Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Abstract The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two W bosons, the lightest neutralinos ($\tilde{\chi}_1^0$), and quarks, are presented: the signal is characterised by the presence of a single charged lepton (e^\pm or μ^\pm) from a W boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton–proton collision data taken at a centre-of-mass energy $\sqrt{s} = 13$ delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 (1.4) are excluded at 95% confidence level for a light $\tilde{\chi}_1^0$.

1 Introduction

The Standard Model (SM) has proven to be a very successful theory. The discovery of the Higgs boson [1–4] by the ATLAS and CMS collaborations confirmed the predicted electroweak symmetry breaking, but also highlighted the hierarchy problem [5–8]. Supersymmetry (SUSY) [9–14] is a theoretical framework which assumes supersymmetric particles differing from their SM partners by a half unit of spin. By introducing a new fermionic (bosonic) supersymmetric partner for each boson (fermion) in the SM, SUSY provides a possible solution to the hierarchy problem. In SUSY models conserving R-parity [15], SUSY particles are produced in pairs. The lightest supersymmetric particle (LSP) has to be stable and is possibly weakly interacting, constituting a viable dark-matter candidate [16,17].

The partner particles of the SM fermions (quarks and leptons) are the scalar squarks (\tilde{q}) and sleptons ($\tilde{\ell}$). In the boson sector, the supersymmetric partners of the gluons are the fermionic gluinos (\tilde{g}). The fermionic supersymmetric partners of the Higgs scalars (higgsinos) and of the electroweak gauge bosons (winos and bino) mix to form charged mass eigenstates (charginos) and neutral mass eigenstates (neutralinos). In the minimal supersymmetric extension of the Standard Model (MSSM) [18,19], two scalar Higgs doublets along with their higgsino partners are necessary, resulting in two charginos ($\tilde{\chi}_{1,2}^\pm$) and four neutralinos ($\tilde{\chi}_{1,2,3,4}^0$).

Squarks and gluinos, in R-parity-conserving scenarios, are produced in pairs through the strong interaction. If strongly interacting gluinos or squarks are present at the scale, they should be produced copiously in the 13 pp collisions at the Large Hadron Collider (LHC). With the recorded integrated luminosity and the predicted cross-sections for squark and gluino production, the searches are expected to be sensitive to sparticle masses of a few TeV.

This paper targets two simplified SUSY models [20,21] describing gluino and first two generation squark (\tilde{u}_L, \tilde{d}_L, \tilde{c}_L, \tilde{s}_L, \tilde{t}_L, \tilde{q}_L) production processes and decays. These models, introduced in Ref. [22], serve as benchmarks. In the models, referred to as the gluino and squark one-step models, gluinos or squarks are produced in pairs: gluinos subsequently decay via a virtual squark into a $\tilde{\chi}_1^0$ and two light quarks, while squarks decay into a $\tilde{\chi}_1^0$ and one light quark ($q \in \{u, d, s, c\}$). The $\tilde{\chi}_1^0$ then decay into a W^\pm boson and a $\tilde{\chi}_1^0$. The corresponding diagrams are shown in Fig. 1. It is further assumed that $\tilde{\chi}_1^0$ is wino-like and the $\tilde{\chi}_1^0$ is bino-like. In both models, the branching fractions for SUSY particles are assumed to be 100% for the aforementioned processes squark/gluino decay into $\tilde{\chi}_1^0$ and quarks, and $\tilde{\chi}_1^0 \to \tilde{\chi}_1^0 W^\pm$.

The SM particles are assumed to decay following their known branching fractions. All other sparticles, which do not explicitly appear in the decay chains, are set to be kinematically inaccessible and decoupled.

In this search, two different types of mass spectra are considered. In the first one, the $\tilde{\chi}_1^0$ mass is set to be exactly midway between the masses of the gluino (squark) and...
the $\tilde{χ}_1^0$, so that the relative mass splitting $x = (m(\tilde{χ}_1^\pm) - m(\tilde{χ}_1^0))/(m(\tilde{χ}_1^\pm) - m(\tilde{χ}_1^0))$ is equal to 1/2. In the second mass spectrum, the $\tilde{χ}_1^0$ mass is set to be 60 GeV while the gluino (squark) mass and the relative mass splitting are free parameters.

The experimental signature of interest consists of a single charged lepton (electron or muon) produced by the leptonic decay of one of the W bosons, at least two jets, and large missing transverse momentum (E_T^{miss}, defined in Sect. 4) from the undetected neutrino and the two neutralinos. The particle masses determine the energy available in their decays, so the number of jets and their kinematic properties depend on the mass spectrum chosen. To provide sensitivity to a broad range of mass spectra in the gluino and squark one-step models, four signal regions with differing jet multiplicity requirements from ≥ 2 to ≥ 6 are defined. Furthermore, the signal regions are categorised by allowing or forbidding the presence of jets originating from b quarks (b-tag and b-veto signal regions, respectively) to be sensitive to a wider class of decay processes, e.g. gluino decays producing top quarks.

The results presented in this paper are based on the ATLAS data collected in proton–proton collisions at the LHC during 2015–2018 at a centre-of-mass energy of 13 TeV. This analysis supersedes the previous ATLAS search with an integrated luminosity of 139 fb$^{-1}$. Similar searches for gluinos and squarks via intermediate supersymmetric particles were performed by the CMS Collaboration [24,25].

2 ATLAS detector

The ATLAS detector [26–28] is a multipurpose particle detector with nearly 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range $|\eta| < 2.5$. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range ($|\eta| < 1.7$). The endcap and forward regions are instrumented with LAr calorimeters for EM and hadronic energy measurements up to $|\eta| = 4.9$.

The muon spectrometer surrounds the calorimeters and is based on three large air-core toroidal superconducting magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for triggering. A two-level trigger system [29] is used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector information to keep the accepted rate below 100 kHz. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average.

3 Dataset and simulated events

The search is performed using 139 fb$^{-1}$ of LHC pp collision data collected between 2015 and 2018 by the ATLAS detector, with a centre-of-mass energy of 13 TeV and a 25 ns proton bunch crossing interval. The average number of interactions per bunch crossing (pile-up) evolves over the data-taking period from $(⟨\mu⟩ = 13$ in 2015, to $⟨\mu⟩ = 25$ in 2016, $(⟨\mu⟩ = 38$ in 2017, and $(⟨\mu⟩ = 36$ in 2018. The uncertainty in the combined 2015–2018 integrated luminosity is 1.7% [30], obtained using the LUCID-2 detector [31] for the primary luminosity measurements.

The SM background modelling, signal selection efficiencies, and signal event yield are evaluated using Monte Carlo (MC) simulated event samples. All the samples are produced by a fast simulation [32] procedure that combines a parameterisation of the calorimeter response with a Geant4 [33] simulation of the other detector systems implemented in the ATLAS simulation infrastructure [34].

To model the pile-up observed in data, inelastic pp events were generated with Pythia 8.186 [35] using the NNPDF2.3LO set of parton distribution functions (PDF) [36] and a set of tuned parameters called the A3 tune [37]. These events were overlaid on all simulated hard-scatter events to model the additional proton–proton interactions in the same and nearby bunch crossings. The pile-up overlay was reweighted to match the observed distribution in data. The simulated events are reconstructed with the same algorithms as used for data.

