Minireview

Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments

Chang Ding and Jianzhong He*
Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576.

Summary

Microbial treatment of environmental contamination by anthropogenic halogenated organic compounds has become popular in recent decades, especially in the subsurface environments. Molecular techniques such as polymerase chain reaction-based fingerprinting methods have been extensively used to closely monitor the presence and activities of dehalogenating microbes, which also lead to the discovery of new dehalogenating bacteria and novel functional genes. Nowadays, traditional molecular techniques are being further developed and optimized for higher sensitivity, specificity, and accuracy to better fit the contexts of dehalogenation. On the other hand, newly developed high throughput techniques, such as microarray and next-generation sequencing, provide unsurpassed detection ability, which has enabled large-scale comparative genomic and whole-genome transcriptomic analysis. The aim of this review is to summarize applications of various molecular tools in the field of microbially mediated dehalogenation of various halogenated organic compounds. It is expected that traditional molecular techniques and nucleic-acid-based biomarkers will still be favoured in the foreseeable future because of relative low costs and high flexibility. Collective analyses of metagenomic sequencing data are still in need of information from individual dehalogenating strains and functional reductive dehalogenase genes in order to draw reliable conclusions.

Introduction

Pollution caused by anthropogenic halogenated organic compounds has been a serious environmental problem since the middle of the 20th century. Halogenated compounds (including chlorinated and brominated) constitute more than 50% of the top hundred species in the 2007 CERCLA Priority List of Hazardous Compounds (http://www.atsdr.cdc.gov/cercla/07list.html). In order to remove halogenated compounds from the anoxic subsurface environments, bacteria that are capable of reductive dehalogenation are promising because they can replace chlorine/bromine with hydrogen and derive energy for growth, i.e. with chlorinated/brominated ethenes, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), chlorinated/brominated phenols, chlorobenzenes, and dioxins, through a process called dehalorespiration (Shelton and Tiedje, 1984; Maymó-Gatell et al., 1997; Boyle et al., 1999; Holliger et al., 1999; Adrian et al., 2000; 2007a; Bunge et al., 2003; May et al., 2008; Ye et al., 2010; L.K. Lee et al., 2011).

Molecular detection and characterization of dehalogenating bacteria have greatly facilitated application of dehalogenating bacteria in bioremediation. Gene expression studies by reverse-transcript quantitative polymerase chain reaction (RT-qPCR), RNA-sequencing (RNA-seq) and microarray have established links between genes and their dehalogenating activities. Advances in proteomics have initiated the discovery of numerous reductive dehalogenases (RDases) and elucidation of dehalogenation mechanisms. Previously, Northern blotting was used to monitor expression of only a limited number of genes, while microarray technology is able to measure thousands of genes in one chip. For small bacterial genomes, one microarray chip can cover the whole collection of protein-coding genes, allowing a thorough screening of transcript abundance and gene regulation (West et al., 2008). Therefore, the novel techniques such as microarrays and next-generation deep genome sequencing further enable the in-depth study of dehalogenating microbes, in aspects that used to require intensive labour.
work. Figure 1 depicts various traditional and recently developed molecular techniques that are discussed in this review with their advantages/disadvantages indicated in different scenarios.

This review summarizes molecular techniques that have been utilized or will potentially be applied in studying dehalorespiration of halogenated compounds. It should be noted that there have also been studies on oxygenolytic/hydrolytic dehalogenation as well as co-metabolic reductive dehalogenation, which will not be covered in this review (Fetzner, 1998; Löffler et al., 2003; Mattes et al., 2010).

Detection and quantification of dehalogenating bacteria

Phylogenetic classification methods

The conventional 16S rRNA gene-based phylogenetic classification method is still widely used because of the large database available. Genus-specific primers targeting 16S rRNA genes are available for the detection of various dehalogenating genera, as summarized in Table 1. However, 16S rRNA gene-based techniques have their disadvantages due to some inherent drawbacks, such as low evolution rates of rRNA gene sequences, and existence of multiple 16S rRNA gene copies in bacterial genomes (Yamamoto and Harayama, 1995; Klappenbach et al., 2001; Acinas et al., 2004). Moreover, the information on 16S rRNA gene alone may not be enough to confirm the phylogeny of a species/strain. Sometimes, microbes sharing very similar 16S rRNA gene sequences (e.g. >99.5% similarity) are actually different species based on DNA–DNA hybridization results (e.g. only 41% similarity via DNA–DNA hybridization) (Fox et al., 1992). On the other hand, in the genus of Desulfitobacterium, strains previously thought to belong to different species based on 16S rRNA gene sequences were later found to be in the same species according to >80% homology in DNA–DNA hybridization (Villemur et al., 2006).

According to rrnDB as of June 2011 (Z.M.P. Lee et al., 2009), among the 1074 entries of Bacteria and Archaea, only 20.2% genomes contain single-copy of 16S rRNA gene operons and the average number of 16S rRNA operons is 3.94 copies per genome (refer to Table 2 for 16S rRNA gene copies in genomes of common dehalogenating bacteria). Multiple and sometimes heteroge-
Group	Primer	Sequence	T	Size	Specificity	Reference
Chloroflexi	Ch348F	GAG GCA GCA GCAAG AA	60	470	Chloroflexi	Fagerová et al. (2005)
	Dehal844R	GGC GGG ACA CT T AAA GGG				
Acetobacterium	Aceto572f	GGC TCA ACC GGT GAC ATG CA	59	208	Acetobacterium in KB-1	Duhamel and Edwards (2006)
	Aceto784r	ACT TAC ACC CCC AIA CAC CT				
	Aceto572f	GGC TCA ACC GGT GAC ATG CA	63	219		Grostern and Edwards (2009)
	Aceto791r	CTG CCG CAC TCA TGT TCC CC				
Anaeromyxobacter	A60-86F	(refer to the reference)				Dollhopf et al. (2005)
	A447-465R					
	60F	CGA GAA AGC CGG CA AA GGG	56.5	401		Petrie et al. (2003)
	461R	ATT CCG ACC TCG CAC AGG CT T	60	67		Thomas et al. (2009)
	Ade399Fwd	GCA AGC CCG CAC TCC TGT T				
	Ade466Rev	TCC GTC CCG ACA GTG TTT CT	60	69	2CP-like strains	Thomas et al. (2009)
	2CP444Fwd	TCG CTA ACC CAC TCC TA CGG CGG				
	2CP513Rev	CCG TGC CTC CAC AGG TA				
	F112	GTA TAC TGC CTA AGG CAC GGT	60	115		Sanford et al. (2007)
	R227	AGA CAG AGC ATG CAC GGT CCA				
Clostridium	Chis150f	AAA GGR AGA TTA ATG CCA GGT	57	540	Majority of clusters I and II Clostridium	Hung et al. (2008)
	ClostrIR	TTC TCA TCT TAC TCT ATG CAC CA				
Dehalobacter	Deb179F	TGT ATT GTC CAA GAG AGA	53	828		Schrödelburg et al. (2002)
	Deb1007R	ACT CCC ATG TCT CTA CCG				
	Dre441F	GGT AGG GAA CCG CAT CTA CGG T	58	225		Smits et al. (2004)
	Dre645R	CCT CAC CGG CAC TCC GAC CAG A	58	589		Smits et al. (2004)
	Dre1013R	CGA AGC CAC CAC TCC AT TG				
	Dheb477	GAT TGA CCG CAC TCA CAG AGG	63	170		
	Dheb647r	TAC AGC TCA TCC TTG TCG TGG TCG				
Dehalococoides	DET730/Dhc730F	GGC TTT TAC TTT GTG TCT	58	620		Bunge et al. (2003)
	DET1350/Dhc1350R	AGG GGC TGA TCC TGT GCT GAG CT GGC				
	FL2/Fhc728F/Dco728F	AAG GGC GTT TCC GAA CGG CTG CAC ACC TG TAC CGG	58	436	Dehalococoides sp. strain FL2	Löfler et al. (2000)
	FL2R/Dhc1164R	GGT TAC TTT GGG CTC GGG CGC				Hendrickson et al. (2002)*
	FpDHC1/Dhc1f	GAT GAA CCG CAG GAG CTG TCG TCC AGG	55	1377		Grostern and Edwards (2009)
	RpdHDC1777/1777R	GAT TCG CAC CAC TCC TA CGG GGC	59	260		
	FpDHC1/Dhc1f	GAT GAA CCG CAG GGC CAG GC				
	Dhc264r	GCA ATG CAC ATG CAC ACC ATG TCC GGG				
	DHE-for	AAG GCG GTT TCC TAC TCG AGG	58	443		
	DHE-rev	GCT TCG GCG GGG CAG CCG				
	FpDHC1/Dhc1f	GAT GAA CCG TTG TCG TCC CAC ACC GGG	59	258		Warrack et al. (2003)
	259r	CAG ACC AGC TA GCA TCG AA				
	FpDHC1/Dhc1f	GAT GAA CCG TTG TCG CAC ACC GGG	52	1380		
	1386r	CTT CTC CAC TCC CTT GTC GAG ACC CAG TCC				
	DeF	GTA ATT AGG ATG TGG GC	55	1373		Cupples et al. (2003)
	DeR	ACT TCC TCG CAC TTA CC				
	FpDHC1/Dhc1f	GAT GAA CCG TTG TCG TCC CAC ACC CAC GAG T				
	DhcReverse	CAC CAC GCR CAC TTR TGC GCG				
	DhcForward	GGT CAC AGG ATG TCG GGA CAG CAG CAG G	60	98	'D. ethenogenes' strain 195	Yoshida et al. (2005)
Dehalogenimonas	(Thirteen primer sets)	(refer to the reference)				

©2011 The Authors
Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Microbial Biotechnology, 5, 347–367
neous 16S rRNA gene copies in a single genome have notable inconvenience when analysing the phylogenetic sequence (Tourova, 2003) and also when querying the abundance of organisms (Fogel et al., 1999). For example, in order to query methanogen abundance in dechlorinating consortia, 16S gene copy number per genome in *Methanococcus maripaludis* has be to be estimated in order to convert measured gene copy numbers into actual cell numbers (Daprato et al., 2007).

To tackle these problems, the use of the *rpoB* gene (Dahllöf et al., 2000), the fast-evolving gene *gyrB* and the internal transcribed spacer (ITS) (Yamamoto and Harayama, 1995; Dauga, 2002; Brown and Fuhrman, 2005; Stingl et al., 2007) have been proposed to complement the 16S rRNA gene-based classification method (at least for some phylogenetic groups). The *gyrB* - and ITS-based phylogenetic analysis might serve as a promising way to determine culture’s purity and suggest phylo-

Table 1. cont.

