Gray matter atrophy and corresponding impairments in connectivity in patients with anti-N-methyl-D-aspartate receptor encephalitis

Yuanyuan Guo1,2 · Xinyi Lv3 · Juanjuan Zhang1,2 · Chenglong Li1,2 · Ling Wei1,2 · Nong Zhou1 · Jinping Xu4 · Yanghua Tian1,5,6 · Kai Wang1,5,6,7

Accepted: 24 March 2022 / Published online: 23 August 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune disease that is commonly accompanied by cognitive impairment and various neurological and psychiatric symptoms, advanced image analyses help explore the pathogenesis of this disease. Therefore, this study aimed to explore specific structural and functional alterations and their relationship with the clinical symptoms of anti-NMDAR encephalitis. In this study, twenty-two patients with anti-NMDAR encephalitis after the acute stage and 29 controls received cognitive assessments and magnetic resonance imaging. Grey matter atrophy was measured using voxel-based morphometry, and functional alterations in abnormal regions were subsequently investigated using resting state functional connectivity (RSFC). Finally, correlation analyses were performed to explore the associations between imaging alterations and cognitive assessments. The patients demonstrated significant gray matter atrophy in the bilateral triangle part of the inferior frontal gyrus (triIFG.L and triIFG.R) and right precuneus, decreased RSFC between triIFG.L and bilateral Heschl gyrus (HES), decreased RSFC between triIFG.R and HES.R, decreased RSFC between right precuneus and left cerebellum, and increased RSFC between triIFG.R and left superior frontal gyrus. Further correlation analyses showed that the gray matter volume in triIFG.R and decreased RSFC between triIFG.L and HES.R were associated with decreased memory scores, whereas decreased RSFC between triIFG.R and HES.R was marginally correlated with the disease course in patients. In conclusion, this study suggests that cognitive impairments in patients with anti-NMDAR encephalitis may be mainly associated with gray matter atrophy and abnormal RSFC in the triIFG. These findings provide new insights into anti-NMDAR encephalitis pathogenesis and help explore potential treatments.

Keywords Anti-N-methyl-D-aspartate receptor encephalitis · Cognitive impairment · Functional connectivity · Voxel-based morphometry · Gray matter volume

Yuanyuan Guo and Xinyi Lv contributed equally to this work.

Jingping Xu
jp.xu@siat.ac.cn

Yanghua Tian
ayfytyh@126.com

1 Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
2 Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
3 Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
4 Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
5 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
6 Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
7 The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China
Introduction

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis results from the production of anti-NMDAR GluN1-subunit autoantibodies. This disease can induce numerous neuropsychiatric symptoms, including psychosis, epileptic seizures, dyskinesias, cognitive deficits, consciousness disorders, autonomic instability, and central hypoventilation (Carsten et al., 2016; Dalmau, 2016; Dalmau et al., 2008; Irani et al., 2010; Viaccoz et al., 2014). NMDAR is widely expressed in the brain and it is highly concentrated in the frontal lobe, hippocampus, and cerebellum (Moscato et al., 2014; Skowronska et al., 2019; Wang & Xiao, 2020). Moreover, it plays a prominent role in synaptic transmission and plasticity processes, which are considered the basis of learning and memory (Lau & Zukin, 2007). Anti-NMDAR antibody production is associated with receptor internalization and synaptic plasticity disruption, further causing long-term memory deficits (Bach, 2014). This disease is clinically diagnosed when anti-NMDAR antibodies are detected in the cerebrospinal fluid, though this procedure is slow and expensive. Moreover, the identification rate of acute stage anti-NMDAR encephalitis using clinical routine magnetic resonance imaging (MRI) is between 11 and 83% (Bacchi et al., 2018). Repeated lumbar puncture examinations to detect antibodies are invasive, and conventional MRI in the acute and convalescence phases is less specific than cerebrospinal fluid examination. Therefore, a more convenient and sensitive method to help us understand the pathogenesis of this disease and assess its prognosis to provide better treatments is warranted.

Several structural imaging studies have been performed in patients with anti-NMDAR encephalitis in recent years. Finke et al. in 2013 demonstrated that there were no significant changes in gray matter morphology in convalescent patients by using voxel-based morphometry (VBM) analysis (Finke et al., 2013). In contrast, in 2016, significant hippocampus atrophy was found in a study comprising a larger sample size than the previous one (Carsten et al., 2016). Additionally, our previous study has demonstrated decreased cortical alterations in the language and default mode networks and sub-cortical atrophy of the left hippocampus CA1 body in these patients (Xu et al., 2021), indicating the possible presence of progressive structural brain alterations in patients with anti-NMDAR encephalitis.

