THE GOLOMB SPACE IS TOPOLOGICALLY RIGID

TARAS BANAKH, DARIO SPIRITO, SLAWOMIR TUREK

Abstract. The Golomb space \(N_\tau \) is the set \(N \) of positive integers endowed with the topology \(\tau \) generated by the base consisting of arithmetic progressions \(\{a + bn : n \geq 0\} \) with coprime \(a, b \). We prove that the Golomb space \(N_\tau \) is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by the first author at Mathoverflow in 2017.

1. Introduction

In the AMS Meeting announcement \[3\] M. Brown introduced an amusing topology \(\tau \) on the set \(N \) of positive integers turning it into a connected Hausdorff space. The topology \(\tau \) is generated by the base consisting of arithmetic progressions \(a + bN_0 := \{a + bn : n \in N_0\} \) with coprime parameters \(a, b \in N \). Here by \(N_0 = \{0\} \cup N \) we denote the set of non-negative integer numbers.

In \[14\] the topology \(\tau \) is called the relatively prime integer topology. This topology was popularized by Solomon Golomb \[6\], \[7\] who observed that the classical Dirichlet theorem on primes in arithmetic progressions is equivalent to the density of the set II of prime numbers in the topological space \((\mathbb{N}, \tau) \). As a by-product of such popularization efforts, the topological space \(N_\tau := (\mathbb{N}, \tau) \) is known in General Topology as the Golomb space, see \[15\], \[16\].

The topological structure of the Golomb space \(N_\tau \) was studied by Banakh, Mioduszewski and Turek \[2\] who proved that the space \(N_\tau \) is not topologically homogeneous (by showing that 1 is a fixed point of any homeomorphism of \(N_\tau \)). Motivated by this results, the authors of \[2\] posed a problem of the topological rigidity of the Golomb space. This problem was also repeated by the first author at Mathoverflow \[1\]. A topological space \(X \) is defined to be topologically rigid if its homeomorphism group is trivial.

The main result of this note is the following theorem answering the above problem.

Theorem 1. The Golomb space \(N_\tau \) is topologically rigid.

The proof of this theorem will be presented in Section 5 after some preparatory work made in Sections 3, 4. The idea of the proof belongs to the second author who studied in \[12\] the rigidity properties of the Golomb topology on a Dedekind ring with removed zero, and established in \[12\] Theorem 6.7 that the homeomorphism group of the Golomb topology on \(\mathbb{Z} \setminus \{0\} \) consists of two homeomorphisms. The proof of Theorem 1 is a modified (and simplified) version of the proof of Theorem 6.7 given in \[12\]. It should be mentioned that the Golomb topology on Dedekind rings with removed zero was studied by Knopfmacher, Porubský \[10\], Clark, Lebowitz-Lockard, Pollack \[4\], and Spirito \[12, 13\].

2. Preliminaries and notations

In this section we fix some notation and recall some known results on the Golomb topology. For a subset \(A \) of a topological space \(X \) by \(\overline{A} \) we denote the closure of \(A \) in \(X \).

A poset is a set \(X \) endowed with a partial order \(\leq \). A subset \(L \) of a partially ordered set \((X, \leq) \) is called

- linearly ordered (or else a chain) if any points \(x, y \in L \) are comparable in the sense that \(x \leq y \) or \(y \leq x \);
- an antichain if any two distinct elements \(x, y \in A \) are not comparable.

2010 Mathematics Subject Classification. Primary: 11A99; 54G15.

Key words and phrases. The Golomb topology, topologically rigid space.
By \(\Pi \) we denote the set of prime numbers. For a number \(x \in \mathbb{N} \) we denote by \(\Pi_x \) the set of all prime divisors of \(x \). Two numbers \(x, y \in \mathbb{N} \) are coprime iff \(\Pi_x \cap \Pi_y = \emptyset \). For a number \(x \in \mathbb{N} \) let \(x^k := \{x^n : n \in \mathbb{N}\} \) be the set of all powers of \(x \).

For a number \(x \in \mathbb{N} \) and a prime number \(p \) let \(l_p(x) \) be the largest integer number such that \(p^{l_p(x)} \) divides \(x \). The function \(l_p(x) \) plays the role of logarithm with base \(p \).

The following formula for the closures of basic open sets in the Golomb topology was established in \cite{BanakhMioduszewskiTurek2000}.

Lemma 2 (Banakh, Mioduszewski, Turek). For any \(a, b \in \mathbb{N} \)

\[
a + b\mathbb{N}_0 = \mathbb{N} \cap \bigcap_{p \in \Pi_b} (p\mathbb{N} \cup (a + p^{l_p(b)}\mathbb{Z})).
\]

Also we shall heavily exploit the following lemma, proved in \cite{BanakhMioduszewskiTurek2000}.

