Direct and residual effect of boron on growth parameters and yield of rice-wheat grown under the Inceptisol of Varanasi

Ankesh Kumar Chanchal, Satish Kumar Singh, Shriman Kumar Patel, Md Mahtab Alam and Maneesh Kumar

DOI: https://doi.org/10.22271/chemi.2020.v8.i2ad.9043

Abstract

A pot experiment was conducted in net house of the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India during kharif 2017 and rabi 2017-18 to evaluate the direct effect boron (B) fertilizers on plant growth parameters of rice and their residual effect on subsequent wheat crop grown in B deficient soil (0.42 mg kg⁻¹). The experiment comprised of 9 B levels i.e., 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 kg B ha⁻¹ in soil as borax (B:11%) along with basal dose of nitrogen, phosphorus and potassium as treatments in a completely randomized design (CRD) with three replications. The result showed that among the levels of boron the direct application of 1.5 kg B ha⁻¹ soil along with RDF to rice was most beneficial and brought highest improvement in growth parameters and on succeeding wheat crop the most beneficial and highest yield was in residual B of 3.0 kg B ha⁻¹. The yield increased due to residual effect of B was statistically lower than the direct effect of B. Boron concentration in soils ranged from 0.54 to 0.43 mg kg⁻¹ in rice and 0.29 to 1.25 mg kg⁻¹ in wheat. The plant growth attributes like plant height, Greenness index, and number of tillers along with yield were increased by the direct and residual effect of B levels. The application of boron did not increase yield grain of rice and wheat significantly over RDF. However, application of B @ 2 kg ha⁻¹ or higher doses significantly decreased the rice grain yield. In, wheat, the grain yield was at par in all the treatments. A significant residual effect of B application in rice was noticed even after the harvest of wheat crop particularly at highest doses of application.

Keywords: Direct effect, boron fertilizers, growth parameters, residual effect, boron deficient soil

Introduction

To fulfill the demand of ever-increasing population, the present day agriculture has become more intensive and is resulting in mining of available nutrients including micronutrients from soil over the years. Boron is an essential micronutrient element required by the plants for their normal physiological processes and growth. Among all essential micronutrient, boron is the only Non- metal (metalloid) in nature. Boron is associated with one or more of the following processes: cell division, calcium utilization, flowering and fruiting, carbohydrate and nitrogen metabolism, water relations, disease resistance, and catalyst for certain reactions (Berger, 1949; Sprague, 1951) [4, 43]. Boron stabilizes the structure of plasma membrane by complexing membrane compounds containing cis-diol groups such as glycoproteins and glycolipids to keep channels and enzymes at optimum conformation within the membrane. IAA levels is regulated by the B via IAA oxidase activity. Synthesis of N-bases such as uracil requires boron. Hence, needful and careful B fertilization is the key for sustainable production of crops in intensive cropping systems in Indian soil. Micronutrient deficiency in soil including that of B is distributed over a large area in Asian countries including India due to prevalent soil and environmental conditions. There is a narrow range of concentration between deficiency and toxicity of B in soil - plant systems. Boron is essential for the development of reproductive tissues and its deficiency results in low grain set or poor quality seeds and fruits. Due to widespread deficiencies of boron in soils of Uttar Pradesh (Singh et al., 2015) [39] and their direct influence on the growth and yield of cereals and other crops (Sakal et al., 1996) [37] its importance increased considerably. Deficiencies of B emerge due to intensive cropping, use of high analysis fertilizers and adoption of high yielding varieties (Rashid and Fox, 1992;"
Rafique et al., 2006. Boron is found to have its residual impact on the successive crops, it is imperative that application of B containing fertilizers are needed to exploit the production potential of crops under cropping systems and also to mitigate the deficiencies of this nutrient. Adequate B nutrition is reported to reduce incidence of some diseases in plants. Boron (B) plays an important role in the development and differentiation of sugar in plant. It helps in the normal growth of plant and in absorption of nitrogen (N) in soil and also makes up the calcium (Ca) deficiency to some extent. Boron also helps in root development, flower and pollen grain formation. Among micronutrients, zinc and boron deficiency accounts about 49% and 33% respectively in Indian soils, which reduce not only the yield but also the nutritional quality of the produce. About one-third of the cultivated soils, especially in the eastern and north-eastern states of India are deficient in B (Gupta et al., 2008). Boron deficiency is the second most important micronutrient constraint in crops after that of Zn on global scale. Its deficiency has been widely found in highly calcareous soils of Bihar, Eastern Uttar Pradesh, Tamil Nadu and Saurashtra, sandy soils of Haryana and Rajasthan, hill and sub-mountaneous soils of north Himalayan and NEH States and in red and lateritic soils of Orissa, Karnataka, Andhra Pradesh and Keken region (Behera et al., 2009). Rice-wheat is grown in the Indo-Gangatic Plains with an estimated area of 13.5 million hectares in South Asia (Jackson, 2009). Rice-wheat is a nutrient exhaustive system and nutrient removal from the soil is much higher than fertilizer input. As a result, wide spread boron deficiency occurred in rice-wheat system. In India rice is cultivated in western Costal strip, eastern Costal strip, all primary delta, Assam plains and surrounding low hills, foothills and Tarai region along the Himalayas and states like west Bangal, Bihar, Eastern Uttar Pradesh, Eastern Madhya Pradesh, North Andhra Pradesh, and Odisha. Uttar Pradesh ranks second in rice production after west Bangal in country accounting 11.5% of country production (2014-15). In Uttar Pradesh, rice is cultivated in 70 districts out of which 7 districts (Bijnour, Kushniagar, Philibheet, Chandauni, Bagpat, Ambedkar and Varanasi) are under high productivity which. The total area under rice cultivation is 56.96 M ha with average productivity of 2,042 kg/ha. Wheat is the second most cultivated food grain in the world after maize. India is the second largest producer of wheat after china. Boron is important micronutrient that is essential for plant growth and improves the production efficiency of wheat. The micro nutrients have important role in improvement of growth and yield attributes of rice as well as wheat. Among micronutrients Boron found to be essential not only for obtaining greater number of tillers and proper seed setting but it is observed playing marked role for improvement in plant height and Greenness Index (SPAD value). Plant height is considered as main attribute for indication of vegetative growth potential of plants which is an outcome of proper uptake of almost all essential nutrients. A healthy plant removes more amounts of nutrients from soil than weak plants and develops well and plant health is likely to be influenced by nutrient uptake. Keeping these facts in view, an experiment was conducted to assess the direct and residual effect of boron and on rice and wheat in terms of plant growth parameters and crop yield in boron deficient soils of eastern Uttar Pradesh.

