The skeletal muscles of mice infected with *Plasmodium berghei* and *Plasmodium chabaudi* reveal a crosstalk between lipid mediators and gene expression

Mauro Toledo Marrelli1,2*, Zhiying Wang2, Jian Huang2 and Marco Brotto2

**

Abstract

Background: Malaria is one of the most prevalent infectious disease in the world with 3.2 billion humans at risk. Malaria causes splenomegaly and damage in other organs including skeletal muscles. Skeletal muscles comprise nearly 50% of the human body and are largely responsible for the regulation and modulation of overall metabolism. It is essential to understand how malaria damages muscles in order to develop effective preventive measures and/or treatments. Using a pre-clinical animal model, the potential molecular mechanisms of *Plasmodium* infection affecting skeletal muscles of mice were investigated.

Methods: Mouse Signal Transduction Pathway Finder PCR Array was used to monitor gene expression changes of 10 essential signalling pathways in skeletal muscles from mice infected with *Plasmodium berghei* and *Plasmodium chabaudi*. Then, a new targeted-lipidomic approach using liquid chromatography with tandem mass spectrometry (LC–MS/MS) to profile 158 lipid signalling mediators (LMs), mostly eicosanoids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), was applied. Finally, 16 key LMs directly associated with inflammation, oxidative stress, and tissue healing in skeletal muscles, were quantified.

Results: The results showed that the expression of key genes altered by *Plasmodium* infection is associated with inflammation, oxidative stress, and atrophy. In support to gene profiling results, lipidomics revealed higher concentrations of LMs in skeletal muscles directly related to inflammatory responses, while on the levels of LMs crucial in resolving inflammation and tissue repair reduced significantly.

Conclusion: The results provide new insights into the molecular mechanisms of malaria-induced muscle damage and revealed a potential mechanism modulating inflammation in malarial muscles. These pre-clinical studies should help with future clinical studies in humans aimed at monitoring of disease progression and development of specific interventions for the prevention and mitigation of long-term chronic effects on skeletal muscle function.

Keywords: Malaria, Skeletal muscles, Muscle damage, Lipid signaling mediators, Gene array

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background

Malaria remains as the most significant human infectious diseases in the World with 3.2 billion humans at risk [1]. The disease continues to spread and curb the development of various African countries, causing a huge economic and social cost [2]. Malaria pathogenesis is a process by which malaria parasites cause illness,
abnormal function and damage in the hosts. The malaria pathogens have been related to cause detrimental effects on skeletal muscles of animals and humans [3–9]. In addition of affecting skeletal muscles, severe malaria may cause damage on cardiac muscles [10–12]. Circulation levels of cardiac proteins increases with the severity of malaria, indicating myocardial impairment in complicated falciparum malaria [13, 14].

The skeletal muscle microvascular function and its oxygen consumption is proportionally impaired to the disease degree. Strikingly, oxygen consumption in severe malaria reduces similarly as in sepsis patients [15]. RNA and protein contents in much lower levels can be found in malaria infected skeletal muscles compared with non-infected controls [16]. Previous study demonstrated that in mice infected with Plasmodium berghei, both glycolytic and oxidative hind limb skeletal muscles produced half of the normal contractile force, fatigued significantly more, and recovered significantly less [7]. These effects were associated with a reduced content of key contractile proteins, such as troponins and myosin [7]. Although these results could help to explain many of the symptoms in humans infected with malaria, they do not explain the molecular and cellular pathway mechanism of direct damage to the contractile machinery. The investigation of genes expression changes and of other biomolecules involved on the physiological effects of the malaria pathogen on muscles becomes crucial to understand potential mechanisms underlying this musculoskeletal disease. Involved in many physiological processes, the lipid signalling mediators, a class of bioactive metabolites of the essential polyunsaturated fatty acids (PUFA) [17–22], have different major functions in living systems, such as being major constituents of biological membranes, efficient energy sources, modifiers of proteins, and signalling molecules [18]. These signalling molecules generate locally through specific biosynthetic enzymes/receptors in response to extracellular stimuli, and play an important role through their signalling pathways on the regulation of pathophysiological states such as inflammation, metabolic syndrome, and cancer [18, 23, 24]. Thus, some LMs could serve as biomarkers in therapy or diagnosis of diseases, as well as potential candidates in drug development.

Herein, to study the molecular mechanisms of malaria-induced injury, 10 gene-signalling pathways were simultaneously monitored in mouse skeletal muscles infected with Plasmodium berghei and Plasmodium chabaudi. PCR Arrays are reliable tools for analysing focused panels of genes in signal transduction, biological processes or disease research pathways. Furthermore, a new targeted lipidomic approach using LC–MS/MS method, developed by the authors, was applied to profile total 158 LMs, and further quantify 16 key LMs directly associated with inflammation and tissue healing in skeletal muscles. The results showed a high level of concordance between the RT-PCR gene arrays and lipidomics. In the course of malaria, muscles present a conclusive signature of enhanced inflammation signalling and reduced signalling to resolve inflammation. More specifically, a crosstalk between arachidonic acid (AA) related lipid mediators and Acsl4 gene was revealed as a potential mechanism modulating inflammation in muscles during Plasmodium infection.

