Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13–Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13–Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13–Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13–Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1–UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13–Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13–Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1 inhibits other E2 enzymes in a non-catalytic manner.

OTUB1 was previously identified as a K48 linkage-specific deubiquitinating enzyme that contains two distinct ubiquitin-binding sites (Fig. 1a): a distal site and a proximal site that includes the ~45 N-terminal residues of OTUB1 (ref. 5). These residues are important for OTUB1 inhibition of E2 activity and are absent in OTUB2, which does not inhibit UBC13 (ref. 4). It was previously shown that binding of the covalent inhibitor, ubiquitin aldehyde (Ubal), to the distal ubiquitin-binding site of OTUB1 stimulates binding of ubiquitin vinyl sultone to the N terminus. Because the OTUB1 N terminus was implicated in binding to the donor ubiquitin in the UBC13–Ub conjugate, we asked whether Ubal binding to OTUB1 could enhance inhibition of UBC13 by stimulating binding of the OTUB1 N terminus to the donor ubiquitin. The results (Fig. 1b) showed a marked enhancement of the ability of OTUB1 to suppress K63Ub synthesis, indicating that Ubal is an allosteric effector that increases the affinity of the OTUB1 N terminus for the ubiquitin in the UBC13–Ub thiolester. This prompted us to ask whether free ubiquitin binding to the OTUB1 distal site could similarly stimulate binding of OTUB1 to UBC13–Ub conjugates. To test this, we generated a mixture of charged and uncharged UBC13(C87S), which forms a more stable UBC13–Ub oxyster, purified away the free ubiquitin, and performed pull-down assays with Hc–OTUB1 in the presence and absence of added free ubiquitin. Remarkably, OTUB1 shows no preference for the charged UBC13–Ub in the absence of ubiquitin, whereas addition of 100 μM free ubiquitin greatly enhances OTUB1 binding to UBC13–Ub, but not to uncharged UBC13 (Fig. 1c). By contrast, ubiquitin bearing hydrophobic patch mutations I44A, L8A or L8A/I44A/R42A (but not R42A alone) do not stimulate OTUB1 binding to UBC13–Ub like wild-type ubiquitin (Fig. 1c). The relative binding of OTUB1 to UBC13–Ub increases as the concentration of free ubiquitin is increased from 2 to 50 μM (Supplementary Fig. 2). To verify that ubiquitin binding to the distal site of OTUB1 is important for inhibition of UBC13, we assayed the effect of distal site mutations, which were chosen based on structures of a covalent yeast Otu1–ubiquitin complex and of human OTUB1 (ref. 9). Distal site substitutions F193W, F193R and H217W disrupted the ability of OTUB1 to inhibit polyubiquitination by UBC13–UEV1A (Fig. 1d) without affecting binding of OTUB1 to UBC13 (Supplementary Fig. 3). Taken together, our results indicate that the ability of OTUB1 to bind preferentially to the UBC13–Ub conjugate and inhibit ubiquitin transfer is allosterically regulated by free ubiquitin binding to the distal site of OTUB1 (Fig. 1a), which triggers capture of the conjugated ubiquitin in the OTUB1 proximal site.

Because ubiquitin aldehyde most probably enhances interactions between the OTUB1 N terminus and the donor ubiquitin in UBC13–Ub, we examined the effect of N-terminal deletions in OTUB1 to delimit the minimal fragment needed for binding and inhibition. Deletion of residues 1–15 has no effect on inhibition of UBC13–Ub conjugate whereas larger deletions exhibit defects (Supplementary Fig. 4), indicating that N-terminal residues 16–45 are sufficient for activity.

