Muon capture rates: Evaluation within the Quasiparticle Random Phase Approximation

Fedor Šimkovic,1,2,3,† Rastislav Dvorníký,1,4,* and Petr Vogel5‡

1 Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia
2 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
3 Institute of Experimental and Applied Physics, Czech Technical University in Prague, 110 00 Prague, Czech Republic
4Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Russia
5 Kellogg Radiation Laboratory and Physics Department, Caltech, Pasadena, California, 91125, USA

(Dated: September 2, 2020)

The Quasiparticle Random Phase Approximation (QRPA) is used in evaluation of the total muon capture rates for final nuclei participating in double-beta decay. Several variants of the method are used, depending on the size of the single particle model space used, or treatment of the initial bound muon wave function. The resulting capture rates are all reasonably close to each other. In particular, the variant that appears to be most realistic in rates that are in good agreement with the experimental values. There is no necessity for an empirical quenching of the axial current coupling constant g_A. Its standard value $g_A = 1.27$ seems to be adequate.

PACS numbers: 23.10.-s; 21.60.-n; 23.40.Bw; 23.40.Hc

Keywords: Muon capture, Nuclear matrix elements; Quasiparticle random phase approximation

I. INTRODUCTION

The capture of negative muons from the 1s muonic atom orbit,

\[\mu^- + (Z, N) \rightarrow \nu_\mu + (Z - 1, N + 1)^* \]

(1)

has been studied in detail for a long time (see the classic reviews by Walecka [1], Mukhopadhyay [2], and Meadday [3]). Experimental determination of the total muon capture rate is relatively straightforward, therefore it is known for many stable elements, sometimes even for the separated isotopes [4, 5].

The nuclear response in this semileptonic weak process is governed by the momentum transfer of the order of muon mass. The region of the excited nuclear states near the giant dipole resonance dominates in the final nuclei since the phase space as well as nuclear response give preference to low excitation energies. These features lead to the recent revival of interest in the muon capture as a testing ground for theoretical description of weak nuclear processes. In particular, the question of the so-called “axial current quenching” phenomenon is widely discussed in connection with the evaluation of $0\nu\beta\beta$ decay nuclear matrix elements.

It is well known that using the nuclear shell model leads to the prediction of the allowed Gamow-Teller β decays, as well as of the two-neutrino double beta decays ($2\nu\beta\beta$), that are too fast compared to the experimental lifetimes. The corresponding enhancement factors are approximately the same for all nuclei in the same shell, thus they can be conveniently described by a phenomenological effective axial vector coupling constant g_A^{eff} that is smaller than the $g_A = 1.27$ deduced from the free neutron β decay [6, 7]. Since the $2\nu\beta\beta$ decay is nothing else than two GT transitions occurring at once, similar quenching appears when the $2\nu\beta\beta$ rate is calculated in the shell model [8]. Recent careful analysis [9] suggests that when all nuclear correlations, including the effects of the two-body weak currents, and a proper treatment of effective operators, are included, the GT transition strength is correctly described without the need to use the quenching idea. However, the advanced treatment of nuclear correlations, as in Ref. [9], is not yet available for evaluation of the rate of the $0\nu\beta\beta$ and $2\nu\beta\beta$ decays, or of the muon capture.

The magnitude of quenching, i.e. the amount $q \leq 1$ of the ratio $q = g_A^{\text{eff}}/g_A$, is nuclear model dependent. For example, when the Interaction Boson Model version IBM-2 is used [10], the corresponding q is considerably smaller than in the case of the shell model treatment [8]. Within the Quasiparticle Random Phase Approximation (QRPA) the situation is more complex, since the quenching amount q is strongly correlated with the particle-particle effective coupling parameter g_{pp} which is often adjusted to correctly describe the $2\nu\beta\beta$ decay half-life [11, 12].

The quenching phenomenon has been firmly established for the low momentum transfer GT-type nuclear transitions, governed by the selection rules $\Delta I \leq 1$, $\Delta \pi = 0$, and involving dominantly the $\sigma\pi$ operator. However, the neutrinoless double beta decay ($0\nu\beta\beta$) involves momentum transfer $q \sim 100$ MeV, with no restriction on angular momentum and parity change. This makes the muon capture, with analogous unrestricted selection rules and a magnitude of the momentum transfer, an attractive testing ground for nuclear model description of...
the nuclear matrix elements for the 0νββ decay. One of the examples of the recent effort along these lines is in Ref. 13 dedicated mostly to the experimental study of the nuclear γ radiation following muon capture in the (µ−, ν 2n) reactions on the final nuclei involved in ββ decay.

In this work we use the QRPA to evaluate the total muon capture rates for the 0νββ decay candidate nuclei and compare them with the experiment. The excitation energy and multipolarity distributions are also presented. Previous analogous calculations of the total muon capture rate lead to ambiguous conclusions. Refs. 14,16 use a version of QRPA and conclude that none, or only mild, quenching is needed. Similarly, the shell model applied to the muon capture on 18O in Ref. 17 also required only minimal quenching $g_A^\text{eff}/g_A \sim 0.95$. On the other hand, in Ref. 18 based on QRPA quite strong quenching $g_A^\text{eff}/g_A \sim 0.5$ is required to describe the total muon capture rates of the 0νββ decay candidate nuclei.

This motivates us to use the formalism closely related to the one used previously for the evaluation of the 0νββ nuclear matrix elements [12]. The paper is organized as follows: In Section II the formalism is briefly described. In Section III we discuss the choice of input parameters and study the corresponding uncertainties. In Section IV the results are shown and conclusion about the amount of needed g_A quenching is discussed. Our conclusions are presented in Section V.

