The effect of graduated elastic compression stockings on clinical findings, complications and inflammatory and thrombotic markers in patients with superficial vein thrombophlebitis

Утицај градуисане еластичне компресивне бандаже на клинички налаз, компликације као и на маркере инфламације и тромбозе код пацијената са површним венским тромбофлебитисом

Dragan Marković¹,², Dragan Vasić¹, Perica Mutavdžić¹, Slobodan Cvetković¹,², Vladan Popović³, Lazar Davidović¹,²

¹Clinical Center of Serbia, Clinic for Vascular and Endovascular Surgery, Belgrade, Serbia; ²University of Belgrade, Faculty of Medicine, Belgrade, Serbia; ³Clinical Center of Vojvodina, Clinic for vascular and transplantation surgery, Novi Sad, Serbia

Received: March 11, 2020
Revised: November 20, 2020
Accepted: November 23, 2020
Online First: November 26, 2020
DOI: https://doi.org/10.2298/SARH200311112M

Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the *Serbian Archives of Medicine*. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

Correspondence to:
Perica MUTAVDŽIĆ
Clinic for Vascular and Endovascular Surgery, Clinical Center of Serbia, Koste Todorovića 8, 11000 Belgrade, Serbia
E-mail: mutavdzic_perica@yahoo.com
The effect of graduated elastic compression stockings on clinical findings, complications and inflammatory and thrombotic markers in patients with superficial vein thrombophlebitis

The effect of graduated elastic compression stockings on clinical findings, complications and inflammatory and thrombotic markers in patients with superficial vein thrombophlebitis

Утицај градуисане еластичне компресивне бандаже на клинички налаз, компликације као и на маркере инфламације и тромбозе код пацијената са површним венским тромбофлебитисом

SUMMARY
Introduction/Objective Assessment of the effect of graduated elastic compression stockings on clinical findings, complications and inflammatory and thrombotic markers in patients with superficial vein thrombophlebitis.

Methods This prospective study was conducted between January and July 2017, in the Clinic for Vascular and Endovascular Surgery of Clinical Centre of Serbia. All the patients were clinically examined, and color duplex ultrasonography of the superficial and deep venous systems was performed. In all cases we follow clinical finding, inflammatory and thrombotic markers and complication superficial vein thrombosis (SVT).

Results SVT was detected in 60 patients (36 women, aged from 23 to 75 and 24 men, aged from 18 to 76. Most patients were with unilateral, subacute, above knee located SVT. Regarding the typical clinical symptoms of SVT, patients were divided in four groups. Majority of our patients (group D) had all symptoms associated. Regarding the severity of SVT and risk factors, patients were divided into a greater risk group (Group I) and a lesser risk group (Group II), and treated with low-molecular-weight heparin (LMWH) aspirin (ASA) and two classes of GECS regarding the level of SVT. Laboratory testing of inflammatory and thrombotic markers in patients with SVT was performed at the beginning and at the end of therapy.

Conclusions In treatment of superficial venous thrombosis higher class of graduated compression therapy has stronger influence in decrement of inflammatory and thrombotic factors and prompt and adequately chosen therapy of superficial venous thrombosis allows stoppage and regression of thrombotic process.

Keywords: graduated elastic compression stockings; inflammatory and thrombotic markers; superficial vein thrombophlebitis

САЖЕТАК
Увод/Циљ Циљ рада је процена утицаја градуисаних еластичних компресивних чарапа на клинички налаз, компликације као и на маркере инфламације и тромбозе код пацијената са површним венским тромбофлебитисом.

Методе Студија је дизајнирана као проспективна и обављена је од јануара до јула 2017. године на Клиници за васкуларну и ендоваскуларну хирургију Клиничког центра Србије. Сви пацијенти су подвижени клиничком прегледу и на основу клиничких симптома и ризика подељени у четири групе. Већина случајева у нашој студији имала је све очуване симптоме тромбофлебитиса. Узимајући у обзир степен ПВТ и факторе ризика пацијенти су били подељени у две групе. Већина случајева у нашој студији је имала високи ризик код којих су примењени хепарин и аспирин као и две класе градуисана компресивних чарапа високог и ниског нивоа ПВТ. Лабораторијски тестови инфламаторних и тромботских маркера код пацијената са ПВТ обављено је пре започињања и по завршетку терапије.

