INVARIANT SUBSPACES OF RL^1

DANIEL JUPITER AND DAVID REDETT

Abstract. In this note we extend D. Singh and A. A. W. Mehanna’s invariant subspace theorem for RH^1 (the real Banach space of analytic functions in H^1 with real Taylor coefficients) to the simply invariant subspaces of RL^1 (the real Banach space of functions in L^1 with real Fourier coefficients).

Let T denote the unit circle in the complex plane, and let L^p denote the Lebesgue spaces on T with respect to Lebesgue measure normalized so that the Lebesgue measure of T is 1. We use the standard notation H^p to denote the subspace of L^p consisting of those functions in L^p whose negative Fourier coefficients vanish. Let

$$RH^p = \{ f \in H^p : \text{the Fourier (Taylor) coefficients of } f \text{ are real} \}.$$

An invariant subspace is a (closed) subspace invariant under multiplication by the coordinate function. D. Singh and A. A. W. Mehanna [3] gave a characterization of the invariant subspaces of RH^1. Specifically, they proved the following result.

Singh-Mehanna. Let M be an invariant subspace of RH^1. Then there exists a unique (up to a constant multiple of modulus one) inner function, I, in RH^1 such that $M = IRH^1$.

Let $RL^p = \{ f \in L^p : \text{the Fourier coefficients of } f \text{ are real} \}$. A simply invariant subspace is an invariant subspace, M, whose image under multiplication by the coordinate function is strictly contained in M. (In RH^1 every invariant subspace is simply invariant.) In this note we extend Singh and Mehanna’s result to the simply invariant subspaces of RL^1.

Main Theorem. Let M be a simply invariant subspace of RL^1. Then there exists a unique (up to a constant multiple of modulus one) unimodular function, U, in RL^1 such that $M = URH^1$.

To prove this theorem we follow the approach of Singh and Mehanna. We will first prove an analogous result in RL^2 and then use this result to prove the Main Theorem. Singh and Mehanna’s proof weighs heavily on the inner-outer factorization of functions in H^1. In general, L^1 functions do not have such a factorization. As we will soon see, however, the members of M have a nice factorization which will prove useful in the proof of the Main Theorem.

Theorem 1. Let M be a simply invariant subspace of RL^2. Then there exists a unique (up to a constant multiple of modulus one) unimodular function, U, in RL^2 such that $M = URH^2$.

2000 Mathematics Subject Classification. Primary 47A15; Secondary 46E30.

The second author was supported in part by a VIGRE grant from the NSF.
To prove this, we need to understand the form of the doubly invariant subspaces of \(RL^2 \). These are the invariant subspaces, \(\mathcal{M} \), of \(RL^2 \) for which multiplication by the coordinate function takes \(\mathcal{M} \) onto \(\mathcal{M} \).

Theorem 2. If \(\mathcal{M} \) is a doubly invariant subspace of \(RL^2 \) then \(\mathcal{M} = 1_E RL^2 \) where \(E \) is a measurable subset of \(T \).

In the above theorem, \(1_E \) denotes the characteristic function of the set \(E \). The following proof is a slightly simplified version of the proof given in [1] for the doubly invariant subspaces of \(L^2 \). Although our proof is stated for \(RL^2 \), it works equally well in the \(L^2 \) setting.

Proof. If \(1 \) is in \(\mathcal{M} \) then \(\mathcal{M} = RL^2 \). In this case \(E = T \). If \(1 \) is not in \(\mathcal{M} \), let \(q \) be the orthogonal projection of \(1 \) onto \(\mathcal{M} \). Then \(1 - q = 1_{E^c} \), so we have that \(1_E \in \mathcal{M} \) and \(1_{E^c} \in \mathcal{M}^+ \). By the double invariance of \(\mathcal{M} \) we have that \(1_E RL^2 \) is contained in \(\mathcal{M} \) and that \(1_{E^c} RL^2 \) is contained in \(\mathcal{M}^+ \). We also have \(1_E RL^2 + 1_{E^c} RL^2 = RL^2 \) and \(1_E RL^2 \cap 1_{E^c} RL^2 = \{0\} \). Hence \(\mathcal{M} = 1_E RL^2 \) as desired. \(\square \)

We are now ready to prove Theorem 1. Our proof follows the proof given in [1] for the simply invariant subspaces of \(L^2 \). We include it for completeness.

