EFFECTS OF DEHYDRATION ON THE PHYSIOCHEMICAL CHARACTERISTICS OF TOMATO, ONION AND PEPPER POWDERED CULINARY BLENDS

Ogori A. F.1, Amove J. M.2, Adoba J. A. 3, Lukas Hleba4, Miroslava Cisarová5, Alexey Glinushkin5,6,7, Alexey Laishevtcev8,9, Anna Derkanosova9, Pigorev Igor2, Sergey Plygun2,10, Mohammad Ali Shariaty10*

Address(es):
1 Department of Food Science and Technology, Federal University of Agriculture, Makurdi, Benue State, Nigeria.
2 Department of Home Science, Faculty of Agriculture, Federal University, Gashua, Gashua, Yobe State, Nigeria.
3 Department of Microbiology, Faculty of Biotechnology and Food Sciences, Federal University of Agriculture in Nitra, Nitra, Slovak Republic.
4 University of SS. Cyril and Methodius, Department of Biology, Faculty of Natural Sciences, Nám. J. Herdú 2, SK-91701 Trnava, Slovak Republic.
5 Doctor of Agricultural Sciences, Head of Department of Resistance Studies, All Russian Research Institute of Phytopathology, Moscow Region, Russia.
6 Professor of the Russian Academy of Sciences, Moscow, Russia.
7 Professor, Orenburg State Agrarian University, Orenburg, Russia.
8 Senior Researcher, Federal Research Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow, 109428, Russia.
9 Laboratory of Biological Control and Antimicrobial Resistance, Orel State University named after I.S. Turgenev, Orel, 302024, Russia.
10 Candidate of Technical Sciences, Associate Professor, Department of service and restaurant business, Voronezh state university of engineering technologies, Voronezh, 394036, Russia.
11 Professor, Vice Rector on Science, Kursk State Agricultural Academy, Kursk, 305021, Russia.
12 European Society of Clinical Microbiology and Infectious Diseases, Basel, 4051, Switzerland.
13 All Russian Research Institute of Phytopathology, Moscow Region, 143050, Russia.

*Corresponding author: ninakelechiolo22@gmail.com, shariatymohammadali@gmail.com

doi: 10.15414/jmbfs.2020.9.5.994-997

ARTICLE INFO
Received 10. 7. 2019
Revised 23. 10. 2019
Accepted 20. 11. 2019
Published 1. 4. 2020

ABSTRACT
Quality evaluation of blends of tomato, onion and pepper powder were studied using standard methods. Blends of tomato, onion and pepper were formulated at different ratio. Sample A (TOP 100/0/0), sample B (TOP 70/25/5), Sample C (TOP 70/20/10), sample D (TOP 70/15/15 and Sample E (TOP 70/10/20). The functional chemical and sensory properties of the sample were evaluated. Result showed decrease in moisture content from 11.70 -9.15 % as the ration of the onion and pepper varies, also wettability of the sample decreases as the ration of onion and pepper were alternated from 2.5 -2.00 g/ml but density of samples increases from 0.80-0.78 g/ml , reconstitution index shows that sample A has the highest value of 8.95g/ml while sample D has the least value of 6.00g/ml , water absorption capacity of sample B has the highest oil absorption capacity value of 2.10% while sample B and E has the least oil absorption capacity of 1.61%. Vitamin C content of sample increases as sample increases as the ratio of onion and pepper were varied with sample E having the highest value of 16.06mg/100g while sample A has the least value of 11.25mg/100g PH of sample decreases with sample E having the highest value of 7.20 while sample A has the least value of 6.95. Sensory evaluation scores of the sample indicates that all sample were moderately liked based on appearance, aroma, taste and overall acceptability. Based on the functional, chemical and sensory properties sample E is preferred.

Keywords: Tomato, Onion, Pepper, Blend, Chemical and Functional Properties

INTRODUCTION
Drying is a process in which water is removed to halt or slow down the growth of spoilage microorganisms, as well triggers certain chemical reactions. Dehydration of foods has removed moisture content to less than 2.5% water % (dry basis) unlike dried foods with more than 2.5% water % (dry basis) (Vega-Mercado et al., 2001). However, drying decreases the water content of the raw product to levels that minimizes its biochemical, chemical and micro-biological deterioration (Owureku-Asure, et al., 2014). Dehydrated vegetable and fruit powders has a longer shelf life and some are packed with essential vitamins and minerals to improve their bio-accessibility. Powdered vegetable and fruits are high in demand, but limited by bland flavors and washed out colors caused by poor extraction, processing and storage technology.

