On the Distribution of the Fourier Spectrum of Halfspaces

Ilias Diakonikolas1, Ragesh Jaiswal2, Rocco A. Servedio3, Li-Yang Tan3, and Andrew Wan4

1University of California Berkeley, ilias@eecs.berkeley.edu.
2Indian Institute of Technology Delhi, rjaiswal@cse.iitd.ac.in.
3Columbia University, \{ras2105, liyang\}@cs.columbia.edu.
4Tsinghua University, andrew@tsinghua.edu.cn.

March 1, 2012

Abstract

Bourgain [Bou02] showed that any noise stable Boolean function f can be well-approximated by a junta. In this note we give an exponential sharpening of the parameters of Bourgain’s result under the additional assumption that f is a halfspace.

1 Introduction

There is a sequence of results [NS94, Fri98, Bou02] in the theory of Boolean functions which share the following general flavor: if the Fourier spectrum of a Boolean function f is concentrated on low-degree coefficients, then f must be close to a junta (a function that depends only on a small number of its input variables). Bourgain’s theorem [Bou02] is the most recent and strongest of these results; roughly speaking, it says that if a Boolean function f has low noise sensitivity then f must be close to a junta. See Section 1.1 for definitions and a precise statement of Bourgain’s theorem.

The parameters in the statement of Bourgain’s theorem are essentially the best possible for general Boolean functions, in the sense that the n-variable Majority function almost (but not quite) satisfies the premise of the theorem – its noise sensitivity is only slightly higher than the bound required by the theorem – but is very far from any junta. It is interesting, though, to consider whether quantitative improvements of the theorem are possible for restricted classes of Boolean functions; this is what we do in this paper, by considering the special case when f is a halfspace.

In [DS09] a quantitatively stronger version of an earlier “junta theorem” due to Friedgut [Fri98] was proved for the special case of halfspaces, and it was asked whether a similarly strengthened version of Bourgain’s theorem held for halfspaces as well. Intuitively, any halfspace which has noise sensitivity lower than that of Majority should be “quite unlike Majority” and thus could reasonably be expected to depend on few variables; our result makes this intuition precise.

In this note we show that halfspaces do indeed satisfy a junta-type theorem which is similar to Bourgain’s but with exponentially better parameters. Our main result shows that if f is a halfspace which (unlike the Majority function) satisfies a noise sensitivity bound similar to the one in Bourgain’s original theorem, then f must be close to a junta of exponentially smaller size than is guaranteed by the original theorem. Our proof does not follow either the approach of Bourgain or of [DS09] but instead is a case analysis based on the value of a structural parameter known as the “critical index” [Ser07, DGJ+10, OS11] of the halfspace.
1.1 Background and Statement of Main Result.

We view Boolean functions as mappings \(f : \{-1, 1\}^n \to \{-1, 1\} \). All probabilities and expectations over \(x \in \{-1, 1\}^n \) are taken with respect to the uniform distribution, unless otherwise specified. We say that \(f, g : \{-1, 1\}^n \to \{-1, 1\} \) are \(\epsilon \)-close to each other (or that \(g \) is an \(\epsilon \)-approximator to \(f \)) if \(\Pr[f(x) \neq g(x)] \leq \epsilon \).

A function \(f : \{-1, 1\}^n \to \{-1, 1\} \) is said to be a “junta on \(J \subseteq [n] \)” if \(f \) only depends on the coordinates in \(J \). We say that \(f \) is a \(J \)-junta, \(0 \leq J \leq n \), if it is a junta on some set of cardinality at most \(J \).

Definition 1 (Noise sensitivity). The noise sensitivity of a Boolean function \(f : \{-1, 1\}^n \to \{-1, 1\} \) at noise rate \(\epsilon \) is defined as

\[
\text{NS}_\epsilon(f) = \Pr_{x,y}[f(x) \neq f(y)],
\]

where \(x \) is uniformly distributed and \(y \) is obtained from \(x \) by flipping each bit of \(x \) independently with probability \(\epsilon \).

Bourgain’s theorem may be stated as follows (see Theorem 4.3 of [KN06]).

Theorem 2 ([Bou02]). Fix \(f : \{-1, 1\}^n \to \{-1, 1\} \) and \(\epsilon, \delta \) sufficiently small\(^3\). If \(\text{NS}_\epsilon(f) \leq (\delta \sqrt{\epsilon})^{1+o(1)} \), then \(f \) is \(\delta \)-close to a \(2^{O(1/\epsilon)} \cdot \text{poly}(1/\delta) \)-junta.

