ON BIFURCATION AND LOCAL RIGIDITY
OF TRIPLY PERIODIC MINIMAL SURFACES IN \mathbb{R}^3

M. KOISO, P. PICCIONE, AND T. SHODA

Abstract. We use bifurcation theory to determine the existence of infinitely many new examples of triply periodic minimal surfaces in \mathbb{R}^3. These new examples form branches issuing from the H-family, the rPD-family, the tP-family, and the tD-family, that converge to some degenerate embedding of the families. As to nondegenerate triply periodic minimal surfaces, we prove a perturbation result using an equivariant implicit function theorem.

1. Introduction

Construction of examples and classification of triply periodic minimal surfaces in \mathbb{R}^3 constitute a very active field of research in Differential Geometry. Such surfaces correspond, via universal covering, to minimal embeddings of closed orientable surfaces into a flat torus \mathbb{T}^3. As originally conjectured by Meeks, see [18], it is known that every closed surface of genus greater than or equal to 3 admits a minimal embedding in a flat torus, see [24]. Interestingly enough, triply periodic minimal surfaces appear naturally in several applied sciences, including physics, chemistry, and crystallography, see for instance [2, 7, 8, 22]. G. E. Schröder-Turk, A. Fogden, and S. T. Hyde [9] studied one-parameter families of triply periodic minimal surfaces in \mathbb{R}^3. These families which are called H-family, rPD-family, tP-family, tD-family, and tCLP-family, contain many classical examples (Schwarz P-surface, Schwarz D-surface, Schwarz H-surface, and Schwarz CLP-surface).

The purpose of this paper is to give an abstract proof of the existence of infinitely many new examples of triply periodic minimal embeddings of a closed orientable surface Σ of genus 3 into some flat 3-torus (Theorems A and 5.4), using perturbation techniques, and in particular bifurcation theory.

Date: July 27th, 2014.

2010 Mathematics Subject Classification. Primary: 53A10, 58J55, 58E12; Secondary: 35J62.

Key words and phrases. triply periodic minimal surfaces, H-family, rPD-family, tP-family, tD-family, tCLP-family, bifurcation theory.

The first author is partially supported by Grant-in-Aid for Scientific Research (B) No. 25287012 of the Japan Society for the Promotion of Science, and the Kyushu University Interdisciplinary Programs in Education and Projects in Research Development. The second author is partially supported by Fapesp and CNPq, Brazil. The third author is partially supported by JSPS Grant-in-Aid for Young Scientists (B) 24740047.
The way to a development of a bifurcation theory in this context was paved by some recent numerical results of N. Ejiri and T. Shoda, see [6], who use a finite dimensional approach to compute the nullity and the Morse index for the above families of minimal embeddings.

Let us describe more precisely the result discussed in this paper. Given a one-parameter family \(\alpha_0 - \varepsilon, \alpha_0 + \varepsilon \) \(\ni \alpha \mapsto g_\alpha \) of (unit volume) flat metrics in \(T^3 \), and a one-parameter family \(\alpha \mapsto x_\alpha \) of \(g_\alpha \)-minimal embeddings \(x_\alpha : \Sigma \to T^3 \), then a bifurcating branch of minimal embeddings converging to \(x_{\alpha_0} \) for the family \((x_\alpha)_{\alpha} \) consists of:

- a sequence \(\alpha_n \) tending to \(\alpha_0 \) as \(n \to \infty \);
- a sequence \(x_n : \Sigma \to T^3 \) of embeddings, where \(x_n \) is \(g_{\alpha_n} \)-minimal for all \(n \), such that
 i. \(\lim_{n \to \infty} x_n = x_{\alpha_0} \) in some suitable \(C^k \)-topology, with \(k \geq 2 \);
 ii. \(x_n \) is not congruent to \(x_{\alpha_n} \) for all \(n \).

Let us also recall that two embeddings \(y_1, y_2 : \Sigma \to T^3 \) are congruent if one is obtained from the other by a change of parameterization of \(\Sigma \) and by a translation of \(T^3 \), i.e., if there exists a diffeomorphism \(\psi \) of \(\Sigma \) and \(t \in T^3 \) such that \(y_1 = y_2 \circ \psi + t \).

In the situation above, we say that \(\alpha_0 \) is a bifurcation instant for the family \((x_\alpha)_{\alpha} \). An important related notion is that of local rigidity for a family of minimal embeddings, which will be discussed in Section 3, based on the notion of equivariant nondegeneracy, see Definition 3.2.

We will recall in Section 3 the definitions of the H-family, the rPD-family, the tP-family, the tD-family and the tCLP-family of triply periodic minimal embeddings. The precise statement of the main result proved in the present paper is the following:

Theorem A. There is one bifurcation instant for the H-family, and two bifurcation instants for the rPD-family, the tP-family, and the tD-family.

Estimates of the above bifurcation instants are obtained using the numerical results of [6]. The proof of Theorem A is based on some techniques of equivariant bifurcation theory (see Theorem 5.4), and it also employs some recent results obtained in [6] for the computation of Morse index and nullity of minimal embeddings in the above families.

A few remarks on our proof are in order.

The first important issue is the question of degeneracy of the minimal embeddings in the above families, caused by the symmetries of the ambient space \(T^3 \). Every minimal embedding admits a three dimensional space of (non trivial) Jacobi fields, coming from the Killing fields of the ambient, which implies that each one of the embeddings is a degenerate critical point of the area functional. Recall that standard variational bifurcation assumptions require nondegeneracy at the endpoints of the path, which fails to hold in this situation. The central technical part of the paper consists in the
construction of an alternative functional framework, suitable to handle such degenerate situation. To this aim, we use an idea originally introduced by Kapouleas to prove an implicit function theorem for constant mean curvature embeddings, which consists in considering a “perturbed” mean curvature function \tilde{H} of an embedding, see Section 2.2 for details. Such a function vanishes identically exactly at minimal embeddings (Proposition 2.1), nevertheless maintains its differential surjective at possibly degenerate minimal embeddings, provided that the degeneracy arises exclusively from the ambient symmetries (Proposition 4.1). We call equivariantly nondegenerate a minimal embedding along which every Jacobi field arises from a Killing field of the ambient space. A direct application of an equivariant implicit function theorem to the equation $\tilde{H} = 0$ gives a local rigidity result for each of the above families of minimal embeddings in neighborhoods of equivariantly nondegenerate embeddings (Theorem 3.3). As a corollary of Theorem 3.3 we prove the following:

Theorem B. Every minimal surface in the tCLP-family, as well as any surfaces in the H-family, the tP-family, the tD-family, and the rPD-family whose nullity is equal to 3, belongs to a (unique up to homotheties) smooth locally rigid 5-parameter family of pairwise non-homothetic triply periodic minimal surfaces.

1.1. **Remark.** It is interesting to observe that W. Meeks proved in [18, Theorem 7.1] that every triply periodic minimal surface of genus 3 for which the ramified values of the Gauss map consist of 4 antipodal pairs in the 2-sphere, belongs to a real 5-dimensional family of triply periodic minimal surfaces of genus 3. Every surface in the tCLP-family, the tP-family, the tD-family, and the rPD family belongs to the class of surfaces to which [18, Theorem 7.1] applies. Thus, for each surface $x_0 : \Sigma \to \mathbb{T}^3$ with nullity three in these families, the 5-parameter family of triply periodic minimal surfaces that contains x_0 given in Theorem B coincides with Meeks’ family. For these examples, the new information provided by our results, besides a different approach to the proof, is the local rigidity property of these families around surfaces with nullity equal to 3, and the lack of local rigidity around surfaces with nullity larger than 3.

1.2. **Remark.** The existence of a 5-parameter family of triply periodic minimal surfaces containing a given one is obtained in Theorem 3.3 more generally, near each embedded triply periodic minimal surface with genus greater than one and with nullity equal to three. The classical example of Schoen’s gyroid does not satisfy the assumptions of [18, Theorem 7.1] (see [18, Remark 7.2]). However, since it belongs to the associate family of P and D-surfaces (Example 6.6), it has nullity equal to 3, and Theorem 3.3 applies in this situation.
Theorem C. Schoen’s gyroid belongs to a (unique up to homotheties) smooth locally rigid 5-parameter family of pairwise non-homothetic triply periodic minimal surfaces.

We remark that the existence of a family of deformations for the triply periodic minimal surfaces considered in Theorem B and Theorem C above can also be deduced from Ejiri’s results in [5]. Actually, while we obtain the results via an equivariant implicit function theorem, [5] uses a different approach, and it gives a more explicit description of the deformation space.

As an undesired drawback in our bifurcation setup, we need to observe that the PDE:

$$\tilde{H} = 0,$$

defined in the space of “unparameterized embeddings” of Σ into T^3, is not variational, i.e., it is not the Euler–Lagrange equation of some variational problem (recall that the standard mean curvature function is the gradient of the area functional). This entails that, in order to carry out our project, we have to resort to more general bifurcation theory for Fredholm operators (see Appendix A.2), which provides results somewhat weaker than variational bifurcation theorems. More specifically, rather than the classical “jump of Morse index” assumption, in the non variational case one has to postulate the less general (and intuitive) “odd crossing number” condition for the eigenvalues of the linearized problem. In particular, we can only infer the existence of bifurcating branches at those instants at which the jump of the Morse index is an odd integer, leaving undecided the existence of a bifurcating branch at a certain degeneracy instant ($a_1 \approx 0.71479$) for the H-family, where the jump of Morse index is equal to 2, see Section 6.

