February 24, 1998
physics/9802044
to appear in Lett. Math. Phys.

MIRROR SYMMETRY ON K3 SURFACES
AS A HYPERKÄHLER ROTATION

Ugo Bruzzo §‡ and Guido Sanguinetti ¶§

§ Scuola Internazionale Superiore di Studi Avanzati,
Via Beirut 2-4, 34014 Trieste, Italy
‡ Dipartimento di Matematica, Università degli Studi
di Genova, Via Dodecaneso 35, 16146 Genova, Italy
¶ Dipartimento di Scienze Fisiche, Università degli Studi
di Genova, Via Dodecaneso 33, 16146 Genova, Italy
E-mail: bruzzo@sissa.it, sanguine@sissa.it

Abstract. We show that under the hypotheses of [11], a mirror partner of a K3 surface X with a fibration in special Lagrangian tori can be obtained by rotating the complex structure of X within its hyperkähler family of complex structures. Furthermore, the same hypotheses force the B-field to vanish.

1. Introduction

According to the proposal of Strominger, Yau and Zaslow [11], the mirror partner of a K3 surface X admitting a fibration in special Lagrangian tori should be identified with the moduli space of such fibrations (cf. also [7]). In more precise terms, the mirror partner \check{X} should be identified with a suitable compactification of the relative Jacobian of X', where X' is an elliptic K3 surface obtained by rotating the complex structure of X within its hyperkähler family of complex structures.

Morrison [10] suggested that such a compactification is provided by the moduli space of torsion sheaves of degree zero and pure dimension one supported by the fibers of X'. (It should be noted that whenever the fibration $X' \to \mathbb{P}^1$ admits a holomorphic section, as it is usually assumed in the physical literature, the complex manifolds X' and \check{X} turn out to be isomorphic). In [1] Morrison’s suggestion was implemented, and it was shown that the relative Fourier-Mukai
transform defined by the Poincaré sheaf on the fiber product $X' \times_{\mathbb{P}^1} \hat{X}$ enjoys some good properties related to mirror symmetry; e.g., it correctly maps D-branes in X to D-branes in \hat{X}, preserves the masses of the BPS states, etc. (The fact that the Fourier-Mukai transform might describe some aspects of mirror symmetry was already suggested in [3].)

It remains to check that \hat{X} is actually a mirror of X in the sense of Dolgachev and Gross-Wilson, cf. [2, 3, 4]. In this note we show that this is indeed the case. Roughly speaking, we prove that whenever X admits a fibration in special Lagrangian tori with a section, and also admits an elliptic mirror \hat{X} with a section, then the complex structure of \hat{X} is obtained by that of X by redefining the B-field and then performing a hyperkähler rotation. A more precise statement is as follows. Let M be a primitive sublattice of the standard 2-cohomology lattice of a K3 surface, and denote by K_M the moduli space of pairs (X, j), where X is a K3 surface, and $j : M \to \text{Pic}(X)$ is a primitive lattice embedding. Let $T = M^\perp$. We assume that T contains a $U(1)$ lattice P; this means that the generic K3 surface X in K_M, possibly after a rotation of its complex structure within its hyperkähler family, admits a fibration in special Lagrangian tori with a section. After setting $\hat{M} = T/P$, we assume that the generic K3 surface in $K_{\hat{M}}$ is elliptic and has a section. These hypotheses force the B-field to be an integral class. Then, by setting to zero this class (as it seems to be suggested by the physics, since in string theory the B-field is a class in $H^2(X, \mathbb{R}/\mathbb{Z})$), and rotating the complex structure of X within its hyperkähler family of complex structures, we associate to $X \in K_M$ a K3 surface \hat{X} in $K_{\hat{M}}$ such that $\text{Pic}(\hat{X}) \simeq \hat{M}$.

2. Special Lagrangian fibrations and mirror K3 surfaces

We collect here, basically relying on [6, 9, 2, 5], some basic definitions and constructions about mirror families of K3 surfaces.

Special Lagrangian submanifolds. Let X be an n-dimensional Kähler manifold with Kähler form ω, and suppose that on X there is a nowhere vanishing holomorphic n-form Ω. One says that a real n-dimensional submanifold $\iota : Y \hookrightarrow X$ is *special Lagrangian* if $\iota^*\omega = 0$, and Ω can be chosen so that the form $\iota^*\text{Re }\Omega$ coincides with the volume form of Y. The moduli space of deformations of Y through special Lagrangian submanifolds was described in [3].

Let $n = 2$, assume that X is hyperkähler with Riemannian metric g, and choose basic complex structures $I, J,$ and K. These generate an S^2 of complex structures compatible with the Riemannian metric of X, which we shall call the *hyperkähler family* of complex structures of X.

