Gate Driver for Wide-Bandgap Power Semiconductors With Small Negative Spike and Switching Ringing in Zero-Voltage Switching Circuit

GI-YOUNG LEE, (Member, IEEE), CHANG-TAE JU, SUNG-SOO MIN, AND RAE-YOUNG KIM, (Senior Member, IEEE)

1Division of Energy Engineering, Daejin University, Pocheon 11159, South Korea
2Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
Corresponding author: Rae-Young Kim (rykim@hanyang.ac.kr)

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant by the Korean Government through The Ministry of Trade, Industry and Energy (MOTIE) (Development of High Efficiency Power Converter based on Multidisciplinary Design and Optimization Platform) under Grant 20212020800020.

ABSTRACT Because SiC MOSFET-based zero-voltage switching (ZVS) power converter circuits provide high-speed switching, high power density and high efficiency can be achieved. However, an undesired negative spike is formed at the gate-source voltage owing to the crosstalk phenomenon in leg structures, such as half-bridge switch configurations, during high-speed switching. Additionally, ringing voltage occurs owing to resonance between the snubber capacitor and the common source inductance of the SiC MOSFET. Because SiC MOSFETs have a lower gate voltage rating than conventional Si devices, it is essential to reduce the negative spike and ringing voltages to ensure reliability. In this paper, the gate driver circuit is proposed for reducing the negative spike and ringing voltages of the gate-source in ZVS circuits. Because the proposed gate driver circuit provides an effective impedance path for each section through an active switch, a stable driving voltage range of the gate-source can be achieved. To verify the proposed gate driver circuit, an accurate simulation model of the 3-pin SiC MOSFET package is proposed, and the validity of the proposed model is verified through comparison of the simulated waveforms with experimental waveforms. The performance of the proposed gate driver circuit is verified through PSpice simulation.

INDEX TERMS Crosstalk, gate driver, negative spike, SiC MOSFET, snubber capacitor, ZVS.

I. INTRODUCTION Power converters are key components in various industrial applications, such as renewable energy, electric transportation, and aerospace systems. Accordingly, high-speed switching techniques for switching devices are being implemented to achieve miniaturization, high efficiency, and weight reduction of power converters. Examples include widely applied soft-switching techniques, which use the resonance of a capacitor and an inductor. Soft switching technique enable switching devices to achieve high-speed switching and increased efficiency by reducing switching losses through zero-voltage or zero-current transitions during on/off operations [1]–[7]. Additionally, high-speed switching can be realized by replacing the conventional silicon (Si)-based switching devices with wide-bandgap (WBG) devices. WBG devices have superior physical properties to Si-based devices and offer the advantages of fast switching speed and low conduction resistance [6]–[11]. Therefore, high power density and high efficiency can be achieved by concurrently using a WBG device and applying a soft-switching technique.

However, during high-speed switching, undesirable crosstalk occurs in leg structures, such as half-bridge switch configurations [12]–[23]. Crosstalk is a phenomenon in which positive and negative spikes appear in the gate-source voltage owing to the current flowing into the Miller capacitor in the \(\frac{dv}{dt} \) section of the drain-source during turn-on and...
turn-off. As shown in Table 1, because SiC MOSFETs have a lower threshold voltage than Si devices, unwanted turn-on may occur because of positive spikes. Therefore, this may result in an increase in switching loss and, in the worst case, switch burnout [14], [15]. Additionally, because SiC MOSFETs have low gate-source negative voltage rating, the rating may be exceeded owing to a negative spike by crosstalk, which results in switch burnout [22], [23].

In [15]–[17], negative offset voltage was applied during turn-off to reduce the effect of the positive spike voltage. If negative offset voltage is applied during turn-off, the threshold voltage margin for a positive spike can be obtained. In [17]–[21], the positive spike voltage was reduced by adding an active Miller clamp to the gate-source. Because the active Miller clamp technique is operated in the dead time period after turn-off, it does not affect the switching performance. Additionally, it provides a low-impedance path, and the positive spike voltage formed at the gate-source can be reduced. However, conventional methods for reducing the positive spike caused by crosstalk cannot decrease the negative spike voltage but can worsen it instead. In [22] and [23], the positive and negative spike voltages caused by crosstalk were reduced by adding an auxiliary circuit to the gate-source. However, the ringing voltage due to inductances such as common source inductance (CSI) included in the gate-source loop was not fully considered.

Meanwhile, isolation converters, such as series-resonant, parallel-resonant, phase-shift full-bridge, dual-active-bridge, and LLC converters, can achieve zero-voltage switching (ZVS) over the designed frequency range [1]–[7]. However, turn-off loss still exists because hard switching occurs at turn-off [1], [6]. To solve this problem, the turn-off loss can be reduced by adding additional snubber capacitors at both sides of the switches [2], [27]–[29]. However, a ZVS with a snubber capacitor suffers from a resonance problem between the CSI and snubber capacitor [30]–[32]. For 3-pin package SiC MOSFET devices particularly, because CSI is unavoidably included in gate-source loops, ringing voltage occurs at the gate-source owing to the resonance [33], [34]. Because SiC MOSFETs have low gate-source threshold voltage and low negative voltage rating, as shown in Table 1, the negative spike and ringing voltages must be reduced to ensure the reliability of the gate driver circuit.