A halfspace, or linear threshold function (henceforth simply referred to as an LTF), over \(\{-1, 1\}^n \) is a Boolean function \(f : \{-1, 1\}^n \to \{-1, 1\} \) of the form \(f(x) = \text{sign}(\sum_{i=1}^n w_i x_i - \theta) \), where \(w_1, \ldots, w_n, \theta \in \mathbb{R} \). The function \(\text{sign}(z) \) takes value 1 if \(z \geq 0 \) and takes value \(-1 \) if \(z < 0 \); the values \(w_1, \ldots, w_n \) are the weights of \(f \) and \(\theta \) is the threshold. LTFs have been intensively studied for decades in many different fields such as machine learning and computational learning theory, computational complexity, and voting theory and the theory of social choice.

Our main result, given below, is a strengthening of Bourgain’s theorem for halfspaces:

Theorem 3 (Main Result). Fix \(f : \{-1, 1\}^n \to \{-1, 1\} \) to be any LTF and \(\epsilon, \delta \) sufficiently small. If \(\text{NS}_\epsilon(f) \leq O((\delta^{2-\epsilon}/(1-\epsilon))^{1/\sqrt{\epsilon}}) \), then \(f \) is \(\delta \)-close to an \(\text{O}\left((1/\epsilon^2) \cdot \log(1/\epsilon) \cdot \log(1/\delta) \right) \)-junta.

Theorem 3 requires a slightly stronger bound on the noise sensitivity in terms of \(\delta \), namely as much as \(\delta^{2-\epsilon}/(1-\epsilon) \) versus essentially \(\delta \), but the resulting junta size bound of **Theorem 3** is exponentially smaller, both as a function of \(\epsilon \) and of \(\delta \), than the bound of **Theorem 2**.

2 Preliminaries

2.1 Basic Notation.

For \(n \in \mathbb{Z}_+ \), we denote by \([n] \) the set \(\{1, 2, \ldots, n\} \). For \(a, b, \epsilon \in \mathbb{R}_+ \) we write \(a \approx b \) to indicate that \(|a - b| = O(\epsilon) \). Let \(\mathcal{N}(\mu, \sigma^2) \) denote the Gaussian distribution with mean \(\mu \) and variance \(\sigma^2 \). Let \(\phi, \Phi \) denote the probability density function (pdf) and cumulative distribution function (cdf) respectively of a standard Gaussian random variable \(X \sim \mathcal{N}(0, 1) \).

\(^3\)Here and throughout the paper, “sufficiently small” means “in the interval \((0, c)\)” where \(c > 0 \) is some universal constant that we do not specify.
2.2 Probabilistic Facts.

We require some basic probability results including the standard additive Hoeffding bound (see e.g. [DP09]):

Theorem 4. Let X_1,\ldots,X_n be independent random variables such that for each $j \in [n]$, X_j is supported on $[a_j,b_j]$ for some $a_j,b_j \in \mathbb{R}$, $a_j \leq b_j$. Let $X = \sum_{j=1}^n X_j$. Then, for any $t > 0$, \[
\Pr \left[|X - \mathbb{E}[X]| \geq t \right] \leq 2 \exp \left(-2t^2 / \sum_{j=1}^n (b_j - a_j)^2 \right).
\]

The Berry-Esséen theorem (see e.g. [Fel68]) gives explicit error bounds for the Central Limit Theorem:

Theorem 5. (Berry-Esséen) Let X_1,\ldots,X_n be independent random variables satisfying $\mathbb{E}[X_i] = 0$ for all $i \in [n]$, $\sqrt{\sum_i \mathbb{E}[X_i^2]} = \sigma$, and $\sum_i \mathbb{E}[|X_i|^3] = \rho_3$. Let $S = \sum_i X_i / \sigma$ and let F denote the cumulative distribution function (cdf) of S. Then $\sup_x |F(x) - \Phi(x)| \leq \rho_3 / \sigma^3$.

Definition 6. A vector $w = (w_1,\ldots,w_n) \in \mathbb{R}^n$ is said to be τ-regular if $\max_i |w_i| \leq \tau \|w\|_2$.

An easy consequence of the Berry-Esséen theorem is the following fact, which says that a τ-regular linear form behaves approximately like a Gaussian up to error $O(\tau)$:

Fact 7. Let $w = (w_1,\ldots,w_n)$ be a τ-regular vector in \mathbb{R}^n with $\|w\|_2 = 1$. Then for any interval $[a,b] \subseteq \mathbb{R}$, we have $\Pr[\sum_{i=1}^n w_i x_i \in (a,b)] \approx \Phi(b) - \Phi(a)$. (In fact, the hidden constant in the \approx is at most 2.)

We say that two real-valued random variables X,Y are ρ-correlated if $\mathbb{E}[XY] = \rho$. We will need the following generalization of Fact 7 which is a corollary of the two-dimensional Berry-Esséen theorem (see e.g. Theorem 68 in [MORS10]).

