In vitro anti-coxsackievirus B₃ effect of ethyl acetate extract of Tian-hua-fen

Zhen-Hong Li, Bao-Ming Nie, Hong Chen, Shu-Yun Chen, Ping He, Yang Lu, Xiao-Kui Guo, Jing-Xing Liu

AIM: To investigation the anti-coxsackievirus B₃ (CVB₃m) effect of the ethyl acetate extract of Tian-hua-fen on HeLa cells infected with CVB₃m.

METHODS: HeLa cells were infected with CVB₃m and the cytopathic effects (CPE) were observed through light microscope and crystal violet staining on 96-well plate and A₆₀₀ was detected using spectrophotometer. The protective effect of the extract to HeLa cells and the mechanism of the effect were also evaluated through the change of CPE and value of A₆₀₀.

RESULTS: The extract had some toxicity to HeLa cells at a higher concentration while had a marked inhibitory effect on cell pathological changes at a lower concentration. Consistent results were got through these two methods. We also investigated the mechanism of its anti-CVB₃m effect and the results indicated that the extract represented an inhibitory effect through all the processes of CVB₃m attachment, entry, biosynthesis and assembly in cells.

CONCLUSION: The results demonstrate that the ethyl acetate extract of Tian-hua-fen has a significant protective effect on HeLa cells infected with CVB₃m in a dose-dependent manner and this effect exists through the process of CVB₃m attachment, entry, biosynthesis and assembly in cells, suggesting that the ethyl acetate extract of Tian-hua-fen can be developed as an anti-virus agent.

Li ZH, Nie BM, Chen H, Chen SY, He P, Lu Y, Guo XK, Liu JX. In vitro anti-coxsackievirus B₃ effect of ethyl acetate extract of Tian-hua-fen. World J Gastroenterol 2004; 10(15): 2263-2266

INTRODUCTION

Tian-hua-fen is the dried root of *Trichosanthes kirilowii* Maxim or *Trichosanthes japonica* Regel. The major component of it is mass starch, various amino acids, phytohemagglutinin, saccharide, saponin and some other things[1]. Tian-hua-fen was mentioned in Compendium of Materia Medica written by Li Shizhen in the late 14th Century as a drug to reset menstruation and facilitating the expulsion of retained placenta. For a long time, Tian-hua-fen had been used in the powdered form in conjunction with other Chinese herbal medicines to induce abortion[2]. Clinical applications over the years proved that Tian-hua-fen had multiple pharmacological effects, such as termination of pregnancy, anti-tumor, anti-inflammation, antivirus and immunoregulation and so on[3-5]. The anti-virus, especially anti-HIV-1, effect of trichosanthin (TCS) has been known to us. But to the author’s knowledge research about the non-protein parts of Tian-hua-fen is rare. Coxsackievirus B is the major pathogen of viral myocarditis and now there is no effective therapeutic drug. In the process of screening anti-virus agents from Chinese medicinal herb we found that the nonprotein parts of Tian-hua-fen had a notable anti-virus effect in vitro and in vivo.

MATERIALS AND METHODS

Preparation of the ethyl acetate extract of Tian-hua-fen

A total amount of 200 g Tian-hua-fen powder (Shanghai drug store) was macerated with 2 L 750 mL/L ethanol overnight, then was boiled in water under reflux for 3 h and the boiled fluid was filtered. The filtrate was evaporated under reduced pressure to gain a residue. The residue was suspended in water and partitioned with petroleum ether, ethyl acetate and n-BuOH (Analytical pure, Shanghai chemical company Ltd) successively.

The four fractions were evaporated under reduced pressure to give petroleum ether fraction (0.82 g), n-BuOH fraction (0.85 g) and aqueous fraction (12.7 g), respectively.

Preparation of HeLa cells and titration of virus titer

HeLa cells were stored in liquid nitrogen with 100 g/L dimethyl sulphoxide (DMSO) and 900 mL/L formaldehyde solution (FCS) and maintained in culture flasks in complete RPMI 1640 medium (Gibco, BRL, America). Subculture was carried out every 2-3 d after it had formed a confluent monolayer. CVB₃m (Stored by our laboratory) was serially diluted to 10⁻¹⁰ with non-FCS RPMI1640 culture medium. On 40-well plate, 0.025 mL CVB₃m with variable dilution and 0.025 mL non-FCS RPMI1640 culture medium were added to each well. Finally, 0.05 mL viable HeLa cells (3×10⁶/mL) were added. Each dilution was quadrupled and normal HeLa cells co-cultured with it. The cytopathic effects (CPE) were observed under light microscope. The titer at which cells appeared 50% CPE was designated 1 TCID₅₀ (50% tissue culture infectious doses). A 100 TCID₅₀ was used as the infectious titer in the following experiment.

