A single mutation in \textit{rapP} induces cheating to prevent cheating in \textit{Bacillus subtilis} by minimizing public good production

Nicholas A. Lyons1 & Roberto Kolter1

Cooperation is beneficial to group behaviors like multicellularity, but is vulnerable to exploitation by cheaters. Here we analyze mechanisms that protect against exploitation of extracellular surfactin in swarms of \textit{Bacillus subtilis}. Unexpectedly, the reference strain NCIB 3610 displays inherent resistance to surfactin-non-producing cheaters, while a different wild isolate is susceptible. We trace this interstrain difference down to a single amino acid change in the plasmid-borne regulator RapP, which is necessary and sufficient for cheater mitigation. This allele, prevalent in many \textit{Bacillus} species, optimizes transcription of the surfactin operon to the minimum needed for full cooperation. When combined with a strain lacking \textit{rapP}, NCIB 3610 acts as a cheater itself—except it does not harm the population at high proportions since it still produces enough surfactin. This strategy of minimal production is thus a doubly advantageous mechanism to limit exploitation of public goods, and is readily evolved from existing regulatory networks.
Cooperative systems, in which some members of a population help others at their own cost, are ubiquitous in nature yet can be vulnerable to exploitation by non-cooperative individuals that take part of the benefit without paying the cost. These exploitative cheaters cannot thrive on their own but can invade a community with a negative frequency-dependent fitness advantage over the cooperators that is detrimental to the overall population—two of the hallmarks of cheating. Some of the most studied cheating situations are in microbial species since they exhibit many cooperative behaviors, including secreted molecules like siderophores and surfactants, that are often expressed in multicellular contexts like fruiting body formation, swarms, and biofilms.

Because cooperative systems are so pervasive, mechanisms to prevent cheating must be as prevalent. Identified mechanisms tend to fall into a handful of different strategies: restrict cooperation to genetic relatives usually via kin discrimination or population bottlenecks, only engage in the cooperative trait when it is not rate-limiting, limit how public the good actually is, couple the cooperative act with other important behaviors such as quorum sensing or iron acquisition, and thus may not be representative of all the evolved mechanisms out there. Additionally, experiments are typically performed using a single strain of a given species, so it is not known whether the identified cheater control mechanisms are conserved or if other strains use different mechanisms.

In this study we took advantage of a different cooperative multicellular system: swarming in Bacillus subtilis, which is absolutely dependent on the secreted molecule surfactin. We previously showed that B. subtilis uses an antagonistic kin discrimination system to prevent this public good from being stolen by unrelated strains, but this system would not protect against spontaneous cheater mutants that arise from within a kin population. Investigating this scenario, we found that different strains have different responses to the presence of a surfactin-non-producing mutant. We traced this intraspecific difference down to a single mutation in a plasmid-borne gene rapP whose protein product regulates major developmental transcriptional cascades. This mutation results in the minimal production of surfactin needed to swarm, thus maintaining the full benefits of cooperation while lowering its cost and exploitability. RapP also effectively turned cells into cheaters, as the minimal-producers mutant exhibited phenotypes typical of cheating. Cheating has been observed in the B. subtilis population whether a non-cooperating mutant exhibited phenotypes typical of cheating. Cheating has been observed in the B. subtilis population whether a non-cooperating non-producing mutant. We traced this intraspecific difference down to a single mutation in a plasmid-borne gene rapP whose protein product regulates major developmental transcriptional cascades. This mutation results in the minimal production of surfactin needed to swarm, thus maintaining the full benefits of cooperation while lowering its cost and exploitability. RapP also effectively turned cells into cheaters, as the minimal-producers mutant exhibited phenotypes typical of cheating. Cheating has been observed in the B. subtilis population whether a non-cooperating

Results
Surfactin cheating in closely related strains. We first tested whether a non-cooperating B. subtilis mutant exhibited phenotypes typical of cheating. Cheating has been observed in the standard lab strain NCIB 3610's biofilm matrix components and derived lab strains' quorum-sensing molecules in swarms. We wanted to verify this and compare NCIB 3610 to the closely related strain PS-216 (ref. 65), as we previously found a number of differences in cooperative genes among B. subtilis strains, unlike NCIB 3610 but like most other B. subtilis isolates, is a mucoid strain and thus may have different approaches to production of extracellular substances. To assay for cheating behavior, we combined cells harboring a direct deletion of the public good surfactin (ΔsrfAA) with wild-type cells in varying ratios and spotted the mixtures on swarm-inducing media (Fig. 1a). After spreading across the entire plate, swarms were scraped off the agar, OD₆₀₀ readings were taken to determine total cellular yields, and final ratios of wild type: ΔsrfAA were measured by flow cytometry. Initial tests verified that OD₆₀₀ readings tracked very closely with the more direct but laborious method of measuring cell numbers by plating and counting colonies (Supplementary Fig. 1A) and is thus a good indicator of reproductive success of the swarm.

In NCIB 3610, increasing the initial percentage of ΔsrfAA cells caused the total yield of the swarms to decrease (Fig. 1b, black bars), as expected of a cheater harming the population by not producing the public good. However, in PS-216 the number of cells actually increased with added ΔsrfAA, to over two-fold in the 67% ΔsrfAA swarms, then decreased somewhat in the 90% ΔsrfAA swarms (though still higher than wild-type alone) (Fig. 1b, gray bars). This was unexpected, and was accompanied by a change in swarm morphology to more resemble non-mucoid strains like NCIB 3610 (Fig. 1a, bottom right). Also, the improved yields of PS-216 + ΔsrfAA brought it to similar levels as NCIB 3610, which consistently produced denser swarms (Fig. 1c) that expanded at a faster rate (Supplementary Fig. 1B).

