Molecular Mechanisms Underlying Ascl1-Mediated Astrocyte-to-Neuron Conversion

Zhiping Rao,1,2,7,10 Ran Wang,3,10 Sanlan Li,1,2,10 Yuhan Shi,1,2 Licun Mo,4 Su’e Han,1,2 Jiacheng Yuan,1 Naihe Jing,3,8,9,11,* and Leping Cheng1,4,5,6,11,*

1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
4Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment & Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, China
5Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, China
6Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease (Guangxi Medical University), Nanning, Guangxi 530021, China
7Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
8School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
9Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
10These authors contributed equally
11Co-senior author
*Correspondence: njing@sibcb.ac.cn (N.J.), lpcheng@gxmu.edu.cn (L.C.)

https://doi.org/10.1016/j.stemcr.2021.01.006

SUMMARY

Direct neuronal reprogramming potentially provides valuable sources for cell-based therapies. Proneural gene Ascl1 converts astrocytes into induced neuronal (IN) cells efficiently both in vitro and in vivo. However, the underlying mechanisms are largely unknown. By combining RNA sequencing and chromatin immunoprecipitation followed by high-throughput sequencing, we found that the expression of 1,501 genes was markedly changed during the early stages of Ascl1-induced astrocyte-to-neuron conversion and that the regulatory regions of 107 differentially expressed genes were directly bound by ASCL1. Among Ascl1’s direct targets, Klf10 regulates the neurogenesis of IN cells at the early stage, Myt1 and Myt1l are critical for the electrophysiological maturation of IN cells, and Neurod4 and Chd7 are required for the efficient conversion of astrocytes into neurons. Together, this study provides more insights into understanding the molecular mechanisms underlying Ascl1-mediated astrocyte-to-neuron conversion and will be of value for the application of direct neuronal reprogramming.

INTRODUCTION

The central nervous system of mammals has a limited capacity to regenerate when neurons are injured or lost in traumatic or neurodegenerative diseases. Together with stem cell-derived neuronal products, direct neuronal reprogramming offers promising alternatives to achieve neuronal repair (Colasante et al., 2019; Masserodetti et al., 2016; Tsunemoto et al., 2015; Xu et al., 2015). Mounting evidence shows that non-neuronal cells such as fibroblasts and astrocytes can be directly converted into neurons and a number of neuronal subtypes (Addis et al., 2011; Berninger et al., 2007; Caiazzo et al., 2011; Colasante et al., 2015; Guo et al., 2014; Heinrich et al., 2010; Heins et al., 2002; Kim et al., 2011; Li et al., 2019; Liu et al., 2013, 2015; Niu et al., 2013; Pflügerer et al., 2011; Son et al., 2011; Torper et al., 2013; Vadodaria et al., 2016; Vierbuchen et al., 2010; Xu et al., 2016). However, the molecular mechanisms underlying direct neuronal reprogramming remain poorly understood.

The past several years have seen much progress in our understanding of how fibroblasts are converted into neurons. It has been reported a hierarchical mechanism operates in the direct reprogramming of fibroblasts into neurons mediated by the transcription factors (TFs) Ascl1, Bm2, and Myt1l. Ascl1 acts as an “on-target” pioneer factor by occupying most cognate genomic sites in both the opened and closed chromatin in fibroblasts (Wapinski et al., 2013). Further study showed that Ascl1 opens closed chromatin at its target sites within 12 h, and induces rapid chromatin remodeling and nucleosome phasing that precedes neuronal maturation in direct reprogramming of fibroblasts to neurons (Wapinski et al., 2017). By performing single-cell RNA sequencing (RNA-seq), Treutlein et al. (2016) revealed that the direct reprogramming of fibroblasts to neurons contains two stages: the initiation stage when Ascl1 induces neuronal and myocyte fates and the maturation stage when Bm2 and Myt1l promote reprogrammed fibroblasts to permanently acquire neuronal identity. Mall et al. (2017) further showed that the TF Myt1l...
represses multiple somatic cell lineage programs to establish and maintain neuronal identity. Besides TFs, polypyrimidine tract-binding proteins, microRNAs, and epigenetic regulators also actively participate in the conversion of fibroblasts into neurons (He et al., 2018; Hu et al., 2018; Lee et al., 2018; Lu and Yoo, 2018; Luo et al., 2019; Zhang et al., 2016).

During direct reprogramming of astrocytes into neurons, it has been reported that Neurog2 and Ascl1 rapidly induced distinct transcriptional programs with only a small subset of target genes in common at 24 h after induction, including Insm1, NeuroD4, Prox1, and Sox11. Among these downstream TFs, only NeuroD4 is sufficient to induce a small fraction of neuronal cells (1%–3%) from cerebral cortex astrocytes at postnatal day 6–7 (P6–7), and together with Insm1 they induced a glutamatergic neuronal phenotype (Masserdotti et al., 2015). However, how the downstream factors of proneural genes contribute to the astrocyte-to-neuron conversion remains largely unknown. Here, we combined RNA-seq, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), and analysis of the TF regulation network to dissect the mechanisms underlying Ascl1-induced astrocyte-to-neuron conversion. We found that Ascl1 induced rapid and global transcriptional changes by directly binding to its target genes. Among these direct target genes, the TFs Klf10, Myt1, and Neurod4, and chromatin remodeling factor Chd7 played important roles in the direct reprogramming of astrocytes into neurons.

RESULTS

Ascl1 Induces Rapid and Global Transcriptional Changes

To investigate the molecular mechanisms underlying Ascl1-induced astrocyte-to-neuron conversion, we infected the cultured dorsal midbrain astrocytes with FUGW-Ascl1 or control viruses and performed the assays within 10 days post infection (DPI) (Figure 1A). We assessed the purity of the starter astrocytes by performing immunostaining. The results showed that the majority of the cells were stained positive for GFAP (83.3% ± 1.6%, n = 3 independent experiments) while few cells were stained positive for TUJ1 (0.8% ± 0.2%, n = 3 independent experiments) and NG2 (0.5% ± 0.2%, n = 3 independent experiments). The TUJ1+ cells did not exhibit neuronal morphology. Notably, in Marius Wernig’s work on direct conversion of fibroblasts to functional neurons by defined factors (Vierbuchen et al., 2010), it has been reported that rare TUJ1-positive cells with fibroblast-like morphology exist in starting mouse embryonic fibroblasts (MEFs), indicating weak expression of TUJ1 in non-neuronal cells. Conversely,
SOX2 (a neural stem cell marker)-positive cells could hardly be detected in the astrocyte cultures (data not shown). At 10 DPI when infected with the control lentivirus FUGW expressing GFP only, the astrocytes maintained the glial morphology and did not express the neuronal marker TUJ1. In contrast, most of the astrocytes infected with FUGW-Ascl1 adopted a neuronal fate and expressed TUJ1 (67.2% ± 5.1%, n = 3 independent experiments, 5701 GFP+ cells counted) and exhibited characteristic neuronal morphology (Figures 1B and 1C). We then examined the expression of the neuronal markers TuJ1, Map2, and NeuN by performing quantitative RT-PCR (qRT-PCR) at various time points during the direct reprogramming. We found that the expression of neuronal markers was markedly increased at 2 DPI and reached peak levels at 5 DPI (Figure 1D).

To reveal the genome-wide transcriptional changes during astrocyte-to-neuron conversion, we performed RNA-seq assays at 2 DPI and 5 DPI with five groups of samples including day0-A (astrocytes control without virus infection at day 0), day2-Ctrl, and day5-Ctrl (astrocytes infected with FUGW at day 2 and day 5), day2-Ascl1 and day5-Ascl1 (astrocytes infected with FUGW-Ascl1 at day 2 and day 5). The results showed that the two biological replicates in each group correlated very well (Figure 2A).

Correlation analysis confirmed that the normalized RNA-seq tag counts of these genes were consistent with their expression levels that were detected by qRT-PCR (Figure 2B). Principal component analysis (PCA) separated the Ascl1-infected samples from controls in the principal component 1 (PC1) dimension and revealed that day2-Ascl1 was an intermediate state across the direct reprogramming (Figures 2C, S1A, and S1B). We found that the expression of 1,501 genes was markedly changed (fold change >1.5, p < 0.05) in FUGW-Ascl1-infected astrocytes compared with that in control astrocytes during direct reprogramming, and these differentially expressed genes (DEGs) could be clustered into five groups by their expression levels at different time points. The expression of genes in group 1 was upregulated only at day 2 (G1), the genes in group 2 were upregulated at day 2 and their expression was maintained at day 5 (G2), group 3 was composed of genes whose expression was sequentially upregulated from day 2 to day 5 (G3), and group 4 consisted of genes upregulated only at day 5 (G4), whereas the genes in group 5 were downregulated at both day 2 and day 5 (G5) (Figures 2D and 2E). Furthermore, functional enrichment analysis revealed that the genes in each group were associated with distinct biological processes (Figure 2D). The list of 1,501 DEGs can be found in Table S1. We have compared the results with previous works (Masserdotti et al., 2015; Wapinski et al., 2013), and the comparisons can be found in Tables S2-S4 and Figure S2.

Genome-wide Binding Sites of ASCL1 in Astrocytes
To search for the genome-wide binding sites of ASCL1 in astrocytes, we performed ChIP-seq for ASCL1 in astrocytes at day 2 after virus infection. The results showed that 955 ASCL1-binding peaks were identified with at least 3-fold enrichment (Figure 3A), and the ASCL1 bound sites were mainly located in the distal regions of target genes (Figure 3B and Table S5). The genes with enriched binding peaks within 50 kb upstream or downstream of transcriptional start sites (TSSs) were defined as ASCL1 direct binding targets. We found that 696 genes were directly bound by ASCL1 (Table S6). De novo motif discovery analysis was performed to identify ASCL1 binding motifs within its binding regions. Among the top-ranking motifs, the canonical E-box motif CANNTG, which is associated with ASCL1 binding in fibroblasts (Wapinski et al., 2013) and neural stem cells (Raposo et al., 2015), was highly enriched across the binding sites (Figure 3C). Combining the results of ChIP-seq with RNA-seq, we found that 107 of 1,501 DEGs were directly bound by ASCL1 during direct reprogramming (Figure 3D and Table S7).

We applied the same criteria to analyze the ChIP-seq results, which were collected in fibroblasts reprogrammed for 2 days (Wapinski et al., 2013), and identified 12,321 ASCL1-binding peaks and 6,115 possible binding targets. Among these possible binding targets, 2,644 genes were distributed on either PC1 or PC2 dimension, which classified the direct neuronal reprogramming process to distinct stages. We defined the 2,644 genes as ASCL1 direct downstream targets in this system. Notably, 92 genes out of the 107 ASCL1 direct downstream targets in astrocytes induced for 2 days (this study) were also identified as ASCL1 downstream targets in fibroblasts reprogrammed for 2 days (Wapinski et al., 2013) (Table S7).

To unravel the connection of ASCL1 and the downstream targets, we analyzed the Connection Specificity Index (CSI) of TFs in five DEG groups and generated a TF co-expression network (Ascl1 negatively correlated TF group was removed in Figure S1C). We connected Ascl1 and its direct downstream targets through deep yellow arrows. Being closer to ASCL1, the target gene displayed more significant differential expression, and we made the arrow bold. We then reconnected and reclustered the TFs based on the detailed CSI coefficient, and the correlation between every two TFs was shown (Figure S1C). TFs Klf10, Myt1, and Neurod4 were chosen as representative DEGs of day2 upregulated only (G1), day2-day5 upregulated sequentially (G3), and day5 upregulated only (G4) to investigate what roles they might play during the Ascl1-induced astrocyte-to-neuron conversion (Figures 3E-3G and S1C). Furthermore, among the 1,501 DEGs identified during Ascl1-induced astrocyte-to-neuron conversion, 61 epigenetic factors were differentially expressed (fold change >1.5, p < 0.05),...
and an ATP-dependent chromatin remodeler chromo-helicase-DNA-binding protein 7 (Chd7) was the most significant DEG. Meanwhile, the expression profile of Chd7 highly correlated with that of Ascl1 (Figure S3). Thus, we also studied the function of the epigenetic factor Chd7 (Figure 3H). We have confirmed the binding of ASCL1 on the regulatory regions of Klf10, Myt1, Neurod4, and Chd7 by ChIP-PCR at 2 DPI and the expression of these genes at 2 DPI and 5 DPI by qRT-PCR (Figures 3I and 3J).

