Improving Out-of-Distribution Generalization of Text-Matching Recommendation Systems

Parikshit Bansal
Microsoft Research
parikshitb52@gmail.com

Yashoteja Prabhu
Microsoft Research
yprabhu@microsoft.com

Emre Kıcıman
Microsoft Research
emrek@microsoft.com

Amit Sharma
Microsoft Research
amshar@microsoft.com

Abstract

Given a user’s input text, text-matching recommender systems output relevant items by comparing the input text to available items’ description, such as product-to-product recommendation on e-commerce platforms. As users’ interests and item inventory are expected to change, it is important for a text-matching system to generalize to data shifts, a task known as out-of-distribution (OOD) generalization. However, we find that the popular approach of fine-tuning a large, base language model on paired item relevance data (e.g., user clicks) can be counter-productive for OOD generalization. For a product recommendation task, fine-tuning obtains worse accuracy than the base model when recommending items in a new category or for a future time period. To explain this generalization failure, we consider an intervention-based importance metric, which shows that a fine-tuned model captures spurious correlations and fails to learn the causal features that determine the relevance between any two text inputs. Moreover, standard methods for causal regularization do not apply in this setting, because unlike in images, there exist no universally spurious features in a text-matching task (the same token may be spurious or causal depending on the text it is being matched to). For OOD generalization on text inputs, therefore, we highlight a different goal: avoiding high importance scores for certain features. We do so using an intervention-based regularizer that constrains the importance score of any token on the model’s relevance score to be similar to the base model. Results on Amazon product and 3 question recommendation datasets show that our proposed regularizer improves generalization for both in-distribution and OOD evaluation, especially in difficult scenarios when the base model is not accurate.

1 Introduction

In item-to-item recommendation [Adomavicius and Tuzhilin (2005)], the goal is to output a list of relevant items given an input item. Many such recommender systems utilize the text content of an item, such as recommending relevant questions given a question in an online forum [Wang et al. (2018)], suggesting relevant products given a product title [Linden et al. (2003)], or predicting relevant ads given a search engine query [Broder et al. (2008)]. A popular way for training these text-matching recommender systems is to fine-tune text embeddings from a base language model like BERT using supervised user feedback (such as clicks). For example, one may use a contrastive loss to ensure that given an input query, embedding of another user-labelled relevant item is closer to it than any other item [Dahiya et al. (2021); Xiong et al. (2020); or a standard supervised loss to ensure that embeddings of items within each labelled pair are similar [Reimers and Gurevych (2019)]. Pairwise
distances on the learnt embeddings are then used to rank candidate items for recommendation, in a bi-encoder architecture Reimers and Gurevych (2019).

However, the generalizability of the fine-tuned embeddings to item distributions beyond the user-labelled data has received little attention. Distribution shifts are common in recommendation systems, such as when new product categories are added to an e-commerce platform, the list of recommendable items is modified, or the popularity of items changes over time. As a result, after a recommender model is deployed, it is likely to encounter out-of-distribution data compared to its training set.

For out-of-distribution generalization, we find that fine-tuned models using relevance labels can be worse than the pre-trained base model that they start from. On a product recommendations dataset from Amazon, while fine-tuning always increases in-distribution accuracy, the accuracy of the fine-tuned model on unseen product categories is lower than that of the base model. We find a similar result on question-to-question recommendation on online forums (sentence matching task Reimers and Gurevych (2019); Thakur et al. (2020)). Training on one forum’s data and evaluating on another can result in lower accuracy compared to the base model, especially when the forums are farther apart in content (e.g., general-purpose Quora versus technical forums like AskUbuntu and SuperUser).

To improve generalizability, we consider a causal graph for the relevance function’s computation and highlight the difficulty of not having universally spurious tokens for the text-matching task. Instead, we argue that avoiding disproportionately high importance scores for tokens can be a viable way to regularize for OOD generalization. Specifically, we propose ITVReg, a method that constrains the importance of tokens to be similar to that in the base model, which has been trained on a larger and more diverse set and thus less likely to share the same spurious patterns. To do so, the method utilizes interventions on the training data (e.g., by masking certain tokens) to create OOD queries. We also provide a data augmentation version of our method for computational efficiency; and a simpler regularizer (OutReg) that makes the model’s output equal to the base model’s output.

We evaluate ITVReg on OOD data for product title and question recommendation tasks and find that it improves OOD accuracy of naively finetuned models. Compared to a baseline of directly regularizing a model’s predictions to the base model, ITVReg performs the best under reasonable OOD shifts, where exploiting training data is useful. Interestingly, ITVReg also helps accuracy on an IID test set: it increases accuracy over low-frequency, “tail” items. Our contributions include,

- When new items (of a different category or from a later time) are introduced, state-of-the-art models for text-matching recommendation are worse than the base model on which they are fine-tuned.
- We characterize how new items break correlation between tokens of the query and candidate items; thus methods overfitting to those correlations fail.
- We propose a regularizer based on an interventional measure of token importance that improves OOD generalization on two benchmark tasks.

2 Related Work

Our work connects recommender systems, sentence matching, and OOD generalization literature.

Text-matching recommendation systems. Among item-to-item recommendation systems, text-matching is a popular technique since many items can be characterized through their text, e.g., product-to-product recommendation on e-commerce websites or question-to-question recommendation on online forums. Given an input query (such as a product’s title or description), the goal is to find the most relevant items. State-of-the-art models use dense text retrieval techniques Xiong et al. (2020); Karpukhin et al. (2020), based on a pre-trained base model like BERT Devlin et al. (2018) for the initial encoding. Then, either a bi-encoder or cross-encoder architecture Thakur et al. (2020); Karpukhin et al. (2020) is trained for learning the similarity between any two items. The former is computationally efficient while the latter is more accurate but inefficient Reimers and Gurevych (2019). Since recommender systems often deal with a large number of items, we restrict ourselves to bi-encoders. Contrastive loss with negative mining Yu et al. (2022); Dahiya et al. (2021); Hoang et al. (2022) is a popular way to train a bi-encoder model because recommender systems usually have one-sided feedback on the relevant pairs of items.

In addition to having a short text description about the item, recent work augments training data with longer descriptions Dahiya et al. (2021) or user-item graphs Mittal et al. (2021); Sami et al. (2021) to
help improve generalization and deal with new users or items. However, we focus on single sentence inputs since they are most common and generalize to almost all domains.

A major concern for recommender systems is the spurious correlations present in training data (e.g., exposure bias [Schnabel and Bennett (2020)] or popularity bias [Abdollahpour et al. (2019)]) and how to avoid them for generalization to new kinds of items or users. While these questions have been explored for user-item recommendation models [Zhou et al. (2021a); He et al. (2022)], text-based item-to-item models have received less attention.

Sentence matching. Recent work on sentence matching task has focused on improving model architectures for better in-distribution accuracy: efficient bi-encoders instead of cross-encoders [Reimers and Gurevych (2019)] or using a different architecture than BERT [Gao and Callan (2021)]. Others have focused on building a better base model, by self-supervision on natural language inference datasets [Lee et al. (2019); Gao et al. (2021); Chang et al. (2020)] or utilizing the stochasticity in model dropout to create training pairs [Gao et al. (2021)]. Closer to our work, Thakur et al. (2020) tackled the problem of domain adaptation by assuming access to unlabelled data from a new distribution, and leveraging a cross encoder to weakly label that data. Rather than domain adaptation, our work focuses on the harder domain generalization problem [Zhou et al. (2021b)] where no data is available a priori from the new domains.

