Effects of organic matter on the performance of water and wastewater treatment: Electrocoagulation a case study

K. Hashim1,*, Wafaa Ismail Saad2, K. Safaa3, Abduljaleel Al-Janabi3
1 College of Environment, Al-Qasim Green University, Babylon, Iraq
2 College of Education, University of Mustansiriyah, Iraq
3 Faculty of Engineering, University of Babylon, Iraq

Corresponding author’s e-mail: kadhim.hashim@enviro.uoqasim.edu.iq

Abstract. One of the commonly available pollutants in freshwater sources is organic matter (OM) because it is abundantly found in nature and the wastewater, where it is believed all forms of freshwater, soils and wastewaters contain a certain concentration of OM. Although the majority of the OM, especially the natural forms, has no serious impacts on the human health or aquatic environment, its high concentrations or its industrial forms can cause health problems along with severe impacts on the treatability of water or wastewater because it chelates the inorganic matters, reacts with other pollutants or covers them, which makes their removal is difficult. Therefore, a vast number of methods were applied to remove OM from water, such as electrocoagulation. Despite the proven efficiency of the EC in the removal of a vast number of pollutants from solutions, its performance is highly influenced by the content of OM in the solution because the OM covers the electrodes decreasing the dissolution rate, and OM also reacts with inorganic matter such as metals making it difficult to remove them. Some solutions were developed to solve these problems, such as adding chloride that inhibits the formation of the inert layers on electrodes, also adding Mg could improve the removal efficiency by maximising the size of the flocs. Thus, this paper reviews the effects of the OM on the performance of EC and lists a number of recent applications of the EC in OM removal.

1. Introduction

1.1. Organic matter chemistry and existence in water

Organic matter (OM) is chemically defined as a group of carbon-containing compounds; in other words, it is a chemical compound/complex that contains carbon atoms in its structure, which can be found in water, soil, and even in the air. OM can be decomposed under the effects of temperature or by living organisms [1, 2]. Therefore, OM is a main component of the aquatic environments, where it could be found in all forms of freshwater, groundwater, reservoirs, domestic sewage, industrial sewage, and agricultural sewages [3-5]

The existence of OM in freshwater results from the interactions between the hydrological cycle and the geosphere and biosphere [6]. Chemically, the structures of the OM generally have carbon atom(s) besides other elements such as H, N and O, depending on the origins of the OM. The concentration and chemical compositions of the OM in water bodies vary pointedly depending on the origin of water or wastewaters [7-9].

Generally, the OM is classified into two types according to their source, synthetic and natural OM. The natural OM [6]. Synthetic OM is usually more complex and harmful than natural OM. For example,
phenol, pesticide, and organic acids are synthetic OM and could be found in industrial and agricultural sewages [10-12] while the natural OM is derived from the residuals of plants and animals and humic substances and enter the aquatic environment from the surrounding environments, such as the banks of the river or the bed soil [13, 14] Additionally, the concentration and composition of the OM may seasonally differ in the same place within the aquatic environments [15, 16]. This difference in concentration and type of OM applies noteworthy effects on selections, designs and performances of treatment means [17-19].

Furthermore, the concentrations of the OM in water and sewages are increasing day by day because of the increase in world population. For example, the global population has increased to about 7 billion people during the last century [20, 21]; this increase was accompanied by a vast increase in urbanisations, industry and agriculture [22-24]. Consequently, the usage and disposal of OM have increased many folds [22-26], where the need for new houses, infrastructures, food and freshwater supplies contributed to the increase in production, use and disposal of the OM. An example of this rapid increase in the use of OM is the textile industry that consumes huge amounts of OM in both fabrics and dyes, where the number of the synthetic dyes that are currently used in the textile industry is more than 100 × 10^3 types and the global production of these dyes is more than 100 × 10^6 tons/year. Taking into account these vast amounts of dyes will be mixed with bigger volumes of water (in the range of 100-200 L per kg of fabrics), and wasted water will be discharged back to the rivers and lakes. Another example of pollution with OM is the refineries, where the estimated daily global sewage discharge from the refining industry is about 40 × 10^6 litres [4, 27]. Another reason for the pollution of water with organic matter is the landfilling of manucipal solid wastes [28], this source of pollution is incraeing due to the expansion of cities that dispose huge volumes of solid wastes everyday [29-31]. Climate change is also causes huge increase in the OM pollution because it either decreases the flow of rivers [32, 33], or cuases floods in other places [34-36], which results in huge pollution and water shortage consequently [37-39].

