The meaning of laparoscopic procedure against inguinal hernia

Hideaki Sato (✉ shide2929@med.showa-u.ac.jp)
Showa Daigaku Koto Toyosu Byoin
https://orcid.org/0000-0002-0794-5491

Jyoji Yoshizawa
Showa Daigaku Koto Toyosu Byoin

Akihide Sugiyama
Showa Daigaku Yokohama-shi Hokubu Byoin

Tomokazu Nakagami
Showa Daigaku Koto Toyosu Byoin

Yu Watarai
Showa Daigaku Byoin

Research article

Keywords: inguinal hernia, laparoscopy, pediatrics, herniorrhaphy

DOI: https://doi.org/10.21203/rs.3.rs-63017/v1

License: ☄️ ⓘ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Laparoscopic approach, especially laparoscopic percutaneous extraperitoneal closure (LPEC) for inguinal hernia (IH) is widely spread but few studies have compared its invasiveness with that of conventional approach (POTTS). This study compared the role and invasiveness of LPEC with POTTS at our institute.

Material and methods

The records of 940 IH patients from 2014 to 2019 were analyzed on the basis of age, sex, method of surgery, pre- and post-operative diagnosis, postoperative symptoms, and complications.

Results

The POTTS group comprised 393 males, of which 44 were diagnosed with contralateral hernia (7.1%). In the LPEC group, 158 males had an average age of 3.88 years. The contralateral patent processus vaginalis (CPPV) was identified in 148 patients during operation. POTTS operation time for patients aged < 1 year was 42.7 minutes, vs 33.4 minutes for LPEC. The two groups experienced comparable paces of fever and first oral intake time; however, pain and recurrence rate were greater in the LPEC group.

Conclusion

LPEC can be performed to avoid contralateral recurrences; surgical time is reduced for patients aged < 1 year. However, the reduced invasiveness of LPEC compared to that of POTTS did not minimize postoperative symptoms or complications.

Background

Herniorrhaphy is one of the most conventional surgical procedures against inguinal hernia (IH) for pediatric surgeons. Traditionally, open surgery has been performed for IH; however, laparoscopy is currently being explored as a treatment option. Laparoscopic percutaneous extraperitoneal closure (LPEC) was first reported in 1995, and has gained popularity as being the standard treatment procedure for IH. Its benefits are: 1) confirming the contralateral patent processus vaginalis (CPPV), indicating contralateral side recurrence in the future, and 2) the cosmetic result of the process. LPEC has the disadvantage of a higher recurrence rate than in the open method; however, it has great benefits and, therefore, is widely used.

Minimally invasive surgery (MIS) describes either a small incision or an approach not involving cutting tendons or splitting muscles. The benefits include reduced pain, rapid resumption of routine activities,
and lesser tissue damage compared to traditional surgeries [11]. In pediatric surgery, LPEC is included under MIS. Comparative studies have been performed between LPEC and conventional open surgery [7–9]; however, few papers have been analyzed with respect to the invasiveness of the procedure. For the evaluation of the invasiveness, various factors have been investigated, such as operation and anesthesia times, and postoperative pain. This study aims to compare the role and invasiveness of LPEC with conventional open surgery for pediatric IH.

Methods

Study design

This multi-center study included a retrospective review of 940 patients who underwent IH repair between January 2014 to December 2019 from two independent hospitals (Showa University Koto Toyosu Hospital Children's Medical Centre, Showa University Northern Yokohama Hospital Children's Medical Centre). The Potts (POTTS) method was employed for open surgery, and LPEC was adapted to laparoscopy. In both centers, the techniques of POTTS and LPEC against IH, were presented to patients with respect to their pros and cons, who determined the method of operation. Medical records were reviewed with respect to age, sex, operative method and time, average period of the oral intake, and pre and postoperative symptoms, diagnosis and complications.

