Predicting long-term hydrological change caused by climate shifting in the 21st century in the headwater area of the Yellow River Basin

Jingyi Hu1,2 · Yiping Wu1 · Pengcheng Sun1 · Fubo Zhao1 · Ke Sun1 · Tiejian Li3 · Bellie Sivakumar4 · Linjing Qiu1 · Yuzhu Sun1 · Zhangdong Jin1,5,6

Accepted: 14 September 2021 / Published online: 2 October 2021 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The Qinghai-Tibetan Plateau (QTP) is one of the amplifiers of global climate change. The headwater area of the Yellow River Basin (HYRB) on the QTP is the dominant water source region for the whole Yellow River Basin. However, the sensitive responses of hydrological processes to the intensifying climate change are exerting high uncertainties to the water cycle in the HYRB. The aim of this study was to investigate the potential climate change under three Representative Concentration Pathways (RCP 2.6, 4.5, and 8.5) and their hydrological impacts in this region using the ensemble climate data from eight general circulation models (GCMs) and the Soil and Water Assessment Tool (SWAT). Compared to the baseline (1976–2015), the projected climate indicated a rise of 7.3–7.8% in annual precipitation, 1.3–1.9 °C in maximum air temperature, and 1.2–1.8 °C in minimum air temperature during the near future period (2020–2059), and an increment of 9.0–17.9%, 1.5–4.5 °C, and 1.3–4.5 °C in precipitation, maximum and minimum temperature, respectively, during the far future period (2060–2099). The well-simulated SWAT modeling results suggested that due to a wetter and warmer climate, annual average actual evapotranspiration (AET) would increase obviously in the future (31.9–35.3% during the near future and 33.5–54.3% during the far future), which might cause a slight decrease in soil water. Water yield would decrease by 16.5–20.1% during the near future period, implying a worsening water crisis in the future. Till the end of this century, driven by the increased precipitation, water yield would no longer continue to decrease, with a decline by 15–19.5%. Overall, this study can not only provide scientific understanding of the hydrological responses to the future climate in both semi-arid and alpine areas, but also contribute to the decision support for sustainable development of water resources and protection of eco-environment in the HYRB.

Keywords Climate change · Hydrological components · Representative concentration pathways · SWAT

1 Introduction

Global warming is one of the most important threats to human society. Indeed, it has already begun to threaten the sustainability of Earth’s life support systems (Lubchenco 1998). According to Intergovernmental Panel on Climate Change (IPCC) reports, the global average air temperature has increased by 0.85 °C from 1880 to 2012, and the situation might get worse as temperature are anticipated to rise by 1–5 °C by the end of the twenty-first century (Holden et al. 2018; Lin et al. 2018; Stocker et al. 2013). Recent studies have pointed out that high-altitude regions, such as the Qinghai-Tibetan Plateau (QTP), were the
amplifier of global climate change (Giorgi et al. 2010; Jian et al. 2014; Liu and Chen 2015). Due to the high altitude, low temperature, and slow vegetation growth, the ecosystems in these regions are fragile and difficult to be repaired once damaged (Wang et al. 2007). Thus, these regions are experiencing much more changes and subject to large uncertainties due to the global climate change when compared to other parts of the world (Tang et al. 2018; Tian et al. 2020).

The water cycle consists of several hydrological processes, among which actual evapotranspiration (AET) is the main process of water and energy exchange in the hydrosphere, atmosphere, soil sphere and biosphere. Besides, AET is also an important link between ecological and hydrological processes (Kool et al. 2014; Xiang et al. 2020). Soil water, also known as soil water content, is the material basis for plant growth and survival. It not only affects the distribution of plants on the land surface, but also plays an important role in regulating and distributing water (Liu et al. 2013; Marco 2011). Water yield refers to the river runoff generated per unit watershed area, which directly reflects the water availability or water supply. Global warming could affect the water resources and complicate their assessment and management (Christensen et al. 2004; Oki and Kanae 2006; Zhou et al. 2011). The increase of temperature has increased the spatial and temporal variability of precipitation and hydrological processes, which caused more frequent drought and flood events and more serious economic losses (Piao et al. 2010; Trenberth et al. 2014). Associated with global warming, the actual evapotranspiration (AET) has also changed significantly during the past several decades, resulting in the loss of soil water and runoff (Berg et al. 2017; Donnelly et al. 2017). Coles et al. (2017) assessed trends in climatological and hydrological variables of hillslopes on Great Plains, and found that snowmelt-runoff and spring soil water content all decreased. In the future, a warming climate would accelerate water transformation processes between different phases and increase the uncertainty of the water cycle prediction. Thus, it is difficult to formulate reasonable management strategies of water resources (Meauurio et al. 2017; Wu et al. 2016; Zhang et al. 2016). Liu et al. (2017) examined the impacts of 1.5 and 2 °C global warming on water cycle and indicated drier springs, and more severe floods over long return periods (25 and 50 years) for Yiluo and Beijiang River catchment. Yang et al. (2014) reported that the weakened water vapor exchange led to less precipitation in the monsoon-impacted southern and eastern Plateau, but the warming enhanced land evaporation. The in-depth understanding of the temporal and spatial distribution of AET, soil water, water yield, and the future climate change impacts is hence of great significance for understanding the evolution characteristics of water cycle, the water resource management, and associated policy formulation, and this has also been an important concern in the global change field (Su et al. 2020; Wang et al. 2018, 2021).

Various methods have been proposed and utilized to disentangle climate change impacts on watershed hydrology (Zhang et al. 2018), such as paired catchment approach, hydrological modelling approach, conceptual approach, empirically statistical method, and hydrological sensitivity method (Gao et al. 2016; Zhang et al. 2017). Because hydrological models relate model parameters directly to physically observable land surface characteristics, this method can effectively extract a significant amount of information from limited existing data (Yang et al. 2017). Lu et al. (2018) used Variable Infiltration Capacity (VIC) model and RegCM4 and found that evapotranspiration would increase by 10–60% in the source regions of Yellow and Yangtze rivers due to the temperature rise. Recently, a common approach for assessing future hydrological conditions is to use General Circulation Model (GCM) projections in combination with hydrological models (Chen et al. 2012). The Soil and Water Assessment Tool (SWAT), a physical-based, semi-distributed, and bio-physical model, is suitable to investigate the response of simulated streamflow to climate change, especially with the help of projected climate data from various GCMs (Arnold et al. 1998; Zhao et al. 2018). For example, using SWAT and outputs from 20 GCMs to estimate the potential hydrological changes, Neupane et al. (2019) found that the mean annual streamflow would decrease under the worst-case Representative Concentration Pathways (RCP) 8.5 during the 2080s in the Suwannee River Basin in the United States.

