GGA-1/2 self-energy correction for accurate band structure calculations: the case of resistive switching oxides

Jun-Hui Yuan¹, Qi Chen¹, Leonardo R C Fonseca², Ming Xu¹, Kan-Hao Xue¹ and Xiang-Shui Miao¹

¹ Wuhan National Research Center for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
² Departamento de Fisica, ICEs, Universidade Federal de Minas Gerais, 30123-970 Belo Horizonte, MG, Brazil

E-mail: skh@hust.edu.cn

Keywords: GGA-1/2, density functional theory, band gap, self-energy correction, resistive switching oxides

Abstract

First-principles calculation has become an indispensable methodology in revealing the working principles of nanoscale electronic devices, but ultra-large supercells are usually required in modeling the devices with critical metal/dielectric interfaces. Traditional density functional theory within the generalized gradient approximation (GGA) suffers from the inaccurate band gap problem when metal oxides are present, but they serve as the core component in resistive random access memory (RRAM), which is a promising path for novel high speed non-volatile memories. To obtain improved oxide band gaps, we applied the efficient GGA-1/2 method for self-energy correction, whose computational load is at the same level as standard GGA. In particular, we have investigated the influence of exchange-correlation functional flavors on the GGA-1/2 band structures, taking four important binary oxide RRAM materials (α-Al₂O₃, r-TiO₂, m-ZrO₂ and m-HfO₂) as benchmark examples. Five GGA functionals (PBE, PBEsol, PW91, revPBE and AM05) were considered and their band structures were compared in detail. We have found that the performance of GGA-1/2 is comparable to state-of-the-art GW and generally superior to the HSE06 hybrid functional. Among the five GGA functionals, PBEsol yields the best results in general. In addition, the applicability of a single self-energy potential for various GGA-1/2 flavors is discussed. Our work provides a guide to the GGA flavor selection, when applying the GGA-1/2 method to metal oxides.

1. Introduction

With the rising of big data [1], cloud computing [2], internet of things [3] and other technologies in recent years, an exploding amount of information requires storage and analysis, for which fast, low power consumption, high density and non-volatile memories are suitable. However, the NAND FLASH memory that dominates the present non-volatile memory market suffers from intrinsically slow erasing operation, opening an urgent demand for next-generation non-volatile memories [4, 5]. Resistive random access memory (RRAM), which achieves data storage through reversible resistance changes in certain dielectrics, is one of the leading candidates for this purpose. Reproducible resistive switching phenomena have been widely observed in oxides [6–9], chalcogenides [10] and even organic materials [11]. Due to their simple device structure (metal/insulator/metal), high compatibility to standard CMOS flow line and the prospect of 3D integration, certain binary oxides such as Al₂O₃ [12], HfO₂ [13, 14], TiO₂ [15, 16], and ZrO₂ [17] have attracted more attention. In recent few years, HfO₂ has been regarded in some works [18] as the most promising candidate material for commercial application.

Although oxide-based RRAM has experienced a rapid development for more than a decade, it has not reached large-scale industrial applications yet. There are still some fundamental issues to be resolved in terms of the resistive switching mechanism, reliability, integration schemes, and so forth [15]. For instance, the mesoscopic physical mechanisms of switching and the corresponding models, without which a proper device optimization cannot be achieved, still require more in-depth study. Most binary metal oxides are believed to

© 2018 The Author(s). Published by IOP Publishing Ltd
manifest a transition from a high resistance state (HRS) to a low resistance state (LRS) upon the formation of conductive filaments (CFs) connecting the two electrodes. Yet, at present there are still controversies on the exact composition and geometry of the CFs [19–22]. Since it is difficult to directly observe and determine experimentally the exact composition of the CFs within the dielectric media, theoretical approaches can be particularly helpful.

Among atomistic simulation techniques, *ab initio* calculations based on density functional theory (DFT) [23] are highly successful in the prediction of total energies, bond lengths, and vibration frequencies. However, DFT within local density approximation (LDA) or generalized gradient approximation (GGA) severely underestimates the band gaps of semiconductors and insulators, which limits its capability of predicting the band alignment in metal-semiconductor contacts, a significant task in understanding charge transmission through CFs [24]. Various theoretical approaches have been proposed to overcome this shortcoming, thus providing more reliable predictions of physical properties that depend on excited states. Hedin’s GW approximation is considered to be the state-of-the-art, which is still the most accurate method for electronic structure calculation. It calculates the quasiparticle energies in terms of the perturbation theory [25], and is a beyond-DFT technique. Hybrid functionals [26], which combine standard DFT and Hartree–Fock exchange functionals through a mixing parameter, are also well-known and robust alternatives, though they sometimes require an adjustment of the mixing parameter. Both hybrid functional and GW methods demand much greater computational efforts than standard DFT-LDA or DFT-GGA, setting severe limitations to the size of the simulated systems. Indeed, to simulate realistic RRAM devices, large supercells with hundreds of atoms are typically required. For instance, to investigate the atomic structure of a CF through the dielectric, a large cross-section area is indispensable to avoid undesired interactions between a CF and its periodic images [13]. Therefore, realistic *ab initio* RRAM device calculations require both a high computational speed and relatively accurate band gaps. Traditionally, one resolves the band gap problem in DFT-LDA/DFT-GGA by employing LDA + U and GGA + U [27–30], or resorts to hybrid functionals [31]. While the adoption of hybrid functional increases the computational load considerably, LDA + U is almost as fast as conventional LDA. However, LDA + U is not suitable for many of these RRAM oxides. For example, Al2O3, TiO2, ZrO2 and HfO2 are all ordinary oxides without strong electron correlation, in which case LDA + U does not work well unless an additional large U parameter is introduced [27], reflecting the fact that the band gap is primarily with the oxygen anion rather than the metal cation.

The LDA-1/2 method corrects the spurious electron self-interaction term in LDA using the Slater half-occupation technique [32]. As the conduction band electron usually occupies Bloch-like states with nearly-null self-energy, corrections are only carried out to the holes that are typically localized on the anions. Instead of calculating explicitly the self-energy, such correction can be achieved by simply introducing a so-called self-energy potential in real space, which acts as an external potential to the region where the hole resides. The exact form of self-energy potential for any atom can be derived by atomic calculations using DFT, with the desired exchange-correlation (XC) flavor. Such self-energy potential for the anion is then trimmed to a finite range to avoid overlapping between neighboring anions. Going one step further from LDA-1/2, a natural extension is GGA-1/2, which was previously shown to bring about improvement over LDA-1/2 in some cases [33]. While LDA tends to underestimate the lattice constants, in the framework of GGA there are certain XC functionals like PBEsol [34], Wu-Cohen [35] and AM05 [36] that can predict rather accurate lattice constants. Hence, GGA-1/2, which corrects the electronic band structure calculated with GGA, ought to be a better computational method for RRAM simulation than LDA-1/2. However, to our best knowledge there is no theoretical study on the influence of GGA flavors towards the accuracy of GGA-1/2 band structures. Hence, from both theoretical and application aspects, it is of great significance to carry out a systematic study on the GGA-1/2 band structures built upon various GGA flavors.

