ON AN INDEX THEOREM BY BISMUT

MAN-HO HO

Abstract. In this note we give a proof of an index theorem by Bismut. As a consequence we obtain another proof of the Grothendieck–Riemann–Roch theorem in differential cohomology.

Contents

1. Introduction
2. Background Materials
 2.1. Cheeger–Simons differential characters
 2.2. Index bundle and Bismut–Cheeger eta form
3. Main result
4. References

1. Introduction

The differential Grothendieck–Riemann–Roch theorem [7, Theorem 6.19], [11, Corollary 8.26], [13, Theorem 1] (abbreviated as dGRR) is a lift of the classical Grothendieck–Riemann–Roch theorem to differential cohomology. It states that for a proper submersion \(\pi : X \to B \) with closed spin\(^c\) fibers of even relative dimension, the following diagram commutes.

\[
\begin{array}{ccc}
\hat{K}(X) & \xrightarrow{\hat{\text{ch}}} & \hat{H}^{\text{even}}(X; \mathbb{R}/\mathbb{Q}) \\
\text{ind}\downarrow & & \downarrow \int_{X/B} \hat{\text{Todd}}(\hat{\nabla}^{T V} X) \ast (\cdot) \\
\hat{K}(B) & \xrightarrow{\hat{\text{ch}}} & \hat{H}^{\text{even}}(B; \mathbb{R}/\mathbb{Q})
\end{array}
\] (1)

Here \(\hat{K} \) is differential \(K \)-theory [5, 15, 11] and \(\hat{H} \) is Cheeger–Simons differential characters [9, 1].

In [13] the proof of the dGRR is to reduce it to an index theorem by Bismut [4, Theorem 1.15]:

\[
\hat{\text{ch}}(\ker(D^E), \nabla^{\ker}(D^E)) + i_2(\tilde{\eta}(E)) = \int_{X/B} \hat{\text{Todd}}(T^V X, \hat{\nabla}^{T V} X) \ast \hat{\text{ch}}(E, \nabla^E).
\] (2)

2010 Mathematics Subject Classification. Primary 19K56, 58J20, 19L50, 53C08.
One can regard (2) as a lift of the local family index theorem \[5\] to differential characters. Bismut’s proof of (2) involves certain adiabatic limits arguments given in \[5, 10\] and an Atiyah-Patodi-Singer index theorem in differential characters \[9, Theorem 9.2\]. In this note we give a proof of (2), which is inspired by \[1\] and does not make use of the above results.

Section 2 contains the background material needed in this note, including basic properties of differential characters, the construction of the index bundle and of the Bismut–Cheeger eta form. Section 3 contains the main result of this note.

2. Background Materials

2.1. Cheeger–Simons differential characters. We recall some basic properties of differential characters with coefficients in \(\mathbb{R}/\mathbb{Q}\), and refer the details to \[9, 1\].

Let \(X\) be a smooth manifold and \(k \geq 1\). A degree \(k\) differential character \(f\) with coefficients in \(\mathbb{R}/\mathbb{Q}\) is a group homomorphism \(f : Z_{k-1}(X) \to \mathbb{R}/\mathbb{Q}\) with a fixed \(\omega_f \in \Omega^k(X)\) such that for all \(c \in C_k(X)\), \(f(\partial c) = \int_c \omega_f \mod \mathbb{Q}\). The abelian group of degree \(k\) differential characters is denoted by \(\hat{H}^k(X; \mathbb{R}/\mathbb{Q})\). Denote by \(\Omega^k_{\mathbb{Q}}(X)\) the group of closed \(k\)-forms with periods in \(\mathbb{Q}\). It is easy to see that \(\omega_f \in \Omega^k_{\mathbb{Q}}(X)\) and is uniquely determined by \(f \in \hat{H}^k(X; \mathbb{R}/\mathbb{Q})\). Thus one can define a map \(\delta_1 : \hat{H}^k(X; \mathbb{R}/\mathbb{Q}) \to \Omega^k_{\mathbb{Q}}(X)\) by \(\delta_1(f) = \omega_f\). The map \(i_2 : \Omega^{k-1}_{\mathbb{Q}}(X) \to \hat{H}^k(X; \mathbb{R}/\mathbb{Q})\) defined by \(i_2(\alpha)(z) = \int_z \alpha \mod \mathbb{Q}\) is injective. In the following diagram, every square and triangle commutes, and the two diagonal sequences are exact.

