Liouville Type Theorems for the Planar Stationary MHD Equations with Growth at Infinity

Wendong Wang

Communicated by G. G. Chen

Abstract. For the two dimensional steady MHD equations, we prove that Liouville type theorems hold if the velocity is growing fast at infinity. The main obstacle comes from the nonlinear terms, since the vorticity system of the MHD equations has no maximum principle unlike the Navier–Stokes equations. As a corollary, we obtain that all solutions of the 2D Navier–Stokes equations satisfying $\nabla u \in L^p(\mathbb{R}^2)$ with $1 < p < \infty$ are constants, which is sharp since there exist some non-trivial linear solutions like the Couette flow in the sense of $\nabla u \in L^\infty(\mathbb{R}^2)$.

Mathematics Subject Classification. 35Q30, 35B53, 76D03.

Keywords. Liouville theorem, MHD equations, Navier–Stokes equations.

1. Introduction

Consider the incompressible MHD equations on the whole space \mathbb{R}^2 as follows:

$$\begin{cases}
-\Delta u + u \cdot \nabla u + \nabla \pi = b \cdot \nabla b, \\
-\Delta b + u \cdot \nabla b = b \cdot \nabla u, \\
d\text{div } u = 0, \text{div } b = 0,
\end{cases}$$

(1)

and the Dirichlet energy integral is defined as the following:

$$D(u, b) = \int_{\mathbb{R}^2} |\nabla u|^2 + |\nabla b|^2 \, dx.$$

(2)

When $b = 0$ in (1), it is the 2D Navier–Stokes equations. Let us recall some known results of Navier–Stokes equations on this issue. For example, Gilbarg–Weinberger proved the above Liouville type theorem by assuming the Dirichlet energy integral of (2) with $b = 0$ is finite in [11], where they made use of the fact that the vorticity function satisfies a nice elliptic equation to which a maximum principle applies. The assumption on the boundedness of the Dirichlet energy integral can be relaxed to $\nabla u \in L^p(\mathbb{R}^2)$ with some $p \in (\frac{6}{5}, 3]$ by Bildhauer–Fuchs–Zhang [1]. If u is bounded, a Liouville theorem being more in the spirit of the classical one for entire analytic functions was obtained by Koch–Nadirashvili–Seregin–Sverak [13] as a byproduct of their work on the non-stationary case. The above results also can be generalized to the shear thickening flows, for example seeing [4–6,12,19,20]. In addition, the equation of (1) was also considered in an exterior domain like the existence and asymptotic behavior of solutions, such as referring to [3,9,10,14–17].

Furthermore, along with [13], Fuchs–Zhong in [7] showed the velocity field u satisfying the stationary Navier–Stokes equations on the entire plane must be constant under the growth condition $\limsup |x|^{-\alpha} |u(x)| < \infty$ as $|x| \to \infty$ for some $\alpha \in [0, 1/7)$. Later, Bildhauer–Fuchs–Zhang [1] proved the component can be improved to $\alpha < \frac{1}{3}$.
However, for the two dimensional stationary MHD equations, the similar Liouville type theorems seem to be more difficult, since the maximum principle for the vorticity system is not available to the best of my knowledge. In [18], the author and Y. Wang obtained some Liouville type theorems by assuming $D(u, b) < \infty$ in (2) or $u \in L^\infty$, where the smallness conditions of the magnetic field are added. Here we go on this topic in this direction. Since all the exact solutions of (1) with $b = 0$ we know are polynomials, it seems that the smooth solutions below linear growth are trivial. A natural question is as follows:

What happens if the velocity is growing at infinity?

Note that the vorticity equations are as follows. Let $w = \partial_2 u_1 - \partial_1 u_2$ and $h = \partial_2 b_1 - \partial_1 b_2$, then
\[
\begin{aligned}
-\Delta w + u \cdot \nabla w &= b \cdot \nabla h, \\
-\Delta h + u \cdot \nabla h &= b \cdot \nabla w + H
\end{aligned}
\]
(3)

where
\[
H = 2\partial_2 b_2(\partial_2 u_1 + \partial_1 u_2) + 2\partial_1 u_1(\partial_2 b_1 + \partial_1 b_2).
\]

The main difficulty comes from the terms $b \cdot \nabla w$, H etc., which are not vanishing by the usual energy method. This is why we have to assume the smallness of some norm of b holds. Moreover, if the velocity is largely growing as in [1], i.e. there exist two constants $\alpha > 0$ and $c_0 > 0$ such that
\[
|u(x)| \leq c_0 (1 + |x|)^\alpha, \quad \forall \, x \in \mathbb{R}^2,
\]
(4)

then this case is more complicated. In fact, using the same arguments as in [1], the term
\[
C(q)L^{2\alpha}\int_{\mathbb{R}^2} h^2 |b|^2 w^{2q-4}(\eta^2)dx
\]
seems to be not controlled (see (8) in the second subsection). To overcome it, we introduce the decay condition of b:
\[
|b(x)| \leq c_0 (1 + |x|)^{\beta}, \quad \forall \, x \in \mathbb{R}^2,
\]
(5)

where $\beta < 0$. Another new observation is to consider the local energy estimate in an annular domain, which is similar as the idea of Littlewood-Paley decomposition.

Next we state our first result:

Theorem 1.1. Let (u, b, π) be a smooth solution of the 2D MHD equations (1) defined over the entire plane satisfying the growth estimates (4) with $\alpha < 1/3$ and (5) with $\beta < -\alpha$. Then, there exists $\varepsilon_0 = \varepsilon_0(\alpha, \beta, c_0) > 0$ such that, if
\[
\|b\|_{L^1(\mathbb{R}^2)} + \|\nabla |b|^{1/2}\|_{L^1(\mathbb{R}^2)} \leq \varepsilon_0,
\]
then u and π are constants and $b \equiv 0$.

Remark 1. The above result generalized the Liouville type theorem in [1,7,13] to the MHD case. It is worth mentioning that we don’t know whether this condition of $\alpha < 1/3$ is sharp. As far as the author knows, even for the Navier–Stokes equation, it is the best result at present.

