High-Dimensional Approximate r-Nets

Z. Avarikioti1 · I. Z. Emiris2,3 · L. Kavouras1 · I. Psarros2

Received: 1 May 2017 / Accepted: 19 December 2019 / Published online: 7 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The construction of r-nets offers a powerful tool in computational and metric geometry. We focus on high-dimensional spaces and present a new randomized algorithm which efficiently computes approximate r-nets with respect to Euclidean distance. For any fixed $\epsilon > 0$, the approximation factor is $1 + \epsilon$ and the complexity is polynomial in the dimension and subquadratic in the number of points; the algorithm succeeds with high probability. Specifically, we improve upon the best previously known (LSH-based) construction of Eppstein et al. (Approximate greedy clustering and distance selection for graph metrics, 2015. CoRR arxiv: abs/1507.01555) in terms of complexity, by reducing the dependence on ϵ, provided that ϵ is sufficiently small. Moreover, our method does not require LSH but follows Valiant’s (J ACM 62(2):13, 2015. https://doi.org/10.1145/2728167) approach in designing a sequence of reductions of our problem to other problems in different spaces, under Euclidean distance or inner product, for which r-nets are computed efficiently and the error can be controlled. Our result immediately implies efficient solutions to a number of geometric problems in high dimension, such as finding the $(1 + \epsilon)$-approximate k-th nearest neighbor distance in time subquadratic in the size of the input.

Keywords Metric geometry · General dimension · Approximation algorithm · r-nets · Locality sensitive hashing

I. Psarros
ipsarros@di.uoa.gr

Z. Avarikioti
zetavar@hotmail.com

I. Z. Emiris
emiris@di.uoa.gr

L. Kavouras
lukassemfe@hotmail.com

1 School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou St, 15780 Athens, Greece
2 Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
3 ATHENA Research Center, Maroussi, Greece
1 Introduction

We study \(r\)-nets, a powerful tool in computational and metric geometry, with several applications in approximation algorithms. An \(r\)-net for a metric space \((X, \|\cdot\|), |X| = n\) and for numerical parameter \(r\) is a subset \(R \subseteq X\) such that the closed \(r/2\)-balls centered at the points of \(R\) are disjoint, and the closed \(r\)-balls around the same points cover all of \(X\). Thus, the construction of \(r\)-nets provides a sketch of the point set for distances that are \(r\) or larger. Nets are a useful tool in presenting point sets hierarchically. In particular, computing nets of different resolutions and linking between different levels, leads to a tree like data-structure that can be used to facilitate many tasks. Nets can be defined in any metric space, but in Euclidean space a grid can sometimes provide an equivalent representation. Furthermore, the problem of computing an \(r\)-net is closely related to the very well-studied \(k\)-center problem.

We define approximate \(r\)-nets analogously. Formally,

Definition 1 Given a point set \(X \subseteq \mathbb{R}^d\), a distance parameter \(r \in \mathbb{R}\) and an approximation parameter \(\varepsilon > 0\), a \((1 + \varepsilon/r)\)-net of \(X\) is a subset \(R \subseteq X\) s.t. the following properties hold:

1. (Packing) For every \(p, q \in R, p \neq q\), we have that \(\|p - q\|_2 \geq r\).
2. (Covering) For every \(p \in X\), there exists a \(q \in R\) s.t. \(\|p - q\|_2 \leq (1 + \varepsilon)r\).

The only difference between the definition of exact \(r\)-nets and approximate \(r\)-nets is that we relax the covering property. This allows us to compute approximate \(r\)-nets in high dimensional Euclidean space with time complexity subquadratic in the number of points and polynomial in the dimension. Our algorithm outperforms the best known algorithm in this setting, by reducing the dependence on \(\varepsilon\) and thus, allowing better tradeoff between solution quality and running time.

Existing Work. Finding \(r\)-nets can be addressed naively by considering initially all points of \(X\) unmarked: while there remains an unmarked point \(p\), the algorithm adds it to net \(R\) and marks all other points within distance \(r\) from \(p\) (Fig. 1). The performance of this algorithm can be improved by using grids and hashing [12]. However, the complexity remains too high when dealing with big data in high dimension. The naive algorithm is quadratic in \(n\) and the grid approach is in \(O(d^{d/2}n)\), hence it is relevant only for constant dimension \(d\) [14]. In [13], they show that an approximate net hierarchy for an arbitrary finite metric can be computed in \(O(2^{ddim}n \log n)\), where \(ddim\) is the doubling dimension. This is satisfactory when doubling dimension is constant. However, a vast amount of resources are required when the doubling dimension is high, in contrast to our work in which the complexity bounds are independent of the doubling dimension.

When the dimension is high, there is need for algorithms with time complexity polynomial in \(d\) and subquadratic in \(n\). One approach, which computes \((1 + \varepsilon)r\)-nets in high dimension, is that of [10], which uses Locality Sensitive Hashing (LSH); for LSH refer to, e.g., [4]. For sufficiently small \(\varepsilon > 0\), the resulting time

\(\text{Springer}\)
complexity is $\tilde{O}(dn^2 - \Theta(\epsilon))$, where \tilde{O} hides polylogarithmic factors. In this work, we improve this time complexity to $\tilde{O}(dn^2 - \Theta(\sqrt{\epsilon}))$.

In general, high dimensional analogues of classical geometric problems have been mainly addressed by LSH. For instance, the approximate closest pair problem can be trivially solved by performing n approximate nearest neighbor (ANN) queries. For sufficiently small ϵ, this runs in $\tilde{O}(dn^2 - \Theta(\epsilon))$ time, due to the complexity factor of an LSH query. Several other problems have been reduced to ANN queries [11]. More recently, Valiant [16, 17] presented an algorithm for the approximate closest pair problem in time $\tilde{O}(dn^2 - \Theta(\sqrt{\epsilon}))$. This is a different approach in the sense that while LSH exploits dimension reduction through random projections, the algorithm of [17] is inspired by high dimensional phenomena. One main step of the algorithm is that of lifting the point set up to a higher dimension. Similarly to [17], in this paper, we employ these high dimensional tools and extend them to address a more challenging problem, namely approximating r-nets. In contrast to [17], we require all-pair distances to maintain specific relations through all point set transformations. Furthermore, we present a simple algorithm to compute an r-net on hypercube vertices.

Later, [2] improved on Valiant’s algorithm for the approximate closest pair problem by presenting an algorithm with randomized time near $dn + n^2 - \Theta(e^{1/3} / \log 1/e)$. This approach employs probabilistic polynomial threshold function representations and improves the exponential dependence on the error ϵ.

Fig. 1 The construction of r-nets in 4 steps. Left-top: the input point set. Right-top: all initial points are considered unmarked with balls of radius r centered at them. Left-bottom: Net points are marked red and every net point covers points in distance at most r. Any point may be covered by more than one net point. Right-bottom: the set of net points representing the initial point set in resolution r (Color figure online)
from $e^{1/2}$ to roughly $e^{1/3}$. After the submission of this paper, the same approach was used by Avarikioti et al. [6] to similarly improve this work, i.e., [6] presents an algorithm for computing $(1 + \epsilon)$ approximate r-nets in time $O(dn + n^{2-a})$, where $a = \Omega(e^{1/3}/\log 1/\epsilon)$.

Our Contribution We present a new randomized algorithm that computes approximate r-nets in time subquadratic in n and polynomial in d, and improves upon the complexity of the best known algorithm. Our method does not employ LSH and, with probability $1 - o(1)$, returns $R \subseteq X$, which is a $(1 + \epsilon)r$-net of X.

We reduce the problem of an approximate r-net for arbitrary vectors (points) under Euclidean distance to the same problem for vectors on the unit sphere. Then, depending on the magnitude of distance r, either an algorithm handling “small” distances or an algorithm handling “large” distances is called. These algorithms reduce the Euclidean problem of r-nets on unit vectors to finding an r-net for unit vectors under inner product (Sect. 3).

We convert the vectors having unit norm into vectors with entries $\{-1, +1\}$ (Sect. 2). This transformation is necessary in order to apply the Chebyshev embedding of [17], an embedding that damps the magnitude of the inner product of “far away” vectors, while preserving the magnitude of the inner product of “close” vectors. For the final step of the algorithm, we first apply a procedure that allows us to efficiently compute $(1 + \epsilon)$-nets when the number of “small” distances is large. Then, we apply a modified version of the Vector Aggregation algorithm of [17] that exploits fast matrix multiplication in order to achieve the desired running time.

In short, we extend Valiant’s framework [17] and compute r-nets in time $\tilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$, thus improving on the exponent of the LSH-based construction in [10], when ϵ is sufficiently small. This improvement by $\sqrt{\epsilon}$ in the exponent is the same as the complexity improvement obtained in [17] over the LSH-based algorithm for the approximate closest-pair problem.

Our study is motivated by the observation that computing efficiently an r-net leads to efficient solutions for several geometric problems, specifically by means of approximation algorithms. In particular, our extension of r-nets in high dimensional Euclidean space can serve in the framework of [14]. This framework has many applications, notably to computing the distance to the k-th nearest neighbor, for which we obtain a $1 + \epsilon$ approximation, in time $\tilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$. Other applications may include preprocessing for finding the approximate nearest neighbor to ANN, see e.g., [3].

This work offers a complete version of our results, initially presented in [5], including full proofs and discussion.

Paper Organization Section 2 presents an algorithm for computing an approximate net with respect to the inner product for a set of unit vectors. Section 3 translates the problem of finding r-nets under Euclidean distance to the same problem under inner product. In Sect. 4, we discuss applications of our construction and possible future work.
We use $\| \cdot \|$ to denote the Euclidean norm $\| \cdot \|_2$ throughout the paper.

2 Points on a Sphere Under Inner Product

In this section, we design an algorithm for constructing an approximate ρ-net of vectors on the sphere under inner product. To that end, we reduce the problem to constructing an approximate net under absolute inner product for vectors that lie on the vertices of a unit hypercube.

