On the specification of operations on the rational behaviour of systems

Marcello M. Bonsangue
LIACS, Leiden University
The Netherlands
marcello@liacs.nl

Stefan Milius
Technische Universität Braunschweig
Germany
mail@stefan-milius.eu

Jurriaan Rot*
LIACS, Leiden University
The Netherlands
jrot@liacs.nl

Structural operational semantics can be studied at the general level of distributive laws of syntax over behaviour. This yields specification formats for well-behaved algebraic operations on final coalgebras, which are a domain for the behaviour of all systems of a given type functor. We introduce a format for specification of algebraic operations that restrict to the rational fixpoint of a functor, which captures the behaviour of finite systems. In other words, we show that rational behaviour is closed under operations specified in our format. As applications we consider operations on regular languages, regular processes and finite weighted transition systems.

1 Introduction

Structural operational semantics (SOS) is a popular and widely used framework for defining operational semantics by means of transition system specifications. Syntactic restrictions on the format of these specifications give rise to algebraic properties of operations on system behaviour [2], e. g., GSOS rules [9] ensure that bisimilarity is a congruence.

The key insight to give a uniform mathematical treatment of various flavours of SOS is that the theory of coalgebras provides a common framework for the study of state-based systems and their behaviour. This includes labelled transition systems but also stream automata, (non-)deterministic automata, weighted transition systems and many more. The type of a coalgebra is expressed by an endofunctor \(F \), and a canonical domain for system behaviour is provided by the final \(F \)-coalgebra.

Turi and Plotkin [25] show in their seminal paper that the interplay between syntax and behaviour given by transition system specifications can be generalized by distributive laws of a functor \(\Sigma \), representing the syntax, over a functor \(F \), representing the behaviour. They formulate and prove that bisimilarity is a congruence at this level of generality. The final \(F \)-coalgebra here plays an important rôle as the denotational model of a transition system specification. In particular, a distributive law induces a canonical \(\Sigma \)-algebra structure on the final coalgebra for \(F \).

But the final \(F \)-coalgebra is the domain of the behaviour of all \(F \)-coalgebras, and often it is interesting to study the behaviour of only finite-state systems, such as finite automata or regular processes. In fact, finite-state systems have nice decidability properties and are amenable to automated verification techniques. The rational fixpoint of a set functor \(F \) is the subcoalgebra of the final coalgebra given by the behaviours of all finite coalgebras [4, 20]. For example, regular languages, rational streams [23], rational formal power series [12] and regular trees for a signature [11] form rational fixpoints of appropriate functors \(F \).

In this paper we investigate bipointed specifications, a restricted type of distributive laws which induces operations on the rational fixpoint of a functor \(F \) as a restriction of the same operations on the
Operations on rational behaviour

final coalgebra. As a result we show that regular system behaviour is closed under operations induced by bipointed specifications. So this yields an easy syntactic criterion to check that regular behaviour is closed under certain algebraic operations. Applications include operations on regular languages and finite automata, such as the well-known shuffle operator, operations on finite weighted transition systems and regular processes.

There is a large body of work on SOS formats and distributive laws (see [17] for a good overview). Bipointed specifications appear (without a name) as an intermediate format between abstract toy SOS [15] and the abstract operational rules of [25]. However, we are not aware of any work on formats for finite coalgebras. The only exception is the work on labelled transition systems by Aceto [1] (see also [2]).

When instantiated on coalgebras corresponding to labelled transition systems, bipointed specifications coincide with specifications in the simple GSOS format of loc. cit. on finite signatures. Our contribution can thus be seen as a generalization of the simple GSOS format to the realm of distributive laws. In [1, 2] there is also an extension to countable signatures with certain finite dependencies among the operators, and it is proved that the labelled transition system induced by a simple GSOS specification is regular, i.e., for each closed process term \(P\) the ensuing transition system defining the operational semantics of \(P\) has finitely many states (see [2, Theorem 5.28]). In future work we shall incorporate such a result in our theory.

The outline of this paper is as follows. In the next section we introduce the necessary preliminaries. Then in Section 3 we present our specification format. This induces an algebra on the rational fixpoint, as shown in Section 4. We proceed in Section 5 with several applications of the theory, and we finish in Section 6 with conclusions and suggestions for future work.

2 Preliminaries

We assume that the reader is familiar with basic notions of category theory. With \(\text{Set}\) we denote the category of sets and functions. In any category we write products and coproducts with their projections and injections, respectively as \(A \xleftarrow{\pi_0} A \times B \xrightarrow{\pi_1} B\) and \(C \xleftarrow{\text{inl}} C + D \xrightarrow{\text{inr}} D\). The corresponding unique induced morphisms are denoted \(\langle a, b \rangle : E \rightarrow A \times B\) and \([c, d] : C + D \rightarrow E\).

2.1 Algebras and coalgebras

Let \(\mathcal{A}\) be a category and \(F : \mathcal{A} \rightarrow \mathcal{A}\) a functor. An \(F\)-algebra is a pair \((A, \alpha)\) where \(A\) is an object of \(\mathcal{A}\) called the carrier and \(\alpha : FA \rightarrow A\) is a morphism called the structure of the algebra. Given algebras \((A, \alpha)\) and \((B, \beta)\), an algebra homomorphism is a map \(f : A \rightarrow B\) such that \(f \circ \alpha = F f \circ \beta\). A signature is a set \(\Sigma\) of operation symbols with prescribed arity \(|\sigma| \in \mathbb{N}\) for each \(\sigma \in \Sigma\). This can equivalently be represented as a polynomial functor

\[
\Sigma X = \prod_{\sigma \in \Sigma} X^{|\sigma|}.
\]

(We shall abuse notation and denote by \(\Sigma\) both a signature and its corresponding polynomial functor.) For example, a signature \(\Sigma_0\) on \(\text{Set}\) consisting of a binary operation symbol \(b\) and a constant symbol \(c\) corresponds to the functor \(\Sigma_0X = X \times X + 1\). A \(\Sigma_0\)-algebra then is a set \(A\) together with an actual binary operation \(b_A : A \times A \rightarrow A\) and a constant \(c_A \in A\), and algebra homomorphisms are precisely the maps between algebras preserving the binary operation and the constant.

Example 2.1. A **join-semilattice** is a set \(S\) with a binary operator \(\vee : S \times S \rightarrow S\) called the join, and an element \(\bot \in S\) (or \(\bot : 1 \rightarrow S\)) called bottom; equivalently, it is an algebra \([\vee, 0] : S \times S + 1 \rightarrow S\). The join
is associative, commutative and idempotent, and the bottom is the identity element with respect to the join. With Jsl we denote the category of join-semilattices and homomorphisms between them.

An \(F \)-coalgebra is a pair \((S, f)\) such that \(S \) is an object of \(\mathcal{A} \), called the carrier, and \(f : S \to FS \) is an arrow, called the transition structure or dynamics. For coalgebras \((S, f_S)\) and \((T, f_T)\), a coalgebra homomorphism is a morphism \(h : S \to T \) such that \(f_T \circ h = Fh \circ f_S \). If \(\mathcal{A} = \text{Set} \) and \((S, f_S)\) and \((T, f_T)\) are coalgebras, then a bisimulation is a relation \(R \subseteq S \times T \) such that \(R \) carries a coalgebra structure \(f_R \) and the projection maps \(\pi_0 : R \to S \) and \(\pi_1 : R \to T \) are coalgebra homomorphisms from \((R, f_R)\) to \((S, f_S)\) and \((T, f_T)\), respectively. We denote by

\[
\operatorname{Coalg}(F)
\]

the category of \(F \)-coalgebras and their homomorphisms. Of special interest are final coalgebras, i.e., final objects of categories \(\operatorname{Coalg}(F) \), which exist under mild conditions on \(F \). Thus, if a category \(\operatorname{Coalg}(F) \) has a final coalgebra \((vF, t)\), then there exists, for each \(F \)-coalgebra \((S, f)\) a unique coalgebra homomorphism \(f^1 : S \to vF \). A final coalgebra is determined uniquely up to isomorphism. Moreover, by the famous Lambek Lemma \([13]\), the transition structure \(t : vF \to F(vF) \) is an isomorphism. The final coalgebra can be thought of as a canonical domain of behaviour of the type of systems corresponding to the functor \(F \). We consider several examples.

