NONEXISTENCE FOR COMPLETE KÄHLER EINSTEIN METRICS ON SOME NONCOMPACT MANIFOLDS

PENG GAO, SHING-TUNG YAU, AND WUBIN ZHOU

Abstract. Let M be a compact Kähler manifold and N be a subvariety with codimension greater than or equal to 2. We show that there are no complete Kähler–Einstein metrics on $M - N$. As an application, let E be an exceptional divisor of M. Then $M - E$ cannot admit any complete Kähler–Einstein metric if blow-down of E is a complex variety with only canonical or terminal singularities. A similar result is shown for pairs.

1. Introduction and Main Theorem

A basic question in Kähler geometry is how to find on each Kähler manifold a canonical metric such as Kähler–Einstein metric, constant scalar curvature Kähler metric, or even extremal metric. When the Kähler manifold is compact with negative or zero first Chern class, the question has been solved by the senior author’s celebrated work on Calabi’s conjecture [21]. Whereas the first Chern class is positive, there is an obstruction called Futaki invariant for the existence of Kähler–Einstein metric.

For the noncompact case, the majority of work focuses on open Kähler manifolds or quasi-projective manifolds. A complex manifold M is open (resp. quasi-projective) if there is a compact Kähler (resp. projective) manifold \bar{M} with an effective divisor D such that M is biholomorphic to $\bar{M} - D$. The second author raised the question concerning existence of complete Kähler-Einstein metrics on quasi-projective varieties in [22], where the results of [3] were announced for the case with constant negative scalar curvature. Also, the second author announced in [22] the existence of complete Ricci-flat Kähler metrics on the complement of an anticanonical divisor, using methods following his earlier work in [21, 19].

Cheng and Yau [3] constructed complete negative Kähler-Einstein metrics on $\bar{M} - D$ when D is a normal crossing divisor and $K_M + D$ positive. In [15, 16] the second author showed that there exists a complete Ricci flat Kähler metric on quasi-projective M, if D is a neat and almost ample smooth divisor on M; or \bar{M} is a compact Kähler orbifold and D is a neat, almost ample and admissible divisor on \bar{M}. This follows the analysis of [21]. In [17] he also proved on open manifold M there are complete Kähler-Einstein metrics with negative scalar curvature if the adjoint canonical bundle $K_M + D$ is ample. This too follows the analysis of [21].

Several years ago, the second author [5] proposed the following questions

Problem 1.1. Let M be a compact Kähler manifold and N be a subvariety with codimension bigger than or equal to 2, how to find a complete canonical metric on the noncompact Kähler manifold $M - N$?

Date: March 22, 2016.

Key words and phrases. Kähler-Einstein metrics, exceptional divisor, open manifolds.
In the Ricci-flat case, this was answered in [22] based on a theorem proved in [19] for volume of complete noncompact Riemannian manifolds. In order to handle this question, the authors (in [5, 4]) introduced the concept of complete metrics with Poincaré-Mok-Yau (PMY) asymptotic property, and constructed many constant scalar curvature Kähler metrics with PMY asymptotic property on some special types of noncompact Kähler manifolds. Since these PMY type metrics are not Kähler–Einstein, naturally one can ask the following question

Problem 1.2. Can $M - N$ be endowed with complete Kähler–Einstein metrics?

In fact, little is known about the obstruction for the existence of complete Kähler–Einstein on noncompact Kähler manifolds. The unique outstanding result is due to Mok and Yau’s main theorem in [11] which states that a bounded domain Ω admits a complete Kähler–Einstein if and only if Ω is a domain of holomorphy. If N is a higher codimension subvariety of a bounded domain Ω, then $\Omega - N$ is not a domain of holomorphy. This implies on $\Omega - N$ there are no complete Kähler metrics with nonpositive Ricci curvature. In our discussions on Problem 1.2 the senior author proposed that the answer should be negative and the original work in [11] will give hints. Here we follow this idea and it turns out that we can obtain the following theorem

Theorem 1.3. There are no complete Kähler metrics ω on $M - N$ satisfying $-\lambda \leq \text{Ric}_\omega \leq 0$ with nonnegative constant λ.

Since $M - N$ is noncompact, according to Bonnet-Myer’s compactness theorem $M - N$ cannot admit Kähler–Einstein metrics with positive Ricci curvature. Immediately, we find a negative answer for Problem 1.2 that

Corollary 1.4. There are no complete Kähler–Einstein metrics ω on $M - N$.

