Systematic Review

Indian J Med Res 148, July 2018, pp 56-76
DOI: 10.4103/ijmr.IJMR_2023_17

Relationship between type of smokeless tobacco & risk of cancer: A systematic review

Sanjay Gupta¹, Ruchika Gupta¹, Dhirendra N. Sinha³ & Ravi Mehrotra²

¹Division of Cytopathology, ²WHO FCTC Global Knowledge Hub for Smokeless Tobacco, ICMR-National Institute of Cancer Prevention & Research, Noida & ³School of Preventive Oncology, Patna, India

Received December 22, 2017

Background & objectives: Causative linkages of smokeless tobacco (SLT) use with oral potentially malignant disorders and cancers of oral cavity, oesophagus and pancreas have been reported. Published meta-analyses have provided pooled risk estimates for major cancers caused by SLT, both on global and regional levels. This systematic review was aimed at summarizing the available studies on occurrence and mortality risk of common cancers due to various SLT products.

Methods: PubMed and Google Scholar databases were systematically searched from 1985 till January 2018 for observational studies on SLT and cancer. The included studies were evaluated and data were extracted and reviewed.

Results: The review included 80 studies providing 121 risk estimates for various cancers. Majority of the studies from South-East Asian Region (SEAR) and Eastern Mediterranean Region (EMR) showed a significant positive association of SLT use with oral [odds ratio (OR) ranging from 1.48 to 27.4] and oesophageal cancers (OR between 2.06 and 12.8), while studies from European Region (EUR) reported a positive association with pancreatic cancer (OR between 1.6 and 2.1). Cancer-related mortality was evaluated in a few reports with higher risk of mortality for lung (OR between 2.0 and 9.1), cervical (OR 2.0) and prostate (OR 2.1) cancers. A wide variation was noted in the association of various cancers and specific SLT products based on their nature, methods of use and inherent toxicity. The majority of chewing tobacco products displayed higher risk for oral and oesophageal cancers while the same was not observed for snus.

Interpretation & conclusions: This review emphasizes on the significantly positive association of SLT use with oral and oesophageal cancers in SEAR and EMR and pancreatic cancer in EUR. Mortality estimates for SLT-associated cancers need further analysis. Risk analysis for cancers of other sites in SLT users also requires multicentric well-designed studies.

Key words Cancer - mortality - occurrence - oesophagus - oral - pancreas - pharynx - smokeless tobacco

Smokeless tobacco (SLT) consumed orally or nasally has been in use for as long as other forms of tobacco. Research studies conducted over years have shown linkage of SLT use with oral potentially malignant disorders and cancers of oral cavity, oesophagus and pancreas along with possible contributory role in
cardiovascular disease, hypertension, peptic ulcer and foetal morbidity and mortality\(^1\).

SLT products are known to contain more than 30 carcinogens, including tobacco-specific \(N\)-nitrosamines (TSNAs), nitrite, nitrate and heavy metals such as nickel, cadmium and chromium\(^2\). The levels of these carcinogens vary widely among the SLT products consumed in different countries. The additives used in these products leading to changes in toxicity and associated health risks also differ in various geographic regions. This hinders the comparability of results of various studies evaluating the health effects of SLT use\(^3\).

A conceptual model of SLT-associated carcinogenesis postulates that carcinogens present in SLT products are ingested and processed, leading to metabolic activation of carcinogens. The carcinogens cause formation of DNA adducts and subsequent mutations in \(K\)-ras, \(p53\) and other genes, leading to uncontrolled cell growth. Other changes, including chronic local inflammation, oxidative stress and formation of reactive oxygen species, may also contribute to tumour promotion\(^4\). Mechanisms such as activation of Akt and protein kinase A lead to reduced apoptosis and increased angiogenesis and cellular transformation. Apart from TSNAs, other compounds present in SLT products such as polycyclic aromatic hydrocarbons and areca nut may also contribute to causation of cancer in SLT users. Epigenetic pathways, such as promoter methylation of tumour-suppressor genes leading to unregulated proliferation, are also speculated to be involved in SLT-related carcinogenesis\(^5\).

Summary risk estimates of cancer occurrence have shown a higher risk of oral cancer [risk ratio (RR) 3.43, 95% confidence interval (CI) 2.26-5.19], pharyngeal cancer (2.23, 95% CI 1.55-3.20) and oesophageal cancer (2.17, 95% CI 1.70-2.78) in SLT users\(^6\). However, regional variation in this risk has also been demonstrated. Risk for mortality due to cancers of upper aerodigestive tract (UADT), stomach and uterine cervix has also been shown to be significantly higher with SLT use\(^7\). This systematic review was undertaken to summarize the available studies (categorized into WHO-defined Regions) on cancer occurrence as well as mortality risk in users of SLT products.

Material & Methods

A systematic literature search was conducted in PubMed and Google Scholar databases for articles on SLT-associated cancers published since 1985 till January 2018 using the search terms ‘smokeless tobacco,’ ‘chewing tobacco,’ ‘snus,’ ‘snuff,’ ‘\(khaini\),’ ‘\(gutka\),’ ‘\(toombak\),’ ‘\(shammah\),’ ‘\(tuibur\)’ and ‘cancer’ or ‘neoplasm.’ The PRISMA guidelines were followed\(^8\). The flow chart shows the search strategy used (Figure). Cross-references of all included articles were also examined for additional studies.

Inclusion criteria: (i) Articles published in English language or published in other languages with summary having detailed results available in English; (ii) Case-control or cohort studies including any age group and either or both gender and total sample size of at least 100; (iii) Exposure variable: SLT in one of its various forms; (iv) Outcome: Cancer of oral cavity, nasal cavity, pharynx, larynx, oesophagus, stomach, lung, uterine cervix, breast, prostate, urinary bladder, kidney, penis, brain, skin, colon and rectum; leukaemia/ lymphoma, multiple myeloma; sarcoma; and (v) Risk estimate: Estimates for combined exposure or individual SLT products were extracted. Gender-wise estimates were noted, where available.

Exclusion criteria: Case series, case reports, letters or reviews, reports of only precancerous lesions, duplicate data, and reports of chewable products without tobacco were excluded.

Figure. Flow chart showing search strategy for studies on association of SLT with cancer. OPMD, oral potentially malignant diseases.
Risk of occurrence of oral cancer has been extensively assessed for the association with SLT; 33 studies (22 from SEAR, 5 EMR, 3 EUR, 2 AFR and 1 AMR) were retrieved in the selected time period (Table 1). Majority of these studies have been case-control (28 of 33) while only five (three from SEAR and two from EUR) were cohort studies.

Results

The initial search yielded 4470 articles, of which 80 studies providing 121 risk estimates for various cancers were included in this review. Of these, 47 were conducted in WHO South-East Asian Region (SEAR, 46 in India, 1 in Indonesia), 12 in European Region (EUR), 11 in American Region (AMR), eight in Eastern Mediterranean Region (EMR) and two in African Region (AFR). No studies were retrieved from Western Pacific Region (WPR).

Smokeless tobacco (SLT) and cancer occurrence risk

Oral cancer: Risk of occurrence of oral cancer has been extensively assessed for the association with SLT; 33 studies (22 from SEAR, 5 EMR, 3 EUR, 2 AFR and 1 AMR) were retrieved in the selected time period (Table 1). Majority of these studies have been case-control (28 of 33) while only five (three from SEAR and two from EUR) were cohort studies.

Cohort studies: Of the five cohort studies evaluating risk of oral cancer in SLT users, all three from SEAR9-11 showed a significant positive association with SLT intake while both studies from EUR12,13 did not show this positive association. Of the four studies mentioning SLT product, two studies evaluating risk of oral cancer in snus users did not find an increased risk of occurrence of oral cancer12,13 while both the studies evaluating risk with tobacco chewing reported higher risk of oral cancer in chewers10,11. Four of these five studies adjusted for smoking as a confounding factor.

Case-control studies: Nineteen (19) case-control studies were retrieved from SEAR, of which 16 reported a significant positive association with the use of SLT products17-19,24-27,29-33,37,39-41 while the remaining three did not concur with this association22,23,28. The single studies from EUR35 and AMR38 did not detect any significant positive association of oral cancer with SLT use. All five studies from EMR15,16,20,21,34 and two from AFR14,36 demonstrated significantly higher risk of oral cancer in SLT users.

Seven studies gave separate estimates for males and females, and found significantly higher risk of oral cancer both in male and female SLT users14,25,27,32,39-41. Some studies demonstrated a higher risk of cancer in female users [odds ratio (OR) ranging between 3.2 and 45.89] compared to males in the same study (OR ranging from 2.7 to 9.33).

There were 30 estimates mentioning the type of SLT product - 22 on chewing products, five on snuff, two on toombak and one on naswar. One study evaluated the risk of oral cancer with naswar as well as the use of paan with tobacco. Of the 22 studies assessing risk of oral cancer with chewing tobacco products, 15 specified the product including gutka, betel quid, paan with tobacco, zarda, khaini and mishri. Fourteen studies reported a significant positive association between oral cancer and SLT product while one study did not find similar association12. The remaining seven studies mentioned only tobacco chewing in the exposure variable without specifying the product type; of these, four demonstrated significantly higher risk of oral cancer in chewers while three did not find any similar association. Both the studies including toombak users and two estimates for risk of oral cancer in naswar users reported significant positive association14,15,34,36. Snuff was evaluated in five studies; two found significantly higher risk of oral cancer in users40,41 while three studies did not report similar risk18,35,38. Of the 28 case-control studies, eight did not adjust for smoking as a confounding variable.