Theorem 8. Let $w = (w_1,\ldots,w_n)$ be a τ-regular vector in \mathbb{R}^n with $\|w\|_2 = 1$. Let (x,y) be a pair of ρ-correlated n-bit binary strings, i.e. a draw of (x,y) is obtained by drawing x uniformly from $\{-1,1\}^n$ and independently for each i choosing $y_i \in \{-1,1\}$ to satisfy $\mathbb{E}[x_i y_i] = \rho$. Then for any intervals $I_1 \subseteq \mathbb{R}$ and $I_2 \subseteq \mathbb{R}$ we have $\Pr[(\sum_{i=1}^n w_i x_i, \sum_{i=1}^n w_i y_i) \in (I_1, I_2)] \approx \Pr[(X,Y) \in (I_1, I_2)]$, where (X,Y) is a pair of ρ-correlated standard Gaussians.

2.3 Fourier Basics over $\{-1,1\}^n$.

We consider functions $f : \{-1,1\}^n \rightarrow \mathbb{R}$ (though we often focus on Boolean-valued functions which map to $\{-1,1\}$), and we view the inputs x to f as being distributed according to the uniform distribution. The set of such functions forms a 2^n-dimensional inner product space with inner product given by $\langle f,g \rangle = \mathbb{E}[f(x)g(x)]$. The set of functions $(\chi_S)_{S \subseteq [n]}$ defined by $\chi_S(x) = \prod_{i \in S} x_i$ forms a complete orthonormal basis for this space. We will often simply write x_S for $\prod_{i \in S} x_i$.

Given a function $f : \{-1,1\}^n \rightarrow \mathbb{R}$ we define its Fourier coefficients by $\hat{f}(S) \overset{\text{def}}{=} \mathbb{E}[f(x) x_S]$, and we have that $f(x) = \sum_S \hat{f}(S) x_S$.

As an easy consequence of orthonormality we have Plancherel’s identity $\langle f,g \rangle = \sum_S \hat{f}(S) \hat{g}(S)$, which has as a special case Parseval’s identity, $\mathbb{E}[f(x)^2] = \sum_S \hat{f}(S)^2$. From this it follows that for every $f : \{-1,1\}^n \rightarrow \{-1,1\}$ we have $\sum_S \hat{f}(S)^2 = 1$. It is well-known and easy to show that the noise sensitivity of f can be expressed as a function of its Fourier spectrum as follows: $\mathbb{NS}_\epsilon(f) = \frac{1}{2} - \frac{1}{2} \cdot \sum_{S \subseteq [n]} (1 - 2\epsilon)^{|S|} \cdot \hat{f}(S)^2$.

3
3 Proof of Theorem 3

Fix ϵ, δ sufficiently small. Let $f : \{-1,1\}^n \to \{-1,1\}$ be an LTF satisfying $\text{NS}_\epsilon(f) \leq O(\delta^{1/\epsilon} \cdot \sqrt{\epsilon})$. We will show that f is δ-close to an $O\left(\frac{1}{\epsilon^2} \cdot \log(1/\epsilon) \cdot \log(1/\delta)\right)$-junta.

We start by observing that for $\delta^{1/\epsilon} < \sqrt{\epsilon}$ the desired statement follows easily; indeed, under the assumption of the theorem f is δ-close to a constant function. This is formalized in the following simple claim which holds for any Boolean function:

Claim 9. Let $f : \{-1,1\}^n \to \{-1,1\}$ be any Boolean function and $0 < \delta^{1/\epsilon} < \sqrt{\epsilon}$. If $\text{NS}_\epsilon(f) \leq \delta^{1/\epsilon} \cdot \sqrt{\epsilon}$, then f is δ-close to a constant function.

Proof. For any Boolean function we have $\sum_{S \neq \emptyset} (1 - 2\epsilon)^{|S|} \cdot \hat{f}^2(S) \leq (1 - 2\epsilon) \cdot \sum_{S \neq \emptyset} \hat{f}^2(S) = (1 - 2\epsilon) \cdot (1 - \hat{f}^2(\emptyset))$ where the equality follows from Parseval’s identity. Therefore, we can write

$$\text{NS}_\epsilon(f) = \frac{1}{2} \left(1 - \hat{f}^2(\emptyset) - \sum_{S \neq \emptyset} (1 - 2\epsilon)^{|S|} \cdot \hat{f}^2(S)\right) \geq \epsilon \cdot \left(1 - \hat{f}^2(\emptyset)\right)$$

which implies $1 - \hat{f}^2(\emptyset) \leq \delta^{1/\epsilon} / \epsilon^{1/2} \leq \delta$ where the first inequality follows from the assumed upper bound on the noise sensitivity and the second uses the assumption that $\delta^{1/\epsilon} < \sqrt{\epsilon}$. It follows that f is δ-close to $\text{sign}(\hat{f}(\emptyset))$ and this completes the proof. \hfill \qed

Using the above lemma, for the rest of the proof we can assume that $\delta^{1/\epsilon} \geq \sqrt{\epsilon}$.

