Removal of Antibiotics from Aqueous Solutions by a Carbon Adsorbent Derived from Protein-Waste-Doped Biomass

Jiamin Yu, Yan Kang, Wenjun Yin, Jinlin Fan, and Zizhang Guo*

ABSTRACT: Antibiotic pollution in water is an urgent environmental problem. A novel carbon adsorbent derived from powdery puFFed waterfowl feather (PPWF)-doped Phragmites australis (PA) was proposed for enhancing the removal of antibiotics from water in this study. Amoxicillin (AMX) and cephalexin (CEX) were selected as typical antibiotics. PPWF-doped (FPAC) and -undoped (PAC) carbon adsorbents were developed to test the adsorption capacities and mechanisms of AMX and CEX. Characterization techniques such as N2 adsorption/desorption, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, elemental analysis, and Boehm titration were used to determine the properties of adsorbents. Results showed that more microporous structure and surface functional groups are exhibited in FPAC compared to PAC. The nitrogen-containing functional groups were introduced in FPAC. Adsorption capacities at different contact times, pH, and initial concentration were investigated by batch experiments. The AMX and CEX maximum adsorption capacities of FPAC are 25.2 and 30.1% higher than those of PAC, respectively. The kinetic data were well represented by the pseudo-second-order model for AMX and CEX adsorption. The equilibrium data agreed well with the Langmuir model for AMX adsorption and the Freundlich model for CEX adsorption. The adsorption mechanism of AMX and CEX was chemisorption, such as electrostatic attraction and covalent bonding.

1. INTRODUCTION
Antibiotics are effective medicines that improve human and animal health and are widely used in medical and aquaculture.1,2 The two common antibiotics amoxicillin (AMX) and cephalexin (CEX) are extensively used in the treatment of bacterial infection and other diseases. It has been reported that about 30–90% of AMX and CEX discharged into the environment through human and animal excrement,3,4 however, they were only partially removed by traditional wastewater treatment plants. Residual antibiotics in the water environment increase the resistance of pathogenic bacteria and pose a great threat to groundwater and surface water; therefore, it remains challenging to remove antibiotics from aqueous solutions. The current methods for removing AMX and CEX are adsorption,5,6 chemical oxidation,7 microbial degradation,8 etc. Among them, adsorption is considered to be an excellent method for treating wastewater containing low concentration of antibiotics because of its high efficiency9 and antitoxic nature.10

The choice of adsorbent is the most critical factor in adsorption. Carbon adsorbents are widely used because they have the advantages of acid and alkali resistance, strong adsorption capacity, and stable properties. Considerable researches11–13 focused on added chemical modifying agents for improving the adsorption capacities of carbon adsorbents for antibiotic adsorption; however, these methods have problems of secondary pollution, high cost, complicated operation, etc. Therefore, a novel protein-waste as a biomass modifier has been proposed in this study, as it protects the environment and is economically favorable.

As a common grass plant, Phragmites australis (PA) is mostly grown in wetlands, and the accumulation of abandoned PA causes blockage of water flow. PA has a high carbon content and is a very suitable material for preparation of a carbon adsorbent.14,15 In modern agriculture, large-scale poultry farming produces a large amount of feather wastes, and only 10–20% of them are used to prepare feed with low utilization and value.16,17 Powdery puFFed waterfowl feather (PPWF) is a common protein waste. As a modifier, it can increase the functional groups of carbon adsorbents. Therefore, PPWF-doped PA was proposed for carbon adsorbent preparation in this study. The prepared adsorbent will have a well-developed
pore structure and abundant surface functional groups, thus having an excellent adsorption removal capacity for antibiotics. The main purposes of this study are: (1) to examine the feasibility of PPWF as a biomass modifier; (2) to explore the properties of prepared carbon adsorbents by N\textsubscript{2} adsorption/desorption, Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Boehm titration, and elemental analysis (EA); and (3) to investigate the adsorption capacities and mechanisms of AMX and CEX by batch adsorption experiments and characterization results.