In this paper, we propose a new gate driver circuit for a SiC MOSFET-based ZVS circuit. It can reduce both the negative spike voltage caused by crosstalk and the ringing voltage caused by the resonance of the snubber capacitor and CSI. Before proposing the gate driver circuit, a detailed mode analysis of the dead time period is performed, and the gate loop is analyzed. For accurately analyzing the proposed gate driver circuit, a simulation model that reflects the dynamic characteristics of a 3-pin SiC MOSFET is proposed. Additionally, the proposed simulation model is validated through comparison with actual experimental results. The performance of the proposed gate driver circuit is verified through PSpice simulation.

II. GATE-SOURCE MODE ANALYSIS FOR ZVS CIRCUIT

In this section, a detailed mode analysis is conducted to analyze the causes of the negative spike and ringing voltages of the gate-source. Figure 1 shows the equivalent ZVS circuit, in which the parasitic components of the 3-pin package SiC MOSFET are included. Here, VDC represents the input voltage of the ZVS circuit; CSH and CSS are the snubber capacitors connected in parallel with high and low switches; Cds, Cdg, and Cgs represent parasitic capacitors of the switch; and LD denotes the CSI by the inner bonding wire and source terminal of the package. Dm denotes the body diode of the switch, Rd is the equivalent resistance of the body diode, and Rg(m) is the internal gate resistance. Rh and RgL are represent the external gate resistances, Vdrv.H and Vdrv.L are the input voltages of the gate driver, and iL is the load current.

A. ANALYZING THE NEGATIVE SPIKE VOLTAGE OF GATE-SOURCE

Figure 2 shows the operation waveform during the dead time period from the turn-off of the high switch to the section in which the body diode of the low-switch conducts. Figure 3 shows the operation mode for each section from t0 to t4. Here, Im_H represents the current of the high switch and ID is the current of the body diode. iCds, iCdg, and iCgs denote the
currents flowing through each parasitic capacitor, and i_{Rg} is the current flowing through the gate resistor. $V_{Cs,H}$ and $i_{Cs,H}$, and $V_{Cs,L}$ and $i_{Cs,L}$ represent the voltages and currents of the high- and low-side snubber capacitors, respectively, and V_{Ls} denotes the voltage formed across the CSI. V_{GS} represents the voltage across the input capacitor C_{gs}, and $V_{GS,H}$ and $V_{GS,L}$ denote the gate-source voltages of the high- and low-side switches, respectively. V_P represents the Miller plateau voltage of the switch, and V_{th} denotes the threshold voltage of the switch.

Before t_0, $V_{GS,H}$ is 18 V and $V_{GS,L}$ is 0 V; thus, the high switch is turned on, and the low switch is turned off. Therefore, in this section, power is transmitted to the load through the high switch.

1) STAGE 1 (t_0–t_1)
At t_0, $V_{GS,H}$ decreases to V_P by the turn-off signal of the high-side gate driver, and the operation region of the high switch moves from the linear region to saturation region. Therefore, although $V_{GS,H}$ decreases, the channel of the high switch is maintained because the operating region of the switch is located in the saturation region, and $i_{sw,H}$ is equal to i_{load}.

2) STAGE 2 (t_1–t_2)
In the section from V_P to V_{th} of $V_{GS,H}$, $i_{sw,H}$ starts to decrease at t_1 and the high switch completely turns off at t_2. Therefore, the output capacitors of the high and low switches are charged.
and discharged by i_{load} as $i_{sw, H}$ decreases. Additionally, at t_1, $V_{C_s, H}$ and $V_{C_{st, L}}$ start to rise and fall, and because the current and voltage of the switch intersect in the corresponding section, turn-off loss occurs in the high switch.

Figure 4 shows the current path formed in the gate loop of the low switch from t_1 to t_4. At t_1, V_{Cds} drops to $-\frac{dv}{dt}$ by the discharge of C_{ds} and C_{gs} of the low switch, and the discharge current i_{Cds} gradually increases. Simultaneously, according to the relationship among V_{Cds}, V_{Cdg}, and V_{Cgs}, as shown in (1), V_{Cdg} and V_{Cgs} decrease in proportion to V_{Cds}. Therefore, the current paths of i_{Cds} and i_{Cgs} are formed in the discharge direction, as shown in Figure 4, and i_{Cdg} is equal to the sum of i_{Rs} and i_{Cgs}, as shown in (2).

$$V_{Cds} = V_{Cdg} + V_{Cgs} \quad (1)$$
$$i_{Cds} = i_{Rg} + [i_{Cgs}] \quad (2)$$

