Supplementary Materials for

Single-EV analysis (sEVA) of mutated proteins allows detection of stage 1 pancreatic cancer

Scott Ferguson, Katherine S. Yang, Piotr Zelga, Andrew S. Liss, Jonathan C. T. Carlson, Carlos Fernandez del Castillo, Ralph Weissleder*

*Corresponding author. Email: rweissleder@mgh.harvard.edu

Published 22 April 2022, Sci. Adv. 8, eabm3453 (2022)
DOI: 10.1126/sciadv.abm3453

This PDF file includes:

Modeling and Simulation
Figs. S1 to S11
Tables S1 to S6
References
Modeling and Simulation
A model previously described (56) was adapted to simulate tumor-originating EV in
circulation as a function of tumor size (Table S5, Fig. S8). In order to expand the model
we sought two key parameters and their expected variability: i) the EV-shed rate of
human pancreatic tumors, and ii) the distribution of marker-panel positive EV across
human pancreatic tumors. To accomplish the first point we collected EV for each of the
7 PDX cell lines in 2D culture over a 24 hour interval, quantified the Ison-purified EV
samples via total Qubit protein assay and used a correction factor of 1E9 EV per
microgram protein to approximate total EV numbers. These were normalized to the
number of cells seeded and counted at collection in order to obtain an EV shed rate for
each cell line. It is well described in the literature that cells grown in 3D culture release
more EV than cells grown in 2D culture. We assumed tumor EV shed rates
in vivo will
reflect the rate of cells growing in all spatial dimensions. To create a correction factor for
our 2D shed rates to 3D shed rates we found 5 data points in the literature where this
was done and used the average fold-increase of 5.2 and multiplied this through (68–70).
The corrected shed rates for human PDX cells spanned a similar magnitude range as
the tumor shed rates observed from the fourteen KIC mice and nine KPC spontaneous
pancreatic cancer models. The distribution of observed EV shed rates was then
checked for normality or log-normality. Across the seven patient cell lines, the data was,
as expected, more closely representative of a log-normal distribution, passing both the
Shapiro-Wilk and Kolmogorov-Smirnov test. For marker coverage observations
however, the data for all cell lines tested passed each built-in Normality test within
GraphPad Prism 8.0 and the likelihood ratio for normality (96.7%) versus log normal
(3.3%) was 29.3. Therefore, when simulating 100 representative individuals a log-
normal distribution of tEV shedding centered on 0.066 Day⁻¹ with a standard deviation of
0.063 was generated. For marker coverage, a normal distribution with a mean of 37.1%
and standard deviation of 15.65 was simulated. For the simulation, some correlation
within the lower triangular matrix was included following the observation that higher-EV
shed rates were often accompanied by higher marker coverage as well as faster growth
rate (covariance 0.35). Additional time-variant error of 20% was included in the
simulation and model outputs of tumor size and total tEV in circulation were then
plotted. All model distributions were simulated using ADAPTv5 provided by University of
Southern California Biomedical Simulations Resource. The total tEV in circulation output
by model simulations was normalized to the percentage of tEV relative to all EV (tEV +
hEV) by hEV equal to 4.2E7 and dividing by the volume of distribution, 6000 ml. The
total marker-positive tEV was computed by assigning the simulated distribution. The
observed LOD for the combined marker panel of 0.005% was then set as a threshold
and for each simulated sampling time a percentage of individuals above this threshold
was computed and this data was fit to a Hill equation.
Fig. S1: Labeling and purification steps in sEVA. Prior to processing, biological samples were centrifuged at 10,000g for 15 minutes to remove large debris. 1) Samples containing EV were further processed using a qEV single size exclusion column (IZON). Following 1 ml void volume, 650\(\mu\)l was collected and used for subsequent labeling. This resulted in EV ranging in size between 50-300 nm and excluded larger microvesicles. 2) EV were labeled with the amine reactive AF488-PEG-TFP dye to define all EV. Unreacted AF488 was removed using a Zeba column. 3) AF488-PEG-TFP labeled EV were co-labeled with fluorescent antibodies. Following labeling, unbound antibodies were removed with a second IZON column. 4) Labeled EV were pipetted onto hydrophobic glass sides and cover slipped. 5) EV were imaged and multicolor images were then analyzed as detailed in Fig S2. All cell line and PDX experiments were performed in triplicate using at least 10,000 EV. For the clinical samples, all images analyzed passed QC and on average several thousand vesicles were analyzed per sample (range: 3,608 - 15,051; average > 5,000).
Fig. S2: Flowchart of image analysis. The pipeline shows the image acquisition and analysis parameters to obtain analyzable and reproducible data. Note that following confirmation of high-quality images, all data points were obtained by automated analysis and not by “visual inspection”. Marker signal intensity was measured only on regions demarcated by TFP labeling to avoid non-specific signals not localized to EV. These measurements were analyzed in GraphPad Prism v8 to determine optimal threshold values between control samples and positive samples by maximizing the likelihood ratio of the receiver operator characteristic curve. Logic statements within Microsoft Excel were used to determine percent positive EVs for each sample, as well as co-positive EVs.
Fig. S3: Analysis of potential spectral crosstalk. A) Detection of EVs labeled with different TFP-fluorophores. EV derived from PANC1 cells were labeled with different fluorochrome (AF350, AF488, AF647) tagged TFP and then imaged by microscopy either as purified or mixed populations. B) Cross-section analysis of mixed TFP population. Note the high signal-to-noise ratio of individually labeled vesicles and specificity of each label as evidenced by the absence of signal overlap between the discretely labeled EV.
Fig. S4: Antibody specificity for KRAS mutations and cell-EV correlation. A-C) Western blot analysis of total KRAS (A), and KRAS mutation specific antibodies (B-C) using lysate of prototypical PDAC cell lines with known mutations. Note the specificity of antibodies. D) Western blot quantitation from A-C showing the general composition of cell lysates (all data are from same gel and scaled to GAPDH). E) Correlation between mutational load of parent cells and their isolated EV. Normalized cell content of G12D and G12V protein detection was correlated to the percent EV staining positive for each (AsPC-1, CAPAN-2, Mia-PaCa-2 and PANC-1). Red: KRASG12D (R2 0.95); Orange KRASG12V (R2 0.99). F) PANC-1 EVs stained for total KRAS (mutant + wild-type; green), and KRASG12D (red). There are EV that are exclusively green (harboring predominantly wild-type KRAS), EV that are yellow (positive for KRAStotal + KRASG12D) and EV that are predominantly red (KRASG12D with fainter KRAStotal signal). See Fig S4 D for bulk composition. Note that the sEVA assay only uses antibodies for mutant KRAS forms to detect cancers.
Fig. S5 Antibody specificity for P53 mutations. The P53\textsubscript{mut} antibody (Abcam) does not recognize P53WT present in CAPAN-2 but does recognize mutant-P53 in BxPC3 (Y220C), MIA-PaCa-2 (R248W), and PANC-1 (R273H) cell lysate via western blot analysis. However, there was not a strong signal for P53\textsubscript{mut} cell lines AsPC-1 (C135fs*35) or PSN-1 (K132Q) via western-blot. Clinical samples with known P53\textsubscript{mut} status included R213Ter, Y220C, Y163C, R196Ter, and R196H, all of which stained positively above levels in control plasma.
Fig. S6: Antibody validation for different biomarkers in cell lines and EV. Note the good specificity against negative and positive controls using purified protein (first two columns). The EV staining data generally matches the whole cell data with the exception of P53mut in MIA PaCa-2 (R248W). MIA PaCa-2 appears to have more P53total and P53mut and compared to other PDAC cell lines but which lacks efficient incorporation into EV.
Fig. S7: ROC analysis to define threshold for detecting stage 1 PDAC
The black line represents the ROC and the grey lines are the 95% confidence intervals. The red line denotes the AUC=0 assumption. The table summarizes the numerical values of the analysis.

