Does computed tomography permeability predict hemorrhagic transformation after ischemic stroke?

Peggy Yen, Allison Cobb, Jai Jai Shiva Shankar

AIM: To use perfusion-derived permeability-surface area product maps to predict hemorrhagic transformation following thrombolytic treatment for acute ischemic stroke.

METHODS: We retrospectively analyzed our prospectively kept acute stroke database over five consecutive months for patients with symptoms of acute ischemic stroke (AIS) who had computed tomography (CT) perfusion (CTP) done at arrival. Patients included in the analyses also had to have a follow-up CT. The permeability-surface area product maps (PS) was calculated for the side of the ischemia and/or infarction and for the contralateral unaffected side at the same level. The cerebral blood flow map was used to delineate the ischemic territory. Next, a region of interest was drawn at the centre of this territory on the PS parametric map. Finally, a mirror region of interest was created on the contralateral side at the same level. The relative permeability-surface area product maps (rPS) provided an internal control and was calculated as the ratio of the PS on the side of the AIS to the PS on the contralateral side. A student t-test was performed after log conversion of rPS between patients with and without hemorrhagic transformation. Log conversion was used to convert the data into normal distribution to use t-test. For the group of patients who experienced intracranial bleed, a student t-test was performed between those with only petechial hemorrhage and those with more severe parenchymal hematoma with subarachnoid haemorrhage.

RESULTS: Of 84 patients with AIS and CTP at admission, only 42 patients had a follow-up CT. The rPS...
The aim is to restore blood flow and reperfuse ischemic brain tissue at risk of disastrous progression towards irreversible infarction. Although it is well established that this therapy has made significant reduction in the irreversible infarction. Although it is well established that this therapy has made significant reduction in the irreversible infarction.

The primary purpose of this study is to assess whether PS can predict hemorrhagic transformation on follow-up scans in patients with acute ischemic stroke and, if so, whether the severity of the hemorrhagic event can be anticipated.

MATERIALS AND METHODS

Patient selection

A retrospective review of a prospectively maintained acute stroke database at a tertiary care centre was performed on patients with symptoms of AIS during five consecutive months and in whom a CTP had been performed upon hospital arrival (Table 1). All patients with symptoms lasting less than 6 h were evaluated by the on-call neurologist and/or stroke neurologist and underwent routine stroke imaging protocol. Patients were treated according to standard institutional protocols, including intravenous or intra-arterial thrombolysis. This study was approved under an umbrella retrospective review of CT perfusion methodology by the institutional ethics committee.

During the study time period, 84 patients with symptoms of AIS received a CTP examination at admission. If tPA was then administered, a follow-up unenhanced CT was performed at 24 h. If tPA was deemed not clinically indicated, a follow-up CT was ordered at the radiologist’s discretion. A follow-up CT was performed at 24 h. If tPA was deemed not clinically indicated, a follow-up CT was ordered at the radiologist’s discretion.
Table 1 Characteristics of patients who presented with acute ischemic stroke

Patients (n = 42)	Age (years)	Sex (M/F)	IV tPA	Mechanical	No tPA	Onset to CT (min)	Onset to therapy
No hemorrhage (27; 64.3%)	70.1 ± 12.57	12/15	24 (88.9%)	0	3 (11.1%)	127	168
Hemorrhage (15; 35.7%)	69.9 ± 13.6	7/8	14 (92.9%)	5 (33.3%)	1 (6.7%)	111	143
P value	0.89	0.83	0.7	0.07			

CT: Computed tomography; tPA: Tissue plasminogen activator; M: Male; F: Female.

RESULTS

The demographic information on our patients is summarized in Table 1. The average PS for the affected
hemisphere in those who experienced any hemorrhagic transformation was not significantly ($P = 0.26$) higher (Mean + std: 3.06 + 1.81) compared to those who did not (2.47 + 1.75; Table 2). The average PS in the contralateral normal side was also not significantly different ($P = 0.18$) between those with hemorrhagic transformation (1.79 + 1.10) and those without (2.3 + 1.35; Table 2). The rPS derived using the normal side as the internal control was significantly higher ($P = 0.003$) in cases of hemorrhagic transformation (1.71 + 1.64) compared to those who did not have any (1.07 + 1.30; Table 2).

Using the overall mean rPS of 1.3 as a cutoff, values above the threshold showed an increased likelihood of subsequent hemorrhagic transformation. The sensitivity of using this score to predict hemorrhagic transformation was 71.4, the specificity was 78.6, with a positive predictive value of 62.5 and negative predictive value of 84.6. The accuracy was determined at 76.2. The odds ratio of an event occurring with such an rPS was 9.2.

