High pressure polymorphism of LiBH₄ and of NaBH₄†

Adrien Marizy, a Grégory Geneste, a Gaston Garbarino b and Paul Loubeyre a

The pressure-induced structural changes in LiBH₄ and in NaBH₄ have been investigated experimentally up to 290 GPa by coupling Raman spectroscopy, infrared absorption spectroscopy and synchrotron X-ray diffraction. This data set is also analysed in the light of Density Functional Theory calculations performed up to 600 GPa. The [BH₄]⁻ unit appears to be remarkably resistant under pressure. NaBH₄ remains stable in the known Pnma γ-phase up to 200 GPa and calculations predict a transition to a metallic polymeric C2/c phase at about 480 GPa. LiBH₄ is confirmed to exhibit a richer polymorphism. A new Pnma orthorhombic phase VI is found to be stable above 60 GPa and there are hints of a possible phase VII above 160 GPa. DFT calculations predict that two other high pressure LiBH₄ phases should appear at about 290 and 428 GPa. A very slight solubility of H₂ inside phases II, III and V of LiBH₄ is observed. A NaBH₄(H₂)₀.₅ complex is predicted to be stable above 150 GPa.

Introduction

The unique potential of LiBH₄ and NaBH₄ for solid hydrogen storage is widely discussed in the literature, since these compounds could theoretically meet the 2025 DOE target for onboard hydrogen storage in terms of gravimetric and volumetric hydrogen densities (respectively 18.4 wt% and 122.5 kg H₂ per m³ for LiBH₄ and 10.6 wt% and 113.1 kg H₂ per m³ for NaBH₄). However, the strong covalent bond in the BH₄⁻ units of borohydrides requires a high decomposition temperature (>500 °C for NaBH₄ (ref. 1) and 380 °C for LiBH₄ (ref. 2)) which hampers their use in practical applications. A lot of chemical engineering work has already been done with some success,3–10 through catalyst addition or nanotailoring, to try to lower their decomposition temperature but near-room-temperature hydrogen desorption/absorption has not been achieved yet. Therefore, it is of tremendous importance to continue to explore the possible mechanisms of destabilization of the boron–hydrogen bonds.

Recently, pressure has emerged as an effective means of producing new structures and materials, potentially interesting for hydrogen storage.11–14 Indeed, the application of high pressure (>GPa) significantly reduces interatomic distances and thus modifies the chemical bonding, the molecular configuration and the crystal structure. More specifically, for borohydrides, a high pressure study is an effective way of producing new polymorphs with increased coordination numbers, new [BH₄]⁻ anion charges, reduced H–H distances and mono/bi/tridentate configurations. Disclosing such effects should be useful to strengthen our understanding of the factors governing the B–H bond stability. Besides, the search for novel materials with targeted properties using Density Functional Theory (DFT) calculations has recently made tremendous progress. One way to evaluate the reliability of such calculations to explore the configuration space of the borohydrides family is to test them against the high pressure phase diagrams of selected compounds, such as LiBH₄ and NaBH₄. Finally, it has been demonstrated in many compounds that hydrogen uptake drastically increases under very high hydrogen pressure. Not only are interstitial hydrides more filled with hydrogen15 but new polyhydrides16,17 or hydrogen complexes such as NH₃BH₃(H₂)₁.₅ are also created.18,19 Hence, is it possible to insert more hydrogen into LiBH₄ and in NaBH₄? Even if the new dense polymorphs/hydrides found under pressure cannot be recovered at atmospheric pressure, a chemical substitution could then be attempted to stabilize them at ambient pressure.

The present work aims to experimentally and numerically extend the known phase diagrams of NaBH₄ and LiBH₄ up to the metallization pressure and to numerically explore the possibility of including more hydrogen inside NaBH₄. Sodium borohydride was studied at room temperature up to 90 GPa by X-ray diffraction and Raman spectroscopy with neon or hydrogen as a pressure medium and up to 200 GPa by infrared absorption spectroscopy without any pressure medium. LiBH₄ was studied at room temperature up to 130 GPa by X-ray diffraction in a helium pressure medium, by Raman spectroscopy up to 70 GPa and by IR absorption up to 290 GPa without any pressure medium. Ab initio calculations were conducted to complement the experimental investigation. The use of...
molecular dynamics simulations, in particular, has enabled us to discover a potential NaBH₄(H₂)₀.₅ compound.

