LOW REGULARITY CONSERVATION LAWS FOR THE BENJAMIN-ONO EQUATION

BLAINE TALBUT

ABSTRACT. We obtain conservation laws at negative regularity for the Benjamin-Ono equation on the line and on the circle. These conserved quantities control the H^s norm of the solution for $-\frac{1}{2} < s < 0$.

1. INTRODUCTION

We study real-valued solutions to the Benjamin-Ono equation

\[\frac{d}{dt} q = H q'' + 2qq' \]

on the line \mathbb{R} and the circle \mathbb{R}/\mathbb{Z}, where the Hilbert transform H is defined in either setting by

\[\hat{H}f(\xi) = -i \text{sgn}(\xi) \hat{f}(\xi). \]

This equation is a model for the propagation of long internal waves. For a recent review of the literature on (BO), see [19]. The equation (BO) is known to be completely integrable and to enjoy an infinite hierarchy of conservation laws which control the H^k norms of the solution for $k = 0, 1, \ldots$ (see [4], [3]). The well-posedness of the Cauchy problem for (BO) has been well-studied on both the line ([11], [8], [20], [2]) and the circle ([16], [12]). On both spaces, the lowest regularity for which global well-posedness is known in H^s is $s = 0$ (see [9], [13], [15], [5]). The equation (BO) is also known to be well-posed in the category of $C^0_t H^s_x \cap C^1_t H^1_x$ classical solutions (see [7], [18]); note that a classical $C^0_t H^s_x$ solution is automatically $C^1_t H^1_x$ because it solves (BO). For these results at nonnegative regularity, global well-posedness can be deduced from local well-posedness and the aforementioned hierarchy of conservation laws.

The equation (BO) also enjoys a scaling symmetry, to wit

\[q \mapsto \lambda q(\lambda^2 t, \lambda x). \]

This symmetry leaves $\|q\|_{H^{-1/2}(\mathbb{R})}$ invariant. This suggests that at least below the critical regularity $s = -1/2$ we should expect (BO) to be ill-posed. Well-posedness on the line in the regime $-\frac{1}{2} \leq s < 0$ appears to be an open question, and we hope to apply the conservation laws obtained in this paper to a future study of this problem. On the other hand, on the circle, for all $s < 0$ the Cauchy problem is known to be ill-posed in the sense that the data-to-solution map fails to be pointwise continuous; see [14]. Our results show that, nevertheless, norm blowup does not occur on the circle for regularities $s > -\frac{1}{2}$. This leaves open the possibility that after some suitable renormalization of the solutions, one can recover well-posedness on the circle, as was done for the cubic Wick-ordered NLS on the circle in [17].
The equation [BO] is related to the Korteweg-de Vries equation

\[
\frac{d}{dt} q = -q''' + 6qq'.
\]

by way of the Intermediate Long Wave equation; [BO] is formally obtained from the Intermediate Long Wave equation in the deep water limit, while [KdV] arises from the shallow water limit. For details, see [1]. Using the integrable structure of [KdV] and in particular the Lax pair, Killip, Visan, and Zhang [10] obtained conservation laws which govern the \(H^s\) norm of the solution for \(s \geq -1\). These same conservation laws were employed in [9] to obtain global well-posedness of [KdV] in the space \(H^{-1}\).

In this note, we follow the method of [10] to obtain low-regularity conservation laws for [BO]. Our principal result is the following:

Theorem. Let \(q\) be a classical solution to [BO] on the line or the circle and let \(-\frac{1}{2} < s < 0\), \(1 \leq r < \infty\). Then

\[
(1 + \|q(0)\|_{L^r_{s/2}}^2)\sup_{t \in \mathbb{R}} \|q(t)\|_{H^r_s} \lesssim_{s,r} \|q(0)\|_{B^r_{s/2}} \lesssim_{s,r} (1 + \|q(0)\|_{L^r_{s/2}}^2)^{-s} \inf_{t \in \mathbb{R}} \|q(t)\|_{B^r_{s/2}}.
\]

The particular case of \(r = 2\) is equivalent to the conservation of the Sobolev norm:

\[
\sup_{t \in \mathbb{R}}(1 + \|q(0)\|_{H^r_{s/2}}^2)^{-s} \|q(t)\|_{H^r_s} \lesssim_{s,r} \|q(0)\|_{H^r_s} \inf_{t \in \mathbb{R}}(1 + \|q(0)\|_{H^r_{s/2}}^2)^{-s} \|q(t)\|_{H^r_s}.
\]

This will be proved as Theorem 3.2. See section 3 for the definition of the Besov norms \(\|f\|_{B^r_{s/2}}\).

