Short Report:
A Comparative Study on Deoxynivalenol Mycotoxin Level in Wheat Flour and Bread Samples

Issa Gholampour Azizi 1, Javid Arjmandi 2, Sanaz Ahmadi 3, *Samaneh Rouhi 4, 5

1. Department of Laboratory Sciences, Faculty of Medicine, Islamic Azad University, Babol Branch, Babol, Iran.
2. Department of Food Science and Technology, Faculty of Agriculture, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran.
3. Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
4. Children Growth Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
5. Clinical Research Development Unit, Kosar Hospital, Qazvin University of Medical Sciences, Qazvin, Iran.

ABSTRACT

Background: Deoxynivalenol (DON) is one of the most common mycotoxins found in cereal products. The purpose of this study is to compare the DON contamination level in raw wheat flour and bread.

Objective: The purpose of this study is to compare the DON contamination level in raw wheat flour and bread.

Method: In this analytical study with cross-sectional design, a total of 44 wheat flour and bread samples (Lavash flour and bread, and Barbari flour and bread) were collected. The DON level was measured using ELISA method. Collected data were analyzed in SPSS software by using ANOVA and t-test considering a significance level of P≥0.05.

Finding: The mean±SD total DON level in the flour and bread samples was 0.03±0.04 and 0.12±0.21 µg/kg. The mean DON level in the Lavash and Barbari flour samples was 0.01±0.02 and 0.01±0.01 µg/kg, and in the Lavash and Barbari bread samples as 0.04±0.03 and 0.16±0.27 µg/kg, respectively. There was no statistically significant difference in the DON levels between flour and bread samples (P≥0.05).

Conclusion: The presence of DON in the studied samples was observed, but its contamination level was lower than the permissible limit.

Extended Abstract

1. Introduction

The Deoxynivalenol (DON) mycotoxin is generally produced by Fusarium graminearum and Fusarium culmorum [1, 2]. This toxin is commonly found in cereal products [3-5]. According to the European Commission report, the maximum permissible limit of DON in wheat flour is 750 µg/kg, and in bread as 500 µg/kg [6]. European Food Safety Authority reported that 1.7% of animal food and 0.8% of human food has a contamination level above the standard level [7].

In Vidal et al.’s study in 2016, it was shown that the hydrolysis enzymes used in the bakery reduced the amount of DON from 10 to 14% at 45°C [8]. In the study by Yazdanpanah et al. in 2014, 13.9% of the cereal samples and its products were contaminated with DON by a maximum level of 368.7 ng/g and an average level of 118.2 ng/g [9]. Bread made from wheat flour is considered as the main source of human food. Therefore, it is necessary to iden-
identify the type and amount of fungal toxins in various food products to control and provide the necessary solutions to eliminate it. Due to the fact that the production of fungal toxins is higher in humid areas, this study aims to compare the DON contamination level in wheat flour and bread in northern Iran with humid climate.

2. Materials and Methods

This is an analytical study with cross-sectional design conducted in Mahmudabad, Mazandaran, Iran in Spring 2016. The sample size, according to the capacity of the Enzyme-Linked Immunosorbent Assay (ELISA) kit, was determined 44. For this purpose, 44 samples of wheat flour and bread were prepared from the selected bakeries; 12 Lavash flour and 12 Lavash bread (from the Lavash bakeries No.1 and 2), and 10 Barbari flour and 10 Barbari breads (from the Barbari bakeries No.1 and 2). All samples were kept in the refrigerator at a temperature of 4°C until transferring to the laboratory [10]. First, 5 g of each flour sample was measured using a digital scale and poured into Erlenmeyer flasks, separately. Then, 25 cc of 72% methanol was added to the flour-containing flasks and mixed well for 3 minutes using a shaker. The resulting solution was then filtered using a filter paper (Whatman Grade 1) and the extract was collected [11]. The amount of DON in the samples was measured according to the instructions of the Veratox ELISA kit (Neogen, USA) [12]. Data were analyzed in SPSS v. 20 software using Analysis of Variance (ANOVA) and t-test, considering a significance level at P≤0.05) [3, 5].

