New G_2 Metric, D6-branes and Lattice Universe

H. Lü

Michigan Center for Theoretical Physics
University of Michigan, Ann Arbor, Michigan 48109

ABSTRACT

We construct a new (singular) cohomogeneity-three metric of G_2 holonomy. The solution can be viewed as a triple intersection of smeared Taub-NUTs. The metric comprises three non-compact radial-type coordinates, with the principal orbits being a T^3 bundle over S^1. We consider an M-theory vacuum $(\text{Minkowski})_4 \times \mathcal{M}_7$ where \mathcal{M}_7 is the G_2 manifold. Upon reduction on a circle in the T^3, we obtain the intersection of a D6-brane, a Taub-NUT and a 6-brane with R-R 2-form flux. Reducing the solution instead on the base space S^1, we obtain three intersecting 6-branes all carrying R-R 2-form flux. These two configurations can be viewed as a classical flop in the type IIA string theory. After reducing on the full principal orbits and the spatial world-volume, we obtain a four-dimensional metric describing a lattice universe, in which the three non-compact coordinates of the G_2 manifold are identified with the spatial coordinates of our universe.

Research is supported in full by DOE grant DE-FG02-95ER40899.
1 Introduction

Seven-dimensional manifolds of G_2 holonomy have long been known to exist. The construction of explicit non-compact G_2 metrics began ten years ago, when asymptotically conical metrics of cohomogeneity one were found [1, 2]. The physical interest of G_2 manifolds has increasingly significantly with the discovery of M-theory, because they are the most natural compactifying spaces from the eleven-dimensional point of view. It is expected that M-theory compactified on a G_2 manifold gives rise to an $\mathcal{N} = 1$ super Yang-Mills theory in $D = 4$ [3]. The G_2 manifold with principal orbits $S^3 \times S^3$ provides a geometrical demonstration of the classical flop of the type IIA superstring theory [4]. In [5], M-theory dynamics on a G_2 manifold were discussed.

Recently, a large class of new metrics of G_2 holonomy have been obtained [6]-[17], following the construction of the first examples of asymptotically locally conical spin(7) manifolds [18]. These examples have non-abelian isometry groups. G_2 metrics with nilpotent isometry groups were also constructed in [19], which can be obtained by taking the Heisenberg or Euclidean limits of the non-abelian examples. Whilst it is of great interest to construct regular G_2 metrics, physically, it is essential to have an appropriate singularity structure to give rise to chiral fermions in $D = 4$ [20, 21].

In section 2, we construct a new non-compact cohomogeneity three metric with G_2 holonomy. The metric has three non-compact radial-type coordinates, with the principal orbits being a T^3 bundle over S^1. The isometry group of the metric is a four-dimensional nilpotent Lie group. The metric has either power-law singularities or delta-function singularities. The solution can be viewed as the intersection of three smeared Taub-NUTs. When one of the Taub-NUT charges is set to zero, the metric describes a product of S^1 with a six-dimensional non-compact Calabi-Yau manifold.

In section 3, we consider an M-theory vacuum (Minkowski)$_4 \times \mathcal{M}_7$, where \mathcal{M}_7 is the G_2 manifold. We show that by dimensionally reducing the solution on one of the circles in the T^3, we obtain a type IIA configuration with one D6-brane, one Taub-NUT and one 6-brane with an R-R 2-form flux. On the other hand, if we reduce the solution on the base space S^1, we obtain an intersection of three 6-branes all carrying R-R 2-form flux. These two configurations can be viewed as the classical flop of type IIA string theory on a non-compact six-dimensional Kähler manifold with a nilpotent isometry group. The origin of the flop is that the T^3 bundle over S^1 principal orbits can also be viewed as S^1 bundle over T^3.

In section 4, we perform a Kaluza-Klein reduction on the full principal orbits and the
spatial world-volume. We obtain three perpendicularly intersecting membranes in $D = 4$, describing a lattice universe. In this picture, the three non-compact coordinates of the G_2 manifold are identified with the spatial coordinates of our universe. We conclude the letter in section 5.

