Gain Components in Autler-Townes Doublet from Quantum Interferences In Decay Channels

Sunish Menon1 and G. S. Agarwal1,2

1 Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
2 Max-Plank-Institut für Quantenoptik, 85748 Garching, Germany.
(April 1, 2022)

We consider non-degenerate pump-probe spectroscopy of V-systems under conditions such that interference among decay channels is important. We demonstrate how this interference can result in new gain features instead of the usual absorption features. We relate this gain to the existence of a new vacuum induced quasi-trapped-state. We further show how this also results in large refractive index with low absorption.

PACS No. : 42.50 Gy., 42.50 Hz.

I. INTRODUCTION

The properties of a medium are significantly altered when the medium is driven by strong, resonant, coherent fields. Mollow first studied in detail the physical characteristics of a two-level system driven by a coherent field of arbitrary strength. He discovered new features in the emission spectra \cite{1a}. These new features are best understood in terms of field dependent eigenstates and eigenvalues or dressed states of the system \cite{3}. Mollow in a later paper \cite{1b}, further demonstrated the possibility of amplification of a probe field in a coherently driven two-level system. This gain can also be understood in terms of dressed states \cite{3}. An alternative way of probing a driven two-level model is by coupling a probe field to one of the states (e.g. the ground state) of the strongly driven transition and a different excited state (V-system). The absorption spectra will show new resonances related to the dressed states of the strongly driven two-level atom. The strong drive splits the absorption resonance into two components known as the Autler-Townes components. Various experiments in gases \cite{3} and in solid state systems \cite{8} have confirmed the presence of the Autler-Townes splitting of absorption lines. Such a three-level model is not known to show gain unless additional fields are introduced. For example, an incoherent pumping along the probing transition of a V-system will give rise to gain \cite{8,12}. Other three-level models with coherent and incoherent pumping also exhibit gain \cite{8,12}.

In this paper, we demonstrate that quantum interference between different paths of spontaneous emission in a V-system can produce gain under conditions when one would have otherwise observed absorption peaks. Interference due to spontaneous emission can arise when spontaneous emission from one level can strongly affect a neighboring transition. For example, consider excited levels \cite{1}, \cite{2} of same parity, and ground state \cite{3} of a different parity (see Fig. 1a). Let the spontaneous emission rates from levels \cite{1} and \cite{2} to level \cite{3} be denoted as $2\gamma_1$ and $2\gamma_2$ respectively. In interaction picture, the equations of motion for density matrix elements will be:

\begin{equation}
\dot{\rho}_{11} = -2\gamma_1 \rho_{11} - \sqrt{\gamma_1 \gamma_2} \cos \theta (\rho_{12} e^{-iW_{12} t} + \rho_{21} e^{iW_{12} t}), \\
\dot{\rho}_{22} = -2\gamma_2 \rho_{22} - \sqrt{\gamma_1 \gamma_2} \cos \theta (\rho_{21} e^{-iW_{12} t} + \rho_{12} e^{iW_{12} t}), \\
\dot{\rho}_{12} = - (\gamma_1 + \gamma_2) \rho_{12} - \sqrt{\gamma_1 \gamma_2} \cos \theta e^{iW_{12} t} (\rho_{11} + \rho_{22}), \\
\dot{\rho}_{13} = -\gamma_1 \rho_{13} - \sqrt{\gamma_1 \gamma_2} \cos \theta e^{iW_{12} t} \rho_{23}, \\
\dot{\rho}_{23} = -\gamma_2 \rho_{23} - \sqrt{\gamma_1 \gamma_2} \cos \theta e^{-iW_{12} t} \rho_{13}.
\end{equation}

Here $\hbar W_{12}$ is the energy separation between the excited levels which we keep arbitrary. The above equations are derived without making any kind of secular approximation, and can be solved under the conditions when interference between decay channels is important. We demonstrate how this interference can result in the spectrum.

Here 3 when $W_{12} \gg \gamma_1, \gamma_2$, the oscillatory terms will average out and the effects of such off-diagonal terms will vanish. A result of such an off-diagonal radiative coupling is that the coherence $\rho_{12}(t)$ will evolve even when $\rho_{12}(0) = 0$. The coherence arises from the vacuum of the electromagnetic field. We refer to it as vacuum induced coherence (VIC). This coherence term will change the steady state response of the medium and under suitable conditions can create trapping in a degenerate V-system \cite{1}. The coherence can also modify significantly the emission spectrum of a near-degenerate V-system \cite{1}. Recent works \cite{12} generalize equations (1) to include thermal photons as well as incoherent pumping. The presence of both thermal photons and VIC leads to additional features in the spectrum.

In the present paper, we study how to probe VIC by using a pump-probe spectroscopy. We demonstrate that the VIC can manifest itself via gain features instead of the traditional absorption features. The organization of this paper is as follows: In Sec. I we present basic equations describing the pump-probe spectroscopy under conditions when interference between decay channels is important. We also point out the crucial difference between...
the present work and the previous studies. In Sec. III we discuss our numerical results. We show the possibility of new gain features due to VIC. In Sec. IV we report the possibility of quasi-trapped-states that arise strictly from the interference between decay channels. In Sec. V we analyze the effect of this trapping on the absorption and dispersion properties of the pump field. In Sec. VI we explain the numerical results of Sec. III in terms of the trapped states discussed in Sec. IV.

II. BASIC EQUATIONS

Consider the pump-probe set-up shown in Fig. 1(a). The transition dipole moments \vec{d}_{13} and \vec{d}_{23} are non-orthogonal: so in principle we should include the coupling of pump (probe) to the transition $|1\rangle \leftrightarrow |3\rangle$ ($|2\rangle \leftrightarrow |3\rangle$).