Materials and Methods

A pot experiment was conducted in the net house of the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India. Varanasi is situated at an altitude of 80.71 meters above mean sea level and located between 25014’ and 25023’N latitude and 82056’ and 83030’E longitude and falls in a semi-arid to sub humid climate. The boron deficient soils were collected from Agricultural Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi. Soil samples were taken from each pot after completion of the pot experiment for the determination of physico-chemical properties of the soils. The initial physico-chemical properties of experimental soils (table 2) were analyzed by following standard laboratory methods (table 1). A pot experiment was conducted taking rice (ARIZE-6444) as a test crop in kharif 2017-18 and wheat (HUW468) crop in rabi season 2017-18 in the net house of Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, B.H.U., Varanasi, U.P. To conduct the pot experiment, bulk surface soil sample (0-15 cm) was collected from the Dry Land Agricultural Research Farm that was deficient in B. The soil was air dried and ground to pass through 2 mm sieve. Then processed 10 kg soil was filled in each polythene lined pots. The experiment comprised of 9 B levels i.e., 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 kg B ha-1 in soil as borax (B: 11%) along with basal dose of nitrogen, phosphorus and potassium as treatments in a completely randomized design (CRD) with three replications. Required quantities of fertilizers for 10 kg soil were calculated and applied in liquid form using urea, K2HPO4 and muriate of potash as source of N, P and K, respectively. The recommended N, P2O5 and K2O were 150, 60 and 60 kg ha-1 respectively for Rice and 120, 60 and 60 kg ha-1 for wheat respectively. Nitrogen @ 60 kg ha-1 and P2O5 and K2O at full dose was applied as basal. Left over doses of nitrogen was added in two equal splits at 30 and 60 days after transplanting in each pot. Borex (Na2B4O7.10H2O) was applied in liquid form as basal. The growth parameters were recorded at 30 days, 60 days and 90 days after transplanting/sowing the crops. All the data arising out of experiment were statistically analyzed.

