A note on the approximate controllability of second-order integro-differential evolution control systems via resolvent operators

Velusamy Vijayakumar1, Anurag Shukla2, Kottakkaran Sooppy Nisar3*, Wasim Jamshed4 and Shahram Rezapour5,6*

*Correspondence: n.sooppy@psau.edu.sa; sh.rezapour@azaruniv.ac.ir; sh.rezapour@mail.cmuoh.org.tw; rezapourshahram@yahoo.ca
1Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia
2Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
3Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia
4Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
5Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
6Correspondence: n.sooppy@psau.edu.sa; sh.rezapour@azaruniv.ac.ir; sh.rezapour@mail.cmuoh.org.tw; rezapourshahram@yahoo.ca

Full list of author information is available at the end of the article

Abstract
The approximate controllability of second-order integro-differential evolution control systems using resolvent operators is the focus of this work. We analyze approximate controllability outcomes by referring to fractional theories, resolvent operators, semigroup theory, Gronwall’s inequality, and Lipschitz condition. The article avoids the use of well-known fixed point theorem approaches. We have also included one example of theoretical consequences that has been validated.

MSC: Primary 34K30; 34K40; secondary 47H08; 47H10

Keywords: Approximate controllability; Gronwall’s inequality; Resolvent operators; Second-order integro-differential systems

1 Introduction
The memory effect of the system must be accounted for in numerous disciplines, such as nuclear reactor dynamics and thermoelasticity. The impact of history is overlooked when differential equations, which involve functions at any specific time and space, are used to model such systems. As a result, an integro-differential system is created by adding an integration term to the differential system to include the memory possessions in these frameworks. Integro-differential systems have been widely employed in viscoelastic mechanics, fluid dynamics, thermoelastic contact, control theory, heat conduction, industrial mathematics, financial mathematics, biological models, and other domains, one can refer to [1–7].

Grimmer started and showed the existence of integro-differential systems using resolvent operators in [1, 8, 9]. For solving integro-differential equations, the resolvent operator via fixed-point technique is very easy and most suitable one [10–37]. We recommend readers to [1, 2, 8, 9, 38–42] and the sources referenced therein for more information on resolvent operators and integro-differential systems. Very recently in [4], the author presented the controllability of integro-differential inclusions via resolvent operators by employing the facts connected with resolvent operators and Bohnenblust–Karlin’s fixed point
approach. Also very recently in [2], the authors proved the existence and controllability results for the integro-differential frameworks by applying resolvent operator theories and various fixed point theorems.

Because it is linked to pole assignment, quadratic optimal control, observer design, and other ideas, controllability is significant in mathematical control theories and technical sectors. In infinite-dimensional systems, the two fundamental principles of controllability that can be distinguished are exact and approximation controllability. This is because there are non-closed linear subspaces in infinite-dimensional spaces. Exact controllability enables the system to be directed to any ultimate state, whereas approximate controllability enables it to be derived to any smaller neighborhood of the ultimate state. Many researchers have published about the controllability debate for fractional and integer order frameworks, see [5, 6, 43–60].

Let us consider the following nonlinear differential evolution equations with control:

$$z''(t) = A(t)z(t) + \int_0^t \mathcal{B}(t,s)z(s)\,ds + Bv(t) + F(t,z(t)), \quad t \in J = [0,c],$$

$$z(0) = z_0, \quad z'(0) = z_1,$$

(1.1) (1.2)

where $A(t) : D(A(t)) \subseteq X \to X$ and $\mathcal{B}(t,s) : D(\mathcal{B}) \subseteq X \to X$ are closed linear operators in the Hilbert space X. $v(t) \in L^2(J,U)$ is a Hilbert space of admissible control functions corresponding to Hilbert space U. Additionally, the linear operator $B : U \to X$ is bounded and $F : J \times X \to X$. Let us consider that $D(\mathcal{B})$ is independent of (t,s).

The linear type system for the above nonlinear differential evolution equations with control (1.1)–(1.2) is presented by

$$z''(t) = A(t)z(t) + \int_0^t \mathcal{B}(t,s)z(s)\,ds + Bv(t), \quad t \in J = [0,c],$$

$$z(0) = z_0, \quad z'(0) = z_1.$$

(1.3) (1.4)

Motivations and contributions:

- We study the necessary conditions for the approximate controllability of the proposed system (1.1)–(1.2) by using two different conditions.
- In the first condition, we use B in system (1.1)–(1.2) as an I (identity operator), the sufficient conditions for controllability of integro-differential system are discussed.
- In the second condition, we use B in system (1.1)–(1.2) is any bounded operator, the sufficient conditions for controllability of integro-differential system are discussed.
- Results are obtained with the help of Gronwall’s inequality and Lipschitz condition on nonlinearity.
- It is assumed that the resolvent operator is compact, and consequently the associated linear control system is not exactly controllable but only approximately controllable.
- We show that our result has no analog for the concept of complete controllability. To the best of our knowledge, an approximate controllability result has not been studied in this connection.
• The research focused on the approximate controllability of the proposed system (1.1)–(1.2) under consideration that has not been addressed in the literature to our knowledge, and it supports the current findings.

