A density functional theory insight towards the rational design of ionic liquids for SO2 capture†

Gregorio Garcia,a Mert Atilhanb and Santiago Aparicioa∗

A systematic density functional theory (DFT) analysis has been carried out to obtain information at the molecular level on the key parameters related to efficient SO2 capture by ionic liquids (ILs). A set of 55 ILs, for which high gas solubility is expected, has been selected. SO2 solubility in ILs was firstly predicted based on the COSMO-RS (Conductor-like Screening Model for Real Solvents) method, which provides a good prediction of gas solubility data in ILs without prior experimental knowledge of the compounds’ features. Then, interactions between SO2 and ILs were deeply analyzed through DFT simulations. This work provides valuable information about required factors at the molecular level to provide high SO2 solubility in ILs, which is crucial for further implementation of these materials in the future. In our opinion, systematic research on ILs for SO2 capture increases our knowledge about those factors which could be controlled at the molecular level, providing an approach for the rational design of task-specific ILs.

1. Introduction

Air pollution is attracting increasing attention throughout the world. Among the main air pollutants, sulfur dioxide (SO2), which is mainly emitted through the combustion of fossil based fuels, is causing serious harm to the environment and human health.1 At the same time, SO2 is a useful source of many intermediates in chemical synthesis.2 As a matter of fact, there is general interest in the design and improvement of methods for SO2 capture. Although several methods have been developed for this purpose, all of them have several drawbacks. For instance, an effective method based on flue gas desulfurization (FGD) needs a large amount of water and subsequent treatment of the consequent waste, in order to prevent excessive amounts of calcium sulphate that lead to secondary pollution in the environment. Other methods, such as amine scrubbing, are affected by solvent loss and degradation due to the low volatility and stability of amine solutions.2,3,5

In recent years, ionic liquids (ILs) have demonstrated their effectiveness for acid-gas removal from flue gas such as SO2 and CO2.8–14 In addition, ILs contain unique properties, including good thermal and chemical stability, non-flammability and most distinctly they have almost null vapor pressure. All these features have been proved to be useful in chemical processes to replace volatile organic compounds. Nonetheless, the major advantage of ILs is the possibility to design task-specific solvents through the adequate cation–anion combinations, which requires a deep understanding of the structure–property relationship.3,5

There is a large collection of compounds (approximately about ~106 when considering only “pure” ILs), and thus, systematic approaches on the ability of ILs for acid gas capture are useful in the selection of ILs for SO2 storage. Unfortunately, the larger number of ILs hinders systematic experimental studies on a huge number of ILs, due to the economical and temporal cost as well as limited experimental resources. Having mentioned the cost of experimental difficulties and cost hurdles associated with broad screening of ILs for acid-gas removal, density functional theory (DFT) simulations have proven their ability to provide valuable indications and guide to the experimentalists. As a matter of fact, DFT is a suitable tool for the analysis of the interactions between ILs and gas molecules at the nanoscopic level, which allow a deeper knowledge of the structure–property relationship. Most of the reported DFT studies only consider CO2,7,12,13,16,17 Though, some researches leading with SO2 capture have been reported.7,17

There are few recent studies that address utilization of ILs for gas capture at the molecular level, especially SO2 capture. Damas et al. have shown a systematic study of acid- and sour-gas mitigation alternatives (SO2, CO2 and H2S) by using ILs through DFT simulations, which mainly focuses on imidazolium cation based ILs.17 In this presented work, we broadened the study that was conducted by Damas et al. by including other cations such as piridinium or cholinium cations in combination with anions such as bis(trifluorosulfonyl)imide, triflate, or tetrafluoroborate as shown in Table 1 and Fig. 1.

In our opinion, the analysis of those ILs with high efficiency for SO2 capture through DFT tools should be a good starting
point to shed some light on the main molecular factors related to efficient SO$_2$ capture. Unfortunately, experimental studies dealing with SO$_2$ capture by ILs are still scarce and reduced to a small number of selected ionic liquids. A key parameter in the selection of an ionic liquid for SO$_2$ capture is gas solubility. It is well known that gas solubility in ILs can be predicted based on the COSMO-RS (Conductor-like Screening Model for Real Solvents) method.18 The COSMO-RS predicts thermodynamics properties of solvents on the basis of uni-molecular quantum chemical calculations for the individual molecules, which provides a good

No.	Cation	Anion	Labelling	$K_H \times 10^{-5}$/Pascal
1	1-Ethyl-3-methylimidazolium	Tetrafluoroborate	EMIm\cdotBF$_4$	3.55
2	1-Butyl-3-methylimidazolium	Tetrafluoroborate	BMIm\cdotBF$_4$	3.55
3	1-Hexyl-3-methylimidazolium	Tetrafluoroborate	HMIm\cdotBF$_4$	3.47
4	1-Methyl-3-octylimidazolium	Tetrafluoroborate	OMIm\cdotBF$_4$	3.35
5	1-Butylpyridinium	Tetrafluoroborate	BPy\cdotBF$_4$	3.72
6	1-Butyl-3-methylpyridinium	Tetrafluoroborate	BMIm\cdotPF$_6$	2.96
7	1-Butyl-4-methylpyridinium	Tetrafluoroborate	BMIm\cdotPF$_6$	2.96
8	1-Butyl-3-methylimidazolium	Hexafluorophosphate	HMIm\cdotPF$_6$	2.65
9	1-Hexyl-3-methylimidazolium	Hexafluorophosphate	HMIm\cdotPF$_6$	2.65
10	1-Methyl-3-octylimidazolium	Hexafluorophosphate	EMIm\cdotPF$_6$	2.47
11	1-Butylpyridinium	Hexafluorophosphate	BMIm\cdotPF$_6$	2.46
12	1-Butyl-3-methylpyridinium	Diethylphosphate	EMIm\cdotEt$_2$PO$_4$	4.07
13	1,3-Dimethylimidazolium	Dimethylphosphate	DMIm\cdotMe$_2$PO$_4$	6.29
14	Choline	Ethylsulfate	EMIm\cdotEtSO$_4$	4.63
15	1-Butyl-3-methylimidazolium	Hidrogensulfate	EMIm\cdotH$_2$SO$_4$	6.45
16	1-Ethyl-3-methylimidazolium	Acetate	EMIm\cdotAc	3.85
17	Ethylammonium	Nitrate	EtNH$_3$$\cdotNO_3$	6.37
21	Triethylsulfonium	Bis[(trifluoromethyl)sulfonylimide	Et$_3$Sn[NTf$_2$]	5.52
22	1-Ethyl-3-methylimidazolium	Bis[(trifluoromethyl)sulfonylimide	EMIm\cdotNTf$_2$	3.63
23	1-Methyl-3-propylimidazolium	Bis[(trifluoromethyl)sulfonylimide	MPIm\cdotNTf$_2$	3.54
24	1,2-Dimethyl-3-propylimidazolium	Bis[(trifluoromethyl)sulfonylimide	DMPIm\cdotNTf$_2$	3.19
25	1-Butyl-3-methylimidazolium	Bis[(trifluoromethyl)sulfonylimide	BMIm\cdotNTf$_2$	3.50
26	1-Butyl-3,3-dimethylimidazolium	Bis[(trifluoromethyl)sulfonylimide	BDIm\cdotNTf$_2$	3.18
27	1-Hexyl-3-methylimidazolium	Bis[(trifluoromethyl)sulfonylimide	HMIm\cdotNTf$_2$	3.50
28	1-Hexadecyl-3-methylimidazolium	Bis[(trifluoromethyl)sulfonylimide	HMIm\cdotNTf$_2$	3.69
29	1-Allyl-3-methylimidazolium	Bis[(trifluoromethyl)sulfonylimide	AMIm\cdotNTf$_2$	3.56
30	1-Methyl-1-propylpyrrolidinium	Bis[(trifluoromethyl)sulfonylimide	MPPr\cdotNTf$_2$	3.39
31	1-Butyl-1-methylpyrrolidinium	Bis[(trifluoromethyl)sulfonylimide	BMPr\cdotNTf$_2$	3.36
32	1-Methyl-1-propylpyrrolidinium	Bis[(trifluoromethyl)sulfonylimide	MPPr\cdotNTf$_2$	3.33
33	1-Butylpyridinium	Bis[(trifluoromethyl)sulfonylimide	BPpy\cdotNTf$_2$	3.49
34	1-Butyl-1-methylpyrrolidinium	Bis[(trifluoromethyl)sulfonylimide	BMPr\cdotNTf$_2$	3.29
35	1-Butyl-4-methylpyridinium	Bis[(trifluoromethyl)sulfonylimide	BMPr\cdotNTf$_2$	3.29
36	1-Ethyl-3-methylimidazolium	Triflate	EMIm\cdotSO$_2$CF$_3$	4.41
37	1-Butyl-3-methylimidazolium	Triflate	BMIm\cdotSO$_2$CF$_3$	4.20
38	1-Hexyl-3-methylimidazolium	Triflate	HMIm\cdotSO$_2$CF$_3$	4.17
39	1-Methyl-3-octylimidazolium	Triflate	OMIm\cdotSO$_2$CF$_3$	4.11
40	1-Butyl-1-methylpyrrolidinium	Triflate	EMIm\cdotSO$_2$CF$_3$	3.57
41	1-Ethyl-3-methylimidazolium	Thiocianate	EMIm\cdotSCN	4.17
42	1-Ethyl-3-methylimidazolium	Dicyanamide	EMIm\cdotDCA	4.30
43	1-Butyl-3-methylimidazolium	Dicyanamide	BMIm\cdotDCA	4.22
44	1-Butyl-1-methylpyrrolidinium	Dicyanamide	BMPr\cdotDCA	2.88
45	1-Ethyl-3-methylimidazolium	Chloride	EMIm\cdotCl	2.01
46	1-Butyl-3-methylimidazolium	Chloride	BMIm\cdotCl	3.42
47	1-Allyl-3-methylimidazolium	Chloride	AMIm\cdotCl	2.87
48	1-Ethyl-3-methylimidazolium	Bromide	EMIm\cdotBr	2.24
49	1-Butyl-3-methylimidazolium	Bromide	BMIm\cdotBr	3.53
50	1,3-Dimethylimidazolium	Iodide	DMIm\cdotI	3.39
51	1-Butyl-3-methylimidazolium	Iodide	EMIm\cdotI	3.63
52	1-Butyl-3-propylimidazolium	Iodide	MPIm\cdotI	3.70
53	1-Butyl-3-methylimidazolium	Iodide	BMIm\cdotI	4.07
54	1-Hexyl-3-methylimidazolium	Iodide	HMIm\cdotI	4.50
55	1-Allyl-3-methylimidazolium	Iodide	AMIm\cdotI	4.07
prediction of gas solubility data in ILs without prior experimental knowledge on the compound’s properties. Thus, COSMO-RS is able to carry out fast screening on a huge number of ionic liquids, reducing the number of candidates for experimental studies, which also reduces try-and-error attempts and economical and temporal cost. Consequently, the COSMO-RS method was firstly used to carry out a quick screening on a big matrix of ILs. Then, an in-depth study of those ILs, which are expected to provide high SO2 solubility according to the COSMO-RS method, from a molecular point of view was done using DFT tools. The combination...
of first screening to select efficient ILs for SO$_2$ capture using COSMO-RS analysis along with DFT analysis on the most adequate ILs have allowed us to obtain information about structure vs. property relations that control SO$_2$ solubility in ILs, which is crucial for the rational design of task-specific ILs for SO$_2$ absorption.