The post-operative symptoms indicating the invasiveness of the operation and anesthesia were classified as “fever up” (over 38 degrees Celsius), “pain” (needing additional painkiller administration), and “vomiting” (post-surgery). All patients who underwent operation against IH were indirectly diagnosed. Criteria for enrollment included indirect IH and associated hydrocele. Patients who underwent other procedures, like umbilicoplasty or orchidopexy, simultaneously as herniorrhaphy, were excluded. Patients were permitted oral intake at least 3 hours after operation; this was adjusted according to the condition by the nursing stuff. Patients were followed up in the outpatient clinic at 1 week and 1 month postoperatively, to assess the prevailing conditions and wound healing.

Statistical analysis and ethics

The distribution of continuous data was evaluated using the student’s t-test, and categorical variables with the Chi-square test. A p-value less than 0.05 was considered statistically significant.

There are no conflicts of interest to declare. This study protocol was approved by the Ethical Committee at Showa University. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Surgical procedures

General anesthesia

All operative procedures were performed under general anesthesia with an intra-tracheal intubation. During the operation, 4–6 µg/kg of Fentanyl was administrated intravenously. For the POTTS group, local
anesthesia comprising of 1.5–2 mg/kg of Ropivacaine was applied by the surgeon. For LPEC, Rectus Sheath Block was preoperatively applied using 1.5–2 mg/kg of Ropivacaine.

POTTS procedure

Open method for IH was performed as described by Potts et al; this is high ligation and removal of hernia sac. A skin incision was made on the lower abdominal wall, measuring approximately 1.5 cm. The external oblique aponeurosis was incised, as the fiber direction and muscle layer were split. The hernial sac was identified and divided from the testicular vessels and spermatic cord in males. High ligation was performed by the double transfixation of absorbable suture materials of size 3-0. The uterine cord was ligated together in females. The hernial sac on the distal side was explored and opened. The closure of the fascia and skin was carried out, and the incision was covered by tape and glue.

LPEC procedure

Laparoscopic method for IH was performed, as described by Takehara et al [6]. The 3-mm trocar was inserted through the umbilicus for laparoscopy; a 2-mm trocar was inserted on the right side of the abdomen for the active port using grasping forceps. Pneumoperitoneum was maintained at a pressure of 8 mmHg, with a CO₂ flow rate of 1-3 L/min. Plying a unique needle (19G LAPAHER CLOSURE®, Hakko Medical Co., Nagano, Japan), the internal inguinal ring was secured by a 2-0 non-absorbable suture, avoiding any peritoneal gap and injury of the testicular vessels and spermatic cord in males. In case the CPPV had been marked, closure should have been done at the same time. Closure of the peritoneum and fascia was performed for the umbilicus wound. Skin incision was covered by glue. In patients with hydrocele, the puncture procedure was added to the scrotum.

Results

Patient demographics are shown in Table 1. POTTS was performed on 612 patients, whereas LPEC was performed on 328. In the POTTS group, there were 393 males with an average age of 4.05 years. Patients aged < 1 year comprised 5% of the group, 1–5-year-olds were 69%, 6–10-year-olds were 23%, and over 11-year-olds were 2.4%. In the LPEC group, there were 158 males, with an average age of 3.88 years. Patients aged <1-year-old were 6%, 1–5-year-olds were 66%, 6–10-year-olds were 23%, and over 11-year-olds were 3%. Preoperatively, unilateral IH was diagnosed in 583 patients (96%) in the POTTS and 307 (93%) in LPEC groups. Bilateral IH was diagnosed preoperatively in 29 patients (4%) in POTTS and 21 (6%) in LPEC. Postoperatively, the diagnosis was unchanged in the POTTS group with 96% unilateral hernia, against 48% in the LPEC group (p<0.05); bilateral measured 4% in the POTTS group against 52% in the LPEC group, respectively (p<0.05). Therefore, 148 (45%) patients were confirmed with CPPV during operation; prophylactic ligation was performed in the LPEC group. It was found that 44 patients (7.1%) developed contralateral metachronous inguinal hernia (CMIH) in the POTTS group and none did in the LPEC group. No procedure conversion took place.
The operation time comparison for each age group is shown in Table 2. The mean operation time for patients aged <1 year was 42.7 minutes in the POTTS group, and 33.4 minutes in the LPEC group (p<0.05). Other age groups showed no significant difference of operation time between POTTS and LPEC. The anesthesia time comparison in each age group is shown in Table 2. The mean anesthesia time for patients aged 1–5 years and 6–10 years were 75.6 min and 69.8 min in the POTTS group, against 83.5 min and 76.9 min in the LPEC group, respectively (p<0.05). In addition, the mean anesthesia time was 74.6 min in the POTTS group, and 81.8 in the LPEC group (p<0.05).