Fix a weight-based representation of f as $f(x) = \text{sign}(w \cdot x - \theta)$, where we assume, without loss of generality, that $\sum_i w_i^2 = 1$ and $|w_i| \geq |w_{i+1}| > 0$, for all $i \in [n - 1]$. For $k \in [n]$, we denote $\sigma_k \overset{\text{def}}{=} \sqrt{\sum_{i=k}^n w_i^2}$. The proof proceeds by case analysis based on the value of the ϵ-critical index of the vector w, which we now define.

Definition 10 (critical index). We define the τ-critical index $\ell(\tau)$ of a vector $w \in \mathbb{R}^n$ as the smallest index $i \in [n]$ for which $|w_i| \leq \tau \cdot \sigma_i$. If this inequality does not hold for any $i \in [n]$, we define $\ell(\tau) = \infty$.

The case analysis is essentially the same as the one used in [Ser07, DGJ+10]. Let $\ell(\epsilon) \overset{\text{def}}{=} \ell(\epsilon)$ be the ϵ-critical index of f. We fix a parameter

$$L(\epsilon, \delta) \overset{\text{def}}{=} \Theta\left(\frac{1}{\epsilon^2} \cdot \log(1/\epsilon) \cdot \log(1/\delta)\right)$$

for an appropriately large value of the constant in the $\Theta(\cdot)$. If $\ell = 1$, then the linear form behaves like a Gaussian and must be either biased or noise sensitive. In Lemma 11, we show that such an f is either δ-close to constant or has noise sensitivity $\Omega(\delta^{1/\epsilon} / \sqrt{\log(1/\delta) \sqrt{\epsilon}})$. (See Case I below.) If $\ell > L$, then previous results [Ser07] establish that f is δ-close to a junta. (See Case III.) Finally, for $1 < \ell < L$, we consider taking random restrictions to the variables before the critical index. If a $(1 - \delta)$-fraction of these restrictions result in subfunctions which are very biased, then f must be 3δ-close to a junta over the first L variables. Otherwise, a δ-fraction of the restrictions result in regular LTFs which are not very biased, and we can apply the results from Case I to show that the noise sensitivity of f must be too large to satisfy the conditions of Theorem 3. We show this in Lemma 15, Case II. Our requirement on the noise sensitivity in Theorem 3 which is probably stronger than optimal, comes from the analysis of this case.
We now proceed to consider each of these three cases formally.

Case I: \(\ell = 1 \), i.e. the vector \(w \) is \(\epsilon \)-regular.] In this case, we show that \(f \) is \(\delta \)-close to a constant function. The argument proceeds as follows: If \(|E[f]| < 1 - \delta \), we prove (Lemma 11) that \(\NS(\epsilon)(f) = \Omega(\delta^{1/\epsilon} \sqrt{\log(1/\delta)}/\sqrt{\epsilon}) \) contradicting the assumption of the theorem. Hence, \(|E[f]| \geq 1 - \delta \), i.e. \(f \) is \(\delta \)-close to a constant. Our main lemma in this section establishes the intuitive fact that a regular LTF that is not-too-biased towards a constant function has high noise sensitivity.

Lemma 11. Fix \(0 < \epsilon \leq 1/2 \). Let \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \) be an \(\epsilon \)-regular LTF \(f(x) = \text{sign}(w \cdot x - \theta) \) that has \(|E[f]| = 1 - p \). Then we have

\[
\NS(\epsilon)(f) = \Omega((p^{1/\epsilon} \sqrt{\log(1/p)} \cdot \sqrt{\epsilon}) - O(\epsilon)).
\]

Case I follows easily from the above lemma. Suppose that \(p \leq \delta \). Then the function \(f \) is \(\delta \)-close to a constant. Otherwise, the lemma implies that \(\NS(\epsilon)(f) = \Omega(\delta^{1/\epsilon} \sqrt{\log(1/\delta)}/\sqrt{\epsilon}) - O(\epsilon) \); since \(\delta^{1/\epsilon} \geq \sqrt{\epsilon} \), this is \(\Omega(\delta^{1/\epsilon} \sqrt{\log(1/\delta)}/\sqrt{\epsilon}) \). This contradicts our assumed upper bound on \(\NS(\epsilon)(f) \) from the statement of the main theorem.

The proof of Lemma 11 proceeds by first establishing the analogous statement in Gaussian space (Lemma 12 below) and then using invariance to transfer the statement to the Boolean setting.

We start by giving a lower bound on the Gaussian noise sensitivity of any LTF as a function the noise rate and the threshold of the LTF. The following lemma is classical for \(\theta = 0 \). We were not able to find an explicit reference for arbitrary \(\theta \), so we give a proof for the sake of completeness.

