On the discrete spectrum of non-analytic matrix-valued Friedrichs model

I. A. Ikramov, F. Sharipov

14 February 1995

Abstract

We have found the sufficient conditions for the spectrum of matrix-valued Friedrichs model to be finite.

1 Introduction

Consider a self-adjoint operator \(H \) in the Hilbert space \(L^2(T^\nu, \mathbb{C}^n) \) given by the formula

\[
(Hf)(x) = U(x)f(x) + \int_{T^\nu} K(x, y)f(y) \, dy
\]

where \(T^\nu \) is a \(\nu \)-dimensional torus, \(\mathbb{C}^n \) is the \(n \)-dimensional complex Euclidean space, \(L^2(T^\nu, \mathbb{C}^n) \) is the complex Hilbert space of the square-integrable (with respect to the norm) functions on \(T^\nu \) taking values in \(\mathbb{C}^n \), \(U(x) \) and \(K(x, y) \) are continuous functions on \(T^\nu \) and \(T^\nu \times T^\nu \) respectively with values in the space \(M_n(\mathbb{C}) \) of complex \(n \times n \)-matrices, satisfying the following conditions:

\[
U^*(x) = U(x), \quad K^*(x, y) = K(y, x),
\]

where * denotes the adjoint matrix.

Operator of the form (1) for the first time was treated by Friedrichs [1], [2] in the case \(\nu = 1, n = 1, U(x) = x \) as a simple model of the perturbation theory for continuous spectrum. His results were further developed by O. A. Ladyzhenskaya and L. D. Faddeev [3], L. D. Faddeev [4], S. N. Lakaev [5], [6], etc.

In the case when \(U(x) \) and \(K(x, y) \) are matrix-valued analytic functions the spectral properties of the operator \(H \) were studied in [3], [4], [5], [6]. In particular the following theorem was proved:
Theorem 1. [3], [4]. Let $U(x) = (\delta_{ij} u_j(x))$, $K(x, y) = (K_{ij}(x, y))$ where δ_{ij} is the Kronecker symbol and suppose that the matrix elements $u_j(x)$, $K_{ij}(x, y)$ $(i, j = 1, 2, \ldots, n)$ are real-valued analytic functions on T^ν and on $T^\nu \times T^\nu$ respectively. If one of the following two conditions is valid then the operator H defined by (1) has a finite number of eigenvalues (counted with multiplicities) outside the essential spectrum.

1. $\nu = 1$ and for every $j = 1, 2, \ldots, n$ all critical points of the functions $u_j(x)$ are isolated;
2. $\nu \geq 1$ and for every $j = 1, 2, \ldots, n$ all critical points of the functions $u_j(x)$ are non-degenerate.

In the present paper we show the finiteness of the discrete spectrum of the operator H for a more wide class of functions $U(x)$ and $K(x, y)$.

2 Main theorem

Denote by $\sigma_{ess}(H)$ the essential spectrum of the operator H and denote by $\Delta(x, z)$ the determinant of the matrix $U(x) - z E$, where E is the unit matrix and $z \in \mathbb{C}$.

Lemma 2. The essential spectrum of H is of the form

$$\sigma_{ess}(H) = \bigcup_{x \in T^\nu} \{ z \in \mathbb{C} : \Delta(x, z) = 0 \} = \bigcup_{i=1}^k [m_i, M_i]$$

with mutually non-intersecting segments $[m_i, M_i]$ $(i = 1, 2, \ldots, k)$.

Lemma 2 follows from the Weyl’s theorem about the essential spectrum and from the minimax principle (cf. [13]).

Denote now by Γ the set

$$\Gamma = \{ m_1, m_2, \ldots, m_k, M_1, M_2, \ldots, M_k \}$$

Lemma 3. For any $z \in \Gamma$ the value $A = 0$ is globally extremal value for the continuous real-valued function $\varphi_z(x) = \Delta(x, z)$ on the torus T^ν.

Definition 1. Let $\varphi(x)$ be a continuous real-valued function on the torus T^ν. Extremal point $x^0 \in T^\nu$ of the function $\varphi(x)$ is called a point of finite multiplicity if there exist such numbers $m > 0$, $c > 0$ and such neighbourhood $V(x^0)$ of the point x^0 that for any $x \in V(x^0)$ the following inequality holds

$$|\varphi(x) - \varphi(x^0)| \geq c|x - x^0|^m, \quad \text{where} \quad |x - x^0|^2 = \sum_{i=1}^n (x_i - x_i^0)^2.$$

(3)
Else the extremal point \(x^0 \) is called a point of infinite multiplicity. The exact lower bound of the set of numbers \(m > 0 \) satisfying the condition (3) is called multiplicity of the extremal point \(x^0 \) and is denoted by \(m(x^0) \). Multiplicity of an extremal value \(A \) of the function \(\varphi(x) \) is the sum of multiplicities of all extremal points from the inverse image \(\varphi^{-1}(A) \) of \(A \).

