Chronic Active Epstein–Barr Virus Disease

Hiroshi Kimura1 and Jeffrey I. Cohen2*

1Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan, 2Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States

Chronic active Epstein–Barr virus (CAEBV) disease is a rare disorder in which persons are unable to control infection with the virus. The disease is progressive with markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes. Patients often present with fever, lymphadenopathy, splenomegaly, EBV hepatitis, or pancytopenia. Over time, these patients develop progressive immunodeficiency and if not treated, succumb to opportunistic infections, hemophagocytosis, multiorgan failure, or EBV-positive lymphomas. Patients with CAEBV in the United States most often present with disease involving B or T cells, while in Asia, the disease usually involves T or NK cells. The only proven effective treatment for the disease is hematopoietic stem cell transplantation. Current studies to find a cause of this disease focus on immune defects and genetic abnormalities associated with the disease.

Keywords: chronic active Epstein–Barr virus, Epstein–Barr virus lymphoma, infectious mononucleosis, hemophagocytosis, DDX3X

INTRODUCTION

Primary infection of adolescents and young adults often results in infectious mononucleosis with fever, lymphadenopathy, and sore throat (1). Additional signs and symptoms include splenomegaly, lymphocytosis, and liver dysfunction. Fever and lymphadenopathy usually resolve within 2 weeks after onset but can persist for a month, or in rare cases even longer. EBV is present in circulating B cells, and the level of EBV DNA is elevated in the blood for the first month of the illness. Both the innate immune response (especially NK cells) and the acquired immune response (virus-specific CD4 and CD8 cells) have a critical role in clearing the infection (2).

Initial control of EBV in healthy persons involves NK cells that can kill virus-infected cells (3, 4) and secrete IFN-γ, which inhibits B cell proliferation, and monocytes, which release chemokines in response to virus infection (5). A large clonal or oligoclonal expansion of CD8 cells is observed during infectious mononucleosis (6). Most CD8 cells are directed to lytic antigens initially, and these cells rapidly undergo apoptosis (7). These patients have modestly elevated antibodies to EBV lytic antigens as well as antibodies to the EBV nuclear antigens (EBNAs), including EBNA1.

Rare patients who become infected with EBV, or reactivate EBV, develop disease that does not resolve. Some of these patients develop fulminant infectious mononucleosis and die within days or weeks of primary infection. Others develop a more chronic course with persistent or intermittent infectious mononucleosis-like symptoms including fever, persistent lymphadenopathy, splenomegaly, and EBV hepatitis. These patients are unable to control EBV infection and have infiltration of tissues by EBV positive T, NK, or less often B cells. They have markedly elevated levels of EBV DNA in the blood and infiltration of organs by EBV-positive lymphocytes.
that persist in the blood. This entity is referred to as chronic active EBV (CAEBV) disease.

Some patients with CAEBV have been reported to have impaired NK cell (8) or T cell activity (9–13) against EBV-infected cells. In addition, reduced numbers of EBV-specific T cells have been described in patients with CAEBV disease (10). Unlike healthy persons with infectious mononucleosis, patients with CAEBV disease often have low numbers of EBV-specific CD8 cells (10). A recent study showed that patients with CAEBV or infectious mononucleosis have a decrease in the TCR-beta repertoire and expanded T cell clones in their peripheral blood compared with healthy carriers of EBV (14). Many have extremely high levels of antibodies to EBV lytic proteins and lack antibody to EBNA1 (13).

