Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2023 (Volume 63): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2021): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY
Additions to the oribatid mite fauna (Acari, Oribatida) of Ethiopia: results of the Joint Russian-Ethiopian Biological Expedition (2014) to the vicinity of Lake Tana

Sergey G. Ermilov

(Received 21 March 2016; accepted 15 April 2016; published online 22 July 2016)

ABSTRACT — The present study is based on oribatid mite material (Acari, Oribatida) collected in October–December 2014 from the vicinity of Lake Tana, Northwest Ethiopia. A list of identified taxa, including 34 species from 29 genera and 25 families, is provided; of these, ten species, seven genera and three families are recorded in Ethiopia for the first time. A new species of the genus Haplozetes (Haplozetidae) is described from the leaf litter of forests with Coffea arabica and Podacarpus gracilior. Haplozetes valbehanae n. sp. is morphologically most similar to H. triangulatus Beck, 1964, but differs by the tridentate rostrum and presence of four pairs of genital setae and dense cerotegumental tubercles in the anterior part of the ventral plate.

KEYWORDS — mites; fauna; new species; Haplozetes; morphology; systematics; record; Africa

INTRODUCTION

In recent years the Ethiopian oribatid mite fauna has been actively studied (for example, Ermilov et al. 2012a; Ermilov and Rybalov 2012b, 2013; Ermilov et al. 2014; Miko et al. 2014; Niedbała and Ermilov 2014). The present study is based on the material collected during the Russian-Ethiopian expedition in October–December 2014 to the vicinity of Lake Tana (Northwest Ethiopia). The primary goal of the paper is to present a list and new records of the identified taxa.

In the course of taxonomic identification, I found one new species, belonging to the genus Haplozetes Willmann, 1935. The secondary goal of the paper is to describe and illustrate this species under the name Haplozetes valbehanae n. sp.

The genus Haplozetes was proposed by Willmann (1935) with Peloribates vindobonensis Willmann, 1935 as type species. I support Bayartogtokh’s (2000, 2010) and Weigmann’s (2006) classification and diagnosis of this genus. At present, Haplozetes s. str. comprises more than 60 species, which have a cosmopolitan distribution. Identification keys for some species of the genus were presented by Balogh and Balogh (2002), Weigmann (2006), and Bayartogtokh (2010).

MATERIALS AND METHODS

Material — Oribatid mites were collected from four sites of the vicinity of Lake Tana (Northwest Ethiopia):
- Et-2014–20: 11°41’36”N, 37°20’49”E, near Lake
LIST OF ORIBATID TAXA COLLECTED FROM THE VICINITY OF LAKE TANA

This list indicates the specific localities where oribatid mites were collected, and notes new records and general known distribution.

Sphaerochthoniidae

Sphaerochthonius splendidus (Berlese, 1904) (see Berlese 1904b). Localities: Et-2014–20, Et-2014–21. Distribution: Tropics and Subtropics.

Epilohmanniidae

Epilohmannia minuta Berlese, 1920. Locality: Et-2014–20. Distribution: Tropics and Subtropics.

Malaconothridae

Tyrphonothrus ensifer (Mahunka, 1982). Localities: Et-2014–20, Et-2014–21. Distribution: Ethiopia and Congo.

Nothridae

Nothrus crassisetus Mahunka, 1982. Locality: Et-2014–20. Distribution: Ethiopia.

Hermanniellidae

Hermanniella congoensis Balogh, 1958. Localities: Et-2014–20, Et-2014–21, Et-2014–22. Distribution: Ethiopian region.

Nanhermanniidae

Masthermannia mammillaris (Berlese, 1904) (see Berlese 1904a). Locality: Et-2014–20. Distribution: Tropics and Subtropics.

Plasmobatidae

Plasmobates foveolatus Ermilov, Sidorchuk and Rybalov, 2011. Locality: Et-2014–20. Distribution: Ethiopia.

Licnodamaeidae

Pedrocortesella africana Pletzen, 1963. Localities: Et-2014–20, Et-2014–21. Distribution: Ethiopian region.

