Abstract: We study integral representation of the so-called d-dimensional Catalan numbers $C_d(n)$, defined by $\left[\prod_{p=0}^{d-1} \frac{p!}{(n+p)!} \right] (dn)!$, $d = 2, 3, \ldots$, $n = 0, 1, \ldots$. We prove that the $C_d(n)$’s are the nth Hausdorff power moments of positive functions $W_d(x)$ defined on $x \in [0, d^d]$. We construct exact and explicit forms of $W_d(x)$ and demonstrate that they can be expressed as combinations of $d-1$ hypergeometric functions of type ${}_dF_{d-2}$ of argument x/d. These solutions are unique. We analyze them analytically and graphically. A combinatorially relevant, specific extension of $C_d(n)$ for d even in the form $D_d(n) = \left[\prod_{p=0}^{d-1} \frac{p!}{(n+p)!} \right] \left[\prod_{q=0}^{d/2-1} \frac{(2n+2q)!}{(2q)!} \right]$ is analyzed along the same lines.

2000 AMS Mathematics Subject Classification: Primary: 44A60.

Keywords and phrases: d-dimensional Catalan numbers, Hausdorff moment problem.