Cancer of pharynx (excluding nasopharynx): Six studies (Table 1) were found for risk of occurrence of pharyngeal cancer (all from SEAR17,30,33,42,44) in SLT users. There was one cohort study32 while the rest five were case-control in design17,30,33,43,44. All these studies evaluated this association with chewing tobacco. Three studies did not report significant association with SLT use17,33,42 while two showed positive association30,44. In the study by Sapkota et al31, positive association was found only with zarda while the same was not true for khaini, mawa and gutka. Six of seven studies were adjusted for smoking.

Oesophageal cancer: Risk of oesophageal cancer in SLT users has been evaluated in 15 studies (11 from SEAR9,30,46-49,51,52,54-56, three EUR13,45,53 and one EMR50). Only three were cohort9,13,45 while the
Table I. Characteristics of studies on risk of occurrence of site-specific cancers in smokeless tobacco (SLT) users included in the review

Author/yr	Country	Study design	Gender	SLT type	OR (95% CI)	Sample size	Confounder adjusted
Oral cancer: Cohort studies							
Pednekar et al, 2011^a	India	Cohort	Men	SLT	1.48 (1.03-2.13)	88,658	Age, education, religion, BMI, smoking
Jayalekshmi et al, 2011^b	India	Cohort	Men	Chewing tobacco	2.4 (1.7-3.3) all 1.1 (0.7-1.9) tongue 4.7 (2.8-7.9) gum/mouth	66,277	Age, smoking, alcohol
Jayalekshmi et al, 2009^c	India	Cohort	Women	Chewing tobacco	5.5 (3.3-9.0) current 9.2 (4.6-18.1) former	78,140	Age, family income
Luo et al, 2007^d	Sweden	Cohort	Men	Snus	0.9 (0.4-1.8)	258	Age, BMI, smoking
Boffetta et al, 2005^e	India	Cohort	Men	Snus	1.13 (0.45-2.83)	10,136	Age, smoking
Oral cancer: Case-control studies							
Hassanin and Idris, 2017^f	Sudan	Case-control	Men and women	Toombak	3.80 (1.70-8.59) 3.0 (1.35-6.7) males 3.2 (1.8-6.1) females	98 cases, 98 controls	Smoking, alcohol
Khan et al, 2017^g	Pakistan	Case-control	Men and women	Naswar	27.4 (10.0-74.7)	88 cases, 179 controls	Age, sex, socio-economic status, smoking, alcohol
Awan et al, 2016^h	Pakistan	Case-control	NA	Gutka	5.54 (2.83-10.83)	134 cases, 134 controls	Not mentioned
Nair et al, 2016ⁱ	India	Case-control	Men and Women	Chewing tobacco	3.34 (2.00-5.57)	518 cases, 83 controls	Smoking
Mahapatra et al, 2015^j	India	Case-control	Men 80%	Betel quid, gutka, supari, snuff	5.1 (2.0-10.3) gutka 11.4 (3.4-38.2) supari 1.0 (0.3-3.0) snuff 6.4 (2.6-15.5) betel quid	134 cases, 268 controls	Gender, education, age, social class, diet, alcohol, other types, dip products
Kodashetti et al, 2015^k	India	Case-control	NA	Tobacco quid	2.8 (1.2-7.0)	35 cases, 100 controls	Smoking, alcohol, age, gender
Merchant and Pitiphat, 2015^l	Pakistan	Case-control	Men and women	Paan with tobacco	7.27 (2.15-20.43)	79 cases, 143 controls	Age, sex, education, smoking, alcohol, use of paan without tobacco
Quadri et al, 2015^m	Saudi Arabia	Case-control	Men and women	Shammah	20.14 (8.23-49.25)	48 cases, 96 controls	Smoking, khat use
Krishna et al, 2014ⁿ	India	Case-control	Men and women	Betel quid, gutka, paan masala, zarda, khaini, etc.	0.53 (0.23-1.20)	190 cases, 189 controls	Smoking, alcohol
Lakhanpal et al, 2014<sup)o</sup>	India	Case-control	Men and women	Chewing tobacco	1.12 (0.61-2.04)	125 cases, 207 controls	Smoking, alcohol, IL-1beta

Contd...
Author/yr	Country	Study design	Gender	SLT type	OR (95% CI)	Sample size	Confounder adjusted
Amtha et al, 2014	Indonesia	Case-control	Men and women	Betel quid with tobacco	4.59 (1.11-18.91)	81 cases, 162 controls	Alcohol, smoking, diet
Ray et al, 2013	India	Case-control	Men and women	Chewing tobacco	2.88 (1.53-5.42)	71 cases, 187 controls	Not mentioned
Madani et al, 2012	India	Case-control	NA	Chewing tobacco, gutka, supari, mishri	8.3 (5.4-13.0) chewing 12.8 (7.0-23.7) gutka 6.6 (3.0-14.8) supari 3.3 (2.1-5.4) mishri	350 cases, 350 controls	Other products, alcohol, non-veg habits, education, occupation, age, gender
Muwonge et al, 2008	India	Case-control	Men and women	Chewing tobacco	4.3 (3.1-6.1)	282 cases, 1410 controls	Smoking, alcohol, education, religion
Znaor et al, 2003	India	Case-control	NA	Chewing tobacco	5.05 (4.26-5.97)	1563 cases, 3638 controls	Age, education, smoking, alcohol
Buch et al, 2002	India	Case-control	NA	Tobacco with lime or betel quid	1.45 (0.99-2.11)	188 cases, 297 controls	Smoking
Balaram et al, 2002	India	Case-control	Men and women	Paan with tobacco	6.10 (3.84-9.71) males 45.89 (25.02-84.14) females	309 males, 282 females, 591 controls	Age, education, smoking, alcohol
Dikshit and Kanhere, 2000	India	Case-control	NA	Tobacco quid	5.8 (3.6-9.5)	148 cases, 260 controls	Age, smoking
Merchant et al, 2000	Pakistan	Case-control	Men and women	Paan with tobacco Naswar	8.42 (2.31-30.64) paan with tobacco 9.53 (1.73-52.53) naswar	79 cases, 149 controls	Age, gender, smoking, alcohol
Schildt et al, 1998	Sweden	Case-control	Men and women	Snuff	0.7 (0.4-1.2)	410 cases, 410 controls	Smoking, age, gender
Idris et al, 1995	Sudan	Case-control	Men and women	Toombak	3.9 (2.9-5.3)	375 cases, 2820 controls	Age, sex, tribe, residence
Rao et al, 1994	India	Case-control	Men	Chewing tobacco	3.64 (2.51-5.67)	713 cases, 635 controls	Age, residence, smoking, alcohol
Mashberg et al, 1993	USA	Case-control	NA	Chewing tobacco and snuff	1.0 (0.7-1.4) chewing 0.8 (0.4-1.9) snuff	52 cases, 255 controls	Not mentioned

Contd...
Author/yr	Country	Study design	Gender	SLT type	OR (95% CI)	Sample size	Confounder adjusted
Sankaranarayanan *et al*, 1990	India	Case-control	Men and women	Paan with tobacco, snuff	9.33 (5.6-15.22) males paan-tobacco	414 cases, 895	Smoking, alcohol
					3.98 (1.53-10.34) males snuff		
					3.71 (1.99-6.99) females, paan-tobacco		
Nandakumar *et al*, 1990	India	Case-control	Men and women	Paan with tobacco	4.0 (1.8-8.0) males	348 cases, 348	Not mentioned
					30.4 (12.6-73.4) females		
Sankaranarayanan *et al*, 1989	India	Case-control	Men and women	Paan with tobacco, nasal snuff	5.95 (2.99-11.84) males	187 cases, 895	Age
					6.62 (2.48-17.66) females		
					3.90 (1.19-12.70) snuff males		
Jayalekshmi *et al*, 2013	India	Cohort	Men	Tobacco chewing	0.5 (0.2-1.6)	65,553	Smoking
Pharyngeal cancer: Case-control studies							
Nair *et al*, 2016	India	Case-control	Men and women	Chewing tobacco	0.45 (0.23-0.85)	518 cases, 83	Smoking
Sapkota *et al*, 2007	India	Case-control	Men 80%	Khaini, Zarda, Mawa, Gutka	0.74 (0.39-1.42) khaini	513 cases, 718	Age, sex, socio-economic status, alcohol, snuffing, other types
					2.23 (1.11-4.50) zarda		
					1.33 (0.61-2.89) mawa		
					1.35 (0.56-3.29) guka		
Znaor *et al*, 2003	India	Case-control	NA	Chewing tobacco	1.83 (1.43-2.33)	636 cases, 3638	Age, education, smoking, alcohol
Dikshit and Kanhere, 2000	India	Case-control	NA	Tobacco quid	1.2 (0.8-1.8)	247 cases, 260	Age, smoking
Wasnik *et al*, 1998	India	Case-control	Men and women	Tobacco chewing	8.01 (4.92-14.76)	123 cases, 123	Smoking, alcohol, occupation, tobacco material for tooth cleaning
Oesophageal cancer: Cohort studies							
Pednekar *et al*, 2011	India	Cohort	Men	SLT	3.65 (1.59-8.38)	88658	Age, education, religion, BMI, smoking
Zendehehdel *et al*, 2008	Sweden	Cohort	Men	Snuff	3.5 (1.6-7.6) SCC	366	Smoking, age, BMI
					0.2 (0.0-1.9) adeno		
Boffetta *et al*, 2005	Sweden	Cohort	Men	Snus	1.06 (0.35-3.23)	10136	Age, smoking
Oesophageal cancer: Case-control studies							
Das *et al*, 2014	India	Case-control	Men and women	Tobacco chewing	3.32 (1.21-9.14)	100 cases, 100	Betel quid, smoking