2. RESULTS AND DISCUSSION

2.1. Characteristics of Adsorbents. Figure 1 shows the N\textsubscript{2} adsorption/desorption isotherms and crystal structure of PAC and FPAC. As shown in Figure 1a, the adsorbed volume of the two samples had rose very rapidly to a limit at low \(P/P_0 \) and the isotherms exhibited hysteresis loops at high \(P/P_0 \). These two characteristics were consistent with the type I and type IV isotherms; therefore, both PAC and FPAC had a micromesoporous structure. Table 1 lists the Brunauer–Emmett–Teller (BET) surface areas (\(S_{\text{BET}} \)) and pore sizes of adsorbents. As seen, \(S_{\text{BET}} \) and \(V_{\text{tot}} \) of PAC and FPAC were almost equal; however, \(S_{\text{mic}} \) and \(V_{\text{mic}} \) of FPAC (557.7 m2/g and 0.70 cm3/g) were greater than those of PAC (208.1 m2/g and 0.26 cm3/g). The result showed that the modification had little effect on \(S_{\text{BET}} \) and \(V_{\text{tot}} \) but caused an increase in \(S_{\text{mic}} \) and \(V_{\text{mic}} \) which was conducive to removing small molecular pollutants. The XRD pattern in Figure 1b shows that the diffraction pattern of PAC has only one very broad peak, indicating the presence of fully amorphous crystalline phases. No character-

Table 1. Textural and Chemical Parameters of PAC and FPAC

samples	PAC	FPAC
\(S_{\text{BET}} \) (m2/g)	990.2	993.7
\(S_{\text{mic}} \) (m2/g)	208.1	557.7
\(S_{\text{mic}}/S_{\text{BET}} \) (%)	21.0	56.1
\(V_{\text{mic}} \) (cm3/g)	0.26	0.70
\(V_{\text{tot}} \) (cm3/g)	0.70	0.70
\(V_{\text{mic}}/V_{\text{tot}} \) (%)	21.3	59.3
\(D_p \) (nm)	4.93	4.75
carboxylic groups (mmol/g)	0.427	0.777
lactones (mmol/g)	0.272	0.330
phenolic groups (mmol/g)	0.689	0.845
acidic groups (mmol/g)	1.388	1.952
basic groups (mmol/g)	1.313	1.641
total groups (mmol/g)	2.701	3.593
C (wt %)	72.89	63.23
H (wt %)	4.18	6.56
N (wt %)	0.97	3.05
O (wt %)	19.14	23.48

Figure 1. N\textsubscript{2} adsorption/desorption isotherms (a), XRD spectrum (b), SEM image of FPAC (c), and FTIR spectrum of PAC and FPAC (d).

The high-resolution SEM image of FPAC (Figure 1c) confirmed that the surface of FPAC was rough and distributed with a large number of pores of different sizes, exhibiting an irregular porous structure. The well-developed pore structure facilitated the adsorption of adsorbates.
FTIR spectra of PAC and FPAC are shown in Figure 1d. The peak at 3427 cm\(^{-1}\) was derived from the \(-\text{OH}\) stretching vibration in the carboxyl group, phenolic group, and \(\text{H}_2\text{O}\),\(^{20}\) while those at 1627 and 1384 cm\(^{-1}\) were derived from the \(\text{C}=\text{O}\) vibration in the carboxyl group or conjugated carbonyl group.\(^{21,22}\) The peak at 1164 cm\(^{-1}\) was the characteristic peak of the \(\text{C}==\text{O}\) contraction vibration in oxygen-containing functional groups.\(^{23}\) There was a difference in the FTIR spectrum of FPAC compared to that of PAC: peaks that symbolize the \(-\text{OH}\) stretching vibration and the \(\text{C}=\text{O}\) vibration were significantly shifted. Peaks at 3417 and 1615 cm\(^{-1}\) in the spectrum of FPAC could be assigned to the stretching vibration of \(\text{N}−\text{H}\) and amide group (\(\text{C}=\text{N}\)),\(^{24,25}\) indicating that nitrogen-containing functional groups were introduced into FPAC. Boehm titration and EA were used to quantify the functional groups and elements of prepared adsorbents, respectively. As can be seen from Table 1, FPAC had more acidic and basic functional groups and elemental contents of N and O. The result showed that the modified adsorbent contained greater surface oxygen-containing functional groups and introduced surface nitrogen-containing functional groups, which was consistent with the analysis results of FTIR.