2. Theoretical methodology

2.1. COSMO-RS method

Four different approaches can be performed to describe ionic liquids according to the COSMO-RS method. According to Palomar et al., these approximations are labelled $[C + A]_{\text{GAS}}$, $[C + A]_{\text{COSMO}}$, $[\text{CA}]_{\text{GAS}}$ and $[\text{CA}]_{\text{COSMO}}$. The $[C + A]$ model uses isolated ions to simulate ionic liquids systems, while ion-paired structures are used in $[\text{CA}]$. System optimizations can be carried out in gas-phase using quantum chemistry methods (GAS subscript), or the continuum solvation COSMO model (COSMO subscript). The $[C + A]_{\text{GAS}}$ approach (i.e. independent ionic structures optimized in the gas phase) predicts gas solubility data in slightly better agreement with the experiments. Palomar et al. also concluded that all COSMOS-RS approaches provide similar good capability to predict Henry's law constants for ionic liquid. Nonetheless, the $[C + A]_{\text{GAS}}$ model allows us to perform analysis with a reduced computational time, since only optimized ion structures in the gas phase are needed, which is especially useful for screening purposes.

The $[C + A]_{\text{GAS}}$ model was employed in this work, which is based on two main steps: (i) quantum chemical optimization for the molecular involved species and (ii) COSMO-RS statistical calculations. Firstly, the isolated ions and SO$_2$ were optimized at the B3LYP/6-311+G(d,p) level using Gaussian 09 (Revision D.01) package, which was also instructed to provide the COSMO files. For these structures, COSMO files were calculated at the BVP86/TZVP/DGA1 theoretical level and used as input in the COSMOthermX program to estimate Henry's law constants. The COSMO-RS model parameterization used for all calculations was BPTZVPC21-0111.

In this work, Henry's law constants (K_H) for SO$_2$ were selected as a measure of absorbing capability. Henry's constants are directly calculated by COSMOthermX code. The details of theory of COSMO-RS can be found in the original work of Klamt et al. Briefly, Henry's law constants can be defined as the ratio between the liquid phase concentration of SO$_2$ and its partial vapour pressure in the gas phase:

$$K_H = P_l/x_i = \frac{P_l}{x_i}$$

where P_l and x_i are the partial vapour pressure of a compound i (SO$_2$ in our study) in the gas phase and its molar fraction in the liquid. γ_i^∞ is the activity coefficient of the compound at infinite dilution, and P_i^0 is the saturated pure compound vapor pressure of the gas. Those parameters are directly provided by the COSMOthermX code.

2.2. DFT simulations

Systems composed by one isolated molecule (i.e. isolated ions and SO$_2$) up to the system composed by both ions and SO$_2$ were optimized. Optimized minima were checked through their vibrational frequencies. For those simulations wherein two or more molecules are present, different starting points were employed in order to study different relative dispositions, focusing our attention on the disposition of minimal energy. All these calculations were carried out using a B3LYP-D2 functional. B3LYP has been selected since it has been proven to show appreciable performance over a previously studied wide range of systems, while dispersion corrections (D2) are adequate since we dealt with systems with dispersive interactions such as hydrogen bonds. In addition, other works dealing with the performance of dispersion corrected functionals to study ionic liquid concluded that dispersion correction could significantly decrease mean absolute deviations for binding energies up to 10.0 kJ mol$^{-1}$ or lower in comparison with the MP2 method. All atomic elements, except iodine, were described with the standard Pople basis set 6-311+G(d,p). For iodine, a small core Stuttgart–Dresden–Bonn effective core potential was used (SDB-cc-pVTZ). Interaction energies (BE) related with SO$_2$ capture were computed as the energy difference between the complex and the sum of the energy of each component. For example, BE for IL·SO$_2$ was calculated as:

$$BE = E_{\text{IL-SO}_2} - (E_{\text{cat}} + E_{\text{ani}} + E_{\text{SO}_2})$$

Binding energies were also estimated by considering the IL as a whole (BE*), i.e., the binding energy due to the interaction between the IL and the gas molecule:

$$BE^* = E_{\text{IL-SO}_2} - (E_{\text{IL}} + E_{\text{SO}_2})$$

where $E_{\text{IL-SO}_2}$, E_{cat}, E_{ani}, E_{IL} and E_{SO_2} stand for the energies of IL·SO$_2$, cation, anion, IL and SO$_2$, respectively. For those systems composed of two or more molecules, computed energies were corrected according to the counterpoise method to avoid basis set super position error (BSSE).

It has been shown that there is a specific charge transfer interaction between SO$_2$ and the ions. There are different methods to calculate charge distributions, such as the Mulliken method whose basis set dependence is well known. ChelpG scheme has demonstrated its suitability for ILs. Thus, atomic charges were also computed according to both ChelpG and Mulliken schemes. Intermolecular interactions where analyzed in the framework of Bader’s theory (Atoms in Molecules, AIM). In this context, intermolecular interactions are characterized through critical points (CP). Although four kind of critical points were obtained, we focused on bond critical points (BCP), which raises the criteria for considering the presence of intermolecular interactions. AIM analysis was carried out with the MultiWFN code. All the above-mentioned calculations were carried out with Gaussian 09 (Revision D.01) package.