3. Results

The Mean±SD of DON toxin in flour and bread samples was 0.03±0.04 and 0.12±0.21 μg/kg, respectively, and there was no significant difference between flour and bread samples, according to the t-test results (P=0.24). The Mean±SD of DON in Lavash and Barbari flours were reported 0.01±0.02 and 0.01±0.01, respectively, but this difference was not statistically significant (P=0.59). The Mean±SD of DON in Lavash and Barbari breads was 0.04±0.03 and 0.16±0.27, respectively, but this difference was not statistically significant, either (P=0.21). Furthermore, the amount of DON in different samples had no significant relationship with different months of the sampling season (P=0.35).

4. Discussion

In the present study, the highest level of contamination with DON in the bread samples was 0.78 μg/kg, which is not high compared to the permissible limit [6]. The DON is released under the influence of digestive enzymes and increases the amount of toxin in the dough, but in the latter stages of cooking and under heating, a large amount of DON toxin is decomposed [13]. The processes of peeling or bleaching of wheat as well as the milling process can be effective in reducing the contamination of wheat flours [14].

In the process of making Barbari bread, sourdough is used and fermentation is performed for a longer time compared to the Lavash bread; therefore, the release rate of acetylated DON compounds increases, which causes a slight increase in the amount of DON in the Barbari bread [15]. On the other hand, DON remains stable at 120°C during cooking and is largely eliminated at 180°C and remains with a very low amount at 210°C [12]. The amount of heat in baking the Lavash bread is higher than that in baking the Barbari bread, and due to the thinness and flatness of Lavash bread, more heat penetrates into it compared to the Barbari bread leading to the elimination of more toxins [16]. Although the use of sodium bicarbonate is not allowed in the Lavash bakeries in Iran, many bakeries may still add it during baking due to its popularity; with the alkalinization of the environment, it causes the elimination and reduction of the DON in the final product [17].

Weather, temperature, and the conditions, duration, and method of flour storage all can affect the accumulation of toxins in raw materials and products [2]. The results of the present study showed that the amount of DON in flour and bread samples was lower than the permissible limit. Moreover, the samples obtained from this study were completely safe to consume with no any problem for the health. Furthermore, the amount of DON was not significantly different between heat-baked breads and raw wheat.

Ethical Considerations

Compliance with ethical guidelines

There was no experiment on animal or human samples in this study; hence, no ethical approval was needed.

Funding

This study was extracted from the PhD. dissertation of second author approved by the Islamic Azad University of Ayatollah Amoli Branch. The research received no specific grant from funding agencies in the public, commercial, or not-for-profit organizations.

Authors’ contributions

Conceptualization, methodology, validation: Issa Gholampour Aziz, Javid Arjmandi and Samaneh Rouhi; Project supervision and management: Issa Gholampour Azizi;
Written: Javid Arjmandi, Sanaz Ahmadi and Samaneh Rouhi; Data analysis: Javid Arjmandi; Sources and editors: Sanaz Ahmadi, Samaneh Rouhi.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

Authors would like to thank their esteemed colleagues in the Islamic Azad University, Babol Branch and the Islamic Azad University, Ayatollah Amoli Branch.
بررسی تفاوت میزان آلودگی سم قارچی دی اکسی نیوالنول در آرد گندم خام و نان

عباس غلامرضا عزیزی، جاوید ارجمندی، عیسی غلامپور عزیزی، سمانه روحی

شماره 24، دوره 1399، مهر و آبان

غزارش کوتاه

بررسی تفاوت میزان آلودگی سم قارچی دی اکسی نیوالنول در آرد گندم خام و نان

دی اکسی نیوالنول از عمومی‌ترین مایکوتوکسین‌هایی است که در دانه‌های غلات یافت می‌شود.

زمینه

این مطالعه با هدف تعیین تفاوت میزان سم قارچی دی اکسی نیوالنول در آرد خام و نان در نانوایی‌های شهرستان محمودآباد انجام شد.

نمونه تصادفی آرد گندم و نان (لواش و بربری) جمع‌آوری و میزان سم به وسیله الایزا 44444 در مطالعه تحلیلی مقطعی حاضر، مواد و روش‌ها

در مطالعه، مقدار سم قارچی دی اکسی نیوالنول با روش آنالیز همبستگی مورد بررسی قرار گرفت.

میکروگرم بر کیلوگرام بود. مقدار سم موجود در 0/12±0/21 و 0/03±0/04 میکروگرم در آرد و نان به ترتیب یافت است.

مقدار سم در نان لواش و بربری به ترتیب 0/01±0/01 و 0/01±0/02 میکروگرم بر کیلوگرم بود.