Proof of Theorem 1. Since \(\mathcal{M} \) is simply invariant there exists a \(U \) in \(\mathcal{M} \) of norm one. \(U \) is orthogonal to \(e^{in\theta} \mathcal{M} \) for all natural numbers \(n \geq 1 \). So by the symmetry of the inner product on \(RL^2 \) we get

\[
\int_{-\pi}^{\pi} e^{in\theta} |U|^2 (e^{i\theta}) d\theta = 0 \quad \text{for all integers } n \neq 0.
\]

Thus \(U \) has constant modulus one. The set \(\{e^{in\theta} U\}_{n=\infty}^{n=-\infty} \) spans a doubly invariant subspace in \(RL^2 \). Since \(U \) does not vanish on a set of positive measure, we have that this doubly invariant subspace is \(RL^2 \). The span of \(\{e^{in\theta} U\}_{n=0}^{n=\infty} \) is \(U RH^2 \) and is contained in \(\mathcal{M} \). If we show that the set \(\{e^{in\theta} U\}_{n<0} \) is contained in \(\mathcal{M}^+ \), then we can conclude that \(U RH^2 \) is all of \(\mathcal{M} \). Showing that the set \(\{e^{in\theta} U\}_{n<0} \) is contained in \(\mathcal{M}^+ \) is the same as showing that \(U \) is orthogonal to \(e^{in\theta} \mathcal{M} \) for all natural numbers \(n > 0 \). This is true by our choice of \(U \). Hence, \(\mathcal{M} = U RH^2 \) as desired. It remains to prove the uniqueness of \(U \). If \(I \) is another unimodular function such that \(\mathcal{M} = I RH^2 \), then we have \(U/I RH^2 = RH^2 \). Since the inverse of a unimodular function is its complex conjugate, we have that both \(U T \) and \(\overline{U T} \) are in \(RH^2 \). This implies that \(U/I \) is a constant of modulus one. \(\square \)

Let \(\mathcal{M} \) be a simply invariant subspace of \(RL^1 \). Then \(\mathcal{M} \) is a subset of \(L^1 \). The complexification of \(\mathcal{M} \), \(\overline{\mathcal{M}} \otimes C L^1 \), is then a simply invariant subspace of \(L^1 \). By a classical result [1], \(\overline{\mathcal{M}} \otimes C L^1 = \psi H^1 \), where \(\psi \) is a unimodular function in \(L^1 \). So \(\mathcal{M} \) is contained in \(\psi H^1 \). It follows that every element of \(\mathcal{M} \) has a unique unimodular-outer factorization.
Before we prove the Main Theorem we prove several technical lemmas. Let f be an element of L^1. Define $f^*(e^{i\theta}) = \overline{f(e^{-i\theta})}$.

Lemma 1. For f in L^1, $\hat{f}(n) = \hat{f}^*(n)$.

Proof. Let f be an element of L^1. Then

$$
\hat{f}^*(n) = \int_{-\pi}^{\pi} f^*(e^{i\theta}) e^{-in\theta} \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} f(e^{-i\theta}) e^{-in\theta} \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} f(e^{-i\theta}) e^{in\theta} \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} f(e^{i\theta}) e^{-in\theta} \frac{d\theta}{2\pi} = \hat{f}(n).
$$

\[\Box\]

Corollary. For f in L^1, f is in RL^1 if and only if $f = f^*$.

Lemma 2. If O is outer then O^* is outer.

