Variable Secondary Metabolite Profiles Across Cultivars of *Curcuma longa* L. and *C. aromatica* Salisb.

Poonam Kulyal, Satyabrata Acharya†, Aditya B. Ankari†, Praveen K. Kokkiripati, Sarada D. Tetali* and Agepati S. Raghavendra*

Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India

Background: *Curcuma* spp. (Zingiberaceae) are used as a spice and coloring agent. Their rhizomes and essential oils are known for medicinal properties, besides their use in the flavoring and cosmetic industry. Most of these biological activities were attributed to volatile and nonvolatile secondary metabolites present in the rhizomes of *Curcuma* spp. The metabolite variations among the species and even cultivars need to be established for optimized use of *Curcuma* spp.

Objectives: We compared the phytochemical profiles of rhizomes and their essential oils to establish the variability among seven cultivars: five of *Curcuma longa* L. (Alleppey Supreme, Duggirala Red, Prathibha, Salem, Suguna) and two of *C. aromatica* Salisb. (Kasturi Araku, Kasturi Avidi). The GC-MS and LC-MS-based analyses were employed to profile secondary metabolites of these selected cultivars.

Methods: Rhizomes of *Curcuma* spp. were subjected to hydro-distillation to collect essential oil and analyzed by GC-MS. The methanol extracts of fresh rhizomes were subjected to LC-MS analyses. The compounds were identified by using the relevant MS library databases as many compounds as possible.

Results: The essential oil content of the cultivars was in the range of 0.74–1.62%. Several compounds were detected from the essential oils and rhizome extracts by GC-MS and LC-MS, respectively. Of these, 28 compounds (13 from GCMS and 15 from LCMS) were common in all seven cultivars, e.g., α-thujene, and diarylheptanoids like curcumin. Furthermore, a total of 39 new compounds were identified from *C. longa* L. and/or *C. aromatica* Salisb., most of them being cultivar-specific. Of these compounds, 35 were detected by GC-MS analyses of essential oils, 1,2-cyclohexanediol, 1-methyl-4-(1-methylethyl)-, and santolina alcohol, to name a few. The other four compounds were detected by LC-MS of the methanolic extracts of the rhizomes, e.g., kaempferol-3,7-O-dimethyl ether and 5,7,8-trihydroxy-2′,5′-dimethoxy-3′,4′-methylene dioxyisoflavanone.

Abbreviations: CU, curcumin; cvs, cultivars; DMC, demethoxy curcumin; BDMC, bisdemethoxycurcumin.
INTRODUCTION

Turmeric (Curcuma longa L.) is a perennial rhizomatous herb that belongs to the family Zingiberaceae (Prasath et al., 2018). It has been used traditionally in India for its medicinal value and as a spice (Srinivasan et al., 2004; Aggarwal et al., 2007; Esatbeyoglu et al., 2012). In Ayurvedic medicine, turmeric is used internally (as a stomachic, tonic, and blood purifier) or externally (prevention and treatment of skin diseases) (Gounder and Lingamallu, 2012). Turmeric was scientifically validated for several pharmacological benefits, including antioxidant, anti-inflammatory, and chemoprotective properties (Miquel et al., 2002; Krup et al., 2013; Kanase and Khan, 2018; Umar et al., 2020). The rhizomes of turmeric are enriched with several bioactive metabolites, though the attention was mostly on curcuminoids. Besides curcumin (a curcuminoid), the essential oil of C. longa L. showed antimicrobial activity and ability to suppress aflatoxin production (Ferreira et al., 2013).

Out of 110 species of genus Curcuma, only ∼20 species were used so far for phytochemical studies (Nahar and Sarker, 2007). Curcuma longa L. is popularly known as turmeric, while C. aromatica Salisb. and C. caesia Roxb. are known as wild turmeric and black turmeric, respectively. C. longa L. and a few other species, including C. aromatica Salisb., produce curcumin, a yellow colored curcuminoid. So far, at least 235 compounds, primarily phenolics, terpenoids, and alkaloids, were identified from Curcuma spp. (Li et al., 2011). About 70 varieties of C. longa L. are cultivated in India (Sasikumar, 2005; Parthasarathy and Chempakam, 2008), but very few are chemically profiled.

The essential oil of Curcuma spp. is used in traditional medicine for many ailments (Dosoky and Setzer, 2018). The volatile component of C. longa’s rhizome is responsible for its aromatic flavor and odor (Gounder and Lingamallu, 2012). Its essential oil is considered safe for human use (Tisserand and Young, 2013). The oils of C. longa L. and C. aromatica Salisb. have applications in the food and pharmaceutical industries due to their antioxidant, antibacterial, and anti-inflammatory properties (Dosoky and Setzer, 2018). The essential oil also improved the bioavailability of curcumin, thereby its bioactivity (Shishu and Maheshwari, 2010). Preliminarily clinical trials indicated that the essential oil from C. longa L. and C. aromatica Salisb. was helpful against cancer, asthma, and other ailments (Cheng et al., 1999; Joshi et al., 2003; Li Y. et al., 2009). Thus, there is a need to identify high-yielding cultivars containing curcuminoids and essential oil.

Since the pharmacological properties of Curcuma spp. are dependent on their chemical profiles, studies on the chemical constituents of turmeric/wild turmeric and their essential oils gained significance. Thin-layer chromatography (TLC) is one of the methods employed to quantify curcumin (Setyaningsih et al., 2016) and other curcuminoids (Phathanawasin et al., 2009) in Curcuma longa L. A few different techniques used were HPTLC (Pathania et al., 2006; Paramasivam et al., 2009), nuclear magnetic resonance (NMR) spectroscopy (Li W. et al., 2009), and the HPLC method (Kulyal et al., 2016).

Our present study on metabolite profiles would pave the way for metabolomics by providing the identity of several metabolites. Metabolomics is a practical approach for the comprehensive profiling and comparison of metabolites in plant systems (De Vos et al., 2007). It is crucial for quality evaluation and scientific validation of medicinal plants and their products (Mukherjee et al., 2016). Mainly information on secondary metabolites of medicinal plants/spices is of great importance in health, food, and nutrition sectors, due to the antioxidant nature, color, or flavor of these secondary compounds (Beekwilder et al., 2005; Dixon et al., 2006; Hall, 2006). The quality of turmeric and other spices depends on factors, such as cultivation, collection, storage, milling, and processing, apart from genetics and adulteration issues. Therefore, metabolomics provides a practical approach for quality control (Mukherjee et al., 2016; Tetali et al., 2021).

Over the past decade, several methods suitable for large-scale analysis of metabolites in plant extracts were developed (Dixon et al., 2006; Hall, 2006). However, to date, no single analytical method can successfully detect the entire metabolome of higher plants, especially of medicinal and aromatic plants, as they are highly rich in chemically diverse metabolites (Tetali et al., 2021). The GC-MS and LC-MS techniques mutually complement each other in unraveling secondary metabolomes comprising a wide range of volatile and nonvolatile compounds. These compounds belonged to terpenes, phenolic acids, phenylpropanoids, saponins, alkaloids, polyamines, and their derivatives (Huhman and Sumner, 2002; Moco et al., 2006).

Essential oils from different Curcuma species, including C. longa L. and C. aromatica Salisb., were studied for their chemical constituents (Choudhury et al., 1996; Angel et al., 2014; Nampoothiri et al., 2015; Dosoky and Setzer, 2018) to establish their variability. Variation in the volatile compositions of Curcuma spp. such as C. longa L. and C. zedoaria, was done using GC-MS (Dosoky et al., 2019). A combination of GC-MS and LC-MS techniques was used for metabolite analysis of C. domestica L. (C. longa L.) (Herebian et al., 2009). In the present study, the volatile (essential oil) and nonvolatile (total extract) components of the fresh rhizome of the seven cultivars of Curcuma spp. were analyzed by the GC-MS and LC-MS techniques. The present study is the first report revealing such detailed...
TABLE 1 | Essential oil content and total number of compounds detected by GC-MS in the rhizomes of Curcuma species.

Sl. No.	Cultivar (species)	Essential oil (%)	Identified (Reported in Curcuma spp. or another plant species)	Unidentified
1	Alleppey Supreme	1.42	31	58
	(C. longa L.)			111
2	Duggirala Red	0.74	36	56
	(C. longa L.)			108
3	Prathibha	1.20	44	60
	(C. longa L.)			96
4	Salem	1.00	30	39
	(C. longa L.)			131
5	Suguna	0.80	35	51
	(C. longa L.)			114
6	Kasturi Avidi	0.78	29	64
	(C. aromatica Salisb.)			107
7	Kasturi Araku	1.62	31	60
	(C. aromatica Salisb.)			109

metabolite profiles of the selected cultivars to the best of our knowledge. These cultivars, except Alleppey Supreme, are typically cultivated in Telangana and Andhra Pradesh, and these states are among the largest producers of turmeric in India (Parthasarathy and Chempakam, 2008). Most of the studies worldwide on Curcuma spp., for their curative properties, were with C. longa L., followed by C. aromatica Salisb, C. aeruginosa Roxb. (Simoh and Zainal, 2015), and C. kwangsiensis S. K. Lee & C. F. Liang (Zeng et al., 2009). Several cultivars exist within these species, which vary in their chemical profiles. The present article is the first attempt to characterize both volatile (essential oil) and nonvolatile (crude extract) components of fresh rhizomes of seven cultivars of Curcuma spp. by the GC-MS and LC-MS techniques. Our results using GC-MS and LC-MS analyses revealed high variability in their metabolite profiles of seven cultivars of genus Curcuma. We emphasize that such an approach could be exploited to distinguish cultivars for a specific application based on their metabolite profile.

MATERIALS AND METHODS

Materials and Reagents

LC-MS grade methanol, water, and acetonitrile were purchased from Fisher Scientific (Pittsburgh, PA, United States). Ammonium formate, formic acid, 4-fluoro-4′-hydroxy benzophenone (97%), and n-hexane were from Sigma-Aldrich, India. Anhydrous sodium sulfate (99.99%) was from Merck Millipore, India.

Fresh rhizomes of four cultivars of Curcuma longa L. (Duggirala Red, Prathibha, Salem, and Suguna) and two cultivars of C. aromatica Salisb. (Kasturi Araku and Kasturi Avidi) were collected from Turmeric Research Station, Kammarpally, Telangana State, India. Alleppey Supreme cultivar of C. longa L. was from the Indian Institute of Spices Research, Marikunnu (IISR) Kozhikode, Kerala, India. The mature rhizome samples were collected during the postharvest season of turmeric (May–Jun) in 2011 and 2012 and cryopreserved at −80°C until extraction and analysis.

Isolation of Essential Oil by Hydrodistillation for GC-MS Analysis

50 g each of fresh turmeric rhizome of five cultivars of C. longa L. cvs. Alleppey Supreme, Duggirala Red, Prathibha, Salem, Suguna, and two cultivars of C. aromatica Salisb. cvs. Kasturi Araku and Kasturi Avidi were taken out from a −80°C freezer, made into pieces, and ground in a pestle with a mortar to a fine powder under liquid nitrogen. The powder was subjected to hydrodistillation in a Clevenger-type apparatus for 7 h. The essential oil obtained after distillation was dried over anhydrous sodium sulfate and kept at −80°C until GC-MS analysis.

GC-MS Running Conditions and Metabolite Identification

The chemical composition of the Curcuma spp. essential oil was analyzed by the GC-MS technique using Agilent 7890 A gas chromatograph coupled with a Leco Pegasus HT TOF mass spectrometer equipped with a 29.8 m × 320 μm HP-5MS 5% phenyl methyl siloxane capillary column with 0.25 μm film thickness. The oven temperature was programmed at 65°C for 2 min and then increased from 65 to 90°C at 5°C/min (held for 3 min). Then the temperature was increased from 90 to 103°C (held for 3 min) and from 103 to 150°C (held for 15 min) at 20°C/min and 8°C/min, respectively. The temperature was raised finally from 150 to 280°C at 20°C/min. The injector, interphase, and ion source were maintained at 250°C, 280°C, and 250°C, respectively. The detector voltage was 1500 V. A solvent delay of 2 min was selected. One microliter (diluted with n-hexane; 1:10) of essential oil sample was injected into the GC-MS system using split mode (50:1). Helium was used as a carrier gas at a flow rate of 1 ml/min. GC-MS data were measured at 70 eV; mass scan 40–1000 amu.

