TbPRMT6 Is a Type I Protein Arginine Methyltransferase That Contributes to Cytokinesis in Trypanosoma brucei

John C. Fisk,1 Cecilia Zurita-Lopez,2 Joyce Sayegh,2 Danielle L. Tomasello,1 Steven G. Clarke,2 and Laurie K. Read1+*

Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14124,1 and Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 900952

Received 21 January 2010/Accepted 14 April 2010

Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). In Saccharomyces cerevisiae and mammals, this modification affects multiple cellular processes, such as chromatin remodeling leading to transcriptional regulation, RNA processing, DNA repair, and cell signaling. The protozoan parasite Trypanosoma brucei possesses five putative PRMTs in its genome. This is a large number of PRMTs relative to other unicellular eukaryotes, suggesting an important role for arginine methylation in trypanosomes. Here, we present the in vitro and in vivo characterization of a T. brucei enzyme homologous to human PRMT6, which we term TbPRMT6. Like human PRMT6, TbPRMT6 is a type I PRMT, catalyzing the production of monomethylarginine and asymmetric dimethylarginine residues. In vitro methylation assays, TbPRMT6 utilizes bovine histones as a substrate, but it does not methylate several T. brucei glycan/arginine-rich proteins. As such, it exhibits a relatively narrow substrate specificity compared to other T. brucei PRMTs. Knockdown of TbPRMT6 in both procyclic form and bloodstream form T. brucei leads to a modest but reproducible effect on parasite growth in culture. Moreover, upon TbPRMT6 depletion, both PF and BF exhibit aberrant morphologies indicating defects in cell division, and these defects differ in the two life cycle stages. Mass spectrometry of TbPRMT6-associated proteins reveals histones, components of the nuclear pore complex, and flagellar proteins that may represent TbPRMT6 substrates contributing to the observed growth and morphological defects.

Posttranslational methylation of proteins on arginine residues has multiple roles in a wide array of cellular functions, such as chromatin remodeling leading to transcription activation or repression, RNA processing, DNA repair, and various forms of cell signaling (5, 6, 8, 9, 52, 70, 98). The process of arginine methylation involves the transfer of methyl groups from S-adenosyl-methionine (AdoMet) to arginine residues of proteins and is catalyzed by a group of enzymes known as protein arginine methyltransferases (PRMTs). PRMTs themselves are further divided into four classes, depending on the type of methylated arginine generated. The largest PRMT class comprises the type I enzymes, as characterized by the first discovered PRMT, PRMT1. Type I PRMTs initially catalyze the formation of monomethylated arginine (MMA) on the terminal ω-nitrogen, followed by addition of a second methyl group on the same ω-nitrogen, which yields asymmetric dimethylarginine (ADMA). The type II PRMTs are a smaller group, presently consisting only of PRMT5 and its homologues. These enzymes also catalyze the synthesis of MMA on the ω-nitrogen, resulting in symmetric dimethylarginine (SDMA). Almost all known eukaryotic cells possess at least one type I PRMT and one type II PRMT in the form of PRMT1 and PRMT5 homologues, respectively (3). Less is understood about the type III and type IV PRMTs. Type III PRMTs catalyze the production of only MMA. Thus, the Trypanosoma brucei homologue of human PRMT7, TbPRMT7, is the only enzyme thought to be exclusively type III, and the specificity of the mammalian homologue PRMT7 is controversial (27, 54, 64). Finally, the type IV PRMTs catalyze MMA on the δ-nitrogen of arginine but to date have been described to occur only in fungi (63, 69).

PRMT substrates are varied and include chromatin-associated proteins, signaling proteins, and a large number of RNA binding proteins (RBPs) (5). RBPs are usually methylated within glycine/arginine-rich (GAR) regions (68), often within canonical RGG motifs. However, methylation of arginine residues in noncanonical regions is becoming more apparent, suggesting a more complex specificity than initially thought (6, 97). Thus, a large number of PRMT substrates cannot be identified based on their sequences and so must be empirically defined.

The homologues of PRMT6 in humans and other higher eukaryotes comprise a family of type I PRMTs involved in transcription and DNA repair (28, 53). PRMT6 exhibits a relatively narrow substrate specificity, with the currently known substrates being HMG1A (66, 87, 106), histone subunits (32, 37, 38), DNA polymerase beta (20), and several components of the HIV virus (10, 39, 40) as well as PRMT6 itself (28). The human enzyme is reported to display an exclusively nuclear localization pattern (28), consistent with its known roles in...
nuclear processes. Detailed in vitro studies showed that human PRMT6 catalyzes methyl transfers in a distributive manner, depositing the first methyl group and creating MMA, dissociating from the substrate, and then rebinding to the methyl mark and forming ADMA (53). Homologues of PRMT6 are apparently absent from the genomes of most single-celled eukaryotes, with the exception of Trypanosoma brucei and, possibly, Dictyostelium (3).

The kinetoplastid protozoan T. brucei is the causative agent of African sleeping sickness. Kinetoplastid parasites, including T. brucei, Trypanosoma cruzi, and Leishmania spp., exhibit several unique features, one of the most striking of which is the absence of gene regulation at the level of transcription (13, 14). Instead, these parasites regulate several posttranscriptional processes, including RNA stability, translation, and RNA editing, to control gene expression. This unusual mode of gene regulation necessitates the involvement of a large number of RBPs, a few of which have been identified (26, 35, 48, 61, 83, 91, 92). Correspondingly, the T. brucei genome encodes a large number of RBPs. Because many of these RBPs contain GAR motifs, they are in turn proposed targets of regulation by arginine methylation (17; L. K. Read, unpublished results).