Lemma 12. Let \(0 < \epsilon \leq 1/2 \) and \(\theta \in \mathbb{R} \). Let \(X \) and \(Y \) be \(\rho \) \(\text{def} \) \((1 - 2\epsilon) \)-correlated standard Gaussians. Then,

\[
\Pr[\text{sign}(X - \theta) \neq \text{sign}(Y - \theta)] \geq (1/\pi) \cdot \arccos(\rho) \cdot e^{-\frac{\rho^2}{1+\rho^2}}.
\]

Proof. Let \(X \) and \(Y \) be \(\rho \)-correlated standard Gaussians. As is well known, \((X, Y)\) can be generated as follows

\[
X = Z_1 = (Z_1, Z_2) \cdot (1, 0)^T \quad \text{and} \quad Y = \rho \cdot Z_1 + \sqrt{1 - \rho^2} \cdot Z_2 = (Z_1, Z_2) \cdot (\rho, \sqrt{1 - \rho^2})^T.
\]

where \(Z_1 \) and \(Z_2 \) are independent standard Gaussians. For the random variables \(X - \theta \) and \(Y - \theta \) we can write

\[
X - \theta = \left(Z_1 - \theta, Z_2 - \theta \cdot \frac{1 - \rho}{1 + \rho}\right)(1, 0)^T \quad \text{and}
\]

\[
Y - \theta = \left(Z_1 - \theta, Z_2 - \theta \cdot \frac{1 - \rho}{1 + \rho}\right)(\rho, \sqrt{1 - \rho^2})^T.
\]

Fix \(\alpha = \sqrt{\frac{1 - \rho}{1 + \rho}} \) and consider the 2-dimensional random vector \(T = (-Z_2 + \alpha \theta, Z_1 - \theta) \). Note that \(T \) is orthogonal to the vector \((Z_1 - \theta, Z_2 - \alpha \theta)\).

We now observe that

\[
\Pr[\text{sign}(X - \theta) \neq \text{sign}(Y - \theta)] = \Pr[T \text{ “splits” vectors } (1, 0) \text{ and } (\rho, \sqrt{1 - \rho^2})]
\]

We refer to Figure 1 for the rest of the proof. Let \(R \) be the region between the horizontal axis (the line spanned by \((1, 0)\)) and the line spanned by the vector \((\rho, \sqrt{1 - \rho^2})\). The RHS of the above equation is equal to the probability mass of \(R \) under a 2-dimensional unit variance Gaussian
centered at \((\alpha \theta, -\theta)\). We estimate the Gaussian integral restricted to the region by considering points at distance \(r \geq r_0\) from \((\alpha \theta, -\theta)\). Using polar coordinates to compute the integral, we obtain:

\[
\Pr[T \text{ “splits” vectors } (1, 0) \text{ and } (\rho, \sqrt{1 - \rho^2})] \geq \frac{1}{\pi} \int_{r_0}^{\infty} \int_{\gamma(r)}^{\beta(r)} re^{-r^2/2}d\phi dr
\]

\[
= \frac{1}{\pi} \int_{r_0}^{\infty} (\beta(r) - \gamma(r)) re^{-r^2/2}dr. \tag{1}
\]

The angles \(\beta(r), \gamma(r)\) are illustrated in Figure 1 and \(r_0\) is the distance of the point \((\alpha \theta, -\theta)\) from the origin, i.e.

\[
r_0 = \theta \sqrt{1 + \alpha^2} = \frac{\sqrt{2} \theta}{\sqrt{1 + \rho}} \tag{2}
\]

where the second equality follows from the definition of \(\alpha\). To compute (1), we need the following claim:

Claim 13. For all \(r > r_0\), it holds that \((\beta - \gamma)(r) = \arccos(\rho)\).

Proof. Let \(x(r)\) and \(y(r)\) denote the angles illustrated in Figure 1. First, observe that \(\beta(r) = x(r) + y(r)\) and that \(x(r) = \arccos(\rho)\). We also have that \(\gamma(r) = \arcsin(\theta/r)\) (the vector of length \(r\) originates at \((\alpha \theta, -\theta)\) and stops at the origin). Finally, an easy calculation shows that the distance from \((\alpha \theta, -\theta)\) to the line spanned by \((\rho, \sqrt{1 - \rho^2})\) is exactly \(\theta\), and hence \(y(r) = \arcsin(\theta/r)\).

Figure 1: Illustration of the integration region for Lemma 12.
the proof:

We use (3) and invariance to prove the lemma. The following sequence of inequalities completes the proof.

\[\Pr[h_\theta(X) \neq h_\theta(Y)] = \Omega(\sqrt{\epsilon} \cdot e^{-\theta^2/2}). \]

We show (3) as follows: Lemma 12 implies that

\[\Pr[h_\theta(X) \neq h_\theta(Y)] = \Omega(\sqrt{\epsilon} \cdot e^{-\theta^2/2}). \]

where we used the elementary inequality \(\arccos(1 - 2\epsilon) = \Omega(\sqrt{\epsilon}) \). We now relate \(\tilde{p} \) and \(\theta \). We claim that

\[\tilde{p} = \Theta\left(\frac{e^{-\theta^2/2}}{|\theta| + 1}\right). \]