2 New G_2 metric

The metric ansatz is given by

$$ds^2_i = H_1 \, dx_1^2 + H_2 \, dx_2^2 + H_3 \, dx_3^2 + H_1 \, H_2 \, H_3 \, dz_1^2 + H_1^{-1} \, (dz_1 + H_1' \, z_2 \, dz_4)^2$$
$$+ H_1 \, H_2^{-1} \, (dz_2 + H_2' \, z_3 \, dz_4)^2 + H_2 \, H_3^{-1} \, (dz_3 + H_3' \, z_1 \, dz_4)^2,$$

where H_1, H_2 and H_3 are functions of x_1, x_2 and x_3 respectively. The prime on H_i' denotes a derivative with respect to the argument of H_i:

$$H'_1 = \partial_{x_1} H_1, \quad H'_2 = \partial_{x_2} H_2, \quad H'_3 = \partial_{x_3} H_3. \quad (2)$$

The natural vielbein basis is

$$e^0 = \sqrt{H_1 \, H_2 \, H_3} \, dz_4, \quad e^1 = \sqrt{H_1} \, dx_1, \quad e^2 = \sqrt{H_2} \, dx_2, \quad e^3 = \sqrt{H_3} \, dx_3,$$
$$e^4 = \sqrt{H_3 \, H_1^{-1}} \, (dz_1 + H_1' \, z_2 \, dz_4), \quad e^5 = \sqrt{H_1 \, H_2^{-1}} \, (dz_2 + H_2' \, z_3 \, dz_4),$$
$$e^6 = \sqrt{H_2 \, H_3^{-1}} \, (dz_3 + H_3' \, z_1 \, dz_4). \quad (3)$$

The associative 3-form in this basis is given by

$$\Phi = e^{016} + e^{024} + e^{035} + e^{125} - e^{134} + e^{236} - e^{456}, \quad (4)$$

where $e^{ijk} = e^i \wedge e^j \wedge e^k$. The metric (1) has G_2 holonomy if and only if Φ is closed and co-closed. We find that the closure and co-closure of Φ implies that

$$H''_i = 0, \quad i = 1, 2, 3,$$

implying that

$$H_1 = 1 + m_1 \, x_1, \quad H_2 = 1 + m_2 \, x_2, \quad H_3 = 1 + m_3 \, x_3. \quad (5)$$

Here the constant 1 is included so that H_i does not vanish when $m_i = 0$. Clearly the metric has a power-law singularity whenever any of the H_i vanishes. The metric can also be recast in a “co-moving” frame,

$$ds^2_i = dr_1^2 + dr_2^2 + dr_3^2 + \frac{9}{4} (m_1 \, m_2 \, m_3 \, r_1 \, r_2 \, r_3)^{2/3} \, dz_4^2 + \frac{(m_3 \, r_3)^{2/3}}{(m_1 \, r_1)} \, (dz_1 + m_1 \, z_2 \, dz_4)^2$$
$$+ \frac{(m_1 \, r_1)^{2/3}}{(m_2 \, r_2)} \, (dz_2 + m_2 \, z_3 \, dz_4)^2 + \frac{(m_2 \, r_2)^{2/3}}{(m_3 \, r_3)} \, (dz_3 + m_3 \, z_1 \, dz_4)^2. \quad (7)$$

The fibration in the \(z_1 \), \(z_2 \) and \(z_3 \) coordinates implies that the constants \(m_i \) are quantised, namely
\[
 m_1 = n_1 \frac{L_1}{L_2 L_4}, \quad m_2 = n_2 \frac{L_2}{L_3 L_4}, \quad m_3 = n_3 \frac{L_3}{L_1 L_4},
\]
where \(n_i \) are integers and \(L_i \) are the periods of the \(z_i \). For simplicity, we can set \(L_i = \ell_p \) where \(\ell_p \) is the Plank length, and then \(m_i = n_i/\ell_p \).

The metric has a power-law singularity when any of the \(H_i \) vanishes. This can be avoided by instead taking
\[
 H_i = 1 + \sum_\alpha m_i^\alpha |x_i^\alpha - x_i^\alpha|.
\]
such that \(H_i \) is positive definite. However, in doing so, we have introduced delta function singularities.

When all three of the \(H_i' \) are non-vanishing, the metric describes three intersecting Taub-NUTs with three independent non-vanishing smeared charges. The metric has three non-compact coordinates \(x_1 \), \(x_2 \) and \(x_3 \). The principal orbits are \(T^3 \) bundle over \(S^1 \); they are parameterised by the coordinates \((z_1, z_2, z_3)\) and \(z_4 \) respectively. The metric is of cohomogeneity three since it depends explicitly on the three non-compact coordinates \(x_i \). Despite the dependence on the \((z_1, z_2, z_3)\) coordinates, they, together with \(z_4 \), parameterise a four-dimensional nilpotent Lie group \(G \), which is the isometry group of the metric, and thus the four-dimensional principal orbits are homogeneous.