Previously, we identified five putative PRMTs in the T. brucei genome, which is, to our knowledge, the highest number in a single-celled eukaryote (3, 73). In this study, we present an in vitro and in vivo characterization of the T. brucei homologue of the human PRMT6 protein, which we term TbPRMT6. TbPRMT6 is a type I PRMT with a relatively narrow substrate specificity compared to those of other T. brucei PRMTs. Knockdown of TbPRMT6 in both procyclic form (PF) and bloodstream form (BF) T. brucei leads to a modest but reproducible effect on parasite growth in culture as well as differential defects in cell division. Mass spectrometry of TbPRMT6-associated proteins reveals several potential substrates that may contribute to these growth and morphological defects.

MATERIALS AND METHODS

Cloning and expression of TbPRMT6. The gene carrying the TbPRMT6 open reading frame (GenBank:U67235.1) was PCR amplified from oligo(dT)-primed cDNA extracted from procyclic form (PF) T. brucei strain 927 Eatro 1.1 (strain 927 Eatro 1.1) RNA using the primers PRMT6-5′-GGAAGCTTATGGAGTCCGGAGGGTTTG-3′ and PRMT6-3′-GAGGATCTTTTAACTCGAGCTCAATG-3′ (the restriction enzyme-cut sites are underlined). The resultant product was cloned into pJET (CloneJet cloning kit; Fermentas). TbPRMT6 was excised from pJET-TbPRMT6 using BamHI and HindIII and ligated into the BamHI-HindIII sites of both the pET2a vector (Novagen) and the pET2a vector (Novagen). The resultant plasmids were then transferred into Rosetta strain 29-13 (from George A. M. Cross, Rockefeller University), which contains integrated genes for the T7 RNA polymerase and the tetracycline repressor, were grown in SDM-79 medium supplemented with 15% fetal bovine serum (FBS), as indicated previously (75), unless otherwise noted. Bloodstream form (BF) single-marker T. brucei cells (also provided by George A. M. Cross) were cultured in HMI-9 medium supplemented with 10% FBS and 10% Serum Plus (SAFC) (75). For creation of cells expressing double-stranded RNA (dsRNA) targeting TbPRMT6 for RNA interference (RNAi), the full-length TbPRMT6 open reading frame was excised from pET2a-TbPRMT6 using BamHI and HindIII and ligated into the BamHI-HindIII sites of the tetracycline-inducible RNAi vector p2T7-177 (95), creating p2T7-177-TbPRMT6. NotI-linearized p2T7-177-TbPRMT6 was transfected into PF and BF cells, and cells harboring this construct were selected with 2.5 μg/ml phleomycin. Clones were obtained by serial dilution and grown over the indicated time periods in the absence or presence of 2.5 μg/ml tetracycline. For coexpression of expression of TbPRMT6, we engineered the vector pLEW79-MH-TAP to express TbPRMT6 with a C-terminal myc-six-histidine TAP tag (43). Full-length TbPRMT6 was amplified using the primers PRMT6-5′ HindIII (5′-GGAAGCTTATGGAGTCCGGAGGGTTTG-3′) and TbPRMT6-3′ BamHI (5′-GAGGATCTTTTAACTCGAGCTCAATG-3′) (restriction sites are underlined), cloned into the cloning vector pJET, and finally cloned into the HindIII-BamHI sites of pLEW79-MH-TAP. The resultant vector, pLEW79-TbPRMT6-MH-TAP, was transfected into 29-13 cells, and clones were selected by limiting dilution. Expression of tetracycline-inducible TbPRMT6-MH-TAP was verified by Western blotting against both TbPRMT6 and the myc tag, which confirmed the expression of the native 41-kDa TbPRMT6 protein as well as the approximately 69-kDa tagged TbPRMT6-MH-TAP protein.

In vitro methylation assays. 3′-Adeosyl-[methyl-3H]methionine ([3H]AdoMet) (40 Ci/mmol) was purchased from Amersham or Perkin Elmer. Methylation assays were performed essentially as described in references 73 and 74, with the following modifications. Purified TbPRMT6-His (3 μg) was incubated in 50 μl of phosphate-buffered saline (PBS) with specified substrate (typically 3 μg; 10 μg for histones) and 2 μCi [3H]AdoMet for 14 h at room temperature. The substrates used in this study are as follows: the synthetic peptide H-C₄GRGGRGGRG-NH₂ (12), myelin basic protein (MBP) (Sigma), bovine mixed histones (IASS; Sigma), His-RBP16 (35), GST-TbRGG1 (74), and GST-TbRGG2 (26).

High-resolution amino acid analysis of acid hydrolysates of TbPRMT6 products. Reactions were carried out overnight as indicated above except using either 3 μg of GST-TbPRMT6 alone or GST-TbPRMT6 with 10 μg bovine histones. The reactions were precipitated with 50% trichloroacetic acid (TCA) and washed with ice-cold 100% acetone, and the resultant TCA pellet was acid hydrolyzed to lead to a modest but reproducible effect on parasite growth in culture as well as differential defects in cell division. Mass spectrometry of TbPRMT6-associated proteins reveals several potential substrates that may contribute to these growth and morphological defects.
base, three have previously been characterized in our laboratory. This includes canonical homologues of the human type I PRMT1 and type II PRMT5 proteins (73, 74) as well as a unique type III enzyme known as TbPRMT7 (27). A fourth enzyme (Tb927.10.3560), as yet uncharacterized, appears to be the homologue of human PRMT3. The fifth putative PRMT (Tb927.5.3960) shares overall amino acid sequence identities with human PRMT1 but appears to be most similar to human PRMT6 (HsPRMT6) when sequences outside the catalytic core are analyzed. To determine the relationship of Tb927.5.3960 to human PRMTs, we used CLUSTALW (http://www.ebi.ac.uk/Tools/clustalw2/index.html) to align the amino acid sequences of three human type I PRMTs, HsPRMT1, HsPRMT3, and HsPRMT6, with putative type I PRMTs from T. brucei. A cladogram of this alignment (Fig. 1A) demonstrates that Tb927.5.3960 is most similar to HsPRMT6. On the basis of this alignment and analyses described below, we coined this protein TbPRMT6. All active PRMTs share several common motifs required for binding to AdoMet and substrate proteins and catalysis of the methyl transfer (3, 6, 49). In Fig. 1B, we align the amino acid sequences of HsPRMT6 and TbPRMT6, demonstrating that TbPRMT6 possesses all of these motifs (motifs I, post I, II, and III and the double E and THW loops) (Fig. 1), although motif III of TbPRMT6 diverges from the canonical motif. Across the regions of motif I through the THW loop, the human and T. brucei enzymes share 31% identity and 45.7% similarity. While the proteins are generally less conserved outside this region, we identified several shared motifs between TbPRMT6 and HsPRMT6 that are absent in other type I PRMTs (Fig. 1B, “PRMT 6”) and which presumably contribute to the homology of the two proteins as shown in Fig. 1A. TbPRMT6 appears to lack the N-terminal nuclear localization signal (NLS) present in HsPRMT6. Whereas human PRMT6 is exclusively nuclear (28), the absence of an evident NLS in TbPRMT6 suggested that its localization may differ from that of its human counterpart (see below). The homologous proteins in the related kinetoplastid parasites T. cruzi (two distinct contigs, Tc00.1047053507057.30 and Tc00.1047053506947.80) and Leishmania major (LmjF16.0030), which are 57.1% and 47.3% identical to TbPRMT6 at the amino acid level, respectively, also lack an evident N-terminal NLS. On the basis of the primary sequence analysis, the TbPRMT6 gene appears to encode an active PRMT enzyme.