The postoperative invasiveness is indicated in Table 2. There was no significant difference of the postoperative time with respect to the oral intake in total, and in each age group between POTTS and LPEC. In the <1 year group, 21% and 10% of patients suffered fever up in the POTTS and LPEC groups, respectively (p<0.05). In the patients aged 1–5-years, 11% suffered from fever up in the POTTS group, and 18% did in the LPEC group, respectively (p<0.05). There was no significant difference of fever up patients in other age groups between POTTS and LPEC. In the patients aged 6–10-years, 16% suffered pain in the POTTS group, and 25% did in the LPEC group, respectively (p<0.05).

In total, 6.6% suffered pain in the POTTS group, and 18% did in the LPEC group, respectively (p<0.05). There was no significant difference in patients suffering vomiting in various age groups between the POTTS and LPEC groups.

The postoperative complications are shown in Table 3. Wound infections were observed in 0% patients in the POTTS group, and in 1.2% in the LPEC group (p<0.05). The recurrence rate was 0.8% in the POTTS group, and 1.8% in the LPEC group (p<0.05). Hematoma in wound, scrotum swelling, and cryptorchidism were dominantly observed in the POTTS group.

Discussion

The principle of surgical treatment for pediatric IH remains high ligation of the hernia sac at the internal inguinal ring. Open herniorrhaphy is considered the gold standard and the most performed surgical procedure in pediatric IH. Several laparoscopic IH repairs have been reported over the last decade. The advantages include a clear operative field, prophylactic surgery of the contralateral side, and the prevention of injuries for vessels and the spermatic cord [12, 13]. Comparing the methods between open and laparoscopic surgery, Alzahem reported meta-analysis in 2011 using 10 comparative studies [14]. Laparoscopic techniques were associated with a trend towards a higher recurrence rate, variable operative time for repairs, and a reduction in metachronous hernia development [14]. LPEC was reported in 1995, and has gained popularity as the standard procedure for IH [6]. Operative times were found to be shorter in LPEC [7, 8]. Modified LPEC displayed a longer operative time than the open method, but no statistically significant difference was found in the recurrence rate [9]. We classified our data as per the age group; infant (< 0 year), toddler (1 to 5 years old), school child (6 to 10 years old), and adolescents (> 11 years old); operative easiness, tissue weakness, and expression of invasiveness affect the results in each group. No significant difference was reported in the operative time of the one-year-old group, but
infants displayed a shorter operative time with LPEC than with POTTS. In infants, during POTTS procedure, the adipose tissue interferes with the distinct operative field; the peritoneal hernia sac is so weak and thin that the dissection from the testicular vessels and spermatic cord require concentration rather than age. On the other hand, LPEC shows an identical operative field and management independently of age. In the present study, the anesthesia time was significantly longer in the toddler and school child groups. Pneumoperitoneum at LPEC pressure of 8–10 mmHg requires deep sedation rather than POTTS; this prompts lengthier postoperative recovery.