Denote by \(C^{\alpha+0}(T^\nu \times T^\nu, M_n(C)) \) the space of the matrix-valued functions \(K(x, y) \) on \(T^\nu \times T^\nu \) such that for any multiindex \(\beta \) with \(|\beta| \leq |\alpha| \) the derivative \(K^{(\beta)}(x, y) \) satisfies the Hölder condition with index \(\{\alpha\} + 0 \) where \(\{\alpha\} \) is the entire part of \(\alpha \) and \(\{\alpha\} = \alpha - [\alpha] \).

Theorem 4. Let \(0 < \mu < \infty \). Suppose that for any \(z \in \Gamma \) number \(A = 0 \) is the extremal value of the function \(\varphi_z(x) = \Delta(x, z) \) of the multiplicity \(\leq \mu \). Let the function \(K(x, y) \) belong to the class \(C^{2\mu-\nu/2+0}(T^\nu \times T^\nu, M_n(C)) \). Then the operator \(H \) has only a finite number of eigenvalues (counted with multiplicities) outside the essential spectrum.

Proof. of this theorem consists of the following lemmas.

Lemma 5. Let \(z_0 \in \Gamma \). If the matrix-valued function \(\Delta^{-1}(x, z_0) K(x, y) \) is square-integrable with respect to the norm on \(T^\nu \times T^\nu \), then there exists a positive number \(\varepsilon = \varepsilon(z_0) \) such that the operator \(H \) defined by (3) has only a finite number of eigenvalues (counted with multiplicities) in the set \((z_0 - \varepsilon, z_0 + \varepsilon) \setminus \sigma_{\text{ess}}(H) \).

Proof. By the Fredholm theorem it is sufficient to show that \(z_0 \) is not a limit point of the discrete spectrum of the operator \(H \). Suppose that it is not so, i.e. there exists a sequence \(\{z_n\} \) of eigenvalues \(z_n \notin \sigma_{\text{ess}}(H) \), converging to \(z_0 \) and let \(f_n \) be a normed eigenfunction of the operator \(H \) corresponding to the eigenvalue \(z_n \), i.e. a solution of the equation

\[
(U(x) - z_n E)f_n(x) + \int_{T^\nu} K(x, y) f_n(y) \, dy = 0.
\]

Consider a sequence of operators

\[
(\hat{K}(z_n)f_n)(x) = \int_{T^\nu} (U(x) - z_n E)^{-1} K(x, y) f(y) \, dy, \quad n = 1, 2, \ldots
\]

By supposition \(\hat{K}(z_n) \) is a compact operator and

\[
\lim_{n \to \infty} \hat{K}(z_n) = \hat{K}(z_0)
\]

in the uniform operator topology, hence the operator \(\hat{K}(z_0) \) is also compact. Put \(F = \{f_n : n = 1, 2, \ldots\} \). As the set \(\hat{K}(z_0)F \) is precompact and

\[
f_n(x) = -\int_{T^\nu} (U(x) - z_n E)^{-1} K(x, y) f_n(y) \, dy = - (\hat{K}(z_n)f_n)(x), \quad n = 1, 2, \ldots
\]
so by (5) the set F is also precompact. It contradicts the orthonormality of the sequence \{f_n\}, and the lemma is proved.

Lemma 6. Let B be a bounded self-adjoint operator in a Hilbert space \mathcal{H}. If the essential spectrum of B consists of union of finite number of segments and if outside the essential spectrum B has a finite number of eigenvalues, then for any finite-dimensional operator K in \mathcal{H} the operator $B + K$ has finite number of eigenvalues (counted with multiplicities) outside the essential spectrum of B.

The lemma 6 can be easily proved using the Weyl theorem and the Fredholm determinant.

Proof of the theorem 4. If the conditions of the theorem 4 are satisfied then for any $z \in \Gamma$ the function $K(x, y)$ can be represented in the form

$$K(x, y) = K_1(x, y) + K_2(x, y)$$

so that the following conditions are valid:

$$\|\Delta^{-1}(x, z)K_1(x, y)\| \in L^2(T^\nu \times T^\nu), \ K_1^*(x, y) = K_1(y, x), \ K_2^*(x, y) = K_2(y, x)$$

and the integral operator with the kernel $K_2(x, y)$ in the space $L^2(T^\nu, C^n)$ is finite-dimensional.

Now using lemmas 2,3,5 and 6 begin proving the theorem 4.

