Single hole spectral function and spin-charge separation in the $t-J$ model

A. S. Mishchenko1,2, N. V. Prokof’ev3, and B. V. Svistunov2,3

1Correlated Electron Research Center, Tsukuba 305-0046, Japan
2Russian Research Center “Kurchatov Institute”, 123182 Moscow, Russia
3Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for $0.1 \leq J/t \leq 0.4$ on lattices with up to $L \times L = 32 \times 32$ sites at temperature as low as $T = J/40$, and present, apparently, the hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum which is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap $\sim 4 \div 5 \, t$.

PACS numbers: 71.10.fd; 74.20.Mn; 71.10.Pm

For almost four decades the problem of hole dynamics in magnetic systems has attracted constant interest with applications ranging from properties of charge carriers in magnetic semiconductors and insulators[4] to vacancies in solid 3He[5]. The research in this area exploded with the discovery of high temperature superconductors in cuprates, where superconductivity appears upon light doping of AFM insulators. Despite an enormous theoretical effort over the years and quite a variety of treatments (for reviews, see, e.g., Ref. 6) a complete solution of this inherently strong-coupling problem still does not exist, especially in the most interesting region of $t \gg J$, where J is the exchange coupling constant and t is the hopping matrix element in the $t-J$ Hamiltonian

$$H = -t \sum_{<ij>,s} c^\dagger_{is} c_{js} + J \sum_{<ij>} \left(\mathbf{s}_i \cdot \mathbf{s}_j - \frac{1}{4} n_i n_j \right) . \quad (1)$$

Here c_{is} is projected (to avoid double occupancy) fermion annihilation operator, $n_i = \sum_s c^\dagger_{is} c_{is} \neq 2$ is the occupation number, $s_i = \sum_{s'} c^\dagger_{is'} \sigma_{ss'} c_{is'}$ is spin-1/2 operator, and $< ij >$ denote nearest neighbor sites of the 2D square lattice.

The central problem in the hole dynamics is whether or not its spin and charge degrees of freedom separate. The standard way to answer this question is to study the spectral function $A_p(\omega) = -\pi^{-1} i m \, G_p(\omega)$, where $G_p(\omega)$ is the hole Green function. If there is an elementary excitation associated with the hole, the spectral function is supposed to feature a peak at the lower edge of the spectrum. What is crucial, however, is not the presence of the peak itself, but its functional form. Within the self-consistent Born approximation scheme (SCBA) one finds finite overlap between the bare hole and low-energy quasiparticle states, which means that the peak is δ-functional and the hole is described as coherently propagating spin-polaron in the nearly ordered antiferromagnetic (AFM) background (with vanishing scattering at low temperature due to small density of spin waves).

In contrast to that, various resonating-valence-bond (RVB) descriptions and Anderson’s general arguments about breakdown of the Fermi-liquid picture in the system with no-double-occupancy constraint (see, e.g., Ref. 6) strongly suggest that power-law singularity, which is indicative of spin-change separation constraint, might be the case (there is even a claim that the quasiparticle weight Z should be rigorously zero). To make the issue more confusing, angle resolved photoemission spectroscopy experiments[1,2] show very broad maximum in $A(\omega)$ which can be considered both as the quasiparticle peak with anomalously large broadening or as the evidence for composite nature of quasiparticles.

The quasiparticle picture was supported by exact calculations on small clusters[7,8] but system sizes (up to 32 sites) were too small to perform finite-size scaling. Variational calculations, Green function Monte Carlo and density matrix renormalization group studies were mostly concerned with the dispersion law ϵ_k (lowest energy in a given momentum sector). Large scale simulations of the imaginary time Green function $G_k(\tau)$ were performed recently using a combination of the loop-cluster Monte Carlo method for the AFM state and hole evolution in the fixed space-time spin background[9]. This method works only for relatively large exchange $J > 0.6 \, t$, since magnetic background is simulated without the hole and polaron-type distortions have to be accounted for as quantum fluctuations before the hole is introduced. For $J/t < 0.6$ the error bars in $G_k(\tau)$ are too large for reliable spectral analysis (see below).

