Risk factors of postpartum depression and depressive symptoms: umbrella review of current evidence from systematic reviews and meta-analyses of observational studies

Chiara Gastaldon, Marco Solmi, Christoph U. Correll, Corrado Barbui and Georgios Schoretsanitis

Background
Evidence on risk factors for postpartum depression (PPD) are fragmented and inconsistent.

Aims
To assess the strength and credibility of evidence on risk factors of PPD, ranking them based on the umbrella review methodology.

Method
Databases were searched until 1 December 2020, for systematic reviews and meta-analyses of observational studies. Two reviewers assessed quality, credibility of associations according to umbrella review criteria (URC) and evidence certainty according to Grading of Recommendations-Assessment-Development-Evaluations criteria.

Results
Including 185 observational studies (n = 3,272,093) from 11 systematic reviews, the association between premenstrual syndrome and PPD was the strongest (highly suggestive: odds ratio 2.20, 95%CI 1.81–2.68), followed by violent experiences (highly suggestive: odds ratio (OR) = 2.07, 95%CI 1.70–2.50) and unintended pregnancy (highly suggestive: OR=1.53, 95%CI 1.35–1.75). Following URC, the association was suggestive for Caesarean section (OR = 1.29, 95%CI 1.17–1.43), gestational diabetes (OR = 1.60, 95%CI 1.25–2.06) and 5-HTTLPR polymorphism (OR = 0.70, 95%CI 0.57–0.86); and weak for preterm delivery (OR = 2.12, 95%CI 1.43–3.14), anaemia during pregnancy (OR = 1.47, 95%CI 1.17–1.84), vitamin D deficiency (OR = 3.67, 95%CI 1.72–7.85) and postpartum anaemia (OR = 1.75, 95%CI 1.18–2.60). No significant associations were found for medically assisted conception and intralabour epidural analgesia. No association was rated as ‘convinced evidence’. According to GRADE, the certainty of the evidence was low for Caesarean section, preterm delivery, 5-HTTLPR polymorphism and anaemia during pregnancy, and ‘very low’ for remaining factors.

Conclusions
The most robust risk factors of PDD were premenstrual syndrome, violent experiences and unintended pregnancy. These results should be integrated in clinical algorithms to assess the risk of PPD.

Keywords
Depressive disorders; perinatal psychiatry; umbrella review; risk factors; postpartum depression.

Copyright and usage
© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
formal syntheses of the credibility of the exponentially emerging fragmented meta-analyses are required. This umbrella review aimed to identify, quantify and measure the degree of credibility of the association of PPD with different risk factors, including peripheral markers, obstetric complications and psychological factors.

We used the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines to guide this umbrella review (Supplementary Table 1, available at https://doi.org/10.1192/bjp.2021.222).

The review protocol was registered with International Prospective Register of Systematic Reviews (PROSPERO; registration number CRD42020168468).

Study design

We summarised the evidence from multiple research syntheses, performing an umbrella review, which is a form of review of previously conducted systematic reviews and meta-analyses. It consists in repeating the meta-analyses adopting a uniform approach for available factors to enable their comparison. Considering the growing number of systematic reviews and meta-analyses available, this approach allows us to compare and contrast the findings of separate reviews related to a topic of interest. The conduct of an umbrella review also provides a comprehensive overview of healthcare areas, to highlight whether the evidence is consistent or contradictory, and to explore possible heterogeneity sources for existing evidence. This type of review is considered among the highest level of evidence, and is particularly useful to inform clinical practice and policies. Further details are described in the Supplementary Methods.

Two reviewers (C.G. and G.S.) independently conducted the literature search; the screening of the titles, abstracts and full-text papers; and the data extraction. Details of the process are described in the Supplementary Methods.

Eligible reviews were exclusively systematic reviews with a meta-analysis. We considered systematic reviews of observational studies (prospective or retrospective cohort and case-control studies) that investigated the association between exposure to any risk factor and the risk of developing PPD. We excluded systematic reviews that did not present study-level data, such as odds ratios or relative risks with 95% confidence intervals. When more meta-analyses on the same research topic were available, the meta-analysis with the largest number of included studies, providing effect sizes at a study level, was considered for inclusion, as previously described.

From each included systematic review, two investigators (C.G. and G.S.) independently extracted information on first author, publication year, outcomes of interest, number of studies per meta-analysis and summary meta-analytic estimates. Primary studies included in all systematic reviews were retrieved and inspected by two reviewers (C.G. and G.S.). Details of the selection and extraction process are described in the Supplementary Methods.

Reporting quality of included systematic reviews and meta-analyses

Two reviewers (C.G. and G.S.) independently assessed the quality of each systematic review, using A Measurement Tool to Assess Systematic Reviews (AMSTAR-2), a 16-point assessment tool of the methodological quality of systematic reviews. AMSTAR-2 has good interrater agreement, test–retest reliability and content validity (details in the Supplementary Methods).

Method

It assesses the methodological strength of reviews, through 16 domains, which include the research question and design, literature search, data extraction, explicit reports of each step and choice made by reviewers to allow transparency (e.g. presence of a list of excluded studies, with reason for exclusion), quality and statistical assessments. Each item allows for the following response options: yes, partial yes or no. Of these 16 domains, seven are considered critical domains, as they can particularly affect the validity of the review and its conclusion. The AMSTAR-2 is a qualitative tool, not designed to be scored. AMSTAR-2 offers a scheme for interpreting weaknesses identified in critical and non-critical items: reviews with no or only one non-critical weakness are considered ‘high quality’, reviews with more than one non-critical weakness but no critical flaws are considered ‘moderate quality’, reviews with only one critical flaw with or without non-critical weaknesses are considered ‘low quality’. Finally, reviews with more than one critical flaw with or without non-critical weaknesses are considered ‘critically low quality’ (see Supplementary Methods and Supplementary Box 1 for further details).

