Contact between laboratory instruments and equations of quantum mechanics

John M. Myers
Gordon McKay Laboratory, Harvard University,
Cambridge, MA 02138, USA

and

F. Hadi Madjid
82 Powers Road, Concord, MA 01742, USA

January 19, 2022

Abstract
Ambiguity in the contact between laboratory instruments and equations of quantum mechanics is formulated in terms of responses of the instruments to commands transmitted to them by a Classical digital Process-control Computer (CPC); in this way instruments are distinguished from quantum-mechanical models (sets of equations) that specify what is desired of the instruments. Results include:

1. a formulation of quantum mechanics adapted to computer-controlled instruments;
2. a lower bound on the precision of unitary transforms required for quantum searching and a lower bound on sample size needed to show that instruments implement a desired model at that precision;
3. a lower bound on precision of timing required of a CPC in directing instruments;
4. a demonstration that guesswork is necessary in ratcheting up the precision of commands.
1 Introduction

To build a quantum computer is to arrange for laboratory instruments to produce results in accord with models expressed in equations of quantum mechanics. These quantum-mechanical models are of two types:

1. instrument-independent models focused on relating the multiplication of unitary operators to the solving of problems of interest, and
2. models that tie the multiplication of unitary operators (as well as steps of state preparation and measurement) to the use of laboratory instruments.

Instruments that could implement a quantum computer would be valuable if their results could substitute for a more costly classical calculation defined by a model of type 1. If a scientist has such instruments, however, using them requires a model of type 2 which tells the scientist how to use the instruments; it is these quantum-mechanical models of how instruments function that are the subject of this report.

Models of type 2 are subject to revision in the course of using instruments, as we found in arranging for a nuclear-magnetic-resonance (NMR) spectrometer to implement a model of an NMR quantum computer. In addition to its electromagnet that holds a liquid sample, the spectrometer has a Classical, digital Process-control Computer (CPC), a variable radio-frequency (r.f.) transmitter controlled by the CPC, and an r.f. receiver that reports back to the CPC which then computes spectra and displays them. Our colleagues synthesized the active constituent of the liquid for a 5-spin quantum computer, aiming to have the spectrometer behave roughly as described by a certain model α (of type 2), characterized by a Hamiltonian for 5 linearly-coupled spin-active nuclei in the presence of the variable r.f. field.[1] But while monitoring the chemical synthesis they found spectra that better fit a model β (also of type 2) characterized by a more complex hamiltonian with one spin-spin coupling weaker than desired and with extra couplings beyond those wanted. So model β rather than the original model α was used to design commands by which to operate the 5-spin quantum computer, showing that implementers have to negotiate with the instruments to refine their models.

Another lesson from the 5-spin endeavor is the secondary role of fields and particles in the design of instruments. We need models of how the
spectrometer works to tell us what commands the CPC must issue to the transmitter in order to solve the Deutsch-Jozsa problem, and the historically available constructs and examples from which to construct these models are fields, particles and their couplings; these however are needed only as pieces from which to compose models to describe the instruments. A change from model \(\alpha \) to model \(\beta \) changes the couplings, and more severe changes change the particles and fields.

Is the need for alternative models serious? Whether one is working with a mathematical model or working with instruments, it is easy to assume that what goes on in the model, with its fields and particles, also goes on in the instruments, at least once the “right” model is found. But recently it was proved that multiple, inequivalent models to describe a set-up of instruments contend for acceptance not just in the early stages of an experiment but throughout.\[2\] By assuring many models and hence many configurations of particles and fields to describe a single set-up of instruments, this proof punctures the idea that particles and fields (or, more generally, states and operators) reside in instruments, somehow uniquely situated in them, if only one could see them. This puncture relieves a widespread confusion between models and instruments by demonstrating a certain independence between the two. Given that independence, one has the question: of what does contact between instruments and models consist?

For purposes of an analysis that recognizes their independence, we focus on the contact between quantum-mechanical equations and laboratory instruments that takes place in computer files of a Classical, digital Process-control Computer (CPC). Within a session in which both equation writing and the use of instruments are mediated by the CPC, a scientist uses the CPC to:

- compute (classically!) with various sets of equations of quantum mechanics that define what the instruments are supposed to do, and

- send commands to instruments intended to implement those equations and record results produced by the instruments.