CAEBV DEFINITION AND FEATURES

Chronic active Epstein–Barr virus disease is usually defined as a chronic illness lasting at least 6 months, an increased EBV level in either the tissue or the blood, and lack of evidence of a known underlying immunodeficiency (15). Other authors, particularly when defining severe CAEBV disease, require both an elevated level of EBV in the blood as well as infiltration of tissues by EBV-positive lymphocytes (16). Recently, the duration of illness required for defining the disease has been shortened to 3 months (17). Former definitions required elevated levels of antibody to EBV viral capsid or early antigen in the blood (18); however, we have found that elevated levels of EBV DNA in the blood are more specific for CAEBV than elevated levels of EBV antibodies. Most laboratories now perform ELISA tests for EBV antibodies, and these are often less helpful than the previously used quantitative immunofluorescent assay using endpoint dilution of serum. It is important that DNA PCR is done using either whole blood or peripheral blood mononuclear cells, rather than plasma or serum which is much less sensitive for diagnosis of CAEBV disease.

Chronic active Epstein–Barr virus disease was originally reported in children during primary infection, but in recent years, perhaps with increasing recognition of the disease, CAEBV disease has been reported in adults as well (19). CAEBV disease may be indolent with episodic fever, lymphadenopathy, and viral hepatitis followed by periods that are nearly asymptomatic; however, during these asymptomatic periods, the Epstein–Barr viral load remains very elevated. Alternatively, the disease can have a persistent or even fulminant presentation with death occurring in a few weeks. CAEBV disease is more frequent in Asians and in persons from South and Central America and Mexico. In these patients, EBV is predominantly present in T cells (Figure 1) or NK cells (20). In contrast, patients from the United States with CAEBV more often have EBV in B or T cells (16). In most healthy persons, EBV is latent in B cells; however, EBV can sometimes be detected in T and NK cells in the tonsils (21), and virus has been detected in T cells in persons with HIV (22) and other lymphoproliferative diseases (23, 24). At present, it is unclear how the virus enters T and NK cells; these cells do not express CD21, the EBV receptor.

Epstein–Barr virus gene expression in patients with CAEBV disease varies. There are four patterns of EBV gene expression, ranging from type 0 with no viral proteins expressed, although EBV EBV-encoded RNA and BART RNAs are expressed, to type 3 with all the latent viral proteins expressed including the EBV nuclear antigens (EBNAs) 1, 2, 3A–C, and LP, and latent membrane proteins (LMP) 1 and 2. Type 1 latency involves expression of EBNA1 and no other proteins; with type 2 latency, EBNA1, LMP1, and LMP2 are expressed. Patients with infectious mononucleosis have type 3 latency, whereas healthy EBV carriers have type 0 latency. Type 1 latency is seen in Burkitt lymphoma and type 2 in nasopharyngeal carcinoma, Hodgkin lymphoma, peripheral T cell lymphoma, angioimmunoblastic T cell lymphoma, and extranodal NK/T cell lymphoma (25). Most patients with CAEBV disease express a limited number of EBV latency genes. Although many patients have been reported with a type 2 latency pattern (26, 27), other patterns of EBV gene expression have also been reported, including type 3 (28). Thus, patients with T and NK cell CAEBV have a latency pattern that resembles that seen in EBV-positive T cell and NK cell lymphomas. These findings are consistent with a recent study showing that the cellular gene expression profile in patients with NK cell CAEBV is similar to that in NK cell lymphoma (29).

Epstein–Barr virus can be clonal, oligoclonal, or polyclonal in peripheral blood mononuclear cells of patients with CAEBV.

FIGURE 1 | Histopathologic features of a 47-year-old female patient with T cell chronic active Epstein–Barr virus (EBV) disease. (A) Hematoxylin and eosin stain. Small- to medium-sized lymphocytes without significant atypia infiltrate the bone marrow clot. (B) EBV-encoded RNA in situ hybridization. The brown staining lymphocytes are positive for EBV RNA.
heterozygous mutations in Munc 18-2 (39, 40), a heterozygous mutation in perforin (38), compound heterozygous mutations in B cell disease were subsequently found to have compound heterozygous mutations in CAEBV disease. Patients with meeting the definition of CAEBV disease (16, 37). Studies have not found a consistent cause for the disease. In the largest series of CAEBV reported in the United States, EBV was often detected in B cells in tissues from patients, with cases of T and NK cell disease less common (16). The age of onset ranged from 4 to 51 years (mean 19 years). Patients with T cell disease were younger (mean age 7 years) than those with B cell disease (mean age 23 years). Lymphadenopathy and splenomegaly were the most frequent signs and symptoms, followed by fever, hepatitis, hypogammaglobulinemia, pancytopenia, hemophagocytosis, and hepatomegaly. Less common symptoms included pneumonitis, central nervous system disease, and periphere neuropathy. Some patients had B cell lymphoproliferative disease, others had reduced numbers of NK cells, and some had low numbers of both cells. Deaths were most often due to progressive EBV lymphoproliferative disease or opportunistic infections.

