SWIFT J1756.9−2508: spectral and timing properties of its 2018 outburst

A. Sanna1*, F. Pintore2, A. Riggio1, S. M. Mazzola3, E. Bozzo4, T. Di Salvo3
C. Ferrigno4, A. F. Gambino3, A. Papitto5, R. Iaria3, L. Burderi1
1Dipartimento di Fisica, Università degli Studi di Cagliari, SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy
2INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica - Milano, via E. Bassini 15, I-20133 Milano, Italy
3Università degli Studi di Palermo, Dipartimento di Fisica e Chimica, via Archirafi 36, 90123 Palermo, Italy
4ISDC, Department of Astronomy, University of Geneva, Chemin d’Écogia 16, CH-1290 Versoix, Switzerland
5INAF-Osservatorio Astronomico di Roma, Via di Frascati 33, I-00078, Monte Porzio Catone (Roma), Italy

ABSTRACT
We discuss the spectral and timing properties of the accreting millisecond X-ray pulsar SWIFT J1756.9−2508 observed by XMM-Newton, NICER and NuSTAR during the X-ray outburst occurred in April 2018. The spectral properties of the source are consistent with a hard state dominated at high energies by a non-thermal power-law component with a cut-off at ~ 70 keV. No evidence of iron emission lines or reflection humps has been found. From the coherent timing analysis of the pulse profiles, we derived an updated set of orbital ephemerides. Combining the parameters measured from the three outbursts shown by the source in the last ~ 11 years, we investigated the secular evolution of the spin frequency and the orbital period. We estimated a neutron magnetic field of 3.1×10^8 G $< B_{pc} < 4.5 \times 10^8$ G and measured an orbital period derivative of -4.1×10^{-12} s s$^{-1}$ $< P_{orb} / G < 7.1 \times 10^{-12}$ s s$^{-1}$. We also studied the energy dependence of the pulse profile by characterising the behaviour of the pulse fractional amplitude in the energy range 0.3–80 keV. These results are compared with those obtained from the previous outbursts of SWIFT J1756.9−2508 and other previously known accreting millisecond X-ray pulsars.

Key words: Keywords: X-rays: binaries; stars:neutron; accretion, accretion disc, SWIFT J1756.9−2508

1 INTRODUCTION
SWIFT J1756.9−2508 is a low-mass X-ray binary discovered on 2007 June 7 during an X-ray outburst observed by the Swift-BAT. Follow-up observations carried out with the Swift-XRT and the Rossi X-ray Timing Explorer (RXTE) provided the localisation of the source with an arcsec accuracy and led to the discovery of pulsations at a frequency of ~ 182 Hz, classifying the source as an accreting millisecond X-ray pulsar (AMXP, see e.g. Patruno & Watts 2012, for a review), in a 54.7 minutes orbit (Krimm et al. 2007). A second outburst was recorded in July 2009 and the result of the observational campaign carried out with Swift and RXTE was reported in Patruno et al. (2010a, hereafter P10). In both occasions, the source displayed a spectral energy distribution compatible with the so-called “island/extreme island state” of an atoll source (see e.g. Hasinger & van der Klis 1989, and reference therein) and reasonably well described by a model comprising a power-law with a photon index of $\Gamma=1.8-2.0$ with no high-energy cut-off and a black-body component with a temperature of $kT=0.4-0.7$ keV (Linares et al. 2008). Based on the upper limits derived on the spin-down torque, the neutron star magnetic field was constrained in a range compatible with values expected for an AMXP and observed from other sources of this class (0.4×10^9 G $< B < 9 \times 10^8$ G; Patruno et al. 2010b). The source was discovered to undergo a new outburst by INTEGRAL on 2018 April 1 (Mereminskiy et al. 2018). The event was confirmed by Swift-BAT, and follow-up observations provided the detection of pulsations at the known spin period of the source and a preliminary description of its broad-band X-ray spectrum (Krimm et al. 2018; Bult et al. 2018b,c; Chakraborty & Bhattacharyya 2018; Mazzola et al. 2018; Kuiper et al. 2018; Bult et al. 2018a).

In this work, we carried out spectral and coherent timing analysis of the 2018 outburst of SWIFT J1756.9−2508, using INTEGRAL, XMM-Newton, NuSTAR and NICER observations of the source. We updated the source ephemerides

* E-mail: andrea.sanna@dsf.unica.it
© The Authors
and investigated the orbital period evolution over a baseline of almost 11 years by combining the current results with those reported from previous outbursts. We also discuss the broad-band spectral properties of SWIFT J1756.9–2508.

2 OBSERVATIONS AND DATA REDUCTION

2.1 XMM-Newton

XMM-Newton observed SWIFT J1756.9–2508 on 2018 April 8 (Obs.ID. 0830190401) for a total exposure time of ∼66 ks. During the observation, the EPIC-pn (hereafter PN) camera was operated in TIMING mode and Burst mode for ∼49 ks and ∼10 ks, respectively. The RGS instrument observed in spectroscopy mode during the entire observation, while the EPIC-MOS1 and EPIC-MOS2 were operated in FULL FRAME and TIMING mode, respectively. To perform spectral and timing analysis of the source we focused on the PN and MOS2 data (the limited statistics and time resolution of the MOS1 data did not provide a significant improvement in any of the results presented here and in the following sections). These were processed using the Science Analysis Software (SAS) v. 16.0.0 with the up-to-date calibration files and the RDPHA calibrations (see e.g. Pintore et al. 2015).

