Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations

Yun Rose Li1,2,3,16, Joseph T. Glessner1,2,16, Bradley P. Coe4, Jin Li1,5, Maede Mohebnasab1, Xiao Chang1, John Connolly1, Charly Kao1, Zhi Wei6, Jonathan Bradfield1, Cecilia Kim1, Cuiping Hou1, Munir Khan1, Frank Mentch1, Haijun Qiu1, Marina Bakay1, Christopher Cardinale1, Maria Lemma1, Debra Abrams1, Andrew Bridglall-Jhingoor1, Meckenzie Behr1, Shanell Harrison1, George Otieno7, Alexandria Thomas1, Fengxiang Wang1, Rosetta Chiavacci1, Lawrence Wu1, Dexter Hadley3, Elizabeth Goldmuntz2,7, Josephine Elia2,8,9, John Maris2,10, Robert Grundmeier11, Marcella Devoto2,12,13,14, Brendan Keating1, Michael March1, Renata Pellagrino1, Struan F.A. Grant1,2, Patrick M.A. Sleiman1, Mingyao Li14, Evan E. Eichler4,15 & Hakon Hakonarson1,2*

Copy number variants (CNVs) are suggested to have a widespread impact on the human genome and phenotypes. To understand the role of CNVs across human diseases, we examine the CNV genomic landscape of 100,028 unrelated individuals of European ancestry, using SNP and CGH array datasets. We observe an average CNV burden of ~650 kb, identifying a total of 11,314 deletion, 5625 duplication, and 2746 homozygous deletion CNV regions (CNVRs). In all, 13.7% are unreported, 58.6% overlap with at least one gene, and 32.8% interrupt coding exons. These CNVRs are significantly more likely to overlap OMIM genes (2.94-fold), GWAS loci (1.52-fold), and non-coding RNAs (1.44-fold), compared with random distribution ($P < 1 \times 10^{-3}$).

We uncover CNV associations with four major disease categories, including autoimmune, cardio-metabolic, oncologic, and neurological/psychiatric diseases, and identify several drug-repurposing opportunities. Our results demonstrate robust frequency definition for large-scale rare variant association studies, identify CNVs associated with major disease categories, and illustrate the pleiotropic impact of CNVs in human disease.
Copy number variants (CNVs) are losses or gains of genomic segments. Although CNVs are commonly observed in healthy individuals, they are known to have gene dosage-sensitive effects on specific phenotypes. Prior CNV studies suggest that CNVs have a widespread impact on the human genome, as they are often associated with biological functions impacting disease susceptibility. However, most existing studies are based on limited sample sizes and lack adequate depth of rare CNV coverage. Historically, rare large CNVs are known to be associated with certain rare disease phenotypes. More recently, many previously thought to be rare CNVs were found to be common across populations with allelic properties similar to single-nucleotide polymorphism (SNP) genotypes. The frequency and distribution of CNVs across the human genome have been examined by a number of recent studies using a variety of oligonucleotide arrays, CNV calling algorithms, and analytical methods, in an effort to understand the role of CNVs in human health and disease. As CNVs impacting gene products are often deleterious, most such CNVs are rare genomic events that undergo negative selection. Consequently, large-scale sample sizes are required for sufficiently powered studies.

This study examines the CNV burden in over 100k subjects of European ancestry. We highlight the importance of rare, recurrent CNVs on the functional human genome and show that they are associated with on complex, common human diseases, including unreported therapeutic opportunities. Copy number variation regions (CNVRs) are significantly more likely to overlap OMIM genes (2.94-fold), genome-wide association studies (GWAS) loci (1.52-fold), and non-coding RNAs (ncRNAs; 1.44-fold), compared with random distribution (P < 1 × 10^-7). We uncover strong CNV associations with four major disease categories, including autoimmune, cardio-metabolic, oncologic, and neurological/psychiatric diseases, several of which impact genes that represent potential drug targets for future validation.

Results

Amassing and curating CNV calls. To examine the distribution of CNVs across the human genome, we genotyped 100,028 individuals from populations of European ancestry using results from either genome-wide SNP arrays (Illumina and Affymetrix) or array comparative genomic hybridization (aCGH) platforms (SignatureChip and Agilent). For the SNP array platforms (N = 52,321), CNVs were called using both the genotype B allele frequencies and intensity log R ratios (LRRs) calculated from 520,017 overlapping SNPs; LRRs were used for CNV calls on the aCGH platforms (N = 48,707), see Supplementary Methods. For quality control and association testing, we used ParseCNV, a robust CNV pipeline that has been validated for CNV calling based on extensive experimental experience. To avoid study bias in the interpretation of the frequencies of rare recurrent CNVs across the 100,028 subjects, individuals with known multisystemic syndromic disorders with established causality attributable to CNVs were excluded from the analysis (i.e., 22Q deletion and duplication syndromes, del15q11-13, del16p11.2, and trisomy 21. Incidentally, apart from trisomy 21, through our genetic studies, we clustered individuals with disease phenotypes to the possibility of embryonic lethality or early death (P < 0.05; Supplementary Table 2).