Methods

Chemicals and reagents

Sixteen isotope-labelled lipid mediator (LM) internal standards (IS) including arachidonic acid-d_{9} (AA-d_{9}), 6-keto prostaglandin F_{1α}-d_{9} (6-keto-PGF_{1α}-d_{9}), prostaglandin F_{2α}-d_{9} (PGF_{2α}-d_{9}), prostaglandin E_{2}-d_{4} (PGE_{2}-d_{4}), prostaglandin D_{2}-d_{4} (PGD_{2}-d_{4}), thromboxane B_{2}-d_{4} (TXB_{2}-d_{4}), leukotriene B_{4}-d_{4} (LTB_{4}-d_{4}), leukotriene C_{4}-d_{9} (LTC_{4}-d_{9}), 5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic-5,6,8,9,11,12,14,15-d_{8} acid (5-HETE-d_{8}), 15S-hydroxy-5Z,8Z,11Z,13Z-eicosatetraenoic-5,6,8,9,11,12,14,15-d_{8} acid (15-HETE-d_{8}), 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic-5,6,8,9,11,12,14,15-d_{8} acid (12-HETE-d_{8}), platelet-activating factor C-16-d_{4} (PAF C-16-d_{4}), tetrano-prostaglandin E metabolite-d_{4} (tetrano-PGEM-d_{4}), oleoyl ethanolamide-d_{4} (OEA-d_{4}), docosahexaenoic acid-d_{5} (DHA-d_{5}), and eicosapentaenoic acid-d_{5} (EPA-d_{5}), and eighteen LM standard compounds including 6-keto-PGF_{1α}-d_{9}, PGF_{2α}-d_{9}, PGE_{2}-d_{9}, PGA_{2}-d_{9}, TXB_{2}-d_{4}, LTB_{4}-d_{4}, LTC_{4}-d_{9}, 12(S)-hydroxyheptadecatrienoic acid-d_{9} (12-HHT), 9-hydroxy-10,12-octadecadienoic acid (9-DOHE), 13(S)-hydroxyoctadecadienoic acid (13-DOHE), 17,18-dihydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (17,18-DiHETE), 8-hydroxy-4Z,6E,10Z,13Z,16Z,19Z-docosahexaenoic acid (8-HDoHE), N-arachidonoylthanolamine (AEA), EPA, DHA, OEA and AA were purchased from Cayman Chemical Co. (Ann Arbor, MI). Formic acid (reagent grade, ≥95%) was obtained from Sigma–Aldrich (St. Louis, MO, USA). HPLC–MS grade acetonitrile, water, methanol, and ethanol were purchased from J.T. Baker (Phillipsburg, NJ, USA). Tri-reagent from Molecular Research Center, Inc. (Cincinnati, OH, USA). High-capacity cDNA reverse-transcription kit from Applied Biosystems (Foster City, CA, USA). Mouse Signal Transduction Pathway Finder PCR Array. RT2 First Strand Kit. RT2 Real-Time SYBR green/Rox PCR master mix from SABiosciences (Valencia, CA, USA). RNeasy Mini Kit from Qiagen (Valencia, CA, USA).
Animals and infection with malaria
Male mice from 4 to 5 months of age (Swiss Webster), weighing between 25 and 30 g were infected with malaria parasites P. berghei (strain ANKA 2.34) and P. chabaudi (strain CR), uninfected mice used as controls of the experiments. Plasmodium berghei (strain ANKA) isolated from rats Grammannys surdaster 2.34, has been maintained by Swiss Webster mouse passage in the laboratory, and P. chabaudi in Balb/c mice, as described by Hoffmann et al. [25]. For the infections, the mice were intravenously inoculated with identical rates (200 µl) frozen red cell with 25% parasitaemia of malaria parasites diluted in PBS. The parasitaemia was monitored daily by microscopic examination of blood smears stained with Giemsa. Mice with parasitaemia of approximately 35% were selected for the analyses, based on previous findings [7], that these levels of parasitaemia lead to muscle dysfunction, but with no signs of brain dysfunction (i.e. deviation of head, seizures and coma followed by death). Therefore, in this study, only the mice without symptoms of cerebral malaria were used. These levels of parasitaemia were achieved 3-6 days after injection of parasites. Mice were euthanized by cervical dislocation and then intact muscles (gastrocnemius) were isolated, kept stabilized in RNA later and shipped to the Bone-Muscle Research Center, UT-Arlington. (https://www.uta.edu/conhi/research/bmrc/index.php).

RNA isolation and RT-PCR gene arrays
The Mouse Signal Transduction Pathway-Finder PCR Array from SABiosciences was used to simultaneously detect gene expression changes of 10 signalling pathways (see Table 1, and details in Results). Total RNA was extracted from the cells using the Tri reagent according to manufacturer’s protocol, quantified in a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE, USA) by determining absorbance at 260 nm in triplicate. RNA purity was indicated by the A260/280 nm absorbance ratio of 1.9 to 2.1 and A260/230 nm absorbance ratio ≥ 1.8. Using 0.5 µg of RNA, each sample was reverse transcribed in a 20-µL reaction volume. cDNA was synthesized using the RT2 First Strand Kit and the PCR Array was run according to the manufacturer’s protocol, including a threshold of 0.25 and validation of each gene tested by the identification of single peaks in melting curves. As above, data were analysed using RT2 Profiler PCR Array Data Analysis Software (SABiosciences); CT values were normalized to built-in six reference housekeeping genes, genomic DNA control, reverse transcription control, and positive PCR control [26]. This analytical software was used to set the statistical significance of upregulation or downregulation of all tested genes at fivefold difference. A major advantage of this technology is the pre-validation of these pathways at the protein level by the manufacturer and the robust utilization of internal and reference controls.