Закључак У третману ПВТ виши степен градуисане компресивне терапије има значајнији утицај на смањење вредности маркера инфламације и тромбозе те да брзо и адекватно одабрана терапија ПВТ омогућава заустављање и регресију тромбортског процеса.

Кључне речи: градуисана еластична компресивна чарапа; маркери инфламације и тромбозе; површни венски тромбофлебитис
INTRODUCTION

Acute superficial thrombophlebitis of the lower extremities is one of the most common vascular diseases affecting the population. Although it is generally considered a benign disease, it can be extended to the deep venous system and cause pulmonary embolism.

Superficial vein thrombophlebitis (SVT) frequently occurs in varicose veins. It can be caused by trauma, such as catheter insertion or direct intimal injury. It is believed that hidden infection in varicose veins is a potential factor for development of thrombophlebitis, which might be exacerbated after operations, injection treatments, trauma, or exposure to radiation therapy. While considering factors leading to SVT, the clinician must remember all the components constituting Virchow’s triad – namely: intimal injury, stasis, and changes in blood coagulation [1, 2]. SVT manifests as a local pain, itching, tenderness, reddening of the skin, and hardening of the surrounding tissue [3].

The color duplex ultrasonography of superficial and deep veins is a highly reliable diagnostic method and has an important role in deciding among a conservative or surgical treatment or follow-up of the operated patients [4].

Conservative treatment of SVT depends on its etiology and extent as well as the severity of symptoms. It usually implies platelet antiaggregation and anticoagulation therapy, combined with graduated elastic compression stockings (GECS) [5, 6].

This study was performed in order to estimate the effect of the graduated elastic compression stockings on the clinical finding, complication and inflammatory and thrombotic markers in patients with superficial vein thrombophlebitis.

METHODS

This study was designed as a prospective study. It was conducted between January and July 2011, in the Clinic for Vascular and Endovascular Surgery of Clinical Centre of Serbia.
This study was approved by the institutional ethics committee, and written consent was obtained from all the patients for the publication of the paper and any accompanying images.

The criterion for inclusion in this study was the presence of acute or subacute SVT, located below-knee or distally above knee, but without propagation in deep or perforating veins. All the patients were clinically examined, and after that color duplex ultrasonography of the superficial and deep venous systems was performed. All the cases were treated as outpatients.

Coagulation profile has been examined in 10 patients. That included: protein C activity level, protein S activity level, activated protein C resistance, antithrombin III level and activity, and lupus anticoagulant antibodies.

Classification of patients into groups was made based on estimation of the potential risk for spreading of thrombosis and affecting deep or perforating veins. The main criterions were level of SVT, proximity of perforating veins, as well as obesity, immobility and physical inactivity. According to this, the patients were classified in group with greater risk (group I) or lesser risk (group II).

Patients in the first group were treated with low-molecular-weight heparin (LMWH) and in the second group with aspirin (ASA). Patients in both groups have also been treated with graduated elastic compression stockings (GECS), class I (18–21 mmHg) or class II (23–32 mmHg) depending on the CEAP classification. Patients with C0 and C1 stage were treated with class I, while patients with C2-C6 were treated with class II GECS.

The effect on the biochemical parameters, inflammatory and thrombotic markers (leukocyte number, D-dimmer, fibrinogen, C-reactive protein, alkaline phosphatase, creatine kinase, lactate dehydrogenase, gamma glutamyl transferase, alanine transaminase and aspartate transaminase) was estimated 14 days after the initial examination.

All cases in which rapid propagation or propagation toward sapheno-femoral venous junction was detected, were excluded from the study. Those patients usually were treated surgically (by performing ligation or crossectomy).
Data analysis was assessed using statistical evaluation in addition to various descriptive and analytic statistical methods (measures of central tendency, T-test, F-test and others).