3. Results and discussion

3.1. COSMO-RS analysis: selection of the optimal IL family

As said, the first step in our study was the selection of an optimal family of ILs with high SO$_2$ solubility. The SO$_2$ absorption capacities were evaluated in terms of Henry's law constants.
(\(K_H\)) predicted according to the COSMO-RS method. COSMO-RS is a predictive method for thermodynamic equilibrium of fluids, which uses a statistical thermodynamic approach based on the results of uni-molecular quantum chemical calculations. The efficiency of COSMO-RS to predict the solubility behaviour of different solutes in ILs was evaluated by comparing both the experimental and computed (according to the COSMO-RS method) Henry’s constants.\(^{14,18,33,34}\) Although some publications have reported that COSMO-RS systematically overestimates the Henry’s constants, it provides a reasonable linear fit between the calculated and experimental values.\(^{14,34}\)

In this work, COSMO-RS approach has been used to perform a fast screening on SO\(_2\) solubility in ILs. Although several properties, such as σ-surfaces, screening charge density, σ-profiles, and histograms of screening charge can be computed with COSMO-RS, we have focused on Henry’s law constants for SO\(_2\) as a measure of absorbing capability. For this, \(K_H\) (at 303 K) was estimated for a matrix of \(\approx 7600\) ILs formed through a combination of cations based on imidazolium, piperidinium, choline, ammonium cations paired with anions such as halogens, phosphates, tetrafluoroborate, di cyanamide or bis(trifluorosulfonyl)imide (see Table S1, ESI†). In addition to low Henry’s law constants, only those ILs with an adequate viscosity profile for industrial applications as suitable ILs for SO\(_2\) capture were considered. Thus, a set of 55 ILs (see Table 1 and Fig. 1) was selected for a deeper DFT analysis. Table 1 and Fig. 2 gather the computed Henry’s law constants of the selected ionic liquids. All selected ILs yield \(K_H\) within the range of \(2.5 \times 10^5\) to \(6.5 \times 10^5\) Pascal at 303 K. These values are smaller (which means higher solubility) than those reported by González-Miquel et al. (of around \(30 \times 10^5\) Pascal–\(60 \times 10^5\) Pascal) for CO\(_2\) absorption.\(^{33}\) Then, high efficiency for SO\(_2\) capture can be expected for selected ILs. Note that most of the selected ILs are based on cations such as imidazolium, pyridinium or piperazinium and anions such as \([\text{BF}_4]^-\), \([\text{PF}_6]^-\), \([\text{NTf}_2]^-\) triflate or halides. Then, the combination of these anions would be adequate to design ILs for SO\(_2\) capture with high efficiencies.

3.2. DFT analysis

As a first approximation, SO\(_2\) capture at the molecule level could be related with the strength of the interactions between the ions and the SO\(_2\) molecule. In this work, the interaction strength has been mainly analyzed based on binding energies (BE). Prior to analysis of SO\(_2\) capture by selected ILs, ion···SO\(_2\) and ionic pairs were also briefly assessed. Such information could be useful to rationalize the behavior of IL···SO\(_2\) systems.

3.2.1. Ion···SO\(_2\) systems

Fig. 3 shows computed binding energies (|BE|) for anion···SO\(_2\) interactions. In general, the selected cations provide similar |BE|, whose values lie between 31.70 kJ mol\(^{-1}\) ([BMPyr]) and 42.92 kJ mol\(^{-1}\) ([CHI]) except \([\text{EtNH}_2]^+\) which yields the largest cation···SO\(_2\) values, (|BE| = 58.60 kJ mol\(^{-1}\)). In concordance with Damas’s work, the binding energy for the imidazolium family decreases upon alkyl side chain elongation. In fact, from \([\text{EMIM}]^+\) to \([\text{HMIM}]^+\), BE varies by only 1.83 kJ mol\(^{-1}\). However, larger alkyl side chains such as \([\text{OIMM}]^+\) and \([\text{HdMIM}]^+\) lead to a slight increase in BE upon chain elongation. Anion···SO\(_2\) binding energies are, in general, larger than cation···SO\(_2\) binding energies, with values varying between 41.91 kJ mol\(^{-1}\) ([\text{NTf}_2]^-) and 123.37 kJ mol\(^{-1}\) ([\text{H}_2\text{PO}_4]^-). Some ions can be classified according to their chemical structure (such as those based on phosphate or sulfate anions). Thus, |BE| of those ones based on dialkyl phosphate slightly decreases (\(\approx 4.00\) kJ mol\(^{-1}\)) upon alkyl side chain elongation. The alkyl chain absence in \([\text{H}_2\text{PO}_4]^-\) leads to |BE| values of 29.12 kJ mol\(^{-1}\) which is greater than that of \([\text{Et}_2\text{PO}_4]^-\). Similar patterns are noted for sulfate-based ions, wherein the presence of an ethyl chain leads to a diminution of 16.48 kJ mol\(^{-1}\). As concerns as halides, |BE| = 52.18 kJ mol\(^{-1}\) (in average). In order to compare BE values with experimental data, IL 22 \([\text{EMIM}][\text{NTf}_2]\) has been selected as its CO\(_2\) capture performance has been demonstrated experimentally.\(^{11}\) According to eqn (2), CO\(_2\) capture by IL 22 yields |BE| = 36.58 kJ mol\(^{-1}\). This energy could be considered as a low limit, from which higher |BE| would be adequate to provide high SO\(_2\) affinities.
It has been proven that there is a charge transfer interaction between \(\text{SO}_2 \) and the anion motif of ILs. This charge transfer interaction is proportional to the anion basicity and plays an important role on the gas adsorption capacity.\(^{26} \)

Fig. 4 collects the charge transfers between the cation/anion and \(\text{SO}_2 \) molecule. For cation (anion)–\(\text{SO}_2 \) systems, the total charge over the \(\text{SO}_2 \) molecule takes positive (negatives) values, which means that charge is transferred from the \(\text{SO}_2 \) up to the cation (from the anion up to the \(\text{SO}_2 \)). Broadly, charge populations according to the Mulliken scheme are smaller than those computed using the ChelpG model. According to ChelpG (Mulliken) atomic charges, charge transfer between cations and the \(\text{SO}_2 \) molecule is, on average, 0.05 (0.05) electrons. Thus, van der Waals interactions are one of the main contributions to the \(|\text{BE}| \) for cation–\(\text{SO}_2 \) systems, which is in concordance with lower \(|\text{BE}| \) values than anion–\(\text{SO}_2 \) systems. Now, the total charge over \(\text{SO}_2 \) molecule is 0.23 (0.21) electrons for anion–\(\text{SO}_2 \) systems. These higher values are in concordance with greater anion appetency to interact with the \(\text{SO}_2 \) molecule due to a charge transfer interactions. Fig. 5 shows the relationship between binding energies and charge transfer of anion–\(\text{SO}_2 \) systems (a similar pattern has not been found for cation–\(\text{SO}_2 \) systems), which follows a linear behavior for most anions.

3.2.2. Ionic liquids

Fig. 6 gathers computed \(|\text{BE}| \) of the isolated ionic pair and the charge transfer (CT) between ions according to the ChelpG scheme. Most ILs yield \(|\text{BE}| \) between 318.99 \(\text{kJ mol}^{-1} \) (IL 21) and 492.70 \(\text{kJ mol}^{-1} \) (IL 20), while ILs 25, 29, 31, 33 and 35 provide the smallest values, around 173.09 \(\text{kJ mol}^{-1} \). As known, the columbic attraction between opposite charges is the main force between both ions forming the ionic liquid. Even though, other intermolecular forces can also be present. Both the charge transfer and \(\text{BE} \) follow similar patterns (Fig. 6), i.e., the columbic interaction between both positive and negative charges is one of the main contributions to the binding energy. ILs with the smallest \(|\text{BE}| \), i.e. IL 25, 29, 31, 33 and 35, are those wherein high charge transfer does not provide high binding energies, which points out that other interactions (such as hydrogen bonds) also represent an important contribution (intermolecular interactions between ions are below described for some ILs). ILs based on halide anions (45–55) show increasing \(\text{CT} \) with the halide electronegativity. Those effects are stronger from chloride to bromide halides. CTs and binding energies depend on both the cation and anion nature as well. For instance, those ILs based on imidazol cations and [NTf\(_2\)]\(^-\) anions (except ILs 25 and 29) yield similar \(|\text{BE}| \) (\(\approx 339.0 \text{kJ mol}^{-1} \)).
3.2.3. \(\text{SO}_2 \) capture by ionic liquids. Binding energies of IL–\(\text{SO}_2 \) systems have been used as a measurement of the interaction strength between selected ILs and \(\text{SO}_2 \) molecule. Fig. 7 collects \(|\text{BE}|\) (according eqn (2)) of IL–\(\text{SO}_2 \) systems, which has been decomposed as a sum of the ionic pair, cation–\(\text{SO}_2 \) and anion–\(\text{SO}_2 \) contributions. Thus, using the optimized IL–\(\text{SO}_2 \) geometries, contributions from cation–anion, cation–\(\text{SO}_2 \) and anion–\(\text{SO}_2 \) have been also calculated. BE energies were also estimated taking into account the ILs as a whole (eqn (2), \(|\text{BE}^0|\)). All these quantities are also provided in Fig. 7. The largest contribution to the binding energy comes from the interaction between both ions. For an easier comparison, this contribution has been also represented in Fig. 6. For most ILs, the \(\text{SO}_2 \) molecule only induces a scarce weakening on the interaction between ions (lower \(|\text{BE}|\)). However, ILs with the lowest \(|\text{BE}|\) in the absence of \(\text{SO}_2 \) (ILs 25, 29, 31, 33 and 35, see Fig. 6) are those wherein the \(\text{SO}_2 \) molecule steers to a strengthening on the interaction between ions. This is due to the phenomena that the new arrangement between ions of \(\text{SO}_2 \) improves the interaction between both ions and their interactions with the gas molecule, which is described in detail below.