Thus, OM pollution represents a challenge to water and wastewater treatment utilities [40, 41] Several treatment approaches were experienced to remove the OM from sewages before effluent them to the surface water, such as the aerobic and anaerobic degradations [42, 43], adsorptions [27, 44], reverse osmosis and other filtration methods [45, 46], and electrocoagulation (EC) methods [46-48].

The current study focuses on the EC method because it cheap, safe, and efficient method that can be utilised even in low-income countries. At the same time, it is highly influenced by the OM, which makes it a good example of the topic of this study.

1.2. Measurement of OM concentration

The concentration of OM in water is measured by two methods, namely biochemical oxygen demand (BOD) and chemical oxygen demand (COD) [28].

BOD is defined as the needed amount of O_2, usually expressed in mg/L or ppm units, for the living organisms to oxidise OM in solution. This test is usually done at room temperature for a specific period (usually 5 days). While, the COD is an equivalent measure of the required O_2 to decompose the OM in a sample of the solution, and it is done using strong chemical oxidants. COD test has many advantages; for instance, it is simple and takes a much shorter time (about 2 hrs) in comparison to the BOD test that normally requires 5 days [28].

1.3. Influence of OM on quality and treatability of water

The attendance of OM in freshwater or sewages has important negative influences on organoleptic properties and the treatability of that solution [49, 50]. For example, OM endorses the growth of the microbial, consumption coagulants, decreases the effects of water disinfectants, and it reacts with most of the chemical pollutants in nature, forming pollutants that are less disposed to coagulate, and it produces unwanted colour, taste, and odour [47, 51].
In addition, a wide body of studies has shown that OM causes grave health problems, such as cancer, due to its ability to react with water disinfectants, like Cl, forming toxic disinfection by-products such as trihalomethanes and haloacetic [52, 53].

Because of these thoughtful influences, the health and environmental agencies strictly regulate OM and its by-products in drinking water. For example, the European Union countries limited BOD and THM in drinking water to 6 mg/L and 0.1 mg/L, respectively, while the USEPA limits THM and HAA in drinking water to 0.08 and 0.06 mg/L [28].

Many treatment methods, therefore, were used to remove the OM and its by-products from water or wastewater.

1.4. OM treatment methods
To meet the limitations for OM and its by-products in drinking water, many treatment methods have been used to remove OM from drinking water, such as [28, 51]:

1- Chemical coagulation
2- Adsorption
3- membrane filtration
4- Biological digestion
5- EC

Unfortunately, the previous studies showed there is no single method alone that can completely remove the OM and its by-products because of the high variation in their concentrations and chemical compositions [28].

For instance, OM fouls of the membranes that harmfully effects the efficiency of the membrane filtration process [8]. It negatively affects the coagulation process because OM reacts with most of the pollutants to form complexes less disposed to coagulate, and it upsurges the consumption of coagulants. Finally, OM negatively affects the adsorption process due to blocking the adsorption sites on the surfaces of adsorbents, which meaningfully decreases the removal efficiency [8].

In the EC method, the OM decreases the dissolution rate of electrodes, reacts with most of the pollutants to form complexes less disposed to coagulate and increase the energy consumption. However, the EC method is still one of the most affordable treatment methods; therefore, this method will be the focus of this paper.