Characterization of TbPRMT6 activity. To determine whether TbPRMT6 possesses PRMT activity, we conducted in vitro methyltransferase assays using methyl-[H]labeled AdoMet, recombinant six-histidine-tagged TbPRMT6, and several potential substrate proteins. Because HsPRMT6 methylates the tail of histone H3 (37, 38), we tested a mixture of bovine histones as an in vitro substrate for TbPRMT6. Additionally, we tested three T. brucei proteins involved in RNA metabolism, RBP16 (75), TbRGG1 (34), and TbRGG2 (26). All three of these proteins have glycine/arginine-rich (GAR) regions that are common sites of protein arginine methylation,
and all three are in vitro substrates for other trypanosome PRMTs (27, 73, 74). Surprisingly, as shown in Fig. 2, we observed no methylation of RBP16, TbRGG1, or TbRGG2 by TbPRMT6, even after a 1-month exposure to film. Other common PRMT substrates, such as an RG-containing peptide and myelin basic protein, were also not methylated by TbPRMT6 in these assays (data not shown). In contrast, TbPRMT6 did demonstrate PRMT activity toward proteins in the bovine mixed-histone preparation, with the specific substrates appearing to be histone H3 and H4 according to their migration on SDS-PAGE gel (Fig. 2). These data demonstrate that TbPRMT6 is an active PRMT with a narrow substrate range, similar to HsPRMT6. TbPRMT6 differs from the other trypanosome PRMTs characterized to date in this regard, since those enzymes all methylate a wide range of substrates (27, 73, 74).

HsPRMT6 is a type I PRMT that synthesizes MMA followed by ADMA in a distributive enzymatic manner (28, 53). To determine whether TbPRMT6 similarly exhibits type I methyl transfer, we performed in vitro methyltransferase reactions in the presence or absence of bovine histones under the same conditions as those shown in Fig. 2. Following the reactions, proteins were TCA precipitated and acid hydrolyzed to single amino acids. The products were separated by high-resolution chromatography and compared to known standards for MMA, ADMA, and SDMA. As shown in Fig. 3C, TbPRMT6 catalyzed the formation of both MMA and ADMA reactions on the histone substrates, typical of a type I PRMT. There was no evidence of SDMA production by TbPRMT6. It is important to note that, in these experiments, the peaks of radioactivity eluted approximately 1 min earlier than the MMA and ADMA standards detected by ninhydrin analysis. Because of their mass and pKₐ differences, tritiated amines and amino acids elute slightly earlier on high-resolution chromatography than their hydrogen counterparts (30, 44, 46, 99). The elution of radioactivity here agrees with that observed previously for tritiated MMA and ADMA (55, 58, 65). Thus, we conclude that MMA and ADMA are the major methyl species detected. The absence of any methylated amino acids in a reaction without the enzyme (Fig. 3A) demonstrates that TbPRMT6 catalyzes the production of these methylarginine derivatives on bovine histones. Notably, when TbPRMT6 was analyzed in the absence of substrate, we also observed MMA and ADMA production (Fig. 3B). This indicates that, like human PRMT6 (28), TbPRMT6 is also able to catalyze automethylation. In summary, these data demonstrate that TbPRMT6 is a type I PRMT.

![FIG. 2. Enzymatic activity of recombinant TbPRMT6. Three micrograms of TbPRMT6-His was incubated in the presence of [³H]AdoMet and the indicated substrate in PBS for 14 h at 22°C. Products were resolved by SDS-PAGE and Coomassie blue stained (bottom panels). Gels were then treated with EnHance, dried, and exposed to film for 1 month (top panels) (Fluorograph).](image-url)

![FIG. 3. Amino acid analysis of methylarginine derivatives formed by TbPRMT6. (A) Ten micrograms of the bovine histone substrate alone was incubated in the presence of [³H]AdoMet in PBS for 14 h at 22°C. The proteins were precipitated with 50% trichloroacetic acid and digested into amino acids by acid hydrolysis. Amino acids were analyzed by cation exchange chromatography in the presence of unlabeled ADMA, SDMA, and MMA standards (dotted lines). Two hundred microliters of each fraction (one-fifth of the total fraction) was removed for radioactivity analysis, 100 μl was removed for ninhydrin analysis, and the fractions were counted three times for 3 min each (solid lines). (B) Three micrograms of TbPRMT6-His in the absence of additional substrate was incubated and analyzed as described for panel A. (C) Ten micrograms of bovine histones was incubated with three micrograms of TbPRMT6-His and incubated and analyzed as described for panel A.](image-url)
TbPRMT6 is primarily cytoplasmic, although we cannot rule out that a small amount of enzyme is also present in the nucleus. The predominant cytoplasmic localization of TbPRMT6 is in direct contrast to the exclusively nuclear localization of its human counterpart.