Gymnodamaeidae

Arthrodamaeus johnni Hugo, 2010. Locality: Et-2014–21. Distribution: South Africa and Zambia.

Aleurodamaeidae

Aleurodamaeus recensesepto Ermilov and Rybalov,
2012a. Localities: Et-2014–20, Et-2014–21, Et-2014–22. Distribution: Ethiopia.

Damaeidae
Metabelba (Pateribelba) glabriseta Mahunka, 1982. Localities: Et-2014–20, Et-2014–21, Et-2014–22. Distribution: Ethiopia and Angola.

Astegistidae
Cultorribula bicuspidata Mahunka, 1978. Localities: Et-2014–20, Et-2014–21. Distribution: Ethiopian, Neotropical and Oriental regions.

Microzetidae
Berleszetetes glaber Mahunka, 1982. Localities: Et-2014–20, Et-2014–21. Distribution: Ethiopia.

Oppiidae
Arcoppia rugosa (Mahunka, 1973). Localities: Et-2014–20, Et-2014–21. Distribution: Zimbabwe and Ethiopia.

Caloppiidae
Zetorchella vargai (Balogh, 1959). Localities: Et-2014–20, Et-2014–21, Et-2014–22. Distribution: Tanzania and South Africa*. Zetorchella pedestris Berlese, 1916 (see Berlese 1916a). Locality: Et-2014–21. Distribution: Ethiopian region.

Scheloribatidae
Scheloribates (Scheloribates) aethiopicus Mahunka, 1982. Localities: Et-2014–20, Et-2014–21, Et-2014–22. Distribution: Ethiopian region and Canary Islands.

Haplozetidae
Haplozetes valbehanae n. sp. Localities: Et-2014–20, Et-2014–22.

Zetomotrichidae
Zetomotrichus lacrimans Grandjean, 1934. Localities: Et-2014–20, Et-2014–21. Distribution: Tropics and Subtropics.

Mochlozetidae
Unguizetes atypicus (Mahunka, 1982). Localities: Et-2014–20, Et-2014–21, Et-2014–22. Distribution: Ethiopian region.

Puncoribatidae
Allozetes africanus Balogh, 1958. Locality: Et-2014–20. Distribution: Tropics.

Galumnidae
Galumna incisa Mahunka, 1982. Localities: Et-2014–20, Et-2014–21, Et-2014–22. Distribution: Ethiopia. Galumna nuda Engelbrecht, 1972. Localities: Et-2014–20, Et-2014–22. Distribution: South Africa.

Thus, in the course of taxonomic identification I found 34 species from 29 genera and 25 families; of these, one species is new for science, and ten species (Sphaerochthonius splendidus, Epilohmannia minuta, Masthermannia mammillaris, Arthrodamaeus johanni, Condylrippa pilosella, Lasioelba (Antennoppia) capilligera, Ramuloppia ramiweta, Zetorchella vargai, Hydrozetes gueyeae and Galumna nuda), seven gen-
era (Sphaerochthonius, Epilohmannia, Masthermania, Condyloppia, Ramuloppia, Hydrozetes and Haplozetes) and three families (Sphaerochthoniiidae, Epilohmanniidae and Hydrozetidae) are recorded in Ethiopia for the first time.

DESCRIPTION

Haplozetes valbehanae n. sp.

(Figures 1–5)

Diagnosis — Body size: 282 – 348 × 166 – 190. Body surface mostly foveolate. Anterior part of ventral plate with cerotegumental tubercles. Rostrum tridentate. Tutoria with one distal tooth. Rostral setae slightly dilated basally, ciliate unilaterally, inserted under tutorial teeth. Lamellar setae setiform, barbed, inserted on lamellar ends. Interlamellar setae short, erect, barbed. Bothridial setae fusiform, barbed. Notogastr with 10 pairs of short, thin setae. Notogastral saccules with elongated channels basally swollen. Subcapitular setae setiform, barbed. Epimeral setae short, barbed. Circumpedal carinae long, directed to anterior margin of ventral plate. Anogenital setae short, indistinctly barbed. Genital plates with four pairs of setae. Tridactyloous. Ventro-posterior parts of femora I and antiaxial parts of genua I with one trapezoid apophysis. Tarsi I with 19 setae.