1.5. EC method
The common defection of the EC is the in situ production of coagulants through the dissolution of metallic electrodes under the effects of direct electric current, without the need for chemical coagulants or agents [46]. The EC method is consisting of sets of electrodes, anodes and cathodes, connected to a direct electric current source. The DC current motivates the anode to produce positively charged ions and the cathode to produce hydrogen gas. The ions travel towards the negative electrode (the cathode); during this travel, the negative ions react with the pollutants in the solution (they usually have a positive charge), forming a floc, the latter grow in size until it reaches a heavyweight that can not be carried by the solution anymore [27]. As a result, the heavy flocs will be removed from the solution via precipitation and collected from the bottom of the unit as sludge. Another removal scenario happens when the applied current is high, which motivates the cathode to produce more hydrogen gas in bubbles. Because the produced bubbles are lighter than the solution, they will move upward to leave the solution; during this travel, flocs will be attached to these bubbles and accumulated on the surface of the solution as foam, which will be scammed later using a metallic plate [4].

When the direct current is applied, the electrocoagulation reaction started, and these reactions depend on many factors, such as the type of electrodes and pH of the solution. Figure 1 shows a general EC unit.
1.6. Effects of OM on the EC method

In spite of the acknowledged advantages of EC technology to treat a wide spectrum of pollutants from water and wastewater, its efficiency is considerably influenced by some parameters such as the chemistry of the solution being treated [51]. Due to the high reactability of OM with most of the chemicals found in the water forming different complexes, and thereby changing the chemistry of water, OM significantly influences the performance of the EC method. For instance, Fan, Tseng, Li and Hou [54] used carbon electrodes to treat 0.2 mg/L arsenic-containing water samples. The latter reported that the presence of 20 mg/L of OM was enough to reduce arsenic removal efficiency by about 45%.

Generally, the impacts of the OM on the EC method can be summarised as follows [27, 28, 41]:

- OM chelates some of the target inorganic pollutants, forming a complex that is difficult to remove, which in turn reduces the removal efficiency.
- In iron-based electrodes, OM tends to react rapidly with the freshly generated ferrous coagulation ions, a process that disables flocs formation.
- OM coats the inorganic pollutants that inhibit their coagulation.
- It promotes the growth of the passive oxide film on the anode that decreases the number of cations at the anode and consequently minimises the rate of floc formation and the adsorption of pollutants.
- OM reacts with chlorides, which is important to enhance water conductivity and to inhibit the formation of the anodic layer, forming toxic by-products.
- The presence of OM reduces the size of the formed flocs because of the more negative zeta potential, which in turn negatively influences the coagulation process.
- OM competes for active adsorption sites on flocs, decreasing the removal of the targeted pollutants.
- Fractionation of high molecular weight organic compounds during EC produces hydrophilic and low molecular weight compounds, leading to a poor coagulation process.
- OM increases the energy consumption of the EC units due to promoting the growth of an impermeable oxide layer on the anode, which in turn resists the electric current.
A good example of the OM impacts on the EC method is the heavy metals removal from drinking water in the presence of OM. For instance, using EC technology, Kobya, Akyol, Demirbas and Oncel [55] reduced arsenic concentration in drinking water from 150 to 6.3 µg/L (96%) in less than 6 min retention time at a current density of 0.25 mA/cm², and A/V (electrodes area/volume of water) of 0.24 cm⁻¹. However, in the presence of 9.31 ± 0.51 mg/L of organic matter, Mohora, Roncevic, Dalmacija, Agbaba, Watson, Karlovic and Dalmacija [56] needed, with the same A/V, 90 min of electrolysis at a current density of 5.78 mA/cm² to reduce the arsenic concentration from only 45 to 6.2 µg/L (85%). Furthermore, Mohora, Roncevic, Dalmacija, Agbaba, Watson, Karlovic and Dalmacija [56] added an additional 60 mg/L of Cl⁻ to an EC unit to break down the anodic oxide layer promoted by the presence of the OM. This example reveals that the presence of OM increased the required retention time and the consumed energy by 15 and 23-fold, respectively, to remove 1/3 of the arsenic concentration that was removed in the absence of OM. Moreover, Mohora, Roncevic, Dalmacija, Agbaba, Watson, Karlovic and Dalmacija [56] used high chloride concentration to enhance the performance of the EC unit, which gives a high probability of forming toxic by-products.

