Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Dermatologic reactions to disinfectant use during the COVID-19 pandemic

Choon Fu Goh, RPh, PhD, Long Chiau Ming, RPh, PhD, Li Ching Wong, BS

Abstract Infection preventive practice of using disinfectants against SARS-CoV-2 has become the new normal due to the COVID-19 pandemic. Although disinfectants may not be applied directly to the human body, it remains at high risk of exposure including close skin contact on disinfected surfaces or during handling. This dermal contact, on a regular basis, can induce hazardous skin reactions like irritation, inflammation, and burning in severe conditions. Disinfectants are germicide chemicals that can penetrate the skin and create skin reactions that are usually regarded as irritant and allergic contact dermatitis. More importantly, disinfectants can react with skin components (proteins and lipids) to facilitate their skin penetration and disrupt the skin barrier function. Whereas the antimicrobial actions of disinfectants are well understood, much less is known regarding their dermatologic reactions, including but not limited to irritation and hypersensitivity. We reviewed the skin reactions created by those disinfectants against SARS-CoV-2 approved by the European Chemical Agency and the US Environmental Protection Agency.

Introduction

The emergence of a novel coronavirus (SARS-CoV-2) at the end of 2019 was declared as a global pandemic by the World Health Organization (WHO) on March 11, 2020. The alarming situation has triggered the practice of preventive actions that include the use of various disinfectants to sanitize the environment and to reduce the spread of infections. Owing to unawareness and inadequate experience in handling disinfectants among the public, this may cause an inappropriate use of disinfectants, which can create untoward events. Our skin is, thus, at risk of exposure to disinfectants, especially during handling, storage, and application. Even though direct contact with disinfectants may not be often established, the risk of skin contact to the chemical residuals on disinfected surfaces remains high, especially when disinfectant use has become a routine practice.

Disinfectants are small and moderately lipophilic molecules (molecular weight <500 Da and log P ~1 to 4), which can penetrate the skin to induce a direct skin reaction. Skin reactions to various disinfectants can be wide, ranging from inflammation, lichenification, to discoloration, and even necrosis. Disinfectants are germicidal by definition and can react with epidermal keratin filaments and lipids, similar to reactions created by many antimicrobials to the lipid membrane and protein structure of microorganisms. These actions can facilitate skin penetration of chemicals into the deeper skin layers to aggravate any adverse reactions.
Most disinfectants can be regarded as potential skin irritants and/or sensitizers (allergens), including those indicated for human hygiene, such as alcohols and peroxygen compounds. They can create irritant (ICD) or allergic contact dermatitis (ACD). ICD is a nonspecific inflammatory response triggered by innate immune system due to toxic effects on the skin cells. While ACD is considered a delayed hypersensitivity response, where skin inflammation is mediated by antigen-specific T cells (adaptive immunity). The inflammation is not directly caused by the chemicals but rather the response of T cells to the haptenized protein.

We have provided a comprehensive summary of dermatologic reactions due to the exposure of disinfectants. The data on percutaneous penetration and interactions with skin components in facilitating skin penetration are also highlighted. We have included only the disinfectants commonly found in consumer products from the lists of disinfectants approved by (1) the European Chemical Agency and (2) the US Environmental Protection Agency for use against SARS-CoV-2, where these disinfectants have demonstrated efficacy against a harder-to-kill virus or another type of human coronavirus similar to SARS-CoV-2.

### Classification of disinfectants

Table 1 shows the list of disinfectants commonly found in consumer products based on the various chemical classes and their examples and have included adverse reactions associated with the use of disinfectants and their skin penetration ability in Tables 2 and 3.

#### Alcohols

WHO recommends the use of alcohols, namely, ethanol (80%v/v) and isopropanol (75%v/v) in handrubs. Percutaneous penetration of both alcohols is generally low even with extensive use. They may create both ICD and ACD. This could be related to the solvent effect on skin components (Table 2) or preirritated skin with disrupted skin barrier. Because isopropanol is more irritating than ethanol, emollients, such as glycerol or propylene glycol, may be added to hand preparations. Allergic reactions, including contact urticarial, have been reported. The triggers may be due to impurities, aldehyde metabolites, or fragrances in the product.

