INTRODUCTION

Inflammation and wound infection occurring after snakebite complicate treatment of victims. To treat snake bites in Africa, few victims use modern health facilities 1. The microbes resistance to available antibiotics, the blow of antibiotics and anti-inflammatory drugs available on the market leads to the search for new therapeutic molecules with antimicrobial and anti-inflammatory properties. Medicinal plants are an adequate solution to these problems. Victims often use medicinal plants. *Annona senegalensis* (*A. senegalensis*) and *S. longepedunculata* are medicinal plants used in envenomation management in Togo 2.

A. senegalensis is a small tree that is widely distributed in Africa 3. It is usually 2 to 6 meters tall and has an aromatic flower that is used to flavour foods. Its ripe fruit has a yellow colour and a pleasant smell. It’s fruit is edible 4. Previous studies have shown that this plant has anti venom 4, 5, anti diarrhea 6, anti cancer 7, Spermatogenic 8, anti convulsion 9 properties. A methanol root extract has analgesic and anti-inflammatory effects 4. The methanol extract, petroleum ether fraction and methanol fraction have

Keywords: *Annona senegalensis*, *Securidaca longepedunculata*, anti-inflammatory, antimicrobial, BSA.
anti-inflammatory effects. The methanol extract and chloroform fraction have antibacterial properties.

The control of inflammation and wound infection caused by snakebites is important in envenomation management. Anti-inflammatory medicinal plants are used to treat several adverse effects of synthetic anti-inflammatory drugs. Antimicrobial plants are the source of new molecules that can counteract microbial resistance. The aim of this study is to evaluate in vitro anti-inflammatory and antimicrobial properties of *S. longepedunculata* and *A. senegalensis* using their hydroalcoholic extracts.

MATERIAL AND METHODS

Plants materials

Roots of *A. senegalensis* were collected from Ghblainvié in Zio prefecture (Togo), located at 30 km north of Lomé. The roots of *S. longepedunculata* were collected from Anié locality in the prefecture of Anié (Togo). This locality is located 187.7 Km north of Lomé.

Both plants have been identified in Botany and Plant Ecology Laboratory of Faculty of Science (University of Lome), where voucher specimen was deposited in the herbarium under the number TOGO 15673 (*A. senegalensis*) and TOGO 15676 (*S. longepedunculata*).

Roots of the plants were cleaned out with water, cut into small pieces, dried at the Animal Physiology laboratory at 22°C and then reduced into powder using THOMAS-Wiley, LABORATORY MILL, Model 4 mill.

Preparation of the hydro-alcoholic extracts

400g of powder from each plant were extracted in 4L of an ethanol/water mixture (50:50, V/V) for 72 hours under intermittent manual agitation. The crude extract was filtered on Whatman paper and evaporated in vacuum at 45°C using a Rotavapor (Heidolph2, Germany).

The extracts were in the form of crystals and have been stored in the refrigerator at 4°C.

Phytochemical study of *A. senegalensis* and *S. longepedunculata*

Phytochemical screening

The phytochemical analysis was performed for detection of phyto-constituents present in the extracts using standard procedure by 18.

Determination of total phenols and tannins

Total phenols were measured in the extracts by the Folin-Ciocalteu method and for the determination of tannins; a second dosage of the phenols was performed after fixing tannins by PVP (Polyvinyl pyrrolidone). Total tannins content was determined by absorbance difference between the first and second assay according to the method of Maksimovic et al., 19.

Determination of total flavonoids

Flavonoids content was determined according to the method used by Mimica-dukic 20. Briefly, to 2 ml of extract / rutin at different concentrations (5-100 µg/ml), 2 ml of aluminum chloride (20 mg/ml) and 6 ml of sodium acetate (50 mg/ml) were added. Absorbance was read at 440 nm after 2.5 hours of incubation.