Another benefit of the laparoscopic method is confirming CPPV [8, 9]. There is a 5–20% chance of developing a contralateral hernia in pediatric patients [2]. Data suggest that the incidence of the contralateral metachronous inguinal hernia (CMIH) was significantly higher in the POTTS group than in the LPEC group. The propriety of this benefit is vague as CPPV is not always predictive of symptomatic CMIH. Studies reveal the risk of developing symptomatic IH with asymptomatic patent processus vaginalis [15, 16]. Accordingly, laparoscopic operation develops symptomatic inguinal hernia, at the rate of 10.5–13%. These rates are relatively low; however, further studies in elderly individuals diagnosed with indirect hemia with CPPV in childhood are required.

MIS represents a term that describes either a small incision or an approach not involving cutting tendons or splitting muscles. Some centers employing laparoscopic method for IH believe this procedure is less painful, resulting in earlier recovery and improved appearance [17]. Many studies have been carried out comparing conventional open surgery and LPEC; however, few papers have compared for circumstantial invasiveness [14]. We measured the invasiveness of operation and general anesthesia by (1) mean hours to first oral intake, (2) fever up, (3) pain, and (4) vomiting. In our results, no significant difference was observed in the mean hours to the first oral intake and vomiting after operation. This means the recovery from general anesthesia is equal in both groups. In fever up, the longer operation time in infants should cause a significantly vaster effect of fever up in the POTTS group. LPEC had significant defects on fever up in the toddler group and pain in the school age group. The age group itself affected the mental characteristics of the patient; greater post-operative invasiveness is observed in patients with LPEC. As this evaluation of invasiveness is indirect and not quantitative, a more direct and quantified method should be utilized further, such as visual analogue scale.

Comparing the postoperative complications in our data, wound infection, especially in the umbilicus port site, was appealing in patients with LPEC. Miyake et al indicated the umbilicus lesion in LPEC contains much greater bacterium than the inguinal skin wound in patients with POTTS [9]. Hematoma, scrotum swelling, and cryptorchidism are dominant in the POTTS group. These are reasonable because LPEC never touches the scrotum; the peritoneum from testis vessels and spermatic cord are separated sufficiently. Taylor et al describes the risk factors of recurrence in pediatric IH with a nationally representative cohort study. The incidence rate was the highest among children who underwent initial primary repair at the age of < 1 year [18]. Comparing the recurrence of IH between open and laparoscopic surgery, many papers indicate a higher recurrence rate for laparoscopy [13, 19, 20]. However, Parelkar et al indicated technical modifications that they were capable of reducing the recurrence rate from 2.9–0%
Modified LPEC has a low recurrence rate, equivalent with the open method [8]. Our data suggests a higher recurrence rate for laparoscopic repairs. Further development of the laparoscopic procedure will reduce the incidence of recurrence in future.

Conclusion

LPEC can be performed to avoid contralateral recurrences; surgical time is reduced for patients aged < 1 year. However, the reduced invasiveness of LPEC compared to that of POTTS did not minimize postoperative symptoms or complications.

Abbreviations

LPEC: laparoscopic percutaneous extraperitoneal closure; IH:inguinal hernia; POTTS:conventional approach for inguinal hernia; CPPV; contralateral patent processus vaginalis

Declarations

Ethics approval and consent to participate

This study protocol was approved by the Ethical Committee at Showa University. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent for Publication

Not applicable.

Availability of data and material

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Authors' contributions
HS contributed to study concept and design, analysis and interpretation of the data, and was a major contributor in writing the manuscript. JY, AS, TN, and YW contributed to data analysis and interpretation. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

References

1. Bowling K, Hart N, Cox P, Srinivas G (2017) Management of paediatric hernia. BMJ. 359:j4484. doi: 10.1136/bmj.j4484.

2. Esposito C, Escolino M, Turrà F et al (2016) Current concepts in the management of inguinal hernia and hydrocele in pediatric patients in laparoscopic era. Semin Pediatr Surg. 25(4):232-240. doi:10.1053/j.sempedsurg.2016.05.006.