Let us review the method of [10] as it applies to our problem. The first thing to note is that [BO] has a Lax pair. We proceed formally, leaving aside considerations of boundedness until we have identified the objects of our study. We follow [21] in presenting the Lax pair as it decomposes along the Hardy spaces \(H^\pm\) of \(L^2\) functions whose Fourier transforms are supported on positive and negative modes, respectively. On the line,

\[
L^2(\mathbb{R}) = H^+(\mathbb{R}) \oplus H^-(\mathbb{R}).
\]

On the circle we must be more careful, because the zero frequency mode contributes positive mass. However, if we restrict to the space \(L^2_0(\mathbb{R}/\mathbb{Z})\) of mean-zero \(L^2\) functions, then

\[
L^2_0(\mathbb{R}/\mathbb{Z}) = H^+(\mathbb{R}/\mathbb{Z}) \oplus H^-(\mathbb{R}/\mathbb{Z}).
\]

Concordantly, for much of this paper we will assume that all our solutions to [BO] on the circle have mean 0. Because the \([BO]\) flow preserves the mean of the data (since its right hand side is a complete derivative), this amounts to requiring the initial data to have mean 0. This assumption will be removed in the end by way of the Galilei transformation [6].

The orthogonal Cauchy projections \(C_\pm : L^2(\mathbb{R}) \to H^\pm(\mathbb{R})\) and \(C_\pm : L^2_0(\mathbb{R}/\mathbb{Z}) \to H^\pm(\mathbb{R}/\mathbb{Z})\) are given by

\[
C_\pm f = \frac{1}{2}(f \pm iHf).
\]

Given a smooth, decaying function \(q(t,x)\), we define operators \(L_\pm, P_\pm\) by

\[
L_\pm(t) \varphi = \pm C_\pm \frac{1}{4} \partial_x^2 \varphi + C_\pm(q(t))C_\pm \varphi, \quad P_\pm(t) \varphi = \pm \frac{1}{2} C_\pm \partial_x^2 \varphi - C_\pm(q(t))C_\pm \varphi - C_\pm(\partial_x^2 q(t)).
\]

Because these operators leave \(H^\pm\) (respectively) invariant, it will not matter whether we understand them to act on \(L^2\) or on \(H^\pm\). Now \(q(t)\) (mean 0 if on the circle) solves [BO] if and only if

\[
\frac{d}{dt} L_\pm = [L_\pm, P_\pm].
\]
Let us restrict our attention to the action on H^+. Because of (1.1), the (BO) flow preserves all the spectral properties of L_+. Thus, formally, we expect the perturbation determinant (where the determinant is taken over H^+)

$$\det((\kappa + L_+)(t)) = \det(\text{id} + C_+q(t)C_+R_\kappa)$$

to be preserved in time if q solves (BO). Here

$$R_\kappa = C_+L_+C_+^{-1}$$

is defined by multiplication on the Fourier side by $\mathbb{I}_{(0,\infty)}(\xi)((\kappa + \xi)^{-1}$.

If $\kappa > 0$, this is a positive definite operator, and hence $\sqrt{R_\kappa}$ makes sense and the symbol of $\sqrt{R_\kappa}$ is the square root of that of R_κ. Its inverse R_κ^{-1} also makes sense, albeit as an unbounded operator.

Taking a logarithm, we find

$$(1.2) \quad - \log \det((\kappa + L_+)(t)) = \sum_{\ell=1}^{\infty} \frac{(-1)^\ell}{\ell} \text{tr}\{(C_+q(t)C_+R_\kappa)^\ell\}.$$

It will be convenient to reformulate the above in terms of the operator

$$A(\kappa; q) := \sqrt{R_\kappa}C_+qC_+\sqrt{R_\kappa}$$

which depends linearly on q and is self-adjoint when q is real. Cycling the trace, we may rewrite (1.2) as

$$\sum_{\ell=1}^{\infty} \frac{(-1)^\ell}{\ell} \text{tr}\{A(\kappa; q(t))^\ell\}.$$

This quantity almost makes sense; however, $A(\kappa; q)$ is not a trace-class operator, even if q is Schwartz. On the other hand, considered formally,

$$\text{tr}\{A(\kappa; q(t))\} = \text{tr}\{(\kappa + L_+)(t)R_\kappa - \text{id}\}$$

ought to be preserved by the (BO) flow because of (1.1). Thus we may have some confidence in dropping the $\ell = 1$ term to study the quantity

$$\alpha(\kappa; q) := \sum_{\ell=2}^{\infty} \frac{(-1)^\ell}{\ell} \text{tr}\{A(\kappa; q)^\ell\}.$$

As we shall see, this series makes sense if $q \in H^s$ for any $s > -\frac{1}{2}$ and κ is sufficiently large. Although we took the determinant over H^+, it does not matter whether we interpret the trace to be taken over H^+ or L^2, since the difference is a matter of null eigenvectors, and henceforth we shall consider $A(\kappa; q)$ to be an L^2 operator.

The crux of the method is to show, as the foregoing discussion suggests, that $\alpha(\kappa; q)$ is conserved by the (BO) flow (section 2) and that it controls the relevant norm(s) of the solution (section 3). In our case and unlike in [10], the main term of $\alpha(\kappa; q)$ is not directly comparable to any Sobolev norm of q. Therefore, it will be necessary to “build” a proxy for the H^s norm of q out of $\alpha(\kappa; q)$ for various scales κ. The materials of our construction being conserved, it will follow that the (proxy) norm is also conserved.
1.1. Notation and Preliminaries. We write $A \lesssim B$ to mean that $A \leq CB$ for an absolute constant C; if the value of C depends on parameters a, b, \ldots then we will instead write $A \lesssim_{a, b, \ldots} B$. We write $A \lesssim B^\gamma \pm$ to mean that, for any $\varepsilon > 0$, $A \lesssim_{\varepsilon, \gamma} B^\gamma \pm \varepsilon$.

