325.tex
J.Inverse and Ill-Posed problems 2,N3,(1994),269-275.

STABILITY OF THE SOLUTION TO INVERSE
OBSTACLE SCATTERING PROBLEM

A.G. RAMM

Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA

Abstract. It is proved that if the scattering amplitudes for two obstacles (from a large class of obstacles) differ a little, then the obstacles differ a little, and the rate of convergence is given. An analytical formula for calculating the characteristic function of the obstacle is obtained, given the scattering amplitude at a fixed frequency.

Introduction.

Let $D \subset \mathbb{R}^3$ be a bounded domain with a smooth boundary Γ,

$$(\nabla^2 + k^2)u = 0 \quad \text{in} \quad D' := \mathbb{R}^3 \setminus D, \quad k = \text{const} > 0; \quad u = 0 \quad \text{on} \quad \Gamma$$

$$u = \exp(ika \cdot x) + A(\alpha', \alpha, k)r^{-1} \exp(ikr) + o(r^{-1}), \quad r := |x| \to \infty, \quad \alpha' := x^{-1}.$$ \hspace{1cm} (2)

Here α is a given unit vector, S^2 is the unit sphere in \mathbb{R}^3, the function $A(\alpha', \alpha, k)$ is called the scattering amplitude (the radiation pattern). It is well known [1] that problem (1)-(2) has a unique solution, the scattering solution, so that the map $\Gamma \to A(\alpha', \alpha, k)$ is well defined. We consider the inverse obstacle scattering problem (IOSP): given $A(\alpha', \alpha) := A(\alpha', \alpha, k = 1)$ for all $\alpha', \alpha \in S^2$ and a fixed k (for example, take $k = 1$ without loss of generality), find Γ.

Let us assume that $\Gamma \subset \gamma_\lambda$, where γ_λ is the set of star-shaped (with respect to a common point O) surfaces, which are located in the annulus $0 < a_0 \leq |x| \leq a_1$, and whose equations $x_3 = \phi(x_1, x_2)$ in the local coordinates (in which x_3 is directed along the normal to Γ at a point $s \in \Gamma$), have the property

$$\|\phi\|_{C^2, \lambda} \leq c_0, \hspace{1cm} (3)$$

C^2, λ is the space of twice differentiable functions, whose second derivatives satisfy the Hölder condition of order $0 < \lambda \leq 1$, and c_0 is independent of ϕ and Γ.

Uniqueness of the solution to IOSP with fixed frequency data is first proved in [1, p. 85]. We are interested here in the stability problem: suppose that $\Gamma_j \in \gamma_\lambda$ generate $A_j(\alpha', \alpha)$, $j = 1, 2$, and

$$\max_{\alpha', \alpha \in S^2} |A_1(\alpha', \alpha) - A_2(\alpha', \alpha)| < \delta. \hspace{1cm} (4)$$

What can one say about the Hausdorff distance between D_1 and D_2: $\rho := \sup_{x \in \Gamma_1} \inf_{y \in \Gamma_2} |x - y|$. Let \bar{D}_1 denote a connected component of $D_1 \setminus D_2$, $D_{12} := D_1 \cup D_2$, $\Gamma_{12} := \partial D_{12}$, $D'_{12} := \mathbb{R}^3 \setminus D_{12}$, $\bar{\Gamma}_1 := \partial \bar{D}_1 := \Gamma'_1 \cup \bar{\Gamma}_2$, $\bar{\Gamma}_2 \subset \Gamma_2 := \partial D_2$, $\Gamma'_1 \subset \Gamma_1 := \partial D_1$. Let us assume, without loss of generality, that $\rho = |x_0 - y_0|$, $x_0 \in \Gamma'_1$, $y_0 \in \bar{\Gamma}_2$. Can one obtain a formula for calculating Γ, given $A(\alpha', \alpha)$ for all $\alpha', \alpha \in S^2$, $k = 1$ is fixed? No such formula is known for IOSP. For inverse potential scattering problem with fixed-energy data such a formula and stability estimates are obtained in [2], [3]. These results are based on the works [7],[8], [10]-[17], [19]-[21].