Example 2.2.

1. Coalgebras for the functor \(FX = \mathbb{R} \times X \) on \(\text{Set} \), where \(\mathbb{R} \) is the set of real numbers, are often called stream systems over the reals. The carrier of the final \(F \)-coalgebra is the set \(\mathbb{R}^\omega = \{ \sigma \mid \sigma : \mathbb{N} \to \mathbb{R} \} \) of all streams (infinite sequences) of elements of \(\mathbb{R} \). The transition structure \((o, t) : \mathbb{R}^\omega \to \mathbb{R} \times \mathbb{R}^\omega \) is defined as \(o(\sigma) = \sigma(0) \) and \(t(\sigma)(n) = \sigma(n+1) \).

2. Deterministic automata with input alphabet \(A \) are coalgebras for the functor \(FX = 2 \times X^A \), where \(2 = \{0, 1\} \). Indeed, to give a coalgebra \(f : S \to 2 \times S^A \) precisely corresponds to giving a set \(S \) of states with a map \(o : S \to 2 \) (indicating final states) and a map \(t : S \to S^A \), where \(t(s)(a) \) is the successor of state \(s \) under input \(a \). The final coalgebra is carried by the set of all formal languages \(\mathcal{P}(A^*) \) with its coalgebra structure given by \(o : \mathcal{P}(A^*) \to 2 \) with \(o(L) = 1 \) if \(L \) contains the empty word and \(t : \mathcal{P}(A^*) \to \mathcal{P}(A^*)^A \) given by the language derivative \(t(L)(a) = \{ w \mid aw \in L \} \). For a given automaton \((S, f)\) the unique coalgebra homomorphism maps a state to the language it accepts.

3. Labelled transition systems (LTS) with actions from the set \(A \) are coalgebras for the functor \(FX = \mathcal{P}_l(A \times X) \). Indeed, a coalgebra \(f : X \to \mathcal{P}_l(A \times X) \) corresponds precisely to giving a set \(X \) of states and a transition relation \(R \subseteq X \times A \times X \) that is finitely branching, i.e., for every \(x \in X \) there are only finitely many \(a \in A \) and \(x' \in X \) with \((x, a, x') \in R \). The final coalgebra for \(F \) exists and can be thought of as consisting of processes modulo strong bisimilarity of Milner \([21]\). More precisely, it follows from \([4\text{, Proposition 5.16}]\) (cf. also Barr \([7]\)) that the final coalgebra is the coproduct of all countable \(F \)-coalgebras modulo the greatest bisimulation\(^1\).

4. A very similar example are non-deterministic automata with a finite input alphabet \(A \). They are coalgebras for \(FX = 2 \times (\mathcal{P}_lX)^A \). Here the final coalgebra consists of all behaviours modulo bisimilarity of non-deterministic automata; more precisely, \(vF \) is the coproduct of all countable \(F \)-coalgebras modulo the largest bisimulation as in the previous point. A (necessarily) isomorphic description of \(vF \) follows from the description of the final coalgebra for \(\mathcal{P}_l \) given by Worrell \([26]\); (see also \([10]\)): the elements of \(vF \) are finitely branching strongly extensional trees with edges labelled in \(A \) and nodes labelled in \(2 \). Due to lack of space we omit recalling the definition of a strongly extensional tree and refer the reader to \([26,10]\) instead.

\(^1\)This can be thought of as the coproduct of all coalgebras modulo the greatest bisimulation; but this coproduct is a proper class, whence the restriction to countable coalgebras.
(5) Weighted transition systems (WTS) are labelled transition systems where transitions have weights (modelling multiplicities, costs, probabilities, etc.). We consider WTS’s where the weights are elements of a commutative monoid $\mathbb{M} = (M, +, 0)$. In order to define them algebraically as done in [16], we first consider the Set endofunctor $F_{\mathbb{M}}$, which acts on a set X and a function $f : X \rightarrow Y$ as

$$F_{\mathbb{M}}(X) = \{ \phi : X \rightarrow M \mid \phi \text{ has finite support} \} \quad F_{\mathbb{M}}f(\phi)(y) = \sum_{x \in f^{-1}(y)} \phi(x),$$

where a function $\phi : X \rightarrow M$ has finite support if $\phi(x) \neq 0$ for finitely many $x \in X$. A weighted transition system is a coalgebra for the functor $FX = (F_{\mathbb{M}}X)^A$ for a set of labels A. The final F-coalgebra exists for any monoid \mathbb{M}. Similarly as before, it is the coproduct of all countable F-coalgebras modulo weighted bisimilarity of [16].

(6) Let $F = \Sigma$ be a polynomial functor on Set. The final coalgebra νF is carried by the set of all (finite and infinite) Σ-trees, i.e., rooted and ordered trees labelled in the signature Σ so that inner nodes with n children are labelled by n-ary operation symbols and leaves are labelled by constant symbols. The coalgebra structure of νF is given by the inverse of tree-tupling.

2.2 Locally finitely presentable coalgebras

We are interested in algebraic operations on rational behaviour, i.e., behaviour of finite coalgebras (S, f) for a functor F. Anticipating future applications in different categories than Set, we present our results for endofunctors on general categories \mathcal{A} in which it makes sense to talk about “finite” objects and the ensuing rational behaviour of “finite” coalgebras. So we work with locally finitely presentable categories of Gabriel and Ulmer [13] (see also Adámek and Rosický [5]), and we now briefly recall the basics.

A functor $F : \mathcal{A} \rightarrow \mathcal{B}$ is called finitary if \mathcal{A} has and F preserves filtered colimits. An object X of a category \mathcal{A} is called finitely presentable if its hom-functor $\mathcal{A}(X, -)$ is finitary. A category \mathcal{A} is locally finitely presentable (lfp) if (a) it is cocomplete, and (b) it has a set of finitely presentable objects such that every object of \mathcal{A} is a filtered colimit of objects from that set.

Example 2.3

1. The category Set and the categories of posets and graphs and their morphisms are lfp with finite sets, posets and graphs, respectively, as finitely presentable objects.

2. Finitary varieties are categories of algebras for a finitary signature satisfying a set of equations (e.g., groups, monoids, join-semilattices etc.). Such categories are lfp with the finitely presentable objects given by those algebras which can be presented by finitely many generators and relations.

3. As a special case consider locally finite varieties, which are varieties where the free algebras on finitely many generators are finite (e.g., Jsl, distributive lattices or Boolean algebras). Here the finitely presentable objects are precisely the finite algebras.

4. Another special case of point (2) are the categories Vec_F of vector spaces over a field F, where the finitely presentable objects are precisely the finite dimensional vector spaces.

Remark 2.4

On the category Set, a finitary functor is determined by its behaviour on finite sets. More precisely, a functor $F : \text{Set} \rightarrow \text{Set}$ is finitary iff it is bounded (see, e.g., Adámek and Trnková [6]), i.e., for every set X and every element $x \in FX$, there is a finite subset $i : Y \hookrightarrow X$ such that $x \in Fi[FY] \subseteq FX$.

Example 2.5

We list some examples of finitary functors.

1. The finite powerset functor \mathcal{P}_f is finitary, whereas the ordinary powerset functor \mathcal{P} is not.

2. The functor $FX = X^A$ is finitary if and only if A is a finite set.
(3) More generally, the class of finitary set functors contains all constant functors and the identity functor, and it is closed under finite products, arbitrary coproducts and composition. Thus, a polynomial functor Σ is finitary iff every operation symbol of the corresponding signature has finite arity (but there may be infinitely many operations).

