Targeting the insulin-like growth factor-1 receptor in human cancer

Alexandre Arcaro*
Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland

THE INSULIN-LIKE GROWTH FACTOR (IGF) SIGNALING SYSTEM PLAYS A CRUCIAL ROLE IN HUMAN CANCER

The insulin-like growth factor (IGF) signaling system plays a crucial role in human cancer and the IGF-1 receptor (IGF-1R) is an attractive drug target against which a variety of novel anti-tumor agents are being developed. Deregluation of the IGF signaling pathway frequently occurs in human cancer and involves the establishment of autocrine loops comprising IGF-1 or IGF-2 and/or IGF-1R over-expression. Epidemiologic studies have documented a link between elevated IGF levels and the development of solid tumors, such as breast, colon, and prostate cancer. Anti-cancer strategies targeting the IGF signaling system involve two main approaches, namely neutralizing antibodies and small molecule inhibitors of the IGF-1R kinase activity. There are numerous reports describing anti-tumor activity of these agents in pre-clinical models of major human cancers. In addition, multiple clinical trials have started to evaluate the safety and efficacy of selected IGF-1R inhibitors, in combination with standard chemotherapeutic regimens or other targeted agents in cancer patients. In this mini review, I will discuss the role of the IGF signaling system in human cancer and the main strategies which have been so far evaluated to target the IGF-1R.

Keywords: cancer, clinical trials, insulin-like growth factor, IGF-1 receptor, monoclonal antibody, tyrosine kinase inhibitor

THE IGF/INSULIN FAMILY OF GROWTH FACTORS

The insulin-like growth factor (IGF)/insulin family of growth factors is an evolutionally conserved system which plays a crucial role in the growth and development of many tissues and the regulation of overall growth and metabolism. This system comprises three receptors [insulin receptor (IR), IGF-1 receptor (IGF-1R), and IGF-2/mannose 6-phosphate receptor (M-6-PR)], three ligands (insulin, IGF-1, and IGF-2), and six known types of circulating IGF-binding proteins (IGFBP1–6; Pollak et al., 2004; Pollak, 2008). The IGF-1R is a receptor tyrosine kinase which is widely expressed in many human tissues and cell types and is highly homologous to the IR. However, these two receptors have distinct functions, since the IGF-1R controls apoptosis, cell growth, and differentiation, while the IR regulates physiological processes. The IGF-1R is a heterotetrameric glycoprotein composed of two α and two β subunits, post-transcriptionally linked by disulfide bonds. Activation of the IGF-1R is achieved by binding of its specific ligand to the extracellular α subunits, which leads to autophosphorylation of the three tyrosine residues within the kinase domain of the IGF-1R β subunit.

Insulin-like growth factors 1 and 2 are single-chain polypeptides with a high sequence homology to pro-insulin. The half-lives, transportation, and bioavailability of the IGFs circulating at high concentrations in the bloodstream and extracellular fluids are modulated by several high affinity IGF-binding proteins (IGFBP1–6). More than 99% of the circulating IGFs are bound to IGFBPs and the IGFBPs themselves are tightly regulated by tissue specificity, cell or matrix association, phosphorylation, and proteolysis by various proteases (Rutter, 2000).

Both IGF-1 and IGF-2 interact with the IGF-1R, although IGF-1 shows a much higher affinity than IGF-2. The IGF-2 receptor (M-6-PR), differs significantly from the IGF-1R and does not activate specific cellular responses. The ability of the highly homologous IGF-1R and IR to form hybrid receptors by dimerization further increases the complexity of the signaling system. Such IGF-1R/IR hybrid receptors have been reported to influence cell responses by altering the affinities of their growth factor ligands (Pandini et al., 2002; Pollak, 2008; Gallagher and LeRoith, 2010). These hybrid receptors can stimulate cell proliferation, especially in the case of the IR-A isoform, which has been found over-expressed in cancer (Denley et al., 2003).