We next asked whether TbPRMT6 is expressed in both insect and human infective stages of the *T. brucei* life cycle. Equal protein amounts of PF and BF whole-cell extracts were analyzed by immunoblotting with anti-TbPRMT6 antibodies. Loading was normalized using antibodies against MRP2, a protein that is equally expressed in both life cycle stages (92). Figure 4B shows that TbPRMT6 is expressed at essentially equal levels in the PF and BF life cycle stages, suggesting that there is no life cycle-dependent regulation of TbPRMT6 levels.

Effects of RNAi-mediated knockdown of TbPRMT6. Previous studies from our laboratory demonstrated that targeted depletion of TbPRMT1, TbPRMT5, and TbPRMT7 individually has no effect on the growth of PF cells in *vitro* (27, 73, 74). Whether this is due to redundancy between PRMTs or the fact that RNAi does not completely eliminate the protein of interest is currently unknown. Here, we analyzed the effect of RNAi-mediated depletion of TbPRMT6 on the growth of PF and BF *T. brucei*. We utilized the p2T7-177 RNAi vector (96) to generate clonal PF and BF lines expressing TbPRMT6 RNAi. We then induced TbPRMT6 RNAi using tetracycline and monitored cell growth for 12 days (PF) (Fig. 5A) or 10 days (BF) (Fig. 5B). Depletion of TbPRMT6 protein was confirmed on several days during the time course by immunoblotting with anti-TbPRMT6 antibodies (Fig. 5A and B). In both PF (Fig. 5A) and BF (Fig. 5B), we observed a modest, but highly reproducible, slow-growth phenotype beginning on day 6 upon induction of TbPRMT6 RNAi under normal culture conditions. This growth phenotype was also evident in multiple analyzed clones of both PF and BF lineages (data not shown).

To further investigate the effect of TbPRMT6 downregulation on *T. brucei* growth, we cultured PF cells under nutrient deprivation (1% FBS) and induced the RNAi under these “stressed” conditions (Fig. 5A). Uninduced cells grew at similar rates in 10% and 1% sera. However, when TbPRMT6 RNAi was induced, cells grown in 1% FBS displayed a significantly lower growth rate than did uninduced cells or induced cells in 10% FBS (Fig. 5A). Thus, TbPRMT6 is essential for optimal growth of both PF and BF *T. brucei*. These data suggest that TbPRMT6 has a role in cellular growth that is not shared by the other trypanosome PRMTs investigated to date.

In addition to the evident growth effect following loss of TbPRMT6, we also observed some striking morphological effects in the induced PF TbPRMT6 RNAi cells, even when the cells were grown under normal conditions (10% FBS) (Fig. 6A). Starting on about day 4 following induction of RNAi and carrying into days 6 and 8, cells began displaying an unusual morphology, which we termed “hydra.” These cells display a single body with multiple half-formed cell “heads” that protrude from the central, often nucleus-containing body. The heads of the hydra occasionally contained DAPI-staining kinetoplast DNA or nuclear DNA but not normal numbers of both, and they were frequently devoid of DNA (Fig. 6B, white arrows [indicating nuclei] and white arrowheads [indicating kinetoplasts]). PF cells with the hydra morphology were most abundant on day 4, where they comprised almost 5% of the population, and remained at this level in cultures carried through days 6 and 8. These results are consistent with the idea that TbPRMT6 is essential for the growth of both PF and BF stages of *T. brucei*.
induced cells counted, but they also persisted on days 6 and 8 following tetracycline induction. We next analyzed the morphology of BF TbPRMT6 RNAi cells on day 6 following tetracycline addition (Fig. 7A). While some hydra-like cells were observed in TbPRMT6-depleted BF cells, these cells generally exhibited a different morphology that was characterized by giant rounded cells containing large numbers of both nuclei and kinetoplasts (Fig. 7B). Apparent detachment of the flagella was also evident in several of these giant cells. Giant cells comprised approximately 10% of the BF cells fixed to the microscopy slide. In contrast, no PF or BF cells with these distinct morphologies were ever observed in the uninduced TbPRMT6 RNAi cell cultures. In an attempt to further define a defect in cell division, we counted nuclei and kinetoplasts in at least 200 PF cells for days 4 and 6 or at least 300 BF cells for day 6, (i.e., the approximate time frame at which the growth effect reproducibly manifested) following induction in uninduced and induced cultures. However, we did not

FIG. 5. Effect of TbPRMT6 depletion on procyclic form (PF) and bloodstream form (BF) T. brucei cell growth. (A) PF 29-13 cells harboring the tetracycline (TET)-regulatable RNAi vector p2T7-177-TbPRMT6 were treated in the absence of tetracycline (solid lines) or in the presence of 5 µg/ml tetracycline (dotted lines) and counted every 2 days. RNAi induction and cell growth analyses were performed with both 10% fetal bovine serum (FBS; diamonds) and 1% FBS (squares). The lower panel shows Western blotting of TbPRMT6 on days 2, 4, and 6 following tetracycline induction of RNAi. Hsp70 was used as a loading control. (B) BF single-marker cells transfected with the RNAi vector p2T7-177-TbPRMT6 were uninduced (solid line) or induced as described for panel A (dotted line). The lower panel shows the Western blotting of TbPRMT6 and Hsp70 on days 2, 4, and 6 following tetracycline induction.
detect any significant deviance from the normal 1N1K-to-2N2K distribution of nuclei and kinetoplasts in the cells exhibiting normal morphologies (data not shown). Together, these results suggest that the PF hydra morphology and the BF giant cells are the result of a defect in cell division in a population of cells depleted of TbPRMT6 and that this in turn contributes to the slowing of growth observed on day 6 of the RNAi induction.