Signal gluino (squark) pair production samples were produced with MadGraph5_aMC@NLO v2.6.2 [38] at next-to-leading order for the hard-scattering matrix element and Pythia 8.212 (Pythia 8.230) for underlying event, parton shower and hadronization. Signal cross-sections are calculated to approximate next-to-next-to-leading order in the strong coupling constant, adding the resummation of soft gluon emission at next-to-next-to-leading-logarithm accu-
racy (approximate NNLO+NNLL) [39–46]. The nominal cross-section and its uncertainty are derived using the PDF4LHC15_mc PDF set, following the recommendations of Ref. [47]. A typical cross-section for gluino production with $m_{\tilde{g}} = 2000$ GeV, and $m_{\tilde{\chi}^0_1} = 200$ GeV is 1.01 ± 0.20 fb, while for squarks with $m_{\tilde{q}} = 1200$ GeV and $m_{\tilde{\chi}^0_1} = 200$ GeV a typical cross-section is 6.8 ± 0.9 fb when the four partners of the left-handed first two generation quarks (\tilde{u}_L, \tilde{d}_L, \tilde{s}_L, and \tilde{c}_L) are assumed to be mass-degenerate. A ‘single squark flavour’ limit is also given assuming that only one such left-handed first and second generation quarks is kinematically accessible.

All relevant SM backgrounds are considered: $t\bar{t}$ pair production; single-top production (s-channel, t-channel, and associated Wt production); $W/Z+$jets production; $t\bar{t}$ production with an electroweak boson ($t\bar{t}+V$); and diboson (WW, WZ, ZZ) production. Different MC event generators were used to produce the background samples, depending on their production process. The MC-produced events are then normalised to data using the corresponding theoretical cross-sections. The event generators, the routines for parton showering and hadronisation, and the parameter tunes and factorisation/hadronisation models. Details of the MC modelling uncertainties are discussed in Sect. 7.

4 Object reconstruction

Each event is required to have at least one reconstructed interaction vertex with a minimum of two associated tracks, each having $p_T > 500$. In events with multiple vertices, the one with the highest sum of squared transverse momenta of associated tracks is chosen as the primary vertex (PV) [72]. Baseline quality criteria are applied to reject events with non-collision backgrounds or detector noise [73].

Two levels of object definition for leptons and jets are used: ‘baseline’ and ‘signal’. Loose quality requirements define baseline objects, which are used in the calculation of missing transverse momentum and in the overlap removal procedure described below. Signal objects, obtained by applying more selective identification criteria to objects passing the baseline requirements, are used as input for the actual search region definitions. Isolation criteria applied to a set of track-based and calorimeter-based variables, are used to discriminate between signal leptons and semileptonic heavy-flavour decays, photon conversions as well as jets misidentified as leptons.

Energy deposits in the electromagnetic (EM) calorimeter that are matched to charged-particle tracks in the inner detector (ID) [74] provide electron candidates. The p_T of electron is calculated based on the energy deposited in the EM calorimeter. Baseline electrons must have $p_T > 7$ GeV and $|\eta| < 2.47$ and must satisfy the Loose working point provided by a likelihood-based algorithm, described in Ref. [74]. The longitudinal impact parameter $\Delta_0 = z_0$ relative to the

2 The longitudinal impact parameter z_0 corresponds to the z-coordinate distance between the point along the track at which the transverse impact parameter is defined and the primary vertex. The transverse impact parameter d_0 is defined as the distance of closest approach in the transverse plane between a track and the beam-line. The uncertainty in d_0 is denoted $\sigma(d_0)$.

Fig. 1 Diagrams for **a** gluino and **b** squark pair production with subsequent decays into quarks and a \tilde{X}_1^0. The \tilde{X}_1^0 decays into a $\tilde{\chi}_1^0$ and a W boson. This analysis targets final states in which one W decays leptonically and the other hadronically.
PV is required to satisfy $|z_0 \sin \theta| < 0.5 \text{ mm}$. The number of hits on the track is used to discriminate between electrons and converted photons. Signal electron candidates are required to satisfy the Tight likelihood operating point and the requirement $|d_{0}/\sigma(d_{0})| < 5$. The Loose and HighPtcaloOnly isolation working points, described in Ref. [74], are applied to signal electrons having $p_T < 200 \text{ GeV}$ and $p_T > 200 \text{ GeV}$, respectively.

Signal electrons with $p_T < 200 \text{ GeV}$ are refined using the Loose isolation working point, while those with larger p_T are required to pass the HighPtcaloOnly isolation working point, as described in Ref. [74].

Muon candidates are reconstructed from matching tracks in the ID and muon spectrometer, refined through a global fit using the hits from both subdetectors [75]. Baseline muons are required to satisfy $p_T > 6 \text{ GeV}$ and $|\eta| < 2.7$. They are identified using the Medium identification criteria [75]. As with the electrons, baseline muons are required to satisfy $|z_0 \sin \theta| < 0.5 \text{ mm}$. Signal muon candidates must also satisfy tighter pseudorapidity and transverse impact parameter requirements, $|\eta| < 2.5$ and $|d_{0}/\sigma(d_{0})| < 3$, and the FixedCutLoose isolation working point requirements.

Jet candidates are reconstructed from three-dimensional topological energy clusters in the calorimeters using the anti-k_t algorithm [76] with a radius parameter $R = 0.4$ [77]. Baseline jets must have $|\eta| < 4.5$ and $p_T > 20 \text{ GeV}$. To suppress pile-up interactions, those jets having $|\eta| < 2.8$ and $p_T < 120 \text{ GeV}$ are required to pass the Medium working point of the jet vertex tagger (JVT), a multivariate algorithm that identifies jets originating from the PV using track information [78,79]. Signal jets must also have $|\eta| < 2.8$ and $p_T > 30 \text{ GeV}$.

Jets with $p_T > 20 \text{ GeV}$ in the region $|\eta| < 2.5$ that contain b-hadrons can be ‘b-tagged’ with high efficiency by the MV2c10 [80], which is a boosted decision tree with improved light-flavour jet and c-jet rejection. The b-tagging working point provides an efficiency of 77\% for jets containing b-hadrons in simulated $t\bar{t}$ events, with rejection factors of 110 and 4.9 for light-flavour jets and jets containing c-hadrons, respectively [81]. Signal b-jets should also have $p_T > 30 \text{ GeV}$.

An overlap removal procedure is applied to the baseline objects defined above to resolve reconstruction ambiguities between electrons, muons and jets. First, any electron sharing the same ID track with a muon is rejected. If two electrons share the same ID track, the one with lower p_T is discarded. Next, jets are rejected if they lie within $\Delta R = 0.2$ of an electron and then electrons are removed if they are within a cone of p_T-dependent size $\Delta R = \min(0.4, 0.04 + 10\text{GeV}/p_T)$ around a jet. Subsequently, jets are rejected if they are within $\Delta R = 0.2$ of a muon or if the muon is matched to the jet through ghost association [82]. Finally, muons within a cone, defined in the same way as for electrons, around any remaining jet are removed.

The missing transverse momentum, p_T^{miss}, with magnitude, E_T^{miss}, is calculated as the negative vectorial sum of the transverse momenta of all reconstructed baseline objects (electrons, muons, jets and photons [83]) and a soft term. The soft term includes all selected tracks associated with the PV but not matched to any reconstructed baseline object. To suppress contributions from pile-up and improve the E_T^{miss} resolution, tracks not associated with the PV are excluded from the E_T^{miss} calculation [84,85].

The efficiency differences in the trigger, lepton identification and reconstruction between data and simulated events are closely evaluated in independent measurements, and are accounted for by applying the corresponding corrections to the simulation in this analysis.