When two of the \(H_i' \) vanish, the metric describes a direct product of Euclidean 3-space and a smeared Taub-NUT. if instead only one of \(H_i' \) vanishes, in which case the metric was obtained in \(\mathbb{P}^3 \), it describes a product of an \(S^1 \) with a Calabi-Yau 6-manifold. To see this in detail, let us set \(H_3 = 1 \). The metric of the Calabi-Yau manifold is then given by
\[
 ds_6^2 = H_1 dx_1^2 + H_2 dx_2^2 + H_1 H_2 dz_4^2 + H_2 dz_3^2 \\
 + H_1^{-1} (dz_1 + H_1' z_2 dz_4)^2 + H_1 H_2^{-1} (dz_2 + H_2' z_3 dz_4)^2.
\]
and the Kähler form is given by
\[
 J = e^0 \wedge e^5 - e^1 \wedge e^4 + e^2 \wedge e^6,
\]
where the vielbein is given by \((3) \) with \(H_3 = 1 \).
3 Intersecting D6-branes

Having obtained the new G_2 metric, one may consider an M-theory vacuum solution given by the direct product of Minkowski 4-spacetime and the G_2 manifold, namely

$$ds_{11}^2 = -dt^2 + dw_1^2 + dw_2^2 + dw_3^2 + ds_i^2.$$ \hfill (12)

The solution can be viewed as a triple intersection of smeared Taub-NUTs, with the metric represented by the diagram

	t	w_1	w_2	w_3	x_1	x_2	x_3	z_1	z_2	z_3	z_4
$H_1(x_1)$	x	x	x	x	–	x	x	*	–	x	–
$H_2(x_2)$	x	x	x	x	x	–	x	x	*	–	–
$H_3(x_3)$	x	x	x	x	x	x	–	–	x	*	–

Diagram 1. Triple intersections of Taub-NUTs. Here $\times, –$ and $*$ denote the world-volume, transverse space, and fibre coordinates respectively.

There is a $U(1)$ isometry for each of the z_i coordinates, and so we can reduce the metric on any z_i to obtain a solution in type IIA theory. The z_i for $i = 1, 2, 3$ are equivalent, and hence the reduction can be discussed using z_1 as a representative. The resulting type IIA solution is given by

$$e^\Phi ds_{10}^2 = -dt^2 + dw_1^2 + dw_2^2 + dw_3^2 + H_1 dx_1^2 + H_2 dx_2^2 + H_3 dx_3^2 + H_1 H_2 H_3 dz_4^2 + H_1 H_2^{-1} (dz_2 + H_2^2 z_3 dz_4)^2 + H_2 H_3^{-1} dz_3^2 + H_3 H_1 (H_1^t z_2)^2 dz_4^2$$

$$-W^{-1} (H_3 H_1^{-1} H_1^t z_2 dz_4 - H_2 H_3^{-1} H_3^t z_4 dz_3)^2,$$

$$e^\phi = W^{-\frac{3}{4}}, \quad W = H_3 H_1^{-1} + H_2 H_3^{-1} (H_3^t z_4)^2,$$

$$A_{(1)} = W^{-1} (H_3 H_1^{-1} H_1^t z_2 dz_4 - H_2 H_3^{-1} H_3^t z_4 dz_3).$$ \hfill (13)

Note that before performing the Kaluza-Klein reduction, we have made a coordinate transformation $z_3 \to z_3 - H_3^t z_1 z_4$ in the metric (11). Clearly, the solution describes an intersection of three objects. The one parameterised by H_1 is a smeared D6-brane, and the one parameterised by H_2 is a Taub-NUT. The one associated with H_3 is a 6-brane carrying an R-R 2-form flux, but it differs from a standard D6-brane.

We can instead reduce the solution on the z_4 coordinate, giving the type IIA solution

$$e^{\Phi} ds_{10}^2 = -dt^2 + dw_1^2 + dw_2^2 + dw_3^2 + H_1 dx_1^2 + H_2 dx_2^2 + H_3 dx_3^2$$

$$= -dt^2 + dw_1^2 + dw_2^2 + dw_3^2 + H_1 dx_1^2 + H_2 dx_2^2 + H_3 dx_3^2.$$ \hfill (14)
The solution describes three intersecting 6-branes all carrying R-R 2-form flux. These 6-branes are different from the usual D6-brane coming from the reduction of the fibre coordinate of a Taub-NUT in $D = 11$.

