Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Potential benefits of patchouli alcohol in prevention of human diseases: A mechanistic review

Hee-Seop Lee, Jihye Lee, Dmitriy Smolensky, Seong-Ho Lee

1. Introduction

Patchouli alcohol (PA), a tricyclic sesquiterpene, is a dominant bioactive component in oil extracted from the aerial parts of Pogostemon cablin (patchouli). Diverse beneficial activities have been reported, including anti-influenza virus, anti-depressant, anti-nociceptive, vasorelaxation, lung protection, brain protection, anti-ulcerogenic, anti-colitis, pre-biotic-like, anti-inflammatory, anti-cancer and protective activities against metabolic diseases. However, detailed mechanistic studies are required to explore the possibility of developing PA as a functional food material or promising drug for the prevention and treatment of human diseases. This review highlights multiple molecular targets and working mechanisms by which PA mediates health benefits.

Keywords: Patchouli alcohol, Health benefits, Biological mechanisms

A B S T R A C T

Patchouli alcohol (PA), a tricyclic sesquiterpene, is a dominant bioactive component in oil extracted from the aerial parts of Pogostemon cablin (patchouli). Diverse beneficial activities have been reported, including anti-influenza virus, anti-depressant, anti-nociceptive, vasorelaxation, lung protection, brain protection, anti-ulcerogenic, anti-colitis, pre-biotic-like, anti-inflammatory, anti-cancer and protective activities against metabolic diseases. However, detailed mechanistic studies are required to explore the possibility of developing PA as a functional food material or promising drug for the prevention and treatment of human diseases. This review highlights multiple molecular targets and working mechanisms by which PA mediates health benefits.
liver and gut microbiota have come under investigation [26–29]. However, despite these diverse beneficial effects, there is a lack of preclinical and clinical studies for the use of PA in the treatment of human diseases. The present review focuses on the health functionalities of PA in diverse disease models to provide evidence and insight for further studies exploring the possibility of using PA in new drug or functional food material development. The present review was carried out using online search engines including Pubmed, Google Scholar and ScienceDirect.

2. Health beneficial effects of PA

2.1. Activities of PA in immune system

2.1.1. Anti-influenza virus activity

Influenza A epidemics include the 1918 Spanish flu (H1N1), 1957 Asian flu (H2N2), 1968 Hong Kong flu (H3N2) and 2009 swine-origin flu (H1N1pdm09) [30]. To combat influenza infections in the future, safe and effective agents without adverse effects need to be developed, for which PA might be a promising candidate. The known anti-influenza virus activity of PA is summarized in Table 1. Wu et al. [12] reported that PA showed anti-influenza A virus (A/Leningrad/134/17/1957, H2N2-type) activity (IC50 = 4.03 μM) and increased the survival rate of virus-infected mice. Additionally, they suggested that PA may inhibit neuraminidase (NA), one of the viral surface proteins, by binding to NA residues Asp151, Arg152, Glu119, Glu276 and Try406, as identified through a molecular docking study. On the other hand, it has been confirmed that PA has no effect on NA activity in H1N1 type-influenza A viruses (A/FM/1/47 and A/Virginia/ATCC1/2009) [11,31]. A study by Li et al. [13] demonstrated that oral administration of PA (20, 40 and 80 mg/kg/day) significantly increased survival in mice infected with lethal doses of influenza A virus (A/FM/1/47). In addition, oral administration of PA in a nonlethal-dose infection model protected from pulmonary injuries through increasing antibodies to the influenza A virus (IgA, IgM and IgG), enhancing CD3+ and CD4+ T cells in blood and decreasing inflammatory cytokines such as TNFα and enhancing immune regulatory cytokines such as IL-10 and IFNγ in blood and the lung. Wu et al. [10] likewise investigated the anti-virus activity of PA against influenza A virus (A/FM/1/47) in human respiratory epithelial cells (16HBE) co-cultured with dendritic cells, macrophages, or monocytes, and found that PA reversed virus-induced increases in cytokine production (IL-4 and IFNγ), indicating that PA attenuated the cellular immune responses. Yu et al. [11] found that PA may inhibit influenza A (H1N1 type) infection through interacting directly with viral particles and interfering with viral entry into the host cell and multiplication at early stage via inhibition of the PI3K/Akt pathway and ERK/MAPK signaling, which play roles in viral invasion and the viral life cycle. Moreover, intranasal administration of PA (20 and 40 μg/kg) attenuated infection-induced pneumonia symptoms and infiltration of inflammatory cells in the lung. Most recent review article by Huang et al. [32] suggested that PA could be a potential Chinese herbal medicine candidate for targeting three types of proteins (host cell surface protein, ACE2; viral surface protein, Spike protein; viral proteases, 3CLpro and PLpro; viral RNA polymerase, RdRp) of a novel coronavirus (SARS-COV-2), as predicted by in silico molecular docking study. Currently, the epidemic disease caused by SARS-COV-2 (known

Function	Study (year published)	Type of study	Model	Dosage & duration of PA	Outcomes of PA treatment
Anti-influenza virus activity	Wu et al. (2011) [12]	In vivo	MDCK cell	– 72 h	– IC50 to inhibit H2N2 (4.03 μM)
		In vivo	Survival study	– 1 and 5 mg/kg/day (p.o)	– Survival rate↑
		In silico	Molecular docking study	– 5 days	– N/A
	Li et al. (2012) [13]	In vivo	Survival study at lethal level	– 20, 40, and 80 mg/kg/day (p.o)	– Survival rate against H1N1 infection↑
		In vivo	H1N1 infection at non-lethal level	– 7 days	– Anti-influenza A virus IgA, IgM, and IgG level in serum↑
		In vivo	Co-culture of 16HBE cells with immune cells	– 10 μg/mL	– CD3+ and CD4+ T cell in blood↑
	Wu et al. (2013) [10]	In vivo	MDCK cells	– 24 h	– IL-10 and IFN-γ level in serum and lung↑
		In vivo	Pretreatment for 1 h before infection	– 6.25–50 μg/mL	– TNFα level in serum and lung↑
	Yu et al. (2019) [11]	In vivo	MDCK cells	– 2 h (post adsorption)	– IL-4 and IFNγ↑
		In vivo	Influenza A virus (H1N1) infection	– 20 and 40 μg/day (i.n)	– PI3K/Akt and ERK activation↑