II. FORMALISM

A. Effective weak Hamiltonian and T-matrix

The effective weak lepton-nucleus interaction Hamiltonian is of the standard form

$$H_w(x) = \frac{G_\beta}{\sqrt{2}} \bar{\nu}_\mu(x)\gamma_\alpha(1 - \gamma_5)\mu(x)J^\alpha_L(x) + \text{h.c.}. \quad (2)$$

Here $G_\beta = G_F \cos \theta_C$, θ_C is the Cabibbo angle, $\nu_\mu(x)$ and ν_μ are the muon and muonic neutron fields, respectively. $J^\alpha_L(x)$ is the V-A hadronic current at the nucleon level renormalized by the strong and electromagnetic interactions. We have

$$J^\alpha_L = \langle n(p')|\hat{\gamma}\alpha(1 - \gamma_5)u|p(\gamma)\rangle = \bar{\nu}(p') \left[g_\nu(q^2)\gamma^\alpha + ig_M(q^2)\frac{\sigma^\alpha\beta}{2m_p}q^\beta \right. \left. - g_A(q^2)\gamma^\alpha\gamma_5 - g_P(q^2)q^\alpha\gamma_5 \right]|p(\gamma), \quad (3)$$

where m_p is the nucleon mass, $g_\nu = (p' - p)_\mu$ is the momentum transfer and p' and p are the four momenta of neutron and proton, respectively. For the nucleon form factors $g_\nu(q^2)$, $g_M(q^2)$, $g_A(q^2)$, and $g_P(q^2)$ we use the usual dipole parametrization

$$\frac{g_\nu,M(q^2)}{g_\nu,M} = \left(1 - \frac{q^2}{M^2}\right)^{-2}, \quad (4)$$

with $M_\nu = 850$ MeV and $M_V = 1086$ MeV and $g_\nu = g_V(0) = 1$, $g_A \equiv g_A(0) = 1.269$, $g_M \equiv g_M(0) = (\mu_p - \mu_n)/g_V = 3.70$. The induced pseudoscalar form factor is given by the PCAC relation

$$g_P(q^2) = \frac{2m_p}{m_p^2 - q^2}g_A(q^2), \quad (5)$$

where m_π is the pion mass.

Note that usually non-relativistic reduction is performed in the Breit frame ($q_0 = 0$ and $p + p' = 0$ [19]), e.g., in the case of the 0νββ-decay [12] and the elastic electron nucleus (nucleus) scattering of neutrinos on nuclei, etc. In these processes the energies of incoming and outgoing leptons are approximately the same or negligible.

Unlike that, the calculation of muon capture is performed in the proton rest frame where $q_0 = E_{\nu} - E_\mu$, $q = p' - p = -p_\mu$, and $p + p' = -p_\nu$ [20,21], since $p_0 = |p_\nu| = E_{\nu}$ since we neglect neutrino mass. Thus, within the non-relativistic impulse approximation, the hadronic current for muon capture on nuclei is expressed as

$$J^0_L = g_\nu(q^2) + g_A(q^2)\frac{\sigma \cdot p_\nu}{2m_p} - g_P(q^2)\frac{p_\nu \cdot p}{2m_p}, \quad (6)$$

$$J_L = -g_A(q^2)\sigma + g_P(q^2)\frac{\sigma \cdot p}{2m_p} - g_\nu(q^2)\frac{p_\nu \cdot p}{2m_p}$$

Apart of few small terms the structure of the current is the same as in the case of the 0νββ-decay.

The muon capture on nuclei occurs in the first order in weak interaction. The corresponding S-matrix is

$$\langle f|S^{(1)}|i\rangle = 2\pi\delta(E_f + E_\nu - E_i - E_\mu)|\langle f|T^{(1)}|i\rangle| \quad (7)$$

where the T-matrix is

$$\langle f|T^{(1)}|i\rangle = -\frac{G_\beta}{\sqrt{2}} \int \langle f|J^0_L(0, r)|i\rangle \times \Phi(E_\mu, r)\gamma_\alpha(1 - \gamma_5)\Phi(E_\nu, r) \, dr. \quad (8)$$
Nuclear current takes the form
\[J_L^0(0, r) = \sum_{n=1}^{A} \tau_n \left(g^{o0} j_L^0 + g^{ok}(J_L)^k \right) \delta(r - r_n) \]
and wave functions of the bound \(\kappa = -1 \) muon \(\Phi_\mu(E_\mu, r) \) and emitted neutrino \(\Phi_\nu(E_\nu, r) \) are given by
\[\Phi_\mu(E_\mu, r) = \frac{1}{\sqrt{4\pi}} \left(-i f^{-1}(r) \chi_m \right) e^{-i E_\mu r} \]
\[\Phi_\nu(E_\nu, r) = \frac{1}{\sqrt{2}} \left(\chi_m \sigma \cdot \vec{v}_\nu \right) e^{-i E_\nu r}. \]

The energy of emitted neutrino follows from the energy conservation guaranteed by the \(\delta \) function and is determined by the equation
\[E_\nu + \sqrt{M_f^2 + p_\nu^2} - (m_\mu - \varepsilon_b + M_i) = 0. \]

Here, the energies of the initial \(|i\rangle \) and final \(|f\rangle \) states are \(E_i = M_i \) and \(E_f = \sqrt{M_f^2 + p_\nu^2} \), respectively. For medium-heavy nuclei the nuclear recoil energy \(p_\nu^2/(2M_f) \) is of the order of tens of keV and can be safely neglected, as well as the effect of center of mass of muon-nuclear system.

B. Muon capture rate

The differential muon capture rate summed over all final excited states \(|k\rangle \) can be written as
\[d\Gamma = 2\pi \sum_k \delta(E_\nu + E_k - E_i - E_\mu) \sum_{\text{spin}} \langle k | T | i \rangle^2 \frac{d\Omega_\nu}{(2\pi)^2}. \]

Here, the squared \(T \)-matrix is summed over all spin orientations of the muon and daughter nucleus and averaged over all spin orientations of the muon and the parent nucleus.

Inserting Eqs. [9] and [11] for the squared \(T \)-matrix element, we find the total capture rate. When only parity even operators, relevant for the ground state expectation value are kept, the total capture rate takes the form
\[\Gamma = m_\mu \left(\frac{G_\beta m_\mu^2}{2\pi} \right)^2 (C_V B_{V\Phi} + C_A B_{A\Phi} + C_P B_{P\Phi}). \]

The quantities \(B_{\Phi K} \) \((K = V, A, P)\) are
\[B_{\Phi K} = \frac{E_k^2}{m_\mu^2} B_{\Phi K}^K(p_{\nu k}), \]
where \(E_{\nu k} = p_{\nu k} = E_\mu + E_i - E_k \). The sum is over all states \(|k\rangle \) in the nucleus \((Z-1,N+1)\) that can be reached by the corresponding operators involved in the squared matrix elements
\[B_{\Phi K}^K(p_{\nu k}) = \frac{1}{J_i} \sum_{M_i M_k} \int d\Omega_\nu \times \frac{\langle J_k M_k | \tau_j e^{i \pi \hat{\nu}_{\nu k} \cdot r} \Phi_K(r) \rangle^2}{m_{\mu/2}^2 |J_i M_i|^2}. \]