It follows from the above theorem that

Theorem 1.2. Let (u, b, π) be a smooth solution of the 2D MHD equations (1) defined over the entire plane satisfying the growth estimates $\nabla u \in L^{q_0}(\mathbb{R}^2)$ for $1 < q_0 < \infty$, and $\nabla b \in L^\infty(\mathbb{R}^2)$. Then, there exists $\varepsilon = \varepsilon(q_0, \|\nabla u\|_{L^{q_0}}, \|\nabla b\|_{L^\infty}) > 0$ such that, if
\[
\|b\|_{L^1(\mathbb{R}^2)} + \|\nabla |b|^{1/3}\|_{L^1(\mathbb{R}^2)} \leq \varepsilon,
\]
then u and π are constants and $b \equiv 0$.

When b vanishes, the 2D Navier–Stokes equations follows from (1).

Corollary 1.3. Let (u, π) be a smooth solution of the 2D NS equations defined over the entire plane satisfying the growth estimates $\nabla u \in L^q(\mathbb{R}^2)$ for some $1 < q < \infty$. Then u and π are constants.
Remark 2. The above result generalized the Liouville type theorem by Gilbarg–Weinberger in [11] for \(q = 2 \). Moreover, this is the best estimate in a sense, since there are counter-examples, whose gradient \(\nabla u \) belongs to \(L^{\infty}(\mathbb{R}^2) \) (for example, the Couette flow \((x_2,0)\)).

We need the following lemma in the proof.

Lemma 1.4 (Theorem II.9.1 [8]). Let \(\Omega \subset \mathbb{R}^2 \) be an exterior domain and let
\[
\nabla f \in L^p(\Omega),
\]
for some \(2 < p < \infty \). Then
\[
\lim_{|x| \to \infty} \frac{|f(x)|}{|x|^{\frac{p-2}{p}}} = 0,
\]
uniformly.

Throughout this article, \(C(\alpha_1, \cdots, \alpha_n) \) denotes a constant depending on \(\alpha_1, \cdots, \alpha_n \), which may be different from line to line.

2. Proof of Theorem 1.1

In this section, we are aimed to prove Theorem 1.1 by following the same route in [1]. Different from the arguments in [1], we consider the local energy estimates in an annular domain and obtain the \(L^q \) estimates of the vorticity.

First, we prove the following proposition.

Proposition 2.1. Let \((u, b, \pi)\) be a smooth solution of the 2D MHD equations (1) defined over the entire plane satisfying the growth estimates (4) with \(0 < \alpha < \frac{1}{3} \) and (5) with \(\beta < -\alpha \). Then
\[
\|\nabla u\|_{L^q(\mathbb{R}^2)} + \|\nabla b\|_{L^q(\mathbb{R}^2)} \leq C(\alpha, \beta, q, c_0) < \infty
\]
holds for any \(q > q_0 \), where
\[
q_0 = \max \left\{ \frac{2}{1 - 3\alpha}, \frac{-1}{\alpha + \beta}, -\frac{1}{2\beta} \right\}.
\]

Proof of Proposition 2.1. Let \(\eta(x) \in C^\infty_c(2R) \) be a cut-off function on an annular domain with \(0 \leq \eta \leq 1 \) satisfying
\[
\eta(x) = \begin{cases}
1, & x \in B_R \setminus B_{R/2}, \\
0, & x \in B_{2R} \cup B_{R/4}.
\end{cases}
\]

Write \(w^{2q} = (w^2)^q \). Then for \(q \geq 2, \ell \geq q \), we have
\[
\int_{\mathbb{R}^2} w^{2q} \eta^{2\ell} dx = \int_{\mathbb{R}^2} (\partial_2 u_1 - \partial_1 u_2) w^{2q-2} w \eta^{2\ell} dx
\]
\[
= \int_{\mathbb{R}^2} (u_2, -u_1) \cdot \nabla [w^{2q-2} w \eta^{2\ell}] dx
\]
\[
\leq (2q - 1) \int_{\mathbb{R}^2} \|u\| \|\nabla w\| w^{2q-2} \eta^{2\ell} dx + 2\ell \int_{\mathbb{R}^2} \|u\| \|\nabla \eta\| |w|^{2q-1} \eta^{2\ell-1} dx
\]
\[
\leq \frac{1}{2} \int_{\mathbb{R}^2} w^{2q} \eta^{2\ell} dx + C(q) \int_{\mathbb{R}^2} \|u\|^2 |\nabla w|^2 w^{2q-4} \eta^{2\ell} dx + 2\ell \int_{\mathbb{R}^2} \|u\| \|\nabla \eta\| |w|^{2q-1} \eta^{2\ell-1} dx
\]
Similarly, we have

\[
\int_{\mathbb{R}^2} h^2 \eta^2 \bar{f} \, dx \leq C(q) \int_{\mathbb{R}^2} |b|^2 |\nabla h|^2 h^{2q-4} \eta^2 \bar{f} \, dx + 4\ell \int_{\mathbb{R}^2} |b| |\nabla \eta| |h|^{2q-1} \eta^2 \bar{f} \, dx
\]

Due to the growth estimates (4) and (5), we have

\[
\int_{\mathbb{R}^2} w^2 \eta^2 \bar{f} + h^2 \eta^2 \bar{f} \, dx
\]

\[
\leq C(q) R^{2\alpha} \int_{\mathbb{R}^2} |\nabla w|^2 w^{2q-4} \eta^2 \bar{f} \, dx + C(q) R^{2\beta} \int_{\mathbb{R}^2} |\nabla h|^2 h^{2q-4} \eta^2 \bar{f} \, dx
\]

\[
+ C(\ell) R^{\alpha-1} \int_{\mathbb{R}^2} |w|^{2q-4} \eta^2 \bar{f} \, dx + C(\ell) R^{\beta-1} \int_{\mathbb{R}^2} |h|^{2q-4} \eta^2 \bar{f} \, dx
\]

(7)