Group	Primer Set	Primer/Sequence	T	Size	Specificity	Reference
Desulfitobacterium	Dd1/ Dsb174F	AAT ACC GNA TAA GCT TAT CCC	55	1199		El Fantroussi et al. (1997)
	Dd2/Dsb1373R	TAG CGA TTC CGA CTT CAT GT C	55	624		El Fantroussi et al. (1997)
	Dd3/Dsb460F	TCT TCA GGG AGC AAC GGC AG	55	213		Smits et al. (2004)
	Dd4/Dsb1084R	CAT GCA CCA CGT CTC TCA T	58	213		Dowideit et al. (2010)
	Dsb619R	GGA AGG GTT GAG CCC TAG GT	60	865		
	dsb434f	TAC TGT CTT CAG GGA CAC A	58	213		
	Dsb1299r	TGA GAC CAG CTT TCT CGG AT	58	967		Smits et al. (2004)
	Dsb619R	GGA AGG GTT GAG CCC TAG GT	60	865		
	Dsb406F	GTG CCA CCG AGG CTT TCG GGT	58	967		
	Dd2/Dsb1373R	TAG CTA CGG CGA CTT CAT GT C	55	995		El Fantroussi et al. (1997)
Desulfovorax	D1/Dsm59F	CAA GTC GTA CGA GAA ACA TAT C	55	423		El Fantroussi et al. (1997)
	D2/Dsm1054R	GAA GAG GAT CTT TCC ACG A	56	334		
	D3/Dsm205F	GTC TTA ACA GCA ACC GAA AAT C	55	334		
	D4/Dsm628R	CTA TTA AACA ACC GAA AAT C	56	334		
	DSMON8SF	CGG GGT RTG GAG TAA AGT GG	62	1334		
	DSMON1419R	CGA CTT CTG GTG CAG TCA RC	61	610	Desulfuromonas	Daly et al. (2000)
Desulfomona	DSV230	GGC GGT GCG TCG TAA AGT GG	61	610	Desulfuromonas	Desulfomicrobium
Desulfobacteriaceae	DSV938	GCC GAT GCA CGC CAT GTA A	61	225		Desulfomicrobium
Desulfodiscovista	DSB1180F	CCA GTC GCG TAC GAT TCC A	61	225		Desulfomicrobium
Desulfotomona	DSB1405R	GCA ACG CCT TCC AGT GGG GAT C	61	225		Desulfomicrobium
Desulfuromonas	DSV691-F	CGG GGT GCG TCG TAA AGT GG	61	225		Desulfomicrobium
	DSV826-R	GCA ACG CCT TCC AGT GGG GAT C	61	225		Desulfomicrobium
Desulfobacteriaceae	BB1F/Dsf205F	AAC CTT CGG GTC CTA CGT TCC	58	815		Löffler et al. (2000)
Desulfobacteriaceae	BB1R/Dsf1020R	AAC CTT CGG GTC CTA CGT TCC	58	815		Löffler et al. (2000)
Desulfobacteriaceae	Geo564F	AAC CTT GTG TCG GAW TTA T	57	276		Cummings et al. (2003); Sanford et al. (2007)
Desulfobacteriaceae	Geo840R	GCC ACT GCA GGG GTC AAT A	53	820		Cummings et al. (2003); Sanford et al. (2007)
Desulfobacteriaceae	Geo196F	GAA TAT CCT CTA GCT TA CTA TCC	59	412		Sung (2005)
Desulfobacteriaceae	Geo999R	GAA TAT CCT CTA GCT TA CTA TCC	59	412		Sung (2005)
Desulfobacteriaceae	Geo196F	GAA TAT CCT CTA GCT TA CTA TCC	59	412		Sung (2005)
Desulfobacteriaceae	Geo196F	GAA TAT CCT CTA GCT TA CTA TCC	59	412		Sung (2005)
Desulfobacteriaceae	Geo353R	GAA TAT CCT CTA GCT TA CTA TCC	59	412		Sung (2005)
Desulfobacteriaceae	Geo353R	GAA TAT CCT CTA GCT TA CTA TCC	59	412		Sung (2005)
Desulfobacteriaceae	Geo36F	GAA TAT CCT CTA GCT TA CTA TCC	59	412		Sung (2005)
Desulfobacteriaceae	Geo418R	GAA TAT CCT CTA GCT TA CTA TCC	59	412		Sung (2005)
Desulfobacteriaceae	Sulfurospirillum	GCT ACG CTA GCG CTT TAG GG	59	307		Löffler et al. (2005); Duhamel and Edwards (2006)

This table contains most of the primer sets for dehalogenating bacteria, but should not be considered all inclusive. Primers are genus-specific unless specified according to statements in the references. For some primers, more than one primer names are listed, separated by ‘/’.

a. There are in total seven primer sets in the study by Hendrickson and colleagues (2002), among which three sets need to raise their annealing temperatures to ensure specificity on *Dehalococcoides* according to Yan and colleagues (2009).

b. This primer set also amplifies *Anaeromyxobacter* 16S rRNA genes according to Bedard and colleagues (2007).
netic distances among strains, especially for bacterial
groups sharing very similar 16S gene sequences, e.g.
‘Dehalococcoides’ (Cheng and He, 2009).

Biomarker based-stable isotope probing (SIP)
Dependence on bacteria’s cultivability limits discovery of
some difficult-to-cultivate bacterial species that degrade
environmental pollutants. This challenge can be circum-
vented by biomarker based-SIP, which uses stable
isotope as a tracer and analyses biomarkers after cells
incorporate the labelled substrates into biomass (Radajewski
et al., 2000; Manefield et al., 2002). The available biomarkers include DNA, rRNA,
and phospholipid-derived fatty acid (Neufeld et al., 2007)
as well as mRNA and protein (Jehmlich et al., 2010; Dumont et al., 2011). SIP works well when the bacteria
in query are able to break down targeted substrates and
incorporate the labelled atoms into biomass, examples
including benzene (Herrmann et al., 2010), phenol
(Manefield et al., 2002), biphenyl (Leigh et al., 2007;
Sul et al., 2009) and nitrotoluene (Gallagher et al., 2010).

However, SIP encounters problems with reductive
dehalogenation where assimilation of atoms in the halo-
genated substrates does not usually take place (Holliger
et al., 1999). An alternate way is adding 13C-labelled
carbon source (usually 13C-acetate) together with unla-
belled halogenated compounds to the bacterial consortia,
as proposed by Kittelmann and Friedrich (2008a) in a
study of microbial community in pristine river sediment.
The underlying principle is that acetate-utilizing bacteria
should also be actively involved in the dehalogenation
process when halogenated compounds are supplied as
the major electron acceptors (Kittelmann and Friedrich,
2008a). Following this strategy, several novel bacteria
were identified, which played important roles in tetrachlo-
roethene (PCE) dechlorination, such as bacterial cluster
LC from river sediments and *Dehalobium* from tidal flat
sediments (Kittelmann and Friedrich, 2008a,b). Notably,
all the dechlorinators identified in the study of Kittelmann
and Friedrich belong to the Chloroflexi phylum. It is possible
that some dehalogenating bacteria capable of fer-
mentation were missed out by SIP since they may utilize
other fatty acids instead of acetate as a carbon source.
Therefore, the results of SIP in dehalogenation applica-
tion are of importance, but may not be considered com-
prehensive in terms of its coverage of potential dehaloge-
nating bacteria.

Quantification techniques
Quantitative real-time PCR (qPCR) and competitive PCR
(cPCR) are two powerful PCR-based nucleic acid quanti-
fication techniques. Difference in their mechanisms is that
qPCR quantifies fluorescence intensities during the ampli-
fication process while cPCR measures signals at the
amplification endpoint. In addition, applying molecular fin-
gerprinting techniques on serially diluted samples may
also provide quantitative estimates of operational taxo-
nomic units, a strategy called ‘qfingerprinting’ (Ramette,
2009).

qPCR finds its extremely versatile usage in quantifica-
tion of dehalogenating species due to its huge merits in
producing precise and fast results (Cupples, 2008) and
offering high sensitivity compared with terminal restriction
fragment length polymorphism (T-RFLP) and RFLP plus
clone sequencing (Freeborn et al., 2005; Rahm et al.,
2006a). A fast approach of synthesizing DNA standards
and controls using long oligonucleotide hybridization has
made the setup of qPCR even more convenient (David
et al., 2008). The wide applications of qPCR in dehaloge-
nation studies include: (i) establishing relationship
between species and dehalogenating activities (Lendvay

Table 2. Numbers of SSU rRNA gene copies per genome in common dehalogenating bacteria (Villemur et al., 2006; Z.M.P. Lee et al., 2009).

Genus	Species	Strain	16S	ITS	23S	5S	tRNA
Dehalococcoides	ethenogenes	195	1	0	1	1	46
Dehalococcoides	sp.	BAV1	1	0	1	1	46
Dehalococcoides	sp.	CBDB1	1	0	1	1	47
Desulfovibrio	vulgarnis	DP4	5	5	5	6	68
Desulfovibrio	desulfiticans	G20	4	4	4	4	66
Desulfovibrio	vulgarnis	Hildenborough	5	5	5	6	68
Desulfitobacterium	hafniense	YS1	4	4	4	4	64
Desulfitobacterium	hafniense	DCB-2	6	–	–	–	–
Clostridium	(Multiple)		9	8.72	9	8.81	79.16
Anaeromyxobacter	dehalogenans	2CP-C	2	2	2	2	49
Anaeromyxobacter	sp.	Fw109-5	2	2	2	2	49
Anaeromyxobacter	sp.	K	2	2	2	2	49
Enterobacter	sp.	638	7	7	7	8	84
Enterobacter	sakazakii	ATCC BAA-894	7	7	7	8	80

All data are presented as of 8 Jun 2011 from rrnDB. SSU rRNA gene copy numbers for *Clostridium* are average of 27 *Clostridium* strains.
et al., 2003; Yoshida et al., 2005; Taş et al., 2009; 2010a); (ii) examining interactions between dehalogenating bacteria and other species (Duhamel and Edwards, 2006; 2007; Cheng et al., 2010); (iii) demonstrating growth-linked dehalorespiration (He et al., 2003; Bedard et al., 2007; Grostern and Edwards, 2009; Yan et al., 2009b; L.K. Lee et al., 2011) and assessing culture purity (Sung et al., 2006); (iv) assessing spatial and temporal distributions of dehalogenating bacteria (Amos et al., 2009); and (v) analysing effects of growth factors on dehalogenating bacteria (He et al., 2007). As a standardized method, qPCR is sometimes used as a validation for other quantification methods (Adrian et al., 2007a). However, the accuracy and precision of qPCR is prone to interference such as PCR amplification inhibition and differences in PCR amplification/DNA extraction efficiency (Cupples, 2008). Holmes and colleagues (2006) successfully applied a four-gene plasmid standard to lower down the discrepancy between the 16S rRNA gene and RDase gene copy number. However, this methodology lacks flexibility, and can only increase precision of qPCR measurement but not accuracy.

cPCR is more accurate than qPCR in quantifying nucleic acids, showing good reproducibility when detecting very small variations of nucleic acid concentrations (Cupplees et al., 2003; Zentilin and Giacca, 2007). Recent modification of cPCR (namely, alternately binding probe competitive PCR) allows good fitting standard curve ($R^2 = 0.999$) and lower detection limit (10 copies μl^{-1} template DNA), specifically for Dehalococcoides (Miyata et al., 2010). cPCR has been used in enumeration of Dehalococcoides (Cupplees et al., 2003; 2004), Desulfitobacterium (Lévesque et al., 1998), Dehalobium (May et al., 2008), and the Chloroflexi bacteria group (Fagervold et al., 2007). Although cPCR is both accurate and reliable, its limitations are obvious, which mainly lie in the construction of competitor standards that need to be as close as possible to the targeted template and in the cumbersome post-PCR electrophoresis-based detection and analysis step (Zentilin and Giacca, 2007). Its throughput is limited as multiple reactions are needed to quantify one single nucleic acid fragment.

