A Phase II Randomized Trial of Panitumumab, Erlotinib, and Gemcitabine Versus Erlotinib and Gemcitabine in Patients with Untreated, Metastatic Pancreatic Adenocarcinoma: North Central Cancer Treatment Group Trial N064B (Alliance)

THORVARDUR R. HALFDANARSON, a NATHAN R. FOSTER,b,c GEORGE P. KIM, f JEFFREY P. MEYERS,c THOMAS C. SMYRK, d ANN E. MCCULLOUGH, g MATTHEW M. AMES, e JEFFRRY P. JAFFE, h STEVEN R. ALBERTS a

aDivision of Medical Oncology, bDivision of Biomedical Statistics and Informatics, cAlliance Statistics and Data Center, dDepartment of Pathology and Laboratory Medicine, and eDepartment of Oncology, Mayo Clinic, Rochester, Minnesota, USA; fMayo Clinic, Jacksonville, Florida, USA; gDepartment of Pathology and Laboratory Medicine, Mayo Clinic, Scottsdale, Arizona, USA; hMetro-Minnesota Community Oncology Research Consortium, Saint Louis Park, Minnesota, USA

TRIAL INFORMATION

- ClinicalTrials.gov Identifier: NCT00550836
- Sponsor(s): Alliance for Clinical Trials in Oncology
- Principal Investigator: George P. Kim
- IRB Approved: Yes

LESSONS LEARNED

- Dual epidermal growth factor receptor (EGFR)-directed therapy with erlotinib and panitumumab in combination with gemcitabine was superior to gemcitabine and erlotinib, but the clinical relevance is uncertain given the limited role of gemcitabine monotherapy.
- A significantly longer overall survival was observed in patients receiving the dual EGFR-directed therapy.
- The dual EGFR-directed therapy resulted in increased toxicity.

ABSTRACT

Background. Gemcitabine is active in patients with advanced pancreatic adenocarcinoma. The combination of erlotinib, an oral epidermal growth factor receptor (EGFR) inhibitor, and gemcitabine was shown to modestly prolong overall survival when compared with gemcitabine alone. The North Central Cancer Treatment Group (now part of Alliance for Clinical Trials in Oncology) trial N064B compared gemcitabine plus erlotinib versus gemcitabine plus combined EGFR inhibition with erlotinib and panitumab.

Methods. Eligible patients with metastatic adenocarcinoma of the pancreas were randomized to either gemcitabine 1,000 mg/m² on days 1, 8, and 15 of a 28-day cycle with erlotinib 100 mg p.o. daily (Arm A) or the same combination with the addition of panitumab 4 mg/kg on days 1 and 15 of a 28-day cycle (Arm B). The primary endpoint of the trial was overall survival. Secondary endpoints included progression-free survival, the confirmed response rate, and toxicity. Comparison between arms for the primary endpoint was done with a one-sided log-rank test, and a p value less than .20 was considered statistically significant. Response rate comparison was done with Fisher’s exact test. All other reported p values are two-sided.

Results. A total of 92 patients were randomized, 46 to each arm. The median overall survival was 4.2 months in Arm A and 8.3 months in Arm B (hazard ratio, 0.817; 95% confidence interval [CI], 0.530–1.260; p = .1792). The progression-free survival was 2.0 months in Arm A and 3.6 months in Arm B (hazard ratio, 0.843; 95% CI, 0.555–1.280; p = .4190). A partial confirmed response was seen in 8.7% of patients on Arm A and 6.5% on Arm B (p = .9999). No patients had a...
complete response. Grade 3 and higher nonhematologic toxicities were more common in patients on Arm B compared with those on Arm A (82.6% vs. 52.2%; \(p = .0018 \)).

Conclusion. Dual EGFR-directed therapy resulted in a significant prolongation of overall survival in patients with advanced adenocarcinoma of the pancreas but was associated with substantially increased toxicities. Dual EGFR-directed therapy in combination with gemcitabine alone cannot be recommended for further study, as single-agent gemcitabine is no longer considered an appropriate therapy for otherwise fit patients with metastatic pancreatic cancer. *The Oncologist* 2019;24:1–9

DISCUSSION

Single-agent gemcitabine has modest activity in patients with advanced adenocarcinoma of the pancreas. Gemcitabine was shown to be superior to 5-fluorouracil with an improvement in a composite endpoint of pain, performance status, and weight (clinical benefit response) and a modest prolongation of overall survival [1]. Multiple trials have compared gemcitabine alone with combinations of gemcitabine and both cytotoxic and molecularly targeted drugs and failed to show improvement over gemcitabine alone. A large trial conducted by the National Cancer Institute of Canada compared gemcitabine with and without erlotinib in patients with locally advanced or metastatic pancreatic cancer. The overall survival (OS) in the combination arm was statistically superior to the gemcitabine alone arm (6.2 months vs. 5.9 months), but the increase in the overall survival was of questionable clinical importance [2].