Since our ultimate goal is a solution to computing r-nets with respect to Euclidean distance, we allow additive error in the approximation, which under certain assumptions, translates to multiplicative error in Euclidean distance. In the following, we define rigorously the notion of approximate ρ-nets under inner product. We denote by $\langle \cdot, \cdot \rangle$ the inner product between two vectors.

Definition 2 For any $X \subset S^{d-1}$, an approximate ρ-net for $(X, \langle \cdot, \cdot \rangle)$, with additive approximation parameter $\epsilon > 0$, is a subset $C \subseteq X$ which satisfies the following properties:

- for any two $p \neq q \in C$, $\langle p, q \rangle < \rho$, and
- for any $x \in X$, there exists $p \in C$ s.t. $\langle x, p \rangle \geq \rho - \epsilon$.

One relevant notion is that of ϵ-kernels [1]. In ϵ-kernels, one is interested in finding a subset of the input point set, which approximates its directional width. Such constructions have been extensively studied when the dimension is low, due to their relatively small size.

2.1 Crude Approximate Nets

In this subsection we develop our basic tool, which is based on the Vector Aggregation Algorithm by Valiant [17]. This tool aims to compute approximate ρ-nets with multiplicative error, in contrast with our final goal for this section, namely to bound additive error. Moreover, in the context of this subsection, two vectors are close to each other when the magnitude of their inner product is large, and two vectors are far from each other when the magnitude of their inner product is large.

Definition 3 For any $X = [x_1, \ldots, x_n], X' = [x'_1, \ldots, x'_n] \subset \mathbb{R}^{d \times n}$, a crude approximate ρ-net for $(X, X', \langle \cdot, \cdot \rangle)$, with multiplicative approximation factor $c > 1$, is a subset $C \subseteq [n]$ which satisfies the following properties:

- for any two $i \neq j \in C$, $|\langle x_i, x'_j \rangle| < c \rho$, and
- for any $i \in [n]$, there exists $j \in C$ s.t. $|\langle x_i, x'_j \rangle| \geq \rho$.
Moreover, the algorithm runs in time $O(dn + n^{2-a} + \text{MatrixMul}(n \times d, d \times n^{1-a}))$.
The following anti-concentration Lemma is crucial for the proof of Theorem 1, since it argues that if an entry of W^i contains a contribution from a pair of columns with large inner product, then with reasonable probability over the random choice of q_1, \ldots, q_n this entry will not be too small. In other words, after applying Vector Aggregation algorithm, we can still distinguish pairs of vectors which were initially correlated from pairs of vectors which were uncorrelated in the first place. The proof of the Lemma shows that by randomly flipping the signs of each vector we can achieve pairwise independence between the inner products of different pairs of vectors, thus roughly preserving the magnitude of inner products between vectors after the aggregation step.

Lemma 1 (Anti-concentration) Let $q_1, \ldots, q_t \in \{-1, 1\}$ be chosen independently and uniformly at random, and let $a_1, \ldots, a_t \in \mathbb{R}$ s.t. $|a_1| = \max_i |a_i|$. Then,

$$\Pr \left[\left| \sum_{i=1}^t q_i \cdot a_i \right| \geq |a_1| \right] \geq 1/2.$$

Proof Consider a given assignment for q_2, \ldots, q_t. Then if

$$\sum_{i=2}^t q_i \cdot a_i = 0 \implies \left| \sum_{i=1}^t q_i \cdot a_i \right| = |q_1 \cdot a_1| = |a_1|.$$

Otherwise,

$$\Pr \left[\left| \sum_{i=1}^t q_i \cdot a_i \right| \geq |a_1| \right] \geq \Pr \left[\text{sign} (q_1 \cdot a_1) = \text{sign} \left(\sum_{i=2}^t q_i \cdot a_i \right) \right] = 1/2.$$

☐

Proof of Theorem 1 Notice that

$$w_{j,k}^i = \sum_{x_i' \in S_k} q_i \cdot \langle x_j, x_i' \rangle$$

and since $q_1, \ldots, q_{|S_k|} \in \{-1, 1\}$ are independent and chosen uniformly at random, we obtain

$$\mathbb{E}[w_{j,k}^i] = 0.$$

If $\forall u \in S_k, |\langle x_j, u \rangle| \leq \tau$, then

$$\text{Var}(w_{j,k}^i) = \mathbb{E}[(w_{j,k}^i)^2] \leq n^\alpha \tau^2.$$

By Chebyshev’s inequality:

$$\Pr \left[\left| w_{j,k}^i \right| \geq 3 \cdot n^\alpha \tau \right] \leq 1/9.$$
With m repetitions, the number of successes N, that is the number of indices i for which $|w^i_{j,k}| \leq 3 \cdot n^a \tau$, follows the binomial distribution. Hence, by a Chernoff bound (see e.g. [15]) and since we have $\mathbb{E}[N] \leq 8m/9$, we obtain

$$\Pr[N \leq 3m/4] \leq \exp(-m/26).$$

We consider as bad event the event that for some j, k, more than 25% of the repetitions fail, that is $|w^i_{j,k}| \geq 3 \cdot n^a \tau$. By the union bound, this probability is $\leq n^{2-a} \cdot \exp(-m/26)$, which for $m \geq 78 \log n$ implies a probability of failure $\leq 1/n^3$.

Now consider x_j and $x'_j \in S_k$ s.t. $\|x_j, x'_j\| \geq 3 \cdot n^a \tau$, then by Lemma 1, with probability $1/2$, $|w^i_{j,k}| \geq 3 \cdot n^a \tau$. We consider as bad event the event that for j, l, more than 75% of the repetitions fail, that is $|w^i_{j,k}| \leq 3 \cdot n^a \tau$. Hence, by a Chernoff bound,

$$\Pr[N \leq m/4] \leq \exp(-m/8),$$

which for $m \geq 24 \log n$ implies a probability of failure $\leq 1/n^3$.

The runtime of the algorithm is dominated, up to polylogarithmic factors, by the computation of matrix Z, taking time $O(dn)$, the computation of matrix W, taking time n^{2-a}, or the computation of the product W^i, taking time $MatrixMul(n \times d, d \times n^{1-a})$.

For the case of point sets with many “small” distances, we rely crucially on the fact that the expected number of near neighbors for a randomly chosen point is large. So, if we iteratively choose random points and delete these and their neighbors, we will end up with a point set which satisfies the property of having sufficiently few “small” distances. Then, we apply Vector Aggregation.

Crude ApprxNet

Input: $X = [x_1, \ldots, x_n] \in \mathbb{R}^{d \times a}$, $X' = [x'_1, \ldots, x'_n] \in \mathbb{R}^{d \times a}$, $\alpha \in (0, 1)$, $\tau > 0$.

Output: $C' \subseteq [n]$, $F' \subseteq [n]$.

1. $C \leftarrow \emptyset$, $F_1 \leftarrow \emptyset$, $F_2 \leftarrow \{x_1, \ldots, x_n\}$

2. Repeat $n^{0.5}$ times:
 - Choose a column x_i uniformly at random.
 - $C \leftarrow C \cup \{x_i\}$.
 - Delete column i from matrix X and column i from matrix X'.
 - Delete each column k from matrix X, X' s.t. $\|x_i, x'_k\| \geq \tau$.
 - If there is no column k from matrix X s.t. $\|x_i, x'_k\| \geq \tau$, then $F_1 \leftarrow F_1 \cup \{x_i\}$
 - Run Vector Aggregation with input X, X', α, τ and output $W, S_1, \ldots, S_{n-\alpha}$.
 - For each of the remaining rows $i = 1, \ldots$
 - For any $|w^i_{j,k}| \geq 3n^a \tau$:
 - If this command is executed more than $n^{1.7}$ times, then output “ERROR”.
 - Compute inner products between x_i and vectors in S_j. For each vector $x'_k \in S_j$ s.t. $k \neq i$ and $\|x_i, x'_k\| \geq \tau$, delete row k and $F_2 \leftarrow F_2 \backslash \{x_i\}$.
 - $C \leftarrow C \cup \{x_i\}$
 - Output indices of C and $F \leftarrow \{F_1 \cup F_2\}$.

Springer
Theorem 2 On input $X = [x_1, \ldots, x_n] \in \mathbb{R}^{d \times n}$, $X' = [x'_1, \ldots, x'_n] \in \mathbb{R}^{d \times n}$, $\alpha \in (0, 1)$, $\tau > 0$, Crude ApprxNet, computes a crude $3n^a$-approximate τ-net for X, X', following the notation of Definition 3. The algorithm runs in time:

$$\tilde{O}(n^{2-a} + d \cdot n^{1.7+a} + \text{MatrixMul}(n \times d, d \times n^{1-a})),\$$

and succeeds with probability $1 - O(1/n^{0.2})$. Additionally, it outputs a set $F \subseteq \{x_1, \ldots, x_n\}$ with the following property:

$$\{x_i | \forall j \neq i \langle x'_j, x_i \rangle < \tau\} \subseteq F \subseteq \{x_i | \forall j \neq i \langle x'_j, x_i \rangle < 3n^a \tau\}.$$

Proof We perform $n^{0.5}$ iterations and for each, we compare the inner products between the randomly chosen vector and all other vectors. Hence, the time needed is $O(dn^{1.5})$.

In the following, we denote by X_i the number of vectors which have “large” magnitude of the inner product with the randomly chosen point in the ith iteration. Furthermore, $\mathbb{E}[X_i]$ denotes the expected value of X_i over all random choices in the first i iterations. Towards proving correctness, suppose first that $\mathbb{E}[X_i] > 2n^{0.5}$ for all $i = 1, \ldots, n^{0.5}$. The expected number of vectors we delete in each iteration of the algorithm is more than $2n^{0.5} + 1$. So, after $n^{0.5}$ iterations, the expected total number of deleted vectors will be greater than n. This means that if the hypothesis holds for all iterations we will end up with a proper net.