Statistical analysis and umbrella review criteria

We extracted effect sizes of individual studies included in each meta-analysis for every association, and afterwards we re-estimated the summary effect sizes with 95% confidence intervals, using random-effects models as we expected large heterogeneity. Additionally, we calculated the 95% prediction intervals for the summary random effect sizes, which account for heterogeneity between studies and specify the uncertainty for the effect that would be expected in a new study examining that same research question. We evaluated heterogeneity with Cochran’s Q-statistic (statistical significance set at P-value <0.10) and estimated with the I² metric. The I² ranges from 0 to 100%, and it is considered very large, large, moderate and low for values ≥75%, 50–74%, 25–49% and <25%, respectively. Potential publication and small-study effects biases were evaluated with Egger’s test. Specifically, small-study effects bias was considered to be present when a more conservative effect in the largest study and a P-value ≤0.10 in the regression asymmetry test were found. Further, we assessed the excess significance, which is a test that examines if the observed number of studies (O) with statistically significant results (i.e. with P <0.05) in the meta-analysis is higher than the expected number (E). For each meta-analysis, E was calculated as the sum of the statistical power estimates for every study in the meta-analysis. The power of each study was calculated assuming a non-central distribution. The estimated power depends on the plausible effect size. As the true effect size for any meta-analysis is unknown, this approach assumes that the most plausible effect is the one provided by the largest study included. Excess significance for all meta-analyses was set at P-value ≤0.10.

Based on the above calculations, we assessed the umbrella review criteria (URC) to classify the strength of associations as ‘convincing’ (class I), ‘highly suggestive’ (class II), ‘suggestive’ (class III) or ‘weak’ (class IV) (details in Supplementary Box 2). Precisely, meta-analyses were considered without bias (class I) if they met the following criteria: ≥1000 cases, random-effects P-value ≤10^{-6} of the meta-analysis, low or moderate between-study heterogeneity (I² ≤50%), 95% prediction intervals that excluded the null value, and absence of both small-study effects and excess significance. Associations were considered highly suggestive (class II) when the following criteria were met: ≥1000 cases, highly significant summary associations (P-value ≤10^{-6} in the random-effects estimate) and 95% prediction intervals not including the null value.
value. Suggestive evidence (class III) criteria required ≥1000 cases and P-value ≤0.001 in the random-effects model. Weak association (class IV) criteria required only P-value ≤0.05. Associations were not considered significant if the P-value in the random-effects model was ≥0.05. All P-values were two tailed.

Grading of Recommendations, Assessment, Development and Evaluations
Additionally, the overall certainty in the estimates was qualitatively assessed by two reviewers (G.S. and C.G.) – with one author (C.B.) adjudicating the decision in case of discrepancies – using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) method.56

GRADE allows to rate the certainty of estimate for each outcome and gives an overview of findings easily understandable for patients, clinicians, researchers, guideline developers and policy makers.57 The following factors were considered for each outcome of interest, according to the GRADE method: study design, risk of bias, inconsistency, imprecision, indirectness, presence of large effect, dose–response gradient and publication bias.45

Based on GRADE assessments, the certainty of estimates was classified as high, moderate, low or very low (further details in Supplementary Box 3).56 In the case of observational studies, the certainty of evidence is low when there are no reasons to downgrade the certainty of evidence, and very low when at least one reason to downgrade the certainty of evidence is found. The only case in which evidence from observational studies could be ‘moderate’ is when some reason to upgrade the certainty of evidence is found (e.g. strong association), with no downgrades on the other items.

Tables of summary of findings were developed with the GRADEproGDT app (GRADEpro Guideline Development Tool [Software], McMaster University and Evidence Prime, Canada; see gradepro.org).

Overall evaluation
Risk factors were quantified together with a formal assessment of the certainty of estimates, using quantitative URC and GRADE. We employed both methods because they are complementary. The URC quantitatively evaluate the strength of the associations, and GRADE qualitatively assesses the certainty of evidence. We ranked all risk factors based first on the strength of each association (URC), then on the certainty of evidence (GRADE), and finally, on the quality of the systematic review (AMSTAR-2).

Sensitivity analyses
We performed three sensitivity analyses to assess whether the credibility of the evidence and the strength of the association varied when the following studies were retained in the analysis: cohort studies; studies in which the PPD diagnosis/symptoms were assessed with standardised criteria (e.g. ICD or DSM diagnosis, The Mini-International Neuropsychiatric Interview (M.I.N.I.), Structured Clinical Interview for DSM Disorders (SCID) or Edinburgh Postnatal Depression Scale (EPDS) score with a cut-off score of ≥13), excluding non-validated or self- assessed screening tools; and studies assessing mood symptoms at least 7 days after delivery (further details in Supplementary Methods).

Results

Description of studies included in the meta-analyses
The systematic search yielded 703 records. After duplicate removal, title and abstract screening, 73 full-text articles were retrieved and checked for inclusion. Eleven systematic reviews were included, including 12 meta-analyses, with 185 primary studies and 3 272 093 participants (Fig. 1 and Supplementary Table 2). The excluded articles and the reasons for their exclusion are provided in the Supplementary Material.