Of the 15 cases of hemorrhagic transformation, there was no statistically significant difference ($P = 0.35$) in the rPS between those with petechial or the more severe hemorrhagic events (Table 3).

DISCUSSION

This retrospective study supports previous reports that showed a significant correlation between the measure of neurovascular injury (PS) and the propensity of patients to experience ipsilateral intracranial hemorrhage. In contrast to other studies, we did not find significantly increased permeability in the contralateral unaffected hemisphere. We postulate that because the average time from onset of symptoms to CT was well under 6 h, the inflammatory mediators and free radical products had not yet taken action on a global scale. Yang et al$^{[13]}$ showed also that the blood-brain barrier permeability was in the normal ranges for several hours after permanent middle cerebral artery occlusion and that BBB disruption occurs with late reperfusion. This is a global process and underscores the importance of using the

Table 2 The permeability surface area product based on the computed tomography perfusion at the time of hospital presentation

Patients ($n = 42$)	Permeability surface area product	Relative permeability				
	Normal side	Affected side	P value	Normal side	Affected side	P value
No hemorrhage (27; 64.3%)	2.32 ± 1.38	2.34 ± 1.65	0.49	1.04 ± 0.53		
Hemorrhage (15; 35.7%)	1.84 ± 1.06	3.21 ± 1.88	0.002	1.83 ± 0.78		
P value	0.18	0.26	0.003			

Table 3 Petechial and catastrophic bleeds among patients who experienced intracranial hemorrhage

Patients ($n = 15$)	Permeability surface area product	Relative permeability				
	Normal side	Affected side	P value	Normal side	Affected side	P value
Petechial hemorrhage (8; 53.3%)	2.03 ± 1.30	3.70 ± 2.28	0.02	1.78 ± 0.66		
Hematoma + SAH (7; 46.7%)	1.61 ± 0.75	2.66 ± 1.23	0.06	1.89 ± 0.94		
P value	0.92	0.74	0.35			

SAH: Subarachnoid haemorrhage.
contralateral PS as control. Although PS has been shown here and elsewhere to be useful in predicting subsequent intracranial hemorrhage with relatively high specificity and sensitivity, it does not differentiate between mild petechial and the more severe parenchymal hemorrhagic events. A hemorrhagic event can range quite widely in the severity spectrum and can appear minor and asymptomatic with trivial hemorrhagic petechiae to large parenchymal hematoma with space-occupying effect. These imaging characteristics have been used as an indirect marker to predict the clinical outcome. A post hoc analysis of the ECASS II data shows that only parenchymal hemorrhage affecting greater than 30% of the infarct and associated with mass effect leads to an early clinical deterioration and worsened long-term outcome, like death. Thus, in practical terms, although the PS is quite good at evaluating the degree of blood-brain barrier damage that predisposes patients to further injury, it does not give clinicians a sense of who may proceed to catastrophic complication.

Ideally, a method would exist to, first, identify those who will develop symptomatic complications and to halt thrombolytic therapy in these patients. Second, the method would identify those who will develop only asymptomatic complications so that clinicians can extend thrombolytic therapy in this group, with the ultimate goal of individually customizing the time window for tPA administration. If PS cannot assess the true potential risk of thrombolytic therapy, we suggest that this method of stroke evaluation is not yet optimal for the treating physician. PS may prevent treatment in patients who may experience some minor petechial hemorrhage but, ultimately, can benefit from restoration of blood flow and recover from potential neurological deficits. Further research with a larger number of patients is required to develop more refined criteria that can help the treating clinician identify patients with potential serious hemorrhagic complications.

There are a few limitations to this study. First, only 42 of the 84 acute ischemic stroke patients received follow-up CT exam after therapy, which reduced the sample size and the statistical power associated with determination of severity. Second, this study focused solely on the CTP-derived PS. MR imaging has also been used to study blood-brain barrier breakdown and is superior for hemorrhage detection. In cases of acute stroke, however, it is often not feasible to obtain an MR exam within the treatment time window. Thus, development of an extended CT stroke protocol may be more practical in the acute setting because it is the modality of choice for the initial investigation.

Pre-treatment PS can predict the occurrence of hemorrhagic transformation in AIS patients with relatively high sensitivity, specificity, positive and negative predictive value. However, PS may not predict hemorrhagic transformation severity, which is critical in the decision to treat.