The maps \(\delta_1\) and \(\delta_2\) are called the curvature and the characteristic class in literatures respectively.
There is a unique ring structure for $\tilde{H}^*(X;\mathbb{R}/\mathbb{Q})$ [1] Corollary 32, denoted by \ast. For a fiber bundle $\pi : X \to B$ with closed oriented fibers, the “integration along the fiber”, denoted by $\int_{X/B}$, exists and is unique [1] Theorem 39).

2.2. Index bundle and Bismut–Cheeger eta form. In this subsection we recall the construction of the index bundle and of the Bismut–Cheeger eta form. Our basic reference is [2].

Let $E \to X$ be a complex vector bundle with a Hermitian metric h and ∇ a unitary connection on $E \to X$. Let $\pi : X \to B$ be a proper submersion of even relative dimension n, and $T^V X \to X$ the vertical tangent bundle which is assumed to have a metric $g^{TV X}$. A given horizontal distribution $T^H X \to X$ and a Riemannian metric g^{TB} on B determine a metric on $TX \to X$ by $g^{TX} := g^{TV X} + \pi^* g^{TB}$. If ∇^{TX} is the corresponding Levi-Civita connection on $TX \to X$, then $\nabla^{TV X} := P \circ \nabla^{TX} \circ P$ is a connection on $T^V X \to X$, where $P : TX \to T^V X$ is the orthogonal projection. Assume the vertical bundle $T^V X \to X$ has a spinc-structure. Denote by $S^V X \to X$ the spinorc bundle associated to the characteristic Hermitian line bundle $L^V X \to X$ with a unitary connection $\nabla^{L^V X}$. Define a connection $\widehat{\nabla}^{TV X}$ on $S^V X \to X$ by $\widehat{\nabla}^{TV X} := \nabla^{TV X} \otimes \nabla^{L^V}$, where $\nabla^{TV X}$ also denotes the lift of $\nabla^{TV X}$ to the local spinor bundle. The Todd form $\text{Todd}(\widehat{\nabla}^{TV X})$ of $S^V X \to X$ is defined by

$$\text{Todd}(\widehat{\nabla}^{TV X}) := \hat{A} (\nabla^{TV X}) \wedge e^{\frac{1}{2} c_1 (\nabla^{L^V X})}.$$

The Bismut–Cheeger eta form $\tilde{\eta}(\mathcal{E}) \in \frac{Q_{\text{odd}}(B)}{\text{Im}(d)}$ associated to $\mathcal{E} := (E, h, \nabla)$ is defined as follows. Consider the infinite-rank superbundle $\pi_* E \to B$, where the fibers at each $b \in B$ is given by

$$(\pi_* E)_b := \Gamma(X_b, (S^V X \otimes E)|_{X_b}).$$

Recall that $\pi_* E \to B$ admits an induced Hermitian metric and a connection $\nabla^{\pi_* E}$ compatible with the metric [2] §9.2, Proposition 9.13]. For each $b \in B$, the canonically constructed Dirac operator

$$D^E_b : \Gamma(X_b, (S^V X \otimes E)|_{X_b}) \to \Gamma(X_b, (S^V X \otimes E)|_{X_b})$$

gives a family of Dirac operators, denoted by $D^E : \Gamma(X, S^V X \otimes E) \to \Gamma(X, S^V X \otimes E)$. Assume the family of kernels $\text{ker}(D^E_b)$ has locally constant dimension, i.e., $\text{ker}(D^E) \to B$ is a finite-rank Hermitian superbundle. Let $P : \pi_* E \to \text{ker}(D^E)$ be the orthogonal projection, $h^\text{ker}(D^E)$ be the Hermitian metric on $\text{ker}(D^E) \to B$ induced by P, and $\nabla^{\text{ker}(D^E)} := P \circ \nabla^{\pi_* E} \circ P$ be the connection on $\text{ker}(D^E) \to B$ compatible to $h^\text{ker}(D^E)$.

