The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution

Peter R. Eriksson & David J. Clark

Isw1 and Chd1 are ATP-dependent nucleosome-spacing enzymes required to establish regular arrays of phased nucleosomes near transcription start sites of yeast genes. Cells lacking both Isw1 and Chd1 have extremely disrupted chromatin, with weak phasing, irregular spacing and a propensity to form close-packed dinucleosomes. The Isw1 ATPase subunit occurs in two different remodeling complexes: ISW1a (composed of Isw1 and Ioc3) and ISW1b (composed of Isw1, Ioc2 and Ioc4). The Ioc4 subunit of ISW1b binds preferentially to the H3-K36me3 mark. Here we show that ISW1b is primarily responsible for setting nucleosome spacing and resolving close-packed dinucleosomes, whereas ISW1a plays only a minor role. ISW1b and Chd1 make additive contributions to dinucleosome resolution, such that neither enzyme is capable of resolving all dinucleosomes on its own. Loss of the Set2 H3-K36 methyltransferase partly phenocopies loss of Ioc4, resulting in increased dinucleosome levels with only a weak effect on nucleosome spacing, suggesting that Set2-mediated H3-K36 trimethylation contributes to ISW1b-mediated dinucleosome separation. The H4 tail domain is required for normal nucleosome spacing but not for dinucleosome resolution. We conclude that the nucleosome spacing and dinucleosome resolving activities of ISW1b and Chd1 are critical for normal global chromatin organisation.

Eukaryotic DNA is packaged into the nucleus in the form of chromatin. The structural subunit of chromatin is the nucleosome, which is composed of an octamer of core histones (two molecules each of H3, H4, H2A and H2B), around which is wrapped ~146 bp of DNA in ~1.7 superhelical turns. Nucleosomes are regularly spaced along the DNA, like beads on a string, forming a fibre which spontaneously folds into higher-order chromatin structures. Nucleosomes restrict access to DNA and are potent inhibitors of transcription and other DNA-dependent processes in vitro. Cells regulate access to their DNA in part by deploying ATP-dependent chromatin remodeling complexes that are capable of overcoming the nucleosome, either by removing it from the DNA or by sliding it along the DNA.

The ISW1 and CHD enzymes represent a major class of ATP-dependent chromatin remodelers conserved from yeast to mammals. They are primarily nucleosome sliding enzymes; many have nucleosome spacing activity in vitro. In vivo, ISW1 enzymes are important for chromatin organisation near promoters and other gene regulatory elements. ISW1 complexes have additional functions in chromatin assembly, stress-induced gene repression, transcript termination and quality control of mRNP biogenesis.

The budding yeast (Saccharomyces cerevisiae) possesses at least four ATP-dependent chromatin remodeling complexes capable of spacing nucleosomes in vitro: ISW1, ISW2, Chd1 and INO80. In vivo, global chromatin organisation in cells lacking Isw2 is very similar to wild type, suggesting that ISW2 activity is more local than global. In contrast, cells lacking Ino80 or Isw1 have shorter average nucleosome spacing than wild type cells. Cells lacking Chd1 have slightly shorter spacing and relatively poor nucleosome phasing. Most impressively, cells lacking both Isw1 and Chd1 have extremely disrupted chromatin, indicating that both enzymes are required for proper chromatin organisation. Recently, we showed that an important contributory factor to chromatin disruption in the chd1Δ isw1Δ double mutant is a tendency for nucleosomes at the 5′-ends of yeast genes to be packed close together, resulting in dinucleosomes with little or no linker DNA. This observation suggests that Isw1 and/or Chd1 are critical for resolving dinucleosomes.

Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 6A Room 2A02, 6 Center Drive, Bethesda, MD 20892, USA.

email: clarkda@mail.nih.gov
shift is additive relative to the first (+ 1) nucleosome. For example, if the average spacing increases from 160 bp in wild type (165, 165 bp), but not as low as in ioc2Δ and ioc4Δ (160 bp) (Fig. 1d,e), with no change in phasing relative to wild type (165, 165 bp) (Fig. 1c). Cells lacking an ISW1b subunit (ioc2Δ or ioc4Δ) have intermediate nucleosome spacing (161–163 bp) (Fig. 1d,e): less than in wild type (165, 165 bp), but not as low as in isw1Δ cells (159, 160 bp), although the spacing is shorter on genes over 2 kb (see below). Small spacing differences are reproducible (compare biological replicate experiments; Fig. 1). The change in spacing becomes increasingly obvious downstream, because the nucleosome position shift is additive relative to the first (+ 1) nucleosome. For example, if the average spacing increases from 160 to 165 bp, then the downstream shift in average position for the + 2 nucleosome is 5 bp, it is 10 bp for the + 3 nucleosome, and 15 bp for the + 4 nucleosome, and so on. Phasing is weaker in the ioc2Δ mutant (Fig. 1d), but hardly affected in the ioc4Δ mutant (Fig. 1e). Cells lacking both ISW1b ancillary subunits (the ioc2Δ ioc4Δ double mutant) have similar chromatin organisation to the ioc2Δ single mutant, exhibiting the weaker phasing observed in ioc2Δ cells as well as in the shorter spacing observed in both the ioc2Δ and ioc4Δ single mutants (Fig. 1f). The similar spacing in the ioc2Δ and ioc4Δ single mutants and the ioc2Δ ioc4Δ double mutant (~ 162 bp) suggests that both ioc2 and ioc4 are required for ISW1b spacing activity. Chromatin organisation in cells lacking all three ancillary subunits (the ioc2Δ ioc3Δ ioc4Δ triple mutant) is very similar to that in isw1Δ cells (Fig. 1g). This is expected, because both complexes should be inactive in both mutants, given that the ISW1 subunit by itself has no remodeling activity in vitro.

