BASEPOINT-FREEDOM THRESHOLDS AND HIGHER SYZYGIES ON
ABELIAN THREEFOLDS

ATSUSHI ITO

ABSTRACT. For a polarized abelian variety, Z. Jiang and G. Pareschi introduce an invariant
and show that the polarization is basepoint free or projectively normal if the invariant is small.
Their result is generalized to higher syzygies by F. Caucci, that is, the polarization
satisfies property \((N_{p})\) if the invariant is small.

In this paper, we study a relation between the invariant and degrees of abelian subvarieties
with respect to the polarization. For abelian threefolds, we give an upper bound of the
invariant using degrees of abelian subvarieties. In particular, we affirmatively answer some
questions on abelian varieties asked by the author, V. Lozovanu and Caucci in the three
dimensional case.

1. INTRODUCTION

Throughout this paper, we work over the complex number field \(\mathbb{C}\). In [JP20], Z. Jiang
and G. Pareschi introduce cohomological rank functions of \(\mathbb{Q}\)-twisted (complexes of) coherent
sheaves on polarized abelian varieties. Using cohomological rank functions, they define the
basepoint-freeness threshold \(\beta(l)\) for a polarized abelian variety \((X, l)\) and show the following:

1. \(0 < \beta(l) \leq 1\), and \(\beta(l) < 1\) if and only if any line bundle \(L\) representing \(l\) is basepoint
 free.

2. If \(\beta(l) < \frac{1}{2}\), any line bundle \(L\) representing \(l\) is projectively normal.

F. Caucci generalizes (2) to higher syzygies, proving that any line bundle \(L\) representing \(l\)
satisfies property \((N_{p})\) if \(\beta(l) < 1/(p + 2)\) in [Cau20a]. We refer the readers to [Laz04a
Chapter 1.8.D], [Eis05] for the definition of \((N_{p})\). We just note here that \((N_{p})’\)'s consist an
increasing sequence of positivity properties. For example, \(L\) satisfies \((N_{0})\) if and only if \(L\)
defines a projectively normal embedding, and \(L\) satisfies \((N_{1})\) if and only if \(L\) satisfies \((N_{0})\)
and the homogeneous ideal of the embedding is generated by quadrics.

In [Cau20a Theorem 1.1], Caucci asks the following question:

Question 1.1 (Cau20a). Let \((X, l)\) be a polarized abelian variety. Set \(B_{t} = tl\) for a positive
rational number \(t > 0\). Assume that \((B_{t}^{(\dim Z)Z}) > (\dim Z)^{\dim Z}\) for any abelian subvariety
\(Z \subset X\) with \(\dim Z \geq 1\). Then does it hold that \(\beta(l) < t\)?

For \(\dim X \leq 2\), Question 1.1 is answered affirmatively: this can be checked easily for
elliptic curves. For abelian surfaces, it is deduced from [It18 Proposition 3.1] and [Cau20a
Proposition 1.4] as explained in [Cau20a]. For \(\dim X = 3\), the proof of [Loz18 Theorem 1.1] with
[Cau20a Proposition 1.4] gives a partial affirmative answer, i.e. \(\beta(l) < t\) if \((B_{t}^{3}) > 59, (B_{t}^{2}S) > 4, (B_{t}C) > 2\) for any abelian surface \(S \subset X\) and any elliptic curve \(C \subset X\). In
any dimension, it is not difficult to show \(\beta(l) < t\) under a stronger assumption \((B_{t}^{(\dim Z)Z}) >
(\dim X \cdot \dim Z)^{\dim Z}\) by combining results in [LPP11] and [Nak96] (see Proposition 3.3).

In this paper, we give an affirmative answer to Question 1.1 in the three dimensional case:

Theorem 1.2. Let \((X, l)\) be a polarized abelian threefold. Set \(B_{t} = tl\) for a positive rational
number \(t > 0\). Assume that \((B_{t}^{3}) > 27, (B_{t}^{2}S) > 4, (B_{t}C) > 1\) for any abelian surface \(S \subset X\)
and any elliptic curve \(C \subset X\). Then \(\beta(l) < t\).
We obtain the following corollary, which answers [To18 Question 4.2] and [Loz18 Conjecture 7.1] affirmatively in the three dimensional case:

Corollary 1.3. Let L be an ample line bundle on an abelian threefold X and $p \geq 0$ be an integer. Assume that $(L^3) > 27(p + 2)^3, (L^2.S) > 4(p + 2)^2, (L.C) > p + 2$ for any abelian surface $S \subset X$ and any elliptic curve $C \subset X$. Then L satisfies (N_p) and the Koszul cohomology group $K_{p,q}(X, L; dL) = 0$ for any $q, d \geq 1$.

The basepoint freeness on abelian threefolds is studied in [BLR99, Rub99, Fuk01], etc. To the best of the author’s knowledge, the following criterion did not appear in the literature.

Corollary 1.4. Let L be an ample line bundle on an abelian threefold X with $(L^3) \geq 30$, or equivalently $h^0(L) \geq 5$. Then L is basepoint free if and only if $(L^2.S) \geq 6$ and $(L.C) \geq 2$ for any abelian surface $S \subset X$ and any elliptic curve $C \subset X$.

This paper is organized as follows. In §2 we prepare some notation and lemmas. We also show two propositions on basepoint-freeness thresholds. In §3 we see a relation between basepoint-freeness thresholds and Seshadri constants. In particular, we give a partial answer to Question 1.1 in arbitrary dimensions in Proposition 3.3. In §4 we study basepoint-freeness thresholds on abelian surfaces. In §5 we give an easy but important observation. In §6 we show Theorem 6.4, which reduces Question 1.1 to another question. In §7 we show two lemmas on curves and hypersurfaces in abelian varieties. In §8 we give an affirmative answer to the question in §6 for dim $X \leq 3$ and prove Theorem 1.2.

In the proof of Theorem 1.2 we do not need results in §4 §5 other than Proposition 5.3. Hence the readers may read only §2 §3 §6 §8 for the proof of Theorem 1.2.

Acknowledgments. The author would like to express his gratitude to Professor Yoshinori Gongyo for answering his questions about minimal lc centers. He also thanks Professor Zhi Zhang for valuable comments. The author was supported by Grant-in-Aid for Scientific Research (17K14162).

2. Preliminaries

2.1. **Basepoint-freeness threshold.** Let X be an abelian variety of dimension g. An abelian subvariety $Y \subset X$ is a subvariety which is closed under the group low of X. In particular, $o \in Y$ and Y can be $\{o\}$ or X. A polarization l of X is an ample class in $\text{Pic}(X)/\text{Pic}^0(X)$. For $b \in \mathbb{Z}$, the multiplication-by-b isogeny is denoted by

$$
\mu_b : X \rightarrow X, \quad p \mapsto bp.
$$

It is known that $\mu_b^*l = b^2l$ and $\text{deg} \mu_b = b^{2g}$. Frequently L denotes an ample line bundle representing l.

In [JP20], Jiang and Pareschi introduce the cohomological rank function as follows:

Definition 2.1 (JP20 Definition 2.1). Let (X, l) be a g-dimensional polarized abelian variety and $\mathcal{F} \in \mathbb{D}^b(X)$ be a bounded complex of coherent sheaves on X.

1. For $i \in \mathbb{Z}$, $h^i_{\text{gen}}(X, \mathcal{F})$ denotes the dimension of the hypercohomology $H^i(X, \mathcal{F} \otimes P_\alpha)$ for general $\alpha \in \mathcal{X} = \text{Pic}^0(X)$, where P_α is the numerically trivial line bundle on X corresponding to α.

2. The cohomological rank function $h^i_{\mathcal{F}, l} : \mathbb{Q} \rightarrow \mathbb{Q}_{\geq 0}$ is defined as

$$
h^i_{\mathcal{F}, l}(x) = h^i_{\mathcal{F}}(xl) := b^{-2g}h^i_{\text{gen}}(X, \mu_b^*\mathcal{F} \otimes L^b)
$$

for $x = \frac{a}{b} \in \mathbb{Q}, b > 0$ and an ample line bundle L representing l.

Definition 2.2 (JP20 Section 8). Let (X, l) be a polarized abelian variety. The basepoint-freeness threshold $\beta(l)$, or Bpf threshold for short, is defined by

$$
\beta(X, l) = \beta(l) := \inf \{x \in \mathbb{Q} \mid h^1_{\mathcal{F}, l}(xl) = 0\}
$$

For $(17K14162)$.
for a closed point \(p \in X \).

We note that \(h^i_{\mathcal{F},p}(x) \) does not depend on the choices of \(L \) nor the representation \(x = \frac{a}{b} \), and \(\beta(l) \) does not depend on the choice of \(p \in X \).

Theorem 2.3 ([JP20 Theorem D, Corollary E], [Cau20a Theorem 1.1]). Let \((X,l)\) be a polarized abelian variety and \(p \geq 0 \) be an integer.

1. \(0 < \beta(l) \leq 1 \), and \(\beta(l) < 1 \) if and only if any line bundle \(L \) representing \(l \) is basepoint free.
2. If \(\beta(l) < \frac{1}{p+2} \), any line bundle \(L \) representing \(l \) satisfies property \((N_p)\).

For a coherent sheaf \(\mathcal{F} \) on \(X \) and \(x \in \mathbb{Q} \), a \(\mathbb{Q} \)-twisted coherent sheaf \(F(xl) \) is the equivalence class of the pair \((\mathcal{F},xl)\), where the equivalence is defined by
\[
(F \otimes L^m, xl) \sim (F,(x+m)l)
\]
for any line bundle \(L \) representing \(l \) and any \(m \in \mathbb{Z} \). In [JP20], the usual notions of generic vanishing are extended to the \(\mathbb{Q} \)-twisted setting. A coherent sheaf \(\mathcal{F} \) on \(X \) is said to be \(IT(0) \) if \(h^i(X,F \otimes P_{\alpha}) = 0 \) for any \(i > 0 \) and any \(\alpha \in \hat{X} \). A \(\mathbb{Q} \)-twisted coherent sheaf \(F(xl) \) for \(x = \frac{p}{q} \) is said to be \(IT(0) \) if so is \(\mu_k^*F \otimes \mathcal{L}^q \). We do not state the usual definition of the notion \(GV \) here, but we can define \(\mathcal{F}(xl) \) to be \(GV \) if \(\mathcal{F}((x+x')l) \) is \(IT(0) \) for any rational number \(x' > 0 \) by [JP20 Theorem 5.2].

For a line bundle \(N \) on \(X \), \(N(xl) \) is \(IT(0) \) if and only if \(N(xl) \) is ample, i.e. \(N + xl \) is ample. For the non-twisted case, this is shown by [JP20 Example 3.10 (1)]. The \(\mathbb{Q} \)-twisted case follows from the non-twisted case. Hence \(N(xl) \) is \(GV \) if and only if \(N(xl) \) is nef, i.e. \(N + xl \) is nef.

These notions are closely related to \(\beta(l) \) as follows:

Lemma 2.4 ([JP20 Section 8], [Cau20a Lemma 3.3]). Let \((X,l)\) be a polarized abelian variety and \(x \in \mathbb{Q} \). Then \(\beta(l) < x \) if and only if \(I_p(xl) \) is \(IT(0) \) for some (and hence for any) point \(p \in X \).

Remark 2.5. If \(X \) is an elliptic curve, it is easy to check that \(h^1_{\mathcal{F},p}(xl) = 0 \) if and only if \(x \deg(l) - 1 \geq 0 \) by the Riemann-Roch theorem. Hence we have \(\beta(l) = \deg(l)^{-1} \). This follows from Lemma 2.4 as well.

For a basepoint free ample line bundle \(N \) and a line bundle \(N' \) on a projective variety \(X \), the **Koszul cohomology group** \(K_{p,q}(X,N';N) \) is defined to be the cohomology of the Koszul-type complex
\[
\bigwedge^{p+1} H^0(N) \otimes H^0(N' \otimes N'^{-1}) \to \bigwedge^p H^0(N) \otimes H^0(N' \otimes N') \to \bigwedge^{p-1} H^0(N) \otimes H^0(N' \otimes N'^{-1})
\]
for \(p, q \geq 0 \). For \(p, q \geq 0 \), it is known that \(N \) satisfies \((N_p)\) if and only if \(K_{i,q}(X,\mathcal{O}_X;N) = 0 \) for any \(0 \leq i \leq p \) and \(q \geq 2 \).

Let \(MN \) be the kernel of the surjective map \(H^0(X,N) \otimes \mathcal{O}_X \to N \). By [EL93b Section 1], the vanishing \(K_{p,q}(X,N';N) = 0 \) follows from \(h^1(X,\bigwedge^{p+1} MN \otimes N'^{-1} \otimes N') = 0 \). The following proposition is a variant of [Cau20a Proposition 3.5].