On the other hand, multiply \(\eta^2 w h^{q-4} \) and \(\eta^2 h^{q-4} \) on both sides of (3), and we have

\[
I \doteq (2q-3) \int_{\mathbb{R}^2} |\nabla w|^2 w^{2q-4} \eta^2 \bar{f} \, dx
\]

\[
= \frac{1}{2q-2} \int_{\mathbb{R}^2} w^{2q-2} \triangle (\eta^2) \, dx + \frac{1}{2q-2} \int_{\mathbb{R}^2} w^{2q-2} u \cdot \nabla (\eta^2) \, dx
\]

\[
+ \int_{\mathbb{R}^2} b \cdot \nabla h |w|^{2q-4} \eta^2 \bar{f} \, dx
\]

\[
\leq \frac{1}{2q-2} \int_{\mathbb{R}^2} w^{2q-2} \triangle (\eta^2) \, dx + \frac{1}{2q-2} \int_{\mathbb{R}^2} w^{2q-2} u \cdot \nabla (\eta^2) \, dx
\]

\[
+ \frac{1}{2} I + C(q) \int_{\mathbb{R}^2} h^2 |\eta^2 w| \, dx - \int_{\mathbb{R}^2} w^{2q-4} w b \cdot \nabla (\eta^2) \, dx
\]

(8)

and similarly

\[
II \doteq (2q-3) \int_{\mathbb{R}^2} |\nabla h|^2 h^{2q-4} \eta^2 \bar{f} \, dx
\]

\[
\leq \frac{1}{2q-2} \int_{\mathbb{R}^2} h^{2q-2} \triangle (\eta^2) \, dx + \frac{1}{2q-2} \int_{\mathbb{R}^2} h^{2q-2} u \cdot \nabla (\eta^2) \, dx
\]

\[
- \int_{\mathbb{R}^2} w |h|^{2q-4} h b \cdot \nabla (\eta^2) \, dx + \frac{1}{2} II + C(q) \int_{\mathbb{R}^2} w^2 |\eta^2 w| \, dx
\]

\[
+ C \int_{\mathbb{R}^2} |\nabla u| |\nabla b| |h|^{2q-3} (\eta^2) \, dx
\]

(9)

Then it follows from (7), (8) and (9) that

\[
\int_{\mathbb{R}^2} w^{2q} \eta^2 \bar{f} + h^2 \eta^2 \bar{f} \, dx
\]

\[
\leq C(q, \ell) R^{\alpha-1} \left(R^{\alpha-1} \int_{\mathbb{R}^2} w^{2q-2} (\eta^2 f^2) \, dx + R^{2\alpha} \int_{\mathbb{R}^2} w^{2q-2} (\eta^2 f^2) \, dx + \int_{\mathbb{R}^2} |w|^{2q-1} (\eta^2 f^2) \, dx \right)
\]

\[
+ C(q, \ell) \left(R^{2\alpha+2\beta} \int_{\mathbb{R}^2} w^{2q-4} (\eta^2 f^2) \, dx + R^{2\alpha-1+\beta} \int_{\mathbb{R}^2} |w|^{2q-3} |h| (\eta^2 f^2) \, dx \right)
\]

\[
+ C(q, \ell) R^{\beta-1} \left(R^{\beta-1} \int_{\mathbb{R}^2} h^{2q-2} (\eta^2 f^2) \, dx + R^{\alpha+\beta} \int_{\mathbb{R}^2} h^{2q-2} (\eta^2 f^2) \, dx + \int_{\mathbb{R}^2} |h|^{2q-1} (\eta^2 f^2) \, dx \right)
\]

\[
+ C(q) \left(R^{4\beta} \int_{\mathbb{R}^2} w^2 h^{2q-4} (\eta^2 f^2) \, dx + R^{-1+3\beta} \int_{\mathbb{R}^2} |w|^{2q-3} (\eta^2 f^2) \, dx \right)
\]

\[
+ C(q) R^{2\beta} \int_{\mathbb{R}^2} |\nabla u| |\nabla b| |h|^{2q-3} (\eta^2 f^2) \, dx = I_1 + \cdots + I_5
\]

(10)
Estimate of I_5. For a smooth vector-valued function $F \in C^2_0(\Omega)$, by applying the decomposition inequality of L^p norm [2] for $q > 1$ we have

$$\|
abla F\|_{L^q(\Omega)} \leq C(n, q) \left(\|\text{div } F\|_{L^q(\Omega)} + \|
abla \times F\|_{L^q(\Omega)}\right).$$

(11)

Hence, by choosing $F = u_\ell \eta_\ell^5$ or $b_\ell \eta_\ell^5$ we get

$$(\int_{\mathbb{R}^2} |\nabla u|^{2q} \eta^{2\ell} dx)^{\frac{1}{2q}} \leq C(q, \ell) \left(\int_{\mathbb{R}^2} |u|^{2q} \eta^{2\ell} \nabla \eta|^{2q} dx\right)^{\frac{1}{2q}} + C(q, \ell) \left(\int_{\mathbb{R}^2} |w|^{2q} \eta^{2\ell} dx\right)^{\frac{1}{2q}}$$

$$\leq C(q, \ell) R^{-1+\alpha+\frac{1}{q}} + C(q, \ell) \left(\int_{\mathbb{R}^2} |w|^{2q} \eta^{2\ell} dx\right)^{\frac{1}{2q}}$$

and

$$\int_{\mathbb{R}^2} |\nabla u| |\nabla b||h^{2q-3}(\eta^{2\ell})dx$$

$$\leq C(q, \ell) R^{\frac{1}{2q}} \left(R^{\alpha+\frac{1}{q}-1} + \left(\int_{\mathbb{R}^2} |w|^{2q} \eta^{2\ell} dx\right)^{\frac{1}{2q}}\right) \left(R^{3+\frac{1}{q}-1} + \left(\int_{\mathbb{R}^2} |h|^{2q} \eta^{2\ell} dx\right)^{\frac{1}{2q}}\right)$$

Then for the term I_5, Young inequality implies that

$$I_5 \leq C(q) R^{2\beta} \int_{\mathbb{R}^2} |\nabla u| |\nabla b||h^{2q-3}(\eta^{2\ell})dx$$

$$\leq C(\delta, q, \ell) R^{2\beta} (-2+\alpha+3\beta+\frac{1}{q}) + C(\delta, q, \ell) R^{3(1+\alpha+2\beta+\frac{1}{q})} + \delta \left(\int_{\mathbb{R}^2} |w|^{2q} \eta^{2\ell} dx\right)$$

$$+ C(\delta, q, \ell) R^{2+4\beta q} + \delta \left(\int_{\mathbb{R}^2} |h|^{2q} \eta^{2\ell} dx\right)$$

where $\delta > 0$, to be decided.