Quantum mechanical models appropriate to the CPC control of instruments are formulated Section 2. Section 3 addresses the question of finding models from which to determine commands for any particular set-up of instruments, leading to an analysis of sample sizes of experimental tests of models as a function of precision. Consistent with prior estimates\[3\], in
quantum searching\[4\] the required sample size rises exponentially with the number of bits.

Section 4 shows lower bounds on the precision of timing needed for a CPC to manage quantum-computing instruments. Section 5 introduces the concept of a lattice of models to show that testing in physics and engineering cannot be universal like the test of a derivation in mathematics; instead, a scientist working with instruments, trying for progressively higher precision in their accord with models, must re-evaluate properties by which to restrict a set of models, requiring repeated resort to guesswork.

2 Quantum mechanical models for CPC-controlled instruments

For one example of contact between instruments and equations, suppose a scientist has instruments which would implement a quantum computer if they were sent correct commands; the scientist then faces the question of what commands the CPC should transmit and when it should transmit to them in order e.g. to implement a quantum gate expressed as a unitary matrix U_j.

To produce a core set of models from which a scientist can choose to describe the working of particular instruments, we suppose that during a CPC-mediated session some instruments are controlled by CPC-transmitted commands from a set B of possible commands, where $B \subset \mathcal{B}$ and \mathcal{B} is the set of all finite binary strings. Our models express the probability of an outcome of instruments in response to a command $b \in B$ sent to the instruments by the CPC, as follows. Let \mathcal{H} be a separable Hilbert space. Let \mathcal{V}_B, \mathcal{U}_B, and \mathcal{M}_B be the sets of all functions $|v\rangle : B \rightarrow \mathcal{H}$, $U : B \rightarrow \{\text{unitary operators on } \mathcal{H}\}$, and $M : B \rightarrow \{\text{hermitian operators on } \mathcal{H}\}$, respectively, with

$$
|v\rangle : B \rightarrow \mathcal{H}, \quad U : B \rightarrow \{\text{unitary operators on } \mathcal{H}\}, \text{ and} \quad M : B \rightarrow \{\text{hermitian operators on } \mathcal{H}\}.
$$

The core models exhibit discrete spectra for all $M \in \mathcal{M}$:

Property 1

$$
(\forall b \in B)M(b) = \sum_j m_j(b)M_j(b), \quad (1)
$$

where $m_j : B \rightarrow \mathcal{R}$ (with \mathcal{R} denoting the real numbers) is the j-th eigenvalue of M, and M_j is the projection onto the j-th eigenspace (so $M_j M_k = \delta_{j,k}M_j$).
Let Pr\((j|b)\) denote the probability of obtaining the \(j\)-th outcome, given transmission by the CPC of a command \(b\). Although not commonly seen in texts, this probability of an outcome given a command is the hinge pin for focusing on quantum mechanical language used to describe what a scientist can find by using instruments. Quantum mechanics constrains all these models to satisfy

\[Pr(j|b) = \langle v(b)|U^\dagger(b)M_j(b)U(b)|v(b)\rangle, \]

(2)

where the \(\dagger\) denotes the hermitian adjoint.

Any choice of command set \(B\) and of functions from the sets \(V_B, U_B,\) and \(M_B\) produces a quantum-mechanical model \((|v\rangle, U, M)_B\). Two models \((|v\rangle, U, M)_B\) and \((|v'\rangle, U', M')_B\) generate the same probabilities \(Pr(j|b)\) if they are unitarily equivalent, meaning there exists a \(Q : B \to \{\text{unitary operators on } \mathcal{H}\}\) such that \(\forall b \in B\)\(|v'(b)\rangle = Q(b)|v(b)\rangle\), \(U'(b) = Q(b)U(b)Q^\dagger(b)\) and \(M'(b) = Q(b)M(b)Q^\dagger(b)\). For this reason, any model \((|v\rangle, U, M)_B\) can be reduced to \((|v'\rangle, 1, M')_B\), where \(|v'\rangle = U|v\rangle\) and \(M' = M\) or, alternatively to \((|v\rangle, 1, M')_B\) where \(M' = U^\dagger MU\).

