Chesson’s coexistence theory: reply

GYÖRGY BARABÁS 1,2,4 AND RAFAEL D’ANDREA 3

Citation: Barabás, G., and R. D’Andrea. 2020. Chesson’s coexistence theory: reply. Ecology 101(11):e03140. 10.1002/ecy.3140

Chesson’s (2019) comment on our review of modern coexistence theory (Barabás et al. 2018) focuses on perceived mistakes and provides a re-derivation of key results from his own perspective. The criticisms concern three main issues: the definition of standardized environmental and interaction parameters; the definition of comparison quotients and the meaning of their non-uniqueness; and the status of the theory when there are at least as many limiting factors as species in the system. He makes many important observations, and the provision of his own derivation of the theory gives a unique perspective on what elements of the theory are deemed important and why. Additionally, Chesson (2019) mentions in passing several elements of our review that he believes are not handled well. However, we argue that the differences between Chesson’s (2019) account of the theory and ours are overstated, turning out to be differences of emphasis and interpretation, rather than fundamental mistakes. We therefore take this opportunity to clarify our point of view, and to synthesize Chesson’s perspective with ours for an improved outlook on the theory.

DEFINITIONS OF THE STANDARDIZED ENVIRONMENTAL AND INTERACTION PARAMETERS

After choosing environmental and interaction parameters E_j and C_j (both may depend on time), the theory starts by writing the per capita growth rates r_j as their function: $r_j = g(E_j, C_j)$. Based on this parameterization of the growth rates, Chesson (1994, 2019) defines the standardized environmental and interaction parameters δ_j and θ_j via

$$\delta_j = r_j(E_j, C_j^*), \quad \theta_j = r_j(E_j^*, C_j),$$

where E_j^* and C_j^* are “equilibrium” values such that $r_j(E_j^*, C_j^*) = 0$ (Chesson defines θ_j with an extra negative sign, conforming to the situation where C_j measures a competitive reduction in growth rates). In our review, we did mention these definitions, though only as a reference. Instead, we defined the standardized parameters as quadratic approximations to these formulas (Barabás et al. 2018:279):

$$\delta_j = \alpha_j \left(E_j - E_j^* \right) + \frac{1}{2} \alpha_j^{(2)} \left(E_j - E_j^* \right)^2,$$

$$\theta_j = \beta_j \left(C_j - C_j^* \right) + \frac{1}{2} \beta_j^{(2)} \left(C_j - C_j^* \right)^2$$

where the αs and βs are Taylor coefficients. Chesson (2019) mentions two problems with our definitions. First, they are less accurate than those of Eq. 1. Second, they do not yield critical understanding of the underlying theory.

Eq. 1 is indeed more accurate than Eq. 2, as the latter is a quadratic approximation to the former. Fig. 1 of Chesson (2019) presents a model example, showing that, for large environmental variation, the difference in accuracy is especially pronounced in favor of Eq. 1. While this is true, one must keep in mind that the theory as a whole is based on a small fluctuation approximation. This assumption pervades the development of the theory; e.g., the quadratic approximation of the standardized interaction parameters θ_j in the limiting factors rests on this (Eq. 11 in Chesson [2019]; Eq. 9 in Barabás et al. [2018]), as does the approximation $\frac{\delta_j}{\theta_j} \approx \text{cov}(\delta_j, \theta_j)$, which neglects the $\delta_j \theta_j$ term. For small environmental variability, the difference between Eqs. 1 and 2 diminishes. From the point of view of deriving the equations of the theory or applying them to particular ecological models, and making sure that they are accurate to quadratic order, it therefore does not matter which set of definitions one uses, and the difference in accuracy between Eqs. 1 and 2 is beside the point. To go beyond small fluctuation approximations, one way to go is to estimate model quantities via simulations in the first place (Ellner et al. 2016, 2019, Chesson 2019).
Instead, the goal of our alternate approach in Barabás et al. (2018) was to offer a new angle to view the structure of the theory. This takes us to the other criticism of Eq. 2 by Chesson (2019), that it does not yield the same insight into the theory as Eq. 1. Clearly, different ways of arriving at a result emphasize different aspects of the same underlying concepts. Ours emphasizes how a straightforward quadratic expansion recovers all salient quantities of the theory. In the end, we would argue that having both developments is better than having just one or the other. Out of a pool of possible parameterizations, it is best to use the one that yields the most insight into the problem at hand. Standard parameterizations facilitate the comparison of different models and results. That said, we see no reason to rely on a single one exclusively.

