Transcatheter mitral valve implantation using a novel system: preclinical results

Jia-You TANG*, Lin-He LU*, Yang LIU*, Lan-Lan LI, Yan-Yan MA, Shi-Qiang YU, Jin-Cheng LIU, Jian YANG#
Department of Cardiovascular Surgery, the First Affiliated Hospital of Air Force Military Medical University, Xi’an, China

Abstract

Background This preclinical study in sheep sought to demonstrate the initial safety and feasibility of a novel transcatheter mitral valve system (Mi-thos valve) composed of a self-expanding frame and a bovine pericardial tissue bioprosthesis. Methods The valve was implanted in 26 sheep using a transapical approach for short- and long-term evaluation. The technical feasibility, safety, durability, and valve function were evaluated during and 6 months after the procedure using intracardiac and transthoracic echocardiography, multisliced computed tomography, histological analysis, and electron microscopy. Results The success rate of valve implantation was 100%, and the immediate survival rate after surgery was 84%. Five animals died within 90 min after the development of the prosthetic valve due to an acute left ventricular outflow tract obstruction (n = 2) and sudden intraoperative ventricular fibrillation (n = 3). Twelve animals died within 1 month due to acute left heart dysfunction. Mild (n = 5) and moderate (n = 2) paravalvular leakage occurred in seven animals, and two moderate PVL animals died of chronic heart failure within three months. Multimodality imaging studies of the remaining seven animals showed excellent function and alignment of the valves, with no coronary artery obstruction, no left ventricular outflow tract obstruction, no severe transvalvular gradients and no paravalvular leakage. Macroscopic evaluation demonstrated stable, secure positioning of the valve, with full endothelialization of the valve leaflets without injury to the ventricular or atrial walls. Histological and electron microscopic examinations at six months showed no obvious macro- or microcalcification in the leaflets. Conclusions Preclinical studies indicate that transcatheter implantation of the Mi-thos valve is technically safe and feasible. The durability, functionality, and lack of leaflet calcification were all verified in animal experiments. The information from these preclinical studies will be applied to patient selection criteria and the first-in-human studies.

Keywords: Mitral regurgitation; Mitral valve implantation; Preclinical study; Transapical; Transcatheter

1 Introduction

Mitral regurgitation (MR) is one of the most common valvular heart diseases in the world.[1–3] Although surgery remains the gold standard treatment for MR, approximately one-third of potential candidates for surgical repair or replacement are high risk. Transcatheter mitral valve interventions are valuable alternatives to surgery for those patients.[4,5] Some novel transcatheter mitral valve repair devices have been used in humans with optimal results, such as the MitraClip (Abbott, Abbott Park, IL USA), the NeoChord system (NeoChord, St. Louis Park, MN USA), and the Cardioband system (Edwards Lifesciences, Irvine, CA USA); however, repair techniques are still not possible for all patients with MR and are limited by patient-specific mitral anatomical features.[6] Therefore, transcatheter mitral valve implantation (TMVI) may be an attractive alternative.

In recent years, TMVI has emerged from the laboratory and has been used in humans. Thus far, approximately 300 patients have had implants of all different kinds of TMVI devices.[7,8] The clinical results remain inconsistent, highlighting the need for a device with a better design and the importance of anatomical analysis.[9] We report the initial results of the novel transcatheter mitral valve determined from preclinical studies in sheep.

2 Methods

2.1 Valve and delivery system design

The Mi-thos valve (NewMed Medical Co., Ltd., Shanghai, China) is a self-expanding bioprosthesis with cross-linked bovine pericardial tissue leaflets mounted inside a
The inner frame is circular and cylindrical, with three pericardial leaflets and an inner diameter of 29 to 37 mm and a height of 30 mm; it is treated with an anticalcification technique to maintain a consistent, large, and effective orifice area. The atrial portion of the outer frame has a D-shaped design to fit the saddle-shaped mitral annulus; the flange rests on the base of the left atrium, which not only plays a stabilizing role but also allows the endothelialization of the tissue. The ventricular portion of the outer frame is covered with a skirt to minimize paravalvular leakage (PVL) and is secured with barbs to prevent retrograde displacement. The ventricular portion is also designed to secure the valve to the fibrous trigones and the posterior shelf of the native annulus of the mitral valve. On the end of the ventricular side, three anchor points permit retrieval of the device for entry into the delivery system (Figure 1A–C). The device is currently available in three sizes in 4-mm increments: 29, 33, and 37 mm. The 41- and 45-mm sizes are under development and will be introduced soon for investigational use. The valve is loaded into a 28–32 Fr caliber transapical delivery system, which is made of polyvinylidene fluoride and polytetrafluoroethylene with a self-dilating tip to facilitate transition through the apex and the mitral valve complex and to reduce system friction. The delivery device consists of a self-dilating tip with a single turn-knob mechanism to allow controlled deployment and is designed to enter the left ventricular apex directly with or without a delivery introducer sheath (Figure 1D).

