E-Eigenvalue Inclusion Theorems for Tensors

Caili Sanga,b, Jianxing Zhaoa

aCollege of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P.R. China
bSchool of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, P.R. China

Abstract. Two Z-eigenvalue inclusion theorems for tensors presented by Wang et al. (Discrete Cont. Dyn.-B, 2017, 22(1): 187–198) are first generalized to E-eigenvalue inclusion theorems. And then a tighter E-eigenvalue inclusion theorem for tensors is established. Based on the new set, a sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.

1. Introduction

For a positive integer \(n, n \geq 2\), \(\mathbb{N}\) denotes the set \([1, 2, \cdots, n]\). \(\mathbb{C}(\mathbb{R})\) denotes the set of all complex (real) numbers. We call \(\mathcal{A} = (a_{i_1i_2\cdots i_m})\) a real tensor of order \(m\) dimension \(n\), denoted by \(\mathcal{A} \in \mathbb{R}^{[m,n]}\), if
\[
a_{i_1i_2\cdots i_m} \in \mathbb{R},
\]
where \(i_j \in \mathbb{N}\) for \(j = 1, 2, \cdots, m\). \(\mathcal{A}\) is called nonnegative if \(a_{i_1i_2\cdots i_m} \geq 0\). \(\mathcal{A} = (a_{i_1\cdots i_m}) \in \mathbb{R}^{[m,n]}\) is called symmetric \([1]\) if
\[
a_{i_1\cdots i_m} = a_{\pi(i_1)\cdots \pi(i_m)}, \forall \pi \in \Pi_m,
\]
where \(\Pi_m\) is the permutation group of \(m\) indices. \(\mathcal{A} = (a_{i_1\cdots i_m}) \in \mathbb{R}^{[m,n]}\) is called weakly symmetric \([2]\) if the associated homogeneous polynomial
\[
\mathcal{A}x^m = \sum_{i_1\cdots i_m \in \mathbb{N}} a_{i_1\cdots i_m} x_{i_1} \cdots x_{i_m}
\]
satisfies \(\nabla \mathcal{A}x^m = m\mathcal{A}x^{m-1}\), where \(x = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n\), and \(\mathcal{A}x^{m-1}\) is an \(n\) dimension vector whose \(i\)th component is
\[
(\mathcal{A}x^{m-1})_i = \sum_{i_2\cdots i_m \in \mathbb{N}} a_{i_2\cdots i_m} x_{i_2} \cdots x_{i_m}.
\]
It is shown in [2] that a symmetric tensor is necessarily weakly symmetric, but the converse is not true in general.

Given a tensor $\mathcal{A} = (a_{i_1\cdots i_n}) \in \mathbb{R}^{[m,n]}$, if there are $\lambda \in \mathbb{C}$ and $x = (x_1, x_2, \ldots, x_n)^T \in \mathbb{C}^n \setminus \{0\}$ such that

$$\mathcal{A} x^{m-1} = \lambda x \text{ and } x^T x = 1,$$

then λ is called an E-eigenvalue of \mathcal{A} and x an E-eigenvector of \mathcal{A} associated with λ. Particularly, if λ and x are all real, then λ is called a Z-eigenvalue of \mathcal{A} and x a Z-eigenvector of \mathcal{A} associated with λ; for details, see [1, 3]. Denote by $\sigma(\mathcal{A})$ (respectively, $E(\mathcal{A})$) the set of all Z-eigenvalues (respectively, E-eigenvalues) of \mathcal{A}. Assume $\sigma(\mathcal{A}) \neq 0$, then the Z-spectral radius [2] of \mathcal{A}, denoted $\rho(\mathcal{A})$, is defined as

$$\rho(\mathcal{A}) := \max \{ |\lambda| : \lambda \in \sigma(\mathcal{A}) \}.$$

Note here that, Chang et al. in [2] demonstrated by an example that the Z-spectral radius $\rho(\mathcal{A})$ of a nonnegative tensor \mathcal{A} may not be itself a positive Z-eigenvalue of \mathcal{A}, and proved that if \mathcal{A} is a weakly symmetric nonnegative tensor, then $\rho(\mathcal{A})$ is a Z-eigenvalue of \mathcal{A}; see [2], for details.