Regarding ion–\(\text{SO}_2 \) contributions, cation–\(\text{SO}_2 \) one is, in general, much lower than anion–\(\text{SO}_2 \) contributions. Even if, the behavior of both ion–\(\text{SO}_2 \) contributions and its relationship with \(|\text{BE}|\) depends on the analyzed IL. For instance, anion–\(\text{SO}_2 \) contributions present similar values to \(|\text{BE}^0|\) for ILs 1–6 (based on tetrafluoroborate anion) and 45–55 (based on halides), i.e., anion–\(\text{SO}_2 \) interactions stand for the main contribution to the total binding energies of these IL–\(\text{SO}_2 \) systems. Hence, for those ILs based on \([\text{BF}_4]^-\) (1–6) and halide (45–55) anions, the \(\text{SO}_2 \) adsorption process is mainly governed by the anion. For ILs based on triflate, thiocianate or dicyanamide (ILs 36–44), the sum of both ion–\(\text{SO}_2 \) contribution yields similar values of \(|\text{BE}|\). In consequence, the \(\text{SO}_2 \) capture using ILs 36–44 would be guided by both ions. Based on average values, binding energies of cation/anion–\(\text{SO}_2 \) systems (Fig. 3) yield values \(\approx 37.09 \text{kJ mol}^{-1}/72.37 \text{kJ mol}^{-1} \). However, cation/anion–\(\text{SO}_2 \) contributions to the binding energy (Fig. 7) are of around 13.94 kJ mol\(^{-1}/52.03 \text{kJ mol}^{-1}\). For both ions, interaction energies reduce \(\approx 21.9 \text{kJ mol}^{-1}\) due to the presence of the paired ion. Ions became less negative, since they transfer charge up to both the cation and \(\text{SO}_2 \) molecule. However, both ions strongly interact between them, hindering cation/anion–\(\text{SO}_2 \) interactions. Afresh, this general trend depends on the selected family. For example, for \([\text{BF}_4]^-/[\text{Cl}]^-/[\text{Br}]^-/[\text{I}]^-\) anion \(|\text{BE}| = 55.45 \text{kJ mol}^{-1}/54.64 \text{kJ mol}^{-1}/50.07 \text{kJ mol}^{-1}/51.83 \text{kJ mol}^{-1}\), while anion–\(\text{SO}_2 \) contributions to the total \(|\text{BE}|\) for ILs 1–6 (which are those based on tetrafluoroborate anion) are \(\approx 69.28 \text{kJ mol}^{-1}\), and \(\approx 90.07 \text{kJ mol}^{-1}\) for those ILs based on halides (45–55). As seen above, anion–\(\text{SO}_2 \) interactions are mainly ruled by the anion–\(\text{SO}_2 \). Both factors point out that the CT between both ions would increase anion basicity, as well as its interaction strength with the \(\text{SO}_2 \) molecule. Bearing in mind

![Fig. 5](image-url) Binding energies (\(|\text{BE}|\)) vs. charge transfer of anion–\(\text{SO}_2 \) systems.

![Fig. 6](image-url) Computed binding energies (in absolute value, \(|\text{BE}|\)) of ionic pairs (black line), along charge transfer computed according to the ChelpG scheme (blue bar). Binding energies of ionic pairs using their geometries in the presence of \(\text{SO}_2 \) are also collected (green line).
a value of around 36.0 kJ mol\(^{-1}\) (estimated for \(\text{CO}_2\) capture by [EMIM][Tf\(_2\)N] IL) as a low limit, almost ILs yield larger values, |\(\text{BE}^0\)| \(\approx\) 45.0 kJ mol\(^{-1}\). According to these raised values, an efficient \(\text{SO}_2\) capture can be expected. Once more, ILs 25, 29, 31, 33 and 35 do not follow the general trend, since their binding energies despising ionic contribution (|\(\text{BE}^0\)|) are much larger than the sum of both ion-\(\cdot\)\(\text{SO}_2\) contributions.

In short, anion-\(\cdot\)\(\text{SO}_2\) interactions play an important role in \(\text{SO}_2\) capture by ILs. When both ions are considered, anion-\(\cdot\)\(\text{SO}_2\) strengths will be affected by cation-anion interactions. We have defined the binding energies of IL-\(\text{SO}_2\) systems (\(\text{BE}\), according eqn (2)) as a function of the \(\text{BE}\) of ion-\(\cdot\)\(\text{SO}_2\) systems (Section 3.2.1. and Fig. 3) and ionic pairs (Section 3.2.2. and Fig. 6):

\[
\text{BE}_{\text{IL-\text{SO}_2}} = (a \text{BE}_{\text{CAT-\text{SO}_2}})^x + (b \text{BE}_{\text{ANI-\text{SO}_2}})^y + (c \text{BE}_{\text{IL}})^z \tag{4}
\]

where \(\text{BE}_{\text{IL-\text{SO}_2}}\), \(\text{BE}_{\text{CAT-\text{SO}_2}}\), \(\text{BE}_{\text{ANI-\text{SO}_2}}\), \(\text{BE}_{\text{IL}}\) are the binding energies of the IL-\(\text{SO}_2\), cation-\(\cdot\)\(\text{SO}_2\), anion-\(\cdot\)\(\text{SO}_2\) and anion-cation systems, respectively, while \(a\), \(b\), \(c\), \(x\), \(y\) and \(z\) are adjustable parameters. Fig. 9a plots the results of a statistical analysis after expressing \(\text{BE}_{\text{IL-\text{SO}_2}}\) according to eqn (4). Fig. 9a gathers the data collected for the whole set of ILs. Most of them yield a linear behavior between \(\text{BE}_{\text{IL-\text{SO}_2}}\) estimated from the IL-\(\text{SO}_2\) optimized systems (\(\text{BE}_{\text{IL-\text{SO}_2,\text{DFT}}}\)) and those ones after the fit of eqn (4) (\(\text{BE}_{\text{IL-\text{SO}_2,\text{Statistical}}}\)). Hence, the total binding energy of IL-\(\text{SO}_2\) systems, which takes into account both anion-\(\cdot\)\(\text{SO}_2\) interactions, could be directly obtained through the optimization of ion-\(\cdot\)\(\text{SO}_2\) systems and ILs. The fit yields \(R^2 = 0.6772\) and medium deviation (MD) = 3.20 kJ mol\(^{-1}\), which could be considered an acceptable value despite the variety in the chemical structure of the selected ionic liquid. The largest errors correspond to ILs 25, 29, 31, 33 and 35 (|\(\text{BE}_{\text{IL-\text{SO}_2,\text{Statistical}}}\)| \(\approx\) 360.0 kJ mol\(^{-1}\)). As seen above, those ILs suffered and strengthening of the interaction between ions due to the presence of the \(\text{SO}_2\) molecule occurred. According to eqn (4), no important differences on binding energies for ILs are expected upon \(\text{SO}_2\) presence. On the other hand, IL 20 (|\(\text{BE}_{\text{IL-\text{SO}_2,\text{Statistical}}}\)| = 578.34 kJ mol\(^{-1}\)) is based on [\(\text{EtNH}_3\)]\(^+\) cation. [\(\text{EtNH}_3\)]\(^+\)\(\cdot\)\(\text{SO}_2\) provided the highest binding energy among all studied cations. According with a parameter \((\text{a} = 1.28 \times 10^{-16})\), contribution from \(\text{BE}_{\text{CAT-\text{SO}_2}}\) is close to zero. Hence, the above expression is only applicable to those ILs wherein the anion plays the main role on \(\text{SO}_2\) capture and for those ILs which do
not suffer important geometrical arrangements in the presence of the gas molecule. Note that the parameter z is close to one. As a result, we defined eqn (4) based only on $BE_{\text{ANI-SO}_2}$ and $BE_{\text{IL-SO}_2}$ Statistical as follows:

$$BE_{\text{IL-SO}_2,\text{Statistical}} = b(BE_{\text{ANI-SO}_2})^3 + cBE_{\text{IL}} \quad (5)$$

The fit was repeated despising ILs 20, 25, 29, 31, 33 and 35. As seen in Fig. 9b, there is a notable improvement in the fit performance with $R^2 = 0.7887$ and $MD = 2.55$ kJ mol$^{-1}$. It could be concluded that SO_2 capture by ILs is mainly governed by ILs, while interactions between ions are also an important parameter. Since BE between ions is much higher than anion–SO_2 ones, BE_{IL} grants the most important contribution to $BE_{\text{IL-SO}_2}$ Statistical. Then, for those ILs with similar BE_{IL}, the efficiency in SO_2 capture will be ruled by the anion. In addition, eqn (5) allows estimating $BE_{\text{IL-SO}_2}$ only through the optimization of anion–SO_2 and cation–anion systems, which can be considered a useful insight into the rational design of ILs for SO_2 capture.