Proposition 2.6. Let \(X \) be an abelian variety and \(N, N' \) be line bundles on \(X \) such that \(N \) is ample and basepoint free. Let \(n \in \text{Pic} X / \text{Pic}^0(X) \) be the class of \(N \) and \(p, q \) be nonnegative integers. Assume that that there exists a rational number \(t > 0 \) such that \((q-1-t)N + N' \) is nef and \(\beta(n) < \frac{1}{p+1} \). Then \(h^1(X,\bigwedge^{p+1} MN \otimes N'^{-1} \otimes N') = 0 \) and hence \(K_{p,q}(X,N';N) = 0 \).

In particular, if \(l \) is a polarization of \(X \) and \(\beta(l) < \frac{1}{p+1} \) for \(p \geq 0 \), then \(L \) is projectively normal and \(K_{p,q}(X,L;dl) = 0 \) for any \(q, d \geq 1 \) and any \(L \) representing \(l \).
Proof. Set \(s(n) = \inf \{ x \in \mathbb{Q} \mid h^1_{M_N}(xL) = 0 \} \) as in [JP20]. By [JP20] Theorem D and \(\beta(n) < \frac{t}{p+1+t} \), we have

\[
s(n) = \frac{\beta(n)}{1 - \beta(n)} < \frac{t}{p+1+1-t},
\]

and hence \(M_N(\frac{t}{p+1+1-t}) \) is IT(0) by [JP20] Section 8, [Cau20a] Lemma 3.3. As a \(\mathbb{Q} \)-twisted sheaf, \(M_N^{(p+1)} \otimes N^{q-1} \otimes N' \) is written as

\[
\left(M_N \left(\frac{t}{p+1+1-t} \right) \right)^{(p+1)} \otimes (N^{q-1} \otimes N')(-tn) \text{.}
\]

Since \((q-1-t)N+N' \) is nef by assumption, \((N^{q-1} \otimes N')(-tn) \) is GV. Thus \(M_N^{(p+1)} \otimes N^{q-1} \otimes N' \) is IT(0) by [Cau20a] Proposition 3.4, and hence \(h^1(X, M_N^{(p+1)} \otimes N^{q-1} \otimes N') = 0 \). Since \(\bigwedge^{p+1} M_N \otimes N^{q-1} \otimes N' \) is a direct summand of \(M_N^{(p+1)} \otimes N^{q-1} \otimes N' \), we have \(h^1(X, \bigwedge^{p+1} M_N \otimes N^{q-1} \otimes N') = 0 \) and hence \(K_{p,q}(X, N'; N) = 0 \).

For the last statement, the projective normality of \(L \) follows from \(\beta(l) < 1/(p+2) \leq 1/2 \) and [Theorem 2.3] (2). Let \(N = dL, N' = L \) and \(t = d^{-1} \) for \(d \geq 1 \). Then

\[
\beta(n) = \beta(dl) = d^{-1} \beta(l) = d^{-1} \frac{d-1}{p+2} \leq \frac{d^{-1}}{p+1+d^{-1}}
\]

for any \(d \geq 1 \). Since \((q-1-d^{-1})N+N' = (q-1)N \) is nef for \(q \geq 1 \) and \(\beta(n) < \frac{d^{-1}}{p+1+d^{-1}} \), \(K_{p,q}(X, L; dL) = 0 \) follows. \(\square \)

Remark 2.7. By [Proposition 2.6] we can generalize [AL16] Theorems 2.4, 2.9 as follows:

Let \(N, N' \) be line bundles on \(X \) such that \(N \) is ample and basepoint free as in [Proposition 2.6] Assume that \(g = \dim X \geq 2, N-N' \) is ample and set \(b = \min \{ s \in \mathbb{R} \mid sN-N' \text{ is nef} \} < 1 \). Then \(K_{p,1}(X, N'; N) = 0 \) for

\[
r - b - \frac{g-1-b}{\beta(n)} < p \leq r - g,
\]

where \(r = h^0(N) - 1 \).

In fact, by Serre duality and the Kodaira vanishing theorem, we have

\[
h^1(\bigwedge^{p+1} M_N \otimes N') = h^{g-1}(\bigwedge^{g-p-1} M_N \otimes N \otimes N'^{-1}) = h^1(\bigwedge^{p+1} M_N \otimes N^{g-1} \otimes N'^{-1})
\]

as in the proof of [AL16] Lemma 2.1. Here we use \(p \leq r - g \) and the ampleness of \(N-N' \).

Set \(p' = r-p-g \geq 0 \). By (2.2) \(K_{p,1}(X, N'; N) = 0 \) follows from \(h^1(\bigwedge^{p+1} M_N \otimes N^{g-1} \otimes N'^{-1}) = 0 \). Hence it suffices to find \(t > 0 \) such that \((g-1-t)N-N' \) is nef and \(\beta(n) < \frac{t}{p+1+t} \) by [Proposition 2.6]

Note that \(g-1-b \) is positive by \(g \geq 2 \) and \(b < 1 \). We show that a rational \(t > 0 \) with \(0 < (g-1-b) - t \leq 1 \) satisfies these conditions.

By the definition of \(b \) and \(g-1-t > b \), \((g-1-t)N \otimes N' \) is ample. On the other hand, the first inequality of (2.1) is equivalent to \(\beta(n) < \frac{t}{p+1+t} = \frac{g-1-b}{p+1+(g-1-b)} \). Since \(t \) is sufficiently close to \(g-1-b \), we have \(\beta(n) < \frac{t}{p+1+t} \). Hence we obtain the vanishing \(K_{p,1}(X, N'; N) = 0 \).

The following lemma is well-known to experts, but we give a proof for completeness.

Lemma 2.8. Let \((X, L) \) be a polarized abelian variety and \(F \) be a coherent sheaf on \(X \). Let \(x \in \mathbb{Q} \).

1. Let \(0 \rightarrow F_1 \rightarrow F \rightarrow F_2 \rightarrow 0 \) be an exact sequence of coherent sheaves on \(X \). If \(F_1(xL) \) and \(F_2(xL) \) are IT(0), so is \(F(xL) \).

2. Let \((X', l') \) be a polarized abelian variety and \(F' \) be a coherent sheaf on \(X' \). If \(F(xL) \) and \(F'(xL') \) are IT(0), so is \(F \boxtimes F'(x(l \boxtimes l')) \), where \(F \boxtimes F' \) (resp. \(l \boxtimes l' \)) is the tensor product of pullbacks of \(F \) and \(F' \) (resp. \(l \) and \(l' \)) on \(X \times X' \).
(3) Let $f : X' \to X$ be an isogeny. Then $\mathcal{F}(xl) = \text{IT}(0)$ if and only if so is $f^*\mathcal{F}(xf^*l)$.

(4) Let $X' \subset X$ be an abelian subvariety and \mathcal{F}' be a coherent sheaf on X'. Then $\mathcal{F}'(x'l|_{X'})$ is $\text{IT}(0)$ on X' if and only if so is $i_*\mathcal{F}(xl)|_X$ on X, where $i : X' \to X$ is the inclusion morphism.

Proof. Let $x = \frac{a}{b}$ and μ_b' be the multiplication-by-b isogeny on X'.

(1) For $\alpha \in \hat{X}$, we have $h^i(\mu_b^*F_j \otimes \mathcal{L}^{ab} \otimes \mathcal{P}_a) = 0$ for $i > 0$ if $F_j(xl)$ is $\text{IT}(0)$ for $j = 1, 2$. Tensoring $\mathcal{L}^{ab} \otimes \mathcal{P}_a$ with the pullback of the exact sequence in (1) by μ_b', it holds that $h^i(\mu_b^*\mathcal{F} \otimes \mathcal{L}^{ab} \otimes \mathcal{P}_a) = 0$ for $i > 0$. Hence $\mathcal{F}(xl)$ is $\text{IT}(0)$.

(2) Let $(\alpha, \alpha') \in \hat{X} \times \hat{X}' = \hat{X} \times \hat{X}'$. By the Künneth formula,

$$H^i(X \times X', (\mu_b \times \mu_b')(\mathcal{F} \boxtimes \mathcal{F}') \otimes (\mathcal{L} \boxtimes \mathcal{L}')^{ab} \otimes (\mathcal{P}_a \boxtimes \mathcal{P}_{a'}))$$

is the direct sum of

$$H^i(X \times X', (\mu_b^*\mathcal{F} \otimes \mathcal{L}^{ab} \otimes \mathcal{P}_a) \otimes H^{i-k}(X', \mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab} \otimes \mathcal{P}_{a'})$$

for $0 \leq k \leq i$. If $i > 0$, (2.3) is zero for any $0 \leq k \leq i$ since $\mathcal{F}(xl)$, $\mathcal{F}'(xl')$ are $\text{IT}(0)$. Hence $\mathcal{F} \boxtimes \mathcal{F}'(x(l \otimes l'))$ is $\text{IT}(0)$ as well.

(3) For $\alpha \in \hat{X}$, it holds that

$$H^i(X', \mu_b^*f^*\mathcal{F}' \otimes (f^*\mathcal{L})^{ab} \otimes f^*\mathcal{P}_a) = H^i(X', f^*\mu_b^*\mathcal{F} \otimes f^*\mathcal{L}^{ab} \otimes f^*\mathcal{P}_a)$$

$$= \bigoplus_{\gamma \in \text{dim} f^{-1}(\delta')} H^i(X, \mu_b^*\mathcal{F} \otimes \mathcal{L}^{ab} \otimes \mathcal{P}_a \otimes \gamma),$$

where $\delta' \in \hat{X}'$ is the origin and $\hat{f} : \hat{X} \to \hat{X}'$ is the dual isogeny. Hence $h^i(X, \mu_b^*\mathcal{F} \otimes \mathcal{L}^{ab} \otimes \mathcal{P}_a) = 0$ for any $\alpha \in \hat{X}$ if and only if $h^i(X', \mu_b^*f^*\mathcal{F}' \otimes (f^*\mathcal{L})^{ab} \otimes f^*\mathcal{P}_a) = 0$ for any $\alpha \in \hat{X}$. Since $f^*\mathcal{P}_a = P_{f(\alpha)}$ and \hat{f} is surjective, this is equivalent to the condition that $h^i(X', \mu_b^*f^*\mathcal{F}' \otimes (f^*\mathcal{L})^{ab} \otimes P_{\alpha'}) = 0$ for any $\alpha' \in \hat{X}'$. Hence $\mathcal{F}(xl)$ is $\text{IT}(0)$ if and only if so is $f^*\mathcal{F}(xf^*l)$.

(4) Let $i : \hat{X} \to \hat{X}'$ be the dual surjection. For the non-twisted case, \mathcal{F}' on X' is $\text{IT}(0)$ if and only if so is $i_*\mathcal{F}'$ on X since i is surjective and

$$h^i(X, i_*\mathcal{F}' \otimes \mathcal{P}_a) = h^i(X', \mathcal{F}' \otimes \mathcal{P}_a|_{X'}) = h^i(X', \mathcal{F}' \otimes P_{i(\alpha)}),$$

for $\alpha \in \hat{X}$. Hence we do not need to distinguish $i_*\mathcal{F}'$ and \mathcal{F}' when we consider the property $\text{IT}(0)$ for non-twisted sheaves. Furthermore, \mathcal{F}' is $\text{IT}(0)$ if and only if so is $t_p^\alpha\mathcal{F}'$ for some $p \in X$, where $t_p : X \to X$ is the translation by p.

Let $g = \text{dim} X, g' = \text{dim} X'$. Then $\mu_b^{-1}(X')$ is the disjoint union of $b^{2(g'-g)}$ copies $X_1', \ldots, X_{b^{2(g'-g)}}'$ of X'. For each j, there exists $p_j \in \mu_b^{-1}(a)$ such that the translation by p_j gives an isomorphism $t_j : X' \sim X_j' \subset X$. Then $\mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab}$ is the direct sum of $(\mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab})|_{X_j'}$ for $1 \leq j \leq b^{2(g'-g)}$. Since $\mu_b|_{X_j'} \circ t_j : X' \sim X_j' \to X' \subset X$ coincides with μ_b' by $p_j \in \mu_b^{-1}(a)$, it holds that

$$H^i((\mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab})|_{X_j'}) = \mu_b'^*H^i(\mathcal{F} \otimes \mathcal{L}^{ab}|_{X_j'}).$$

Hence $(\mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab})|_{X_j'}$ is IT(0) if and only if so is $\mu_b'^*\mathcal{F}' \otimes t_j^*(\mathcal{L}^{ab}|_{X_j'})$ if and only if so is $\mu_b'^*\mathcal{F}' \otimes \mathcal{L}^{ab}|_{X_j'}$. Since $\mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab}$ is the direct sum of $(\mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab})|_{X_j'}, \mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab}$ is IT(0) if and only if so is $\mu_b^*\mathcal{F}' \otimes \mathcal{L}^{ab}|_{X_j'}$. Hence $i_*\mathcal{F}'(x'l)$ is IT(0) if and only if so is $\mathcal{F}'(x'l|_{X_j'})$. \hfill \square

For any integer $m > 0$ and any polarization l, it holds that $\beta(ml) = m^{-1}\beta(l)$. Hence for a rational ample class $\xi \in N^1(X)_\mathbb{Q} := (\text{Pic}(X)/\text{Pic}^0(X)) \otimes \mathbb{Q}$, we can define $\beta(\xi) := m^{-1}\beta(m\xi)$ for sufficiently divisible $m > 0$. Thus we have a function $\beta : \text{Amp}(X) \cap N^1(X)_\mathbb{Q} \to \mathbb{R}$, where $\text{Amp}(X) \subset N^1(X) := (\text{Pic}(X)/\text{Pic}^0(X)) \otimes \mathbb{R}$ is the ample cone.

