m_2^2}{\mu_2} |\Upsilon'^T \Upsilon'|. \]
(124)
However, \(|\Upsilon'^T \Upsilon'| = 0 \) trivially (parallellepiped with two spanning vectors being identical has zero volume).

Definition 13 (\(W, W', \sigma, \sigma' \)). Let us define another pair of random matrices
\[W = \begin{pmatrix} Y_{11} & \ldots & Y_{1p} \\ \vdots & \ddots & \vdots \\ Y_{n1} & \ldots & Y_{np} \\ 1 & \ldots & 1 \end{pmatrix} \]
(125)
and
\[W' = \begin{pmatrix} Y_{11} & \ldots & Y_{1q} \\ \vdots & \ddots & \vdots \\ Y_{p1} & \ldots & Y_{pq} \\ 1 & \ldots & 1 \end{pmatrix}, \]
from which we construct two sums \(\sigma \) and \(\sigma' \) as
\[\sigma = \sum_{1 \leq i_1 < i_2 < \ldots < i_{p-1} \leq n} |W_{(i_1,i_2,\ldots,i_{p-1})}|^2 \]
and
\[\sigma' = \sum_{1 \leq i_1 < i_2 < \ldots < i_{q-1} \leq n} |W'_{(i_1,i_2,\ldots,i_{q-1})}|^2. \]
(126)
By definition, we put \(\sigma = 0 \) when \(p = 0 \).
Definition 14 \(W^{[q]}, \tilde{W}^{[q]} \). Denote

\[
W^{[q]} = \begin{pmatrix}
Y_{11} & \cdots & Y_{1q} & Y_{1,q+1} & \cdots & Y_{1,p+1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
Y_{p1} & \cdots & Y_{pq} & Y_{p,q+1} & \cdots & Y_{p,p+1}
\end{pmatrix}, \quad \tilde{W}^{[q]} = \begin{pmatrix}
Y_{11} & \cdots & Y_{1q} & \tilde{Y}_{1,q+1} & \cdots & \tilde{Y}_{1,p+1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
Y_{p1} & \cdots & Y_{pq} & \tilde{Y}_{p,q+1} & \cdots & \tilde{Y}_{p,p+1}
\end{pmatrix}.
\]

Proposition 19.

\[
E' |W^{[q]}|^2 = (p - q + 1)! \mu_2^{-q} (\mu_2 \sigma' + |V'TV'|)
\]

Proof. Denote

\[
Z^{[q]} = \begin{pmatrix}
Y_{11} & \cdots & Y_{1q} & Y_{1,q+1} & \cdots & Y_{1,p+1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
Y_{p1} & \cdots & Y_{pq} & Y_{p,q+1} & \cdots & Y_{p,p+1}
\end{pmatrix}.
\]

By Lemma 5 (or by expansion in the last row), we get

\[
|W^{[q]}| = |Z^{[q]}| + \sum_{j=q+1}^{p+1} (-1)^{p+1+j} |Z^{[q]}_{p+1,j}|.
\]

Squaring,

\[
|W^{[q]}|^2 = |Z^{[q]}|^2 + 2 \sum_{j=q+1}^{p+1} (-1)^{p+1+j} |Z^{[q]}||Z^{[q]}_{p+1,j}| + \sum_{j=q+1}^{p+1} \sum_{s=q+1}^{p+1} (-1)^{j+s} |Z^{[q]}_{p+1,j}||Z^{[q]}_{p+1,s}|.
\]

We now take the \(E' \) expectation. Expanding \(|Z^{[q]}| \) in the \(j \)-th column, where \(j > q \), we notice that

\[
E' |Z^{[q]}||Z^{[q]}_{p+1,j}| = E' \sum_{k=1}^{p} (-1)^{k+j} Y_{kj} |Z^{[q]}||Z^{[q]}_{p+1,j}| = 0
\]

since \(E' Y_{kj} = 0 \). Similarly, expanding \(|Z^{[q]}_{p+1,j}| \) in the \(s \)-th column, where \(s > q \), we get

\[
E' |Z^{[q]}_{p+1,j}||Z^{[q]}_{p+1,s}| = 0 \quad \text{when} \quad s \neq j.
\]

Only terms with \(j = s \) survive. Therefore, by symmetry,

\[
E' |W^{[q]}|^2 = E' |Z^{[q]}|^2 + (p - q + 1) E' |Z^{[q]}_{p+1,p+1}|^2.
\]

But \(Z^{[q]}_{p+1,q+1} = V^{[q]} \). So, using Proposition 15

\[
E' |Z^{[q]}_{p+1,q+1}|^2 = (p - q)! \mu_2^{-q} |V'TV'|.
\]

On the other hand, expanding \(|Z^{[q]}| \) in all columns with \(j > q \) and collecting terms with the same value,

\[
E' |Z^{[q]}|^2 = (p - q + 1)! \mu_2^{-q+1} \sigma'.
\]