Here, \(|J_i M_i \rangle \) is the initial (final) nuclear state with spin \(j \) \((K_i)\) and spin-projection \(M_i \) \((M_K)\), \(J_i = 2J_i + 1 \), \(\Phi_\nu(r) = g^{-1}(r)/\sqrt{4\pi} \) and
\[\mathcal{O}_V = 1, \ \mathcal{O}_A = \sigma_j, \ \mathcal{O}_P = \sigma_j \cdot \hat{\nu}_{\nu k}. \]

The effective coupling constants in Eq. [14] are
\[C_V = \frac{g_\nu^2(q^2)}{1 + \frac{p_\nu^2}{(2m_\mu)^2}}, \]
\[C_A = \frac{g_A^2(q^2) + (g_V^2 q^2 + g_M^2 q^2)^2}{(2m_\mu)^2} \]
\[C_P = \frac{p_\nu^2}{(2m_\mu)^2} \left(g_A^2(q^2) - 2g_A(q^2)g_{\mu}^p(q^2) \frac{2m_\mu}{m_\nu} + (g_{\nu}^p)^2(q^2) \frac{p_\nu^2}{2m_\mu} - (g_V^2 + g_M^2 q^2)^2 \right). \]

Here, the dimensionless pseudoscalar form factor is
\[g_{\nu}^p(q^2) = m_\mu g_P(q^2) = \frac{2m_\mu m_\nu}{m_\nu - m_\mu} g_A(q^2). \]
The coefficients \(C_{V,A,P} \) only weakly depend on the neutrino momentum \(p_{\nu k} \). For a sake of simplicity they are not included in the calculation of \(B_{\Phi K} \) but are evaluated for some average neutrino momentum \(p_\nu \).

Often used [23,26] alternative reduction of the nucleon current to its nonrelativistic form is based on a renormalization procedure of nucleon current due to strong interaction of Ref. [22]. This, so-called Fuji–Primakoff form, of the constants \(C_V, C_A \) and \(C_P \) in Eq. [14] is
\[C_V = G_V^2, \ \ C_A = G_A^2, \ \ C_P = G_P^2 - 2G_V G_P, \]
with
\[G_V = \frac{g_V(q^2)}{1 + \frac{p_\nu}{2m_\mu}}, \]
\[G_A = -g_A(q^2) - (g_V(q^2) + g_M(q^2)) \frac{p_\nu}{2m_\mu}, \]
\[G_P = (g_{\nu}^p(q^2) + g_A(q^2) - g_V(q^2) + g_M(q^2)) \frac{p_\nu}{2m_\mu}. \]

These two forms of the constants \(C_V, C_A \) and \(C_P \) differ in the recoil order terms \(p_\nu/(2m_\mu) \).

In order to make the analogy to the evaluation of the 0\(\nu \beta \beta \) matrix element more explicit we introduce Fermi–Gamow–Teller and tensor squared matrix elements,
\[B_{\Phi F} = B_{\Phi V}, \ \ B_{\Phi GT} = B_{\Phi A}, \ \ B_{\Phi T} = 3B_{\Phi P} - B_{\Phi A}. \]
Their explicit form will be given in subsection F. The muon capture rate then takes the form
\[
\Gamma = m_\mu \left(\frac{G_\mu m_\mu^2}{2\pi} \right)^2 \times (g_A^{\text{eff}})^2 \left(C_F \frac{B_{\Phi,T}}{(g_A^{\text{eff}})^2} + C_{GT}B_{\Phi,GT} + C_T B_{\Phi,T} \right),
\]
where the \((g_A^{\text{eff}})^2\) appears as a scale parameter. The constants \(C_F, C_T,\) and \(C_{GT}\) are given by
\[
C_F = G_\nu^2, \quad C_T = \frac{1}{(g_A^{\text{eff}})^2} \frac{C_F}{3}, \quad C_{GT} = \frac{1}{(g_A^{\text{eff}})^2} \left(C_A + \frac{C_F}{3} \right). \tag{23}
\]

In Table I we compare the \(C_F, C_{GT}\) and \(C_T\) coefficients introduced in the present approach with those governing the Fujii-Primakoff approach. We note that the coefficients \(C_K (K = F, GT, T)\) are less dependent on the neutrino energy \(E_\nu\) than the coefficients \(C_V, C_A\) and \(C_P\), and only slightly dependent on the parameter \(g_A^{\text{eff}}\).

\(E_\nu [\text{MeV}]\)	\(g_A^{\text{eff}}\)	\(C_F\)	\(C_{GT}\)	\(C_T\)	\(C_F\)	\(C_{GT}\)	\(C_T\)
75	0.80	0.976	0.797	-0.241	1.054	1.165	-0.333
	1.00	0.976	0.821	-0.197	1.054	1.091	-0.296
	1.27	0.976	0.847	-0.158	1.054	1.030	-0.265
85	0.80	0.965	0.805	-0.239	1.052	1.203	-0.359
	1.00	0.965	0.823	-0.197	1.052	1.117	-0.317
	1.27	0.965	0.844	-0.159	1.052	1.048	-0.282
95	0.80	0.955	0.818	-0.234	1.051	1.241	-0.385
	1.00	0.955	0.828	-0.195	1.051	1.145	-0.337
	1.27	0.955	0.844	-0.159	1.051	1.067	-0.298

In this paper we use two alternative ways to include the bound muon wave function in the muon capture rate formula. Traditionally, in order to simplify the calculation, it is assumed that the muon wave function and nuclear matrix distributions can be separated. This is done by averaging muonic wave function over the nuclear charge density distributions (to be determined and discussed later). We have then
\[
B_{\Phi,K} = \frac{\langle \Phi^2 \rangle}{m_\mu^2} B_K. \tag{24}
\]

Thus, while the \(B_{\Phi,K}\) depends on the bound muon wave function \(\Phi\), in the case of the factorization that dependence is separated into the factor \(\frac{\langle \Phi^2 \rangle}{m_\mu^2}\). The quantities \(B_K\) thus are pure nuclear quantities, independent of the muon wave function \(\Phi\).