| Classification                  | Examples                                                                 |
|---------------------------------|-------------------------------------------------------------------------|
| **Alcohols**                    | Ethanol, isopropanol                                                   |
| **Aldehydes**                   | Glutaraldehyde                                                         |
| **Bases**                       | Calcium dihydroxide, calcium hydroxide, calcium magnesium oxide, calcium magnesium tetrahydroxide, calcium oxide |
| **Carbonates**                  | Sodium carbonate, sodium carbonate peroxyhydrate, ammonium bicarbonate, ammonium carbonate |
| **Biguanides**                  | Polyhexamethylene biguanide hydrochloride (polyhexanide)              |
| **Chlorine and chlorine compounds** | Chlorine dioxide, hydrochloric acid, hypochlorous acid, sodium chloride, sodium hypochlorite, sodium dichloro-S-triazinetrione (sodium dichloroisocyanurate) |
| **Glycols**                     | Triethyleneglycol, 1,2-hexanediol                                      |
| **Iodophors**                   | Polyvinylpyrrolidone iodine                                            |
| **Metal ions**                  | Silver ions, copper ions (copper sulfate pentahydrate)                |
| **Organic acids**               | α-Hydroxy acids                                                        |
| **Peroxygen compounds**         | Citric acid, glycolic acid, lactic acid                                |
| **Phenolic compounds**          | Fatty acids                                                             |
| **Surfactants**                 | Caprylic acid (octanoic acid), pelargonic acid (nonanoic acid)         |
| **Thiazoles**                   | Old generation: benzalkonium chloride (alkyl dimethyl benzyl ammonium chloride), benzenthonium chloride |
|                                 | New generation: dialkyl dimethyl ammonium halide/carbonate (didecyl dimethyl ammonium chloride/carbonate), octyl decyl dimethyl ammonium chloride, dioctyl dimethyl ammonium bromide, didecyl dimethyl ammonium bicarbonate, dimethyl ethylbenzyl ammonium chloride |

---

**Table 1**: Classification of disinfectants and related examples

| Classification                  | Examples                                                                 |
|---------------------------------|-------------------------------------------------------------------------|
| **Alcohols**                    | Ethanol, isopropanol                                                   |
| **Aldehydes**                   | Glutaraldehyde                                                         |
| **Bases**                       | Calcium dihydroxide, calcium hydroxide, calcium magnesium oxide, calcium magnesium tetrahydroxide, calcium oxide |
| **Carbonates**                  | Sodium carbonate, sodium carbonate peroxyhydrate, ammonium bicarbonate, ammonium carbonate |
| **Biguanides**                  | Polyhexamethylene biguanide hydrochloride (polyhexanide)              |
| **Chlorine and chlorine compounds** | Chlorine dioxide, hydrochloric acid, hypochlorous acid, sodium chloride, sodium hypochlorite, sodium dichloro-S-triazinetrione (sodium dichloroisocyanurate) |
| **Glycols**                     | Triethyleneglycol, 1,2-hexanediol                                      |
| **Iodophors**                   | Polyvinylpyrrolidone iodine                                            |
| **Metal ions**                  | Silver ions, copper ions (copper sulfate pentahydrate)                |
| **Organic acids**               | α-Hydroxy acids                                                        |
| **Peroxygen compounds**         | Citric acid, glycolic acid, lactic acid                                |
| **Phenolic compounds**          | Fatty acids                                                             |
| **Surfactants**                 | Caprylic acid (octanoic acid), pelargonic acid (nonanoic acid)         |
| **Thiazoles**                   | Old generation: benzalkonium chloride (alkyl dimethyl benzyl ammonium chloride), benzenthonium chloride |
|                                 | New generation: dialkyl dimethyl ammonium halide/carbonate (didecyl dimethyl ammonium chloride/carbonate), octyl decyl dimethyl ammonium chloride, dioctyl dimethyl ammonium bromide, didecyl dimethyl ammonium bicarbonate, dimethyl ethylbenzyl ammonium chloride |

