Resonance-assisted tunneling in three degrees of freedom without discrete symmetry

Srihari Keshavanurthy*
School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom
(Dated: March 30, 2022)

We study dynamical tunneling in a near-integrable Hamiltonian with three degrees of freedom. The model Hamiltonian does not have any discrete symmetry. Despite this lack of symmetry we show that the mixing of near-degenerate quantum states is due to dynamical tunneling mediated by the nonlinear resonances in the classical phase space. Identifying the key resonances allows us to suppress the dynamical tunneling via the addition of weak counter-resonant terms.

Tunneling is a phenomenon that is forbidden by classical mechanics but allowed by quantum mechanics. In general, any flow of quantum probability between (approximately) equivalent yet classically disconnected regions constitutes tunneling. The classical regions could be disconnected due to barriers in coordinate space, momentum space or, more generally, in the classical phase space. In the cases where tunneling occurs despite the absence of obvious energetic barriers it is called dynamical tunneling[3]: the barriers now arise due to certain exact or approximate constants of the motion and hence are naturally identified in the underlying classical phase space. Considerable theoretical[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and experimental[11] works have established that tunneling between quantum states localized on two symmetry-related regions in the phase space can be strongly influenced by the classical stochasticity (chaos-assisted tunneling[2]) and/or by the intervening nonlinear resonances (resonance-assisted tunneling[6]). In the former case, phase space is mixed regular-chaotic and the splittings show marked dependence on the nature of the chaotic states which couple to the tunneling doublets[2, 3, 4]. In the latter case with near-integrable phase space, the splittings depend delicately on the various resonance islands bridging the degenerate states[3, 4, 5, 6, 7, 8, 10]. Clearly, a quantitative semiclassical theory, still elusive, requires one to identify key structures in the phase space on which the theory is to be based. In this regard there is increasing evidence[3, 10] that the classical nonlinear resonances might play a central role in near-integrable as well as mixed phase space situations.

However, most of the studies thus far have been on two degrees of freedom (dof) systems with discrete symmetries[12]. Does the resonance-assisted tunneling viewpoint hold in systems with three or more dof which lack discrete symmetries? The main motivation for our study comes from suggestions[8] put forward in the molecular context – can dynamical tunneling provide a route for mixing between near-degenerate states and hence energy flow between regions supporting qualitatively different types of motion? In addition, notwithstanding the difficulties associated with visualizing the multidimensional phase space, dynamics in three or more dof has features that cannot manifest in the systems studied up until now[13]. In this letter we attempt to understand dynamical tunneling in a model nonsymmetric, near-integrable three dof system. We show that mixing of near-degenerate states occurs via dynamical tunneling mediated by nonlinear resonances and the mixing can be suppressed by adding weak counter-resonant terms.

We study the Hamiltonian

\[H = H_0 + \sum_r K_{m_r} [(a_1^r)^\alpha_r (a_2^r)^\beta_r (a_3^r)^\gamma_r (a_4^r)^\delta_r + \text{h.c.}], \]

(1)
describing four coupled modes \(j = 1, 2, 3, 4 \) with

\[H_0 = \sum_j (\omega_j n_j + x_{jj} n_j^2) + \sum_{j<k} x_{jk} n_j n_k, \]

(2)

and \(H_0|n\rangle = E_0^{|n\rangle}. \) Although eq. (1) has been inspired in the molecular context[14], similar multiresonant Hamiltonians arise in a variety of systems[15]. The occupation number of the \(j^{th} \) mode, \(n_j = a_j^r a_j^\dagger \), is expressed in terms of the harmonic creation \((a_j^\dagger)^r\) and destruction \((a_j)^r\) operators. The perturbations are characterized by \(m_r = (\alpha_r, -\beta_r, -\gamma_r, -\delta_r) \) with strengths \(K_{m_r} \). The classical limit of eq. (1) generated via the correspondence \(a_j \leftrightarrow \sqrt{I_j} \exp(i\theta_j) \), is the following Hamiltonian:

\[\mathcal{H}(I, \theta) = \mathcal{H}_0(I) + 2\epsilon \sum_r K_{m_r} \sqrt{I_1^{\alpha_r} I_2^{\beta_r} I_3^{\gamma_r} I_4^{\delta_r}} \cos(m_r \cdot \theta). \]

(3)

\((I, \theta)\) are the classical action-angle variables of \(\mathcal{H}_0 \) and hence the perturbations correspond to classical nonlinear resonances. The parameter \(\epsilon \) has been introduced for a perturbative analysis (see below). We restrict ourselves to three perturbations \(m_1 = (1, -2, 0, 0), m_2 = (1, -1, -1, 0) \) and \(m_3 = (1, -1, 0, -1) \). This allows for a clear study of the role of the specific resonances in dynamical tunneling. The existence of a conserved quantity \(P = n_1 + (n_2 + n_3 + n_4)/2 \), with the classical analog \(P_c = I_1 + (I_2 + I_3 + I_4)/2 \), implies that the 4-mode system has effectively three dof. The eigenstates, eigenvalues, and the resulting mean level spacing of \(H \) are denoted

*Permanent address: Department of Chemistry, Indian Institute of Technology, Kanpur, U.P. 208016, India.
by $|\alpha\rangle$, E_α and ΔE respectively. In the units appropriate for the model Hamiltonian, the Heisenberg time is given by $\tau_H = (2\pi c \Delta E)^{-1}$ with c being the speed of light.