We filtered events within the energy range 0.3–10.0 keV, retaining single and double pixel events only (PATTERN≤4). We extracted the source events for the PN and MOS2 using RAWX=[29:45] and RAWX=[285:325], respectively. We filtered background events for the PN selecting RAWX=[3:5] and we checked that the selected background was not contaminated by the emission from the source. For the MOS2, we extracted the background using an empty circular region of radius 150″ from the MOS1 dataset. The mean PN and MOS2 observed count rates during the observation were ∼22 cts/s and ∼4.5 cts/s, characterised by a slow decreasing trend. The background mean count rate in the PN selected RAWX range is of the order of ∼0.5 cts/s (0.3–10.0 keV), Thermonuclear (Type-I) X-ray burst episodes (see e.g. Strohmayer & Bildsten 2010, for a review) were not detected in the EPIC data. We extracted RGS data with standard procedures. We checked that the RGS1 and RGS2 spectra were consistent and then we merged them with the task *RGScombine.*

Fig. 1 shows the monitoring light curve of the 2018 outburst of SWIFT J1756.9–2508 as seen by *Swift-XRT* (black points) and obtained from the on-line *Swift-XRT* data products tool (Evans et al. 2009). The green star represents the beginning of the *XMM-Newton* observation taken few days after the outburst peak. To perform the timing analysis, we reported the PN photon arrival times to the Solar System barycentre by using the BARYCORN tool (DE-405 solar system ephemeris). We applied the best available X-ray position of the source (reported in Tab. 3) estimated performing astrometric analysis to the available *Swift-XRT* observation of the source (Evans et al. 2009). The new source coordinates are compatible, to within the associated uncertainties, with the position reported by Krimm et al. (2007).

2.2 *NuSTAR*

NuSTAR observed SWIFT J1756.9–2508 twice during its 2018 outburst. The first observation (Obs.ID. 90402313002) started at 08:31 UT on 2018 April 8 for an elapsed time of ∼85ks, resulting in a total effective exposure time ∼43ks. The second observation (Obs.ID. 90402313004) started at 02:56 UT on 2018 April 14 for an elapsed time of ∼125ks, corresponding to a total effective exposure time of ∼68ks. The epochs at which *NuSTAR* observed are shown as red squares in Fig. 1. We screened and filtered the events with the *NuSTAR* data analysis software (*nustardas*) version 1.5.1. We extracted the source events from the FPMs of the RGS1 and RGS2 spectra with standard procedures. We checked that the RGS1 and RGS2 spectra were consistent and then we merged them with the task *RGScombine.*

2.3 *NICER*

NICER observed SWIFT J1756.9–2508 seven times during its 2018 outburst (see Tab. 1 for more details). We extracted events across the 0.2–12 keV band applying standard screening criteria using the HEASOFT version 6.24 and NICER-DAS version 4.0. Observations 105023105/6/7 showed the presence of high-energy background features. To further proceed with the timing analysis we excluded (when available) data 50 s before the raise and 100 s after the decay of the flares. We then barycentered the NICER photon arrival

![Figure 1. Swift-XRT light curve (black points) of the 2018 outburst of the accreting millisecond X-ray pulsar SWIFT J1756.9–2508. Data are shown from MJD = 58210 (2018-04-02). Upper limits on the Swift-XRT count rate are shown with empty triangles. The green star, red squares, blue diamonds, and purple square represent the starting times of the XMM-Newton, NuSTAR, NICER and INTEGRAL observations, respectively.](image-url)
times with the BARYCORR tool using DE-405 Solar system ephemeris and adopting the source coordinates reported in Tab. 3.

2.4 INTEGRAL

SWIFT J1756.9—2508 was observed with INTEGRAL (Winkler et al. 2003) from 2018 April 7 at 18:58 to 2018 April 8 at 19:56 (UTC), during the satellite revolution 1939. We analysed all data by using version 10.2 of the Off-line Scientific Analysis software (OSA) distributed by the ISDC (Courvoisier et al. 2003). The INTEGRAL observations are divided into science windows (SCWs), i.e. pointings with typical durations of ~ 2–3 ks. We analysed a total of 25 SCWs in which the source was located to within an off-axis angle of 3.5 deg from the center of the JEM-X (Lund et al. 2003) field of view (FoV) and within an off-axis angle of 12 deg from the center of the IBIS/ISGRI (Ubertini et al. 2003; Lebrun et al. 2003) FoV. These choices allowed us to minimise the instruments calibration uncertainties1.

We extracted first the IBIS/ISGRI and JEM-X mosaics. SWIFT J1756.9—2508 was detected in the IBIS/ISGRI 20–40 keV and 40–80 keV mosaics at a significance of 20σ and 13σ, respectively. The corresponding fluxes estimated from the mosaics were 15.3 ± 0.8 mCrab (roughly 1.2×10^{-10} erg cm$^{-2}$s$^{-1}$) and 9.5 ± 0.8 mCrab (roughly 7×10^{-11} erg cm$^{-2}$s$^{-1}$). The source was relatively faint for JEM-X and detected at 11σ in the 3–10 keV mosaic obtained by combining all JEM-X data. The correspondingly estimated flux was 26 ± 3 mCrab (roughly 4.0×10^{-10} erg cm$^{-2}$s$^{-1}$). We extracted the JEM-X light curves of the source with a bin time of 2 s to search for type-I X-ray bursts, but no significant detection was found.

