Synthesis of all Maximum Length Cellular Automata of Cell Size up to 12

Jaydeb Bhaumik
Haldia Institute of Technology, Haldia-721657, India

Abstract. Maximum length CA has wide range of applications in design of linear block code, cryptographic primitives and VLSI testing particularly in Built-In-Self-Test. In this paper, an algorithm to compute all n-cell maximum length CA-rule vectors is proposed. Also rule vectors for each primitive polynomial in $GF(2^n)$ to $GF(2^{12})$ have been computed by simulation and they have been listed. Programmable rule vectors based maximum length CA can be used to design cryptographic primitives.

Keyword Linear hybrid maximum length CA, Rule vectors, primitive polynomial

1 Introduction

A Cellular Automata (CA) consist of a number of cells arranged in a regular manner. Each cell consists of a storage element (D flip-flop) and a combinational logic implementing the next-state function. CA is universally accepted as a very good generator of pseudo random sequences. It is also very well suited for VLSI design due to its regular structure. If the combinational logic of a CA cell only involves XOR logic, then it is called a linear CA. For a three neighborhood one dimensional CA, the combinational logic implementing the next state is $s_i(t + 1) = f(s_{i-1}(t), s_i(t), s_{i+1}(t))$. Where $s_i(t)$ is the output state of the ith cell at tth time step. $s_{i-1}(t)$ and $s_{i+1}(t)$ are the output states of left and right neighbors of ith cell and f denotes the local transition function realized with a combinational logic and is known as a rule of the CA. A CA is said to be hybrid if the rules of different cells vary. An n-cell maximum length CA is characterized by the presence of a cycle of length $2^n - 1$ with all non-zero states. In case of a maximum length CA, it has a characteristic polynomial which is primitive. CA-rules 90 and 150 have been considered. The combinational logic for rule 90 and rule 150 are as follows.

Rule 90 : $s_i(t + 1) = s_{i-1}(t) \oplus s_{i+1}(t)$
Rule 150 : $s_i(t + 1) = s_{i-1}(t) \oplus s_i(t) \oplus s_{i+1}(t)$
where $s_i(t)$ is the output state of the ith cell at time t.

Efficient characterization of 1D CA based on matrix algebra and its application in error correcting codes, cryptography and VLSI testing is available in [3]. The characteristic matrix of a linear CA operating over $GF(2)$ is a matrix
that describes the behavior of the CA. We can calculate the next state of the
CA by multiplying the characteristic matrix by the present state of the CA. A
characteristic matrix is constructed as: $T[i,j] = 1$, if the next state of the
i_{th}
cell depends on the j_{th} cell and $T[i,j] = 0$, otherwise.

Only one rule vector for each n-length CA has been provided in [3]. A new
architectural design of CA-based codec based on linear maximum length CA
has been proposed in [5]. In [2] authors proposed an algorithm for determining
minimal cost n-cell maximum length CA of degree up to 500. Programmable rule
vectors based linear maximum length CA has many applications in the design of
cryptographic primitives. In [4] one such application has been mentioned, where
programmable linear maximum length CA has been used to design an integrated
scheme for both error correction and message authentication. Therefore, designer
needs list of maximum length CA-rule vectors for a particular cell size.

2 Method and Result

The algorithm of determining whether a given n- cell CA has a maximum length
cycle is as follows.

1. Take $n \times n$ tridiagonal matrix with all non-zero elements are 1
2. Change main diagonal sequentially by one of the 2^n combinations
3. Compute the characteristic polynomial corresponding to the $n \times n$ con-
 structed matrix
4. Calculate the number of non-zero coefficient in the characteristic polynomial
 and if number of coefficients is even then go to step 2
5. Check the coefficients of x^n and x^0, if they are zeros then go to step 2.
6. Check if the characteristic polynomial matches with any one of the list of
 primitive polynomials.
7. If matches then corresponding main diagonal of the matrix represents the
 maximum length CA-rule vector