We are interested in the fate of a set of near-degenerate zeroth-order states in the presence of weak perturbations, $K_m, /\Delta E \equiv k_m < 1$. Consider states $|n\rangle$, $|n'\rangle$, $|n''\rangle$, . . . such that $E_n^0 \approx E_{n'}^0 \approx E_{n''}^0 \approx \ldots$ with average energy \bar{E} and $E_n^0 \in (\bar{E} - \Delta E/2, \bar{E} + \Delta E/2)$. Certain states, among the set of near-degenerate states, mix since they are directly connected to each other via one of the perturbations. The nonlinear resonances in eq. 3 do mediate the mixing via dynamical tunneling. However, in this work we will focus on states that are not directly coupled by the resonances in eq. 3 in order to show that even very weak, induced resonances can lead to substantial mixing that can be associated with dynamical tunneling. Quantum mechanically, the extent of mixing of a zeroth-order state $|n\rangle$ can be gauged by computing the survival probability $P_{nQ}(t)$ and the inverse participation ratio (IPR) σ_n,

$$P_{nQ}(t) = |\langle n|e^{-iHt/\hbar}|n\rangle|^2 = \sum_{\alpha, \beta} p_{n\alpha} p_{n\beta} e^{-i\omega_{n,\alpha}\beta t}, \quad (4)$$

$$\sigma_n = \lim_{T \to \infty} \frac{1}{T} \int_0^T P_{nQ}(t) dt = \sum_{\alpha} p_{n\alpha}^2, \quad (5)$$

with $p_{n\alpha} = |\langle \alpha|n\rangle|^2$ and $\omega_{n,\alpha} = (E_\alpha - E_n)/\hbar$. If $\sigma_n \ll 1$ then $|n\rangle$ mixes extensively with other zeroth-order states.

Specifically, we investigate a set of zeroth-order states around $E \approx 3542.5\Delta E$ and $P = 8$. This choice of E is motivated by the existence of a number of near-degenerate states and qualitatively similar behavior is seen at different values of E as well. We select states that are not directly coupled by the perturbations in eq. 3 but nevertheless have IPR smaller than one. In Fig. 1 we show the survival probabilities for four such zeroth-order states $|a\rangle = |0, 11, 1, 4\rangle$, $|b\rangle = |0, 11, 2, 3\rangle$, $|c\rangle = |0, 12, 2, 2\rangle$, and $|d\rangle = |0, 13, 1, 2\rangle$ with $\sigma_n \approx 0.97, 0.51, 0.40, \text{ and } 0.74$ respectively. The crucial thing to note is that $|b\rangle, |c\rangle$, and $|d\rangle$ mix amongst themselves over long times. The corresponding classical calculations, shown in Fig. 1 middle row, indicate long time trapping. Thus the observed mixing between the states is classically forbidden and corresponds to dynamical tunneling. In Fig. 2 the variation of the energy levels with the coupling parameter k_m, is shown to indicate the lack of avoided crossings between the states of interest. Fig. 2 also shows the spectral intensities $p_{n\alpha}$ and in every case we see two clumps of lines - one at the origin and another $\approx 60\Delta E$ away. A purely quantum explanation invokes the second clump of states, the virtual or off-resonance states, which provide a ”vibrational superexchange” pathway for the mixing.

The virtual states themselves have $\sigma_n \approx 1$ and hence do not mix significantly. It is particularly striking to note that neither $p_{n\alpha}$ nor the energy level variations suggest any differences between the zeroth-order states in contrast to the observations in Fig. 1. We now show that a relatively simple explanation can be given in terms of resonance-assisted tunneling on the energy shell.