The compounds were identified by comparing their mass spectra with the data available in the literature, National
Institute of Standards Technology NIST, and Leco-Fiehn Rtx5 libraries. The compounds originated from the GC-MS data file were identified by matching most resembling spectra with the NIST library. Each search produced a hit list of compounds according to match factor or similarity with the library spectra. All the compounds showing similarity more than 70% with the

![Representative TIC chromatograms from GC-MS of essential oil from cultivars (A) Alleppey Supreme, (B) Duggirala Red, (C) Prathibha, (D) Salem, (E) Suguna of Curcuma longa L. and cvs. (F) Kasturi Araku, (G) Kasturi Avidi of C. aromatica Salisb.](image-url)
TABLE 2: Cultivar-specific compounds identified, in one of the seven cultivars of Curcuma longa L. or C. aromatica Salisb. by GC-MS in the essential oil from rhizomes. The structures of the compounds (serial numbers from 1 to 23) are given in Figure 2 (panel numbers: 1–23), and this is the first report of these compounds from the genus Curcuma L. These compounds, however, were reported from genus other than Curcuma L. The compounds from serial numbers 24 to 41 are already reported in Curcuma species. Structures for few compounds (serial numbers 24–30) are given in Figure 3 (panel numbers: 1–7). Abbreviations used: AS, Alleppey Supreme; DR, Duggirala Red; PR, Prathibha; SA, Salem; SU, Suguna; KAr, Kasturi Araku; KAv, Kasturi Avidi.

Sl. No.	Compound name	Cultivar	RT (Min)	Area/abundance	Formula	Mass (Mass fragmentations)	Class of compound	Reported from plant species	References
1	1,2-Cyclohexanediol, 1-methyl-4-(1-methylthyl)-	AS	6.38	958955880	C12H20O2	172.146, 43, 71, 111, 154	Monoterpenoid	Citrus medica L. Leaf and peel essential oil	Bhuiyan et al. (2009)
2	Trans-trans-Octa-2,4-dienyl acetate	AS	8.22	8498	C10H16O2	168.115, 43, 77, 79	Dienen acetate	Kaempferia galanga L. Dried rhizomes	Othman et al. (2006)
3	Phenol, 2-methoxy-3-(2-propenyl)-	AS	17.05	200016	C10H12O2	164.083, 77, 131	Phenolic monoterpenoid	Dalbergia stevensoni Standl. Wood extracts	Jiang et al. (2018)
4	3-Isopropyl-4-methyl-1-pentyn-3-ol	DR	13.59	805101	C9H16O	140.120, 43, 97	Alcohol constituent	Anethum sowa Roxb. ex, Fleming	Saleh-e-in et al. (2010)
5	5,9-Tetradecadiyne	DR	19.45	11283632	C14H22	190.172	Unsaturated hydrocarbon	Ferula ves:nertensis Coss. & Durieu ex Trab.	Zellagui et al. (2012)
6	Naphthalene, 5-butyl-1,2,3,4-tetrahydro-	DR	20.62	1290163	C14H20	188.156, 91, 145	Tetralin	Meconopsis punicea Maxim. and M. delavayi (Franch.) Franch. Ex Prain, essential oil	Yuan et al. (2003)
7	Santolinal alcohol	DR	23.63	841206	C10H18O	188.156	Tertiary alcohol	Achillea filipendulina L., aerial part	Sharopov and Setzer (2010)
8	2-Pentanone, 4-mercapto-4-methyl-	PR	5.32	1330293	C6H12OS	132.060	Ketone	Camellia sinensis (L.) Kuntze	Kumazawa et al. (2005)
9	8-Methylene-3-oxatricyclo[5.2.0.0(2,4)]nonane-	PR	11.72	25554	C9H12O	136.08, 121, 43, 55	Alcohol constituent	Abies alba Mill.	Wang et al. (2005)
10	7-Tetracyclo[6.2.1.0(3.8)0(3.9)]undecanol, 4,4,11,11 tetramethyl-	PR	19.16	21297286	C15H24O	188.156, 91, 145	Triterpenoid	Parkia speciosa Hassk.	Salman et al. (2006)
11	Bicyclo(2.2.1)hept-2-ene, 2,3-dimethyl-	PR	19.41	23461594	C9H14	122.109	Alcohol constituent	Linderag aggregata (Sims) Kosterm., essential oil	Hong (2011)
12	1H-3a,7-methanoazulene, 2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-, [3R-(3à,3aá,7á,8aà)]	PR	19.69	1483176	C15H24	204.187, 93, 119, 161	Sesquiterpene	Lindera aggregata (Sims) Kosterm., essential oil	Yang et al. (2009)
13	Cholesta-8,24-dien-3-ol, 4-methyl-, [3ß(3a,7,8a)]	PR	21.56	84886714	C20H40O	398.354, 69, 105	Triterpenoid	Parkia speciosa Hassk. seed	Salman et al. (2006)
14	4-Ethylphenoylethylamine	PR	25.88	507899185	C10H15N	149.120	Amines	Psidium guajava L. stem bark essential oil	Fasola et al. (2011)
15	Cyclohexan-2-methyl-5-(1-methylthiyl)-	PR	26.57	3966291	C9H12O	154.135, 67, 107, 136	Monoterpenoid	Mentha spicata L. aerial parts	Mohammed et al. (2017)
16	Cyclohexane, 1,2-dimethyl-3,5-bis(1-methylthiyl)-	PR	26.59	26170712	C16H18S4	192.187, 107, 149	Monoterpenoid	Rhanterium adpressum Coss. & Durieu Aerial parts	Kala et al. (2009)
17	5,8,11,14-Eicosatetraenoic acid, phenylmethyl ester, (all-Z)-	SA	5.39	15244294	C20H30O2	394.287, 67, 91, 205	Fatty acid	Ficus hispida L. Fresh male and female receptive figs, leaves	Sathyabalan et al. (2014)
18	11-Dodecen-2-one	SA	36.83	511982	C10H22O	182.167, 43, 124, 182	Ketone	Coriandrum sativum L., leaf oil	Song et al. (2001)
19	E-11-Tetradecenoic acid	SA	37.15	335669	C10H20O2	226.193, 41, 56, 69	Fatty acid	Alpinia speciosa (J.C. Wendl) K. Schum	Bhuiyan et al. (2009)
20	2-Nonen-4-yn-1-ol, (Z)-	SU	10.68	287984	C9H16O	154.135, 41, 67	Alcohol	Psidium guajava L. stem bark essential oil	Ho (2010)
Cultivar-specific compounds identified, in one of the seven cultivars of Curcuma longa L. or C. aromatica Salisb. by GC-MS in the essential oil from rhizomes. The structures of the compounds (serial numbers from 1 to 23) are given in Figure 2 (panel numbers: 1–23), and this is the first report of these compounds from the genus Curcuma L. These compounds, however, were reported from genus other than Curcuma L. The compounds from serial numbers 24 to 41 are already reported in Curcuma species. Structures for few compounds (serial numbers 24–30) are given in Figure 3 (panel numbers: 1–7).

Sl. No.	Compound name	Cultivar	RT (Min)	Area/abundance	Formula	Mass (amu)	Class of compound	Reported from plant species	References
21	3-Cyclohexen-1-one, 3,5,5-trimethyl-	SU	21.81	10709364	C9H14O	95, 138	Cyclohexene	Seeds and leaves	D’Auria et al. (2006)
22	6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl-	SU	23.27	18320904	C15H24O	96, 138	Sesquerpenoid	Dried saffron	Venkataramani and Chinagounder (2012)
23	3-Octen-5-yne, 2,7-dimethyl-, (Z)-	KAv	7.91	132889991	C10H16	93, 121, 136	Monoterpene	Litsea glutinosa (Lour.) C.B. Rob Fruit oil	Chowdhury et al. (2008b)
24	Aromadendrene	PR	21.68	32839807	C10H16	204.187	Hydrocarbon	Curcuma aromatica Salisb., rhizome	Hong et al. (2014)
25	Isoborneol	PR	10.16	931077	C10H18O	154.135	Monoterpenoid	Curcuma aromatica Salisb., rhizome	Sasikumar (2005)
26	β-Elemene	PR	17.87	8265459	C15H24	204.187	Sesquerpenoid	Curcuma longa L., rhizome Essential oil	Ma and Gang (2006)
27	α-Santalone	PR	19.15	167463111	C15H24	204.187	Sesquerpenoid	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
28	2-Tridecanone	PR	36.82	145399	C18H36	180.182	Ketone	Curcuma albedora Thwaites, rhizome Essential oil	Herath et al. (2017)
29	Nonanoic acid	SU	37.82	1054190	C9H18O2	158.130	Fatty acid	Curcuma longa L., rhizome Essential oil	Nieman et al. (2012)
30	Eucalyptol	KAr	6.34	73923505	C10H16O	154.135	Monoterpene	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
31	Carvacrol	AS	15.46	800060	C10H16O	150.104	Monoterpene	Curcuma longa L., rhizome Essential oil	Awasthi and Dixit (2009)
32	endo-Borneol	PR	25.95	762477	C10H18O	154.135	Monoterpene	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
33	1,3,5-Cycloheptatriene, 3,7,7-trimethyl-	KAv	22.26	44959671	C10H16	134.109,120	Cyclic hydrocarbon	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
34	p-Cymen-8-ol	KAr	11.08	28783214	C10H16O	150.104	Monoterpenoid	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
35	Camphor	PR	9.68	7983536	C10H16O	152.120	Terpenoid ketone	Curcuma longa L., rhizome Essential oil	Leela et al. (2002)
36	α-Bisabolol	PR	22.60	26108003	C15H24O	222.198	Sesquerpenoid	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
37	α-Elemone	PR	22.99	5796701	C15H24O	218.167	Sesquerpenoid	Curcuma longa L., rhizome Essential oil	Singh et al. (2010)
38	Caryophyllene oxide	PR	21.85	84236617	C10H16O	220.182	Sesquerpenoid oxide	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
39	Citral	KAr	10.81	4942325	C10H16O	152.120	Monoterpene	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
40	Neoisolongifolene, 8,9-dehydro-	KAr	20.92	956644398	C10H16	204.187	Bicyclic hydrocarbon	Curcuma longa L., rhizome Essential oil	Chowdhury et al. (2008a)
41	Sabinene hydrate	KAv	19.81	30005835	C10H18O	154.135	Monoterpenoid	Zingiber officinalis Roscoe, rhizome essential oil	Koo and Gang (2012)
FIGURE 2 | Structures of first-time reported (total 39) from the genus Curcuma, identified from cultivars of Curcuma longa L. and C. aromatica Salisb. detected in essential oil (panel numbers 1–23 and 24–35 corresponding to serial numbers 1–23 and 1–12 of Tables 2, 3 respectively) and rhizome extracts (panel numbers 36 and 37–39 corresponding to serial numbers 1 and 1–3 of Tables 6, 7 respectively) by GC-MS and LC-MS, respectively. Details of all these compounds are given in Supplementary Tables S3, S4.

Continued
NIST library were selected by the software (Software: Version 4.22 optimized for Pegasus®). Software searches (identifies) compound from their mass spectra and includes MS interpretation programs for analyzing mass spectra based on chemical structure, molecular formula, isotopic pattern, etc. The similarity of 70% or above between the m/z values of the compound detected in the respective cultivar and the MS-libraries’ mass fragmentation pattern was considered as identification. Furthermore, mass spectra of all compounds were also matched with ranges available as per their CAS number. Compounds for which the CAS number was not generated, the PubChem CID was used. Compounds below the similarity level of 70% were not considered and grouped as unknown. The data obtained with the samples collected in 2012 are presented in this article.

Preparation of Rhizome Extracts for LC-MS Analysis

Samples for LC-MS analysis were prepared by grinding the fresh rhizome to a fine powder in a mortar and pestle under liquid nitrogen. 1 g of the rhizome powder was suspended in 2 ml of MeOH (LC-MS grade). The samples were sonicated for 30 min and centrifuged for 25 min at 1500 rpm, and the supernatants were separated by filtering through a 0.45-μm Nylon filter disk. These extracts were freshly prepared for the analysis. A 200 μl aliquot of the extract was diluted quantitatively with internal standard (IS) 200 μl 4-fluoro-4′-hydroxy benzophenone solution. It was prepared freshly for each analysis by dissolving in methanol for a final concentration of 0.58 mg/ml. The samples were subjected to LC-MS analysis for the complete metabolite profile. The data obtained with the samples collected in 2012 were presented in this article.