However, as we explain further in subsection F, it is possible to include the bound muon wave function \(g_{-1}(r)\) directly, without factorization. We will show later that these two alternatives lead to essentially equivalent resulting capture rates. The final numerical results on the muon capture rate are therefore presented with both the non-factorization and the traditional way with factorization. Comparison will be presented with the properly normalized \(B_{\Phi,K}\):
\[
\tilde{B}_K = \frac{m_\mu^2}{\langle \Phi^2 \rangle} B_{\Phi,K}. \tag{25}
\]

C. Integration with the muon wave function

In all previous theoretical evaluation of the muon capture rate the factorization in Eq. (24) was used:
\[
\Gamma = m_\mu \left(\frac{G_\mu m_\mu^2}{2\pi} \right)^2 \times (g_A^{\text{eff}})^2 \left(C_F \frac{B_{\Phi,T}}{(g_A^{\text{eff}})^2} + C_{GT}B_{\Phi,GT} + C_T B_{\Phi,T} \right). \tag{26}
\]

However, if the quantities \(B_K\) are replaced by \(\tilde{B}_K (K = F, GT, T)\) the capture rate without factorization of muon wave function is obtained.

The squared nuclear matrix elements \(B_{F,GT,T}\) in Eq. (26) can be expressed in general as
\[
B_F = \langle 0^+ | \sum_{jk} \tau_j^- \tau_k^+ F^F(r_j, r_k)|0^+_i \rangle,
\]
\[
B_{GT,T} = \langle 0^+ | \sum_{jk} \tau_j^- \tau_k^+ F_{GT,T}^{F,T}(r_j, r_k, \sigma_j, \sigma_k)|0^+_i \rangle. \tag{27}
\]

Let us define the distribution functions \(D_K(r_1, r_2)\) \((K = F, GT, T)\) as
\[
D_F(r_1) = \langle 0^+ | \sum_{jk} \tau_j^- \tau_k^+ \delta(r_1 - r_j) F^F(r_j, r_k)|0^+_i \rangle,
\]
\[
D_{GT,T}(r_1, r_2) = \langle 0^+ | \sum_{jk} \tau_j^- \tau_k^+ \delta(r_1 - r_j) \delta(r_2 - r_k) F_{GT,T}^{F,T}(r_j, r_k, \sigma_j, \sigma_k)|0^+_i \rangle, \tag{28}
\]

as well as
\[
D_F(r_1, r_2) = \langle 0^+ | \sum_{jk} \tau_j^- \tau_k^+ \delta(r_1 - r_j) \delta(r_2 - r_k) F^F(r_j, r_k)|0^+_i \rangle
\]
\[
D_{GT,T}(r_1, r_2) = \langle 0^+ | \sum_{jk} \tau_j^- \tau_k^+ \delta(r_1 - r_j) \delta(r_2 - r_k) \delta(r_2 - r_k) F_{GT,T}^{F,T}(r_j, r_k, \sigma_j, \sigma_k)|0^+_i \rangle \tag{29}
\]

Obviously, the \(D\)-functions are normalized as
\[
B_K = \int_{\infty}^0 D_K(r_1) dr_1,
\]
\[B_K = \int_0^\infty D_K(r_1, r_2)dr_1dr_2. \] (30)

Once the \(D_K(r_1, r_2) \) have been calculated one can avoid the factorization of the (averaged) muon wave function and of the sum of squared nuclear matrix elements. The relevant quantity is then

\[\frac{1}{4\pi} \left(\frac{1}{m_\mu^3} \right) \int_0^\infty g_{-1}(r_1)g_{-1}(r_2)D_K(r_1, r_2)dr_1dr_2 \] (31)

instead of \(F^2_\mu/m_\mu^3 B_K \) in the Eq. (22). We will show below that the two alternative approaches of treating the bound muon wave function lead to very similar muon capture rates.

\[\text{D. Separation of the muon wave function} \]

For medium and heavy nuclei considered in the present work the relativistic effects on the bound muon are essential, thus the muon wave function is obtained by solving the Dirac equation. In it the nuclear potential is based on the Fermi type charge distribution, with parameters specified in Table II.

The wave function of the bound \(\kappa = -1 \) muon is given in Eq. (11). The effect of the nuclear charge distribution on the muon, relevant for the muon capture, can be described by the overlap

\[\langle \Phi^2_\mu \rangle_g = \int_0^\infty \frac{g^-_1(r)}{4\pi} \rho(r)r^2dr \] (32)

or, essentially equivalently

\[\langle \Phi^2_\mu \rangle_Z = \int_0^\infty \frac{(g^-_1(r) + f^-_1(r))}{4\pi} \rho(r)r^2dr. \] (33)

The nuclear charge distribution \(\rho(r) \sim 1/(1 + \exp((r - c_{rms})/a)) \) is normalized to \(Z \), the proton number.

In Fig. [we show examples of the radial muon wave functions \(g_{-1}(r) \) and \(f_{-1}(r) \). Since the small component \(f_{-1}(r) \) vanishes at the origin its effect on the muon capture is negligible.

Traditionally [27] the quantity \(\langle \Phi^2_\mu \rangle \) is replaced by the empirical parameter \(Z_{e,\text{eff}} \) using

\[Z_{e,\text{eff}}^4 = \frac{\pi}{\alpha^4} \langle \Phi^2_\mu \rangle_Z, \]

\[\frac{\langle \Phi^2_\mu \rangle_Z}{m_\mu^3} = \frac{\alpha^3}{\pi Z} Z_{e,\text{eff}}^4. \] (34)

Using \(\langle \Phi^2_\mu \rangle_g \) instead of \(\langle \Phi^2_\mu \rangle_Z \) makes little difference as seen in Table II. Also, we tested that \(Z_{e,\text{eff}}^4 \) is insensitive to variations of \(c_{rms} \). By changing it by 1% changes \(Z_{e,\text{eff}}^4 \) also by approximately the same amount. Replacing the Fermi distribution by the sharp surface nuclear charge distribution also changes \(Z_{e,\text{eff}}^4 \) by only a small amount.

\[\text{E. Evaluation of the matrix elements through a product of two one-body matrix elements} \]

