Precise heavy-light meson masses and hyperfine splittings from lattice QCD including charm quarks in the sea

R. J. Dowdall,¹ C. T. H. Davies,¹ T. C. Hammant,² and R. R. Horgan²

¹SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
²DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

We present improved results for the B and D meson spectrum from lattice QCD including the effect of u/d, s and c quarks in the sea. For the B mesons the Highly Improved Staggered Quark action is used for the sea and light valence quarks and NonRelativistic QCD for the b quark including $O(\alpha_s)$ radiative corrections to many of the Wilson coefficients for the first time. The D mesons use the Highly Improved Staggered Quark action for both valence quarks on the same sea. We find $M_{B_s} - M_B = 84(2)$ MeV, $M_{B_c} = 5.366(8)$ GeV, $M_{B_c} = 6.278(9)$ GeV, $M_{D_s} = 1.9697(33)$ GeV, and $M_{D_s} - M_D = 101(3)$ MeV. Our results for the B meson hyperfine splittings are $M_{B_s} - M_B = 50(3)$ MeV, $M_{B_c} - M_{B_s} = 52(3)$ MeV, in good agreement with existing experimental results. This demonstrates that our perturbative improvement of the NRQCD chromo-magnetic coupling works for both heavyonium and heavy-light mesons. We predict $M_{B_s^*} - M_{B_s} = 54(3)$ MeV. We also present first results for the radially excited B_c states as well as the orbitally excited scalar B_{c0} and axial vector B_{c1} mesons.

I. INTRODUCTION

Lattice QCD calculations have become an essential part of B physics phenomenology [1], providing increasingly precise determinations of decay constants and mixing parameters needed, along with experiment, in the determination of CKM matrix elements. Since these calculations can now give stringent constraints on the CKM unitarity triangle, currently resulting in tension at a few sigma level [2], it is important to check that all systematic errors have been correctly accounted for. With this in mind we present a new study of the B-meson spectrum that provides a good check of recent improvements that have been made in our discretization of the QCD Lagrangian. The possibility of more B states being found at experiments such as LHCb also gives us the opportunity for further tests of QCD in the nonperturbative regime. We emphasise that all parameters for this calculation, including quark masses and the lattice spacing, have already been determined elsewhere [3] making this a parameter free test of lattice QCD.

This test is made possible by the use of NonRelativistic QCD (NRQCD) for the b quark, which has the advantage that the same action can be used for both bottomonium and B-meson calculations. HPQCD recently computed the one loop radiative corrections to many of the coefficients in the NRQCD action [3,4] and studied the effect of these improvements on the bottomonium spectrum in [3]. Systematic errors were significantly reduced in a number of quantities, including the hyperfine splitting, and the first QCD prediction of the D-wave spin splittings was made [5]. This analysis used new gluon configurations [6] generated by the MILC collaboration with 2+1+1 flavours of HPQCD’s Highly Improved Staggered Quarks (HISQ) in the sea and including $n_f\alpha_s a^2$ improvements to the gluon action [8]. We use the same gluon configurations here.

For the u, d, s and c valence quarks in our calculation we use the same HISQ action as for the sea quarks. The advantage of using HISQ is that am_q discretisation errors are under sufficient control that it can be used both for light and for c quarks [7]. Both the NRQCD and the HISQ actions are also numerically very cheap which means we are able to perform a very high statistics calculation to combat the signal to noise ratio problems that arise in simulating B-mesons. The same u/d, s, c HISQ quark propagators used in the B mesons can also be used to calculate the masses of pseudoscalar charmed mesons which we also present here. Our results are precise enough that it is possible to distinguish the heavy quark dependence of splittings such as the $M_{D_s} - M_D$ and $M_{B_s} - M_B$.

We begin by outlining the methods used in our lattice calculation, which are similar to [3,9]. The B_s, B_c and B meson masses and the radially excited B_c are presented in Sec. [III] hyperfine results are given in Sec. [IV] axial vector and scalar B-mesons are discussed in Sec. [V] compares our results to earlier NRQCD-HISQ ones on $n_f = 2 + 1$ configurations including asqtad sea quarks [9] and to calculations using the HISQ action for b quarks [10]. Sec. [VI] gives our conclusions, including an updated spectrum for gold-plated mesons from lattice QCD.
II. LATTICE CALCULATION

Our calculation uses five ensembles of gluon configurations generated by the MILC collaboration [6]. These are \(n_S = 2 + 1 + 1 \) configurations that include the effect of light, strange and charm quarks with the HISQ action and a Symanzik improved gluon action with coefficients correct through \(\mathcal{O}(\alpha_s a^2, n_f \alpha_s a^2) \) [8]. The lattice spacing values range from \(a = 0.15 \text{fm} \) to \(a = 0.09 \text{fm} \). The configurations have accurately tuned sea strange quark masses and sea light quark masses \((m_{u} = m_{d} = m_{l})\) with ratios to the strange mass of \(m_{s}/m_{s} = 0.1 \) and 0.2, which correspond to pions of mass 220-315 MeV. Having sea quark masses close to the physical point is particularly important for studies of the \(B \) meson where chiral extrapolations make up a substantial portion of the final error.

In Ref. [3] we accurately determined the lattice spacings using the \(\Upsilon(2S - 1S) \) splitting and the decay constant of the fictitious \(\eta_{b} \) particle, a pseudo-scalar \(s\bar{s} \) meson whose valence quarks are not allowed to annihilate on the lattice [12]. Agreement was shown between these methods in the continuum limit. In this paper we use the \(\Upsilon(2S - 1S) \) lattice spacings. The details of each ensemble, including the sea quark masses and spatial volumes, are given in Table I. All ensembles were fixed to Coulomb gauge.

Light, strange and charm quark propagators were generated using the HISQ action, the masses used are given in Table I. In Ref. [3] we accurately determined the lattice spacings using the \(\Upsilon(2S - 1S) \) splitting and the decay constant of the fictitious \(\eta_{b} \) particle, a pseudo-scalar \(s\bar{s} \) meson whose valence quarks are not allowed to annihilate on the lattice [12]. Agreement was shown between these methods in the continuum limit. In this paper we use the \(\Upsilon(2S - 1S) \) lattice spacings. The details of each ensemble, including the sea quark masses and spatial volumes, are given in Table I. All ensembles were fixed to Coulomb gauge.

In Ref. [3] we accurately determined the lattice spacings using the \(\Upsilon(2S - 1S) \) splitting and the decay constant of the fictitious \(\eta_{b} \) particle, a pseudo-scalar \(s\bar{s} \) meson whose valence quarks are not allowed to annihilate on the lattice [12]. Agreement was shown between these methods in the continuum limit. In this paper we use the \(\Upsilon(2S - 1S) \) lattice spacings. The details of each ensemble, including the sea quark masses and spatial volumes, are given in Table I. All ensembles were fixed to Coulomb gauge.

In Ref. [3] we accurately determined the lattice spacings using the \(\Upsilon(2S - 1S) \) splitting and the decay constant of the fictitious \(\eta_{b} \) particle, a pseudo-scalar \(s\bar{s} \) meson whose valence quarks are not allowed to annihilate on the lattice [12]. Agreement was shown between these methods in the continuum limit. In this paper we use the \(\Upsilon(2S - 1S) \) lattice spacings. The details of each ensemble, including the sea quark masses and spatial volumes, are given in Table I. All ensembles were fixed to Coulomb gauge.

Charm quark masses are tuned by matching the mass of the \(\eta_{c} \) meson, which was determined from \(K \) and \(\pi \) meson masses to be 6893(12) GeV. The values of \(a m_{c}^{\text{val}} \) in Table I correspond to these. Mistuning of the strange quark mass was a major source of error in Ref. [9] which will not be present in this calculation. The light valence quarks are taken to have the same masses as in the sea. Charm quark masses are tuned by matching the mass of the \(\eta_{b} \) to experiment. The experimental value is shifted by 2.6 MeV for missing electromagnetic effects and 2.4 MeV for not allowing it to annihilate to gluons, giving 2.985(3) GeV [12]. The \(\epsilon_{\text{Sak}} \) term in the action is not negligible for charm quarks and we use the tree level formula given in [13], the values appropriate to our masses are given in Table I.

The velocity of a \(b \) quark in a bound state is typically very small; \(v^2 = 0.1 \) in bottomonium and \(v^2 \) varies from 0.01 to 0.04 in heavy light systems containing a \(b \) quark. This makes NRQCD [14] a suitable effective field theory for handling \(b \) quarks. It also has a number of other advantages. By construction, we are able to perform calculations at relatively coarse lattice spacings since discretisation errors are not set by powers of the quark mass as in a relativistic theory. Generation of propagators is very fast since in NRQCD they can simply be generated by time evolution with a given Hamiltonian. The other major benefit is that NRQCD can be used for both heavy-heavy and heavy-light mesons. All free parameters in this calculation were previously tuned using the statistically more precise bottomonium spectrum in [3], meaning that all results here are parameter free tests of QCD.

These advantages come at a price. NRQCD is non-renormalisable because operators of dimension greater than four are included in the action, rather than being evaluated as operator insertions as in HQET. This means that the continuum limit \(a \to 0 \) cannot be taken. This does not mean, however, that physical results cannot be extracted. Because NRQCD is an effective theory, continuum results can be inferred from fits to calculations in its regime of validity, where \(a m_{b} > 1 \). We discuss this in Sec. III A.1. As finer lattices become more readily available on which \(a m_{b} < 1 \), other methods [10] may become more appropriate than NRQCD. In the meantime, however, NRQCD remains the easiest and best way to access the full range of heavy quark physics in lattice QCD.