Current knowledge on the phase diagrams of LiBH₄ and NaBH₄

Many works have already explored the phase diagram of NaBH₄ and LiBH₄ up to the 50 GPa pressure range. At ambient pressure and temperature, NaBH₄ has a cubic phase (space group Pm₃m) in which the tetrahedral units [BH₄]⁻ are disordered due to thermal agitation. This structure was found to transform via a disorder–order transition into a tetragonal P4₂,mc structure, either below 190 K at atmospheric pressure or above 6 GPa at ambient temperature. A tetragonal to orthorhombic transition (space group Pnma) is observed at 9 GPa. This experimental sequence of transitions was not initially predicted by DFT but subsequent numerical studies accurately described it. It should be noted that two nearly identical structures have been proposed experimentally for the tetragonal phase and that calculations show that the most stable tetragonal structure is described in the higher symmetry P4₂/mmc space group and not in the P4₂,mc space group. The last experimental work published on NaBH₄ suggests a monoclinic transition near 20 GPa due to anomalies in the evolution versus pressure of the B–H Raman vibrons. Nevertheless, previous X-ray studies up to 30 GPa have not reported any monoclinic phase apparition. At room temperature and atmospheric pressure, the disordered cubic Fm₃m structure is shared by all other univalent borohydrides but LiBH₄ has a richer polymorphism, as shown as early as 1974 by Pistorius and lately revised and refined 30 years later. Its phase at ambient conditions (phase II) is a Pnma orthorhombic structure without disorder and with undistorted [BH₄]⁻ tetrahedra. This phase transforms with slight hydrogen desorption into a hexagonal one at 381 K (phase I, space group P6₃/mc). Under pressure at ambient temperature, at 1 GPa, a new phase appears. It was first described in the Ama2 space group by Filchenkova et al. and lately better described in the I₄/acd space group (phase III). This phase was proven to be metastable down to atmospheric pressure below 200 K. This phase III starts to transform into the well-known disordered cubic phase (phase V, Fm₃m) from 17 GPa at 300 K and at lower pressure if temperature is raised. The authors also pointed out that a significant weakening of the recorded XRD signal near 50 GPa probably portended a new phase transition. After this study, Yao & Klug used DFT calculations to predict two possible monoclinic candidate phases for phase VI with a C2/m and a C2/c (distorted N1As) space group. LiBH₄ was also predicted to be metallic in a new polymeric monoclinic phase VII at 425 GPa. Although the calculations accurately predicted that the tetrahedron would have an ideal geometry in phase II, they also predict other structures for phases I and II, which are clearly at variance with the experimental data or have later been contradicted. Besides, several recent DFT studies are not accurate at high pressure either because they did not take into account the stable I₄/acd structure or because they did not have enough atoms in their supercells to find it.

It has to be pointed out that historically a PT domain between phase I and III was assigned to a new phase IV by Pistorius et al. No new phase was found by synchrotron X-ray diffraction but a mixture of the two phases at the transition. Hence, phase IV does not exist but the numeration remained unchanged. Therefore, in this study, the usual notation will be kept.

Methods
Sample preparation
NaBH₄ and LiBH₄ samples were obtained from commercial Sigma-Aldrich powder with a purity of respectively 99% and 95%. Manipulations of the two borohydrides were made inside a high-purity argon glove box (H₂O < 1 ppm). After the loading of the samples inside the Diamond Anvil Cell (DAC), the DAC is manually closed tightly to avoid any water contamination outside the glovebox. Diamond anvil culets (300 μm, 150 μm, 100 μm or 40 μm in diameter) were used to cover various pressure domains. The rhenium gasket was covered with a 1000 Å thick layer of gold to ensure good airtightness prior to any loading with a pressure transmitting gas under 1400 bars. When no pressure medium was used (IR absorption measurements and Raman spectroscopy on LiBH₄), no gold was used on the gasket. When the DACs were loaded with gas, neon and hydrogen were used with a moisture content inferior to 2 ppm (Air Products Premier Line) for NaBH₄ and with helium with a moisture content inferior to 20 ppb (Air Products BIP Technology) for LiBH₄. Several purges/pumping cycles were done to dry all the gas loading device before the opening of the DAC for gas loading, especially for LiBH₄ because of its highly hygroscopic nature.