IC50, concentration to inhibit viral infection by 50%; NA, neuraminidase; p.o, per os; i.n, intranasal administration.
as COVID-19) is spreading rapidly and globally, with the World Health Organization (WHO) having declared a global pandemic in March 2020 [33]. Thus, the inhibitory effect and efficacy of PA against SARS-COV-2 and its mechanism of action need to be investigated for use in global healthcare efforts against COVID-19.

2.1.2. Anti-inflammatory activity

In the anti-inflammatory activities of PA are summarized in Table 2. In lipopolysaccharide (LPS)-induced RAW264.7 cells, PA attenuated inflammatory response by reducing NO production and inflammatory cytokine production (iNOS, PGE2, COX-2, TNFα, IL-1β and IL6) [16], while it improved xylene/carrageenan-induced edema by reducing production of NO and pro-inflammatory cytokines (TNFα and IL-1β) in a mouse model [15]. Jeong et al. [14] demonstrated in LPS-treated RAW264.7 cells and TNFα-treated HT29 cells that PA exerts anti-inflammatory activity through suppressing iNOS degradation as well as the nuclear translocation and transcriptional activity of NF-κB via inhibition of ERK activation. According to an in vivo study [17], oral administration of PA (80 mg/kg) fortified humoral immune response, as evidenced by increased phagocytic activity and circulating serum IgM and IgG, resulting in improved thymus and spleen indexes. In addition, PA administration suppressed cell-mediated immune responses in a 2,4-dinitro-chlorobenzene (DNCB)-induced delayed-type hypersensitivity (DTH) model using Kunming mice. These findings suggest that PA can exert an anti-inflammatory effect through suppressing inflammatory response via inactivation of the NF-κB pathway and cell-mediated immune response as well as by enhancing humoral immunity. In the LPS-induced acute lung injury animal model, PA (10, 20 and 40 mg/kg) attenuated histological observation, neutrophil infiltration and inflammatory response through inhibiting NF-κB activation [25]. Furthermore, an in silico molecular docking study identified that PA might act as a COX-1 inhibitor [34]. According to this theoretical study, PA can bind to active sites of COX-1, including Leu223B, Asp228B, Leu237B, Arg332B, Trp138A, Glu139A, Ser142A and Asn143A. These bindings can be maintained by hydrogen bonds with Ser142A, Glu139A and Asp228B. However, COX-1 inhibition by PA requires further testing in experimental in vitro and in vivo models.

A recent study identified that PA acts as a pregnane X receptor (PXR) agonist and inhibits inflammatory response through PXR-mediated inactivation of the NF-κB pathway in vitro and in vivo models [21]. PXR is highly expressed in the intestinal epithelium and the liver, and it regulates transcription of genes involved in the xenobiotic detoxification and transport pathway [35]. PXR can inhibit NF-κB signaling, which signaling results in pro-inflammatory cytokine production [36]. According to a study by Zhang et al. [21] using hPXR-overexpressing human embryonic kidney cells (HEK293T) and endogenously hPXR-expressing human colon cancer cells (LS174T), PA treatment increased the nuclear translocation of PXR, consequently enhancing expression of an hPXR target gene (CYP3A4) through activation of CYP3A4 promoter activity. PA was also shown to induce CYP3A11 gene expression in mouse primary hepatocytes by activating mPXR signaling. Notably, the suppressive effect of PA on NF-κB activation was enhanced in hPXR-overexpressing LS174T cells and reversed in hPXR-silencing LS174T cells. In a dextran sulfate sodium (DSS)-induced colitis mouse model, PA attenuated colitis symptoms such as body weight loss, bloody diarrhea, colon shortening, immune cell infiltration, and colon injury through suppressing the inflammatory response via inhibition of NF-κB activity as a result of up-regulated mPXR activity. The effects of PA against DSS-induced colitis were reversed by pharmacological mPXR inhibition using the mPXR-specific inhibitor

Table 2

Summary of anti-inflammatory activity of PA.	Function	Study (year published)	Type of study	Model	Dosage & duration of PA	Outcomes of PA treatment
Anti-inflammatory activity	Li et al. (2011)	in vivo	LPS-treated RAW264.7 cells	10, 20, 40 μM	Production of NO & PGE2↓	
				24 h	Inflammatory cytokines↓	
				10, 20, 40 mg/kg (p.o)	Xylene-induced ear edema↓	
					Single injection (1 h before induction edema)	
	Jeong et al. (2013)	in vivo	LPS-treated RAW264.7 cells and TNFα-treated HT29 cells	50, 75 μM	NF-κB activation↓	
				21 h	ERK activation↓	
					Phagocytic index↑	
					Humoral immunity↑(IgM, IgG)	
					Thymus index↑, Spleen index↑	
					DNCB-induced cell-mediated immune response↓	
					DSS-induced colonic inflammation↓	
					Total cells, Neutrophils, macrophages in BALF↓	
					Lung edema↓	
					Inflammatory cytokines in BALF↓	
					Lung injury observed in H&E staining↓	
					NF-κB activity↓	