The NRQCD Hamiltonian we use is given by [15]:

\[
\begin{align*}
 aH &= aH_0 + a\delta H; \\
 aH_0 &= - \frac{\Delta^{(2)}}{2 a m_{b}}, \\
 a\delta H &= - c_1 \frac{(\Delta^{(2)})^2}{8 (am_{b})^3} + c_2 \frac{i}{8 (am_{b})^2} (\nabla \cdot \tilde{E} - \tilde{E} \cdot \nabla) \\
 &+ c_3 \frac{1}{8 (am_{b})^2} \sigma \cdot (\nabla \times \tilde{E} - \tilde{E} \times \nabla) \\
 &+ c_4 \frac{\Delta^{(4)}}{2 a m_{b}} \\
 &+ c_5 \frac{(\Delta^{(2)})^2}{16 m (am_{b})^2}.
\end{align*}
\]

Here \(\nabla \) is the symmetric lattice derivative and \(\Delta^{(2)} \) and \(\Delta^{(4)} \) the lattice discretization of the continuum \(\sum_i D_i^2 \) and \(\sum_i D_i^4 \) respectively. \(am_b \) is the bare \(b \) quark mass. \(\tilde{E} \) and \(\tilde{B} \) are the chromoelectric and chromomagnetic fields calculated from an improved clover term [16]. The \(\tilde{B} \) and \(\tilde{E} \) are made anti-hermitian but not explicitly traceless, to match the perturbative calculations done using this action.

The coefficients \(c_i \) in the action are unity at tree level but radiative corrections cause them to depend on \(am_{b} \) at higher orders in \(\alpha_s \). These were calculated for the relevant \(b \) quark masses using lattice perturbation theory in [3] and the values used in this paper are given in Table III. A major improvement in this work is the inclusion of one loop radiative corrections to \(c_4 \) [1] which controls the hyperfine splitting between the vector and pseudo-scalar states. We show in Sec. IV that this leads to accurate results for \(b \)-light hyperfine splittings in keeping with the results of [3] for bottomonium.

The tuning of the \(b \) quark mass on these ensembles was discussed in [3]. We use the spin-averaged kinetic mass of the \(\Upsilon \) and \(\eta_{b} \) and take the experimental value to which we tune to be 9.445(2) GeV. This allows for electromagnetism and \(\eta_{b} \) annihilation effects missing from...
TABLE I. Details of the five gauge ensembles used in this calculation [6]. β is the gauge coupling, a_γ is the lattice spacing as determined by the $\Upsilon(2S - 1S)$ splitting in [3], where the three errors are statistics, NRQCD systematics and experiment. am_i, am_s, and am_c are the sea quark masses, $L/a \times T/a$ gives the spatial and temporal extent of the lattices and n_{cfg} is the number of configurations in each ensemble. The ensembles 1 and 2 will be referred to in the text as “very coarse”, 3 and 4 as “coarse” and 5 as “fine”.

Set	β	a_γ (fm)	am_i	am_s	am_c	$L/a \times T/a$	n_{cfg}
1	5.80	0.1474(5)(14)(2)	0.013	0.065	0.838	16×48	1020
2	5.80	0.1463(3)(14)(2)	0.0064	0.064	0.828	24×48	1000
3	6.00	0.1219(2)(9)(2)	0.0102	0.0509	0.635	24×64	1052
4	6.00	0.1195(3)(9)(2)	0.00507	0.0507	0.628	32×64	1000
5	6.30	0.0884(3)(5)(1)	0.0074	0.037	0.440	32×96	1008

TABLE II. The parameters used in the generation of the HISQ propagators. am^{val}_i are the valence quark masses and c_{Naik} is the coefficient of the Naik term in the action. On set 4 c_{Naik} is very slightly wrong - it should be -0.224.

Set	am^{val}_i	am^{val}_s	am^{val}_c	c_{Naik}
1	0.013	0.0641	0.826	-0.345
2	0.0064	0.0636	0.818	-0.340
3	0.01044	0.0522	0.645	-0.235
4	0.00507	0.0505	0.627	-0.222
5	0.0074	0.0364	0.434	-0.117

TABLE III. The coefficients c_1, c_5, c_4 and c_6 used in the NRQCD action [1] c_2 and c_3 are set to 1.0.

Set	c_1	c_5	c_4	c_6
very coarse	1.36	1.21	1.22	1.36
coarse	1.31	1.16	1.20	1.31
fine	1.21	1.12	1.16	1.21

TABLE IV. Parameters used in the NRQCD action. am_b is the bare b quark mass and u_{0L} the Landau link tadpole-improvement factor used in the NRQCD action [19]. n_{cfg} gives the number of configurations used in each ensemble. 16 time sources were used on each configuration. The column a_{sm} gives the size parameters of the quark smearing functions, which take the form $\exp(-r/a_{sm})$. a_{sm} kept approximately constant in physical units.

Set	am_b	u_{0L}	n_{cfg}
1	3.297	0.8195	16
2	3.263	0.8205	16
3	2.66	0.834	16
4	2.62	0.8349	16
5	1.91	0.8525	16

Our calculation [9]. Note that we no longer have to apply a shift for missing charm quarks in the sea [9]. The values used in this calculation are tuned on that basis and given in Table IV along with other parameters.

The calculation of NRQCD-HISQ two point functions with stochastic noise sources uses the method developed in [9] to allow spin-information to be added into the HISQ propagators so that the correct J^{PC} NRQCD-light correlators can be made. Once HISQ propagators have been made with a source time-slice of random numbers we can no longer apply the ‘staggering matrix’, $\Omega(x) = \prod_{\mu=1}^{4} \gamma_\mu^{t_x}$, at the source to convert them to naive quark propagators with spin as would be used in the original method for combining staggered and non-staggered quarks [17]. Instead we include the staggering matrix at the source of the NRQCD propagators along with the same time-slice of random numbers [9] [18].

We also use exponentially smeared quark sources, which take form $\exp(-r/a_{sm})$ as a function of radial distance, for the NRQCD propagators. These use two different radial sizes, a_{sm}, on each ensemble as given in Table IV. Correlators were calculated at 16 time sources on each configuration and the calculation was repeated with the heavy quark propagating in the opposite time direction. All correlators on the same ensemble were binned to avoid underestimating the errors. Our method also requires the calculation of Υ and η_b correlators to subtract the unphysical ground state energy of NRQCD, for details see [3].

B meson energies are extracted from the two-point functions using a simultaneous multi-exponential Bayesian fit [20] [21] to the form

$$C_{\text{meson}}(i, j; t, t_0) = \sum_{k=1}^{N_{\text{exp}}} b_{i,k} b_{j,k}^* e^{-E_k(t-t_0)} + \sum_{k'=1}^{N_{\text{exp}}-1} d_{i,k'} d_{j,k'}^* (-1)^{(t-t_0)} e^{-E_{k'}(t-t_0)}.$$}

The priors on the energy splittings $E_{n+1} - E_n$ are 600(300) MeV and the priors on the ground states are estimated from previous results with a width of 300 MeV. The priors on the amplitudes are 0.1(1.0) and the fit includes points from some t_0 to $L/2$, half the temporal extent of the lattice. i and j label the different source and sink smearing functions used in the correlator, t_0 is taken from 7 – 8 on the fine ensemble, 6 – 8 on coarse and for very coarse the B and B_s are fit from $t_0 = 4 – 8$ but the B_c fits started at $t_0 = 14$ in order to obtain an acceptable fit. The B, B_s and B_c are fit separately but all vector and pseudo-scalar correlators for each meson are.
III. MESON MASSES

We begin with results for pseudo-scalar mesons. Hyperfine splittings are discussed in Sec. IV and scalars and axial vectors in Sec. V.

A. The \(B_s \) meson

In NRQCD meson energies have an unphysical energy shift and we must consider energy splittings in order to compare with experiment. We subtract half the spin average \(aE_{b\bar{b}} \) of the \(Y \) and \(\eta_b \) ground state energies from \(aE_{B_s} \):

\[
\Delta_{B_s} = \left(aE_{B_s} - \frac{1}{2} aE_{b\bar{b}} \right)_{\text{latt}} a^{-1}. \tag{3}
\]

From this we can reconstruct \(M_{B_s} \) using

\[
M_{B_s, \text{latt}} = \Delta_{B_s} + \frac{1}{2} M_{b\bar{b}, \text{phys}} \tag{4}
\]

where \(M_{b\bar{b}, \text{phys}} = 9.445(2) \) is the relevant experimental value.

Our results for \(aE_{B_s} \) and \(aE_{b\bar{b}} \) are given in Table V. Our \(b \) and \(s \) quark masses are well-tuned here. Nevertheless we allow small adjustments to \(\Delta_{B_s} \) to allow for mistuning. These are based on previous determinations of the linear slope of \(\Delta_{B_s} \) with appropriate meson mass, \(M_{s\bar{s}} \), for \(b \) and \(M_{s}^2 \) for \(s \). In \([9] \), the slope of \(\Delta_{B_s} \) against \(M_{s\bar{s}} \) was found to be 0.017 using two values of \(am_b \) on a very coarse ensemble. By comparing our spin averaged kinetic masses to the experimental value on each ensemble, we obtain the shift \(\Delta_{M_{s\bar{s}}} \) that needs to be applied to \(\Delta_{B_s} \) to give the value at the correct \(b \) quark mass. Using two values of \(am_b \) on set 1, we find that the slope of \(\Delta_{B_s} \) with \(M_{s}^2 \) is 0.24(4), consistent with previous results \([9,10] \). Comparing \(M_{\eta_b} \) on each ensemble to the physical value of 0.6893(12) GeV in \([3] \) gives the tuning shift \(\Delta_{M_{\eta_b}} \). This is significantly smaller in all cases than the lattice spacing error in \(\Delta_{B_s} \). The error on both shifts is taken to be half the shift itself.