	Full Data ROC	LPO Cross Validation ROC
Area under the ROC curve		
Area	0.9000	0.8833
Std. Error	0.06862	0.07987
95% confidence interval	0.7655 to 1.000	0.7268 to 1.000
P value	0.0082	0.0214
Fig. S8: Comparison of data to modeling. The percent EV positive for the current marker panel along with the corresponding tumor volume from pathology are overlaid onto model simulations.
Fig. S9: Comparison of literature values of EV increases in late stage cancers compared to model used in this study. **A)** Increase in total circulating EVs in humans as a function of tumor burden is presented in fold-changes over the baseline values of EV according to model by Ferguson et al. (56). **B)** Model predicted fold-increases in EVs were compared to available clinical data. The model correlated well with clinical data from four different cancer types, including the PDAC samples from the current study (red dot; $R^2=0.96$, blue dashed line).
Fig S10. Effect of EV size on diagnostic accuracy. EV binned into small (<10 pixel area) and large (10+ pixel area). Plotted are the RFU of EV as a function of EV size (small and large) for P53mut (green), KRASmut (red) and PDACEV (blue). Note that the diagnostic information is similar across large and small EV and does not affect accuracy.
Fig. S11 Model Equations. Equations 1 - 5 describe tEV distribution and elimination in mass units where: $v_{asc}k_{on}$ is the first order rate constant describing association of tEV to the vascular walls, $v_{asc}k_{off}$ is the first order rate constant describing dissociation of tEV from the vascular walls back into circulation, $Renal_{EXC}$ and $Fecal_{EXC}$ are the first order rate constants of tEV eliminated into urine and feces, respectively, RES_{uptake} is the first order rate constant of hepatic uptake, and Hep_{Eli} is the first order rate constant of tEV eliminated in the liver (days$^{-1}$).

Equation 6 describes the tumor growth dynamics and production of tEV. k_{Tgr} is the first order growth rate of the tumor (days$^{-1}$) and $Tumor_{Max}$ is the maximum tumor volume (mm3). Under the case where a tumor is present, tEV input from equation 6 is modeled in equation 1 by the first order tumor-EV shed rate: k_{EVSHED} (days$^{-1}$).

\[
\frac{d tEV}{dt} = -(v_{asc}K_{on} \times tEV) - (Renal_{EXC} \times tEV) - (Fecal_{EXC} \times tEV) - (RES_{uptake} \times tEV) + (v_{asc}K_{off} \times VASC) + (TUMOR \times k_{EVSHED})
\]

Eq. 1, Tumor EVs in circulation:

\[
\frac{d VASC}{dt} = (v_{asc}K_{on} \times tEV) - (v_{asc}K_{off} \times VASC)
\]

Eq. 2, Tumor EVs bound to vasculature:

\[
\frac{d LIVER}{dt} = (tEV \times RES_{uptake}) - (LIVER \times Hep_{Eli})
\]

Eq. 3, Tumor EVs cleared by the liver:

\[
\frac{d URINE}{dt} = (tEV \times Renal_{EXC})
\]

Eq. 4, Tumor EVs cleared renally:

\[
\frac{d FECES}{dt} = (tEV \times Fecal_{EXC})
\]

Eq. 5, Tumor EVs cleared fecally:

\[
\frac{d TUMOR}{dt} = k_{Tgr} \times \log \left(\frac{Tumor_{Max}}{TUMOR} \right) \times TUMOR
\]

Eq. 6, Tumor volume:
Table S1: Characteristics of PDAC cell lines used in study

EV were obtained from a total of 11 cell lines and used for single EV analysis. The commercially available cells were from ATCC and have been described(41). The PDX cell lines were created at MGH and have partially been described(9, 43).