OOD generalization and fine-tuning. Domain generalization in the vision literature [Zhou et al. (2021b)] aims to identify spurious features in image data and remove them from a model’s representation using data augmentation on the spurious feature [Yao et al. (2022)] or through regularization [Chai et al. (2022)]. While recent work has attempted using data augmentations from vision [Xie et al. (2020)], such augmentations are not always useful in text data [Yu et al. (2021)] since it is difficult to obtain universal augmentations. For instance, in the recommendation scenario, certain tokens (e.g., brand of a product) may be both spurious and causal depending on the user intent (e.g., substitute or accessory for a product).

Given the prevalence of pre-trained base models, another direction is to utilize the base models for OOD generalization since they are trained on larger, diverse data [Hendrycks et al. (2020)]. Recent work proposes fine-tuning-based OOD generalization on image classification [Kumar et al. (2022); Wortzman et al. (2021); Cha et al. (2022)], but this direction has not been explored for text models or contrastive loss, especially in the recommendations context.

3 Distribution shifts in recommendation

3.1 Review of SOTA recommendation models

Let X be the set of input queries and Z be the set of candidate items. Let the train data be $(X_i, Z_i, R_{ij})_{i, j, 1, \ldots, N}$, where X_i, Z_i correspond to the query and item text respectively and R_{ij} is the relevance or similarity score between X_i, Z_i. For each query X, the text-matching recommendation problem is to output a ranked list of k items $Z_k \subset Z$.

Encoder. We define $f_0 : X \rightarrow \mathbb{R}^N$ as our encoder, parameterised by θ. We use θ_0 as parameters for Base model and hence $f_0(\cdot)$ as the Base encoder. We assume that f outputs unit norm embeddings, i.e. $\|f_0(X)\|_2 = 1$ and $\|f_0(Z)\|_2 = 1$.

Training. For training the recommendation model, state-of-the-art methods [Dahiya et al. (2021); Xiong et al. (2020)] embed both queries and items in a common space using a large, pre-trained base encoder like BERT that provides the initial embeddings. Thus, we can assume pre-trained base embeddings $f_0(X)$ and $f_0(Z)$ for each query and item respectively. These embeddings are then fine-tuned using a supervised loss on the paired relevance labels. A popular loss is the contrastive loss $Xiong et al. (2021); Dahiya et al. (2021)$ based on sampling negative labels from the query-item pairs that are not labelled as relevant by users. The intuition is to bring closer the embeddings of the relevant pairs while pushing away the embeddings of the non-relevant pairs.

$$L = \max(0, 1 + f_0(X)^\top f_0(Z^+) - f_0(X)^\top f_0(Z^-))$$

(1)

where X, Z^+ and Z^- denote a query, relevant item, and a non-relevant item respectively; and the relevance score of any query-item pair is given by the cosine similarity of their embeddings (equal to...
Figure 1: Causal graph for the data-generating process for query, item and relevance score, \((X, Z, R)\). Spurious tokens \(X_s\) or \(Z_s\) do not cause query-item relevance but are predictive of the relevance score.

\[
\text{Method} \\ \text{IID} & 20.01 & 30.61 \\ \text{OOD} & 38.74 \pm 0.08 & 28.31 \pm 0.17
\]

Table 1: Precision@1 for recommending product titles on Amazon. OOD denotes queries from five categories that were not included in the train data. Even after training on a similar dataset of Amazon titles, the precision of the finetuned model is lower than the base model.

Inference. For a new input query, the model outputs a vector \(\hat{R} \in \mathbb{R}^M\) where \(M\) is number of items, and \(r_j = f_\theta(X)^\top f_\theta(Z_j)\) is its relevance score with \(j\)th item. The \(k\) items with the highest relevance scores, \(Z_k\), are output as recommendations.

Evaluation. The system is typically evaluated on its accuracy in predicting the “ground-truth” relevance labels (e.g., the metric may be precision over the top-\(k\) ranked items). The evaluation data is a held-out random sample of the queries from the same log data as training. This evaluation scheme, however, assumes that the queries and items are independently and identically distributed (IID), at training and deployment time. In practice, this is rarely the case. The distribution of queries \(P(X)\) from users changes over time, in predictable (e.g., seasonal) and unpredictable ways. Similarly, the distribution of candidate items \(P(Z)\) changes based on item availability (e.g., as new item categories are added to a system). Therefore, it is important to evaluate a recommendation model not just on IID, but also on out-of-distribution (OOD) samples. Ideally, the model should obtain high performance on both IID and OOD samples.

3.2 Types of distribution shift

We study three shifts: change in queries \(P(X)\), items \(P(Z)\), and both queries and items \(P(X, Z)\).

Change in \(P(X)\). The distribution of queries changes but the set of candidate recommendations may remain the same. For example, the popularity of certain queries can shoot up due to external events, or the system may be expanded to new queries (e.g., products on another website).

Change in \(P(Z)\). The distribution of candidate items changes while the queries remain the same. For example, an e-commerce platform may alter the eligibility rules for an item to be recommended, or recommend items from a partner website.

Change in both \(P(X)\) and \(P(Z)\). A final scenario is when the distribution of both queries and items changes. For example, introducing a new item category in an online store leads to new queries that can be accessed by user and also be recommended.

While the criteria for relevance (i.e., user intent) can change over time, for simplicity, we assume that \(P(R|Z, X)\) remains constant where \(R\) is the true relevance score. As we show below, even under this favorable assumption, text-matching models can learn patterns that do not generalize.

3.3 Example: OOD data on Amazon products

Let us use the *Amazon Titles* dataset (see Sec. 5.1) to illustrate the problem with OOD generalization for fine-tuned models. Both the input query and candidate items are titles of products on Amazon.com. We simulate a scenario where \(P(X)\) is changed by removing queries from five categories from the train data and evaluating the model on those removed queries using precision@1 metric.
3.4 Explaining the OOD generalization failure

Explanation through causal graph. To understand the failure, consider the schematic causal diagram for the data-generating process of the training set. Figure 1 shows that each query can be broken down into its semantic (causal) component X_c and its spurious component X_s. Same for candidate items, denoted by Z_c and Z_s. The semantic components X_c and Z_c together cause the relevance label. An ideal encoder should only learn the semantic components. However, since the non-semantic components are correlated with the semantic component and can be easier to learn, a fine-tuned encoder may learn the non-semantic components too.

Specifically, when new queries are introduced, the correlation between X_c and X_s can be broken, even as $P(R|X,Z)$ remains the same. Hence, X_s is no longer a good predictor of relevance and any model relying on X_s will fail to generalize. For example, for certain queries in the Amazon data, X_s may correspond to the brand of a query product and X_c the rest of its title. In the training data, the brand (e.g., “samsung”) may be correlated with a single product category (e.g., “smartphone”) and thus an encoder may learn a non-zero weight for the brand to determine the relevance score. However, the correlation may be broken in the evaluation data where the same brand is associated with another product category (e.g., “refrigerator”). We can reason analogously for a change in $P(Z)$.

