On The Feasibility of
Open Domain Referring Expression Generation
Using Large Scale Folksonomies

Fabián Pacheco, Pablo Duboue and Martín Domínguez
Referring Expression Generation (REG)

• Classic NLG problem
 – **Input:** set of entities (with a distinguished element), set of triples pertaining to the entities.
 – **Output:** a Definite Description, i.e., a set of *positive triples* and *negative triples*.
 – Focus (among other things) on running time **efficiency**.

• **Question:** does efficiency matters nowadays?
 – Yes, it does.
 – We used a large scale *folksonomy* (DBpedia) and a set of naturally occurring entities (from Wikinews).
Can REG Help Summarization?

- Do we have data for the relevant entities?
 - Yes, roughly 50% of the time.
 - We used anaphora training data and looked it up on DBpedia by hand.

- Do we have discriminant data for relevant entities?
 - Yes, roughly 80% of the time.
 - Measured on Wikinews, Cohen’s κ of 79% (small evaluation size, though).

- Are classic REG algorithms enough?
 - Maybe not, they either fail to produce an output or return a poor description in 60%+ of the cases.
 - But there is hope and our evaluation needs to be extended.
About The Authors
Possible Application To Multi-document Summarization

Use REG to fix anaphoric references drafted from different documents (similar to [Siddharthan et al., 2011])

- Excerpt from Columbia Newsblaster:

Thousands of cheering, flag-waving Palestinians gave Palestinian Authority President Mahmoud Abbas an enthusiastic welcome in Ramallah on Sunday, as he told them triumphantly that a “Palestinian spring” had been born following his speech to the United Nations last week. The president pressed Israel, in unusually frank terms, to reach a final peace agreement with the Palestinians, citing the boundaries in place on the eve of the June 1967 Arab-Israeli War as the starting point for negotiation about borders.
Three Single Referent REG Algorithms

- **DR** [Dale and Reiter, 1995]
 - A classic algorithm.
 - Greedy approach, use a default ordering.

- **Gardent** [Gardent, 2002]
 - An algorithm generating negations.
 - Constraint satisfaction programming.

- **Full Brevity (FB)** [Bohnet, 2007]
 - More exhaustive search of the solution space
Data: DBpedia

- DBpedia [Bizer et al., 2009] is an ontology curated from Wikipedia infoboxes
 - Infoboxes are the small tables containing structured information at the top of most Wikipedia pages.
 - We used “Ontology Infobox Properties” which contains 1,7520,158 triples (for English).
 - We missed Ontology Infobox Types.
Experiments With Anaphora Resolution Training Data

- **Hand-annotated corpus [Hasler et al., 2006]**
 - 74 documents, 239 coreference chains.
 - 44% in DBpedia
 - 16 documents usable for REG eval (40 REG tasks).

- **Failure rate**
 - DR: 12 (30%), Gardent: none (0%), FB: 23 (57.5%).
 - Lack of unique differentiating triples.
 - FB ran out of memory multiple times.

- **Execution timings**
 - DR and Gardent, comparable; FB 16x slower.

- **Discard FB**
Experiments With Wikinews-derived REG Tasks

• Wikinews, a news service operated as a wiki
 – News articles interspersed with *interwiki* links.
 * Entities disambiguated.

Former [[New Mexico]] {{w|Governor of New Mexico|governor}} {{w|Gary Johnson}} ended his campaign for the {{w|Republican Party (United States)|Republican Party}}.

• Finding people and organizations
 – Entity has “birth date”? ⇒ person
 – Entity has “creation date”? ⇒ organization.
 – 4,230 tasks (17,814 runs) for people and 12,998 (44,080) for organizations.
Wikinews Timings And Failure Rates

- **Failure Rates**
 - People
 - DR: 2.8%, Gardent 2% (negations on 14%).
 - Organizations
 - DR: 30.8%, Gardent 0% (negations on 12%).