These are the same assumptions made in [11] on physical grounds.
Denote by \(\omega_I, \omega_J \) and \(\omega_K \) the Kähler forms corresponding to the complex structures \(I, J \) and \(K \). The 2-form \(\Omega_I = \omega_I + i \omega_K \) never vanishes, and is holomorphic with respect to \(I \). Thus, submanifolds of \(X \) that are special Lagrangian with respect to \(I \), are holomorphic with respect to \(J \) (this is a consequence of Wirtinger’s theorem, cf. \[6\]). If \(X \) is a complex K3 surface that admits a foliation by special Lagrangian 2-tori (in the complex structure \(I \)), then in the complex structure \(J \) it is an elliptic surface, \(p : X' \to \mathbb{P}^1 \). If one wants \(X \) to be compact then one must allow the fibration \(p : X' \to \mathbb{P}^1 \) to have some singular fibers, cf. \[8\].

Mirror families of K3 surfaces \[2\]. Let \(L \) denote the lattice over \(\mathbb{Z} \)
\[
L = U(1) \perp U(1) \perp U(1) \perp E_8 \perp E_8
\]
(by “lattice over \(\mathbb{Z} \)” we mean as usual a free finitely generated \(\mathbb{Z} \)-module equipped with a symmetric \(\mathbb{Z} \)-valued quadratic form). If \(X \) is a K3 surface, the group \(H^2(X, \mathbb{Z}) \) equipped with the cohomology intersection pairing is a lattice isomorphic to \(L \).

If \(M \) is an even nondegenerate lattice of signature \((1, t)\), a \(M \)-polarized K3 surface is a pair \((X, j)\), where \(X \) is a K3 surface and \(j : M \to \text{Pic}(X) \) is a primitive lattice embedding. One can define a coarse moduli space \(\mathbf{K}_M \) of \(M \)-polarized K3 surfaces; this is a quasi-projective algebraic variety of dimension \(19 - t \), and may be obtained by taking a quotient of the space
\[
D_M = \{ \mathcal{C} \Omega \in \mathbb{P}(M^\perp \otimes \mathbb{C}) | \Omega \cdot \Omega = 0, \Omega \cdot \bar{\Omega} > 0 \}
\]
by a discrete group \(\Gamma_M \) (which is basically the group of isometries of \(L \) that fix all elements of \(M \)) \[2\].

A basic notion to introduce the mirror moduli space to \(\mathbf{K}_M \) is that of admissible \(m \)-vector. We shall consider here only the case \(m = 1 \). Let us pick a primitive sublattice \(M \) of \(L \) of signature \((1, t)\).

Definition 2.1. A 1-admissible vector \(E \in M^\perp \) is an isotropic vector in \(M^\perp \) such that there exists another isotropic vector \(E' \in M^\perp \) with \(E \cdot E' = 1 \).

After setting
\[
\tilde{M} = E^\perp / \mathbb{Z}E
\]
one easily shows that there is an orthogonal decomposition \(M^\perp = P \oplus \tilde{M} \), where \(P \) is the hyperbolic lattice generated by \(E \) and \(E' \). The orthogonal of \(E \) is taken here in \(M^\perp \). The mirror moduli space to \(\mathbf{K}_M \) is the space \(\tilde{\mathbf{K}}_M \). Of course one has
\[
\dim \mathbf{K}_M + \dim \tilde{\mathbf{K}}_M = 20.
\]
The operation of taking the “mirror moduli space” is a duality, i.e. \(\tilde{\mathbf{K}}_M \simeq M \) (this works so because we consider the case of a 1-admissible vector, and is no longer true for \(m > 1 \)).
The interplay between special Lagrangian fibrations and mirror K3 surfaces.

Let again M be an even nondegenerate lattice of signature $(1, t)$, and suppose that X is K3 surface such that $\text{Pic}(X) \cong M$. The transcendental lattice T (the orthogonal complement of $\text{Pic}(X)$ in $H^2(X, \mathbb{Z})$) is an even lattice of signature $(2, 19 - t)$. Let $\Omega = x + iy$ be a nowhere vanishing, global holomorphic two-form on X. Being orthogonal to all algebraic classes, the cohomology class of Ω spans a space-like 2-plane in $T \otimes \mathbb{R}$. The moduli space of K3 such that $\text{Pic}(X) \cong M$ is parametrized by the periods, whose real and imaginary parts are given by intersection with x and y, respectively. Indeed, one should recall that if we fix a basis of the cohomology lattice $H^2(X, \mathbb{Z})$ given by integral cycles α_i, $i = 1, \ldots, 22$, every complex structure on X is uniquely determined, via Torelli’s theorem, by the complex valued matrix whose entries ϖ_i are given by the intersections of the cycles α_i with the class of the holomorphic two-form Ω, i.e. $\varpi_i = \alpha_i \cdot \Omega$. This shows that generically neither x nor y are integral classes in the cohomology ring. However, if we make the further request that there is a 1-admissible vector in T, and make some choices, one of the two classes is forced to be integral.