In this work, we adopt four relevant binary oxide RRAM materials as benchmarks. Five GGA XC flavors are considered and their band structures are compared in detail. Our results offer guidance in properly choosing GGA flavors to achieve efficient and accurate GGA-1/2 band structure calculations for the four binary oxide semiconductors, i.e. corundum Al2O3, rutile TiO2, monoclinic ZrO2 and monoclinic HfO2. Our results can be readily extended to more oxides.

2. Computational

2.1. Crystal structures

We studied the room temperature phases of Al2O3, TiO2, ZrO2 and HfO2, namely corundum (α-Al2O3), rutile-TiO2 (r-TiO2), monoclinic ZrO2 (m-ZrO2) and monoclinic HfO2 (m-HfO2), shown in figure 1. Corundum α-Al2O3 crystallizes with trigonal symmetry in the space group R3c, where oxygen atoms are arranged by a slightly distorted hexagonal close packing, in which two-thirds of the gaps between the octahedra
are occupied by aluminum (figure 1(a)) [37]. Rutile TiO$_2$ presents a tetragonal unit cell with the titanium atoms surrounded by an octahedron of six oxygen atoms. The oxygen coordination number is 3, resulting in a trigonal planar geometry, as illustrated in figure 1(b) [38]. The ground state monoclinic phases of ZrO$_2$ and HfO$_2$ are isomorphic, both with the baddeleyite structure (P2$_1$/c) as shown in figure 1(c) [39]. Unlike TiO$_2$, which features six-coordinated Ti in all phases, m-ZrO$_2$ and m-HfO$_2$ consist of seven-coordinated zirconium or hafnium centers. This discrepancy is attributed to the larger size of Zr/Hf atoms relative to the Ti atom.

2.2. Computational methods

DFT calculations were carried out using the plane-wave-based Vienna Ab initio Simulation Package (VASP) [40, 41], with a fixed 500 eV plane-wave kinetic energy cutoff. Five distinct flavors for the GGA XC functional were considered: Perdew–Burke–Ernzerhof (PBE) [42], PBE developed for solids (PBEsol) [34], Perdew–Wang 1991 (PW91) [43], the revised PBE (revPBE) [44] and the Armiento–Mattsson 2005 (AM05) [36]. In addition, we employed the HSE06 screened hybrid functional [26] (using the PBE-optimized geometries) to calculate the band structures of all the four crystals for comparison. The HSE06 functional used in this work assumes its most common form, constructed by mixing 25% of the Fock exchange with 75% of the PBE exchange, and 100% of the PBE correlation [26]. Core electrons were approximated by projector augmented-wave pseudopotentials [45, 46]. Unless specified otherwise, the electrons considered as valence were: 3s and 3p for Al; 3s, 3p, 3d and 4s for Ti; 4s, 4p, 4d and 5s for Zr; 5p, 5d and 6s for Hf; 2s and 2p for O. In all self-consistent runs, the total energy convergence criterion was set to below 10^{-6} eV, while structural optimization was reached for Hellmann–Feynman forces less than 0.01 eV/Å in any direction. We employed the following Monkhorst–Pack k-point grids for Brillouin zone sampling during geometry optimization: $5 \times 5 \times 2$ for Al$_2$O$_3$, $7 \times 7 \times 11$ for TiO$_2$, $7 \times 7 \times 7$ for ZrO$_2$, and $7 \times 6 \times 6$ for HfO$_2$. For total energy calculations the k-point grids were enlarged to $10 \times 10 \times 4$ for Al$_2$O$_3$, $11 \times 11 \times 17$ for TiO$_2$, $10 \times 10 \times 10$ for ZrO$_2$, and $11 \times 9 \times 9$ for HfO$_2$ [47].

2.3. GGA-1/2 for improved band structures

GGA-1/2 generalizes to solids the original idea of Slater’s half occupation scheme, which was initially designed for ionization energy calculation in isolated atoms. Its formalism starts from Janak’s formula, which offers an interpretation of the DFT single particle eigenvalues e_α as the variation of the total energy E with respect to its
occupation f_α

$$\frac{\partial E}{\partial f_\alpha} = c_\alpha(f_\alpha)$$ \hspace{1cm} (1)

Assuming a linear relation between the eigenvalue and its occupation [48], it is straightforward to show that

$$E(0) - E(-1) = c_\alpha(0) - S_\alpha$$ \hspace{1cm} (2)

Equation (2) means that the energy difference between the ground state energy $E(0)$ and the total energy of the ion $E(-1)$ with one electron removed from state α, is given by the energy eigenvalue of state α and a so-called "self-energy term" S_α. The analytical expression for S_α [32],

$$S_\alpha = \int d^3r d^3r' \frac{n_\alpha(r)n_\alpha(r')}{|r - r'|} + \text{higher order terms}$$ \hspace{1cm} (3)

indeed has the form of a self-energy, which renders its name. If one regards S_α as the quantum mechanical average of a "self-energy potential" V_α,

$$S_\alpha = \int d^3r n_\alpha(r) V_\alpha(r)$$ \hspace{1cm} (4)

it follows that V_α can be obtained as the difference from the DFT-calculated electrostatic potentials between the neutral atom and the half-ionized ions:

$$V_\alpha \approx -V(-1/2, r) + V(0, r)$$ \hspace{1cm} (5)

As mentioned in section 1, the self-energy potential must be trimmed by some function $\Theta(r)$ [32]. To obtain the rectified band gaps for solid state materials, V_α is added to the pseudopotentials of the anions and a second self-consistent run using the modified pseudopotentials is carried out upon the same relaxed geometry. Since the self-energy potentials serve as external potentials in the solid, the ground state energies given by GGA-1/2 self-consistent calculations are not physically meaningful themselves. Nevertheless, band diagrams and density of states are properly recovered by GGA-1/2 [32]. Hence, in our work all total energies were taken from GGA calculations, while the band diagrams were taken either from GGA (uncorrected) or from GGA-1/2 (corrected) calculations.

Since all the materials under investigation are binary metal oxides, the self-energy correction ought to be done only for oxygen anions. The optimal cutoff radius in $\Theta(r)$ to trim the corresponding V_α (with $1/2$e subtracted from the O 2p orbital [32]) was obtained variationally upon maximizing the band gap [32]. Electronic structures were obtained with this optimal cutoff radius only, and no empirical parameters were involved.

