Efetividade do uso de times de resposta rápida para reduzir a ocorrência de parada cardíaca e mortalidade hospitalar: uma revisão sistemática e metanálise

RESUMO

Objetivo: Avaliar a efetividade de times de resposta rápida com uso de identificação precoce de deterioração clínica, na redução das ocorrências de parada cardiotoráptroria e morte no hospital.

Fontes de dados: Realizaram-se buscas nas bases de dados MEDLINE, LILACS, Cochrane Library e Center for Reviews and Dissemination.

Seleção de estudos: Incluímos trabalhos que avaliaram a efetividade de times de resposta rápida em unidades hospitalares de pacientes adultos, publicados em inglês, português ou espanhol, no período entre 2000 e 2016. Consideraram-se elegíveis revisões sistemáticas, ensaios clínicos, estudos de coorte e ecológicos pré-pós. A qualidade dos trabalhos foi avaliada de forma independente por dois dos pesquisadores com utilização das escalas Newcastle-Ottawa e Jadad modificada, e da ferramenta Assessment of Multiple Systematic Reviews.

Extração dos dados: Os resultados foram resumidos e tabulados. Quando os autores dos estudos incluídos relataram medidas de risco, estimamos a efetividade como 1-RR ou 1-OR. Nos estudos pré-pós, estimamos a efetividade como a diminuição porcentual nas taxas após a intervenção.

Resultados: Identificou-se um total de 278 trabalhos, dos quais 256 foram excluídos após avaliação do resumo, e dois outros após avaliação do texto completo. Na metanálise dos estudos que relataram dados de mortalidade, calculamos uma proporção de risco de 0,85 (IC95% 0,76 - 0,94); para os trabalhos que relataram dados de parada cardíaca, o cálculo da proporção de risco foi de 0,65 (IC95% 0,49 - 0,87). A evidência foi de baixa qualidade em razão da heterogeneidade e do risco de viés nos ensaios primários.

Conclusão: Os times de resposta rápida podem reduzir a incidência de morte e parada cardíaca no hospital, embora a qualidade da evidência seja baixa para ambos os desfechos.

Descritores: Equipe de assistência ao paciente; Mortalidade; Parada cardíaca; Qualidade da assistência à saúde; Revisão sistemática

INTRODUÇÃO

Cada vez mais, tem recebido atenção a qualidade dos serviços fornecidos a pacientes hospitalizados em hospitais terciários. Empregam-se diferentes métodos para medir a qualidade hospitalar, com a finalidade de ajustar rotinas, inclusive processos de acreditação. Uma das estratégias sugeridas nos processos de acreditação, que pode melhorar a qualidade dos cuidados e reduzir a mortalidade hospitalar, é a implantação de times de resposta rápida (TRR), também...
conhecidos como times de emergência médica, times de código azul ou times de parada cardíaca.

Os TRR são compostos por profissionais de saúde exclusivamente dedicados a proporcionar cuidados a pacientes hospitalizados e identificados como em risco elevado de piora. Os TRR são implantados com a finalidade de prevenir a parada cardíaca em pacientes admitidos às enfermarias do hospital e reduzir a mortalidade.(5)

A implantação de TRR foi considerada uma intervenção prioritária na campanha norte americana 5 Million Lives. Esta campanha foi lançada em 2004 pelo Institute for Healthcare Improvement com o objetivo de diminuir em 5 milhões o número de óbitos nos Estados Unidos em um período de 2 anos. Após a campanha, a implantação de TRR foi recomendada pela maior parte das agências de acreditação.(6)

Um estudo conduzido em três hospitais com atendimento de emergência na Austrália mostrou que cerca de 67% dos óbitos em pacientes hospitalizados ocorreram em unidades de enfermaria aberta. Estima-se que, geralmente, as paradas cardíacas têm sintomas ou sinais clínicos que predizem sua ocorrência 6 a 8 horas antes do evento.(5) Os sinais mais comuns de parada cardíaca em 66% dos pacientes examinados foram dessaturação e hipotensão, achados que foram identificados em diversos estudos conduzidos em hospitais com diferentes condições e estruturas. (7-10)

A ideia de um TRR se originou a partir da criação dos times de trauma, treinados para reconhecer os sinais precoce de deterioração clínica e rapidamente responder às necessidades do paciente traumático, tendo sido inicialmente introduzidos na Austrália em 1989. A composição do TRR é frequentemente diferente entre distintos hospitais. Algumas instituições têm equipes que compreendem médicos, enfermeiros intensivistas e fisioterapeutas, e, na maior parte dos hospitais, os médicos atuam como líderes do TRR.(14)

Os TRR triam e tratam pacientes internados que apresentam sinais de deterioração clínica. A falta de detecção desta deterioração pode diminuir a efetividade dos TRR. Além disto, o TRR foi incluído como a quinta conexão na cadeia da sobrevivência descrita pelo Advanced Cardiac Life Support Subcommittee.