We can show that β extends to a continuous function on $\text{Amp}(X)$, though we do not use this fact in the rest of the paper.
Proposition 2.9. Let X be an abelian variety.

1. Let $l \in \Pic(X)/\Pic^0(X)$ be a polarization and $n \in \Pic(X)/\Pic^0(X)$ be a nef (resp. ample) class. Then $\beta(l+n) \leq \beta(l)$ (resp. $\beta(l+n) < \beta(l)$).

2. The function $\beta : \Amp(X) \cap N^1(X)_Q \to \mathbb{R}$ extends to a continuous function on $\Amp(X)$.

Proof. (1) Let l, n be line bundles representing l, n respectively.

For the case when n is nef, it suffices to show that $x > \beta(l+n)$ for any $x = \frac{a}{b} > \beta(l)$. Take an integer $m \gg 1$ so that $x = \frac{a}{b} > \frac{ma-1}{mb} > \beta(l)$. By Lemma 2.4, $\mu_{mb}^* \mathcal{I}_{p} \otimes L^{(ma-1)mb}$ is IT(0). On the other hand, $L^{mb} \otimes N^{m^2ab}$ is IT(0) since it is ample. Thus
\[
\mu_{mb}^* \mathcal{I}_{p} \otimes (L \otimes N)^{mn^2ab} = (\mu_{mb}^* \mathcal{I}_{p} \otimes L^{(ma-1)mb}) \otimes (L^{mb} \otimes N^{m^2ab})
\]
is IT(0) as well by [PP11, Proposition 3.1]. Hence $\mathcal{I}_p(x(l+n))$ is IT(0) by $x = \frac{ma}{mb}$, which is equivalent to $\beta(l+n) < x$.

If n is ample, $cn-l$ is nef for some integer $c \gg 1$. Then it holds that
\[
\beta(l+n) = c \cdot \beta(c(l+n)) = c \cdot \beta((c+1)l + (cn-l)) \leq \frac{c}{c+1} \cdot \beta((c+1)l) = \frac{c}{c+1} \beta(l) < \beta(l),
\]
where the first inequality follows from the nef case.

(2) It suffices to show that if a sequence $\{\xi_i\}_{i \in \mathbb{N}}$ in $\Amp(X) \cap N^1(X)_Q$ converges to some $\xi \in \Amp(X)$, then $\{\beta(\xi_i)\}_{i \in \mathbb{N}}$ also converges to a real number.

For any rational number $0 < \delta < 1$, there exists $N \geq 0$ such that both $(1+\delta)\xi_n - \xi$ and $\xi - (1-\delta)\xi_m$ are ample for any $n \geq N$. Hence $(1+\delta)\xi_n - (1-\delta)\xi_m$ is ample for any $m, n \geq N$.

By (1), we have
\[
(1+\delta)^{-1} \beta(\xi_m) = \beta((1+\delta)\xi_m) < \beta((1-\delta)\xi_n) = \beta(1-\delta)\beta(\xi_m).
\]
By $m, n \to \infty$,
\[
(1+\delta)^{-1} \lim_{n \to \infty} \beta(\xi_n) \leq (1-\delta)^{-1} \lim_{m \to \infty} \beta(\xi_m).
\]
By $\delta \to 0$, we have
\[
\lim_{n \to \infty} \beta(\xi_n) \leq \lim_{m \to \infty} \beta(\xi_m).
\]
Hence $\{\beta(\xi_n)\}$ converges to a real number. \qed

2.2. Singularities and non-klt locus. We recall some notation in birational geometry. Let X be a smooth variety and $D = \sum_i d_i D_i$ be an effective \mathbb{Q}-divisor on X. Let $f : Y \to X$ be a log resolution of (X, D) and write
\[
K_Y = f^*(K_X + D) + F
\]
with $F = \sum_j b_j F_j$. Here we assume that if F_j is the strict transform of D_i, we take $b_j = -d_i$, and all the other F_j’s are exceptional divisors of f.

The pair (X, D) is called log canonical, or lc for short, (resp. klt) at $x \in X$ if $b_j \geq -1$ (resp. $b_j > -1$) for any log resolution f and any j with $x \in f(F_j)$. The pair (X, D) is called log canonical (resp. klt) if (X, D) is log canonical (resp. klt) at any $x \in X$. A prime divisor F_j with $b_j \leq -1$ is called a non-klt place of (X, D). A subvariety $Z \subset X$ is called a non-klt center of (X, D) if it is the image of a non-klt place. When (X, D) is log canonical at the generic point of a non-klt center Z, Z is also called a log canonical center, or lc center for short.

The log canonical threshold of (X, D) at $x \in X$ is
\[
lct_x(\mathbb{C}, D) = \lct_x(D) := \max\{s \geq 0 | (X, sD) is log canonical at x}\.
\]
The multiplier ideal $\mathcal{J}(X, D)$ of (X, D) is defined as
\[
\mathcal{J}(X, D) := f_* \mathcal{O}_Y([F]),
\]
which does not depend on the choice of the log resolution f. Note that $\text{Supp} O_X/\mathcal{J}(X,D)$ coincides with the non-klt locus

$$\text{Nklt}(X,D) := \{x \in X \mid (X,D) \text{ is not klt at } x\}.$$

The following result about the existence of minimal lc centers is known (see [EL93a], [Hel97], [Kaw97]).

Theorem 2.10. Let X be a smooth variety and D be an effective \mathbb{Q}-divisor on X such that (X,D) is log canonical. Then every irreducible component of the intersection of two lc centers of (X,D) is also a lc center of (X,D).

In particular, if (X,D) is log canonical but not klt at $x \in X$, there exists the unique minimal lc center Z of (X,D) containing x. Furthermore, Z is normal at x.

The following lemma follows from the standard Tie-breaking trick.

Lemma 2.11. Let X be a smooth projective variety and D be an effective \mathbb{Q}-divisor on X such that (X,D) is lc but not klt at a point $x \in X$. Let Z be the minimal lc center of (X,D) at x. Assume that B is an ample \mathbb{Q}-divisor on X such that $B - D$ is ample. Then there exists an effective \mathbb{Q}-divisor F on X such that $B - F$ is ample and $\text{Nklt}(X,F) = Z$ in a neighborhood of x.

Proof. Let $H \subset X$ be a general effective divisor containing Z. Then we may take $F = (1 - \varepsilon)D + \varepsilon'H$ for $0 < \varepsilon \ll \varepsilon' \ll 1$. □

The following lemma is also well-known.

Lemma 2.12. Let $f : X \to T$ be a smooth morphism between smooth varieties, and D be an effective \mathbb{Q}-divisor on X. Set $X_t = f^{-1}(t)$ for $t \in T$. If t is general, it holds that

$$\text{Nklt}(X_t,D|_{X_t}) = \text{Nklt}(X,D)\cap X_t.$$

Proof. By [Laz04b] Theorem 9.5.35, we have $\mathcal{J}(X_t,D|_{X_t}) = \mathcal{J}(X,D)|_{X_t}$ if t is general. This lemma follows by considering the cosupports of the ideals. □

The following lemma is a special case of [Hel97] Proposition 3.2, and the first step of cutting down lc centers in [Hel97], [Kaw97].

Lemma 2.13. Let X be a smooth projective variety of dimension n, B be an ample \mathbb{Q}-divisor on X, and $D \equiv B$ be an effective \mathbb{Q}-divisor on X. For a point $x \in X$, assume that $m := \text{mult}_x(D) > n$. Let $c := \text{lct}_x(D) \leq \frac{n}{m} < 1$ and let $Z \subset X$ be the minimal lc center of (X,cD) at x. If $(B^{\dim Z},Z) \geq n^{\dim Z} \cdot \text{mult}_x(Z)$, there exists an effective \mathbb{Q}-divisor $D_1 \equiv c_1B$ for some $c < c_1 < 1$ such that (X,D_1) is lc but not klt at x and the minimal lc center Z_1 of (X,D_1) at x is properly contained in Z.

Proof. Under the assumption of this lemma,

$$b_x(X,cD) := \sup \{\text{mult}_x(D') \mid D' \text{ is an effective } \mathbb{Q}\text{-divisor such that } (X,cD + D') \text{ is lc at } x\}$$

is at most $n - \text{mult}_x(cD) = n - mc$. Then the statement of this lemma follows from [Hel97] Proposition 3.2] since the condition

$$(B^{\dim Z},Z) \geq \left(\frac{b_x(X,cD)}{1-c}\right)^{\dim Z} \cdot \text{mult}_x(Z)$$

in [Hel97] Proposition 3.2] is satisfied by $(B^{\dim Z},Z) \geq n^{\dim Z} \cdot \text{mult}_x(Z)$, $n - mc \geq b_x(X,cD)$ and $m > n$. We note that B is assumed to be a line bundle in [Hel97] Proposition 3.2], but the proof works for \mathbb{Q}-divisors. □

Remark 2.14. In the proof of Theorem 1.2 we use Lemma 2.13 when X is an abelian threefold and Z is a curve. In this case, the condition $(B^{\dim Z},Z) \geq n^{\dim Z} \cdot \text{mult}_x(Z)$ is equivalent to $(B,Z) \geq 3$ since Z is smooth at x by Theorem 2.10.
3. BPF thresholds and Seshadri constants

For a polarized abelian variety \((X, l)\), the Seshadri constant of \((X, l)\) is defined by
\[
\varepsilon(X, l) = \sup \{t \geq 0 \mid \pi^* l - tE \text{ is nef}\},
\]
where \(\pi : \text{Bl}_o X \to X\) is the blow-up of \(X\) at the origin \(o\) and \(E\) is the exceptional divisor. Equivalently, we may define
\[
(3.1) \quad \varepsilon(X, l) = \inf_V \frac{\dim V}{\text{mult}_o(V)},
\]
where \(\text{mult}_o(V)\) is the multiplicity of \(V\) at \(o\) and we take the infimum over all subvarieties \(V \subset X\) containing \(o\) with \(\dim V \geq 1\). We refer the readers to [Laz04a, Section 5] for detail.

By definition, \(\varepsilon(X, l)^{-1} < x\) if and only if \(x \pi^* l - E\) is ample. On the other hand, \(\beta(l) < x\) if and only if \(\mathcal{I}_o(xl)\) is \(\text{IT}(0)\). We note that \(\pi^* l - E\) (resp. \(\mathcal{I}_o(xl)\)) can be considered as a formal tensor product of \(\mathcal{O}(-E) = \pi^{-1}\mathcal{I}_o\) with \(x \pi^* l\) (resp. \(\mathcal{I}_o\) with \(xl\)). Furthermore, recall that a line bundle \(N\) on an abelian variety is \(\text{IT}(0)\) if and only if \(N\) is ample. Thus we might think that the definition of \(\beta(l)\) is similar to that of \(\varepsilon(X, l)^{-1}\). In fact, the following direct relation between \(\beta(l)\) and \(\varepsilon(X, l)^{-1}\) is known:

Proposition 3.1 ([LPP11], [Can20a], [Can20b]). Let \((X, l)\) be a polarized abelian variety of dimension \(g\). Then it holds that \(\varepsilon(X, l)^{-1} \leq \beta(l) \leq g \cdot \varepsilon(X, l)^{-1}\).

Proof. The first inequality is shown in [Can20a, Proposition 1.4]. On the other hand, \([LPP11, Lemma 1.2]\) essentially states that \(r(l) \leq g \cdot \varepsilon(X, l)^{-1}\). Hence we have the second inequality. \(\square\)

For \(\varepsilon(X, l)^{-1}\), the following upper and lower bounds are obtained from the degrees of abelian subvarieties.

Lemma 3.2. Let \((X, l)\) be a polarized abelian variety. Then
\[
\max_Z \frac{1}{\dim Z} \sqrt{\left(\frac{\dim Z}{\varepsilon(X, l)}\right)} \leq \max_Z \frac{\dim Z}{\varepsilon(X, l)},
\]
where we take the maxima over all abelian subvarieties \(\{o\} \neq Z \subset X\).

Proof. The lower bound follows from (3.1) since \(\text{mult}_o(Z) = 1\) for any abelian subvariety \(Z\). The upper bound follows from [Nak96, Lemma 3.1] or [Oht22, Theorem 1.2]. We note that \(\{\dim Z / (\text{dim} Z, 1)\} Z\) and \(\{\dim Z \cdot \sqrt{\text{dim} Z, 1}\} Z\) have maxima since \(\{\text{dim} Z\}\)'s are integers. \(\square\)

We note that the affirmative answer to Question 1.1 is equivalent to
\[
\beta(l) \leq \max_Z \frac{\dim Z}{\sqrt{\left(\frac{\text{dim} Z}{\varepsilon(X, l)}\right)}},
\]
where we take the maximum over all abelian subvarieties \(\{o\} \neq Z \subset X\). This upper bound is the same as that in [Lemma 3.2]. By Proposition 3.1 and Lemma 3.2, we have a partial answer to Question 1.1.