Lemma 3 (Banakh, Mioduszewski, Turek). Each homeomorphism \(h : \mathbb{N}_r \to \mathbb{N}_r \) of the Golomb space has the following properties:

\begin{enumerate}
 \item \(h(1) = 1; \)
 \item \(h(\Pi) = \Pi; \)
 \item \(\Pi h(x) = h(\Pi x) \) for every \(x \in \mathbb{N}; \)
 \item \(h(x^k) = h(x)^n \) for every \(x \in \mathbb{N} \).
\end{enumerate}

Let \(p \) be a prime number and \(k \in \mathbb{N} \). Let \(\mathbb{Z} \) be the ring of integer numbers, \(\mathbb{Z}_{p^k} \) be the residue ring \(\mathbb{Z}/p^k\mathbb{Z} \), and \(\mathbb{Z}_{p^k}^\times \) be the multiplicative group of invertible elements of the ring \(\mathbb{Z}_{p^k} \). It is well-known that \(|\mathbb{Z}_{p^k}^\times| = \phi(p^k) = p^{k-1}(p-1) \). The structure of the group \(\mathbb{Z}_{p^k}^\times \) was described by Gauss in \cite{Gauss1801} art.52–56 (see also Theorems 2 and 2’ in Chapter 4 of \cite{Gauss1801}).

Lemma 4 (Gauss). Let \(p \) be a prime number and \(k \in \mathbb{N} \).

\begin{enumerate}
 \item If \(p \) is odd, then the group \(\mathbb{Z}_{p^k}^\times \) is cyclic;
 \item If \(p = 2 \) and \(k \geq 2 \), then the element \(-1 + 2^k\mathbb{Z} \) generates a two-element cyclic group \(C_2 \) in \(\mathbb{Z}_{p^k}^\times \), the element \(5 + 2^k\mathbb{Z} \) generates a cyclic subgroup \(C_{2^{k-2}} \) of order \(2^{k-2} \) in \(\mathbb{Z}_{2^k}^\times \) such that \(\mathbb{Z}_{2^k}^\times = C_2 \oplus C_{2^{k-2}} \).
\end{enumerate}

3. Golomb topology versus the \(p \)-adic topologies on \(\mathbb{N} \)

Let \(p \) be any prime number. Let us recall that the \(p \)-adic topology on \(\mathbb{Z} \) is generated by the base consisting of the sets \(x + p^n\mathbb{Z} \), where \(x \in \mathbb{Z} \) and \(n \in \mathbb{N} \). This topology induces the \(p \)-adic topology on the subset \(\mathbb{N} \) of \(\mathbb{Z} \). It is generated by the base consisting of the sets \(x + p^n\mathbb{N}_0 \) where \(x, n \in \mathbb{N} \). The following lemma is a special case of Proposition 3.1 in \cite{GelfandShilov1964}.

Lemma 5. For any clopen subset \(\Omega \) of \(\mathbb{N}_r \setminus p\mathbb{N} \), and any \(x \in \Omega \), there exists \(n \in \mathbb{N} \) such that \(x + p^n\mathbb{N}_0 \subset \Omega \).

Proof. Since the set \(p\mathbb{N} \) is closed in \(\mathbb{N}_r \), the set \(\Omega \) is open in \(\mathbb{N}_r \) and hence \(x + p^n\mathbb{N}_0 \subset \Omega \) for some \(k \in \mathbb{N} \) and \(b \in \mathbb{N} \), which is coprime with \(px \). We claim that \(x + p^n\mathbb{N}_0 \subset \Omega \). To derive a contradiction, assume that \(x + p^n\mathbb{N}_0 \setminus \Omega \) contains some number \(y \). Since \(\Omega \) is closed in \(\mathbb{N}_r \setminus p\mathbb{N} \), there exist \(m \geq n \) and \(d \in \mathbb{N} \) such that \(d \) is coprime with \(p \) and \(y \), and \(y + p^m\mathbb{N}_0 \cap \Omega = \emptyset \). It follows that \(y + p^m\mathbb{N}_0 \subset (x + p^n\mathbb{N}_0) + p^m\mathbb{N}_0 \subset x + p^n\mathbb{N}_0 \). Since \(p \notin \Pi_b \cup \Pi_d \), we can apply the Chinese Remainder Theorem \cite{Mordell1953} 3.12 and conclude that \(\emptyset \neq (y + p^m\mathbb{N}) \cap \bigcap_{q \in \Pi_b \cup \Pi_d} q\mathbb{N} \). Applying Lemma 2 and taking into account that the set \(\Omega \) is clopen in \(\mathbb{N}_r \setminus p\mathbb{N} \), we conclude that

\[
\emptyset \neq (y + p^m\mathbb{N}_0) \cap \left(\bigcap_{q \in \Pi_b \cup \Pi_d} q\mathbb{N} \right) = (x + p^n\mathbb{N}_0) \cap \left(\bigcap_{q \in \Pi_b} q\mathbb{N} \right) \cap (y + p^m\mathbb{N}_0) \cap \left(\bigcap_{q \in \Pi_d} q\mathbb{N} \right) \subseteq
\]

\[
\frac{x + p^n\mathbb{N}_0 \cap y + p^m\mathbb{N}_0}{\mathbb{N} \setminus \mathbb{N} \setminus \emptyset} \subset \mathbb{N} \cap (\mathbb{N} \setminus p\mathbb{N} \setminus \Omega) \subset p\mathbb{N},
\]

which is not possible as the sets \(x + p^n\mathbb{N}_0 \) and \(p\mathbb{N} \) are disjoint. This contradiction shows that \(x + p^n\mathbb{N}_0 \subset \Omega \). \(\square \)
A subset of a topological space is clopen if it is closed and open. By the zero-dimensional reflection of a topological space X we understand the space X endowed with the topology generated by the base consisting of clopen subsets of the space X.