Another large trial compared gemcitabine monotherapy with the combination of gemcitabine and cetuximab [3]. Although the combination resulted in a slightly longer overall survival (5.9 months vs. 6.3 months), the difference was not statistically different. Given evidence from preclinical and translational studies suggesting synergistic efficacy of different classes of anti-EGFR agents, this trial was performed [4, 5].

Designed as a randomized phase II trial, evaluating the efficacy of a combined EGFR inhibition using erlotinib and panitumumab in conjunction with gemcitabine with gemcitabine plus erlotinib as a reference arm, 92 patients were enrolled, 46 on each arm. The patient characteristics were balanced between the arms. The primary endpoint was OS, with progression-free survival (PFS), radiographic response rate, and toxicity as secondary endpoints. The trial was designed to detect with 80% power a difference in the primary outcome between arms using a one-sided log-rank test with an \(\alpha \) of .20. A \(p \) value less than .20 was therefore considered significant for OS.

The median OS was longer in the combined EGFR inhibition plus gemcitabine arm (Arm B) compared with gemcitabine with erlotinib (Arm A)—8.3 months versus 4.2 months—and met statistical significance (hazard ratio, 0.817; 95% CI, 0.530–1.260; \(p = .1792 \)) (Fig. 1). A nonsignificant difference in the PFS was seen, favoring Arm B (median: 3.6 months in Arm B and 2.0 months in Arm A; hazard ratio 0.843; 95% CI, 0.555–1.280; \(p = .4190 \)) (Fig. 2). A partial response was seen in 8.7% of patients on Arm A and 6.5% on Arm B (\(p = .9999 \)). No patients had a complete response. Grade 3 and higher nonhematologic toxicities were more common in patients receiving combined EGFR inhibition therapy (82.6% vs. 52.2%; \(p = .0018 \)).

Figure 1. Overall survival by treatment arm.

Abbreviations: CI, confidence interval; EGFR, epidermal growth factor receptor; Gem, gemcitabine.
Trial Information

Disease	Pancreatic cancer
Stage of Disease/Treatment	Metastatic/advanced
Prior Therapy	None
Type of Study - 1	Phase II
Type of Study - 2	Randomized
Primary Endpoint	Overall survival
Secondary Endpoint	Progression-free survival
Secondary Endpoint	Overall response rate
Secondary Endpoint	Toxicity

Drug Information (Control – Arm A)

Drug 1
- Generic/Working Name: Gemcitabine
- Drug Class: Antimetabolite
- Dose: 1,000 milligrams (mg) per squared meter (m²)
- Route: IV
- Schedule of Administration: On days 1, 8, and 15 of a 28-day cycle

Drug 2
- Generic/Working Name: Erlotinib
- Drug Class: EGFR
- Dose: 100 milligrams (mg)
- Route: Oral (p.o.)
- Schedule of Administration: Daily

Drug 3
- Generic/Working Name: Panitumumab
- Drug Class: EGFR
- Dose: 4 milligrams (mg) per kilogram (kg)
- Route: IV
- Schedule of Administration: On days 1 and 15 of a 28-day cycle

Drug Information (Experimental – Arm B)

Drug 1
- Generic/Working Name: Gemcitabine
- Drug Class: Antimetabolite
- Dose: 1,000 milligrams (mg) per squared meter (m²)
- Route: IV
- Schedule of Administration: On days 1, 8, and 15 of a 28-day cycle

Drug 2
- Generic/Working Name: Erlotinib
- Drug Class: EGFR
- Dose: 100 milligrams (mg)
- Route: Oral (p.o.)
- Schedule of Administration: Daily

Drug 3
- Generic/Working Name: Panitumumab
- Drug Class: EGFR
- Dose: 4 milligrams (mg) per kilogram (kg)
- Route: IV
- Schedule of Administration: On days 1 and 15 of a 28-day cycle

Investigator’s Analysis: Level of activity did not meet planned endpoint.