In this paper our conventions for the Fourier transform are

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ix\xi} f(x) dx, \quad \hat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{ix\xi} f(\xi) d\xi$$

for functions on the line and

$$\hat{f}(\xi) = \int_0^1 e^{-ix\xi} f(x) dx, \quad \hat{f}(x) = \sum_{\xi \in 2\pi\mathbb{Z}} e^{ix\xi} f(\xi)$$

for functions on the circle. We define

$$\|f\|_{H^s}^2 = \int_{\mathbb{R}} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2 d\xi, \quad \|f\|_{H^s(\mathbb{R}/\mathbb{Z})}^2 = \sum_{k \in 2\pi\mathbb{Z}} (1 + |\xi|^2)^s |\hat{f}(\xi)|^2$$

and let $H^0_s(\mathbb{R}/\mathbb{Z})$ denote the subspace of $H^s(\mathbb{R}/\mathbb{Z})$ functions with $\hat{f}(0) = 0$, i.e. mean zero.

Because our problem is translation-invariant, we may avoid any functional-analytic subtleties by working entirely on the Fourier side. If T is a linear operator given on the Fourier side by

$$\hat{T}\varphi(\xi) = \int_{\mathbb{R}} K(\xi, \eta) \varphi(\eta) d\eta$$

then we may define the Hilbert-Schmidt norm of T by

$$\|T\|_{HS}^2 = \iint_{\mathbb{R}^2} |K(\xi, \eta)|^2 d\eta d\xi.$$ Similarily, if $n \geq 2$ and T_1, \ldots, T_n are Hilbert-Schmidt operators with Fourier kernels K_1, \ldots, K_n, then we say $T_1 \cdots T_n$ is trace class and define the trace

$$\text{tr}\{T_1 \cdots T_n\} = \int_{\mathbb{R}^n} K_1(\xi_1, \xi_2) \cdots K_n(\xi_n, \xi_1) d\xi_1 \cdots d\xi_n.$$ In this formulation, cycling the trace amounts to an application of Fubini’s theorem.

By the Cauchy-Schwarz inequality, $\alpha(\kappa; q)$ is a sub-geometric series with a common ratio $\lesssim \|A(q)\|_{HS}$. The following lemma gives sufficient conditions for this series to converge and submit to term-by-term differentiation and ensures that $\alpha(\kappa; q)$ is comparable to its first term.

Lemma 1.1. Let $t \mapsto A(t)$ define a C^1 curve in \mathcal{F}_2. Suppose for some t_0 we have

$$\|A(t_0)\|_{\mathcal{F}_2} < \frac{1}{3}.$$ Then there is a closed interval I containing t_0 on which the series

$$\alpha(t) := \sum_{\ell=2}^{\infty} (-1)^\ell \text{tr}\{A(t)^\ell\}$$

converges uniformly and defines a C^1 function which can be differentiated term by term:

$$\frac{d}{dt} \alpha(t) = \sum_{\ell=2}^{\infty} (-1)^\ell \text{tr}\{A(t)^{\ell-1} \frac{d}{dt} A(t)\}.$$ If $A(t)$ is self-adjoint, then

$$\frac{1}{3} \|A(t)\|_{\mathcal{F}_2}^2 \leq \alpha(t) \leq \frac{2}{3} \|A(t)\|_{\mathcal{F}_2}^2.$$
For a proof of this lemma, see [10], Lemma 1.5.

2. CONSERVATION OF THE PERTURBATION DETERMINANT

In light of Lemma 1.1, our first task is to understand \(\|A(q(t))\|_2 \). Our next result is most conveniently formulated in terms of the linear operator \(T_\kappa \) given by the Fourier multiplier

\[
\hat{T_\kappa f}(\xi) = \frac{\log(2 + |\xi|/\kappa)}{\sqrt{\kappa^2 + |\xi|^2}} \hat{f}(\xi).
\]

Theorem 2.1. If \(q \in H^s(\mathbb{R}) \) or \(q \in H^s_0(\mathbb{R}/\mathbb{Z}) \) for \(-\frac{1}{2} < s < 0\), then for \(\kappa \geq 1 \)

\[
\|A(\kappa; q)\|_2^2 \sim \langle q, T_\kappa q \rangle \lesssim s \kappa^{-1-2s} \|q\|_{H^s}^2.
\]

