Comparison of cortical activation in an upper limb added-purpose task versus a single-purpose task: a near-infrared spectroscopy study

FUBIAO HUANG1–4)*, DAI SUKE HIRANO3, 4), YUN SHI5), TAKAMICHI TANIGUCHI3, 4)

1) Department of Occupational Therapy, China Rehabilitation Research Center: No.10, Jiao Men North Road, Feng Tai District, Beijing 100-068, China
2) Faculty of Rehabilitation, Capital Medical University, China
3) Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Japan
4) Department of Occupational Therapy, School of Health Sciences, International University of Health and Welfare, Japan
5) Department of Occupational Therapy, New York University, USA

Abstract. [Purpose] The purpose of this study was to compare prefrontal activations during an added-purpose task with those during a single-purpose task using functional near-infrared spectroscopy. [Subjects] Six healthy right-handed adults were included in this study. [Methods] The participants were instructed to complete both added-purpose and single-purpose activities separately with each hand. The near-infrared spectroscopy probes were placed on the scalp overlying the prefrontal cortex, according to the International 10–20 system (Fz). Changes in the oxygenated hemoglobin and deoxygenated hemoglobin concentrations in the prefrontal cortex were measured during performance of the activities. We then compared the number of activation channels with significant increase in oxygenated hemoglobin, during added-purpose activity to single-purpose activity using both hands separately. [Results] A greater number of widespread activations were observed in the prefrontal cortex during the added-purpose task than during the single-purpose task. These results were noted with both right and left hands. [Conclusion] According to our findings, added-purpose activity can bring about more activation in the prefrontal cortex, which may provide occupational therapists with effective guides in therapeutic practice.

Key words: Purposeful activity, Functional near-infrared spectroscopy (fNIRS), Prefrontal cortex

INTRODUCTION

Purposeful activities, commonly used as a treatment modality in occupational therapy practice, play an important role in the health insurance system. Various added-purpose activities are employed by occupational therapists for patients at different stages of involvement during their treatment sessions. In the author’s experience, recovery of the fingers on the hemiplegic side in cerebral vascular accident (CVA) patients differs depending on whether the patient participated in grasping objects with the affected side during occupational therapy. It was therefore unclear if the activity purpose influenced upper limb recovery. To investigate the changes among added-purpose activities, most previous studies measured heart rate, blood pressure, and perceived exertion rating1–5). However, the relationship between the added-purpose activities and cerebral activation remains unclear.

A non-invasive measurement of the changes in oxygenated and deoxygenated hemoglobin concentrations (Oxy-Hb and Deoxy-Hb, respectively) in response to cerebral activities is provided by functional near-infrared spectroscopy (fNIRS)6–9). In terms of temporal and spatial resolution, compared with other neuroimaging technologies, fNIRS is generally considered a less advanced technique. However, it is advantageous in that it represents a safer method and does not require strict restriction of motion; as a result of this, it can be used in natural environments10, 11). Therefore, subjects can perform pegboard tasks in the seated position and in a relaxed environment.

As pegboard tasks are frequently used in occupational therapy for CVA patients, we defined “an added-purpose task” and “a single-purpose task” in terms of these tasks. The subjects were required to move a peg from one hole to another on the pegboard by pinching with the thumb and
index finger for the added-purpose task and perform the same movement without pegs for the single-purpose task.

Consequently, the purpose of this study was to identify the factors that affect functional recovery based on cortical activation during upper limb activities with different purposes.

SUBJECTS AND METHODS

Six healthy right-handed participants (5 women and 1 man; mean age: 19.7 ± 0.5 years; range: 19–20 years) who volunteered for this study were included. Handedness was assessed using the Edinburgh Inventory13). An added-purpose task and a single-purpose task had not been experienced previously by the participants. This study was approved by the institutional ethical committee of the China Rehabilitation Research Center (2015-K-070), and all participants were required to sign a written informed consent.

The subjects were required to move a peg from one hole to another on a pegboard using the pinch grasp with the thumb and index finger for the added-purpose task at the speed of 1 peg/s (Fig. 1) and perform the same motion of the added-purpose task without pegs for the single-purpose task. These tasks were carried out with the right and left hands at the rate of 1 peg/s.