---

**Table 1**: Classification of disinfectants and related examples
| Classification          | Examples                                | Skin irritation | Skin sensitization | Skin manifestations                                      | Effect on skin components                                                                 |
|------------------------|-----------------------------------------|-----------------|-------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------|
| **Alcohols**            | Ethanol                                 | Yes             | No                | Dryness, itchiness, burning (at high concentrations)    | • Stratum corneum (SC) lipid solubilization, fluidization, and extraction                   |
|                        | Isopropanol                             | Yes             | No                | Yellow-brown discoloration                               | • SC protein denaturation                                                                   |
|                        | Glutaraldehyde                          | Yes             | No                | Edema, redness, flaking with papules                     | • Crosslinking with protein (discoloration)                                                |
| **Aldehydes**           | Polyhexamethylene biguanide hydrochloride (polyhexanide) | No              | Yes               | Buming sensation, pain, redness, edema, blisters, tissue necrosis | • SC protein and lipid oxidation                                                         |
| **Biganides**           | Sodium hypochlorite                     | Yes             | No                | Brown-black discoloration                               | • SC lipid fluidization and disordering                                                     |
| **Chlorine and chlorine compounds** | Sodium hypochlorite                     | No              | Yes               | Burns with blisters and tissue necrosis (associated with wounds) | n.a.                                                                                      |
| **Glycols**             | Triethylene glycol 1,2-Hexanediol        | No              | No                | n.a.                                                     | n.a.                                                                                      |
| **Iodophors**           | Polyvinylpyrrolidone iodine             | No              | No                | Burns with blisters and tissue necrosis (associated with wounds) | n.a.                                                                                      |
| **Metal ions**          | Silver ions                             | No              | No                | Brown-black discoloration                               | • Photoreduction on keratin protein (discoloration)                                       |
| **α-Hydroxy acids**     | Citric acid                             | No              | No                | Peeling, burning, skin thickening, reversible photosensitivity, contact urticaria, reduced melanin deposition | • Disruption of tight junction and adhesion of keratinocytes                               |
|                        | Lactic acid                             | Yes             | No                | n.a.                                                     | Inhibition of tyrosinase activities of melanocytes                                          |
| **Fatty acids**         | Caprylic acid (octanoic acid)           | Yes             | No                | Skin thickening                                          | • Epidermal cell apoptosis, reduction of keratinocyte proliferation, and Langerhans cells |
|                        | Pelargonic acid (nonanoic acid)         | Yes             | No                | n.a.                                                     | • SC lipid disordering                                                                    |
| **Peroxygen compounds** | Hydrogen peroxide                       | Yes             | No                | Blaching, vascular eruption, erythema, edema, peeling, burns (at high concentrations) | • Surfactant action on keratin protein and cell membranes                                  |
|                        | Peroxyacetic acid (peracetic acid)      | Yes             | No                | Buming sensation, itchiness                              | • Hemoglobin oxidation, oxygen-induced vasoconstriction                                   |
| **Phenolic compounds**  | Ortho-phenylphenol                      | No              | No                | Leucoderma                                               | • SC protein and lipid oxidation, lipid solubilization                                    |
|                        | Thymol                                  | No              | No                | n.a.                                                     | n.a.                                                                                      |
| **Anionic surfactants** | Chlorocresol                            | Yes             | No                | Urticaria                                               | • Inhibition of tyrosinase activities of melanocytes                                       |
|                        | Dodecylbenzenesulfonic acid             | Yes             | No                | Roughness, erythema                                      | • SC lipid fluidization and disordering                                                    |
| **Cationic surfactants**| Benzalkonium chloride (alkyl dimethyl benzyl ammonium chloride) | Yes             | No                | Inflammation                                             | • SC protein denaturation and lipid plasticization                                         |
|                        | Benzethonium chloride                   | Yes             | No                | n.a.                                                     | • SC protein denaturation and lipid solubilization                                         |

n.a., not available/unknown.

* Potential due to increased cases.
**Aldehydes**

Glutaraldehyde does not readily penetrate the skin (10% glutaraldehyde: up to ~14%; 0.75% and 7.5% glutaraldehyde: ~0.2%)\(^{22,23}\), however, it is irritating and can cause necrosis at higher concentrations (20%).\(^{24,25}\) ACD frequently occurs due to occupational (1% to 2%) and experimental (1% to 10%) exposures.\(^{24}\) This involves a Th2-dominant cytokine expression profile with a higher interleukin-4 (IL-4) over Th1-associated interferon-γ (IFN-γ).\(^{26}\) Yellow-brown skin discoloration has the tanning effect from glutaraldehyde cross-linking of proteinaceous components such as keratin and collagen that alters the protein structure, thus creating yellow-brown discoloration.\(^{27}\)

**Biguanides**

The dermal absorption of polyhexamethylene biguanide hydrochloride (PHMB) or polyhexanide is low (4%).\(^{28}\) ACD is rare (0.5%) with application of 0.4% to 0.5% PHMB, and even at 5% PHMB, the reporting remains insignificant (0.8%).\(^{29}\) Despite this, ACD is continually reported in recent years and has partial cross-reactivity with other biguanides such as chlorhexidine and poliaminopropylbiguanide.\(^{30–33}\) PHMB is recognized as a moderate-to-strong skin sensitizer at concentrations above 1.2%.\(^{34}\) Anaphylaxis rarely occurs and may be related to wound treatment involving damaged skin.\(^{35–37}\)

**Chlorine and chlorine compounds**

The percutaneous penetration for hypochlorites is low and is attributed to its high reactivity, oxidizing, and alkalinity properties when in contact with proteinaceous materials.\(^{38}\) Hypochlorites are nonirritating when diluted (0.1%) but are skin irritants at 5% to 10%.\(^{38,39}\) Heat release from an exothermic reaction with water may worsen the reactions.\(^{40}\) Other skin manifestations, such as burning sensation, pain, redness, edema, blisters, and necrosis, are known.\(^{40}\) Beyond 10%, hypochlorites are corrosive and can cause chemical burns.