Traditional fingerprinting techniques

Various molecular fingerprinting techniques are available aiming at retrieving microbial community structure information. Cloning and sequencing reveal nearly full-length sequences of 16S rRNA genes and thus allow discrimination based on subtle differences in the gene sequences. However, cloning and sequencing are performed at the expense of tedious work and high sequencing costs especially when a large number of clones are needed. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) can separate DNA sequences differing only by one base pair (Myers et al., 1987; Muyzer and Smalla, 1998), which can be useful in the detection of Dehalococcoides strains with high identity of 16S rRNA genes (Hendrickson et al., 2002). Due to its low cost, fast results, high sensitivity (as low as 1% of total population), semi-quantitative ability, and good resolution, DGGE has been widely used in characterizing dehalogenating communities (Duhamel et al., 2002; 2004; May et al., 2008; Narihiko et al., 2010). However, DGGE/TGGE has multiple limitations (e.g. relatively short sequences of only 200–400 bp) as described by Muyzer and Smalla (1998). The choice of hypervariable regions (e.g. ‘V1, V9 and V3 – the most variable regions’ versus ‘V1 and V4 – the most heterogeneous regions in terms of melting temperature’) in 16S rRNA genes has significant impact on the resolving power of DGGE and thus the diversity implicated for the microbial community (Yu and Morrison, 2004). To further improve DGGE’s separation resolution towards complex microbial communities, Wang and He (2011) developed a new method T-RFs-2D that separates terminal restriction fragments (T-RFs) of 16S rRNA genes on a two-dimensional gel electrophoresis. When characterizing a microbial community in a complex river-sediment that dechlorinates PCBs, T-RFs-2D separated 63 DNA fragments, while traditional DGGE detected only 41 DNA fragments in the same sample.

T-RFLP is a sensitive and high-throughput molecular fingerprinting method (Marsh, 1999). It was claimed that T-RFLP detected more ‘ribotypes’ and was considerably more sensitive than DGGE (Marsh et al., 1998). However, T-RFLP has often to be combined with clone library and sequencing to identify each fragment (Bunge et al., 2008; Kittelmann and Friedrich, 2008a,b) or with in silico analysis based on database sequences (Sung et al., 2006). Moreover, because of its non-confirmative results and the emergence of other new high-throughput fingerprinting techniques such as microarray and 16S-pyrosequencing, T-RFLP has become less frequently used except in initial tentative profiling of microbial community structures and changes.

There are other fingerprinting techniques such as single-strand conformation polymorphism (SSCP), amplified ribosomal DNA restriction analysis (ARDRA), and ribosomal intergenic spacer analysis (RISA), which were summarized and compared in a review by Justé and colleagues (2008). They were also occasionally applied in the studies of microbial reductive dehalogenation, albeit at a lower frequency. It should be noted that sometimes there is discrepancy observed in ribotype identities obtained using different 16S-rRNA-gene-based techniques, which may be caused by biases in sample preparations of different techniques. For example, in a study of microbial community in a biofilm sample that aerobically degraded...
PCBs, although SSCP and clone library/sequencing detected bacteria species belonging to same genera, none of the sequences obtained by SSCP was identical to the sequences of clones obtained by PCR of 16S rRNA genes or RT-PCR of 16S rRNA (Tillmann et al., 2005).

High-throughput fingerprinting techniques

The next-generation sequencing and microarray techniques are developed that could overcome the limitations of traditional fingerprinting techniques, i.e. only limited number of DNA fragments can be displayed on the DGGE/TGGE gel or on the T-RFLP profile.

Next-generation sequencing techniques (Shendure and Ji, 2008) pushed forward genome sequencing by providing a low-cost and ultra-fast sequencing technique, which does not require cloning of sample DNA fragments. One of the sequencing techniques, pyrosequencing, was later applied in high-throughput sequencing of 16S rRNA gene fragments amplified from genomic DNA for microbial community analysis (Roesch et al., 2007). Multiplex barcoded pyrosequencing has further enhanced efficiency by pooling together primer barcoded DNA from multiple samples in a single run (Parameswaran et al., 2007; Smith et al., 2010). Zhang and colleagues (2010) successfully applied massively parallel pyrosequencing of a hypervariable region of the 16S rRNA genes on microbial samples from biofilm reactors with dechlorination activities. Dehalococcoides was found to thrive on the biofilm via dechlorinating trichloroethene (TCE), while a more diverse microbial community was observed in the biofilm fed with multiple chlorinated compounds, including sulfate-reducing bacteria (Desulfovibrio) and nitrate-reducing bacteria (Geothrix and Pseudomonas). J. Lee and colleagues (2011) retrieved over 10 000 sequences by using pyrosequencing on tidal flat microbial communities, and found Desulfuromonas and Desulfovibrio as potential PCE dechlorinators while Dehalococcoides was not detected. The pyrosequencing technique possesses a much higher resolution than conventional clone-library based approach.

Phylogenic oligonucleotide arrays (POAs) (e.g. the PhyloChips) can detect the presence and abundance of Bacteria and Archaea by hybridization between matched DNA fragments and probes designed to target prokaryotic 16S rRNA genes (Brodie et al., 2006). A recent application of PhyloChip revealed a significantly altered community structure when monitoring microbial community prior to and after the oil spillage in the Gulf of Mexico (Hazen et al., 2010). In another TCE-contaminated site, PhyloChip measurement exhibited that TCE-respiring Dehalococcoides decreased, but methane-oxidizing organisms capable of TCE co-metabolism increased in wells distant from electron donor injection location (Conrad et al., 2010). The above observation indicates that electron donor addition that aimed at enhancing reductive dechlorination might also stimulate co-metabolism of TCE. Another POA designed by Sanguin and colleagues (2006a,b) showed that microbial community structure was significantly affected by as low as 1 p.p.m. TCE in soil and the most affected microorganisms from TCE treatment were identified (Nemir et al., 2010). However, unlike the PhyloChip which can distinguish bacterial phylogeny down to sub-family level, this POA has only 742 probes and thus possesses a much lower phylogenetic resolution.

The genome-probing microarray (GPM) is another type of microarray that spots bacterial genome DNAs instead of oligonucleotides onto glass slides to query sample DNA (Bae et al., 2005). Without the aid of PCR amplification, the detection limit of GPM was 2.5 ng of sample genomic DNA even in the presence of non-target DNA, which was added to test its effect on hybridization and detection sensitivity. The detection sensitivity of GPM was 0.25% of total microbial community. GPM avoided bias caused by PCR amplification and achieved a species-specific detection; however, genomic DNA needs to be prepared for each bacterial strain thus preventing large-scale production of arrays and application of this technique. Another limitation of GPM is that uncultured microorganisms cannot be used to establish genome probes on array chips. However, this was later solved by Chang and colleagues (2008a) using digital multiple displacement amplification to amply genomes from uncultured single bacterial cells. Despite these drawbacks, GPM is believed to have advantage over traditional DNA–DNA hybridization by having higher reproducibility, a lower background, and a less time-consuming procedure (Chang et al., 2008b).

Besides the above-mentioned POA and GPM, latter sections of this review will discuss other types of microarrays, i.e. functional gene arrays (FGAs) and whole-genome arrays (WGAs).

Assessing culture purity

Obtaining pure dehalogenating cultures is important for in-depth study of their physiological properties and dehalogenation mechanisms. Culture purity can be indicated by microscopic observation of uniform cell morphology, or by observing a single 16S rRNA fragment as detected by fingerprinting techniques (Yan et al., 2009b). In addition to molecular fingerprinting methods as mentioned above to assess culture purity, nested-PCR using genus-specific primer sets (Table 1) would be a recommended approach to detect other populations possibly existing in extreme minor populations. This is due to the fact that in some seemingly pure dehalogenating cultures, there might be another strain that is actually responsible for dehalogenating but could only grow to a very low cell density.
caused by the rather low concentrations of halogenated compounds such as PCBs, PBDEs and dioxins. Colony picking from solid phase medium is an important isolation method but should not be relied on as evidence for purity of culture, since other possible taxa could be carried over during the colony picking process such as the case for coculture DPH-1 (Chang et al., 2000; Fletcher et al., 2008).

Even though all 16S rRNA gene-based techniques indicate a single 16S rRNA gene pattern in a culture, it may still be possible that multiple strains with the same 16S rRNA gene sequence exist, especially for Dehalococcoides. This is perfectly demonstrated in the isolation process of Dehalococcoides sp. strain GT (Sung et al., 2006). To cope with this challenge, RDases have been quantified together with 16S rRNA genes by qPCR based on the fact that common RDase genes such as tceA and bvcA are single copy genes in the Dehalococcoides genome (Krajmalnik-Brown et al., 2004; Sung et al., 2006). Pure culture identification must be performed carefully with appropriate molecular tools, or conclusions can be questionable. In a study of a PCE-to-ethene dechlorinating culture originated from Bitterfeld (Germany), one single Dehalococcoides strain in the culture was claimed to be responsible for all dechlorination steps from PCE to ethene, based on substrate specificity and 16S rRNA gene-based DGGE tests (Cichocka et al., 2010). However, the purity of Dehalococcoides in the culture was still questionable (unless a simultaneous quantification of RDase genes were performed), although the author attributed the random variations in 16S rRNA gene sequences of Dehalococcoides clones to method-introduced errors.

Investigation on dehalogenating activity
Identification of novel functional genes

Techniques available. Identification of novel functional genes responsible for dehalogenation is crucial in elucidating mechanisms of catalytic dehalogenation and in optimizing dehalogenation rates. In particular, dehalogenating bacteria possess RDases that catalyse the terminal electron transfer in the dehalorespiration process (Holliger et al., 1999). Ni and colleagues (1995) successfully identified the first RDase from Desulfomonile tiedjei strain DCB-1 by using chromatography separation. This RDase catalyses dechlorination of 3-chlorobenzoate to benzoate in an energy-yielding process. Up till now, more than 20 RDases have been linked to specific dehalogenation activities (Table 3), although PCB/PBDE/dioxin-related RDases remain largely undiscovered (Sakaki and Munetsuna, 2010) except for a few tentative cases (Zanaroli et al., 2010). Earlier identification of RDases was achieved by protein separation combined with in vitro activity test, and subsequent N-terminal sequencing of the enzyme. Later, after more homologue sequences were obtained, degenerate PCR primers based on conserved regions of RDases became popular in pulling out putative RDases. The rapid development of next-generation sequencing and microarray techniques also greatly aided novel RDase identification. Figure 2 depicts the common workflow of RDase gene identification.