Lipidomics
All components of LC–MS/MS system are from Shimadzu Scientific Instruments, Inc. (Columbia, MD, USA). LC system was equipped with four pumps (Pump A/B: LC-30AD, Pump C/D: LC-20AD XR), a SIL-30AC autosampler (AS), and a CTO-30A column oven containing a 2-channel six-port switching valve. The LC separation was conducted on a C8 column (Ultra C8, 150 × 2.1 mm, 3 µm, RESTEK, Manchaca, TX, USA) along with a Halo guard column (Optimize Technologies, Oregon City, OR, USA). The MS/MS

Table 1 Signalling pathways and genes in Mouse Signal Transduction Pathway Finder PCR Array

Signalling pathways	Genes
TGFβ pathway	Atf4, Cdk11b (p27Kip1), Emp1, Gadd45b, Herpud1, Ifrd1, Myc, Tnfsf10
WNT pathway	Axin2, Ccnd1, Ccnd2, Dab2, Fosl1 (fra-1), Mmp7 (Matrilysin), Myc, Ppard, Wisp1
NFκB pathway	Bcl2a1a (Bfl-1/A1), Bcl2l1 (Bcl-x), Birc3 (c-IAP1), Cc15 (Rantes), Csf1 (Mcsf), Icam1, Ilng, Stat1, Tnf
JAK/STAT pathway	Bcl2l1 (Bcl-x), Ccnd1, Cebpδ, Lrg1, Mcl1, Socs3
JAK1, 2/STAT1	Bcl2l1 (Bcl-x), Ccnd1, Socs3
STAT3	Fcer2a, Gata3
JAK1, 3/STAT6	Bax, Bbc3, Btg2, Cdkn1a (p21Cip1/Waf1), Egr1, Fas (Tnfrsf6), Gadd45a, Pcn1, Rb1
p53 pathway	Hes1, Hes5, Hey1, Hey2, Hey2, Id1, Jag1, Lfng, Notch1
Notch pathway	Bcl2, Bmp2, Bmp4, Ptch1, Wnt1, Wnt2b, Wnt3a, Wnt5a, Wnt6
Hedgehog pathway	Acscl3, Acscl4, Acscl5, Cnp2, Fatsp1, Orl1, Scl27a4, Sorbs1
PPAR pathway	Fth1, Gclc, Gclm, Gsr, Hmox1, Nogo1, Sqstm1, Tbx1, Tmem1
Oxidative stress	Adm, Arnt, Car9, Epo, Hmox1, Ldhb, Serpine1 (PAI-1), Slc2a1, Vegfa
Hypoxia	
analysis was performed on Shimadzu LCMS-8050 triple quadrupole mass spectrometer. The instrument was operated and optimized under both positive and negative electrospray and multiple reaction monitoring modes (± ESI MRM). The settings of flow rate and gradient program for the LC system as well as MS/MS conditions are recommended by a software method package for 158 lipid mediators (Shimadzu Scientific Instruments, Inc., Columbia, MD, USA) and further optimized following previously published quantification method [27]. All analyses and data processing were completed on Shimadzu LabSolutions V5.91 software (Shimadzu Scientific Instruments, Inc., Columbia, MD, USA).

Tissue preparation for lipidomics analyses

Striated muscles were isolated after mice sacrifice, then snap frozen in liquid nitrogen immediately and stored at -80 °C. Before the experiment, the aliquoted frozen muscle tissue (50–100 mg) were defrosted on ice and in the dark, weighed carefully, and minced into small pieces on ice. The minced muscle was placed into a 2.0 mL round-bottom low retention microcentrifuge tube (Fisher Scientific, Waltham, MA, USA) containing one 5 mm stainless steel bead (Qiagen, Germantown, MD, USA), and 1.0 mL of ice-cold 80% methanol in water (v/v) will be added. The mixture was homogenized using a Tissue Lyser II homogenizer (Qiagen, Germantown, MD, USA) at the frequency of 30 s⁻¹, in 8 × 30-s bursts, waiting 20 s in between to avoid high temperature. The obtained homogenate was mixed with 5 µL of isotope-labelled LM internal standards (IS) mixture stock solution (5 µg/mL for AA-d₈, 2 µg/mL for DHA-d₅ and EPA-d₉, and 0.5 µg/mL for the rest IS), and then agitated on ice and in the dark for 1–2 h, followed by centrifugation at 6000×g at 4 °C for 10 min to remove any tissue residue and precipitated proteins.

All muscle samples need to be cleaned and concentrated by Solid Phase Extraction (SPE) before being injected into LC–MS/MS. Ice-cold 0.1% formic acid (4 mL) was added in the obtained supernatant to fully protonate the LM species before sample was loaded to the preconditioned SPE cartridges (Strata-X 33 µm polymeric reversed phase, Phenomenex, Torrance, CA, USA). Once the sample had been totally loaded, cartridges were washed with 0.1% formic acid followed by 15% (v/v) ethanol in water to remove excess salts. Then the LMs from the SPE sorbent bed were eluted by 0.5 µg/mL for the rest IS, followed by centrifugation at 6000×g at 4 °C for 10 min to remove any tissue residue and precipitated proteins.

Statistics analysis

For lipidomics analyses data is presented as mean±SD of all samples in multiple experiments. One-way ANOVA with post hoc Tukey’s test (α = 0.05) was performed for data analysis. Differences were considered statistically significant at p < 0.05.