The splittings \(\Delta_{B_s} \) before shifts are applied are listed in Table VI along with the shifts due to mistuning. \(M_{B_s, \text{latt}} \) is plotted in Fig. 1. The error is dominated by that from the lattice spacing uncertainty. This error would be reduced if we constructed an energy difference which was much smaller, for example subtracting \(M_{\eta_b} \) from both sides of Eq. \([3] \). However the resulting quantity would then be very sensitive to the \(s \) quark mass, so we do not do this here. As Fig. 1 shows, no significant lattice spacing or sea quark mass dependence is visible in our results for \(M_{B_s, \text{latt}} \).

1. Extracting physical results

Extracting continuum results from a lattice NRQCD calculation is more complicated than in a relativistic formalism due to the way coefficients scale with the cutoff. Usually, one appropriately tunes parameters in the action so that the results are independent of the cutoff up to some power of \(a \), and then fits the remaining dependence. For example in an \(\mathcal{O}(a) \) improved action, the following form would be used:

\[
f(a) = f_{\text{phys}} \left(1 + k_1(\Lambda a)^2 + k_2(\Lambda a)^4 + \ldots \right),
\]

where \(\Lambda \) sets the scale and logarithmic terms are generally ignored as they are not distinguishable from powers.

Our results here have discretization errors of the above form from the light quark and gluon actions. On top of this, our NRQCD action will have discretization errors that could have a mild unphysical dependence on \(am_b \) over the range of \(am_b \) values we are using here (1.9-3.3), well within the range of validity of NRQCD as an effective theory. The \(am_b \) dependence comes from missing radiative corrections to discretisation correction terms, those with coefficients \(c_5 \) and \(c_6 \) in Eq. \([1] \). \(\mathcal{O}(a) \) corrections to these coefficients are included here, so the missing terms are \(\mathcal{O}(a^2) \) and higher. To allow for this, we include dependence of the discretisation errors on \(am_b \) in our fits, using the form:

\[
f(a) = f_{\text{phys}} \left[1 + \sum_{j=1}^{2} d_j(b) x_m^j + \sum_{j=1}^{2} \sum_{b} d_j(b) x_m^j \right].
\]

Here we model the \(am_b \) dependence with a polynomial using the parameter \(\delta x_m = (am_b - 2.7)/1.5 \) which varies from approximately -0.5 to 0.5 across the range of \(am_b \) we use. In this way we obtain physical results just as with any other quark formalism and the error budget from the fit includes the additional error from the effective field theory cutoff dependence. Note that the effect of relativistic corrections to the NRQCD action, which are physical, cannot be judged from fitting the data and are included as a separate error item.

In practice we find that most quantities in this work have very small lattice spacing dependence. The quantities which do show some dependence are the \(B_s \) mass and hyperfine splitting where we believe that the discretisation errors come mainly from the charm quark.

The complete fit function for \(\Delta_{B_s} \) also includes terms to allow for sea quark mass dependence. We take a polynomial in the variables \(\delta x_s \) and \(\delta x_l \) defined as the difference from the correct quark mass \(M_{q, \text{sea,phys}} \) normalised by the correct \(s \) quark mass:

\[
\delta x_q = \frac{m_{Q, \text{sea,phys}} - m_{Q, \text{sea,phys}}}{m_{s, \text{sea,phys}}}
\]
that are applied to ΔB spacing uncertainty. Column 3 and 4 give the shifts in MeV to compensate for the mistuning of the sea quark masses in units of the ΔB meson.

The values of δx entering the fits are given in Table VI The values of δx_s are significantly smaller than for the Asqtad 2+1 ensembles used before and the δx_l values correspondingly closer to the physical point.

With this chiral dependence included, the fit function becomes:

\[
\Delta B_s(a, \delta x_l, \delta x_s) = \Delta B_{s, \text{phys}}[1 \\
+ \sum_{j=1}^{3} d_j(\Lambda a)^{2j}(1 + d_{jb} \delta x_m + d_{jbs}(\delta x_m)^2) \\
+ 2b_l \delta x_l (1 + d_l(\Lambda a)^2) \\
+ b_s \delta x_s (1 + d_s(\Lambda a)^2) \\
+ 4b_b(\delta x_l)^2 + 2b_{bs}\delta x_l \delta x_s + b_{ss}(\delta x_s)^2].
\]

The fit gives $\Delta B_{s, \text{phys}} = 0.644(6)$ GeV and is robust under changes in the priors and fit function. The 6 MeV error can be broken down into contributions from a dependence, sea quark mass dependence and the error on the data points by looking at the variation of the χ^2. The contributions are listed separately in our final error budget and are dominated by the error on the data points, i.e. statistics and lattice spacing uncertainty. Since the quark masses are very well tuned, the corrections for mistuning applied in the previous section produce negligible effects.

2. Systematic errors

We now describe the remaining sources of systematic error that cannot be estimated from the fit. The largest of these is the spin independent NRQCD systematic error although there is a significant improvement over previous work due to the inclusion of radiative corrections.

Spin independent NRQCD systematics: This error can affect both the bottomonium and B_s pieces of $\Delta B_{s, \text{phys}}$. For bottomonium, the NRQCD action is correct through $O(\alpha_s v^4)$ so the largest errors will be $O(\alpha_s v^6)$ and v^2 effects are of order 500 MeV, so we allow an error of $0.32 \times 0.1 \times 500 = 45$ MeV from missing $\alpha_s v^4$ corrections (compared to 15 MeV in [9]) Similarly, v^6 terms should be 5 MeV. Adding these in quadrature and dividing by two gives 3.4 MeV. For the B_s, power counting is in terms of $v = \Lambda/m_b$ which is even smaller in a heavy-light meson and missing spin independent corrections are negligible.
Spin dependent NRQCD systematics: Since the bottomonium energies are spin averaged, the only contribution from spin dependent terms is to the B_s mass. With the one loop corrections to c_4, the dominant error comes from radiative corrections to the σB term and missing $(\Lambda/m_b)^2$ terms. We take the error to be $3\alpha^2/4$ times the hyperfine splitting $B_s^* - B_s$ which gives 3 MeV.

Electromagnetism: The effects of missing electromagnetism were estimated in 9 and give a 0.1 MeV error in the B_s.

Finite volume effects: Chiral perturbation theory and studies of the wave functions of heavy mesons show that finite volume errors are negligible for the ensembles used here.

M_{η_s} and $M_{\bar{B}b}$: The uncertainty in the η_s mass and the error from the electromagnetic and annihilation corrections in $M_{\bar{B}b}$ also feed into the total error. M_{η_s} has an error of 1.2 MeV which using the slope of 0.24 vs $M_{\eta_s}^2$ gives an error of 0.4 MeV to be added to ΔB_s. The error in the adjusted value of $M_{\bar{B}b} = 9.445(2)$ GeV has negligible effect on ΔB_s, but when reconstructing M_{B_s} this leads to a 1 MeV error. The error in $M_{\bar{B}b}$ comes entirely from electromagnetism/annihilation as the experimental error is negligible.

Error	M_{B_s}	$M_{B_s,bb}$	$M_{B_s,bs}$
Stats/tuning/uncertainty in a	4.8	2.1	9.5
Lattice spacing dependence	2.2	0.6	3.5
m_c dependence	2.8	2.9	3.5
$m_{q,sea}$ dependence	1.4	1.4	5.0
spin-ind. NRQCD systs.	3.4	5.3	2.3
spin-dep. NRQCD systs.	3.0	3.0	0.0
uncrt in M_{η_b}	0.3	-	0.7
em, annihi in $\bar{b}b$	1.0	1.0	0.0
em, annihi in $c\bar{c}$	-	1.5	0.2
em effects in B_s or B_c	0.1	1.0	1.0
em effects in D_s	-	-	1.0
finite volume	0.0	0.0	0.0
Total (MeV)	7.7	8.0	12.2

TABLE VII. Full error budget for B_s and B_c meson masses in MeV. The source of each error is described in the text and the total error is obtained by adding in quadrature. Starred errors are correlated and are added linearly before being squared.

The systematic errors are summarised in the error budget in Table VII. When added in quadrature the total systematic error is 4.7 MeV giving a final value of

$$M_{B_s} = 5.366(6)(5) \text{ GeV},$$

which should be compared with the current PDG value of 5.368(2) MeV 22. This is the best result for this quantity from lattice QCD so far. There is a noticeable improvement over the systematic errors in Ref. 9 but the lattice spacing uncertainty remains similar. The results are plotted in Fig. 1.

Our method for calculating the mass of the D_s meson closely follows that of 13. The previous study on MILC 2+1 AsqTad ensembles included 5 values of the lattice spacing down to 0.045 fm and found $M_{D_s} = 1.9691(32)$ GeV. Here we have only 3 lattice spacings at the coarser end of the range so our result will suffer from a larger error from the continuum extrapolation. Some other systematic errors are smaller, however and our results provide an interesting comparison with those in the B spectrum.