![Diagram](image)

FIG. 1. (a) Schematic diagram of a three-level V-system. The pump and probe fields have a frequency detunings Δ_2 and Δ_1 respectively. The γ's denote the spontaneous emission rates from the respective levels. (b) The arrangement of field polarization required for single field driving one transition if dipoles are non-orthogonal.

The pump field ($\vec{E}_2 = \vec{\varepsilon}_2 e^{-i\omega_2 t} + c.c.$) with a Rabi frequency $2G = 2\vec{d}_{23} \cdot \vec{\varepsilon}_2 / \hbar$ drives $|2\rangle \leftrightarrow |3\rangle$ transition ($\vec{d}_{13} \cdot \vec{\varepsilon}_2 = 0$) and similarly probe field ($\vec{E}_1 = \vec{\varepsilon}_1 e^{-i\omega_1 t} + c.c.$) with a Rabi frequency $2g = 2\vec{d}_{13} \cdot \vec{\varepsilon}_1 / \hbar$ drives $|1\rangle \leftrightarrow |3\rangle$ transition ($\vec{d}_{23} \cdot \vec{\varepsilon}_1 = 0$). We work under the condition such that VIC is important. However, we would like to keep the situation rather parallel to the usual case. Thus we assume a specific geometry of the Fig. [b], so that the pump (probe) does not couple to $|1\rangle \leftrightarrow |3\rangle$ ($|2\rangle \leftrightarrow |3\rangle$) transition. The Hamiltonian for this system will be

$$H = \hbar W_{13}|1\rangle \langle 1| + \hbar W_{23}|2\rangle \langle 2| - \hbar (G|2\rangle \langle 3| e^{-i\omega_2 t} + g|1\rangle \langle 3| e^{-i\omega_1 t} + H.c.),$$

(2)

where $\hbar W_{13}$ ($i = 1, 2$) is the energy of the state $|i\rangle$ when measured with respect to state $|3\rangle$.

In the rotating wave approximation the density matrix equations with the inclusion of all the decay terms will be

$$\dot{\rho}_{11} = -2\gamma_1 \rho_{11} - \eta(\rho_{12} + \rho_{21}) + i\rho_{13} e^{-i\omega_2 t} - i\rho_{13} e^{i\omega_2 t},$$

$$\dot{\rho}_{22} = -2\gamma_2 \rho_{22} - \eta(\rho_{12} + \rho_{21}) + i\rho_{13} e^{-i\omega_2 t} - i\rho_{13} e^{i\omega_2 t},$$

$$\dot{\rho}_{13} = -(\gamma_1 + i\Delta_2 + W_{13}) \rho_{13} - \eta(\rho_{12} + \rho_{21}) + i\rho_{13} e^{-i\omega_2 t} - i\rho_{13} e^{i\omega_2 t},$$

$$\dot{\rho}_{23} = -(\gamma_2 + i\Delta_2) \rho_{23} - \eta(\rho_{12} + \rho_{21}) + i\rho_{13} e^{-i\omega_2 t} - i\rho_{13} e^{i\omega_2 t},$$

(3)

where $\delta = \omega_1 - \omega_2$ is the probe-pump detuning. The probe detuning $\Delta_1 = W_{13} - \omega_1$ and the pump detuning $\Delta_2 = W_{23} - \omega_2$ are related by $\Delta_1 - \Delta_2 = W_{12} - \delta$. In deriving (3) we have made the canonical transformations so that ρ_{13} and ρ_{23} are obtained by multiplying the solution of (3) by $e^{-i\omega_2 t}$. We also use the trace condition $\rho_{11} + \rho_{22} + \rho_{33} = 1$. Here $\eta = \eta_0 \sqrt{\gamma_1 \gamma_2} \cos \theta$ is the VIC parameter, which is nonzero when $\theta \neq 90^\circ$. Note that for the geometry shown in Fig. 1(b), θ is always nonzero, though it could be small. The parameter η_0 enable us to study the limiting case when the effects of VIC are ignored ($\eta_0 = 0$), otherwise we will set $\eta_0 = 1$. In the absence of external fields as seen from equations (4), the VIC effect is important when the separation between the two excited levels is of the order of natural line width. However, this condition may be relaxed when the system is being driven by external fields as we will see later.

Let us first consider the case when $\eta_0 = 0$. Making a further canonical transformation on ρ_{13} and ρ_{23} we can get rid of the explicit time dependence. The imaginary part of ρ_{13} yields the probe absorption. In the limit of a weak probe field ($g \ll \gamma_1, \gamma_2$), we obtain

\[
\rho_{13} = \frac{g((\gamma_1^2 + \Delta_2^2 + 2G^2)(\Delta_2 - \Delta_1 + i(\gamma_1 + \gamma_2)) + G^2(\Delta_2 - i\gamma_2))}{(\gamma_1^2 + \Delta_2^2 + 2G^2)[G^2 + (\Delta_1 - i\gamma_1)(\Delta_2 - \Delta_1 + i(\gamma_1 + \gamma_2))]}.
\]

(4)

In the limit of vanishing γ's and large G, the above expression shows that two complex poles exist at $\Delta_1 = (\Delta_2 + i\gamma_2 + 2i\gamma_1 \pm \sqrt{(\Delta_2 - i\gamma_2)^2 + 4G^2})/2$. The probe absorption as a function of Δ_1, i.e. as a function of probe frequency will have two resonances at $\Delta_1 = (\Delta_2 \pm \sqrt{\Delta_2^2 + 4G^2})/2$. These are the two Autler-Townes components in the absorption spectrum. It can be further shown that $\text{Im}(\rho_{13}) > 0$.

