The first excited $1/2^+$ state in 9Be and 9B

M. Odsuren1, Y. Kikuchi2, T. Myo3,4 and K. Kato5,*

1School of Engineering and Applied Sciences and Nuclear Research Centre, National University of Mongolia, Ulaanbaatar 210646, Mongolia
2Tokuyama College, National Institute of Technology, Yamaguchi 745-8585, Japan
3General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
4Research Centre for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
5Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
*e-mail: kato@nucl.sci.hokudai.ac.jp

Nuclear states observed around threshold energies provide us with interesting problems associated with the nuclear cluster structure [1, 2, 3, 4]. The first excited $J^\pi = 1/2^+$ state of 9Be [5], which is an $\alpha + \alpha + \textit{n}$ Borromean nucleus, is one of the typical examples in light nuclei. This state of 9Be has been observed as a sharp peak above the 8Be + n threshold energy in the photo-disintegration cross section of $\gamma + ^9$Be $\rightarrow \alpha + \alpha + \textit{n}$ [6, 7]. The strength of the peak has a strong influence on the reaction rate of the 9Be synthesis. We performed the calculations using an $\alpha + \alpha + \textit{n}$ three-body model [8, 9] and the complex scaling method (CSM), which well reproduces the observed photo-disintegration cross section. However, the result indicates that the $1/2^+$ state shows the s-wave virtual-state character of 8Be+\textit{n}. In addition to this problem, we discuss a mirror state problem of the first excite $1/2^+$ state in 9B.

Key words: cluster model, photo-disintegration cross section, virtual state.
PACS numbers: 21.60.Gx, 25.20.-x, 26.20.Np

1 Introduction

Nuclear states observed around threshold energies provide us with interesting problems associated with the nuclear cluster structure [1, 2, 3, 4]. Most of them are also interesting astrophysically from the viewpoint of nucleosynthesis. The first excited $J^\pi = 1/2^+$ state in 9Be [5], which is an $\alpha + \alpha + \textit{n}$ Borromean nucleus, is one of the typical examples in light nuclei.

The reaction rate of the 4He(α, γ)9Be reaction is crucial to understand the productions of heavy elements. In the α(n, γ)9Be reaction, a sequential process, 4He(α, γ) 8Be(n, γ) 9Be, has been considered as a dominant one. However, owing to the short life-time of the 8Be ground state ($\sim 10^{-16}$ s), a direct measurement of the 8Be(n, γ)9Be reaction is impossible. For an alternative way, the cross section of its inverse reaction, 9Be(γ, n)8Be, has been measured to deduce the cross section of 8Be(n, γ)9Be.

The low-lying $1/2^+$ state have a impact on the reaction rate of 8Be(n, γ)9Be in stellar environments. This state of 9Be has been observed as a sharp peak above the 8Be + n threshold energy in the photo-disintegration cross section of $\gamma + ^9$Be $\rightarrow \alpha + \alpha + \textit{n}$ [6, 7]. The strength of the peak has a strong influence on the reaction rate of the 9Be synthesis. From a theoretical side, it is interesting to answer how the low-lying $1/2^+$ state of 9Be contributes to the 8Be(n, γ)9Be reaction.

We perform the calculations using an $\alpha + \alpha + \textit{n}$ three-body model [8, 9] and the complex scaling method (CSM) [10, 11]. Applying the three-cluster potential, we show that the observed photo-disintegration cross section [6, 7] is well reproduced. And, the result indicates that the $1/2^+$ state shows the s-wave virtual-state character of 8Be + n.

In this report, we explain our results of the first excite $1/2^+$ state in 9Be in comparison with those of other previous studies [12 - 17], because it has been a long-standing problem whether the $1/2^+$ state is a resonant or virtual state. In addition to this problem, we discuss a mirror state problem of the first excite $1/2^+$ state in 9B.
In the next section, we will briefly explain the $\alpha + \alpha + n$ three-body model [8, 9], and show the results of the photo-disintegration cross section. In Sec. 3, the result of the complex scaling method for the $1/2^+$ state is discussed to show no resonance solutions for ^9Be. In Section 4, the $1/2^+$ state in ^9B is shown to be obtained as a resonant state, and the comparison of energy levels for ^9Be and ^9B is discussed. Finally, summary is given in Section 5.