The Comparison Quotients

In relation to the comparison quotients q_{is} that are used in invader-resident comparisons (denoted d_i/d in Barabás et al. 2018:283), Chesson (2019) objects that we have confused them with the conceptually different scaling factors (which are used, among other things, to decompose invasion rates into stabilizing and equalizing contributions), and takes issue with our claim that using partial derivatives does not properly define the q_{is}, whose non-uniqueness we seemingly deemed a flaw of the theory.

We have not in fact confused comparison quotients with scaling factors, but this is obfuscated by conflicting terminology in the literature. Historically, the q_{is} had not been assigned a particular name until Ellner et al. (2016) called them scaling factors. It was only in Chesson (2019) that the term “comparison quotient” was offered, to differentiate them from another set of quantities called “scaling factors,” which were independently introduced by Chesson and Huntly (1997). Their purpose was to cancel linear terms in the limiting factors (Chesson and Huntly 1997: Appendix C), and they therefore closely correspond to our d_i in Barabás et al. (2018); in fact, as we pointed out in our review, our inspiration for these factors was Chesson and Huntly (1997) in the first place. Without being explicitly named, scaling factors underwent further evolution (e.g., Chesson 2003, 2008, Yuan and Chesson 2015) and became a tool for nondimensionalizing invasion growth rates and decomposing them into stabilizing and equalizing contributions. Finally, Chesson (2018) gave scaling factors their official name, notation (as b_i), and a general definition.

In Barabás et al. (2018), we consistently denote what Chesson would call the comparison quotients q_{is} by d_i/d, and call the individual d_i scaling factors (in line with Chesson and Huntly 1997). In turn, the b_i of Chesson (2018), which he calls scaling factors, we denote by ϕ_i and do not give them any particular name. In no place do we refer to one as if it was the other, either in notation or in terminology. We of course did not use the terms “comparison quotient” and “scaling factor” as suggested by Chesson (2018, 2019), as our review was published prior to these works. That said, we have nothing against adopting Chesson’s suggested terminology as described above. During review, it was suggested that the d_i should then also receive their own name. We suggest calling the d_i the “(linear) cancellation coefficients,” to emphasize their role in eliminating the linear terms in the limiting factors from the invader-resident comparison.

Apart from terminology, another possible reason for the impression that we have conflated comparison quotients and scaling factors is the fact that the scaling factors happen to be the same as the “canonical” choice of invader comparison quotients in the presence of a single limiting factor, because then $d_i = 1/\phi_i$ for any invader species i (Barabás et al. 2018: Eq. 22). That scaling factors and comparison quotients are related in this way is itself a noteworthy result. It is an open question whether this should be treated as an opportunity to unify the concepts of scaling factors and comparison quotients, or if it is better for future developments of the theory to still treat them as separate entities, despite the fact that they are related.

Chesson (2019) also points out that we unduly criticized the definition of comparison quotients in terms of the partial derivative $\partial \varepsilon_i/\partial \varepsilon$, evaluated at $\varepsilon_i = 0$ (Chesson 1994, Chesson 2019: Eq. 4). This was not our intention, though we do see that it was possible to read our text that way (last paragraph of Partitioning the sum of invader and resident growth rates). We regret if we were interpreted by readers as claiming that this definition is faulty, and so we would like to emphasize here that this is not the case. As pointed out by Chesson (2019), the derivative works just as well as our method, as long as the invader’s ε_i is expressible as a function of resident ε_i, values, which is another way of saying that the number of independent limiting factors should be lower than the number of species competing for them. The derivative will not be unique unless the number of limiting factors is one less than the number of species (in which case, the d_i are unique up to a common multiplicative constant that cancels from $q_{is} = d_i/d$). Otherwise, the invader ε_i can be expressed as a function of the resident ε_i, in multiple ways; Chesson (2019) explains very clearly why this is a natural consequence of the theory. In the end, both our method and that of Chesson (1994, 2019) yield the same results, and both can be non-unique for the exact same reason.