Therefore, because of the current flowing through the gate loop, a negative spike starts to form in $V_{GS, L}$ and V_{Cgs}, in proportion to the voltage drops of $R_{g, L}$ and $R_{g(in)}$, as shown in the following equations:

$$V_{GS, L} = -R_{g, L} \times \Delta i_{Rg} \quad (3)$$
$$V_{Cgs} \approx - (R_{g, L} + R_{g(in)}) \times \Delta i_{Rg} \quad (4)$$

3) STAGE 3 (t_2–t_3)

At t_2, the high switch is turned off, and most of the load current flows through $C_{S, H}$ and $C_{S, L}$. Because the charging and discharging of the snubber capacitors are not completed in this section, $C_{S, H}$ and $C_{S, L}$ are continuously charged and discharged from the load current in the same way as in Stage 2.

4) STAGE 4 (t_3–t_4)

At t_3, V_{ds} of the low switch is sufficiently discharged to be 10 V or less. The device used in this study is the same as the SiC MOSFET in Table 1 (SCTW90N65G2V), and Figure 5 shows the capacitance of the device according to drain-source voltage. As shown in the figure, when the drain-source voltage is less than 10 V, C_{ds} and C_{dg} increase rapidly, and the impedance decreases. Therefore, the slopes of i_{Cds} and i_{Cdg} increase rapidly in this section, and i_{Rg} and i_{Cgs} increase in proportion to i_{Cds}, as shown in (2). Accordingly, a negative spike with a sharp slope is formed in $V_{GS, L}$ and V_{Cgs}.

B. ANALYZING THE RINGING VOLTAGE OF THE GATE-SOURCE

Figure 6 shows the operation mode from t_4 to t_8. At t_4, V_{Cds} is formed as $-V_F$, and thus D_{in} conducts. Based on these characteristics, ZVS is achieved during turn-on.

1) STAGE 5 (t_4–t_5)

Because most of the load current flows through D_{in} after t_4, i_D increases to i_{load}. Owing to the increase in i_D, a negative voltage is formed in L_S by $-\frac{dv}{dt}$. Accordingly, $V_{C_{st, L}}$ decreases by $-V_L$, and reaches a minimum voltage, and $V_{C_{s, H}}$ increases by V_{Ls} and reaches a maximum voltage. Therefore, overshoot and undershoot occur in $V_{C_{sth}}$ and $V_{C_{st, L}}$ at t_5, and $\frac{dv}{dt}$ equals 0; hence, $i_{C_{sth}}$ and $i_{C_{st, L}}$ become 0 A.

2) STAGE 6 (t_5–t_6)

From t_5 to t_6, $V_{C_{st, L}}$ rises to $-V_F$, and $V_{C_{s, H}}$ falls to $V_{ds} + V_F$, returning to the same voltage as that at t_4. Simultaneously, the current direction of the snubber capacitor is reversed by $\frac{dv}{dt}$ of $V_{C_{st, H}}$ and $V_{C_{st, L}}$. Therefore, as shown in (5), i_D increases by the current of the snubber capacitor and reaches a maximum value at t_6. Accordingly, $\frac{dv}{dt}$ of i_D
3) STAGE 7 \((t_6 \rightarrow t_7) \)

At \(t_6 \), \(i_D \) is formed to a maximum value because of the current of the snubber capacitor, and at \(t_7 \), \(i_D \) returns to \(i_{load} \). Simultaneously, \(V_{LS} \) increases by \(+di/dt \) owing to the decrease in \(i_D \). Accordingly, \(V_{CS,H} \) increases and \(V_{CS,L} \) decreases by \(V_{LS} \). Therefore, at \(t_7 \), \(di/dt \) of \(V_{CS,H} \) and \(V_{CS,L} \) become 0; thus, \(i_{CS,H} \) and \(i_{CS,L} \) become 0 A.

4) STAGE 8 \((t_7 \rightarrow t_8) \)

At \(t_7 \), \(V_{CS,L} \) is equal to \(-V_F \), and \(V_{CS,H} \) is equal to \(V_{DC} + V_F \). The current direction of the snubber capacitor is reversed after \(t_7 \) by \(di/dt \) of \(V_{CS,H} \) and \(V_{CS,L} \). Therefore, as shown in (6), \(i_D \) decreases by the snubber capacitor current and reaches a minimum value at \(t_8 \). Accordingly, \(di/dt \) of \(i_D \) becomes 0 at \(t_8 \); thus, \(V_{LS} \) drops to 0 V.

\[
i_D \approx i_{load} - |i_{CS,H}| - |i_{CS,L}|
\]

(6)

Through mode analysis from Stages 5 to 8, the power loop can be simplified, as shown in Figure 7(a). A resonance is induced between the snubber capacitors and \(L_S \) after the body diode conducts. Consequently, the ringing voltage with a resonance frequency occurs in \(V_{LS} \), \(i_{CS,H} \), and \(i_{CS,L} \), as follows:

\[
f = 1/2\pi \sqrt{L_S \cdot (C_{S,H} + C_{S,L})}
\]