Because a UEV (ubiquitin E2 variant) must bind to UBC13 and position the acceptor ubiquitin for K63Ub synthesis to occur, we asked whether OTUB1 could bind to UBC13 in the presence of UEV1A. In gel filtration assays using fluorescently labelled UEV1A, OTUB1 and uncharged UBC13 migrate as a ternary complex with UEV1A (Fig. 1f). To assay binding to charged UBC13, we generated a non-hydrolysable conjugate in which Ub with a carboxy-terminal G75C is covalently linked to the active-site cysteine of UBC13 with dichloroacetone (DCA)34. UEV1A binds to UBC13(DCA)–Ub, but OTUB1–Ubal interferes with UEV1A binding to the UBC13(DCA)–Ub conjugate (Fig. 1g). By contrast, the N-terminal deletion, OTUB1Δ37, can still form a complex with UBC13(DCA)–Ub and labelled UEV1 in the presence of Ubal (Fig. 1h), indicating that the N terminus of OTUB1 competes with UEV binding when OTUB1 is bound to Ubal. We verified that free ubiquitin has a similar effect on UEV binding by
Figure 1 | Allosteric regulation of OTUB1 by ubiquitin. a, Schematic diagram of OTUB1 illustrating proximal and distal ubiquitin binding sites. b, Effect of ubiquitin aldehyde (Ubal) on the ability of human OTUB1 to inhibit K63 polyubiquitin synthesis by UBC13–UEV1A. Assays include 0.1 μM E1, 0.4 μM UBC13–UEV1A, 0.5 μM human OTUB1, 5 μM ubiquitin. The 3 h time point is shown in the presence (right) and absence (left) of human OTUB1, without (−) and with (+) 0.5 μM Ubal. Top shows detection by anti-Ub western blot; Coomassie staining below shows level of human OTUB1. c, Pull-down assay showing binding of H2–tagged human OTUB1 to a mixture of UBC13 and UBC13–Ub oxyester in the presence and absence of 100 μM free ubiquitin (wild type (WT) or mutant). d, Effect of human OTUB1 distal site mutations on inhibition of K63Ub synthesis. Assay performed as in b but with comparing migration of a sample containing labelled UEV1, UBC13DCA–Ub and OTUB1 prepared in the presence and absence of free ubiquitin and found that the ratio of free UEV1 to UEV1–UBC13DCA–Ub–OTUB1 increases when ubiquitin is present (Fig. 1i). Similarly, pull-downs with H2–OTUB1 do not show an enhancement in coprecipitation of UEV1A along with UBC13–Ub in the presence of added free ubiquitin (Supplementary Fig. 5). These results indicate that the N terminus of OTUB1 interferes with UEV binding and thus with K63Ub synthesis, and that the ability of the N terminus to interfere with UEV depends upon a conformational change that is triggered by binding of free ubiquitin to OTUB1.

To determine the structural basis for OTUB1 inhibition of E2 enzymes, and how ubiquitin allosterically regulates OTUB1 activity, we determined the structure of Caenorhabditis elegans OTUB1 (worm OTUB1) bound to human UBC13 at 1.8 Å resolution (Fig. 2a), and a 2.35 Å resolution quaternary complex structure containing worm OTUB1, Ubal and a UBC13DCA–Ub conjugate generated with UbG75C. The resulting non-native linkage is four bond lengths longer than the native thioester (Supplementary Fig. 6). Human UBC13 is 89% identical to worm UBC13, whereas human OTUB1 shares 34% sequence identity and 56% similarity with worm OTUB1 (Supplementary Fig. 7) and inhibits K63Ub chain formation by human UBC13–UEV1A (Supplementary Fig. 8a). Worm OTUB1 is a weaker inhibitor of UBC13, as reflected in its higher Kd of 58.5 μM compared to 7.04 μM for human OTUB1 (Supplementary Fig. 8b). Crystals of the worm OTUB1–Ubal–UBC13DCA–Ub complex contain four complexes in the P212121 asymmetric unit. The ubiquitin conjugated to UBC13 could be unambiguously positioned in two of the four complexes (Supplementary Fig. 9); our discussion focuses on the complex with the most well-ordered ubiquitin (complex 1). Because the N terminus of OTUB1 plays a key role in inhibition is poorly conserved between human and worm OTUB1, we also determined the 3.1 Å resolution structure of a quaternary complex with a hybrid OTUB1 containing the N-terminal 45 residues of human OTUB1 and the OTU domain of worm OTUB1 (Supplementary Fig. 7b). The hybrid human/worm OTUB1 inhibits K63Ub synthesis by UBC13–UEV1A (Supplementary Fig. 10). Details on all structure determinations are in Supplementary Methods and statistics are in Supplementary Table 1.

In the structure of apo worm OTUB1 bound to UBC13 (Fig. 2a), the OTU domain of worm OTUB1 binds to UBC13 in an orientation that places their respective active-site cysteines 28 Å apart on the same face of the complex, burying 1.280 Å2 of total surface area. Of the 12 worm OTUB1 side chains at the interface with UBC13 (Fig. 2b), seven are identical in human OTUB1 and four are similar (Supplementary Fig. 7a) and can mediate comparable interactions with UBC13. Consistent with this, the double substitution Y170A/F138A in human OTUB1 and can mediate comparable interactions with UBC13. Consistent with this, the double substitution Y170A/F138A in human OTUB1 (Y168A/F135A in worm OTUB1) is defective in binding to UBC13 (Supplementary Fig. 11). Similar interactions could form between UBC13 and UBE2L3 (also known as UBCH7), consistent with the observation that OTUB1 inhibits UBC5 but not UBC7 (ref. 4).