The scaled Bismut superconnection $A_t : \Omega(B, \pi_* E) \to \Omega(B, \pi_* E)$ [3, Definition 3.2] (see also [2, Proposition 10.15] and [10, (1.4)]), is defined by

$$A_t := \sqrt{t} D_E + \nabla^{\pi_* E} - \frac{c(T)}{4\sqrt{t}},$$

where $c(T)$ is the Clifford multiplication by the curvature 2-form of the fiber bundle. The Bismut–Cheeger eta form $\tilde{\eta}(\mathcal{E})$ [5, (2.26)] (see also [10] and [2, Theorem 10.32]) is defined by

$$\tilde{\eta}(\mathcal{E}) := \frac{1}{2\sqrt{\pi}} \int_0^\infty \frac{1}{\sqrt{t}} \text{Str} \left(\frac{dA_t}{dt} e^{-A_t^2} \right) dt.$$

The local family index theorem states that

$$d\tilde{\eta}(\mathcal{E}) = \int_{X/B} \hat{\text{Todd}}(\hat{\nabla}^T V^X) \wedge \hat{\text{ch}}(\nabla^E) - \hat{\text{ch}}(\nabla^{\ker(D_E)}).$$

Let $f : \tilde{B} \to B$ be a smooth map. In [7, §2.3.2] the pullback of the above geometric data is studied and in particular the Bunke eta form ([6, Definition 2.2.16]) is shown to respect pullback. Since the Bismut–Cheeger eta form is a special case of the Bunke eta form, we have

$$\tilde{\eta}(f^* \mathcal{E}) = f^* \tilde{\eta}(\mathcal{E}).$$

One can prove (5) directly as in [7, §2.3.2].

3. Main result

In this section we prove the main result in this note. Let $E \to X$ be a Hermitian bundle with a Hermitian metric h and ∇ a unitary connection on $E \to X$. Throughout this section we write \mathcal{E} for (E, h, ∇).

As in [13] it suffices to prove (2) in the special case where the family of kernels of the Dirac operators has constant dimension, i.e., $\ker(D_E) \to B$ is a superbundle. The general case of (2) follows from a standard perturbation argument as in [11, §7] and its proof is essentially the same as the special case.

Proposition 1. Let $\pi : X \to B$ be a proper submersion with closed spinc fibers of even relative dimension. For any \mathcal{E}, the differential character

$$f := \int_{X/B} \hat{\text{Todd}}(\hat{\nabla}^T V^X) \wedge \hat{\text{ch}}(E, \nabla) - \hat{\text{ch}}(\ker(D_E), \nabla^{\ker(D_E)})$$

is uniquely characterized by the following conditions:

1. naturality, i.e., respect pullback,
2. compatibility with curvature; i.e.,

$$\delta_1(f) = \int_{X/B} \hat{\text{Todd}}(\hat{\nabla}^T V^X) \wedge \hat{\text{ch}}(\nabla) - \hat{\text{ch}}(\nabla^{\ker(D_E)}),$$

3. compatibility with characteristic class; i.e., $\delta_2(f) = 0$.

(4) compatibility with topological trivialization; i.e., for any \(k \in \mathbb{N} \) and \(\beta \in \Omega^k(X) \), \(i_2(\beta) \ast f = i_2(\beta \wedge \delta_1(f)) \).

(5) compatibility with topological trivialization of flat characters; i.e., for any fiber bundle \(\pi : B \to B' \) with closed fibers \(F \) the following diagram commutes:

\[
\begin{array}{ccc}
\Omega_{d=0}^{\text{odd}}(B) & \xrightarrow{i_2} & \hat{H}^{\text{even}}(B; \mathbb{R}/\mathbb{Q}) \\
\left\downarrow f_{B/B'} \right. & & \left\downarrow \right. f_{B/B'} \\
\Omega_{d=0}^{\text{odd}} - \text{dim}(F)(B') & \xrightarrow{i_2} & \hat{H}^{\text{even}} - \text{dim}(F)(B'; \mathbb{R}/\mathbb{Q})
\end{array}
\]

Proof. Note that condition 1 and 2 ensure the uniqueness of differential characteristic classes \([12, \text{Proposition 3.1}]\); condition 1, 2, 3 and 4 ensure the uniqueness of ring structure of differential characters \([11, \text{Corollary 32}]\) and condition 1, 2, 3, 5 ensure the uniqueness of integration along the fibers \([11, \text{Theorem 39}]\). Obviously \(f \) is natural (see the discussion at the end of Section 2). Thus the differential character (6) is unique in the sense that it satisfies condition 1 to 5. \(\square \)

Remark 1.