Klf10 Regulates Neuritogenesis and the Electrophysiological Properties of Induced Neuronal Cells

The expression of TF Klf10 was upregulated only at day 2 during direct reprogramming (Figure 3J). To investigate whether Klf10 plays critical roles in initiating the astrocyte-to-neuron conversion, we designed specific short hairpin RNAs (shRNAs) against Klf10 (Figure S4A) to reduce its expression. A previous work reported that phosphomutant ASCL1 can...
enhance neuronal induction activity in *Xenopus* embryos and improve neuronal transdifferentiation efficiency (Ali et al., 2014). Therefore, we mutated all six serine-proline sites (SP) to alanine-proline (SA) in ASCL1 to generate S-A ASCL1 (SAA) and used SAA as a substitute for ASCL1 to induce astrocyte-to-neuron conversion. Astrocytes were co-infected with FUW-SAA-IRES-tdTomato and pLKD-shKlf10-GFP or pLKD-shCtrl-GFP lentiviruses. We found that the morphology of SAA virus-infected astrocytes was transformed quicker upon Klf10 knockdown compared with that of control (data not shown). The cellular phenotypes of SAA and shRNA virus co-infected cells (tdTomato+GFP+) were analyzed at 10 DPI (Figures 4A and 4B). Notably, more TUJ1-positive neuronal cells were generated (86.6% ± 4.4% versus 66.5 ± 4.2, n = 4, 1,207–1,370 tdTomato+GFP+ cells counted), and the total neurite length (TUJ1+) was increased (391.3 ± 23.08 μm versus 215.1 ± 23.53 μm, n = 3, 61–70 tdTomato+GFP+ cells measured) upon Klf10 knockdown (Figures 4C–4E). Moreover, the dendrite complexity was also enhanced upon Klf10 knockdown, as measured by increased total dendritic branch length (MAP2+) (1.54 ± 0.07 versus 1.00 ± 0.07, n = 3, 60 tdTomato+GFP+ cells measured) and total dendritic branch tip number (MAP2+) (1.36 ± 0.08 versus 1.00 ± 0.07, n = 3, 60 tdTomato+GFP+ cells measured) (Figures 4C, 4F, and 4G).

To evaluate whether early Klf10 expression controls other aspects of neuronal differentiation, we performed electrophysiological recording and qRT-PCR. The recording results showed that upon Klf10 knockdown, the membrane properties of induced neuronal (iN) cells, such as...
membrane capacitance (Cm), input resistance (Rin), and resting membrane potential (RMP), remained largely unchanged (data not shown). Conversely, the height of action potential (AP) was markedly reduced (Figure 4H). As we reported previously, we categorized IN cells into four groups based on their current and voltage response patterns: non-active cells (“non-active”), cells exhibiting inward current without AP (“inward”), single AP (“sAP”), and multiple APs (“mAPs”) (Liu et al., 2015). When Klf10 was knocked down, the percentage of IN cells firing mAPs was markedly reduced whereas the percentage of non-active cells and IN cells firing sAP increased (Figure 4I). Meanwhile, the qRT-PCR results showed that the mRNA expression of synaptic proteins such as Synapsin I and Homer1 was not markedly changed when Klf10 was knocked down. Interestingly, the mRNA expression of sodium channel gene Scn1a but not sodium channel genes Scn2b and Scn8a increased when Klf10 was knocked down (data not shown). These results indicate that early Klf10 expression controls the neuritogenesis and the electrophysiological properties of IN cells.

Myt1 and Myt1l Are Critical for the Electrophysiological Maturation of IN Cells

A recent study reported that pan-neuron-specific TF Myt1-like (Myt1l) exerts a pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program during direct reprogramming of...
fibroblasts to neurons (Mall et al., 2017). Besides Myt1, there are two other Myt family members, Myt1 and Myt3 (also known as St18) (Yee and Yu, 1998). Interestingly, during astrocyte-to-neuron conversion, the expression of Myt1 was increased enormously both at day 2 and day 5, whereas the expression of Myt1 and Myt3 was upregulated only at day 5 by 116-fold and 26-fold, respectively (Figure S4B). We investigated their functions by knocking down Myt1, Myt1l, or Myt3 individually or Myt1 and Myt1l simultaneously (Figure S4C). The results showed that individual knockdown of Myt1, Myt1l, or Myt3 did not affect the morphology and re-programming efficiency of iN cells (data not shown). Interestingly, double knockdown of Myt1 and Myt1l resulted in iN cells with thicker neurites and stretched-out morphology (Figures 5A and 5B), although the number of induced TUJ1-positive cells remained largely unchanged compared with that of the control (70.1% ± 2.9% versus 56.4% ± 5.85%, n = 3, 1,020–1,036 tdTomato+ GFP+ cells counted). We also performed immunostaining with antibodies of more mature markers such as MAP2 and SYNAPSIN I. The results showed that compared with the scramble control, iN cells induced by FUW-SAA-IRES-tdTomato together with pLKD-shMyt1/1L-

Figure 5. Knockdown of Myt1 and Myt1l Inhibits the Electrophysiological Maturation of iN Cells
(A and B) TUJ1 immunostaining of cells co-infected with FUW-SAA-IRES-tdTomato and shMyt1/1L (B) or shCtrl (A) at 10 DPI.
(C and D) MAP2 immunostaining of cells co-infected with FUW-SAA-IRES-tdTomato and shMyt1/1L (D) or shCtrl (C) at 14 DPI.
(E) Differential interference contrast image of whole-cell recording from an iN cell (green and red fluorescence) at 22 DPI.
(F) Representations of single action potentials (sAP) or multiple action potentials (mAPs) generated by iN cells from control group when recorded in current-clamp mode.
(G) Percentages of iN cells with four different degrees of membrane excitability (non-active, inward, sAP, or mAPs) when co-infected with FUW-SAA-IRES-tdTomato and shRNA against Myt1 and Myt1l or control shRNA.
(H–J) Cm (H), Rin (I), and RMP (J) of iN cells when both Myt1 and Myt1l were knocked down.
Data are presented as mean ± SEM, n = 3 independent experiments. *p < 0.05, **p < 0.01. Scale bars, 100 μm. See also Figure S4 and Table S9.
GFP expressed MAP2 (Figures 5C and 5D) and SYNAPSIN 1 (data not shown) as well.

We further examined the electrophysiological properties of iN cells by performing whole-cell recording upon Myt1 and/or Myt1l knockdown. FUW-SAA-IRES-tdTomato and pLKD-shMyt1/shMyt1l-GFP lentivirus co-infected cells (tdTomato+ GFP+) were recorded at 22 DPI (Figure 5E). Knockdown of Myt1 or Myt1l individually resulted in a decreased percentage of iN cells firing mAPs, increased percentage of iN cells firing sAP, and generation of non-active iN cells compared with that in cells infected with only FUW-SAA-IRES-tdTomato (Figure 5D). More notably, upon knockdown of both Myt1 and Myt1l, the majority of iN cells were non-active (Figures 5F and 5G). Moreover, upon Myt1 and Myt1l double knockdown, the iN cells had lower Cm (shMyt1/1L 10.6 ± 0.9 pF, shCtrl 14.6 ± 1.0 pF, n = 45), tended to have higher Rin (shMyt1/1L 3575 ± 458.4 MΩ, shCtrl 2278 ± 526.8 MΩ, n = 45) and had more negative RMP (shMyt1/1L -86.9 ± 4.1 mV, shCtrl -69.4 ± 2.4 mV, n = 45) compared with that of control (Figures S5H–S5J). Taking these results together, Myt1 and Myt1l were critical for the electrophysiological maturation of iN cells.

Neurod4 Can Partially Substitute Ascl1 to Induce iN Cells

Neurod4 is a TF that contributes to the neuronal differentiation program (Guillemtot, 2007). During astrocyte-to-neuron conversion, the expression of Neurod4 was markedly increased (Figure 3J). Consistent with a previous report (Masserdotti et al., 2015), the conversion efficiency of astrocytes into neurons markedly decreased upon Neurod4 knockdown (33.4% ± 4.6% versus 66.9% ± 5.9%, n = 3, 876–1,062 tdTomato+ GFP+ cells counted) (Figures S5A and 6A–6C). To explore whether the downstream TFs of Neurod4, Ascl1, and Neurod4 could induce a genuine astrocyte-to-neuron switch and are in line with the observation that Neurod4 is sufficient to induce a genuine astrocyte-to-neuron switch and are in line with the observation that Neuroid is a chromatin remodeling factor, to be markedly increased during the reprogramming process of astrocytes into neurons (Figure 3J). Therefore, we characterized the function of Chd7 in Asc1l-induced astrocyte-to-neuron conversion by shRNA-mediated knockdown (Figure S5B). The results showed that the conversion efficiency markedly decreased upon Chd7 knockdown (24.7% ± 2.3%, n = 3, 786 tdTomato+GFP+ cells counted) compared with that of the control (59.0% ± 3.7%, n = 3, 2,516 tdTomato+GFP+ cells counted) (Figures 7A–7C, 5S, and 5D). To investigate how Chd7 affects the reprogramming, we constructed a network of Chd7 correlated TFs based on their expression correlation CSI (CSI > 0.8) (Figure 7D). The TFs included those that were upregulated at day 2 and day 5 (in yellow), upregulated continuously at day 2 and day 5 (in blue), upregulated only at day 5 (in brown), and downregulated at both day 2 and day 5 (in green) (Figure 7D). In line with the CSI analysis, qRT-PCR results showed that the expression of Chd7 positively correlated genes was markedly reduced upon Chd7 knockdown (Figure 7E). Interestingly, these decreased genes, such as Sox11, Myt1, Ebf3, Neurod4, and Zfp821, are related to neuronal development and differentiation, which may explain why knockdown of Chd7 reduced the efficiency of direct reprogramming. These results indicate that besides neurogenic TFs, epigenetic regulator Chd7 is also indispensable for the astrocyte-to-neuron conversion. Combining the results of Klf10, Myt1, Myt1l, Neurod4, and Chd7 during Asc1l-mediated astrocyte-to-neuron conversion, we found that different downstream targets of Asc1l may play distinct roles: Klf10 was transiently expressed at 2 DPI, and its early expression controlled the neuritogenesis and the electrophysiological properties of iN cells; the expression of Myt1 and Chd7 was continually increased at 2 DPI and 5 DPI, and they were positive driving forces for iN cells to proceed with the reprogramming...
process and acquire mature neuronal properties; the expression of *Neurod4* was upregulated largely at 5 DPI and promoted the maturation of iN cells (Figure 7F).