The Z-eigenvalue problem plays a fundamental role in best rank-one approximation, which has numerous applications in engineering and higher order statistics [1, 4], and neural networks [5]. Recently, much literature has focused on locating all Z-eigenvalues of tensors and bounding the Z-spectral radius of nonnegative tensors in [6–20]. In 2017, Wang et al. [6] generalized Geršgorin eigenvalue inclusion theorem from matrices to tensors and established the following Geršgorin-type Z-eigenvalue inclusion theorem.

Theorem 1.1. [6, Theorem 3.1] Let $\mathcal{A} = (a_{i_1\cdots i_n}) \in \mathbb{R}^{[m,n]}$. Then

$$\sigma(\mathcal{A}) \subseteq K(\mathcal{A}) = \bigcup_{i \in N} K_i(\mathcal{A}),$$

where

$$K_i(\mathcal{A}) = \{ z \in \mathbb{C} : |z| \leq R_i(\mathcal{A}) \} \text{ and } R_i(\mathcal{A}) = \sum_{j_1,\cdots,j_n \in N} |a_{i_1j_1\cdots i_n}|.$$

Based on the set $K(\mathcal{A})$, the following upper bound for $\rho(\mathcal{A})$ presented in [7] is obtained easily.

Theorem 1.2. [7, Corollary 4.5] Let $\mathcal{A} \in \mathbb{R}^{[m,n]}$ be nonnegative. Then

$$\rho(\mathcal{A}) \leq \max_{i \in N} R_i(\mathcal{A}).$$

To get a tighter Z-eigenvalue inclusion set than $K(\mathcal{A})$, Wang et al. [6] obtained the following Brauer-type Z-eigenvalue inclusion theorem for tensors.

Theorem 1.3. [6, Theorem 3.3] Let $\mathcal{A} = (a_{i_1\cdots i_n}) \in \mathbb{R}^{[m,n]}$. Then

$$\sigma(\mathcal{A}) \subseteq M(\mathcal{A}) = \bigcup_{i,j \in N \neq i} \left(M_{i,j}(\mathcal{A}) \cup H_{i,j}(\mathcal{A}) \right),$$

where

$$M_{i,j}(\mathcal{A}) = \{ z \in \mathbb{C} : (|z| - R_i(\mathcal{A}) - |a_{ij-}|)(|z| - P_{i}(\mathcal{A})) \leq |a_{ij-}|(R_i(\mathcal{A}) - P_{i}(\mathcal{A})) \},$$

$$H_{i,j}(\mathcal{A}) = \{ z \in \mathbb{C} : R_i(\mathcal{A}) - |a_{ij-}| < |z| < P_{i}(\mathcal{A}) \},$$

and

$$P_{i}(\mathcal{A}) = \sum_{j_1,\cdots,j_n \in N \neq i} |a_{ji_1\cdots i_n}|.$$

Based on the set $M(\mathcal{A})$, Wang et al. [6] obtained a better upper bound than that in Theorem 1.2.
Theorem 1.4. [6, Theorem 4.6] Let $A = (a_{i_1, \ldots, i_m}) \in \mathbb{R}^{[m,n]}$ be a weakly symmetric nonnegative tensor. Then
\[
\varphi(A) \leq \Psi(A) = \max_{i,j \in [N], i \neq j} \left\{ \frac{1}{2} \left(R_i(A) - a_{i,j} + P_{ij}(A) + \Lambda_{ij}^2(A) \right) , R_i(A) - a_{i,j} - P_{ij}(A) \right\},
\]
where
\[
\Lambda_{ij}(A) = (R_i(A) - a_{i,j} - P_{ij}(A))^2 + 4a_{i,j}(R_i(A) - P_{ij}(A)).
\]

Due to various new and important applications of E-eigenvalue problem in numerical multilinear algebra [21], image processing [22], higher order Markov chains [23], spectral hypergraph theory, the study of quantum entanglement, and so on, some properties of E-eigenvalues have been studied systematically; see [8] for details. However, characterizations of inclusion set for E-eigenvalue are still underdeveloped. This stimulates us to establish some inclusion theorems to identify the distribution of E-eigenvalues.

