Search for electroweak single top quark production in p\bar{p} collisions at $\sqrt{s} = 1.96$ TeV

D. Acosta,16 J. Adelman,12 T. Affolder,9 T. Akimoto,54 M.G. Albrow,15 D. Ambrose,43 S. Amerio,42 D. Amidei,33 A. Anastassov,50 K. Anikeev,31 A. Annovi,44 J. Antos,1 M. Aoki,54 G. Apollinari,15 T. Arisawa,56 J-F. Arguin,32 A. Artikov,13 W. Ashmananskas,15 A. Attal,7 F. Azfar,41 P. Azzi-Bacchetta,42 N. Bacchetta,42 H. Bachacou,28 W. Badgett,15 A. Barbaro-Galtieri,15 G.J. Barker,25 V.E. Barnes,46 B.A. Barnett,24 S. Baroiant,6 M. Barone,17 G. Bauer,31 F. Bedeschi,44 S. Behari,24 S. Belforte,54 G. Bellettini,44 J. Bellinger,58 E. Ben-Haim,15 D. Benjamin,14 A. Beretvas,15 A. Bhatti,48 M. Binkley,15 D. Bisello,42 M. Bishai,15 R.E. Blair,2 C. Blocker,5 K. Bloom,43 B. Blumenfeld,24 A. Bocci,48 A. Bodek,17 G. Bolla,46 A. Bohlkov,31 P.S.L. Booth,29 D. Bortoletto,46 J. Boudreau,45 S. Bourou,15 C. Bromberg,34 E. Brubaker,12 J. Budagov,13 H.S. Budd,47 K. Burkett,15 G. Busetto,42 P. Bussey,19 K.L. Byrum,2 S. Cabrera,14 M. Campanelli,18 M. Campbell,3 A. Canepa,46 M. Casarsa,53 D. Carlsmit,58 S. Carron,14 R. Carosi,44 M. Cavalli-Sforza,3 A. Castro,4 P. Catastini,44 D. Caux,53 A. Cerri,28 C. Cerri,44 L. Cerrito,27 J. Chapman,33 C. Chen,43 Y.C. Chen,1 M. Chertok,6 G. Chiairelli,44 G. Chlachidze,13 F. Chlebana,15 I. Cho,27 K. Cho,27 D. Chokheli,13 M.L. Chu,1 S. Chuang,58 Y.J. Chung,38 W-H. Chung,58 Y.S. Chung,47 C.I. Ciobanu,23 M.A. Ciocci,44 A.G. Clark,18 D. Clark,5 M. Coka,47 A. Connolly,28 M. Convery,48 J. Conway,6 B. Cooper,30 M. Cordelli,17 G. Cortiana,42 J. Cranesh,52 J. Cuevas,10 R. Culbertson,15 C. Currat,28 D. Cyr,58 D. Dagenhart,5 S. Da Ronco,42 S. D’Auria,19 P. Daros,47 S. De Cecho,49 G. De Lentdecker,47 S. Dell’Agnello,47 M. Dell’Orso,14 S. Demers,47 L. Demortier,48 M. Denimo,4 D. De Pedis,49 P.F. Derwent,15 C. Dionisio,49 J.R. Dittmann,15 P. Doksun,23 A. Dominguez,28 S. Donati,44 M. Donega,18 J. Donini,52 M. D’Onofrio,18 T. Dorigo,42 V. Drolshinger,36 K. Eilam,56 N. Eddy,23 R. Ely,28 R. Erbacher,6 M. Erdmann,25 D. Errede,23 S. Errede,23 R. Eusebi,47 H-C. Fang,28 S. Farrington,29 I. Fedorko,44 R.G. Feild,59 M. Feindt,25 J.P. Fernandez,46 C. Ferretti,33 R.D. Field,16 I. Finner,44 G. Flaman,44 B. Flaugher,15 L.R. Flores-Castillo,45 A. Foland,26 S. Forrester,6 G.W. Foster,15 M. Franklin,20 J.C. Freeman,28 H. Frisch,12 Y. Fuji,28 I. Furic,12 A. Gajjar,29 A. Gallas,37 J. Glayder,11 M. Gallinaro,36 M. Garcia-Sucerio,42 A.F. Garnik,64 C. Gavy,59 H. Gerberich,14 D.W. Gerdes,33 E. Gerchtein,11 S. Giagu,49 P. Giannetti,44 A. Gibson,28 K. Gibson,11 C. Ginsburg,58 K. Gioia,46 M. Giordani,53 G. Giorgio,11 V. Glagolev,13 D. Ginzlinski,15 M. Gold,36 N. Goldschmidt,33 D. Goldstein,7 J. Goldstein,41 G. Gomez,19 G. Gomez-Ceballos,31 M. Goncharov,51 O. Gonzalez,46 I. Gorelov,36 A.T. Goshaw,14 Y. Gotra,45 K. Goulionas,48 A. Gresele,4 M. Griffiths,29 C. Grosso-Pilcher,12 U. Grundler,23 M. Guenther,46 J. Guimaraes