To evaluate the biological and functional impact of CNVRs on human health and disease, we used repeated permutations to determine whether the overlap between CNVR regions and functional regions (RefSeq genes, OMIM morbid loci, ultra-conserved elements, CpG islands, conserved transcription factor-binding sites, ncRNAs, exons, conserved transcriptional factor-binding sites and genome-wide significant GWAS hits) was greater than that expected at random (see online methods; Fig. 2 and Supplementary Table 3). We identified significant annotations for both OMIM morbid genes (enrichment ratio, ER = 2.94), genome-wide significant GWAS loci (ER = 1.52), as well as recombination hotspots (ER = 1.32), all P < 1 × 10^-4. Together, these findings underscore the important impact of natural selection in driving human genetic diversity and CNV distribution, as well as the importance of CNVs in phenotypic variation and human disease.

To identify potential associations between recurrent CNVs and human disease, we clustered individuals with disease phenotypes into four major categories (Fig. 3a) and healthy controls: (1) autoimmune/inflammatory diseases (n = 11,489), (2) cancers (n = 9105), (3) cardiovascular and metabolic diseases (n = 2581), and (4) a combination of psychiatric, neurodevelopmental, and neurological diseases (n = 43,841). At the expense of reduced sensitivity, this approach enabled us to identify loci that have broad disease implications in spite of the low frequency of most CNVRs, which makes a phenome-wide approach impractical.

CNV impact on health and disease. Among the most clinically important CNVRs are homozygous deletions (hdCNVRs), as they are most likely to be pathologic. As expected, a lower percentage of the hdCNVRs are recurrent (2076 or 75.6%). Among the hdCNVRs identified, 375 are unreported, 44.3% of which were private. Leveraging the power of the large cohort, we also examined the data for evidence of homozygous or hemizygous deletions that incur embryonic lethality. Among the 2021 deletion CNVRs with a population frequency of at least 1.25%, we identified 62 loci at which no hdCNVR was identified, consistent with the possibility of embryonic lethality or early death (P < 0.05).

We identified a total of 11,314 deletion, 5625 duplication, and 2746 homozygous-deletion CNVRs, defined as a contiguous cluster of non-singleton SNPs (occurring with a frequency of >0.03% or ~30 samples) that spans <1 Mb (Fig. 1a, Supplementary Fig 1, and Supplementary Data 1–3). We observed a mean CNV inheritance rate of 94% in a subset of several thousand family trios examined, with biological replicate concordance rate of 98%, confirming the reliability and specificity of the reported CNV calls (see Supplementary Methods). Furthermore, experimental validation by quantitative PCR (qPCR) was observed in >95% of the 2127 randomly selected, genotyped samples. We also examined CNVR distributions by genotyping platforms and CNVR size ranges to exclude the presence of technical bias in genotyping, sample processing, or CNV calling. As a further method of quality control, we showed that CNVs observed across this study population recapitulated a number of CNVRs with a population frequency of at least 1.25%, we identified 62 loci at which no hdCNVR was identified, consistent with the possibility of embryonic lethality or early death (P < 0.05; Supplementary Table 2).