Identification of TbPRMT6-associated proteins. Because the associations between PRMTs and their substrates are often relatively stable, some PRMT substrates, as well as upstream activators, have been identified using various protein-protein interaction strategies (29, 89, 90). To begin to understand the molecular basis of the growth and morphological defects in TbPRMT6 RNAi cells, we identified TbPRMT6-interacting proteins using affinity purification followed by mass spectrometry. To this end, we generated a PF *T. brucei* cell line expressing TbPRMT6 with a C-terminal Myc-His-TAP tag (TbPRMT6-MHT) in a tetracycline-inducible manner, a strategy that often yields relevant *in vivo* complexes (34, 72, 84). We purified

FIG. 6. Microscopy of procyclic form cells exhibiting aberrant morphologies upon TbPRMT6 depletion. (A) Morphological changes evident in PF TbPRMT6 RNAi cells. Cells grown in the presence (+TET) or absence (−TET) of tetracycline for 6 days were fixed to slides, stained with DAPI, and analyzed by microscopy. (B) Images of PF “hydra” cells, characterized by a central body containing nuclei (white arrows) with multiple heads with or without kinetoplasts (white arrowheads).

FIG. 7. Microscopy of bloodstream form cells exhibiting aberrant morphologies upon TbPRMT6 depletion. (A) Morphological changes evident in BF TbPRMT6 RNAi cells. Cells grown in the presence (+TET) or absence (−TET) of tetracycline for 6 days were fixed to slides, stained with DAPI, and analyzed by microscopy. (B) Images of the giant cells with detached flagella evident in BF TbPRMT6 RNAi cells. Note the BF cell with normal morphology (black arrow) for scale reference.
However, with the use of mass spectrometry, 43 proteins, in modulin binding protein tag), and only one other substoichiometric size of TbPRMT6-MHCBP (TbPRMT6–Myc-His-calmodulin binding protein) (bold arrow), a protein of approximately 45 kDa was observed (thin arrow).

FIG. 8. Silver staining of TAP-tagged purified TbPRMT6 complexes. TbPRMT6-Myc-His-TAP was expressed in PF 29-13 cells and purified using standard tandem affinity purification. The eluate was resolved using SDS-PAGE and silver stained. In addition to the major band representing TbPRMT6-MHCBP (TbPRMT6–Myc-His-calmodulin binding protein) (bold arrow), a protein of approximately 45 kDa was observed (thin arrow).

Interestingly, several flagellar proteins have been reported to play a role in cell division in *T. brucei* (11, 50, 78, 79), including the TbPRMT6-associated KMP-11 protein, depletion of which was shown to cause inappropriate nuclear division (57). Finally, TbPRMT6 also copurified with two proteins reported or suggested to be involved in RNA metabolism (the RNA binding protein TbRBD3 [21] and the putative RNA helicase TbDed1, which also associated with TbPRMT5 [73]). The low stoichiometric levels of these proteins relative to the level for TbPRMT6 itself (Fig. 8) are consistent with the idea that these proteins act as substrates for TbPRMT6 rather than as stable components of a TbPRMT6-containing complex. Overall, these data suggest multiple mechanisms by which TbPRMT6-catalyzed arginine methylation could affect cell growth and morphology, including modulation of nucleocytoplasmic transport of macromolecules, chromatin modification, and modulation of RNA processing.

TABLE 1. Proteins identified in TbPRMT6-MHT eluates

Protein group and designation in GeneDB	No. of unique peptides	Protein description
Nucleocytoplasmic transport proteins		
Tb09.211.4780	2	TbNup82, putative
Tb10.61.2630	3	Protein transport protein Sec13, putative
Tb10.6k15.3670	3	TbNup96, putative
Tb11.03.0140	5	TbNup158, putative
Tb927.2.4230	5	NUP-1 protein, putative
Tb927.3.3180	4	TbNup98, putative
Tb927.4.2280	4	TbNup149, putative
Histones		
Tb10.6l.1090	2	Histone H3 variant, putative
Tb10.496.0530	6	Histone H2B, putative
Tb11.02.5250	2	Histone H2B variant, putative
Tb927.1.2430	2	Histone H3, putative
Tb927.2.2270	4	Histone H4, putative
Tb927.5.4170	6	Histone H4, putative
Tb927.7.2820	2	Histone H2A, putative
Flagellar proteins		
Tb09.211.4511	3	Kinetoplastid membrane protein KMP-11
Tb927.3.4290	8	PFR1
Tb927.8.4970	4	PFR2
Tb927.10.9570	2	PFC14
Other		
Tb10.61.2130	2	ATP-dependent DEAD/H RNA helicase, putative (TbDed1p)
Tb927.6.4440	3	TbDRBD3
Tb927.8.4580	2	Hypothetical protein, conserved
Tb927.8.4780	2	Hypothetical protein, conserved

* TnPRMT6-MHT was purified by tandem affinity chromatography, and resulting eluates were analyzed by mass spectrometry. The sequences for the peptides identified were compared to known sequences in the annotated trypanosome database GeneDB (http://www.genedb.org/). The identified proteins were further categorized based on their known or putative functions. The number of unique peptides identified for each protein is shown. Proteins for which only one peptide was identified were excluded from the analysis.
DISCUSSION