Lemma 6. The p-adic topology on $\mathbb{N} \setminus p\mathbb{N}$ coincides with the zero-dimensional reflection of the subspace $\mathbb{N}_r \setminus p\mathbb{N}$ of the Golomb space \mathbb{N}_r.

Proof. Lemma implies that the p-adic topology τ_p on $\mathbb{N} \setminus p\mathbb{N}$ is stronger than the topology ζ of zero-dimensional reflection on $\mathbb{N}_r \setminus p\mathbb{N}$. To see that the τ_p coincides with ζ, it suffices to show that for every $x \in \mathbb{N} \setminus p\mathbb{N}$ and $n \in \mathbb{N}$ the basic open set $\mathbb{N} \cap (x + p^n\mathbb{Z})$ in the p-adic topology is clopen in the subspace topology of $\mathbb{N}_r \setminus p\mathbb{N} \subset \mathbb{N}_r$. By the definition, the set $\mathbb{N} \cap (x + p^n\mathbb{Z})$ is open in the Golomb topology. To see that it is closed in $\mathbb{N}_r \setminus p\mathbb{N}$, take any point $y \in (\mathbb{N} \setminus p\mathbb{N}) \setminus (x + p^n\mathbb{Z})$ and observe that the Golomb-open neighborhood $y + p^n\mathbb{N}_0$ of y is disjoint with the set $\mathbb{N} \cap (x + p^n\mathbb{Z})$.

For every prime number p, consider the countable family

$$X_p = \{a^N : a \in \mathbb{N} \setminus p\mathbb{N}, \ a \neq 1\},$$

where the closure $\overline{a^N}$ is taken in the p-adic topology on $\mathbb{N} \setminus p\mathbb{N}$, which coincides with the topology of zero-dimensional reflection of the Golomb topology on $\mathbb{N} \setminus p\mathbb{N}$ according to Lemma.

The family X_p is endowed with the partial order \leq defined by $X \leq Y$ iff $Y \subseteq X$. So, X_p is a poset carrying the partial order of reverse inclusion.

Lemma 7. For any prime number p, any homeomorphism h of the Golomb space \mathbb{N}_r induces an order isomorphism

$$h : X_p \to X_{h(p)}, \ h : a^N \mapsto h(a^N) = \overline{h(a)^N}$$

of the posets X_p and $X_{h(p)}$.

Proof. By Lemma $h(1) = 1$ and $(h(p)$ is a prime number. First we show that $h(p\mathbb{N}) = h(p)\mathbb{N}$. Indeed, for any $x \in p\mathbb{N}$ we have $p \in \Pi(x)$ and by Lemma $h(p) \in h(\Pi(x)) = \Pi(h(x))$ and hence $h(x) \in h(p)\mathbb{N}$ and $h(p\mathbb{N}) \subset h(p)\mathbb{N}$. Applying the same argument to the homeomorphism h^{-1}, we obtain $h^{-1}(h(p)\mathbb{N}) \subset p\mathbb{N}$, which implies the desired equality $h(p\mathbb{N}) = h(p)\mathbb{N}$. The bijectivity of h ensures that h maps homeomorphically the space $\mathbb{N}_r \setminus p\mathbb{N}$ onto the space $\mathbb{N}_r \setminus h(p)\mathbb{N}$.

Then h also is a homeomorphism of the spaces $\mathbb{N} \setminus p\mathbb{N}$ and $\mathbb{N}_r \setminus h(p)\mathbb{N}$ endowed with the zero-dimensional reflections of their subspace topologies inherited from the Golomb topology of \mathbb{N}_r. By Lemma these reflection topologies on $\mathbb{N} \setminus p\mathbb{N}$ and $\mathbb{N} \setminus h(p)\mathbb{N}$ coincide with the p-adic and $(h(p))$-adic topologies on $\mathbb{N} \setminus p\mathbb{N}$ and $\mathbb{N} \setminus h(p)\mathbb{N}$, respectively.

By Lemma for any $a \in \mathbb{N} \setminus \{1\} \cup p\mathbb{N}$ we have

$$h(a)^N = h(a^N) \subseteq h(\mathbb{N} \setminus p\mathbb{N}) = h(p\mathbb{N})$$

and by the continuity of h in the topologies of zero-dimensional reflections, we get $h(a^N) = \overline{h(a)^N} = \overline{h(a)^N}$. The same argument applies to the homeomorphism h^{-1}. This implies that

$$h : X_p \to X_{h(p)}, \ h : a^N \mapsto h(a^N) = \overline{h(a)^N},$$

is a well-defined bijection. It is clear that this bijection preserves the inclusion order and hence it is an order isomorphism between the posets X_p and $X_{h(p)}$.