LC-MS/MS Conditions and Metabolite Identification

LC-MS analyses of the crude extract of fresh rhizome of Curcuma spp. were performed according to Jiang et al. (2006) using Agilent 6520 Accurate Q-TOF (Agilent Santa Clara, CA), and the column used was Zorbax Eclipse XDB-C 18, 4.6 × 50 mm, 1.8 μ; Mobile phase: A) buffer (5 mM ammonium formate, 0.1% formic acid, in deionized and distilled H2O) and B) acetonitrile; gradient (in buffer A): 0–2 min, 5% B; 2–5 min, 5–100% B; 57–60 min, 100% B; 60–65 min, 100–5% B; flow rate: 0.25 ml/min; temperature, 40°C; injection volume 5 μl. For the MS detection, Agilent MSD-Trap-SL was equipped with electrospray ionization (ESI) interface as the ion source. The acquisition parameters for the negative mode were: drying N2 temperature, 350°C, 8 l/min; nebulizer pressure 40 psi; HV capillary 4000 V; skimmer 65.0 V; spray voltage: 4 kV; scan rate 1.4. We analyzed the results in both the positive and the negative ion mode acquired by Agilent TOF/Q-TOF mass spectrometry and full MS scan, in the form of total ion current (TIC) chromatogram, and the metabolites were identified based on their MS/MS spectra and fragmentation rules reported previously (Jiang et al., 2006).

RESULTS

Essential Oil Content

The oil was obtained by hydro-distillation, in a Cleverenger-type apparatus, of the fresh rhizomes of five cultivars (Alleppey Supreme, Duggirala Red, Prathibha, Salem, and Suguna) of Curcuma longa L. and two cultivars (Kasturi Araku and Kasturi Avidi) of C. aromatica Salisb. The yield of essential oil from the seven cultivars was in the range of 0.74–1.62% on a fresh weight basis, with the highest yield of 1.62% in cv. Kasturi Avidi (C. aromatica Salisb.) followed by cv. Alleppey Supreme (C. longa L.) with an amount of 1.42% and the lowest yield of 0.74% in cv. Duggirala Red (C. longa L.). The essential oil yields from the other five rhizomes were in between these values (Table 1). The oil yields of C. longa L. varieties were higher than those of C. aromatica Salisb.

GC-MS Analysis of Essential Oil

Essential oils of seven cultivars of Curcuma spp. were subjected to GC-MS analysis, and the results from one of such studies for each cultivar are presented in this article. The representative TIC chromatograms of these cultivars are shown in Figure 1. Several compounds were detected in each cultivar’s essential oil (Table 1). Only a few of the identified compounds were confirmed based on their match with the compound profiles found in the NIST database and Leco-Fiehn Rtx5 library. Up to 44 compounds were identified from the five cvs. of C. longa L. and 31 compounds from two cvs. of C. aromatica Salisb. (Table 1). Altogether 80 compounds were grouped into three categories: cultivar-specific (41), present in more than one cultivar (26), and common in all seven cultivars (13). These 41 cultivar-specific compounds were detected in the essential oil of one of the cultivars of C. longa L. or C. aromatica Salisb. (Table 2). The essential oil of C. longa L. cv. Prathibha had the highest number of cultivar-specific compounds, whereas C. aromatica Salisb. had the highest number of mass fragmentation patterns.
TABLE 3

Compounds detected in more than one cultivar of *C. longa* L. and *C. aromatica* Salisb. identified by GCMS in the essential oil from rhizomes. The structures of the compounds from serial numbers 1–12 are given in Figure 2 (panel numbers: 24–35), and the compounds with Sl.No. 13–18 are shown in Figure 3, with corresponding panel numbers: 8–13 respectively. Abbreviations used: AS, Alleppey Supreme; DR, Duggirala Red; PR, Prathibha; SA, Salem; SU, Suguna; KAR, Kasturi Araku; KAV, Kasturi Avidi.

Sl. No.	Compound name	Cultivar	RT (Min)	Area/abundance	Formula	Mass (m/z)	Mass fragment ions	Class of compound	Reported from plant species	References
1	1,3,5-Cycloheptatriene	AS, PR, SA, SU, KAR, KAV	2.16	6243556	1,3,5-C6H8	92.0626	65,91	Closed ring organic compound	*Cereogia wooldi* Schltr	Meng et al. (2010)
2	Bicyclo(3.1.0)hexane, 4-methyl-1-(1-methyl)	DR, PR, SA, SU, KAR, KAV	5.70	89775296	C10H16	136.1252	41, 77, 93	Monoterpenes	*Zingiber officinale* Roscoe	Tang et al. (2012)
3	Bicyclo(3.2.0)oct-2-ene, 3-methyl-4-methylene-	DR, KAR, KAV	9.35	559966	C10H16	134.1096	91, 105, 134	Monoterpenes	*Sesel duxialium* C.B. Clarke	Mohiuddin et al. (2012)
4	Oxirane, 2-(hexyn-1-yl)-3-methoxymethylene-	DR, KAR, KAV	9.75	71555	C10H14O2	166.0994	79, 110	Cyclic ether and epoxide	*Hypotis spicigera* Lam	Ladan et al. (2011)
5	Bergamotol, Z-α-trans-	AS, SA	20.90	3926774	C15H24O	220.182	91, 93, 119, 187	Sesquiterpene	*Aristolochia chinensis* (Panigrahi) Press	Kumar et al. (2019)
6	(1,3-Dimethyl-2-methylene-cyclopropyl) methanol	AS, DR, SA, SU, KAR, KAV	21.05	2503789	C10H16	140.1201	67, 77, 94, 109	Alcohol	*Hypotis spicigera* Lam	Ladan et al. (2011)
7	12-Oxabicyclo[9.1.0]dodeca-3,7-diene, 1,5,5,8-tetramethyl-, [1R-[1R*,3E,7E,11R*]-	DR, KAR, KAV	21.67	2130448	C15H24O	220.1827	67, 96, 109, 128	Epoxide	*Eugenia Caryophyllus* (Spredy.) Bullock & S.G. Harrison	Mani and Boominathan (2011)
8	Isolongifolene, 4,5,9,10-dehydro-	AS, DR, SA, SU, KAR, KAV	22.10	350003	C15H20	200.1565	77, 91, 143, 157, 185	Polycyclic hydrocarbon	*Cymbopogon citratus* (DC.) Stapf	Tajdin (2012)
9	Z,Z,Z-4,6,9-Nonadecatriene	DR, KAR, KAV	22.33	16921575	C34H19	262.2661	79, 93	Hydrocarbon	*Papaver somniferum* L.	Kumaravel el al. (2019)
10	6-β-Tolyll-2-methyl-2-heptanol	AS, SU, KAR, KAV	22.98	6040656	C15H22O	218.182	91, 119, 202	Aromatic alcohol	*Zingiber officinale* Roscoe	Choudhari and Kereppa (2013)
11	6-Tridecen-4-yne, (Z)-	DR, KAR, KAV	23.14	1539997	C13H22	178.172	43, 79, 94	Hydrocarbon	*Ambrosia trifida* L.	Wang et al. (2005)
12	1,4-Cyclohexadiene, 1-methyl-	AS, PR, SA, SU, KAR, KAV	4.56	930505	C7H10	94.0783	55, 79, 94	Monoterpenes	*Curcuma longa* L.	Usman et al. (2012)
13	α-Phellandrene	AS, DR, SA, SU, KAR, KAV	5.72	26453570	C10H16	136.125	77, 93	Monoterpenes	*Curcuma longa* L.	Choudhury et al. (2008a)
14	Limonene	AS, SU, KAR, KAV	6.27	20198837	C10H16	136.125	68, 93	Monoterpenes	*Curcuma longa* L.	Singh et al. (2010)
15	α-Terpinenol	AS, PR, SA, SU, KAR, KAV	11.25	35019844	C10H16O	154.135	59	Monoterpenoid	*Curcuma longa* L.	Gopalan et al. (2000)
16	β-Sesquiphellandren	AS, DR, KAR, KAV	20.73	96269070	C10H16	204.187	43, 79, 94	Monoterpenes	*Curcuma longa* L.	Choudhury et al. (2008a)
17	Nerolidol	DR, KAR, KAV	21.79	15626126	C10H16O	222.198	69, 93	Sesquiterpene	*Curcuma longa* L.	Awasti and Dixit (2009)
18	Bicyclo(4.1.0)hept-2-ene, 3,7,7-trimethyl-	DR, KAR, KAV	5.63	227551	C10H16	136.125	93, 121	Monoterpenes	*Curcuma longa* L.	Choudhury et al. (2008b)
19	α-Terpine	AS, DR, SA, SU, KAR, KAV	6.00	28366949	C10H16	136.125	93, 121, 136	Monoterpenes	*Curcuma longa* L.	Choudhury et al. (2008a)
20	cis-Ocimene	DR, KAR, KAV	6.74	466438	C10H16	136.125	41, 93	Monoterpenes	*Curcuma longa* L.	Usman et al. (2009)
21	γ-Terpine	AS, DR, SA, KAR, KAV	7.01	26650014	C10H16	136.125	93, 119, 136	Monoterpenes	*Curcuma longa* L.	Usman et al. (2009)
22	Linalool	AS, DR, SU, KAR, KAV	8.15	500594	C10H16O	154.135	71, 93, 121	Alcohol	*Curcuma longa* L.	Leela et al. (2002)

(Continued on following page)
TABLE 3 | (Continued) Compounds detected in more than one cultivar of *C. longa* L. and *C. aromatica* Salisb. identified by GC-MS in the essential oil from rhizomes. The structures of the compounds from serial numbers 1–12 are given in Figure 2 (panel numbers: 24–35), and the compounds with Sl.No. 13–18 are shown in Figure 3, with corresponding panel numbers: 8–13 respectively. Abbreviations used: AS, Alleppey Supreme; DR, Duggirala Red; PR, Prathibha; SA, Salem; SU, Suguna; KAr, Kasturi Araku; KAv, Kasturi Avidi.

Sl No.	Compound name	Cultivar	RT (Min)	Area/abundance	Formula	Mass	Mass fragment ions	Class of compound	Reported from plant species	References
24	Terpinene-4-ol	AS, DR, PR, SA, SU	10.83	2557284	C_{10}H_{18}O	154.135	73, 94, 154	Monoterpene	*Curcuma longa* L.	Singh et al. (2010)
25	cis-α-A Bisabolene	PR, KAr	20.40	11244271	C_{15}H_{24}	204.187	67, 93, 161, 204	Sesquiterpene	*Curcuma longa* L.	Chowdhury et al. (2008a)
26	Ar-Tumerone	DR, SA, KAv	25.87	328137262	C_{15}H_{22}O	216.151	83, 119, 173, 216	Sesquiterpene	*Curcuma longa* L.	Chowdhury et al. (2008a)

TABLE 4 | Compounds common in the seven cultivars of *Curcuma* spp detected by GC-MS in essential oil obtained from rhizomes. The structures of the two compounds with serial numbers 10 and 13 are given in Figure 3 (panel numbers: 14–15 respectively).