An overview of the human/worm OTUB1–Ubal–UBC13DCA–Ub complex is shown in Fig. 2d, e. Ubal binds to the OTUB1 distal site while the donor ubiquitin in the UBC13–Ub conjugate binds in the OTUB1 proximal site, which comprises residues in both the OTU domain and the N terminus. In the absence of bound ubiquitin, the worm OTUB1 N terminus (residues 1–37, corresponding to human OTUB1 residues 1–39) is disordered (Fig. 2a). However, in the OTUB1–Ubal–UBC13DCA–Ub complexes, part of the N terminus of OTUB1 becomes ordered, forming a ubiquitin-binding helix that contacts the donor ubiquitin in the distal site (Fig. 2e). Additional
Figure 2 | Structure OTUB1–UBC13 and OTUB1–Ubal–UBC13DCA–Ub.

a. Complex of worm OTUB1 (green) bound to human UBC13 (blue). Respective active-site cysteines are shown as space-filling representations. Dashed line indicates disordered residues. b. Contacts at worm OTUB1 (green)–UBC13 (blue) interface. c. Superposition of UBCH5B (UBE2D2, PDB ID 2ESK) and UBCH7 (UBE2L3, PDB ID 1FBV) with UBC13 in the complex with worm OTUB1. UBCH7 contains an insertion (at N94) and a lysine (K96) that would interfere with binding. d. Structure of hybrid human/worm OTUB1 (green) bound to Ub (distal Ub, yellow), UBC13 (blue) and ubiquitin (proximal Ub, red) that is covalently linked to the active-site cysteine (C87) of UBC13 by a DCA linkage. Dashed line indicates disordered C-terminal residues 73–76 of the donor ubiquitin and DCA linkage. e. A 90° rotation compared to d showing positions of worm OTUB1 and UBC13 active-site cysteine and modelled location of K48 of the proximal ubiquitin. f. Contacts between the donor ubiquitin (red) and the OTU domain (green) in the worm OTUB1–Ubal–UBC13DCA–Ub complex.

Figure 3 | Conformational changes in the OTU domain triggered by Ubal binding.

a. Superposition of worm OTUB1 (green) bound to Ubal (yellow surface) with the structure of apo worm OTUB1 (grey). Dotted circles indicate regions of conformational change, which are illustrated in the figure panels noted. b. Location of human OTUB1 distal site mutations that affect inhibition. The structure of human OTUB1 (2ZFY, brown) is superimposed on worm OTUB1 (green)–Ubal (yellow). Ubiquitin residues L8 and I44, where substitutions with alanine disrupt allostERIC effect of ubiquitin binding, are shown. View is 180° rotation about vertical compared with a. c. Structural differences in the OTU domain in the presence (green) and absence (grey) of distal Ub that affect contacts with the donor Ub. Arrows indicate conformational changes. Dotted lines indicate hydrogen bonds and salt bridges. View shown is from ‘top’ of complex as shown on right of panel a, rotated 90° counter-clockwise. d. Effect of mutating OTUB1 conserved arginine, worm OTUB1(R236E) and human OTUB1(R238E), on inhibition of UBC13–UEV1A. Assay performed as in Fig. 1b, with 1 μM human OTUB1 and 15 μM worm OTUB1. e. View of OTU domain structural rearrangements coloured as in c. View as in panel a; proximal ubiquitin not shown. f. Detailed view of catalytic triad in the presence and absence of Ubal (carbon coloured as in c).
contacts with the donor ubiquitin are mediated by the OTU domain which, as described below, undergoes a set of conformational changes triggered by Ubal binding to the distal site.