DISCUSSION

In this study we found that *Ascl1* induced rapid and global transcriptional changes at 2 DPI and 5 DPI by performing RNA-seq during astrocyte-to-neuron conversion. Meanwhile, ChIP-seq performed at 2 DPI showed that the regulatory regions of 696 genes were directly bound by ASCL1. Combining the results of RNA-seq and ChIP-seq, we found that ASCL1 directly bound to the regulatory regions of 107 DEGs. Among these downstream genes of ASCL1, we found that the early expression of *Klf10* controlled the neuritogenesis and the electrophysiological properties of iN cells, *Myt1* and Myt family member *Myt1l*.
were critical for the electrophysiological maturation of iN cells, and *Neurod4* and *Chd7* were required for the efficient conversion of astrocytes to neurons.

The similarity between this study and that of Wapinski et al. (2013) is that 2 days after *Ascl1* induction, both systems entered intermediate stages (Figures S2A and S2B) and showed similar transcriptome identities (Figure S2C). Genes upregulated on day 2, such as TFs *Sox11*, *Hes5*, and *Hes6*, were mostly related to neuronal differentiation and relevant biological processes. Notably, *Klf10* was upregulated in both systems as well (Figure S2C). PC1 dimension reflected the neuronal maturation procedure (Figure S2A). Meanwhile, hierarchical clustering analysis revealed that Day5_Ascl1_1/2 clustered closer to BAM_22d of Wapinski et al. (2013) (Figure S2B), indicating a faster reprogramming process of our system. However, in PC2, our samples (Day5_Ascl1_1/2) showed differences compared with BAM_13d and BAM_22d (Figure S2D), indicating that induction time plays important roles in direct reprogramming.

Comparative analysis showed the correlation between our system and the reprogramming method applied in Masserdotti et al., 2015 (Figure S2E) as well. Pearson correlation coefficient assays with RNA-seq and microarray data showed that, at 4 h after ASCL1ERT2 activation, there was no significant change in transcriptome, corroborating with the fact that there were only a few DEGs at 4 h (data not shown). At 24 h after ASCL1ERT2 activation, astrocytes...
were transformed into another stage, similar to our intermediate state (day2-Ascl1). At 48 h after ASCL1ERT2 activation, the astrocytes had a tendency toward later reprogramming stages (day2-Ascl1 to day5-Ascl1) (Figure S2E). Notably, poor reprogramming was observed in the sample 2 Ascl1-48h-2 (Figure S2E).

Moreover, we found the expression of 630 overlapping genes was markedly changed during Ascl1-mediated conversion of astrocytes and MEFs into neurons, and the regulatory regions of 629 genes were bound by ASCL1 in both astrocytes and MEFs. For example, the expression of Klf10 and Sox11 were augmented during Ascl1-mediated conversion and their regulatory regions were bound by ASCL1 in both astrocytes and MEFs (data not shown). Wapinski et al. (2013) identified Zfp238 as a key downstream target of Ascl1 that can partially substitute for Ascl1 during direct reprogramming of fibroblasts into neurons. However, in this study we found that the regulatory regions of Zfp238 were not bound by ASCL1 and that Ascl1 largely could not induce the expression of Zfp238 in astrocytes (data not shown). Instead, we found that another ASCL1 downstream target Neurod4 could convert astrocytes into TUJ1-positive neuronal cells, which is consistent with a previous study (Masserdotti et al., 2015). In MEFs, Neurod4 alone was incapable of eliciting neuronal conversion, while together with Ins1 they generated iN cells at 14 DPI (Masserdotti et al., 2015). The direct binding of ASCL1 to large amounts of overlapping genes in astrocytes and fibroblasts reveals a highly similar occupancy of ASCL1 even in distantly related cell types. Conversely, a modest fraction of overlapping genes was differentially expressed during the conversion of astrocytes and fibroblasts to neurons, demonstrating that Ascl1 regulates the expression of downstream genes in cell context-dependent fashion. Furthermore, it has been reported that Ascl1 converts Müller glia cells from the retina and astrocytes from the neocortex and cerebellum into different neuronal subtypes (Chouchane et al., 2017; Guimaraes et al., 2018; Pollak et al., 2013). In Table S4, Pvalb was upregulated in iN cells generated from neocortex astrocytes but not in iN cells generated from dorsal midbrain astrocytes (this study), indicating different neuronal subtypes. This warrants further studies to reveal the identities of iN cells converted from astrocytes that are located in different regions.

It is unknown whether Klf10 plays physiological functions in the nervous system (Subramaniam et al., 2010). In this study, we found that the expression of Klf10 was upregulated at day 2 but downregulated at day 5 during direct reprogramming of astrocytes into neurons. Interestingly, upon Klf10 knockdown, more TUJ1-positive neuronal cells were generated with longer neurite length and more complex dendrites but with reduced electrophysiological activity. Moreover, the expression of Klf10 was also upregulated during direct reprogramming of fibroblasts to neurons at day 2 (Treutlein et al., 2016), and we found that the efficiency of fibroblast-to-neuron conversion was increased upon Klf10 knockdown as well (data not shown). These results show that Klf10 may play a similar role during the direct reprogramming from different donor cells at the early stages.

Although Ascl1 alone is sufficient to convert MEFs into iN cells in optimized culture conditions, endogenous Myt1l is induced during the conversion and exogenous Myt1l considerably increases the efficiency of conversion and the functional maturation of the iN cells (Chanda et al., 2014; Vierbuchen et al., 2010). We have previously shown that Ascl1 alone is sufficient to convert midbrain astrocytes into functional, synapse-forming neurons in vitro (Liu et al., 2015). In this study, we found that the expression of Myt1l was increased more remarkably compared with that of Myt1l and Myt3 during Ascl1-induced astrocyte-to-neuron conversion. Meanwhile, ASCL1 directly bound to the regulatory region of Myt1l. This is corroborated by the observation that Myt1l is a direct target of ASCL1 at the onset of neuronal differentiation (Vasconcelos et al., 2016). However, knockdown of Myt1l, Myt1l, or Myt3 individually did not affect the conversion efficiency of astrocytes into iN cells induced by Ascl1 (data not shown). Moreover, double knockdown of Myt1l and Myt1l largely did not affect the conversion efficiency of astrocytes into iN cells, although these cells had thicker neurites, stretched-out morphology, and inactive electrophysiological properties. This warrants investigating further whether the Myt1 family members play similar roles also for the iN cells converted from fibroblasts to obtain functional neuronal properties.

Wapinski et al. (2013) found that Ascl1 acts as a pioneer factor at neurogenic loci marked by a close chromatin state to direct conversion of fibroblasts into neurons, and this is in agreement with the observation that Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis (Raposo et al., 2015). Enhanced chromatin accessibility has also been observed in TF Neurog2, microRNAs, and CRISPR/cas9-mediated fibroblast-to-neuron conversion (Abernathy et al., 2017; Black et al., 2016; Smith et al., 2016). Moreover, epigenetic factor ten-eleven translocation 3 (Tet3), which regulates DNA demethylation, and a histone H3 lysine 4 methylase KMT2B contribute to the direct conversion of fibroblast into functional neurons (Barbagiavanni et al., 2018; Zhang et al., 2016). Conversely, incomplete MyoD-induced transdifferentiation of human fibroblasts is associated with chromatin remodeling deficiencies (Mandhar et al., 2017). It has been reported that the chromatin remodeling factor Chd7 regulates adult neurogenesis via activation of SoxC TFs and is...
indispensable for normal cerebellar development (Feng et al., 2013, 2017). Here, we found the efficiency of astrocyte-to-neuron conversion to be markedly decreased upon Chd7 knockdown. Moreover, CSI results showed that Chd7 is required for expression of the genes Sox11, Myt1, Ebf3, Neurod4, and Zfp821 that are related to neuronal development and differentiation. It will be of interest to investigate how Chd7 is recruited to specific targets and remodels the chromatin structure. Indeed one way to improve direct neuronal reprogramming is to understand the possible barriers in the context of a higher-order chromatin landscape (Gascon et al., 2017; Guo and Morris, 2017; Ninkovic and Gotz, 2018; Riemens et al., 2018).

EXPERIMENTAL PROCEDURES

Astrocyte Culture

Astrocytes were cultured as previously described with some modifications (McCarthy and de Vellis, 1980).

Viral Production

Lentiviruses were produced from HEK293FT cells that were transiently transfected with lentiviral, viral envelope-typing, and VSVG-pseudo-typing plasmids (Tiscornia et al., 2006).

Immunostaining

Immunostaining on cultured cells was performed essentially as previously described except that the primary antibodies were incubated for overnight (Vierbuchen et al., 2010).

RNA Sequencing

Total RNA was isolated with TRIzol reagent. Libraries were prepared, and sequencing was performed in 100-bp paired-end format on the Illumina HiSeq 2000 system.

Chromatin Immunoprecipitation Followed by Sequencing

ChIP-seq was carried out in astrocytes 2 days after FUGW-Ascl1 infection as described previously (Jin et al., 2009). Approximately 9–12 × 10^6 cells were used for each ChIP-seq experiment, and sequencing reads were generated on HiSeq 2000 Illumina platforms.

Gene Knockdown

To acutely knock down Klf10, Myt1, Neurod4, and Chd7, we cloned one or two shRNAs specifically against targeting sequence and one control scramble shRNA sequence into the lentiviral vector pLKD (OBiO Technology [Shanghai]). The shRNA sequences can be found in Table S9.

Electrophysiological Recording

Whole-cell voltage-clamp or current-clamp recording was performed as described previously (Lu et al., 2007).

Data and Code Availability

The accession number for the RNA-seq data is GEO: GSE132674. The accession number for the ChIP-seq data is GEO: GSE132671.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.stemcr.2021.01.006.

AUTHOR CONTRIBUTIONS

L.C., N.J., and Z.R. designed the project. Z.R. and S.L. performed the experiments. R.W. and L.M. analyzed the RNA-seq and ChIP-seq. S.H. and Y.S. conducted electrophysiological experiments. J.Y. carried out the lentivirus production. Z.R. and L.C. wrote the manuscript.

ACKNOWLEDGMENTS

We thank Dr. Xiang Yu for technical assistance and Dr. Jie He for comments on the project. This work was supported by the National Key Research and Development Program of China (grant no. 2018YFA0108003), the National Natural Science Foundation of China (nos. 31871037, 32070976, and 31371096), Guangxi First-class Discipline Project for Basic Medicine Sciences (no. GXFCDP-BMS-2018) (L.C.), and Fundamental Research Funds for the Central Universities Under Grant No. XJS201211 (Z.R.).

Received: June 18, 2019

Revised: January 12, 2021

Accepted: January 12, 2021

Published: February 11, 2021

REFERENCES

Abernathy, D.G., Kim, W.K., McCoy, M.J., Lake, A.M., Ouwenga, R., Lee, S.W., Xing, X., Li, D., Lee, H.J., Heuckeroth, R.O., et al. (2017). MicroRNAs induce a permissive chromatin environment that enables neuronal subtype-specific reprogramming of adult human fibroblasts. Cell Stem Cell 21, 332–348.

Addis, R.C., Hsu, F.C., Wright, R.L., Dichter, M.A., Coulter, D.A., and Gearhart, J.D. (2011). Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector. PLoS One 6, e28719.

Ali, F.R., Cheng, K., Kirwan, P., Metcalfe, S., Livesey, F.J., Barker, R.A., and Philpott, A. (2014). The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro. Development 141, 2216–2224.

Barbagiovanni, G., Germain, P.L., Zech, M., Atashpaz, S., Lo Riso, P., D’Antonio-Chronowska, A., Tenderini, E., Caiazzo, M., Boesch, S., Jech, R., et al. (2018). KMT2B is selectively required for neuronal transdifferentiation, and its loss exposes dystonia candidate genes. Cell Rep. 25, 988–1001.

