The effectiveness of problem based learning (PBL) model with ethnomatematics to improve mathematics literacy ability of high school students

Zaenuri1*, F Imam2, and S E Nugroho3

1Mathematics Department FMIPA Universitas Negeri Semarang, Indonesia
2SMA Negeri 1 Mranggen Demak, Indonesia
3Physics Department FMIPA Universitas Negeri Semarang, Indonesia

*Corresponding author: zaenuri.mipa@mail.unnes.ac.id

Abstract. The purpose of this study is to determine the effectiveness of the problem-based learning model with nuances of ethnomatematics on the ability of mathematical literacy. The study was conducted at SMA Negeri 1 Mranggen. The research method used is a combination research method with a concurrent embedded model. The sampling technique uses cluster random sampling. Data collection uses documentation, questionnaires, test results, and interviews. The results showed the model of problem-based learning nuanced effective ethnomatematics against students' mathematical literacy abilities.

1. Introduction
In the globalization era, critical, creative and innovative individuals are needed. Individuals needed at this time are not just individuals who know certain knowledge, but more than that, each individual is required to optimize all their knowledges to become a critical, creative, and innovative person in receiving and processing information. Education has an important role to face these challenges. The results of the mathematics literacy abilities of Indonesian students in the international standard of PISA and TIMSS show poor results (Table 1).

Year	Score	International Ranking	Year	Score
2000	367	500	39	41
2003	360	500	38	40
2006	391	500	50	57
2009	371	500	61	65
2012	375	500	65	66

The study results were relatively similar in the TIMSS of Indonesian students in mathematical abilities in 1999 (ranked 34 out of 38); 2003 (ranked 35 out of 46); 2007 (ranked 36 out of 49); and 2011 (ranked 38 out of 42). Based on these international studies, it shows that the mathematical literacy ability of Indonesian students is still low.
Literacy includes mathematical reasoning and the ability to use mathematical concepts, procedures, facts and mathematical functions to describe, explain and predict phenomena. The simpler meaning of mathematical literacy is which suggests that mathematical literacy is the knowledge to know and apply basic mathematics every day. The definition of mathematical literacy is not just a mathematical operation based on the school curriculum but rather the use of mathematical knowledge and understanding in real life. Thus the knowledge and understanding of mathematical concepts is very important, but even more important is the ability to activate mathematical literacy to solve problems encountered in everyday life. With the mastery of mathematical literacy, each individual will be able to reflect mathematical logic to play a role in his life, community, and society. Mathematical literacy makes individuals able to make decisions based on constructive mathematical mindsets.

Explains that PISA includes three main components of the mathematical domain, namely content, context, and competence. The results of the pre-research trials show that 17% of students can interpret problems, 7% are able to interpret and plan problem solving, and 1.3% of students can solve problems properly by taking into account realistic and contextual conditions. In the period of 2000 until now there have been three curriculums in force, namely the 2004 curriculum, the 2006 curriculum, and the 2013 curriculum. Although changing the curriculum, it turns out that Indonesia has not been able to raise the achievements of students in international forums. This is expected, although the curriculum has changed, the function and role of teachers in learning mathematics, especially related to the role and way of delivering subject matter, has never changed. According to the learning process up to this time still gives the dominance of teachers and kuant provides access for students to develop independently through discovery in their thought processes.

States problem-based learning begins by preparing problems that are relevant to the concept to be learned and proceed with solving the problem. Problem-based learning is a student-centered model that develops active and motivated learning, problem-solving abilities and broad field knowledge, and is based on deep understanding and problem solving. Explains the characteristics of the problem-based learning model, among others: (1) Authentic, namely the problem must be real rooted in scientific discipline, (2) The problem being solved must be clearly articulated, (3) Learning is the process of solving problems, (4) The problem demands a plurality of collaborative and cooperative thinking, and (5) Learning is done through a process.