Contd...
Author/yr	Country	Study design	Gender	SLT type	OR (95% CI)	Sample size	Confounder adjusted
Talukdar et al,	India	Case-control	Men and women	Dried tobacco leaf, zarda, khaini	2.63 (1.53-4.5)	112 cases, 130 controls	Age, gender, betel quid, smoking, alcohol
2013							
Dar et al, 2012	India	Case-control	Men and women	Nass	2.88 (2.06-4.04) nass	702 cases, 1663 controls	Age, ethnicity, religion, residence, education, cumulative use, alcohol, fruit/veg intake
				Gutka	2.87 (0.87-9.46) gutka		
Sehgal et al,	India	Case-control	Men and women	Snuff	3.86 (2.46-6.08)	200 cases, 200 controls	Alcohol, smoking, butter, sundried food, red chilli, baking soda
2012							
Akhtar et al,	Pakistan	Case-control	Betel quid with	12.8 (6.3-26.2) Betel quid	91 cases, 364 controls	Ethnicity, areca nut, smoking	
2012			tobacco	Snuff	4.3 (1.6-11.7) snuff		
Znaor et al,	India	Case-control	NA	Chewing tobacco	2.06 (1.62-2.63)	566 cases, 3638 controls	Age, education, smoking, alcohol
2003							
Phukan et al,	India	Case-control	Men and women	Tobacco alone	4.9 (2.8-11.6) males	502 cases, 1004 controls	Betel nut, smoking, alcohol
2001					3.4 (1.3-5.6) females		
Nayar et al,	India	Case-control	Men and women	Betel leaf with tobacco	2.58 (1.24-5.37)	150 cases, 150 controls	Smoking, veg consumption
2000							
Lagergren et al,	Sweden	Case-control	NA	Snuff	1.4 (0.9-2.3) SCC	189 cases, 820 controls	Age, gender, smoking, alcohol, education, BMI, fruit/veg, physical activity
2000					1.2 (0.7-2.0) adeno		
Nandakumar et al,	India	Case-control	Men and women	Paan with tobacco	2.9 (1.5-5.4) males	343 cases, 686 controls	Smoking, alcohol
1996					2.2 (1.4-3.3) females		
Sankaranarayanan et	India	Case-control	Men and women	Chewing tobacco	2.18 (0.71-6.70) males	267 cases, 895 controls	Age, religion, smoking and alcohol among men, restricted to non-smoking non-alcohol group in women
al, 1991					0.57 (0.20-1.58) females		
Rao et al, 1989	India	Case-control	Men	Chewing tobacco	5.61 (3.68-8.55)	165 cases, 295 controls	Smoking, alcohol
Gastric cancer:							
Cohort studies							
Zendehdel et al,	Sweden	Cohort	Men	Snuff	0.9 (0.4-2.0) cardia	1385	Smoking, age, BMI
2008					1.4 (1.1-1.9) non-cardia		
Boffetta et al,	Sweden	Cohort	Men	Snus	1.00 (0.71-1.42)	10136	Age, smoking
2005							
Al-Qadasi et al,	Republic of	Case-control	Men and women	Shammah	4.37 (1.92-9.95)	70 cases, 140 controls	Family history, diet, smoking
2017	Yemen						

Contd...
Author/yr	Country	Study design	Gender	SLT type	OR (95% CI)	Sample size	Confounder adjusted
Malakar et al., 2014⁵⁸	India	Case-control	Men and women	Tuibur	2.68 (1.27-5.66)	105 cases, 210 controls	Smoking, smoked fish, preserved meat
Phukan et al, 2005⁵⁹	India	Case-control	Men and women	Tuibur, chewing tobacco	2.1 (1.3-3.1) tuibur	329 cases, 665 controls	Alcohol, smoking, education, occupation, income, tuibur/chewing
Rao et al, 2002⁶⁰	India	Case-control	Men and women	Paan with tobacco	1.03 (0.7-1.4)	170 cases, 2184 controls	Not mentioned
Randhawa et al, 2004⁶¹	India	Case-control	Men and women	Guttar	1.2 (0.8-1.8)	262 cases, 820 controls	Alcohol, smoking, BMI, education, occupation, income, smoking
Phukan et al, 2005⁶²	India	Case-control	Men and women	Tuibur, chewing tobacco	2.6 (1.1-4.2) chewing	329 cases, 665 controls	Alcohol, smoking, education, occupation, income, tuibur/chewing
Rao et al, 2002⁶³	India	Case-control	Men and women	Tuibur, chewing tobacco	2.1 (1.3-3.1) tuibur	329 cases, 665 controls	Alcohol, smoking, education, occupation, income, tuibur/chewing
Phukan et al, 2005⁶⁴	India	Case-control	Men and women	Tuibur, chewing tobacco	2.6 (1.1-4.2) chewing	329 cases, 665 controls	Alcohol, smoking, education, occupation, income, tuibur/chewing
Ye et al, 1999⁶⁵	Sweden	Case-control	Men and women	Snuff	0.5 (0.2-1.1) cardia	567 cases, 1165 controls	Age, gender, smoking, alcohol, education, BMI, fruit/veg, physical activity
Ye et al, 1999⁶⁶	Sweden	Case-control	Men and women	Snuff	0.8 (0.5-1.3) distal intestinal type	Age, gender, smoking, alcohol, education, BMI, fruit/veg, physical activity	
Ye et al, 1999⁶⁷	Sweden	Case-control	Men and women	Snuff	0.6 (0.3-1.2) distal diffuse type	Age, gender, smoking, alcohol, education, BMI, fruit/veg, physical activity	
Gajalakshmi and Shanta, 1999⁶⁸	India	Case-control	Men and women	Betel quid with tobacco	1.3 (0.89-1.98)	388 cases, 388 controls	Residence, education, income, alcohol
Colorectal cancer							
Araghi, 2017⁶⁹	Sweden	Pooled cohort	Men	Snus	1.40 (1.09-1.79) rectal	71,35,504	Smoking
Nordenwall et al, 2011⁷⁰	Sweden	Cohort	Men	Snus	1.08 (0.91-1.29)	40,932	Smoking
Aithal et al, 2017⁷¹	India	Case-control	Men and women	Chewing tobacco	1.53 (0.58-4.00)	100 cases, 200 controls	Age, literacy, diet, fruit consumption, physical activity, diabetes, hypertension

Pancreatic cancer: Cohort studies

Pednekar et al, 2011⁷²	India	Cohort	Men	SLT	1.95 (0.68-5.54)	88658	Age, education, religion, BMI, smoking
Luo et al, 2007⁷³	Sweden	Cohort	Men	Snus	2.1 (1.2-3.6)	83 cases	Age, BMI, smoking
Boffetta et al, 2005⁷⁴	Sweden	Cohort	Men	Snus	1.60 (1.00-2.55)	10136	Age, smoking

Pancreatic cancer: Case-control studies

| Hassan et al, 2007⁷⁵ | USA | Case-control | Men and women | Chewing tobacco and snuff | 0.6 (0.3-1.4) chewing | 808 cases, 808 controls | Age, sex, race, smoking, alcohol, diabetes, education, residence, marital status |

Contd...
Author/yr	Country	Study design	Gender	SLT type	OR (95% CI)	Sample size	Confounder adjusted
Alguacil and Silverman, 2004¹⁷	USA	Case-control	NA	Chewing tobacco and snuff	1.1 (0.4-3.1)	526 cases, 2153 controls	Race, gender, smoking, age
Laryngeal cancer							
Jayalekshmi et al, 2013²⁰	India	Cohort	Men	Tobacco chewing	1.1 (0.5-2.4)	65,553	Smoking
Sapkota et al, 2007²⁰	India	Case-control	Men and Women	Khaini, Zarda, Mawa, Gutka	0.79 (0.43-1.44), 0.81 (0.36-1.78), 0.59 (0.25-1.45), 1.11 (0.45-2.74)	511 cases, 718 controls	Age, sex, socio-economic status, alcohol, snuffing, other types
Lung cancer: Cohort studies							
Pednekar et al, 2011³⁰	India	Cohort	Men	SLT	1.71 (1.08-2.73)	88658	Age, education, religion, BMI, smoking
Luo et al, 2007¹²	Sweden	Cohort	Men	Snus	0.8 (0.4-1.3)	154 cases	Age, BMI, smoking
Boffetta et al, 2005⁵³	Sweden	Cohort	Men	Snus	0.80 (0.36-1.85)	10136	Age, smoking
Lung cancer: Case-control studies							
Ihsan et al, 2011³⁰	India	Case-control	Men and women	Tobacco chewing	3.05 (1.79-5.20)	116 cases, 278 controls	Smoking, alcohol, p53
Ganesh et al, 2011⁹³	India	Case-control	Men	Tobacco chewing	0.6 (0.3-1.2)	408 cases, 1383 controls	Smoking, alcohol
Gajalakshmi et al, 2003³⁰	India	Case-control	NA	Tobacco chewing	0.74 (0.57-0.96)	778 cases, 1927 controls	Age, smoking
Dikshit and Kanhere, 2000³⁵	India	Case-control	NA	Tobacco chewing	0.7 (0.4-1.2)	163 cases, 260 controls	Age, smoking

NA, not available; BMI, body mass index; SCC, squamous cell carcinoma; adeno, adenocarcinoma; OR, odds ratio; CI, confidence interval
rest 12 were case-control studies30,46-56. Of the cohort studies, one report each from SEAR and EUR showed significant positive association between SLT use and oesophageal cancer9,45. The third study from EUR did not find an increased risk of oesophageal cancer in snus users13.