Proteomic methods can identify RDases with no prior knowledge of the RDase gene sequences. Separation of whole cell proteins is achieved by either liquid chromatography (LC) (Magnuson et al., 1998) or polyacrylamide gel electrophoresis (PAGE) (Adrian et al., 2007b). Differential abundance of proteins in cultures with or without the targeted halogenated compounds may also give a hint of some possible candidates, since most RDase genes are inducible rather than constitutive (Cole et al., 1995; Lee et al., 2006). However, when using comparative proteomics technique to pick out potential RDases, one needs to bear in mind that differentially expressed genes might also result from the response of bacteria towards toxic substances and thus cannot guarantee a positive identification. After separation of proteins, native PAGE gel bands or LC effluent fractions containing RDase activities are collected for further analysis, e.g. SDS-PAGE (Ni et al., 1995; Magnuson et al., 1998; Maillard et al., 2003), N-terminal amino acid sequencing (Miller et al., 1998), or mass spectrometry (Thibodeau et al., 2004; Adrian et al., 2007b).

For certain bacterial species such as those within the Chloroflexi phylum, the commonly encountered problem in identification of RDases is extremely low biomass, which may be due to low energy yield and growth rate under anaerobic conditions, and may also be due to low solubility of some chloroaromatic compounds. Low biomass severely limits the application of proteomic techniques that usually require a large protein amount in order to ensure successful detection, either in gel or by chromatography (Müller et al., 2004; Adrian et al., 2007b). With accumulating RDase sequences identified (confirmed or putative) in recent years, using degenerate PCR primers to probe unknown cultures has become more popular (Table 4) (Krajmalnik-Brown et al., 2004; Regeard et al., 2004; Chow et al., 2010). To increase the chances of finding the most expressed RDases by degenerate primers, construction of clone library based on complementary DNA (cDNA) rather than on genomic DNA is helpful (Lee et al., 2008). It is impractical to cover all possible RDase sequences using one degenerate primer set as demonstrated by Wagner and colleagues (2009), who designed 13 primer sets to cover 32 RDases in Dehalococcoides sp. strain CBDB1. It is perceivable that clone libraries with multiple degenerate primer sets may retrieve more putative RDases, but work load is significantly higher.
Table 3. List of identified reductive dehalogenases and approaches employed.

RDase	Microorganism	Main substrate	Identification technique	Reference
3-CIBA–RD	Desulfitomonile tiedjei strain DCL-1	3-chlorobenzoate	LC + in vitro	Ni et al. (1995)
CprA	Desulfitobacterium chlororespirans strain Co23	3-chloro-4-hydroxybenzoate, chlorinated phenols	LC + in vitro + Amino	Löfler et al. (1996); Krasotkina et al. (2001)
PceA	Sulfurospirillum multivorans	PCE, TCE, cis-/trans-DBE	LC + in vitro + Amino	Neumann et al. (1996); Ye et al. (2010)
PceA	Dehalobacter restrictus	PCE, TCE	LC + in vitro + Amino	Schumacher et al. (1997); Maillard et al. (2003)
PceA	Dehalococcoides ethenogenes strain 195	A number of ortho-chlorinated phenols	LC + in vitro + Amino	Christiansen et al. (1998)
TceA	Dehalococcoides ethenogenes strain 195	TCE	LC + in vitro + PAGE	Magnuson et al. (1998; 2000)
PceA	Desulfitobacterium hafniense strain DCB-2	3-chloro-4-hydroxyphenylacetate	LC + in vitro + Amino	Miller et al. (1998); Ye et al. (2010)
CprA	Desulfitobacterium hafniense strain PCP-1	A number of ortho-chlorinated phenols	LC + in vitro + Amino	van de Pas et al. (1999)
PceA	Desulfitobacterium sp. strain PCE1	PCE	LC + in vitro + Amino	van de Pas et al. (2001)
CprA	Desulfitobacterium sp. strain PCE1	CI-OH-phenylacetate	LC + in vitro + Amino	van de Pas et al. (2001)
PceA	Desulfitobacterium hafniense strain TCE1	PCE, TCE	LC + in vitro + Amino	van de Pas et al. (2001)
PceC	Coculture DPH-1 (containing Desulfitobacterium hafniense strain JH1)	PCE, TCE	LC + in vitro + Amino	Okeke et al. (2001)
PceA	Desulfitobacterium sp. strain Y51	PCE, TCE	LC + in vitro + Amino	Suyama et al. (2002)
CrdA	Desulfitobacterium hafniense strain PCP-1	2,4,6-TCP, PCP	LC + in vitro + Amino + Genome	Boyer et al. (2003)
CprA5	Desulfitobacterium hafniense strain PCP-1	3,5-DCP	LC + in vitro + MS + Genome	Thibodeau et al. (2004)
VcrA	Dehalococcoides sp. strain VS	VC, cis-/trans-1,1-DCE	LC + in vitro + Amino	Müller et al. (2004)
BvcA	Dehalococcoides sp. strain BAV1	VC	Dege + qPCR	Krajmalnik-Brown et al. (2004)
CbrA	Dehalococcoides sp. strain CBDB1	Chlorinated benzenes	PAGE + in vitro + MS + Dege + T-RFLP + Genome	Adrian et al. (2007b; Wagner et al. (2009)
DcaA	Desulfitobacterium dichloroelminans strain DCA1	1,2-DCA	Dege + qPCR	Marzorati et al. (2007)
CBDBA1453	Dehalococcoides sp. strain CBDB1	1,2-3-TCB	Dege + T-RFLP + Genome	Wagner et al. (2009)
CBDBA187	Dehalococcoides sp. strain CBDB1	1,2-3-TCB	Dege + T-RFLP + Genome	Wagner et al. (2009)
CBDBA1624	Dehalococcoides sp. strain CBDB1	1,2-4-TCB	Dege + T-RFLP + Genome	Wagner et al. (2009)
WL RdhA1	Dehalobacter sp.	1,2-DCA	Dege + qPCR	Grostern and Edwards (2009)
(eight RdhAs)	Dehalococcoides culture TUT2264	Chloroethenes	Dege + qPCR	Futamata et al. (2009)
MbrA	Dehalococcoides sp. strain MB	TCE	Dege + qPCR	Chow et al. (2010)
CprA3	Desulfitobacterium hafniense strain PCP-1	PCE, TeCP, TCP	LC + in vitro + MS + Genome	Bisaillon et al. (2010)

Techniques: LC, chromatography separation; Amino, amino acid sequencing; PAGE, PAGE gel separation; Dege, degenerate primer detection; in vitro, in vitro activity test of RDases; Genome, sequenced genome of the targeted strain; MS, mass spectrometry detection of peptides; qPCR, transcriptional analysis by qPCR; T-RFLP, transcriptional analysis by T-RFLP.

Compounds: PCP, pentachlorophenol; TeCP, tetrachlorophenol; TCP, trichlorophenol; DCP, dichlorophenol; PCE, tetrachloroethene; TCE, trichloroethene; DCE, dichloroethene VC, vinyl chloride; DCA: dichloroethane; TCB, trichlorobenzene; DBE, dibromoethene; VB, vinyl bromide.
Metagenomic sequencing and whole-genome sequencing extract huge amounts of sequence information from bacterial genomes, and thus pave the way for rapid identification of novel putative RDases. For example, the complete genome sequence of *Dehalococcoides* sp. strain CBDB1 revealed 32 putative RDases, implying the enormous dehalogenating potential of this microbe (Kube et al., 2005). Recently released complete genome sequence of the novel *Chloroflexi* microbe *Dehalobium chlorocoercia* strain DF-1 by J. Craig Venter Institute revealed at least 35 putative RDases, which may be responsible for DF-1’s ability to dechlorinate PCB congeners as well as chlorinated ethenes (http://www.jcvi.org). Chan and colleagues (2010) verified activities of putative hydrolytic dehalogenases identified from five sequenced microbial genomes by expressing them in *E. coli*. The strategy of cloning, overexpression and purification of selected proteins as adopted in this study proved to be effective in screening potential functional genes from genome sequencing data.

Similar to the degenerate primers method, putative RDase genes in genome sequences can only be identified if they share a significant sequence similarity with identified RDases, thus certain novel RDases may be missed out if they are only distantly related with existing RDases. To tackle this, sequencing of bacterial transcriptome is a promising way to select possible candidates among the most abundant transcripts (Mao et al., 2008; Ansorge, 2009). In such scenarios, there will be more positive identifications because transcripts with either small sizes or low BLAST scores in public databases will still be identified as long as they are highly expressed upon the addition of halogenated compounds.

Understanding RDase structures. So far, several consensus sequences in RDases have been identified to be related to reductive dehalogenation, such as the iron–sulfur cluster binding motifs, cobalamin binding motifs, and twin-arginine signal sequence (Hölscher et al., 2004), as well as some conserved amino acid residues (e.g. tryptophan and histidine) that are potentially involved in catalysis of chloroethenes (Smidt et al., 2000). It is known that critical changes of amino acids in active sites may cause significant shift in catalytic activities as demonstrated in studies on hydrolytic dehalogenases (Pavlova et al., 2009; Beloqui et al., 2010). Obtaining such information with RDases will help in modification of RDases to achieve higher catalytic rates and broader substrate ranges.

Up to now, what we know about RDase catalysing mechanisms is still limited to the above-mentioned conserved regions. While next-generation gene sequencing
has yielded billions of base pairs of gene sequences from either isolates or environmental samples, interestingly, the boosting RDase gene pools have not brought in revolutionary insights into structure–function analysis of the RDases. One reason is that expressing RDase genes in host cells is difficult due to their instability after purification and absence of activity after overexpression (Neumann et al., 1998; Sakaki and Munetsuna, 2010). More needs to be done to overcome such difficulties when trying to produce active RDases since this is the prerequisite for site-specific mutagenesis and further identification of RDase active sites. One possible solution is to create genetically modified strains using natural dehalogenating bacteria, either by modifying genes on chromosomes or introducing expression vectors containing RDase gene sequences. This strategy takes advantage of the natural transcription/translation in these bacteria and may circumvent the difficulties in constructing a suitable expression system in the commonly used Escherichia coli host strains.

On the other hand, deficiency in analysis of metagenomic data hinders novel enzyme identification (Fernández-Arrojo et al., 2010). It should be noted that sequencing data only provide an inventory of genes rather than proofs in functionality. A significant portion (5%) of sequencing data only provide an inventory of genes rather than proofs in functionality. A significant portion (5%) of open reading frames in the newly sequenced genomic data have little homology with genes of known functions, implying for many previously undescribed genes (Har-lington et al., 2007). Also, miss-annotation exists in gene databases, especially in those without manual curation (Schnoes et al., 2009). To facilitate protein identification, semi-rational protein design that utilizes computational tools has become popular recently (Belouqui et al., 2010; Lutz, 2010). By preselecting promising target sites and limiting amino acid diversity, semi-rational protein design greatly reduces library sizes, which are usually large in

Table 4. List of degenerate primer sets for reductive dehalogenase gene identification.