Task 1: Added-purpose task with the right hand
Task 2: Added-purpose task with the left hand
Task 3: Single-purpose task with the right hand
Task 4: Single-purpose task with the left hand

Every task was repeated 5 times. During the rest period, the subjects stared at the red dot in the center of the pegboard under the seat (Fig. 2).

To avoid the influence of the test sequence on the results, the subjects were provided the tasks in a random sequence (Table 1).

We used the multichannel fNIRS optical topography system ETG-4000 (Hitachi Medical Corporation, Kashiwa, Japan) with 2 wavelengths of near-infrared light (695 and 830 nm). Optical data based on the modified Beer-Lambert law12, 14, 15) was analyzed, as previously described16). This method allowed us to calculate signals that reflected changes in the Oxy-Hb and Deoxy-Hb concentrations in millimolar-millimeters (mM mm)16, 17). The sampling rate was set at 10 Hz.

According to the International 10–20 system (Fz), the NIRS probes were placed on the scalp overlying the prefrontal cortex17, 18). We used a set of 3 × 5 multichannel probe holders, consisting of 8 illuminating and 7 detecting probes arranged alternately at an inter-probe distance of 3 cm, resulting in 22 channels (CH).

We defined a set of 9 CH before Fz as a prefrontal area region of interest (ROI) (Fig. 3).

For every subject, the CH measurements showing a low signal-to-noise ratio were discarded. Linear trends of continuous Δ[Oxy-Hb] and Δ[Deoxy-Hb] fluctuations were also eliminated. Changes in the Δ[Oxy-Hb] and Δ[Deoxy-Hb] were smoothed with a 5 s moving average12, 17). We focused on Δ[Oxy-Hb], because Δ[Oxy-Hb] is the most sensitive parameter of cerebral blood flow6, 17, 19, 20). The standard deviation (SD) was calculated against 10 s resting periods just before the target task blocks in each channel and the significance level of Δ[Oxy-Hb] were evaluated, with SD × 3.053 as a threshold. The term “3.053” is the Z-score of the one-sided Bonferroni corrected significance level (p <0.05) for multiple comparisons. A response of each channel was deemed significant when Δ[Oxy-Hb] was above the signifi-

Table 1. Testing sequence in the subjects

Subjects	1st test	2nd test	3rd test	4th test
1	Task 1	Task 2	Task 3	Task 4
2	Task 1	Task 2	Task 4	Task 3
3	Task 2	Task 1	Task 3	Task 4
4	Task 4	Task 3	Task 1	Task 2
5	Task 3	Task 4	Task 1	Task 2
6	Task 3	Task 4	Task 2	Task 1

Fig. 1. An added-purpose task

Fig. 2. Patient posture during the rest period

Fig. 3. fNIRS probe placement and ROI
cance level during the target stimulus block. To evaluate the activation areas, the number of channels with a significant increase in ∆[Oxy-Hb] was compared between the added-purpose task and single-purpose task. These analyses were performed using Matlab 2010a (MathWorks, Natick, MA, USA).

RESULTS

The cortical activation areas in the prefrontal cortex and its surrounding areas, either left hand or right, the number of activation channels with the added-purpose task is much more. These results were demonstrated using the right hand (paired t-test, p = 0.029 < 0.05) and left hand (p = 0.007 < 0.05) (Table 2).

DISCUSSION

In this study, the author defined “an added-purpose task” and “a single-purpose task”. The subjects were required to move a peg from one hole to another on a pegboard by pinching with the thumb and index finger for the added-purpose task and perform the same motion of the added-purpose task without pegs for the single-purpose task. A comparison of prefrontal activation between added-purpose tasks and single-purpose tasks with the fNIRS revealed that in the prefrontal cortex and its surrounding areas, with both upper limbs, the added-purpose task brings about more activation in the prefrontal cortex compared to single-purpose activity. Our findings may provide occupational therapists with an effective guide in therapeutic practice. Broadly speaking, more added-purpose tasks should be used for improving patient function and activity daily living ability. Additionally, more time and effort is required to investigate specific activities and guidance method of added-purpose tasks to improve cortial activation.