Due to the mentioned significant impacts of the OM on water treatability and performance of treatment methods, this study focuses on developing a new, cost-effective, and environmentally friendly hybrid method to remove heavy metals from water in the presence of OM. This method is a combination of microwave and EC technologies (microwave-assisted EC). Therefore, for a better understanding of MW effects on the removal of water pollutants, it would be necessary to allocate the following chapter to explain the fundamentals, theory, and applications of MW in water and wastewater treatment.

1.7. Uses of the EC method in the removal of OM from solutions

Table 1 lists a number of the recent studies that dealt with the use of the EC in the removal of OM from solutions.

Type of water or wastewater	Material of electrode	Type of reactor	Optimum operating conditions	Removal efficiency	Authors
Olive mill wastewater	Aluminiu m	Batch	Time = 25 min, current density = 75 mA/cm², initial pH = 4-6, initial COD = 75.1 g/L, power consumption = Not given, gap between electrodes = 20 mm.	76% of COD	[57]
wastewater of potato chips plant	Aluminiu m and iron	Batch	The best removal by Al electrodes, time = 40 min, current density = 20 mA/cm², initial pH = 4, initial COD = 2.2-2.8 g/L, power consumption = 4 kWh/m³, gap between electrodes = 11 mm.	60% of COD	[58]
synthetic waters	Iron cast	Batch	Time = 70 min, applied voltage = 50V, initial pH = 9, initial concentration of humic acid = 200 mg/L, power	92.69% of COD	[59]
Wastewater of agro-industry	Mild steel and aluminium	Batch	Time = 60 min, current density = 5 mA/cm², final pH = 7.6, power consumption = up to 51.6 kWh/m³ (according to the type of wastewater), gap between electrodes = 15 mm.	About 85% of COD using bipolar mild steel electrodes [60]	
-----------------------------	--------------------------	-------	---	---	
Wastewater of paper mill	Aluminium and iron	Batch	Time = 7.5 min, current density = 4.8 mA/cm², initial pH = 7.6, initial concentration of phenol and lignin is 0.535 and 13.514 mg/L respectively, power consumption = 95.52 Kw/m³, gap between electrodes = 20 mm.	Al electrodes were 80% of lignin and 98% of phenol. Fe electrodes 92% of lignin and 93% of phenol. [61]	
Wastewater of vegetable oil refinery	Aluminium	Batch	Time = 90 min, current density = 35 mA/cm², initial pH = 7, power consumption = 42.6 kWh/kg of COD, gap between electrodes = 8 mm.	98.9% of COD [62]	
Hospital wastewater	Fe-Fe	Batch	Time = 60 min, applied voltage = 30V, initial pH = 3, power consumption = 30.6 kWh/m³, gap between electrodes = 20 mm.	87.1% of COD [63]	
Wastewater of petroleum refinery	Iron as anode and aluminium as a cathode	Batch	Time = 30 min, current density = 12.2 mA/cm², initial pH = 9, initial COD = 72,450 mg/L, power consumption = not given, gap between electrodes = 10 mm.	80% of COD [64]	
Wastewater of distillery industries	Iron and aluminium	Batch	Iron electrodes gave the highest removal efficiency at time = 150 min, applied voltage = 25V, initial pH = 3, initial COD = 110-190 g/L,	85.7% of COD [65]	
power consumption = not given, gap between electrodes = not given.