Tomatoes (Solanumlycopersicum) is one of the most widely used and versatile vegetable crops. They are consumed fresh and are also used to manufacture a wide range of processed products (Ray et al., 2016; Santos de souse et al., 2008). However, limited by seasonality and post-harvest losses, and sometimes to total waste (Srivastara and Kulshreshtha, 2013). Processing dehydrated tomato and its product depends certain thermodynamic and functional properties. (Owureku-Asure, et al., 2014).

Peppers (hot and sweet) belong to the Solanaceae family, genus Capsicum.). Red pepper is generally known to be cholesterol free, and have low sodium and caloric contents, and serve as good source of vitamins A and C. In food processing, red pepper is also used as coloring and flavoring agent in sauces, soups, pickles, and pizzas. Like other fresh fruits and vegetables, fresh pepper is a perishable produce and deteriorates within a few days after harvest without proper storage or preservation measures. The perishable nature of pepper can lead to economic losses which are further aggravated by storage and marketing problems and lack of appropriate processing technologies. The major goal in drying fruits and vegetables such as pepper is to reduce the moisture content of desirable levels, usually 5 – 10%, which allows for safe storage over an extended period of time (Owusu-Kwarteng, et al., 2017).

Onion, one of the main ‘bulbs’ of Allium family, is the most commonly used spice in the cuisine and culinary preparations in tropical countries. Onion helps to prevent several diseases such as cancer, tumor cataract, cardiovascular, asthma, ulcer. It is also used as antimicrobial and anti-agitating agents and antioxidant (Mitra et al., 2011).

Vegetables are good sources of micronutrients for humans although its production is limited due to season and regional variations and due to it high
moisture content it is highly perishable there by limiting its storage life and transportation. It is therefore necessary to process vegetables into dehydrated form to prolong shelf life and ease transportation, easily reconstitution, save time and cut off inconveniences during culinary operations. The focus of this work is to determine the physiochemical and functional properties of these powdered blends for food applications.

MATERIAL AND METHODS

Fresh onions, pepper and tomatoes were purchased from Wurukum Market, Makurdi; local packaging materials were purchased from north bank market, Makurdi Benue State.

Methodology

Sample Preparation

Fresh tomatoes, onions and pepper were sorted and washed in clean water and were cut into slices of 5mm thickness using sharp stainless steel knife.

Pre-treatment Prior to dehydration Process

The sliced onions were dipped into solution of 0.2 per cent NaMS(sodium metabisulphite) solution for 5 minutes at room temperature (Sangwan et al., 2010), the sliced tomatoes were dipped in salt solution (0.2% NaMS) for 10 minutes at room temperature (Ladi et al., 2017; Sarker et al., 2014), and 0.1% NaMS + 0.1% CaCl were used to treat matured red pepper.

Dehydration Processes

To get a uniform product, the tomato, onion and pepper sliced were placed singly in layers on trays for drying in hot air oven at predetermined temperatures of 60°C for 10 minutes at room temperature (2010) the sliced tomatoes were dipped in salt solution (0.2% NaMS) for 10 minutes at room temperature. The sliced onions were dipped into solution of 0.2 per cent NaMS for 10 minutes at room temperature (2010). After dehydration, the samples were preserved inside desiccators to prevent re-absorption of moisture and packed in polythene bag for analysis and stored in a dark place for determination of different functional and sensory properties. The detailed procedure of drying is given in Figure 1.

Table 1 Blends Formulation

Samples	Tomato %	Onion %	Pepper %
A	100	0	0
B	70	25	5
C	70	20	10
D	70	15	15
E	70	10	20

Functional Properties

Determination of Bulk Density

50g flour sample was put into a 100ml measuring. The cylinder was tapped several times on a laboratory bench to a constant volume. The volume of sample was recorded.

\[\text{Bulk density (g/cm)} = \frac{\text{Weight of Sample}}{\text{Volume of Sample After Tapping}} \]