To evaluate the biological and functional impact of CNVRs on human health and disease, we used repeated permutations to determine whether the overlap between CNVR regions and functional regions (RefSeq genes, OMIM morbid loci, ultra-conserved elements, CpG islands, conserved transcription factor-binding sites, ncRNAs, exons, conserved transcriptional factor-binding sites and genome-wide significant GWAS hits) was greater than that expected at random (see online methods; Fig. 2 and Supplementary Table 3). We identified significant annotations for both OMIM morbid genes (enrichment ratio, ER = 2.94), genome-wide significant GWAS loci (ER = 1.52), as well as recombination hotspots (ER = 1.32), all P < 1 × 10^-4. Together, these findings underscore the important impact of natural selection in driving human genetic diversity and CNV distribution, as well as the importance of CNVs in phenotypic variation and human disease. To identify potential associations between recurrent CNVs and human disease, we clustered individuals with disease phenotypes into four major categories (Fig. 3a) and healthy controls: (1) autoimmune/inflammatory diseases (n = 11,489), (2) cancers (n = 9105), (3) cardiovascular and metabolic diseases (n = 2581), and (4) a combination of psychiatric, neurodevelopmental, and neurological diseases (n = 43,841). At the expense of reduced sensitivity, this approach enabled us to identify loci that have broad disease implications in spite of the low frequency of most CNVRs, which makes a phenome-wide approach impractical.
Consistent with expectation, disease-associated CNVRs (DA-CNVRs) are larger than average (Fig. 3b) and 94% (ER = 2.4) overlapped CNV-bearing regions previously reported in the DGV and 18% (ER = 1.2) overlapped GWAS loci (Fig. 2a), both significantly enriched as compared with chance (P < 0.001)\(^22,23\). We identified candidate genes in DA-CNVRs in a number of well-established disease-associated loci, including chr2p24.3 (MYCN amplification in cancer)\(^24\), chr22q11.21 (COMT and TBX1 deletion in neuropsychiatric disease and congenital heart conditions)\(^25–27\), and chr17q21.1 (NR1D1, deletion and duplication associated with response to lithium in bipolar disease and major depressive disorder)\(^28,29\). In addition, we unveiled multiple, putatively unreported DA-CNVRs that map to relevant candidate genes (Table 1). Among those are several well-established drug targets and others in development, including but not limited to TNFAIP8, HSPA9, SLIT3, HCN2, GRK6, ITGB8, ADK, CD44, NR1D1, and SLC38A10\(^{30–43}\). We performed similar enrichment analyses across each set of the domain-specific DA-CNVRs, showing that a number of the functional and genomic elements were enrichments in multiple disease domains (Supplementary Fig. 5).

Finally, we also identified multiple disease-associated hdCNVRs (DA-hdCNVRs), including those that map to unreported disease-association loci, as well as those that map to known genes reported by GWAS or other association studies (Table 2). On average, DA-hdCNVRs are smaller in size than the DA-CNVRs, which may be a consequence of the deleteriousness of large hdCNVR events in the genome (Supplementary Fig. 5).

Discussion

Our analysis presents a dense map of CNVs across the human genome (Fig. 1 and Supplementary Data 1–3) and refines the frequencies of rare recurrent CNVs across the genome. Although individual CNVs are rare, most are recurrent and, collectively, CNVs represent an important and not infrequent source of genetic variation in the human genome. Although the importance of CNVs in rare genetic syndromes, congenital diseases, and in the cancer genome is well-elucidated, the role of germline CNVs in common human diseases has been thus far largely understudied. The salient overlap between CNVRs and GWAS signals observed in our study suggests that rare and uncommon CNVs may significantly contribute to common polygenic diseases (Fig. 2). Although some association studies have attempted to leverage GWAS to capture common CNVs, in the form of TagSNPs, our findings suggest that common polymorphisms do not effectively capture rare CNVs (Supplementary Data 4). This may contribute to the missing heritability observed when
comparing heritability calculated from GWAS findings with the expected heritability obtained from familial/twin studies. More effort is needed to evaluate the degree to which rare CNVs may contribute to the observed missing heritability using larger sample sizes and appropriate genomic platforms.

The role of CNVs and structural rearrangements as a driving force in human evolution and genome variation is also evident in the overlap of CNVRs with recombination hotspots. Recombination rates were higher for smaller and less common CNVRs and, in keeping with prior reports, a third (35.3%) of the CNVRs overlapped a recombination hotspot. In addition, we observed significant overlap between CNVRs and loci bearing segmental duplications and microsatellite sites \((P < 1 \times 10^{-4}; \text{Fig. 2a and Supplementary Figs. 3 and 4}) \), likely related to increased rates of DNA replication defects at these regions. As polymorphic and repetitive loci are often neglected in disease-association studies due to technical challenges, it is especially important to further evaluate the phenotypic contributions of CNVs mapping to these loci.

We report herein a number of CNVRs, including a number of unreported CNVRs, which are associated with common human diseases. In addition to providing evidence of the impact of CNVRs in common diseases, these genes offer important avenues for therapeutic intervention. One notable example is a chr7p15.3 deletion associated with autoimmune disease \((P < 6.87 \times 10^{-19}) \).