We opted for our approach because it reduces the problem of finding the comparison quotients to the solution of a system of linear algebraic equations. This felt more direct than computing $\partial \varepsilon_i/\partial \varepsilon_s$, which requires the implicit function theorem to even interpret correctly, and potentially obscure methods such as generalized
invulnerable to actually evaluate. As an added benefit, the
fact that a set of linear equations may have a non-unique
solution is well known, and we hope this helps shed new
light on the origins of the non-uniqueness of the com-
parison quotients (this is why, despite the criticisms, Chessen (2019) acknowledges that our method has
merit). We reiterate that the purpose of our approach is
to not dismiss that of Chessen (1994, 2019). Both are
equally adequate and lead to the same result, and it is up
to the user to decide which formulation they prefer.

The Number of Limiting Factors Reaching or
Exceeding the Number of Species

Chessen (2019) argues that we underestimate the util-
ity of the theory when there are at least as many limiting
factors \(L \) as species \(S \). This is in response to our claim
that the theory “does not offer any advantages, and may
even work worse than other methods, if there are as
many or more limiting factors as species“ (Barabás et al.
2018:300). To be fair, we did follow that sentence up by
saying that this limitation, along with others, may not be
fundamental to the theory and could be amended by
future work. In light of this, it is especially helpful that
Chessen (2019) cites example applications with as many
or more limiting factors than species, with a worked-out
example in an Appendix.

The example of Chessen’s Appendix has two species
in a MacArthur-style consumer–resource model
(MacArthur 1970, Chessen 1990). In this case, due to
the assumption of a timescale separation between
resources and consumers (the former are much faster
than the latter), the limiting factors become the species’
population densities themselves, and the competitive
factors are weighted sums of them:

\[
C_j = \sum_{k=1}^{S} \sigma_{kj} E_k N_k,
\]

where \(S \) is the number of species, \(\sigma_{kj} \) is the interaction
coefficient between species \(k \) and \(j \) based on the degree
of overlap in their resource use, \(E_k \) is the \(k \)th environ-
mental parameter, and \(N_k \) is the density of species \(k \).
Then, one can indeed obtain the comparison quotients
using \(\partial \sigma_{ij}/\partial \sigma_{is} \) evaluated at \(\sigma_{is} = 0 \) (Chessen
2019: Eq. 14). The reason this works is that the invader
species is absent from the community: \(N_j = 0 \), which also
means that the corresponding limiting factor is absent.
In the two-species case for instance, letting \(i \) be the
invader and \(s \) the resident, we have \(C_j = \sigma_{js} E_j N_j \) and
\(C_i = \sigma_{ss} E_s N_s \), where \(N_s \) is the monoculture
equilibrium density of the resident. We can therefore write
\(C_i = \sigma_{ss} E_s N_s = \sigma_{ss} E_s N_s \sigma_{ss}/\sigma_{aa} = C_i \sigma_{ss}/\sigma_{aa} \),
which is now explicitly a function of \(C_i \). Taking the derivative
with respect to this variable yields the comparison quo-
tients:
\[
q_{ij} = \partial C_i^{-1}/\partial C_i^{-1} = \sigma_{ij}/\sigma_{ss}.
\]

More generally, in any \(S \)-species community with
limiting factors proportional to the population densities,
putting species \(i \) in the invader state will also set the \(s \)th
factor to zero. This factor therefore disappears without
having to cancel it out, so the number of limiting factors
to be eliminated is reduced from \(S \) to \(S - 1 \). This is now
less than the number of species, so either the method of
Chessen (2019: Eq. 14) or our method of the cancella-
tion coefficients \(d_i \) (Barabás et al. 2018, Eq. 21) may be
applied to cancel the remaining \(S - 1 \) factors. All in all,
here indeed comparison quotients can be obtained even
though there are as many limiting factors as species. On
the downside, this method requires a separation of time
scales which may not always hold. Relaxing this require-
ment to obtain comparison quotients when \(L < S \)
still avenue for future research (Barabás et al. 2018:
295–296).