LPS, lipopolysaccharide; NO, nitric oxide; PR, prednisone acetate; DNCB, 2, 4-dinitro-chlorobenzene; DTH, delayed-type hypersensitivity; PXR, pregnane X receptor; DSS, dextran sulfate sodium; BALF, bronchoalveolar lavage fluid; p.o, per os.
decreased inflammasome-related factors including IL-1β, TXNIP, pro-
productive enzymes (SOD, CAT and GSH-px) and survival signaling regulators
uction of inflammatory response. Regarding the molecular mechanism,
mitochondrial integrity [19]. In another study using in vitro model [38], PA restored H.
pro-inflammatory cytokine↓
mitochondriodyregulation, and intestinal mucous tissue injury induced by 5-FU treatment. Sig-
phylum level, PA treatment restored 5-FU-induced microbiota dysbiosis with PA administration. At phylum level, PA treatment re-
Liu et al. [18] demonstrated that PA has a protective effect against heat shock-induced injury in a rat intestinal epithelial cell line (IEC-6) through its anti-oxidative properties, as evidenced by downregulated oxidative stress markers (ROS and MDA) and upregulated anti-oxidative enzymes (SOD, CAT and GSH-px) and survival signaling regulators (Nrf2, Keap1 and HO-1). In an animal study, PA administration (10, 20 and 40 mg/kg) prevented 5-fluorouracil (5-FU)-induced intestinal mucositis via suppression of TLR2/MyD88-mediated NF-κB pathway activation [23]. Treatment with PA attenuated body weight loss, diarrhea and intestinal mucous tissue injury induced by 5-FU treatment. Significant inhibition of inflammatory response was detected with reduced cytokine production (TNFα, IL-1β and IL-6), along with nuclear translocation of NF-κB and IκB degradation through TLR2 downregulation. In addition, PA rescued 5-FU-induced intestinal mucosal barrier dysfunction, as evidenced by inhibited MLC phosphorylation and loss of tight junction proteins (ZO-1, occluding and claudin-1), which are good indications of improved intestinal permeability. Another interesting finding in this study is the improvement of 5-FU-induced microbiota dysbiosis with PA administration. At phylum level, PA treatment reversed both 5-FU-induced decrease in Firmicutes and increase in Proteobacteria. Particularly, probiotics (Bifidobacterium and Lactobacillus) were increased in abundance with PA treatment, but pathogenic bacteria (Bacteroides, Escherichia, Helicobacter, and Parabacteroides) were significantly decreased. Bifidobacterium and Lactobacilli are known as having beneficial effects in terms of inhibiting NF-κB activation, upregulating tight junction proteins and decreasing intestinal permeability.

2.2. Activities of PA in digestive system

2.2.1. Protective action of PA against gastritis

Gastric ulcers are considered to be one of the most common diseases in the world, and can be induced by chronic alcohol consumption, anti-
inflammatory response in DSS-induced colitis, and that PA was proposed as a promising agent for preventing or treating inflammatory bowel disease.

Function	Study (year published)	Type of study	Model	Dosage & duration of PA	Outcomes of PA treatment
Gastroprotection	Zheng et al. (2014)	in vivo	Ethanol-induced gastric ulcer	- 10, 20, 40 mg/kg (p.o)	- Ulcer area↓
				- Single administration 1 h prior to treatment ulcer	- Pro-inflammatory cytokine↓
	Xie et al. (2016)	in vitro	HPU-induced injury of GES-1 cells	- 5, 10, and 20 μM	- Oxidative stress↓
				- Pretreatment for 4 h prior to treatment HPU for 24 h	- Apoptosis↓
	Lian et al. (2018)	in vitro	H. pylori-infected GES-1 cells	- 5, 10, and 20 μg/ml	- Mitochondrial membrane potential↓
				- 24 h	- Inflammatory cytokine production↓
					- Inflammasome formation↓
					- Gastritis↓
					- Oxidative stress↓
					- Inflammatory cytokine production↓

HPU, H. pylori urease; NP-SH, non-protein sulphydryls; PGE2; prostaglandin E2; p.o, per os; i.p, intraperitoneal injection.

eicosanoids by administering PA plays a pivotal role in inhibiting the NF-κB-mediated inflammatory response in DSS-induced colitis, and that PA was proposed as a promising agent for preventing or treating inflammatory bowel disease.

2.2.2. Protective effects of PA in intestinal disease and microbiota

The prevalence of intestinal bowel disease (IBD) is continuously increasing in Western countries, and the incidence of IBD is also rapidly increasing in newly industrialized countries. In addition, it is well known that the intestinal microbiome plays an important role in the pathogenesis of IBD [40]. PA has abilities to attenuate inflammatory intestinal injury and maintain gut microbiota homeostasis (Table 4). Liu et al. [18] demonstrated that PA has a protective effect against heat shock-induced injury in a rat intestinal epithelial cell line (IEC-6) through its anti-oxidative properties, as evidenced by downregulated oxidative stress markers (ROS and MDA) and upregulated anti-oxidative enzymes (SOD, CAT and GSH-px) and survival signaling regulators (Nrf2, Keap1 and HO-1). In an animal study, PA administration (10, 20 and 40 mg/kg) prevented 5-fluorouracil (5-FU)-induced intestinal mucositis via suppression of TLR2/MyD88-mediated NF-B pathway activation [23]. Treatment with PA attenuated body weight loss, diarrhea and intestinal mucous tissue injury induced by 5-FU treatment. Significant inhibition of inflammatory response was detected with reduced cytokine production (TNFα, IL-1β and IL-6), along with nuclear translocation of NF-κB and IκB degradation through TLR2 downregulation. In addition, PA rescued 5-FU-induced intestinal mucosal barrier dysfunction, as evidenced by inhibited MLC phosphorylation and loss of tight junction proteins (ZO-1, occluding and claudin-1), which are good indications of improved intestinal permeability. Another interesting finding in this study is the improvement of 5-FU-induced microbiota dysbiosis with PA administration. At phylum level, PA treatment reversed both 5-FU-induced decrease in Firmicutes and increase in Proteobacteria. Particularly, probiotics (Bifidobacterium and Lactobacillus) were increased in abundance with PA treatment, but pathogenic bacteria (Bacteroides, Escherichia, Helicobacter, and Parabacteroides) were significantly decreased. Bifidobacterium and Lactobacilli are known as having beneficial effects in terms of inhibiting NF-κB activation, upregulating tight junction proteins and decreasing intestinal permeability.

