Decoy receptor 3 is involved in epidermal keratinocyte commitment to terminal differentiation via EGFR and PKC activation

Nan-Lin Wu, Duen-Yi Huang, Shie-Liang Hsieh, Yang-Shia Dai and Wan-Wan Lin

© The Author(s) 2022

INTRODUCTION

Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor (TNFR) superfamily and is a 33 kDa glycosylated soluble factor lacking a transmembrane domain. DcR3 is able to exert its function via its decoy functions, including neutralizing Fas-ligand (FasL), lymphotoxin-like; exhibits inducible expression; and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT), and TNF-like molecule 1 A (TL1A) to inhibit apoptosis and promote angiogenesis. DcR3 has been reported to be elevated in serum and tumor samples of different cancers and is regarded as a biomarker in cancer progression. A high DcR3 serum level has been established as an index of poor prognosis for cancer patients. Recently, DcR3 has also been shown to perform various nondecoy (non-neutralizing) functions by acting as an effector molecule via interactions with heparan sulfate proteoglycans (HSPGs), such as syndecan 2 and CD44v3. DcR3 has been suggested to be a critical factor involved in the pathogenesis of multiple autoimmune and inflammatory diseases in addition to cancers. The serum level of DcR3 is regarded as a biomarker of inflammation status in various diseases, including Crohn’s disease, systemic lupus erythematosus, rheumatic diseases, acute respiratory distress syndrome and kidney diseases.

Epidermal keratinocytes are the principal cellular component in the skin; these cells progressively differentiate from proliferative cells in the stratum basale to form the outermost layer of the keratinized stratum corneum. To accomplish intact and functional cornification, epidermal keratinocytes need to express distinct differentiation marker proteins, such as transglutaminase (TGase), involucrin, keratin 1/10, loricrin and profilaggrin. The epidermal growth factor receptor (EGFR) expressed in keratinocytes plays a unique role in controlling skin cell proliferation, differentiation, disorders and cancers. During keratinocyte differentiation, EGFR expression and activity are downregulated. Aberrant activation of EGFR leads to overproliferation of keratinocytes, contributing to psoriasis, while EGFR inhibitors switch keratinocytes from a proliferative to a differentiative phenotype, thus affecting epidermal development and barrier function.

1Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan, ROC. 2Department of Medicine, MacKay Medical College, New Taipei City, Taiwan, ROC. 3MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC. 4Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, ROC. 5Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC. 6Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC. 7Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan, ROC. 8Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC. 9Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC. 10email: wwllaura1119@ntu.edu.tw

Received: 4 June 2021 Revised: 4 November 2021 Accepted: 9 January 2022
Published online: 27 April 2022
Regarding skin biology, DcR3 is detected in primary human keratinocytes and clinical studies have shown that the DcR3 level is elevated in the serum of patients with psoriasis and that DcR3 is overexpressed in the epidermal layers of psoriatic skin lesions. Moreover, we previously demonstrated that EGFR activation is involved in upregulating DcR3 gene expression in keratinocytes through the NF-κB pathway. Although DcR3 is present in keratinocytes and is a skin marker for psoriasis, its biological action in keratinocytes remains elusive. Therefore, in this study, we explored the role and molecular mechanism of DcR3 in keratinocyte differentiation and its relationship to EGFR. Our data revealed that DcR3 can cooperate with EGFR to modulate keratinocyte differentiation; in addition, for the first time, we identified protein kinase C (PKC) isoforms as intracellular targets of DcR3 in the regulation of keratinocyte differentiation. The novel functions of DcR3 in the regulation of keratinocyte terminal differentiation may account for its pathological role in psoriasis.

MATERIAL AND METHODS

Cell culture

Primary normal human epidermal keratinocytes (NHEKs) were isolated from normal adult human foreskin and cultured as described previously. Experiments were conducted according to the principles of Helsinki and approved by the Ethics Committee of Mackay Memorial Hospital. NHEKs were cultured in Keratinocyte-SFM (Gibco BRL/Invitrogen, Carlsbad, CA, USA) supplemented with EGF (0.1–0.2 ng/ml), bovine pituitary extract (20–30 mg/ml), and 0.1% penicillin-streptomycin. In some experiments, culture medium without EGF was used. NHEKs were used for experiments within 3 passages. For cell differentiation, we used the confluence, PMA and calcium models as we previously described.