(4) The functors F_M are finitary for every monoid M.

(5) The functor $FX = \mathbb{R} \times X$ is finitary both on Set and on $\text{Vec}_\mathbb{R}$.

Assumption 2.6. Throughout the rest of this paper we assume, unless stated otherwise, that \mathcal{A} is a locally finitely presentable category and $F : \mathcal{A} \to \mathcal{A}$ is a finitary functor. So F has a final coalgebra $t : \nu F \to F(\nu F)$ (see Makkai and Paré [19]).

For a functor F on an lfp category \mathcal{A} the notion of a “finite” coalgebra is captured by a coalgebra having a finitely presentable carrier. We denote by

$$\text{Coalg}_f(F)$$

the full subcategory of F-coalgebras $f : S \to FS$ with S finitely presentable. In order to talk about the behaviour of finite coalgebras in this setting we would like to consider a coalgebra that is final among all coalgebras in $\text{Coalg}_f(F)$. However, $\text{Coalg}_f(F)$ does not have a final object in general, and so we consider the larger category of locally finitely presentable coalgebras in which the desired final object exists.

An F-coalgebra (S, f) is called locally finitely presentable if the canonical forgetful functor

$$\text{Coalg}_f(F)/(S, f) \to \mathcal{A}/S$$

is cofinal [10, 20]. In lieu of going into the details of this definition we recall the following result, which gives a structure theoretic characterisation of locally finitely presentable coalgebras that we will use later:

Theorem 2.7 ([20]). A coalgebra is locally finitely presentable iff it is a filtered colimit of a diagram of coalgebras from $\text{Coalg}_f(F)$, i.e., a colimit of a diagram of the form $\mathcal{D} \to \text{Coalg}_f(F) \hookrightarrow \text{Coalg}(F)$.

Example 2.8. We recall from [20, 10] more concrete descriptions of locally finitely presentable coalgebras in some categories of interest.

(1) A coalgebra for a functor on Set is locally finitely presentable iff it is locally finite, i.e., every finite subset of its carrier is contained in a finite subcoalgebra.

(2) Similarly, for a functor on a locally finite variety a coalgebra is locally finitely presentable iff every finite subalgebra of its carrier is contained in a finite subcoalgebra.

(3) A coalgebra (S, f) for a functor on $\text{Vec}_\mathbb{F}$ is locally finitely presentable if and only if every finite dimensional subspace of its carrier S is contained in a subcoalgebra (S', f') of (S, f) whose carrier S' is finite dimensional.

2.3 The rational fixpoint

The final F-coalgebra is thought to capture the behaviour of all systems of type F. The behaviour of all “finite” systems is captured by the so-called rational fixpoint. We now recall its definition and key properties as well as some illustrative examples from [4, 20, 10].

First it is easy to see that the category $\text{Coalg}_f(F)$ is closed under finite colimits, so the embedding

$$E : \text{Coalg}_f(F) \hookrightarrow \text{Coalg}(F)$$

(2.1)
is an (essentially small) filtered diagram. We define a coalgebra
\[r : qF \to F(qF) \]
to be the colimit of \(E \), i.e., \((qF, r) = \text{colim} \, E \). This coalgebra is a fixpoint of \(F \) [4], and it is characterized by a universal property both as a coalgebra and as an algebra. This is the content of the following theorem. Statement 3 in the theorem below mentions iterative algebras for \(F \). We do not recall that concept as it is not needed in the present paper; we refer the interested reader to [4].

Theorem 2.9. Let \((qF, r) \) be as above. Then
1. \((qF, r) \) is a fixpoint of \(F \), i.e., \(r \) is an isomorphism, and
2. \((qF, r) \) is the final locally finitely presentable \(F \)-coalgebra, and finally
3. \((qF, r^{-1}) \) is the initial iterative \(F \)-algebra.

Remark 2.10. For \(\mathcal{A} = \text{Set} \) the rational fixpoint \(qF \) is the union of all images \(f^+ [S] \subseteq \nu F \), where \(f : S \to FS \) ranges over the finite \(F \)-coalgebras and \(f^+ : S \to \nu F \) is the unique coalgebra homomorphism (see [4] Proposition 4.6 and Remark 4.3)]. So, in particular, we see that \(qF \) is a subcoalgebra of \(\nu F \).

For endofunctors on different categories than \(\text{Set} \), this need not be the case as shown in [10 Example 3.15]. However, for functors preserving monomorphisms on categories of vector spaces over a field and on locally finite varieties such as \(J_{sl} \) the rational fixpoint always is a subcoalgebra of \(\nu F \) (see [10 Proposition 3.12]).

Example 2.11. For each of the functors in Example 2.2 we now mention the rational fixpoints. For more examples see [4, 10].

1. For the functor \(FX = \mathbb{R} \times X \) on \(\text{Set} \) whose final coalgebra is carried by the set of all streams over \(\mathbb{R} \), the rational fixpoint consists of all streams that are *eventually periodic*, i.e., of the form \(\sigma = v w v w w \ldots \) for words \(v \in \mathbb{R}^* \) and \(w \in \mathbb{R}^+ \). If we consider the similar functor \(FV = \mathbb{R} \times V \) on the category of vector spaces over \(\mathbb{R} \), the rational fixpoint consists precisely of all rational streams (see, e.g., Rutten [23]).
2. Recall that deterministic automata are modeled by the functor \(FX = 2 \times X^A \) on \(\text{Set} \). The carrier of the rational fixpoint of \(F \) is the set of all languages accepted by finite automata, viz. the set of all regular languages. If we define \(F \) instead on the category \(J_{sl} \) of join-semilattices, its rational fixpoint is still given by all regular languages, this time with the join-semilattice structure given by union and \(\emptyset \).
3. For \(FX = P(A \times X) \) on \(\text{Set} \) we saw in Example 2.2(3) that the coalgebras are labelled transition systems and \(\nu F \) consists of processes (modulo strong bisimilarity). In this case the rational fixpoint contains all finite-state processes (modulo bisimilarity); more precisely, \(qF \) is the coproduct of all finite \(F \)-coalgebras modulo the largest bisimulation—this follows from the construction of \(qF \) as the colimit of the diagram in (2).
4. Similarly, for \(FX = 2 \times (P_X)^A \) on \(\text{Set} \), \(qF \) can be described as the coproduct of all finite \(F \)-coalgebras modulo the largest bisimulation. A different (isomorphic) description is that \(qF \) consists of all rational finitely branching strongly extensional trees with edges labelled in \(A \) and nodes labelled in 2, where a tree is rational if it has (up to isomorphism) only a finite number of subtrees.
5. For the functor \(FX = (J_{sl})^A \) of weighted transition systems the rational fixpoint is obtained as the coproduct of all finite WTS’s modulo weighted bisimilarity.
6. Let \(F = \Sigma \) be a polynomial functor on \(\text{Set} \), where the final coalgebra is carried by all \(\Sigma \)-trees. Then the rational fixpoint is given by all regular \(\Sigma \)-trees (see Courcelle [11]), i.e., all those \(\Sigma \)-trees having (up to isomorphism) only finitely many different subtrees; this description of regular trees is due to Ginali [14].
3 Bipointed specifications

We still assume that \(F : \mathcal{A} \to \mathcal{A} \) is a finitary endofunctor on the lfp category \(\mathcal{A} \).

Definition 3.1. Let \(\Sigma : \mathcal{A} \to \mathcal{A} \) be a functor. We call a natural transformation

\[
\lambda : \Sigma(F \times \text{Id}) \Rightarrow F(\Sigma + \text{Id})
\]

a bipointed specification.