3 DATA ANALYSIS AND RESULTS

3.1 Spectral analysis

We performed a broad-band spectral analysis combining all the available data. In particular, we selected the 2.0–10 keV, 1.2–2.0 keV, 3–70 keV, 30–90 keV and 4–40 keV for PN/MOS2, RGS, NuSTAR and INTEGRAL/ISGRI, and JEMX, respectively.

We first fitted these spectra simultaneously adopting a simple TBABSx(CUTOFFPL) model, with the addition of a multiplicative constant to take into account differences in the inter-calibrations of the instruments and the non-simultaneity between the datasets. The fit with this model did not provide an acceptable result (χ^2/d.o.f. = 2903.49/1349), showing a marked discrepancy between the spectral slopes of the PN and NuSTAR data. This is a well known issue and was already reported in the past (see e.g. Sanna et al. 2017a). We thus allowed the photon indexes of the PN and NuSTAR spectra to vary independently in the fit. Although the fit was statistically improved (χ^2/d.o.f. = 1872.42/1348), some residuals were still present especially at the lower energies. We added a soft component (a multicolour black-body disc, DISKBB in XSPEC; Mitsuda et al. 1984) to the spectral model, which provided an additional significant improvement to the fit (χ^2/d.o.f. = 1648.36/1346). Assuming a distance of 8.5 kpc (based on the proximity toward the direction of the Galactic center) and an inclination angle of ≤ 60 deg inferred taking into account the lack of dips and eclipses in the X-ray light-curve (see e.g. Frank et al. 2002), we estimated an plausible inner disc radius of ≤ 1.2 km. We thus replaced the DISKBB component with a single-temperature BBODYRAD. The quality of the fit did not change significantly and we measured a black-body temperature of 0.85 ± 0.03 keV. The corresponding emitting radius was estimated at 1.8 ± 0.2 km, compatible with the size of an hot spot on the NS surface. The broad-band spectrum of SWIFT J1756.9—2508 is shown in Figure 2, together with the best fit model and the residuals from the fit. All parameters of the best fit model are listed in Tab. 2. We note that no emission lines were detected in the spectra, at odds with the findings reported from the analysis of X-ray data collected during the previous outbursts from the source (P10). The 3σ upper limit that we obtained on the equivalent width of an iron emission feature centred at 6.5 keV and characterised by a width of 0.3 keV (see P10) for the 2018 outburst of the source is 5 eV.

3.2 Timing analysis

To investigate the timing properties of SWIFT J1756.9—2508 we corrected the delays of the PN photon time of arrivals caused by the X-ray pulsar orbital motion under the hypothesis of a circular orbit. As a starting point, we considered the orbital period (P_{orb} = 3282.32(3) s and the projected semi-major axis (asin) / c = 0.005982(8) lt/s) corresponding to the ephemerides obtained from the 2009 outburst of the source (see Tab. 2 in P10). To investigate possible shifts on the time of passage from the ascending node (T_{NOD}), we extrapolated the closest value to the PN observation starting from the value reported in P10 and assuming a constant orbital period. We then

Instrument	Obs.ID. (revolution)	Date	Exp. (s)
XMM-Newton-PN	0830190401	2018-04-08	49072
NuSTAR	90402313002	2018-04-08	43457
	90402313004	2018-04-14	65763
INTEGRAL	(1939)	2018-04-07	85000
	1050230102	2018-04-03	6716
	1050230102	2018-04-04	6424
	1050230103	2018-04-07	2201
	1050230104	2018-04-08	9490
	1050230105	2018-04-09	3861
	1050230106	2018-04-10	6141
	1050230107	2018-04-11	4470

Table 1. Log of the observations of SWIFT J1756.9—2508 used to perform the spectral and timing analysis.

1 http://www.isdc.unige.ch/integral/analysis
explored a grid of parameters spaced by 1 s within a range of few kilo-seconds around the expected value. We searched for pulsations by exploiting the epoch-folding technique on the entire observations using 16 phase bins, starting with $v_0 = 182.065803$ Hz and exploring around v_0 with steps of 10^{-7} Hz, for a total of 10001 steps. The pulse profile with the largest signal-to-noise ratio was found at steps of 10 s.

Figure 2. Top panel: Unfolded ($E^2f(E)$) X-ray spectrum of SWIFT J1756.9–2508 observed by the PN (black), MOS2 (orange), RGS (red), NuSTAR FPMA/B (green and blue), JEMX (yellow) and ISGRI (cyan) fitted with the model $\text{tbabs} \times (\text{bbodyrad}+\text{cutoffpl})$, in the energy range 1–90 keV. Bottom panel: residuals with respect to the best-fitting model. Data have been binned for displaying purposes only.

Table 2. Spectral parameters obtained from the best fit to the SWIFT J1756.9–2508 data of the 2018 outburst with the model described in the text ($\text{tbabs} \times (\text{bbodyrad}+\text{cutoffpl})$).

Model	Parameter	Value	Error
TBABS	nH (10^{22})	8.14$^{+0.14}_{-0.15}$	0.15
	kT (keV)	0.85$^{+0.03}_{-0.04}$	
	Norm	4.5$^{+0.8}_{-0.8}$	
CUTOFFPL	Γ (NuSTAR)	1.44$^{+0.04}_{-0.04}$	0.04
	Γ (MOS2)	1.65$^{+0.04}_{-0.04}$	0.04
	E_{cut} (keV)	75$^{+13}_{-11}$	0.04
	Norm	0.042$^{+0.003}_{-0.003}$	0.003

| χ^2/dof | 1646/1345 |
we epoch-folded 800 s-long intervals. We modelled the pulse profiles with a sinusoidal model and we investigated the evolution of the pulse phase delays using Eq. 1. The best-fit parameters, compatible within the uncertainties with those obtained from the phase-connected timing analysis of the PN and NICER observations, are shown in the right column of Tab. 3.