Seawater	aluminium	Batch	Time = 40 min, current density = 22.4 mA/cm², initial pH = 3, initial COD = 1.34 mg/L, power consumption = not given, gap between electrodes = 10 mm.	70.8% of COD	[66]
Synthetic oil refinery wastewater	Iron as anode and aluminium as a cathode	Batch	Time = 40 min, applied voltage = 10.5V, initial pH = 7, initial diesel concentration = 3.5 g/L, power consumption = 6.47 kWh/m³, gap between electrodes = 20 mm.	98% of COD	[67]

2. Conclusion

The final summary of the review is, firstly, the EC method is eco-friendly as it does depend on metallic plates to provide the coagulants instead of the additions of external chemicals; this means no secondary pollutants will be produced. Secondly, the EC is easy to be operated without the need for skilled staff.

However, the chemical composition of the solution affects the efficiency of the EC method, especially the OM, because the OM can chelate some of the target inorganic pollutants forming a complex that is difficult to remove; OM tends to react rapidly with the freshly generated ferrous coagulation ions, a process that disables flocs formation. OM coats the inorganic pollutants that inhibit their coagulation. OM promotes the growth of the passive oxide film on the anode that decreases the number of cations at the anode and consequently minimises the rate of floc formation and the adsorption of pollutants.

These problems could be solved by adding some chemicals or by supplying the EC units with pre-treatment units to minimise the concentration of OM.

References

[1] Tavali I E. Evaluation of the effects of organic amendments on soil microbial dynamics in terms of sustainable soil fertility. *Academic Research and Reviews in Agriculture, Forestry and Aquaculture Sciences*, 43.

[2] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M and Alawsh R 2019. Electrocoagulation as a green technology for phosphate removal from River water. *Separation and Purification Technology*, 210 135-44.

[3] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017. Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach. *Journal of Environmental Management*, 197 80-8.

[4] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019. Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflootation (EC/EF) process. *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, University of Kufa, Iraq 12-22.
[5] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019. Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel. Desalination and Water Treatment, 168 165-74.

[6] Hashim K S, ALKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management, Berlin: Springer.

[7] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020. Electrochemical removal of nitrate from wastewater. IOP Conference Series: Materials Science and Engineering, 012037.

[8] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021. Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study. Science of The Total Environment, 760 1-16.

[9] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkiabadi M, Naghdali Z, Hashim K S and Ghanbari R 2020. Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes. Separation Science and Technology, 55 3184-94.

[10] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020. Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater. Journal of Water Process Engineering, 33 101079-86.

[11] Hashim K S, Ali S S M, ALRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020. Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor. Chemosphere, 247 125868-75.

[12] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljefery M and Al-Khaddar R 2020. Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies. Water Science and Technology, 83 1-17.

[13] Alenezi A, Hashim K, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020. Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. IOP Conference Series: Materials Science and Engineering, 012031.

[14] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020. Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. IOP Conference Series: Materials Science and Engineering, 012033.

[15] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020. Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. IOP Conference Series: Materials Science and Engineering, 012064.

[16] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi B 2020. Cost-effective hybrid filter for remediation of water from fluoride. IOP Conference Series: Materials Science and Engineering, 012038.

[17] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020. Removal of iron from wastewater using a hybrid filter. IOP Conference Series: Materials Science and Engineering, 012035.

[18] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020. Natural filtration unit for removal of heavy metals from water. IOP Conference Series: Materials Science and Engineering, 012034.

[19] Hashim K, Hussein A, Zubaidi S, Kot P, Kraidy L, Alkhaddar R, Shaw A and Alwash R 2019. Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. 2nd International Scientific Conference, Al-Qadisiyah University, Iraq 12-22.

[20] Hashim K, Al-Saati N and Hussein A 2018. An investigation into the level of heavy metals leaching from canal-dredged sediment: a case study metals leaching from dredged sediment. 1st Int. Conference on Materials Engineering & Science, Istanbul Aydin University, Turkey 12-22.
[21] Hashim K S, Idowu I A, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M 2018. Removal of phosphate from River water using a new baffle plates electrochemical reactor. *MethodsX*, 5 1413-8.

[22] Al-Jumeily D, Hashim K, Alkaddar R and Lunn J 2019. Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). *11th International Conference on Developments in eSystems Engineering (DeSE)*, Cambridge, UK 214-9.