This 2.9 kb deletion overlaps the gene \(\text{ITGB8} \), which encodes the cell-surface glycoprotein \(\beta_8 \) integrin. \(\text{ITGB8} \) is a well-established drug target for ovarian cancer and its expression is critical for dendritic cell-mediated induction of regulatory T-cell repertoire. Through extensive functional studies, Travis et al. and others have shown that the conditional loss of the transforming growth factor-\(\beta \)-activating integrin \(\alpha-V/\beta_8 \) on leukocytes causes severe inflammatory bowel disease and age-related autoimmunity in mice. Recent efforts show that the \(\alpha-V/\beta_8 \) receptor complex is a viable therapeutic target in fibro-inflammatory airway disease.

Another candidate locus is chr19p13.3, which encodes \(\text{HCN2} \), a hyperpolarization-activated, cyclic nucleotide-gated K+ channel.

Fig. 2 Functional enrichment analysis. a Relative enrichment ratios for mapping of a CNV to a locus annotated as each of the given categories. ER was calculated based on 10,000 repeated simulations for each category/CNVR combo (see Methods). Regions of the genome bearing CNVs were significantly more likely to map to loci that are gene-bearing (Genic regions), exonic, or conserved (PHAST or PhyloP), and are enriched for functional loci, including miRNA targets (RNAi), CpG islands (CpG), microsatellites, recombination hotspots (Recombination), transcription factor-binding sites (TF BD), and were more likely to map to regions previous CNVs have been reported in the Database for Genomic Variants (DGV). ER enrichment ratio; DUP duplication; DEL deletion; HD homozygous deletion. The enrichment results are reported separately for “ALL” CNVRs and CNVRs optimized for Dup, Del, or HD CNVs. b Contribution of CNVRs with different transcriptional impact as annotated by Ensemble Variant Effect Predictor for the nearest gene, respectively, for all CNVRs, deletion CNVRs, duplication CNVRs, disease-associated CNVRs, homozygous deletion CNVRs, and all CNVs identified.
CNVs at this locus were associated with neurological diseases (deletion $P < 6.53 \times 10^{-47}$ and duplication $P < 1.75 \times 10^{-11}$). A careful review of literature reveals that increased HCN2 expression and activity are associated with neuropathic hyperalgesia, and neuropathic pain is initiated by HCN2-driven action potential firing in NaV1.8-expressing nociceptors. In addition, Dibbens et al. showed that a 9 bp exonic deletion in HCN2 was associated with pediatric-onset generalized epilepsy with febrile seizures, consistent with the enhanced neuronal excitability observed in vitro in a Xenopus oocyte model of the indel. Several
other genes residing at the association loci reported include known drug targets with repurposing opportunities, such as GRK6, CD44, SLC38A10, and ADK, with potential implications for multiple major disease categories and autoimmune-inflammatory diseases.

Moreover, in this work, we identified a number of DA-hdCNVRs. A prime example is an hdCNVR at chr2q34 that is associated with autoimmunity and interrupts the coding region of ERBB4. This gene encodes a cell-surface receptor tyrosine kinase that is a key oncogene and targetable by multiple Food and Drug Administration-approved small-molecule inhibitors. Interestingly, germline mutations in ERBB4 have also recently been linked to amyotrophic lateral sclerosis and schizophrenia, and the loss of ErbB4 expression is found in patients with relapsing–remitting multiple sclerosis. Furthermore, the expression of this family of proteins in microglia promotes remyelination of neurons in response to soluble isoform of

Table 1 Select loci enriched with CNVs in four major disease categories.