When considering muon capture on even-even nuclei with the \(0^+ \) ground state (all ground states relevant for double-beta decays are \(0^+ \) ground states) we can simplify the evaluation of the quantities \(B_{V,A,P} \) (without the factor \(F^2_\mu/m_\mu^3 \)) in Eq. (14) to find \((I = V, A, P) \)

\[B_\mu = 4\pi \sum_{J_k^F} E_{\text{nu}}^{2} B_\text{eff}(J_k^F, p_{\text{nu}}), \] (35)

where \(p_{\text{nu}} = E_{\text{nu}} = E_\mu + E_i = E_j^r \) and

\[B_{V,P}(J_k^F, p_{\text{nu}}) = \sum_{J_k^P} (n \parallel O_{J_k^P}^{\mu}(p_{\text{nu}}) \parallel p) T_{\text{nu}}(J_k^F) \]

\[B_{A}(J_k^F, p_{\text{nu}}) = \sum_{L=\pm 1} \left[\sum_{J_k^P} (n \parallel O_{J_k^P}^{A}(p_{\text{nu}}) \parallel p) T_{\text{nu}}(J_k^F) \right]^2 \] (36)

with

\[O_{J_k^P}^{\mu}(p_{\text{nu}}) = \iota^J j_j(p_{\text{nu}}r)Y_{J_k^P}(\Omega_r), \]

\[O_{LJk^P}^{\mu}(p_{\text{nu}}) = \iota^L j_L(p_{\text{nu}}r)Y_L(\Omega_r) \otimes \sigma_1 \}_{J_k^P}, \]

\[O_{J_k^P}^{A}(p_{\text{nu}}) = \iota^{J-1} \times \left(\sqrt{\frac{2J-1}{2J+1} j_{J-1}(p_{\text{nu}}r)C_{J-10}^{J0} \{ Y_{J-1}(\Omega_r) \otimes \sigma_1 \}_{J_k^P} \right) \]

\[-\sqrt{\frac{2J+3}{2J+1} j_{J+1}(p_{\text{nu}}r)C_{J+10}^{J0} \{ Y_{J+1}(\Omega_r) \otimes \sigma_1 \}_{J_k^P} \right) \].

(37)

and

\[T_{\text{nu}}(J_k^F) = \frac{1}{\sqrt{2J+1}} (J_k^F \parallel [c_{\alpha} \bar{c}_p]_J \parallel 0^+_i), \]
TABLE II: The effective charge Z_{eff} of Ref. [17] is shown in col. 2 and Z_{eff} determined in the present work in col. 9. The half-way radius c_{rms} is in col. 6. The Fermi distribution $\rho(r) = 1/(1+\exp((r-c_{\text{rms}})/a))$ is chosen such that the mean square radius $\langle r^2 \rangle$ has its experimental value [25] shown in col. 5; the surface thickness $a = 0.545$ fm is used. The muon wave function $(\Phi_n^\text{eff}/m_n^\text{eff})$ averaged over the nuclear charge distribution $\rho(r)$ is shown in col. 7 using $g_{\text{v}}(r) + f_{\text{v}}(r)$ and only $g_{\text{v}}(r)$ in col. 8. ε_b in col 4 is the binding energy of the muon in the $\kappa = -1$ state.

| Elem. | Z_{eff} | Nucl. | ε_b | $\langle r^2 \rangle |c_{\text{rms}}$ | $\rho(r) = \rho_0(1 + \exp((r-c_{\text{rms}})/a))^{-1}$ | $\langle r^2 \rangle/m_n^2$ | $\langle \Phi_n^\text{eff}/m_n^\text{eff} \rangle^2$ | Z_{eff} |
|-------|-----------------|-------|----------------|----------------|--|---------------------------|---------------------------------|-------|
| Ti | 17.38 | 46Ti | 1.268 | 3.592 | 3.828 | 5.449 × 10^{-4} | 5.461 × 10^{-4} | 17.654|
| Se | 23.24 | 34Se | 2.760 | 4.140 | 4.659 | 1.087 × 10^{-3} | 1.092 × 10^{-3} | 23.405|
| Kr | 36.96 | 82Kr | 3.046 | 4.192 | 4.737 | 1.177 × 10^{-3} | 1.183 × 10^{-3} | 24.223|
| Mo | 26.37 | 96Mo | 3.939 | 4.385 | 5.019 | 1.407 × 10^{-3} | 1.415 × 10^{-3} | 26.328|
| Ru | 106.40 | 106Ru | 4.247 | 4.453 | 5.119 | 1.470 × 10^{-3} | 1.480 × 10^{-3} | 26.935|
| Cd | 28.20 | 112Cd | 4.877 | 5.377 | 5.297 | 1.588 × 10^{-3} | 1.600 × 10^{-3} | 28.069|
| Sn | 28.64 | 106Sn | 5.020 | 4.625 | 5.367 | 1.647 × 10^{-3} | 1.660 × 10^{-3} | 28.621|
| Te | 29.03 | 132Te | 5.513 | 4.716 | 5.500 | 1.673 × 10^{-3} | 1.686 × 10^{-3} | 29.017|
| Xe | 29.91 | 136Xe | 5.838 | 4.717 | 5.585 | 1.715 × 10^{-3} | 1.729 × 10^{-3} | 29.477|
| Ba | 56.94 | 136Ba | 6.482 | 5.673 | 5.916 | 1.712 × 10^{-3} | 1.723 × 10^{-3} | 29.463|
| Sm | 51.94 | 150Sm | 7.140 | 5.028 | 5.925 | 1.723 × 10^{-3} | 1.737 × 10^{-3} | 29.922|

$$ = v_p u_{\tau}^* Y_{npJ}^k + u_p v_{\tau} Y_{npJ}^k.$$

The one-body operators $c_p^+ c_n^-$ (the tilde denotes the time-reversed state) appear in the reduced matrix elements. In them c_p^+ create a neutron, and c_n^- annihilates a proton. Such matrix elements in Eq. (38) depend on the BCS coefficients u_{τ}, v_{τ} ($\tau = p, n$) and on the QRPA vectors X_{npJ}^k and Y_{npJ}. The nuclear structure information resides in these quantities.

F. Calculation through two-body matrix elements

There is an alternative and equivalent way to evaluate the squared matrix elements $B_{F,G,T}$ (K = Fermi (F), Gamow-Teller (GT), and Tensor (T)). It can be expressed as sums over the final states, labeled by their angular momentum and parity J' and indices k in the QRPA as follows ($K = F, GT$ and T):

$$B_K = \sum_{J_n'} \sum_{J_p'} \sum_{n'\nu} \frac{E^{2}_{n'\nu}}{m_{n'}^{2}} \times$$

$$(-1)^{j_n+j_p'+J'+J} \sqrt{2J+1} \left\{ \begin{array}{c} j_p \ \ j_n \ \ J \\ j_{p'}, \ j_{n'} \ \ J' \end{array} \right\} \times$$

$$\langle \langle 1, p' (2); J || O_K(p_{n'}) || p_n (1), n'(2); J' \rangle || 0_{\nu}^{b} || [c_{p}^{\nu} c_{n'}^{\nu}]_{J'} || J_{K} \rangle || [c_{n}^{\nu} c_{p}^{\nu}]_{J} || 0_{\nu}^{b} \rangle.$$

As in the Eq. (37) the reduced matrix elements of the one-body operators $c_{p}^{\nu} c_{n}^{\nu}$ depend on the BCS coefficients u_{ν}, v_{ν} and on the QRPA vectors.