[23] Farhan S L, Hashim I A J and Najj A A 2019. Statistical modeling of monthly streamflow using time series and artificial neural network models: Hindiya Barrage as a case study. *Water Practice and Technology*, 16 681-91.

[24] Al-Sareji O J, Grmasha R A, Salmon J M, Idowu I and Hashim K S 2021. Street dust contamination by heavy metals in Babylon governorate, Iraq. *Journal of Engineering Science and Technology*, 16 3528 - 46.

[25] Hashim K, Al-Saati N, Alquzweeni S, Zubaidi S, Kot P, Kraidi L, Hussein A, Alkhaddar R, Shaw A and Alwash R 2019. Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, University of Kufa, Iraq 25-32.

[26] Abdulredha M 2017 The innovative use of electrocoagulation-microwave techniques for the removal of pollutants from water. PhD thesis, Liverpool, United Kingdom: Liverpool John Moores University, UK, p 229

[27] Hashim K S 2017 The innovative use of electrocoagulation-microwave techniques for the removal of pollutants from water. PhD thesis, Liverpool, United Kingdom: Liverpool John Moores University, UK, p 229

[28] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K 2018. Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression. *Waste Management*, 77 388-400.

[29] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019. An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences. *Waste Management*, 87 761-71.

[30] Zubaidi S, Al-Bugharbee H, Muhsen Y, Hashim K, Alkhaddar R, Al-Jumeily D and Aljaaf A 2019. The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate. *12th International Conference on Developments in eSystems Engineering (DeSE)*, Kazan, Russia 274-7.

[31] Zubaidi S L, Kot P, Hashim K, Alkhaddar R, Abdellatif M and Muhsin Y R 2019. Using LARS–WG model for prediction of temperature in Columbia City, USA. *IOP Conference Series: Materials Science and Engineering*, 012026.

[32] Salah Z, Abdulkareem I, Hashim K, Al-Bugharbee H, Ridha H, Al-Qaim F, Muradov M and Kot P 2020. Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand. *Water*, 12 1-18.

[33] Salah Z, Hashim K, Ethaib S, Al-Bdaire N, Al-Bugharbee H and Gharghan S 2020. A novel methodology to predict monthly municipal water demand based on weather variables scenario. *Journal of King Saud University-Engineering Sciences*, 32 1-18.

[34] Salah Z, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S, Ahmed M and Hashim K 2020. A Method for Predicting Long-Term Municipal Water Demands Under Climate Change. *Water Resources Management*, 34 1265-79.
[37] Zubaidi S, Al-Bugharbee H, Muhsin Y R, Hashim K and Alkhaddar R 2020. Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study. IOP Conference Series: Materials Science and Engineering, 012018.

[38] Zubaidi S, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020. Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study. Water, 12 1-18.

[39] Zubaidi Salah L, Al-Bugharbee H, Ortega-Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020. A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach. Water, 12 1-17.

[40] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. Journal of Environmental Management, 189 98-108.

[41] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020. Ultrasonic-Electrocoagulation method for nitrate removal from water. IOP Conference Series: Materials Science and Engineering, 012073.

[42] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Hashim K 2017. Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology. Procedia Engineering, 196 792-9.

[43] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017. Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor. Journal of Water Process Engineering, 20 207-16.

[44] Al-Saati N, Hussein T K, Abbas M, Hashim K, Al-Saati Z, Kot P, Sadique M, Aljefery M and Carnacina I 2019. Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study. Desalination and Water Treatment, 150 406-12.

[45] Alyafei A, AlKizwini R, Hashim K, Yeboah D, Gkantou M, Al-Falufi D and Zubaidi S L 2020. Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. IOP Conference Series: Materials Science and Engineering, 012032.

[46] Emamjomeh M, Kakavand S, Jamali H, Alizadeh S, Safdari M, Mousavi S, Hashim K and Mousazade M 2020. The treatment of printing and packaging wastewater by electrocoagulation–flocculation: the simultaneous efficacy of critical parameters and economics. Desalination and Water Treatment, 205 161-74.