Pheno	Cyto band	Del/ Dups	P-value	Gene name	Annotations
Cardio	1p36.31	del 5.3E-14	ACOT7, BACH, GPR53	ACOT7 upregulation protects against fatty acid oversupply in the heart [21212523]	
Neuro	1q21.1	del 6.0E-31	BC036212, KIAA1693, NBP1F	NBPF1 duplication in arteriovenous malformations [24096321]	
Cancer	2p24.3	dup 1.6E-27	MYCN	Amplified/duplicated in neuroblastoma [23401364 and 15013217], DDXY-MYC duplication in neuroblastoma [24164955]	
Cancer	2q31.1	del 6.2E-26	GPR53, SCRN3	Overexpressed in breast cancer [19022662], deletion in osteosarcoma [15298715], CNV reduced hepatocellular carcinoma cell line expression [28863781]	
Aid	4p13	del 1.7E-18	SLC30A9, WD2R18	Zn regulation in white blood cells [25927701], BEND4 in colorectal cancer [21663702], CED4 in MDR pancreatic adenocarcinoma [18453221], deletion in bladder and other carcinomas [19068201]	
Cancer	4p13	del 4.9E-23	BEND4, CDCC4, SLC30A9	Neurogenesis during cortical development [22842144], neuronal differentiation [20823227]	
Aid	4p16.3	dup 1.4E-21	RNF212	E3 Ubiquitin ligase, involved in meiotic recombination [23996135]	
Neuro	4q24.3	del 3.6E-27	TAF4B9P	Induced in Parkinson’s disease [24464499]	
Cancer	5q12.1	del 3.5E-20	HSPA9	Medullary thyroid carcinoma [25433637], tumor suppressor signaling [23959801], oral SCC [23545799], HCC [17934217], colorectal cancer [15532096], brain tumors [9418674]	
Neuro	5q35.1	del 3.9E-23	SLT3	Parkinson’s disease [19162339]	
Neuro	5q35.3	dup 6.6E-75	GRK6	Schizophrenia [2784156]	
Cancer	6q22.1	del 1.8E-52	HISTH2AE, HISTH2BG, HISTH4E	HISTH2BG associated with schizophrenia [23904455]	
Cancer	7q12.1	del 5.1E-18	DFFZP564N2472	Lung adenocarcinoma [21151896]	
Cancer	7q12.2	del 3.7E-17	IKZF1, ZNFN1A1	Inactivation in lymphoma [1980663 and 11389096], deletion of IKZF1 or ZNFN1A1 in acute lymphoblastic leukemia [19129520, 26050650, 29519967, 15309181]	
Aid	7p15.3	del 6.9E-19	ITG88	Upstream of CMYC, identified in prostate [16130124] and breast cancer [10867149, 15527903, 17231017]	
Cancer	8p22	del 7.5E-28	SGC2	Lung adenocarcinoma [21151896], recurrent copy number loss in breast cancer [29545918], downregulation of MIT-383 in intron of SGC2 [28243881], gene fusions CAMC2-SGCC in metastatic small-cell gallbladder neuroendocrine carcinoma [28045466]	
Cancer	8q11.1	del 2.0E-31	AK097475, BC041354	Upstream of CMYC, identified in prostate cancer [16130124] and breast cancer [10867149, 15527903, 17231017]	
Cancer	8q24.13	del 1.6E-17	TRIB	Leukemia [27390356], double minute in acute myeloid leukemia [18503831], colon cancer [19691111], prostate cancer [24962028]	
Neuro	10q14	del 8.0E-19	CUGBP1, NAPOR-1	Neuroblastoma apoptosis-related RNA-binding protein [9858671]	
Neuro	10q22.2	del 1.5E-24	ADK	Epilepsy and glioma [26329539]	
Cancer	10q26.3	del 8.4E-15	TERC6/1	Increased in breast tumor [16147999]	
Cancer	11p12	del 2.7E-26	CITF74, near CD44	Marker for Langerhans cell sarcoma [25837753], downregulation of CD44 in different types of cancer [25022570, 30631039, 30443182, 3021160, 30317669, 30462396]	
Aid	11q13.4	del 1.8E-26	UCP2	Protective in sepsis [25873251], protective in inflammation [23925522], decrease the severity of multiple sclerosis in mouse model [21857957]	
Cancer	11q22.3	del 9.0E-18	SLC35F2	NSCLC [21874247], an important molecular determinant of response to the Sepantronium Bromide [25064833, 28465296, 25360870], decrease the severity of multiple sclerosis in mouse model [21857957]	
Neuro	14q24.3	del 5.9E-41	CITF74	Malignant peripheral piniginomas [27889662], vanishing white matter syndrome [22678813]	
Aid	14q13.1	del 4.5E-23	FLRT2	Autoantigen in SLE [23401364], prostate cancer [26893034]	
Cancer	16p13.3	del 4.4E-50	MAPKBP3	Increased in brain tumor [16147999]	
Neuro	16p13.3	del 1.7E-18	SOX8	Cancer of head and neck [27199577]	
Neuro	17q12	del 9.4E-18	ACACA, C17orf78	ACACA deleted in autism [23375656], ACACA associated with Alzheimer’s disease [22982105]	
Neuro	17q21.1	del 5.7E-73	N Robbins	Major depression [23670170], bipolar disorder [26746321, 25359593]	
Aid	17q25.3	del 6.1E-34	SLC38A10	Associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers [23382691]	
Cancer	19p13.3	del 7.6E-25	PALM	Cancer [21881828], CLL [28165464], lung cancer [25982285], near STK11, Peutz-Jeghers syndrome [21593326]	
Neuro	19p13.3	del 6.5E-47	HCN2, POU5MT	Decreased HCN2 reduces learning abilities [21593326], HCN2 gene deletion decreased neuropathic pain [21903199]	
Cardio	22q11.21	del 3.7E-23	COMT, TBX1	Velocardiofacial syndrome [26278718]	

CNVRs presented in Table 1 show disease category-specific enrichment reaching statistical significance (P < 9 × 10^{-14}), which is adjusted for multiple comparisons based on results obtained from repeated simulations (see Methods). See Supplementary Data 5 for extended results (P < 5 × 10^{-6}). Brackets (notation) denote PMIDs.
Together, our observations underscore that CNVs can be selective pressures. We further support this by demonstrating that CNVRs associated with multiple disease categories, we show that the impacted candidate genes are significantly more likely to be found in shared biological networks and to impact gene network interactions (Supplementary Fig. 7).