In Table under the caption 'CA-rule vector', ‘0’ and ‘1’ correspond to rule
90 and 150 respectively. Under caption 'Primitive poly.' the entries represent
primitive polynomial in binary format. It has been observed that mirror image
each rule vector corresponds to same primitive polynomial. For example in
8-cell CA, 00000110 and 01100000 are two rule vectors for primitive polynomial
$x^8 + x^4 + x^3 + x^2 + 1$ (100011101), where rule vectors are mirror image of each
other.
# cells	Primitive Poly.	CA-rule vector
2	111	10
3	1011, 110	100
4	10011, 1010	
5	100101, 11100	10000
6	1000011, 000110	101111
7	10000011, 1011001	01110110
	10001001, 0111010	0011011110
	10001111, 1110001	0001101111
	10010001, 1110100	0101000111
	10010111, 1110000	0010011111
	11000001, 0010000	1110111111
	11001011, 1011011	0101111110
	11010011, 1111101	0000111110
	11100001, 1001101	1010111111
	11110111, 0011110	1011001111
	11111101, 0100110	0110101111

# cells	Primitive Poly.	CA-rule vector			
8	100011101, 0000110				
	100101011, 0101111				
	100101101, 0111011				
	101001101, 0110110				
	101011111, 1001001				
	101000111, 0101110				
	110101101, 0111001				
	110100101, 1111001				
	110101011, 1111001				
	11100011, 1001011				
	11111011, 0011110				
	11111101, 0100111				
# cells	Primitive Poly.	CA-rule vector	# cells	Primitive Poly.	CA-rule vector
---------	----------------	----------------	---------	----------------	----------------
9	1011010001	0100000001	10	10001101111	0001000010
	1011011101	1010111110		10010000001	0001111111
	1011110101	0011110011		10010001011	0111010001
	1100010011	0110000110		10011000101	0001111101
	1100010101	1000110011		10011101011	0011011111
	1100011111	1000101111		10011110011	0100011111
	1100100011	1100101011		10011110011	0100011111
	1100110011	0111010001		10100001101	0101100001
	1100111111	0101111001		10100011001	0101000110
	1101001101	0110100011		10100100011	0010100110
	1101100011	0001011111		10100110011	0011010110
	1101110011	0000101111		10100111111	1111111101
	1110001011	0000001111		10100111111	1111111101
	1110011101	0001000110		10111000111	1000010110
	1110100011	0000101110		10111011011	1000010110
	1110110011	0100001001		10111010111	1000010110
	1111000101	0010011010		10111100111	1100000001
	1111010011	1001111111		1100000001	0001010110
	1111100011	0000100010		11000001011	0001010110
	1111110011	0000011110		11000010101	0001010110
	1111111011	1001101111		11000101011	1100000001
	1111111111	1001000001		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
	1111111111	0000100010		11001001011	0001010110
# cells	Primitive Poly	CA-rule vector			
---------	----------------	----------------			
10	11010110101	10111011110			
	11011000010	10000101100			
	11011010011	00110111111			
	11011011111	01100100010			
	11011111101	01111100111			
	11100011011	00110001111			
	11100011101	00111000111			
	11101000001	11010010110			
	11100110001	01100001111			
	11101000111	11000101100			
	11101010011	00011011011			
	11101010101	00110110001			
	11101011001	01010001111			
	11101100011	11000111001			
	11101110011	00111000111			
	11101110111	01001001111			
	11101111001	01100010111			
	11101111101	01100010111			
	11101111111	01100010111			
	11101111111	01100010111			
	11101111111	01100010111			
	11101111111	01100010111			
	11101111111	01100010111			
11	10001000011	10111001111			
	10001000101	10010101101			
	10001000111	10111001111			
	10001010011	01100010101			
	10001010101	01100010101			
	10001011001	00110100010			
	10001011011	01001001111			
	10001011101	01100010111			
	10001011111	01100010111			
	10001011111	01100010111			
	10001011111	01100010111			
	10001011111	01100010111			
	10001011111	01100010111			
	10001011111	01100010111			
	10001011111	01100010111			