(7)

The gate loop can be equalized as shown in Figure 7(b), and ringing occurs at \(V_{GS_L} \) as a result of \(V_{LS} \), as follows:

\[
V_{GS_L} = \frac{R_g}{R_g + R_{G(in)}} \cdot (V_{Cgs} + V_{LS})
\]

(8)

III. GATE LOOP ANALYSIS FOR RELIABILITY

In this section, a detailed gate loop analysis is performed to analyze the physical relationship between the characteristics of a 3-pin SiC MOSFET and passive elements of the gate driver. Figure 8 shows the operation waveform according to the gate resistance under the same load conditions. Between \(t_1 \) and \(t_4 \), negative spike voltages are formed in \(V_{GS,L} \) and \(V_{Cgs} \) by the current formed in the negative direction of the gate loop. Because the negative spike voltage is generated by the voltage drop of the gate resistance, as shown in (3) and (4), the smaller the gate resistance, the lower the negative spike voltage. Between \(t_4 \) and \(t_8 \), the ringing voltage occurs in \(V_{GS,L} \) because of the resonance between the snubber capacitors and \(L_S \). The ringing voltage formed in \(V_{GS,L} \) is dominantly affected by the ringing voltage of \(V_{LS} \), as shown in (8). However, \(V_{Cgs} \) varies according to the magnitude of the gate resistance, as shown in Figure 8. A detailed analysis of these relationships is provided in the following.

A. DETAILED ANALYSIS OF GATE LOOP BETWEEN \(t_4 \) AND \(t_8 \)

1) STAGE A \((t_4 \rightarrow t_6) \)

As \(i_D \) increases, \(i_{Cds} \) and \(i_{Cd-g} \) flow along the path shown in Figure 9(a). Therefore, the resulting \(V_{Cds} \) and \(V_{Cd-g} \) are negative, and \(V_{Cgs} \) is determined accordingly. Here, \(V_{Cds} \) changes depending on the load current. When the load condition is equal, \(V_{Cgs} \) is more affected by the change in \(V_{Cds} \). Notably, \(V_{Cd-g} \) is formed by the \(i_{RG} \) flowing through the gate resistor, and the magnitude of \(i_{RG} \) increases when the gate resistance is small, as shown in Figure 8. Therefore, when \(R_{g,L} \) is small, as shown in Figure 8(a), \(V_{Cd-g} \) increases to a negative value smaller than \(V_{Cds} \), and, consequently, \(V_{Cgs} \) increases to a positive value. However, if \(R_{g,L} \) is large, as shown in Figure 8(b), \(V_{Cgs} \) is formed as a negative value because \(V_{Cd-g} \) is higher than \(V_{Cds} \).

2) STAGE B \((t_6 \rightarrow t_8) \)

In contrast with Stage A, \(i_D \) decreases; thus, \(i_{Cds} \) and \(i_{Cd-g} \) flow in the path shown in Figure 9 (b). Therefore, \(V_{Cds} \) and \(V_{Cd-g} \) are charged in the positive direction. In this section, \(V_{Cd-g} \) increases more than \(V_{Cds} \) regardless of the gate resistance, and the variation in \(V_{Cd-g} \) is high when \(R_{g,L} \) is small, as shown in Figure 8. Thus, \(V_{Cgs} \) drops to a negative value in both cases. Consequently, the smaller the gate resistance, the greater the variation in \(V_{Cgs} \).

B. RELATIONSHIP BETWEEN \(V_{GS,L} \) AND \(V_{Cgs} \)

Figure 10 shows the simulation results according to the gate resistance under the 2 kW load condition. The gate threshold voltage of the SiC MOSFET used is 3.2 V, and the maximum negative rating of the gate voltage is –10 V. As shown in the figure, the negative spike voltage of \(V_{GS,L} \) increases with the gate resistance. However, the ringing voltage and negative voltage of \(V_{Cgs} \) increase as the gate resistance decreases.
G.-Y. Lee et al.: Gate Driver for Wide-Bandgap Power Semiconductors With Small Negative Spike and Switching Ringing

FIGURE 8. Operation waveform according to gate resistance. (a) For low gate resistance; $R_{g,L} = 5 \Omega$. (b) For high gate resistance; $R_{g,L} = 20 \Omega$.