Now suppose that there is an iteration j where $\mathbb{E}[X_j] \leq 2n^{0.5}$. After all iterations, the number of “small” distances are at most $n^{1.5}$ on expectation. By Markov’s inequality, when the Vector Aggregation algorithm is called, the following is satisfied with probability $1 - n^{-0.2}$:

$$|\{(i, k) | \langle x'_i, x'_k \rangle \geq \tau, i \neq k\}| \leq n^{1.7}.$$

By Theorem 1 and the above discussion, the number of entries in the matrix W that we need to visit is at most $n^{1.7}$. For each entry, we perform brute force which runs in dn^a time.

Now notice that the first iteration stores centers c and deletes all points p for which $|\langle c, p \rangle| \geq \tau$. Hence, any two centers c, c' satisfy $|\langle c, c' \rangle| < \tau$. In the second iteration, over the columns of W, notice that by Theorem 1, for any two centers c, c' we have $|\langle c, c' \rangle| < 3n^a \tau$.

Notice that the constants in the analysis above was chosen to facilitate our purposes. No further attempts were made towards optimization.

2.2 Approximate Inner Product Nets

In this subsection, we show that the problem of computing ρ-nets for the inner product of unit vectors reduces to the less natural problem of Definition 3, which refers to the magnitude of the inner product.

The first step consists of mapping the unit vectors to vectors in $\{-1, 1\}^d$. The mapping is essentially Charikar’s LSH scheme [7]. Then, we apply the Chebyshev
embedding of [17] in order to achieve gap amplification, and finally we call algorithm **Crude ApprxNet**, which will now return a proper ρ-net with additive error.

The following theorem describes the performance of the algorithm that converts the set of unit vectors into the set of vectors with entries in $\{-1, 1\}^{d'}$. This transformation is necessary in order to apply the Chebyshev embedding and ensures that the entries of the vectors returned by the embedding have the same magnitudes. Then, we can apply Chernoff bounds to guarantee that the inner products between the returned vectors are concentrated about their expectations.

Theorem 3 [17] There exists an algorithm with the following properties. Let $d' = O\left(\frac{\log n}{\delta^2}\right)$ and $Y \in \mathbb{R}^{d' \times n}$ denote its output on input X, and δ, where $X \in \mathbb{R}^{d \times n}$ is a matrix whose columns have unit norm. Then, with probability $1 - o(1/n^2)$, for all pairs $i, j \in [n]$, the following difference has an absolute value bounded as follows:

$$\left|\frac{\langle Y_i, Y_j \rangle}{d'} - 1 + 2 \cdot \frac{\cos^{-1}(\langle X_i, X_j \rangle)}{\pi}\right| \leq \delta,$$

where X_i, Y_i denote the i-th column of X and Y respectively. Additionally, the runtime of the algorithm is $O(dn \log n/\delta^2)$.

Next, we present the theorem describing the performance of Chebyshev embedding; a randomized embedding that reduces the magnitude of the inner product between “far away” vectors, while preserving the magnitude of the inner product between “close” vectors. The statement is taken from [17, Prop.6], except that we additionally establish an asymptotically better probability of success. Before proceeding to the proof, we define the Chebyshev polynomial of the first kind. The proof is the same, but since we claim stronger guarantees on success probability, we include the complete proof.

Definition 4 Let

$$T_q(x) = \frac{(x - \sqrt{x^2 - 1})^q + (x + \sqrt{x^2 - 1})^q}{2},$$

be the qth Chebyshev polynomial of the first kind.

Theorem 4 Let Y, Y' be the matrices output by algorithm “Chebyshev Embedding” on input $X, X' \in \{-1, 1\}^{d' \times n}$, $\tau^+ \in [-1, 1]$, $\tau^- \in [-1, 1]$ with $\tau^- < \tau^+$, integers q, d'. With probability $1 - o(1/n)$ over the randomness in the construction of Y, Y', for all $i, j \in [n], \langle Y_i, Y'_j \rangle$ is within $\sqrt{d'} \log n$ from the value

$$T_q\left(2 \frac{\langle X_i, X'_j \rangle/d' - \tau^-}{\tau^+ - \tau^-} - 1\right) \cdot d' \cdot \frac{(\tau^+ - \tau^-)^q}{2^{3q+3}},$$

where T_q is the degree-q Chebyshev polynomial of the first kind. The algorithm runs in time $O(d' \cdot n \cdot q)$.

Springer
For the proof of Theorem 4 we refer to [17, Algorithm 3: Chebyshev Embedding]. The proof is the same with that of [17], apart from indicating that the probability of success is actually $1 - o(1/n)$ instead of $1 - o(1)$ as stated in [17]. While $1 - o(1/n)$ probability of success is enough for our purposes, even better probability bounds can be achieved.

Proof The fact that all inner products are concentrated within $\pm \sqrt{d} \log n$ about their expectations follows from the fact that each row of Y, Y' is generated identically and independently from the other rows, and all entries of these matrices are ± 1; thus, each inner product is a sum of independent and identically distributed random ± 1 variables, and we can apply the basic Chernoff bound to each inner product, and then a union bound over the $O(n^2)$ inner products. Let $X_i \in \pm 1$ i.i.d. random variables. The basic Chernoff bound gives probability,

$$
\Pr \left[\left| \sum_{i=1}^{d'} X_i - \mathbb{E} \left[\sum_{i=1}^{d'} X_i \right] \right| > \sqrt{d'} \log n \right] \leq 2 \cdot \exp(-\Theta(\log^2 n)) = o(1/n^3).
$$

Given this concentration, we now analyze the expectation of the inner products. Let v, v' be columns of X, X', respectively, and u, u' the corresponding columns of Y, Y'. Letting $x = \langle v, v' \rangle / d$, we argue that by [17, Lemma 3.3],

$$
\mathbb{E}[\langle u, u' \rangle] = d' \sum_{i=1}^{q} \frac{x - c_i}{2}, \quad (1)
$$

where c_i is the location of the ith root of the qth Chebyshev polynomial after the roots have been scaled to lie in the interval $[\tau^-, \tau^+]$. To see why this is the case, note that each coordinate of u, u', is generated by computing the product of q random variables that are all ± 1; namely, a given entry of u is given by $\prod_{l=1}^{q} s_v(l)$, with the corresponding entry of u' given by $\prod_{l=1}^{q} s_{v'}(l)$. Note that for $i \neq j$, $s_v(i)$ is independent of $s_v(j)$ and $t_{v'}(j)$, although by construction, $s_v(i)$ and $t_{v'}(i)$ are not independent. We now argue that $\mathbb{E}[s_v(i)t_{v'}(i)] = \frac{\tau^+ - \tau^-}{2}$, from which Eq. 1 will follow by the fact that the expectation of the product of independent random variables is the product of their expectations.

By construction, in Step (1) of the inner loop of the algorithm, with probability $1/2$, $E[s_v(i)t_{v'}(i)] = \langle v, v' \rangle / d = x$. Steps (2)-(4) ensure that with the remaining $1/2$ probability, $\mathbb{E}[s_v(i)t_{v'}(i)] = \frac{1-c_i}{2}(1) - \frac{1+c_i}{2}(-1) = -c_i$. Hence, in aggregate over the randomness of Steps (1)-(4), $\mathbb{E}[s_v(i)t_{v'}(i)] = x/2 - c_i/2$, as claimed, establishing Eq. 1.

To show that Eq. 1 yields the statement of the proposition, we simply reexpress the polynomial $\prod_{i=1}^{q} \frac{\tau^+ - \tau^-}{2}$ in terms of the qth Chebyshev polynomial T_q. Note that the qth Chebyshev polynomial has leading coefficient 2^{q-1}, whereas this expression (as a polynomial in x) has leading coefficient $1/2^q$, disregarding the factor of the dimension d'. If one has two monic degree q polynomials, P and Q where the roots of Q are given by scaling the roots of P by a factor of α, then the values at corresponding
locations differ by a multiplicative factor of $1/\alpha^q$; since the roots of T_q lie between $[-1, 1]$ and the roots of the polynomial constructed in the embedding lie between $[\tau^-, \tau^+]$, this corresponds to taking $\alpha = \frac{2}{\tau^+ - \tau^-}$. □

Inner product ApprxNet

Input: $X = [x_1, \ldots, x_n]$ with each $x_i \in \mathbb{S}^{d-1}$, $\rho \in [-1, 1]$, $\epsilon \in (0, 1/2]$.
Output: Sets $C, F \subseteq [n]$.

– If $\rho \leq \epsilon$, then:
 – $C \leftarrow \emptyset$, $F \leftarrow \emptyset$, $W \leftarrow \{x_1, \ldots, x_n\}$
 – While $W \neq \emptyset$:
 • Choose arbitrary vector $x \in W$.
 • If $\forall y \in W$, $\langle x, y \rangle < \rho - \epsilon$ then $F \leftarrow F \cup \{x\}$
 • $W \leftarrow W \setminus \{y \in W \mid \langle x, y \rangle \geq \rho - \epsilon\}$
 • $C \leftarrow C \cup \{x\}$
 – Return indices of C, F.

– Apply Theorem 3 for input X, $\delta = \epsilon/3\pi$ and output $Y \in \{-1, 1\}^{d \times n}$ for $d' = O(\log n/\delta^2)$.

– Apply Theorem 4 for input Y, $d'' = n^{0.2}$, $q = 50^{-1} \log n$, $\tau^- = -1, \tau^+ = 1 - \frac{2\cos^{-1}(\rho - \epsilon)}{\pi} + \delta$ and output Z, Z'.

– Run algorithm Crude ApprxNet with input $\tau = 3n^{0.16}, \alpha = \sqrt{\epsilon}/500$, Z, Z' and output C, F.
– Return C, F.