# cells	Primitive Poly.	CA-rule vector	# cells	Primitive Poly.	CA-rule vector
---------	----------------	----------------	---------	----------------	----------------
11	101001101101	00110101110	11	1011110011101	00110101111
	101011111111	00110111100		101111101101	00110111111
	101110001101	00110111100		101111101101	00110111111
	101010010001	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
	10110101101	01101101100		101111101101	00110111111
# cells	Primitive Poly.	CA-rule vector			
---------	----------------	---------------			
11	110101011001	01001011001			
	110101100011	001010011011			
	110101101111	011110010011			
	110101110001	101110100010			
	110110100011	000011010110			
	110110101111	000010110111			
	110110110011	001011001011			
	110110111011	001000110111			
	110110111111	000010101111			
	110111001001	001011100110			
	110111010111	011110100011			
	110111101101	011110011111			
	110111100001	011110011011			
	110111110111	011110011011			
	111000000010	100001000010			
	111000011101	001100111111			
	111001000001	011011001011			
	111001001001	001111011011			
	111001101011	001111011111			
	111001101101	001111011111			
	111001101111	001111011111			
	111010010001	111000000011			
	111010100010	101110011011			
	111010101001	111000000011			
	111010110101	111000000011			
	111010111001	111000000011			
	111010111101	111000000011			
	111011001001	111000000011			
	111011010001	111000000011			
	111011011001	111000000011			
	111011011101	111000000011			
	111011100001	111000000011			
	111011101001	111000000011			
	111011110001	111000000011			
	1111000010001	111000000011			
	111100010001	111000000011			
	111100011001	111000000011			
	111100011101	111000000011			
	111100100001	111000000011			
	111100101001	111000000011			
	111100110001	111000000011			
	111100111001	111000000011			
	111100111101	111000000011			
	111101000001	111000000011			
	111101001001	111000000011			
	111101010001	111000000011			
	111101011001	111000000011			
	111101100001	111000000011			
	111101101001	111000000011			
	111101110001	111000000011			
	111101111001	111000000011			
	111110000001	111000000011			
	111110001001	111000000011			
	111110010001	111000000011			
	111110011001	111000000011			
	111110100001	111000000011			
	111110101001	111000000011			
	111110110001	111000000011			
	111110111001	111000000011			
	111111000001	111000000011			
	111111001001	111000000011			
	111111010001	111000000011			
	111111100001	111000000011			
	111111101001	111000000011			
	111111110001	111000000011			
# cells	Primitive Poly.	CA-rule vector			
---------	----------------	----------------			
12	10000011010011	011011000110			
	10000011010011	10011100100101			
	10000011110111	01101001101001			
	10000011010011	00000110001001			
	10000110100011	01010010100101			
	10000110100011	00110100100110			
	10000111010111	00111010100110			
	10000111010111	11010110100110			
	10000111110111	11101010100110			
	10000111110111	11110100100110			
	10001000001111	10101010100110			
	10001001110011	10011001100110			
	10001010011111	00010110100110			
	10001010110111	11011010100110			
	10001011010111	01101001100110			
	10001011110111	00110110100110			
	10001100001111	11011010100110			
	10001101110011	10011001100110			
	10001110110111	00010110100110			
	10001110110111	11011010100110			
	10001111110111	11101010100110			
	10010000001111	10101010100110			
	10010010011011	00010110100110			
	10010011110111	00110110100110			
	10010100001111	11011010100110			
	10010110110111	01101001100110			
	10010111010111	00110110100110			
	10010111110111	11101010100110			
	10011000110111	00010110100110			
	10011010011011	00010110100110			
	10011011110111	00110110100110			
	10011100011011	11011010100110			
	10011110110111	00010110100110			
	10011111110111	11101010100110			