A efetividade dos TRR continua controversa, em razão da diversidade da evidência referente ao impacto dessas equipes. Em metanálise conduzida pela Cochrane Collaboration em 2007, a efetividade dos TRR não pôde ser concluída de forma definitiva, principalmente em razão do número de estudos que utilizaram metodologia inadequada ou tiveram baixo nível de evidência.

Os resultados de outra metanálise, conduzida em 2010, demonstraram a efetividade dos TRR, identificando significante redução no número de paradas cardiorrespiratórias em adultos (risco relativo - RR = 0,66; intervalo de confiança de 95% - IC95% 0,54 - 0,80), porém redução não significante na mortalidade (RR = 0,96; IC95% 0,84 - 1,09). Os resultados de metanálise recente, conduzida em 2015 e que avaliou estudos publicados até 2013, indicaram reduções estatisticamente significantes na mortalidade (13%) e na ocorrência de paradas cardíacas (35%). Subsequentemente, foram publicados outros estudos, que avaliam a efetividade dos TRR, justificando a realização de metanálise atualizada nesta área de interesse.

Assim, nosso objetivo foi conduzir uma revisão sistemática para examinar a evidência científica disponível, com a finalidade de verificar a efetividade do TRR na redução da incidência de morte e parada cardíaca no hospital. Os desfechos avaliados foram a redução da mortalidade e da ocorrência de paradas cardíacas em pacientes adultos admitidos às enfermarias.

MÉTODOS

Fonte dos dados e seleção dos estudos

Conduziu-se uma revisão sistemática da literatura, segundo as diretrizes PRISMA. A questão da pesquisa foi desenvolvida com uso da estratégia PICOS (Tabela 1).

Em 1º de fevereiro de 2016, conduzimos uma busca nas bases de dados MEDLINE (PubMed), Cochrane Library, Center for Reviews and Dissemination e LILACS para identificar a literatura pertinente; utilizaram-se estratégias específicas de busca, levando em consideração a sintaxe e a máquina de pesquisa para cada base de dados, visando obter a maior sensibilidade possível. Conduziu-se também busca manual das referências incluídas nos estudos. A busca foi restrita pela linguagem (artigos em português, inglês e espanhol) e pela data, incluindo-se apenas trabalhos publicados desde 2000.

Incluímos estudos que inscreveram adultos e avaliaram a efetividade dos TRR em comparação à ausência de TRR em pelo menos um dos desfechos a seguir: mortalidade ou parada cardíaca em unidades abertas do hospital. Só se incluíram estudos ecológicos pré-pós, ensaios clínicos, estudos de coorte e metanálises que relataram medidas quantitativas do desfecho.

Os artigos foram selecionados de forma independente por dois pesquisadores. Os trabalhos foram inicialmente
Tabela 1 - Estratégia PICOS para busca da literatura

População	Pacientes adultos admitidos por todas as causas em unidades abertas do hospital
Intervenção	Time de resposta rápida com sistemas de identificação de sinais precoces de deterioração clínica
Comparação	Serviços sanitários a pacientes em unidades abertas que não utilizam sistemas para detecção precoce de sinais de deterioração clínica e sem fluxo de acionamento da equipe médica
Outcomes (desfechos)	Mortalidade hospitalar
	Paradas cardíacas na unidade aberta
Study design (delineamento do estudo)	Estudos ecológicos antes-depois, ensaios clínicos, estudos de coorte e metanálises

Tabela 2 - Estratégia de busca de artigos nas bases de dados eletrônicas

Bases de dados	Lista de termos
MEDLINE [PubMed]	#1 (“Hospital Rapid Response Team”[Mesh]) AND “Hospital Mortality”[Mesh]
	#2 (“Hospital Rapid Response Team”[Mesh]) AND “Heart Arrest”[Mesh]
Cochrane Library	(tw: (“rapid response team”)) AND (kw: (“mortality hospital”))
	(tw: (“rapid response team”)) AND (kw: (“cardiac arrest”))
Centre for Reviews and Dissemination	“rapid response team” AND “mortality”
	“rapid response team” AND “cardiac arrest”
LILACS	(rapid response team) or “RAPID RESPONSE TEAM” [Palavras] and “mortality” or “MORTALITY, HOSPITAL” [Palavras]
	(rapid response team) or “RAPID RESPONSE TEAM” [Palavras] and “PARADA CARDIO-RESPIRATORIA” [Palavras]

selecionados com base em seus títulos e resumos. Então, excluíram-se os artigos em duplicata e os que não cumpriram os critérios de inclusão. Nos casos de discordância, os avaliadores reavaliaram conjuntamente os artigos, para chegar a um consenso. Obteve-se o texto completo dos trabalhos selecionados para uma revisão abrangente. A qualidade dos artigos foi avaliada com utilização das seguintes ferramentas: Newcastle-Ottawa Scale (NOS) para estudos de coorte,(31) Jadad modificada para ensaios clínicos(32) e Assessment of Multiple Systematic Reviews (AMSTAR) para revisões sistemáticas.(33)