4. The order structure of the posets X_p

In this section, given a prime number p, we investigate the order-theoretic structure of the poset X_p.

For every $n \in \mathbb{N}$ denote by $\pi_n : \mathbb{N} \to \mathbb{Z}_{p^n}$ the homomorphism assigning to each number $x \in \mathbb{N}$ the residue class $x + p^n\mathbb{Z}$. Also for $n \leq m$ let

$$\pi_{m,n} : \mathbb{Z}_{p^m} \to \mathbb{Z}_{p^n}$$

be the ring homomorphism assigning to each residue class $x + p^n\mathbb{Z}$ the residue class $x + p^n\mathbb{Z}$. It is easy to see that $\pi_n = \pi_{m,n} \circ \pi_m$. Observe that the multiplicative group $\mathbb{Z}_{p^n}^\times$ of invertible elements of the ring \mathbb{Z}_{p^n} coincides with the set $\mathbb{Z}_{p^n} \setminus p\mathbb{N}$ and hence has cardinality $p^n - p^{n-1} = p^{n-1}(p-1)$.

First we establish the structure of the elements a^N of the family X_p.

□
Lemma 8. If for some \(a \in \mathbb{N} \setminus p\mathbb{Z} \) and \(n \in \mathbb{N} \) the element \(\pi_n(a) \) has order \(\geq \max\{p,3\} \) in the multiplicative group \(\mathbb{Z}_p^\times \), then \(a^n = \pi_n^{-1}(\pi_n(a)^n) \).

Proof. Let \(B = B^n \) be the cyclic group generated by the element \(b = \pi_n(a) \) in the multiplicative group \(\mathbb{Z}_p^\times \). Since \(|\mathbb{Z}_p^\times| = p^{n-1}(p-1) \), and \(b \) has order \(\geq \max\{p,3\} \), the cardinality of the group \(B \) is equal to \(p^kd \) for some \(k \in [1,n-1] \) and some divisor \(d \) of the number \(p-1 \). Moreover, if \(p = 2 \), then \(2^k \geq 3 \) and hence \(k \geq 2 \) and \(n \geq 3 \).

For any number \(m \geq n \), consider the quotient homomorphism \(\pi_{m,n} : \mathbb{Z}_{pm}^\times \rightarrow \mathbb{Z}_{pn}^\times, \pi_{m,n} : x + pm\mathbb{Z} \mapsto x + pn\mathbb{Z} \). We claim that the subgroup \(H = \pi_{m,n}^{-1}(B) \) of the multiplicative group \(\mathbb{Z}_{pm}^\times \) is cyclic. For odd \(p \) this follows from the cyclicity of the group \(\mathbb{Z}_{p^n}^\times \), see Lemma [1].

For \(p = 2 \), by Lemma [1] the multiplicative group \(\mathbb{Z}_{2m}^\times \) is isomorphic to the additive group \(\mathbb{Z}_2 \times \mathbb{Z}_{2m-2} \). Assuming that \(H \) is not cyclic, we conclude that \(H \) contains the 4-element Boolean subgroup

\[V = \{1 + 2^m \mathbb{Z}, -1 + 2^m \mathbb{Z}, 1 + 2^{m-1} + 2^m \mathbb{Z}, -1 + 2^{m-1} + 2^m \mathbb{Z}\} \]

of \(\mathbb{Z}_{2m}^\times \). Then \(B = \pi_{m,n}(H) \supset \pi_{m,n}(V) \ni -1 + 2^n \mathbb{Z} \). Taking into account that \(-1 + 2^n \mathbb{Z} \) has order 2 in the cyclic group \(B \), we conclude that \(-1 + 2^n \mathbb{Z} = a^{2^n-1} + 2^n \mathbb{Z} \). Since \(k \geq 2 \), the odd number \(c = a^{2^{k-2}} \) is well-defined and \(c^3 + 42 = a^{2^{k-2}} + 4Z = -1 + 4Z \) which is not possible (as squares of odd numbers are equal 1 modulo 4). This contradiction shows that the group \(H \) is cyclic.

By [1] 1.5.5, the number of generators of the cyclic group \(H \) can be calculated using the Euler totient function as

\[\phi(|H|) = \phi(p^{m-n} |B|) = \phi(p^{m-n} p^kd) = \phi(p^{m-n+k} |d| (p-1)) = p^{m-n} \phi(p^k) \phi(d) = p^{m-n} \phi(p^k) \phi(|B|), \]

which implies that for every generator \(g \) of the group \(B \), every element of the set \(\pi_{m,n}(g) \) is a generator of the group \(H \). In particular, the element \(\pi_{m,n}(a) \in \pi_{m,n}^{-1}(\pi_n(a)) \) is a generator of the group \(H \). By the definition of \(p \)-adic topology,

\[a^n = \bigcap_{m \geq n} \pi_{m,n}^{-1}(\pi_{m,n}(a)^n) = \bigcap_{m \geq n} \pi_{m,n}^{-1}(\pi_{m,n}(B)) = \bigcap_{m \geq n} \pi_{m,n}^{-1}(B) = \pi_{m,n}^{-1}(B) = \pi_{n}^{-1}(\pi_n(a)^n). \]

Lemma 9. (1) For any \(X \in \mathcal{X}_p \), there exists \(n \in \mathbb{N} \) and a cyclic subgroup \(H \) of \(\mathbb{Z}_p^\times \) of order \(\geq \max\{p,3\} \) such that \(X = \pi_n^{-1}(H) \).