Nine of ten case-control studies from SEAR demonstrated a higher risk of oesophageal cancer in SLT users30,46-49,51,52,54,56 while one study did not report any similar risk55. The study from EMR reported a significant positive association between SLT use and oesophageal cancer50 while the report from EUR55 did not find a positive association. Ten studies evaluated chewing tobacco - six specifying the product including zarda, khaini, gutka, betel quid, tobacco alone or paan with tobacco. Of these six studies, five found significantly higher risk of oesophageal cancer in tobacco users while one did not report similar association with gutka though this study found positive association of nass chewing and oesophageal cancer48. On the other hand, three studies evaluated snuff; two of these (from SEAR49 and EMR50) revealed significantly higher risk of oesophageal cancer in snuff users while the study from EUR51 did not report similarly higher risk of cancer. Smoking was adjusted as a confounding variable in 14 studies while alcohol was adjusted in only nine studies (Table I).

Gastric cancer: Of the nine studies included, four were conducted in SEAR58,60,62, four in EUR13,45,53,61 and one in EMR57, as depicted in Table I. Of these, two were cohort studies13,45 while seven were case-control in design33,57-59,61,62. Of the cohort studies, the report by Zendehdel et al55 showed significant positive association of cancer of non-cardia part of stomach with SLT use while the same was not found for cancers in the cardia region. The other cohort study did not find increased risk of gastric cancer in snus users13. Among the case-control studies, report from EMR (shammmah users)47 and those from SEAR evaluating the effect of tuibur intake58,59 reported a significantly higher risk of gastric cancer. However, the studies including users of chewing tobacco (shammmah, paan with tobacco, betel quid) or snuff did not reveal significantly positive association with gastric cancer43,60-62.

Colorectal cancer: Three studies (one pooled cohort63 one cohort64, and one case-control65) were retrieved evaluating risk of colorectal cancer in SLT users. Of these, only one study with pooled cohort reported a significantly higher risk of rectal cancer in snus users. However, risk of colon cancer was not found to be higher in SLT users in any of the studies (Table I).

Pancreatic cancer: Five studies (two EUR12,13, two AMR66,67 and one SEAR9) have assessed the risk of risk of occurrence of pancreatic cancer in SLT users (Table I). Three studies were cohort49,12,13 while two were case-control reports66,67. Two cohort studies, both from EUR12,13, reported significant positive association between snus use and pancreatic cancer. The third cohort study as well as both case-control studies did not find a similar association9,66,67. All the five studies were adjusted for smoking as a confounding factor.

Respiratory cancer: Two studies evaluated association of SLT with laryngeal cancer (both SEAR42,43) and both studies (subjects consuming chewing tobacco) reported lack of significant positive association of SLT with cancer of larynx (Table I).

Lung cancer was evaluated in three cohort9,12,13 and four case-control studies33,68-70. One of the cohort (SLT type not specified) and one of case-control studies (assessing chewing tobacco69) demonstrated significant positive association of lung cancer with SLT use. The other cohort and case-control studies failed to detect similar association between SLT use and lung cancer (Table I). All the seven studies were adjusted smoking as a confounding variable.

Other cancers: Other neoplasias including breast cancer21,72, cervical cancer71, lymphoma74, genitourinary tumours13,75,76 liver75, and others77-79 have also been evaluated for their association with SLT use with variable results in sporadic studies (Table II).

Smokeless tobacco (SLT) and cancer mortality

Eight studies providing 19 individual estimates for mortality due to various cancers were retrieved for this review (Table III80,87). Of these, seven studies provided estimates for digestive tract cancers, three for respiratory, two for combined oral and pharyngeal cancers, two for genitourinary and one each for pharyngeal, upper aero-digestive tract (UADT), breast and cervical cancers. Significantly higher risk of mortality was found for lung (OR ranging from 2.081 to 9.186), cervical (OR 2.0 and 2.2 for urban and rural females, respectively84), prostate (OR 2.1, 95% CI 1.1-4.187) and UADT (OR between 1.9 and 3.884). Due to small number of studies on individual cancer and mortality risk, product-specific assessment was not attempted.
Author/yr	Country	Study design	Gender	SLT type	Site of cancer	OR (95% CI)	Sample size	Confounders adjusted
Rajbongshi et al, 2015	India	Case-control	Women	Betel quid with tobacco	Breast	2.59 (1.34-5.01)	100 cases, 100 controls	Not mentioned
Spangler et al, 2001	USA	Census	Women	SLT	Breast	7.79 (1.05-66.0) younger onset	1070	Not mentioned
Rajkumar et al, 2003	India	Case-control	Women	Paan with tobacco	Uterine cervix	2.13 (0.78-5.86)	205 cases, 213 controls	Age, residence, education, occupation, marital status, age at marriage, pregnancies
Balasubramaniam et al, 2013	India	Case-control	Men	Tobacco with lime	NHL	1.5 (0.7-3.2)	390 cases, 1383 controls	Smoking, milk, coffee, chicken, red meat consumption, eggs/fish, vegetables, pesticides
Hartge et al, 1985	USA	Case-control	Men	Chewing tobacco/snuff	Bladder	0.77 (0.38-1.56) snuff 1.02 (0.67-3.28) chew	2982 cases, 5782 controls	Age, race, residence, smoking, other type of tobacco
Hayes, 1994	USA	Case-control	Men	Snuff	Prostate	5.5 (1.2-26.2)	981 cases, 1315 controls	Not mentioned
Pednekar et al, 2011	India	Cohort	Men	SLT	Liver	2.35 (1.08-5.10)	88658	Age, education, religion, BMI, smoking
Zhou et al, 2013	England	Case-control	Men and women	SLT	Head and neck	1.20 (0.67-2.16) 4.06 (1.31-12.64) >10 yr duration of use	1046 cases, 1239 controls	Age, gender, race, education, smoking, alcohol
Bile et al, 2010	Pakistan	Case-control	Men and women	SLT	Oropharyngeal	4.66 (3.92-5.54)	7292	Age, sex, smoking, ethnicity
Lewin et al, 1998	Sweden	Case-control	Men	Snuff	Head and neck	1.0 (0.6-1.6)	605 cases, 756 controls	Age, region, alcohol, smoking
Boffetta et al, 2005	Sweden	Cohort	Men	Snus	Kidney	0.47 (0.23-0.94)	10136	Age, smoking
Boffetta et al, 2005	Sweden	Cohort	Men	Snus	Bladder	0.72 (0.52-1.06)	10136	Age, smoking

This Table includes single studies for cancer of a particular organ or studies where the specific organ for cancer is not mentioned. NA, not available; BMI, body mass index; NHL, non-Hodgkin’s lymphoma; OR, odds ratio; CI, confidence interval.
Author/yr	Country	Study design	Gender	SLT type	OR (95% CI)	Sample size	Site of cancer	Confounder adjusted
Gupta et al, 2005	India	Cohort	Men and women	Mishri, betel quid	3.72 (0.46-30.26) males 2.74 (0.60-12.40) females	99570	Oral and pharyngeal combined	Age, smoking, education
Henley et al, 2005	USA	Cohort	Men	Chewing tobacco	2.02 (0.53-7.74) CPS I 0.9 (0.12-6.71) CPS II	7745 CPS I 3327 CPS II	Pharyngeal	Age, race, education, BMI, exercise, alcohol, smoking, fat consumption, fruit/veg intake
Roosaar et al, 2008	Sweden	Cohort	Men	Snus	2.3 (0.7-8.3)	9956	Oral and pharyngeal combined	Smoking, residence, alcohol
Timberlake et al, 2017	USA	Cohort	Men and women	SLT	0.83 (0.10-7.03)	349,282	Oral	Age, gender, race, education, family income
Gajalakshmi and Kanimozhi, 2015	India	Case-control	Men and women	Chewing tobacco	2.2 (1.4-3.6) urban males 1.9 (0.9-4.3) rural males 2.7 (2.0-3.7) urban females 3.8 (2.3-6.4) rural females	456 cases 429,306 controls	UADT	Smoking, alcohol, age, education
Timberlake et al, 2017	USA	Cohort	Men and women	SLT	0.46 (0.11-2.00)	349,282	Oesophageal	Age, gender, race, education, family income
Gajalakshmi and Kanimozhi, 2015	India	Case-control	Men and women	Chewing tobacco	1.9 (0.9-3.6) urban males 2.1 (1.1-4.2) rural males 1.8 (1.2-2.7) urban females 1.4 (0.9-2.2) rural females	348 cases 429,306 controls	Gastric	Smoking, alcohol, age, education
Chao et al, 2002	USA	Cohort	Men	Chew/snuff	1.58 (0.76-3.28)	1505	Gastric	Age, race, education, family history, high fibre foods, veg intake, citrus fruits
Timberlake et al, 2017	USA	Cohort	Men and women	SLT	0.70 (0.34-1.43)	349,282	Pancreatic	Age, gender, race, education, family income
Accoritt et al, 2002	USA	Cohort	Men and women	SLT	0.9 (0.3-2.3) males 0.8 (0.3-2.7) females	1068	Digestive system	Age, race, poverty index ratio, residence, alcohol, exercise, fruit/veg, smoking
Discussion