[47] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020. Electrochemical removal of brilliant green dye from wastewater. IOP Conference Series: Materials Science and Engineering, 012036.

[48] Grmasha R, Al-sareji O, Salman J, Hashim K and Jasim I 2020. Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust Within Three Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment. Journal of King Saud University - Engineering Sciences, 33 1-18.

[49] Hashim K, Shaw A and Phipps D, 2019. Treatment reactor and method of treating a liquid. Patent, WIPO, PCT/GB2019/052493, LJMM University, United Kingdom.

[50] Alnaimi H, Idan I J, Al-Janabi A, Hashim K, Gkantou M, Zubaidi S L, Kot P and Muradov M 2020. Ultrasonic-electrochemical treatment for effluents of concrete plants. 888 1-9.

[51] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021. Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment. Journal of Cleaner Production, 280 1-17.

[52] Hashim K, Shaw A, Pedrola M and Phipps D 2017. Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach. Journal of Environmental Management, 196 224-33.

[53] Omran I I, Al-Saati N H, Al-Saati H H, Hashim K S and Al-Saati Z N 2021. Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA). Water Practice and Technology, 16 648-60.
[54] Fan C S, Tseng S C, Li K C and Hou C H 2016. Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization. *J Hazard Mater*, **312** 208-15.

[55] Kobya M, Akyol A, Demirbas E and Oncel M S 2014. Removal of arsenic from drinking water by batch and continuous electrocoagulation processes using hybrid Al-Fe plate electrodes. *Environmental Progress & Sustainable Energy*, **33** 131-40.

[56] Mohora E, Roncevic S, Dalmacija B, Aghaba J, Watson M, Karlovic E and Dalmacija M 2012. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor. *J Hazard Mater*, **235-236** 257-64.

[57] Adhoum N and Monser L 2004. Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. *Chemical Engineering and Processing: Process Intensification*, **43** 1281-7.

[58] Kobya M, Hiz H, Senturk E, Aydiner C and Demirbas E 2006. Treatment of potato chips manufacturing wastewater by electrocoagulation. *Desalination*, **190** 201-11.

[59] Yildiz Y S, Koparal A S, Irdemez S and Keskinler B 2007. Electrocoagulation of synthetically prepared waters containing high concentration of NOM using iron cast electrodes. *J Hazard Mater*, **139** 373-80.

[60] Drogui P, Asselin M, Brar S, Benmoussa H and Blais J 2008. Electrochemical removal of pollutants from agro-industry wastewaters. *Separation and Purification Technology*, **61** 301.

[61] Ugurlu M, Gurses A, Dogar C and Yalcin M 2008. The removal of lignin and phenol from paper mill effluents by electrocoagulation. *J Environ Manage*, **87** 420-8.

[62] Un U, Koparal A S and Bakir Ogutveren U 2009. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. *J Environ Manage*, **90** 428-33.

[63] Dehghani M, Seresht S S and Taghizadeh M 2012. Optimization of organic compounds removal from Wastewater by Electrocoagulation. *Hormozgan Medical Journal*, **19**

[64] Ben I, Halleb A, Adhoum N and Monser L 2013. Treatment of petroleum refinery sulfidic spent caustic wastes by electrocoagulation. *Separation and Purification Technology*, **107** 150-7.

[65] Wagh M, Nemade P and Dhasal S 2015. Colour and COD removal of Distillery spent wash by using Electro coagulation. *International Journal of Engineering Research and General Science*, **3** 1159-73.

[66] Hakizimana J N, Gourich B, Vial C, Drogui P, Oumani A, Naja J and Hilali L 2016. Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis. *Desalination*,

[67] Safari S, Azadi Aghdam M and Kariminia H R 2016. Electrocoagulation for COD and diesel removal from oily wastewater. *International Journal of Environmental Science and Technology*, **13** 231-42.