Pathways: Asynchronous Distributed Dataflow for ML

by Barham et al., 2022

Paul Barham, Aakanksha Chowdhery, Jeff Dean, Sanjay Ghemawat, Steven Hand, Dan Hurt, Michael Isard, Hyeontaek Lim, Ruoming Pang, Sudip Roy, Brennan Saeta, Parker Schuh, Ryan Sepassi, Laurent El Shafey, Chandramohan A. Thekkath, Yonghui Wu

[Paper link]

Presented by Andrzej Szablewski, as3623@cam.ac.uk
23/10/2024
Yesterday…

- Single Program Multiple Data paradigm (SPMD)
  - All accelerators run the same computation and communicate collectively!

(a) JAX/PyTorch SPMD
Yesterday…

(b) TF1 SPMD

(c) TF1 non-SPMD
Yesterday… and Today!

- Single Program Multiple Data paradigm (SPMD)
  - All accelerators run the same computation and communicate collectively!

- Large models struggle to scale using SPMD. Instead:
  - Pipelining
  - Use of sparsity (e.g. MoE)
  - ...

- Heterogeneous clusters
  - Multiple Program Multiple Data (MPMD)

- Foundation models and model sharing
SPMD models and multi-controller (PyTorch, Tensorflow, JAX)

- Low latency (dispatch over fast PCIe) 🔥
- Implementation fairly straightforward (ctrl+c, ctrl+v) 🔥
- but…
- Poor flexibility! 😞
So, maybe single-controller systems?

- General distributed dataflow model (MPMD) 🔥
- Virtualisation of resources 🔥
- but…
- Dispatch over slower Data Center Network (DCN) 😞
- Still important to have SPMD ability -> Gang-scheduling 😞
The Challenge

Low latency + workload flexibility
Solution!

Sharded dataflow graph + Asynchronous operations
Pathways Programming Model

- XLA computations -- “compiled functions”
  - Resources known beforehand (input/output shapes, types, etc.)
  - Each compiled function maps to a single (sharded) node in the dataflow graph
- Functions can be placed on specific virtual devices with desired network topology and other constraints
- Pathways automatically handles data movement and resharding
Pathways System Architecture

- Resource Manager
- Client
- Coordination
- Gang-scheduled
dynamic dispatch
- Parallel async dispatch
- Data management
Pathways System Architecture

- Resource Manager
- Client
- Coordination
- Gang-scheduled dynamic dispatch
- Parallel async dispatch
- Data management
Pathways System Architecture
Resource Manager & Client

- Accelerators grouped in islands
- Virtualisation of resources
  - one-to-one virtual to physical
- Dynamic scaling of the system
- Single-controller allows pause/resume and migration
Resource Manager & Client

- Client registers computations and get them compiled
- Creates device-agnostic IR
- Sharded buffer for instruction and data buffers
Coordination and Gang-Scheduling

- Cross-host coordination using *Plaque* -- closed-source (😡) sharded dataflow system
  - Sparse, low-latency communication

- Plaque
  - Async enqueuing the execution of computation and network sends
  - Communication with scheduler for consistent ordering of fn execution

- Centralised scheduler per island managing all computation
  - Simple FIFO allocation
Parallel Asynchronous Dispatch

(a) Sequential dispatch

(b) Parallel dispatch
Evaluation

- Single-controller dispatch overheads
  - set of mini-benchmarks
- Multi-tenancy
- Large scale model performance (real machine learning workloads)
  - text-to-text transformer
  - large language model
Single-Controller Dispatch Overheads

Trivial gang-scheduled computation containing a single AllReduce.

Measuring throughput

- O - Separate call for each instruction
- C - Chained, 128 nodes, single client call
- F - Fused, single node single client call
Single-Controller Dispatch Overheads

Smallest computation to match throughput between Pathways and JAX, masking the single-controller overhead.
Multi-Tenancy

Aggregated throughput when multiple clients concurrently submit different Pathways programs

Figure 8. Aggregate throughput of concurrent programs (compute times in ms). PATHWAYS time-multiplexes accelerators between programs efficiently incurring no overhead to context switch.

Figure 9. Traces of a sample of cores on PATHWAYS showing interleaving of gang-scheduled concurrent programs with proportional-share ratios of 1:1:1:1 (Upper) and 1:2:4:8 (Lower) between 4 clients.
Large Scale Model Performance

Text-to-text Transformer

Identical performance because realistic computations are large enough to mask single-controller overheads!

Table 1. Training throughput (tokens/s) of Text-to-text Transformer model configurations from (Raffel et al., 2019) on JAX multi-controller and PATHWAYS.

| Model    | Params | TPU cores | JAX   | PATHWAYS |
|----------|--------|-----------|-------|----------|
| T5-Base  | 270M   | 32        | 618k  | 618k     |
| T5-Large | 770M   | 32        | 90.4k | 90.4k    |
| T5-3B    | 3B     | 512       | 282.8k| 282.8k   |
| T5-11B   | 11B    | 512       | 84.8k | 84.8k    |
Large Scale Model Performance

3B Transformer-based language model (decoder-only)

Table 2. Training throughput (tokens/s) of 3B Transformer language model, using SPMD or multiple pipeline stages, with $C$ TPU cores in PATHWAYS. For pipeline-parallel models, there are $S$ stages and each batch is split into $M$ μ-batches.

| Model configuration           | TPU cores | PATHWAYS |
|------------------------------|-----------|----------|
| Model-parallel (SPMD)        | 128       | 125.7k   |
| Pipelining, $S=4$, $M=16$    | 128       | 133.7k   |
| Pipelining, $S=8$, $M=32$    | 128       | 132.7k   |
| Pipelining, $S=16$, $M=64$   | 128       | 131.4k   |
| Pipelining, $S=16$, $M=64$   | 512       | 507.8k   |
Large Scale Model Performance

3B Transformer-based language model (decoder-only)

Here pipeline has competitive performance to SPMD.

Collective communication within the SPMD computation incurs higher overhead than pipeline bubble overhead.

Figure 10. 3B Transformer model pipelined over 128 TPUs: PATHWAYS can efficiently train models over islands of TPUs connected via DCN achieving the same throughput (131.4k tokens/sec) on 4 islands of 32 cores each on configuration (C) as using a single island of 128 cores on configuration (B).
Final Thoughts and Further Research

- Design impacted by the use of TPUs over GPUs -- fusing many computations into a TPU kernel.
- No software released and use of closed-source systems 😖

- Room for further improvements in dynamic resource management
- Fine-grained control flow -- selective parameter updates
  - Useful for MoE architectures with routing
  - Data-dependent data exchanges between nodes
Good news!

- Single-controller model allows simple access to much richer computation patterns
- Low-latency achieved with minimal overheads in real machine learning scenarios
Thank you!