SLT products have a worldwide presence in various forms - chewing tobacco in the USA, snuff (snus) in Sweden and mixture of chewing tobacco with other ingredients in developing countries. Reviews in the mid-1980s as well as the US Surgeon General Report in 1986 concluded that SLT products had negative health implications. Recent analyses have demonstrated significant morbidity and mortality related to SLT use. One study estimated that globally, 1.7 million disability-adjusted life years (DALYs) were lost and 62,283 deaths were attributed to SLT-associated cancers based on estimated burden of disease figures available for 113 countries. Another meta-analysis calculated

Author/yr	Country	Study design	Gender	SLT type	OR (95% CI)	Sample size	Site of cancer	Confounder	Adjusted
Henley et al, 2005	USA	Cohort	Men	Chewing tobacco	1.26 (1.05-1.52)	7745 CPS I 3327 CPS II	Digestive system	Age, race, education, BMI, exercise, alcohol, smoking, fat consumption, fruit/vegetable	
Timberlake et al, 2017	USA	Cohort	Men and women	SLT	0.99 (0.70-1.41)	349,282	Digestive system	Age, gender, race, education, family income	
Henley et al, 2005	USA	Cohort	Men	Chewing tobacco	1.08 (0.64-1.83)	7745 CPS I 3327 CPS II	Lung	Age, race, education, BMI, exercise, alcohol, smoking, fat consumption, fruit/vegetable	
Accortt et al, 2002	USA	Cohort	Men and women	SLT	0.0 males (no case in SLT users)	1068	Lung	Age, race, poverty index ratio, residence, alcohol, exercise, fruit/vegetable, smoking	
Gupta et al, 2005	India	Cohort	Men and women	Mishri, betel quid	2.23 (0.82-6.04)	99570	Respiratory	Age, smoking, education	
Gajalakshmi and Kanimozhi, 2015	India	Case-control	Men and women	Chewing tobacco	0.5 (0.3-0.8) urban females	315 cases 429306 controls	Breast	Smoking, alcohol, age, education	
Gajalakshmi and Kanimozhi, 2015	India	Case-control	Men and women	Chewing tobacco	0.9 (0.5-1.7) rural females	421 cases 429306 controls	Cervix	Smoking, alcohol, age, education	
Hsing et al, 1990	USA	Cohort	Men	SLT	2.1 (1.1-4.1)	149	Prostate	Age	
Henley et al, 2005	USA	Cohort	Men	Chewing tobacco	0.97 (0.77-1.22)	7745 CPS I 3327 CPS II	Genitourinary system	Age, race, education, BMI, exercise, alcohol, smoking, fat consumption, fruit/vegetable consumption	

*CPS I, Cancer Prevention Study I; CPS II, Cancer Prevention Study II; BMI, body mass index; UADT, upper aerodigestive tract; OR, odds ratio; CI, confidence interval
3.6 million DALYs and 101,004 deaths due to cancers associated with SLT use\(^8\). A monograph on SLT and Public Health in India reported that 90 per cent of oral and pharyngeal cancers were caused by tobacco in some form and 50 per cent of these are attributable to SLT\(^9\). However, the multitude and heterogeneity of products have raised doubts on these associations. Due to significant differences in composition, production and usage practices of SLT, the levels of most important carcinogens such as TSNA, vary widely across different SLT products\(^10\).

A systematic review of health effects of SLT published in 2003 reported significant risk of oral cancers due to betel quid and tobacco chewing in India while studies from the US and Scandinavian countries did not report significant positive association\(^1\). Since this review, there have been a few region-specific or cancer-specific systematic reviews and meta-analyses on SLT\(^7,8,9,92\). However, review on association of various cancers with SLT products in a global perspective has not been conducted recently.

Risk of cancer occurrence in SLT users

The present review re-emphasizes the strong association between SLT use and occurrence of oral cancer with risk estimates ranging from 1.48 (1.03-2.13)\(^9\) to 27.4 (10.0-74.7)\(^15\), especially for studies originating from SEAR. Occasional studies from SEAR did not find significant positive association of oral cancer with SLT use\(^22,23,28\). This could partly be attributed to the fewer number of controls in one study\(^22\). Studies from EUR, fewer in number compared to those from SEAR, have not found a significant positive association between SLT use and cancer\(^12,13,35\). An earlier meta-analysis showed overall 34 per cent higher risk of oral cancer in SLT users although regional variation was evident\(^7\). Sinha \textit{et al}\(^7\), in their meta-analysis of Indian studies, gave a risk estimate of 5.67 (3.83-8.40) for oral cancer in SLT users (Table IV).

A review of studies from the USA found significantly higher risk of oral cancer with chewing tobacco as well as snuff\(^93\). Meta-analysis of studies from South Asia and Pacific concluded increased risk of oral cancer in tobacco chewers (7.46, 5.86-9.50) although need for conducting studies focussing on different types of tobacco and eliciting dose–response relationship was emphasized\(^94\). An Indian study has demonstrated a linear dose–response association of oral cancer and chewing tobacco\(^95\). This regional variation in risk estimates can partly be explained by the chemical composition of SLT products, especially levels of TSNA, and their usage practices. The SEAR has the maximum diversity in SLT products as well as their usage methods, varying from chewing tobacco alone to a mixture of tobacco with ingredients such as betel quid and/or areca nut (both recognized

Authors/yr (global/regional)	OR (95% CI)
Oral cancer	
Siddiqi \textit{et al}, 2015\(^\#\) (global)	3.43 (2.26-5.19)
Wyss \textit{et al}, 2016\(^\#\) (USA)	3.01 (1.63-5.55)
Sinha \textit{et al}, 2016\(^\#\) (India)	5.67 (3.83-8.40)
Guptad and Johnson, 2014\(^\#\) (South Asia and Pacific)	7.46 (5.86-9.50)
Khan \textit{et al}, 2014\(^\#\) (South Asia)	4.7 (3.1-7.1)
Pharyngeal cancer	
Siddiqi \textit{et al}, 2015\(^\#\) (global)	2.23 (1.55-3.20)
Wyss \textit{et al}, 2016\(^\#\) (USA)	1.22 (0.65-2.27)
Sinha \textit{et al}, 2016\(^\#\) (India)	3.07 (1.94-4.86)
Oesophageal cancer	
Siddiqi \textit{et al}, 2015\(^\#\) (global)	2.17 (1.70-2.78)
Sinha \textit{et al}, 2016\(^\#\) (India)	3.15 (2.50-3.97)
Stomach cancer	
Sinha \textit{et al}, 2016\(^\#\) (India)	1.31 (0.92-1.87)
Laryngeal cancer	
Sinha \textit{et al.}, 2016\(^\#\) (India)	1.79 (0.70-4.54)
Lung cancer	
Sinha \textit{et al}, 2016\(^\#\) (India)	0.93 (0.71-1.22)
Cervical cancer	
Sinha \textit{et al}, 2016\(^\#\) (India)	2.07 (1.64-2.61)

OR, odds ratio; CI, confidence interval
as carcinogens), lime and other such products96. Some products are sucked, gurgled/sipped or used as a dentrifice (Table V)99. A review of toxicology of SLT products available in India highlighted the disturbingly high levels of TSNAs in the most popular brands of SLT products such as khaini, zarda and mishri99. Various authors have also detected TSNAs in the saliva of tobacco chewers100,101. In addition, mutagenic effects of extracts of SLT products have also been demonstrated102. Formation of micronucleus as a genotoxic effect has been reported in exfoliated buccal epithelial cells from tobacco chewers103. A few studies in the present review reported a higher risk of cancer in female SLT users (OR ranging between 3.2 and 45.89)14,32 compared to male users in the same study (OR ranging from 2.7 to 9.33)27,39. A previous meta-analysis of studies from India also showed a significantly higher risk of oral cancer in female users (pooled OR 12.09, 95% CI 9.49-15.25) compared to males (5.16, 95% CI 4.49-5.94)97. This difference may be attributed to the behavioural differences in the usage of SLT products between males and females.

Results on association of SLT use and pharyngeal cancer have been conflicting as can be seen from Table I. However, earlier meta-analyses have shown 22 and 30 per cent higher risk of occurrence of pharyngeal cancer in SLT users6,7. Unlike oral cancer where tobacco is the most important aetologic agent, pharyngeal cancer, especially oropharyngeal, is causatively linked to human papillomavirus (HPV)104. Synergistic effect of smoking and HPV16 positivity on the causation of head and neck cancer have been demonstrated104 though the same has not been proved for SLT products as yet.

Another significant positive association highlighted is that of oesophageal cancer and SLT products. Majority of studies from SEAR, the single study from EMR and one of two reports from EUR demonstrated positive association of oesophageal cancer with SLT use. A previous global review of SLT-related diseases reported an overall 20 per cent higher risk of oesophageal cancer in SLT users with maximum risk detected in the analysis of studies from EMR and SEAR6. Similar positive association was reported in a meta-analysis of Indian studies7.