Theorem 5 The algorithm Inner product ApprxNet, on input $X = [x_1, \ldots, x_n]$ with each $x_i \in \mathbb{S}^{d-1}$, $\rho \in [-1, 1]$ and $\epsilon \in (0, 1/2]$, computes an approximate ρ-net with additive error ϵ, using the notation of Definition 2. The algorithm runs in time $O(dn + n^2\sqrt{\epsilon}/600)$ and succeeds with probability $1 - O(1/n^{0.2})$. Additionally, it computes a set F with the following property: $\{x_i \mid \forall x_j \neq x_i \langle x_j, x_i \rangle < \rho - \epsilon\} \subseteq F \subseteq \{x_i \mid \forall x_j \neq x_i \langle x_j, x_i \rangle < \rho\}$.

The proof of Theorem 5 relies on fast matrix multiplication and specifically it employs Coppersmith’s result presented below.

Theorem 6 [8] For any positive $\gamma > 0$, provided that $\beta < 0.29$, the product of a $k \times k^\beta$ with a $k^\beta \times k$ matrix can be computed in time $O(k^{2+\gamma})$.

Corollary 1 For any positive $\gamma > 0$, provided that $\beta < 0.29 \cdot \alpha < 1$, the product of a $n \times n^\beta$ by a $n^\beta \times n^\alpha$ matrix can be computed in time $O(n^{1+\alpha+\alpha\gamma})$.

Proof The idea is to perform $n^{1-\alpha}$ multiplications of matrices of size $n^\alpha \times n^\beta$ and $n^\beta \times n^\alpha$.

Hence, by Theorem 6, the total cost is:

$$O(n^{1-\alpha}(n^{\alpha(2+\gamma)})) = O(n^{1+\alpha+\alpha\gamma}).$$ □
The following fact describes important properties of the Chebyshev polynomial (of the first kind) that we will rely on, specifically for the proof of theorem 5.

Fact 2.1 Let $T_q(x)$ denote the qth Chebyshev polynomial of the first kind, then the following hold:

- For $x \in [-1, 1], |T_q(x)| \leq 1.$
- For $\delta \in (0, 1/2], T_q(1+\delta) \geq \frac{1}{2} e^q \sqrt{\delta}.$

Claim 2.1 For $\rho \in [-1, 1], \epsilon \in (0, 1)$, it holds $\cos^{-1}(\rho - \epsilon) - \cos^{-1}(\rho) \geq \epsilon/2.$

Proof If $(\rho - \epsilon)^2 \neq 1$ then we have

\[
\cos^{-1}(\rho - \epsilon) - \cos^{-1}(\rho) = \int_{\rho-\epsilon}^{1} \frac{1}{\sqrt{1-x^2}} \, dx - \int_{\rho}^{1} \frac{1}{\sqrt{1-x^2}} \, dx
\]

\[
= \int_{\rho-\epsilon}^{\rho} \frac{1}{\sqrt{1-x^2}} \, dx
\]

\[
= \int_{0}^{\epsilon} \frac{1}{\sqrt{1-(\rho-\epsilon+y)^2}} \, dy
\]

\[
\geq \int_{0}^{\epsilon} \frac{1}{\sqrt{1-(\rho-\epsilon)^2}} \, dy
\]

\[
= \frac{\epsilon}{\sqrt{1-(\rho-\epsilon)^2}} \geq \epsilon.
\]

Now if $(\rho - \epsilon)^2 = 1 \implies \rho - \epsilon = -1$ then,

\[
\cos^{-1}(\rho - \epsilon) - \cos^{-1}(\rho) = \int_{-1}^{-1+\epsilon} \frac{1}{\sqrt{1-x^2}} \, dx \geq \frac{\epsilon}{\sqrt{2\epsilon - \epsilon^2}} \geq \epsilon/2.
\]

Proof of Theorem 5 If $\rho \leq \epsilon$, our approach ensures that for any $x, y \in C$, it holds $\langle x, y \rangle < \rho - \epsilon \leq 0$. We show that $|C| \leq d + 1$, due to a simple packing argument. Let x_1, \ldots, x_{d+2} such that $\forall i \neq j \in [d + 2]$ we have $\langle x_i, x_j \rangle < 0$. Then, there exist $\lambda_1, \ldots, \lambda_{d+1} \in \mathbb{R}$ not all zero for which $\sum_{i=1}^{d+1} \lambda_i x_i = 0$. Now consider two subsets $I, J \subseteq [d + 1]$ of indices such that $\forall i \in I, \lambda_i > 0$ and $\forall j \in J, \lambda_j < 0$. We can write

\[
\sum_{i \in I} \lambda_i x_i = \sum_{j \in J} -\lambda_j x_j \implies 0 \leq \left\langle \sum_{i \in I} \lambda_i x_i, -\sum_{j \in J} \lambda_j x_j \right\rangle = -\sum_{i \in I, j \in J} \lambda_i \lambda_j \langle x_i, x_j \rangle < 0
\]

which leads to contradiction. If $J = \emptyset$ (or equivalently if $I = \emptyset$), then $0 = \langle x_{d+2}, \sum_{i \in I} \lambda_i x_i \rangle < 0$, which leads again to contradiction.
We now focus on the case $\rho > \varepsilon$. By Theorem 3, with probability $1 - o(1/n^2)$, the matrix Y returned by the corresponding algorithm will have the property that any pair of columns

$$
\langle X_i, X_j \rangle \geq \rho \implies \frac{\langle Y_i, Y_j \rangle}{d'} \geq 1 - \frac{2 \cos^{-1}(\rho)}{\pi} - \delta,
$$

$$
\langle X_i, X_j \rangle \leq \rho - \varepsilon \implies \frac{\langle Y_i, Y_j \rangle}{d'} \leq 1 - \frac{2 \cos^{-1}(\rho - \varepsilon)}{\pi} + \delta.
$$

Hence, according to Claim 2.1, it suffices to set $\delta = \varepsilon/3\pi$ in order to distinguish between the two cases:

$$
1 - \frac{2 \cos^{-1}(\rho - \varepsilon)}{\pi} + 2\delta \leq 1 - \frac{2 \cos^{-1}(\rho)}{\pi} - \delta.
$$

Now we set $\tau^+ = 1 - \frac{2 \cos^{-1}(\rho - \varepsilon)}{\pi} + \delta > -1$. By Theorem 4, with probability $1 - o(1)$,

$$
\langle Y_i, Y_j \rangle \leq \tau^+ d' \implies |\langle Z_i, Z_j \rangle| \leq d'' \frac{2^q}{2^{3q-1}} + \sqrt{d'' \log n} \leq 3n^{0.16},
$$

for large enough n. Moreover, let Y_i, Y_j s.t. $\langle Y_i, Y_j \rangle \geq (\tau^+ + \delta)d'$. Then,

$$
|\langle Z_i, Z_j \rangle| \geq d'' \cdot T_q \left(1 + 2 \frac{\delta}{\tau^+ + 1}\right) \frac{2^q}{2^{3q-1}} - \sqrt{d'' \log n} > \frac{1}{2} \cdot T_q \left(1 + 2 \frac{\delta}{\tau^+ + 1}\right) \cdot n^{0.16},
$$

for large enough n.

Then, by Fact 2.1,

$$
|\langle Z_i, Z_j \rangle| \cdot n^{-0.16} \geq \frac{1}{4} e^{q\sqrt{\delta}} = \frac{1}{4} n^{\sqrt{\delta}/50} \geq 3n^{\sqrt{\delta}/100} \geq 3n^{\sqrt{\varepsilon}/400},
$$

where some of the inequalities hold for large enough n.

Now, by Theorems 3, 4, 2 and Corollary 1 the time complexity is $\tilde{O}(dn + n^2 - \sqrt[3]{\varepsilon}/600)$, if we set as γ in Corollary 1 a sufficiently small multiple of $\sqrt{\varepsilon}$. Finally, the subroutine with the higher probability of failure is Crude ApprxNet and by the union bound, it dominates the total probability of failure.

\[\Box\]

3 Approximate Nets in High Dimensions

In this section, we translate the problem of computing r-nets in $(\mathbb{R}^d, \| \cdot \|)$ to the problem of computing ρ-nets for unit vectors under inner product. One intermediate step is that of computing r-nets for unit vectors under Euclidean distance.
3.1 From Arbitrary to Unit Vectors

In this subsection, we show that if one is interested in finding an \(r \)-net for \((\mathbb{R}^d, \lVert \cdot \rVert) \), it is sufficient to solve the problem for points on the unit sphere. One analogous statement is used in [17], where they prove that one can apply a randomized mapping from the general Euclidean space to points on a unit sphere, while preserving the ratio of distances for any two pairs of points. The claim derives by the simple observation that an \(r \)-net in the initial space can be approximated by computing an \(\epsilon r / c \)-net on the sphere, where \(c \) is the maximum norm of any given point envisaged as a vector. Our exposition is simple since we can directly employ the analogous theorem from [17].

Corollary 2 There exists an algorithm, Standardize, which, on input \(d \times n \) matrix \(X \) with entries \(x_{i,j} \in \mathbb{R} \), a constant \(c \in (0, 1) \) and a distance parameter \(r \in \mathbb{R} \), outputs a \(m' \times n \) matrix \(Y \), with columns having unit norm and \(m' = \log^3 n \), and a distance parameter \(\rho \in \mathbb{R} \), such that a \(\rho \)-net of \(Y \) is an approximate \(r \)-net of \(X \), with probability \(1 - o(1/\text{poly}(n)) \).

Towards improving the Corollary above we employ an algorithm introduced in [17], which guarantees that there is a randomized mapping from Euclidean space to points on the unit sphere that preserves the ratio of the distances of any two pair of points with only an additive error.