3.2.4. Representative ionic liquids for SO_2 capture. Up to now, properties for IL–SO_2 interactions have been analyzed for the whole family of selected ILs based on binding energies. As seen, the SO_2 absorption capacity is often governed by anion–SO_2 interactions, although cations have also an important role. Even though, cation–SO_2 contributions to the total $|BE|$ are always lower than cation–SO_2 binding energies, while this general trend was not found for anion–SO_2 contributions. For instance, anion–SO_2 contributions to the total $|BE|$ for ILs 1–4, which are based on imidazolium cations paired with tetrafluoroborate anion) are higher than binding energies for anion–$[BF_4]$ systems, while the opposite trend was noted for ILs 22–29 (also based on imidazol derived cations, but paired with the $[NTf_2]$ anion). In addition, a statistical analysis has shown that BE of IL–SO_2 systems mainly depends on anion–SO_2 and cation–anion interactions. The diversity in the nature of both ions forming the family of studied ILs hinders the search of structure–property relationships. Therefore the IL family has been divided into six sets (labelled as I–VII, see Fig. 2 and 7), wherein ILs within the same sets have similar features regarding the chemical structure of their ions. For each one, the most representative ILs have been selected, whose intermolecular interactions where analyzed within the context of the AIM theory to obtain some information on the SO_2 capture mechanism at the nanoscopic level.

Set I (ILs 1–13) includes ILs based on imidazolium ($[Im]^+$) or pyridinium ($[Py]^+$) cations paired with $[BF_4]$ or $[PF_6]$ anions. ILs based on imidazolium and $[BF_4]$ (ILs 1–4) yields similar $K_H \simeq 3.6 \times 10^5$ Pascal and $|BE'| \simeq 49.65$ kJ mol$^{-1}$, $[Im][PF_6]$ based ILs (8–10) render smaller $K_H (\simeq 2.7 \times 10^5$ Pascal); however this improvement in K_H is not observed on $|BE'| (\simeq 45.19$ kJ mol$^{-1}$). For pyridinium based ILs (5–7 and 11–13) the replacement of $[Im]^+$ by $[Py]^+$ does not lead to important changes on K_H and $|BE'|$. Though, the alkyl chain length in the cation, as well as the presence of $[BF_4]$ or $[PF_6]$ anions have an effect of thermophysical properties such as viscosity or density, $[Im][PF_6]$ included in set I would provide similar SO_2 capture efficiency (based on K_H and $|BE'|$ values). As a matter of fact, several papers highlight the effect on macroscopical properties as a function of the selected ions elsewhere.

In order to discuss the effects on different ions at the molecular level, besides previously described parameters, the interaction mechanisms of $[BMMim][BF_4]$ (IL 2), $[BMMim][PF_6]$ (IL 8), $[B4MPy][BF_4]$ (IL 7) and $[B4MPy][PF_6]$ (IL 13) have been deeply analyzed as representative compounds of this set. Intermolecular interactions were localized and featured through the AIM theory (we have focused on electronic density values, ρ, for the main intermolecular interactions). Fig. 10 plots their optimized structures in the presence of the SO_2 molecule (optimized geometries for isolated ILs are not represented since the presence of SO_2 does not carry out important changes on the relative disposition between ions), whereas bond length and AIM features of intermolecular interactions are reported in Table 2. In the absence of the SO_2 molecule, several anion–cation interactions are established. The main interactions are formed between F and H in position 2 of the imidazolium/pyridinium ring, whose d (intermolecular distance) and ρ are ≈ 2.240 and 0.0140 a.u., respectively. In this sense, it is well known that the main interaction in imidazilium based ILs is carried out through the H atom in position 2.17 The presence of the SO_2 molecule leads to an intermolecular distance...
Within this set we have focused on cation–SO$_2$ interactions. For ILs based on [B3MPy]$^+$/[B4MPy]$^+$ based ILs (6/7 and 8 and 13), the presence of methyl chain in position 3/4 brings slight improvement on d_{13} for IL 7), with SO$_2$, which is absent for [BPy]$^+$. ILs based on phosphate, sulfate, acetate or nitrate anions are located in set II. Most of them are also based on [EMIm]$^+$ cation. Interaction energies of anion···SO$_2$ systems (see Fig. 3); [Et$_2$PO$_4$]$^-$ (99.24 kJ mol$^{-1}$), [EtSO$_4$]$^-$ (65.75 kJ mol$^{-1}$), [Ac]$^-$ (120.47 kJ mol$^{-1}$) and [NO$_3$]$^-$ (120.47 kJ mol$^{-1}$), are larger than those estimated for [EMIm]$^+$ [33.77 kJ mol$^{-1}$] and [EtNH$_3$]$^+$ [58.60 kJ mol$^{-1}$] cations. Analogous behaviour is noted for both ions···SO$_2$ contribution to the binding energy, i.e., anion···SO$_2$ > cation···SO$_2$. Nevertheless, the sum of both contributions is higher than $|BE|$ (see Fig. 7). In concordance with $|BE|$ computed for cation/anion···SO$_2$, anion···SO$_2$ contribution to the total BE is larger. Within this set we have focused on [EMIm][Et$_2$PO$_4$] (14), [EMIm][EtSO$_4$] (17) and [EMIm][Ac] (19) ILs. A detailed analysis of [CH][H$_2$PO$_4$] at the molecular level and their application for SO$_2$ capture will be studied in a separate work in the future. The structures of [EMIm][Et$_2$PO$_4$] (14), [EMIm][EtSO$_4$] (17) and [EMIm][Ac] (19) in the presence and absence of SO$_2$ are reported in Fig. 11. [EtNH$_3$][NO$_3$] (20) IL has been also selected to obtain some insight up to the behaviour of this IL. In the absence of the SO$_2$ molecule, the main interaction between imidazolium cation and the corresponding anion is carried out by a hydrogen bond between the O atom (anion) and H in position 2 of the imidazolium ring (labelled d_{12}). The presence of methyl chain in position 3/4 brings slight improvement on K_{II} and BE with respect to [BPy]$^+$.

The models illustrated in Fig. 10 shows the optimized geometries of [BMIm][BF$_4$] (2), [B4MPy][BF$_4$] (7), [BMIm][PF$_6$] (8) and [B4MPy][PF$_6$] (13) in the presence of the SO$_2$ molecule. Main intermolecular interactions are also displayed. Atom colour code: C (gray), oxygen (red) sulphur (yellow), hydrogen (white), nitrogen (blue), boron (pink), phosphorous (orange) and fluorine (light blue). See Table 2 for a more detailed description on intermolecular interactions.

Fig. 10 Optimized geometries of [BMIm][BF$_4$] (2), [B4MPy][BF$_4$] (7), [BMIm][PF$_6$] (8) and [B4MPy][PF$_6$] (13) in the presence of the SO$_2$ molecule. Main intermolecular interactions are also displayed. Atom colour code: C (gray), oxygen (red) sulphur (yellow), hydrogen (white), nitrogen (blue), boron (pink), phosphorous (orange) and fluorine (light blue).
This effect is not observed in the presence of the SO\textsubscript{2} molecule. The adsorption of SO\textsubscript{2} by IL 20 is carried out by a strong interaction between SO\textsubscript{2} and the anion (d\textsubscript{22} and d\textsubscript{23}, being the latter the weakness). Once more, a larger electronic density for d\textsubscript{35} (respect to d\textsubscript{26}) agrees with the greater contribution from SO\textsubscript{2}–cation interaction to |BE\textsubscript{0}|.