Results

RT-PCR Array

Table 1 shows the 10 signalling pathways and the specific genes monitored in each pathway through the Mouse Signal Transduction Pathway-Finder PCR Array from SABiosciences. This methodology was implemented to simultaneously detect gene expression changes in striated muscles of mice infected with P. chabaudi or P. berghei.

The analysis showed three genes (Gadd45b, Ppard, Slc27a4) were significantly up-regulated compared to controls in skeletal muscles from mice infected with P. berghei, while twenty other genes (Ifrd1, Axin2, Mmp7, Bcl2l1, Ccnd1, Mc1, Socs3, Gata3, Bax, Bbc3, Btg2, Gadd45a, Rb1, Jag1, Wnt1, Wnt3a, Orl1, Hmx1, Tnx1, Serpine1) were up-regulated only in muscles from mice infected with P. chabaudi (Fig. 1).

Seven common genes (Acsl4, Bmp2, Cebpd, Cdkn1a, Sastm1, Stat1 and Tnmd1) had their expression significantly altered in skeletal muscles from mice infected with either P. chabaudi or P. berghei, comparing to uninfected mouse controls, with higher expressions on P. chabaudi infected mice, as illustrated in Fig. 2.

Compared to negative control, the expression of Acs14 gene was downregulated by -2.37-fold (p = 0.005674) and -3.22-fold (p = 0.018156), respectively, in muscles infected with P. chabaudi or P. berghei parasites.
infected with *P. berghei* and *P. chabaudi*, respectively (Fig. 2). The other six genes were upregulated comparing to the uninfected mouse muscles, with *Bmp2* gene altered by 3.99-fold (*p = 0.012177*) and 9.04-fold (*p = 0.006948*), respectively in *P. berghei* and *P. chabaudi* infected muscles. *Cebpd* was significantly altered by 3.72-fold (*p = 0.025971*) and 51.02-fold (*p = 0.031599*) in *P. berghei* and *P. chabaudi* infected muscles, respectively.

The expression of *Cdkn1a* gene was significantly upregulated by 12.48-fold (*p = 0.047676*) and 40.70-fold (*p = 0.009800*), respectively in *P. berghei* and *P. chabaudi* infected muscles. *Stat1* gene was significantly altered by 11.20-fold (*p = 0.021470*) in *P. berghei* infected muscles, and 9.16-fold (*p = 0.005999*), in *P. chabaudi* infected muscles. Regarding the gene *Sqstm1*, it was upregulated related to the controls, by 4.33-fold (*p = 0.008631*) and 11-fold (*p = 0.022897*), respectively, in *P. berghei* and *P. chabaudi* infected muscles. Finally, the expression of *Txnrd1* gene upregulated by 3.14-fold (*p = 0.030464*) in *P. berghei* infected muscles and 6.77-fold (*p = 0.009119*) in *P. chabaudi* infected muscles.

Lipid Signalling Mediators (LMs)

Due to the essential roles of lipid signalling in health and disease, the profiles of total 58 lipid signalling mediators were compared between the muscles from mice infected with the two malaria parasites and uninfected mice (control) through a targeted LC–MS/MS based targeted lipidomics analytical method. Then the absolute concentrations of 16 key LMs, was further determined and related to six metabolic pathways, from mouse skeletal muscles in this study. This quantification method, developed in the Brotto Muscle Research Laboratory in collaboration with the Shimadzu Research Institute, was recently applied and showed substantial differences during aging as well sex-related differences in mice [27]. In the present study, both quantification and profiling results indicated significant differences (*p < 0.05*) in LM levels in skeletal muscles of mice infected with *P. berghei* and *P. chabaudi* compared to that of the muscles from the control mice (Table 2, Additional file 1: Table S1, and Fig. 3).

In 16 quantified LMs, the muscle levels of four LMs derived from arachidonic acid (AA, 20:4, ω-6), including 6-keto-PGF$_{1α}$, PGF$_{2α}$, PGD$_{2}$, 12-HHT, were observed to be remarkably higher in mice infected with *P. berghei* than uninfected mice. As for the two LMs showing significantly lowered concentrations, EPA belongs to ω-3 PUFA eicosapentaenoic acid (EPA, 20:5, ω-3) metabolic pathway, and AEA belongs to fatty acid ethanolamide (EA)-derived metabolic pathway (Table 2, Fig. 3). Analysis of LM quantification from muscles of *P. chabaudi* infected mice showed similar results. The concentrations of 4 LMs from AA metabolic pathway, including PGF$_{2α}$, PGD$_{2}$, PGA$_{2}$ and 12-HHT, were significantly higher than the controls, while two ω-3 PUFA metabolites from docosahexaenoic acid (DHA, 22:6, ω-3) and EPA pathways (EPA and DHA), and one EA metabolite (AEA) were found in lower concentrations comparing to the muscles from uninfected mice (Table 2, Fig. 3).

All LMs related to ω-6 PUFA metabolic pathways, including both AA and linoleic acid (LA, 18:2, ω-6) determined in this study, exhibited elevated levels in striated muscles from mice with two types of malaria, even though no statistically significant differences (*p < 0.05*) were observed (Table 2). Two hydroxyoctadecadienoic acids 13-HODE and 9-HODE, being considered as lipid peroxidation biomarkers [28, 29], showed much higher concentrations in malaria infected muscles, about 6-fold (*P. chabaudi*) and twofold (*P. berghei*) higher than the control, respectively, for both 13-HODE and 9-HODE (Table 2).