The self-energy potentials with all these GGA XC flavors (PBE, PBEsol, PW91, revPBE, AM05) were derived from atomic calculations using a modified ATOM code (supplied with the Siesta simulation package [49]). These self-energy potentials do not depend on the ab initio simulation code, and can be regarded as only specific to the XC flavor. We have also created a web-based self-energy correction program where pseudopotentials modified through the inclusion of GGA-1/2 self-energy potentials for all these XC flavors can be generated online, at http://www.eedevice.com/dft-half.

3. Results and discussions

3.1. Geometric structures and partial density of states

The optimized lattice parameters for these four crystals are summarized in table 1, which also shows the corresponding experimental values [50–52]. Due to their intrinsic similarity, PBE and PW91 yield very similar lattice parameters, while the lattice parameters obtained with PBEsol and AM05 also share a similar trend. The lattice parameters obtained with revPBE are always the largest among all considered XC functionals. Compared with experimental values, PBEsol and AM05 are closest to data, while PBE and PW91 usually predict slightly larger lattice constants. On the other hand, revPBE yields the worst agreement of all functionals tested.

The partial density of states for α-Al2O3, r-TiO2, m-ZrO2 and m-HfO2 obtained with GGA-PBE are shown in figure 2. In any material the valence band maximum (VBM) mainly consists of O-2p states, which confirms that the hole is located around oxygen anions and the self-energy correction should indeed be done to oxygen only.

3.2. Band structure results based on optimized lattice parameters

The band gaps calculated with PBE, PBEsol, PW91, revPBE, AM05, HSE06 and GGA-1/2 (including the five different XC flavors) for the four compounds are listed in table 2, where fully optimized lattice parameters were utilized for each XC. As expected, DFT–GGA severely underestimates the energy gap. All band gaps obtained with conventional GGA are far below the experimental values by 1.16 eV ~ 2.67 eV. Among the four materials,
α-Al₂O₃ is a wide band gap insulator with the VBM and conduction band minimum (CBM) both located at Γ, which is consistent with previous results [53, 54]. The largest obtained band gap for α-Al₂O₃ based on DFT-GGA is 6.13 eV, using the AM05 XC. However, that is still 2.67 eV smaller than the typical experimental value (8.8 eV) [53], and even smaller than the previous GW results (9.36 eV and 9.78 eV) [55, 56]. After self-energy correction, the GGA-1/2 band gaps obtained with the five XC functionals are all above 8 eV (table 2), which is comparable to the HSE06 values 8.09 eV (calculated previously for a PBEsol-optimized structure using norm-conserving pseudopotentials [54]) and 7.70 eV (calculated in this work for a PBE-optimized structure).

Table 1. Optimized structural parameters for α-Al₂O₃, r-TiO₂, m-ZrO₂, and m-HfO₂, calculated using various XC functionals. Experimental values are shown for comparison.

	PBE	PBEsol	PW91	revPBE	AM05	Experimental
α-Al₂O₃						
a(Å)	4.807	4.774	4.804	4.837	4.775	4.759 [50]
c(Å)	13.122	13.013	13.111	13.211	13.020	12.991
r-TiO₂						
a(Å)	4.644	4.393	4.644	4.687	4.600	4.601 [51]
c(Å)	2.968	2.942	2.968	2.984	2.941	2.968
m-ZrO₂						
a(Å)	5.187	5.132	5.213	5.227	5.134	5.146 [52]
b(Å)	5.247	5.212	5.279	5.273	5.214	5.208
c(Å)	5.376	5.301	5.395	5.427	5.305	5.315
β angle(°)	99.602	99.596	99.603	99.678	99.658	99.249
m-HfO₂						
a(Å)	5.138	5.079	5.137	5.180	5.083	5.118 [52]
b(Å)	5.191	5.156	5.190	5.218	5.152	5.186
c(Å)	5.321	5.246	5.320	5.369	5.253	5.284
β angle(°)	99.697	99.664	99.680	99.740	99.759	99.352

α-Al₂O₃ is a wide band gap insulator with the VBM and conduction band minimum (CBM) both located at Γ, which is consistent with previous results [53, 54]. The largest obtained band gap for α-Al₂O₃ based on DFT-GGA is 6.13 eV, using the AM05 XC. However, that is still 2.67 eV smaller than the typical experimental value (8.8 eV) [53], and even smaller than the previous GW results (9.36 eV and 9.78 eV) [55, 56]. After self-energy correction, the GGA-1/2 band gaps obtained with the five XC functionals are all above 8 eV (table 2), which is comparable to the HSE06 values 8.09 eV (calculated previously for a PBEsol-optimized structure using norm-conserving pseudopotentials [54]) and 7.70 eV (calculated in this work for a PBE-optimized structure).
Table 2. Calculated GGA and GGA-1/2 band gaps (unit: eV) for α-Al₂O₃, r-TiO₂, m-ZrO₂ and m-HfO₂ with various exchange-correlation functionals, based upon optimized lattice parameters. HSE06, GW and experimental values are also listed for comparison.

	PBE	PBEsol	PW91	revPBE	AM05	HSE06	GW	Expt.	
α-Al₂O₃	GGA	5.86	6.04	5.93	5.72	6.13	7.70	9.36	8.8 [53]
	GGA-1/2	8.10	8.25	8.16	8.04	8.38	8.088	9.78	[56]
r-TiO₂	GGA	1.82	1.84	1.78	1.83	1.84	3.32	3.46(G₉W₀)	3.0–3.4
	GGA-1/2	3.04	3.10	2.97	3.02	3.09	3.39	57	[58–61]
m-ZrO₂	GGA	3.63	3.58	3.48	3.70	3.61	5.20	4.99(G₉W₀),	5.0–5.8 [62],
	GGA-1/2	5.51	5.45	5.33	5.59	5.50	5.14	5.34(G₉W₀), 5.42(G₉W₀)	5.4 [65]
m-HfO₂	GGA	4.03	3.96	4.01	4.10	3.99	5.26	6.0 [66],	5.9 [67, 68]
	GGA-1/2	6.06	5.96	6.04	6.17	6.02	5.83	5.45(G₉W₀), 5.78(G₉W₀), 5.92(G₉W₀)	69

* With norm-conserving pseudopotentials
Although the values are still smaller than the experimental values by about 0.4 eV \(-\Delta E_{\text{G}} \sim 0.8\) eV (below we show that \(\alpha\)-Al\(_2\)O\(_3\) is the most difficult case among the materials under investigation), they do show great improvement over conventional DFT-GGA. We have noticed that the band gaps of \(\alpha\)-Al\(_2\)O\(_3\) obtained with HSE06 are about 0.7 eV \(-\Delta E_{\text{G}} \sim 1.1\) eV smaller than experimental, while the \(GW\) band gaps are 0.6 eV \(-\Delta E_{\text{G}} \sim 1.0\) eV larger than experimental. Our GGA-1/2 band gaps fall between HSE06 and GW results.