In addition to structural MRI, resting state functional MRI (rs-fMRI) can quantify spontaneous fluctuations in the blood oxygen level-dependent signal to measure intrinsic neural activity, which is known as resting state functional connectivity (RSFC) (Brier et al., 2016; Fox & Raichle, 2007). Anti-NMDAR encephalitis has been associated with abnormal hippocampal connectivity and several large-scale networks, such as the default mode network (Finke et al., 2013; Peer et al., 2017). Another rs-fMRI study has demonstrated decreased neural activity in the posterior cingulate cortex, precuneus, and cerebellum of 17 patients with anti-NMDAR encephalitis (Cai et al., 2020). Previous studies have demonstrated that these brain regions and networks mostly showed structural changes (Carsten et al., 2016; Xu et al., 2021), suggesting that these alterations may be accompanied by brain functional impairment. However, most studies on anti-NMDAR encephalitis patients have independently examined changes either in neuronal activity or structure (Cai et al., 2020; Carsten et al., 2016; Xu et al., 2021; Peer et al., 2017). Therefore, we combined VBM and RSFC to focus on structural and related functional alterations in patients with anti-NMDAR encephalitis and further explore the underlying mechanisms of the long-term cognitive impairment caused by this disease.

Materials and methods

Participants

Twenty-four patients with anti-NMDAR encephalitis were enrolled after the acute phase in a grade-three general hospital in Hefei, China. All patients fulfilled the diagnostic criteria for anti-NMDAR encephalitis, including typical clinical features and a positive test for immunoglobulin G (IgG) NMDAR antibodies in the cerebrospinal fluid using a combination of tissue-based assay and cell-based assay (Dalmau et al., 2011). The detailed patient characteristics are provided in Supplemental Table S1. Thirty normal controls (NCs) with matching sex, age, and education were also included. NCs were negative for anti-NMDAR antibodies and did not have any psychiatric or neurological disorders. The global cognitive function was evaluated using the Montreal Cognitive Assessment (MoCA), and short- and long-term memory were assessed using the Auditory Verbal Learning Test (AVLT, Chinese version) (Table 1). All participants provided a written consent statement according to the Declaration of Helsinki, and this study was approved by the ethical committee of Anhui Medical University.

MRI data acquisition

MRI scans were obtained from a GE 3.0 T MR scanner (Discovery 750; GE Healthcare, Buckinghamshire, UK) on the same day with cognitive assessment. T1-weighted images were acquired using a three-dimensional brain volume sequence (3D-BRAVO) using the following parameters: repetition time (TR): 8.16 ms; echo time (TE): 3.18 ms;
inversion time (TI): 450 ms; flip angle (FA): 12°; matrix size: 256 × 256; field of view (FOV): 256 × 256 mm²; slice thickness: 1 mm; voxel size: 1 × 1 × 1 mm³; and number of sagittal slices: 188. rs-fMRI was performed using the following echo-planar imaging sequence parameters: TR: 2400 ms, TE: 30 ms; acquisition time: 521 s; FA: 90°; matrix size: 256 × 64; field of view: 192 × 192 mm²; slice thickness: 3 mm; voxel size: 3 × 3 × 3 mm³; and number of slices: 46.

Image preprocessing

The T1-weighted images were preprocessed using Data Processing & Analysis for Brain Imaging (DPABI; http://rfmri.org/dpabi). First, the quality of each image was visually checked; two participants, one patient and one NC, were excluded due to poor image quality. Subsequently, the images were segmented into gray matter, white matter, and cerebrospinal fluid and transformed into a standard Montreal Neurological Institute space. Then, these images were modulated to preserve regional volume information, and finally smoothed utilizing a 6-mm Gaussian kernel full-width at half maximum; (7) removal of linear and quadratic trends; (8) exclusion of head motion effects, white matter, cerebrospinal fluid, and global signals using the Friston 24-parameter model (Satterthwaite et al., 2013); (9) temporal band pass filtering (0.01–0.1 Hz); and (10) “scrubbing” two time-points before and one time-point after obtaining poor-quality images, which were defined as a frame displacement > 0.5 (Power et al., 2012). The average frames of FD which exceeded 0.5 in patients and controls were 3.500 ± 5.697 vs. 2.310 ± 4.310, and the range of frames in the two groups was both from 0 to 21. All participants had fMRI images for more than half of the total time-points, and these data were analyzed.

Voxel-based morphology

The VBM analysis were performed using Statistical Parametric Mapping software (SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Differences in whole-brain gray matter volume between the patient and NC groups were explored using a two-sample t-test, with age, sex, and education as covariates. Significance levels were determined using Gaussian random field (GRF) corrections with a voxel-level threshold of \(p < 0.001 \) and cluster-level threshold of \(p < 0.05 \). Finally, the mean gray matter volume of abnormal regions was calculated and compared between groups using a general linear model (GLM) controlled for age, sex, and education in SPSS version 19 (IBM SPSS Inc., Chicago, IL, USA).