The 12 risk factors reported in the 11 systematic reviews were anaemia (during pregnancy and postpartum), GDM, Caesarean section, preterm delivery, intra-labour epidural analgesia, medically assisted conception, violent experiences, premenstrual syndrome (PMS), vitamin D deficiency and unintended pregnancy, whereas one review provided data on a protective factor, the presence of the serotonin-transporter-linked polymorphic region (5-HTTLPR) polymorphism. Supplementary Table 2 summarises the main review and individual study characteristics. The number of studies per meta-analysis ranged between 4 and 33. Seven meta-analyses included ≥1000 cases (range 1074–15 758), and five had <1000 cases. Of the 185 studies, 123 (66.5%) were cohort studies and 62 (33.5%) adopted a case–control or cross-sectional design. Study participants were pregnant females, exposed to one or multiple risk factors. PPD was identified with an EPDS score of ≥13 or with ICD-9 or 10 or DSM-IV criteria in 81 studies; the remaining studies used self-reported or other scales or operational criteria. Assessments of mood symptoms were conducted within the first postpartum week in 31 studies.

Quality assessment of the systematic reviews
The PMS review was of moderate quality according to the AMSTAR-2 scoring system,59 the systematic review on medically assisted conception was of low quality,60 and the remaining nine were of critically low quality (Table 1).17,21,25,27,61 The most common weakness was that all the systematic reviews did not contain an explicit statement that the review methods were established before the conduct of the review (Table 1, question 2), with the exception of the review on preterm delivery.25 The nine reviews rated as critically low also did not provide a list of excluded studies with reasons to justify the exclusion (Table 1, question 7).17,21,25,27,61 Other critical flaws were that authors did not consider the risk of bias when interpreting results (Table 1, question 13), and the absence of adequate investigation of publication bias or small study bias and their impact on the results (Table 1, question 15).

Summary of associations and URC
Ten meta-analyses showed significant summary random-effects estimates; exposure to PMS, violent experiences, unintended pregnancy, Caesarean section, preterm delivery, GDM, anaemia during pregnancy, vitamin D deficiency and postpartum anaemia increased the risk of PPD (Table 2 and Fig. 2).61 The most common weakness was that all the systematic reviews did not consider the risk of bias when interpreting results (Table 1, question 7).17,21,25,27,61,64 Other critical flaws were that authors did not consider the risk of bias when interpreting results (Table 1, question 7).7,17,23,25,26,59,61–63 Conversely, the 5-HTTLPR polymorphism was associated with a lower PPD risk.64 Associations between PPD and medically assisted conception or intra-labour analgesia were not significant.27,60

According to the URC, three associations (between PPD and PMS, violent experiences and unintended pregnancy) were highly suggestive (class II); three associations (between PPD and Caesarean section, GDM and 5-HTTLPR polymorphism) were suggestive (class III); four associations (between PPD and preterm delivery, anaemia during pregnancy, vitamin D deficiency and postpartum anaemia) were weak (Table 2); and non-significant associations were reported for medically assisted conception and labour epidural analgesia.

Certainty of evidence according to GRADE
For Caesarean section, preterm delivery, anaemia during pregnancy and 5-HTTLPR polymorphism, the certainty was rated as low
(Table 3), based on the *a priori* GRADE baseline assumption of low certainty for observational studies. We found no reasons to upgrade this baseline evaluation. For postpartum anaemia, PMS, violent experiences, GDM, labour epidural analgesia and unintended pregnancy, the certainty was very low, mainly because of inconsistency.

Overall ranking

Figure 2 presents a ranking of associations based on URC, GRADE and AMSTAR-2. The association between PPD and PMS was the most reliable, followed by associations with violent experiences and unintended pregnancy. The association with Caesarean section, GDM and 5-HTTLPR was suggestive, and the association with preterm delivery, anaemia during pregnancy, vitamin D deficiency and postpartum anaemia was weak. No association was found for medically assisted conception or intra-labour epidural analgesia.

Sensitivity analyses

In cohort studies, the associations between PPD and violent experiences (class II), unintended pregnancy (class II), GDM (class III), preterm delivery (weak), vitamin D deficiency (weak), postpartum anaemia (weak), medically assisted conception (no association) and intra-labour analgesia (no association) remained at the same strength. Conversely, the association with PMS was downgraded from highly suggestive (class II) to weak because of cases was not met. Moreover, for PMS, the GRADE certainty assessed in the sensitivity analysis was in contrast with the URC, as it was upgraded from very low to low, as the risk of bias was rated as ‘not serious’ in this case. In the case of Caesarean section, the association was downgraded from suggestive (class III) to non-significant, and the GRADE certainty was downgraded from low to very low. In the remaining cases, the GRADE certainty did not change between the main and the sensitivity analysis (Supplementary Table 3). This sensitivity was not performed for two risk factors: in the case of anaemia during pregnancy, all included studies were cohort, and for the 5-HTTLPR, none of the studies investigated cohorts.

In studies with standardised criteria for the PPD diagnosis/symptoms, the association with PPD was upgraded from suggestive to highly suggestive for GDM, remained suggestive for Caesarean section, and was non-significant for labour epidural analgesia and medically assisted conception. The associations with PMS and unintended pregnancy were downgraded from highly suggestive to weak, violent experiences was downgraded from highly suggestive to suggestive, 5-HTTLPR polymorphism was downgraded from suggestive to weak, preterm delivery and postpartum anaemia were downgraded from weak to non-significant. The GRADE certainty was upgraded only for anaemia and PMS, from very low to low, whereas the association with 5-HTTLPR polymorphism remained low. In all other cases, GRADE certainty was very low, as in the main analysis (Supplementary Table 4). For anaemia during pregnancy and vitamin D deficiency, sensitivity analysis was not performed, as not enough studies using standardised criteria were available (one and zero studies, respectively).