2.2 Animal study protocols

The animal protocols were approved by the Institutional Animal Care and Use Committee and the Medical Ethics Committee of our local hospital. Twenty-six healthy adult sheep (weight at intervention: 60–70 kg) were used in this study. Catheterization was performed in an animal catheterization laboratory. The operation was carried out under the cooperation of a multidisciplinary team. The animals were anesthetized and intubated endotracheally. All procedures were performed with the animals in the right recumbent position. Intracardiac echocardiography (ICE) using the ACUSON X700 ultrasound system (Siemens Medical Solutions USA, Mountain View, CA, USA) and fluoroscopy were used for intraoperative guidance. The right femoral artery was punctured and cannulated with a 6 Fr sheath. The right femoral vein was also punctured and cannulated with an 11 Fr sheath for insertion of the ICE probe. A coronary sinus electrode was inserted into the coronary sinus through the right jugular vein to help better visualize the mitral annulus and to achieve precise positioning during

![Figure 1. Mi-thos valve and delivery system. (A & C): Sectional view of the D-shaped prosthesis valve; (B): lateral view of the prosthesis valve; and (D): delivery system that goes through the apex.](http://www.jgc301.com; jgc@jgc301.com | Journal of Geriatric Cardiology)
the delivery of the bioprosthesis. A 6F pigtail catheter was advanced through the right femoral artery cannula to the ascending aorta and left ventricle. Ventriculograms were taken to show the aorta, the mitral valve apparatus, and the shape of the left ventricle (Figure 2A&B). The precise diameters of the aortic annulus and of the mitral annulus and the length of the left ventricle were measured using preoperative CTA and were double checked by both echocardiography and intraoperative fluoroscopy. A 4-cm subxiphoid minithoracotomy incision was performed, exposing the apex of the left ventricle to allow apical puncture. Two orthogonal U-shaped (purse-string) sutures were placed around the apical entry site. Heparin (100 IU/kg) was administered intravenously. After the apical puncture, a 6 Fr sheath was inserted. A 6F pigtail catheter together with a J-tipped 0.035-inch guidewire was inserted and advanced across the mitral apparatus into the left atrium. Then, the J-tipped 0.035-inch guidewire was manipulated into the distal end of the left inferior pulmonary vein or the left atrium and exchanged with a super stiff guidewire. The valve was loaded into its delivery system, inserted over the guidewire, and advanced retrogradely across the mitral valve into the left atrium (Figure 2C). When we retrieved the outer sheath of the delivery system, the atrial skirt was released while the ventricular portion of the device was still partially confined to the sheath. By rotating the system used to introduce the valve, the D shape of the valve can be adjusted to fit the shape of the native mitral valve apparatus. Radiopaque markers were visualized on the metal frame of the device to achieve accurate alignment and engagement of the flat atrial aspect of the device with the mitral annulus using echocardiographic and fluoroscopic guidance (Figure 2D). The valve was retrievable until the flat atrial segment was released. Then, the whole system was retracted and seated on the atrial side of the mitral annulus. The ventricular portion was deployed and released from the delivery system. Repeat ventriculograms were taken to confirm both the position and the shape of the valve and to determine valvular insufficiency, PVL, left ventricular outflow tract (LVOT) patency, and coronary artery obstruction (Figure 2E & F). After evaluation of valve position and function by ICE (Figure 3), the delivery system was removed.

Following implantation of the valve, all experimental animals received standardized care. Oral aspirin (3 mg/kg) and warfarin (0.1 mg/kg) were administered for 180 consecutive days. At 30 ± 14, 90 ± 14, and 180 ± 14 days after implantation of the device, the animals underwent clinical assessment, tests for complete blood count and blood chemistry analysis, echocardiographic measurements of the degree of mitral regurgitation, the presence of PVL, pressure gradients across the mitral valve and presence of PVL, and multisliced CT to evaluate the positioning and function of the valve and to detect fractures in or deformation of the frame.