In section II we prove that $\rho \leq c_1 \left(\frac{|\ln|\ln|\delta||}{|\ln|\delta||} \right)^{c_2}$ as $\delta \to 0$. We also prove some inversion formula, but it is an open problem to make an algorithm out of this formula. In Remark 3, we comment on some recent papers [4-6] in which attempts are made to study the stability problem and point out a number of errors in these papers. Our result, formulated as Theorem 1 in section II, is stronger than the results announced in Theorem 1 in [4], Theorem 1 in [5] and Theorem 2.10 in [6].
II. Stability Result and a Reconstruction Formula.

Theorem 1. Under the assumptions of section I, one has $\rho(\delta) \leq c_1 \left(\frac{\ln |\ln \delta|}{\ln \delta} \right)^{c_2}$, where c_1 and c_2 are positive constants independent of δ.

Proposition 1. There exists a function $\nu_\epsilon(\alpha, \theta) \in L^2(S^2)$ such that

$$-4\pi \lim_{\epsilon \to 0} \int_{S^2} A(\theta', \alpha) \nu_\epsilon(\alpha, \theta) d\alpha = \frac{\lambda^2}{2} \tilde{\chi}_D(\lambda).$$

Here $\lambda \in \mathbb{R}^3$ is an arbitrary fixed vector, $\chi_D(x) := \begin{cases} 1, & x \in D \\ 0, & x \notin D \end{cases}$, $\tilde{\chi}_D(\lambda) := \int_{\mathbb{R}^3} \exp(-i \lambda \cdot x) \chi_D(x) dx$, $\theta, \theta' \in M := \{ \theta : \theta \in \mathbb{C}^3, \theta \cdot \theta = 1 \}$, $\theta' - \theta = \lambda$, and $A(\theta', \alpha)$ is defined by the absolutely convergent series

$$A(\theta', \alpha) = \sum_{k=0}^{\infty} A_k(\alpha) Y_k(\theta'), \quad \theta' \in M, \quad A_k(\alpha) := \int_{S^2} A(\alpha', \alpha) Y_k(\alpha') d\alpha',$$

where $Y_k(\alpha)$ are the orthonormal in $L^2(S^2)$ spherical harmonics, $Y_k(\theta')$ is the natural analytic continuation of $Y_k(\alpha')$ from S^2 to M, and the series (6) converges absolutely and uniformly on compact subsets of $S^2 \times M$.

Remark 1. The stability result given in Theorem 1 is similar to the one in [3], p. 9, formula (2.42), for inverse potential scattering.

Remark 2. Proposition 1 claims the existence of the inversion formula (5). An open problem is to construct the function $\nu_\epsilon(\alpha, \theta)$ algorithmically, given the data $A(\alpha', \alpha)$ \quad \forall \alpha', \alpha \in S^2$.

Proof of Theorem 1. First, we prove that $\rho(\delta) \to 0$ as $\delta \to 0$. Then, we prove that $|u_2| \leq c \rho$ in \tilde{D}_1. Next, we prove that $|u_2(x)| \leq c e^{c'\rho'}$ (*) if $\text{dist}(x, \Gamma_1') = O(\rho)$, where $|\ln \epsilon| = cN(\delta)$, $N(\delta) := |\ln \delta|/|\ln |\ln \delta||$. From (*) Theorem 1 follows. By c, c', c, c_j various positive constants, independent of δ and on $\Gamma \in \gamma_\lambda$, are denoted.

