Testing vacuum electrodynamics using “slow light” experiments

S. P. Flood and D. A. Burton

Department of Physics, Lancaster University - Lancaster, LA1 4YB, UK, EU and The Cockcroft Institute - Daresbury, Warrington, WA4 4AD, UK, EU

received 11 October 2012; accepted in final form 29 November 2012
published online 4 January 2013

PACS 03.50.De – Classical electromagnetism, Maxwell equations
PACS 41.20.-q – Applied classical electromagnetism
PACS 02.40.Hw – Classical differential geometry

Abstract – A recent proposal to explore vacuum electrodynamics using the speed of propagation of an electromagnetic wave through an ambient constant magnetic field is examined. It is argued that the proposal should be modified so that the background magnetic field, the direction of propagation and the transverse projection of the electric field (with respect to the direction of propagation) are not coplanar. The implications of invariance under Gibbons’ electric-magnetic duality rotations are determined in this context.

Copyright © EPLA, 2012

Introduction. – The scattering of light by light in the vacuum has been a source of considerable interest over many decades. The most common approach to modelling electrodynamics in high-field scenarios employs effective actions extracted from the QED vacuum-to-vacuum persistence amplitude of the electron-positron field in an ambient electromagnetic field [1]. Although the QED vacuum is expected to feature prominently in non-terrestrial strong-field environments, such as gamma-ray pulsars and magnetars [2], the study of non-linear electrodynamics has received considerable impetus from advances in terrestrial high-power laser facilities in recent years [3–5]. In particular, the anticipated laser field intensities in the forthcoming Extreme Light Infrastructure [6] are so large that photon-photon scattering will be appreciable, and such facilities will present a unique opportunity to probe fundamental physics in domains that are currently inaccessible to high-energy particle colliders [5].

One may speculate that the Standard Model quantum vacuum is not the only source of an effective self-coupling of the electromagnetic field. In particular, the partition functional for an open string coupled to an ambient $U(1)$ gauge potential leads to the Born-Infeld effective action [7] for the electromagnetic field and, from an aesthetic perspective, Born-Infeld electrodynamics [8] is privileged because it is unique in retaining the exceptional causal properties of Maxwell theory [9]. More precisely, it is the only regular generalization of Maxwell electrodynamics generated from an arbitrary local Lagrangian depending only on the two electromagnetic invariants that also has zero birefringence and does not exhibit shock waves. Although the value of the coupling constant governing the self-interaction of the electromagnetic field in Euler-Heisenberg electrodynamics is determined by the electron rest mass and charge, the analogous quantity in string-inspired Born-Infeld electrodynamics (string tension) is unknown. Moreover, string-theoretic and other considerations have been used to motivate a range of “Born-Infeld–like” theories (e.g., [10–12]) and a unique extension to classical Maxwell theory does not immediately present itself in the wider context.

Recent investigations of the implications of non-linear electrodynamics [11–19] have concentrated on properties of the electromagnetic field within particular theories. However, little attention has been paid thus far to indistinguishable aspects of different theories and attendant implications for proposed tests of non-linear electrodynamics.

Exact Born-Infeld waves propagating in a constant background (electric or magnetic) field on flat spacetime were explored in ref. [17], and the phase speed of the wave was found to depend on the ambient background field. A similar “slow light” effect was reported in ref. [14] where the transit time of an electromagnetic wave across a region bathed in a constant magnetic field was examined within Born-Infeld electrodynamics. The retardation of the electromagnetic wave is cumulative, and one can envisage using an optical cavity and strong magnets to place bounds on the Born-Infeld constant. In ref. [14] the electric field of the wave and ambient magnetic field were aligned; in the following we argue that such an experiment would be more effective if a more general configuration is employed.
This paper uses the Einstein summation convention throughout. Latin indices run from 0 to 3 and units are used in which the speed of light \(c = 1 \) and the permittivity of free space \(\varepsilon_0 = 1 \).