In the long-term study, all surviving animals were euthanized at 180 days after implantation and served as the
Figure 3. Valve position and function were evaluated from an echocardiogram. The red mark indicates the morphology of the prosthetic valve.

long-term animal model. The hearts were removed for macroscopic evaluation. The surfaces of the Mi-thos valves, the stents, and the polyethylene terephthalate fabrics were examined using pathological sectioning, hematoxylin-eosin and alizarin red staining and scanning electron microscopy.

2.3 Statistical analyses

Data are presented as means ± SD, medians with ranges, or percentages, as appropriate. SPSS 16.0 for Windows (SPSS, Inc., Chicago, IL, USA) was used for the statistical analysis. The t test, chi-square test, and Fisher’s exact test were used to compare the two groups, where appropriate; P < 0.05 was considered statistically significant.

3 Results

3.1 Follow-up and short-term animal models

Mi-thos valves were successfully implanted in all animals. A total of 5 Mi-thos valves of 33 mm and 21 Mi-thos valves of 37 mm were used. The baseline characteristics and procedural data are shown in Table 1. Immediate survival was observed in 21 of 26 (84%) sheep. Five animals died within 90 min due to LVOT obstruction (n = 2) and sudden intraoperative ventricular fibrillation that could not be reversed (n = 3). Animals suspected of LVOT were autopsied, and macroscopic evaluation showed LVOT obstruction caused by an oversized prosthetic valve or narrowed LVOT. None of the valves migrated or embolized after implantation. The 21 animals that underwent successful valve implantation remained hemodynamically stable throughout the procedure. Postprocedural cardiac catheterization demonstrated patent coronary arteries and no discernible LVOT gradient. Intracardiac echocardiography confirmed good function and alignment of all valves and leaflets, with no LVOT obstruction, no encroachment on the aortic valve, and no transvalvular gradients. Mild PVL was noted in five animals, and moderate PVL was noted in two. None of the surviving animals exhibited hemolysis. Macroscopic evaluation of the explanted hearts in the short-term animal models demonstrated stable, secure positioning of the Mi-thos valve from both the atrial (Figure 4A) and the ventricular (Figure 4B) views.

3.2 Follow-up and long-term animal models

Seven animals died within one week, three died in the second week, and two died in the third and fourth weeks. The cause of death was considered to be acute left heart failure because the animal showed shortness of breath and cough with pink, foamy sputum. Two other animals that were diagnosed with moderate PVL died of chronic heart failure within three months after operation; moderate paravalvular regurgitation and decreased EF value were found by transthoracic ultrasound evaluation. All the animals that died within three months after operation were evaluated by echocardiography before death, and autopsy was performed after death. The five animals with mild PVL survived more than three months. In this experiment, a total of seven animals survived to six months and exhibited normal hemodynamics, and stability was maintained during the follow-up.

Table 1. Baseline characteristics and procedural data of the animals that underwent transcatheter mitral valve implantation.

Characteristic	Value
Sex (female/male)	26 (100%)
Weight, kg	75.5 ± 7.2
Diameter of mitral annulus (mm, systolic phase by DSA)	25.8 ± 1.9
Diameter of mitral annulus (mm, diastolic phase by DSA)	30.7 ± 2.6
Diameter of mitral annulus (mm, systolic phase by ICE)	24.8 ± 1.5
Diameter of mitral annulus (mm, diastolic phase by ICE)	31.6 ± 2.1
Size of the Mi-thos valve, mm	36.2 ± 1.6
X-ray exposure time, min	16.9 ± 7.3
Operation time, min	97.7 ± 28.0