For \(r\)-TiO\(_2\), all the calculated band structures exhibit a direct band gap with the VBM and CBM both located at \(\Gamma\), consistent with previous experimental and theoretical results \([57–61]\). Compared with experimental band gap values \([58–61]\), the GGA band gaps differ by about 1.16 eV \(-\Delta E_{\text{G}} \sim 1.56\) eV (table 2). Yet, the GGA-1/2 band gaps are quite satisfactory, agreeing well with experimental values by showing merely \(-0.1\) eV to 0.4 eV mismatches. In addition, our GGA-1/2 results are also very close to the HSE06 (3.32 eV and 3.39 eV \([58]\)) and GW (3.46 eV) \([58]\) results.

Regardless of the computational method, both \(m\)-ZrO\(_2\) and \(m\)-HfO\(_2\) are predicted to be indirect band gap semiconductors with the VBM and CBM located at \(\Gamma\) and B, respectively. In general, the calculated GGA band gaps are lower than typical experimental values by about 1.30 eV \(-\Delta E_{\text{G}} \sim 2.32\) eV (for \(m\)-ZrO\(_2\)) and 1.80 eV \(-\Delta E_{\text{G}} \sim 1.94\) eV (for \(m\)-HfO\(_2\)). After self-energy correction, the GGA-1/2 band gaps differ from the experimental value by merely \(-0.59\) eV \(-\Delta E_{\text{G}} \sim 0.47\) eV for \(m\)-ZrO\(_2\) and \(-0.27\) eV \(-\Delta E_{\text{G}} \sim -0.06\) eV for \(m\)-HfO\(_2\), respectively. Regarding higher order calculations, the HSE06 band gap for \(m\)-ZrO\(_2\) (5.20 eV in this work and 5.14 eV from \([63]\)) is lower than our GGA-1/2 results as well as the available experimental values. Moreover, our GGA-1/2 results are comparable to that from \(GW_{6}\) (5.34 eV \([62]\) and 5.42 eV \([64]\)) and larger than that of \(GW_{6}\) \((4.99\) eV) calculations \([62]\). Comparing the five XC flavors, PBEsol yields the best band gap that differs from experimental by less than 0.05 eV (adopting the experimental value of 5.4 eV \([65]\)), followed by PW91 (0.07 eV), AM05 (0.10 eV), PBE (0.11 eV) and revPBE (0.19 eV).

For \(m\)-HfO\(_2\), the calculated self-energy corrected band gaps are nearly in line with the experimental results (5.9 eV band gap \([67, 68]\)), where the largest difference 0.27 eV comes from the revPBE XC. PBEsol yields the best agreement (differing by 0.06 eV), as it does for \(m\)-ZrO\(_2\), followed by AM05 (0.12 eV), PW91 (0.14 eV), PBE (0.16 eV) and revPBE (0.27 eV). In addition, the values obtained with HSE06 (5.56 eV and 5.83 eV \([69]\)) are slightly smaller than experimental. Notice that the \(m\)-HfO\(_2\) band gaps obtained with \(GW\) range from 5.45 eV to 6.0 eV \([62, 66, 69]\), similar to the GGA-1/2 range of values obtained with any of the five GGA-XC functionals.

Figure 3 shows the best (among all XC functionals) GGA-1/2 band structures for each material, along with conventional DFT-GGA and HSE06 results. The GGA-1/2 band structures are in line with DFT-GGA and HSE06 in terms of the morphology and the intrinsic excitation characteristics (such as the locations of VBM and CBM). This confirms that for these oxides, the good accuracy of GGA-1/2 is not limited to the fundamental gap, but also for the overall band structures, where GGA-1/2 is comparable with computationally intensive methods such as hybrid functionals.

3.3. Band structure results based on experimental lattice parameters

Since each GGA XC leads to a specific set of optimum lattice parameters, the band diagrams calculated in section 3.2 were not based on a unique unit cell for each material. To better evaluate the difference among various XCs, we further calculated the band gaps of \(\alpha\)-Al\(_2\)O\(_3\), \(r\)-TiO\(_2\), \(m\)-ZrO\(_2\) and \(m\)-HfO\(_2\) with both GGA and GGA-1/2 using their experimental lattice parameters. Yet, to avoid internal forces, the atomic coordinates within the unit cell were fully relaxed. The calculated band gaps for all five XC flavors are listed in table 3, and figure 4(a) compares those band gaps obtained with optimized lattice parameters with fixed experimental lattice parameters. Among the five XCs, the obtained band gap of \(r\)-TiO\(_2\) with experimental lattice parameters is slightly smaller than that of optimized structure for PBEsol, PW91 and AM05, regardless of using GGA or GGA-1/2. On the other hand, the results of PBE (both GGA and GGA-1/2) and revPBE (only GGA-1/2) are slightly larger than that of optimized structure. In addition, for \(\alpha\)-Al\(_2\)O\(_3\) the band gaps are much improved by fixing to experimental lattice constants, especially for the revPBE XC whose GGA-1/2 band gap now only deviates from the experimental value by 0.15 eV. It is therefore clear that the original poor GGA-1/2 band gap using equilibrium lattice constants is strongly related to the over-estimation of lattice constants. For instance, the equilibrium c-axis lattice constant was predicted to be 13.211 Å using the revPBE XC, which is 1.7% larger than the experimental value. Such improvement also implies that using correct lattice constants is more important than minimizing the stress, in order to obtain band gaps close to measured values. Finally, we notice that the lattice constant effect on \(m\)-ZrO\(_2\) and \(m\)-HfO\(_2\) is relatively tiny, because the band gaps derived from either optimized lattice or experimental lattice differ by no more than 0.1 eV.

It is well-known that AM05 and PBEsol yield the most accurate lattice parameters among common GGA XCs. Therefore, it is natural to infer that for these two XCs the GGA-1/2 band gaps do not vary much when switching to experimental lattice parameters. However, the quantitative relation is still unclear yet. Hence, we have also listed explicitly in figure 4(b) the band gap shift \(\Delta E_{\text{G}} = E_{\text{G}}^{\text{expt}} - E_{\text{G}}^{\text{opt}}\) (optimized
Figure 3. (a) Band diagrams of α-Al$_2$O$_3$ calculated with GGA-AM05, HSE06 and GGA-1/2 (AM05); (b) band diagrams of r-TiO$_2$ calculated with GGA-PBEsol, HSE06 and GGA-1/2 (PBEsol); (c) band diagrams of m-ZrO$_2$ calculated with GGA-PBEsol, HSE06 and GGA-1/2 (PBEsol); (d) band diagrams of m-HfO$_2$ calculated with GGA-PBEsol, HSE06 and GGA-1/2 (PBEsol).
lattice) using GGA-1/2. Notice that while the differences for \(m \)-ZrO\(_2\) and \(m \)-HfO\(_2\) are slight regardless of the XC used, for \(\alpha \)-Al\(_2\)O\(_3\) and \(r \)-TiO\(_2\) the differences can be a lot more pronounced. Moreover, among the five GGA XCs the \(\Delta E_g \) values obtained with PBEsol have the least fluctuation in general, slightly better than AM05 (both PBEsol and AM05 are considerably better than the other three GGA XCs).