The two-body operators $O_{F,G,T}$ are given by

$$O_{F}(p_{\nu})$$

$$O_{GT}(p_{\nu})$$

$$O_{T}(p_{\nu})$$

\begin{align}
\left\{ \begin{array}{c} \langle J_{12}^+ \rangle \\
\langle J_{12}^- \rangle \\
\langle J_{12} \rangle \end{array} \right\} &= \tau_3^+ \tau_3^- \left\{ \begin{array}{c} 0 \\\n0 \\\n0 \end{array} \right\} \times
\end{align}
we performed our calculation with two choices of single nucleon basis. The small basis has 11 levels (oscillator shells N=0-3 plus the $g_{9/2}$ from N=4) for 48Ti, 16 levels (oscillator shells N=0-4 plus the $h_{11/2}$ from N=5) for 76Se and 82Kr, 18 levels (oscillator shells N=0-4 plus the $p_{3/2}$, $f_{7/2}$ and $h_{11/2}$ from N=5) for 96Mo and 100Ru, 21 levels (oscillator shells N=0-5) for 110Cd, 22 levels (oscillator shells N=0-5 plus the $i_{13/2}$ from N=6) for 116Sn, 124Te, 128Xe, 130Xe, 134Ba, 134Ba and 136Ba, 23 levels (oscillator shells N=0-5 plus the $g_{9/2}$ and $i_{13/2}$ from N=6) for 150Sm. All single particle states in the large basis are bound.

The large model space contains 28 levels (oscillator shells N=0-6) for 48Ti, 76Se, 82Kr, 96Mo, 100Ru, 110Cd, 116Sn and 35 levels (oscillator shells N=0-7) for 116Sn, 124Te, 128Xe, 130Xe, 134Ba, 136Ba, and 150Sm. Some of the neutron states in the large basis are quasibound or truly unbound.

Our results suggest that the smaller basis is inadequate since adding additional states changes the capture rate significantly. To test the convergence of the larger single particle space we checked that subtracting few upper levels makes only small difference.

In QRPA we treat the muon capture as the creation of the correlated proton - hole - neutron particle states. Experimentally only a fraction of the final states remains bound in the final odd-odd (Z,N+1) nucleus, while most final states involve the emission of one or more neutrons. It is therefore clear that highly excited states in the final nucleus are present. Hence, it is important to include in the calculation as many neutron single particle states above the Fermi level as possible. On the other hand, the quasi bound or unbound states included in the large single particle space in this work do not have the correct asymptotic behavior. It is, therefore, likely that the optimal single particle space is between the boundaries developed in this work.

The residual nuclear interaction enters the QRPA equation of motion. In this work we use the Brueckner G-matrix elements [31] calculated with a realistic one-boson-exchange Argonne V18 potential [31].

The pairing interaction has been included in the standard way, i.e. the coupling constant g_{pair} of the $T = 1, j = 0$ interaction was slightly renormalized in order to reproduce the experimental pairing gaps. In addition, it is customary in the application of the QRPA method in the evaluation of the $\beta \beta$ nuclear matrix elements to adjust the particle-hole coupling parameter g_{ph} as well as the two isospin components of the particle-particle coupling parameter g_{pp}^T (see Ref. [22, 23]).

We show an example how the capture rate depends on the renormalized parameters g_{ph} and g_{pp}^T in Fig. 2. Over the whole range of realistic g values the capture rate changes by less than 10%, with the exception of the known singularity for $g_{pp}^T = 0 > 1$. Our calculation use safely smaller values of g_{pp}^T. For each model space we fixed values of these coupling constants by the condition of the partial restoration of SU(4) symmetry applied for a corresponding double-beta decay transitions, as described in Ref. [33].

In order to compare the results with and without factorization of the muon wave function, as well as the results with the small and large single particle model space, we show in Table III the calculated squared nuclear matrix elements B_K and B_K (see Eq. (25) for the definition) for the 13 final nuclei participating in the double-beta decay transitions. Typically, the Gamow-Teller matrix elements are dominant. However, the Fermi and Tensor nuclear matrix elements give a non-negligible contribution. Note that the ratio B_K^{GT}/B_F is on average about 2.8 \pm 0.1, close to the value $B_K^{GT}/B_F = 3$ corresponding to the pure $S = 0$ state.

The squared matrix elements using the large model space are about 10-20% larger in comparison with those for the small model space. The capture rate with and without factorization of the muon wave function can be obtained by inserting B_K and B_K into Eq. (22) respectively. Thus, a difference of these squared matrix elements quantifies the effect of the factorization treatment. It is not very significant, but is increasing with Z of the nucleus. The entries weakly depend on the g_{A}^{eff} value. They were evaluated with the g_{A}^{eff} that reproduces the empirical value of the muon capture rate.

In Table IV we show the contributions of individual J^z multipoles to the matrix elements and the total cap-
A weak hamiltonian was used. In both cases the present way of choosing the nonrelativistic reduction of the ing the small and large single particle model spaces. The without the factorization of the muon wave function, us-

The energy distributions of the final states in muon capture on 76Se and 136Ba are shown in Figs. 3 and 4. The results with small and larger single particle spaces are shown. The discrete final states are replaced with the Gaussian peaks of 100 keV width. With the larger single particle space not only additional higher excitation energy states are populated, but the distribution among the lower energy states are also noticeably changed. The fraction of bound states below the neutron emission thresholds of 7.33 MeV in 76As is 0.32 for the large single particle space and 0.36 for the small one. In 136Cs the neutron emission threshold is 6.83 MeV, and the corresponding bound state fractions are 0.17 for the large space and 0.21 for the small one.

The energy distributions of the final states in muon capture on 76Se and 136Ba are shown in Figs. 3 and 4. The results with small and larger single particle spaces are shown. The discrete final states are replaced with the Gaussian peaks of 100 keV width. With the larger single particle space not only additional higher excitation energy states are populated, but the distribution among the lower energy states are also noticeably changed. The fraction of bound states below the neutron emission thresholds of 7.33 MeV in 76As is 0.32 for the large single particle space and 0.36 for the small one. In 136Cs the neutron emission threshold is 6.83 MeV, and the corresponding bound state fractions are 0.17 for the large space and 0.21 for the small one.
TABLE IV: The multipole decomposition of the matrix elements \bar{B}_K (K=V, A, P, F, GT and T) (see Eqs. (39) or (35)) and muon capture rate Γ_{pres} for 76Se and 136Ba evaluated in the small (s) and large (l) single particle model spaces.