مقدار سم قارچی دی اکسی نیوالنول در آرد لواش و بربری به ترتیب 0/16±0/27 و 0/04±0/03 میکروگرم بر کیلوگرم بود.

مقدار سم در نمونه‌های آرد و نان با توجه به آماری معنی‌دار نبود.

کلیدواژه‌ها:

دی اکسی نیوالنول، گندم، آرد، نان

مقدمه

عموماً به وسیله فوزاریوم 1 سم قارچی دی اکسی نیوالنول 2 تولید می‌شود. این سم، 2، 3[3] گرامیناروم و فوزاریوم کلموروم تولید می‌شود و در حیوانات باعث تهوع، استفراغ، اسهال خونی، کاهش وزن و امتناع از خوردن غذا می‌شود. این سم یک عامل محرک ایجاد تومور سرطانی است.

کمیسیون 3-5 [4] حداقل محدودیت مصرف دی اکسی نیوالنول است. در ایران، در سال‌های 2012 تا 2017، تعداد 24413 نمونه غذای انسان و حیوانات را 271 کشور اروپایی جمع‌آوری کرد و از نظر دی اکسی نیوالنول مورد بررسی قرار داد. در این بررسی، دی اکسی نیوالنول در 1/7 درصد نمونه‌ها وجود داشت. در یک مطالعه در اروپایی، غلظت سم قارچی دی اکسی نیوالنول در 8/6 درصد غذاهای غلات و 8/8 درصد غذاهای دیگر بین 0/12 و 0/21 میکروگرم بر کیلوگرام بود.

دی اکسی نیوالنول، 3/1 میکروگرم بر کیلوگرم غذای حیوان را از حد مجاز می‌نماید.

به دلیل اینکه آلودگی سم قارچی که باشد دفعیسم می‌شود و بیماری‌ها و کمک‌های اجتماعی استفاده می‌شود. در ایران، می‌تواند موجب بهبود ارتباطات، کاهش خانوادگی، افزایش دانش‌آموزی و افزایش بهبود در ارتباطات باشد.

1. Deoxynivalenol (DON)
2. European Commission (EC)
3. European Food Safety Authority (EFSA)

References:

1. Deoxynivalenol (DON)
2. European Commission (EC)
3. European Food Safety Authority (EFSA)
محمدمهدوی، ایرج مرادی، علی اکبر طالب‌الهی و علی‌محمد پرستوئیی، ایرج جلالی و عادل سیدمحمدی

 tầm و روش‌ها

 مطالعه حاضر از نوع تحلیلی و به صورت مقطعی در شهرستان دشتی، استان گلستان در زمینه توزیع سم در نانوایی‌های سطح شهرستان انجام شد. این مطالعه شامل آزمون تی و آزمون تی خواص نزدیک و مجموعه‌ای از مواد تشکیل دهنده آرد و نان در نمونه‌های مختلف با ماه‌های مختلف فصل نمونه‌گیری می‌باشد. در پایان این مطالعه، نتایج آزمون تی تفاوت معنی‌داری بین نمونه‌های آرد و نان نشان داد که میزان سم در آرد لواش به طور معنی‌داری بالاتر بوده است. به همین دلیل، نتایج آزمون تی نشان داد که میانگین سم موجود در آرد لواش و بربری نشان دهنده تفاوت معنی‌داری بین نمونه‌های آرد و نان نیست. بنابراین، میزان سم در نان نهایتاً معادل نانوایی‌های تهیه شده در شرکت این شهرستان به شمار می‌آید.

کاربرد‌ها

 تأثیر حرارت در تجزیه سم آکسی نیوالنول

 در مطالعه حاضر، تأثیر حرارت بر تجزیه سم آکسی نیوالنول در نانوایی‌های سطح شهرستان به بررسی подیده شد. در این مطالعه، با استفاده از روش آنووا، نتایج نشان داد که میزان سم در نان نهایتاً معادل نانوایی‌های تهیه شده در شرکت این شهرستان به شمار می‌آید.