After establishing our general bifurcation result for minimal embeddings into flat 3-tori (Theorem 5.4), a proof of Theorem A is obtained readily (Section 6) by applying the results of [6], where the nullity and the Morse index of the minimal embeddings in the given families are computed.

In Section 7, we will present an analysis of the type of bifurcation occurring at the bifurcation instants determined in Theorem A. We will show that for the H-family, the degeneracy instant corresponds to a transcritical bifurcation, which does not produce essentially new triply periodic minimal surfaces. This is due to the fact that, around the degenerate instant where bifurcation occurs, the homothety class of the flat metric on the torus does not depend bijectively on the parameter of the family, see Remark 5.2. The same situation occurs at one of the two bifurcation instants of the families rPD, tP and tD. On the other hand, the second bifurcation instant of each of these three families is genuine, in the sense that the bifurcation branch that issues from these instants consists of triply periodic minimal surfaces that are not homothetic to any other member of the family.

As a final remark, we would like to observe that a full-fledged bifurcation theory for triply periodic minimal surfaces in \mathbb{R}^3 will require a further
development of the results exposed here. In first place, it would be interesting to extend the existence result to degeneracy instants corresponding to even jumps of the Morse index, which is very likely a matter of applying finer bifurcation results. The second point would be to study the topology of the bifurcating branches, like connectedness, cardinality, regularity, etc., which ultimately depends on the behavior of the eigenvalues of the Jacobi operator near zero (derivative, transversal crossing). An important question to assess is establishing the pitchfork picture of the bifurcation set, and the stability/instability of minimal surfaces in the bifurcating branches. Note that a triply periodic minimal surface that divides \mathbb{T}^3 into two parts is said to be stable if the second variation of the area is nonnegative for all volume-preserving variations as a compact surface in \mathbb{T}^3 with the corresponding metric. Here, by volume it is meant the volume of each part of \mathbb{T}^3 divided by the surface. For instance, the Schwarz P and D surfaces and Schoen’s gyroid are stable (Ross [21]).

Finally, it would be very interesting to study the geometry of the new triply periodic minimal surfaces in the bifurcating branches issuing from the genuine bifurcation instants along the rPD, the tP and the tD family. These topics constitute the subject of an ongoing research project by the authors.

Acknowledgement: Most of the pictures of surfaces in this paper were originally drawn by Professor Shoichi Fujimori (Okayama University, Japan). The authors express their gratitude to him.

2. The functional setup

2.1. Notations and terminology. We will denote by Λ a generic lattice in \mathbb{R}^3. The quotient \mathbb{R}^3/Λ is diffeomorphic to the 3-torus \mathbb{T}^3, the quotient map $\mathbb{R}^3 \to \mathbb{R}^3/\Lambda$ will be denoted by π_Λ and the induced flat metric will be denoted by g_Λ. The identity connected component of the isometry group of $(\mathbb{R}^3/\Lambda, g_\Lambda)$ consists of translations $t \mapsto t + t_0$, $t, t_0 \in \mathbb{R}^3/\Lambda$.

The symbol $\mathcal{T}(\mathbb{T}^3)$ will denote the set of flat metrics on \mathbb{T}^3 modulo isometries, or, equivalently, the set of isometry classes of lattices of \mathbb{R}^3. The isometry class of a flat metric g will be denoted by $[g]$, and the isometry class of a lattice Λ will be denoted by $[\Lambda]$. The volume of a lattice Λ is the volume of the metric g_Λ; by $\mathcal{T}_1(\mathbb{T}^3)$ we will denote the isometry classes of unit volume lattices of \mathbb{R}^3.

Let Σ be a closed surface; in our main applications, Σ will be a closed orientable surface of genus 3. For $k \in \mathbb{N} \cup \{0\}$ and $\alpha \in [0,1]$, the symbol $C^{k,\alpha}(\Sigma)$ will denote the Banach space of $C^{k,\alpha}$ real functions on Σ.

1We have a surjective map from $\text{GL}(3) = \text{GL}(3, \mathbb{R})$ to the set of lattices of \mathbb{R}^3: given $A \in \text{GL}(3)$, one associates the lattice $\Lambda_A = \text{span}_\mathbb{Z}(Ae_1, Ae_2, Ae_3)$, where e_1, e_2, e_3 is the canonical basis of \mathbb{R}^3. Given $A, A' \in \text{GL}(3)$, then the lattices Λ_A and $\Lambda_{A'}$ are isometric if and only if there exists $U \in O(3)$ such that $A' = UA$. Thus, $\mathcal{T}(\mathbb{T}^3)$ is identified with the quotient space $O(3)\backslash \text{GL}(3)$. This is a 6-dimensional manifold; the set $\mathcal{T}_1(\mathbb{T}^3)$ of isometry classes of lattices having volume 1 has dimension equal to 5.
Let \(\Lambda_0 \) be a fixed lattice of \(\mathbb{R}^3 \), \(g_0 = g_{\Lambda_0} \) be the corresponding flat metric on \(T^3 \), and let us assume that \(x_0 : \Sigma \rightarrow T^3 \) is a fixed \(g_0 \)-minimal embedding, which is transversally oriented. Given \([\Lambda]\) sufficiently close to \([\Lambda_0]\) and \(\varphi \in C^{2,\alpha} \) near 0, let us denote by \(x_{\varphi,\Lambda}: \Sigma \rightarrow T^3 \) the embedding:

\[
x_{\varphi,\Lambda}(p) = \exp^{g_{\Lambda}}_{x_0(p)} \left(\varphi(p) \cdot \tilde{n}_{x_0(p)}^{g_{\Lambda}} \right), \quad p \in \Sigma,
\]

where \(\exp^{g_{\Lambda}} \) is the exponential map of the metric \(g_{\Lambda} \), and \(\tilde{n}_{x_0}^{g_{\Lambda}} \) is the positively oriented \(g_{\Lambda} \)-unit normal vector along \(x_0 \). It is well known that, for \(\Lambda \) fixed, the map \(\varphi \mapsto x_{\varphi,\Lambda} \) gives a bijection between a neighborhood of 0 in \(C^{2,\alpha}(\Sigma) \) and a neighborhood of \(x_0 \) in the space of unparameterized embeddings (i.e., embeddings modulo reparameterizations) of \(\Sigma \) into \(T^3 \). Details of this construction can be found, for instance, in reference [11].

Finally, for fixed \(\Lambda \) and \(i = 1, 2, 3 \), set \(K_i^{\Lambda} = (\pi_{\Lambda})_*(e_i) \), where \(\{e_1, e_2, e_3\} \) is the canonical basis of \(\mathbb{R}^3 \). The \(K_i^{\Lambda}, i = 1, 2, 3 \), form a basis of Killing vector fields of \((T^3, g_{\Lambda})\). For \(\varphi \in C^{2,\alpha} \) near 0 and \(i = 1, 2, 3 \), define \(f_i^{\varphi,\Lambda}: \Sigma \rightarrow \mathbb{R} \) by:

\[
f_i^{\varphi,\Lambda} = g_{\Lambda}(K_i^{\Lambda}, \tilde{n}_{x_{\varphi,\Lambda}}^{g_{\Lambda}}).
\]

Here, \(\tilde{n}_{x_{\varphi,\Lambda}}^{g_{\Lambda}} \) denotes the \(g_{\Lambda} \)-unit normal field along the embedding \(x_{\varphi,\Lambda} \). We will also denote by \(K_i^{\varphi,\Lambda} \) the vector fields on \(\Sigma \) obtained by \(g_{\Lambda} \)-orthogonal projection to \(x_{\varphi,\Lambda} \) of \(K_i^{\Lambda} \):

\[
K_i^{\varphi,\Lambda} = K_i^{\Lambda} - f_i^{\varphi,\Lambda} \cdot \tilde{n}_{x_{\varphi,\Lambda}}^{g_{\Lambda}}.
\]

2.2. The functional framework. Given \([\Lambda] \in \mathcal{T}(T^3)\) and an embedding \(x: \Sigma \rightarrow T^3 \), let us denote by \(\tilde{\mathcal{H}}^{\Lambda}(x): \Sigma \rightarrow \mathbb{R} \) the mean curvature function of the embedding \(x \) relative to the metric \(g_{\Lambda} \). Let us consider the function:

\[
\tilde{\mathcal{H}}: \Omega_0 \times \mathbb{R}^3 \times \mathcal{U}_0 \rightarrow C^{0,\alpha}(\Sigma),
\]

where \(\Omega_0 \) is a neighborhood of 0 in the Banach space \(C^{2,\alpha}(\Sigma) \) and \(\mathcal{U}_0 \) is a neighborhood of \([\Lambda_0]\) in \(\mathcal{T}(T^3) \), defined by:

\[
\tilde{\mathcal{H}}(\varphi, a_1, a_2, a_3, [\Lambda]) = \mathcal{H}^{\Lambda}(x_{\varphi,\Lambda}) + \sum_{i=1}^{3} a_i f_i^{\varphi,\Lambda}.
\]

