Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original Article

Demographic, clinical, and laboratory characteristics of patients with COVID-19 during the second and third waves of the pandemic in Egypt

Ragaey A. Eid a, Abdelrahman M. Attia b, Mahmoud Hassan c, Marwa Abdallah Shaker a, Manar Ahmed Kamald,∗

a Department of Tropical Medicine, Faculty of Medicine, Beni-Suef University, Egypt
b Faculty of Medicine, Cairo University, Cairo, Egypt
c Lecturer of Internal Medicine, Department of Internal Medicine, Faculty of Medicine, Beni-Suef University, Egypt
d Faculty of Medicine, Benha University, Benha, Egypt

A R T I C L E I N F O

Article history:
Received 29 May 2021
Received in revised form 6 August 2021
Accepted 8 August 2021

Keywords:
Demographic details
Clinical characteristics
Laboratory findings
COVID-19
Egypt
SARS-CoV-2

A B S T R A C T

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus that belongs to the coronaviruses and causes coronavirus disease 2019 (COVID-19). In this study, we explored the demographic details, clinical features, and routinely conducted laboratory investigations of patients with COVID-19 during the second and third waves of the pandemic to understand their possible diagnostic and prognostic values in Egypt.

Methods: In this retrospective cohort study, the demographic characteristics, detailed medical history, laboratory findings, and symptoms of all enrolled patients with SARS-CoV-2 were collected from the medical records of Beni Suef University Hospitals during December 15, 2020, and April 15, 2021.

Results: This retrospective study included 473 patients, almost all of whom were elderly. The median age of the patients was 48 years, and those with moderate and severe disease were older than those with mild infections. The proportion of females was higher (63.4%) than males (36.6%). Diabetes mellitus (DM) was the most common comorbidity (17.3%), and fever was the most typical manifestation of COVID-19 (62.6%). Those with severe disease showed a higher C-reactive protein level (CRP) than those with moderate (p-value 0.009) or mild (p-value 0.01) diseases. Serum ferritin levels were significantly higher in patients with severe disease than in those with moderate disease (p-value 0.018). In contrast, n-dimer and serum creatinine were normal and showed no significant difference in all comparisons (p-value overall 0.21).

Conclusion: This study observed several variations in COVID-19 patients’ characteristics. The new manifestations included skin rash, bone and low back pains, and rigors. In contrast to females, most males had moderate-to-severe illness. Old age and higher body mass index was associated with increasing severity. n-dimer and complete blood count were normal and could not identify potential COVID-19 patients. Patients who had mild illness were still at risk of developing post-COVID complications.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of King Saud Bin Abdulaziz University for Health Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Coronavirus disease 2019 (COVID-19) is a novel outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first case of SARS-CoV-2 infection appeared in Wuhan City, Hubei Province, China, and manifested as respiratory illness; the World Health Organization (WHO) reported this case on December 31, 2019 [1]. The WHO conducted a meeting on January 30, 2020, in which the COVID-19 outbreak was declared a global health emergency [2]. The first case of COVID-19 in Egypt was detected on February 14, 2020 [3]. Subsequently, Egypt sought to prevent the spread of COVID-19 infection with a partial ban that started on March 25, 2020 [4]. According to the consultant for health affairs...
of the president, the second wave in Egypt began on November 26, 2020 [5], while the third wave began at the end of March 2021, with an increased number of cases (>650 cases) [6,7].

The most typical clinical manifestations of COVID-19 are cough, fever, dyspnea, and pneumonia [8]. The WHO classifies cases into mild, moderate, and severe according to the severity of the disease [9]. The diagnosis is confirmed by reverse transcription-polymerase chain reaction (RT-PCR) of nasopharyngeal and oropharyngeal swab samples obtained from patients with symptoms [9]. Hematologic parameters are also changed in patients with COVID-19 infection. Several studies have found that increased d-dimer and abnormal coagulation parameters were associated with poor prognosis [9–11], in addition to fibrin degradation products and baseline platelet concentrations. The demographic details, clinical characteristics, and laboratory findings of patients with COVID-19 showed variation during the second wave as the incidence rate, number of infected patients, and hospitalization rate increased. All variations were different from the characteristics of the first wave [12,13].

Moreover, variations were also noted between the second and third waves [14,15]. Despite the changes in patients' demographic, clinical, and laboratory characteristics with COVID-19 during the different pandemic waves, only a few studies have observed these characteristics in Egypt during the first pandemic wave [4,16]. Furthermore, no previous studies were retrospectively conducted on patients with COVID-19 to determine these characteristics in Egypt during the second and third waves. Therefore, we explored the demographic details, clinical features, and routine laboratory investigations of patients with COVID-19 to establish potential diagnostic and prognostic values of COVID-19 in Egypt.

Material and methods

This retrospective cohort study was conducted in accordance with the STROBE Statement and Checklist for cohort studies [17].

Study design and setting

This study is a single-center retrospective cohort study conducted in Beni Suef University Hospitals in Egypt.