Nucleosome phasing on a gene can be influenced by interference from a phasing signal emanating from downstream elements, such as a downstream promoter. This effect can be eliminated by restricting the analysis to promoter-proximal nucleosomes on long genes, defined here as genes with distances of > 2 kb between the TSS and the transcript termination site (1616 genes; Supplementary Fig. S1). We find that gene length has no effect on nucleosome spacing in wild type cells (165 bp on all genes and on long genes) or in ioc3Δ cells, which have slightly longer spacing than wild type cells (167 bp on all genes and on long genes). However, the ioc2Δ and ioc4Δ single mutants, the ioc2Δ ioc4Δ double mutant and the ioc2Δ ioc3Δ ioc4Δ triple mutant all exhibit shorter spacing on long genes than on all genes (see Fig. 1). In fact, the spacing on long genes is about the same in ioc2Δ (159 bp), ioc4Δ (160 bp), ioc2Δ ioc4Δ (159 bp), ioc2Δ ioc3Δ (158 bp) and isw1Δ (159 bp) cells (Supplementary Fig. S1). Thus, long genes do not exhibit the intermediate spacing observed for all genes in the ioc mutants (Fig. 1d, e, f; Supplementary Fig. S1). These data suggest that the phasing potential of downstream elements is enhanced in the absence of ISW1b, resulting in phasing interference and altered spacing on short genes, but not on long genes. Taken together, our observations support the conclusion that the ISW1b complex is primarily responsible for wild type nucleosome spacing, whereas ISW1a plays a very minor role.
Figure 1. The ISW1b complex (Isw1-Ioc2-Ioc4) is required for setting wild type nucleosome spacing, whereas the ISW1a complex (Isw1-Ioc3) plays only a minor role. Average nucleosome dyad density plots for all genes: (a) wild type, (b) isw1Δ, (c) ioc3Δ, (d) ioc2Δ, (e) ioc4Δ, (f) ioc2Δ ioc4Δ, (g) ioc2Δ ioc3Δ ioc4Δ. All yeast genes were aligned on the midpoints of their +1 nucleosomes. The dyad distribution was normalized to the global average (set at 1). For ease of comparison, wild type (WT) replicate A is shown as a black line with grey fill in all plots. Two biological replicate experiments (A and B) are shown for each strain in all of the plots (A: red line; B: blue line). The average spacing in bp is shown for replicates A and B in the bottom right corner (measured by regression analysis of the first 5 nucleosome peaks, beginning with the +1 nucleosome).
ISW1a and ISW1b spacing activities are not restricted to genes enriched in their respective loc subunits. Chromatin immunoprecipitation (ChIP-seq) experiments have shown that ISW1a (loc3), ISW1b (loc4) and Isw1 are enriched on different sets of genes, suggesting that these genes might be differentially affected by ISW1a or ISW1b. We determined whether the chromatin organisation of these sets of genes is differentially affected by loss of ISW1a or ISW1b, as might be expected. In the case of ISW1a, we found that loc3-enriched genes show very slightly increased spacing (166 vs. 165 bp) in wild type cells and in isw1Δ cells (167 vs. 166 bp), but these differences are probably negligible (Supplementary Fig. S2). Thus, ISW1a has little or no differential effect on the chromatin organisation of its putative target genes. Moreover, the spacing on loc3-bound genes is affected in isw1Δ cells, indicating that ISW1a-enriched genes are affected by ISW1b (loc4) (Supplementary Fig. S2). In the case of ISW1b, loc4-enriched and non-enriched genes have the same spacing and phasing in wild type cells, suggesting that they are not differentially affected by ISW1b. In isw1Δ cells, both sets of genes have shorter spacing than wild type (Supplementary Fig. S2). Ioc4-enriched genes may have slightly shorter spacing than non-enriched genes, but the effect is subtle (Supplementary Fig. S2). As expected, Ioc4-enriched genes are not affected in loc3Δ cells (Supplementary Fig. S2). Thus, ISW1b affects the chromatin organisation of both sets of genes. Finally, Isw1-enriched genes have the same spacing as non-enriched genes in wild type cells and, although the phasing is slightly better on the Isw1-enriched genes, this effect is also observed in the absence of Ioc3 (Supplementary Fig. S2). Ioc3-enriched and non-enriched genes show similar changes in isw1Δ cells (short spacing and weaker phasing), although there is a slight difference in spacing of 1–2 bp between the two sets of genes (Supplementary Fig. S2). Overall, the Ioc3 complexes affect the chromatin organisation of both enriched and non-enriched genes similarly, with only subtle differences at most. It is unclear why we do not observe obvious differences in chromatin organisation for putative target and non-target genes defined by Ioc3, Ioc4 or Isw1 enrichment; perhaps all genes have some bound ISW1b, such that the putative target genes are only modestly enriched relative to non-target genes. Alternatively, loss of one ISW1 complex might affect the distribution and/or activity of the other ISW1 complex.

ISW1b and Chd1 account for the extreme chromatin disruption in cells lacking both ISW1 and Chd1. Cells lacking Chd1 have a mild chromatin organisation defect, characterized by somewhat shorter spacing than wild type (164, 163 bp vs. 165, 165 bp) and weaker phasing (Fig. 2a). This effect is slightly stronger on long genes (chd1Δ: 162 bp; wild type: 165 bp; Supplementary Fig. S1). In contrast, chromatin organisation in cells lacking both Chd1 and Isw1 (the chd1Δ isw1Δ double mutant) is extremely disrupted (143 vs. 145 bp) (Fig. 2b). The chd1Δ loc2Δ loc4A triple mutant (Fig. 2c) also has extremely disrupted chromatin, whereas the chd1Δ loc3Δ double mutant is very similar to the chd1Δ single mutant (Fig. 2d). This observation is consistent with our conclusion that the ISW1b complex is much more important than the ISW1a complex for global nucleosome spacing (Fig. 1). However, chromatin organisation in the chd1Δ loc2Δ loc4A triple mutant is not quite as severely disrupted as in the chd1Δ isw1Δ double mutant: the phasing in the triple mutant is very poor, but somewhat stronger than in the double mutant (Fig. 2b,c). Measurement of the spacing in these two mutants is not appropriate because most of the peaks are too weak to measure accurately. The difference between the chd1Δ loc2Δ loc4A triple mutant and the chd1Δ isw1Δ double mutant is that ISW1a complex is still present in the former mutant. This suggests that ISW1a contributes some residual order to genic chromatin in the absence of both Chd1 and ISW1b.