Chlorine dioxide (ClO\(_2\)) is a highly reactive and unstable chlorine compound. The oxidizing effect on the skin may be similar to hypochlorites but milder even at very high

---

**Table 3** Molecular weight, log \(P\), and skin penetration of disinfectants

| Classification     | Examples                                           | Molecular weight (Da) | Log \(P\)\(^{a}\) | Skin penetration |
|--------------------|----------------------------------------------------|-----------------------|-------------------|-----------------|
| Alcohols           | Ethanol                                            | 46.1                  | −0.16             | Yes (low)\(^9,10\) |
|                    | Isopropanol                                        | 60.1                  | 0.25              |                 |
| Aldehydes          | Glutaraldehyde                                     | 100.1                 | −0.27             | Yes (low)\(^{22,23}\) |
|                    | Polyhexamethylene biguanide hydrochloride (polyhexanide) | 1415.0               | −2.39\(^{14}\)    | Yes (low)\(^{28}\) |
| Biguanides         | Polyhexamethylene biguanide                        | Variable (average: 118.2) | 0.62             |                 |
| Chlorine and chlorine compounds | Sodium hypochlorite                             | 74.4                  | 0.32              | Yes (very low)\(^{38}\) |
| Glycols            | Chlorine dioxide                                   | 67.5                  | 0.26              | No\(^{52}\) |
|                    | Triethylene glycol                                 | 150.2                 | −1.30             | No\(^{52}\) |
|                    | 1,2-Hexanediol                                     | 118.2                 | 0.62              |                 |
| Iodophors          | Polyvinylpyrrolidone iodide                        | 365.0                 | 1.36 (iodine)     | Yes\(^{43}\) |
| Metal ions         | Silver ions                                        | 107.9                 | −0.73             | Yes (low)\(^{56}\) |
| α-Hydroxy acids    | Citric acid                                        | 192.1                 | −1.32             | Yes\(^{51–64}\) |
| acids              | Glycolic acid                                      | 76.1                  | −1.04             |                 |
| Fatty acids        | Caprylic acid (octanoic acid)                      | 144.2                 | 2.70              | Yes\(^{128}\) |
|                    | Pelargonic acid (nonanoic acid)                    | 158.2                 | 3.14              | Yes\(^{28}\) |
| Peroxygen compounds| Hydrogen peroxide                                  | 34.0                  | −0.45             | n.a.            |
| Phenolic compounds | Peroxyacetic acid (peracetic acid)                 | 76.1                  | −0.30             | n.a.            |
|                    | Ortho-phenylphenol                                 | 170.2                 | 3.32              | Yes\(^{34,85,153–156}\) |
|                    | Thymol                                             | 150.2                 | 3.43              | Yes (very low)\(^{138}\) |
|                    | Chlorocresol                                       | 142.6                 | 2.79              | Yes (very low)\(^{138}\) |
| Anionic surfactants| Dodecylbenzenesulfonic acid                       | 326.5                 | 6.56              | No\(^{52}\) |
| Cationic surfactants| Benzalkonium chloride (alkyl dimethyl benzyl ammonium chloride) | Variable (C10: 311.9; C12: 340.0; C14: 368.1; C16: 396.1) | C10: 1.74; C12: 2.63; C14: 3.52; C16: 4.41 | Yes\(^{99}\) |
|                    | Didecyl dimethyl ammonium chloride                | 362                   | 4.01              | Yes\(^{100}\) |

\(^{a}\) Calculated using MarvinSketch program (ChemAxon Ltd., Hungary) unless otherwise specified.
concentrations considering the rapid degradation. Even though chlorine gas produced can be irritating to the skin, the effect is insignificant, because no dermal uptake occurs with intact human skin.42

**Iodophors**

Iodophors or polyvinylpyrrolidone (povidone, PVP) iodines (PVP-I) is nonstaining, being relatively less toxic and irritating, compared with iodine. Topical absorption seems to be time dependent.43 ICD (usually 10% PVP-I) sometimes occurs with chemical burns, pain, blistering lesions, and tissue necrosis.44–49 Such burns, however, are often observed in damaged skin and/or wounds with prolonged exposure.48,50,51 These side effects are associated with the wet condition during application and the continuous release of free iodine (I₂) that act as weak oxidants such as iodine cations (H₂OI⁺).48 ACD and anaphylactic reactions are seldom reported and mainly may be due to other ingredients such as alcohols and PVP,52–55 which can induce IgE-mediated allergic reactions.52