Water and oil absorption capacity

This was determined using the method of Lin et al. (1974). One gram of the sample was dispersed into a weighed centrifuge tube with 10ml of distilled water and mixed thoroughly. The mixture was allowed to stand for 1 hour before being centrifuged at 3500rpm for 30 minutes. The excess water (unabsorbed) was decanted and the tube inverted over an absorbent paper to drain dry. The weight of water absorbed was determined by difference. The water absorption capacity was calculated as:

\[\text{WAC%} = \frac{\text{Volume of water used} - \text{Volume of free water}}{\text{Weight of sample used}} \times 100 \]

Wettability and Sinkability

Wettability and sinkability of powders are difficult to separate and they were done in one test. The test was started by spreading five grams of air dried tomato powder on the surface of a filter paper, held tightly between the gaps of two small food cans (just enough to pull) where the cans were opened at both ends. The assembly of the two cans and the filter paper were mounted on glass beaker (500 ml) containing 500 ml distilled water, paring in mind; the height of the surface of the beaker and end of the apparatus is 3 inches. They were left to immerse and then; the time for the powder to be wetted was recorded, on the other hand time taken by the powder to sink down was also recorded (Sulieman et al., 2013).

Reconstitution Index

The reconstitution index of the sample was determined according to method described by Onwuka et al. (2005). Five grams of the sample was dissolved in 50ml of boiling water. The mixture was agitation for 90 seconds and was transferred into a 50ml graduated cylinder and the volume of the sediment was recorded after setting for 30 minutes.

\[\text{RI (g/ml)} = \frac{\text{Volume of sediment}}{\text{Weight of Sample}} \]

Chemical Composition

Determination of Vitamin C

Vitamin C was determined using the method described by AOAC (2012), 10g of the sample was weighed into 250ml flask and 50 ml acetonite was filtered. The filtrate was measured and equal volume of saturated NaCl was added to wash the filtrate. The mixture was shaken then transferred to a separating funnel and the layer of the filtrate was removed. The upper layer was washed again with 100% Potassium trioxocarbonate (IV) (K2CO3), then separated and finally washed with about 10 – 20ml of distilled water. The absorbance was read in a spectrophotometer.

Determination of Lycopene

The low volume hexane extraction method (LVHEM) was performed as in Fish et al. (2002). Approximately 0.6 (determined to the nearest 0.01g) duplicate samples were weighed from each pure into three 240ml amber screw-top vials (Fisher, #03 – 391-9F) that contained 5 ml of 0.05% (w/v) butylatedhydroxytoluene (BHT) in acetone, 5ml of 95% USP grade ethanol, and 10ml of hexane. Purées were stirred on a magnetic stirring plate during sampling. Samples were extracted on an orbital shaker at 180 RPM for 15 minutes of ice. Samples were extracted on an orbital added to each vial and the samples were shaken for an additional 5 minutes on ice. The vials were then left at room temperature for 30 minutes. The vials were then left to immerse and then; the time for the powder to be wetted was recorded, on the other hand time taken by the powder to sink down was also recorded (Sulieman et al., 2013).

Figure 1 Flow chart for the production of powdered tomato onion and pepper blends (Sangwan et al., 2010; Ladi et al., 2017; and Sarker et al., 2014).
temperature for 5 minutes to allow for phase separation. The absorbance of the upper, hexane layer was measured in a 1 cm path length quartz cuvette at 503 nm with blank hexane. The lycopene content of each sample was then estimated using the absorbance at 503 nm and the sample weight (Beerh and Siddappa, 1959; Fish et al., 2002).

Determination of Moisture Content

The moisture content was determined by hot air oven method as described by AOAC crucible. The samples were placed into the hot air oven and dried for 24 hours at 100°C. The crucible and its contents were cooled in the desiccators and their weights taken. The loss in weight was regarded as moisture content and expressed as:

\[\frac{\text{% moisture}}{\text{Weight loss}} \times 100 \]

Where,

W1 = weight of empty dish
W2 = weight of dish and the weight of the sample
W3 = weight of dish and sample after drying

Determination of pH

Five grams of sample was grounded, suspended in 50ml of distilled water and the solution was shaken well. After calibration of pH meter, pH values of the samples solutions were measured (Yusufe et al., 2017).

Sensory Evaluation

The blended tomato, onions and pepper samples were analyzed for taste, texture, flavour, as well as overall acceptability using a 15 – member semi-trained panel, made up of students of the University of Agriculture, Makurdi. A 9-point hedonic score system as highlighted by Sengoe et al. (2015) was used with the following ratings: 9=like extremely, 8=like very much, 7=like moderately, 6=like slightly, 5= neither like or dislike, 4=dislike slightly, 3=dislike moderately, 2=dislike very much, and 1=Dislike extremely.