The following analysis is undertaken on a flat spacetime manifold with frame \(\{ x^a = \partial / \partial x^a \} \), naturally dual coframe \(\{ e^a = dx^a \} \) and metric \(g \) given by \(g = -e^0 \otimes e^0 + \sum_{i=1}^3 e^i \otimes e^i \). The spacetime volume element is \(* 1 = \text{d}x^0 \wedge \text{d}x^1 \wedge \text{d}x^2 \wedge \text{d}x^3 \) where \(* \) denotes the Hodge map and \(\{ x^a \} \) denotes \(\{ t, x, y, z \} \) as the standard coordinate system for the lab frame. Then the macroscopic equations describing the electromagnetic field in the vacuum are given by

\[
dF = 0, \tag{1}
\]
\[
d \ast G = 0. \tag{2}
\]

Here \(F \) is the Faraday 2-form

\[
F = \text{d}t \wedge E + \ast (\text{d}t \wedge B) \tag{3}
\]

(encapsulating information about the electric field and magnetic field) and \(G \) is the excitation 2-form related to \(F \) by the expression

\[
G = 2 \left(\frac{\partial L}{\partial \dot{X}} F - \frac{\partial L}{\partial \dot{Y}} \ast F \right), \tag{4}
\]

where the local 0-form \(L(X, Y) \) is the Lagrangian of the electromagnetic theory and is assumed to depend only on the electromagnetic invariants \(X \) and \(Y \),

\[
X = \ast (F \wedge \ast F), \tag{5}
\]
\[
Y = \ast (F \wedge F). \tag{6}
\]

For example, the Lagrangians for linear Maxwell theory and vacuum Born-Infeld electrodynamics are

\[
L_M = \frac{X}{2}, \tag{7}
\]
\[
L_{BI} = \frac{1}{\kappa^2} \left(1 - \frac{1}{\kappa^2} X - \frac{\kappa^4}{4} Y^2 \right), \tag{8}
\]

respectively, where \(\kappa \) is the Born-Infeld constant and \(1/\kappa \) is the field strength for which non-linearities are significant. The electric field \(E = (E_x, E_y, E_z) \) and magnetic field \(B = (B_x, B_y, B_z) \) are induced from the electric 1-form \(\text{E} = E_x \text{d}x + E_y \text{d}y + E_z \text{d}z \) and magnetic 1-form \(B = B_x \text{d}x + B_y \text{d}y + B_z \text{d}z \) respectively, and it follows \(X = E^2 - B^2 \), \(Y = 2E \cdot B \).

Electromagnetic waves in a constant background magnetic field.

Preliminaries. Consider a linearly polarized electromagnetic plane wave travelling through a region of constant magnetic field as per fig. 1. The direction of propagation of the wave is orthogonal to the background magnetic field and the wave’s electric field is parallel to the background magnetic field. The Faraday 2-form \(F \) may be written as

\[
F = \mathcal{E}(z-vt)(dx - dz - B_x \, dy \wedge dz) \tag{9}
\]

by appropriately orienting the Cartesian coordinate frame so that the wave propagates along \(z \) and the background magnetic field is aligned along \(x \). The smooth function \(\mathcal{E} \) encodes the wave’s electric and magnetic fields and \(v \) is the phase velocity of the wave.

Equations (1), (2) and (4) may be used to show that Lagrangians of the form

\[
\mathcal{L}(X, Y) = c_1 + c_2 Y + \mathcal{F}(X + \lambda Y^2) \tag{10}
\]

yield field equations that have (9) as an exact solution. The real constant \(\lambda \) is positive, \(c_1 \) and \(c_2 \) are real constants and \(\mathcal{F} \) is a smooth function satisfying \(\mathcal{F}(X + \lambda Y^2) \approx X/2 \) to first order in \(X \) and \(Y \) which ensures that the usual linear vacuum Maxwell equations are recovered in the weak-field limit. Although it is possible to simply verify (10) by direct substitution, it is instructive to show how one is led to this result from first principles.

Firstly, note that (9) satisfies (1) by construction, hence it is only necessary to consider (2). Using (2), (4) and (9) one obtains

\[
(\gamma^2 Bv\partial_{XY}^2 \mathcal{L}|_P + \mathcal{E} \partial_{X}^2 \mathcal{L}|_P) \dot{\mathcal{E}}' = 0, \tag{11}
\]
\[
(\partial_X \mathcal{L}|_P - 2\varepsilon^2 \gamma^2 \partial_{X}^2 \mathcal{L}|_P - 4vB\mathcal{E} \partial_{XY}^2 \mathcal{L}|_P - 2v^2 \gamma^2 B^2 \partial_{X}^2 \mathcal{L}|_P) \dot{\mathcal{E}}' = 0, \tag{12}
\]