\(\blacksquare \)
3.5 Auxiliary moments and their recurrences

Definition 15 (B, g₁(n), g₂(n, p), G₄(t), G₄(t, ω), Ψ(ς)). Given Yᵢ’s, we form a matrix B = (Yᵢ)ᵢ×ᵢ and denote g₄(n) = E|B|⁴ and

\[G₄(t) = \sum_{n=0}^{\infty} \frac{t^n}{(n!)²} g₄(n). \]

(135)

Similarly, denote g₄(n, p) = E|VᵀV|². For its generating function, we write

\[G₄(t, ω) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^p ω^{n-p} g₄(n, p). \]

(136)

Remark 9. Since the moments of a random determinant are dependent only on moments of its random entries, we get that g₄(n) and g₄(n, p) are equal to f₄(n) and f₄(n, p), respectively, in which we replace mᵢ by μᵢ when j > 1. So, by Dembo’s formula and by the ansatz expansion

\[G₄(t, ω) = \sum_{j=0}^{∞} \omega^j \left(\frac{1 - m₂ t}{1 - ω - m₂ t} \right)^{j+1} \Psi_j(t) = \frac{e^{t(μ₄ - 3μ₂)}}{(1 - μ₂ t)^2(1 - ω - μ₂ t)}. \]

(137)

where

\[ψ₀(ς) = G₄(ς, 0) = G₄(ς) = \frac{e^{t(μ₄ - 3μ₂)}}{(1 - μ₂ t)^3} \text{ and } ψ_j(ς) = 0 \text{ for } j ≥ 1. \]

(138)

Definition 16 (α(n, p), β(n, p), γ(n, p), δ(n, p), ε(n, p), ρ(n, p), η(n, p), κ(n, p)). We define the following

\[α(n, p) = E(|U|⁴|V|⁴), \quad β(n, p) = |V|⁴|U|⁴, \quad γ(n, p) = E(|U|⁴|V|⁴), \quad δ(n, p) = E(|U|⁴|V|⁴), \quad ε(n, p) = E|U|⁴|V|⁴, \]

\[ρ(n, p) = E|V|⁴|U|⁴, \quad η(n, p) = E|V|⁴|U|⁴, \quad κ(n, p) = E⁴. \]

Remark 10. By definition, we have γ(n, 0) = ε(n, 0) = ρ(n, 0) = η(n, 0) = 0 and δ(n, 0) = 1, α(n, 0) = η(n, 0) = n and β(n, 0) = n². And due to vanishment for large p, we also have α(n, p) = β(n, p) = ε(n, p) = η(n, p) = 0 for p ≥ n and γ(n, p) = δ(n, p) = ρ(n, p) = 0 for p ≥ n + 1. Less straightforwardly, it can be shown that σ = 0 when p ≥ n + 2, so κ(n, p) = 0 for p ≥ n + 2 (but we don’t need it).

Remark 11. When m₁ = 0, note that f₄(n, p) = δ(n, p) = g₄(n, p), γ(n, p) = ρ(n, p) and α(n, p) = η(n, p).

Proposition 20.

\[f₄(n, p) = \sum_{q=0}^{p} \frac{n!μ₂(q-p)}{(n-2p+q)!} \left(f₄(p, q) + \frac{2m₂}{μ₂} α(p, q) + \frac{m₁}{μ₂} β(p, q) \right). \]

Proof. By Cauchy-Binet formula, taking expectation, transposing and collecting identical terms, we get

\[f₄(n, p) = E|U|⁴|U|⁴ = E \sum_{1≤i₁<i₂<...<iₚ≤n} |U(i₁, i₂,...,iₚ)|² |U(i₁, i₂,...,iₚ)|² = \sum_{q=0}^{p} c_{p,q} E|U|^q |\bar{U}|^q. \]

(139)

By Proposition 47 with the fact that E = E E’,

\[E|U|^q |\bar{U}|^q = E \left((p-q)! μ₂²-q \left(|U|⁴ |U’| + \frac{m₂}{μ₂} |\bar{U}|⁴ |\bar{U’}| \right) \right)^2 \]

\[= (p-q)!² μ₂²(p-q) \left(f₄(p, q) + \frac{2m₂}{μ₂} α(p, q) + \frac{m₁}{μ₂} β(p, q) \right), \]

(140)

inserting this result into (139), we get the desired recurrence relation for f₄(n, p).
Definition 17 \((d_{p, q})\). Given two identical copies of the set \([1, 2, 3, \ldots, n]\), we denote \(d_{p, q}\) the number of ways how we can select \(p\) numbers from the first copy and \(p + 1\) numbers from the second copy, provided that exactly \(q\) numbers in both selections were chosen simultaneously. Using standard combinatorics,

\[
d_{p, q} = \binom{n}{q} \binom{n-q}{p-q} \binom{n-p}{p+1-q} = \frac{n!}{q!(p-q)!(p-q+1)!(n-2p+q-1)!}. \tag{141}
\]

Proposition 21.

\[
\alpha(n, p) = \sum_{q=0}^{p} \frac{n! \mu_2^{2(p-q)}}{q!(n-2p+q-1)!} \left(\mu_2 \gamma(p, q) + \delta(p, q) + m_2^2 \epsilon(p, q) + \frac{m_2^2}{\mu_2} \eta(p, q) \right).
\]

