Introduction

Epithelioid malignant peripheral nerve sheath tumor (EMPNST, malignant epithelioid schwannoma) is a rare variant of malignant peripheral nerve sheath tumor that has morphologic and immunophenotypic overlap with a variety of epithelioid neoplasms. Because of its rarity it may be potentially underrecognized. We describe a case arising in the subcutis of the thigh in a 25 year-old female, and discuss the pathologic features and differential diagnosis.

Keywords

Epithelioid malignant peripheral nerve sheath tumor, extremity, sarcoma, schwannoma, SMARCB1/INI1 gene, thigh

Superficial EMPNST have been shown to have a metastatic rate of 12% compared to 30% for deep tumors, but in contrast other studies have not shown a correlation between site/depth and clinical behavior. Histologically EMPNSTs are characteristically composed of nodules, clusters or cords of large polygonal or ovoid cells with prominent nucleoli, sometimes with focal rhabdoid morphology or clear cytoplasm. Often spindle cells typical of classical MPNST are also present, and merge with the epithelioid cells. Unlike conventional MPNST, EMPNSTs typically show diffuse and strong...
expression of S100 protein, but they do not express melanoma-associated antigens such as MelanA and HMB45. There is rarely cytokeratin positivity, while INI1 is lost in up to two thirds of EMPNST. Inactivating somatic alterations of polycomb repressive complex 2 (PRC2) components Suz12 or Eed, which leads to trimethylation loss at lysine 27 of histone H3 (H3K27me3), are present in up to 90% of MPNST (including those which occur sporadically, as well as those associated with radiotherapy or NF1). Loss of H3K27me3 by immunohistochemistry is noted in about half of MPNST, but this is usually retained in EMPNST.

We describe an example of subcutaneous EMPNST of the thigh of a 25-year-old female, which showed diffuse S100 protein and SOX10 expression as well as loss of nuclear INI1. Because of the extreme rarity of this neoplasm, we illustrate how this can be mistaken for a variety of other epithelioid tumors at this site, with reference to the differential diagnosis.

Case report

The tumor presented as a mass in the right thigh of a 25-year-old female, who had noticed it for approximately 18 months prior to presentation. The patient had sensations of tingling along the leg when the lesion was knocked, but was otherwise asymptomatic and had no relevant past medical or family history. On examination, this was a small mobile, circumscribed subcutaneous mass and was clinically suspected to be a schwannoma arising from one of the cutaneous nerves supplying sensation to the lateral aspect of the thigh. No other lesions were present, and clinical examination, which included thorough examination for stigmata of NF1, and assessment of nodal status, was otherwise normal. Magnetic resonance imaging showed a solid, well-circumscribed, smoothly contoured ovoid mass measuring 21 mm × 11 mm × 11 mm in maximum diameter, present anteriorly to the quadriceps compartment of the right thigh at the junction of the biceps femoris and vastus lateralis, and suggesting a neurogenic tumor.

The tumor was diagnosed initially on core biopsy, with subsequent excision. The morphological findings in both the biopsy and the resection specimen were similar (Figure 1). Macroscopically the tumor measured 20 mm in maximum dimension and was located within subcutaneous fat. The tumor had a homogeneous, yellowish, myxoid cut surface. Microscopically the tumor was thinly encapsulated and lobulated (Figure 1(a)) and of variable cellularity (Figure 1(b and c)), and was composed of patternless distributions of slender spindle cells with minimally to mildly atypical vesicular nuclei and long cytoplasmic processes within delicately collagenous to focally myxoid stroma (Figure 1(a–c)), intermingled with more cellular nodules of plump, polygonal cells with moderately pleomorphic vesicular nuclei with prominent eosinophilic nucleoli and irregular chromatin, with moderate to abundant amounts of eosinophilic cytoplasm (Figures 1(b and c)). The mitotic index was up to 2 per 10 high power fields (hpf) including markedly abnormal forms (Figure 1(c)). No lymphovascular invasion or necrosis was seen.