Reagents

Antibodies directed against JNK1, ERK2, PKCα, PKCδ, EGFR, Tgase 1, and involucrin, and horseradish peroxidase-coupled secondary antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies against human keratin 10 and loricrin were purchased from Sigma-Aldrich (St. Louis, MO, USA). Myelin basic protein (MBP) was purchased from PerkinElmer (Wellesley, MA, USA). Enhanced chemiluminescence reagent was obtained from Fisher Scientifi (Millipore, Billerica, MA, USA). Speciﬁc protein bands were detected with enhanced chemiluminescence detection reagent.

Small interfering RNA (siRNA) transfection

siRNA experiments were performed by using siRNAs targeting human Dcr3, Pkcα, and Pkcδ and a nontargeting siRNA as the control (Thermo Fisher Scientific, Lafayette, CO, USA). NHEKs at approximately 50% confluence were transfected with 100 nM siRNA with DharmaFECT Transfection Reagent following the manufacturer’s instructions. Cells were harvested at the indicated time points.

Immunoblotting

Equal amounts of soluble protein were loaded and electrophoresed on SDS–PAGE gels and were then transferred to Immobilon-P membranes (Millipore, Billerica, MA, USA). Speciﬁc protein bands were detected with enhanced chemiluminescence detection reagent.

Quantitative real-time RT–PCR analysis

The procedure was carried out as previously described, and the primers used to amplify the housekeeping gene cyclophilin A and human involucrin, Tgase 1, keratin 10, loricrin, EGFR, amphiheregulin, HB-EGF and transforming growth factor-α (TGF-α) were described previously. The primers used to amplify Dcr3 (NM_003823.3) were designed with Primer Express Software (Applied Biosystems, CA, USA).

Crystal violet assay

To determine the relative cell number, NHEKs transfected with the indicated siRNA were cultured in medium with or without growth factors for 5 days. After rinsing with phosphate-buffered saline (PBS), cells were fixed with methanol for 10 min at room temperature and were then stained with 0.1% crystal violet. The relative cell number was determined by measuring the absorbance of the dissolved dye at 540 nm after elution with 33% acetic acid.

Cell counting and cell cycle analysis

After DcR3 knockdown, NHEKs were cultured in medium with or without growth factors. To generate the cell growth curve, the number of cells per well was determined 2 and 5 days after knockdown, and the fold change relative to the initial number of cells was calculated. To determine the cell cycle distribution, cells were collected, washed with ice-cold PBS, and fixed with 70% (v/v) ethanol in PBS overnight at −20°C. The supernatant was removed after centrifugation, and the pellet was resuspended in DNA extraction buffer (0.2 M Na2HPO4, 0.1 M citric acid (pH 7.8)). After another centrifugation step, the pellet was stained with 80 μg/ml PI, and the cell cycle distribution was analyzed by flow cytometry (BD, FACScalibur) as described previously.

Enzyme-linked immunosorbent assay (ELISA)

Commercial ELISA kits (R&D Systems, Minneapolis, MN) were used to determine amphiregulin levels in cell culture supernatants according to the manufacturer’s instructions.

PKC kinase activity assay

Equal amounts of soluble protein were used for measurement of total kinase activity with a PKC kinase activity kit (ENZO Life Sciences, Farmingdale, NY, USA) according to the manufacturer’s instructions. For the PKCc and PKCδ kinase assays, immunoprecipitation followed by an in vitro kinase assay was carried out as described previously. An anti-PKC antibody was applied, and MBP was used as the substrate.

Statistical analysis

Data are expressed as the mean ± S.E.M. of at least 3 independent experiments, and Student’s t test was used to assess the statistical significance of the differences. A P value < 0.05 was considered statistically significant.

RESULTS

DcR3 mRNA and protein levels are decreased along with keratinocyte differentiation

To induce cell differentiation, three classical in vitro differentiation models—phorbol 12-myristate 13-acetate (PMA)-induced, calcium-induced, and cell confluence-induced differentiation—were used. Our data showed that DcR3 mRNA expression was constitutively detected in proliferating NHEKs and that after PMA (30 nM) treatment, DcR3 mRNA expression was transiently increased within 6 h and was then time-dependently suppressed upon PMA-induced NHEKs differentiation (Fig. 1a, upper panel). Both the secreted and intracellular DcR3 protein levels, as measured by ELISA and immunoblotting (Fig. 1a, middle and lower panels), were time-dependently decreased. Taken together, these findings indicate that the DcR3 gene and protein expression levels are attenuated when keratinocytes undergo differentiation.
The reduction in EGFR expression accompanying keratinocyte terminal differentiation may contribute to downregulation of DcR3