Assay of the toxicity of the extract to HeLa cells

A total of 5 mg extract was dissolved in 5 µL DMSO, then 2.5 mL deionized water was added and the liquid was sterilized at 115 °C for 20 min. After cooling to 55 °C, 2.5 mL 2×RPMI 1640 culture medium (without FCS) was added to make the end concentration of the extract (1 mg/mL). The original liquid
was diluted with non-FCS RPMI 1640 culture medium serially from 1:2 to 1:1024. A total of the 0.025 mL sample with various concentration and 0.025 mL of the same culture medium were added to each well on 96-well plate. Finally 0.05 mL viable HeLa cells (3×10^4/mL) were added. Each concentration of the sample was quadrupled. Two controls, HeLa cells co-cultured only with RPMI1640 (containing 100 mL/L FCS) and 1 g/L DMSO respectively were prepared synchronously. Cells were incubated at 37 ℃ with 50 mL/L CO₂ for 72 h. CPE was observed under light microscope and the concentration at which cells appeared <50% CPE (compared with that of extract-free cultures) was regarded as the lowest toxic concentration. In addition, cells were stained with 5 g/L crystal violet (Ameresco) and A_600 was detected using spectrophotometer.

Assay of the anti-CVB₃m effect of the extract

The extract was diluted serially from 1:256 at which it had no toxicity to HeLa cells to 1:8 192 with non-FCS RPMI 1640 culture medium. Then 0.025 mL extract with variable concentration was added to each well of 96-well plate. Then 0.025 mL 100 TCID₅₀CVB₃m was overalld. After incubation at 37 ℃ with 50 mL/L CO₂ for 1 h, 0.05 mL viable HeLa cells (3×10^4/mL) were added. Each concentration was quadrupled and three controls, normal HeLa cells co-cultured only with RPMI1640 (containing 100 mL/L FCS), 100 TCID₅₀CVB₃m and the extract (1:256 mg/mL), respectively were prepared synchronously. Cells were grown for 3 days and then CPE was observed under light microscope. Later, the cells were stained with 5 g/L crystal violet and A_600 was measured using spectrophotometer.

Primary study on the mechanism of anti- CVB₃m effect of the extract

The extract was diluted with non-FCS RPMI1640 culture medium from 1:256 to 1:8 192. HeLa cells (1.5×10^5/well) were seeded onto three 96-well plates and allowed to attach to the well bottom. When the cells were confluent the culture medium was discarded and the cells were rinsed twice with the same culture medium. The cells on three plates were treated respectively as follows: The first plate: 0.025 mL 100TCID₅₀CVB₃m and 0.025 mL extract of variable concentration were added to each well. After incubation at 37 ℃ with 50 mL/L CO₂ for 1 h, the mixture was substituted with 0.1 mL non-FCS RPMI1640 culture medium; the second plate: 0.025 mL 100TCID₅₀CVB₃m and the extract (1:256 mg/mL), respectively were prepared synchronously. Cells were grown for 3 days and then CPE was observed under light microscope. The results showed the cells appeared 100% CPE. About the cells treated with CVB₃m at titer of 10⁻⁸-10⁻¹₀, the cells in four wells appeared 100% CPE while the others appeared 50% CPE. In regards to the cells co-cultured with CVB₃m at titer of 10⁻⁷, the cells in two wells appeared 100% CPE while the others appeared no CPE completely. Then TCID₅₀ was calculated as 10⁻⁷ according to Reed-Muench method⁷.

RESULTS

Titration of CVB₃m titers

The incubation was terminated after 72 h and CPE was observed under light microscope. The results showed the cells in all quadrupled wells treated with CVB₃m at titer of 10⁻¹⁻1⁰⁻⁶ appeared 100% CPE. About the cells treated with CVB₃m at titer of 10⁻⁸, the cells in two wells appeared 100% CPE while the others appeared 50% CPE. In regards to the cells co-cultured with CVB₃m at titer of 10⁻⁵-10⁻⁷, the cells in four wells appeared no CPE completely. Then TCID₅₀ was calculated as 10⁻⁷ according to Reed-Muench method⁷.

Assay of toxicity of ethyl acetate extract to HeLa cells

After incubation for 72 h, CPE induced by the extract was observed under light microscope. The results showed the cells co-cultured with extract at concentration from 1:2-1:128 mg/mL appeared CPE of different degrees, while the cells co-cultured with extract at concentration from 1:256 to 1:8 192 mg/mL appeared no CPE. The 50% toxic concentration was 1:128 mg/mL according to Reed-Muench method. The value of A_600 also indicated that the extract had no toxicity to HeLa cells from 1:256 mg/mL. The cells co-cultured with 1 g/L DMSO appeared no CPE, which showed that DMSO at this concentration had no toxicity to HeLa cells (Table 1).