If N was allowed to have singularities, Corollary 1.4 would imply there are no complete Kähler–Einstein metric on $\tilde{M} - D$, where \tilde{M} is a compact Kähler manifold that desingularizes M and D the exceptional locus of \tilde{M}. By Hironaka’s theorem on resolution of singularities, such desingularizations always exist over a field of characteristic 0, also true for analytical varieties. More precisely, blowing up M along N, one obtains a new compact Kähler manifold $\tilde{M} = Bl_N(M)$. Then $M - N$ is bi-holomorphic to $Bl_N(M) - D$ where D is the exceptional set. And it’s clear $\tilde{M} - D$ has a complete Kähler-Einstein metric if and only if $M - N$ has one.

Similarly one could ask about the inverse operation, whether there is a complete Kähler Einstein metric on $M - E$ if E is an exceptional divisor which blows down to a singularity. It is natural to expect that the answer depends on the type of singularities produced for example by a divisorial contraction. In fact, by a local analysis we can show the following

Theorem 1.5. Let $f : M \rightarrow X$ be two complex normal varieties which are birational, and E the sum of the exceptional divisors. Then if X has only canonical or terminal singularities, and the codimension two singular locus is non-empty in X, there are no complete Kähler-Einstein metrics on $M - E$.

This result holds in general dimension. But it is difficult to relax the assumption on codimension of the singular locus in X. Especially, in dimension two we obtain the following corollary.
Corollary 1.6. If \(M \) is a complex surface and the singularities of \(X \) are of type A-D-E, then there are no complete \(\text{Kähler} \)-Einstein metrics on \(M \).

We can generalize Theorem 1.5 to the case of pairs \((M, D) \) with boundary divisor \(D \). As our analysis essentially depends only on the curvature condition, it can be carried out for these open cases as well. For pairs, we have

Theorem 1.7. If the pair \((X, D) \) is klt, then there are no complete \(\text{Kähler-Einstein} \) metrics on \(M - E \), where \(E \) is the exceptional divisor of a log resolution \(f: M \rightarrow X \) where \(E \cap f^{-1}(\text{supp}(D)) \) is simple normal crossing.

It is clear any open manifold (non-complete variety) birational to these pairs also cannot admit \(\text{Kähler-Einstein} \) metrics.

In Theorem 1.5 and Theorem 1.7, the adjoint canonical bundle \(K_M + E \) is generally not ample. It demonstrates that the ampleness condition in [15, 16, 17] and [18] is necessary. Besides, various generalizations of \(\text{Kähler-Einstein} \) metrics to the singular setting for pairs have been proposed in the literature, see e.g. [12, 2, 1] etc. Our theorems assert immediately that these singular metrics for klt pairs are not complete, and it has been shown for klt pairs these metrics have cone singularities [7].

The rest of this note is devoted to the proof of Theorem 1.3, Theorem 1.5, and Theorem 1.7.

2. THE PROOF OF THEOREM 1.3

The proof of Theorem 1.3: We prove Theorem 1.3 by contradiction and the key point is to show the boundedness of volume function nearby \(N \). Let \(\dim_{\mathbb{C}} M = n \) and \(\dim_{\mathbb{C}} N = k \) and \(k \leq n - 2 \). We assume that over \(M - N \) there is a complete \(\text{Kähler} \) metric \(\omega \) with Ricci curvature

\[-\lambda \leq \text{Ric}_\omega \leq 0\]

with a nonnegative constant \(\lambda \). Locally, let \(p \in N \), there is a local open ball \(B_\xi = \{(z_1, z_2, z_3, \cdots, z_n), |z_i| < \xi\} \) such that \(p = \{0, \cdots, 0\} \) and \(N \cap B_\xi \) is

\[z_1 = z_2 = \cdots = z_{n-k} = 0.\]

On this open set \(B_\xi - N \), we assume that \(\omega = \sqrt{-1} g_{ij} dz_i \wedge d\bar{z}_j \). Choose a two-dimension polydisc \(\Delta_p(\xi) \) to be \(\{(z_1, z_2, 0, \cdots, 0)|z_1| \leq \xi, |z_2| \leq \xi\} \), then the exponent of the volume form of the metric, i.e. \(\text{det} g_{ij} = e^{\log \text{det}(g_{ij})} \) is plurisubharmonic over \(\Delta_p(\xi) - p \) according to

\[-\text{Ric} = \partial \bar{\partial} (\log \text{det}(g_{ij})) \geq 0.\]
Let D_{z_2} be disc

