Finding high-order \textit{analytic} post-Newtonian parameters from a high-precision \textit{numerical} self-force calculation

Abhay G. Shah,1, 2 John L. Friedman,3 and Bernard F. Whiting4, 5

1Dept of Particle Physics \& Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
2School of Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom
3Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201, USA
4Department of Physics, P.O. Box 118440, University of Florida, Gainesville, Florida 32611-8440
5GReCO, Institut d’Astrophysique de Paris — UMR 7095 du CNRS, Université Pierre \& Marie Curie, 98bis boulevard Arago, 75014 Paris, France

We present a novel analytic extraction of high-order post-Newtonian (pN) parameters that govern quasi-circular binary systems. Coefficients in the pN expansion of the energy of a binary system can be found from corresponding coefficients in an extreme-mass-ratio inspiral (EMRI) computation of the change ΔU in the redshift factor of a circular orbit at fixed angular velocity. Remarkably, by computing this essentially gauge-invariant quantity to accuracy greater than one part in 10^{225}, and by assuming that a subset of pN coefficients are rational numbers or products of π and a rational, we obtain the exact analytic coefficients. We find the previously unexpected result that the post-Newtonian expansion of ΔU (and of the change $\Delta \Omega$ in the angular velocity at fixed redshift factor) have conservative terms at half-integral pN order beginning with a 5.5 pN term. This implies the existence of a corresponding 5.5 pN term in the expansion of the energy of a binary system.

Coefficients in the pN series that do not belong to the subset just described are obtained to accuracy better than 1 part in $10^{265–23n}$ at nth pN order. We work in a radiation gauge, finding the radiative part of the metric perturbation from the gauge-invariant Weyl scalar ψ_0 via a Hertz potential. We use mode-sum renormalization, and find high-order renormalization coefficients by matching a series in $L = \ell + 1/2$ to the large-L behavior of the expression for ΔU. The non-radiative parts of the perturbed metric associated with changes in mass and angular momentum are calculated in the Schwarzschild gauge.
I. INTRODUCTION

The principal approximation methods used to compute the inspiral of compact binary systems are the post-Newtonian expansion, in which an orbital angular velocity $M\Omega$ serves as the expansion parameter; and the self-force or extreme-mass-ratio-inspiral (EMRI) approach, in which the small parameter is the mass ratio m/M of the binary’s two components. Previous work by Blanchet et al. [1, 2] used an overlapping regime where both approximations are valid to check the consistency of the renormalization methods used in the two approaches and to find numerical values of pN coefficients at orders beyond the reach of current analytical work.

In the present paper, by working with much higher numerical accuracy – maintaining precision of at least one part in 10^{225} in an EMRI computation of the perturbed orbital frequency and redshift factor, and by considering orbits at much larger separation – with orbital radii extending to $10^{30}M$, we obtain two surprising results not seen in the previous study:

- (1) A subset of the pN parameters in lower-order analytical work had been found to be either rationals m/n or to be sums of rationals multiplied by powers of π, the Euler constant γ and square roots of integers. Our high precision allows us to extract the exact analytical form of the subset of coefficients that are rationals or products of the form rational×π from our numerical values up to 10 pN order, corresponding to corrections smaller by $(v/c)^{22}$ that the Newtonian value.

- (2) In a pN expansion, conservative terms (terms even under the interchange of outgoing and ingoing radiation) are initially encountered at integral pN orders; dissipative terms (odd under the interchange of outgoing and ingoing) first enter at 2.5 pN order. At higher order, dissipative terms can occur at either integral or half-integral order, depending on the details \(\text{[8]} \), while conservative terms enter at each integral order. We find that conservative terms of 5.5 pN order appear in the expression for the redshift at fixed angular velocity (and thus in the expressions for the angular velocity at fixed redshift and in the expression for the energy of an orbit with given angular velocity). These quantities are conservative, and the presence of 5.5 pN terms was unexpected.