While this is a rather abstract and seemingly unusable specification format, by considering a specific functor \(F \) one can often devise more concrete formats. We discuss several examples in Section 5. For now let us consider the definition of a parallel operator on transition systems, to give a basic example of a bipointed specification. Klin [15] §5.2 presents a similar example and notices that it gives rise to a bipointed specification.

Example 3.2. Recall that the functor corresponding to transition systems is \(FX = \mathcal{P}_f(A \times X) \) on \(\text{Set} \) and that we think of the elements of \(\nu F \) as processes.

We would like to define a parallel operator on processes, which can be defined in standard SOS as follows:

\[
\begin{array}{c|c}
\alpha & \beta \\
\hline
s \xrightarrow{\alpha} s' & t \xrightarrow{\beta} t'
\end{array}
\]

\[
\begin{array}{c|c}
s \triangleright t & s \triangleright t
\end{array}
\]

Intuitively this means that whenever \(s \) can make an \(\alpha \)-transition to some state \(s' \), then \(s \triangleright t \) can make an \(\alpha \)-transition to \(s' \triangleright t \), and similarly for \(t \). Since we are interested in a single binary operator, the corresponding signature is \(\Sigma X = X \times X \). Thus, the bipointed specification \(\lambda : \Sigma(F \times \text{Id}) \Rightarrow F(\Sigma + \text{Id}) \) is given by the following family of maps:

\[
\lambda_X : (\mathcal{P}_f(A \times X) \times (\mathcal{P}_f(A \times X) \times X) \to \mathcal{P}_f(\mathcal{A} \times (X \times X + X))).
\]

Now a for a 4-tuple \((S, s, T, t)\) in the domain of \(\lambda_X \), \(S \) and \(T \) are the sets of outgoing transitions of \(s \) and \(t \), respectively. Moreover, an element \((a,(u,v))\) in the codomain of \(\lambda_X \) corresponds to an \(\alpha \)-transition to the state \(u \triangleright v \). Thus, we may define \(\lambda_X \) as

\[
\lambda_X(S, s, T, t) = \{(a, (s', t)) \mid (a, s') \in S\} \cup \{(a, (s, t')) \mid (a, t') \in T\}.
\]

It has been shown by Turi and Plotkin [25] and Bartels [8] that natural transformations as in the previous definition and more general ones (see Klin [17] for an overview) induce algebraic structures on the final coalgebra \(\nu F \). We recall how this construction works for our bipointed specifications. To this end let \(\lambda : \Sigma(F \times \text{Id}) \to F(\Sigma + \text{Id}) \) be a bipointed specification. We define a functor \(\Phi : \text{Coalg}(F) \to \text{Coalg}(F) \) as follows:

\[
\Phi(S, f) = \left(\Sigma S + S \xrightarrow{\Sigma(f, \text{Id}) + f} \Sigma(FS \times S) + FS \xrightarrow{[\lambda_S, \text{Finr}]} F(\Sigma S + S) \right), \tag{3.1}
\]

\[
\Phi h = \Sigma h + h, \quad \text{for any coalgebra homomorphism } h : (S, f) \to (T, g).
\]

In order for \(\Phi \) to be well-defined \(\Phi h \) must be a coalgebra homomorphism, which indeed follows from naturality of \(\lambda \) and functoriality of \(\Sigma \). We do not spell out the details, but refer the interested reader to [8,17]. Observe that \(\Phi \) is a lifting of \(\Sigma + \text{Id} \) to \(\text{Coalg}(F) \), i.e., for the forgetful functor \(U : \text{Coalg}(F) \to \text{Set} \) we have \((\Sigma + \text{Id}) \cdot U = U \cdot \Phi \).
Now if we apply Φ to the final coalgebra $(\nu F, t)$ we obtain the following:

$$\Sigma(\nu F) + \nu F \xrightarrow{\Sigma(\nu F, id)} \Sigma(F(\nu F) \times \nu F) + F(\nu F) \xrightarrow{[\lambda F, F \text{fin}]} F(\Sigma(\nu F) + \nu F).$$

By finality, there is a unique coalgebra homomorphism from $\Phi(\nu F, t)$ to $(\nu F, t)$, and it is easy to prove that its right-hand component is the identity on νF; so the homomorphism has the form

$$[\alpha, id] : \Sigma(\nu F) + \nu F \to \nu F.$$

Thus, we obtain a unique Σ-algebra $\alpha : \Sigma \nu F \to \nu F$ making the diagram below commute:

$$\begin{array}{ccc}
\Sigma(\nu F) & \xrightarrow{\Sigma(\nu F, id)} & \Sigma(F(\nu F) \times \nu F) \\
\alpha & \downarrow & \downarrow \\
\nu F & \xrightarrow{\lambda_F} & F(\Sigma(\nu F) + \nu F)
\end{array} \xrightarrow{F[\alpha, id]} F\nu F \tag{3.2}$$

In concrete instances, α provides the denotational semantics of the algebraic operations as specified by λ, taking as arguments elements of the final coalgebra. Returning to the above Example [3.2] for two processes s and t, $\alpha(s, t)$ is indeed the parallel composition $s || t$.

Remark 3.3. The original abstract GSOS format considered by Turi and Plotkin is given by natural transformations of the form

$$\lambda : \Sigma(\nu F \times Id) \Rightarrow FT\Sigma$$

where $T\Sigma$ is the free monad on Σ; for a polynomial functor Σ on Set, $T\Sigma X$ is the set of all terms of operations in Σ over variables of X. This is more general than the bipointed specifications of Definition [3.1]. However, we will be interested in operations on the rational fixpoint. And in general, operations on νF defined by the above format need not restrict to ϱF as demonstrated by the following example.

Example 3.4. Recall from Example [2.11] the functor $FX = \mathbb{R} \times X$ whose coalgebras are stream systems. A unary operation p on the final coalgebra $\nu F = \mathbb{R}^{\omega}$ of all real streams is specified by the following behavioural differential equations:

$$p(\sigma)(0) = \sigma(0) + 1 \quad p(\sigma)' = p(\sigma') \quad p(0) = p(1),$$

where $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$ denotes the tail of the stream σ. Let $\Sigma X = X$ be the polynomial functor for the signature with one unary operation symbol p. Then the above behavioural differential equations give rise to the natural transformation

$$\ell_X : \Sigma FX = \mathbb{R} \times X \to \mathbb{R} \times T\Sigma X = FT\Sigma X \quad (r, x) \mapsto (r + 1, p(p(x))),$$

and we get an abstract GSOS rule as follows: $\lambda = (\Sigma(\nu F \times Id) \xrightarrow{\Sigma p_0} \Sigma F \xrightarrow{\ell} FT\Sigma)$, where $\pi_0 : F \times Id \Rightarrow F$ denotes the left-hand product projection. It is easy to see that the ensuing operation $p : \nu F \to \nu F$ satisfies

$$p((0, 0, 0, \ldots)) \mapsto (1, 2, 4, 8, \ldots, 2^n, \ldots).$$

Clearly, the rational fixpoint ϱF, which consists of eventually periodic streams, is not closed under the operation p.

Even operations defined using bipointed specifications will not restrict to ϱF in general, when we simultaneously specify infinitely many operations that depend on one another.
Example 3.5. For \(FX = \mathbb{R} \times X \) on \(\text{Set} \) with \(\nu F = \mathbb{R}_0^\omega \) we define infinitely many unary operations \(u_n, n \in \mathbb{N} \), by the following behavioural differential equations:

\[
 u_n(\sigma)(0) = n \quad u_n(\sigma)' = u_{n+1}(\sigma').
\]

Let \(\Sigma X = \mathbb{N} \times X \) be the polynomial functor corresponding to the signature with the unary operation symbols \(u_n, n \in \mathbb{N} \). Then the above behavioral differential equations give rise to the natural transformation

\[
 \ell : \Sigma FX = \mathbb{N} \times \mathbb{R} \times X \to \mathbb{R} \times \mathbb{N} \times X = F\Sigma X \quad (n, r, x) \mapsto (n, n + 1, x),
\]

and we get a bipointed specification as follows: \(\lambda = (\Sigma(F \times Id))_{\Sigma} F \Sigma \ell \overset{\text{fin}}{\Rightarrow} F(\Sigma + Id) \). The ensuing operations \(u_n : \nu F \to \nu F \) satisfy \((0, 0, 0, \ldots) \overset{u_n}{\mapsto} (n, n + 1, n + 2, n + 3, \ldots)\). So the rational fixpoint \(\nu F \) is not closed under these operations.