The donor ubiquitin binds to the proximal site of OTUB1 (Fig. 2d) in an orientation that places K48 of the ubiquitin near the OTUB1 active site (Fig. 2e). A K48 isopeptide linkage can be modeled between the proximal and distal ubiquitins, consistent with OTUB1 isopeptidase specificity for K48-linked diubiquitin. Residues 73–76 of the donor ubiquitin and the DCA linkage are not visible in the electron density map, indicating that they do not adopt a unique conformation in the crystal. The distance between the C-terminal ubiquitin residue and the active-site cysteine is approximately 12.5 Å, which is sufficient to accommodate the four missing residues and a native thiolester linkage. The donor ubiquitin interface with the OTU domain buries 850 Å² of surface area. Ubiquitin side chains that lie between residues 54–60 contact the OTU domain, forming both direct and water-mediated hydrogen bonds and van der Waals interactions (Fig. 2f). Three of the contacting worm OTUB1 side chains are R236, Y233 and D235, which are only in a position to contact ubiquitin in the quaternary complex.

The observed contacts between the donor ubiquitin and the OTU domain depend upon distal site binding of Ubal, which forms a covalent bond with the active-site cysteine (Supplementary Fig. 12) and triggers conformational changes in three regions of the globular OTU domain (Fig. 3a). Ubal binds to the distal ubiquitin binding site of OTUB1 (Fig. 3b) in a manner similar to yeast and viral OTU enzymes, and accounts for the effects of mutations in the OTUB1 distal site (Fig. 1d). A loop (residues 235–245) that partially occludes the distal site in the absence of ubiquitin undergoes a large rearrangement that relieves steric clashes with the distal ubiquitin and positions R236 of worm OTUB1 to make multiple contacts with the donor ubiquitin bound in the proximal site of OTUB1 (Fig. 3c). In the structure of apo human OTUB1 (ref. 9), this residue is disordered (backbone and side-chain atoms) and lies in a loop that presumably changes conformation upon distal ubiquitin binding. Mutating the conserved arginine to glutamic acid in both human (R238E) and worm (R236E) OTUB1 disrupts inhibition (Fig. 3d), consistent with its role in binding the donor ubiquitin. Interestingly, the corresponding residue is a glutamic acid in OTUB2, which lacks an N-terminal arm and does not inhibit UBC13 (ref. 4). Y233, which occludes the distal site in apo worm OTUB1 and undergoes a conformational change to hydrogen bond with the distal Ub (Fig. 3c), is conserved in human OTUB1 (Supplementary Fig. 7a). Another set of conformational changes in the loop connecting helices 1 and 2 of OTUB1 flips the solvent exposed Y57 side chain into the interior of the OTU domain, where it stacks between F65 and E56 (Fig. 3e). The altered loop conformation relieves steric clashes with the donor ubiquitin that would otherwise occur. Binding of the distal ubiquitin is accompanied by additional local rearrangements that narrow the binding cleft around the ubiquitin C-terminal tail (Fig. 3e) and moves the worm OTUB1 active-site histidine, H267, into a position between D269 and C88 to activate the cysteine for catalysis (Fig. 3f).

The OTUB1 N-terminal ubiquitin-binding helix seen in the structure spans residues 28–39 of worm OTUB1 (complex 1) and 25–44 of human OTUB1 (Figs 4a–c), burying 542 Å² and 626 Å², respectively, on the donor ubiquitin (electron density shown in Supplementary Fig. 13). The helix interacts with the donor ubiquitin in a manner reminiscent of the RAP80 UIM (Fig. 4d). Despite limited sequence identity between the worm OTUB1 and human OTUB1 N terminus (Fig. 4a), the three side chains that contact the donor ubiquitin in the 2.35 Å resolution structure of worm OTUB1 (Fig. 4b) are conserved in human OTUB1 (Fig. 4a) and are oriented towards ubiquitin in the same manner in the 3.1 Å resolution human/worm OTUB1 structure (Fig. 4c). In the worm OTUB1 complex (Fig. 4b), residues E37 and I34 contact donor ubiquitin residue H68 while Q33 interacts with backbone atoms. In the structure containing the human N terminus, the helix extends beyond the donor ubiquitin and approaches the UBC13 active-site cysteine (Fig. 4c). It is possible that additional residues may be ordered when the complex is in solution, as nine residues from the minimal human OTUB1Δ15 fragment that exhibits full activity (Fig. 1d) are missing from the human/worm OTUB1 complex structure. It is not clear whether the shorter helix observed in the worm OTUB1 complex reflects a structural difference in solution, or whether crystal contacts interfere with helix formation. The close approach of the OTUB1 N terminus to the donor ubiquitin C terminus in both complexes (Figs 4b, c) leaves open the possibility that additional contacts may form with the donor ubiquitin tail linked to UBC13 via a native thiolester.