Sample characterisations
LiBH₄ and NaBH₄ are weak X-ray scatterers, which renders their high pressure structural characterisation in a DAC particularly challenging. X-ray diffraction measurements on LiBH₄ and NaBH₄ were performed at the ID27 beamline of the European Synchrotron Radiation Facility with a wavelength of 0.3738 Å, an X-ray beam of around 5 μm and a MAR-CCD detector. An XRD pattern of LiBH₄ at 68 GPa was also collected using a MAR555 detector on ID15b (0.4111 Å) for improved sensitivity. The pressure was measured using the equation of state of a small gold piece placed next to the sample for LiBH₄ and with the hydrostatic ruby pressure scale for NaBH₄. The X-ray diffraction patterns were analysed using DIOPTAS and the FULLPROF software. Uncertainties are estimated to be ±2% for pressure and ±0.2 Å for volume.

Infrared absorption and Raman spectroscopy have been performed to complement the XRD structural investigation. First, discontinuities in the frequency shift versus pressure of
the various excitation modes of the BH₄ entity reflect the variation of the crystal field acting on it with high sensitivity. Therefore, they can reveal subtle structural changes that would be difficult to extract from XRD, such as a change of orientational order of the BH₄ tetrahedra. Besides, for spectroscopic studies, the size of the sample is much less problematic than for XRD and so IR absorption can be used to extend the structural investigation up to 200 GPa.

Infrared absorption spectroscopy was performed at room temperature using the synchrotron radiation source at the SMIS beamline of the French SOLEIL Synchrotron. The IR experimental configuration already described previously includes a horizontal infrared microscope made up of two Schwarzschild objectives (×15, N.A. 0.5, W.D. = 43 mm) producing a 22 μm (FWHM) IR spot. Spectra were taken with a 4 cm⁻³ resolution with 512 accumulations. The high-frequency edge of the T₂g Raman band of the diamond anvil was used to estimate the pressure according to Akahama’s calibration.®

Confocal Raman spectroscopy was performed using an Alpha300M+ (Witec) spectroscopic system with a continuous Ar–Kr laser emitting at 488.0 nm. The Stokes Raman signal was collected in back-scattering geometry by a CCD coupled to a 600 g mm⁻³ grating.

Ab initio calculations

Ab initio calculations have been performed to guide the discussion of the experimental data with insights at a microscopic level. We have performed DFT calculations using the Generalized Gradient Approximation in the form proposed by Perdew, Burke and Ernzerhof (GGA-PBE).® We have used the ABINIT code.® Four kinds of calculations have been performed: first, structural optimizations under fixed pressure; second, phonon calculations in the framework of the Density-Functional Perturbative Theory (DFPT);® third Molecular Dynamics (MD) runs in the isothermal–isobaric (NPT) ensemble; fourth constrained *Ab Initio* Random Structure Searching (AIRSS).°

The structural optimizations have been done in the Projector Augmented Wave (PAW) framework, with a plane-wave (PW) cut-off of 40 Hartrees, and a 6 × 6 × 6 k-point mesh for insulating phases and 12 × 12 × 12 k-point mesh for metallic phases. All the non-disordered experimental or predicted stable polymorphs for LiBH₄ were also adapted and optimized for NaBH₄ and conversely.

DFPT calculations have been performed, at selected pressures, using both the PAW framework (PW cut-off 40 Ha) and ONCVPSP norm-conserving pseudopotentials (PW cut-off 50 Ha).® In the latter case, the structures were re-optimized using ONCVPSP pseudopotentials prior to the DFPT calculation.