As was recently proved\cite{x}, in order that measured data can select a single best fitting model from a set of models (up to unitary equivalence), additional restrictions are necessary to narrow down the set of models to a much smaller set than that defined by properties 1 and 2, because many inequivalent models can be found to fit exactly and conceivable record of outcomes. Furthermore, it was proved that these restrictions cannot be derived from quantum mechanics nor from the measured data, so that imposing them takes guesswork on the part of the scientist. This core set of models is a subset of models available using more general formulations. Because guesswork is necessary even to resolve choices among models of the core set\cite{x}, it follows that guesswork is necessary also to resolve the broader choices of models from supersets that include more models, e.g. models involving positive-operator-valued measures or superoperators or both.

It is conventional in endeavors aiming at quantum computing to assume three additional properties to narrow the set of models; this is community-endorsed guesswork:

Property 3 The command \(b\) is the concatenation of separate commands for the three types of operations, so that

\[b = b_v \parallel b_U \parallel b_M, \]

(3)
where here the \parallel denotes concatenation of commands.

According to these models, one can vary any one of the three while holding the other two fixed. This specializes Eq. (3) to the more restrictive form:

$$\Pr(j|b) = \langle v(b_v)|U^\dagger(b_U)M_j(b_M)U(b_U)|v(b_v)\rangle.$$

(4)

An additional constraining guess characterizes models widely used in the analysis of quantum computers, a guess prompted by the desire to generate a unitary transformation as a product of other unitary transformations that serve as “elementary quantum gates.” For example, a scientist may want to generate the unitary transformation $U(b_{U,1})U(b_{U,2})$ by causing the CPC to transmit some b_U. For quantum computing to have an advantage over classical computing, the determination of this b_U in terms of $b_{U,1}$ and $b_{U,2}$ must be of polynomial complexity [5]. It is usually assumed that b_U is the simplest possible function of $b_{U,1}$ and $b_{U,2}$, as follows.

Let $B_U \subset B$ be a set of instrument-controlling commands, thought of as strings that can be concatenated. Suppose the function U has the form $U(b_1 \parallel b_2) = U(b_2)U(b_1)$ for all $b_1 \parallel b_2 \in B_U$ (note reversal of order). Then we say the function U respects concatenation.

Property 4 Quantum computation employs a subset of models in which U respects concatenation.

Finally, the theories widely used in quantum computing assume something about timing:

Property 5 the unitary transformation commanded by any command b_U takes a state $|v\rangle$ at one time into a a state $|v'\rangle$ at a time later by some amount $T(b_U)$.

Remark 1 To appreciate contact between instruments and equations, it is essential to see Properties 1 through 5 not as properties of laboratory instruments, but as properties that a scientist can choose to demand of models. Whether the instruments act that way is another question. There are reasons, relaxation and other forms of decoherence among them, to expect limits to the precision with which instruments can behave in accord with properties 3 through 5. All five properties are used often enough to be conventions, in the sense that a convention is a guess endorsed by a community.
2.1 Statistically significant differences between models

In practice, a scientist has little interest in a model chosen so that its probabilities exactly fit measured relative frequencies. Rather, the scientist wants a simpler model with some appealing structure that comes reasonably close to fitting. Quantum mechanics encourages this predilection, because on account of statistical variation in the sample mean, functions that perfectly fit outcomes on hand at one time are not apt to fit perfectly outcomes acquired subsequently. We show here that accepting statistics no way takes away from the proof that measurements and equations by themselves cannot link models to instruments.

One needs a criterion for the statistical significance of a difference between two quantum-mechanical models (or between a model and measured relative frequencies). Here we limit our attention to models α and β which have a set B of commands in common and for which the spectra of M_α and M_β are the same. For a single command b, the question is whether the difference between the probability distributions $Pr_\alpha(\cdot|b)$ and $Pr_\beta(\cdot|b)$ is bigger than typical fluctuations expected in $N(b)$ trials. An answer is that two distributions are indistinguishable statistically in $N(b)$ trials unless

$$N(b)^{1/2}d(Pr_\alpha(\cdot|b), Pr_\beta(\cdot|b)) > 1,$$

where d is the statistical distance defined in Eq. (10) of a paper by Wooters\[6\]. Furthermore, Wooters’s Eq. (12) shows for two models α and β that differ only in the function $|v\rangle$,

$$d(Pr_\alpha(\cdot|b), Pr_\beta(\cdot|b)) \leq \cos^{-1} |\langle v_\alpha(b)|v_\beta(b)\rangle|.$$

(6)

To help judge the significance of the difference between two models with respect to a set B of commands common to them, a scientist who chooses some weighting of different commands can define a weighted average of $d(Pr_\alpha(\cdot|b), Pr_\beta(\cdot|b))$ over all $b \in B$. The same holds if model β is replaced by relative frequencies of outcomes interpreted from measured results.