Explanation through interventional examples. OOD generalization failure is more intuitively understood through intervention-based analysis [Ribeiro et al. (2020)], where we change parts of a query and inspect the model’s prediction. To understand which tokens a model learns as important, we define an importance score s of each token. To compute s for a token, we mask that token and compute the dot product similarity of the masked input’s embedding with the original input’s embedding. [Bastings and Filippova (2020)]

$$s_j = 1 - f_\theta(X)^\top f_\theta(X'_{-j})$$

where X'_{-j} is X with its jth token masked.

Consider a candidate item in the Amazon dataset, "Rowenta Z100 Non Toxic Soleplate Cleaner Kit". Figure 2 (left) shows the importance scores. The base encoder gives almost equal importance to each token, whereas the finetuned encoder is biased towards the token rowe, possibly because Rowenta products tend to be relevant to other Rowenta products. This token obtains such a disproportionately high importance score that the item’s representation (average of all tokens’ representation) is defined by it. Here $rowe \in Z_s$ is a spurious token since relevance may depend on the brand rowenta, but not on rowe alone. When we consider an OOD query having an actual brand called “Rowe”, "Rowe USA Spoke Wrench - Bagged 09-0001", the model matches it to the Rowenta item and other products by Rowenta (see Suppl. Table 9), exposing the spurious correlation learnt by the encoder.

Table 1 compares the precision@1 of the base model (MSMarco Sanh et al. (2019)) and fine-tuned model that is initialized with the base model. As expected, the fine-tuned model improves significantly over the base model on IID test data, almost doubling the precision. However, on the queries from the unseen item categories, the finetuned model performs worse than the base model.
As another example, consider the query, “Soleus Air MS-09 Oscillating Reflective Heater”. The importance scores are in Figure 2 (right). Again, we see that the base encoder gives almost equal importance to all tokens, while the finetuned encoder is biased towards the token ‘reflective’. This happens since ‘reflective’ is a strong matching signal in the train set: products with this token are often marked as relevant to products that have it too. As a result, the top predicted item by the finetuned model is 3M Scotchlite Reflective Tape, Silver, 1-Inch by 36-Inch (not a relevant item, see Suppl. Table 10).

4 Regularization for OOD generalization

The above analysis indicates that fine-tuning encourages a model to learn high importance for certain tokens while forgetting the rest, which is undesirable if the tokens are spuriously associated with the relevance label. However, it is non-trivial to identify the spurious versus semantic tokens. Below we discuss this fundamental limitation and propose two regularizers using the base model.

4.1 Building a Risk Invariance Predictor

As we mentioned in Section 3, in text-matching systems, we expect the distribution of queries P(X), distribution of labels P(Z), or both to change from train to test data. At the same time, we assumed that P(R|X, Z), i.e., the relevance between a query and label remains invariant across distributions. That is, the relevance function g(·|X, Z) (for bi-encoders it can be written as f(X)⊤f(Z), see Sec 3.1) remains invariant. Intuitively, the goal is that the relevance function has similar accuracy on train as well as test data. We can now formally express this intuition of a OOD generalizable relevance function, using the definition of risk invariance from Makar et al. (2022). Let P be a set of distributions over R, X, Z such that P(R|X, Z) remains invariant but the marginal distributions P(X, Z) can vary across the distributions. Then, an optimal predictor can be characterized as follows.

Optimal Risk Invariant Predictor: Define the risk of predictor g on distribution P_t ∈ P as \(R_{P_t}(g) = E_{x,z,r∼P_t} l(g(x,z), r) \), where \(l \) is the loss function. Then, the set of risk-invariant predictors obtain the same risk across all distributions P_t ∈ P, and set of the optimal risk-invariant predictors is defined as the risk-invariant predictors that obtain minimum risk on all distributions.

From the causal graph of Figure 1, we assumed that each query can be broken down into two mutually exclusive subsets of tokens, causal X_c and spurious X_s where X_c ∪ X_s = X, such that only X_c affects the relevance with a label. Similarly, label Z can be broken down into two mutually exclusive subsets of tokens, causal Z_c and spurious Z_s, such that only Z_c affects the relevance with a query. Thus, an intuitive way to achieve risk invariance is to build a predictor g for relevance that only depends on X_c and Z_c for any query and label, P(R|X_c, Z_c).

From OOD generalization literature on images (Zhou et al., 2021b; Wang et al., 2022), the goal then is to use one of these methods to learn X_c/Z_c from observed data: regularization (Mahajan et al., 2021; Lee et al., 2022), weighting Sagawa et al. (2019); Yao et al. (2022) or data augmentation Zhou et al. (2021b). However, such a solution relies on assumptions that the spurious features (e.g., image background) 1) are universal for all inputs; 2) can change independently of the semantic features (e.g., object in image). As we describe below, spurious features in text-matching data do not exhibit such a property.

4.2 Problem: Spurious features depends on context

In text-based recommendations, it is difficult to find (a set of) tokens that are universally spurious, since spuriousness depends on context. For example, in our example with “samsung”-products (“smartphone” and “refrigerator”), the brand was a spurious feature for learning the relevance score. However, when looking for a smartphone accessory, the brand is no longer spurious (in fact, it is the semantic feature). Thus, the subset X_c for a query may change based on the label, and similarly, the subset Z_c for a label may change based on different queries. The second assumption that tokens can be changed independently is also less plausible. Possibly spurious tokens like “samsung” can be associated with other parts of the query (e.g., product code or name); it is hard to remove them.

Thus, while there are distribution shifts in text-based queries and items, it is difficult to find universal spurious features that can be modified. As a result, prior work (Gao et al., 2021) has found that
methods based on universal data augmentations (e.g., masking certain parts of query, adding a random word) do not work (as we also show in our evaluation).

Therefore, fully removing the influence of any token can be counter-productive. Rather than removing the influence of certain tokens, our goal is to ensure that no token is under-weighted such that it ceases to be important (ignored) for relevance prediction. Since we saw that finetuning on text-matching models tend to assign very high weights to certain tokens, we can reframe our goal: to avoid learning large importance scores for some tokens that may lead to ignoring other tokens, and thus not generalize to new data.

How do we decide a threshold for “large” when we regularize importance scores? This is important since we cannot expect each token in a query or label to have the same importance, yet we would like to ensure that tokens do not get disproportionately large importance scores. Rather than choosing arbitrary thresholds on importance scores (e.g., twice than other tokens, K times the mean score, etc.), a good proxy can be the base model. We assume that the base model has been trained on larger, diverse data and is thus unlikely to encode the same spurious patterns.

We present two methods in this direction below. The first is a brute-force attempt, that forces not just word) do not work (as we also show in our evaluation).

The independent change may be any text transformation, such as masking, deleting, replacing the token subset, etc. By definition, an intervention deviates from the original distribution and its modified query with the token masked. More generally, given a text input, we define an intervention (OOD shifts. In Section 3.3, we defined token importance as the similarity between an original query and its modified query with the token masked. Since both the fine-tuned model and the base model have the same architecture, a straightforward way to avoid very high importance scores is to make the neural network output be the same as the base model. This is a relaxation of the ideal goal of ensuring that the accuracy of the finetuned model matches models tend to assign very high weights to certain tokens, we can reframe our goal: to ensure that tokens do not get disproportionately large importance scores. Rather than choosing arbitrary thresholds on importance scores (e.g., twice than other tokens, K times the mean score, etc.), a good proxy can be the base model. We assume that the base model has been trained on larger, diverse data and is thus unlikely to encode the same spurious patterns.