When we measured the relative fitness of the mutant in the swarms, we again found a marked difference between strains. This time PS-216 showed the expected cheater phenotype of a negative frequency-dependent fitness advantage of ΔsrfAA over wild type, with low mutant ratios having a fitness over six and high ratios only around two (Fig. 1d, gray triangles). NCIB 3610, though, did not exhibit much of an advantage, peaking at less than two in the 33% ΔsrfAA swarms (Fig. 1d, black circles). The NCIB 3610 strain must therefore have some previously unknown inherent cheater resistance mechanism that limits the fitness advantage non-producers enjoy in other strain backgrounds.

In summary, the PS-216 swarms were helped by the presence of non-producing mutants, but because those mutant cells had a large fitness advantage they would eventually take over the population, leading to loss of the cooperative trait. NCIB 3610, on the other hand, was more sensitive to the addition of non-producers in terms of total swarm yield, but was guarded against their takeover because they have little or no advantage over wild type. So while neither strain showed both of the typical characteristics of being cheated, we consider NCIB 3610 as being cheater-protected because its cooperative swarming should be more evolutionarily stable than PS-216, which we consider cheating-vulnerable. Surfactin is thus an exploitable public good, unlike the surfactant in P. aeruginosa rhamnolipids that are public but guarded from exploitation through tight regulation and Pseudomonas putida puitisolvin that is neither public nor exploitable.

Cheater prevention due to a plasmid-borne allele. To see if the difference between the strains was due to the spatial distribution within swarms, which is known to affect cheater phenotypes, we examined fluorescently labeled wild type and mutant strains under a stereomicroscope. In both NCIB 3610 and PS-216 we saw even distribution of wild type and ΔsrfAA cells in all areas of the swarms, similar to the wild-type + wild-type control, despite the uneven abundances of each strain (Supplementary Fig. 2A, B). In contrast, Δhag cells that do not produce flagella and thus cannot swarm on their own did not spread out much beyond the initial inoculum spot (Supplementary Fig. 2C), indicating the lack of cheating of this private good (flagella). Cheater suppression in NCIB 3610 is thus not due to prevention of ΔsrfAA cells from spreading along with wild-type cells.

We then wondered what the mechanism was behind this inherent cheater mitigation in NCIB 3610, and how come it is missing in PS-216. The genomes of PS-216 and NCIB 3610 are very similar, with only 140 single-nucleotide polymorphisms varying ratios. All PS-216 values were significantly different from wild-type alone (P < 0.0001) except 90% mutant (P = 0.142), no NCIB 3610 ratios had significant fitness differences.
NCIB 3610 ΔpBS32 + rapP. Adding back rapP completely mitigated cheating, returning the number of cells and fitness back to wild-type NCIB 3610 levels (Fig. 2b), consistent with RapP being the cause behind the cheater resistance in this strain. We next wanted to see if rapPphrP was sufficient for cheater prevention in addition to being necessary. We thus inserted the operon into the chromosome of PS-216, which is very similar to NCIB 3610 but does contain SNPs in key regulatory genes like oppD, comp, degQ, and sigH, and has not co-evolved its transcriptional regulons with this unusual Rap. Despite these differences, the PS-216 + rapP strain has an almost identical response to the ΔsrfAA mutant as NCIB 3610: lower cellular yield but resistance to the mutant’s fitness advantage (Fig. 2b).

As mentioned, RapP is rare among Rap phosphatases in that its N236T mutation confers constitutive repressive activity; otherwise it would behave like any other Rap, of which there are many in every B. subtilis strain. We therefore tested whether adding back a non-constitutive version of RapP with residue 236 mutated back to the canonical Asn would also mitigate cheating. It did not, as NCIB 3610 ΔpBS32 + rapP(T236N) was exploited by the ΔsrfAA mutant just like the strains without any rapP, though it showed much more variability (Fig. 2b). All together, these data indicate that cheating can easily be prevented by a single amino acid change in a single gene.

Cheater resistance via RapP regulation of public good genes. Given this protein’s known effect on signaling proteins Spo0F and ComA, we looked at the expression levels of some of the major targets of these signaling proteins using nanoString nCounter, a probe hybridization-based assay. We examined the transcript levels of 73 genes chosen to represent a cross-section of B. subtilis regulons (see Supplementary Data 1 for list of genes). Though it is not a complete global analysis, this technique requires much less sample input and so allowed us to analyze transcriptional dynamics in early swarm development when cell counts are not high. When we compared the mRNA abundances of the three strains of interest—NCIB 3610, PS-216, and NCIB 3610 ΔpBS32—we found significant differences in 17 genes (Fig. 3a). These differences were almost entirely attributable to NCIB 3610, however, as PS-216 and NCIB 3610 ΔpBS32 had nearly identical gene expression. If we exclude sunA and rapP that are absent in NCIB 3610 ΔpBS32 and/or PS-216, the eight most-different genes are down-regulated in NCIB 3610, and none of...
the genes induced in NCIB 3610 are more than three-fold higher (Supplementary Data 1). These data support the hypothesis that the phenotypic differences between NCIB 3610 and PS-216 seen in Fig. 1 are largely due to the constitutively repressive activity of RapP on plasmid pBS32.