RESULTS

SVT was detected in 60 patients: 36 women (aged from 23 to 75) and 24 men (aged from 18 to 76). Group I consisted of 28 and group II of 32 patients. No patient had a history of malignancy or was peripartum. No patient reported a history of trauma to the lower extremities. Patients’ demographic characteristics are presented in Table 1.

Most patients were with unilateral, subacute, above knee located SVT. Table 2 presents clinical characteristics of SVT.

Regarding the typical clinical symptoms of SVT, patients were divided in four groups (Table 3). Patients in groups A, B and C had isolated erythema, pain or swelling. Majority of our patients (group D) had all symptoms associated.

Regarding the severity of SVT and risk factors, patients were divided into a greater risk group (Group I) and a lesser risk group (Group II). Patients in Group I were treated with low-molecular-weight heparin (LMWH), while patients in Group II were treated with aspirin (ASA). Patients were treated with two classes of GECS regarding the level of SVT. Patients with below knee SVT were treated with class I compression, whereas the patients with above knee SVT were treated with class II compression (Table 4).

Laboratory testing of inflammatory and thrombotic markers in patients with SVT was performed at the beginning and at the end of therapy (mean values are presented in Figure 1). All our patients with SVT had D-dimer value elevated over the baseline. Also, in all patients, increase in the values of inflammatory parameters, CRP and fibrinogen was observed.

After two-week therapy we have noticed that in most patients, 57 of them (95.5%), there was a subjective improvement, with stoppage of thrombosis progression.
In two patients treated with ASA and class I GECS there was thrombus propagation into Cockett perforating veins. Afterwards they were treated with LMWH, and eventually with oral anticoagulants.

One patient treated with LMWH and class II GECS has suffered proximal propagation of SVT through sapheno-femoral junction into common femoral vein. Two months later, that patient had a malignant process in the lungs established.

None of our patients has suffered pulmonary embolism.

DISCUSSION

Pharmacological and mechanical methods are used in the prevention and therapy of superficial and deep vein thrombosis. Pharmacological methods alter the blood coagulation, while mechanical methods include pneumatic compression and, specially, graduated elastic compression stockings. The exact mechanism how GECS function remains partially unknown. It is assumed that graded circumferential pressure, combined with activity of muscles, causes propulsion of blood from superficial to deep venous system through perforating veins [5–8].

SVT is characterized by formation of thrombi inside superficial veins, with involvement or occlusion of the lumen and inflammatory reaction along the venous path [9]. Inflammation and thrombosis are closely connected. Several clinical studies have examined the relation between levels of inflammatory markers and venous thrombosis. The common conclusion for all of them is that the risk of development of venous thrombosis is associated with elevations in plasma levels of CRP, interleukin 6 and IL-8, monocyte chemotactic protein 1, tumor necrosis factor alpha, and other. In the acute phase of SVT a majority of inflammatory markers were increased, particularly hsCRP, IL-6 and TNF-α. This finding was expected, since inflammation represents one of the basic pathogenetic mechanisms of SVT and is not limited only to the vessel wall, but usually affects the surrounding tissue as well [10].
One of the recent studies has shown that CRP is elevated in patients with acute DVT compared to controls, and that levels decline during the first few days of DVT treatment. Similar conclusions were made for IL-8 levels, leading to the conclusion that the thrombotic process produces a systemic inflammation. It is also believed that the decrement in levels of inflammatory factors is partly caused by heparin treatment (because of its anti-inflammatory effects) [11].

The fragments of the disintegrating fibrin in the clot are fibrin degradation products and one of them is D-dimer, which consists of variously sized pieces of cross-linked fibrin. Almost all patients with acute superficial or deep venous thrombosis have an elevated D-dimer level. An elevated D-dimer is associated with many illnesses, and therefore, is not specific for venous thromboembolism. D-dimer tests can have a high sensitivity which is useful because a normal test excludes the diagnosis of venous thromboembolism. D-dimer testing is most appropriate in the assessment of outpatients because the prevalence of disease and the likelihood of comorbidity are lower than in inpatient population, making a test of exclusion particularly valuable. Therefore, it is often used in conjunction with clinical probability scoring or color duplex ultrasonography to reduce the need for further imaging [11, 12].