It has been proved that the set of models statistically indistinguishable from a given model can be much larger than would be the case if the “\leq” of (6) were an equality\[4\].

Proposition 2.1 For any set of outcomes, two models α and β of the form $(|v\rangle, 1, M)_B$ can perfectly fit the relative frequencies of the outcomes (Proposition 2.1) and yet be mutually orthogonal in the sense that $\langle v_\alpha|v_\beta \rangle = 0$. 7
Wooters extended the definition of statistical difference to unit vectors representing quantum states. While for any two unit vectors, there exist measurement operators that maximize the statistical distance between them, for any such operator there exist other vectors, mutually orthogonal, that have zero statistical distance relative to this operator. For this reason, among others, statistics still leaves the scientist needing something beyond calculation and measurement to determine a model, for the set of models closer than ϵ in weighted statistical distance to certain measured results certainly includes all the models that exactly fit the data and, without special restrictions dependent on guesses, this set includes models that are mutually orthogonal. Models close to given measured data are not necessarily close to each other in the predictions they make.

3 Large sample size needed to decide which model better fits measured data

By recognizing that models are distinct from instruments, it is easy to ask a question of the form: suppose model α assumed to describe instruments, is wrong and another model, call it β, describes the instruments better with respect to outcomes in some situation. Even if instruments behave in accord with a model α, it can be a lot of work to show this, and without showing it, one does not know it. While there are many models having properties 1 and 2 that fit any given outcomes of instruments exactly, making the the models indistinguishable with respect to fit, there are many other models that do not fit. Given a model α that fits and a model γ that does not, it was shown[4] that models α and γ are statistically distinguishable with respect to their fit to data measured for a command b only if the statistical distance between α and γ, which we call ϵ, is big enough in relation to sample size $N(b)$; distinguishability requires

$$N(b) \geq \epsilon^{-2}. \quad (7)$$

This raises the question of the size of the statistical distance ϵ. Very small values of ϵ are required to implement quantum searching[4], implying large sample size, as follows. The task of searching is often expressed as the task of finding the value (assumed to exist and to be unique) for which a binary function f of n bits is 1. The function f is expressed by an oracle, represented by a unitary transformation U_f, diagonal in the computational basis.
of dimension $N = 2^n$, with 1 for each value except for -1 in the place for the argument for which f takes the value 1. For the example of the function f_0 such that $f(0) = 1$ and $f(x) = 0$ for $x \neq 0$, $U_f = U_0 = 1 - 2|0\rangle\langle 0|$. The algorithm for quantum search can be viewed as implementing a model that calls for three steps, (the second of which is repeated many times):

1. prepare a state
 $$|w\rangle \overset{\text{def}}{=} \frac{-1}{2} \sum_{j=0}^{N-1} |j\rangle$$

2. on the order $N^{1/2}$ times, apply U_f followed by $U_w = 1 - 2|w\rangle\langle w|$; and

3. make a nondegenerate measurement diagonal in the computational basis.

This works because U_w reflects about the hyperplane perpendicular to $|w\rangle$, U_f reflects about the hyperplane perpendicular to the basis vector corresponding to the special value (which is $|0\rangle$ for the case $f = f_0$), and the product of the two reflections acts as a rotation moving the starting vector $|w\rangle$ toward the special vector for f.

Now we show explicitly how a small error in a unitary transformation can cause a failure. Suppose that the instruments behave not in accord with the model α described but in accord with a model β that differs from α in that in place of U_w, the transformation is $U_\tilde{w}$ which lacks the component $|0\rangle$:

$$|\tilde{w}\rangle \overset{\text{def}}{=} (N - 1)^{-1/2} \sum_{j=1}^{N-1} |j\rangle.$$

(9)