ISW1a and ISW1b have little effect on the chromatin of very active genes. Since ISW1b preferentially associates with transcriptionally active genes, we examined whether ISW1a or ISW1b mediate specific effects at highly active genes. We defined highly active genes as those which have >4 times the genomic average signal using our published ChIP-seq data for the Rpb3 subunit of Pol II. Although this is a somewhat arbitrary threshold, it is clear from heat map analysis that relatively few genes have high levels of Pol II; most genes have relatively low Pol II levels (Supplementary Fig. S3). On average, the 300 most active genes have ~eightfold higher Rpb3 density than the remaining genes. Accordingly, we compared the average chromatin structure of the most active genes with that of the remaining, much less active, 5470 genes (Supplementary Fig. S3). In wild type cells, the chromatin of the highly active genes is poorly organised, characterized by much reduced and irregular spacing, weak phasing and a much wider nucleosome-depleted region (NDR) at the promoter, which extends upstream. Although the average spacing on the highly active genes cannot be measured accurately due to poor phasing, it is clearly shorter than the spacing on the other genes (Supplementary Fig. S3; compare nucleosome peak locations). The chromatin organisation of the highly active genes is not strongly differentially affected by any of the locΔ mutations or isw1Δ (Supplementary Fig. S3), whereas the less active genes have the spacing observed for all genes, as expected. We conclude that ISW1a and ISW1b have no differential effect on the chromatin organisation of highly active genes, with the caveat that their general state of disruption might obscure subtle effects. On the other hand, nucleosome phasing on the top 300 active genes is weaker in cells lacking Chd1 than in wild type or in any of the loc mutants (Supplementary Fig. S3), suggesting that Chd1 is the most important spacing enzyme for highly active genes, and consistent with a direct association of Chd1 with transcript elongation factors.

Both ISW1b and Chd1 are important for resolution of close-packed dinucleosomes. We reported previously that a major contributing factor to chromatin disruption in the chd1Δ isw1Δ double mutant is the presence of close-packed dinucleosomes, primarily involving the +2 nucleosome (i.e. dinucleosomes containing either the +1 and +2 nucleosomes or the +2 and +3 nucleosomes) (Fig. 3a). These dinucleosomes are characterized by MNase-resistant DNA fragments of 250–350 bp, presumably representing two nucleosomes (or perhaps sub-nucleosomes) with little or no intervening linker DNA for MNase to cut. The dyad plots shown...
above (Figs. 1 and 2) include only mononucleosome data (the analysis was limited to DNA fragments of 120–180 bp). A dyad plot is not appropriate for dinucleosomes, since the midpoint of a dinucleosome would be located between the two nucleosomes. Instead, we used nucleosome occupancy (coverage) plots, in which the number of times each genomic base pair appears in either mononucleosomes or dinucleosomes is counted and normalized to the genomic average.

In the \textit{chd1}Δ \textit{isw1}Δ double mutant, there is a strong dinucleosome peak at the +2 position and a depressed +2 mononucleosome peak, consistent with the presence of a significant fraction of all +2 nucleosomes in dinucleosomes22 (Fig. 3a; Supplementary Fig. S4). We determined the relative contributions of Chd1 and Isw1 to dinucleosome resolution. A dinucleosome peak is observed in both the \textit{chd1}Δ and \textit{isw1}Δ single mutants, but it is weaker than in the \textit{chd1}Δ \textit{isw1}Δ double mutant (Fig. 3a). The +2 mononucleosome peak is also weaker in the single mutants relative to wild type. These data indicate that the Chd1 and Isw1 remodeling enzymes both

Figure 2. ISW1b and Chd1 are the major remodelers required for normal chromatin organisation. Average nucleosome dyad density plots for all genes: (a) \textit{chd1}Δ, (b) \textit{chd1}Δ \textit{isw1}Δ, (c) \textit{chd1}Δ \textit{ioc2}Δ \textit{ioc4}Δ, (d) \textit{chd1}Δ \textit{ioc3}Δ. All yeast genes were aligned on the midpoints of their +1 nucleosomes. The dyad distribution was normalized to the global average (set at 1). For ease of comparison, wild type replicate A is shown as a black line with grey fill in all plots. Two biological replicate experiments (A and B) are shown for each strain in all of the plots (A: red line; B: blue line). The average spacing in bp is shown for replicates A and B in the bottom right corner (measured by regression analysis of the first 5 nucleosome peaks, beginning with the +1 nucleosome); ND = not determined because the phasing is too weak for accurate measurement.
contribute independently and make additive contributions to dinucleosome resolution, such that neither enzyme is capable of resolving all dinucleosomes on its own.