The headwater area of the Yellow River Basin (HYRB) is well known as the “water tower” of the Yellow River, which is of great significance to water use and ecological security in northern China (Chu et al. 2018). The HYRB, in which the specific ecosystem is valuable and critical for the YRB and even the entire global, is fragile and sensitive to environmental changes (Sun et al. 2019; Zhang et al. 2013). In the context of global climate change, the HYRB is experiencing a much more intense climate change and associated effects, thus greatly increasing the uncertainties of water resources in this region. The annual average flow of the HYRB has decreased over the past 50 years (Cuo et al. 2013). Meng et al. (2016) used a land surface hydrological model to investigate the climate elasticity and indicated that evapotranspiration played a dominant role in runoff reduction in the 2000s. Although there are many references about the impact of climate change on hydrological processes, most of them focused on evapotranspiration or water yield, without systematic analysis of key hydrological processes (Patel et al. 2020). Jian et al. (2021)
investigated changes in Reference evapotranspiration (ET₀) for 1.5 °C and 2 °C stabilized warming and found that although the Yellow River Basin would be drier, it is unclear whether the HYRB would be drier or wetter. In addition, due to the sparse stations and the possible lack of data in the alpine region, the traditional statistical and station scale analysis methods could not meet the requirements of long-term and large-scale hydrological analysis (Chen et al. 2019). Therefore, it is of importance to simulate and evaluate the hydrological responses to climate change using process models for effective watershed management.

With this in mind, the goal of the present study was to assess the hydrological responses to the future projected climate in the HYRB during the near-future and far-future periods. The assessment was made for three RCP scenarios (RCP 2.6, 4.5, and 8.5) using an ensemble of eight downscaled GCMs and SWAT modeling. The specific objectives were to: (1) validate the suitability and performance of the SWAT model in simulating the hydrological processes in the HYRB, (2) predict the characteristics of air temperature and precipitation from CMIP5 GCMs under the above three scenarios, and (3) investigate the spatiotemporal patterns of the key hydrological components (including AET, soil water, and water yield) over the whole basin and across the 21st century. Our modeling results can provide a proper perspective for investigating the main influencing climate factors of the hydrological components, which is not only useful for developing suitable strategies and policies in the semi-arid area, but also the key to the sustainable development of the eco-environment in the YRB.

2 Materials and methods

2.1 Study area

The HYRB, well known as the ‘water tower’ of the Yellow River basin, is located in the Qinghai Province and the northeastern part of the QTP with an area of 118,000 km², accounting for 15.7% of the YRB (Fig. 1). The average annual precipitation (based on observations over the period 1956–2015) is approximately 497 mm and the average annual temperature is about 1.8 °C. The average annual runoff (based on observations over the period 1956–2012) is 19,800,000,000 m³, which is as much as about 42% of the runoff of the Yellow River Basin in the corresponding period. In comparison with the middle and lower reaches, the upper reach of the HYRB is less affected by anthropogenic activities. So, the response of hydrological components to climate change could be reflected objectively in the HYRB.

2.2 Model description

The SWAT model was developed by the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), and has been widely used to predict the impact of climate change and land use change on water, sediment, and chemical components (Arnold et al. 1998).
The hydrological components in the SWAT is based on the water balance equation (Gassman et al. 2007):

\[SW_t = SW + \sum_{i=1}^{t} (R_i - Q_i - ET_i - P_i - QR_i) \]

where \(SW \) is the soil water content, \(i \) is the time \(t \) (days) for the simulation period, \(R \) (mm), \(Q \) (mm), \(ET \) (mm), \(P \) (mm), and \(QR \) (mm) are the daily amounts of precipitation, runoff, evapotranspiration, percolation, and return flow, respectively. Hydrological Response Unit (HRU) is the basic unit in SWAT. The HRU is defined as a unique aggregation of land use, soil properties, management, and terrain slope (Flügel 2010; Patel and Srivastava 2013). In the modeling process, we facilitated the elevation band to discretize the topographic effects of temperature and precipitation into snow melting and runoff (Hartman et al. 1999).

2.3 Model input data

The monthly streamflow data observed over the period 1970–2010 at the Tangnaihai gaging station were provided by the Yellow River Conservancy Commission of the Ministry of Water Resources (http://www.yrcc.gov.cn/). Meteorological data observed over the period 1951–2015 at 16 stations, including daily maximum temperature (TMAX), minimum temperature (TMIN), precipitation, wind speed, solar radiation, and relative humidity, were provided by the Data Center of the China Meteorological Administration (CMA, http://data.cma.cn/). The input data also included digital elevation model (DEM), soil type, and land use. The 90 m × 90 m Shuttle Radar Topography Mission (SRTM) DEM were used to extract the flow direction and accumulation, create streams, delineate the watershed, and calculate the subbasin parameters. Soil data at 1 km resolution were from the Cold and Arid Regions Sciences Data Center at Lanzhou (http://westdc.westgis.ac.cn). Land use data of the year 1980 (1 km × 1 km) and soil data with a 1:1 million scale were provided by the Ecological and Environmental Science Data Center for West China (http://westdc.westgis.ac.cn). Land use data were reclassified into seven major classes including mid-density and sparse grassland (56.9%), dense grassland (19.0%), barren or sparsely vegetated land (14.4%), forest (7.3%), water bodies (2.8%), cropland (0.4%) and urban, industrial and residential land (0.03%).

2.4 Model setup, calibration, and validation

The HYRB was divided into 157 subbasins based on DEM and digital stream network information, and the subbasins were further divided into 2205 HRUs using a threshold of 5% for each of land use, soil properties, management, and terrain slope. The monthly streamflow data from the Tangnaihai gauging station at the watershed outlet was used to calibrate and validate the SWAT model. In this study, SWAT-CUP (Calibration and Uncertainty Procedures) was used to identify the set of parameters based on the sensitivity analysis and generate the optimized values of the parameters (Abbaspour et al. 2007; Andrianaki et al. 2019; Xu et al. 2009) (listed in Table 1). The Sequential Uncertainty Fitting version 2 (SUFI-2) algorithm was adopted for the parameter optimization in this study (Yang et al. 2008). The monthly streamflow data were available for 40 years (1971–2010), from which a twenty-year (1981–2000) record of monthly streamflow was used to calibrate the model, and the other twenty-year (1971–1980 and 2001–2010) record was used for validation. We used a series of numeric criteria to