In the literature there are not many papers that study the biochemical parameters of inflammation with the treatment of SVT. One of the earliest and most cited papers is a study in which DeTakats speculated that dormant infection in varicose veins was a factor in the development of thrombophlebitis. The paper mentions the experience with the treatment of 1,500 patients with resting infection using parenteral therapy [13].

All examined biochemical markers of inflammation (leukocyte number, CRP, and fibrinogen) were significantly reduced in group I with ASA therapy probably due to larger decrease in markers of inflammation with aspirin therapy, probably because of anti-inflammatory effects of aspirin.

The paper by Harenberg et al. has shown a decrease of D-dimer during UFH and LMWH treatment of deep vein thrombosis. Also, in patients with acute VTE, D-dimer was elevated and it decreased after three days of treatment with unfractionated heparin (UH) or with LMWH, but remained above the normal levels for the first week of treatment [14].
role of the pretest clinical probability score and/or the D-dimer concentration in the diagnostic management of thrombophlebitis and/or deep vein thrombosis (DVT) has been the objective of many studies and D-dimer testing is most appropriate in the assessment of outpatients because the prevalence of disease and the likelihood of comorbidity are lower than in inpatient populations, making a test of exclusion particularly valuable [15]. We found that no significant decrease of D-dimer was noted in both groups, but all values remained above the cut-off value.

Uncu et al. have evaluated the efficacy of LMWH compared to combined therapy of LMWH with non-steroidal anti-inflammatory drugs in treatment of SVT. They have found that significant improvements were achieved for both groups after the treatment in terms of all SVT symptoms. The results of their study suggest that the combined therapy of LMWH with an anti-inflammatory agent is more effective than LMWH, and that it might be an important option in the standard treatment of SVT [16].

Yasim et al. have evaluated serum concentrations of procoagulant, endothelial and oxidative stress markers in early primary varicose veins compared to healthy volunteers. They have investigated vascular endothelial marker levels and the effect of endothelial damage on coagulation parameters and vasodilator substances to determine metabolic markers of oxidative stress in patients with varicose veins and vascular endothelial damage caused by oxidative stress.

They have not found statistically significant difference between the study group and the control group. Their conclusion was that systemic increased oxidative stress seems not to be related to the early stages of chronic venous insufficiency [17].

Poredos has noted that inflammation has been accepted as a possible mechanism through which different factors cause formation of thrombus. They suggest that inflammation of the vein wall initiates thrombus formation, and that inflammation and coagulation systems are coupled by a common activation pathway. Therefore, the key event in the initiation of venous thrombus formation is most probably vein wall inflammation, but expected relationship between inflammatory markers as indicators of inflammatory process and clinical venous thromboembolism (VTE) has not been recognized yet. In their opinion C-reactive protein does not appear to be useful in predicting future venous thrombosis or to be
useful in the diagnosis of VTE [17]. In patients with SVT, levels of inflammatory markers are increased in the acute phase of the disease and most of the markers significantly decrease after 12 weeks. Also, levels of circulating inflammatory markers are negatively related to the recanalization rate of thrombosed superficial veins, which indicates that inflammation inhibits the resolution of thrombus and the recanalization of occluded veins [18].

According to the results of the present trial, which are supported by coherent data from the literature, it is not justified to recommend compression stockings in addition to LMWH and NSAIDs for prolonged time periods, but they might have beneficial effects early in the disease process [19].