4 Algebras on the rational fixpoint

In this section we show how a bipointed specification defines an algebraic structure \(\beta : \Sigma(\nu F) \to \nu F \) on the rational fixpoint similar to the structure \(\alpha : \Sigma(\nu F) \to \nu F \) in (3.2). We will also see that the new structure \(\beta \) on \(\nu F \) is a “restriction” of \(\alpha \); more precisely the unique coalgebra homomorphism \((\nu F, r) \to (\nu F, t) \) is also a \(\Sigma \)-algebra homomorphism. In order to proceed we make

Assumption 4.1. We still assume that \(F \) is a finitary functor on the lfp category \(\mathcal{A} \). We now assume also that \(\Sigma : \mathcal{A} \to \mathcal{A} \) is a strongly finitary functor, i.e., \(\Sigma \) is finitary and it preserves finitely presentable objects. We also assume that \(\lambda : \Sigma(F \times Id) \to F(\Sigma + Id) \) is a bipointed specification. We still write \(\Phi \) for the functor in (3.1), which lifts \(\Sigma + Id \) to \(\text{Coalg}(F) \).

Example 4.2. The notion of strongly finitary functor is taken from [3] and we discuss some examples below.

1. The class of strongly finitary functors on \(\text{Set} \) contains the identity functor, all constant functors on finite sets, the finite power-set functor \(\mathcal{P}_I \), and it is closed under finite products, finite coproducts and composition.

2. From the previous point we see that a polynomial functor \(\Sigma \) on \(\text{Set} \) is strongly finitary iff the corresponding signature has finitely many operation symbols of finite arity.

3. The functor \(F X = 2 \times X^A \) is strongly finitary iff \(A \) is a finite set.

4. The type functor \(F X = \mathbb{R} \times X \) of stream systems as coalgebras is finitary but not strongly so. However, if we consider \(F \) as a functor on \(\text{Vec}_\mathbb{R} \), then it is strongly finitary; in fact, for every finite dimensional real vector space \(X, \mathbb{R} \times X \) is finite dimensional, too.

First we need the following lemma which states that \(\Phi \) is a finitary functor that restricts to the subcategory of coalgebras with a finitely presentable carrier.

Lemma 4.3. The lifting \(\Phi \) (a) is finitary and (b) restricts to \(\text{Coalg}_t(F) \).

Proof. Ad (a). By assumption, \(\Sigma \) is a finitary functor, and so \(\Sigma + Id : \mathcal{A} \to \mathcal{A} \) is clearly finitary, too. Since the forgetful functor \(U : \text{Coalg}(F) \to \mathcal{A} \) creates all colimits, it follows that \(\Phi \) is finitary since \((\Sigma + Id) \cdot U = U \cdot \Phi \).

Ad (b). Let \((S, f) \) be an object of \(\text{Coalg}_t(F) \). Then \(S \) is finitely presentable, and, since \(\Sigma \) is strongly finitary, \(\Sigma S \) is also finitely presentable. Finally, since finitely presentable objects are clearly closed under finite colimits, \(\Sigma S + S \) is finitely presentable, too. Thus, \(\Phi(S, f) \) is an object of \(\text{Coalg}_t(F) \). \(\square \)
Now in order to use the universal property of \(\varepsilon F\) we prove that the lifting \(\Phi\) applied to it is locally finitely presentable:

Lemma 4.4. The coalgebra \(\Phi(\varepsilon F, r)\) is locally finitely presentable.

Proof. Since \((\varepsilon F, r) = \text{colim} \ E\) (see \(\text{[2.1]}\)) and \(\Phi\) is finitary (Lemma 4.3(a)), \(\Phi(\varepsilon F, r)\) can be obtained as the filtered colimit of the diagram \(\text{Coalg}_\varepsilon(F) \to \text{Coalg}(F) \to \text{Coalg}(F)\). By Lemma 4.3(b), this is a diagram of coalgebras from \(\text{Coalg}_\varepsilon(F)\). Therefore, by Theorem 2.7, \(\Phi(\varepsilon F, r)\) is a locally finitely presentable coalgebra. \(\Box\)

From the above lemma, by the universal property of the rational fixpoint we obtain

Corollary 4.5. There exists a unique algebra structure \(\beta : \Sigma(\varepsilon F) \to \varepsilon F\) such that the following diagram commutes:

\[
\begin{array}{ccc}
\Sigma(\varepsilon F) & \xrightarrow{\Sigma(r, \text{id})} & \Sigma(F(\varepsilon F) \times \varepsilon F) \\
\beta & \downarrow & \downarrow \lambda_F \\
\varepsilon F & \xrightarrow{r} & F(\varepsilon F)
\end{array}
\]

Indeed, by Lemma 4.4 and the finality of \(\varepsilon F\) as a locally finitely presentable coalgebra there is a unique coalgebra homomorphism from \(\Phi(\varepsilon F, r)\) to \((\varepsilon F, r)\), and it is again easy to show that its right-hand coproduct component must be the identity, and so its left-hand component is the desired \(\Sigma\)-algebra structure \(\beta\).

Proposition 4.6. Let \(h : (\varepsilon F, r) \to (\nu F, t)\) be the unique \(F\)-coalgebra homomorphism. Then \(h\) is also a \(\Sigma\)-algebra homomorphism from \((\varepsilon F, \beta)\) to \((\nu F, \alpha)\).

Proof. We are to prove the equation \(h \cdot \beta = \alpha \cdot \Sigma h\). This is equivalent to proving

\([h \cdot \beta, h] = [\alpha \cdot \Sigma h, h] : \Sigma(\varepsilon F) + \varepsilon F \to \nu F\),

which is established by proving that both sides form coalgebra homomorphisms from \(\Phi(\varepsilon F, r)\) to \((\nu F, t)\). Indeed, they are both compositions of two coalgebra homomorphisms:

\([h \cdot \beta, h] = (\Phi(\varepsilon F, r) \xrightarrow{[\beta, \text{id}]} (\nu F, t)) \xrightarrow{h} (\nu F, t), \quad [\alpha \cdot \Sigma h, h] = (\Phi(\varepsilon F, r) \xrightarrow{\Phi h} (\nu F, t)) \xrightarrow{[\alpha, \text{id}]} (\nu F, t). \quad \Box\)

As a consequence we obtain the following closure property of \(\varepsilon F\): Suppose that \(h\) in the previous proposition is a monomorphism (cf. Remark 2.10). Then \((\varepsilon F, r)\) is a subcoalgebra of \((\nu F, t)\) and \((\varepsilon F, \beta)\) is a subalgebra of \((\nu F, \alpha)\) via \(h\).