(2) For any \(n \in \mathbb{N} \) and cyclic subgroup \(H \) of \(\mathbb{Z}_p^\times \) of order \(|H| \geq \max\{p,3\} \), there exists a number \(a \in \mathbb{N} \setminus p\mathbb{N} \) such that \(\pi_n^{-1}(H) = a^n \in \mathcal{X}_p \).

Proof. 1. Given any \(X \in \mathcal{X}_p \), find a number \(a \in \mathbb{N} \setminus (\{1\} \cup p\mathbb{N}) \) such that \(X = a^n \). Choose any \(n \in \mathbb{N} \) with \(p^n > a^p \) and observe that the cyclic subgroup \(H \subset \mathbb{Z}_p^\times \), generated by the element \(\pi_n(a) = a + p^n \mathbb{Z} \) has order \(|H| \geq p + 1 \geq \max\{p,3\} \). By Lemma [1] \(X = a^n = \pi_n^{-1}(H) \).

2. Fix \(n \in \mathbb{N} \) and a cyclic subgroup \(H \) of \(\mathbb{Z}_p^\times \) of order \(|H| \geq \max\{p,3\} \). Find a number \(a \in \mathbb{N} \) such that the residue class \(\pi_n(a) = a + p^n \mathbb{Z} \) is a generator of the cyclic group \(H \). Then \(\pi_n(a) \) has order \(|H| \geq \max\{p,3\} \), Lemma [1] ensures that \(\pi_n^{-1}(H) = \pi_n^{-1}(\pi_n(a)^n) = a^n \in \mathcal{X}_p \).

For any \(X \in \mathcal{X}_p \), let

\[n(X) = \min \{ n \in \mathbb{N} : X = \pi_n^{-1}(\pi_n(X)), |\pi_n(X)| \geq \max\{p,3\} \}. \]

Lemma [1] implies that the number \(n(X) \) is well-defined and \(\pi_n(X) \) is a cyclic subgroup of order \(\geq \max\{p,3\} \) in the multiplicative group \(\mathbb{Z}_p^\times \). Let \(i(X) \) be the index of the subgroup \(\pi_n(X) \) in \(\mathbb{Z}_p^\times \).

Lemma 10. For any odd prime number \(p \) and two sets \(X,Y \in \mathcal{X}_p \) the inclusion \(X \subseteq Y \) holds if and only if \(i(Y) \) divides \(i(X) \).
For any odd prime number p, any $n \in \mathbb{N}$, and the number $a = 1 + p^n$ we have $\overline{a^n} = 1 + p^n \mathbb{N}_0$ and $i(\overline{a^n}) = p^n(p - 1)$.

Proof. Observe that for any $k < p$ we have $a^k = (1 + p^n)^k \in 1 + kp^n + p^{n+1} \mathbb{Z} \neq 1 + p^{n+1} \mathbb{Z}$ and $a^n = (1 + p^n)p \in 1 + p^{n+1} \mathbb{Z}$, which means that the element $\pi_{n+1}(a)$ has order p in the group $\mathbb{Z}^{\times}_{p^{n+1}}$. By Lemma 11

$$\overline{a^n} = \pi_{n+1}^{-1}(\{a^k + p^{n+1} \mathbb{Z} : 0 \leq k < p\}) = \bigcup_{k=0}^{p-1}(a^k + p^{n+1} \mathbb{N}_0) = 1 + p^n \mathbb{N}_0.$$

Also $i(\overline{a^n}) = |\mathbb{Z}^{\times}_{p^{n+1}}|/p = p^n(p - 1)$. □

Lemmas 8, 9, and 11 imply that for an odd p, the poset \mathcal{X}_p is order isomorphic to the set

$$D_p = \{d \in \mathbb{N} : d \text{ divides } p^n(p - 1) \text{ for some } n \in \mathbb{N}\},$$

described with the divisibility relation.

An element t of a partially ordered set (X, \leq) is called a **chain** if its upper set $\uparrow t = \{x \in X : x \geq t\}$ is a chain. It is easy to see that the set of **chain** elements of the poset D_p coincides with the set $\{p^n(p - 1) : n \in \mathbb{N}_0\}$ and hence is a well-ordered chain with the smallest element $(p - 1)$.

Below on the Hasse diagrams of the posets D_3 and D_5 (showing that these posets are not order isomorphic) the **chain** elements are drawn with the bold font.

![Hasse diagrams](image)

Lemmas 9, 10, and the isomorphism of the posets \mathcal{X}_p and D_p imply the following lemma.

Lemma 12. For an odd prime number p, the family $\{1 + p^n \mathbb{N}_0 : n \in \mathbb{N}\}$ coincides with the linearly ordered set of **chain** elements of the poset \mathcal{X}_p.