REFERENCES

1. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G, Grotta J, Howard G, Kaste M, Koga M, von Kummer R, Lansberg M, Lindley RI, Murray G, Olivot JM, Parsons M, Tilley B, Toni D, Toyoda K, Wahlgren N, Wardlaw J, Whiteley W, del Zoppo GJ, Baigent C, Sandrock P, Hacke W. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 2014; 384: 1929-1935 [PMID: 25106063 DOI: 10.1016/S0140-6736(14)60584-5]

2. Balami JS, Chen RL, Grunwald IQ, Buchan AM. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995; 333: 1581-1587 [PMID: 7477192 DOI: 10.1056/NEJM199512143332401]

3. Balami JS, Chen RL, Grunwald IQ, Buchan AM. Neurological complications of acute ischemic stroke. Lancet Neurol 2011; 10: 357-371 [PMID: 21247806 DOI: 10.1016/S1474-4422(10)70313-6]

4. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurology 2011; 10: 1026-1038 [PMID: 21877872 DOI: 10.1016/S1474-4422(11)70245-1]
Neurology 2009; 8: 355-369 [PMID: 19233729 DOI: 10.1016/S1474-4422(09)70025-0]

5 Souza LC, Payabvash S, Wang Y, Kamalian S, Schaefer P, Gonzalez RG, Furie K, Levy MH. Admission CT perfusion is an independent predictor of hemorrhagic transformation in acute stroke with similar accuracy to DWI. *Cerebrovasc Dis* 2012; 33: 8-15 [PMID: 22143195 DOI: 10.1159/000331914]

6 Wardlaw JM, Murray V, Berge E, Del Zoppo GJ. Thrombolysis for acute ischaemic stroke. *Cochrane Database Syst Rev* 2009; (4): CD000213 [PMID: 19821269 DOI: 10.1002/14651858.CD000213.pub2]

7 Heuschmann PU, Kolominsky-Rabas PL, Misselwitz B, Hermanek P, Leffmann C, Janzen RW, Rother J, Buecker-Nott HJ, Berger K. German Stroke Registers Study Group. Predictors of in-hospital mortality and attributable risks of death after ischemic stroke: The German Stroke Registers Study Group. *Arch Intern Med* 2004; 164: 1761-1768 [PMID: 15364669]

8 Berger C, Fiorelli M, Steiner T, Schäbitz WR, Bozzao L, Bluhmki E, Hackett W, von Kummer R. Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic? *Stroke* 2001; 32: 1330-1335 [PMID: 11387495 DOI: 10.1161/01.STR.32.6.1330]

9 Adams HP, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Morgenstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EF. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: The American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. *Circulation* 2007; 115: e478-e534 [PMID: 17515473 DOI: 10.1161/CIRCULATIONAHA.107.181486]

10 Hom J, Dankbaar JW, Soares BP, Schneider T, Cheng SC, Bredno J, Lau BC, Smith W, Dillon WP, Wintzenmark M. Blood-brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. *AJNR Am J Neuroradiol* 2011; 32: 41-48 [PMID: 20947643 DOI: 10.3174/ajnr.A2244]

11 Aviv RI, d’Estere CD, Murphy BD, Hopyan JJ, Buck B, Mallia G, Li V, Zhang L, Symons SP, Lee TY. Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. *Radiology* 2009; 250: 867-877 [PMID: 19244051 DOI: 10.1148/radiol.2503080257]

12 Trouillas P, von Kummer R. Classification and pathogenesis of cerebral hemorrhages after thrombolysis in ischemic stroke. *Stroke* 2006; 37: 556-561 [PMID: 16397182 DOI: 10.1161/01.STR.0000196942.84707.71]

13 Yang GY, Betz AL. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. *Stroke* 1994; 25: 1658-1664; discussion 1664-1665 [PMID: 8042219 DOI: 10.1161/01.STR.25.8.1658]

14 Molina CA, Alvarez-Sabín J, Montaner J, Abilleira S, Arenillas JF, Coscuela P, Romero F, Codina A. Thrombolysis-related hemorrhagic infarction: a marker of early reperfusion, reduced infarct size, and improved outcome in patients with proximal middle cerebral artery occlusion. *Stroke* 2002; 33: 1551-1556 [PMID: 12052990 DOI: 10.1161/01.STR.0000163233.13456.E5]

P- Reviewer: Starke RM, Wang DJJ
S- Editor: Qiu S
L- Editor: A
E- Editor: Li D