In summary, we report the frequencies, distributions, and disease associations of rare recurrent CNVs using genome-wide SNP genotyping and CGH data from over 100,000 unrelated individuals of European ancestry, representing the largest population-based CNV analysis to-date. The strong correlation between CNVs and known GWAS loci, as well as recombination hotspots, suggest that rare or uncommon CNVs may contribute to the missing heritability conundrum, and that CNV-bearing loci correlate with regions of the genome under increased selective pressures. We further support this by demonstrating that many candidate genes mapping to DA-CNVRs are broadly expressed across multiple tissues and show examples in which such candidate genes have known pleiotropic roles across related diseases. Finally, although GWAS and genome-wide CNV analyses have significantly advanced our understanding of the distribution and biological impact of CNVs, whole-genome sequencing studies are needed to identify and fine-map CNVs, particularly those that are extremely rare and/or under 1 kb35. Together, our observations underscore that CNVs—both common and rare—have important biological roles in human health and disease. Thus, more effort and larger studies elucidating these associations may be an avenue for understanding and diagnosing genetic diseases and targeted therapeutic interventions.

Methods

Sample cohorts

All samples in the primary analysis were derived from one of two cohorts. The first group included 52,321 samples obtained from de-identified samples associated with electronic medical records residing in the genomics biorepository at The Children’s Hospital of Philadelphia (CHOP). All samples were also genotyped at the Center for Applied Genomics (CAG) at CHOP. A second set of 20,083 samples from subjects with neurological disease and 19,584 matching controls were run on a CGH array at The University of Washington in Seattle, WA. Informed consent authorizing the use of de-identified GWAS data was obtained from all subjects. The Institutional Review Board at The Children’s Hospital of Philadelphia approved the study.

Over 95% of the DNA was extracted from fresh blood. Six incremental versions of the Illumina 550k SNP set were used across both sets of samples, with a total of 520,017 SNPs in common to all included chip versions. PennCNV56 was used for CNV calls and validated by QuantiSNP18. To ensure data quality and to minimize technical bias, only samples with a mean call rate >98% and LRR SD <0.25 were included in the analysis. Furthermore, autosome genotype relatedness and intensity wave variations following GC content wave correction were assessed for sample exclusion. CNV sensitivity was assessed based on the identification of known CNVs in the reference HapMap individuals. CNV calls of different size ranges across the genome were validated by independent testing in 2127 samples using qPCR with an overall specificity exceeding 95% as shown by results from 367 successful validation assays including consistent data quality across 7 disease studies with a range of different genomic loci and CN states (Supplementary Fig. 9).

Quality filtering

To minimize false-positive CNV calls, a set of quality-filtering metrics were performed. Case and control matching was insured by calculating a distance exceeding 95% as shown by results from 367 successful validation assays including consistent data quality across 7 disease studies with a range of different genomic loci and CN states (Supplementary Fig. 9).

Statistical tests

CNV frequency was compared between cases and controls, as well as across genotyping cohorts. Comparisons were made for each SNP using Fisher’s exact test. To determine CNV enrichment, we only considered loci that were nominally significant between the comparative groups (P < 0.05). For case–control comparisons, we looked for recurrent CNVs that were observed across different independent cohorts or were not observed in any of the control subjects, and were validated with an independent method. Three lines of evidence established statistical significance: independent replication, permutation of observations, and absence of loci observed with control enriched significance. We