In our previous study, we demonstrated that DcR3 gene transcription in keratinocytes is induced by EGFR ligands (e.g., EGF and TGFα) and is mediated by NF-κB and JNK signaling21. Because we found that EGFR protein expression is also downregulated along with confluence-induced keratinocyte differentiation and that this event is accompanied by enhanced expression of the differentiation markers K10 and loricrin16, we sought to understand the role of DcR3 in keratinocyte differentiation and its relationship to EGFR. First, we determined the changes in EGFR expression in the PMA- and calcium-induced differentiation models. We found that similar to the effect observed above in the confluence-induced model, EGFR protein expression was time-dependently decreased by treatment with 30 nM PMA, accompanied by increased involucrin and TGase 1 expression, during cell differentiation (Fig. 2a). Likewise, 1.5 mM calcium treatment time-dependently downregulated EGFR but upregulated TGase 1 (Fig. 2b).

Next, we treated NHEKs with the EGFR inhibitor gefitinib to determine whether endogenous EGF/EGFR autocrine activity is involved in regulating DcR3 expression, as we previously observed for exogenous EGF in keratinocytes21. We found that gefitinib enhanced confluence-induced and calcium-induced but not PMA-induced suppression of DcR3 mRNA expression (Fig. 2c). Moreover, the transient effects of PMA (within 6 h) and calcium (within 12 h) on upregulating DcR3 gene expression were not altered by gefitinib. Collectively, these data suggest that the decrease in DcR3 expression after progressively longer periods under each differentiation condition might be ascribed to decreased EGFR activation, particularly in the confluence-induced and calcium-induced models. On the other hand, the transient induction of DcR3 expression by PMA (within 6 h) and calcium (within 12 h) was independent of EGFR activity.

DcR3 expression in keratinocytes modulates the expression of differentiation markers

Due to the abundant expression of DcR3 in NHEKs, we knocked down DcR3 expression by using DcR3 siRNA to investigate the role of DcR3 in keratinocyte differentiation by measuring the mRNA expression of the typical differentiation markers keratin 10, involucrin, loricin and TGase 1. As shown in Fig. 3a, efficient knockdown of DcR3 mRNA expression was confirmed by quantitative real-time PCR. We found that compared to that of control cells, the cytoplasm of DcR3-silenced cells was more abundant under culture in starvation medium (Fig. 3b). During the growth of cells to confluence, the mRNA expression levels of involucrin and TGase 1 were reduced but those of keratin 10 and loricin were increased in the DcR3-silenced group compared to the control group (Fig. 3b). During the growth of cells to confluence, the mRNA expression levels of involucrin and TGase 1 were reduced but those of keratin 10 and loricin expression were enhanced by siDcR3 treatment (Fig. 3d).
These data suggest that DcR3 can differentially regulate the expression of differentiation markers. Because DcR3 expression is controlled by EGFR ligands and EGFR signaling is crucial for the differential regulation of keratinocyte differentiation molecules, i.e., upregulation of involucrin and TGase but downregulation of keratin 10 and loricrin, we suggest an association between DcR3 and EGFR in the regulation of keratinocyte differentiation.

DcR3 reciprocally and positively regulates EGFR signaling

After identifying the link between DcR3 and EGFR, we asked whether DcR3 might exert a feedback effect on EGFR. To this end, we evaluated the effects of DcR3 silencing on EGFR activation induced by endogenous ligands or exogenous EGF treatment. We found that DcR3 silencing reduced EGFR protein expression and constitutive ERK activation (Fig. 4a). Moreover, the mRNA expression of EGFR and its ligands (amphiregulin, HB-EGF and TGF-α) was attenuated in cells with DcR3 silencing. In addition, the extracellular amphiregulin protein level was reduced (Fig. 4b). Moreover, consistent with these findings, exogenous EGF-induced EGFR phosphorylation and downstream ERK and JNK signaling were attenuated in DcR3-silenced cells (Fig. 4c). These findings suggest the existence of a positive feedback loop between EGFR signaling and DcR3 expression in keratinocytes.