Graduated elastic compression stockings provide the graded compression to the leg, highest at the level of ankle. They assist the calf muscle pump and reduce elevated venous tension and valvular reflux. The final effect is reduction of edema, improvement of tissue microcirculation and prevention of development of skin lesions. The same effect is documented with using knee-length and thigh-length compression stockings, however knee-length stockings are easier to apply and wear. Existing studies investigating the effect of GECS in patients with chronic venous disease have been graded as having low quality, while a Cochrane review concluded that there is insufficient, high quality evidence to determine whether or not compression stockings are effective as the sole and initial treatment of varicose veins [20].

Some studies also confirm that compression stocking therapy in the varicose vein wall may change the levels of biomarkers associated with vein insufficiency [21]. A higher level of class II GECS in our study led to a significant reduction of symptoms, equivalent to a greater effect on venous hypertension.

CONCLUSION

1. D-dimer is a successful diagnostic test in the initial phase and recovery phase.
2. In treatment of superficial venous thrombosis higher class of graduated compression therapy has stronger influence in decrement of inflammatory and thrombotic factors.

3. The prompt and adequately chosen therapy of superficial venous thrombosis allows stoppage and regression of thrombotic process.

4. Elastic bandage combined with an anticoagulant therapy with anti-inflammatory drugs is the method of choice.

Conflicts of interest: None declared.
REFERENCES

1. Myers DD Jr. Pathophysiology of venous thrombosis. Phlebology. 2015 Mar;30(1 Suppl):7–13. doi: 10.1177/0268355515569424.

2. Stone J, Hangge P, Albadawi H, Wallace A, Shamoun F, Knuttien MG et al. Deep vein thrombosis: pathogenesis, diagnosis, and medical management. Cardiovasc Diagn Ther. 2017 Dec;7(Suppl 3):S276-S284. doi: 10.21037/cdt.2017.09.01.

3. Di Nisio M, Wichers IM, Middeldorp S. Treatment for superficial thrombophlebitis of the leg. Cochrane Database Syst Rev. 2018 Feb 25;2:CD004982. doi: 10.1002/14651858.

4. Sándor T. Superficial venous thrombosis. A state of art. Orv Hetil. 2017 Jan;158(4):129–138. doi: 10.1556/650.2017.03618.

5. Sachdeva A, Dalton M, Lees T. Graduated compression stockings for prevention of deep vein thrombosis. Cochrane Database Syst Rev. 2018 Nov 3;11:CD001484. doi: 10.1002/14651858.

6. Rabe E, Partsch H, Hafner J, Lattimer C, Mosti G, Neumann M, et al. Indications for medical compression stockings in venous and lymphatic disorders: An evidence-based consensus statement. Phlebology. 2018 Apr;33(3):163–184. doi: 10.1177/0268355516689631.

7. Clarke MJ, Broderick C, Hopewell S, Juszczyk E, Eisenga A. Compression stockings for preventing deep vein thrombosis in airline passengers. Cochrane Database Syst Rev. 2016 Sep 14;9:CD004002. doi: 10.1002/14651858.

8. Partsch B, Partsch H. New aspects of compression therapy. Wien Med Wochenschr. 2016 Jun;166(9-10):305–11. doi: 10.1007/s10354-016-0467-9.

9. de Almeida MJ, Guillammon AT, Miquelin D, Joviliano EE, Hafner L, Sobreira ML, et al. Guidelines for superficial venous thrombosis. J Vasc Bras. 2019 Nov 20;18:e20180105. doi: 10.1590/1677-5449.180105.

10. Poredos P, Spírkoska A, Jezovnik MK. In patients with superficial vein thrombosis the inflammatory response is increased and related to the recanalization rate. Arch Med Sci. 2019 Mar;15(2):393–401. doi: 10.5114/aoms.2019.83292.

11. Van Aken BE, Reitsma PH, Rosendaal FR. Interleukin 8 and venous thrombosis: evidence for a role of inflammation in thrombosis. Br J Haematol. 2002;116 (1): 173–7. doi: 10.1046/j.1365-2412.2002.03245.

12. Kearon C, Ginsberg JS, Douketis J, Crowther M, Brill-Edwards P, Weitz JI, et al. Management of suspected deep venous thrombosis in outpatients by using clinical assessment and D-dimer testing. Ann Inter Med. 2001; 135:108–111. doi: 10.7326/0003-4819-135-2-200107170-00011.