da Costa,20 C. Haber,28 K. Hahn,43 S.R. Hahn,15 E. Halkiadakis,47 A. Hamilton,32 B-Y. Han,47 R. Handler,58 F. Happacher,17 K. Kara,54 M. Hare,55 R.F. Harr,57 R.M. Harris,15 F. Hartmann,25 K. Hatakeyama,41 J. Hauser,7 C. Hayward,14 H. Hayward,29 E. Heider,55 B. Heinemann,29 J. Heinrich,43 M. Hennem,25 M. Herndon,24 C. Hill,9 D. Hirschbuehl,25 A. Hocker,47 G. Holfert,12 A. Holloway,20 S. Hou,1 M.A. Houlden,29 B.T. Huffman,41 Y. Huang,14 R.E. Hughes,38 J. Huston,34 K. Ikado,56 J. Incandela,9 G. Intorzi,44 M. Iori,49 Y. Ishizawa,54 C. Isser,9 A. Ivanov,47 Y. Iwata,22 B. Iyutin,31 E. James,15 D. Jang,50 J. Jarrell,36 D. Jeans,49 H. Jensen,15 E.J. Jeon,27 M. Jones,46 K.K. Ju,27 S. Jun,11 T. Junk,23 T. Kamon,51 J. Kang,33 M. Karagoz Uzel,37 P.E. Karchin,57 S. Kartal,15 Y. Kato,40 Y. Kemp,25 R. Kephart,15 U. Kerzel,25 V. Khotilovich,51 B. Kilminster,38 D.H. Kim,27 H.S. Kim,23 J.E. Kim,27 M.J. Kim,11 M.S. Kim,27 S.B. Kim,27 S.H. Kim,54 T.H. Kim,31 Y.K. Kim,12 B.T. King,29 M. Kirby,14 L. Kirsch,5 S. Klimentenko,16 B. Knuteson,31 B.R. Ko,14 H. Kobayashi,54 P. Koehn,38 D.J. Kong,27 K. Kondo,56 J. Konigsberg,16 K. Kordas,32 A. Korn,31 A. Kotov,16 K. Kotelnikov,35 A.V. Kotwal,14 A. Kovalov,43 J. Kraus,23 I. Kravchenko,31 A. Kreymer,13 J. Kroll,43 M. Kruse,14 V. Krutelyov,51 S.E. Kuhlmann,2 N. Kuznetsova,15 A.T. Laasanen,46 S. Lai,32 S. Lami,48 S. Lammel,15 J. Lancaster,14 M. Lancaster,30 R. Lander,6 K. Lannon,38 A. Lath,50 G. Latino,36 R. Lauhakangas,21 I. Lazizzera,42 Y. Le,24 C. Lecci,25 T. LeCompte,2 J. Lee,27 J. Lee,47 S.W. Lee,31 R. Lefèvre,3 N. Leonardi,31 S. Leone,44 J.D. Lewis,15 K. Li,59 C. Liu,59 C.S. Lin,15 M. Lindgren,15 T.M. Liss,23 D.O. Litvinvsev,15 T. Liu,15 Y. Liu,18 N.S. Lockyer,43 A. Logino,35 M. Loreti,42 P. Loverre,49 R.S. Lu,1 D. Lucchesi,42 P. Lujan,28 P. Lukens,15 G. Lungu,16 L. Lyons,41 J. Lys,28 R. Lysak,1 D. MacQueen,32 R. Madrak,29 K. Maeshima,15 P. Maksimovic,24 L. Malelferri,3 G. Manca,29 R. Marginean,38 M. Martin,34 A. Martin,35 J. Martínez,2 T. Maruyama,54 H. Matsunaga,54 M. Mattsson,57 P. Mazzanti,4 K.S. McFarland,47 D. McGivern,30 P.M. McIntyre,51 P. McNamara,50 R. McNulty,29 S. Menzemer,31 A. Menzione,44 P. Merkel,15 C. Mesropian,48 A. Messina,49 T. Miao,15 N. Miladinovic,5 L. Miller,20 R. Miller,34 J.S. Miller,33 R. Miquel,28 S. Miscetti,17 G. Mitselmakher,16 A. Miyamoto,26 Y. Miyazaki,40 N. Mogg,4
We report on a search for Standard Model t-channel and s-channel single top quark production in $p\bar{p}$ collisions at a center of mass energy of 1.96 TeV. We use a data sample corresponding to 162 pb$^{-1}$ recorded by the upgraded Collider Detector at Fermilab. We find no significant evidence for electroweak top quark production and set upper limits at the 95% confidence level on the production cross section, consistent with the Standard Model: 10.1 pb for the t-channel, 13.6 pb for the s-channel and 17.8 pb for the combined cross section of t- and s-channel.