4.3 Output-based regularization

Since both the fine-tuned model and the base model have the same architecture, a straightforward way to avoid very high importance scores is to make the neural network output be the same as the base model. In a bi-encoder architecture for text-matching, we can implement this by enforcing that the finetuned and base encoders output exactly the same representation for an input. Given the finetuning \(f_\theta(\cdot) \) and base \(f_{\theta_0}(\cdot) \) encoders and an input query \(X \), the output regularizer (OutReg) can be written as, \(\| f_\theta(X) - f_{\theta_0}(X) \|^2 \).

This simple regularizer is expected to do well for extreme distribution shifts where learning from IID data may not be that useful, since it constrains the encoder’s representation to be closer to the base encoder. However, the same property is the biggest weakness of OutReg. As a regularization, it is too strong and discourages learning from train data: with a high enough penalty term, the final encoder may be exactly equal to the base encoder.

4.4 Intervention-based regularization

Therefore, we now describe a weaker notion of base model regularization aimed at less extreme OOD shifts. In Section 3.3, we defined token importance as the similarity between an original query and its modified query with the token masked. More generally, given a text input, we define an intervention as an independent change to a subset of the tokens without affecting the rest of the input. The independent change may be any text transformation, such as masking, deleting, replacing the token subset, etc. By definition, an intervention deviates from the original distribution \(P(X) \) that generated the data, thus creating an out-of-distribution sample.

For each input \(X \), we construct an interventional input \(X' \) using a transformation on a random subset \(X_{\text{sub}} \) of the tokens. The key idea behind our regularizer is that for any subset of tokens \(X_{\text{sub}} \), its importance score using the finetuned model should be the same as the importance score using the base model. This is a relaxation of the ideal goal of ensuring that the accuracy of the finetuned model remains the same for \(X \) and \(X' \). Since we do not have the ground-truth relevance labels for \(X' \) (and do not trust the base model to be a good enough proxy for the ground-truth), we regularize on the importance scores. Using Eqn 2 for importance score, the regularizer can be written as,

\[
[(1 - f_\theta(X)^T f_\theta(X')) - (1 - f_{\theta_0}(X)^T f_{\theta_0}(X'))]^2
= (f_\theta(X)^T f_\theta(X') - f_{\theta_0}(X)^T f_{\theta_0}(X'))^2
\]

We call this the Interventional regularizer (ITVR\(\theta_0 \)). The full training loss (where \(L_{\text{ERM}} \) can be the contrastive loss from Eqn 1) is,

\[L_{\text{ERM}} + \lambda \mathbb{E}_X [(f_\theta(X)^T f_\theta(X') - f_{\theta_0}(X)^T f_{\theta_0}(X'))^2] \]
While going from 131K to 1.3M dataset represents a temporal shift where both queries and items’ information. We exclude queries from the 5 most popular second-level categories from the train set, and use them to construct the OOD evaluation set (AmazonCatOOD). The in-distribution validation set also has the categories excluded (AmazonCatRemoved). Thus, the item distribution \(P(Z) \) remains the same while the query distribution \(P(X) \) changes across train and validation. Since \(X, Z \) have been treated symmetrically in our setup, this setups results can also be extrapolated to a case where the label distribution \(P(Z) \) changes while the query distribution \(P(X) \) remains the same.

Fine-tuning. We follow the modeling procedure used in a recent state-of-the-art work Dahiya et al. (2021). We initialize with MSMARCO-DistilBERT-v4 Sanh et al. (2019) and use contrastive loss with hard negative mining. Details are in Supp C.1.
Evaluation metric. We use the $\text{Precision}@1$ metric for evaluation. Given predicted similarities $\hat{R} \in \mathbb{R}^M$ and ground truth similarities R (where r_i is 1 if its a relevant item, otherwise 0), $P@k$ is defined as $P@k = \frac{1}{k} \sum_{l \in \text{rank}_k(\hat{R})} R_l$.

Results. Table 2 shows the IID and OOD P@1 metrics for different recommender models. We first analyze the temporal distribution shift: train on Amazon131K and test on Amazon1.3M. On IID evaluation, ITVReg and Finetuned both obtain the highest P@1 while OutReg obtains the lowest P@1. On OOD evaluation, however, OutReg obtains the highest P@1 followed by ITVReg.

To understand the tradeoff between ITVReg and OutReg, we study how the accuracy of these models would vary as different amounts of OOD data (from 1.3M dataset) is mixed with IID data (validation) for evaluation. This simulates the real-world scenario where new items are progressively added. Specifically, we progressively add 40K new items and their relevant queries from 1.3M to create multiple OOD datasets. As Figure 4 shows, ITVReg is the only method that performs better than Finetuned (line $y = 0$) on P@1 on all OOD datasets. As the distribution shift becomes more extreme, (around 24% of 1.3M OOD data) OutReg surpasses ITVReg indicating that OutReg is more suitable for large distribution shifts.

Next, we consider categorical distribution shift from Table 2. We obtain similar results as the temporal shift: on the OOD evaluation, OutReg followed by ITVReg are the best performing models. For P@1 on each category, see Suppl. Table 8.

While we looked at adding new queries and items, in practice, OOD shifts are more commonly observed as reweighing of existing items. Hence, in addition to the average IID accuracy, it is important to analyze accuracy of a model at different levels of item popularity. We bin the items according to their frequency in five quantiles i.e. 0-20%, . . . , 80-100%, where lower quantiles denote low-frequency tail and higher quantiles denote head items. Comparing the percentage gain in P@1 of methods wrt the Finetuned model (Fig. 3), we find that OutReg helps on the tail items but suffers a huge drop in P@1 on head items. In comparison, ITVReg achieves best of both worlds, with the same gains on tail and significantly lower drop on head items. Qualitative results for all methods for the two queries from Section 3.4 are in Suppl. F.

Importance Scores We also evaluate importance scores for the two qualitative examples presented in Fig. 2 after ITVReg regularisation in Fig 5. The importance scores for the problematic tokens rowe and reflective are now in a reasonable range of value guided by the Base model.

5.2 Question recommendation

Datasets. We use the setup of Shah et al. (2018) for our experiments. The AskUbuntu and SuperUser data comes from Stack Exchange, a family of technical community support forums. Both datasets contain around one million pairs of sentences, labeled either zero or one denoting a negative and a positive pair. Simulating a cold-start scenario with limited items, we present main results on 10%
subsample of these datasets. Results on the complete datasets are in Suppl G. To study generalization under an extreme distribution shift, we additionally evaluate on a non-technical forum, Quora-Question Pairs dataset Wang et al. (2018).

Fine-tuning. We adopt the same modeling procedure as Thakur et al. (2020), training with a MSE loss between the ground truth and the predicted relevance score. We initialize the models using two different Base models: NLI-DistilBERT Sanh et al. (2019) MSMARCO-DistilBERT-v4 Sanh et al. (2019) the latter having a substantially higher accuracy on our task. For more details on training, refer Supp C.2.