# cells	Primitive Poly.	CA-rule vector			
12	10011001000101	001000111101			
	10011001000101	10011001100110			
	10011001100110	00010110100110			
	10011001100110	11101010100110			
	10011001111010	01110110100110			
	10011001111010	10011001100110			
	10011010000110	00100011110110			
	10011010000110	10011001100110			
	10011010100110	00010110100110			
	10011010100110	11101010100110			
	10011010110110	00010110100110			
	10011010110110	11101010100110			
	10011010110110	00010110100110			
	10011010110110	11101010100110			
	10011011000110	00010110100110			
	10011011000110	11101010100110			
	10011011000110	00010110100110			
	10011011000110	11101010100110			
	10011011010110	00010110100110			
	10011011010110	11101010100110			
	10011011010110	00010110100110			
	10011011010110	11101010100110			
# cells	Primitive Poly.	CA-rule vector	# cells	Primitive Poly.	CA-rule vector
---------	----------------	----------------	---------	----------------	----------------
12	1011101111111	010010010001	12	1101110101011	010110101011
	1011110000001	011100000001		1110000000101	000000111111
	1100001011011	1001110010101		1110000010001	001100010111
	1100001111011	1110101010011		1110000101111	001111111111
	1100001010001	000101000010		1110000100111	010101100011
	1100001011011	000100010101		1110000101011	010101001011
	1100001110001	001100000101		1110010000111	001110010011
	1100001110111	100000111111		1110010011111	000011111111
	1100010011011	110001111001		1110010101011	001101001011
	1100010011101	001111110101		1110010111101	000011111101
	1100010100001	000000100110		1110010110101	001101000101
	1100010101011	101111111111		1110010110011	001101100011
	1100010110111	110100101111		1110010110111	001101100101
	1100010111011	011010101111		1110010111001	001101101011
	1100010111111	011011001011		1110010111111	001101101101
	1100100011111	000011111111		1110011000111	001100011101
	1100100110011	010111001001		1110011001001	110000001011
	1100100110111	101010101101		1110011001101	001101001011
	1100100111011	110010101111		1110011001111	001101001101
	1100100111111	110100111111		1110011001001	001101001111
	1100101010001	001111111010		1110011001111	001101001110
	1100101011011	011001001111		1110011010001	001101001110
	1100101011111	111010001111		1110011010101	001101010101
	1100101110001	101011001011		1110011010111	001101010100
	1100101110111	111010101111		1110011011001	001101010100
	1100101111011	111010101111		1110011011101	001101010100
	1100101111111	111010101111		1110011011111	001101010100

Conclusion In this paper a simple algorithm to compute rule vectors for \(n \)-cell maximum length CA has been introduced. Also, all maximum length CA rule vectors for cell size 2 to 12 have been computed by employing proposed algorithm and they have been tabulated. Programmable rule vectors based maximum length CA can be used to design cryptographic primitives. Since the list of all rule vectors are available so it will certainly reduce design cycle time.
References

1. B. Kar, S. Nandi, and P. P. Chaudhury, “Theory and application of cellular automata based cryptography,” *IEEE Transactions on Computers*, vol. 43, no. 12, pp. 1346-1357, Dec. 1994.

2. K. Cattell, S. Zhang, “Minimal Cost One-Dimensional Linear Hybrid Cellular Automata of Degree Through 500,” *Journal of electronic Testing: Theory and Application*, vol. 6, pp. 255-258, 1995.

3. P. P. Chaudhuri, D. Roy Chowdhury, S. Nandi and S. Chattopadhyay, Additive Cellular Automata: Theory and Applications, *IEEE Computer Society press*, California, USA, 1997.

4. J. Bhaumik and D. Roy Chowdhury, “An Integrated ECC-MAC Based on RS Code,” *Transactions on Computational Science*, vol. IV, LNCS 5430, pp. 117-135, Apr. 2009.

5. J. Bhaumik and D. Roy Chowdhury, “New Architectural Design of CA-Based Codec,” *IEEE Transactions on Very Large Scale Integration Systems*, vol. 18, no. 7, pp. 1139-1144, July 2010.