One model of problem-based learning is PBL (Problem Based Learning). The research results [6] PBL learning approached by PMRI was effective in improving mathematics literacy skills. The same thing was expressed PBL learning with scientific realistic approach is effective in improving mathematics literacy skills. Ethnomathematics is mathematical knowledge based on local culture. Ethnomathematics is a study that connects mathematics and culture [1]. In this case, the process of culture in schools is the academic achievement of students, to cultivate the attitudes, knowledge, skills and traditions that exist in a cultural community, and to develop culture in a community through the academic achievement of students. In their research results revealed various buildings laden with ethnomatematics, related to various mathematical concepts, such as flat shapes, space constructions, collections, symmetries, statistics, social arithmetic, and even trigonometry. Ethnomathematics material contributes to the development of students' skills and talents [2-4].

Mathematics seems to be free of cultures, beliefs, and values [5]. Ethnomathematics refers to the habits of a group such as language, code, values, beliefs, food, clothing, habits and physical properties [6]. berbagai bentuk budaya matematika dapat dimplementasikan dengan menggunakan etnomodelling, etnomatematika [7]. Ethnomatematics-based mathematical learning tools that are valid, practical and effective are obtained by effective learning. An increase in the process of forming the ability of mathematical connections in the class of PjBL models containing ethnomatematics. Ethnomathematics is a learning approach that links mathematical material taught with local culture [8-13]. Practically this research is expected to provide benefits as a reference material or input to teachers to design learning designs in accordance and provide references and input for schools in an effort to improve learning so that the quality of learning can improve.
2. Research Methods
The study was conducted at SMA Negeri 1 Mranggen. Using the cluster random sampling technique, one experimental class and one control class were chosen. The experimental class as a class that received PBL nuanced ethnomathematics and the control class as a class that received PBL was not nuanced ethnomathematics.

The research method used in this study is a combination research method (mixed method) with a concurrent embedded model. The concurrent embedded model combination research method is a research method that combines quantitative and qualitative research methods by mixing the two methods unbalanced [14]. Imbalance is addressed by placing quantitative research methods as primary/primary methods and qualitative research methods as secondary/support methods.

Before conducting the research, research instruments and instruments are prepared. Peragkat prepared in the form of a syllabus, lesson plan, and learning media. Research instruments in the pretest and posttest mathematics literacy skills. Each learning device was validated by an expert with a scale rating of 0 as the lowest value and 5 as the highest value for each learning device. The score of each item is calculated on average. The research instrument was validated by an expert with a scoring technique and the same criteria as the validation of the research tools. Specifically for the pretest and posttest instruments a trial is conducted to the non-experimental class and the control class is then tested for reliability, validity, distinguishing test, and difficulty level test.

Data collection techniques used in this study were test and interview techniques. Test techniques in the mathematics literacy ability pretest, and posttest mathematics literacy ability. Pretest and posttest mathematics literacy abilities are given to the experimental and control classes before learning (pretest) and after learning (posttest).

Quantitative and qualitative data were collected and then analyzed according to the concurrent embedded model research combination method. Quantitative data as primary/primary data and qualitative data as supporting/secondary data. Analysis of the data in this study uses the Miles and Huberman Model which includes: (1) data reduction, (2) data display, (3) conclusion/verification. Using the cluster random sampling technique selected class X IPA 3 as the experimental class and X IPA 2 as the control class. The experimental class is a class that uses PBL models with ethnomathematics nuances and the control class is a class that uses PBL models without ethnomathematics nuances.

Analysis of the results of the study aims to prove the research hypotheses. Analysis of the results of the study includes quantitative and qualitative analysis. Quantitative analysis aims to prove empirically the effectiveness of ethno-mathematical nuances of PBL on mathematical literacy skills. The effectiveness of ethno-mathematical nuances of PBL is shown by 1) Achievement of minimum completeness criteria, 2) Comparison of control classes with experimental classes, 3) Improvement of mathematical literacy skills and a love of local culture.

3. Results and Discussion
The first part is statistically proven complete achievement of mathematical literacy abilities.

Table 2. Mathematical Literacy Abilities pretest and posttest
Source of variation
Many students
Average
SD
Maximum
Minimum

The data used is the posttest data on the final ability of mathematics literacy in PBL class with ethnomatematic nuance.
$H_0 : \mu_1 \geq 66$ (the average class with PBL nuanced ethnomatematics more than or equal to 66)

$H_a : \mu_1 < 66$ (the average class with PBL with ethnematics nuance is less than 66)

With $\alpha = 0.05$ and statistical test with One-sample t-test left side assisted by SPSS 16 obtained sig values. (tailed) = 0.213. Because the value of sig. (tailed) is more than α then H_0 is accepted. H_0 is accepted, it means that the average class with PBL with ethnomatics nuances is more than or equal to 66. This proves that the class with PBL nuances with ethnomatics reaches completeness criteria.