Generally, the reliability of the gate-source voltage can be estimated through $V_{GS,L}$, which is the shortest measurable point externally. However, although $V_{GS,L}$ exceeds the gate threshold voltage, the channel current of the low switch ($i_{sw,L}$) does not flow, as shown in Figure 10(b). The reason behind this phenomenon is that V_{Cgs} does not exceed the threshold voltage. Meanwhile, a large ringing voltage is generated in V_{Cgs} owing to the small gate resistance, as shown in Figure 10(a). This results in an unexpected turn-on because the ring voltage of V_{Cgs} exceeds the threshold voltage. Therefore, the reliability of gate-source voltages cannot be determined by externally measurable points ($V_{GS,L}$), and it is important to secure V_{Cgs} in a safe range.
IV. PROPOSED GATE DRIVER CIRCUIT FOR IMPROVING RELIABILITY

As analyzed in Section 3, a conventional gate driver circuit with a single-gate resistor has unavoidable performance limitations owing to the trade-off relationship between the negative spike voltage and ringing voltage. Therefore, we propose a gate driver circuit in this section to reduce the negative spike and ringing voltages simultaneously and detail the operation of the proposed circuit.

A. CONCEPT OF THE PROPOSED GATE DRIVER CIRCUIT

Figure 11 shows the proposed gate driver circuit. D_{off}, $R_{g(\text{off})}$, and S_{off} represent a diode, resistor, and N-channel MOSFET, respectively, for the turn-off path. D_{NV} and S_{NV} denote a diode and P-channel MOSFET for reducing the negative spike voltage, respectively. $V_{\text{drv}_{\text{off}}}$ and $V_{\text{drv}_{\text{NV}}}$ represent the gate driving voltages for the S_{off} and S_{NV} switches, respectively. The proposed circuit maintains small and large gate resistance when negative spike voltage and ringing voltage occur, respectively. This can be realized by providing an effective impedance path for each section through the active switch (S_{off}, S_{NV}). Through this operation, the negative spike and ringing of V_{Cgs} can be simultaneously reduced.

B. OPERATIONAL PRINCIPLE OF THE PROPOSED GATE DRIVER CIRCUIT

Figure 12 shows the operation waveform of the proposed gate driver circuit, which consists of three operation modes, as shown in Figure 13. Before t_0, the low switch is turned on, and S_{off} and S_{NV} are turned off. Each operation mode is described as follows.

1) MODE 1 (t_0–t_1)

The equivalent circuit of Mode 1 is shown in Figure 13(a). As $V_{\text{drv}_{\text{L}}}$ changes to 0 V at t_0, V_{Cgs} is discharged. Here, turn-off loss occurs in the low switch, as described in Stage 2 of Section 2. To reduce the switching loss, it is better to have a small gate resistance for fast turn-off. After t_0, S_{off} is turned on, and the discharge path of V_{Cgs} is blocked by D_{NV}.
Therefore, V_{Cgs} is discharged through $R_{g,L}$ or through a path leading to D_{off}, $R_{g(\text{off})}$, and S_{off}. Simultaneously, because R_{off} is smaller than $R_{g,L}$, V_{Cgs} is mostly discharged through $R_{g(\text{off})}$ and S_{off}.

2) MODE 2 (t_1–t_2)
At t_1 and t_2, a negative spike voltage is formed by the current flowing through the gate loop. Because a small impedance can lower the negative spike voltage, S_{NV} and D_{NV} should be selected as having a small impedance. As shown in Figure 13(b), S_{off} is turned off, and S_{NV} is turned on. Additionally, the current path is blocked by D_{off}. Therefore, the gate-loop current flows through the $R_{g,L}$ path or S_{NV} path. Simultaneously, because the impedance of the path from S_{NV} to D_{NV} is relatively small, most of the current flows through this path.

3) MODE 3 (t_2–t_3)
In this section, the ringing voltage is formed after the body diode conducts. The ringing voltage is generated by V_{Ls} and can be reduced through a large gate resistance. As shown in Figure 13(c), S_{off} and S_{NV} are turned off, and the bidirectional current due to ringing is blocked by the body-diodes of S_{off} and S_{NV} and diodes D_{off} and D_{NV}. Therefore, the ringing current only flows through $R_{g,L}$. To reduce the ringing voltage, a high resistance should be selected for $R_{g,L}$. Because the switching time between Modes 2 and 3 is short, D_{NV} must have a fast reverse recovery time.

Using the proposed gate driver circuit, fast turn-off to reduce switching loss is realized in Mode 1, and the negative spike voltage is reduced through a small impedance path in Mode 2. Additionally, the ringing voltage is reduced by the large gate resistance in Mode 3.

V. VERIFICATION OF THE PROPOSED GATE DRIVER CIRCUIT
To verify the effectiveness of the proposed gate driver circuit, a PSpice simulation was performed. First, to apply the characteristics of CSI and the internal capacitances of the device, a simulation model for 3-pin SiC MOSFET was proposed. The proposed gate driver circuit was validated by comparing its performance with that of a conventional circuit.

A. SIMULATION MODEL OF A 3-PIN SiC MOSFET
Typically, the switch model applies the spice model provided by the manufacturer. However, in the conventional spice model, the voltage of the parasitic components cannot be measured because its properties are already mathematically considered in the spice model. Therefore, we built and applied
FIGURE 17. Simulation results of the proposed gate driver circuit.

TABLE 2. System parameters.