2 Photo-disintegration of ^9Be

To understand the origin of a low-energy peak in the photo-disintegration cross section just above the $^8\text{Be} + n$ breakup threshold energy in ^9Be, we investigate the $E1$-transition strength using an $\alpha + \alpha + n$ three-body model [8, 9]. The Hamiltonian for the relative motion of the $\alpha + \alpha + n$ three-body system for ^9Be is given as

$$H = \sum_{i=1}^{3} t_i - T_{cm} + \sum_{i=1}^{2} V_{an}(\xi_i) + V_{\alpha \alpha} + V_{\text{PF}} + V_3,$$

where t_i and T_{cm} are kinetic energy operators for each particle and the center of mass of the total system, respectively. The interactions between the neutron and the α particle is given as $V_{an}(\xi_i)$, where ξ_i is the relative distance between them. We here employ the KKNN potential [18] for V_{an}. For the $\alpha-\alpha$ interaction $V_{\alpha \alpha}$, we employ a folding potential of the effective NN interaction [19] and the Coulomb interaction:

$$V_{\alpha \alpha}(r) = v_0 \exp(-ar^2) + \frac{4e^2}{r} \text{erf}(Br),$$

where $v_0 = -106.09$ MeV, $a = 0.2009$ fm$^{-2}$, and $\beta = 0.5972$ fm$^{-1}$. The pseudo-potential $V_{\text{PF}} = \lambda |\Phi_{\text{PF}}\rangle \langle \Phi_{\text{PF}}|$ with $\lambda = 10^6$ MeV is expressed by the projection operator to remove the Pauli forbidden states Φ_{PF} from the relative motion of $\alpha-\alpha$ and $\alpha-n$.

In the Hamiltonian of Equation (1), two-cluster potentials V_{an} and $V_{\alpha \alpha}$ are fixed so as to reproduce the observed scattering data of α and $\alpha-\alpha$, respectively. Since the antisymmetrization effects are taken into account by the Pauli-potential V_{PF} but a three-cluster exchange effect is not included explicitly in this calculation, we introduce the phenomenological three-cluster potential V_3 to investigate the photo disintegration of ^9Be by reproducing the breakup threshold energy into $\alpha + \alpha + n$. The explicit form of V_3 is given by

$$V_3 = v_3 \exp(-\mu r^2),$$

where ρ is the hyper-radius of the $\alpha + \alpha + n$ system. The hyper-radius is defined as

$$\rho^2 = 2r^2 + \frac{8}{9}R^2,$$

where r is the distance between two α-particles and R is that between the neutron and the center of mass of the $\alpha + \alpha$ subsystem. In Figure 1, calculated photo-disintegration cross sections are shown. The dashed and dotted lines are results with and without the three-body potential of $v_3 = 1.10$ MeV and $\mu = 0.02$ fm. The black solid line represents the cross section calculated by using an attractive three-body potential with $v_3 = -1.02$ MeV. The experimental data below $E_{\gamma} = 2.2$ MeV are taken from References [6, 7]. The arrow indicates the threshold energy of the $^8\text{Be}(0^+) + n$ channel.

The result calculated with an appropriate strength v_3 of the three-cluster interaction well reproduces the cross section peak observed just above the $^8\text{Be}(0^+) + n$ threshold.
The first excited 1/2+ state in ⁹Be and ⁹B

3 The virtual-state property of ⁹Be (1/2⁺)

For the problem that the first excited 1/2+ state in ⁹Be is resonant or virtual state, we have many studies so far [12 - 17]. To see whether the peak of the photo-disintegration cross section is due to resonances or not, we apply the complex scaling method to the α+ α + n model and search for the 1/2+ resonant states. The complex-scaled Schrodinger equation is given as

\[H^\theta \Psi_J(\theta) = E^\theta_J \Psi_J(\theta), \]

where \(J \) is the total spin of the α+α+n system. The complex-scaled Hamiltonian and wave function are

\[H^\theta = U(\theta) H U^{-1}(\theta), \]
\[\Psi_J(\theta) = U(\theta) \Psi_J, \]

respectively. The complex scaling \(U(\theta) \) with a real parameter \(0 \leq \theta \leq 45^\circ \) transforms the relative coordinates as

\[U(\theta); \quad r \to r e^{i\theta}, \quad R \to R e^{i\theta}. \]