Cell line	Source	Sex/Age	Site	KRAS	P53	MUC1	EGFR	Comment
AsPC-1	ATCC	F/62	Ascites	G12D	Mut	+	++++	CRL-1682
CAPAN-2	ATCC	M/56	Primary	G12V	WT	++++	+++++	HTB80
MIA PaCa-2	ATCC	M/65	Primary	G12C	Mut	+	++++	CRL-1420
PANC-1	ATCC	M/56	Primary	G12D	Mut	++++	+++++	CRL-1469
609	MGH	M/52	Primary	G12D	Mut	++++	++	MGH PDX
950	MGH	M/57	Primary	G12V	Mut	++++	(-)	MGH PDX
1275	MGH	M/70	Primary	G12V	Mut	++	+	MGH PDX
1309	MGH	M/62	Primary	G12D	Mut	++++	++	MGH PDX
1319	MGH	M/66	Primary	G12D	Mut	++++	++++	MGH PDX
1326	MGH	F/82	Primary	G12D	Mut	++	+	MGH PDX
1473	MGH	M/61	Primary	G12V	WT	++	++	MGH PDX
Table S2: Frequency of biomarker positive EV compared to parental cells

Cancer biomarkers are less common in EV when compared to parental cells. For example, in AsPC-1 cells only 37% of EV express mutant KRAS. PDACEV refers to EV positive for EGFR, MUC1, and/or αFG-P4OH.

Cell line	KRASmut	P53mut	PDACEV	No Marker
AsPC-1	0.368	0.046	0.492	0.481
CAPAN-2	0.352	0.002	0.279	0.501
MIA PaCa-2	0.036	0.022	0.449	0.519
PANC-1	0.341	0.39	0.607	0.243
609	0.349	0.133	0.315	0.481
950	0.363	0.047	0.393	0.431
1275	0.282	0.03	0.342	0.487
1309	0.212	0.217	0.366	0.43
1319	0.398	0.157	0.229	0.456
1326	0.406	0.055	0.296	0.428
1473	0.635	0.005	0.425	0.314
Table S3: Characteristics of patient samples

Plasma was obtained from 25 patients, including 16 patients with stage 1 PDAC, 4 patients with late stage PDAC and 5 healthy controls. SEVA was performed on 100 µL of purified plasma. *ND = not determined. KRAS and P53 status was determined by sequencing of the primary tumor.

Patient sample	Dx	Stage	Volume (cm³)	Age	Sex	KRAS	P53
E1	Early PDAC	I	0.268	75-79	male	G12D	ND
E2	Early PDAC	I	1.640	55-59	male	G12D	WT
E3	Early PDAC	I	0.014	65-69	female	G12D	R213 Ter
E4	Early PDAC	I	0.268	75-79	male	G12D	Y220C
E5	Early PDAC	I	3.431	65-69	female	G12R	Y163C
E6	Early PDAC	I	4.490	70-74	male	Q61K	R196 Ter
E7	Early PDAC	I	0.382	70-74	female	Q61H	R196H fs Ter 52; N239S
E8	Early PDAC	I	4.490	75-79	female	ND	ND
E9	Early PDAC	I	0.181	70-74	female	ND	ND
E10	Early PDAC	I	0.105	75-79	female	ND	ND
E11	Early PDAC	I	0.001	70-74	female	ND	ND
E12	Early PDAC	I	2.827	>80	female	ND	ND
E13	Early PDAC	I	1.115	75-79	male	ND	ND
E14	Early PDAC	I	0.382	70-74	male	ND	ND
E15	Early PDAC	I	0.034	75-79	female	ND	ND
E16	Early PDAC	I	0.001	>80	female	ND	ND
L1	Late PDAC	III	54.39	65-69	male	WT	R213W
L2	Late PDAC	IV	418.88	55-59	female	G12R	R273H
L3	Late PDAC	IV	49.01	65-69	male	G12C	G266 Ter
L4	Late PDAC	III	109.62	70-74	male	G12D	R282W
C1	Healthy	-	35-39	male	-	-	
C2	Healthy	-	30-34	male	-	-	
C3	Healthy	-	25-29	female	-	-	
C4	Healthy	-	20-24	female	-	-	
C5	Healthy	-	30-34	female	-	-	
Table S4: Affinity labels used for sEVA analysis

Target	Reagent	Vendor	Catalog #	Flurochrome	DOL	Ex/Em filters
All EV (TFP)	TFP	Thermo Fisher	A37570	AF488	N/A	472/520
KRAS_{G12D}	anti-KRAS_{G12D}	Genetex	GTX635362	AF594	3.4	562/593
KRAS_{G12V}	anti-KRAS_{G12V}	CellSignaling	14412BF (Special order)	AF594	1.7	562/593
P53_{mut}	Anti-P53_{mut}	Abcam	ab247264	AF488	4	472/520
P53_{mut}	Anti-P53_{mut}	Abcam	ab32049	AF555	3.6	562/593
MUC1	Anti-MUC1	Biolegend	355602	AF680	2.8	628/692
EGFR	anti-EGFR	Abcam	Ab30	AF680	3.1	628/692
αFG-P4OH	anti-αFG-P4OH	Diagnocine	KC600	AF680	5.1	628/692
Table S5: Parameters for EV modeling.

Parameter	Description	Species/Cancer	Estimate (CV%) / [95% CI]	Notes
\(V_{d-m}\)	Volume of distribution (ml)	Mouse	1.53 Fix	Shah & Betts (2012) scaled to 25g mouse
\(V_{d-h}\)	Volume of distribution (ml)	Human	6,004 Fix	Shah & Betts (2012) scaled to 75kg male
Renal\text{EXC}	Renal Elimination (day\(^{-1}\))	Mouse/Human	1.932 x 10\(^{-2}\) (29.31)	Model Estimate
Fecal\text{EXC}	Fecal Elimination (day\(^{-1}\))	Mouse/Human	1.031 x 10\(^{-2}\) (16)	Model Estimate
RES\text{uptake}	Hepatic Uptake (day\(^{-1}\))	Mouse/Human	0.3055 (5.516)	Model Estimate
vas\text{Kon}	Vasculature \text{Kon} (day\(^{-1}\))	Mouse/Human	0.6397 (5.418)	Model Estimate
vas\text{Koff}	Vasculature \text{Koff} (day\(^{-1}\))	Mouse/Human	2.336 x 10\(^{-2}\) (18.18)	Model Estimate
He\text{PEi}	Hepatic Elimination (day\(^{-1}\))	Mouse/Human	6.264 x 10\(^{-3}\) (7.961)	Model Estimate
\(k_{Tgr}\)	Tumor Growth Rate (day\(^{-1}\))	KPC Pancreatic	1.424 x 10\(^{-2}\) [0.0072 - 0.0229]	Gompertz Fit
Tumor\text{Max}	Max Tumor Volume (ml)	Sharma et al (51)	477 [401.0 - 673.8]	Gompertz Fit
\(k_{\text{EV-SHED}}\)	Shed Rate of Tumor EVs (day\(^{-1}\))		0.2208 (5.399)	Model Estimate
\(k_{Tgr}\)	Tumor Growth Rate (day\(^{-1}\))	KIC Pancreatic	0.1098 -	Gompertz Fit
Tumor\text{Max}	Max Tumor Volume (ml)	Sharma et al (51)	1953 [1,629 - 2,279]	Gompertz Fit
\(k_{\text{EV-SHED}}\)	Shed Rate of Tumor EVs (day\(^{-1}\))		5.428 x 10\(^{-2}\) (18.12)	Model Estimate