Study population and sample size

The target population included patients who were admitted to Beni Suef University Hospitals with confirmed COVID-19. According to the WHO criteria [18], patients were classified into mild, moderate, and severe groups according to the severity of the disease. For sample size calculations, we performed a retrospective analysis of the hospital medical records and filtered the data according to our inclusion and exclusion criteria and in a way similar to that described in D. Liao et al.'s study [19]. Retrospective studies use statistical power rather than calculating sample sizes [20], and we call these Post hoc power analyses based on determining the main outcome variable; the power of the study is 0.99. The statistical power was calculated using G*power software 3.1.9.4 [21], based on the following assumptions: main outcome variable and disease severity. Patients were classified into mild, moderate, and severe disease groups. Patients were classified into mild, moderate, and severe disease groups. The main statistical test is Post hoc power analysis: alpha = 0.01, total sample size = 473, effect size = 0.30 (see Supplementary Fig. 1).

Inclusion criteria

We included patients admitted to the hospitals between December 15, 2020, and April 15, 2021. Patients were diagnosed according to the WHO interim guidance based on a SARS-CoV-2-positive nasopharyngeal swab by RT-PCR. We included patients aged ≥18 from both the sexes with mild, moderate, and severe COVID-19.

Exclusion criteria

Patients with missing data were transferred to other medical facilities with unknown outcomes and those aged <18 years old were excluded.

Data collection

Demographic characteristics, detailed medical history, laboratory findings, and symptoms of all enrolled patients positive for SARS-CoV-2 infection were collected from the medical records of hospitals between December 15, 2020, and April 15, 2021. We handled and managed the data in a spreadsheet before starting the analysis. Data on demographic characteristics, previous medical history, and laboratory findings, including hematologic and biochemical parameters (complete blood count [CBC], liver function tests, kidney function test, C-reactive protein [CRP], fasting blood glucose, ferritin, and d-dimer), were collected. The diagnosis of COVID-19 was based on the history of epidemiologic exposure and clinical manifestations. The diagnosis was confirmed when positive results were obtained on performing SARS-CoV-2 RT-PCR test (see Supplementary Table 1). According to the COVID-19 protocol of the Egyptian Ministry of Health [22,23], the primary treatment for mild, moderate, and severe cases is based on antiviral drugs, immune modulators, anti-inflammatory drugs, analgesics, and multivitamins (see Appendix 1). After the patients were discharged from the hospital, their mean follow-up duration was approximately 13.5 days, which changed according to the patients' severity of disease.

Statistical analysis

The collected data were summarized and presented using suitable tables and graphs. Continuous nonnormally distributed variables are presented as median and interquartile range, and categorical variables are presented as numbers and percentages. Statistical significance was evaluated using the Kruskal–Wallis test for continuous variables and a chi-square test (χ²) or Fisher's exact test for categorical variables as appropriate. We performed post hoc pairwise comparisons among groups using the Bonferroni adjustment method after significant effects have been found. The association between the variables was tested using Spearman correlation analysis, followed by multinomial logistic regression analysis, including all factors showing significance (p < 0.05). Multinomial logistic regression models were conducted to determine the association between the predictor and dependent variables. The optimal CRP cutoff point was evaluated using the receiver operator characteristic (ROC) curve. The dependent variable (severities) was classified as mild (reference category), moderate, or severe. Therefore, the multinomial regression model was used to compare mild vs. moderate and mild vs. severe disease probabilities. A p-value of ≤0.05 was considered statistically significant. We conducted statistical analyses using the Statistical Package for the Social Sciences (SPSS) software (version 26.0) [24].

Ethical approval

This study was an observational cohort study that recruited human participants and thus conducted according to the ethical principles of the Declaration of Helsinki. The study was ethically approved by the ethical research committee of the Faculty of
Results

Baseline demographic and clinical characteristics

This retrospective study included 476 patients. Three patients were excluded: two with inadequate data in their hospital records and <18 years old. Almost all patients were older, and the median age was 48 years old. Patients with moderate and severe disease were older than those with mild disease. The proportion of females was higher (63.4%) than males (36.6%). However, males developed moderate and severe illnesses more frequently than did females. Approximately 8.5% of the patients were smokers. Diabetes mellitus (DM) was the most common comorbidity (17.3%), followed by hypertension (HTN) (16.7%) and hepatitis C virus (HCV) (7.5%). The most common clinical manifestations of COVID-19 were fever (62.6%), followed by cough (52.7%), bony pain (39.8%), dyspnea (36%), rigors (27.3%), and abdominal pain (26.8%). All baseline demographic and clinical characteristics are listed in Table 1.

Hematologic parameters of patients with COVID-19

The hematologic and coagulation parameters are presented in Table 2. Neutrophil count, lymphocyte count, neutrophil/lymphocyte (N/L) ratio, CRP, alanine aminotransferase (ALT), aspartate aminotransferase (AST), platelet, fasting blood sugar (FBS), and serum ferritin (all p < 0.001) and monocyte (p < 0.05) were significantly different in all comparisons.

