Prevalence of SARS-CoV-2 Infection Among COVID-19 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Laboratory Workers in Bangladesh

Mohammad Jahidur Rahman Khan 1, Samshad Jahan Shumu 1, Farzana Mim 2, Ruksana Raihan 3, Nusrat Mannan 4, Md. Selim Reza 5, Nazia Hasan Khan 6, Arifa Akram 7, Amirul Huda Bhuiyan 8, Paroma Deb 9

1. Department of Microbiology, Shaheed Suhrawardy Medical College, Dhaka, BGD 2. Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, BGD 3. Department of Microbiology, US-Bangla Medical College, Dhaka, BGD 4. Department of Virology, US-Bangla Medical College, Dhaka, BGD 5. Department of Infectious Disease, Bangabandhu Sheikh Mujib Medical College, Faridpur, BGD 6. Department of Infectious Disease, United Hospital Limited, Dhaka, BGD 7. Department of Virology, National Institute of Laboratory Medicine and Referral Center, Dhaka, BGD 8. Department of Infectious Disease, Narayanganj 500 Bed Hospital, Narayanganj, BGD 9. Department of Virology, Dhaka Medical College Hospital, Dhaka, BGD

Corresponding author: Farzana Mim, farzanarahman1371996@gmail.com

Abstract

Background: Healthcare workers (HCWs) at the frontline are confronting a substantial risk of infection during the COVID-19 pandemic. This emerging virus created specific hazards to researchers and laboratory staff in a clinical setting, underlined by rapid and extensive worldwide transmission.

Objectives: This study aimed to investigate the prevalence of SARS-CoV-2 infection among COVID-19 reverse transcription-polymerase chain reaction (RT-PCR) laboratory health workers in Bangladesh.

Materials and methods: This retrospective study was conducted between October 2 to December 2, 2020. A total of 508 participants, including doctors, scientific officers, medical technologists, and cleaners working in several COVID-19 RT-PCR laboratories, were included in this study. Data were collected from each participant using a semi-structured questionnaire prepared in the format of an anonymous Google form. All statistical analyses were performed using SPSS, version 25.0 (SPSS Inc., Chicago, IL, USA).

Results: Out of the 508 participants, 295 tested positive for SARS-CoV-2 RT-PCR. Among the positive cases, 202 were men, and 93 were women, with a median age of 30 years. The most positive cases were medical technologists (53.22%) followed by doctors (28.8%). Out of the 271 symptomatic positive cases, the most typical symptoms were fever (78.5%), fatigue (70%), loss of smell and taste (65%), and cough (64%). Hypertension, obesity, and diabetes were found in 8.8%, 8.8%, and 7.1% positive cases. A+ blood group was present in 37% of the positive cases, followed by the B+ blood group (27%) and O+ blood group (25%). Inadequate supply of personal protective equipment (PPE), absence of negative pressure ventilation, laboratory contamination, and no training on molecular test methods were found in 15.8%, 67.8%, 44.7%, and 40.6% of positive cases, respectively.

Conclusion: Evaluating the infection status of laboratory HCWs is crucial for drawing attention from the public, providing practical suggestions for government agencies, and increasing protective measures for laboratory HCWs.

Introduction

Since its discovery, SARS-CoV-2 has become a pandemic. As of September 4, 2021, there were 220,362,472 reported cases and 4,562,679 deaths worldwide [1]. In Bangladesh, the first case of SARS-CoV-2 infection was confirmed on March 8, 2020. Subsequently, Bangladesh faced an increasing risk of imports and some local cluster cases of COVID-19. As of September 4, 2021, 1,510,283 confirmed cases and 26,432 deaths in Bangladesh [2].