2.2. Adsorption Kinetics. The adsorption data were analyzed by the pseudo-first-order model (eq 1)\(^{26}\) and pseudo-second-order model (eq 2)\(^{27}\) to explain the kinetics of adsorbents with AMX and CEX adsorption.

\[
\ln(Q_e - Q_t) = \ln Q_e - k_1t
\]

(1)

\[
\frac{t}{Q_t} = \frac{1}{k_2Q_e^2} + \frac{1}{Q_e}
\]

(2)
where Q_e and Q_0 (mg/g) are the amount of TMP adsorbed on the adsorbents at equilibrium and at time t, respectively, and k_1 (1/min) and k_2 (mg-min) are the rate constants. As shown in Figure 2a,b, almost 85% of AMX and CEX were quickly adsorbed within 6 and 5 h by FPAC, respectively, while PAC took 9 and 6 h to remove the same percentage of AMX and CEX, respectively. FPAC had the faster adsorption efficiency because the nitrogen-containing functional groups of FPAC promoted the chemical combination of adsorbates and adsorbents. The adsorption capacities had a slow rise in a long time until equilibrium was reached as the adsorption time increased. Table 2 shows that the determination coefficient (R^2) of the pseudo-second-order model was greater than 0.99, and the equilibrium adsorption capacity experimental value ($Q_{e,exp}$) was near to the calculated value ($Q_{e,cal}$). In contrast, the pseudo-first-order model had a poor fit to the experimental data, and $Q_{e,exp}$ and $Q_{e,cal}$ had significant differences. The ideal pseudo-second-order model fitting showed that the limiting factor in the adsorption process of both adsorbents was the adsorption mechanism.28

2.3. Adsorption Isotherms

The adsorption data were fitted using the Langmuir (eq 3)29 and Freundlich (eq 4)30 isotherm models, and constant values in the isothermal equation were calculated to analyze the adsorption isotherms of PAC and FPAC for AMX and CEX adsorption.

$$\frac{C_e}{Q_e} = \frac{1}{Q_0k_L} + \frac{1}{Q_0}C_e$$

(3)

$$\log Q_e = \log K_F + \frac{1}{n} \log C_e$$

(4)

where Q_e (mg/g) is the equilibrium adsorption capacity, Q_0 (mg/L) is the equilibrium concentration, k_L (L/mg) is the maximum adsorption capacity, k_F (mg$^{-1}$L/1/g) and n are the Freundlich constants. As shown in Figure 2c,d, adsorption capacities of the two adsorbents increased as the solution concentration increased. Active adsorption sites were sufficient in the low initial concentration range; adsorption capacities increased significantly with the increase of concentration. When the initial concentration exceeded 50 mg/L, adsorption capacities increased slowly until saturation was reached. As can be seen from Table 3, both isothermal models had good fitting results ($R^2 > 0.95$) for the adsorption of AMX and CEX. For AMX adsorption, the R^2 of the Langmuir isotherm model was greater than that of the Freundlich isothermal model, and $Q_{e,cal}$ was more consistent with $Q_{e,exp}$. The better fit of the Langmuir isotherm model indicated that the adsorption of AMX by the two samples was mainly concentrated on the monolayer specific site adsorption. Contrary to AMX adsorption, the Freundlich isothermal model was more suitable to describe the isotherm of CEX adsorption. The result showed that the CEX adsorption of the prepared adsorbent was mainly heterogeneous adsorption and many interactions existed between the adsorbate and adsorbent. The constant $1/n$ of the Freundlich model was less than 1, which indicates that CEX was easily absorbed by PAC and FPAC.31

2.4. Effect of pH

The adsorption effects of PAC and FPAC on AMX and CEX at different initial pH were studied. As shown in Figure 2e,f, as the solution pH increased, the adsorption capacities increased first and then decreased sharply. Both samples had the highest AMX percent removal at pH = 5.5 and the highest CEX percent removal at pH = 7. The solution pH not only affected the surface properties of the adsorbent but also changed the presence of AMX and CEX. Both AMX and CEX had a hydrolysis equilibrium in an aqueous solution, and their main forms of existence were different at different pHs. AMX$^+$ and CEX$^+$ were the dominant species at low pH, AMX$^2-$ and CEX$^2-$ dominated at $pK_{a1} < pH < pK_{a2}$, and AMX$^-$ and CEX$^-$ were dominant ions in alkaline conditions.32,33 In the strong acidic environment, most of the surface adsorption sites of adsorbents were protonated and exhibited positive charges. AMX$^+$ or CEX$^+$ was electrostatically attracted by a small amount of deprotonated negative charge adsorption sites, so the removal percent was low. As the pH increased, surface adsorption sites were deprotonated and negative charge sites increased, and AMX$^2-$ or CEX$^2-$ was simultaneously adsorbed by the positive and negative charge sites of the surface of the adsorbent. At the same time, electrostatic repulsion was also generated between adsorbates and adsorbents; therefore, the increased trend of AMX and CEX percent removal was slow. The degree of deprotonation was enhanced at pH $> pK_{a2}$, and the repulsion between negative charge sites and anions was pretty intense, resulting in a sharp decrease in the percent removal of AMX and CEX. Based on the above results, electrostatic attraction played an indispensable role in AMX and CEX adsorption.

