Cationic and betaine-type boronated acridinium dyes: synthesis, characterization and photocatalytic activity

Krzysztof Durka, Mateusz Urban, Marek Dąbrowski, Piotr Jankowski, Tomasz Kliś, Sergiusz Luliński*

*Corresponding author. Tel, Fax: +48 222347575, +48 226282741
serek@ch.pw.edu.pl
Supporting Information

Table of contents

1 NMR spectra of compounds 1-10 ... S3
2 Optical properties – additional information ... S12
3 Theoretical calculations ... S18
4 Thermal analysis .. S28
5 HR-MS .. S32
1 NMR spectra of compounds 1-10

Figure S1. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 1.

Figure S2. 13C NMR spectrum (101 MHz, CDCl$_3$) of 1.
Figure S3. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 2.

Figure S4. 13C NMR spectrum (101 MHz, CDCl$_3$) of compound 2.
Figure S5. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 4.

Figure S6. 13C NMR spectrum (101 MHz, CDCl$_3$) of compound 4.

S5
Figure S7. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 5.

Figure S8. 13C NMR spectrum (101 MHz, CDCl$_3$) of compound 5.
Figure S9. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 6.

Figure S10. 13C NMR spectrum (101 MHz, CDCl$_3$) of compound 6.
Figure S11. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 7.

Figure S12. 13C NMR spectrum (101 MHz, CDCl$_3$) of compound 7.
Figure S13. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 8.

Figure S14. 13C NMR spectrum (101 MHz, CDCl$_3$) of compound 8.
Figure S15. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 9.

Figure S16. 13C NMR spectrum (101 MHz, CDCl$_3$) of compound 9.
Figure S17. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 10.

Figure S18. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 10.
2 Optical properties – additional information

Figure S19. Overlay of UV-VIS absorption spectra of 5-10 in DCM.

Figure S20. Overlay of UV-VIS absorption spectra of 5-10 in MeCN.
Figure S21. Overlay of UV-VIS absorption spectra of 5-10 in PhMe.

Figure S22. Overlay of UV-VIS absorption spectra of 5 and 8 in various solvents.

Figure S23. Overlay of UV-VIS absorption spectra 6 and 9 in various solvents.
Figure S24. Overlay of UV-VIS absorption spectra of 7 and 10 in various solvents.

Table S1. The complete list of UV-VIS absorption bands of compounds 5–10 in various solvents.

compound	solvent	\(\lambda_{\text{max}} \)/ nm	\(\varepsilon \)/dm\(^3\)mol\(^{-1}\)cm\(^{-1}\)	
5	DCM	436	8780	
		362	23600	
	MeCN	430	8130	
		361	20200	
	PhMe	432	10400	
		375	32800	
6	DCM	436	11800	
		362	31200	
	MeCN	430	10300	
		361	27300	
	PhMe	434	7790	
		336	17500	
7	DCM	431	10700	
		360	27800	
	MeCN	428	9880	
		360	27500	
	PhMe	433	10400	
		364	25420	
8	DCM	446	12700	
		358	19500	
	MeCN	435	9660	
		359	17500	
	PhMe	--	--	
9	DCM	441	10800	
		357	18700	
	MeCN	431	10900	
		359	22200	
	PhMe	DCM	MeCN	PhMe
--------	-------	------	------	------
λ / nm	436	430	426	433
	361	356	356	357
ε	8470	10900	10200	7630
	14000	21800	19600	7630

Figure S25. Overlay of normalized UV-VIS absorption and emission bands for 5 and 8 in DCM.

Figure S26. Overlay of normalized UV-VIS absorption and emission bands for 6 and 9 in DCM.
Figure S27. Overlay of normalized UV-VIS absorption and emission bands for 7 and 10 in DCM.

Figure S28. Overlay of normalized UV-VIS absorption and emission bands for 5 in toluene. For comparison, emission spectrum in DCM was also depicted by thin dotted line.
Figure S29. Overlay normalized UV-VIS absorption and emission bands for 6 and 9 in PhMe. For comparison, emission spectrum in DCM was also depicted by thin dash-dot line.