Table 1 Demographic information and clinical measurements

	NMDA (n = 22)	NC (n = 29)	Statistics	\(P \) value
Age (years)	30.54 ± 10.79	35.79 ± 15.02	\(t = -1.388 \)	0.171
Sex (male:female)	10:12	12:17	\(\chi^2 = 0.961 \)	0.327*
Education	10.54 ± 4.62	10.90 ± 3.83	\(t = -0.194 \)	0.847
FD	0.11 ± 0.05	0.09 ± 0.04	\(t = -1.340 \)	0.285
MoCA	23.95 ± 5.40	28.03 ± 2.12	\(t = -3.350 \)	0.002*
AVLT				
Immediate recall	7.67 ± 2.52	9.91 ± 1.31	\(t = -4.099 \)	<0.001*
Delayed recall	7.31 ± 4.00	10.44 ± 2.26	\(t = -3.537 \)	0.001*
Disease duration (days)	46.91 ± 19.59	-	-	-
Time between first symptom and immune therapy (days)	20.41 ± 11.55	-	-	-
Time between first symptom and imaging (months)	15.14 ± 11.68	-	-	-
mRS at onset	3.86 ± 0.94	-	-	-
mRS at discharge	2.73 ± 1.03	-	-	-
mRS at imaging	0.23 ± 0.69	-	-	-

Data are expressed as mean ± standard deviation; * \(\chi^2 \) test results; * \(p < 0.05 \)

Abbreviations: NMDA, patients with anti-N-methyl-D-aspartate receptor encephalitis; NCs, normal controls; FD, frame-wise displacement; MoCA, Montreal Cognitive Assessment; AVLT, Auditory Verbal Learning Test; and mRS, modified Rankin Scale.
RSFC

RSFC was defined as the Pearson correlation coefficient between the mean time series of seed regions and each voxel in the rest of the brain. Seed region was defined as a sphere with a 10 mm radius located at peak point of each abnormal cluster from VBM analysis. Subsequently, all correlation coefficients were converted to z values using Fisher’s z-transformation to normalize the results. Between-group differences were analyzed using a two-sample t-test, with age, sex, education, and frame-wise displacement (FD) as covariates. Significance levels were determined using GRF corrections with a voxel-level threshold of $p < 0.001$ and a cluster-level threshold of $p < 0.05$. Finally, the mean RSFC of abnormal regions was calculated and compared between groups using GLM corrections, controlling for age, sex, education, and FD, in SPSS version 19 (IBM SPSS Inc., Chicago, IL, USA).

Correlation analyses

Partial correlation analyses were performed between neuroimaging indices, including gray matter volume (total volume within each cluster) and RSFC (mean RSFC value), and clinical measurements, including disease duration, MoCA, and AVLT scores. Age, sex, and education were controlled for gray matter volume, whereas FD was also controlled for RSFC. With limited samples, we provided significance levels of $0.05 < p < 0.1$ to show trends of significance, and a p-value < 0.05 was considered statistically significant.

Results

Demographic information and clinical measurements

Twenty-two patients with anti-NMDAR encephalitis (10 males, 12 females) and 29 NCs (12 males, 17 females) were included in the study. There were no significant differences in sex ($\chi^2 = 0.961$ and $p = 0.327$), age ($t = -1.388$ and $p = 0.171$), education ($t = -0.194$ and $p = 0.847$), and FD ($t = 1.340$ and $p = 0.285$) between groups. Patients with anti-NMDAR encephalitis demonstrated significantly lower scores in MoCA ($t = -3.350$ and $p = 0.002$), Auditory Verbal Learning Test-Immediate Recall (AVLT_IR) ($t = -4.099$ and $p < 0.001$), and Auditory Verbal Learning Test-Delayed Recall (AVLT_DR) ($t = -3.537$ and $p = 0.001$) compared to NCs (Table 1). All patients received first-line immunotherapy; three patients also received second-line immunotherapy, and three patients with ovarian teratomas underwent tumor resection (Supplemental Table S1).

Gray matter atrophy

Compared with NCs, patients with anti-NMDAR encephalitis showed significant gray matter atrophy in the left triangle part of the inferior frontal gyrus (triIFG.L), right triangle part of the inferior frontal gyrus (triIFG.R), and right precuneus (PCUN.R) (Fig. 1 and Table 2).
The RSFC between the triIFG.L and left Heschl gyrus (HES.L)/right Heschl gyrus (HES.R), between the triIFG.R and HES.R, and between the PCUN.R and left cerebellum (CERE.L) were significantly lower in patients with anti-NMDAR encephalitis than in NC, whereas the opposite was true for the RSFC between the triIFG.R and left superior frontal gyrus (SFG.L) (Fig. 2 and Table 3).