3. Yang C, Zhang H, Pu J et al (2011) Laparoscopic vs open herniorrhaphy in the management of pediatric inguinal hernia: a systemic review and meta-analysis. Pediatr Surg. 46(9):1824-1834. doi: 10.1016/j.jpedsurg.2011.04.001.

4. Thomas DT, Göcmen KB, Tulgar S, Boga I (2016) Percutaneous internal ring suturing is a safe and effective method for the minimal invasive treatment of pediatric inguinal hernia: Experience with 250 cases. J Pediatr Surg. 51(8):1330-5. doi: 10.1016/j.jpedsurg.2015.11.024.

5. Abd-Alrazek M, Alsherbiny H, Mahfouz M et al (2017) Laparoscopic pediatric inguinal hernia repair: a controlled randomized study. J Pediatr Surg. 52(10):1539-1544. doi: 10.1016/j.jpedsurg.2017.07.003.

6. Takehara H, Yakabe S, Kameoka K (2006) Laparoscopic percutaneous extraperitoneal closure for inguinal hernia in children: clinical outcome of 972 repairs done in 3 pediatric surgical institutions. J Pediatr Surg. 41(12):1999-2003.

7. Shibuya S, Miyazaki E, Miyano G, et al (2019) Comparison of laparoscopic percutaneous extraperitoneal closure versus conventional herniotomy in extremely low birth weight infants. Pediatr Surg Int. 35(1):145-150. doi: 10.1007/s00383-018-4386-2.

8. Miyake H, Fukumoto K, Yamoto M, et al (2016) Comparison of percutaneous extraperitoneal closure (LPEC) and open repair for pediatric inguinal hernia: experience of a single institution with over 1000 cases. Surg Endosc. 30(4):1466-1472. doi: 10.1007/s00464-015-4354-z.

9. Amano H, Tanaka Y, Kawashima H, et al (2017) Comparison of single-incision laparoscopic percutaneous extraperitoneal closure (SILPEC) and open repair for pediatric inguinal hernia: a single-
center retrospective cohort study of 2028 cases. Surg Endosc. 31(12):4988-4995. doi: 10.1007/s00464-017-5472-6.

10 Saka R, Okuyama H, Sasaki T, Nose S, Yoneyama C (2014) Safety and efficacy of laparoscopic percutaneous extraperitoneal closure for inguinal hernias and hydroceles in children: a comparison with traditional open repair. J Laparoendosc Adv Surg Tech A. 24(1):55-58. doi: 10.1089/lap.2013.0109.

11 Phelps HM, Lovvorn HN 3rd (2018) Minimally Invasive Surgery in Pediatric Surgical Oncology. Children (Basel). 5(12). pii: E158. doi: 10.3390/children5120158. Review.

12 Yip KF, Tam PK, Li MK (2004) Laparoscopic flip-flap hernioplasty: an innovative technique for pediatric hernia surgery. Surg Endosc. 18(7):1126-9. doi: 10.1007/s00464-003-9155-0.

13 Harrison MR, Lee H, Albanese CT, Farmer DL (2005) Subcutaneous endoscopically assisted ligation (SEAL) of the internal ring for repair of inguinal hernias in children: a novel technique. J Pediatr Surg. 40(7):1177-1180. doi: 10.1016/j.jpedsurg.2005.03.075.

14 Alzahem A (2011) Laparoscopic versus open inguinal herniotomy in infants and children: a meta-analysis. Pediatr Surg Int. 27(6):605-612. doi: 10.1007/s00383-010-2840-x. Review.

15 Weaver KL, Poola AS, Gould JL, et al (2017) The risk of developing a symptomatic inguinal hernia in children with an asymptomatic patent processus vaginalis. J Pediatr Surg. 52(1):60-64. doi: 10.1016/j.jpedsurg.2016.10.018.