• Finally, we give an example of the system which is not completely controllable, but approximately controllable.

The structure of the article will now be presented as follows:
1. Sect. 2 discusses some fundamental theories on resolvent operators as well as control theory results.
2. We demonstrate the approximate controllability of integro-differential systems using $B = I$ in Sect. 3.
3. We demonstrate the approximate controllability of integro-differential systems using $B \neq I$ in Sect. 4.
4. Sect. 5 gives an example of how the acquired hypotheses can be validated.

2 Preliminaries

In this section, we mention a few results, notations, and lemmas needed to establish our main results. We introduce certain notations which will be used throughout the article without any further mention. The remainder of this content is structured as follows: $(X, \| \cdot \|)$ is a Banach space and $A(t)$, $B(t, s)$ for $0 \leq s \leq t$ are closed linear operators determined on $D(A)$ and $D(B)$, respectively. We assume that $D(A)$ is dense in X.

The space $D(A)$ provided with the graph norm induced by $A(t)$ is a Banach space. We will assume that all of these norms are equivalent. A simple condition for obtaining this property is that there exists $\lambda \in \rho(A(t))$, the resolvent set of $A(t)$, so that $(\lambda I - A(t))^{-1} : X \to D(A)$ is a bounded linear operator.

Nowadays, there has been an expanding enthusiasm for examining the second order initial value problem,

\begin{equation}
\begin{aligned}
z''(t) &= A(t)z(t) + f(t), \quad 0 \leq s, t \leq c, \\
z(s) &= z_0, \quad z'(s) = z_1,
\end{aligned}
\end{equation}

where $A(t) : D(A) \subseteq X \to X$, $t \in [0, c]$, is a densely defined closed linear operator. Additionally, $f : [0, c] \to X$ is an appropriate function. For discussion of this kind, we refer the readers to [3, 61–68]. In many of the articles, the authors discussed the existence of (2.1)–(2.2) connected with $S(t, s)$ has the form

\begin{equation}
z''(t) = A(t)z(t), \quad 0 \leq t \leq c.
\end{equation}

Let us assume that, for every $z \in D(A)$, $t \mapsto A(t)z$ is continuous. Now, we assume $A(\cdot)$ generates $(S(t, s))_{0 \leq s \leq t \leq c}$, which is discussed by Kozak [64], Definition 2.1 (refer also to Henriquez [69], Definition 1.1).

We refer to these works for a careful study of this issue. We only regard here that $S(\cdot)$ is continuously differentiable for all $z \in X$ with derivative uniformly bounded on bounded intervals, which in particular implies that there exists $M_1 > 0$ such that

\[\|S(t + h, s) - S(t, s)\| \leq M_1|h| \]
for all $s, t, t + h \in [0, c]$. We now determine the operator $C(t, s) = -\frac{\partial f(x)}{\partial s}$. Consider $f : [0, c] \to X$ is an integrable function. We now define the mild solution $z : [0, c] \to X$ of system (2.1)–(2.2) as follows:

$$z(t) = C(t, s)z^0 + S(t, s)z^1 + \int_0^t S(t, \xi)f(\xi) d\xi.$$

Next we consider the second-order integro-differential system

$$z''(t) = A(t)z(t) + \int_s^t B(t, \xi)z(\xi) d\xi, \quad s \leq t \leq c,$$

$$z(s) = 0, \quad z'(s) = x \in X,$$

for $0 \leq s \leq c$. This problem was discussed in [3]. We denote $\Delta = \{(t, s) : 0 \leq s \leq t \leq c\}$. We now introduce some conditions that the operator $B(\cdot)$ presented in [3] fulfills.

(B1) For each $0 \leq s \leq t \leq c$, $B(t, s) : [D(A)] \to X$ is a bounded linear operator, additionally for every $z \in D(A)$, $B(\cdot, \cdot)z$ is continuous and

$$\|B(t, s)z\| \leq b\|z\|_{D(A)}$$

for $b > 0$ which is independent of $s, t \in \Delta$.

(B2) There exists $L_{\mathcal{B}} > 0$ such that

$$\|B(t_2, s)z - B(t_1, s)z\| \leq L_{\mathcal{B}}|t_2 - t_1|\|z\|_{D(A)}$$

for all $z \in D(A)$, $0 \leq s \leq t_1 \leq t_2 \leq c$.

(B3) There exists $b_1 > 0$ such that

$$\left\|\int_s^t S(t, s)B(s, \xi)z d\xi\right\| \leq b_1\|z\|$$

for all $z \in D(A)$ and $0 \leq \xi \leq t \leq c$.