Igualmente, dois pesquisadores realizaram independentemente avaliação da qualidade, classificando os artigos, segundo a qualidade, como bom, médio ou ruim, de acordo com os critérios de cada escala. Nos casos de discordância com relação à avaliação da qualidade, os avaliadores procederam à revisão conjunta e à discussão do artigo, até se obter um consenso. Os artigos com avaliação de qualidade ruim foram excluídos do estudo.

Consideramos também o potencial impacto de novas pesquisas sobre nossa confiança nas estimativas de efeito relatadas pelos estudos. Para tal, avaliamos a qualidade da evidência com utilização do sistema GRADE. A evidência foi considerada com qualidade alta (muito improvável que novas pesquisas afetem nossa confiança nas estimativas de efeito), baixa (é muito provável que novas pesquisas tenham impacto importante em nossa confiança das estimativas) ou muito baixa (a validade das estimativas de efeito é incerta).

Extração de dados

Extraiemos de cada estudo as informações referentes a seu delineamento, população, medidas de desfecho, resultados e limitações.

Para todos os estudos, a associação primária avaliada e extraída foi o efeito dos TRR na redução dos desfechos de interesse. Nos estudos de coorte e caso-controle, este efeito foi relatado como RR ou odds ratio (OR). Nos ensaios pré-pós, o efeito foi relatado como taxas, durante o período antes e depois da intervenção.

Com a finalidade de permitir comparação das medidas de impacto, agrupamos as estimativas de efetividade extraídas de todos os trabalhos. Para os estudos de coorte e caso-controle, a efetividade é apresentada como 1-OR ou 1-RR. Para os estudos pré-pós, a efetividade (sempre que possível) foi calculada como diminuição percentual das taxas dos eventos de interesse após a intervenção, utilizando a seguinte fórmula: (taxa pré-ocorrência - taxa pós-ocorrência)/taxa pré-ocorrência x 100.

Os resultados são apresentados para comparações do delineamento dos estudos e tipos de desfecho.

Análise estatística

Conduziram-se metanálises dos resultados dos estudos primários com utilização do método de variância inversa e modelos de efeitos aleatórios, para compensar a heterogeneidade entre os estudos. Para condução das análises, utilizou-se o programa de computador Review Manager 5.3.
RESULTADOS

Identificaram-se, no total, 278 publicações - cinco das quais eram duplicatas e foram excluídas. Avaliamos os títulos e resumos dos 273 artigos restantes, porém 256 deles não atendiam aos critérios de inclusão. Assim, avaliou-se o texto completo de 17 artigos e, destes, excluíram-se 2, por não cumprirem os critérios necessários quanto ao padrão de qualidade (Figura 1). Finalmente, incluíram-se 15 artigos publicados entre 2000 e 2016, a saber: 2 ensaios clínicos, 3 metanálises e 10 estudos observacionais.

A mortalidade foi avaliada em 12 estudos. Nove destes estudos apresentaram resultados indicando que os TRR se associam com redução significante da mortalidade, com variação das estimativas entre 10 - 48%. (25,26,29,34,36,41-43) Os três estudos remanescentes não identificaram efetividade dos TRR na redução da mortalidade. (24,38,40) Duas das três metanálises aqui incluídas relataram que não houve redução significante da mortalidade, (24,38) mas a metanálise mais recente (conduzida em 2015) indicou redução estaticamente significante (Tabela 4).

Onze estudos consideraram a ocorrência de parada cardiorrespiratória. Nove deles, inclusive duas metanálises, apresentaram resultados que indicam que os TRR se associam com redução significante da ocorrência de paradas cardiopulmonar, com variação das OR entre 0,47 e 0,74. (25,29,35-37,39,41-43) Os dois estudos restantes não identificaram efetividade dos TRR na redução da ocorrência de parada cardiopulmonar (Tabela 4). (35,38)

A metanálise mais recente, conduzida em 2015 e que incluiu artigos publicados até 2013, relatou as seguintes medidas combinadas de efetividade: 13% para mortalidade (IC95% 5 - 19) e 35% para parada cardiopulmonar (IC95% 30 - 39). Dois estudos que foram conduzidos em 2014 e 2015 e não incluídos nesta metanálise também relataram redução significante da mortalidade, com RR de 0,76 (26) e OR de 0,80. (29) No Brasil identificou-se que os TRR se associam com reduções significantes da ocorrência de mortalidade (11%) e parada cardíaca (52%) (Tabela 4). (43)