Step 1. Proof of the relation $\rho(\delta) \to 0$ as $\delta \to 0$. Assume the contrary:

$$\rho_n := \rho(\delta_n) \geq c > 0 \quad \text{for some sequence} \quad \delta_n \to 0.$$ \hspace{1cm} (7)

Let Γ_{j_n}, $j = 1, 2$, be the corresponding sequences of the boundaries, $\Gamma_{j_n} \in \gamma_\lambda$. Due to assumption (3), one can select a convergent in $C^2(\mu)$, $0 < \mu < \lambda$, subsequence, which we denote Γ_{j_n} again. Thus $\Gamma_{j_n} \to \Gamma_j$ as $n \to \infty$. From (7) it follows that (1) $\rho(D_1, D_2) \geq c > 0$, where D_j is the obstacle with the boundary Γ_j. By the known continuity of the map $\Gamma_j \to A_j$, $\Gamma_j \in \gamma_\mu$, it follows that $A_1(\alpha', \alpha) - A_2(\alpha', \alpha) = 0$.

By the uniqueness theorem [1, p. 85] it follows that $\Gamma_1 = \Gamma_2$. Thus, $\rho(D_1, D_2) = 0$ which is a contradiction to (1). This contradiction proves that $\rho(\delta) \to 0$ as $\delta \to 0$.

Step 2. Proof of the estimate $|u_2(x)| \leq c \rho$ for $x \in \tilde{D}_1$. It is known that $\|u_2\|_{C^2(D_2)} \leq c$, where $u_2 = u_2(x, \alpha)$ is the scattering solution corresponding to the obstacle D_2. Since $u_2 = 0$ on $\tilde{\Gamma}_2$, one has $|u_2(x)| \leq (\max_{x \in D_1} |\nabla u_2|) \rho \leq c \rho$.

Step 3. Proof of the estimate $|v(x)| \leq c e^{d'}$, where $v := u_2 - u_1$ and $d := \text{dist}(x, \Gamma_1')$.

From [3, p. 26, formulas (4.12), (4.17), (2.28)], one has

\[|v(x)| \leq c \exp\{-\gamma N(\delta)\}, \quad |x| > a_2, \quad N(\delta) := \frac{|\ln \delta|}{\ln |\ln \delta|}, \quad \gamma := \ln \frac{a_2}{a_1} > 0, \quad (8) \]

\(a_2 > a_1 \) is an arbitrary fixed number, \(a_2 \leq |x| \leq a_2 + 1 \) (in [3] it is assumed \(a_2 > a_1 \sqrt{2} \), but \(a_2 > a_1 \) is sufficient). Let us derive from (8), from equation (1) for \(v(x) \), from the radiation condition for \(v(x) \), and from the estimate \(\|v\|_{C^2(D_{12}')} \leq c \), the estimate:

\[|v(x)| \leq ce^{\epsilon x'}, \quad x \in D_{12}, \quad c_3 \rho \leq d \leq c_4 \rho, \quad c_3 > 0, \quad d = \text{dist}(x, \Gamma_1'), \quad (9) \]

If (9) is proved, then Theorem 1 follows. Indeed, \(|v(x)| = |v(s) + \nabla v \cdot (x - s)| = O(\rho) \leq ce^{\epsilon x'} \) if \(d \) satisfies (9). Here we use: 1) \(v = u_2 - u_1 = u_2 \) on \(\Gamma_1' \), \(|u_2| = O(\rho) \) on \(\Gamma_1' \), since \(u_2 = 0 \) on \(\Gamma_2 \), and \(|\nabla u_2| \leq c \), 2) \(|x - s| = O(\rho) \) if \(\text{dist}(x, \Gamma_1') = O(\rho) \), and 3) \(0 < c \leq |\nabla v| \leq \epsilon \) if \(d \) satisfies (9). The last claim follows from the continuity of \(\nabla v(x) \), smallness of \(\rho, \rho(\delta) \to 0 \) as \(\delta \to 0 \), and the fact that \(|\nabla u_j|_{\Gamma_1'} \neq 0 \) almost everywhere (otherwise, by the uniqueness of the solution to the Cauchy problem for (1), one concludes that \(u_j = 0 \) in \(D_{12}' \), which contradicts (2), since, by (2), \(|u_j| \to 1 \) as \(|x| \to \infty \)). Thus \(\ln \rho \leq c \epsilon \ln \epsilon \), or \((s) \frac{|\ln \rho|}{\ln(\rho - 1)} \leq c(\ln(\epsilon^{-1})) \), where \(\rho \) and \(\epsilon \) are small numbers, \(0 < \rho, \epsilon < 1, c, c' > 0, \) and \(c \) stands for different constants. It follows from \((s) \) that \(\rho \leq \{c(\ln(\epsilon^{-1}))\}^{-1} \), \(\omega \to 0 \) as \(\epsilon \to 0 \). From the definition (8) of \(\epsilon \), one gets the estimate of Theorem 1. Thus, the proof of Theorem 1 is completed as soon as (9) is proved.