In the sequel, we research on the E-eigenvalue localization problems for tensors and their applications. First, Theorems 1.1 and 1.3 are extended to E-eigenvalue inclusion theorems. Second, a new E-eigenvalue inclusion set for tensors is presented and proved to be tighter than those in Theorems 1.1 and 1.3. Finally, as an application of the new set, a new upper bound for the E-spectral radius of weakly symmetric nonnegative tensors is given and proved to be sharper than those in Theorems 1.2 and 1.4.

2. E-eigenvalue inclusion sets for tensors

In this section, we first generalized those sets in Theorems 1.1 and 1.3 to E-eigenvalue inclusion sets. And then we present a new E-eigenvalue inclusion set for tensors and establish the comparison among these three sets. Firstly, similar to the proof of Theorems 3.1 and 3.3 of [6], the following theorem is obtained easily.

Theorem 2.1. Let $A = (a_{i_1, \ldots, i_m}) \in \mathbb{R}^{[m,n]}$. Then
\[
E(A) \subseteq K(A), \text{ and } E(A) \subseteq M(A).
\]

Next, a new E-eigenvalue inclusion theorem for tensors is presented.

Theorem 2.2. Let $A = (a_{i_1, \ldots, i_m}) \in \mathbb{R}^{[m,n]}$. Then
\[
E(A) \subseteq \Omega(A) = \bigcup_{i,j \in [N], i \neq j} \left(\tilde{\Omega}_{ij}(A) \cup \left(\tilde{\Omega}_{ij}(A) \cap K(A) \right) \right),
\]
where
\[
\tilde{\Omega}_{ij}(A) = \left\{ z \in \mathbb{C} : |z| < P_{ij}(A) \text{ and } |z| < P_{ij}(A) \right\}
\]
and
\[
\tilde{\Omega}_{ij}(A) = \left\{ z \in \mathbb{C} : \left(|z| - P_{ij}(A) \right) \left(|z| - P_{ij}(A) \right) \leq \left(R_i(A) - P_{ij}(A) \right) \left(R_i(A) - P_{ij}(A) \right) \right\}.
\]

Proof. Let λ be an E-eigenvalue of A with corresponding E-eigenvector $x = (x_1, \ldots, x_n)^T \in \mathbb{C}^n \setminus \{0\}$, i.e.,
\[
Ax^{m-1} = \lambda x, \text{ and } ||x||_2 = 1.
\]
Let $|x_i| \geq |x_s| \geq \max_{i \in [N], i \neq s} |x_s|$. Obviously, $0 < |x_i|^{m-1} \leq |x_s|^{m-1} \leq |x_i| \leq 1$. From (1), we have
\[
\lambda x_i = \sum_{j \neq i, j \in [N]} a_{ij, i_m} x_j \cdots x_{i_m} + \sum_{j \neq i, j \in [N]} a_{ij, i_m} x_j \cdots x_{i_m}.
\]
Taking modulus in the above equation and using the triangle inequality give

\[
|\lambda| |x_i| \leq \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_2}| \cdots |x_{i_m}| + \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_1}| \cdots |x_{i_m}|
\]

\[
\leq \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_2}|^{m-2} + \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_1}|^{m-1}
\]

\[
\leq \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_2}| + \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_1}|
\]

\[
= (R_e(A) - P^e(A))|x_i| + P^e(A)|x_i|
\]

i.e.,

\[
(|\lambda| - P^e(A))|x_i| \leq (R_e(A) - P^e(A))|x_i|.
\]

By (2), it is not difficult to see $|\lambda| \leq R_e(A)$, that is, $\lambda \in \mathcal{K}_e(A)$. If $|x_i| = 0$, then $|\lambda| - P^e(A) \leq 0$ as $|x_i| > 0$. When $|\lambda| - P^e(A) = 0$, obviously, $\lambda \in (\Omega_e(A) \cap \mathcal{K}_e(A)) \subseteq \Omega(A)$. And when $|\lambda| - P^e(A) < 0$, if $|\lambda| \geq P^e(A)$, then we have

\[
(|\lambda| - P^e(A))(|\lambda| - P^e(A)) \leq 0 \leq (R_e(A) - P^e(A))(R_e(A) - P^e(A)),
\]

which implies $\lambda \in (\Omega_e(A) \cap \mathcal{K}_e(A)) \subseteq \Omega(A)$; if $|\lambda| < P^e(A)$, then we have $\lambda \in \Omega_e(A) \subseteq \Omega(A)$.