Regarding the laboratory findings in Table 2, the patients with severe infection showed significantly higher CRP than those with moderate and mild illness. Serum ferritin was significantly higher in patients with severe disease than in those with moderate disease (mainly males) (see Fig. 1), and FBS was also considerably higher in patients with severe disease than those with moderate and mild illness. Basal O₂ was significantly lower in patients with severe disease (p < 0.001), while heart rate was considerably higher in patients with severe disease (p < 0.001) (see Table 2).

The optimum cutoff value for CRP to predict severe disease was 17.4 mg/L using a ROC curve with a sensitivity of 76.4% and a specificity of 63.4%. The area under the ROC curve (AUC) for severe cases was 0.73 (see Fig. 2). The accuracy of D-dimer to diagnose was poor (AUC = 0.56) with a cutoff value (0.77), and the accuracy of serum ferritin to diagnose severe cases was fair (AUC = 0.75) with a cutoff value (165.86), and they were at the normal range; this means that there were severe cases with normal serum ferritin and normal D-dimer.

Correlations between grade of severity and other factors

A low positive correlation was noted between body mass index (BMI), sex, DM, HTN, ischemic heart disease, HCV, liver cirrhosis, chronic kidney disease (CKD), cough, sweating, ALT, AST, FBS, segmented neutrophils %, N/L ratio, heart rate, and grade of severity. A low negative correlation was noted between diarrhea, abdominal pain, anemia, dysgeusia, rhinorrhea, platelet, lymphocyte percentage (%), and grade of severity as well as the association between the grade of severity. A moderately positive correlation was established between age, serum ferritin, CRP, duration of O₂ treatment per day, time of follow-up per day, and grade of severity (see Table 3). All factors showing significance (p < 0.05) were evaluated using the multinomial logistic regression model (see Table 4).

Determinants of severity with a multinomial logistic regression model

The multinomial regression analysis revealed that age, BMI, sex, DM, HTN, HCV, liver cirrhosis, CKD, diarrhea, abdominal pain, anemia, dysgeusia, cough, rhinorrhea, sweating, ALT, AST, CRP, FBS, serum ferritin, segmented %, lymphocyte %, N/L ratio, basal O₂, and heart rate were significant predictors of severe grade (see Table 4).

The odds ratio (OR) for age was 1.07 (95% confidence interval [CI], 1.05–1.08), meaning that older patients had a higher chance of developing the more severe disease than younger patients. The OR for BMI was 1.2 (95% CI, 1.12–1.3), meaning that patients with higher BMI had a higher chance of developing more severe disease than patients with lower BMI. The OR for female patients was 0.48 (95% CI, 0.28–0.82), meaning that female patients had a lesser chance of developing severe symptoms than male patients. The OR for DM, HTN, HCV, liver cirrhosis, and CKD were 0.13 (95% CI, 0.07–0.25), 0.15 (95% CI, 0.07–0.29), 0.10 (95% CI, 0.04–0.27), 0.11 (95% CI, 0.028–0.44), and 0.09 (95% CI, 0.009–0.89), respectively, meaning that patients without these comorbidities had a lesser chance of developing more severe disease than patients with these comorbidities. The OR for diarrhea, abdominal pain, anemia, dysgeusia, and rhinorrhea were 2.47 (95% CI, 1.16–5.23), 2.53 (95% CI, 1.26–5.06), 2.91 (95% CI, 1.27–6.69), 2.24 (95% CI, 1.016–4.96), and 2.42 (95% CI, 0.99–5.94), respectively, meaning that patients without these symptoms had a lower chance of developing more severe disease than patients with these symptoms. Those patients with symptoms such as cough (OR, 0.44; 95% CI, 0.25–0.75) and sweating (OR, 0.29; 95% CI, 0.11–0.76) had a lower chance of developing more severe disease than those without these symptoms. The OR for laboratory findings ALT, AST, FBS, CRP, serum ferritin, segmented %, and N/L ratio were 1.16 (95% CI, 1.10–1.24), 1.15 (95% CI, 1.09–1.21), 1.012 (95% CI, 1.008–1.017), 1.022 (95% CI, 1.015–1.029), 1.006 (95% CI, 1.004–1.008), 1.05 (95% CI, 1.02–1.07), and 1.28 (95% CI, 1.13–1.45), respectively, meaning that patients...
with higher laboratory findings had a higher chance of developing more severe disease than those with lower laboratory findings. The OR for lymphocyte percentage was 0.95 (95% CI, 0.92–0.97), meaning that those patients with a higher lymphocyte percentage had a lesser chance of developing more severe disease than those with a lower lymphocyte percentage.

The OR for basal O₂ was 0.98 (95% CI, 0.97–0.99), meaning that patients with higher basal O₂ had a lesser chance of developing more severe disease than lower basal O₂. The OR for heart rate was 1.05 (95% CI, 1.03–1.08), meaning that patients with a higher heart rate had a higher chance of developing more severe disease than those with a lower heart rate.