Benniger, B., Costa, M.R., Koch, U., Schroeder, T., Sutor, B., Grothe, B., and Gotz, M. (2007). Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J. Neurosci. 27, 8654–8664.
nergic neurons from mouse and human fibroblasts. Nature Colciago, G., et al. (2011). Direct generation of functional dopami-
Taverna, S., Leo, D., Sotnikova, T.D., Menegon, A., Roncaglia, P., Cociago, G., et al. (2011). Direct generation of functional dopami-
nergic neurons from mouse and human fibroblasts. Nature 476, 224–227.
Chanda, S., Ang, C.E., Davila, J., Pak, C., Mall, M., Lee, Q.Y., Ahleni-
us, H., Jung, S.W., Sudhof, T.C., and Wernig, M. (2014). Genera-
tion of induced neuronal cells by the single reprogramming factor
ASCL1. Stem Cell Rep. 3, 282–296.
Chouchane, M., Melo de Farias, A.R., Moura, D.M.S., Hilscher,
M.M., Schroeder, T., Leao, R.N., and Costa, M.R. (2017). Lineage re-
programming of astroglial cells from different origins into distinct
neuronal subtypes. Stem Cell Reports 9, 162–176.
Colasante, G., Lignani, G., Rubio, A., Medrihan, L., Yekhlaf, L., Sessa,
A., Massimino, L., Giannelli, S.G., Sacchetti, S., Caiazzo,
M., et al. (2015). Rapid conversion of fibroblasts into functional
forebrain GABAergic interneurons by direct genetic reprogram-
mimg. Cell Stem Cell 17, 719–734.
Colasante, G., Rubio, A., Massimino, L., and Broccoli, V. (2019).
Direct neuronal reprogramming reveals unknown functions for
known transcription factors. Front. Neurosci. 13, 283.
Feng, W., Kawauchi, D., Korkel-Qu, H., Deng, H., Serger, E., Sieber,
L., Lieberman, J.A., Jimeno-Gonzalez, S., Lambo, S., Hanna, B.S.,
et al. (2017). Chd7 is indispensable for mammalian brain develop-
ment through activation of a neuronal differentiation programme.
Nat. Commun. 8, 14758.
Feng, W., Khan, M.A., Bellvis, P., Zhu, Z., Bernhardt, O., Herold-
Mende, C., and Liu, H.K. (2013). The chromatin remodeler
CHD7 regulates adult neurogenesis via activation of SoxC tradi-
scription factors. Cell Stem Cell 13, 62–72.
Gascon, S., Masserdotti, G., Ruso, G.L., and Gotz, M. (2017).
Direct neuronal reprogramming: achievements, hurdles, and
new roads to success. Cell Stem Cell 21, 18–34.
Guillemot, F. (2007). Spatial and temporal specification of neural
fates by transcription factor codes. Development 134, 3771–3780.
Guimarães, R.P.M., Landeira, B.S., Coelho, D.M., Golbert, D.C.F.,
Silveira, M.S., Linden, R., de Melo Reis, R.A., and Costa, M.R.
(2018). Evidence of Muller glia conversion into retina ganglion
cells using neurogenin2. Front. Cell. Neurosci. 12, 410.
Guo, C., and Morris, S.A. (2017). Engineering cell identity: estab-
lishing new gene regulatory and chromatin landscapes. Curr.
Opin. Genet. Dev. 46, 50–57.
Guo, Z., Zhang, L., Wu, Z., Chen, Y., Wang, F., and Chen, G. (2014).
In vivo direct reprogramming of reactive glial cells into functional
neurons after brain injury and in an Alzheimer’s disease model.
Cell Stem Cell 14, 188–202.
He, B., Deng, T., Zhu, I., Furusawa, T., Zhang, S., Tang, W., Postni-
kov, Y., Amba, S., Li, C.C., Livak, F., et al. (2018). Binding of HMGN
proteins to cell specific enhancers stabilizes cell identity. Nat. Com-
mun. 9, 5240.
Heinrich, C., Blum, R., Gascon, S., Masserdotti, G., Tripathi, P., San-
chez, R., Tiedt, S., Schroeter, T., Gotz, M., and Berninger, B. (2010).
Directing astroglia from the cerebral cortex into subtype specific
functional neurons. PLoS Biol. 8, e1000373.
Heins, N., Malatesta, P., Cecconi, F., Nakafuku, M., Tucker, K.L.,
Hack, M.A., Chapouton, P., Barde, Y.A., and Gotz, M. (2002). Giall
cells generate neurons: the role of the transcription factor Pax6.
Nat. Neurosci. 5, 308–315.
Hu, J., Qian, H., Xue, Y., and Fu, X.D. (2018). PTB/nPTB: master reg-
ulators of neuronal fate in mammals. Biophys. Rep. 4, 204–214.
Jin, Z., Liu, L., Bian, W., Chen, Y., Xu, G., Cheng, L., and Jing, N.
(2009). Different transcription factors regulate nestin gene expres-
sion during P19 cell neural differentiation and central nervous sys-
tem development. J. Biol. Chem. 284, 8160–8173.
Kim, J., Su, S.C., Wang, H., Cheng, A.W., Cassidy, J.P., Lodato,
M.A., Lengner, C.J., Chung, C.Y., Dawlaty, M.M., Tsai, L.H., et al.
(2011). Functional integration of dopaminergic neurons directly
converted from mouse fibroblasts. Cell Stem Cell 9, 413–419.
Lee, S.W., Oh, Y.M., Lu, Y.L., Kim, W.K., and Yoo, A.S. (2018).
MicroRNAs overcome cell fate barrier by reducing EZH2-controlled
REST stability during neuronal conversion of human adult fibro-
blasts. Dev. Cell 46, 73–84.
Li, S., Shi, Y., Yao, X., Wang, X., Shen, L., Rao, Z., Yuan, J., Liu, Y.,
Zhou, Z., Zhang, Z., et al. (2019). Conversion of astrocytes and fi-
broblasts into functional noradrenergic neurons. Cell Rep. 28,
682–697.
Liu, M.L., Zang, T., Zou, Y.H., Chang, J.C., Gibson, J.R., Huber,
K.M., and Zhang, C.L. (2013). Small molecules enable neurogenin
2 to efficiently convert human fibroblasts into cholinergic neu-
rons. Nat. Commun. 4, 2183.
Liu, Y., Miao, Q., Yuan, J., Han, S., Zhang, P., Li, S., Rao, Z., Zhao,
W., Ye, Q., Geng, J., et al. (2015). Ascl1 converts dorsal midbrain as-
trocytes into functional neurons in vivo. J. Neurosci. 35, 9336–
9355.
Lu, J.T., Li, C.Y., Zhao, J.P., Poo, M.M., and Zhang, X.H. (2007).
Spike-timing-dependent plasticity of neocortical excitatory synap-
ses on inhibitory interneurons depends on target cell type. J.
Neurosci. 27, 9711–9720.
Lu, Y.L., and Yoo, A.S. (2018). Mechanistic insights into microRNA-
induced neuronal reprogramming of human adult fibroblasts.
Front. Neurosci. 12, 522.
Luo, C., Lee, Q.Y., Wapinski, O., Castanon, R., Nery, J.R., Mall, M.,
Kareta, M.S., Cullen, S.M., Goodell, M.A., Chang, H.Y., et al.
(2019). Global DNA methylation remodeling during direct reprog-
messing of fibroblasts to neurons. eLife 8, e40197.
Mall, M., Kareta, M.S., Chanda, S., Ahlenius, H., Perotti, N., Zhou,
B., Grieder, S.D., Ge, X., Drake, S., Euong Ang, C., et al. (2017).
Myt1l safeguards neuronal identity by actively repressing many
non-neuronal fates. Nature 544, 245–249.
Manandhar, D., Song, L., Kabadi, A., Kwon, J.B., Edsall, L.E., Ehr-
lisch, M., Tsumagari, K., Gersbach, C.A., Crawford, G.E., and Gor-
dan, R. (2017). Incomplete MyoD-induced transdifferentiation is
associated with chromatin remodeling deficiencies. Nucleic Acids
Res. 45, 11684–11699.
Masserotti, G., Gascon, S., and Gotz, M. (2016). Direct neuronal reprogramming: learning from and for development. Development 143, 2494–2510.

Masserotti, G., Gillotin, S., Sutor, B., Drechsl, D., Irmel, M., Jorgensen, H.F., Sass, S., Theis, F.J., Beckers, J., Berninger, B., et al. (2015). Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 17, 74–88.

McCarthy, K.D., and de Vellis, J. (1980). Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902.

Ninkovic, J., and Gotz, M. (2018). Understanding direct neuronal reprogramming from pioneer factors to 3D chromatin. Curr. Opin. Genet. Dev. 52, 65–69.

Niu, W., Zang, T., Zou, Y., Fang, S., Smith, D.K., Bachoo, R., and Zhang, C.L. (2013). In vivo reprogramming of astrocytes to neurons in the adult brain. Nat. Cell Biol. 15, 1164–1175.

Pfisterer, U., Kirkeby, A., Torper, O., Wood, J., Nelander, J., Dufour, A., Bjorklund, A., Lindvall, O., Jakobsson, J., and Parmar, M. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proc. Natl. Acad. Sci. USA 108, 10343–10348.

Pollak, J., Wilken, M.S., Ucki, Y., Cox, K.E., Sullivan, J.M., Taylor, R.J., Levine, E.M., and Reh, T.A. (2013). Ascl1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development 140, 2619–2631.

Raposo, A., Vasconcelos, F.F., Drechsl, D., Marie, C., Johnston, C., Dolle, D., Bithell, A., Gillotin, S., van den Berg, D.L.C., Ettwiller, L., et al. (2015). Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Rep. 10, 1544–1556.

Riemens, R.J.M., van den Hove, D.L.A., Esteller, M., and Delgado-Morales, R. (2018). Directing neuronal cell fate in vitro: achievements and challenges. Prog. Neurobiol. 168, 42–68.

Smith, D.K., Yang, J., Liu, M.L., and Zhang, C.L. (2016). Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Reports 7, 953–969.

Son, E.Y., Ichida, J.K., Wainger, B.J., Toma, J.S., Rafuse, V.F., Wolff, C.J., and Eggan, K. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218.

Subramaniam, M., Hawse, J.R., Rajamannar, N.M., Ingle, J.N., and Spelsberg, T.C. (2010). Functional role of KLF10 in multiple disease processes. Biofactors 36, 8–18.

Tiscornia, G., Singer, O., and Verma, I.M. (2006). Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245.

Torper, O., Pfisterer, U., Wolf, D.A., Pereira, M., Lau, S., Jakobsson, J., Bjorklund, A., Grealish, S., and Parmar, M. (2013). Generation of induced neurons via direct conversion in vivo. Proc. Natl. Acad. Sci. USA 110, 7038–7043.

Tetreault, B., Lee, Q.Y., Camp, J.G., Mall, M., Koh, W., Shariati, S.A., Sim, S., Neff, N.E., Skotheim, J.M., Wernig, M., et al. (2016). Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534, 391–395.

Tsunemoto, R.K., Eade, K.T., Blanchard, J.W., and Baldwin, K.K. (2015). Forward engineering neuronal diversity using direct reprogramming. EMBO J. 34, 1445–1455.

Vadodaria, K.C., Mertens, J., Paquola, A., Bardy, C., Li, X., Jappelli, R., Fung, L., Marchetto, M.C., Hamm, M., Gorris, M., et al. (2016). Generation of functional human serotonergic neurons from fibroblasts. Mol. Psychiatry 21, 49–61.

Vasconcelos, F.F., Sessa, A., Laranjeira, C., Raposo, A., Teixeira, V., Hagey, D.W., Tomaz, D.M., Muhr, J., Broccoli, V., and Castro, D.S. (2016). MyT1 counteracts the neural progenitor program to promote vertebrate neurogenesis. Cell Rep. 17, 469–483.

Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041.

Wapinski, O.L., Lee, Q.Y., Chen, A.C., Li, R., Corces, M.R., Ang, C.E., Tetreault, B., Xiang, C., Baubet, V., Suchy, F.P., et al. (2017). Rapid chromatin switch in the direct reprogramming of fibroblasts to neurons. Cell Rep. 20, 3236–3247.

Wapinski, O.L., Vierbuchen, T., Qu, K., Lee, Q.Y., Chanda, S., Fuentes, D.R., Giresi, P.G., Ng, Y.H., Marro, S., Neff, N.F., et al. (2013). Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621–635.

Xu, J., Du, Y., and Deng, H. (2015). Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119–134.

Xu, Z., Jiang, H., Zhong, P., Yan, Z., Chen, S., and Feng, J. (2016). Direct conversion of human fibroblasts to induced serotonergic neurons. Mol. Psychiatry 21, 62–70.

Yee, K.S., and Yu, V.C. (1998). Isolation and characterization of a novel member of the neural zinc finger factor/myelin transcription factor family with transcriptional repression activity. J. Biol. Chem. 273, 5366–5374.

Zhang, J., Chen, S., Zhang, D., Shi, Z., Li, H., Zhao, T., Hu, B., Zhou, Q., and Jiao, J. (2016). Tet3-mediated DNA demethylation contributes to the direct conversion of fibroblast to functional neuron. Cell Rep. 17, 2326–2339.
Supplemental Information

Molecular Mechanisms Underlying Ascl1-Mediated Astrocyte-to-Neuron Conversion

Zhiping Rao, Ran Wang, Sanlan Li, Yuhan Shi, Licun Mo, Su'e Han, Jiacheng Yuan, Naihe Jing, and Leping Cheng
Figure S1. Identification of transcriptional changes induced by Ascl1 during astrocyte-to-neuron conversion. Related to Figure 2 and Figure 3.

(A) Heatmaps of top 100 positive and negative genes with highest quantitative correlation in the first principal component (PC1).

(B) Heatmaps of top 100 positive and negative genes with highest quantitative correlation in the second principal component (PC2).

(C) Connection Specificity Index (CSI) network of Ascl1 downstream transcription factors. Gene expression correlation coefficient-derived CSIs are calculated based on the RNA-seq expression value.
Figure S2. Comparison of direct reprogramming of astrocytes and fibroblasts into neurons. Related to Figure 2.

(A) Principal component analysis of RNA samples from this study and Wapinski et al. (2013).
(B) Unsupervised hierarchical clustering analysis of RNA samples from this study and Wapinski et al. (2013).
(C-D) Heatmaps show the expression of differentially expressed genes during the direct reprogramming processes across different time points of this study and Wapinski et al. (2013). Top gene ontology (GO) terms and transcription factors (TFs) are shown on the right side.
(E) Comparative analysis of RNA-seq data from this study and microarray data from Masserdotti et al. (2015) during the direct reprogramming processes across different time points.
Figure S3. Expression of epigenetic factors during Ascl1-mediated direct reprogramming.

Related to Figure 2.

(A) Volcano Plot shows the 1,501 DEGs during direct reprogramming. Plotted genes have \(P < 0.05 \) and fold change of > 1.5. The four genes that we studied were labeled in red dots.

(B) Volcano Plot shows the 61 differentially expressed epigenetic factors during direct reprogramming. Plotted genes have \(P < 0.05 \) and fold change of > 1.5. The top 10 epigenetic factors with highest fold changes were labeled.

(C) Bar plot shows the fold changes of top 10 epigenetic factors. Chd7 was labeled in red.

(D) Bar plot shows the expression correlation coefficient between Ascl1 and top 10 epigenetic factors during direct reprogramming. Chd7 was labeled in red.
Figure S4. Validation of specific shRNAs. Related to Figure 4 and Figure 5.

(A) qRT-PCR results showing the knockdown efficiency of specific shRNAs against Klf10 in Neuro2a cell line. The effect of each shRNA against Klf10 was compared with that of shCtrl. shKlf10-2 was selected for further experiments.

(B) The expression of Myt family members during direct reprogramming of astrocytes into neurons at early stages 2 DPI and 5 DPI.

(C) qRT-PCR results showing the knockdown efficiency of specific shRNAs against Myt1 family members in Neuro2a cell line.

(D) Percentages of iN cells with four different degrees of membrane excitability (non-active, inward, sAP or mAPs) when co-infected with SAA and control shRNA or specific shRNAs against Myt1 or Myt1l. Data are presented as mean ± SEM, n = 3 independent experiments. *p < 0.05, **p < 0.01.
Figure S5. Validation of specific shRNAs. Related to Figure 6 and Figure 7.
(A-B) qRT-PCR results showing the knockdown efficiency of specific shRNAs against Neurod4 (Nd4) and Chd7 in Neuro2a cell line. The shRNAs marked in blue were selected for further experiments.
(C) The representative images of cells co-infected with SAA and shCtrl or shChd7 at 10 DPI.
(D) Efficiency of conversion of astrocytes into neurons upon Chd7 knockdown.
Data are presented as mean ± SEM, n = 3 independent experiments. *p < 0.05, **p < 0.01. Scale bars: 100 μm.
Table S2 Comparison of gene expression during direct reprogramming of fibroblasts (Cell 2013_48h) and astrocytes (this study) into neurons. Related to Figure 2.

To compare the RNA-seq results with previous works, we downloaded the RNA-seq data from a study published by Wapinski et al. (2013). Using the criteria applied in this study (fold change > 1.5, p < 0.05), we identified 1,049 genes up-regulated after Ascl1 induced reprogramming of fibroblasts for 2 days. It is noteworthy that quite a number of genes upregulated in reprogramming of fibroblast for 2 days were upregulated in astrocyte-to-neuron conversion for 2 days in this study. The top 50 genes are shown below.

Gene	Fold change	Gene	Fold change	Gene	Fold change
Tnnt2	97.09	Miat	66.64	Stmn4	27.40
R3hdml	82.64	Gal	56.56	Chgb	22.14
Gm9994	41.49	Tubb3	20.79	Hes5	21.43
Gal3st2	38.31	Dll3	17.33	Snap25	18.76
Tnnc1	38.17	Htr3a	14.31	Celf3	18.48
Fabp7	37.31	Crtac1	11.15	Stmn3	17.02
Pgam2	32.15	Sox11	9.97	Ina	15.38
Bmp7	27.70	Snca	9.24	Myt1	13.60
Parm1	25.71	Mchr1	8.40	Hrk	12.24
Prph	25.58	Homer2	8.34	Igf2	12.21
Septin 4	22.62	Cdk5r1	8.21	Scrt2	11.77
Nkd1	20.75	Tnr	7.31	Gm12238	11.66
Tnnt1	20.16	Hes6	7.24	Elavl3	11.52
Tnnt3	19.65	Fam57b	6.78	Dcc	11.45
Gm7325	19.57	Ncald	6.34	Celsr3	11.29
Tnni1	18.98	Ass1	6.03	150016L03Rik	11.14
Shisa2	16.47	Scx	5.38	Actl6b	10.70
Dynl1l	16.00	Slc29a4	5.36	5430421N21Rik	9.43
Atoh8	15.87	Chrb1	5.22	Atcay	8.85
Des	15.75	Sox8	5.18	Septin3	8.64
Pvalb	15.50	Gna14	5.16	Elavl4	8.52
Gm6086	15.15	Ube2q1l	4.75	Reln	8.45
Kcnm3	14.66	2610109H07Rik	4.75	Rbfox3	8.31
Tspan18	14.20	Gabbr2	4.72	Nisr2	8.08
Prune2	13.59	Chfa2I3	4.60	Brsk2Mir3104	8.06
Dlx3	13.39	Gng2	4.56	Spock1	7.68
Arsi	12.89	Chst11	4.51	Caen4	7.62
Prex1	12.63	Gnrb3	4.47	Pak7	7.60
Cox8b	12.52	Enox1	4.38	Chga	7.60
Setc	12.42	Cdon	4.31	Gprin1	7.31
Gene	Log2FC	Gene	Log2FC	Gene	Log2FC
-------	--------	-------	--------	-------	--------
Kcne1l	12.39	D930015E06Rik	4.17	Cpxl1	7.11
Cdkn1c	12.30	Tmem229b	3.98	Grik2	6.94
Acta1	11.92	Rarres1	3.97	Sema5a	6.86
Rbm24	11.44	Klf10	3.97	270009003Rik	6.83
Filip1	11.39	Phf16	3.87	Caen2	6.75
Adamtsl2	11.33	Zfp238	3.71	Neurl1a	6.60
Plac1	11.04	2310040G24Rik	3.66	6330407J23Rik	6.48
Heyl	10.15	Pkib	3.62	Celf4	6.46
Rgs16	9.94	Map3kl	3.55	Srrm4	6.44
Pdlim3	9.91	Cacna2d2	3.47	Jgbp1	6.41
Lzt51	9.85	Smoc1	3.33	Dlgap3	6.40
Rasgef1b	9.73	Srpk3	3.32	Dscam1	6.35
Ankrd1	9.65	Chn2	3.29	Mgat5b	6.34
Gpr56	9.00	Satb1	3.23	9330159F19Rik	6.26
Gdf10	8.98	Opn3	3.18	Atp2b2	6.21
Ccdc88c	8.84	Nos1	3.16	Ebf3	6.14
Gl0s2	8.76	Svil	3.15	Gdap1	6.12
Wnt4	8.63	Rorc	3.13	Sgc2	6.06
Susd5	8.61	Stxbp1	3.12	3380026J04Rik	6.02
1810020D 17Rik	8.59	Col18a1	3.11	Chrb2	5.79
Table S3 Comparison of gene expression during direct reprogramming of fibroblasts (Cell 2013_13d & 22d) and astrocytes (this study) into neurons. Related to Figure 2.

To compare the RNA-seq results with previous works, we downloaded the RNA-seq data from a study published by Wapinski et al. (2013). Using the criteria applied in this study (fold change > 1.5, p < 0.05), we identified 1,726 genes up-regulated after Ascl1 induced fibroblast-to-neuron conversion for 13 days and 22 days. It is noteworthy that many genes upregulated in reprogramming of fibroblast to neurons for 13 and 22 days were upregulated in astrocyte-to-neuron conversion for 5 days in this study. The top 50 genes are shown below.