The trial was opened on December 30, 2009 and was closed to accrual on August 13, 2010. Trial information and patient characteristics are summarized in Table 1.
Patient Characteristics (Control – Arm A)

Characteristic	Value
Number of Patients, Male	29
Number of Patients, Female	17
Stage	Metastatic
Age	Median (range): 60.5 years
Number of Prior Systemic Therapies	Median (range): 0
Performance Status: ECOG	0 — 52.2%
	1 — 47.8%
	2 —
	3 —
	Unknown —
Cancer Types or Histologic Subtypes	Adenocarcinoma, 46

Patient Characteristics (Experimental – Arm B)

Characteristic	Value
Number of Patients, Male	31
Number of Patients, Female	15
Stage	Metastatic
Age	Median (range): 62 years
Number of Prior Systemic Therapies	Median (range): 0
Performance Status: ECOG	0 — 50%
	1 — 50%
	2 —
	3 —
	Unknown —
Cancer Types or Histologic Subtypes	Adenocarcinoma, 46

Primary Assessment Method (Control – Arm A)

Characteristic	Value
Title	Gemcitabine/Erlotinib
Number of Patients Enrolled	46
Number of Patients Evaluable for Toxicity	46
Number of Patients Evaluated for Efficacy	46
Evaluation Method	RECIST 1.0
Response Assessment – CR	n = 0 (0%)
Response Assessment – PR	n = 5 (10.9%)
Response Assessment – SD	n = 15 (32.5%)
Response Assessment – PD	n = 25 (54.3%)
Response Assessment – Other	n = 1 (2.2%)
(Median) Duration Assessments – PFS	2 months; 95% CI, 1.8–3.3 months
(Median) Duration Assessments – OS	4.2 months; 95% CI, 3.5–7.8 months
Outcome Notes	Outcomes are summarized in Table 2.

Primary Assessment Method for Phase II Experimental

Characteristic	Value
Title	Gemcitabine/Erlotinib/Panitumumab
Number of Patients Enrolled	46
Number of Patients Evaluable for Toxicity	46
Number of Patients Evaluated for Efficacy	46
Evaluation Method	RECIST 1.0
Pancreatic cancer is a highly lethal malignancy, and the survival of patients with advanced disease is less than a year, ranging from 6 to 11 months in patients on clinical trials. Long-term survivors are rare, and even among patients with surgically resected disease, the 10-year overall survival is 3.9% [6]. Most patients who undergo resection will suffer a recurrence within 5 years, which is invariably fatal. Adjuvant therapy improves outcomes following surgery, but even with such therapy, the outcome is poor and recurrences remain very common [7, 8]. Given the high recurrence rate following surgery and the fact that the majority of patients have either metastatic or locally advanced disease at diagnosis, there is a great need for better systemic therapy. Gemcitabine was the standard therapy for advanced pancreatic cancer for more than 10 years, and multiple trials combining cytotoxic or targeted therapy with gemcitabine showed no improvement over gemcitabine alone [9].

The epidermal growth factor receptor (EGFR) pathway has been considered a potential target for therapy in pancreatic cancer. Increased expression of EGFR and its epidermal growth factor ligand are detected in pancreatic cancer tissues and predict for poor prognosis [10, 11]. Blocking the EGFR pathway in preclinical models was shown to suppress pancreatic cancer growth, suggesting a potential therapeutic target [12, 13]. Dual EGFR blockade with a monoclonal antibody and a tyrosine kinase inhibitor was also shown to have effect on tumor growth, suggesting utility in patients with pancreatic cancer [14]. KRAS mutations are very common in pancreatic cancer and may be predictive of an inferior survival, but unlike in colorectal cancer, KRAS mutations do not appear to predict outcomes in patients with pancreatic cancer treated with EGFR inhibitors [15–17].

The combination of gemcitabine and erlotinib showed a very modest and statistically significant prolongation of overall survival in patients with metastatic pancreatic cancer, but the clinical significance was questionable, and the combination never gained traction [2]. It was not until 2011 that substantial improvements were made, when oxaliplatin, irinotecan, fluorouracil, and leucovorin (FOLFIRINOX) was shown to substantially prolong overall survival compared with gemcitabine alone, from 6.8 months to 11.1 months [18]. Shortly thereafter, the combination of gemcitabine and albumin-bound paclitaxel (nab-paclitaxel) was shown to be superior to gemcitabine alone, prolonging the overall survival of patients from 6.7 months to 8.5 months [19]. Gemcitabine alone is no longer considered an acceptable therapy for metastatic pancreatic cancer except for patients with impaired performance status or for patients who desire to receive less aggressive, and less toxic, albeit less effective, therapy [20].