Correlation results

Partial correlation analyses controlled for age, sex, and education revealed that the gray matter volume in triIFG.R was positively correlated with AVLT_DR scores ($r = 0.506$ and $p = 0.027$) and marginally correlated with AVLT_IR scores ($r = 0.452$ and $p = 0.052$) in patients with anti-NMDAR encephalitis (Fig. 3A). Moreover, gray matter volume in triIFG.R was marginally correlated with disease duration in patients with anti-NMDAR encephalitis controlled for age, sex, and education (Fig. 3B). The RSFC between triIFG.L and HES.R was positively correlated with AVLT_DR scores ($r = 0.540$ and $p = 0.021$) and AVLT_IR scores ($r = 0.558$ and $p = 0.016$) in patients with anti-NMDAR encephalitis controlled for age, sex, education, and FD (Fig. 3C).

Discussion

Anti-NMDAR encephalitis is a type of severe autoimmune encephalitis. Clinical routine MRI findings are either normal or with mild changes in most patients with acute anti-NMDAR encephalitis (John et al., 2019). Moreover, >75% of patients still suffer from prolonged cognitive deficits, even with timely access to adequate immunotherapy (McKeon et al., 2018, 2021), indicating that these patients may have cerebral functional and/or structural changes. Indeed, most patients in this study showed normal routine clinical MRI results. However, we found structural and functional changes in some brain regions with high-resolution structural MRI and rs-fMRI.

Patients with anti-NMDAR encephalitis showed significant gray matter atrophy in bilateral triIFG and PCUN.R compared with NCs. Additionally, the RSFCs between triIFG.L and HES.L/HES.R, between triIFG.R and HES.R, and between PCUN.R and left CERE.L were significantly reduced in patients with anti-NMDAR encephalitis compared to NCs, yet the opposite was true for the RSFC between triIFG.R and SFG.L as assessed using seed-to-whole-brain voxel analyses. Additionally, decreased gray matter volume and RSFC were associated with memory deficits and disease duration. These findings suggest that these typical gray matter atrophies and altered RSFCs may represent key structural alterations related to the cognitive symptoms of anti-NMDAR encephalitis, and that combined multi-MRI and cognitive assessment are potentially valuable to assess prognosis and treatment efficacy.

Significant gray matter atrophy was observed in both triIFG.R and triIFG.L. These results were similar to the findings of our previous studies, which demonstrated decreased cerebral blood flow in both triIFG.R and triIFG.L in 15 patients with anti-NMDAR encephalitis compared with 15 NCs (Guo et al., 2014). The IFG is considered sensitive to auditory and phonological information and, consequently, related to verbal working memory (Wang et al., 2020; Zhu et al., 2020). Indeed, decreased gray matter volume in the IFG has been observed in patients with neurological diseases characterized by deficits in higher-order cognition, such as multiple sclerosis, Alzheimer’s disease, and mild cognitive impairment (Rossi et al., 2016; Toko et al., 2021; Whitwell et al., 2008). Consistently with previous studies (Irish et al., 2014), we demonstrated that the decreased gray matter volume in triIFG.R was positively correlated with AVLT_DR scores and marginally correlated with AVLT_IR scores in patients with anti-NMDAR encephalitis, controlling for age, sex, and education. The AVLT score is used to assess
verbal working memory (Xu et al., 2019) and was significantly decreased in the patients in this study compared with NCs. Moreover, we found that decreased gray matter volume in triIFG.R was marginally related to disease duration. Briefly, we presumed that the IFGs may be key contributors to anti-NMDAR encephalitis pathogenesis. Additionally, we identified significant decreases in gray matter volume in PCUN.R in patients with anti-NMDAR encephalitis compared with NCs, and this result is consistent with previous studies. Compared with NCs, patients with anti-NMDAR

Seed regions	RSFC patterns	Mean RSFC
triIFG.L (<51, 36, 18), r = 10 mm	HES.L	HES.R
	[Brain image]	[Brain image]
	[Brain image]	[Brain image]
triIFG.R (42, 35, 6), r = 10 mm	SFG.L	HES.R
	[Brain image]	[Brain image]
	[Brain image]	[Brain image]
PCUN.R (18, -51, 35), r = 10 mm	CERE.L	
	[Brain image]	
	[Brain image]	
	[Brain image]	