Primer pair	Primer	Targeted region	Size	Detected RDase genes	Reference
1	RRF2	Twin arginine motif in strain 195	1500 – 1700	7 RDase genes in BAV1 including bvcA	Krajmalnik-Brown et al. (2004)
				7 RDases in MB including mbrA (together with RDH F1C/R1C)	Chow et al. (2010)
				13 RDase genes in CBDB1, 14 RDases in FL2	Hölscher et al. (2004)
				8 RDase genes in culture TUT2264	Futamata et al. (2009)
				4 RDase genes in environmental samples, including two novel RDases	Lee et al. (2008)
2	RDH F1C/RDH R1C	Twin arginine motif	1200	7 RDases genes in MB including mbrA (together with RRF1 and B1R)	Chow et al. (2010)
3	mem2/mem5	Upstream of ISB region of orfA in strain CBDB1	1000	One RDase gene in CBDB1	Hölscher et al. (2004)
4	fdehal/fdehal	Conserved sequence: ‘AARLFAG(D/S)(L/S)VG’	750 – 900	Two known pceA, one new RDase gene in Desulfotobacterium sp. dcaA in Desulfotobacterium dichloroeliminans strain DCA1	Regear et al. (2004)
	ceRD2L/ceRD2S	Conserved sequence: ‘C(V/E)AVCP’	500	7 RDase genes (together with RRF2/ RD7r)	Marzorati et al. (2006; 2007)
	RD7r	Conserved sequence: ‘C(V/E)AVCP’	500	Two new RDase genes in D. restrictus, one new RDase in S. multivorans	Regard et al. (2004)
	ceRD2L/ceRD2S/RD7r	Conserved sequence: ‘AARLFAG(D/S)(L/S)VG’	500	One new RDase gene in CBDB1	Hölscher et al. (2004)
		Conserved sequence: ‘P(D/T)KPI(D/K)(A/F)G’	500	Two RDase genes in strain DCA1	Edp-Nik et al. (2010)
		No amplicons	500	No amplicons	Regard et al. (2004)
7	RD4f/RD4r/RD5f	Twin arginine motif in strain 195	1000	Two new RDase genes in S. multivorans	Chow et al. (2010)
8	RRF2	Conserved sequence: ‘C(V/E)AVCP’	450	Two RDase genes in a 2-bromophenol-degrading consortium	Rhee et al. (2003)
9	Dhu1350r	Highly conserved ISB region	350	Two RDase genes in a 2-bromophenol-degrading consortium	Rhee et al. (2003)
10	Dhar1000f	Highly conserved iron–sulfur cluster binding motifs	350	No amplicons	Kittelmann and Friedrich (2008b)
		Conserved regions in several known pceA genes	330	Two pceA genes	Kimoto et al. (2010)
Monitoring dehalogenating activities

Biomarkers indicating dehalogenating activities. Traditionally, the most evident sign for dehalogenation activity is direct monitoring of microbial degradation of substrates in situ (Kjellerup et al., 2008). However, biomarker-based techniques (e.g. DNA, mRNA, protein and phospholipid) are mainstream detection methods due to their high sensitivity (White et al., 2005; Lee et al., 2008; Futamata et al., 2009; Lu et al., 2009; Werner et al., 2009). DNA fragments such as 16S rRNA genes (Lu et al., 2009) or functional genes of dehalogenating bacteria indicate dehalogenating potential but are only indirectly related to dehalogenating activity because: (i) quantification of cell numbers (16S rRNA gene copies) often does not reflect the actual physiological state of the microbial community (Röling, 2007), as shown by the discrepancy between dehalogenating bacteria cell counts and in situ activity (Freeborn et al., 2005; Ritalahti et al., 2010); and (ii) functional genes may be present but not expressed at all, or targeted functional genes do not cover the entire group of genes with similar functions, since the current RDase database is far from complete (Ritalahti et al., 2010).

In view of the limitation of gene copy numbers, it is recommended to monitor gene expression (mRNA abundance) in order to assess in situ dehalogenation activity, using techniques such as RT-qPCR and microarrays. To account for mRNA loss during sample preparation, the addition of exogenous internal reference mRNA substantially improved the quantification accuracy for laboratory cultures (Johnson et al., 2005; Futamata et al., 2009). Transcripts of key functional genes such as RDase genes were found to correlate with active dechlorination of chlorinated ethenes (Lee et al., 2006; Futamata et al., 2009). For example, Wagner and colleagues (2009) adopted an innovative T-RFLP method to monitor the expression of all 32 RDases in strain CBDB1 genome, which is less labour-intensive and more cost-effective. However, because of primer degeneracy, certain level transcripts were not successfully amplified. Moreover, primer degeneracy also leads to biased PCR amplification among different RDase transcripts, making this method only semi-quantitative. Nevertheless, T-RFLP seems promising for simultaneous monitoring of gene homologues other than 16S rRNA genes as long as suitable primer sets are available. Besides tracking the RDase transcripts, some other key genes (e.g. hydrogenase genes) in the respiratory chain may also be monitored for assessing microbial activities (Rahm et al., 2006b; Rahm and Richardson, 2008a,b; Rowe et al., 2008). It is noteworthy to point out that under certain stress conditions (e.g. elevated temperature and presence of oxygen), expression of functional genes may be upregulated but the corresponding microbial activity does not elevate simultaneously (Amos et al., 2008; Fletcher et al., 2011).

Proteins translated from mRNA are more confirmative evidence for dehalogenating activities because specific RDases directly catalyse the transformation of halogenated compounds. However, protein biomarkers are less utilized compared with nucleic acids because of lack of convenient and sensitive method for their detection and identification. Based on available Dehalococcoides genome annotation, mass spectrometry can identify specific peptides matching several respiratory enzymes (e.g. hydrogenases, formate dehydrogenase and several strain-specific RDases) present in active dechlorinating cultures, which may be used as biomarkers in environmental samples (Morris et al., 2006; 2007; Fung et al., 2007). However, conventional mass-spectrometry-based proteomic analyses are susceptible to contaminating proteins, and can only be carried out in less complex systems, or in membrane-associated cell fractions (Morris et al., 2007). Werner and colleagues (2009) introduced a highly selective and sensitive protein identification method in the detection of specific proteins in a complex environment. This method, referred to as multiple-reaction monitoring mass spectrometry, is able to quantify as low as 5 fmol peptide and requires protein from merely 1.4×10^5 Dehalococcoides cells for analysis.

Transcriptomic analysis by microarray and next-generation sequencing. The construction of microarray and next-generation sequencing techniques has turned high-throughput transcriptomic analysis into reality (Schena et al., 1995; Wang et al., 2009). Metabolism of key dechlorinators such as ‘Dehalococcoides ethenogenes’ strain 195 is of constant interest to researchers. A WGA was designed to cover >99% of the predicted protein-coding sequences for strain 195, based on which a series of studies were performed to query its metabolic pathways (Johnson et al., 2008; 2009; West et al., 2008; Tang et al., 2009). Using this array, changes in the strain 195 transcriptome were captured and linked to availability of growth factors such as corrinoid cofactor, electron acceptor, electron donor, carbon source and nitrogen source (Johnson et al., 2008; 2009; P.K.H. Lee et al., 2009). When targeting on genomic DNA rather than mRNA, comparative genomics by using WGAs have yielded interesting results in analysing intraspecies genome mutations among Dehalococcoides (West et al., 2008; P.K.H. Lee et al., 2011). The above studies show that although Dehalococcoides strains are similar to each other in genomes, they differ in genes located in integrated elements or high-plasticity regions where RDase genes usually locate.
Functional gene arrays target genes involved in key metabolic processes and are used to study microbially mediated geochemical, ecological and environmental processes, such as E-FGA (McGrath et al., 2010) and GeoChip (He et al., 2010). In the GeoChip 3.0, the number of probes was increased to 27,812, covering 56,990 functional genes for carbon, nitrogen, phosphorus and sulfur cycles, energy metabolism, and notably, degradation of organic contaminants including chlorinated compounds (He et al., 2010). Both genomic DNA and cDNA from reverse transcribed RNA can be detected by GeoChip, since its probes were designed based on protein-coding gene sequences (He et al., 2010). GeoChip found its versatile usage in tracking functional microbial communities in bioremediation sites (Leigh et al., 2007; Tas¸ et al., 2009; Van Nostrand et al., 2009). An example was the study of dechlorinating community in soil samples from Ebro River (Tas¸ et al., 2009), in which new probes were designed and added to the array in order to cover all RDases in public databases. Results showed that Dehalococcoides activity varied significantly at different locations.

In recent years, sequencing of cDNA library using next-generation sequencing techniques, termed as RNA-Seq, has gained enormous attention in the study of transcriptomics (Wang et al., 2009). Comparisons of microarray and RNA-Seq are frequently made, usually in favour of RNA-Seq in view of inherent limitations of microarray techniques (Shendure, 2008; Wang et al., 2009). Nevertheless, microarray is still frequently used because of shorter time to retrieve results and reasonable cost (Agarwal et al., 2010). It is expected that with reducing sequencing costs and further improvement of protocols, RNA-Seq will gradually replace microarray in most bacterial genome-wide transcriptomic analyses (Croucher and Thomson, 2010).

Future perspective

Rapid development of molecular techniques has revolutionized the study of dehalogenation in many ways, and some basic issues need to be re-evaluated, such as choices of biomarkers, evolution of mainstream techniques and overall analysis strategies.

From nucleic acids to peptide fragments as targeted biomarkers?

It is interesting to know whether characteristic peptides will surpass DNA/RNA and become the most frequent bioremediation biomarkers in the future. There are predictions of expecting the rise of proteomics in functional microbial ecology, judging from recent research trends that incorporate more data from shotgun proteomics (Maron et al., 2007; Desai et al., 2010). However, unlike nucleic acids which can be conveniently amplified and targeted, protein detection lacks suitable amplification methods, and is limited by sophisticated instrumentations. Therefore, before fast and high-throughput protein sequencing techniques become available, genomics/transcriptomics are still the most welcome approaches we can rely on to obtain an overall picture of microbial status in situ.

From traditional low-throughput techniques to novel high-throughput techniques?

Current PCR-based quantification/fingerprinting techniques are continuously being optimized to better suit to characterize dehalogenating microbial communities, to improve coverage, specificity and sensitivity in the detection of dehalogenating bacteria. On the other hand, emerging sequencing and microarray techniques allow analysis of very complex microbial community and thorough screening of gene expression in the microbial genome, which greatly facilitate the identification of functional genes and their regulation mechanisms with decreasing costs of genome/metagenome sequencing and tailor-made microarrays. Nevertheless, relative low costs and high flexibility will still keep traditional low-throughput molecular tools important in monitoring key dehalogenating bacteria and functional genes. The two sets of techniques are perfectly complementary to each other rather than replacing one for another.

From specific microbes and genes to an integrated network?