The two configurations arising from the reduction on z_1 or z_4 can be viewed as a classical flop in the type IIA string theory on the non-compact Kähler manifold. The flop in $D = 10$ can be geometrically explained by the fact that the T^3 bundle over S^1 principal orbits of the four-dimensional nilpotent Lie group G can also be described as an S^1 bundle over T^3. However, the two descriptions are somewhat different. In the latter case, the fibre is the circle group in G generated by $\frac{\partial}{\partial z_4}$. In the former case, the fibre is not the orbit of a three-dimensional subgroup of G because $\frac{\partial}{\partial z_i}$ for $i = 1, 2, 3$ are not themselves Killing vectors; we must add a multiple of $\frac{\partial}{\partial z_4}$. In fact the flop involves interchanging the fibre and base spaces of the $U(1)$ fibration. This is analogous to the flop discussed in [4].

4 Lattice universe

The new G_2 metric (\mathbb{I}) that we have obtained is in fact inspired by the four-dimensional intersecting membrane solution that describes the lattice universe [23]. There has been experimental evidence suggesting that the network of galaxy superclusters and voids seems to form a three-dimensional lattice with a spacing of about $120h^{-1}$ Mpc (where h^{-1} is the Hubble constant in units of $100 km s^{-1} Mpc^{-1}$) [25, 24, 27]. In [23], an M-theory solution was constructed to describe such a lattice structure, which can be realised by considering non-standard brane intersections of two M5-branes and one Taub-NUT, or two Taub-NUTs and one M5-brane. In the latter case, turning off the M5-brane charge causes the solution to reduce to the product of 5-dimensional Minkowski spacetime and the non-compact Calabi-Yau manifold given in (10).

In section 2, we obtained the new G_2 metric (\mathbb{I}) by adding an extra fibration on the seventh coordinate. This procedure follows the general prescription of obtaining G_2 manifolds from six-dimensional Kähler manifolds, described in detail in [28].

\footnote{In [24], a triply quasi-periodic Gibbons-Hawking metric was obtained.}
If we reduce the M-theory solution on the world-volume spatial coordinates \(w_i \) and also on the \(T^3 \) bundle over \(S^1 \) principal orbits, we obtain three perpendicularly intersecting membranes in \(D = 4 \), with the metric

\[
 ds_4^2 = (H_1 H_2 H_3)^{1/2} (-dt^2 + H_1 dx_1^2 + H_2 dx_2^2 + H_3 dx_3^2). \tag{15}
\]

This metric was first obtained in [23], although it was supported by very different field strength. The functions of \(H_i \) in this case are given by (9) describing periodic arrays of intersecting membranes.

In this static cosmological model the spatial world-volume and the \(T^3 \) bundle over \(S^1 \) principal orbits are viewed as an internal space, whilst the three non-compact coordinates \(x_1, x_2 \) and \(x_3 \) of the \(G_2 \) manifold are identified with the spatial coordinates of our universe. This is rather natural since the principal orbits are clearly compact, and the spatial world-volume can be wrapped on a compact space such as \(T^3 \). Although it is not likely that the metric (15) describes our actual universe, since it preserves \(\mathcal{N} = 1 \) supersymmetry; it is nevertheless rather suggestive that the lattice structure should emerge from a metric with \(G_2 \) holonomy.

5 Conclusions

In this letter, we constructed a new cohomogeneity-three metric with \(G_2 \) holonomy. It has three radial-type coordinates, with the principle orbits being a \(T^3 \) bundle over \(S^1 \). The solution can be viewed as three intersecting Taub-NUTs. We performed Kaluza-Klein reduction on the \(S^1 \) and instead on a circle in the \(T^3 \). The two resulting type IIA configurations can be viewed as a classical flop in type IIA string theory on a non-compact Kähler six-manifold. Although the type IIA solutions do not describe the triply intersecting D6-branes advocated in [21, 29] for the realisation of chiral fermions, it is nevertheless of interest to investigate further if chirality could arise from the singularities of our \(G_2 \) metric. The metric provides a concrete example for studying such an issue, since it can be viewed as the lifting of a D6-brane configurations in \(D = 10 \).

If we perform a Kaluza-Klein reduction on the entire four-dimensional full principal orbits and the spatial world-volume, we obtain triply intersecting membranes in \(D = 4 \), describing a lattice universe. The construction takes full advantage of the non-compact nature of the manifold, in that the three non-compact coordinates are precisely identified with the spatial coordinates of our universe. It is of great interest to investigate further the significance of such a configuration arising from a \(G_2 \) manifold.
Acknowledgement

We are grateful to Mirjam Cvetič for extensive discussions on triply intersecting D6-branes and chiral fermions, to Gary Gibbons for pointing out the isometry group of the metric, and to Chris Pope and Justin Vázquez-Poritz for discussions.