Nucl.	ms	1^+	2^+	3^+	4^+	5^+	0^+	$1^−$	$2^−$	$3^−$	$4^−$	$5^−$	all
76Se	s	0.306	0.000	0.561	0.008	0.000	0.000	1.808	0.000	0.119	0.000	0.001	2.802
	l	0.570	0.000	0.711	0.000	0.011	0.000	1.901	0.000	0.143	0.000	0.001	3.336
136Ba	s	0.753	0.000	0.859	0.000	0.022	0.000	0.933	0.000	0.135	0.000	0.002	2.704
	l	1.092	0.000	1.023	0.000	0.027	0.000	1.277	0.000	0.195	0.000	0.002	3.617

In Fig. 4 the average excitation energies associated with the largest GT matrix elements are shown for all considered nuclei. The shift between the small and large single particle spaces, as well as the considerable shift between the evaluation with and without the factorization of the bound muon wave function are clearly visible. However, the pattern of the average excitation energy as a function of the mass number A is very similar in all four variants.

In Figs. 6 and 7 the same energy spectra as in Figs. 3 and 4 are shown, but separated into different multipoles. Only the large single particle model space is used, hence the scale difference. As is also seen in Table IV the $1^−$, $2^−$, 1^+ and 2^+ multipoles dominate, each accounting for roughly comparable contributions.

In Figs. 8 and 9 the same energy spectra as in Figs. 8 and 9 are shown, but separated into different multipoles. Only the large single particle model space is used, hence the scale difference. As is also seen in Table IV the $1^−$, $2^−$, 1^+ and 2^+ multipoles dominate, each accounting for roughly comparable contributions.
FIG. 5: (Color online) The average energy of excited states associated with the Gamow-Teller matrix elements B_{GT} and B_{QGT}. nf (wf) denotes case without (with) factorization of muon wave function and nuclear matrix element. sms (lms) stands for small (large) model space calculation.

Gamma Γ_{GP}, empirically adjusted for the individual isotopes, are also shown. Our results in columns 4 and 5 use, for this purpose only, the same $g_A^{eff} = 0.8$ as in Table II of [18]. One can see that the muon capture rates in Ref. [18] are 2-3 times faster than in our work. At the same time, obviously, the $\Gamma_{QRP A}$ of Ref. [18] are substantially larger than experiment, thus requiring even smaller g_A^{eff}. Our results are smaller than the experiment, thus requiring $g_A^{eff} > 0.8$. The origin of the discrepancy is unknown at the present time.

To see the differences of the results here and in Ref. [18] more clearly we compare in Fig. 8 the results of both works for 76Se and 136Ba used as examples. The differences in both the energy and multipole distributions are quite noticeable. It appears that the present approach leads to somewhat less strength at lower excitation energy and correspondingly more strength at higher energies compared to the results of Ref. [18].

Note, that the experimental data are mostly for elements, not for individual isotopes. Thus, instead of using them directly, we use for comparison with calculations the so called Goulard-Primakoff empirical formula [5] that describes sufficiently well the muon capture rate.
for all nuclei with given A and Z,

$$
\Gamma_{GP}(A, Z) = Z_{\text{eff}}^4 G_1 \left(1 + G_2 \frac{A}{2Z} \right)
- G_3 \frac{A - 2Z}{2Z} - G_4 \left(\frac{A - Z}{2A} + \frac{A - 2Z}{8AZ} \right)
$$

where $G_1 = 261$, $G_2 = -0.040$, $G_3 = -0.26$, $G_4 = 3.24$ (TRIUMF data fit). While the agreement of the Goulard-Primakoff empirical formula with the few measured capture rates for individual isotopes is not perfect, the discrepancies never exceed $\sim 10\%$.

Our main results are shown in Fig. 9 where the experimental total capture rates are compared with the calculated rates for $g_A^{\text{eff}} = 1.27$ and 1.0, and for all final nuclei participating in the double-beta decay. Clearly, for these results, obtained with the large single particle model space, the experimental data are bracketed by these two g_A^{eff} values.

More details are shown in Table VI. Here the results with and without muon wave function factorization are shown for both single particle spaces and for $g_A^{\text{eff}} = 0.8$, 1.0 and 1.27. The experimental data for the natural elements from Ref. [3] and for separated isotopes from Ref. [13] are also shown for comparison.

Finally, in Fig. 10 we display the values of the effective axial current coupling constant g_A^{eff} needed to reproduce the empirical Goulard and Primakoff muon capture rate Γ_{GP}. Calculations were performed for the same nuclei as in Fig. 9. Results shown are for the present and Fujii-Primakoff approaches of reducing the weak Hamiltonian to its nonrelativistic form. Both the small (sms) and large (lms) single particle spaces were used.
The work of a given isotope is evaluated for g_A values 0.80, 1.00 and 1.27, as indicated. They are obtained with the present approach with (with fact.) and without (no fact.) factorization of muon wave functions. The small (s) and large (l) single particle level spaces are considered. Γ_{exp} is the experimental total capture rate for the stable elements with natural abundance of isotopes and for a given isotope [3]. All values of capture rates are in units 10^6 s$^{-1}$.

All values of capture rates are in units 10^6 s$^{-1}$.