Os resultados dos estudos de metanálise que relataram mortalidade sugerem que os TRR demonstraram um efeito protetor, com proporção de risco de 0,85 (IC95% 9,76 - 0,94); identificaram-se resultados similares quanto à ocorrência de parada cardíaca (proporção de risco 0,65; IC95% 0,49 - 0,87). Observou-se heterogeneidade significante (Figuras 2 e 3). A qualidade da evidência foi avaliada como baixa, conforme definição do sistema GRADE, por causa da grande heterogeneidade e do risco de viés nos estudos primários utilizados.

DISCUSSÃO

A presente revisão sistemática identificou que a implantação de TTR pode receber recomendação de nível B, já que a maior parte dos estudos mostrou que estas equipes reduzem de forma efetiva a mortalidade e a ocorrência de paradas cardíacas no hospital em adultos internados em unidades abertas; a metanálise sugere redução da taxa de mortalidade em 15%.
Tabela 3 - Resultados da avaliação pareada quanto à qualidade dos trabalhos observacionais selecionados

Artigo	Ferramenta	Conclusão final da escala
McGaughey et al. (23)	AMSTAR	Todos os itens foram sim
Chan et al. (24)	AMSTAR	Sem questões explícitas, não apresenta o registro da metanálise
Maharaj et al. (25)	AMSTAR	Todos os itens foram sim
Salvatierra et al. (26)	Jadad	8 pontos (ocultação inadequada)
Ludikhuize et al. (27)	NOS	7 estrelas (comparabilidade ruim)
Buist et al. (28)	Jadad	6 pontos (ocultação inadequada)
Devita et al. (29)	NOS	7 estrelas (comparabilidade ruim)
Priestley et al. (30)	Jadad	5 pontos (randomização e ocultação inadequadas)
Jones et al. (31)	Jadad	6 pontos (ocultação inadequada)
Hillman et al. (32)	Jadad	6 pontos (ocultação inadequada)
Dacey et al. (33)	Jadad	8 pontos (ocultação inadequada)
Chan et al. (34)	Jadad	8 pontos (ocultação inadequada)
Konrad et al. (35)	Jadad	8 pontos (ocultação inadequada)
Beitler et al. (36)	NOS	7 estrelas (comparabilidade ruim)
Gonçales, et al. (37)	Jadad	8 pontos (ocultação inadequada)

Figura 2 - Gráfico tipo forest plot da efetividade do time de resposta rápida na prevenção da mortalidade.

Figura 3 - Gráfico tipo forest plot da efetividade do time de resposta rápida na prevenção de parada cardíaca.

Embora só se possa fazer recomendação com nível B, é importante considerar as questões éticas, que podem decorrer da busca de resultados com nível mais elevado de evidência. A ética de ensaios para avaliar a efetividade dos TRR pode ser questionável, já que um grupo de pacientes receberia a intervenção enquanto o outro seria privado dela. Este fato complica o uso de grupos controle e alocação aleatória, assim como a ocultação dos códigos para os participantes que receberem a intervenção. Contudo, por ser uma questão controvertida, pode ser conduzido um ensaio clínico.

Logo, em uma avaliação do delineamento epidemiológico ideal para avaliar a qualidade dos serviços de saúde, identificou-se que estudos de coorte constituem um dos
Tabela 4 - Resultados dos ensaios clínicos, estudos ecológicos antes-depois e estudos de coorte incluídos na revisão sistemática