Figure S30. Overlay of normalized UV-VIS absorption and emission bands for 7 and 10 in PhMe. For comparison, emission spectrum in DCM was also depicted by thin dash-dot line.
3 Theoretical calculations

Figure S31. The disposition of molecular orbitals from HOMO-4 to LUMO in 5. Blue and red areas correspond to negative and positive signs of the function, respectively, depicted with isovalue of 0.2 eÅ⁻³.
Figure S32. The disposition of molecular orbitals from HOMO-4 to LUMO in 6. Blue and red areas correspond to negative and positive signs of the function, respectively, depicted with isovalue of 0.2 eÅ⁻³.
Figure S33. The disposition of molecular orbitals from HOMO-4 to LUMO in 7. Blue and red areas correspond to negative and positive signs of the function, respectively, depicted with isovalue of 0.2 eÅ$^{-3}$.
Figure S34. The disposition of molecular orbitals from HOMO-4 to LUMO in 8. Blue and red areas correspond to negative and positive signs of the function, respectively, depicted with isovalue of 0.2 eÅ⁻³.

Figure S35. The disposition of molecular orbitals from HOMO-4 to LUMO in 9. Blue and red areas correspond to negative and positive signs of the function, respectively, depicted with isovalue of 0.2 eÅ⁻³.
Figure S36. The disposition of molecular orbitals from HOMO-4 to LUMO in 10. Blue and red areas correspond to negative and positive signs of the function, respectively, depicted with isovalue of 0.2 eÅ⁻³.

Table S2. Selected atomic charges (all values given in e) in 5-10 calculated at PBE0/6-311+G(d,p) level of theory.

	5 \((p\text{-BOH}_2) \)	6 \((m\text{-BOH}_2) \)	7 \((o\text{-BOH}_2) \)	8 \((p\text{-BF}_3) \)	9 \((m\text{-BF}_3) \)	10 \((o\text{-BF}_3) \)
N	0.967	0.918	1.103	1.204	1.205	1.184
B	0.623	0.612	0.426	0.847	0.886	0.889
C9	1.200	1.024	1.081	0.355	0.389	0.571
C10	0.781	0.084	0.823	1.378	1.297	1.033
Table S3. Group charges (all values given in e) in 5-10 calculated at PBE0/6-311+G(d,p) level of theory.

	5 (p-B(OH)₂)	6 (m-B(OH)₂)	7 (o-B(OH)₂)	8 (p-BF₃)	9 (m-BF₃)	10 (o-BF₃)
NPh	-0.295	-0.433	-0.223	-0.127	-0.122	-0.334
Acr	1.454	1.206	1.174	0.822	0.853	1.077
B	-0.281	0.166	-0.056	-0.696	-0.731	-0.743
ClO₄⁻	-0.878	-0.939	-0.895	-	-	-

Table S4. Cartesian coordinates for optimized structure of 5.

Atom	x	y	z	Atom	x	y	z
C1	-0.6281	3.2935	-1.9004	H31	5.7809	2.2043	1.3510
C2	-1.3111	2.4416	-1.0737	C32	-2.7106	0.6507	0.5351
C3	-0.6015	1.5410	-0.2520	C33	-3.4293	1.5462	1.3218
C4	0.8232	1.5309	-0.2863	C34	-3.3564	-0.2664	-0.2778
C5	1.4860	2.4214	-1.1727	C35	-4.8111	1.5279	1.2852
C6	0.7810	3.2880	-1.9568	H36	-2.9065	2.2539	1.9573
C7	1.5266	0.5985	0.4953	C37	-4.7467	-0.2861	-0.3135
C8	0.8166	-0.2806	1.3285	H38	-2.7709	-0.9793	-0.8535
C9	-0.6083	-0.2338	1.3476	H39	-5.4802	0.6124	0.4640
C10	-1.3234	-1.1172	2.1824	H40	-5.3978	2.2130	1.8864
H11	-2.403	-1.0953	2.1835	H41	-5.2398	-1.0105	-0.9490
C12	-0.6447	-2.0129	2.9636	O42	-6.8262	0.6726	0.4959
C13	0.7650	-2.0690	2.9627	C3	-7.5687	-0.2330	-0.3121
C14	1.4756	-1.2221	2.1650	H44	-7.3200	-1.2640	-0.0301
H15	-1.1871	3.9725	-2.5358	H45	-7.2959	-0.0920	-1.3657
H16	-2.3924	2.4376	-1.0619	C46	-9.0335	0.0493	-0.0906
H17	2.5669	2.3829	-1.2261	H47	-9.6380	-0.6297	-0.6975
H18	1.2979	3.9555	-2.6368	H48	-9.3015	-0.0941	0.9586
H19	-1.2071	-2.6964	3.5910	H49	-9.2775	1.0757	-0.3740
H20	1.2777	-2.7901	3.5889	N50	-1.2665	0.6705	0.5630
H21	2.5575	-1.2567	2.1464	Cl5	-0.0921	-2.2278	-1.7208
C22	3.0038	0.5178	0.4161	O52	1.1319	-2.5635	-0.9566
C23	3.5960	-0.5703	-0.2308	O53	-0.1297	-0.7554	-1.9290
C24	3.8049	1.5148	0.9754	O54	-0.0997	-2.9244	3.0063
C25	4.9801	-0.6413	-0.3175	O55	-1.2833	-2.5044	-0.9187
H26	2.9605	-1.3399	-0.6634	B56	7.3614	0.2181	0.1119
C27	5.1869	1.4186	0.8881	O57	7.8722	-0.9185	-0.4345