In vitro antimicrobial property of *A. senegalensis* and *S. longepedunculata* extracts

Microbial strains

The pathogenic bacterial strains assayed in this study were *Staphylococcus aureus* ATCC 29213, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, *Klebsiella pneumoniae* ATCC 70603, including the yeast *Candida albicans* ATCC 35659. These strains come from bacteriology laboratory strain bank of the National Institute of Hygiene (Togo).

Microbial suspensions preparation

Grown 24 hours old Microorganisms were used. To obtain these young colonies of microorganisms, the selected germs were isolated on Muller-Hinton agar (MHA) for bacteria and on Sabouraud Chloramphenicol agar (SCA) for *Candida albicans*. Incubation was done at 37°C for bacteria and 25°C for *Candida albicans* for 18 to 24 hours.

Microbial suspensions of densities of 0.5 Mc Farland diluted 10⁻¹ were prepared in normal physiological saline with young colonies of microorganisms.

The *S. longepedunculata* and *A. senegalensis* extracts solutions were prepared at a concentration of 250 mg/mL in distilled water and then sterilized on millipore membrane of 0.45 µm porosity and 47 mm in diameter 21.

Presumptive Test

It is a presumptive test that has made it possible to identify the active extracts starting from a high concentration. The antibiotic susceptibility testing was performed by the agar well diffusion method with some changes 21. The high concentration of extract in this study is 250 mg/mL.

The microbial suspensions used were equal to 0.5 Mc Farland (≥108 CFU/mL). The inoculum was introduced on culture medium prepared under standard conditions. These were MHA for bacteria and SCA for Candida. The quality of these medium was evaluated by sterility and fertility tests before use. After inoculation of the medium, wells of 6 mm in diameter were made using a sterile hollow punch concentric ally in the agar. Gentamicin solution’s 30 µg/mL (for *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*) and Nystatin solution’s 250 mg/mL for *Candida albicans* were used as reference drugs. For negative controls, sterile distilled water was used in place of the extract. After 30 minutes of pre-diffusion at laboratory temperature, the Petri dishes were incubated for 24 h at 35°C for the bacteria and 25°C for the yeasts.

The microbial growth inhibition zone diameter’s was measured using an electronic reading chart. Extracts having an inhibition diameter ≥ 12 mm (including disc) were used for the determination of MIC and MBC/MFC. The tests were repeated in triplicate 22.

Minimum Inhibitory Concentrations (MIC) and Bactericidal/Fungicidal (MBC/MFC) determination

Extracts that showed a growth inhibition diameter of 12 mm according to our presumptive test were used for the MIC and MBC/MFC determination.

This test was performed using 96-well microplate dilution method. From a stock extract solution of 250 mg/mL. A successive dilutions series of the two plants extracts (250, 125, 62.5, 31.25, 15.625, 7.8125 and 3.90625 mg/mL) were placed in Mueller Hinton Broth (MHB). The wells were inoculated with a microbrial suspension at 6x10⁵ CFU/mL. Quality control was performed with MHB (not inoculated).
Another control was performed with MHB seeds to facilitated reading. The tests were performed in a sterile environment. The preparations were covered with parafilm and incubated at the appropriate temperature for 24 h. After incubation, the wells were observed with the naked eye. Turbidity presence corresponded to microbial culture presence. The MIC of the extract on tested strain corresponds to extract lowest concentration for which no culture was observed. Then, 100 μL was taken from wells that did not show visible microbial growth to the naked eye and plated on MHA for bacteria and SCA for Candida albicans. Incubation was carried out at the appropriate temperature for 24 h. The tests were performed in triplicate. The lowest concentration for which no colonies were found was considered the MBC or MIC of the extract on the strain tested. The MBC/MIC ratio was used to determine the antibiotic activity of the extract on the microbial strain.