The work reported here involves a binary system that, at zeroth order in the mass ratio, is described by a test particle in a circular geodesic about a Schwarzschild black hole. At first order in m/M, the orbital parameters are altered by a metric perturbation $h_{\alpha\beta}$ produced by the orbiting particle: The perturbed motion can be described by saying that the particle moves on a circular geodesic of the metric $g_{\alpha\beta} + h_{\alpha\beta}^{\text{ren}}$, where $h_{\alpha\beta}^{\text{ren}}$ is the renormalized metric perturbation. The perturbed spacetime is helically symmetric, with a helical Killing vector k^α that is tangent to the particle’s 4-velocity,

$$u^\alpha = U k^\alpha.$$ \hfill (1)

The constant of proportionality U is termed the redshift factor (first introduced by Detweiler [4]), and can be thought of as a contribution to the redshift, measured from the perturbed orbit of the mass m, that is independent of the internal geometry of the mass. With the perturbed spacetime chosen so that the perturbed and unperturbed helical Killing vectors coincide, the change in ΔU at fixed angular velocity Ω has the form

$$\Delta U = -U \frac{1}{2} h_{\alpha\beta}^{\text{ren}} u^\alpha u^\beta =: -U H^{\text{ren}},$$ \hfill (2)

and it is invariant under gauge transformations generated by helically symmetric gauge vectors.

A pN expansion of ΔU, written in terms of a dimensionless $R := (M\Omega)^{-2/3}$, has the form

$$\Delta U = -\frac{1}{R} + \sum_{n=1}^{\infty} \alpha_n \frac{1}{R^{n+1}} + \sum_{n=4}^{\infty} \beta_n \frac{\log R}{R^{n+1}} + \sum_{n=7}^{\infty} \gamma_n \frac{\log^2 R}{R^{n+1}} + \sum_{n=10}^{\infty} \delta_n \frac{\log^3 R}{R^{n+1}} + \cdots,$$ \hfill (3)

where the post-Newtonian order n can take half-integral as well as integral values, starting at $\alpha_{5.5}$ and $\beta_{8.5}$. That is, integral values of coefficients of $\log^k R/R^{n+1}$ start at pN order $n = 3k + 1$; half-integral values appear to start at $n = 3k + 5.5$, but we do not carry our numerical expansion far enough to find the first half-integral value for $k = 2$ ($\gamma_{11.5}$) or for larger k. We compute ΔU at a set of radii extending to $10^{30}M$ and match to a series of this form. As noted in the abstract, the high numerical accuracy of $\Delta U(r)$ allows us to find the coefficients $\alpha_n, \beta_n, \gamma_n$ with a precision at least as high as one part in $10^{265-230}$. At each pN order, we find that the coefficient of the highest occurring power of $\log R$ is rational when n is an integer; and it has the form rational×π when n is a half-integer. The remaining coefficients for a given value of n are not of this form.

Because the presence of $\alpha_{5.5}$ and higher-order half-integral coefficients was not expected, we performed an elaborate set of checks. Our calculations were carried out in a radiation gauge, but, we repeated the entire numerical calculation...
of ΔU in a Regge-Wheeler gauge, obtaining numerical agreement to 368 places of accuracy, that is, the retarded values of $h_{\alpha\beta}$ for each l-mode in the RG and RWZ gauges agree to more than 368 digits). This serves as a demanding test of both the numerical code and of the analytical computation on which it is based. Because the numerical calculation is performed in Mathematica, the comparison is also a check of Mathematica’s claimed numerical precision. Adrian Ottewill and Marc Casals kindly used their codes to perform an independent radiation-gauge computation to compare with ours at double-precision accuracy for small R. Specifically, for the $s = \ell = m = 2$ term, we compared our values of the invariant, $A_{lm}R_HR_\infty$ (see Eq. (27) below), at $r/M = 10^8, 10^6$. Finally, we analytically computed $\alpha_{5,5}$ (see Sect. III A).

In Sect. II we briefly review the calculation of the renormalized ΔU in a modified radiation gauge. In Sect. III we present the results of matching a sequence of values $\Delta U(r)$ to a series of the form \[3\].

We work in gravitational units ($G = c = 1$) and use signature $+---$ to conform to Newman-Penrose conventions.

II. REVIEW OF ΔU COMPUTATION

We consider a particle of mass m orbiting a Schwarzschild black hole of mass M. At zeroth order in m/M, the trajectory is a circular orbit. In Schwarzschild coordinates, its angular velocity is $\Omega = \Omega_0$, which has the form \[5–7\], with $U = u^t = \frac{1}{\sqrt{1 - 3M/r_0}}$. (4)

We compute the change ΔU at first-order in m/M in a modified radiation gauge, as detailed in \[2\]. We briefly review the formalism here, noting first that Eq. (5) for ΔU involves a single component H^ret of the renormalized metric perturbation.