Estimate of I_1. Noting $\ell \geq q$, by Young inequality we have

$$I_1 = C(\ell, q) R^{2\alpha-2} \int_{\mathbb{R}^2} w^{2q-2} (\eta^{2\ell-2}) dx + C(\ell, q) R^{3\alpha-1} \int_{\mathbb{R}^2} w^{2q-2} (\eta^{2\ell-1}) dx$$

$$+ C(\ell, q) R^{\alpha-1} \int_{\mathbb{R}^2} w^{2q-1} \eta^{2\ell-1} dx = I_{11} + \cdots + I_{13},$$

where

$$I_{11} \leq \delta \int_{\mathbb{R}^2} w^{2q} \eta^{2(2\ell-2) - \frac{1}{q-1}} dx + C(\delta, \ell, q) R^{2+q(2\alpha-2)},$$

$$I_{12} \leq \delta \int_{\mathbb{R}^2} w^{2q} \eta^{2(2\ell-1) - \frac{1}{q-1}} dx + C(\delta, \ell, q) R^{2+q(3\alpha-1)},$$

and

$$I_{13} \leq \delta \int_{\mathbb{R}^2} w^{2q} \eta^{2(\ell-1) - \frac{1}{q-1}} dx + C(\delta, \ell, q) R^{2+q(2\alpha-1)}.$$

Estimate of I_2. Similar to the calculation of the term I_1, we get

$$I_2 \leq \delta \int_{\mathbb{R}^2} (w^{2q} + h^{2q}) \eta^{2\ell} dx + C(\delta, \ell, q) R^{2+q(2\alpha+2\beta)}$$

$$+ \delta \int_{\mathbb{R}^2} (w^{2q} + h^{2q}) \eta^{2(\ell-1) - \frac{1}{q-1}} dx + C(\delta, \ell, q) R^{2+q(2\alpha-1+\beta)}.$$
Estimate of I_3. By Hölder and Young inequalities we have
\[
I_3 \leq \delta \int_{\mathbb{R}^2} h^{2q} \eta^{(2\ell-2)} \frac{2q}{\pi^{\ell\tau}} dx + C(\delta, \ell, q) R^{2+q(2\beta-2)} + \delta \int_{\mathbb{R}^2} h^{2q} \eta^{(2\ell-1)} \frac{2q}{\pi^{\ell\tau}} dx + C(\delta, \ell, q) R^{2+q(\alpha-1+2\beta)} + \delta \int_{\mathbb{R}^2} h^{2q} \eta^{(2\ell-1)} \frac{2q}{\pi^{\ell\tau}} dx + C(\delta, \ell, q) R^{2+2q(\beta-1)}
\]

Estimate of I_4. Similar to the calculation of the term I_3, we get
\[
I_4 \leq \delta \int_{\mathbb{R}^2} (w^{2q} + h^{2q}) \eta^{(2\ell)} dx + C(\delta, \ell, q) R^{2+q(4\beta)} + \delta \int_{\mathbb{R}^2} (w^{2q} + h^{2q}) \eta^{(2\ell-1)} \frac{2q}{\pi^{\ell\tau}} dx + C(\delta, \ell, q) R^{2+q(-1+3\beta)}
\]

Note that $\eta^{(2\ell-1)} \frac{2q}{\pi^{\ell\tau}} \leq \eta^{2\ell}$ and $\eta^{(2\ell-1)} \frac{2q}{\pi^{\ell\tau}} \leq \eta^{2\ell}$ for $\ell = q \geq q_0$. Hence, firstly taking $\ell = q$ and $\delta < \frac{1}{32}$; secondly, for fixed $\alpha < \frac{1}{3}$ with $\beta < -\alpha$, we take the minimum q_0 satisfying the following conditions
\[
2 + q(2\alpha - 2) \leq 0, \quad 2 + q(3\alpha - 1) \leq 0, \quad 2 + 2q(\alpha - 1) \leq 0,
\]
and
\[
2 + 4\beta q \leq 0, \quad 2 + q(2\alpha + 2\beta) \leq 0.
\]

Obviously, q_0 is as in (6). And for any $q > q_0$, we write
\[
\gamma_0 = \max\{2 + q(3\alpha - 1), 2 + 4\beta q, 2 + q(2\alpha + 2\beta)\} < 0.
\]

Then we get
\[
\int_{\mathbb{R}^2} w^{2q} \eta^{2\ell} + h^{2q} \eta^{2\ell} dx \leq C(\ell, q) \left[R^{2+q(2\alpha-2)} + R^{2+q(3\alpha-1)} + R^{2+2q(\alpha-1)} \right] + C(\ell, q) R^{2+4\beta q} + C(\ell, q) R^{2+q(2\alpha+2\beta)}
\]

Choose $R = 2^{k+1}$ with $k \in \mathbb{N}$ such that
\[
\int_{2^k \leq |x| \leq 2^{k+1}} w^{2q} + h^{2q} dx \leq C(\alpha, \beta, q) 2^{k\gamma_0}
\]

Consequently, we get
\[
\int_{\mathbb{R}^2 \setminus B_1} w^{2q} + h^{2q} dx \leq C(\alpha, \beta, q, c_0) < \infty, \quad (12)
\]

for any $q > q_0$.