S23
Table S5. Cartesian coordinates for optimized structure of \(\text{6} \).

![Diagram of \(\text{6} \)](image)

Atom	\(x \)	\(y \)	\(z \)	Atom	\(x \)	\(y \)	\(z \)
C1	-0.7695	3.0794	-2.5059	H31	6.8300	0.9098	0.0719
C2	-1.3952	2.3479	-1.5305	C32	-2.6548	0.7397	0.3714
C3	-0.6402	1.7884	-0.4787	C33	-3.6003	1.6555	0.8239
C4	0.7711	1.9811	-0.4474	C34	-3.0403	-0.4677	-0.1887
C5	1.3773	2.7213	-1.4963	C35	-4.9456	1.3620	0.7014
C6	0.6266	3.2724	-2.4949	H36	-3.2814	2.5930	1.2682
C7	1.5317	1.3497	0.5546	C37	-4.3933	-0.7644	-0.3111
C8	0.8714	0.6405	1.5749	H38	-2.2826	-1.1832	-0.5002
C9	-0.5431	0.4842	1.5236	C39	-5.3524	0.1503	0.1293
C10	-1.2017	-0.2434	2.5357	H40	-5.7048	2.0556	1.0443
H11	-2.2740	-0.3750	2.4897	H41	-4.6807	-1.7123	-0.7476
C12	-0.4769	-0.7918	3.5605	O42	-6.6832	-0.0425	0.0521
C13	0.9232	-0.6413	3.6324	C43	-7.1658	-1.2548	-0.5163
C14	1.5794	0.0562	2.6600	H44	-6.7860	-2.1067	0.0619
H15	-1.3627	3.5002	-3.3111	H45	-6.7967	-1.3485	-1.5455
H16	-2.4635	2.1841	-1.5688	C46	-8.6727	-1.2085	-0.4845
H17	2.4553	2.8230	-1.4954	H47	-9.0809	-2.1267	-0.9146
H18	1.1022	3.8327	-3.2917	H48	-9.0362	-1.1167	0.5416
H19	-0.9952	-1.3539	4.3302	H49	-9.0469	-0.3605	-1.0626
H20	1.4736	-1.0833	4.4548	N50	-3.2462	1.0347	0.4887
H21	2.6544	0.1810	2.6967	C51	0.6638	-2.2769	-1.0782
C22	3.0065	1.3074	0.4770	O52	1.9144	-2.6441	-0.3510
C23	3.5614	0.0677	0.1555	O53	0.7295	-0.8338	-1.4188
C24	3.8395	2.4104	0.6624	O54	0.5287	-3.0879	-2.2843
C25	4.9344	-0.0962	0.0119	O55	-0.4863	-2.4880	-0.1727
H26	2.8894	-0.7708	0.0089	B56	5.5126	-1.4997	-0.4330
C27	5.2162	2.2547	0.5291	O57	6.8752	-1.6015	-0.5263
H28	3.4198	3.3775	0.9237	H58	7.1321	-2.4859	-0.8000
C29	5.7562	1.0189	0.1878	O59	4.7695	-2.5959	-0.7096
H30	5.8684	3.1075	0.6895	H60	3.8013	-2.5466	-0.6589

Table S6. Cartesian coordinates for optimized structure of \(\text{7} \).

![Diagram of \(\text{7} \)](image)

Atom	\(x \)	\(y \)	\(z \)	Atom	\(x \)	\(y \)	\(z \)
C1	0.2467	-3.3286	-2.3590	H31	-7.3112	-1.5336	0.6431
C2	0.9074	-2.5233	-1.4680	C32	2.2594	-0.9093	0.3547
C3	0.1748	-1.7729	-0.5232	C33	2.9824	-1.8763	1.0487
C4	-1.2451	-1.8600	-0.5082	C34	2.9027	0.0900	-0.553
C5	-1.8855	-2.7009	-1.4548	C35	4.3636	-1.8424	1.0245

S24
Table S7. Cartesian coordinates for optimized structure of 8.