Remark 4.7. Notice that the results of this section are easily seen to generalize from bipointed specifications to the more general coGSOS laws, i.e., natural transformations of the form

\[\lambda : \Sigma C_F \to F(\Sigma + \text{Id}),\]

where \(C_F\) denotes the cofree comonad on \(F\) (see, e.g., [17]). (Observe that the cofree comonad on \(F\) is given objectwise by assigning to an object \(X\) of \(\mathcal{A}\) the final coalgebra \(\nu(F(-) \times X)\).) This is formally dual to the abstract GSOS format we recalled in Remark 3.3. coGSOS laws allow to specify important operations not captured by bipointed specifications, e.g., the tail operation \(\sigma \mapsto \sigma'\) on streams. And in the case of transition system specifications (i.e., where \(FX = P_\sigma(A \times X)\)) it is well-known that specifications in the so-called safe ntree format are instances of coGSOS laws (see [25]), but it is not known whether every coGSOS law arises from a safe ntree specification. We defer a thorough treatment of coGSOS laws to future work.
5 Applications

In this section we consider algebraic operations defined on the rational fixpoint for several concrete types of systems, as applications of Corollary 4.5 and Proposition 4.6. We discuss concrete SOS formats corresponding to bipointed specifications. There are many such concrete specification formats for similar distributive laws studied in the literature [17], and we can only cover a few examples here. For most of these formats it is easy to obtain a restriction to bipointed specifications, so that our results apply and the obtained specifications define operations which restrict to the rational fixpoint. Throughout this section we assume that \(\Sigma \) is a signature represented as a strongly finitary polynomial functor on \(\text{Set} \). To the best of our knowledge, all the results we present in the corollaries in this section are new.

Streams. Consider the \(\text{Set} \) functor \(FX = \mathbb{R} \times X \) of streams over the reals. A bipointed specification then is a natural transformation \(\lambda \) with components

\[
\lambda_X : \Sigma(\mathbb{R} \times X \times X) \Rightarrow \mathbb{R} \times (\Sigma X + X).
\]

(5.1)

We recall from [17] that these natural transformations can be expressed in a more convenient SOS format as follows. A bipointed stream SOS rule for an operator \(f \) in \(\Sigma \) of arity \(n \) is a rule

\[
\begin{array}{c}
x_1 \xrightarrow{r_1} x'_1 \\
\vdots \\
x_n \xrightarrow{r_n} x'_n \\
\end{array}
\]

\[
f(x_1, \ldots, x_n) \xrightarrow{r} t
\]

where \(x_1, \ldots, x_n, x'_1, \ldots, x'_n \) is a collection of pairwise distinct variables, which we call \(V \). Further, \(t \) is a variable in \(V \) or a term of the form \(g(y_1, \ldots, y_m) \) where \(g \) is an \(m \)-ary operation symbol of \(\Sigma \), and \(y_i \in V \) for all \(1 \leq i \leq m \), and finally \(r, r_1, \ldots, r_n \in \mathbb{R} \). We say the above rule is triggered by the \(n \)-tuple \((r_1, \ldots, r_n)\). A bipointed stream SOS specification for the strongly finitary signature \(\Sigma \) then is a collection of bipointed stream SOS rules for \(\Sigma \) such that for each operator \(f \) in \(\Sigma \) and for each sequence of real numbers \(r_1, \ldots, r_n \), there exists precisely one rule for \(f \) triggered by \((r_1, \ldots, r_n)\). Bipointed stream SOS specifications are in one-to-one correspondence with natural transformations of the above type (5.1).

Therefore, by Proposition 4.6 we have

Corollary 5.1. The operations defined by a bipointed stream SOS specification on the final coalgebra of the \(\text{Set} \) functor \(FX = \mathbb{R} \times X \) restrict to the rational fixpoint of \(F \), i.e., the coalgebra of eventually periodic streams.

As an example consider the well-known zip (or merge) operation, which takes two streams and returns a new stream which alternates between the two given arguments. The standard definition of zip can be given as a bipointed stream SOS rule:

\[
\begin{array}{c}
\sigma \xrightarrow{r_1} \sigma' \\
\tau \xrightarrow{r_2} \tau' \\
\end{array}
\]

\[
\text{zip}(\sigma, \tau) \xrightarrow{r} \text{zip}(\sigma', \tau')
\]

A direct consequence of the above corollary is the basic insight that for any two streams \(\sigma \) and \(\tau \) which are eventually periodic, \(\text{zip}(\sigma, \tau) \) is again eventually periodic.

Remark 5.2. (1) Another way of specifying operations on streams is using behavioural differential equations [22] (cf. Example 3.4). In fact the above bipointed stream specifications also correspond precisely to behavioural differential equations in which each of the derivatives is restricted to be either a variable or a single operator applied to variables (precisely as \(t \) in the definition of bipointed stream SOS rules). Thus, such differential equations define operations which restrict to eventually periodic streams as well.
(2) If we consider $FX = \mathcal{R} \times X$ as a functor on $\mathit{Vec}_\mathbb{R}$ then bipointed specifications are natural transformations λ where Σ is a functor on $\mathit{Vec}_\mathbb{R}$ and where the components λ_X in (5.1) are linear maps. By Proposition 4.6 we obtain that operations defined by a bipointed specification on νF, the final coalgebra of all streams, restrict to the rational fixpoint ϕF formed by all rational streams. An example of such an operation is the above specification of zip. Consequently, we obtain that rational streams are closed under zip.

Labelled transition systems. Recall from Example 2.2 that labelled transition systems are coalgebras for the functor $FX = \mathcal{P}_l(A \times X)$ on Set. In this case a bipointed specification for a strongly finitary signature Σ is a natural transformation with components

$$\lambda_X : \Sigma(\mathcal{P}_f(A \times X) \times X) \Rightarrow \mathcal{P}_f(A \times (\Sigma X + X)). \quad (5.2)$$

This corresponds to a restricted “flat” version of the well-known GSOS format [9], where on the right-hand side of the transition in the conclusions of a rule there may only be a variable or single operation symbol applied to variables in lieu of an arbitrary term. For a strongly finitary signature, this is precisely the simple GSOS format of [2]. Indeed, following the presentation in [17], we define a *bipointed LTS SOS rule* for an operator f in Σ of arity n as

$$\begin{align*}
\{ x_{ij} \to y_j \}_{j=1..m} & \quad \{ x_{ik} \to b_k \}_{k=1..l} \\
& \quad f(x_1, \ldots, x_n) \to t
\end{align*} \quad (5.3)$$

where m is the number of positive premises and l is the number of negative premises. The variables $x_1, \ldots, x_n, y_1, \ldots, y_m$ are again pairwise distinct; let V denote the set of these variables. Then t is either a variable in V or a flat term $g(z_1, \ldots, z_p)$, where g is an p-ary operation symbol in Σ and $z_1, \ldots, z_p \in V$. Finally $a_1, \ldots, a_m, b_1, \ldots, b_l, c \in A$ are labels. The above rule is triggered by an n-tuple (E_1, \ldots, E_n), where each $E_i \subseteq A$, if for each $i = 1..n$ we have $a_j \in E_j$ for all $j = 1..m$ and $b_k \notin E_i$ for all $k = 1..l$. A *bipointed LTS SOS specification* then is a collection of rules of the above type such that for each operator f in Σ, each $c \in A$ and each n-tuple $\bar{E} = (E_1, \ldots, E_n)$ of sets of labels, there are finitely many rules for f with c as the conclusion label that are triggered by \bar{E}. Bipointed specifications for labelled transition systems (5.2) are in one-to-one correspondence with bipointed LTS SOS specifications. So by Proposition 4.6 we have

Corollary 5.3. The operations defined by a bipointed LTS SOS specification on the final coalgebra of the Set functor $FX = \mathcal{P}_l(A \times X)$ restrict to the rational fixpoint of F, i.e., the coalgebra of all finite labelled transition systems modulo the largest bisimulation.