Theorem 7 [17] There exists an algorithm which on input \(d \times n \) matrix \(X \) with entries \(x_{i,j} \in \mathbb{R} \) and a constant \(c \in (0, 1) \) outputs a \(m' \times n \) matrix \(Y \) with columns having unit norm and \(m' = \log^3 n \), such that, with probability \(1 - o(1/\text{poly}(n)) \) for all sets of four columns \(Y_1, Y_2, Y_3, Y_4 \) of matrix \(Y \), with \(X_1, X_2, X_3, X_4 \) being the corresponding columns of matrix \(X \), it holds that

\[
\frac{\lVert Y_1 - Y_2 \rVert \lVert X_3 - X_4 \rVert}{\lVert Y_3 - Y_4 \rVert \lVert X_1 - X_2 \rVert} \in \left[1 - \frac{\epsilon}{10}, 1 + \frac{\epsilon}{10} \right].
\]

Now, let us define two \(d \)-dimensional vectors \(X_{n+1}, X_{n+2} \), s.t. \(r' = X_{n+1} - X_{n+2} \) and \(\lVert r' \rVert = r \), where \(X \) is a \(d \times n \) matrix with entries \(x_{i,j} \in \mathbb{R} \) and \(r \in \mathbb{R} \) is the radius of the \(r \)-net of \(X \). Also, let matrix \(X' \) denote the concatenation of \(X \), \(X_{n+1} \) and \(X_{n+2} \) with size \(d \times (n + 2) \). After applying Theorem 7 on input \(X' \) and \(\epsilon/10 \), we define \(\rho := \lVert Y_{n+1} - Y_{n+2} \rVert \) to be the new radius of \(Y \). Then, we claim that the following hold with probability \(1 - o(1/\text{poly}(n)) \), which immediately implies Corollary 2:

- For all \(X_i, X_j \in X \) and their corresponding \(Y_i, Y_j \in Y \), if \(\lVert X_i - X_j \rVert \leq r \) then \(\lVert Y_i - Y_j \rVert \leq (1 + \epsilon/10) \rho \).
- For all \(X_i, X_j \in X \) and their corresponding \(Y_i, Y_j \in Y \), if \(\lVert X_i - X_j \rVert \geq (1 + \epsilon) r \) then \(\lVert Y_i - Y_j \rVert \geq (1 + \epsilon/2) \rho \).
From Theorem 7, we easily derive that for all $X_i, X_j \in X$ and their corresponding $Y_i, Y_j \in Y$, it holds that

$$
\|Y_i - Y_j\| \leq (1 + \epsilon/10) \frac{\|X_i - X_j\|}{r} \rho.
$$

Therefore, if $\|X_i - X_j\| \leq r$, we have $\|Y_i - Y_j\| \leq (1 + \epsilon/10)\rho$. For the other direction, we use the opposite side of Theorem 7, thus we have that for all $X_i, X_j \in X$ and their corresponding $Y_i, Y_j \in Y$:

$$
\|Y_i - Y_j\| \geq (1 - \epsilon/10) \frac{\|X_i - X_j\|}{r} \rho.
$$

It follows that $\|X_i - X_j\| \geq (1 + \epsilon)r \Rightarrow \|Y_i - Y_j\| \geq (1 - \epsilon/10)(1 + \epsilon)\rho \Rightarrow \|Y_i - Y_j\| \geq (1 + \epsilon/2)\rho$.

\[\square\]

3.2 Approximate Nets Under Euclidean Distance

In this subsection, we show that one can translate the problem of computing an r-net for points on the unit sphere under Euclidean distance, to finding an r-net for unit vectors under inner product as defined in Sect. 2. Moreover, we identify the subset of the r-net which contains the centers that are approximately far from any other point. Formally,

Definition 5 Given a set of points X and $\epsilon > 0$, a set $F \subseteq X$ of $(1 + \epsilon)$-approximate r-far points is defined by the following property:

$$
\{ x \in X \mid \forall y \in X \setminus \{x\} \|x - y\| > (1 + \epsilon)r \} \subseteq F \subseteq \{ x \in X \mid \forall y \in X \setminus \{x\} \|x - y\| > r \}.
$$

If r is greater than some constant, the problem can be immediately solved by the law of cosines since the multiplicative approximation on the distance can be translated to an additive approximation to the inner product. If r cannot be considered as constant, we distinguish cases $r \geq 1/n^{0.9}$ and $r < 1/n^{0.9}$. The first case is solved by a simple modification of an analogous algorithm in [17, p.13:28]. The second case is not straightforward and requires partitioning the point set in a manner which allows computing r-nets for each part separately. Each part has bounded diameter which implies that we need to solve a “large r” subproblem. Below, we present an algorithm that finds an $(1 + \epsilon)$-approximate r-net for points on the unit sphere under Euclidean distance, given that the radius r is appropriately large.
ApprxNet (Large radius)

Input: $X = [x_1, \ldots, x_n]^T$ with each $x_i \in \mathbb{S}^{d-1}$ with $d = \log n$, $r > 1/n^{0.9}$, $\epsilon \in (0, 1/2]$. Output: Sets $R, F \subseteq [n]$.

- If $r > 0.2$ run Inner Product ApprxNet with error parameter $\epsilon/25$ and $\rho = 1 - \frac{\epsilon}{2}$.
- Otherwise, define the $d \times n$ matrix Z as follows: for each $i \in [d]$, select $q = \lfloor \frac{x}{2\cos^{-1}(1 - r^2/2)} \rfloor$ uniformly random vectors v_1, \ldots, v_q and for all $j \in [n]$, set

$$z_{ij} = \text{sign} \prod_{k=1}^{q} X_j^T v_k,$$

where X_j is the jth column of matrix X.

- Run Inner Product ApprxNet with $\rho = \left(1 - \frac{2\cos^{-1}(1 - r^2/2)}{\epsilon} \right)^q$, error parameter $\epsilon/100$ and input matrix Z with all entries scaled by $1/\sqrt{d}$ to make them have unit norm.

Theorem 8 There exists an algorithm, ApprxNet (Large radius), which, for any constant $\epsilon \in (0, 1/2]$, $X \subseteq \mathbb{S}^{d-1}$ s.t. $|X| = n$, outputs a $(1 + \epsilon)r$-net and a set of $(1 + \epsilon)$-approximate r-far points with probability $1 - \Theta(1/n^{0.2})$. Additionally, provided $r > 1/n^{0.9}$ the runtime of the algorithm is $\tilde{O}(dn^{2-\Theta(\sqrt{n}/\epsilon)})$.

Proof In the case of $r > 0.2$ we will show that the $1 + \epsilon$ multiplicative approximation on the distance translates to $c\epsilon$ additive approximation to the inner product. Applying the law of cosines, the first condition yields $\langle p, q \rangle \geq 1 - \frac{\epsilon^2}{2}$ and the second condition yields $\langle p, q \rangle \leq 1 - \frac{r^2}{2} - \frac{2r^2 + (r^2)^2}{\epsilon} < 1 - \frac{r^2}{2} - \frac{\epsilon}{25}$. So, it suffices to take $c = 1/25$.

Now suppose that $r < 0.2$. For each random vector v we have that $\mathbb{E} \left[\text{sign}(X_i^T v \cdot X_j^T v) \right] = 1 - \frac{2\cos(\theta(X_i, X_j))}{\pi}$, where $\theta(X_i, X_j)$ denotes the angle between X_i, X_j. Since expectations of independent random variables multiply, we have that, for each k,

$$\mathbb{E}[z_{k,i}z_{k,j}] = (1 - 2 \cdot \theta(X_i, X_j)/\pi)^q.$$

Now let $\theta_r = \cos^{-1}(1 - r^2/2)$,

$$||X_i - X_j|| \leq r \implies \theta(X_i, X_j) \leq \theta_r \implies \mathbb{E}[\langle Z_i, Z_j \rangle] \geq d(1 - 2\theta_r/\pi)^q$$

$$||X_i - X_j|| \geq (1 + \epsilon)r \implies \theta(X_i, X_j) \geq (1 + \epsilon/2)\theta_r$$

$$\implies \mathbb{E}[\langle Z_i, Z_j \rangle] \leq d(1 - 2(1 + \epsilon/2)\theta_r/\pi)^q.$$

Notice that,

$$\frac{(1 - 2(1 + \epsilon/2)\theta_r/\pi)^q}{(1 - 2\theta_r/\pi)^q} < 1 - \epsilon/10,$$

for $q = \lfloor \pi/(2\theta_r) \rfloor$ and since $n^{0.9} \leq r \leq 0.2$. Notice that $d(1 - 2\theta_r/\pi)^q \in [0.3d, 0.5d]$. Hence, if $||X_i - X_j|| \leq r$ and $||X_i - X_j|| \geq (1 + \epsilon)r$,

$$\mathbb{E}[\langle Z_i, Z_j \rangle] < (1 - \epsilon/10)\mathbb{E}[\langle Z_i, Z_j \rangle] \leq \mathbb{E}[\langle Z_i, Z_j \rangle] - 0.3d\epsilon/10.$$
By a union bound over Chernoff bounds, since \(d = \log^3 n \), with probability \(1 - o(1/poly(n)) \), the inner products between any two columns of \(Z \) differ from their expectations by \(o(d) \). After performing the scaling procedure, and due to the fact that \(d(1 - 20r/\pi)^9 \leq 0.5d \), we conclude that it suffices to compute \(\text{Inner Product ApprxNet} \) with \(\rho = (1 - 2 \cdot 20r/\pi)^9 \) and approximation error \(\epsilon/100 \).

The runtime of all components of the algorithm aside from the calls to \(\text{Inner Product ApprxNet} \) is bounded by \(\tilde{O}(n/\cos^{-1}(1 - r^2/2)) = \tilde{O}(n^{1.9}) \).

Let us now present an algorithm which translates the problem of finding an \(r \)-net for \(r < 1/n^{0.9} \) to the problem of computing an \(r \)-net for \(r \geq 1/n^{0.9} \). The main idea, illustrated in Fig. 3, is that we compute disjoint subsets \(S_i \), which are far enough from each other, so that we can compute \(r \)-nets for each \(S_i \) independently. We show that for each \(S_i \) we can compute \(T_i \subseteq S_i \) which has bounded diameter and \(T'_i \subseteq S_i \) such that \(T_i, T'_i \) are disjoint, each point in \(T_i \) is far from each point in \(T'_i \), and \(|T'_i| \leq 3|S_i|/4 \). It is then easy to find \(r \)-nets for \(T_i \) by employing the \(\text{ApprxNet(Large radius)} \) algorithm. Then, we recurse on \(T'_i \) which contains a constant fraction of points from \(|S_i| \). Finally, we cover points in \(S_i \setminus (T_i \cup T'_i) \) and points which do not belong to any \(S_i \).