Evaluation metric. We use AUC(0.05) as the evaluation metric as in Shah et al. (2018). AUC(0.05) is the area under the ROC curve when the false positive rate (fpr) ranges from 0 to 0.05.

Results. Table 3 shows the IID and OOD performance of models trained on the two forum datasets. Let us first consider AUC on evaluation within the technical forums and using the less accurate NLI-DistilBERT Base model. On both IID and OOD evaluation, ITVReg obtains the highest AUC for both datasets. On OOD evaluation, MaskReg and ITVAug have the second-best AUC for SuperUser and AskUbuntu evaluation sets respectively. OutReg has comparatively lower AUC because the base model is not accurate: ITVReg obtains > 10 points higher AUC on both OOD datasets.

Using the more accurate MSMARCO-DistilBERT-v4, accuracy of both OutReg and ITVReg increases. P@1 on OOD data of OutReg is comparable to ITVReg on AskUbuntu evaluation and 1 point higher than ITVReg on SuperUser evaluation. In comparison, MaskReg and SimCSE fail to utilise the better Base model. When evaluated on an extreme distribution shift (Quora), Base model performs the best on OOD evaluation (Table 3), followed by OutReg. Finetuning on AskUbuntu or SuperUser adds no information.

6 Discussion and Conclusion

We identified limitations of text-matching recommender systems on OOD generalization, showing that state-of-the-art models often perform worse than the base model on which they were finetuned. We proposed two regularizers using the base model, ITVReg and OutReg. Compared to other methods, ITVReg obtains high IID accuracy and OOD accuracy, thus exploiting the best of the Base model and the training data. However, under extreme distribution shifts where IID training data is not useful, OutReg or the Base model is more suitable.

Limitations

We studied a specific setting of short text-matching recommender systems and our results may not apply to other kinds of text-based recommender systems that utilize longer descriptions or other metadata. Another limitation is that all our experiments use offline data collected from recommender
Base Model	Method	Train : AskUbuntu	AskUbuntu	Train : SuperUser	SuperUser	Quora	Quora
NLI	Base	31.80	48.50	14.00	31.80	48.50	14.00
	Finetuned	65.68 ± 0.54	72.70 ± 0.75	12.74 ± 0.43	47.98 ± 6.63	75.70 ± 1.49	12.82 ± 0.49
	MaskReg	71.51 ± 0.16	77.55 ± 0.37	12.44 ± 0.48	53.83 ± 3.07	81.97 ± 0.33	15.13 ± 0.17
	SimCSE	67.51 ± 1.28	73.46 ± 2.24	12.87 ± 0.36	45.13 ± 4.22	76.80 ± 0.68	15.41 ± 0.20
	OutReg	56.86 ± 0.69	66.28 ± 0.66	14.09 ± 0.18	36.52 ± 1.53	71.11 ± 0.86	14.44 ± 0.28
	ITVAug	70.10 ± 0.80	76.98 ± 0.43	13.74 ± 0.12	45.86 ± 4.10	81.24 ± 0.11	14.22 ± 0.45
	ITVReg	71.24 ± 0.62	78.89 ± 0.59	13.57 ± 0.32	47.00 ± 1.58	83.40 ± 0.54	14.07 ± 0.18
MSMARCO	Base	34.01	80.75	18.39	34.01	80.75	18.39
	Finetuned	68.11 ± 0.09	75.73 ± 0.74	14.05 ± 0.19	39.27 ± 2.16	79.28 ± 0.94	14.35 ± 0.20
	MaskReg	72.59 ± 0.41	79.00 ± 0.08	12.63 ± 0.36	52.05 ± 6.53	83.53 ± 0.53	13.65 ± 0.20
	SimCSE	70.07 ± 0.32	76.54 ± 1.43	14.98 ± 0.08	48.97 ± 3.28	80.51 ± 0.70	14.70 ± 0.05
	OutReg	73.04 ± 0.77	84.09 ± 0.28	17.16 ± 0.13	60.75 ± 0.84	86.24 ± 0.13	17.64 ± 0.25
	ITVAug	71.17 ± 0.46	80.53 ± 0.23	15.36 ± 0.48	54.85 ± 3.94	84.29 ± 0.13	15.64 ± 0.32
	ITVReg	74.64 ± 0.56	82.86 ± 0.65	16.11 ± 0.36	60.07 ± 2.42	86.24 ± 0.24	16.39 ± 0.31

Table 3: AUC (0.05) using two different base models, NLI-DistilBERT-Base and MSMARCO-DistilBERT-Base. First three columns correspond to training on AskUbuntu and the last three training on SuperUser. When evaluated on technical forums with a weaker base model (NLI), ITVReg obtains the best AUC on both IID and OOD evaluation.

systems. It will be useful to study the performance of proposed methods when deployed on a real-world system that faces distribution shifts. Finally, the potential of our method for improving OOD generalization depends on the quality of the base model.

References
Himan Abdollahpouri, Masoud Mansoury, Robin Burke, and Bamshad Mobasher. 2019. The unfairness of popularity bias in recommendation. *arXiv preprint arXiv:1907.13286*.

Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. *IEEE transactions on knowledge and data engineering, 17*(6):734–749.

Jasmijn Bastings and Katja Filippova. 2020. The elephant in the interpretability room: Why use attention as explanation when we have saliency methods? *arXiv preprint arXiv:2010.05607*.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. 2016. The extreme classification repository: Multi-label datasets and code.

Andrei Z Broder, Peter Ciccolo, Marcus Fontoura, Evgeniy Gabrilovich, Vanja Josifovski, and Lance Riedel. 2008. Search advertising using web relevance feedback. In *Proceedings of the 17th ACM conference on information and knowledge management*, pages 1013–1022.

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. 2022. Domain generalization by mutual-information regularization with pre-trained models. *arXiv preprint arXiv:2203.10789*.

Wei-Cheng Chang, Felix X Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar. 2020. Pre-training tasks for embedding-based large-scale retrieval. *arXiv preprint arXiv:2002.03932*.

Kunal Dahiya, Ananye Agarwal, Deepak Saini, K Gururaj, Jian Jiao, Amit Singh, Sumeet Agarwal, Purushottam Kar, and Manik Varma. 2021. SiameseXML: Siamese networks meet extreme classifiers with 100m labels. In *ICML*.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.

Luyu Gao and Jamie Callan. 2021. Condenser: a pre-training architecture for dense retrieval. *arXiv preprint arXiv:2104.08253*.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive learning of sentence embeddings. *arXiv preprint arXiv:2104.08821*.

Yue He, Zimu Wang, Peng Cui, Hao Zou, Yafeng Zhang, Qiang Cui, and Yong Jiang. 2022. Causpref: Causal preference learning for out-of-distribution recommendation. *arXiv preprint arXiv:2202.03984*.

11
Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Song. 2020. Pretrained transformers improve out-of-distribution robustness. arXiv preprint arXiv:2004.06100.

Trong Nghia Hoang, Anoop Deoras, Tong Zhao, Jin Li, and George Karypis. 2022. Learning personalized item-to-item recommendation metric via implicit feedback. arXiv preprint arXiv:2203.12598.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-domain question answering. arXiv preprint arXiv:2004.04906.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. 2022. Fine-tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 2019. Latent retrieval for weakly supervised open domain question answering. arXiv preprint arXiv:1906.00300.