The main intracellular signaling pathways downstream of the IGF-1R use the IR substrates-1 to -4 (IRS-1 to -4) and the Src-homology collagen protein (Shc) isoforms as adapters molecules. Phosphorylation of the IRS adapter molecules on one hand triggers activation of the phosphoinosride 3-kinase (PI3K)/Akt signaling pathway, whereas, on the other hand, the Shc adapter activates signaling by the Ras/Raf/MEK/Erk signaling pathway (Figure 1). Generally, signals controlled by the IGF-1R have pleotropic effects on cell behavior, controlling cell proliferation, differentiation, and cell migration, but also regulating the apoptotic machinery (Pollak, 2008; Gallagher and LeRoith, 2010).

THE ROLE OF THE IGF-1R IN HUMAN CANCER

In the past decades, a large body of evidence has arisen, supporting a key role for IGF-1R signaling in various types of human cancers (Pollak, 2008; Gallagher and LeRoith, 2010). A number of studies performed in the last two decades have demonstrated a role for this receptor in the transformation of cells, cancer cell proliferation, as well as in metastatic events (Kaló et al., 1990; Sell et al., 1994; Scotlandi et al., 2002; Sachdev et al., 2004; Carboni et al., 2005).
While no recurrent cancer-specific mutations of the IGF-1R or its ligands have been described to date, a plethora of studies have provided evidence for a link between this signaling pathway and the risk of developing cancer (Khandwala et al., 2000; Pollak, 2008; Gallagher and LeRoith, 2010). The most common findings associated with deregulated IGF signaling are over-expression of the IGF-1R or the establishment of autocrine or paracrine signaling loops. While high expression levels of the IGF-1R have been found in breast and colorectal cancer, autocrine signaling loops are more common, and have been reported in a wide variety of human malignancies. Paracrine signaling has mainly been described for breast cancer, where stromal cells have been shown to produce IGF-1 and IGF-2. Population studies have further highlighted the importance of IGF signaling in some of the most common cancers (Guerreiro et al., 2006a; Pollak, 2008; Gallagher and LeRoith, 2010). The published evidence from epidemiological studies has revealed a correlation between elevated IGF-1 levels and an increased risk of cancer diagnosis (Pollak et al., 2004; Guerreiro et al., 2006a; Pollak, 2008; Gallagher and LeRoith, 2010). Although the population studies did not always come to the same conclusions, systematic reviews of these results led to the interpretation that circulating IGF-1 levels are indeed related to a risk of several common cancers (Renehan et al., 2004). The most significant correlation between increased levels of IGF-1 and the risk of cancer diagnosis was found for prostate cancer, pre-menopausal breast cancer, and colorectal cancer (Wolk et al., 1998; Ma et al., 1999; Giovannucci et al., 2000; Harman et al., 2000; Kaaks et al., 2000; Stattin et al., 2000; Chan et al., 2002; Palmqvist et al., 2002; Chen et al., 2009; Major et al., 2010; Rinaldi et al., 2010). However, it should be noted that no significant overall associations were found between breast cancer and common germline variation in IGF1 and other genes involved in IGF-1 metabolism in a large, comprehensive study (Canzian et al., 2010).
In summary, mechanistic and epidemiological studies have provided substantial information supporting a role for IGF signaling and the IGF-1R in human cancers. The IGF-1R has emerged as a promising target for the development of new therapeutic approaches, which can be combined with other classical treatment regimens.

STRATEGIES TO TARGET THE IGF-1R IN CANCER THERAPY

The IGF-1R can be inhibited through various experimental approaches (Figure 1). I will focus the discussion on the two approaches which are currently being evaluated in clinical trials: (A) neutralizing antibodies and (B) small molecule inhibitors of the IGF-1R tyrosine kinase activity.