RapP is thought to repress Spo0F and ComA, and has previously been shown to affect expression of the extracellular matrix operon eps, the sporulation gene spoIIG, the srfA surfactin synthetase operon, and a different response regulator rapA.70,71. Of these, we found srfAA, rapA, and the late-sporulation gene sspB were indeed different between strains (Fig. 3a). However, epsA did not show a significant difference with or without pBS32 in our conditions, nor did tasA, sinR, slrR, abrB, sdpA, and skfB that are in the same Spo0F–Spo0A transcriptional network.78 (Supplementary Data 1). This could indicate a different regulatory architecture in swarms than biofilms, or that RapP preferentially interacts with ComA over Spo0F. Consistent with this, all the genes in our dataset from the ComA regulon were lower in NCIB 3610: pel, degQ, rapC, srfAA, and rapA (Fig. 3a).

To verify these results and examine expression at a single cell level, we measured fluorescent transcriptional reporters of several candidate genes by flow cytometry: srfAA, sspB, epsA, rapA, and the flagellum gene hag (which should be highly expressed in swarming cells but was slightly higher in NCIB...
3610 in our nanoString data). The promoter of each was placed in front of the yellow fluorescent protein (yfp) gene, and TFP levels in individual swarming cells were compared to a non-fluorescent control to determine the percentage of the population transcribing the promoter. We observed robust expression from promoters of hag, epsA, and tapA, but no difference between strains (Fig. 3b). Expression from the srfAA promoter was extremely high in PS-216 and NCIB 3610 ΔpBS32, with 68% and 65% of cells fluorescing yellow, but much lower in NCIB 3610, where less than 19% of cells definitively expressed YFP (Fig. 3b). This is similar to previous results in B. subtilis biofilms and sliding populations except that we do not see a separate subpopulation of surfactin-producing cells but rather a slight shift of the entire population (Supplementary Fig. 3A). Expression from P_sfpB was also significantly higher in PS-216 and NCIB 3610 ΔpBS32 than NCIB 3610, from 0.356 to 12.9% of cells (Fig. 3b), and all clearly were from a separate subpopulation of sporulating cells (Supplementary Fig. 3C). Since the promoters of the srfAA reporter seemed unimodal compared to the sfpB reporter, we also analyzed the median fluorescence levels of P_srfAA/yfp strains (Supplementary Fig. 3D). The results were much the same, with NCIB 3610 only having a 1.80x the level of the negative control while PS-216 and NCIB 3610 ΔpBS32 were 6.16 and 5.43 times as bright.

Because the profiles of NCIB 3610 ΔpBS32 so closely matched PS-216, we tested the transcriptional reporters in the rapPphrP addback strains to see whether RapP was the sole cause of the observed phenotype. As expected, adding rapP to PS-216 and NCIB 3610 ΔpBS32 drastically lowered the expression of P_srfA and P_sfpB but had no effect on P_sfpA (Fig. 3c). As with the cheating assay above, this effect was dependent on the N236T mutation, since the Asn reversion exhibited elevated transcription of these two reporters.

We next wanted to verify that the ultimate output of srfAA—surfactant in the swarm—matched the observed transcriptional differences. We thus performed a droplet collapse assay on swarm supernatants (Supplementary Fig. 4) to approximate the concentration of surfactin in each strain. The results showed a 7- and 15-fold difference in total surfactant between NCIB 3610 and PS-216 or NCIB 3610 ΔpBS32, and 11- and 19-fold when normalized to the number of cells in each swarm (Table 1). This supports the idea that the two cheater-vulnerable strains produce vastly more of the public good relevant to swarming than the resistant strain, which minimizes production.

To more solidly link surfactin production levels to cheater susceptibility, we examined the two phenotypes in a unicellular condition in which cells are not producing public goods: logarithmic growth in liquid LB, a rich complex medium in which having RapP(N236T) can impart a growth advantage. In this context neither NCIB 3610 nor NCIB 3610 ΔpBS32 expressed srfAA much above background levels (Fig. 4a, Supplementary Fig. 3B). Concordantly, a ΔsrfAA mutant had no fitness advantage at any starting frequency in either strain (Fig. 4b). This further supports a causal link between levels of surfactin produced and the ability of a non-producer to cheat, and also shows that cheating is multicellularity-specific.

The differences seen in srfAA expression between NCIB 3610 and PS-216 sheds light on their different phenotypes when mixed with ΔsrfAA cells. Since expression is so low in NCIB 3610, adding non-producers drops it below some critical threshold for efficient swarming and the total yield decreases. Conversely, a PS-216 swarm with added ΔsrfAA cells mimics NCIB 3610 in that total surfactin production is lowered, which seems to be more efficient since mixed swarms had up to two-fold higher yield (Fig. 1b). Minimizing public good production is thus a better overall use of resources on top of protecting against cheater invasion. Additionally, we think that the protective effect seen from lowering surfactin production is not due to its role as a signaling molecule, as transcription of its downstream target genes epsA and tapA was not different between strains (Fig. 3b).