Yoonho Lee, Huaxiu Yao, and Chelsea Finn. 2022. Diversify and disambiguate: Learning from underspecified data. arXiv preprint arXiv:2202.03418.

Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1):76–80.

Divyat Mahajan, Shruti Tople, and Amit Sharma. 2021. Domain generalization using causal matching. In International Conference on Machine Learning, pages 7313–7324. PMLR.

Maggie Makar, Ben Packer, Dan Moldovan, Davis Blalock, Yoni Halpern, and Alexander D’Amour. 2022. Causally motivated shortcut removal using auxiliary labels. In International Conference on Artificial Intelligence and Statistics, pages 739–766. PMLR.

Anshul Mittal, Noveen Sachdeva, Sheshansh Agrawal, Sumeet Agarwal, Purushottam Kar, and Manik Varma. 2021. Eclare: Extreme classification with label graph correlations. In Proceedings of the Web Conference 2021, pages 3721–3732.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond accuracy: Behavioral testing of nlp models with checklist. arXiv preprint arXiv:2005.04118.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. 2019. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731.

Deepak Saini, Arnav Kumar Jain, Kushal Dave, Jian Jiao, Amit Singh, Ruofei Zhang, and Manik Varma. 2021. Galaxc: Graph neural networks with labelwise attention for extreme classification. In Proceedings of the Web Conference 2021, pages 3733–3744.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Tobias Schnabel and Paul N Bennett. 2020. Debiasing item-to-item recommendations with small annotated datasets. In Fourteenth ACM Conference on Recommender Systems, pages 73–81.

Darsh J Shah, Tao Lei, Alessandro Moschitti, Salvatore Romeo, and Preslav Nakov. 2018. Adversarial domain adaptation for duplicate question detection. arXiv preprint arXiv:1809.02255.

Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. 2020. Augmented sbert: Data augmentation method for improving bi-encoders for pairwise sentence scoring tasks. arXiv preprint arXiv:2010.08240.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461.
Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, and Philip Yu. 2022. Generalizing to unseen domains: A survey on domain generalization. *IEEE Transactions on Knowledge and Data Engineering*.

Mitchell Wortsman, Gabriel Ilharco, Mike Li, Jong Wook Kim, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig Schmidt. 2021. Robust fine-tuning of zero-shot models. *arXiv preprint arXiv:2109.01903*.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian Khabsa, Fei Sun, and Hao Ma. 2020. Clear: Contrastive learning for sentence representation. *arXiv preprint arXiv:2012.15466*.

Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Bolin Ding, and Bin Cui. 2020. Contrastive learning for sequential recommendation. *arXiv preprint arXiv:2010.14395*.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett, Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In *International Conference on Learning Representations*.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett, Junaid Ahmed, and Arnold Overwijk. 2021. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In *ICLR*.

Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. 2022. Improving out-of-distribution robustness via selective augmentation. *arXiv preprint arXiv:2201.00299*.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. 2021. [Are graph augmentations necessary? simple graph contrastive learning for recommendation](https://arxiv.org/abs/2005.14655)

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2022. Self-supervised learning for recommender systems: A survey. *arXiv preprint arXiv:2205.15876*.

Chang Zhou, Jianxin Ma, Jianwei Zhang, Jingren Zhou, and Hongxia Yang. 2021a. Contrastive learning for debiased candidate generation in large-scale recommender systems. In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pages 3985–3995.

Kaityang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. 2021b. Domain generalization in vision: A survey. *arXiv preprint arXiv:2103.02503*.

A Dataset Details

Quora, SuperUser, AskUbuntu The ratio of positives to negatives in *SuperUser, AskUbuntu* is 1:100, while in *Quora* is 4:7.

Amazon131K In *Amazon131K* we have categorical information for 99K labels. The categorical shift experiments are conducted on this filtered data.

B Hyper-parameter Tuning

For *SimCSE* the only choice of hyperparameter is the λ regularisation coefficient. We search over 3 values of λ i.e. 0.01,0.1,1.0 and select 0.1 as the best value. For other methods also we fix λ as 0.1. See Table A.

For *MaskReg* and *ITVReg* another hyperparameter choice is the masking fraction of the input. We search over 2 choices of masking namely masking 50% of input, or 15% of input. We find that 15% works best for *MaskReg* while 50% gives best results for *ITVReg*. We use these parameters for all experiments. For *MaskReg* results are reported in Table 5 while for *ITVReg* results can be seen in Table 11[13][12].

We also try running with lower learning rates but higher learning rate gives better numbers and hence we work with $1e^{-4}$. See Table 6 for reference.
Table 4: SimCSE IID numbers finetuned with base model as MSMARCO-DistilBERT-v4 on complete Quora, AskUbuntu, SuperUser datasets. This shows that 0.1 is the optimal hyperparameter for SimCSE.

Method	Quora	AskUbuntu	Superuser
SimCSE 0.01	54.98	73.70	84.91
SimCSE 0.1	55.40	74.34	86.38
SimCSE 1.0	54.89	74.07	85.41

Table 5: AUC (0.05) for MaskReg with 15% and 50% input token masking. 15% is the optimal masking for MaskReg. The setup is same as in Table 3.

Since we deal with short sentences, the max token length is fixed at 32 which allows for bigger batch sizes (900 for Amazon Titles, 250 for Question Recommendation).

For ITVReg and OutReg we report numbers for various values of hyperparameter λ in Table 7. We can see that for higher values of λ OutReg behaves more like the Base model but the numbers for both ITVReg and OutReg are stable across this wide range of λ.

C Training Details

C.1 AmazonTitle Recommendations Training Details

We follow the modeling procedure used in a recent state-of-the-art work Dahiya et al. (2021). For training, we use contrastive loss with hard negative mining. We initialise the model as MSMARCO-DistilBERT model, and fine-tune it for 200 epochs with a batch size of 900. The only difference from Dahiya et al. (2021)’s setup is that we train only till 200 epochs instead of convergence (300-400 epochs) due to computational constraints. We use Adam optimizer with learning rate of 1e-4.

C.2 Question Recommendations Training Details

We train all the models for 5 epochs with a batch size of 250. We use learning rate of 1e-4 to fine-tune the model. We train the model with a MSE loss between the ground truth and the predicted similarities, as done in Thakur et al. (2020). For Quora on the 10% subset, we train the model for 20 epochs with lr of 1e-4.

D Category-wise P@1 for AmazonCatOOD

We report category wise numbers OOD numbers for AmazonCatOOD (Table 2). All categories have a similar trend. Results can be seen in Table 8.

Learning Rate	2 Epochs	4 Epochs	10 Epochs
1e-5	39.15	45.05	53.40
5e-5	50.67	54.87	57.20
1e-4	52.14	55.54	57.80

Table 6: AUC(0.05) on IID complete Quora with Finetuned method on NLI-DistilBERT-Base model. Higher learning rate and more epochs help in training. For computational efficiency we hence take 4 epochs for complete setting and 20 epochs for 10% Quora subset.
Table 7: AUC (0.05) for different values of the hyperparameter λ. We can see that both ITVReg and OutReg behave well in these reasonable range of λ. OutReg on higher values of hyperparameter imitates the Base model while ITVReg still learns useful information from the data.