Next, we determined the separate contributions of the ISW1a and ISW1b complexes to Isw1-dependent dinucleosome resolution (Fig. 3b). The \(\text{ioc}2\Delta \) and \(\text{ioc}4\Delta \) single mutants have an enhanced dinucleosome peak and depressed mononucleosome peak, as observed for the \(\text{isw}1\Delta \) single mutant, suggesting that both ancillary subunits of the ISW1b complex are required for Isw1-dependent dinucleosome resolution. Consistent with

Figure 3. Both ISW1b and Chd1 are important for separating close-packed dinucleosomes. Average nucleosome occupancy (coverage) plots for all genes. All yeast genes were aligned on the midpoint of their average +1 nucleosome position. The occupancy was normalized to the global average (set at 1) for mononucleosomes (120–180 bp) or dinucleosomes (250–350 bp). Note different y-axis scales are used in different plots to separate the lines more clearly. Data for replicate A are shown (see Supplementary Fig. S4 for comparison of biological replicate experiments). (a) Dinucleosomes involving the +2 nucleosome are enriched whereas +2 mononucleosomes are depleted in \(\text{chd}1\Delta \text{isw}1\Delta \) cells; smaller effects are observed in \(\text{chd}1\Delta \) and \(\text{isw}1\Delta \) cells. (b) ISW1b (\(\text{isw}1\Delta\text{-loc}2\Delta\text{-loc}4\Delta \)) accounts for the increased level of dinucleosomes in \(\text{isw}1\Delta \) cells. (c) ISW1b and Chd1 are both required to resolve all dinucleosomes.
this conclusion, the \textit{io}o2\textDelta\textit{io}c4\textDelta double mutant has a dinucleosome peak similar to that of the single mutants. In contrast, there are fewer dinucleosomes in the \textit{io}c3\textDelta mutant, which has a slightly lower +2 dinucleosome peak than wild type and somewhat higher levels of the +2 and +3 mononucleosomes (Fig. 3b; Supplementary Fig. S4), indicating that ISW1a is not important for dinucleosome resolution. These conclusions are supported by high levels of dinucleosomes in the \textit{chd1}\textDelta\textit{io}c2\textDelta\textit{io}c4\textDelta triple mutant versus wild type, resulting from loss of both ISW1b and Chd1 (Fig. 3c). Similarly, the \textit{chd1}\textDelta\textit{io}c3\textDelta double mutant has more dinucleosomes than wild type, but less than the \textit{chd1}\textDelta\textit{io}c2\textDelta\textit{io}c4\textDelta triple mutant, which can be accounted for by the absence of Chd1 with little contribution from ISW1a (Fig. 3c). Thus, the ISW1b complex accounts quite well for the role of Isw1 in dinucleosome resolution.

Set2 contributes to dinucleosome separation. The \textit{io}c4 PWWP domain binds preferentially to H3-K36me3 relative to unmethylated H3-K36 in vitro, suggesting that ISW1b may be regulated by H3-K36me348,49. The only H3-K36 methyltransferase in yeast is encoded by \textit{SET2}. We examined whether ISW1b-mediated changes in nucleosome spacing and dinucleosome resolution depend on Set2. Nucleosome spacing in a \textit{set2}\textDelta mutant (replicates: 165 and 163 bp) is slightly lower than wild type (165 and 165 bp), although this difference is probably not significant (Fig. 4a). Loss of \textit{io}c4 has a stronger effect on nucleosome spacing (Fig. 1c; \textit{io}c4\textDelta replicates: 163 and 162 bp) than loss of Set2 (Fig. 4b), which is also true for long genes (Supplementary Fig. S1). Like \textit{io}c4\textDelta cells, \textit{set2}\textDelta cells have higher dinucleosome levels than wild type cells (Fig. 4c). Interestingly, there are more +3 and +4 dinucleosomes in \textit{set2}\textDelta cells than in \textit{io}c4\textDelta cells (Figs. 4c; 3b; Supplementary Fig. S4). However, there is no corresponding depression in the +2, +3 and +4 mononucleosome peaks in \textit{set2}\textDelta cells (Fig. 4c); instead, these mononucleosomes are higher than in wild type. There is an apparently compensatory reduction in NDR occupancy and the –1 nucleosome (Fig. 4c), which is also observed in \textit{io}c4\textDelta cells but not in the other \textit{io}c mutants (Fig. 3b). Overall, these data suggest that Set2 and H3-K36me3 may be more important for the dinucleosome resolving activity of ISW1b than for its spacing activity.

Loss of Set1 has no effect on global chromatin organisation. The binding of ISW1 to chromatin is mediated indirectly through H3-K4 trimethylation50. On the other hand, a direct interaction might be possible, mediated by the putative PHD domain in the \textit{io}c2 subunit of ISW1b38. Since Set1 is the only H3-K4 methyltransferase in yeast, we tested this possibility by examining \textit{set1}\textDelta cells. However, chromatin organisation in \textit{set1}\textDelta cells is essentially identical to wild type at the global level (Supplementary Fig. S5) and quite different from that in \textit{io}c2\textDelta cells (Fig. 1d). Dinucleosomes involving the +3 and +4 nucleosomes may be somewhat elevated in \textit{set1}\textDelta cells, although this is unclear because the replicates are not consistent in this respect (Supplementary Fig. S4; Supplementary Fig. S5). In conclusion, Set1 and therefore H3-K4me3 are not required for ISW1-dependent nucleosome spacing.

Deletion of the H4 N-terminal tail domain results in shorter nucleosome spacing but does not increase dinucleosome levels. Nucleosome mobilisation in vitro by ISW1 complexes isolated from different organisms requires the H4 N-terminal tail domain, specifically the “basic patch” (residues 16–19)33,44,45. In addition, genetic interactions between \textit{io}sw1 mutations and H4 mutations (point mutations and a tail deletion) suggest involvement in a common pathway39. We reasoned that deletion of the H4 N-tail might result in a chromatin organisation similar to that observed in the \textit{io}sw1\textDelta single mutant: reduced spacing, weaker phasing and increased dinucleosome formation (Figs. 1b, 3a). We constructed a yeast strain in which both H3/H4 gene loci (\textit{HHT1-HHF1} and HHT2-HHF2) were deleted and covered by a plasmid carrying wild type \textit{HHT1-HHF1} or \textit{HHT1-HHF1Δ21}, in which the first 21 amino acid residues of the H4 N-tail had been deleted. This strain displayed a clear growth phenotype, with a doubling time of ~ 2.6 h, compared with ~ 1.8 h for the wild type strain, in synthetic complete (SC) medium. We find that nucleosome spacing is shorter in cells lacking the H4 N-tail (Fig. 5a), though not as short as in \textit{io}sw1\textDelta cells (Fig. 1b), and both mutants have poor phasing. These observations are consistent with the requirement of Isw1 for the H4 N-tail domain. However, removal of the H4 N-tail resulted in only a very slight increase in dinucleosome prevalence (Fig. 3b; Supplementary Fig. S4), unlike loss of Isw1 (Fig. 3a), indicating that loss of Isw1 and loss of the H4 N-tail are not equivalent.