Description — Measurements – Small species. Body length: 315 (holotype: female), 282 – 348 (14 paratypes: five females and nine males); notogaster width 166 (holotype), 166 – 190 (14 paratypes). No differences between females and males in the body sizes.

Integument (Figs 1A, 1B, 2A, 4C, 4I, 5C) — Body color yellow brownish. Body surface punctate. Notogastr, subcapitular mentum, anogenital region, genital and anal plates, medio-dorsal part of prodorsum and antero-lateral parts of epimeral region sparsely foveolate (diameter of foveolae up to 4). Pteromorphs, subcapitular mentum, pedotecta I, discidia, epimeral region, anal plates, posterior part of anogenital region, leg femora and tibiae III and IV slightly striate. Anterior part of ventral plate, which covers base of subcapitcular mentum, with dense cerotegumental tubercles (their diameter up to 4).

Prodorsum (Figs 1A, 1B, 2A, 4A–D) — Rostrum tridentate. Lamellae (lam) two thirds as long as prodorsum (measured in lateral view), with one very small outer tooth, located dorso-laterally. Prolamellae absent. Sublamellae (slam) about one third the length of lamellae, lineate. Sublamellar porose areas (Al, 10 – 12 × 6 – 8) oval, located near to sublamellae. Tutoria (tu) similar to lamellae in length, with one strong distal tooth. Parietal carinae (car) present, parallel to tutoria. Rostral setae (ro, 28) setiform, slightly dilated basally, ciliate unilaterally, inserted laterally on prodorsum under tutorial teeth. Lamellar setae (le, 36 – 41) setiform, barbed, inserted on lamellar ends. Interlamellar setae (in, 16–18) setiform, erect, barbed. Bothridial setae (bs, 49 – 57) fusiform, with long, smooth stalks and heads shorter, barbed. Exobothridial setae (ex, 8–10) thin, indistinctly barbed. Sejugal porose areas (Ad) diffuse, located posterior to interlamellar setae, transversely elongated.

Notogastr (Figs 1A–C, 2A, 4E–H) — Anterior notogastral margin convex medially. Dorsophragmata (D) elongated, longitudinally oriented. Pteromorphs triangular, with distinct hinges. Ten pairs of notogastral setae short (8 – 10), thin, smooth to indistinctly barbed. Four pairs of saccules (Sa, S1, S2 and S3) with elongated channels basally swollen. Opisthontal gland openings (gla) and lyrifissures (ia, im, ip, ih and ips) clearly visible.

Gnathosoma (Figs 2B–D) — Subcapitulum longer than wide (77 – 82 × 57 – 61). Subcapitular setae similar in length (14 – 18) and thickness, setiform, barbed. Two pairs of adoral setae (or1, or2, 6 – 8) setiform, barbed. Palps (length 49 – 53) with setation 0–2–1–3–9(+)ω. Solenidia of palptarsi attached to eupathidia (acman). Postpalpal setae (ep, 8) spiniform. Chelicerae (length 86 – 90) with two barbed setae, cha (28 – 30) longer than chb (16 – 20). Trägårdh’s (Tg) organ narrowly triangular, smooth.