Statistical Analysis

The data of physio-chemical analysis was subjected to analysis of variance (ANOVA) where the Least Significant Difference (LSD) was adopted to ascertain the difference between samples. Treatment means were compared at p<0.05.

RESULTS AND DISCUSSION

Chemical Properties of Tomato, Onion and Pepper Powder Blends.

The result of the chemical properties of tomato, onion and pepper powder blends presented in table 2. Moisture content of samples shows that sample E has the least moisture content of 9.15 followed by sample D 10.25 followed by sample C and B 11.20, while sample A has the highest moisture content of 11.70. The low moisture content of blends other than sample A is attributed to the addition of onion and pepper in the blends.

The vitamin C content ranges from 13.24 (Sample A) the lowest, 14.16 (Sample B), 14.98 (Sample C), 15.66 (Sample D), 16.12 (Sample E) the highest. The high moisture content of blends other than sample A is attributed to the addition of onion and pepper on the blends. According to Yusufe et al., 2017 vitamin C help the body to convert glucose in the energy.

The lycopene content of samples showed that sample A has the least lycopene content of 11.25, followed by sample B 12.99, followed by sample C 13.47, followed by sample D 14.94, while sample E has the highest lycopene content of 16.06. The high rate of lycopene content is attributed to the addition of onion and pepper on the blends. According to Sousa et al. (2008) tomato and tomato products are good sources of carotenoids in particular lycopene, vitamin C, etc.

Table 2 Chemical Properties of Tomato, Onion and Pepper Powder Blends.

Sample Parameters	Moisture (%)	Vitamin C (mg/100g)	Lycopene (mg/100g)	pH
A	11.70±0.28a	13.24±0.01a	11.25±0.01c	6.95±0.07b
B	11.20±0.28b	14.16±0.00d	12.90±0.01c	7.15±0.07a
C	11.20±0.28a	14.98±0.00c	13.47±0.04c	7.15±0.07a
D	10.25±0.35c	15.66±0.05b	14.94±0.01b	7.15±0.00a
E	9.15±0.21a	16.12±0.00a	16.06±0.04a	7.20±0.00a
LSD	0.74	0.08	0.08	0.16

Values are means±SD duplicate determinations

Table 3 Functional Properties of the tomato, onions and pepper powder blends.

Samples Parameters	WT(g/ml)	BD(g/ml)	RI(g/ml)	WAT(g/ml)	Oil Absorption (%)
ATOP(70/25/5)	2.50±0.71a	0.80±0.03a	8.95±0.21a	3.95±0.35c	1.78±0.28a
BTOP(70/25/5)	2.00±0.00a	0.80±0.03a	6.40±0.82bc	5.30±0.28a	1.61±0.28a
CTOP(70/25/5)	2.50±0.71a	0.81±0.01a	6.85±0.28d	4.35±0.35c	2.17±0.21a
DTOP(70/25/5)	2.00±0.00a	0.78±0.01a	6.00±0.28d	4.15±0.35c	1.82±0.21a
ETOP(70/25/5)	2.00±0.00a	0.81±0.01a	6.70±0.28d	4.55±0.35b	1.61±0.28a
LSD	1.15	0.04	0.066	0.88	0.66

Values are means±SD duplicate determinations

Key

Sample A TOP(70/25/5) = Tomato 100%+ Onions 0% + Pepper 0%
Sample B TOP(70/25/5) = Tomato 70%+ Onions 25% + Pepper 5%
Sample C TOP(70/25/5) = Tomato 70%+ Onions 15% + Pepper 10%
Sample D TOP(70/25/5) = Tomato 70%+ Onions 15% + Pepper 15%
Sample E TOP(70/25/5) = Tomato 70%+ Onions 10% + Pepper 20%

WT = Wettability
BD = Bulk Density
WA = Water Absorption
RI = Recommendation Index
LSD = Least Significant Difference.
Sensory Evaluation of Tomato, Onion and Pepper Powder Blends

Result of sensory attributes of tomato, onion and pepper powder blends are presented in Table 4. Sensory evaluation showed that there was no significant difference in terms of appearance, aroma, taste and overall acceptability of the samples. Sample D has the least appearance score of 7.00, followed by sample A and C 7.59, followed by sample E 7.71, while sample B has the highest score of 7.76. Aroma showed that sample D has the least score 6.76, followed by sample E 7.29, followed by sample B 7.35, followed by sample A 7.47, while sample C has the highest score of 7.59. The taste of blends showed that sample D has the least score for taste 6.29 followed by sample E 7.00 followed by sample A 7.06 followed by sample B 7.24 while sample C has the highest score in terms of taste. The overall acceptability showed that sample D has the least sensory score for overall acceptability followed by sample A, B and C 7.35 while sample E has the highest score of 7.53.