To determine M_{D_s}, we calculate the splitting $M_{D_s} - M_{\eta_b}/2$ which has several advantages over determining the mass directly. Since the splitting is much smaller than the mass, the same relative scale uncertainty translates into a much smaller absolute error on the splitting. It was shown in 13 that the c quark mass dependence of the splitting is small which leads to reduced tuning errors, particularly on the coarsest ensembles where discretisation errors are large. Finally, the splitting allows for a direct comparison with $M_{B_s} - M_{\eta_b}/2$ which must be used in the NRQCD case due to the unphysical energy shift. The η_c is used rather than the spin averaged $c\bar{c}$ state simply because a staggered vector meson would require additional propagators to be generated. $M_{B_s} - M_{\eta_b}/2$ has a slightly increased systematic error over our preferred ΔB_s (eq. (3)).

Like the NRQCD B_s correlators, the D_s fit function
quark mass dependence and the splitting itself is taken

The same prior values as for the

effect of which partially cancels in the splitting. m
the lattice spacing is a third of the naive value. Changing
advantage of using M
application to M
and 0.05 against M
motion is discussed in Ref. [13] by fitting the splitting as a func-

stable by this point.

The lattice results are adjusted for missing electromagnetic and annihilation effects.

As for the B_s fits, the priors on the energy splittings $E_{n+1} - E_n$ are taken to be approximately $600(300)$ MeV and the prior on the ground state is 1.9 GeV with a 300 MeV width. Similarly the prior splitting between the ground state and first oscillating state is $600(300)$ MeV. Fits with $N_{\exp} = 5$ are typically used as the results are stable by this point. D_s, D and η_c correlators are fit simultaneously on each ensemble to include the correlations in the splittings.

Before performing a continuum extrapolation we must correct for mistuning of the valence quark masses. The s and c quark mass dependence of $M_{D_s} - M_{\eta_c}/2$ was studied in detail in Ref. [13] by fitting the splitting as a function of $M_{\eta_c}^2$ and M_{η_s}. The dependence is linear over the range of values used with a slope of $0.20(1)$ against $M_{\eta_c}^2$ and 0.05 against M_{η_s}. Although this data used AsqTad sea quarks the corrections are small and since all shifts are applied with a 50% error, any difference between the slope for HISQ sea quarks will be negligible. The shifts applied to $M_{D_s} - M_{\eta_c}/2$ are listed in Table VII. Another advantage of using $M_{D_s} - M_{\eta_c}/2$ is that the error from the lattice spacing is a third of the naive value. Changing the lattice spacing requires m_s and m_c to be retuned, the effect of which partially cancels in the splitting.

The results at different lattice spacings and light quark masses are fit to the same function as in Ref. [13]

$$
\Delta_{D_s}(a, \delta x_l, \delta x_s) = \Delta_{D_s, \text{phys}}[1 + \sum_{j=1}^{4} d_j (m_c a)^{2j} + 2b_0 \delta x_l(1 + d_l (m_c a)^2) + b_s \delta x_s(1 + d_s (m_c a)^2) + 4b_{11} (\delta x_l)^2 + 2b_{12} \delta x_l \delta x_s + b_{ss}(\delta x_s)^2].
$$

The same prior values as for the B_s are used for the sea quark mass dependence and the splitting itself is taken to have prior $0.5(2)$ GeV. The discretisation terms have priors $0.0(2)$ except for d_1 which is $0.00(6)$ since treetlevel a^2 errors have been removed in the HISQ action. Discretisation errors are set by the scale $\Lambda = m_c$ since the dominant error will come from the charm quarks.

The result of the fit, $0.4808(28)$ GeV, is plotted in Fig. 2 along with the retuned data on each ensemble. Also included for comparison is the corresponding splitting in the B meson spectrum $M_{B_s} - M_{\eta_c}/2$ from our results. There is a significant difference in the two splittings, largely driven by the stronger binding of heavy-quarkonium as the heavy quark mass is increased. The experimental difference between c and b is well reproduced by our results here. The complete dependence on heavy quark mass is mapped out in [10][11]. The lighter shaded band in Fig. 2 includes the systematic errors which are discussed in the next section.

Set	a_{m_c}	a_{m_s}	a_l	$a_{E_{\eta_c}}$	$a_{E_{D_s}}$	$a_{E_{D_s}} - a_{E_{\eta_c}}$	$\Delta_M^2_{D_s}$	$\Delta_M_{D_s}$
1	0.826	0.0641	0.013	2.22508(7)	1.48729(30)	1.43326(58)	0.05403(57)	0.37475(29)
2	0.818	0.0636	0.0064	2.21032(4)	1.47555(20)	1.41258(68)	0.06300(69)	0.37043(19)
3	0.645	0.0522	0.01044	1.83967(5)	1.21934(14)	1.17112(53)	0.04822(47)	0.29950(13)
4	0.627	0.0505	0.00507	1.80351(3)	1.19554(8)	1.14112(61)	0.05442(58)	0.29379(8)
5	0.434	0.0364	0.0074	1.33307(4)	0.88212(9)	0.84682(26)	0.03530(21)	0.21559(10)

TABLE VIII. Results from charmed meson fits in lattice units. Columns 2-4 give the HISQ quark masses used in the run, columns 5-7 give the η_c, D_s and D energies with statistical errors only. Columns 8 and 9 give splittings that we use in our fits. They have reduced errors over the naive subtraction of earlier columns because correlations are taken into account. Columns 10 and 11 give the shifts in MeV that are applied to Δ_{D_s} due to mistuning of the s and c quarks.

FIG. 2. Plot of the splittings $M_{D_s} - M_{\eta_c}/2$ and $M_{B_s} - M_{\eta_c}/2$ against the square of the lattice spacing. The dark grey band is the statistical error and the lighter band gives the full combined statistical and systematic error. The errorbars include statistics, scale and tuning only, correlated errors are not shown. The lattice results are adjusted for missing electromagnetic and annihilation effects.
1. Systematic errors

The error arising from statistical/scale, lattice spacing dependence and sea quark mass effects is estimated from the fit as above, the remaining systematic errors that cannot be found in this way are the following:

Electromagnetism: Electromagnetic effects in the D_s were estimated in Ref. [13] where the shift was 1.3(7) MeV, assuming a 50% error.

M_{η_c}: The uncertainty in the mass of the η_c meson, used for tuning to the correct s quark mass, feeds into the error. Using the slope of 0.2, the mass $M_{\eta_c} = 0.6893(12)$ GeV results in an error of $0.2 \times 2 \times 1.2 \times 0.69 \sim 0.3$ MeV.

M_{D_s}: When the D_s mass is reconstructed from the splitting, we must include the error from $M_{\eta_c} = 2.985(3)$ that comes from our estimate of electromagnetic and annihilation effects in the η_c as well as experimental errors. This gives a 1.5 MeV error in M_{D_s}.

Lattice spacing systematics: Systematic errors in the determination of the lattice spacing are included in the scale error.

The error budget for M_{D_s} is given in Table [IX] and our final result is

$$M_{D_s} = 1.9697(28)(17) \text{ GeV}$$

where the two errors are fitting/scale/tuning and systematics and lead to a combined error of 3.3 MeV. In fact our final error is not significantly worse than in [13] because an increased lattice spacing extrapolation error is offset by the accurate physical value for M_{η_c}. The current experimental result for M_{D_s} is 1.9685(3) GeV [22].

Error	M_{D_s}
Stats/tuning/uncert in a	2.2
Lattice spacing dependence	1.6
$m_{q,sea}$ dependence	0.7
uncert in M_{η_c}	0.7
em effects in D_s	0.7
em, annihilation effects in η_c	1.5
finite volume	0.0
Total (MeV)	3.3

TABLE IX. Full error budget for M_{D_s} in MeV. The different errors are described in more detail in the text.

C. The B_c meson

In Ref. [9], two different methods of reconstructing the B_c mass were used: the “heavy-heavy” (or hh) subtraction method and the “heavy-strange” (or hs) subtraction. In the hh method, half the mass of the η_c is subtracted from the lattice value of E_{B_c} in addition to the spin averaged bottomonium ground state energy.

$$M_{B_c} = \left(aE_{B_c} - {1 \over 2}(aE_{\eta_c} + aM_{\eta_c}) \right)_{\text{latt}} a^{-1}$$

$$+ {1 \over 2} \left(M_{\eta_c,\text{phys}} + M_{\eta_c,\text{phys}} \right).$$

This has two advantages, firstly it makes the splitting a very small value which results in a reduced error from the uncertainty in the lattice spacing, and secondly it reduces mistuning errors since to a good approximation E_{B_c} and M_{η_c} depend linearly on the charm quark mass. The second method, hs, uses the B_s and D_s energies to remove the unphysical energy shift from NRQCD:

$$M_{B_c} = (aE_{B_c} - (aE_{B_s} + aM_{D_s}))_{\text{latt}} a^{-1}$$

$$+ (M_{B_s,\text{phys}} + M_{D_s,\text{phys}}).$$

The D_s and η_c masses are calculated using HISQ for both the c and s valence quarks with the parameters given in Table [I] The hh and hs methods have different systematic errors and give two independent results to check consistency. Previously [9] the hs and hs methods resulted in total errors in the B_c mass of 10 MeV and 19 MeV respectively, using NRQCD b quarks.

Table [X] gives the energies of the B_c, D_s and η_c required for the two methods. The B_s energies are those given in Table [V].