Parameter	Symbol	Value (or Part No.)
Input voltage	V_{DC}	230 V
Snubber capacitance	$C_{d,j}, C_{d,L}$	10 nF
Switching frequency	f_{sw}	118 kHz
Dead time	t_{dead}	500 ns
Output power	P_{out}	2 kW
Gate resistance	$R_{d,j}$	30 Ω
Turn-off gate resistance	$R_{d,off}$	2 Ω
Schottky diode	D_{off}, D_{NV}	RBR3L30BDD
N-channel MOSFET	S_{off}	S2318CDS
P-channel MOSFET	S_{NV}	S2319CDS
Common source inductance	L_{ds}	5 nH
Gate driver voltage	$V_{drv,L}$	18 V / 0 V
Gate voltage of S_{off}	$V_{drv,off}$	18 V / 0 V
Gate voltage of S_{nv}	$V_{drv,NV}$	18 V / -5 V

a switch model that can measure the voltage of the parasitic components externally, as shown in Figure 14.

Figure 15 shows the experimental and simulation waveforms of the ZVS circuit. The negative spike voltage of the simulation waveform is -7 V, which is the same as that of the experimental waveform. Additionally, the maximum voltage is 19.1 V, which has only a 1% error compared with the experimental result. Based on this result, the validity of the switch model is verified, and it confirms that the analysis resultant with simulation will be equal to the experiment.

B. SIMULATION RESULTS

The operation waveform from turn-off to turn-on of the proposed gate driver circuit is shown in Figure 17. In the proposed circuit, a designed effective impedance path is provided for each section by $V_{drv,L}$ and $V_{drv,NV}$.

Figure 16 shows the simulation configuration of the 2 kW half-bridge ZVS circuit to which the proposed gate driver is applied. The detailed system parameters are presented in Table 2. Schottky diodes with fast reverse recovery time are applied at D_{off} and D_{NV}, and switch devices with small $R_{ds(on)}$ are applied to the N-channel MOSFET (S_{off}) and P-channel MOSFET (S_{NV}).

FIGURE 18. Simulation waveform of V_{Cgs} for: (a) conventional gate driver and (b) proposed gate driver.

(a) Conventional gate driver with $R_{d,off} = 2$ Ω, $R_{d,L} = 30$ Ω

(b) Proposed gate driver with $R_{d,off} = 2$ Ω, $R_{d,L} = 30$ Ω
Table 3. Performance comparison of gate driver circuits.

Parameter	Conventional with $R_L = 2\,\Omega$	Conventional with $R_L = 30\,\Omega$	Proposed
Negative voltage	-2.3	-6.5	-1.2
Ringing voltage	22.5	0.66	0.83

When the gate resistance is low, the negative spike voltage is $-2.3\,\text{V}$, and the peak-to-peak of the ringing voltage is $22.5\,\text{V}$. When the gate resistance is high, the negative spike voltage is $-6.5\,\text{V}$, and the peak-to-peak of the ringing voltage is $0.66\,\text{V}$. However, in the proposed circuit, the negative spike voltage is $-1.2\,\text{V}$, and the peak-to-peak of the ringing voltage is $0.83\,\text{V}$, as shown in Figure 19(b). The performance comparison results are arranged in the Table 3. Consequently, the negative spike voltage is reduced by more than 81%, and the peak-to-peak of the ringing voltage decreases by more than 96% compared with the conventional circuit.

VI. CONCLUSION

In this paper, we proposed a gate driver circuit for reducing the negative spike and ringing voltages of the gate-source in a SiC MOSFET based ZVS circuit. By analyzing the detailed operating principles of the dead-time interval, the relationship between the parasitic components of a 3-pin SiC MOSFET and ZVS circuit parameters was determined.

To realize and analyze the precise operational characteristics of the 3-pin SiC MOSFET, we fabricated a switch model and demonstrated the validity of the model by comparing the simulation and experimental waveforms. The proposed gate driver circuit provided an effective impedance path for the gate loop through two additional active switches, and a stable driving range of the gate-source voltage could be secured. The performance of the proposed circuit was verified through PSpice simulation, and the negative spike voltage reduced by 81% and the ringing voltage by more than 96% compared with the conventional gate driver composed of a single gate resistor.