Studies on gastric cancer have reported conflicting results with reports from EUR not finding positive association while majority of SEAR and EMR studies demonstrating higher risk of gastric cancer with SLT use. However, a previous meta-analysis of Indian studies did not find significant positive association between gastric cancer and SLT use (1.31, 95% CI 0.92-1.87)7. The association of pancreatic cancer with SLT use has been demonstrated in Scandinavian reports though studies from America have not supported this association12,13. The Scandinavian studies have shown this increased risk in SLT users after adjustment for smoking and alcohol use13 or in never-smoking stratum12. Animal model experiments have shown the occurrence of pancreatic adenocarcinoma in rats exposed to TSNAs or their metabolites as well as effect of TSNAs on point mutations in the RAS gene that is implicated in pancreatic carcinogenesis105,106. TSNAs have also been documented in human pancreatic juice at higher concentration in smokers compared to non-smokers107. However, the available evidence lacks detailed information regarding the chemical composition of the SLT products consumed in different Regions. Since the toxicity of SLT products differs according to their composition and manufacturing practices, effect of these products in causation of various cancers has been debatable in the studies from different Regions.

The role of SLT use in occurrence of cancers such as colorectal, lung, breast and cervix has not been established beyond doubt as yet and needs further exploration by well-controlled studies.

Cancer-related mortality and SLT use

In comparison with the number of studies evaluating cancer occurrence in SLT users, research into cancer-related mortality with SLT use has been scarce. In the present review, only 19 individual risk estimates were retrieved for mortality of various cancers in SLT users. A previous meta-analysis of SLT-attributable mortality showed significantly higher risk of deaths due to UADT, gastric and cervical cancers in SLT users. Regional variation was noted for mortality outcome of UADT cancer with significant positive association in estimates from SEAR while the same was not true for those from AMR99. However, a limitation of this analysis was the small number of estimates included for each cancer. In addition, mortality estimates were not available from all Regions.

A cohort study from south India on effect of tobacco chewing on cancer mortality did not find significant positive association (1.07, 95% CI 0.94-1.22) after adjustment for age, gender, socio-economic status and dietary variables. However, age-wise evaluation
Name of product	Region/country	Method of use	Form of tobacco	Additives	pH	Known carcinogens (TSNAs/NNK/NNN/NNAL (ng/g))
Betel quid with tobacco	SEAR: India, Sri Lanka, Bangladesh, Myanmar, Thailand, Indonesia, Nepal, Maldives; EMR: Pakistan, UAE; WPR: Lao Democratic People’s Republic, Palau, Cambodia, Malaysia, Vietnam, Federal States of Micronesia	Oral - chewed	Plain or flavoured tobacco flakes	Areca nut, slaked lime (calcium hydroxide) or other alkaline agents, betel leaf and usually catechu. Can include cardamom, saffron, cloves, camphor, aniseed, turmeric, mustard, or sweeteners	Data NA	Data NA
Dry snuff	AMR: Canada, USA; AFR: South Africa, Nigeria; EUR: Germany	Oral - sucked	Fire-cured and fermented tobacco	Sweeteners, flavourings	5.71-6.25	10300-76500/1340-4600/6120-31300/47-1050
Gutka	SEAR: India, Bangladesh, Nepal, Myanmar, Sri Lanka; EMR: Pakistan	Oral - chewed	Powdered tobacco	Areca nut, slaked lime (calcium hydroxide), catechu, and other condiments, sweeteners, and flavourings	India: 7.43-8.61	83.9-560/11.6-208/45.4-9/137/0.2-53.5
Khaini	SEAR: India, Bangladesh, Nepal, Bhutan	Oral - chewed, sucked	Tobacco leaves	Slaked lime (calcium hydroxide), and sometimes areca nut	9.65-9.79	21600-23500/88-502/16800-17500/1350-1400
Mishri	SEAR: India	Oral - sucked, applied to teeth and gums, teeth, cleaning	Toasted powdered tobacco	-	6.54	4210/870/
Moist snuff	AMR: Canada, USA, Mexico; AFR: South Africa	Oral - sucked	Tobacco leaves	Flavourings, inorganic salts, humectants	5.54-8.62	4874-90024/382-9950/2204-4255/421-1412
Nass	EMR: Pakistan, Iran, Afghanistan, UAE; AFR: South Africa; EUR: Turkmenistan, Kyrgyzstan, Uzbekistan	Oral - chewed, sucked	Sun- and heat-dried tobacco	Ash, cotton or sesame oil, water, and sometimes lime or gum	8.76-9.14	478-1380/29.4-309/363-5/458.6-104
Shammah	EMR: Saudi Arabia, Yemen; AFR: Algeria	Oral - sucked	Sun-dried pulverized tobacco	Slaked lime, ash, black pepper, oil, flavourings, bombossa (sodium carbonate)	Data NA	Data NA

Contd...
showed detrimental effects on cancer mortality in the middle age group, 40-59 yr (1.26, 95% CI 1.03-1.55).

Due to paucity of studies evaluating cancer-related mortality in SLT users, conclusive opinion on cancer-specific, Region-wise or product-related mortality risk for various cancers is currently not possible. Exploring this aspect would need well-designed studies with appropriate adjustment for confounding factors.

Strengths and limitations

The strengths of this review include the wide and comprehensive range of cancers included, thorough literature review and global coverage to the widest extent possible. Cancer sites not considered by previous reviews and meta-analyses were also included in the present review.

However, there were certain limitations also. Many of the observational studies included inadequate descriptions of SLT use as ‘ever or never’ without defining the type of SLT product or estimating the dose-response relationship. Second, biochemical validation of SLT use was not conducted in majority of the studies. Self-reporting of SLT use is fraught with recall bias as well as intentional hiding of facts by the subjects. Such bias can lead to misclassification of subjects as cases or controls, leading to confounding results. A significant limitation of this review was the lack of uniformity of case definition in accordance with the International Classification of Diseases (ICD-10) system, especially for oral cancers. Many studies included in the review failed to mention the case definition criteria. The definition of various outcomes was also not uniform across studies. This was of special concern in the evaluation of studies on mortality since the data from developing countries were usually lacking in the completeness and certification of cause of death. In such a scenario, confounding by other causes of death in a cancer patient could not be excluded with confidence. Absence of studies from WPR limited the evaluation of SLT and cancer association in this Region. From AFR, only two studies evaluating role of toombak in risk of oral cancer were retrieved. Other cancer sites were not examined in AFR for the association with SLT products. Another limitation pertained to countries like India with wide inter-State variations in SLT products. Studies reported from such countries are not distributed uniformly through the country; however, the results are considered to represent the country as a whole.

Conclusion & recommendations for the future

The present review highlights the significant positive association of SLT use with risk of oral and oesophageal cancer in SEAR and EMR. Higher risk of pancreatic cancer in SLT users has been emphasized in
studies from EUR. Association of SLT products with cancers of other sites and with cancer-related mortality is still an unresolved issue that requires robust studies from across the globe.

Although association of SLT and oral cancer is well accepted especially for SEAR, further studies with adequate power and control of confounding factors are required from other Regions, as well as for other cancers to establish their association with SLT. The studies should specifically address the product-specific association to enable clear policy decisions and also to refute the claims of tobacco industry regarding relative safety of SLT products as an alternative to quitting for smokers. To address the latter issue, studies also need to include a category of ‘switchers’ in their long-term follow up to obtain real estimates of adverse health consequences of SLT use compared to smoking.

Financial support & sponsorship: None.

Conflicts of Interest: None.