Our claim that Chessen’s framework loses its advan-
tages compared to other methods when there are as
many or more limiting factors than species was based on
the fact that the theory is rooted in invasion analysis.
What distinguishes it from “standard” textbook invasion
analysis is the meaningful partitioning of invasion
growth rates into the \(\Delta \rho_i, \Delta N_i, \Delta I_i, \) and \(\Delta \kappa_i \)
coexistence-affecting terms via the comparison quotients (Barabás et al. 2018: Eqs. 20 and 47). However, these quotients do
not exist (or are all zero, if one uses our \(d_i \)) when \(L \geq S \),
unless we are in the realm of the example discussed
above. Without the comparison quotients, the method
effectively reduces to standard invasion analysis, and
can do only as much. That said, there is more to the the-
ory than the comparison quotients, and other aspects
may still be useful for analysis, e.g., the quadratic expan-
sion of growth rates. Furthermore, even when \(L \geq S \),
one can choose a subset of \(S - 1 \) limiting factors to
eliminate explicitly, leaving the others as contributions
to the \(\Delta \rho_i \) term (Barabás et al. 2018:283). Though this
leaves the \(\Delta \rho_i \) term unevaluated, one still ends up with a
meaningful partitioning of the invasion growth rates.
Therefore, while the theory may not offer benefits over
others in performing calculations, it still has strong
heuristic power and can facilitate improved understand-
ing even when \(L \geq S \). We take it that this is what Ches-
son meant by pointing out that the theory is not
primarily methodological, but a theory of coexistence
in ecological communities: an important and valid point.

Further Points

Chessen (2019) lists a number of additional issues that
were “not handled well” by our review. As these were not
explored on, we do not respond to any specific criti-
cisms here. Instead, we simply provide our own perspec-
tive on some of them, those about which we feel we have
something relevant to say.

Species average fitness

In our review, we suggested replacing the term “aver-
age fitness difference” with “competitive advantage.” We
wish to emphasize that this was not because the original terminology cannot be justified (Chesson 2018). Rather, the problem is that subdisciplines such as adaptive dynamics (Geritz et al. 1998, Meszéna 2005, Metz 2012) operate with a slightly different fitness concept. In adaptive dynamics, “fitness” corresponds to the realized per capita growth rate r_i of a rare invader in the environment defined by the resident species (Metz and Geritz 2016: Invasion fitness and fitness proxies: a short review). This differs from the “species average fitness” of Chesson (2018), which determines the identity of the competitively superior species in the absence of any coexistence-affecting mechanisms; and also from the “average fitness difference” (adjusted for the presence of such mechanisms) that was denoted by ξ_i in Chesson (2018) and by f_i in Barabási et al. (2018: Eq. 52). As we have stated in Barabási et al. (2018:286–287), we believe coexistence theory and adaptive dynamics combined could yield a method for studying evolution in variable environments. But then one may wish to avoid a potential terminological clash, where “fitness” means multiple, subtly different things. While the qualifier “species average” in front of “fitness” ought to clarify the distinction from the general fitness concept of adaptive dynamics, the term is often not used this way. As we have pointed out in Barabási et al. (2018:286), various aliases are in use, such as “relative fitness difference,” “fitness difference,” or just “fitness.” While we do not wish to insist on our own terminology, we hope this clarifies why we felt that there is a risk of a terminological clash, and opted for “competitive advantage” instead.

Community average stabilization and the size of the coexistence region

As long as the community average stabilization A and the average fitness differences f_i are independently adjustable, A will measure the size of the parameter region allowing for coexistence (Yuan and Chesson 2015). We have argued in Barabási et al. (2018:298) that, in general, A and f_i are not independent, thus limiting the use of A to measure the coexistence region. Since the publication of our review, there have been several new developments.

Chesson (2018) proves a theorem stating that in models with sufficiently many parameters, one can always find some combination of them such that A and f_i are independently adjustable, at least for A sufficiently small. While this theorem shows that one can vary A and f_i independently in a broad class of models, it is silent on how likely this is to be the case in nature. Should field ecologists expect species differences in traits such as beak shape or flower color to contribute only to A, only to f_i, or both, confounding whether those differences promote coexistence by increasing stabilization or hinder it by increasing competitive advantages? We argue elsewhere that the independence of A and f_i is in fact highly unlikely (Song et al. 2019): unless one chooses very carefully which parameters to vary and exactly how, both quantities will simultaneously change in response to the change in parameters. That said, this is a rapidly developing area, and while perfect independence may be the exception, the same need not be true of quasi-independence, whereby some mechanism mainly affects either A or the f_i, leaving the other relatively intact. For instance, analysis of a competition-predation tradeoff revealed that it mostly affected only the f_i (Stump and Chesson 2017). Such quasi-independence is an intriguing possibility and an avenue for future work.