5 Event selection

To retain acceptance for soft leptons, events satisfying the E_T^{miss} trigger selection were recorded [86] and used in the search. The trigger efficiency is higher than 98\% for offline E_T^{miss} values above 250 GeV. To target the signal-like events, selected events are required to have exactly one signal lepton,
either an electron or a muon. Events with additional baseline leptons are rejected to suppress dilepton $\ell\ell$, single-top (Wt-channel), Z+jets and diboson backgrounds. The following observables are used to further reduce background contributions and increase the sensitivity for signal:

- The transverse mass, m_T, is defined from the lepton transverse momentum p_T^ℓ and p_T^{miss} as

$$m_T = \sqrt{2 p_T^\ell E_T^{miss} (1 - \cos(\Delta \phi(p_T^\ell, p_T^{miss})))},$$

where $\Delta \phi(p_T^\ell, p_T^{miss})$ is the azimuthal angle between p_T^ℓ and p_T^{miss}. It has an upper endpoint at the W boson mass for W+jets events and for semileptonic $t\bar{t}$ events. The m_T distribution for signal events extends significantly beyond that endpoint.

- The effective mass, m_{eff}, is the scalar sum of the p_T of the signal lepton and all signal jets and E_T^{miss}:

$$m_{eff} = p_T^\ell + \sum_{j=1}^{N_{jet}} p_T^{jet,j} + E_T^{miss}.$$

The effective mass provides good discrimination against background events, especially for the signal scenarios with energetic jets. It can also help to distinguish between different signal channels. For example gluino production shows higher jet multiplicity than squark production. High-mass gluinos and squarks are expected to produce harder jets than low-mass ones. Thus, the optimal m_{eff} value depends on the different signal scenarios. To achieve a wide-range sensitivity to various SUSY models with a limited number of signal regions, multiple intervals in m_{eff} are used in the final model-dependent signal regions.

- The aplanarity is a variable designed to provide more global information about the full momentum tensor of the event. It is constructed from the lepton and the jets, and is defined as $(3/2) \times \lambda_3$, where λ_3 is the smallest eigenvalue of the sphericity tensor [87]. Typical measured aplanarity values lie in the range 0–0.3, with values near zero indicating highly planar background-like events. Strongly produced SUSY signals tend to have high aplanarity values, since they are more spherical than background events due to the multiple objects emitted in the gluino/squark decay chains.

Four mutually exclusive signal regions (SRs) are designed to enhance the signal sensitivity. The selection criteria for the four SRs are summarised in Table 2. Each SR is optimised for specific SUSY scenarios, as discussed below. They are labelled by the minimum required number of jets and, where relevant, the characteristics of the targeted supersymmetric mass spectrum: $2J$, $4J$ high-x, $4J$ low-x, and $6J$. When setting model-dependent exclusion limits (‘exc’), each SR is divided in m_{eff} intervals and in b-veto/b-tag categories, and a simultaneous fit is performed across all bins of the four SRs. This choice enhances the sensitivity to a range of new-physics scenarios with or without b-quarks in the final states, and with different mass splittings. For model-independent limits and null-hypothesis tests (‘disc’ for discovery), the event yield in each SR is used to search for an excess over the SM background using an optimised minimum m_{eff} value. The discovery SRs require the b-veto and are separately optimised for gluino and squark cases. The systematic uncertainties, fits, and results discussed in the following sections for the simplified models are based on the exclusion SRs, while the model-independent results are based on the discovery SRs.

The $2J$ SR targets compressed scenarios where differences between $m_{\tilde{g}}$, $m_{\tilde{q}}$, and $m_{\tilde{\chi}^0_1}$ are small and the decay products tend to have low p_T. Thus, events are required to have one low-p_T lepton and at least two jets. The lower p_T bound is 7 (6) GeV for the electron (muon), and the upper p_T bound increases with the jet multiplicity up to 25 GeV. The upper p_T requirement ensures the orthogonality between the $2J$ SR and other signal regions. The jet multiplicity dependence maintains the balance between background rejection and signal acceptance: the leptons are more energetic for signals with increasing mass splittings. Stringent requirements are placed on E_T^{miss} and on E_T^{miss}/m_{eff} to enhance the signal sensitivity by selecting signal events with boosted final-state neutralinos recoiling against energetic initial-state radiation (ISR) jets. Compared to other SRs, a less stringent lower bound on m_{eff} is preferred.

The $4J$ high-x SR provides sensitivity to the models with a fixed $m_{\tilde{\chi}^0_1}$ of 60 GeV and a high x value, i.e. when $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{g}}$ are relatively close. Events with four or five jets are selected for this scenario. The mass-splitting between $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\chi}^0_1}$ is large enough to produce a boosted W boson that decays into a high-p_T lepton and a neutrino. Large m_T is thus the most distinguishing characteristic of this SR. Relatively soft jets are expected to be emitted from the gluino or squark decays. The SM background is further suppressed by tight requirements on E_T^{miss}, aplanarity, and E_T^{miss}/m_{eff}. Compared to the $2J$ SR, a tighter m_{eff} selection is applied due to higher jet activity.

The $4J$ low-x SR is optimised for the models where $m_{\tilde{\chi}^0_1}$ is fixed to 60 GeV and $x \approx 0$, i.e. $m_{\tilde{\chi}^0_1}$ is close to $m_{\tilde{\chi}^0_1}$. The jet multiplicity requirement is the same as in the $4J$ high-x SR. In contrast to the high-x scenarios, the small mass-splitting between $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\chi}^0_1}$ tends to produce an off-shell W boson, leading to small m_T. To keep this SR orthogonal to the $4J$ high-x SR, an upper bound is applied to m_T. Other than that, the requirements on m_{eff}, E_T^{miss}, aplanarity, and E_T^{miss}/m_{eff} are identical to the ones used in the $4J$ high-x SR.
Table 2 Overview of the selection criteria for the signal regions used for gluino/squark one-step models. The requirements that only apply to the exclusion (discovery) SRs are marked with ’excl’ (’disc’). The m_{eff} bins are of even width and the ‘+’ indicates that overflow events are included in the last bin.

CR	2J	4J high-x	4J low-x	6J
N_{ℓ}	= 1			
p_T^{ℓ} [GeV]	$\geq 7 (6)$ for $e(\mu)$ and $\leq \min (10 \cdot N_{\text{jet}}, 25)$	≥ 25	≥ 25	≥ 25
N_{jet}	≥ 2	4–5	4–5	≥ 6
p_T^{jet} [GeV]	≥ 30	≥ 30	≥ 30	
E_T^{miss} [GeV]	≥ 400	≥ 300	≥ 300	≥ 300
m_T [GeV]	≥ 100	≥ 520	150–520	≥ 225
Aplanarity	≥ 0.01	≥ 0.01	≥ 0.01	≥ 0.05
$E_T^{\text{miss}}/m_{\text{eff}}$	≥ 0.25	≥ 0.2	≥ 0.2	$-$
$N_{b_{\text{jet}}}$ (excl)			3 bins $\in [700, 2500+]$	4 bins $\in [700, 3500+]$
m_{eff} [GeV] (excl)	≥ 1900 (1300) for gluino (squark)	≥ 2200	≥ 2200	≥ 2800 (2100) for gluino (squark)

Table 3 Overview of the control region selection criteria. The top and W+jets control regions are defined by the b-tag and b-veto requirements, respectively. The m_{eff} bins are of even width and the ‘+’ indicates that overflow events are included in the last bin.