Discussion

\textit{ISW1b} is the primary nucleosome spacing enzyme in yeast. We and others have shown previously that Isw1 and Chd1 are both needed for normal global chromatin organisation in yeast14,15. We proposed that these two enzymes compete to set nucleosome spacing in wild type cells, with Isw1 being dominant, setting wild type spacing, and Chd1 directing shorter spacing15. In the absence of Isw1, the spacing is short, which we attributed to Chd1 activity. An important complication, which we have addressed here, is that there are two complexes containing the Isw1 ATPase subunit26. We have determined their respective roles in chromatin organisation.

A difficulty for our competition model is that, in the absence of Chd1, ISW1b is expected to win the competition, resulting in wild type spacing. Instead, we observe that spacing is somewhat shorter in cells lacking Chd115 (Fig. 2a; Supplementary Fig. S1). One possible explanation is that the dominance of ISW1b depends on Chd1 and so, in its absence, we see an increased contribution from ISW1a, such that the spacing represents the average of ISW1a and ISW1b activities. If so, cells having only ISW1b (the \textit{chd1}\textDelta\textit{io}c3\textDelta double mutant) are expected to have wild type spacing. However, the result is intermediate spacing, very similar to the \textit{chd1}\textDelta single mutant (Fig. 2). Alternatively, ISW1b might only be able to create nucleosome arrays with wild type spacing if Chd1...
Figure 4. Set2 contributes to dinucleosome separation but has little effect on spacing. (a) Average nucleosome dyad density plot for all genes in set2Δ cells. Wild type replicate A is shown as a black line with grey fill. Two biological replicate experiments are shown: A (red line) B (blue line). The average spacing (bp) for replicates A and B is shown (bottom right). (b) Comparison of chromatin organisation in set2Δ cells (blue line) and ioc4Δ cells (red line) (replicates A). (c) Occupancy plots for dinucleosomes and mononucleosomes in set2Δ and wild type (WT) cells (see legend to Fig. 3).
Figure 5. Deletion of the first 21 residues of the H4 N-terminal tail domain results in shorter global nucleosome spacing but little dinucleosome accumulation. (a) Comparison of the H4ΔN21 mutant with its isogenic wild type strain (WT-H4) (top panel). WT-H4 replicates (bottom panel). All yeast genes were aligned on the midpoints of their +1 nucleosomes. The dyad distribution was normalised to the global average (set at 1). WT-H4 replicate A: black line with grey fill in both plots. The average spacing in bp is shown for each replicate in the bottom right corner. (b) Occupancy plots for dinucleosomes and mononucleosomes in H4Δ21 and wild type (WT) cells (see legend to Fig. 3).
Figure 6. Dominant role of ISW1b in chromatin organisation. (a) Global average nucleosome spacing is primarily determined by ISW1b (wild type cells), since loss of ISW1a has little effect. Short spacing is attributed to Chd1, because the chd1Δ isw1Δ double mutant has highly disrupted chromatin. (b) Dinucleosomes disrupt phasing and reduce spacing. Model to show the effects of dinucleosomes on chromatin organisation. Top panel: Average nucleosome positions on a gene in wild type cells with regular spacing. Middle: Close-packed dinucleosomes (grey ovals) are high in the absence of both ISW1b and Chd1. These dinucleosomes preferentially involve the +2 nucleosome i.e., they are mostly +1/+2 or +2/+3 dinucleosomes. Nucleosomes farther down the gene (+3 etc.) may be regularly spaced relative to the dinucleosome, but because a linker is missing in the dinucleosome, downstream nucleosomes are out of phase with other nucleosomal arrays, resulting in poor phasing due to interference patterns from the different arrays. Bottom: Dinucleosomes are absent from the mononucleosome dyad density plots, resulting in depressed, flattened peaks. These effects are strongest in cells lacking both ISW1b and Chd1. Dinucleosomes that cannot be resolved by ISW1b can account for shorter spacing in chd1Δ cells.
has already made arrays with short spacing, although this model is inconsistent with in vitro data showing that purified ISW1b can space nucleosomes by itself66.

A more satisfying explanation involves dinucleosomes (Fig. 6b). Consider a single gene. If there are regularly spaced nucleosomes downstream of a close-packed +1/+2 dinucleosome (i.e. no linker), these nucleosomes will be out of phase by one linker length with nucleosomes in cells with no dinucleosome on this gene. Other cells may have a +2/+3 dinucleosome instead, which will alter the positions of regularly spaced downstream nucleosomes to give a different phasing. The result is generally weaker phasing (peak flattening) and a shift to shorter average spacing. Moreover, since the dinucleosomes are not counted in the mononucleosome phasing pattern, there will be missing occupancy around the +2 nucleosome, resulting in more pattern disruption (primarily a depressed +2 nucleosome peak). These effects will increase as the fraction of genes having a dinucleosome increases: the chd1Δ isw1Δ double mutant and the chd1Δ ioc2Δ ioc4Δ triple mutant both have high dinucleosome levels and extremely poor phasing. The chd1Δ single mutant has fewer dinucleosomes, resulting in a smaller shift in the peaks to shorter spacing. These considerations can account for the shift to shorter spacing in the absence of Chd1 and for the major disruption of chromatin in the absence of both Chd1 and ISW1b. Thus, we propose that the spacing is shorter in cells lacking Chd1 because ISW1b cannot resolve all of the dinucleosomes.