where \(\dot{\mathcal{E}}' = \partial \mathcal{E} / \partial \zeta \) with \(\zeta = z - vt \), \(\gamma = 1/\sqrt{1-v^2} \) is the Lorentz factor of the phase velocity \(v \) of the wave, \(B \equiv B_x \) and \(P \equiv (X = -\gamma^{-2} \mathcal{E}^2 - B^2, Y = -2Bv\mathcal{E}) \) is a point in \((X, Y)\)-space corresponding to (9). Equation (6) yields \(Y = -2Bv\mathcal{E} \), which is used to eliminate \(\mathcal{E} \) and cast (11) and (12) as

\[
\partial_{XY}^2 \mathcal{L} - \frac{Y}{2B^2 v^2 \gamma^2} \partial_X^2 \mathcal{L} \simeq 0, \tag{13}
\]
\[
\partial_X \mathcal{L} - \frac{Y^2}{2B^2 v^2 \gamma^2} \partial_Y^2 \mathcal{L} + 2Y \partial_{XY}^2 \mathcal{L} - 2v^2 \gamma^2 B^2 \partial_X^2 \mathcal{L} \simeq 0, \tag{14}
\]

Fig. 1: The relative directions of the plane wave corresponding to the Faraday 2-form (9), where the wave is propagating out of the page, i.e., in the positive \(z \)-direction.
where the function \mathcal{E}' does not vanish identically and has therefore been removed, and \simeq indicates equality on restriction to the subset $\mathcal{U} = \{(X, Y)| X + Y^2/(4B^2\gamma^2v^2) + B^2 = 0\}$ of (X, Y)-space.

A further assumption must now be made in order to proceed; (13) and (14) are extended away from \mathcal{U} by demanding

$$
\partial^2_{XY} \mathcal{L} - \frac{Y}{2B^2v^2\gamma^2} \partial_X^2 \mathcal{L} = 0, \quad (15)
$$

$$
\partial_X \mathcal{L} - \frac{Y^2}{2B^2v^2\gamma^2} \partial^2_X \mathcal{L} + 2Y \partial^2_{XY} \mathcal{L}
-2v^2\gamma^2B^2 \partial^2_Y \mathcal{L} = 0. \quad (16)
$$

The general solution to the second order PDE (15) is

$$
\mathcal{L}(X, Y) = h(Y) + \mathcal{F}\left(X + \frac{1}{4B^2v^2\gamma^2} Y^2\right), \quad (17)
$$

where h, \mathcal{F} are smooth, but otherwise arbitrary, functions of a single variable. Inserting (17) into (16) fixes $h(Y)$ (unless $Bv = 0$, which is undesirable) and

$$
\mathcal{L}(X, Y) = c_1 + c_2 Y + \mathcal{F}\left(X + \frac{1}{4B^2v^2\gamma^2} Y^2\right) \quad (18)
$$

is obtained where c_1 and c_2 are constants. Equation (16) imposes no restrictions on \mathcal{F}.

The constant c_1 is significant if the gravitational field is dynamical (it is the cosmological constant); however, here the spacetime metric is prescribed and c_1 does not play a role. Although the term $c_2 Y$ in (10) may play a role in spatially bounded domains, this term is not considered further in the present article.

Using (18), it follows that theories whose Lagrangians have the form (10) admit the same solution (9) with phase velocity v satisfying

$$
v^2 = \frac{1}{1 + 4\lambda B^2}. \quad (19)
$$

Coplanar background magnetic field, wave vector and transverse electric field. It is straightforward to extend the analysis given in the previous section to more general configurations in which the background magnetic field, wave vector and transverse projection of the electric field (with respect to the direction of propagation) are coplanar. In particular, extension of the magnetic field to an arbitrary constant vector in the (x, z)-plane is accommodated by introducing a longitudinal component to the electric field:

$$
F = \mathcal{E}(z - vt)(dz - vdt) \wedge dz
- B_z dy \wedge dz - B_z dx \wedge dy
+ \chi \mathcal{E}(z - vt) dt \wedge dz, \quad (20)
$$

with χ being a real constant. The electromagnetic field (20) has previously been shown to be an exact solution to the vacuum Born-Infeld field equations [17].