1. Heavy-heavy method

We begin with the hh method, values for $\Delta_{B_c, hh}$ are listed in Table [XI] As for the B_s we need to correct $\Delta_{B_c, hh}$ for small mistunings in the quark masses. In [9] the slope with respect to M_{η_c} was 0.014 (agreeing with that from using HISQ b quarks in [11]) which gives us the shifts $\Delta_{M_{\eta_c, hh}}$ given in Table [XI]. The shifts are around 1 MeV which is comparable to, or slightly larger than, the lattice spacing uncertainty. Since the slope is a physical dependence rather than a lattice artefact, for the charm quark we use the slope against M_{η_c} of -0.035 found in [11]. This was based on more data and on finer lattice spacings than the smaller value in [9]. From this we obtain the shifts, $\Delta_{M_{\eta_c, hh}}$, in Table [XI]. These shifts are negligible compared to the lattice spacing errors. Again, the errors on the shifts are taken to be 50% of the shift. As for the B_s, once retuning is taken into account the actual scale error on the splitting is less than the naive value, in this case ranging from 0.5-0.7 of the naive value. We take 0.7 times the a error on all ensembles.

The data are fit to a similar form to that of Δ_{B_s} but with a few changes. Since $\Delta_{B_c, hh}$ has such a small value, the scale, cutoff and sea quark mass dependence are included additively rather than multiplicatively to allow them a larger range. We give them instead an overall coefficient of 0.4 GeV. We also expect the discretisation errors to be dominated by the charm quark so $m_c \simeq 1$
\[\Delta_{B_c, hh}(\text{GeV}) = \Delta_{B_c, hh, \text{phys}} + \Delta_{M_{B_c}, hh}(\text{MeV}) + \Delta_{\text{M}\phi_{B_c}, hh}(\text{MeV}) \]

We take the prior on \(\Delta_{B_c, hh, \text{phys}}\) to be 0.05(5). The priors for the fit terms are the same as for the \(B_c\) case with the additional \(d_j, d_{j\beta}, d_{j\lambda}\) terms having priors of 0(1). The fit gives \(\Delta_{B_c, hh, \text{phys}} = 0.06131(39)\) (fit error only), the systematic errors that must be included when reconstructing \(M_{B_c}\) are the following:

Spin independent NRQCD systematics: The effect of missing terms in the action on \(M_{b\bar{b}}\) is the same as discussed previously, but since the \(b\) quark velocity in the \(B_c\) is half that in bottomonium we expect partial cancellation of the \(a^4v^4\) errors in \(\Delta_{B_c, hh}\). We take 1.7 MeV, which is half the value for the \(B_c\) case. The \(v^6\) terms are not expected to cancel and results in the same 5 MeV giving a total of 2.6 MeV when added in quadrature and halved.

Spin dependent NRQCD systematics: As for the \(B_s\), we take the error to be \(3\alpha_s^2/4\) times the hyperfine splitting in the \(B_c\) system giving 3 MeV.

Electromagnetism: Electromagnetic effects are not negligible in the \(B_c\) and the required shift was estimated to be +2(1) MeV.

Finite volume effects: Chiral perturbation theory and studies of the wave functions of heavy mesons show that finite volume errors are negligible for the ensembles used here.

\(M_{b\bar{b}}\) and \(M_{b\bar{b}}\): Since the slopes of \(\Delta_{B_c, hh}\) against these meson masses are very small, the uncertainty in \(M_{b\bar{b}}\) and \(M_{b\bar{b}}\) does not require an additional error to be included. However the errors will appear when \(M_{B_c}\) is reconstructed. These errors come from corrections due to electromagnetism and annihilation effects and are correlated since the same method was used to estimate these shifts. Taking half the error on these shifts gives 1 MeV for \(M_{b\bar{b}}\) and 1.5 MeV for \(M_{b\bar{b}}\). These are added linearly.
along with the 1 MeV for electromagnetic effects in the B_c described above before being added in quadrature to the other errors. The correlated errors are marked with a * in Table VII.

Taking all of these systematic errors into account, our value for the B_c mass using the hh method is

$$M_{B_c} = 6.278(4)(8) \text{ GeV}.$$

The fit result is plotted in Fig. 3 along with the returned data points for each ensemble. Table VII gives the contribution to the final error of statistics, tuning, scale uncertainty and quark mass dependence. Adding the statistical and systematic errors in quadrature gives a total error of 9 MeV which is shown as the lighter shaded band in Fig. 3. The current experimental value is 6.277(6) GeV [22].

2. Heavy-strange method

The hs method requires tuning adjustments for the b, c and s quark masses. Ref. [9] found strong dependence on the s quark but very small dependence on the b and c masses. The slope against $M_{q_b}^2$ is 0.41, the slope against $M_{q_b}^4$ is 0.005 and against M_{q_c} is 0.07. These slopes agree with the results in [11]. The resulting shifts are given in Table XII along with the energy splittings $\Delta B_{c,hs}$. The biggest shifts are those for mistuning of the s quark on the coarse lattices, but even there the shifts are smaller than the lattice spacing uncertainty.

\begin{tabular}{|c|c|c|c|c|}
\hline
Set & $\Delta B_{c,hs}$ (GeV) & $\Delta M_{d,hs}$ & $\Delta M_{s,hs}$ & $\Delta M_{c,hs}$ \\
\hline
1 & -1.069(1)(10) & -0.4 & 0.4 & 0.0 \\
2 & -1.065(1)(10) & -0.25 & 0.3 & 0.2 \\
3 & -1.059(1)(7) & 0.6 & 0.5 & 2.1 \\
4 & -1.062(1)(8) & 0.0 & 0.5 & 2.5 \\
5 & -1.067(1)(7) & -0.4 & 0.7 & -0.1 \\
\hline
\end{tabular}

TABLE XII. Results for the hs splitting $\Delta B_{c,hs}$ in GeV where the two errors are statistical and scale uncertainty. Columns 3-5 are the shifts in MeV applied for mistuning of the b, c and s quark respectively in MeV.

The fit function is the same as the hh case but with the dependences included multiplicatively

$$\Delta B_{c,hs}(a, \delta x_1, \delta x_s) = \Delta B_{c,hs,phys} \left[1 + \sum_{j=1}^{4} d_j(m_c a)^{2j} (1 + d_{j,b} \delta x_m + d_{j,b} \delta x_m (\delta x_m)^2) + 2b_i \delta x_1 (1 + d_i(m_c a)^2 + d_i(m_c a)^4) + b_i \delta x_s (1 + d_s(m_c a)^2 + d_s(m_c a)^4) + 4d_i(\delta x_1)^2 + 2b_i \delta x_1 \delta x_s + b_s(\delta x_s)^2 \right].$$

(11)

The prior on $\Delta B_{c,hs,phys}$ is -1.0(2), all other priors are the same as for the hh method. The fit result is $\Delta B_{c,hs,phys} = -1.071(12)$ where the error is from the fit only. The systematic errors are listed below:

Spin independent NRQCD systematics: There will be no cancellation as in the hh case so spin independent systematic errors in the B_c will be of order $\alpha_s^2 v^4$. Based on the b quark velocities in each meson, this should be half as big for the B_c as for $M_{b\bar{b}}$ estimated earlier, giving 2.3 MeV. These missing terms also enter the B_s mass but are negligible, along with v^6 terms in both mesons.

Electromagnetism: As in the hh method, there is a shift of $+2(1)$ MeV for the B_c but we must also include a shift of $-1.3(7)$ due to the subtraction of the D_s mass.

M_{D_s}, M_{D_s} and $M_{D_{s\bar{s}}}$: The errors in the retuning coming from the M_{D_s} and $M_{D_{s\bar{s}}}$ are negligible due to the small slopes, but the 1.2 MeV error in the M_{D_s} results in a 0.7 MeV error in $\Delta B_{c,hs}$. We also need to include the error in the reference B_s and D_s masses which is dominated by our estimates of electromagnetic corrections. The D_s has an error of 0.7 MeV and it is negligible for the B_s. Including the errors in a correlated way is not necessary here as only the electromagnetic shift in the B_c is negligible.

Our final answer for the B_c mass with the hs method is

$$M_{B_c} = 6.264(12)(3) \text{ GeV}$$

where the error is dominated by statistics. This is in good agreement, but not quite as accurate, as our result from the hh method. This mass is shown in Fig. 4 along with

FIG. 4. Results for the B_c meson mass for each ensemble plotted against the lattice spacing using the hs method. The data points are adjusted for missing electromagnetism and mistuning of quark masses. The dark grey band is the statistical error on the fit result and the systematic error is shown in light grey and is barely visible on this scale.
3. Radially excited states

Our B_c meson correlators fits are accurate enough, and include multiple smearings to improve projection on the ground state, that there is a good signal for the first radially excited states, the B_c' and $B_{c}^{∗′}$. Fig. 5 shows how our fit results for these states converge. Unlike the B and the B_c, these states are well below the threshold for strong decay, in this case into B, D, so that the states can be extracted unambiguously from a lattice calculation involving only operators that overlap onto single hadron states. The splittings from the ground state are listed in Table X. We only have a signal for the coarse and fine ensembles along with the result of the fit.

The results from the fits are shown in Figs. 6 and 7, giving 1.2 MeV. The radial excitation energies for the B_c meson using the splitting $\Delta B = M_{B_{c}'} - M_{B_c}$ in which NRQCD systematics should cancel. The mass of the B can then be reconstructed using our determination of $M_{B_{c}}$ in Sec. III A. Results for the lattice energy splittings $aE_{B_c' - aE_{B}}$ are given in Table XIII along with the values of M_{B_c} on each ensemble needed for extrapolation in the light quark mass. The large correlation matrix meant that the correlators for each meson had to be fit separately but the statistical errors are a significant improvement over those in [9].