Assessment of the in vitro anti-inflammatory activity of A. senegalensis and S. longepedunculata extracts

Membrane stabilisation assay

The method described by Javed et al., 26 and Joshi et al., 27 was used to perform this test. Wistar rats were anesthetized using light diethyl ether and blood was collected from the retro-orbital sinus in heparinised tubes. The collected blood was centrifuged at 1500 rpm for 10 min and washed three times with the same volume of normal saline. The reconstitution of red blood cells (RBC) with saline solution was 10% v/v suspension. To 1 mL of the RBC suspension were added 1 mL of plant extract or the reference drug Diclofenac sodium at different concentrations (50-1600 μg/mL) and 2 mL of hyposaline solution (0.36%). After 30 min of incubation at 37 °C, centrifugation (3000 rpm) was performed for 20 min. The assay was then performed in three replicates for each concentration and the membrane stabilisation percentage reflecting anti-inflammatory activity was determined after reading the absorbance at 560 nm.

The inhibition percentage was calculated by following formula.

\[\text{Anti-inflammatory activity} \% = \frac{(A0 - At)}{A0} \times 100 \]

A0 was the control absorbance (without extract) and At was the absorbance of extract or drug presence.

Inhibition of bovine protein serum albumin (BSA) denaturation

The anti-inflammatory effect of extracts was investigated using Saleem et al., method 28. To 0.45 mL of bovine serum albumin (BSA) solution (5% w/v), 0.05 mL of extract at different concentration or reference drugs (Diclofenac sodium) were added (1600; 800; 400; 200; 10 and 50 μg/mL). Incubation took place twice : at 37°C during 20 min incubation, and at 70°C during 5 min. After cooling, 2.5 mL PBS (pH 6.3) was added to each sample. The test was carried out in three replicates for each concentration and the protein denaturing inhibition percentage that reflects anti-inflammatory activity was determined after reading the absorbance at 660 nm.

The inhibition percentage was calculated by following formula.

\[\text{Anti-inflammatory activity} \% = \frac{(A0 - At)}{A0} \times 100 \]

A0 was the control absorbance (without extract) and At was the absorbance of extract or drug presence.

Data Analysis

Data were expressed as Mean ± SD (standard deviation) for presumptive test and Mean ± SEM (standard error of the Mean) for anti-inflammatory tests using the GraphPad Prism 7 software. Statistical differences between groups were determined by ANOVA followed by Dunnett test and considered significant for p < 0.05.

RESULTS

Phytochemical Study of A. senegalensis and S. longepedunculata

Phytochemical screening

Phytochemical analysis of hydroalcoholic extracts A. senegalensis and S. longepedunculata revealed the presence of flavonoids, tannins, carbohydrates, alkaloids, phenols, and saponosides. The results of phytochemical screening are resumed in table 1.

Table 1 : Phytochemical screening

Metabolites	A. senegalensis	S. longepedunculata
Alkaloids	+	+
Tannins	+	+
Flavonoids	+	+
carbohydrates	+	+
Phenols	+	+
Saponosides	+	+

+ : presence

Determination of total flavonoids, phenols and tannins

Table 2 shows that A. senegalensis and S. longepedunculata contain phenolic compounds.

Table 2 : Total phenols, flavonoids and tannins content

Extracts	Total flavonoids (mgRE/g)	Total phenols (mgGAE/g)	Total tannins (mgGAE/g)
A. senegalensis	15.62±0.71	31.77±2.24	5.15±2.24
S. longepedunculata	29.62±0.95	11.09±0.62	1.07±0.62

Total phenols and tannins are expressed in mg Gallic Acid Equivalent/g extract. Flavonoids are expressed in mg Rutin Equivalent/g extract.
In vitro antimicrobial property of A. senegalensis and S. longepedunculata extracts