Cheater prevention by cheater induction. Because RapP reduces srfAA expression so much, most of the cells in an NCIB 3610 swarm are effectively non-producers—phenotypically ΔsrfAA. We therefore reasoned that NCIB 3610 cells should act as cheaters in the presence of NCIB 3610 ΔpBS32 cells that are paying a high production cost, similar to the growth advantage in liquid LB previously reported. Indeed, the ΔpBS32 strain showed signs of being exploited by wild type in both total swarm yield and negative frequency-dependent fitness disadvantage (Fig. 5a, black bars and circles). This was largely abrogated when wild type was instead mixed with ΔpBS32 + rapP (Fig. 5a, gray bars and triangles), indicating the effects are entirely due to the presence of RapP in wild type. The lowest starting percent of wild type did still show some fitness benefit in this last experiment though, which could be due to copy number differences: one rapPphrP on the chromosome versus 2 copies of pBS32 per cell.

We next tested whether inserting rapPphrP into strains was sufficient to turn them into cheaters. In both the PS-216 and NCIB 3610 ΔpBS32 backgrounds, combining with RapP-containing strains conferred a fitness advantage and increased cell yields, indicative of cheating (Fig. 5b). The phenotypes were not as dramatic as combinations with either a true ΔsrfAA mutant or the wild-type NCIB 3610, which is likely again due to the lower copy number of chromosomally encoded rapP and that 5.05–12.3% of cells still make surfactin.

There are two obvious differences worth pointing out between the experiments in Fig. 5 and the previous assays: (1) here it is the normal wild-type strain that had a fitness advantage, not an engineered mutant and (2) the swarm yields did not go back to zero with higher amounts of cheaters. This is a crucial point, because while the RapP-containing wild-type cells have an advantage and thus could take over a population of no-RapP cells, they are not pure cheaters because they would not collapse the population. NCIB 3610 is thus a nonobligate variation of a facultative cheater, although unlike regulated facultative cheats, it’s behavior does not change when in the minority versus majority and so does not become cheatable itself.

Prevalence of rapP and N236E mutations. The clear advantage of strains with RapP(N236T) led us to investigate how prevalent this allele is, as we would expect it to spread through a population in a cheater-like way. We started by searching publically available B. subtilis genomes for homologs of rapP and found 16 hits in 112 unique genomes (14.3%, Table 2), including one on a plasmid that is very similar to pBS32, pLS32 (ref. 69). Because genome entries do not always contain plasmid sequences or are not fully

Strain	Total surfactant in swarm (μM)	Surfactant per cell (fm)
NCIB 3610	37 ± 5.4	16 ± 3.3
PS-216	260 ± 48	170 ± 39
NCIB 3610 ΔpBS32	560 ± 60	310 ± 34
NCIB 3610 ΔsrfAA	-	-
assembled, this search could easily have missed many genes. We therefore directly checked for rapP by PCR in 83 wild isolates, many of which were isolated on swarm- or biofilm-inducing media, and this time found 27 rapP homologs (32.5%, Table 2). This higher incidence could be due to the incompleteness of genome sequences or the source of the strains (many sequenced genomes are from industrially relevant strains), or that some of our strains were selected on multicellularity-inducing media. Regardless, the two methods together uncovered 43 homologs out of 195 strains (22.1%, listed in Supplementary Data 2), indicating that rapP is not an uncommon gene.

Looking closer at the identified rapP genes, we found that only NCIB 3610 contained the N236T mutation. However, there were seven strains that were either missing residue 236 (resulting from an upstream frameshift or deletion of the region) or had a truncation shortly downstream of 236 (Table 2). These could potentially have the same effect as N236T (PhrP insensitivity), but may also disrupt substrate target binding. Moreover, there could be additional residues whose mutation would prevent PhrP binding, as the peptide contacts a number of highly conserved side chains, so we cannot rule out other cheater-protective alleles in these strains.

Because Asn236 is highly conserved not just in RapP but in all other Rap proteins, we expanded our search for potential cheater-resistant N236 mutations using a database of 2921 Bacillus Rap homologs. Searching through the alignment of all full-length Rap proteins, we found mutations at the equivalent of position 236 in 194 Raps from 166 different strains (Table 2, Supplementary Data 2). Most of these occurred outside the subtilis group of species: in the 83 closest strains only four of the 881 Raps were mutated. Beyond those immediate species, though due to crosstalk they can sometimes still be inhibited by other Phr peptides, the N236 mutations we have highlighted here abrogate Phr binding like they do in RapP, then we would expect less selection pressure to maintain the downstream phr gene. Of the 194 Raps with Asn mutations, 62 do not have an associated phr gene (32.0%; Table 3, Supplementary Fig. 5, Supplementary Data 2), which is a significant enrichment over wild-type-236 Raps (712/2717, 26.1%; P = 0.0011 by nonparametric two-tailed t-test). It could however be the reverse: after a phr gene is lost there is relaxed selection on the N236 residue, as there is a higher incidence of Asn mutants among orphan than non-orphan Raps (10.2% versus 6.21%, P = 0.0011). Both scenarios result in an over-active repressor, which could target regulators other than Spo0F and ComA. Indeed, some of the mutant Raps are homologous to an allele that did not exhibit activity towards either of these targets in a heterologous system, so while
mutation of this residue likely does not have the same phenotype in all organisms, the production of various goods could be minimized with important evolutionary consequences.

Discussion
In this study we have shown that different *B. subtilis* strains have different responses to the presence of a surfactin-non-producing cheater in swarms, which is due to a single mutation in a plasmid-borne gene that minimizes production of the public good surfactin. Cells with this plasmid gene therefore act similarly to cheater in swarms, which is due to a single mutation in a plasmid-borne gene that minimizes production of the public good surfactin. RapP turns host cells into cheaters. The strategy is further beneficial because it mitigates cheater mutants that spontaneously arise from within the population, which complements the *B. subtilis* kin discrimination system that protects against newly-encountered populations that might steal public goods. One drawback, though, is that because it is already essentially at the minimum level of surfactin needed to swarm, it has a smaller margin for error and is hurt more by introduced cheaters.