Table 3
Summary of protective effects of PA against gastric injuries.

Function Study (year published)	Type of study	Model	Dosage & duration of PA	Outcomes of PA treatment	
Gastroprotection Zheng et al. (2014)	in vivo	Ethanol-induced gastric ulcer	- 10, 20, 40 mg/kg (p.o)	- Ulcer area↓	
			- Single administration 1 h prior to treatment ulcer	- Pro-inflammatory cytokine↓	
	Xie et al. (2016)	in vitro	HPU-induced injury of GES-1 cells	- 5, 10, and 20 μM	- Oxidative stress↓
			- Pretreatment for 4 h prior to treatment HPU for 24 h	- Apoptosis↓	
	Lian et al. (2018)	in vitro	H. pylori-infected GES-1 cells	- 5, 10, and 20 μg/ml	- Mitochondrial membrane potential↓
			- 24 h	- Inflammatory cytokine production↓	
				- Inflammasome formation↓	
				- Gastritis↓	
				- Oxidative stress↓	
				- Inflammatory cytokine production↓	
In a study that performed metabolomics analysis using a DSS-induced colitis animal model, PA attenuated acute colitis through inhibition of tryptophan catabolism by decreasing and an increase of disease activity. More broadly, pharmacological inhibition of IDO-1 attenuates DSS-induced colitis [50], while deletion of TPH1 in mice ameliorates colitis symptoms; supplementation of TPH1 (-/-) mice with 5-HTP results in more severe colitis [51]. These findings indicate that inhibition of TPH1 and IDO-1 and suppression of 5-HTP synthesis by PA administration contributed to improving DSS-induced colitis; however, it remains to be elucidated how PA regulates the tryptophan metabolism-mediated inflammatory response and cell death pathway.

2.3. Activities of PA in nervous system

2.3.1. Anti-depressant-like activity

According to a report released by the WHO, approximately 4.4% of people worldwide live with depression, and regulating the depression is essential for their mental health [52]. Essential oils extracted from plant materials have been used in aromatherapy for the purpose of releasing depression [53]. In an experimental depressant animal model PA, a major component in patchouli essential oil, has anti-depressant-like activity via mTOR pathway activation (Table 5) [54]. Specifically, this study found PA to attenuate chronic unpredictable mild stress (CUMS)-induced depressant-like behaviors through phosphorylation of mTOR and its downstream regulators (4E-BP1 and p70S6K), consequently upregulating synaptic proteins (PSD-95 and SYN-1) and down-regulating autophagy marker proteins (LC3-II and p62) in the hippocampus. In addition, these activities were reversed by treatment with 5-FU, 5-fluorouracil; DSS, dextran sulfate sodium; LPS, lipopolysaccharide; p.o, per os; i.p, intraperitoneal injection; SCFAs, short-chain fatty acids.

Function	Study (year published)	Type of study	Model	Dosage & duration of PA	Outcomes of PA treatment
Intestinal protection	Liu et al. (2016) [18]	In vitro	Heat shock-induced IEC-6 cells	~ 10, 40, 80 ng/mL. – 3 h before heat shock	– Heat shock stress ↓
				~ 7 days	– Oxidative stress ↓
					– Survival signal ↓
	Wu et al. (2020) [23]	In vivo	5-FU-induced intestinal mucositis	~ 10, 20, 40 mg/kg/day (p.o) – 7 days	– Intestinal epithelium damage ↓
					– Inflammatory cytokines ↓
					– TLR2-MyD88-NF-κB pathway ↓
					– Intestinal mucosal barrier dysfunction ↓
					– Mucin-2 synthesis and secretion ↑
					– Gut microbiota dysbiosis ↑
					– Gut epithelial barrier function ↑
					– Colonic apoptosis and necroptosis ↓
					– Tryptophan catabolism and metabolism ↑
Qu et al. (2017) [22]	In vivo	DSS-induced colitis	~ 10, 20, 40 mg/kg/day (p.o) – 7 days	– Survival signal ↑	
Prebiotics-like effect	Leong et al. (2019) [28]	In vivo	Mice	~ 20 mg/kg/day (p.o) – 15 days	– Survival signal ↑
					– Oxidative stress ↓
					– Heat shock stress ↓
					– Inflammatory response ↓
					– Survival signal ↑
Table 4					– Oxidative stress ↓

5-FU, 5-fluorouracil; DSS, dextran sulfate sodium; LPS, lipopolysaccharide; p.o, per os; i.p, intraperitoneal injection; SCFAs, short-chain fatty acids.
Anti-depressant activity
Zhou et al. (2020) [54]
\[CUMS-treated SD rat \]
\[10, 20, 40 mg/kg \]
\[4 weeks \]
- Depressant-like behavior ↓
- mTOR pathway activation in hippocampus ↓
- Autophagy in hippocampus ↓
- Synaptic protein ↓

Anti-nociceptive effect
Yu et al. (2019) [57]
\[C17.2 and PC12 cells \]
\[5 μg/mL \]
\[3 h \]
- Intracellular Ca\(^{2+}\) ↓

Brain protection
Wei et al. (2018) [24]
\[Ischemia/reperfusion-induced brain injury \]
\[10, 20, 40 mg/kg (i.p) \]
\[Twice (0 h after reperfusion and 12 h later) \]
- Infarct volume & neurological deficit score ↓
- Blood brain barrier dysfunction ↓
- Brain edema ↓
- MMP9 in brain tissue ↓
- Inflammatory cytokines ↓
- MAPK activation ↓

CUMS, Chronic unpredictable mild stress; s.c, subcutaneous injection; i.p, intraperitoneal injection.

mTOR inhibitor (rapamycin), thus it is reasonable to speculate that activated mTOR mediates the anti-depressant-like activity of PA. This conclusion is further supported by evidence that the mTOR signaling pathway contributes to synapse formation and inhibition of hippocampal autophagy, and is inactivated in CUMS-treated mice [55]. In addition, the anti-depressant-like activity of PA is supported by an animal study demonstrating the PA-enriched dichloromethane extract of *Valeriana wallichii* to have anti-depressant-like activity evidenced by the increased neurotransmitters (norepinephrine and dopamine) level in forebrain [56].