Clinical complications and mortality rate

Six death events occurred during hospitalization; all six patients (100%) had severe disease. In addition, clinical follow-up complications, such as deep vein thrombosis (DVT), appeared in one patient (0.2%) with severe illness after hospital discharge despite oral anticoagulation therapy. Moreover, persistent polyneuropathic pain appeared in one patient (0.2%) with mild disease, chronic cough appeared in three patients (0.6%; one with mild disease and two with severe illness), and chronic fatigue occurred in five patients (1.1%; two with moderate disease and three with severe disease) (see Fig. 3).

Discussion

COVID-19 emerged in December 2019 in Wuhan. Unfortunately, the published data from Egypt currently only present the patient characteristics of the first wave of the pandemic. Therefore, the disease characteristics, severity, mortality, risk factors, and associated comorbidities remain unclear [25], especially in Egypt. The current
Table 2

Laboratory findings of the patients (n = 473).

Missing data	Total (n = 473)	Mild (n = 259)	Moderate (n = 140)	Severe (n = 74)	P Value overall	Mild Vs Moderate	Mild Vs Severe	Moderate Vs Severe
Creatinine, mg/dL	0.87(1.0–1.66)	0.8(1.0–1.66)	0.87(1.0–1.66)	0.9(1.1–1.7)	0.1	<0.001	<0.001	0.26
ALT, U/mL	27(31–25)	27(29–25)	29(33–25)	30(33.25–26)	<0.001	<0.001	<0.001	0.42
AST, U/mL	31(34–28)	30(33–28)	33(35–29)	33(38–29)	<0.001	<0.001	<0.001	0.008
FBG, mg/dL	97(105–88)	92(102–87)	98(107–88)	104.5(202.5–89)	<0.001	<0.001	<0.001	0.008
INR	1.08(1.13–1.04)	1.08(1.12–1.04)	1.085(1.14–1.05)	1.08(1.15–1.03)	0.09	<0.001	0.1	0.01
CRP, mg/L	0.42(0.05–0.2)	0.34(0.06–0.21)	0.36(0.08–0.17)	0.39(0.98–0.21)	<0.001	0.01	0.01	<0.009
D-dimer, mg/L	175(132.7–76.9)	99.82(208.45–49.01)	243.12(376.46–101.06)	321(594.7–176.51)	<0.001	<0.001	<0.001	<0.001
Hemoglobin, g/dL	12.5(13.5–11.5)	12.5(13.32–11.5)	12.6(13.5–11.5)	12.4(13.5–11.2)	0.67	<0.001	<0.01	<0.001
RBCs, 10^12/L	4.64(3.49–2.29)	4.63(3.46–3.44)	4.54(3.45–2.44)	4.6(5.12–4.15)	0.14	0.05	<0.001	0.01
HCT, %	66(39.4–42.31)	39.3(42.27–36.35)	39.4(42.3–36.4)	39.3(43.05–34.55)	0.82	0.12	0.12	0.12
MCV, fl	65(84.9–90.17)	85.95(90.2–81.7)	85.95(90.05–82.52)	85.9(90.37–80.15)	0.64	0.04	<0.001	0.01
MCH, pg	65(27.8–29.726)	27.8(29.4–26.92)	28(29.4–26.92)	27.49(28.95–26.7)	0.12	0.04	<0.001	0.01
MCHC, g/dL	65(31.9–32.8–30.8)	31.8(32.6–30.52)	32.6(32.1–30.92)	31.8(32.87–30.9)	0.11	0.04	<0.001	0.01
Hemoglobin, g/dL	62(234.283–188)	248(299–200.5)	223(261.5–169)	216(265–171.5)	<0.001	0.94	0.002	<0.001
WBCs, 10^3/L	23(7.96–6.54)	7.4(9.6–5.6)	7.1(10.13–5.5)	6.4(9.5–2.5)	0.39	<0.001	<0.01	<0.001
Staff Neutrophils, %	24(2(2–2)	2(2.3–2)	2(2.3–2)	2(2.3–2)	0.23	<0.001	<0.01	0.01
Segmented Neutrophils, %	26(59.69–51)	57(68–49)	59(69–54)	64(73–58)	<0.001	0.04	0.01	0.01
Lymphocyte Percentage, %	25(30.38–21)	33(40–22.25)	30(36–21)	25(32–17.5)	<0.001	<0.01	<0.001	0.059
Neutrophil-to-Lymphocyte Ratio	46(2.06(3.42–1.43)	1.82(3.09–1.31)	2.07(3.38–1.56)	2.64(2.46–1.94)	<0.001	0.04	0.01	0.01
Monocyte Percentage, %	28(6.7–5)	6(7–5)	6(7–5)	5(6.75–4)	0.02	0.016	0.11	0.63
Eosinophil Percentage, %	27(2–2)	2(2–2)	2(2–2)	2(2–2)	0.12	<0.001	0.001	0.011
Basophil Percentage, %	29(0)	0	0	0	0.61	<0.001	<0.001	<0.001