DcR3 does not affect keratinocyte proliferation

Generally, the differentiation process in most cell types is negatively controlled by cell growth. Although keratinocyte differentiation is different from the conventional scenario and is potentiated by cell confluence, we sought to understand whether DcR3 might regulate keratinocyte proliferation. Via a crystal violet assay, we found that when NHEKs were incubated in culture medium either with or without growth factors for 5 days, DcR3 silencing did not induce a significant change in cell viability (Fig. 5a). In addition, the proliferation of keratinocytes, as evaluated by direct cell counting, was not changed by DcR3 silencing upon culture in either the absence or presence of growth factors for 5 days (Fig. 5b). Likewise, data showing the cell populations in different cell cycle phases revealed no differences between control and DcR3-silenced cells (Fig. 5c). Collectively, these findings suggest that DcR3-mediated regulation of differentiation marker expression is not linked to cell growth.

DcR3 regulation of keratinocyte differentiation might occur via intracellular and extracellular actions

DcR3 is a soluble factor, and extracellular DcR3 has been shown to produce biological responses via the neutralization of identified TNF superfamily ligands, i.e., FasL, LIGHT and TL1A, or via a nondecoy function. To understand if DcR3’s action is mediated
via an extracellular site, we first collected the conditioned medium (CM) of NHEKs with or without DcR3 silencing (i.e., siDcR3 CM, containing barely any DcR3; and siControl CM, containing a high amount of DcR3, respectively). Then, we treated siDcR3 cells separately with each type of CM and tested the ability of these CMs to restore the actions of DcR3 in siDcR3 cells. As shown in Fig. 6a, we found that the increases in the keratin 10 and loricrin mRNA levels caused by DcR3 silencing were inhibited in cells cultured with siControl CM. In contrast, siControl CM could not reverse the downregulation of TGase 1 and involucrin (Fig. 6b). The immunoblot results confirmed the reversal of the changes in the expression of the differentiation markers keratin 10 and loricrin by siControl CM (Fig. 6c). Based on these findings, we suggest that DcR3 can regulate keratin 10 and loricrin gene expression via an extracellular mechanism, while its regulation of TGase 1 and involucrin gene expression might occur via an intracellular mechanism.

DcR3 regulates keratinocyte differentiation via modulation of PKC activity

To understand the possible molecular mechanism by which intracellular DcR3 controls gene expression, we considered the potential actions of PKC isoforms. Previously, PKCα and PKCδ have been documented to control keratinocyte differentiation38–39, and our previous study revealed the ability of exogenous DcR3 to activate PKC in monocytes31. Therefore, we clarified the functional relationship between DcR3 and PKC in keratinocyte differentiation. We first determined the effect of DcR3 silencing on PKC isoforms. As shown in Fig. 7a, the protein levels of PKCα and PKCδ were not changed by DcR3 silencing. Of note, we found that DcR3 is associated with both the α and δ isoforms of PKC (Fig. 7b). We asked whether DcR3 might affect PKC activity via a protein–protein interaction. Thus, we conducted an in vitro kinase assay and found that the total PKC activity in siDcR3 cells was reduced compared to that in the control group (Fig. 7c). We further conducted immunoprecipitation of PKCα and PKCδ for an in vitro kinase assay and, consistent with the above results, found that the activity of both PKCα and PKCδ was decreased in siDcR3 cells (Fig. 7d). To verify the roles of these PKC isoforms in regulating the above-tested genes, we knocked down PKCα and PKCδ. siPKCα reduced confluence-induced involucrin and TGase 1 protein expression but affected keratin 10 and loricrin expression to a lesser degree (Fig. 7e). On the other hand, siPKCδ was shown to reduce PMA-induced involucrin and TGase 1 expression (Fig. 7f).

DISCUSSION

DcR3 has been demonstrated to perform multiple immune system-related functions upon inflammation and is a critical factor involved in the pathogenesis of multiple diseases in addition to cancers. It is regarded as a potential biomarker for predicting inflammatory disease progression and cancer metastasis. Although DcR3 has a decoy function in neutralizing FasL, LIGHT and TL1A, recent evidence indicates that DcR3 can also act as an extracellular effector of “nondecoy” biological functions12–14.