Data are presented as mean ± SD unless other indicated. DSA: digital subtraction angiography; ICE: intra-cardiac echocardiography.
period. At six months, the remaining seven animals were sacrificed for autopsy. Long-term evaluation of seven sheep showed good valve function and alignment, with no LVOT obstruction, coronary artery obstruction, or transvalvular gradient throughout the 180-day follow-up period. No macroscopic damage, including erosion of the atrial wall or aorta, was noted in the native atria of the individual animals. Cardioscopic examination showed that the valve was well-seated and that the metal struts and Dacron coatings were covered with a white homogeneous fibrotic connective tissue layer along the ventricular struts (Figure 4C). On the atrial side, the prostheses were also coated with fibrotic connective tissue that was adequate for healing and that merged with the atrial tissue (Figure 4D). Gross evaluation revealed that 100% of the atrial element was covered by tissue at 180 days. The leaflets of the explanted Mi-thos valve were soft, flexible, free from thrombus, and intact, without tears or perforations. Histopathological examination using hematoxylin-eosin staining revealed that the collagen fibers of the bioprosthetic valve leaflets of the Mi-thos valve 180 days after implantation were slightly disrupted compared with the unimplanted samples (Figure 5A–D). Alizarin red staining revealed no obvious incarcassation and no detectable calcified nodules (Figure 5E–H). Macroscopic analysis of the bioprosthetic valve leaflets using a scanning electron microscope and a transmission electron microscope 180 days after implantation showed that the implanted valve leaflets were coated with the proteins and endothelial cells to form a layer (Figure 6A–D) and that the collagen distribution was regular, without obvious calcified nodules (Figure 6E–L).

3.3 Evaluation using multisliced computed tomography

Multisliced CT images taken following the insertion of the Mi-thos valve showed that the native mitral valves were replaced by the metal skeleton of the Mi-thos frame and that the LVOT and coronary artery were patent (Figure 7A & B). The Mi-thos valve was seated in the desired position without PVL, migration, or fracture of the stent (Figure 7C & D).
Figure 6. Macroscopic view of prosthetic valve leaflets 180 days after implantation using transmission electron microscopy (A-D) and scanning electronic microscopy (E-L) showing that the leaflets are coated by the proteins and multiple cells and that the collagen distribution is regular, without obvious calcified nodules. TEM: transmission electron microscopy; SEM: scanning electron microscopy.

Figure 7. Computed tomographic scan showing the Mi-thos valve seated in the correct position without migration or fracture of the stent in cross-section (A), coronal plane (B) and vertical plane (C & D).

4 Discussion

It has been reported that severe MR affects approximately 2% of the population and that the incidence of severe MR is expected to increase dramatically, with advances in medicine leading to enhanced survival rates.[10] Though open-heart surgery remains the gold standard for treating various mitral valve diseases, cardiopulmonary bypass, cardiac arrest, and
the associated high rates of mortality and morbidity render it
inadvisable for elderly and high-risk patients with MR.

Various novel transcatheter valvular technologies have
emerged as alternatives to open-heart surgery for high-risk
patients, including percutaneous edge-to-edge repair, percu-
taneous leaflet plication, and direct and indirect annulop-
lasty.[11–13] However, each transcatheter mitral repair device
has its own inherent patient selection criteria and can only
be used in a limited number of patients with MR. Due to the
complexity of mitral valve diseases, many patients are not
candidates for transcatheter repair. Transcatheter mitral
valve replacement may provide a viable alternative for in-
operable or high-risk patients with MR.[14,15]

Though TMVI reduces MR while preserving the mitral
apparatus, many challenges related to the design of the de-
vice remain, including accommodating the asymmetrical,
multiplanar mitral valve annulus, remaining stable and re-
sistant to displacement or migration, and dealing with the
high-pressure gradients that are generated across the mitral
valve.[16–18] In addition, valvular regurgitation and PVL after
device implantation should be minimized, and the valve
must not obstruct the LVOT, occlude the circumflex coro-
mary artery, or compress the coronary sinus.[19–22]

The Mi-thos transcatheter mitral valve was specifically
designed to fit the complex anatomical structure of the mi-
tral apparatus. The outside D-shaped frame is designed to fit
the native mitral valve annulus and to avoid LVOT obstruc-
tion. The barbs on the ventricular side are designed to pro-
vide extra fixation beyond the radial expansion force of the
device. The inner circular valve stent can ensure optimal
valve hemodynamic features and valve durability. Addi-
tionally, this device is partially retrievable and reposition-
able after deployment of the atrial side of the device. The
results of the present study showed the safety and feasibility
of transapical implantation of the Mi-thos valve. The ovine
animal model allowed us to carry out a rapid, straightforward
implantation procedure, with an average fluoroscopic
time of 16.9 min, a procedure time of 97.7 min, and a pro-
cedural success rate of 100%. Instant ICE and follow-up
transthoracic echocardiography showed a stable, well-align-
ed, functional bioprosthesis. We observed that two animals
with moderate PVL died of chronic heart failure within
three months after surgery, suggesting the importance of
preoperative accurate CT evaluation in selecting the right
valve type. For five animals with mild PVL, long-term fol-
low-up showed that the PVL was reduced and that no seri-
ous complications occurred. Macroscopic evaluation of the
explanted hearts showed that the position of the trans-
catheter valve was stable and secure, with endothelialization
of the valve leaflets, the metal frame, and the fabric coatings
in the long-term animals. Endodermization of valve leaflets
suggests that the preoperative management of artificial
valve leaflets is scientific, which is helpful for ensuring the
durability of artificial valves, reducing thrombosis and de-
laying the calcification and decay of valves. The leaflets of
the explanted Mi-thos prostheses were mobile and free of
cLOTS. There was no evidence of thrombus formation in the
heart chambers and no traumatic injuries to the ventricular
or the atrial wall near the device. Histological and electron
microscopic examinations showed no macro- or microcalci-
fications up to 180 days after implantation.