Table 1: Analytical methods followed during investigation are as under.

Parameters	Procedures applied	References
pH (1:2.5)	Glass electrode (pH meter)	(Sparks 1996) [40]
EC (1:2.5)	Conductivity meter	(Sparks 1996) [42]
Texture	Hydrometer	Bouyoucos (1962) [8]
Organic C	Titrimetric method	Walkley and Black (1934) [46]
Available nitrogen	Alkaline KMnO4	Subbiah and Asija (1956) [44]
Available phosphorus	Olsen’s Method for alluvial soil	Olsen et al. (1954) [26]
Available potassium	Flame photometer	Hanway and Heidel (1952) [12]
Available boron	Azomethine-H by spectrophotometer	(Aitken et al., 1987) [12]
Table 2: Initial physicochemical properties of composite soils.

Properties	Alluvial soil
Sand (%)	55.8%
Silt (%)	18.4%
Clay (%)	25.8%
pH (1:2.5)	7.05
EC (1:2.5) (dSm⁻¹)	0.504
Organic carbon (%)	0.60
Available nitrogen (kg ha⁻¹)	112
Available phosphorus (kg ha⁻¹)	37
Available potassium (kg ha⁻¹)	157.70
Available sulphur (mg kg⁻¹)	15.43
Available boron (mg kg⁻¹)	0.42

Table 3: Treatment details.

Treatments	Rice	Wheat
T₁	Absolute control (without fertilizer)	Absolute control (without fertilizer)
T₂ Control; RDF (N: P₂O₅: K₂O @ 150:60:60 kg ha⁻¹)	Control; RDF (N: P₂O₅: K₂O @ 120:60:60 kg ha⁻¹)	Control; RDF (N: P₂O₅: K₂O @ 120:60:60 kg ha⁻¹)
T₃	RDF + 0.5 kg B ha⁻¹ soil application	RDF + Residual Effect of Boron Applied in Rice
T₄	RDF + 1.0 kg B ha⁻¹ soil application	RDF + Residual Effect of Boron Applied in Rice
T₅	RDF + 1.5 kg B ha⁻¹ soil application	RDF + Residual Effect of Boron Applied in Rice
T₆	RDF + 2.0 kg B ha⁻¹ soil application	RDF + Residual Effect of Boron Applied in Rice
T₇	RDF + 2.5 kg B ha⁻¹ soil application	RDF + Residual Effect of Boron Applied in Rice
T₈	RDF + 3.0 kg B ha⁻¹ soil application	RDF + Residual Effect of Boron Applied in Rice
T₉	RDF + 3.5 kg B ha⁻¹ soil application	RDF + Residual Effect of Boron Applied in Rice
T₁₀	RDF+4.0 kg B ha⁻¹ soil application	RDF + Residual Effect of Boron Applied in Rice

*RDF – Recommended dose of fertilizer

Results and Discussion

Plant height

The plant height at 90 DAT in rice significantly varied from 37.2 to 41.6 cm whereas in wheat it ranges between 17.28 to 25.93 cm (Table 4). The maximum plant height (41.60 cm) was recorded in treatment T₃ (RDF + 1.5 kg B ha⁻¹) at 90 DAT in rice and in wheat it was in treatment T₅ (RDF + 3 kg B ha⁻¹) 25.93 cm and both were significantly superior to their respective absolute control (T₁) and RDF (T₂). Almost similar trend were noted with respect to plant height at 30 and 60 DAT/DAS. Gour et al. (2015) [10] also found the maximum plant height in rice @ 1.5 kg B ha⁻¹. Ram et al (2014) [22] reported that plant height significantly increased by 27.7 and 21.6% with application of S, Zn, and B with RDF over control at 30 and 60 days after transplanting (DAT), respectively. Application of higher dose of B gave higher response, but indiscriminate use of B may cause toxicity in plants and may also cause deleterious effect of growth of several crops (Kushwaha et al., 1999) [23]. The middle rate of B concentration gave the highest plant height (Khalifa et al., 2009) [19]. Hosseini et al. (2007) [24] reported that high levels of B decreased plant height and dry matter production of corn (Zea mays L.). The presented results are similar with the findings of BINA (1993) [6] who reported that plant height varied significantly by application of 1 kg B ha⁻¹. In wheat, the residual effect of B on plant height showed a significant (p<0.05) response along with a fresh dose of RDF. Soylu et al. (2004) [25] and Soylu et al. (2005) [26] reported that B application considerably improved the growth and yield parameters of wheat. Many studies had reported a significant increase in plant height (Pradhan and Sarkar, 1993; Rana et al, 2005 and Patel and Ghosh, 2013) [30, 32, 27]. The reasons for increase in plant heights may be attributed to better plant nutrition and balanced interaction among all macro and micronutrients, which may result into better plant growth in terms of plant height. Furthermore, growth inhibition with B deficiency might be due to impairment of plasma membrane functions by reactive quinines or decreased levels of diffusible auxins (IAA), caused by enhanced IAA oxidize activity. The inhibition of growth of the plant in boron deficiency has been attributed to the accumulation of phenolic compounds (Shkolnik, 1974) [38]. Khan et al. (2011) [20] were found that, Plant height significantly increased with B application over control. Maximum plant height was achieved with the application of B applied to wheat at 2 kg ha⁻¹ (T₃) that was statistically non-significant with the application of B applied both to wheat and rice at the same level of B (T₅) in rice-wheat system.