Heavy meson chiral perturbation theory (HMχPT) is used for the chiral fits. We use the 1-loop formulas given by Jenkins in [24] including heavy quark spin symmetry breaking terms at order $1/m_Q$, and up to $O(M^3)$ in the light mesons masses. Using the same notation as [24],
the parity partner states discussed in Sec. V. The chiral logarithms are given by

\[\delta \ln \frac{M_{B^+}^2}{M_{B^0}^2} = \frac{3}{2} \left(\ln \frac{M_{B^0}^2}{M_{B^+}^2} + \ln \frac{M_{K^*}^2}{M_{K^0}^2} \right) \]

where \(\Lambda_{\chi} = 4\pi f_\pi \) is the chiral scale, \(\alpha \) and \(\Delta^{(\sigma)} \) are coefficients of the tree level terms, \(g \) is the \(BB^*\pi \) coupling and \(\Delta \) is the coefficient of the term in the effective Lagrangian that gives rise to the heavy meson hyperfine splitting. The chiral logarithms are given by

\[l(M^2) = M^2 \left(\ln \frac{M^2}{\Lambda^2} + \delta^{FV}(ML) \right) \]

including the finite volume correction \(\delta^{FV}(ML) \)

\[\delta^{FV}(ML) = \frac{4}{ML} \sum_{\tilde{n} \neq \tilde{0}} K_1(|\tilde{n}||ML|) \]

where \(K_1 \) is a modified Bessel function and the sum is over spatial vectors with components \(n_i \in \mathbb{Z} \). The finite volume corrections shift the pion chiral logarithms by a few percent on some ensembles but have a completely negligible effect on the fit result. We use the kaon and pion masses calculated in [3], and use the tree level relation to change \(M_{B^0}^2 \) into a combination of \(M_K^2 \) and \(M_{K^*}^2 \). Quark masses are converted to meson masses using tree level relations.

Our central result uses the reduced \(SU(2) \) version of the formula:

\[M_{B^*} - M_{B^0} = C - \frac{3}{4} (2a + 2\Delta^{(\sigma)}) m_\lambda - \frac{g^2 \pi}{4 \Lambda^2} \left(\frac{3}{2} M_\pi^2 \right) \]

\[+ \frac{3g^2 \Delta^{(\sigma)}}{4 \Lambda^2} \left[\frac{3}{2} l(M_K^2) + l(M_{K^*}^2) + \frac{1}{2} l(M_{B^0}^2) \right] \]

for some constant \(C \). We also perform the fits using the \(SU(3) \) formula as a check of systematic errors. Since we have a single pion mass for each ensemble and the sea strange quark masses are well tuned, partial quenching will be a small effect and we use only the full QCD form. Staggered quark and other discretisation effects could be more significant, however, so the fit function is multiplied by

\[(1.0 + d_1(\Lambda a)^2 + d_2(\Lambda a)^4) \]

at a scale of \(\Lambda = 0.4 \text{ GeV} \).

We take the prior on \(g \) to be 0.5(5) which based on several recent lattice calculations [26–29] with a wide error covering all of the central values. Our results are not sufficient to constrain \(g \), so we test the dependence of the final answer on this prior by varying its width. While this affects the shape of the curve, the result at the physical point does not change significantly since we have sufficiently light pion masses. The prior on the tree level quark mass term is taken to be 0.5(5) and the priors on the discretisation terms \(d_1, d_2 \) are 0.0(5) and 0(1) respectively.

The result of the \(SU(2) \) fit is \(M_{B^*} - M_{B^0} = 85(2) \) MeV when evaluated at \(a = 0 \) and at the physical mass of the \(\pi^0 \) meson of 0.135 GeV. The fit is shown in Fig. 8 and gives a result around 1σ below experiment. To check the reliability of the fit, the results of several different fit functions are plotted in Fig. 7. This includes the 1-loop \(SU(2) \) case, \(SU(2) \) with different prior widths on \(g \), the

Set	\(a_{m_\lambda} \)	\(a_{m_{sT}} \)	\(a_{m_{lT}} \)	\(a_{M_{B^0}} \)	\(a_{E(B_s)} - a_{E(B)} \)	\(a_{\Delta B_{B^0}^{hyp}} \)	\(a_{\Delta B_{B^0}^{\alpha^+ - \alpha^-}} \)	\(a_{\Delta B_{B^0}^{\alpha^+ - \alpha^-}} \)
1	3.297	0.0641	0.013	0.23637(15)	0.05111(126)	0.0375(12)	0.245(17)	0.251(20)
2	3.263	0.0636	0.0064	0.16615(7)	0.08821(110)	0.0377(9)	0.207(25)	0.150(57)
3	2.66	0.0522	0.01044	0.19153(9)	0.04288(63)	0.0324(4)	0.193(15)	0.192(15)
4	2.62	0.0505	0.00507	0.13413(5)	0.04705(60)	0.0309(4)	0.200(4)	0.207(4)
5	1.91	0.0364	0.0074	0.14070(9)	0.03134(78)	0.0212(11)	0.159(8)	0.158(7)

FIG. 7. Results for the splitting \(M_{B^*} - M_{B^0} \) on the fine and coarse ensembles with the result of the fit.
but compare to the average since the Electromagnetism will affect the two states differently.\(B^u + 2(1)\) MeV for the \(B^s\) case and just the tree level terms with discretisation effects added in each case. Good SU(2) HM \(\chi\) PT with and without discretisation terms; SU(2) HM \(\chi\) PT with a tighter prior on \(g\) of 0.5(1); SU(3) HM \(\chi\) PT with and without discretisation terms. Only the error from the chiral fit is shown.

\(SU(3)\) case and just the tree level terms with discretisation effects added in each case. Good \(\chi^2\) values and consistent results are obtained for all fits.

We now need to consider the effect of electromagnetism on \(\Delta B_{\text{phys}}\). Since our light quark masses are degenerate we do not distinguish between the \(B_d\) and \(B_s\) mesons but compare to the average \(M_{B^s} = (M_{B^d} + M_{B^s})/2\). Electromagnetism will affect the two states differently since the \(B_u\) is charged. In [9] the shift was estimated to be +2(1) MeV for the \(B_u\) whereas the shift was negligible for the \(B_d\) and \(B_s\). So to compare with experiment we shift \(\Delta B_{\text{phys}}\) by -1 MeV to give

\[M_{B^s} - M_{B^d} = 84(2)\text{ MeV}\]

in good agreement with experiment of 87.4(3) MeV (within 2 sigma). Reconstructing \(M_B\) using our value for \(M_{B^s}\) in Sec. IIIA gives \(M_B = 5.283(2)(8)\) GeV The first error is from the chiral fit and the second is the error on \(M_{B^s}\) with the detailed breakdown as in Sec. IIIA.

E. The D meson

Our analysis of the \(D\) meson follows the same method as the \(B\) in the previous section. The splitting \(M_{D^s} - M_D\) is taken from a combined fit to all three charmed mesons, the results are given in Table VIII. Systematic errors should be small in the splitting since the only difference between the states is the light quark mass, however we still see some lattice spacing dependence coming from the charm quark discretisation errors. We use the SU(2) HM \(\chi\) PT formula Eq. 16 with discretisation terms, this time including higher powers of \(a\) and with a scale set by \(m_c\)

\[(1.0 + d_1 (m_c a)^2 + d_2 (m_c a)^4 + d_3 (m_c a)^6 + d_4 (m_c a)^8).\]

18

Priors for \(g\) and the leading term are the same as above but priors for discretisation errors are 0.00(6) for \(d_1\) and 0.0(2) for other \(d_i\) terms as in Sec. IIIB. Since we do not have vector meson masses the experimental value 140 MeV [22] is used for the hyperfine term in the fit function. The HISQ action has previously been shown to give results for hyperfine splittings in agreement with experiment [7].
The result of the fit is shown in Fig. 10 including an adjustment for electromagnetism. The shift in the D_s is 1.3(7) MeV and the shifts in the D_h and D_{lh} are -0.4 MeV and +1.3 MeV, which results in a total shift of 0.9 MeV in $M_{D_s} = (M_{D_h} + M_{D_{lh}}) / 2$. As for the B, tightening the prior on g to 0.1 also gives a consistent result, but in this case discretisation errors are significant so removing the d_t terms leads to a poorer fit.

Our final result for the splitting is

$$M_{D_s} - M_{D_l} = 101(3) \text{ MeV}$$

in agreement with the experimental splitting of 101.3(3) MeV [22]. When combined with our result for M_{D_s} above this gives $M_{D_l} = 1.869(3)(3) \text{ GeV}$, the first error being the chiral fitting error and the second the full error from M_{D_s}.

Fig. 10 shows $M_{B_s} - M_B$ and $M_{D_s} - M_B$ on the same plot. It is clear that lattice QCD can distinguish the difference between these two small splittings. In HQET language it arises from the difference in the kinetic energy of the heavy quark in a heavy-strange meson compared to that in a heavy-light meson. We would expect this difference to be positive and contribute a larger amount to that in a heavy-light meson. We would expect this of the heavy quark in a heavy-strange meson compared to a heavy-light meson.

The bottomonium hyperfine splittings were calculated using our improved action in [3], where we obtained 70(9) MeV for the 1S hyperfine splitting and 0.499(42) for the ratio of the 2S and 1S hyperfine splittings (which agreed well with subsequent experiment [23]). The error in both cases was dominated by the missing v^6 terms. The heavy-light hyperfine splittings have previously been studied in Ref. [30] by considering ratios that were independent of c_4. This resulted in a prediction of 53(7) MeV for the B_s hyperfine splitting. The advantage of our current calculation is that the coefficients have been obtained by matching NRQCD to QCD at one loop, allowing the hyperfine splittings to be determined directly without losing predictive power. Using the same action and c_4 for both the bottomonium and B-meson calculations also allow us to make very different, independent checks.