$$D_{z_2} = \{(z_1, z_2, 0, \cdots, 0) \mid z_1 \text{ is fixed} \} \subset \Delta_p(\xi) - p,$$

by the maximum principle on the disc D_{z_2}

$$\det(g_{ij}) |_{D_{z_2}} \leq \sup_{|z_2| = \xi} \det(g_{ij}).$$

Since the set $\{(z_1, z_2, 0, \cdots, 0) \mid |z_2| = \xi \}$ in $\Delta_p(\xi)$ is a close subset of $M - N$, we have

$$\det(g_{ij}(z_1, z_2)) \leq \sup_{|z_2| = \xi} \det(g_{ij}) \leq C_1 \text{ for } 0 < |z_1| \leq \xi, |z_2| < \xi,$$

with constant C_1. Similarly in the same way, the following inequality is satisfied for some constant C_2

$$\det(g_{ij}(z_1, z_2)) \leq \sup_{|z_1| = \xi} \det(g_{ij}) \leq C_2 \text{ for } |z_1| \leq \xi, 0 < |z_2| < \xi.$$

Combining (2.1) and (2.2), one has

$$\det(g_{ij}) |_{\Delta_p(\xi) - p} \leq \sup_{|z_1| = \xi, |z_2| = \xi} \det(g_{ij}) = \max\{C_1, C_2\}.$$

On the other hand, we claim

$$\omega > C_3 dz_1 \wedge d\bar{z}_i$$

on the ball $B_\xi - N$ with some constant C_3 and $B_\xi = \{(z_1, \cdots, z_n) \mid |z_i| < \xi/2\}$, which yields

$$\det(g_{ij}) > C_4$$

for some constant C_4. In fact, put Poincaré metric ω_P on B_ξ, and let $u = \text{trace}_\omega \omega_P$. It follows that

$$\omega_P \leq u \omega.$$

Applying Chern-Lu inequality [20], we have

$$\Delta u \geq -\lambda u + cu^2$$

where $-c$ is the upper bound of the bisectional curvature of ω_P. Since the metric ω is not complete on the boundary of B_ξ, Yau’s Schwarz lemma [20] can not applied
directly for identity map $Id: (B_\xi - N, \omega) \to (B_\xi, \omega_P)$ to obtain the upper bound of u. But we can choose a sequence $p_k \in B_\xi$, such that $u(p_k) \to \sup_{B_\xi - N} u$.

There are two cases for the limit points of p_k. If $p_k \to p_0 \in \bar{B}_\xi - N$, one has $u(p_k) \to \sup_{\bar{B}_\xi - N} u$ according to maximum principle for inequality (2.7). Otherwise, the $p_k \to p_0 \in N$, it is the same as [20] that we can obtain the boundedness of u according to Yau’s general maximum principle since ω is complete nearby N. In both cases, u is bounded and claim (2.4) is obtained.

Using (2.3) and (2.5), we have $C_4 < \det(\bar{g}_{ij})|_{\Delta_{p_0}(\xi)} - p < C_1$. It follows $g_{11}|_{\Delta_{p_0}(\xi)} - p \leq C$ for some constant C. Let $z_1 = x_1 + \sqrt{-1}y_1$, the length of the real line segment in space ${\{(z_1, 0, \cdots, 0)\}}$ from $({\xi, 0, \cdots, 0})$ to p is given now by

$$\int_0^\xi \sqrt{g_{11}}dx_1 \leq \sqrt{C}\xi$$

which contradicts the completeness of the metric ω nearby N, and we have finished the proof. □

Remark 2.1. From the proof above, we see that all analysis is local (that is, there are no Kähler metric ω on $B_\xi - N$ such that ω is complete nearby N). It means Theorem 1.3 is still true when M is not compact which therefore allows us to prove similar statements in cases when more than one smooth subvariety of codimension 2 or higher are removed.

3. The Proof of Theorem 1.5

Although our proof shall be local and mainly differential geometric in nature, it is useful to phrase the theorem in the right algebraic setting. The notations are standard in the literature, the readers can consult the standard [9] for further detail.

3.1. Canonical singularities. First we recall some properties of the class of singularities known as canonical singularity. We do not restrict to any specific number of dimension of the variety.

Unless otherwise stated, we will be considering normal varieties. Then by Zariski’s main theorem which applies to normal varieties, we know that the fundamental locus of all birational morphisms are closed subvarieties of codimension at least 2.