Assay of the anti-CVB₃m effect of the extract

From 1:256 to 1:8 192 mg/mL the extract showed various protective effects to HeLa cells and the effect was decreased with the increased dilution. The protective effect was best at concentration from 1:256 to 1:1 024 mg/mL. The minimal effective inhibitory concentration (EIC) was 1:8 192. The value of variable concentration and 0.075 mL non-FCS RPMI1640 culture medium; the third plate: 0.025 mL 100TCID₅₀CVB₃m and 0.025 mL non-FCS RPMI1640 culture medium were added first. After incubation at 37 ℃ with 50 mL/L CO₂ for 1 h the mixture was discarded and 0.025 mL extract of variable concentration and 0.075 mL non-FCS RPMI1640 culture medium were overlaid. Three controls, HeLa cells co-cultured only with RPMI1640 containing 100 mL/L FCS, 100TCID₅₀CVB₃m and extract (1:256 mg/mL) respectively were prepared synchronously and each extract concentration was quadrupled. At last all plates were incubated at 37 ℃ with 50 mL/L CO₂. When the cells treated with CVB₃m appeared 100% CPE, the cells were stained with 5 g/L crystal violet and A_600 was detected using spectrophotometer.

Table 1	Cytotoxicity of ethyl acetate extract to HeLa cells shown in the value of A_600									
Dilution	1:2	1:4	1:8	1:16	1:32	1:64	1:128	1:256	1:512	1:1 024
Value of A_600	0.20±0.029	0.22±0.030	0.32±0.022	0.29±0.069	0.36±0.043	0.59±0.035	0.69±0.075	1.30±0.069	1.23±0.061	1.29±0.056

The A_600 value of the cells co-cultured with the extract at concentration from 1:2 to 1:128 mg/mL was lower than that of normal HeLa cells (1.32±0.034), which showed that the extract had some toxicity to HeLa cells at these concentrations. From 1:256 mg/mL the A_600 value became close to that of normal HeLa cells, which indicated that from 1:256 mg/mL the extract had no toxicity to HeLa cells again.

Table 2	Protective effect of ethyl acetate extract on HeLa cells shown in the value of A_600					
Dilution	1:256	1:512	1:1 024	1:2 048	1:4 096	1:8 192
Value of A_600	1.09±0.017	1.02±0.122	0.89±0.060	0.91±0.039	0.83±0.048	0.77±0.028

The A_600 value of the cells co-cultured only with RPMI1640 was 1.32±0.02; the A_600 value of the cells co-cultured only with 10⁻⁵ CVB₃m was 0.22±0.026; and the A_600 value of the cells co-cultured only with extract at concentration of 1:256 mg/mL was 1.21±0.042. As shown in the table the value of A_600 of the cells treated with extract is higher than that of the cells infected with CVB₃m while not treated with the extract (P<0.01), indicating the protective effect of the extract on HeLa cells from CVB₃m infection.
of A\text{600} obtained using crystal violet staining showed that starting from 1:256 mg/mL, the value of A\text{600} decreased with the increased dilution. There was a negative correlation between them (r=0.8525, P<0.01, Tables 2-3, Figure 1).

![Figure 1](image)

Primary study on the mechanism of anti-CVB\text{3m} effect of the extract in vitro

In the first group, the extract was added in the process of virus adsorption. In second group, the extract was added in the process of virus adsorption and also after adsorption while in the third one, the extract was added after virus adsorption. The value of A\text{600} of the three groups were obtained. Among all three groups, A\text{600} obtained from the cells treated with extract from 1:256 to 1:8 192 mg/mL was higher than that treated with 100TCID\text{50} CVB\text{3m}, and that of the second group was the highest. This suggested the extract exerted anti-CVB\text{3m} effect through all the processes of the virus infection (Table 4).