Parameter	Description	Species/Cancer	Estimate	SD	Notes
\(k_{\text{EV-SHED}}\)	Shed Rate of Tumor EVs (day\(^{-1}\))	Human PDX	0.066	0.0627	Experimentally derived
\(k_{\text{EV-SHED}}\)	Shed Rate of Tumor EVs (day\(^{-1}\))	Human	0.0477	0.0465	Simulated trial
Marker\ (+)	% tEV positive for a tested marker	Human PDX	0.371	0.1565	Experimentally derived
Marker\ (+)	% tEV positive for a tested marker	Human	0.337	0.1444	Simulated trial
Table S6: Comparison between SEA and sEVA methods

	SEA	sEVA	Advantages
Technique	Labeling on glass	Labeling in solution, additional purification	Faster, more reproducible, limits background
Loss of EV	>95%	<10%	Representative EV
Staining quality	Dim SNR ~3	Bright SNR >15	Better sensitivity for identifying (+) EV
Image quality	Borderline, spurious signal	Superb	High confidence in signal specificity
Use for rare EV	Not suitable	Suitable	Early stage cancer
Reference	ACS Nano 2018;12:494–503	Current study	
REFERENCES AND NOTES

1. L. Rahib, B. D. Smith, R. Aizenberg, A. B. Rosenzweig, J. M. Fleshman, L. M. Matrisian, Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

2. C. R. Ferrone, G. Marchegiani, T. S. Hong, D. P. Ryan, V. Deshpande, E. I. McDonnell, F. Sabbatino, D. D. Santos, J. N. Allen, L. S. Blaszkowsky, J. W. Clark, J. E. Faris, L. Goyal, E. L. Kwak, J. E. Murphy, D. T. Ting, J. Y. Wo, A. X. Zhu, A. L. Warshaw, K. D. Lillemoe, C. Fernández-del Castillo, Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann. Surg. 261, 12–17 (2015).

3. A. K. Mattox, C. Bettegowda, S. Zhou, N. Papadopoulos, K. W. Kinzler, B. Vogelstein, Applications of liquid biopsies for cancer. Sci. Transl. Med. 11, eaay1984 (2019).

4. B. A. Krantz, E. M. O’Reilly, Biomarker-based therapy in pancreatic ductal adenocarcinoma: An emerging reality. Clin. Cancer Res. 24, 2241–2250 (2018).

5. C. Bettegowda, M. Sausen, R. J. Leary, I. Kinde, Y. Wang, N. Agrawal, B. R. Bartlett, H. Wang, B. Luber, R. M. Alani, E. S. Antonarakis, N. S. Azad, A. Bardelli, H. Brem, J. L. Cameron, C. C. Lee, L. A. Fecher, G. L. Gallia, P. Gibbs, D. Le, R. L. Giuntoli, M. Goggins, M. D. Hogarty, M. Holdhoff, S. M. Hong, Y. Jiao, H. H. Juhl, J. J. Kim, G. Siravegna, D. A. Laheru, C. Lauricella, M. Lim, E. J. Lipson, S. K. Marie, G. J. Netto, K. S. Oliner, A. Olivi, L. Olsson, G. J. Riggins, A. Sartore-Bianchi, K. Schmidt, L. M. Shih, S. M. Oba-Shinjo, S. Siena, D. Theodorescu, J. Tie, T. T. Harkins, S. Veronese, T. L. Wang, J. D. Weingart, C. L. Wolfgang, L. D. Wood, D. Xing, R. H. Hruban, J. Wu, P. J. Allen, C. M. Schmidt, M. A. Choti, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, N. Papadopoulos, L. A. Diaz, Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).

6. J. D. Cohen, L. Li, Y. Wang, C. Thoburn, B. Afsari, L. Danilova, C. Douville, A. A. Javed, F. Wong, A. Mattox, R. H. Hruban, C. L. Wolfgang, M. G. Goggins, M. Dal Molin, T. L. Wang, R. Roden, A. P. Klein, J. Ptak, L. Dobbiny, J. Schaefer, N. Silliman, M. Popoli, J. T. Vogelstein, J. D. Browne, R. E. Schoen, R. E. Brand, J. Tie, P. Gibbs, H. L. Wong, A. S. Mansfield, J. Jen, S. M. Hanash, M. Falconi, P. J. Allen, S. Zhou, C. Bettegowda, L. A. Diaz, C. Tomasetti, K. W. Kinzler, B. Vogelstein, A. M. Lennon, N. Papadopoulos, Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

7. B. Lee, L. Lipton, J. Cohen, J. Tie, A. A. Javed, L. Li, D. Goldstein, M. Burge, P. Cooray, A. Nagrial, N. C. Tebbutt, B. Thomson, M. Nikfarjam, M. Harris, A. Haydon, B. Lawrence, D. W. M. Tai, K. Simons, A. M. Lennon, C. L. Wolfgang, C. Tomasetti, N. Papadopoulos, K. W. Kinzler, B. Vogelstein, P. Gibbs, Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann. Oncol. 30, 1472–1478 (2019).
8. A. D. Singhi, L. D. Wood, Early detection of pancreatic cancer using DNA-based molecular approaches. *Nat. Rev. Gastroenterol. Hepatol.* **18**, 457–468 (2021).