Our argument remains valid if \(|v| = O(\rho^m) \) with some \(m, 0 < m < \infty \). Such an inequality is always true for a solution \(v \) to elliptic equation (1) unless \(\rho = 0 \) (see [26, p.14]).

Proof of (9). Since \(\|v\|_{C^2(D_{12})} \leq c, v(x) \) vanishes at infinity, and \(v \) solves (1), one can represent \(v(x) \) in \(D_{12}' \) by the volume potential: \(v(x) = \int_{D_{12}} g(x - y) f(y) dy, f \in C^\mu(D_{12}), g(x) := \frac{\exp(|iy|)}{4\pi|x|}. \) The function \(|x - y| = \sqrt{r^2 + 2r|y|\cos \theta + |y|^2}^{1/2} := R \) admits analytic continuation on the complex plane \(z = r \exp(iv) \) to the sector \(S_\phi := \{ \arg z < \phi, z^2 - 2z|y|\cos \theta + |y|^2 \neq 0 \} \) for \(z \) in this sector. We use the branch of \(R \) for which \(\text{Im} R \geq 0, \) and \(\text{Re} R \) at \(m = 0 \geq 0. \) The argument of \(R^2 := z^2 - 2z|y|\cos \theta + |y|^2 \) is defined so that it belongs to the interval \([0, 2\pi) \), so that the analytic continuation of \(g(x - y) \) to the sector \(S_\phi \) is bounded there. It is crucial to have at least boundedness of the norm \(\|v\|_{C^1(D_{12})} \). Indeed, \((1) \) implies that one can extend \(v \) from \(D_{12}' \) to \(D_{12} \) as \(C^1(\mathbb{R}^3) \) functions. This is true although the boundary \(\partial D_{12} \) may be nonsmooth to the degree which prevents using the known extension theorems (Stein’s theorem, for example). The way to go around this difficulty is to extend \(u_1 \) and \(u_2 \) separately to \(D_1 \) and \(D_2 \) respectively, and then take \(v = u_2 - u_1 \) as the extension. If \(v \in C^2(\mathbb{R}^3) \) satisfies the radiation condition and the Helmholtz equation, and is \(C^2 \) in the interior and in the exterior of \(D_{12} \), then it is representable as a sum of the volume and single-layer potentials, and our argument, which uses analytic continuation, goes through. Without this assumption the argument is not valid and the conclusion fails, as the following example shows.