PACS numbers: 14.65.Ha, 12.15.Ji, 13.85.Rm

In $p\bar{p}$ collisions at 1.96 TeV, top quarks are predominantly produced in pairs via strong interaction processes. Within the Standard Model (SM), top quarks are also expected to be produced singly by the electroweak interaction involving a Wtb vertex. At the Tevatron, the two relevant production modes are the t- and the s-channel exchange of a virtual W boson. The measurement of the single top cross section is particularly interesting because the production cross section is proportional to $|V_{tb}|^2$, where V_{tb} is the Cabibbo-Kobayashi-Maskawa (CKM) matrix element which relates top and bottom quarks. Assuming three quark generations, the unitarity of the CKM matrix implies that V_{tb} is close to unity. The most recent next-to-leading order (NLO)
calculations, assuming $|V_{tb}| = 1$, predict cross sections of $(1.98 \pm 0.25) \, \text{pb}$ for the t-channel and $(0.88 \pm 0.11) \, \text{pb}$ for the s-channel mode at $\sqrt{s} = 1.96 \, \text{TeV}$. Using these predictions, a measurement of the single top cross section will allow for a direct determination of $|V_{tb}|$. Single top searches test also exotic models which predict anomalously altered single top production rates. Moreover, single top quark processes result in the same final state as the Standard Model Higgs boson process $WH \to \ell\nu b\bar{b}$ and therefore impact future searches for the Higgs boson at the Tevatron. In this article we report results of the first search for single top production in Run 2 at the Tevatron. Results of searches for single top production at $\sqrt{s} = 1.8 \, \text{TeV}$ (Run 1) can be found in Refs. 1, 2.

The experimental signature of single top events consists of the W decay products plus two or three jets, including one b quark jet from the decay of the top quark. To suppress QCD multijet background we select only $W \to \mu\nu$ and $W \to e\nu$ candidates. In s-channel events we expect a second b quark jet from the Wtb vertex. In t-channel events a second jet originates from the recoiling light quark and a third jet is produced through the splitting of the initial-state gluon into a $b\bar{b}$ pair. Mostly, this third jet escapes detection, since it is produced in the high pseudorapidity (η) regions and at low transverse energy (E_T).