Otherwise, $|x_i| > 0$. By (1), we can get

\[
|\lambda| |x_i| \leq \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_2}| \cdots |x_{i_m}| + \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_1}| \cdots |x_{i_m}|
\]

\[
\leq \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_2}|^{m-1} + \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_1}|^{m-1},
\]

\[
\leq \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_2}| + \sum_{i_1, \ldots, i_m \in \{1, \ldots, n\}} |a_{i_1-2, \ldots, i_m}| |x_{i_1}|
\]

i.e.,

\[
(|\lambda| - P^e(A))|x_i| \leq (R_e(A) - P^e(A))|x_i|.
\]

When $|\lambda| \geq P^e(A)$ or $|\lambda| \geq P^e(A)$ holds, multiplying (2) with (3) and noting that $|x_i|x_i| > 0$, we have

\[
(|\lambda| - P^e(A))(|\lambda| - P^e(A)) \leq (R_e(A) - P^e(A))(R_e(A) - P^e(A)),
\]

which implies $\lambda \in (\Omega_e(A) \cap \mathcal{K}_e(A)) \subseteq \Omega(A)$. And when $|\lambda| < P^e(A)$ and $|\lambda| < P^e(A)$ hold, we have $\lambda \in \Omega_e(A) \subseteq \Omega(A)$. Hence, the conclusion $\sigma(A) \subseteq \Omega(A)$ follows immediately from what we have proved.

Next, a comparison theorem is given for Theorems 2.1 and 2.2.

Theorem 2.3. Let $A = (a_{i_1-2, \ldots, i_m}) \in \mathbb{R}^{m,n}$. Then

\[
\Omega(A) \subseteq M(A) \subseteq \mathcal{K}(A).
\]
Proof. By Corollary 3.2 in [6], $M(\mathcal{A}) \subseteq \mathcal{K}(\mathcal{A})$ holds. Hence, we only prove $\Omega(\mathcal{A}) \subseteq M(\mathcal{A})$. Let $z \in \Omega(\mathcal{A})$. Then there are $t, s \in N$ and $t \neq s$ such that $z \in \hat{\Omega}_{t,s}(\mathcal{A})$ or $z \in (\hat{\Omega}_{t,s}(\mathcal{A}) \cap K_{t}(\mathcal{A}))$. We divide the proof into two parts.

Case I: If $z \in \hat{\Omega}_{t,s}(\mathcal{A})$, that is, $|z| < P_{t}^{s}(\mathcal{A})$ and $|z| < P_{t}^{s}(\mathcal{A})$. Then, it is easily to see that

$$|z| < P_{t}^{s}(\mathcal{A}) \leq R_{t}(\mathcal{A}) - |a_{ts-s}|$$

which implies that $z \in \mathcal{H}_{t,s}(\mathcal{A}) \subseteq M(\mathcal{A})$, consequently, $\Omega(\mathcal{A}) \subseteq M(\mathcal{A})$.

Case II: If $z \notin \hat{\Omega}_{t,s}(\mathcal{A})$, that is,

$$|z| \geq P_{t}^{s}(\mathcal{A})$$

or

$$|z| \geq P_{t}^{s}(\mathcal{A})$$

then $z \in (\hat{\Omega}_{t,s}(\mathcal{A}) \cap K_{t}(\mathcal{A}))$, i.e.,

$$|z| \leq R_{t}(\mathcal{A})$$

and

$$(|z| - P_{t}^{s}(\mathcal{A}))(|z| - P_{t}^{s}(\mathcal{A})) \leq (R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A}))(R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})).$$