In the previous section, eq. (15) arose from the ∂v^2 component of $\ast d \ast G = 0$. In the present case, the analogous PDE is

$$
\partial^2_X \mathcal{L} - \frac{Y(1 - v^2 - \gamma^2)}{2(B^2v^2 B^2 \gamma^2)} \partial^2_Y \mathcal{L} = 0 \quad (21)
$$

with general solution

$$
\mathcal{L}(X, Y) = h(Y) + \mathcal{F}\left(X + \frac{1 - v^2 - \gamma^2}{4(B^2v^2 B^2 \gamma^2)} Y^2\right), \quad (22)
$$

where h, \mathcal{F} are smooth, but otherwise arbitrary, functions of a single variable. Inserting (22) into the remaining PDEs for \mathcal{L} arising from $d \ast d \ast G = 0$ leads to $h(Y) = c_1 + c_2 Y$ and

$$
v^2 = \frac{1 + 4\lambda B^2}{1 + 4\lambda B^2}, \quad \chi = \frac{2\lambda B^2 v \sin 2\theta}{1 + 4\lambda B^2 \cos^2 \theta}. \quad (24)
$$

Introducing the polar decomposition $B_z = B \sin \theta, B_x = B \cos \theta,$ where θ is the angle between the wave vector and the magnetic field, yields

$$
v^2 = 1 - \frac{4\lambda B^2 \sin^2 \theta}{1 + 4\lambda B^2}, \quad \chi = \frac{2\lambda B^2 v \sin 2\theta}{1 + 4\lambda B^2 \cos^2 \theta}. \quad (24)
$$

and it can be seen that the influence of B on v is optimal when the background magnetic field is orthogonal to the wave vector and, in this case, the electric field is transverse to the direction of propagation since $\chi = 0$.

However, theories of the form (10) with identical λ possess (20), (23) as a solution and cannot be discriminated from each other using (20), (23) alone. The Born-Infeld Lagrangian (8) is a particular member of that class and has $c_1 = c_2 = 0$ with

$$
\mathcal{F}_{BI}(\xi) = \frac{1}{4\lambda} \left(1 - \sqrt{1 - 4\lambda^2} \right), \quad \lambda = \kappa^2/4. \quad (25)
$$

Born and Infeld chose $\kappa = e_0r_0^2/e \sim 10^{-22}$ m/V, where r_0 is the classical electron radius and $-e$ is the charge on the electron, although in the context of string theory the value of κ is unknown.

Non-coplanar background magnetic field, wave vector and transverse electric field. No simple modification of (20) has been found to be valid in the general case. In particular, using

$$
F = \mathcal{E}(z - vt)(dz - vdt) \wedge dz
- B_y dy \wedge dz - B_x dx \wedge dy
+ \chi \mathcal{E}(z - vt) dt \wedge dz, \quad (26)
$$

and (10) in (1), (2) leads to the condition $B_y = 0$ if no additional constraints are imposed on \mathcal{F}. However, as shown in ref. [17], equation (26) is an exact solution to the vacuum Born-Infeld equations, i.e., (1), (2) with $\mathcal{L} = \mathcal{L}_{BI}$ (see eq. (8)) and

$$
v^2 = \frac{1 + \kappa^2 B_z^2}{1 + \kappa^2 (B_x^2 + B_y^2 + B_z^2)} = \frac{\chi}{1 + \kappa^2 B_z^2}. \quad (27)
$$
Electric-magnetic duality. – Following Gibbons [20], one may elevate electric-magnetic duality invariance to a fundamental property of the electromagnetic field in source-free regions. An electric-magnetic duality transformation is an endomorphism on the space of solutions of (1), (2) given by the $SO(2)$ action

$$\begin{pmatrix} F \\ G \end{pmatrix} \rightarrow \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix},$$

(28)

where α is a real constant. Invariance under infinitesimal duality transformations leads to the condition

$$\ast(F \wedge F) = \ast(G \wedge G) = C \quad (29)$$
on

on Lagrangian-based theories [20], and setting the constant C to zero selects the family of electric-magnetic duality invariant theories containing $G = F$ (linear Maxwell theory).

Inserting (4) into $F \wedge F = G \wedge G$ and using (5) and (6) yields

$$4Y[(\partial_X \mathcal{L})^2 - (\partial_Y \mathcal{L})^2] - 8X \partial_X \mathcal{L} \partial_Y \mathcal{L} = Y.$$ (30)

After removing the topological term from the action corresponding to (10) by setting $c_2 = 0$, eq. (30) reduces to

$$\left(\frac{d\mathcal{F}}{d\xi} \right)^2 = \frac{1}{4(1 - 4\lambda \xi)}$$ (31)

and it follows

$$\mathcal{F}(\xi) = \frac{1}{4\lambda} \left(1 - \sqrt{1 - 4\lambda \xi} \right),$$ (32)

where the sign of the square root and the constant of integration have been fixed by demanding $\mathcal{F}(X + \lambda Y^2) \approx X/2$ in the weak-field limit. Hence, the unique theory in the intersection of the $C = 0$ family of electric-magnetic duality invariant Lagrangians and the $c_1 = c_2 = 0$ family of Lagrangians is vacuum Born-Infeld electrodynamics (8).