Tas¸ and colleagues (2010b) argued an end of the so-called reductionist approaches in the studies of Dehalococcoides, which are confined to only a few selective biomarkers. Instead, they contended for a switch to a strategy aiming at the entire bioremediation system. Similar points were also raised out by Vieites and colleagues (2009) and Frias-Lopez and colleagues (2008). Although it is absolutely necessary to view the behaviour of microbes and functional genes collectively, it is still too early to move our focus from key dehalogenating bacteria and biomarkers to the holistic approaches. For example, many uncertainties and contributing factors exist in the analysis of metagenomic/metatranscriptomic sequencing data, such as miss-annotation of genes and lack of information on protein function analyses. More information is needed on functional genes and their regulation mechanisms before we can expect reliable inferences of relationship between genes and activities from next-generation sequencing data.
References

Acinas, S.G., Marcelino, L.A., Klepac-Ceraj, V., and Polz, M.F. (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186: 2629–2635.

Adrián, L., Szewczyk, U., Wecke, J., and Görisch, H. (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408: 580–583.

Adrián, L., Hansën, S.K., Fung, J.M., Görisch, H., and Zinder, S.H. (2007a) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41: 2318–2323.

Adrián, L., Rahnenführer, J., Göbom, J., and Hölscher, T. (2007b) Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 73: 7717–7724.

Agarwal, A., Koppstein, D., Rozowsky, J., Sboner, A., Habegger, L., Hillier, L.W., et al. (2010) Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays. BMC Genomics 11: 383–398.

Amos, B.K., Sung, Y., Fletcher, K.E., Gentry, T.J., Wu, W.M., Criddle, C.S., et al. (2007) Detection and quantification of Geobacter lovleyi strain S2: implications for bioremediation at tetrachloroethene- and uranium-impacted sites. Appl Environ Microbiol 73: 6899–6904.

Amos, B.K., Ritalahti, K.A., Cruz-Garcia, C., Padilla-Crespo, E., and Löfler, F.E. (2007) The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 73: 2513–2521.

Boyle, A.W., Phelps, C.D., and Young, L.Y. (1999) Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl Environ Microbiol 65: 1133–1140.

Brodie, E.L., DeSantis, T.Z., Joyner, D.C., Baek, S.M., Larsen, J.T., Andersen, G.L., et al. (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72: 6288–6298.

Brown, M.V., and Fuhrman, J.A. (2005) Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol 41: 15–23.

Bunge, M., Adrián, L., Kraus, A., Opel, M., Lorenz, W.G., Andreessen, J.R., et al. (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421: 357–360.

Bunge, M., Wagner, A., Fischer, M., Andreessen, J.R., and Lechner, U. (2008) Enrichment of a dioxin-dehalogenating Dehalococcoides species in two-liquid phase cultures. Environ Microbiol 10: 2670–2683.

Chan, W.Y., Wong, M., Guthrie, J., Savchenko, A.V., Yakunin, A.F., Pai, E.F., et al. (2010) Sequence- and activity-based screening of microbial genomes for novel dehalogenases. Microbiot Biotech 3: 107–120.

Chang, H.-W., Sung, Y., Kim, K.-H., Nam, Y.-D., Roh, S.W., Kim, M.-S., et al. (2008a) Development of microbial genome-probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells. Environ Microbiol 42: 6058–6064.

Chang, H.W., Nam, Y.D., Jung, M.Y., Kim, K.-H., Roh, S.W., Kim, M.S., et al. (2008b) Statistical superiority of genome-probing microarrays as genomic DNA–DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 75: 523–530.

Chang, Y.C., Hatsu, M., Jung, K., Yoo, Y.S., and Takamizawa, K. (2000) Isolation and characterization of a tetrachloroethene dechlorinating bacterium, Clostridium bifermentans DPH-1. J Bacteriol 43: 89: 489–491.

Cheng, D., and He, J. (2009) Isolation and characterization of Dehalococcoides’ sp. strain MB, which dechlorinates tetrachloroethene to trans-1,2-dichloroethene. Appl Environ Microbiol 75: 5910–5918.

Cheng, D., Chow, W.L., and He, J. (2010) A Dehalococcoides-containing co-culture that dechlorinates tetrachloroethene to trans-1,2-dichloroethene. ISME J 4: 88–97.

Chow, W.L., Cheng, D., Wang, S., and He, J. (2010) Identification and transcriptional analysis of trans-DCE-producing reductive dehalogenases in Dehalococcoides species. ISME J 4: 1020–1030.

Christiansen, N., Ahring, B.K., Wohlforth, G., and Diekert, G. (1998) Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfotobacterium hafniense. FEBS Lett 436: 159–162.

Cichocka, D., Nikolausz, M., Haest, P.J., and Nijenhuis, I. (2010) Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld. FEMS Microbiol Ecol 72: 297–310.
Cole, J.R., Fathepure, B.Z., and Tiedje, J.M. (1995) Tetra-
chloroethene and 3-chlorobenzoate dechlorination activi-
ties are co-induced in Desulfitomarina tiedjei DCB-1. Biodegradation 6: 167–172.

Conrad, M.E., Brodie, E.L., Radtke, C.W., Bill, M., Delwiche, M.E., Lee, M.H., et al. (2010) Field evidence for co-metabolism of trichloroethene stimulated by addition of electron donor to groundwater. Environ Sci Technol 44: 4697–4704.

Croucher, N.J., and Thomson, N.R. (2010) Studying bacterial populations: methods and applications. J Microbiol Methods 72: 1–11.

Cupples, A.M., Spormann, A.M., and McCarty, P.L. (2003) Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Environ Sci Technol 38: 4768–4774.

Cupples, A.M., Spormann, A.M., and McCarty, P.L. (2004) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69: 953–959.

Cupples, A.M., Spormann, A.M., and McCarty, P.L. (2005) Growth of Dehalococcoides populations: methods and applications. J Microbiol Methods 61: 699–706.

Cupples, A.M., Spormann, A.M., and McCarty, P.L. (2007) Comparative analysis of three tetrachloroethene to ethene dehalogenation processes. Environ Sci Technol 41: 2303–2310.

Cummings, D., Snoeyenbos-West, O., Newby, D., Nigge-
myer, A., Lovley, D., Achenbach, L., et al. (2003) Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb Ecol 46: 257–269.

Cupples, A.M. (2008) Real-time PCR quantification of Dehalococcoides populations: methods and applications. J Microbiol Methods 72: 1–11.

Cupples, A.M., Spormann, A.M., and McCarty, P.L. (2003) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69: 953–959.

Cupples, A.M., Spormann, A.M., and McCarty, P.L. (2004) Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Environ Sci Technol 38: 4768–4774.

Dahllöf, I., Baillie, H., and Kjelleberg, S. (2000) Evolution of the rpoB gene intraspecies heterogeneity. Environ Microbiol 2: 419–425.

Daly, K., Sharp, R.J., and McCarthy, A.J. (2000) Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacte-
ria. Microbiology-UK 146: 1693–1705.

Daprato, R.C., Löffler, F.E., and Hughes, J.B. (2007) Comparative analysis of three tetrachloroethene to ethene halo-
respiring consortia suggests functional redundancy. Environ Sci Technol 41: 2261–2269.

Dauga, C. (2002) Evolution of the gyrB gene and the molecu-
lar phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52: 531–547.

David, M.M., Sapkota, A.R., Simonet, P., and Vogel, T.M. (2008) A novel and rapid method for synthesizing positive controls and standards for quantitative PCR. J Microbiol Methods 73: 73–77.

Dennis, P.C., Sleep, B.E., Fulthorpe, R.R., and Liss, S.N. (2003) Phylogenetic analysis of bacterial populations in an aerobic microbial consortium capable of degrading saturation concentrations of tetrachloroethylene. Can J Micro-
biol 49: 15–27.

Desai, C., Pathak, H., and Madamwar, D. (2010) Advances in molecular and ‘omics’ technologies to gauge microbial communities and bioremediation at xenobiotic/ anthropogen contaminated sites. Bioresour Technol 101: 1558–1569.

Dollhopf, S.L., Hyun, J.-H., Smith, A.C., Adams, H.J., O’Brien, S., and Kostka, J.E. (2005) Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Appl Environ Microbiol 71: 240–246.

Dowideit, K., Scholz-Muramatsu, H., Miething-Graff, R., Vigelahn, L., Freygang, M., Dohrmann, A.B., et al. (2010) Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiol Ecol 71: 444–459.

Duhamel, M., and Edwards, E.A. (2006) Microbial composi-
tion of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 58: 538–549.

Duhamel, M., and Edwards, E.A. (2007) Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihalo-
lelimination of 1,2-dichloroethane. Environ Sci Technol 41: 2303–2310.

Duhamel, M., Wehr, S.D., Yu, L., Rizvi, H., Seepersad, D., Dworatzek, S., et al. (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36: 4193–4202.

Duhamel, M., Mo, K., and Edwards, E.A. (2004) Character-
ization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70: 5538–5545.

Dumont, M.G., Pommerenke, B., Casper, P., and Conrad, R. (2011) DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 13: 1153–1167.

El Fantroussi, S., Mahillon, J., Navez, H., and Agathos, S. (1997) Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring. Appl Environ Microbiol 63: 806–811.

Fagervold, S.K., Watts, J.E.M., May, H.D., and Sowers, K.R. (2005) Sequential reductive dechlorination of meta-
chlorinated polychlorinated biphenyl congeners in sedi-
ment microcosms by two different Chloroflexi phylotypes. Appl Environ Microbiol 71: 8085–8090.

Fagervold, S.K., May, H.D., and Sowers, K.R. (2007) Micro-
bial reductive dechlorination of Aroclor 1260 in Baltimore Harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Appl Environ Microbiol 73: 3009–3018.

Fennell, D.E., Carroll, A.B., Gossett, J.M., and Zinder, S.H. (2001) Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol 35: 1830–1839.

Fernández-Arrojo, L., Guazzaroni, M.-E., López-Cortés, N., Beloqui, A., and Ferrer, M. (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21: 725–733.

Fetzner, S. (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50: 633–657.

Fite, A., Macfarlane, G.T., Cummings, J.H., Hopkins, M.J., Kong, S.C., Furnie, E., et al. (2004) Identification and quanti-
tation of mucosal and faecal desulfovibrions using real time polymerase chain reaction. Gut 53: 523–529.
Fletcher, K.E., Ritalahti, K.M., Pennell, K.D., Takamizawa, K., and Löfler, F.E. (2008) Resolution of culture Clsostium bifermentans DPH-1 into two populations, a Clsostium sp. and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain JH1. Appl Environ Microbiol 74: 6141–6143.

Fletcher, K.E., Costanza, J., Cruz-Garcia, C., Ramaswamy, N.S., Pennell, K.D., and Löfler, F.E. (2011) Effects of elevated temperature on Dehalococcoides dechlorination performance and DNA and RNA biomarker abundance. Environ Sci Technol 45: 712–718.

Fogel, G.B., Collins, C.R., Li, J., and Brunk, C.F. (1999) Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population. Microb Ecol 38: 93–113.