Fig. 3 Illustration of the algorithm \(\text{ApproxNet(Small radius)} \). For each disjoint subject \(S_i, S_j, \ldots \) we compute an \(r \)-net independently. The set \(T_i \) is bounded in the diameter, hence we construct an \(r \)-net by employing \(\text{Standardize and ApprxNet(Large radius)} \). In \(T'_i \)'s case we recurse the entire algorithm.
Algorithmica (2020) 82:1675–1702

Theorem 9 For any constant $\epsilon > 0$, $X \subseteq \mathbb{S}^{d-1}$ s.t. $|X| = n$, and $r < 1/n^{0.9}$,
$\text{ApprxNet} \ (\text{Small radius})$ will output a $(1+\epsilon)r$-net and a set of $(1+\epsilon)^{-1}$-approximate r-far points in time $\tilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$, with probability $1 - o(1/n^{0.04})$.

Proof Note that points in S_i had projections p_i in sets of contiguous intervals of width r; each interval had $\geq n^{0.6}$ points, hence the diameter of the projection of S_i is $\leq n^{0.4}r$. By the Johnson Lindenstrauss Lemma [9] we have that for $v \in \mathbb{S}^{d-1}$ chosen uniformly at random:
\[
\Pr \left[\langle u, v \rangle^2 \leq \frac{\|u\|^2}{n^{0.4}} \right] \leq \frac{\sqrt{d} \sqrt{e}}{n^{0.2}}.
\]

Hence, \(\mathbb{E}[\{ x_k, x_j \in S_i \mid \|x_k - x_j\| \geq n^{0.6} r \text{ and } \|p_k - p_j\| \leq n^{0.4} r \}] \leq |S_i|^2 \cdot \frac{\sqrt{d} \sqrt{e}}{n^{0.2}} \), and the probability \(\Pr[\{ x_k, x_j \in S_i \mid \|x_k - x_j\| \geq n^{0.6} r \text{ and } \|p_k - p_j\| \leq n^{0.4} r \}] \geq |S_i|^{1.95} \) \(\leq |S_i|^{0.05} \cdot \sqrt{ed} \cdot n^{-0.2} \leq \sqrt{ed} \cdot n^{-0.15} \). Taking a union bound over all sets \(S_i \) yields a probability of failure \(o(1/n^{0.045}) \). This implies that (for large enough \(n \), which implies large enough \(|S_i| \)) at least

\[
\left(\frac{|S_i|}{2} \right) - |S_i|^{1.95} \geq \frac{|S_i|^2}{4}
\]

distances between points in \(S_i \) are indeed small (\(\leq n^{0.6} r \)). Hence, there exists some point \(p_k \in S_j \) which \((n^{0.6} r) \)-covers \(|S_i|/2 \) points. For each possible \(p_k \) we sample \(n^{0.1} \) distances to other points, and by Chernoff bounds, if a point \((n^{0.6} r) \)-covers a fraction of more than \(1/2 \) of the points in \(S_j \), then it covers more than \(n^{0.1}/3 \) sampled points with high probability. Similarly, if a point \((n^{0.6} r) \)-covers a fraction of less than \(1/4 \) of the points in \(S_j \), then it covers less than \(n^{0.1}/3 \) sampled points with high probability. More precisely, for some fixed \(u \in S_j \), let \(X_j = 1 \) when for the \(j \)th randomly chosen point \(v \in S_j \), it holds \(\|u - v\| \leq n^{0.6} r \) and let \(X_j = 0 \) otherwise. Then, for \(Y = \sum_{j=1}^{n^{0.1}} X_j \), it holds:

\[
\mathbb{E}[Y] \geq n^{0.1}/2 \implies \Pr[Y \leq n^{0.1}/3] \leq \exp(-\Theta(n^{0.1})),
\]

\[
\mathbb{E}[Y] \leq n^{0.1}/4 \implies \Pr[Y \geq n^{0.1}/3] \leq \exp(-\Theta(n^{0.1})).
\]

Since for any point \(x \in T_i \) and any point \(y \in T_i' \) we have \(\|x - y\| > r \), the packing property of \(r \)-nets is preserved when we build \(r \)-nets for \(T_i \) and \(T_i' \) independently. For each \(T_i \), we succeed in building \(r \)-nets with probability \(1 - O(1/n^{0.2}) \). By a union bound over all sets \(T_i \), we have a probability of failure \(O(1/n^{0.1}) \). Furthermore, points which belong to sets \(W_i \) and \(K_i \) are possibly covered and need to be checked.

For the analysis of the runtime of the algorithm, notice that step 5b runs in time \(O(d \cdot (\sum_{j=1}^{n^{0.1}} |T_j| + |T'_j|)) = O(dn) \). Then, step 5c runs in time \(O(d \cdot \sum_{j=1}^{n^{0.1}} |W_j| \cdot |T_j| + d \cdot \sum_{j=1}^{n^{0.1}} |W_j| \cdot |T'_j|) = O(dn^{1.4}) \). Finally, notice that we have at most \(n^{0.1} \) sets \(K_j \). Each \(K_j \) contains at most \(2n^{0.6} \) points, hence checking each point in \(\bigcup_j K_j \) with each point in \(R \) requires \(O(dn^{1.7}) \) time.

Now regarding step 5, consider any interval \([p_i - r, p_i] \) in the initial list, where all points are projected. If \(\{ j \mid p_j \in [p_i - r, p_i] \} \leq 2n^{0.9} \) then the \(i \)th iteration in step 5 will obviously cost \(O(n^{0.9}) \), since previous steps only delete points. If \(\{ j \mid p_j \in [p_i - r, p_i] \} > 2n^{0.9} \), we claim that \(\{ j < i \mid p_j \in [p_i - r, p_i] \text{ and } K_j \text{ is created} \} \leq 1 \). Consider the smallest \(j < i \) s.t. \(K_j \) is created and \(p_j \in [p_i - r, p_i] \). This means that all points \(p_k \), for \(k \leq j \), are deleted when \(p_j \) is visited. Now assume that there exists integer \(l \in (j, i) \) s.t. \(K_l \) is created. This means that the remaining points in the interval \([p_i - r, p_l] \) are \(\leq n^{0.6} \) and all of the remaining points \(p_k < p_l \) are more than \(n^{0.9} \). This leads to contradiction, since by the deletion in...
the jth iteration, we know that all of the remaining points $p_k < p_i$ lie in the interval $[p_i - r, p_i]$.

Now, assume that there exists one $j < i$ s.t. $p_j \in [p_i - r, p_i]$ and K_j is created. Then, when p_i is visited, there are at least $2n^{0.9} - n^{0.6} > n^{0.9}$ remaining points in the interval $[p_i - r, p_i]$. Hence, there exists $l \geq i$ for which the remaining points in the interval $[p_i - r, p_i]$ are contained in S_l. Hence in this case, in step 5, there exist at most $O(n^{0.6})$ points which are not deleted and belong to the interval $[p_i - r, p_i]$. Now assume that there does not exist any $j < i$ s.t. $p_j \in [p_i - r, p_i]$ and K_j is created. This directly implies that there exists $l \geq i$ for which the remaining points in the interval $[p_i - r, p_i]$ are contained in S_l.

At last, the total time of the above algorithm is dominated by the calls to the construction of the partial r-nets of the sets T_i. Thus, the total running time is $O(\sum_i |T_i|^{2-\theta(\sqrt{r})} + \sum_i |T_i|^{2-\theta(\sqrt{r})}) = O(\sum_i |T_i|^{2-\theta(\sqrt{r})} + \sum_i (3|T_i|/4)^{2-\theta(\sqrt{r})}) = \tilde{O}(n^{2-\theta(\sqrt{r})})$. Finally, taking a union bound over all recursive calls of the algorithm we obtain a probability of failure $o(1/n^{0.04})$.

We now present an algorithm for an $(1 + \epsilon)r$-net for points in \mathbb{R}^d under Euclidean distance.

\begin{algorithmic}
 \caption{ApprxNet}
 \begin{itemize}
 \item \textbf{Input}: Matrix $X = [x_1, \ldots, x_n]$ with each $x_i \in \mathbb{R}^d$, parameter $r \in \mathbb{R}$, constant $\epsilon \in (0, 1/2]$.
 \item \textbf{Output}: $R \subseteq [x_1, \ldots, x_n]$
 \begin{itemize}
 \item Let Y, r' be the output of algorithm \texttt{Standardize} on input X, r with parameter $\epsilon/4$.
 \item If $r' \geq 1/n^{0.9}$ run \texttt{ApprxNet\textunderscore Large radius} on input $Y, \epsilon/4, r'$ and return points which correspond to the set R.
 \item If $r' < 1/n^{0.9}$ run \texttt{ApprxNet\textunderscore Small radius} on input $Y, \epsilon/4, r'$ and return points which correspond to the set R.
 \end{itemize}
 \end{itemize}
\end{algorithmic}

\begin{theorem}
Given n points in \mathbb{R}^d, a distance parameter $r \in \mathbb{R}$ and an approximation parameter $\epsilon \in (0, 1/2]$, with probability $1 - o(1/n^{0.04})$, \texttt{ApprxNet} will return a $(1 + \epsilon)r$-net, R, in $\tilde{O}(dn^{2-\theta(\sqrt{r})})$ time.
\end{theorem}

\begin{proof}
The theorem is a direct implication of Theorems 8, 9, and Corollary 2.
\end{proof}