In the resonance-assisted tunneling scenario the mixing between, for example, $|b\rangle$ and $|c\rangle$ can be mediated by a 1:1 resonance involving modes $j = 2$ and 4 i.e., a resonance vector $m_{13} \equiv (0, 1, 0, -1)$. The Hamiltonian in eq. 3 does not have m_{13} explicitly but it can be induced by m_1 and m_3. Similarly, $m_{14} \equiv (0, 0, 1, -1)$ and $m_{12} \equiv (0, 1, -1, 0)$ can be induced by the resonances in eq. 3. The resonances can be visualized by constructing the Arnol’d web at $E \approx \bar{E}$ and fixed P, i.e., the intersection of the various resonance planes $m_w \cdot \partial H_0(I)/\partial I = 0$ with the energy shell $H_0(I) \approx \bar{E}$. For near-integrable systems the energy shell, resonance zones, and the location of the zeroth-order states can be projected onto a 2-dimensional space of two independent frequency ratios. The “static” Arnol’d web based on H_0 highlights the various possible resonances and their topology on $H_0(I) \approx \bar{E}$.

However, from the tunneling perspective it is crucial to determine dynamically relevant part of the static web at $E \approx \bar{E}$. This “dynamical web” is determined via a wavelet based local frequency

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Quantum survival probability (top row) P_{nQ} of the states $|n\rangle = |0, 11, 1, 4\rangle \equiv |a\rangle$ (black), $|0, 11, 2, 3\rangle \equiv |b\rangle$ (red), $|0, 12, 2, 2\rangle \equiv |c\rangle$ (green), and $|0, 13, 1, 2\rangle \equiv |d\rangle$ (blue). Time τ is measured in units of the Heisenberg time and $0.5K_{m_1} = K_{m_2} = K_{m_3} \approx 0.2\Delta E$. $\Delta E \approx 4.44 \text{ cm}^{-1}$ for eq. 4 with $P = 8$. The cross probabilities $|\langle n'|n(t)\rangle|^2$ are also shown. The middle row shows the classical analog, P_{nC}. P_{nC} indicates trapped motion and is qualitatively different from P_{nQ}. The bottom row shows the quantum P_{nQ} with the addition of weak counter-resonant terms (eq. 4). The dynamical tunneling essentially shuts down, proving the importance of the induced resonances.}
\end{figure}
Along the trajectory (conditions of the Hamiltonian eq. 3. Briefly, initial conditions of the Hamiltonian eq. 3) of the primary resonances, \(m_1 \) (red), \(m_2 \) (black) and \(m_3 \) (magenta), as predicted by \(H_0 \) are superimposed for comparison. \(m_2 \) and \(m_3 \) intersect on the energy shell giving rise to the induced resonance \(m_{14} = (0, 0, 1, -1) \). \(m_1 \) and \(m_4 \) interact with \(m_1 \) to give rise to the two other induced resonances \(m_{12} = (0, 1, -1, 0) \) and \(m_{13} = (0, 1, 0, -1) \) respectively. The nearly degenerate zeroth-order states (filled circles) are located close to the induced resonances (arrows) which lead to state-mixing (cf. Fig. 1) via resonance-assisted tunneling.

\[
H_{\text{eff}}^{(24)} = \frac{(K_{24} - K_{24}^*)^2}{2M_{24}} + 2V_{24}\cos 2\phi_{24}, \tag{6}
\]

appropriate for the induced resonance \(\lambda_{m_{13}} \) with \(K_{24} \sim 2I_4 \) and \(2\phi_{24} \sim (\theta_2 - \theta_4) \). The resonance center is denoted by \(K_{24}^* \). The coupling \(V_{24} \) can be expressed in terms of the conserved quantities \(I_3, P_c, \) and \(P_{24} \equiv I_2 + I_4 \) and the resulting tunneling time \(\tau_{\text{tun}} \approx 2\pi\Delta E/V_{24} \) agrees well with Fig. 1. The strengths estimated via a pendulum approximation can be translated back to effective quantum strengths \(\lambda_m \) and our analysis reveals that the induced resonances are more than an order of magnitude smaller then that of the primary resonances \(\lambda_{m_{14}} \approx |\lambda_{m_{12}}| \approx |\lambda_{m_{13}}| \approx 0.035K_{m_1} \). Note that \(m_{12} \) and \(m_{13} \) come with a negative sign as opposed to \(m_{14} \). It is known that for significant mixing the states must lie symmetrically with respect to the center of the mediating resonance zone. Among the states considered, \(|b\rangle \) and \(|c\rangle \) satisfy the criterion very well and hence enhanced mixing between them is seen in Fig. 1. The state \(|a\rangle \) is not symmetrically located with respect to \(|b\rangle \) and thus, combined with the very small strength \(\lambda_{m_{14}} \), the induced resonance \(m_{13} \) is ineffective. Now consider modifying eq. 1 according to

\[
H' = H + |\lambda_{m_{12}}|(a_2^4a_3 \text{ h.c.)} + |\lambda_{m_{13}}|(a_3^2a_4 \text{ h.c.}), \tag{7}
\]

where we have added terms to counter the induced resonances. The reasoning is simple - if the induced reso-
the survival probabilities for the original system. Despite this, as shown in Fig. 1 and spectral intensities show little change as compared to the opposite sign (triangles). Note the importance of the sign of the induced resonances and the shutdown of tunneling for the states of interest (filled symbols). Other nearby states (open symbols) are least affected by the counter-resonant terms.