ILs based on the [NTf\textsubscript{2}]– anion (set III) are the largest group, whose $K_H \approx 3.4 \times 10^4$ Pascal and |BE'| ≈ 38.45 kJ mol–1 (despising ILs 25, 29, 31, 33 and 35). For ILs 25, 29, 31, 33 and 35, |BE'| is much larger than sum of both ion–SO\textsubscript{2} contributions. Furthermore, ILs 25, 29, 31, 33 and 35 are the only ones whose interactions between ions are strengthened in the presence of the SO\textsubscript{2} molecule (see Fig. 6). The SO\textsubscript{2} brings a rearrangement between ions which improves their mutual interaction and also their interactions with SO\textsubscript{2}. To obtain information about this fact, we have focused on IL [BMIm][NTf\textsubscript{2}]. Optimized geometries as well as the main results from intermolecular interaction

Table 2. Intermolecular distances (d) along the electronic density values (ρ) of [BMIm][BF\textsubscript{4}] (2), [B4MPy][BF\textsubscript{4}] (7), [BMIm][PF\textsubscript{6}] (8) and [B4MPy][PF\textsubscript{6}] (15) ionic liquids. See Fig. 10 for labeling.

IL	IL – SO\textsubscript{2}		
d/A	ρ/a.u.	d/A	ρ/a.u.
2 – [BMIm][BF\textsubscript{4}]	2.233 0.0143	2.788 0.0076	
d\textsubscript{1}	2.106 0.0178	2.457 0.0121	
d\textsubscript{2}	2.502 0.0082	2.502 0.0091	
d\textsubscript{3}	2.873 0.0101	2.892 0.0102	
d\textsubscript{4}	2.222 0.0130	2.447 0.0100	
7 – [B4MPy][BF\textsubscript{4}]	2.298 0.0129	2.910 0.0097	
d\textsubscript{10}	2.119 0.0173	2.549 0.0148	
d\textsubscript{11}	2.671 0.0117	2.484 0.0081	
d\textsubscript{12}	2.322 0.0097	2.870 0.0105	
d\textsubscript{13}	2.289 0.0120	2.479 0.0077	
d\textsubscript{14}	2.298 0.0129	2.706 0.0188	
d\textsubscript{15}	2.716 0.0089	2.716 0.0089	
8 – [BMIm][PF\textsubscript{6}]	2.406 0.0113	2.421 0.0116	
d\textsubscript{16}	2.320 0.0138	2.607 0.0101	
d\textsubscript{17}	2.413 0.0107	2.701 0.0067	
d\textsubscript{18}	2.479 0.0100	2.315 0.0118	
d\textsubscript{19}	2.698 0.0142	2.803 0.0094	
d\textsubscript{20}	2.488 0.0097	2.648 0.0206	
13 – [B4MPy][PF\textsubscript{6}]	2.328 0.0116	2.363 0.0128	
d\textsubscript{21}	2.124 0.0167	2.078 0.0181	
d\textsubscript{22}	2.313 0.0113	2.481 0.0145	
d\textsubscript{23}	2.588 0.0114	2.446 0.0095	
d\textsubscript{24}	2.698 0.0057	2.698 0.0057	
d\textsubscript{25}	2.648 0.0092	2.648 0.0092	
d\textsubscript{26}	2.955 0.0065	2.955 0.0065	
d\textsubscript{27}	3.218 0.0059	3.218 0.0059	
d\textsubscript{28}	2.718 0.0038	2.718 0.0038	

a For isolated IL, this interaction takes place between F and H in position 2. b For isolated IL, this interaction takes place between F and C in position 2.
Although SO\(_2\) causes a weakening of the interaction between i.e. two bonds with the anion, between both ions are found in the presence of the SO\(_2\) molecule, all of them suffer an elongation/decrease on intermolecular distances/electronic density values. SO\(_2\) molecule is able to for two bonds with the anion, i.e., \(d_6 (S \cdots O)\) and \(d_7 (S \cdots F)\), being the latter much weaker than S \cdots O interaction. Further, two O \cdots H bonds \((d_8 \text{ and } d_9)\) are noted between SO\(_2\) and cation molecules. Although SO\(_2\) causes a weakening of the interaction between ions (based on electronic density values), it also allows the formation of a cage, with their corresponding cage critical points (CCP). Concretely, two cage critical points (represented as purple points along the yz view) are found, whose electronic density is 0.0027 a.u. and 0.0018 a.u. The presence of both CCP points out to a charge delocalization process between different motifs. Results described for this IL could be extrapolated to ILs 29, 31, 33 and 35, i.e., larger \(\mid \text{BE}\) \mid values and stronger interaction between ions are due to the charge delocalization process. This charge delocalization brings an increase on inter ionic interaction (with respect to isolated IL), and \(\mid \text{BE}\) \mid is higher than the sum of both ion \cdots SO\(_2\) contributions. Although, CCPs are also found for other ILs, they own much lower electronic density values.

ILs based on the triflate anion ([SO\(_3\)CF\(_3\)]\(^-\)) are within set IV (IL 36–40). Those ones also based on imidazolium cations (36–39) provide \(K_{H} \approx 4.22 \times 10^{5}\) Pascal and \(\mid \text{BE}\) \mid \(\approx 60.30\) kJ mol\(^{-1}\), which is due to the sum of both ion \cdots SO\(_2\) contributions. [BMPr][SO\(_3\)CF\(_3\)] (IL40) yields \(K_{H} = 3.57 \times 10^{5}\) Pascal and \(\mid \text{BE}\) \mid = 51.97 kJ mol\(^{-1}\), mainly due to the anion \cdots SO\(_2\) contribution. Larger anion \cdots SO\(_2\) contributions (Fig. 7) to the binding energy mimic the previously reported compound for ion \cdots SO\(_2\) binding energies (Fig. 3). Fig. 13 and Table 5 gather optimized geometries and intermolecular

Table 3 Intermolecular distances (d) along the electronic density values (\(\rho\)) of [EMIm][Et\(_2\)PO\(_4\)] (14), [EMIm][EtSO\(_4\)] (17), [EMIm][Ac] (19) and [EtNH\(_3\)][NO\(_3\)] (20). See Fig. 11 for labeling

IL	d/Å	\(\rho\)/a.u.	IL \cdots SO\(_2\)	d/Å	\(\rho\)/a.u.
14 – [EMIm][Et\(_2\)PO\(_4\)]					
\(d_1\)	1.756	0.0299	\(d_1\)	1.793	0.0369
\(d_2\)	2.304	0.0120	\(d_2\)	2.780	0.0194
\(d_3\)	1.962	0.0253	\(d_3\)	2.119	0.0064
\(d_4\)			\(d_4\)	2.238	0.0575
\(d_5\)			\(d_5\)	2.510	0.0088
\(d_6\)			\(d_6\)	2.578	0.0087
\(d_7\)			\(d_7\)	2.242	0.0144

17 – [EMIm][EtSO\(_4\)]					
\(d_8\)	2.055	0.0231	\(d_8\)	2.052	0.0225
\(d_9\)	2.510	0.0095	\(d_9\)	2.500	0.0096
\(d_{10}\)	2.417	0.0103	\(d_{10}\)	2.513	0.0087
\(d_{11}\)	2.184	0.0159	\(d_{11}\)	2.555	0.0082
\(d_{12}\)			\(d_{12}\)	2.243	0.0396
\(d_{13}\)			\(d_{13}\)	2.419	0.0109
\(d_{14}\)			\(d_{14}\)	2.444	0.0081
\(d_{15}\)			\(d_{15}\)	2.576	0.0059

19 – [EMIm][Ac]					
\(d_{16}\)	1.654	0.0278	\(d_{16}\)	2.110	0.0205
\(d_{17}\)	2.352	0.0109	\(d_{17}\)	2.491	0.0097
\(d_{18}\)	2.002	0.0240	\(d_{18}\)	2.427	0.0104
\(d_{19}\)			\(d_{19}\)	2.189	0.0638
\(d_{20}\)			\(d_{20}\)	2.667	0.0077
\(d_{21}\)			\(d_{21}\)	3.665	0.0128
\(d_{22}\)			\(d_{22}\)	2.583	0.0082

20 – [EMIm][NO\(_3\)]					
\(d_{23}\)	1.596	0.0072	\(d_{23}\)	1.639	0.0564
\(d_{24}\)	1.045	0.0072	\(d_{24}\)	2.625	0.0078
\(d_{25}\)			\(d_{25}\)	2.350	0.0454
\(d_{26}\)			\(d_{26}\)	1.820	0.0328
\(d_{27}\)			\(d_{27}\)	2.620	0.0074

Table 4 Intermolecular distances (d) along the electronic density values (\(\rho\)) of [BMIm][NTf\(_2\)] (25). See Fig. 12 for labeling