Fig. 3 DcR3 differentially regulated the expression of differentiation markers in epidermal keratinocytes. After knocking down DcR3, quantitative real-time RT-PCR was performed to detect the mRNA expression of DcR3 (a) and differentiation markers, including TGase 1, involucrin, keratin 10 and loricrin (c). The ratio of mRNA expression in NHEKs transfected with DcR3 siRNA to that in NHEKs transfected with control siRNA (siDcR3/siControl) was determined. *p < 0.05 when the ratio was significantly higher or lower than 1. b NHEKs treated with DcR3 siRNA or control siRNA were cultured in medium with or without growth factors. Cell morphology was examined by microscopy. d After knocking down DcR3, protein expression was determined by immunoblotting.
A further study using a fragment of the DcR3 protein without a decoy function indicated that the DcR3-mediated nondecoy function is mediated via crosslinking of heparin sulfate proteoglycans such as syndecans and CD44v34. In addition to acting as an inflammatory biomarker, DcR3 serves as a novel physiological regulator in keratinocytes. To date, the study of DcR3 in skin is still quite limited. Previously, we and others detected DcR3 in human primary keratinocytes and found that its expression was decreased by UV light but increased by EGF and TGF-α18,21. To date, the cellular function of DcR3 in keratinocytes remains unclear. In this study, quantitative real-time PCR analysis revealed downregulation of DcR3 mRNA expression during keratinocyte differentiation induced by calcium, PMA, and cell confluence. The immunoblot results further revealed decreased DcR3 protein expression in keratinocytes during differentiation. We also found, for the first time, novel intracellular actions of DcR3 in modulating the gene expression of keratinocyte markers, suggesting that DcR3 can regulate cellular functions in addition to performing decoy and nondecoy functions as a secreted protein. In keratinocytes, intracellular DcR3 can enhance PKCα/δ activity, which might be involved in controlling keratinocyte homeostasis during differentiation.

In normal skin, EGFR activity is usually high in the basal layer but low in the upper layers. In psoriasis, maintenance of EGFR activity can be observed in the upper epidermal layer35–37. Our previous study showed that DcR3 is mainly expressed in the upper epidermal layer in psoriatic skin36, which is characterized by reduced loricrin and keratin 10 expression but increased TGase 1 and involucrin expression38–40. In this study, we demonstrated that DcR3, like EGF, as previously reported, is involved in upregulating TGase 1 and involucrin but downregulating keratin10 and loricrin gene expression. The alterations in these differentiation genes upon DcR3 silencing actually mimic the effects of EGFR inhibition. In this context, previous studies demonstrated that EGFR activity is involved in the differential regulation of keratinocyte differentiation genes, i.e., upregulation of involucrin and TGase 1 but downregulation of keratin 10 and loricrin16,25–27,41. Moreover, our data revealed that DcR3 is involved in maintaining constitutive EGFR activity, possibly by promoting the expression of endogenous EGFR ligands (amphiregulin, HB-EGF and TGF-α) and EGFR. The reduced EGFR expression caused by DcR3 silencing also led to the attenuation of EGFR signaling elicited by EGF. Thus, we suggest that the positive regulatory role of DcR3 in EGFR signaling might involve mediation of EGFR-dependent regulation of keratinocyte differentiation. On the other hand, upregulation of DcR3 expression by EGF and TGF-α via EGFR-mediated IKK/NF-κB and JNK pathways has been demonstrated in keratinocytes21. Therefore, we suggest that DcR3 and EGFR activation form a positive feedback loop and that DcR3 might mediate the regulatory functions of EGFR in keratinocyte differentiation, which might accelerate the pathogenesis of skin disorders such as psoriasis. Accordingly, in addition to the previous idea that combined treatment with a differentiation-promoting agent and an EGFR inhibitor may be an additional approach for the management of hyperproliferative skin diseases41, silencing DcR3 provides another promising alternative strategy.
In this study, we also excluded the possibility that DcR3-mediated regulation of differentiation marker expression results from an indirect action on cell growth. We found that DcR3 silencing does not alter cell growth, possibly because the initiation of keratinocyte differentiation is not inseparably associated with cell cycle arrest. On the other hand, the positive EGFR-DcR3 loop mentioned above was verified by additional findings. First, during keratinocyte differentiation induced by PMA treatment, calcium treatment or cell confluence, EGFR activity was time-dependently decreased gradually. This change in EGFR activity kinetics occurred in parallel to the downregulation of DcR3 mRNA expression. Second, the observation that suppression of DcR3 gene expression was enhanced by the EGFR inhibitor gefitinib during differentiation in the models suggests the role of EGFR in DcR3 gene expression. However, before the time-dependent decrease in DcR3 during keratinocyte differentiation, we observed transient induction of DcR3 expression by PMA (within 6 h) and calcium (within 12 h) treatment, and this effect was independent of EGFR activity. Currently, we do not have other data to clarify the mechanisms and cellular functions of this transient increase in DcR3 gene expression.