This article describes two analyses: (1) a combined search for the t- plus s-channel single top signal, (2) a separate search, where we measure the rates for the two single top processes individually. The data sample corresponds to an integrated luminosity of $(162 \pm 10) \, \text{pb}^{-1}$ collected with the upgraded Collider Detector at Fermilab (CDF II), which is described elsewhere. The common event preselection of our two analyses resembles closely the one used in the CDF measurement of the $t\bar{t}$ cross section reported in Ref. 10. We accept events with evidence for a leptonic W decay: (a) missing transverse energy $E_T > 20 \, \text{GeV}$ from the neutrino and (b) an isolated central electron with $E_T > 20 \, \text{GeV}$ or an isolated central muon candidate with $p_T > 20 \, \text{GeV}/c$. An electron or muon candidate is considered isolated if the non-lepton E_T in an $\eta-\phi$ cone of radius 0.4 centered around the lepton is less than 10\% of the lepton E_T or p_T. To remove dilepton events from $t\bar{t}$-production and leptonic Z boson decays, we accept events with only one well identified lepton. In addition, we veto events if we find a second, loosely identified lepton candidate that forms an invariant mass with the primary lepton between 76 GeV/$c^2 < M_{\ell\ell} < 106 \, \text{GeV}/c^2$. The jet reconstruction uses a fixed cone of radius $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.4$. We count jets with transverse energy $E_T \geq 15 \, \text{GeV}$ and $|\eta| \leq 2.8$. We only accept $W + 2$ jets events. At least one of these jets must be identified as likely to originate from a b quark (b-tag) by requiring a displaced secondary vertex within the jet as measured using silicon tracker information. The effective coverage of the b-tagging ranges up to $|\eta| \leq 1.4$.

To optimize our sensitivity, we apply a cut on the invariant mass $M_{\ell\ell\nu}$ of the charged lepton, the neutrino and the b-tagged jet: $140 \, \text{GeV}/c^2 < M_{\ell\ell\nu} < 210 \, \text{GeV}/c^2$. The transverse momentum of the neutrino is set equal to the missing transverse energy vector \vec{E}_T; $p_\perp(\nu)$ is obtained up to a two-fold ambiguity from the constraint $M_{\ell\ell\nu} = M_W$. From the two solutions we pick the one with lower $|p_\perp(\nu)|$. If the $p_\perp(\nu)$ solution has non-zero imaginary part as a consequence of resolution effects in measuring jet energies, we use only the real part of $p_\perp(\nu)$. For the separate search, we subdivide the sample into events with exactly one b-tagged jet or exactly two b-tagged jets. For the 1-tag sample, we require at least one jet to have $E_T \geq 30 \, \text{GeV}$. We determine the total event detection efficiency ϵ_{evt} for the signal from events generated by the matrix element event generator MadEvent 11, followed by parton showering with PYTHIA 12 and a full CDF II detector simulation. MadEvent features the correct Pythia modelling used in the Run I analyses. The event detection efficiency ϵ_{evt} includes the kinematic and fiducial acceptance, branching ratios, lepton and b-jet identification as well as trigger efficiencies. We combine ϵ_{evt} as given in Table I with the cross sections predicted by theory 13 and thereby obtain the number of expected single top events listed in Table III.

We distinguish between two background components: $t\bar{t}$ and non-top background. We estimate the $t\bar{t}$ background based on events generated with PYTHIA, normalized to the theoretically predicted cross section of $\sigma(t\bar{t}) = 6.7^{+0.7}_{-0.9} \, \text{pb}$. The primary source (62\%) of the non-top background is the W+heavy flavor processes $gg' \to Wg$ with $g \to b\bar{b}$ or $g \to c\bar{c}$, and $gg \to Wc$. Additional sources are “mistags” (25\%), in which a light quark jet is erroneously identified as heavy flavor, “non-W” (10\%), e.g. direct $b\bar{b}$ production, and diboson (WW, WZ, ZZ) production (3\%). The non-W and mistag fractions are estimated using CDF II data. The W+heavy flavor rates are extracted from ALPGEN 14 Monte Carlo (MC) events normalized to data 10. The diboson rates are estimated from PYTHIA events normalized to theory predictions 15. The numbers of expected sig-

Table I: Event detection efficiencies in %.