Immunohistochemically, the tumor was diffusely and strongly positive for S100 protein (Figure 1(d)), SOX10 (Figure 1(e)), D2-40, CD56 and glial fibrillary acidic protein in both the epithelioid and spindle cell populations, with focal CD34 expression. Epithelial membrane antigen (EMA) highlighted perineurial cells in the surrounding capsule, with some cytoplasmic expression in the epithelioid cells. There was complete loss of nuclear INI1 expression in the epithelioid cells (Figure 1(f)), although the spindle cells around the nodules of epithelioid cells retained INI1. The tumor was negative for HMB45, MelanA, smooth muscle actin, desmin, AE1/AE3, CD79a, CD45, and CD30. The features were of epithelioid malignant peripheral nerve sheath tumor. The tumor was excised with a thin fibrous capsule. In view of the size of the tumor, superficial location and low mitotic index, no adjuvant therapy was administered. The patient remains well, with no evidence of local recurrence or metastatic disease 20 months after excision of the neoplasm, but remains under six-monthly clinical follow-up.

Discussion

Although currently there are no specific histologic criteria to determine malignancy in epithelioid peripheral nerve sheath tumors, the present case had unequivocal malignant features, with marked cytological pleomorphism and atypical mitoses. One point of interest here is that although the epithelioid cells within this neoplasm were negative for INI1 immunohistochemically, the background slender spindle cells retained expression in nuclei. Both subsets of cell within the neoplasm were strongly S100 protein and SOX10 positive, confirming their Schwannian nature. This suggests that there are two different clones of cells within the tumor, one that appears cytologically benign and similar to the cells of a schwannoma, and another that appears cytologically malignant, that is, that this EMPNST is potentially arising within a schwannoma. It also suggests that loss of particular genetic material containing the SMARCB1 (INI1) gene at 22q11.2, a negative cell cycle regulator and tumor suppressor gene, may be involved in tumorigenesis.

The main differential diagnoses for EMPNST are carcinoma, myoepithelial carcinoma, melanoma, myxofibrosarcoma, epithelioid sarcoma and epithelioid schwannoma. Carcinoma, epithelioid sarcoma and melanoma can be distinguished readily using a simple immunohistochemistry panel for cytokeratins, S100 protein, MelanA and HMB45. Carcinomas and epithelioid sarcomas will be cytokeratin positive and S100 protein negative, in contrast to EMPNST. Melanomas are likely to express MelanA
and/or HMB45 in addition to S100 protein. It is rare for melanomas to only be MelanA and HMB45 positive without the expression of S100 protein, and it would be even more unusual to encounter such an entity as a metastasis without also having a history of melanoma with that immunophenotype. Myxofibrosarcoma with an epithelioid morphology is more likely to occur in the elderly, will be S100 protein-negative and should have areas with a more typical morphology: curvilinear vessels and sometimes vacuolated fibroblasts. Myoepithelial carcinoma may be more difficult to distinguish from EMPNST because it is also typically S100 protein-positive (at least focally), and may also be INI1 negative. However, myoepithelial carcinoma should also display some cytokeratin and EMA positivity, in addition to expression of smooth muscle markers. Epithelioid sarcoma typically shows strong cytokeratin expression with about 50% also showing strong CD34 positivity.

Once these differential diagnoses are excluded, a distinction between epithelioid schwannoma and EMPNST must be made. This is generally made by assessing the degree and extent of the cytological atypia, the nature of the mitoses

Figure 1. Epithelioid malignant peripheral nerve sheath tumor (EMPNST). The tumor is seen to be encapsulated and lobulated (a), and is of variable cellularity (a–c). It is composed of patternless distributions of slender spindle cells with minimally to mildly atypical vesicular nuclei and long cytoplasmic processes (a) within delicately collagenous (a) to focally myxoid stroma (c). There are also highly cellular nodules of plump, polygonal cells with moderately pleomorphic vesicular nuclei with prominent eosinophilic nucleoli and irregular chromatin, with moderate to abundant amounts of eosinophilic cytoplasm (b and c). Atypical mitotic figures can be seen (c). Immunohistochemically, the tumor shows diffuse, strong positivity for S100 protein (d), which is typical of EMPNST. The tumor also shows diffuse and strong nuclear expression of SOX10 (e). There is complete loss of nuclear INI1 expression in the epithelioid cells (f), in contrast to the interspersed small lymphocytes, which show nuclear retention of INI1.
in the tumor and the presence or absence of necrosis. However, it has been reported that epithelioid schwannomas can have worrying nuclear atypia, as well as a relatively high mitotic count (up to nine mitoses per 10 hpf), and these have been referred to as “atypical variants.” Therefore only atypical mitoses and necrosis can be safely used as absolute criteria for malignancy. More caution would need to be exercised when using the more subjective criteria of “extreme anaplasia,” or when using a mitotic count of more than 10 mitoses per 10 hpf, as the upper limit of benign but mitotically active epithelioid schwannomas is still based on a limited number of cases.