Now we reveal the order structure of the poset \mathcal{X}_2. This poset consists of the closures $\overline{a^n}$ in the 2-adic topology of the sets a^n for non-zero odd numbers $a > 1$.

Lemma 13. Let $a \in \mathbb{N}$ and $X = a^n$.

1. If $a \in 1 + 4 \mathbb{N}$, then $a^n = 1 + 2^{n(x)-2} \mathbb{N}_0$.

![Hasse diagram](image)
Lemma 14. If $a \in 3 + 4\mathbb{N}$, then $a^{16} = (1 + 2^{n(X)-1}N_0) \cup (-1 + 2^{n(X)-2} + 2^{n(X)-1}N_0)$.

In both cases, $i(X) = 2^{n(X)-3}$.

Proof. Lemma 8 and the definition of the number $n(X)$ imply that the projection $C_X := \pi_{n(X)}(X) = \pi_{n(X)}(\mathbb{N})$ is a cyclic subgroup of order 4 of the group $\mathbb{Z}_{2^n(X)}$, and that $X = \pi_{n(X)}^{-1}(C_X)$.

By the Gauss Lemma 4, $M_X = \{1 + 4k + 2^{n(X)} \mathbb{Z} \mid 0 \leq k < 2^{n(X)}-2\}$ is a maximal cyclic subgroup of $\mathbb{Z}_{2^n(X)}$. If $a \in 1 + 4\mathbb{N}$, the subgroup generated by $\pi_{n(X)}(a)$ is contained in M_X. Then $C_X = \{1 + k \cdot 2^{n(X)-2} + 2^{n(X)} \mathbb{Z} \mid 0 \leq k < 4\}$ and $X = \pi_{n(X)}^{-1}(C_X) = 1 + 2^{n(X)-2} \mathbb{Z}$.

If $a \in 3 + 4\mathbb{N}$, then C_X is not contained in M_X. By Gauss Lemma 4 again, the unique cyclic subgroup of $\mathbb{Z}_{2^n(X)}$ of order 4 not contained in M_X is generated by an element g of $\mathbb{Z}_{2^n(X)}$ such that $-g$ generates the cyclic subgroup of M_X of order 4. Therefore,

$C_X = \{1 + 2^{n(X)} \mathbb{Z}, 1 + 2^{n(X)-1} + 2^{n(X)} \mathbb{Z}, -1 + 2^{n(X)-2} + 2^{n(X)} \mathbb{Z}, -1 + 2^{n(X)-2} + 2^{n(X)-1} + 2^{n(X)} \mathbb{Z}\}$.

The first two elements, lifted to \mathbb{Z}, give the sequence $1 + 2^{n(X)-1} \mathbb{N}$, while the last two give $-1 + 2^{n(X)-2} + 2^{n(X)-1} \mathbb{N}$. Hence, X is their union. \square

Lemma 14. For every $n \geq 2$

1. the set $X = (1 + 2^n)^N \in X_2$ coincides with $1 + 2^n \mathbb{N}_0$ and has $i(X) = 2^{n-1}$;
2. the set $Y = (-1 + 2^n)^N \in X_2$ coincides with $(1 + 2^{n+1} \mathbb{N}_0) \cup (2^n - 1 + 2^{n+1} \mathbb{N}_0)$ and has $i(Y) = 2^n$.

Proof. 1. Observe that for every $k < 4$ we have $(1 + 2^n)^k \in 1 + k2^n + 2^{n+2} \mathbb{Z} \neq 1 + 2^{n+2} \mathbb{Z}$ and $(1 + 2^n)^4 \in 1 + 2^{n+2} \mathbb{Z}$, which means that the element $(1 + 2^n)^k + 2^{n+2} \mathbb{Z}$ has order 4 in the group $\mathbb{Z}_{2^{n+2}}^\times$. Then the element $X = (1 + 2^n)^N \in X_2$ has $n(X) = n + 2$ and hence $X = 1 + 2^n \mathbb{N}_0$ and $i(X) = 2^{n(X)-3} = 2^{n-1}$ by Lemma 13.

2. Also for every $k < 4$ we have $(-1 + 2^n)^k \in (-1)^k + k2^n + 2^{n+2} \mathbb{Z} \neq 1 + 2^{n+2} \mathbb{Z}$ and $(-1 + 2^n)^4 \in 1 + 2^{n+2} \mathbb{Z}$, which means that the element $(-1 + 2^n)^k + 2^{n+2} \mathbb{Z}$ has order 4 in the group $\mathbb{Z}_{2^{n+2}}^\times$. Then the element $Y = (-1 + 2^n)^N \in X_2$ has $n(Y) = n + 2$ and hence $Y = (1 + 2^{n+1} \mathbb{N}_0) \cup (2^n - 1 + 2^{n+1} \mathbb{N}_0)$ and $i(Y) = 2^n(Y)-3 = 2^n$ by Lemma 13. \square

Lemma 15. For distinct sets $X, Y \in X_2$, the inclusion $X \subset Y$ holds if and only if $X \subseteq 1 + 4\mathbb{N}_0$ and $i(Y) < i(X)$.