It is easy to check that the angle θ between $|w\rangle$ and $|\tilde{w}\rangle$ defined by $\theta = \cos^{-1} |\langle w|\tilde{w}\rangle|$ is given by

$$\theta = \cos^{-1}[(1 - 1/N)^{1/2}] \approx N^{-1/2} = 2^{-n/2}.\quad (10)$$

Correspondingly, the error between the desired unitary transformation U_w and the transformation $U_\tilde{w}$ that describes what the instruments do is readily calculated to be

$$\epsilon = \| U_w - U_\tilde{w} \| = 2|\sin \theta| \approx 2N^{-1/2} = 2^{1-n/2},\quad (11)$$

which is exponentially small in the number \(n \) of bits. Though exponentially small, the error \(\epsilon \) completely destroys the quantum computation for the case of \(f_0 \), because (by construction) \(\langle 0 | \tilde{w} \rangle = 0 \), with the result that

\[
(U_{\tilde{w}} U_0)^2 = 1,
\]

so the repeated applications of \(U_{\tilde{w}} U_0 \) (in step 2, above) accomplish nothing, and no magnification of the desired component \(|0\rangle \) is achieved, so with an error in \(U_{\tilde{w}} \) as in Eq. (11), the outcome has negligible probability of corresponding to the right answer.

3.1 Lower bound on sample size required to verify performance

Exploring contact between instruments and equations requires not just the recognition of multiple models for given instruments, but also modeling the commands sent to instruments. To verify that a command \(b_U \) generates statistics corresponding to a desired unitary matrix \(U_1 \) requires trying the command out in conjunction with related commands \(b_{v,j} \) to prepare state vectors (\(j \) ranges over a sufficiently large set). The number of these vectors must be larger than the dimension of the vector subspace relevant to problems in which \(U_1 \) is used. This means for \(n \)-bit quantum computing the number of vectors is greater than \(N = 2^n \). For each vector, it follows from Eqs. (7) and (11) that the sample size required to show that a command \(b_U \) produces statistics consistent with any model to within the precision required for quantum searching is large indeed, namely \(N(b_U) > \epsilon^{-2} > 2^{n-2} \), whence it follows that the number of trials (the sample size) needed to verify experimentally that command \(b_U \) accords within \(\epsilon \) with a model that says it generates \(U_1 \) is greater than \(2^n N(b_U) \), which in turn is greater than \(2^{2n-2} \). With less than this amount of testing, the likelihood that quantum computing instruments will perform to the required precision is essentially zero.

4 High precision required for timing of CPC commands

While within some margin, the physics of a classical computer is insulated from its manipulating of symbols, that physics is not insulated from instruments commanded by a CPC; indeed the precision of timing of the CPC
matters critically to the successful functioning of instruments that it commands. Per property 5 of section 2, each unitary transformation takes a state at an earlier time to a state at a later time. Thus a unitary transformation happens not all at once, but over a time duration that depends on how the instruments implement the transformation. A written command b_U acts as a musical score. Like sight reading at a piano, executing a program containing the command b_U requires converting the character string b_U—the score—into precisely timed actions—like the striking of keys at the piano. In this analogy, the piano keys, so to speak, include the output buffers that control the amplitude, phase, frequency, and polarization of lasers of an ion-trap quantum computer or of radio-frequency transmitters for a nuclear-magnetic-resonance (NMR) quantum computer.

For this reason, executing a command b_U requires parsing it into pieces (signals) and sending each signal at its proper time, the specification of which is contained in the string b_U. Either the CPC that executes a program in which b_U is written parses the command into signals and transmits each signal at its appointed time, or the instruments receiving the command b_U, unparsed, contain programmable counters operating in conjunction with a clock that do this timed parsing. Such programmable counters themselves constitute a special-purpose CPC. So either the scientist’s CPC must execute commands by issuing an appropriately timed sequence of signals, or some other CPC attached to the instruments must do this. Either way, the capacity to execute programmed motion in step with a clock is a requirement for a CPC, distinct from and in addition to requirements to act as a Turing machine.