Proposition 3.3. Let \((X, l)\) be a polarized abelian variety of dimension \(g\). Then
\[
\beta(l) \leq \max_Z \frac{g \cdot \dim Z}{\sqrt{\left(\frac{\text{dim} Z}{\varepsilon(X, l)}\right)}},
\]
where we take the maximum over all abelian subvarieties \(\{ o \} \neq Z \subset X \).

Equivalently, \(\beta(l) < t \) holds for \(t > 0 \) if \((B_{l}^{\text{dim} Z} Z) > (g \cdot \text{dim} Z)^{\text{dim} Z} \) for any abelian subvariety \(\{ o \} \neq Z \subset X \), where \(B_{l} := tl \).

Proof. This is a direct consequence of Proposition 3.1 and Lemma 3.2 \(\square \)

For lower bounds of \(\beta(l) \), Caucci [Can20b, Proposition 1.6.10] obtains the inequality \(\beta(l) \geq \sqrt[\text{dim} Z]{(l^{g} \cdot \text{dim} Z)^{-1}} \) from \(\beta(l) \geq \varepsilon(X, l)^{-1} \). Similarly, we also have \(\beta(l) \geq \max Z \dim Z (\text{dim} Z)^{-1} \) by \(\beta(l) \geq \varepsilon(X, l)^{-1} \) and Lemma 3.2. The following lemma improves these lower bounds by the factor \(\sqrt[\text{dim} Z]{(\text{dim} Z)!} \) for each \(Z \). Since \(\beta(l) < x \) if and only if \(\beta(x l) < 1 \), this lemma could be considered as the statement that if a \(\mathbb{Q} \)-line bundle \(x L \) is “basepoint free”, “\(h^{0}(x L) = \)” \(x^{g} \chi(l) \) is greater than one, and \(x L|_{Z} \) is “basepoint free” for any abelian subvariety \(Z \subset X \).

Lemma 3.4. Let \((X, l)\) be a polarized abelian variety of dimension \(g \). Then it holds that

1. \(\beta(l) \geq \sqrt[\text{dim} Z]{(\chi(l)^{-1} - 1)} \),
2. \(\beta(l) \geq \beta(l|_{Z}) \) for any abelian subvariety \(\{ o \} \neq Z \subset X \).

As a consequence, it holds that

\[
\beta(l) \geq \max_{Z} \frac{1}{\text{dim} Z (\chi(l) - 1)} = \max_{Z} \frac{\sqrt{\text{dim} Z}}{(\chi(l) - 1)},
\]

where we take the maxima over all abelian subvarieties \(\{ o \} \neq Z \subset X \).

Proof. follows from (1), (2) since we have \(\beta(l|_{Z}) \geq \text{dim} Z (\chi(l) - 1) \) by applying (1) to \((Z, l|_{Z})\). Hence it suffices to show (1) and (2).

1. Take a rational number \(x = \frac{m}{n} > \beta(l) \). It is enough to show \(x \geq \sqrt[\text{dim} Z]{(\chi(l)^{-1})} \).

By the choice of \(x \), \(\mu_{b}^{*} I_{o} \otimes L^{ab} \) is IT(0) and hence

\[
H^{0}(X, L^{ab}) \rightarrow H^{0}(X, L^{ab} \otimes O_{X}/\mu_{b}^{*} I_{o})
\]

is surjective. Thus we have

\[
(ab)^{g} \chi(l) = \chi(L^{ab}) = h^{0}(X, L^{ab}) \geq h^{0}(X, L^{ab} \otimes O_{X}/\mu_{b}^{*} I_{o}) = \deg \mu_{b} = b^{2g}
\]

and hence \(x^{g} = (a/b)^{g} \geq \chi(l)^{-1} \).

2. Take a rational number \(x = \frac{m}{n} > \beta(l) \). It suffices to show that \(I_{o/Z}(x l|_{Z}) \) is IT(0), where \(I_{o/Z} \) is the ideal sheaf on \(Z \) corresponding to \(o \in Z \subset X \).

Consider the diagram

\[
\begin{array}{ccc}
H^{0}(X, L^{ab} \otimes P_{a}) & \xrightarrow{r} & H^{0}(X, L^{ab} \otimes P_{a} \otimes O_{X}/\mu_{b}^{*} I_{o}) \\
\downarrow R & & \downarrow R' \\
H^{0}(Z, L^{ab}_{|Z} \otimes P_{a}|_{Z}) & \xrightarrow{r'} & H^{0}(Z, L^{ab}_{|Z} \otimes P_{a}|_{Z} \otimes O_{Z}/\mu_{b}^{*} I_{o/Z})
\end{array}
\]

where \(\alpha \in \hat{X} \) and \(\mu_{b,Z} : Z \rightarrow Z \) is the multiplication-by-\(b \) isogeny on \(Z \). Since \(\mu_{b}^{*} I_{o} \otimes L^{ab} \) is IT(0), \(r \) is surjective for any \(\alpha \). Since \(R' \) is induced from the surjection \(O_{X}/\mu_{b}^{*} I_{o} \rightarrow O_{Z}/\mu_{b,Z}^{*} I_{o/Z} \) between skyscraper sheaves, \(R' \) is surjective as well. Hence \(r' \) is also surjective and hence we have \(h^{1}(Z, \mu_{b,2Z}^{*} I_{o/Z} \otimes L^{ab}_{|Z} \otimes P_{a}|_{Z}) = 0 \). Since the natural homomorphism \(\hat{X} \rightarrow \hat{Z} \) is surjective, \(\mu_{b,Z}^{*} I_{o/Z} \otimes L^{ab}_{|Z} \) is IT(0). Hence so is \(I_{o/Z}(x l|_{Z}) \). \(\square \)

If Question 1.1] has an affirmative answer, we have

\[
\max_{Z} \frac{\sqrt{\text{dim} Z}}{(\text{dim} Z)^{\text{dim} Z}} \leq \beta(l) \leq \max_{Z} \frac{\sqrt{\text{dim} Z}}{(\text{dim} Z)^{\text{dim} Z}}
\]

by Lemma 3.4. These inequalities are similar to those for \(\varepsilon(X, l)^{-1} \) in Lemma 3.2.
By the above similarity, we might expect $\beta(l)^{-1}$ and $\varepsilon(X, l)$ could have similar properties. For example, both $\beta(l)^{-1}$ and $\varepsilon(X, l)$ are homogeneous, that is, $\beta(ml)^{-1} = m\beta(l)^{-1}$ and $\varepsilon(X, ml) = m\varepsilon(X, l)$ for any positive integer m. It is known that the Seshadri constant of a direct product $(X \times X', l \boxtimes l')$ is the minimum of $\varepsilon(X, l)$ and $\varepsilon(X', l')$ (see [MR15 Proposition 3.4] for example). Bpf thresholds also have this property:

Lemma 3.5. Let $(X, l), (X', l')$ be polarized abelian varieties. Then $\beta(X \times X', l \boxtimes l') = \max \{\beta(X, l), \beta(X', l')\}$.

Proof. Let $o \in X, o' \in X'$ be the origins. Since $(X, l), (X', l')$ are polarized abelian subvarieties of $(X \times X', l \boxtimes l')$, we have $\beta(X \times X', l \boxtimes l') \geq \max \{\beta(X, l), \beta(X', l')\}$ by Lemma 3.4.

Take a rational number $x > \max \{\beta(X, l), \beta(X', l')\}$. To prove the converse inequality $\beta(X \times X', l \boxtimes l') \leq \max \{\beta(X, l), \beta(X', l')\}$, it suffices to show $\beta(X \times X', l \boxtimes l') < x$, that is, $\mathcal{I}_{(o,o')(x(l \boxtimes l')]}$ is IT(0).

Consider the exact sequence

$$0 \to \mathcal{I}_{(o)} \to \mathcal{I}_{(o') \times X'} \to \mathcal{I}_{(o,o')/\{o\} \times X'} \to 0$$

on $X \times X'$. Both $\mathcal{I}_{x(l)}$ and $\mathcal{O}_{X'}(x l')$ are IT(0) by $\beta(X, l) < x$. Hence $\mathcal{I}_{(o)} \times \mathcal{O}_{x(l \boxtimes l')}$ is IT(0) by Lemma 2.8 (2). By $\beta(X', l') < x$, the \mathbb{Q}-twisted sheaf $\mathcal{I}_{x(l l')}$ on X' is IT(0). Thus the \mathbb{Q}-twisted sheaf $\mathcal{I}_{(o,o')/\{o\} \times X'}$ is IT(0) by Lemma 2.8 (4). Hence $\mathcal{I}_{(o,o')}(x(l \boxtimes l'))$ is IT(0) by Lemma 2.8 (1).

Another basic property of Seshadri constant is the inequality

$$\varepsilon(X, l + n) \geq \varepsilon(X, l) + \varepsilon(X, n)$$

for two polarizations l, n on X. Hence it would be interesting to ask if

$$\beta(l + n)^{-1} \geq \beta(l)^{-1} + \beta(n)^{-1}$$

holds or not in general.

4. **Bpf thresholds on abelian surfaces**

In this section, we study Bpf thresholds on abelian surfaces. First, we show that the inequalities (3.4) hold for abelian surfaces. We note that the upper bounds of $\beta(l)$ in the following proposition are stated in [Cau20a, p.950].

Proposition 4.1. Let (X, l) be a polarized abelian surface and set

$$\mu(X, l) = \sup \{t \geq 0 \mid \pi^*l - tE \text{ is big} \},$$

where $\pi : \text{Bl}_E X \to X$ is the blow-up of X at the origin and E is the exceptional divisor. Let $r(l) \in \mathbb{R}$ be the threshold defined in (3.2). Then it holds that

\begin{equation}
\max \left\{ \frac{\sqrt{2}}{\sqrt{(l^2)}}, \max \frac{1}{\mu(X, l)} \right\} \leq \beta(l) \leq r(l) \leq \max \left\{ \frac{2}{\mu(X, l)}, \max \frac{1}{\mu(l, C)} \right\} \leq \max \left\{ \frac{2}{\sqrt{(l^2)}}, \max \frac{1}{\mu(l, C)} \right\},
\end{equation}

where we take the maxima over all elliptic curves $C \subset X$. In particular, (3.4) holds for abelian surfaces.

Proof. The first inequality follows from Lemma 3.4. The second inequality is shown by [Cau20a Proposition 1.4]. The third inequality follows from [Ito18 Proposition 3.1]. Since $\mu(X, l) \geq \sqrt{(l^2)}$ by the Riemann-Roch theorem, the last inequality follows.

Remark 4.2. If $\sqrt{(l^2)}$ is not an integer, we have a lower bound of $\mu(X, l)$ which is slightly better than $\sqrt{(l^2)}$ as follows.

We may assume that l is primitive, i.e. l is not written as kn for some integer $k \geq 2$ and some polarization n. Let $(1, d)$ be the type of l. In particular, $\sqrt{2d} = \sqrt{(l^2)}$ is not an integer. Let (k_0, m_0) be the primitive solution of Pell’s equation $m^2 - 2dk^2 = 1$. By the proof of [Bau98]...
Theorem A.1, (a)], there exists an effective divisor $D \equiv 2k_0 l$ such that $\text{mult}_o(D) = 2m_0$. Hence we have

$$\mu(X,l) \geqslant \frac{m_0}{k_0} = \sqrt{2d + \frac{1}{k_0^2}} > \sqrt{2d} = \sqrt{(l^2)}.$$

If the Picard number of X is one, we have $\mu(X,l) = m_0/k_0$ by [Bau99] Theorem 6.1, (b). If $2/\sqrt{(l^2)} \leqslant \max_C 1/(l.C)$, both the upper and lower bounds of (4.1) are $\max_C 1/(l.C)$ and hence we have $\beta(l) = \max_C 1/(l.C)$. We show that this equality holds under a weaker condition $\sqrt{2}/\sqrt{(l^2)} \leqslant \max_C 1/(l.C)$.

We use the following lemma:

Lemma 4.3. Let (X,l) be a polarized abelian g-fold and $S \subset X$ be an abelian subvariety of codimension one. Then it holds that

$$\beta(l|S) \leqslant \beta(l) \leqslant \max \left\{ \beta(l|S), \frac{g(l^g-1,S)}{(l^g)} \right\} = \max \left\{ \beta(l|S), \frac{\chi(l|S)}{\chi(l)} \right\}.$$

Proof. The first inequality follows from Lemma 3.4 (2).

Take a rational number $x > \max \{ \beta(l|S), g(l^g-1,S)/(l^g) \}$. To prove the second inequality, it suffices to show that $\mathcal{I}_o(xl)$ is IT(0).