In this article, we report the in vitro and in vivo characterization of a PRMT from the protozoan parasite *T. brucei*. This enzyme, which we term TbPRMT6, is most similar to PRMT6 in the family of mammalian protein arginine methyltransferases. The mammalian PRMT6 enzymes have been shown to function in DNA repair and transcriptional control (20, 37, 38). However, PRMT6 homologues appear to be absent from *Saccharomyces cerevisiae* and most other prototaxa (3). Despite the evolutionary distance between humans and trypanosomes, HsPRMT6 and TbPRMT6 are similar in that they exhibit type 1 PRMT activity and catalyze automethylation. The consequences of this automethylation are currently unknown. TbPRMT6 also resembles human PRMT6 in its apparently narrow substrate range, and it differs from the other, more promiscuous *T. brucei* PRMTs in this regard (27, 73, 74). In vitro, TbPRMT6 methylated a mixture of bovine histones but did not methylate several other substrates, including three trypanosome GAR proteins. TbPRMT6 histone methylation may be of functional significance since histones are an in vivo substrate of human PRMT6, and we found that TAP-tagged TbPRMT6 expressed in PF *T. brucei* copurified with several histones (see below). In contrast to the properties listed above, HsPRMT6 and TbPRMT6 differ in their subcellular localization, with the human enzyme exhibiting an exclusively nuclear localization, while TbPRMT6 is predominantly cytoplasmic. It is important to note, however, that the cytoplasmic steady-state localization of TbPRMT6 does not preclude the possibility that this protein has nuclear functions. Several human PRMTs shuttle between the cytoplasm and nucleus, and human PRMT5 appears predominantly cytoplasmic at steady state despite several well-documented roles in transcription and cell cycle progression (23, 41, 51, 80, 86, 94, 103). While experiments using leptomycin B, an inhibitor of CRM1/exportin-1-dependent nuclear export, did not provide evidence for nucleocytoplasmic shuttling of TbPRMT6 (data not shown), we cannot rule out that TbPRMT6 shuttles through a different pathway or that a small amount of nuclear enzyme is sufficient for this protein’s nuclear functions.

Of the four *T. brucei* PRMTs that have been characterized to date, TbPRMT6 is the only enzyme whose downregulation leads to a growth defect. While this defect is modest under normal culture conditions, it becomes pronounced when PF cells are nutrient starved. Thus, TbPRMT6 performs a nonredundant function that is critical for cell growth. TbPRMT6 depletion also leads to morphological defects in a subset of both PF and BF cells. Aberrant PF cells appeared to have initiated, but not completed, cell division. In addition, there often appeared to be multiple nuclei at the junctions of partially divided cells, suggesting that nuclear segregation was impaired in cells depleted of TbPRMT6. In BF, giant rounded cells with large numbers of nuclei and kinetoplasts accumulated, often with detached flagella, again indicating defects in cytokinesis in cells with decreased TbPRMT6 levels.

Mass spectrometry analysis of TbPRMT6-associated proteins highlighted several cellular pathways that could contribute to an essential function of the enzyme. Notably, histones were a major class of proteins that were associated with TbPRMT6-MHT in PF cells. We obtained multiple peptide hits for seven different trypanosome histone proteins. This finding, coupled with the ability of HsPRMT6 to methylate histones in vitro and our demonstration that TbPRMT6 methylates bovine histones in vitro (Fig. 2), suggests that histones might be an in vivo substrate for TbPRMT6. The identification of histones as putative TbPRMT6 substrates was somewhat surprising, as analyses of histone modifications in *T. brucei* to date have identified acetylation, phosphorylation, and lysine methylation but no methylation of arginine residues (25). Previous analyses of histone modifications were performed using Edman degradation (42, 62). Recently developed mass spectrometric techniques for detection of methylarginines (93) may be useful for identification of previously overlooked methylarginine residues in histones of *T. brucei*. If such modifications are detected in wild-type cells, it will be of interest to analyze histone modifications in TbPRMT6-depleted cells to reveal whether this enzyme catalyzes histone arginine methylation and whether it, in turn, affects chromatin structure and gene regulation.

A second family of proteins that was highly represented in TbPRMT6-MHT purification was that comprising components of the nuclear pore complex (NPC). There are two different possibilities to account for the association of TbPRMT6 with the NPC, and these scenarios are not mutually exclusive. First, as suggested above, TbPRMT6 may itself be a shuttling protein. As such, NPC components may have been isolated in combination with TbPRMT6 that was itself undergoing nucleocytoplasmic transport at the time of cell lysis. Alternatively, some NPC components may be substrates for TbPRMT6. Arginine methylation is well known to affect the subcellular localization of many proteins and RNAs (2, 8, 60, 76, 88). In some instances, methylation-induced alterations in nucleocytoplasmic transport have been directly attributed to modification of specific shuttling proteins, but a role for methylation of NPC components can easily be envisioned.

We also identified four flagellar proteins in association with TbPRMT6, although no defects in cell motility were evident in those TbPRMT6 RNAi cells with normal morphology. However, several flagellar proteins of *T. brucei* are reported to affect both the cell cycle and cellular division. While we did not detect specific cell cycle defects in the majority TbPRMT6-depleted cells, up to 5% of PF cells exhibited the dramatically altered morphology described above that we termed “hydra.” A similar morphology was observed when the paraflagellar rod protein pfr2 was depleted in PF cells (79). As stated above, the aberrant forms present in cultures of TbPRMT6-depleted BF cells were even more striking. These altered morphologies indicate that cells depleted for TbPRMT6 exhibit defects in cytokinesis, and these defects are more pronounced in the BF stage. Interestingly, depletion of various flagellar components or flagellar interacting proteins leads to aberrant cytokinesis and/or abnormal numbers of nuclei/kinetoplasts, and these defects are often more severe in BF cells than in PF cells (11, 47, 50, 78). Loss of another TbPRMT6-interacting protein, KMP-11, leads to altered cytokinesis, attachment of flagella, and multiple nuclei (57). Together, these data suggest a model whereby TbPRMT6-catalyzed methylation of a subset of flagellar proteins is essential for proper cell division in *T. brucei*.