Parameter	Description	Initial value	Range	Calibrated value/change
CN2	SCS curve number for moisture condition II	36–94	-10 to 10%	9.7%
ALPHA_BF	Baseflow alpha factor (day)	0.048	0.03 to 0.09	0.043
GW_DELAY	Groundwater delay (day)	31	2.0 to 6.0	4.717
GW_REVAP	Groundwater revap coefficient	0.02	0.01 to 0.02	0.018
ESCO	Soil evaporation compensation factor	0.95	0.5 to 0.99	0.987
SOL_K	Saturated hydraulic conductivity (mm/h)	0–109.66	-5 to 20%	1.40%
SOL_AWC	Available water capacity of soil layer (mm)	0.05–0.17	-13 to 10%	9.6%
CH_K2	Effective hydraulic conductivity (mm/h)	5	4.0 to 10.0	9.057
SMTMP	Snowmelt temperature (°C)	0.500	-0.5 to 1.28	0.646
SFTMP	Snowfall temperature (°C)	1.000	1.51 to 3.13	1.967
TLAPS	Temperature lapse rate	0	7.43 to –6.11	–6.37
SOL_Z	Depth from soil surface to the bottom of the layer (mm)	2000	-10 to 5%	-6.1%
evaluate the model performance, including the Nash–Sutcliffe efficiency (NSE), coefficient of determination (R²), and percentage bias (PBIAS). Details of these are presented in "Appendix 1".

2.5 Future climate scenarios

In this study, eight General Circulation Models (GCMs) were selected for climate change projections. The data were downloaded from the ESGF’s website (http://pcmdi9.llnl.gov/). Details of the data sources used in this study are presented in Table 2. The daily data sets (precipitation, maximum and minimum temperatures) of the above three GCMs were selected under RCP 2.6, 4.5, and 8.5 scenarios (representing a very low forcing scenario, medium stabilization scenario, and very high emission scenario, respectively) to predict the future climate scenarios. Two future periods were considered to study the temporal change of hydrological components: near future: 2020–2059 and far future: 2060–2099. The impacts of climate change on hydrological components were investigated by comparing the yearly and monthly difference between the baseline (1976–2015) and the future projections from the model outputs. Specifically, we used absolute changes to evaluate future maximum and minimum temperature, and relative changes to evaluate future precipitation, AET, soil water, and water yield.

Before implementing the GCM output data in SWAT modeling, it is necessary to downscale the raw data to get a fine resolution (Wilby et al. 2002). In this study, we used bilinear interpolation to obtain high-resolution data that could be used in hydrological models (Bae et al. 2015; Sun et al. 2016); see “Appendix 2” and Figure S2 for details. Then we used a simple bias correction method to correct the downscaled data. The precipitation correction parameter \(z_m\) was the relative change between monthly observation data and GCMs data during the historical period (1971–1990), and the temperature correction parameter \(\beta_m\) was the monthly absolute change in the historical period. These biased climate data were calculated as follows:

\[
\begin{align*}
P_{fm} &= (1 + z_m) \times P_{fm0} \\
z_m &= \frac{P_{hm} - P_{hm0}}{P_{hm0}} \\
T_{fm} &= \beta_m + T_{fm0} \\
\beta_m &= T_{hm} - T_{hm0}
\end{align*}
\]

where \(m\) is the month, \(P_{fm}\) and \(T_{fm}\) are the corrected GCMs precipitation and temperature, \(P_{fm0}\) and \(T_{fm0}\) are initial GCMs precipitation and temperature, \(P_{hm}\) and \(T_{hm}\) are GCMs precipitation and temperature data in historical period, \(P_{hm0}\) and \(T_{hm0}\) are CMA precipitation and temperature data.

The GCMs data were evaluated by comparing with the CMA data during the historical period (1986–2005) (Figure S3). Although the downscaling procedure for precipitation underestimated some peaks, the downscaled data were generally consistent with the CMA-based observations, with \(R^2\) being 0.87 (Figure S3a). For the monthly maximum and minimum temperatures, the downscaled data were in much closer agreement with the observed data than the case for monthly precipitation, as shown in Figure S3b and c. The \(R^2\) between monthly temperature (maximum and minimum) derived from the downscaled GCMs and CMA exceeded 0.95 (0.96 for maximum and 0.98 for minimum). Generally, both the simulated downscaled precipitation and the temperature values were in close agreement with the observed ones, suggesting that the real climate conditions of the study area (HYRB) could be fairly accurately reflected by the downscaled climate data derived from the GCMs.

2.6 Statistical analysis

In this study, the unitary linearity regress method was used to fit the relation between variables. The prediction model of the univariate linear regression analysis method is as follows:

\[
y_t = ax_t + b
\]
\[b = \frac{\sum Y_i - a \sum x_i}{n} \] \hspace{1cm} (7)
\[a = \frac{n \sum x_i Y_i - \sum x_i \sum Y_i}{n (\sum x_i^2 - (\sum x_i)^2)} \] \hspace{1cm} (8)

where \(x_t \) represents the value of independent variable in \(t \) period, \(Y_t \) represents the value of dependent variable in \(t \) period, \(a \) and \(b \) represent the parameter of linear regression equation.

We also used Mann–Kendall nonparametric rank test to analyze the trend of hydrological and meteorological elements (Kendall and MauriceG 1979). The rank correlation test for two sets of observations \(X = x_1, x_2, \ldots, x_n \) and \(Y = y_1, y_2, \ldots, y_n \) is formulated as follows. The statistic \(S \) is calculated as follows:

\[S = \sum_{i<j} a_{ij} b_{ij} \] \hspace{1cm} (9)

where

\[a_{ij} = \text{sgn}(x_j - x_i) = \begin{cases} 1 & x_i < x_j \\ 0 & x_i = x_j \\ -1 & x_i > x_j \end{cases} \] \hspace{1cm} (10)

and \(b_{ij} \) is similarly defined for the observations in \(Y \). Under the null hypothesis that \(X \) and \(Y \) are independent and randomly ordered, the statistic \(S \) tends to normality for large \(n \), with \(E(S) = 0 \) and variance given by:

\[\text{var}(S) = \frac{n(n-1)(2n+5)}{18} \] \hspace{1cm} (11)

The significance of trends is tested by comparing the standardized test statistic \(Z \) with the standard normal variate at the desired significance level. \(Z \) is calculated as:

\[Z = \begin{cases} \frac{(S-1)}{\sqrt{\text{var}(S)}} & S > 0 \\ 0 & S = 0 \\ \frac{(S+1)}{\sqrt{\text{var}(S)}} & S < 0 \end{cases} \] \hspace{1cm} (12)

|\(|Z| \geq 1.64 \) means that the confidence level in the current test is more than 95% \((P < 0.05)\). |