Proof. By Cauchy-Binet formula and by taking expectation, transposing and collecting identical terms,

\[
\alpha(n, p) = \mathbb{E}[\|U\|^2|\|V\|^2] = \mathbb{E} \sum_{1 \leq i_1 < i_2 < \ldots < i_p \leq n} |U(i_1, i_2, \ldots, i_p)|^2 |V(i'_1, i'_2, \ldots, i'_{p+1})|^2 = \sum_{q=0}^{p} d_{p, q} \mathbb{E}[\|U|^q]^2 |\tilde{W}^q|^2. \tag{142}
\]

Combining Propositions [17] and [19] with the fact that \(\mathbb{E} = \mathbb{E}'\),

\[
\mathbb{E}[\|U|^q]^2 |\tilde{W}^q|^2 = \mathbb{E} (p-q)! \mu_2^{2(p-q)} \left(|U^\top U'| + \frac{m_2^2}{\mu_2} |\tilde{V}^\top V'| \right) (p-q+1)! \mu_2^{2-p-q} \left(\mu_2 \sigma + |V'\tilde{V}'| \right)
\]

\[
= (p-q)! (p-q+1)! \mu_2^{2(p-q)} \left(\mu_2 \gamma(p, q) + \delta(p, q) + m_2^2 \epsilon(p, q) + \frac{m_2^2}{\mu_2} \eta(p, q) \right). \tag{143}
\]

Inserting this result into (142), we get the desired relation for \(\alpha(n, p)\). \(\blacksquare\)

Proposition 22.

\[
\eta(n, p) = \sum_{q=0}^{p} \frac{n! \mu_2^{2(p-q)}}{q!(n-2p+q-1)!} \left(\mu_2 \rho(p, q) + \eta_4(p, q) \right).
\]

Proof. In Proposition 21, put \(m_1 = 0\) and use Remark 11. \(\blacksquare\)

Proposition 23.

\[
\gamma(n, p) = \sum_{q=0}^{p-1} \frac{n! \mu_2^{2p-2q-1}}{q!(n-2p+q+1)!} \left(\alpha(p, q) + \frac{m_2^2}{\mu_2} \beta(p, q) \right).
\]

Proof. By Cauchy-Binet formula and the definition of \(\sigma\), taking expectation, transposing and collecting identical terms,

\[
\gamma(n, p) = \mathbb{E}[\|U\|^p|\|\tilde{V}\|^q] = \mathbb{E} \sum_{1 \leq i_1 < i_2 < \ldots < i_p \leq n} |U(i_1, i_2, \ldots, i_p)|^2 |\tilde{W}(i'_1, i'_2, \ldots, i'_{p+1})|^2 = \sum_{q=0}^{p-1} d_{p-1, q} \mathbb{E}[\|U|^q]^2 |\tilde{W}^q|^2. \tag{144}
\]

By using Propositions [17] and [18] and \(\mathbb{E} = \mathbb{E}'\),

\[
\mathbb{E}[\|U|^q]^2 |\tilde{W}^q|^2 = \mathbb{E} (p-q)! \mu_2^{2(p-q)} \left(|U^\top U'| + \frac{m_2^2}{\mu_2} |\tilde{V}^\top V'| \right) (p-q-1)! \mu_2^{2-p-q} |\tilde{V}'\tilde{W}'|
\]

\[
= (p-q)! (p-q-1)! \mu_2^{2(p-q-1)} \left(\alpha(p, q) + \frac{m_2^2}{\mu_2} \beta(p, q) \right). \tag{145}
\]

Inserting this result into (144), we get the desired relation for \(\gamma(n, p)\). \(\blacksquare\)

Proposition 24.

\[
\rho(n, p) = \sum_{q=0}^{p-1} \frac{n! \mu_2^{2p-2q-1} \eta(p, q)}{q!(n-2p+q+1)!}.
\]
Proposition 25.
\[\beta(n, p) = \sum_{q=0}^{p+1} \frac{n!\mu_2^{2(p-q)}}{q!(n-2p+q-2)!} \left(\mu_2^2 \kappa(p, q) + 2\mu_2 \rho(p, q) + g_4(p, q) \right). \]

Proof. By Cauchy-Binet formula and by taking expectation, transposing and collecting identical terms,
\[\beta(n, p) = E [\mathbf{Y}^T \mathbf{Y}]^2 = E \sum_{1 \leq i_1 < i_2 < \ldots < i_{p+1} \leq n} |\mathbf{Y}_{(i_1, i_2, \ldots, i_{p+1})}|^2 |\mathbf{Y}_{(i'_1, i'_2, \ldots, i'_{p+1})}|^2 = \sum_{q=0}^{p+1} c_{p+1, q} E [W^{[q]}]^2 |\tilde{W}^{[q]}|^2. \] (146)

By using Proposition 19 and \(E = E' \),
\[E |W^{[q]}|^2 |\tilde{W}^{[q]}|^2 = E \left((p-q+1)! \mu_2^{p-q} (\mu_2 \sigma' + |V^T V'|)^2 - (p-q+1)! \right) (p-q+1)! \mu_2^{2(p-q)} (\mu_2^2 \kappa(p, q) + 2\mu_2 \rho(p, q) + g_4(p, q)) \] (147)
and inserting this result into (146), we get the desired relation for \(\beta(n, p) \).