3 Applications

1. Suppose that the matrix-valued function $U(x)$ is analytic. Then for any $z \in \mathbb{R}$ the function $\varphi_z(x) = \Delta(x, z)$ is real-analytic on T^ν. It follows from the Lojasevitch inequality (cf. [11]) that the isolated extremal point of a real-analytic function on the torus T^ν is an extremal point of finite multiplicity (cf. definition 1). Henceforth by the theorem 4 we obtain the following theorem generalizing the theorem 1.

Theorem 7. Let the matrix-valued function $U(x)$ be analytic on T^ν and let for any $z \in \Gamma$ the set $\varphi_z^{-1}(0)$ is finite (where $\varphi_z(x) = \Delta(x, z)$). Then there exists a positive number $s > 0$ such that for any matrix-valued function $K(x, y)$ from the class $C^{s+0}(T^\nu \times T^\nu, M_n(C))$ the operator H has finite number of eigenvalues (counted with multiplicities) outside the essential spectrum.

The following example shows the necessity of the condition of the theorem 7.
Example. Consider in the space $L^2(T^2)$ (where $T^2 = [0, 2\pi]^2$) operator of the form (1) with $n = 1$, $\nu = 2$, $U(x) = \cos x_1$,

$$K(x, y) = \sum_{k \geq 1} c_k \cos kx_2 \cos ky_2, \quad x = (x_1, x_2), \quad y = (y_1, y_2),$$

where

$$c_k^{-1} = \int_{T^1} (\cos x_1 + 1 + e^{-k})^{-1}dx_1.$$

It is clear that these functions $U(x)$ and $K(x, y)$ are analytic on T^2 and on $T^2 \times T^2$ respectively and the extremal points of the function $U(x)$ are not isolated. It can be easily checked that the essential spectrum of the operator H coinsides with the segment $[-1, 1]$ and the numbers $\lambda_n = -1 - e^{-n}$, $n = 1, 2, \ldots$ are eigenvalues of the operator H lying outside its essential spectrum.

2. Let $\varphi \in C^s(T^\nu)$ with natural s. Denote by $J_\alpha^s \varphi$, $\alpha \in T^\nu$ a s-jet of the function φ at the point α (cf. [3]). The following theorem is valid.

Theorem 8. Let $\varphi(x)$ be a real-valued function from the class $C^{\mu+3}(T^\nu)$ where μ is a natural number and let $\alpha \in T^\nu$ be an extremal point of the function φ. If there exists a smooth function $\psi(x)$ on T^ν for which the point α is a critical point of multiplicity $n \leq \mu$ (cf. [3]) and if $J_\alpha^{\mu+1} \varphi = J_\alpha^{\mu+1} \psi$, then $m(\alpha) \leq n + 1$.

Proof. As the statement of the theorem has a local character so it is sufficient to prove it in the neighbourhood of zero in \mathbb{R}^ν. Without any loss of generality we can suppose that $\alpha = 0$ is the point of minimum of the function φ and $\varphi(0) = 0$. As it is shown in [12] the number n is odd.

Let $p(x)$ be a $(\mu + 1)$-jet of the function φ at the point $\alpha = 0$. It follows from the Tujron theorem [12] that the function $p(x)$ has a local minimum at zero. Consider now a one-parameter deformation of the function p of the form $F_\varepsilon(x) = p(x) - \varepsilon x_1^{\mu+1}$ (where $x = (x_1, x_2, \ldots, x_\nu)$, $\varepsilon > 0$. As the multiplicity of the critical point $\alpha = 0$ is equal to n, so $x_1^n \in I_{\nabla p}$ (cf. [3]) where $I_{\nabla p}$ is the local gradient ideal of the function p at zero. Henceforth there exist such smooth functions $\{h_k(x)\}$ that in some neighbourhood of zero the following equality is valid:

$$x_1^n = h_1(x) \frac{\partial p}{\partial x_1} + h_2(x) \frac{\partial p}{\partial x_2} + \ldots + h_\nu(x) \frac{\partial p}{\partial x_\nu}. $$

Hence if ε is small enough we have $I_{\nabla p} = I_{\nabla F_\varepsilon}$. So the map ∇F_ε at the point $\alpha = 0$ has a zero of the multiplicity n (3).

As $\alpha = 0$ is the critical point of finite multiplicity for the polynom $p(x)$, so there exists a ball neighbourhood $V \subset \mathbb{C}^\nu$ of zero such that for all $x \in \partial V$ (where ∂V is a boundary of V) the inequality $|\nabla p(x)| \geq \delta > 0$.