Example 1: Let \(D := \{ x : |x| \leq 1, x \in \mathbb{R}^3 \}, v = v_\ell := \frac{h^{(1)}(\ell)}{h^{(1)}(1)} Y_\ell(x^0), \) where \(h^{(1)}(\ell) \) is the spherical Hankel function, \(Y_\ell(x^0) \) is the normalized in \(L^2(S^2) \) spherical harmonic. It is well known that \(h^{(1)}(\ell) \sim i \frac{(\ell + 1)!}{(\ell + 2)!b} \) as \(\ell \to \infty \) uniformly in \(1 \leq \ell \leq b, b < \infty \) is arbitrary. Therefore \(v_\ell \sim \sim \ell^{-\ell+1} \) as \(\ell \to \infty \). In any annulus \(A := \{ x : 1 < a_2 \leq y \leq b \}, \) one has \(\|v_\ell\|_{L^2(A)} \leq c_\ell^{-\ell+1} \) as \(\ell \to \infty \). On the other hand \(\|v_\ell\|_{L^2(S^2)} = 1 \) for all \(\ell \). Thus, for sufficiently large \(\ell \) the solution \(v_\ell \) to Helmholtz equation is as small as one wishes in the annulus \(A \), but it is not small at the boundary \(\partial D \) for any \(\ell \) or its \(L^2(\partial D) \) norm is one. The reason for the solution to fail to be small on \(\partial D \) is that the \(C^1 \) norm of \(v_\ell \) is unbounded, as \(\ell \to \infty \), on \(\partial D \).
Let us continue the proof of (9). The function $v(r, r^0, \alpha)$, where α is the same as in (2), $r^0 := x/r$, and $r = |x|$, admits an analytic continuation to the sector S on the complex plane z, $S := \{z : |\arg(z - r(x^0))| < \phi\}$, $\phi > 0$, $r = r(x^0)$ is the equation of the surface Γ^0 in the spherical coordinates with the origin at the point O, and $v(z, x^0, \alpha)$ is bounded in S. The angle ϕ is chosen so that the cone K with the vertex at $r(x^0)$, axis along the normal to Γ^0 at the point $r(x^0)$, and the opening angle 2ϕ, belongs to $D_1/2$. Such a cone does exist because of the assumed smoothness of Γ_j. The analytic continuation of this type was used in [18]. It follows from (8) that $\sup_{r \geq r_0} |v(r)| \leq \epsilon$, and $\sup_{z \in S} |v(z)| \leq \epsilon$, since $\Im(z^2 - 2z|y| \cos \theta + |y|^2|/2 \geq 0$ in S. From this and the classical theorem about two constants [22, p. 296], one gets $|v(z)| \leq ce^{h(z)}$, where $h(z) = h(z, L, Q)$ is the harmonic measure of the set $\partial S \setminus L$ with respect to the domain $Q := S \setminus L$ at the point $z \in Q$. Here L is the ray $[a_2, +\infty)$, ∂S is the union of two rays, which form the boundary of the sector S, and of the ray L. The proof is completed as soon as we demonstrate that $h(z) \sim kd^2$ as $z \to r(x^0)$ along the real axis, $d := |z - r(x^0)|$, $k = \text{const} > 0$, $c = \text{const} > 0$. This, however, is clear: let $r(x^0)$ be the origin, and denote $z - r(x^0)$ by z. If one maps conformally the sector S onto the half-plane $Rez \geq 0$ using the map $w = z^c$, $c = \frac{i}{2\alpha}$, then the ray L is mapped onto the ray $L := [a_2', +\infty)$, and (see [22, p. 293]) $h(z, L, Q) = h(z^c, L', Q')$, where Q' is the image of Q under the mapping $z \mapsto z^c = w$. By the Hopf lemma [23, p. 34], $\frac{\partial h(0, L', Q')}{\partial w} > 0$, $h(0, L', Q') = 0$, so $h(w, L', Q') \sim kw = k\bar{z}^c$ as $z \to 0$, and (9) is proved. Theorem 1 is proved. □