NEUTRALIZING ANTIBODIES

A number of monoclonal antibodies have been developed to target the receptor itself, which bind to the extracellular domains of the IGF-1R and block ligand binding. A feature common to all anti-IGF-1R antibodies, probably more important than the blocking activity itself, is their ability to down-regulate the IGF-1R overtime by promoting internalization of the receptor. Receptor-targeting antibodies might have important therapeutic advantages, concerning both specificity and toxicity. A variety of fully human anti-IGF-1R monoclonal antibodies have been characterized and showed strong anti-tumor activity in vitro and in vivo (King and Wong, 2012). Most IGF-1R antibodies which have been evaluated in clinical trials so far have proven to be well tolerated (King and Wong, 2012). A selection of the results published with these molecules is described below.

AMG-479 (ganitumab; Amgen) is a fully human immunoglobulin G1 (IgG1) against the IGF-1R (Beltran et al., 2009). AMG-479 blocks IGF-1 and IGF-2 binding to the IGF-1R without cross-reacting with the IR and also inhibits the activation of IGF-1R homodimers and IGF-IR/IGFR hybrids (Beltran et al., 2009). A phase I study in patients with advanced solid malignancies or non-Hodgkin’s lymphoma showed that AMG 479 can be administered safely and tumor responses were observed in patients with Ewing’s sarcoma or desmoplastic small round cell tumors.

IMC-A12 (cixutumumab; ImClone Systems Incorporated) is a fully human monoclonal anti-IGF-1R IgG1 antibody, which inhibits receptor activation, downstream signaling and also mediates internalization and degradation of the receptor (Rowsinsky et al., 2007). Although promising single-agent activity was observed, the most impressive effects of targeting the IGF-1R with IMC-A12 were observed when this agent was combined with cytotoxic agents or other targeted therapeutics (Rowsinsky et al., 2007). The results of a phase II study of IMC-A12, with or without cetuximab, in patients with refractory metastatic colorectal cancer documented that IMC-A12 alone, or in combination with cetuximab, was insufficient to warrant additional study in patients with colorectal cancer refractory to EGFR inhibitors (Reidy et al., 2010). IMC-A12 was evaluated in combination with the mammalian target of rapamycin (mTOR) inhibitor temsirolimus in patients with refractory Ewing’s sarcoma family tumors (Naing et al., 2012). The combination was well tolerated and showed preliminary evidence of durable anti-tumor activity (Naing et al., 2012). Currently several clinical trials are evaluating IMC-A12 as a single agent or in combination with standard chemotherapy or other targeted agents.

MK-0646 (dalotuzumab, h7C10; Merck) is a humanized IgG1 monoclonal antibody against the IGF-1R (Goetsch et al., 2005; Scartozzi et al., 2010). Pre-clinical studies have demonstrated that dalotuzumab acts by inhibiting IGF-1 and IGF-2-mediated tumor cell proliferation (Goetsch et al., 2005), IGF-1R autophosphorylation, and Akt phosphorylation (Wan et al., 2007; Cao et al., 2008; Ibrus et al., 2009; Scartozzi et al., 2010). Data from phase I clinical trials demonstrated that dalotuzumab is safe, well tolerated and significantly inhibits tumor proliferation (Scartozzi et al., 2010; Azzoni et al., 2011). A phase II study evaluated the safety and efficacy of MK-0646, as monotherapy in patients with metastatic, well-differentiated neuroendocrine tumors (Reidy-Lagunes et al., 2011).
Advances in characterization of the structural biology of the IGF-1R, which are specific for the IGF-1R at the cellular level (Garcia-Echeverria et al., 2004; Mit-siades et al., 2004). NVP-ADW742 and NVP-AEW541 have been extensively used in pre-clinical studies in a broad range of human cancer models. However, these compounds were not considered further for clinical development because of toxicity problems observed during the pre-clinical testing phase. The potential of NVP-ADW742 and NVP-AEW541 as single agents or in combination with other drugs was investigated in colorectal and neuroblastoma, and small cell lung cancer (Scotlandi et al., 2005; Warshamana-Greene et al., 2005; Guerreiro et al., 2006b; Tanno et al., 2006; Doepfner et al., 2007; Tazzari et al., 2007; Urban-Maksymowych et al., 2007). In atypical teratoid/rhabdoid tumor cells of the central nervous system, NVP-AEW541 was shown to inhibit cell proliferation and survival by blocking IGF-1R and IR activation by autocrine loops involving IGFs and insulin (Arcaro et al., 2007). In colorectal cancer, studies with NVP-AEW541 suggested that a combination therapy targeting both EGFR and IGF-1R could be a promising approach (Kaulfuss et al., 2009). A study in rhabdomyosarcoma also underscored the therapeutic potential of simultaneous targeting of IGF-1R and human epidermal growth factor receptor 2 (HER2) to abrogate resistance (Abraham et al., 2011). In pediatric glioblastoma co-treatment of the PDGFR inhibitor imatinib with NVP-AEW541 resulted in a highly synergistic interaction in vitro and increased efficacy in vivo (Bienen et al., 2011).