Proposition 26.
\[\kappa(n, p) = \sum_{q=0}^{p-1} \frac{n!\mu_2^{2(p-q-1)}}{q!(n-2p+q+2)!} \beta(p, q). \]

Proof. By the definition of \(\sigma \), taking expectation, transposing and collecting identical terms,
\[\kappa(n, p) = E \sigma^2 = E \sum_{1 \leq i_1 < i_2 < \ldots < i_{p-1} \leq n} |\mathbf{W}_{(i_1, i_2, \ldots, i_{p-1})}|^2 |\mathbf{W}_{(i'_1, i'_2, \ldots, i'_{p-1})}|^2 = \sum_{q=0}^{p-1} c_{p-1, q} E [\mathbf{Y}^{[q]}]^2 |\tilde{\mathbf{Y}}^{[q]}|^2. \] (148)

By using Proposition 18 and \(E = E' \),
\[E |\mathbf{Y}^{[q]}|^2 |\tilde{\mathbf{Y}}^{[q]}|^2 = E \left((p-q-1)! \mu_2^{p-q-1} \mathbf{Y}^T \mathbf{Y} \right)^2 = (p-q-1)! \mu_2^{2(p-q-1)} \beta(p, q), \] (149)
inserting this result into (148), we get the desired relation for \(\kappa(n, p) \).

Proposition 27.
\[\delta(n, p) = \sum_{q=0}^{p} \frac{n!\mu_2^{2(p-q)}}{q!(n-2p+q)!} \left(\delta(p, q) + \frac{m_2^2}{\mu_2} \eta(p, q) \right). \]

Proof. By Cauchy-Binet formula and by taking expectation, transposing and collecting identical terms,
\[\delta(n, p) = E [\mathbf{U}^T \mathbf{U}] |\mathbf{V}^T \mathbf{V}| = E \sum_{1 \leq i_1 < i_2 < \ldots < i_p \leq n} |\mathbf{U}_{(i_1, i_2, \ldots, i_p)}|^2 |\mathbf{V}_{(i'_1, i'_2, \ldots, i'_p)}|^2 = \sum_{q=0}^{p} c_{p, q} E [U^{[q]}]^2 |V^{[q]}|^2. \] (150)

By using Propositions 15 and 17 and \(E = E' \),
\[E |U^{[q]}|^2 |V^{[q]}|^2 = E (p-q)! \mu_2^{p-q} \left(|U^T U'| + \frac{m_2^2}{\mu_2} |V^T V'| \right) (p-q)! \mu_2^{p-q} |V^T V'| \]
\[= (p-q)! \mu_2^{2(p-q)} \left(\delta(p, q) + \frac{m_2^2}{\mu_2} \eta(p, q) \right), \] (151)
inserting this result into (150), we get the desired relation for \(\delta(n, p) \).
Definition 18 ($e_{p,q}$). Given two identical copies of the set $\{1, 2, 3, \ldots, n\}$, we denote $e_{p,q}$ the number of ways how we can select $p + 1$ numbers from the first copy and $p - 1$ numbers from the second copy, provided that exactly q numbers in both selections were chosen simultaneously. Using standard combinatorics,

$$e_{p,q} = \binom{n}{q} \binom{n-q}{p+1-q} \binom{n-(p+1)}{p-1-q} = \frac{n!}{q!(p-q+1)!(p-q-1)!(n-2p+q)!}. \quad (152)$$

Proposition 28.

$$e(n, p) = \sum_{q=0}^{p-1} \frac{n!2^{p-2q-1}}{q!(n-2p+q)!} (\mu_2 e(p, q) + \eta(p, q)).$$

Proof. By Cauchy-Binet formula and the definition of σ, taking expectation, transposing and collecting identical terms,

$$e(n, p) = E[\mathcal{V}^T \mathcal{V} \sigma] = E \sum_{1 \leq i_1 < i_2 < \cdots < i_{p+1} \leq n} |\mathcal{V}_{i_1, i_2, \ldots, i_{p+1}}|^2 |\mathcal{V}_{i_1', i_2', \ldots, i_{p+1}'}|^2 = \sum_{q=0}^{p-1} e_{p,q} E[|\mathcal{V}^T|^2 |\mathcal{V}^T|^2]. \quad (153)$$

By using Propositions 18 and 19 and $E = E' E'$,

$$E[|\mathcal{V}^T|^2 |\mathcal{V}^T|^2]^2 = E(p-q+1)! \mu_2^{p-q} (\mu_2 \sigma' + |\mathcal{V}^T \mathcal{V}'|) (p-q-1)! \mu_2^{p-q-1} |\mathcal{V}^T \mathcal{V}'|$$

$$= (p-q+1)! (p-q-1)! \mu_2^{2p-2q-1} (\mu_2 e(p, q) + \eta(p, q)). \quad (154)$$

inserting this result into (153), we get the desired relation for $e(n, p)$.