The mechanism uncovered here is reminiscent of previously observed cheater control strategies based on prudent production of cheatable goods. However, those strategies, all described in *P. aeruginosa* and many resulting from experimental evolution rather than naturally occurring mechanisms, are either based on stopping production when it is not needed or being willing to reduce the benefit gained from cooperation by down-regulating production when it could be needed, trading off maximal cooperativity for cheater protection. The *B. subtilis* system does not make such sacrifices because instead of going below the threshold for maximum cooperative gain, it just avoids overproduction. And since NCIB 3610 swarms just as quickly and

![Image](https://example.com/image.png)
makes full use of surfactin’s signaling properties (matrix gene expression is unaffected), it appears that nothing is lost by reducing production. There is a side-effect of less sporulation in this strain (Fig. 3), but it is not known how many spores are optimal and thus whether this could also be avoiding overproduction.

Division of labor is thought to be one of the key advantages of multicellularity because it is more efficient than every individual performing all functions independently. While the flow cytometry profiles of surfactin gene expression in swarms do not suggest true division of labor, the levels in NCIB 3610 are so low that much of the population are essentially non-producers that depend on other cells to produce more surfactin for the entire group, creating a pseudo-division of labor. This was mimicked in PS-216, a high-production strain when performing all functions independently.

Based on our results, the Rap family of regulators seems to be sufficient allocation of tasks but also as a means of cooperation. We know that the virtual absence of N236 mutations in B. subtilis strains is surprising (Table 3), and could be a result of other cheater protection mechanisms at work, such as the diversification of surfactants in the subtilis clade (though this diversity was shown to affect biofilms more than surfactins). It may also suggest that NCIB 3610, the supposedly wild strain commonly used in lab studies, is likely at least partially domesticated from its original Marburg ancestor based on a recent genomic analysis that found an amount of gene loss similar to that of lab strains. Nevertheless, our results have still uncovered a molecular mechanism by which cheating can be prevented, even if it did not originate in the wild (although surely not all of the 194 Asn mutants in Table 3 are the result of domestication). If the selection for the Rap-P-N236T mutation in NCIB 3610 was artificial, it could still have been due to its cheater control benefits, as laboratory growth conditions involve larger populations than natural settings and thus more opportunity for cheaters to arise and more pressure on public goods producers. We know that the plasmid carrying this gene was lost upon further domestication in the derived lab strain 168, along with other public good genes and regulators necessary for biofilm formation. This explains why previous papers were able to demonstrate cheating in a lab

Table 2 Prevalence of rapP and N236 mutations in Bacillus subtilis strains

Strains examined	Have rapP	Residue at position 236	Truncation after Asn236		
		Asn	Thr	None	
PCR wild isolates	27	24	1	2	3
BLAST whole genomes	16	15	0	1	1
Total	43	39	1	3	4
%	22.1	90.7	2.3	7.0	9.3

*Due to either deleted region or upstream frameshift

Table 3 Bacillus Rap proteins mutated at position 236, by species and amino acid mutation

Species	Thr	Ser	Tyr	Asp	His	Ala	Ile	Total	Orphans (no Phr)	Strains examined	Paralogs	Strains with N236 mutant (%)
B. subtilis	2	1	1	4	2	2	44	1	6.82	1	100	188
B. mojavensis	0	0	0	0	0	0	0	0	0	0	0	0
B. amyloliqueficiens	0	0	0	0	0	0	0	0	0	0	0	0
B. atrophaeus	3	3	6	3	9	0	13	2	100	1	100	100
B. licheniformis	9	9	6	3	3	2	2	1	100	1	100	100
B. sonorensis	2	2	6	3	9	0	13	4	76.0	4	100	100
B. stratosphericus	1	1	1	1	1	1	1	1	100	1	100	100
B. pumilus	1	13	14	10	11	3	3	100	100	1	100	100
B. safensis	1	0	0	0	0	0	0	0	0	0	0	0
B. mycoides	67	17	85	21	147	13	147	49.0	100	4	100	100
B. thuringiensis	17	6	23	10	25	4	25	76.0	100	4	100	100
B. anthracis	26	26	52	10	26	0	26	100	100	0	100	100
B. clausi	2	1	3	6	1	1	1	100	100	1	100	100
Total	119	26	4	39	2	3	194	43.9	100	32	43.9	

*N236 mutant Raps found in same genome as another N236 mutant
Strains were diluted 100× to OD₆₀₀. Gene expression analysis included in every experiment. Scrape off of plates and resuspended in 200 µl PBS, OD₆₀₀ readings were taken, especially when studying social traits. Surfactant quantification was done to identify the different strains used to estimate the total concentration of surfactants in the liquid medium, then 10× more than normal (OD₆₀₀ = 5) were spotted on B medium at 37°C in order to initiate spreading sooner. For unicellular conditions in Fig. 4, overnight cultures were diluted to OD₆₀₀ = 0.001 in 15 ml of LB and grown to OD₆₀₀ = 0.5–1.0, approximating the increase in cell number that occurs on swarm plates while still staying in the logarithmic phase.