Our trial was designed before FOLFIRINOX and gemcitabine with nab-paclitaxel were shown to be superior to gemcitabine alone and when there was still a substantial enthusiasm for EGFR-directed therapy. An early phase II trial of gemcitabine with cetuximab suggested a benefit of the combination indicating that EGFR was a potential target in pancreatic cancer [21]. A National Cancer Institute of Canada phase III trial of erlotinib given with gemcitabine, an oral EGFR inhibitor, showed a statistically significant but very modest prolongation of overall survival [2]. These findings, along with preclinical data, led to the design of our trial testing the hypothesis that two EGFR inhibitors of different classes could be superior to gemcitabine and erlotinib, a reasonable therapy standard at that time. Unfortunately, a large phase III trial (Southwest Oncology Group S0205) failed to show improvement of survival in patients treated with gemcitabine and cetuximab over gemcitabine alone [3]. In this large trial, there was no difference in overall survival of patients among the two arms—6.3 months for the combination versus 5.9 months for gemcitabine alone (hazard ratio, 1.06; 95% confidence interval, 0.91–1.23; p = .23)—and a 2-week improvement was seen in the time to treatment failure (p = .006).

The current trial showed a statistically significant difference observed in terms of overall survival favoring the combination of dual EGFR inhibition and gemcitabine. The dual EGFR inhibition therapy was more toxic, as expected. The relevance of this finding is of uncertain clinical significance, as gemcitabine monotherapy can no longer be considered an appropriate chemotherapy backbone for combination therapy with targeted

Adverse Events

Adverse events are summarized in Table 3.

Assessment, Analysis, and Discussion

Completion

Investigator’s Assessment

Outcome Notes

Outcomes are summarized in Table 2.

© AlphaMed Press 2019
agents given the superiority of cytotoxic doublet or triplet therapy, and toxicities, especially dermatological, were substantial. Dual EGFR inhibition may be even more challenging in conjunction with chemotherapy doublets or triplets given the adverse events seen with gemcitabine alone. Further studies of EGFR inhibitors administered concurrently with cytotoxic agents are unlikely to result in a meaningful improvement in the outcome of patients with metastatic pancreatic cancer and cannot be recommended.

Acknowledgments
The following institutional networks participated in this study: Colorado Cancer Research Program (NCI) CCOP (Community Oncology Research Program), Denver, CO, Keren Sturtz, UG1CA189805; Dayton NCI Community Oncology Research Program, Dayton, OH, Howard Gross, UG1CA189957; Geisinger Cancer Institute NCI Community Oncology Research Program, Danville, PA, Srilatha Hosur, UG1CA189847; Hawaii Minority Underserved NCI CCOP, Honolulu, HI, Jeffrey Berenberg, UG1CA189804; Iowa-Wide Oncology Research Coalition NCI CCOP, Des Moines, IA, Robert Behrens, UG1CA189816; Mayo Clinic LAPS, Rochester, MN, Steven Alberts, U10CA180790; Metro Minnesota Community Oncology Research Consortium, Saint Louis Park, MN, Daniel Anderson, UG1CA189863; Michigan Cancer Research Consortium NCI CCOP, Ann Arbor, MI, Philip Stella, UG1CA189971; Missouri Valley Cancer Consortium CCOP (Community Clinical Oncology Program), Omaha, NE, Gaminii Soori, U10CA063849; Montana Cancer Consortium NCI CCOP, Billings, MT, Benjamin Marchello, UG1CA189872; Northern Indiana Cancer Research Consortium, South Bend, IN; Michael Method, U10CA086726; Ochsner NCI Community Oncology Research Program, New Orleans, LA, John Cole, UG1CA189880; Pacific Cancer Research Consortium NCI CCOP, Seattle, WA, Alison Conlin, UG1CA189953; Rapid City Regional Hospital, Rapid City, SD, Joshua Lukenbill; Sanford NCI Community Oncology Research Program of the North Central Plains, Sioux Falls, SD, Preston Steen, UG1CA189825; Southeast Clinical Oncology Research Consortium NCI CCOP, Winston-Salem, NC, James Atkins, UG1CA189858; Toledo Clinic Cancer Centers-Toledo, Toledo, OH, Rex Mowat; Toledo Community Hospital Oncology Program CCOP, Toledo, OH, Rex Mowat; Wichita NCI Community Oncology Research Program, Wichita, KS, Shaker Dakhil, UG1CA189808; and Wisconsin NCI Community Oncology Research Program, Marshfield, WI, Anthony JasIEWSKI, UG1CA189956.