The significance of the ratio of intra- to interspecific competition

For two-species Lotka-Volterra competition, intra-specific competition must exceed interspecific competition for coexistence. This statement has strong heuristic power: coexistence requires that a species limits itself more than its competitor. Generalizations of this principle to multiple species and other models all emphasize that stable and robust coexistence requires that species’ growth rates are, to an extent, regulated by different factors (Levin 1970, Chesson 2000, Meszéna et al. 2006, Pásztor et al. 2016), leading to the same effect.

Its heuristic power notwithstanding, a naive application of the “intra $>$ inter” principle can lead to incorrect conclusions. We have shown an example in Barabási et al. (2018: Appendix S8) where increasing the ratio of intra- to interspecific competition coefficients does not necessarily move the system in the direction of stability. This is due to indirect effects that are absent in a two-species setting (Barabási et al. 2016). For instance, reducing interspecific competition may allow two species to coexist that together are able to prevent a third from establishing, even though all three possible species pairs would form stable communities. In some situations it is even possible to increase the interspecific competition strength of a single species and get a non-monotonic effect on community stability, with a stable configuration achieved only for intermediate strengths (Barabási et al. 2017).

Despite these examples (which Peter Chesson acknowledges; see Chesson 2018: Eq. 37 and surrounding text), one may justifiably argue that the heuristic is nevertheless important, as it usefully guides our thinking about what kinds of effects can promote coexistence. Naive applications notwithstanding, the general principle that species must be somewhat independently regulated for stable coexistence still stands. We therefore stress that our purpose is not to dispel the principle, but to warn against adopting an unquestioning acceptance of it, and using it where it does not apply. The examples in Barabási et al. (2016, 2018) are designed to bring attention to the non-intuitive role of indirect effects and
show how naive applications can run into trouble, rather than to question the heuristic itself.

Niche overlap and the ratio of species average fitneses

While this was not explicitly mentioned by Chesson (2019), we bring it up here nevertheless, as it is a topic we have indeed not handled well. Unlike with the other issues where we see differences in emphasis but no outright error, this topic was treated far too superficially in Barabás et al. (2018:287), without explanation but with notation that could easily cause confusion. To remediate, we have included an Appendix S1 where we explain the origin of the often-used formulas

\[
\rho = \sqrt{\frac{a_{ij}a_{kj}}{a_{jk}a_{ik}}} \times \frac{b_j}{b_i} \sqrt{\frac{a_{ij}a_{kj}}{a_{jk}a_{ik}}}
\]

(3)

in detail, along with the meaning of \(\rho\) and the \(\kappa\)-ratio, and their connection to the community average stabilization \(A\) and average fitness differences \(f_i\).

Conclusions

We have argued that the deviations of Barabás et al. (2018) from Chesson’s formalism (Chesson 1994, 2018, 2019) are not errors but differences in terminology, emphasis, and perspective, which we believe can help clarify the theory’s strengths and weaknesses. Regardless of which description one prefers, the theory has the potential to continue developing and contributing to our understanding of coexistence. Alongside many other possibilities, one untapped direction is its application to problems of adaptive dynamics in variable environments. While the adaptive dynamics of two species in cyclic environments has been explored before (Kremer and Klausmeier 2013), coexistence theory could help generalize these results to stationary nonperiodic fluctuations and an arbitrary number of species. Furthermore, the theory will continue to remain useful in guiding our thinking about coexistence in spatiotemporally variable environments.

Acknowledgments

We thank Peter Chesson for the ongoing discussion, and Sebastian Schreiber, Stephen Ellner, and Robert Holt for their input. G. Barabás acknowledges funding by the Swedish Research Council (grant VR 2017-05245).