Table 3. Calculated GGA and GGA-1/2 band gaps (unit: eV) for \(\alpha \)-Al\(_2\)O\(_3\), \(r \)-TiO\(_2\), \(m \)-ZrO\(_2\) and \(m \)-HfO\(_2\) with various exchange-correlation functionals, based upon experimental lattice parameters. HSE06, GW and experimental values are also listed for comparison.

	PBE	PBEsol	PW91	revPBE	AM05	GW	Expt.
\(\alpha \)-Al\(_2\)O\(_3\)	GGA	6.22	6.13	6.26	6.31	6.23	8.088\(^*\) [54]
	GGA-1/2	8.46	8.35	8.50	8.65	8.49	9.78 [56]
\(r \)-TiO\(_2\)	GGA	1.83	1.81	1.66	1.78	1.82	3.39 [57]
	GGA-1/2	3.09	3.07	2.80	3.12	3.07	3.0-3.4 [58-61]
\(m \)-ZrO\(_2\)	GGA	3.65	3.59	3.57	3.70	3.63	5.14 [63]
	GGA-1/2	5.53	5.46	5.41	5.61	5.51	5.34(G\(_0\)W\(_0\)) [62], 5.42(G\(_0\)W\(_0\)) [64]
\(m \)-HfO\(_2\)	GGA	4.08	4.01	4.06	4.13	4.06	5.83' [69]
	GGA-1/2	6.10	6.01	6.08	6.20	6.08	5.45(G\(_0\)W\(_0\)), 5.78(G\(_0\)W\(_0\)) [62], 5.92(G\(_0\)W\(_0\)) [61]

* With norm-conserving pseudopotentials.

3.4. Influence of different pseudopotential forms

Pseudopotentials of different forms can have great influence on the calculated electronic structures, especially for transition metals due to the complexity of d electrons. The pseudopotential of Al is sufficiently simple because only 3 electrons need to be considered as in the valence. On the other hand, for the 4d metal Zr, the pseudopotential of the Zr\(_{sv}\) form (including 4s, 4p, 4d and 5s electrons in the valence) is unavoidable in VASP. There is thus little room to test the influence of pseudopotential forms for Al and Zr. Hence, we only considered different GGA-PBEsol pseudopotential forms for Ti and Hf available with the VASP code, which are Ti(Hf) (four valence electrons, 4e for short), Ti(Hf)\(_{pv}\) (ten valence electrons, 10e for short), and Ti(Hf)\(_{sv}\) (twelve valence electrons, 12e for short). As shown in table 4, the calculated band gap of \(r \)-TiO\(_2\) is much more sensitive to the choice of pseudopotential than that of \(m \)-HfO\(_2\). For \(r \)-TiO\(_2\), at least the Ti\(_{pv}\) (10e) pseudopotential should be used in order to get accurate results. In addition, all the three pseudopotential forms considered here for Hf are suitable for various calculations. Thus, on account of both computational accuracy and efficiency, in carrying out GGA-1/2 electronic structure calculations we recommend Ti\(_{sv}\) (12e) or at least Ti\(_{pv}\) (10e) pseudopotentials for \(r \)-TiO\(_2\), while for \(m \)-HfO\(_2\) all three available pseudopotential forms are suitable.
3.5. Universality of the GGA-1/2 self-energy potentials

In all the GGA-1/2 calculations above, we have derived the self-energy potentials by subtracting the potential of a charged ion with (1/2)e missing, from that of a neutral atom. Both neutral and ionized atomic potentials were calculated initially using DFT-GGA for each XC flavor. These self-energy potentials in fact do not differ much since the subtraction may eliminate most of the specific features belonging to each specific XC flavor. To investigate whether a unique self-energy potential can be used in the GGA-1/2 calculation with different GGA XCs, we have manually listed PBE and PBEsol as the baseline XCs. This means that we subsequently carried out GGA-1/2 calculations with all five XCs, but utilizing the set of self-energy potentials only from the baseline XCs. For all oxides, the corresponding band gap results are shown in Table 5. Compared with Table 2, the maximum GGA-1/2 band gap variation upon switching to the PBE-derived oxygen self-energy potential, is merely 0.02 eV among all XCs and all oxides. When exclusively using PBEsol-derived oxygen self-energy potential, the maximum band gap variation is enlarged to 0.06 eV, which is still a tiny value. We conclude that for these materials the self-energy correction is not significantly dependent on the XC flavor, and the PBE self-energy potentials may fit other XC flavors in carrying out GGA-1/2 calculations.

3.6. Influence of the self-energy potential trimming scheme

In the GGA-1/2 calculations, a cutoff function Θ is employed to trim the self-energy potential:

\[
\Theta(r) = \begin{cases}
1 - \left(\frac{r}{r_{\text{cut}}}\right)^p & , \quad r \leq r_{\text{cut}} \\
0 & , \quad r > r_{\text{cut}}
\end{cases}
\]

where p is a power index that should be sufficiently large to ensure a sharp trim, and r_{cut} is the cutoff radius. In the original work of Ferreira et al the value $p = 8$ was chosen to avoid possible convergence issues, but higher values can also be used. Indeed, we re-calculated the band gaps for the four oxides using GGA-1/2 with $p = 20$, and encountered no issue related to numerical convergence. Compared with $p = 8$, the GGA-1/2 band gaps with $p = 20$ (listed in Table 6) increase by about 0.2 eV (for α-Al$_2$O$_3$) and 0.09 eV ~ 0.14 eV (for r-TiO$_2$, m-ZrO$_2$ and m-HfO$_2$). The mean differences between the calculated band gap values and the experimental results are diminished as p increases from 8 to 20, indicating that $p = 20$ is more favorable for these calculations because it includes the self-energy more accurately. In order to explain this phenomenon, in Figure 5 we plot the real-space spatial distribution of the hole (residing at the VBM in k-space) and the electron (residing at the CBM in k-space) for r-TiO$_2$ as an example. Since the hole and electron overlap, when the p value is low the self-energy potential reaches the electron density, lowering the CBM as well as the VBM. On the other hand, as p increases from 8 to 20, the self-energy potential acquires a sharper boundary, resulting in less overlap with the electron distribution, which yields larger band gaps. In the meantime, we notice a variation of the optimal oxygen self-energy cutoff radius when using different p values. As plotted in Figure 6, the cutoff radii are in general reduced by around 0.2 a.u. ~ 0.3 a.u. when p is increased from 8 to 20. Such phenomenon is common for all the materials under investigation. However, as long as p is fixed, the optimal r_{cut} is relatively constant across these oxides, showing good transferability of the self-energy potentials.