(1) Consider the term \(\hat{c}(\ker(D^E), \nabla^{\ker(D^E)}) \) in (6). Although it does not need condition 3, 4 and 5 in Proposition \([11]\) to guarantee its uniqueness, it automatically satisfies these conditions.

(2) One can also prove the uniqueness of (6) along the lines of \([12, \text{Proposition 3.1}], [11, \text{Theorem 31}]\) and \([11, \text{Theorem 39}]\).

To prove Bismut’s theorem; i.e., (2) holds, it remains to verify \(i_2(\tilde{\eta}(E)) \) satisfies the conditions 1 to 5 in Proposition \([11]\).

Proposition 2. Let \(\pi : X \to B \) be a proper submersion with closed spin\(^c\) fibers of even relative dimension. For any \(E \), the differential character \(i_2(\tilde{\eta}(E)) \in \hat{H}^{\text{even}}(B; \mathbb{R}/\mathbb{Q}) \), where \(\tilde{\eta}(E) \in \frac{\Omega_{d=0}^{\text{odd}}(B)}{\text{Im}(d)} \) is the Bismut–Cheeger eta form of \(E \), satisfies conditions 1 to 5 in Proposition \([11]\).

Proof. As in Remark \([11]\) we only need to verify that \(i_2(\tilde{\eta}(E)) \) satisfies condition 1 and 2 in Proposition \([11]\) because these two conditions alone guarantee the uniqueness of the value of \(i_2(\tilde{\eta}(E)) \) on each \(z \in Z_{\text{odd}}(B) \). Condition 3, 4 and 5 are not needed for its uniqueness, but of course it automatically satisfies these three conditions.

The naturality of \(i_2(\tilde{\eta}(E)) \) follows from \([5]\). The curvature that \(i_2(\tilde{\eta}(E)) \) is equal to \([7]\) follows from the commutativity of the lower triangle of \([3]\) and the local family index theorem \([11]\). \(\square \)

References

1. Christian Bär and Christian Becker, *Differential characters and geometric chains*, Differential Characters, Lecture Notes in Mathematics, vol. 2112, Springer International Publishing, 2014, pp. 1–187.
2. Nicole Berline, Ezra Getzler, and Michèle Vergne, *Heat kernels and Dirac operators*, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004, Corrected reprint of the 1992 original.
3. Jean-Michel Bismut, *The Atiyah-Singer index theorem for families of Dirac operators; two heat equation proofs*, Invent. Math. **83** (1986), 91–151.
4. ______, *Eta invariants, differential characters and flat vector bundles*, Chinese Ann. Math. Ser. B **26** (2005), 15–44.
5. Jean-Michel Bismut and Jeff Cheeger, *η-invariants and their adiabatic limits*, J. Amer. Math. Soc. **2** (1989), 33–70.
6. Ulrich Bunke, *Index theory, eta forms, and Deligne cohomology*, Mem. Amer. Math. Soc. **198** (2009), no. 928, vi+120.
7. Ulrich Bunke and Thomas Schick, *Smooth K-theory*, Astérisque **328** (2009), 45–135.
8. ______, *Uniqueness of smooth extensions of generalized cohomology theories*, J. Topol. **3** (2010), 110–156.
9. Jeff Cheeger and James Simons, *Differential characters and geometric invariants*, in Geometry and Topology (College Park, Md., 1983/84), Lecture Notes in Math. **1167** (1985), 50–80.
10. Xianzhe Dai, *Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence*, J. Amer. Math. Soc. **4** (1991), 265–321.
11. Daniel S. Freed and John Lott, *An index theorem in differential K-theory*, Geom. Topol. **14** (2010), 903–966.
12. Man-Ho Ho, *On differential characteristic classes*, To appear in J. Aust. Math. Soc.
13. ______, *A condensed proof of the differential Grothendieck-Riemann-Roch theorem*, Proc. Amer. Math. Soc. **142** (2014), no. 6, 1973–1982.
14. M. J. Hopkins and I. M. Singer, *Quadratic functions in geometry, topology, and M-theory*, J. Diff. Geom. **70** (2005), 329–425.
15. James Simons and Dennis Sullivan, *Axiomatic characterization of ordinary differential cohomology*, J. Topol. **1** (2008), 45–56.
16. ______, *Structured vector bundles define differential K-theory*, Quanta of Maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 579–599.

Department of Mathematics, Hong Kong Baptist University

E-mail address: homanho@hkbu.edu.hk