Table 2. Kinetic Parameters of the Pseudo-First Order and Pseudo-Second Order Models for the Removal of AMX and CEX by PAC and FPAC

Compounds	Samples	Pseudo-first-order parameters	Pseudo-second-order parameters				
		Q_{cal} (mg/g)	k_1 (1/h)	R^2	Q_{cal} (mg/g)	k_2 (g/(mg h))	R^2
AMX	PAC	18.9784	0.0814	0.9776	33.0033	0.0268	0.9953
	FPAC	26.7384	0.0783	0.9359	42.1941	0.0171	0.9907
CEX	PAC	16.3643	0.1040	0.9012	28.0899	0.0325	0.9948
	FPAC	22.2446	0.0545	0.9221	39.5257	0.0198	0.9912

Table 3. Langmuir and Freundlich Constants for the Adsorption of AMX and CEX by PAC and FPAC

Compounds	Samples	Langmuir	Freundlich				
		Q_0 (mg/g)	K_L (L/mg)	R^2	K_F (mg/g(L/mg)$^{1/n}$)	$1/n$	R^2
AMX	PAC	74.6269	0.0486	0.9947	8.3095	0.4804	0.9849
	FPAC	93.4579	0.0669	0.9919	12.4311	0.4684	0.9901
CEX	PAC	68.0272	0.0371	0.9766	7.4745	0.4494	0.9918
	FPAC	88.4956	0.0540	0.9705	13.6331	0.3956	0.9903
an increase in the content of C=O or C==N. However, the peak at 1384 cm⁻¹ disappeared, proving that the C=O bond was consumed. The result indicated that new C==N bonds were produced. In addition, the peak at 3417 cm⁻¹ was also enhanced, suggesting an increase in amino groups. The above results were attributed to the following possible chemical combination: (1) the surface carbonyl group of FPAC was substituted with the amine group in AMX and CEX to generate the C==N bond; and (2) the surface carboxyl group of FPAC was dehydrated and condensed with the amine group in AMX and CEX to produce the amino group. This further illustrated the decisive role of chemisorption in the adsorption of AMX and CEX by the prepared adsorbent.

2.6. AMX and CEX Removal Performance of Different Adsorbents. The maximum AMX and CEX adsorption capacities of various adsorbents are shown in Table 4. FPAC was better than other adsorbents for the removal of AMX and CEX from water, demonstrating the great potential of FPAC toward the kind of antibiotic pollutants.

3. CONCLUSIONS

The FFWF-doped FPAC had more microporous structure and surface functional groups, which promoted the adsorption of antibiotic pollutants from water. The associated adsorption kinetics were well fitted to the pseudo-second-order model for AMX and CEX. The adsorption isotherms for AMX accorded with the Langmuir isotherm model, and the adsorption isotherms for CEX accorded with the Freundlich isotherm model. The adsorption capacities of AMX and CEX increased first and then decreased sharply with the increase of solution pH. Chemisorption, such as electrostatic attraction and covalent bonding with surface functional groups, was the primary adsorption mechanism for AMX and CEX adsorption.

4. MATERIALS AND METHODS

4.1. Materials and Chemicals. P. australis used in this study was taken from the Xiaomei River Constructed Wetland in Shandong province, China. It was washed with distilled water repeatedly and dried completely at 105 °C. Then it was crushed to 100 mesh (model Φ 200) as a material for preparing carbon adsorbents. Powdery puffed waterfowl feather (PPWF) was purchased from New Hope Group Co., Ltd., China. Amoxicillin (99.8%, standard grade) and cephalaxin (99.8%, standard grade) were purchased from Aladdin Biological Technology Co., Ltd., China. In this study, all chemicals used in the experiment were of analytical grade, and distilled water was used as the solvent. The pH of the solution was adjusted by HCl and NaOH.