3 Results

3.1 Model evaluation

A visual comparison of the monthly simulated streamflow against the observations showed that although three peak flows (e.g., 1981, 1983, and 1999) were underestimated and two peak flows (e.g. 1995 and 2007) were overestimated during extreme high-water years, the monthly streamflow simulations generally matched well with the observations (Fig. 2). The statistical evaluation showed that the model performed well with the NSE of 0.85, \(R^2 \) of 0.86, and PBIAS of -0.3% for the calibration period (Table 3). As for the validation periods, the NSEs were 0.87 and 0.82, \(R^2 \) were 0.88 and 0.89, and PBIAS were -0.3% and 11.3% for validation period I (1971–1980) and validation period II (2001–2010), respectively. Based on the performance ratings of assuming typical uncertainty in observations given by Pereira et al. (2016), the streamflow simulation in this study could be evaluated as ‘good’ (|PBIAS| ≤ 15%, 0.8 ≤ NSE, and \(R^2 \geq 0.85 \)). These results indicate that the SWAT model performed well in the HYRB and can be used to investigate the future climate change impacts on hydrological processes.
3.2 Historical spatiotemporal characteristics of key hydrological components

Figure 3 showed that the average annual AET was about 292 mm during 1976–2015, with a range of 250 mm in 1997 to 329 mm in 2012. SD (standard deviation) of AET was 19.46 mm, which means AET fluctuated greatly during the study period. The linear fitting results showed that AET in the whole region increased significantly with a rate of 0.93 mm/yr, which was due to the increase of precipitation and temperature in this region (Figure S1). Spatially, in comparison with the northwestern part, the southeastern part of the basin had a higher AET value (Fig. 4a). From 1976 to 2015, AET increased mainly in the southeast, central and western parts of the basin, and the change in most areas is significant. While it decreased slightly in the northeast (Fig. 4d, g). Table 4 showed that 84.2% of the basin experienced increased AET with a rate ranging from 0.1 to 2.0 mm/year, with significant increasing portion detected for 74.0%.

The basin-average soil water approximately amounted to 120 mm during 1976–2015 (Fig. 3). During the study period, the minimum soil water was 116 mm, which appeared in 1988, and the maximum value was 126 mm, which appeared in 1983. Soil water in the whole region showed a slightly decreasing trend with a rate of 0.05 mm/year during the 40-year period. Soil water showed an increasing gradient from the northwest to the southeast with a range of 0 to 578 mm (Fig. 3). There was abundant rainfall and high coverage grassland in the southeast, which could increase the retention time of rainwater on the land surface and increase the infiltration of rainwater, so the soil water in this area was higher. Fig. 4h showed that the area with decreased soil water was greater than the increased one, and we could also find the same result from Table 4.

Water yield refers to the capacity of a catchment to supply water (Arnold et al. 1998). The average water yield in the study area was 205 mm with a range of 147–305 mm during 1976–2015 (Fig. 3). The SD of water yield was 35.65 mm, and the linear fitting results showed that the water yield decreased by 0.02 mm/year, and the downward trend was insignificant. From Fig. 4c, we found that water yield of the basin had obvious spatial heterogeneity, that is, water yield of the eastern and southern region was much higher than that in the western and northern area. During the study period, water yield mainly showed a decreasing trend in the south of basin (about 51.8% of the whole basin), while the western and northern regions showed an increasing trend (48.2% of the whole basin) (Fig. 4i and Table 4). Besides, there was no statistical significance in the trend of water yield in both increasing and decreasing areas.

3.3 Projected climate over the twenty-first century

The downscaled data were analyzed for the two future time periods: near future (2020–2059) and far future (2060–2099). The future bias-corrected scenarios RCP 2.6, RCP 4.5, and RCP 8.5 were then compared with the
observed climate data from the historical period (1976–2015).

Figure 5 showed that during the near future period, the annual increases in precipitation were found to be 7.3%, 7.6%, and 7.8% under RCP 2.6, RCP 4.5, and RCP 8.5, respectively. The annual precipitation was projected to continuously increase in the HYRB under three RCPs during the far future period. From the Table 5, we found

AET	Percent area of significant decrease (%)	Percent area of insignificant decrease (%)	Percent area of insignificant increase (%)	Percent area of significant increase (%)
3.95	11.85	10.2	74	
25.6	25.1	34.3	15	
0	48.2	51.8	0	
Soil water				
Water yield				
that the CV (coefficient of variation) of far future period precipitation was higher than that of near future period precipitation. Figure 6a showed that the precipitation in the HYRB mainly concentrated from May to September every year during the historical period. The rainfall in the study area would increase in every month, while the changes in monthly projected rainfall showed large differences (Fig. 6b). The precipitation increased most obviously in January and November. In particular, it was anticipated to increase by 63% and 63.3% in these two months under
RCP 8.5 scenario during the far future period. These results indicated that the future precipitation changes had temporal heterogeneity under different scenarios.

Both annual and monthly temperatures showed a significant warming trend across the HYRB (Figs. 5, 6). Under RCP 2.6, the increment of temperature was similar during the near future and far future periods. Under RCP 4.5 scenario, the maximum temperature increased by $1.6^\circ C$ and the minimum temperature increased by $1.5^\circ C$ in the near future period. The maximum temperature and minimum temperature increased by $2.6^\circ C$ and $2.4^\circ C$ respectively in the far future period. The HYRB was projected to experience the warmest period at the end of this century under RCP 8.5, in which period the maximum temperature and minimum temperature were expected to increase by $4.5^\circ C$. Table 5 indicated that the CV of far future period temperature was higher than that of near future period temperature. Figure 6a showed that the maximum values of the maximum and minimum temperature in the HYRB appear in July and the minimum values appear in January. The maximum temperature increased the most in October (by $5.2^\circ C$), and the minimum temperature increased the most in March (by $6.4^\circ C$), which occurred in the RCP 8.5 scenario at the end of this century (Fig. 6c, d).

Hydrological responses to projected climate change

We analyzed the effects of climate change on several key hydrological components in the HYRB, including actual evapotranspiration (AET), soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield. Figures 7 and 8 showed the annual and monthly change, respectively, of the future AET, soil water, and water yield.
precipitation and temperature in the HYRB. From the Fig. 8a, we found that the AET in historical period reached its maximum in July. During the near future and far future period, AET showed an increasing trend (Fig. 8b). AET was projected to increase greatly in March, April, October, and November, and the maximum increment occurred under RCP 8.5 scenario at the end of this century, with a change rate of 174%. Spatial change analysis showed that AET of the whole basin would increase in the future, while it increased more obviously in the eastern and southern part of the basin, indicating more water loss in this region in the future (Figure S4). Compared with RCP 2.6 and RCP 4.5, AET increased most under RCP 8.5, which was related to the different temperature changes under the three scenarios.