Finally, two proteins that have been shown or are presumed
to function in RNA metabolism, TbRBD3 and TbDed1, were isolated with TbPRMT6-MHT. In general, RBPs constitute a major class of arginine methyl proteins in both mammals and yeast (4, 36, 59, 70, 89). Methylation of RBPs generally leads to dramatic alterations in protein-protein interactions (7, 15, 19, 24, 56, 67, 100) and, less often, in protein-RNA interactions. Estevez (21) recently reported that TbRBD3 binds to a subset of developmentally regulated transcripts and promotes their stabilization. Because TbRBD3 is equally expressed in PF and BF T. brucei, it was proposed that its role in developmentally modulated RNA stabilization may result from life cycle-specific posttranslational modifications. Thus, it will be interesting to determine the methylation status of TbRBD3 in PF and BF. TbDed1 is a DEAD box protein and a putative RNA helicase that has been reported in TAP pulldowns of RNA polymerase II and a noncanonical nuclear poly(A) polymerase in T. brucei (16, 22), although its functions have not been elucidated. Notably, we also identified TbDed1 in association with the SDMA-producing TbPRMT5 protein from T. brucei cytoplasm (73). In addition, the human homologue of TbDed1, DDX3, isozymes in association with the type I PRMT PRMT8 (71). Recent analyses supported by a Ruth L. Kirschstein National Research Service Award due to Yuko Ogata at SBRI for mass spectrophotometric analysis of proteins in kinetoplastids: a comparative analysis. Eukaryot. Cell 4(10–16). 14. Clayton, C. M., and S. Read. 2007. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol. Biochem. Parasitol. 156:95–101. 15. Clayton, C. E. 2002. Life without transcriptional control? From fly to man and back again. EMBO J. 21:1881–1888. (Erratum, 21:3917.) 16. Cote, J., and S. Richard. 2005. Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem. 280:28476–28483. 17. Das, A., H. Li, T. Liu, and V. Bellofatto. 2006. Biochemical characterization of Trypanosoma brucei RNA polymerase II. Mol. Biochem. Parasitol. 150:201–210. 18. De Gaudenzi, J., A. C. Frasch, and C. Clayton. 2005. RNA-binding domain proteins in kinetoplastids: a comparative analysis. Eukaryot. Cell 4:2106–2114. 19. DeGrasse, J., K. DuBois, D. Devos, T. Siegel, A. Sali, M. Field, M. Rout, and B. Chait. 2009. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell. Proteomics 8:2113–2120. 20. El-Andaloussi, N., T. Valovka, M. Touelle, P. O. Hassa, P. Gehrig, M. Covic, U. Hubersch, and M. O. Hottiger. 2007. Methylation of DNA poly- merase beta by protein arginine methyltransferase 1 regulates its binding to proliferating cell nuclear antigen. FASEB J. 21:2895–2907. 21. El-Andaloussi, N., T. Valovka, M. Touelle, R. Steinacher, F. Focke, P. Gehrig, M. Covic, P. O. Hassa, P. Schar, U. Hubersch, and M. O. Hottiger. 2006. Arginine methylation regulates DNA polymerase beta. Mol. Cell 22:95–102. 22. Estevez, A. M. 2008. The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Res. 36:4573–4586. 23. Etheridge, R. D., D. M. Clemens, P. D. Gershon, and R. Aphasizhev. 2009. Identification and characterization of protein non-cannonical poly(A) poly- mersases from Trypanosoma brucei. Mol. Biochem. Parasitol. 162:65–73. 24. Fabbrizio, E., S. El Messaoudi, J. Polanowska, C. Paul, J. R. Cook, J.-H. Lee, V. Negre, M. Roussel, S. Pestka, A. Le Cam, and C. Sardet. 2002. Negative regulation of transcription by the type II arginine methyltrans- ferase PRMT5. EMBO Rep. 3:641–645. 25. Feng, Q., P. Yi, J. Wong, and B. W. OMalley. 2006. Signaling within a coactivator complex: methylation of SR-C/AIB1 is a molecular switch for cell cycle progression. Mol. Biol. Cell. 17:3686–3697. 26. Figueiredo, L. M., G. A. M. Cross, and C. J. Janzen. 2009. Epigenetic regulation in African trypanosomes: a new kid on the block. Nat. Rev. Microbiol. 7:504–513. 27. Fisk, J. C., M. L. Ammerman, V. Pressnyak, and L. K. Read. 2008. TbRGC2, an essential RNA editing accessory factor in two Trypanosoma brucei life cycle stages. J. Biol. Chem. 283:23016–23025. 28. Fisk, J. C., J. J. Sayegh, C. Zurita-Lopez, S. Menon, V. Pressnyak, S. G. Clarke, and L. K. Read. 2009. A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. J. Biol. Chem. 284:11590–11600. 29. Frankel, A. N., Y. Yadav, J. Lee, T. L. Branscombe, S. Clarke, and M. T. Bedford. 2002. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem. 277:3537–3543. 30. Friesen, W. J., S. Paushkin, A. Wyce, S. Massenet, G. Van Duyne, J. Rappisilber, M. Mann, and G. Dreyfuss. 2001. The methylosome, a 20S complex containing JBP1 and pCLn, produces dimethylarginine- modified Sm proteins. Mol. Cell. Biol. 21:2829–3800. 31. Gottschling, E., and H. Freese. 1962. A tritium isotope effect on ion ex- chang chromatography. Nature 196:829–831. 32. Grondal, E. J., R. Evers, K. Kosubek, and A. W. Corneliussen. 1989. Char- acterization of the RNA polymerases of Trypanosoma brucei: trypanoso- mal mRNAs are composed of transcripts derived from both RNA polymerase- II and III. EMBO J. 8:3338–3343. (Erratum, 8:4359.) 33. Guccione, E., C. Bassi, F. Casadio, F. Martinato, M. Cesaroni, H. Schulz-Motel, B. Luscher, and A. Sali. 2007. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933–937. 34. Harris, M. E., D. R. Moore, and S. L. Hajduk. 1990. Addition of uridines...
to edited RNAs in trypanosome mitochondria occurs independently of transcription. J. Biol. Chem. 265:11366–11376.

34. Hashimi, H., A. Zikova, A. K. Panigrahi, K. D. Stuart, and J. Lukes. 2008. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that associates with a novel multiprotein complex. RNA 14:970–980.