By $x > g(l^g-1,S)/(l^g)$, we have $(xl)^g > g \cdot (l^g)(l^g-1,S)$. Hence $xl - S$ is big by [Laz04b Theorem 2.2.15]. Since X is an abelian variety, $xl - S$ is ample.

Consider an exact sequence

$$0 \to \mathcal{I}_S \to \mathcal{I}_o \to \mathcal{I}_{o/S} \to 0$$

on X. Since $xl - S$ is ample, $\mathcal{I}_S(xl) = \mathcal{O}_X(-(S)(xl))$ is IT(0). By $x > \beta(l|S)$, $\mathcal{I}_{o/S}(xl|S)$ is IT(0) as a \mathbb{Q}-twisted sheaf on S. Hence $\mathcal{I}_{o/S}(xl)$ is IT(0) as a \mathbb{Q}-twisted sheaf on X by Lemma 2.8 (4). Then $\mathcal{I}_o(xl)$ is IT(0) by Lemma 2.8 (1).

Proposition 4.4. Let (X,l) be a polarized abelian surface. Assume that there exists an elliptic curve $C \subset X$ such that $\sqrt{(l^2)/\sqrt{2}} \geqslant (l.C)$. Then it holds that

$$\beta(l) = \varepsilon(X,l)^{-1} = \frac{1}{(l.C)}.$$

Proof. By Remark 2.5 we have $\beta(l|C) = \deg(l|C)^{-1} = (l.C)^{-1}$. By Lemma 4.3

$$\frac{1}{(l.C)} = \beta(l|C) \leqslant \beta(l) \leqslant \max \left\{ \beta(l|C), \frac{2(l.C)}{(l^2)} \right\} = \max \left\{ \frac{1}{(l.C)}, \frac{2(l.C)}{(l^2)} \right\} = \frac{1}{(l.C)},$$

where the last equality follows from the assumption $\sqrt{(l^2)/\sqrt{2}} \geqslant (l.C)$. Hence we have $\beta(l) = (l.C)^{-1}$.

For the Seshadri constant, it holds that

$$(l.C) = \frac{1}{\beta(l)} \leqslant \varepsilon(X,l) \leqslant (l.C),$$

where the first inequality follows from Proposition 3.1 and the second inequality follows from (3.1). Thus we have $\varepsilon(X,l) = \beta(l)^{-1} = (l.C)^{-1}$.

Proposition 4.4 states that we can compute $\beta(l)$ when X contains an elliptic curve whose degree $(l.C)$ is small compared to the volume (l^2) as in the following example. As far as the author knows, this is the first example to compute $\beta(l)$ other than (the multiples of) non-basepoint free polarizations.

Example 4.5. Let X be an abelian surface which contains an elliptic curve C. Let l' be a polarization on X and set $l = l' + a[C]$ for $a \geqslant (l'.C)$, where $[C] \in \text{Pic} X \slash \text{Pic}^0 X$ is the class of C. Then $\sqrt{(l^2)} \geqslant \sqrt{2}(l.C)$ and hence we have $\beta(l) = (l.C)^{-1} = (l'.C)^{-1}$ by Proposition 4.4.
Remark 4.6. We note that the inequalities in \((4.1) \) are sharp in the sense that \(\beta(l) \) could coincide with \(\sqrt{2}/\sqrt{t} \), \(2/\sqrt{t^2} \) and \(\max_C(l.C)^{-1} \) respectively as follows:

If \(l \) is a principal polarization, \((t^2) = 2 \) and any \(L \) representing \(l \) is not basepoint free. Hence \(\beta(l) = 1 = \sqrt{2}/\sqrt{t} \). If \((t^2) = 4 \), \(L \) is not basepoint free since \(h^0(L) = 2 \). Hence \(\beta(l) = 1 = 2/\sqrt{t^2} \). An example which satisfies \(\beta(l) = \max_C(l.C)^{-1} \) is given in Example 4.5.

For the next proposition, we recall three notions on higher order embeddings. A line bundle \(N \) on a smooth projective variety \(M \) is called \(k \)-jet ample for an integer \(k \geq 0 \) if the restriction map

\[
H^0(L) \to H^0(L \otimes O_M/I_{p_1}I_{p_2} \cdots I_{p_{k+1}})
\]

is surjective for any (not necessarily distinct) \(k+1 \) points \(p_1, \ldots, p_{k+1} \in M \). A line bundle \(N \) is called very ample (resp. \(k \)-spanned) if the restriction map \(H^0(M, N) \to H^0(Z, N|_Z) \) is surjective for any \(0 \)-dimensional subscheme \(Z \) (resp. any curved linear \(0 \)-dimensional subscheme \(Z \)) of \(M \) with length\((O_Z) = k + 1 \). It is known that \(k \)-jet ampleness implies very ampleness (cf. [BS93a, Proposition 2.2]), which of course implies \(k \)-spannedness.

On abelian varieties, these notions are studied in [BS97a, BS97b, Ter98, PP04], etc. In [Cau20b, Theorem D], Caucci shows that an ample line bundle \(L \) on an abelian variety is \(k \)-jet ample if \(\beta(l) < 1/(k+1) \). On abelian surfaces, these notions on higher order embeddings are completely determined by \(\beta(l) \) or \(\varepsilon(X, l) \) under a suitable assumption:

Proposition 4.7. Let \(t > 0 \) be a rational number and \(L \) be an ample line bundle on an abelian surface \(X \) such that \((L^2) > 4/t^2 \). Then the following are equivalent:

(a) \(\beta(l) < t \),
(b) \(\varepsilon(X, l) > t^{-1} \),
(c) \((l.C) > t^{-1} \) for any elliptic curve \(C \subset X \),

where \(l = |L| \) is the polarization represented by \(L \).

If \(t = 1/(p+2) \) for an integer \(p \geq -1 \), in particular, we assume \((L^2) > 4(p+2)^2 \), (a)-(c) and the following are equivalent:

(d) \(L \) is \((p+1) \)-spanned,
(e) \(L \) is \((p+1) \)-very ample,
(f) \(L \) is \((p+1) \)-jet ample.

Moreover, if \(p \geq 0 \), (a)-(f) are equivalent to

(g) \(L \) satisfies \((N_p) \).

Proof. (a) \(\Rightarrow \) (b) follows from \(\beta(l) \geq \varepsilon(X, l)^{-1} \). (b) \(\Rightarrow \) (c) follows \cite{3.1} (c) \(\Rightarrow \) (a) follows from \((4.1) \) and the assumption \((t^2) > 4/t^2 \).

Assume \(t = 1/(p+2) \) for an integer \(p \geq -1 \). (a) \(\Rightarrow \) (f) follows \cite{Can20b, Theorem D}. As we already see, (f) \(\Rightarrow \) (e) and (e) \(\Rightarrow \) (d) hold in general.

If there exists an elliptic curve \(C \subset X \) such that \((L.C) < t^{-1} = p + 2 \), it is easy to find a subscheme \(Z \subset C \) with length\((O_Z) = p + 2 \) such that \(H^0(C, L|_C) \to H^0(Z, L|_Z) \) is not surjective (see [BS93b, Proposition 1.2] for example). Then \(H^0(X, L) \to H^0(Z, L|_Z) \) is not surjective as well and hence \(L \) is not \((p+1) \)-spanned. Thus we have (d) \(\Rightarrow \) (c) and the equivalence of (a)-(f) follows.

If \(p \geq 0 \), (c) \(\Leftrightarrow \) (g) is nothing but the main result of [KLI9, Ito18].

We note that the most parts of the equivalence of (b)-(g) are already known. For example, \((b) \Leftrightarrow (c) \) follows \cite{Bau98, Theorem A.1 (b)]. (c) \(\Leftrightarrow \) (d) \(\Leftrightarrow \) (e) follows \cite{Ter98, Theorem 1.1}. As stated in the proof, (c) \(\Leftrightarrow \) (g) is proved in [KLI9, Ito18].

Remark 4.8. We see that the assumption \((L^2) > 4/t^2 \) is sharp at least for \(t = 1/(p+2) \) with \(p = -1 \) or 0 as follows.

Let \(N \) be an ample symmetric line bundle on a simple abelian surface \(X \) such that \((N^2) = 4 \). Since \(h^0(N) = 2 \), \(N \) is not basepoint free and hence \(\beta(n) = 1 \).
For $p = -1$ and $L = N$, it holds that $(L^2) = 4 = 4/t^2$ since $t = 1/(p + 2) = 1$. In this case, (a), (d)-(f) do not hold. On the other hand, (c) holds since X is simple.

For $p = 0$ and $L = 2N$, it holds that $(L^2) = 16 = 4/t^2$ since $t = 1/(p+2) = 1/2$. In this case, L is not projectively normal by [Ohb88], [Iye03, Remark 3.6, 2)], and $\beta(l) = \beta(n)/2 = 1/2$. Thus (a), (g) do not hold, but (c) holds since X is simple.

5. An Observation

Higher syzygies on abelian surfaces and threefolds are studied in [KL19], [Itô18], [Loz18]. In these papers, the starting point is the following theorem in [LPP11]:

Theorem 5.1 ([LPP11]). Let p be a non-negative integer, X be an abelian variety, and L be an ample line bundle on X. Assume that there exists an effective \mathbb{Q}-divisor F on X such that

(i) $\frac{p+2}{p-2}L - F$ is ample,
(ii) the multiplier ideal $\mathcal{J}(X, F)$ coincides with the maximal ideal \mathcal{I}_o of the origin $o \in X$.

Then L satisfies property (N_p).

Note that we may replace (ii) by $\text{Nklt}(X, F) = \{ o \}$ as in [Itô18 Remark 2.1]. Hence Theorem 5.1 closely resembles the following well-known fact which is used in the study of Fujita's basepoint freeness conjecture in [EL93a], [Kol93], [Hel97], [Kaw97], [YZ20], etc.

Proposition 5.2. Let L be an ample line bundle on a smooth projective variety X and $x \in X$ be a point. If there exists an effective \mathbb{Q}-divisor F on X such that $L - F$ is ample and x is an isolated point of $\text{Nklt}(X, F)$, then $K_X + L$ is basepoint free at x.

A difference between Theorem 5.1 and Proposition 5.2 is that the former assumes the equality $\text{Nklt}(X, F) = \{ o \}$ on whole X but the latter assumes $\text{Nklt}(X, F) = \{ x \}$ locally. As stated in [Loz18 Section 7], this difference makes the construction of F in Theorem 5.1 harder even in the case $\dim X = 3$. To construct a divisor F in Theorem 5.1 on abelian threefolds, Lozovanu [Loz18] gives a detailed analysis on the restricted volume $\text{vol}_X(\pi^*L - tE)$ using (infinitesimal) Newton-Okounkov bodies and Seshadri constants, where $\pi : X' \to X$ is the blow-up at the origin and E is the exceptional divisor.

An easy but important observation is the following proposition, whose proof is essentially the same as that of Proposition 5.2 (see [Laz04b, 10.4.C] for example).

Proposition 5.3. Let (X, l) be a polarized abelian variety and $t > 0$ be a positive rational number. Let $S \subset X$ be a finite set and assume that there exists an effective \mathbb{Q}-divisor F on X such that

(i) $tl - F$ is ample,
(ii) each point in S is an isolated point of the non-klt locus $\text{Nklt}(X, F)$.

If an ideal sheaf \mathcal{I} on X satisfies $\mathcal{J}(X, F) \subset \mathcal{I}$ and $\text{Supp} \mathcal{O}_X/\mathcal{I} \subset S$, then $\mathcal{I}(tl)$ is IT(0). In particular, $\mathcal{I}_S(tl)$ is IT(0), where \mathcal{I}_S is the ideal sheaf of S with the reduced scheme structure.

Proof. Let $t = \frac{a}{b}$. Since $\mu_*^\mathcal{I}(X, F) = \mathcal{J}(X, \mu_*^b F)$ and $abL - \mu_*^b F \equiv abL - b^2F \equiv b^2(tl - F)$ is ample, $h^1(L^{ab} \otimes \mu_*^b \mathcal{J}(X, F) \otimes \mathcal{O}_a) = 0$ for any $a \in \hat{X}$ by the Nadel vanishing theorem. Hence the natural map

$$H^0(L^{ab} \otimes \mathcal{O}_a) \to H^0(L^{ab} \otimes \mathcal{O}_X/\mu_*^b \mathcal{J}(X, F))$$

is surjective.