Excluding studies that assessed mood symptoms within the first postpartum week, the strength of association remained for violent experiences, Caesarean section, vitamin D deficiency, preterm...
AMSTAR-2 questions	PMS (Cao et al, 2020)	Experience of violence (Zhang et al, 2019)	Unintended pregnancy (Qiu et al, 2020)	5-HTTLPR polymorphism (Li et al, 2020)	Caesarean section (Xu et al, 2017)	Gestational diabetes (Azami et al, 2019)	Preterm (De Paula Eduardo et al, 2019)	Anaemia (Azami et al, 2019)	Vitamin D deficiency (Wang et al, 2018)	Medically assisted conception (Gressier et al, 2015)	Labour epidural analgesia (Kountanis et al, 2020)	
1 Did the research questions and inclusion criteria for the review include the components of PICO?	Yes											
2 Did the report of the review contain an explicit statement that the review methods were established before the conduct of the review and did the report justify any significant deviations from the protocol?	No	Yes	No	No	Yes	Yes						
3 Did the review authors explain their selection of the study designs for inclusion in the review?	No	Yes	Yes	No	Yes	No	Yes	No	No	No	No	No
4 Did the review authors use a comprehensive literature search strategy?	Yes											
5 Did the review authors perform study selection in duplicate?	No	No	No	Yes								
6 Did the review authors perform data extraction in duplicate?	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes
7 Did the review authors provide a list of excluded studies and justify the exclusions?	Yes	No	Yes	No	No							
8 Did the review authors describe the included studies in adequate detail?	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
9 Did the review authors use a satisfactory technique for assessing the risk of bias in individual studies that were included in the review?	Yes											
10 Did the review authors report on the sources of funding for the studies included in the review?	No											
11 If meta-analysis was performed did the review authors use appropriate methods for statistical combination of results?	Yes	No	Yes	Yes	Yes	Yes						
AMSTAR-2 questions	PMS (Cao et al, 2020)	Experience of violence (Zhang et al, 2019)	Unintended pregnancy (Qu et al, 2020)	5-HTTLPR polymorphism (LJ et al, 2020)	Caesarean section (Xu et al, 2017)	Gestational diabetes (Azami et al, 2019)	Preterm (De Paula Eduardo et al, 2019)	Anaemia (Azami et al, 2019)	Vitamin D deficiency (Wang et al, 2018)	Medically assisted conception (Gressier et al, 2015)	Labour epidural analgesia (Kountanis et al, 2020)	
-------------------	----------------------	---------------------------------	-----------------------------	---------------------------------	-------------------------	-------------------------------	---------------------------------	-----------------------------	-----------------------------	---------------------------------	---------------------------------	
12 If meta-analysis was performed, did the review authors assess the potential impact of risk of bias in individual studies on the results of the meta-analysis or other evidence synthesis?	Yes	Yes	Yes	No	Yes	No	No	No	Yes	Yes	Yes	No
13 Did the review authors account for risk of bias in individual studies when interpreting/discussing the results of the review?	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes
14 Did the review authors provide a satisfactory explanation for, and discussion of, any heterogeneity observed in the results of the review?	Yes	No										
15 If they performed quantitative synthesis did the review authors carry out an adequate investigation of publication bias (small study bias) and discuss its likely impact on the results of the review?	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	No
16 Did the review authors report any potential sources of conflict of interest, including any funding they received for conducting the review?	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	No
Number of critical weaknesses	1	2	2	3	3	3	2	2	1	2		
Number of non-critical weaknesses	3	2	2	4	4	4	3	3	2	3		
Reporting quality of each meta-analysis	Moderate	Critically low	Low	Critically low								

Bolding indicates critical questions. Further details can be found in the Supplementary Material. AMSTAR-2: A Measurement Tool to Assess Systematic Reviews; PMS, premenstrual syndrome; 5-HTTLPR, serotonin-transporter-linked polymorphic region; PICO: population, intervention, comparator, outcome.
Table 2

Parameter	Random effects	Random-effects effect size	Egger’s test	Significant studies	Class of evidence	GRADE certainty	GRADE purpose	GRADE strength
Risk factors for PPD								
Number of cases	597							
Risk factors								
Maternal age	597							
PMS	4.59 (1.03-7.0)							
Gestational diabetes (GDM)	5.72 (1.3-23.9)							
Caesarean section	2.44 (1.05-5.69)							
Anaemia	2.44 (1.05-5.69)							

Discussion

The most reliable association with PPD was found for women suffering from PMS, followed by violent experiences and unintended pregnancy. The risk of PPD was more than doubled in women with PMS or a violent experience, and was 50% higher in women with unintended pregnancy. Women suffering from PMS could have an affective vulnerability underpinned by hormonal fluctuations, which occur both during the premenstrual period and on a much larger scale during postpartum. Experience of violence may be a less specific risk factor, as it has been implicated in different psychiatric disorders, including other affective and addiction disorders. Unintended pregnancy has been previously suggested as a PPD risk factor, mainly because of increased stress levels, which can activate the hypothalamic-pituitary-adrenal axis, resulting in a release of glucocorticoids influencing psychological functions.

Specifically, women who did not plan their pregnancy may be unprepared/worried about the health of the foetus, feel a potential conflict between continuing and terminating the pregnancy, and start the prenatal care later than women who planned the pregnancy.

For these risk factors, the effect sizes were generally small (odds ratio < 3.5), despite the URC showing class II associations. Therefore, evidence regarding such associations might only play a partial role with respect to depression onset, and confounding could not be ruled out because of the observational nature of studies, which was reflected by the GRADE certainty (very low).

At an intermediate credibility level, we found associations of PPD with 5-HTTLPR polymorphism, Caesarean section and GDM. The latter increased the risk of PPD by 60%. Conversely, women who underwent Caesarean section had a slightly increased risk of PPD. However, it is noteworthy that in the included meta-analysis, Caesarean section was a significant risk factor for PPD when performed in an emergency situation, but not when elective, suggesting a central role of unexpected complications for PPD. The allelic model of 5-HTTLPR polymorphism was the only protective factor, which slightly reduced the PPD risk. The 5-HTT gene is a key factor that affects risk for depression and other mental disorders.