Other indices

Basal O2	94(96.98–93)	98(99–96)	96(97–94)	89(92–80)	<0.001	<0.001	<0.001	<0.001
Heart Rate	150(98.106–88)	94(100.25–88)	98(102–88)	104(110–93)	<0.001	0.38	0.001	0.001
Duration of O2 Treatment, Days	204	0	0	0	1(10–0)	<0.001	<0.001	<0.001
Duration of Steroid Treatment, Days	32	4(7–3)	3(4–0)	7(10–5)	10(14–6)	<0.001	<0.001	<0.001
Duration of Follow Up	28	10(18–8)	10(11–7)	15(20–10)	21(530–16.5)	<0.001	<0.001	<0.001

Notes: Data are presented as median (interquartile range) or n (percentage). We did not perform group comparisons for variables with overall p-values > 0.05. Instead, categorical variables were analyzed using the χ2 test or Fisher’s exact test, and the Kruskal–Wallis test was used for continuous variables. P-values < 0.05 were considered statistically significant.

Abbreviations: ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; FBG: fasting blood glucose; INR: The International Normalized Ratio; CRP: C-reactive protein; RBCs, red blood cells; HCT: Hematocrit; MCV: Mean Corpuscular Volume; MCH: Mean Corpuscular Hemoglobin; MCHC: Mean Corpuscular Hemoglobin Concentration; WBCs, white blood cells; and O2, Oxygen.
Table 3
Correlations between Grade of Severity and other factors (n = 473).

Grade of severity with other factors	Correlation Coefficient	P-value
Age	0.516	<0.001
BMI	0.271	<0.001
Sex	0.143	0.002
Comorbidity		
Smoking	-0.03	0.39
Malignancy	0.09	0.052
CHF	0.05	0.25
DM	0.287	<0.001
HTN	0.283	<0.001
BA	0.005	0.92
HDI	0.102	0.02
HCV	0.228	<0.001
Liver cirrhosis	0.163	<0.001
CKD	0.121	0.009
Hypothyroidism	-0.006	0.89
RHA	-0.005	0.91
Symptoms		
Diarrhea	-0.14	0.002
Abdominal pain	-0.12	0.01
Anemia	-0.16	<0.001
Dysgeusia	-0.12	0.006
Fever	0.08	0.082
Cough	0.181	<0.001
Skin rash	0.05	0.23
Rhinorrhea	-0.139	0.003
Sweating	0.098	0.03
Hematologic		
Creatinine	0.08	0.07
ALT	0.250	<0.001
AST	0.260	<0.001
FBS	0.221	<0.001
INR	0.08	0.07
CRP	0.422	<0.001
D.Dimer	0.07	0.12
Serum ferritin	0.455	<0.001
Hemoglobin	0.001	0.97
RBC	-0.07	0.14
HCT	-0.01	0.8
MCV	0.009	0.85
MCH	0.05	0.27
MCHC	0.081	0.1
Platelet	-0.205	<0.001
WBCS	-0.05	0.22
Staff%	0.04	0.36
Segment%	0.200	<0.001
Lymphocyte percentage, %	-0.189	<0.001
Neutrophil to Lymphocyte Ratio	0.206	<0.001
Monocyte percentage, %	-0.07	0.12
Eosinophil percentage, %	0.02	0.57
Basophil percentage, %	-0.04	0.35
Others		
Basal O2	-0.51	<0.001
Heart Rate	0.192	0.001
Duration of O2 treatment, days	0.511	<0.001
Duration of Steroid treatment, days	0.676	<0.001
Duration of follow up	0.597	<0.001

Note: P- and R-values were derived from the Spearman correlation test. P-values ≤ 0.05 were considered statistically significant.
Abbreviations: BMI, body mass index; CHF, congestive heart failure; DM, diabetes mellitus; HTN, hypertension; BA, bronchial asthma; IHD, ischemic heart disease; HCV, hepatitis C virus; CHD, chronic kidney disease; RHA, rheumatoid arthritis; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; FBG, fasting blood glucose; INR: The International Normalized Ratio; CRP: C-reactive protein; RBC, red blood cells; HCT: Hematocrit; MCV: Mean Corpuscular Volume; MCH: Mean Corpuscular Hemoglobin; MCHC: Mean Corpuscular Hemoglobin Concentration; WBCS, white blood cells; and O2, Oxygen.

and Liu et al. [26] reported that elderly patients with COVID-19 were more likely to have acute and severe COVID-19 compared with middle-aged people with COVID-19. This age-dependent variation in the severity of COVID-19 could be explained by decreased cell-mediated immune function and reduced humoral immune function [27]. The proportion of infected females was higher than infected males, which agrees with the findings of two previous studies [28,29]. Two previous studies presented results on sex-specific differences in the severity of COVID-19, which were similar to our work; almost all of the previous work has demonstrated that the number of infected males was higher than that of the infected females [4,19,30–33]. However, the percentage of females was higher, but males developed moderate and severe illness more frequently than females, which is in agreement with the findings of the present study and the previous literature [4,19,30–33]. Approximately 8.5% of the patients were smokers, and smoking has been previously related to higher expression of angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 [34]. A previous systematic review that included five studies reported that smoking is most likely associated with the negative progression and adverse outcomes of COVID-19 [35].