Sample	Appearance	Aroma	Taste	Overall acceptability
A(TOP/00/0)	7.59a	7.47a	7.06a	7.35a
B(TOP/70/25/5)	7.76a	7.35a	7.24a	7.35a
C(TOP/70/20/10)	7.59a	7.59a	7.35a	7.35a
D(TOP/70/15/15)	7.00a	6.76a	6.29a	6.65a
E(TOP/70/10/20)	7.71a	7.29a	7.00a	7.53a
LSD	0.90	0.86	1.14	0.96

Values with different superscript within the same column are significantly different (p<0.05).

Key:
- Sample A TOP/100/00 = Tomato 100+ Onions 0 + Pepper 0
- Sample B TOP/75/25/5 = Tomato 75+ Onions 25 + Pepper 5
- Sample C TOP/70/20/10 = Tomato 70+ Onions 20 + Pepper 10
- Sample D TOP/70/15/15 = Tomato 70+ Onions 15 + Pepper 15
- Sample E TOP/70/10/20 = Tomato 70+ Onions 10 + Pepper 20
- LSD = Least Significant Difference.

CONCLUSIONS

The quality characteristics of tomato, onions and pepper powder blends was determined. Result of the study showed that, functional properties of tomato, onion and pepper powder blends were evaluated and sample E (Tomato 70+ Onions 10+ Pepper 20) was recorded to have highest values for functional properties among the samples making it the best sample for this study. Based on the chemical properties of powder blends determined, sample E have high level of vitamin C and lycopene content. Based on the sensory evaluation carried out on the tomato, onions and pepper blends, sample E having good sensory attributes is most preferred.

Consent: Written consent was obtained from all participants prior to interview. All information obtained in the study was stored confidential.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

REFERENCES

Abadio, E. M. B., Dominques, A. M., Borges, S. V. and Oliveira, V. A. and Oliveira, V.A. (2004). Physical properties of powdered pineapple (Ananascomosus) juice-effect of malt dextrin concentration and atomization speed. Journal of Food Engineering, 64: 285-287.

Abasi, S., Mousavi, S. M. Mohebi, M. and Kiani, S. (2009). Effect of Time and Temperature on moisture content, shrinkage, and rehydration of dried onion. Iranian Journal of Chemical Engineering, 6(3): 78 – 82.

Ade-Omosaye, B.I.O., Rastogi, N.K, Angbersbach, A. and Knorr, D. (2002). Osmotic Dehydration of Bell peppers: Influence of high intensity electric field pulses and elevated temperature treatment. J. Food Eng, 54:35-43.

Akpinar, E. K. Bicer, Y. and Yildiz, C. (2003). Thin Layer Drying of Red Pepper. J. Food Eng, 59, 99-104.

Alegondra, M., Rojas, G., Gemma, O., Robert, S.F. and Martin-Belloso, O. (2009). The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables. Int. J. Food Sci. Tech., 44, 875-889.

Aguelovna, T. and Warthsen, J. (2000). Lycopene stability in tomato powders. Journal of Food Science 65: 67-70.

Araujo, J.C. and Tellhado, F.P. (2015). Organic Food; A comparative Study of the effect of tomato cultivars and cultivation conditions on the physio-chemical properties. Journal of Foods Science, 4: 263-270.

Arshad, M. S., Sohalb, M., Nadeem, M., Saeed, F., Imran, A., Jaed, A., Amjad, Z. and Batool, S.M. (2017). Status and trends of nutraceuticals from onion and onion by-products. A Critical Renewn. Arshad et a., Cogent Food & Agriculture,3: 234-244.

Arslan, D. & Ozcan, M.M. (2011). Dehydration of red bell-pepper (Capsicum annum L); Change in drying behavior, colour and antioxidant content. Food Bioprocess Technology, 89:504-513.