- **Execution Timings**
 - For people, Gardent was 46x slower.
 - For organizations, Gardent was 29x slower.
 - DR took 3’ for the 44,080 runs for organizations.
Wikinews Human Evaluation

- Evaluating referring expressions is hard.
 - Open Domain: the judges need to be acquainted with all entities in the training set.
- Inter-annotator agreement
 - Random sample of 20 runs, two annotators.
 - Cohen’s κ of 60% for annotating DD results.
 - κ of 79% for determining whether the folksonomy had enough information to build a satisfactory DD.
- Final evaluation
 - Extended to 60 runs (one annotator).
 - DR: 41.6% accuracy; Gardent: 43.4% accuracy.
 - Folksonomy contained enough information: 81.6%.
Issues

- **DR algorithm issues**
 - Default ordering strategy not stable across different subtypes (e.g., politicians vs. musicians).
 - Recent paper might help (Koolen et al. at INLG’12).

- **Gardent’s algorithm issues**
 - Sometimes it selects a bad triple (an obscure fact).
 - A negative piece of information could just be a missing piece of information.
 - Example: **China** vs. \{ Peru and Taiwan \}
 * “the place where they do not speak Chinese”

- **Robust NLG for noisy (ontological) inputs.**
Conclusions

- A folksonomy can enable traditional NLG referring expression generation for Open Domain tasks.

- Three tasks remain:
 - Dealing with missing information.
 * _smart default values_, ontological siblings.
 - Estimating salience for ontological information.
 * Search engine salience.
 - Transform the extracted triples into actual text
 * Custom-made grammar.
Backup Slides

Efforts to automate this task in NLG [Gatt et al., 2007] have taken an approach similar to machine translation BLEU scores [Papinini et al., 2001], for example, by asking multiple judges to produce referring expressions for a given scenario. These settings usually involve images of physical objects and relate to small ontologies. While such an approach could be adapted to the
• **What is Referring Expression Generation (REG)**

 – Input: (generation from *data*), ontological information about the referents

 – Output: Definite Descriptions (DD), set of *positive triples* and a set of *negative triples*,

 – Lot of attention in NLG

 * early work: using custom-tailored ontologies

 * recent years: [Belz et al., 2010] “Open Domain Referring Expression Generation,” (OD REG), properties come from a *folksonomy*, a large-scale volunteer-built ontology.

• **Two sets of experiments:**

 – one with anaphora resolution training information
– roughly half of the entities annotated in the documents were present in the folksonomy
– sets of distractors from Wikinews
– 40k referring expression tasks.

References

[Belz et al., 2010] Belz, A., Kow, E., Viethen, J., and Gatt, A. (2010). Generating referring expressions in context: The grec task evaluation challenges. In Krahmer, E. and Theune, M., editors, Empirical Methods in Natural Language Generation, volume 5790 of Lecture Notes in Computer Science, pages 294–327. Springer.

[Bizer et al., 2009] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hellmann, S. (2009). DBpedia-a crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World Wide Web, 7(3):154–165.

[Bohnet, 2007] Bohnet, B. (2007). is-fbn, is-fbs, is-iac: The adap-
expressions in order to produce expressions like humans do. *MT Summit XI, UCNLG+ MT*, pages 84–86.

[Dale and Reiter, 1995] Dale, R. and Reiter, E. (1995). Computational interpretations of the gricean maxims in the generation of referring expressions. *Cognitive Science*, 19(2):233–263.

[Gardent, 2002] Gardent, C. (2002). Generating minimal definite descriptions. In *Proceedings of the 40th Annual Meeting on Association for Computational Linguistics*, pages 96–103. Association for Computational Linguistics.

[Gatt et al., 2007] Gatt, A., Sluis, I. V. D., and Deemter, K. V. (2007). Evaluating algorithms for the generation of referring expressions using a balanced corpus. In *Proceedings of the Eleventh European Workshop on Natural Language Generation*, pages 49–56. Association for Computational Linguistics.

[Hasler et al., 2006] Hasler, L., Orasan, C., and Naumann, K. (2006). NPs for events: Experiments in coreference annotation. In *Proceedings of the 5th edition of the International Conference on Language Resources and Evaluation (LREC2006)*, pages 1167–1172.
[Papinini et al., 2001] Papinini, K., Roukos, S., Ward, T., and Zhu, W.-J. (2001). Bleu: a method for automatic evaluation of machine translation. Technical report, IBM.

[Siddharthan et al., 2011] Siddharthan, A., Nenkova, A., and McKeown, K. (2011). Information status distinctions and referring expressions: An empirical study of references to people in news summaries. *Computational Linguistics*, 37(4):811–842.