In Fig. 4 we report the best pulse profiles obtained by epoch-folding the PN (top panel), NuSTAR (medium panel), and NICER (bottom panel) data after correcting for the best-fitting parameters reported in Tab. 3. The average pulse profile differs significantly from a sinusoidal function. It is well described by using a combination of two sinusoids with harmonically related periods, is reported in red. Green dot-dashed and blue dot-dot-dashed lines represent the fundamental and the second harmonic pulse profile components, respectively. We show in all cases two pulse cycles for clarity.

4 DISCUSSION

We presented the spectral and timing properties of the AMXP pulsar SWIFT J1756.9–2508 obtained combining observations collected by INTEGRAL, XMM-Newton, NICER and NuSTAR during its 2018 outburst.
The fractional amplitude of the pulse profile of SWIFT J1756.9–2508 shows a clear increasing trend with energy, varying from 6% to 7% in the energy range 1-6 keV, followed by a slight decrease between 6 and 8 keV that at higher energies levels to 3% (Sanna et al. 2018a), XTE J1807−3740 (Falanga et al. 2005a), and XTE J1751-305 (Miller et al. 2003). Finally, we measured an absorbed 0.3–70 keV flux of $(2.88 \pm 0.01) \times 10^{-9}$ erg cm$^{-2}$ s$^{-1}$ (compatible with the flux values measured few days after the peak of 2007 and 2009 outbursts) and a luminosity of 2.5×10^{36} erg s$^{-1}$, assuming a distance of 8.5 kpc (i.e., about 2% of the Eddington limit).

The photon index of the power-law has changed from $\Gamma_{\text{ NICER}}$ during the first days of the outburst (as measured from the NICER data), to ~ 1.5 during the XMM-Newton observation. The detection of a cut-off at ~ 70 keV strongly indicates that the source was in a hard state, as usually observed for AMXPs in outburst (e.g. Patruno & Watts 2012; Burderi & Di Salvo 2013, for a review). Note that such a cut-off was not reported in the previous outburst of SWIFT J1756.9–2508, when the source spectrum displayed an hard tail extending up to 100 keV (Linares et al. 2008).

At odds with previous outbursts (see P10), no significant iron lines were observed in the NICER and Swift-XRT data collected during the event in 2018. We note, however, that the poor energy resolution of the RXTE data from the previous outbursts did not allow P10 to reliably constrain the line energy, the emissivity index, the inner disc radius, as well as the inclination of the system and the properties of the Compton reflection hump. This makes any comparison with the 2018 outburst particularly challenging. Assuming a line energy of 6.5 keV and a width of 0.3 keV (extrapolated from the spectral residuals reported in Fig. 5 of P10), we estimated an upper limit on the equivalent width of any iron line not detected during the 2018 outburst of the order of 5 eV. We note that no evidence of iron emission lines or reflection humps has been reported also in the cases of the AMXPs IGR J16597−3704 (Sanna et al. 2018b), IGR J17379−3747 (Sanna et al. 2018a), XTE J1807−294 (Falanga et al. 2005a), and XTE J1751-305 (Miller et al. 2003). Finally, we measured an absorbed 0.3–70 keV flux of $(2.88 \pm 0.01) \times 10^{-9}$ erg cm$^{-2}$ s$^{-1}$ (compatible with the flux values measured few days after the peak of 2007 and 2009 outbursts) and a luminosity of 2.5×10^{36} erg s$^{-1}$, assuming a distance of 8.5 kpc (i.e., about 2% of the Eddington limit).

4.1 Spectral properties

The results indicate that the source is highly absorbed ($N_H \sim 8.1 \times 10^{22}$ cm$^{-2}$), in line with previous findings (Krimm et al. 2007) and the Swift-XRT data taken at the beginning of the outburst (Mereminskiy et al. 2018). The N_H value we measured is slightly higher than that reported from the NICER data (Bult et al. 2018b). Based on the comparison with other known AMXPs, we consider unlikely such large variability in the absorption column density and assume that the most reliable measure is provided by our spectral analysis (which includes data collected by the RGS instrument on-board XMM-Newton).

The photon index of the power-law has changed from $\Gamma_{\text{ NICER}}$ during the first days of the outburst (as measured from the NICER data), to ~ 1.5 during the XMM-Newton observation. The detection of a cut-off at ~ 70 keV strongly indicates that the source was in a hard state, as usually observed for AMXPs in outburst (e.g. Patruno & Watts 2012; Burderi & Di Salvo 2013, for a review). Note that such a cut-off was not reported in the previous outburst of SWIFT J1756.9–2508, when the source spectrum displayed an hard tail extending up to 100 keV (Linares et al. 2008).

4.2 Pulse profile and energy dependence

We investigated the properties of the pulse profile of SWIFT J1756.9–2508 as a function of energy by analysing the observations collected with the PN (0.3-10 keV) and NuSTAR (3-80 keV). Since the pulse profile is well described by a combination of two sinusoids (see Fig. 4), we independently studied the fractional amplitude of the fundamental and second harmonic components.