To date, the nondecoy functions of DcR3 responsible for some cellular functions and therapeutic potentials have been documented. These include driving dendritic cell and macrophage polarization toward Th2 phenotypes and M2-like phenotypes, respectively. Despite accumulating lines of evidence indicating the effector function of extracellular DcR3, only a limited understanding of the mechanism of action has been obtained. In this respect, extracellular DcR3 can interact with heparin sulfate proteoglycans (HSPGs), such as syndecans and CD44v3, in myeloid cells, induce M2 macrophage polarization via epigenetic regulation, and induce monocyte adhesion via activation of FAK. Despite these findings, the possible intracellular action of DcR3 is totally unknown. In this study, we identified a novel intracellular target of DcR3. We demonstrated the interactions of intracellular DcR3 with PKCα and PKCδ and found that these interactions contribute to constitutive PKC activation. Because resting PKC activity can be controlled by EGFR and regulate keratinocyte differentiation, we speculate that DcR3-mediated regulation of keratinocyte differentiation might involve PKC activity.

Our study also showed the role of the extracellular action of...
DcR3 in keratinocyte differentiation. Via the conditioned medium approach, we found that exogenous DcR3 reversed the effects of DcR3 silencing on upregulating keratin 10 and loricrin gene expression but failed to change DcR3 silencing-induced downregulation of TGase 1 and involucrin. These findings not only reveal the gene-specific regulation by DcR3 and EGF but also indicate that DcR3 serves as an effector via its extracellular action. Several lines of evidence indicate that TL1A may be involved in the pathogenesis of psoriasis, Other ligands neutralized by DcR3, such as FasL and LIGHT, have been shown to regulate keratinocyte death, keratinocyte-mediated skin inflammation and fibrosis, but their effects on keratinocyte differentiation are unknown. Although we cannot exclude the possibility of interactions between DcR3 and these ligands in regulating keratinocyte differentiation, more studies are required to explore other possible soluble factors regulated by DcR3 in keratinocytes.

In summary, we demonstrated a new function of DcR3 in impairing keratinocyte differentiation. Via a reciprocal and positive feedback loop formed with EGFR, DcR3 promotes TGase 1 and involucrin expression, and it can also interact with the PKCα/δ isoforms to support PKCα/δ activity. In addition, extracellular DcR3 can negatively regulate keratin 10 and loricrin expression via an unidentified mechanism of action. Collectively, these findings indicate that keratinocyte-derived DcR3 can integrate EGFR and PKC signaling to promote TGase 1 and involucrin expression but inhibit keratin 10 and loricrin expression via extracellular and intracellular mechanisms of action. Dysregulation of the EGFR-
DcR3 axis leads to impaired keratinocyte differentiation in psoriasis.