Health care personnel around the globe have the most significant risk of getting infected and infecting others in their surrounding environment [3]. According to initial estimation, healthcare workers (HCWs) account for 10%-20% of all confirmed cases [4]. During the pandemic, medical services worldwide face an unavoidable burden of public health challenges [5]. In Bangladesh, most molecular laboratories performed RT-PCR to detect SARS-CoV-2 have been established after the pandemic began. These facilities were
confronted with an increased amount of real-time reverse transcription-polymerase chain reaction (RT-PCR) testing of SARS-CoV-2 for patients suspected of COVID-19, quarantined HCWs; travellers came back from high-risk countries as well as other required samples. The staff available for the laboratory was swiftly deployed to receive a large number of clinical samples without adequate amounts of training and personal protective equipments (PPEs). To confront this novel coronavirus never experienced before, some public health laboratory workers overlooked concerns about the possible risks of SARS-CoV-2 infection from their occupational exposure. While the protection of laboratory HCWs during the COVID-19 pandemic is one of the primary concerns, data regarding this issue are still inadequate [6].

At present, around 1200 health workers, including doctors, microbiologists, biochemists, molecular biologists, medical technologists, and cleaners, are working in over 100 COVID-19 RT-PCR laboratories across the country [7]. Many of them were infected by SARS-CoV-2 during this ongoing pandemic. As a result, they became a source of SARS-CoV-2 viral spread in a number of laboratories [8]. The testing capacity of a COVID-19 RT-PCR laboratory is reduced when several workers become SARS-CoV-2 infected. The physical environment of the laboratory and workload play an essential role in transmitting SARS-CoV-2 among the laboratory workers [9]. The chance of getting infected by SARS-CoV-2 also depends on a laboratory health worker’s age, comorbidity, and functional skill [10].

Thus, we conducted a retrospective study to investigate the prevalence of SARS-CoV-2 infection among COVID-19 RT-PCR laboratory HCWs in Bangladesh and assess the underlying factors related to the high infection rate of SARS-CoV-2.

This article was previously posted to the medRxiv preprint server on December 5, 2021.

Materials And Methods

Study design and data collection

We conducted a retrospective online survey from October 2 to December 2, 2020. A semi-structured questionnaire was prepared using an anonymous Google form. The generated link was shared with the focal persons of each laboratory and several Facebook and WhatsApp groups involving doctors and medical technologists. We decided to collect the data using online approaches and maintain social distance during Bangladesh's pandemic. Additional data were collected from some participants who did not fill out the Google form over the telephone. A hard copy of the questionnaire was also supplied to some participants who were not habituated to online submission by Google form. All participants provided informed consent. Ethical clearance was obtained from the Institutional Ethics Review Committee of Shaheed Suhrawardy Medical College, Dhaka, Bangladesh (protocol: ShSMCH/Ethical/2021/08).

Study sample

A total of 508 laboratory health workers, including doctors, scientific officers (microbiologists, biochemists, and molecular biologists), medical technologists, and cleaners, filled up the Google form. Twenty-six participants were excluded as they had COVID-19-like symptoms, but RT-PCR did not confirm the diagnosis. The remaining 508 laboratory health workers from multiple COVID-19 RT-PCR laboratories were included in this study. Informed consent was obtained from all participants.

Statistical analysis

The confirmed COVID-19 cases among HCWs were categorized according to the following parameters: sex, occupation type, hospital type, infection status, and others. All statistical analyses were performed using SPSS, version 25.0 (SPSS Inc., Chicago, IL, USA).

Results

Among the 508 participants, 295 (58%) tested positive for SARS-CoV-2 RT-PCR, and 237 (80.3%) were between the 24-44 years age group; male participants were 68.5%, and females were 31.5% (Table 1).
Characteristics

Characteristics	Total	SARS-CoV-2 RT-PCR Positive	SARS-CoV-2 RT-PCR Negative
Number (%)	508 (100%)	295 (58%)	213 (42%)
Age (years)			
Median	30	30	30
<24 (%)	50 (9.8%)	27 (9.2%)	23 (10.9%)
24-44 (%)	413 (81.3%)	237 (80.3%)	176 (82.6%)
>44 (%)	45 (8.9%)	31 (10.5%)	14 (6.6%)
Sex			
Male (%)	344 (67.7%)	202 (60.5%)	142 (68.7%)
Female (%)	164 (32.3%)	93 (31.5%)	71 (31.3%)

Table 1: Demographic data of the study population.