Under these conditions, it has been established that there exists $(R(t, s))_{t \geq s}$ associated with problem (2.3)–(2.4). From now, we are going to consider that such a resolvent operator exists, and we adopt its properties as a definition.

Definition 2.1 ([3]) A family of bounded linear operators $(R(t, s))_{t \geq s}$ on X is said to be a resolvent operator for system (2.3)–(2.4) if it satisfies:

(a) The map $R : \Delta \to \mathcal{L}(X)$ is strongly continuous, $R(t, \cdot)z$ is continuously differentiable for all $z \in X$, $\mathcal{R}(s, s) = 0$, $\frac{\partial}{\partial s}R(t, s)|_{s=s} = I$, and $\frac{\partial^2}{\partial s^2}R(t, s)|_{s=s} = -I$.

(b) Assume $x \in D$. The function $R(\cdot, s)x$ is a solution of system (2.3)–(2.4). This means that

$$\frac{\partial^2}{\partial t^2}R(t, s)x = A(t)R(t, s)x + \int_s^t B(t, \xi)R(\xi, s)x d\xi$$

for all $0 \leq s \leq t \leq c$.

It follows from condition (a) that there are constants $M > 0$ and $\tilde{M} > 0$ such that
\[
\|R(t, s)\| \leq M, \quad \left\| \frac{\partial}{\partial s} R(t, s) \right\| \leq \tilde{M}, \quad (t, s) \in \Delta.
\]

Moreover, the linear operator
\[
G(t, \xi) x = \int_\xi^t \mathcal{B}(t, s) R(s, \xi) x \, ds, \quad x \in D(A), 0 \leq \xi \leq t \leq c,
\]
can be extended to X. Portraying this expansion by the similar notation $G(t, \xi)$, $G : \Delta \to L(X)$ is strongly continuous, and it is verified that
\[
R(t, \xi) x = S(t, \xi) + \int_0^t S(t, s) G(s, \xi) x \, ds \quad \text{for all } x \in X.
\]

The resulting property is that $R(\cdot)$ is uniformly Lipschitz continuous, that is, there exists $L_R > 0$ such that
\[
\left\| R(t + h, \xi) - R(t, \xi) \right\| \leq L_R |h| \quad \text{for all } t, t + h, \xi \in [0, c].
\]

Let $g : J \to X$ be an integrable function. The nonhomogeneous problem
\[
\begin{align*}
\frac{d^2}{dt^2} z(t) &= A(t) z(t) + \int_0^t \mathcal{B}(t, s) z(s) \, ds + g(t), \quad t \in J = [0, c], \quad (2.5) \\
z(0) &= x^0, \quad z'(0) = x^1, \quad (2.6)
\end{align*}
\]
was discussed in [3]. We now introduce the mild solution for system (2.5)–(2.6).

Definition 2.2 ([3]) Assume $x^0, x^1 \in X$. The function $z : [0, c] \to X$ given by
\[
z(t) = - \frac{\partial R(t, s)x^0}{\partial s} \bigg|_{s=0} + R(t, 0)x^1 + \int_0^t R(t, s)g(s) \, ds
\]
is said to be the mild solution for system (2.5)–(2.6).

It is clear that $z(\cdot)$ in Definition 2.2 is a continuous function.

Definition 2.3 A continuous function $z : [0, c] \to X$ is said to be a mild solution for system (1.1)–(1.2) if $z(0) = z_0, \ z'(0) = z_1$, and
\[
z(t) = - \frac{\partial R(t, s)x^0}{\partial s} \bigg|_{s=0} + R(t, 0)x_1 + \int_0^t R(t, s)Bv(s) \, ds
\]
\[
+ \int_0^t R(t, s)F(s, z(s)) \, ds, \quad t \in J,
\]
is fulfilled.
Definition 2.4 The reachable set of system (1.1)–(1.2) given by

\[K_c(F) = \{ z(c) \in X : z(t) \text{ represents a mild solution of system (1.1)–(1.2)} \}. \]

In case \(F \equiv 0 \), system (1.1)–(1.2) reduces to the corresponding linear system. The reachable set in this case is denoted by \(K_c(0) \).

Definition 2.5 If \(K_c(F) = X \), then the semilinear control system is approximately controllable on \([0, c]\). Here \(K_c(F) \) represents the closure of \(K_c(F) \). Clearly, if \(K_c(0) = X \), then the linear system is approximately controllable.

Assume that \(\Psi = L^2(J, X) \). Define the operator \(\mathcal{N} : \Psi \to \Psi \) as follows:

\[[\mathcal{N}z](t) = F(t, z(t)); \quad 0 < t \leq c. \]

3 Controllability results when \(B = I \)

For this discussion, it is shown that the approximate controllability of the linear system reaches from the semilinear system under specific requirements on the nonlinear term. Clearly, \(X = U \).