CR	2J	4J	6J
N_{ℓ}	= 1		
p_T^{ℓ} [GeV]	$\geq 7 (6)$ for $e(\mu)$ and $\leq \min (10 \cdot N_{\text{jet}}, 25)$	≥ 25	≥ 25
N_{jet}	≥ 2	4–5	≥ 6
p_T^{jet} [GeV]	≥ 30	≥ 30	≥ 30
E_T^{miss} [GeV]	≥ 400	≥ 300	≥ 300
m_T [GeV]	$\geq 50–80$	$\geq 50–90$	$\geq 50–100$
Aplanarity	≥ 0.01	≥ 0.01	≥ 0.05
$E_T^{\text{miss}}/m_{\text{eff}}$	≥ 0.25	≥ 0.2	$-$
$N_{b_{\text{jet}}}$	3 bins $\in [700, 2500+]$	3 bins $\in [1000, 2800+]$	4 bins $\in [700, 3500+]$
m_{eff} [GeV]	≥ 1 for the top CR; $= 0$ for the W+jets CR		

The 6J SR targets signal scenarios with high gluino/squark mass, and is optimised for models with $x \approx 1/2$. Events with one high-p_T lepton and at least six jets are selected. Large aplanarity is required, reflecting the heavy gluino/squark produced in the targeted signature. Tight requirements on m_T and E_T^{miss} are imposed to reduce the SM background. To achieve high sensitivity for a wide range of $m_{\tilde{g}/\tilde{q}}$, four exclusive bins are defined in m_{eff} and used in the fit. The lowest mass bin starts from 700 GeV, and the highest from 2800 GeV.

6 Background estimation

Robust prediction of the SM background event yields in SRs is important in any search like the one presented in this paper. Different approaches for calculating the SM event yields in the SRs are used depending on the background process of interest. The yields of $t\bar{t}$, single-top, and W+jets processes are estimated from data using a set of dedicated control regions (CRs), while contributions from $Z+$jets, $t\bar{t}$ produced in association with a W or Z boson, and dibosons (WW, WZ, ZZ) are evaluated from MC simulation. The details are described below.

Three sets of CRs, 2J, 4J high-x, 4J low-x and 6J signal regions. The CRs satisfy the criteria of high purity for the targeted background process and low signal contamination from the model of interest. The purity varies from 57 to 88% for the top backgrounds ($t\bar{t}$ and single top) in top CRs and from 73 to 92% for W+jets in W+jets CRs. Each of the
Fig. 2 The m_T distributions in the signal regions after all of the selection requirements other than the m_T cut (noted as ‘N-1’ in the figures). Due to the removal of the m_T requirement, these plots effectively show the CRs, VRs and SRs for each jet multiplicity. The uncertainty bands include all statistical and systematic uncertainties. Overflow events are included in the last bin. The dashed lines represent benchmark signal points for gluino and squark pair production.

CRs is defined with kinematic boundaries close to the corresponding SR in order to reduce the theoretical and detector uncertainties from the extrapolation. The contributions of the top and $W+jets$ backgrounds in the SRs are evaluated with a fit based on the profile likelihood method. The normalised background predictions are obtained from a simultaneous fit across all control regions, as described in Sect. 8. The control regions for top and $W+jets$ are presented in Table 3. Events in the top control region require at least one b-tagged signal jet in the event, while $W+jets$ control regions are defined by vetoing all events containing any b-tagged signal jets. The CRs are crafted in the same way as signal regions, thus each CR is defined as a function of m_{eff}, with the same binning as the corresponding SR. This permits extrapolation from each b-tag/b-veto and m_{eff} bin in CRs to the corresponding bin in the SRs. The extrapolation from CRs to SRs is performed via the m_T variable, which is found to be well modelled in simulation as shown in Fig. 2.
In order to validate the background fit results, cross-checks of the background estimates are performed in validation regions (VRs) situated between the SRs and the CRs in m_{T}, while remaining orthogonal to both regions. The VRs are also defined as functions of m_{eff} in the same way as the corresponding CRs and SRs, to ensure an m_{eff}-dependent validation. The highest m_{eff} bin in the 6J VR is not used because its signal contamination would be too large. Similar to the control regions, events in the top VRs require a b-tag, while events in the W+jets VRs require a b-veto. The VRs are not used to constrain the fit; they serve only to verify that the normalised background predictions agree with the observed data. The VR definitions and their graphical representation are shown in Table 4 and Fig. 3.

The background contributions from Z+jets, $t\bar{t}+V$ and diboson events are evaluated from simulation. The simulated event samples are normalised to the relevant theoretical cross-sections. No dedicated control regions for the diboson background are used, as the modelling of this background by simulation is found to be sufficiently good when compared with the data in the validation regions. The data and MC predictions yield, obtained from the overall background estimate, differ in all validation regions by less than two standard deviations. The background originating from misidentified leptons, real leptons coming from jets produced by heavy-flavour quarks or photons converted to electrons is evaluated using both MC and data-driven methods, and it is found to be negligible within the statistical error of the data due to the stringent requirements on E_{T}^{miss}.

As a representative example, the m_{eff} distributions in the 6J top and W+jets control regions are shown in Fig. 4 before and after a fit which constrains only the control regions. The fit strategy is discussed in Sect. 8. A trend is observed, as it was in previous similar searches [23], whereby the MC overestimates the expected yields at large values of m_{eff}. This is accounted for by applying different normalisation parameter values for each m_{eff} bin in the corresponding fit, which effectively corrects the mismodelling. In the post-fit distributions, the data and the background expectation agree well within the uncertainties.

7 Systematic uncertainties

The expected yields for both the signal and background events are subject to theoretical and experimental systematic uncertainties. The theoretical uncertainties for the backgrounds normalised to data influence only the transfer factors from CR(s) to VR(s) and from CR(s) to SR(s), while for the other backgrounds, the uncertainties affect the inclusive cross-section of each process and the acceptance of the analysis selection.

Following the procedure described in Sect. 6, both the experimental and the theoretical uncertainties are computed separately for each m_{eff} bin. Both theoretical and experimental uncertainties are correlated across all m_{eff} bins. For the single-top and $t\bar{t}$ backgrounds, the theoretical uncertainties due to parton shower and hadronisation/fragmentation are estimated by comparing the predictions obtained with the POWHEG-box generator interfaced with two different parton shower generators, PYTHIA 8 and HERWIG 7 [88], while those due to the hard-scattering are evaluated by a POWHEG-box + PYTHIA 8 to MG5_aMC@NLO + PYTHIA 8 comparison. Diagram removal (DR) and diagram subtraction (DS) samples, modelled by POWHEG-box + PYTHIA 8, are used to determine the impact of the interference between single-top Wt and $t\bar{t}$ production [89]. In order to evaluate the impact of the uncertainties coming from the emission of initial- and final-state radiation, the renormalisation, and factorisation scales and showering are varied.

Uncertainties for $t\bar{t}+V$, W/Z+jets and dibosons coming from scale variations are evaluated by considering the envelope of the seven-point variations of the renormalisation and factorisation scales. The resummation and the CKKW

Table 4 Overview of the validation region selection criteria. The top and W+jets validation regions are defined by the b-tag and b-veto requirements, respectively. The m_{eff} bins are of even width and the ‘+' indicates that overflow events are included in the last bin.

VR	2J	4J	6J
N_{ℓ}	= 1	> 25	> 25
p_{T}^{ℓ} [GeV]	> 7(6) for $e(\mu)$ and $< \text{min}(10 \cdot N_{\text{jet}}, 25)$	> 4–5	> 25
N_{jet}	≥ 2	4–5	6
E_{T}^{miss} [GeV]	> 400	> 300	> 250
m_{T} [GeV]	80–100	90–150	100–225
Δplanarity	–	> 0.01	> 0.05
$E_{T}^{\text{miss}}/m_{\text{eff}}$	> 0.25	> 0.2	–
m_{eff} [GeV]	3 bins ∈ [700, 2500+]	3 bins ∈ [1000, 2800+]	3 bins ∈ [700, 2800+]
$N_{b_{\text{jet}}}$	≥ 1 for the top VR; = 0 for the W+jets VR		

© Springer
matching variations for $W/Z+$jets are estimated by varying the corresponding scale parameters up and down by a factor of two relative to the nominal value for each region. The PDF uncertainties for $W/Z+$jets are considered following the recommendation in PDF4LHC15 [47], while those for $t\bar{t}$ were found to be negligible in all the regions. Systematic uncertainties of 5% and 6% are assigned to the inclusive cross-sections of the $t\bar{t}+V$ and diboson processes [90], respectively. For the other background processes such as $Z+$jets, a systematic uncertainty in the inclusive cross-section is included at the 5% level.