nuclide	Γ_{exp}	g_A^{nat}	Γ_{pres}				
natTi	2.590 ± 0.012	48Ti	0.80	1.08	1.32	0.99	1.23
48Ti	2.323 ± 0.015		1.00	1.47	1.81	1.35	1.69
natSe	5.681 ± 0.037	76Se	0.80	3.30	3.83	2.94	3.50
76Se	5.70 ± 0.05		1.00	4.47	5.22	3.98	4.77
82Kr	6.300 ± 0.004		1.27	6.53	7.66	5.81	7.00
natMo	9.23 ± 0.07	96Mo	0.80	4.73	5.87	4.24	5.32
96Mo	9.614 ± 0.15		1.00	6.39	8.01	5.72	7.24
$^{90.018}$	1.00	9.30	11.8	8.32	10.6		
natCd	10.63 ± 0.11	110Cd	0.80	6.31	7.20	5.58	6.44
110Cd	10.61 ± 0.18		1.00	8.59	9.79	7.59	8.74
natSn	10.70 ± 0.14	116Sn	0.80	6.90	7.43	5.96	6.61
116Sn	10.44 ± 0.18		1.00	9.30	10.1	8.03	9.94
natTe	9.27 ± 0.10	124Te	0.80	5.76	6.47	5.03	5.89
124Te	9.06 ± 0.11		1.00	7.83	8.83	6.83	8.02
Xe	128Xe	0.80	6.05	7.03	5.26	6.37	
128Xe	1.00	8.22	9.60	7.14	8.67		
natBa	10.18 ± 0.10	134Ba	0.80	5.88	7.19	5.09	6.50
134Ba	9.94 ± 0.16		1.00	8.03	9.84	6.93	8.87
natSm	12.22 ± 0.17	150Sm	0.80	6.34	8.23	5.69	7.61
150Sm	11.75 ± 0.07		1.00	8.62	11.2	7.72	10.4

V. CONCLUSIONS

The study of muon capture on nuclei is an important test of the ability of nuclear models to describe this semileptonic weak process. Muon capture is characterized by the relatively large momentum transfer of the order of muon mass, and hence involves many multipolarities and a wide range of excitation energies. The Quasiparticle Random Phase Approximation is a method designed to describe collective nuclear effects. Thus, as a test of the method, the total muon capture rate is, we believe, a characteristic that should be considered first, in preference to the description of the individual final states that each represent only a small fraction of the total capture rate.

In this work we show that the QRPA method is capable to describe the muon capture rate in agreement with experiment in a many nuclei, spanning a large interval of Z and A. To reach such a conclusion we used a variety of procedures. Some of them have been used before, some others are new. It is important to note that the resulting calculated capture rates are relatively close to each other, independently of the variant employed. That shows that they are relatively stable. It is also an important test of our procedures, since many of the variants require separate, and seemingly quite different, computer codes.

In particular, our aim is to test whether the idea of the axial current quenching is needed to describe the muon capture. If it would be the case, we would expect that the calculated capture rates would exceed the experimental ones by an approximately constant factor for a large group of nuclei. Our results show that, at least for the QRPA method as described here, this is not the case. We describe the capture rates reasonably well with the standard value of $g_A = 1.27$. There is no necessity of any quenching.

More details, like the fraction leading to the bound states in the (Z−1, N+1) nucleus, or the branching ratios for the individual bound states, might be also eventually used as additional tests of the model.

Acknowledgments

This work was supported by the VEGA Grant Agency of the Slovak Republic under Contract No. 1/0607/20 and by the Ministry of Education, Youth and Sports of the Czech Republic under the INAFYM Grant No. CZ.02.1.01/0.0/0.0/16_019/0000766. The work of P.V. is supported by the Physics Department, California Institute of Technology.

[1] J.D.Walecka, in Muon Physics II, edited by V.W.Hughes and C.S.Wu (Academic Press, NY 1975), p. 113.
[2] N.C.Mukhopadhyay, Phys. Rep. C 30, 1 (1977).
[3] D. F. Measday, Phys. Rep. 354, 243 (2001).
[4] M. Eckhause, R. T. Siegel, R. E. Welsh, and T. A. Filipas, Nucl. Phys. 81 575 (1966).
[5] T. Suzuki, D.F. Measday and J.P. Roalsvig, Phys. Rev. C35, 2212 (1987).
[6] B. A. Brown and B. H. Wildenthal, Ann.Rev.Nucl. Part.Sci. 38, 29 (1988).
[7] G. Martinez-Pinedo, A. Poves, E. Caurier, and A.P. Zuker, Phys. Rev. C53, R2602 (1996).
[8] E. Caurier, F. Nowacki and A. Poves, Phys. Lett. B711, 62 (2012).
[9] P. Gysberk et al., Nature Physics 15, 428 (2019).
[10] J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87, 014315 (2013).
[11] V.A. Rodin, A. Faessler, F. Šimkovic, and P. Vogel, Phys. Rev. C68, 044302 (2003).
[12] F. Šimkovic, A. Faessler, V. Rodin, P. Vogel, and J. Engel, Phys. Rev. C77, 045503 (2008).
[13] D. Zinatulina, V. Brudanin, V. Egorov, C. Petitjean, M. Shirchenko, J. Suhonen, and I. Yutlandov, Phys. Rev. C99, 024327 (2019).
[14] N. T. Zinner, K. Langanke and P. Vogel, Phys. Rev. C74, 024326 (2006).
[15] E. Kolbe, K. Langanke and P. Vogel, Phys. Rev. C62, 055502 (2000).
[16] T. Marketin, N. Paar, T. Niksic, and D. Vretenar, Phys. Rev. C79, 054323 (2009).
[17] T.Suzuki, S. Chiba, T. Yoshida, K. Takahashi,and H. Umeda, Phys. Rev. C98, 034613 (2018).
[18] L. Jokiniemi and J. Suhonen, Phys. Rev. C100, 014619 (2019).
[19] T. Ericson and W. Weise, *Pions and Nuclei*, Clarendon Press, Oxford (1988).
[20] E. D. Commins, *Weak Interactions*, McGraw-Hill, 1973.
[21] V. Bernard, T. R. Hemmert and Ulf-G. Meißner, Nucl. Phys. A866, 290 (2001).
[22] M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).
[23] Y. Kohyama and A. Fujii, Prog. Theor. Phys. Suppl. 60, 171 (1976).
[24] A. Loddern and C.C. Jonker, Nucl. Phys. B2, 383 (1967).
[25] F. Cannata, R. Graves and H. Uberall, Rivista del Nuovo Cimento 7, 133 (1977).
[26] C. W. Kim and S. L. Mintz, Phys. Rev. C 31, 274 (1985).
[27] K. W. Ford and J. G. Wills in Nucl. Phys. 35, 295 (1962).
[28] I. Angeli and K.P. Marinova, At. Dat. and Nucl. Dat. Tabl. 99, 69 (2013).
[29] G. F. Bertsch, *The Practitioner’s Shell Model*, North Holland, Amsterdam, 1972, pp 206.
[30] H. Mütter and A. Polls, Phys. Rev. C 61, 014304 (1999); Prog. Part. Nucl. Phys. 45, 243 (2000).
[31] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).
[32] F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C87, 045501 (2013).
[33] F. Šimkovic, A. Smetana, and P. Vogel, Phys. Rev. C 98, 064325 (2018).