Assume the following linear system

\[w''(t) = A(t)w(t) + \int_0^t B(t, s)w(s) \, ds + u(t), \quad t \in J = [0, c], \]

\[z(0) = z_0, \quad z'(0) = z_1, \]

and the semilinear system

\[z''(t) = A(t)z(t) + \int_0^t B(t, s)z(s) \, ds + v(t) + F(t, z(t)), \quad t \in J, \]

\[z(0) = z_0, \quad z'(0) = z_1. \]

For proving the primary task of this section, that is, the approximate controllability of system (3.3)–(3.4), we need to introduce the following hypotheses:

- \((H_1)\) Linear system (3.1)–(3.2) is approximately controllable.
- \((H_2)\) \(F(t, z(t)) \) is a nonlinear function which fulfills the Lipschitz condition in \(z \), that is,

\[\| F(t, z_1) - F(t, z_2) \|_X \leq l \| z_1 - z_2 \|_X, \quad l > 0, \text{ for all } z_1, z_2 \in X, t \in J. \]

Theorem 3.1 If hypotheses \((H_1)\)–\((H_2)\) are satisfied, then (3.3)–(3.4) is approximately controllable.

Proof Assume that \(w(t) \) is the mild solution of system (3.1)–(3.2), along with the control \(u \). Assume the following semilinear system:

\[z''(t) = A(t)z(t) + \int_0^t B(t, s)z(s) \, ds + F(t, z(t)) + u(t) - F(t, w(t)), \quad t \in J, \]
\[z(0) = z_0, \quad z'(0) = z_1. \] (3.6)

On comparing system (3.3)–(3.4) and system (3.5)–(3.6), we can see the control function \(v(t) \) is assumed such that

\[v(t) = u(t) - F(t, w(t)). \]

The mild solution of system (3.1)–(3.2) is given by

\[w(t) = \frac{\partial R(t, s)x^0}{\partial s} \bigg|_{s=0} + R(t, 0)z_1 + \int_0^t R(t, s)u(s) \, ds, \quad t \in J, \] (3.7)

and the mild solution of system (3.5)–(3.6) is given by

\[z(t) = -\frac{\partial R(t, s)x^0}{\partial s} \bigg|_{s=0} + R(t, 0)z_1 + \int_0^t R(t, s)\left[F(s, z(s)) + u(s) - F(s, w(s))\right] \, ds, \quad t \in J. \] (3.8)

From equation (3.7) and equation (3.8), we get

\[w(t) - z(t) = \int_0^t R(t, s)\{F(s, w(s)) - F(s, z(s))\} \, ds. \] (3.9)

Applying norm on both sides, we have

\[\|w(t) - z(t)\|_X \leq \int_0^t \|R(t, s)\| \|F(s, w(s)) - F(s, z(s))\| \, ds \]

\[\leq M \int_0^t \|F(s, w(s)) - F(s, z(s))\| \, ds. \]

By referring to Gronwall’s inequality, \(w(t) = z(t) \) for all \(t \in [0, c] \). Thus, the solution \(w \) of the linear system along the control \(u \) is a solution of the semilinear system \(z \) along the control \(v \), i.e., \(K_c(F) \supset K_c(0) \). Because \(K_c(0) \) is dense in \(X \) (by employing hypothesis \((H_1))\), \(K_c(F) \) is dense in \(X \) too, which concludes the approximate controllability of system (3.3)–(3.4), and this concludes the proof. \(\square \)

4 Controllability results of semilinear system when \(B \neq I \)

Now, the approximate controllability when \(B \neq I \) is verified under certain conditions on \(A \), \(B \), and \(F \).

Assume the following linear system

\[w''(t) = A(t)w(t) + \int_0^t B(t, s)w(s) \, ds + Bu(t), \quad t \in J. \] (4.1)
\[z(0) = z_0, \quad z'(0) = z_1, \]

and the semilinear system

\[z''(t) = A(t)z(t) + \int_0^t \mathcal{B}(t,s)z(s)\, ds + Bv(t) + F(t,z(t)), \quad t \in J, \]

\[z(0) = z_0, \quad z'(0) = z_1. \]

For proving the primary task of this section, that is, the approximate controllability of system (4.3)–(4.4), we have to introduce the following hypotheses:

\(\text{(H}_3 \text{)} \) Linear system (4.1)–(4.2) is approximately controllable.

\(\text{(H}_4 \text{)} \) Range of the operator \(\mathcal{N} \) is a subset of the closure of range of \(B \), i.e.,

\[\text{Range}(\mathcal{N}) \subseteq \overline{\text{Range}(B)}. \]

Theorem 4.1 If hypotheses (H_2)–(H_4) are fulfilled, then system (1.1)–(1.2) is approximately controllable.