In conclusion, this work shows that significant mixing between near-degenerate states due to resonance-assisted tunneling can be expected in very general situations. In addition, by suitable local modifications of the phase space, complete control of the dynamical tunneling can be attained. In light of a recent work the counter-resonances can be thought of as weak control terms\[18\] and in nonautonomous systems this suggests the possibility of control via additional weak driving fields with particular attention to the relative phases between the fields\[16\]. The model system studied herein is certainly not in the deep semiclassical limit, perhaps reason enough to argue against competition from classical transport mechanisms, and yet the importance of the nonlinear resonances is clear. Further work in the deep semiclassical regime, more closely approaching the molecular systems, is in progress.

Part of this work was done at the Max-Planck-Institut für Physik Komplexer Systeme, Dresden and I am grateful to Prof. J. M. Rost for the hospitality and support. I thank P. Schlagheck for inspiring discussions and A. Semparithi for generating the data for Fig. 3.

[1] M. J. Davis and E. J. Heller, J. Chem. Phys. 75, 246 (1981); R. T. Lawton and M. S. Child, Mol. Phys. 37, 1799 (1979).
[2] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993); S. Creagh, in Tunneling in Complex Systems, edited by S. Tomsovic (World Scientific, Singapore, 1998), p.1.
[3] W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65, 2927 (1990); A. Shudo and K. S. Ikeda, Phys. Rev. Lett. 74, 682 (1995); V. A. Podolskiy and E. E. Narimanov, Phys. Rev. Lett. 91, 263601 (2003); S. Tomsovic and D. Ullmo, Phys. Rev. E 50, 145 (1994); J. Zakrzewski, D. Delande, and A. Buchleitner, Phys. Rev. E 57, 1458 (1998).
[4] E. Doron and S. D. Frisch, Phys. Rev. Lett. 75, 3661 (1995).
[5] L. Bonci et al., Phys. Rev. E 58, 5689 (1998).
[6] O. Brodier, P. Schlagheck, and D. Ullmo, Phys. Rev. Lett. 87, 064101 (2001); Ann. Phys. (N. Y.) 300, 88 (2002).
[7] A. M. Ozorio de Almeida, J. Phys. Chem. 88, 6139 (1984).
[8] E. J. Heller and M. J. Davis, J. Phys. Chem. 85, 307 (1981); E. J. Heller, J. Phys. Chem. 99, 2625 (1995).
[9] C. Eltschka and P. Schlagheck, Phys. Rev. Lett. 94, 014101 (2005).
[10] S. Keshavanurthy, J. Chem. Phys. 119, 161 (2003); 122, 114109 (2005) and references therein to the work on dynamical tunneling and energy flow in the molecular context.
[11] J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997); W. K. Hensinger et al., Nature 412, 52 (2001); D. A. Steck, W. H. Oskay, and M. G. Raizen, Science 293, 274 (2001); A. P. S. de Moura et al., Phys. Rev. Lett. 88, 236804 (2002); E. R. Th. Kerstel et al., J. Phys. Chem. 95, 8282 (1991).
[12] Effects of asymmetry are studied in, S. Tomsovic, J. Phys. A: Math. Gen. 31, 9469 (1998).
[13] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992.
[14] H_0 corresponds to the chiral molecule CDBrClF and the parameters are determined (table VIII, column 4) in, A. Beil et al., J. Chem. Phys. 113, 2701 (2000).
[15] One can think of eq.\(\text{10}\) as being in the intrinsic resonance representation. See, M. Carioli, E. J. Heller, and K. B. Møller, J. Chem. Phys. 106, 8564 (1997); D. M. Leitner and P. G. Wolynes, Phys. Rev. Lett. 76, 216 (1996).
[16] A. A. Stuchebrukhov and R. A. Marcus, J. Chem. Phys. 98, 8443 (1993); 98, 6044 (1993).
[17] L. V. Vela-Arevalo and S. Wiggins, Int. J. Bifur. Chaos 11, 1359 (2001).
[18] C. Chandre et al., Phys. Rev. Lett. 94, 074101 (2005).
[19] F. Grossmann et al., Phys. Rev. Lett. 67, 516 (1991); D. Farrelly and J. A. Milligan, Phys. Rev. E 47, R2225 (1993); M. Latka, P. Grigolini, and B. J. West, Phys. Rev. E 50, R3299 (1994); V. Averbukh et al., Z. Phys. D 35, 247 (1995).