The transcriptional activity of the 5-HTT gene may be regulated by glucocorticoids influencing psychological functions. The sensitivity analyses in cohort studies confirmed all of the results, with the exception of the association between PPD and GDM, which was found to be less reliable, dropping from highly suggestive to weak because of the small number of cases.

The sensitivity analyses based on standardised criteria for PPD led to different results. Here, we discuss the most relevant differences. First, it is important to note that the evidence on GDM was upgraded to highly suggestive with a slightly higher odds ratio (from 1.44 to 1.57), indicating that GDM may be more strongly associated with clinical depression rather than subclinical depressive symptoms. Second, evidence on GDM, unintended pregnancy and 5-HTTLPR...
polymerase was downgraded to weak, suggesting that these factors might be associated with subclinical depression symptoms.

Restricting the analyses to studies with an assessment after the first postpartum week, we found lower certainty for almost all associations, with the exception of the association of PPD with violent experiences, Caesarean section and unintended pregnancy. These associations remained at the same level of credibility indicating that apart from violent experiences, Caesarean section and unintended pregnancy, the other risk (or protective) factors might be associated more with the so-called ‘maternity blues’ or adjustments within the first postpartum week, rather than with depression diagnosed later. This result is notable if we consider that authors previously suggested that maternity blues could be a risk factor for developing depression later on in the postpartum period.13,79,80

Moreover, the credibility of the association with violent experiences was maintained across all analyses. The increased risk was slightly lower in the two sensitivity analyses based on clinical criteria and assessment timing, suggesting that some bias could have inflated the main results. Nevertheless, violent experiences were found as one of the most reliable risk factors for developing PPD, especially those with low incidence.13,79,80

Finally, the sensitivity analyses confirmed the non-differential associations, with the exception of the association of PPD with violent experiences, that are only partially mentioned in the tool, we suggest that these risk factors may be at risk of bias in the future. We suggest that these factors might be revised and updated along with guidelines. Specifically, considering that currently PMS, Caesarean section and GDM are not included in the tool, we suggest that these risk factors might be at least considered. Moreover, the assessment of some risk factors, such as violent experience, that are only partially mentioned under the ‘Experiencing stressful life events’ category, could be more weighted. Finally, some risk factors already considered may be less strong than commonly considered, such as preterm delivery.

A number of limitations need to be considered when interpreting these results. First, although broadly employed in mental health and medicine,50,51,53–55,66 and corroborated by standard statistical tests,42,44–46 the URC classification to classify strengths has been just recently introduced. The criteria of the ≥1000 cases might not be fully applicable for studies that target very specific samples, especially those with low incidence. A second general cautionary note is the observational nature of the primary studies, which does not allow us to establish a causal association between risk factors and PPD. Moreover, this type of studies is vulnerable to bias because of unmeasured confounding and lower internal validity compared with randomised controlled trials.43,64 In fact, it is unclear if some of the investigated factors were proxies for other factors or shared background risk. It should be noted, however, that this risk of bias is taken into consideration by GRADE, which suggests rating the certainty of estimates from observational studies as low quality instead of high quality, to acknowledge issues with internal validity.56 On the other hand, findings of meta-analyses of observational studies are more generalisable and pragmatic, as they have larger sample

Fig. 2 Ranking of associations on the risk of post-partum depression with exposure to risk factors.

Risk factor	Number of studies	Sample size	Random-effect meta-analysis (Odds ratio [95% CIs])	Forest plot (Odds ratio and 95% CIs [Odds ratio≥1 increased risk])	Certainty of evidence (GRADE)	Quality of systematic review (AMSTAR-2)
High suggestive association (Class I)						
PMS	19	8990	2.20 [1.81–2.68]		★★★★★	Very low
Violence	33	18013	2.07 [1.70–2.50]		★★★★★	Very low
Unintended pregnancy	29	42443	1.53 [1.35–1.73]		★★★★★	Very low
Suggestive association (Class II)						
5-HTTLPR polymorphism	4	2512	0.70 [0.57–0.86]		★★★★	Critical low
Caesarean section	33	54551	1.29 [1.17–1.43]		★★★★	Critical low
Gestational diabetes	18	2368213	1.60 [1.25–2.06]		★★★★	Critical low
Weak association (Class IV)						
Preterm delivery	12	8241	2.12 [1.43–3.14]		★★★★	Critical low
Anaemia during pregnancy	4	880	1.47 [1.17–1.84]		★★★★	Critical low
Vitamin B deficiency	4	2228	3.67 [1.73–7.83]		★★★★	Critical low
Anaemia postpartum	8	2574	1.75 [1.18–2.60]		★★★★	Critical low
No significant association						
Medically assisted conception	8	2651	0.93 [0.66–1.32]		★★★★	Critical low
Epidural analgesia	11	85928	1.03 [0.78–1.36]		★★★★	Critical low

5-HTTLPR, serotonin-transporter-linked polymorphic region; AMSTAR-2, A Measurement Tool to Assess Systematic Reviews; GRADE, Grading of Recommendations, Assessment, Development and Evaluations; PMS, premenstrual syndrome.
Risk factor	Number of studies	Study design	Risk of bias	Indirectness	Imprecision	Other considerations
PMS (Cao et al, 2020)	19	Observational studies	Very serious	Not serious	Not serious	Publication bias strongly suspected, strong association
Experience of violence (Zhang et al, 2019)	17	Observational studies	Not serious	Very serious	Not serious	Strong association
5-HTTLPR polymorphism (Li et al, 2020)	64	Observational studies	Not serious	Not serious	Not serious	None
Caesarean section (Xu et al, 2017)	26	Observational studies	Not serious	Not serious	Not serious	None
Gestational diabetes (Azami et al, 2019)	62	Observational studies	Serious	Very serious	Not serious	None
Preterm (De Paula Eduardo et al, 2019)	25	Observational studies	Not serious	Serious	Not serious	Strong association
Anaemia during pregnancy (Azami et al, 2019)	61	Observational studies	Not serious	Not serious	Not serious	None
Medically assisted conception (Gressier et al, 2015)	60	Observational studies	Not serious	Not serious	Not serious	None
Labour epidural analgesia (Kountanis et al, 2020)	27	Observational studies	Serious	Very serious	Not serious	Serious