To summarize, we still lack evidence that for small J the quasiparticle weight remains finite in the thermodynamic limit and the lowest peak has nothing to do with the power-law singularity. We thus find it important to rule out the possibility that t-J model may explain the data of Refs. 10,11 (as suggested by Ref. 9), so that extensions of the model such as t' and t'' terms[12] or frustrating exchange couplings are proven necessary.

Speaking classically, moving hole breaks AFM bonds and thus its energy increases linearly with the travel distance[13] (this consideration, or the string-potential picture, is most appropriate for the $t-J_z$ model). It is believed that the ground energy scaling $E_{k_0} \sim J^{2/3} \, \pi^2 t$ [where...
$k_0 = (\pi/2, \pi/2)$] and excitation spectrum are described by the string-potential pictures [2], and transverse spin fluctuations do not “erase” strings completely. In the limit of small J the theory predicts that several resonances in $A(\omega)$ have to be seen with the peak positions being strictly related to the eigenvalue properties of Airy functions. Early exact diagonalization studies on clusters 4×4 attributed two peaks above the ground state to string resonances, however later studies on larger clusters were not able to detect the second resonance, and the spectral function was showing strong size dependence. What happens at small J in the thermodynamic limit remains an open question.

In this letter we present results for $G_k(\tau)$ and $A_k(\omega)$ obtained from Monte Carlo simulations on systems with 16×16 and 32×32 sites and at temperatures as low as $T/J = 0.025$ (for the largest system size) using continuous-time Worm algorithm in combination with the recently developed spectral analysis which is capable of resolving infinitely sharp features in $A(\omega)$. The method itself is free from any systematic errors, and we were unable to detect finite-size corrections in our data; thus, we believe, our results describe correctly the thermodynamic limit.

Worm algorithm is based on the idea that world-line configurations of spins and the hole are updated through the space-time motion of the creation and annihilation operators. In Fig. 1 and Fig. 2 we show the typical configuration of the Heisenberg AFM with the hole, and Monte Carlo updates which apply to it. Physical configurations contributing to the hole Green function are those which have no spin end points (denoted by filled circles).

Since the world-line representation is based on the expansion of the statistical evolution operator $e^{-H/T}$ in powers of t and J it suffers from the sign problem which first appears in order t^2J^3 (see Fig. 3). It is worth noting that if not for the sign problem, spin-charge separation can be ruled out by the analysis of world-line configurations. Let the hole be created by c_{\downarrow} operator. If spin charge separation does take place, one should see, following the evolution of the system configuration in imaginary time, an extra spin density leaving the hole creation site and going into the bulk, i.e., the world-line density far from the hole should increase. At $T = 0$ the AFM ground state is ordered (as opposite to the spin liquid state) and the minimal possible change in the world-line density is equivalent to having exactly one extra world line, which can be traced out and interpreted as spin-1 magnon excitation. We may now construct an operator which has finite overlap with the quasiparticle excitation as a product $s^- c_{\downarrow}$, where s^- is added to cancel the extra magnon in the bulk. However, up to a single hopping transition the above composite operator is identical to c_\uparrow, and we conclude that holes are good quasiparticles in contradiction with our original assumption (probably rephrasing the proof of Ref. [3]).
However, in the presence of the sign problem the above consideration should be taken with extreme caution. It may turn out that ordered world-line configurations compensate each other completely and single-configuration conclusions are misleading, as suggested in Ref. 3 where hole-related sign problem is called the "irreparable phase string effect" and argued to cause spin-charge separation.

The sign problem implies that we may not calculate $G(\tau)$ reliably over long time scales and have to restrict our simulation to $\tau T < 3 \div 4$ to suppress sign fluctuations by larger statistics. Fortunately, on this time scale $G_k(\tau)$ is already in its asymptotic regime and the data are sufficiently accurate to reveal the ground state properties. Formally, calculations are done at finite T but its value is more than an order of magnitude smaller than the energy of the lowest magnon state in a given system size. For each value of J the calculation time was about 2 weeks on a PIII-600 workstation.