References
1. Critchley JA, Unal B. Health effects associated with smokeless tobacco: A systematic review. Thorax 2003; 58 : 435-43.
2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Smokeless tobacco and some tobacco-specific N-nitrosamines. *IARC Monogr Eval Carcinog Risks Hum* 2007; 89 : 1-592.
3. Boffetta P, Hecht S, Gray N, Gupta P, Straif K. Smokeless tobacco and cancer. *Lancet Oncol* 2008; 9 : 667-75.
4. Hecht SS. Tobacco carcinogenesis. In: Schwab M, editor. *Encyclopedia of cancer*. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 3717-9.
5. Stanfill SB, Connolly GN, Zhang L, Jia LT, Henningfield JE, Richter P, et al. Global surveillance of oral tobacco products: Total nicotine, un-ionised nicotine and tobacco-specific N-nitrosamines. *Tob Control* 2011; 20 : e2.
6. Siddiqi K, Shah S, Abbas SM, Vidyasagar A, Jawad M, Dogar O, et al. Global burden of disease due to smokeless tobacco consumption in adults: Analysis of data from 113 countries. *BMJ Med* 2015; 13 : 194.
7. Sinha DN, Abdulkader RS, Gupta PC. Smokeless tobacco-associated cancers: A systematic review and meta-analysis of Indian studies. *Int J Cancer* 2016; 138 : 1368-79.
8. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *BMJ* 2009; 339 : b2535.
9. Pednekar MS, Gupta PC, Yeole BB, Hèbert JR. Association of tobacco habits, including bidi smoking, with overall and site-specific cancer incidence: Results from the Mumbai cohort study. *Cancer Causes Control* 2011; 22 : 859-68.
10. Jayalekshmi PA, Gangadharan P, Akiba S, Koriyama C, Nair RRK. Oral cavity cancer risk in relation to tobacco chewing and bidi smoking among men in Karunagappally, Kerala, India: Karunagappally cohort study. *Cancer Sci* 2011; 102 : 460-7.
11. Jayalekshmi PA, Gangadharan P, Akiba S, Nair RRK, Tsuji M, Rajan B, et al. Tobacco chewing and female oral cavity cancer risk in Karunagappally cohort, India. *Br J Cancer* 2009; 100 : 848-52.
12. Luo J, Ye W, Zendehdel K, Adami J, Adami HO, Boffetta P, et al. Oral use of Swedish moist snuff (snus) and risk for cancer of the mouth, lung, and pancreas in male construction workers: A retrospective cohort study. *Lancet* 2007; 369 : 2015-20.
13. Boffetta P, Aagnes B, Weiderpass E, Andersen A. Smokeless tobacco use and risk of cancer of the pancreas and other organs. *Int J Cancer* 2005; 114 : 992-5.
14. Hassanin AA, Idris AM. Attribution of oral cancer in the Sudan to toobamak dipping. *Transl Res Oral Oncol* 2017; 2 : 2057178X1668572.
15. Khan Z, Dreger S, Shah SMH, Pohlabeln H, Khan S, Ullah Z, et al. Oral cancer via the bargain bin: The risk of oral cancer associated with a smokeless tobacco product (Naswar). *PLoS One* 2017; 12 : e0180445.
16. Awan KH, Hussain QA, Patil S, Maralingamnavar M. Assessing the risk of oral cancer associated with gutka and other smokeless tobacco products: A case-control study. *J Contemp Dent Pract* 2016; 17 : 740-4.
17. Nair S, Datta S, Thiagarajan S, Chakrabarti S, Nair D, Chaturvedi P, et al. Squamous cell carcinoma of the upper aerodigestive tract in exclusive smokers, chewers, and those with no habits. *Indian J Cancer* 2016; 53 : 538-41.
18. Mahapatra S, Kamath R, Shetty BK, Bina VS. Risk of oral cancer associated with gutka and other tobacco products: A hospital-based case-control study. *J Cancer Res Ther* 2015; 11 : 199-203.
19. Kadashetti V, Chaudhary M, Patil S, Gawande M, Shivakumar KM, Patil S, et al. Analysis of various risk factors affecting potentially malignant disorders and oral cancer patients of central India. *J Cancer Res Ther* 2015; 11 : 280-6.
20. Merchant AT, Pitiphat W. Total, direct, and indirect effects of pan on oral cancer. *Cancer Causes Control* 2015; 26 : 487-91.
21. Quadri MFA, Alharbi F, Bajonaid AMS, Moafa IHY, Sharwani AA, Alamir AHA, et al. Oral squamous cell carcinoma and associated risk factors in Jazan, Saudi Arabia: A hospital based case control study. *Asian Pac J Cancer Prev* 2015; 16 : 4335-8.
22. Krishana A, Singh RK, Singh S, Verma P, Pal US, Tiwari S, et al. Demographic risk factors, affected anatomical sites and clinicopathological profile for oral squamous cell carcinoma in a North Indian population. *Asian Pac J Cancer Prev* 2014; 15 : 6755-60.
23. Lakanpal M, Yadav DS, Devi TR, Singh LC, Singh KJ, Latha SP, et al. Association of interleukin-1β -511 C/T polymorphism with tobacco-associated cancer in Northeast India: A study on oral and gastric cancer. *Cancer Genet* 2014; 207 : 1-1.
24. Amtha R, Razak IA, Basuki B, Roeslan BO, Gautama W, Puwanto DJ, et al. Tobacco (kretek) smoking, betel quid chewing and risk of oral cancer in a selected Jakarta population. *Asian Pac J Cancer Prev* 2014; 15 : 8673-8.
25. Ray JG, Ganguly M, Rao BS, Mukherjee S, Mahato B, Chaudhuri K, et al. Clinicopathological profile of oral potentially malignant and malignant conditions among areca nut, tobacco and alcohol users in Eastern India: A hospital based study. J Oral Maxillofac Pathol 2013; 17: 45-50.

26. Madani AH, Dikshit M, Bhaduri D. Risk for oral cancer associated to smoking, smokeless and oral dip products. Indian J Public Health 2012; 56 : 57-60.

27. Muwonge R, Ramadas K, Sankila R, Thara S, Thomas G, Vinoda J, et al. Role of tobacco smoking, chewing and alcohol drinking in the risk of oral cancer in Trivandrum, India: A nested case-control design using incident cancer cases. Oral Oncol 2008; 44 : 446-54.

28. Anantharaman D, Chaubal PM, Kannan S, Bhisey RA, Mahimikar MB. Susceptibility to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: Tobacco exposure as a risk modulator. Carcinogenesis 2007; 28 : 1455-62.

29. Subapriya R, Thangavelu A, Mathavan B, Ramachandran CR, Nagini S. Assessment of risk factors for oral squamous cell carcinoma in Chidambaram, Southern India: A case-control study. Eur J Cancer Prev 2007; 16 : 251-6.

30. Znor A, Brennan P, Gajalakshmi V, Mathew A, Shanta V, Varghese C, et al. Independent and combined effects of tobacco smoking, chewing and alcohol drinking on the risk of oral, pharyngeal and esophageal cancers in Indian men. Int J Cancer 2003; 105 : 681-6.

31. Buch SC, Notani PN, Bhisey RA. Polymorphism at GSTM1, GSTM5 and GSTT1 gene loci and susceptibility to oral cancer in an Indian population. Carcinogenesis 2002; 23 : 803-7.

32. Balaram P, Sridhar H, Rajkumar T, Vaccarella S, Herrero R, Dikshit RP, et al. Oral cancer in Southern India: The influence of smoking, drinking, paan-chewing and oral hygiene. Int J Cancer 2002; 98 : 440-5.

33. Dikshit RP, Kanhere S. Tobacco habits and risk of lung, oropharyngeal and oral cavity cancer: A population-based case-control study in Bhopal, India. Int J Epidemiol 2003; 32 : 609-14.

34. Merchant A, Husain SS, Hosain M, Fikree FF, Pitiphat W, Siddiqui AR, et al. Paan without tobacco: An independent risk factor for oral cancer. Int J Cancer 2000; 86 : 128-31.

35. Schildt EB, Eriksson M, Hardell L, Magnuson A. Oral snuff, smoking habits and alcohol consumption in relation to oral cancer in a Swedish case-control study. Int J Cancer 1998; 77 : 341-6.

36. Idris AM, Ahmed HM, Malik MO. Toombak dipping and cancer of the oral cavity in the sudan: A case-control study. Int J Cancer 1995; 63 : 477-80.

37. Rao DN, Ganesh B, Rao RS, Desai PB. Risk assessment of tobacco, alcohol and diet in oral cancer – A case-control study. Int J Cancer 1994; 58 : 469-73.

38. Mashberg A, Boffetta P, Winkelman R, Garfinkel L. Tobacco smoking, alcohol drinking, and cancer of the oral cavity and oropharynx among U.S. veterans. Cancer 1993; 72 : 1369-75.

39. Sankaranarayanan R, Duffy SW, Padmakumary G, Day NE, Krishan Nair M. Risk factors for cancer of the buccal and labial mucosa in Kerala, Southern India. J Epidemiol Community Health 1990; 44 : 286-92.

40. Nandakumar A, Thimmasetty KT, Seeramareddy NM, Venugopal TC, Rajanna, Vinutha AT, et al. A population-based case-control investigation on cancers of the oral cavity in Bangalore, India. Br J Cancer 1990; 62 : 847-51.

41. Sankaranarayanan R, Duffy SW, Padmakumary G, Day NE, Padmanabhan TK. Tobacco chewing, alcohol and nasal snuff in cancer of the gingiva in Kerala, India. Br J Cancer 1989; 60 : 638-43.

42. Jayalekshmi PA, Nandakumar A, Akiba S, Gangadharan P, Koriyama C. Associations of tobacco use and alcohol drinking with laryngeal and hypopharyngeal cancer risks among men in Karunagappally, Kerala, India – Karunagappally cohort study. PLoS One 2013; 8 : e73716.

43. Sapkota A, Gajalakshmi V, Jetly DH, Roychowdhury S, Dikshit RP; Brennan P, et al. Smokeless tobacco and increased risk of hypopharyngeal and laryngeal cancers: A multicentric case-control study from India. Int J Cancer 2007; 121 : 1793-8.

44. Wasnik KS, Ughade SN, Zodpey SP, Ingle DL. Tobacco consumption practices and risk of oro-pharyngeal cancer: A case-control study in central India. Southeast Asian J Trop Med Public Health 1998; 29 : 827-34.

45. Zendedhel K, Nyrén O, Luo J, Dickman PW, Boffetta P, Englund A, et al. Risk of gastroesophageal cancer among smokers and users of Scandinavian moist snuff. Int J Cancer 2008; 122 : 1095-9.

46. Das M, Sharma SK, Sekhon GS, Saikia BJ, Mahanta J, Phukan RK, et al. Promoter methylation of MGMT gene in serum of patients with esophageal squamous cell carcinoma in North East Asia. Asian Pac J Cancer Prev 2014; 15 : 9955-60.

47. Talukdar FR, Ghosh SK, Laskar RS, Mondal R. Epigenetic, genetic and environmental interactions in esophageal squamous cell carcinoma from Northeast India. PLoS One 2013; 8 : e60996.