From this it follows that

\[e^{-\theta^2/2} = \Theta\left(\tilde{p}\sqrt{\log(1/\tilde{p})}\right) \]

and (4) yields (3). It remains to get the desired bound on \(\tilde{p} \). Assume that \(\theta \geq 0 \); for \(\theta < 0 \) the argument is symmetric. First, it is easy to see that

\[\mathbb{E}_{x \sim \mathcal{N}(0,1)}[h_\theta(x)] = -1 + 2\tilde{\Phi}(\theta) \]

where \(\tilde{\Phi}(\theta) \overset{\text{def}}{=} \Pr_{x \sim \mathcal{N}(0,1)}[x \geq \theta] \). Since \(\theta \geq 0 \), we have \(\tilde{\Phi}(\theta) \leq 1/2 \), hence \(\tilde{p} = 2\tilde{\Phi}(\theta) \). The desired bound on \(\tilde{p} \) now follows from the following elementary fact:

Fact 14. For all \(\theta \geq 0 \), it holds \(\tilde{\Phi}(\theta) = \Theta\left(\frac{e^{-\theta^2/2}}{|\theta| + 1}\right) \).

We now turn to the Boolean setting to finish the proof of Lemma 12. Let \(f = \sign(w \cdot x - \theta) \) be a Boolean \(\epsilon \)-regular LTF (where without loss of generality \(\|w\|_2 = 1 \)) that has \(|\mathbb{E}[f]| = 1 - p \). We use (3) and invariance to prove the lemma. The following sequence of inequalities completes the proof:

\[\NS_\epsilon(f) = \Pr[\sign(w \cdot x - \theta) \neq \sign(w \cdot y - \theta)] \]

\[\overset{\text{2}}{=} \Pr[\sign(X - \theta) \neq \sign(Y - \theta)] \]

\[= \Omega(\tilde{p}^{-1} \sqrt{\log(1/\tilde{p})} \cdot \sqrt{\epsilon}) - O(\epsilon) \]

\[= \Omega(p^{-1} \sqrt{\log(1/p)} \cdot \sqrt{\epsilon}) - O(\epsilon) \]

where the last equality follows from (2). This concludes the proof of Lemma 12.

Proof of Lemma 11. We first bound from below the Gaussian sensitivity of a halfspace as a function of its bias and the noise rate. Let \((X, Y)\) be a pair of \(\rho \overset{\text{def}}{=} (1 - 2\epsilon) \)-correlated standard Gaussians. Consider the one-dimensional halfspace \(h_\theta : \mathbb{R} \to \{-1, 1\} \) defined as \(h_\theta(x) = \sign(x - \theta) \) and let \(|\mathbb{E}_{x \sim \mathcal{N}(0,1)}[h_\theta(x)]| = 1 - \tilde{p} \). We claim that

\[\Pr[h_\theta(X) \neq h_\theta(Y)] = \Omega(\tilde{p}^{-1} \sqrt{\log(1/\tilde{p})} \cdot \sqrt{\epsilon}). \]

We show (3) as follows: Lemma 12 implies that

\[\Pr[h_\theta(X) \neq h_\theta(Y)] = \Omega(\sqrt{\epsilon} \cdot e^{-\theta^2/2}) \]

where we used the elementary inequality \(\arccos(1 - 2\epsilon) = \Omega(\sqrt{\epsilon}) \). We now relate \(\tilde{p} \) and \(\theta \). We claim that

\[\tilde{p} = \Theta\left(\frac{e^{-\theta^2/2}}{|\theta| + 1}\right). \]

From this it follows that

\[e^{-\theta^2/2} = \Theta\left(\tilde{p}\sqrt{\log(1/\tilde{p})}\right) \]

and (4) yields (3). It remains to get the desired bound on \(\tilde{p} \). Assume that \(\theta \geq 0 \); for \(\theta < 0 \) the argument is symmetric. First, it is easy to see that

\[\mathbb{E}_{x \sim \mathcal{N}(0,1)}[h_\theta(x)] = -1 + 2\tilde{\Phi}(\theta) \]

where \(\tilde{\Phi}(\theta) \overset{\text{def}}{=} \Pr_{x \sim \mathcal{N}(0,1)}[x \geq \theta] \). Since \(\theta \geq 0 \), we have \(\tilde{\Phi}(\theta) \leq 1/2 \), hence \(\tilde{p} = 2\tilde{\Phi}(\theta) \). The desired bound on \(\tilde{p} \) now follows from the following elementary fact:

Fact 14. For all \(\theta \geq 0 \), it holds \(\tilde{\Phi}(\theta) = \Theta\left(\frac{e^{-\theta^2/2}}{|\theta| + 1}\right) \).
where (5) follows from Theorem 8 and (6) is an application of (3). To see (7), note that, by Fact 7 (a corollary of the Berry-Esseen theorem) we get that \(p \approx \tilde{p} \), and hence \(|p^{1/(1-\epsilon)} \sqrt{\log(1/p) - \tilde{p}^{1/(1-\epsilon)} \sqrt{\log(1/p)}}| = O(\epsilon) \).