By (ii), there exists an ideal sheaves $\mathcal{J}, \mathcal{J}'$ on X such that $\mathcal{J}(X, F) = \mathcal{J} \cap \mathcal{J}'$, $\text{Supp} \mathcal{O}_X/\mathcal{J} = S$ and $S \cap \text{Supp} \mathcal{O}_X/\mathcal{J}' = \emptyset$. Then we have

$$\mathcal{O}_X/\mu_*^b \mathcal{J}(X, F) = \mathcal{O}_X/\mu_*^b (\mathcal{J} \cap \mathcal{J}') = \mathcal{O}_X/\mu_*^b \mathcal{J} \otimes \mathcal{O}_X/\mu_*^b \mathcal{J}'$$

since $\text{Supp} \mathcal{O}_X/\mu_*^b \mathcal{J} \cap \text{Supp} \mathcal{O}_X/\mu_*^b \mathcal{J}' = \emptyset$. Thus

$$H^0(L^{ab} \otimes \mathcal{O}_a \otimes \mathcal{O}_X/\mu_*^b \mathcal{J}(X, F)) = H^0(L^{ab} \otimes \mathcal{O}_a \otimes \mathcal{O}_X/\mu_*^b \mathcal{J}) \oplus H^0(L^{ab} \otimes \mathcal{O}_a \otimes \mathcal{O}_X/\mu_*^b \mathcal{J}')$$
and hence the natural map
\[H^0(L^a \otimes P_\alpha) \to H^0(L^a \otimes P_\alpha \otimes \mathcal{O}_X/\mu_b^* \mathcal{J}) \]
is surjective as well.

The assumption on \(\mathcal{I} \) is equivalent to \(\mathcal{J} \subset \mathcal{I} \). Since \(\mathcal{O}_X/\mu_b^* \mathcal{J} \) is a skyscraper sheaf, the natural map
\[H^0(L^a \otimes P_\alpha \otimes \mathcal{O}_X/\mu_b^* \mathcal{J}) \to H^0(L^a \otimes P_\alpha \otimes \mathcal{O}_X/\mu_b^* \mathcal{J}) \]
is also surjective. Thus \(H^0(L^a \otimes P_\alpha) \to H^0(L^a \otimes P_\alpha \otimes \mathcal{O}_X/\mu_b^* \mathcal{J}) \) is surjective and hence \(H^1(\mu_b^* \mathcal{I} \otimes L^a \otimes P_\alpha) = 0 \) by \(H^1(L^a \otimes P_\alpha) = 0 \). Since \(\alpha \) can be any point in \(\hat{X} \), \(\mu_b^* \mathcal{I} \otimes L^a \) is \(\text{IT}(0) \). Thus \(\mathcal{I}(tl) \) is \(\text{IT}(0) \).

The last statement follows from \(\mathcal{J}(X, F) \subset \mathcal{I}_S \) and \(\text{Supp} \mathcal{O}_X/\mathcal{I}_S = S \). □

As a special case, we obtain the following corollary

Corollary 5.4. Let \((X, l)\) be a polarized abelian variety and \(t > 0 \) be a positive rational number. Assume that there exists an effective \(\mathbb{Q} \)-divisor \(F \) on \(X \) such that

(i) \(tl - F \) is ample,

(ii) \(o \in X \) is an isolated point of \(\text{Nklt}(X, F) \).

Then \(\beta(l) < t \). In particular, any \(L \) representing \(l \) satisfies \((N_p)\) if \(t \leq \frac{1}{p+2} \).

Proof. Recall that \(\beta(l) < t \) if and only if \(\mathcal{I}_o(tl) \) is \(\text{IT}(0) \). Hence this corollary is a special case \(S = \{o\} \) of Proposition 5.3 □

We might regard the condition \(\beta(l) < t \), which is equivalent to \(\beta(tl) < 1 \), as “the basepoint freeness of the \(\mathbb{Q} \)-line bundle \(tl^a \)” by Theorem 2.3. Since \(tl = K_X + tL \) for an abelian variety, Corollary 5.4 can be regarded as a \(\mathbb{Q} \)-line bundle case of Proposition 5.2 on abelian varieties.

Some techniques to construct \(F \) as in Proposition 5.2 are developed in the study of Fujita’s conjecture. The basic strategy is to cut down minimal lc centers so that the centers become zero-dimensional. The strategy and techniques to cut down lc centers are used in [Ito18, Loz18] to construct \(F \) as in Theorem 5.1. However we can use them more directly due to Corollary 5.4 since we only need to consider the singularities of \(F \) locally as in Proposition 5.2.

Recall a threshold \(r(l) \) in (3.2):
\[r(l) = \inf\{t \in \mathbb{Q} \mid \text{there exists an effective } \mathbb{Q} \text{-divisor } F \text{ on } X \text{ such that} \]
\[tl - F \text{ is ample and } \mathcal{J}(X, F) = \mathcal{I}_o \} \]

We define a modified threshold:

Definition 5.5. Let \((X, l)\) be a polarized abelian variety. We define
\[r'(l) = \inf\{t \in \mathbb{Q} \mid \text{there exists an effective } \mathbb{Q} \text{-divisor } F \text{ on } X \text{ such that} \]
\[tl - F \text{ is ample and } \text{Nklt}(X, F) \text{ has an isolated point} \} \]

Remark 5.6. If there exists an effective \(\mathbb{Q} \)-divisor \(F \) on \(X \) such that \(tl - F \) is ample and \(\text{Nklt}(X, F) \) has an isolated point, then \(r'(l) \leq t \) by definition. In fact, we have \(r'(l) < t \) since \(tl - F \) is still ample if \(0 < t - t' \leq 1 \).

The following corollary is a restatement of Corollary 5.4

Corollary 5.7. Let \((X, l)\) be a polarized abelian variety. Then \(\beta(l) \leq r'(l) \leq r(l) \).

Proof. We obtain the first inequality by applying Proposition 5.3 to \(S = \{p\} \), where \(p \) is an isolated point of \(\text{Nklt}(X, F) \). The second one follows from the definitions of \(r'(l) \) and \(r(l) \). □

By Corollaries 5.4, 5.7 and results in the study of Fujita’s conjecture, we obtain the following proposition, though we do not use this in the proof of Theorem 1.2

Proposition 5.8. Let \((X, l)\) be a polarized abelian variety and set \(B_t = tl \) for \(t > 0 \).
(1) The case \(\dim X = 1 \): \(\beta(l) = r'(l) = r(l) = (\deg t)^{-1} \).
(2) The case \(\dim X = 2 \) \([\text{Cau20a}]\): If \((B_t^X) > 4\) and \((B_t.C) > 1\) for any elliptic curve \(C \subset X \), then \(\beta(l) \leq r'(l) \leq r(l) < t \).
(3) The case \(\dim X = 3 \): Assume
 - \((B_t^X) > 27\),
 - \((B_t^X.S) \geq 9\) for any surface \(S \subset X \),
 - \((B_t,C) \geq 3\) for any curve \(C \subset X \).

Then \(\beta(l) \leq r'(l) < t \).
(4) The case \(\dim X = 4 \): Assume

\[_{(B_t^{\dim Z}.Z)} \geq 5^{\dim Z} \]

for any subvariety \(Z \subset X \). Then \(\beta(l) \leq r'(l) < t \).
(5) In any dimension: Assume

\(_{(B_t^{\dim Z}.Z)} > \left(\frac{\dim X + 1}{2} \right)^{\dim Z} \)

for any subvariety \(Z \subset X \). Then \(\beta(l) \leq r'(l) < t \).

Proof. (1) We have \(\beta(l) = (\deg t)^{-1} \) by Remark 2.5. On the other hand, \(r(l) = (\deg t)^{-1} \) can be checked from the definition. Hence (1) follows from Corollary 5.7.
(2) The inequality \(r(t) < t \) follows from Proposition 4.1. In fact, this is proved in \([\text{Cau20a}]\) and we use his argument in the proof of Proposition 4.1.
(3) \([\text{Hel99}]\) Example 4.6 shows that the numerical conditions in (3) imply the existence of an effective \(\mathbb{Q} \)-divisor \(D \equiv cB_t \) on \(X \) for some \(0 < c < 1 \) such that \(o \) is the minimal lc center of \((X,D)\). Perturbing \(D \) slightly by Lemma 2.11 we obtain \(F \) as in the definition of \(r'(l) \). Hence we have \(r'(l) < t \).

For (4) and (5), the same proof works if we replace \([\text{Hel99}]\) Example 4.6 with the proof of \([\text{Kaw97}]\) Theorem 4.1 and an algebraic proof \([\text{Kol97}]\) of Angelini and Siu’s theorem \([\text{AS95}]\) respectively.

Other than \([\text{Hel99}]\), \([\text{Kaw97}]\), \([\text{Kol97}]\), we could apply results in \([\text{Hei02}]\), \([\text{YZ20}]\), etc. We note that we assume lower bounds of \((B_t^{\dim Z}.Z)\) for all subvarieties \(Z \) in \([\text{Proposition 5.8}]\) contrary to \([\text{Question 1.1}]\).

6. Induction Argument to Abelian Subvarieties

Inspired by works \([\text{HTT1}], \text{LPPT1}, \text{KL19}]\) on \((N_p)\) of polarized abelian varieties and a generalization of Fujita’s conjecture \([\text{Kol97}]\), the author asks the following question.

Question 6.1 \((\text{[Kol18] \text{Question 4.2}]})\). Let \(p \) be a non-negative integer, \(X \) be an abelian variety, and \(L \) be an ample line bundle on \(X \). Set \(B = \frac{1}{p+1}L \). Assume that \((B^{\dim Z}.Z) > (\dim Z)^{\dim Z}\) for any abelian subvariety \(Z \subset X \) with \(\dim Z \geq 1 \). Then does \(L \) satisfy property \((N_p)\)?

From **Theorem 2.3** and **Question 6.1** Caucci asks the following question:

Question 6.2 \(\text{[= \text{Question 1.1}]})\). Let \((X,l)\) be a polarized abelian variety. Set \(B_t = tl \) for a positive rational number \(t > 0 \). Assume that \((B_t^{\dim Z}.Z) > (\dim Z)^{\dim Z}\) for any abelian subvariety \(Z \subset X \) with \(\dim Z \geq 1 \). Then does it hold that \(\beta(l) < t \)?

As we see in the previous section, techniques and results to cut down lc centers are quite useful to study these questions. However, we still have some difficulty to answer **Question 1.1** even in dimension three. A generalization of Fujita’s conjecture \([\text{Kol97}]\) 5.4 Conjecture claims that an adjoint line bundle \(K_X + L \) on a smooth projective variety \(X \) is basepoint free if \((L^{\dim X}) > (\dim X)^{\dim X}\) and \((L^{\dim Z}.Z) \geq (\dim X)^{\dim Z}\) for all subvarieties \(Z \subset X \). Between **Question 1.1** and \([\text{Kol97}]\) 5.4 Conjecture, there are the following two differences which cause some problems when we use **Corollary 5.4** to answer **Question 1.1**.
(a) The lower bound \((\dim Z)^{\dim Z}\) in Question 1.1 is smaller than the bound \((\dim X)^{\dim Z}\) in [Kol97 5.4 Conjecture] for an abelian subvariety \(Z \subset X\).

(b) In Question 1.1, we do not assume any lower bounds of \((B^g)^{\dim Z}\) if \(Z \subset X\) is not an abelian subvariety.

For (a), we consider the following question.

Question 6.3. For an ample \(\mathbb{Q}\)-divisor \(B\) on a \(g\)-dimensional abelian variety \(X\) with \((B^g) > g^g\), does there exist an effective \(\mathbb{Q}\)-divisor \(F\) on \(X\) such that \(B - F\) is nef and \(\text{Nklt}(X, F)\) contains an abelian subvariety of \(X\) as an irreducible component?

Proposition 6.6. Let \((X, l)\) be a polarized abelian variety and \(Y \subset X\) be an abelian subvariety. Assume that there exist a rational \(\mathbb{Q}\)-divisor \(F\) on \(X\) and an abelian subvariety \(Y \subset X\) such that

\[(i) \ tl - F\text{ is ample,}
(ii) \ Y\text{ is an irreducible component of }\text{Nklt}(X, F),
(iii) \ \beta(l|_Y) < t, \text{ where we set } \beta(l|_Y) := -\infty \text{ if } Y = \{0\}.

Then \(\beta(l) < t\).

Proof. For a subset \(S \subset X\) and a point \(x \in X\), the translations of \(S\) by \(x, -x\) are denoted by \(S + x, S - x \subset X\) respectively. Let \(f : X \times Z \to X\) be the isogeny in Theorem 6.5.

By (ii), there exists an open subset \(U \subset X\) such that \(\text{Nklt}(X, F) \cap U = Y \cap U \neq \emptyset\). Take a general \(x \in X\). In particular, the finite set \(Y \cap (Z - x)\) is contained in \(U\). Applying Lemma 2.12 to \((X, F)\) and the quotient homomorphism \(X \to X/Z\), we have

\[
\text{Nklt}(Z - x, F|_{Z-x}) \cap U = \text{Nklt}(X, F) \cap (Z - x) \cap U = (Y \cap U) \cap (Z - x) = Y \cap (Z - x).
\]
Set $W := (Y + x) \cap Z \subset U + x$ and $D_Z := (F + x)|_Z = F|_Z$. Then

$$\text{(6.1)} \quad \text{Nklt}(Z, D_Z) \cap (U + x) = \text{Nklt}(Z, (F + x)|_Z) \cap (U + x) = (Y + x) \cap Z = W.$$

Recall that $\beta(l) < t$ holds if and only if $I_x(tl)$ is IT(0). Since f is an isogeny, $I_x(tl)$ is IT(0) and only if $I_f^{-1}(x)(tf^*l)$ is IT(0) by Lemma 2.8(3).