Table 8: Category wise numbers OOD numbers for AmazonCatOOD (Table 2). All categories have a similar trend as observed in Table 2. This shows that our results are agnostic to the choice of categories and hold true for any category in general.

E Evaluation Metrics

E.1 Precision@1
Given a query, the model outputs a vector $\hat{R} \in \mathbb{R}^M$, where M is the number of items and \hat{r}_j denotes the similarity between the query and the jth item. We use the Precision@1 metric for evaluation, interpreted as the fraction of queries where the top-predicted item is in the query’s ground-truth relevant items. Given predicted similarities \hat{r} and ground truth similarities r (where r_i is 1 if its a relevant item, otherwise 0), $P@k$ is defined as $P@k = \frac{1}{k} \sum_{l \in \text{rank}_k(\hat{r})} r_l$.

F Qualitative Samples
We give top 5 predicted labels as qualitative samples for "Soleus Air Oscillating Reflective Heater" query in Table 10 and for query "Rowenta Z100 Non Toxic Soleplate Cleaner" in Table 9.

G Complete Dataset Results
For the complete dataset results, we follow the same setup as described before, with the only difference being number of epochs. We run Quora for 4 epochs and SuperUser, Askubuntu for 1 epoch. Results can be seen in Table 11,13,12.

H 10% Dataset Subset Results
Results on 10% subset of the data (most of them are redundant as they overlap with results in main paper) can be seen here: Table 14,16,15.

I Experimental Budget
Computing Infrastructure We use 16GB V100 GPUs for all our experiments.
Training Time Our training time is around 1 hour for each run on Question Recommendation. Amazon dataset takes 8 hrs for training.
Parameters Of Model We use DistilBERT model for all our experiments.
Method	Top 5 Predicted Items
Base	Ridgid 31105 24-Inch Aluminum Pipe **Wrench**
	Ridgid 31115 48-Inch Aluminum Pipe **Wrench**
	Ridgid 31110 36-Inch Aluminum Pipe **Wrench**
	Ridgid 31100 18-Inch Aluminum Pipe **Wrench**
	Craftsman 9-41796 Ratcheting Ready Bit Screwdriver
Finetuned	Rowenta ZD100 Non-Toxic Soleplate Cleaner Kit
	Rowenta DR5015 800 Watt Ultra Steam Brush with Travel Pouch
	Rowenta(R) Stainless Steel Soleplate Cleaning Kit ZD-110
	Rowenta DR8015 Ultrasteam Hand-Held Steam Brush with Travel Pouch, 800-watt
	Rowenta DR8050 Ultrasteam Hand-Held Steam Brush Dual-Voltage with Travel Pouch, 800-watt
OutReg	Rowenta DR8015 Ultrasteam Hand-Held Steam Brush with Travel Pouch, 800-watt
	Rowenta DW4006 Auto Steam Iron 1700W with Airglide Stainless Steel Soleplate Auto-off Anti-Scale, Blue
	Rowenta DR5015 800 Watt Ultra Steam Brush with Travel Pouch
	Rowenta VU2531 Turbo Silence 4-Speed Oscillating Desk Fan, 12-Inch, Bronze
	Rowenta(R) Stainless Steel Soleplate Cleaning Kit ZD-110
MaskReg	Rowenta ZD100 Non-Toxic Soleplate Cleaner Kit
	Rowenta DG8430 Pro Precision Steam Station with 400 hole Stainless Steel soleplate 1800 Watt, Purple
	Rowenta DR5015 800 Watt Ultra Steam Brush with Travel Pouch
	Rowenta DR8015 Ultrasteam Hand-Held Steam Brush with Travel Pouch, 800-watt
SimCSE	Rowenta RH8559 Delta Force 18V Cordless Bagless Energy Star Rated Stick Vacuum Cleaner ...
	Rowenta ZD100 Non-Toxic Soleplate Cleaner Kit
	Rowenta DR8015 Ultrasteam Hand-Held Steam Brush with Travel Pouch, 800-watt
	Rowenta DR8050 Ultrasteam Hand-Held Steam Brush Dual-Voltage with Travel Pouch, 800-watt
ITVReg	**Wrench** Set, Open End Metric 4mm-6mm - SCR-913.00
	Craftsman 6 pc. Universal **Wrench** Set - Metric
	Tusk Spoke **Wrench** Set
	Crescent RD12BK 3/8-Inch Ratcheting Socket **Wrench**
	Allen **Wrench** Set, 10 Pc. Heavy Duty, Extra Long 9 T-handle, Metric Sizes

Table 9: Top 5 predicted items for the query *Rowe USA Spoke Wrench - Bagged 09-0001* given by various methods sorted by relevance. Correct items should be about *wrench* and ITVReg and Base model both give the same. Other models rely on spurious feature i.e. *Rowe* for predicting items, which leads to wrong results.
### Pre-trained Model	Fine-tuning Method	Quora	AskUbuntu	Superuser
NLI-DistilBERT-Base	Base	14.00	31.80	48.50
Finetuned	54.84 ± 0.82	17.50 ± 2.41	29.25 ± 1.10	
MaskReg	56.00 ± 1.15	19.79 ± 0.97	29.53 ± 1.59	
SimCSE	56.24 ± 0.55	21.05 ± 1.57	29.04 ± 2.01	
OutReg	52.69 ± 0.41	17.41 ± 1.16	27.33 ± 0.90	
ITVReg (0.15)	57.19 ± 0.57	19.70 ± 1.33	28.67 ± 0.26	
ITVReg (0.50)	56.64 ± 0.74	20.56 ± 1.07	28.57 ± 1.04	
Base	18.39	54.01		
Finetuned	54.50 ± 0.31	19.79 ± 3.55	30.48 ± 1.33	
MaskReg	56.00 ± 0.60	19.55 ± 3.12	33.71 ± 0.62	
SimCSE	56.29 ± 1.62	19.57 ± 1.54	31.71 ± 0.93	
OutReg	54.41 ± 0.04	32.01 ± 1.72	46.80 ± 1.75	
ITVReg (0.15)	56.63 ± 0.65	20.09 ± 1.46	33.06 ± 1.65	
ITVReg (0.50)	55.98 ± 0.68	19.50 ± 1.77	33.51 ± 0.62	

Table 10: Top 5 predicted items for the query *Soleus Air Oscillating Reflective Heater* given by various methods sorted by relevance. Correct items should be about *Heater* and *ITVReg* and *Base* model both give the same. Other models rely on spurious feature i.e. *Reflective* for predicting items, which leads to wrong results.