The calculated eigenvalue distribution of the 1/2⁺ states is shown in Figure 2. The result indicates no resonance solutions for \(\theta = 15^\circ \). Although there may exist a resonance solution with a large width, which cannot be solved with \(\theta = 15^\circ \), it is not consistent with observed data of the width \(\Gamma = 217\pm10 \text{ KeV} \) [5]. And we could not find such a resonant state by the analytical continuation for the three-cluster potential strength [8].

On the other hand, we obtain the resonant solution for the 1/2⁺ state in the mirror nucleus ⁹B, where the same Hamiltonian (Equation (1)) for the α + α + p model with the
Figure 2 - Energy eigenvalue distribution of 1/2+ states of 9Be measured from the \(\alpha + \alpha + n \) threshold with scaling angle \(\theta = 15^\circ \). The solid, dashed, and dotted lines represent the branch cuts for \(\alpha + \alpha + n \), \(^8\text{Be}(0^+) + n \), and \(^5\text{He}(3/2^-) + \alpha \) continua, respectively.

Coulomb interaction for the proton \(p \) are used. In Figure 3, the 1/2+ resonant state is shown with a circle. This resonance solution is understood to be reproduced by the Coulomb interaction between the valence proton and two \(\alpha \) clusters, which does not exist in the \(\alpha + \alpha + n \) system.

Figure 3 – Energy eigenvalue distribution of 1/2+ states of 9B measured from the \(\alpha + \alpha + p \) threshold with scaling angle \(\theta = 15^\circ \). The solid, dashed, and dotted lines represent the branch cuts for \(\alpha + \alpha + p \), \(^8\text{Be}(0^+) + p \), and \(^4\text{Li}(3/2^-) + \alpha \) continua, respectively.

The virtual state property of the 1/2+ state in 9Be was studied in detail by using the \(^8\text{Be}+n\) model [20-30]. It is confirmed that the virtual state of the neutron s-wave is embedded in the continuum without a barrier potential. Furthermore, it is shown that we cannot distinguish virtual state from resonant state in the shape of the cross section peak, when the resonance appears at a very small energy from the threshold.
4 Mirror States in 9Be and 9B

In addition to the $1/2^+$ state, low-lying states of 9Be are calculated within the $\alpha + \alpha + n$ model. The observed photo-disintegration cross sections [6, 7] are shown to be well explained over a wide energy region [9]. The energy levels of 9Be are presented in Figure 4 together with experimental results [5]. The first excited $1/2^+$ state does not have correspondence in the present calculation, and the $3/2^-_1$ state is predicted to be about 1 MeV lower than the experiment. However, other states are well reproduced.

![Figure 4](image)

Figure 4 – Energy levels of 9Be. The present calculation is compared with the experimental data taken from Ref. [5]

In Figure 5, we show the present result of energy levels for 9B in comparison with observed data [5]. The low-lying states, which are all resonant states, are well reproduced except for the first excited $1/2^+$ state. The calculated state is rather higher than the experimental one.

![Figure 5](image)

Figure 5 – Energy levels of 9B. The present calculation is compared with the experimental data taken from Ref. [5]
This state of ^9B is the mirror of the virtual state in ^9Be, which is understood to have the s-wave configuration of the neutron around the ^8Be ($=\alpha+\alpha$) core. The Thomas-Ehrman effect [23] suggests that the s-wave proton of the mirror nucleus has a weak effect from the Coulomb interaction. Then the energy shift of the s-wave proton configuration is expected to be smaller than those of other states. Thus, the present result shows an inverse tendency of the energy relation between the $1/2^+$ states in ^9Be and ^9B.