For \([\Lambda] \in \mathcal{T}(T^3)\), we will also use the notation:

\[
\tilde{\mathcal{H}}^{\Lambda}: \Omega_0 \times \mathbb{R}^3 \rightarrow C^{0,\alpha}(\Sigma)
\]

for the map:

\[
\tilde{\mathcal{H}}^{\Lambda}(\varphi, a_1, a_2, a_3) = \tilde{\mathcal{H}}(\varphi, a_1, a_2, a_3, [\Lambda]).
\]

The following result is based on an idea of N. Kapouleas [10, 11], which was then also employed by R. Mazzeo, F. Pacard and D. Pollack [16], R. Mazzeo and F. Pacard [17], B. White [25, §3], J. Pérez and A. Ros [20, Thm 6.7], and, finally in Reference [3]. Let 0 denote the zero function on \(\Sigma \).
Proposition 2.1. Assume that the functions \(f_i^{0, \Lambda_0}, \ i = 1, 2, 3, \) are linearly independent\(^2\). Then, for sufficiently small neighborhoods \(\mathcal{U}_0 \) and \(\mathcal{V}_0 \):

\[
\tilde{\mathcal{H}}^{-1}(0) = \left\{ (\varphi, 0, 0, 0, [\Lambda]) : \ x_{\varphi, \Lambda} \text{ is } g_{\Lambda}\text{-minimal} \right\}.
\]

Proof. First, we choose \(\mathcal{U}_0 \) and \(\mathcal{V}_0 \) small enough so that the functions \(f_i^{\varphi, \Lambda}, \ i = 1, 2, 3, \) are linearly independent for all \((\varphi, \Lambda) \in \mathcal{U}_0 \times \mathcal{V}_0 \). Now, let \((\varphi, a_1, a_2, 3, \Lambda) \) be such that:

\[
\mathcal{H}^\Lambda(x_{\varphi, \Lambda}) + \sum_{i=1}^{3} a_i f_i^{\varphi, \Lambda} = 0.
\]

In order to prove (4), we need to show that from the above equality it follows \(a_1 = a_2 = a_3 = 0 \). Multiplying both sides of the above equality by \(\sum_{i=1}^{3} a_i f_i^{\varphi, \Lambda} \) we get:

\[
\mathcal{H}^\Lambda(x_{\varphi, \Lambda}) \sum_{i=1}^{3} a_i f_i^{\varphi, \Lambda} + \left(\sum_{i=1}^{3} a_i f_i^{\varphi, \Lambda} \right)^2 = 0.
\]

We claim that for all \(i = 1, 2, 3 \) we have:

\[
\int_{\Sigma} \mathcal{H}^\Lambda(x_{\varphi, \Lambda}) f_i^{\varphi, \Lambda} d\Sigma_{\varphi, \Lambda} = 0,
\]

where \(d\Sigma_{\varphi, \Lambda} \) is the volume element of the pull-back by \(x_{\varphi, \Lambda} \) of \(g_{\Lambda} \). This follows from Stokes' Theorem, observing that:

\[
\mathcal{H}^\Lambda(x_{\varphi, \Lambda}) f_i^{\varphi, \Lambda} = \text{div}(K_i^{\varphi, \Lambda}),
\]

where the \(K_i^{\varphi, \Lambda} \)'s are defined in (1), see Lemma A.1. Using (5) and (6) we get:

\[
\int_{\Sigma} \left(\sum_{i=1}^{3} a_i f_i^{\varphi, \Lambda} \right)^2 d\Sigma_{\varphi, \Lambda} = 0,
\]

which gives \(\sum_{i=1}^{3} a_i f_i^{\varphi, \Lambda} = 0 \). Since the \(f_i^{\varphi, \Lambda} \)'s are linearly independent, we obtain \(a_1 = a_2 = a_3 = 0 \), which proves our result. \(\square \)

3. Local rigidity

Fix \([\Lambda] \in \mathcal{T}(\mathbb{T}^3) \); two embeddings \(x_1, x_2 : \Sigma \to \mathbb{R}^3/\Lambda \) will be called \(\Lambda\text{-congruent} \) if there exists a diffeomorphism \(\psi : \Sigma \to \Sigma \) and an element \(t_0 \in \mathbb{R}^3/\Lambda \) such that \(x_2 = t_0 + (x_1 \circ \psi) \). Observe that of \(x_1 \) and \(x_2 \) are \(\Lambda\text{-congruent}, \) then also \(x_2 \) is \(g_{\Lambda}\text{-minimal}. \)

Let \(\mathcal{V} \) be a neighborhood of \([\Lambda_0] \) in \(\mathcal{T}(\mathbb{T}^3) \), and let \(\mathcal{V} \ni [\Lambda] \mapsto \varphi_{\Lambda} \in \mathcal{U}_0 \) be a continuous map such that \(x_{\varphi_{\Lambda}, \Lambda} \) is \(g_{\Lambda}\text{-minimal} \) for all \([\Lambda] \in \mathcal{V}. \)

\(^2\)The linear independence assumption is always satisfied when the genus of \(\Sigma \) is greater than 1, see Remark 5.5.
Definition 3.1. The family of minimal embeddings \(\{ x_{\varphi, \Lambda} \} \) is said to be locally rigid at \(\Lambda_0 \) if for every \([\Lambda] \in \mathcal{W} \) and every \(g_{\Lambda} \)-minimal embedding \(y: \Sigma \to T^3 \) sufficiently close to \(x_\varphi \), \(y \) is \(\Lambda \)-congruent to \(x_{\varphi, \Lambda} \).

In order to formulate a rigidity criterion, let us introduce a suitable notion of nondegeneracy for minimal embeddings in \((T^3, g_\Lambda)\).

Definition 3.2. Assume that \(x_{\varphi, \Lambda} \) is a \(g_\Lambda \)-minimal embedding, and let \(J_{\varphi, \Lambda}: C^{2, \alpha}(\Sigma) \to C^{0, \alpha}(\Sigma) \) denote its Jacobi operator. We say that \(x_{\varphi, \Lambda} \) is equivariantly nondegenerate if \(\ker(J_{\varphi, \Lambda}) = \text{span}\{ f_{\varphi, \Lambda}^1, f_{\varphi, \Lambda}^2, f_{\varphi, \Lambda}^3 \} \).

The span of \(\{ f_{\varphi, \Lambda}^1, f_{\varphi, \Lambda}^2, f_{\varphi, \Lambda}^3 \} \) is the space of the so-called Killing–Jacobi fields along \(x_{\varphi, \Lambda} \). Thus, an equivalent way of characterizing equivariant nondegeneracy is the fact that every Jacobi field along \(x_{\varphi, \Lambda} \) is a Killing–Jacobi field.

A direct application of the equivariant implicit function theorem proved in \([3]\) gives the following:

Theorem 3.3. Assume that the functions \(f_i^{\varphi, \Lambda_0} \), \(i = 1, 2, 3 \), are linearly independent\(^3\) and that \(x_\varphi \) is equivariantly nondegenerate. Then, there exists a smooth function \(\mathcal{W} \ni \Lambda \mapsto \varphi_\Lambda \in \mathcal{U}_0 \) defined in a neighborhood \(\mathcal{U} \) of \([\Lambda_0] \) in \(\mathcal{T}(T^3) \), such that:

(a) \(\Lambda_0 = \Lambda_0 \);
(b) \(x_{\varphi_\Lambda, \Lambda} \) is a minimal \(g_\Lambda \) embedding for all \([\Lambda] \in \mathcal{U} \);
(c) the family \(\{ x_{\varphi_\Lambda, \Lambda} \}_{[\Lambda] \in \mathcal{W}} \) is locally rigid at \(\Lambda_0 \).

Therefore, near \(x_\varphi \), all triply periodic minimal surfaces in \(\mathbb{R}^3 \) consist of six-parameter family of surfaces. If we restrict ourselves to the unit volume lattice, then, near \(x_\varphi \), all triply periodic minimal surfaces consist of a five-parameter family of pairwise non-homothetic surfaces.

Proof. (a) - (c) follows from \([3]\) Theorem 5.2. Then, we know the dimension of the space of triply periodic minimal surfaces near \(x_\varphi \) from the dimension of the isometry class in the flat 3-torus. \(\square \)

4. Linearization

In order to study the lack of local rigidity for a family of minimal \(g_\Lambda \)-embeddings, we study the linearization of the map \(\tilde{H}_\Lambda \), given in \((3)\), at one of its zeros, described in Proposition 2.1. Let \((\varphi, \Lambda) \in \mathcal{U}_0 \times \mathcal{W}_0 \) be such that \(\tilde{H}_\Lambda(\varphi, 0, 0, 0) = 0 \). Let us denote by:

\[
T_{\varphi, \Lambda}: C^{2, \alpha}(\Sigma) \times \mathbb{R}^3 \to C^{0, \alpha}(\Sigma)
\]

\(^3 \) is the elliptic operator on \(\Sigma \) given by \(\Delta_{\varphi, \Lambda} - \| S_{\varphi, \Lambda} \|^2 \), where \(\Delta_{\varphi, \Lambda} \) is the (positive) Laplacian of the pull-back of the metric \(g_\Lambda \) by \(x_{\varphi, \Lambda} \), \(S_{\varphi, \Lambda} \) is the second fundamental form of \(x_{\varphi, \Lambda} \), and \(\| \cdot \| \) is the Hilbert–Schmidt norm.