The structures show how OTUB1 interferes with UEV1 binding and positioning of the acceptor ubiquitin, and also occludes the RING E3

Figure 4 | OTUB1 N-terminal arm and the mechanism of E2 inhibition.

a. Sequence alignment of N-terminal arms of human OTUB1 and worm OTUB1. Boxed residues form a helix in the quaternary complex structures containing Ubal and UBC13. Donor Ub; additional shaded residues in worm OTUB1 are ordered in complex 1 but are not helical. b. Donor Ub (red) interacts with the worm OTUB1 N-terminal helix (green); UBC13 shown in blue. Dashed lines indicate disordered residues. c. Interactions with the human OTUB1 N-terminal helix of the human/worm OTUB1 hybrid, depicted as in b. d. Superposition comparing RAP80 (grey, PDB ID 3A1Q) binding to ubiquitin (red) with human OTUB1 N-terminal helix (green). UBC13 shown in blue. Dashed lines indicate disordered residues. e. Superposition of human/worm OTUB1–UBC13 complex homology model with UBC13–UEV1 (1JTD) showing predicted position of UEV1 (grey). The solvent-accessible surface of the human N-terminal arm residues of OTUB1 is depicted. f. Modelled position of attacking K63 in acceptor Ub (cyan) based on yeast Ubc13–Ub–Mms2 (2GMI). g. Superposition with quaternary complex showing relative position of the TRAF6 E3 ligase (3HCT).
binding site. Figure 4e shows a superposition with the structure of a UBC13–UEV1 complex showing that the N-terminal helix of human OTUB1 clashes with the expected location of UEV1. Modelling of the predicted position of the acceptor ubiquitin based on the structure of yeast UBC13–Ub–Mms2 (ref 17) shows the N terminus of OTUB1 in a position to interfere with attack by the acceptor ubiquitin lysine on the thiolester (Fig. 4f). Because OTUB1 also inhibits UBC6, which does not function with a UEV, we propose that the OTUB1 N terminus may also interfere with acceptor ubiquitin binding for other E2s. The repositioning of the donor ubiquitin away from the E2 also probably contributes to inhibition, in light of evidence that the donor ubiquitin in the E2–Ub thiolester interacts specifically with the E2 (refs 18, 19) and that this is essential for ubiquitin transfer. In addition, superposition with the structure of UBC13 bound to TRAF6 (ref 20) shows that the OTUB1 binding site overlaps with the E3 RING-binding site (Fig. 4g), indicating that competition between OTUB1 and RNF168 would further suppress UBC13 activity in vivo. Competition with E3 binding is likely to be particularly important for OTUB1 inhibition of UBC15B which, unlike UBC13, is strictly dependent upon an E3 ligase for activity.

The ability of OTUB1 to serve as both an isopeptidase and an inhibitor of E2 enzyme activity arises from its ability to bind to selected E2s, while taking advantage of the allosteric communication between the proximal and distal ubiquitin binding sites of OTUB1 and the distinctive features of its N terminus. Given the high degree of coupling between the multiple binding interactions within the OTUB1–Ub–UBC13–Ub complex, the degree of inhibition in vivo will clearly depend upon the relative concentrations of OTUB1, E2–Ub thiolester, E3 and free ubiquitin in the cell. An interesting question is whether the dependence of OTUB1 repression on ubiquitin binding to the distal site is exploited to modulate OTUB1 activity in response to fluctuations in the concentration of free ubiquitin or of free chains, whose C-terminal subunits could similarly bind to the distal site of OTUB1. Our findings establish new directions for investigating how the allosteric regulation of OTUB1 may be exploited to regulate ubiquitination in the DNA damage response.

METHODS SUMMARY

Cloning, expression, protein purification and crystallization are described in Methods and in accompanying references. The DCA linkage between the active-site cysteine of UBC13 and a C-terminal cysteine in Ub(G79C) or Ub(G76C) was generated by a modification of the published method. The hybrid human/worm OTUB1 protein contains residues 1–45 of human OTUB1 and residues 43–276 of worm OTUB1. Structures were determined by molecular replacement as described in Methods. Free ubiquitin chain synthesis was assayed by gel electrophoresis and products were detected by western blot with anti-ubiquitin antibody or by Coomassie staining. Pull-down assays were performed with purified recombinant protein. Assays of complex formation between OTUB1, UBC13, UBC3(CA)1–Ub and UEV1A were performed by gel filtration with fluorescein-labelled UEV1A or UEV1, monitoring fluorescein absorbance at 495 nm. Binding of OTUB1 to UBC13 was measured by fluorescence anisotropy using fluorescein-labelled UBC13, and equilibrium dissociation constants were calculated using SigmaPlot (SPSS).

Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.

Received 21 November 2011; accepted 3 February 2012.
Published online 22 February 2012.

1. Al-Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst.) 9, 1229–1240 (2010).

2. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

3. Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

4. Nakada, S. et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466, 941–946 (2010).

5. Wang, T. et al. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of ubtubin J. Mol. Biol. 386, 1011–1023 (2009).

6. Saha, A., Lewis, S., Kleiger, G., Kuhlman, B. & Deshaies, R. J. Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 42, 75–83 (2011).

7. Wickliffe, K. E., Lorenz, S., Wemmer, D. E., Kuriyan, J. & Rape, M. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144, 769–781 (2011).

8. Messick, T. E. et al. Structural basis for ubiquitin recognition by the Otu ovarian tumor domain protein. J. Biol. Chem. 283, 11038–11049 (2008).

9. Edelmann, M. J. et al. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem. J. 418, 379–390 (2009).

10. Hofmann, R. M. & Pickart, C. M. Noncanonical Mms2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

11. Yin, L., Krantz, B., Russell, N. S., Deshpande, S. & Wilkinson, K. D. Nonhydorlyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation. Biochemistry 39, 10001–10010 (2000).

12. James, T. W. et al. Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing proteinase. Proc. Natl Acad. Sci. USA 106, 2222–2227 (2011).

13. Capodagli, G. C. et al. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bound ubiquitin. J. Virol. 85, 3621–3630 (2011).

14. Akutsu, M., Ye, Y., Virdee, S., Chin, J. W. & Komander, D. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc. Natl Acad. Sci. USA 108, 2228–2233 (2011).

15. Sato, Y. et al. Structural basis for specific recognition of Lys63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 28, 2461–2468 (2009).

16. Moraes, T. F. et al. Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2–hUbc13. Nature Struct. Biol. 8, 669–673 (2001).

17. Eddins, M. J., Carlile, C. M., Gomez, K. M., Pickart, C. M. & Wolberger, C. Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nature Struct. Mol. Biol. 13, 915–920 (2006).

18. Wenzel, D. M., Stoll, K. E. & Kleit, R. E. E2s: structurally economical and functionally replete. Biochem. J. 433, 31–42 (2011).

19. McKenna, S. et al. An NMR-based model of the ubiquitin-bound human ubiquitin conjugation complex Mms2–Ubc13. The structural basis for lysine 63 chain catalysis. J. Biol. Chem. 278, 13151–13158 (2003).

20. Yin, Q. et al. E2 interaction and dimerization in the crystal structure of TRAF6. Nature Struct. Mol. Biol. 16, 658–666 (2009).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We thank E. Henderson for generating the human/worm OTUB1 clone and C. Bernsdor, A. DiBello, A. Delta and M. Bianchet for discussions. GM/CA-CAT beamlines were funded in whole or in part with funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Science (Y1-GM-11040). Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract no. DE-AC02-06CH11357.

Author Contributions R.W. and C.W. designed the experiments and R.W. performed all biochemical experiments. Cloning, expression and protein purification were carried out by X.Z. and R.W. Complexes were prepared for crystallization and crystals were grown by X.Z. and R.W. R.W. determined the crystal structure with guidance from C.W., R.W. and C.W. wrote the manuscript.

Author Information Coordinates and diffraction amplitudes are deposited in the Protein Data Bank under accession numbers 4DHJ (worm OTUB1–Ub–UBC13) and 4DHJ (worm OTUB1–Ub–UBC13) and 4DHJ (human/worm OTUB1–Ub–UBC13) and 4DHJ (human/worm OTUB1–Ub–UBC13). Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Researchers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to C.W. (cwo@jhu.edu).
Crystallization. All crystals were grown by the hanging-drop vapour diffusion method at 20 °C. A worm OTUB1–UBC13 complex was prepared by incubating worm OTUB1 and human UBC13 at a molar ratio of 1:1 and total protein concentration of 26 mg ml−1 for 10 min at room temperature. Crystals were grown from a 1:1 mix of protein and well solution containing 100 mM sodium cacodylate, pH 6.5 and 1 M trisodium citrate and appeared in about 2–3 days. Crystals were transferred to cryoprotectant consisting of well solution plus 20% ethylene glycol and then flash-frozen in liquid nitrogen.