Greenness index (SPAD)

Data pertaining to greenness index in leave as influenced by direct and residual effect of different doses of B with RDF, are presented in Table 4. The greenness index (30 DAT) in rice and wheat were ranged from 37.82 to 44.36 and 32.01 to 37.73 SPAD, respectively. The maximum greenness index was recorded in T₃ (RDF+1.5 kg B ha⁻¹) in rice, whereas in wheat it was in T₅ (RDF+3 kg B ha⁻¹) and the minimum was recorded in absolute control (T₁) for both the crops. Almost similar trend was observed with the leaf greenness index at 60 and 90 DAT/DAS except a slight decrease was noticed as compared to observation at 30 DAT/DAS. Chlorophyll is one of the major components of plants for photosynthesis, and relative chlorophyll content has a positive relationship with photosynthetic rate. Bhutto et al. (2013) [5] reported that application Zn and B also showed increased chlorophyll content. The chlorophyll contents in plants may increase or decrease by the effects of micronutrients level in plant and soil (Manivasgaperumal et al., 2011) [24], Muhammad et al., 2012 [23] revealed that the chlorophyll contents of rice plant increased significantly with the application of B and Zn as compared to the control. The improvement in growth attributes as a result of B application may be due to the enhanced photosynthetic and metabolic activity which leads to an increase in various plant metabolic pathways responsible for
cell division and elongation (Hatwar et al., 2003) because the chlorophyll contents increased considerably in Zn and B treated plants. The photosynthesis enhanced in the presence of B indicates that it helps to activate the synthesis of tryptophan and precursor of indole acetic acid (IAA) which is responsible for stimulation of plant growth and accumulation of biomass. The micronutrient is a component of ferredoxin and electron transport are also associated with chloroplast. The acceleration in photosynthesis is evident for better vegetative growth (Patil et al., 2010).

Number of Tillers

Data recorded on total number of tillers per pot in rice and wheat has been presented in Table 4. The total number of tillers at 90 DAT in rice ranged between 3.0 to 4.76. The maximum number of tillers (4.76) was recorded in treatment T1 (RDF+1.5kg B ha⁻¹). Residual effect of RDF + 3kg B ha⁻¹ and RDF+3.5kg B ha⁻¹ (T9, T10) increased the number of Tillers at 90 DAS wheat by 25 and 23% respectively over RDF. Almost similar trend was noted with respect to number of tiller at 30 and 60 DAS. The increase in number of tiller of rice might be attributed to balanced fertilization (Latare and Singh, 2013) [23]. Hussain et al. (2012) [15] found the maximum number of tiller per m² in the plot where B was applied in soil at 1.5 kg ha⁻¹ at flowering stage. Gour et al. (2015) [10] also found the maximum no of tiller in rice @ 1.5 kg B ha⁻¹. Hussain et al. (2012) [15] found maximum number of tillers per m² in the plot where B was applied in soil at 1.5 kg ha⁻¹ at flowering stage.