Table 11: Trained on Complete Quora for 4 epochs (same hyperparameters as in paper)
Pre-trained Model	Fine-tuning Method	Quora	AskUbuntu	Superuser
NLI-DistilBERT-Base	Base	14.00	31.80	48.50
	Finetuned	11.02 ± 0.43	71.09 ± 1.05	74.90 ± 0.27
	MaskReg	13.36 ± 0.38	77.62 ± 0.31	79.09 ± 0.21
	SimCSE	12.41 ± 0.34	74.73 ± 0.79	77.58 ± 0.11
	OutReg	14.75 ± 0.41	68.18 ± 0.64	72.88 ± 1.14
	ITVReg (0.15)	13.90 ± 0.51	77.54 ± 0.33	79.70 ± 0.31
	ITVReg (0.50)	13.77 ± 0.63	77.75 ± 0.49	81.06 ± 0.32
	Base	18.39	54.01	80.73
	Finetuned	12.01 ± 0.33	70.70 ± 1.16	74.94 ± 0.22
	MaskReg	13.66 ± 0.28	78.04 ± 0.44	79.94 ± 0.26
	SimCSE	13.89 ± 0.37	75.39 ± 0.99	78.53 ± 0.15
	OutReg	17.34 ± 0.26	78.84 ± 0.49	85.01 ± 1.41
	ITVReg (0.15)	14.84 ± 0.53	78.10 ± 0.55	81.19 ± 0.67
	ITVReg (0.50)	15.20 ± 0.41	78.47 ± 0.17	82.27 ± 0.36
MSMARCO-DistilBERT-v4	Base	18.39	54.01	80.73
	Finetuned	12.01 ± 0.33	70.70 ± 1.16	74.94 ± 0.22
	MaskReg	13.66 ± 0.28	78.04 ± 0.44	79.94 ± 0.26
	SimCSE	13.89 ± 0.37	75.39 ± 0.99	78.53 ± 0.15
	OutReg	17.34 ± 0.26	78.84 ± 0.49	85.01 ± 1.41
	ITVReg (0.15)	14.84 ± 0.53	78.10 ± 0.55	81.19 ± 0.67
	ITVReg (0.50)	15.20 ± 0.41	78.47 ± 0.17	82.27 ± 0.36

Table 12: Trained on Complete AskUbuntu for 1 epoch (same hyperparameters as in paper)

Pre-trained Model	Fine-tuning Method	Quora	AskUbuntu	Superuser
NLI-DistilBERT-Base	Base	14.00	31.80	48.50
	Finetuned	33.22 ± 0.82	10.95 ± 1.45	18.56 ± 1.53
	MaskReg	35.02 ± 0.85	12.94 ± 1.05	21.48 ± 1.65
	SimCSE	32.52 ± 0.29	10.82 ± 1.19	20.99 ± 1.13
	OutReg	33.41 ± 0.70	14.91 ± 1.26	25.63 ± 1.67
	ITVReg (0.15)	33.94 ± 1.47	13.73 ± 0.66	22.74 ± 0.59
	ITVReg (0.50)	32.93 ± 0.50	12.33 ± 0.89	20.91 ± 0.52
	Base	18.39	54.01	80.73
	Finetuned	34.15 ± 0.30	13.31 ± 1.29	23.73 ± 1.63
	MaskReg	36.49 ± 0.70	11.89 ± 1.70	25.88 ± 2.49
	SimCSE	34.85 ± 1.32	11.34 ± 1.99	25.63 ± 0.64
	OutReg	38.50 ± 0.29	31.96 ± 3.23	55.98 ± 1.49
	ITVReg (0.15)	38.41 ± 1.09	15.91 ± 2.22	30.95 ± 1.49
	ITVReg (0.50)	35.26 ± 1.09	12.28 ± 1.58	24.61 ± 0.95
MSMARCO-DistilBERT-v4	Base	18.39	54.01	80.73
	Finetuned	34.15 ± 0.30	13.31 ± 1.29	23.73 ± 1.63
	MaskReg	36.49 ± 0.70	11.89 ± 1.70	25.88 ± 2.49
	SimCSE	34.85 ± 1.32	11.34 ± 1.99	25.63 ± 0.64
	OutReg	38.50 ± 0.29	31.96 ± 3.23	55.98 ± 1.49
	ITVReg (0.15)	38.41 ± 1.09	15.91 ± 2.22	30.95 ± 1.49
	ITVReg (0.50)	35.26 ± 1.09	12.28 ± 1.58	24.61 ± 0.95

Table 13: Trained on Complete SuperUser for 1 epoch (same hyperparameters as in paper)

Table 14: Trained on 10% Quora
Table 17: AUC (0.05) using two different base models, NLI-DistilBERT-Base and MSMARCO-DistilBERT-Base. First three columns correspond to training on Quora, middle three to AskUbuntu and the last three training on SuperUser. When evaluated on technical forums with a weaker base model (NLI), ITVReg obtains the best AUC on both IID and OOD evaluation. These are different from Table 16 they run with lower learning rate of 1e-5 and higher number of epochs with best model numbers reported.

Pre-trained Model	Fine-tuning Method	Quora	AskUbuntu	Superuser
NLI-DistilBERT-Base	Base	14.00	31.80	48.50
	Finetuned	12.74 ± 0.43	65.68 ± 0.54	72.70 ± 0.73
	MaskReg	12.44 ± 0.48	71.51 ± 1.16	77.55 ± 0.57
	SimCSE	12.87 ± 0.36	67.31 ± 1.28	73.46 ± 2.24
	OutReg	14.09 ± 0.18	56.86 ± 0.69	66.28 ± 0.66
	ITVReg (0.15)	13.62 ± 0.25	71.45 ± 1.17	78.32 ± 0.58
	ITVReg (0.50)	13.57 ± 0.32	71.24 ± 0.62	78.89 ± 0.59
MSMARCO-DistilBERT-v4	Base	18.39	54.01	80.73
	Finetuned	14.05 ± 0.19	68.11 ± 1.09	75.33 ± 0.74
	MaskReg	12.63 ± 0.36	72.39 ± 0.41	79.00 ± 0.08
	SimCSE	14.98 ± 0.08	70.07 ± 0.32	76.54 ± 1.43
	OutReg	17.16 ± 0.13	73.04 ± 0.77	84.09 ± 0.28
	ITVReg (0.15)	15.67 ± 0.22	74.11 ± 0.58	81.78 ± 0.28
	ITVReg (0.50)	16.11 ± 0.36	74.64 ± 0.56	82.86 ± 0.65

Table 15: Trained on 10% AskUbuntu

Pre-trained Model	Fine-tuning Method	Quora	AskUbuntu	Superuser
NLI-DistilBERT-Base	Base	14.00	31.80	48.50
	Finetuned	12.82 ± 0.49	47.98 ± 6.63	75.70 ± 1.49
	MaskReg	13.13 ± 0.17	33.83 ± 3.07	81.97 ± 0.33
	SimCSE	13.41 ± 0.20	45.03 ± 4.22	76.80 ± 0.68
	OutReg	14.44 ± 0.28	36.52 ± 1.53	71.11 ± 0.86
	ITVReg (0.15)	14.35 ± 0.28	40.10 ± 3.68	82.27 ± 0.38
	ITVReg (0.50)	14.67 ± 0.18	47.00 ± 1.58	83.40 ± 0.54
MSMARCO-DistilBERT-v4	Base	18.39	54.01	80.73
	Finetuned	14.35 ± 0.20	59.27 ± 2.16	79.28 ± 0.94
	MaskReg	13.65 ± 0.20	32.05 ± 6.53	83.53 ± 0.53
	SimCSE	14.70 ± 0.05	48.97 ± 3.28	80.51 ± 0.70
	OutReg	17.64 ± 0.25	60.75 ± 0.84	86.24 ± 0.13
	ITVReg (0.15)	15.94 ± 0.15	53.02 ± 5.42	85.44 ± 0.23
	ITVReg (0.50)	16.39 ± 0.31	60.07 ± 2.42	86.24 ± 0.24

Table 16: Trained on 10% SuperUser