Estudos	Definirmento/população do estudo	Desfecho	Resultados	Limitações do estudo	Efetividade (%)	Qualidade da evidência
McGaughey et al.(23)	Revisão sistemática Artigos publicados entre 1996 e junho de 2006	Mortalidade	Redução da mortalidade	Apenas dois artigos examinados; não realizaram análise econômica		Moderada
Chan et al.(24)	Revisão sistemática e metanálise Artigos publicados entre 1º de janeiro de 1950 e 31 de novembro de 2008	Mortalidade Parada cardiaca	RR 0,96 (IC95% 0,84 - 1,09) RR 0,66 (IC95% 0,54 - 0,80)	Não foram analisados dados individuais; foram utilizados centros acadêmicos na maior parte dos estudos revisados	4% (IC95% 9 - 16) 0,34 (IC95% 0,20 - 0,46)	Moderada
Maharaj et al.(25)	Revisão sistemática e metanálise Estudos publicados entre 1º de janeiro de 1990 e 31 de novembro de 2013	Mortalidade Parada cardiaca	RR 0,87 (IC95% 0,81 - 0,95; p < 0,001 RR 0,65 (IC95% 0,61 - 0,70; p < 0,001	Não foram analisados dados individuais	13% (IC95% 5 - 19) 35% (IC95% 30 - 39)	Moderada
Salvatierra et al.(26)	Estudo antes-depois Pacientes adultos Intervenção: introdução da equipe de emergências clínicas em 10 hospitais em Washington, durante 31 meses; 235.344 pacientes Controle: 235.718 pacientes antes da intervenção	Mortalidade	RR 0,76 (IC95% 0,72 - 0,80)	Uso de controles históricos	24% (IC95% 20 - 28)	Baixa
Ludikhuize et al.(29)	Estudo antes-depois Pacientes adultos Intervenção: implantação da TRR foi dividida em duas fases. Primeiramente MEWS e a ferramenta de comunicação SBAR, e, após 7 meses da implantação, a TRR foi implantada em 12 hospitais holandeses, 29.560 admissões Controle: 28.298 admissões	Mortalidade Parada cardiaca	OR 0,80 (IC95% 0,64 - 1,00) OR 0,60 (IC95% 0,39 - 0,93)	Uso de controles históricos	20% (IC95% 0 - 36) 40% (IC95% 7 - 61)	Baixa
Buist et al.(34)	Estudo antes-depois Pacientes adultos em hospitais americanos com 300 leitos Intervenção: introdução de uma TRR Controles: histórico, 19.317 admissões	Parada cardiaca	OR 0,5 (IC95% 0,35 - 0,73)	Uso de controles históricos	50% (IC95% 27 - 65)	Baixa
DeVita et al.(35)	Análise retrospectiva de desfechos Pacientes adultos em hospitais americanos com 622 leitos Intervenção: introdução de critérios objetivos para ativação da equipe de emergência clínica	Parada cardiaca	6,5 para 5,4/1.000	Estudo observacional; análise retrospectiva com dificuldade para controlar quanto a fatores de confusão	16%	Moderada
Priestley et al.(36)	Ensaio clínico randomizado por enfermarias 16 enfermarias de um hospital geral de 800 leitos na Inglaterra Desfecho: mortalidade Intervenção: Introdução de um serviço de terapia intensiva nas enfermarias	Mortalidade	OR 0,52 (IC95% 0,32 - 0,85)	Poucos hospitais participantes; efeito Hawthorne; contaminação dos controis; problemas com coleta de dados	48% (IC95% 15 - 68)	Moderada

Continua...
Estudos	Delineamento/população do estudo	Desfecho	Resultados	Limitações do estudo	Efetividade (%)	Qualidade da evidência
Jones et al.\(^{37}\)	Estudo antes-depois, análise de três períodos Pacientes adultos em hospital australiano com 400 leitos Intervenção: introdução da equipe de emergência clínica Controles: histórico, 16.246 admissões	Parada cardiaca	OR 0,47 (IC95% 0,35 - 0,62)	Utilização de controles históricos; não foi randomizado nem cego; apenas um hospital avaliado; mecanismo de redução da parada cardiaca não revelado	53% (IC95% 38 - 65)	Baixa
Hillman et al.\(^{38}\)	Estudo antes-depois Pacientes adultos de 23 hospitais australianos Desfecho: parada cardiopulmonar e óbito imprevisto Intervenção: introdução de equipe de emergência clínica Controle: sem introdução da equipe de emergência clínica	Mortalidade Parada cardiaca	OR 1,03 (IC95% 0,84 - 1,28) OR 0,94 (IC95% 0,79 - 1,13)	As variações identificadas entre os hospitais foram maiores do que o previsto pelo grupo de pesquisadores	-3% (IC95% -28 - 16) 6% (IC95% -13 - 21)	Moderada
Dacey et al.\(^{39}\)	Estudo antes-depois Pacientes adultos em hospitais americanos com 350 leitos Intervenção: introdução da TRR Controles: histórico	Mortalidade Parada cardiaca	2,82 para 2,35/100 hospitalizações; p < 0,001 7,6 para 3,0/1.000 hospitalizações; p < 0,001	Não foi randomizado; efeito Hawthorne	16% (p<0,001) 60% (p<0,001)	Baixa
Chan et al.\(^{40}\)	Coorte prospectiva Pacientes adultos em hospital americano com 404 leitos Intervenção: introdução de um TRR Controles: histórico, 24.193 admissões	Mortalidade	OR 0,95 (IC95% 0,81 - 1,11)	Uso de controles históricos, porém ajustado quanto às tendências temporais; poder estatístico pequeno para identificar diferenças na mortalidade	5% (IC95% -11 - 19)	Baixa
Konrad et al.\(^{41}\)	Estudo antes-depois Pacientes adultos Intervenção: introdução da equipe de emergências clínicas, 73.825 pacientes Controle: 203.892 pacientes antes da intervenção	Mortalidade Parada cardiaca	OR 0,90 (IC95% 0,84 - 0,97) OR 0,74 (IC95% 0,55 - 0,98)	Uso de controles históricos; retardos da direção da equipe não foram avaliados	10% (IC95% 3 - 16) 26% (IC95% 2 - 45)	Baixa
Beitler et al.\(^{42}\)	Coorte prospectiva Pacientes adultos em hospitais americanos com 809 leitos Intervenção: introdução de um TRR Controles: histórico, 77.021 pacientes	Mortalidade Parada cardiaca	RR 0,82 (IC95% 0,69 - 0,98) RR 0,49 (IC95% 0,39 - 0,61)	Uso de controles históricos, porém ajustado quanto às tendências temporais	18% (IC95% 2 - 31) 51% (IC95% 39 - 61)	Baixa
Gonçales et al.\(^{43}\)	Estudo antes-depois Pacientes adultos brasileiros com 477 leitos Intervenção: introdução da equipe de emergência clínica Controle: pacientes atendidos nos 19 meses antes da intervenção	Mortalidade Parada cardiaca	14,34/1000 após a intervenção 16,27 antes; p < 0,001 1,69/1000 hospitalizações, 3,54 antes; p < 0,001	Uso de controles históricos; retardos na direção da equipe não foram avaliados	11% (p<0,001) 52% (p<0,001)	Baixa