PCR: polymerase chain reaction.

Most participants were medical technologists (53.7%), followed by doctors (27.2%) (Table 2).

Designation	Total participants (n= 508)	SARS-CoV-2 RT-PCR	
		Positive (n= 295)	Negative (n= 213)
Doctor	138 (27.2%)	85 (61.6%)	53 (38.4%)
Scientific officer	52 (10.5%)	27 (50.9%)	26 (49.1%)
Medical Technologist	273 (53.7%)	157 (57.0%)	116 (43.0%)
Cleaner	44 (8.6%)	26 (59.1%)	18 (40.9%)

Table 2: Infection rate according to the designation of laboratory workers.

PCR: polymerase chain reaction.

Among the 295 positive cases, 271 were symptomatic. Analyzing the symptoms, we found 78.5% of them had a fever, fatigue (70%), loss of smell and taste (65%), cough (64%), and others (Figure 1).
FIGURE 1: Symptoms of the SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) positive cases (%).

Among the positive cases, the A+ blood group (37%) was affected more by COVID-19, followed by the B+ blood group (27%) (Figure 2).

FIGURE 2: Blood group distribution among the SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) positive cases.

We analyzed their comorbidity status and found that hypertension and obesity were most common, 8% in both cases, followed by diabetes (7%) (Table 3).
TABLE 3: Comorbidities found in SARS-CoV-2 RT-PCR-positive and SARS-CoV-2 RT-PCR-negative cases.
DM: diabetes mellitus; HTN: hypertension; IHD: ischemic heart disease, RT-PCR: reverse transcription-polymerase chain reaction.

Comorbidity	Total participants (n= 508)	SARS-CoV-2 RT-PCR	
		Positive (n= 295)	Negative (n= 213)
DM	28 (5.5%)	21 (7.1%)	07 (3.3%)
HTN	38 (7.5%)	26 (8.8%)	12 (5.6%)
Asthma	21 (4.1%)	15 (5.0%)	06 (2.8%)
Obesity	44 (8.6%)	26 (8.8%)	18 (8.4%)
IHD	06 (1.1%)	05 (1.7%)	01 (0.5%)

Among the positive cases, 13.8% did not have an adequate supply of PPE, 67.8% did not have the negative pressure ventilation system, 44.7% had an incidence of laboratory contamination, and 40.6% did not receive any training on molecular test methods or quality control (QC) (Table 4).

TABLE 4: Association of risk factors among SARS-CoV-2 RT-PCR-positive cases.
PPE, personal protective equipment, RT-PCR: reverse transcription-polymerase chain reaction.

Risk factors	SARS-CoV-2 RT-PCR-positive cases
Inadequate supply of standard PPE	13.6%
Absence of negative pressure ventilation	67.8%
Incidence of laboratory contamination	44.7%
No training on molecular test methods	40.6%

Discussion
Findings from a previous pandemic of other coronaviruses revealed that frontline HCWs were at the highest risk of infection because of close contact with infected patients, touching the contaminated surfaces, the hiding of epidemiological histories by patients, inadequate training for infection prevention, and control and conducting the high-risk procedures in airway management [11,12]. Additional laboratory professionals, including virologists, microbiologists, medical technologists, and cleaners, are also at high risk through exposure to specimens collected from SARS-CoV-2 infected patients. This study retrospectively collected epidemiological and related data from laboratory personnel working in multiple COVID-19 RT-PCR laboratories. Among the 508 participants of our research, we found that 295 (58%) lab workers became positive during their services, and most of them were male and young (24-44 years age group).