Table 4. Comparison of calculated band gaps (unit: eV) for r-TiO$_2$ and m-HfO$_2$ with different versions of pseudopotentials. The GGA-1/2 method is used, within the PBEsol functional.

Material	GGA-1/2 (4e)	GGA-1/2 (10e)	GGA-1/2 (12e)
r-TiO$_2$	2.81	3.05	3.10
m-HfO$_2$	5.88	5.96	5.94

Table 5. Calculated GGA-1/2 band gaps (unit: eV) for α-Al$_2$O$_3$, r-TiO$_2$, m-ZrO$_2$ and m-HfO$_2$ with five different exchange-correlation functionals. Here the self-energy potentials were nevertheless only of PBE/PBEsol flavors.

Material	PBE	PBEsol	PW91	revPBE	AM05
α-Al$_2$O$_3$	8.09/8.11	8.24/8.25	8.15/8.16	8.05/8.07	8.37/8.39
r-TiO$_2$	3.04/3.04	3.09/3.09	3.01/3.02	3.02/3.03	3.08/3.09
m-ZrO$_2$	5.51/5.51	5.44/5.45	5.38/5.39	5.61/5.61	5.49/5.50
m-HfO$_2$	6.06/6.06	5.95/5.96	6.04/6.04	6.18/6.18	6.01/6.01
3.7 Overall estimation of GGA-1/2

In Figure 7, we compare the accuracy of the GGA-1/2 self-energy correction scheme under various XC flavors with conventional GGA, HSE06, and GW. Experimental values are used for benchmark. As expected, GGA band gaps are significantly underestimated compared to experimental values, differing by as much as 2.67 eV in the case of α-Al$_2$O$_3$ (see Figure 7(a)). For the materials under investigation, the GW band gaps are the largest, except for m-HfO$_2$ where GW and GGA-1/2 are very close. Note that for m-HfO$_2$, the calculated GW band gaps vary considerably across the literature. For instance, in the case of m-HfO$_2$, Balá et al reported 5.45 eV [62], while Jain et al reported 6.0 eV [66]. Moreover, for α-Al$_2$O$_3$, the GW band gaps are larger than experimental data by 0.56 eV – 0.98 eV, while for r-TiO$_2$ and m-ZrO$_2$, the reported GW band gaps are in good agreement with experiments (see Figures 7(b)–(d)).

The hybrid functional HSE06, depicted as hollow triangles in Figure 7, clearly shows great improvement over conventional GGA, but its band gaps are generally smaller than those from GW calculations. On the other hand, the GGA-1/2 band gaps are generally better than HSE06 results, except for r-TiO$_2$. Among the five XC flavors, PBEsol demonstrates the best performance in general, in accordance with our previous results discussed in Section 3.3.

3.8 GGA-1/2 in the study of RRAM devices

After demonstrating the advantages of GGA-1/2 and identifying PBEsol as the XC with the best accuracy, we here list some possible applications of the GGA-1/2 method in investigating some fundamental problems in RRAM, especially regarding the nature of the CF:

- Prediction of CF composition and structure in binary oxide-based RRAM cells. It is commonly agreed that oxygen vacancies (V_0’s) are key to CF formation. However, for each material it is far from certain what amount of V_0 should render CF formation with the
Figure 6. Optimal \(r_{\text{cut}}\) comparison for \(\alpha\)-Al\(_2\)O\(_3\), \(r\)-TiO\(_2\), \(m\)-ZrO\(_2\) and \(m\)-HfO\(_2\) with different XC flavors, where the power index \(p\) is either 8 or 20.

Figure 7. Energy band gaps for \(\alpha\)-Al\(_2\)O\(_3\), \(r\)-TiO\(_2\), \(m\)-ZrO\(_2\) and \(m\)-HfO\(_2\) calculated with GGA (solid rhombuses), HSE06 (hollow triangles), GW (hollow squares), and GGA-1/2 (solid circles). Experimental values (horizontal dashed lines) are shown for comparison.
On the other hand, the CF

In summary, we performed a thorough investigation into the accuracy of the GGA-1

4. Conclusions

In summary, we performed a thorough investigation into the accuracy of the GGA-1/2 electronic structure calculation method, by comparing five different exchange-correlation functionals (PBE, PBEsol, PW91, revPBE and AM05). Four metal oxide crystals (α-Al2O3, r-TiO2, m-ZrO2 and m-HfO2) were selected for benchmark calculations, based on their relevance in resistive memory devices, for which the simulation requires exceptionally large supercells in order to clarify the device physics. Such tasks ask for fast and accurate schemes for the calculation of band gaps and band offsets. We compared the accuracy of each GGA functional flavor and have drawn the following conclusions:

(1) GGA-1/2 within any of these exchange-correlation functional flavors predicts reasonable band gaps, correcting the band gap underestimation of conventional GGA.

(2) For the oxides investigated, the GGA-1/2 band gaps fall between the HSE06 and GW results, while the GGA-1/2 band structure morphology is in agreement with the computationally-demanding GW method.

(3) Since PBEsol and AM05 predict the most accurate lattice parameters, GGA-1/2 based on these two flavors yields band gaps that are relatively insensitive to the choice of experimental or optimized lattice parameters. In particular, PBEsol performs slightly better than AM05.
(4) While the atomic potentials obtained with different GGA flavors are fairly different, the corresponding self-energy potentials are relatively insensitive to the XC flavor that was used in the self-energy potential generation. In case a self-energy potential with a specified GGA XC is missing, one may resort to the PBE self-energy potential.

(5) In the implementation of GGA-1/2, increasing the power index of the self-energy cutoff function from 8 to 20 can further improve the calculated band gaps for typical metal oxides.

Our work shows that GGA-1/2 is an efficient and accurate method for calculating the electronic band structures for various resistive switching oxides, for all the GGA exchange-correlation functionals investigated. Nevertheless, the combination GGA(PBEsol)-1/2 stands out as the optimum scheme that offers the most accurate band gaps for these oxides.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Materials Genome Initiative, 2017YFB0701700), the National Natural Science Foundation of China under Grant No. 11704134, the Fundamental Research Funds of Wuhan City under Grant No. 2017010201010106, the Fundamental Research Funds for the Central Universities of China under Grant No. HUST:2016XYMS212, and the Hubei “Chu-Tian Young Scholar” program. L R C Fonseca thanks the Brazilian agency CNPq for financial support under Grant No. 118485/2017-2.