The theoretical uncertainties in the expected yields for the two signal models are considered and estimated using MG5_aMC@NLO + PYTHIA 8 samples by varying the parameters corresponding to the factorisation, renormalisation and CKKW-L matching scales.

Detector-related systematic uncertainties include uncertainties from jet energy scale (JES), jet energy resolution (JER), lepton reconstruction and identification, b-tagging, E_T^{miss} modelling, pile-up, and the trigger efficiency. The dominant experimental systematic uncertainties stem from the JES and JER uncertainties. They are derived as a function of p_T and η of the jet, the pile-up conditions and the jet flavour composition [91]. The uncertainties due to the lepton identification, momentum/energy scale and resolution are estimated from samples of $Z \rightarrow \ell^+\ell^-$, $J/\psi \rightarrow \ell^+\ell^-$ and $W \rightarrow \ell v$ decays [74,75]. The E_T^{miss} modelling systematic uncertainties are evaluated by accounting for the uncertainties in the energy and momentum scale of each object used in the calculation, as well as the uncertainties in the soft term’s resolution and scale. The uncertainty due to pile-up modelling is computed by varying the reweighting factor by ±4%. Uncertainties related to the b-tagging efficiency are derived from data-driven measurements in $t\bar{t}$ events [80,92], while uncertainties associated with the probability of mistakenly b-tagging a jet which does not contain a b-hadron are determined using dijet samples [93]. The uncertainties in the dominant background normalisation are obtained when performing the fit including the background control regions.

Tables 5 and 6 detail the size of the different systematic uncertainties in the signal regions, summed over all m_{eff} bins. The uncertainty in the hard-scattering for $t\bar{t}$ dominates in many regions. The determination with Monte Carlo samples
Fig. 4 The m_{eff} distribution in 6J top (left, labelled as ‘TR’) and W+jets (right, labelled as ‘WR’) control regions before (top) and after (bottom) the fit. The uncertainty bands include all statistical and systematic uncertainties. Overflow events are included in the last bin.

Table 5 Breakdown of the dominant systematic uncertainties in the background estimates in the various signal regions. The numbers are a yield weighted average over the bins. The individual uncertainties can be correlated and do not necessarily add in quadrature to the total background uncertainty. The percentages show the size of the uncertainty relative to the total expected background.

Uncertainty of channel	2J b-veto	2J b-tag	4J low-x b-veto	4J low-x b-tag
Total background expectation	346	272	449	810
Total background systematic uncertainty	8%	25%	7%	13%
Jet energy resolution	2.5%	4%	2.9%	2.4%
Jet energy scale	1.8%	1.6%	2.4%	1.5%
b-tagging	1.6%	1.7%	2.2%	1.3%
Lepton uncertainties	1.0%	0.6%	0.5%	0.34%
E_T^{miss}/JVT/pile-up/trigger	1.9%	0.33%	0.5%	0.6%
W+jets theory uncertainties	0.8%	1.8%	1.6%	0.9%
$t\bar{t}$ theory uncertainties	5%	23%	3.1%	12%
Single-top theory uncertainties	0.7%	4%	0.9%	1.3%
Other theory uncertainties	2.7%	0.8%	2.8%	0.26%
Normalisation of dominant backgrounds	1.5%	9%	1.0%	4%
MC statistics	3.0%	1.5%	1.6%	0.8%
of the $t\bar{t}$ uncertainties reported in the tables includes also the statistical component, arising from limited MC statistics, in the uncertainties for all regions. Jet-related uncertainties dominate the detector-related systematic uncertainties.

8 Results

The statistical interpretation of the data is based on a profile likelihood method using the HistFitter framework [94, 95]. The likelihood function includes a set of Poisson functions representing the yields in each of the control and signal regions. These Poisson functions depend on the observed number of data events in the respective region and the expected numbers of signal and background events. Different parameters are included in the likelihood function to control the normalisation of the backgrounds and the signal or to reflect statistical and systematic uncertainties. The normalisations of the $t\bar{t}$, single-top and W+jets backgrounds are controlled by the respective normalisation factors assigned individually for each m_{eff} bin in the SRs. This configuration corrects for the mismodelling of the m_{eff} distribution in the Monte Carlo simulation, as discussed in Sect. 6. An exception is made for the 4J case in the $m_{\text{eff}} > 1600$ GeV region, where for each of the $t\bar{t}$ and single-top backgrounds the same normalisation factor is used across the two m_{eff} bins due to the low statistics in the highest m_{eff} bin. The yields in the corresponding control regions are sufficient to allow for two different normalisation factors for W+jets, one in the range $m_{\text{eff}} \in [1600, 2200]$ GeV and one for $m_{\text{eff}} > 2200$ GeV. In total, the fit includes nine normalisation factors for $t\bar{t}$ and single top and ten normalisation factors for W+jets. The normalisation of the signal is controlled by one common normalisation factor applied to all bins included in the fit. Systematic uncertainties are accommodated through the use of nuisance parameters, which are constrained by a Gaussian auxiliary term added to the likelihood.

In a background-only fit, only the control regions are used to constrain the likelihood. A signal contribution is neglected in the fit, so the signal normalisation parameter is dropped. The observed yields in the VRs are found to be compatible with the background expectation obtained from this fit, with the largest deviation of data from MC over the 18 bins having a statistical significance of about 2σ. Background predictions in the signal regions are compared with the observed data in Tables 7, 8, 9, 10 and illustrated in Figures 5, 6, 7. No significant excess of events is observed.

Using the discovery signal regions defined in Table 2, a test is performed for the presence of beyond-the-SM physics in a model-independent fit in each signal region. The signal contribution is only considered in the respective signal region, and not in the CRs, and therefore a conservative background estimate is obtained in the signal regions. Table 11 shows the observed and expected upper limits (σ_{obs}^95 and σ_{exp}^95, respectively) on the number of signal events, at 95% confidence level (CL) using the CL$_S$ prescription [96]. Also reported is the visible cross-section upper limit ($\langle\sigma\epsilon\rangle_{\text{obs}}^95$), which is the upper limit on the cross-section times the reconstruction efficiency and region acceptance. The table also presents the discovery p-values (p_0), which quantify the probability to observe at least as many events as expected in the background-only assumption, the CL$_{S}$ value, i.e. the confidence level observed for the background-only hypothesis, and the associated significance.
Table 7 Observed event yields and the background expectation obtained by a background fit in the $2J$ SRs with an integrated luminosity of 139 fb$^{-1}$. Each column corresponds to a bin in m_{eff}. Uncertainties reported for the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties. The uncertainties in this table are symmetrised for error propagation purposes.

$2J$ b-veto	Bin 1 [700, 1300] GeV	Bin 2 [1300, 1900] GeV	Bin 3 > 1900 GeV
Observed events	280	84	22
Total SM background events	261 ± 22	73 ± 12	12.8 ± 2.2
$t\bar{t}$ events	19 ± 13	11 ± 7	1.3 ± 0.6
W+jets events	155 ± 14	28 ± 5	3.4 ± 1.5
Z+jets events	14 ± 5	4.3 ± 0.6	1.37 ± 0.19
Single-top events	5 ± 4	2.9 ± 2.3	1.1 ± 0.9
Diboson events	66 ± 8	26.0 ± 3.4	5.5 ± 0.7
$t\bar{t}$+V events	1.32 ± 0.16	0.47 ± 0.23	0.041 ± 0.023

Table 8 Observed event yields and the background expectation obtained by a background fit in the $4J$ high-x SRs with an integrated luminosity of 139 fb$^{-1}$. Each column corresponds to a bin in m_{eff}. Uncertainties reported for the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties. The uncertainties in this table are symmetrised for error propagation purposes but are truncated at zero to remain within the physical boundaries.