IL	d/Å	\(\rho\)/a.u.	IL \cdots SO\(_2\)	d/Å	\(\rho\)/a.u.
25 – [BMIm][NTf\(_2\)]					
\(d_1\)	1.952	0.0303	\(d_1\)	2.020	0.0266
\(d_2\)	2.186	0.0150	\(d_2\)	2.419	0.0104
\(d_3\)	2.290	0.0130	\(d_3\)	2.352	0.0115
\(d_4\)	2.564	0.0063	\(d_4\)	2.594	0.0058
\(d_5\)	2.533	0.0024	\(d_5\)	2.623	0.0058
\(d_6\)			\(d_6\)	2.683	0.0218
\(d_7\)			\(d_7\)	3.208	0.0062
\(d_8\)			\(d_8\)	2.739	0.0068
\(d_9\)			\(d_9\)	2.479	0.0099
parameters for \(\text{[BMIm][SO}_2\text{CF}_3] \) (37). Results obtained for this IL could be extrapolated for the whole set IV. The main interaction between both ions takes places through O corresponding to the anion and H in position 2 located in the cation \((d_1)\), whose \(\rho \) and distances are more affected by the \(\text{SO}_2 \) molecule, which causes its weakening. However, the remaining interactions are slightly affected by the gas molecule. Thus, binding energy for IL 37 is very similar to contribution from inter ionic interaction to the BE estimated for the IL \(\text{[BMIm][SO}_2\text{CF}_3] \) system (see Fig. 6). The adsorption of \(\text{SO}_2 \) by IL 37 is mainly carried out through O (anion) \(-\cdot\text{S(SO}_2\text{)} \) interaction (labelled as \(d_5 \)). Even if, \(\text{SO}_2 \) molecule also owns two intermolecular O \(-\cdot\text{H} \) bonds with alkyl H atoms located in the cation \((d_6 \text{ and } d_7)\). In accordance with ion \(-\cdot\text{H} \) contributions to \(\text{[BE}^\prime\text{]} \), anion \(-\cdot\text{SO}_2 \) interaction (based on its larger electronic density value) is greater than cation \(-\cdot\text{SO}_2 \) interaction.

Set V (IL 41 44) comprises those ILs whose anions have at least one CN group, i.e., thiocyanate ([SCN] \(^-\)) and dicyanamide ([DCA] \(^-\)). ILs based on the imidazolium cation (41–43) supply \(K_{\text{H}} \approx 4.23 \times 10^{11} \) Pascal and \(|\text{BE}| \approx 76.21 \text{ kJ mol}^{-1} \), while \(\text{[BMPyr][DCA]} \) (IL 44) yields \(K_{\text{H}} = 2.88 \times 10^{12} \) Pascal and \(|\text{BE}| = 68.20 \text{ kJ mol}^{-1} \). Isolated ions provided \(|\text{BE}| = 78.40 \text{ kJ mol}^{-1} \) and \(61.29 \text{ kJ mol}^{-1} \), while \(|\text{BE}| \) for imidazolium and \(\text{[BMPyr]} \) are \(\approx 36.99 \text{ kJ mol}^{-1} \) and \(31.70 \text{ kJ mol}^{-1} \), respectively. Nonetheless, the trend perceived for the interaction between anions (cation) and \(\text{SO}_2 \) in the absence of the cation (anion) is also found for both ion \(-\cdot\text{SO}_2 \) contributions to the binding energies. [EMIM][SCN] (41) brings a \(|\text{BE}| \) similar to anion \(-\cdot\text{SO}_2 \) contribution, while \(|\text{BE}| \) for [DCA] \(^-\) based ILs comes from both ion \(-\cdot\text{SO}_2 \) contributions. Fig. 14 and Table 6 reports optimized geometries for [EMIM][SCN] (41), [EMIM][DCA] (42) and [BMPyr][DCA] (44). As expected (in the absence of \(\text{SO}_2 \)), both ions interact with the [EMIM] \(^+\) cation through its H in position 2. S and N terminal atoms from [SCN] \(^-\) anion are able to interact with these H atoms \((d_1 \text{ and } d_2)\). Further, the S atom also provides an intermolecular interaction with methyl hydrogen \((d_3)\). Although, [DCA] \(^-\) owns two CN groups, only one of them interacts with H in position 2 \((d_4)\), though both interactions with alkyl H atoms are also found \((d_5 \text{ and } d_6)\), Regarding IL 44, only one H group interacts with the main position provided by the cation \((d_14)\), although other intermolecular H bonds (with lower \(\rho \)) are also present \((d_{15} \text{ and } d_{16})\). According to electronic density values, ionic interactions are stronger for [SCN] \(^-\) anion, which agrees with its higher \(|\text{BE}| \) values (see Fig. 6). ILs 41, 42 and 44 show similarities regarding to the interactions with the gas molecule. Thus, the main interaction is carried out between one terminal N (anion) and the central S atom \((d_5 \text{ or } d_{11}) \) for IL 41, 42 or 44, respectively. Although electronic density for \(d_5 \) (0.387 a.u.) is smaller than electronic density for \(d_{11} \) and \(d_{12} \) (\(\approx 0.423 \) a.u.), larger charge transfer from the [SCN] \(^-\) anion up to the gas (see Fig. 8) agrees with greater [SCN] \(^-\) \(-\cdot\text{SO}_2 \) contribution in

Table 5	Intermolecular distances (\(d \)) along the electronic density values \(\rho \) of [BMIm][SO\(_2\)CF\(_3\)] (37). See Fig. 13 for labeling			
\(d_1 \)	2.025	0.0239	2.184	0.0070
\(d_2 \)	2.280	0.0130	2.626	0.0109
\(d_3 \)	2.520	0.0081	2.439	0.0089
\(d_4 \)	2.594	0.0088	2.544	0.0351
\(d_5 \)	2.476	0.0096	2.467	0.0107
\(d_6 \)	2.464	0.0107	2.451	0.0070

Fig. 13 Optimized geometries of [BMIm][SO\(_2\)CF\(_3\)] (37) in the presence of \(\text{SO}_2 \) (similar results are obtained for isolated IL). Main intermolecular interactions are also displayed. Atom colour code: C (gray), oxygen (red) sulphur (yellow), hydrogen (white), nitrogen (blue) and fluorine (light blue). See Table 5 for a more detailed description on intermolecular interactions.

Fig. 14 Optimized geometries of [EMIM][SCN] (41), [EMIM][DCA] (42) and [BMPyr][DCA] (44). Main intermolecular interactions are also displayed. Atom colour code: C (gray), oxygen (red) sulphur (yellow), hydrogen (white), nitrogen (blue) and fluorine (light blue). See Table 6 for a more detailed description on intermolecular interactions.
Table 6 Intermolecular distances \((d) \) along the electronic density values \(\rho \) of \([\text{EMIm}]\text{[SCN]} \) (41), \([\text{EMIm}]\text{[DCA]} \) (42) and \([\text{BMPyr}]\text{[DCA]} \) (44). See Fig. 14 for labeling.

IL \ \ \ \ \ \ IL \cdot SO_2	\(d/Å \)	\(\rho/\text{a.u.} \)	
41 - \([\text{EMIm}]\text{[SCN]} \)	\(d_1 \)	2.567	0.0152
	\(d_2 \)	2.907	0.0142
	\(d_3 \)	2.841	0.0092
	\(d_4 \)	2.532	0.0093
	\(d_5 \)	2.369	0.0387
	\(d_6 \)	2.506	0.0089
	\(d_7 \)	2.513	0.0107
42 - \([\text{EMIm}]\text{[DCA]} \)	\(d_1 \)	2.348	0.0137
	\(d_2 \)	2.180	0.0177
	\(d_3 \)	2.161	0.0181
	\(d_4 \)	2.431	0.0430
	\(d_5 \)	2.376	0.0118
	\(d_6 \)	2.630	0.0074
44 - \([\text{BMPyr}]\text{[DCA]} \)	\(d_{14} \)	2.750	0.0084
	\(d_{15} \)	2.462	0.0106
	\(d_{16} \)	2.689	0.0075
	\(d_{17} \)	2.550	0.0104
	\(d_{18} \)	2.294	0.0143

Table 7 Intermolecular distances \((d) \) along the electronic density values \(\rho \) of \([\text{EMIm}]\text{[Cl]} \) (45), \([\text{EMIm}]\text{[Br]} \) (48) and \([\text{EMIm}]\text{[I]} \) (51). See Fig. 15 for labeling.