Antimicrobial presumptive test

The results showed that *A. senegalensis* extract was active on *Staphylococcus aureus* (*S. aureus*) with IZD = 12.22 ± 0.24 mm and on *Pseudomonas aeruginosa* (*P. aeruginosa*) with IZD = 12.06 ± 0.06 mm. *A. senegalensis* root extract has not active on *Klebsiella pneumonia* (*K. pneumonia*), *Escherichia coli* (*E. coli*) and *Candida albicans* (*C. albicans*). In addition, *S. longepedunculata* extract was active on *S. aureus* with IZD = 12.03 ± 0.03 mm and *C. albicans* with IZD = 12.12 ± 0.07 mm. *S. longepedunculata* root extract has not active on *K. pneumoniae*, *E. coli* and *P. aeruginosa*. (Table 3)

Table 3 : inhibition zone diameter obtain in presumptive test

	IZD (mm)	
	A. Senegalensis	S. longepedunculata
	250 mg/mL	250 mg/mL
P. aeruginosa ATCC 27853	12.06 ± 0.06	NA
K. pneumonia ATCC 700603	NA	NA
S. aureus ATCC 29213	12.22 ± 0.24	12.03 ± 0.03
E. coli ATCC 25922	NA	20.65 ± 0.06
C. albicans ATCC 35659	NA	12.12 ± 0.07

IZD = inhibition zone diameter, GN = Gentamicin, NY = Nystatin, NA = not active

Determination of Minimum Inhibitory Concentrations (MIC) and Bactericidal/Fungicidal (MBC/MFC)

MICs and MBCs/MFCs were determined for germs that were susceptible to extracts with inhibition diameters ≥ 12 mm. The bacteriostatic and bactericidal effects of the extracts on the germs were determined by the ratio of MBC/MIC or MFC/MIC ≤ 1 (Bacteriostatic); MBC/MIC or MFC/MIC ≥ 2 (Bactericidal).

A. senegalensis extract was active on *S. aureus* with MIC = 62.5 mg/mL and MBC = 125 mg/mL. He is also active on *P. aeruginosa* with MIC = 125 mg/mL and MBC = 250 mg/mL. The MBC/MIC ratio is 2 for the two bacteria on which *A. senegalensis* extract was active.

S. longepedunculata extract was active on *C. albicans* with MIC = 62.5 mg/mL and MBC = 125 mg/mL. He is also active on *S. aureus* with MIC = 125 mg/mL and MBC = 250 mg/mL. The MFC/MIC or the MBC/MIC ratio is 2 for the two bacteria on which *S. longepedunculata* extract was active. (Table 4)

Table 4 : MIC and MBC of microorganisms

Germs	A. senegalensis	S. longepedunculata				
	CMI (mg/ml)	CMB (mg/ml)	MBC/CMI	CMI (mg/ml)	CMB (mg/ml)	MBC/CMI
P. aeruginosa	125	250	2	0	0	0
K. pneumonia	0	0	0	0	0	0
S. aureus	62.5	125	2	125	250	2
E. coli	0	0	0	0	0	0
C. albicans	0	0	0	62.5	125	2

Assessment of the in vitro anti inflammatory activity of A. senegalensis and S. longepedunculata extracts

Membrane stabilisation assay

The analysis showed concentration-dependent protection of the cell membrane by the hydroalcoholic extracts of *A. senegalensis* and *S. longepedunculata*. For example, at the dose of 50 µg/mL, *A. senegalensis* and *S. longepedunculata* significantly (p<0.001) inhibited haemolysis compared to diclofenac.

These results provide evidence for the membrane stabilizing effect of both extracts as an additional mechanism for their anti-inflammatory activity (Figure 1).
Figure 1: Effet of *A. senegalensis* and *S. longepedunculata* hydroalcoholic extracts on red blood cell membrane stabilisation

\[
\% \text{ inhibition} = \left(\frac{A_0 - A_t}{A_0} \right) \times 100
\]

\(A_0\) was the control absorbance (without extract) and \(A_t\) was the absorbance of extract or drug presence.

Inhibition of bovine protein serum albumin (BSA) denaturation

The results in figure 4 showed that at 50 µg/mL, hydroalcoholic extracts of *A. senegalensis* and *S. longepedunculata* significantly \((p<0.05)\) inhibited protein denaturation compared to Diclofenac. In addition, at the dose of 400 µg/mL, the inhibition of BSA denaturation by the two plants were more significant \((p<0.001)\) than Diclofenac (Figure 2).