Soil water decreased slightly during near future period, by 3.1% in RCP 2.6 scenario, 6.1% in RCP 4.5, and 8.5 scenarios (Fig. 7). By the end of this century, soil water decreased more obviously, by 13.3% under RCP 8.5 scenario compared with base period, which could affect the absorption of water by vegetation. Under different scenarios, soil water decreased quite clearly in April and May (Fig. 8c). The change of soil water was similar to that of temperature, which meant that although the rainfall increased in this region, the increase of ET due to raise of temperature played a greater role. Figure S5 showed that the decrease of soil water was predicted to be mainly in the west, middle and export areas of the basin, while it would increase slightly in the southeastern region. Compared with the near future period, the increment of soil water in southeast may decrease during the far future period, and even turn to a decrease.

Under the combined effects of increased temperature and variations in precipitation, the water yield showed a decrement of 16.5–20.1% during the near future period (Fig. 7). At the end of this century, due to the increase of precipitation, the water yield would be no longer continuously reduced, and the decline rate was similar to that the near future period (15–19.5%). Table 6 indicated that water...
yield had a larger range of variation and correlation than AET and soil water. Figure 8a showed that during the base period, the lowest level of water yield occurred in January, and then increased sharply in May. Water yield peaked in July and decreased after September. From Fig. 8d, we found that the water yield in February, March and November showed an obvious increasing trend compared with the historical period. The highest change was in February, with a change rate of 39.1–129%. The relative changes were also obvious because of the small value of absolute water yield in winter. Besides, water yield was projected to decrease from May to August in each scenario. From Figure S6, we found that water yield in most HRUs would decrease under three RCPs, owing to the significant increase of AET. The water yield was predicted to increase only in a few areas, mainly distributed in the southeast of the basin, with the variation range of 1–70 mm. Compared with the near future period, the decline of water yield at the end of this century was reduced, which might be caused by the increase of rainfall.

4 Discussion

4.1 Intense climate change and potential threats

Our study found that the climate in HYRB would become wetter in terms of the changes of precipitation, especially during far future period under the RCP 8.5 scenarios. The rainfall was projected to increase by 7.3–7.8% for the near future period and 9.0–17.9% for the far future period. Increased precipitation will have a positive effect on AET, soil water, and water yield in study area. The result of the increases in precipitation was generally in line with Feng et al. (2016) and Li et al. (2008). Compared with summer (June, July, and August), the monthly dynamics of precipitation in other months was more obvious, which may affect the monthly variation of hydrological components in HYRB.

For temperature, the results suggested an increase in both maximum and minimum temperature in the future, and this increasing trend of future temperature is consistent with that in the historical period (Figure S1). During the
near future period, the raises of temperature were projected to be substantially similar under RCP 2.6, RCP 4.5, and RCP 8.5, indicating that the different emission scenarios would not lead to significantly different temperature responses. However, the increase in temperature began to diverge under different emission scenarios during the far future, since the temperature increase was generally 3 °C more under RCP 8.5 than under RCP 2.6. Furthermore, Fig. 6 showed that projected increment of maximum temperature were slower than that of minimum temperature, which is consistent with most areas around the world and might lead to a decline in diurnal temperature range (DTR) and considerably affect the growth of vegetation (Donat et al. 2013; Feng et al. 2018; Morak et al. 2013). According to the fifth assessment report (AR5) of IPCC, the simulation results showed that the global average temperature rise could reach 2.6–4.8 °C by the end of the twenty-first century (Stocker et al. 2013), with the temperature projected to increase more at higher elevations and latitudes (Hu et al. 2014; Luo et al. 2019). Previous studies have shown that the temperature changes in the Qinghai-Tibetan Plateau region and the polar regions were more severe than that in other areas (Gao et al. 2012; Overland et al. 2014). As it is climatically sensitive and ecologically fragile, the HYRB region and its environment have been significantly affected by climate change. For example, the wetland ecosystem in the HYRB plays an irreplaceable role in water source conservation, run-off adjustment, and biodiversity maintenance. Climate change will make future efforts to restore and manage wetlands more complex (Erwin 2008). Consequently, the increasing temperature may cause serious disturbances to the ecological structure and degradation of ecosystem functions, posing a threat to the safety of ecosystems in the middle and lower reaches of the Yellow River Basin.

4.2 Projected hydrologic changes and influencing climate factors

Quantifying the influence of climate factors on hydrological processes is essential for water resources management, especially in semi-arid region. The AET was projected to increase by 31.9–35.3% for the near future period and up to 33.5–54.3% for the far future period, which was relative to the combined influence of precipitation and temperature. While as for monthly change, the increase in AET in May, June, July, and August was less than other periods. This was due to the reason that the change in precipitation in same period was small, although the temperature increment was similar to other periods. Therefore, the change in temperature made the AET in whole area increase, but the monthly scale change of AET would be greatly affected by precipitation. The warm and wet climate could lead to a downward trend in soil water in the future. The raise of rainfall might have a positive effect on soil water, but the increment of AET due to temperature would result in a decreasing trend of it. Also, due to severe temperature rise, soil water was predicted to continue to decline during far future period, which meant that in the study area, temperature dominated changes in soil water.

The water yield would reduce by 16.5–20.1% for the near future period, which may imply that the HYRB would be under a severe water stress during the mid-century period. The magnitude of the decline in water yield obtained from this study was a little higher than that from Lin et al. (2012), who reported a decrease of about 9.5% (2020s) under the A2 scenario in the HYRB. We found that the water yield showed a decreasing trend from May to August both in two periods. The decline of water yield was due to the increase in AET caused by warming, even if the precipitation was also raising during the same period. So the increase in ET would be the main cause for water yield decrease. Meng et al. (2016) found that runoff in the HYRB decreased by about 20% in the 2000s, during which precipitation contributed for 3% to the runoff reduction, while the increase in AET accounted for 97%. Besides, due to strong warming over the region, AET has been playing an increasingly important role in influencing runoff changes in recent decades. In the end of this century, driven by the increased precipitation, water yield would no longer continue to decrease, with a decline by 15–19.5% for the far future period. Hence the variation of temperature would dominate the changes in water yield in the HYRB, while rainfall can affect it to some extent.