\(^4 \) holds without the linear independence assumption, with suitable modifications of the function \(\tilde{H} \) in \((3)\). However, we observe that such assumption is always satisfied when the genus of \(\Sigma \) is greater than 1, see Remark 5.5.
the bounded linear operator:

\[T_{\varphi, \Lambda} = d\tilde{H}_\Lambda(\varphi, 0, 0, 0). \]

Proposition 4.1. The operator \(T_{\varphi, \Lambda} \) is given by:

\[T_{\varphi, \Lambda}(\psi, b_1, b_2, b_3) = J_{x_{\varphi, \Lambda}}(\psi) + \sum_{i=1}^{3} b_i f_i^{\varphi, \Lambda}, \]

for all \((\psi, b_1, b_2, b_3) \in C^{2, \alpha}(\Sigma) \times \mathbb{R}^3\), where \(J_{x_{\varphi, \Lambda}} \) is the Jacobi operator of the \(g_{\Lambda} \)-minimal embedding \(x_{\varphi, \Lambda} \). This is a Fredholm operator of index equal to 3. If the \(f_i^{\varphi, \Lambda} \)'s are linearly independent, then \(T_{\varphi, \Lambda} \) is surjective if and only if \(x_{\varphi, \Lambda} \) is an equivariantly nondegenerate \(g_{\Lambda} \)-minimal embedding.

Proof. It is well known that the differential of the mean curvature map \(\varphi \mapsto \mathcal{H}(x_{\varphi, \Lambda}) \) at a minimal embedding is given by the Jacobi operator \(J_{x_{\varphi, \Lambda}} \). Equality (9) follows easily, observing that:

- the map \(\mathbb{R}^3 \ni (a_1, a_2, a_3) \mapsto \sum_{i=1}^{3} a_i f_i^{\varphi, \Lambda} \in C^{0, \alpha}(\Sigma) \) is linear;
- the differential of the map \(\varphi \mapsto f_i^{\varphi, \Lambda} \) is not involved in formula (9),

since \(d\tilde{H}_\Lambda \) is computed at \(a_1 = a_2 = a_3 = 0 \).

As to the Fredholmness, it is well known that \(J_{x_{\varphi, \Lambda}} : C^{2, \alpha}(\Sigma) \to C^{0, \alpha}(\Sigma) \) is Fredholm, and it has index 0 (it is an elliptic differential operator), and so the operator \(C^{2, \alpha}(\Sigma) \times \mathbb{R}^3 \ni (\psi, b_1, b_2, b_3) \mapsto J_{\varphi, \Lambda}(\psi) \in C^{0, \alpha}(\Sigma) \) is Fredholm of index 3. Clearly, \(T_{\varphi, \Lambda} \) is a finite rank perturbation of such operator, and therefore it is also a Fredholm operator of index 3.

As to the last statement, note that \(J_{\varphi, \Lambda} \) is symmetric with respect to the \(L^2 \)-pairing (using the volume element of \(g_{\Lambda} \)), and that its image is the \(L^2 \)-orthogonal of its (finite dimensional) kernel. Such kernel contains the span of the \(f_i^{\varphi, \Lambda} \)'s, and it is equal to this span when \(x_{\varphi, \Lambda} \) is equivariantly nondegenerate. Clearly:

\[\text{Range}(T_{\varphi, \Lambda}) = \text{Range}(J_{\varphi, \Lambda}) + \text{span}\{f_1^{\varphi, \Lambda}, f_2^{\varphi, \Lambda}, f_3^{\varphi, \Lambda}\}, \]

and the conclusion follows easily. \(\square \)

5. **Bifurcation**

Let us now assume that \([-\varepsilon, \varepsilon] \ni s \mapsto (\varphi_s, \Lambda(s)) \in \mathcal{U}_0 \times \mathcal{V}_0\) is a continuous map such that:

1. \(x_{\varphi_s, \Lambda(s)} \) is a \(g_{\Lambda(s)} \)-minimal embedding for all \(s \);
2. \(\varphi_0 = 0 \) and \(\Lambda(0) = \Lambda_0 \).

Definition 5.1. We say that \(s = 0 \) is a bifurcation instant for the path \(s \mapsto x_{\varphi_s, \Lambda(s)} \) if there exists a sequence \((s_n)_{n \in \mathbb{N}} \subseteq [-\varepsilon, \varepsilon]\) and a sequence \(x_n : \Sigma \to \mathbb{T}^3 \) of embeddings such that:

- \(\lim_{n \to \infty} s_n = 0 \) and \(\lim_{n \to \infty} x_n = x_0 \) (in the \(C^{2, \alpha} \)-topology);
- \(x_n \) is \(g_{\Lambda(s_n)} \)-minimal for all \(n \);
- \(x_n \) is not \(\Lambda(s_n) \)-congruent to \(x_{\varphi_s, \Lambda(s_n)} \) for all \(n \).
In particular, if $s = 0$ is a bifurcation instant, then no family $(x_{\varphi, \Lambda}, \Lambda) \in \mathcal{V}$ that contains the path $s \mapsto (\varphi_s, \Lambda_s)$ is locally rigid at Λ_0. Thus, by Theorem 3.3, bifurcation can occur at $s = 0$ only if x_0 is a Λ_0-minimal equivariantly degenerate embedding. In the situation above, the sequence x_n possibly belongs to a continuous set of minimal embeddings having larger cardinality, which is usually called the bifurcating branch issuing from $x_{\varphi_0, \Lambda_{(0)}}$, while the family $s \mapsto x_{\varphi_s, \Lambda_{(s)}}$ is called the trivial branch.

5.2. Remark. Let us observe that in the definition of bifurcation given above, it is not required that, near $s = 0$, the metrics g_{Λ_s} should be pairwise non homothetic. Under this additional hypothesis, a stronger conclusion about the bifurcation branch can be drawn. Namely, if the flat metrics g_{Λ_s} are pairwise non homothetic near $s = 0$, then every embedding x_n in the bifurcating branch is not homothetic to any of the minimal surfaces in the trivial branch.

The notion of Morse index is central in Bifurcation Theory. Let $x_{\varphi, \Lambda}$ be a g_{Λ}-minimal embedding.

Definition 5.3. The Morse index $i_{\text{Morse}}(\varphi, \Lambda)$ of $x_{\varphi, \Lambda}$ is the number of negative eigenvalues of the Jacobi operator $J_{\varphi, \Lambda}$, counted with multiplicity.

The number $i_{\text{Morse}}(\varphi, \Lambda)$ is in fact the Morse index of $x_{\varphi, \Lambda}$ as a critical point of the g_{Λ}-area functional defined in the space of embeddings of Σ into T^3. A sufficient condition for variational bifurcation is given in terms of jumps of the Morse index. Here we cannot employ directly variational techniques, in that our equation $\tilde{H} = 0$ is not variational, and we have to resort to a weaker bifurcation result for general Fredholm operators. This requires a certain parity change in the negative spectrum of the path of operators, which corresponds to an odd jump of the Morse index.

Theorem 5.4. Let $[-\varepsilon, \varepsilon] \ni s \mapsto (\varphi_s, \Lambda_{(s)}) \in \mathcal{U}_0 \times \mathcal{V}_0$ be a continuous map satisfying (i) and (ii) above. Assume the following:

(a) $x_{\varphi_s, \Lambda_{(s)}}$ is equivariantly nondegenerate for all $s \neq 0$;

(b) the functions f_{φ, Λ_s}^i, $i = 1, 2, 3$, are linearly independent;

(c) $i_{\text{Morse}}(\varphi_{-\varepsilon}, \Lambda_{(-\varepsilon)}) - i_{\text{Morse}}(\varphi_{\varepsilon}, \Lambda_{(\varepsilon)})$ is an odd integer.

Then, $s = 0$ is a bifurcation instant for the path $s \mapsto (\varphi_s, \Lambda_{(s)})$.

Proof. A precise statement of the bifurcation theorem employed in this proof is given in Appendix A, Section A.2. For the reader’s convenience, we will refer to the assumptions of this result throughout the proof.

By (a), the integer valued function $s \mapsto i_{\text{Morse}}(\varphi_s, \Lambda_{(-s)})$ is constant on $[-\varepsilon, 0]$ and on $[0, \varepsilon]$. Thus, we can choose arbitrarily small values of ε and reduce the size of \mathcal{U}_0 and \mathcal{V}_0 when needed, maintaining the validity of assumption (c).

First, by continuity, we can assume that the functions f_{φ, Λ_s}^i, $i = 1, 2, 3$, are linearly independent for all fixed $(\varphi, \Lambda) \in \mathcal{U}_0 \times \mathcal{V}_0$. Second, we
choose a codimension 3 closed subspace X of $C^{2,\alpha} (\Sigma)$ which is transversal to Y_0: $= \text{span}\{f_1^{\theta_1,\Lambda_0}, f_2^{\theta_2,\Lambda_0}, f_3^{\theta_3,\Lambda_0}\}$; for instance, X can be taken to be the L^2-orthogonal of Y_0 relatively to the volume element of g_{Λ_0}. Again, by continuity, we can assume that X is transversal to $Y_{\varphi,\Lambda} := \text{span}\{f_1^{\theta_1,\Lambda}, f_2^{\theta_2,\Lambda}, f_3^{\theta_3,\Lambda}\}$, for all $(\varphi, [\Lambda]) \in \mathcal{U}_0 \times \mathfrak{V}_0$.