Disclosures
Thorvardur R. Halfdanarson: Advanced Accelerator Applications (institutional), Lexicon (C/A), Ipsen, ThermoFisher Scientific, ArQule, Agios (institutional) (RF); George P. Kim: Genentech, Amgen (C/A, H). The other authors indicated no financial relationships.

© AlphaMed Press 2019

REFERENCES
1. Burris HA 3rd, Moore MJ, Andersen J et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreatic cancer: A randomized trial. J Clin Oncol 1997;15:2403–2413.
2. Moore MJ, Goldstein D, Hamann J et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25:1960–1966.
3. Philip PA, Benedetti J, Corless CL et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0020. J Clin Oncol 2010;28:3605–3610.
4. Matar P, Rojo F, Cassia R et al. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): Superiority over single-agent receptor targeting. Clin Cancer Res 2004;10:6487–6501.
5. Baselga J, Schöffski P, Rojo F et al. A phase I pharmacokinetic (PK) and molecular pharmacodynamic (PD) study of the combination of two anti-EGFR therapies, the monoclonal antibody (Mab) cetuximab (C) and the tyrosine kinase inhibitor (TKI) gefitinib (G), in patients (pts) with advanced colorectal (CRC), head and neck (HNC) and non-small cell lung cancer (NSCLC). J Clin Oncol 2006;24(suppl 18):3006A.
6. Panici A, Hosokawa P, Henderson W et al. Characteristics of 10-year survivors of pancreatic ductal adenocarcinoma. JAMA Surg 2015;150:701–710.
7. Oettle H, Neuhaus P, Hochhaus A et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA 2013;310:1473–1481.
8. Neoptolemos JP, Palmer DH, Ghaney P et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017;389:1011–1024.
9. Berlin J, Benson AB 3rd. Chemotherapy: Gemcitabine remains the standard of care for pancreatic cancer. Nat Rev Clin Oncol 2010;7:135–137.
10. Korc M, Chandrasekhar B, Yamanka Y et al. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 1992;90:1352–1360.
11. Yamanka Y, Friess H, Korbim MS et al. Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Res 1993;13:565–569.
12. Overholser JP, Prewett MC, Hooper AT et al. Epidermal growth factor receptor blockade by antibody IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft in nude mice. Cancer 2000;89:74–82.
13. Bruns CJ, Harbison MT, Davis DW et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 2000;6:1936–1948.
14. Huang S, Armstrong EA, Benavente S et al. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): Combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 2004;64:5355–5362.
15. Boeck S, Jung A, Laubender RP et al. KRAS mutation status is not predictive for objective response to anti-EGFR treatment with erlotinib in patients with advanced pancreatic cancer. J Gastroenterol 2013;48:544–548.
16. Haas M, Ormanns S, Baechmann S et al. Extended RAS analysis and correlation with overall survival in advanced pancreatic cancer. Br J Cancer 2017;116:1462–1469.
17. Tao LY, Zhang LF, Xu DR et al. Prognostic significance of K-ras mutations in pancreatic cancer: A meta-analysis. World J Surg Oncol 2016;14:146.
18. Conroy T, Desseigne F, Ychou M et al. FOLFOXIRI versus gemcitabine for metastatic pancreatic cancer: A randomized phase III trial. JAMA 2011;306:1817–1825.
19. Von Hoff DD, Ervin T, Arena FP et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013;369:1691–1703.
20. Sohal DP, Mangu PB, Khorana AA et al. Metastatic pancreatic cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2016;34:2784–2796.
21. Xiong HQ, Rosenberg A, LoBuglio A et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: A multicenter phase II trial. J Clin Oncol 2004;22:2610–2616.
Table 1. Trial and patient characteristics

Trial information	Pancreatic adenocarcinoma
Disease	Metastatic
Stage	Previously untreated for metastatic disease (adjuvant therapy allowed)
Prior therapy	Randomized phase II trial
Trial arms	Arm A: Gemcitabine + erlotinib (GE)
	Arm B: Gemcitabine + erlotinib + panitumumab (GEP)
Primary endpoint	Overall survival
Secondary endpoints	Progression free survival, confirmed response rate, toxicity

Drug information

- Gemcitabine: 1000 mg/m² on days 1, 8 and 15 of a 28-day cycle
- Erlotinib: 100 mg p.o. daily
- Panitumumab: 4 mg/kg on days 1 and 15 of a 28-day cycle

Patient information

- No. of enrolled patients: 92 (46 in each arm)
- Median age, yr: Arm A: 60.5; Arm B: 62.0
- Male/female: 60/32
- ECOG PS, n (%): PS 0: 47 (51); PS 1: 45 (49)
- Prior adjuvant therapy: 6 (6.5%)

Abbreviations: ECOG, Eastern Cooperative Oncology Group; PS, performance status.