Proof The mild solution of system (4.1)–(4.2) corresponding to the control \(u \) is given by

\[w(t) = -\frac{\partial \mathcal{R}(t,s)x^0}{\partial s} \bigg|_{s=0} + \mathcal{R}(t,0)z_1 + \int_0^t \mathcal{R}(t,s)Bu(s)\, ds, \quad t \in J. \]

Assume the following semilinear system:

\[z''(t) = A(t)z(t) + \int_0^t \mathcal{B}(t,s)z(s)\, ds + F(t,z(t)) + Bu(t) - F(t,w(t)), \quad t \in J, \]

\[z(0) = z_0, \quad z'(0) = z_1. \]

Since \(\mathcal{N}z \in \overline{\text{Range}(B)} \), for given \(\epsilon > 0 \), there exists a control function \(v \in L^2(J, U) \) such that

\[\|\mathcal{N}z - Bv\|_X \leq \epsilon. \]

Now, assume that \(z(t) \) is the mild solution of system (1.1)–(1.2) corresponding to \((u - v) \) given by

\[z(t) = -\frac{\partial \mathcal{R}(t,s)x^0}{\partial s} \bigg|_{s=0} + \mathcal{R}(t,0)z_1 + \int_0^t \mathcal{R}(t,s)\{B(u - v) + [\mathcal{N}z]\}(s)\, ds, \quad t \in J. \]

From equation (4.5) and equation (4.7), we have

\[w(t) - z(t) = \int_0^t \mathcal{R}(t,s)[Bv - z](s)\, ds \]

\[= \int_0^t \mathcal{R}(t,s)[Bv - \mathcal{N}z](s)\, ds + \int_0^t \mathcal{R}(t,s)[\mathcal{N}z - \mathcal{N}w](s)\, ds. \]
Taking norm on both sides and using (4.6), we get
\[
\|w(t) - z(t)\|_X = \int_0^t \| R(t,s) \| Bv(s) - \mathbf{N}w(s) \| \, ds \\
+ \int_0^t \| R(t,s) \| \mathbf{N}w(s) - \mathbf{N}z(s) \|_X \, ds \\
\leq M \left(\int_0^t ds \right)^{1/2} \left(\int_0^t \| Bv(s) - \mathbf{N}w(s) \|^2 \, ds \right)^{1/2} \\
+ M \int_0^t \| \mathbf{N}w(s) - \mathbf{N}z(s) \|_X \, ds \\
\leq M \sqrt{t} \left(\| \mathbf{N}w - Bv \|_{L^2([0,t];X)} + M \int_0^t \| \mathbf{N}w(s) - [\mathbf{N}]z(s) \|_X \, ds \right) \\
\leq M \sqrt{t} \epsilon + MI \int_0^t \| w(s) - z(s) \|_X \, ds.
\]

By referring to Gronwall's inequality, we have
\[
\|w(t) - z(t)\|_X \leq M \sqrt{t} \epsilon \exp(Mtc).
\]

Since the right-hand side of the above inequality depends on $\epsilon > 0$ and ϵ is arbitrary, it is clear that $\|w(t) - z(t)\|_X$ becomes arbitrarily small by selecting a suitable control function v. Clearly, the reachable set of system (1.1)–(1.2) is dense in the reachable set of system (4.1)–(4.2), which is dense in X due to hypothesis (H3). Hence, the approximate controllability of system (4.1)–(4.2) implies that of the semilinear control system (1.1)–(1.2).

5 Example

Assume that the integro-differential system with control has the form
\[
\frac{\partial^2}{\partial t^2} \chi(t,y) = \frac{\partial^2}{\partial x^2} \chi(t,y) + a(t) \chi(t,y) + \int_0^t b(t-s) \frac{\partial^2}{\partial x^2} \chi(s,y) \, ds \\
+ \mu(t,y) + \frac{\chi^2(t,y)}{(1 + t)(1 + t^2)}, \quad 0 \leq t \leq c, 0 \leq y \leq \pi,
\]
(5.1)

\[
\chi(t,0) = \chi(t,\pi) = 0,
\]
(5.2)

\[
\chi(0,y) = \chi_0(y), \quad \frac{\partial}{\partial t} \chi(0,y) = \chi_1(y), \quad 0 \leq y \leq \pi,
\]
(5.3)

where $a, b : [0, c] \rightarrow \mathbb{R}$, $\epsilon > 0$ are continuous functions, $\chi_0(y), \chi_1(y) \in X = L^2([0, \pi])$ and the function $\mu : I \times [0, \pi] \rightarrow [0, \pi]$ is continuous.