The MD runs have been performed on a cell of Pnma NaBH₄ with additional hydrogen molecules, to inspect the possibility of hydrogen insertion in the borohydride, and the structure that may be formed in such conditions. MD runs in the (NPT) ensemble have been performed using a 192 atoms supercell of the disordered cubic phase V of LiBH₄ over more than 5000 steps in order to obtain the equation of state at 300 K. For checking purpose (NVT) MD runs have been performed using the averaged volume obtained in (NPT) MD runs, providing the right pressure with a precision of 0.3 GPa.

AIRSS was used to search for the ground state of phase VI of LiBH₄. The starting cell was given by the experiment. Six configurations were first generated with a random distribution of lithium and boron atoms. Then, four hydrogen atoms were randomly placed inside a shell around each boron atom. A total of 34 random configurations with 24 atoms were optimized by DFT at 68 GPa. This seemed sufficient to identify the crystal structure of phase VI.

Results and discussion

Pressure-induced structural changes in NaBH₄

A previous Raman study of NaBH₄ under pressure up to 30 GPa suggested that a new phase transition to a possible monoclinic x-LiAlH₄ [P2₁/c]-type phase occurred at 14 GPa. To confirm this hypothesis, the Raman stretching modes of the B–H bonds were measured up to 60 GPa. The corresponding background-corrected spectra are represented in Fig. 1 along with the pressure evolution of the vibrors of the Pnma phase. Six peaks can be clearly followed up to 30 GPa but the signal becomes broader as the pressure increased, making the determination of the peak position less accurate even with the subtraction of the second-order contribution of the diamond. Nevertheless, the six peaks, sometimes in the forms of shoulders, have been followed up to 60 GPa. The evolution of their frequencies is sub-linear as a function of pressure and no new peak seems to emerge, in contrast to George et al.’s suggestion. It has to be noted that the broadening of the Raman lines is probably due to non-hydrostaticity, as the Raman spectra in George et al.’s study...
are broader than ours from 12 GPa on. Hence, from the Raman measurements alone, it is not possible to confirm the existence of a phase transition above 20 GPa.

Diffraction on the \textit{Pnma} phase had been already performed with silicone fluid as a pressure medium up to 30 GPa by Kumar et al.28 and also by Filinchuk et al.30 who decompressed it down to 7 GPa. We extended the X-ray diffraction study of NaBH$_4$ up to 70 GPa in neon pressure transmitting medium. Our measurements are in very good agreement with both the already published data and with the calculated equation of state of the \textit{Pnma} phase, as can be seen in Fig. 2a. A \textit{Vinet} adjustment of a combination of the present data and the already published data gives a bulk modulus of 19.6 GPa with its pressure derivative of 4.6 and a volume at atmospheric pressure of 56.5 Å3.

Fig. 2b presents a Le Bail refinement of the NaBH$_4$ diffraction pattern in the \textit{Pnma} phase under hydrogen at 63 GPa.

Infrared absorption spectroscopy was carried out above 60 GPa and three IR bands centred around 3000 cm$^{-1}$ corresponding to the B–H stretching modes have been followed up to 190 GPa (see ESI, Fig. S1†). Their evolution is linear when the pressure increases, which tends to show that no new phase transition nor decomposition occur under very high pressure. After structural optimizations of all the polymorphs tested, the observed phase II to phase III transition pressure could be numerically reproduced. The \textit{Pnma} NaBH$_4$ structure is taken as a reference. A solid line indicates a stable polymorph. The black arrows indicate if the structure was optimized under increasing or decreasing pressure. The \textit{I4$_1$/acd} structure adapted from phase III of LiBH$_4$ (not shown here) was also optimized at low pressure (<10 GPa) and was found to be very unstable in this pressure range. Structural optimization of the structure adapted from \textit{C2/c} LiBH$_4$ gave rise to a new structure during pressure increase. This new polymorph was then optimized under decreasing pressure and turned out to be of polymeric and metallic type.