Sl No.	Compound name	RT (Min)	Area/abundance	Formula	Mass	Mass fragment ions	Class of compound	Reported from plant species	References
1	α-Thujene	4.13	9407392	C_{10}H_{16}	136.125	93, 136	Monoterpenoid	*Curcuma longa* L.	Raina et al. (2005)
2	1s-α-Pinene	4.27	122103688	C_{10}H_{16}	136.125	39, 41, 93	Monoterpenoid	*Curcuma longa* L.	Singh et al. (2002)
3	Sabinene	5.05	3901899	C_{10}H_{16}	136.125	93, 136	Monoterpenoid	*Curcuma longa* L., leaves	Behura et al. (2002)
4	β or m-Cymene	6.20	338719033	C_{10}H_{14}	134.109	65, 91, 119	Aromatic hydrocarbon	*Curcuma longa* L.	Singh et al. (2002)
5	Terpinolene	7.82	225168296	C_{10}H_{16}	136.125	93, 121	Monoterpenoid	*Curcuma longa* L.	Leela et al. (2002)
6	trans-α-Bergamotene	18.86	2365810	C_{15}H_{24}	204.187	69, 93, 119, 161	Sesquiterpene	*Curcuma longa* L., leaves	Behura et al. (2002)
7	α-Caryophyllene	19.23	6097261	C_{10}H_{16}	136.125	93, 121	Sesquiterpene	*Curcuma longa* L.	Raina et al. (2005)
8	trans-β-Farnesene	19.37	211225438	C_{15}H_{24}	204.187	69, 93, 133	Sesquiterpene	*Curcuma longa* L.	Singh et al. (2002)
9	Ar-Curcumene	19.88	482956678	C_{15}H_{22}	202.172	132, 202	Sesquiterpene	*Curcuma longa* L.	Singh et al. (2002)
10	α-Zingiberene	20.25	1117738917	C_{15}H_{24}	204.187	69, 93, 119, 204	Sesquiterpene	*Curcuma longa* L.	Chowdhury et al. (2008a)
11	Tumerone	22.16	67277186	C_{15}H_{22}O	218.167	83, 157	Sesquiterpene	*Curcuma longa* L.	Singh et al. (2002)
12	Curlone	27.34	436064258	C_{15}H_{22}O	218.167	83, 120, 218	Sesquiterpene	*Curcuma longa* L.	Leela et al. (2002)
13	2-Heptadecanone	39.17	152911	C_{17}H_{34}O	254.261	43, 55, 71, 125	Ketone	*Curcuma angustifolia* Roxb	Srivastava et al. (2006)
FIGURE 4 | Structure of few selected cultivar-specific (panels 3, 5–11 corresponding to serial numbers 2, 3–9 of Table 6) compounds already reported from genus Curcuma in methanolic extract from rhizomes by LCMS analysis of seven cultivars of Curcuma spp.: five of Curcuma longa L. (cvs. Alleppey Supreme, Duggirala Red, Prathibha, Salem, and Suguna) and two of C. aromatica Salisb. (cvs. Kasturi Araku and Kasturi Avidi). (1) Kaempferol-3-rhamnoside, (2) 3-acetyl coumarin, (3) luteolin-7-O-glucoside, (4) turmeronol, (5) 1,7-bis(4-hydroxy-3,5-dimethoxyphenyl)-1,6-heptadiene-3,5-dione, (6) 1,7-bis(3,4-dimethoxyphenyl)-1,6-heptadiene-3,5-dione, (7) (6S)-2-methyl-6-[1R,5S)-(4-methene-5-hydroxyl-2-cyclohexen)-2-hepten-4-one, (8) 1,7-bis(4-hydroxyphenyl)-3,5-heptanediol, (9) 1,7-bis(3,5-diethyl-4-hydroxyphenyl)-1,6-heptadiene-3,5-dione, (10) 1-(4-hydroxy-3-methoxyphenyl)-5-(4-hydroxyphenyl)-1,4-pentadiene-3-one, (11) (-)-(12E,2S,3S,4R, 5R, 9S, 11S, 15R)-3,15-dibenzoyloxy-5,6-epoxylathyri-12-en-14-one, (12) 7-(3,4-dimethoxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene, (13) 1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione, (14) 1-(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one, (15) 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one, (16) 1-heptene-3,5-dione, 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one.
TABLE 5 | Total number of compounds detected by LC-MS from the rhizome extract of *C. longa* L. and *C. aromatica* Salisb.

Sl. No.	Cultivar (Species)	Total number of Metabolites detected	Metabolites identified	Unknown Metabolites
1	Alleppey Supreme (C. longa L.)	86	43	43
2	Duggirala Red (C. longa L.)	107	23	84
3	Prathibha (C. longa L.)	60	28	32
4	Salem (C. longa L.)	91	28	63
5	Suguna (C. longa L.)	96	30	66
6	Kasturi Avidi (C. aromatica Salisb.)	90	30	60
7	Kasturi Araku (C. aromatica Salisb.)	92	29	63

K. Kulyal et al. Metabolomics of Curcuma spp.

Curcuma *longa* quite helpful. TIC chromatograms of all seven cultivars of *Curcuma longa* L. were presented in Supplementary Figure S1B for negative mode and in Supplementary Figure S2 for positive mode. A typical LC-MS analysis of methanolic extracts from the rhizomes of *C. longa* L. cv. Alleppey Supreme revealed the presence of up to 86 compounds. Out of these, 43 were identified, and the remaining 43 compounds remained unknown. The (-) ESI-LC-MS detected 30 known compounds, and the (+) ESI-LC-MS detected 23 known compounds with an overlap of 10 compounds, detected by both negative and positive ion modes. A similar assessment of data was done with all seven cultivars of *Curcuma* spp. (Table 5). Altogether 62 compounds were identified, as presented in Supplementary Table S2. These compounds were grouped into three categories: cultivar-specific, detected in more than one cultivar, and common. There were 23 cultivar-specific compounds present in any one cultivar of *C. longa* L. or *C. aromatica* Salisb. (Table 6). 24 compounds were present in more than one cultivar of *C. longa* L. and/or *C. aromatica* Salisb. (Table 7). The remaining 15 were common in all seven cultivars (Table 8). Of these 15 common compounds found in the LC-MS/MS chromatograms, only one was a “Bisabolane” sesquiterpene (Parthasarathy et al., 2009) and all other 14 were diarylheptanoids. These were identified based on the MS/MS spectra reported by Jiang et al. (2006), including curcumin (CU), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Among the other diarylheptanoids, 1-[(4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one; 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one, etc., were common in all the cultivars of *C. longa* L. and *C. aromatica* Salisb. (Table 8). The structure of the five common compounds was given in Figure 4 (panels 13, 14–15, 16, and 17 corresponding to serial numbers 10, 5–6, 15, and 1, respectively, of Table 8). In addition to diarylheptanoids, several other classes (phenolic acids, flavonoids, ketonic sesquiterpenes, and fatty acid derivatives) were also detected in the turmeric rhizomes.

LC-MS Analysis of Methanol Extracts

Methanolic extracts of rhizomes from the seven cultivars of *Curcuma* spp. were subjected to LC-MS analysis. The results from one of such analyses for each cultivar are presented in this article. The use of "positive" and "negative" modes of LC-MS was quite helpful. TIC chromatograms of all seven cultivars of *Curcuma longa* L. and *C. aromatica* Salisb. were shown in Supplementary Figure S1A for negative mode and Supplementary Figure S1B for positive mode.

A typical LC-MS analysis of methanolic extracts from rhizomes of *C. longa* L. cv. Alleppey Supreme revealed the presence of up to 86 compounds. Out of these, 43 were identified, and the remaining 43 compounds remained unknown. The (-) ESI-LC-MS detected 30 known compounds, and the (+) ESI-LC-MS detected 23 known compounds with an overlap of 10 compounds, detected by both negative and positive ion modes. A similar assessment of data was done with all seven cultivars of *Curcuma* spp. (Table 5). Altogether 62 compounds were identified, as presented in Supplementary Table S2. These compounds were grouped into three categories: cultivar-specific, detected in more than one cultivar, and common. There were 23 cultivar-specific compounds present in any one cultivar of *C. longa* L. or *C. aromatica* Salisb. (Table 6). 24 compounds were present in more than one cultivar of *C. longa* L. and/or *C. aromatica* Salisb. (Table 7). The remaining 15 were common in all seven cultivars (Table 8). Of these 15 common compounds found in the LC-MS/MS chromatograms, only one was a “Bisabolane” sesquiterpene (Parthasarathy et al., 2009) and all other 14 were diarylheptanoids. These were identified based on the MS/MS spectra reported by Jiang et al. (2006), including curcumin (CU), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Among the other diarylheptanoids, 1-[(4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one; 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one, etc., were common in all the cultivars of *C. longa* L. and *C. aromatica* Salisb. (Table 8). The structure of the five common compounds was given in Figure 4 (panels 13, 14–15, 16, and 17 corresponding to serial numbers 10, 5–6, 15, and 1, respectively, of Table 8). In addition to diarylheptanoids, several other classes (phenolic acids, flavonoids, ketonic sesquiterpenes, and fatty acid derivatives) were also detected in the turmeric rhizomes.

Compounds Reported First Time From the Genus Curcuma Using GC-MS and LC-MS Analysis

A total of 39 compounds were detected (Figure 2) for the first time from the genus *Curcuma*. Out of these, 35 and 4 compounds were identified respectively in the essential oils and whole rhizome extracts of *C. longa* L. and *C. aromatica* Salisb. by the GC-MS and LC-MS techniques. Details of the compounds, including the class of compound, molecular weight, are given in Tables 2, 3, 5, and 6; structures of all these compounds are shown in Figure 2 (panels: 1–39). The MS and MS/MS spectra of these compounds are presented in Supplementary Figure S2 (panels: 1–39). These compounds were reported earlier from plants belonging to any genus other than *Curcuma*, and this is the first report from genus...
TABLE 6 | Cultivar-specific compounds identified by LC-MS in the rhizome extracts from one of the seven cultivars of Curcuma longa L. and C. aromatica Salisb. The structure of the compound with the serial number “1” is given in Figure 2 (panel number: 36) and compounds with Sl. Nos. 2–9 are given in Figure 4 with the corresponding panel nos. 3, 5–11, respectively. Abbreviations used: AS, Alleppey Supreme; DR, Duggirala Red; PR, Prathibha; SA, Salem; SU, Suguna; KAr, Kasturi Araku; KAv, Kasturi Avidi.

Sl. No.	Compound name	Cultivar	RT (Min)	Area/abundance	Formula	Mass (m/z)	Mass fragment ions	Class of compound	Reported from plant species	References	
1	Kaempferol-3,7-O-dimethyl ether	AS	12.77	25537	C_{11}H_{14}O_{6}	313.0721 M-H	106; 123; 152; 153	Flavonoid	Lumnitzera racemosa Willd and Artemisia vulgaris L.	Nikolova (2006); DeSouza et al. (2010)	
2	Luteolin-7-O-glucoside	AS	42.2	5324	C_{21}H_{20}O_{11}	447.2733 M-H	110; 185; 279; 280	Flavonoid	Curcuma Zedoaria (Christm.) Roscoe	Mass bank ACCESSION: TY00-0145; Rahmatullah et al. (2012)	
3	1,7-Bis(4-hydroxy-3,5-dimethoxyphenyl)-1,6-heptadiene-3,5-dione	PR	32.9	186331	C_{23}H_{24}O_{8}	428.2 M-H	109; 123; 137; 159; 191; 209	Diarylheptanoid	Curcuma longa L.	Chen et al. (2006)	
4	1,7-Bis(3,4-dimethoxy phenyl)-1,6-heptadiene-3,5-dione	PR	38.3	335360	C_{23}H_{24}O_{6}	396.2 M-H	105; 107; 119; 123; 137; 145; 155; 195	Diarylheptanoid	Curcuma longa L.	Li et al. (2006)	
5	1,7-Bis(4-hydroxyphenyl)-3,5-heptanediol	KAr	22.8	8120	C_{19}H_{24}O_{4}	316.1 M-H	106; 107; 119; 120; 121; 147; 148	Diarylheptanoid	Curcuma longa L.	Li et al. (2011)	
6	1,7-Bis(3,5-diethyl-4-hydroxyphenyl)-1,6-heptadiene-3,5-dione	KAr	60.6	129145	C_{27}H_{32}O_{4}	420.3 M-H	106; 107; 119; 120; 121; 147; 148	Diarylheptanoid	Curcuma longa L.	Ma and Gang (2006)	
7	1,7-Bis(3,5-diethyl-4-hydroxyphenyl)-1,6-heptadiene-3,5-dione	KAv	28.8	1418	C_{19}H_{20}O_{4}	312.1 M-H	144; 145; 146; 147; 171; 172; 175; 187; 197; 201; 209; 211; 213; 223; 237; 239; 241; 323	Aromatic	Curcuma longa L.	Li et al. (2011)	
8	1-(4-Hydroxy-3-methoxyphenyl)-5-(4-hydroxyphenyl)-1,4-pentadiene-3-one	KAv	28.8	8009	C_{18}H_{18}O_{4}	296.1 M-H	105; 109; 117; 119; 133; 145; 159; 161; 171; 173; 181; 185; 1207; 209; 223; 233; 239; 251; 279	Diarylheptanoid	Curcuma longa L.	Park and Kim (2002)	
9	(-)-(12E,2S,3S,4R,5R,6R,9S,11S,15R)-3,15-Dibenzoyloxy-5,6-epoxylathyr-12-en-14-one	KAv	39.8	5683	C_{34}H_{38}O_{6}	542.2 M-H	119; 145; 183; 211; 212; 237	Diterpenoid	Euphorbia microtactis	Tan et al. (2011)	
10	5'-methoxycurcumin	PR	35.56	388655	C_{22}H_{22}O_{7}	398.1 M-H	117; 119; 129; 137; 145; 149; 161; 175; 207	Diarylheptanoid	Curcuma longa L.	Ravindran (2000)	
11	Methyl-7-methoxycurcumin,4-	SU	34.4	67927	C_{11}H_{14}O_{6}	190.1953 M-H	115; 116; 117; 119; 120	Coumarin	none	NIST CAS register No. 2555–28–4	
12	Hydroferulic acid	KAr	16.8	13992	C_{12}H_{14}O_{6}	195.10 M-H	109; 121; 122	Phenolic acid	Curcuma longa L.	Ma and Gang (2006)	
13	1,2,3,4-Tetraphenylbutane-2,3-diol	KAr	11.1	3926	C_{18}H_{22}O_{2}	394.1 M-H	112; 129; 133; 180; 207; 243; 247; 263; 269	Aliphatic diol	none	Pubchem Compound ID: 344369	
14	4-Hepten-3-one, 5-hydroxy-1,7-bis(4-hydroxyphenyl)-	PR	25.2	1418	C_{10}H_{18}O_{2}	312.1 M-H	118; 119; 120; 146; 161	Diarylheptanoid	Curcuma longa L.	Jang et al. (2006)	
15	5,7-Dihydrouracil-2-(4-hydroxyphenyl)-chroman-4-one	PR	26.8	12833	C_{15}H_{14}O_{4}	272.0 M-H	107; 119; 120	Phenolic acid	none	Chromadex	
16	Tetradecanoic acid/myristic acid	AS	29.47	2381	C_{14}H_{28}O_{2}	228.0 M-H	128; 130; 143; 155; 158; 182; 183; 184; 210	Fatty acid	none	NIST CAS 544–63–8	
17	1-(4-Hydroxy-3-methoxyphenyl)-7-(4-hydroxy-3,5-dimethoxyphenyl)-4,6-heptadiene-3-one	PR	32.0	194388	C_{22}H_{22}O_{6}	384.1 M-H and M-H	150; 151; 158; 165	Diarylheptanoid	Curcuma longa L.	Jang et al. (2006)	
18	Tumerone	AS	35.3	6120	C_{12}H_{20}O	218.0 M-H	180	Bisabolane sesquiterpene	Curcuma longa L.	He (2000)	(Continued on following page)
Out of the total of 62 compounds detected by LC-MS analyses of rhizome extracts, four compounds were reported for the first time from the Curcuma genus. One was cultivar-specific (Table 6; Sl. Nos. 1; Figure 2, panels: 36), and three were present in more than one cultivar (Table 7; Sl. Nos. 1–3). The structures of these first-time reported compounds are given in Figure 2 (panels: 37–39), and their corresponding mass fragmentation spectra are shown in Supplementary Figure S2 (panels: 36–39).