Table 6 Variations in annual AET, soil water, and water yield during the near future (NF, 2020–2059) and far future (FF, 2060–2099) periods under RCP 2.6, RCP 4.5, and RCP 8.5 compared with the baseline period (1976–2015). CV denotes the coefficient of variation of model annual averages

Scenario period	RCP 2.6	RCP 4.5	RCP 8.5			
	NF	FF	NF	FF	NF	FF
AET change (%)	32	33.5	33.3	41.8	35.3	54.3
CV (AET %)	6.7	8.5	6.6	8.8	6.5	9.6
Soil water change (%)	– 3.1	– 4.2	– 6.1	– 9	– 6.1	– 13.3
CV (soil water %)	5.6	5.8	3.2	4.2	3.3	5.3
Water yield change (%)	– 16.5	– 15	– 17.8	– 16	– 20.1	– 19.5
CV (water yield %)	12.3	11.3	13.2	16.3	12	21.8
4.3 Implication

The climate warming has been regarded as an undoubted fact and could further exert adverse effects on the water yield, which can alert decision makers for the potential risks, including drought. For example, the reduction of water yield in May to August due to the increment of temperature in the HYRB could be an indicator of reduced water availability in the growing season. Therefore, there was a concern about steady water supply for industrial purposes and crop irrigation not only in the HYRB, but also in the whole Yellow River Basin. Besides, the raising AET and the resulting decline of soil water, especially in irrigation period (May to August), would cause an increasing potential of water stress on crop growth and a resulting increase in water demand for irrigation. Therefore, the reduction in water yield in the HYRB and the increase in irrigation demand require watershed managers to pay attention to the more effective water-use schemes and optimizing effective water-saving irrigation equipment.

Many semi-arid regions have the characteristics of water shortage, fragile natural resources, obvious climate change, and great social pressure (Krol et al. 2006). Integrated studies including climatology and hydrology are required to evaluate possible strategies to make semi-arid areas less susceptible to current and changing climate. Our modeling study provided a proper perspective for investigating the main influencing climate factors of the hydrological components in semi-arid area. This is certainly informative and valuable for people who are interested in the modeling research related to water cycles and its response to climate change, and a better understanding of climatic and hydrological changes in semi-arid areas is highly required to formulate specific and suitable strategies in water resources management (Shen et al. 2019). Besides, climate change dominated the hydrological shifts in alpine region (Yang et al. 2019). Considering the co-effects of both climate and land cover changes on the hydrological cycle, such a headwater area with minimal disturbance by human activities is suitable for diagnosing the historical changes without the challenge of disentangling the land cover changes. In general, although this research is a case study, our results can not only be helpful for understanding the hydrological responses to climate change in semi-arid areas and alpine areas, but also demonstrates the necessity to predict future climate and water cycle changes at local areas, especially when seeking decision support, which can help managers to develop adaptive strategies to mitigate risks and benefit the public.

4.4 Limitations and uncertainties

The soil type, land use, and anthropogenic activities have a great influence on hydrological components, and this may lead to over/under-estimation of the hydrological components. Besides, previous studies have indicated that high-altitude catchments would experience more complex hydrological changes because of the important role of glaciers, snowmelt, and freeze–thaw process of soil in the water balance (Wang et al. 2015), while we did not take these processes into account in this study because of the model simulation ability. In the future, we will carry out relevant researches. Furthermore, there are inherent uncertainties in the GCMs processes (Zhou et al. 2015). Although our study adopted the arithmetic ensemble averages from the hydrological model outputs that are driven by the eight GCMs to address this uncertainty, due to the complexities involved in the climate change phenomenon, accurately predicting future climate change is very difficult (Knutti and Sedlácek 2012).

5 Conclusions

In this study, we investigated the projection of future climate and its impacts on key hydrological components in the HYRB. The SWAT was calibrated and evaluated for the HYRB. The model performed successfully with satisfactory NSE, R^2, and PBIAS values. Temporally, AET showed an significantly increasing trend during 1976–2015, while soil water and water yield decreased slightly. Spatially, these key hydrological components exhibited a substantial heterogeneity. The precipitation projections indicated that there would be a slight increase of 7.3–7.8% during the near future period and an increase by 9.0–17.9% during the far future period. The climate projections showed a warming of 1.3–1.9 °C for the near future period and 1.5–4.5 °C for the far future period for the maximum temperature. The corresponding values for the minimum temperature were 1.2–1.8 °C and 1.3–4.5 °C. And the projected changes in the maximum temperature were slower than those in the minimum temperature in January, February, March, November, and December. Due to the wetter and warmer climate, AET was predicted to increase dramatically under three RCPs, and there would be an increment in the whole basin compared with historical period. As for soil water, there would be a slight decline of 3.1–6.1% during the near future period and a decrease of 4.2–13.3% during the far future period. The spatial changes would be much complicated, but soil water in most HRUs would show a decreasing trend mainly caused by warming. The synergistic effect of the climate
change would result in a 16.5–20.1% reduction in water yield during the near future period. In the end of this century, driven by the increased precipitation, water yield would no longer continue to decrease, with a decline by 15–19.5%. So in the HYRB, the variation of temperature would dominate the changes in water yield in the HYRB, while rainfall can affect it to some extent. Besides, the obvious reduction of water yield from May to August would lead to more severe water crisis not only in study area, but also in the whole Yellow River basin.

Our study examined the spatiotemporal hydrological dynamics in the HYRB under future climate change conditions. The prediction facilitates the development and implementation of an effective water management plan in advance to minimize potential negative water resources issues in the Yellow River basin. To achieve even more reliable results, future research should consider other factors besides climate change, such as land use changes and increased CO₂ concentrations due to human activities. We will address this in our future studies.

Appendix 1: Model performance assessment

To measure the model performance, the Nash–Sutcliffe Efficiency (NSE) (Mandeville et al. 1970), the coefficient of determination (R²), and the percentage bias (PBIAS) were used in this study. These criteria were calculated as follows:

\[\text{NSE} = 1 - \frac{\sum_{i=1}^{n} (Q_{m,i} - Q_{s,i})^2}{\sum_{i=1}^{n} (Q_{m,i} - Q_{m,\text{avg}})^2} \] (13)

\[R^2 = \frac{\sum_{i=1}^{n} (Q_{m,i} - Q_{m,\text{avg}})(Q_{s,i} - Q_{s,\text{avg}})}{\sum_{i=1}^{n} (Q_{m,i} - Q_{m,\text{avg}})^2} \] (14)

\[\text{PBIAS} = \frac{\sum_{i=1}^{n} (Q_{s,i} - Q_{m,i})}{\sum_{i=1}^{n} Q_{m,i}} \times 100\% \] (15)

where \(Q_{m,i} \) and \(Q_{s,i} \) are measured and simulated streamflow at each time step \(i \); \(Q_{m,\text{avg}} \) and \(Q_{s,\text{avg}} \) are the mean measured and simulated streamflow; and \(n \) is the number of time steps.

The NSE describes the explained variance for the observed values over time that is accounted for by the model (Green and Grînensvæn 2008). The PBIAS measures the average difference between observation and simulation. The closer NSE and \(R^2 \) are to 1, and PBIAS to 0, the better the SWAT model performs.

