The Technology and Equipment for Oil and Oil Slicks Removing Under Ice Coverage

A Kodak¹, I Kuzeev¹, A Mingazhev²

¹Technological machines and equipment chair, Ufa State Petroleum Technical University, Kosmonavtov str, 1, Ufa, The Republic of Bashkortostan, 450062, Russia
²Engineering technology chair, Ufa State Aviation Technical University, Ul.K. Marxa, 12, Ufa, The Republic of Bashkortostan, 450008, Russia

E-mail: alekkodak@gmail.com

Abstract. At present, the Arctic region is an attractive area for hydrocarbon production, but at the same time this region is extremely difficult to conduct hydrocarbon production operations, and therefore much attention should be paid to environmental and technical safety of production processes in order to prevent technological accidents. In this paper are considered modern devices for removing oil contaminants from the water surface, their operation principle and efficiency under various conditions. Also in this paper are considered a new efficient method of oil contaminants removing from under the ice, an experimental setup (device) for removing oil contaminants and its efficiency under various operating conditions.

1. Introduction

Despite their difficulty, Arctic Regions are currently very attractive for offshore mining for both Russia and a number of other countries. Russia develops the Arctic shelf in the Pechora Sea using the “Prirazlomnaya” offshore ice-resistant fixed platform. The platform is capable of mining 6 million tons of oil annually during the wave period, which is 16 500 tons per day. Thus, in compliance with the Enactment of Russian Federation “On prevention and elimination of oil and oil products spills on the territory of Russian Federation, on the continental shelf and the exclusive economic zone of Russian Federation” the following document has been approved: “The rules of planning and implementation of measures for prevention and elimination of oil and oil products spills on the territory of Russian Federation, on the continental shelf and the exclusive economic zone of Russian Federation” which obliges oil companies to set the maximum amount of oil and/or oil products spills for pioneer, prospect and development wells in the sea equal to maximum well capacity within 72 hours [1]. The estimated volume of oil spill in the Arctic Region shall be 49 500 thousand tons.

The relative value characterizing the ratio of the overall area of the ice cover to the overall visible water surface is called the concentration of ice. It is measured in points from one to ten, where ten is the maximum ice concentration. If the ice concentration is less than 3 points, the average area of spill will exceed 5 km² in 4 hours with the film thickness up to 1.0 mm and if the ice concentration is more than nine points, the spill area will reach only 0.6 km² in 24 hours, because the natural barriers prevent oil from spreading. Oil also gets trapped within the irregularities in the bottom part of ice cover. This means that in order to eliminate oil contamination from underneath the ice a special device developed specifically [2] for this purpose has to be used. Currently skimmers are the leaders in the field of...
mechanical removal of oil spills from the open water surface. Skimmers are floating devices removing the oil contamination from the water surface with special brushes on a rotating drum.

Such companies as Delmi, Lamor Corporation and Elastic have the devices for removal of oil contamination from the water surface, however neither of them is capable of handling the ice thicker than 1.0 m, because neither their weight, nor their construction enable them to break the ice that thick [3-5]. Picture 1 shows skimmers produced by Lamor and Desmi. As you can see in each of the pictures, the ice has to be crashed for these devices and the oil spill has to be gathered in one place with oil booms [6-15]. It is visually clear that these devices are not capable of skimming 49 500 thousand tons of oil within a short period of time, which has to be done in case of emergency.

Figure 1. Lamor and Desmi skimmers.

The suggested solution does not require using a ship as a carrier or breaking the ice cover of great thickness. Ice thickness is an advantage in this case. The principle of this approach is as follows: a hole is bored in the ice mass; a swirler of special from is lowered into the hole to pump the oil accumulated around the shaft. The schematic of the approach is shown in Picture 2.

To prove the efficiency of this approach, an experimental installation for oil contamination removal from underneath the arctic ice has been developed, hosted by FSBEI of Higher Education Ufa State Petroleum Technological University. The schematics of the experimental installation are shown in Picture 3. Glass vessel 1, 500l capacity, dimensions 800×800×800 mm is placed inside a metal casing 15, 1300mm high. An electric engine 11 is bolted vertically over it. The video recording equipment 5 is mounted on the ribs of the metal casing and connected to a PC with a USB-concentrator 12. Lighting equipment 6 is attached to the bottom of the vessel. Three hoses 2 are fed to the vessel. Hose 2α is connected to a water valve. Hose 2β is connected to a draining pump 9 and oil contamination storage tank 14β. Hose 2γ is connected to a pump and a storage tank with water needed for the experiment.