Denote by $M_{\text{reg}} = M - M_{\text{sing}}$ the complement of the singular set M_{sing}, we then have the open immersion $M_{\text{reg}} \to M$. The canonical sheaf $\omega_M = i_*\omega_{M_{\text{reg}}}$ exists by Hartog’s extension theorem and M being normal. We note that the fundamental locus is generally not contained in M_{sing}, and vice versa. The former clearly depends on the choice of a birational morphism.

Definition 3.1 (Canonical singularity). A n-dimensional normal variety M with \mathbb{Q}-Cartier canonical divisor K_M is said to have only canonical singularities, if there exists a birational morphism $f: Y \to M$ from a smooth variety Y such that in the ramification formula

$$K_Y = f^*K_M + \sum a_i E_i$$

$a_i \geq 0$ for all divisors E_i which are exceptional.
We shall need later the following result (3.4)(A) from [13].

Theorem 3.2 (Canonical ⇒ Du Val in codim 2). Let M be a n-fold with canonical singularities, not necessarily isolated, then M is isomorphic to the following form analytically

$$M \cong (\text{Du Val sing.}) \times \mathbb{A}^{n-2}$$

in the neighborhood of a general point of any codimension 2 stratum.

Where surface canonical singularities are Du Val singularities, also called A-D-E singularities. This can be easily proved using the ‘general section theorem’ for canonical singularities, see e.g. theorem (1.13) in [14].

3.2. The Proof of Theorem 1.5. To proceed we need also the following lemma which proves a version of theorem 1.5 for a canonical (Du Val) singularity in 2 dimensions.

Lemma 3.3 (Du Val surface singularity). If M is a normal complex surface with only canonical singularities, then there does not exist a complete Kähler-Einstein metric on the complement of a finite number of points on M.

The proof of the Lemma. Here we will show the case that there is only one exceptional divisor E and M is smooth. If $f(E)$ consists purely of smooth points of M, we get form Theorem 1.3 that there cannot exist complete Kähler metrics on $M - f(E)$ with Ricci curvature satisfying $-\lambda \leq \text{Ric} \leq 0$. So we assume $f(E) \subset M_{\text{sing}}$.

Recall a Du Val singularity is given locally by a polynomial in \mathbb{A}^3, i.e. a hypersurface. By Weierstrass preparation theorem, near p, $M - p$ can be covered by finitely many disjoint open sets B_i^* such that each B_i^* is biholomorphic to standard punctured disc $B^* = \{(z_1, \ldots, z_n), 0 < \sum_{i=1}^n |z_i|^2 < 1\}$, $n = 2$. Then if there is a complete Kähler–Einstein metric ω on $M - p$, each B_i^* admits a Kähler–Einstein metric $\omega|_{B_i^*}$. It implies B^* can be endowed with a Kähler–Einstein metric that is complete at the punctured point. But this is impossible from the proof of Theorem 1.3. This finishes the proof. □

Du Val singularities are also quotients of \mathbb{C}^2 by finite subgroups of $SL(2, \mathbb{C})$. By Cartan’s lemma any quotient singularity is isomorphic to \mathbb{C}^n/G with $G \subset GL(n, \mathbb{C})$ a finite group. The following theorem applies to quotient singularities in all dimensions $n \geq 2$ by small subgroups G of $GL(n, \mathbb{C})$. They are fixed point free in codimension 1.

Proposition 3.4 (Quotient singularities). Let $G \subset GL(n, \mathbb{C})$ be a small finite group acting on \mathbb{C}^n, then there does not exist a complete Kähler-Einstein metric on the complement of the singular locus in \mathbb{C}^n/G.
Proof. Let \(S = \{ x \in \mathbb{C}^n \mid x = g(x) \text{ for some } g \neq 1 \} \). It is standard that the singular locus is \(\bar{S} = S/G \). Let \(V^* = B - \bar{S} \) with \(B = \{(z_1, \ldots, z_n), |z_i|^2 < 1\} \) be an open neighborhood of the singular locus. For small enough \(V^* \), it is covered by a disjoint union of open sets \(V_i \) \((i = 1, \ldots, l)\) for some finite integer \(l \leq |G| \). If on \(\mathbb{C}^n/G - \bar{S} \) there is a complete Kähler–Einstein metric \(\omega \), then there is a \(G \)-equivariant Kähler–Einstein metric \(\omega^G \), whose restriction \(\omega^G|_{V_i} \) to each \(V_i \) is a Kähler–Einstein metric which is complete at \(S \cap V_i \). From the proof of Theorem 3.3 this is impossible. \(\square \)