The second part is statistically proven differences in the ability of mathematical literacy before and after the PBL treatment nuanced ethnomatematics. The statistics used are paired-samples t-test. The data used are pretest and posttest mathematical literacy abilities.

$H_0 : \mu_1 = \mu_2$ (the average mathematical literacy ability before and after is the same)

$H_a : \mu_1 \neq \mu_2$ (the average of the two samples is different)

With $\alpha = 0.05$ and test statistics With one-sample t-test two SPSS-assisted two parties obtained sig values. (2-tailed) = 0.000. Because the value of sig. (tailed) is less than α then H_0 is rejected. H_0 is rejected, it means that the data is normally distributed and not homogeneous so an independent statistical sample t-test is used. Independent statistical test sample t-test is used to determine differences in the average value of the mathematical literacy ability of students of the two groups.

$H_0 : \mu_1 = \mu_2$ (the average of the two samples is the same)

$H_a : \mu_1 \neq \mu_2$ (the average of the two samples is different)

With $\alpha = 0.05$ and test statistics With the One-sample T test two parties assisted by SPSS 16 obtained the following results. Obtained sig. (tailed) = 0.010. Because the value of sig. (tailed) is less than α then H_0 is rejected. If H_0 is rejected then H_a is accepted, it means that the average class with PBL is ethnatomatically nuanced and the class with PBL learning is different. Because the two averages are different, further tests are needed. By looking at Table 1 shows the average class with PBL nuanced 72.11 is higher than the average literacy ability after learning 38.02. This shows that the ability of mathematical literacy after receiving PBL treatment has a better ethnomatics nuance.

The third part is statistically proven to be a comparison of the average grade of the class getting PBN nuances with ethnomaticness with the class receiving PBL treatment only. The data used is the posttest data on the final literacy ability of the two classes of mathematics. The normality and homogeneity test shows that the data is normally distributed and not homogeneous so an independent statistical sample t-test is used. Independent statistical test sample t-test is used to determine differences in the average value of the mathematical literacy ability of students of the two groups.

$H_0 : \mu_1 = \mu_2$ (the average of the two samples is the same)

$H_a : \mu_1 \neq \mu_2$ (the average of the two samples is different)

With $\alpha = 0.05$ and test statistics With the One-sample T test two parties assisted by SPSS 16 obtained the following results. Obtained sig. (tailed) = 0.010. Because the value of sig. (tailed) is less than α then H_0 is rejected. If H_0 is rejected then H_a is accepted, it means that the average class with PBL nuanced 72.11 is higher than PBL learning alone 62.73.

This shows that the ability of mathematical literacy in the class that received PBL treatment was ethnatomatically better than the class that got PBL treatment only. It was concluded that the PBL model with an ethno-mathematical nuance was better than PBL.

Table 3. PBL Class Gain Value with Ethnomatematics and PBL Class

No	Source of variation	PBL nuanced ethnomatematics	PBL
1	Many students	36	33
2	Average	0.56	0.47
3	SD	0.13	0.20
4	Maximum	0.76	0.72
5	Minimum	0.22	0.04

The fourth part is statistically proven to be a comparison of the value of the gain/increase in the literacy ability of the class that gets the PBL treatment with ethnomatonic nuances with the class that gets the PBL treatment only. The data used are pretest and posttest data for the final ability of mathematics literacy of the two classes. With SPSS16, the data are normally distributed (sig. 0.20) and not homogeneous (sig. 0.03) so that the independent sample t-test statistical test is used.

$H_0 : \mu_1 = \mu_2$ (the average of the two samples is the same)

$H_a : \mu_1 \neq \mu_2$ (the average of the two samples is different)
From the output data, the value of sig. is obtained. (2-tailed) = 0.039. Because the value of sig. (tailed) is less than α then H₀ is rejected. If H₀ is rejected then Ha is accepted, it means that the average value of the class gain with PBL has ethnomatemics nuance and the class with PBL learning is different.