In Fig. 4 we show simulated $G_{k_0}(\tau)$ for $J/t = 0.4$ and the asymptotic law $Z_{k_0} e^{-E_{k_0}\tau}$ with the quasiparticle weight and ground state energy obtained from the weight and position of the δ-peak in $A_{k_0}(\omega)$. Note, that for small values of J the data have to be very accurate to describe correctly how $G(\tau)$ approaches its asymptotic behavior $G_{k_0} \to Z_{k_0} e^{-E_{k_0}\tau}$. Error bars are shown but are smaller than the symbol size (the relative accuracy is better than 10^{-2} even for points with the largest τ where the sign problem was the most severe).

The spectral analysis of $G_{k_0}(\tau)$ was done using stochastic optimization procedure developed earlier for the polaron problem. $A(\omega) = N^{-1} \sum_{i=1}^N A_i(\omega)$ is obtained as an average over spectral densities which optimize deviations between $G(\tau)$ and $\int d\omega e^{-\omega\tau} A_i(\omega)$. The parameter space of $A_i(\omega)$ is defined by the step-wise constant functions, which, in particular, includes infinitely sharp peaks and is not associated with any pre-defined set of frequencies (it is known that δ-peaks can not be handled satisfactorily by the maximum entropy method).

In Fig. 5 we show our results for $A_{k_0}(\omega)$ calculated at points $J/t = 0.4, 0.2, 0.1$. We clearly see a δ-sharp peak at the lower edge of the spectrum. The structure of this peak is incompatible with the power law singularity since its width is smaller than the lowest magnon excitation in our system [for $J/t = 0.4$ the quasiparticle peak width is only 0.01 t (!) while the natural scale for the power law is set by J]. This is the central result of our paper which conclusively rules out spin-charge separation scenario for the single hole dynamics in the $t-J$ model and confirms finite quasiparticle weight in the thermodynamic limit. To verify that finite-size and finite-temperature corrections are negligible we performed long time simulations in a 32×32 lattice at temperature $T = J/40$ for $J/t = 0.2$, but within the error bars $G(\tau)$ was indistinguishable from the result obtained for $L = 16$ and $T = J/20$.

Unfortunately, the ill-defined problem of numeric analytic continuation does not allow to study fine structures in the spectral density, especially if they are "screened" by low- and high-frequency peaks. (The low-frequency peak is fixed by the asymptotic long-time behavior of...
$G(\tau)$, while the high-frequency peak is fixed by the short-
time decay of $G(\tau)$ where the data are extremely accu-
rate.) Our tests show that multiple peaks in the middle
can not be resolved by spectral analysis even when we use
analytically exact $G(\tau)$ data. It means that the absence
of multiple string resonances above the ground state in
our results for $A(\omega)$ may not be considered as a proof
that string potential picture fails in quantum case. We
would rather consider the second peak as a “course grain”
description of spectral density at intermediate energies.
However, if string excitations do exist, their combined
effect should be seen as the $J^{2/3}$ scaling law for the peak
position. In Fig. 6 we plot peak positions as functions of
$(J/t)^{2/3}$ for $0.1 \leq J/t \leq 1.2$ with error bars obtained as
peak half-widths. We conclude that for the second peak
the scaling law is obeyed within the error bars. The high-
energy peak stays roughly at a constant distance from the
ground state, and clearly the physics behind it is differ-
ent.

FIG. 6. Peak positions as functions of $(J/t)^{2/3}$. Data
points for $J > 0.4$ were taken from Ref. [15] (for $J = 0.4 t$
the second peak was not resolved in Ref. [15] because of large
error bars in $G(\tau)$). The two lines are fits $y(x) = a + b(J/t)^{2/3}$
with $a = -3.5 \, t$, $b = 3.77 \, t$ for the ground state, and $b = 5.5 \, t$
for the first peak in continuum.

We thank O. Ruebenacker, P. Stamp, and V.
Kashurnikov for valuable discussions. This work was sup-
ported by the National Science Foundation under Grant
DMR-0071767.