A comprehensive table each for GCMS (Supplementary Table S3) and LCMS (Supplementary Table S4) shows the details of compound identification methods used in the present study for the first-time reported compounds from genus Curcuma and the previous literature. A list of 80 (GC-MS) and 62 (LC-MS) compounds can be seen in Supplementary Tables S5, S6 respectively.

DISCUSSION

In one of our previous studies, we reported that the HPLC method could be a valuable tool to differentiate the cultivars of Curcuma spp. based on their curcuminoids content ratios (Kulyal et al., 2016). Curcuminoids play a significant role in food, cosmetics, and medicinal compounds. But there are several other secondary metabolites such as terpenoids (e.g., mono-, sesqui-, di-, tri-, so on), alkenes, aromatic compounds, flavonoids, coumarins, etc. that are responsible for various biological activities. All these secondary metabolites are present in either the volatile essential oil or the nonvolatile fraction of the Curcuma spp. Employing untargeted metabolomics would be the ideal way to identify as many metabolites as possible. Therefore, in the present study, we analyzed these secondary compounds using GC-MS and LC-MS/MS.

Versatility of GC-MS and LC-MS Techniques to Identify a Large Number of Metabolites

GC-MS analysis is an appropriate technique for analyzing volatile compounds, whereas LC-MS is for detecting polar compounds, and thus, these two techniques are mutually complementary to each other. In the present study, several of the volatile compounds present in the cultivars of C. longa L. and C. aromatica Salisb. belonging to mono- and sesquiterpenoids were detected by GC-MS (Tables 2–4). On the other hand, LC-MS analysis detected phenolic (Tables 6–8) compounds, including several diarylheptanoids in the methanolic extracts of both C. longa L. and C. aromatica Salisb. (Figure 4). Electrospray ionization (ESI), coupled with LC/MS/MS, turned out to be a powerful tool in metabolite profiling and metabolomics research. Studies on chemical derivatization and quantification of several metabolites in turmeric powders and fresh rhizome extracts by LC-MS or LC-MS/MS were made. But the rapid screening within the cultivars of C. longa L. of fresh turmeric rhizome has not yet been reported. To the best of our knowledge, we were able to record the presence of several metabolites, which were not reported so far in the C. longa L. and C. aromatica Salisb. (Tables 2, 3, 6, 7, and Figure 2), using the available literature search, Metlin library, mass bank, and NIST library.
TABLE 7 | Compounds identified by LC-MS in rhizome extracts of more than one cultivar of Curcuma longa L. and C. aromatica Salisb. The compounds from serial numbers 1–3 are reported first time from the genus Curcuma, the structures of these compounds along with few others are given in Figure 2 (panels: 37–39; panels 1–2, 4, 12 corresponding to serial numbers 4–5, 6, 7). Abbreviations used: AS, Alleppey Supreme; DR, Duggirala Red; PR, Prathibha; SA, Salem; SU, Suguna; KAr, Kasturi Araku; KAv, Kasturi Avidi.

Sl. No.	Compound name	Cultivar	RT (Min)	Area/abundance	Formula	Mass (m/z)	Mass fragment ions	Class of compound	Reported from plant species	References
1	5,7,8-Trihydroxy-2',5'-dimethoxy-3',4'-methylene dioxyisoflavone	AS, DR, KAv	2.2	51978	C_{18}H_{18}O_{9}	377.1059	M-H 101; 102; 113; 119; 161; 163; 228; 336	Flavonoid	Terminalia ivorensis A. Chev	Ogundare and Olajuyigbe (2012)
2	Chavicol	AS, SU	38.83	55821	C_{23}H_{20}O_{5}	356.1319	M-H 102; 115	Terpenoid	Piper betle L.	NIST CAS No: 501–92–8
3	Kaempferol-3-O-rutinoside-7-O-glucoside	PR, SA	33.2	3752	C_{33}H_{40}O_{20}	755.2655	M-H 135; 161; 176; 176; 191; 439; 579; 755; 756	Flavonoid	Lycopersicon esculentum Mill	Le Gall et al. (2003)
4	Kaempferol-3-rhamnoside	AS, DR	10.76	5367	C_{21}H_{20}O_{10}	431.9911	M-H 125; 142; 146; 150	Flavonoid	Curcuma xanthorrhiza Roxb	Ruslay et al. (2007)
5	3-Acetyl coumarin	AS, PR, SA, SU, KAv	34.65	289624	C_{11}H_{8}O_{3}	188.0534	115; 116; 117; 118	Coumarin	None	Pub Chem ID 24852845
6	Turmeronol	AS, DR, SU	25.36	87260	C_{15}H_{20}O_{2}	232.1436	103; 104; 105	Bisabolane sesquiterpene	Curcuma longa L.	Ma and Gang (2006)
7	7-(3,4-Dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene	AS, KAv	35.99	16570	C_{19}H_{22}O_{3}	298.1	M-H 119; 133; 143	Diarylheptanoid	Curcuma xanthorrhiza Roxb	Suriyasakul et al. (1994)
8	1,7-Diphenyl-1,6-heptadiene-3,5-dione	AS, SA	2.49	9697	C_{17}H_{18}O_{2}	276.0	115	Diarylheptanoid	Synthesized the compound	NIST CAS 3160–35–8
9	1-Hepten-3-one, 5-hydroxy-1,7-bis(3,4-dihydroxyphenyl)-	PR, SA, SU, KAr, KAv	21.2	1660	C_{19}H_{20}O_{6}	344.1	107; 121; 134; 135; 136; 159; 161; 162; 177	Diarylheptanoid	Alnus japonica (Thunb.) Steud	Sati et al. (2011)
10	4-(p-Hydroxyphenyl)-3-buten-2-one	AS, DR, SA, KAv	22.16	18641	C_{17}H_{22}O_{2}	162.0	117; 118	Flavonoid	None	NIST CAS 3160–35–8
11	5-Hydroxy-7-(4-hydroxyphenyl)(-1E)-1-heptene	AS, DR, PR, SA, KAv	23.11	6169	C_{16}H_{22}O_{4}	328.1	107; 119; 133; 134; 135; 143; 159; 158; 161; 162; 177	Diarylheptanoid	Curcuma xanthorrhiza Roxb	Suriyasakul et al. (1994)
12	1-(4-Hydroxy-3-methoxyphenyl)-7-(4-hydroxy-3,5-dimethoxyphenyl)-4,6-heptadiene-3-one	AS, DR, KAr, KAv	25.8	6408	C_{19}H_{22}O_{6}	384.1	133; 134; 147; 148; 150; 151; 158; 162; 175; 176; 186; 187; 188; 189; 203; 204; 232	Diarylheptanoid	Curcuma longa L.	Jiang et al. (2006)
13	1,5-Bis(3,4-methylenedioxyphenyl)-1,4-pentadien-3-one	SU, KAv	26.0	9161	C_{19}H_{20}O_{6}	322.0	115; 119; 121; 133; 143; 143; 237; 247; 263; 275	Diarylheptanoid	Curcuma longa L.	Jiang et al. (2006)
14	1-Hydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-6-heptan-3,5-dione	AS, KAv	26.7	45589	C_{20}H_{20}O_{7}	372.1	103; 117; 131; 137; 143; 145; 149; 163; 177	Diarylheptanoid	Curcuma longa L.	Jiang et al. (2006)
15	1,7-Bis(4-hydroxyphenyl)-1-heptene-3,5-dione	AS, DR, PR, SA, KAv	27.4	8495	C_{19}H_{18}O_{4}	310.1	117; 118; 119; 145; 146; 161; 175; 176	Diarylheptanoid	Curcuma longa L.	Jiang et al. (2006)
16	1,7-Bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one	AS, DR, PR, SA, KAv	30.0	7240	C_{19}H_{16}O_{3}	292.1	115; 117; 119; 120; 143; 145	Diarylheptanoid	Curcuma longa L.	Li et al. (2011)
17	7-(4-Hydroxy-3-methoxyphenyl)-1-(4-hydroxy phenyl)-4,6-heptadien-3-one	AS, KAv	31.8	138675	C_{20}H_{20}O_{4}	324.1	107; 117; 119; 120; 122; 123; 131; 135; 137; 145; 146; 147; 149; 163; 195; 223	Diarylheptanoid	Curcuma longa L.	Jiang et al. (2006)

(Continued on following page)
TABLE 7 | Continued

Sl. No.	Compound name	Cultivar	RT (min)	Areal abundance (m/z)	Formula	Mass fragment ions	Class of compound	Reported from plant species	References
19	Coumaran	AS, DR, SU	34.36	6563 C 8H8O 120.0	116.117, 118.119	Compound	Coumarin	None	Chromadex
20	5,7-Dihydroxy-4-methylcoumarin	AS, SA, SU	34.57	92188 C 10H8O4 192.17	113, 115, 116, 117, 118, 119	Compound	Coumarin	None	PubChem CID 5354284
21	Curcumol	AS, DR, SU, KAr	35.82	4972 C 25H28O8 456.3	280, 281, 286, 289	Compound	Diarylheptanoid	Synthesised the compound	Hahm et al. (2002)
22	Tumorone	AS, DR, SU, KAr	35.67	34556 C 15H22O2 234.1	105, 107, 109, 117, 123, 125	Compound	Sesquiterpene	Curcuma longa L.	Valeton & Zijp (2009)
23	Oleic acid	SA, KAr	60.2	15974 C 18H32O2 282.1	168, 257	Fatty acid	Oleic acid	None	Ma and Gang (2006)

Cultivar Variability Based on Secondary Metabolites

Based on the presence or absence of metabolites identified by GC-MS and LC-MS analyses, there was a need to authenticate cultivar variability. Thus, the metabolite library can be constructed based on the cultivar-specific and compounds found in more than one cultivar. There are very few reports on cultivar-specific secondary metabolite variation. Out of a total of 142 compounds identified by both GC-MS and LC-MS, only 28 compounds (13 from GCMS and 15 from LCMS) were common (Tables 4, 8) present in all the cultivars of *C. longa* L. and *C. aromatica* Salisb. Ten of 13 common compounds (GCMS) were reported earlier from *C. longa* L. rhizome. Two compounds, namely sabine and α-caryophyllene, were reported from the rhizomes of *C. aromatica*. The remaining one compound, i.e., 2-heptadecanone, was detected for the first time from these two Curcuma species. This compound was earlier reported in the essential oil of *Curcuma angustifolia* Roxb. rhizome (Srivastava et al., 2006).