Remark 12. Dependencies of auxiliary moments on themselves are shown graphically in Figure 1.

![Graph of dependencies in recurrence relations](image)

Figure 1: Graph of dependencies in recurrence relations

3.6 Auxiliary generating functions

Definition 19 ($\tilde{\alpha}(t, \omega)$, $\tilde{\beta}(t, \omega)$, $\tilde{\gamma}(t, \omega)$, $\tilde{\delta}(t, \omega)$, $\tilde{\epsilon}(t, \omega)$, $\tilde{\rho}(t, \omega)$, $\tilde{\eta}(t, \omega)$, $\tilde{\kappa}(t, \omega)$). We define the following generating functions

$$\tilde{\alpha}(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^p \omega^{n-p} \alpha(n, p),$$

$$\tilde{\beta}(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^p \omega^{n-p} \beta(n, p),$$

$$\tilde{\gamma}(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p+1)!}{n!p!} t^p \omega^{n-p+1} \gamma(n, p),$$

$$\tilde{\delta}(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p+1)!}{n!p!} t^p \omega^{n-p+1} \delta(n, p),$$

$$\tilde{\epsilon}(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^p \omega^{n-p} \epsilon(n, p),$$

$$\tilde{\rho}(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^p \omega^{n-p} \rho(n, p),$$

$$\tilde{\eta}(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^p \omega^{n-p} \eta(n, p),$$

$$\tilde{\kappa}(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p)!}{n!p!} t^p \omega^{n-p} \kappa(n, p).$$
\(\dot{\epsilon}(t, \omega) = \sum_{n=0}^{\infty} \frac{(n-p+1)!}{n!p!} t^n \omega^{n-p+1} \epsilon(n, p), \)
\(\dot{\eta}(t, \omega) = \sum_{n=0}^{\infty} \frac{(n-p+1)!}{n!p!} t^n \omega^{n-p+1} \eta(n, p), \)
\(\dot{\rho}(t, \omega) = \sum_{n=0}^{\infty} \frac{(n-p+2)!}{n!p!} t^n \omega^{n-p+2} \rho(n, p), \)
\(\dot{\kappa}(t, \omega) = \sum_{n=0}^{\infty} \frac{(n-p+2)!}{n!p!} t^n \omega^{n-p+2} \kappa(n, p). \)

Definition 20 \((\alpha_j(t), \beta_j(t), \gamma_j(t), \delta_j(t), \epsilon_j(t), \rho_j(t), \eta_j(t), \kappa_j(t)).\) Also, we define the ansatz coefficients via expansions

\[
\begin{align*}
\dot{\alpha}(t, \omega) &= \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \alpha_j(t), \\
\dot{\beta}(t, \omega) &= \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \beta_j(t), \\
\dot{\gamma}(t, \omega) &= \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \gamma_j(t), \\
\dot{\delta}(t, \omega) &= \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \delta_j(t), \\
\dot{\epsilon}(t, \omega) &= \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \epsilon_j(t), \\
\dot{\eta}(t, \omega) &= \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \eta_j(t), \\
\dot{\rho}(t, \omega) &= \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \rho_j(t), \\
\dot{\kappa}(t, \omega) &= \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \kappa_j(t).
\end{align*}
\]

Definition 21 \((G^4_1, \Psi^*_j).\) On top of that, we define the following extra generating function

\[
G^4_1(t, \omega) = \sum_{n=0}^{\infty} \sum_{p=0}^{n} \frac{(n-p+2)!}{n!p!} t^n \omega^{n-p} g_4(n, p) = \sum_{j=0}^{\infty} \omega^j \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+1} \Psi^*_j(t).
\]

Proposition 29.

\[
G^4_1(t, \omega) = 2\omega^2 \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^3 \Psi^*_j(t).
\]

That is \(\Psi^*_2(t) = 2G^4_1(t) \) and \(\Psi^*_j(t) = 0 \) otherwise.

Proof. Note that

\[
G^4_1(t, \omega) = \omega \frac{\partial}{\partial \omega} \left(\omega \frac{\partial}{\partial \omega} (\omega G^4_1(t, \omega)) \right) = \sum_{j=0}^{\infty} \omega^{j+2} \left(\frac{1 - \mu_2^2 t}{1 - \omega - \mu_2^2 t} \right)^{j+3} (j+2)(j+1) \Psi^*_j(t),
\]

so in other words

\[
\Psi^*_j(t) = j(j+1) \Psi^*_{j-2}(t).
\]

Since \(\Psi^*_0(t) = G^4_1(t) \) and otherwise \(\Psi^*_j(t) \) is zero for \(j \geq 1 \), this finishes the proof.