Atom	x	y	z	Atom	x	y	z
C6	-1.1598	-3.4243	-2.3578	H36	2.4626	-2.6511	1.6033
C7	-1.9783	-1.0809	0.4064	C37	4.2931	0.1266	-0.3779
C8	-1.2968	-0.2605	1.3160	H38	2.3200	0.8609	-0.8521
C9	0.1291	-0.2018	1.2814	C39	5.0300	-0.8400	0.3086
C10	0.8144	0.6269	2.1908	H40	4.9527	-2.5806	1.5566
H11	1.8927	0.6924	2.1483	H41	4.7819	0.9204	-0.9280
C12	0.1058	1.3720	3.0946	O42	6.3758	-0.8899	0.3469
C13	-1.3052	1.3214	3.1497	C43	7.1151	0.1091	-0.3463
C14	-1.9855	0.5248	2.2799	H44	6.8459	1.0993	0.0425
H15	0.8219	-3.8937	-3.0850	H45	6.8588	0.0798	-1.4131
C16	1.9862	-2.4484	-1.4901	C46	8.5809	-0.1749	-0.1345
H17	-2.9679	-2.7424	-1.4523	H47	9.1827	0.5749	-0.6544
H18	-1.6600	-4.0578	-3.0814	H48	8.8321	-1.1427	0.9282
H19	0.6432	2.0256	3.7732	H49	8.8453	-1.1607	-0.5240
H20	-1.8361	1.9311	3.8694	N50	0.8150	-0.9587	0.3715
H21	-3.0675	0.4813	2.2987	C151	-0.1130	3.2581	-0.7927
C22	-3.4640	-1.1725	0.4416	O52	-0.9594	2.8624	0.3515
C23	-4.2714	-0.2270	-0.2174	O53	-0.7601	2.7842	-0.2054
C24	-4.0342	-2.2196	1.1667	O54	0.0538	4.7067	-0.8452
C25	-5.6576	-0.3894	-0.1194	O55	1.2068	2.5946	-0.6649
C26	-5.4154	-2.3507	1.2444	B56	-3.6366	0.9619	-1.0554
H27	-3.3927	-2.9330	1.6756	O57	-2.4263	0.7479	-1.5957
C28	-6.2317	-1.4337	0.5950	O58	-4.3006	2.1418	-1.2359
H29	-6.3105	0.3100	-0.6363	H59	-5.0916	2.2309	-0.7042
H30	-5.8492	-3.1686	1.8104	H60	-1.9238	1.5475	-1.8795

![Chemical structure of 8](image-url)
Table S8. Cartesian coordinates for optimized structure of 9.

![Chemical structure of 9]

Atom	x	y	z	Atom	x	y	z
C2	-1.1993	-2.1746	-0.7377	C29	5.6273	0.8573	-0.6876
C3	-0.6035	-0.9126	-0.5521	H30	5.2735	2.3907	-2.1628
C4	0.8098	-0.7732	-0.6625	H31	6.7087	0.9215	-0.7674
C5	1.5681	-1.9163	-1.0327	C32	-2.8091	0.0311	-0.1872
C6	0.9724	-3.1351	-1.2113	C33	-3.5975	0.1588	-1.3282
C7	1.4175	0.4934	-0.4504	C34	-3.3918	-0.2476	1.0382
C8	0.5800	1.5987	-0.1411	C35	-4.9676	0.0074	-1.2362
C9	-0.8322	1.4317	-0.0856	H36	-3.1327	0.3757	-2.2845
C10	-1.6572	2.5403	0.1905	C37	-4.7703	-0.4018	1.1387
H11	-2.7319	2.4174	0.2097	H38	-2.7690	-0.3467	1.9213
C12	-1.0941	3.7664	0.4462	C39	-5.5668	-0.2745	-0.0020
C13	0.3016	3.9359	0.4645	H40	-5.6018	0.1018	-2.1102
C14	1.1161	2.8725	0.1843	H41	-5.2077	-0.6203	2.1044
C15	-0.8906	-4.2282	-1.1859	O42	-6.9044	-0.4043	-0.0166
C16	-2.2710	-2.2827	-0.6375	C43	-7.5814	-0.6953	1.2022
H17	2.6364	-1.8057	-1.1677	H44	-7.3793	0.1007	1.9303
C18	1.5712	-3.9965	-1.4828	H45	-7.2037	-1.6408	1.6120
H19	-1.7422	4.6097	0.6613	C46	-9.0551	-0.7883	0.8979
H20	0.7295	4.8993	0.7167	H47	-9.6089	-1.0113	1.8134
H21	2.1929	2.9766	0.2235	H48	-9.4271	0.1544	0.4906
C22	2.8639	0.6456	-0.5337	H49	-9.2520	-1.5818	0.1737
C23	3.6969	-0.1772	0.2421	N50	-1.3807	0.1885	-0.2813
C24	3.4423	1.5989	-1.3903	B51	5.9941	-1.0600	1.1383
C25	5.0839	-0.0805	0.1954	F52	7.2914	-1.1569	0.6044
H26	3.2528	-0.8952	0.9269	F53	6.0421	-0.5334	2.4452
C27	4.8224	1.6852	-1.4712	F54	5.3798	-2.3377	1.1727