OSI-906 (Astellas Pharma) is a potent, selective, and orally bioavailable dual IGF-1R/IGF-1R kinase inhibitor which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing (Mulvihill et al., 2009). The activity of OSI-906 in combination with standard chemotherapies was documented in colorectal cancer models (Flanigan et al., 2010). Simultaneous administration of OSI-906 and doxorubicin also significantly enhanced the anti-tumor effect of doxorubicin (Zeng et al., 2012). In human tumor cells co-expressing IGF-1R and IR, it was reported that co-targeting IGF-1R and IR with OSI-906 provides superior anti-tumor efficacy compared to targeting IGF-1R alone. A neutralizing antibody (Buck et al., 2010). Another study described predictive biomarkers for OSI-906 in colorectal cancer (Pitts et al., 2010). Baseline gene expression data from cell lines and xenografts, in combination with IGF-1R detection by in situ hybridization and ERAS mutational status, was able to accurately predict OSI-906 sensitivity (Pitts et al., 2010). There are now several clinical trials (phase I and II) ongoing with OSI-906.
FIGURE 2 | Chemical structures of the IGF-1R tyrosine kinase inhibitors discussed in this article.

CONCLUSION
The available data from the first clinical trials with agents targeting the IGF-1R have been positive enough to launch several phase II and III trials in various human cancers. The IGF-1R antibodies appear to have a favorable safety profile and have been demonstrated to reduce IGF-1R signaling in patients. Concerning the IGF-1R tyrosine kinase inhibitors, the first published data from clinical trials are still awaited. There have been several cases of responses in phase I and II trials with anti-IGF-1R antibodies, but these agents will most likely not be useful in unselected patient populations. In addition, some phase II and III trials have been suspended or terminated, because of lack of efficacy of the antibodies (such as figitumumab in NSCLC). The identification of predictive biomarkers is of crucial importance for the further development of anti-cancer therapies based on anti-IGF-1R agents (King and Wong, 2012). In conclusion, there are multiple challenges still ahead, including the multiplicity of potential cancer indications and drug combinations, as well as the need of biomarkers for resistance and sensitivity.

ACKNOWLEDGMENTS
Work in the author’s laboratory is supported by grants from the European Community FP7 (ASSET, project number: 259348 and LUNGTARGET, project number: 259770), the Swiss National Science Foundation (Grant 31003A-120294), the Fondation FORCÉ, the Novartis Stiftung für Medizinisch-Biologische Forschung, the Jubiläumsstiftung der Schweizerischen Mobiliar Genossenschaft, the Stiftung zur Krebsbekämpfung, the Huggenberger-Bischoff Stiftung zur Krebsforschung, the UniBern Forschungsförderstiftung, and the Stiftung für klinisch-experimentelle Tumorfororschung, Bern.