We denote by A_0 the operator given by $A_0z(\xi) = z''(\xi)$ with domain
\[
D(A) = \{ z \in H^2([0, \pi]) : z(0) = z(\pi) = 0 \}.
\]

Then A_0 is the infinitesimal generator of a cosine function of operators $(C_0(t))_{t \in \mathbb{R}}$ on H associated with sine function $(S_0(t))_{t \in \mathbb{R}}$. Additionally, A_0 has discrete spectrum which consists of eigenvalues $-n^2$ for $n \in \mathbb{N}$, with corresponding eigenvectors
\[
\psi_n(x) = \frac{1}{\sqrt{2\pi}} e^{inx}, \quad n \in \mathbb{N}.
\]
The set \(\{ w_n : n \in \mathbb{N} \} \) is an orthonormal basis of \(H \). Applying this idea, we can write

\[
A_0 z = \sum_{n=1}^{\infty} -n^2 \langle z, w_n \rangle w_n
\]

for \(z \in D(A_0) \), \((C_0(t))_{t \in \mathbb{R}} \) is given by

\[
C_0(t)z = \sum_{n=1}^{\infty} \cos(nt) \langle z, w_n \rangle w_n, \quad t \in \mathbb{R},
\]

and the sine function is given by

\[
S_0(t)z = \sum_{n=1}^{\infty} \frac{\sin(nt)}{n} \langle z, w_n \rangle w_n, \quad t \in \mathbb{R}.
\]

It is immediate from these representations that \(\| C_0(t) \| \leq 1 \) and that \(S_0(t) \) is compact for all \(t \in \mathbb{R} \).

We define \(A(t)z = A_0 z + a(t)z \) on \(D(A) \). Clearly, \(A(t) \) is a closed linear operator. Therefore, \(A(t) \) generates \((S(t,s))_{0 \leq s \leq t \leq c} \) such that \(S(t,s) \) is compact for all \(0 \leq s \leq t \leq c \) ([3]).

We complete the terminology by defining \(B(t,s) = b(t-s)A_0 \) for \(0 \leq s \leq t \leq c \) on \(D(A) \).

We now assume the function \(F : J \times X \)

\[
F(t,x) = \frac{\chi^2(t,x)}{(1+t)(1+t^2)},
\]

\[
Bv(t,\xi) = \mu(t,\xi).
\]

Let us consider that the above functions meet the hypotheses condition with \(B = I \) as shown above. Since all the requirements are fulfilled, then system (5.1)–(5.3) is approximately controllable.

6 Conclusion

We primarily focused on the approximate controllability of nonlinear resolvent integro-differential evolution control systems. We analyzed approximate controllability outcomes for the considered systems by referring to resolvent operators, semigroup theory, Gronwall’s inequality, and Lipschitz condition. The article avoids the use of well-known fixed point theorem approaches. The discussion on the approximate controllability of nonlinear resolvent stochastic integro-differential evolution equations with impulses will be our future work.

Acknowledgements

The fifth author was supported by Azarbaijan Shahid Madani University. The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.

Funding

Not applicable.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Author details
1 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India. 2 Department of Applied Sciences, Rajkiya Engineering College, Kannauj, India. 3 Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia. 4 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran. 5 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 7 August 2021 Accepted: 19 October 2021 Published online: 06 November 2021