Case II: \([1 < \ell \leq L]\) In this case, we show that \(f \) is \(\delta \)-close to an \(\ell \)-junta.

Consider the partition of the set \([n]\) into a set of head variables \(H = [\ell] \) and a set of tail variables \(T = [n] \setminus H \). Let us write \(H(x_H) \) to denote \(w_H \cdot x_H \) and \(T(x_T) \) to denote \(w_T \cdot x_T \), the linear forms corresponding to the head and the tail.

The argument proceeds as follows: If a non-trivial fraction of restrictions to the head variables lead to a not-too-biased LTF, we show that the original LTF has high noise sensitivity contradicting the assumption of the theorem. On the other hand, if most restrictions to the head lead to a substantially biased LTF, we argue that the original LTF is close to a junta over the head coordinates.

Let \(\rho \in \{-1, 1\}^{[H]} \) denote an assignment to the head coordinates and \(f_\rho \) be the corresponding restriction of \(f \). Note that for any restriction \(\rho \) of the head variables the resulting \(f_\rho \) is an \(\epsilon \)-regular LTF (with a threshold of \(H(\rho) - \theta \)). Formally, we consider two sub-cases depending on the distribution of \(|E[f_\rho]| \) for a random choice of \(\rho \).

Case IIa: [This case corresponds to \(\Pr_\rho (|E[f_\rho]| \leq 1 - \delta) > \delta \).] That is, at least a \(\delta \) fraction of restrictions to the head variables result in a “not-too-biased” LTF. Since each of these restricted sub-functions has high noise-sensitivity, we can show that the overall noise-sensitivity is also somewhat high. This intuitive claim is quantified in the following lemma.

Lemma 15. Let \(\epsilon, \delta \) be sufficiently small values that satisfy \(\delta^2 \geq \sqrt{\epsilon} \). Let the \(\epsilon \)-critical index \(\ell \) of \(f \) satisfy \(1 < \ell \leq L \). If \(\Pr_\rho (|E[f_\rho]| \leq 1 - \delta) > \delta \), then \(\text{NS}_\epsilon(f) = \Omega(\delta^{2 \cdot \sqrt{\epsilon}} \cdot \log(1/\delta) \cdot \sqrt{\epsilon}) \).

Therefore, in Case IIa we reach a contradiction. To prove the above lemma, we need the following claim, which implies that if a noticeable fraction of restrictions to a Boolean function have high noise sensitivity, then so does the original function.

Claim 16. Let \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \), \(R \subseteq [n] \) and \(\rho \in \{-1, 1\}^{|R|} \) be a random restriction to the variables in \(R \). For any \(\epsilon > 0 \), if \(\Pr_\rho [\text{NS}_\epsilon(f_\rho) > \tau] > \delta \), then \(\text{NS}_\epsilon(f) \geq \tau \delta \).

Proof. The following elementary fact will be useful for the proof:

Fact 17. Let \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \), \(R \subseteq [n] \) and \(\rho \in \{-1, 1\}^{|R|} \). For any \(S \subseteq ([n] \setminus R) \),

\[
\mathbb{E}_\rho [\hat{f}_\rho(S)^2] = \sum_{T \subseteq R} \hat{f}(S \cup T)^2.
\]

By linearity of expectation and Fact 17, we get that

\[
\mathbb{E}_\rho [\text{NS}_\epsilon(f_\rho)] = \frac{1}{2} \cdot \sum_{S \subseteq ([n] \setminus R)} (1 - (1 - 2\epsilon)^{|S|}) \cdot \sum_{T \subseteq R} \hat{f}(S \cup T)^2.
\]

On the other hand, we have:

\[
\text{NS}_\epsilon(f) = \frac{1}{2} \cdot \sum_{S \subseteq ([n] \setminus R)} \sum_{T \subseteq R} \left(1 - (1 - 2\epsilon)^{|S|+|T|}\right) \cdot \hat{f}(S \cup T)^2 \\
\geq \frac{1}{2} \cdot \sum_{S \subseteq ([n] \setminus R)} \sum_{T \subseteq R} \left(1 - (1 - 2\epsilon)^{|S|}\right) \cdot \hat{f}(S \cup T)^2 \\
= \frac{1}{2} \cdot \sum_{S \subseteq ([n] \setminus R)} (1 - (1 - 2\epsilon)^{|S|}) \cdot \sum_{T \subseteq R} \hat{f}(S \cup T)^2
\]

(9)
Combining equations 8 and 9, we obtain
\[
\NS_{\epsilon}(f) \geq E_{\rho}[\NS_{\epsilon}(f_\rho)] \geq \delta \tau.
\]

Using the above claim we can prove Lemma 15.