Table 4: Direct and residual effect of boron application on plant height, tiller number, and greenness Index in rice and wheat

Treatment	30 DAT/DAS	Plant Height (cm)	60 DAT/DAS	90 DAT/DAS		
Rice	Wheat	Rice	Wheat	Rice	Wheat	
T1	26.66±.6 a	12.90±.15 a	37.23±.43 bcd	17.14±.05 a	37.40±.43 bc	17.58±.60 a
T2	93.9±1.20	14.50±.48 a	39.33±.72 cde	22.03±.09 b	39.50±.64 bc	22.04±.22 b
T3	29.3±.88	15.50±.46 a	40.66±.92 c	21.97±.20 b	39.56±.34 cd	22.10±.15 b
T4	30.3±.20	6.00±.58 a	39.50±.28 de	22.07±.04 b	39.93±.21 d	22.30±.26 b
T5	31.6±.20	16.23±.39 ab	41.00±.100 c	21.37±.06 b	41.60±.83 d	22.40±.55 bc
T6	30.66±.88	16.3±.20	36.16±.32	22.30±.64	37.20±.45 b	22.47±.44 bc
T7	29.66±.88	16.40±.31	36.16±.16	22.40±.70	36.60±.26 b	22.73±.76 bc
T8	29.66±.88	20.7±.58	35.0±.76	25.90±.10	35.50±.64 b	25.93±.08 c
T9	29.6±.82	17.20±.42	34.83±.10	23.70±.26	35.30±.91 b	23.7±.26 bc
T10	27.66±.76	16.20±.99	31.6±.16	22.40±.42	32.06±.51 b	21.63±.87 b

Greenness Index (SPAD)
Rice
wheat
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10

Number of tillers pot⁻¹
Rice
wheat
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10

Rice: T1-absolute control (without fertilizer); T2-RDF (N:P₂O₅:K₂O:150:60:60 kg ha⁻¹); T3-RDF+0.5 kg B ha⁻¹; T4-RDF+1 kg B ha⁻¹; T5-RDF+1.5 kg B ha⁻¹; T6-RDF+2 kg B ha⁻¹; T7-RDF+2.5 kg B ha⁻¹; T8-RDF+3 kg B ha⁻¹; T9-RDF+3.5 kg B ha⁻¹; T10-RDF+4 kg B ha⁻¹

Wheat: T1-absolute control (without fertilizer); T2- control + RDF (N:P₂O₅:K₂O:120:60:60 kg ha⁻¹); T3 to T10- RDF⁺ Residual effect of boron.

Grain yield

Examination of data (Table 5. and Fig.1.) clearly showed that the grain yield in rice as well as wheat significantly increased. The direct application of B in rice and its residual effect on wheat, the grain yield varied from 15.33 to 44.07 g pot⁻¹ and 7.76 to 19.70 g pot⁻¹ respectively. The maximum grain yield in rice was recorded in T6 (RDF+3 kg B ha⁻¹) whereas in wheat, it was observed in T8 (RDF+3 kg B ha⁻¹). The minimum grain yield in rice and wheat was recorded in T1 (absolute control). Application of 1.5 kg B ha⁻¹ and +2kg B ha⁻¹ along with RDF (T8 and T9) was statically at par with RDF+1kg B ha⁻¹ (T5) in rice. The residual effect of RDF+3kg B ha⁻¹ (T9) was recorded the maximum (19.70g) grain yield followed by T7 and T6 which increased by 37, 26 and 24% over RDF (T2). This increase in yield of rice might be due to the fact that micronutrients exerted a beneficial effect on chlorophyll.
content in the leaves and dry matter in plant which increased the productivity. Gour et al. (2015) [19] and Ram et al. (2014) [32] reported that grain yield of rice increased with application of Zn, S and B. Similar results were also reported by Keerat-kasikorn et al. (1991) [18]. The pronounced effect of B on grain yield of rice agrees well with the findings of Jahiruddin. (1992) [17] and Abedin et al. (1994) [1]. Boron has many physiological functions in plants which include sugar transport, cell wall synthesis, reproduction, pollen tube growth, pollen germination, lignification, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism (IAA), phenol metabolism, membrane integrity, ascorbate metabolism and oxygen activation (Blevins and Lukaszewski, 1998; Cakmak and Romheld, 1997) [7, 9]. Khan et al. (2011) [20] were found that spike length significantly increased with the application of B applied to wheat alone and both to wheat and rice at 2 and 1 kg ha\(^{-1}\) over control. Maximum spike length was observed with the application of B applied to wheat at 2 kg ha\(^{-1}\) (T\(_4\)) which was statistically at par with the B applied both to wheat and rice at the same level of B (T\(_5\)). The number of spikes m\(^{-2}\) significantly increased with B application, and ranged from 361 to 449. Maximum number of spikes was recorded with the application of B applied to wheat at 2 kg ha\(^{-1}\) (T\(_4\)) that was at par with T\(_6\) and T\(_7\). The residual effect of B applied to rice at 2 kg B ha\(^{-1}\) (T\(_5\)) and 1 kg B ha\(^{-1}\) (T\(_3\)) on the following wheat gave grain yield of 3329 and 3244 kg ha\(^{-1}\) respectively. These treatments differed significantly from each other. The lowest increases over control were 18 and 15% with the residual effect of B applied to rice at 2 and 1 kg ha\(^{-1}\) respectively on the following wheat. Similarly, the application of B applied both to wheat and rice at 1 kg ha\(^{-1}\) (T\(_6\)) gave the better results as compared to B applied to wheat alone (T\(_2\)) and the residual effect of B at 1 kg ha\(^{-1}\) (T\(_8\)). Khan et al. (2006), [21] observed in field experiments that paddy yield was significantly increased by the B application, which ranged from 3.51 to 6.00 t ha\(^{-1}\) while maximum yield was observed with the cumulative application of 2 kg B ha\(^{-1}\) of rice and wheat. Rashid et al. (2007) [35] reported that 14 to 23% increase in paddy yield was achieved with the B application.