$4J$ b-veto	Bin 1 [1000, 1600] GeV	Bin 2 [1600, 2200] GeV	Bin 3 > 2200 GeV
Observed events	104	32	11
Total SM background	92 ± 32	18 ± 4	7.1 ± 2.3
$t\bar{t}$ events	9 ± 5	1.2 ± 0.4	0.32 ± 0.11
W+jets events	61 ± 30	9 ± 4	3.6 ± 1.7
Z+jets events	1.5 ± 0.6	0.8 ± 0.4	0.26 ± 0.14
Single-top events	0.3$^{+0.5}_{-0.3}$	0.006$^{+0.026}_{-0.006}$	1.3 ± 0.8
Diboson events	18.7 ± 2.9	6.1 ± 0.9	1.59 ± 0.29
$t\bar{t}$+V events	0.65 ± 0.15	0.09$^{+0.13}_{-0.09}$	0.029 ± 0.023

$4J$ b-tag	Bin 1 [1000, 1600] GeV	Bin 2 [1600, 2200] GeV	Bin 3 > 2200 GeV
Observed events	121	26	8
Total SM background	127 ± 27	25 ± 5	7.7 ± 2.1
$t\bar{t}$ events	90 ± 24	13.1 ± 2.8	2.0 ± 0.5
W+jets events	18 ± 9	4.6 ± 2.4	1.1 ± 0.4
Z+jets events	0.32 ± 0.10	0.01$^{+0.13}_{-0.01}$	0.15 ± 0.09
Single-top events	10 ± 4	4.9 ± 1.8	3.6 ± 1.7
Diboson events	3.1 ± 0.6	1.20 ± 0.34	0.41 ± 0.15
$t\bar{t}$+V events	5.8 ± 0.5	1.51 ± 0.17	0.39 ± 0.08
Table 9: Observed event yields and the background expectation obtained by a background fit in the 4J low-x SRs with an integrated luminosity of 139 fb$^{-1}$. Each column corresponds to a bin in m_{eff}. Uncertainties reported for the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties. The uncertainties in this table are symmetrised for error propagation purposes but are truncated at zero to remain within the physical boundaries.

4J low-x b-veto	Bin 1	Bin 2	Bin 3
	[1000, 1600] GeV	[1600, 2200] GeV	> 2200 GeV
Observed events	393	57	10
Total SM background	383 ± 27	56 ± 6	9.5 ± 1.7
$t\bar{t}$ events	72 ± 15	8.7 ± 1.8	1.56 ± 0.35
W+jets events	179 ± 23	23 ± 4	3.4 ± 1.4
Z+jets events	4.7 ± 0.9	0.73 ± 0.19	0.16 ± 0.04
Single-top events	12 ± 5	3.3 ± 1.3	$0.16^{+0.25}_{-0.16}$
Diboson events	110 ± 15	20.5 ± 2.8	4.2 ± 0.6
$t\bar{t}$+V events	5.6 ± 0.6	0.54 ± 0.22	0.070 ± 0.031

4J low-x b-tag	Bin 1	Bin 2	Bin 3
	[1000, 1600] GeV	[1600, 2200] GeV	> 2200 GeV
Observed events	695	79	11
Total SM background	701 ± 90	94 ± 19	15 ± 4
$t\bar{t}$ events	510 ± 90	60 ± 18	9.0 ± 2.9
W+jets events	36 ± 9	7.0 ± 1.7	0.96 ± 0.35
Z+jets events	1.7 ± 0.6	0.36 ± 0.08	0.035 ± 0.020
Single-top events	88 ± 12	19 ± 6	3.9 ± 2.5
Diboson events	21.1 ± 3.2	4.3 ± 0.6	0.90 ± 0.13
$t\bar{t}$+V events	41.5 ± 3.0	3.9 ± 0.6	0.45 ± 0.10

Table 10: Observed event yields and the background expectation obtained by a background fit in the 6J SRs with an integrated luminosity of 139 fb$^{-1}$. Each column corresponds to a bin in m_{eff}. Uncertainties reported for the fitted background estimates combine statistical (in the simulated event yields) and systematic uncertainties. The uncertainties in this table are symmetrised for error propagation purposes but are truncated at zero to remain within the physical boundaries.

6J b-veto	Bin 1	Bin 2	Bin 3	Bin 4
	[700, 1400] GeV	[1400, 2100] GeV	[2100, 2800] GeV	> 2800 GeV
Observed events	19	16	3	2
Total SM background	25 ± 8	15.9 ± 2.5	3.5 ± 0.5	1.8 ± 0.6
$t\bar{t}$ events	10 ± 6	4.6 ± 1.7	0.77 ± 0.26	0.09 ± 0.07
W+jets events	7 ± 5	5.2 ± 1.5	1.2 ± 0.5	0.6 ± 0.4
Z+jets events	$0.23^{+0.23}_{-0.23}$	0.25 ± 0.07	0.12 ± 0.05	0.060 ± 0.025
Single-top events	$0.5^{+0.8}_{-0.5}$	$0.3^{+0.5}_{-0.3}$ & 0.0 ± 0.0	0.5 ± 0.4	
Diboson events	6.2 ± 1.4	5.2 ± 0.9	1.31 ± 0.26	0.52 ± 0.16
$t\bar{t}$+V events	0.90 ± 0.18	0.47 ± 0.11	0.06 ± 0.04	$0.012^{+0.021}_{-0.012}$

6J b-tag	Bin 1	Bin 2	Bin 3	Bin 4
	[700, 1400] GeV	[1400, 2100] GeV	[2100, 2800] GeV	> 2800 GeV
Observed events	117	68	7	2
Total SM background	110 ± 17	70 ± 11	13.6 ± 3.1	2.4 ± 1.0
$t\bar{t}$ events	90 ± 17	52 ± 10	10.2 ± 2.8	0.9 ± 0.6
W+jets events	2.0 ± 1.3	1.6 ± 0.8	0.53 ± 0.16	0.46 ± 0.19
Z+jets events	$0.05^{+0.09}_{-0.05}$	0.12 ± 0.05	0.06 ± 0.04	0.08 ± 0.04
Single-top events	4.6 ± 3.1	9 ± 5	1.3 ± 1.1	$0.6^{+0.8}_{-0.6}$
Diboson events	1.62 ± 0.32	1.64 ± 0.31	0.57 ± 0.13	0.14 ± 0.07
$t\bar{t}$+V events	11.5 ± 1.5	5.1 ± 0.8	0.95 ± 0.25	0.20 ± 0.13
Fig. 5 Comparison of the observed and expected event yields in all signal regions in the background-only fit.

Fig. 6 Post-fit m_{eff} distributions in the exclusion 2J and 4J high-x signal regions. The uncertainty bands include all statistical and systematic uncertainties. The dashed lines represent benchmark signal points. Overflow events are included in the last bin.
The uncertainty bands include all statistical and systematic uncertainties. The dashed lines represent benchmark signal points. Overflow events are included in the last bin.

Table 11

Results of the model-independent limit fits. For each SR defined in Table 2, the observed events and the total SM background, and the observed 95% CL upper limits on the visible cross-section $\langle e\sigma \rangle_{\text{obs}}$ and on the number of signal events S_{exp} are given. The sixth column, S_{exp}, shows the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1\sigma$ excursions of the expectation) of background events. The last two columns indicate the CL$_b$ value, i.e. the confidence level observed for the background-only hypothesis, the discovery p-value $p(s = 0)$ and the significance Z. In case of fewer events than the fitted background estimate observed, the p-values are capped at 0.5.