In contrast, the results of our study showed no association between smoking and COVID-19 severity. Our study reported that the incidence of SARS-CoV-2 infection was associated with underlying comorbidities, the most common of which was DM, followed by HTN, as described in most previous literature [4,19,28–30,36,37]. In line with our findings, Marshl et al. [38] reported a higher risk of COVID-19 among patients with diabetes due to the association between the dysregulation of ACE2. The higher risk of COVID-19 among patients with diabetes physiologically maybe because of liver dysfunction and chronic inflammation [38]. In addition, Singh et al. [39] reported that the incidence rate and severity of COVID-19 increased in patients with diabetes.

Moreover, the majority of joint clinical presentations of COVID-19 were fever, followed by cough, as identified in our study and previous studies [Formatting Citation]. Skin rash was the slightest common manifestation of COVID-19, and dermatological manifestations have been increasingly reported in the last few months [40,41]. Our laboratory findings showed that CRP and serum ferritin levels were significantly higher in patients with severe disease than in those with moderate disease, which is in agreement with the results of previous studies [4,28,30,37]. These findings can be explained because CRP is an acute-phase protein that serves as an early marker of COVID-19 infection [42]. The optimum cutoff value for CRP to predict severe disease was 17.4 mg/L using the ROC curve with a sensitivity of 76.4% and a specificity of 63.4%. The AUC for the normal condition was 0.73. Indeed, a pooled analysis of more than ten studies showed that non-survivors with COVID-19 had a significantly higher ferritin level than survivors with COVID-19 [43]. D-dimer, serum creatinine, lymphocyte count, platelet count, staff neutrophils, segmented neutrophils, lymphocytes, monocytes, eosinophils, and basophils, on the other hand, were normal and not significantly different across all comparisons. Moreover, the N/L ratio was standard, which agrees with the findings of Fan et al. [31], which reported that most patients had a standard CBC test. Only patients with severe disease had death events, and approximately six hospitalized patients with severe illnesses died. The survivors of severe disease complained of DVT, chronic cough, and chronic fatigue, and some had to remain under supervision in the intensive care unit. The strengths of our study are its large sample, as we include 473 patients and the fact that our research is the first to discuss the demographic, clinical characteristics and routine laboratory investigations of patients with COVID-19 during the second and third waves of the pandemic in Egypt. The main limitation of this study is the potential for selection bias given its single-center study examined the disease characteristics during the second and third waves of the pandemic.

The current study revealed that patients with moderate and severe COVID-19 were older than those with mild COVID-19. In agreement with our findings, Liao et al. [19], Ghweil et al. [4],
Table 4
Determinants of Grade of severity with a multinomial logistic regression model (n = 473).

Grade of severity and predictors	Moderate (95% CI)	P-value	Severe (95% CI)	P-value
Age	1.07 (1.05–1.08)	<0.001	1.09 (1.10–1.11)	<0.001
BMI	1.10 (1.03–1.17)	0.001	1.2 (1.12–1.13)	<0.001
Sex				
Male	0.6 (0.39–0.92)	0.02	0.48 (0.28–0.82)	0.008
Female				
Comorbidity				
DM	0.4 (0.22–0.74)	0.003	0.13 (0.07–0.25)	<0.001
Yes	ref		ref	
HTN	0.28 (0.15–0.51)	<0.001	0.15 (0.07–0.29)	<0.001
Yes	ref		ref	
IHD	0.34 (0.12–0.99)	0.045	0.32 (0.09–1.10)	0.07
Yes	ref		ref	
Liver cirrhosis	0.27 (0.10–0.70)	0.007	0.10 (0.04–0.27)	<0.001
Yes	ref		ref	
Symptoms				
Diarrhea	1.95 (1.13–3.35)	0.016	2.47 (1.16–5.23)	0.018
Yes	ref		ref	
Abdominal pain	1.32 (0.82–2.10)	0.24	2.53 (1.26–5.06)	0.009
Yes	ref		ref	
Anosmia	2.55 (1.39–4.70)	0.003	2.91 (1.27–6.69)	0.012
Yes	ref		ref	
Dygeusia	1.96 (1.09–3.54)	0.02	2.24 (1.06–4.96)	0.045
Yes	ref		ref	
Cough	0.49 (0.32–0.74)	0.001	0.44 (0.25–0.75)	0.003
Yes	ref		ref	
Rhinorrhea	2.54 (1.27–5.10)	0.008	2.42 (0.99–5.94)	0.05
Yes	ref		ref	
Sweating	0.92 (0.32–2.6)	0.88	0.29 (0.11–0.76)	0.011
Yes	ref		ref	
Hematologic				
ALT	1.12 (1.06–1.18)	<0.001	1.16 (1.10–1.24)	<0.001
AST	1.11 (1.06–1.16)	<0.001	1.15 (1.09–1.21)	<0.001
FBS	1.006 (1.001–1.010)	0.012	1.012 (1.008–1.017)	<0.001
CRP	1.01 (1.009–1.022)	<0.001	1.022 (1.015–1.029)	<0.001
Serum ferritin	1.005 (1.003–1.007)	<0.001	1.006 (1.004–1.008)	<0.001
Platelet	0.99 (0.990–0.997)	<0.001	0.99 (0.98–0.99)	0.003
Segmented%	1.099 (1.09–1.093)	0.07	1.05 (1.02–1.07)	<0.001
Lymphocyte percentage, %	0.98 (0.96–1)	0.055	0.95 (0.92–0.97)	<0.001
N/L Ratio	1.13 (1.006–1.27)	0.04	1.28 (1.13–1.45)	<0.001
others	1.099 (0.98–1.010)	0.08	0.98 (0.97–0.99)	<0.001
Heart Rate	1.015 (0.99–1.13)	0.11	1.05 (1.03–1.08)	<0.001