REFERENCES

[1] M. K. Kazimierczuk, “Class D voltage-switching MOSFET power amplifier,” *IEEE Proc. B Electr. Power Appl.*, vol. 138, no. 6, pp. 285–296, Nov. 1991.
[2] M. K. Kazimierczuk and W. Szaranie, “Class-D zero voltage switching inverter with only one shunt capacitor,” *IEEE Electric Power Appl.*, vol. 139, pp. 449–456, Sep. 1992.
[3] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in *Proc. APEC. 17th Annu. IEEE Appl. Power Electron. Conf. Expo.*, Mar. 2002, pp. 1108–1112.
[4] H. Xu, Z. Yin, Y. Zhao, and Y. Huang, “Accurate model of high-efficiency LLC resonant converter with wide output voltage,” *IEEE Access*, vol. 5, pp. 26653–26665, 2017.
[5] Y. Shen, W. Zhao, Z. Chen, and C. Cai, “Full-bridge LLC resonant converter with series-parallel connected transformers for electric vehicle on-board charger,” *IEEE Access*, vol. 6, pp. 13490–13500, 2018.
[6] K.-H. Cha, C.-T. Ju, and R.-Y. Kim, “Analysis and evaluation of WBG power device in high frequency induction heating application,” *Energies*, vol. 13, no. 20, p. 5351, Oct. 2020.
[7] G. M. Leandro and I. Barbi, “Switched-capacitor LLC resonant DC–DC converter with switch peak voltage of Vin/2,” *IEEE Access*, vol. 8, pp. 111504–111513, 2020.
[8] A. Taylor, J. Lu, L. Zhu, K. Bai, M. McAmmond, and A. Brown, “Comparison of SiC MOSFET-based and GaN HEMT-based high-efficiency high-power-density 7.2 kW EV battery chargers,” *IET Power Electron.*, vol. 11, no. 11, pp. 1849–1857, 2018.
[9] J.-K. Kim, S.-G. Kim, W.-H. Oh, and S.-M. Park, “Modeling and analysis of power device losses for induction cooker applications,” in *Proc. 21st Int. Conf. Electr. Mach. Syst. (ICEMS)*, Oct. 2018, pp. 780–783.
[10] Q. Wu, M. Wang, W. Zhou, X. Wang, G. Liu, and C. You, “Analytical switching model of a 1200 V SiC MOSFET in a high-frequency series resonant pulsed power converter for plasma generation,” *IEEE Access*, vol. 7, pp. 99622–99632, 2019.
[11] D. Yuan, Y. Zhang, X. Wang, and J. Gao, “A detailed analytical model of SiC MOSFETs for bridge-leg configuration by considering staged critical parameters,” *IEEE Access*, vol. 9, pp. 24823–24847, 2021.
[12] Z. Zhang, W. Zhang, F. Wang, L. M. Tolbert, and B. J. Blalock, “Analysis of the switching speed limitation of wide band-gap devices in a phase-leg configuration,” in *Proc. IEEE Energy Convers. Congr. Expo. (ECCE)*, Sep. 2012, pp. 3950–3955.
Z. Chen, G. Feng, L. Huadong, and C. Suhong, “Characterization and detailed analysis of the crosstalk with SiC MOSFET,” in Proc. 1st Workshop Wide Bandgap Power Devices Appl. Asia (WIPDA Asia), May 2018, pp. 239–243.

Z. Zhang, F. Wang, L. M. Tolbert, B. J. Blalock, and D. J. Costinett, “Active gate driver for fast switching and cross-talk suppression of SiC devices in a phase-leg configuration,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2015, pp. 774–781.

Z. Zhang, F. Wang, L. M. Tolbert, and B. J. Blalock, “A novel gate assist circuit for cross talk mitigation of SiC power devices in a phase-leg configuration,” in Proc. 28th Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2013, pp. 1259–1265.

Q. Zhao and G. Stojcic, “Characterization of Cdv/dt induced power loss in synchronous buck DC-DC converters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1508–1513, Jul. 2007.

Avago, Application Note 5314. Active Miller Clamp. Accessed: Jul. 2010. [Online]. Available: https://docs.broadcom.com/doc/AV02-0072EN

ST, Application note AN5355. Mitigation Technique of the SiC MOSFET Gate Voltage Glitches With Miller Clamp. Accessed: Jul. 2019. [Online]. Available: https://www.st.com/content/ccc/resource/technical/document/application_note/group1/2f00a/5ab/db/ab/42/5e/DM00628522/files/DM00628522.pdf/jcr:content/translations/en.DM00628522.pdf

On Semiconductor, Application Note AN-5073. Active Miller Clamp Technology. Accessed: Dec. 2014. [Online]. Available: https://www.onsemi.com/pub/Collateral/AN-5073.pdf

H. Zhou, C. Ye, X. Zhan, and Z. Wang, “Designing a SiC MOSFETs gate driver with high dv/dt immunity and rapid short circuit protection for XEV drivetrain inverter,” in Proc. 22nd Int. Conf. Electr. Mach. Syst. (ICEMS), Aug. 2019, pp. 1–5.

Z. Chen, M. Danilovic, D. Boroyevich, and Z. Shen, “Modularized design consideration of a general-purpose, high-speed phase-leg PEBB based on SiC MOSFETs,” in Proc. 14th Eur. Conf. Power Electron. Appl., Aug. 2011, pp. 1–10.

Z. Zhang, F. Wang, L. M. Tolbert, and B. J. Blalock, “Active gate driver for crosstalk suppression of SiC devices in a phase-leg configuration,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1986–1997, Apr. 2014.