References
1. Diezich, W., Grimm, R., Schappacher, W.: Some considerations for linear integro-differential equations. J. Math. Anal. Appl. 104(1), 219–234 (1984). https://doi.org/10.1016/0022-247X(84)90044-1
2. Murugesu, R., Vijayakumar, V., dos Santos, J.P.C.: Existence of mild solutions for nonlocal Cauchy problem for fractional neutral integro-differential equation with unbounded delay. Commun. Math. Anal. 14(1), 59–71 (2013)
3. Henríquez, H.R., Pozo, J.C.: Existence of solutions of abstract non-autonomous second order integro-differential equations. Bound. Value Probl. 2016, 168 (2016). https://doi.org/10.1186/s13661-016-0675-7
4. Vijayakumar, V.: Approximate controllability results for analytic resolvent integro-differential inclusions in Hilbert spaces. Int. J. Control 91(1), 204–214 (2018). https://doi.org/10.1080/00207179.2016.1276633
5. Vijayakumar, V., Selvakumar, A., Murugesu, R.: Controllability for a class of fractional neutral integro-differential equations with unbounded delay. Appl. Math. Comput. 232, 303–312 (2014).
6. Vijayakumar, V., Ravichandran, C., Murugesu, R., Trujillo, J.J.: Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators. Appl. Math. Comput. 247(4), 152–161 (2014).
7. Sivasankaran, S., Arjunan, M.M., Vijayakumar, V.: Existence of global solutions for second order impulsive abstract partial differential equations. Nonlinear Anal. Theory Methods Appl. 74(17), 6747–6757 (2011).
8. Grimmer, R.: Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. 273(1), 333–349 (1982). https://doi.org/10.2307/1999209
9. Grimmer, R., Pritchard, A.J.: Analytic resolvent operators for integral equations in a Banach space. J. Differ. Equ. 50(2), 234–259 (1983). https://doi.org/10.1016/0022-0396(83)90076-1
10. Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019). https://doi.org/10.3390/sym11050686
11. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652
12. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2021, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3
13. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
14. Karapınar, E., Fulga, A.: An admissible hybrid contraction with an Ulam type stability. Demonstr. Math. 52, 428–436 (2019). https://doi.org/10.1515/dema-2019-0037
15. Alqahtani, B., Fulga, A., Karapınar, E.: Fixed point results on δ-symmetric quasi-metric space via simulation function with an application to Ulam stability. Mathematics 6(10), 208 (2018). https://doi.org/10.3390/math6100208
16. Brzdek, J., Karapınar, E., Petrušel, A.: A fixed point theorem and the Ulam stability in generalized \mathcal{C}-metric spaces. J. Math. Anal. Appl. 467, 501–520 (2018). https://doi.org/10.1016/j.jmaa.2018.07.022
17. Hassan, A.M., Karapınar, E., Alsulami, H.H.: Ulam-Hyers stability for MFC mappings via fixed point theory. J. Funct. Spaces 2016, Article ID 9623597 (2016). https://doi.org/10.1155/2016/9623597
18. Rezapour, S., Azzouzi, B., Tellab, B., Etemad, S., Mahia, H.P.: An analysis on the positive solutions for a fractional differential equation of the Caputo multiterm semilinear fractional differential equation. J. Funct. Spaces 2021, Article ID 6022941 (2021). https://doi.org/10.1155/2021/6022941
19. Sabatghadam, F., Masha, H.P.: Fixed-point results for multi-valued operators in quasi-ordered metric spaces. Appl. Math. Lett. 25(11), 1856–1861 (2012). https://doi.org/10.1016/j.aml.2012.02.046
20. Masha, H.P., Sabatghadam, F., Shahzad, N.: Fixed point theorems in partial metric spaces with an application. Filomat 27(4), 617–624 (2013)
21. Sabatghadam, F., Masha, H.P.: Common fixed points for generalized ϕ-pair mappings on cone metric spaces. Fixed Point Theory Appl. 2011, Article ID 718340 (2010). https://doi.org/10.1155/2011/718340
22. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705
23. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w
24. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos Solitons Fractals 142, 110472 (2021). https://doi.org/10.1016/j.chaos.2021.110472
25. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of Sobolev type fractional integro-differential delay inclusions with order $1 < r < 2$. Math. Comput. Simul. 190, 1–12 (2021). https://doi.org/10.1016/j.matcom.2021.06.026
26. Kim, I.S.: Semilinear problems involving nonlinear operators of monotone type. Results Nonlinear Anal. 2(1), 25–35 (2019)
27. Lazreg, J.E., Abbas, S., Benchohra, M., Karapinar, E.: Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces. Open Math. 19(1), 363–372 (2021). https://doi.org/10.1515/math-2021-0040
28. Rezapour, S., Mohammadi, H., Jajarmi, A.: A New mathematical model for Zika virus transmission. Adv. Differ. Equ. 2020, 369 (2020). https://doi.org/10.1186/s13662-020-03046-7
29. Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668
30. Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469
31. Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9
32. Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70
33. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
34. Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 59(5), 3019–3027 (2020). https://doi.org/10.1016/j.aej.2020.04.053
35. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
36. Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo-Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9
37. Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3
38. Fawzi, A.S., Ghadle, K.P.: Solving nonlinear Fredholm integro-differential equations via modifications of some numerical methods. Adv. Theory Nonlinear Anal. Appl. 5(2), 260–276 (2021). https://doi.org/10.31397/atnaa.872432
39. Nishine, H.K., Ibrahim, R.W., Can, N.H.: Solution of a fractal energy integral operator without body force using measure of noncompactness. Alex. Eng. J. 59(6), 4101–4106 (2020). https://doi.org/10.1016/j.aej.2020.07.015