REFERENCES

1. Pitti, R. M. et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396, 699–703 (1998).
2. Lin, W.-W. & Hsieh, S.-L. Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem. Pharmacol. 81, 838–847 (2011).
3. Hsieh, S.-L. & Lin, W.-W. Decoy receptor 3: an endogenous immunomodulator in dermatology. Exp Dermatol 20, 176–183 (2011).
4. Chang, Y.-C., Chan, Y.-H., Jackson, D. G. & Hsieh, S.-L. The glycosaminoglycan-binding domain of decoy receptor 3 is essential for induction of monocyte adhesion. J. Immunol. 176, 173–180 (2006).
5. Connor, J. P., Felder, M., Kapur, A. & Onujiogu, N. DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cell response to platinum with corresponding alteration in the expression of BRCA1. BMC Cancer 12, 176 (2012).
6. Liu, Y.-L. et al. Amelioration of amyloid-β-induced deficits by DcR3 in an Alzheimer’s disease model. Mol. Neurodegener. 12, 30 (2017).
7. Funke, B. et al. Functional characterisation of decoy receptor 3 in Crohn’s disease. Gut 58, 483–491 (2009).
8. Lee, C. S. et al. Elevated serum decoy receptor 3 with enhanced T cell activation in systemic lupus erythematosus. Clin. Exp. Immunol. 151, 383–390 (2008).
9. Siakavellas, S. I., Sifakis, P. P. & Bamias, G. The TL1A/DR3/DcR3 pathway in autoimmune rheumatic diseases. Semin. Arthritis Rheum. 45, 1–8 (2015).
10. Chen, C.-Y. et al. Decoy receptor 3 levels in peripheral blood predict outcomes of acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 180, 751–760 (2009).
11. Weng, S.-C. & Tarrag, D.-C. Role of prognostic biomarker decoy receptor 3 and immunomodulation in kidney diseases. J. Chin. Med. Assoc. 82, 680–684 (2019).
12. Candi, E., Schmidt, R. & Melino, G. The corni-cell and keratinocyte terminal differentiation (KRT). J. Invest. Dermatol. 124, 481–492 (2005).
13. Eckert, R. L., Sturniolo, M. T., Broome, A.-M., Ruse, M. & Rorke, E. A. Transglutaminase function in epithelial cell death. J. Invest. Dermatol. 124, 703–710 (2000).
14. Nanba, D., Toki, F., Barrandon, Y. & Higashiyama, Y. Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation. J. Dermatol. Sci. 72, 81–86 (2013).
15. King, L. E. Jr, Gates, R. E., Stoscheck, C. M. & Nanney, L. B. Epidermal growth factor-transforming growth factor alpha receptors and psoriasis. J. Invest. Dermatol. 95, 510–512 (1990).
16. Wu, N.-L. et al. Spleen tyrosine kinase mediates EGFR signaling to regulate keratinocyte terminal differentiation. J. Invest. Dermatol. 136, 192–201 (2016).
17. Joly-Tonetti, N., Ondet, T., Monshouwer, M. & Stamatas, G. N. EGFR inhibitors switch keratinocytes from a proliferative to a differentiative phenotype affecting epidermal development and barrier function. BMC Cancer 21, 1–10 (2021).
18. Maeda, T., Hao, C. & Tron, V. A. Ultraviolet light (UV) regulation of the TNF family decoy receptors Dr3 and DcR3 in human keratinocytes. J. Cutan. Med. Surg. 5, 294–298 (2001).
19. Kim, S., Fotiadu, A. & Kotoula, V. Increased expression of soluble decoy receptor 3 in acutely inflamed intestinal epithelia. Clin. Immunol. 115, 286–294 (2005).
20. Bamias, G. et al. Upregulation and nuclear localization of TNF-like Cytokine 1A (TL1A) and its receptors DR3 and DcR3 in psoriatic skin lesions. Exp. Dermatol 20, 725–731 (2011).
21. Wu, N.-L. et al. EGFR-driven up-regulation of decoy receptor 3 in keratinocytes contributes to the pathogenesis of psoriasis. Biochim. Biophys. Acta 1832, 1538–1548 (2013).
22. Wu, N.-L., Lee, T.-A., Tsai, T.-L. & Lin, W.-W. TRAIL-induced keratinocyte differentiation requires caspase activation and p63 expression. J. Invest. Dermatol. 131, 874–883 (2011).
23. Cohen, G. et al. Epidermal growth factor receptor signaling is up-regulated in human colonic aberrant crypt foci. Cancer Res. 66, 5566–5664 (2006).
24. Ben-Bassat, H. et al. Inhibitors of epidermal growth factor receptor kinase and of CaMK activation. Br. J. Pharm. 134, 1055–1065 (2001).
25. Pastore, S., Lulli, D. & Girolomoni, G. J. Epidermal growth factor receptor signalling by decoy receptor 3.
26. Chen, B. C. & Lin, W. W. PKCα mediated CaMK activation.
27. Chang, H.-C. et al. BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation. J. Dermatol. Sci. 92, 151–161 (2018).
28. Seo, H. R. et al. PKCα induces differentiation through ERK1/2 phosphorylation in mouse keratinocytes. Exp. Mol. Med. 36, 292–299 (2004).