Proof. We first consider the case of the line. We compute

\[
\|A(\kappa; q(t))\|_2^2 = \int_{\xi \geq 0} \int_{\eta \geq 0} (\kappa + \xi)^{-1}(\kappa + \eta)^{-1}|\hat{q}(\xi - \eta)|^2 d\eta d\xi
\]

\[
= \int_{-\infty}^{\infty} \int_{\eta \geq \max(0,-\xi)} (\kappa + \xi + \eta)^{-1}(\kappa + \eta)^{-1}|\hat{q}(\xi)|^2 d\eta d\xi
\]

\[
= \int_0^\infty \frac{1}{\xi} \log \left(1 + \frac{\xi}{\kappa} \right) |\hat{q}(\xi)|^2 d\xi - \int_{-\infty}^0 \frac{1}{\xi} \log \left(1 - \frac{\xi}{\kappa} \right) |\hat{q}(\xi)|^2 d\xi
\]

\[
= \int_{-\infty}^{\infty} \log(1 + \frac{|\xi|}{\kappa}) |\hat{q}(\xi)|^2 d\xi
\]

\[
\sim \int_{-\infty}^{\infty} \frac{\log(2 + |\xi|/\kappa)}{\sqrt{\kappa^2 + |\xi|^2}} |\hat{q}(\xi)|^2 d\xi
\]

where the implicit constant in the last line is absolute. This proves the first inequality. The second inequality follows from the fact that

\[
\log(2 + |\xi|/\kappa)(\kappa^2 + |\xi|^2)^{-1/2} \lesssim s \kappa^{-1} \left(1 + \left(\frac{\xi}{\kappa} \right)^2 \right)^s \leq \kappa^{-1-2s}(1 + \xi^2)^s
\]

for any \(-\frac{1}{2} < s < 0\), \(\kappa \geq 1 \).

In the case \(q \in H^s_0(\mathbb{R}/\mathbb{Z}) \), a similar computation to the above may be repeated, although the analogue of the third equality holds only within the bounds of multiplicative constants, rather than exactly. \(\square \)

Theorem 2.2. Let \(q \) be a \(C^1_tH^3_x \cap C^1_tH^1_x \) solution to (BO) on the line or the circle, having mean 0 if on the circle. For any \(t \in \mathbb{R} \) and \(s > -\frac{1}{2} \), there exists a constant \(C = C(s) \) such that for all \(\kappa \geq 1 + C\|q(t)\|_{H^s} \),

\[
\frac{d}{dt} g(\kappa; q(t)) = 0.
\]

Proof. We choose \(C \) large enough that Theorem 2.1 ensures that

\[
\|A(\kappa; q(t))\|_2 \lesssim \frac{1}{3}
\]
whenever $\kappa \geq 1 + \|q(t)\|_{H^2}^\alpha + \|q(t)\|_{H^\alpha}$. We then apply Lemma \[1\] to conclude that $\alpha(\kappa; q)$ converges on a neighborhood of t and
\[
\frac{d}{dt} \alpha(\kappa; q(t)) = \sum_{\ell=2}^{\infty} (-1)^{\ell} \text{tr} \left\{ A(\kappa; q)^{\ell-1} A(\kappa; q) \right\}
\]
\[
= \sum_{\ell=2}^{\infty} (-1)^{\ell} \left\{ A(\kappa; q)^{\ell-1} A(\kappa; Hq'' + 2qq') \right\}.
\]
By Theorem \[2\] $A(\kappa; q)$ is a Hilbert-Schmidt operator, as is $A(\kappa; Hq'' + 2qq')$ if $q \in H^3$, so we may cycle a copy of $A(\kappa; q)$ in the trace to obtain
\[
\frac{d}{dt} \alpha(\kappa; q(t)) = \sum_{\ell=2}^{\infty} (-1)^{\ell} \text{tr} \left\{ A(\kappa; q)^{\ell-2} A(\kappa; Hq'') A(\kappa; q) \right\} + \sum_{\ell=2}^{\infty} (-1)^{\ell} \text{tr} \left\{ A(\kappa; q)^{\ell-1} A(\kappa; 2qq') \right\},
\]
which we rearrange slightly to give a telescoping series:
\[
\frac{d}{dt} \alpha(\kappa; q(t)) = \text{tr} \left\{ A(\kappa; q) A(\kappa; Hq'') \right\} + \sum_{\ell=2}^{\infty} (-1)^{\ell} \left[2 \text{tr} \left\{ A(\kappa; q)^{\ell-1} A(\kappa; qq') \right\} - \text{tr} \left\{ A(\kappa; q)^{\ell-1} A(\kappa; Hq'') A(\kappa; q) \right\} \right].
\]
Evidently it suffices to show that
\[
\text{tr} \left\{ A(\kappa; q) A(\kappa; Hq'') \right\} = 0
\]
and
\[
2 \text{tr} \left\{ A(\kappa; q)^{\ell-1} A(\kappa; qq') \right\} = \text{tr} \left\{ A(\kappa; q)^{\ell-1} A(\kappa; Hq'') A(\kappa; q) \right\} \]
for all $\ell \geq 2$.