We now consider the effects of VIC ($\eta_0 = 1$). The system of Eqs. (3) have been studied under a very wide range of conditions. We would now recall what has been done and in what ways our current work differs from the existing works. (a) We could first consider the
case when pump is also replaced by the probe ($\vec{\epsilon}_1 \equiv \vec{\epsilon}_2$, $\omega_1 = \omega_2$). Here the effects of VIC manifest both in emission [13,14] and absorption spectrum [13,17]. Zhou and Swain demonstrated the existence of ultra-narrow spectral lines in emission [13]. Cardimona et al. showed vanishing of absorption under certain conditions [13] whereas Zhou and Swain demonstrated the possibility of gain with no pump field present [13]. (b) Another case which is extensively studied by Knight and coworkers corresponds to degenerate pump and probe fields, i.e. $\vec{\epsilon}_1 \neq \vec{\epsilon}_2$, but $\omega_1 = \omega_2$ ($\delta = 0$). Here the pump can have arbitrary strength while the probe is kept relatively weak. Papalakis et al. showed how VIC can lead to gain without inversion [17]. (c) In the present work we study the important case of non-degenerate pump and probe fields, $\vec{\epsilon}_1 \neq \vec{\epsilon}_2$, $\omega_1 \neq \omega_2$. We show how the VIC can invert the traditional Autler-Townes splittings in the absorption spectrum and produce gain features.

While we work with a three-level system, it should be noted that effects of VIC in the context of four and five-level schemes have been very extensively investigated [15,20]. In particular, Zhu and coworkers discovered quenching of spontaneous emission [15,20]. An intuitive picture for spontaneous emission suppression and enhancement was provided by Agarwal [21].

The non-degenerate case, that we treat, has a major complication due to explicit time dependence in the equations of motion (3). Since the time dependence in (3) is periodic, we can solve these equations by Floquet analysis. The solution can be written as

$$\rho_{ij} = \sum_m \rho_{ij}^{(m)} e^{-im\omega t}. \tag{5}$$

Thus the absorption and emission spectra gets modulated at various harmonics of δ. The dc component in probe absorption spectrum is related to $\rho_{13}^{(+1)}$. The absorption coefficient α per unit length can be shown to be

$$\alpha = \frac{\alpha_0 \gamma_1}{g} \text{Im}(\rho_{13}^{(+1)}), \tag{6}$$

where $\alpha_0 = 4\pi N|d_{13}|^2 \omega_1 / h \gamma_1 c$ and N denote the atomic density. Note that in (3) only one term from the entire series (3) contributes. For the case of degenerate pump-probe ($\delta = 0$), all the terms in the series (3) are important.

III. NUMERICAL RESULTS

In order to obtain the probe absorption spectra we solve (3) numerically using the series solution (5) and the steady state condition $\dot{\rho}_{ij}^{(m)} = 0$. The situation is much simpler for a weak probe when $\rho_{ij}^{(+1)}$ can be computed to first order in g, otherwise we use Floquet method. In Fig. 2 we plot the probe absorption as a function of probe detuning. The dashed curves in Fig. 2(a,b) are the usual Autler-Townes components in the absence of VIC effects. The solid curves show the absorption spectra when VIC is included. We observe that one of the Autler-Townes component flips sign to give rise to significant gain. This type of behavior is seen for any value of W_{12} provided the pump field strength satisfies the condition $G = |W_{12}|$

![Fig. 2. Effect of interference between decay channels on probe absorption.](image)

For $\Delta_2 = 0$. When $W_{12} = G$ and $\Delta_2 = 0$, the gain appears at $\Delta_1 = -G$. The solid curve in Fig. 2(b) shows that the effect of VIC is observed even for large W_{12}. For $\Delta_2 = 0$. When $W_{12} = G$ and $\Delta_2 = 0$, the gain appears at $\Delta_1 = -G$. The solid curve in Fig. 2(b) shows that the effect of VIC is observed even for large W_{12}.
suppressed for certain set of parameters (see for example the solid curve in Fig. 3). Thus the parameter \(\theta \) (angle between the two transition dipole matrix elements) controls the spectra in presence of VIC. The dot-dashed curve in Fig. 3 also shows the effect of unequal decays. For \(\gamma_2 > 2 \gamma_1 \) both the Autler-Townes components flip. We analyze the origin of gain in the following sections. We note that the previous works [17a] on the degenerate pump and probe fields also reported gain, provided the energy separation between the two excited states can be scanned.

Finally as mentioned in Sec. II the observation of VIC related effects requires the use of transitions with non-orthogonal dipole matrix elements [10–17,19–26]. The question of production of transition with non-orthogonal dipole matrix elements has been extensively discussed in the literature. This can be achieved by mixing the states using either internal fields [20] or external fields [25–28]. We may further note that the relaxation need not occur by spontaneous emission. For example in problems involving intersubband transitions in semiconductors the relaxation can occur by emission of LO phonon [23]. In such cases the non-orthogonality of dipole matrix elements is not required.

\[
\rho_{ij} = \sigma_{ij}^0 + g\sigma_{ij}^0 e^{-i\delta t} + g^* \sigma_{ij}^0 e^{i\delta t}.
\]

We first examine the behavior of the system in the presence of pump field alone (\(g = 0 \)). Note that in the absence of VIC effects the system reduces to the well known case of coherently driven two-level atom. But the behavior is quite different in the presence of VIC effects as we show in the following.