Because the average gain values of the two are different, further tests are needed. By looking at table 2 shows the average grade gain value with PBL nuanced 0.56 higher than PBL learning 0.47. This shows that the increase in the ability of mathematical literacy in the class that received PBL treatment was ethnomatematically better than the class that got PBL treatment only.

Judging from the mathematics literacy component, before learning PBL nuanced visual and audio ethnomatematics groups have good communication and modeling components. While the kinesthetic group has the ability to communicate, modeling, and representation. It shows that before learning, students are able to understand the problem, change the problem to the mathematical form, and present the mathematical object or problem in the form of images, charts, neural, tables and concrete objects to photograph the problem. The following table is a mathematical literacy ability in terms of the literacy component for learning style groups.

After learning PBL nuanced ethnomatematics visual group has components of communication, modeling, and representation; audio groups have components in communication, modeling, representation, and reasoning; the kinesthetic group has almost seven components only less than the strategy component. The results showed that PBL models were effective in ethnomatematics on students' mathematical literacy abilities. In line with the study PBL learning effectively improves mathematics literacy skills. Also states that learning mathematics based on ethnomatematics that is valid, practical and effective is obtained by effective learning.

PBL model by raising the culture of Demak provides an atmosphere of learning that is close and real. The selection of tourist attractions and historic objects of the problem gives students more understanding in understanding the problem. The culture of visiting religious tourism appropriately such as the Great Demak mosque, Kadilangu tomb, and the floating tomb of Mbah mudzakir are still thick in the Demak community. These habits make students have a positive character and love of culture in the district of Demak. The research results Leaders, fishermen, and tour guides foster positive character of religious spirit, hard work, responsibility, and love for the community, care for the environment, religion and democracy [14]. The results [15] showed that the ethnomatematics teaching approach could improve creative skills.

Based on the results of the interviews of the three revealed that with ethno-mathematical nuances they were facilitated in illustrating the problems given. Judging from the work of TKLM on students' communication skills can reveal the problems faced, their representation can sketch or illustrate problems, and the reasoning and argument components of students can provide arguments for the answers obtained. One of the activities carried out is that students make direct observations on the problem object. Learners can feel the benefits of the activities carried out. In addition to learning the use of mathematics in everyday life, students also learn to understand the environment and local culture.

4. Conclusion

Based on the results of the study and discussion it can be concluded that the results of the study show the model of problem-based learning nuances of effective ethnomatatics on students' mathematical literacy abilities.

References
[1] Balamurugan M 2015 Int. J. Modn. Res. Revs. 3(6) 716
[2] Amit M and Quoder A F 2015 Proc. PME 39 24
[3] Lipka J, Andrew-Ihrke D and Yanez E E 2012 Interchange 42 157
[4] Verner I, Massarwe K and Bshouty D 2013 J. Math. Behav. 32(3) 494
[5] Rubio JS 2016 Malays. J. Math. Sci. 10 211
[6] Iluno C And Taylor J I 2013 IOSR J. Res. Method Educ. 3(1) 53
[7] Rosa M and Orey D C 2016 J. Humanist. Math. 6(2) 1
[8] Furuto L H L 2014 Teach. Math. Its Appl. 4 1
[9] Vasquez E L 2017 J. Educ. Hum. Dev. 6 117
[10] Maure L M et al 2018 Acad. - Educ. Res. Rev. 13 307
[11] Zaenuri and Dwidayati N 2018. J. Phys.: Conf. Ser. 983 012108
[12] Dwidayati N and Zaenuri 2019. J. Phys.: Conf. Ser. 1321 032010
[13] Zaenuri, Kurnia B, Dewi N R and Dwidayati N 2019. J. Phys.: Conf. Ser. 1321 032009
[14] Sudirman, Zaenuri and Diah PS 2014 Analysis of mathematics problem solving ability of junior high 3, development of matiklopedia based character building in primary schools (Semarang: Proceedings of ICMSE2014)
[15] Ogunkunle R A and George N R 2015 Eur. Sci. J. 11(3) 386