The AA/EPA ratio, an indicator of inflammation and skeletal muscle depletion [30, 31], was drastically higher (by 5-sixfold) in muscles from mice infected either with *P. berghei* (16.7 ± 7.7, *p = 0.10133) or *P. chabaudi* (19.9 ± 11.9, *p = 0.03887), when compared to the control group (3.6 ± 0.8) (Table 2).

Discussion

Malaria is one of the most prevalent infectious disease in the world, causing splenomegaly and damage in other organs such as liver and kidney [8]. Remarkably, malaria infection can also cause muscle damage due to the combination of ischaemia, inflammation, and oxidative stress [8]. Considering the vital importance
of the skeletal muscles as the largest organ-system in the body, comprising nearly 50% of its mass and largely responsible for the regulation and modulation of overall metabolism, the potential molecular mechanisms of *Plasmodium* infection affecting skeletal muscles of mice was first investigated. The expression of genes associated with inflammation, oxidative stress and atrophy were significantly altered in skeletal muscles infected with *Plasmodium* parasites. Supporting these results, higher concentrations of LMs directly associated to inflammatory responses were found in *Plasmodium* infected muscles, showing a crosstalk between LMs and gene expression.

Among all the genes analysed with the Mouse Signal Transduction Pathway Finder PCR array, the expression of six key genes, *Acsl4*, *Bmp2*, *CebpD*, *Cdkn1a*, *Sqstm1*, *Stat1* and *Txnrd1*, was significantly up-regulated in both *P. berghei* and *P. chabaudi* infected mice muscles, compared to the negative controls, and only one gene, *Acsl4*, was downregulated.

Significant changes of gene expression were observed in genes related to the inflammatory and immune response of the host. For instance, *CebpD* gene encodes an important protein related to the regulation of genes involved in inflammatory and immune responses [32]. *Bmp2* gene belongs to TGFβ signalling pathway, which has pleiotropic functions, including regulating immune response [33]. The gene *Txnrd1* associated to oxidative stress pathways and is involved in the regulation of lipids metabolism via the PPAR signalling pathway [34].

Stat1 gene it is a signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokines and other growth factors, being directly associated with the NF-κB pathway [35]. *Sqstm1* gene is associated to oxidative stress and to the NF-κB signalling pathway.

Another gene, *Cdkn1*, was upregulated in infected muscles with both *Plasmodium* species. This gene encoding a potent cyclin-dependent kinase inhibitor, is related to the p53 signalling pathway, and it might be an important intermediate by which p53/TP53 mediates its role as an inhibitor of cellular proliferation in response to DNA damage. The activation of NF-κB and p53 can activate protein kinase (MAPK) pathways leading to skeletal muscle atrophy [36]. NF-κB is one of the most important signalling pathways linked to the loss of skeletal muscle mass in normal physiological and pathological conditions [37]. The NF-κB pathway has long been considered a prototypical proinflammatory signalling pathway, largely based on the role of NF-κB in the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules, playing a key role in regulating the immune response to infection [38]. This result indicated that malaria infection may function through the NF-κB pathway to regulate myoblast differentiation, since this pathway was affected by

Table 2 Quantification of lipid mediator (pg mg⁻¹ muscle) in striated muscles from mice with or without different malaria infections and the associated metabolic pathways

Metabolic pathways	Lipid mediator	Control	*P. chabaudi*	*P. berghei*
Arachidonic acid (AA)	6-keto-PGF₁₀	13.4 ± 7.9	43.9 ± 15.6	105.1 ± 77.6*
	TB₂	3.4 ± 1.7	12.1 ± 12.8	26.9 ± 23.3
	PGF₂α	7.9 ± 2.1	38.7 ± 19.5*	38.7 ± 11.7*
	PGD₂	7.0 ± 0.6	53.2 ± 23.5*	34.7 ± 6.6*
	PGA₂	2.4 ± 0.4	10.2 ± 6.4*	5.8 ± 1.6
	12-HHT	43.7 ± 5.9	145.1 ± 23.1*	182.7 ± 70***
Linoleic acid (LA)	AA	16.64 ± 4727.6	21,033.5 ± 9395.7	22,340.5 ± 6285.2
	13-HODE	911.6 ± 1839	5,724.6 ± 5,486.6	19,934.3 ± 9,989.8
Eicosapentaenoic acid (EPA)	17,18-DIHETE	11.5 ± 1.4	8.6 ± 5.9	9.2 ± 4.1
	EPA	4702.9 ± 954.4	11,60 ± 292.7***	14,834.3 ± 391.1***
Docosahexaenoic acid (DHA)	8-HDoHE	136.8 ± 52.9	208.3 ± 85.6	221.9 ± 49.7
	DHA	73,814.6 ± 16,486.1	50,135.2 ± 9201.8*	57,149.6 ± 8011.9
α-Linolenic acid (ALA)	9-HOTE	16.9 ± 1.2	121.4 ± 110.5	42.1 ± 13.8
Ethanolamide (EA)	AEA	2.1 ± 2.2	6.4 ± 2.9***	9.9 ± 4.4***
Ratio of AA/EPA	3.6 ± 0.8	19.9 ± 11.9*	16.7 ± 7.7	