It is clear that field \(G \) creates a coherent mixing of states \(|2\rangle\) and \(|3\rangle\). The new eigenvalues will be

\[
\lambda_{\pm} = \frac{\Delta_2 \pm \sqrt{\Delta_2^2 + 4G^2}}{2},
\]

and the corresponding dressed energy states can be written as

\[
|+\rangle = \cos \psi |2\rangle + \sin \psi |3\rangle, \quad |c\rangle = \frac{\sqrt{2\gamma_1}|1\rangle + \sqrt{2\gamma_2}|3\rangle}{\sqrt{\gamma_2 + 2\gamma_1}},
\]

where \(\tan \psi = -G/\lambda_+ \). The crucial point to note is that the level \(|1\rangle\) is coupled with \(|\pm\rangle\) because of the presence of VIC. Thus the population in \(|\pm\rangle\) also depends on the VIC parameter \(\eta \). An important case arises when \(|1\rangle\) is degenerate with either \(|\pm\rangle\), i.e. when \(W_{12} = \lambda_{\pm} \). The degenerate levels get strongly coupled via VIC, giving rise to trapping. When \(|1\rangle\) and \(|-\rangle\) are degenerate, we show that the dynamical behavior of the system can be best analyzed in the basis given below.

\[
|\pm\rangle, \quad |c\rangle = \frac{\sqrt{2\gamma_1}|1\rangle + \sqrt{2\gamma_2}|3\rangle}{\sqrt{\gamma_2 + 2\gamma_1}}, \quad |uc\rangle = \frac{\sqrt{\gamma_2}|1\rangle - \sqrt{2\gamma_1}|3\rangle}{\sqrt{\gamma_2 + 2\gamma_1}}.
\]

Using the transformations (8), (9) and Eqs. (8) with \(g = 0 \), we numerically compute the steady state population in the states (10). In Fig. 3 we plot the population of these states as a function of pump detuning. Note that in the presence of VIC, \(\sigma_{ucuc}^0 \) approaches unity at \(\Delta_2 = 0 \) i.e. when the states \(|1\rangle\) and \(|-\rangle\) are degenerate because \(W_{12} = -G \). A similar kind of trapping will occur when \(|1\rangle\) is degenerate with \(|+\rangle\). When \(W_{12} \neq -G \) the trapping will occur for an off-resonant pump field. Trapping also requires \(\theta \) to be small. We show later that \(\sigma_{ucuc}^0 \) cannot approach unity, and for this reason we refer to it as ‘quasi-trapped-state’ (QTS). Figure 3 also shows that for \(\Delta_2 \ll -G \), all the population remains in \(|+\rangle\). This is not an interference effect and happens irrespective of whether VIC is present or absent. For large negative pump detuning, \(\lambda_+ \rightarrow 0 \) and thus \(\sin \psi \rightarrow 1 \) (cos \(\psi \rightarrow 0 \)) in \(\sigma_{ucuc}^0 \). Since the level \(|3\rangle\) being the ground state, most of the population remains here if the pump is highly off-resonant. The QTS \(|uc\rangle\) is a result of interference among decay channels of \(|1\rangle\) and \(|-\rangle\) levels. As a consequence, even if \(W_{12} \) is large in bare basis, strong VIC effects can appear when dressed levels are degenerate with the bare excited levels unconnected by the pump field.

IV. QUASI-TRAPPED-STATES FROM INTERFERENCE OF DECAY CHANNELS

For a very weak probe field \(g \ll \gamma_1, \gamma_2 \) we can solve equations (9) perturbatively with respect to the strength of the probe field. To the lowest order in \(g \), the solution may be written as

![Graph](image_url)
We next examine how the quasi-trapped-state is formed. For this purpose we transform the equations of motion (1) for the density matrix elements in basis (0). For $\Delta_2 = 0$ and $W_{12} = -G$, a long calculation leads to

\[
\dot{\sigma}_{ucuc}^0 = -\frac{4\gamma_1 \gamma_2 (\gamma_1 + \gamma_2)(1 - \cos \theta)}{(2\gamma_1 + \gamma_2)^2} \sigma_{ucuc}^0 + \frac{\gamma_1 (4\gamma_1^2 + 4\gamma_1 \gamma_2 \cos \theta + \gamma_2^2)}{(2\gamma_1 + \gamma_2)^2} \sigma_{cc}^0 + \frac{\gamma_1 \gamma_2}{2\gamma_1 + \gamma_2} \sigma_{++}^0
\]

\[
-\frac{\gamma_2 \sqrt{\gamma_1 \gamma_2}(2\gamma_1 - \gamma_2)(1 - \cos \theta)}{\sqrt{2}(2\gamma_1 + \gamma_2)^2} (\sigma_{ucuc}^0 + \sigma_{euc}^0),
\]

\[\text{(11a)}\]

\[
\dot{\sigma}_{cc}^0 = -\frac{(4\gamma_1 + \gamma_2)(4\gamma_1^2 + 4\gamma_1 \gamma_2 \cos \theta + \gamma_2^2)}{2(2\gamma_1 + \gamma_2)^2} \sigma_{cc}^0 + \frac{2\gamma_1 \gamma_2^2 (1 - \cos \theta)}{(2\gamma_1 + \gamma_2)^2} \sigma_{ucuc}^0 + \frac{\gamma_2^2}{2(2\gamma_1 + \gamma_2)} \sigma_{++}^0
\]