Moreover, we present a randomized approximation algorithm which, given a point set in \mathbb{R}^d and distance parameter r, returns the points that have at least one neighbor at distance at most r. This algorithm will be used on the applications on Sect. 4.

\begin{algorithmic}
 \caption{DelFar}
 \begin{itemize}
 \item \textbf{Input}: Matrix $X = [x_1, \ldots, x_n]$ with each $x_i \in \mathbb{R}^d$, parameter $r \in \mathbb{R}$, constant $\epsilon \in (0, 1/2]$.
 \item \textbf{Output}: $F' \subseteq [x_1, \ldots, x_n]$.
 \begin{itemize}
 \item Let Y, r' be the output by algorithm \texttt{Standardize} on input X, r with parameter $\epsilon/4$.
 \item If $r \geq 1/n^{0.9}$ run \texttt{ApprxNet\textunderscore Large radius} on input $Y, \epsilon/4, r$ and return points which correspond to the set $F' \leftarrow X \setminus F$.
 \item If $r < 1/n^{0.9}$ run \texttt{ApprxNet\textunderscore Small radius} on input $Y, \epsilon/4, r$ and return points which correspond to the set $F' \leftarrow X \setminus F$.
 \end{itemize}
 \end{itemize}
\end{algorithmic}
Theorem 11 Given $X \subset \mathbb{R}^d$ such that $|X| = n$, a distance parameter $r \in \mathbb{R}$ and an approximation parameter $\epsilon \in (0, 1/2]$, there exists an algorithm, DelFar, that will return, with probability $1 - o(1/n^{0.04})$, a set F' with the following properties in $	ilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$ time:

- If for a point $p \in X$ it holds that $\forall q \neq p, q \in X$ we have $\|p - q\| > (1 + \epsilon)r$, then $p \notin F'$.
- If for a point $p \in X$ it holds that $\exists q \neq p, q \in X$ s.t. $\|p - q\| \leq r$, then $p \in F'$.

Proof By Theorems 8, 9, 2, both $\text{ApprxNet(Large radius)}$ and $\text{ApprxNet(Small radius)}$ return a set F, the subset of the centers of r-net that are isolated, i.e. the points that do not have any neighbor at distance $(1 + \epsilon)r$. Also, both procedures run in $	ilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$. Thus, DelFar on input a $d \times n$ matrix X, a radius $r \in \mathbb{R}$ and a fixed constant $\epsilon \in (0, 1/2]$ returns a set $F' \subseteq \{x_1, \ldots, x_n\}$, which contains all the points (vectors) of X that have at least one neighbor at distance r. Additionally, the algorithm runs in $	ilde{O}(dn^{2-\Theta(\sqrt{\epsilon})})$ time and succeeds with probability $1 - o(n^{0.04})$. \hfill \square

4 Applications and Future Work

Concerning applications, in [14], they design an approximation scheme, which solves various distance optimization problems. The technique employs a grid-based construction of r-nets which is linear in n, but exponential in d. The main prerequisite of the method is the existence of a linear-time decider (formally defined in Sect. 4.1). The framework is especially interesting when the dimension is constant, since the whole algorithm requires time linear in n which, for some problems, improves upon previously known near-linear algorithms. When the dimension is high, we aim for polynomial dependency on d, and subquadratic dependency on n. In the first subsection, we present the modified framework for high dimensional data sets, employing the algorithms ApprxNet and DelFar from this work. In the last subsection, we discuss more possible applications and other research directions in order to improve this result even more.

4.1 A General Framework for High Dimensional Distance Problems

In this subsection, we modify a framework originally introduced by Har-Peled and Raichel [14], which provides an efficient way for constructing approximation algorithms for a variety of well known distance problems. We present the algorithm Net & Prune of [14], modified to call the algorithms ApprxNet and DelFar. We claim that this algorithm computes, with high probability, a constant spread interval and runs in $O(dn^{1.999999})$ time.
We assume the existence of a fast approximate decider procedure for the problems we want to address using this framework, specifically an algorithm that runs in $O(dn^{2 - \theta(\sqrt{\epsilon})})$, where ϵ is the approximation factor. Formally,

Definition 6 Given a function $f : X \to \mathbb{R}$, we call a decider procedure a $(1 + \epsilon)$-decider for f, if for any $x \in X$ and $r > 0$, decider(r, x) returns one of the following:

(i) $f(x) \in [\alpha, (1 + \epsilon)\alpha]$, where α is some real number, (ii) $f(x) < r$, or (iii) $f(x) > r$.

Additionally, we assume the problems we seek to improve with this method have the following property: if the decider returns that the optimal solution is smaller than a fixed value r, we can efficiently remove all points that do not have any neighbor at distance at most r and this does not affect the optimal solution. Let us denote $f(X)$ the optimal solution of a problem for input X.

Net & Prune

Input: An instance (X, Γ) s.t. $X \subseteq \mathbb{R}^d$.

Output: An interval $[x, y]$ containing the optimal value.

1. $X_0 = X, i = 0$
2. While TRUE do
 - Choose at random a point $x \in X_i$ and compute its nearest neighbor distance, l_i
 - Call $\frac{3}{2}$-decider$(2l_i/3, X_i)$ and $\frac{3}{2}$-decider(cl_i, X_i). Do one of the following:
 - If $\frac{3}{2}$-decider$(2l_i/3, X_i)$ returns $f(X_i) \in [x, y]$, return $f(X) \in [x/2, 2y]$
 - If $\frac{3}{2}$-decider(cl_i, X_i) returns $f(X_i) \in [x', y']$, return $f(X) \in [x'/2, 2y']$
 - If $2l_i/3$ is too small and cl_i too large, return $[l_i/3, 2cl_i]$
 - If $2l_i/3$ is too large, call $X_{i+1} = \text{DelFar}(2l_i/3, X_i, \frac{3}{2})$
 - If cl_i is too small, $X_{i+1} = \text{ApprxNet}(4l_i, X_i, \frac{3}{2})$
 - $i = i + 1$

Let us denote as $|X_i^{\leq j}|$ and $|X_i^{> j}|$ the set of points in X, whose nearest neighbor distance is smaller than l and greater than l, respectively.

Theorem 12 Assume that the DelFar algorithm and the ApprxNet algorithm succeed with probability $1 - \frac{1}{n^{0.01}}$. The algorithm Net & Prune (X, Γ) runs in expected $O(dn^{1.999999})$ time.

Proof In each iteration of the while loop the algorithm calls on input X_i the $(3/2)$-decider procedure and either ApprxNet or DelFar, all of which cost $O(d|X_i|^{1.999999})$ time. Thus, the total running time of the algorithm is $O(\sum_{i=0}^{k-1} d|X_i|^{1.999999})$, where k denotes the last iteration of the while loop.

In the $(i + 1)$th iteration of the while loop, where $(i + 1 < k)$, lets assume that x_1, x_2, \ldots, x_m is the points' labels in increasing order of their nearest neighbor distance in X_i. If j is the index of the chosen point on the first step of the algorithm and $X_i^{\leq j}$ and $X_i^{> j}$ are the subsets of points with index $\geq j$ and $\leq j$, respectively,
then we call i a successful iteration when $j \in [m/4, 3m/4]$. Then, we have that $|X_{i,j}^{\Delta j}| \geq |X_{i+1,j}|/4$ and $|X_{i,j}^{\Delta j}| \geq |X_{i+1,j}|/4$ for a successful iteration. The probability that $i + 1$ is a successful iteration is $1/2$.

At each iteration, but the last, either ApprxNet or DelFar gets called. Thus, for any successful iteration, a constant fraction of the point set is removed (it follows from Lemma 3.2.3 in [14] and Theorem 11). Also, the algorithms $(1 + \epsilon)$-decider, ApprxNet and DelFar succeed at every call with probability $1 - \frac{O(\log n)}{\epsilon^m} = 1 - o(1)$, since the expected number of iterations is $O(\log n)$. Hence, the expected running time of the algorithm is $O(dn^{1.999999})$, given the above algorithms succeed.

At every step, either far points are being removed or we compute the net for the points. If the DelFar algorithm is called, then with small probability we remove a point which is not far. This obviously affects the optimal value, thus we will prove the correctness of the algorithm with high probability. On the other hand, if the ApprxNet algorithm is called, the net radius is always significantly smaller than the optimal value, so the accumulated error in the end, which is proportional to the radius of the last net computation, is also much smaller than the optimal value. For the following proofs we assume both DelFar and ApprxNet algorithms succeed, which occurs with probability $1 - o(1)$.

Lemma 2 For every iteration i, we have $|f(X_i) - f(X_0)| \leq 16l_i$.

Proof Let I be the set of indices of the ApprxNet iterations up to the ith iteration, i.e., we store in I which times we called the ApprxNet algorithm. Similarly, let I' be the set of iterations where DelFar iscalled.

If ApprxNet was called in the jth iteration, then X_j is at most a $6l_j$-drift of X_{j-1}, therefore $|f(X_j) - f(X_{j-1})| \leq 12l_j$. Also, if DelFar is called in the jth iteration, then $f(X_j) = f(X_{j-1})$ (by Theorem 11). Let m be the maximum index of I, i.e., $m = \max(I)$. Then, we have that,

$$|f(X_i) - f(X_0)| \leq \sum_{j=1}^i |f(X_j) - f(X_{j-1})| = \sum_{j \in I} |f(X_j) - f(X_{j-1})| + \sum_{j \in I'} |f(X_j) - f(X_{j-1})|$$

$$\leq \sum_{j \in I} 12l_j + \sum_{j \in I'} 0 \leq 12l_m \sum_{j=0}^\infty \left(\frac{1}{4}\right)^j \leq 16l_m \leq 16I_i,$$

where the second inequality holds since for every $j < i$, in the beginning of the jth iteration of the while loop, the set of points X_{j-1} is a subset of the net points of a $4l_i$-net, therefore $l_j \geq 4l_i$.

Lemma 3 For any iteration i of the while loop such that ApprxNet gets called, we have $l_i \leq f(X_0)/\eta$, where $\eta = c - 16$.