(i) Assume $(R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A}))(R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})) = 0$. When (4) holds, by (7), we have

$$\left(|z| - (R_{t}(\mathcal{A}) - |a_{ts-s}|)\right)(|z| - P_{t}^{s}(\mathcal{A})) \leq \left(|z| - P_{t}^{s}(\mathcal{A})\right)(|z| - P_{t}^{s}(\mathcal{A})) \leq (R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A}))(R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})) = 0 \leq |a_{ts-s}||R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})|,$$

which implies that $z \in M_{t,s}(\mathcal{A}) \subseteq M(\mathcal{A})$. On the other hand, when (5) holds, we only prove $z \in M(\mathcal{A})$ under the case that $|z| < P_{t}^{s}(\mathcal{A})$. When

$$P_{t}^{s}(\mathcal{A}) \leq |z| < R_{t}(\mathcal{A}) - |a_{ts-s}|,$$

we have $z \in \mathcal{H}_{t,s}(\mathcal{A}) \subseteq M(\mathcal{A})$. And when

$$R_{t}(\mathcal{A}) - |a_{ts-s}| \leq |z| \leq R_{t}(\mathcal{A}),$$

from

$$\left(|z| - (R_{t}(\mathcal{A}) - |a_{ts-s}|)\right)(|z| - P_{t}^{s}(\mathcal{A})) \leq 0 \leq |a_{ts-s}||R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})|,$$

we have $z \in M_{t,s}(\mathcal{A}) \subseteq M(\mathcal{A})$.

(ii) Assume $(R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A}))(R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})) > 0$. Then dividing both sides by $(R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A}))(R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A}))$ in (7), we have

$$\frac{|z| - P_{t}^{s}(\mathcal{A})}{R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})} \leq \frac{|z| - P_{t}^{s}(\mathcal{A})}{R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})} \leq 1.$$

If $|a_{ts-s}| > 0$, let $a = |z|, b = P_{t}^{s}(\mathcal{A}), c = R_{t}(\mathcal{A}) - |a_{ts-s}| - P_{t}^{s}(\mathcal{A})$ and $d = |a_{ts-s}|$, by (6) and Lemma 2.2 in [24], we have

$$\frac{|z| - (R_{t}(\mathcal{A}) - |a_{ts-s}|)}{|a_{ts-s}|} = \frac{a - (b + c)}{d} \leq \frac{a - b}{c + d} = \frac{|z| - P_{t}^{s}(\mathcal{A})}{R_{t}(\mathcal{A}) - P_{t}^{s}(\mathcal{A})}.$$
When (4) holds, by (11) and (12), we have
\[
\frac{|z| - (R_s(A) - |a_{ts-s}|)}{|a_{ts-s}|} \leq \frac{|z| - P_s'(A)}{R_s(A) - P_s'(A)} \leq \frac{|z| - P_s'(A)}{R_s(A) - P_s'(A)} \leq 1,
\]
equivalently,
\[
(z - (R_s(A) - |a_{ts-s}|))(z - P_s'(A)) \leq |a_{ts-s}|(R_s(A) - P_s'(A)),
\]
which implies that \(z \in M_{ts,s}(A) \subseteq M(A)\). On the other hand, when (5) holds, we only prove \(z \in M(A)\) under the case that \(|z| < P_s'(A)\). If (8) holds, then \(z \in H_{ts,s}(A) \subseteq M(A)\). And if (9) holds, by (10), we have \(z \in M_{ts,s}(A) \subseteq M(A)\).

If \(|a_{ts-s}| = 0\), by \(|z| \leq R_s(A)\), we have \(|z| - (R_s(A) - |a_{ts-s}|) \leq 0 = |a_{ts-s}|\). When (4) holds, we can obtain
\[
(z - (R_s(A) - |a_{ts-s}|))(z - P_s'(A)) \leq 0 = |a_{ts-s}|(R_s(A) - P_s'(A)),
\]
which implies that \(z \in M_{ts,s}(A) \subseteq M(A)\). On the other hand, when (5) holds, we only prove \(z \in M(A)\) under the case that \(|z| < P_s'(A)\). If (8) holds, then \(z \in H_{ts,s}(A) \subseteq M(A)\). And if (9) holds, by (13), we have \(z \in M_{ts,s}(A) \subseteq M(A)\). The conclusion follows from Case I and Case II. \(\square\)

Remark 2.4. Theorem 2.3 shows that the set \(\Omega(A)\) in Theorem 2.2 is tighter than \(K(A)\) and \(M(A)\) in Theorem 2.1, that is, \(\Omega(A)\) can capture all E-eigenvalues of \(A\) more precisely than \(K(A)\) and \(M(A)\).