As per our analyses, 64 compounds (Tables 2, 6) out of 142 compounds were cultivar-specific. Of these 64 compounds, 41 were identified in essential oils by GC-MS (e.g., carvacol, endo-borneol) and 23 (e.g., tumerone, methyl-7-methoxyguaramin, 4-) in fresh rhizome extracts (LC-MS) of any one of the cultivars of *C. longa* L. or *C. aromatica* Salisb. In addition, 50 compounds (Tables 3, 7) were identified to be present in some of the cultivars, present in more than one cultivar but not common to all the cultivars of *C. longa* L. and *C. aromatica* Salisb. Out of these 50 compounds, 26 were identified in essential oils through GC-MS. For example, 1,3,5-cycloheptatriene was detected in all six cultivars except cv. Duggirala Red, whereas 12-oxabicyclo(9.1.0)dodeca-3,7-diene, 1,3,5-cycloheptatriene was detected in all six cultivars except cv. Duggirala Red and Kasturi Araku. The rest 24 compounds were detected in rhizome extracts by LC-MS (e.g., chavicol detected in cvs. Alleppey Supreme and Suguna). The present extensive analyses of both essential oils and whole rhizome secondary metabolome of seven cultivars of *C. longa* L. and *C. aromatica* Salisb. established cultivar variability. Variability of the compounds within or/and in between the cultivars of *C. longa* L. and *C. aromatica* Salisb. will give a better understanding of their selection. The current study will help select cultivars for use in pharmacology or the food industry.

Discovery of First-Time Reported Metabolites in *C. longa* L. and *C. aromatica* Salisb.

In the present study, as many as 142 compounds were identified in the essential oils and rhizome extracts of *C. longa* L. and *C. aromatica* Salisb. Out of these, 39 compounds were identified for the first time in the genus *Curcuma*. However, these compounds were found in other plant genera. The structures of these compounds are shown in Figure 2, and corresponding details, including the class of compound, molecular weight, are given in Tables 2, 3, 6, and 7. As an example, cv. Alleppey Supreme of *C. longa* L. showed three cultivar-specific compounds. Among these, 1,2-cyclohexanediol, 1-methyl-4-(1-methylethyl)- (oxygenated
TABLE 8 | Compounds commonly detected by LC-MS analysis of rhizomes extract of all seven cultivars of Curcuma spp.: five of Curcuma longa L. (cvs. Alleppey Supreme, Duggirala Red, Prathibha, Salem, and Suguna) and two of C. aromatica Salisb. (cvs. Kasturi Araku, Kasturi Avidi). The structures for the compounds in the serial numbers 10, 5, 6, 15, and 1 are given in Figure 4 (panels 13, 14, 15, 16, and 17 respectively).

Sl. No.	Compound name	RT (Min)	Area/abundance	Formula	Mass (m/z)	Mass fragment ions	Class of compound	Reported from plant species	References
1	1,5-Bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one	23.5	3535	C_{19}H_{18}O_{5}	325.1245	117; 118; 119; 120; 135; 143; 145; 146; 159; 161; 187	Diaryheptanoid	Curcuma longa L.	Li et al. (2011)
2	Ar-Turmerone	24.7	23545	C_{15}H_{20}O	216.1	103; 104; 105; 106; 107; 108; 115; 116; 117; 118; 119; 120	Bisabolane sesquiterpene	Curcuma longa L.	Parthasarathy and Chempakam (2008)
3	Tetrahydroxybisdemethoxycurcumin	25.4	4773	C_{19}H_{20}O_{4}	311.1446	117; 118; 119; 120	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
4	Tetrahydrodimerhoxycurcumin	25.9	7734	C_{20}H_{22}O_{5}	341.1272	101; 113; 119	Diaryheptanoid	Piper nigrum L.	Jiang et al. (2006)
5	1-(4-Hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one	26.1	76458	C_{20}H_{18}O_{4}	321.0938	115; 117; 119; 121; 132; 133; 134; 143; 145; 174; 235; 237; 247; 263/264; 274	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
6	1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one	26.3	64172	C_{21}H_{20}O_{5}	351.1123	108; 115; 119; 136; 143; 148; 164; 195; 207; 223; 224; 235; 245; 251; 261; 262; 263; 279; 291; 307	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
7	Tetrahydroxycurcumin	26.5	81260	C_{20}H_{22}O_{4}	371.1686	108; 115; 119; 136; 143; 148; 164; 195; 207; 223; 224; 235; 245; 251; 261; 262; 263; 279; 291; 307	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
8	1-(4-Hydroxy-3-methoxyphenyl)-7-(4-hydroxy-3,5-dimethoxyphenyl)-1,4,6-heptatrien-3-one	26.8	58571	C_{22}H_{22}O_{6}	382.1	149; 159; 173; 197; 208; 211; 221; 233; 237; 239; 249; 261; 267; 277; 289; 293; 295; 305; 309	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
9	1,6-Heptadiene-3,5-dione, 1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-1,4,6-heptatrien-3-one	31.6	5753	C_{19}H_{18}O_{5}	324.1	134; 135; 136; 143	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
10	1,3,4-Dihydroxyphenyl-1,4-di(3,5-dimethoxyphenyl)-1,6-diene-3,5-dione	32.3	16375	C_{20}H_{18}O_{5}	353.1212	134; 135; 136; 150	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
11	Bisdemethoxycurcumin	34.5	1675644	C_{19}H_{18}O_{4}	307.1132	117; 119; 120; 143; 145	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
12	Demethoxycurcumin	35.4	1302410	C_{20}H_{18}O_{5}	337.1251	117; 119; 120; 132; 134; 143; 145; 158	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)
13	Dihydrocurcumin	35.8	5151	C_{21}H_{22}O_{5}	369.1533	160; 175; 201	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2006)

(Continued on following page)
alcoholic monoterpenoid) was earlier reported from leaf and peel essential oil of *Citrus medica* L. (Rutaceae). This compound is used as a flavoring agent (Bhuiyan et al., 2009); trans, trans-octa-2,4-dienyl acetate, present in common Malaysian *Kaempferia galanga* L. (Zingiberaceae), was used for its food-flavoring property (Othman et al., 2006). Phenol, 2-methoxy-3-(2-propenyl)-, an allyl chain-substituted guaiacol was reported from rosewood extracts (Jiang et al., 2018).

The following four compounds were identified from cv. Duggirala Red (*C. longa* L.): 3-isopropyl-4-methyl-1-pentyn-3-ol (alcohol constituent) containing leaf and stem of *Anethum sowa* Roxb. ex, Fleming, used for flavoring of food, beverages and also for many medical preparations (Saleh-e-in et al., 2010); 5,9-tetradecadiyne (unsaturated hydrocarbon) was found to be a major component of *Ferula vescentriensis* Coss. & Durieu ex Trab. leaf essential oil (Zellagui et al., 2012); naphthalene, 5-buty1-1,2,3,4-tetrahydro- (tetralin type of compounds) found in the essential oil of *Meconopsis punicea* Maxim. and *M.delavayi* (Franch.) Franch. Ex Prain (Slavík and Slavíková; Yuan et al., 2003); and santolina alcohol was reported from plant *Achillea filipendulina* Lam. (Sharopov and Setzer, 2010). A total of nine cultivar-specific compounds were detected in cv. Prathibha (*C. longa* L.) and the examples of these compounds and their source plants, respectively, are 7-tetracyclo[6.2.1.0(3,8)0(3,9)]undecan-4,4,11,11-tetramethyl- in *Cyperus articulatus* L. (Metuge et al., 2014); bicyclo(2.2.1)hept-2-ene, 2,3-dimethyl- in *Abies alba* Mill. (Yang et al., 2009). Cultivar-specific compounds of three each were detected in cvs. Salem (*C. longa* L.) and Suguna (*C. longa* L.) (Table 2). In *C. aromatica* Salisb., only one cultivar-specific compound was detected in cv. Kasturi Avidi, i.e., 3-octen-5-yne, 2,7-dimethyl-, (Z)-, and this compound was earlier reported from the medicinally important *Litsea glutinosa* (Lour.) C.B. Rob. fruit essential oil (Chowdhury et al., 2008a).

Some of the compounds identified in our study were present in more than one cultivar. For example, 6-(p-tolyl)-2-methyl-2-heptenol (Table 3) was detected in three cvs.: Alleppey supreme, Suguna of *C. longa* L., and Kasturi Avidi of *C. aromatica* Salisb. This compound was earlier reported from *Zingiber officinale* Roscoe (Zingiberaceae), used as a spice, food products, and beverages (Choudhari and Kareppa, 2013).

Limitations and Strengths of the Present Study

There is significant variability within and between the cultivars of *C. longa* L. and *C. aromatica* Salisb, which can be exploited to differentiate the cultivars of *Curcuma* spp. The feasibility of studies without using any standard compounds was pointed out by Núñez et al. (2020). Similarly, reference compounds were not used in our study to derive arithmetic indices under the experimental conditions. Despite the dilution made in the essential oil sample before injecting into the GC-MS system, the sample was still too concentrated. The high concentration of oil might have restricted the resolution due to overloading the detector. This could be the reason that we could not identify several compounds. We would ensure the further dilution of the oil sample in our future studies. However, the technology employed, GC-TOFMS and LC-QTOFMS, and MS-spectral database/literature search enabled us to establish the cultivar variability of *Curcuma* spp. The detailed information on the metabolite variability within or/and between the cultivars of *C. longa* L. and *C. aromatica* Salisb. may assist us in selecting the cultivars for a specific purpose, like culinary use, coloring, or pharmacological purpose. The studies such as the present one can help to select cultivars, particularly for use in pharmacology or the food industry. Metabolite variability poses a challenge in the use of turmeric in therapy. The practitioners need to be quite careful and use the identified cultivar and avoid mix-up. The caution applies to commercial/industrial use. Once standardized, the protocol should ensure the use of a specific cultivar. Our GC-MS and LC-MS-based metabolite identification is distinct from chemophenetic studies but is a complementary approach to characterize the *Curcuma* metabolome.

Importance of *Curcuma* spp. Metabolites for Human Health

Curcuminoids (CU, DMC, and BDMC) were identified as the main bioactive compounds of genus *Curcuma* and proved to have a broad spectrum of biological activities based on pharmacological studies. However, rhizomes and their essential oils of *Curcuma* spp. contained several other

Sl. No.	Compound Name	RT (Min)	Area/Abundance	Formula	Mass (m/z)	Class of Compound	Reported from Plant Species	References
14	Curcumin	36.2	1503497	C21H20O6	367.1374	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2008)
15	1-Heptene-3,5-dione, 1,7-bis-(4-hydroxy-3-methoxyphenyl)-	43.2	5078	C20H16O6	339.1473	Diaryheptanoid	Curcuma longa L.	Jiang et al. (2008)

Table 8 (Continued) Compounds commonly detected by LC-MS analysis of rhizomes extract of all seven cultivars of *Curcuma* spp.: five of *Curcuma longa* L. (cvs. Alleppey Supreme, Duggirala Red, Prathibha, Salem, and Suguna) and two of *C. aromatica* Salisb. (cvs. Kasturi Araku, Kasturi Avidi). The structures for the compounds in the serial numbers 10, 5, 6, 15, and 1 are given in Figure 4 (panels 13, 14, 15, 16, and 17 respectively).
TABLE 9 | Pharmacological activity of metabolites identified, other than major curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxy curcumin), in C. longa L. and C. aromatica Salisb.