DISCUSSION

The search for natural anti-inflammatory and antimicrobial agents with fewer side effects has crucially increased nowadays. This study was then investigated in order to evaluate the anti-inflammatory and antimicrobial activities of hydroalcoholic extracts of *A. senegalensis* and *S. longepedunculata*.

The antimicrobial assay was performed in order to detect the sensitivity of five germs (*Staphylococcus aureus* ATCC 29213, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, *Klebsiella pneumoniae* ATCC 700603; *Candida albicans* ATCC 35659) in the presence of *A. senegalensis* and *S. longepedunculata* hydro-alcoholic extracts. Results revealed that 40% of the germs tested were...
susceptible to hydro-alcoholic extracts of *A. senegalensis* and *S. longepedunculata*.

A. senegalensis extract was found to be active on *Staphylococcus aureus* (*S. aureus*) and *Pseudomonas aeruginosa* (*P. aeruginosa*) with inhibition zone diameters of 12.22 mm and 12.06 mm respectively. For the two bacteria on which *A. senegalensis* extract was active, the MIC = 62.5 mg/mL for *S. aureus* and MIC = 125 mg/mL for *P. aeruginosa*. The MBC extract for these two bacteria is 125 mg/mL for *S. aureus* and 250 mg/mL for *P. aeruginosa*. However, this extract was not active on *E. coli*, *K. pneumoniae* and *C. albicans* Our results corroborate with the work Swich that showed that Kaurenoic Acid isolated from *A. senegalensis* root bark inhibited *S. aureus* and *P. aeruginosa* but has no effect on *Klebsiella pneumoniae* and *Escherichia coli* 29. This also corroborates with those of More et al., which showed that *A. senegalensis* methanol extract is not active on *Candida albicans* 30. Our results are different from the work of Awa et al. 31 in which methanol extract from *A. senegalensis* stem bark acted on *E. coli* with inhibition zone diameter equals 12 mm. Lino and Deogracious 32 showed that the aqueous extract inhibited *S. aureus* with a diameter of 18 mm. Similarly, the raw flavonoids isolated from stem bark of *A. senegalensis* inhibited *E. coli* an inhibition zone diameter equal to 18 mm 33. The MIC and MBC obtained with methanol and ethanol extracts of this plant are different from the values obtained with hydro-alcoholic extract in this study. Thus, *A. senegalensis* methanol extract was active on *S. aureus* with MIC=250 µg/mL and MBC>1000 µg/mL 34. The ethanol extract from *A. senegalensis* root bark acted on *S. aureus* with a MIC=500 µg/mL 34.

In addition, *S. longepedunculata* extract was active on *S. aureus* and *C. albicans* respectively with 12.03 mm and 12.12 mm inhibition diameters. For the two microbes on which *A. senegalensis* extract was active, the MIC are 125 mg/mL for *S. aureus* and 62.5 mg/mL for *C. albicans*. *S. longepedunculata* extract has an MBC=250 mg/mL for *S. aureus* and an MFC=125 mg/mL for *C. albicans*. However *S. longepedunculata* is not found to be active on *E. coli*, *P. aeruginosa* and *K. pneumoniae*. Our results are same with those obtained by 35 which showed that *S. longepedunculata* roots ethyl acetate fraction and n-butanol fraction have inhibitory effects on *S. aureus* and *C. albicans*. The two fractions had an inhibition zone diameter of 12 mm each on both germs. Acqueous extract yielded 13 mm inhibition zone diameter with *S. aureus* and MIC=1000 mg/mL 32. The lack of sensitivity of the microorganisms used in this work to the extracts of *A. senegalensis* and *S. longepedunculata* could be explained by: an inaccessibility of the molecules contained in these extracts to the microbial cell due to the impermeability of the membrane of the microbes to the molecules contained in these extracts; or an affinity of the molecules contained in these two extracts for the bacterial target or an expulsion of the antibiotic molecules contained in these extracts by chromosomal efflux pumps.