In the following, an example is given to verify Remark 2.4.

Example 2.5. Let \(A = (a_{i,j}) \in \mathbb{R}^{[3,3]}\) with entries defined as follows:
\[
\begin{align*}
A(:,1) = \begin{pmatrix} 0 & 3 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & 0 \end{pmatrix}, & A(:,2) = \begin{pmatrix} 2 & 0.5 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & A(:,3) = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}.
\end{align*}
\]

We now locate all E-eigenvalues of \(A\). By Theorem 2.1, we have
\[
K(A) = \{z \in \mathbb{C} : |z| \leq 14.5000\} \quad \text{and} \quad M(A) = \{z \in \mathbb{C} : |z| \leq 14.2228\}.
\]

By Theorem 2.2, we have
\[
\Omega(A) = \{z \in \mathbb{C} : |z| \leq 11.5000\}.
\]

The E-eigenvalue inclusion sets \(K(A)\), \(M(A)\), \(\Omega(A)\) and all E-eigenvalues \(-6.3796, -3.2536, -1.8154, -0.8351, -0.7011 - 0.8430i, -0.7011 + 0.8430i, -0.4608, 0.4608, 0.7011 - 0.8430i, 0.7011 + 0.8430i, 0.8351, 1.8154, 3.2536, 6.3796\) are drawn in Figure 1, where \(K(A)\), \(M(A)\), \(\Omega(A)\) and the exact E-eigenvalues are represented by black solid boundary, blue dashed boundary, red solid boundary and black “+”, respectively. It is easy to see that \(\sigma(A) \subseteq \Omega(A) \subseteq M(A) \subset K(A)\), that is, \(\Omega(A)\) can capture all E-eigenvalues of \(A\) more precisely than \(M(A)\) and \(K(A)\).

3. A sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors

As an application of the set \(\Omega(A)\) in Theorem 2.2, a new upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is given.

Theorem 3.1. Let \(A = (a_{i,j}) \in \mathbb{R}^{[m,n]}\) be a weakly symmetric nonnegative tensor. Then
\[
\phi(A) \leq \Omega_{\max} = \max \left\{ \Omega_{\max}, \Omega_{\max} \right\},
\]
Figure 1: Comparisons of $K(A), M(A)$ and $\Omega(A)$.

where

$$\Omega_{\max} = \max_{i,j \in N, i \neq j} \min\{P_j^i(A), P_i^j(A)\},$$

$$\tilde{\Omega}_{\max} = \max_{i,j \in N, i \neq j} \min\{R_i^j(A), \Delta_{ij}(A)\},$$

and

$$\Delta_{ij}(A) = \frac{1}{2} \left(P_j^i(A) + P_i^j(A) + \sqrt{(P_j^i(A) - P_i^j(A))^2 + 4(R_i^j(A) - P_j^i(A))(R_j^i(A) - P_i^j(A))} \right).$$

Proof. As stated in Section 1, if A is weakly symmetric and nonnegative, then $\rho(A)$ is the largest Z-eigenvalue of A. Hence, by Theorem 2.2, we have

$$\rho(A) \in \bigcup_{i,j \in N, i \neq j} \left(\tilde{\Omega}_{ij}(A) \cup \tilde{\Omega}_{ij}(A) \cap K_i(A) \right),$$

that is, there are $t, s \in N, t \neq s$ such that $\rho(A) \in \tilde{\Omega}_{ts}(A)$ or $\rho(A) \in \left(\tilde{\Omega}_{ts}(A) \cap K_t(A) \right)$. If $\rho(A) \in \tilde{\Omega}_{ts}(A)$, i.e., $\rho(A) < P_s^t(A)$ and $\rho(A) < P_t^s(A)$, we have $\rho(A) < \min\{P_t^s(A), P_s^t(A)\}$. Furthermore, we have

$$\rho(A) \leq \max_{i,j \in N, i \neq j} \min\{P_j^i(A), P_i^j(A)\}. \quad (14)$$