Mean ± SD, n = 5. One-way ANOVA with Tukey post hoc test (α = 0.05) was applied to compare means between multiple groups. *p < 0.05; **p < 0.01; ***p < 0.001 represent statistically significant difference between uninfected mice (Control) and *P. berghei* or *P. chabaudi* infected mice; *p < 0.05 represents statistically significant difference between *P. berghei* and *P. chabaudi* infected mice.
Fig. 3 Comparison of the lipid concentration in muscles of control uninfected and infected mice with *P. chabaudi* and *P. berghei* parasites:

- **a** 6-keto-PGF1α
- **b** PGF2α
- **c** PGD2
- **d** PGA2
- **e** 12-HHT
- **f** EPA
- **g** DHA
- **h** AEA
both *P. berghei* and *P. chabaudi* infections. These results corroborated with previous studies, which had shown a detrimental effects of malaria on skeletal muscles associated with significant decrease in content of key contractile proteins (reduced from 15 to 45%) in the skinned fibers [7], and also are in agreement with findings from other studies of the presence of muscle specific proteins in the circulation [13, 14, 16].

The results of gene array have shown a higher number of over regulated genes in skeletal muscles of *P. chabaudi* infected mice when compared to *P. berghei* infected mice. It is worth noting that the *Plasmodium* strains were selected according to their characteristics and effect on the experimental mice models. Infections with *P. berghei* ANKA strain can affect the brain and cause complications in laboratory mice, comparable to human cerebral malaria caused by *Plasmodium falciparum* [39], whereas malaria caused by *P. chabaudi*, strain CR, is not lethal, and defined as an experimental malaria self-control. This self-control characteristic of *P. chabaudi* may explain the higher number of over-expressed genes found in striated muscles infected with *P. chabaudi* compared to the low number of over expressed genes when the mice were infected with *P. berghei* ANKA strain.

It is known that the detrimental effects of malaria parasites on skeletal and cardiac muscles are related to their pathogenic mechanism. *Plasmodium berghei* is a mouse parasite, whose symptoms and complications are compared to the human parasite *P. falciparum*, that causes a severe malaria, provoked by microvascular sequestration of parasitized red blood cells causing microcirculatory obstruction [3], leading to decreasing oxygen delivery, obstruction of blood flow and tissue hypoxia [15]. Due to this aspect, skeletal muscle necrosis and rhabdomyolysis, which are directly or indirectly caused by muscle injury or death, have been reported in patients with severe falciparum malaria [3, 5, 6]. Considering that necropsies occur only in *P. falciparum* patients, but not in humans infected by the non-lethal *Plasmodium vivax* malaria, it was expected that some genes were only significantly altered in muscles of mice infected with the *P. chabaudi* parasites, which causes a non lethal infection comparable to *P. vivax*. For instance, the function related to *Mcl1* gene, which encodes an anti-apoptotic protein, could explain the fact that in mice infected with this parasite do not go through an apoptosis process.

Acsl4 gene that was downregulated in this study, encodes an isozyme of the long-chain fatty-acid-coenzyme synthase involved in the peroxisome proliferator-activated receptor (PPAR) signalling pathway and fatty acid pathway. PPARs play essential roles in the regulation of cellular differentiation, development, and metabolism of biomolecules such as carbohydrates, lipids and proteins of vertebrates [40–42]. This isozyme has marked preference for AA as its substrate, which is a polyunsaturated ω-6 fatty acid, related to a metabolic pathway directly related to inflammatory effects (Table 2).

The lipidomics profiling analysis revealed total 58 bioactive lipid mediators detectable in mice skeletal muscles, mostly related to AA and DHA metabolic pathways. These studies led us to conduct quantitative measurement of LMs in skeletal muscle models of malaria to elucidate the fundamental mechanisms of the different pathways of lipid metabolism in the skeletal muscle of mice infected with two types of malaria, a lethal mouse malaria caused by *P. berghei* and another form of mice malaria, non-lethal, caused by *P. chabaudi*. This may lead to better understanding of the cause and potential of treatments for harmful effects of malaria on skeletal muscle. Results of lipidomics quantification indicate significant differences in the levels of the determined LMs in the striated muscles of mice infected with both parasites, *P. berghei* and *P. chabaudi*, compared to the muscles of control mice (Table 2, Fig. 3). Few studies have shown evidence that lipid mediators may regulate skeletal muscle mass and function and potentially protect against muscle wasting in response to various infected diseases, but so far, no information about LM levels in *Plasmodium*-infected skeletal muscles has been reported. In the *P. berghei* infected mice group, the levels of 5 AA-metabolized LMs, including 6-keto-PGF1α, PGF2α, PGD2, PGA2, and12-HHT, were remarkably higher in muscles infected with *P. chabaudi* compared to the uninfected mice (Table 2, Fig. 3). On the other hand, EPA, DHA and AEA, derived from either ω-3 PUFA (EPA and DHA) or fatty acid ethanolamide, respectively, had statistically significant lower concentrations comparing to uninfected mice muscles. EPA concentration was statistically lower (*p* < 0.001) on muscles of mice infected with either malaria parasites. The same was found regarding to AEA concentration on muscles infected with either *Plasmodium* species (*p* < 0.001). Regarding to DHA, both infected malaria muscles were found on lower concentrations, but statistically lower (*p* < 0.05) only in muscles from *P. chabaudi* infected mice (Table 2, Fig. 3f–h).