**Metal ions**

Percutaneous absorption of silver and its nanoparticle forms is usually low in both intact and damaged skin (<4%), because its ionized form does not penetrate the skin readily.56,57 ACD is known to occur due to the other ingredients.58 Local skin discoloration (brown-black) is occasionally observed and seen more frequently with topical application to wounds.59,60 This is not true argyria (blue-grayish discoloration), which is more long-lasting and common after chronic exposure through inhalation or oral ingestion.59

**α-Hydroxy acids**

α-Hydroxy acids (AHAs), including citric acid (CA), glycolic acid (GA), and lactic acid (LA), can penetrate the skin, but the dermal absorption is dependent on pH, concentration, and time.61–64 Burning, dermatitis, skin peeling, itching, and moderate sunburns are frequently reported at a concentration ≤10% or a pH ≥3.5.65 This can be related to the expression of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and IL-1α.66 An increased epidermal and dermal thickness is common at higher concentrations (CA and GA: 20% to 40%; LA: 12%).67–70 AHA may also induce reversible skin photosensitivity and contact urticaria.61,71,72 CA and GA (≥3%) can induce apoptosis of keratinocytes that enhances photodamage to the skin.73 AHA may also decrease melanin deposition in the skin in vivo.69,74 AHA at lower concentrations has none of these effects and is highly useful in dermatologic practice.

**Peroxygens compounds**

Dermal penetration of hydrogen peroxide (H₂O₂) remains unknown due to the rapid degradation into oxygen and water, especially when in contact with organic materials.75 A transient skin blanching, usually benign, is often detected.76 In addition, vacuolar eruption due to oxygen bubble formation in the skin (gas embolism) is a unique clinical manifestation from an exposure of up to 35% H₂O₂.77 H₂O₂ is usually nonirritating at a low concentration (≤10%) despite being a strong oxidizing antiseptic.75,78–80 At 35%, H₂O₂ can cause reversible erythema and edema but irreversible skin desquamation. With a concentration of more than 50%, chemical burns are usually noticed. Prolonged exposure may produce the same reactions at a lower concentration.

Skin irritation, erythema, scaling, and roughness may occur with repeated application of 0.1% to 0.2% of peracetic acid (PA).81 Acute skin irritation has been observed at 0.5% to 3%.82 A regular spray, using 0.2% to 0.5% PA during the SARS outbreak in 2002 to 2003 created multiple health hazards, including skin irritation, burning, and itching, lasting up to 5 hours.83 The cause may be due to the excellent lipid solubility of PA and its strong oxidative disruption on the skin lipids and keratin protein.

**Phenolic compounds**

Phenol and its derivative, especially ortho-phenylphenol (OPP) or biphenyl-2-ol and ortho-benzyl-para-chlorophenol (OBPCP), have excellent skin-penetrating power.84,85 Skin reactions can develop with short contact. ACD related to OPP and OBPCP may occur even at low concentrations (0.1%).86–88 Chemical burns and digital tip gangrene have occurred after persistent exposure to 0.5% halogenated phenol; the actual causative compound was not stated.89 Depigmentation or leukoderma is another clinical concern when applying OPP and OBPCP (1%),90,91 although the depigmentation is reversible but with the repigmentation process taking upward to a year or more.

**Surfactants**

**Anionic surfactants**

Sodium dodecylbenzenesulfonate does not readily penetrate the skin, but penetration may happen due to prolonged contact.92 Repeated application (1%) can result in moderate to severe erythema and skin roughness.92–96

**Cationic surfactants**

**(quaternary ammonium compounds)**

Benzalkonium chloride (BAC) can penetrate the skin and induce skin irritation and inflammation at low concentrations (0.1%).97,98 ACD is rare.99 Newer generations of quaternary ammonium compounds (QAC), dialkyl QAC, such as didecyl dimethyl ammonium chloride (DDAC), have poor cutaneous uptake in vivo.100 ACD has been reported at very low concentrations (0.01%), and immediate hypersensitivity is possible.101–105 Urticaria, swelling, erythema, and itchiness can be found at higher concentrations (1% to 10%).104,106 DDAC may
produce mixed hypersensitivity that induces both IgE- and T-cell-mediated responses. DDAC can be a skin irritant and sensitizer, probably stronger than BAC.