RR - risco relativo; IC95% - intervalo de confiança de 95%; TRR - times de resposta rápida; MEWS - Modified Early Warning Score; SBAR - situation, background, assessment, recommendation.
melhores delineamentos possíveis para esta finalidade. Por esta razão, muitos estudos utilizaram o delineamento pré-pós, às vezes utilizando controles históricos, o que reduziu a força da evidência fornecida. Assim, cremos que a evidência apresentada neste estudo pode ser a melhor forma de avaliar a efetividade dos TRRs.

Dos 15 estudos avaliados, 9 identificaram redução significante da mortalidade após a implantação de TRR, inclusive um estudo e uma metanálise recentemente publicados, em 2015. Quanto à parada cardiorrespiratória, 9 dos 11 estudos que relataram este desfecho também indicaram resultados satisfatórios, demonstrando redução estaticisticamente significante deste desfecho quando os hospitais implantaram TRR.

A heterogeneidade dos resultados encontrados é devida, em parte, às diferentes condições nas quais cada estudo foi desenvolvido, aos variados delineamentos que cada estudo utilizou e ao número de pacientes avaliados em cada ensaio. Mais ainda, a composição das equipes em cada estudo e a forma de detecção da deterioração clínica não são estritamente as mesmas, embora suficientemente comparáveis.

Alguns estudos prévios relataram a implantação de TRR no Brasil. Um grande hospital terciário privado em São Paulo, que instituiu um TRR em 2005, avaliou o impacto de sua implantação. Este estudo demonstrou que a implantação de um TRR se associou com redução significante das taxas de parada cardiorrespiratória (de 3,54 para 1,69 por 1.000 altas hospitalares) e mortalidade hospitalar (de 16,27 para 14,34 óbitos para cada 1.000 altas hospitalares). Não há dados oficiais disponíveis sobre o número de hospitais brasileiros com TRR implantados atualmente.

Conduziram-se buscas em outras bases de dados de avaliação de tecnologia em saúde quanto a recomendações sobre o uso de TRR, inclusive National Institute for Clinical Excellence and Health, National Institute for Health Research Health Technology Assessment Programme, Canadian Agency for Drugs and Technologies in Health e Agencias y Unidades de Evaluación de Tecnologías Sanitarias; mas não foram identificadas recomendações com relação ao uso de TRR. Assim, as agências de avaliação de tecnologias em saúde ainda não estabeleceram recomendações sobre o uso de TRR nos países em que atuam, talvez por causa da falta de evidência.

Uma das limitações deste estudo foi a natureza heterogênea dos hospitais cujos TRR foram avaliados. Muitos dos estudos incluídos utilizaram controles históricos, cujas implicações foram previamente mencionadas e discutidas. Além disso, não se identificaram ensaios randomizados e controlados, e avaliações cegas da efetividade da intervenção. Finalmente, não se conduziram buscas de literatura cinzenta, e trabalharmos com restrição de idiomas.

CONCLUSÃO

Times de resposta rápida podem reduzir a mortalidade hospitalar e a ocorrência de paradas cardíacas, embora a qualidade da evidência para ambos os desfechos seja baixa.
REFERÊNCIAS

1. Keeler EB, Rubenstein LV, Kahn KL, Draper D, Harrison ER, McGinty MJ, et al. Hospital characteristics and quality of care. JAMA. 1992;268(13):1709-14.