F. Gao, Q. Zhou, P. Wang, and C. Zhang, “A gate driver of SiC MOSFET for suppressing the negative voltage spikes in a bridge circuit,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2339–2353, Mar. 2018.

ST, SCTW90N65G2V Datasheet. Accessed: Jul. 2019. [Online]. Available: https://www.st.com/resource/en/datasheet/sctw90n65g2v.pdf

ST, STY139N65M5 Datasheet. Accessed: Jan. 2013. [Online]. Available: https://www.st.com/resource/en/datasheet/sty139n65m5.pdf

ST, STGW80H65FB Datasheet. Accessed: Jun. 2014. [Online]. Available: https://www.st.com/resource/en/datasheet/stgw80h65fb.pdf

H. Sarnago, O. Lucía, A. Mediano, and J. M. Burdio, “Dual-mode operation half-bridge resonant converter for improved efficiency-induction heating system,” in Proc. 27th Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC), Feb. 2012, pp. 2184–2188.

J. Zhang, J. S. Lai, R. Y. Kim, and W. Yu, “High-power density design of a soft-switching high-power bidirectional DC–DC converter,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1145–1153, Jul. 2007.

H. Sarnago, O. Lucía, A. Mediano, and J. M. Burdio, “Series resonant inverter with active snubber circuit for improved efficiency operation applied to domestic induction heating,” in Proc. 28th Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC), Mar. 2013, pp. 1584–1589.

Z. Dong, X. Wu, K. Sheng, and J. Zhang, “Impact of common source inductance on switching loss of SiC MOSFET,” in Proc. IEEE 2nd Int. Future Energy Electron. Conf. (IFEEC), Nov. 2015, pp. 1–5.

K. Aikawa, T. Shida, R. Matsumoto, K. Umetani, and E. Hiragi, “Measurement of the common source inductance of typical switching device packages,” in Proc. IEEE 3rd Int. Future Energy Electron. Conf. ECCE Asia (IFEEC-ECCE Asia), Jun. 2017, pp. 1172–1177.

M. R. Ahmed, R. Todd, and A. J. Forsyth, “Predicting SiC MOSFET behavior under hard-switching, soft-switching, and false turn-on conditions,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9001–9011, Nov. 2017.

Z. Wang, J. Zhang, X. Wu, and K. Sheng, “Analysis of stray inductance’s influence on SiC MOSFET switching performance,” in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2014, pp. 2838–2843.

Z. Chen, “Characterization and modeling of high switching speed behavior of SiC active devices,” M.S. thesis. Dept. Elect. Eng., Virginia Polytechnic Inst. State Univ., Blacksburg, VA, USA, Dec. 2009.

GI-YOUNG LEE (Member, IEEE) received the B.S. and Ph.D. degrees in electrical engineering from Hanyang University, Seoul, South Korea, in 2013 and 2019, respectively.

He was a Senior Researcher with the LS Electric Research and Development Center, Anyang-si, Gyeonggi-do, South Korea, in 2019. From 2019 to 2021, he was a Senior Researcher with the Korea Automotive Technology Institute (KATECH), Cheonan-si, South Korea. Since 2021, he has been with Daejin University, Pocheon-si, South Korea, where he is currently an Assistant Professor of electric engineering with the Division of Energy Engineering. His current research interests include modeling and control of distributed power conversion systems, converters for renewable energies, microgrids, and power converters for electric vehicles.

CHANG-TAE JU received the B.S. degree in electronic engineering from Inje University, Gimhae, South Korea, in 2017, and the M.S. degree from Hanyang University, Seoul, South Korea, in 2021.

His research interests include the application of wide-bandgap devices, resonant converters, and induction heating systems.

SUNG-SOO MIN received the B.S. degree in electrical engineering from Hanyang University, Seoul, South Korea, in 2019, where he is currently pursuing the Ph.D. degree with the Energy Power Electronics Control System Laboratory.

His research interests include protection and application of wide-bandgap devices and the design of high-density and high-efficiency power converters.

RAE-YOUNG KIM (Senior Member, IEEE) received the B.S. and M.S. degrees in electrical engineering from Hanyang University, Seoul, South Korea, in 1997 and 1999, respectively, and the Ph.D. degree in electrical engineering from Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, in 2009.

From 1999 to 2004, he was a Senior Researcher with the Hyosung Heavy Industry Research and Development Center, Seoul, South Korea. In 2009, he was a Postdoctoral Researcher at the National Semiconductor Corporation, Santa Clara, CA, USA, involved in a smart home energy management systems. In 2016, he was a Visiting Scholar with the Center for Power Electronics Systems (CPES), Virginia Polytechnic Institute and State University. Since 2010, he has been with Hanyang University, where he is currently an Associate Professor with the Department of Electrical and Biomedical Engineering. His research interests include the design of high-power density converters and the distributed control of power converters for modular power converter systems in the applications of renewable energy, wireless power transfer, microgrids, and motor drives.

Dr. Kim was a recipient of the 2007 First Prize Paper Award from IEEE IAS.