 5. Analysis of variance
 6. T-test
 7. Liu
 8. Bung
مرحله آماده‌سازی و پخت، میزان سم در نان بربری بیشتر از نان لواش بود. در مرحله عمل اولیه نان بربری از خمیرمایه استفاده و به مدت طولانی تری نسبت به نان لواش تخمیر انجام می‌شد. به همین دلیل میزان سم در نان بربری بیشتر از نان لواش بود. همچنین مصرف نان بربری در مدت طولانی تری و در مدتی که نان لواش بکار رفته است، سم در نان بیشتر است. این موضوع به دلیل افزایش جزئی میزان سم دی اکسی نیوالنول در نان بربری نسبت به نان لواش می‌باشد. در نان بربری نسبت به نان لواش می‌باشد.

درجه سانتی‌گراد 120 درجه تا حد زیادی از بین رفته و در جریان پخت، سم در مدت زمانی که طولانی‌ترین مدت زمان پخت در نان بربری بیشتر از نان لواش بود، میزان سم در نان بربری کاهش یافت. در نان بربری، حرارت بیشتر از پخت نان لواش باعث کاهش سم در نان بربری نمی‌شود. این موضوع به دلیل رفتن استیله دی اکسی نیوالنول نان بربری بیشتر از نان لواش رفته است. در مدت زمانی که طولانی‌ترین مدت زمان پخت در نان بربری بود، سم در نان بربری کاهش یافت. در نان بربری، حرارت بیشتر از پخت نان لواش باعث کاهش سم در نان بربری نمی‌شود. این موضوع به دلیل رفتن استیله دی اکسی نیوالنول نان بربری بیشتر از نان لواش رفته است.

افزودن گل‌مایه در نانوایی‌های لواش ممنوع است، ولی ممکن است به دلیل رایج بودن مصرف گل‌مایه در مراحل پخت، سم در نان لواش کاهش یابد. این موضوع به دلیل رفتن استیله دی اکسی نیوالنول نان بربری بیشتر از نان لواش رفته است.

نتایج مطالعه حاضر نشان داد، میزان سم در نان بربری بیشتر از نان لواش بود. در نان بربری، سم در نان لواش کاهش یابد. این موضوع به دلیل رفتن استیله دی اکسی نیوالنول نان بربری بیشتر از نان لواش رفته است.

تعداد مناطق

پای اخیر توصیه‌گر تعریف مناطق در مقاله وجود ندارد.

مشکل و ناهنجاری

پای دستی از همکاران مختصر در دانشگاه آزاد اسلامی واحد بابل و دانشگاه آزاد اسلامی واحد انجام شد. این سایر در مقاله وجود ندارد.

پیروی از اصول اخلاقی

این مطالعه از حفظ اخلاقی حرمت محترم، محترم و همکاران محترم در دانشگاه آزاد اسلامی واحد بابل و محترم و همکاران محترم در دانشگاه آزاد اسلامی واحد آملی تقدیر و تشکر می‌شود.

تعارض منافع

بنابر اظهار نویسندگان، تعارض منافعی در مقاله وجود ندارد.

تشکر و قدردانی

بدرن این به نظر می‌رسد که مطالعات و تحقیقات بیشتر و نیز پژوهش در طول فصول مختلف سال برای به دست آوردن نتایج مطلوب و دقیق‌تری مورد نیاز است.

نتایج مطالعه حاضر نشان داد، سم نان بربری بیشتر از نان لواش بود، ولی میزان سم در نان بربری کاهش یافت. این موضوع به دلیل رفتن استیله دی اکسی نیوالنول نان بربری بیشتر از نان لواش رفته است. در نان بربری، سم در نان لواش کاهش یابد. این موضوع به دلیل رفتن استیله دی اکسی نیوالنول نان بربری بیشتر از نان لواش رفته است.
References

[1] Alisaae E, Behmann J, Rathgeb A, Karlovsky P, Dehne HW, Mahlein AK. Assessment of Fusarium infection and mycotoxin contamination of wheat kernels and flour using hyperspectral imaging. Toxins. 2019; 11(10):556. [DOI:10.3390/toxins11100556] [PMID] [PMCID]

[2] Martinez M, Albuquerque LDR, Dinolfo ML, Biganzoli F, Pinto VF, Stenglein SA. Effects of Fusarium graminearum and Fusarium poae on disease parameters, grain quality and mycotoxin contamination in barley (part II). J Sci Food Agric. 2020; 100(7):3182-91. [DOI:10.1002/jsfa.10354] [PMID]