Proof of Proposition 1. It is proved in [2, p. 183] that the set $\{u_N(s, \alpha)\}_{\nu\alpha \in S^2}$ is complete in $L^2(\Gamma)$. This implies existence of a function $\nu_c(\alpha, \theta)$ such that

$$\left\| \int_{S^2} u_N(s, \alpha)\nu_c(\alpha, \theta)ds - \frac{\partial \exp(i\theta \cdot s)}{\partial N_s}\right\|_{L^2(\Gamma)} < \epsilon,$$

where $\epsilon > 0$ is arbitrarily small fixed number, N_s is the exterior normal to Γ at the point s, and $\theta \in M$ is an arbitrary fixed vector. It is well known [1, p. 52], that

$$-4\pi A(\theta', \alpha) = \int_{\Gamma} \exp(-i\theta' \cdot s)u_N(s, \alpha)ds.$$

Multiply (11) by $\nu_c(\alpha, \theta)$, integrate over S^2 and use (10), to get

$$-4\pi \lim_{\epsilon \to 0} \int_{S^2} A(\theta', \alpha)\nu_c(\alpha, \theta)ds = \int_{\Gamma} \exp(-i\theta' \cdot s)\frac{\partial \exp(i\theta \cdot s)}{\partial N_s}ds.$$

Note that

$$\int_{\Gamma} \exp(-i\theta' \cdot s)\frac{\partial \exp(i\theta \cdot s)}{\partial N_s}ds = \frac{1}{2} \int_{\Gamma} \frac{\partial \exp[-i(\theta' - \theta) \cdot s]}{\partial N_s}ds$$

$$= \frac{1}{2} \int_D \nabla^2 \exp(-i\lambda \cdot x)dx = -\frac{\lambda^2}{2} \chi_D(\lambda)$$

where the first equation is obtained with the help of Green’s formula. From (12) and (13) one obtains (5). Proposition 1 is proved. □

Remark 3. In [4]-[5] attempt is made to obtain stability results for IOSP, but several errors invalidate the proofs in [4], [5] and [6] related to stability for IOSP. Let us point out some of the errors. Lemma 5, as stated in [4, p. 83], repeated as Lemma 4 in [5], claims that if a solution to a homogeneous Helmholtz equation in the exterior of a bounded domain D is small in the annulus $R \leq |x| \leq R + 1$, $|v| \leq \epsilon$ in the annulus, then $|v|_{\partial D} \leq c \log \epsilon^{-c_1}$. This is incorrect as Example 1 shows. Lemma 3 in [4] is wrong (factor
\(\rho^{2m} \) is forgotten in the argument). In fact, stronger results have been published earlier [17], [2], [3]. In [5] Lemma 2 is intended as a correction of Lemma 3 in [4] (without even mentioning [4]), but its proof is also wrong: the factor \(\rho^{2m} \) is not estimated. There are other mistakes in [5] (e.g., the known asymptotics of Hankel functions in [5, p. 538] is given incorrectly). In [6] these mistakes are repeated (p. 600). There are claims in [6] that: a) there is a gap in the Schiffer’s proof of the uniqueness theorem for IOSP with the data \(A(a',\alpha_0,k) \) \(\forall a' \in S^2, \forall k > 0, \alpha_0 \in S^2 \) is fixed [6, p. 605], b) that Theorem 6 in [8] is incorrect, and the proof of Lemma 5 in [8] contains a flaw [6, p. 588]. These claims are wrong, and no justifications of the claims are given. The remark concerning Shiffer’s proof in [6, p. 605, line 1] is irrelevant (see [1, pp. 85-86]).

It should be noted that the arguments in [4]-[5] are based on the well known estimates of Landis [9] for the stability of the solution to the Cauchy problem, but no references to the work of Landis are given. In [6] it is not mentioned that the concept of completeness of the set of products of solutions to PDE (which is discussed in [6]) has been introduced and widely used for the proof of the uniqueness theorems in inverse problems in the works [2], [13], [19]-[21] (see also references in [2], [13]). In [24] and [25] two theorems are announced which contradict each other (Theorem 1 in [25] and Theorem 2 in [24]).

Acknowledgements. The author thanks NSF for support and Prof. H.-D. Alber for useful discussions.