For multipoles with $\ell \geq 2$, the metric perturbation can be found in a radiation gauge from the the spin-2 retarded Weyl scalar, ψ_0, which has the form \[3\] \[7\],

\[\psi_0(x) = \psi_0^{(0)} + \psi_0^{(1)} + \psi_0^{(2)} ,\] (5)

with

\[\psi_0^{(0)} = 4\pi mu^t \Delta_0 \sum_{\ell m} A_{\ell m}[(\ell - 1)(\ell + 1)(\ell + 2)]^{1/2} R_H(r_\leq) R_\infty(r_\geq) 2Y_{\ell m}(\theta, \phi) Y_{\ell m}(\pi/2, \Omega t),\] (6a)

\[\psi_0^{(1)} = 8i\pi m\Omega u^t \Delta_0 \sum_{\ell m} A_{\ell m}[(\ell - 1)(\ell + 2)]^{1/2} 2Y_{\ell m}(\theta, \phi)_{11} Y_{\ell m}(\pi/2, \Omega t) \times \{[im\Omega_0^2 + 2\Omega_0] R_H(r_\leq) R_\infty(r_\geq) + \Delta_0[R'_H(r_0) R_\infty(r_\geq) \theta(r - r_0) + R_H(r_\leq) R'_\infty(r_0) \theta(r - r_0)] \},\] (6b)

\[\psi_0^{(2)} = -4\pi m\Omega^2 u^t \sum_{\ell m} A_{\ell m} Y_{\ell m}(\theta, \phi) Y_{\ell m}(\pi/2, \Omega t) \times \{[30r_0^3 - 80Mr_0^2 + 48M^2r_0 - 12^2 + 2\Delta_0 - 24\Delta_0r_0 - M + 6im\Omega_0^2(r_0 - M)] R_H(r_\leq) R_\infty(r_\geq) + 2r_0^5 + 16M^2r_0 - 3r_0^2 \Delta_0 + im\Omega_0^2 r_0^3 |R'_H(r_0) R_\infty(r_\geq) \theta(r - r_0) + R'_\infty(r_0) R_H(r_\leq) \theta(r - r_0) + W[R_H(r_\leq), R_\infty(r_\geq)] \},\] (6c)

where $\Delta = r^2 - 2Mr$; the functions R_H and R_∞ (indices ℓ, m are suppressed) are the solutions to the homogenous radial Teukolsky equation that are ingoing and outgoing at the future event horizon and null infinity, respectively, and a prime denotes their derivative with respect to r; $W[R_H(r_\leq), R_\infty(r_\geq)] = R_H R'_\infty - R_\infty R'_H$; and the quantities $A_{\ell m}$, given by

\[A_{\ell m} := \frac{1}{\Delta^3 W[R_H(r_\leq), R_\infty(r_\geq)]},\] (7)

are constants, independent of r. The functions R_H and R_∞ are calculated to more than 350 digits of accuracy using
expansions in terms of hypergeometric functions given in [8], namely

\[R_H = e^{ix}(x)^{-2-\iota} \sum_{n=-\infty}^{\infty} a_n F(n + \nu + 1 - \iota, n - \nu - \iota, -1 - 2\iota; x), \]

\[R_{\infty} = e^{iz} z^{-2} \sum_{n=-\infty}^{n=\infty} (-2z)^n b_n U(n + \nu + 3 - \iota, 2n + 2\nu + 2; -2iz). \]

where \(x = 1 - \frac{r}{2M}, \iota = 2Mm\Omega \) and \(z = -\epsilon x \). We refer the reader to [8, 9] for the derivation of \(\nu \) (the renormalized angular momentum), and the coefficients \(a_n \) and \(b_n \). Here \(F \) and \(U \) are the hypergeometric and the (Tricomi’s) confluent hypergeometric functions.