CAEBV IN THE UNITED STATES

In the largest series of CAEBV reported in the United States, EBV was often detected in B cells in tissues from patients, with cases of T and NK cell disease less common (16). The age of onset ranged from 4 to 51 years (mean 19 years). Patients with T cell disease were younger (mean age 7 years) than those with B cell disease (mean age 23 years). Lymphadenopathy and splenomegaly were the most frequent signs and symptoms, followed by fever, hepatitis, hypogammaglobulinemia, pancytopenia, hemophagocytosis, and hepatomegaly. Less common symptoms included pneumonitis, central nervous system disease, and periphere neuropathy. Some patients had B cell lymphoproliferative disease, others had reduced numbers of NK cells, and some had low numbers of both cells. Deaths were most often due to progressive EBV lymphoproliferative disease or opportunistic infections.

CAEBV IN ASIA

T or NK cell CAEBV has a geographical predisposition, with most cases occurring in East Asians and some cases in Native American populations in the Western hemisphere (16). This distribution is analogous to that of extranodal NK/T cell lymphoma, also referred to as nasal NK/T-cell lymphoma. In Japan, nearly 60% of cases of CAEBV are T cell type, while 40% are NK cell type (37). EBV-infected T cells are variable: CD4+ T cells, CD8+ T cells, CD4+ and CD8+ T cells, CD4+ and CD8- T cells, and γδ T cells have all been reported as the predominant cell type in individual patients with CAEBV. EBV-infected T or NK cells usually express cytotoxic molecules, such as perforin, granzyme, and T-cell intracytoplasmic antigen (TIA)-1 (51, 52), indicating that they have a cytotoxic cell phenotype.

The age at the onset of CAEBV in Asia ranged from 9 months to 53 years (mean, 11.3 years) (20). The signs and symptoms of CAEBV differ in frequency in the US and in Asia (Table 1). Typically in Asia, patients develop fever, hepatosplenomegaly, and lymphadenopathy; other common symptoms are thrombocytopenia, anemia, skin rash, diarrhea, and uveitis (20). The disease is sometimes complicated by hemophagocytic syndrome, coagulopathy, digestive tract ulcer/perforation, central nervous system involvement, myocarditis, interstitial pneumonia, multi-organ failure and sepsis (20). Interstitial pneumonia, calcifications in basal ganglia, and coronary aneurysms are occasionally seen without any symptoms. Some patients may have skin symptoms,
such as hypersensitivity to mosquito bites and hydroa vacciniforme. Patients with severe mosquito bite allergy generally have EBV-infected NK cells, whereas those with hydroa vacciniforme often have EBV-infected γδ T cells (37). Patients with CAEBV sometimes develop T or NK cell neoplasms such as extranodal NK/T cell lymphoma, aggressive NK cell leukemia, and peripheral T cell lymphoma (37).

TREATMENT AND PROGNOSIS

In the absence of treatment, patients with CAEBV develop progressive cellular and humoral immunodeficiencies and develop opportunistic infections, hemophagocytosis, multi-organ failure, or EBV-positive B, T, or NK cell lymphomas (53). CAEBV is refractory to antiviral therapy, interferon, intravenous immunoglobulin, and conventional chemotherapy and thus has a poor prognosis. Many other treatments have been tried including immunosuppressive agents such as cyclosporine or corticosteroids, autologous EBV-specific cytotoxic T cells, rituximab in the case of B cell CAEV, and the combination of bortezomib and ganciclovir. In some cases, these other treatments have resulted in transient reductions in systemic symptoms with improvement in laboratory abnormalities; however, the disease eventually returns and patients succumb to their disease if they do not undergo hematopoietic stem cell transplantation.