ORCID iDs

Kan-Hao Xue https://orcid.org/0000-0002-2894-7912

References

[1] Walker S J 2014 Big data: a revolution that will transform how we live, work, and think Int. J. Advert. 33 181–3
[2] Armbrust M et al 2010 A view of cloud computing Commun. ACM 53 50–8
[3] Gubbi J, Buyya R, Marusic S and Palaniswami M 2013 Internet of things (IoT): a vision, architectural elements, and future directions Future Gener. Comput. Syst. 29 1645–60
[4] Bez R, Camerlenghi E, Modelli A and Visconti A 2003 Introduction to flash memory Proc. IEEE 91 489–302
[5] Pavan P, Bez R, Olivo P and Zanoni E 1997 Flash memory cells—an overview Proc. IEEE 85 1246–71
[6] Gao B et al 2011 Oxide-based RRAM: Unified microscopic principle for both unipolar and bipolar switching 2011 Int. Electron Devices Meet., pp 1–17
[7] Kwon D-H et al 2010 Atomic structure of conducting nanofilaments in TiO2 resistive switching memory Nat. Nanotechnol. 5 148–53
[8] Abbas Y, Sokolov A S, Jeon Y-R, Kim S, Ku B and Choi C 2014 Structural engineering of tantalum oxide based memristor and its electrical switching responses using rapid thermal annealing J. Alloys Compd. 759 64–41
[9] Abbas Y, Jeon Y-R, Sokolov A S, Kim S, Ku B and Choi C 2015 Compliance-free, digital SET and analog RESET synaptic characteristics of sub-tantalum oxide based neuromorphic device Sci. Rep. 8 1228
[10] Li Y, Zhong Y, Li J, Xu X, Wang Q, Xu L, Sun H J and Xiao X S 2013 Intrinsinc memristance mechanism of crystalline stoichiometric Ge2Sb2Te5 Appl. Phys. Lett. 103 043501
[11] Liu X, Ji Z, Tu D, Shang L, Liu J, Liu M and Xie C 2009 Organic nonpolar nonvolatile switching in poly(3,4-ethylenedioxythiophene): Polystyrenesulfonate thin film Org. Electron. 10 1191–4
[12] Wu Y, Lee B and Wong H S P 2010 Al2O3-based RRAM using atomic layer deposition (ALD) with 1-μA RESET current IEEE Electron Device Lett. 31 1449–51
[13] Xue K-H, Traore B, Blaise P, Fonseca L R C, Vianello E, Molas G, De Salvo B, Ghibaudo G, Magyari-Kope B and Nishi Y 2014 A combined ab initio and experimental study on the nature of conductive filaments in Pt/HfO2/Pt resistive random access memory IEEE Trans. Electron Devices 61 1394–402
[14] Ku B, Abbas Y, Sokolov A S and Choi C 2018 Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors J. Alloys Compd. 735 1181–8
[15] Zhao L, Zhang J, He Y, Guan X, Qian H and Yu Z 2011 Dynamic modeling and atomistic simulations of SET and RESET operations in TiO2-based unipolar resistive memory IEEE Electron Device Lett. 32 677–9
[16] Abbas H, Abbas Y, Truong S N, Min K-S, Park M R, Cho J, Yoon T-S and Kang C J 2017 A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications Semicond. Sci. Technol. 32 065014
[17] Wu M-C, Lin Y-W, Jang W-Y, Lin C-H and Tseng T-Y 2011 Low-power and highly reliable multilevel operation in ZrO2 1T1R RRAM IEEE Electron Device Lett. 32 1026–8
[18] Gao Y and Robertson J 2015 Ab initio calculations of materials selection of oxides for resistive random access memories Microelectron. Eng. 147 339–43
[19] Celano U, Gouix L, Degraeve R, Fantini A, Richard O, Bender H, Jurczak M and Vandervorst W 2015 Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory Nano Lett. 15 7970–5
[20] Celano U, Fantini A, Degraeve R, Jurczak M, Gouix L and Vandervorst W 2016 Scalability of valence change memory: from devices to tip-induced filaments AIP Adv. 6 085009
[21] Yang Y, Zhang X, Qin L, Zeng Q, Qiu X and Huang R 2017 Probing nanoscale oxygen ion motion in memristive systems Nat. Commun. 8 15173
[22] Li C et al 2017 Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies Adv. Mater. 29 1602976
[23] Kohn W and Sham L J 1965 Self-consistent calculations including exchange and correlation effects Phys. Rev. A140 1133–8
[24] Xue K-H, Blaise P, Fonseca L R C and Nishi Y 2013 Prediction of semimetallic tetragonal Hf2O3 and Zr2O3 from first principles Phys. Rev. Lett. 110 065502
[25] Hedlin L 1965 New method for calculating the one-particle green’s function with application to the electron-gas problem Phys. Rev. 139 A796–823
[26] Krukar A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 Influence of the screening exchange parameter on the performance of screened hybrid functionals J. Chem. Phys. 125 224106
[27] Park S-G, Magyari-Köpe B and Nishi Y 2010 Electronic correlation effects in reduced rutile TiO2 within the LDA+U method Phys. Rev. B 82 115109
[28] Park S-G, Magyari-Köpe B and Nishi Y 2009 Lattice and electronic effects in rutile TiO2 containing charged oxygen defects from calculations MRS Online Proc. Libr. Arch. 1160 1160–H11–11
[29] Park S-G, Magyari-Köpe B and Nishi Y 2008 First-principles study of resistance switching in rutile TiO2 with oxygen vacancy 9th Annu. Non-Volatile Mem. Technol. Symp. NVMTS pp 1–5
[30] Zhao L, Park S-G, Magyari-Köpe B and Nishi Y 2013 Dopant selection rules for desired electronic structure and vacancy formation characteristics of TiO2, resistive memory Appl. Phys. Lett. 102 083506
[31] Li H, Zhang Z and Shi L P 2016 Identifying and engineering the electronic properties of the resistive switching interface J. Electron. Mater. 45 1142–53
[32] Ferreira I G, Marques M and Teles L K 2008 Approximation to density functional theory for the calculation of band gaps of semiconductors Phys. Rev. B 78 125116
[33] Ferreira I G, Marques M and Teles L K 2011 Slater half-occupation technique revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors AIP Adv. 1 032119
[34] Perdew J P, Ruzsinszky A, Csonka G J, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Restoring the density-gradient expansion for exchange in solids and surfaces Phys. Rev. Lett. 100 136406
[35] Wu Z and Cohen R E 2006 More accurate generalized gradient approximation for solids Phys. Rev. B 73 235116
[36] Armiento R and Mattsson A E 2005 Functional designed to include surface effects in self-consistent density functional theory Phys. Rev. B 72 085108
[37] Levin I and Brandon D 1998 Metastable alumina polymorphs: Crystal structures and transition sequences J. Am. Ceram. Soc. 81 1995–2012
[38] Abraham S C and Bernstein J L 1971 Rutile: Normal probability plot analysis and accurate measurement of crystal structure J. Chem. Phys. 55 3206–11
[39] Mülkülainen V, Leskela M, Ritala M and Puurunen R I 2013 Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends J. Appl. Phys. B 113 021301
[40] Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–86
[41] Kresse G and Furthmüller J 1996 Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 6 15–50
[42] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8
[43] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation Phys. Rev. B 46 6671–87
[44] Hammer B, Hansen L B and Nørskov J K 1999 Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals Phys. Rev. B 59 7413–21
[45] Blöchl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953–79
[46] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 59 17585–78
[47] Monkhorst H J and Pack J D 1976 Special points for Brillouin-zone integrations Phys. Rev. B 13 5188–92
[48] Leite J R and Ferreira L G 1971 Effects of the coulomb correlation on the calculated results for atoms with and without spin polarization Phys. Rev. A 3 1224–30
[49] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejón P and Sánchez-Portal D 2002 The SIESTA method for materials simulation J. Phys. Condens. Matter 14 2745–79
[50] Oettel M and Heger G 1999 Laboratory x-ray powder diffraction: a comparison of different geometries with special attention to the usage of the Cu Ko doublet J. Appl. Crystallogr. 32 799–807
[51] Murugesan S, Kuppusami P and Mohandas E 2010 Rietveld X-ray diffraction analysis of nanostructured rutile films of titania prepared by pulsed laser deposition Mater. Res. Bull. 45 6–9
[52] Whittle K R, Lumpkin G R and Ashbrook S E 2006 Neutron diffraction and MAS NMR of cesium tungstate defect pyrochlores J. Solid State Chem. 179 512–21
[53] French B R, Jones D and Loughin S 1994 Interband electronic structure of α-alumina up to 2167 K J. Am. Ceram. Soc. 77 412–22
[54] Santos R C R, Longhiniotti E, Freire V N, Reimberg R B and Caetano E W S 2015 Elucidating the high-κ insulator α-Al2O3: direct/indirect energy band gap type through density functional theory computations Chem. Phys. Lett. 637 172–6
[55] Marionopoulos A G and Grüning M 2011 Local-field and excitonic effects in the optical properties of α-alumina Phys. Rev. B 83 195129
[56] Peng H, Scalon D O, Stevanovic V, Vidal J, Watson G W and Lany S 2013 Convergence of density and hybrid functional defect calculations for compound semiconductors Phys. Rev. B 88 115201
[57] Landmann M, Rauls E and Schmidt W G 2012 The electronic structure and optical response of rutile, anatase and brookite TiO2 J. Phys. Condens. Matter 24 195503
[58] Burdett J K, Hughbanks T, Miller G J, Richardson Jr J W and Smith J V 1987 Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K J. Am. Chem. Soc. 109 3639–46
[59] Amitout A and Leonelli R 1995 Optical properties of rutile near its fundamental band gap Phys. Rev. B 51 6842–51
[60] Clark J S and Robertson J 2010 Screened exchange density functional applied to solids Phys. Rev. B 82 085208
[61] Pascual J, Camassel J and Mathieu H 1977 Resolved quadrupolar transition in TiO2 Phys. Rev. Lett. 39 1490–3
[62] Jiang H, Gomez-Abal R I, Kinke P and Scheffler M 2010 Electronic band structure of zirconia and hafnia polymorphs from the GW perspective Phys. Rev. B 81 085119
[63] Sinhamahapatra A, Jeon J-P, Kang J, Han B and Yu J-S 2016 Oxygen-deficient zirconia (ZrO$_2-x$): A new material for solar light absorption Sci. Rep. 6 27218