If $\rho(A) \in \left(\tilde{\Omega}_{ts}(A) \cap K_t(A) \right)$, i.e., $\rho(A) \leq R_t(A)$ and

$$\left(\rho(A) - P_t^s(A) \right) \left(\rho(A) - P_s^t(A) \right) \leq \left(R_t(A) - P_t^s(A) \right) \left(R_s(A) - P_s^t(A) \right), \quad (15)$$
then solving \(\varrho(\mathcal{A}) \) in (15) gives

\[
\varrho(\mathcal{A}) \leq \frac{1}{2} \left(P_s(\mathcal{A}) + P_t(\mathcal{A}) + \sqrt{(P_s(\mathcal{A}) - P_t(\mathcal{A}))^2 + 4[R_s(\mathcal{A}) - P_s(\mathcal{A})(R_s(\mathcal{A}) - P_t(\mathcal{A})]} \right) = \Delta_{ts}(\mathcal{A}),
\]

and furthermore

\[
\varrho(\mathcal{A}) \leq \min \{ R_s(\mathcal{A}), \Delta_{ts}(\mathcal{A}) \} \leq \max \min \{ R_i(\mathcal{A}), \Delta_{ij}(\mathcal{A}) \}. \tag{16}
\]

The conclusion follows from (14) and (16). \(\square \)

By Theorem 2.3 and Corollary 4.2 in [6], the following comparison theorem can be derived easily.

Theorem 3.2. Let \(\mathcal{A} = (a_{i_1\ldots i_n}) \in \mathbb{R}^{[m,n]} \) be a weakly symmetric nonnegative tensor. Then the upper bound in Theorem 3.1 is sharper than those in Theorems 1.2 and 1.4, that is,

\[
\varrho(\mathcal{A}) \leq \Omega_{\max} \leq \Psi \leq \max_{i \in N} R_i(\mathcal{A}).
\]

Finally, we show that in some cases the upper bound in Theorem 3.1 is sharper than those in [6, 7, 9–15] by an example.

Example 3.3. Let \(\mathcal{A} = (a_{ijkl}) \in \mathbb{R}^{[4,2]} \) be a symmetric tensor defined by

\[
a_{1111} = \frac{1}{2}, \quad a_{2222} = 3, \quad a_{ijkl} = \frac{1}{3} \text{ elsewhere}.
\]

By computation, we obtain \((\rho(\mathcal{A}), x) = (3.1092, (0.1632, 0.9866))\). By Corollary 4.5 of [7], we have

\[
\varrho(\mathcal{A}) \leq 5.3333.
\]

By Theorem 2.7 of [15], we have

\[
\varrho(\mathcal{A}) \leq 5.2846.
\]

By Theorem 3.3 of [11], we have

\[
\varrho(\mathcal{A}) \leq 5.1935.
\]

By Theorem 4.5, Theorem 4.6 and Theorem 4.7 of [6], we all have

\[
\varrho(\mathcal{A}) \leq 5.1822.
\]

By Theorem 3.5 of [12] and Theorem 6 of [13], we both have

\[
\varrho(\mathcal{A}) \leq 5.1667.
\]

By Theorem 7 of [9], we have

\[
\varrho(\mathcal{A}) \leq 5.0437.
\]

By Theorem 2.9 of [14], we have

\[
\varrho(\mathcal{A}) \leq 4.5147.
\]

By Theorem 5 of [10], we have

\[
\varrho(\mathcal{A}) \leq 4.4768.
\]

By Theorem 3.1, we obtain

\[
\varrho(\mathcal{A}) \leq 4.3971,
\]

which shows that this upper bound is better.
4. Conclusion

In this paper, we first generalize two Z-eigenvalue inclusion sets $\mathcal{K}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$ presented by Wang et al. in [6] to E-eigenvalue localization sets. And then we establish a new E-eigenvalue localization set $\Omega(\mathcal{A})$ and prove that it is tighter than $\mathcal{K}(\mathcal{A})$ and $\mathcal{M}(\mathcal{A})$. Based on the set $\Omega(\mathcal{A})$, we obtain a new upper bound Ω_{max} for the Z-spectral radius of weakly symmetric nonnegative tensors and show that it is better than those in [6, 7, 9–15] in some cases by a numerical example.