Epimeral and lateral podosomal regions (Figs 1B, 2A, 4I, 5A, 5B) — Sejugal apodemes (apos) long, almost reaching genital aperture, longer than apodemes 2 (apo2) and 3 (apo3). Epimeral setal formula: 3–1–3–2; setae (8–10) setiform, thin, slightly
Figure 1: Haplozetes valbehanae n. sp.: A – dorsal view (legs not illustrated); B – ventral view (gnathosoma and legs not illustrated); C – posterior view. Scale bar 100 µm.
FIGURE 2: Haplozetes valbehanae n. sp.: A – lateral view (gnathosoma and legs not illustrated); B – subcapitulum, ventral view; C – palp, right, antiauxial view; D – chelicera, left, paraxial view. Scale bar (A) 100 µm, scale bar (B, D; C) 16 µm.
FIGURE 3: *Haplozetes valbehanae* n. sp.: A – leg I, right, antiaxial view; B – leg II, except trochanter and tarsus, right, antiaxial view; C – leg III, except tarsus, right, paraxial view; D – leg IV, except tarsus, right, paraxial view. Scale bar 20 µm.
Figure 4: Haplozetes valbehanae n. sp., dissected adult, microscope images: A – rostrum, ventral view; B – rostral seta and medio-distal part of tutorium, right, antiaxial view; C – lamellar seta and medio-distal part of lamella, left, dorsal view; D – medio-distal part of bothridial seta, right, paraxial view; E–H – notogastral saccules Sa, S1, S2 and S3, respectively; I – cerotegumental tubercles on anterior part of ventral plate; J – distal part of leg I, left, paraxial view. Scale bar 20 µm.
Figure 5: *Haplozetes valbehanae* n. sp., dissected adult, microscope images: A – part of left podosomal region with pedotectum II, discidium and trochanter III, ventral view; B – left genital plate and part of left epimeral region, ventral view; C – part of left ano-adanal region, ventral view; D – antero-dorsal tooth on leg tibia I; E – ventro-posterior apophysis on leg femur I; F – ventro-anterior tooth on leg femur II. Scale bar 20 µm.
Table 1: Leg setation and solenidia of adult Haplozetes valbehanae n. sp.

Leg	Tr	Fe	Ge	Ti	Ta
I	v’	d, (l), bv’’, v’’	(l), v’, σ	(l), (v), φ₁, φ₂	(ft), (tc), (it), (p), (u), (a), s, (pv), v’, (pl), ε, ω₁, ω₂
II	v’	d, (l), bv’’, v’’	(l), v’, σ	(l), (v), q	(ft), (tc), (it), (p), (u), (a), s, (pv), ω₁, ω₂
III	l’, v’	d, l’, ev’	l’, σ	l’, (v), q	(ft), (tc), (it), (p), (u), (a), s, (pv)
IV	v’	d, ev’	d, l’	l’, (v), q	ft’’, (tc), (p), (u), (a), s, (pv)

Note: Roman letters refer to normal setae, Greek letters to solenidia (except ε = famulus). Single prime (’) marks setae on the anterior and double prime (”) setae on the posterior side of a given leg segment. Parentheses refer to a pair of setae. Tr – trochanter, Fe – femur, Ge – genu, Ti – Tibia, Ta – tarsus.

Material examined — Holotype (male) and nine paratypes (three females and six males): Et-2014–20; five paratypes (two females and three males): Et-2014–22.

Type deposition — The holotype is deposited in the collection of the Senckenberg Museum, Görlitz, Germany; 14 paratypes are deposited in the collection of the Tyumen State University Museum of Zoology, Tyumen, Russia.

Etymology — This species is named in honour of Dr. Valerie Behan-Pelletier (Agriculture and Agri-Food Canada, Ottawa, Canada), to acknowledge her extensive contributions to our knowledge of oribatid mites.

Remarks — The new species is morphologically most similar to Haplozetes triangulatus Beck, 1964 from El Salvador in having long, fusiform bothridial setae, small body size, foveolate surface, short interlamellar setae, localization of rostral setae (under tutorial teeth) and tridactylous legs. However, it differs from the latter by the tridentate rostrum (vs. rounded) and presence of four pairs of genital setae (vs. five pairs) and dense cerotegumental tubercles in anterior part of ventral plate (vs. absent).

Acknowledgements

I cordially thank two anonymous reviewers for the valuable comments; Dr. U. Shtanchaeva and Prof. Dr. L. Subías for consultations; Drs L. Rybalov, A. Prokin and I. Vorobeva for sampling assistance; the project coordinators Drs A. Darkov and A. Yosef for the management of the expedition.

This work was performed within the framework of the Joint Russian-Ethiopian Biological Expedition.
financially supported by the Russian Academy of Sciences. An overlapping project, study of mites associated with ants, was supported by the Ministry of Education and Science of the Russian Federation, project No. 6.1933.2014/K (code 1933).