Previously, we showed that Isw1 and/or Chd1 is required to resolve dinucleosomes, or to prevent their formation32. Here we show that both enzymes are important for separating dinucleosomes and that, as observed for spacing activity, ISW1b is much more important than ISW1a. In vitro, both ISW1a and ISW1b can move nucleosomes reconstituted on a pair of 601 nucleosome positioning sequences farther apart, even if separated by a linker of only 4 bp46, indicating that both ISW1 complexes probably have close-packed dinucleosome resolving activity.

The Set2 methyltransferase contributes to dinucleosome separation. We observe that the ancillary subunits of ISW1b, ioc2 and ioc4, are both necessary for ISW1b-dependent chromatin organisation, although ioc2 makes a greater contribution, since it affects phasing as well as spacing. We suggest that ioc2 and ioc4 cooperate to influence the remodeling activity of the Isw1 subunit. Both may be linked to specific histone modifications: ioc4 binds to reconstituted nucleosomes carrying H3-K36me3 with higher affinity than to unmodified nucleosomes, suggesting that Set2-mediated H3-K36me3 might be an important regulator of ISW1b38,39,47. Our data provide some evidence to support this proposal, because although loss of Set2 has only a subtle effect on nucleosome spacing, it does result in increased dinucleosome levels, similar to that observed for loss of ioc4. We propose that Set2-mediated trimethylation of H3-K36 is important for ISW1b-mediated dinucleosome resolution, through interaction of H3-K36me3 with its ioc4 subunit.

We note that neither ISW1 complex requires H3-K36me3 to space nucleosomes in vitro, since they are active on nucleosomes containing unmodified recombinant histones. On the other hand, in vivo, H3-K36me3 may have local effects on ISW1b activity, rather than global effects, which we have not detected. These are probably not occurring at the most active genes because their chromatin organisation in set2Δ cells is similar to wild type (Supplementary Fig. S3). H3-K36me3 recognition may also affect other functions of ISW1b, such as gene repression30 or mRNP quality control32.

The fact that ioc2 has a putative PHD domain suggests that ISW1b may interact with an additional methylated histone residue, although there is no evidence for this at present48. It is unlikely to be H3-K4me3, because our data indicate that the nucleosome spacing activity of the ISW1b complex is independent of Set1 and therefore of H3-K4me3. H3-K4me3 may also bind to one of the chromodomains of Chd148, although this is controversial49. If Chd1 does indeed bind to H3-K4me3, this binding is not critical for its nucleosome spacing function, since we find that loss of Set1 does not result in global chromatin defects, unlike loss of Chd1.

The H4 N-terminal tail domain is required for normal nucleosome spacing. The H4 tail domain is generally required by ISW1-like enzymes for activity5,44,50. The ISW1 ATPase subunit has an inhibitory AutoN domain that resembles the H4 tail, which is displaced by the H4 tail when ISWI binds to a nucleosome45. The isolated yeast Isw1 subunit is inactive without loc subunits unless the AutoN domain is inactivated by mutation33, implying that the loc subunits may regulate Isw1 activity through the AutoN domain. We find that the H4 tail deletion mutant exhibits shorter spacing, consistent with inactivation of ISW1b, but there is little increase in dinucleosomes. The most likely explanation for the non-equivalence of the H4Δ21 and isw1Δ mutations is that the H4 tail domain is involved in multiple processes, including interactions with other remodelers and proteins. This possibility is supported by the fact that the H4Δ21 mutant has a strong growth defect, unlike the various ioc mutants and the isw1Δ mutant, which have no obvious growth defect. Since Chd1 also makes contacts with the basic patch in the H4 tail31,32, its remodeling activity may also be compromised, although H4Δ21 chromatin is clearly not as disrupted as chd1Δ isw1Δ chromatin. The H4 N-tail is also required by ISW2 in vitro53, although global chromatin organisation is unaffected in isw2Δ cells43,44. The low prevalence of dinucleosomes in the H4Δ21 mutant suggests that the H4 tail might be required for dinucleosome formation, possibly because the increased negative charge on nucleosomes lacking the H4 tail might limit how closely nucleosomes can approach one another60. Deletion of the H4 tail also results in the loss of multiple post-translational modification sites, preventing interaction with many chromatin factors.

Methods

Plasmid construction. The primers used in this study are listed in Supplementary Table S1. pRS-HHT1-HHF1 (p368) was constructed by insertion of the 1930-bp SacI-PstI fragment containing the HHT1-HHF1 locus from p367 at the same sites in pRS317 (CEN ARS LYS2) (ATCC 77157), pRS-HHT1-HHF1Δ21 (p730) was constructed by replacing the 752-bp AfeI-SacI fragment with the
H4 N-terminal tail deletion (H4 begins Met-Leu22...) made by ligating two PCR fragments together (obtained using p368 as template with primers 1770/1771 and 1773/1812). The sequence was confirmed.