According to our limited experience, selection of an ap-
propriately sized prosthesis is the first step toward success-
ful implantation of a transapical mitral valve.[23] Unlike the
aortic annulus, the mitral annulus is more dynamic and
cruder to measure.[24] There is also a large difference in the
respective measurements of the mitral annulus taken during
the systolic and diastolic phases.[25] We routinely measure
the mitral annulus during the diastolic phase with echocar-
diography and CT angiography (CTA). Sometimes, there is
also a large difference between the measurements obtained
using these two imaging tools. We prefer to select the size
of the device based on the average of the measurements
obtained from CTA images. Usually, we select a Mi-thos
prosthesis that is 3 to 5 mm larger than the native mitral
annulus to prevent possible migration of the device and
PVL. Other important considerations in achieving a suc-
cessful transapical mitral valve implant include alignment
and stable anchoring. Precise positioning is crucial, and one
should be sure to verify and adjust the orientation of the
device after it is partially released. Finally, LVOT obstruc-
tion is the most frequent and fatal complication after TMVI.
To prevent LVOT obstruction, one must avoid selecting a
device that is too large. Therefore, CTA perioperative evalua-
tion is of paramount importance.

4.1 Limitations

Our preclinical study has several limitations. First and
foremost, the ovine model is a physiological model and
does not allow us to mimic pathological MR. Though we
selected sheep of weights similar to those of patients, the
heart function of the animals was normal, whereas that of
possible candidate patients would be poor. Additionally, the
size of the mitral annulus of a possible candidate patient
would be much larger than those of the sheep used in this
study. Furthermore, the current device is 28–32 Fr, which
can only be implanted via a transapical approach, which
might limit the use of the technique. Finally because the
Mi-thos is a self-expanding valve, it is unknown how the
system would behave in a partially or severely calcified

Journal of Geriatric Cardiology | jgc@jgc301.com; http://www.jgc301.com
mitral apparatus. Careful selection of clinical cases for the initial human clinical trials should be conducted before the first-in-human applications.

4.2 Conclusions

Using an ovine model, we demonstrated that implantation of the Mi-thos valve is feasible and relatively straightforward and results in a stable, well-functioning mitral valve bioprosthesis. The data and information will be used to further refine the method before beginning a clinical study.

Acknowledgements

This paper was supported by the National Key Research and Development Plan (2016YFC1101000), National Natural Science Foundation of China (81600240 and 81470500) The Distinguished Young Scholar Cultivation Project of Xijing Hospital (XJZT14J03, XJZT15ZL01, and 13QNP129). There is no ethical problem or undeclared conflict of interest regarding publication or experimental ethics on human subjects.