Straw yield

Data on straw yield of rice and wheat has been presented in (Table 5 and Fig.1). It is evident that straw yield of rice and wheat significantly increased with application of different doses of boron along with RDF. The straw yield in rice and wheat ranged from 24.50 to 54.35 g per pot and 18.19 to 48.65 g per pot, respectively. The maximum straw yield in rice and wheat was recorded in T\(_3\) (RDF+1.5 kg B ha\(^{-1}\)) and T\(_8\) (RDF+3 kg B ha\(^{-1}\)) while the minimum was recorded in T\(_1\) (absolute control). Application of 1.0 and 1.5 kg B ha\(^{-1}\) along with RDF (T\(_6\) and T\(_7\)) was significantly increased by 19 and 12% over RDF in rice. The residual effect of application of 3 kg B ha\(^{-1}\) (T\(_6\)) and 2.5 kg B ha\(^{-1}\) (T\(_7\)) with RDF increased straw yield by 55 and 39% over RDF (T\(_2\)) in wheat. It is evident from the results that direct application of boron and its residual effect with RDF, might have facilitated the growth of the plant, because of its involvement in many metallic enzyme system, regulatory functions and auxin production (Sachdev et al.1988) [36] increased synthesis and transport of carbohydrates to the sink (Peda Babu et al.2007) [29]. This is also in conformity with the results found by Uddin et al. (2002) [45] and Ram et al. (2014) [32].

Table 5: Direct and residual effect of boron application on grain yield in rice and wheat

Treatment	Rice yield (g pot\(^{-1}\))	Wheat yield (g pot\(^{-1}\))
T\(_1\)	15.33 ±2.23 a	7.76 ±5.3 a
T\(_2\)	38.03 ±2.58 c	14.36 ±2.05 b
T\(_3\)	39.50 ±6.19 c	15.23 ±5.2 b
T\(_4\)	36.80 ±1.67 bc	45.69 ±2.58 cd
T\(_5\)	47.79 ±4.36 de	36.80 ±1.67 bc
T\(_6\)	42.50 ±0.90 a	18.19 ±5.4 a
T\(_7\)	45.69 ±2.58 cd	31.39 ±3.93 b
T\(_8\)	45.69 ±2.58 cd	31.39 ±3.93 b
T\(_9\)	47.79 ±4.36 de	36.80 ±1.67 bc
T\(_10\)	47.79 ±4.36 de	36.80 ±1.67 bc
Effect of boron on plant growth and yield of rice. Cakmak I, 1992. \(T_1 \) to \(T_{10} \) indicate treatments. Application of \(B \) at 1.5 kg B ha\(^{-1}\) significantly decreased the rice grain yield. In wheat, the grain yield was at par in all the treatments. Application of \(B \) at 1.5 kg B ha\(^{-1}\) significantly enhanced the plant growth in rice, whereas residual effect of 3 kg ha\(^{-1}\) \(B \)应用 has significantly improved plant growth in wheat. A significant residual effect of \(B \) application was noticed even after the harvest of wheat crop particularly at highest doses of application.