48. Dar NA, Bhat GA, Shah IA, Iqbal B, Makhdoumi MA, Nisar I, et al. Hookah smoking, nass chewing, and oesophageal squamous cell carcinoma in Kashmir, India. Br J Cancer 2012; 107 : 1618-23.

49. Sehgal S, Kaul S, Gupta BB, Dhar MK. Risk factors and survival analysis of the esophageal cancer in the population of Jammu, India. Indian J Cancer 2012; 49 : 245-50.

50. Akhtar S, Sheikh AA, Qureshi HU. Chewing areca nut, betel quid, oral snuff, cigarette smoking and the risk of oesophageal squamous-cell carcinoma in South Asians: A multicentre case-control study. Eur J Cancer 2012; 48 : 655-61.

51. Phukan RK, Ali MS, Chetia CK, Mahanta J. Betel nut and tobacco chewing: potential risk factors of cancer of oesophagus in Assam, India. Br J Cancer 2001; 85 : 661-7.

52. Nayar D, Kapil U, Joshi YK, Sundaram KR, Srivastava SP, Shukla NK, et al. Nutritional risk factors in esophageal cancer. J Assoc Physicians India 2000; 48 : 781-7.

53. Lagergren J, Bergström R, Lindgren A, Nyrén O. The role of tobacco, snuff and alcohol use in the aetiology of cancer of the oesophagus and gastric cardia. Int J Cancer 2000; 85 : 340-6.

54. Nandakumar A, Anantha N, Pattabhiraman V, Prabhakaran PS, Dhar M, Puttaswamy K, et al. Importance of anatomical subsite in correlating risk factors in cancer of the oesophagus.
Cigarette smoking, use of other tobacco products and stomach cancer: Evidence from a case-control study in New England. Int J Cancer 2013; 132: 1911-7.

Bile KM, Shaikh JA, Afridi HUR, Khan Y. Smokeless tobacco use in Pakistan and its association with oropharyngeal cancer. East Mediterr Health J 2010; 16: S24-30.

Lewin F, Norell SE, Johansson H, Gustavsson P, Wennerberg I, Börklund A, et al. Smoking tobacco, oral snuff, and alcohol in the etiology of squamous cell carcinoma of the head and neck: A population-based case-referent study in Sweden. Cancer 1998; 82: 1367-75.

Gupta PC, Pednekar MS, Parkin DM, Sankaranarayanan R. Tobacco associated mortality in Mumbai (Bombay) India. Results of the bombay cohort study. Int J Epidemiol 2005; 34: 1395-402.

Henley SJ, Thun MJ, Connell C, Calle EE. Two large prospective studies of mortality among men who use snuff or chewing tobacco (United States). Cancer Causes Control 2005; 16: 347-58.

Roosar A, Johansson AL, Sandborgh-Englund G, Axéll T, Nyrénn O. Cancer and mortality among users and nonusers of snus. Int J Cancer 2008; 123: 168-73.

Timberlake DS, Nikitin D, Johnson NJ, Altekruse SF. A longitudinal study of smokeless tobacco use and mortality in the United States. Int J Cancer 2017; 141: 264-70.

Gajalakshmi V, Kanimozhi V. Tobacco chewing and adult mortality: A case-control analysis of 22,000 cases and 429,000 controls, never smoking tobacco and never drinking alcohol, in South India. Asian Pac J Cancer Prev 2015; 16: 1201-6.

Chao A, Thun MJ, Henley SJ, Jacobs EJ, McCullough ML, Calle EE, et al. Cigarette smoking, use of other tobacco products and stomach cancer mortality in US adults: The cancer prevention study II. Int J Cancer 2002; 101: 380-9.

Accortt NA, Waterbor JW, Beall C, Howard G. Chronic disease mortality in a cohort of smokeless tobacco users. Am J Epidemiol 2002; 156: 730-7.
87. Hsing AW, McLaughlin JK, Schuman LM, Bjelke E, Gridley G, Wacholder S, et al. Diet, tobacco use, and fatal prostate cancer: Results from the Lutheran brotherhood cohort study. Cancer Res 1990; 50 : 6836-40.

88. Cullen JW, Blot W, Henningfield J, Boyd G, Mecklenburg R, Massey MM, et al. Health consequences of using smokeless tobacco: Summary of the advisory committee’s report to the surgeon general. Public Health Rep 1986; 101 : 355-73.

89. Sinha DN, Suliankatchi RA, Gupta PC, Thamarangsi T, Agarwal N, Parascandola M, et al. Global burden of all-cause and cause-specific mortality due to smokeless tobacco use: Systematic review and meta-analysis. Tob Control 2018; 27 : 35-42.

90. Gupta PC, Arora M, Sinha DN, Asma S, Parascandola M, editors. Smokeless tobacco and public health in India. New Delhi: Ministry of Health & Family Welfare, Government of India; 2016.

91. Brunnemann KD, Prokopczyk B, Djordjevic MV, Hoffmann D. Formulation and analysis of tobacco-specific N-nitrosamines. Crit Rev Toxicol 1996; 26 : 121-37.

92. Khan Z, Tömösies J, Müller S. Smokeless tobacco and oral cancer in South Asia: A systematic review with meta-analysis. J Cancer Epidemiol 2014; 2014 : 11.

93. Wyss AB, Hashibe M, Lee YA, Chuang SC, Muscat J, Chen C, et al. Smokeless tobacco use and the risk of head and neck cancer: Pooled analysis of US studies in the INHANCE consortium. Am J Epidemiol 2016; 184 : 703-16.

94. Gupta B, Johnson NW. Systematic review and meta-analysis of association of smokeless tobacco and of betel quid without tobacco with incidence of oral cancer in South Asia and the Pacific. PLoS One 2014; 9 : e113385.

95. Gupta B, Bray F, Kumar N, Johnson NW. Associations between oral hygiene habits, diet, tobacco and alcohol and risk of oral cancer: A case-control study from India. Cancer Epidemiol 2017; 51 : 7-14.

96. Bhawna G. Burden of smoked and smokeless tobacco consumption in India – Results from the global adult tobacco survey India (GATS-India)- 2009-201. Asian Pac J Cancer Prev 2013; 14 : 3323-9.

97. National Cancer Institute and Centers for Disease Control and Prevention. Smokeless tobacco and public health: A global perspective. NIH publication No. 14-7983. Bethesda, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Institutes of Health, National Cancer Institute; 2014. p. B5-63.

98. WHO Study Group on Tobacco Product Regulation: Report on the Scientific Basis of Tobacco Product Regulation: Third Report of a WHO Study Group. (WHO Technical Report Series; No. 955). Available from: http://who.int/tobacco/global_interaction/tobreg/publications/tsr_955/en/, accessed on March 5, 2018.

99. Bhisey RA. Chemistry and toxicology of smokeless tobacco. Indian J Cancer 2012; 49 : 364-72.

100. Idris AM, Nair J, Friesen M, Ohshima H, Brouet I, Faustman EM, et al. Carcinogenic tobacco-specific nitrosamines are present at unusually high levels in the saliva of oral snuff users in Sudan. Carcinogenesis 1992; 13 : 1001-5.

101. Stich HF, Parida BB, Brunemann KD. Localized formation of micronuclei in the oral mucosa and tobacco-specific nitrosamines in the saliva of “reverse” smokers, Khaini-tobacco chewers and gudakhu users. Int J Cancer 1992; 50 : 172-6.

102. Bhide SV, Kulkarni J, Nair UJ, Spiegelhalder B, Preussmann R. Mutagenicity and carcinogenicity of masheri, a pyrolysed tobacco product, and its content of tobacco-specific nitrosamines. IARC Sci Publ 1987; 84 : 460-2.

103. Das RK, Dash BC. Genotoxicity of ‘gudakhu’, a tobacco preparation. II. In habitual users. Food Chem Toxicol 1992; 30 : 1045-9.

104. Herrero R, Castellsagué X, Pawlita M, Lissowska J, Kee F, Balaram P, et al. Human papillomavirus and oral cancer: The international agency for research on cancer multicenter study. J Natl Cancer Inst 2003; 95 : 1772-83.

105. Rivenson A, Hoffmann D, Prokopczyk B, Amin S, Hecht SS. Induction of lung and exocrine pancreas tumors in F344 rats by tobacco-specific and areca-derived N-nitrosamines. Cancer Res 1988; 48 : 6912-7.

106. Schuller HM. Mechanisms of smoking-related lung and pancreatic adenocarcinoma development. Nat Rev Cancer 2002; 2 : 455-63.

107. Prokopczyk B, Hoffmann D, Bologna M, Cunningham AJ, Trushin N, Akerkar S, et al. Identification of tobacco-derived compounds in human pancreatic juice. Chem Res Toxicol 2002; 15 : 677-85.

108. Ramadas K, Sauvaget C, Thomas G, Fayette JM, Thara S, Sankaranarayanan R, et al. Effect of tobacco chewing, tobacco smoking and alcohol on all-cause and cancer mortality: A cohort study from Trivandrum, India. Cancer Epidemiol 2010; 34 : 405-12.

For correspondence: Dr Sanjay Gupta, Division of Cytopathology, ICMR-National Institute of Cancer Prevention & Research, I-7, Sector-39, Noida 201 301, Uttar Pradesh, India e-mail: sanjaydr17@hotmail.com