Note: P-values ≤ 0.05 were considered statistically significant.

Abbreviations: BMI, body mass index; DM, diabetes mellitus; HTN, hypertension; IHD, ischemic heart disease; HCV, hepatitis C virus; CKD, chronic kidney disease; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; FBG, fasting blood glucose; CRP: C-reactive protein; and O₂, Oxygen.

nature and the missing data as some results of laboratory investigations of some patients.

Conclusion

In conclusion, we observed many variations in COVID-19 patients’ characteristics. Regarding the clinical features, fever remained the most common symptom as in the first wave. The new manifestations included skin rash, bony pain, low back pain, and rigors. In particular, the number of females was higher than the number of males; however, most males had a moderate and severe illness, which contrasted with females. Old age, higher BMI was associated with increasing severity. The subjects diagnosed with DM, HTN, HCV, liver cirrhosis, and CKD tended to have higher
References

[1] Patel A, Jernigan DB. 2019-nCoV CDC Response Team. Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak — United States, December 31, 2019–February 4, 2020. MMWR Morb Mortal Wkly Rep 2020;69(5):140–6.

[2] WHO. 2020. Geneva, Switzerland: World Health Organization; 2020. https://www.who.int/mediacentre/factsheets/fs353/en/

[3] Franke A, van der Velde MA, van der Werf S, de Jong L, van der Meer AJ, Drijfhout JS. SARS-CoV-2 infection in Dutch patients with hematologic malignancies: a retrospective cohort study. Haematologica 2020;105(9):1762–9.

[4] Xue Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai X, Cao T, Song J, Xia P, Dong J, Zhao W, Wang F-S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020;8(4):420–2.

[5] Paniz-Mondolé C, et al. 2020. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J 2020; p. postgradmed-2020-138577.

[6] Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Hemost 2020;18(4):844–7.

[7] Rostami M, Mansouriraghebi H. D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol 2020;13(Nov 11):1265–75.

[8] Song H, Huy N, Yun JG, Noh JY, Cheong HJ, Kim WJ, Song YJ. Comparison of the second and third waves of the COVID-19 pandemic in South Korea: importance of early public health intervention. Int J Infect Dis 2021;204:742–5.

[9] Akkasa M, Asem N, Abdelazeem A, Madkour A, Sayed H, Tawheed A, Al Shafee A, Gamaal A, Elsayed H, Badr M, Hassany M, Omar N. A flexible and compact clinical features and laboratory characteristics of patients hospitalized with COVID-19: Single centre report from Egypt. Infect Dev Cires 2020;14(12):1352–60.

[10] von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 2007;335(Oct 7624):806–8.

[11] World Health Organization (WHO). Clinical management and clinical management living guidance COVID-19. World Health Organ 2021(January).

[12] Liao D, Zhou F, Luo L, Xu M, Wang H, Xia J, Gao Y, Cai L. Haematological characteristics and risk factors in clinical characteristics and prediction evaluation of COVID-19: a retrospective cohort study. Lancet Haematol 2020;7(9):e071–8.

[13] Kim J, Seo BS. How to calculate sample size and why. Clin Orthop Surg 2013;5(3):235.

[14] Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39(May 2):175–91.

[15] Masoud HH, Hassany M, Hepatology N, Zaky S, Baki AA, Hepatology N. November Management protocol for COVID-19 patients MoHP protocol for COVID19 November 2020;2020.

[16] Masoud HH, Zaky S, Baki AA, Hepatology N. May Management protocol for COVID-19 patients version 14.30th may 2020 ministry of health and population (MoHP), Egypt; 2021.

[17] IBM Corp. “IBM SPSS Statistics for Windows, Version 26.0.” Armonk, NY: IBM Corp.