To see (2.1), we compute the trace directly on the line:
\[
\text{tr} \left\{ A(\kappa; q) A(\kappa; Hq'') \right\}
\]
\[
= - \int_{\xi \geq 0} \int_{\eta \geq 0} (k + \xi)^{-1} \hat{q} (\xi - \eta) (k + \eta)^{-1} \hat{H} (\eta - \xi) (\eta - \xi)^2 \hat{q} (\eta - \xi) d\eta d\xi
\]
\[
= -i \int_{\xi \geq 0} \int_{\eta \geq 0} \frac{\text{sgn}(\xi - \eta)(\xi - \eta)^2}{(k + \xi)(k + \eta)} |\hat{q}(\eta - \xi)|^2 d\eta d\xi.
\]
This integral converges absolutely when $q \in H^2$. The integrand is odd with respect to $\xi = \eta$, so the integral evaluates to 0. The computation on the circle is similar.

To reduce the number of derivatives on q in the right hand side of (2.2), we require a Leibniz rule for the derivative operator R^{-1}_κ. If $f \in H^3$, we write
\[
C_+ f' C_+ = iC_+[C_+ (\kappa - i\partial_x) C_+ f] C_+ = iC_+[R^{-1}_\kappa f] C_+
\]
and so, commuting C_+ and R_κ as needed,
\[
A(\kappa; q) A(\kappa; f') A(\kappa; q) = i \sqrt{R_\kappa} C_+ q R_\kappa C_+ [R^{-1}_\kappa f] C_+ R_\kappa C_+ q \sqrt{R_\kappa}
\]
\[
= i \sqrt{R_\kappa} C_+ q C_+ (f R_\kappa - R_\kappa f) C_+ q C_+ \sqrt{R_\kappa}
\]
\[
= i \sqrt{R_\kappa} C_+ q C_+ f C_+ \sqrt{R_\kappa} A(\kappa; q) - i A(\kappa; q) \sqrt{R_\kappa} C_+ C_+ q C_+ \sqrt{R_\kappa}.
\]
Because R^{-1}_κ is an unbounded operator, the first equality above holds only on the domain of R^{-1}_κ, which is a dense subset of L^2. However, $A(\kappa; q) \in L^2_0$ and $\sqrt{R_\kappa} C_+ f C_+ g \sqrt{R_\kappa} \in L^2_0$ when $f, g \in H^2$. This suffices to conclude

$$A(\kappa; q) A(\kappa; f') A(\kappa; q) = i \sqrt{R_\kappa} C_+ q C_+ f C_+ \sqrt{R_\kappa} A(\kappa; q) - i A(\kappa; q) \sqrt{R_\kappa} C_+ f C_+ q C_+ \sqrt{R_\kappa}$$

with equality as operators on L^2.

Now we show (2.2). We write

$$H q'' = \frac{1}{2} q''_+ - \frac{1}{2} q''_- = (\frac{1}{2} q'_+ - \frac{1}{2} q'_-)',$$

where φ_\pm denotes the projection of φ onto H^\pm. Letting $f = \frac{1}{2} q'_+ - \frac{1}{2} q'_-$ in (2.3), we find

$$\text{tr} \{ A(\kappa; q)^{-1} A(\kappa; H q'') A(\kappa; q) \} = \text{tr} \left\{ A(\kappa; q)^{-1} \sqrt{R_\kappa} C_+ q C_+ q C_+ \sqrt{R_\kappa} \right\} - \text{tr} \left\{ A(\kappa; q)^{-1} \sqrt{R_\kappa} C_+ q C_+ q C_+ \sqrt{R_\kappa} \right\} + \text{tr} \left\{ A(\kappa; q)^{-1} \sqrt{R_\kappa} C_+ q C_+ q C_+ \sqrt{R_\kappa} \right\}.$$

We pass to the penultimate line above by cycling a copy of $A(\kappa; q)$ in two of the trace terms. Adding and subtracting $A + D$ yields

$$\text{tr} \{ A(\kappa; q)^{-1} A(\kappa; H q'') A(\kappa; q) \} = 2(A + D) - A - B - C - D.$$

We exploit some identities of the Cauchy projections in order to simplify the above expressions. If $f \in L^2(\mathbb{R})$ or $f \in L^2_0(\mathbb{R}/\mathbb{Z})$, then $C_+ f_+ C_+ = f_+ C_+$ and $C_+ f_- C_+ = C_+ f_-$. Thus

$$A = \text{tr} \left\{ A(\kappa; q)^{-1} \sqrt{R_\kappa} C_+ q C_+ q C_+ \sqrt{R_\kappa} \right\}, \quad D = \text{tr} \left\{ A(\kappa; q)^{-1} \sqrt{R_\kappa} C_+ q C_+ q C_+ \sqrt{R_\kappa} \right\}.$$

Applying the identity $f_+ + f_- = f$, we find

$$A + D = \text{tr} \left\{ A(\kappa; q)^{-1} A(\kappa; q') \right\}.$$

Thus to show (2.2) and complete the proof of the theorem, it suffices to show $A + B + C + D = 0$. By the same identity, we may simplify

$$A + C = \text{tr} \left\{ A(\kappa; q)^{-1} \sqrt{R_\kappa} C_+ q C_+ q C_+ \sqrt{R_\kappa} \right\}$$

and

$$B + D = \text{tr} \left\{ A(\kappa; q)^{-1} \sqrt{R_\kappa} C_+ q C_+ q C_+ \sqrt{R_\kappa} \right\}.$$
Because $\sqrt{\mathcal{R}_\kappa} C_+ q C_+ q C_+ q C_+ \sqrt{\mathcal{R}_\kappa} \in \mathcal{I}_2$, we may substitute this into the trace and cycle a copy of $A(\kappa; q)$ to obtain
\[A + B + C + D = \text{tr}\{X\} = 0. \]