Proof. If $X \subseteq 1 + 4\mathbb{N}_0$, then by Lemma 13, $X = 1 + 2^{n(X)-1} \mathbb{N}_0$. If $i(Y) < i(X)$, then $n(Y) < n(X)$, and thus by Lemma 13 we get $Y \supset 1 + 2^{n(X)-1} \mathbb{N}_0$ (i.e., $Y \supset X$) both if Y is contained in $1 + 4\mathbb{N}_0$ or if it is not.

Conversely, if $X \subset Y$, the claim follows by writing explicitly X and Y through Lemma 13 \square

Lemmas 14 and 15 imply:

Lemma 16. The family $\min X_2 = \{X \in X_2 : X \not\subseteq 1 + 8\mathbb{N}_0\}$ coincides with the set of minimal elements of the poset X_2 and the set $X_2 \setminus \min X_2 = \{X \in X_2 : X \subseteq 1 + 8\mathbb{N}_0\}$ is linearly ordered and coincides with the set $\{1 + 2^n \mathbb{N}_0 : n \geq 3\}$.
The Hasse diagram of the poset X_2

Lemma 17. For any homeomorphism h of the Golomb space \mathbb{N}_τ and any $n \in \{1, 2, 3\}$ we have $h(n) = n$.

Proof.
1. The equality $h(1) = 1$ follows from Lemma 8(1).

2. By Lemma 7, h induces an order isomorphism of the posets X_2 and $X_{h(2)}$. By Lemma 14 the set $\{(−1 + 2^n)\mathbb{N} : n \geq 2\}$ is an infinite antichain in the poset X_2. Consequently, the poset $X_{h(2)}$ also contains an infinite antichain. On the other hand, for any odd prime number p the poset X_p is order-isomorphic to the poset D_p, which contain no infinite antichains. Consequently, $X_{h(2)}$ cannot be order isomorphic to X_p, and hence $h(2) = 2$.

3. By Lemma 8(2), $h(3)$ is a prime number, not equal to $h(2) = 2$. By Lemma 7, h induces an order isomorphism of the posets X_3 and $X_{h(3)}$. Then the posets D_3 and $D_{h(3)}$ also are order isomorphic. The smallest \uparrow-chain element of the poset D_3 is 2 and the set $\downarrow 2 = \{d \in D_3 : d \text{ divides } 2\}$ has cardinality 2. On the other hand, the smallest \uparrow-chain element of the poset $D_{h(3)}$ is $h(3) − 1$. Since the sets D_3 and $D_{h(3)}$ are order-isomorphic, the set $\downarrow (h(3) − 1) = \{d \in D_p : d \text{ divides } h(3) − 1\}$ has cardinality 2, which means that the number $h(3) − 1$ is prime. Observing that 3 is a unique odd prime number p such that $p − 1$ is prime, we conclude that $h(3) = 3$. □

Lemma 18. For any homeomorphism h of the Golomb space \mathbb{N}_τ, and any prime number p we have $h(1 + p^n\mathbb{N}_0) = 1 + h(p)^n\mathbb{N}_0$ for all $n \in \mathbb{N}$.

Proof. By Lemma 7 the homeomorphism h induces an order isomorphism of the posets X_p and $X_{h(p)}$.

If $p = 2$, then $h(p) = 2$ by Lemma 17. Consequently, h induces an order automorphism of the poset X_2 and hence h is identity on the well-ordered set $\{1 + 2^n\mathbb{N}_0 : n \geq 3\}$ of non-minimal elements of X_2. Consequently, $h(1 + 2^n\mathbb{N}_0) = 1 + 2^n\mathbb{N}_0$ for all $n \geq 3$.

Next, we show that $h(1 + 4\mathbb{N}_0) = 1 + 4\mathbb{N}_0$. Observe that for the smallest non-minimal element $9\mathbb{N} = 1 + 8\mathbb{N}_0$ of X_2 there are only two elements $5\mathbb{N} = 1 + 4\mathbb{N}_0$ and $3\mathbb{N} = (1 + 8\mathbb{N}_0) \cup (3 + 8\mathbb{N}_0)$, which are strictly smaller than $9\mathbb{N}$ in the poset X_2. Then $h(5\mathbb{N}) \in \{3\mathbb{N}, 5\mathbb{N}\}$. By Lemma 17, $h(3) = 3$ and hence $h(3\mathbb{N}) = 3\mathbb{N}$, which implies that $h(1 + 4\mathbb{N}_0) = h(5\mathbb{N}) = 5\mathbb{N} = 1 + 4\mathbb{N}_0$.

Now assume that p is an odd prime number. Since $h(2) = 2$, the prime number $h(p) ≠ h(2) = 2$ is odd. By Lemma 12 the well-ordered sets $\{1 + p^n\mathbb{N}_0 : n \in \mathbb{N}\}$ and $\{1 + h(p)^n\mathbb{N}_0 : n \in \mathbb{N}\}$ coincide with the sets of \uparrow-chain elements of the posets X_p and $X_{h(p)}$, respectively. Taking into account that h is an order isomorphism, we conclude that $h(1 + p^n\mathbb{N}_0) = 1 + h(p)^n\mathbb{N}_0$ for every $n \in \mathbb{N}$. □
In this section we present the proof of Theorem 1. Given any homeomorphism \(h \) of the Golomb space \(\mathbb{N}_r \), we need to prove that \(h(n) = n \) for all \(n \in \mathbb{N} \). This equality will be proved by induction.