Proposition 30.

\[
\begin{align*}
F_4(t, \omega) &= \frac{1}{1 - \omega} \left(F_4 \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + \frac{2m_1^2}{\mu_2} \alpha \left(t, \frac{1 - \mu_2^2 t}{1 - \omega} \right) + \frac{m_4^2}{\mu_2^2} \beta \left(t, \frac{1 - \mu_2^2 t}{1 - \omega} \right) \right), \\
\dot{\alpha}(t, \omega) &= \frac{1}{\mu_2^2 (1 - \omega)} \left(\mu_2 \dot{\gamma} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + \dot{\delta} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + m_2^2 \dot{\epsilon} \left(t, \frac{1 - \mu_2^2 t}{1 - \omega} \right) + m_4^2 \dot{\eta} \left(t, \frac{1 - \mu_2^2 t}{1 - \omega} \right) \right), \\
\dot{\beta}(t, \omega) &= \frac{1}{\mu_2^2 (1 - \omega)} \left(\mu_2 \dot{\kappa} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + 2m_2 \dot{\rho} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + G_4 \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) \right), \\
\dot{\gamma}(t, \omega) &= \frac{1}{\mu_2 (1 - \omega)} \left(\dot{\alpha} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + \frac{m_2^2}{\mu_2} \dot{\beta} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) \right),
\end{align*}
\]
\[\dot{\delta}(t, \omega) = \frac{1}{\mu_2^2 t(1 - \omega)} \left(\dot{\delta} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + \frac{m_1^2}{\mu_2} \tilde{\eta} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) \right). \]

\[\dot{\epsilon}(t, \omega) = \frac{1}{\mu_2^2 t(1 - \omega)} \left(\mu_2 \dot{\epsilon} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + \tilde{\eta} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) \right). \]

\[\dot{\eta}(t, \omega) = \frac{1}{\mu_2^2 t^2(1 - \omega)} \left(\mu_2 \dot{\beta} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) + G^4 \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right) \right). \]

\[\dot{\beta}(t, \omega) = \frac{1}{\mu_2^2 t(1 - \omega)} \tilde{\eta} \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right). \]

\[\dot{\kappa}(t, \omega) = \frac{1}{\mu_2^2 t^2(1 - \omega)} \beta \left(t, \frac{\omega \mu_2^2 t}{1 - \omega} \right). \]

Proof. Insert Propositions 20 – 28 into the definitions of the corresponding generating functions. \(\square \)

Corollary 30.1. In the terms of ansatz coefficients, comparing the terms of the expansions, this is equal to the linear system

\[\Phi_j(t) = \mu_2^j t \left(\Phi_0(t) + \frac{2m_1^2}{\mu_2} \alpha(t) + \frac{m_1^2}{\mu_2} \beta_1(t) \right), \quad \alpha_1(t) = \mu_2^{j-1} t^{j-1} \left(\mu_2 \gamma_1(t) + \delta_1(t) + m_1^2 \epsilon_1(t) + \frac{m_1^2}{\mu_2} \eta_1(t) \right). \]

\[\beta_j(t) = \mu_2^{j-4} t^{j-2} \left(\mu_2 \kappa_1(t) + 2 \mu_2 \rho_j(t) + \Psi_1(t) \right), \quad \gamma_1(t) = \mu_2^{j-1} t \left(\alpha_j(t) + \frac{m_1^2}{\mu_2} \beta_j(t) \right). \]

\[\delta_j(t) = \mu_2^{j-2} t^{j-1} \left(\delta_1(t) + \frac{m_1^2}{\mu_2} \eta_1(t) \right), \quad \epsilon_j(t) = \mu_2^{j-3} t^{j-1} \left(\mu_2 \epsilon_j(t) + \eta_1(t) \right), \]

\[\eta_1(t) = \mu_2^{j-4} t^{j-2} \left(\mu_2 \rho_1(t) + \Psi_1(t) \right), \quad \rho_j(t) = \mu_2^{j-3} t^{j-1} \eta_1(t), \quad \kappa_j(t) = \mu_2^{j-2} t^j \beta_j(t). \]

Corollary 30.2. Solving the linear system, we get

\[\Phi_1(t) = m_1^2 t \frac{2 \mu_2 \alpha_1(t) + \frac{m_1^2}{\mu_2} \beta_1(t)}{1 - \mu_2^2 t}, \quad \Phi_2(t) = \frac{2 m_1^2 \mu_2^2 t^2}{(1 - \mu_2^2 t)^4} G_4(t). \]

\[\alpha_0(t) = 0, \quad \alpha_1(t) = \frac{\delta_1(t) + m_1 \epsilon_1(t) + \frac{m_1^2}{\mu_2} \beta_1(t)}{1 - \mu_2^2 t}, \quad \alpha_2(t) = \frac{2 m_1^2 \mu_2^2 t^2}{(1 - \mu_2^2 t)^3} G_4(t). \]

\[\beta_0(t) = 0, \quad \beta_1(t) = \frac{2}{1 - \mu_2^2 t} G_4(t), \quad \beta_2(t) = \frac{2 m_1^2 \mu_2^2 t^2}{(1 - \mu_2^2 t)^2} G_4(t). \]

\[\gamma_0(t) = 0, \quad \gamma_1(t) = t \frac{\mu_2 \delta_1(t) + m_1 \mu_2 \epsilon_1(t) + \frac{m_1^2}{\mu_2} \beta_1(t)}{1 - \mu_2^2 t}, \quad \gamma_2(t) = \frac{2 m_1^2 \mu_2^2 t^2}{(1 - \mu_2^2 t)^3} G_4(t). \]