In the case $\ell = 2$, we do not have two copies of $A(\kappa; q)$ to place around the commutator, so we cannot apply the Leibniz rule as an operator identity. Instead we apply the same idea at the level of the integrals:
\[
(A + C) + (B + D) = \int_{\xi \geq 0} \int_{\eta \geq 0} \int_{\nu \geq 0} \frac{i(\nu - \xi)}{\kappa + \xi} \hat{q}(\xi - \eta) \hat{q}(\eta - \nu) \hat{q}(\nu - \xi) d\nu d\eta d\xi
+ \int_{\xi \geq 0} \int_{\eta \geq 0} \int_{\nu \geq 0} \frac{i(\eta - \nu)}{\kappa + \xi} \hat{q}(\xi - \eta) \hat{q}(\eta - \nu) \hat{q}(\nu - \xi) d\nu d\eta d\xi
= \int_{\xi \geq 0} \int_{\eta \geq 0} \int_{\nu \geq 0} \frac{i(\nu - \xi)}{\kappa + \xi} \hat{q}(\xi - \eta) \hat{q}(\eta - \nu) \hat{q}(\nu - \xi) d\nu d\eta d\xi
- i \int_{\xi \geq 0} \int_{\eta \geq 0} \int_{\nu \geq 0} \frac{1}{\kappa + \xi} \hat{q}(\xi - \eta) \hat{q}(\eta - \nu) \hat{q}(\nu - \xi) d\nu d\eta d\xi.
\]
The above integrals converge by Cauchy-Schwarz. Cycling the variables $\xi \mapsto \nu \mapsto \eta \mapsto \xi$ in the second integral, we see that the two integrals in the last identity are equal. This completes the proof. \qed

Because α is comparable to its first term, as a corollary to this result we obtain uniform in time control of $\|A(\kappa; q(t))\|_{\mathcal{I}_2}$.

Corollary 2.3. Let $s > -\frac{1}{2}$ and let q be a $C^0_t H^2_x \cap C^1_t H^1_x$ solution to (BO) on the line or the circle, having mean 0 if on the circle. Then there exists a constant $C = C(s)$ such that for all $\kappa \geq 1 + C\|q(0)\|_{H^s}^{\frac{2}{s-1}}$,
\[
\sup_{t \in \mathbb{R}} \|A(\kappa; q(t))\|_{\mathcal{I}_2}^2 \leq 2 \|A(\kappa; q(0))\|_{\mathcal{I}_2}^2 < \frac{1}{9}
\]
and therefore, by Theorem 2.2
\[
\langle q(t), T_\kappa q(t) \rangle \lesssim \langle q(0), T_\kappa q(0) \rangle.
\]

Proof. We may choose C sufficiently large that $\|A(\kappa; q(0))\|_{\mathcal{I}_2}^2 < \frac{1}{18}$. By Lemma 1.1 and Theorem 2.2 there exists a neighborhood I of 0 on which
\[
\|A(\kappa; q(t))\|_{\mathcal{I}_2}^2 \leq 3\alpha(\kappa; q(t)) = 3\alpha(\kappa; q(0)) \leq 2 \|A(\kappa; q(0))\|_{\mathcal{I}_2}^2 < \frac{1}{9}.
\]
Since $\|A(\kappa; q(t))\|_{\mathcal{I}_2} < \frac{1}{3}$, Lemma 1 implies that (2.4) is an open condition, and the theorem follows by a continuity argument. \qed

3. Conservation of Norms

Because of the logarithmic factor, $\langle q, T_\kappa q \rangle$ is not comparable to any H^s norm of q; it behaves like $\|q\|_{H^{-1/2}}^2$ at frequencies $\lesssim \kappa$ and like $\|\log(|\nabla|)(|\nabla|^{1/2} q\|^2_{L^2})$ at frequencies $\gg \kappa$. This difficulty is avoided if we “build” $\|q\|_{H^s}$ for $-\frac{1}{2} < s < 0$ one frequency scale at a time, using the contribution of $\langle q, T_\kappa q \rangle$ at the frequency scale κ where it behaves like a pure Sobolev norm.
This is naturally expressed in terms of the Besov norms
\[
\|f\|_{B^s_{r,2}} = \left(\|\hat{f}(\xi)\|^r_{L^2(|\xi| \leq 1)} + \sum_{N>1} N^{rs} \|\hat{f}(\xi)\|^r_{L^2(N \leq |\xi| < 2N)} \right)^{1/r}
\]
where the sum is taken over dyadic \(N = 2, 4, 8, \ldots \) and with the usual interpretation in the case \(r = \infty \). The following lemma (the analogue of Lemma 3.2 in [10]) relates this norm to (the leading term of) \(\alpha(k;q) \).