Phenotype	Chr:Pos (hg18)	P-value	Cases	Controls	Gene name	Phenyte information
Cardio	chr11:55204003-55204003	8.0E-10	157	1204	ORAC6	Obesity
Cancer	chr11:81194909-81194909	2.9E-07	80	129	BC041900	Target of FOXF2; deficiency important in E > M transition
Neuro	chr1:78432711-78432711	6.1E-06	20	6	AX747165, BC015860	Misense (c.785C>T; p.L262R) and nonsense (c.903G>A; p.W301X) mutations in human GIPC3 cause congenital sensorineural hearing impairment
Aid	chr1:167466049-167466049	3.0E-05	15	6	NME7	Venous thromboembolism
Neuro	chr13:97328242-97330758	3.8E-05	28	16	IPO5	Schizophrenia
Cardio	chr6:6705019-6705019	4.1E-05	97	110	EYS	AR retinitis pigmentosa
Cardio	chr5:113188389-113197319	4.2E-05	34	195	YTHDC2	MicroRNA metabolism
Aid	chr3:19127916-19127916	4.5E-05	28	23	LEPRE1	Homozygous loss-of-function mutation causes severe nonsyndromic high myopia with early-onset cataracts.
Aid	chr12:27539678-27545813	8.1E-05	10	2	PPFBPI	Receptor tyrosine kinase
Neuro	chr3:163625169-163625169	1.1E-04	57	55	BC073807	NA
Aid	chr5:117420155-117421055	2.5E-04	79	124	BC044409	NA
Neuro	chr19:40354649-40354649	2.6E-04	51	49	FXYDS	NA
Neuro	chr15:50050557-50057972	2.7E-04	12	3	LE01	Neural tube development
Aid	chr3:75511365-75532825	3.8E-07	57	82	DQ584669	N/A

CNVRs presented in Table 2 are select loci from those that reached experimentally defined statistical significance (P < 5 × 10⁻⁶), which adjusts for multiple comparisons based on results obtained from repeated simulations (see Methods). See Supplementary Data 6 for additional loci that are marginally associated with at least one disease category.
used DAVID (Database for Annotation, Visualization, and Integrated Discovery) to assess the significance of functional annotation clustering of independently associated results into Interactive Categories. We have complied with all relevant ethical regulations for the work with human participants. Informed consent was obtained for all participants prior to including them in the biobank at the CAG at CHOP.

Data availability

CNV calls generated are available from the authors and are published with open access on the website (https://www.filehosting.org/file/details/832375/Li_etal_NatureCommunications_SigContag_tg18_rawcnv.bed.zip). All data authorized for dbGaP submission have been deposed to dbGaP (accessions: phs000490.v1.p1, phs000607.v3.p2, phs000371.v1.p1, phs000490.v1.p1, phs001194.v2.p2, phs001194.v2.p2.c1, phs001661, and phs000233).

Received: 10 September 2018; Accepted: 14 November 2019; Published online: 14 January 2020