9. K. S. Yang, H. Im, S. Hong, I. Pergolini, A. F. Del Castillo, R. Wang, S. Clardy, C. H. Huang, C. Pille, S. Ferrone, R. Yang, C. M. Castro, H. Lee, C. F. Del Castillo, R. Weissleder, Multiparametric plasma EV profiling facilitates diagnosis of pancreatic malignancy. *Sci. Transl. Med.* **9**, eaa13226 (2017).

10. V. Martini, S. Timme-Bronsert, S. Fichtner-Feigl, J. Hoeffner, B. Kulemann, Circulating tumor cells in pancreatic cancer: Current perspectives. *Cancers* **11**, 1659 (2019).

11. C. Yuan, C. B. Clish, C. Wu, J. R. Mayers, P. Kraft, M. K. Townsend, M. Zhang, S. S. Tworoger, Y. Bao, Z. R. Qian, D. A. Rubinson, K. Ng, E. L. Giovannucci, S. Ogino, M. J. Stampfer, J. M. Gaziano, J. Ma, H. D. Sesso, G. L. Anderson, B. B. Cochrane, J. E. Manson, M. E. Torrence, A. C. Kimmelman, L. T. Amundadottir, M. G. Vander Heiden, C. S. Fuchs, B. M. Wolpin, Circulating metabolites and survival among patients with pancreatic cancer. *J. Natl. Cancer Inst.* **108**, djv409 (2016).

12. H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, H. Lee, New technologies for analysis of extracellular vesicles. *Chem. Rev.* **118**, 1917–1950 (2018).

13. H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, H. Lee, Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. *Nat. Biotechnol.* **32**, 490–495 (2014).

14. D. Issadore, C. Min, M. Liong, J. Chung, R. Weissleder, H. Lee, Miniature magnetic resonance system for point-of-care diagnostics. *Lab Chip* **11**, 2282–2287 (2011).

15. H. Lee, E. Sun, D. Ham, R. Weissleder, Chip-NMR biosensor for detection and molecular analysis of cells. *Nat. Med.* **14**, 869–874 (2008).

16. T. Arab, E. R. Mallick, Y. Huang, L. Dong, Z. Liao, Z. Zhao, O. Gololobova, B. Smith, N. J. Haughey, K. J. Pienta, B. S. Slusher, P. M. Tarwater, J. P. Tosar, A. M. Zivkovic, W. N. Vreeland, M. E. Paulaitis, K. W. Witwer, Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. *J. Extracell Vesicles* **10**, e12079 (2021).

17. K. Lee, K. Fraser, B. Ghaddar, K. Yang, E. Kim, L. Balaj, A. Chiocca, X. O. Breakefield, H. Lee, R. Weissleder, Multiplexed profiling of single extracellular vesicles. *ACS Nano* **12**, 494–503 (2018).

18. S. A. Melo, L. B. Luecke, C. Kahlert, A. F. Fernandez, S. T. Gammon, J. Kaye, V. S. LeBleu, E. A. Mittendorf, J. Weitz, N. Rahbari, C. Reissfelder, C. Pilarsky, M. F. Fraga, D. Piwnica-Worms, R. Kalluri, Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. *Nature* **523**, 177–182 (2015).

19. M. Capello, L. E. Bantis, G. Scelo, Y. Zhao, P. Li, D. S. Dhillon, N. J. Patel, D. L. Kundnani, H. Wang, J. L. Abbruzzese, A. Maitra, M. A. Tempero, R. Brand, M. A. Firpo, S. J. Mulvihill, M. H. W.
Katz, P. Brennan, Z. Feng, A. Taguchi, S. M. Hanash, Sequential validation of blood-based protein biomarker candidates for early-stage pancreatic cancer. *J. Natl. Cancer Inst.* 109, djw266 (2017).

20. J. Kim, W. R. Bamlet, A. L. Oberg, K. G. Chaffee, G. Donahue, X. J. Cao, S. Chari, B. A. Garcia, G. M. Petersen, K. S. Zaret, Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19–9 blood markers. *Sci. Transl. Med.* 9, eaa5583 (2017).

21. S. A. Hinger, J. J. Abner, J. L. Franklin, D. K. Jeppesen, R. J. Coffey, J. G. Patton, Rab13 regulates sEV secretion in mutant KRAS colorectal cancer cells. *Sci. Rep.* 10, 15804 (2020).

22. K. H. Lim, K. O’Hayer, S. J. Adam, S. D. Kendall, P. M. Campbell, C. J. Der, C. M. Counter, Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. *Curr. Biol.* 16, 2385–2394 (2006).

23. K. H. Lim, A. T. Baines, J. J. Fiordalisi, M. Shipitsin, L. A. Feig, A. D. Cox, C. J. Der, C. M. Counter, Activation of RalA is critical for Ras-induced tumorigenesis of human cells. *Cancer Cell* 7, 533–545 (2005).

24. S. Zhang, C. Wang, B. Ma, M. Xu, S. Xu, J. Liu, Y. Tian, Y. Fu, Y. Luo, Mutant p53 drives cancer metastasis via RCP-mediated Hsp90α secretion. *Cell Rep.* 32, 107879 (2020).

25. H. Ying, P. Dey, W. Yao, A. C. Kimmelman, G. F. Draetta, A. Maitra, R. A. DePinho, Genetics and biology of pancreatic ductal adenocarcinoma. *Genes Dev.* 30, 355–385 (2016).

26. A. M. Waters, C. J. Der, KRAS: The critical driver and therapeutic target for pancreatic cancer. *Cold Spring Harb. Perspect. Med.* 8, a031435 (2018).

27. J. Kowal, G. Arras, M. Colombo, M. Jouve, J. P. Morath, B. Primdal-Bengtson, F. Dingli, D. Loew, M. Tkach, C. Théry, Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. *Proc. Natl. Acad. Sci. U.S.A.* 113, E968–E977 (2016).