REFERENCES

Balogh J. 1958 — Oribatides nouvelles de l’Afrique tropicale — Revue de Zoologie et de Botanique Africaines, 58 (1-2): 1-34.

Balogh J. 1959 — Oribates (Acari) nouveaux d’Angola et du Congo Belge (1ère série) — Companhia de Diamantes de Angola, Lisboa, 48: 91-108.

Balogh J., Balogh P. 2002 — Identification keys to the oribatid mites of the Extra-Holarctic regions. Vol. 1 — Miskolc, Well-Press Publishing Limited, 453 pp.

Bayartogtokh B. 2000 — Three species of *Haplozetes* (Acari: Oribatida) from Mongolia — International Journal of Acarology, 26 (1): 11-24. doi:10.1080/01647950008683631

Bayartogtokh B. 2010 — Oribatid mites of Mongolia (Acari: Oribatida) — Moscow, KMK, 372 pp.

Beck L. 1964 — Beiträge zur Kenntnis der neotropischen Oribatidenfauna 4. *Haplozetes* und *Peloribates* (Arach., Acari) — Senckenbergiana Biologica, 45 (2): 161-183.

Berlese A. 1904a — Acari nuovi. Volume I — Redia, 2: 235-280.

Berlese A. 1904b — Acari nuovi. Volume II — Redia, 2: 10-32.

Berlese A. 1910 — Brevi diagnosi di generi e species nuovi di Acari — Redia, 6: 346-388.

Berlese A. 1916a — Centuria prima di Acari nuovi — Redia, 12: 19-67.

Berlese A. 1916b — Centuria terza di Acari nuovi — Redia, 12: 289-338.

Berlese A. 1920 — Centeria quinta di acari nuovi — Redia, 14: 143-195.

Engelbrecht C.M. 1972 — Two new species of the genus *Galumna* von Heyden, 1826 (Galumnidae: Oribatei) from South Africa — Navorsinge van die Nasionale Museum, Bloemfontein, 2 (9): 244-262.

Ermilov S.G., Rybalov L.B. 2012a — A new species of *Aleurodamaeus* from Ethiopia, with remarks on the taxonomic status of *Aleurodamaeus (Trichodamaeus)* Mahunka, 1984 (Acari: Oribatida: Aleurodamaeidae) — Opuscula Zoologica Budapest, 43 (1): 21-26.

Ermilov S.G., Rybalov L.B. 2012b — Ethiopian oribatid mites (Acari: Oribatida) from the Joint Russian-Ethiopian Biological Expedition (2012), with description of a new species — African Invertebrates, 55 (1): 27-37. doi:10.5733/afin.055.0101

Ermilov S.G., Rybalov L.B. 2013 — Two new species and new records of oribatid mites (Acari: Oribatida) from Ethiopia — Annales Zoologici, 63 (1): 45-55. doi:10.3161/000345413X666093

Ermilov S.G., Rybalov L.B., Hundama T. 2014 — Ethiopian oribatid mites (Acari, Oribatida): results of the Joint Russian-Ethiopian Biological Expedition (June 2013) — Systematic and Applied Acarology, 19 (2): 197-204. doi:10.11158/saa.19.2.10

Ermilov S.G., Sidorchuk E.A., Rybalov L.B. 2010 — Two new species of *Austrocarabodes (Ulluguroides)* from Ethiopia (Acari: Oribatida: Carabodidae) — Annales Zoologici, 60 (4): 617-626. doi:10.3161/000345410X350472

Ermilov S.G., Sidorchuk E.A., Rybalov L.B. 2011 — New oribatid mites of the genera *Plasmobates* and *Arcippia* (Acari: Oribatida) from Ethiopia — Genus, 21 (4): 673-686.

Ermilov S.G., Sidorchuk E.A., Rybalov L.B. 2012a — Oribatid mites (Acari: Oribatida) of Ethiopia — Zootaxa, 3208: 27-40.

Ermilov S.G., Winchester N.N., Lowman M.M., Wassie A. 2012b — Two new species of oribatid mites (Acari: Oribatida) from Ethiopia, including a key to species of *Pilobatella* — Systematic and Applied Acarology, 17 (3): 301-317.