[64] Králík B, Chang E K and Louie S G 1998 Structural properties and quasiparticle band structure of zirconia Phys. Rev. B 57 7027–36

[65] Houssa M, Tuominen M, Nauli M, Afanas’ev V, Stesmans A, Haukka S and Heyns M M 2000 Trap-assisted tunneling in high permittivity gate dielectric stacks J. Appl. Phys. 87 8615–20

[66] Jain M, Chelikowsky J R and Louie S G 2011 Quasiparticle excitations and charge transition levels of oxygen vacancies in hafnia Phys. Rev. Lett. 107 216803

[67] Sayan S, Emge T, Garfunkel E, Zhao X, Wielunski L, Bartynski R A, Vanderbilt D, Suerhe J S, Suzeer S and Banaszak-Holl M 2004 Band alignment issues related to HfO$_2$/SiO$_2$/p-Si gate stacks J. Appl. Phys. 96 7485–91

[68] Alkauskas A, Broqvist P and Pasquarello A 2008 Defect energy levels in density functional calculations: Alignment and band gap problem Phys. Rev. Lett. 101 046405

[69] Chen W and Pasquarello A 2012 Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus many-body perturbation theory Phys. Rev. B 86 035134

[70] Kim K M, Jeong D S and Hwang C S 2011 Nano filamentary resistive switching in binary oxide system: a review on the present status and outlook Nanotechnology 22 254002

[71] Broqvist P, Alkauskas A and Pasquarello A 2008 Defect levels of dangling bonds in silicon and germanium through hybrid functionals Phys. Rev. B 78 075203

[72] Xue K-H, Yuan J-H, Fonseca L R C and Miao X-S 2018 Improved LDA-1/2 method for band structure calculations in covalent semiconductors Comput. Mater. Sci. 153 493–505

[73] Xue K-H, Blaise P, Fonseca L R C, Molas G, Vianello E, Traore B, De Salvo B, Gibaudo G and Nishi Y 2013 Grain boundary composition and conduction in HfO$_2$: An ab initio study Appl. Phys. Lett. 102 201908

[74] Shubhakar K, Mei S, Bosman M, Raghavan N, Ranjan A, O’Shea S J and Pey K L 2016 Conductive filament formation at grain boundary locations in polycrystalline HfO$_2$-based MIM stacks: Computational and physical insight Microelectron. Reliab. 64 204–9

[75] Xue K-H and Miao X-S 2018 Oxygen vacancy chain and conductive filament formation in hafnia J. Appl. Phys. 123 161505

[76] Biju K P, Liu X J, Bourim E M, Kim I, Jung S, Siddik M, Lee J and Hwang H 2010 Asymmetric bipolar resistive switching in solution-processed Pt/TiO$_2$/W devices J. Phys. D: Appl. Phys. 43 495104

[77] Wu Z-H, Xue K-H and Miao X-S 2017 Filament-to-dielectric band alignments in TiO$_2$ and HfO$_2$ resistive RAMs J. Comput. Electron. 16 1057–65

[78] Gu T, Wang Z, Tada T and Watanabe S 2009 First-principles simulations on bulk Ta$_2$O$_3$ and Cu/Ta$_2$O$_3$/Pt heterojunction: Electronic structures and transport properties J. Appl. Phys. 106 103713