We recall now a result from [5] (although in a slightly weaker form).

Proposition 2.2. There exists in T a 1-admissible vector if and only if there is a complex structure on X such that X has a special Lagrangian fibration with a section.

So we consider on X a complex structure satisfying this property (it follows from [5] that, if we fix a hyperkähler metric on X, this complex structure belongs to the same hyperkähler family as the one we started from). As a direct consequence we have

Proposition 2.3. If there exists a 1-admissible vector in T one can perform a hyperkähler rotation of the complex structure and choose a nowhere vanishing two-form Ω, holomorphic in the new complex structure, whose real part $\Re \Omega$ is integral.

Proof. By Proposition 1.3 of [5] the existence of a 1-admissible vector implies the existence on X of a special Lagrangian fibration with a section. On the other hand by [5] what is special Lagrangian in a complex structure is holomorphic in the complex structure in which the Kähler form is given by $\Re \Omega$. Thus in this complex structure the Picard group is nontrivial, which implies that the surface is algebraic, i.e. $\Re \Omega$ is integral.

3. The construction

We introduce now a moduli space \tilde{K}_M parametrizing M-polarized K3 surfaces together with of a 1-admissible vector in $T = M^\perp$. The generic K3
surface X in \tilde{K}_M admits a fibration in special Lagrangian tori with a section; the primitive $U(1)$ sublattice P of the transcendental lattice T associated with the 1-admissible vector is generated by the class of the fiber and the class of the section. We fix a marking of X, i.e., a lattice isomorphism $\psi: H^2(X, \mathbb{Z}) \to L$. We have an isomorphism

\[L \simeq M \oplus P \oplus \tilde{M}, \]

where $\tilde{M} = T/P$. The fact that $\tilde{M} \simeq M$ implies that the moduli spaces \tilde{K}_M and $\tilde{K}_\tilde{M}$ are isomorphic. Generically, we may assume that $M \simeq \psi(\text{Pic}(X))$.

One easily shows that the following assumptions are generically equivalent to each other (where “generically” means that this holds true for X in a dense open subset of \tilde{K}_M):

(i) The lattice \tilde{M} contains a primitive $U(1)$ sublattice P'.

(ii) The generic K3 surface in the mirror moduli space $K_\tilde{M}$ is an elliptic fibration with a section.

(iii) X carries two fibrations in special Lagrangian tori admitting a section, in such a way that the corresponding $U(1)$ lattices P, P' are orthogonal.

The two $U(1)$ lattices P and P' are interchanged by an isometry of L. Thus, the operation of exchanging them has no effect on the moduli space K_M (although it does on D_M).

We shall assume one of these equivalent conditions. The form (ii) of the second condition shows that we are working exactly under the same assumptions that in [11] are advocated on physical grounds.

In the complex structure of X we have fixed at the outset we have the Kähler form ω and the holomorphic two-form $\Omega = x + iy$, with x an integral class. Condition (iii) means that P' is calibrated by x. If we perform a rotation around the y axis, mapping the pair (ω, x) to $(x, -\omega)$, we still obtain an algebraic K3 surface X' whose Picard group contains P'.\footnote{Since we are fixing a marking of X in the following we shall often confuse the lattices $H^2(X, \mathbb{Z})$ and L.}

Now we want to show that the Kähler class of X' is a space-like vector contained in the hyperbolic lattice P'. We remind here that the explicit mirror map in [2] and [3] is given in terms of a choice of a hyperbolic sublattice of the transcendental lattice. Let D_M be defined as in Section 2, and let

\[T_M = \{ B + i\omega \in M \otimes \mathbb{C} \mid \omega \cdot \omega > 0 \} = M \times V(M)^+. \]

Here $V(M)^+$ is the component of the positive cone in $M \otimes \mathbb{R}$ that contains the Kähler form of X. The space T_M can be regarded as a (covering of the) moduli space of “complexified Kähler structures” on X. Let $M' = T/P' \simeq \tilde{M}$. By [4] Proposition 1.1, the mirror map is an isomorphism

\[\phi: T_{M'} \to D_M, \]

\footnote{Then one shows that the direct sum $P \oplus P'$ is an orthogonal summand of T.}
\[\phi(\hat{B} + i\hat{\omega}) = \hat{B} + E' + \frac{1}{2}(\hat{\omega} \cdot \hat{\omega} - \hat{B} \cdot \hat{B})E + i(\hat{\omega} - (\hat{\omega} \cdot \hat{B})E). \]

Here \(E\) and \(E'\) are the two isotropic generators of the \(U(1)\) lattice \(P'\), while \(\hat{B}\) is what the physicists call the B-field. Our holomorphic two-form \(\Omega\) is of course of the form \(\phi(\hat{B} + i\hat{\omega})\) for suitable \(\hat{B}\) and \(\hat{\omega}\), since \(\phi\) is an isomorphism. The Kähler class of \(X'\) is given by

\[x = \Re \phi \Omega = \hat{B} + E' + \frac{1}{2}(\hat{\omega} \cdot \hat{\omega} - \hat{B} \cdot \hat{B})E \]

and the new global holomorphic two-form is \(-\omega + iy\). Since \(\hat{B}\) is orthogonal to \(E\) and \(E'\), it is an integral class.