Lemma 3.1. Fix \(-\frac{1}{2} < s < 0, 1 \leq r \leq \infty, \kappa_0 \geq 1.\) For any \(H^2 \) function \(f \),
\[
\|f\|_{B^s_{r,2}} \lesssim \sum_{N \in 2^n} N^{rs} \left(\kappa_0 N \langle f, T_{\kappa_0 N} f \rangle \right)^{r/2}
\]
and
\[
\sum_{N \in 2^n} N^{rs} \left(\kappa_0 N \langle f, T_{\kappa_0 N} f \rangle \right)^{r/2} \lesssim \kappa_0^{-rs} \|f\|_{B^s_{r,2}}.
\]

Proof. The inequality (3.1) follows easily from the estimate
\[
\left\| \hat{f}(\xi) \right\|^2_{L^2(|\xi| \leq N)} \leq \frac{2}{\log 2} \int \frac{\kappa_0 N \log(2 + |\xi| N)}{\sqrt{\kappa_0^2 N^2 + \xi^2}} |\hat{f}(\xi)|^2 d\xi.
\]

To control the other direction, we decompose
\[
\int \frac{\kappa_0 N \log(2 + |\xi| N)}{\sqrt{\kappa_0^2 N^2 + \xi^2}} |\hat{f}(\xi)|^2 d\xi \\
\leq \log(3) \|\hat{f}(\xi)\|^2_{L^2(|\xi| \leq 1)} + \sum_{M \in 2^n} \kappa_0 N \log(2 + \frac{2M}{\kappa_0 N}) \|\hat{f}(\xi)\|^2_{L^2(M < |\xi| \leq 2M)} \\
\leq \left(\sqrt{\log(3)} \|\hat{f}(\xi)\|_{L^2(|\xi| \leq 1)} + \sum_{M \in 2^n} \left(\kappa_0 N \log(2 + \frac{2M}{\kappa_0 N}) \right)^{1/2} \|\hat{f}(\xi)\|_{L^2(M < |\xi| \leq 2M)} \right)^2.
\]

This shows that the left-hand side of (3.2) is bounded by
\[
\left\| \sqrt{\log(3)} N^s \|\hat{f}(\xi)\|_{L^2(|\xi| \leq 1)} + \sum_{M \in 2^n} \left(\kappa_0 N^{1+2s} M^{-2s} \log(2 + \frac{2M}{\kappa_0 N}) \right)^{1/2} M^s \|\hat{f}(\xi)\|_{L^2(M < |\xi| \leq 2M)} \right\|^r_{\ell^r(N \in 2^n)}
\]
which reduces our task to estimating the operator norm of a certain \(\ell^r \rightarrow \ell^r \) matrix. To do this, we apply Schur’s test. The row sums of this operator are bounded by
\[
\sqrt{\log(3)} N^s + \sum_{M \in 2^n} \left(\kappa_0 N^{1+2s} M^{-2s} \log(2 + \frac{2M}{\kappa_0 N}) \right)^{1/2} \lesssim s 1 + \kappa_0^{-s}
\]
uniformly in \(N \), while the column sums are bounded by
\[
\sum_{N \in 2^n} \sqrt{\log(3)} N^s \lesssim s, \quad \sum_{N \in 2^n} \left(\kappa_0 N^{1+2s} M^{-2s} \log(2 + \frac{2M}{\kappa_0 N}) \right)^{1/2} \lesssim s \kappa_0^{-s}.
\]
uniformly in M. Note that to make these estimates we require the condition $-\frac{1}{2} < s < 0$. This proves (3.2). \hfill \square

Our main result now follows easily from the foregoing lemma and Corollary 2.3.

Theorem 3.2. Let q be a $C^1_t H^3_x \cap C^1_t H^1_x$ solution to BO on the line or the circle and let $-\frac{1}{2} < s < 0, 1 \leq r \leq \infty$. Then

$$(1 + \|q(0)\|_{B_t^{r,2}}^{\frac{2}{s}})^s \sup_{t \in \mathbb{R}} \|q(t)\|_{B_t^{r,2}} \lesssim_{s,r} \|q(0)\|_{B_t^{r,2}} \lesssim_{s,r} (1 + \|q(0)\|_{B_t^{r,2}}^{\frac{2}{s(r+2)}})^{-s} \inf_{t \in \mathbb{R}} \|q(t)\|_{B_t^{r,2}}.$$

Proof. On the circle, we first assume that q has mean 0. By Hölder’s inequality, we have an embedding $B_t^{s_1,2} \hookrightarrow B_t^{s_2,2} = H^{s_2}$ for any $s_2 < s_1$. Let

$$\kappa_0 = 1 + C\|q(0)\|_{B_t^{r,2}}^{\frac{2}{s}} \gtrsim_{s} 1 + C\|q(0)\|_{B_t^{r,2}}^{\frac{2}{s}}$$

for a sufficiently large constant C, so that we may apply Corollary 2.3. Then, for any time t, Lemma 3.1 implies

$$\|q(t)\|_{B_t^{r,2}}^{r} \lesssim \sum_{N \in \mathbb{Z}} N^rs (\kappa_0 N \langle q(t), T_{\kappa_0 N} q(t) \rangle)^{r/2}$$