5 Summary

It has been a long standing problem that the peak of the photo-disintegration cross section observed just above the $^9\text{Be}+n$ threshold in ^9Be causes from the $1/2^+$ resonant state or a neutron s-wave virtual. The complex scaled $\alpha+\alpha+n$ model shows to reproduces the observed peak of the $1/2^+$ state due to a neutron s-wave virtual state of $^9\text{Be}(0^+) + n$. We discussed a mirror state problem of the first excite $1/2^+$ state in ^9B.

References

1. K. Ikeda, N. Takigawa, H. Horiuchi. The Systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei // Progress of Theoretical Physics Supplement E. – 1968. – Vol. 68. – P. 464.
2. H. Horiuchi, K. Ikeda, K. Katō. Recent developments in nuclear cluster // Progress of Theoretical Physics Supplement. – 2012. – Vol. 192. – Pp. 1-238.
3. H. Horiuchi, K. Ikeda. Cluster Model of The Nucleus // Cluster Models and Other Topics. – 1987. – P. 1–258.
4. H. Horiuchi, K. Ikeda. A Molecule-like Structure in Atomic Nuclei of ^{16}O and ^{18}Ne // Progress of Theoretical Physics. – 1968. – Vol.40, No. 2. – P. 277-287.
5. D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. E. Purcell, C. G. Sheu, & H. R. Weller. Energy levels of light nuclei $A=8,9,10$ // Nucl. Phys. A. – 2004. – Vol. 745. – P. 155-362.
6. C. W. Arnold, T. B. Clegg, C. Iliadis, H. J. Karwowski, G. C. Rich, J. R. Tompkins, and C. R. Howell. Arnold, C. W., Clegg, T. B., Iliadis, C., Karwowski, H. J., Rich, G. C., Tompkins, J. R., & Howell, C. R. (2012). Cross-section measurement of $^9\text{Be}(\gamma,n)^8\text{Be}$ and implications for $\alpha+\alpha+n$+^8Be in the r process // Physical Review C. – 2015. – Vol. 85, No. 4. – P. 044605.
7. H. Utsunomiya, S. Katayama, I. Gheorghe, S. Imai, H. Yamaguchi, D. Kahl, Y. Sakaguchi, T. Shima, K. Takahisa, and S. Miyamoto. Photodisintegration of ^9Be through the $1/2^+$ state and cluster dipole resonance // Phys. Rev. C. – 2015. – Vol. 92, No. 6. – P. 064323.
8. Myagmarjav Odsuren, Yuma Kikuchi, Takayuki Myo, Masayuki Aikawa, and Kiyoshi Katō. Virtual-state character of the $^9\text{Be}1/2^+$ state in the $^9\text{Be}(\gamma,n)^8\text{Be}$ reaction // Phys. Rev. C. – 2015. – Vol. 92, No. 1. – P. 014322.
9. Yuma Kikuchi, Myagmarjav Odsuren, Takayuki Myo, and Kiyoshi Katō. Photodisintegration cross section of ^9Be up to 16 MeV in the $\alpha+\alpha+n$+ three-body model // Phys. Rev. C. – 2016. – Vol. 93, No. 5. – P. 054605.
10. J. Aguilar and J. M. Combes. A class of analytic perturbations for one-body Schrödinger Hamiltonians // Communications in Mathematical Physics – 1971. – Vol. 22, No. 4. – P. 269-279.
11. E. Balslev and J. M. Combes. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions // Communications in Mathematical Physics – 1971. – Vol. 22, No. 4. – P. 280-294.
12. F.C. Barker and B. M.Fitzpatrick. R-matrix fit to $^9\text{Be}(\gamma,n)^8\text{Be}$ cross section near threshold // Australian Journal of Physics. – 1968. – Vol. 21, No. 4. – P. 415-421.
13. Hiroshi Furutani Hiroyuki Kanada Tsuneo Kaneko Hidetoshi Nishioka Shigeto Okabe Sakae Saito Toshimi Sakuda Michio Seya. Chapter III. Study of Non-Alpha-Nuclei Based on the Viewpoint of Cluster Correlations // Progress of Theoretical Physics Supplement. – 1980. – Vol. 68. – P. 193-302.
14. P. Descouvemont. ^9Be and ^9B nuclei in a microscopic three-cluster model // Phys. Rev. C. – 1989. – Vol. 39, No.4. – P. 1557.
15. F.C. Barker. The ^9Be (ρ,γ) cross section at low energies // Australian Journal of Physics. – 2000. – Vol. 53. – P. 247.
16. O. Burda, P. von Neumann-Cosel, A. Richter, C. Forssen, B.A. Brown. Resonance parameters of the first 1/2$^+$ state in ^9Be and astrophysical implications // Phys. Rev. C. – 2010. – Vol. 82, No. 1. – P. 015808.
17. E. Garrido, D. V. Fedorov, and A. S. Jensen. Above thresholds-wave resonances illustrated by the 1/2$^+$ states in ^9Be and ^9B // Phys. Lett. B. – 2010. – Vol. 684, No. 2-3. – P. 132-136.
18. R. Álvarez-Rodríguez, A. S. Jensen, E. Garrido, and D. V. Fedorov. Structure and three-body decay of 9Be resonances // Phys. Rev. C. – 2010. – Vol. 82, No.3. – P. 034001.
19. J. Casal, M. Rodríguez-Gallardo, J. M. Arias, and I.J. Thompson. Astrophysical reaction rate for ^9Be formation within a three-body approach // Phys. Rev. C. – 2014. – Vol. 90, No. 4. – P. 044304.
20. Y. Koike, E. Cravo, and A. C. Fonseca, in Proceedings of the International Symposium on Clustering Aspects of Quantum Many-Body Systems, Kyoto, Japan, 2001, edited by Ohnishi et al. (World Scientific, Singapore, 2002), p. 65.