As an example we recall the semantics of the operators of Milner’s CCS [21], which forms a bipointed LTS SOS specification:

$$
\begin{align*}
\text{a.P} & \Rightarrow P \\
\frac{P_1 \to P_1'}{P + P_1 \to P_1'} \\
\frac{P_2 \to P_2'}{P_1 + P_2 \to P_1' + P_2'} \\
\frac{P \to P'}{P \setminus L \to P' \setminus L} \quad (a, \bar{a} \notin L)
\end{align*}

\begin{align*}
P_1 & \Rightarrow P_1' \\
P_2 & \Rightarrow P_2' \\
P_1 \parallel P_2 & \Rightarrow P_1' \parallel P_2' \\
P_1 \parallel P_2 & \Rightarrow P_1' \parallel P_2' \\
P_1 \parallel P_2 & \Rightarrow P_1' \parallel P_2' \\
P_1 \parallel P_2 & \Rightarrow P_1' \parallel P_2' \\
P \to P' \\
P \to P' \\
P \to P' \\
P \to P'
\end{align*}

Note that in order for the signature corresponding to these operations to be strongly finitary, the set of actions A must be finite. Then, by the above Corollary 5.3, finite-state processes are closed under all of the above operations.
Remark 5.4. Aceto [11] proved (see [2] Theorem 5.28) that for a simple GSOS specification the induced transition system on the process terms is regular, i.e., for every closed process term P the transition system giving P its operational semantics has finitely many states. Note that this result is not a direct consequence of our results in Section 4. In fact, the transition systems induced by a (simple) GSOS specification is (generalized by) the operational model of Turi and Plotkin [25] for the corresponding abstract GSOS specification; this operational model is the initial Σ-algebra $\mu \Sigma$ equipped with the F-coalgebra structure induced by the abstract GSOS specification. The corresponding generalization of Aceto’s result then states that for a bipointed specification λ the induced F-coalgebra on $\mu \Sigma$ is locally finitely presentable. We shall state and prove this result in future work.

Non-deterministic automata. Recall from Example 2.2(4) that non-deterministic automata are coalgebras for the Set functor $FX = 2 \times (P_2 X)^A$. Bipointed specifications for this functor instantiate to natural transformations with components

$$\lambda_X : \Sigma(2 \times P_f (X)^{A} \times X) \Rightarrow 2 \times P_f (\Sigma X + X)^A.$$

We are not aware of an existing SOS format for non-deterministic automata corresponding precisely to these natural transformations, which we call bipointed NDA specifications. However, it is not hard to devise a format based on the above LTS SOS specifications, such that each specification gives rise to a bipointed NDA specification, but not necessarily vice versa, i.e., an incomplete format. Define an output rule for an operator f in Σ of arity n as

$$\frac{\{x_{i_j} \downarrow\}_{j=1,k} \downarrow}{f(x_1, \ldots, x_n) \downarrow}$$

where $k \leq n$. The above output rule is triggered by an n-tuple $(o_1, \ldots, o_n) \in 2^n$ provided that for all j, $o_{i_j} = 1$ iff $x_{i_j} \downarrow$ is in the premise of the rule. Intuitively, such a rule specifies that $f(x_1, \ldots, x_n) \downarrow$, meaning that $f(x_1, \ldots, x_n)$ is a final state, whenever each of its arguments x_{i_j} are final, and all of the other arguments are not final. Notice that one way to extend this format would be to make the transitions also depend on the output of the arguments; for technical convenience and lack of space we do not discuss such extensions here. A bipointed NDA SOS specification is a bipointed LTS SOS specification together with a collection of output rules such that for each operator f and for each n-tuple $\bar{o} = (o_1, \ldots, o_n) \in 2^n$, there is at most one output rule triggered by f and \bar{o}. Any bipointed NDA SOS specification is easily seen to give rise to a bipointed NDA specification (5.4). By Proposition 4.6 we now have

Corollary 5.5. The operations defined by a bipointed NDA (SOS) specification on the final coalgebra of the Set functor $FX = 2 \times P_2 (X)^A$, where A is a finite set, restrict to the rational fixpoint of F.

Besides inducing an algebra structure $\alpha : \Sigma(\nu F) \rightarrow \nu F$ that restricts to νF, a bipointed specification as in (5.4) also induces an algebra on formal languages, i.e., $\tilde{\alpha} : \Sigma(\nu G) \rightarrow \nu G$ for $GX = 2 \times X^A$ on Set. To see this recall from Examples 2.2(4) and 2.11(4) the descriptions of νF (and νF) as (rational) strongly extensional trees. Now consider the following map $s : \nu G \rightarrow \nu F$: it takes a formal language L and first interprets its characteristic map $A^* \rightarrow 2$ as a complete ordered $|A|$-ary tree t_L with nodes labelled in 2; the strongly extensional tree $s(L)$ is then obtained by forgetting the order on the children of every node of t_L and labelling the outgoing edges of every node with the corresponding letter from A. So $s(L)$ has the same shape as t_L, and every node of $s(L)$ has for every $a \in A$ precisely one a-labelled edge to a successor node. Secondly, let $q : \nu F \rightarrow \nu G$ be the map that assigns to every strongly extensional tree t in νF its corresponding formal language of all words given by paths from the root of t to a node labelled by 1. Clearly, we have $q \cdot s = id_{\nu G}$. Now define

$$\tilde{\alpha} = (\Sigma(\nu G) \xrightarrow{\Sigma s} \Sigma(\nu F) \xrightarrow{\alpha} \nu F \xrightarrow{q} \nu G).$$
Observe that s maps a regular language to a regular tree in vF, and q maps a regular tree in vF to a regular language. Thus, s and q restrict to the corresponding rational fixpoints and we have

Corollary 5.6. The set of regular languages over a finite alphabet A is closed under any operation defined in a bipointed NDA (SOS) specification.

More precisely, the above algebra structure $\bar{s} : \Sigma(vG) \to vG$ restricts to an algebra structure $\bar{\beta} : \Sigma(qG) \to qG$ on the rational fixpoint (i.e., on regular languages) with $\bar{\beta} = q' \cdot \beta \cdot s'$, where q', β and s' are the restrictions of q, α and s, respectively, to the rational fixpoints qF and qG.

Given two words w and v, the shuffle of w and v, denoted $w \triangleright v$, is the set of words obtained by arbitrary interleavings of w and v [24]. For example, $ab \triangleright c = \{abc, acb, cab\}$. The shuffle of two languages L_1 and L_2 is the pointwise extension: $L_1 \triangleright L_2 = \bigcup_{w \in L_1, v \in L_2} w \triangleright v$. The shuffle operator can be defined in terms of a bipointed NDA SOS specification as follows:

\[
\begin{align*}
 s & \mapsto s' \\
 t & \mapsto t' \\
 s \triangleright t & \mapsto s \triangleright t'
\end{align*}
\]

By Corollary 5.5 this operation restricts to the rational fixpoint of non-deterministic automata, and by Corollary 5.6 we obtain the fact that regular languages are closed under shuffle.

The perfect shuffle of two words w and v of the same length is defined as the alternation between the two words, reminiscent of the zip operation on streams discussed above [24]. The operation assigning to two formal languages the language of all perfect shuffles of their words can also easily be defined as a bipointed specification; in fact it can be defined using a bipointed specification w.r.t. the type functor G of deterministic automata.