Fox, G.E., Wisotzkey, J.D., and Jurtshuk, P. (1992) How Freeborn, R.A., West, K.A., Bhupathiraju, V.K., Chauhan, S., Fogel, G.B., Collins, C.R., Li, J., and Brunk, C.F. (1999) Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population. Microb Ecol 38: 93–113.

Friis-Lopez, J., Shi, Y., Tyson, G.W., Coleman, M.L., Schuster, S.C., Chisholm, S.W., et al. (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105: 3805–3810.

Fung, J.M., Morris, R.M., Adrian, L., and Zinder, S.H. (2007) Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl Environ Microbiol 73: 4439–4445.

Futamata, H., Kaiya, S., Sugawara, M., and Hiraishi, A. (2009) Phylogenetic and transcriptional analyses of a tetrachloroethene-dechlorinating ‘Dehalococcoides’ enrichment culture TUT2264 and its reductive-dehalogenase genes. Microbes Environ 24: 330–337.

Gallagher, E.M., Young, L.Y., McGuinness, L.M., and Kerkhof, L.J. (2010) Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation. Appl Environ Microbiol 76: 1695–1698.

Grostern, A., and Edwards, E.A. (2006a) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72: 7849–7856.

Grostern, A., and Edwards, E.A. (2006b) Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 72: 428–436.

Grostern, A., and Edwards, E.A. (2009) Characterization of a Dehalobacter coculture that dechlorinates 1,2-dichloroethene to ethene and identification of the putative reductive dehalogenase gene. Appl Environ Microbiol 75: 2684–2693.

Harrington, E.D., Singh, A.H., Doerks, T., Letunic, I., von Mering, C., Jensen, L.J., et al. (2007) Quantitative assessment of protein function prediction from metagenomics shotgun sequences. Proc Natl Acad Sci USA 104: 13913–13918.

Hazen, T.C., Dubinsky, E.A., DeSantis, T.Z., Andersen, G.L., Piceno, Y.M., Singh, N., et al. (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330: 204–208.

He, J., Ritalahti, K.M., Yang, K.L., Koenigsberg, S.S., and Löfler, F.E. (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424: 62–65.

He, J., Holmes, V.F., Lee, P.K.H., and Alvarez-Cohen, L. (2007) Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73: 2847–2853.

He, Z.L., Deng, Y., Van Nostrand, J.D., Tu, Q.C., Xu, M.Y., Hemme, C.L., et al. (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4: 1167–1179.

Hendrickson, E.R., Payne, J.A., Young, R.M., Starr, M.G., Perry, M.P., Fahnestock, S., et al. (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68: 485–495.

Herrmann, S., Kleinsteuber, S., Chatzinotas, A., Kuppradt, S., Lueders, T., Richnow, H.-H., et al. (2010) Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 12: 401–411.

Holliger, C., Wohlfarth, G., and Diekert, G. (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22: 383–398.

Holmes, V.F., He, J., Lee, P.K.H., and Alvarez-Cohen, L. (2006) Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl Environ Microbiol 72: 5877–5883.

Hölscher, T., Krajmalnik-Brown, R., Ritalahti, K.M., von Wintzingeroede, F., Görisch, H., Löfler, F.E., et al. (2004) Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides. Appl Environ Microbiol 70: 5290–5297.

Hung, C.H., Cheng, C.H., Cheng, L.H., Liang, C.M., and Lin, C.Y. (2008) Application of Clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community. Int J Hydrogen Energy 33: 1586–1592.

Jehmlich, N., Schmidt, F., Taubert, M., Seifert, J., Bastida, F., von Bergen, M., et al. (2010) Protein-based stable isotope probing. Nat Protocols 5: 1957–1966.

Johnson, D.R., Lee, P.K.H., Holmes, V.F., and Alvarez-Cohen, L. (2005) An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 71: 3866–3871.

Johnson, D.R., Brodie, E.L., Hubbard, A.E., Andersen, G.L., Zinder, S.H., and Alvarez-Cohen, L. (2008) Temporal transcriptomic microarray analysis of ‘Dehalococcoides ethenogenes’ strain 195 during the transition into stationary phase. Appl Environ Microbiol 74: 2864–2872.

Johnson, D.R., Nemir, A., Andersen, G.L., Zinder, S.H., and Alvarez-Cohen, L. (2009) Transcriptomic microarray analy-
sis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195. FEMS Microbiol Lett 294: 198–206.

Justé, A., Thomma, B., and Liewens, B. (2008) Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol 25: 745–761.

Kimoto, H., Suye, S., Makishima, H., Arai, J., Yamaguchi, S., Fuji, Y., et al. (2010) Cloning of a novel dehalogenase from environmental DNA. Biosci Biotechnol Biochem 74: 1290–1292.

Kittelmann, S., and Friedrich, M.W. (2008a) Identification of novel perchloroethene-respiring microorganisms in anoxic river sediment by RNA-based stable isotope probing. Environ Microbiol 10: 31–46.

Kittelmann, S., and Friedrich, M.W. (2008b) Novel uncultured Chloroflexi dechlorinate perchloroethene to trans dichloroethene in tidal flat sediments. Environ Microbiol 10: 1557–1570.

Kjellerup, B.V., Sun, X.L., Ghosh, U., May, H.D., and Sowers, K.R. (2008) Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities. Environ Microbiol 10: 1296–1309.

Klappenbach, J.A., Saxman, P.R., Cole, J.R., and Schmidt, T.M. (2001) rDB: the ribosomal RNA operon copy number database. Nucleic Acids Res 29: 181–184.

Krajmalnik-Brown, R., Hölscher, T., Thomson, I.N., Saunders, F.M., Ritalahti, K.M., and Löffler, F.E. (2004) Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl Environ Microbiol 70: 6347–6351.

Krasotkina, J., Walters, T., Maruya, K.A., and Ragsdale, S.W. (2001) Characterization of the B12r-iron–sulfur-containing reductive dehalogenase from Desulfitobacterium chlororespirans. J Biol Chem 276: 40991–40997.

Kube, M., Beck, A., Zinder, S.H., Kuhl, H., Reinhardt, R., and Adrian, L. (2005) Genome sequence of the chlorinated compound resiping bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23: 1269–1273.

Lee, L.K., Ding, C., Yang, K.L., and He, J. (2010) Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. ISME J 5: 1014–1024.

Lee, Z.M.P., Bussemra, C., and Schmidt, T.M. (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37: D489–D493.

Leigh, M.B., Pellizari, V.H., Uhl, O., Sutka, R., Rodrigues, J., Ostrom, N.E., et al. (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1: 134–148.

Lendvay, J.M., Löffler, F.E., Dollhoff, M., Aiello, M.R., Daniels, G., Fathepure, B.Z., et al. (2003) Bioreactive barriers: bioaugmentation and biostimulation for chlorinated solvent remediation. Environ Sci Technol 37: 1422–1431.

Lévesque, M.J., Beaudet, R., Bisaillon, J.G., and Villermur, R. (1998) Quantiﬁcation of Desulfitobacterium frappieri strain PCP-I and Clostridium-like strain 6 in mixed bacterial populations by competitive polymerase chain reaction. J Microbiol Methods 32: 263–271.

Löffler, F.E., Sanford, R.A., and Tiedje, J.M. (1996) Initial characterization of a reductive dehalogenase from Desulfotobacterium chlororespirans Co23. Appl Environ Microbiol 62: 3809–3813.

Löffler, F.E., Sun, Q., Li, J.R., and Tiedje, J.M. (2000) 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfovirorumonas and Dehalococcoides species. Appl Environ Microbiol 66: 1369–1374.

Löffler, F.E., Cole, J.R., Ritalahti, K.M., and Tiedje, J.M. (2003) Diversity of dechlorinating bacteria. In Dehalogenation: Microbial Processes and Environmental Applications. Häggblom, M.M., and Bossert, I.D. (eds). New York, USA: Kluwer Academic Press, pp. 53–87.

Löffler, F.E., Sanford, R.A., and Ritalahti, K.M. (2005) Enrichment, cultivation, and detection of reductively dechlorinating bacteria. Methods Enzymol 397: 77–111.

Loy, A., Kusel, K., Lehner, A., Drake, H.L., and Wagner, M. (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70: 6998–7009.

Lu, X., Wilson, J., and Kampbell, D. (2009) Comparison of an assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in the field. Environ Pollut 157: 809–815.

Lutz, S. (2010) Beyond directed evolution–semi-rational protein engineering and design. Curr Opin Biotechnol 21: 734–743.

McGrath, K.C., Mondav, R., Sintrajaya, R., Slattery, B., Schmidt, S., and Schenk, P.M. (2010) Development of an environmental functional gene microarray for soil microbial communities. Appl Environ Microbiol 76: 7161–7170.

Magnuson, J.K., Romine, M.F., Burris, D.R., and Kingsley, M.T. (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66: 5141–5147.

Lee, P.K.H., Cheng, D., Hu, P., West, K.A., Dick, G.J., Brodie, E.L., et al. (2011) Comparative genomics of two newly isolated Dehalococcoides strains and an enrichment using a genus microarray. ISME J 5: 1014–1024.
Maillard, J., Schumacher, W., Vazquez, F., Regeard, C., Hagen, W.R., and Holliger, C. (2003) Characterization of the corinoid iron–sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Appl Environ Microbiol 69: 4628–4638.

Manfield, M., Whiteley, A.S., Griffiths, R.I., and Bailey, M.J. (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68: 5367–5373.

Mao, C.H., Evans, C., Jensen, R.V., and Sobral, B.W.S. (2008) Identification of new genes in Sinorhizobium melloti using the genome sequencer FLX system. BMC Microbiol 8: 72.

Maron, P.A., Ranjard, L., Mougel, C., and Lemanceau, P. (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53: 486–493.

Marsh, T.L. (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2: 323–327.

Marsh, T.L., Liu, W.T., Forney, L.J., and Cheng, H. (1998) Beginning a molecular analysis of the eukaryal community in activated sludge. Water Sci Technol 37: 455–460.

Marzorati, M., Borin, S., Van de Pas, B.A., Smidt, H., Hagen, W.R., van der Oost, J., Neumann, A., Wohlfarth, G., and Diekert, G. (1996) Purification and characterization of the tetrachloroethene-adapted microbial communities to ex-situ biostimulation of polluted groundwater. Biodegradation 17: 41–56.

Marzorati, M., de Ferra, F., Allifranchini, E., Carpani, G., et al. (2007) A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitotobacterium dichloroelimitans strain DCA1 is linked to dehalogenation of 1,2-dichloroethane. Appl Environ Microbiol 73: 2990–2999.

Mathes, T.E., Alexander, A.K., and Coleman, N.V. (2010) Aerobic biodegradation of the chlorothenoes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34: 445–475.

May, H.D., Miller, G.S., Kjellerup, B.V., and Sowers, K.R. (2008) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74: 2089–2094.

Maymó-Gatell, X., Chien, Y.T., Gossett, J.M., and Zinder, S.H. (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1568–1571.