2. Lindenauer PK, Remus D, Roman S, Rothberg MB, Benjamin EM, Ma A, et al. Public reporting and pay for performance in hospital quality improvement. N Engl J Med. 2007;356(5):486-96.

3. Schmaltz SP, Williams SC, Chassin MR, Loeb JM, Wachter RM. Hospital performance trends on national quality measures and the association with Joint Commission accreditation. J Hosp Med. 2011;6(8):454-61.

4. Manzo BF, Brito MJ, Corrêa AR. Implicações do processo de Acreditação Hospitalar no cotidiano de profissionais de saúde. Rev Esc Enferm USP. 2016;28(3):278-94.

5. Mezzaroba AL, Tanita MT, Festti J, Carrilho CM, Cardoso LT, Grion CM. Avaliação de 5 anos de atuação de um time de resposta rápida liderado por médico intensivista em hospital universitário. Rev Bras Ter Intensiva. 2016;28(3):278-94.

6. McCannon CJ, Hackbart AD, Griffin FA. Miles to go: an introduction to the 5 Million Lives Campaign. Jt Comm J Qual Patient Saf. 2007;33(8):477-84.

7. Hillman KM, Bristow PJ, Chey T, Daffurn K, Jacques T, Norman SL, et al. Antecedents to hospital deaths. Intern Med J. 2001;31(6):343-8.

8. Churep MM, Yuen TC, Edelson DP. Predicting clinical deterioration in the hospital: the impact of outcome selection. Resuscitation. 2013;84(5):564-8.

9. Schein RM, Hazday N, Pena M, Ruben BH, Sprung CL. Clinical antecedents to in-hospital cardiopulmonary arrest. Chest. 1990;96(8):1388-92.

10. Franklin C, Mathew J. Developing strategies to prevent in-hospital cardiac arrest: analyzing responses of physicians and nurses in the hours before the event. Crit Care Med. 1994;22(2):244-7.

11. Deane SA, Gaudry PL, Pearson I, Ledwidge DG, Read C. Implementation of a trauma team. Aust N Z J Surg. 1989;59(5):373-8.

12. Mailey J, Digivine B, Baillo D, O’Nan G, Jordan J, Rubinfeld I. Reducing hospital standardized mortality rate with early interventions. J Trauma Nurs. 2006;13(4):178-82.

13. Offner PJ, Heit J, Roberts R. Implementation of a rapid response team decreases cardiac arrest outside of the intensive care unit. J Trauma. 2007;62(5):1223-7; discussion 1227-8.

14. Braithwaite RS, DeVita MA, Mahidhara R, Simmons RL, Stuart S, Foraida M. Medical Emergency Response Improvement Team (MERIT). Use of medical emergency team (MET) responses to detect medical errors. Qual Saf Health Care. 2004;13(4):255-9.

15. Jones D, George C, Hart GK, Bellomo R, Martin J. Introduction of medical emergency teams in Australia and New Zealand: a multi-centre study. Crit Care. 2008;12(2):R46.

16. Barbosa V, Gomes E, Vaz S, Azevedo G, Fernandes G, Ferreira A, et al. Falha na ativação da equipe de emergência intra-hospitalar: causas e consequências. Rev Bras Ter Intensiva. 2016;28(4):420-6.

17. Link MS, Berklow LC, Kudenchuk PJ, Halperin HR, Hess EP, Moitra VK, et al. Part 7: Adult advanced cardiovascular life support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(18 Suppl 2):S444-64.

18. Kronick SL, Kurz MC, Lin S, Edelson DP, Berg RA, Billi JE, et al. Systems of Care and Continuous Quality Improvement: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(18 Suppl 2):S397-413.

19. Rashid MF, Imran M, Javeri Y, Rajani M, Samad S, Singh O. Evaluation of rapid response team implementation in medical emergencies: A gallant evidence based medicine initiative in developing countries for serious adverse events. Int J Crit Illn Inj Sci. 2014;4(1):3-9.

20. Segon A, Ahmad S, Segon Y, Kumar V, Friedman H, Ali M. Effect of a rapid response team on patient outcomes in a community-based teaching hospital. J Grad Med Educ. 2014;6(1):61-4.

21. ANZICS-CORE MET dose investigators. Mortality of rapid response team patients in Australia: a multicentre study. Crit Care Resusc. 2013;15(4):273-8.

22. Howell MD, Ngo L, Folcarelli P, Yang J, Mottley L, Marcantonio ER, et al. Sustained effectiveness of a primary-team-based rapid response system. Crit Care Med. 2012;40(9):2562-8.

23. Mcauliffe J, Alderdice F, Fowler R, Kapila A, Mayhew A, Moutray M. Outreach and Early Warning Systems (EWS) for the prevention of intensive care admission and death of critically ill adult patients on general hospital wards. Cochrane Database Syst Rev. 2007;3:CD005529.