2.3.2. Anti-nociceptive activity

Only one study has investigated the anti-nociceptive activity of PA, using both *in vivo* and *in vitro* models (Table 5) [57]. In acetic acid-induced writhing tests using mice, PA (200 mg/kg for 30 min) prolonged the writhing period and decreased the frequency of writhing action, indicating that PA reduced the response to visceral pain. This was accompanied by reduced production of inflammatory cytokines (TNFα, IL-1β, COX2 and NF-κB) in the brains of the treated mice. In plantar formalin-induced allodynia tests, PA reduced plantar licking time, indicating that treatment of PA reduced response to plantar pain. In addition, PA significantly reduced Ca\(^{2+}\) influx in mouse cerebellum stem cells (C17.2) and pheochromocytoma cells (PC12) derived from rat adrenal glands. Further support comes from a report that Ca\(^{2+}\) influx is closely associated with neurotransmitter release and cell membrane excitability modulation [58]. Finally, a study demonstrated that the essential oil extracted from *Valeriana wallichii* DC showed anti-analgesic activity with the decreased writhing time in acetic acid-induced writhing test; PA was identified a main component of this essential oil, supporting the anti-nociceptive activity of PA [59].

2.3.3. Protective effect against acute brain injury

In an ischemia/reperfusion (IR)-induced cerebral injury animal model, PA not only improved brain edema, blood-brain barrier dysfunction and MMP-9 expression in brain tissue, but also suppressed inflammatory cytokine production via inhibition of MAPK activation [24].

2.4. Vasorelaxation activity

Ichikawa K et al. [60] found that PA showed vasorelaxation activity for the first time. In the study, PA exhibited inhibitory activity on Ca\(^{2+}\)-induced contraction of rat aorta with IC\(_{50}\) of 4.7 × 10\(^{-5}\) M. Hu et al. [61] demonstrated PA to have vasorelaxant activity through blocking extracellular Ca\(^{2+}\) influx via voltage-dependent Ca\(^{2+}\) channels (VDCCs) and receptor-operated Ca\(^{2+}\) channels (ROCCs) into vascular smooth muscle cells, and also blocking intracellular Ca\(^{2+}\) release from the sarcoplasmic reticulum via inositol triphosphate receptor (IP\(_{3}\))-and ryanodine receptor (RyR)-mediated Ca\(^{2+}\) channels (Table 6). Two different vasocontractants, KCl and phenylephrine (PHE), were used in this study; these molecules induce membrane polarization [62] and extracellular Ca\(^{2+}\) influx via activating ROCCs [63]. PA inhibited both KCl- and PHE-induced aorta contraction, indicating that PA might be a vasorelaxant due to its role as a Ca\(^{2+}\) channel antagonist. Notably, vascular smooth muscle cells widely have a and β receptors that play opposite roles in vasoconstriction (α-receptor, vasoconstriction; β-receptor, vasorelaxation) [64]. The β-receptor inhibitor propranolol did not affect the relaxant effect of PA, indicating that β-receptors are not involved in PA-induced vasorelaxation. This effect of PA on the vascular muscle cell contractile response could be a promising treatment option for hypertension or cardiovascular disease; however, a follow-up study is required to elucidate such beneficial effect in an animal disease model.

2.5. Anti-cancer activity of PA

The anti-cancer activities of PA are summarized in Table 6. PA inhibited the growth of non-small-cell lung cancer cells (A549) by inducing cell cycle arrest (G1/S phase arrest) and apoptosis through suppression of the EGFR-ERK signaling pathway [26]. In this study, the IC\(_{50}\) value of PA with respect to the proliferation of A549 cells was 79.8 μg/mL, however, that in normal human cells (L02, liver; HEK293T, embryonic kidney; HFL-1, lung) was more than 300 μg/mL, indicating that PA might be a safe anti-cancer agent with specific activity against non-small-cell lung cancer. In non-small-cell lung cancer, EGFR and its downstream signaling pathway play crucial roles in cell proliferation and oncogenesis [65]. PA-induced apoptosis and suppression of the EGFR pathway in A549 cells was reversed by treatment with exogenous EGF [26], indicating that the anti-proliferative activity of PA is dependent on blocking the EGFR-ERK signaling pathway. In another study, Yang et al. [66] reported that PA-induced A549 cell death was resulted from increased autophagosome formation and activity; however, neither molecular target nor mechanism was identified, and so both remain unclear. Anti-proliferative activity of PA was
observed in other types of human cancer cell lines, such as colorectal cancer (HCT116 and SW480), breast cancer (MCF7), pancreatic cancer (BxPC3) and prostate cancer (PC3) [67].