Cheating assays. Strains constitutively expressing different fluorescent protein combinations (RFP alone or RFP plus GFP) were combined in varying initial proportions and spotted on swarm-inducing plates as above. After overnight incubation, the entire swarm was scraped off the agar surface, suspended in 1 ml phosphate-buffered saline (PBS; 17 mM KH₂PO₄, 5 mM Na₂HPO₄, 150 mM NaCl), vortexed, passed through a 23-gauge needle 10× to break up clumps, sonicated 15× on ice at 20% amplitude, washed once in PBS, and resuspended in 1 ml PBS. Swarmer yield was determined by OD₆₀₀ readings of this suspension on a spectrophotometer, and normalized to the values of wild type alone to reduce day-to-day variation. Fixed by flow cytometry, and relative fitness was determined by the following formula: [(1–f)/(1–i)]/(1–i), where f is the final proportion and i the initial proportion. Spatial distributions of strains constitutively expressing RFP or YFP were visualized on a fluorescent microscope and analyzed by ImageJ software. All experiments were repeated with the fluorescent combinations swapped to control for any effect of the markers on fitness, and wild type + wild-type controls (0% mutant) at all tested ratios were included in every experiment.

Gene expression analysis. Various strains were grown in triplicate as above, except strains were diluted 100× to OD₆₀₀ = 0.005 before spotting on swarm agar plates. To detect early-development dynamics, scraped into 400 µl RNA later solution, vortexed, passed through a needle 10×, incubated for 15 min at room temperature, then sonicated 25x with 1 s pulses at 30% amplitude. After washing once in phosphate-buffered saline, cells were incubated in 200 µl of 15 mg/ml lysozyme in 57.5 mM Tris (pH 7.5) plus 2 mM EDTA for 2 h at room temperature. After adding 400 µl RLT buffer (Qiagen) containing 1:100 β-mercaptoethanol, lysates were diluted ten-fold in RLT for hybridization with probeset. Isolation and quantification of RNA by NanoString nCounter SPRINT was done according to the manufacturer’s instructions. Abundances of each mRNA were normalized to housekeeping gene counts, averaged among the three biological replicates, and any strain ratios greater than two-fold and i-test > 0.05 were considered significant. See Supplementary Data 1 for full results.

Transcriptional reporter assays. Strains containing constructs with different promoters in front of the yfp gene were spotted on swarm agar plates at OD₆₀₀ = 0.005, except <i>P_{phrP}</i>-Gfp strains were spotted at the normal concentration since sporulation occurs later. Swarms were grown overnight at 30°C, scraped into 0.5 ml PBS, vortexed, passed through a needle 10×, fixed in 4% paraformaldehyde at room temperature for 7 min to maintain the expression level in the swarm, washed in 0.5 ml PBS, resuspended in 0.5 ml GTE (50 mM glucose, 20 mM Tris pH 8.0, 10 mM EDTA), and sonicated 15× on ice at 20% amp. Cells were diluted to OD₆₀₀ = 0.3 and run on an LSR-II flow cytometer using FACS Diva software. Tight forward- and side-scatter gates were used to filter out clumps of cells, and controls of single-fluoresphore (cheating assays) or no-fluoresphore (reporter assays) were used to identify the different fluorescent populations. Histograms in Supplementary Fig. 3A–C were made in FCS Express 6 software, and the % YFP-positive cells shown in Fig 3 are the percentage of events that remained after subtracting out the no-fluorescence control histograms. Median YFP levels in Supplementary Fig. 3D were analyzed before and after subtracting out the lower level signal by subtracting the median value of the no-fluorescence control done on the same day.

Surfactant quantification. Fully-developed swarms from three replicates were scraped off of plates and resuspended in 200 µl PBS, OD₆₀₀ readings were taken, then cells were pelleted, and supernatants harvested into new tubes. Supernatants were then serially diluted and 5 µl spotted onto parafilm, allowed to settle for 10 min, photographed, and diameter of spots were correlated to dilutions of purchased surfactin (Sigma) to estimate the total concentration of surfactants in the swarms. To normalize by the number of cells in each swarm, OD₆₀₀ readings were converted to CFUs using Supplementary Fig. 1A. Total surfactant in the swarms was statistically different between NCIB 3610 and PS-216 (P = 0.0102) and NCIB 3610 ∆P_{BS32} (P = 9.76 × 10⁻⁴), and between PS-216 and NCIB 3610 ∆P_{BS32} (P = 0.0178); and surfactant levels normalized to cell counts were significantly different between NCIB 3610 and PS-216 (P = 0.0174) and NCIB 3610 ∆P_{BS32} (P = 0.00107), but not between PS-216 and NCIB 3610 ∆P_{BS32} (P = 0.0354) by two-tailed t-tests.

Statistical analyses. For comparing surfactin expression alone, all gene expression assays, and surfactant quantification, two-tailed t-tests were used without assuming consistent standard deviations. All statistical tests were done in Prism v7.0 software. rPP PCR and BLAST. Primers specific to the N236 region of rPP (Fwd CCATGAAATTATGCTCAGCGAGC, Rev CTTCCTGGTGTGTGTCGGCGG; 434 bp) were reacted with genomic DNA from our collection of wild strains to detect genotype sequence potential homologs, using DNA from NCIB 3610 and NCIB 3610 ∆P_{BS32} as positive and negative controls in each set of reactions. Because only the interior of the ORF was amplified, we cannot know if the homologs all contain the same <i>phrP</i> immediately downstream. For BLASTx searches, full-length rPP gene (GenBank: CP020103.1, nucleotide positions 29607–30770) was used to query <i>Brachybacterium subtilis</i> (taxid: 1423) nt and WGS databases, requiring >90% identity over >90% of the gene to be considered a homolog. Lab strains, contaminated genome sequences, and duplicate strains between the two approaches were excluded from final numbers. Homologs were confirmed by clustering in a phylogenetic tree with rPP and not the nearest homolog <i>rapl</i> (Supplementary Fig. 6). All strains examined by PCR and all strains with homologs found by BLAST are listed in Supplementary Data 2.