Miller, E., Wohlfarth, G., and Diekert, G. (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch Microbiol 169: 497–502.

Miyata, R., Adachi, K., Tani, H., Kurata, S., Nakamura, K., Tsuneda, S., et al. (2010) Quantitative detection of chlorothene-reductive bacteria Dehalococcoides spp. using alternately binding probe competitive polymerase chain reaction. Mol Cell Probes 24: 131–137.

Morris, R.M., Sowell, S., Barofsky, D., Zinder, S., and Richardson, R. (2006) Transcription and mass-spectroscopic proteomic studies of electron transport oxidoreductases in Dehalococcoides ethenogenes. Environ Microbiol 8: 1499–1509.
responsible for tetrachloroethene and chlorophenol reductive dehalogenation in *Dehalobacter* strain PCE1. *Arch Microbiol* **176**: 165–169.

Pavlova, M., Klvana, M., Prokop, Z., Chaloupkova, R., Banas, P., Otyepka, M., et al. (2009) Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. *Nat Chem Biol* **5**: 727–733.

Petrie, L., North, N.N., Dollhopf, S.L., Balkwill, D.L., and Kostka, J.E. (2003) Enumeration and characterization of iron(III)-reducing microbial communities from acidic sub-surface sediments contaminated with uranium(VI). *Appl Environ Microbiol* **69**: 7467–7479.

Radajewski, S., Ineson, P., Parekh, N.R., and Murrell, J.C. (2000) Stable-isotope probing as a tool in microbial ecology. *Nature* **403**: 646–649.

Rahm, B.G., and Richardson, R.E. (2008a) Correlation of respiratory gene expression levels and pseudo-steady-state PCE respiration rates in *Dehalococcoides* ethenogenes. *Environ Sci Technol* **42**: 416–421.

Rahm, B.G., and Richardson, R.E. (2008b) *Dehalococcoides* gene transcripts as quantitative bioindicators of tetrachloroethene, trichloroethene, and cis-1,2-dichloroethene dehalorespiration rates. *Environ Sci Technol* **42**: 5099–5105.

Rahm, B.G., Chauhan, S., Holmes, V.F., Macbeth, T.W., Sorenson, K.S.J., and Alvarez-Cohen, L. (2006a) Molecular characterization of microbial populations at two sites with differing reductive dechlorination abilities. *Biodegradation* **17**: 523–534.

Rahm, B.G., Morris, R.M., and Richardson, R.E. (2006b) Temporal expression of respiratory genes in an enrichment culture containing *Dehalococcoides* ethenogenes. *Appl Environ Microbiol* **72**: 5486–5491.

Ramette, A. (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. *Appl Environ Microbiol* **75**: 2495–2505.

Regeard, C., Maillard, J., and Holliger, C. (2004) Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes. *J Microbiol Methods* **56**: 107–118.

Rhee, S.K., Fennell, D.E., Häggblom, M.M., and Kerkhof, L.J. (2003) Detection by PCR of reductive dehalogenase motifs in a sulfidogenic 2-bromophenol-degrading consortium enriched from estuarine sediment. *FEMS Microbiol Ecol* **43**: 317–324.

Ritalahti, K.M., Hatt, J.K., Lugmayr, V., Henn, L., Petrovskis, E.A., Ogles, D.M., et al. (2010) Comparing on-site to off-site biomass collection for *Dehalococcoides* biomarker gene quantification to predict in situ chlorinated ethene detoxification potential. *Environ Sci Technol* **44**: 5127–5133.

Roesch, L.F., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K.M., Kent, A.D., et al. (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. *ISME J* **1**: 283–290.

Röling, W.F.M. (2007) Do microbial numbers count? Quantifying the regulation of biogeochemical fluxes by population size and cellular activity. *FEMS Microbiol Ecol* **62**: 202–210.
Sulling, U., Tripp, H.J., and Giovannoni, S.J. (2007) Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. *ISME J* 1: 361–371.

Sul, W.J., Park, J., Quensen, J.F., Rodrigues, J.L.M., Seliger, L., Tsoi, T.V., *et al.* (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. *Appl Environ Microbiol* 75: 5501–5506.

Sung, Y. (2005) *Isolation and Ecology of Bacterial Populations Involved in Reductive Dechlorination of Chlorinated Solvents*. Atlanta, GA, USA: School of Civil and Environmental Engineering, Georgia Institute of Technology.

Sung, Y., Ritalahti, K.M., Apkarian, R.P., and Löfler, F.E. (2009) Diversity and distribution of methanogenic environments. *Microb Biotechnol* 3: 522–531.

Taš, N., Van Eekert, M.H.A., De Vos, W.M., and Smidt, H. (2009) Tracking functional guilds: ‘Dehalococcoides’ spp. in European river basins contaminated with hexachlorobenzene. *Appl Environ Microbiol* 75: 4696–4704.

Taš, N., Heilig, H., van Eekert, M.H.A., Schraa, G., Zhou, J.Z., de Vos, W.M., and Smidt, H. (2009) Concurrent hexachlorobenzene and chloroethene transformation by endogenous dechlorinating microorganisms in the Ebro River sediment. *FEMS Microbiol Ecol* 74: 682–692.

Taš, N., Van Eekert, M.H.A., De Vos, W.M., and Smidt, H. (2010a) The little bacteria that can – diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments. *Microb Biotechnol* 3: 389–402.

Thibodeaux, J., Gauthier, A., Duguay, M., Villemur, R., Lépine, F., Juteau, P., *et al.* (2004) Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from *Dehaloalkalibacter frappieri* PCR-1. *Appl Environ Microbiol* 70: 4532–4537.

Thomas, S.H., Padilla-Crespo, E., Jardine, P.M., Sanford, R.A., and Löfler, F.E. (2009) Diversity and distribution of *Anaeromyxobacter* strains in a uranium-contaminated subsurface environment with a nonuniform groundwater flow. *Appl Environ Microbiol* 75: 3679–3687.

Tillmann, S., Strömpl, C., Timmis, K.N., and Abraham, W.-R. (2005) Stable isotope probing reveals the dominant role of *Burkholderia* species in aerobic degradation of PCBs. *FEMS Microbiol Ecol* 52: 207–217.

Tourou, T.P. (2003) Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analyses. *Microbiology* 72: 389–402.

Van Nostrand, J.D., Wu, W.M., Wu, L.Y., Deng, Y., Carley, J., Carroll, S., *et al.* (2009) GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. *Environ Microbiol* 11: 2611–2626.

Vieites, J.M., Guazzaroni, M.-E., Belouqi, A., Golyshin, P.N., and Ferrer, M. (2009) Metagenomics approaches in systems microbiology. *FEMS Microbiol Rev* 33: 236–255.

Villemur, R., Lanthier, M., Beaudet, R., and Lépine, F. (2006) The *Desulfotobacterium* genus. *FEMS Microbiol Rev* 30: 706–733.

Wagner, A., Adrian, L., Kleinsteuber, S., Andreesen, J.R., and Lechner, U. (2009) Transcription analysis of genes encoding homologues of reductive dehalogenases in ‘Dehalococcoides’ sp. strain CBDB1 by using terminal restriction fragment length polymorphism and quantitative PCR. *Appl Environ Microbiol* 75: 1876–1884.

Wang, S., and He, J. (2011) Separation of fluorescence-labelled terminal restriction fragment DNA on a twodimensional gel (T-RFs-2D) – an efficient approach for microbial consortium characterization. *Environ Microbiol* 13: 2565–2575.

Wang, Z., Gerstein, M., and Snyder, M. (2009) RNA-Seq, a revolutionary tool for transcriptomics. *Nat Rev Genet* 10: 57–63.

Watts, J.E.M., Fagervold, S.K., May, H.D., and Sowers, K.R. (2005) A PCR-based specific assay reveals a population of bacteria within the *Chloroflexi* associated with the reductive dehalogenation of polychlorinated biphenyls. *Microbiology* 151: 2039–2046.

Werner, J.J., Ptak, A.C., Rahm, B.G., Zhang, S., and Richardson, R.E. (2009) Absolute quantification of *Dehalococcoides* proteins: enzyme bioindicators of chlorinated ethene dehalorespiration. *Environ Microbiol* 11: 2687–2697.

West, K.A., Johnson, D.R., Hu, P., Desantis, T.Z., Brodie, E.L., Lee, P.K.H., *et al.* (2008) Comparative genomics of ‘Dehalococcoides ethenogenes’ 195 and an enrichment culture containing unsequenced ‘Dehalococcoides’ strains. *Appl Environ Microbiol* 74: 3533–3540.

White, D.C., Geyer, R., Peacock, A.D., Hedrick, D.B., Köningsberg, S.S., Sung, Y., *et al.* (2005) Phospholipid fatty acids and ubiquinone-8: Lipid biomarkers that may protect *Dehalococcoides* strains from free radicals. *Appl Environ Microbiol* 71: 8426–8433.

Yamamoto, S., and Harayama, S. (1995) PCR amplification and direct sequencing of *gyrB* genes with universal primers and their application to the detection and taxonomic analysis of *Pseudomonas putida* strains. *Appl Environ Microbiol* 61: 1104–1109.

Yan, J., Rash, B.A., Rainey, F.A., and Moe, W.M. (2009a) Detection and quantification of *Dehalogenimonas* and ‘Dehalococcoides’ populations via PCR-based protocols targeting 16S rRNA genes. *Appl Environ Microbiol* 75: 7560–7564.

Yan, J., Rash, B.A., Rainey, F.A., and Moe, W.M. (2009b) Isolation of novel bacteria within the *Chloroflexi* capable of reductive dechlorination of 1,2,3-trichloropropane. *Environ Microbiol* 11: 833–843.

Ye, L.D., Schillhabel, A., Bartram, S., Boland, W., and Diekert, G. (2010) Reductive dehalogenation of brominated ethenes by *Sulfurospiillum multivorans* and *Desulfotubacterium hafniense* PCE-S. *Environ Microbiol* 12: 501–509.

© 2011 The Authors

Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, *Microbial Biotechnology, 5*, 347–367
Yoshida, N., Takahashi, N., and Hiraishi, A. (2005) Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. *Appl Environ Microbiol* 71: 4325–4334.

Yu, Z., and Morrison, M. (2004) Comparisons of different hypervariable regions of *rrs* genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. *Appl Environ Microbiol* 70: 4800–4806.

Zanaroli, G., Ballo, A., Negroni, A., Daffonchio, D., and Fava, F. (2010) A *Dehalococcoides*-like bacterium and a new reductive dehalogenase are responsible for PCB dechlorination in marine sediments under *in situ* biogeochemical conditions. *J Biotechnol* 150: S270–S270.

Zentilin, L., and Giacca, M. (2007) Competitive PCR for precise nucleic acid quantification. *Nat Protoc* 2: 2092–2104.

Zhang, H.S., Ziv-El, M., Rittmann, B.E., and Krajmalnik-Brown, R. (2010) Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membrane-biofilm reactors. *Environ Sci Technol* 44: 5159–5164.