2.6. Preventive effect of PA on metabolic diseases

Metabolic diseases are a leading cause of death around the world and are closely associated with cancer [68]. There are several reports demonstrating the effect of PA against metabolic diseases (Table 6). In an atherosclerosis animal model fed an atherogenic diet for ten weeks, PA administration reversed plaque burden, macrophage infiltration and production of inflammatory cytokines such as IL-1β, IL-6, iNOS, CXCL9 and CXCL11 [69]. This anti-atherogenic activity seems to be due to downregulation of the chemottractant molecule MCP-1; however, the molecular mechanism of action of PA in pathophysiological aspects of atherogenesis requires further elucidation. Lee et al. [27] reported that PA suppressed adipogenesis and lipid accumulation in 3T3-L1 cells through suppressing PPARγ and C/EBPα and activating β-catenin. In mice fed a high-fat diet for 12 weeks, oral administration of PA (25 and 50 mg/kg body weight) decreased the weight of abdominal white adipose tissues (epididymal and retroperitoneal adipose tissue). In a fatty liver animal model using Sprague Dawley rats, oral administration of PA (10, 20 and 40 mg/kg body weight) for four weeks attenuated hepatic steatosis through not only suppressing endoplasmic reticulum (ER) stress by inactivating ER stress mediators (PERK, IRE1 and ATF6) but also regulating hepatic VLDL uptake by reducing VLDL receptor expression and elevating VLDL secretion [29]. These reports imply that PA can be used for the prevention or treatment of metabolic diseases as a dietary supplement or functional food material.

Table 6

Summary of vasorelaxation, anti-cancer and preventive effect of PA on metabolic diseases.

Function	Study (year published)	Type of study	Model	Dosage & duration of PA	Outcomes of PA treatment
Vasorelaxation	Hu et al. (2018) [61]	Ex vivo	Isolated rat thoracic aorta	– 100 μM	KCl- and PHE-induced contraction↓; Extracellular Ca2⁺-induced contraction↓; Endogenous Ca2⁺ release-induced contraction↓
Anti-cancer	Lu et al. (2016) [26]	In vivo	A549 cell	– 50, 70, 100 μg/ml; – For 48 h	A549 cell growth↓; Mitochondrial membrane permeability↑; Apoptosis↑; Cell cycle arrest↑; EGFR downstream signaling↓
	Yang et al. (2019) [66]	In vivo	A549 cells	– 150, 300 μM; – For 24 h	A549 cell growth↓; Autophagosome formation↑; Autophagosome activity↑; Cell proliferation↑
	Jeong et al. (2013) [67]	In vivo	Colon cancer cells	– 50, 70, 100 μM; – For 24 h	Growth of cancer cells (HCT116, SW480, MCF7, BaPC3, PC3); Cell cycle inhibition↑; NF-κB-mediated cell death↑
Anti-atherosclerosis	Wang et al. (2016) [69]	In vivo	Atherogenic diet-induced atherosclerosis	– 40 mg/kg/day (p.o); – 10 weeks	Plaque burden in aorta and aortic root↓; Macrophage infiltration in atherosclerotic plaque in aortic root↓ (Muc2-positive area↓); Macrophage recruitment↓; Inflammatory response↓
Anti-obesity	Lee et al. (2020) [27]	In vivo	3T3-L1 cells	– 12, 25, 50, 75, 100 μM; – 10 days	Lipid accumulation in mature adipocyte↓; Adipogenesis↓; Body weight gain↓, WAT weight↓
		In vivo	High fat diet-induced obesity	– 25, 50 mg/kg (p.o); – 3 times/week for 8 weeks	Lipid accumulation↓; Mitochondrial membrane permeability↑; Apoptosis↑
Anti-steatosis	Wu et al. (2019) [29]	In vivo	High fat diet-induced steatosis	– 10, 20, 40 mg/kg/day (p.o); – 4 weeks	Hepatic lipid accumulation↓; Hepatic oxidative stress↓; Mitochondrial membrane permeability↑; Apoptosis↑; Hepatic VLDL uptake↓; VLDL export ↑

PHE, Phenylephrine; EGFR, epidermal growth factor receptor; WAT, white adipose tissue; BAT, brown adipose tissue; ER, endoplasmic reticulum; VLDL, very low density lipoprotein; i.p, intraperitoneal injection; p.o, per os.

3. Conclusion

Emerging evidences concerning the bioactivity of PA in diverse experimental disease models supports that PA could be a promising therapeutic or preventive agent for a variety of acute and chronic human diseases, including influenza, depression, gastric disorder, inflammatory intestinal diseases, cancer and metabolic diseases (Fig. 2). Recently, molecular targets of PA have been reported in diverse experimental disease models supports that PA could be a promising multifunctional drug and thus a safe natural compound for preventing or treating human diseases.

Funding

This work is supported by USDA NIFA Hatch grant [MD-HNFS-9897] and USDA ARS grant [NACA 58-3020-7-034] to S-HL.

Author contributions

All authors participated in drafting and revising the article. All authors read and approved the final manuscript.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.intimp.2020.107056.