N236 mutant analysis. The alignment of all Raps taken from ref. 76 was manually scanned for substitutions at the position that aligned to 236 of RapP. These non-asparagine mutant sequences were then isolated and re-aligned for phylogenetic analysis in Mega v6.06. The percentage of strains with a mutant Rap was determined by first subtracting out the number of paralogs from the total number of mutated Raps in each species, then dividing by the number of strains examined. Unnamed species and species with a single representative are not listed in Table 3 for simplicity but were included in the totals. Supplementary Data 2 contains every species, strain, Rap ID number, 236 residue, and amino acid sequence of the identified mutant Raps and the Phr immediately downstream (if any).

Data availability. All datasets generated and analyzed in this study are listed in the article and supplementary information files.

Received: 26 June 2018 Accepted: 10 August 2018 Published online: 04 September 2018

References
1. Strassmann, J. E. & Queller, D. C. Evolution of cooperation and control of cheating in a social microbe. <i>Proc. Natl Acad. Sci. USA</i> 108(7 Suppl 2), 10855–10862 (2011).
2. Ozkaya, O., Xavier, K. B., Dionisio, F. & Balbontin, R. Maintenance of cheater resistance in quorum-sensing bacterial populations. <i>Behav. Ecol. 29</i>, 403 (2018).
3. Bastiaans, E., Debets, A. J. & Aanen, D. K. Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. <i>Nat. Commun. 7</i>, 11435 (2016).
4. Amherd, M., Veliger, G. J., Rendueles, O. & Holman, L. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. <i>Behav. Ecol. 29</i>, 393–403 (2018).
5. Brockhurst, M. A. Population bottlenecks promote cooperation in bacterial biofilms. <i>PLoS ONE 2</i>, e434 (2007).
6. Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. <i>Nature 450</i>, 411–414 (2007).
7. Gilbert, O. M., Foster, K. R., Mehdibadi, N. J., Strassmann, J. E. & Queller, D. C. High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. <i>Proc. Natl Acad. Sci. USA</i> 104, 8913–8917 (2007).
8. Ho, H. I., Hirose, S., Kuspa, A. & Shaulsky, G. Kin recognition protects cooperators against cheaters. <i>Curr. Biol. 23</i>, 1590–1595 (2013).
1. Lyons, N. A. & Kolter, R. Bacillus subtilis protects public goods by extending kin discrimination to closely related species. *Proc. Natl Acad. Sci. USA* **108**, 8357–8362 (2011).
2. Mumford, R. & Frimodt-Møller, V. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phase therapy. *Evol. Appl.* **10**, 161–169 (2017).
3. Saucedo-Mora, M. A. et al. Selection of functional quorum sensing systems by lysozyme bacteriophages in *Pseudomonas aeruginosa*. *Front. Microbiol.* **8**, 2077 (2017).
4. Smalley, N. E., An, D., Parsiek, M. R., Chandler, J. R. & Dandekar, A. A. Quorum sensing protects *Pseudomonas aeruginosa* against cheating by other species in a laboratory coculture model. *J. Bacteriol.* **197**, 3154–3159 (2015).
5. Waa, M., Schaefer, A. L., Dandekar, A. A. & Greenberg, E. P. Quorum sensing and policing of *Pseudomonas aeruginosa* social cheaters. *Proc. Natl Acad. Sci. USA* **112**, 2187–2191 (2015).
6. Wilder, C. N., Diggle, S. P. & Schuster, M. Cooperation and cheating in *Pseudomonas aeruginosa*: the roles of the las, rhl and pqs quorum-sensing systems. *ISME J.* **5**, 1332–1343 (2011).
7. Wolf, J. B. et al. Fitness trade-offs result in the illusion of social success. *Curr. Biol.* **25**, 1086–1090 (2015).
8. Butaite, E., Baumgartner, M., Wyder, S. & Kummerli, R. Siderophore production and cheating resistance shape competition for iron in soil and freshwater *Pseudomonas* communities. *Nat. Commun.* **8**, 414 (2017).
9. Greig, D., & Travisano, M. The prisoner’s dilemma and polymorphism in quorum-sensing systems. *SUC genes. Proc. Natl Acad. Sci. USA* **101**, Suppl. 3, S25–S26 (2004).
10. Pollak, S. et al. Facultative cheating supports the coexistence of diverse quorum-sensing alleles. *Proc. Natl Acad. Sci. USA* **113**, 2152–2156 (2016).
11. Stilwell, P., Lowe, C. & Buckling, A. The effect of cheats on siderophore diversity in *Pseudomonas aeruginosa*. *J. Evol. Biol.*, https://doi.org/10.1111/jeb.13307 (2018).
12. Holt, F. J. et al. Spatial structure facilitates cooperation in a social dilemma: empirical evidence from a bacterial community. *PLoS ONE* **10**, e0017704 (2015).
13. Jack, C. N. et al. Migration in the social stage of *Dictyostelium discoideum* amoeba impacts competition. *Peerj* **3**, e1352 (2015).
14. Lujan, A. M., Gomez, P. & Buckling, A. Siderophore cooperation of the bacterium *Pseudomonas aeruginosa* in soil. *Biol. Lett.* **11**, 20140934 (2015).
15. MacLean, R. C. & Guedelj, I. Resource competition and social conflict in experimental populations of yeast. *Nature* **441**, 498–501 (2006).
16. Momemi, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. *eLife* **2**, e06900 (2013).
17. Pande, S. et al. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. *ISME J.* **10**, 1413–1423 (2016).
18. Ross-Gillespie, A., Gardner, A., Buckling, A., West, S. A. & Griffin, A. S. Density dependence and cooperation: theory and a test with bacteria. *Evolution* **63**, 2315–2325 (2009).
19. Schuster, J., Nadell, C. D., Bassler, B. L. & Foster, K. R. Adhesion as a weapon in microbial competition. *ISME J.* **10**, 139–149 (2016).
20. Smukalla, S. et al. *FLOI* is a variable green beard gene that drives biofilm-like cooperation in budding yeast. *Cell* **135**, 726–737 (2008).
21. Van Dyken, J. D., Muller, M. J., Mack, K. M. & Desai, M. M. Spatial population expansion promotes the evolution of cooperation in an experimental Prisoner’s Dilemma. *Curr. Biol.* **23**, 919–923 (2013).
22. van Gestel, J., Weissing, F. J., Kuipers, O. P. & Kovacs, A. T. Density of founder cells affects spatial pattern formation and cooperation in *Bacillus subtilis* biofilms. *ISME J.* **8**, 2069–2079 (2014).
23. Yan, J., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. *Nat. Commun.* **8**, 327 (2017).
24. Kearns, D. B., Chu, F., Rudner, R. & Losick, R. Genes governing swarming in *Bacillus subtilis* and evidence for a phase variation mechanism controlling surface motility. *Mol. Microbiol.* **52**, 357–369 (2004).
25. Stefanic, P., Kraghier, B., Lyons, N. A., Kolter, R. & Mandic-Mulec, I. Kin discrimination between sympatric *Bacillus subtilis* isolates. *Proc. Natl Acad. Sci. USA* **112**, 14042–14047 (2015).
26. Lyons, N. A., Kraghier, B., Stefanic, P., Mandic-Mulec, I. & Kolter, R. A combinatorial kin discrimination system in *Bacillus subtilis*. *Curr. Biol.* **26**, 733–742 (2016).
27. Dragos, A. et al. Evolution of exploitative interactions during diversification in *Bacillus subtilis* biofilms. *FEMS Microbiol. Ecol.*, https://doi.org/10.1093/femsme/fxu155 (2017).
28. Martin, M. et al. De novo evolved interference competition promotes the spread of biofilm defectors. *Nat. Commun.* **8**, 15127 (2017).
29. Even-Tov, E. et al. Social evolution selects for redundancy in bacterial quorum sensing. *PLoS Biol.* **14**, e1002386 (2016).
30. Stefanic, P. & Mandic-Mulec, I. Social interactions and distribution of *Bacillus subtilis* pherotypes at microscale. *J. Bacteriol.* **191**, 1756–1764 (2009).
66. Parashar, V., Konkol, M. A., Kearns, D. B. & Neiditch, M. B. A plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. *J. Bacteriol.* **195**, 4085–4093 (2013).