Grading: high certainty: we are very confident that the true effect lies close to the estimate of the effect; moderate certainty: our confidence that the true effect is likely to be substantially different from the estimate of the effect, but there is a possibility that it is substantially different; low certainty: the true effect may be substantially different from the estimate of the effect, but there is a possibility that it is substantially different.

a. Eleven out of nineteen studies with serious risk of bias.
b. Funnel plot inspections showed asymmetry and Egger’s test confirmed.
c. Very high heterogeneity.
d. Not assessed.
e. Confidence interval includes no difference.

Despite these limitations, the main strengths of this work are the comprehensiveness of the search and the quantitative and qualitative approaches employed to rate the credibility of evidence. To the best of our knowledge, this is the first umbrella review that systematically summarised data on the association between PPD and several risk and protective factors grading the certainty and strength of evidence by applying well-recognised criteria. A previous overview of reviews on PPD risk factors was recently published; however, the authors did not perform any re-analysis and did not grade the credibility of evidence and strength of association by using any qualitative or quantitative criteria. In contrast with our approach, Hutchens and Kearney narratively summarised systematic reviews on PPD risk factor, regardless of the presence of a meta-analysis. Moreover, previous umbrella reviews have assessed risk factors for other mental disorders, such as depression, anxiety and psychosis, but did not include PPD or postpartum depressive symptoms. Our approach led to the inclusion of an extremely large number of participants, at over 3 million. Additionally, the retrieved risk factors were either social/ environmental stressors or medical/obstetric complications of the pregnancy and delivery. This highlights the central role of social environment in the future mothers’ mental health and well-being, as well as in the pathogenesis of mental disorders in the general population.
Furthermore, this work provides methodological directions for future studies aiming to improve our understanding of predictors of PPD. First, there is an urgent need to generate further multidisciplinary evidence to more effectively tackle mental (and physical) health challenges for women during pregnancy, as well as the postpartum phase.95,96 Second, further replication of the evidence regarding biological and psychosocial factors in more sophisticated observational studies on risk factors for PPD, collecting data pre/intrapartum and following up on women after the first week post-partum are needed to determine whether risk factors are associated with maternity blues or later depression.95,96 Ultimately, our data may enhance efforts to develop interdisciplinary prevention and care targeting patients at high risk for PPD.

Our results could be of help in updating postpartum screening tools employed to identify and screen women at risk of PPD, such as the one developed by the American College of Obstetricians and Gynecologists.8,2 The early recognition and management of these patients will improve treatment outcomes improving maternal health and new-born development.

Author contributions

C.G., G.S., C.B. and M.S. and C.U.C. designed the study. C.G. and G.S. drafted the manuscript. C.G., G.S., C.B., M.S. and C.U.C. designed the database. C.G. and G.S. drafted the manuscript. C.G., upon request.

Supplementary material

To view supplementary material for this article, please visit: https://doi.org/10.1192/bjp.2021.222

References

1 Gelbey B, Rondon MB, Araya R, Williams MA. Epidemiology of maternal depression, risk factors, and child outcomes in low-income and middle-income countries. Lancet Psychiatry 2016; 3(10): 973–82.

2 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th edn). American Psychiatric Association, 2013.

3 Fonseca A, Ganhio-Avila L, Lambregtse-van den Berg M, Lupattelli A, Rodrigues-Munoz MF, Ferreira P, et al. Emerging issues and questions on peripartum depression prevention, diagnosis and treatment: a consensus report from the COST action RISEUP-PDD. J Affect Disord 2020; 274: 167–73.

4 Putnam KT, Wilcox M, Robertson-Blackmore E, Sharkey K, Bergini V, Munk-Olsen T, et al. Clinical phenotypes of perinatal depression and time of symptom onset: analysis of data from an international consortium. Lancet Psychiatry 2017; 4(6): 477–85.

5 World Health Organization. International Statistical Classification of Diseases and Related Health Problems (10th edn). World Health Organization, 1992.

6 Postpartum Depression: Action Towards Causes and Treatment (PACT) Consortium. Heterogeneity of postpartum depression: a latent class analysis. Lancet Psychiatry 2015; 2(1): 59–67.

7 Srinivasan R, Pearson RM, Johnson S, Lewis G, Lewis G. Maternal perinatal depressive symptoms and offspring psychiatric experiences at 18 years of age: a longitudinal study. Lancet Psychiatry 2020, 7(5): 431–40.

8 Kamau C. Postpartum depression or psychosis and return to work. Lancet Psychiatry 2017; 4(2): 96–7.

9 Neto E, Pearson RM, Murray L, Cooper P, Craske MG, Stein A. Association of persistent and severe postnatal depression with child outcomes. JAMA Psychiatry 2018; 75(3): 247–53.

10 Duan Z, Wang Y, Tao Y, Bower JL, Yu R, Wang S, et al. Relationship between trait neuroticism and suicidal ideation among postpartum women in China: testing a mediation model. J Affect Disord 2019; 256: 532–5.

11 O’Connor E, Rossom RC, Henninger M, Groom HC, Burda BU. Primary care screening for and treatment of depression in pregnant and postpartum women: evidence report and systematic review for the US preventive services task force. JAMA 2016; 315(4): 388–406.