References

[1] R.L. Bryant and S. Salamon, *On the construction of some complete metrics with exceptional holonomy*, Duke Math. J. **58**, 829 (1989).

[2] G.W. Gibbons, D.N. Page and C.N. Pope, *Einstein metrics on S^3, \mathbb{R}^3 and \mathbb{R}^4 bundles*, Commun. Math. Phys. **127**, 529 (1990).

[3] B.S. Acharya, *On realising $N = 1$ super Yang-Mills in M theory*, hep-th/0011089.

[4] M. Atiyah, J. Maldacena and C. Vafa, *An M-theory flop as a large N duality*, J. Math. Phys. **42**, 3209 (2001), hep-th/0011250.

[5] M. Atiyah and E. Witten, *M-theory dynamics on a manifold of G_2 holonomy*, hep-th/0107177.

[6] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, *Supersymmetry M3-branes and G_2 manifolds*, Nucl. Phys. **B620**, 3 (2002), hep-th/0106026.

[7] A. Brandhuber, J. Gomis, S.S. Gubser and S. Gukov, *Gauge theory at large N and new $G(2)$ holonomy metrics*, Nucl. Phys. **B611**, 179 (2001), hep-th/0106034.

[8] N. Hitchin, *Stable forms and special metrics*, math.DG/0107101.

[9] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, *Cohomogeneity one manifolds of Spin(7) and G_2 holonomy*, hep-th/0108243.

[10] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, *Orientifolds and slumps in G_2 and Spin(7) metrics*, hep-th/0111096.

[11] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, *M-theory conifolds*, Phys. Rev. Lett. **88**, 121602 (2002), hep-th/0112098.

[12] A. Brandhuber, *G_2 holonomy spaces from invariant three-forms*, hep-th/0112113.
[13] M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, A G_2 unification of the deformed and resolved conifolds, hep-th/0112138, to appear in Phys. Lett. B.

[14] R. Hernandez and K. Sfetsos, An eight-dimensional approach to G_2 manifolds, hep-th/0202133.

[15] S. Gukov, S-T. Yau and E. Zaslow, Duality and fibrations on G_2 manifolds, hep-th/0203217.

[16] K. Behrndt, Singular 7-manifolds with G_2 holonomy and intersecting 6-branes, hep-th/0204061.

[17] Z.W. Chong, M. Cvetič, G.W. Gibbons, H. Lü, C.N. Pope and P. Wagner, General metrics of G_2 holonomy and contraction limits, hep-th/0204064.

[18] M. Cvetič, G. W. Gibbons, H. Lü and C. N. Pope, New complete non-compact Spin(7) manifolds, hep-th/0103155. New cohomogeneity one metrics with Spin(7) holonomy, math.DG/0105119.

[19] G.W. Gibbons, H. Lü, C.N. Pope and K.S. Stelle, Supersymmetric domain walls from metrics of special holonomy, Nucl. Phys. B623, 3 (2002), hep-th/0108191.

[20] B. Acharya and E. Witten, Chiral fermions from manifolds of G_2 holonomy, hep-th/0109152.

[21] M. Cvetič, G. Shiu and A.M. Uranga, Chiral type II orientifold constructions as M theory on G_2 holonomy spaces, hep-th/0111179.

[22] I.V. Lavrinenko, H. Lü and C.N. Pope, Fibre bundles and generalised dimensional reductions, Class. Quant. Grav. 15, 2239 (1998), hep-th/9710243.

[23] M.J. Duff, P. Hoxha, H. Lü, R.R. Martinez-Acosta and C.N. Pope, A lattice universe from M-theory, Phys. Lett. B451, 38 (1999), astro-ph/9712301.

[24] S. Nergiz and C. Saclioglu, A Quasiperiodic Gibbons-Hawking metric and space-time foam, Phys. Rev. D53, 2240 (1996), hep-th/9505141.

[25] J. Einasto, M. Einasto, S. Gottlober, V. Muller, V. Saar, A.A. Starobinsky, E. Tago, D. Tucker, H. Andernach and P. Frisch, A 120 Mpc periodicity in the three-dimensional distributions of galaxy superclusters, Nature, 385 (1997) 139.
[26] R. Kirshner, *The universe as a lattice*, Nature, **385** (1997).

[27] J. Einasto, *Has the universe a honeycomb structure*, astro-ph/9711320.

[28] M. Cvetić, G.W. Gibbons, H. Lü and C.N. Pope, *Almost special holonomy in type IIA and M theory*, hep-th/0203060.

[29] E. Witten, *Deconstruction, G_2 holonomy, and doublet-triplet splitting*, hep-ph/0201018.