67. Parashar, V., Konkol, M. A., Kearns, D. B. & Neiditch, M. B. A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. *J. Bacteriol.* **195**, 2437–2448 (2013).

68. Omer Bendori, S., Pollak, S., Hizi, D. & Eldar, A. The RapP-Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. *Front. Microbiol.* **8**, d32–d45 (2013).

69. Lazazzera, B. A., Solomon, J. M. & Grossman, A. D. An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. *Cell* **89**, 917–926 (1997).

70. Molle, V. et al. The Spo0A region of Bacillus subtilis. *Mol. Microbiol.* **50**, 1683–1701 (2003).

71. Cornella, N. & Grossman, A. D. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. *Mol. Microbiol.* **57**, 1159–1174 (2005).

72. Lopez, D., Vlamakis, H., Losick, R. & Kolter, R. Paracrine signaling in a bacterium. *Genes Dev.* **23**, 1631–1638 (2009).

73. van Gestel, J., Vlamakis, H. & Kolter, R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. *PLoS Biol.* **13**, e1002141 (2015).

74. Santorelli, L. A. et al. Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. *Nature* **451**, 1107–1110 (2008).

75. Madsen, J. S. et al. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models. *Appl. Environ. Microbiol.* **81**, 8414–8426 (2015).

76. Parashar, V., Jeffrey, P. D. & Neiditch, M. B. Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors. *PLoS Biol.* **11**, e1001512 (2013).

77. Gallego del Sol, F. & Marina, A. Structural basis of Rap phosphatase inhibition by Phr peptides. *PLoS Biol.* **11**, e1001511 (2013).

78. Fiega, F., Yu, Y. T., Kadam, S. V. & Velicer, G. J. Evolution of an obligate social cheater to a superior cooperater. *Nature* **441**, 310–314 (2006).

79. Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. *Nature* **459**, 253–256 (2009).