REFERENCES
Abraham, J., Pratapati, S. I., Nishijio, K., Schaffler, B. S., Taniguchi, E., Kilcoyne, A., et al. (2011). Evasion mechanisms to Igf1r inhibition in rhabdomyosarcoma. Mol. Cancer Ther. 10, 697–707.
Arcaro, A., Doepfner, K. T., Boller, D., Guerreiro, A. S., Shalaby, T., Jackson, S. P., et al. (2007). Novel role of insulin as an autocrine growth factor for malignant brain tumour cells. Biochem. J. 406, 57–66.
Azzo, F., Tabernero, J., Cortesino, A., Prudkin, L., Andreu, J., Rodriguez-Bruna, E., et al. (2011). A phase I pharmacokinetic and pharmacodynamic study of dalotuzumab (MK-0646), an anti-IGF-1R monoclonal antibody, in patients with advanced solid tumors. Clin. Cancer Res. 17, 6304–6312.

www.frontiersin.org

March 2013 | Volume 4 | Article 30 | 5
Arcaro T. Targeting the IGF-1R in human cancer

Buck, E., Gokhale, P. C., Koujak, S., Tham, P. S., Benjamin, K., and LeRoith, D. (2010). The proliferating role of insulin and insulin-like growth factors in cancer. Endocr. Rev. 31, 259–272.

Haluska, P. F., Shaw, H. M., Batzel, G. S., and Seidman, J. G. (2000). Structural biology of insulin and IGF-I receptors: implications for drug design. Nat. Rev. Drug Discov. 1, 769–780.

DeVereuil, B., Hall, S. C., Guerreiro, A. S., Boller, D., and Hill, J. (2008). Antiangiogenic effects of IGF-I receptor signaling inhibition in human neuroblastoma cells. Mol. Cancer Ther. 7, 906–916.

Fong, Y., Yao, E., Shen, R., Goel, A., Arica, M., Tenenbaum-Feldman, I., et al. (2009). High expression levels of total IGF-1R and sensitivity of NCI-60 cell lines to a VEGF-based assay predict sensitivity to IGF-1R inhibition. Mol. Cancer Ther. 8, 2273–2283.

Ahmed, K. A., Babu, S., and Balachandran, P. (2010). Inhibition of IGF-1R expression and sensitivity of NSCLC to an IGF-1R small molecule inhibitor of insulin-like growth factor-1R/IR. Mol. Cancer Ther. 9, 1921–1930.

Srivastava, N., and Blum, A. (2010). Recent progress in the structural biology of the insulin receptor. Front. Biosci. 15, 575–585.

Korpics, K., Balázs, A., Almár, I., Warren, T., Leong, S., Benjamin, B., et al. (2010). A phase I study of weekly R1507, a human monoclonal antibody insulin-like growth factor I receptor antagonist, in patients with advanced solid tumors. Clin. Cancer Res. 16, 3548–3556.

Halman, S. M., Mettler, E. J., Bachman, H. R., Lamba, P. K., and Carter, H. B. (2000). Serum levels of insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-3, and prostate-specific antigen as predictors of clinical prostate cancer. J. Clin. Endocrinol. Metab. 85, 4294–4300.

Kulozik, E., Tornillo, P., Ahmedkhanov, A., Lukatova, A., Dusha, H., et al. (2000). Serum C-peptide, insulin-like growth factor-I (IGF-I), IGF-binding protein-3, and colorectal cancer risk in women. J. Natl. Cancer Inst. 92, 915–927.

Kakko, M., Rattie, W. J., and Milne, A. D. (1990). Overexpression of the human insulin-like growth factor I receptor provokes ligand-dependent neoplastic transformation. Mol. Cell. Biol. 10, 464–473.

Kailas, S., Bruendl, P., Gaedcke, I., and Sch ner, J. G. (2009). Dual silencing of insulin-like growth factor-I receptor and epidermal growth factor receptor in colorectal cancer cell is associated with decreased proliferation and enhanced apoptosis. Mol. Cancer Ther. 8, 821–833.

Khandelwal, H. M., Micciche, I. E., Hysberg, A., and Friend, K. E. (2000). The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr. Rev. 21, 215–244.

Kindler, H. L., Richards, D. A., Garbo, L. E., Gaten, E. B., Stephens, J. J., Bocca-Lima, C. M., et al. (2012). A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or cetuximab (AMG 458) in combination with gemcitabine in patients with metastatic pancreatic cancer. Nat. Oncol. 25, 2854–2862.