C. elegans OTUB1–UBC13 crystals were generated by crystallization using a QuickChange mutagenesis kit (Stratagene) following the manufacturer’s protocol. The hybrid human/worm OTUB1 was generated by swapping the first 41 residues of worm OTUB1 with the first 45 residues of human OTUB1 using Infusion ligation-free cloning (Clontech). Human OTUB1 with a N-terminal 41-residue truncation (OTUB1AN41) was generated as previously described, all other OTUB1 deletions were generated using Infusion ligation-free cloning (Clontech).

Protein expression and purification. All proteins were expressed in E. coli Rosetta-2 (DE3) cells grown in Luria-Bertani (LB) medium. Cultures were inoculated using 1% (v/v) overnight saturated cultures and were grown at 37 °C to an OD₆₀₀ of 0.8. Proteins were induced at 16 °C overnight by addition of 1 mM isopropyl-β-D-thiogalactoside (IPTG). Cells were harvested by centrifugation (8,000 g for 10 min) and either lysed immediately or stored at −80 °C for later use.

Human OTUB1, worm OTUB1, human E1 enzyme and ubiquitin were purified as previously described. Deletions and mutants of human and C. elegans OTUB1 and of ubiquitin were purified according to the same protocol as the wild-type proteins. UBC13 and UEV1A were purified by resuspending cell pellets in lysis buffer (20 mM HEPES pH 7.3, 300 mM NaCl, 10 mM imidazole, 2 mM β-mercaptoethanol) after adding 0.1 mM phenyl-methyl sulphonyl fluoride (PMSF). Cells were disrupted using a Microfluidizer (Microfluidics) and the lysate was centrifuged to remove cell debris. The lysate was subjected to immobilized metal affinity chromatography (IMAC) using 5 ml His-Trap columns (GE Biosciences) developed with a linear imidazole gradient of 25–400 mM in 20 column volumes. Fractions containing purified protein were pooled, S-20 protease was added in a ratio of 1:100 to cleave off the His-SUMO-2 tag, and pooled fractions were dialysed overnight at 4 °C against lysis buffer. Cleaved protein was then subjected to a second round of IMAC and the cleaved protein was collected from the flow-through. Proteins were then purified by gel filtration on a Superdex 75 column (GE Healthcare), dialysed into 20 mM HEPES, pH 7.3, 150 mM NaCl and 1 mM diethiothreitol (DTT), concentrated and stored at −80 °C. Proteins for crystallization, enzyme assays and binding studies were ≥98% pure as visualized on a Coomassie-stained gel. His-tagged human OTUB1 used in pull-down assays was ~90% pure.

Protein modifications. UBC13, UEV1A and UEV1 were labelled with fluorescein-5-maleimide (Invitrogen) as described in the manufacturer’s protocol. Ubiquitin aldehyde was prepared as described.

Preparation of UBC13–Ub conjugates. UBC13(G87S)–Ub oxyster was prepared as previously described. The UBC13(G87S)–Ub covalent conjugate was prepared according to a modification of the protocol from ref. 11. Purified ubiquitin containing the substitution G76C (Ub(G76C)) or G75C (Ub(G75C)) and UBC13 were dialysed separately overnight into 20 mM sodium borate buffer, pH 8.0 and 2 mM TCEP (tris(2-carboxyethyl)phosphine), mixed in the proportion of 1 mM Ub(G76C) or Ub(G75C) to 330 μM UBC13, and incubated on ice for 15 min. A stock of 20 mM 1,3-dichloroacetone (DCA) was prepared in dimethylformamide (DMF) and added to the conjugation reaction to a final concentration of 0.8 mM DCA. The reaction was stopped after 1 h by addition of 10 mM β-mercaptoethanol. The coupling efficiency was approximately 50%. For the Ub(G76C) reaction, the mix was diluted tenfold with 10 mM Tris, pH 8, loaded onto a mono Q column (GE Healthcare) pre-equilibrated with 10 mM Tris, pH 8. Free Ub(G76C) eluted in the eluted-through and UBC13(DCA)–Ub eluted together with unconjugated UBC13 in 180 mM NaCl in 20 mM Tris, pH 8. For the Ub(G75C) reaction, UBC13(DCA)–Ub(G75C) was purified by gel filtration on a Superdex 75 column pre-equilibrated with 20 mM HEPES pH 7.3, 100 mM NaCl and 2 mM DTT. The separation efficiency was about 10% of the total amount of UBC13(DCA)–Ub(G75C) in the reaction mix.