40. Raja, M.M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential evolution equations of order $1 < r < 2$ in Hilbert spaces. Chaos Solitons Fractals 141, 110310 (2020). https://doi.org/10.1016/j.chaos.2020.110310
41. Raja, M.M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional evolution inclusions of order $1 < r < 2$ with infinite delay. Chaos Solitons Fractals 141, 110343 (2020). https://doi.org/10.1016/j.chaos.2020.110343
42. Rezapour, S., Henriquez, H.R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on existence of mild solutions for second-order neutral integro-differential evolution equations with state-dependent delay. Fractal Fract. 5(3), 126 (2021). https://doi.org/10.3390/fractalfract5030126
43. Duraisamy, S.R., Sundararajan, P., Karthikeyan, K.: Controllability problem for fractional impulsive integrodifferential evolution systems of mixed type with the measure of noncompactness. Results Nonlinear Anal. 3(2), 85–99 (2020)
44. Mahmudov, N.I., Denker, A.: On controllability of linear stochastic systems. Int. J. Control 73(2), 144–151 (2000). https://doi.org/10.1080/0020717010219869
45. Mahmudov, N.I.: Approximate controllability of evolution systems with nonlocal conditions. Int. J. Control 68(3), 536–546 (2008). https://doi.org/10.1080/0020717060061188
46. Mahmudov, N.I., Vijayakumar, V., Murugesu, R.: Approximate controllability of second-order evolution differential inclusions in Hilbert spaces. Mediterr. J. Math. 13, 1433–1454 (2016). https://doi.org/10.1007/s00009-016-0695-7
47. Mahmudov, N.I., Udhayakumar, R., Vijayakumar, V.: On the approximate controllability of second-order evolution hemivariational inequalities. Results Math. 75, 160 (2020). https://doi.org/10.1007/s00025-020-01293-2
48. Naito, K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25(3), 715–722 (1987). https://doi.org/10.1137/0325040
49. Nisar, K.S., Vijayakumar, V.: Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7647
50. Sakthivel, R., Ganesh, R., Anthoni, S.M.: Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 225(1), 708–717 (2013). https://doi.org/10.1016/j.amc.2013.09.068
51. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear control system of order \(\alpha \in (1, 2) \) in Hilbert spaces. Nonlinear Stud. 22(1), 131–138 (2015)
52. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear control systems of order \(\alpha \in (1, 2) \) with infinite delay. Mediterr. J. Math. 13, 2539–2550 (2016). https://doi.org/10.1007/s10915-015-0639-8
53. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear stochastic system of order \(\alpha \in (1, 2) \). J. Dyn. Control Syst. 23, 679–691 (2017). https://doi.org/10.1007/s10883-016-9350-7
54. Shukla, A., Sukavanam, N., Pandey, D.N., Arora, U.: Approximate controllability of second-order semilinear control system. Circuits Syst. Signal Process. 35, 3339–3354 (2016). https://doi.org/10.1007/s00034-015-0191-5
55. Shukla, A., Patel, R.: Existence and optimal control results for second-order semilinear delay control systems. J. Appl. Math. Comput. 65(1–2), 861–875 (2021). https://doi.org/10.1007/s12190-020-01418-4
56. Shukla, A., Patel, R.: Controllability results for fractional semilinear delay control systems. J. Appl. Math. Comput. 65(1–2), 861–875 (2021). https://doi.org/10.1007/s12190-020-01418-4
57. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional stochastic control system. Asian-Eur. J. Math. 11(6), 1850088 (2018). https://doi.org/10.1142/S1793557118500882
58. Vijayakumar, V., Henriquez, H.R.: Existence of global solutions for a class of abstract second order nonlocal Cauchy problem with impulsive conditions in Banach spaces. Numer. Funct. Anal. Optim. 39(6), 704–736 (2018). https://doi.org/10.1080/01630563.2017.1414060
59. Vijayakumar, V., Muruguesu, R., Poongodi, R., DhanaLakshmi, S.: Controllability of second order impulsive nonlocal Cauchy problem via measure of noncompactness. Mediterr. J. Math. 14(3), 1–23 (2017). https://doi.org/10.1007/s10915-016-0813-6
60. Williams, W.K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: A new study on existence and uniqueness of nonlocal fractional delay differential systems of order \(1 < r < 2 \) in Banach spaces. Numer. Methods Partial Differ. Equ. 37(2), 949–961 (2021). https://doi.org/10.1002/num.22560
61. Baty, C.J.K., Chill, R., Srivastava, S.: Maximal regularity for second order non-autonomous Cauchy problems. Stud. Math. 189(3), 205–223 (2009). https://doi.org/10.4064/sm189-3-1
62. Henriquez, H.R., Castillo, G.: The Kneser property for the second order functional abstract Cauchy problem. Integral Equ. Oper. Theory 52, 505–525 (2005). https://doi.org/10.1007/s00020-002-1266-9
63. Kisyński, J.: On cosine operator functions and one parameter group of operators. Stud. Math. 44(1), 93–105 (1972)
64. Kozak, M.: A fundamental solution of a second order differential equation in a Banach space. Universitatis LM et Universitatis Rovim Acta Mathematica 32, 725–289 (1995)
65. Travis, C.C., Webb, G.F.: Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houst. J. Math. 3(4), 555–567 (1977)
66. Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32, 75–96 (1978). https://doi.org/10.1007/BF01902205
67. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control (2020). https://doi.org/10.1002/asjc.2549
68. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sathivel, N., Nisar, K.S.: A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 44(6), 4428–4447 (2021). https://doi.org/10.1002/mma.7040
69. Henriquez, H.R.: Existence of solutions of non-autonomous second order functional differential equations with infinite delay. Nonlinear Anal., Theory Methods Appl. 74(10), 3333–3352 (2011). https://doi.org/10.1016/j.na.2011.02.010