The survival of patients with T cell-type CAEBV is significantly lower, compared with that of patients with NK cell-type CAEBV (20). Hematopoietic stem cell transplantation alone is a curative treatment for the disease, although the incidence of transplantation-related complications is high (54, 55).

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

ACKNOWLEDGMENTS

This work was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases. We thank Dr. Seiichi Kato, Aichi Cancer Institute, Japan for the photomicrograph of the pathology slides.

REFERENCES

1. Balfour HH Jr, Holman CJ, Hokanson KM, Lelonek MM, Giesbrecht JE, White DR, et al. A prospective clinical study of Epstein-Barr virus and host interactions during acute infectious mononucleosis. *J Infect Dis* (2005) 192:1505–12. doi:10.1086/491740

2. Taylor GS, Long HM, Brooks JM, Richardson AB, Hislop AD. The immunology of Epstein-Barr virus-induced disease. *Ann Rev Immunol* (2015) 33:787–821. doi:10.1146/annurev-immunol-032414-112326

3. Djajoud Z, Guethlein LA, Horowitz A, Azzi T, Nemati-Gorgani N, Olive D, et al. Two alternate strategies for innate immunity to Epstein-Barr virus: one using NK cells and the other NK cells and γδ T cells. *J Exp Med* (2017) 214:1827–41. doi:10.1084/jem.20161017

4. Chijioke O, Landtwing V, Münz C. NK cell influence on the outcome of primary Epstein-Barr virus infection. *Front Immunol* (2016) 7:323. doi:10.3389/fimmu.2016.00323

5. Gaudreault E, Fiola S, Olivier M, Gosselin J. Epstein-Barr virus induces MCP-1 secretion by human monocytic via TLR2. *J Virol* (2007) 81:8016–24. doi:10.1128/JVI.00403-07

6. Callan MF, Steven N, Krausa P, Wilson JD, Moss PA, Gillespie GM, et al. Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. *Nat Med* (1996) 2:906–11. doi:10.1038/nm0896-906

7. Callan MF, Fazou C, Yang H, Rostron T, Poon K, Hatton C, et al. CD8(+) T cell selection, function, and death in the primary immune response in vivo. *J Clin Invest* (2000) 106:1251–61. doi:10.1172/JCI10590

8. Joncas J, Monczak Y, Ghibu F, Alfieri C, Bonin A, Ahronheim G, et al. Brief report: killer cell defect and persistent immunological abnormalities in two patients with chronic active Epstein-Barr virus infection. *J Med Virol* (1989) 28:110–7. doi:10.1002/jmv.1890280211

9. Fujieda M, Wakiguchi H, Hisakawa H, Kubota H, Kurashige T. Defective activity of Epstein-Barr virus (EBV) specific cytotoxic T lymphocytes in children with chronic active EBV infection and in their parents. *Acta Paediatr Jpn* (1993) 35:394–9. doi:10.1111/j.1442-200X.1993.tb03079.x

10. Sugaya N, Kimura H, Hara S, Hoshino Y, Kojima S, Morishima T, et al. Quantitative analysis of Epstein-Barr virus (EBV)-specific CD8+ T cells in patients with chronic active EBV infection. *J Infect Dis* (2004) 190:985–8. doi:10.1086/423285

11. Tsuge I, Morishima T, Kimura H, Kuzushima K, Matsuoka H. Impaired cytotoxic T lymphocyte response to Epstein-Barr virus-infected NK cells in patients with severe chronic active EBV infection. *J Med Virol* (2001) 64:141–8. doi:10.1002/jmv.1029