The diversity observed in the sensitivity of *K. pneumoniae* to the extracts could be explained first by the capsule surrounding the bacteria presence as a natural protection [36]. Difference between our results and those obtained with methanol and ethanol extracts is explained by the fact that hydro-alcoholic extract (50:50) would not have been able to extract sufficient the active ingredients extracted acting microbe with methanol and ethanol. These active ingredients would increase the bactericidal potency of the two extracts when methanol and ethanol are used as maceration solvents.

Inflammation is a physiological process that defends body against aggression that results in tissue alteration. Inflammation primary function is to eliminate the aggressor and allow tissue repair. Short-term inflammation known as acute inflammation is a beneficial phenomenon of the body that allows it to regain its physiological integrity. Whereas the negative inflammation aspect occurs when it lasts and becomes a chronic inflammation. In this case, inflammatory reaction should be controlled by the drugs 37.

In this study, the effect of *S. longepedunculata* and *A. senegalensis* extracts on membrane stabilization was indexed via the ability to protect RBCs from heat-induced haemolysis. The red blood cell membrane stabilization can be extrapolated to the lysosomal membrane because the two membranes are analogous. The haemolycy effect of a hypotonic solution is expressing by excessive accumulation of fluid inside the cell that caused membrane rupture 38.

Results showed that *S. longepedunculata* and *A. senegalensis* protected red blood cell membrane against haemolysis. This effect occurred in dose dependent manner. However, *S. longepedunculata* showed a higher protective capacity than the reference drug used for the 200 µg/mL dose. This could be explained by the control of surface/volume ratio of cells or by strengthening of the red blood cells membrane by the plants.

Protein denaturation is a process by which proteins lose their structure due to the presence of other compounds, external stress, or heat, thus leading them to lose their biological functionality. Therefore, denaturation of tissue proteins is recognized as a marker of inflammation. In our study, Both extracts inhibited BSA protein denaturation in concentration dependent manner. It is possible that bioactive compounds in the extracts protect lysosomal membranes against injury by interfering with activation of phospholipases. The extracts may block an exaggerated release of pro-inflammatory molecules, including histamine, serotonin, tachykinine, bradykinine and complement proteins 39. Our results corroborate with other studies that had demonstrated the anti-inflammatory effect of *A. senegalensis* 40, 41 and *S. longepedunculata*42,43.

To better understand the effect of the two plants, their preliminary phytochemical study was carried out. With phytochemical screening, the presence of alkaloids, tannins, flavonoids, carbohydrates, saponosides and phenols were revealed in the two extracts. This is in accordance to the works of 44 and 45. Quantitative tests confirmed the presence of these phenolic compounds. The phenolic compounds present the plants could explain their antimicrobial and anti-inflammatory effects because many studies demonstrated the antibacterial properties of tannins 46 and flavonoids 47, anti-inflammatory properties of phenols such as coumarin 48, flavonoids 49 and tannins 50. In fact, these compounds present in the extract having functional groups serve as electron donors by breaking the free radical chain. Flavonoids also have the property of stabilizing the structure of biological membranes. Phenolic compounds also are able to inhibit either the production or the action of pro-inflammatory mediators, resulting in anti-inflammatory capacity.

CONCLUSION

In summary, *A. senegalensis* and *S. longepedunculata* have remarkable antimicrobial and anti-inflammatory properties. These properties could be related to the phytochemical compounds present in the hydroalcoholic
extracts of A. senegalensis and S. longepedunculata. Taken together, these two medicinal plants can be used in the patients suffering of inflammation and microbial infection of wounds by snake bites.

However, further studies are required to understand the exact mechanism of action of various constituents present in the two plants.