King, E. R., and Wong, K. K. (2012). Insulin-like growth factor-1 receptor: current concepts and new developments in cancer therapy. Recent Pat. Anticancer Drug Discov. 7, 14–30.

Ko, E. A., Gertext, R., Lock, R., Carol, H., Motton, C. L., Kue, S. T., et al. (2011). Initial (stage 1) of the IGF-1 receptor inhibitor BMS-578607 in the pediatric proclini cal testing program. Pediatr. Blood Cancer 56, 695–705.

Ko, E. A., Kamaras, D., Zhang, W., Liu, J., Hingorani, P., Baker, D. S., et al. (2010). BMS-578607, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with cycapamin in inhibiting growth of osteosarcoma xenografts. Cancer Res. 70, 657–675.

Kurekovic, R., Penuela, A., Annino, J., Warren, T., Leong, S., Benjamin, B., et al. (2010). A phase I study of weekly R1507, a monoclonal antibody insulin-like growth factor I receptor antagonist, in patients with advanced solid tumors. Clin. Cancer Res. 16, 2489–2495.

Lacy, M. Q., Almap, M., Francesca, R., Picciagulli, M. L., Melk, C. L., Yan, D., et al. (2000). Phase II, pharmacokinetic and pharmacodynamic study of the anti-insulinlike growth factor type 1 monoclonal antibody AMP-157 in patients with malignant melanoma. J. Clin. Oncol. 20, 3919–3923.

Lennonbort, B. C., Coughston, C. J., Tennel, A., Chan, B. T., Hillenbrand, S. C., Wang, T., et al. (2011). High IGF III activity in triple-negative breast cancer cell lines and tumors correlates with sensitivity to anti-IGF-ER therapy. Clin. Cancer Res. 17, 2321–2327.
Arcaro T. Targeting the IGF-1R in human cancer.

Palmqvist, R., Hallmans, G., Rinaldi, S., Olmos, D., Postel-Vinay, S., Molife, Naing, A., Lorusso, P., Fu, S., Hong, Major, J. M., Laughlin, G. A., Mulvihill, M. J., Cooke, A., Rosenfeld-

www.frontiersin.org March 2013 | Volume 4 | Article 30 | 7

advanced solid tumours: results of itumumab (CP-751,871) in combina-

northern Sweden.

factor 1, insulin-like growth factor (2002). Plasma insulin-like growth

Biessy, C., Stenling, R., Riboli, E., et al. (2010). A 12-year cohort study.

in patients with sarcoma and Ewing’s

M., Paccagnella, M. L., et al. (2010). Erlotinib activity against desmoplastic small tumor

Mcmullan, C. J., Poulaki, V., Reidy, D. L., Vakiani, E., Fakih, M. G.,

Chawla, S. P., et al. (2011). R1507, a novel agent in colorectal cancer: a phase I study of an integrated genomic classifier for a novel agent in colorectal cancer approach to individualized therapy in early development. Clin. Cancer Res. 17, 1315–1324.

Pollak, M. (2008). Insulin and insulin-like growth factor signaling in neoplasia. Nat. Rev. Cancer 8, 915–924.

Pollak-M, N., Schindhelm, K. R., and Hanksen, S. E. (2004). Insulin-like growth factor receptors and neoplasia Nat. Rev. Cancer 4:505–518.

Quark, B., Wang, Q., Morgon, J. A., Suki, D., and E never, D. (2011). A dominant negative type-I insulin-like growth factor receptor inhibits metastasis of human cancer cells. J. Biol. Chem. 279, 5017–5024.

Sachdev, D., Hardarl, J. S., Lee, A. V., Zhang, X., and Tan, D. (2004). A dominant negative type-I insulin-like growth factor receptor inhibits anchorage-independent growth of the insulin-like growth factor-I receptor. Clin Cancer Res 10, 5569–5576.

www.frontlinereg.org March 2013 | Volume 4 | Article 20 | 7

Mia, J., Pollak, M. N., Giovannucci, E., Chan, J. M., Tao, Y., Henderson, C. H., et al. (1999). Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF-I) and IGF-binding protein-3 (IGFBP-3). J. Natl Cancer Inst. 91, 429–425.