Literature Cited

Barabás, G., R. D’Andrea, and S. M. Stump. 2018. Chesson’s coexistence theory. Ecological Monographs 88:277–303.

Barabás, G., M. J. Michalska-Smith, and S. Allesina. 2016. The effect of intra- and interspecific competition on coexistence in multispecies communities. American Naturalist 188:E1–E12.

Barabás, G., M. J. Michalska-Smith, and S. Allesina. 2017. Self-regulation and the stability of large ecological networks. Nature Ecology & Evolution 1:1870–1875.

Chesson, P. 1990. MacArthur’s consumer-resource model. Theoretical Population Biology 37:26–38.

Chesson, P. 1994. Multispecies competition in variable environments. Theoretical Population Biology 45:227–276.

Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31:343–366.

Chesson, P. 2003. Quantifying and testing coexistence mechanisms arising from recruitment fluctuations. Theoretical Population Biology 64:345–357.

Chesson, P. 2008. Quantifying and testing species coexistence mechanisms. Pages 119–164 in V. Valladares, Camacho, A., Elosegui, A., Gracia, C., Estrada, M., Senar, J. C., and Gili, J. M., editors. Unity in diversity: Reflections on ecology after the legacy of Ramon Margalef. Fundación BBVA, Bilbao, Spain.

Chesson, P. L. 2018. Updates on mechanisms of maintenance of species diversity. Journal of Ecology 106:1773–1794.

Chesson, P. L. 2019. Chesson’s coexistence theory: Comment. Ecology e02851. http://dx.doi.org/10.1002/ency.2851

Chesson, P., and N. Huntly. 1997. The roles of harsh and fluctuating conditions in the dynamics of ecological communities. American Naturalist 150:519–553.

Ellner, S. P., R. E. Snyder, and P. B. Adler. 2016. How to quantify the temporal storage effect using simulations instead of math. Ecology Letters 19:1333–1342.

Ellner, S. P., R. E. Snyder, P. B. Adler, and G. Hooker. 2019. An expanded modern coexistence theory for empirical applications. Ecology Letters 22:3–18.

Geritz, S. A. H., E. Kisdi, G. Meszéna, and J. A. J. Metz. 1998. Evolutionary singular strategies and the adaptive growth and branching of evolutionary trees. Evolutionary Ecology 12:35–57.

Kremer, C. T., and C. A. Klausmeier. 2013. Coexistence in a variable environment: eco-evolutionary perspectives. Journal of Theoretical Biology 339:14–25.

Levin, S. A. 1970. Community equilibria and stability, and an extension of the competitive exclusion principle. American Naturalist 104:413–423.

MacArthur, R. H. 1970. Species packing and competitive equilibria for many species. Theoretical Population Biology 1:1–11.

Meszéna, G. 2005. Adaptive dynamics: the continuity argument. Journal of Evolutionary Biology 18:1182–1185.

Meszéna, G., M. Gyllenberg, L. Pásztor, and J. A. J. Metz. 2006. Competitive exclusion and limiting similarity: a unified theory. Theoretical Population Biology 69:68–87.

Metz, J. A. J. 2012. Adaptive dynamics. Page 7–177 in A. Hastings and Gross, L. J., editors. Encyclopaedia of theoretical ecology. California University Press, Berkeley, California, USA.

Metz, J. A. J., and S. A. H. Geritz. 2016. Frequency dependence 3.0: an attempt at codifying the evolutionary ecology perspective. Journal of Mathematical Biology 72:1011–1037.

Pásztor, L., Z. Botta-Dukát, G. Magyar, T. Czárán, and G. Meszéna. 2016. Theory-based ecology: a Darwinian approach. Oxford University Press, Oxford, UK.

Song, C., G. Barabás, and S. Saavedra. 2019. On the consequences of the interdependence of stabilizing and equalizing mechanisms. American Naturalist 194:627–639.
Stump, S. M., and P. Chesson. 2017. How optimally foraging predators promote prey coexistence in a variable environment. Theoretical Population Biology 114:40–58.

Yuan, C., and P. Chesson. 2015. The relative importance of relative nonlinearity and the storage effect in the lottery model. Theoretical Population Biology 105:39–52.

Supporting Information

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10.1002/eco.3140/supinfo