Gene	Fold change	Gene	Fold change	Gene	Fold change
Scg3	89.29	Miat	66.64	Gal	56.56
Nts	72.99	Stmn4	27.40	Hex5	21.43
Klk1	62.11	Chgb	22.14	Igf2	12.21
Snbg11	34.72	Tubb3	20.79	Srt2	11.77
Rtn1	31.15	Snap25	18.76	Gm12238	11.66
Ppshr2	22.73	Celf3	18.48	1500016L03Rik	11.14
Gng3	21.41	Dll3	17.33	Sox11	9.97
Mapt	21.32	Stmn3	17.02	5430421N21RikKrt81Krt83Krt85	9.43
Clec3b	20.88	Ina	15.38	Mchr1	8.40
Lyz2	20.20	Htr3a	14.31	Homer2	8.34
Fstl5	18.45	Myt1	13.60	Rbfox3	8.31
Rnf208	18.28	Hrk	12.24	Ntsr2	8.08
Scg5	17.67	Elav3	11.52	Brsk2Mir3104	8.06
Car3	17.51	Dec	11.45	Tnr	7.31
Cadm3	16.98	Celsr3	11.29	Hex6	7.24
Camk2b	16.98	Crtac1	11.15	Sema5a	6.86
Vat1l	15.77	Act6b	10.70	2700090003Rik	6.83
Gc	15.58	Snca	9.24	Igfbp1	6.41
Disp2	15.43	Atcay	8.85	Dscam1l	6.35
Crmp1	15.36	Septin3	8.64	Ebf3	6.14
Vgf	14.75	Elavl4	8.52	Ass1	6.03
Emd2	14.35	Reln	8.45	Sez6l	5.52
Syt1	14.06	Cdk5r1	8.21	Gm2694	5.51
Vstn2a	13.21	Spock1	7.68	Slc44a5	5.45
Nrnx2	13.19	Caeng4	7.62	Scx	5.38
Mt3	13.18	Chga	7.60	Panx1	5.36
Brsk2	13.14	Pak7	7.60	Gsx1	5.31
Pou3f2	12.94	Gprin1	7.31	Chrb1	5.22
Gap43	12.82	Cplx1	7.11	Sox8	5.18
Syngr3	12.69	Grik2	6.94	Gna14	5.16
Tmem130	12.64	Fam57b	6.78	Mycn	5.09
Atp6v0e2	12.48	Caeng2	6.75	Cdh22	4.93
Uchl1	12.38	Neurl1a	6.60	Stmn1	4.90
Sult4a1	12.33	6330407J23Rik	6.48	Chbln1	4.89
Gene	Log2 fold change	Gene	Log2 fold change	Gene	Log2 fold change
---------	------------------	---------	------------------	---------	------------------
Gabrb3	12.06	Celf4	6.46	Mex3b	4.76
Lpl	12.00	Srrm4	6.44	Lhx1	4.76
Nefh	11.86	Dlgap3	6.40	2610109H07Rik	4.75
Dgkk	11.81	Mgat5b	6.34	Scn5a	4.66
Asnl	11.70	Ncald	6.34	C530008M17Rik	4.57
Cd200	11.67	9330159F19Rik	6.26	Gng2	4.56
Cadps	11.38	Atp2b2	6.21	Chst11	4.51
Snurf	10.91	Gdap1	6.12	Gad1	4.51
Cnih2	10.86	Scg2	6.06	Gnb3	4.47
Acta1	10.76	Mapk8ip2	6.02	Tbc1d16	4.40
Mtap7d2	10.71	Chrnb2	5.79	Enox1	4.38
Snrpn	10.70	Ly6h	5.77	Bcan	4.37
Apoe	10.62	Chd7	5.76	Ppp1r17	4.35
Cyfip2	10.60	Nol4	5.65	Cdon	4.31
Rell2	10.57	Bex2	5.63	Meg3Mir1906-2Mir770	4.27
Cntn1	10.47	2410066E13Rik	5.61	Cck	4.20
Table S4 Comparison of gene expression during direct reprogramming of astrocytes into neurons ((Cell Stem Cell 2015_48h) and this study). Related to Figure 2.

To compare the RNA-seq results with previous works, we downloaded the transcriptome data in Ascl1 induced reprogramming of astrocytes from the postnatal cerebral cortex for 2 days (Masserdotti et al., 2015). Since the transcriptome data collected from microarray analysis is less sensitive than that collected from RNA-Seq, we used the criteria (fold change > 1.5, p < 0.01) to find the comparable differentially expressed genes (DEGs). We identified 370 DEGs at 2 days after Ascl1 induction (246 genes up-regulated and 124 genes down-regulated). Among the up-regulated genes, 82 genes were similarly up-regulated in our system and the top 50 genes are shown below.

Up-regulated in Cell Stem Cell 2015_48h only	Up-regulated both in Cell Stem Cell 2015_48h and this study	Up-regulated in this study only			
Gene	Fold change	Gene	Fold change	Gene	Fold change
Lzt5l	12.77	Map	66.64	Celf3	18.48
Cdkn1c	10.35	Gal	56.56	Hrk	12.24
Nefm	10.32	Stmn4	27.40	Igf2	12.21
Nefl	8.60	Chgb	22.14	Gm12238	11.66
A930017K11 Rik	5.34	Hes5	21.43	Dcc	11.45
Bbd11	5.16	Tubb3	20.79	1500016L03Rik	11.14
Dcx	4.63	Snap25	18.76	Actl6b	10.70
Ohip2a	4.39	Dll3	17.33	5430421N21Rik	9.43
Lhx3	3.91	Stmn3	17.02	Reln	8.45
Crmp1	3.89	Ina	15.38	Mchr1	8.40
Trp53i11	3.67	Htr3a	14.31	Ntsr2	8.08
Pvalb	3.55	Myt1	13.60	Brsk2Mir3104	8.06
Nt5dc2	3.49	Scr2	11.77	Cacng4	7.62
Rbm38	3.48	Elavl3	11.52	Tnr	7.31
Tex14	3.40	Celsr3	11.29	Gprin1	7.31
Dleu7	3.14	Crtac1	11.15	Cpxl1	7.11
1810041L15 Rik	3.13	Sox11	9.97	Sema5a	6.86
Dgkk	3.02	Snca	9.24	2700090003Rik	6.83
Asic1	3.00	Acay	8.85	Caeng2	6.75
Bmp7	2.94	Septin3	8.64	Neurl1a	6.60
Lmo1	2.90	Elavl4	8.52	6330407J23Rik	6.48
A930009L07 Rik	2.79	Homer2	8.34	Igbpl1	6.41
Sh3kbp1	2.69	Rhfox3	8.31	Dlgap3	6.40
Tmnt2	2.69	Cdk5r1	8.21	DccamI	6.35
Plxmd1	2.62	Spock1	7.68	Ncald	6.34
Grpr	2.61	Chga	7.60	Atp2b2	6.21
Nap1l2	2.58	Pak7	7.60	Ebf3	6.14
Plk3	2.57	Hes6	7.24	Ass1	6.03
Dlx2	2.53	Grik2	6.94	Mapk8ip2	6.02
Pak3	2.51	Fam57b	6.78	Chrnb2	5.79
Mfng	2.50	Celf4	6.46	Ly6h	5.77
Gene	FC				
-------	-----				
Kcnq4	2.49				
Shisa2	2.48				
Eomes	2.47				
Jade3	2.43				
Ralgds	2.42				
Eya2	2.41				
Shf	2.39				
Parm1	2.38				
Gse1	2.30				
Pcp4	2.28				
Prmt8	2.28				
Sstr2	2.24				
Ifi205	2.20				
Tnem178b	2.19				
Tac2	2.18				
Rph3a	2.18				
Megf11	2.17				
Fgfbp3	2.17				
Arc	2.15				

Gene	FC
Srrm4	6.44
Mgat3b	6.34
9330159F19Rik	6.26
Gdap1	6.12
Scg2	6.06
Nol4	5.65
Tic9b	5.60
Rab3c	5.54
Sez6l	5.52
Kif5c	5.50
Slc29a4	5.36
Gna14	5.16
Mycn	5.09
Sez6l2	4.99
Cd2h2	4.93
Mex3b	4.76
Lhx1	4.76
Ube2qtl1	4.75
Spns2	4.62