As reported in the top panel of Fig. 5, the pulse fractional amplitude estimated from the fundamental component shows a clear increasing trend with energy, varying from 4% to 7% in the energy range 1-6 keV, followed by a slight decrease between 6 and 8 keV that at higher energies levels to $\sim 6%$. This trend is very similar to that reported by P10.
for the 2009 outburst, although we notice that the high energy behaviour of the fundamental component inferred from the RXTE data suggests a monotonic increase while the NuSTAR observation from the 2018 outburst clearly shows a constant tendency above 10 keV. Similar energy dependence of the fractional amplitude has been already reported for other AMXPs such as Aql X−1 (Casella et al. 2008), SAX J1748.9−2021 (Patruno et al. 2009; Sanna et al. 2016), IGR J00291+5934 (with a bit more complex energy dependence in the range 3−10 keV Falanga et al. 2005b; Sanna et al. 2017a) and XTE J1807−294 (Kirsch et al. 2004). No consensus has been reached in terms of the process responsible for the hard spectrum of the pulsation detected in these sources. However, mechanisms such as a strong Comptonisation of the beamed radiation seems to well describe the properties of a few sources (Falanga & Titarchuk 2007). Nonetheless, it is worth noting that a completely opposite energy dependence of the pulse profile have been observed in other AMXPs such as XTE J1751−305 (Falanga & Titarchuk 2007), IGR J17511−3057 (Papitto et al. 2010; Falanga et al. 2011; Riggi et al. 2011) and SAX J1808.4−3058 (Cui et al. 1998; Falanga & Titarchuk 2007; Sanna et al. 2017b).

Finally, the fractional amplitude of the second harmonic (Fig. 5 bottom panel), shows a clear decreasing trend from ∼4% at 1 keV to ∼2% at 10 keV, after which it starts increasing and reaches the values 4% in the highest energy bin. We notice that the corresponding trend reported by P10 for the 2009 outburst shows a slightly weaker fractional amplitude below 10 keV.

4.3 Secular spin evolution

SWIFT J1756.9−2508 has been observed in outburst three times since its discovery (see Krimm et al. 2007; Patruno et al. 2010a). To investigate the secular evolution of the spin frequency we considered the estimates from the 2007 and the 2009 (reported by Patruno et al. 2010a, see Tab 2 and 3), that we combined with the 2018 spin frequency value reported in Tab. 3.

We modelled the three spin frequency values with a linear function (see bottom panel in Fig. 6), obtaining a best-fit with \(\chi^2 = 0.03 \) with 1 d.o.f. and a spin frequency derivative of \(\dot{\nu}_{sd} = -4.8(6) \times 10^{-16} \text{ Hz/s} \), consistent with the upper limit reported by P10. Combining the rotational-energy loss rate to the rotating magnetic dipole emission, we can derive the magnetic field strength at the NS polar caps. Assuming a rotating dipole in presence of matter, the NS magnetic dipole moment can be approximated as

\[
\mu \simeq 1.05 \times 10^{36} \left(\frac{1}{1 + \sin^2 \alpha} \right)^{-1/2} \nu_{15/2}^{-3/2} \nu_{-16}^{1/2} \text{ G cm}^3,
\]

where \(\alpha \) is the angle between the rotation and magnetic axes (see e.g. Spitkovsky 2006, for more details), \(I_{45} \) is the NS moment of inertia in units of \(10^{45} \text{ g cm}^2 \), \(\nu_{15/2} \) is the NS spin frequency rescaled for SWIFT J1756.9−2508, \(\nu_{-16} \) is the spin-down frequency derivative in units of \(10^{-16} \text{ Hz/s} \). Adopting our estimates of the spin frequency and its secular spin-down derivative, and assuming the extreme values \(\alpha = 0 \) deg and \(\alpha = 90 \) deg we can limit the NS magnetic moment to be \(2.3 \times 10^{36} \text{ G cm}^3 < \mu < 3.3 \times 10^{36} \text{ G cm}^3 \). Defining the magnetic field strength at the magnetic caps as \(B_{PC} = 2\mu / R_{NS}^3 \), and considering a NS radius of \(R_{NS} = 1.14 \times 10^6 \text{ cm} \) (corresponding to the FPS equation of state for a 1.4 M\(_\odot\) NS, see e.g., Friedman & Pandharipande 1981; Pandharipande & Ravenhall 1989), we obtain 3.1 \times 10^8 \text{ G} < B_{PC} < 4.5 \times 10^8 \text{ G}, consistent with the value reported by Mukherjee et al. (2015) and similar to what has been derived for other AMXPs. It is worth noting that the estimate presented here is likely a lower limit on the magnetic field strength. As a matter of fact, even though no significant spin-up derivative has been reported in the observed outbursts (see e.g. Krimm et al. 2007; Patruno et al. 2010a), matter has been transferred and accreted on the NS surface likely accelerating the compact object.

4.4 Orbital period evolution

To investigate the secular evolution of the orbital period we used the epoch of passage from the ascending node (\(T_{\text{COD}} \)) measured in each of the three outbursts observed from the source, and the corresponding number of elapsed orbital cycles (\(N \)) determined with respect to a certain reference time.

\begin{table}
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{Time (MJD)} & \textbf{ΔT} & \textbf{ΔT'} \tabularnewline
\hline
54000 & 56000 & 58000 \tabularnewline
\hline
\end{tabular}
\caption{Table of Data and Calculations for SWIFT J1756.9−2508.}
\end{table}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure6}
\caption{Top panel: Differential corrections to the time of passage at the ascending node for the three outbursts of SWIFT J1756.9−2508. Data are shown from MJD = 54000 (2006-09-22). The delays are calculated with respect to the first outburst of the source (see Sec. 4.4 for more details). Black dots represent the delays from the first two outbursts reported by P10, while the green star is the value obtained combining the PN and NICER observations. The dot-dot-dashed line represents the quadratic model that better describes the data. Bottom panel: Secular evolution of the spin frequency of SWIFT J1756.9−2508 within the ∼11 yr baseline. Frequencies are rescaled with respect to the value \(\nu_0 = 182.0658039 \text{ Hz} \). Black points represent the frequency measurements of the previous outbursts estimated by P10, while the green star represents the spin values obtained from the combined timing analysis of the PN and NICER observations. The dashed line represents the best-fitting linear model, corresponding to a spin down derivative \(\dot{\nu}_{SD} = -4.8(6) \times 10^{-16} \text{ Hz/s} \), where uncertainties are reported at 1σ confidence level.