24. Chan PS, Jain R, Nallmothu BK, Berg RA, Sasson C. Rapid response teams: a systematic review and meta-analysis. Arch Intern Med. 2010;170(1):18-26.

25. Maharah R, Raffaele I, Wendon J. Rapid response systems: a systematic review and meta-analysis. Crit Care. 2015;19:254.

26. Salvaterra G, Bindler RC, Corbetti C, Roll J, Daratha KB. Rapid response team implementation and in-hospital mortality. Crit Care Med. 2014;42(9):2001-6.

27. Moriarty JP, Schiebel NE, Johnson MG, Jensen JB, Caples SM, Morlan BW, et al. Evaluating implementation of a rapid response team: considering alternative outcome measures. Int J Qual Health Care. 2014;26(1):49-57.

28. Lee YJ, Park JJ, Yoon YE, Kim JW, Park JS, Kim T, et al. Successful implementation of a rapid response system in the Department of Internal Medicine. Korean J Crit Care Med. 2014;29(2):77-82.

29. Ludwikhe J, Brunsved-Reminders AH, Dijkgraaf MG, Smorenburg SM, de Rooij SE, Adams R, de Maaijer PF, Fikkers BG, Tanguay P, de Jonge E; Cost and Outcomes of Medical Emergency Teams Study Group. Outcomes Associated With the Nationwide Introduction of Rapid Response Systems in The Netherlands. Crit Care Med. 2015;43(12):2544-51.

30. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-8, W64.

31. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603-5.

32. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12.

33. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol. 2007;7:10.

34. Buitst MD, Moore GE, Bernard SA, Waxman BP, Anderson JN, Nguyen TV. Effects of a medical emergency team on reduction of incidence of and mortality from unexpected cardiac arrests in hospital: preliminary study. BMJ. 2002;324(7334):387-9.

35. DeVita MA, Braithwaite RS, Mahidhara R, Stuart S, Foraida M, Simmons RL; Medical Emergency Response Improvement Team (MERIT). Use of medical emergency team responses to reduce hospital cardiopulmonary arrests. Qual Saf Health Care. 2004;13(4):251-4.

36. Priestley G, Watson W, Rashidian A, Moxley C, Russell D, Wilson J, et al. Introducing Critical Care Outreach: a ward-randomised trial of phased introduction in a general hospital. Intensive Care Med. 2004;30(7):1386-404.

37. Jones D, Bellomo R, Bates S, Warnillows S, Goldsmith D, Hart G, et al. Long term effect of a medical emergency team on cardiac arrests in a teaching hospital. Crit Care. 2005;9(6):R808-15.

38. Hillman K, Chen J, Cretikos M, Bellomo R, Brown D, Doig F, Finfer S, Flabouris A; MERIT study investigators. Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial. Lancet. 2005;365(9477):2091-7. Erratum in Lancet. 2005;366(9492):1164.

39. Dacey MJ, Mirza ER, Wilcox V, Doherty M, Mello J, Boyer A, et al. The effect of a rapid response team on major clinical outcome measures in a community hospital. Crit Care Med. 2007;35(9):2076-82.
40. Chan PS, Khalid A, Longmore LS, Berg RA, Kosiborod M, Spertus JA. Hospital-wide code rates and mortality before and after implementation of a rapid response team. JAMA. 2008;300(21):2506-13.
41. Konrad D, Jäderling G, Bell M, Granath F, Ekborn A, Martling CR. Reducing in-hospital cardiac arrests and hospital mortality by introducing a medical emergency team. Intensive Care Med. 2010;36(1):100-6.
42. Beitler JR, Link N, Bails DB, Hurdle K, Chong DH. Reduction in hospital-wide mortality after implementation of a rapid response team: a long-term cohort study. Crit Care. 2011;15(6):R269.
43. Gonçales PD, Polessi JA, Bass LM, Santos GP, Yokota PK, Laselva CR, et al. Redução de paradas cardiorrespiratórias por times de resposta rápida. Einstein (São Paulo). 2012;10(4):442-8.
44. Black N. Why we need observational studies to evaluate the effectiveness of health care. BMJ. 1996;312(7040):1215-8.
45. Taguti PS, Dotti AZ, Araujo KP, Pariz OS, Dias GF, Kauss IA, et al. Atuação do time de resposta rápida em hospital universitário no atendimento de código amarelo. Rev Bras Ter Intensiva. 2013;25(2):99-105.
46. Veiga VC. Atuação do time de resposta rápida nos indicadores de melhoria da qualidade assistencial [tese]. Campinas: Faculdade de Ciências Médicas, Universidade Estadual de Campinas; 2013.