Polyunsaturated fatty acids (PUFAs) are important constituents of the phospholipids of all cell membranes and generally considered to have beneficial effects. Some well-known LMs metabolized from PUFAs such as prostaglandins (PGs), thromboxanes (TXs) and leukotrienes (LTs) and related oxygenated derivatives have a wide range of biological actions including potent effects on inflammation [43]. However, it is believed that ω-3 and ω-6 PUFAs have opposing effects on metabolic functions in the body. Typically, ω-6 PUFAs are associated with inflammatory responses, constriction
of blood vessels, and platelet aggregation [44]. In contrast, ω-3 PUFAs show anti-inflammatory and pro-resolving activities to resolve inflammation effectively, and alter the function of vascular and carcinogen biomarkers, thus reducing the risk of cancer [45–47]. Considering that malaria is known as an inflammatory disease, with recognized symptoms, such as fever and headache, signs, such as splenomegaly, and damage in other organs such as liver and kidney [8], the findings in this study corroborated with those assessments, since all LMs found on significantly higher concentrations compared to the controls are from ω-6 pathway (AA and LA pathways, Table 2), while the lipids found at remarkably lower concentrations comparing to the controls are related to ω-3 pathway (EPA and DHA pathways, Table 2). Accordingly, a significantly higher AA/EPA ratio was also found in Plasmodium infected mice compared to uninfected ones. This significantly increased AA/EPA ratios may also suggest an association between malaria infection and skeletal muscle depletion.

Fig. 4 Schematic representation of arachnoid acid (AA) related lipids downregulating Acs4 gene and modulating inflammatory process in malaria infected skeletal muscles. Blue arrow-ended line: stimulation/activation; red circle-ended line: inhibition; dash line: PPAR signalling pathway.
The results of lipid profiles also indicate the potentially increased peroxidation in skeletal muscles infected with malaria parasites. Recently, hydroxyoctadecadienoic acids (HODEs) such as 13-HODE and 9-HODE have been reported as lipid peroxidation biomarkers [29]. HODEs are stable oxidation products of linoleic acid (LA, 18:2, ω-6), a most abundant PUFA in vivo, by 15-lipoxygenase-1 (15-LOX-1) followed by glutathione peroxidases and phospholipases [28, 48]. HODEs accumulate in atherosclerotic lesions and exert protective effects in atherogenesis by modulating macrophage lipid accumulation and inflammatory mediator generation through peroxisome proliferator-activated receptor-γ (PPAR-γ) activation [49, 50]. Elevated levels of HODEs is always linked to oxidative stress-related diseases such as diabetes [49]. In the present study, both 13-HODE and 9-HODE showed increased levels in skeletal muscles from malaria infected mouse, confirming previous data showing that malaria infection induces a combination of inflammation and oxidative damage in skeletal muscles [14, 15]. These data are also corroborated by the gene array results, which showed an upregulated expression of Sgstm1 gene, associated to oxidative stress pathway.

Therefore, profiles of targeted lipid mediators obtained in this study provided crucial information related to the aspects of skeletal muscle infected with the malaria parasite P. berghei and P. chabaudi, with insights on the quantification of LMs involved with essential physiological functions ranging from tissue repair and inflammation due to malaria infection. The study further points to a crosstalk between AA-related lipid mediators and Acsl4 gene as a potential cellular mechanism of sustained inflammation in muscles of Plasmodium infected mice.

Conclusion

The gene profiling analyses showed expression of key genes altered by malaria infection associate with inflammation, oxidative stress, and atrophy. In support to these results, the lipidomics analyses revealed higher concentrations of LMs direct related to inflammatory responses, while on the levels of LMs crucial in resolving inflammation and tissue repair reduced significantly. Figure 4 shows a proposed model for the potential mechanism between AA derived lipid mediators and the Acsl4 gene; a gene directly related to inflammation process of malaria-infected muscles. The high concentration of the AA related lipid mediators found in malaria infected mice may act downregulating the Acsl4 [51], promoting the inflammatory response. Therefore, the present study helped to increase the knowledge of mechanisms underlying molecular mechanisms of malaria-induced muscle damage, targeting key molecules, such as genes and lipids, associated and leading to muscle damage.

Together, this information could be useful in future works to provide better monitoring of disease progression and development of specific interventions for the mitigation of long-term chronic effects on skeletal muscle function.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12936-020-03332-3.

Additional file 1: Table S1. Lipid profiling (% to the control) in striated muscles from mice with or without different malaria infections and the associated metabolic pathways.

Acknowledgements

We are thankful to Dr. Heitor Franco de Andrade Junior, from Tropical Medicine Institute of University of Sao Paulo, for providing the Plasmodium strains.

Authors’ contributions

MTM and MB conceived and designed the study. MTM oversaw the mice infections. ZW performed the lipidomic experiments. JH, MTM performed the gene array experiments. JH, MTM and ZW analysed the data. MTM wrote the first draft of the article. JH, ZW and MB made the scientific review of the article. All authors read and approved the final manuscript.

Funding

We are grateful for instrumentation support from Shimadzu Scientific Instruments, Inc. The George W. and Hazel M. Jay and Evantson Research Endowments, and the UTA College of Nursing Animal Models of Muscule-skeletal Diseases Startup (MB), and Sabbatical Grant from the University of Sao Paulo (MM), directly supported this work. MM, ZW, and JH were partially supported by grants from the National Institutes of Health [PO1 AG039355, R01AG056504, and R01AG060541 (MB)].

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The experimental protocols were conducted according to the Ethics in Animal Experimentation (COBEA/SBCAL - Brazilian College of Animal Experimentation) and approved by the Animal Research Ethics Committee of the Institute of Tropical Medicine of the University of Sao Paulo (CPE-IMT 2013).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Epidemiology, School of Public Health, University of Sao Paulo, Avenida Dr. Arnaldo 715, Sao Paulo, SP 01246-904, Brazil. 2. Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas-Arlington, 655 W. Mitchell Street, Arlington, TX 76010, USA.