\[
\frac{\gamma_1 (2\gamma_1 - \gamma_2) \sqrt{\gamma_1 \gamma_2}(1 - \cos \theta)}{(2\gamma_1 + \gamma_2)^2} (\sigma_{ucuc}^0 + \sigma_{euc}^0),
\]

\[\text{(11b)}\]

\[
\dot{\sigma}_{++}^0 = -\frac{\gamma_2}{2} \sigma_{++}^0 + \frac{(4\gamma_1^2 + 4\gamma_1 \gamma_2 \cos \theta + \gamma_2^2)}{2(2\gamma_1 + \gamma_2)} \sigma_{cc}^0 + \frac{2\gamma_1 \gamma_2 (1 - \cos \theta)}{(2\gamma_1 + \gamma_2)} \sigma_{ucuc}^0
\]

\[
+ \frac{(2\gamma_1 - \gamma_2) \sqrt{\gamma_1 \gamma_2}(1 - \cos \theta)}{\sqrt{2}(2\gamma_1 + \gamma_2)^2} (\sigma_{ucuc}^0 + \sigma_{euc}^0),
\]

\[\text{(11c)}\]

\[
\dot{\sigma}_{ucuc}^0 = -\left[\frac{4\gamma_1^2 \gamma_2 (1 - \cos \theta)}{(2\gamma_1 + \gamma_2)^2} + \frac{\gamma_1 \gamma_2 \cos \theta + \gamma_2^2}{(2\gamma_1 + \gamma_2)^2} + \gamma_1\right] \sigma_{ucuc}^0 - \frac{\gamma_1 \gamma_2 (1 - \cos \theta)(2\gamma_1 - \gamma_2)}{(2\gamma_1 + \gamma_2)^2} \sigma_{ucuc}^0
\]

\[
- \frac{\sqrt{\gamma_1 \gamma_2}}{\sqrt{2}} \sigma_{ucuc}^0 - \frac{[8\gamma_1^2 (1 - \cos \theta) + (2\gamma_1 + \gamma_2)^2 \cos \theta] \sqrt{\gamma_1 \gamma_2}}{\sqrt{2}(2\gamma_1 + \gamma_2)^2} \sigma_{cc}^0
\]

\[
- \frac{\gamma_2 \sqrt{\gamma_1 \gamma_2}}{\sqrt{2}(2\gamma_1 + \gamma_2)^2} \sigma_{++}^0,
\]

\[\text{(11d)}\]

\[
\dot{\sigma}_{uc}^0 = -\frac{\gamma_2}{2(2\gamma_1 + \gamma_2)} \gamma_2 + \gamma_1 (1 + 6\sqrt{2} - \cos \theta) \sigma_{ucuc}^0 - \frac{\sqrt{\gamma_1 \gamma_2}}{\sqrt{2}(2\gamma_1 + \gamma_2)} [2\gamma_1 + \gamma_2 \cos \theta - 2\gamma_2] \sigma_{++}^0,
\]

\[\text{(11e)}\]

\[
\dot{\sigma}_{+c}^0 = -\frac{\sqrt{2\gamma_1 \gamma_2}}{(2\gamma_1 + \gamma_2)} [\gamma_1 (1 - \cos \theta) - \gamma_2] \sigma_{ucuc}^0 - \frac{\sqrt{\gamma_1 \gamma_2}}{\sqrt{2}(2\gamma_1 + \gamma_2)} [2\gamma_1 \gamma_2 (1 + \cos \theta) + 4\gamma_1^2 + 3\gamma_2^2] \sigma_{ucuc}^0.
\]

\[\text{(11f)}\]

The above equations have been derived by neglecting terms rotating at $e^{\pm 2iGt}$ (secular approximation). Note that the above equations are not the usual rate equations because the diagonal elements are coupled with the off-diagonal elements as in (0). It is this coupling which leads to quasi-trapping even though σ_{ucuc}^0 decays at a rate

\[
\Gamma_{uc} = \frac{4\gamma_1 \gamma_2 (\gamma_1 + \gamma_2)(1 - \cos \theta)}{(2\gamma_1 + \gamma_2)^2}.
\]

\[\text{(12)}\]

Also note that for small non-zero θ the decay from state $|uc\rangle$ is very small, which makes it a highly ‘stable’ state. We solve Eqs. (11) numerically with the initial condition $\sigma^{0}_{ucuc}(t) = 1$. In Fig. 4 we plot the time evolution of the population in states $|+, \rangle$, $|c\rangle$, and $|uc\rangle$. Note that both $|+\rangle$ and $|c\rangle$ decay very rapidly, while population gets accumulated in $|uc\rangle$. Here complete trapping will occur ($\sigma_{ucuc}^0(\infty) = 1$) when $\Gamma_{uc} = 0$. This is not possible for the geometry shown in Fig. 4(b). However, we have an quasi-trapped-state for small θ.