Process	Combined	1-tag	2-tag
t-channel	0.89±0.07	0.86±0.07	0.007±0.002
s-channel	1.06±0.08	0.78±0.06	0.23±0.02
TABLE II: Expected number of signal and background events compared with observations.

Process	Combined	1-tag	2-tag
t-channel	2.8 ± 0.5	2.7 ± 0.4	0.02 ± 0.01
s-channel	1.5 ± 0.2	1.1 ± 0.2	0.32 ± 0.05
tt	3.8 ± 0.9	3.2 ± 0.7	0.60 ± 0.14
non-top	30.0 ± 5.8	23.3 ± 4.6	2.59 ± 0.71
Total Background	33.8 ± 5.9	26.5 ± 4.7	3.19 ± 0.72
Total Expected	38.1 ± 5.9	30.3 ± 4.7	3.53 ± 0.72
Observed	42	33	6

in the 1-tag sample and for the number of events in the 2-tag sample.

\[
\mathcal{L}_{\text{sig}}(\sigma_1, \ldots, \sigma_4; \delta_1, \ldots, \delta_7) = \prod_{j=1}^{4} G(\sigma_j; \sigma_{\text{SM},j}, \Delta_j) \cdot \prod_{i=1}^{7} G(\delta_i; 0, 1)
\]

Four processes are considered and labeled by the index \(j \): t-channel (\(j = 1 \)), s-channel (\(j = 2 \)), \(tt \) (\(j = 3 \)), and non-top (\(j = 4 \)). The corresponding cross sections are denoted \(\sigma_j \). The background cross sections are constrained to their SM prediction \(\sigma_{\text{SM},j} \) by Gaussian priors with width \(\Delta_3 = 23% \sigma_{\text{SM},3} \) for \(tt \) and \(\Delta_4 = 20% \sigma_{\text{SM},4} \) for non-top. The index “sig” denotes the signal process, which is s- or t-channel, respectively. The \(\mu_k \) are the mean numbers of events in bin \(k \) of the \(Q \cdot \eta \) histogram (\(N_{\text{bin}} \equiv \) number of bins), while \(\mu_{d} \) is the mean number of events in the 2-tag sample. \(n_k \) and \(n_{d} \) are the event numbers observed in data, respectively. Seven sources of systematic uncertainties are considered in the likelihood function: (1) jet energy scale (JES), (2) initial state radiation (ISR), (3) final state radiation (FSR), (4) parton distribution functions (PDF), (5) the choice of signal MC generator, (6) the top quark mass, (7) trigger, identification and \(b \)-tagging efficiencies and the luminosity. The relative strength of a systematic effect due to source \(i \) is parameterized by the variable \(\delta_i \). Systematic effects change the acceptance and influence the shape of the \(Q \cdot \eta \) distribution. When calculating \(\mu_{k/d} \) we take systematic shifts in the acceptance and in the shape of the template histograms, and their full correlation into account. All variables except the signal cross section \(\sigma_{\text{sig}} \) are constrained to their expected values by Gaussian functions \(G(x; x_0, \Delta_x) \) of mean \(x_0 \) and width \(\Delta_x \). The largest uncertainties are on the \(b \)-tagging efficiency (7%), luminosity (6%), top quark mass (4%) and JES (4%). The effect of uncertainty in the JES is evaluated by applying energy corrections that describe ±1σ variations. Systematic uncertainties due to the modeling of ISR and FSR are obtained from MC samples that describe variations in these effects. To evaluate the uncertainty associated with the choice of a specific parametrization of PDF we investigated several PDF sets and took the maximum deviation (MRST72) from our standard PDF set (CTEQ5L). We estimate the uncertainty associated with the choice of single top MC generator using samples generated with TopReX [16]. The values of acceptance uncertainties for the single top processes are summarized in Table III.