Among laboratory health workers, medical technologists possess a higher risk of regular handling of both symptomatic and asymptomatic cases [13]. Our study also found that medical technologists affected almost 53% of cases. Analyzing the symptoms of positive cases, we found fever (78%), fatigue (70%), loss of smell and taste (65%), cough (64%), breathlessness (15%), and diarrhoea (14%). Most of the cases were symptomatic (91%). A meta-analysis study on COVID-19 comorbidities shows that the most common comorbidities identified are hypertension (15.8%), which also matched our research; we found it in 8% of cases [14]. Blood group A had a significantly higher risk for acquiring COVID-19 than other blood groups in our study, which is also matched with the study of Barcelona [15].

SARS-CoV-2 can be transmitted during the incubation period when a patient has nonspecific symptoms or no symptoms at all [14]. Therefore, it is necessary to protect them from SARS-CoV-2 infection, and additional transmission-based precautions should be taken [15]. HCWs infected by SARS-CoV-2 can increase the risk of transmission, and their absence from work can decrease health service performance. These may disrupt the chain management of transmission [16]. To minimize the risk of transmission, HCWs should be...
Acknowledgements

First, we would like to express our sincere gratitude to the Institute of Epidemiology, Disease Control and Research (IEDCR) for supplying us with all types of rapid antigen test kits as part of the validation procedure. We would like to thank the principal of Shaheed Suhrawardy Medical College for permitting this study in his institute. We would also like to thank all of the doctors and laboratory staff of the Department of Microbiology for their continuous support throughout the study. We are also grateful to all of the study participants who actively participated and co-operated to make it possible to complete this study. Finally, we would like to thank all the people who have supported me to complete the research work directly or indirectly.

Conclusions

The safety of laboratory HCWs should be confirmed to end the pandemic, as COVID-19 is ongoing. In this study, we tried to analyze the infection status of laboratory HCWs as it was not done before in Bangladesh; it is also essential to attract enough attention from the government and the public. This study will draw the attention of the government and non-government agencies to maintain the QC of COVID-19 RT-PCR laboratories, improve protective measures like the adequate supply of PPE, and arrange more hands-on training for laboratory health workers.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Ethical Review Committee of Shaheed Suhrawardy Medical College, Dhaka, Bangladesh issued approval ShSMCH/Ethical/2021/08. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

First, we would like to express our sincere gratitude to the Institute of Epidemiology, Disease Control and Research (IEDCR) for supplying us with all types of rapid antigen test kits as part of the validation procedure. We would like to thank the principal of Shaheed Suhrawardy Medical College for permitting this study in his institute. We would also like to thank all of the doctors and laboratory staff of the Department of Microbiology for their continuous support throughout the study. We are also grateful to all of the study participants who actively participated and co-operated to make it possible to complete this study. Finally, we would like to thank all the people who have supported me to complete the research work directly or indirectly.

References

1. Worldometer: coronavirus update in Bangladesh. (2022). Accessed: February 21, 2022: https://www.worldometers.info/coronavirus/country/bangladesh/.
2. COVID-19 dynamic dashboard for Bangladesh. (2022). Accessed: February 21, 2022: http://103.247.238.92/webportal/pages/covid19.php.
3. Lahner E, Dilaghi E, Prestigliacomo C, et al.: Prevalence of Sars-Cov-2 infection in health workers (HWs) and diagnostic test performance: the experience of a teaching hospital in central Italy. Int J Environ Res Public Health. 2020, 17:4417.
4. Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD: How will country-based mitigation measures influence the course of the COVID-19 epidemic?. Lancet. 2020, 395:931-4. 10.1016/S0140-6736(20)30567-5
5. Khan MJR, Raihan R, Islam SMR, et al.: Renewed focus on the threat of cross-contamination in molecular laboratories: notes from the COVID-19 testing experience in Bangladesh. Adv Infect Dis. 2021, 11:357-365. 10.4236/aid.2021.114032.