Arguments for the estimate in B_1. Firstly,
\[
\int_{\mathbb{R}^2} w^{2q} + h^{2q} dx < \infty, \quad q > q_0,
\]
due to the regularity of the solutions. Secondly, by (11) we have
\[
\int_{B_R} |\nabla u|^{2q} + |\nabla b|^{2q} dx \leq C(q) \int_{\mathbb{R}^2} w^{2q} + h^{2q} dx + C(q) R^{-2q} \int_{B_{2R}} (|u| + |b|)^{2q} dx,
\]
and thus
\[
\int_{\mathbb{R}^2} |\nabla u|^{2q} + |\nabla b|^{2q} dx \leq C(q) \int_{\mathbb{R}^2} w^{2q} + h^{2q} dx < \infty, \quad q > q_0, \quad (13)
\]
where we used the growth estimates (4) and (5). Finally, for the non-negative cut-off function \(\eta_1 \), i.e.

\[
\eta_1(x) = \begin{cases}
1, & x \in B_1, \\
0, & x \in B_2^c,
\end{cases}
\]
satisfying \(|\nabla \eta_1| + |\nabla^2 \eta_1| \leq C\), one can also obtain the similar estimate to (10) with \(R = 1 \) and arrive at

\[
\int_{\mathbb{R}^2} w^{2q}\eta_1^{2q} + h^{2q}\eta_1^{2q} \, dx \leq C(q) \int_{\mathbb{R}^2} (|\nabla u| + |\nabla b|)^{2q - 2}\eta_1^{2q - 2} + (|\nabla u|^2 + |\nabla b|)^{2q - 1}\eta_1^{2q - 1} \, dx,
\]

which can be controlled by

\[
C(q)\int_{\mathbb{R}^2} (|\nabla (u\eta_1)| + |\nabla (b\eta_1)|)^{2q - 2} + (|\nabla (u\eta_1)| + |\nabla (b\eta_1)|)^{2q - 1} \, dx + C(q, c_0),
\]

where we used \(q = \ell \),

\[
|\nabla u\eta_1| = (|\nabla (u)\eta_1| = |\nabla (u\eta_1)| - \nabla \eta_1 \otimes u) \leq |\nabla (u\eta_1)| + |\nabla \eta_1| |u|,
\]

and \(|u| + |b| \leq C(c_0)\) in \(B_2 \). Using (11) and Hölder inequality, we get

\[
\int_{\mathbb{R}^2} w^{2q}\eta_1^{2q} + h^{2q}\eta_1^{2q} \, dx \leq \frac{1}{2} \int_{\mathbb{R}^2} w^{2q}\eta_1^{2q} + h^{2q}\eta_1^{2q} \, dx + C(q, c_0),
\]

which and (12) imply that

\[
\int_{\mathbb{R}^2} w^{2q} + h^{2q} \, dx \leq C(\alpha, \beta, q, c_0) < \infty,
\]

for any \(q > q_0 \). And the required inequality follows by using (11), (4) and (5) again.

Thus the proof of Proposition 2.1 is complete. \(\square \)

Lemma 2.2. Let \((u, b, \pi)\) be a smooth solution of the 2D MHD equations (1) defined over the entire plane satisfying the growth estimates (4) with \(0 < \alpha < \frac{1}{3} \). Moreover, we assume that \(b \) satisfies (5) with \(\beta < -\alpha \). Then

\[
\|\nabla(|w|^{q-1})\|_{L^2(\mathbb{R}^2)} + \|\nabla(|h|^{q-1})\|_{L^2(\mathbb{R}^2)} \leq C(\alpha, \beta, q, c_0) < \infty,
\]

where

\[
q > q_0 + 1 = \max \left\{ \frac{2}{1 - 3\alpha}, -\frac{1}{\alpha + \beta}, -\frac{1}{2\beta} \right\} + 1.
\]

Proof of Lemma 2.2. On the other hand, let \(\phi(x) \in C_c^\infty(B_R) \) and \(0 \leq \phi \leq 1 \) satisfying

\[
\phi(x) = \begin{cases}
1, & x \in B_R, \\
0, & x \in B_2^c_R
\end{cases}
\]

Using similar estimates as in (8) and (9), multiply \(\phi^{2q}w^{2q-4}w \) and \(\phi^{2q}h^{2q-4}h \) on both sides of (3) with \(q > 2 \), and we have

\[
I' = (2q - 4) \int_{\mathbb{R}^2} |\nabla w|^2 w^{2q-4} \phi^{2q}w \, dx
\]

\[
\leq \frac{1}{2q - 2} \int_{\mathbb{R}^2} w^{2q-2} \Delta (\phi^{2q}) \, dx + \frac{1}{2q - 2} \int_{\mathbb{R}^2} w^{2q-2} u \cdot \nabla (\phi^{2q}) \, dx
\]

\[
+ C(q) \int_{\mathbb{R}^2} h^2 |b|^2 w^{2q-4}(\phi^{2q}) \, dx - \int_{\mathbb{R}^2} w^{2q-4} \phi h \cdot \nabla (\phi^{2q}) \, dx
\]

\[
= I'_1 + \cdots + I'_4,
\]

(14)
and
\[II' = (2q - 4) \int_{\mathbb{R}^2} |\nabla h|^2 h^{2q-4} \phi^{2q} \, dx \]
\[\leq \frac{1}{2q - 2} \int_{\mathbb{R}^2} h^{2q-2} \triangle (\phi^{2q}) \, dx + \frac{1}{2q - 2} \int_{\mathbb{R}^2} h^{2q-2} u \cdot \nabla (\phi^{2q}) \, dx \]
\[\quad - \int_{\mathbb{R}^2} w h^{2q-4} h b \cdot \nabla (\phi^{2q}) \, dx + C(q) \int_{\mathbb{R}^2} w^2 |b|^2 h^{2q-4} (\phi^{2q}) \, dx \]
\[+ C \int_{\mathbb{R}^2} |\nabla u| |\nabla b| h^{2q-3} (\phi^{2q}) \, dx \]
\[= II'_1 + \cdots + II'_5 \]

(15)

Since
\[||\nabla u||_{2\tilde{q}} + ||\nabla b||_{2\tilde{q}} < \infty, \]

for any \(\tilde{q} > q_0 \) by Proposition 2.1, we have
\[||\nabla (|w|^{q-1})||_{L^2(B_R)}^2 + ||\nabla (|h|^{q-1})||_{L^2(B_R)}^2 \]
\[\leq C \int_{B_{2R}} |w|^{2q-2} + |h|^{2q-2} + |\nabla u| |\nabla b| |h|^{2q-3} \, dx < \infty, \]

for any \(q > q_0 + 1 \). Then the proof is complete.