It should be noted that trapped states were shown to occur in presence of VIC under several conditions. For example trapped state arises at certain parameter regime when $|1\rangle$ and $|2\rangle$ are degenerate and when no external fields are applied, however the system is prepared in one of the excited states (0). Trapping is also known to occur in the degenerate case ($\delta = 0$) and when pump and probe have identical strengths ($\varepsilon'_2 = \varepsilon'_1$) (4). Recently, new trapping states in the presence of VIC have been found for four-level systems (23,24). However, note that the QTS discussed above is due to a pump field G coupling $|2\rangle \leftrightarrow |3\rangle$ transition and thus is different from all the previous works.
V. EFFECTS OF QUASI-TRAPPED-STATE ON THE PUMP FIELD LINE-PROFILES

We now show the effects of the above trapping on the absorption and dispersion profiles of the pump field. The trapping leads to a very steep increase in the refractive index and reduces absorption drastically for the pump field. Various models in the past have demonstrated and discussed the importance of such a medium [30–32]. However, in the present case we show how VIC can be used to control the refractive index of a medium. It is known that a large population difference between the dressed states can result in large dispersion with vanishing absorption [31]. For our system the population of dressed states depends on η and hence in principle we can get a situation where large population difference between dressed states can exist. Consider the case when $\Delta_2 = 0$ and $W_{12} = -G$. The coherence σ_{23}^0 can be evaluated using Eqs. (10) and (11). The optical coherence to all orders in the pump field is found to be

$$\sigma_{23}^0 = \left\{ G^2 \eta^2 \left\{ G^2 (2 \gamma_1 + 2 \gamma_2) \gamma_1 + (\eta^2 - \gamma_1 \gamma_2) (\gamma_1 + \gamma_2)^2 \right\} \right.$$
$$+ i G (\gamma_1 \gamma_2 - \eta^2) \left\{ A \gamma_2 - \eta^2 \gamma_1 (\gamma_1 + \gamma_2)^2 \right\} / B,$$

where

$$A = G^2 \gamma_1^2 + 4 G^2 \gamma_1 \gamma_2 + \gamma_2^2 \gamma_2 + 4 G^2 \gamma_1^2 + 2 \gamma_1 \gamma_2 + \gamma_2^4,$$

$$B = (\gamma_1 \gamma_2 - \eta^2) \left\{ A (\gamma_1^2 + 2 G^2) + \eta^2 G^2 (\gamma_2 + 2 \gamma_1) \right\}$$
$$+ \eta^2 G^4 (\gamma_2 + 2 \gamma_1)^2 + \eta^2 (\gamma_1 + \gamma_2)^2 (3 \gamma_1 \gamma_2 \eta^2)$$
$$- 2 \gamma_1 \gamma_2 - \eta^4).$$

It is known that the Re(σ_{23}^0) corresponds to the dispersion and Im(σ_{23}^0) corresponds to absorption. When the alignment parameter θ is small, we have $\eta^2 \approx \gamma_1 \gamma_2$ (for example when $\theta = 15^\circ$, $\eta^2 = 0.93 \gamma_1 \gamma_2$), then we can approximate (13) by

$$\sigma_{23}^0 \approx \frac{\gamma_1}{\gamma_2 + 2 \gamma_1} + i \left(\gamma_1 \gamma_2 - \eta^2 \right) \left\{ A - \gamma_1^2 (\gamma_1 + \gamma_2)^2 \right\} / G^2 \gamma_1 (\gamma_1 + \gamma_2)^2,$$

with the constraint that $G \neq 0$. Thus for $\gamma_1 > \gamma_2$ one can have Re(σ_{23}^0) as high as 0.5 while the absorption remains low. It should be borne in mind that the absorption and dispersion have been computed to all orders in the pump field strength. In Fig. 5 we plot the absorption and dispersion parts of σ_{23}^0 as a function of detuning Δ_2/γ_2. For comparison the dashed curves show the result in the absence of VIC. These curves are obtained from the steady state numerical solutions of (10) with $g = 0$. Note that in the presence of VIC there is a dip in absorption and a peak in dispersion curve. Due to trapping most of the population tend to remain in states $|+\rangle$ and $|-\rangle$. For $W_{12} = -G$ and $\Delta_2 = 0$ the population in the three dressed states and the coherence σ_{0+} was evaluated to be

$$\sigma_{11}^0 = \frac{G^2 \eta^2 (\gamma_1 + \gamma_2) (\eta^2 - \gamma_1 \gamma_2) - G^4 \eta^2 \gamma_2 (\gamma_2 + 2 \gamma_1)}{B},$$

with

$$\sigma_{0+}^0 = \frac{G^2 \eta^2 (\gamma_1 + \gamma_2) (\eta^2 - \gamma_1 \gamma_2) - G^4 \eta^2 \gamma_2 (\gamma_2 + 2 \gamma_1)}{B},$$

and

$$\sigma_{0-}^0 = \frac{G^2 \eta^2 (\gamma_1 + \gamma_2) (\eta^2 - \gamma_1 \gamma_2) - G^4 \eta^2 \gamma_2 (\gamma_2 + 2 \gamma_1)}{B}.$$

The atomic population in the basis (10) as a function of detuning Δ_2/γ_2 in presence (frame b) and in absence (frame a) of VIC. The parameters are $G = 20 \gamma_2$, $W_{12} = -G$, $\gamma_1 = \gamma_2$ and $\theta = 15^\circ$. The solid curves denote σ_{0ucuc}, the dashed curves are for σ_{0cc} and the dot-dashed curves denote σ_{0+}.
\[\sigma_{0-} = [(\gamma_1^2 + 2G^2)A(\gamma_1\gamma_2 - \eta^2) - \eta^2G^2(\gamma_1\gamma_2 - \eta^2)(3\gamma_2^2 + 5\gamma_1\gamma_2 + \gamma_1^2) + 4G^4\eta^2\gamma_1\gamma_2 + \eta^2(\gamma_2 + \gamma_1)^2(3\eta^2\gamma_1\gamma_2 - 2\gamma_1^2\gamma_2 - \eta^4)]/2B, \]

