Nonossifying fibroma: A possible pitfall in F18-FD-PET/CT imaging of Hodgkin's disease

Manuela Pagano, MD; Mara Berta, MD; Anna Maria Postini, MD; Maurizio Bianchi, MD; Adalberto Brach del Prever, MD; Claudio Defilippi, MD; Umberto Ficola, MD; and Angelina Cistaro, MD

A 14-year-old girl was examined for a history of right lateral neck swelling and radiographic mediastinal widening. Biopsy of a right supraclavicular lymph node demonstrated the nodular sclerosing form of Hodgkin's lymphoma. An 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (F18-FDG-PET/CT) study showed several pathological areas of lymph-node uptake in the upper mediastinum and right distal tibia. Radiography of the tibia revealed a nonossifying fibroma in the site corresponding to the distal tibial uptake. The PET appearance of benign fibro-osseous lesions may be similar to those of skeletal metastases. Information obtained by the CT component of the PET/CT study and by conventional radiography can be useful in preventing erroneous interpretations of F18-FDG-PET uptake.
The patient was treated according to the AIEOP protocol LH-2004 for Hodgkin’s lymphoma: six cycles of Cyclophosphamide, Vincristine, Procarbazine, and Prednisolone (COPP), with interval administration of Adriamycin, Bleomycin, and Vinblastin (ABV), followed by radiotherapy “mini-mantle” therapy (DFT 14.4 Gy).

The F18-FDG-PET study during chemotherapy showed complete resolution of the lymph-node uptake and a persistent accumulation of tracer in the tibia. The evaluation at the end of treatment indicated complete lymphoma remission (Fig. 4). However, tibial uptake was unchanged (Fig. 5).

Discussion
Diagnostic imaging methods, such as conventional radiographic, sonographic, and cross-sectional imaging, are excellent tools for evaluating Hodgkin’s disease in pediatric patients (1). F18-FDG-PET/CT recently achieved an important role in the initial staging of disease. This method is also important during chemotherapy (evaluation of early response), in radiotherapy planning, at the end of treatment, and during followup (1, 2, 6, 7). However, FDG is not a tumor-specific substance. FDG accumulation may be observed in a variety of benign entities (2, 7) because activated granulocytes and macrophages may display signific-

Figure 1. 14-year-old girl with nonossifying fibroma. Multiple enlarged mediastinal and right cervical lymph nodes are noted on CT (left), with increased uptake on coronal F18-FDG PET (middle) and F18-FDG PET/CT fusion image (right).

Figure 2. 14-year-old girl with nonossifying fibroma. Lucent lesion is noted in the distal right tibia on sagittally reformatted CT (left). Increased uptake is noted in this lesion on coronal F18-FDG PET (middle) and F18-FDG PET/CT fusion image (right).

Figure 3. 14-year-old girl with nonossifying fibroma. AP radiograph of both tibias, showing an eccentric, lucent lesion in the distal right tibia with a well-demarcated, sclerotic border, consistent with a nonossifying fibroma.
cantly increased glucose consumption (infection, G-CSF administration, radiation therapy, fracture) (8). FDG biodistribution also can be affected by various physiologic factors, such as brown adipose tissue (2), blood glucose levels, and muscle uptake (9). All these conditions may give rise to false-positive results in staging, in evaluation of treatment response, and in post-treatment assessment and followup.

Nonossifying fibroma (NOF) is a common benign finding encountered in radiology. It is a well-circumscribed solitary proliferation of fibrous tissue. NOF is more common in males than females, and may occur in as many as 35% of all children (10-12), with 75% of cases presenting in the second decade of life (10, 11, 13). Clinically, NOF is asymptomatic and is usually discovered by chance on a radiograph. NOF is usually located in the metaphysis or diaphysis, but the lesion may be seen in the metaphyseal junction of the femur or tibia (10-15). In general, NOF regresses spontaneously. During the involutional phase, osteoblastic activity increases as the lesion is replaced by new bone (13). Conventional radiography, CT, and MRI characteristics of NOF have been extensively studied (10-15). On unenhanced radiographs, a nonossifying fibroma appears as an eccentric radiolucent lesion with thinned cortex, a multilocular appearance, and often a sclerotic margin. Some authors have reported NOF as being metabolically active on F18-FDG-PET images (10, 13). Such activity, probably independent of lesion size, varies among patients and over time, as indicated by their F18-FDG uptake on PET (13).