The proof of Theorem 3.3. here is the main’s proof. We make use of Theorem 3.2, by which the claim reduces to showing non-existence of Kähler-Einstein metrics for the complement of the singular points which are Du Val on the codimension two strata. This stratum is non-empty by assumption and the statement then follows from Lemma 3.3. \(\square \)

4. The proof of Theorem 1.7

4.1. Log Terminal Singularities. For simplicity, we will only consider normal varieties. Then by Zariski’s main theorem, we know that the fundamental locus of all birational morphisms involved in our setup are closed subvarieties of codimension at least 2. Denote by \(M_{\text{reg}} = M - M_{\text{sing}} \) the complement of the singular set \(M_{\text{sing}} \), we then have the open immersion \(M_{\text{reg}} \xrightarrow{i} M \). The canonical sheaf \(\omega_M = i_*\omega_{M_{\text{reg}}} \) exists by Hartog’s extension theorem and \(M \) being normal. We note that the fundamental locus is generally not contained within \(M_{\text{sing}} \), and vice versa.

To measure the local valuative property of a singularity, the notion of discrepancy was introduced (see e.g. [10]). This notion can be defined for \(\mathbb{R} \)-linear combinations of Weil divisors \(D = \sum a_iD_i \), but often \(\mathbb{Q} \)-linear is sufficient. Since Weil divisors are not always pulled back, we assume \(K_M + D \) is \(\mathbb{Q} \)-Cartier. Let \(f : Y \to M \) be a birational (bimeromorphic) morphism, and \(Y \) normal, we let

\[
K_Y + f^{-1}\ast(D) = f\ast(K_M + D) + \sum a_E(M, D)E
\]

where \(E \) are distinct prime divisors of \(Y \) and \(a_E(M, D) \in \mathbb{Q} \). This is now a statement regarding linear equivalence of divisors and not local. As non-exceptional divisors appear in this formal sum, the right hand side needs some explanation.

We demand as in [10] that for a non-exceptional divisor \(E \), the coefficient \(a_E(M, D) \neq 0 \) iff \(E = (f^{-1})_i(D_i) \) for some \(i \), in which case we set \(a_{D_i}(M, D) = -a_i \). This defines \(a_E(M, D) \in \mathbb{R} \), called the discrepancy of \(E \) with respect to the pair \((M, D)\).

A more global measure of singularity of the pair is defined by taking the inf of \(a_E(M, D) \) over distinct primes \(E \subset Y \).

Definition 4.1.

\[
\text{discr}_E(M, D) := \inf_E \{a_E(M, D) \mid E \subset Y \text{ exceptional with center } \neq \emptyset \text{ on } M\}
\]

\[
\text{discr}_{\text{total}}(M, D) := \inf_E \{a_E(M, D) \mid E \subset Y \text{ has non-empty center on } M\}
\]

We are ready to recall the definition of a log terminal ‘singularity’. The following is def. (2.34) in [9].
Definition 4.2. Let \((M, D)\) be as above, then we say \((M, D)\) or \(K_M + D\) is terminal canonical klt lc

\[
\text{if } \text{discrp}(M, D) \begin{cases}
> 0 \\
\geq 0 \\
> -1 \text{ and } |D| \leq 0 \\
\geq -1
\end{cases}
\]

The running of MMP preserves both the Kawamata log terminal (klt) and log canonical (lc) property of pairs. This means the statements we make may easily be extended to the context of birational geometry.

4.2. Local property of klt pairs. We will need the following lemma characterizing klt singularity structures in codimension 2. This comes from a cutting by hypersurface technique similar to the case of complete varieties, and for details we refer to [6].

Lemma 4.3 (Property in codimension 2). Let \((X, D)\) be a klt pair. Then there exists a closed subset \(N \subset X\) with \(\text{codim}_X N \geq 3\) such that \(X \setminus N\) has quotient singularities.

This is proposition (9.3) in [6]. However, using [9], Corollary (2.39), this will follow as a corollary of Theorem 3.2. In that case, we can give a proof of 1.7 based on 1.5 since we may consider the pair \((X, \emptyset)\). However, we will end up with a redundant restriction on the codimension of the singular locus. The proof of Theorem 1.7 now parallels that of 1.5 in the previous section.