Purification of worm OTUB1–Ub–UBC13(ΔC)–Ub(G76C) quaternary complex. Worm OTUB1 was incubated on ice with Ub in a 1:4 molar ratio for 15 min and added to the purified apo human UBC13 and UBC13(DCA)–Ub mixture such that UBC13(DCA)–Ub was in twofold excess over worm OTUB1, as estimated by gel electrophoresis. The reaction was incubated for 15 min on ice, then loaded onto a Superdex 200 column (GE Healthcare) pre-equilibrated with 20 mM Tris, pH 7.45, 150 mM NaCl and 2 mM DTT. The OTUB1–Ubal–UBC13(DCA)–Ub complex eluted as a single peak and was concentrated to 10 mg ml⁻¹ and stored at −80 °C.

©2012 Macmillan Publishers Limited. All rights reserved
100 μM; Fig. 1f, UEV1A 10 μM, UBC13–Ub 10 μM, human OTUB1 50 μM and Ubal 50 μM; Fig. 1g, UEV1 20 μM, UBC13–Ub 20 μM, human OTUB1(A37) 100 μM and Ubal 100 μM; Fig. 1h, UEV1 20 μM, UBC13–Ub 20 μM, human OTUB1 100 μM and ubiquitin 200 μM.

In vitro ubiquitination assay. Ubiquitination assays were performed in 25 mM Tris-HCl (pH 8.0) buffer containing 0.1 mM DTT, 1 mM ATP, 2.5 mM MgCl2, 5 mM creatine phosphate, 0.3 units ml–1 inorganic pyrophosphatase, and 0.3 units ml–1 creatine kinase. Proteins in the amounts of 0.4 μM UBC13, 0.4 μM UEV1A and 5 μM ubiquitin were mixed with human OTUB1 (1 μM) or worm OTUB1 (15 μM). Reactions were initiated by the addition of 0.1 μM E1 enzyme, incubated at 37 °C, and stopped at different time points by adding denaturing SDS–PAGE loading dye containing β-mercaptoethanol (BME). For Fig. 1b, 0.5 μM human OTUB1 was incubated with 0.5 μM Ubal for 15 min before addition to the reaction. Reaction products were separated on a 4–12% Bis-Tris NuPAGE (Invitrogen) gel and transferred to a polyvinylidene fluoride (PVDF) membrane. Membranes were denatured in a 6 M guanidine HCl, 20 mM Tris-HCl, pH 7.5, 1 mM PMSF, 5 mM β-mercaptoethanol solution for 30 min at 4 °C and then washed extensively in Tris-buffered saline and Tween 20 (TBST). Membrane were blocked overnight at 4 °C with 5% BSA in TBST and incubated for 1 h with ubiquitin antibody (P4D1 Santa Cruz) 1:1,000 at room temperature followed by anti-mouse horseradish peroxidase (HRP)-conjugated secondary antibody. OTUB1 was detected with Coomassie brilliant blue or SimplyBlue SafeStain (Invitrogen).

Pull-down assays. Ni2+-NTA beads were equilibrated in buffer A (50 mM phosphate buffer pH 8.0, 100 mM NaCl, 5 mM β-mercaptoethanol and 10 mM Imidazole). 6×His–human OTUB1 (30 μg) was incubated with pre-equilibrated beads in 200 μl of buffer A for 30 min. Beads were washed with 400 μl buffer A and incubated with a mixture of human UBC13 and human UBC13(C87S)–Ub with and without the indicated concentration of free ubiquitin (2–100 μM) in 200 μl buffer A for 1 h. Beads were washed with 400 μl buffer A for 10 min and eluted with 25 μl of buffer A plus 250 mM imidazole. Eluates were analysed by gel electrophoresis and staining with Coomassie blue or SimplyBlue SafeStain (Invitrogen). The pull-down in Supplementary Fig. 2 was performed as above except for the addition of 6×His–human OTUB1 (7 μg), human UBC13(C87S)–Ub (7 μg) and ubiquitin as indicated in the figure.

21. Berndsen, C. E. & Wolberger, C. A spectrophotometric assay for conjugation of ubiquitin and ubiquitin-like proteins. Anal. Biochem. 418, 102–110 (2011).
22. Hu, M. et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 24, 3747–3756 (2005).
23. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).
24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
25. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
26. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D 66, 22–25 (2010).
27. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).
28. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
29. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).
30. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).