Sl. No.	Compound name	Source plant	Tested Compound/essential oil/extract	Pharmacological activity/health benefit of the compound or compound containing plant product	References
1	Carvacrol	Curcuma longa L.	Compound	Antibacterial	Sunares et al. (2015)
2	p-Cymene	Curcuma longa L.	Compound	Antioxidant	De Oliveira et al. (2015)
3	Eucalyptol	Curcuma longa L.	Compound	Anti-inflammatory, anticancer, and antimicrobial effects	Marchese et al. (2017)
4	α-Pinenol	Curcuma longa L.	Compound	Anti-inflammatory and chondroprotective	Murata et al. (2013); Islam et al. (2014); De Oliveira et al. (2012)
5	α-Terpinol	Curcuma longa L.	Compound	Anti-inflammatory	De Oliveira et al. (2012)
6	Terpinolene	Curcuma longa L.	Compound	Anticancer	Okumura et al. (2012)
7	2-Heptadecanone	Curcuma angustifolia Roxb	Dried rhizome essential oil	As a coolant, demulcent	Srivastava et al. (2006)
8	Santolina alcohol	Achillea filipendulina Lam	Aerial part essential oil	Traditional herbal medicine	Sharopov and Setzer (2010)
9	Cyclohexanol, 2-methyl-5-(1-methylethenyl)-	Mentha spicata L.	Aerial parts essential oil	Antifungal	Mohammed et al. (2017)
10	Cyclohexane, 1,2-dimethyl-3,5-bis(1-methylethenyl)-	Rhanterium adpressum Coss. & Durieu	Aerial parts essential oil	Antifungal	Kala et al. (2009)
11	4-Ethylphenethylamine	Psidium guajava L.	Stem bark essential oil	Antioxidant	Fasola et al., (2011)
12	5,9-Tetradecadiylne	Ferula vescentensis Coss. & Durieu ex Trab	Leaves essential oil	Antibacterial	Zellagui et al. (2012)
13	E-11-Tetradecenoic acid	Coriandrum sativum L.	Leaf essential oil	Spices, flavoring agent, antimicrobial	Bhuilyan et al. (2009)
14	6,10-Dodecadien-1-yn-3-ol, 3,7,11-trimethyl-	Hipptage benghalensis (L.) Kurz	Leaf essential oil	Treatment of skin diseases, cough, asthma, leprosy	Venkataranamini and Chinnagounder (2012)
15	Chavicol	Piper betle L.	Leaf oil	Antifungal, antiseptic, and anthelmintic Antibiotic	Niagori et al. (2011)
16	1,2-Cyclohexanediol, 1-methyl-4-(1-methylethyl)-	Citrus medica L.	Leaf and peel essential oil	Flavored of food and beverages, antimicrobial, antioxidant	Bhuilyan et al. (2009)
17	3-Isopropyl-4-methyl-1-pentyn-3-ol	Anethum sowa Roxb. ex Fleming	Leaf and stem essential oil	Seasonal scavenging activity	Saleh-e-in et al. (2010)
18	Bicyclo(2.2.1)hept-2-ene, 2,3-dimethyl-	Abies alba Mill	Leaf and twig essential oil	As a food and herbal medicine, mosquito larvicidal activity	Ho (2010)
19	2-Norien-4-yn-1-ol, (Z)-	Alpinia speciosa (J.C. Wendl.) K. Schum	Seeds and leaves essential oil	As a food and herbal medicine, mosquito larvicidal activity	Wang et al. (2005)
20	8-Methylene-3-octatrienoic acid	Schisandra chinensis (Turcz.) Baill	Dried fruit essential oil	Antioxidant	Wang et al. (2005)
21	3-Cyclohexen-1-one, 3,5,5-trimethyl-	Crocus sativus L.	Dried saffron essential oil	Antitumor	Othman et al. (2006)
22	Ar-Tumerone a-Tumerone β-Tumerone a-Santalayne	Curcuma longa L.	Phyzome essential oil	Antioxidant	Singh et al. (2010)
23	7-Tetracyclo[6.2.1.0(3.8)0(3.9)]undecanol, 4,4,11,11-tetramethyl-	Oryxus articulatus L.	Roots/rhizome essential oil	Anti-onchocera activity	Metuge et al. (2014)
24	Cholesta-8,24-dien-3-ol, 4-methyl-	Pankia speciosa Hassk.	Seed essential oil	High nutritional and medicinal value	Salman et al. (2006)
25	3-Octen-5-yn, 2,7-dimethyl-, (Z)-	Lizuca glutinosus (Lour.) C.B. Rob	Fruit essential oil	Antirheumatic	Chowdhury et al. (2008b)
26	5,8,11,14-Eicosatetraenoic acid, phenylmethyl ester, (all-2)-	Petiveria alliacea L.	Whole plant essential oil	Used as folk medicine to enhance memory and in treatment of common cold, flu, other viral, or bacterial infections	Sathyabalan et al. (2014)
27	Naphthalene, 5-buty1-2,3,4-tetrahydro-	Mecanopsis punicea Maxim. and M. delavayi (Franch.) Franch. Ex Prian	Whole plant essential oil	As a traditional medicinal plant for anti-inflammatory and analgesic activity	Yuan et al. (2003)
28	1H-3a,7-methanoazulene, 2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-, [3R-(2a,3a,7a,8a)]-trans, trans-Octa-2,4-dienyl acetate	Lindera aggregata (Simiu) Kosterm	Root/tubers essential oil	Treatment of decubitus ulcer	Hong (2011)
29		Kaempferia galanga L.	Dried rhizomes	Spice, food-flavoring agent	Othman et al. (2006)

(Continued on following page)
bioactive (volatile and nonvolatile) compounds. A summary of the pharmacological studies with the metabolites detected in the present study is given in Table 9. Some of the studies demonstrated therapeutic activity with the isolated metabolites, e.g., carvacrol (Suntres et al., 2015), p-cymene (De Oliveira et al., 2015), which are commonly found in essential oils of Curcuma spp. A few other reports correlated anti-inflammatory and antioxidant properties of C. longa L. essential oil with its chemical components ar-tumerone, a-santalene (Singh et al., 2010) (Table 9). Several compounds detected in the present study in the essential oil or rhizome extracts of C. longa L. or C. aromatic Salisb. were also found in the essential oil of other medicinal plants, traditionally used for their health benefits. The examples of such compounds are 5,9-tetradecadiyne, a cultivar-specific compound of Duggirala Red (C. longa L.), earlier reported in Ferula vesceritensis Coss. & Durieu ex Trab. leaf essential oil, exhibiting antibacterial activity; 3-octen-5-yn-1, 2,7-dimethyl-, (Z)-, a hydrocarbon monoterpene, identified from cv. Kasturi Avidi (C. aromatic Salisb.) was earlier reported from fruit essential oil of the medicinally important plant, Litsea glutinosa (Lour.) C.B. Rob. (Chowdhury et al., 2008a). We suggest that the medicinal use of the genus Curcuma can be not only species but also cultivar-specific.

CONCLUDING REMARKS

Essential oils from spices and aromatic plants are enriched with bioactive metabolites, easily isolated and used, unlike the difficulties encountered with synthetic chemical products. The low mammalian toxicity and biodegradable nature of the natural secondary products provide an attractive option to develop them also for crop protection. Metabolomics is a practical and dynamic approach to make a comprehensive study. Both GC-MS and LC-MS techniques should be used to characterize the metabolite profiles of as many cultivars as possible for building a reference library. Preparative LC can be helpful to collect individual metabolite fractions and establish their identity. Several metabolites detected in 7 selected cultivars of Curcuma spp. by GC-MS and LC-MS analyses are reported first time in Curcuma spp. We suggest that the seven Indian cultivars of Curcuma spp. employed in our study can be used as sources of such compounds. High-throughput analysis of cultivar-specific and first-time detected compounds in the present study may lead to new drug candidates. The metabolites validated for their medicinal or other users can be quantified using simple techniques such as HPLC or TLC to ensure their presence in the herbal preparations.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ebi.ac.uk/metabolights/MTBLS2790.

AUTHOR CONTRIBUTIONS

ST and AR planned and designed all the experiments. PK and PKK did the experiments and preliminary data interpretation related to GC-MS and LC-MS/MS, respectively. PK, ST, and AR re-analyzed the data and wrote the draft of the manuscript. SA prepared tables and reference search. AA drew the figures and helped in editing the manuscript. All the authors read and approved the final version of the manuscript.
FUNDING
Part of this study was supported by grants from DBT (BT/PR/11674/PBD/16/838/2008) sanctioned to Prof. A.S. Raghavendra (PI) and Prof. Sarada D. Tetali (co-PI) and the Institute of Eminence - University of Hyderabad (IoE-UOH) Research Chair Professor Grant to Prof. A.S. Raghavendra.

ACKNOWLEDGMENTS
The authors are indebted to Professors K. Uma Maheshwari (Turmeric Research Station, Kamarapally of Telangana State, India) and K. Nirmal Babu (Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, India) for providing turmeric samples. PK and PKK acknowledge their research fellowships from the research project (BT/PR/11674/PBD/16/838/2008). SA is a recipient of a research fellowship from the University of Hyderabad and AA is a recipient of UGC-JRF (856/SC/CSIR-UGC/NET/Dec 2016). The authors are thankful to Prasanth Bitla, School of Life Sciences, University of Hyderabad, for acquisition of GC-MS and LC-MS data. The authors are thankful to DBT-CREBB, DBT-FIST, and UGC-SAP for supporting infrastructural facilities of the Department of Plant Sciences and School of Life Sciences. The authors also acknowledge the ChemDraw Ultra 12.0 software tool used to draw structures in Figures 2, 3 and 4.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2021.659546/full#supplementary-material

REFERENCES
Aggarwal, B. B., Sundaram, C., Malani, N., and Ichikawa, H. (2007). “Curcumin: The Indian Solid Gold,” in The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Editors B. B. Aggarwal, Y.-J. Sun, and S. Shishodia (Boston, MA: Springer US), 1–75. doi:10.1007/978-0-387-46401-5_1

Angel, G. R., Menon, N., Vimala, B., and Nambisan, B. (2014). Essential Oil Composition of Eight Starchy Curcuma Species. Ind. Crops Prod. 60, 233–238. doi:10.1016/j.indcrop.2014.06.028

Awasthi, P. K., and Dixit, S. C. (2009). Chemical Composition of Curcuma Longa and Rhizome Oil from the plains of Northern India. J. Young Pharm. 1, 312. doi:10.14103/0975-1483.935919

Beekwilder, J., Jonker, H., Meesters, P., Hall, R. D., Van Der Meer, I. M., and Ric de Vos, C. H. (2005). Antioxidants in Raspberry: On-Line Analysis Links

Supplementary Figure 1 (A) Representative TIC chromatograms from negative ion (-) ESI-HPLC from cultivars (A) Alleppey Supreme, (B) Duggirala Red, (C) Prathibha, (D) Salem, (E) Suguna of Curcuma longa L. and cvs. (F) Kasturi Araku, (G) Kasturi Avidi of C. aromatica Salisb. Peak labelled IS represents internal standard. (B) Representative TIC chromatograms from positive ion (+) ESI-HPLC from cultivars (A) Alleppey Supreme, (B) Duggirala Red, (C) Prathibha, (D) Salem, (E) Suguna of Curcuma longa L. and cvs. (F) Kasturi Araku, (G) Kasturi Avidi of C. aromatica Salisb. Peak labelled IS represents internal standard.

Supplementary Table 1 A list of secondary metabolites identified by GC-MS in the essential oil from the rhizomes of five cvs. of C. longa L. and two cvs. of C. aromatica Salisb. Abbreviations: AS, Alleppey Supreme; DR, Duggirala Red; PR, Prathibha; SA, Salem; SU, Suguna; KAr, Kasturi Araku; KAv, Kasturi Avidi.

Supplementary Table 2 A list of secondary metabolites identified by LC-MS in the rhizome extracts of five cvs. of C. longa L. and two cvs. of C. aromatica Salisb. Abbreviations used: AS, Alleppey Supreme; DR, Duggirala Red; PR, Prathibha; SA, Salem; SU, Suguna; KAr, Kasturi Araku; KAv, Kasturi Avidi.

Supplementary Table 3 Identification parameters of first-time reported compounds by GC-MS in the essential oil from the seven cultivars of Curcuma spp. along with the methods used in previous literature.

Supplementary Table 4 Identification parameters of first-time reported compounds by LC-MS in the rhizome extracts of genus Curcuma along with the methods used in related previous literature.

Supplementary Table 5 The list of 80 compounds identified by GCMS analysis.

Supplementary Table 6 The list of 62 compounds identified by LCMS analysis.

**Antioxidant Activity to a Diversity of Individual Metabolites. J. Agric. Food Chem. 53, 3313–3320. doi:10.1021/jf047880b Behura, S., Sahoo, S., and Srivastava, V. K. (2002). Major Constituents in Leaf Essential Oils of Curcuma Longa L And Curcuma Aromatica Salisb. Curr. Sci. 83, 1312–1313.