Fig. 2 Comparison of resting state functional connectivity (RSFC) in patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and normal controls (NCs). The first column is for seed regions which were defined as a sphere with a 10 mm radius located at the peak point of each abnormal cluster, the middle column is for RSFC patterns, and the last is for mean RSFC. Group differences were analyzed using a two-sample t-test, with sex, age, education, and frame-wise displacement used as covariates. The results were corrected using a Gaussian random field with a voxel level of \(p < 0.001 \) and cluster level of \(p < 0.05 \). Mean RSFCs were compared using a GLM, with sex, age, education, and frame-wise displacement as covariates. Stars represent significant results with \(p < 0.05 \). Abbreviations for brain regions are listed in Table 3.
encephalitis were reported to have decreased white matter volume, amplitude of low frequency fluctuations (ALFF), and hypometabolism in PCUN (Cai et al., 2020; Liang et al., 2020; Wegner et al., 2014). Although no relationship between PCUN.R cortical atrophy and cognitive scores has been demonstrated, we cannot exclude their association since PCUN has been reported to be involved in the processing of working memory, and patients with cognitive deficits usually show hypoperfusion and disruptions of functional connectivity within PCUN (Ferri et al., 2016; Jia et al., 2018; Wang et al., 2019).

Brain structure atrophy may be accompanied by functional impairment. For example, altered gray matter volume and RSFC were observed in patients with neurological and psychiatric diseases, such as Parkinson’s disease, major depression, and bipolar disorder, compared with NCs (Chen et al., 2018; Droby et al., 2021; Jiang et al., 2021). Using the clusters derived from the VBM analysis of

Table 3: Alterations of resting state functional connectivity in patients with anti-NMDAR encephalitis

Seed regions	Brain regions	Abbreviations	Peak intensity	Cluster size	MNI coordinates (x, y, z)
triIFG.L (-51, 36, 18)	Right Heschl gyrus	HES.R	-5.141	203	51, -12, 3
	Left Heschl gyrus	HES.L	-5.216	107	-36, -30, 12
triIFG.R (42, 33, 6)	Right Heschl gyrus	HES.R	-5.691	271	51, -9, 3
	Left superior frontal gyrus	SFG.L	-5.491	289	-21, 54, 36
PCUN.R (18, -51, 35)	Left cerebellum	CERE.L	-4.721	100	-3, -66, -30

MNI, Montreal Neurological Institute
seed regions, we observed altered RSFCs between several regions in patients with anti-NMDAR encephalitis, indicating functional impairment in these brain areas. We primarily found decreased RSFC between triIFG.L and HES.L/HES.R and between triIFG.R and HES.R in patients with anti-NMDAR encephalitis compared with NCs. Previously, decreased HES RSFC has been observed in autoimmune diseases such as multiple sclerosis (Fu et al., 2019), and another report has demonstrated extensive damage to HES in patients with status epilepticus following viral meningoencephalitis (P. Pillon et al., 2014). Patients with seizures have been reported to be seizure-free following HES resection (Ferri et al., 2014). Additionally, an MRI study has found that patients with schizophrenia demonstrated significantly decreased RSFC between HES and IFG (Guo et al., 2014). Epileptic seizures and psychosis are two of the most typical clinical manifestations of anti-NMDAR encephalitis (Dalmau et al., 2008).

We demonstrated a significant correlation between decreased RSFC and AVLT scores, which are used to assess verbal working memory (Xu et al., 2019). As we know, verbal working memory is divided into phonological store and articulatory rehearsal (Baddeley, 1992). The Heschl gyrus is a major component of the superior temporal gyrus and forms the primary auditory region (Fernandez et al., 2020); the IFG is also considered to play an important role in auditory and visual verbal information processing (Liu et al., 2012; Zhu et al., 2020). Therefore, these two brain regions are both related to verbal working memory, thus supporting our observations.

Additionally, compared with NCs, patients with anti-NMDAR encephalitis had decreased RSFC between PCUN.R and left CERE.L. Previous studies have indicated that CERE showed high NMDAR expression besides the frontal lobe and hippocampus (Moscat et al., 2014; Skowronska et al., 2019; Wang & Xiao, 2020). Decreased ALFF were also observed in CERE and PCUN in patients with anti-NMDAR encephalitis (Cai et al., 2020), indicating functional impairment in these brain regions. Even though we did not find a direct link between the RSFC between these two regions and the memory performance, the disrupted connectivity between PCUN and CERE is an interesting finding for the pathological basis of anti-NMDAR encephalitis. Besides decreased RSFC in several brain regions, we also found increased RSFC between triIFG.R and SFG.L in patients with anti-NMDAR encephalitis compared with NCs. Moreover, a previous study has demonstrated a hyperintense lesion in SFG in a patient who tested positive for both anti-myelin oligodendrocyte glycoprotein and anti-NMDAR antibodies (Nagata et al., 2018), supporting the results of this study. Increased RSFC is considered a compensation after acute inflammatory injury or a result of the proliferation of glial cells during recovery (Cai et al., 2020). As the neural activity requires cerebral blood perfusion to supply oxygen and nutrients, elevated perfusion tends to induce increased neural activity (Poornima et al., 2016). Moreover, increased cerebral blood perfusion was also observed in patients with anti-NMDAR encephalitis due to the increased permeability of the blood–brain barrier (Guo et al., 2020; Suárez et al., 2016).