Proof We will prove this with induction. Let m_1, m_2, \ldots, m_t be the indices of the iterations of the while loop in which ApprxNet gets called.
Base: In order for \texttt{ApprxNet} to get called we must have \(\eta l_{m_i} < c l_{m_i} < f(X_{m_i-1})\) and since this is the first time \texttt{ApprxNet} gets called we have \(f(X_{m-1}) = f(X_0)\). Therefore, \(\eta l_{m_i} < f(X_0)\).

Inductive step: Suppose that \(l_{m_i} \leq f(X_0)/\eta\), for all \(m_j < m_i\). If a call to \(3/2\)-rNet is made in iteration \(m_i\) then again \(c l_{m_i} < f(X_{(m_i)-1}) = f(X_{m_i-1})\). Thus, by the induction hypothesis and Lemma 2 we have,

\[
l_{m_i} < f(X_{m_i-1})/c \leq f(X_0) + 16 l_{m_i-1} \leq f(X_0) + 16 f(X_0)/\eta = 1 + 16/\eta f(X_0) = f(X_0)/\eta.
\]

Therefore, if we set \(c = 64\) we have \(\eta = 48\), thus by Lemma 2 and Lemma 3,

\[
|f(X_i) - f(X_0)| \leq 16 l_i \leq 16 f(X_0)/\eta = f(X_0)/3.
\]

Corollary 3 For \(c \geq 64\) and for any iteration \(i\) we have:

\[- \frac{2}{3} f(X_0) \leq f(X_i) \leq \frac{4}{3} f(X_0),\]

\[- \text{if } f(X_i) \in [x, y], \text{ then } f(X_0) \in [(3/4)x, (3/2)y] \subseteq [x/2, 2y],\]

\[- \text{if } f(X_0) > 0 \text{ then } f(X_i) > 0.\]

Theorem 13 For \(c \geq 64\), the Net & Prune algorithm computes in \(O(dn^{1.99999})\) time a constant spread interval containing the optimal value \(f(X)\), with probability \(1 - o(1)\).

Proof Consider the iteration of the while loop at which Net & Prune terminates. If the interval \([x, y]\) was computed by the \(3/2\)-decider, then it has spread \(\leq \frac{3}{2}\). Thus, by Corollary 3 the returned interval \([x', y'] = [x/2, 2y]\) contains the optimal value and its spread is \(\leq 6\). Similarly, if \(2l_i/3\) is too small and \(cl_i\) too large, then the returned interval is \([l_i/3, 2cl_i]\) and its spread is 384.

4.2 \(k\)-th nearest neighbor distance

Let us focus on the problem of approximating the \(k\)th nearest neighbor distance.

Definition 7 Let \(X \subset \mathbb{R}^d\) be a set of \(n\) points, approximation error \(\epsilon > 0\), and let \(d_1 \leq \ldots \leq d_k\) be the nearest neighbor distances. The problem of computing an \((1 + \epsilon)\)-approximation to the \(k\)th nearest neighbor distance asks for a pair \(x, y \in X\) such that \(\|x - y\| \in [(1 - \epsilon)d_k, (1 + \epsilon)d_k]\).
Now we present an approximate decider for the problem above. This procedure combined with the framework we mentioned earlier, which employs our net construction, results in an efficient solution for this problem in high dimension.

\begin{algorithm}
\caption{\textbf{kth NND Decider}}
\begin{algorithmic}
\State \textbf{Input:} $X \subseteq \mathbb{R}^d$, constant $\epsilon \in (0, 1/2]$, integer $k > 0$.
\State \textbf{Output:} An interval for the optimal value d_k.
\State \text{– Call DelFar($X, \frac{r}{4+\epsilon}, \epsilon/4$) and store its output in W_1.}
\State \text{– Call DelFar($X, r, \epsilon/4$) and store its output in W_2.}
\State \text{– Do one of the following:}
\State \hspace{1cm} \text{1. If $|W_1| > k$, then output $d_k = r''$.}
\State \hspace{1cm} \text{2. If $|W_2| < k$, then output $d_k = r''$.}
\State \hspace{1cm} \text{3. If $|W_1| \leq k$ and $|W_2| \geq k$, then output $d_k \in \left[\frac{r}{4+\epsilon/4}, \frac{1+\epsilon/4}{r}\right]$.}
\end{algorithmic}
\end{algorithm}

\begin{theorem}
Given a point set $X \subseteq \mathbb{R}^d$, one can compute a $(1 + \epsilon)$-approximation to the k-th nearest neighbor in $\tilde{O}(dn^{2-\Theta(1/\epsilon)})$, with probability $1 - o(1)$.
\end{theorem}

\begin{proof}
For this particular problem, the optimal solution is not affected by the DelFar’s removal of the points with no other point at distance at most r. Also, each time the ApprxNet algorithm is called, for a fixed distance r, the drift of the optimal solution is at most $2r$. Thus, Theorem 13 holds, and we compute a constant spread interval $[x, y]$ containing the optimal value, with high probability. We then apply binary search on values $x, (1 + \epsilon)x, (1 + \epsilon)^2x, \ldots, y$ using the algorithm \textbf{kth NND Decider}. We perform $O(1/\log(1 + \epsilon)) = O(1/\epsilon^2)$ iterations, hence the total amount of time needed is $\tilde{O}(dn^{2-\Theta(1/\epsilon)})$ and the algorithm succeeds with high probability $1 - o(1)$.
\end{proof}

To the best of our knowledge, this is the best high dimensional solution for this problem, when ϵ is sufficiently small. Setting $k = n$ and applying Theorem 14 one can compute the farthest nearest neighbor in $\tilde{O}(dn^{2-\Theta(1/\epsilon)})$ with high probability.

\subsection{4.3 Future Work}

Concerning future work, let us start with the problem of finding a greedy permutation. A permutation $\Pi = \pi_1, \pi_2, \ldots$ of the vertices of a metric space $(X, \| \cdot \|)$ is a greedy permutation if each vertex π_i is the farthest in X from the preceding vertices $\Pi_{i-1} = \pi_1, \ldots, \pi_{i-1}$. The computation of r-nets is closely related to that of the greedy permutation.

The k-center clustering problem asks the following: given a set $X \subseteq \mathbb{R}^d$ and an integer k, find the smallest radius r such that X is contained within k balls of radius r. Our algorithm can be plugged into the framework of [14] to achieve a $(4 + \epsilon)$ approximation for the k-center problem in time $\tilde{O}(dn^{2-\Theta(1/\epsilon)})$. By [10], a simple modification of our net construction implies an algorithm for the $(1 + \epsilon)$ approximate
greedy permutation in time $\tilde{O}(dn^2 - \Theta(\sqrt{\epsilon}) \log \Phi)$ where Φ denotes the spread of the point set. Then, approximating the greedy permutation implies a $(2 + \epsilon)$ approximation algorithm for k-center clustering problem. We expect that one can avoid any dependencies on Φ.

Acknowledgements I. Z. Emiris and I. Psarros acknowledges partial support by the European Union’s Horizon 2020 research and innovation programme under Grant agreement No. 734242 (RISE Project LAMBDA). I. Z. Emiris is member of Project-team AROMATH, a joint team between INRIA Sophia-Antipolis (France) and NKU Athens (Greece).

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, MSRI, pp. 1–30. University Press (2005)
2. Alman, J., Chan, T.M., Williams, R.: Polynomial representations of threshold functions and algorithmic application. In: Proceedings 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 467–476 (2016)
3. Anagnostopoulos, E., Emiris, I.Z., Psarros, I.: Low-quality dimension reduction and high-dimensional approximate nearest neighbor. CoRR arxiv : abs/1412.1683 (2014)
4. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008). https://doi.org/10.1145/1327452.1327494
5. Avarikioti, G., Emiris, I.Z., Kavouras, L., Psarros, I.: High-dimensional approximate r-nets. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 16–30 (2017). https://doi.org/10.1137/1.9781611974782.2
6. Avarikioti, G., Ryser, A., Wang, Y., Wattenhofer, R.: High dimensional clustering with r-nets. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, pp. 3207–3214 (2019)
7. Charikar, M.: Similarity estimation techniques from rounding algorithms. In: Proceedings 34th Annual ACM Symposium on Theory of Computing, 2002, Montréal, Canada, pp. 380–388 (2002)
8. Coppersmith, D.: Rectangular matrix multiplication revisited. J. Complex. 13(1), 42–49 (1997). https://doi.org/10.1006/jcom.1997.0438
9. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003). https://doi.org/10.1002/rsa.10073
10. Eppstein, D., Har-Peled, S., Sidiroopoulos, A.: Approximate greedy clustering and distance selection for graph metrics. CoRR arxiv: abs/1507.01555 (2015)
11. Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional proximity problems. In: Proceedings 12th Symposium on Discrete Algorithms (SODA), pp. 769–778 (2001). http://dl.acm.org/citation.cfm?id=365411.365776. Accessed June 2016
12. Har-Peled, S.: Clustering motion. Discret. Comput. Geom. 31(4), 545–565 (2004). https://doi.org/10.1007/s00454-004-2822-7
13. Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. In: Proceedings 21st Annual Symposium Computational Geometry, pp. 150–158 (2005). https://doi.org/10.1145/1064092.1064117
14. Har-Peled, S., Raichel, B.: Net and prune: a linear time algorithm for euclidean distance problems. J. ACM 62(6), 44 (2015). https://doi.org/10.1145/2831230
15. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511813603
16. Valiant, G.: Finding correlations in subquadratic time, with applications to learning parities and juntas. In: 53rd Annual IEEE Symposium Foundations of Computer Science (FOCS), pp. 11–20 (2012). https://doi.org/10.1109/FOCS.2012.27
17. Valiant, G.: Finding correlations in subquadratic time, with applications to learning parities and the closest pair problem. J. ACM 62(2), 13 (2015). https://doi.org/10.1145/2728167

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.