The computation of the spin-weighted spherical harmonics \(s \mathcal{Y}_{\ell,m}(\theta, \phi) \) is done analytically using [8]. Once \(\psi_0 \) is computed, the components of the metric perturbation are found from Hertz potential, \(\Psi \), whose angular harmonics are related to those of \(\psi_0 \) by an algebraic equation,

\[\Psi_{\ell m} = 8 (-1)^{\ell} (\ell + 2)(\ell + 1)\ell(\ell - 1)\bar{\psi}_{\ell, -m} + 12iM\Omega\psi_{\ell m} \]

\[\frac{[(\ell + 2)(\ell + 1)\ell(\ell - 1)]^2 + 444m^2M^2\Omega^2}{(\ell + 2)(\ell + 1)\ell(\ell - 1)} \]

where \(\Psi = \sum_{\ell,m} \Psi_{\ell m}(r) 2\mathcal{Y}_{\ell m}(\theta, \phi) e^{-im\Omega t} \) and \(\psi_0 = \sum_{\ell,m} \psi_{\ell m}(r) 2\mathcal{Y}_{\ell m}(\theta, \phi) e^{-im\Omega t} \). The components of the metric along the Kinnersley tetrad are

\[h_{11} = \frac{r^2}{2} (\bar{\partial}^2 \Psi + \bar{\partial}^2 \bar{\Psi}), \]

\[h_{33} = r^4 \left[\frac{\partial^2}{4} - 2f \partial_r \partial_r + \frac{f^2 \partial^2}{r^4} \right] - \frac{3(r - M)}{2r^2} \partial_r + \frac{f(3r - 2M)}{2r^2} \partial_r + \frac{r^2 - 2M^2}{r^4} \Psi, \]

\[h_{13} = -\frac{f^3}{2\sqrt{2}} \left(\bar{\partial}_r - f \partial_r - \frac{2}{r} \right) \bar{\partial} \Psi, \]

where \(f = \Delta/r^2 \) and the operators \(\bar{\partial} \) and \(\partial \), acting on a spin-s quantity, \(\eta \), are given by

\[\bar{\partial} \eta = - (\partial \theta + i \csc \theta \partial \phi - s \cot \theta) \eta, \]

\[\partial \eta = - (\partial \theta - i \csc \phi \partial \phi + s \cot \theta) \eta. \]

The metric recovered from \(\Psi_{\ell m}^{\text{ren}} \) above only specifies the radiative part of the perturbations (\(\ell \geq 2 \)) and the full metric reconstruction requires one to take into account the change in mass and angular momentum of the Schwarzschild metric and are associated with \(\ell = 0 \) and \(\ell = 1 \) harmonics, respectively. The contribution to the full \(H \) from the change in mass \((H_{\delta M}) \) and angular momentum \((H_{\delta J}) \) of the Schwarzschild metric are given by (see Eqs. (137, 138) of [8])

\[H_{\delta M} = \frac{m(r_0 - 2M)}{r_0^{1/2} (r_0 - 3M)^{3/2}}, \]

\[H_{\delta J} = \frac{-2M \omega}{r_0^{1/2} (r_0 - 3M)^{3/2}}. \]

The renormalization of \(H \) is described in detail in [8, 9]. The related quantity \(\Delta \Omega \) that gives the \(O(m) \) change in the angular velocity of a trajectory at fixed redshift factor is

\[\Delta \Omega = - \frac{1}{u_\phi u^t} H^{\text{ren}} = \frac{\Delta U}{u_\phi u^t}. \]

III. RESULTS

In this section we present the pN-coefficients of \(\Delta U \). Prior to this work, the following analytical coefficients were known [1, 10]:

\[\Delta U = \frac{-1}{R} + \frac{-2}{R^2} + \frac{-5}{R^3} + \frac{-3872 + 123\pi^2}{96R^4} + \frac{-592384 - 196608\gamma + 10155\pi^2 - 393216\log(2)}{7680R^5} + \frac{64\log(R)}{5R^6} + \frac{-956\log(R)}{105R^6}. \]
We calculate \(\Delta U \) for a set of \(R \)-values from \(1 \times 3 \times 5 \times 8 \times 10^{20} \) to \(10^{29} \) in logarithmic intervals of 10 with an accuracy of one part in \(10^{227} \) for \(R = 10^{20} \), \(10^{242} \) for \(R = 10^{25} \) and \(10^{252} \) for \(R = 10^{30} \). We then match this data to a \(pN \)-series to extract the unknown coefficients. In doing so, we find non-zero half-integer \((n, 5)\) \(pN \) coefficients that come from the tail-of-tail terms in \(pN \)-computations \(\[\sum \] \). To confirm its presence we analytically calculated the 5.5\(pN \) term – the coefficient of \(1/R^{6.5} \) and found that it agreed with the numerically extracted coefficient to 113 significant digits. (The analytic calculation is described briefly below.) The high accuracy of the numerically extracted coefficients, however, allows us to extract their exact analytical expressions, \emph{without an analytic calculation}. For example, the numerically extracted value of the 6\(pN \) log-term is