SR$_{\text{disc}}$	Observed events	Total SM background	$\langle e\sigma \rangle_{\text{obs}}$ [fb]	S_{exp}^95	S_{exp}^95	CL$_b$	$p(s = 0)$ (Z)
2J (gluino)	22	12.8 ± 2.2	0.14	19.0	10.1±4.0	0.98	0.02 (1.97)
2J (squark)	106	86 ± 12	0.34	47.8	31.3±13.0	0.90	0.09 (1.33)
4J high-x	11	7.1 ± 2.3	0.09	12.0	8.3±3.5	0.87	0.13 (1.12)
4J low-x	10	9.5 ± 1.7	0.06	8.9	8.4±3.3	0.57	0.42 (0.19)
6J (gluino)	2	1.8 ± 0.6	0.03	4.7	4.3±1.9	0.59	0.41 (0.24)
6J (squark)	5	5.3 ± 0.8	0.04	6.0	6.0±24.0	0.48	0.50 (0)

Observed and expected exclusion limits at 95% CL are calculated for the gluino and squark one-step models using all statistically independent binned signal and control regions in a model-dependent fit. For this exclusion fit, the signal contribution, adjusted using a single floating normalisation factor, is considered in all control and signal regions. The background normalisation factors are simultaneously determined in the same fit. Specific sparticle masses in the gluino or squark one-step models can be excluded if the upper limit of the signal normalisation factor is less than unity.

Figure 8 shows the expected and observed exclusion limits. Gluino masses up to 2.2 and 2.05 can be excluded for $\tilde{\chi}_1^0$ masses less than 400 GeV and 1 respectively, while squark masses up to 1.37 can be excluded for low-mass $\tilde{\chi}_1^0$. Ben-
beneﬁting from the increased integrated luminosity, the current observed limit exceeds the previous ATLAS limit by about 100 GeV in $m_{\tilde{q}}$ and in $m_{\tilde{g}}$ for low-mass $\tilde{\chi}^0_1$. In squark one-step models in which only a single squark flavour is kinematically accessible, squark masses up to about 1.0 can be excluded.

9 Conclusion

A search for gluinos and squarks in events with one isolated lepton, jets and missing transverse momentum is presented. The analysis uses 139 fb$^{-1}$ of proton–proton collision data at a centre-of-mass energy of 13 collected by the ATLAS experiment at the LHC. Four signal regions requiring from at least two to at least six jets are used to cover a broad spectrum of the targeted SUSY model parameter space. Three signal regions defined using high-p_T lepton selections target models with large mass differences between the supersymmetric particles. A separate, low-p_T lepton region is designed to enhance the sensitivity to models with compressed mass spectra. The data agree with the Standard Model background prediction in the signal regions. For all signal regions, limits on the visible cross-section are derived in models of new physics within the kinematic requirements of this search. In addition, exclusion limits are placed on models with gluino/squark production and subsequent decays via an intermediate chargino to the lightest neutralino. This search extends the exclusion limit by 100 GeV (gluino) and 180 GeV (squark) for a massless LSP with respect to the previous search [23] owing to a more solid background estimation technique and an increased statistical sample. Gluino (Squark) masses up to around 2.2 (1.4) are excluded for a χ^0_1 mass lower than 200 GeV, while for scenarios with a single accessible squark flavour, squark masses up to around 1.04 are excluded.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efﬁciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; COLCIEN-
References

1. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

2. C.M.S. Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

3. ATLAS and CMS Collaborations, Combined measurement of the Higgs boson mass in pp collisions at $v_s = 7$ and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett. 114, 191803 (2015). arXiv:1503.07589 [hep-ex]

4. ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $v_s = 7$ and 8 TeV. JHEP 08, 045 (2016). arXiv:1606.02266 [hep-ex]

5. N. Sakai, Naturalness in supersymmetric GUTS. Z. Phys. C 11, 153 (1981)

6. S. Dimopoulos, S. Raby, F. Wilczek, Supersymmetry and the scale of unification. Phys. Rev. D 24, 1681 (1981)

7. L.E. Ibanez, G.G. Ross, Low-energy predictions in supersymmetric grand unified theories. Phys. Lett. B 105, 439 (1981)

8. S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B 193, 150 (1981)

9. Y.A. Golffand, E.P. Likhtman, Extension of the algebra of Poincare group generators and violation of P invariance. JETP Lett. 33, 323 (1971). [Pisma Zh. Eksp. Teor. Fiz. 13, 452 (1971)]

10. D.V. Volkov, V.P. Akulov, Is the neutrino a goldstone particle? Phys. Lett. B 46, 109 (1973)

11. J. Wess, B. Zumino, Supergauge transformations in four-dimensions. Nucl. Phys. B 70, 39 (1974)

12. J. Wess, B. Zumino, Supergauge invariant extension of quantum electrodynamics. Nucl. Phys. B 78, 1 (1974)

13. S. Ferrara, B. Zumino, Supergauge invariant Yang–Mills theories. Nucl. Phys. B 79, 413 (1974)

14. A. Salam, J.A. Strathdee, Super-symmetry and non-Abelian gauges. Phys. Lett. B 51, 353 (1974)

15. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B 76, 575 (1978)

16. H. Goldberg, Constraint on the photon mass from cosmology. Phys. Rev. Lett. 50, 1419 (1983). [Erratum: Phys. Rev. Lett. 103, 099905 (2009)]

17. J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive, M. Srednicki, Supersymmetric relics from the big bang. Nucl. Phys. B 238, 453 (1984)

18. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B 64, 159 (1976)

19. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B 69, 489 (1977)

20. J. Alwall, P. Schuster, N. Toro, Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D 79, 075020 (2009). arXiv:0810.3921 [hep-ph]

21. D. Alves et al., Simplified models for LHC new physics searches. J. Phys. G 39, 105005 (2012). arXiv:1105.2838 [hep-ph]

22. ATLAS Collaboration, Further search for supersymmetry at $v_s = 7$ TeV in final states with jets, missing transverse momentum and isolated leptons with the ATLAS detector. Phys. Rev. D 86, 092002 (2012). arXiv:1208.4688 [hep-ex]