Bhuiyan, M. N. I., Begum, J., Sardar, P. K., and Rahman, M. S. (2009). Constituents of Peel and Leaf Essential Oils of Citrus Medica L. J. Sci. Res. 1, 387–392. doi:10.3329/jscr.v1i2.1760

Chen, W. F., Deng, S. L., Zhou, B., Yang, L., and Liu, Z. L. (2006). Curcumin and its Analogues as Potent Inhibitors of Low Density Lipoprotein Oxidation: H-Atom Abstraction from the Phenolic Groups and Possible Involvement of the 4-Hydroxy-3-Methoxypyphenyl Groups. Free Radic. Biol. Med. 40, 526–535. doi:10.1016/j.freeradbiomed.2005.09.008

Cheng, J. H., Wu, W. Y., Liu, W. S., Chang, G., Liu, Y. L., Yang, Z. G., et al. (1999). Treatment of 17 Cases of Patients with Primary Liver Cancer with Curcuma Aromatica Oil Infused via Hepatic Artery. Shijie Huaren Xiaohua Zazhi 7, 92.
Li, W., Wang, S., Feng, J., Xiao, Y., Xue, X., Zhang, H., et al. (2009a). Structure
Leela, N., Tava, A., Sha
Li, Y., Wo, J. M., Liu, Q., Li, X., and Martin, R. C. (2009b). Chemoprotective Effects
Liang, G., Shao, L., Wang, Y., Zhao, C., Chu, Y., Xiao, J., et al. (2009). Exploration
Le Gall, G., Colquhoun, I. J., Davis, A. L., Collins, G. J., and Verhoeyen, M. E.
Marchese, A., Arciola, C. R., Barbieri, R., Silva, A. S., Nabavi, S. F., Tsetegho Sokeng,
Kulyal et al. Metabolomics of
Moco, S., Bino, R. J., Vorst, O., Verhoeven, H. A., De Groot, J., Van Beek, T. A.,
Mohammed, L. M., M. Salah, T. F., and Qader, K. O. (2017). Chemical
Mukherjee, P. K., Harwansh, R. K., Bahadur, S., Biswas, S., Kucibhairita, L. N.,
Mukherjee, P. K., Harwansh, R. K., Bahadur, S., Biswas, S., Kucibhairita, L. N.,
Tetali, S. D., et al. (2016). Metabolomics of Medicinal Plants - A Versatile Tool for Standardization of Herbal Products and Quality Evaluation of Ayurvedic Formulations. Curr. Sci. 111, 1624–1630. doi:10.18520/cs/v111/i10/1624-1630
Murata, S., Shiragami, R., Kosugi, C., Tezuka, T., Yamazaki, M., Hirano, A., et al. (2013). Antitumor Effect of L, 8-cineole against colon Cancer. Oncol. Rep. 30, 2647–2652. doi:10.3892/or.2013.2763
Muthukumanan, P., Kumaravel, S., and Nimia, N. (2019). Phytochemical, GC-MS and FT-IR Analysis of Papaver Somniferum L. Jips 7, 1–8. doi:10.18231/jips.2019.001
Nagori, K., Singh, M. K., Alexander, A., Kumar, T., Dewangan, D., Badwaik, H., et al. (2011). Piper Betle L: A Review on its Ethnobotany, Phytochemistry, Pharmacological Profile and Profiling by New Hypeninated Technique DART-MS (Direct Analysis in Real Time Mass Spectrometry). J. Pharm. Res. 4, 2991–2997. Available at: http://jpronline.info/article/view/9266/4710.
Nahar, D. L., and Sarker, S. (2007). "Phytochemistry of the Genus Curcuma," in Turmeric: The Genus Curcuma. Editors K. Ravindran, P. N., and K. N. Babu (Boca Raton, Florida: & Sivaraman), 71–106.
Nampoothiri, S. V., Philip, R. M., Kankangi, S., Kiran, C. R., and Menon, A. N. (2015). Essential Oil Composition, α-Amylase Inhibition and Antiglycation Potential ofCurcuma aromaticaSalisb. J. Essent. Oil Bearing Plants 18, 1051–1058. doi:10.1002/mrc.2478
Nieman, D. C., Caidella-Kam, L., Knab, A. M., and Shanely, R. A. (2012). Influence of Red Pepper Spice and Turmeric on Inflammation and Oxidative Stress Biomarkers in Overweight Females: A Metabolomics Approach. Plants Foods Hum. Nutr. 67, 415–421. doi:10.1007/s11130-012-0235-x
Nikolova, M. (2006). Intraspecific Variability in the Flavonoid Composition of Artemisia Vulgaris L Acta Bot. Crust. 65, 13–18.
Núñez, N., Vidal-Casasena, O., Sentellas, S., Saurina, J., and Núñez, O. (2020). Non-targeted Ultra-high Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS) Fingerprinters for the Chemometric Characterization and Classification of Turmeric and Curry Samples. Separations 7, 32–13. doi:10.3390/separations7020032
Nurfina, A. N., Rekohadiprodjo, M. S., Timmerman, H., Jenie, U. A., Sugianto, D., and Van Der Goot, H. (1997). Synthesis of Some Symmetrical Curcumin Derivatives and Their Antiinflammatory Activity. Eur. J. Med. Chem. 32, 321–328. doi:10.1016/S0223-5234(97)89084-8
Ogundare, A. O., and Olajuyigbe, A. O. (2012). Bioactivity Guided Isolation of the Antifungal Components in Sawdust Extracts of Pinusdensastrum africanus, and Terminalia Ivorensis. Malays. J. Microbiol. 8, 34–41. doi:10.21161/mjm.32611
Okumura, N., Yoshida, H., Nishimura, Y., Kitagishi, Y., and Matsuda, S. (2012). Terpinolene, a Component of Herbal Sage, Downregulates AKT1 Expression in K562 Cells. Oncol. Lett. 3, 321–324. doi:10.3892/ol.2011.491
Othman, R., Ibrahim, H., Mohd, M. A., Mustafa, M. R., and Awang, K. (2006). Bioassay-guided Isolation of a Vasorelaxant Active Compound from Kaempferia Galanga L. Phytomedicine 13, 61–66. doi:10.1016/j.phymed.2004.07.004
Paramasivam, M., Poi, R., Banerjee, J., and Bandyopadhyay, A. (2009). High-performance Thin Layer Chromatographic Method for Quantitative Determination of Curcuminooids in Curcuma Longa GERMPLASM. Food Chem. 113, 640–644. doi:10.1016/j.foodchem.2008.07.051
Park, S. Y., and Kim, D. S. (2002). Discovery of Natural Products from Curcuma Longa that Protect Cells from Beta-Amyloid Insult: a Drug Discovery Effort against Alzheimer’s Disease. J. Nat. Prod. 65, 1227–1231. doi:10.1021/np01039x
Parthasarathy, V. A., and Chempakam, B. (2008). in "Chemistry of Spices," in Chemistry Of Spices. Editors V. A. Parthasarathy, B. Chempakam, and T. J. Zachariah (Cambridge: CAB1). 1–445. doi:10.4327/jnsf1949.32.267
Pathania, V. A., Gupta, A. P., and Singh, B. (2006). Improved HPTLC Method for Determination of Curcuminooids from Curcuma Longa. J. Liquid Chromatogr. Relat. Tech. 29, 877–887. doi:10.1080/10826070500351417
Peng, H. Y., and Yang, X. E. (2005). Volatile Constituents in the Flowers of Eugena Caryophyllus L. Acta Pharm. Sin. 113, 879–885. doi:10.1631/jzus.2005.B0091
Phatannawasin, P., Sotanaphun, U., and Sriphong, L. (2009). Validated TLC-Image Analysis Method for Simultaneous Quantification of Curcuminooids in Curcuma Longa. Chroma 69, 397–400. doi:10.1635/i0033-0089-3
Prasath, D., Kandiannan, K., Leela, N. K., Aarthi, S., Sasi Kumar, B., and Babu, K. N. (2018). Turmeric. Hortic. Rev. 46, 99–184. doi:10.1002/9781119521082.ch3
Rahmatullah, M., Azam, M. N. K., Pramanik, S., Sania, S., Rahman, S., and Jahan, R. (2012). Antihyperglycemic Activity Evaluation of Rhizomes of Curcuma Zedoaria (Christm.) roscoe and Fruits of Sonneratia Caseolaris (L.). Engl. Int. J. Pharmotech Res. 4, 125–129.

Raina, V. K., Srivastava, S. K., and Syamsundar, K. V. (2005). Rhizome and Leaf Oil Composition of Curcuma Longa from the Lower Himalayan Region of Northern India. J. Essent. Oil Res. 17, 556–559. doi:10.1080/104129005.2006.969899

Ravindran, P. N. (2000). in Black Pepper: Piper Nigrum. Editor P. N. Ravindran (London: CRC Press). doi:10.1201/9780203303870

Sharopov, F., and Setzer, W. (2010). Composition of the Essential Oil of Zedoaria Zingiberi. J. Nat. Prod. 73, 1807–1810. doi:10.1021/np100328x

Sivasankar, A., Abas, F., Shaari, K., Zainal, Z., Maulidiani Sirat, H., et al. (2007). Characterization of the Chemical Components of Zingiber Officinalis Rosc. in Southern India. J. Nat. Prod. 70, 1814–1817. doi:10.1021/np0683505

Suksamrarn, A., Nourmamode, A., Gardrat, C., Grelier, S., Bravic, G., Chasseau, D., et al. (2003). Studies on the Photochemistry of 1,7-Diphenyl-1,6-Heptadiene-3,5-Dione, a Non-phenolic Curcuminoid Model. Photochem. Photobiol. Sci. 2, 941–920. doi:10.1039/b301229h

Tajdij, N. E. (2012). Chemical Composition and Citral Content in Lemongrass (Cymbopogon Citratus) Essential Oil at Three Maturity Stages. Afr. J. Biotechnol. 11, 2685–2693. doi:10.5897/ajb11.2939

Tang, J., Li, X., and Han, J. (2012). Analysis of Volatile Components in Rhizome Zingibers, Zingiber Officinalis Rosc and Ginger Pre by GC-MS and Chemometric Resolution. J. Chin. Med. Res. Dev. 1, 47–53. doi:10.7574/journal.wmcn.2010.00662

Tetali, S. D., Acharya, S., Ankarl, A. B., Nankaam, V., and Raghavendra, A. S. (2021). Metabolomics of Withania Somnifera (L.) Dunal: Advances and Applications. J. Ethnopharmacol. 267, 113469. doi:10.1016/j.jep.2020.113469

Tian, Y., Xu, W., Zhu, C., Lin, S., Li, Y., Xiong, L., et al. (2011). Lathyrane Diterpenoids from the Roots of Euphorbia Mircactra and Their Biological Activities. J. Nat. Prod. 74, 1221–1229. doi:10.1021/np1001489

Tisserand, R., and Young, R. (2013). Essential Oil Safety-E-Book: A Guide for Health Care Professionals. Churchill Livingstone, London: Elsevier Health Sciences.

Umar, N. M., Parumasivam, T., Amin, N., and Toh, S. M. (2020). Phytochemical and Pharmacological Properties of Curcuma Aromatica Salib (Wild Turmeric). J. App Pharm. Sci. 10, 180–194. doi:10.7324/JAPS.2020.1010018

Usman, L., Hamid, A. A., George, O., Ameen, O., Muhammad, N. O., Zubair, M., et al. (2009). Chemical Composition of Rhizome Essential Oil of Curcuma longa L. growing in Growing in North Central Nigeria. World J. Chem. 4, 178–181.

Venkataramani, M., and Chinnagounder, S. (2012). Preliminary Phytochemical Screening and GC-MS Profiling of Hiptage Benghalensis (L.) J. Kurz. J. Pharm. Res. 5, 2895–2899.

Wang, P., Liang, W., Kong, C., and Jiang, Y. (2005). Allelopathic Potential of Volatile Allelochemicals of Ambrosia Trifida L. On Other Plants. Allelopath. 15, 131–136.

Yang, S. A., Jeon, S. K., Lee, E. J., Im, N. K., Jhee, K. H., Lee, S. P., et al. (2009). Radical Scavenging Activity of the Essential Oil of Silver Fir (Abies alba). J. Clin. Biochem. Nutr. 44, 253–259. doi:10.3164/jcbn.08-2412

Yuan, C., Nan, P., Shi, S., and Zhong, Y. (2003). Chemical Composition of the Essential Oils of Two Chinese Endemic Meconopsis Species. Z. Naturforsch C J. Biosci. 58, 313–315. doi:10.1515/znc-2003-5-603

Zellagui, A., Ghennar, F., and Rhouati, S. (2012). Chemical composition and antibacterial activity of the essential oils of Fenna vescentisensis Coss et Dur. leaves, endemic in Algeria. Org. Med. Chem. Lett. 2, 31. doi:10.1186/2191-2882-2-31

Zeng, J. H., Xu, G. B., and Chen, X. (2009). Application of the Chromatographic Fingerprint for Quality Control of Essential Oil from Guangxi Curcuma Kwangensis. Med. Chem. Res. 18, 158–165. doi:10.1007/s00044-008-9115-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Kulyal, Acharya, Ankarl, Kokkiriati, Tetali and Raghavendra. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.