Basher, N., Bhat, M.A., Dar, B.N. & Shad, M.A. (2014). Effect of Different drying methods on the quality of tomates. Advances in Food Science, 35(2): 21-27.

Canine-Adams, K., Clinton, S.K., King, J.L., Lindshied, B.L., Wharton, C., Jeffery, E. & Erdman, J.W. (2004). The growth of the dunning R-3327-H transplantableprostateadenocarcinoma in ratsfed diets containing tomato, broccoli, lycopen, or receiving finasteride treatment. FASEB Journal, 18(8), 86-91.

Catalano, P., Fucci, F., Giametta, F., Penna, A.L. & Fianza, G.L. (2013). Experimental System and tests to optimize a tomato drying process. The Open Agriculture Journal, 7, 73-79.

Chan, A. (2016). Drying technology research for vegetable powder production: retrieved from https://www.linkedin.com/pulse/drying-technology-research-vegetable-powder.

AOAC (2012). Official Methods of Analysis. 18th Ed. American Association of Analytical Chemists, Inc., Washington.

Banushinya, E. I. & Banushiya, O.M. (2011). Tiger nut: as a plant, its derivatives and benefits. African Journal of Food Agriculture, Nutrition and Development, 11(5). https://doi.org/10.4314/afrjand.v11i5.70443.

Benchamaporn, P., Duangkhae, K. & Sophon, B. (2009). Effect of Addition of Antioxidants on the Oxidative Stability of Refined Bleached and Deodorized Palm Olein. Kasetsart Journal of Natural Science, 43, 370 – 377.

Ezebor, F., Igye, C.C., Owolabi, F.A.T. & Okoh, S.O. (2005).Comparison of the physic-Chemical Characteristics, oxidative and hydrolytic stabilities of oil and fat of cyperus esculentus L. and butyrospermum parkii (shea nut) from Middle-Belt States of Nigeria. Nigerian Food Journal, 23, 33-39. https://doi.org/10.4314/nfj.v23i1.33596.

FAO. (1988). Traditional Food Plants: Food and Nutrition Paper 42 Rome 239-242.

Moore (2004) Documents Prepared for Bottlegreen for the Product Tiger White: www.tigerwhitedrinks.com Copyright Miam Ltd. 1-22.

Nadeem, M., Abdullah, M., Hussain, I., Irayat, S., Javid, A. & Zahoor, Y. (2013). Antioxidant Potential of Moringa oleifera Leaf Extract for the Stabilisation of Butter at Refrigeration Temperature. Czech Journal of Food Science, 31, 332-339. https://doi.org/10.17221/366/2012-cjfs.

Ndubuisi, L. C. (2009). Evaluation of food potentials of tiger nut tubers (cyperus esculentus) and its products (milk, coffee and wine).. Department of home science, nutrition and dietetics, university of nigeria, nsukka. Theses N.O. PG/M.SC/03/34134.

Olagunju, A.O. (2009). Evaluation of food potentials of tiger nut seed (Cyperus esculentus) using 23 full factorial design. M. Sc. Thesis, Dep. of Chemical Engineering, Federal Univ. of Technology, Minna, Niger State, Nigeria.

Okairo, J. N. C., Mordi, J. I., Ozumba, A. U., Solomon, H.M. & Olatunji, O. (2003). Preliminary studies on the characterization of contaminants in tiger nut (Yellow variety). In Proceedings of 27th annual Nigerian Institute of Food Science and Technology (NIFST) conference, 210-211.

Sadouni, R. & Ali Ahmed, D. (2017). Studies on physico-chemical characteristics and fatty acid composition of commercially available Algerian frying edible oils. Agriculture Department, Faculty of Biology and Agriculture, “Mouloud Mammeri” University of Tizi-Ouzzou, 15000, Algeria. International Food Research Journal, 24(1): 60-67.

Shaker, M. A., Ahmed, M. Gaafar, Amany, M. B. & Shereen, L. N. (2009). Chufa Tubers (Cyperus esculentus L.): As a New Source. World Applied Sciences Journal, 7(2), 151-156.

TTSL. (2005). Tigernuts. Chufas. Souchet. Ermandelain. Pois Sucrés: Tigernut Traders, S.L. Export. www.tigernut.com; http://www.tigernut.com/product3.htm