4.2. Preparation and Characterization of Prepared Adsorbents. PA and PPWF were thoroughly mixed in a ratio of 99:1 (g/g) and impregnated in the 85 wt % H₃PO₄ solution with a ratio of 10:0.2 (g/mol) for 10 h, and then the sample was transferred to a muffle furnace and heated to 450 °C for 1 h. After cooling to room temperature, it was washed with distilled water until the solution pH was stable, and then the sample was dried completely and ground to 120 mesh (model Φ 200) to obtain. The adsorbent was referred to as FPAC. The undoped PPWF adsorbent as a control sample was referred to as PAC, and its preparation method was described in our previous work.⁴¹

The specific surface area was determined by N₂ adsorption/desorption at 77 K using a surface area analyzer (TriStar II Plus) by a multipoint Brunauer-Emmett-Teller (BET) method. The micropore surface area (Sₘ) and micropore volume (Vₘ) were calculated using the t-plot method. The total pore volume (Vₜ) was determined from the amount of N₂ adsorbed at a P/P₀ ratio of around 0.95. The average pore diameter (Dₚ) was obtained from Dₚ = 4Vₜ/Sₘ. The crystal phase structure was presented by X-ray diffraction.

Table 4. Comparison of Results of Different Adsorbents on the Adsorption of AMX and CEX

Adsorbents	Precursors	Activating Agents	Modifying Agents	Qₘₐₓ (mg/g)	AMX	CEX	Reference
PA	H₃PO₄				74.20	66.44	this work
PA	H₃PO₄		PPWF	92.59	85.82		this work
Vine wood	NaOH			2.69	7.08		34
Olive stone	H₃PO₄			57.00			35
Graphene nanoplatelets			magnetically	14.10			36
Chitosan beads	H₃PO₄			8.71			5
Organobentonite				26.18			37
Lotus stalk	H₃PO₄	Cu(NO₃)₂		78.12			38
Amberlite XAD resin	H₃PO₄	Fe(NO₃)₃		75.11			38
Nonimprinted polymers				17.70			40
Molecularly imprinted polymers				39.70			40
an XRD diffractometer (Bruker D8, Germany) and SEM (Zeiss Supra 40, Germany). The surface functional groups were determined by FTIR (Nicolet-460, Thermo Fisher) and Boehm titration.13 The content of main elements was determined by EA (Flash 2000, Thermo Fisher).

4.3. Adsorption Experiments. Batch adsorption experiments were performed to study the effects of different factors (initial concentration, contact time, and initial pH) on AMX and CEX adsorption. Adsorption experiments were conducted by adding a certain amount of adsorbent into 50 mL AMX solution (40 mg/L) or CEX solution (30 mg/L). Experimental samples were shaken at 120 rpm at room temperature (32 ± 1 °C) in darkness for 72 h, and then they were filtered through 0.45 μm filters. The concentration of AMX and CEX were determined with an ultraviolet (UV)—visible spectrophotometer (UV-5100, Shanghai) at the wavelength of 230 nm for AMX and 258 nm for CEX. The adsorption capacity was calculated with an ultraviolet (UV) spectrophotometer.

\[Q_e = \frac{(C_0 - C_e)V}{M} \]
(5)

removal (%) = \(\frac{(C_0 - C_e)}{C_0} \times 100 \)
(6)

where \(C_0 \) is the initial solution concentration (mg/L), \(C_e \) is the equilibrium solution concentration (mg/L), \(V \) is the volume of solution (L), and \(M \) is the mass of the adsorbent (g).

AUTHOR INFORMATION

Corresponding Author
Zizhang Guo — School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China; orcid.org/0000-0002-0099-8013; Email: guozizhang@sdu.edu.cn

Authors
Jiamin Yu — School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China

Yan Kang — College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Wenjun Yin — School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China

Jinlin Fan — Department of Science and Technology Management, Shandong University, Jinan 250100, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c02568

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation of China (No. 51908326), the China Postdoctoral Science Foundation (No. 2018M640632), and the Shandong Provincial Natural Science Foundation (ZR2019MEM026).