References

1. Bonow RO, O’Gara PT, Adams DH, et al. 2020 Focused update of the 2017 ACC expert consensus decision pathway on the management of mitral regurgitation. J Am Coll Cardiol 2020; 75: 2236–2270.
2. O’Gara PT, Grayburn PA, Badhwar V, et al. 2017 ACC expert consensus decision pathway on the management of mitral regurgitation: a report of the American College of Cardiology task force on expert consensus decision pathways. J Am Coll Cardiol 2017; 70: 2421–2449.
3. Karagodin I, Singh A, Lang RM. Pathoanatomy of Mitral Regurgitation. Struct Heart 2020; 4: 254–263.
4. Tommaso CL, Fullerton DA, Feldman T, et al. SCAI/AATS/ACC/STS operator and institutional requirements for transcatheter valve repair and replacement. Part II. Mitral valve. J Am Coll Cardiol 2014; 64: 1515–1526.
5. Rumsfeld JS, Holmes DR Jr., Stough WG, et al. Insights from the early experience of the Society of Thoracic Surgeons/ American College of Cardiology Transcatheter Valve Therapy Registry. J Am Coll Cardiol Interv 2015; 8: 377–381.
6. Tammaso M, Gaemperli O, Maisano F. Treatment of degenerative mitral regurgitation in elderly patients. Nat Rev Cardiol 2015; 12: 177–183.
7. Mylotte D, Piazza N. Transcatheter mitral valve implantation: A brief review. EuroIntervention 2015; 11 (Suppl W): W67–W70.
8. Urena M, Himbert D, Vahanian A. Pushing the boundaries of transcatheter mitral valve replacement. J Am Coll Cardiol 2019; 73: 2555–2557.
9. Ruiz CE, Kliger C, Perk G, et al. Transcatheter therapies for the treatment of valvular and paraavalvular regurgitation in acquired and congenital valvular heart disease. J Am Coll Cardiol 2015; 66: 169–183.
10. Overchouk P, Piazza N, Granada JF, Modine T. Predictors of adverse outcomes after transcatheter mitral valve replacement. Expert Rev Cardiovasc Ther 2019; 17: 625–632.
11. Vogelhuber J, Weber M, Sinning JM, Nickenig G. [Transcatheter mitral valve replacement: current status]. Herz 2019; 44: 602–610. [Article in German].
12. Maisano F, Aliferi O, Banai S, et al. The future of transcatheter mitral valve interventions: Competitive or complementary role of repair vs. replacement? Eur Heart J 2015; 36: 1651–1659.
13. Baldetti L, Melillo F, Beneduce A, et al. Transcatheter mitral valve implantation: who are we treating and what may we expect? Am J Cardiol 2019; 123: 1884–1885.
14. Coisne P, Pontana F, Tchetchè D, et al. Transcatheter mitral valve replacement: factors associated with screening success and failure. EuroIntervention 2019; 15: e983–e989.
15. Blanke P, Naoum C, Dvir D, et al. Predicting LVOT Obstruction in Transcatheter Mitral Valve Implantation: Concept of the Neo-LVOT. JACC Cardiovasc Imaging 2017; 10: 482–485.
16. Ussia GP, Quadri A, Cammalleri V, et al. Percutaneous transcatheter-transapical implantation of a second-generation cardiac mitral valve bioprosthesis: First procedure description and 30-day follow-up. EuroIntervention 2016; 11: 1126–1151.
17. Sondergaard L, De Backer O, Franzen OW, et al. First-in-human case of transfemoral CardiaQ mitral valve implantation. Circ Cardiovasc Interv 2015; 8: e002135.
18. Sondergaard L, Brooks M, Ihlemann N, et al. Transcatheter mitral valve implantation via transapical approach: An early experience. Eur J Cardiothorac Surg 2015; 48: 873–877.
19. Verheyse S, Cheung A, Leon M, Banai S. The Tiara transcatheter mitral valve implantation system. EuroIntervention 2015; 11 (Suppl W): W71–W72.
20. Urena M, Vahanian A, Sondergaard L. Patient selection for transcatheter mitral valve implantation: why is it so hard to find patients? EuroIntervention 2018; 14(AB): B83–B90.
21. Langhammer B, Huber C, Windecker S, Carrel T. Surgical antegrade transcatheter mitral valve implantation for symptomatic mitral valve disease and heavily calcified annulus. Eur J Cardiothorac Surg 2017; 51: 382–385.
22. Bapat V, Lim ZY, Boix R, Pirone F. The Edwards Fortis transcatheter mitral valve implantation system. EuroIntervention 2015; 11 (Suppl W): W73–W75.
23. Werner N, Kilkowski C, Sutor D, et al. Transcatheter Mitral Valve Implantation (TMVI) Using Edwards SAPIEN 3 Prosthesis in patients at very high or prohibitive surgical risk: a single-center experience. J Interv Cardiol 2020; 2020: 9485247.
24. Abdul-Jawad Altisent O, Dumont E, et al. Transcatheter mitral valve implantation with the Fortis device: Insights into the evaluation of device success. J Am Coll Cardiol Interv 2015; 8: 994–995.
25. Badhwar V, Sorajja P, Duncan A, et al. Mitral regurgitation severity predicts one-year therapeutic benefit of Tendyne transcatheter mitral valve implantation. EuroIntervention 2019; 15: e1065–e1071.