35. Hayman, M. L., and L. K. Read. 1999. Trypanosoma brucei RBP16 is a mitochondrial Y-box family protein with guide RNA binding activity. J. Biol. Chem. 274:12067–12074.

36. Herrmann, F., A. M. Felix, N. Herth, R. Hoffmann, and S. Pestka. 2004. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that associates with a novel multiprotein complex. RNA 14:970–980.

37. Hashimi, H., A. Zikova, A. K. Panigrahi, K. D. Stuart, and J. Lukes. 2008. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that associates with a novel multiprotein complex. RNA 14:970–980.

38. Hayman, M. L., and L. K. Read. 1999. Trypanosoma brucei RBP16 is a mitochondrial Y-box family protein with guide RNA binding activity. J. Biol. Chem. 274:12067–12074.

39. Hashimi, H., A. Zikova, A. K. Panigrahi, K. D. Stuart, and J. Lukes. 2008. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that associates with a novel multiprotein complex. RNA 14:970–980.
protein from trypanosomatid mitochondria, modulates RNA stability. Eukaryot. Cell 2:560–568.

84. Schimanski, B., T. N. Nguyen, and A. Gunzl. 2005. Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot. Cell 4:1942–1950.

85. Schwede, A., L. Ellis, J. Luther, M. Carrington, G. Stoecklin, and C. Clayton. 2008. A role for CaF1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res. 36:3374–3388.

86. Scoumanne, A., J. Zhang, and X. Chen. 2009. PRMT5 is required for cell-cycle progression and p53 suppressor function. Nucleic Acids Res. 37:4965–4976.

87. Sgarra, R., J. Lee, M. A. Tessari, S. Altamura, B. Spolaore, V. Giancotti, M. T. Bedford, and G. Manfioletti. 2006. The AT-hook of the chromatin architectural transcription factor high mobility group A1a is arginine-methylated by protein arginine methyltransferase 6. J. Biol. Chem. 281:3764–3772.

88. Shen, E. C., M. F. Henry, V. H. Weiss, S. R. Valentini, P. A. Silver, and M. S. Lee. 1998. Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev. 12:679–691.

89. Swiercz, R., M. D. Person, and M. T. Bedford. 2005. Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem. J. 386:65–91.

90. Tang, J., P. N. Kao, and H. R. Herschman. 2000. Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J. Biol. Chem. 275:19666–19676.

91. Vanhamme, L., D. Perez-Morga, C. Marchal, D. Speijer, L. Lambert, M. Geuskens, S. Alexandre, N. Ismaili, U. Goringer, R. Benne, and E. Pays. 1998. Trypanosoma brucei TBRGG1, a mitochondrial oligo(U)-binding protein that co-localizes with an in vitro RNA editing activity. J. Biol. Chem. 273:21825–21833.

92. Vondruskova, E., J. van den Burg, A. Zikova, N. L. Ernst, K. Stuart, R. Benne, and J. Lukes. 2005. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei. J. Biol. Chem. 280:2429–2438.

93. Wang, H., R. M. Straubinger, J. M. Aletta, J. Cao, X. Duan, H. Yu, and J. Qu. 2009. Accurate localization and relative quantification of arginine methylation using nanoflow liquid chromatography coupled to electron transfer dissociation and orbitrap mass spectrometry. J. Am. Soc. Mass Spectrom. 20:507–519.

94. Wang, L., S. Pai, and S. Sif. 2008. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol. Cell. Biol. 28:6262–6277.

95. Wickstead, B., K. Erfsfeld, and K. Gull. 2002. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 125:211–216.

96. Wirtz, E., S. Leal, C. Ochatt, and G. A. Cross. 1999. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99:89–101.

97. Wysocka, J., C. D. Allis, and S. Coonrod. 2006. Histone arginine methylation and its dynamic regulation. Front. Biosci. 11:344–355.

98. Xie, H., and S. Clarke. 1993. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. J. Biol. Chem. 268:13364–13371.

99. Xu, W., H. Chen, K. Du, H. Asahara, M. Tini, B. M. Emerson, M. Montminy, and R. M. Evans. 2001. A transcriptional switch mediated by cofactor methylation. Science 294:2507–2511.

100. Zamudio, J. R., R. Mittra, A. Chattopadhyay, J. A. Wohlschlegel, N. R. Sturm, and D. A. Campbell. 2009. Trypanosoma brucei spliced leader RNA maturation by the cap 1 2'-O-ribose methyltransferase and SLA1 H/ACA snoRNA pseudouridine synthase complex. Mol. Cell. Biol. 29:1202–1211.

101. Zeiner, G. M., N. R. Sturm, and D. A. Campbell. 2003. Exportin 1 mediates nuclear export of the kinetoplastid spliced leader RNA. Eukaryot. Cell 2:222–230.

102. Zhao, Q., G. Rank, Y. T. Tan, H. Li, R. L. Moritz, R. J. Simpson, L. Cerruti, D. J. Curtis, D. J. Patel, C. D. Allis, J. M. Cunningham, and S. M. Jane. 2009. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16:304–311.

103. Zikova, A., A. K. Panigrahi, R. A. Dalley, N. Acestor, A. Amapaka, Y. Ogata, P. J. Myler, and K. Stuart. 2008. Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol. Cell. Proteomics 7:1286–1296.

104. Zikova, A., A. K. Panigrahi, A. D. Uboldi, R. A. Dalley, E. Handman, and K. Stuart. 2008. Structural and functional association of Trypanosoma brucei MIX protein with cytochrome c oxidase complex. Eukaryot. Cell 7:1994–2003.

105. Zou, Y., K. Webb, A. D. Perna, Q. Zhang, S. Clarke, and Y. Wang. 2007. A mass spectrometric study on the in vitro methylation of HMGA1a and HMGA1b proteins by PRMT1s: methylation specificity, the effect of binding to AT-rich duplex DNA, and the effect of C-terminal phosphorylation. Biochemistry 46:7896–7906.