The results for the hyperfine splittings are given in lattice units in Table XIV for the B_s, B_l and B_t. Before fitting the data we make a small correction for the b quark mass mistuning on each ensemble. The splittings are very insensitive to the light quark mass so retuning for m_s, m_c will be negligible compared to other errors. The retuning assumes that the hyperfine splitting is inversely proportional to the b quark mass and is applied multiplicatively using the tuned b quark mass values $m_{b,\text{phys}}$ calculated in [3] and listed in Table XIV. There are two sources of error in $m_{b,\text{phys}}$, coming from the lattice spacing and the determination of the bottomonium kinetic mass values. Since a change in the lattice spacing would result in a change in the quark mass, the lattice spacing uncertainty is correlated with the scale uncertainty in the hyperfine splitting itself. To account for this correlation, we apply twice the lattice spacing error to the hyperfine splitting rather than adding them separately. The retuning factors are all less than 2% and are given in Table XIV.

The dominant source of uncertainty in $\Delta_{B_s}^{\text{hyp}}$ is still the higher order correction to c_4 which is now $O(\alpha_s^2)$. To allow for this we apply a correlated systematic error to all the data points of size α_s^2 where we take α_s at a scale π / a. Values for α_s are: 0.275 on very coarse, 0.255 on coarse and 0.225 on fine [3]. The B_s and B_l hyperfine splittings are fit to the same form as Δ_{B_s} (Eq. (5)), allowing for lattice spacing, sea quark mass and cutoff dependence. The B_c hyperfine is fit to the form used for Δ_{B_s} in the hs method (Eq. (10)) in which we include discretisation errors with a scale set by m_c. Priors are the same in all cases except for the prior on $\Delta_{B_s}^{\text{hyp}}$ which is 0.5(5).

The data and fit results are plotted in Fig. 11 with the data points adjusted for b quark mass mistuning but not including the correlated systematic error from c_4. There is no noticable sea quark mass dependence and very little a dependence except for the B_l case where the discretisation errors come from the charm quark. The dependence of $\Delta_{B_s}^{\text{hyp}}$ on the light valence quark is also very small and not statistically significant. The results for the physical values from the fits are:

$$\Delta_{B_s}^{\text{hyp}} = 50(3)\text{MeV}$$
$$\Delta_{B_l}^{\text{hyp}} = 52(3)\text{MeV}$$
$$\Delta_{B_c}^{\text{hyp}} = 60(6)\text{MeV}. \quad (19)$$

The other remaining source of error is the effect of v^6 terms which are very small here. The full error budget for each splitting is given in Table XV. Comparison to experiment (45.8(4) MeV [22]) for B_l shows good agreement. For B_s the experimental results are not as accurate. In Fig. 11 we use the experimental average of 46.1(1.5) MeV [22]. This agrees with our value within 2σ.

The dominant error in the hyperfine splittings is still the uncertainty in the c_4 coefficient which is reduced in
TABLE XIV. Results for the hyperfine splittings $\Delta_{B_{s}}^{\text{hyp}}$ in lattice units for each ensemble, errors are statistical only. Column 5 gives the tuned b quark masses calculated in [3] where the first two errors are from statistical and systematic errors respectively in the lattice spacing determination. The third and fourth errors are the statistical and systematic errors in the determining the Upsilon kinetic mass used for tuning m_{s}. The final column gives the multiplicative factor applied to each hyperfine splitting due to b quark mass mistuning.

Set	$a\Delta_{B_{s}}^{\text{hyp}}$	$a\Delta_{B_{d}}^{\text{hyp}}$	$a\Delta_{B_{c}}^{\text{hyp}}$	m_{s}^{phys}	tuning
1	0.0375(12)	0.03892(40)	0.03659(17)	3.297(11)(35)(7)(16)	1.000(5)
2	0.0377(9)	0.03705(47)	0.03658(13)	3.263(7)(35)(4)(16)	1.000(5)
3	0.0324(4)	0.03177(18)	0.03140(3)	2.696(4)(22)(7)(13)	0.987(5)
4	0.0309(4)	0.03102(16)	0.03137(2)	2.623(7)(22)(7)(13)	0.999(6)
5	0.0212(11)	0.02310(14)	0.02470(2)	1.803(6)(12)(5)(9)	1.009(5)

FIG. 11. Results for the B, B_{s} and B_{c} hyperfine splittings. The data points include statistical, tuning and lattice spacing errors, taken as double the naive error as discussed in the text. The correlated α_{s}^{2} error is not included on the data points. The result of the fit in each case is shown as a grey band and, where available, experimental values are given as black solid circles.

TABLE XV. The full error budget for the hyperfine splittings, giving each error as a percentage of the final answer. The fit value is obtained including the statistical, scale and α_{s}^{2} errors and their separate contribution to the error budget is distinguished by fitting with and without the α_{s}^{2} error. v^{6} errors are included multiplicatively using the estimates in Sec. [1]. The error from a, $m_{q,\text{sea}}$, and m_{s} dependence is estimated from the fit. The error from m_{b} tuning is estimated by fitting with and without the error on the tuning in Table [XIV].

	$\Delta_{B_{d}}^{\text{hyp}}$	$\Delta_{B_{s}}^{\text{hyp}}$	$\Delta_{B_{c}}^{\text{hyp}}$	$R_{B_{d}}$	$R_{B_{s}}$
stats/fitting/scale	2.0	1.9	5.8	2.3	1.5
α-dependence	1.3	0.8	3.6	2.1	2.5
$m_{q,\text{sea}}$-dependence	1.6	1.7	2.8	1.0	1.2
NRQCD m_{b}-dependence	0.1	0.6	5.3	0.2	3.7
NRQCD v^{6}	0.1	0.1	0.5	0.5	2.0
NRQCD c_{4} uncertainty	6.0	4.4	4.7	0.0	0.0
m_{s} tuning	<0.1	<0.1	<0.1	0.0	0.0
Total (%)	6.7	5.2	10	3.3	5.2

The first error is from statistics/fitting and the second is the systematic error that is dominated by missing v^{6} terms in the action. We take half the estimated size of v^{6} terms as there should be some cancellation between the splittings. The full error budget is given in Table [XV]. Our results are now precise enough that we are able to resolve the difference from 1.0 in the charm/strange hyperfine ratio, at the same time confirming our previous result [30] that this ratio is not far from 1. Our value for the ratio of light to strange hyperfine splittings is 1 with an accuracy of 3% (equivalent to 1.5 MeV for this splitting). The experimental ratio, using the B_{s} average above is 0.993(34).

This calculation to $\mathcal{O}(\alpha_{s}^{2})$. Taking ratios of hyperfine splittings eliminates this error and also cancels errors from the lattice spacing and mistuning of the b quark mass. The remaining errors will be from missing v^{6} terms which are very small. Fig. [12] shows results for the ratio of the B and B_{c} hyperfine splittings to that of the B_{s}. The fit function for $\Delta_{B_{d}}^{\text{hyp}}/\Delta_{B_{s}}^{\text{hyp}}$ is the same as for the B_{d} hyperfine splitting and the fit function for $\Delta_{B_{c}}^{\text{hyp}}/\Delta_{B_{s}}^{\text{hyp}}$ is the same as for the B_{c} hyperfine splitting. Priors on the ratios are taken to be 1.0(5).

The results of the fits are

$$R_{B_{d}} = \frac{\Delta_{B_{d}}^{\text{hyp}}}{\Delta_{B_{s}}^{\text{hyp}}} = 0.993(33)(5)$$

$$R_{B_{c}} = \frac{\Delta_{B_{c}}^{\text{hyp}}}{\Delta_{B_{s}}^{\text{hyp}}} = 1.166(56)(23).$$

(20)
The accuracy of the ratios above means that we can give an improved prediction of $M_{B^0} - M_{B^+}$. Multiplying the experimental average for B_s by the ratio above gives:

$$\Delta_{B_c}^{hyp} = 54(3) \text{ MeV.}$$ \hspace{1cm} (21)

We take this as our final predicted value. Note that this is smaller than either the bottomonium or charmonium ground-state hyperfine splittings.

V. AXIAL VECTOR AND SCALAR B_c MESONS

As discussed in Sec. II our B-meson correlators contain oscillating terms corresponding to states of opposite parity. Hence our pseudoscalar correlators contain both 0^- and 0^+ states, and the vector correlators contain 1^- and 1^+ states. By using the fit form given in Eq. (2) we can then extract the energies of these scalar and axial vector states from our fits.

The splittings

$$a\Delta_{B_q}^{0^+ - 0^-} = aE_{B_q^0} - aE_{B_q^+}$$ \hspace{1cm} (22)

$$a\Delta_{B_q}^{1^+ - 1^-} = aE_{B_q^{1+}} - aE_{B_q^{1-}}$$ \hspace{1cm} (23)

are given in Tables V, X and XIII for the three mesons with $q = s, c, l$ respectively. We find that, for the B, both states are above threshold for decay into $B\pi$ and for the B_s, the states are very close to threshold for BK decay, as was found in [9]. Since we do not have enough data to accurately estimate threshold effects in these cases we do not analyse them further, but they are included for completeness.

VI. DISCUSSION

The results obtained here agree well with existing experiment and set improved levels of accuracy from a lattice QCD calculation.

It is important to compare to other lattice QCD calculations as well as to experiment because different lattice QCD methods have different systematic errors, particularly if they use a different formalism for the quarks. Agreement then gives improved confidence in the error analysis. In Figs. 15 and 16 we compare existing results for the masses of the B_c and B_s mesons from lattice QCD, in which the quark masses are fixed from bottomonium, the η_c and the η_c. The comparison includes results from two very different formalisms for the b quark: the NRQCD formalism used here and in [9] and the HISQ formalism in which an extrapolation up to the b quark mass is made from lighter masses on lattices with a range of lattice spacings [10, 11]. The agreement between the different methods is good, within their total errors of around 10 MeV.