Proof of Theorem 1.1. For \(q > q_0 + 1 \), we still consider the inequalities (14) and (15). Now we estimate the term \(I'_3 \):
\[I'_3 \leq C(q) \int_{\mathbb{R}^2} |b|^2 w^{2q-2} (\phi^{2q}) \, dx + \int_{\mathbb{R}^2} |b|^2 h^{2q-2} (\phi^{2q}) \, dx = I'_{31} + I'_{32}. \]

In details,
\[I'_{31} = \int_{\mathbb{R}^2} |b|^2 w^{2q-2} (\phi^{2q}) \, dx \]
\[\leq \left(\int_{\mathbb{R}^2} |b|^{2p} \, dx \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^2} |\tilde{w}|^{2p} \, dx \right)^{\frac{1}{p}} \]
\[\leq C(q) ||b||_{L^p(\mathbb{R}^2)} ||w||_{\infty} ||\tilde{w}||_{\frac{2q}{q-1}} \||\nabla \tilde{w}||_{2-\theta}^2 \]

where \(\theta := \frac{2q}{p(q-1)} \), \(\tilde{w} = |w|^{q-1} \) and we used Hölder inequality, Lemma 2.2, and Gagliardo-Nirenberg inequality(for example, see Lemma II.3.3 in [8]). So when \(p = 4q \),
\[\theta = \frac{1}{2(q-1)} \]

Taking \(p_1 = 8q - 2 \), it follows from (13), which is also valid for \(b \), that
\[||b||_{\infty} \leq ||b||_{L^1(\mathbb{R}^2)} \||\nabla b||_{L^{2p_1}(\mathbb{R}^2)} \leq C(q) ||b||_{L^1(\mathbb{R}^2)} \||h||_{L^{p_1}(\mathbb{R}^2)} \]

Write \(\tilde{h} = |h|^{q-1} \). By Gagliardo–Nirenberg inequality we have
\[I'_{31} \leq C(q) ||b||_{L^p(\mathbb{R}^2)} ||b||_{L^{2p_1}(\mathbb{R}^2)} \||h||_{L^{p_1}(\mathbb{R}^2)} \||\nabla h||_{\frac{2q}{q-1}} \||\nabla \tilde{w}||_{2-\theta}^2 \]
\[\leq C(q) ||b||_{L^p(\mathbb{R}^2)} ||b||_{L^{2p_1}(\mathbb{R}^2)} \||h||_{L^{p_1}(\mathbb{R}^2)} \||\nabla \tilde{h}||_{\frac{2q-1}{q-2}} \||\nabla \tilde{w}||_{2-\theta}^2 \]
\[\leq C(q) ||b||_{L^p(\mathbb{R}^2)} ||b||_{L^{2p_1}(\mathbb{R}^2)} \||\nabla \tilde{h}||_{\frac{2q-1}{q-2}} \||\nabla \tilde{w}||_{2-\theta}^2 , \]
since

\[
\left(\frac{p_1 - 2q}{p_1(q - 1)} \right) \left(\frac{2p_1}{3p_1 - 2} \right) = \theta.
\]

(16)

Due to (5), we have

\[
\|b\|_{L^{p}(\mathbb{R}^2)} \leq C(\beta, q)\|b\|_{L^{1}(\mathbb{R}^2)}^{\frac{1}{p}}
\]

Hence, using Proposition 2.1, there exists a positive number \(\varepsilon_2 = \varepsilon_2(\alpha, \beta, q, c_0)\) such that if \(\|b\|_{L^{1}(\mathbb{R}^2)} \leq \varepsilon_2\), then

\[
I_{31}' \leq C(q, \alpha, \beta, c_0)\|b\|_{L^{1}(\mathbb{R}^2)}^{\frac{1}{p}} \frac{1}{p} \|\nabla \tilde{h}\|^2 \|\nabla \tilde{w}\|^2
\leq \frac{1}{16} \|\nabla \tilde{h}\|^2 + \|\nabla \tilde{w}\|^2
\]

The terms \(I_{32}'\) and \(I_{4}'\) are similar, hence we have

\[
I_{3} + I_{4}' = \int_{\mathbb{R}^2} w^2 |b|^2 h^2 q^{-2} (\phi^{2q}) dx \leq \frac{1}{8} \|\nabla \tilde{h}\|^2 + \|\nabla \tilde{w}\|^2
\]

Next we estimate the term \(I_{5}'\). Using (11) to estimate the \(L^p\) norm of \(\nabla b\) with that of \(h\) and Gagliardo-Nirenberg inequality again, we have

\[
I_{5}' = \int_{\mathbb{R}^2} \|\nabla u\|_{L^p(\mathbb{R}^2)} |\nabla b| h^{2q - 3} (\phi^{2q}) dx
\leq \|\nabla u\|_{2p(q - 1)} \|\nabla b\|_{2p(q - 1)(2q - 2)} \|h^{2q - 2}\|_{2p(q - 1)(2q - 2)} \|\nabla u\|_{L^{p}(\mathbb{R}^2)}
\leq C(q) \|h\|_{L^{p}(\mathbb{R}^2)} \left(\|\nabla \tilde{u}\|_{L^{p}(\mathbb{R}^2)} \|\nabla \tilde{w}\|_{L^{p}(\mathbb{R}^2)} \right)
\]

where \(p = 4q\) and

\[
\theta = \frac{2q}{p(q - 1)} = \frac{1}{2(q - 1)}
\]

Taking \(p_1 = 8q - 2\) and \(\gamma = \frac{p_1 - 2}{2q(p_1 - 2)}\) we have

\[
C(q) \|h\|_{L^{p}(\mathbb{R}^2)} \leq C(q) \left(\int_{\mathbb{R}^2} |h|^{p - 2q}\|\nabla\|_{L^{p}(\mathbb{R}^2)} \right)^{\frac{p_1 - p'(1 - \gamma)}{p_1}} \|\nabla h\|_{L^{p_1}(\mathbb{R}^2)}^{\frac{2p_1}{2q}} \|\tilde{h}\|_{L^{p_1}(\mathbb{R}^2)}^{\frac{2q - 1}{2q}} \|\nabla \tilde{h}\|_{L^{p_1}(\mathbb{R}^2)}^{\frac{2p_1}{2q}}
\]

where \(\tilde{h} = |h|^{q - 1}\), and

\[
\|h\|_{L^{p_1}(\mathbb{R}^2)}^{\frac{p - 2q}{2q}} = \|h\|_{L^{p_1}(\mathbb{R}^2)}^{\frac{p - 2q}{2q}}
\]