Safety preventive measures

Although the use of disinfectants is inevitable, it is crucial to consider the following points to minimize or avoid any potential dermatologic reactions:

- Damaged skin is prone to adverse reactions from a direct absorption of disinfectants, and extra care should be given to avoid contact with disinfectants.
- While multiple disinfectants may be used together or formulated as a single product to achieve synergistic effects, an enhanced adverse effect is expected.
- Whenever dermatitis is known, disinfectants that are weak or nonirritants and sensitizers should be prioritized. Patch testing may be considered. It is important to avoid using disinfectants from a similar class that is known to be allergic to the users in consideration of a potential cross-reactivity.
- It is necessary to use protective garments during handling to avoid direct contact from spillage. Even with regular use of protective attires, unnoticed punctures in the gloves on multiple uses and the handling of disinfected surfaces can expose users to contamination. Possible interactions of disinfectants with protective garments may occur; for example, glutaraldehyde at 2% to 3.4% may penetrate latex gloves after 45 min, and thus butyl rubber and nitrile rubber gloves are recommended.
- Emphasis is given only on the dermatologic reactions in this review, but the exposure through other manners such as ocular route and inhalation is often significant and most probably toxic. For instance, chlorine compounds are known to emit chlorine gas during preparation and application. The exposure to the eyes is thus high and toxic.

Conclusions

The dermatologic events are usually, but not always, related to prolonged exposure and contact with concentrated disinfectants. Many dermatologic adverse events remain unreported. Some skin reactions, especially sensitization, can develop for compounds currently known to be a nonirritant or sensitizer.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. World Health Organization. WHO virtual press conference on COVID-19. March 11, 2020 https://www.who.int/docs/default-source/coronaviruse/transcripts/who-audio-press-conferences-covid-19-monthly-update-20200311.pdf?

2. Lachapelle JM. A comparison of the irritant and allergic properties of antiseptics. Eur J Dermatol 2014;24:3-9.

3. Lee HY, Stieger M, Yawalkar N, et al. Cytokines and chemokines in irritant contact dermatitis. Mediat Inflamm 2013;2013:916497.

4. Sebastiani S, Albanesi C, De Pità O, et al. The role of chemokines in allergic contact dermatitis. Arch Dermatol Res 2002;293:552-559.

5. Nosbaum A, Nicolas J-F. Irritant versus allergic contact dermatitis: an etiopathological approach. In: Alikhan A, Lachapelle J-M, Mai-bach HI, eds. Textbook of Hand Eczema. Berlin: Springer; 2014. p. 69-74.

6. European Chemicals Agency. COVID-19 Lists of Disinfectant Active Substances and Products. European Chemicals Agency: Helsinki. 2020 https://data.europa.eu/eudrp/en/data/dataset/biocidal-products-lists-of-disinfectant-active-substances-and-products.

7. US Environmental Protection Agency. List N: Disinfectants for Use Against SARS-CoV-2. Washington, DC: US Environmental Protection Agency. 2020 https://www.epa.gov/pesticide-registration/list-n-disinfectants-coronavirus-covid-19.

8. World Health Organization. WHO Guidelines on Hand Hygiene in Health Care. Geneva: WHO Press. 2009.

9. Blank IH. Penetration of low-molecular-weight alcohols into skin. I. Effect of concentration of alcohol and type of vehicle. J Invest Dermatol 1964;43:415-420.

10. Pendington RU, Whittle E, Robinson JA, et al. Fate of ethanol topically applied to skin. Food Chem Toxicol 2001;39:169-174.

11. Kramer A, Below H, Bieber N, et al. Quantity of ethanol absorption after excessive hand disinfection using three commercially available hand rubs is minimal and below toxic levels for humans. BMC Infect Dis 2007;7:117.

12. Lachenmeier DW. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J Occup Med Toxicol 2008;3:26.

13. Löffler H, Kampf G. Hand disinfection: how irritant are alcohols? J Hosp Infect 2008;70:44-48.

14. de Haan P, Meester HHM, Bruyneel DP. Irritancy of alcohols. In: Van der Valk P, Maibach H, eds. The Irritant Contact Dermatitis Syndrome. New York: CR Press; 1996. p. 65-70.

15. Goh CF, Mohamed Ahmed AHA. How to make hand sanitiser gel. Commun Eye Health J 2020;33:14-15.

16. Mohamed Ahmed AHA, Goh CF. How to make hand sanitiser/hand rub. Commun Eye Health J 2020;33:14-15.

17. Berardi A, Perinelli DR, Merchant HA, et al. Hand sanitisers amid CoViD-19: a critical review of alcohol-based products on the market and formulation approaches to respond to increasing demand. Int J Pharm 2020;584:119431.

18. Pequer C, Pradailier A, Dry J. Allergic contact dermatitis from ethanol in a transdermal estradiol patch. Contact Dermat 1992;27:275.

