MID-INFRARED PROPERTIES OF LOCAL ACTIVE GALACTIC NUCLEI

Daniel Asmus (MPIfR, Bonn)

Poshak Gandhi
Sebastian F. Hönig
Alain Smette
Wolfgang J. Duschl

Torus 2012
AGN in the mid-infrared

MIR atmosphere transmission at Paranal

Wavelength (μm)

Transmission

Type 2 AGN

Type 1 AGN

VISIR manual

N band

Q band

Thermal

Synchrotron

Jet?

NLR

LINER

Star-forming region

Glumpy torus

Thin accretion disk

BLR
The AGN MIR Atlas

• Goals:
 – Detect and characterize MIR emission in local AGN
 – Quantify non-AGN emission
 – Verify the nuclear MIR emission as bolometric indicator \((\text{Gandhi+09, Levenson+09})\)
 – Investigate the origin of the nuclear MIR emission
Importance of angular resolution in the MIR

Spitzer/IRS (~0.8m) **versus** **VLT/VISIR** (~8m)

Hernán-Caballero & Hatziminaoglou (2011) and Hönig et al. (2010)
The AGN MIR Atlas

• **Goals:**
 - Detect and characterize MIR emission in local AGN
 - Quantify non-AGN emission
 - Verify the nuclear MIR emission as bolometric indicator \((Gandhi+09, Levenson+09)\)
 - Investigate the origin of the nuclear MIR emission

• **Sample:**
 - All Seyferts and LINERs with public ground-based high-angular resolution MIR imaging in N- and/or Q-band data
The AGN MIR Atlas

• **Goals:**
 - Detect and characterize MIR emission in local AGN
 - Quantify non-AGN emission
 - Verify the nuclear MIR emission as bolometric indicator (*Gandhi+09, Levenson+09*)
 - Investigate the origin of the nuclear MIR emission

• **Sample:**
 - All Seyferts and LINERs with public ground-based high-angular resolution MIR imaging in N- and/or Q-band data
 - 249 objects (z < 0.4)
 - >1/3 of the nearby AGN (z < 0.01; Veron-Cetty & Veron 2010)

• **Methods:**
 - Reduce all data in a uniform way (*as in Asmus et al. 2011*)
see also Hönig+10
Maximum star formation contamination

- 249 AGN with HR MIR imaging
- 200 objects detected
- >18% resolved
- Star formation weak in the nuclear 0.4” region

Scale star formation template to PAH 11.3 feature

Spitzer/IRS VISIR photometry maximum SF contribution

BAT:
Type 1
Type 2

Asmus et al. 2011

249 AGN with HR MIR imaging
200 objects detected
>18% resolved
Star formation weak in the nuclear 0.4” region
The AGN MIR atlas in X-rays

The BAT AGN surveys
- “least-biased” all-sky sample of AGN
- selected at 14-195keV
- 9-month sample: 102 AGN (Tueller et al. 2008, Winter et al. 2009)
- We observed ~80% with HR MIR imaging

Intrinsic 2-10keV properties
- collected and combined from literature for all AGN

Credit: Tueller et al. 2010
The MIR--X-ray luminosity correlation

- 249 AGN with MIR imaging
- 200 objects detected
- >18% resolved
- Star formation weak in the nuclear 0.4” region
- MIR—X-ray correlation valid for all AGN with slope \(\sim 1 \)

See also: Krabbe+01, Lutz+04, Horst+06, Horst+08, Gandhi+09, Levenson+09, Asmus+11, Matsuta+12, Mason+12, Ichikawa+12, ...

Asmus et al., in prep.

\[
\log L_{\text{MIR}} \sim (0.99 \pm 0.03) \log L_{\text{X}}
\]

- 155 detections plotted
- Obs. scatter \(\sim 0.42 \)
- Intrins. scatter \(\sim 0.28 \)
The MIR–X-ray correlation

- Hot corona
- Thin accr. disk
- Clumpy dusty structure

Mid-infrared

X-ray

UV
Dependency on optical type

Asmus et al., in prep.
Dependency on the nuclear obscuration (N_H)

$\log N_H / \text{cm}^2 \leq 22$

$\log N_H / \text{cm}^2 > 22$

Asmus et al., in prep.
Effect of the column density

- 249 AGN with HR MIR imaging
- 200 objects detected
- >18% resolved
- Star formation weak in the nuclear 0.4” region
- MIR—X-ray correlation valid for all AGN with slope ~1
- No type or N_H dependency obvious

Asmus et al., in prep.
Dependency on the luminosity

- 249 AGN with HR MIR imaging
- 200 objects detected
- >18% resolved
- Star formation weak in the nuclear 0.4” region
- MIR—X-ray correlation valid for all AGN with slope ~1
- No type or N_H dependency obvious
- No luminosity dependency obvious
Effect of the accretion rate

- 249 AGN with HR MIR imaging
- 200 objects detected
- >18% resolved
- Star formation weak in the nuclear 0.4” region
- MIR—X-ray correlation valid for all AGN with slope ~1
- No type or N_H dependency obvious
- No luminosity dependency obvious
- Structure probably changes at low accretion rates

Asmus et al., in prep.
Thank you for your attention!

- 249 AGN with HR MIR imaging
- 200 objects detected
- >18% resolved
- Star formation weak in the nuclear 0.4” region
- MIR—X-ray correlation valid for all AGN with slope ~1
- No type or N_H dependency obvious
- No luminosity dependency obvious
- Structure probably changes at low accretion rates

The AGN MIR Atlas