28. S. Springer, Y. Wang, M. Dal Molin, D. L. Masica, Y. Jiao, I. Kinde, A. Blackford, S. P. Raman, C. L. Wolfgang, T. Tomita, N. Niknafs, C. Douville, J. Ptak, L. Dobbyn, P. J. Allen, D. S. Klimstra, M. A. Schattner, C. M. Schmidt, M. Yip-Schneider, O. W. Cummings, R. E. Brand, H. J. Zeh, A. D. Singhi, A. Scarpa, R. Salvia, G. Malleo, G. Zamboni, M. Falconi, J. Y. Jang, S. W. Kim, W. Kwon, S. M. Hong, K. B. Song, S. C. Kim, N. Swan, J. Murphy, J. Geoghegan, W. Brugge, C. Fernandez-Del Castillo, M. Mino-Kenudson, R. Schulick, B. H. Edil, V. Adsay, J. Paulino, J. van Hooft, S. Yachida, S. Nara, N. Hiraoka, K. Yamao, S. Hijioka, S. van der Merwe, M. Goggins, M. I. Canto, N. Ahuja, K. Hirose, M. Makary, M. J. Weiss, J. Cameron, M. Pittman, J. R. Eshelman, L. A. Diaz, N. Papadopoulos, K. W. Kinzler, R. Karchin, R. H. Hruban, B. Vogelstein, A. M. Lennon, A combination of molecular markers and clinical features improve the classification of pancreatic cysts. *Gastroenterology* 149, 1501–1510 (2015).

29. The Cancer Genome Atlas Research Network, Integrated genomic characterization of pancreatic ductal adenocarcinoma. *Cancer Cell* 32, 185–203.e13 (2017).
30. N. Koshikawa, T. Minegishi, H. Kiyokawa, M. Seiki, Specific detection of soluble EphA2 fragments in blood as a new biomarker for pancreatic cancer. *Cell Death Dis.* **8**, e3134 (2017).

31. L. Gambini, A. F. Salem, P. Udompholkul, X. F. Tan, C. Baggio, N. Shah, A. Aronson, J. Song, M. Pellecchia, Structure-based design of novel EphA2 agonistic agents with nanomolar affinity in vitro and in cell. *ACS Chem. Biol.* **13**, 2633–2644 (2018).

32. S. Boeck, C. Wittwer, V. Heinemann, M. Haas, C. Kern, P. Stieber, D. Nagel, S. Holdenrieder, Cytokeratin 19-fragments (CYFRA 21-1) as a novel serum biomarker for response and survival in patients with advanced pancreatic cancer. *Br. J. Cancer* **108**, 1684–1694 (2013).

33. D. Bausch, M. Mino-Kenudson, C. Fernández-Del Castillo, A. L. Warshaw, K. A. Kelly, S. P. Thayer, Plectin-1 is a biomarker of malignant pancreatic intraductal papillary mucinous neoplasms. *J. Gastrointest. Surg.* **13**, 1948–1954; discussion 1954 (2009).

34. R. Chen, E. C. Yi, S. Donohoe, S. Pan, J. Eng, K. Cooke, D. A. Crispin, Z. Lane, D. R. Goodlett, M. P. Bronner, R. Aebersold, T. A. Brentnall, Pancreatic cancer proteome: The proteins that underlie invasion, metastasis, and immunologic escape. *Gastroenterology* **129**, 1187–1197 (2005).

35. K. Suzuki, A. Watanabe, K. Araki, T. Yokobori, N. Harimoto, D. Gantumur, K. Hagiwara, T. Yamanaka, N. Ishii, M. Tsukagoshi, T. Igarashi, N. Kubo, N. Gombodorj, M. Nishiyama, Y. Hosouchi, H. Kuwano, K. Shirabe, High STMN1 expression is associated with tumor differentiation and metastasis in clinical patients with pancreatic cancer. *Anticancer Res.* **38**, 939–944 (2018).

36. I. Keklikoglou, C. Cianciaruso, E. Güç, M. L. Squadrito, L. M. Spring, S. Tazzyman, L. Lambein, A. Poissonnier, G. B. Ferraro, C. Baer, A. Cassará, A. Guichard, M. L. Iruela-Arispe, C. E. Lewis, L. M. Coussens, A. Bardia, R. K. Jain, J. W. Pollard, M. De Palma, Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. *Nat. Cell Biol.* **21**, 190–202 (2019).

37. S. Kaur, L. M. Smith, A. Patel, M. Menning, D. C. Watley, S. S. Malik, S. R. Krishn, K. Mallya, A. Aithal, A. R. Sasson, S. L. Johansson, M. Jain, S. Singh, S. Guha, C. Are, M. Raimondo, M. A. Hollingsworth, R. E. Brand, S. K. Batra, A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: A multicenter study. *Am. J. Gastroenterol.* **112**, 172–183 (2017).

38. K. K. Das, X. Geng, J. W. Brown, V. Morales-Oyarvide, T. Huynh, I. Pergolini, M. B. Pitman, C. Ferrone, M. Al Efishat, D. Haviland, E. Thompson, C. Wolfgang, A. M. Lennon, P. Allen, K. D. Lillemo, R. C. Fields, W. G. Hawkins, J. Liu, C. F. Castillo, K. M. Das, M. Mino-Kenudson, Cross validation of the monoclonal antibody Das-1 in identification of high-risk mucinous pancreatic cystic lesions. *Gastroenterology* **157**, 720–730.e2 (2019).

39. K. K. Das, H. Xiao, X. Geng, C. Fernandez-Del-Castillo, V. Morales-Oyarvide, E. Dagililar, D. G. Forcione, B. C. Bounds, W. R. Brugge, M. B. Pitman, M. Mino-Kenudson, K. M. Das, mAb Das-1 is specific for high-risk and malignant intraductal papillary mucinous neoplasm (IPMN). *Gut* **63**, 1626–1634 (2014).
40. K. S. Yang, D. Ciprani, A. O’Shea, A. Liss, R. Yang, S. Fletcher-Mercaldo, M. Mino-Kenudson, C. Fernández-Del Castillo, R. Weissleder, Extracellular vesicle analysis allows for identification of invasive IPMN. Gastroenterology 160, 1345–1358.e11 (2021).

