Scaling Attributed Network Embedding to Massive Graphs

by: R. Yang, J. Shi, X. Xiao, Y. Yang, J. Liu, and S. Bhowmick
Basic data analytics is easy.

Stock	Profit	Revenue	Market share	Overvalued?	Buy?
TSLA	$721m	$31B	3.6%	Yes	???

Target attribute
Graph data analytics is more powerful.

Stock	Profit	Revenue	Market share	Overvalued?	Buy?
TSLA	$721m	$31B	3.6%	Yes	???
Graph data analytics is powerful but difficult.

Tools	Single table data analytics	Attributed graph data analytics
Tools	**dmlearn** + **XGBoost**	Deep graph neural network
Difficulty	🌟 🌟	🌟 🌟 🌟 🌟 🌟 🌟
Req. Skill level	![Image](image1.png)	![Image](image2.png)
We present Practical Attributed Network Embedding (PANE).
Performance of PANE

Effective

Accuracy (F1):
up to +17.2% ↑

Compared to SOTA Neural Network methods

Efficient

Single-server:
~ 12 hours

Computing all embeddings on a HUGE graph with 59m nodes, 0.98b edges, 2k attributes
Applications of PANE

- Link Prediction
- Attribute Inference
- Node Classification
PANE is based on mostly novel database technologies (with a bit of machine learning flavor).

1. PANE measures Node-Attribute affinity via random walks.
2. PANE computes embeddings with joint matrix factorization.
3. PANE makes full use of multi-core parallel computation.
Types of Random Walks in PANE

Forward: node-to-attribute

attribute r → u → node → attribute r → node → v

Backward: attribute-to-node

attribute r → v → node → attribute r → u → node → attribute r
Forward Random Walks

• Forward random walk from node u:
 • Start from u
 • At each step, stop with α probability
 • After stopping at a node v, pick an attribute r with probability $\propto w(v, r)$

• Intuition: it samples an attribute r from the vicinity of u
Node-Attribute Affinity

Node-attribute affinity:

\[F[u, r] = \text{normalized probability that a forward random walk from } u \text{ samples } r \text{ in the end} \]
• Backward random walk from attribute r
 • Randomly pick a node s with probability proportional to the weight of (s, r)
 • Start a random walk from s
 • At each step, stop with α probability
 • Let v be the stopping point of the walk

Attribute-node affinity

$B[r, v] \leftarrow$ normalized random walk probability from attribute r to node v
Node-to-Node affinity is derived.

\[p(u, v) = \sum_{r \in R} F[u, r] \cdot B[r, v] \]

This saves a LOT of space: \(O(n^2) \to O(nd), d \ll n \)
Embedding Matrices in PANE

- We construct
 - two embedding matrices X_f and X_b for the nodes, and
 - one embedding matrix Y for attributes

- Optimization objective:
 - $X_f \cdot Y^T \approx F$, to capture node-attribute affinity
 - $Y \cdot X_b^T \approx B$, to capture attribute-node affinity
Solving the optimization program

- Jointly factorize F and B to obtain X_f, X_b, and Y
 - Formulate the joint factorization as a least square problem
 - Solve it using gradient descent
 - Use randomized SVD to obtain a good initial solution

- Time complexity: $O(mdt + ndkt)$
 - k is the embedding size
 - t is the number of iterations
 ($t = 5$ in our experiments)
Greedy Initialization + SGD

$$F \approx U \cdot \Sigma \cdot V^T$$
- $$X_f = U \cdot \Sigma, Y = V$$
- $$V = Y$$ is unitary
- $$Y^T \cdot Y = I$$
- $$X_b = X_b \cdot Y^T \cdot Y = B \cdot Y$$

Greedy initialization of embeddings via randomized SVD and the unitary property

For $$t$$ iterations:
Update $$X_f, X_b$$ via SGD;
Update $$Y$$ via SGD;

$$F \approx X_f \cdot Y$$
$$B \approx X_b \cdot Y$$

Only a few iterations are needed!
PANE is fully parallelized on multi-core computers.

Explained in Section 4 of our paper.
Experiments: 8 Datasets

Name	# of nodes	# of edges	# of distinct attributes	# of attributes per node	# of distinct labels
Cora	2.7k	5.4k	1.4k	18.2	7
Citeseer	3.3k	4.7k	3.7k	31.9	6
Facebook	4k	88.2k	1.3k	8.3	193
Pubmed	19.7k	44.3k	0.5k	50.2	3
Flickr	7.6k	479.5k	12.1k	24.0	9
Google+	107.6k	13.7M	15.9k	2793.7	468
TWeibo	2.3M	50.7M	1.7k	7.3	8
MAG	59.3M	978.2M	2.0k	7.3	100
Experiments: 10 Competitors

- Default embedding dimensionality: $k = 128$

6 neural-network-based methods	3 factorization-based methods	1 other method
STNE [KDD 2018]	TADW [IJCAI 2015]	PRRE [CIKM 2018]
ARGA [IJCAI 2018]	BANE [ICDM 2018]	
LQANR [IJCAI 2019]	NRP [VLDB 2020]	
CAN [WSDM 2019]		
DGI [ICLR 2019]		
GATNE [KDD 2019]		
Results: Node Classification

- Percentage of nodes used for training: 10% ~ 90%
- PANE vs. SOTA: improvements of 3.4% - 17.2% in terms of F1 measure
THANK YOU

1. Random walks
2. Joint matrix factorization
3. Parallelization
Scaling Attributed Network Embedding to Massive Graphs

by: R. Yang, J. Shi, X. Xiao, Y. Yang, J. Liu, and S. Bhowmick

Code: https://github.com/AnryYang/PANE