Implicit in models used in quantum computing is an additional property, to do with the effect of the mistiming of signals transmitted by a CPC executing a command b_U for a unitary transformation. The effect of mistiming is to generate some (unwanted) command \tilde{b}_U in place of b_U. To think about the effect of mistiming, one can start with the simple case of a mistimed NOT-gate for one bit. Two such gate operations concatenated result in the identity, which in the Bloch picture is a rotation by 2π. If it takes $T(\text{NOT})$ seconds to perform the NOT-gate, there is an angular rotation rate (in radians/s) of $\omega = \pi/T(\text{NOT})$. To avoid making an error greater than ϵ in the angle of the state vector, it is then necessary to have the error ΔT allowable for the CPC in the timing of signals satisfy:

$$\frac{\Delta T}{T(\text{NOT})} \leq \frac{\epsilon}{\omega T(\text{NOT})} = \frac{\epsilon}{\pi}. \quad (13)$$
For the search algorithm, Eq. (11) implies
\[\Delta T/T(\text{NOT}) < 2^{-n/2}. \] (14)

The best precision of timing available from hydrogen masers is something like 1 part in 10^{15}, which fails to be adequate if $n > 30 \ln 10 / \ln 2 < 100$; i.e. the precision of the best hydrogen masers is less than the precision of timing needed if $n > 99$.

5 Modeling calls for guesswork

In this section we review propositions proved elsewhere concerning guesswork required to link quantum-mechanical models to instruments and contribute a new one; in addition, we describe how the set of models forms a lattice that a scientist navigates in searching for a model that fits data to within some prescribed weighted statistical distance; finally we describe guesswork needed to replace a model that fits the behavior of instruments at one level of precision with a model that fits more precisely.

5.1 Trying for a model that fits the instruments

Consider a scientist searching for a model α within a weighted statistical distance ϵ of relative frequencies of outcomes obtained by use of the instruments. The scientist needs to choose a model from some large set S of models. To illustrate what is involved, suppose S is the set of models of section 2, constrained only to exhibit properties 1 and 2. As proved earlier[2], we have the following three propositions:

Proposition 5.1 Given any recorded counts of measured outcomes associated with any set B of commands, the set of models satisfying properties 1 and 2 contains many unitarily inequivalent models $(|v\rangle, U, M)_B$, each of which fits perfectly the relative frequencies of outcomes.

Proposition 5.2 For any set of outcomes, two models α and β of the form $(|v\rangle, 1, M)_B$ can perfectly fit the relative frequencies of the outcomes (Proposition 5.1) and yet be mutually orthogonal in the sense that $\langle v_\alpha | v_\beta \rangle = 0$.
Proposition 5.3 For measured data to uniquely decide to within unitary equivalence which quantum-mechanical model of a set of models best fits experimental results interpreted as outcomes by a criterion of least statistical distance (or any other plausible criterion), the set of models must first be sufficiently narrowed, and this narrowing is underviable from the results and the basic properties 1 and 2 of quantum mechanics.

To these we now append:

Proposition 5.4 Any model \((|v\rangle, U, M)_B\) working in the Hilbert space \(\mathcal{H}\) can be mimicked exactly for all commands of \(B\) by two other mutually perpendicular models working with any command set \(\tilde{B} \supseteq B\) in the Hilbert space \(\mathcal{H} \otimes \mathcal{H}\).

Proof: To generate one of the mimicking models, replace \(|v\rangle\) by \(|\tilde{v}\rangle \otimes |w\rangle\) while for the other use \(|v\rangle \rightarrow |\tilde{v}\rangle \otimes |w_\perp\rangle\), for any \(|\tilde{v}\rangle|_B = |v\rangle\) and any \(|w\rangle, |w_\perp\rangle\) : \(\tilde{B} \rightarrow \mathcal{H}\) such that \(\langle w|w_\perp\rangle = 0\); for both mimicking models, replace \(U\) by \(U \otimes 1\) and \(M\) by \(M \otimes 1\). An easy check confirms that these models have the claimed properties of producing the same probabilities for commands of \(B\) as does the given model, and that the two mimicking models are orthogonal to each other. □

All the subsets of \(S\) constitute a lattice under set intersection and union; we call this a lattice of models. Any record of measured results interpreted as outcomes, together with a weighted statistical distance \(\epsilon\), defines a subset of \(S\) consisting of those models that have the property being within \(\epsilon\) in distance to the relative frequencies of the outcomes. The propositions show that \(S\) is “too big” a set, in that it always contains models that are drastically different from each other, indeed orthogonal. That means the subset contains models that, by any plausible measure, are unappealing.

Each property applicable to \(S\) defines a subset of \(S\); e.g. property 3 defines a subset, and property 4 a subset of that subset. Indeed, the lattice of models can be viewed as isomorphic to a lattice of properties. Our scientist hopes to guess properties to produce a subset within which the models that are close to measured results are close to each other in the predictions they make, and have properties that the scientist likes. Actually, the scientist wants to guess properties that narrow \(S\) down to one model that appeals to the scientist and best fits the measured results.