This study has several limitations. (1) With limited samples, the correlation results were showed without multiple comparison correction. (2) All patients received immunosuppressive drugs, and these drugs vary across patients, which might affect results, but no effort can be taken to control for this at present. (3) Abnormal MRI findings with different lesions were identified in over 50% of patients at onset, we can’t exclude their potential effects on our results. (4) VBM showed rough gray matter change and lack of information of the white matter, which is limited in the detection of brain abnormalities. (5) The results of this study were limited by its cross-sectional design; longitudinal studies further exploring the neural mechanism of anti-NMDAR encephalitis are warranted.

Conclusion

In conclusion, our study found gray matter atrophy and altered RSFC in the bilateral triIFG and right PCUN in patients with anti-NMDAR encephalitis. The combination of structural and functional MRI demonstrates a characteristic pattern of pathological alterations in the aforementioned patients. We believe that assessing these characteristic brain alterations may provide a theoretical basis for exploring promising therapeutic strategies for anti-NMDAR encephalitis.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11682-022-00670-5.

Author contributions Yuanyuan Guo, Jinping Xu, and Yanghua Tian designed the study. Yuanyuan Guo, Xinyi Lv, Juanjuan Zhang, and Chenglong Li collected the data. Jinping Xu analyzed the data. Yuanyuan Guo drafted the manuscript. Juanjuan Zhang, Ling Wei, Nong Zhou, Jinping Xu, Yanghua Tian, and Kai Wang revised the draft.

Funding This work was supported by funding from the National Natural Science Foundation of China (32071054), the National Natural Science Foundation of China (62006220), and the Shenzhen Science and Technology Research Program (JCYJ20200109114816594).

Data availability All data generated or used during the study are available from the corresponding author by request.

Declarations

Ethical approval All the experiment procedures performed in this study was approved by the ethics committee of the Anhui Medical Univer-
sity and was accordance with the Helsinki declaration and its later amendments or comparable ethical standards. All participants provided informed written consent.

Consent to participate The written informed consent for publication was obtained from all participants included in the study.

Consent to publish All the authors have read and approved the submission.

Competing interests The authors declare that they have no competing interests.

References

Bacchi, S., Franke, K., Wewegama, D., Needham, E., Patel, S., & Menon, D. (2018). Magnetic resonance imaging and positron emission tomography in anti-NMDA receptor encephalitis: A systematic review. *Journal of Clinical Neuroscience*, 5254–59. https://doi.org/10.1016/j.jocn.2018.03.026

Bach, L. J. (2014). Long term rehabilitation management and outcome of anti-NMDA receptor encephalitis: Case reports. *NeuroRehabilitation*, 35(4), 863–875. https://doi.org/10.3233/NRE-141176

Baddeley, A. (1992). Working memory. *Science*, 255(5044), 556–559. https://doi.org/10.1126/science.1736359

Brier, M. R., Day, G. S., Snyder, A. Z., Tanenbaum, A. B., & Ances, B. M. (2016). N-methyl-D-aspartate receptor encephalitis mediates loss of intrinsic activity measured by functional MRI. *Journal of Neurology*, 263(6), 1083–1091. https://doi.org/10.1007/s00415-016-8083-6

Cai, L., Liang, Y., Huang, H., Zhou, X., & Zheng, J. (2020). Cerebral functional activity and connectivity changes in anti-N-methyl-D-aspartate receptor encephalitis: A resting-state fMRI study. *NeuroImage Clin*, 2152189. https://doi.org/10.1016/j.nicl.2020.102189

Carsten, F., Ute, A., Kopp, A., Pajkert, J., & Behrens, R. (2016). Structural hippocampal damage following anti-N-Methyl-D-aspartate receptor encephalitis. *Biological Psychiatry*, 79(9), 727–734. https://doi.org/10.1016/j.biopsych.2015.02.024