41. E. L. Deer, J. González-Hernández, J. D. Coursen, J. E. Shea, J. Ngatia, C. L. Scaife, M. A. Firpo, S. J. Mulvihill, Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39, 425–435 (2010).

42. N. P. Hessvik, A. Llorente, Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75, 193–208 (2018).

43. I. Pergolini, V. Morales-Oyarvide, M. Mino-Kenudson, K. C. Honselmann, M. W. Rosenbaum, S. Nahar, M. Kem, C. R. Ferrone, K. D. Lillemoe, N. Bardeesy, D. P. Ryan, S. P. Thayer, A. L. Warshaw, C. Fernández-Del Castillo, A. S. Liss, Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLOS ONE 12, e0182855 (2017).

44. M. Ono, J. Matsubara, K. Honda, T. Sakuma, T. Hashiguchi, H. Nose, S. Nakamori, T. Okusaka, T. Kosuge, N. Sata, H. Nagai, T. Ioka, S. Tanaka, A. Tsuchida, T. Aoki, M. Shimahara, Y. Yasunami, T. Itoi, F. Moriyasu, A. Negishi, H. Kuwabara, A. Shoji, S. Hirohashi, T. Yamada, Prolyl 4-hydroxylation of alpha-fibrinogen: A novel protein modification revealed by plasma proteomics. J. Biol. Chem. 284, 29041–29049 (2009).

45. C. J. Mageean, J. R. Griffiths, D. L. Smith, M. J. Clague, I. A. Prior, Absolute quantification of endogenous Ras isoform abundance. PLOS ONE 10, e0142674 (2015).

46. S. Kitamoto, S. Yokoyama, M. Higashi, N. Yamada, S. Takao, S. Yonezawa, MUC1 enhances hypoxia-driven angiogenesis through the regulation of multiple proangiogenic factors. Oncogene 32, 4614–4621 (2013).

47. H. L. Huang, H. Y. Wu, P. C. Chu, I. L. Lai, P. H. Huang, S. K. Kulp, S. L. Pan, C. M. Teng, C. S. Chen, Role of integrin-linked kinase in regulating the protein stability of the MUC1-C oncoprotein in pancreatic cancer cells. Oncogenesis 6, e359 (2017).

48. M. Palviainen, M. Saraswat, Z. Varga, D. Kitka, M. Neuvonen, M. Puhka, S. Joenväärä, R. Renkonen, R. Nieuwland, M. Takatalo, P. R. M. Siljander, Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo—Implications for biomarker discovery. PLOS ONE 15, e0236439 (2020).

49. J. Van Deun, A. Jo, H. Li, H. Y. Lin, R. Weissleder, H. Im, H. Lee, Integrated dual-mode chromatography to enrich extracellular vesicles from plasma. Adv. Biosyst. 4, e1900310 (2020).

50. M. Goggins, K. A. Overbeek, R. Brand, S. Syngal, M. Del Chiaro, D. K. Bartsch, C. Bassi, A. Carrato, J. Farrell, E. K. Fishman, P. Fockens, T. M. Gress, J. E. van Hooft, R. H. Hruban, F. Kastrinos, A. Klein, A. M. Lennon, A. Lucas, W. Park, A. Rustgi, D. Simeone, E. Stoffel, H. F. A. Vasen, D. L. Cahen, M. I. Canto, M. Bruno; International Cancer of the Pancreas Screening (CAPS) consortium, Management of patients with increased risk for familial pancreatic cancer:
Updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. *Gut* 69, 7–17 (2020).

51. R. Sharma, X. Huang, R. A. Brekken, A. J. Schroit, Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. *Br. J. Cancer* 117, 545–552 (2017).

52. V. H. Cruz, E. N. Arner, W. Du, A. E. Bremauntz, R. A. Brekken, Axin-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer. *JCI Insight* 5, 126117 (2019).

53. K. P. Olive, M. A. Jacobetz, C. J. Davidson, A. Gopinathan, D. McIntyre, D. Honess, B. Madhu, M. A. Goldgraben, M. E. Caldwell, D. Allard, K. K. Frese, G. Denicola, C. Feig, C. Combs, S. P. Winter, H. Ireland-Zechini, S. Reichelt, W. J. Howat, A. Chang, M. Dhara, L. Wang, F. Rückert, R. Grützmann, C. Pilarsky, K. Izeradjene, S. R. Hingorani, P. Huang, S. E. Davies, W. Plunkett, M. Egorin, R. H. Hruban, N. Whitebread, K. McGovern, J. Adams, C. Iacobuzio-Donahue, J. Griffiths, D. A. Tuveson, Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. *Science* 324, 1457–1461 (2009).

54. M. P. Zaborowski, L. Balaj, X. O. Breakefield, C. P. Lai, Extracellular vesicles: Composition, biological relevance, and methods of study. *Bioscience* 65, 783–797 (2015).