This can require a long journey. Starting with \(S\), the scientist guesses a list of properties, each of which defines a subset. The list of properties defines
a subset $S' \subset S$ that shares all these properties, which is just the intersection of all the subsets defined by the properties separately. Having defined this smaller set S', the scientist explores the weighted distance between the models of this subset and recorded measured data, and also explores the closeness of the models that fit the data, if any, to each other. If carried out, this exploration results in one of three cases:

1. there are widely disparate models in S' that all fit the data; i.e. S' is too big, so the scientist needs to guess additional properties to shrink to fewer models;

2. no models of S' fit well, leading to the need to drop a property from the list to get a new subset of S, which includes S';

3. some models of S' fit the data well and these are close to each other in their implications, leading to the use of one of these models, say model α.

5.2 Ratcheting up precision takes fresh guesswork

Suppose the following:

1. A scientist cycles through these cases, arriving eventually at case 3 with a model α, with ϵ as the weighted statistical distance between the model and relative frequencies of outcomes obtained from the testing of instruments.

2. Using the model to define commands for the CPC to transmit to instruments results in successful quantum searching for functions of $n - 1$ bits, but the commands do not work for n bits; per Eq. (11), requires a reduction of error by $2^{-1/2}$.

3. The scientist needs to produce commands that more precisely generate behavior of the instruments described by quantum gates specified as unitary matrices U_j for $j = 1, \ldots, G$, and needs to achieve weighted statistical distance $\epsilon' = 2^{-1/2} \epsilon$, or less.
5.2.1 Can searching supplant the need for a better model?

If a scientist has a command b_j that generates behavior of instruments consistent to within ϵ of a desired unitary transformation U_j, can the scientist likely find a command that is precise to within $\epsilon' = 2^{-1/2}\epsilon$ by searching, thus skipping the need to get a more precise model? That depends on the how many commands have to tried, and the number of repetitions of each command necessary to obtain a sample size big enough to discriminate between models to within a statistical distance of ϵ'.

To determine this number of commands that have to be tried, we introduce a notion of an ϵ-grid on a metric space, here the Lie group $SU(N)$ with the metric induced by the spectral norm. By an ϵ-grid on a metric space S, we mean a finite subset $\mathcal{G}_\epsilon \subset S$ such that for any $x \in S$, $\exists y \in \mathcal{G}_\epsilon$ such that $|x - y| < \epsilon$. To be sure of finding a command \tilde{b}_j that produces behavior within ϵ' of U_j, it is necessary to explore all the points of an ϵ'-grid of the ϵ-ball in $SU(N)$ around $U(b_j)$. There are at least as many such points as the ratio of the volume of an ϵ-ball to the volume of an ϵ'-ball in $SU(N)$. That ratio is $(\epsilon/\epsilon')^d$, where d is the dimension of $SU(N)$, so $d = N^2 - 1 = 2^{2n} - 1$. Thus the number of points that have to be explored to guarantee finding one that improves the precision by enough to expand quantum search by one bit is, for just one gate command, $2^{d/2}$, with $d \approx 4^n$. Starting with precision just adequate for a 4-bit search, to reach precision just adequate for a 5-bit search requires exploring about 10^{154} commands. Without counting the large number of trials needed to get a sample size big enough, blind searching is hopeless as a way to find better commands. Finding a better model to generate commands, and thus avoiding a search over all these commands, appears indispensable.

5.2.2 Trying for a better model

A model α found in the beginning of a quantum-computing experiment by trying out small problems for a small sample sizes and a small set of commands B_{test} will likely be inadequate to generate the precision required to deal with larger problems, such as factorizing larger integers or searching a larger list. With blind searching ruled out, a better model, call it β, is necessary from which to determine more precisely the commands and their timing.

How does looking for and deciding on a better model work? Can this be
done by a universally applicable program, run by the CPC that controls the quantum computing instruments? Hope for this automation lies mostly the idea that searching for a better model is adequately defined by the objective of a better fit to measured results and by a desire for simplicity in the model; the hope is perhaps spurred also by the allure of the universal test used in mathematical logic, isolated from laboratory instruments, for testing a claimed derivation, a test that can be thought of as a universally applicable program for a Turing machine[8].