References

1. Abedin MJ, Jahiruddin M, Hoque MS, Islam MR, Ahmed MU. Application of boron for improving grain yield of wheat. Progress Agriculture. 1994; 5(1):75-79.
2. Aitken RL, Jeffrey AJ, Compton BL. Evaluation of selected extractants for boron in some Queensland soils. Soil Research. 1987; 25(3):263-273.
3. Behera SK, Singh MV, Lakaria BL. Micronutrient deficiencies in India and their amelioration through fertilizers. Indian Fming. 2009; 59(2):28-31.
4. Berger KC. Boron in soil and crops. Advances in Agronomy. 1949; 1:321-351.
5. Bhutto MA, Maqsood ZT, Arif S, Riazuddin Iqbal S, Mahmood Q, Akhlaq A et al. Effect of zinc and boron fertilizer application on uptake of some micronutrients into grain of rice varieties. American-Eurasian Journal of Agricultural Environmental Sciences. 2013; 13(8):1034-1042.
6. BINA. (Bangladesh Institute of Nuclear Agriculture). Effect of different levels of boron application on the growth and yield of wheat. Ann. Rep. (1991-92). Bangladesh Inst. Nuclear Agriculture., Mymensingh, 1993, 159.
7. Blevins DG, Lukaszewski KM. Boron in plant structure and function. Annual Review of Plant Biology. 1998; 49(1):481-500.
8. Bouyoucos GJ. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal. 1962; 54(5):464-465.
9. Cakmak I, Romheld V. Boron deficiency-induced impairments of cellular functions in plants. Plant and Soil. 1997; 193(1-2):71-83.
10. Gour SP, Singh SK, Lal R, Singh RP, Bohra JS, Srivastava JP. Effect of organic and inorganic sources of plant nutrients on growth and yield of rice (\textit{Oryza sativa}) and soil fertility. Indian Journal of Agronomy. 2015; 60(2):328-331.
11. Gupta SP, Singh MV, Dixit ML. Deficiency and management of micronutrients. Indian Journal of Fertilizers. 2008; 3(5):57-60.
12. Hanway JJ, Heidel H. Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa Agriculture. 1952; 57:1-31.
13. Hatwar GP, Gondane SV, Ukrdke SM, Gahukar OV. Effect of micronutrients on growth and yield of chilli. Soil and Crop. 2003; 13:123-1254.
14. Hosseini SM, Maftoun M, Karimian N, Ronaghi A, Emam Y. Effect of zinc boron interaction on plant growth and tissue nutrient concentration of corn. Journal of Plant Nutrition. 2007; 30(5):773-781.
15. Hussain M, Khan MA, Khan M, Farooq M, Farooq S. Boron application improves growth, yield and net economic return of rice. Rice Science. 2012; 19(3):259-262.
16. Jackson MT. Revitalizing the rice wheat cropping systems of the Indo-Gangetic Plains: adaptation and adoption of resource conserving technologies in India, Bangladesh, and Nepal, Final Report No. DPPC2007-100. International Rice Research Institute, Los Banos, Philippines, 2009.
17. Jahiruddin M. Influence of boron, copper and molybdenum on grain formation in wheat. Crop Research. 1992; 5:35-42.
18. Keerati-Kasikorn P, Bell RW, Loneragan JF. Response of two peanut (\textit{Arachis hypogaea} L.) cultivars to boron and calcium. Plant and Soil. 1991; 138(1):61-66.
19. Khalifa RKHM, Shaaban SHA, Rawia A. Effect of foliar application of zinc sulfate and boric acid on growth, yield and chemical constituents of iris plants. Ozean Journal of Applied Science. 2009; 4(2):129-144.
20. Khan RU, Gurmani AR, Khan MS, Din J, Gurmani AH. Residual, direct and cumulative effect of boron application on wheat and rice yield under rice-wheat system. Sarhad Journal of Agriculture. 2011; 27(2):219-23.
21. Khan, Rahmathulla, Gurmani, Akher Husain, Ali Raza Gurmani, Muhammad Sharif Zia. Effect of boron application on rice yield under wheat rice system. International Journal of Agriculture and Biology. 2006; 8(6):805-808.
22. Kushwaha BL. Studies on response of Frenchbean to zinc, boron and molybdenum application. Indian Journal of Pulses Research. 1999; 12(1):44-48.
23. Latare AM, Singh SK. Effect of sewage sludge and fertilizers application on accumulation of heavy metals and yield of rice (\textit{Oryza sativa} L.) in an inceptisol of Varanasi. Journal of the Indian Society of Soil Science. 2013; 61(3):219-225.
24. Manivisagaperumal R, Balamurugan S, Thiagarajan G, Sekar J. Effect of zinc on germination, seedling growth and biochemical content of cluster bean (\textit{Cyanopsis tetragonoloba} (L.) Taub). Current Botany. 2011; 2(5):11-15.
25. Muhammad Arif, Shehzad MA, Bashir F, Tasneem M, Yasin G, Iqbal M. Boron, zinc and micronutrients on growth, chlorophyll contents and yield attributes in rice (Oryza sativa L.) cultivar. African Journal of Biotechnology. 2012; 11(48):10851-10858.

26. Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture; Washington, 1954.

27. Patel SK, Ghosh SKG. Effect of different levels of boron and sulphur on growth of chickpea with mustard intercropping system. Trends in Biosciences. 2013; 6(2):188-189.

28. Patil BC, Hosamani RM, Ajjappalavara PS, Naik BH, Smitha RP, Ukkund KC. Effect of foliar application of micronutrients on growth and yield components of tomato (Lycopersicon esculentum Mill.). Karnataka Journal of Agricultural Sciences, 2010, 21(3).

29. Peda Babu P, Shanti M, Rajendra Prasad B, Minhas PS. Effect of zinc on rice in rice–black gram cropping system in saline soils. Andhra Agricultural Journal. 2007; 54(1/2):47-50.

30. Pradhan AC, Sarkar SK. Growth and yield of rapeseed and mustard varieties as influenced by sulphur and boron application. Indian Agriculturist. 1993; 37(1):21-26.

31. Rafique E, Rashid A, Ryan J, Bhatti AU. Zinc deficiency in rainfed wheat in Pakistan: magnitude, spatial variability, management, and plant analysis diagnostic norms. Communications in soil science and plant analysis. 2006; 37(1-2):181-197.

32. Ram B, Singh SK, Latare AM, Kumar O. Effect of sulphur, zinc and boron application on growth and yield of hybrid rice (Oryza sativa L.). Journal of the Indian Society of Soil Science. 2014; 62(2):184-188.

33. Rana KS, Rana DS, Gautam RC. Influence of phosphorus, sulphur and boron on growth, yield, nutrient uptake and economics of Indian mustard (Brassica juncea) under rainfed conditions. Indian Journal of Agronomy. 2005; 50(4):314-316.

34. Rashid A, Fox RL. Evaluating internal zinc requirements of grain crops by seed analysis. Agronomy Journal. 1992; 84(3):469-474.

35. Rashid A, Yasin M, Ali MA, Ahmad Z, Ullah R. An alarming boron deficiency in calcareous rice soils of Pakistan: Boron use improves yield and cooking quality. Advances in Plant and Animal Boron Nutrition, 2007, 103-116.

36. Sachdev P, Deb DL, Rastogi DK. Effect of varying levels of zinc and manganese of dry matter yield and mineral composition of wheat plant at maturity. Journal of Nuclear Agriculture and Biology. 1988; 17(3):137-143.

37. Sakal R, Singh AP, Sinha RB, Bhogal NS. Twenty-five years of research on micro and secondary nutrients in soils and crops of Bihar. RAU, Pusa, Bihar, 1996, 1-208.

38. Shkolnik M. General conception of physiological role of boron in plants. Fiziol Rast Mosk, 1974.

39. Singh SK, Dey P, Singh S, Sharma PK, Singh YV, Latare AM et al. Emergence of boron and sulphur deficiency in soils of Chandauli, Mirzapur. Sant Ravidas Nagar and Varanasi districts of Eastern Uttar Pradesh. Journal of the Indian Society of Soil Science. 2015; 63(2):200-208.

40. Soylu S, Sade B, Topal A, Akgün N, Gezgin S, Hakki EE et al. Responses of irrigated durum and bread wheat cultivars to boron application in a low boron calcareous soil. Turkish Journal of Agriculture and Forestry. 2005; 29(7):275-286.