Proof of Lemma 15. By Claim 16 and the assumption that \(\Pr_\rho[|E[f_\rho]| \leq 1 - \delta] > \delta\), it suffices to show that \(f_\rho\) is noise sensitive whenever \(|E[f_\rho]| \leq 1 - \delta\), i.e., that
\[
\NS_{\epsilon}(f_\rho) = \Omega(\frac{1}{\sqrt{\log(1/\delta) \cdot \sqrt{\epsilon}}}).
\]
This follows from the fact that \(f_\rho\) is an \(\epsilon\)-regular LTF. Applying Lemma 11 with \(p = \delta \geq \epsilon\) completes the proof.

Case IIb: [The complementary case corresponds to \(\Pr_\rho[|E[f_\rho]| \leq 1 - \delta] \leq \delta\).] That is, with probability at least \(1 - \delta\) over a random restriction of the head, the bias of the corresponding restriction is “large.” In this case, a simple argument yields the following:

Lemma 18. Let \(f : \{-1,1\}^n \rightarrow \{-1,1\}\), \(H \subseteq [n]\), and \(0 < \delta \leq 1\). Suppose \(\Pr_\rho \sim H[|E[f_\rho]| \leq 1 - \delta] \leq \delta\). Then \(f\) is \(3\delta\)-close to a junta over \(H\).

Proof. Let \(B \subseteq \{-1,1\}^{|H|}\) denote the set of bad restrictions, where we say that a restriction \(\rho \in \{-1,1\}^{|H|}\) is bad if \(|E[f_\rho]| \leq 1 - \delta\). Define \(g : \{-1,1\}^n \rightarrow \{-1,1\}\) to be:
\[
g(x) = \begin{cases}
1 & \text{if } x_H \in B \\
\hat{f}(x) & \text{otherwise},
\end{cases}
\]
and note that \(g\) is \(\delta\)-close to \(f\) since \(|B| \leq \delta \cdot 2^{|H|}\) by assumption. We also have that \(g\) satisfies \(|\hat{g}_\rho(\theta)| = |E[g_\rho]| > 1 - \delta\) for all \(\rho \in \{-1,1\}^{|H|}\). Now consider \(h(x) = \sum_{S \subseteq H} \hat{g}(S)x_S\) and note that
\[
\|h - g\|_2^2 = \sum_{T \not\subseteq H} \hat{g}(T)^2 = E_{\rho \sim H}[\Var(g_\rho)] = 1 - E_{\rho \sim H}[\hat{g}_\rho(\theta)^2] < 1 - (1 - 2\delta) = 2\delta.
\]
Since \(f\) is \(\delta\)-close to \(g\) and \(g\) is \(2\delta\)-close to \(\sign(h)\) (a junta over \(H\)), this completes the proof.

This completes Case II.

Case III: \([\ell > L]\). In this case, we merely observe that \(f\) is \(\delta\)-close to an \(L\)-junta. This follows immediately from the arguments in [Ser07, DGJ+10]. In particular,

Lemma 19 (Case II(a) of Theorem 1 of [Ser07]). Fix \(\epsilon, \delta > 0\). Let \(f\) be an LTF with \(\epsilon\)-critical index \(\ell > L\). Then \(f\) is \(\delta\)-close to an \(L\)-junta.

The proof of Theorem 3 is now complete.

Acknowledgements. I.D. would like to thank Guy Kindler and Elad Hazan for useful discussions.
References

[Bou02] J. Bourgain. On the distributions of the fourier spectrum of boolean functions. *Israel J. Math.*, 131:269–276, 2002.

[DGJ+10] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. Servedio, and E. Viola. Bounded independence fools halfspaces. *SIAM J. on Comput.*, 39(8):3441–3462, 2010.

[DP09] D. Dubhashi and A. Panconesi. *Concentration of measure for the analysis of randomized algorithms*. Cambridge University Press, Cambridge, 2009.

[DS09] I. Diakonikolas and R. Servedio. Improved approximation of linear threshold functions. In *Proc. 24th Annual IEEE Conference on Computational Complexity (CCC)*, pages 161–172, 2009.

[Fel68] W. Feller. *An introduction to probability theory and its applications*. John Wiley & Sons, 1968.

[Fri98] E. Friedgut. Boolean functions with low average sensitivity depend on few coordinates. *Combinatorica*, 18(1):474–483, 1998.

[KN06] S. Khot and A. Naor. Nonembeddability theorems via Fourier analysis. *Mathematische Annalen*, 334(4):821–852, 2006.

[MORS10] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces. *SIAM J. on Comput.*, 39(5):2004–2047, 2010.

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. *Comput. Complexity*, 4:301–313, 1994.

[OS11] R. O’Donnell and R. Servedio. The Chow Parameters Problem. *SIAM J. on Comput.*, 40(1):165–199, 2011.

[Ser07] R. Servedio. Every linear threshold function has a low-weight approximator. *Comput. Complexity*, 16(2):180–209, 2007.