Fig. 3 Enthalpy difference per formula unit as a function of pressure for various NaBH$_4$ polymorphs. The \textit{Pnma} NaBH$_4$ structure is taken as a reference. A solid line indicates a stable polymorph. The black arrows indicate if the structure was optimized under increasing or decreasing pressure. The \textit{I4$_1$/acd} structure adapted from phase III of LiBH$_4$ (not shown here) was also optimized at low pressure (<10 GPa) and was found to be very unstable in this pressure range. Structural optimization of the structure adapted from \textit{C2/c} LiBH$_4$ gave rise to a new structure during pressure increase. This new polymorph was then optimized under decreasing pressure and turned out to be of polymeric and metallic type.

Fig. 4 Temperature vs. pressure phase diagram of NaBH$_4$ adapted and completed from Sundqvist.40 Green writing indicates a phase with disorder caused by tetrahedral reorientation. Na, B and H atoms are respectively represented by yellow, green and pink spheres. Beige background indicates the new high pressure phase diagram proposed by this work.
increasing optimization of the adapted non-metallic \(C2/c \) LiBH\(_4\) polymorph found by Yao & Klug.\(^{21}\) This metallic sodium borohydride has a polymeric/layered feature without any more tetrahedral (see ESI, Fig. S5). Each boron & hydrogen-containing layer is made of zigzag chains linked between them by a \(\text{R}_{\text{chain1}}-\text{H}-\text{B}-\text{H}-\text{R}_{\text{chain2}} \) link. Each chain is composed by a pattern which alternates simple B–B bonds and B–2H–B bonds as in diborane(6) or maybe as in diborane(4) (plus terminal hydrogen atoms).

The phase diagram of NaBH\(_4\) can thus be extended and a new one is presented in Fig. 4.

Pressure-induced structural changes in LiBH\(_4\)

X-ray diffraction was performed on LiBH\(_4\) embedded in helium as a hydrostatic pressure medium. As can be seen in Fig. 5, the transition pressures and measured volumes are in good agreement with Nakano et al.’s previous study.\(^ {46} \) Even the intermediate disordered phase \(\text{V} \) appears, while it was hypothesised that it would appear only in non-hydrostatic conditions. The volume of the disordered cubic phase \(\text{V} \) was also calculated by averaging the volume over the equilibrated isothermal–isobaric MD trajectories at 300 K and several pressures. This calculated volume agrees well with the experimental data within the experimental error. Starting from 45 GPa, the recorded X-ray signal of the cubic phase \(\text{V} \) slowly decreases in intensity as already seen by Nakano et al.\(^ {46} \) and new peaks of a phase \(\text{VI} \) start to emerge. A first run with 300 \(\mu \)m culets leads to a mixture of phase \(\text{V} \) and \(\text{VI} \) up to 72 GPa, the highest pressure achieved in this run. The mixture was confirmed by Raman spectroscopy. The six new peaks detected at this pressure were not sufficient to determine a plausible cell for the new phase \(\text{VI} \). Therefore, X-ray diffraction was then performed with a more sensitive detector (mar555) on the cell that was used for the Raman study hereafter. At 68 GPa, the LiBH\(_4\) sample without pressure medium was found totally transformed into phase \(\text{VI} \) and an orthorhombic cell containing four LiBH\(_4\) unit formula can be inferred from the first eleven reflections seen in the image plate (up to \(2\theta = 16^\circ \)). The highest angle peaks are broad and weak but could also be described by this orthorhombic cell. As can be seen in (Fig. 5a), this cell corresponds to the computed \(\text{Pnma} \) phase \(\text{VI} \) with the same structure as the NaBH\(_4\) \(\text{Pnma} \) phase III. This structure is calculated to be thermodynamically stable from 29 GPa in comparison to the \(\text{I}4_1/\text{acd} \) structure and not the disordered \(\text{Fm}3\text{m} \) phase \(\text{V} \). Besides, to be sure of the hydrogen atoms orientation, more than thirty random draws of the atoms inside the experimental cell followed by structural optimization gave the NaBH\(_4\)-like \(\text{Pnma} \) structure as the most stable configuration. Besides, the apparition of this phase for LiBH\(_4\) just after the \(\text{Fm}3\text{m} \) disordered phase \(\text{V} \) is logical, as the structure is only a pressure-distorted version of the \(\text{P}4_2/\text{mnc} \) phase II of NaBH\(_4\) which appears right after the same disordered \(\text{Fm}3\text{m} \) phase I of NaBH\(_4\).