DISCUSSION

Proliferation of virus primarily depends on the biosynthesis system of host cells because virus deficit the enzymes needed for their proliferation. Virus proliferation was similar to nucleotide replication of host cells and there is also great similarity between its products such as nucleotide and proteins and that of host cells. So the demand for killing virus while not infecting the normal physiological function of host cells brings us great difficulty to design and synthesize effective anti-virus drug. The development of anti-virus drugs is very slow compared with that of anti-bacteria drugs in the last one hundred years since the discovery of virus. Though it is an important way to synthesize anti-virus drugs using chemical methods, it is very slow and time-consuming. In recent years, many countries are paying more and more attention to look for anti-virus agents from Chinese medicinal herbs. Tian-huafen is a traditional Chinese medicinal herb. It has been used in Chinese for centuries to induce mid-term abortion. And there were many records about its biological efficacy. In the 70 s, the active ingredient of Tian-hua-fen, TCS, a protein from the root tuber of the Chinese medicinal herb Trichosanthes kirilowii Maxim was found and purified. It is a monomeric protein with a pl (isoelectric point) of 9.4 and an apparent molecular weight of 24 kDa. There are no cysteine residues in the molecule[11]. TCS is a member of type 1 ribosome-inactivating protein (RIP) family[9,10]. RIP is a group of cytotoxic proteins acting on eukaryotic ribosomes. They can inactivate 60S ribosomal subunits by only hydrolyzing a single phosphodiester bond between the guanosine residue at position 4325(G4325) and the adenosine residue at position 4326(A4326) in 28S rRNA. TCS can inactivate eukaryotic ribosomes through its N-glycosidase activity by hydrolyzing the N-C glycosidic bond of adenyl acid at 4324 site in 28S rRNA of rat liver[11]. Thus cell protein synthesis was inhibited. Clinical application over the years showed TCS had multiple pharmacological effects. The research about TCS was once popular since McGrath et al.[11,12] reported it could inhibit HIV-1 for the first time. But the sever side effect prevented its more extensive clinical application[13].

There are some other components such as polysaccharide, phytohemaglutinin, sterol and palmitic acid and so on in Tian-hua-fen besides TCS[14]. Polysaccharide in Tian-hua-fen had marked immunoregulation effect[14]. The galactose-binding lectin from Tian-hua-fen stimulated the incorporation of D-[3-3H]glucose into lipids in isolated rat epididymal adipocytes[15]. In the process of screening anti-virus agents, we found the ethyl acetate extract of Tian-hua-fen had obvious preventive effect on HeLa cells from CVB\text{3m} infection. This showed the potential anti-virus effect of the ethyl acetate extract of Tian-hua-fen. In this study, Tian-hua-fen was treated with chemical reagents and then was extracted with organic reagents. Finally, four kinds of extract were obtained. The anti-CVB\text{3m} effect of the four fractions was tested and the results showed
ethyl acetate fraction had the best preventive effect on HeLa cells from CVB3m infection. The preventive effect decreased as the extract dilution increased. There was an obvious correlation between them. The ethyl acetate fraction was further chromatographed on silica gel column and their anti-virus effect was also tested. The results suggested that toxicity of the further extract to HeLa cells was decreased compared with the former one and there also existed a negative correlation between the preventive effect and the dilution.

Many methods have been developed for determining the antiviral activities of compounds in cell culture. For viruses that cause discernible cytopathic effects (CPE) microscopically in cells, visual scoring of CPE induction is performed most frequently because it is rapid, and allows a number of compounds to be evaluated using 96-well microplates[18]. Since solely relying on visual scoring was inaccurate for assessing the cytotoxicities, the use of a dye or stain is very important. The results indicated that methods using bisbenzimide, crystal violet, fluorescein diacetate, MTT, neutral red, or rhodamine 6G were similar to visual scoring for determining anti-influenza virus activity in cell culture. Rapid staining (15 min) methods could be done with crystal violet and rhodamine 6G, and rhodamine 6G gave a high background in microwells containing only water (no cells or virus) which had to be subtracted[17], whereas other methods for determining antiviral activity of test substances may be much more tedious, requiring more microplates, compound, and/or time than the above methods. These include the plaque reduction assay[19], virus yield reduction assay[19], determining drug effect by counting the number of infected cells stained by fluorescent antibody[20] and [³H]TdR incorporation[21]. For this reason, we preferred crystal violet staining in our study in order to quantitatively screen anti-virus agents.

We also did some primary study on the anti-CVB3m mechanism of the extract. The extract was added before virus adsorption, during adsorption and after adsorption and then the cells were stained with crystal violet and A₀₀₀₇ was measured. The value of A₀₀₀₇ of the three groups was higher than that of the cells infected with virus. This indicated the three kinds of treatment had preventive effect on HeLa cells from CVB3m infection at different levels and suggested that the extract could act through virus adsorption, penetration and synthesis in cells.