13. DeTakats G. "Resting Infection" in varicose veins, its diagnosis and treatment. Am J Med Sci 1932; 184: 57.

14. Harenberg J, Hucke K, Bratschb H, Stehlea G, Demjplea CE, Malia K, et al. Therapeutic Application of Subcutaneous Low-Molecular-Weight Heparin in Acute Venous Thrombosis. Haemostasis 1990; 20 (S1): 205–219.

15. Marković D, Vasić D, Bašić J, Tanasković S, Cvetković S, Rančić Z. Sensitivity and specificity of D-dimer tests: comparing the ultrasound examination of deep vein thrombosis. Srp Arh Celok Lek. 2018 May-Jun;146(5-6):303–308. DOI: https://doi.org/10.2298/SARH180222038M

16. Uncu H. A comparison of low-molecular-weight heparin and combined therapy of low-molecular-weight heparin with an anti-inflammatory agent in the treatment of superficial vein thrombosis. Phlebology 2009; 24: 56–60. doi: 10.1258/phleb.2008.008025.

17. Yasim A, Kilinci M, Aral M, Okçu H, Kalbacı M, Ergolu E, et al. Serum concentration of procoagulant, endothelial and oxidative stress markers in early primary varicose veins. Phlebology 2008; 23: 15–20. doi: 10.1258/phleb.2007.007014.

18. Poredos P, Jezovnik MK. The role of inflammation in venous thromboembolism and the link between arterial and venous thrombosis. Int Angiol. 2007; 26 (4): 306–11.

19. Boehler K, Kittler H, Stolkovich S, Tzaneva S. Therapeutic effect of compression stockings versus no compression on isolated superficial vein thrombosis of the legs: a randomized clinical trial. Eur J Vasc Endovasc Surg. 2014 Oct; 48(4):465–71. doi: 10.1016/j.ejvs.2014.06.047.

20. Kakkos SK, Timpilis M, Patrinos P, Nikolakopoulos KM, Papageorgopoulou CP, Kouri AK et al. Acute Effects of Graduated Elastic Compression Stockings in Patients with Symptomatic Varicose Veins: A Randomised Double Blind Placebo Controlled Trial, Eur J Vasc Endovasc Surg 2018. 55, 118e125 2018 Jan;55(1):118–125. doi: 10.1016/j.ejvs.2017.10.004.

21. Guillermo Moñux, Mariano de la Serna-Soto, Ferrán Plá-Sanchez, José J Zamorano-León et al. Compression stockings attenuate the expression of proteins associated with vascular damage in human varicose veins. J Vasc Surg Venous Lymphat Disord. 2020 Jul 15;S2213–333X(20)30353-X.
Table 1. Demographic characteristics

Characteristic	Group I	Group II
Sex		
Men	11	13
Women	17	19
Mean Age	48.29	51.69
Table 2. Superficial vein thrombophlebitis (SVT) characteristics

Characteristics	Group I	Group II
Topographic map		
Above knee	9	23
Below knee	19	9
Type		
Acute SVT	10	18
Subacute SVT	18	14
Table 3. Clinical presentation of superficial vein thrombophlebitis

Group	Symptoms	n (%)
A	Erythema or inflammation	7 (11.7)
B	Pain, induration and tenderness	9 (15)
C	Swelling and tissue warmth	18 (30)
D	Symptoms associated	26 (43.3)
Total		60 (100)
Table 4. Patients’ groups regarding therapy and class of graduated elastic compression

Group	Therapy, compression	n (%)
Group I	LMWH + class I	14 (23.3)
	LMWH + class II	14 (23.3)
Group II	ASA + class I	16 (26.7)
	ASA + class II	16 (26.7)
Total		60 (100)

ASA – acetylsalicylic acid; LMWH – low-molecular-weight heparin
Figure 1. The graduated elastic compression stockings compression effects on inflammatory and thrombotic markers