12 Kuehn BM. Postpartum depression screening needs more consistency. JAMA 2020; 323(24): 2454.

13 Hutchins BF, Kearney J. Risk factors for postpartum depression: an umbrella review. J Midwifery Womens Health 2020, 65(1): 96–108.

14 Frieden TR. Evidence for health decision making — beyond randomized, controlled trials. N Engl J Med 2017; 377(5): 465–75.

15 Beck CT. A meta-analysis of predictors of postpartum depression. Nurs Res 1996; 45(5): 297–303.

16 Alvarez-Segura M, Garcia-Esteve L, Torres A, Plaza A, Imaz ML, Hermida-Barros L, et al. Are women with a history of abuse more vulnerable to perinatal depressive symptoms? A systematic review. Arch Womens Ment Health 2014; 17(5): 343–57.

17 Zhang S, Wang L, Yang T, Chen L, Qiu X, Wang T, et al. Maternal violence experiences and risk of postpartum depression: a meta-analysis of cohort studies. Eur Psychiatry 2019; 55: 90–101.

18 Dibba Y, Fantahun M, Hindin MJ. The association of unwanted pregnancy and social support with depressive symptoms in pregnancy: evidence from rural Southwestern Ethiopia. BMC Pregnancy Childbirth 2012; 13: 135.

19 Azad R, Fahmi R, Shrestha S, Joshi H, Hasan M, Khan ANS, et al. Prevalence and risk factors of postpartum depression within one year after birth in urban slums of Dhaka, Bangladesh. PLOS One 2019; 14(5): e0215735.

20 Nakamura A, van der Waarden J, Melchor M, Bolce C, El-Khoury F, Pryor L. Physical activity during pregnancy and postpartum depression: systematic review and meta-analysis. J Affect Disord 2019; 246: 29–41.

21 Wang I, Liu N, Sun W, Chen D, Zhao J, Zhang W. Association between vitamin D deficiency and antepartum and postpartum depression: a systematic review and meta-analysis of longitudinal studies. Arch Gynecol Obstet 2018; 298(6): 1045–59.

Declaration of interest

C.B. and C.G. have nothing to disclose. G.S. has served as a consultant for HLS Therapeutics. C.U.C. has been a consultant and/or advisor to, or has received honoraria from, Alkermes, Boehringer-Ingelheim, Gedeon Richter, Gerson Lehrman Group, Indivior, Intracellular Therapies, Janssen/J&J, LB Pharma, Lundbeck, MedImmune-ProPhase, MedinCell, Medpace, Merck, Mylan, Neurocrine, Noven, Otsuka, Pfizer, Recordati, Rovi, Servier, Summitum Daraprim, Sunovion, Supernus, Teva and Takeda. He has also been a consultant for ALI Pharma, DSM and Otsuka. He served on a Data Safety Monitoring Board for Boehringer-Ingelheim, Lundbeck, Roxi, Supernus and Teva. He has received royalties from UpToDate and grant support from Janssen and Takeda. He is also a shareholder of LB Pharma. M.S. has been a consultant and/or advisor to, or has received honoraria from, Angelini and Lundbeck.

Author contributions

C.G., C.B. and C.U.C. have nothing to disclose. G.S. has served as a consultant for HLS Therapeutics. C.U.C. has been a consultant and/or advisor to, or has received honoraria from, Alkermes, Boehringer-Ingelheim, Gedeon Richter, Gerson Lehrman Group, Indivior, Intracellular Therapies, Janssen/J&J, LB Pharma, Lundbeck, MedImmune-ProPhase, MedinCell, Medpace, Merck, Mylan, Neurocrine, Noven, Otsuka, Pfizer, Recordati, Rovi, Servier, Summitum Daraprim, Sunovion, Supernus, Teva and Takeda. He has also been a consultant for ALI Pharma, DSM and Otsuka. He served on a Data Safety Monitoring Board for Boehringer-Ingelheim, Lundbeck, Roxi, Supernus and Teva. He has received royalties from UpToDate and grant support from Janssen and Takeda. He is also a shareholder of LB Pharma. M.S. has been a consultant and/or advisor to, or has received honoraria from, Angelini and Lundbeck.
Caropreso L, de Azevedo Cardoso T, Eltayebani M, Frey BN. Preeclampsia as a risk factor for postpartum depression and psychosis: a systematic review and meta-analysis. *Arch Womens Ment Health* 2020; 23(4): 493–505.

Teo C, Chia AR, Colega MT, Chen LW, Fok D, Pang WW, et al. Prospective associations of maternal dietary patterns and postpartum mental health in a multi-ethnic Asian cohort: the growing up in Singapore Towards Healthy Outcomes (GUSTO) study. *Nutrients* 2018; 10(3): 299.

de Paula Eduardo JAF, de Rezende MG, Menezes PR, Del-Ben CM. Preterm birth as a risk factor for postpartum depression: a systematic review and meta-analysis. *J Affect Disord* 2019; 259: 392–403.

Xu H, Ding Y, Ma Y, Xin X, Zhang D. Cesarean section and risk of postpartum depression: a meta-analysis. *J Psychosom Res* 2017; 97: 116–26.

Kountanis J, Vahabzadeh C, Bauer S, Muzik M, Cassidy R, Aman C, et al. Labor epidural analgesia and the risk of postpartum depression: a meta-analysis of observational studies. *J Clin Anesth* 2020; 61: 109658.

Solmi M, Correll CU, Carvalho AF, Ioannidis JPA. The role of meta-analyses and umbrella reviews in assessing the harms of psychotropic medications: beyond qualitative synthesis. *Epidemiol Psychiatr Sci* 2018; 27(6): 537–42.

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. *Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA* 2000; 283(10): 2008–12.

Fusar-Poli P, Radua J. Ten simple rules for conducting umbrella reviews. *Evid Based Ment Health* 2018; 21(3): 95–100.

Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. *Int J Evid Based Healthc* 2015; 13(3): 122–40.

Ioannidis JP. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. *CMAJ* 2009; 181(8): 488–93.

Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and findings. *BMJ* 1996; 315: 42–7.

DerSimonian R, Lao N. Meta-analysis in clinical trials. *Control Clin Trials* 1986; 7(3): 177–88.

Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. *BMJ* 2011; 342: d549.

Cochran WG. The combination of estimates from different experiments. *Biometrics* 1954; 10(1): 101–29.

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003; 327(7414): 557–60.

Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ* 2011; 343: d4002.

Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 1997; 315(7109): 629–34.

Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. *Clin Trials* 2007; 4(3): 245–53.

Lubin JH, Gail MH. On power and sample size for studying features of the relative odds of disease. *Am J Epidemiol* 1990; 131(3): 552–66.

Bortolato B, Kühler CA, Evangelou E, León-Cabrero J, Solmi M, Stubbs B, et al. Systematic assessment of environmental risk factors for bipolar disorder: an umbrella review of systematic reviews and meta-analyses. *Bipolar Disord* 2017; 19(2): 84–96.

Dragioti E, Evangelou E, Larsson B, Gerde B. Effectiveness of multidisciplinary programmes for clinical pain conditions: an umbrella review. *J Rehabil Med* 2018; 50: 779–91.

Bellio V, Belbasisi L, Tzoulaki I, Evangelou E, Ioannidis JP. Environmental risk factors and Parkinson’s disease: an umbrella review of meta-analyses. *Parkinsonism Relat Disord* 2018; 24: 1–9.

Tsalidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. *BMJ* 2015; 350: g6707.

Dragioti E, Karathanos V, Gerdev B, Evangelou E. Does psychotherapy work? An umbrella review of meta-analyses of randomized controlled trials. *Acta Psychiatr Scand* 2017; 136(3): 234–46.

Papola D, Outhuzzi G, Thabane L, Guyatt G, Barbui C. Antipsychotic drug exposure and risk of fracture: a systematic review and meta-analysis of observational studies. *Int Clin Psychopharmacol* 2018; 33(4): 181–96.

Machado MO, Veronese N, Sanches M, Stubbs B, Koyanagi A, Thompson T, et al. The association between depression and self-reported cause-specific mortality: an umbrella review of systematic reviews and meta-analyses. *BMC Med* 2018; 16: 112.

Barbui C, Purgato M, Abdulmalik J, Acarthur C, Eaton J, Gastaldon C, et al. Efficacy of psychosocial interventions for mental health outcomes in low-income and middle-income countries: an umbrella review. *Lancet Psychiatry* 2020; 7(2): 162–72.

Guyatt GH, Oxman AD, Vist GE, kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008; 336(7650): 924–6.

Guyatt GH, Thorlund K, Oxman AD, Walter SD, Patrick D, Furukawa TA, et al. GRADE guidelines 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. *J Clin Epidemiol* 2013; 66(2): 173–83.

Balshem H, Helfand M, Schünemann H, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines 3. Rating the quality of evidence. *J Clin Epidemiol* 2011; 64(4): 401–6.

Cao S, Jones M, Tooth L, Mishra GD. History of premenstrual syndrome and development of postpartum depression: a systematic review and meta-analysis. *Acta Psychiatr Scand* 2011; 124(1): 19–27.

Dragioti E, Karathanos V, Gerdle B, Evangelou E. Does psychotherapy work? An umbrella review of systematic reviews and meta-analyses. *BMJ* 2018; 360: k666.

Azami M, Badfard G, Khalighi Z, Qasemi P, Shohani M, Soleymani A, et al. The association between anemia and postpartum depression: a systematic literature review and meta-analysis. *Gaszpi J Intern Med* 2019; 10(2): 115–24.

Azami M, Badfard G, Soleymani A, Rahmati S. The association between gestational diabetes and postpartum depression: a systematic review and meta-analysis. *Diabetes Res Clin Pract* 2019; 149: 147–55.

Qiu X, Zhang S, Sun X, Li H, Wang D. Unintended pregnancy and postpartum depression: a meta-analysis of cohort and case-control studies. *J Psychosom Res* 2020; 138: 110259.

Li J, Chen Y, Xiang Q, Xiang J, Tang Y, Tang L. 5HTTLPR polymorphism and postpartum depression risk: a meta-analysis. *Psychol Health Med* 2020; 25(3): 392–403.

Amiel Castro RT, Pataky EA, Ehter U. Associations between premenstrual syndrome and postpartum depression: a systematic literature review. *Biol Psychol* 2019; 147: 107612.

Köhler CA, Evangelou E, Stubbs B, Solmi M, Veronese N, Belbaseis L, et al. Mapping risk factors for depression across the lifespan: an umbrella review of evidence from meta-analyses and Mendelian randomization studies. *J Psychiatr Res* 2018; 103: 169–207.

Brown A, Cosgrave E, Killackey E, Purcell R, Buckby J, Yung AR. The longitudinal contribution of stress and ovarian hormones. *Prog Neuro-Psychopharmacol Biol Psychiatry* 2010; 34(3): 766–76.

Meltzer-Brody S. New insights into perinatal depression: pathogenesis and treatment during pregnancy and postpartum. *Dialogues Clin Neurosci* 2011; 13(1): 89–100.

Karaçam Z, Onel K, Gerçek E. Effects of unplanned pregnancy on maternal health in Turkey. *Midwifery* 2011; 27(2): 288–93.

Faisal-Cury A, Menezes PR, Quayle J, Matijasevich A. Unplanned pregnancy and risk of maternal depression: secondary data analysis from a prospective pregnancy cohort. *Psychol Health Med* 2012; 17(1): 65–74.