\begin{equation}
\Delta T = \Delta T' + (\Delta P_{orb}/P_{orb}) \cdot T + 0.5 (\Delta P_{orb}/P_{orb}) T^2
\end{equation}
\end{table}
at a specific orbital period. Under the assumption of constant orbital period, the predicted passages from the ascending node $T_{\text{NOD2007}}(N) = T_{\text{NOD0}} + N \delta P_{\text{orb}}$ can be determined and compared with the measured ones to calculate the corresponding differential corrections (see e.g. Papitto et al. 2005; Di Salvo et al. 2008; Hartman et al. 2008; Burderi et al. 2009, 2010; Iaria et al. 2015, 2014, 2018; Sanna et al. 2016). In order to be able to perform a coherent (orbital) timing, we need to verify that we can unambiguously determine the number of elapsed orbital cycles for each T_{NOD}.

The condition is thus the following:

$$\left(\sigma_{T_{\text{NOD}}}^2 + \sigma_{\delta P_{\text{orb}}}^2 N_{\text{MAX}}^2 + \frac{1}{4} \sigma_{P_{\text{orb}}}^2 P_{\text{orb}}^2 N_{\text{MAX}}^4 \right)^{1/2} < \frac{P_{\text{orb}}}{2},$$

where $\sigma_{T_{\text{NOD}}}$ and $\sigma_{\delta P_{\text{orb}}}$ are the uncertainties on the time of passage from the ascending node and the orbital period used as a reference for the timing solution, respectively. δP_{orb} is the secular orbital derivative and N_{MAX} is the integer number of orbital cycles elapsed by the source during the time interval covered by the three outbursts observed. Specifically, during the period 2007-2018, SWIFT J1756.9–2508 elapsed $N_{\text{MAX}} = [(T_{\text{NOD2018}} - T_{\text{NOD2007}})/P_{\text{orb}}] \sim 10^4$ orbital cycles.

Even considering the most accurate orbital period reported in Tab. 4, it is clear that despite the possible effects of an orbital period derivative, the condition reported in Eq.3 cannot be satisfied. It is thus not possible to unambiguously associate a number N to all the T_{NOD} values within the baseline 2007-2018. Instead, we can tentatively phase connect the first two outbursts separated in time by only 2.1 years, corresponding to $N_{\text{MAX}} \sim 2 \times 10^4$. To test Eq.3, we took the 2009 orbital period as a reference and we considered its uncertainty at the 95% confidence level (0.06 s). Given the lack of knowledge on the orbital period derivative, we assumed as a fiducial value the average obtained combining the estimates from the only two AMXPs for which this quantity has been inferred: $\dot{P}_{\text{orb}} = 3.6(4) \times 10^{-12}$ s/s for SAX J1808.4–3658 (see e.g. Di Salvo et al. 2008; Patruno et al. 2016; Sanna et al. 2017b) and $\dot{P}_{\text{orb}} = 1.1(3) \times 10^{-10}$ s/s for SAX J1748.9–2021 (Sanna et al. 2016), that corresponds to $\dot{P}_{\text{orb}} \sim 6 \times 10^{-11}$ s/s. Substituting the values into Eq.3, we find the uncertainty on the time of passage from the ascending node to be of the order of 0.35P_{orb}, which satisfies the possibility to apply coherent orbital timing on the two outbursts. Assuming $P_{\text{orb}} \sim 6 \times 10^{-11}$ s/s, we obtain an improved orbital period $P_{\text{orb,2.1yr}} = 3282.3503(12)$ s.

Substituting the more accurate estimate of the orbital period into Eq.3 and using the same prescription for P_{orb}, we obtain that the propagated uncertainty on T_{NOD} for the 2007-2018 baseline is below the 0.5P_{orb} threshold and we are then allowed to coherently phase connect the orbital parameters among the three outbursts. As we can unambiguously associate the number of elapsed orbital cycles to each T_{NOD}, we calculate the correction on the NS passage from the ascending node ΔT_{NOD} with respect to the beginning of the 2007 outburst. For each outburst we determine the quantity $T_{\text{NOD2007}} - T_{\text{NOD2007}}$ estimated with respect to $P_{\text{orb,2.1yr}} = 3282.3503(12)$ s, and we plot it as a function of corresponding elapsed cycles (top panel in Fig. 6). Using the quadratic function:

$$\Delta T_{\text{NOD}} = \delta T_{\text{NOD2007}} + N \delta P_{\text{orb,2.1yr}} + 0.5 N^2 \dot{P}_{\text{orb}} P_{\text{orb,2.1yr}},$$

we determine the unique set of parameters that approximate the T_{NOD} values shown in Fig. 6, where $\delta T_{\text{NOD2007}}$ represents the correction to the adopted time of passage from the ascending node, $\delta P_{\text{orb,2.1yr}}$ is the correction to the orbital period, and \dot{P}_{orb} is the orbital-period derivative. In the bottom part of Tab. 4, we report the combined orbital solution of the source and the corresponding uncertainties reported at the 1σ confidence level.