Appendix 2: Bilinear interpolation downscaling method

Bilinear interpolation, as an extension of linear interpolation, is used to interpolate functions of two variables (e.g., \(x \) and \(y \)) on a rectilinear 2D grid in mathematics (https://en.wikipedia.org/wiki/Bilinear_interpolation). The method is described as follows:

Suppose get the value of the unknown function \(f \) at point \(P = (x, y) \). It’s assumed that we know the value of the four points of the function \(f \) at \(Q_{11} = (x_1, y_1) \), \(Q_{12} = (x_1, y_2) \), \(Q_{21} = (x_2, y_1) \), \(Q_{22} = (x_2, y_2) \) (Figure S2).

First, linear interpolation is performed in the \(x \)-direction:

\[f(R_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) \] (16)

where \(R_1 = (x, y_1) \),

\[f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) \] (17)

where \(R_2 = (x, y_2) \).

Then, linear interpolation is performed in the \(y \)-direction:

\[f(P) \approx \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y - y_1}{y_2 - y_1} f(R_2) \] (18)

Finally, the desired estimate of \(f(x, y) \):

\[f(x, y) \approx \frac{f(Q_{11})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y_2 - y) + \frac{f(Q_{21})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y_2 - y) + \frac{f(Q_{12})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y - y_1) + \frac{f(Q_{22})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y - y_1) \] (19)

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00477-021-02099-6.

Acknowledgements This study was funded by the National Key Research and Development Program of China (2019YFC0507403), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40020205), the Shaanxi Major Theoretical and Practical Program (2021TD-52), and the National Thousand Youth Talent Program of China. We also thank the HPCC Platform in Xi’an Jiaotong University for computing equipment and computer maintenance. We thank the editor and two anonymous reviewers for their constructive comments and suggestions.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Data availability The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleteiner J et al (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333(2–3):413–430

Andrianaki M, Shrestha J, Kobierska F, Nikolaidis NP, Bernasconi SM (2019) Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment. Hydrol Earth Syst Sci 23(8):3219–3232

Arnold JG, Srinivasan R, Mutthia RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89

Bae DH, Koike T, Awan JA, Lee MH, Sohn KH (2015) Climate change impact assessment on water resources and susceptible zones identification in the Asian monsoon region. Water Resour Manag 29(14):5377–5393

Berg A, Sheffield J, Milly PCD (2017) Divergent surface and total soil moisture projections under global warming. Geophys Res Lett 44(1):236–244

Chen H, Xu C-Y, Guo S (2012) Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J Hydrol 434–435:36–45

Chen J, Wang Z, Wu X, Chen X, Lai C, Zeng Z et al (2019) Accuracy evaluation of GPM multi-satellite precipitation products in the hydrological application over alpine and gorge regions with sparse rain gauge network. Hydrol Res 50(6):1710–1729

Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim Change 62(1–3):337–363

Chu H, Wei J, Li J, Li T (2018) Investigation of the relationship between runoff and atmospheric oscillations, sea surface temperature, and local-scale climate variables in the Yellow River headwaters region. Hydrol Process 32(10):1434–1448

Coles A, McConkey B, McDonnell J (2017) Climate change impacts on hillslope runoff on the northern Great Plains, 1962–2013. J Hydrol 550:538–548

Cuo L, Zhang Y, Gao Y, Hao Z, Cairang L (2013) The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. J Hydrol 502:37–52

Donat M, Alexander L, Yang H, Durre I, Vose R, Dunn R et al (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118(5):2098–2118

Donnelly C, Greuell W, Andersson J, Gerten D, Piscarczuk G, Roudier P et al (2017) Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim Change 143(1):13–26

Erwin KL (2008) Wetlands and global climate change: the role of wetland restoration in a changing world. Wet Ecol Manag 17(1):71

Feng T, Yang T, Wang X, Li Z, Yang L, Liu P (2016) Influence of climate change on hydrologic regime of the Yellow River source region. Water Resour Power 034(007):11–15

Feng R, Yu R, Zheng H, Gan M (2018) Spatial and temporal variations in extreme temperature in Central Asia. Int J Climatol 38(6):388–400

Flügel WA (2010) Delineating hydrological response units by geophysical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol Process 9(3–4):423–436

Gao H, He X, Ye B, Pu J (2012) Modeling the runoff and glacier mass balance in a small watershed on the Central Tibetan Plateau, China, from 1955 to 2008. Hydrol Process 26(11):1593–1603

Gao G, Fu B, Wang S, Liang W, Jiang X (2016) Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci Total Environ 557–558:331–342

Gassman P, Reyes M, Green C, Arnold J (2007) The soil and water assessment tool: Historical development, applications, and future research directions. Trans ASABE 50:1211–1250

Giorgi F, Hurrell JW, Marinucci MR, Beniston M (2010) Elevation dependency of the surface climate change signal: a model study. J Clim 10(2):288–296

Green CH, Av G (2008) Autocalibration in hydrologic modeling using SWAT2005 in small-scale watersheds. Environ Model Softw 23(4):422–434

Hartman MD, Baron JS, Lammers RB, Cline DW, Band LE, Liston GE et al (1999) Simulations of snow distribution and hydrology in a mountain basin. Water Resour Res 35(5):1587–1603

Holden PB, Edwards NR, Ridgwell A, Wilkinson RD, Fricher K, Lunkeit F et al (2018) Climate–carbon cycle uncertainties and the Paris Agreement. Nat Clim Change 8(7):609–613

Hu Z, Zhang C, Hu Q, Tian H (2014) Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. J Clim 27(3):1143–1167

Jian T, Zhang Y, Zhu J, Jiang Y, Yi X (2014) Elevation-dependent temperature change in the Qinghai-Xizang Plateau grassland during the past decade. Theoret Appl Climatol 117(1–2):61–71

Jian D, Ma Z, Chen L, Duan J, Mitchell D, Zheng Z et al (2021) Effects of 1.5 °C and 2 °C of warming on regional reference evapotranspiration and drying: a case study of the Yellow River Basin, China. Int J Climatol 41(2):791–810

Kendall MG (1979) The advanced theory of statistics. C. Griffin, Glasgow

Knutti R, Seland Åke J (2012) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369

Kool D, Agam N, Lazarovitch N, Heitman JL, Sauer TJ, Ben-Gal A (2014) A review of approaches for evapotranspiration partitioning. Agric Meteorol 184:56–70

Krol M, Jaeger A, Bronstert A, Güntner A (2006) Integrated modelling of climate, water, soil, agricultural and socio-economic processes: a general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil. J Hydrol 328(3–4):417–431

Li L, Hao ZC, Wang JH, Wang ZH, Yu ZB (2008) Impact of future climate change on runoff in the head region of the Yellow River. J Hydrol Eng 13(5):347–354

Lin L, Shen H, Dai S, Xiao J, Shi X (2012) Response of runoff to climate change and its future tendency in the source region of Yellow River. J Geogr Sci 22(3):431–440