REFERENCES

1. Ali, M. M. M.; Ahmed, M. J. Adsorption behavior of doxycycline antibiotic on NaY zeolite from wheat (Triticum aestivum) straws ash. J. Taiwan Inst. Chem. Eng. 2017, 81, 218–224.

2. Lu, Y.; Jiang, M.; Wang, C.; Wang, Y.; Yang, W. Impact of molecular size on two antibiotics adsorption by porous resins. J. Taiwan Inst. Chem. Eng. 2014, 45, 955–961.

3. Halling-Sorensen, B.; Nors, N. S.; Lanzky, P. F.; Ingerslev, F.; Holten Luthøft, H. C.; Jørgensen, S. E. Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 1998, 36, 357–393.

4. De Baere, S.; De Backer, P. Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection. Anal. Chim. Acta 2007, 586, 319–325.

5. Adrian, W. S.; Veredas, V.; Santana, C. C.; Gonçalves, L. R. B. Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochem. Eng. J. 2005, 27, 132–137.

6. Ding, S.; Huang, W.; Yang, S.; Mao, D.; Yuan, J.; Dai, Y.; Kong, J.; Sun, C.; He, H.; Li, S.; Zhang, L. Degradation of Azo dye direct black BN based on adsorption and microwaves-induced catalytic reaction. Front. Environ. Sci. Eng. 2018, 12, No. 5.

7. Andreozzi, R.; Canterino, M.; Marotta, R.; Pauxes, N. Antibiotic removal from wastewaters: the ozonation of amoxicillin. J. Hazard. Mater. 2005, 122, 243–250.

8. Cunningham, J. H.; Lin, L. S. Fate of amoxicillin in mixed-culture bioreactors and its effects on microbial growth and resistance to silver ions. Environ. Sci. Technol. 2010, 44, 1827–1832.

9. Feng, Z.; Zhu, L. Sorption of phenanthrene to biochar modified by base. Front. Environ. Sci. Eng. 2018, 12, No. 1.

10. Ikehata, K.; Jodeiri Naghashkar, N.; Gamal El-Din, M. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Sci. Eng. 2006, 28, 351–414.

11. Sun, P.; Li, Y.; Meng, T.; Zhang, R.; Song, M.; Ren, J. Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine. Water Res. 2018, 147, 91–100.

12. Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Johir, M. A. H.; Sornalingam, K. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chem. Eng. J. 2017, 311, 348–358.

13. Peiris, C.; Gunatilake, S. R.; Milsa, T. E.; Mohan, D.; Vithanage, M. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresource Technol. 2017, 246, 150–159.

14. Gong, Y.-P.; Ni, Z. Y.; Xiong, Z. Z.; Cheng, L. H.; Xu, X. H. Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation. Environ. Sci. Pollut. Res. 2014, 21, 8326–8335.

15. Wang, L.; Yan, W.; He, C.; Wen, H.; Cai, Z.; Wang, Z.; Chen, Z.; Liu, W. Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18. Appl. Surf. Sci. 2018, 433, 222–231.

16. Yusuf, I.; Ahmad, S. A.; Phang, L. Y.; Syed, M. A.; Shamaan, N. A.; Abdul, K. K.; Dahalan, F. A.; Shukor, M. Y. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001. J. Environ. Manage. 2016, 183, 182–195.

17. Parrado, J.; Rodriguez-Morgado, B.; Tejada, M.; Hernandez, T.; Garcia, C. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enzyme Microb. Technol. 2014, 57, 1–7.

18. Redlich, O.; Peterson, D. L. A useful adsorption isotherm. J. Phys. Chem. A. 1959, 63, 1024.

19. Shen, Z.; Zhang, Y.; Jin, F.; McMillan, O.; Al-Tabbaa, A. Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Sci. Total Environ. 2017, 609, 1401–1410.

20. Gan, C.; Liu, Y.; Tan, X.; Wang, S.; Zeng, G.; Zheng, B.; Li, T.; Jiang, Z.; Liu, W. Effect of porous zinc–biochar nanocomposites on
Cr (vi) adsorption from aqueous solution. *RSC Adv.* 2015, 5, 35107–35115.

(21) Jeon, C.; Park, J. Y.; Yoo, Y. J. Biosorption model for binary adsorption sites. *J. Microbiol. Biotechnol.* 2001, 11, 781–787.