The uncertainty on the orbital period derivative is such that we cannot determine whether the orbit is secularly expanding or shrinking. However, the longer baseline with respect to P10 allow us to improve by few orders of magnitude the constraint on the strength of the orbital derivative. Already at this stage, we can exclude an orbital evolution similar to that of the AMXP SAX J1748.9–2021 for which an extremely fast expansion has been reported (Sanna et al. 2016). On the other hand, considering the 95% confidence level interval -4.1×10^{-12} s/s < \dot{P}_{orb} < 7.1×10^{-12} s/s (see also Bult et al. 2018a), we note that the secular evolution of SWIFT J1756.9–2508 is still compatible with the fast expansion reported for SAX J1808.4–3658 (see e.g. Di Salvo et al. 2008; Patruno et al. 2016; Sanna et al. 2017b) as well as with very slow evolution suggested for IGR J00291+5934 (see e.g. Patruno et al. 2016; Sanna et al. 2017a). Future outbursts will allow us to further constrain the orbital period derivative and the secular evolution of the system.

5 CONCLUSIONS

We reported on the spectral and timing properties of the 2018 outburst of the AMXP SWIFT J1756.9–2508 observed with INTEGRAL, XMM-Newton, NuSTAR and NICER. From the phase-connected timing analysis of the NICER and XMM-Newton observations, we obtained an updated set of the source ephemerides, compatible within the errors with those obtained from the NuSTAR dataset. Owing to the multiple observations performed during the source outburst, we obtained, for the first time since the decomposition of RXTE, a reliable constraint on the spin frequency derivative ($|\nu| < 1.4 \times 10^{-12}$ Hz/s) of an AMXP during the accretion state. Combining the timing properties from the previous two outbursts, we estimated a secular spin-down frequency derivative $\nu_{\text{sec}} = 4.8(6) \times 10^{-16}$ Hz/s, compatible with a magnetic field (at the polar caps) of 4.3×10^8 G < B_{PC} < 4.5×10^9 G. Furthermore, we obtained

Outburst	T_{NOD} (MJD)	P_{orb} (s)	\dot{P}_{orb} (10$^{-12}$ s s$^{-1}$)
2007	54265.28087(10)	3282.41(15)	-
2009	55026.03413(3)	3282.32(3)	-
2018	58216.3843(10)	3282.40(4)	-
Combined	54265.28087(10)	3282.3519(5)	1.5 ± 2.8

Table 4. Top: SWIFT J1756.9–2508 best-fitting orbital parameters derived for each individual outburst. The values of the first two outbursts was obtained from P10. Bottom: Best-fitting orbital parameters derived combining the source outbursts observed between 2007 and 2018 (see text for more details). Uncertainties are reported at 1σ confidence level.
a secular orbital period derivative in the range -4.1×10^{-12} $s/s < P_{\text{orb}} < 7.1 \times 10^{-12} s/s$ (95% confidence level), suggesting that more outbursts are required to further constrain the orbital evolution of the system. We also investigated the pulsed emission energy distribution of SWIFT J1756.9–2508 in the energy range 0.3–10 keV and 3–80 keV, using the XMM-Newton and NuSTAR datasets, respectively. The pulse fractional amplitude trend shown by the fundamental and second harmonic components present similarities with those reported for other AMXPs likely suggesting a Comptonisation origin.

Finally, we found that the broad-band (3–90 keV) energy spectrum of SWIFT J1756.9–2508 observed during its 2018 outburst is well described by an absorbed cut-off power law plus a soft thermal component. A photon index of Γ_abs is well described by an absorbed cut-off power law E_{peak} in the energy range 0.3–10 keV and 3–80 keV, using the XMM-Newton datasets, respectively. The pulse fractional amplitude trend shown by the fundamental harmonic components present similarities with those reported for other AMXPs likely suggesting a Comptonisation origin.

We thank N. Schartel for providing us with the possibility to perform the ToO observation in the Director Discretionary Time, and the XMM-Newton team for the technical support. We also use Director Discretionary Time on NuSTAR, for which we thank Fiona Harrison for approving and the NuSTAR team for the technical support. We acknowledge financial contribution from the agreements ASI-INAF 1/037/12/0 and ASI-INAF 2017-14-H.O. This work was partially supported by the Regione Autonoma della Sardegna through POR-FSE Sardegna 2007-2013, L.R. 7/2007, Progetti di Ricerca di Base e Orientata, Project N. CRF-60529. AP acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 660657-TMSP-H2020-MSCA-IF-2014, as well as the International Space Science Institute (ISSI Bern) which funded and hosted the international team “The disk magnetosphere interaction around transitional millisecond pulsar”.

ACKNOWLEDGMENTS

We thank N. Schartel for providing us with the possibility to perform the ToO observation in the Director Discretionary Time, and the XMM-Newton team for the technical support. We also use Director Discretionary Time on NuSTAR, for which we thank Fiona Harrison for approving and the NuSTAR team for the technical support. We acknowledge financial contribution from the agreements ASI-INAF 1/037/12/0 and ASI-INAF 2017-14-H.O. This work was partially supported by the Regione Autonoma della Sardegna through POR-FSE Sardegna 2007-2013, L.R. 7/2007, Progetti di Ricerca di Base e Orientata, Project N. CRF-60529. AP acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement 660657-TMSP-H2020-MSCA-IF-2014, as well as the International Space Science Institute (ISSI Bern) which funded and hosted the international team “The disk magnetosphere interaction around transitional millisecond pulsar”.