\[
-90.3985890652557319223985890652557319223398589065255731922 \\
3985890652557319223985890652557319223985890485251879955 \cdots
\]

(19)

More than five repetition cycles of the string 3985890652557319222398589065255731922 tells us that it is the rational number \(-51256/567\). In a similar fashion we extract analytical values of other coefficients making the \(pN \)-series of analytically known coefficients the following,

\[
\Delta U_{\text{analytically known}} = -\frac{1}{R} + \frac{2}{R^2} - \frac{5}{R^3} + \frac{96 R^4}{R^5} + \frac{-592384 - 196608 \gamma + 10155 \pi^2 - 393216 \log(2)}{7680 R^5} \\
+ \frac{64 \log(R)}{5 R^5} + \frac{-956 \log(R)}{105 R^6} + \frac{-13696 \pi}{525 R^{6.5}} + \frac{-51256 \log(R)}{567 R^7} + \frac{81077 \pi}{3675 R^{7.5}} + \frac{27392 \log^2(R)}{525 R^8} \\
+ \frac{82561159 \pi}{467775 R^{8.5}} + \frac{-27016 \log^2(R)}{2205 R^9} + \frac{-11723776 \pi \log(R)}{55125 R^{9.5}} + \frac{-4027582708 \log^2(R)}{9823275 R^{10}} \\
+ \frac{99186502 \pi \log(R)}{1157625 R^{10.5}} + \frac{23447552 \log^3(R)}{165375 R^{11}}.
\]

(20)

A rational number with fewer than ten digits in its numerator and in its denominator is determined by the first eleven digits in its decimal expansion; thus if one assumes that the rationals occurring in the coefficients of (20) have this character, they are uniquely determined by the numerical accuracy. Without the assumption, the probability that the digits in a decimal representation of a randomly chosen number will match a rational with \(n \) digits in numerator and denominator is less than \(10^{n_1 + n_d - n} \) when \(n > n_1 + n_d \).

After using the above analytical coefficients, a numerical fit for the other numerical coefficients in (3) gives the values listed in Table I

A. Exact, Analytic 5.5\(pN \) value

As mentioned above, as a check on the work, we analytically compute the 5.5\(pN \) term. To do so, we use the fact that the renormalization parameters that characterize the singular part of \(H^{\text{ret}} \) have no \(n, 5 \)\(pN \) terms: The \(pN \) expansion of \(H^{\text{sing}} \) does not include half-integer powers of \(1/R \). Studying the \(pN \)-expansion of the first few multiplopes of \(H^{\text{ret}} \), we find that the 5.5\(pN \) term comes only from the \(\ell = 2, m = \pm 2 \) multiplopes of \(H^{\text{ret}} \). That is, the numerical coefficient of the 5.5\(pN \) term we obtain by matching \(H^{\text{ret}} \) coincides exactly with that obtained by matching the sum of the \(\ell = 2, m = \pm 2 \) multiplopes of \(H^{\text{ret}} \) to a \(pN \)-series. The analytic calculation was thus restricted to the \(\ell = 2, m = \pm 2 \) multiplopes of \(R_H^{(p)} R_q^{(q)} / (R_H R_{\infty} - R_H R_{\infty}) \) (where \(p \) and \(q \), the number of radial derivatives, each run from 0 to 2). We use the hypergeometric series Eqs. (3) and (9) to express each of these functions as Taylor series in powers of \(1/R \). From these series, we obtain in turn the \(pN \)-expansions of the \(l = 2, m = \pm 2 \) contributions to \(\psi_0, \Psi \) and their first two radial derivatives and, finally, the \(pN \)-series of \(H^{\text{ret}}_{2, \pm 2} \).