The proof of Theorem 1.7. By resolution of singularities the log resolution claimed in the theorem exists. Let \(S = f(E) \cap X_{\text{sing}}\). The existence of a complete Kähler-Einstein metric on the complement of the exceptional divisor \(M \setminus E\) is equivalent to the existence of a complete Kähler-Einstein metric on \(X \setminus S\). By lemma 4.3 we only have to show the case when \(\text{codim}_X S = 2\), in which case each irreducible component of \(S\) is a finite quotient. Clearly \(S\) has only finitely many irreducible components, and the non-existence of a complete Kähler-Einstein metric on \(X \setminus S\) follows from Prop. 3.4.

A simple application of our results is in the context of desingularization of the Satake compactifications [8]. Without using any detail on modular forms, we can conclude that the compactification of locally symmetric spaces must proceed by adding boundary components which contain singular points, i.e. cusps. This follows from the simple fact that arithmetic quotients admit complete Kähler-Einstein metrics.

References

[1] R.J. Berman, and H. Guenancia, Kähler–Einstein metrics on stable varieties and log canonical pairs. Geometric and Functional Analysis 24.6 (2014): 1683–1730.
[2] S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Monge–Ampère equations in big cohomology classes. Acta mathematica, 205(2) (2010), 199–262.
[3] S.-Y. Cheng and S.T. Yau, On the existence of a complete Kähler metric in non-compact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33(1980), 507–544.
[4] J. Fu, S.-T. Yau and W. Zhou; Complete cscK metrics on the local models of the conifold transition. Commun. Math. Phys. 335 (2015), 1215–1233.
[5] J. Fu, S.-T. Yau and W. Zhou, On complete cscK metrics with Poincaré-Mok-Yau asymptotic property, preprint.
[6] D. Greb, S. Kebekus, S. Kovacs, T. Peternell, *Differential Forms on Log Canonical Spaces*, Publ. Math. Inst. Hautes Études Sci. No. 114 (2011), 87–169.

[7] H. Guenancia, *Kähler–Einstein metrics with cone singularities on klt pairs*. International Journal of Mathematics 24.05 (2013): 1350035.

[8] J. Iguša, *On the desingularization of Satake compactifications*, in Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., Amer. Math. Soc., pp. 301–305, 1966.

[9] J. Kollár and S. Mori, *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998.

[10] J. Kollár, *Singularities of Pairs*, preprint, arXiv:alg-geom/9601026.

[11] N. Mok and S.-T. Yau, *Completeness of the Kähler–Einstein metric on bound domains and the Characterization of domain of holomorphy by curvature condition*. Proceedings of Symposia in Pure mathematics, V.39 (1983), Part 1, 41–59.

[12] E. Philippe, V. Guedj, and A. Zeriahi. *Singular Kähler–Einstein metrics*. Journal of the American Mathematical Society 22.3 (2009): 607–639.

[13] M. Reid, *Young person’s guide to canonical singularities*, Proc. Symp. in Pure Math. 46 (1987) 343–416.

[14] M. Reid, *Canonical 3-folds*, Journées de Géométrie Algébrique d’Angers, A. Beauville, editor, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, 273-310.

[15] G. Tian and S.T. Yau, *Complete Kähler manifolds with zero Ricci curvature*. I. J. Amer. Math. Soc. 3 (1990), 579–609.

[16] G. Tian and S.T. Yau, *Complete Kähler manifolds with zero Ricci curvature*. II. Invent. Math. 106 (1991), 27–60.

[17] G. Tian and S.T. Yau, *Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry*, Adv. Ser. Math. Phys. (1987), 574-628, Mathematical aspects of string theory (San Diego, Calif., 1986).

[18] D. Wu, *Kähler–Einstein metrics of negative Ricci curvature on general quasi-projective manifolds*, Comm. Anal. Geom. 16(2008), no.2, 395–435.

[19] S.-T. Yau, *Some function theoretic properties of complete Riemannian manifolds and their application to geometry*, Indiana Univ. Math. J., 25 (1976) 659–670.

[20] S.-T. Yau, *A general schwartz lemma for Kähler manifolds*. American Journal of Mathematics, 197–203, 1978.

[21] S.-T.Yau, *On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I*. Comm. Pure. Appl. Math. 31 (1978), 339–411.

[22] S.-T. Yau, *The Role of Partial Differential Equations in Differential Geometry*, Proceedings of the International Congress of Mathematicians, 1978, Helsinki.

Department of mathematics, Harvard University, Cambridge, MA 02138, USA

E-mail address: penggao@math.harvard.edu

Department of mathematics, Harvard University, Cambridge, MA 02138, USA

E-mail address: yau@math.harvard.edu

Shanghai Center for Mathematical Sciences, Shanghai 200433, China

E-mail address: wubin_zhou@fudan.edu.cn