Proof. Recall that a function f in H^p is outer if and only if

$$
\log |f(0)| = \int_{-\pi}^{\pi} \log|f(e^{i\theta})| \frac{d\theta}{2\pi}.
$$

Since O is outer we have

$$
\log |O(0)| = \int_{-\pi}^{\pi} \log|O(e^{i\theta})| \frac{d\theta}{2\pi}.
$$

By Lemma 1 $|O(0)| = |O^*(0)|$ and the negative Fourier coefficients of O^* are zero. A change of variable shows that

$$
\int_{-\pi}^{\pi} \log|O(e^{i\theta})| \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} \log|O^*(e^{i\theta})| \frac{d\theta}{2\pi}.
$$

Thus

$$
\log |O^*(0)| = \int_{-\pi}^{\pi} \log|O^*(e^{i\theta})| \frac{d\theta}{2\pi}.
$$

so O^* is outer. \[\Box\]

Lemma 3. Let f be an element of RL^1 such that f has a unique factorization $f = UO$, where U is a unimodular function and O is an outer function. Then U and O are in RL^1.

Proof. Since f is in RL^1, by the above corollary we have that $f = f^*$. Thus $UO = U^*O^*$. Since U^* is unimodular and O^* is outer, the uniqueness of our factorization implies $U^* = U$ and $O^* = O$. By the above corollary we get U and O are in RL^1. \[\Box\]

We are now ready to prove the Main Theorem.
Proof of Main Theorem. Let \mathcal{M} be a simply invariant subspace of RL^1. Then $\mathcal{M} \cap RL^2$ is an invariant (closed) subspace of RL^2. We will show that $\mathcal{M} \cap RL^2$ is dense in \mathcal{M}. Then $\mathcal{M} \cap RL^2$ is actually simply invariant, and by Theorem 4 $\mathcal{M} \cap RL^2 = U RH^2$. Hence \mathcal{M} is of the form $U RH^1$, as desired.

We first show that $\mathcal{M} \cap RL^2$ is nonempty. Let f be any nonzero element of \mathcal{M}. By Lemma 3 we have that $f = UO$, where U is unimodular and O is outer, with both U and O in RL^1. Since O is outer it is actually a member of RH^1, so by Lemma 3.4 of [3] we may assume without loss of generality that \sqrt{O} is in RH^2. Therefore $g := U\sqrt{O}$ is in RL^2. We now show that g is also in \mathcal{M}. By Corollary 3.4 of [3] there exists a sequence of polynomials, $\{p_n\}$, in RH^2 such that

$$\|\sqrt{O}p_n - 1\|_2 \to 0 \text{ as } n \to \infty.$$

Thus,

$$\|fp_n - g\|_1 = \|g\sqrt{O}p_n - g\|_1 \\ \leq \|g\|_2 \|\sqrt{O}p_n - 1\|_2 \quad \text{(by Cauchy-Schwarz)} \\ \to 0 \text{ as } n \to \infty.$$

Since fp_n is in \mathcal{M} for all n by the invariance of \mathcal{M}, and since \mathcal{M} is closed, we see that g is in \mathcal{M}, as desired.

It remains to show that $\mathcal{M} \cap RL^2$ is dense in \mathcal{M}. Let f be any nonzero element of \mathcal{M}. Then $f = UO$, where U is unimodular and O is outer, with both U and O in RL^1. As mentioned above, we assume without loss of generality that \sqrt{O} is in RH^2. Let $\sqrt{O}_n = \sum_{k=0}^{n} a_k e^{ik\theta}$ be the partial sums of the Fourier series for \sqrt{O}. We know that \sqrt{O}_n converges to \sqrt{O} in RL^2. By the work above we know that $U\sqrt{O}_n$ is in \mathcal{M} for all $n > 0$. Thus

$$\|U\sqrt{O}_n - f\|_1 = \|U\sqrt{O}(\sqrt{O}_n - \sqrt{O})\|_1 \\ \leq \|U\sqrt{O}\|_2 \|\sqrt{O}_n - \sqrt{O}\|_2 \quad \text{(by Cauchy-Schwarz)} \\ \to 0 \text{ as } n \to \infty.$$

We conclude that $\mathcal{M} \cap RL^2$ is dense in \mathcal{M}, as desired.

References

[1] H. Helson, Lectures on invariant subspaces, Academic Press, 1964.
[2] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962.
[3] D. Singh and A. A. W. Mehanna, Invariant Subspaces of Functions in H^1 with Real Taylor Coefficients, Aligarh Bull. Math., 12 (1987-89), 45-50.
[4] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987.