The X-ray study was completed by a second run in helium with a much smaller sample and a 100 \(\mu \)m culet, three peaks could be followed up to 130 GPa and have allowed us to extend the PV equation of state of LiBH\(_4\) at room temperature. At

![Fig. 5](image)

74 GPa, the volume drops between phase \(\text{V} \) and the new phase \(\text{VI} \) is around 3%.

Typical Raman spectra without pressure medium are presented in Fig. 6. A striking quasi disappearance of the low
frequency modes is recorded from 20 GPa on, when LiBH$_4$ transforms from an ordered tetragonal I_4_1/acd phase III to two disordered phases: a tetragonal and then a cubic phase (phases V_0 and V). As the pressure increases, new low frequency vibrons start to appear at 45 GPa and are well defined near 55 GPa. Nevertheless, at this pressure, the Raman stretching modes in the 2500 cm$^{-1}$ region indicate that a fraction of the cubic phase remains, as three peaks are distinguishable whereas from 64 GPa on, only two peaks are distinguishable. Hence Raman spectra clearly indicate a reordering of the [BH$_4$]$^-$ tetrahedron leading to the new high pressure phase VI of LiBH$_4$.

The infrared absorption study presented in Fig. 7 confirms the appearance of this new phase as well and has allowed us to extend the study LiBH$_4$ under higher pressure. As can be seen, the transition between phase III and phase V'/V is clearly indicated by the disappearance of the denoted σ_3 absorption band and a clear slope change in the evolution of the denoted σ_2 (corresponding to a bending mode27) starting from 17 GPa. Other slope changes for σ_2 occur: (1) near 25 GPa, indicating the complete transformation of the disordered tetragonal phase V' into the disordered phase V, (2) near 45 GPa, corresponding to the coexistence zone between phase V and VI and (3) above 60 GPa, interpreted as the corresponding starting pressure at which only phase VI is present.

Higher pressure IR absorption study up to 290 GPa was also conducted with a 40 μm DAC by following the two main stretching bands which were saturated in the experiment with the 300 μm culet. A slight slope jump and a slope change are detected at 160 GPa which could be a very first indicator of a new phase transition to a potential phase VII (see Fig. S2 and S3 in ESI$^+$ for IR spectra). Should it be confirmed by XRD, this phase VII would probably not be one of the phases predicted by Yao & Klug, i.e. monoclinic $C2/m$ or $C2/c$ insulating phases, as they are computed to be unstable with respect to the new phase VI at this pressure (Fig. 8). One can hypothesize a slight monoclinic distortion of phase VI. At higher pressure, the insulating $C2/c$ structure proposed by Yao & Klug51 is calculated.
to become thermodynamically favourable near 290 GPa. Then, LiBH₄ is expected to metallize at 428 GPa by transforming into the polymeric C₂/m structure predicted by Yao & Klug.²¹ This metallic phase, unlike the metallic phase of NaBH₄, does not contain B–2H–B bonds but simple B–H–B or B–B bonds.

The phase diagram of LiBH₄ can thus be extended and a new one is presented in Fig. 9.

Hydrogen impurities in LiBH₄

Infrared transmission measurements on lithium borohydride reveal the presence of a small absorption band near 4550 cm⁻¹ in phase II. Its frequency is greater than the frequency of pure H₂ and corresponds to the stretching vibration of few H₂ molecules trapped inside the LiBH₄ crystal lattice. As far as we know, this slight amount of hydrogen inside LiBH₄ was never reported before; maybe because this trapped H₂ is hardly detected by Raman spectroscopy (IR absorption measurements can be much more sensitive than Raman spectroscopy to detect a hydrogen vibron). Incidentally, it should be noted that the H₂ signal broadens and tends to vanish, indicating a low signal or a possible diffusion of the hydrogen into the gasket.