The working principle of the experimental installation is described below. The pulse-frequency modulator 8 (PFM) and the electric engine 11 are connected to 220V power supply. When the PFM switch 15 is switched to the “on” position, the electric engine 11 starts working which sets the shaft 13
with headers 7 in motion. PFM 8 controls the speed of electric engine shaft rotation either increasing or decreasing it. A vortex is created depending on the speed of shaft rotation. The pump 9 drains oil contaminants from the oil layer of the vortex transferring them into the contaminants storage tank 14a. After the experiment is finished the remaining water is also removed to the tanks 146 prepared beforehand.

![Diagram](image.png)

1 – ice mass, 2 – oil or oil products, 3 – swirler, 4 – full shaft of the swirler, 5 – pipe for oil pumping, 6 – holes in the hollow shaft, 7 – vortex from the swirler

Figure 2. Schematics of oil removing from underneath the ice.

The experiment has shown that a triangular tetralateral swirler header with extension length of 450 mm was the most efficient. The table 1 shows the values of the vortex diameter in the middle of its height D_1, diameter of the vortex at the height of the ice cover bottom D_2, vortex angle φ, height h at shaft rotation speed from 150 rpm up to 300 rpm with 50 rpm speed increase step [16-20].

Schematic representation of the vortex under the ice is shown in picture 4. Chart of the values dependence on the shaft rotation speed is shown in picture 5. Thus, at the 300 rpm shaft rotation speed, the diameter of the vortex at the ice cover bottom D_2 is 144 mm, in the middle of its height D_1 – 87.3 mm, the vortex angle φ is 38° and its height is 188.5 mm. Which gives 0.001 m3 (1l) per turn, which means that 1 m3 (0.906 t of ARCO grade oil) can be pumped in 3.3 minutes provided that the film is constantly present under the ice and a pumping unit ensures the required performance. AIR80 electric engine has been used during the test, its capacity is 1100 W. An hour of using such electric engine costs 3.16 rubles (at a cost of 2.87 rubles for kW per hour), and the volume of the contaminant skimmed is 18.2 m3.
1 – vessel; 2 – hoses; 3 – imitating material; 4 – imitating liquids; 5 – video recording equipment; 6 – lighting equipment; 7 – headers; 8 – pulse-frequency modulator; 9 – oil contamination drainage pump; 10 – water drainage pump; 11 – electric engine; 12 – USB-concentrator; 13 – engine shaft; 14 (a, b) – liquid storage tanks; 15 – pulse-frequency modulator switch

Figure 3. Schematics of the experimental installation for oil contamination removal from underneath the Arctic ice.

Table 1. D1, D2, φ, h values at shaft rotation speed from 150 rpm up to 300 rpm with 50 rpm speed increase step.

	150,00 rpm	200,00 rpm	250,00 rpm	300,00 rpm
D1, mm	36,00	72,00	76,00	87,30
D2, mm	72,00	100,00	106,00	144,00
φ, degree	50,00	44,00	41,00	38,00
h, mm	71,82	119,05	149,00	188,50
Figure 4. Schematic representation of the vortex under the ice.

Figure 5. Chart of the dependence of the vortex diameter in the middle of its height D_1, vortex diameter at the bottom of the ice cover D_2, vortex angle ϕ, height h at shaft rotation speed from 150 rpm up to 300 rpm with 50 rpm speed increase step. Swirler header of triangular form at speed from 150 rpm up to 300 rpm with 50 rpm speed increase step.
An ORR (oil recovery rate [15]) – the volume of removed product in a unit of time – has been calculated to determine the efficiency of the approach

\[
\text{ORR} = \frac{V_{\text{oil}}}{t},
\]

(1)

where \(V_{\text{oil}}\) is the volume of spilled product, \(t\) – time in which the product was removed.

\[\text{ORR} = 300/1=300 \text{ l/min}\]

As a comparison table 2 shows average ORR value for such devices as Desmi SeaMop3060, Lori Mini, Elastec X30, Elastec TDS 118G, Elastec Magnum 100G, Lamor LRB150.

No.	Device name	ORR, l/min	% of ice cover
1	Desmi SeaMop3060	29.8	50
2	Lori Mini	18.7	50
3	Elastec X30	43.1	50
4	Elastec TDS 118G	49	50
5	Elastec Magnum 100G	79.5	50
6	Lamor LRB150	98.3	50
7	Experimental installation	300	100

The table shows that none of the devices can be used in areas with 100% of ice cover and the experimental installation among all the other devices for skimming the oil contaminants shown in the table has the highest ORR value – volume of removed product in a unit of time. This proves its efficiency at a high level of ice concentration.