[3] Foroud NA, Baines D, Gagkaevi TY, Thakor N, Badea A, Steiner B, et al. Trichothecenes in cereal grains - an update. Toxins (Basel). 2019; 11(11):634. [DOI:10.3390/toxins11110634] [PMID] [PMCID]

[4] Chen C, Turnaa NS, Wua F. Risk assessment of dietary deoxynivalenol exposure in wheat products worldwide: Are new codex DON guidelines adequately protective? Trends Food Sci Technol. 2019; 89:11-25. [DOI:10.1016/j.tifs.2019.01.003]

[5] Rios G, Pinson-Gadais L, Abécassis J, Zakhia-Rozis N, Lullien-Pellerin V. Assessment of dehulling efficiency to reduce deoxynivalenol and Fusarium level in durum wheat grains. J Cereal Sci. 2009; 49(3):387-92. [DOI:10.1016/j.jcs.2009.01.003]

[6] Mishra S, Srivastava S, Dewangan J, Divakar A, Rath SK. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: A survey. Crit Rev Food Sci Nutr. 2020; 60(8):1346-74. [DOI:10.1080/10408398.2019.1571479] [PMID]

[7] European Food Safety Authority. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J. 2013; 11(10):3379. [DOI:10.2903/j.efsa.2013.3379]

[8] Vidal A, Ambrosio A, Sanchis V, Ramos AJ, Marin S. Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glucoside during breadmaking. Food Chem. 2016; 208:288-96. [DOI:10.1016/j.foodchem.2016.04.003] [PMID]

[9] Yazdanpanah H, Shafaati AR, Foroutan SM, Zarighi A, Aboul-Fathi F, Khodam A, et al. Occurrence of deoxynivalenol in foods for human consumption from Tehran, Iran. Iran J Pharm Res. 2014; 13(Suppl):87-92. [PMID] [PMCID]

[10] Derakhshan M, Rouhi S, Khasi B, Zaboli F. A survey on ochratoxin a contamination in cookies and biscuits in Amol, Iran in 2013. Tabari Biomed Stud Res J. 2016; 2(2):53-7. [In Persian] http://tbsrj.mazums.ac.ir/article-1-3546-en.html

[11] Hashemi-Karouei M, Gholampour-Azizi I, Rouhi S, Tashayyo M. Effects of different temperatures and durations of heating on the reduction of Ochratoxin A in bread samples. J Adv Environ Health Res. 2014; 2(4):209-14. [DOI:10.22102/JAEHR.2014.40171]

[12] Batrinou A, Houhoulou D, Papageorgiou E. Rapid detection of mycotoxins on foods and beverages with enzyme linked immuno-sorbent assay. Qual Assur Saf Crop Foods. 2020; 12(1):40-9. [DOI:10.15586/QAS2019.654]

[13] Liu Y, Li M, Bian K, Guan E, Liu Y, Lu Y. Reduction of deoxynivalenol in wheat with superheated steam and its effects on wheat quality. Toxins (Basel). 2019; 11(7):414. [DOI:10.3390/toxins11070414] [PMID] [PMCID]

[14] Jiang Q, Wu J, Yao K, Yin Y, Gong MM, Yang C, et al. Paper-based microfluidic device (DON-Chip) for rapid and low-cost deoxynivalenol quantification in food, feed, and feed ingredients. ACS Sens. 2019; 4(11):3072-9. [DOI:10.1021/acssensors.9b01895] [PMID]

[15] Jiang D, Chen J, Li F, Li W, Yu L, Zheng F, et al. Deoxynivalenol and its acetyl derivatives in bread and biscuits in Shandong province of China. Food Addit Contam Part B Surveill. 2018; 11(1):43-8. [DOI:10.1080/19393210.2017.1402824] [PMID]

[16] Wu L, Qiu L, Zhang H, Sun J, Hu X, Wang B. Optimization for the production of deoxynivalenol and zearalenone by Fusarium graminearum using response surface methodology. Toxins (Basel). 2017; 9(2):57. [DOI:10.3390/toxins9020057] [PMID] [PMCID]

[17] Kamani H, Paseban A, Bazrafshan E, Kord Mostafa Pour F, Ansari H, Rakhsh Khoshid A. Title study of indirect burning in bakeries in Zahedan. J North Khorasan Univ Med Sci. 2010; 2(2-3):59-64. [In Persian] [DOI:10.29252/jnkums.2.2.3.59]
This Page Intentionally Left Blank