12. Kimura H, Tsuge I, Imai S, Yamamoto M, Kuzushima K, Osato T, et al. Intact antigen presentation for Epstein-Barr virus (EBV)-specific CTL by a lymphoblastoid cell line established from a patient with severe chronic active EBV infection. *Med Microbiol Immunol* (1995) 184:63–8. doi:10.1007/BF00221388

13. Xing Y, Song HM, Wei M, Liu Y, Zhang YH, Gao L. Clinical significance of variations in levels of Epstein-Barr virus (EBV) antigen and adaptive immune response during chronic active EBV infection in children. *J Immunotoxicol* (2013) 10:387–92. doi:10.3109/1547691X.2012.758199

14. Liu S, Zhang Q, Huang D, Zhang W, Zhong F, Feng J, et al. Comprehensive assessment of peripheral blood TCR repertoire in infectious mononucleosis and chronic active EBV infection patients. *Ann Hematol* (2017) 96:665–80. doi:10.1007/s00277-016-2911-8

15. Kimura H. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? *Rev Med Virol* (2006) 16:251–61. doi:10.1002/rmv.505

16. Cohen JJ, Jaffe ES, Dale JK, Pittaluga S, Heslop HE, Rooney CM, et al. Characterization and treatment of chronic active Epstein-Barr virus
26. Iwata S, Wada K, Tobita S, Gotoh K, Ito Y, Demachi-Okamura A, et al.
22. Bekker V, Scherpbier H, Beld M, Piriou E, van Breda A, Lange J, et al.
21. Hudnall SD, Ge Y, Wei L, Yang NP, Wang HQ, Chen T. Distribution
18. Okano M, Kawa K, Kimura H, Yachie A, Wakiguchi H, Maeda A, et al.

Kimura and Cohen
31. Kawano Y, Iwata S, Kawada J, Gotoh K, Suzuki M, Torii Y, et al. Plasma viral
30. Ohga S, Nomura A, Takada H, Ihara K, Kawakami K, Yanai F, et al.
28. Yoshioka M, Ishiguro N, Ishiko H, Ma X, Kikuta H, Kobayashi K.

EBV virus infection. J Gen Virol (2010) 91:42–50. doi:10.1099/s0065-230X(08)60319-X

Advances in the EBV field. Adv Cancer Res (1993) 62:179–239. doi:10.1016/34. Schooley RT, Carey RW, Miller G, Henle W, Eastman R, Mark EJ, et al. Chronic Epstein-Barr virus infection associated with fever and interstitial pneumonitis. Clinical and serologic features and response to antiviral chemotherapy. Ann Intern Med (1986) 104:636–43. doi:10.1001/0003-4819-104-5-636

EBV) from a patient with chronic active EBV infection. Blood (2011) 117:5835–49. doi:10.1182/blood-2010-11-316745

Summary: In the United States. Blood (2011) 117:5835–49. doi:10.1182/blood-2010-11-316745

19. Arai A, Imadome K, Watanabe Y, Yoshimori M, Koyama T, Kawaguchi T, et al. Clinical features of adult-onset chronic active Epstein-Barr virus infection: a retrospective analysis. J Hum Med (2011) 93:660–2. doi:10.1007/s12185-011-0831-x

Kimura H, Morishima T, Kanegane H, Ohga S, Hoshino Y, Maeda A, et al. Predictive factors for chronic active Epstein-Barr virus infection. J Infect Dis (2003) 187:257–33. doi:10.1086/367988

Early-onset severe chronic active EBV in a patient for five years with mutations in STXBP2 (MUNC18-2) and PRF1 (perforin 1). J Clin Immunol (2015) 35:445–8. doi:10.1007/s10875-015-0168-5

Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendra U, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110α result in T-cell senescence and human immune deficiency. Nat Immunol (2014) 15:88–97. doi:10.1038/nili.2771

Li FY, Chaigue-Delandle B, Kanellopoulou C, Davis JC, Matthews HE, Douek DC, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature (2011) 475:471–6. doi:10.1038/nature10246