Muir, I. M., Laughlin, G. A., Kirito-Schwenker, D. J., Wingard, D. L., and Barrett-Conner, E. (2010). Insulin-like growth factor-I and cancer mortality in older men. J. Clin. Endocrinol. Metab. 95, 1034–1039.

Mitridate, C. S., Mitridate, N. S., Meccalli, C. I., Pirozzi, N., Stangorupps, A., Alejana, M., et al. (2004). Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 3, 225–236.

Meleka, L. R., Fong, P. C., Paciaccaglia, L., Reid, A. H., Shore, M. M., Vidal, L., et al. (2010). The insulin-like growth factor-1 receptor inhibits Gli-2-induced glioma cell transformation and proliferation in vitro and in vivo. Clin. Cancer Res. 12, 6772–6780.

Tap, W. D., Demetri, G., Barnett, P., Duna, J., Kavantzis, E., Koutro-B, et al. (2012). Phase II study of ganitumab, a fully human anti-type-I insulin-like growth factor receptor antibody, in patients with metastatic dermatomic family tumors or demoplastic small round cell tumors. J. Clin. Oncol. 30, 1848–1856.

Tanzini, B., Manconi, C., Vitale, R. M., Macchi, M., Medlock, H. P., Dominici, C., et al. (2006). Down-regulation of insulin-like growth factor-I receptor tyrosine kinase activity by NVP-AEW365 has a anti-tumor effect on melanocytic cells in vitro and in vivo. Clin. Cancer Res. 12, 2625–2631.

D’Amato, C., D’Andrea, S., Geppetti, P., Reiche, A., et al. (2004). A phase 2 study of the insulin-like growth factor-I receptor inhibitor MK-0646 in patients with metastatic, well-differentiated neuroendocrine tumors. Cancer 108, 4797–4800.

Rutledge, A. G., Zborilova, M., Mindert, C., O’Dwyer, S. T., Skulet, S. M., and Egger, M. (2004). Insulin-like growth factor (IGF-I) binding protein-5, and cancer risk: systematic review and meta-regression analysis. Lancet 363, 1103–1113.

Rinaldi, S., Gevold, R., Norat, T., Buon, C., Balmanouk, S., Lemmens, J., et al. (2010). Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk results from the EPIC cohort, plus a meta-analysis of individual studies. Int. J. Cancer 126, 1752–1755.

Rosensky, E. K., Youssoufian, H., Terra, J. R., Solomon, P., Burtrum, D., and Ludwig, D. B. (2007). IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor 1 receptor. Clin Cancer Res 13, 5546–5552.

Sadick, H., Hardidl, J. S., Lee, A. V., Zhang, X., and Tan, D. (2004). A dominant negative type-I insulin-like growth factor receptor inhibits metastasis of human cancer cells. J. Biol. Chem. 279, 5017–5024.

Sauron, M., Biancon, M., Marcon, E., Gampert, B., Berard, R., and Casimia, S. (2010). Demidumab, a recombinant humanized mAb tar- geted against IGFR1 for the treatment of cancer. Curr. Opin. Mol. Ther. 12, 361–373.

Schmitt, S., Kaminski-Ferrary, M. C., Henry, S., Zanetta, S., Schiffmann, G., Lompé, E., et al. (2012). Phase II study of fostamatinib in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck clinical activity and mole- cular response (GORTIC 2008-05). Ann. Oncol. 23, 2123–2131.

Scalfani, K., Ansell, S., Benini, S., Man- arre, M. C., Serra, M., Cavaliro, V., et al. (2002). Expression of an IGF-I receptor dominant negative mutant induces apoptosis, inhibits tumorigene- sis and enhances chemosensitivity in Ewing/sarcoma cells. Int J. Cancer 101, 11–16.