References

[1] L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation 40 (2005) 1302–1324.
[2] K.C. Chang, K.J. Pearson, T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra and its Applications 438 (2013) 4166–4182.
[3] L.H. Lim, Singular values and eigenvalues of tensors: a variational approach, in Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), 13-15 Dec. 2005, pp. 129–132.
[4] E. Kofidis, P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM Journal on Matrix Analysis and Applications 23(3) (2002) 863–884.
[5] M.L. Che, A. Cichocki, Y.M. Wei, Neural networks for computing best rank-one approximations of tensors and its applications, Neurocomputing 267 (2017) 114-133.
[6] G. Wang, G. Zhou, L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete and Continuous Dynamical Systems Series B 22 (1) (2017) 187–198.
[7] Y. Song, L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM Journal on Matrix Analysis and Applications 34(4) (2013) 1581–1595.
[8] K.C. Chang, L. Qi, T. Zhang, A survey on the spectral theory of nonnegative tensors, Numerical Linear Algebra with Applications 20 (2013) 891–912.
[9] C.L. Sang, A new Brauer-type Z-eigenvalue inclusion set for tensors, Numerical Algorithms 80 (2019) 781–794.
[10] J. Zhao, A new Z-eigenvalue localization set for tensors, Journal of Inequalities and Applications 2017 (2017) 85.
[11] W. Li, D. Liu, S.W. Vong, Z-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra and its Applications 483 (2015) 182–199.
[12] J. He, Bounds for the largest eigenvalue of nonnegative tensors, Journal of Computational Analysis and Applications 20(7) (2016) 1290–1301.
[13] J. He, Y.M. Liu, H. Ke, J.K. Tian, X. Li, Bounds for the Z-spectral radius of nonnegative tensors, Springerplus 5 (2016) 1727.
[14] Q. Liu, Y. Li, Bounds for the Z-eigenpair of general nonnegative tensors, Open Mathematics 14(1) (2016) 181–194.
[15] J. He, T.Z. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Applied Mathematics Letters 38 (2014) 110–114.
[16] Y. Wang, G. Wang, Two S-type Z-eigenvalue inclusion sets for tensors, Journal of Inequalities and Applications 2017 (2017) 152.
[17] J. Zhao, C. Sang, Two new Z-eigenvalue localization sets for tensors and theirs applications, Open Mathematics 15 (2017) 1267–1276.
[18] C. Sang, Z. Chen, E-eigenvalue localization sets for tensors, Journal of Industrial and Management Optimization (2019). doi: 10.3934/jimo.2019042.
[19] J. He, Y. Liu, G. Xu, Z-eigenvalues-based sufficient conditions for the positive definiteness of fourth-Order tensors, Bulletin of the Malaysian Mathematical Sciences Society (2019). doi:https://doi.org/10.1007/s40840-019-00768-y.
[20] J. He, Y. Liu, G. Xu, Z-eigenvalues-based sufficient conditions for the positive definiteness of fourth-Order tensors. Bulletin of the Malaysian Mathematical Sciences Society (2019). doi:https://doi.org/10.1007/s40840-019-00727-7.
[21] L.B. Cui, M.H. Li, Y. Song, Preconditioned tensor splitting iterations method for solving multi-linear systems, Applied Mathematics Letters 96 (2019) 89–94.
[22] L.B. Cui, C. Chen, W.Li, M.K. Ng, An eigenvalue problem for even order tensors with its applications, Linear and Multilinear Algebra 64 (2016) 602–621.
[23] L.B. Cui, Y. Song, On the uniqueness of the positive Z-eigenvector for nonnegative tensors, Journal of Computational and Applied Mathematics 352 (2019) 72–78.
[24] C. Li, Y. Li, An eigenvalue localization set for tensor with applications to determine the positive (semi-)definiteness of tensors, Linear and Multilinear Algebra 64(4) (2016) 587–601.