Gene	FC					
Chd7	5.76					
Bex2	5.63					
2410066E13Rik	5.61					
Scrt1	5.58					
Add2	5.56					
Gria2	5.54					
Gm2694	5.51					
Scl44a5	5.45					
Scx	5.38					
Mtap2	5.36					
Panx1	5.36					
Gsx1	5.31					
Gdap1I1	5.23					
Chrnb1	5.22					
Sox8	5.18					
BC005764	5.15					
Bsn	5.15					
Xkr7	5.13					
Grin1	5.11					
Septin4	6030407003Rik	Ap1b1	C1qtnf1	Cntnap4	Ensa	
Septin7	6430562015Rik	Ap3b2	C230024C17Rik	Col16a1	Ephb5	
Septin11	6430706222Rik	Apol8	C230079003Rik	Col18a1	Ephb7	
Selenof	7530416G11Rik	Agrp9	Cables1	Col23a1	Ephb2	
0610007P14Rik	8030423J24Rik	Arc	Cacna2d3	Coro1c	Ephx4	
1110028F11Rik	8430422H06Rik	Arhgap12	Calml4	Coro2b	Erbb4	
1110038F14Rik	9030204H09Rik	Arhgap26	Camtal	Cpa1	Erdr1	
1500015O10Rik	9930704L06Rik	Arhgap29	Cant1	Cplx3	Ergic1	
1600002D24Rik	A330074K22Rik	Arid1b	Capn12	Cpv1	Erh	
1700066H21Rik	A330093E20Rik	Arid3a	Capn8	Cradl	Eva1a	
1700034G11Rik	A330072M11Rik	Arsi	Ccd60	Cyp2r1	Fam110a	
1700066B17Rik	A330023P12Rik	Asc2	Cdc68l	D630003M21Rik	Fam167a	
1810041L15Rik	A330031A15Rik	Ass1	Ccnk	D730050B12Rik	Fam167b	
201003K11Rik	Atab	Atg10	Ccr6	D8Etra82e	Fam174a	
2010111O10Rik	Abcc1	Atf2	Ccser2	Dbx2	Fam175b	
2210409D07Rik	Abhd10	Atoh8	Cdc42ep1	Dgki	Fam185a	
231001H17Rik	Acpp	Atp1b3	Cda7l	Dgkz	Fam49a	
2310015A10Rik	Acrs6	Atp2a3	Cdh20	Dhx9	Fam53b	
231002B05Rik	Actn1	Atp5l	Cdk2ap1	Dip2c	Fbxw7	
2310043L19Rik	Acvr1	Atp8a2	Cdk3-ps	Disc1	Figfr4	
2810006K23Rik	Adam12	Atxn10	Cdk5r1	Dleu7	Fhit	
2810049E08Rik	Adams14	Atxn2	Cdk5rap2	Dlg5	Filip1l	
2900011O08Rik	Admats17	B3gnt5	Cdkal1	Dlap1	Fkbp1	
3110039J08Rik	Adcy2	B4galnt5	Cebp	Dil1	Flnb	
4631405J19Rik	Adcyap1r1	Bag1	Ccrl2	Dil2c	Flt1	
4930401O10Rik	Adm	Bag5	Celsr1	Dmpk	Fnnl2	
4930447J18Rik	Adora1	Ba2b	Cer1	Dnajh5	Foxn3	
4930455H04Rik	Adbkb2	Bc065040	Cerk	Dnajc5b	Foxo6	
4930459C07Rik	Afgp1	Bc065402	Chad5	Dock1	Fra10ac1	
4930474M22Rik	Aff3	Bcl2l1	Chad7	Dpp6	Fzd7	
4930567K20Rik	Agmat	Bcl7a	Chn2	D pysl4	Gab1	
4930584F22Rik	Aida	Bcr	Chrac1	Dyps15	Gal	
4930596J21Rik	Aif1l	Bfsp2	Chrm4	Dsn1	Gapdh	
4931440F15Rik	Aim1	Birc3	Chrn4	Dyn1c2	Gas6	
4933417E11Rik	Akap2	Bptf	Chrm4	Ednrb	Gldp5	
4933426M11Rik	Akap6	Brap	Chxt1	Efcb5	Gli3	
4933427D06Rik	Akt2	Brnnp2	Cited4	Efhd2	Gm10007	
4933433G14Rik	Amer3	Brsk2	Cldn14	Ehd2	Gm10432	
5031425E22Rik	Ampd3	Bbd11	Clip3	Elf3	Gm10494	
5430421N21Rik	Angpl2	Bbbd6	Cmpk2	Efln1	Gm12669	
5730435O14Rik	Ank2	Btg2	Cntk6	Elk3	Gm12695	
5930412G12Rik	Ano6	C1qa	Cnot7	Engase	Gm13152	
Gm14461	Ifo1	Lpin1	Mir7072	Odc1	Polr1a	Rnf19b
Gm15941	Iffo2	Lrig1	Mir7218	Offj2	Ppib	Rnf216
Gm16039	If27	Lrp1l	Mir7243	Olfn1	Ppp4r2	Rnf217
Gm16386	Igdc4	Lrp8	Mir8095	Olfn2	Prdlm10	Rp9
Gm19897	Igsf2l	Lrc30	Mir9-f	Olfn2b	Prkar1a	Rpa1
Gm4285	Il15ra	Lhbp4	Mkln1os	Olig1	Prkdhp	Rph3al
Gm527	Il2rb	Lyph6	Mrkn1	Opalin	Prr18	Rpl29
Gm5294	Impdh1	Lyz14os	Morn1	Opclm	Prr5	Rps6ka2
Gm6994	Inppl1	Mab213	Mroh2a	Oprl1	Prss33	Rps6kc1
Gm7616	Iqsec1	Mad111	Mrps28	Osm	Prss52	Rptoros
Gm9159	Irf2hp2	Map3k14	Msntd1	Ostc	Psmh7	Rrp7a
Gm9899	Iga9	Map6	Mst2	Pah	Psmc6	Rtn4r11
Gna12	Jade1	Mapk8ip1	Msra	Pde1b	Ptgfrn	Rfyl1
Gpc5	Jade3	Mapkapk2	Mtr1b	Pde2a	Ptk2	Sae1
Gpr114	Jag1	Mapre1	Mtss1	Pde4b	Ptp4a2	Scarb1
Gpr156	Jard2	Marveld3	Mxra7	Pdgfa	Prprd	Sdc3
Gpr52	Kat6b	Mast4	Myo3b	Pdlim4	Ptpnrn	Sec22c
Gpr56	Kazn	Mbp	Myo5c	Pdpn	Ptprs	Sec61b
Gprc5d	Kcnh2	Mc2r	Myt1	Peps	Pvalb	Sema5a
Gprin3	Kenk13	Mejfd2	Myzap	Pex19	Pvr	Sema6d
Gpx2	Konk2	Mcm2	Nab2	Pga2	Pwwp2b	Sefgef
Grhl2	Kcnq1	Mcur1	Nat10	Phl12	Qpct	Serping
Grik4	Kcnq4	Mdjic	Nav2	Phld1b	Qprt	Sertad3
Grin2b	Kcd14	Me3	Nbl1	Phld2	Qsox1	Sestd1
Grin3a	Kdm4d	Med31	Neald	Piezo2	R74862	Sefdt5
Grin7	Kdm6b	Metap1d	Nck2	Pigv	Rab6b	Sh3f1
Grm8	Kdm7a	Mgat5	Nckap5	Pigz	Rabgap11	Shb
Gsx11	Kj20b	Miat	Ncor2	Pip4k2a	Rad51b	Sii1
Gf3a	Kj26b	Micalc	Ndrg1	Ptpnmm	Ratgds	Sim2
Gucy1b2	Kiil	Mif4gd	Ndafa12	Phkd1	Ratgps1	Sipa11
H2afy3	Kl10	Mir128-2	Neh1	Pkig	Ranbp9	Scl14a2
H6pd	Kl13	Mir182	Nenf	Pkm	Rasal2	Scl30a4
Has2	Khl21	Mir1902	Neurod4	Pikp1	Rassf3	Scl35b1
Hdac11	Khl25	Mir1931	Nkbia	Pla2g2c	Rbfox1	Scl35e1
Hdac7	L2hgdh	Mir1969	Ngfy1	Plac8ll	Rbms3	Scl38a1
Herpud2	Lif	Mir343	Nkd1	Plce1	Rbpfj	Scl38a4
Hexim2	Limal	Mir3473f	Noc4l	Plcgl	Reep1	Scl39a11
Hey1	Linep1	Mir374c	No4l	Plekha1	Rere	Scl51b
Hgd	Ling01	Mir5133	Notch1	Plekha7	Rgr	Scl7a5
Hibadl	Lnf1	Mir6364	Nphp4	Plekhg5	Rgs12	Scl8a1
Hip1	Lmnb2	Mir6368	Nron	Plet1	Rgs3	Scl9a3
Hipk2	Lmo1	Mir6401	Nsmce2	Pik3	Rhbd13	Sli1
Hivep3	Lmo2	Mir6409	Ntsr2	Plxdc2	Rimbp3	Sli3
Hook2	Lmod2	Mir6904	Nudt18	Plxna2	Ritt2	Smad5
Iba57	LOC101056043	Mir7041	Numb	Plxna2	Rnaseh2b	Smm3
Idh2	Lphn3	Mir705	Nxxn	Pold3	Rnf122	Sna1
Snca	Sstr5	Tek	Tmsb10	Tsc1	Vmn1r195	Wscd1
------	-------	-----	--------	------	----------	-------
Snld1	St3gal2	Tgbi	Tnfsf13b	Tstd2	Vmn2r6	Zc3h12c
Snora19	Stk33	Tgif1	Tnkh	Tc28	Vps37b	Zfand5
Snora3	Stx6	Thbs2	Tnr	Tc8	Vps41	Zfhx3
Surpe	Stx8	Thbs4	Tns3	Tll3	Vsm4	Zfp423
Snta1	Sun1	Them6	Top1	Tll5	Vwa2	Zfp536
Sntg1	Sv2b	Thpo	Toc3	Tulp4	Vwa8	Zfp609
Snx29	Svil	Tmem177	Traf3ip2	Tswg1	Wdr1	Zfp648
Soxs3	Synpo	Tmem178b	Traf4	Ubf	Wdr27	Zfp664
Sorl1	Tapt1	Tmem191c	Traf6	Ubxn8	Wdr34	Zfp827
Sox11	Tas1r1	Tmem201	Trim29	Unc5a	Wdr70	Zfp930
Spon1	Tcf12	Tmem236	Trit1	Upp2	Wdr95	Zfp940
Spon2	Tct11	Tmem255b	Trmt5	Usp12	Wnt5a	Znrf2
Srp9	Tead1	Tmem44	Trmt61a	Ust	Wnt7b	Zpld1
Sspn	Tecr	Tmie	Tspan14	Yash1	Wnt9a	
Table S7 Direct downstream targets of ASCL1 during direct reprogramming of astrocyte into neurons. The genes in bold were shared in Wapinski et al. Cell 2013 and this study. Related to Figure 2 and Figure 3.

Gene	Day2 Up-regulated only	Day2-Day5 Up-regulated in order	Day5 Up-regulated Only	Down-regulated Both	
Adam12	A330093E20Rik	Lpin1	Ap3b2	5031425E22Rik	1500015O10Rik
Adams14	A930003A15Rik	Lrp11	Cdk5r1	Adrbk2	Aim1
Ass1	Ank2	Mapkapk2	Chd7	Akap6	Chrab4
Atp2a3	Arid1b	Micalcl	Lmo2	Atp8a2	Glis3
Chst11	Cdk2ap1	Phldb2	Miat	Cacna2d3	Kazn
Col18a1	Cerk	Pcg1	Myt1	Camta1	Neb1
Dock1	Coro1c	Plxna2	Ncald	Cecr2	Plce1
Exosc9	Ctf	Ptprs	Pde1b	Chn2	Plekha7
Gal	Ctnnb1	Pwpp2b	Snca	Chrm4	Prkcdbp
Jag1	Dhx9	Rbpj	Sox11	Cntnap4	Sema6d
Klf10	Dip2c	Rere	Unc5a	Dpys5	Snta1
Lrig1	Ephb2	Rnaseh2b	Erbb4	Synpo	
Mcm2	Ephx4	Sestd1	Kcnh2		
Olig1	Foxn3	Shb	Neurod4		
Plekha1	Foxo6	S1c8a1	Ntsr2		
Sema5a	Frail10ac1	Svil	Prr18		
Tcf12	Gm527	Traf4	Rab6b		
Thbs2	Hdac11	Traf6	Reep1		
Tnr	Hipk2	Tsscl	Sx29		
Wnt7b	Hook2	Tulp4	Zfp423		
Inpp11	Usp12				
Lima1	Zfand5				
Gene	Forward Primer	Reverse primer			
--------	-----------------	-------------------------			
Gapdh	AGGTCGGGTGTAAGCGATTTTG	TGTAGACCATGATGTTGAGGTCATA			
Tuj1	TAGACCCAGCGCGCACTAT	GTTCCAGGTCCAAATCTCACC			
Map2	GCCAGCCTCACAGAAACAACAG	AAGGTCTTGGAGGGAAGAAGAAC			
NeuN	GTAGAGGGAGGAAAATTGAGG	GTGGGGTATGGGGAAACCTGG			
Klf10	ATGCTCAACTTGGGCTTCTT	CGCTTACCGGCCTTGAAGC			
Chd7	GACCCAGGGATGATGAGTTCTT	ATGGGGTTCACGGGTTTTC			
Sox11	CACAACCGCACTCTTCAA	GGGTCCGTCTGGGCTTTTGG			
Myt1	ATGATGACCCGGTGGGAAATTAGG	GGACACTTGGATTTCACGGCTTCT			
Myt1l	TGGTCACGTCAGGCGGAATAATA	TGCAAAATGTTTTTCGCTGGGG			
Myt3	TGATTGGCTCTATGGGCGAAGAG	CCCATGTCTGGGCTTGAAGT			
Neurod4	AGCTGGTCAACACACAATCTCT	GTTCGCCAGCATTCACATAAGAGC			
Ebf3	CAGGCCATCGTGTATGAAGG	GTGTCTCGTTTCTATTGCCACA			
Zfp821	CTCTGCCAGCTAGACTGTGGG	GCAGTTGGACCGCTGATCT			
Klf7	TCCACGACACCGGCTACTT	GGGAGCAAGCAAGGGGCTCTA			
Nhlh1	GCTTTGGGAGCTACAGGAGGAGG	CTTTAAGTGAGGGACTTGGGCTAT			
Runx2	TTCAACGATCTGAGTATTTGTGGG	GGATGAGGAATGCGCCTA			
Phx1	ACTGCTGTTCTGACAGAGTCTC	CTCTGCGGTTCTGCTGGGAC			
Cdk2b	CCGTGCCAACCTTACCCAGA	CAGATACCCCGTGAATGCTCAG			
Col24a1	TTCACTGCTTCAAACACCCCAAGG	CCATCCTGAATCTTTCAGTCTCAT			
Thx4	TCCCCAGCTACAAGGGTAAAAATGT	ACCATCCATTGTTGTCACAGAAGA			
Myh3	AAAAGGCCATCAGTACGC	CAGCTCCTGCATCCGTGTCTC			
Myo18b	TCTCCGCCTCCTTGTCTTCTT	TGCTGGGATCTACTTCTGG			
Table S9. shRNA sequences. Related to Figures 4, 5, 6, and 7.