Received: 6 January 2020 Accepted: 9 July 2020 Published online: 14 July 2020

References

1. WHO. World malaria report 2017. Geneva: World Health Organization; 2017.
2. Otem JN, Kirigia JM, Azairwe R, Kasiyie L, Walker O. Impact of malaria morbidity on gross domestic product in Uganda. Int Arch Med. 2012;22:12.
3. Da Silva HJ, Goonetilleke AK, Senaratna N, Ramesh N, Jayawickrama US, Jayasinghe KS, et al. Skeletal muscle necrosis in severe falciparum malaria. BMJ. 1988;296:1039.

4. Miller KD, White NJ, Lott JA, Roberts JM, Greenwood BM. Biochemical evidence of muscle injury in African children with severe malaria. J Infect Dis. 1989;159:139–42.

5. Taylor WR, Prosser DI. Acute renal failure, acute rhabdomyolysis and falciparum malaria. Trans R Soc Trop Med Hyg. 1992;86:361.

6. Knochel JP, Moore GE. Rhabdomyolysis in malaria. N Engl J Med. 1993;329:1204–10.

7. Brotto MA, Marrelli MT, Brotto LS, Jacobs-Lorena M, Nosen TM. Functional and biochemical modifications in skeletal muscles from malarial mice. Exp Physiol. 2005;90:417–25.

8. Marrelli MT, Brotto M. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles. Malar J. 2016;15:524.

9. Takaya S, Kutsuna S, Suzuki T, Komaki-Yasuda K, Kano S, Ohmagari N. Case Report: Plasmodium knowlesi Infection with Rhabdomyolysis in a Japanese traveler to Palawan, the Philippines. Am J Trop Med Hyg. 2018;99:967–9.

10. Herr J, Mehrfar P, Schmiedel S, Wichmann D, Brattig NW, Burchard GD, et al. Reduced cardiac output in imported Plasmodium falciparum malaria. Malar J. 2011;10:160.

11. Janka JJ, Koita OA, Traoré B, Traoré JM, Mzayek F, Sachdev V, et al. Increased pulmonary pressures and myocardial wall stress in children with severe malaria. J Infect. 2011;202:791–800.

12. Costerano P, Benedetti P, Facchin C, Mengoli C, Pellizzer F. Fatal myocardiect in mouse of Plasmodium falciparum infection: case report and review of cardiac complications in malaria. Case Rep Med. 2011;2011:1:1–7.

13. Ehrhardt S, Moenkenhaupt FP, Anemana SD, Otchwemah RN, Wichmann D, Brattig NW, et al. High levels of circulating cardiac proteins indicate cardiac impairment in African children with severe Plasmodium falciparum malaria. Microbe Infect. 2005;7:1204–10.

14. Ehrhardt S, Wichmann D, Hemmer CJ, Burchard GD, Brattig NW. Circulating concentrations of cardiac proteins in complicated and uncomplicated Plasmodium falciparum malaria. Trop Med Int Health. 2004;9:1099–103.

15. Yeo TW, Lampah DA, Kenangalem E, Tjitra E, Price RN, Anstey NM. Infection with Plasmodium knowlesi in a traveler to Palawan, the Philippines. Am J Trop Med Hyg. 2018;99:967–9.

16. Fern EB, McNurlan MA, Garlick PJ. Effect of malaria on rate of protein synthesis in individual tissues of rats. Am J Physiol. 1985;249:E485–93.

17. Liu M, Saeki K, Matsunobu T, Okuno T, Koga T, Sugimoto Y, et al. 12-Hydroxy-heptadecaenoic acid promotes experimental wound healing by accelerating keratinocyte migration via the BTL2 receptor. J Exp Med. 2014;211:1063–78.

18. Murakami M. Lipid mediators in life science. Exp Anim. 2011;60:7–20.

19. Hellmann J, Tang Y, Spite M. Proresolving lipid mediators and diabetic wound healing. Curr Opin Endocrinol Diabetes Obes. 2012;19:104–8.

20. Altmann R, Hausmann M, Spottl T, Gruber M, Bull AW, Menzel K, et al. Impaired skeletal muscle microvascular function and increased skeletal muscle oxygen consumption in severe falciparum malaria. J Infect Dis. 2013;207:528–36.

21. Fern EB, McNurlan MA, Garlick PJ. Effect of malaria on rate of protein synthesis in individual tissues of rats. Am J Physiol. 1985;249:E485–93.

22. Feige JN, Gelmian L, Michalik L, Desvergne B, Wahl W. From molecular action of peroxisome proliferator-activated receptors to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res. 2002;41:309–45.

23. Belfiore A, Genua M, Malaguarnera R. PPAR-gamma agonists and their effects on IGF-I receptor signaling: implications for cancer. PPAR Res. 2009;2009:85051.

24. Ricciotti E, FitzGerald GA. Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther Adv Endocrinol Metab. 2010;1:51–60.

25. Takaya S, Kutsuna S, Suzuki T, Komaki-Yasuda K, Kano S, Ohmagari N. Case Report: Plasmodium knowlesi Infection with Rhabdomyolysis in a Japanese traveler to Palawan, the Philippines. Am J Trop Med Hyg. 2018;99:967–9.