The mainstay of management of localized EMPNST remains complete surgical resection with or without neoadjuvant/adjuvant radiation. The role of chemotherapy in the management of localized disease remains to be defined. A number of systemic therapies can be considered for advanced/metastatic EMPNST, but the evidence base is limited. The fact that a proportion of these tumors have INI1 loss suggests that patients should be recruited into trials of EZH2 inhibitors.

In summary, EMPNST is a rare soft tissue tumor and may be under reported. These tumors have immunohistochemical overlap with a number of other malignancies, which also makes the diagnosis challenging. Greater collaboration is required to define the underlying biology of EMPNST and explore potential novel therapies.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Khin Thway https://orcid.org/0000-0001-9727-8030

References
1. Jo VY and Fletcher CD. Epithelioid malignant peripheral nerve sheath tumor: clinicopathologic analysis of 63 cases. Am J Surg Pathol 2015; 39(5): 673–682.
2. McMenamin ME and Fletcher CD. Expanding the spectrum of malignant change in schwannomas: epithelioid malignant change, epithelioid malignant peripheral nerve sheath tumor, and epithelioid angiosarcoma: a study of 17 cases. Am J Surg Pathol 2001; 25(1): 13–25.
3. Carter JM, O’Hara C, Dundas G, et al. Epithelioid malignant peripheral nerve sheath tumor arising in a schwannoma, in a patient with “neuroblastoma-like” schwannomatosis and a novel germline SMARCB1 mutation. Am J Surg Pathol 2012; 36(1): 154–160.
4. Laskin WB, Weiss SW and Bratthauer GL. Epithelioid variant of malignant peripheral nerve sheath tumor (malignant epithelioid schwannoma). Am J Surg Pathol 1991; 15(12): 1136–1145.
5. Allison KH, Patel RM, Goldblum JR, et al. Superficial malignant peripheral nerve sheath tumor: a rare and challenging diagnosis. Am J Clin Pathol 2005; 124(5): 685–692.
6. Hollmann TJ and Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol 2011; 35(10): e47–e63.
7. Lee W, Teckie S, Wiesner T, et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet 2014; 46(11): 1227–1232.
8. De Raedt T, Beert E, Pasmant E, et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature 2014; 514: 247–251.
9. Schaef er IM, Fletcher CD and Homick JL. Loss of H3K27 tri-methylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol 2016; 29(1): 4–13.
10. Prieto-Granada CN, Wiesner T, Messina JL, et al. Loss of H3K27me3 expression is a highly sensitive marker for sporadic and radiation-induced MPNST. Am J Surg Pathol 2016; 40(4): 479–489.
11. Cleven AH, Sannaa GA, Briaire-de Bruijn I, et al. Loss of hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene 2002; 21(42): 6403–6412.
12. Isakoff MS, Sansam CG, Tamayo P, et al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci USA 2005; 102(49): 17745–17750.
13. Versteeg I, Medjkane S, Rouillard D, et al. A key role of the Snf5 tumor suppressor in the control of the G1-S transition of the cell cycle. Oncogene 2002; 21(42): 6403–6412.
14. Hornick JL and Fletcher CD. Myoepithelial tumors of soft tissue: a clinicopathologic and immunohistochemical study of 101 cases with evaluation of prognostic parameters. Am J Surg Pathol 2003; 27(9): 1183–1196.
15. Thway K and Fisher C. Myoepithelial tumor of soft tissue: histology and genetics of an evolving entity. Adv Anat Pathol 2014; 21(6): 411–419.
16. Thway K, Jones RL, Noujaim J, et al. Epithelioid sarcoma: diagnostic features and genetics. Adv Anat Pathol 2016; 23(1): 41–49.
17. Fisher C, Chappell ME and Weiss SW. Neuroblastoma-like epithelioid schwannoma. Histopathology 1995; 26: 193–194.
18. Hart J, Gardner JM, Edgar M, et al. Epithelioid schwannomas: an analysis of 58 cases including atypical variants. Am J Surg Pathol 2016; 40(5): 704–713.