REFERENCES

1. Kircher MA: Motivation as a factor of perceived exertion in purposeful versus nonpurposeful activity. Am J Occup Ther, 1984, 38: 165–170. [Medline] [CrossRef]
2. Steinbeck TM: Purposeful activity and performance. Am J Occup Ther, 1986, 40: 529–534. [Medline] [CrossRef]
3. Bloch MW, Smith DA, Nelson DL: Heart rate, activity, duration, and affect in added-purpose versus single-purpose jumping activities. Am J Occup Ther, 1989, 43: 25–30. [Medline] [CrossRef]
4. Morton GG, Barnett DW, Hale LS: A comparison of performance measures of an added-purpose task versus a single-purpose task for upper extremities. Am J Occup Ther, 1992, 46: 128–133. [Medline] [CrossRef]
5. Bakshi R, Bhambhani Y, Madill H: The effects of task preference on performance during purposeful and nonpurposeful activities. Am J Occup Ther, 1991, 45: 912–916. [Medline] [CrossRef]
6. Strangman G, Culver JP, Thompson JH, et al.: A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage, 2002, 17: 719–731. [Medline] [CrossRef]
7. Hoshi Y: Functional near-infrared optical imaging: utility and limitations in human brain mapping. Psychophysiology, 2003, 40: 511–520. [Medline] [CrossRef]
8. Koizumi H, Yamamoto T, Maki A, et al.: Optical topography: practical problems and new applications. Appl Opt, 2003, 42: 3054–3062. [Medline] [CrossRef]
9. Obrig H, Villringer A: Beyond the visible—imaging the human brain with light. J Cereb Blood Flow Metab, 2003, 23: 1–18. [Medline] [CrossRef]
10. Ferrari M, Quaresima V: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 2012, 63: 921–935. [Medline] [CrossRef]
11. Scholkmann F, Kleiser S, Metz AJ, et al.: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 2014, 85: 6–27. [Medline] [CrossRef]
12. Hirano D, Seki Y, Huang F, et al.: Reduction in cortical activation in the sensorimotor cortex during motor skill learning of a pursuit rotor task: a functional near-infrared spectroscopy study. Int J Phys Med Rehabil, 2014, 2: 5. [CrossRef]
13. Oldfield RC: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 1971, 9: 73–79. [Medline] [CrossRef]
14. Cope M, Delpy DT, Reynolds EO, et al.: Methods of quantitating cerebral near infrared spectroscopy data. Adv Exp Med Biol, 1988, 222: 183–189. [Medline] [CrossRef]
15. Delpy DT, Cope M, van der Zee P, et al.: Estimation of optical pathlength
through tissue from direct time of flight measurement. Phys Med Biol, 1988, 33: 1433–1442. [Medline] [CrossRef]

16) Maki A, Yamashita Y, Ito Y, et al.: Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med Phys, 1995, 22: 1997–2005. [Medline] [CrossRef]

17) Takeda K, Gomi Y, Imai I, et al.: Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy. Neurosci Res, 2007, 59: 136–144. [Medline] [CrossRef]

18) Okamoto M, Dan H, Sakamoto K, et al.: Three-dimensional probabilistic anatomical crania-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. Neuroimage, 2004, 21: 99–111. [Medline] [CrossRef]

19) Hoshi Y, Kobayashi N, Tamura M: Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 1985, 2001, 90: 1657–1662. [Medline]

20) Shimada S, Hiraki K, Oda I: The partial role in the sense of self-ownership with temporal discrepancy between visual and proprioceptive feedbacks. Neuroimage, 2005, 24: 1225–1232. [Medline] [CrossRef]

21) Mushiake H, Saito N, Sakamoto K, et al.: Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron, 2006, 50: 631–641. [Medline] [CrossRef]

22) Shima K, Isoda M, Mushiake H, et al.: Categorization of behavioural sequences in the prefrontal cortex. Nature, 2007, 445: 315–318. [Medline] [CrossRef]

23) Yamada M, Morioka S, Sugimura S: Influence of a discrimination task during movement on cerebral blood flow measured by fNIRS. J Phys Ther Sci, 2008, 23: 261–265.

24) Hasegawa A, Utsun H: Executive function and cerebral blood flow on dorsolateral prefrontal cortex in cases of subcortical infarction. J Tokyo Med Univ, 2006, 64: 45–53.

25) Nagata K, Maruya H, Yuya H, et al.: Can PET data differentiate Alzheimer’s disease from vascular dementia? Ann N Y Acad Sci, 2000, 903: 252–261. [Medline] [CrossRef]