\[\delta_0(t) = 0, \quad \delta_1(t) = \frac{2 m_1^2 \mu_2^2 t^2}{(1 - \mu_2^2 t)^2} G_4(t), \quad \delta_2(t) = \frac{2 m_1^2 \mu_2^2 t^2}{(1 - \mu_2^2 t)^2} G_4(t). \]

\[\epsilon_0(t) = 0, \quad \epsilon_1(t) = \frac{2 \mu_2 t}{1 - \mu_2^2 t} G_4(t), \quad \epsilon_2(t) = \frac{2 \mu_2 t}{1 - \mu_2^2 t} G_4(t). \]

\[\eta_0(t) = 0, \quad \eta_1(t) = 0, \quad \eta_2(t) = \frac{2}{1 - \mu_2^2 t} G_4(t). \]

\[\rho_0(t) = 0, \quad \rho_1(t) = 0, \quad \rho_2(t) = \frac{2 \mu_2 t}{1 - \mu_2^2 t} G_4(t). \]

\[\kappa_0(t) = 0, \quad \kappa_1(t) = t \beta_1(t), \quad \kappa_2(t) = \frac{2 \mu_2^2 t^2}{(1 - \mu_2^2 t)^2} G_4(t). \]

and

\[\Phi_j(t) = \alpha_j(t) = \beta_j(t) = \gamma_j(t) = \delta_j(t) = \epsilon_j(t) = \eta_j(t) = \rho_j(t) = \kappa_j(t) = 0 \quad \text{for} \quad j \geq 3. \]
3.7 The remaining ansatz coefficients and the final conclusion

Proposition 31.

\[\begin{align*}
\epsilon_1(t) &= \sum_{n=0}^{\infty} \frac{\epsilon(n, n)}{n!} t^n, \\
\delta_1(t) &= \sum_{n=0}^{\infty} \frac{\delta(n, n)}{n!} t^n, \\
\beta_1(t) &= \sum_{n=0}^{\infty} \frac{\beta(n + 1, n)}{(n + 1)!} t^n.
\end{align*} \]

Proof. In Definition 20, perform the Taylor expansion in \(\omega \) and then compare with Definition 19. \(\blacksquare \)

Proposition 32.

\[\epsilon_1(t) = 0 \]

Proof. Trivial since \(\epsilon(n, n) = 0 \) (see Remark 10). \(\blacksquare \)

Proposition 33.

\[\delta_1(t) = \frac{1 + (m_1^2 \mu_2 - \mu_2^2 + 2m_1 \mu_3) t + (m_1^2 \mu_2^2 - 2m_1 \mu_2^2 \mu_3) t^2 - m_1^2 \mu_2^2 \mu_3^2 t^3}{1 - \mu_2^2 t} G_4(t). \]

Proof. With \(U \) and \(V \) having dimensions \(n \times n \), we have similarly as in the previous proposition,

\[\delta(n, n) = E|U^T U||V^T V| = E|A|^2|B|^2, \]

which can be now simplified using standard techniques as before. Recall the formula

\[|A| = |B| + m_1 S, \quad \text{where} \quad S = \sum_{ij} (-1)^{i+j}|B_{ij}|, \]

then

\[\delta(n, n) = E|B|^4 + 2m_1 E|B|^3 S + m_1^2 E|B|^2 S^2. \]

It turns out that the terms are either trivial or already expressed, namely

- \(E|B|^4 = g_4(n) \)
- \(E|B|^3 S = n^2 \mu_3 g_4(n - 1) \)
- \(E|B|^2 S^2 = n^2 h_0(n) + n^2(n - 1)^2 \mu_3^2 g_4(n - 2) \)

In total, multiplying (159) by \(t^n/n!^2 \) and summing up,

\[\delta_0(t) = G_4(t) + 2m_1 \mu_3 t G_4(t) + m_1^2 \left(H_0(t) + \mu_3^2 t^2 G_4(t) \right), \]

from which the proposition follows since \(H_0(t) = \mu_2 t G_4(t)/(1 - \mu_2^2 t) \) (see Proposition 12). \(\blacksquare \)

Proposition 34.

\[\beta_1(t) = \frac{1 + 2 \mu_2^2 t}{1 - \mu_2^2 t} G_4(t) \]

Proof. Let \(V \) has dimensions \((n + 1) \times n \), thus \(V \) is a square \((n + 1) \times (n + 1) \) matrix. By the multiplicative property of determinant,

\[\beta(n + 1, n) = E|V^T V|^2 = E|V|^4. \]

By expansion in the last column,

\[|V| = \sum_{i=1}^{n+1} (-1)^{i+n+1}|V_{i1}|. \]

Hence

\[\beta(n + 1, n) = E|V|^4 = E \sum_{i,j,r,s \in \{1,\ldots,n+1\}} (-1)^{i+j+r+s}|V_{i1}||V_{ij}||V_{ir}||V_{rs}|. \]