19. Barbaud A, Trechot P, Reichert-Penetrat S, et al. Contact dermatitis due to ethyl alcohol: how to perform patch tests? Ann Dermatol Venereol 2000;133:469-549.

20. Ciomiotti JP, Marmur ES, Nesin M, et al. Adverse reactions associated with an alcohol-based hand antiseptic among nurses in a neonatal intensive care unit. Am J Infect Control 2003;31:43-48.

21. Ophaswongse S, Maibach HI. Alcohol dermatitis: allergic contact dermatitis and contact urticaria syndrome. Contact Dermat 1994;30:1-6.

22. Reifenrath WG, Prystowski SD, Nonomura JH, et al. Topical glutaraldehyde-percutaneous penetration and skin irritation. Arch Dermatol Res 1985;277:242-244.

23. Frantz SW, Beskitt JL, Tallant MJ, et al. Glutaraldehyde: species comparisons of in vitro skin penetration. J Toxicol Cutan Ocul Toxicol 1993;12:349-361.
69. Yamamoto Y, Uede K, Yonei N, et al. Effects of alpha-hydroxy acids on the human skin of Japanese subjects: the rationale for chemical peeling. J Dermatol 2006;33:16-22.

70. Smith WP. Epidermal and dermal effects of topical lactic acid. J Am Acad Dermatol 1996;35:388-391.

71. Kaidbey K, Sutherland B, Bennett P, et al. Topical glycolic acid enhances photodamage by ultraviolet light. Photodermatol Photomed Immunol Photomed 2003;19:21-27.

72. Vishal B, Rao SS, Pavithra S, et al. Contact urticaria to glycolic acid peel. J Cutan Aesthet Surg 2012;5:58-59.

73. Tang S-C, Yang J-H. Dual effects of alpha-hydroxy acids on the skin. Molecules 2018;23:863.

74. Usuki A, Ohashi A, Sato H, et al. The inhibitory effect of glycolic acid and lactic acid on melanin synthesis in melanoma cells. Exp Dermatol 2003;12:43-50.

75. Assessment Report - Hydrogen Peroxide. Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products. Finland: European Commission. 2015.

76. Chan HP, Maibach HI. Hydrogen peroxide, blanching, and skin: an overview. Cutan Ocul Toxicol 2008;27:307-309.

77. Izu K, Yamamoto O, Asahi M. Occupational skin injury by hydrogen peroxide. Dermatolology 2000;201:61-64.

78. European Union Risk Assessment Report - Hydrogen Peroxide. Helsinki: European Communities. 2003.

79. Bito T, Izu K, Tokura Y. Evaluation of toxicity and Stat3 activation in human skin of Japanese subjects: the rationale for chemical peeling. J Dermatol Sci 2010;58:157-159.

80. Murphy EC, Friedman AJ. Hydrogen peroxide and cutaneous biology: translational applications, benefits, and risks. J Am Acad Dermatol 2019;81:1379-1386.

81. Peracetic acid [MAK value documentation, 1996]. The MAK-Collection for Occupational Health and Safety. Weinheim, Germany: Wiley; 1996. p. 230-239.

82. Peracetic Acid Acute Exposure Guideline Levels Acute Exposure Guideline Levels for Selected Airborne Chemicals by National Research Council (US) Committee on Acute Exposure Guideline Levels. Washington, DC: National Academies Press. 2010:327-367.

83. You Y, Bai Z, Yan L, et al. Peracetic acid exposure assessment during outbreak of SARS in Tianjin, China [Abstract]. Epidemiology 2006;17: S217-S218.

84. Roberts MS, Anderson RA. The percutaneous absorption of phenolic compounds: the effect of vehicles on the penetration of phenol. J Pharm Pharmacol 1975;27:599-605.

85. Hinze RS, Lorence CR, Hodson CD, et al. Percutaneous penetration of para-substituted phenols in vitro. Fundam Appl Toxicol 1991;17: 575-583.

86. Sonnex TS, Rycroft RJG. Allergic contact dermatitis from orthobenzyl parachlorophenol in a drinking glass cleaner. Contact Dermat 1986;14: 247-248.

87. Adams RM. Allergic contact dermatitis due to o-phenylphenol. Contact Dermat 1981;7:332.

88. Estlander T, Kanerva L, Jolanki R. Occupational skin sensitization to the antimicrobials ortho-benzyl para-chlorophenol and amphotolyte 103 G. In: Frosch P, Dooms-Goossens A, Lachapelle JM, et al, eds. Current Topics in Contact Dermatitis. Berlin: Springer; 1989. p. 88-91.