16 Centeno-Wolf N, Mircea L, Sanchez O, et al (2015) Long-term outcome of children with patent processus vaginalis incidentally diagnosed by laparoscopy. J Pediatr Surg. 50(11):1898-1902. doi: 10.1016/j.jpedsurg.2015.07.001.

17 Davies DA, Rideout DA, Clarke SA, et al (2020) The International Pediatric Endosurgery Group Evidence-Based Guideline on Minimal Access Approaches to the Operative Management of Inguinal Hernia in Children. J Laparoendosc Adv Surg Tech A. 30(2):221-227. doi: 10.1089/lap.2016.0453.

18 Taylor K, Sonderman KA, Wolf LL, et al (2018) Hernia recurrence following inguinal hernia repair in children. J Pediatr Surg. 53(11):2214-2218. doi: 10.1016/j.jpedsurg.2018.03.021.

19 Koivusalo AI, Korpela R, Wirtavuori K, Piiparinen S, Rintala RJ, Pakarinen MP (2009) A single-blinded, randomized comparison of laparoscopic versus open hernia repair in children. Pediatrics. 123(1):332-7. doi: 10.1542/peds.2007-3752.

20 Chan KL, Hui WC, Tam PK (2005) Prospective randomized single-center, single-blind comparison of laparoscopic vs open repair of pediatric inguinal hernia. Surg Endosc. 19(7):927-932.

21 Parekar SV, Oak S, Gupta R, et al (2010) Laparoscopic inguinal hernia repair in the pediatric age group—experience with 437 children. J Pediatr Surg. 45(4):789-792. doi: 10.1016/j.jpedsurg.2009.08.007.
Tables

Table 1: Patient’s Characteristics

	POTTS n=612	LPEC n=328	Significance
Gender			
Male	393 (65%)	158 (48%)	NS
Female	219 (35%)	170 (52%)	NS
Mean age at surgery (year)	4.05	3.88	NS
Age distribution			
Under 1	33 (5%)	20 (6%)	NS
1 to 5	423 (68%)	219 (66%)	NS
6 to 10	141 (23%)	78 (23%)	NS
Over 11	15 (2.4%)	11 (3%)	NS
Pre operative diagnosis			
Unilateral	533 (96%)	307 (93%)	NS
Bilateral	29 (4%)	21 (6%)	NS
Post operative diagnosis			
Unilateral	533 (96%)	159 (48%)	<0.05
Bilateral	29 (4%)	169 (51%)	<0.05
Contralateral metachronous inguinal hernia	44 (7.1%)	0 (0%)	<0.05

Table 2: Operation time and Postoperative symptoms

	POTTS	LPEC	Significance
Operation time (min)			p<0.05
Under 1	42.7	33.4	p<0.05
1 to 5	37.3	38.2	NS
6 to 10	31.8	34.7	NS
Over 11	43.5	37.2	NS
Total	36.2	37.4	NS
Anesthesia time (min)			NS
POTTS	54.1	83.5	p<0.05
LPEC	33.2	58.1	p<0.05
Average Hours to first oral intake			NS
POTTS	3.02	3.09	NS
LPEC	3.11	3.2	p<0.05
Fever up			NS
POTTS	7.21	7.18	NS
LPEC	5.34	5.6	p<0.05
Pain			NS
POTTS	6.0	0.0	NS
LPEC	5.1	0.1	NS
Vomit			NS
POTTS	2.6	0.9	NS
LPEC	2.4	0.8	NS

Table 3: Complications

	POTTS	LPEC	Significance
Wound Infection	0 (0%)	4 (1.2%)	p<0.05
Recurrence	5 (0.8%)	6 (1.8%)	p<0.05
Contralateral Swelling	44 (7%)	0 (0%)	NS
Hematoma	5 (0.8%)	0 (0%)	NS
Scrotum Swelling	13 (2%)	0 (0%)	NS
Testis Eventration	2 (0.3%)	0 (0%)	NS