6. Iwen PC, Stiles KL, Pentella MA: Safety considerations in the laboratory testing of specimens suspected or known to contain the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Am J Clin Pathol. 2020, 153:567-70. 10.1093/ajcp/aqaa047

7. Mim F, Reza MS, Rahman Khan MJ, Karim N, Rahman MA, Hossain MI, Biswas R: Evaluation of sensitivity and specificity of three commercial real-time quantitative polymerase chain reaction kits for detecting SARS-CoV-2 in Bangladesh. Cureus. 2021, 13:e20627. 10.7759/cureus.20627

8. Albans PM, Notarte KI, Macaranas I, Maralit B: Cross-contamination in molecular diagnostic laboratories in low-and middle-income countries. Philipp J Pathol. 2020, 5:7-11. 10.21141/PJP.2020.09

9. Huggett JF, Benes V, Bustin SA, et al.: Cautionary note on contamination of reagents used for molecular detection of SARS-CoV-2. Clin Chem. 2020, 66:1569-72. 10.1093/clinchem/hva214

10. Zuckerman NS, Pando R, Bucris E, et al.: Comprehensive analyses of SARS-CoV-2 transmission in a public health virology laboratory. Viruses. 2020, 12:854. 10.3390/v12080854

11. Escombe AR, Oser CC, Gilman RH, et al.: Natural ventilation for the prevention of airborne contagion . PLoS Med. 2007, 4:e68. 10.1371/journal.pmed.0040068

12. Frieden TR, Lee CT: Identifying and interrupting superspreading events—implications for control of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020, 26:1059-66. 10.3201/eid2606.200495

13. Sadeghi M, Saberian P, Hasani-Sharamin P, Dadashi F: The role of possible factors affecting the risk of getting infected by COVID-19 in emergency medical technicians: a case-control study. Res Sq. 2020, 10.21203/rs.3.rs-39251/v1

14. Sanyaloo A, Okorie C, Marinkovic A, et al.: Comorbidity and its impact on patients with COVID-19 . SN Compr Clin Med. 2020, 2:1069-76. 10.1007/s42399-020-00565-4

15. Muñiz-Diaz E, Llopis J, Parra R, et al.: Relationship between the ABO blood group and COVID-19 susceptibility, severity and mortality in two cohorts of patients. Blood Transfus. 2021, 19:54-63. 10.2450/2020.0256-20

16. Callaway E, Czyrnski D: China coronavirus: six questions scientists are asking . Nature. 2020, 577:e605-8.

17. McGarry BE, Grabowski DC, Barnett ML: Severe staffing and personal protective equipment shortages faced by nursing homes during the COVID-19 pandemic. Health Aff (Millwood). 2020, 39:1812-21. 10.1377/hlthaff.2020.01269

18. Fischer RJ, Morris DH, van Doremalen N, et al.: Effectiveness of N95 respirator decontamination and reuse against SARS-CoV-2 virus. Emerg Infect Dis. 2020, 26:2253-55. 10.3201/eid2609.201524

19. Schwartz A, Stiegl M, Greenov N, et al.: Decontamination and reuse of N95 respirators with hydrogen peroxide vapor to address worldwide personal protective equipment shortages during the SARS-CoV-2 (COVID-19) pandemic. Appl Biosaf. 2020, 25:67-70. 10.1177/1535670X20919952

20. Cook TM: Personal protective equipment during the coronavirus disease (COVID) 2019 pandemic - a narrative review. Anaesthesia. 2020, 75:920-7. 10.1111/anae.15071

21. The Lancet: COVID-19: protecting health-care workers. Lancet. 2020, 395:922. 10.1016/S0140-6736(20)30644-9

22. Lai X, Wang M, Qin C, et al.: Coronavirus disease 2019 (COVID-2019) infection among health care workers and implications for prevention measures in a tertiary hospital in Wuhan, China. JAMA Netw Open. 2020, 3:e209666. 10.1001/jamanetworkopen.2020.9666

23. Zhou Q, Gao Y, Wang X, et al.: Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Ann Transl Med. 2020, 8:629. 10.21037/atm-20-3324