IV. NUMERICAL EXTRACTION AND ERROR ANALYSIS

We describe in this section the way we numerically extract the \(pN \)-coefficients and check the accuracy with which they are determined. We compute \(\Delta U(R) \) for \(R = 1 \times 3 \times 5 \times 8 \times 10^{20} \) to \(10^{29} \) in logarithmic intervals of 10. From this data, after subtracting the known terms of Eq. (13), we match it to

\[
\sum_{n=5} a_n \frac{1}{R^{n+1}} + \sum_{n=6} b_n \frac{\log R}{R^{n+1}} + \sum_{n=7} c_n \frac{\log^2 R}{R^{n+1}} + \sum_{n=10} d_n \frac{\log^3 R}{R^{n+1}} + \cdots.
\]

(21)
Coefficient	Numerical value
α_5	-243.176814646743075872935889693800234737272817232786539528868308827\ldots
α_6	-1305.0013810787055741090068271713\ldots
α_7	-6343.8744531990306527270512066053061390446046295187592031581328657892\ldots
α_8	-11903.4729472013044159758656241408269022857453416201732322629\ldots
α_9	-8301.37370829085581136384718573193317705504946743\ldots
α_{10}	-221316.52514302\ldots
$\alpha_{10.5}$	6.035×10^4\ldots
β_7	536.40521247102428678178935947503891127020626955232120792788336024036\ldots
β_8	1490.5550856958907438011974098883951669927243111359379504747\ldots
β_9	-3176.929181153969206392388326926608\ldots
β_{10}	-7358.271055677\ldots
$\beta_{10.5}$	5013.2\ldots
γ_{10}	2105.92718670257\ldots

See Note added at the end of the paper.

TABLE I. Numerical values of the coefficients in the expansion ΔU for which analytic expressions could not be inferred.

The accuracy with which the coefficients are extracted depends on the number of terms in the series. The fit is done in Mathematica and the number of terms in Eq. (21) chosen to maximize the accuracy of the extracted coefficients is calculated as follows. Since the coefficient extracted depends on the number of terms (say k) in the fitting series, we give another index k to some n-pN term, say the first unknown coefficient 5.5-pN term, α^k (we omit the pN-index for simplicity for now). We then look at the fractional difference of $|\alpha_{k\pm 1}/\alpha_k - 1|$ vs k, and the k_0 at which the fractional difference is minimum, we choose that coefficient. For further details we refer the reader to Sec (V) of [7] where a similar fitting is done. The fitting procedure is done twice here - first to extract the new analytical pN-coefficients (the terms in Eq. (20) minus Eq. (18)), and then we subtract them from data to do another fit to extract the coefficients in Table I.

V. DISCUSSION

In [12] it was established that a relation exists between, on the one hand, coefficients in the pN expansion of the redshift variable and, on the other hand, coefficients in the expansion of the pN binding energy and angular momentum for the binary system; for explicit results, see, for example, Eq. (2.50a-d) and (4.25a-d) in [12]. Subsequently, using essentially Eqs. (2.40), (4.19) and (4.23) in [12], Le Tiec et al. (see [13]) transformed these relations to obtain, for arbitrary pN order, elegant expressions for the energy and angular momentum directly in terms of the self-force redshift variable and its first derivative; see, in particular, Eqs. (4a-b) in [13].

Self-force extensions of the pN binding energy and angular momentum have been long sought after, since they were known to have the potential to contribute to the effective-one-body (EOB) formulation (see [14, 15]) of the binary inspiral problem — mimicking, as far as possible, the reduced mass form of the Newtonian problem, but in a fully four dimensional, space-time setting. Thus, in a follow-up paper to [13], Barausse et al. [16] found a very compact result, expressing the relevant EOB function directly in terms of the self-force variable alone; see their Eq. (2.14) for this important relation, subsequently also reported in [17].

There is a very clear synergy between self-force results, and their applications in pN and EOB work, and knowledge of our new results will have an immediate impact though the application of the relations discussed in the previous two paragraphs. Since the completion of our calculation, a corresponding computation has been performed to directly evaluate the 5.5pN coefficient through conventional pN analysis, in which it is known to arise from a tails-of-tails contribution. The ensuing result, as reported in a companion paper [11], is in exact agreement with the 5.5pN term in our Eq. (20).
Note: The works cited in this section express Ω as $x^{3/2}/(M + m)$ rather than our $R^{3/2}/M$, and use $z(x) = 1/U(R)$ as the red shift variable. The notation used throughout the rest of this paper was first introduced by Detweiler [4].