ACKNOWLEDGMENTS

The authors are grateful to the bacteriology laboratory of National Institute of Hygiene (INH) of Lome for assistance in antimicrobial test.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

FUNDING

None.

REFERENCES

1. Chippaux JP. Pratique des essais cliniques en Afrique. IRD Editions. 2004. https://doi.org/10.4000/books.irdeditions.9899

2. Agody-Acacha M, Atakpama W, Akpavi S, Titikpina NK, Tchacondo T. How Traditional Healers of Tchaoundjo District in Togo Take Care of Animal Injuries? Int J Complement Alt Med; 2017; 9(3):00299. https://doi.org/10.15465/jicam.2017.09.00299

3. Ogbadoyi EO, Abdulganioy AO, Adamma TZ, Okogun JL. In vivo trypanocidal activity of Annona senegalensis Pers. leaf extract against Trypanosoma brucei brucei. J Ethnopharmacol, 2007; 112(1):85-89. https://doi.org/10.1016/j.jep.2007.02.015

4. Adzu B, Abubakar MS, Izebe KS, Akmula DD, Gamanl KL. Effect of Annona senegalensis root bark extracts on Trypanocotis nigrigoti venom in rats. J Ethnopharmacol, 2005; 96(3):507-513. https://doi.org/10.1016/j.jep.2004.09.055

5. Grema M, Koné PP. Effets du venin d’un serpent (Bitis arietans) et d’une plante antivenimeuse de la pharmacopée traditionnelle africaine (Annona senegalensis) au niveau de la jonction nerf sciatique muscle gastronémi de crapaud (Buffo regularis). Revue CAMES. 2003; Série A(02):79-85. https://www.yumpu.com/fr/document/read/17334148

6. Suleman MM, Dzenda T, Sani CA. Anti-inflammatory activity of the methanol stem-bark extract of Annona senegalensis Pers. (Annonaceae). Journal of ethnopharmacology, 2008; 116(1):125-130. https://doi.org/10.1016/j.jep.2007.11.007

7. Sowemimo AA, Fakoya FA, Awopeju I, Omobuwajo OR, Adesanya SA. Toxicity and mutagenic action of some selected Nigerian plants. Journal of ethnopharmacology, 2007; 113(3):427-432. https://doi.org/10.1016/j.jep.2007.06.024

8. Oladele G, Faramade I, Ogunbode M. Effect of Aqueous Extract of Annona senegalensis leaves on the Spermiogram of Male Albino Rats. World J Pharmacy Pharm Sci, 2014; 3(9):409-418. https://www.cabdirect.org/cababstracts/abstract/20143284130

9. Okoye TC, Akah PA, Omeje EO, Okoye FB, Nwuru CS. Anti-inflamamtory effect of kaurenoic acid isolated from the root bark of Annona senegalensis. Pharmacology Biochemistry and Behavior, 2013; 109:38-43. https://doi.org/10.1016/j.pbb.2013.05.001

10. Adzu B, Amos S, Adamu M, Gamanl KL. Anti-nociceptive and anti-inflammatory effects of the methanol extract of Annona senegalensis root bark. Journal of natural remedies, 2003; 3(1):63-67. http://www.informaticsjournals.com/index.php/jnr/article/view/365

11. Magassouba FB, Diallo A, Kouyaté M, Mara F, Mara O, Bangoura O, Camara A, Traoré S, Diallo AK, Zoro M, Larou M, Diallo S, Camara G, Traoré Š, Kéta A, Camara MK, Barry R, Kéta S, Ouédre K, Barry MS, Donzo M, Camara A, Toké T, Vanden Berghe D, Totté J, Pieters I, Vletinck A, Belda AM. Ethnobotanical survey and antibacterial activity of some plants used in Guinean traditional medicine. Journal of ethnopharmacology, 2007; 114(1):44-53. https://doi.org/10.1016/j.jep.2007.07.009

12. Arbonnier M. Trees, shrubs and lianas of West African dry zones. CIRAD. Paris, France, 2004. http://agritropic.cirad.fr/S21735