For \(n \leq 3 \) the equality \(h(n) = n \) is proved in Lemma 17. Assume that for some number \(n \geq 4 \) we have proved that \(h(k) = k \) for all \(k < n \). For every prime number \(p \) let \(\alpha_p \) be the largest integer number such that \(p^{\alpha_p} \) divides \(n - 1 \) (so, \(\alpha_p = t_p(n-1) \)). For every \(p \in \Pi_{n-1} \) we have \(p \leq n - 1 \) and hence \(h(p) = p \) (by the inductive hypothesis). Then \(h(\Pi_{n-1}) = \Pi_{n-1} \) and \(h(\Pi \setminus \Pi_{n-1}) = \Pi \setminus \Pi_{n-1} \).

Observe that \(n \) is the unique element of the set
\[
\bigcap_{p \in \Pi} (1 + p^{\alpha_p} N_0) \setminus (1 + p^{\alpha_p+1} N_0).
\]

By Lemma 18, \(h(n) \) coincides with the unique element of the set
\[
\bigcap_{p \in \Pi} (1 + h(p)^{\alpha_p} N_0) \setminus (1 + h(p)^{\alpha_p+1} N_0) =
\left(\bigcap_{p \in \Pi_{n-1}} (1 + h(p)^{\alpha_p} N_0) \setminus (1 + h(p)^{\alpha_p+1} N_0) \right) \cap \left(\bigcap_{p \in \Pi \setminus \Pi_{n-1}} N \setminus (1 + h(p) N_0) \right) =
\left(\bigcap_{p \in \Pi_{n-1}} (1 + p^{\alpha_p} N_0) \setminus (1 + p^{\alpha_p+1} N_0) \right) \cap \left(\bigcap_{p \in \Pi \setminus \Pi_{n-1}} N \setminus (1 + p N_0) \right) = \{ n \}
\]
and hence \(h(n) = n \).

References

[1] T. Banakh, Is the Golomb countable connected space topologically rigid? (https://mathoverflow.net/questions/285557).
[2] T. Banakh J. Mioduszewski, S. Turek, On continuous self-maps and homeomorphisms of the Golomb space, Comment. Math. Univ. Carolin. 59:4 (2018) 423442.
[3] M. Brown, A countable connected Hausdorff space, Bull. Amer. Math. Soc. 59 (1953), 367. Abstract #423.
[4] P.L. Clark, N. Lebowitz-Lockard, P. Pollack, A Note on Golomb topologies, Quaestiones Mathematicae 42:1 (2019) 73–86.
[5] C.F. Gauss, Disquisitiones Arithmeticae, Springer, New York, 1986.
[6] S. Golomb, A connected topology for the integers, Amer. Math. Monthly 66 (1959), 663–665.
[7] S. Golomb, Arithmetica topologica, in: General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961), Academic Press, New York; Publ. House Czech. Acad. Sci., Prague (1962) 179–186; available at https://dml.cz/bitstream/handle/10338.dmlcz/700933/Toposym_01-1961-1_41.pdf.
[8] K. Ireland, M. Rosen, A classical introduction to modern number theory, GTM 84, Springer-Verlag, New York, 1990.
[9] G.A. Jones, J.M. Jones, Elementary Number Theory, Springer, 2012.
[10] J. Knopfmacher, Š. Porubský, Topologies related to arithmetical properties of integral domains, Expo. Math. 15 (1997), 131–148.
[11] D. Robinson, A course in the theory of groups, GTM 80, Springer-Verlag, New York, 1996.
[12] D. Spirito, The Golomb topology on a Dedekind domain and the group of units of its quotients, preprint (https://arxiv.org/abs/1906.09922).
[13] D. Spirito, The Golomb topology of polynomial rings, preprint (https://arxiv.org/abs/1911.02328).
[14] L.A. Steen, J.A. Seebach, Jr. Counterexamples in Topology, Dover Publications, Inc., Mineola, NY, 1995.
[15] P. Szczyka, The connectedness of arithmetic progressions in Furstenberg’s, Golomb’s, and Kirch’s topologies, Demonstratio Math. 43:4 (2010), 899–909.
[16] P. Szczyka, The Darbou property for polynomials in Golomb’s and Kirch’s topologies, Demonstratio Math. 46:2 (2013), 429–435.

T.Banakh: Ivan Franko National University of Lviv (Ukraine) and Jan Kochanowski University in Kielce (Poland)
E-mail address: t.o.banakh@gmail.com

D.Spirito: Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Roma (Italy)
E-mail address: spirito@mat.uniroma3.it

S.Turek: Cardinal Stefan Wyszyński University in Warsaw (Poland)
E-mail address: s.turek@uksw.edu.pl