Since $W = (Y + x) \cap Z$ and $-Y = Y \subset X$, it holds that $f^{-1}(x) = \{(x - w, w) \in Y \times Z \mid w \in W\} \subset Y \times W$. Hence we have an exact sequence

$$0 \to I_Y \times W \to I_{f^{-1}(x)} \to I_{f^{-1}(x)/I_Y \times W} \to 0$$

on $Y \times Z$. To prove that $I_{f^{-1}(x)}(tf^*l)$ is IT(0), it suffices to show that both $I_Y \times W(tf^*l)$ and $I_{f^{-1}(x)}/I_Y \times W(tf^*l)$ are IT(0) by Lemma 2.8(1).

Claim 6.7. $I_Y \times W(tf^*l)$ is IT(0).

Proof. Since $O_Y(tl|_Y)$ is IT(0) and

$$I_Y \times W(tf^*l) = O_Y \boxtimes I_{W/Z}(tl|_Y \boxtimes l|_Z),$$

it suffices to show that $I_{W/Z}(tl|_Z)$ is IT(0) by Lemma 2.8(2). By (i), $tl|_Z - D_Z \equiv tl|_Z - F|_Z$ is ample. By (6.1) each point in W is an isolated point of Nklt(Z, D_Z). Hence $I_{W/Z}(tl|_Z)$ is IT(0) by Proposition 5.3. \square

Claim 6.8. $(I_{f^{-1}(x)}/I_Y \times W)(tf^*l)$ is IT(0).

Proof. Since $f^{-1}(x) = \{(x - w, w) \in Y \times Z \mid w \in W\} \subset Y \times W$, we have

$$I_{f^{-1}(x)/I_Y \times W} = \bigoplus_{w \in W} I_{(x - w, w)/Y \times \{w\}}.$$

Since $\beta(l|_Y) < t$ by (iii), $I_{x - w/Y}(tl|_Y)$ is IT(0) for any $w \in W$. Hence $I_{(x - w, o)/Y \times \{o\}}(tf^*l)$ is IT(0) by Lemma 2.8(4). Then $I_{(x - w, o)/Y \times \{o\}}(tf^*l)$ is IT(0) and hence so is the direct sum $I_{f^{-1}(x)}/I_Y \times W(tf^*l) = \bigoplus_{w \in W} I_{(x - w, w)/Y \times \{w\}}(tf^*l)$. \square

By Claims 6.7, 6.8 $I_{f^{-1}(x)}(tf^*l)$ is IT(0). Hence this proposition follows. \square

Now we can prove Theorem 6.4.

Proof of Theorem 6.4. We prove this theorem by the induction on g. If $g = 1$, there is nothing to prove since we already see that Question 1.1 has an affirmative answer for $\dim X = 1$ by Proposition 5.8(1).

Assume that this theorem holds for $g - 1$. Let (X, l), B_t be as in Question 1.1 with $\dim X = g$. What we need to show is that an affirmative answer to Question 6.3$^\text{g−1}$ implies $\beta(l) < t$.

Since $(B_t^g) > g^g$, we still have $(B^g) > g^g$ for $B = B_t$ with $0 < t - t' \ll 1$. If we assume an affirmative answer to Question 6.3$^\text{g−1}$, there exists an effective Q-divisor F on X such that $B - F$ is nef and Nklt(X, F) contains an abelian subvariety $Y \subset X$ as an irreducible component. Since $tl - F = B_t - F = (B_t - B) + (B - F)$ is ample, F satisfies (i), (ii) in Proposition 6.6. If we assume an affirmative answer to Question 1.1$^\text{g−1}$, we have an affirmative answer to Question 1.1$^\text{g−1}$. Thus (iii) in Proposition 6.6 is also satisfied and $\beta(l) < t$ follows from Proposition 6.6 \square

7. **Two Lemmas on Curves and Hypersurfaces on Abelian Varieties**

In this section, we show two lemmas on curves and hypersurfaces on abelian varieties. In the proof of Theorem 1.2 we will apply these lemmas to minimal lc centers of (X, D) for some D on an abelian threefold X.

Throughout this section, let X, B be as in Question 6.3 such that, is X is an abelian g-fold and B is an ample Q-divisor on X with $(B^g) > g^g$. For a subvariety $V \subset X$, $\langle V \rangle \subset X$ denotes the smallest abelian subvariety which contains a translate of V. Let $\pi : X' \to X$ be the blow-up at the origin $o \in X$ and $E \subset X'$ be the exceptional divisor.
The following lemma is a variant of \[Loz18\] Proposition 4.3.

Lemma 7.1. For a curve \(C \subset X\),

 (1) \((B.C) > g^2 / \sqrt{g}!\) if \((C) = X\).
 (2) If \(S := \langle C \rangle\) is a hypersurface, \(B - S\) is ample or \((B.C) > g(g - 1) / \sqrt{(g - 1)!}\).

Proof. (1) By \[Deb94\] Proposition 4.1, we have \((B.C) \geq g \sqrt{(B^2)/g} > g^2 / \sqrt{g}!\).
(2) If \((B^{g-1}.S) \leq g^{g-1}\), it holds that \((B^g) > g^g \geq g(B^{g-1}.S)\). Hence \(B - S\) is big by \[Laz04b\] Theorem 2.2.15. Since \(X\) is an abelian variety, \(B - S\) is ample.

If \((B^{g-1}.S) > g^{g-1}\), we have \((B.C) \geq (g - 1)^{g-1}/(B^{g-1}.S)/(g - 1)! > g(g - 1)^{g-1}/(g - 1)!\) by \[Deb94\] Proposition 4.1. \(\square\)

In the following lemma, we combine the argument in \[Hel97\] Section 4 with \[Nak05\], \[Loz18\] Propositions 4.2, 4.4. For the asymptotic multiplicity \(\text{mult}_S(\|\pi^*B - gE\|)\), we refer the readers to \[ELM+06\], \[Loz18\].

Lemma 7.2. Let \(S \subset X\) be a prime divisor such that \(\text{mult}_S(\|\pi^*B - gE\|) \geq 1\), where \(S' \subset X'\) is the strict transform of \(S\). Then \(S\) is an abelian subvariety and \(B - S\) is ample.

Proof. By \(\text{mult}_S(\|\pi^*B - gE\|) \geq 1\) and \[ELM+06\] Lemma 3.3], we have \(\text{vol}(\pi^*B - gE) = \text{vol}(\pi^*B - gE - S')\). Since \(\pi^*B - gE\) is big by \((B^g) > g^g\), so is \(\pi^*B - gE - S'\). Hence \(\pi_*(\pi^*B - gE - S') = B - S\) is big as well. Since \(X\) is an abelian variety, the big divisor \(B - S\) is ample. Thus the rest is to show that \(S\) is an abelian subvariety.

By the assumption \(\text{mult}_S(\|\pi^*B - gE\|) \geq 1 > 0\), \(S'\) is contained in the restricted base locus \(B_-(\|\pi^*B - gE\|)\) by \[ELM+06\] Proposition 2.8. In particular, \(S'\) is contained in the augmented base locus \(B_+\|\pi^*B - gE\|\). By \[Loz18\] Lemma 4.2, \(\alpha\) is contained in \(S\) and if \(S\) is smooth at \(\alpha\), \(S\) is an abelian subvariety. Hence it suffices to show that \(\text{mult}_o(S) = 1\).

Set \(\tau = \sup\{t \geq 0\|\pi^*B - tE\|\text{ pseudo-effective}\} > g\) and \(m = \text{mult}_o(S) \geq 1\). Define a function \(m_{S'} : [0, \tau) \rightarrow \mathbb{R}_{\geq 0}\) by \(m_{S'}(t) = \text{mult}_{S'}(\|\pi^*B - tE\|)\).

By the definition of \(m_{S'}(t)\) and \[ELM+06\] Lemma 3.3], we have a bound of the restricted volume \(\text{vol}_{X|E}(\pi^*B - tE)\) for \(t \in (0, \tau)\) as

\[
0 < \text{vol}_{X|E}(\pi^*B - tE) = \text{vol}_{X|E}(\pi^*B - tE - m_{S'}(t)S') \\
\leq \text{vol}_E((\pi^*B - tE - m_{S'}(t)S'|_E) \\
= \text{vol}_{p_{g-1}}O_{p_{g-1}}(t - mm_{S'}(t))
\]

since \(S'|_E \sim O_E(m)\). Hence we have \(t - mm_{S'}(t) > 0\) for \(t \in (0, \tau)\) and

\[
(B^g) = g \int_0^\tau \text{vol}_{X|E}(\pi^*B - tE)dt \leq g \int_0^\tau (t - mm_{S'}(t))^{g-1}dt,
\]

where the first equality follows from \[LM09\] Corollary C.

By \[Nak96\] Lemma 3.4 (see also \[Loz18\] Proposition 4.4), we have \(m_{S'}(t) - m_{S'}(g) \geq t - g\) for \(t \in [g, \tau]\). Thus it holds that

\[
t - mm_{S'}(t) \leq t - m(t - g + m_{S'}(g)) \\
= -(m - 1)(t - g) + g - mm_{S'}(g)
\]

for \(t \in [g, \tau]\). For simplicity, set \(\alpha = g - mm_{S'}(g)\). We have

\[
0 < \alpha = g - mm_{S'}(g) \leq g - m
\]

by the assumption \(m_{S'}(g) = \text{mult}_{S'}(\|\pi^*B - gE\|) \geq 1\).

Since \(m_{S'}(t)\) is a convex function by \[Loz18\] Lemma 2.5],

\[
\Lambda_1 = \{(t, y) \in \mathbb{R}^2 | 0 \leq t < \tau, 0 \leq y \leq t - mm_{S'}(t)\}
\]

is a convex set. The set

\[
\Lambda_2 = \{(t, y) \in \mathbb{R}^2 | t \geq g, y \geq -(m - 1)(t - g) + \alpha\}
\]
is also convex. Since \((g, \alpha) \in \Lambda_1 \cap \Lambda_2\) and \(\Lambda_1\) and \(\Lambda_2\) do not intersect in the interiors by (7.2), there exists \(\lambda \geq m - 1\) such that
\[
t - \text{mm}_{S'}(t) \leq -\lambda(t - g) + \alpha
\]
for any \(t \in [0, \tau)\).

Recall that we need to show \(m = 1\). To prove this by contradiction, we assume \(m \geq 2\). Then we have \(\lambda \geq m - 1 \geq 1\). Let \((a, a)\) be the intersection point of two lines \(y = t, y = -\lambda(t-g) + \alpha\), and \((b, 0)\) be the intersection point of two lines \(y = 0, y = -\lambda(t-g) + \alpha\), that is,
\[
a = \frac{g\lambda + \alpha}{1 + \lambda}, \quad b = \frac{g\lambda + \alpha}{\lambda}.
\]
We note that \(\tau \leq b\) follows since \(0 < t - \text{mm}_{S'}(t) \leq -\lambda(t-g) + \alpha\) for any \(t \in [0, \tau)\).

By (7.1) and the assumption \((B^g) > g^g\),
\[
g^g < (B^g) \leq g \int_0^\tau (t - \text{mm}_{S'}(t))^{g-1} dt
\]
\[
= g \int_0^a (t - \text{mm}_{S'}(t))^{g-1} dt + g \int_a^\tau (t - \text{mm}_{S'}(t))^{g-1} dt
\]
\[
\leq g \int_0^a t^{g-1} dt + g \int_a^b (-\lambda(t-g) + \alpha)^{g-1} dt
\]
\[
= a^g + \frac{1}{\lambda} a^g = a^{g-1} b \leq \left(\frac{(g-1)a + b}{g}\right)^g,
\]
where the last inequality follows from the fact that the geometric mean is bounded by the arithmetic mean. Thus we have
\[
g < \frac{(g-1)a + b}{g},
\]
which is equivalent to
\[
0 < (\alpha + 1 - g)g\lambda + \alpha
\]
by (7.4) Since \(\alpha \leq g - m\) by (7.3) and \(\lambda \geq m - 1 \geq 1\), it holds that
\[
0 < ((g-m) + 1 - g)g\lambda + (g-m) = -(m-1)g\lambda + g - m
\]
\[
\leq -(m-1)^2 g + g - m.
\]
Hence \((m-1)^2 < 1 - \frac{m}{g} < 1\), which contradicts \(m \geq 2\). Thus we have \(\text{mult}_o(S) = m = 1\). \(\square\)

8. Proof of Theorem 1.2

We answer Question 6.3 affirmatively for \(\dim X \leq 3\):

Theorem 8.1. Question 6.3 has an affirmative answer for \(\dim X \leq 3\), that is, for an ample \(\mathbb{Q}\)-divisor \(B\) on a \(g\)-dimensional abelian variety \(X\) with \((B^g) > g^g\) and \(g \leq 3\), there exists an effective \(\mathbb{Q}\)-divisor \(F\) such that \(B - F\) is nef and \(\text{Nklt}(X, F)\) contains an abelian subvariety as an irreducible component.