1 P.G. de Gennes, Phys. Rev. 118, 141 (1960); N. Nagaoka,
Phys. Rev. 147, 392 (1966).
2 L.N. Bulaevskii, E.L. Nagaev, and D.I. Khomskii,

Sov. JETP 27, 836 (1968); E.L. Nagaev, Physics of Magnetic Semiconductors, Mir,
Moscow (1979); W.F. Brinkman and T.M. Rice,
Phys. Rev. B 2, 1324 (1970).
3 A.F. Andreev, Sov. JETP Lett. 24, 564 (1976);
G. Montambaux, M. Heritier, and P. Lederer,
J. Low Temp. Phys. 47, 39 (1982);
P. Kumar and N.S. Sullivan, Phys. Rev. Lett. 55, 963
(1985); Phys. Rev. B 35, 3162 (1987).
4 E. Manousakis, Rev. Mod. Phys. 63, 1 (1991);
E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
5 As an example, compare $A(\omega)$ in 1D and 3D cases: 1D
electrons have vanishing overlap with low-energy qua-
siparticle states, and their spectral function has a power-law
singularity $\sim (\omega - \omega_0)^{1-\nu}$ with $\nu > 0$, while in the 3D
Fermi liquid quasiparticles have finite overlap with bare
electrons and $A(\omega)$ features a δ-peak.
6 I.E. Dzyaloshinskii and A.I. Larkin, Sov. Phys. JETP, 38,
202 (1974); A. Luther and I. Peschel, Phys. Rev. B 9, 2911
(1974); A. Parola and S. Sorella, Phys. Rev. B, 45, 13156
(1992); R. Hayn and R.O. Kuzian, cond-mat/0005462.
7 S. Schmitt-Rink, C.M. Varma, and A.E. Ruckenstein,
Phys. Rev. Lett. 60, 2793 (1988);
C.L. Kane, P.A. Lee, and N. Read, Phys. Rev. B 39 6880
(1988);
F. Marsiglio et al., Phys. Rev. B 43, 10882 (1991);
G. Martinez and P. Horsch, Phys. Rev. B 44, 317 (1991);
Z. Liu and E. Manousakis, Phys. Rev. B 45, 2425 (1992);
ibid. 51, 3156 (1995).
8 P.W. Anderson, The theory of superconductivity in the
high-T_c cuprates, Princeton Univ. Press (1997).
9 D.N. Sheng, Y.C. Chen, and Z.Y. Weng, Phys. Rev. Lett.,
77, 5102 (1996); Z.Y. Weng et al., Phys. Rev. B 55, 3894
(1997); cond-mat/0008340.
10 B.O. Wells et al., Phys. Rev. Lett. 74, 964 (1995); C. Kim
et al., Phys. Rev. Lett. 80, 4245 (1998).
11 F. Ronning et al., Science, 282, 2067 (1998).
12 R.B. Laughlin, Phys. Rev. Lett. 79, 1726 (1997)
13 P. Béra, D. Poilblanc, and R.B. Laughlin, Nuc. Phys. B,
473, 707 (1996).
14 D. Poilblanc, H.J. Schultz, and T. Ziman, Phys. Rev. B 47,
3273 (1993). P.W. Leung and R.J. Gooding, Phys. Rev. B
52, R15711 (1995).
15 M. Brunner, F.F. Assaad, and A. Muramatsu, cond-
mat/0002321.
16 T.K. Lee and C.T. Shih, Phys. Rev. B 55, 5983 (1997);
G.B. Martins, R. Eder, and E. Dagotto, Phys. Rev. B
60, R3716 (1999);
T. Tohyama et al., J. Phys. Soc. Jpn., 69 9 (2000).
17 B. Shraiman and E. Siggia, Phys. Rev. Lett. 60, 740 (1988).
18 Z. Liu and E. Manousakis, Phys. Rev. B 45, 2425 (1992).
19 S. White and I. Affleck, cond-mat/0011098.
20 N.V Prokof’ev, B.V. Svistunov, and I.S. Tupitsyn,
Phys. Lett. A, 238, 253 (1998); Sov. Phys. JETP 87 310
(1998).
21 A.S. Mishchenko, N.V Prokof’ev, A. Sakamoto, and B.V.
Svistunov, Phys. Rev. B, 62, 6317, (2000).
22 M. Jarrell and J. Gubernatis, Phys. Rep., 269, 133 (1996).