Conclusion

The PET appearance of nonossifying fibroma can mimic bone metastasis (13). The possible mechanism for F18-FDG uptake in such cases is similar to that for acute fractures, consisting of increased blood flow and osteoblastic activity.

When PET reveals metabolically active osseous abnormalities in children who are at risk for bone metastases, benign fibro-osseous lesions should be considered in the differential diagnosis before additional diagnostic procedures are undertaken. Information obtained by the CT component of the PET/CT study and by conventional radiography is essential to characterize the nature of these lesions and to prevent erroneous interpretations of the F18-FDG uptakes.

References

1. Toma P, Granata C, Rossi A, Garaventa A. Multimodality imaging of Hodgkin disease and non-Hodgkin lymphomas in children. *Radiographics* 2007; 27(5):1335-54 [PubMed]
2. Castellucci P, Zinzani P, Pourdehnad M, Alinari L, Nanni C, Farsad M, Battista G, Tani M, Stefoni V, Canini R, Monetti N, Rubello D, Alavi A, Franchi R, Fanti S. 18-F-FDG PET in malignant lymphoma: significance of positive findings. *Eur J Nucl Med Mol Imaging* 2005; 32(7):749-56 [PubMed]
3. Montravers F, de Bazelaire C, Kerrou K, Farges C, Huchet V, Talbot JN, Frija J, de Kerviler E. Imaging and PET-CT of adult and childhood lymphoma. *J Radiol* 2008; 89(3 pt 2):371-84 [PubMed]
4. Hines-thomas M, Kaste SC, Hudson MM, Howard SC, Liu WA, Wu J, Kun LE, Shulkin BL, Krasin MJ, Metzger ML. Comparison of gallium and PET scans at diagnosis and follow-up of pediatric patients with Hodgkin lymphoma. *Pediatr Blood Cancer* 2008; 51(2):198-203 [PubMed]
5. Moog F, Bangertner M, Diederichs CG, Guhlmann A, Kotzerke J, Merkle E, Kolokythas O, Herrmann F, Reske SN. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. *Radiology* 1997; 203(3):795-800 [PubMed]
6. Mardis N, Wong CY. The accuracy of PET(CT) in evaluating pediatric lymphoma. *J Pediatr Hematol Oncol* 2007; 29(9):667-68 [PubMed]

7. Castellucci P, Nanni C, Farsad M, Alinari L, Zinzani P, Stefani V, Battista G, Valentini D, Pettinato C, Marengo M, Boschi S, Canini R, Baccarani M, Monetti N, Franchi R, Rampin I, Fanti S, Rubello D. Potential pitfalls of 18-F-FDG PET in a large series of patients treated for malignant lymphoma: prevalence and scan interpretation. *Nucl Med Commun* 2005; 26(8):689-94 [PubMed]

8. Metser U, Miller E, Lerman H, Even-Sapir E. Benign non physiologic lesion with increased 18F-FDG uptake on PET/CT: characterization and incidence. *AJR Am J Roentgenol* 2007; 189(5):1203-10 [PubMed]

9. Barrington SF, O’Doherty MJ. Limitation of PET for imaging lymphoma. *Eur J nucl Med Mol Imaging* 2003; 30(suppl 1): S117-27 [PubMed]

10. Betsy M, Kupersmith LM, Springfield DS. Metaphys- eal fibrous defects. *J Am Acad Orthop Surg* 2004; 12:89-95 [PubMed]

11. Brant WE, Helms CA. *Fundamentals of diagnostic radiology*, 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 1999:969-971

12. Caffey J. On fibrous defects in cortical walls of growing tubular bone: their radiologic appearance, structure, prevalence, natural course, and diagnostic significance. *Adv Pediatr* 1955; 7:13-51 [PubMed]

13. Goodin GS, Shulkin BL, Kaufman RA, Mc Carville MB. PET/CT Characterization of Fibroosseous Defects in Children: 18F-FDG Uptake Can Mimic Metastatic Disease. *AJR* 2006; 187:1124-28 [PubMed]

14. Jee WH, Choe BY, Kang HS et al. Nonossifying fi- broma: characteristics at MR imaging with pathologic correlation. *Radiology* 1998; 209:197-202 [PubMed]

15. Smith SE, Kransdorf MJ. Primary musculoskeletal tumors of fibrous origin. *Semin Musculoskelet Radiol* 2000; 4:73-88 [PubMed]