Liu P, He Z, Du J, Chen L, Jing L (2018) Impacts of climate change on reference evapotranspiration in the Qilian Mountains of China: Historical trends and projected changes. Int J Climatol 5:2980–2993

Liu X, Chen B (2015) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742

Liu M, Yang J, Li X, Liu G, Yu M, Wang J (2013) Distribution and dynamics of soil water and salt under different drip irrigation regimes in northwest China. Irrig Sci 31(4):675–688

Liu L, Xu H, Wang Y, Jiang T (2017) Impacts of 1.5 and 2 °C global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China. Clim Change 145(1):145–158
Lu W, Wang W, Shao Q, Yu Z, Hao Z, Xing W et al (2018) Hydrological projections of future climate change over the source region of Yellow River and Yangtze River in the Tibetan Plateau: a comprehensive assessment by coupling RegCM4 and VIC model. Hydro Process 32(13):2096–2117

Lubchenco J (1998) Entering the century of the environment: a new social contract for science. Science 279(5350):491

Luo M, Liu T, Meng F, Duan Y, Bao A, Frankl A et al (2019) Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia. Int J Climatol 39(3):1571–1588

Mandeville AN, O’Connell PE, Sutcliffe JV, Nash JE (1970) River flow forecasting through conceptual models part III—the ray catchment at Grendon Underwood. J Hydrol 11(2):109–128

Meng F, Su F, Yang D, Tong K, Hao Z (2016) Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. J Hydrol Reg Stud 6:66–81

Morak S, Hegerl GC, Christidis N (2013) Detectable changes in the frequency of temperature extremes. J Clim 26(5):1561–1574

Neupane RP, Ficklin DL, Knoutt JH, Ehsani N, Cibin R (2019) Hydrologic responses to projected climate change in ecologically diverse watersheds of the Gulf Coast, United States. Int J Climatol 39(4):2227–2243

Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313(5790):1068–1072

Overland JE, Wang M, Walsh JE, Stroeve JC (2014) Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2(2):68–74

Patel DP, Srivastava PK (2013) Flood hazards mitigation analysis using remote sensing and GIS: Correspondence with town planning scheme. Water Resour Manag 27(7):2353–2368

Patel PM, Saha D, Shah T (2020) Sustainability of groundwater through community-driven distributed recharge: an analysis of arguments for water scarce regions of semi-arid India. J Hydrol Reg Stud 29:100680

Pereira DdR, Martinez MA, Pruski FF, da Silva DD (2016) Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: calibration and validation tests. J Hydrol Reg Stud 7:14–37

Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

Shen Y, Guo Y, Zhang Y, Pei H, Brenning A (2019) Review of historical and projected future climatic and hydroclimatic changes in mountainous semiarid Xinjiang (northwestern China), central Asia. CATENA 187:104343

Stockter T, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press Cambridge, New York

Su Z, Zeng Y, Romano N, Manfreda S, François F, Ben Dor E et al (2020) An integrative information aqueduct to close the gaps between satellite observation of water cycle and local sustainable management of water resources. Water 12(5):1–37

Sun Z, Jia S, Ai Feng LV, Zhu W, Gao Y (2016) Precision estimation of the average daily precipitation simulated by IPCC AR5 GCMs in China. J Geo-Inf Sci 18(2):227–237

Sun P, Wu Y, Yang Z, Sivakumar B, Qiu L, Liu S et al (2019) Can the Grain-for-Green program really ensure a low sediment load on the Chinese Loess Plateau? Engineering 5(5):855–864

Tang L, Duan X, Kong F, Zhang F, Zheng Y, Li Z et al (2018) Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci Rep 8(1):7331

Tian P, Lu H, Feng W, Guan Y, Xue Y (2020) Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin. CATENA 187:104340

Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR et al (2014) Global warming and changes in drought. Nat Clim Change 4(1):17–22

Wang G, Wang Y, Li Y, Cheng H (2007) Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. CATENA 70(3):506–514

Wang R, Yao Z, Liu Z, Wu S, Jiang L, Wang L (2015) Snow cover variability and snowmelt in a high-altitude ungauged catchment. Hydrool Process 29(17):3665–3676

Wang L, Wei X, Bishop K, Reeves AD, Ursino N, Winkler R (2018) Vegetation changes and water cycle in a changing environment. Hydrool Earth Syst Sci 22(3):1731–1734

Wang X, Chu B, Feng X, Li Y, Fu B, Liu S et al (2021) Spatiotemporal variation and driving factors of water yield services on the Qingzang Plateau. Geogr Sustain 2(1):31–39

Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17(2):145–157

Wu Y, Liu S, Yan W, Xia J, Xiang W, Wang K et al (2016) Climate change and consequences on the water cycle in the humid Xiangjiang River Basin, China. Stoch Environ Res Risk Assess 30(1):225–235

Xiang K, Li Y, Horton R, Feng H (2020) Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—a review. Agric Water Manag 232:106043

Xu Z, Zhao F, Li J (2009) Response of streamflow to climate change in the headwater catchment of the Yellow River basin. Quatern Int 208(1):62–75

Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohoe Basin in China. J Hydrol 358(1):1–23

Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global Planet Change 112:79–91

Yang L, Feng Q, Yin Z, Wen X, Si J, Li C et al (2017) Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrocl Process 31(5):1100–1112

Yang L, Feng Q, Yin Z, Deo RC, Liu W (2019) Regional hydrology heterogeneity and the response to climate and land surface changes in arid alpine basin, northwest China. CATENA 187:104345

Zhang Y, Zhang S, Xia J, Hua D (2013) Temporal and spatial variation of the main water balance components in the three rivers source region, China from 1960 to 2000. Environ Earth Sci 68(4):973–983

Zhang Y, You Q, Chen C, Ge J (2016) Impacts of climate change on streamflows under RCP scenarios: a case study in Xin River Basin, China. Atmos Res 178–179:521–534

Zhang L, Karthikeyan R, Bai Z, Srinivasan R (2017) Analysis of streamflow responses to climate variability and land use change in the Loess Plateau region of China. CATENA 154:1–11

Zhang L, Nan Z, Yu W, Zhao Y, Xu Y (2018) Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Sci Total Environ 622–623:1016–1028

Zhao F, Wu Y, Qiu L, Bellie S, Bellie S, Zhang F et al (2018) Spatiotemporal features of the hydro-biogeochemical cycles in a typical loess gully watershed. Ecol Ind 91:542–554
Zhou G, Wei X, Wu Y, Liu S, Huang Y, Yan J et al (2011) Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Glob Change Biol 17(12):3736–3746
Zhou J, He D, Xie Y, Liu Y, Yang Y, Sheng H et al (2015) Integrated SWAT model and statistical downscaling for estimating streamflow response to climate change in the Lake Dianchi watershed, China. Stoch Env Res Risk Assess 29(4):1193–1210

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.