For all Λ, the group $G_{\Lambda} = \mathbb{R}^3/\Lambda$ acts isometrically on (T^3, g_{Λ_0}) by translation, and this defines a smooth action on the set of embeddings of Σ into T^3. Passing to the quotient by the action of the diffeomorphism group of Σ, we have a continuous action on the set of unparameterized embeddings, and therefore a local action on the open set \mathcal{U}_0. The G_{Λ}-orbit of every smooth embedding, and in particular, of any minimal embedding, is a smooth submanifold of \mathcal{U}_0; details of the proof of this fact can be found in [1]. Note that the G_{Λ}-orbit of an (unparameterized) embedding φ is precisely the set of (unparameterized) embeddings that are Λ-congruent to φ. Given $[\Lambda] \in \mathfrak{V}_0$ and any smooth function $\varphi \in \mathcal{U}_0$, the tangent space at φ of the G_{Λ}-orbit of φ is exactly the 3-dimensional space $Y_{\varphi,\Lambda}$. By transversality, if \mathcal{U}_0 is small enough, we can assume that for every smooth $\varphi \in \mathcal{U}_0$, there is a unique intersection point φ^Λ between the orbit $G_{\Lambda} \cdot \varphi$ and $X \cap \mathcal{U}_0$. The path $s \mapsto \varphi^\Lambda_s$ is continuous, and up to replacing φ_s with φ^Λ_s, we can therefore assume that $\varphi_s \in X \cap \mathcal{U}_0$ for all s. This settles assumption (B) in Section A.2.

Finally, there is a correspondence between zeros of the function \tilde{H} in $\mathcal{U}_0 \times \mathbb{R}^3 \times \mathfrak{V}_0$, defined in [2], and its restriction to $(X \cap \mathcal{U}_0) \times \mathbb{R}^3 \times \mathfrak{V}_0$: if $(\varphi, [\Lambda]) \in \mathcal{U}_0 \times \mathfrak{V}_0$ is such that $\tilde{H}(\varphi, 0, 0, 0, \Lambda) = 0$, i.e., $x_{\varphi,\Lambda}$ is a (smooth) g_{Λ}-minimal embedding, then also $\tilde{H}(\varphi^\Lambda, 0, 0, 0, \Lambda) = 0$.

In conclusion, the argument above shows that Λ-congruence classes of g_{Λ}-minimal embeddings of Σ into T^3 are into 1-1 correspondence with zeros of the function \tilde{H} in $(X \cap \mathcal{U}_0) \times \mathbb{R}^3 \times \mathfrak{V}_0$. The aimed bifurcation result will then be proved in this context, and it will be obtained as a direct application of a classical bifurcation theorem for Fredholm operators, see [14], Theorem II.4.4, p. 212]. A precise statement of this theorem is recalled in Appendix A.2.

If $s \in [-\varepsilon, \varepsilon]$ is such that $\tilde{H}_{\Lambda_s}(\varphi_s, 0, 0, 0) = 0$, then the restriction of $T_s = d\tilde{H}_{\Lambda_s}(\varphi_s, 0, 0, 0)$ to $X \times \mathbb{R}^3$, denoted by T_s see [8], is a Fredholm operator of index 0, which settles assumption (C1) in Section A.2. This follows easily from Proposition 4.1, since X is transversal to Y_{φ_s,Λ_s}, which is a 3-dimensional subspace of $\text{Ker}(T_s)$. By the same argument, Proposition 4.1 says that x_{φ_s,Λ_s} is an equivariantly nondegenerate g_{Λ_s}-minimal embedding.

5Note that transversality, i.e., $X + Y_{\varphi,\Lambda} = C^{2,\alpha} (\Sigma)$, also implies $X \cap Y_{\varphi,\Lambda} = \{0\}$, by a dimension argument.

6More precisely, the definition of the local action of G_{Λ} on \mathcal{U}_0 is as follows. For $t \in \mathbb{R}^3/\Lambda$ close to 0, and $\varphi \in \mathcal{U}_0$, consider the embedding $y = t + x_{\varphi,\Lambda}$. There exists a unique $\varphi' \in \mathcal{U}_0$ such that $x_{\varphi',\Lambda}$ is a reparameterization of y. Then, $t \cdot \varphi = \varphi'$.
if and only if T_s is an isomorphism. Thus, assumption (a) implies that, for $s \neq 0$, T_s is nonsingular, which settles assumption (BT1) in Section A.2.

Let us the injective continuous linear map

$$X \oplus \mathbb{R}^3 \ni (\psi, b_1, b_2, b_3) \mapsto \psi + \sum_{i=1}^{3} b_i \Theta_i \in C^0,\alpha(\Sigma)$$

(10) to identify $X \oplus \mathbb{R}^3$ with a subspace of $C^0,\alpha(\Sigma)$, as in assumption (A) in Section A.2. Since T_0 is Fredholm, then 0 is an isolated eigenvalue of T_0 (assumption (D) in Section A.2), and it has finite multiplicity, given by $m = \dim(\ker(T_0)) - 3 > 0$. Notice that T_0 is diagonalizable: it coincides with the Jacobi operator J_{b_0, A_0} on X, which is J_{b_0, A_0}-invariant, and it is the identity on \mathbb{R}^3. In particular, the generalized 0-eigenspace of T_0, i.e., $E_0 = \bigcup_{k \geq 1} \ker(T_0^k)$, coincides with the kernel of T_0, given by $\ker(J_{b_0, A_0}) \cap X$.

Using the identification (10), the operators T_s can be seen as unbounded linear operators on $C^0,\alpha(\Sigma)$, with domain $C^2,\alpha(\Sigma)$. As such, they are closed operators, i.e., they have closed graphs. This follows easily observing that they are finite rank perturbations of the self-adjoint elliptic operators of second order $J_{\varphi_s, \Lambda(s)}$, which are closed (see for instance [14, Section III.1]). This settles assumption (C2) in Section A.2.

Let us now show that the path of Fredholm operators T_s has an odd crossing number at $s = 0$ using assumption (c).

To this aim, let us consider the continuous path of Fredholm operators $T'_s = J_{\varphi_s, \Lambda(s)} + P_s$, where $P_s : C^2,\alpha(\Sigma) \cong X_s \oplus Y_s \to Y_s$ is the projection, and X_s is the L^2-orthogonal complement of Y_s relatively to the metric $g_{\Lambda(s)}$.

Observe that:

(i) $T'_0 = T_0$;

(ii) T'_s is invertible for all $s \neq 0$;

(iii) T'_s is diagonalizable with real eigenvalues, and for $s \neq 0$, its spectrum $\text{spec}(T'_s)$ coincides with $(\text{spec}(J_{\varphi_s, \Lambda(s)}) \setminus \{0\}) \cup \{1\}$;

(iv) T'_s has an odd crossing number at $s = 0$, by assumption (c).

Statement (iv) follows easily from (iii). In order to conclude that also the family T_s has an odd crossing number at $s = 0$, it suffices to show that there exists r arbitrarily small and $s = s(r)$ such that the isomorphisms T_s and T'_s are endpoints of a continuous path of invertible operators that remain inside the ball $B(T_0, r)$ of radius r centered at T_0, see Remark A.2.

The difference $T'_s - T_s$ is equal to:

- P_s on X_0;
- $(J_{\varphi_s, \Lambda(s)} - J_{b_0, A_0}) + (P_s - I_s)$ on Y_0.

Using the identification (10), the operator $T_0 : C^2,\alpha(\Sigma) \to C^0,\alpha(\Sigma)$ is given by $J_{b_0, A_0} + P_0$, where $P_0 : X \oplus Y_0 \to Y_0$ is the projection.

The sum of a closed and a bounded operator is closed.
where \(I_s : Y_0 \to Y_s \) is the isomorphism defined by \(I_s(f_0, \Lambda(\cdot)) = f_0^{\varphi_s, \Lambda(s)} \),
\(i = 1, 2, 3 \). Since \(\lim_{s \to 0} P_s = P_0 \) and \(\lim_{s \to 0} J_{\varphi_s, \Lambda(s)} = J_{0, \Lambda_0} \) in the operator norm, then:

\[
\lim_{s \to 0} \left\| P_s \right\|_X_0 = 0, \quad \text{and} \quad \lim_{s \to 0} \left\| \left(J_{\varphi_s, \Lambda(s)} - J_{0, \Lambda_0} \right) + (P_s - I_s) \right\|_{Y_0} = 0.
\]

Observe that \(P_s \) is an operator of rank 3, and \(Y_0 \) has dimension 3. In other words, \(T'_s \) is the sum \(T_s + R_s \), with \(R_s \) a finite rank operator such that \(\lim_{s \to 0} \| R_s \| = 0 \). This implies easily that, given any \(r > 0 \), there exists \(s = s(r) \) such that both \(T_s \) and \(T'_s \) belong to the ball \(B(T_0, r) \), and that there exists a continuous path of invertible operators in \(B(T_0, r) \) joining \(T_s \) and \(T'_s \). This shows that the family \(T_s \) has an odd crossing number at \(s = 0 \) (assumption (BT2) in Section A.2), and concludes the proof. □

5.5. Remark. Assumption (b) in Theorem 5.4 is always satisfied when the genus of \(\Sigma \) is greater than 1. There is a number of ways to prove this fact, here we propose the most elementary one. Recalling the definition of the Jacobi field \(f_0, \Lambda_0 \) in Section 2.1, observe that they are linearly independent if and only if some non zero constant (i.e., translation invariant) vector field of \(\mathbb{R}^3 / \Lambda_0 \) is everywhere tangent to \(S = x_0(\Sigma) \).