Weighted transition systems. Recall from Example 2.2(5) that weighted transition systems are coalgebras for the functor $FX = (\mathcal{F}_{M}X)^{A}$ on Set; here, we assume A to be finite. In this case a bipointed specification is a natural transformation with components

\[
\lambda_X : \Sigma((\mathcal{F}_{M}X)^{A} \times X) \Rightarrow (\mathcal{F}_{M}(\Sigma X + X))^{A}.
\]

(5.6)

We call these natural transformations bipointed WTS specifications. A general GSOS format for weighted transition systems is given in [16]. We restrict it to bipointed specifications as follows. A bipointed WTS SOS rule for an operator f in Σ of arity n is defined as

\[
\begin{align*}
 \{x_i \xrightarrow{a_i} y_j\}_{i=1..m} & \Rightarrow \{x_i \xrightarrow{w_{a,i}} y_j\}_{a \in D_i, i=1..n} \\
 f(x_1, \ldots, x_n) & \xrightarrow{c, \beta(u_1, \ldots, u_m)} t
\end{align*}
\]

(5.7)

where m is the number of weighted transitions in the premise. The variables $x_1, \ldots, x_n, y_1, \ldots, y_m$ are again pairwise distinct; let V be the set consisting of these variables. Then t is either a variable in V or a flat term $g(z_1, \ldots, z_p)$, where g is an p-ary operation symbol in Σ and $z_1, \ldots, z_p \in V$. Further $D_i \subseteq A$ is a subset of labels for which the total weight of the outgoing transitions from x_i is specified by $w_{a,i}$. Finally $a_1, \ldots, a_m, c \in A$ are labels, u_1, \ldots, u_m are weight variables, and $\beta : M^{m} \to M$ is a multi-additive function. A bipointed WTS SOS specification then is a collection of rules of the above type such that only finitely many rules share the same operator f in the source, the same label c in the conclusion, and the same partial function from $[1, \ldots, n] \times A$ to M arising from their sets of total weight premises [16]. Each bipointed WTS SOS specification induces a distributive law as in [5.6] (but the converse does not hold, see [16]). So by Proposition 4.6 we have
Corollary 5.7. The operations defined by a bipointed WTS (SOS) specification on the final coalgebra of the Set functor $FX = (F_{\text{cl}}X)^A$ where A is a finite set, restrict to the rational fixpoint of F, i.e., the coalgebra of all finite weighted transition systems modulo weighted bisimilarity.

All of the examples of operations on WTS’s from [15] are bipointed specifications, from which it follows that the rational fixpoint is closed under those operations. We recall here the priority operator. To this end we consider the weights to be in $\mathbb{R}^{+\infty}$, which is the set consisting of all positive reals augmented with infinity (denoted ∞). By taking minimum as the sum operation, this forms a monoid with ∞ as the unit. The unary operation ∂_{ab} is defined by the rules

$$
\frac{a \xrightarrow{x} w}{\partial_{ab}(x) \xrightarrow{a,u} \partial_{ab}(x')} \\
\frac{b \xrightarrow{x} v}{\partial_{ab}(x) \xrightarrow{b,u} \partial_{ab}(x')}
$$

for all $w \leq v \in \mathbb{R}^{+\infty}$. The operator ∂_{ab} preserves only the a-transitions if the minimum weight of all a-transitions is less than or equal to the minimum of all outgoing b-transitions, and vice versa.

6 Conclusions and future work

In this paper we have presented a general categorical framework for the specification of algebraic operations on regular behaviour based on distributive laws. The theory we have presented works not only in Set but also in many other categories including vector spaces and other algebraic categories. In this paper we have instantiated the general theory to several concrete specification formats in Set. It remains an interesting challenge to study concrete formats for distributive laws on other categories, not only for our bipointed specifications but also for distributive laws corresponding to GSOS. For example, working out a format for the functor $FX = 2 \times X^A$ on the category of join-semilattices will give a more direct way to define operations like the shuffle product of formal languages which cannot be captured by a bipointed specification for F on Set. Finally, it is interesting to study extensions of the format introduced in this paper. We already mentioned the coGSOS format, and we will investigate this more thoroughly in the future. One would also hope for formats covering all the standard operations on formal languages such as the Kleene star which, presently, does not arise as an application of our theory. Since checking if a specification gives rise to operations under which regular behaviour is closed is in general undecidable, a complete format cannot exist [2].

References

[1] L. Aceto (1994): GSOS and Finite Labelled Transition Systems. Theoret. Comput. Sci. 131(1), pp. 181–195, doi:10.1016/0304-3975(94)90094-9
[2] L. Aceto, W. Fokkink & C. Verhoef (2001): Structural Operational Semantics. In: Handbook of Process Algebra, Elsevier Science, pp. 197–292, doi:10.1016/B978-044482830-9/50021-7
[3] J. Adámek, S. Milius & J. Velebil (2003): Free Iterative Theories: a coalgebraic view. Math. Structures Comput. Sci. 13(2), pp. 259–320, doi:10.1017/S0960129502003924
[4] J. Adámek, S. Milius & J. Velebil (2006): Iterative algebras at work. Math. Structures Comput. Sci. 16(6), pp. 1085–1131, doi:10.1017/S0960129506005706
[5] J. Adámek & J. Rosický (1994): Locally presentable and accessible categories. Cambridge University Press, doi:10.1017/CBO9780511600579
[6] J. Adámk & V. Trnková (1990): Automata and Algebras in Categories. Mathematics and its Applications 37, Kluwer Academic Publishers.

[7] M. Barr (1993): Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114(2), pp. 299–315, doi:10.1016/0304-3975(93)90076-6

[8] F. Bartels (2004): On generalised coinduction and probabilistic specification formats. Ph.D. thesis, CWI, Amsterdam.

[9] B. Bloom, S. Istrail & A. Meyer (1995): Bisimulation Can’t be Traced. J. ACM 42(1), pp. 232–268, doi:10.1145/200836.200876

[10] M. Bonsangue, S. Milius & A. Silva (2012): Sound and complete axiomatizations of coalgebraic language equivalence. Accepted for publication in ACM Trans. Comput. Log.

[11] B. Courcelle (1983): Fundamental properties of infinite trees. Theoret. Comput. Sci. 25, pp. 95–169, doi:10.1016/0304-3975(83)90059-2

[12] M. Droste, W. Kuich & H. Vogler, editors (2009): Handbook of weighted automata. Monographs in Theoretical Computer Science, Springer, doi:10.1007/978-3-642-04164-8

[13] P. Gabriel & F. Ulmer (1971): Lokal präsentierbare Kategorien. Lecture Notes Math. 221, Springer-Verlag.

[14] S. Ginali (1979): Regular trees and the free iterative theory. J. Comput. System Sci. 18, pp. 228–242, doi:10.1016/0022-0000(79)90032-1

[15] B. Klin (2007): Bialgebraic Operational Semantics and Modal Logic. In: Proc. of LICS 2007, pp. 336–345, doi:10.1109/LICS.2007.13

[16] B. Klin (2009): Structural Operational Semantics for Weighted Transition Systems. In J. Palsberg, editor: Semantics and Algebraic Specification, LNCS 5700, Springer, pp. 121–139, doi:10.1007/978-3-642-04164-8_7

[17] B. Klin (2011): Bialgebras for structural operational semantics: An introduction. Theoret. Comput. Sci. 412(38), pp. 5043–5069, doi:10.1016/j.tcs.2011.03.023

[18] J. Lambek (1968): A Fixpoint Theorem for Complete Categories. Math. Z. 103, pp. 151–161, doi:10.1007/BF01110627

[19] M. Makkai & R. Paré (1989): Accessible categories: the foundation of categorical model theory. Contemporary Math. 104, Amer. Math. Soc., Providence, RI, doi:10.1090/conm/104

[20] S. Milius (2010): A Sound and Complete Calculus for Finite Stream Circuits. In: Proc. of LICS 2010, IEEE Computer Society, pp. 421–430, doi:10.1109/LICS.2010.11

[21] R. Milner (1989): Communication and Concurrency. Prentice Hall.

[22] J. Rutten (2005): A coinductive calculus of streams. Math. Structures Comput. Sci. 15(1), pp. 93–147, doi:10.1017/S0960129504004517

[23] J. Rutten (2008): Rational Streams Coalgebraically. Log. Methods Comput. Sci. 4(3:9), p. 22 pp., doi:10.2168/LMCS-4(3:9)2008

[24] J. Shallit (2008): A Second Course in Formal Languages and Automata Theory. Cambridge University Press, doi:10.1017/CBO9780511808876

[25] D. Turi & G. Plotkin (1997): Towards a Mathematical Operational Semantics. In: Proc. of LICS 1997, IEEE Computer Society, pp. 280–291, doi:10.1109/LICS.1997.614955

[26] J. Worrell (2005): On the final sequence of a finitary set functor. Theoret. Comput. Sci. 338, pp. 184–199, doi:10.1016/j.tcs.2004.12.009