Cohen JJ, Dropulic L, Hsu AP, Zerbe CS, Krogmann T, Dowdell K, et al. Association of GATA2 deficiency with severe primary Epstein-Barr virus (EBV) infection and EBV-associated cancers. Clin Infect Dis (2016) 63:41–7. doi:10.1093/cid/ciw160

Kucuk ZK, Zhang K, Filipovich L, Blessing JJ. CTP synthase 1 deficiency in successfully transplanted siblings with combined immune deficiency and chronic active EBV infection. J Clin Immunol (2016) 36:750–3. doi:10.1007/s10875-016-0332-z

Okuno Y, Murata T, Ito Y, Sato Y, Kojima S, Ogawa S, et al. Comprehensive genetic study of chronic active EBV infection. 17th International Symposium on Epstein Barr Virus and Associated Diseases. Zurich (2016). 114 p. Abstract number EBV2016-1149.

Jiang L, Gu ZH, Yan ZX, Zhao X, Xie YY, Zhang ZG, et al. Exome sequencing identifies somatic mutations of DDIX3 in natural killer/T-cell lymphoma. Nat Genet (2015) 47:1061–6. doi:10.1038/ng.3358

Schmitz Y, Young RM, Ceribelli M, Jhaver S, Xiao W, Zhang M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature (2012) 490:116–20. doi:10.1038/nature11378

Ito Y, Suzuki R, Torii Y, Kawa K, Kikuta K, Sajoia S. HELA-A*26 and HLA-B*52 are associated with a risk of developing EBV-associated T/NK lymphoproliferative disease. Blood (2013). Available from: http://www.bloodjournal.org/content/early/2011/11/16/blood-2011-10-381921/tab-letters

Hildesheim A, Apple RJ, Chen CJ, Wang SS, Cheng YJ, Kliitz W, et al. Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst (2002) 94:1780–9. doi:10.1093/jnci/94.23.1780

Niens M, Jarrett RF, Hepkema B, Nolte IM, Diepstra A, Platteel M, et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood (2007) 110:3310–5. doi:10.1182/blood-2007-05-086934

Ohshima K, Suzumiya J, Shimazaki K, Kato A, Tanaka T, Kanda M, et al. Nasal T/NK cell lymphomas commonly express perforin and Fas ligand: important mediators of tissue damage. Histopathology (1997) 31:444–50. doi:10.1046/j.1365-2559.1997.2880887.x

Quintana-Martinez L, Kumar S, Fend F, Reyes E, Teruya-Feldstein J, Kingma DW, et al. Fulminant EBV(+) T-cell lymphoproliferative disorder following acute/chronic EBV infection: a distinct clinicopathologic syndrome. Blood (2000) 96:443–51.
53. Okano M. Overview and problematic standpoints of severe chronic active Epstein-Barr virus infection syndrome. *Crit Rev Oncol Hematol* (2002) 44:273–82. doi:10.1016/S1040-8428(02)00118-X

54. Gotoh K, Ito Y, Shibata-Watanabe Y, Kawada J, Takahashi Y, Yagasaki H, et al. Clinical and virological characteristics of 15 patients with chronic active Epstein-Barr virus infection treated with hematopoietic stem cell transplantation. *Clin Infect Dis* (2008) 46:1525–34. doi:10.1086/587671

55. Kawa K, Sawada A, Sato M, Okamura T, Sakata N, Kondo O, et al. Excellent outcome of allogeneic hematopoietic SCT with reduced-intensity conditioning for the treatment of chronic active EBV infection. *Bone Marrow Transplant* (2011) 46:77–83. doi:10.1038/bmt.2010.122

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

At least a portion of this work is authored by Jeffrey I. Cohen on behalf of the U.S. Government and, as regards Dr. Cohen and the US government, is not subject to copyright protection in the United States. Foreign and other copyrights may apply. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.