23. ATLAS Collaboration, Search for squarks and gluinos in events with an isolated lepton, jets, and missing transverse momentum at $v_s = 13$ TeV with the ATLAS detector. Phys. Rev. D 96, 112010 (2017). arXiv:1708.08232 [hep-ex]
T. Varol, D. Varouchas, K. E. Varvell, M. E. Vasile, G. A. Vasquez, F. Vazeille, D. Vazquez Furelos, T. Vazquez Schroeder, J. Veatch, V. Vecchio, M. J. Veen, L. M. Veloce, F. Veloso, S. Veneziano, A. Ventura, A. Verbyskyy, V. Vercesi, M. Verducci, C. M. Vergel Infante, C. Vergis, W. Verkerke, A. T. Vermeulen, J. C. Vermeulen, C. Vernieri, P. J. Verschuuren, M. C. Vetterli, N. Viaux Maira, T. Vickery, O. E. Vicikey Boeriu, G. A. Viehhauser, L. Viganò, M. Villa, M. Villaplana Perez, E. M. Villeda, E. Vilucchi, M. G. Vincet, G. S. VIRDee, A. Vishwakarma, C. Vittori, I. Vivairelli, M. Vogel, P. Vokac, J. Von Ahnen, S. E. von Buddenbrock, E. Von Toerne, V. Vorobel, K. Vorobiev, M. Vos, J. H. Vossebeld, M. Vozak, V. Vranjes, M. Vranjes Milosavljevic, V. Vrba, M. Vreeswijk, N. K. Wu, R. Vuillermot, I. Vukotic, S. Wada, P. Wagner, W. Wagner, J. Wagner-Kuhr, S. Waahdan, H. Wahlberg, R. Wakasa, V. M. Walbrecht, J. Walder, R. Walker, S. D. Walker, W. Walkowiak, V. Wallangen, A. W. Wang, L. Wang, C. Wang, D. Wang, W. Wang, J. Wang, P. Wang, Q. Wang, R.-J. Wang, R. Wang, T. Wang, T. Wang, W. T. Wang, W. Wang, W. X. Wang, Y. Wang, W. Wang, Z. Wang, T. Wang, C. Wanotayaroj, Y. Wei, A. R. Weidberg, J. Weingarten, M. Weirich, C. Wei, P. Wells, T. Wenaus, B. Wendland, T. Wengler, S. Wen, N. Wermes, M. Wessels, T. D. Weston, K. Whalen, A. M. Wharton, A. White, M. J. White, D. Whiteson, B. W. Whitmore, W. Wiedenmann, C. Wiel, M. Wieler, N. Wiesoeote, C. Wieglesworth, L. A. M. Wiik-Fuchs, H. G. Wilkens, L. J. Wilkins, D. M. Williams, H. H. Williams, S. Williams, S. Willocq, P. J. Windschrofer, I. Wingertse-Seez, E. Winkel, F. Winklmeier, B. T. Winters, M. Wittgen, M. Wobisch, A. Wolf, R. Wölker, J. Pollrath, M. W. Wolter, H. Wolters, W. W. Wong, A. F. Wongel, N. L. Woods, S. D. Worm, B. K. Wosiek, K. W. Woźniak, K. Wraight, S. L. Wu, X. Wu, Y. Wu, J. Wuerzinger, T. R. Wyatt, B. M. Wynne, S. Xella, J. Xiang, X. Xiao, X. Xie, I. Xiotidis, D. Xu, H. Xu, H. Xu, L. Xu, R. Xu, T. Xu, W. Xu, Y. Xu, Z. Xu, Z. Xu, B. Yabsley, S. Yacoob, D. P. Yallup, N. Yamaguchi, Y. Yamaguchi, A. Yamamoto, M. Yamatan, T. Yamazaki, Y. Yamazaki, J. Yan, Z. Yan, H. J. Yang, S. Yang, T. Yang, X. Yang, X. Yang, Y. Yang, Z. Yang, W.-M. Yao, Y. C. Yap, H. Ye, J. Ye, S. Ye, I. Yeleetskii, M. R. Yexley, E. Yigitbasi, P. Yin, K. Yorita, K. Yoshihara, C. J. S. Young, C. Young, J. Yu, R. Yuan, X. Yue, M. Zazaoua, B. Zabinski, G. Zacharis, E. Zaffaroni, J. Zahreddine, A. M. Zaitsev, T. Zakareishvily, N. Zakharchuk, S. Zambito, D. Zanini, S. V. Zeißner, C. Zeinitz, G. Zemaityte, J. C. Zeng, O. Zenin, T. Ženiš, D. Zerwas, M. Zgubić, B. Zhang, D. F. Zhang, G. Zhang, J. Zhang, K. Zhang, L. Zhang, L. Zhang, M. Zhang, X. Zhang, R. Zhang, S. Zhang, X. Zhang, X. Zhang, Z. Zhang, Z. Zhang, P. Zhao, Y. Zhao, Z. Zhao, A. Zhemchugov, Z. Zheng, B. Zhou, C. Zhou, H. Zhou, M. Zhou, X. Zhou, Y. Zhou, C. G. Zhu, C. Zhu, H. L. Zhu, H. Zhu, J. Zhu, Y. Zhu, X. Zhuang, K. Zhukov, V. Zhulavoy, D. Zieminska, N. I. Zimine, S. Zimmermann, Z. Zinonos, M. Ziolkowski, L. Živkoč, G. Zobernig, A. Zoccoli, K. Zoch, T. G. Zorbas, R. Zou, L. Zwalinski.
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, University of Texas at Austin, Austin, TX, USA
12 (a) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (b) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (c) Department of Physics, Bogazici University, Istanbul, Turkey; (d) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
14 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
15 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Physics Department, Tsinghua University, Beijing, China; (c) Department of Physics, Nanjing University, Nanjing, China; (d) University of Chinese Academy of Science (UCAS), Beijing, China
16 Institute of Physics, University of Belgrade, Belgrade, Serbia
17 Department for Physics and Technology, University of Bergen, Bergen, Norway
18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA
19 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
21 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
22 (a) Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá, Colombia; (b) Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia
23 (a) Dipartimento di Fisica, INFN Bologna and Universita’ di Bologna, Bologna, Italy; (b) INFN Sezione di Bologna, Bologna, Italy
24 Physikalisches Institut, Universität Bonn, Bonn, Germany
25 Department of Physics, Boston University, Boston, MA, USA
26 Department of Physics, Brandeis University, Waltham, MA, USA
27 (a) Transilvania University of Brasov, Brasov, Romania; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania; (e) University Politehnica Bucharest, Bucharest, Romania; (f) West University in Timisoara, Timisoara, Romania
28 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
29 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
31 California State University, Long Beach, CA, USA
32 Cavendish Laboratory, University of Cambridge, Cambridge, UK
33 (a) Department of Physics, University of Cape Town, Cape Town, South Africa; (b) Themba Labs, Western Cape, South Africa; (c) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa; (d) University of South Africa, Department of Physics, Pretoria, South Africa; (e) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
34 Department of Physics, Carleton University, Ottawa, ON, Canada
35 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca, Morocco; (b) Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPEH-Marrakech, Morocco; (d) Moroccan Foundation for Advanced Science Innovation and Research (MASCIIR), Rabat, Morocco; (e) LPMR, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco; (f) Faculté des sciences, Université Mohammed V, Rabat, Morocco
36 CERN, Geneva, Switzerland
37 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
38 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
39 Nevis Laboratory, Columbia University, Irvington, NY, USA
40 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
41 (a) Dipartimento di Fisica, Università della Calabria, Rende, Italy; (b) Laboratori Nazionali di Frascati, INFN Gruppo Collegato di Cosenza, Frascati, Italy
42 Physics Department, Southern Methodist University, Dallas, TX, USA
Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

Faculty of Science, Kyoto University, Kyoto, Japan

Kyoto University of Education, Kyoto, Japan

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

Physics Department, Lancaster University, Lancaster, UK

Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia

School of Physics and Astronomy, Queen Mary University of London, London, UK

Department of Physics, Royal Holloway University of London, Egham, UK

Department of Physics and Astronomy, University College London, London, UK

Louisiana Tech University, Ruston, LA, USA

Fysiska institutionen, Lunds universitet, Lund, Sweden

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, UK

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst, MA, USA

Department of Physics, McGill University, Montreal, QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, University of Michigan, Ann Arbor, MI, USA

Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus

Group of Particle Physics, University of Montreal, Montreal, QC, Canada

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

National Research Nuclear University MEPhI, Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen, The Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands

Department of Physics, Northern Illinois University, DeKalb, IL, USA

(a) Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia; (b) Novosibirsk State University Novosibirsk, Novosibirsk, Russia

Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute”, Moscow, Russia

Department of Physics, New York University, New York, NY, USA

Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan

Ohio State University, Columbus, OH, USA

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA

Department of Physics, Oklahoma State University, Stillwater, OK, USA

RCPTM, Joint Laboratory of Optics, Palacký University, Olomouc, Czech Republic

Institute for Fundamental Science, University of Oregon, Eugene, OR, USA

Graduate School of Science, Osaka University, Osaka, Japan