Conclusion. – It has been shown that (26) with $B_y = 0$ is an exact solution to the field equations of the class of theories of vacuum non-linear electrodynamics given by (10), for any choice of smooth E and constants B_x, B_z. Moreover, the relationships between the parameters v, χ and the constants λ, B_x, B_z are independent of the choice of \mathcal{F}. It follows that one cannot discriminate between those theories using (20) alone. However, if electric-magnetic duality invariance is invoked then Born-Infeld electrodynamics can be singled out from that class.

On the other hand, eq. (26) with $B_y \neq 0$ is not a solution to (2) for arbitrary E and arbitrary F. The only choice of \mathcal{F} that was found to solve (2) corresponds to vacuum Born-Infeld electrodynamics. Therefore, without invoking electric-magnetic duality invariance, non-coplanar configurations are a better choice than coplanar configurations for attempts to discriminate between theories of non-linear electrodynamics using time-of-flight measurements of an electromagnetic wave propagating through a constant magnetic field.

An optical cavity may be used to increase the effective path length of a laser beam bathed in a strong magnetic field and, as suggested in ref. [14], deviations from vacuum Maxwell theory may be accessible in the laboratory before quantum phenomena noticeably intrude. In ref. [14] the background magnetic field and the electric field of the plane wave were aligned; the analysis given here indicates that such experiments should allow for different orientations of the wave vector relative to the direction of the magnetic field.

The authors thank R. W. Tucker for useful discussions, and thank the referees for their helpful comments. The authors are members of the ALPHA-X consortium funded by EPSRC and are grateful for support provided by the Cockcroft Institute of Accelerator Science and Technology (STFC) under the grant ST/G008248/1.

REFERENCES

[1] Dittrich W. and Gies H., *Probing the Quantum Vacuum*, in *Springer Tracts Mod. Phys.*, Vol. 166 (Springer) 2000.
[2] Lai D. and Ho W., *Phys. Rev. Lett.*, 91 (2003) 071101.
[3] Marklund M., *Nat. Photon.*, 4 (2010) 72.
[4] King B., Di Piazza A and Keitel C. H., *Nat. Photon.*, 4 (2010) 92.
[5] Homma K., Habs D., Mourou G., Ruhi H. and Tajima T., *Prog. Theor. Phys. Suppl.*, 193 (2012) 224.
[6] www.extreme-light-infrastructure.eu/.
[7] Fradkin E. S. and Tseytlin A. A., *Phys. Lett. B*, 163 (1985) 123.
[8] Born M. and Infeld L., *Proc. R. Soc. London, Ser. A*, 144 (1934) 425.
[9] Boillat G., *J. Math. Phys.*, 11 (1970) 941.
[10] Ayón-Beato E. and García A., *Phys. Lett. B*, 464 (1999) 25.
[11] Kruglov S. I., *J. Phys. A: Math. Theor.*, 43 (2010) 375402.
[12] Burton D. A., Dereli T. and Tucker R. W., *Phys. Lett. B*, 703 (2011) 530.
[13] Burton D. A., Trines R. M. G. M., Walton T. J. and Wen H., *J. Phys. A: Math. Theor.*, 44 (2011) 095501.
[14] Dereli T. and Tucker R. W., *EPL*, 89 (2010) 20009.
[15] Ferraro R., *J. Phys. A: Math. Theor.*, 43 (2010) 195202.
[16] Munoz G. and Tennant D., *Phys. Lett. B*, 682 (2009) 297.
[17] Aiello M., Bengochea G. R. and Ferraro R., *Phys. Lett. A*, 361 (2007) 9.
[18] Denisov V. I., *Phys. Rev. D*, 61 (2000) 036004.
[19] Ferraro R., *Phys. Rev. Lett.*, 99 (2007) 230401.
[20] Gibbons G. W. and Rasheed D. A., *Nucl. Phys. B*, 454 (1995) 185.