[18] Zhang J, Wang X, Jia X, Li H, Hu K, Chen G, Wei J, Gong Z, Zhou C, Hu Y, Mu M, Lei H, Cheng F, Zhang B, Xu Y, Wang G, Dong W. Risk factors of disease severity, improvement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect 2020;26(6):767–72.

[19] Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: a comparison with young patients and older patients. J Infect 2020;80(6):e14–8, https://doi.org/10.1016/j.jinf.2020.03.005.

[20] Euopa 2020;27 March. PMID: 31271866; PMCID: PMC7102640.

[21] Liu F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054–62, http://dx.doi.org/10.1016/S0140-6736(20)30853-3.

[22] Lagadinou M, Solomonou EE, Zareifopoulos N, Marangois M, Gogos C, Velissaris D. Prognosis of COVID-19: changes in laboratory parameters, vol. 2019; 2020. p. 2139–47.

[23] Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Hemost 2021;2020:1324–9. April.

[24] Palaniappan S, Amin K, Niu D, Xiao Y, Xia J, Pan Z, Yang H, Li W, Luo X, Zhang K. The use of D-dimer for the diagnosis of COVID-19 in patients with pneumonia: a systematic review and meta-analysis. Clin Lab 2020;66(2):321–7, http://dx.doi.org/10.1186/s12024-019-1798-x.

[25] Aggarwal N, Chakravorty S, Acharjee S, Sahoo D, Deb S, Ganguly S, Chakrabarty S, Mallikarjuna S, Koley T. COVID-19: a critical appraisal of the pandemic. J Med Case Reports 2020;14(1):159, http://dx.doi.org/10.1186/s1477-7807-9967-1.

[26] Rostami M, Mansouriraghebi H. D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol 2020;13(Nov 11):1265–75.
Aberg JA, Bagiella E, Horowitz CR, Murphy B, Fayad ZA, Narula J, Nestler EJ, Fuster V, Cordo-Cardo C, Charney D, Reich DL, Just A, Bottiger EP, Charney AW, Glicksberg BS, Nadkarni GN, Mount Sinai COVID Informatics Center (MSCIC). Retrospective cohort study of clinical characteristics of 2199 hospitalised patients with COVID-19 in New York City; 2020. p. 1–11.

[31] Fan Bingwen Eugene, Chong Vanessa Cui Lian, Chan Stephrene Seok Wei, Lim Gek Hsiang, Lim Kian Guan Eric, Tan Guat Bee, Muchelhi Sharavan Sadasiv, Kuperan Ponnudurai, Ong Kiat Hoe. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 2020;(March):131–4.

[32] Yilmaz A, Sabirli R, Seyit M, Ozen M, Oskay A, Cakmak V, January Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier connect, the company’s public news and information; 2020.

[33] Kamal MA, Alamiry KR, Zaki M. Sex and age differences in telomere length and susceptibility to COVID-19. J Biomed Res Environ Sci 2020;1(7):303–10.

[34] Cai G, Cui X, Zhu X, Zhou J. February A hint on the COVID-19 risk: population disparities in gene expression of three receptors of SARS-CoV address correspondence to: guoshuai cai department of environmental health sciences arnold school of public health university of south carolina 915 g; 2020.

[35] Vardavas C, Nikitaras K. COVID-19 and smoking: a systematic review of the evidence. Tob Induc Dis 2020;18(March).

[36] Yilmaz A, Sabirli R, Seyit M, Ozen M, Oskay A, Cakmak V, Goren T, Turkcuer I. Association between laboratory parameters and CT severity in patients infected with Covid-19: a retrospective, observational study. Am J Emerg Med 2021;42(January):110–4. Apr.

[37] Xunliang Tong, Anqi Cheng, Xueling Yuan et al. Characteristics of Peripheral Blood Cells in COVID-19 Patients Revealed by a Retrospective Cohort Study, 22 October 2020. PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-94972/v1].

[38] Marhl M, Grubelnik V, Magdic M, Marković R. Diabetes and metabolic syndrome as risk factors for COVID-19. Diabetes Metab Syndr Clin Res Rev 2020;14(Jul (4)):671–7.

[39] Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr Clin Res Rev 2020;14(Jul (4)):303–10.

[40] Genovese G, Moltrasio C, Berti E, Marzano AV. Skin manifestations associated with COVID-19: current knowledge and future perspectives. Dermatology 2021;237(1):1–12.

[41] Pagali S, Parikh RS. Severe urticarial rash as the initial symptom of COVID-19 infection. BMJ Case Rep 2021;14(3):19–21.

[42] Ahnach M, Zbiri S, Nejjar S, Ousti F, Elktettani C. C-reactive protein as an early predictor of COVID-19 severity. J Med Biochem 2020;39(4):500–7.

[43] Cheng L, Li H, Li L, Liu C, Yan S, Chen H, Li Y. Ferritin in the coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Clin Lab Anal 2020;34(Oct (10)).