Lemma 5.6. Let \(S \) be an embedded submanifold of \(T^3 \) which is diffeomorphic to a closed orientable surface of genus \(\text{gen}(S) > 1 \). Then, no nontrivial constant vector field of \(T^3 \) is everywhere tangent to \(S \).

Proof. Nontrivial constant vector fields are never vanishing. But the Euler characteristic of \(S \) is \(2 - 2 \text{gen}(S) < 0 \), so there are no never vanishing vector fields on \(S \) by the Poincaré–Hopf theorem. □

More on the geometry of minimal submanifolds in flat tori can be found in reference [19].

6. PROOF OF THEOREMS A, B, AND C

We can apply Theorem 5.4 and the results of [6] to conclude the proof of Theorem A.

Proof of Theorem A. For the H-family \((M_a)_{a \in [0,1]} \), see Example 6.1 and [6] Main Theorem 1, the nullity of every surface except for \(a_0 \approx 0.49701 \) and \(a_1 \approx 0.71479 \) is equal to 3. The Morse index of \(M_a \) is equal to 2 for \(a \in [0, a_0]\), it is equal to 1 for \(a \in]a_0, a_1[\), and it is equal to 3 for \(a \in]a_1, 1[\). Thus, there is an odd jump at \(a_0 \), which is a bifurcation instant. We cannot infer the existence of bifurcation at \(a_1 \), where the Morse index has an even jump.

As to the rPD-family \((M_a)_{a \in [0, \infty]} \), see Example 6.2 and [6] Main Theorem 2, there are two odd jumps of the Morse index at \(a_1 \approx 0.494722, a_2 = (a_1)^{-1} \approx 2.02133 \). The nullity at every other instant is equal to 3.
Figure 1. Surfaces M_a of the H-family, with $a = 0.1$ (Morse index 2), $a = 0.5$ (Morse index 1), and $a = 0.9$ (Morse index 3).

For the tP-family and the tD-family, see Example 6.3 and [6, Main Theorem 3], there are two odd jumps of the Morse index: $a_1, a_2 \in [2, +\infty[$ of the Morse index, where $a_1 \approx 7.40284$ and $a_2 \approx 28.7783$. The nullity at every other instant is equal to 3.

Observe that assumption (b) of Theorem 5.4 is satisfied in all cases, because all the minimal surfaces have genus equal to 3, see Remark 5.5.

6.1. Example (H-family — Figure 1). For $a \in [0,1[$, let M_a be a hyperelliptic Riemann surface of genus 3 defined by $w^2 = z(z^3 - a^3)(z^3 - \frac{1}{a^3})$ and f a conformal minimal immersion given by

$$f(p) = \Re \int_{p_0}^{p} i(1 - z^2, i(1 + z^2), 2z) \frac{dz}{w}.$$ $f(M_a)$ is called H-family.

6.2. Example (rPD family, Karcher’s TT surface, see ref. [12] — Figure 2). For $a \in [0, \infty[$, let M_a be a hyperelliptic Riemann surface of genus 3 defined by $w^2 = z(z^3 - a^3)(z^3 + \frac{1}{a^3})$ and f a conformal minimal immersion given by

$$f(p) = \Re \int_{p_0}^{p} (1 - z^2, i(1 + z^2), 2z) \frac{dz}{w}.$$ $f(M_a)$ is called rPD family or Karcher’s TT surface. $M_{\sqrt{2}}$ gives the so-called Schwarz Primitive surface (Schwarz P surface), and $M_{1/\sqrt{2}}$ gives the so-called Schwarz Diamond surface (Schwarz D surface).

6.3. Example (tP-family — Figure 3, tD-family — Figure 4). For $a \in [2, +\infty[$, let M_a be a hyperelliptic Riemann surface of genus 3 defined by $w^2 = z^8 + az^4 + 1$. Let f be a conformal minimal immersion given by

$$f(p) = \Re \int_{p_0}^{p} (1 - z^2, i(1 + z^2), 2z) \frac{dz}{w}.$$ and f'

$$f'(p) = \Re \int_{p_0}^{p} i(1 - z^2, i(1 + z^2), 2z) \frac{dz}{w}.$$
BIFURCATION OF TRIPLY PERIODIC MINIMAL SURFACES

Figure 2. Surfaces M_a of the rPD-family, with $a = 0.1$ (Morse index 2), and $a = 0.5$ (Morse index 1).

Figure 3. Surfaces M_a of the tP-family, with $a = 0.285$ (Morse index 2), and $a = 14$ (Morse index 1). The surface M_{14} of the tP-family is also called *Schwarz Primitive* surface, or *P-surface*.

$f(M_a)$ is called tP-family and $f'(M_a)$ is called tD-family. $f(M_{14})$ gives the Schwarz P surface, and $f'(M_{14})$ gives the Schwarz D surface.

As to the local rigidity, we can apply Theorem 3.3 to the above families. We have seen that there are exactly two surfaces that are not equivariantly nondegenerate in each of the rPD-family, the H-family, the tP-family and the tD-family. There is a fifth family of triply periodic minimal surfaces, called the tCLP-family (see Example 6.5), which consists of equivariantly nondegenerate surfaces.

Proof of Theorem B. As we have observed in Remark 5.5, the linear independence assumption of Theorem 3.3 is always satisfied in the case of all minimal surfaces of the given families. This implies that equivariantly non-degenerate surfaces correspond precisely to minimal surfaces with nullity
equal to 3. Each such surface belongs to a unique smooth family of triply periodic minimal surfaces, parameterized by isometry classes of flat metrics in T^3 (a 6-dimensional space), by Theorem 3.3. If we consider isometry classes of flat metrics with fixed volume, which are thus pairwise non-homothetic, we get a smooth 5-parameter family of pairwise non-homothetic triply periodic minimal surfaces.

6.4. Remark. By the proof of Theorem A, Examples 6.2 and 6.3, and Theorem B, we can make the following observation. Schwarz P-surface has nullity equal to 3, and it is contained both in the rPD-family and in the tP-family, which are two one-parameter families of triply periodic minimal surfaces. Near the P-surface, these two families consist of surfaces that are pairwise non-homothetic. On the other hand, by Theorem B, the P-surface belongs to a (unique up to homotheties) smooth locally rigid 5-parameter family of pairwise non-homothetic triply periodic minimal surfaces. By the local rigidity, such 5-parameter family must contain (a portion of) the rPD-family and the tP-family, and it would be very interesting to have a geometric description of this 5-parameter family. An analogous situation occurs for the Schwarz D-surface, which has nullity equal to 3, and it is contained both in the rPD-family and in the tD-family.

6.5. Example (tCLP-family — Figure 5). For $a \in]-2, 2[$, let M_α be a hyperelliptic Riemann surface of genus 3 defined by $w^2 = z^8 + az^4 + 1$. Let f be a conformal minimal immersion given by

$$f(p) = \Re \int_{P_0}^p (1 - z^2, i(1 + z^2), 2z)^t \frac{dz}{w}.$$

$f(M_\alpha)$ is called tCLP family. For all α, the minimal surface M_α has constant nullity equal to 3 and Morse index equal to 3, see [6, Main Theorem 4].
6.6. Example (associate family of Schwarz P-surface). Let M be a hyperelliptic Riemann surface of genus 3 defined by $w^2 = z^8 + 14z^4 + 1$. Then the Schwarz P surface is given by

$$p \mapsto \Re \int_{p_0}^p (1 - z^2, i(1 + z^2), 2z) \frac{dz}{w},$$

and the Schwarz D surface is given by

$$p \mapsto \Re \int_{p_0}^p i(1 - z^2, i(1 + z^2), 2z) \frac{dz}{w}.$$

The general associate surface of the P surface is given by

$$p \mapsto \Re \int_{p_0}^p e^{i\theta} (1 - z^2, i(1 + z^2), 2z) \frac{dz}{w}, \quad \theta \in \mathbb{R}. \quad (11)$$

It is known that there is a unique $\theta \in]0, \pi/2[$ such that (11) gives a triply periodic minimal surface in \mathbb{R}^3. Actually, $\theta \approx 0.907313 (= 51.9852^\circ)$ gives this surface, which is called the Schoen’s gyroid ([23]). Since these three surfaces have the same Riemann metric:

$$ds^2 = \frac{(1 + |z|^2)^2}{|w|^2} |dz|^2,$$

and thus the same Jacobi operator:

$$J = \Delta - 2K = \frac{4|w|^2}{(1 + |z|^2)^4} \left((1 + |z|^2)^2 \frac{\partial^2}{\partial z \partial \bar{z}} + 2 \right), \quad (12)$$
they also have the same nullity and the same Morse index. Since Schwarz P and D surfaces have nullity 3 and Morse index 1 because they are volume-preserving stable (Ross [21]), the Schoen’s gyroid also has nullity 3 and Morse index 1.