To measure the combined t-channel plus s-channel signal in data, we use a kinematic variable whose distribution is very similar for the two single top processes, but is different for background processes: \(H_T \), which is the scalar sum of \(\vec{E}_T \) and the transverse energies of the
TABLE III: Fractional changes in ϵ_{evt} of single top processes in %. ϵ_{trig} is the trigger efficiency, ϵ_{ID} the lepton identification efficiency.

i	Source	t-channel	s-channel	Combined
1	JES	$+2.4$	$+0.4$	$+0.1$
2	ISR	-6.7	-3.1	-4.3
3	FSR	±1.0	±0.6	±1.0
4	PDF	±2.2	±5.3	±2.6
5	Generator	±5	±2	±3
6	Top quark mass	±0.7	-2.3	-4.4
7	ϵ_{trig}, ϵ_{ID}, luminosity	±9.8	±9.8	±9.8

![FIG. 2: H_T distribution for data (42 events) in the combined search compared with smoothed MC predictions for signal and background.](image)

We find upper limits of 10.1 pb at the 95% C.L. for the t-channel cross section and 13.6 pb for the s-channel. For the combined search we find an upper limit of 17.8 pb at the 95% C.L..

In summary, we find no significant evidence for electroweak single top quark production in (162 ± 10) pb$^{-1}$ of integrated luminosity recorded with CDF II. We set the first limits on single top cross sections in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV in Run 2 at the Tevatron. If compared with Run 1 results the upper limits on t-channel and s-channel single top quark production are considerably improved by 28% (t-channel) or 20% (s-channel), respectively. We have introduced improved Monte Carlo modeling for single top and a fully Bayesian treatment of systematic uncertainties in the likelihood function which are important steps for future analyses aiming for the observation of single top quark production.

We wish to thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Instituton Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation; the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Russian Foundation of Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; and in part by the European Community’s Human Potential Program under contract HPRN-CT-20002, Probe for New Physics. We acknowledge the help of T. Stelzer and S. Slabospitsky for the generation of MadEvent and TopReX MC samples. We thank S. Mrenna and Z. Sullivan for useful discussions.

[1] T. Stelzer, Z. Sullivan, S.S. Willenbrock, Phys. Rev. D 56, 5919 (1997); M.C. Smith and S.S. Willenbrock, Phys. Rev. D 54, 6696 (1996); S. Mrenna and C.-P. Yuan, Phys. Lett. B 416, 200 (1998).
[2] K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[3] B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, S. Weinzierl, Phys. Rev. D 66, 054024 (2002); Z. Sullivan, hep-ph/0408049.
[4] T.M.P. Tait and C.-P. Yuan, Phys. Rev. D 63, 014018 (2001) and references therein.
[5] Levan Babukhadia et al. (CDF and DØ Higgs Working Group), FERMILAB-PUB-03-320-E.
[6] CDF Collaboration, D. Acosta et al., Phys. Rev. D 65, 091102 (2002); ibid. 69, 052003 (2004).
[7] DØ Collaboration, V. Abazov et al., Phys. Lett. B 517, 282 (2001); Phys. Rev. D 63, 031101 (2000).
[8] The polar angle θ is measured w.r.t. the proton beam direction. The pseudorapidity is defined as $\eta \equiv -\ln \tan(\theta/2)$. $E_T = E \sin(\theta)$.
[9] CDF Collaboration, FERMILAB-PUB-96/390-E (1996).
[10] CDF Collaboration, D. Acosta et al., hep-ex/0410041 submitted to Phys. Rev. D.
[11] T. Stelzer and W.F. Long, Comput. Phys. Commun. 81, 337 (1994); F. Maltoni and T. Stelzer, J. High Energy Phys. 02 (2003) 027.
[12] T. Sjöstrand et al., Comp. Phys. Commun. 135, 238 (2001).
[13] R. Bonciani et al., Nucl. Phys. B529, 424 (1998); M. Cacciari et al., J. High Energy Phys. 04 (2004) 068.
[14] F. Caravaglios et al., Nucl. Phys. B539, 215 (1999); M.L. Mangano et al., Nucl. Phys. B632, 343 (2002); M.L. Mangano et al., J. High Energy Phys. 07 (2003) 001.
[15] J.M. Campbell and R.K. Ellis, Phys. Rev. D 60, 113006 (1999).
[16] S.R. Slabospitsky and L. Sonnenschein, Comput. Phys. Commun. 148, 87 (2002).