References

1. Donahoe, P. K. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949 (2004).
2. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 315, 525–528 (2004).
3. Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).
4. Tuzun, E. et al. Fine-scale structural variation of the human genome. Nat. Genet. 37, 727–732 (2005).
5. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).
6. Hinds, D. A., Kloek, A. P., Jen, M., Chen, X. & Frazer, K. A. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat. Genet. 38, 82–85 (2006).
7. Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).
8. Itiara, A. et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am. J. Hum. Genet. 84, 148–161 (2009).
9. Shaiikh, T. H. et al. High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res. 19, 1682–1690 (2009).
10. Craddock, N. et al. Genome-wide association study of CNVs in 16,000 cases of schizophrenia and 14,943 controls. Nature 465, 713–720 (2010).
11. Glessner, J. T., Li, J. & Hakonarson, H. ParsaCNV integrative copy number variation association software with quality tracking. Nucleic Acids Res. 41, e64 (2013).
12. Glessner, J. T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459, 569–573 (2009).
13. Lathrop, M. G. et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc. Natl Acad. Sci. USA 107, 10584–10589 (2010).
14. Lathrop, M. G. et al. Duplication of the SLIT3 locus on 5q35.1 predisposes to exclusive to childhood obesity cases. Hum. Mol. Genet. 18, R229–R235 (2009).
15. Noviková, M., Praško, J., Látalová, K., Sládek, M. & Sumová, A. The circadian system of patients with bipolar disorder differs in episodes of mania and depression. Bipolar Disord. 17, 303–314 (2015).
16. Zhang, L., Liu, R., Lan, Y.-Y. & Yao, Y.-M. Tumor nNesocin factor—a induced protein &: pathophysiology, clinical significance, and regulatory mechanism. Int. J. Biol. Sci. 14, 398–405 (2018).
17. Wang, W.-W., Wang, Y.-R., Wang, D.-Q., Lin, Z. & Sun, R.-J. Integrin beta-8 (ITGB8) silencing reverses gestin1β resistance of human hepatic cancer HepG2/G cell line. Int. J. Clin. Exp. Med. 8, 3063–3071 (2015).
18. Liu, R.-J. et al. miR-199a-3p enhances cisplatin sensitivity of ovarian cancer cells by targeting ITGB8. Oncol. Rep. 39, 1649–1657 (2018).
19. Zhou, Z., Li, Z., Shen, Y. & Chen, T. MicroRNA-138 directly targets TNAFIP8 and acts as a tumor suppressor in osteosarcoma. Exp. Ther. Med. 14, 3665–3673 (2017).
20. Lowe, J. M. et al. The novel p53 target TNAFIP8 variant is 2 increased in cancer and offsets p53-dependent tumor suppression. Cell Death Differ. 24, 181–191 (2017).
21. Zhang, C. et al. The significance of TNAFIP8 in prostate cancer response to radiation and docetaxel and disease recurrence. Int. J. Cancer 133, 31–42 (2013).
22. Raghuram, S. et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBa and REV-ERBB. Nat. Struct. Mol. Biol. 14, 1207–1213 (2007).
23. Woldt, E. et al. Rev-erbα modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 1039–1046 (2013).
24. Spinelli, V., Sartiani, L., Mugelli, A., Romanelli, M. N. & Cerbai, E. Hyperpolarization-activated cyclic-nucleotide-gated channels: pathophysiological, developmental, and pharmacological insights into their function in cellular excitability. Can. J. Physiol. Pharmacol. 96, 977–984 (2018).
25. Tsantoulas, C. et al. Hyperpolarization-activated cyclic nucleotide–gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy. Sci. Transl. Med. 9, eaam6077 (2017).
26. D’Francesco, J. C. & DiFrancesco, D. Dysfunctional HCN ion channels in neurological diseases. Front. Cell. Neurosci. 6, 71 (2015).
27. Nisar, S. et al. Hyaluronan–CD44 interactions as potential targets for cancer therapy. FEBS J. 278, 1429–1443 (2011).
28. Sahin, I. H. & Klotergaard, J. CD44 as a drug delivery target in human cancers: where are we now? Expert. Opin. Ther. Targets 19, 1587–1591 (2015).
29. Huang, W.-Y. et al. Nanoparticle targeting CD44-positive cancer cells for site-specific drug delivery in prostate cancer therapy. ACS Appl. Mater. Interfaces 8, 3072–30734 (2016).
30. Moore, N., Napier, M. A. & McLean, J. W. Cloning and expression of a divergent integrin subunit beta 8. J. Biol. Chem. 276, 19650–19658 (1991).
31. Travis, M. A. et al. Loss of integrin alpha(β) beta3 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).
32. Minagawa, S. et al. Selective targeting of TGF–β activation to treat fibroinflammatory airway disease. Sci. Transl. Med. 6, 241ra79 (2014).
33. Emery, E. C., Young, G. T., Berrocoso, E. M., Chen, L. & Naughton, P. A. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science 333, 1466–1461 (2011).
34. Santoro, B. et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93, 717–729 (1998).
35. Dibbens, L. M. et al. Augmented currents of an HCN2 variant in patients with aberrant stem cell maturation in schizophrenia. PharmacoI. Ther. 121, 115–122 (2009).
36. Birchmeier, C. ErbB receptors and the development of the nervous system. Exp. Cell Res. 315, 611–618 (2009).
37. Morukov-Samara, E., Auriel, E., Levy-Amir, Y. & Karni, A. Reduced ErbB4 expression in immune cells of patients with relapsing remitting. Mult. Scler. Mult. Sci. Int. 2011, 561262 (2011).
53. Marballi, K. et al. In vivo and in vitro genetic evidence of involvement of neuregulin 1 in immune system dysregulation. J. Mol. Med. (Berl.). 88, 1133–1141 (2010).
54. Flames, N. et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44, 251–261 (2004).
55. Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011).
56. Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).
57. Huang, D. W. et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, R183 (2007).

Acknowledgements
We thank the patients and their families for their participation in the respective genotyping studies and in the Biobank Repository at the Center for Applied Genomics. Y.R.L. was supported by the Paul and Daisy Soros Fellowship for New Americans and the NIH F30 Individual NRSA Training Grant. This study was supported by Institutional Development Funds from The Children’s Hospital of Philadelphia (CHOP), by CHOP’s Endowed Chair in Genomic Research (Hakonarson), and by U01-HG006830 (NHGRI-sponsored eMERGE Network).

Author contributions
All authors contributed to reviewing and providing comments on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-13624-1.

Correspondence and requests for materials should be addressed to H.H.

Peer review information Nature Communications thanks Stephen Chanock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020