Chen, L., Wang, Y., Niu, C., Zhong, S., Hu, H., Chen, P., Zhang, S., Chen, G., Deng, F., Lai, S., Wang, J., Huang, L., & Huang, R. (2018). Common and distinct abnormal frontal-limbic system structural and functional patterns in patients with major depression and bipolar disorder. *NeuroImage Clin*, 2042–50. https://doi.org/10.1016/j.nicl.2018.07.002

Dalmau, J. (2016). NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: The 2016 Cotzias Lecture. *Neurology*, 87(23), 2471–2482. https://doi.org/10.1212/WNL.0000000000004344

Dalmau, J., Gleichman, A. J., Hughes, E. G., Rossi, J. E., Peng, X., Lai, M., Dessain, S. K., Rosenfeld, M. R., Balice-Gordon, R., & Lynch, D. R. (2008). Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. *Lancet Neurology*, 7(12), 1091–1098. https://doi.org/10.1016/S1474-4422(08)70224-2

Dalmau, J., Lancaster, E., Martinez-Hernandez, E., Rosenfeld, M. R., & Balice-Gordon, R. (2011). Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. *Lancet Neurology*, 10(1), 63–74. https://doi.org/10.1016/S1474-4422(10)70253-2

Droby, A., Pelosi, E., Putzolu, M., Bommurito, G., Marchese, R., Mazzella, L., Avanzino, L., & Inglese, M. (2021). A multimodal imaging approach demonstrates reduced midbrain functional network connectivity is associated with freezing of gait in Parkinson’s Disease. *Frontiers in Neurology*, 12583593–583593. https://doi.org/10.3389/fneur.2021.583593

Fernandez, L., Velasquez, C., Garcia Porro, J. A., de Lucas, E. M., & Martino, J. (2020). Heschl’s gyrus fiber intersection area: A new insight on the connectivity of the auditory-language hub. *Neurosurgical Focus*, 48(2), E7. https://doi.org/10.3171/2019.11.FOCUS19778

Ferri, L., Bisulli, F., Nobile, L., Tassi, L., Licchetta, L., Mostacci, B., Stipa, C., Mainieri, G., Bernabe, G., Provini, F., & Tinuper, P. (2014). Auditory aura in nocturnal frontal lobe epilepsy: A red flag to suspect an extra-frontal epilepticogenic zone. *Sleep Medicine*, 15(11), 1417–1423. https://doi.org/10.1016/j.sleep.2014.06.019

Ferri, J., Schmidt, J., Hajcak, G., & Canli, T. (2016). Emotion regulation and amygdala-prefrontal connectivity: Focusing on attentional deployment. *Cognitive, Affective, & Behavioral Neuroscience*, 16(6), 991–1002. https://doi.org/10.3758/s13415-016-0447-y

Finke, C., Kopp, U. A., Scheel, M., Pech, L. M., Soemmer, C., Schlichting, J., Leyboldt, F., Brandt, A. U., Wuerfel, J., Probst, C., Ploner, C. J., Pruss, H., & Paul, F. (2013). Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. *Annals of Neurology*, 74(2), 284–296. https://doi.org/10.1002/ana.23932

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. *Nature Reviews Neuroscience*, 8(9), 700–711. https://doi.org/10.1038/nrn2201

Fu, J., Chen, X., Gu, Y., Xie, M., Zheng, Q., Wang, J., Zeng, C., & Li, Y. (2019). Functional connectivity impairment of postcentral gyrus in relapsing-remitting multiple sclerosis with somatosensory disorder. *European Journal of Radiology*, 118200–206. https://doi.org/10.1016/j.ejrad.2019.07.029

Guo, Q., Tang, Y., Hui, L., Zhang, T., & Wang, J. (2014). Both volumetry and functional connectivity of Heschl’s gyrus are associated with auditory P300 in first episode schizophrenia. *Schizophrenia Research*, 160(1–3), 57–66. https://doi.org/10.1016/j.schres.2014.10.006

Guo, Y., Lv, X., Wu, Y., Chen, Y., Wei, Q., Zhou, N., Wang, K., & Tian, Y. H. (2020). Cognitive function and cerebral blood perfusion changes in patients with anti-N-methyl-d-aspartate receptor encephalitis. *Zhonghua Yi Xue Za Zhi*, 100(25), 1942–1946. https://doi.org/10.3760/cma.j.cn.12137-20200108-00030

Irani, S. R., Katarzyna, B., Patrick, W., Luigi, Z., Susan, M., Zandi, M. S., Friese, M. A., Ian, G., Kullmann, D. M., & David, B. (2010). N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. *Brain A Journal of Neuroscience*, 6, 1655–1667. https://doi.org/10.1093/brain/awq113

Irish, M., Piquet, O., & Hornberger, M. (2014). Common and unique gray matter correlates of episodic memory dysfunction in fronto-temporal dementia and Alzheimer’s disease. *Human Brain Mapping*, 35(4), 1422–1435. https://doi.org/10.1002/hbm.22263