26
By symmetry in $ijrs$ and by omitting trivially vanishing terms, we obtain
\[\beta(n+1, n) = (n+1)E|V_{i1}|^4 + 3(n+1)nE|V_{i1}|^2|V_{i2}|^2, \]
which we can write as, recalling $h_8(n)$ and B the $n \times n$ matrix of Y_{ij}'s,
\[\frac{\beta(n+1, n)}{n+1} = E|B|^4 + 3n[E|B_{11}|^2|B_{12}|^2]_{n \rightarrow n+1} = g_4(n) + 3n^2\mu_2 h_0(n). \]
In total, summing for all n and by using the definitions of the generating functions,
\[\beta(t) = G_4(t) + 3\mu_2 H_0(t) = \frac{1 + 2\mu_2^2 t}{1 - \mu_2^2} G_4(t). \]

Proposition 35. Combining Propositions 32 – 34 and by Corollary 30.2, we get
\[\alpha_1(t) = 1 + \frac{1}{(1 - \mu_2^2)^2} (2m_1^2\mu_2 - \mu_2^2 + 2m_1\mu_3) t + \frac{1}{(1 - \mu_2^2)^3} (2m_1^2\mu_2^3 - 2m_1\mu_2\mu_3 + m_1^2\mu_3^2) t^2 - \frac{1}{(1 - \mu_2^2)^3} m_1^2\mu_2\mu_3^2 t^3 G_4(t). \]

Proposition 36. Combining Propositions 34 and 35 and by Corollary 30.2, we get, defining \hat{p}_k's as before,
\[\Phi_4(t) = \frac{m_2^2 G_4(t)}{(1 - \mu_2^2)^3} \sum_{k=1}^4 \hat{p}_k t^k. \]

Corollary 36.1. Together with the fact that $\Phi_0(t) = F_4(t)$ from [89], we recover Theorem 2.

4 Final remarks

We believe it might be still possible to derive the full $f_6(n)$ via the same treatment as presented in this paper (Lemma 6 and expansions in all classes). Similarly, by cubing Cauchy-Binet formula, one could obtain $f_6^{\text{sym}}(n, p)$ and possibly $f_6(n, p)$. But that task may be way harder.

References

[1] Dembo A. 1989. On random determinants. *Quarterly of applied mathematics* 47.2:185–195.
[2] Flajolet P, Sedgewick R. 2009. *Analytic combinatorics*. Cambridge University press.
[3] Forsythe GE, Tukey JW. 1952. The extent of n-random unit vectors. *Bulletin of the American Mathematical Society* Vol. 58. 4:502–502.
[4] Fortet R. 1951. Random determinants. J. Research Nat. Bur. Standards 47:465–470.
[5] Lv Z, Potechin A. 2022. The Sixth Moment of Random Determinants. URL: https://arxiv.org/abs/2206.11356
[6] Muirhead RJ. 1982. *Aspects of multivariate statistical theory*. John Wiley & Sons.
[7] Nyquist H, Rice S, Riordan J. 1954. The distribution of random determinants. *Quarterly of Applied mathematics* 12.2:97–104.
[8] Prékopa A. 1967. On random determinants I. *Studia Sci. Math. Hungar* 2.1-2:125–132.
[9] Reed W. 1974. Random points in a simplex. *Pacific Journal of Mathematics* 54.2:183–198.
[10] Stanley RP. *Expected size of determinant of AA^T for non-square random A*. MathOverflow. (version: 2015-07-02). URL: https://mathoverflow.net/q/210668
[11] Stanley RP, Fomin S. 1999. *Enumerative Combinatorics*. Vol. 2. Cambridge Studies in Advanced Mathematics. Cambridge University Press:152.
[12] Tao T. *Expected determinant of a random NxN matrix*. MathOverflow. (version: 2010-06-09). URL: https://mathoverflow.net/q/27616
[13] Turán P. 1955. On a problem in the theory of determinants. *Acta Math. Sinica* 5.41:417–423.
A Matrix symbols

B	B/1j	B/11	B/12	B/11/2j	B/11/3j	B/11/4j	B/11/i2	B/11/i3	B/11/i4	B/11/i5	B/12	B/12/2j	B/12/3j	B/12/11	B/12/i3	B/13	B/13/2j	B/13/i1	B/13/i2	B/14	B/14/i1	B/21
B/23	B/23/1j	B/23/2j	B/23/12	B/23/13	B/23/14	B/23/i1	B/23/i2	B/24/i2	B/31	B/31/2j	B/32	B/33/1j	B/33/i2	B/34/1j	B/34/i1	B/12.12	B/12.13	B/12.14	B/12.23	B/12.24	B/12.25	
B/34	B/44/1j	B/12.13	B/12.14	B/13.13	B/13.23	B/13.34	B/13.35	B/14.12	B/14.13	B/14.14	B/14.45	B/23.12	B/23.14	B/23.23	B/23.24	B/23.34	B/24.13	B/24.14	B/24.15			

| E|B_{11}|^2|B_{23.24}|^2|B_{22}|B_{21}| = E\left(\begin{array}{c} \text{Diagram 1} \\ \text{Diagram 2} \end{array}\right)^2 \left(\begin{array}{c} \text{Diagram 3} \\ \text{Diagram 4} \end{array}\right)^2

| Table 6: Table of all matrix symbols used |