REFERENCES

Bult P., et al., 2018a, preprint, (arXiv:1807.09100)
Bult P. M., et al., 2018b, The Astronomer’s Telegram, 11502
Bult P. M., Gendreau K. C., Ray P. S., Altamirano D., Arzoumanian Z., Strohmayer T. E., Homan J., Chakrabarty D., 2018c, The Astronomer’s Telegram, 11583
Burderi L., Di Salvo T., 2013, Mem. Soc. Astron. Italiana, 84, 117
Burderi L., Riggio A., di Salvo T., Papitto A., Menna M. T., van der Klis M., 2009, A&A, 496, L17
Burderi L., Di Salvo T., Riggio A., Papitto A., Iaria R., Menna M. T., 2010, A&A, 515, A44
Casella P., Altamirano D., Patruno A., Wijnands R., van der Klis M., 2008, ApJ, 674, L41
Chakraborty M., Bhattacharyya S., 2018, The Astronomer’s Telegram, 11566
Courvoisier T., et al., 2003, A&A, 411, L53
Cui W., Morgan E. H., Titarchuk L. G., 1998, ApJ, 504, L27
Deefer J. E., Boynton P. E., Pravdo S. H., 1981, ApJ, 247, L1003
Di Salvo T., Burderi L., Riggio A., Papitto A., Menna M. T., 2008, MNRAS, 389, 1851
Evans P. A., et al., 2009, MNRAS, 397, 1177
Falanga M., Titarchuk L., 2007, ApJ, 661, 1084
Falanga M., et al., 2005a, A&A, 436, 647
Falanga M., et al., 2005b, A&A, 444, 15
Falanga M., et al., 2011, A&A, 529, A68
Frank J., King A. R., Raine D. J., 2002, Accretion power in astrophysics, 3rd edn. Cambridge University Press
Friedman B., Pandharipande V. R., 1981, Nuclear Physics A, 361, 502
Hartman J. M., et al., 2008, ApJ, 675, 1468
Haslinger G., van der Klis M., 1989, A&A, 225, 79
Iaria R., Di Salvo T., Burderi L., Riggio A., D’Al A., Robba N. R., 2014, A&A, 561, A99
Iaria R., et al., 2015, A&A, 582, A32
Iaria R., et al., 2018, MNRAS, 473, 3490
Kirsch M. G. F., Mukerjee K., Breitfellner M. G., Dvajdhnia S., Freyberg M. J., Kendziorra E., Smith M. J. S., 2004, A&A, 425, L9
Krimm H. A., et al., 2007, ApJ, 668, L147
Krimm H. A., et al., 2018, The Astronomer’s Telegram, 11505
Kuiper L., Tsyganok S., Falanga M., Galloway D., Poutanen J., 2018, The Astronomer’s Telegram, 11603
Lebrun F., et al., 2003, A&A, 411, L141
Linares M., Wijnands R., van der Klis M., Krimm H., Markwardt C. B., Chakrabarty D., 2008, ApJ, 677, 515
Lund N., et al., 2003, A&A, 411, L231
Manzola S., Bonzo E., Kuulkers E., Ferrigno C., Savchenko V., Ducci L., 2018, The Astronomer’s Telegram, 11523
Mereminskiy I. A., Grebenev S. A., Krivonos R. A., Sunyaev R. A., 2018, The Astronomer’s Telegram, 11497
Miller J. M., et al., 2003, ApJ, 583, L99
Mitsuda K., et al., 1984, PASJ, 36, 741
Mukerjee K., Bult P., van der Klis M., Bhattacharya D., 2015, MNRAS, 452, 3094
Pandharipande V. R., Ravenhall D. G., 1989, in Soyer M., Frolov H., Tamm T., eds, NATO Advanced Science Institute (ASI) Series B. p. 103
Papitto A., Menna M. T., Burderi L., Di Salvo T., D’Antona F., Robba N. R., 2005, ApJ, 621, L113
Papitto A., Riggio A., di Salvo T., Burderi L., D’Al A., Iaria R., 2010, MNRAS, 407, 2575
Patruno A., 2016, preprint, (arXiv:1611.06055)
Patruno A., Watts L. A., 2012, preprint, (arXiv:1206.2727)
Patruno A., Altamirano D., Hessels J. W. T., Casella P., Wijnands R., van der Klis M., 2009, ApJ, 690, 1856
Patruno A., Altamirano D., Messenger C., 2010a, MNRAS, 403, 1426
Patruno A., et al., 2010b, The Astronomer’s Telegram, 2407, 1
Patruno A., et al., 2016, preprint, (arXiv:1611.06023)
Pintore F., et al., 2015, MNRAS, 450, 2016
Riggio A., Papitto A., Burderi L., di Salvo T., Bachetti M., Iaria R., D’Al A., Menna M. T., 2011, A&A, 526, A95
Sanna A., et al., 2016, MNRAS, 459, 1340
Sanna A., et al., 2017a, MNRAS, 466, 2910
Sanna A., et al., 2017b, MNRAS, 471, 463
Sanna A., et al., 2018a, preprint, (arXiv:1807.08574)
Sanna A., et al., 2018b, ApJ, 859, L2
Spitkovsky A., 2006, ApJ, 648, L51
Strohmayer T., Bildsten L., 2010, New views of thermonuclear burst storms. p. 113
Ubertini P., et al., 2003, A&A, 411, L131
Winkler C., et al., 2003, A&A, 411, L1