Jia, X., Li, Y., Li, K., Liang, P., & Fu, X. (2018). Precuneus dysfunction in Parkinson’s disease with mild cognitive impairment. *Front Aging Neurosci*, 10, 427. https://doi.org/10.3389/fnagi.2018.00427

Jiang, X., Wang, X., Jia, L., Sun, T., Kang, J., Zhou, Y., Wei, S., Wu, F., Kong, L., Wang, F., & Tang, Y. (2021). Structural and functional alterations in untreated patients with major depressive disorder and bipolar disorder experiencing first depressive episode: A magnetic resonance imaging study combined with follow-up. *Journal of Affective Disorders*, 279, 324–333.

John, C. M., Mathew, D. E., Abdelaziz, M., Mahmoud, A. A. H., AIO-taibi, A. D., & Sohal, A. P. S. (2019). Anti-N-methyl-d-aspartate receptor encephalitis: A case series and review of the literature.
neurotransmission and astrocytic homeostasis. International Journal of Molecular Sciences, 20(2), 309. https://doi.org/10.3390/ijms20020309

Suárez, J., Domínguez, M., Gómez, M., Portilla, J. C., Gómez, M., & Casado, I. (2016). Brain perfusion SPECT with (99m)Tc-HMPAO in the diagnosis and follow-up of patients with anti-NMDA receptor encephalitis. Neurologia, 39(9), 622–623. https://doi.org/10.1016/j.nrl.2016.05.019

Toko, M., Kitamura, J., Ueno, H., Ohshita, T., Nemoto, K., Ochi, K., Higaki, T., Akiyama, Y., Awai, K., & Maruyama, H. (2021). Prospective memory deficits in multiple sclerosis: Voxel-based morphometry and double inversion recovery analysis. International Medicine, 60(1), 39–46. https://doi.org/10.2169/internalmedicine.5058-20

Viaccoz, A., Desestret, V., Ducray, F., Picard, G., Cavillon, G., Rogaev, M., Antoine, J. C., Delattre, J. Y., & Honnorat, J. (2014). Clinical specificities of adult male patients with NMDA receptor antibodies encephalitis. Neurology, 82(7), 556–563. https://doi.org/10.1212/WNL.000000000000126

Wang, H., & Xiao, Z. (2020). Current progress on assessing the prognosis for anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. BioMed Research International, 20207506590. https://doi.org/10.1155/2020/7506590

Wang, J., Becker, B., Wang, L., Li, H., Zhao, X., & Jiang, T. (2019). Corresponding anatomical and coactivation architecture of the human precuneus showing similar connectivity patterns with macaques. NeuroImage, 205562–574, https://doi.org/10.1016/j.neuroimage.2019.07.001

Wang, J., Yang, Y., Zhao, X., Zuo, Z., & Tan, L. H. (2020). Evolulational and developmental anatomical architecture of the left inferior frontal gyrus. NeuroImage, 222117268, https://doi.org/10.1016/j.neuroimage.2020.117268

Wegner, F., Wilke, F., Raab, P., Tayeb, S. B., & Boeck A.... (2014). Anti-lesuicine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography. Bmc Neurology, 14(1), 136. https://doi.org/10.1186/1471-2377-14-136

Whitwell, J. L., Shiang, M. M., Przybelski, S. A., Weigand, S. D., Knopman, D. S., Boeve, B. F., Petersen, R. C., & Jack, C. R. (2008). MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology, 70(7), 512–520. https://doi.org/10.1212/wnl.0000285057577437.a2

Xu, J., Wang, J., Bai, T., Zhang, X., Li, T., Hu, Q., Li, H., Zhang, L., Wei, Q., Tian, Y., & Wang, K. (2019). Electroconvulsive therapy induces cortical morphological alterations in major depressive disorder revealed with surface-based morphometry analysis. International Journal of Neural Systems, 29(7), 1950005. https://doi.org/10.1142/S0129065719500059

Xu, J., Guo, Y., Li, J., Lv, X., Zhang, J., Zhang, J., Hu, Q., Wang, K., Tian, Y. (2021). Progressive cortical and sub-cortical alterations in patients with anti-N-methyl-D-aspartate receptor encephalitis. Journal of Neurology(4). https://doi.org/10.1007/s00415-021-10543-1

Zhu, R., Luo, Y., Wang, Z., & You, X. (2020). Modality effects in verbal working memory updating: Transcranial direct current stimulation over human inferior frontal gyrus and posterior parietal cortex. Brain and Cognition, 145105630, https://doi.org/10.1016/j.bandc.2020.105630