\[\sigma_{++}^0 = (\gamma_1\gamma_2 - \eta^2)\{A(\gamma_2^2 + 2G^2) + G^2\eta^2\gamma_1(\gamma_2 + 2\gamma_1) + \eta^2(\gamma_1 + \gamma_2)^2(G^2 - 2\gamma_1\gamma_2 + \eta^2)\}/2B, \]

\[\sigma_{0-}^0 = [(\eta^2 - \gamma_1\gamma_2)(A\gamma_2^2 - G^2(\gamma_2^2 + \gamma_1\gamma_2 - \gamma_1^2)\eta^2) - \eta^2(\gamma_1 + \gamma_2)^2(3\gamma_1\gamma_2\eta^2 - 2\gamma_1^2\gamma_2 - \eta^4) - 2iG(\eta^2 - \gamma_1\gamma_2)(A\gamma_2 - \eta^2\gamma_1(\gamma_1 + \gamma_2)^2)]/2B, \]

which under the condition \(\eta^2 \approx \gamma_1\gamma_2 \) reduce to

\[\sigma_{11}^0 \approx \frac{\gamma_2}{\gamma_2 + 2\gamma_1}, \quad \sigma_{-}^0 \approx \frac{2\gamma_1}{\gamma_2 + 2\gamma_1}, \]

\[\sigma_{++}^0 \approx \frac{(\gamma_1\gamma_2 - \eta^2)\{A(\gamma_2^2 + 2G^2) + G^2\gamma_1^2\gamma_2(\gamma_2 + 2\gamma_1) + \gamma_1\gamma_2(\gamma_1 + \gamma_2)^2(G^2 - \gamma_1\gamma_2)\}}{2G^4\gamma_1\gamma_2(\gamma_2 + 2\gamma_1)^2}, \]

\[\text{Im}(\sigma_{++}^0) \approx \frac{(\gamma_1\gamma_2 - \eta^2)\{A - \gamma_1^2(\gamma_1 + \gamma_2)^2\}}{G^4\gamma_1(\gamma_2 + 2\gamma_1)^2}. \]

Note that \(\sigma_{++}^0 \) and \(\text{Im}(\sigma_{++}^0) \) are very small compared to \(\sigma_{11}^0 \) and \(\sigma_{-}^0 \). One can equally write \(\sigma_{23}^0 \) as

\[\sigma_{23}^0 = (\sigma_{-}^0 - \sigma_{++}^0)/2 + i\text{Im}(\sigma_{++}^0), \quad \text{at} \Delta_2 = 0. \]

Thus the large difference in population between states \(|-\rangle \) and \(|+\rangle \) gives rise to the large dispersion. Also note that state \(|-\rangle \) lies below the ground state \(|3\rangle \) which can also cause large index of refraction with small absorption \(|1\rangle \). When \(\eta_0 = 0 \), we see from equations (17), (18) and (19) that, \(\sigma_{0-}^0 = \sigma_{++}^0 \) and \(\text{Im}(\sigma_{++}^0) \neq 0 \), and hence dispersion at \(\Delta_2 = 0 \) is zero with substantial absorption which is consistent with the well known power broadened absorption and dispersion profiles for a two-level atom.

VI. ORIGIN OF GAIN THROUGH QUASI-TRAPPED-STATES

The origin of the Autler-Townes doublet in the absorption spectrum is well understood. The pump dresses the states \(|2\rangle \) and \(|3\rangle \). The population in the dressed states \(|\pm\rangle \) absorbs a photon from the probe field leading to the Autler-Townes doublet. The situation changes drastically in presence of VIC which as shown in Sec. V can, for a suitable choice of parameters, lead to a quasi-trapped-state \(|ac\rangle \). For \(\Delta_2 = 0 \), \(W_{12} = -G \), \(\gamma_1 = \gamma_2 \) and small values of \(\theta \) the dressed state \(|+\rangle \) is almost empty where as \(\sigma_{++}^0 > \sigma_{11}^0 \) (Eq. (20)). Thus the probe can be absorbed in the transition \(|-\rangle \rightarrow |1\rangle \) whereas the probe will experience gain in the transition \(|1\rangle \rightarrow |+\rangle \). We also note that in principle the coherence between two dressed states \(|\pm\rangle \) can also contribute to the gain. As discussed in the Sec V, the population in the states \(|\pm\rangle \) and

FIG. 6. Plots show the absorption and dispersion curves for the pump field in dimensionless units as a function of pump detuning \(\Delta_2/\gamma_2 \). The solid curves show the effect of VIC and the dashed curves are for \(\eta_0 = 0 \). The parameters are \(G = 20\gamma_2 \), \(\gamma_1 = 10\gamma_2 \), and \(\theta = 15^\circ \). For the solid curve \(W_{12} = -G \).
VII. CONCLUSIONS

In summary, we have studied the non-degenerate pump-probe spectroscopy of V-systems when the presence of interference in decay channels is significant. We have shown the possibility of gain components in Autler-Townes doublet. We present physical interpretation of this gain. We have also shown the possibility of a new trapped states due to VIC which we further show, results in very high refractive index with very low absorption.

One of us (GSA) thanks Olga Kocharovskaya and Marian O. Scully for a number of discussions on the subject of vacuum induced coherences.