Proof. If \(\dim X = 1\), we may take \(F = 0\). If \(\dim X = 2\), under the assumption \((B^2) > 4\), the proof of [Io18] Proposition 3.1] constructs an effective \(\mathbb{Q}\)-divisor \(D\) such that \(B - D\) is ample, \((X, D)\) is lc, and a minimal lc center of \((X, D)\) is a point or an elliptic curve. Perturbing \(D\) slightly by Lemma 2.11, we obtain \(F\) as in the statement of this theorem.

Assume \(\dim X = 3\) and let \(B\) be an ample \(\mathbb{Q}\)-divisor with \((B^3) > 27\). Let \(\pi : X' \to X\) be the blow-up at \(o \in X\) and \(E \subset X'\) be the exceptional divisor. Since \((B^3) > 27\), we can take a rational number \(\delta > 0\) such that \((B^3) > (3 + \delta)^3\). In particular, \(\pi^*B - (3 + \delta)E\) is big. Take a general effective \(\mathbb{Q}\)-divisor \(D' \equiv \pi^*B - (3 + \delta)E\). Set \(D = \pi_*(D') \equiv B\) and
\[
(8.1) \quad c := \text{lct}_o(X, D) \leq \frac{3}{3 + \delta} < 1.
\]
If the minimal lc center of \((X, cD)\) at \(o\) is \(\{o\}\), a small perturbation \(F\) of \(cD\) satisfies the condition in the statement of this theorem. Thus we may assume that the minimal lc center of \((X, cD)\) at \(o\) is a curve or a surface.

Case 1: The minimal lc center is a curve \(C\).

Case 1-1. \(\dim(C) = 3\): In this case, we have \((B.C) > 9/\sqrt{6} > 3\) by Lemma 7.1(1). Thus we can apply Lemma 2.13 to the above \(X, B, D\) by Remark 2.14 and hence there exists an effective \(\mathbb{Q}\)-divisor \(D_1 \equiv c_1B\) for some \(c_1 < 1\) such that \((X, D_1)\) is lc but not klt at \(o\) and the minimal lc center is \(\{o\}\). Perturbing \(D_1\) slightly, we have an effective \(\mathbb{Q}\)-divisor \(F\) on \(X\) such that \(B - F\) is ample and \(\{o\}\) is an isolated point of \(\text{Nklt}(X, F)\).

Case 1-2. \(\dim(C) = 2\): In this case, \(S = \langle C \rangle\) is an abelian surface. By Lemma 7.1(2), \(B - S\) is ample or \(\langle B, C \rangle \equiv 3\sqrt{2}\).

If \(B - S\) is ample, \(F = S\) satisfies the condition in the statement of this theorem.

If \((B.C) > 3\sqrt{2} > 3\), we have \(F\) such that \(B - F\) is ample and \(\{o\}\) is an isolated point of \(\text{Nklt}(X, F)\) as in Case 1-1.

Case 1-3. \(\dim(C) = 1\): In this case, \(C\) is an elliptic curve. A small perturbation \(F\) of \(cD\) satisfies the condition in the statement of this theorem.

Case 2: The minimal lc center is a surface \(S\).

Claim 8.2. Let \(S' \subset X'\) be the strict transform of \(S\). Then \(\text{mult}_{S'}(\|\pi^*(\frac{3}{3+\delta}B) - 3E\|) \geq 1\).

Proof of Claim 8.2. Assume \(\text{mult}_{S'}(\|\pi^*(\frac{3}{3+\delta}B) - 3E\|) < 1\), that is, \(\text{mult}_{S'}(\|\pi^*B - (3 + \delta)E\|) < (3 + \delta)/3\). Then we have \(\text{mult}_{S'}(D') < (3 + \delta)/3\) since we take general \(D' \equiv \pi^*B - (3 + \delta)E\). On the other hand, since \(S\) is a lc center of \((X, cD)\), we have \(\text{mult}_{S'}(D') = \text{mult}_S(D) = c^{-1} \geq (3 + \delta)/3\) by (8.1) which is a contradiction.

Since \(\text{mult}_{S'}(\|\pi^*(\frac{3}{3+\delta}B) - 3E\|) \geq 1\) and \((\frac{3}{3+\delta}B)^3 = (\frac{3}{3+\delta})^3(B^3) > 27, S\) is an abelian surface and \(\frac{3}{3+\delta}B - S\) is ample by Lemma 7.2. Hence \(F = S\) satisfies the condition in the statement of this theorem.

Remark 8.3. We note that Corollary 5.4 is not enough to prove Theorem 1.2 even if we use lemmas in §7. The reason is as follows:

Let \(X, l, B_l = tl\) be as in Theorem 1.2 and take \(D \equiv B_l, c = lct_o(D)\) as in the proof of Theorem 8.1. Assume that the minimal lc center of \((X, cD)\) at \(o\) is an elliptic curve \(C\) as in Case 1-3. Then we cannot cut down \(C\) since we only assume \((B_l, C) > 1\) and cannot apply Lemma 2.13. This is the case when we essentially need Theorem 6.4 or Proposition 6.6.

If we perturb \(cD\), we have \(\mathcal{J}(X, cD) = \mathcal{I}_C\) in a neighborhood of the origin. It might be worth noting that we obtain \(c(l) < t\) if \(\mathcal{J}(X, cD) = \mathcal{I}_C\) holds on whole \(X\) as follows: If \(\mathcal{J}(X, cD) = \mathcal{I}_C\), then \(\mathcal{I}_C(tl) = \mathcal{J}(X, cD)(tl)\) is IT(0) by the Nadel vanishing theorem. Since \(\deg \mathcal{O}_C(-o)(tl) = (B_l, C) - 1 > 0\) and \(C\) is an elliptic curve, \(\mathcal{I}_{o/C}(tl) = \mathcal{O}_C(-o)(tl)\) is IT(0) as well. Thus \(\mathcal{I}_o(tl)\) is IT(0) and hence \(c(l) < t\) follows from the exact sequence

\[0 \to \mathcal{I}_C \to \mathcal{I}_o \to \mathcal{I}_{o/C} \to 0\]

and Lemma 2.3 (1). However, we do not know how to control the singularity of \((X, cD)\) outside the origin and hence do not know whether \(\mathcal{J}(X, cD) = \mathcal{I}_C\) holds or not on whole \(X\). Thus we cannot apply the above argument to prove Theorem 1.2 at least without further argument about the singularities of \((X, cD)\).

The readers might ask if we use \(c' = lct(D) := \max\{s \geq 0 \mid (X, sD)\text{ is log canonical}\}\) instead of \(c = lct_o(D)\). Then \(\mathcal{J}(X, c'D) = \mathcal{I}_{C'}\) holds on whole \(X\) for a minimal lc center \(C'\) of \((X, c'D)\) after perturbing \(c'D\) and hence the above argument to use (8.2) works if \(C'\) is an elliptic curve. However, if \(C'\) is a curve of general type, it is not clear whether \(\mathcal{I}_{o/C'}(tl)\)
is IT(0) or not. Furthermore, we cannot apply [Lemma 2.13] to cut down C' since C' might not contain the origin and hence there might not exist a point $x \in C'$ with $\text{mult}_x(D) > 3$. Therefore, we are not sure how to treat the case when C' is a curve of general type if we consider $\text{let}(D)$ instead of $\text{let}_x(D)$.

Proof of Corollary 1.3 By [Theorem 1.2] we have $\beta(l) < 1/(p+2)$. Hence L satisfies property (N_p) by [Theorem 2.3]. The vanishing of $K_{p,q}(X; L; dL)$ follows from [Proposition 2.6].

Proof of Corollary 1.4 If $(L^2, S) \geq 6$ and $(L, C) \geq 2$ for any abelian surface $S \subset X$ and any elliptic curve $C \subset X$, then $\beta(l) < 1$ follows from [Theorem 1.2] and the assumption $(L^3) \geq 30 > 27$. Hence L is basepoint free by [Theorem 2.3] (1).

On the other hand, if L is basepoint free, so are $L|_S$ and $L|_C$ for any abelian surface S and any elliptic curve $C \subset X$. Since $L|_S$ and $L|_C$ are ample, $h^0(S, L|_S) = (L^3)|_S/2 \geq 3$ and $h^0(C, L|_C) = \deg(L|_C) \geq 2$. Thus we have $(L^2, S) \geq 6$, $(L, C) \geq 2$.

If $h^0(L) = (L^3)/3! \leq 3$, L is not basepoint free since L is ample. Hence if $h^0(L) \neq 4$, the basepoint freeness of an ample line bundle L on an abelian threefold is completely determined by the numerical data $(L^{\dim Z}, Z)$ for all abelian subvarieties $Z \subset X$, including the data for $Z = X$.

However, the basepoint freeness is not determined by such data if $h^0(L) = 4$. For example, let (X_1, l_1) and (X_2, l_2) be very general polarized abelian threefolds of type $(1, 1, 4)$ and $(1, 2, 2)$ respectively. Let L_i be a line bundle representing l_i for each $i = 1, 2$. Then $(L_1^3) = (L_2^3) = 24$. Furthermore, X_1, X_2 are simple since (X_1, l_1) and (X_2, l_2) are very general. Hence the numerical data $(L^{\dim Z}, Z)$ for all abelian subvarieties $Z \subset X$ coincide for X_1 and X_2. On the other hand, L_1 is basepoint free by [DHS94, Proposition 2], but L_2 is not by [NR95, Corollary 2.6], [BL04, Remark 15.1.4].

In particular, the assumption $h^0(L) \geq 5$ is sharp, that is, the statement of Corollary 1.4 does not hold under the weaker assumption $h^0(L) \geq 4$.

References

[AL16] Marian Aprodu and Luigi Lombardi, *On the vanishing of weight one Koszul cohomology of abelian varieties*, Bull. Lond. Math. Soc. **48** (2016), no. 2, 280–290. MR 3483065

[AS95] Urban Angérh and Yum Tong Siu, *Effective freeness and point separation for adjoint bundles*, Invent. Math. **122** (1995), no. 2, 291–308. MR 1358978

[Bau98] Thomas Bauer, *Seshadri constants and periods of polarized abelian varieties*, Manuscripta Math. **94** (1999), no. 3-4, 547–583. MR 1678549

[Bau99] Thomas Bauer, *Seshadri constants on algebraic surfaces*, Math. Ann. **313** (1999), no. 3, 547–583. MR 1678549

[BL04] Christina Birkenhake and Herbert Lange, *Complex abelian varieties*, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673

[BLR93] Ch. Birkenhake, H. Lange, and S. Ramanan, *Primitive line bundles on abelian threefolds*, Manuscripta Math. **81** (1993), no. 3-4, 299–310. MR 1248757

[BS93a] Mauro C. Beltrametti and Andrew J. Sommese, *On k-jet ampleness, Complex analysis and geometry*, Univ. Ser. Math., Plenum, New York, 1993, pp. 355–376. MR 1211891

[BS93b] , *On the preservation of k-very ampleness under adjunction*, Math. Z. **212** (1993), no. 2, 257–283. MR 1202811

[BS97a] Th. Bauer and T. Szemberg, *Higher order embeddings of abelian varieties*, Math. Z. **224** (1997), no. 3, 449–455. MR 1439201

[BS97b] , *Primitive higher order embeddings of abelian surfaces*, Trans. Amer. Math. Soc. **349** (1997), no. 4, 1675–1683. MR 1376538

[Cau20a] Federico Caucci, *The basepoint-freeness threshold and syzygies of abelian varieties*, Algebra Number Theory **14** (2020), no. 4, 947–960. MR 411062

[Cau20b] Federico Caucci, *The basepoint-freeness threshold, derived invariants of irregular varieties, and stability of syzygy bundles*, Ph.D. thesis, 2020.

[Deb94] Olivier Debarre, *Degrees of curves in abelian varieties*, Bull. Soc. Math. France **122** (1994), no. 3, 343–361. MR 1294460
[PP08] , M-regularity and the Fourier-Mukai transform, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov. Part 2, 587–611. MR 2435838
[PP11] , Regularity on abelian varieties III: relationship with generic vanishing and applications, Grassmannians, moduli spaces and vector bundles, Clay Math. Proc., vol. 14, Amer. Math. Soc., Providence, RI, 2011, pp. 141–167. MR 2807853
[Rub99] Elena Rubei, On normal generation of line bundles on abelian threefolds, Kodai Math. J. 22 (1999), no. 1, 15–34. MR 1679235
[Ter98] Hiroyuki Terakawa, The k-very ampleness and k-spannedness on polarized abelian surfaces, Math. Nachr. 195 (1998), 237–250. MR 1654705
[YZ20] Fei Ye and Zhixian Zhu, On Fujita’s freeness conjecture in dimension 5, Adv. Math. 371 (2020), 107210, 56 pp. MR 4108218

Graduate School of Mathematics, Nagoya University, Nagoya, Japan
Email address: atsushi.ito@math.nagoya-u.ac.jp