$$\lesssim \sum_{N \in \mathbb{Z}} N^rs (\kappa_0 N \langle q(0), T_{\kappa_0 N} q(0) \rangle)^{r/2}$$

$$\lesssim_{s} \kappa_0^{-r}s \|q(0)\|_{B_t^{r,2}}^{r}$$

$$= (1 + \|q(0)\|_{B_t^{r,2}}^{\frac{2}{s}})^{-r}s \|q(0)\|_{B_t^{r,2}}^{r}.$$

This proves the first inequality. By time translation symmetry, we then also obtain

$$\|q(0)\|_{B_t^{r,2}} \lesssim_{s} (1 + \|q(t)\|_{B_t^{r,2}}^{\frac{2}{s(r+2)}})^{-r}s \|q(t)\|_{B_t^{r,2}}$$

and applying the first inequality to the quantity in parentheses produces the second inequality.

To remove the mean zero assumption on the circle, we employ Galilean invariance: if q solves BO, then so does

$$(3.3) \quad \tilde{q}(t, x) = q(t, x + 2\mu t) + \mu.$$

The estimate

$$\|\tilde{q}(t)\|_{B_t^{r,2}(\mathbb{R}/\mathbb{Z})}^2 \sim \|q(t)\|_{B_t^{r,2}(\mathbb{R}/\mathbb{Z})}^2 + \mu^2$$

then implies the general theorem. \hfill \square

References

[1] M. J. Ablowitz, P. A. Clarkson, *Solitons, nonlinear evolution equations and inverse scattering*. London Mathematical Lecture Note Series, vol. 149. Cambridge University Press, 1991.

[2] N. Burq, F. Planchon, “The Benjamin-Ono equation in energy space,” in: *Phase space analysis of partial differential equations* 55–62. Progr. Nonlinear Differential Equations Appl., vol 69. Birkhäuser Boston, 2006.

[3] R. R. Coifman, M. V. Wickerhauser, *The scattering transform for the Benjamin-Ono equation*. Inverse Problems 6 (1990), 825–861.

[4] M. Ablowitz, A. Fokas, *The inverse scattering transform for the Benjamin-Ono equation, a pivot for multidimensional problems*. Stud. Appl. Math. 68 (1983), 1–10.

[5] M. Ifrim, D. Tataru, *Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation*. Preprint (2017). arXiv:1701.08476
[6] A. D. Ionescu, C. E. Kenig, *Global well-posedness of the Benjamin-Ono equation in low regularity spaces.* J. Amer. Math. Soc. **20** (2007), 753–798.

[7] R. J. Iório, Jr., *On the Cauchy problem for the Benjamin-Ono equation.* Comm. Partial Differential Equations **11** (1986), 1031–1081.

[8] C. E. Kenig, K. D. Koenig, *On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations.* Math. Res. Lett. **10** (2003), 879–895.

[9] R. Killip, M. Visan, *KdV is well-posed in H^{-1}.* Preprint (2018). [arXiv:1802.04851](http://arxiv.org/abs/1802.04851)

[10] R. Killip, M. Visan, X. Zhang, *Low regularity conservation laws for integrable PDE.* Geom. Funct. Anal. **28** (2018), 1062–1090.

[11] H. Koch, N. Tzvetkov, *On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbb{R})$.* Int. Math. Res. Not. IMRN **26** (2003), 55–68.

[12] L. Molinet, *Global well-posedness in the energy space for the Benjamin-Ono equation on the circle.* Math. Ann. **337** (2007), 353–383.

[13] L. Molinet, *Global well-posedness in L^2 for the periodic Benjamin-Ono equation.* Amer. J. Math. **130** (2008), 635–683.

[14] L. Molinet, *Sharp ill-posedness result for the periodic Benjamin-Ono equation.* J. Funct. Anal. **257** (2009), 3488–3516.

[15] L. Molinet, D. Pilot, *The Cauchy problem for the Benjamin-Ono equation in L^2 revisited.* Analysis & PDE **5** (2012), 365–395.

[16] L. Molinet, F. Ribaud, *Well-posedness results for the generalized Benjamin-Ono equation with small initial data.* J. Math. Pures Appl. **83** (2004), 277–311.

[17] T. Oh, C. Sulem, *On the one-dimensional cubic nonlinear Schrödinger equation below L^2.* Kyoto J. Math. **52** (2012), 99–115.

[18] J.-C. Saut, *Sur quelques généralisations de l’équation de Korteweg–de Vries.* J. Differential Equations **33** (1979), 320–335.

[19] J.-C. Saut, *Benjamin-Ono and intermediate long wave equations: modeling, IST and PDE.* Preprint (2018). [arXiv:1811.09552](http://arxiv.org/abs/1811.09552)

[20] T. Tao, *Global well-posedness of the Benjamin-Ono equation in H^1.* J. Hyperbolic Diff. Equations **1** (2004), 27–49.

[21] Y. Wu, *Simplicity and finiteness of discrete spectrum of the Benjamin-Ono scattering operator.* SIAM J. Math. Anal. **48** (2016), 1348–1367.