55. C. Théry, K. W. Witwer, E. Aikawa, M. J. Alcaraz, J. D. Anderson, R. Andriantsitohaina, A. Antoniou, T. Arab, F. Archer, G. K. Atkin-Smith, D. C. Ayre, J. M. Bach, D. Bachurski, H. Baharvand, L. Balaj, S. Baldacchino, N. N. Bauer, A. A. Baxter, M. Bebawy, C. Beckham, A. B. Zavec, A. Bennoussa, A. C. Berardi, P. Bergese, E. Bielska, C. Blenkiron, S. Bobis-Wozowicz, E. Boilard, W. Boireau, A. Bongiovanni, F. E. Borrás, S. Bosch, C. M. Boulanger, X. Breakefield, A. M. Breglio, M. Á. Brennan, D. R. Brigstock, A. Brisson, M. L. Broekman, J. F. Bromberg, P. Bryl-Górecka, S. Buch, A. H. Buck, D. Burger, S. Busatto, D. Buschmann, B. Bussolati, E. I. Buzás, J. B. Byrd, G. Camussi, D. R. Carter, S. Caruso, L. W. Chamley, Y. T. Chang, C. Chen, S. Chen, L. Cheng, A. R. Chin, A. Clayton, S. P. Clerici, A. Cocks, E. Cocucci, R. J. Coffey, A. Cordeiro-da-Silva, Y. Couch, F. A. Coumans, B. Coyle, R. Crescitelli, M. F. Criado, C. D’Souza-Schorey, S. Das, A. Datta Chaudhuri, P. de Candia, E. F. De Santana, O. De Wever, H. A. Del Portillo, T. Demaret, S. Deville, A. Devitt, B. Dhondt, D. Di Vizio, L. C. Dieterich, V. Dolo, A. P. Domínguez-Rubio, M. Dominici, M. R. Dourado, T. A. Driedonks, F. V. Duarte, H. M. Duncan, R. M. Eichenberger, K. Ekström, S. El Andaloussy, C. Elie-Caille, U. Erdbrügger, J. M. Falcón-Pérez, F. Fatima, J. E. Fish, M. Flores-Bellver, A. Förösönts, A. Frelet-Barrand, F. Fricke, G. Fuhrmann, S. Gabrielson, A. Gámez-Valero, C. Gardiner, K. Gärtner, R. Gaudin, Y. S. Gho, B. Giebel, C. Gilbert, M. Gimonà, I. Giusti, D. C. Goberdhan, A. Görgens, S. M. Gorski, D. W. Greening, J. C. Gross, A. Gualerzi, G. N. Gupta, D. Gustafson, A. Handberg, R. A. Harasztí, P. Harrison, H. Hegyesi, A. Hendrix, A. F. Hill, F. H. Hochberg, K. F. Hoffmann, B. Holder, H. Hölthofer, B. Hosseinkhani, G. Hu, Y. Huang, V. Huber, S. Hunt, A. G. Ibrahim, T. Ikezu, J. M. Inal, M. Isin, A. Ivanova, H. K. Jackson, S. Jacobsen, S. M. Jay, M. Jayachandran, G. Jenster, L. Jiang, S. M. Johnson, J. C. Jones, A. Jong, T. Jovanovic-Talisman, S. Jung, R. Kalluri, S. I. Kano, S. Kaur, Y. Kawamura, E. T. Keller, D. Khamari, E. Khomyakova, A. Khvorova, P. Kierulf, K. P. Kim, T. Kislinger, M. Klingebohm, D. J. Klinke, M. Kornek, M. M. Kosanović, Á. F. Kovács, E. M. Krämer-Albers, S. Krasemann, M. Krause, I. V. Kurochkin, G. D. Kusuma, S. Kuypers, S.
59. A. Datta, H. Kim, M. Lal, L. McGee, A. Johnson, A. A. Moustafa, J. C. Jones, D. Mondal, M. Ferrer, A. B. Abdel-Mageed, Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. *Cancer Lett.* **408**, 73–81 (2017).

60. V. Hyenne, A. Apaydin, D. Rodriguez, C. Spiegelhalter, S. Hoff-Yoessle, M. Diem, S. Tak, O. Lefebvre, Y. Schwab, J. G. Goetz, M. Labouesse, RAL-1 controls multivesicular body biogenesis and exosome secretion. *J. Cell Biol.* **211**, 27–37 (2015).

61. X. Yu, S. L. Harris, A. J. Levine, The regulation of exosome secretion: A novel function of the p53 protein. *Cancer Res.* **66**, 4795–4801 (2006).

62. A. Lespagnol, D. Duflaut, C. Beekman, L. Blanc, G. Fiucci, J. C. Marine, M. Vidal, R. Amson, A. Telerman, Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. *Cell Death Differ.* **15**, 1723–1733 (2008).

63. A. A. Shamseddine, C. J. Clarke, B. Carroll, M. V. Airola, S. Mohammed, A. Rella, L. M. Obeid, Y. A. Hannun, P53-dependent upregulation of neutral sphingomyelinase-2: Role in doxorubicin-induced growth arrest. *Cell Death Dis.* **6**, e1947 (2015).

64. N. Bardeesy, A. J. Aguirre, G. C. Chu, K. H. Cheng, L. V. Lopez, A. F. Hezel, B. Feng, C. Brennan, R. Weissleder, U. Mahmood, D. Hanahan, M. S. Redston, L. Chin, R. A. Depinho, Both p16(INK4a) and the p19(ARF)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 5947–5952 (2006).

65. J. Ko, Y. Wang, J. C. T. Carlson, A. Marquard, J. Gungabeesoon, A. Charest, D. Weitz, M. J. Pittet, R. Weissleder, Single extracellular vesicle protein analysis using immuno-droplet digital polymerase chain reaction amplification. *Adv. Biosyst.* **4**, e1900307 (2020).

66. J. Ko, Y. Wang, K. Sheng, D. A. Weitz, R. Weissleder, Sequencing-based protein analysis of single extracellular vesicles. *ACS Nano* **15**, 5631–5638 (2021).

67. M. Yu, I. F. Tannock, Targeting tumor architecture to favor drug penetration: A new weapon to combat chemoresistance in pancreatic cancer. *Cancer Cell* **21**, 327–329 (2012).

68. S. Thippabhotla, C. Zhong, M. He, 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. *Sci. Rep.* **9**, 13012 (2019).

69. S. Rocha, J. Carvalho, P. Oliveira, M. Voglstaetter, D. Schwartz, A. R. Thomsen, N. Walter, R. Khanduri, J. C. Sanchez, A. Keller, C. Oliveira, I. Nazarenko, 3D cellular architecture affects microRNA and protein cargo of extracellular vesicles. *Adv. Sci.* **6**, 1800948 (2019).

70. J. Cao, B. Wang, T. Tang, L. Lv, Z. Ding, Z. Li, R. Hu, Q. Wei, A. Shen, Y. Fu, B. Liu, Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. *Stem Cell Res. Ther.* **11**, 206 (2020).