Name	shRNA sequence
shKlf10-1	GCGACTGGAAGTCTCTATTCA
shKlf10-2	GGGTCAATCTGACTGATCA
shKlf10-3	GCGCTGCATATGACTTTTG
shMyt1/1l	GGTCATTGAAGTCAAGTCA
shMyt1	GCCCAGAGCTACATAGCTCTAA
shMyt1l	GGGCATTGAATAGCAACA
shMyt3	GCAGCAGTATCCAGTCTTTAA
shNeurod4-1	GCCTCAACCATTAAAGAGT
shNeurod4-2	GCTCGCCTTGAAAGATTC
shNeurod4-3	CTGGCAAGGAACACTACATCT
shChd7-1	CCTCCTGCTGAGCTGAGAAGAATAT
shChd7-2	CAGGCAGCTATTGACAGATTCTCCA
shChd7-3	TGACAGGTGAGTCTCTACTGTGTTA
shChd7-4	GCCAGCGCGTCGGACCATTTC
shChd7-5	GCTCCAGACTGGACCGATATA
shCtrl	AGACGCACGACAACGGCATAT
SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Astrocyte Culture
Astrocytes were cultured as previously described with some modifications (McCarthy and de Vellis, 1980). Briefly, the dorsal midbrain astrocytes from P5–P7 mice were dissected and dissociated with 0.25% trypsin for 15 min. The tissue was pipetted up and down gently for further dissociation and then seeded in 25 cm2 flask for expansion with medium containing DMEM/F-12 (Invitrogen), 10% fetal bovine serum (Invitrogen), penicillin/streptomycin (Invitrogen), and supplemented with B27 (Invitrogen), 10 ng/ml epidermal growth factor (EGF), and 10 ng/ml fibroblast growth factor 2 (FGF2). After 7–9 days, the oligodendrocytes were shaken off to obtain the astrocyte culture and reseeded in 60 mm dishes. All animal procedures are approved by the Animal Care Committee at the Institute of Neuroscience, CAS center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (Reference NA-010-2016).

Viral Production and Transduction
Lentiviruses were produced from HEK293FT cells that were transiently transfected with lentiviral, viral envelope-, and VSVG-pseudo-typing plasmids (Tiscornia et al., 2006). Viral particles were concentrated from supernatant by ultracentrifugation at 25,000 g for 2 hours. Viral particles were tittered by clonal analysis after transduction of 293FT cells. Viral titers were typically 10^8–10^9 infectious particles/ml. Lentiviral transduction of astrocytes was performed 2–4 hours after seeding cells on poly-D-lysine-coated 24-well plate at a density of 70,000 cells per well. Twenty-four hours after transduction, the medium was replaced completely by a medium consisting of DMEM/F-12, B27 supplement, and penicillin/streptomycin. Then the cells were allowed for direct reprogramming, from 6 days post-infection (DPI) onward, brain-derived neurotrophic factor (20 ng/ml; PeproTech) were added to the medium every 3 day by changing 50% of the medium.

Immunostaining
Immunostaining on cultured cells was performed essentially as previously described except the primary antibodies were incubated for overnight (Vierbuchen et al., 2010). The primary antibodies were used as follows: rabbit anti-GFAP (1:1000; Z0334; DAKO), mouse anti-S100β (1:1000; S2532; Sigma), rabbit anti-NG2 (1:200; AB5320; Millipore), mouse anti-O4 (1:500; MAB345; Millipore), rabbit anti-Olig2 (1:500; AB9610; Millipore), rabbit anti-IBAI (1:500; 019-19741; Wako), mouse anti-CNPase (1:500; ab6319; Abcam), mouse anti-Ascl1 (1:200;556604; BD Biosciences), mouse anti-Tuj1 (1:500; MMS-435P; Covance), mouse anti-Map2 (1:500; M4403; Sigma), rabbit anti-GFP (1:1000; A6455; Invitrogen), chicken anti-GFP (A10262; 1:1000; Invitrogen), rabbit anti-DsRed (1:500; 632496; Clontech). Cy3- and Cy5-conjugated secondary antibodies were obtained from Jackson ImmunoResearch. AlexaFluor-350-, Alexa Fluor-488-, and Alexa Fluor-546-conjugated secondary antibodies were obtained from Invitrogen.

Quantitative RT-PCR
Total RNA was extracted with Trizol reagent (Invitrogen) according to the manufacturer’s instructions. The cDNA was synthesized using PrimeScript™ RT reagent kit with gDNA eraser (Takara). Quantitative RT-PCR was performed on LightCycler480 (Roche) using JumpStart Ready Mix (Sigma) and the Eva Green (Biotium). Data analysis was performed with the DDCt method. The primers for
quantitative RT-PCR can be found in Table S8.

RNA Sequencing and Data Processing
Total RNA was isolated with Trizol reagent. Libraries were prepared, and sequencing was performed in 100-bp paired-end format on the Illumina HiSeq 2000. The quality of the reads was evaluated using the FASTQC tool. Raw reads were mapped to mm10 version of mouse genome using TopHat version 2.0.4 program (Trapnell et al., 2009). We calculated fragment per kilobase per million reads (FPKM) as expression level using Cufflinks version 2.0.2 with default parameters (Trapnell et al., 2010). Genes with the FPKM > 1.0 in at least one sample across all samples were retained for further analysis. Then the expression levels were transformed to logarithmic space by using the \log_2 (FPKM + 1). Differentially expressed genes (DEG) between clusters were identified using RankProd (Hong et al., 2006) with P value < 0.05 and fold change > 1.5. DEG heatmaps were generated using Cluster 3.0 and visualized using Java TreeView software (Saldanha, 2004). PCA analysis was performed using FactoMineR package in R (http://www.r-project.org).

Connection Specificity Index (CSI).
CSI of the TF groups were calculated. CSI employs the PCC (Pearson Correlation Coefficient) as a first-level association index to rank the similarity between nodes, and then uses a constant of 0.8 to define the boundary of interaction-profile similarity. Finally, we generated a TF co-expression network based on the CSI (CSI > 0.8) coefficient matrix (Fuxman Bass et al., 2013).

Functional Enrichment Analysis
Functional enrichment of gene sets with different expression patterns was performed using the Database for Annotation, Visualization and Integrated Discovery version 6.8 (DAVID v6.8) (Huang da et al., 2009).

Chromatin Immunoprecipitation Followed by Sequencing
ChIP-seq was carried out in astrocytes 2 days after FUGW-Ascl1 infection. Approximately 9-12x10⁶ cells were used for each ChIP-seq experiment. Cells were cross-linked in 1% formaldehyde for 10 min, lysed and sonicated to generate DNA fragments with an average size of 300 bp (Jin et al., 2009). About 5 ng IP DNA and input DNA measured by Agilent Technologies 2100 Bioanalyzer were used to construct DNA library by using ChIP-Seq Sample Prep Kit (Illumina). Enriched DNA sequencing was performed on Illumina HiSeq 2000. Immunoprecipitations were performed with mouse anti-Ascl1 (Pharmining 556604) or control LEAF-purified mouse IgG1 (Cambridge Biosciences). Sequencing reads were generated on HiSeq 2000 Illumina platforms. The primers for ChIP-PCR were as follows: Klf10, 5′-AGCTCTTCTCTGCCTCTCC-3′ and 5′-CAGACACAGGGTTCAGGTTT-3′; Chd7, 5′-TTGGAAGCAGTTTGTGCACTG-3′ and 5′-GGCTCCATTTCAGCATATA-3′; Sox11, 5′-TTCTGCAGCTGCCTCCTC-3′ and 5′-ATGCAAGGTGCCGCAAGT-3′; Myt1, 5′-CCAGGCAGGGGACTACATAA-3′ and 5′-GATAGGCCACAGAGCACTGG-3′; and Neurod4, 5′-CCCTCCATTCCTCTCTC-3′ and 5′-TGGCAGTCCAACAGATT-3′.

ChIP-seq Data Analysis
Raw reads were mapped to mm10 version of mouse genome using bowtie2 (version 2.3.1) (Langmead and Salzberg, 2012), and then peaks were called using HOMER (version 4.2) (Heinz et al., 2010) with
default parameters. The enrichment tags were visualized using Integrative Genomics Viewer (IGV, version 2.4).

Gene Knockdown

To acutely knockdown *Klf10*, *Myt1*, *Neurod4*, and *Chd7*, one or two shRNA specifically against targeting sequence and one control scramble shRNA sequence were cloned into the lentiviral vector *pLKD* (OBIOTechnology (Shanghai) Corp., Ltd.) using AgeI and EcoR1. The shRNA sequences can be found in Table S9.

Image Acquisition and Morphological Analysis

Z-stack images at 1 μm interval were acquired on a Nikon TiE-A1 plus scanning confocal microscope with a 20X Neofluor objective (N.A. = 1.3, for quantitative morphological analysis). Total dendritic branch length (TDBL) and total dendritic branch tip number (TDBTN) were measured and counted using ImageJ. At 8 DPI, iN cells have not yet developed dendritic spines, so protrusions longer than 3 μm were considered dendritic branch tips (Bian et al., 2015).

Electrophysiological Recording

Whole-cell voltage- or current-clamp recording was performed as described previously (Lu et al., 2007), with some modifications. Whole-cell recordings were made from GFP⁺ and tdTomato⁺ cells with borosilicate glass micropipettes filled with an internal solution containing the following (in mM): 130 K-gluconate, 20 KCl, 10 HEPES, 0.2 EGTA, 4 Mg2ATP, 0.3 Na2GTP, and 10 Na2-phosphocreatine, at pH 7.3 (290–310 mOsm). The pipette resistance was in the range of 2.0–4.0 MΩ. To evoke currents, step voltages (500 ms, 10 mV step) from -110 to 60 mV were applied in the voltage-clamp mode. To evoke membrane potential deflections, step currents (500 ms duration) were injected in the current-clamp mode. For separating spontaneous EPSCs (sEPSCs) and sIPSCs, cells were voltage clamped to -66 and 0 mV, respectively, using the Cs⁺-based internal solution that contained the following (in mM): 125 Cs⁺-gluconate, 5 tetraethylammonium-Cl, 2 CsCl, 1 EGTA, 10 HEPES, 4 Mg-ATP, 0.3 GTP, 10 phosphocreatine, and 3 QX-314, pH 7.2. Electrical signals were amplified and filtered at 2–10 kHz (low pass) with Axon MultiClamp 700B (Molecular Devices), digitized at 20–100 kHz (Digidata 1322A; Molecular Devices), and acquired by a computer with the pClamp 9.2 (Molecular Devices). The data analysis was done with the Clampfit and a custom program in MATLAB (MathWorks). All chemicals were from Sigma or Tocris Bioscience.

SUPPLEMENTAL REFERENCES

Bian, W.J., Miao, W.Y., He, S.J., Wan, Z.F., Luo, Z.G., and Yu, X. (2015). A novel Wnt5a-Frizzled4 signaling pathway mediates activity-independent dendrite morphogenesis via the distal PDZ motif of Frizzled 4. Dev. Neurobiol. 75, 805-822.

Fuxman Bass, J.I., Diallo, A., Nelson, J., Soto, J.M., Myers, C.L., and Walhout, A.J. (2013). Using networks to measure similarity between genes: association index selection. Nat. Methods 10, 1169-1176.

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589.

Hong, F., Breitling, R., McEntee, C.W., Wittner, B.S., Nemhauser, J.L., and Chory, J. (2006). RankProd: a
bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22, 2825-2827.

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.

Jin, Z., Liu, L., Bian, W., Chen, Y., Xu, G., Cheng, L., and Jing, N. (2009). Different transcription factors regulate nestin gene expression during P19 cell neural differentiation and central nervous system development. J. Biol. Chem. 284, 8160-8173.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.

Lu, J.T., Li, C.Y., Zhao, J.P., Poo, M.M., and Zhang, X.H. (2007). Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type. J. Neurosci. 27, 9711-9720.

Masserdotti, G., Gillotin, S., Sutor, B., Drechsel, D., Irmler, M., Jorgensen, H.F., Sass, S., Theis, F.J., Beckers, J., Berninger, B., et al. (2015). Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 17, 74-88.

McCarthy, K.D., and de Velillis, J. (1980). Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890-902.

Saldanha, A.J. (2004). Java Treeview--extensible visualization of microarray data. Bioinformatics 20, 3246-3248.

Tiscornia, G., Singer, O., and Verma, I.M. (2006). Production and purification of lentiviral vectors. Nat. Protoc. 1, 241-245.

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111.

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515.

Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041.