Table 2. Outcomes

Results	Results	p value	
Overall survival, mo	4.2	8.3	.1792 (1-sided)
Progression-free survival, mo	2	3.6	4.190

Confirmed response

- Partial response, n (%): 5 (10.9) vs 5 (10.9)
- Stable disease, n (%): 15 (32.6) vs 24 (52.2)
- Progressive disease, n (%): 25 (54.3) vs 12 (26.1)
- Missing data, n (%): 1 (2.2) vs 5 (10.9)

Treatment delivery

- No. cycles administered: 155 vs 186
- Mean (SD) no. of cycles: 3.4 (2.9) vs 4.0 (2.6)
- Median number of cycles: 2.0 vs 4.0
- Range number of cycles: (1.0–13.0) vs (1.0–11.0)
| Adverse events | Patient subset | Arm A, n (%) | Arm B, n (%) | p value |
|----------------|---------------|--------------|--------------|---------|
| Thrombosis | | | | |
| All adverse events | 11 (24) | 10 (22) | .9999 |
| Related to therapy | 4 (9) | 5 (11) | .9999 |
| Nausea | | | | |
| All adverse events | 7 (15) | 6 (13) | .9999 |
| Related to therapy | 4 (9) | 5 (11) | .9999 |
| Vomiting | | | | |
| All adverse events | 3 (7) | 4 (9) | .9999 |
| Related to therapy | 2 (4) | 3 (7) | .9999 |
| Skin rash | | | | |
| All adverse events | 4 (9) | 14 (30) | .0164 |
| Related to therapy | 4 (9) | 13 (28) | .0295 |
| Fatigue | | | | |
| All adverse events | 8 (17) | 8 (17) | .9999 |
| Related to therapy | 1 (2) | 7 (15) | .0585 |
| Anorexia | | | | |
| All adverse events | 7 (15) | 2 (4) | .1577 |
| Related to therapy | 6 (13) | 2 (4) | .2668 |
| Dyspnea | | | | |
| All adverse events | 3 (7) | 6 (13) | .4850 |
| Related to therapy | 1 (2) | 3 (7) | .6166 |
| Dehydration | | | | |
| All adverse events | 3 (7) | 4 (9) | .9999 |
| Related to therapy | 3 (7) | 3 (7) | .9999 |
| Abdominal pain | | | | |
| All adverse events | 9 (20) | 5 (11) | .3846 |
| Related to therapy | 2 (4) | 3 (7) | .9999 |
| Neutropenia | | | | |
| All adverse events | 13 (28) | 5 (11) | .0639 |
| Related to therapy | 12 (26) | 5 (11) | .1052 |
| Thrombocytopenia | | | | |
| All adverse events | 2 (4) | 4 (9) | .6768 |
| Related to therapy | 2 (4) | 3 (7) | .9999 |
| Anemia | | | | |
| All adverse events | 5 (11) | 6 (13) | .9999 |
| Related to therapy | 3 (7) | 5 (11) | .7139 |
| Elevated bilirubin | | | | |
| All adverse events | 7 (15) | 6 (13) | .9999 |
| Related to therapy | 4 (9) | 4 (9) | .9999 |
| Elevated ALT | | | | |
| All adverse events | 5 (11) | 5 (11) | .9999 |
| Related to therapy | 1 (2) | 5 (11) | .2031 |
| Elevated alkaline phosphatase | | | | |
| All adverse events | 10 (22) | 5 (11) | .2586 |
| Related to therapy | 3 (7) | 2 (4) | .9999 |
| Hyperglycemia | | | | |
| All adverse events | 3 (7) | 3 (7) | .9999 |
| Related to therapy | 1 (2) | 2 (4) | .9999 |

Bold p values indicate statistical significance. Abbreviation: ALT, alanine aminotransferase.
Figure 2. Progression-free survival by treatment arm.
Abbreviations: CI, confidence interval; EGFR, epidermal growth factor receptor; Gem, gemcitabine.