References

1. Ramm, A.G., Scattering by Obstacles, Reidel, Dordrecht, 1986.
2. , Stability Estimates in Inverse Scattering, Acta Appl. Math. 28 N1, (1992), 1-42.
3. Isakov, V., Stability Estimates for Obstacles in Inverse Scattering, J. Comp. Appl. Math. 42 (1992), 79-88.
4. , New Stability Results for Soft Obstacles in Inverse Scattering, Inverse Probl. 9 (1993), 535-543.
5. , Uniqueness and Stability in Multidimensional Inverse Problems, Inverse Probl. 9 (1993), 579-621.
6. Ramm, A.G., Multidimensional Inverse Scattering Problems and Completeness Of The Products Of Solutions To Homogeneous PDE, Zeitchrift f. angew. Math. u.Mech. 69 N4, (1989), T13-T22.
7. Ramm, A.G., Multidimensional Inverse Problems and Completeness of the Products of Solutions to PDE, J. Math. Anal. Appl. 134 N1, (1988), 211-253; 139 (1989), 302; 136 (1988), 568-574.
8. Landis, E., Some Problems of the Qualitative Theory of Second Order Elliptic Equations, Russ. Math. Surveys 18 N1, (1963), 1-62.
9. Ramm, A.G., Stability of the Numerical Method for Solving 3D Inverse Scattering Problems with Fixed Energy Data, J. Reine Angew. Math. 414 (1991), 1-21.
10. , Stability of the Inversion of 3D Fixed-Frequency data, J. Math. Anal. Appl. 169 N2, (1992), 329-349.
11. , Stability of the solution to 3D Fixed-Energy Inverse Scattering Problem, J. Math. Anal. Appl. 170 N1, (1992), 1-15.
12. , Completeness of the Products of Solutions of PDE and Inverse Problems, Inverse Probl. 6 (1990), 643-664.
13. , Property C with Constraints and Inverse Problems, J. of Inverse and Ill-Posed Problems 1 N3, (1993), 227-230.
14. , Property C with Constraints and Inverse Spectral Problems with Incomplete Data, J. Math. Anal. Appl. 180 N1, (1993), 239-244.
15. Ramm, A.G., Multidimensional Inverse Scattering: Solved and Unsolved Problems, Proc. of the First Intern. Conference on Dynamical Systems, Atlanta (1994).
16. Ramm, A.G., Stability of the Numerical Method for Solving the 3D Inverse Scattering Problem with Fixed Energy Data, Inverse Probl. 6 (1990), L7-L12.
17. , Absence of the Discrete Positive Spectrum of the Dirichlet Laplacian in Some Infinite Domains, Vestnik Leningrad Univ., 13, (1964), 153-156; 176 N1, (1966), Math.Rev. 30 #1295.
18. , On Completeness of the Products of Harmonic Functions, Proc. A.M.S. 99 (1986), 253-256.
19. , Property C and Inverse Problems, ICM-90 Satellite Conference Proceedings, Inverse Problems in Engineering Sciences, Proc. of a Conference held in Osaka, Japan, Aug. 1990, Springer Verlag, New York (1991), pp. 139-144.
20. , Property C and Uniqueness Theorems for Multidimensional Inverse Spectral Problem, Appl. Math. Lett. 3 (1990), 57-60.
21. , Multidimensional Inverse Problem Of Potential theory, Sov. Math.Doklady 19 (1978), 630-633.
22. Hörmander, L., The Analysis of Linear Partial Differential Operators III, Springer Verlag, New York, 1985.
23. Evgenvov, M., Analytic Functions, Nauka, Moscow, 1965, (in Russian).
24. Gilbarg, D., Trudinger, N., Elliptic Partial Differential Equations of Second Order, Springer Verlag, New York, 1983.
25. Evgenvov, M., Analytic Functions, Nauka, Moscow, 1965, (in Russian).