(22) Xu, M.; Zhang, Y.; Zhang, Z.; Shen, Y.; Zhao, M.; Pan, G. Study on the adsorption of Ca²⁺, Cd²⁺ and Pb²⁺ by magnetic Fe₃O₄ yeast treated with EDTA dianhydride. *Chem. Eng. J.* 2011, 168, 737–745.

(23) Weng, X.; Lin, S.; Zhong, Y.; Chen, Z. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. *Chem. Eng. J.* 2013, 229, 27–34.

(24) Zainal, Z.; Hui, L. K.; Hussein, M. Z.; Abdullah, A. H.; Hamadneh, I. M. Characterization of TiO(2)-chitosan/glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. *J. Hazard. Mater.* 2009, 164, 138–145.

(25) Mahdavian, A. R.; Mirrahimi, M. A. Efficient separation of heavy metal cations by anchoring polyacrylic acid on super-paramagnetic magnetite nanoparticles through surface modification. *Chem. Eng. J.* 2010, 159, 264–271.

(26) Meng, G.; Li, A.; Yang, W.; Liu, F.; Yang, X.; Zhang, Q. Mechanism of oxidative reaction in the post crosslinking of hypercrosslinked polymers. *Eur. Polym. J.* 2007, 43, 2732–2737.

(27) Aroua, M. K.; Leong, S. P. P.; Teo, L. Y.; Yin, C. Y.; Wan, M. A. W. D. Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode. *Biocatal. Biotrans.* 2008, 26, 5786–5792.

(28) Ho, Y. S.; Mckay, G. Pseudo-second order model for sorption processes. *Process Biochem.* 1999, 34, 451–465.

(29) Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. *J. Am. Chem. Soc.* 1918, 40, 1361–1403.

(30) Freundlich, H. Over the adsorption in solution. *J. Phys. Chem.* A. 1906, 57, 385–470.

(31) Crini, G.; Peindy, H. N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. *Sep. Purif. Technol.* 2007, 53, 97–110.

(32) Liu, W. F.; Xie, H. J.; Zhang, J.; Zhang, C. L. Sorption removal of cephalexin by HNO3 and H2O2 oxidized activated carbons. *Sci. China Chem.* 2012, 55, 1959–1967.

(33) Moussavi, G.; Alahabadi, A.; Yaghmaeian, K.; Eskandari, M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. *Chem. Eng. J.* 2013, 217, 119–128.

(34) Pourteadal, H. R.; Salegh, N. Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. *J. Water Process Eng.* 2014, 1, 64–73.

(35) Limousy, L.; Ghouma, I.; Ouederni, A.; Jeguirim, M. Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. *Environ. Sci. Pollut. Res.* 2017, 24, 9993–10004.

(36) Kerkez-Kuyumcu, Ö.; Bayazit, Ş. S.; Salam, M. A. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. *J. Ind. Eng. Chem.* 2016, 36, 198–205.

(37) Zha, S.X.; Zhou, Y.; Jin, X.; Chen, Z. The removal of amoxicillin from wastewater using organobentonite. *J. Environ. Manage.* 2013, 129, 569–576.

(38) Liu, H.; Liu, W.; Zhang, J.; Zhang, C.; Ren, L.; Li, Y. Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. *J. Hazard. Mater.* 2011, 185, 1528–1535.

(39) Dutta, N.; Saikia, M. D. Adsorption equilibrium of 7-aminodeacetoxy cephalosporanic acid—cephalexin mixture onto activated carbon and polymeric resins. *Indian J. Chem. Technol.* 2005, 12, 296–303.

(40) Li, X.; Pan, J.; Dai, J.; Dai, X.; Ou, H.; Xu, L.; Li, C.; Zhang, R. Removal of cefalexin using yeast surface-imprinted polymer prepared by atom transfer radical polymerization. *J. Sep. Sci.* 2012, 35, 2787–2795.

(41) Liu, H.; Hu, Z.; Liu, H.; Xie, H.; Lu, S.; Wang, Q.; Zhang, J. Adsorption of amoxicillin by Mn-impregnated activated carbons: performance and mechanisms. *RSC Adv.* 2016, 6, 11454–11460.

(42) Boehm, H. P. Surface oxides on carbon and their analysis: a critical assessment. *Carbon* 2002, 40, 145–149.