89. DeBono R, Laitung G. Phenolic household disinfectants—further precautions required. Burns 1997;23:182-185.

90. Kahn G. Depigmentation caused by phenolic detergent germicides. Arch Dermatol 1970;102:177-187.

91. Arundell FD. San Francisco Dermatological Society. Arch Dermatol 1973;108:848-849.

92. Final report on the safety assessment of sodium dodecylbenzenesulfonate/TEA-dodecylbenzenesulfonate/ sodium decylbenzenesulfonate/ Am Coll Toxicol 1993;12:279-309.

93. Piotte C, Ferguson T. Factors which determine the skin irritation potential of soaps and detergents. J Soc Cosmet Chem 1975;26:29-46.

94. Harrold S. Denaturation of epidermal keratin by surface active agents. J Invest Dermatol 1959;32:581-588.

95.Van Scott EJ, Lyon JB. A chemical measure of the effect of soaps and detergents on the skin. J Invest Dermatol 1953;21:199-203.

96. Imokawa G, Sumura K, Katsumi M. Study on skin roughness caused by surfactants: II. Correlation between protein denaturation and skin roughness. J Am Oil Chem Soc 1975;52:484-489.

97. Aki H, Koizumi O, Okamoto Y, et al. Interaction of stratum corneum components with benzalkonium chloride. Isotermal Titration Calorimetric Study. J Therm Anal Calorimetry 2001;64:293-297.

98. Basketter DA, Marriott M, Gilmour NJ, et al. Strong irritants masquerading as skin allergens: the case of benzalkonium chloride. Contact Dermat 2004;50:213-217.

99. Wentworth AB, Yiannias JA, Davis MD, et al. Benzalkonium chloride: a known irritant and novel allergen. Dermatitis 2016;27:14-20.

100. Buist HE, de Heer C, van Burgsteden J, et al. Dermatomiketones of didecylmethylammonium chloride and the influence of some commercial biocidal formulations on its dermal absorption in vitro. Regul Toxicol Pharmacol 2007;48:87-92.

101. Dejobert Y, Martin P, Piette E, et al. Contact dermatis from didecylmethylammonium chloride and bis-(aminopropyl)-laurylamine in a detergent-disinfecant used in hospital. Contact Dermat 1997;37:95.

102. Movitz M, Pontén A. Foot dermatis caused by didecylmethylammonium chloride in a shoe refresher spray. Contact Dermat 2015;73:374-376.

103. Geier J, Lessmann H, Cevik N, et al. Patch testing with didecylmethylammonium chloride. Contact Dermat 2016;74:374-376.

104. Houtappel M, Bruinzeel-Koomen CAFM, Röckmann H. Immediate-type allergy by occupational exposure to didecyl dimethyl ammonium chloride. Contact Dermat 2008;59:116-117.

105. Dibo M, Brasch J. Occupational allergic contact dermatis from N,N-bis(3-aminopropyl)dodecylamine and dimethyldidecylammonium chloride in 2 hospital staff. Contact Dermat 2001;45:40.

106. Ruiz Oropeza A, Fischer Fiius, Duus Johansen J. Occupational contact urticaria caused by didecyl dimethyl ammonium chloride. Contact Dermat 2011;64:297-298.

107. Shane HL, Lukomska E, Stafaniak AB, et al. Divergent hypersensitivity responses following topical application of the quaternary ammonium compound, didecylmethylammonium bromide. J Immunotoxicol 2017;14:204-214.

108. Anderson SE, Shane H, Long C, et al. Evaluation of the irritancy and hypersensitivity potential following topical application of didecylmethylammonium chloride. J Immunotoxicol 2016;13:557-566.

109. Shane HL, Lukomska E, Kashon ML, et al. Topical application of the quaternary ammonium compound didecylmethylammonium chloride activates type 2 innate lymphoid cells and initiates a mixed-type allergic response. Toxicol Sci 2019;168:508-518.

110. Jordan SL, Stowers MF, Trawick EG, et al. Glutaraldehyde permeation: an in situ monitoring of the proper glove. Am J Infect Control 1996;24:67-69.

111. Kowatzki E. Hand hygiene and skin health. J Hosp Infect 2003;55:239-245.

112. Kurilhara-Bergstrom T, Knutson K, DeNoble LJ, et al. Percutaneous absorption enhancement of an ionic molecule by ethanol—water systems in human skin. Pharm Res 1990;7:762-766.

113. Bonnmann D, Potts RO, Guy RH. Examination of the effect of ethanol on human stratum corneum in vivo using infrared spectroscopy. J Control Release 1991;16:299-304.