The B_c states, however, are far enough below threshold for decay to BD that we can reliably predict their masses. The remaining problem comes from identifying which states our results correspond to. From heavy quark spin symmetry, the “P-wave” heavy-light mesons come in two doublets, a $0^+, 1^+$ pair coming from a light quark spin of $j_l = 1/2$ and a $1^+, 2^+$ pair from $j_l = 3/2$. Identifying our scalar state with the physical 0^+ state is unambiguous but the situation is not as clear for the axial-vector. Naively one would expect that we have calculated the lighter of the two states but without including a larger basis of operators this cannot be shown for certain.

The results on coarse and fine ensembles for $\Delta_{B_c}^{0^+ - 0^-}$ and $\Delta_{B_c}^{1^+ - 1^-}$ are shown in Figs. 13 and 14 respectively. The results are fit using the same form as in Eq. (11) with a prior of 0.5(5) on the physical value and the same priors as before for other parameters. As in the case of the radially excited states, we estimate that errors from missing relativistic corrections to the NRQCD action will be 1 MeV and that other systematic errors will be negligible. Our results for the splittings are then:

$$\Delta_{B_c}^{0^+ - 0^-} = 429(13)(1) \text{ MeV}$$ \hspace{1cm} (24)

$$\Delta_{B_c}^{1^+ - 1^-} = 410(13)(1) \text{ MeV},$$ \hspace{1cm} (25)

where the first error is from the fit and the second is from NRQCD systematics.

VII. CONCLUSIONS

We have presented results for the B meson spectrum using a perturbatively improved NRQCD action, very high statistics and gluon field configurations with an improved gluon action and including 2+1+1 flavours of HISQ sea quarks. We have improved upon and extended the previous results in Ref. [9] and, combined with our study of the Upsilon spectrum in Ref [3], we have shown that our improved action gives accurate meson masses across a wide range of heavy mesons. Where we can compare, we see no significant differences with the results of [9], so that the inclusion of c quarks in the sea has not produced any noticeable changes.

The strongest improvement from our reduced systematic errors can be seen in the hyperfine splittings which were previously dominated by missing radiative corrections. Our errors are now 3-6 MeV, giving an even more stringent test against experiment than for the bottomonium hyperfine splitting. The high statistics used in our calculation (32k correlators with 3 quark smearings) al-
allowed for the lightest B states to be reliably extracted and, with the light sea quark masses now available, consistent results were obtained for a range of reasonable chiral fit functions. This demonstration is particularly important for future determinations of f_B which are currently underway including ensembles with physical light quark masses. The calculation showed that lattice QCD could successfully resolve the change in splitting between heavy-strange and heavy-light meson masses as the quark mass is increased from c to b. The statistical precision of our correlators also allowed us to make the first QCD prediction of the radially excited B_c states and two of the “P-wave” states.

An overview of our results for the B-meson spectrum is shown in Fig. 17 including the full error on each point. We find excellent agreement with the experimentally known pseudoscalar and vector states. In summary our results are: $M_{B_s} - M_{D_s} = 84(2)$ MeV, $M_{B_c} = 5.366(8)$ GeV, $M_{B_c} = 6.278(9)$ GeV, $M_{D_s} = 1.9697(33)$ GeV, and $M_{D_s} - M_D = 101(3)$ MeV. Our results for the B meson hyperfine splittings are $M_{B^*} - M_B = 50(3)$ MeV and $M_{B^*} - M_{B_s} = 52(3)$ MeV and we predict $M_{B_s} - M_{B_c} = 54(3)$ MeV. Combining our results for the B_c and the pseudoscalar radial splitting, we predict the mass of the B_c to be $M_{B_c} = 6.894(19)_{\text{stat}}(8)_{\text{syst}}$ GeV. Combining the B_c, the hyperfine splitting and the vector radial splitting, we predict $M_{B_c'} = 6.922(19)_{\text{stat}}(8)_{\text{syst}}$ GeV. Our prediction for the 0^+ state is $M_{B_{c0}^*} = 6.707(14)_{\text{stat}}(8)_{\text{syst}}$ GeV.

Finally, in Fig. 18 we update the complete spectrum plot for gold-plated mesons to include the new results from this paper, as well as updated experimental val-
FIG. 15. A comparison of results for the B_s meson mass from different formalisms for the b quark in lattice QCD. The experimental average value is given at the top with accompanying vertical lines.

FIG. 16. A comparison of results for the B_c meson mass from different formalisms for the b quark in lattice QCD. In each case the result from the hh method is given above the result for the hs method. The experimental average value is given at the top with accompanying vertical lines.

FIG. 17. The spectrum of gold-plated B, B_s and B_c meson states from this calculation, compared to experiment where results exist. Predictions are marked with open red circles. None of the meson masses included here were used to tune parameters of the action so all the masses are parameter-free results from lattice QCD.

ACKNOWLEDGEMENTS

We are grateful to the MILC collaboration for the use of their gauge configurations and to J. Laiho, P. Lepage and C. Monahan for useful discussions. The results described here were obtained using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service as part of the DiRAC facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the Universities of Cambridge and Glasgow. This work was funded by STFC.

[1] C. Davies, PoS LATTICE2011, 019 (2011), 1203.3862.
[2] J. Laiho, E. Lunghi, and R. Van de Water, PoS LATTICE2011, 018 (2011), 1204.0791.
[3] R. Dowdall et al. (HPQCD Collaboration), Phys.Rev. D85, 054509 (2012), 1110.6887.
FIG. 18. The spectrum of gold-plated mesons comparing HPQCD lattice QCD results to experiment. We distinguish between results used to set the parameters of QCD, results obtained after experiment and results obtained before experimental values were available.

[4] T. C. Hammant, A. G. Hart, G. M. von Hippel, R. R. Horgan, and C. J. Monahan, Phys. Rev. Lett. 107, 112002 (2011), 1105.5309.
[5] J. Daldrop, C. Davies, and R. Dowdall (HPQCD Collaboration), Phys.Rev.Lett. 108, 102003 (2012), 1112.2590.
[6] A. Bazavov et al. (MILC), Phys.Rev. D82, 074501 (2010), 1004.0342.
[7] E. Follana et al. (HPQCD), Phys.Rev. D75, 054502 (2007), hep-lat/0610092.
[8] A. Hart, G. M. von Hippel, and R. R. Horgan (HPQCD), Phys. Rev. D79, 074008 (2009), 0812.0503.
[9] E. B. Gregory et al. (HPQCD), Phys. Rev. D83, 014506 (2011), 1010.3848.
[10] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel, and G. P. Lepage (HPQCD) (2011), 1110.4510.
[11] C. McNeile, C. Davies, E. Follana, K. Hornbostel, and G. Lepage (HPQCD) (2012), 1207.0994.
[12] C. Davies, E. Follana, I. Kendall, G. Lepage, and C. McNeile (HPQCD), Phys.Rev. D81, 034506 (2010), 0910.1229.
[13] C. Davies, C. McNeile, E. Follana, G. Lepage, et al. (HPQCD), Phys.Rev. D82, 114504 (2010), 1008.4018.
[14] B. Thacker and G. Lepage, Phys.Rev. D43, 196 (1991).
[15] G. Lepage, L. Magnea, C. Nakleh, U. Magnea, and K. Hornbostel, Phys.Rev. D46, 4052 (1992), hep-lat/9205007.
[16] A. Gray, I. Allison, C. Davies, E. Dalgic, G. Lepage, et al. (HPQCD), Phys.Rev. D72, 094507 (2005), hep-lat/0507013.
[17] M. Wingate, J. Shigemitsu, C. T. Davies, G. P. Lepage, and H. D. Trottier (HPQCD), Phys.Rev. D67, 054505 (2003), hep-lat/0211014.
[18] H. Na, C. J. Monahan, C. T. Davies, R. Horgan, G. P. Lepage, et al. (HPQCD) (2012), 1202.4914.
[19] G. Lepage and P. B. Mackenzie, Phys.Rev. D48, 2250 (1993), phys. Lett. B., hep-lat/9209022.
[20] G. P. Lepage et al. et al., Nucl. Phys. Proc. Suppl. 106, 12 (2002), hep-lat/0110175.
[21] G. Lepage (Lsqfit and Corrfitter python code for Bayesian fitting is available from http://www.physics.gla.ac.uk/HPQCD/).
[22] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).
[23] R. Mizuk et al. (Belle Collaboration) (2012), 1205.6351.
[24] E. E. Jenkins, Nucl.Phys. B412, 181 (1994), hep-ph/9212295.
[25] C. Bernard (MILC Collaboration), Phys.Rev. D65, 054031 (2002), hep-lat/0111051.
[26] W. Detmold, C.-J. D. Lin, and S. Meinel (2012), 1203.3378.
[27] J. Bulava, M. Donnellan, and R. Sommer (ALPHA Collaboration), PoS LATTICE2010, 303 (2010), 1011.4393.
[28] S. Negishi, H. Matsufuru, and T. Onogi, Prog.Theor.Phys. 117, 275 (2007), hep-lat/0612029.
[29] D. Becirevic, B. Blossier, E. Chang, and B. Haas, Phys.Lett. B679, 231 (2009), 0905.3355.
[30] E. B. Gregory et al. (HPQCD), Phys. Rev. Lett. 104, 022001 (2010), 0909.4462.