2. Reference

[1] Draft regulation of Russian Federation «The rules of planning and implementation of measures for prevention and elimination of oil and oil products spills on the territory of Russian Federation, on the continental shelf and the exclusive economic zone of Russian Federation» http://docs.cntd.ru/document/902340839

[2] Zhuravel V I, Mansurov M N, Marichev A V 2007 Analysis of the technical specifications for sea vessel systems of oil spills elimination under the conditions of the freezing seas Oil and Gas Engineering 1 37

[3] AMAP Arctic Oil and Gas 2007 Report to the Arctic Monitoring and Assessment Programme (AMAP), P O Box 8100, Dep., N-0032 Oslo, Norway (www.amap.no) Bobra A M and M F Fingas 1986 The Behavior and Fate of Arctic Oil Spills Water Science Technology 18(2) 13-23

[4] Buist I, Belore R, Dickins D, Guarino A, Hackenberg D and Wang Z 2009 Empirical weathering properties of oil in ice and snow In: Proceedings Arctic and Marine Oilspill Program (AMOP) Technical Seminar 32 vol 1 pp 67-107 Environment Canada, Ottawa, Canada

[5] Chen E C, Keevil B E, Ramseier R O 1976 Behaviour of crude oil under fresh-water ice Journal of Canadian Petroleum Technology

[6] Comfort G and Purves W 1982 The behaviour of crude oil spilled under multiyear ice Environmental Protection Service Report EPS 4-EC-82-4 Environment Canada Ottawa, Canada

[7] Dickins D F, Brandvik P J, Bradford J, Faksness L-G, Liberty L and Daniolff R 2006 experimental oil spill under ice: remote sensing, oil weathering under Arctic conditions and assessment of oil removal by in-situ burning In: Proceedings 2008 International Oil Spill Conference. American Petroleum Institute Washington, DC, USA

[8] Dickins D F and Buist I A 1981 Oil and Gas Under Sea Ice Study: 1&2. Prepared by Dome Petroleum Ltd. for COOSRA, Report CV-1, Calgary, AB, Canada (also published In: Proceedings 1981 International Oil Spill Conference Atlanta GA, USA
[9] Faksness L-G, Brandvik P J, Daae R L, Leirvik F and Borseth J F 2011 Large-scale Oil-in-ice Experiment in the Barents Sea: Monitoring of oil in water and MetOcean interactions Marine Pollution Bulletin 62 (2011): 976-984

[10] Farwell C, Reddy C M, Peacock E, Nelson R K, Washburn L and Valentine D L 2009 Weathering and the Fallout Plume of Heavy Oil from Strong Petroleum Seeps Near Coal Oil Point, CA Environmental Science Technology 43 (10) 3542

[11] Fingas M F and Hollebone B P 2002 Behavior of oil in freezing environments:A literature review In: Proceedings Arctic and Marine Oilspill Program (AMOP) Technical Seminar 25 vol 2 pp 1191-1205 Environment Canada Ottawa, Canada

[12] Hazen T C, Dubinsky E A, DeSantis T Z, Andersen G L, Piceno Y M, Singh N, Jansson J K, Probst A, Borglin S E, Fortney J L, Stringfellow W T

[13] Conrad M E, Tom L M, Chavarria K L, Alusi R, Lamendella R, Joyner D C, Spier C, Baelum J, Auer M, Zemla M L, Chakraborty E L

[14] Sonnenthal P, D’haeseleer H, Ying N, Holman S, Osman Z, Lu J D, Nostrand V, Deng Y, Zhou J and Mason O U 2010 Deep-sea oil plume enriches indigenous oil-degrading bacteria Science 330 204-208

[15] Schmidt B, Meyer P, Potter S 2013 Testing of Oil Recovery Skimmers in Ice at Ohmsett The national Oil Spill Response Research & Renewable Energy Test Facility Ottawa, Canada

[16] Kodak A A, Mingazhev A D, Yevsyutina O V 2015 Oil slicks removing under ice bottom in arctic conditions Yekaterinburg: Book of reports «International research and practice conference «Ural mine training school to the regions» 26 674

[17] Kodak A A, Mingazhev A D, Yevsyutina O V 2015 Oil slicks removing from under ice in Arctic conditions Ufa: Book of reports «66th science and technology conference for students, candidates and young scientists of Ufa State Petroleum Technological University» 66 2015

[18] Kodak A A, Mingazhev A D 2016 The research of processes of oil slicks removing under ice bottom Almaty: Book of reports «Book of abstracts» 13 9

[19] Kodak A A, Mingazhev A D, Yevsyutina O V 2016 The research of oil slicks removing under ice bottom Ufa: Book of reports «67th science and technology conference for students, candidates and young scientists of Ufa State Petroleum Technological University» 67

[20] Kodak A A, Mingazhev A D, Yevsyutina O V 2016 Research of procedures for oil contaminants removal from underneath the ice cover Ufa: Book of reports «67th science and technology conference for students, candidates and young scientists of Ufa State Petroleum Technological University» 67