Scalfani, K., Marana, M. C., Nicoleti, G., Levi, P. L., Luka, S., Benini, S., et al. (2005). Antitumor activity of the insulin-like growth factor-I recep- tor kinase inhibitor NVP-AEW541 in murine cancer. Cancer Res. 65, 3866–3871.

Sall, C., Dumenil, G., Doward, C., Maitre, M., Coppejns, D., Drange- lis, T., et al. (1994). Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol. Cell. Biol. 14, 3606–3612.

Stutman, P., Behand, A., Rinikall, S., Buon, C., Duchaux, H., Steinman, U. H., et al. (2000). Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J. Natl Cancer Inst. 92, 1910–1917.

Toinen, B., Mancini, C., Vitale, R. M., Macchi, M., Medlock, H. P., Dominici, C., et al. (2006). Down-regulation of insulin-like growth factor-I receptor tyrosine kinase activity by NVP-AEW365 has an anti-tumor effect on melanocytic cells in vitro and in vivo. Clin. Cancer Res. 12, 2625–2631.

Tolchen, A. W., Saratichopoulos, I., Par- nuk, A., Papadopoulos, K., Lin, C. C., Rodon, J., et al. (2009). Phase I pharmacokinetic and metabolic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor-1. J. Clin. Oncol. 27, 5800–5807.

Urbanska, K., Trzynadl, J., Del Valle, E., Hidakan, M. B., Hofmann, F., Garcia-Echeverria, C., et al. (2007). Inhibition of IGF-I receptor in anchorage-independent attenuates GSK-3beta constitutive phosphorylation and compromises growth and survival of medulloblastoma cell lines. Oncogene 26, 2508–2517.

Van, X., Harkesy, B., Shen, N., Gao, P., and Yeh, L. (2009). Brain-derived neurotrophic factor activation of Akt signaling through an IGF-IIR-dependent mechanism. Oncogene 28, 1952–1940.

Wang, Y., Hailey, J., Williams, D., Lipari, P., Makowskowi, M., Wang, S., et al. (2005). Inhibition of insulin-like growth factor-I receptor (IGF-IIR) signaling in tumor cells by a fully human neutralizing anti-IGF-IIR.
Arcaro Targeting the IGF-1R in human cancer

Mol. Cancer Ther. 4, 1214–1221.

Warshamana-Greene, G. S., Litz, J., Buchdunger, E., Garcia-Echeverria, C., Hofmann, E., and Krystal, G. W. (2005). The insulin-like growth factor-I receptor kinase inhibitor, NVP-AO9742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin. Cancer Res 11, 1563–1571.

Wittman, M. D., Carboni, J. M., Yang, Z., Lee, F. Y., Astrman, M., Attar, R., et al. (2009). Discovery of a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF-1R) kinase in clinical development. J. Med. Chem. 52, 7760–7765.

Wojtalla, A., Salm, F., Christiansen, D. G., Corona, T., Orski, P., Shalaby, T., et al. (2012). Novel agents targeting the IGF-IR/PI3K pathway impair cell proliferation and survival in subsets of medulloblastomas and neuroblastomas. PLoS ONE 7:e47109. doi: 10.1371/journal.pone.0047109

Wolk, A., Marmot, C. S., Andersson, S. O., Bergstrom, R., Signorello, L. B., Lagnado, P., et al. (1998). Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study. J. Natl. Cancer Inst. 90, 911–915.

Zeng, X., Zhang, H., Oh, A., Zhang, Y., and Yee, D. (2012). Enhancement of doxorubicin cytotoxicity of human cancer cells by tyrosine kinase inhibition of insulin receptor and type I IGF receptor. Breast Cancer Res. Treat. 133, 117–126.

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 18 January 2013; accepted: 04 March 2013; published online: 22 March 2013.

Citation: Arcaro A (2013) Targeting the insulin-like growth factor-I receptor in human cancer. Front. Pharmacol. 4:30. doi: 10.3389/fphar.2013.00030

This article was submitted to Frontiers in Pharmacology of Anti-Cancer Drugs, a specialty of Frontiers in Pharmacology.

Copyright © 2013 Arcaro. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.