Table S9. Cartesian coordinates for optimized structure of 10.

![Chemical structure of 10]

Atom	x	y	z	Atom	x	y	z					
C1	-0.1573	-3.2876	-1.3636	C28	6.1528	0.3988	-0.4615					
C2	-0.8763	-2.1534	-1.0730	H29	5.9798	-0.5604	1.4538					
C3	-0.1971	-0.9489	-0.8105	H30	6.0140	1.3727	-2.3816					
C4	1.2252	-0.9220	-0.8387	H31	7.2380	0.4346	-0.4331					
C5	1.9239	-2.1195	-1.1386	C32	-2.3239	0.1374	-0.4019					
C6	1.2486	-3.2779	-1.4030	C33	-3.1345	0.3640	-1.5108					
C7	1.9102	0.2755	-0.5533	C34	-2.8853	-0.1537	0.8305					
C8	1.1640	1.4529	-0.3290	C35	-4.5089	0.2994	-1.3798					
C9	-0.2560	1.3966	-0.3091	H36	-2.6845	0.5893	-2.4722					
C10	-0.9963	2.5679	-0.0503	C37	-4.2674	-0.2205	0.9692					
-----	------	------	------	------	------	------	------	------	------	------	------	------
H11	-2.0775	2.5292	-0.0351	H38	-2.2404	-0.3307	1.6853					
C12	-0.3402	3.7500	0.1880	C39	-5.0870	0.0063	-0.1388					
C13	1.0657	3.8182	0.1968	H40	-5.1618	0.4714	-2.2279					
C14	1.7981	2.6898	-0.0485	H41	-4.6887	-0.4498	1.9395					
H15	-0.6924	-4.2103	-1.5644	O42	-6.4322	-0.0348	-0.1139					
H16	-1.9573	-2.1823	-1.0435	C43	-7.0862	-0.3326	1.1145					
H17	3.0055	-2.0910	-1.1352	H44	-6.8091	0.4168	1.8671					
H18	1.7921	-4.1893	-1.6221	H45	-6.7588	-1.3167	1.4737					
H19	-0.9224	4.6442	0.3863	C46	-8.5722	-0.3178	0.8591					
H20	1.5620	4.7570	0.4141	H47	-9.1096	-0.5432	1.7838					
H21	2.8806	2.7089	-0.0197	H48	-8.8944	0.6633	0.5029					
C22	3.3886	-0.3039	-0.5104	H49	-8.8442	-1.0656	0.1108					
C23	4.0504	-0.2453	0.6007	N50	-0.8909	0.2003	-0.5250					
C24	4.0840	0.8928	-1.5727	B51	3.2496	-0.9236	1.8551					
C25	5.4466	-0.1678	0.5929	F52	2.9803	-2.2854	1.5693					
C26	5.4712	0.9289	-1.5531	F53	4.0047	-0.8236	3.0271					
H27	3.5398	1.3094	-2.4165	F54	1.9965	-0.2552	2.0272					
4. Thermal analysis

Figure S37. TGA and DSC curves of 5.
Figure S38. TGA and DSC curves of 6.

Figure S39. TGA and DSC curves of 7.
Figure S40. TGA and DSC curves of 8.

Figure S41. TGA and DSC curves of 9.
Figure S42. TGA and DSC curves of 10.
5. HR-MS

Figure S43. HRMS data for 5.

Figure S44. HRMS data for 6.
Figure S45. HRMS data for 7.

Figure S46. HRMS data for 8.
Figure S47. HRMS data for 9.

Figure S48. HRMS data for 10.