Grandjean F. 1934 — Oribates de l’Afrique du Nord (2ème Série) — Bulletin de la Société d’histoire naturelle de l’Afrique du Nord, 25: 235-252.

Hugo E.A. 2010 — Two new species of Gymnodamaeidae (Acari: Oribatida) from South Africa — International Journal of Acarology, 36 (3): 199-210. doi:10.1080/01647950903567199

Mahunka S. 1973 — Neue und interessante Milben aus dem Genfer Museum XI. Neue und wenig bekannte Oribatiden aus Rhodesien (Acari) — Archives des Sciences, 26 (3): 205-225.

Mahunka S. 1978 — Neue und interessante milben aus dem Genfer museum XXXIV. A compendium of the oribatid (Acari) fauna of Mauritius, Reunion and the Seychelles Is. II — Revue suisse de Zoologie, 85 (2): 307-340. doi:10.5962/bhl.part.82234

Mahunka S. 1982 — Oribatids from the Eastern Part of the Ethiopian Region (Acari) I — Acta Zoologica Academiae Scientiarum Hungaricae, 28 (3-4): 293-336

Mahunka S. 1983 — Oribatids from the Eastern Part of the Ethiopian Region (Acari) III — Acta Zoologica Academiae Scientiarum Hungaricae, 29 (4): 397-440.

Mahunka S. 1990 — Notes and remarks on Oribatid taxa (Acari), I. — Annales Historico-Naturales Musei Nationalis Hungarici, 82: 191-215.
Ermilov S.G.

Miko L., Mourek J., Ermilov S.G. 2014 — Taxonomy of African Damaeidae I. Metabelba (Pateribelba) centurion sp. nov. from Ethiopia and redescription of Metabelba (Pateribelba) glabriseta — International Journal of Acarology, 40 (7): 519-534. doi:10.1080/01647954.2014.951686

Niedbała W., Ermilov S.G. 2014 — Additions to the Ecuadorian, Ethiopian and Nepalese ptyctimous mite fauna (Acari, Oribatida), with description of two new species and remarks on some known species — International Journal of Acarology, 40 (3): 254-262. doi:10.1080/01647954.2014.906499

Norton R.A. 1977 — A review of F. Grandjean’s system of leg chaetotaxy in the Oribatei (Acari) and its application to the family Damaeidae — In: Dindal D.L. (ed.), Biology of oribatid mites. SUNY College of Environmental Science and Forestry, Syracuse, pp. 33-61.

Norton R.A., Behan-Pelletier V.M. 2009 — Oribatida. Chapter 15. In: Krantz G.W., Walter D.E. (eds.). A Manual of Acarology — Texas Tech University Press, Lubbock, 430-564.

Pletzen R. 1963 — Studies on South African Oribatei (Acarina) II: Plateremaecidae Trägårdh 1931; genus Pedro-cortesella Hammer 1961 — Acarologia, 5 (3): 438-442.

Subías L.S. 2004 — Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (excepción fósiles) — Graellsia, 60 (número extraordinario): 3-305. Online version accessed in February 2016, 593 pp.

Trägårdh I. 1910 — Acariden aus dem Sarekganger — Naturwissenschaftliche Untersuchungen Sarekgebirges in Schwedisch-Lappland, Zoologie, Stockholm, 4: 375-586.

Travé J., Vachon M. 1975 — François Grandjean. 1882-1975 (Notice biographique et bibliographique) — Acarologia, 17 (1): 1-19.

Weigmann G. 2006 — Hornmilben (Oribatida). Die Tierwelt Deutschlands — Teil 76. Keltern, Goecke and Evers, 520 pp.

Willmann C. 1935 — IV. Die Milbenfauna — Oribatei. In: Jaus I.: Faunistisch-ökologische Studien im Anningargebiet, mit besonderer Berücksichtigung der xerothermen Formen — Zoologische Jahrbücher (Systematik), 66 (5): 331-344.

COPYRIGHT

This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.