References

[1] A. Akhila, R. Tewari, Chemistry of patchouli oil: a review, Curr. Res. Med. Aroma. Plants (2004).
[2] A. Donelian, L. Carlson, T. Lopes, R. Machado, Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation, J. Supercrit. Fluids 48 (1) (2009) 15–20, https://doi.org/10.1016/j.supflu.2008.09.020.
[3] G. Mangol, S.H. Manohar, H.N. Murthy, Chemical constituents, antioxidant and antimicrobial activity of essential oil of Pogostemon paniculatus (Willd.), Nat. Prod. Res. 26 (22) (2012) 2152–2154, https://doi.org/10.1080/17486191.2011.633082.
[4] R.S. Verma, R.C. Padalia, A. Chauhan, V.R. Singh, Sesquiterpenoid rich essential oil from the leaves of Pogostemon patchouli pellet grown organically under tarai conditions, J. Essent. Oil-Bear. Plants 10 (2) (2007) 157–161, https://doi.org/10.1080/0972060X.2007.10643535.
[5] Y. Chen, Y. Wu, Y. Xu, J. Zhang, J. Song, G. Zhu, X. Hu, Dynamic accumulation of sesquiterpenes in essential oil of Pogostemon cablin, Rev. Bras. Farmacogn. 24 (6) (2014) 626–634, https://doi.org/10.1016/j.bjp.2014.11.001.
[6] B.C. Zhu, G. Henderson, Y. Yu, R.A. Laine, Toxicity and repellency of patchouli oil and patchouli alcohol against Formosan subterranean termites Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), J. Agr. Food Chem. 51 (16) (2003) 4585–4588, https://doi.org/10.1021/jf0300149.
[7] D. Kocorvský, M. Du, J. Kan, C. Jing, I. Lačanin, H. Pavlović, Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species, J. Food Sci. 78 (5) (2013) M731–M737, https://doi.org/10.1111/1750-3841.12118.
[8] D. Kocevski, M. Du, J. Kan, C. Jing, I. Lačanin, H. Pavlović, Antifungal effect of patchouli (Pogostemon cablin (Blanco) Benth.) influenced by irrigation, organic mulch and nitrogen application in semi-arid tropical climate, Ind. Crop. Prod. 16 (2) (2002) 101–107, https://doi.org/10.1016/S0926-6690(02)00013-4.
[9] M. Singh, S. Sharma, S. Ramesh, Herbage, oil yield and oil quality of patchouli [Pogostemon cablin (Blanco) Benth.] influenced by irrigation, organic mulch and nitrogen application in semi-arid tropical climate, Ind. Crop. Prod. 16 (2) (2002) 101–107, https://doi.org/10.1016/S0926-6690(02)00013-4.
[10] X. Wu, D. Ju, J. Chen, B. Yu, K. Liu, J. He, C. Dai, S. Wu, Z. Chang, Y. Wang, Immunologic mechanism of patchouli alcohol anti-H1N1 influenza virus may through regulation of the RLR signal pathway in vitro, Curr. Microbiol. 67 (4) (2013) 431–436, https://doi.org/10.1007/s00284-013-0381-y.
[11] Y. Yu, Y. Zhang, S. Wang, W. Liu, C. Hao, W. Wang, Inhibition effects of patchouli alcohol against influenza virus through targeting cellular PI3K/Akt and ERK/MAPK signaling pathways, Virol. J. 16 (1) (2019) 1–16, https://doi.org/10.1186/s12985-019-1266-x.
[12] H. Wu, B. Li, X. Wang, M. Jin, G. Wang, Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H1N2) virus, Molecules 16 (8) (2011) 6489–6501, https://doi.org/10.3390/molecules16086489.
[13] Y. Li, S. Peng, H. Chen, F. Zhang, P. Xu, J. Xie, J. He, J. Chen, X. Lai, Z. Su, Oral administration of patchouli alcohol isolated from Pogostemon Herba augments protection against influenza virus infection in mice, Int. Immunopharmacol. 12 (1) (2012) 294–301, https://doi.org/10.1016/j.intimp.2011.12.007.
[14] J.B. Jeong, Y.K. Shin, S.H. Lee, Anti-inflammatory activity of patchouli alcohol in RAW264.7 and HT-29 cells, Food Chem. Toxicol. 55 (2013) 229–233, https://doi.org/10.1016/j.fct.2012.12.062.
[15] Y. Li, Y. Xian, S. Ip, Z. Su, J. Su, J. He, Q. Xie, Lai, Z. Lin, Anti-inflammatory activity of patchouli alcohol isolated from Pogostemon Herba in animal models, Fitoterapia 82 (8) (2011) 1295–1301, https://doi.org/10.1016/j.fitote.2011.09.003.
[16] Y. Xian, Y. Li, S. Ip, Z. Lin, X. Lai, Z. Su, Anti-inflammatory activity of patchouli alcohol isolated from Pogostemon Herba in LPS-stimulated RAW264.7 macrophages, Exp. Ther. Med. 2 (3) (2011) 545–550, https://doi.org/10.3892/etm.2011.233.
[17] J.B. Liao, D.W. Wu, S.Z. Peng, J.H. Xie, Y.C. Li, J.Y. Su, J.N. Chen, Z.R. Su, Immunomodulatory potential of patchouli alcohol isolated from Pogostemon cablin (Blanco) Benth (Lamiaceae) in mice, Trop. J. Pharm. Res. 12 (4) (2013) 559–565, https://doi.org/10.4314/tjpr.v12i4.18.
[18] X. Liu, L. Jiang, F. Liu, Y. Chen, L. Xu, D. Li, Y. Ma, H. Li, J. Xu, Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells, Int. J. Hyperther. 32 (5) (2016) 474–482, https://doi.org/10.3109/02656736.2016.1147617.
[19] Y. Zheng, J. Xie, Y. Xu, Y. Liang, Z. Mo, W. Jiang, X. Chen, Y. Liu, X. Yu, P. Huang, Gastroprotective effect and mechanism of patchouli alcohol against ethanol, indomethacin and stress-induced ulcer in rats, Chem. Biol. Interact. 222 (2014) 27–36, https://doi.org/10.1016/j.cbi.2014.08.008.
[20] D. Lian, Y. Xu, W. Ren, L. Fu, F. Chen, L. Xu, D. Li, Y. Ma, H. Li, J. Xu, Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells, Int. J. Hyperther. 32 (5) (2016) 474–482, https://doi.org/10.3109/02656736.2016.1147617.
[21] Y. Cheng, Y. Wu, Y. Xu, J. Zhang, X. Song, G. Zhu, X. Hu, Dynamic accumulation of sesquiterpenes in essential oil of Pogostemon cablin, Rev. Bras. Farmacogn. 24 (6) (2014) 626–634, https://doi.org/10.1016/j.bjp.2014.11.001.
[22] B.C. Zhu, G. Henderson, Y. Yu, R.A. Laine, Toxicity and repellency of patchouli oil and patchouli alcohol against Formosan subterranean termites Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), J. Agr. Food Chem. 51 (16) (2003) 4585–4588, https://doi.org/10.1021/jf0300149.
Patchouli alcohol activates PXR and suppresses the NF-κB-mediated inflammatory J. Ethnopharmacol. 248 (2020) 112302, https://doi.org/10.1016/j.