However, the Picard lattice of the K3 surface \(X'\) is generically not isomorphic to \(\hat{M}\). A better choice is suggested by the physics. Indeed in most string theory models the B-field is regarded as a Chern-Simons term, namely, as a class in \(H^2(X, \mathbb{R}/\mathbb{Z})\); so, if we consider the projection \(\lambda: H^2(X, \mathbb{R}) \to H^2(X, \mathbb{R}/\mathbb{Z})\), the relevant moduli space should be

\[\tilde{T}_{M'} = \lambda(M' \otimes \mathbb{R}) \times V(M')^+ \]

instead of \(T_{M'}\). To take this suggestion into account we set \(\hat{B} = 0\). Since \(y = \hat{\omega} - (\hat{\omega} \cdot \hat{B})E\), this changes the complex structure in \(X'\). Moreover, \(x\) lies now in \(P'\).

So, let us now consider the intersection of \(P \otimes \mathbb{R}\) with the spacelike two-plane \(\langle \Omega \rangle\) spanned by \(\Omega\). This cannot be trivial, since \(P\) is hyperbolic and \(T \otimes \mathbb{R}\) is of signature \((2, 19 - t)\). So we have a real space-like class in \(P \otimes \mathbb{R} \cap \langle \Omega \rangle\) that is orthogonal to \(x\) by construction and thus must be equal (up to a scalar factor) to \(y\). But then, in the complex structure in which the Kähler form is given by \(x\), all the cycles of \(\hat{M}\) are orthogonal to the new holomorphic two-form, given by \(\omega + iy\), and therefore are algebraic. (Notice that the class \(y\) is not integral.)

4. Conclusions

A first conclusion we may draw is that the hypotheses of [11] force the B-field to be integral, namely, to be zero as a class \(\hat{B} \in H^2(X, \mathbb{R}/\mathbb{Z})\). Moreover, starting from a K3 surface \(X\) in \(\bar{K}_M\), the construction in the previous section singles out a point in the variety \(\bar{K}_{\hat{M}}\); so we have established a map

\[\mu: \bar{K}_M \to \bar{K}_{\hat{M}} \]

which is bijective by construction, and deserves to be the called the mirror map. This map consists in setting \(\hat{B}\) to zero (as a class in \(H^2(X, \mathbb{Z})\)) and then performing a hyperkähler rotation.

If we do not set \(\hat{B}\) to zero, we obtain a family of K3 surfaces, labelled by the possible values of \(\hat{B} \in M' \simeq \hat{M}\). Its counterpart under mirror symmetry is a family of K3 surfaces labelled by \(M\). The two families are related by a hyperkähler rotation.
Acknowledgements. We thank C. Bartocci, I. Dolgachev and D. Hernández Ruipérez for useful comments and discussions. This work was partly supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica through the research project “Geometria reale e complessa.”

References

[1] Bartocci, C., Bruzzo, U., Hernández Ruipérez, D., and Muñoz Porras, J.M., Mirror symmetry on K3 surfaces via Fourier-Mukai transform, alg-geom/9704023 (to appear in Commun. Math. Phys.).

[2] Dolgachev, I.V., Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci. 81 (1996), 2599–2630.

[3] Douglas, M.R., and Moore, G., D-branes, quivers, and ALE instantons, hep-th/9603167.

[4] Gross, M., Special Lagrangian fibrations I: Topology, alg-geom/9710006.

[5] Gross, M., and Wilson, P.M.H., Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds, Math. Ann. 309 (1997), 505–531.

[6] Harvey, R., and Lawson Jr., H.B, Calibrated geometries, Acta Math. 148 (1982), 47–157.

[7] Hitchin, N., The moduli space of special Lagrangian submanifolds, dg-ga/9711002.

[8] Kodaira, K., On complex analytic surfaces, II, Ann. Math. 77 (1963), 563–620.

[9] McLean, R.C., Deformations of calibrated submanifolds, Texas A&M University Preprint, 1996: to appear in Comm. Anal. Geom.

[10] Morrison, D.R., The geometry underlying mirror symmetry, alg-geom/9608006, to appear in “Proc. European Algebraic Geometry Conference” (Warwick 1996).

[11] Strominger, A., Yau, S.-T., and Zaslow, E., Mirror symmetry is T-duality, Nucl. Phys. B479 (1996), 243–259.