21. K. Arai, P. Descouvemont, D. Baye, and W. N. Catford. Resonance structure of 9Be and 9B in a microscopic cluster model // Phys. Rev. C. – 2003. – Vol. 68, No. 1. – P. 014310.

22. V.D. Efros and J.M. Bang. The first excited states of 9Be and 9B // The European Physical Journal A. – 1999. – Vol. 4, No. 1. – P. 33-39.

23. V. D. Efros, P. von Neumann-Cosel, and A. Richter. Properties of the first excited state of 9Be derived from (γ,n) and (e,e'') reactions // Phys. Rev. C. – 2014. – Vol. 89, No. 2. – P. 027301.

24. H. Kanada, T. Kaneko, S. Nagata, and M. Nomoto. Microscopic Study of Nucleon-4He Scattering and Effective Nuclear Potentials // Progress of Theoretical Physics. – 1979. – Vol. 61, No. 5. – P. 1327-1341.

25. E. Schmid and K. Wildermuth. Phase shift calculations on $\alpha-\alpha$ scattering // Nucl. Phys. – 1961. – Vol. 26, No. 3. – P. 463-468.

26. M. Odsuren, Y. Kikuchi, T. Myo, G. Khuukhenkhuu, H. Masui and K. Katō. Virtual-state character of the two-body system in the complex scaling method // Phys. Rev. C. – 2017. – Vol. 95, No. 6. – P. 064305.

27. M. Odsuren, Y. Kikuchi, T. Myo and K. Katō. Photodisintegration cross sections for resonant states and virtual states // Phys. Rev. C. – 2019. – Vol. 99, No. 3. – P. 034312.

28. M. Odsuren, T. Myo, G. Khuukhenkhuu, H. Masui, K. Katō. Analysis of a Virtual State Using the Complex Scaling Method // Acta Physics Polonica B. – 2018. – Vol. 49, No. 3. – P. 319-324.

29. R. G. Thomas. An Analysis of the Energy Levels of the Mirror Nuclei, 13C and 13N // Phys. Rev. – 1952. – Vol. 88, No. 5. – P. 1109.

30. J. B. Ehrman. On the Displacement of Corresponding Energy Levels of 13C and 13N // Phys. Rev. – 1951. – Vol. 81, No. 3. – P. 412.