Since

\[
\frac{p'}{p - 1} = \frac{p}{p - 1} \cdot \frac{p_1 - 2}{p_1 - 2} = \frac{4q(8q - 4)}{12q^2 - 8q + 1}
\]
thence by (16) we have

\[
I_5' \leq C(q) \left(\| h \|_{L^1(\mathbb{R}^2)} \right)^{\frac{1}{2}} \left(\| h \|_{L^2(\mathbb{R}^2)} \right)^{\frac{1}{2}} \| h \|_{L^{\frac{2q}{q-2}}(\mathbb{R}^2)} \left(\| \nabla h \|_{L^{\frac{2q}{q-2}}(\mathbb{R}^2)} \right)^{\frac{1}{2}}
\]

where we used Hölder inequality, due to

\[
\frac{1}{3} < \frac{4q^2 - 2q}{12q^2 - 8q + 1} < 2q
\]

for \(q > 2 \). Hence there exists a positive number \(\| | h |^{\frac{1}{2}} \|_{L^1(\mathbb{R}^2)} \leq \varepsilon_3(\alpha, \beta, q, c_0) \) such that

\[
I_5' \leq \frac{1}{16} \left(\| \nabla h \|_{L^2}^2 + \| \nabla \tilde{u} \|_{L^2}^2 \right)
\]

Recalling the inequalities (14) and (15), using the growth (4), (5) and the above estimates, by Proposition 2.1 and Lemma 2.2 we get

\[
\int_{\mathbb{R}^2} |\nabla w|^2 w^{2q - 4} \phi^{2q} dx + \int_{\mathbb{R}^2} |\nabla h|^2 h^{2q - 4} \phi^{2q} dx
\]

\[
\leq C(\alpha, \beta, q, c_0) \left(R^{-2} + R^{\alpha - 1} + R^{\alpha - 1} \right)
\]

and \(R \to \infty \) implies that

\[
\nabla(|w|^{q - 1}) \equiv 0, \quad \nabla(|h|^{q - 1}) \equiv 0,
\]

which yields that

\[
w \equiv C, \quad h \equiv C,
\]

and it follows from Proposition 2.1 that \(C \equiv 0 \) and \(u, b \) are constants.

The proof of Theorem 1.1 is complete by taking \(\varepsilon_0 = \min \{ \varepsilon_2, \varepsilon_3 \} \).

\[\square\]

3. Proof of Theorem 1.2

Proposition 3.1. Let \((u, b, \pi)\) be a smooth solution of the 2D MHD equations (1) defined over the entire plane satisfying the growth estimates \(\nabla u \in L^{\infty} (\mathbb{R}^2) \) for \(2 < q_0 < \infty \), and \(\nabla b \in L^{\infty} (\mathbb{R}^2) \). Then there exists \(\varepsilon_1 > 0 \) such that, if

\[
\| b \|_{L^1(\mathbb{R}^2)} + \| h \|_{L^1(\mathbb{R}^2)}^{\frac{1}{3}} \leq \varepsilon_1(\varepsilon_0, \| \nabla u \|_{L^{\infty}}, \| \nabla b \|_{L^{\infty}}),
\]

then

\[
\nabla u \in L^p(\mathbb{R}^2), \nabla b \in L^p(\mathbb{R}^2),
\]

for any \(p \geq q_0 \).

Proof of Proposition 3.1. By Lemma 1.4, there exists \(R > 0 \) such that

\[
|u(x)| \leq (1 + |x|)^{1 - \frac{\alpha}{2} \varepsilon_0}, \quad |x| > R, \quad (17)
\]

since \(\nabla u \in L^{q_0}(\mathbb{R}^2) \), and we also have \(b(x) \in L^p(\mathbb{R}^2) \) for any \(1 \leq p \leq \infty \) by Gagliardo-Nirenberg inequality satisfying

\[
\| b \|_{L^p(\mathbb{R}^2)} \leq C(p, \| \nabla b \|_{L^{\infty}}) \quad (18)
\]

Moreover, by (11) we have

\[
\int_{B_R} |\nabla b|^p dx \leq C(q) \int_{\mathbb{R}^2} h^p dx + C(q) R^{-p} \int_{B_{2R}} |b|^p dx, \quad p > 1
\]
by letting \(R \to \infty \), it follows that
\[
\int_{\mathbb{R}^2} |\nabla b|^p \, dx \leq C(q) \int_{\mathbb{R}^2} h^p \, dx \leq C(p, \|\nabla b\|_{\infty}), \quad \forall \, p > 1,
\]
where we have used (18) and \(|h|^{1/3} \in L^1 \cap L^{\infty} \).