29. Palazzo, E. et al. A novel DLX3–PKC integrated signaling network drives keratinocyte differentiation. Cell Death Differ. 24, 717–730 (2017).
30. Rosato, B. et al. Role of TGFβ2 expression and signaling in keratinocyte differentiation: Sequential involvement of PKCδ and PKCa. Cell Death Dis. 9, 1–16 (2018).
31. Hsu, M.-J. et al. Enhanced adhesion of monocytes via reverse signaling triggered by decoy receptor 3. Exp. Cell Res. 392, 241–251 (2020).
32. Tsai, T.-L. & Lin, W.-W. TRAIL-induced keratinocyte differentiation through Fas/Fas ligand mediated keratinocyte activity and apoptosis of human papilloma virus 16-immortalized human keratinocytes. Cancer Res. 57, 3741–3750 (1997).
33. Pastore, S., Lulli, D. & Girolomoni, G. J. Epidermal growth factor receptor signalling in keratinocyte biology: implications for skin toxicity of tyrosine kinase inhibitors. Arch. Toxicol. 88, 1189–1203 (2014).
34. Chang, H.-C. et al. BLIMP1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation. J. Dermatol. Sci. 92, 151–161 (2018).
35. Nanney, L. B., Stoscheck, C. M., Magid, M. & King, L. E. Jr. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis. Exp. Mol. Med. 37, 1346–1353 (2005).
36. Higashiyama, M., Hashimoto, K., Matsumoto, K. & Yoshikawa, K. Differential expression of transforming growth factor-alpha (TGF-alpha) and EGF receptor in transitional area of psoriatic epidermis. J. Invest. Dermatol. 118, 192–199 (2002).
37. Wang, S., Zhang, Z., Peng, H. & Zeng, K. Recent advances on the roles of epidermal growth factor receptor in psoriasis. J. Exp. Med. 214, 295–306 (2014).
38. Bernard, B. A., Asselineau, D., Schaffar-Deshayes, L. & Darmon, M. Y. Abnormal sequence of expression of differentiation markers in psoriatic epidermis: inversion of two steps in the differentiation program? J. Invest. Dermatol. 90, 801–805 (1988).
39. Duvic, M., Asano, A. T., Hager, C. & Mays, S. The pathogenesis of psoriasis and the mechanism of action of tazarotene. J. Am. Acad. Dermatol. 39, 5129–5133 (1998).
40. Ishida-Yamamoto, A. & Ikuzo, H. Differences in involucrin immunolabeling within cornified cell envelopes in normal and psoriatic epidermis. J. Invest. Dermatol. 104, 391–395 (1995).
41. Leon Carrion, S., Sutter, C. H. & Sutter, T. R. J. E. D. Combined treatment with sodium butyrate and PD 151305 enhances keratinocyte differentiation. Exp. Dermatol. 23, 211–214 (2014).
42. Truong, A. B. & Khavari, P. A. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle 6, 295–299 (2007).
43. Schneider, M. R., Werner, S., Paus, R. & Wolf, E. Beyond wavy hairs: the epidermal growth factor receptor and its ligands in skin biology and pathology. Am. J. Pathol. 173, 14–24 (2008).
44. Lee, Y.-S., Yuspa, S. H. & Dlugosz, A. A. Differentiation of cultured human epidermal keratinocytes at high cell densities is mediated by endogenous activation of the protein kinase C signaling pathway. J. Invest. Dermatol. 111, 762–766 (1998).
45. Wolf, C., Qian, Y., Brooke, M. A., Kelsell, D. P. & Franzke, C.-W. ADAM17/EGFR axis promotes transglutaminase-dependent skin barrier formation through phospholipase Cγ1 and protein kinase C pathways. Sci. Rep. 6, 1–14 (2016).
46. Yeh, C.-N. et al. Fas/Fas ligand mediates keratinocyte death in sunitinib-induced hand-foot skin reaction. J. Invest. Dermatol. 134, 2768–2773 (2014).
47. Herro, R., Antunes, R. D. S., Aguilera, A. R., Tamada, K. & Croft, M. J. The tumor necrosis factor superfamily molecule LIGHT promotes keratinocyte activity and skin fibrosis. J. Invest. Dermatol. 135, 2109–2118 (2015).
48. Herro, R. et al. LIGHT–HIVEM signaling in keratinocytes controls development of dermatitis. J. Exp. Med. 215, 415–422 (2018).

ACKNOWLEDGEMENTS

We would like to thank the Ministry of Science and Technology (MOST 103-2321-B-002-105 - MOST 107-2322-B-002 -036 -MY3), National Taiwan University Hospital (110-M5044), MacKay Memorial Hospital (MMH109-17, MMH110-19) and MacKay Medical College (1081A03) for research funding.

AUTHOR CONTRIBUTIONS

N.L.W. and W.W.L. designed the study. N.L.W. and D.Y.H performed the experiments. N.L.W., D.Y.H., S.L.H., and W.W.L. investigated and analyzed the data. S.L.H., Y.S.D., and W.W.L. provided the technical support and supervised the study. N.L.W., D.Y.H., and W.W.L. wrote the paper.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Wan-Wan Lin.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.