This hope is dashed by Wittgenstein’s contribution to the foundations of both psychology and set theory, when he made unequivocally clear that words are what people say in various scenes, so that what the speaking of a word means depends on the scene in which the word is spoken[9]. This applies to words transmitted by a CPC as commands to computer-controlled instruments. The evaluation of the words cannot be independent of the evaluation of the activity and actions of the instruments generated by those words. (Without this connection any concept of testing falls in confusion, because the same word, whether uttered by a person or transmitted as a command to an instrument by a CPC, produces actions that depend on context beyond the power of verbal or mathematical analysis, as follows from the previously cited proof of the need for guesswork to link models to instruments.) This means that, even under our bold assumption that suitable commands exist, the finding of a model with certain properties that fits measured data at one level of precision by no means assures the existence of a model having those properties and fitting the same measured data at greater precision, let alone data obtained from larger samples and a larger set of commands. Thus when larger problems are tackled, with their demand for increased precision, the scientist can expect to have to go back through the lattice of models, encountering all three cases, to find new, possibly more complex properties by which to narrow the set of models. This implies a need for a scientist operating a quantum computer to switch back and forth between modes of quantum computing and modes of refining the model and the commands it calls for.[2]

6 Concluding remarks

It has been striking and surprising to find in the course of this work that contact between instruments and equations is a barely discovered discipline
Models that fit exactly to certain measured outcomes

Models for which $U(b_1 \parallel b_2) = U(b_2)U(b_1)$

Figure 1: Non-intersection of “nice models” with “exactly fitting models.”

of physics, awaiting further investigation. The example of quantum searching shows up some of the issues of contact especially vividly. The quantum computing problem of factorizing and the Deutsch-Jozsa problem require a number of gate transformations polynomial rather than exponential in the number of bits, and so the challenges to their implementation are less extreme. Nonetheless implementing any device described quantum mechanically at progressive levels of precision calls for navigating a lattice of models, coping with ambiguity among inequivalent models, dealing with sample sizes made necessary by quantum indeterminacy, and managing via machinery that is specified classically the timing of signals at the precision demanded by quantum mechanics. Here we have provided some tools for a promising discipline. Since they are of general application, not limited to quantum
computing, these tools are widely applicable to efforts that join theory and experiment in quantum physics.

Acknowledgments

We thank Amr Fahmy for contributing to our thoughts and discussions at many points during this work. In addition to him, we are indebted to Steffen Glaser, and Raimund Marx, and Wolfgang Bermel for introducing us to the subtleties of laboratory work aimed at nuclear-magnetic-resonance quantum computers[1][2][3][4][5][6][7]. We learned the view of quantum searching used here from David Mumford.

References

[1] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, “Chemical engineering of an NMR quantum computer,” to be published in E. Donker and A. R. Pirich, eds, Quantum Computing, Proc. SPIE, 4047, 2000.

[2] J. M. Myers and F. H. Madjid, “A proof that measured data and equations of quantum mechanics can be linked only by guesswork,” arXiv:quant-ph/0003144 30 Mar 2000, Submitted for publication in the AMS Contemporary Mathematics Series volume entitled Quantum Computation & Quantum Information Science, 2000.

[3] E. Bernstein and U. Vazirani, “Quantum complexity theory”, SIAM Journal on Computing 26, pp. 1411–1473, 1997.

[4] L. K. Grover, “A fast quantum mechanical algorithm for database search”, Proc. 28th annual ACM symposium on the theory of computing, ACM Press, New York, NY, pp. 212–219, 1996.

[5] C. H. Papadimitriou, Computational complexity, Addison-Wesley, Reading, MA, 1994.

[6] W. K. Wooters, “Statistical distance and Hilbert space”, Phys. Rev. D 23 (1981), 357–362.
[7] D. Collins, K. W. Kim, and W. C. Holton, “Deutsch-Jozsa algorithm as a test of quantum computation,” Phys. Rev. A 58, R1633, 1998.

[8] G. S. Boolos and R. C. Jeffrey, Computability and logic, 3rd ed., Cambridge University Press, Cambridge, 1989.

[9] L. Wittgenstein, Philosophical Investigations, 2nd ed., Blackwell, Oxford, 1958, p232.

[10] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, “Approaching five-bit NMR quantum computing,” Phys. Rev. A., accepted for publication, 2000.