Recalling the inequalities (14) and (15) with \(q - 1 = \frac{q_0}{2} \), we have
\[
\|\nabla(|w|^{q-1})\|^2_{L^2(B_R)} + \|\nabla(|h|^{q-1})\|^2_{L^2(B_R)}
\leq C(q_0, \|\nabla b\|_{\infty}) \int_{B_{2R} \setminus B_R} \left(R^{-\frac{2}{q_0}} + |b| R^{-1} \right) (|w|^{q_0} + |h|^{q_0}) \, dx
\]
\[+ C(q_0, \|\nabla b\|_{\infty}) \int_{B_{2R}} |b|^2 (|w|^{q_0} + |h|^{q_0}) + |\nabla u||\nabla b|^{q_0} \, dx < \infty,
\]
where we used (17) for \(R \) large enough. Thus
\[
\nabla \left(|w|^{\frac{q_0}{2}} \right), \nabla \left(|h|^{\frac{q_0}{2}} \right) \in L^2(\mathbb{R}^2),
\]
since \(b \in L^{\infty} \) in (18), \(\nabla b \in L^{\infty} \), \(\nabla u \in L^{q_0} \) form known conditions and \(\nabla b \in L^{q_0} \) in (19). Recall that \(\nabla b \in L^p(\mathbb{R}^2) \), for any \(p > q_0 \) due to (19), then in order to prove Proposition 3.1, it suffices to obtain the following estimate:
\[
\nabla u \in L^p(\mathbb{R}^2),
\]
for any \(p > q_0 \). Firstly, with the help of (21) and \(\nabla u \in L^{q_0} \) we get \(w \in L^p(\mathbb{R}^2) \) for any \(p > q_0 \) due to Gagliardo–Nirenberg inequality. Secondly, using (11) again we have
\[
\int_{B_R} |\nabla u|^p \, dx \leq C(q) \int_{\mathbb{R}^2} u^p \, dx + C(q) R^{-p} \int_{B_{2R}} |u|^p \, dx,
\]
where the last term can be controlled due to (17)
\[
R^{-p} \int_{B_{2R}} |u|^p \, dx \leq C(n) R^{-p+2+p(1-\frac{2}{p})} \leq C(n) R^{2+p(-\frac{2}{p})} \to 0,
\]
as \(R \to \infty \) if \(p > q_0 \). Finally, (22) holds. The proof is complete. \(\square \)

Proof of Theorem 1.2. Case I: \(q_0 > 2 \). One can make the same arguments with the two terms of \(I_{31}^j \) and \(II_5^j \) as in the proof of Theorem 1.1 by noting that (20) and (17).

Case II: \(q_0 = 2 \). At this time, \(\nabla u \in L^2 \) and \(\nabla b \in L^2 \) due to (19). We refer to Theorem 1.1 of [18], which is an immediate corollary.

Case III: \(1 < q_0 < 2 \). At this time, \(u \in L^{\frac{2q_0}{2-q_0}}(\mathbb{R}^2) \) by Sobolev inequality and \(b \in L^p \) for any \(p > 1 \) due to (18). Thus, we refer to Theorem 1.2 of [18], which is also an immediate corollary.

The proof is complete. \(\square \)

Acknowledgements. W. Wang was supported by NSFC under Grant 12071054, 11671067 and “the Fundamental Research Funds for the Central Universities”.

Declarations

Conflict of interest The author states that there is no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

[1] Bildhauer, M., Fuchs, M., Zhang, G.: Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J. Math. Fluid Mech. 15(3), 583–616 (2013)

[2] Bogovski, M.E.: Decomposition of $L^p(Ω; R^n)$ into the direct sum of subspaces of solenoidal and potential vector fields. Soviet Math. Dokl. 33, 161–165 (1986)

[3] Decaster, A., Ifimie, D.: On the asymptotic behaviour of 2D stationary Navier–Stokes solutions with symmetry conditions. Nonlinearity 30(10), 3951–3978 (2017)

[4] Fuchs, M.: Stationary flows of shear thickening fluids in 2D. J. Math. Fluid Mech. 14(1), 43–54 (2012)

[5] Fuchs, M.: Liouville theorems for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. 14(3), 421–444 (2012)

[6] Fuchs, M., Zhang, G.: Liouville theorems for entire local minimizers of energies defined on the class $LlogL$ and for entire solutions of the stationary Prandtl-Eyring fluid model. Calc. Var. Partial Differ. Equ. 44(1–2), 271–295 (2012)

[7] Fuchs, M., Zhong, X.: A note on a Liouville type result of Gilbarg and Weinberger for the stationary Navier-Stokes equations in 2D. Problems in mathematical analysis No. 60. J. Math. Sci. (N.Y.) 178(6), 695–703 (2011)

[8] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, 2nd edn. Springer Monographs in Mathematics. Springer, New York (2011)

[9] Galdi, Giovanni P., Grisanti, Carlo R.: Existence and regularity of steady flows for shear-thinning liquids in exterior two-dimensional. Arch. Ration. Mech. Anal. 200(2), 533–559 (2011)

[10] Galdi, G.P., Novotny, A., Padula, M.: On the two-dimensional steady-state problem of a viscous gas in an exterior domain. Pac. J. Math. 179(1), 65–100 (1997)

[11] Gilbarg, D., Weinberger, H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5(2), 381–404 (1978)

[12] Jin, Bum Ja, Kang, Kyungkeun: Liouville theorem for the steady-state non-Newtonian Navier–Stokes equations in two dimensions. J. Math. Fluid Mech. 16(2), 275–292 (2014)

[13] Koch, G., Nadirashvili, N., Seregin, G., Sverak, V.: Liouville theorems for the Navier–Stokes equations and applications. Acta Mathematica 203, 83–105 (2009)

[14] Korobkov, Mikhail, Pileckas, Konstantin: Russo, Remigio The existence of a solution with finite Dirichlet integral for the steady Navier–Stokes equations in a plane exterior symmetric domain. J. Math. Pures Appl. (9) 101(3), 257–274 (2014)

[15] Pileckas, Konstantin, Russo, Remigio: On the existence of vanishing at infinity symmetric solutions to the plane stationary exterior Navier–Stokes problem. Math. Ann. 352(3), 643–658 (2012)

[16] Russo, Antonio: A note on the exterior two-dimensional steady-state Navier–Stokes problem. J. Math. Fluid Mech. 11(3), 407–414 (2009)

[17] Russo, Antonio: On the asymptotic behavior of D-solutions of the plane steady-state Navier–Stokes equations. Pac. J. Math. 246(1), 253–256 (2010)

[18] Wang, W., Wang, Y.: Liouville-type theorems for the stationary MHD equations in 2D. Nonlinearity 32(11), 4483–4505 (2019)

[19] Zhang, G.: A note on Liouville theorem for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech. 15(4), 771–782 (2013)

[20] Zhang, G.: Liouville theorems for stationary flows of shear thickening fluids in 2D. Ann. Acad. Sci. Fenn. Math. 40(2), 889–905 (2015)

Wendong Wang
School of Mathematical Sciences
Dalian University of Technology
Dalian 116024
China
e-mail: wendong@dlut.edu.cn

(accepted: July 28, 2021; published online: August 7, 2021)