Note added: At 1:15 pm (GMT) on December 9th, 2013 we received email notification from Nathan Kieran Johnson-McDaniel [18] that α_5 could be represented as

$$\sqrt{205680256 + 7342080 \gamma - 31680075 \pi^2 + 28968960 \log(2) - 13996800 \log(3)} / 403200$$

An equivalent result, and an exact expression for α_6, have subsequently appeared in [19]. It has since been possible to show that our numerical results for β_7 and β_8 can be represented by

$$\beta_7 = \frac{5163722519}{5457375} - \frac{109568}{525} \gamma - \frac{219136}{525} \log(2)$$

and

$$\beta_8 = \frac{769841899153}{496621125} + \frac{108064}{2205} \gamma + \frac{5361312}{11025} \log(2) - \frac{852930}{2205} \log(3).$$

An explanation of these results and the methods used to obtain them will be discussed in a forthcoming paper [20].

ACKNOWLEDGMENTS

We are indebted to Alexandre Le Tiec for pointing out [10] for the value of 4-pN coefficient. This work was supported by NSF Grant PHY 1001515 to UWM, PHY 0855503 to UF, European Research Council Starting Grant No. 202996 to WIS and the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 304978 to UoS. BFW acknowledges sabbatical support from the CNRS through the IAP, where part of this work was carried out.

[1] L. Blanchet, S. Detweiler, A. L. Tiec, and B. F. Whiting, Phys Rev D, 81, 084033 (2010).
[2] L. Blanchet, S. Detweiler, A. Le Tiec, and B. F. Whiting, in Mass and Motion in General Relativity, edited by L. Blanchet, A. Spallicci, and B. Whiting (2011) pp. 415–442.
[3] L. Blanchet and T. Damour, Phys Rev D, 37 (1988).
[4] S. Detweiler, Phys Rev. D, 77, 124026 (2008) [arXiv:0804.3529 [gr-qc]]
[5] A. G. Shah, J. L. Friedman, and T. S. Keidl, Phys Rev D, 86, 084059 (2012).
[6] T. S. Keidl, A. G. Shah, J. L. Friedman, D.-H. Kim, and L. R. Price, Phys Rev. D, 82, 124012 (2010).
[7] A. G. Shah, T. S. Keidl, J. L. Friedman, D.-H. Kim, and L. R. Price, Phys Rev. D, 83, 064018 (2011).
[8] S. Mano, H. Suzuki, and E. Takasugi, Prog Theor Phys, 95, 1079 (1996).
[9] M. Sasaki and H. Tagoshi, Living Rev. Relativity, 6 (2003).
[10] D. Bini and T. Damour, Phys Rev D, 87, 121501(R) (2013).
[11] L. Blanchet, G. Faye, and B. F. Whiting, “Half-integral conservative post-newtonian approximations in the redshift observable of black hole binaries,” (2013), arXiv:1312.2975[gr-qc].
[12] A. L. Tiec, L. Blanchet, and B. F. Whiting, Phys Rev D, 85, 064039 (2012).
[13] A. Le Tiec, E. Barausse, and A. Buonanno, Phys Rev Lett., 108, 131103 (2012) [arXiv:1111.5609 [gr-qc]]
[14] A. Buonanno and T. Damour, Phys Rev. D, 59 (1999).
[15] T. Damour, P. Jaranowski, and G. Schaefer, Phys Rev. D, 62 (2000).
[16] E. Barausse, A. Buonanno, and A. Le Tiec, Phys Rev., D85, 064010 (2012) [arXiv:1111.5610 [gr-qc]]
[17] S. Akcay, L. Barack, T. Damour, and N. Sago, Phys Rev., D86, 104041 (2012) [arXiv:1209.0964 [gr-qc]]
[18] N. K. Johnson-McDaniel, Private communication (2013).
[19] D. Bini and T. Damour, “High-order post-newtonian contributions to the two-body gravitational interaction potential from analytical gravitational self-force calculations,” (2013), arXiv:1312.2503[gr-qc].
[20] N. K. Johnson-McDaniel, A. G. Shah, and B. F. Whiting, Manuscript in preparation (2014).