Yeast strain construction. The yeast strains used in this study are listed in Supplementary Table S2. YDC507 (H4 N-terminal tail deletion) was constructed by transforming ROY1281, which carries plasmid pCC67 (2 micron origin URA3 HHT1-HHT1 HTA1-HHT1), with p730 (CEN ARS LYS2 HHT1-HHT1) and then counter-selection against URA3 with 5-fluoro-orotic acid (5-FOA) to evict pCC67. A wild type control strain (YDC101) was constructed in the same way using p368 (CEN ARS LYS2 HHT1-HHT1) instead of p730. The diploid strain YPE600 was made by crossing YTT196 with YDC111, YPE606 (ioc3Δ) was constructed by transforming YPE600 with an ioc4Δ::HPH1 fragment made using primers 1922/1923 and genomic DNA from YTT827, followed by hygromycin selection on YPD plates and sporulation. YPE636 (ioc2Δ) was constructed by transforming YPE600 with an ioc2Δ::URA3 fragment made using primers 1961/1962 and extended using primers 1965/1966 and wild type genomic DNA as template, followed by selection on SC-ura plates and sporulation. YPE654 (ioc2Δ ioc3Δ) was constructed by transforming YPE636 with the ioc3Δ::kanMX DNA fragment (see above). YPE655 (ioc2Δ ioc4Δ) was constructed by transforming YPE636 with the ioc4Δ::HPH1 fragment (see above). YPE657 (ioc2Δ ioc3Δ ioc4Δ) was constructed by transforming YPE654 with the ioc4Δ::HPH1 fragment. YPE712 (chd1Δ ioc3Δ) was obtained by crossing YJO486 with YPE607. YJO487 was obtained by sporulation of YJO305. YPE715 (chd1Δ ioc2Δ ioc4Δ) was constructed by crossing YJO487 with YPE655. YPE602 (set1Δ) was constructed by transforming YPE600 with a set1Δ::NAT1 fragment made using primers 1926/1927 and genomic DNA from YTT1986, followed by nourseothricin selection on YPD plates and sporulation. YPE604 (set2Δ) was constructed by transforming YDC111 with a set2Δ::TRP1 fragment made using primers 1914/1915 extended with 1916/1917 and plasmid pFA6a-TRP1, followed by selection on SC-trp plates.

MNase-seq. Nuclei were prepared as described. MNase digestion of nuclei and construction of paired-end libraries was as described, except that mononucleosomal DNA was not gel-purified, in order to retain mononucleosomes and dinucleosomes in the correct proportions. Two biological replicate experiments were performed for all strains (i.e., the replicate experiments for each strain were performed entirely independently). MNase-seq data were analysed using scripts originally described; modified code is provided (Supplementary Code).

Data availability The datasets generated during the current study are available in the NCBI Gene Expression Omnibus (GEO) repository [GSE156224]. Published data sets used in the current study are available in the GEO repository (MNase-seq data for YJO484: GSE117514; Rpb3 ChIP-seq data: GSE69400).

Received: 6 October 2020; Accepted: 25 January 2021
Published online: 18 February 2021