Take ε to satisfy the following inequalities:

5
\begin{itemize}
 \item $F_\varepsilon(x) > 0$ for all $x \in \partial V \cap \mathbb{R}^\nu$,
 \item $|\nabla p(x)| > \varepsilon |x_1^n|$ for all $x \in \partial V$.
\end{itemize}

By the multidimensional Rouchet theorem ([11]) the maps $\nabla F_\varepsilon(x)$ and $\nabla p(x)$ have equal number of zeros (counted with multiplicities) in V. Therefore both functions $\nabla F_\varepsilon(x)$ and $\nabla p(x)$ have in V a unique zero of multiplicity n at the point $\alpha = 0$, in particular the function $F_\varepsilon(x)$ has no real critical points in V.

Therefore for any $x \in \overline{V} \cap \mathbb{R}^\nu$ and small enough positive ε we have $F_\varepsilon(x) \geq 0$, i.e.

$$p(x) \geq \varepsilon |x_1|^{n+1}.$$

By the same way we can prove that there exists a neighbourhood W of zero and a positive number ε such that the estimates

$$p(x) \geq \varepsilon |x_k|^{n+1}, \quad (k = 1, 2, \ldots, \nu)$$

hold for all $x \in W$ and it proves the theorem.

Remark. Validity of the theorem 8 for so-called extremally non-degenerate polynomials follows from the theorem 1.5 of [12].

From the theorems 4 and 8 we obtain the following

Theorem 9. Let $U(x) \in C^{\mu+3}(\mathbb{R}^\nu \times \mathbb{R}^\nu, M_n(\mathbb{C}))$ with some natural μ. If for any $z \in \Gamma$ and for any $\alpha \in \varphi_z^{-1}(0)$ where $\varphi_z(x) = \Delta(x, z)$ there exists a smooth function $\psi_{z, \alpha}(x)$ on \mathbb{R}^ν for which the point α is critical of multiplicity $n(\alpha)$ and

$$J^\mu_{\alpha + 1} \varphi_z = J^\mu_{\alpha + 1} \psi_{z, \alpha}, \quad \sum_{\alpha} n(\alpha) \leq \mu,$$

then for any function $K(x, y) \in C^{2^{\mu+2-\nu/2+\mu}}(\mathbb{R}^\nu \times \mathbb{R}^\nu, M_n(\mathbb{C}))$ the operator H has finite number of eigenvalues (counted with multiplicities) outside the essential spectrum.

Acknowledgement. This research was supported by Uzbek Science Foundation (grant N 44). The second author thanks for partial support by the International Science Foundation (Soros) (grant N MGM000). We are grateful to S. N. Lakaev and A. S. Mishchenko for helpful discussions.

References

[1] Friedrichs K. // Über die Spectralzerlegung eines Integraloperators. *Math. Ann.* 115 (1938), 249–272.
[2] Friedrichs K. // On the perturbation of continuous spectra. *Comm. Pure Appl. Math.* 1 (1948), 361–406.

[3] Ladyzhenskaya O. A., Faddeev L. D. // On continuous spectrum perturbation theory. *Dokl. Akad. Nauk SSSR* 120 (1958), 1187–1190 (in Russian).

[4] Faddeev L. D. // On the Friedrichs model in the theory of perturbations of continuous spectra. *Trudy Mat. Inst. Steklov* 73 (1964), 292–313 (in Russian).

[5] Lakaev S. N. // Discrete spectrum of operator-valued Friedrichs models. *Comm. Math. Univ. Carolinae* 27 (1986), 341–357.

[6] Lakaev S. N. // The discrete spectrum of a generalized Friedrichs model. *Dokl. Akad. Nauk UzSSR* (1979) No 4, 9–10 (in Russian).

[7] Abdullaev Zh. I., Lakaev S. N. // On the spectral properties of the matrix-valued Friedrichs model. *Adv. in Sov. Math.* 5 (1991), 1–37.

[8] Minlos R. A., Mogilner A. I. // Resonances of two quasi-particles on an impurity. In: Schrödinger Operators, Standart and Non-Standart. Inst. Nucl. Res., Dubna (USSR), Singapore, 1988, 243–257.

[9] Arnol’d V. I., Varchenko A. N., Gusein-zade S. M. // Singularities of differentiable maps. I. Moscow: Nauka, 1982.

[10] Shabat B. V. // Introduction to the complex analysis. II. Moscow: Nauka, 1976.

[11] Malgrange B. // Ideals of differentiable functions. Moscow: Mir, 1968.

[12] Vasil’ev V. A. // Asymptotics of exponential integrals, Newton diagrams and classification of minimal points. *Func. Anal. i Pril.* 11 (1977), No 3, 1–11.

[13] Reed M., Simon B. // Methods of modern mathematical physics. IV. New York: Academic Press, 1982.

Ikramov I. A., Sharipov F.
Dept. of Mathematics
Samarkand State University
Samarkand, 703004, Uzbekistan