Proof of Theorem C. As the proof of Theorem B, it follows immediately from Theorem 3.3 since Schoen’s gyroid has nullity equal to 3 (Example 6.6).

7. REMARKS ON THE GEOMETRY OF TRIPLY PERIODIC MINIMAL SURFACES IN THE BIFURCATION BRANCHES

In general, Theorem 5.4 does not imply the existence of essentially new triply periodic minimal surfaces, because there we do not assume that the flat metrics $g_{\Lambda(s)}$ are pairwise non homothetic near $s = 0$, see Remark 5.2.

In this section we will discuss this question at each bifurcation instant that we obtained in Theorem A, and we will determine at which bifurcation instants one obtains the existence of new examples of triply periodic minimal surfaces. Every bifurcation instant given in Theorem A corresponds to an equivariantly degenerate minimal embedding whose Jacobi operator has kernel spanned by the three Killing–Jacobi fields (Definition 3.2), and one additional Jacobi field which is not Killing. Such a Jacobi field gives a first order approximation of the bifurcating branch, and it will be used in our discussion. The exact equations of these Jacobi fields and how to derive them will be discussed in a forthcoming paper, and will be omitted here.

7.1. rPD-family. First, let us look at the bifurcation instants along the rPD-family M_a, $a \in]0, +\infty[$ (Example 6.2). Set

$$A = A(a) : = \frac{1}{\sqrt{3a}} \int_0^1 \frac{1 + a^2 t^2}{\sqrt{t(1-t^3)(a^3 t^3 + \frac{1}{a^3})}} \, dt,$$

$$C = C(a) : = 4 \int_0^1 \frac{t}{\sqrt{t(1-t^3)(a^3 + \frac{1}{a^3})}} \, dt.$$

Then, the lattice is

$$\Lambda = \begin{pmatrix} 3A & 3A & 4A \\ \sqrt{3A} & -\sqrt{3A} & 0 \\ 0 & 0 & C \end{pmatrix}.$$

C is the height of the lattice, and A is a certain fixed constant times the length of the edge of the triangle (see Figure 2). Hence, the ratio A/C determines the lattice (up to homothety). Figure 4 represents the ratio A/C as a function of a, and $a = a_1 \approx 0.494722$ gives the minimum. It

9An instructive example of bifurcation by Morse index jump in geometric variational problems that does not produce new solutions is discussed in [15 Section 2.6], in the context of constant mean curvature surfaces.
Figure 6. The horizontal axis represents a, while the vertical axis indicates the ratio A/C for the rPD family. The minimum of A/C is attained at $a = a_1 \approx 0.494722$.

shows that there exist positive constants ϵ_1 and ϵ_2, a strictly monotone-increasing function $\delta : [0, \epsilon_1] \to [0, \epsilon_2]$ with $\delta(0) = 0$ and such that the lattice $\Lambda(a_1 - \epsilon)$ is a homothety of the lattice $\Lambda(a_1 + \delta(\epsilon))$.

Denote by $X(c)$ the surface $f(M_{a_1 + c})$. Since $A(a)$ and $C(a)$ are increasing functions of a near the bifurcation instant $a = a_1 \approx 0.494722$ (see Figure 7), the surfaces $X(c)$ are like the pictures in the upper row in Figure 8.

Now, for $\epsilon \in [0, \epsilon_1]$, reduce the surface $X(-\epsilon)$ to $C(a_1 + \delta(\epsilon))$, and denote the new surface by $Y(\epsilon)$. Then the lattice of $Y(-\epsilon)$ is the same as the lattice of $X(-\epsilon)$, but the surfaces $X(-\epsilon)$ and $Y(-\epsilon)$ are not congruent to each other (see Figure 8).

Similarly, for $\epsilon \in [0, \epsilon_1]$, expand the surface $X(-\epsilon)$ to $C(a_1 - \epsilon)$, and denote the new surface by $Y(\delta(\epsilon))$. Then the lattice of $Y(\delta(\epsilon))$ is the same as the lattice of $X(\delta(\epsilon))$, but the surfaces $X(\delta(\epsilon))$ and $Y(\delta(\epsilon))$ are not congruent to each other (see Figure 8).

One can show the nodal lines of the zero-eigenfunction at $a = a_1$ are exactly the boundary triangles in Figure 8, and since the “essential” dimension of the zero eigenspace is one, it seems that the surfaces $Y(c)$ give the bifurcation branch from the instant $a = a_1$. However, they are homotheties of the original surfaces in the rPD family.

For $\epsilon \in [0, \epsilon_1]$, $X(-\epsilon)$ has index 2 and nullity 3, $X(\delta(\epsilon))$ has index 1 and nullity 3, $Y(-\epsilon)$ has index 1 and nullity 3, $Y(\delta(\epsilon))$ has index 2 and nullity 3. Hence, this bifurcation is a transcritical bifurcation.

On the other hand, at $a = a_2 = (a_1)^{-1} \approx 2.02133$, the ratio A/C is strictly monotone (Figure 6). This implies that the bifurcation branch contains triply periodic minimal surfaces that are not homothetic to any other surface in the five families given in § 6 (Examples 6.1–6.5). Moreover, we can show that the nodal lines of the zero eigenfunctions at $a = a_2$ are planar geodesics that connect each vertex of each triangle with the middle point of
Fig. 7. The horizontal axis represents a, while the vertical axis indicates A (left) and C (right) for the rPD family.

Fig. 8. Bifurcation at $a = a_1$ of the rPD family. Each picture shows a half period of the corresponding triply periodic minimal surface. The surfaces in the upper row belong to the rPD family. The surfaces in the lower row belong to the bifurcation branch, and they are homothetic to surfaces in the rPD family.

a side of a triangle (Fig. 9, the left picture in Fig. 10). Remarkably, the sides of the triangles are not nodal lines, which suggests that near $a = a_2$, our new triply periodic minimal surfaces are like the right picture in Fig. 10. It would be interesting to determine the symmetries of the new surfaces.
For rPD family, we plot two pair of lines which can be identified each other by red points.

Next we consider the nodal lines for 0-eigenfunction of Jacobi operator of area. We shall plot nodal lines for rPD family by red points. Note that we mean continuous lines by red points.

Figure 9. One period of a surface in the rPD-family with the planar geodesics.

Figure 10. Left: one period of a surface in the rPD-family with the planar geodesics, Right: variation from a surface \((a = a_2)\) in the rPD family with the zero eigenfunction as variation vector filed.

7.2. H-family. By a similar fashion, we find the lattice of the H-family. Set

\[
B := \sqrt{3} \int_0^1 \frac{1 - t^2}{\sqrt{t(t^3 + a^3)(t^3 + \frac{1}{a^3})}} dt \\
+ 4 \int_{\frac{1}{2}}^1 \frac{x}{\sqrt{(a^3 + \frac{1}{a^3} + 6x - 8x^3)(1 - x^2)}} dx, \\
D := 8 \int_0^1 \frac{t}{\sqrt{t(t^3 + a^3)(t^3 + \frac{1}{a^3})}} dt.
\]

Then, the lattice is

\[
\Lambda = \begin{pmatrix}
\frac{\sqrt{3}}{2} B & 0 & 0 \\
B & 0 & D \\
0 & 0 & D
\end{pmatrix}.
\]
Thus \(H \) family consists of two triangle catenoids. The nodal lines are composed of triangles and \(H \) family has two nodal domains given by two triangle catenoids.

Figure 11. One period of a surface in the \(H \)-family.

The ratio \(B/D \) determines the lattice (up to homothety). Figure 12 represents the ratio \(B/D \) as a function of \(a \), and \(a = a_0 \approx 0.49701 \) gives the minimum of \(B/D \). Moreover, we can show that the nodal lines of the zero eigenfunctions at \(a = a_0 \) are exactly the triangles indicated in Figure 11. And so, arguing as the case of the \(rPD \)-family, we conjecture that the bifurcation we obtained in Theorem A at \(a = a_0 \) for the \(H \)-family gives only homotheties of the surfaces in the original \(H \)-family.

7.3. \(tP \)-family and \(tD \)-family. By a similar way, we find the lattice of the \(tP \)-family. Set

\[
E = 2 \int_0^1 \frac{1 - t^2}{\sqrt{t^8 + \alpha t^4 + 1}} \, dt + 4 \int_0^1 \frac{dt}{\sqrt{16t^4 - 16t^2 + 2 + \alpha}},
\]

\[
F = 8 \int_0^1 \frac{t}{\sqrt{t^8 + \alpha t^4 + 1}} \, dt.
\]

Then, the lattice is

\[
\Lambda = \begin{pmatrix} E & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & F \end{pmatrix}.
\]

The ratio \(E/F \) determines the lattice (up to homothety). Figure 13 represents \(E/F \) as a function of \(a \). By the same reason as the case of the \(rPD \)-family, we conjecture that the bifurcation we obtained in Theorem A at \(a = a_2 \approx 28.7783 \) for the \(tP \)-family gives only homotheties of the surfaces in the original \(tP \)-family. However, we conclude that the bifurcation at \(a = a_1 \approx 7.40284 \) for the \(tP \)-family give triply periodic minimal surfaces that are not homothetic to any other surface in the five families given in §6 (Examples 6.1—6.5). As for the \(tD \)-family, the situation is totally analogous.

