Irritated Skin Is Not Sensitive Skin

TO THE EDITOR

I was especially interested in the paper from Harding et al. (2021) on a genomic test on tissue-engineered skin equivalents for the determination of chemical irritation potential. The authors concluded that the expression of a seven-gene panel in human skin equivalents, based on immortalized keratinocytes, in combination with multivariate statistical approaches showed enhanced confidence in the discrimination of skin irritants from nonirritants. Such models are very interesting in the context of European Union directives prohibiting the use of animal testing for cosmetics or other ethical rules worldwide, which exclude the formerly used tests on animals.

However, there is a need to clearly distinguish skin irritation from skin sensitivity. Skin sensitivity is a fine-tuned response by the skin that is a known sensory organ. Sensitive skin, which should better be named reactive or hyperreactive or hypersensitive skin to avoid confusion, and irritated skin (orthergic dermatoses) as well as sensitized (or allergic) skin are very different conditions in reaction to environmental factors (Misery, 2007). Table 1 summarizes the differences. In the introduction of their paper, Harding et al. (2021) kindly cited four references—Farage et al. (2006), Misery et al. (2017), Ständer et al. (2009), and Talagas and Misery (2019)—about skin irritation or sensitivity with some ambiguity because these papers were rather related to sensitive skin.

Using the Delphi method, the special interest group on sensitive skin of the International Forum for the Study of Itch defined sensitive skin as follows: “a syndrome defined by the occurrence of unpleasant sensations (tingling, burning, pain, pruritus, and tingling sensations) in response to stimuli that normally should not provoke such sensations. These unpleasant sensations cannot be explained by lesions attributable to any skin disease. The skin can appear normal or be accompanied by erythema. Sensitive skin can affect all body locations, especially the face” (Misery et al., 2017). The same expert group published a second-position paper on the pathophysiology and management of sensitive skin (Misery et al., 2020). A multifactorial origin was suggested after a discussion of many putative mechanisms. However, it was concluded that sensitive skin is not an immunological disorder but is related to alterations of the skin nervous system and that skin barrier abnormalities are frequently associated but without any direct relationship. Growing evidence suggests that sensitive skin is a neuropathic disorder (Huet and Misery, 2019).

Sensitive skin is related to the characteristics of the subject’s skin, whereas skin irritation is related to the characteristics of a product. When a chemical is applied, it will induce skin irritation on all subjects if this product is irritant, but it will induce paresthetic sensations only in patients with sensitive skin. An in vitro test for sensitive skin would test neurocutaneous interactions (Sakka et al., 2018), whereas an in vitro test for skin irritation would test the effects of chemicals on the skin itself, as shown in this study (Harding et al., 2021).

The authors recognized that the lack of a neuronal and immune component highlights the limitations of their elegant model (Harding et al., 2021). Consequently, Harding et al. (2021) did not find the same gene signatures as other authors who performed transcriptomic studies on skin biopsies from subjects with sensitive skin (Bataille et al., 2019; Harding et al., 2021; Kim et al., 2015, 2014a; Yang et al., 2017). In these studies on sensitive skin, previous works found upregulations of genes involved in innate immunity, such as IGHA1/2, CDH1, HLA-C, toll-like receptor 1 gene TLR1, S100A8, and the noncoding gene GATA3-AS1 (Kim et al., 2014a; Yang et al., 2017), or a major role of adiponectin deficiency (Kim et al., 2015). Previous studies also found differentially expressed genes involved in the functions of Merkel cells and sensory neurons, such as DOCK9 or PIEZO2 (Yang et al., 2017). Regarding keratinocytes, studies on

Table 1. Different Types of Skin Reactions

Type	Irritated Skin	Allergic Skin	Sensitive Skin	Atopic Skin
Pathophysiology	Chemical reaction	Allergy	Neuropathic disorder	Atopy
Triggering factors	Irritant chemicals	Allergens	Physicochemical factors	Atopens, stress
Affected individuals	All	Allergic	Reactive	Atopic
Area	Area of application	Area of application and beyond	Area of application and beyond	Widespread
Objective symptoms	Erythema	Erythema, vesicles	Erythema	Erythema, vesicles
Subjective symptoms	Pain	Pruritus	Paresthesia	Pruritus
Epicutaneous tests	Irritative type	Eczema	Negative	Eczema
In vitro tests	Specific to irritants	Specific to allergens	Capsaicin, lactic acid	None

Cite this article as: JID Innovations 2021;1:100031
10.1016/j.xjidi.2021.100031

© 2021 The Author. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
sensitive skin mainly found upregulations of CDH1 (encoding for E-cadherin), keratin 27 gene K27, CLDN5, ANXA5, and ERBB4 (Kim et al., 2014a; Yang et al., 2017).

Harding et al. (2021) identified a putative seven-gene panel: IL6, PTGS2, ATF3, TRPV3, MAP3K8, HMGB2, and matrix metalloproteinase 3 gene MMP3. These markers were not found in transcriptomic studies on sensitive skin (Kim et al., 2014b; Yang et al., 2017), which supports that irritated skin is not sensitive skin. Further comparative studies for sensitive skin and irritation transcriptomes would be highly interesting to better understand the shared and/or distinct molecular players and pathways and what clinical results might be expected.

In practice, the determination of a chemical irritation potential of a substance using Harding’s elegant technique (Harding et al., 2021) should discourage its use in topicals (or only in low concentrations), but it may not predict the skin reactivity of individuals with sensitive skin.

CONFLICT OF INTEREST
LM states conflict of interest with BASF, Bayer, Beiersdorf, Biolerma, Clarins, Laboratories Expanscience, Galderma, Gilbert, Pierre Fabre, La Roche-Posay, Solalia Group, and Uriage.

Laurent Misery

1LINK, University of Western Brittany, Brest, France; and 2Department of Dermatology, University Hospital of Brest, Brest, France

*Corresponding author
e-mail: laurent.misery@chu-brest.fr

REFERENCES
Bataille A, Le Gall-Ianotto C, Genin E, Misery L. Sensitive skin: lessons from transcriptomic studies. Front Med (Lausanne) 2019;6:115.

Farage MA, Katsarou A, Maibach HI. Sensory, clinical and physiological factors in sensitive skin: a review. Contact Dermatitis 2006;55:1–14.

Harding AL, Murdoch C, Danby S, Hasan MZ, Nakanishi H, Furuno T, et al. Determination of chemical irritation potential using a defined gene signature set on tissue-engineered human skin equivalents. JID Innov 2021;1:100011.

Huet F, Misery L. Sensitive skin is a neuropathic disorder. Exp Dermatol 2019;28:1470–3.

Kim EJ, Lee DH, Kim YK, Eun HC, Chung JH. Adiponectin deficiency contributes to sensitivity in human skin. J Invest Dermatol 2015;135:2331–4.

Kim EJ, Lee DH, Kim YK, Kim MK, Kim JY, Lee MJ, et al. Decreased ATP synthesis and lower pH may lead to abnormal muscle contraction and skin sensitivity in human skin. J Dermatol Sci 2014a;76:214–21.

Kim HO, Kim JH, Chung BY, Choi MG, Park CW. Increased expression of the aryl hydrocarbon receptor in patients with chronic inflammatory skin diseases. Exp Dermatol 2014b;23:278–81.

Misery L. How the skin reacts to environmental factors. J Eur Acad Dermatol Venereol 2007;21(Suppl. 2):5–8.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/