References

1. Lugner, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).
2. Thoma, F., Koller, T. & Klug, A. Involvement of histone H1 in the organisation of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83, 403–427 (1979).
3. Chereji, R. V. & Clark, D. J. Major determinants of nucleosome positioning. Mol. Biol. 33, 403–427 (1979).
4. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).
5. Paul, S. & Bartholomew, B. Regulation of ATP-dependent chromatin remodelers: accelerators/brakes, anchors and sensors. Biochem. Soc. Trans. 46, 1423–1430 (2018).
6. Prajapati, H. K., Ocampo, J. & Clark, D. J. Interplay among ATP-dependent chromatin remodelers determines chromatin organisation in yeast. Biology (Basel) 9, 190 (2020).
7. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the initiation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686–697 (1999).
8. Lusser, A., Urwin, D. L. & Kadonaga, J. T. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat. Struct. Mol. Biol. 12, 160–166 (2005).
9. Stockdale, C., Flaus, A., Ferreira, H. & Owen-Hughes, T. Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes. J. Biol. Chem. 281, 16279–16288 (2006).
10. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACE, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).
11. Pointer, J. et al. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J. 31, 4388–4403 (2012).
12. Lieleg, C. et al. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density. Mol. Cell. Biol. 35, 1588–1605 (2015).
13. Torigoe, S. E., Patel, A., Huang, M. T., Bowman, G. D. & Kadonaga, J. T. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling, elf1c/2, e08683 (2013).
14. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organisation. Science 333, 1758–1760 (2011).
15. Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. The ISWI and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res. 44, 4625–4635 (2016).
16. Wieschons, N. et al. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors. PLoS Genet. 12, e1005940 (2016).
17. Barisic, D., Studler, M. B., Iurlaro, M. & Schibeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019).
18. Vary, J. C., Fazzio, T. G. & Tsukiyama, T. Assembly of yeast chromatin using ISWI complexes. Methods Enzymol. 375, 88–102 (2004).
19. Lindstrom, K. C., Vary, J. C., Parthun, M. R., Delrow, J. & Tsukiyama, T. Isw1 functions in parallel with the Nua4 and Swr1 complexes in stress-induced gene repression. Mol. Cell. Biol. 26, 6117–6129 (2006).
20. Pinskaya, M., Nair, A., Clynes, D., Morillon, A. & Mellor, J. Nucleosome remodeling and transcriptional repression are distinct functions of Isw1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 29, 2419–2430 (2009).
21. Morillon, A. et al. Isw1 chromatin remodelling ATPase coordinates transcription elongation and termination by RNA polymerase II. Cell 115, 425–435 (2003).
22. Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. Contrasting roles of the RSC and ISWI1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genes Dev. 29, 407–419 (2015).
23. Babour, A. et al. The chromatin remodeler ISWI Is a quality control factor that surveys nuclear mRNAP biogenesis. Cell 167, 1201–1214.e15 (2016).
24. Udagama, M., Sabri, A. & Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31, 662–673 (2011).
25. Krietenstein, N. et al. Genomic nucleosome organisation reconstituted with pure proteins. Cell 167, 709–721.e12 (2016).
26. Vary, J. C. et al. Yeast Isw1p forms two separable complexes in vivo. Mol. Cell. Biol. 23, 80–91 (2003).
27. Ten, K., Vinayachandran, V., Batta, K., Koerber, R. T. & Pugh, B. F. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149, 1461–1473 (2012).
28. van Bakel, H. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet. 9, e1003479 (2013).
29. Qiu, H. et al. Chromatin remodeler Ino80C acts independently of H2A.Z to evict promoter nucleosomes and stimulate transcription of highly expressed genes in yeast. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa571 (2020).
30. Tirosh, I., Sigal, N. & Barkai, N. Widespread remodeling of mid-coding sequence nucleosomes by Isw1. Genome Biol. 11, R49 (2010).
31. Mellor, J. & Morillon, A. ISWI complexes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1677, 100–112 (2004).
32. Lafon, A., Petty, E. & Pillus, L. Functional antagonism between Sas3 and Gcn5 acetyltransferases and ISWI chromatin remodelers. PLoS Genet. 8, e1002994 (2012).
33. Yan, L., Wu, H., Li, X., Gao, N. & Chen, Z. Structures of the ISWI-nucleosome complex reveal a conserved mechanism of chromatin remodeling. Nat. Struct. Mol. Biol. 26, 258–266 (2019).
34. Richmond, T. J. Nucleosome recognition and spacing by chromatin remodelling factor ISW1a. Biochem. Soc. Trans. 40, 347–350 (2012).
35. Gangaraju, V. K. & Bartholomew, B. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol. Cell. Biol. 27, 3217–3225 (2007).
36. Yamada, K. et al. Structure and mechanism of the chromatin remodeler factor ISW1a. Nature 472, 448–453 (2011).
37. Santos-Rosa, H. et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell 12, 1325–1332 (2003).
38. Smolle, M. et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19, 884–892 (2012).
39. Maltby, V. E. et al. Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol. Cell. Biol. 32, 3479–3485 (2012).
40. Ganguli, D., Chereji, R. V., Iben, J. R., Cole, H. A. & Clark, D. J. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res. 24, 1637–1649 (2014).
41. Weiner, A., Hughes, A., Vassour, M., Rando, O. J. & Friedman, N. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 20, 90–100 (2010).
42. Cole, H. A., Ocampo, J., Iben, J. R., Chereji, R. V. & Clark, D. J. Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases. Nucleic Acids Res. 42, 12512–12522 (2014).
43. Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846–1856 (2003).
44. Clapier, C. R., Lángst, G., Corona, D. E., Becker, P. B. & Nightingale, K. P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).
45. Clapier, C. R., Nightingale, K. P. & Becker, P. B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649–655 (2002).
46. Krajewski, W. A. Yeast Isw1a and Isw1b exhibit similar nucleosome mobilisation capacities for mononucleosomes, but differently mobilise dinucleosome templates. Arch. Biochem. Biophys. 546, 72–80 (2014).
47. Smolle, M. & Workman, J. L. Transcription-associated histone modifications and cryptic transcription. Biochim. Biophys. Acta 1829, 84–97 (2013).
48. Pray-Grant, M. G., Daniel, J. A., Schietz, D., Yates, J. R. & Grant, P. A. Chd1 chromdomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005).
49. Simms, R. J. et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–41792 (2005).
50. Hamiche, A., Kang, J. G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl. Acad. Sci. U.S.A. 98, 14316–14321 (2001).
51. Sundaramoorthy, R. et al. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitylated nucleosome. eLife 7, e35720 (2018).
52. Ferreira, H., Flaus, A. & Owen-Hughes, T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J. Mol. Biol. 374, 563–579 (2007).
53. Dang, W., Kagawala, M. N. & Bartholomew, B. Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA. Mol. Cell. Biol. 26, 7388–7396 (2006).
54. Clark, D. J. & Kimura, T. Electrostatic mechanism of chromatin folding. J. Mol. Biol. 211, 883–896 (1990).
55. Blank, T. A. & Becker, P. B. Electrostatic mechanism of nucleosome spacing. J. Mol. Biol. 252, 305–313 (1995).
56. Eriksson, P. R. et al. Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Mol. Cell. Biol. 25, 9127–9137 (2005).
57. Dhillon, N. & Kamakaka, R. T. A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol. Cell. Biol. 769–780 (2000).
58. Clark-Adams, C. D., Norris, D., Osborne, M. A., Fassler, J. S. & Winston, F. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2, 150–159 (1988).
59. Kim, Y., McLaughlin, N., Lindstrom, K., Tsukiyama, T. & Clark, D. J. Activation of Saccharomyces cerevisiae HIS3 results in Gcn4-dependent, SWI/SNF-dependent mobilisation of nucleosomes over the entire gene. Mol. Cell. Biol. 26, 8607–8622 (2006).
60. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
61. Cole, H. A., Howard, B. H. & Clark, D. J. Activation-induced disruption of nucleosome position clusters on the coding regions of Gcn4-dependent genes extends into neighbouring genes. Nucleic Acids Res. 39, 9521–9535 (2011).
62. Chereji, R. V., Ocampo, J. & Clark, D. J. MNase-sensitive complexes in yeast: nucleosomes and non-histone barriers. Mol. Cell 65, 565-577.e3 (2017).

Acknowledgements
We thank Alan Hinnebusch for helpful comments on the manuscript and Răzvan Chereji for help with the bioinformatics. We thank Alex Naim for constructing p368, Toshi Tsukiyama for yeast strains, and Rohinton Kamakaka and Namrita Dhillon for pCC67 (pRO149) and ROY1281. This research was supported by the Intramural Research Program of the NIH (NICHD). We thank the NHLBI Core Facility (Yan Luo, Poching Liu and Jun Zhu) for paired-end sequencing. This study utilized the high performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health.

Author contributions
P.R.E.: Acquisition, analysis and interpretation of data. D.J.C.: Analysis, interpretation of data and manuscript preparation.

Funding
Open Access funding provided by the National Institutes of Health (NIH).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-82842-9.

Correspondence and requests for materials should be addressed to D.J.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021