Our results showed that the ethyl acetate extract of Tianhua-fen had marked anti-CVB3m effect in vitro. Some questions still remained to be answered. Which component play key role in the process of anti-virus? Which has the better anti-virus effect between the crude extract and the further extract? What is the anti-virus mechanism of it? To answer these questions needs more and further research. Anyway it is sure that the ethyl acetate extract of Tian-hua-fen has marked anti-virus effect. The answers to the above questions will help to wide the range of virus that Tian-hua-fen resists and also help to make Tian-hua-fen a clinical-used drug.

REFERENCES
1. Wang Y. Trichosanthis. Second Edition, Beijing, China Science Press 2000: 18: 81.
2. Shaw PC, Chan WL, Yeung HW, Ng TB. Minireview: trichosanthis-a protein with multiple pharmacological properties. Life Sci 1994; 55: 253-262.
3. Wu L, LaRosa G, Kassam N, Gordon CJ, Heath H, Ruffing N, Chen H, Humblaies, Samson M, Parmentier M, Moore P, Mackay CR. Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J Exp Med 1997; 186: 1373-1381.
4. Zheng Y, Chan WL, Chan P, Huang H, Tam SC. Enhancement of the anti-herpetic effect of trichosanthis by acyclovir and interferon. FEBS Lett 2001; 496: 139-142.
5. Fan ZS, Ma BL. IL-10 and trichosanthis inhibited surface molecule expression of antigen processing cells and T-cell proliferation. Zhongguo Yu Jiu Xue Bao 1999; 20: 353-357.
6. Carlucci MJ, Scalaio LA, Errera MI, Matulewicz MC, Damone EB. Antiviral activity of natural sulphated galactans on herpes virus multiplication in cell culture. Planta Med 1997; 63: 429-432.
7. Krahl DL. Receptors for binding measles virus on host cells and erythrocytes. Biologicals 1991; 19: 223-227.
8. Maragano JM, Joseph M, Bailey MC. Purification and characterization of trichosanthis. Homology to the ricin A chain and implications to mechanism of abortifacient activity. J Biol Chem 1987; 262: 11628-11633.
9. Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. Biocim Biophys Acta 1993: 1154: 237-282.
10. Zhang C, Gong Y, Ma H, An C, Chen D, Chen ZL. Reactive oxygen species involved in trichosanthis-induced apoptosis of human choriocarcinoma cells. Biochem J 2001; 355(Pt 3): 653-661.
11. McGrath MS, Hwang KM, Caldwell SE, Gaston I, Liu KC, Wu P, Ng VL, Crowe S, Daniels J, Marsh J, Grillo M. J. HIV-223: an inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc Natl Acad Sci U S A 1999; 86: 2844-2848.
12. McGrath MS, Santulli S, Gaston I. Effects of GL0223 on HIV replication in human monocyte/macrophages chronically infected in vitro with HIV. AIDS Res Hum Retroviruses 1990; 6: 1039-1043.
13. Byers VS, Levin AS, Malvino A, Waites L, Robins RA, Baldwin RW. A phase II study of effect of addition of trichosanthis to zidovudine in patients with HIV disease and failing antiretroviral agents. AIDS Res Hum Retroviruses 1994; 10: 413-420.
14. Wu AM, Wu JH, Tsai MS, Her P. Carbohydrate specificity of an agglutinin isolated from the root of Trichosanthes kirilowii. Life Sci 2000; 66: 2571-2581.
15. Ng TB, Wong CM, Li WW, Yeung HW. Effect of Trichosanthes kirilowii lectin on lipolysis and lipogenesis in isolated rat and hamster adipocytes. Ethnopharmacol 1985; 14: 93-98.
16. Sidwell RW, Huffman JH. Use of disposable micro tissue culture plates for antiviral and interferon induction studies. Appl Microbiol 1977; 22: 797-801.
17. Sme DG, Morrison AC, Barnard DL, Sidwell RW. Comparison of colorimetric, fluorometric, and visual methods for determining anti-influenza (H1N1 and H3N2) virus activities and toxicities of compounds. J Virol Meth 2002; 106: 71-79.
18. Desideri N, Conti C, Mastromarino P, Mastropalo F. Synthesis and anti-herpetic activity of 2-styrylchromones. Antivir Chem Chemother 2000; 11: 373-381.
19. Semple J, Pyke SM, Reynolds GD, Flower RL. In vitro antiviral activity of the antibrucella chonrophic acid against poliovirus. Antiviral Res 2001; 49: 169-178.
20. Sme DF, Sidwell RW, Barnett BB, Spendlove RS. Bioassay system for determining ribavirin levels in human serum and urine. Chemotherapy 1981; 27: 1-11.
21. Baba M, Pauwel R, Balzarini J, Arnout J, Desmyter J, De Clercq E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Nat Acad Sci U S A 1998; 85: 6132-6136.