13. Muanda FN, Dicko A, Soulman R. Assessment of polyphenolic compounds, in vitro antioxidiant and anti-inflammation properties of Securidaca longepedunculata root barks. Comptes Rendus Biologies, 2010; 333(9):663-669. https://doi.org/10.1016/j.crvi.2010.07.002

14. Bah S, Jäger AK, Adsersen A, Diallo D, Paulsen BS. Antiplasmodial and GABA benzodiazepine receptor binding activities of five plants used in traditional medicine in Mali, West Africa. Journal of ethnopharmacology, 2006; 110(3):451-457. https://doi.org/10.1016/j.jep.2006.10.019

15. Adiele RC, Fakae BB, Isuzu II. Anthemic activity of Securidaca longepedunculata (Family: Polygalaceae) root extract in mice, in vitro and in vivo. Asian Pacific Journal of tropical medicine, 2013; 6(11):841-846. https://www.sciencedirect.com/science/article/pii/S1995764513601509

16. Okoli CO, Akah PA, Elugwu UE. Anti-inflammatory activity of extracts of root bark of Securidaca longepedunculata Frees (Polygalaceae). African Journal of Traditional, Complementary and Alternative Medicines, 2006; 3(1):54-63. https://doi.org/10.4314/ajtcam.v3i1.31139

17. Musa AA, Oyewale AO, Ndukwe IG, Yakubu SE, Abdullahi MS. Phytochemical screening and antimicrobial activity of solvent fractions of Securidaca longepedunculata Fres (Polygalaceae). Journal of Chemical and Pharmaceutical Research, 2012; 5(10):28-33. http://jcrpm.com/vol5-iss10-2013/JPCR

18. Harbonne JB. Phytochemical methods. Chapman and hall. Eds. New York, 1973; 354. https://www.springer.com/gp/book/9780412230509

19. Maksimović Z, Malekč N, Kovačević N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresearch technology, 2005; 96(8):873-877. https://doi.org/10.1016/j.biortech.2004.09.006

20. Miminca-Dukic N, Pavkovic BV, Lukic V, Gasic O. Study of chemical composition and microbiological contamination of chamomile tea. In WOCMAP I-Medicinal and Aromatic Plants Conference, 1999; 4:137-142. https://doi.org/10.17660/jahortic.1999.33314

21. Aññybo YG, Anani K, Essel K et al. Antimicrobial Activities of Syzygium aromaticum (L.) Merr. & L. Perry (Myrtaceae) Fruit Extracts on Six Standard Microorganisms and Their Clinical Counterpart. Open Access Library Journal, 2018; 5:1. https://doi.org/10.4236/oalib.1104951

22. Karou D, Dicko MH, Simpore J, Traoré AS. Antioxidant and Anti-Bacterial Activities of Polyphenols from Ethnomedical Plants of Burkina Faso. African Journal of Biotechnology, 2005; 4(8):823-828. https://www.ajol.info/index.php/ajb/article/view/15190

23. Kpadonou KBGH, Yayi LE, Kpoviessi DSS et al. Chemical Variation of Essential Oil Constituents of Ocimum gratissimum (Lamiaceae) and Toxicity against Artemia salina LEACH. Chemistry and Biodiversity, 2012; 9:139-150. https://doi.org/10.1002/cbdv.201100194

24. Yehouounou B, Ahoussi E, Sessou P, Alotouna GA, Toukourou F, Soohounhble DCK. Chemical Composition and Antimicrobial Activities of Essential (EO) Extracted from Leaves of Lippia rigosa A. Chev. against Foods Pathogenic and Adulterated Microorganisms. African Journal of Microbiology Research, 2012; 6(26):5495-5505. https://doi.org/10.5897/AJMR12.698

25. Anani K, Adjrah Y, Ameypah Y et al. Antimicrobial, Anti-Inflammatory and Antioxidant Activities of Jatropha multifida L.