Hydrogen complexes with NaBH₄

As we have seen, NaBH₄ stays in its orthorhombic Pnma phase under high pressure which is not very interesting from a hydrogen storage perspective. Several NPT MD runs have been performed to try to find new stable NaBH₄(H₂)ₓ complexes with high hydrogen content. The additional hydrogen was initially inserted inside the void in the NaBH₄ Pnma structure at 50 GPa. Several stoichiometries have been tested with x = 1/2, 1, 3/2, 2. The total number of atoms in the cell was 28. On the four stoichiometries tested, only the one with x = 1/2 lead to a structure compatible with a possible insertion. The resulting structure, shown in Fig. 10, was then optimized and could be described in the P2₁/c space group (see ESI† for the Wyckoff...
positions). The lattice of the orthorhombic \textit{Pnma} structure was distorted into a monoclinic one due to hydrogen insertion without any major reorganisation of the atoms. In this structure, H forms a bridge between the edges of two distinct tetrahedral. By comparing the enthalpies of pure NaBH\textsubscript{4} + 0.5H\textsubscript{2} and NaBH\textsubscript{4}(H\textsubscript{2})\textsubscript{0.5} as a function of pressure, we found that this new complex becomes stable above 153 GPa. For the reference phase of H\textsubscript{2}, we have used the C\textsubscript{2}/c-32 phase77 for phase I and the C\textsubscript{2}/c-24 phase which is the accepted candidate phase for the phase III of dense hydrogen.79 Phonon band structures of NaBH\textsubscript{4} and NaBH\textsubscript{4}(H\textsubscript{2})\textsubscript{0.5} at 206 GPa can be found in ESI (Fig. S7 and S8). Note that a slight dynamical instability is observed in the case of NaBH\textsubscript{4}(H\textsubscript{2})\textsubscript{0.5}, close to the gamma point, proving that a slightly more stable structure may exist (however, its direct simulation would require the building of a supercell 10 times larger, which is currently beyond our numerical possibilities). The new compound remains an insulator and the stretching vibration frequency of the inserted H\textsubscript{2} molecules is higher than that of pure hydrogen by 650 cm-1 at 200 GPa (H\textsubscript{2} at 3750 cm-1 at 75 K and 200 GPa (ref. 76)). Experimentally, this higher vibration frequency should easily be detected thanks to Raman or IR spectroscopy. The volume is also slightly increased by 8\% at 200 GPa (+1.57 \AA3) compared to \textit{Pnma} NaBH\textsubscript{4}. We have performed preliminary experiments on NaBH\textsubscript{4} loaded with H\textsubscript{2} in a DAC, and no such hints of H\textsubscript{2} insertion have been detected up to 88 GPa during the room temperature pressure increase, which is in agreement with the calculations.

Conclusion

The phase diagrams of both lithium and sodium borohydrides have been experimentally extended in pressure above 100 GPa and up to the metallization of these compounds by \textit{ab initio} calculations. Their extended phase diagrams in the multi-Mbar range are shown in Fig. 9 and 4, respectively. The polymorphism of LiBH\textsubscript{4} is richer than the one of NaBH\textsubscript{4}. Indeed, LiBH\textsubscript{4} is transformed under pressure into five specific polymorphs at least. Previously, only the disordered \textit{Fm\textit{3m}} cubic phase was known to be shared between the two compounds, but in the present study, we have found a shared high pressure \textit{Pnma} structure. As suggested by the IR absorption data, this phase might undergo a monoclinic distortion under pressure for LiBH\textsubscript{4} but not for NaBH\textsubscript{4}.

Moreover, the reliability of highly converged GGA-PBE calculations has been demonstrated in this study, both by a good replication of the phase diagram of the two borohydrides but also by a successful \textit{ab initio} search for the structure of phase VI of LiBH\textsubscript{4}. Hence, machine learning/AIRRSS search and design should be useful to discover new borohydrides or, more generally, new ternary hydrides for better solid hydrogen storage.

With the prediction of the stability of a new NaBH\textsubscript{4}(H\textsubscript{2})\textsubscript{0.5} hydride under pressure, the question of the possibility of inserting more hydrogen inside alkaline borohydrides which do not have a very open metal–organic framework is raised. Moreover, the detection of trapped H\textsubscript{2} inside the polymorphs of LiBH\textsubscript{4} under pressure calls for new numerical and experimental searches for LiBH\textsubscript{4}(H\textsubscript{2})\textsubscript{x} complexes with high hydrogen content, as what was done for NaBH\textsubscript{4}, especially in phase VI which is shared between the two compounds.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We would like to very warmly thank Paul Dumas for his help on SMIS beamline and also Mrs Stéphanie Blanchandin and Mrs Karine Chaouachi for their precious help with the glovebox at the Soleil Synchrotron.