J. Whitworth, COVID-19: a fast evolving pandemic, Trans. R. Soc. Trop. Med. Hyg. 121 (2021) 70–72, https://doi.org/10.1093/trstmh/.

W. Leong, G. Huang, J. Kong, Y. Li, X. Qiu, J. Wu, J. Wang, J. Shen, Molecular role of EGFR-MAPK pathway in patchouli alcohol-induced apoptosis and cell cycle arrest on A549 cells in vitro, Biomol. Res. Int. 2016 (2016), https://doi.org/10.1155/2016/4567580.

J. Lee, B. Kong, S.H. Lee, Patchouli alcohol, a compound from Pogostemon cablin, inhibits obesity, J. Med. Food 23 (3) (2020) 326–334, https://doi.org/10.1089/jmf.

W. Leong, G. Huang, I. Khan, W. Xia, Y. Li, X. Li, R. Han, Z. Wu, H. Xiao, Patchouli essential oil and its derived compounds revealed prebiotic-like effects in C57BL/6J mice, Front. Pharmacol. 10 (2019) 1229, https://doi.org/10.3389/fphar.2019.01229.

J. Wu, X. Zhang, X. Xue, R. Wang, Patchouli alcohol protects against lipopoly-
saccharide-induced acute lung injury in mice, J. Surg. Res. 194 (2) (2015) 537–543, https://doi.org/10.1016/j.

X. Lu, L. Yang, C. Lu, Z. Xu, H. Qiu, J. Wu, J. Wang, J. Tong, Y. Zhu, J. Shen, Patchouli alcohol protects against ischemia/reperfusion-induced brain injury via inhibiting neuroinflammation in normal and obese mice, Brain Res. 1682 (2018) 61–70, https://doi.org/10.1016/j.

J. Zhuo, B. Chen, C. Sun, T. Jiang, Z. Chen, Y. Liu, J. Nie, H. Yang, J. Zheng, L. Tai, Patchouli alcohol protects against chronic unpredictable mild stress-induced depression-like behavior through inhibiting excessive autophagy via mTOR signaling pathway, Biomed. Pharmacother. 127 (2020) 110115, https://doi.org/10.1016/j.biopha.2020.110115.

X. Liu, J. Ren, Role of Mammalian Target of Rapamycin (mTOR) in Cardiac Homeostasis in Metabolic Disorders, Molecules to Medicine with mTOR, Elsevier, 2016, pp. 263–274.

P. Sah, C.S. Mathela, K. Chopra, Antidepressant effect of Valeriana wallichii patchouli alcohol chemotype (patchouli alcohol) in experimental animal models, Indian J. Exp. Biol. 48 (3) (2010) 289–293.

W. Prado, Involvement of calcin in pain and anicincepton, Braz. J. Med. Biol. Res. 34 (4) (2001) 449–461, https://doi.org/10.1016/S0100-1889(01)00040-X.

Y. Chou, T. Wang, Z. Wang, F. Su, Z. Yuan, Patchouli alcohol is reduced in Ido1-deficient mice with down-regulation of TLR-MyD88 NF-κB pathway, Sci. Rep. 5 (2015) 17305, https://doi.org/10.1038/srep17305.

J. Aromather. 14 (2) (2004) 63–69, https://doi.org/10.1016/j.ijat.2004.04.002.

M. H2O/med/2013/04/006.

K. Ichikawa, T. Kinoshita, U. Sankawa, The screening of Chinese crude drugs for Ca2+ antagonist activity: identification of active principles from the aerial part of Pogostemon cablin and the fruits of Prunus mume, Chem. Pharm. Bull. 37 (2) (1989) 345–348, https://doi.org/10.1248/cpb.37.345.

K. Kravtsov, A. Kvant, On the mechanism of action of KCi-Induced vascular smooth muscle contraction: a key role of cation binding to the plasma membrane, Neuroligands. 4 (3) (1995) 160–167, https://doi.org/10.1155/1995/91389.

C.H. Lee, D. Poburko, P. Salota, J. Sandhu, D.O. Ruelhmann, C. van Breemen, The mechanism of phenylephrine-mediated [Ca2+]i oscillations underlying tonic contraction in the rabbit inferior vena cava, J. Physiol. 534 (3) (2001) 641–650, https://doi.org/10.1111/j.1469-7793.2001.00641.x.

F. Brovovich, C. Nicholson, C. Degen, Y.Z. Gao, M. Aggarwal, K.G. Morgan, Mechanisms of vascular smooth muscle contraction and the basis for phosphodiesterase treatment of smooth muscle disorders, Pharmacol. Rev. 68 (2) (2016) 476–532, https://doi.org/10.1124/pr.115.110652.

Y. Chou, H. Lin, Y. Lien, Y. Wang, C. Hong, Y. Kao, S. Lin, Y. Chang, S. Chen, EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the I2x transcriptional repressor ERF, Cancer Res. 70 (21) (2010) 8822–8831, https://doi.org/10.1158/0008-5472.

J. Bienenstock, L. O'Mahony, F. Shanahan, Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus sal-

S. Conway, Commensal anaerobic gut bacteria attenuate inflammation by regulation of microbiota, Biomed. Pharmacother. 124 (2020) 104883, https://doi.org/10.1016/j.biopha.2020.104883.

T. Jiang, Z. Chen, Y. Liu, J. Nie, W. Han, Patchouli alcohol protects against chronic stress-induced depression-like behavior in Ido1-deficient mice via attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor, J. Integr. Med. 25 (6) (2019) 454–461, https://doi.org/10.1016/j.jmeet.2019.06.007.