[1] (a) B. R. Mollow, Phys. Rev. 188, 1969 (1969); (b) Phys. Rev. A 5, 2217 (1972).
[2] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interaction: Basic Processes and Applications (John Wiley & Sons, New York, 1992), Chap. VI.
[3] G. S. Agarwal, Phys. Rev. A 19, 923 (1979); G. Grynberg and C. Cohen-Tannoudji, Opt. Commun. 96, 150 (1993).
[4] S. H. Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).
[5] P. B. Hogan, S. J. Smith, A. T. Georges, and P. Lambropoulos, Phys. Rev. Lett. 41, 229 (1978); H. R. Gray and C. R. Stroud Jr., Opt. Commun. 25, 359 (1978).
[6] R. Shimano and M. Kuwata-Gonokami, Phys. Rev. Lett. 72 530 (1994).
[7] Y. F. Zhu, Phys. Rev. A 45, R6145 (1992); Y. F. Zhu and M. Xiao, Phys. Rev. A 49, 2203 (1994).
[8] A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, Phys. Rev. Lett. 75, 1499 (1995); G. R. Welch, G. G. Padmabandu, E. S. Fry, M. D. Lukin, D. E. Nikonov, F. Sander, M. O. Scully, A. Weis and F. K. Tittel, Found. Phys. 28, 621 (1998).
[9] O. Kocharovskaya and Ya. I. Khanin, Pis'ma Zh. Éksp. Teor. Fiz. 48, 581 (1988) [JETP Lett. 48, 680 (1988)]; M. O. Scully, S.-Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989); A. Imamoglu, J. E. Field, and S. E. Harris, Phys. Rev. Lett. 66, 1154 (1991).
[10] G. S. Agarwal, Quantum Optics, Springer Tracts in Modern Physics Vol. 70 (Springer, Berlin, 1974), p. 95.
[11] G. S. Agarwal, S. L. Haan and J. Cooper, Phys. Rev. A 29, 2565 (1984); D. Agassi, Phys. Rev. A 30, 2449 (1984); S.-Y. Zhu, R. C. F. Chan, and C. P. Lee, Phys. Rev. A 52, 710 (1995).
[12] V. I. Savchenko, N. Fisch, A. Pantaleev, and A. Starostin, Phys. Rev. A 59, 708 (1999); O. Kocharovskaya, et al., Found. Phys. 28 (1998).
[13] G. C. Hegerfeldt and M. B. Plenio, Phys. Rev. A 46, 373 (1992); ibid. 47, 2186 (1993).
[14] P. Zhou and S. Swain, Phys. Rev. Lett. 77, 3995 (1996); Phys. Rev. A 56, 3011 (1997).
[15] D. A. Cardimona, M. G. Raymer, and C. R. Stroud Jr., J. Phys. B 15, 55 (1982).
[16] P. Zhou and S. Swain, Phys. Rev. A 78, 832 (1997).
[17] (a) E. Paspalakis, S.-Q. Gong, and P. L. Knight, Opt. Commun. 152, 293 (1998); (b) S.-Q. Gong, E. Paspalakis, and P. L. Knight, J. Mod. Optics 45, 2433 (1998).
[18] S. E. Harris [Phys. Rev. Lett. 62, 1033 (1989)] predicted the possibility of lasing without population inversion in systems where two excited states got coupled via coupling to a common reservoir; see also A. Imamoglu, Phys. Rev. A 40, 2835 (1989).
[19] S.-Y. Zhu and M. O. Scully, Phys. Rev. Lett. 76, 388 (1996); H. Huang, S.-Y. Zhu and M. S. Zubairy, Phys. Rev. A 55, 744 (1997); H. Lee, P. Polynkin, M. O. Scully, and S.-Y. Zhu, Phys. Rev. A 55, 4445 (1997); F. Li and S.-Y. Zhu, Phys. Rev. A 59, 2330 (1999).
[20] H.-R. Xia, C. Y. Ye, and S.-Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996).
[21] G. S. Agarwal, Phys. Rev. A 55, 2457 (1997).
[22] E. Paspalakis and P. L. Knight, Phys. Rev. Lett. 81, 293 (1998); E. Paspalakis, N. J. Kylstra, and P. L. Knight, Phys. Rev. Lett. 82, 2079 (1999).
[23] F. Li and S.-Y. Zhu, Opt. Commun. 162, 155 (1999).
[24] F. Plastina and F. Piperno, Opt. Commun. 161, 236 (1999).
[25] P. R. Berman, Phys. Rev. A 58, 4886 (1998).
[26] A. K. Patnaik and G. S. Agarwal, J. Mod. Opt. 45, 2131 (1998); Phys. Rev. A 59, 3015 (1999).
[27] K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. Lett. 66, 596 (1991); Phys. Rev. A 45, 5152 (1992).
[28] For a discussion on static field induced mixing of magnetic sub-levels see, E. B. Alexandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States (Springer-Verlag, Berlin, 1993), pg. 229.
[29] H. Schmidt and A. Imamoglu, Opt. Commun. 131, 333 (1996).
[30] M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991); M. O. Scully and S.-Y. Zhu, Opt. Commun. 87, 134 (1992); M. Fleischhauer, C. H. Keitel, M. O. Scully, and C. Su, Opt. Commun. 87, 109 (1992).
[31] O. A. Kocharovskaya, P. Mandel, and M. O. Scully, Phys. Rev. Lett. 74, 2451 (1995); M. Löfber, D. E. Nikonov, O. Kocharovskaya, and M. O. Scully, Phys. Rev. A 56, 5014 (1997).
[32] A. S. Zibrov, M. D. Lukin, L. Hollberg, D. E. Nikonov, M. O. Scully, H. G. Robinson, and V. L. Velichansky, Phys. Rev. Lett. 76, 3935 (1996).
[33] G. S. Agarwal, Phys. Rev. A 44, R28 (1991).