Notes and references

1. P. Martelli, R. Caputo, A. Remhof, P. Mauron, A. Borgschulte and A. Zütte, \textit{J. Phys. Chem. C}, 2010, 114, 7173–7177.
2. A. Zütte, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron and C. Emmenegger, \textit{J. Alloys Compd.}, 2003, 356–357, 515–520.
3. A. Zütte, A. Borgschulte and S. I. Orimo, \textit{Scr. Mater.}, 2007, 56, 823–828.
4. J. Manna, M. Vashistha and P. Sharma, \textit{Int. J. Energy a Clean Environ.}, 2010, 11, 65–97.
5. I. Saldan, \textit{Open Chem.}, 2011, 9, 761–775.
6. L. H. Rude, T. K. Nielsen, D. B. Ravnsbaek, U. Bösenberg, M. B. Ley, B. Richter, L. M. Arnbjerg, M. Dornheim, Y. Filinchuk, F. Besenbacher and T. R. Jensen, \textit{Phys. status solidi}, 2011, 208, 1754–1773.
7. M. L. Christian and K.-F. Aguey-Zinsou, \textit{ACNS Nano}, 2012, 6, 7739–7751.
8. M. B. Ley, L. H. Jepsen, Y. Lee, W. Cho, J. M. Bellosta von Colbe, M. Dornheim, M. Rokni, J. O. Jensen, M. Sloth, Y. Filinchuk, J. E. Jørgensen, F. Besenbacher and T. R. Jensen, \textit{Mater. Today}, 2014, 17, 122–128.
9. J. Mao and D. Gregory, \textit{Energies}, 2015, 8, 430–453.
10. M. Paskevicius, L. H. Jepsen, P. Schoowink, R. Černý, D. B. Ravnsbæk, Y. Filinchuk, M. Dornheim, F. Besenbacher and T. R. Jensen, \textit{Chem. Soc. Rev.}, 2017, 46, 1565–1634.
11. Y. Song, \textit{Phys. Chem. Chem. Phys.}, 2013, 15, 14524–14547.
12. V. Ban, A. V. Soloninich, A. V. Skripov, J. Hadermann, A. Abakumov and Y. Filinchuk, \textit{J. Phys. Chem. C}, 2014, 118, 23402–23408.
13. N. A. Tumanov, E. Roedern, Z. Łodziana, D. B. Nielsen, T. R. Jensen, A. V. Talyzin, R. Černý, D. Chernyshov, V. Dmitriev, T. Palasyuk and Y. Filinchuk, \textit{Chem. Mater.}, 2016, 28, 274–283.
14. M. A. Rafiee, \textit{Phys. Chem. Res.}, 2018, 6, 657–666.
15. A. Marizy, G. Geneste, P. Loubeyre, B. Guigue and G. Garbarino, \textit{Phys. Rev. B}, 2018, 97, 184103.
16. C. M. Pépin, A. Dewaele, G. Geneste, P. Loubeyre and M. Mezouar, \textit{Phys. Rev. Lett.}, 2014, 113, 265504.
17. C. M. Pépin, G. Geneste, A. Dewaele, M. Mezouar and P. Loubeyre, \textit{Science}, 2017, 357, 382–385.
73 S. A. Shevlin, C. Cazorla and Z. X. Guo, *J. Phys. Chem. C*, 2012, 116, 13488–13496.
74 D. T. Shane, R. C. Bowman and M. S. Conradi, *J. Phys. Chem. C*, 2009, 113, 5039–5042.
75 C. J. Pickard and R. J. Needs, *Nat. Phys.*, 2007, 3, 473–476.
76 P. Loubeyre, F. Occelli and R. LeToullec, *Nature*, 2002, 416, 613–617.