IL \ \ \ \ \ \ IL \cdot SO_2	\(d/Å \)	\(\rho/\text{a.u.} \)	
45 – \([\text{EMIm}]\text{[Cl]} \)	\(d_6 \)	2.978	0.0021
	\(d_7 \)	3.041	0.0088
	\(d_8 \)	3.075	0.0099
48 – \([\text{EMIm}]\text{[Br]} \)	\(d_6 \)	2.798	0.0024
	\(d_7 \)	2.865	0.0101
	\(d_8 \)	2.861	0.0095
51 – \([\text{EMIm}]\text{[I]} \)	\(d_6 \)	2.987	0.0021
	\(d_7 \)	3.041	0.0088
	\(d_8 \)	3.075	0.0099

![Fig. 15](image-url) Optimized geometries of \([\text{EMIm}]\text{[Cl]} \) (45) and \([\text{EMIm}]\text{[Br]} \) (48). Similar geometries are obtained for \([\text{EMIm}]\text{[I]} \) (51). Main intermolecular interactions are also displayed. Atom colour code: C (gray), oxygen (red) sulphur (yellow), hydrogen (white), nitrogen (blue), chloride (green) and bromide (garnet). See Table 7 for a more detailed description on intermolecular interactions.

IL41–SO_2 system (Fig. 7). The SO_2 molecule also interacts (through both hydrogen atoms) with the cation \((d_6 \text{ and } d_7, d_{12} \text{ and } d_{13} \text{ or } d_{20} \text{ and } d_{21} \text{ for IL 41, 42 or 44, respectively})

Instead the selected IL, the sum of the electronic density for both intermolecular bonds is \(\approx 0.0190 \text{ a.u.} \). Thus, \(\text{cation} \cdot \text{SO}_2 \) contribution to the BE is similar for all ILs within set V.

4. Conclusions

This contribution reports a density functional theory (DFT) on several ILs, for which high SO_2 solubility is expected. This work
is divided into three parts: (i) we selected a set of ILs which should provide high efficiency for SO₂ capture. For this, a screening of a large number of ILs via the COSMO-RS method was done; (ii) binding energies between SO₂ and ILs were analyzed intensely through DFT simulations for a set of 55 ILs, which provided high efficiency in SO₂ capture according to the COSMO-RS method; (iii) intermolecular interaction for some representative ILs were deeply studied through the AIM theory aimed at obtaining some information on the SO₂ adsorption mechanism at the molecular level. The results evidenced the ability of the selected cations and anions to interact with the SO₂ molecule, which is stronger for anion···SO₂ interactions. Thus, anion···SO₂ interactions are ruled by a strong charge transfer from the anion to SO₂ molecule. For the ILs···SO₂ system, the total binding energy (BE) has been decomposed in the contributions from the interactions between ions, anion···SO₂ and cation···SO₂. The interaction between both ions always provided the largest contribution to the total binding energy. Then, the binding energy related with SO₂ capture by ILs was also calculated considering the ILs as a whole (BE”). A value of around 36.58 kJ mol⁻¹ (for CO₂ capture by [EMIM][NTf₂] IL, which was taken as a pivotal reference for comparison purposes) as a low limit; all ILs yield larger binding energies. Most of them provide values of around 45.0 kJ mol⁻¹. Therefore, all of them would provide high SO₂ capture efficiency. Through the comparison between ion···SO₂ contributions and BE”, we could obtain some information on what ions mainly govern the SO₂ capture within the ILs. In most cases, SO₂ capture would be mainly ruled out by the anion or by both ions. Even if the SO₂ capture mechanism at the molecule level depends on each ILs, some common features are found for related ions. Even though, a statistical analysis of binding energies of IL···SO₂ systems as a function of ion···SO₂ and cation–anion ones brings to light that SO₂ adsorption by ILs at the molecular level is mainly ruled by anion···SO₂ interaction and cation–anion as well. Thus, qualitative trends on SO₂ capture by ILs can be obtained only based on the study of anion···SO₂ and isolated ILs systems. Systematic research on ILs for SO₂ capture allow increase of our knowledge about those factors which could be controlled at the molecular level, allowing an approach up to the rational design of task-specific ILs for future applied studies.

Acknowledgements

Gregorio García acknowledges the funding by Junta de Castilla y León (Spain), cofunded by European Social Fund, for a postdoctoral contract. Santiago Aparicio acknowledges the funding by Ministerio de Economía y Competitividad (Spain, project CTQ2013-40476-R) and Junta de Castilla y León (Spain, project BU324/14). Mert Attilhan acknowledges support of an NPRP grant (No: 6-330-2-140) from the Qatar National Research Fund. The statements made herein are solely the responsibility of the authors.

References

1. S. J. Smith, J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke and S. Delgado Arias, Atmos. Chem. Phys., 2011, 11, 1101–1116.
2. G. Cui, C. Wang, J. Zheng, Y. Guo, X. Luo and H. Li, Chem. Commun., 2012, 48, 2633–2635.
3. J. Huang, A. Riisager, P. Wasserscheid and R. Fehrmann, Chem. Commun., 2006, 4027–4029.
4. Z. Z. Yang, L. N. He, Y. N. Zhao and B. Yu, Environ. Sci. Technol., 2013, 47, 1598–1605.
5. D. Yang, M. Hou, H. Ning, J. Ma, X. Kang, J. Zhang and B. Han, Reversible Capture of SO₂ through Functionalized Ionic Liquids, ChemSusChem, 2013, 6(7), 1191–1195.
6. S. Tian, Y. Hou, W. Wu, S. Ren and C. Zhang, RSC Adv., 2013, 3, 3572–3577; X. L. Yuan, S. J. Zhang and X. M. Lu, J. Chem. Eng. Data, 2007, 52, 596–599; S. Ren, Y. Hou, W. Wu, Q. Liu, Y. Xiao and X. Chen, J. Phys. Chem. B, 2010, 114, 2175–2179; G. Cui, J. Zheng, X. Luo, W. Lin, F. Ding, H. Li and C. Wang, Angew. Chem., Int. Ed., 2013, 52, 10620–10624.
7. G. Yu and X. Chen, J. Phys. Chem. B, 2011, 115, 3466–3477.
8. S. Ren, Y. Hou, S. Tian, X. Chen and W. Wu, J. Phys. Chem. B, 2013, 117, 482–2486.
9. Z. Lei, C. Dai and B. Chen, Chem. Rev., 2013, 114, 1289–1326.
10. S. Aparicio and M. Attilhan, Energy Fuels, 2010, 24, 4989–5001; S. Aparicio and M. Attilhan, J. Phys. Chem. B, 2012, 116, 9171–9185; F. Karadas, M. Attilhan and S. Aparicio, Energy Fuels, 2010, 24, 5817–5828; D. H. Zaitsau, A. V. Yermalayev, S. P. Verevkin, J. E. Bara and A. D. Stanton, Ind. Eng. Chem. Res., 2013, 52, 16615–16621; C. Wang, X. Luo, H. Luo, D. E. Jiang, H. Li and S. Dai, Angew. Chem., Int. Ed., 2011, 50, 4918–4922; X. Zhang, H. Dong, Z. Zhao, S. Zhang and Y. Huang, Carbon capture with ionic liquids: overview and progress, Energy Environ. Sci., 2012, 5, 6668–6681.
11. F. Karadas, B. Köz, J. Jacquemin, E. Deniz, D. Rooney, J. Thompson, C. T. Yavuz, M. Khrasheh, S. Aparicio and M. Attilhan, Fluid Phase Equilib., 2013, 351, 74–86.
12. V. Sanz, R. Alcalde, M. Attilhan and S. Aparicio, J. Mol. Model., 2014, 20, 1–14.
13. S. Aparicio, M. Attilhan, M. Khrasheh, R. Alcalde and J. Fernández, J. Phys. Chem. B, 2011, 115, 12487–12498.
14. J. Palomar, M. González-Miquel, A. Polo and F. Rodríguez, Ind. Eng. Chem. Res., 2011, 50, 3452–3463.
15. J. Earle-Martyn and R. Seddon-Kenneth, Green Solvents for the Future, in Clean Solvents, American Chemical Society, 2002; J. S. Wilkes, Green Chem., 2002, 4, 73–80; R. D. Rogers and K. R. Seddon, Science, 2003, 792–793.
16. O. Hollóczki, Z. Kelemen, L. Konczöl, D. Szieberth, L. Nyulaszi, A. Stark and B. Kirchner, ChemPhysChem, 2013, 14, 315–320; K. M. Gupta and J. Jiang, J. Phys. Chem. C, 2014, 118, 3110–3118; P. Gu, R. Lü, S. Wang, Y. Lu and D. Liu, Comput. Theor. Chem., 2013, 1020, 22–31; F. Yan, M. Larrey, K. Damodaran, E. Albenze, R. L. Thompson, J. Kim, M. Haranczyk, H. B. Nulwala, D. R. Luebke and B. Smit, Phys. Chem. Chem. Phys., 2013, 15, 3264–3272.