Appendix A. Auxiliary results

A.1. A divergence formula. We will prove here formula (7), used in the proof of Proposition 2.1.
Lemma A.1. Let \((\overline{M}, \overline{g})\) be a Riemannian manifold, let \(M \subset \overline{M}\) be a compact submanifold (without boundary), with mean curvature vector field \(\overline{H}\), and let \(K \in \mathfrak{X}(M)\) be a Killing field in \(M\). Denote by \(K_M \in \mathfrak{X}(M)\) the vector field on \(M\) obtained by orthogonal projection of \(K\). Then, \(\text{div}_M(K_M) = \overline{g}(K, \overline{H})\).

Proof. In order to compute \(\text{div}_M(K_M)\), let \(\overline{\nabla}\) denote the Levi-Civita connection of \(\overline{g}\) and let \(\nabla\) be the Levi–Civita connection of the induced metric on \(M\). If \(S\) is the second fundamental form of \(M\), then for all pairs \(X, Y \in \mathfrak{X}(M)\), one has \(\overline{\nabla}_X Y = \nabla_X Y + S(X, Y)\). Moreover, differentiating in the direction \(X\) the equality \(\overline{g}(K_M, Y) = \overline{g}(K, Y)\), we get:

\[
\overline{g} (\nabla_X K_M, Y) + \overline{g} (K_M, \nabla_X Y) = \overline{g} (\nabla_X K, Y) + \overline{g} (K, \nabla_X Y).
\] (13)

Substituting \(\overline{g}(K, \nabla_X Y) = \overline{g}(K, \nabla_X Y) + \overline{g}(K, S(X, Y))\) in (13) gives:

\[
\overline{g} (\nabla_X K_M, Y) = \overline{g} (\nabla_X K, Y) + \overline{g}(K, S(X, Y)).
\] (14)
Given $x \in M$, an orthonormal frame e_1, \ldots, e_m of $T_x M$, and recalling that, since K is Killing, $\bar{g}((\nabla e_i) K, e_i) = 0$ for all i, we get:

$$\text{div}_M (K_M) = \sum_i \bar{g}((\nabla e_i) K_M, e_i) = \sum_i \bar{g}(K, S(e_i, e_i)) = \bar{g}(K, \vec{H}).$$

A.2. **On bifurcation for families of Fredholm operators.** Let us recall briefly the precise statement of a well known bifurcation result for solutions of an equation of the form $F(x, \mu) = 0$, with $\mu \in [\mu_0 - \delta, \mu_0 + \delta]$, $\delta > 0$, a real parameter and $F(\cdot, \mu) : X \to Z$ is a continuous family of smooth maps from the (open subset of a) Banach space X to a Banach space Z. Our basic references are the books [13] and [14].

Assume that:

(A) X is continuously embedded into Z, i.e., there exists a continuous injective linear map $i : X \hookrightarrow Z$ (we will implicitly consider $X \subset Z$);

(B) $[\mu_0 - \delta, \mu_0 + \delta] \ni \mu \mapsto x_\mu \in X$ is a continuous map such that $F(x_\mu, \mu) = 0$ for all μ;

(C) setting $A_\mu = D_x F(x_\mu, \mu) : X \to Z$, then for all μ:

(C1) A_μ is a Fredholm operator of index 0;

(C2) $A_\mu : Z \to Z$ is closed as an unbounded linear operator with domain X;

(D) 0 is an isolated eigenvalue of A_{μ_0}.

Assumption (C1) implies that $\text{Ker}(A_{\mu_0})$ is finite dimensional, while assumption (D) implies that the generalized eigenspace $E_{\mu_0} = \bigcup_{k \geq 1} \text{Ker}(A_{\mu_0}^k)$ is also finite dimensional, see [13, Section IV.5.4]. For the spectral theory, one considers a complexification of the space X.

Deep results from perturbation theory, see [13, Sections II.5.1 and III.6.4], imply that there exists $\delta' \in [0, \delta]$ and a continuous map of finite dimensional subspaces $[\mu_0 - \delta', \mu_0 + \delta'] \ni \mu \mapsto E_\mu \subset X$ such that for all μ:

- $\dim(E_\mu) = \dim(E_{\mu_0})$;
- E_μ is invariant by A_μ.

Denote by \overline{A}_μ the restriction of A_μ to E_μ, and ϵ_μ denote the sign of the determinant of \overline{A}_μ:

$$\epsilon_\mu = \begin{cases}
+1, & \text{if } \det(\overline{A}_\mu) > 0; \\
0, & \text{if } \det(\overline{A}_\mu) = 0; \\
-1, & \text{if } \det(\overline{A}_\mu) < 0.
\end{cases}$$

Note that $\epsilon_\mu = 0$ only if A_μ is singular, because $\text{Ker}(\overline{A}_\mu) = \text{Ker}(A_\mu) \cap E_\mu$.

Bifurcation Theorem for Fredholm Operators. *In the above situation, assume:*

(BT1) for $\mu \in [\mu_0 - \delta, \mu_0] \cup [\mu_0, \mu_0 + \delta]$, the operator A_μ is nonsingular10;

(BT2) $\epsilon_{\mu_0 - \delta} \neq \epsilon_{\mu_0 + \delta}$.

10i.e., $A_\mu : X \to Z$ is an isomorphism
Then, \((r_{\mu_0}, \mu_0)\) is a bifurcation point for the equation \(F(r, \mu) = 0\), i.e., the closure of the set \(\{(r, \mu) : r \neq r_{\mu}, F(r, \mu) = 0\}\) contains \((r_{\mu_0}, \mu_0)\).

Proof. See [14, Theorem II.4.4]. □

Condition (BT2) in the above theorem is usually referred to by saying that \(A_{\mu}\) has an odd crossing number at \(\mu = \mu_0\).

The bifurcation result for minimal embeddings proved in Theorem 5.4 employs the above bifurcation criterion for Fredholm operators. Usually, the odd crossing number assumption (BT2) is hard to verify, in that one has no explicit description of the perturbed eigenspaces \(E_{\mu}\). However, in some cases the following elementary observation simplifies the task.

A.2. Remark. Assume that \([\mu_0 - \delta, \mu_0 + \delta] \ni \mu \mapsto A_{\mu}, A'_{\mu}\) are continuous paths of Fredholm operators of index 0 from \(X\) to \(Z\), with \(A_{\mu_0} = A'_{\mu_0}\), and assume that for all \(\mu \in [\mu_0 - \delta, \mu_0] \cup [\mu_0 + \delta, \mu_0 + \delta]\), both \(A_{\mu}\) and \(A'_{\mu}\) are nonsingular. Assume that for all \(r > 0\) there exists \(\delta' > 0\) and two continuous paths of invertible operators in the ball \(B(A_{\mu_0}, r)\) centered at \(A_{\mu_0}\) and of radius \(r\) joining \(A_{\mu_0 - \delta}\) with \(A'_{\mu_0 - \delta'}\), and \(A_{\mu_0 + \delta}\) with \(A'_{\mu_0 + \delta'}\), respectively. Then \(A_{\mu}\) has an odd crossing number at \(\mu_0\) if and only if \(A'_{\mu}\) has an odd crossing number at \(\mu_0\). This follows easily from the fact that the sign function \(\epsilon\), which is defined in a sufficiently small neighborhood of \(A_{\mu_0}\), is constant along continuous paths of invertible operators. This is because the sign of the determinant does not change along continuous paths of invertible linear maps.

References

[1] L. J. Alías and P. Piccione, On the manifold structure of the set of unparametrized embeddings with low regularity, Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 171–183.
[2] S. Andersson, S. T. Hyde, K. Larsson, S. Lidin, Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers, Chem. Rev., 1988, 88 (1), 221–242.
[3] R. G. Bettiol, P. Piccione, G. Siciliano, Deforming solutions of geometric variational problems with varying symmetry groups, preprint 2013, to appear in Transformation Groups.
[4] N. Ejiri, A differential-geometric Schottky problem, and minimal surfaces in tori, Differential geometry and integrable systems (Tokyo, 2000), 101–144, Contemp. Math., 308, Amer. Math. Soc., Providence, RI, 2002.
[5] N. Ejiri, A generating function of a complex Lagrangian cone in \(\mathbb{H}^n\), preprint.
[6] N. Ejiri and T. Shoda, The Morse index of a triply periodic minimal surface, preprint.
[7] W. Fischer, E. Koch, On 3-periodic minimal surfaces Z. Kristallogr. 179: 31–52 (1987).
[8] A. Fogden, S.T. Hyde, Continuous transformations of cubic minimal surfaces, Eur. Phys. J. B 7, 91–104 (1999).

11Recall that the set of Fredholm operators of index 0 is an open subset of the space of all bounded linear operator from \(X\) to \(Z\) endowed with the operator norm.
[9] A. Fogden G. E. Schröder-Turk, S. T. Hyde, Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces, Eur. Phys. J. B. 54 (2006), 509–524.

[10] N. Kapouleas, Constant mean curvature surfaces in Euclidean three-space, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 2, 318–320.

[11] N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2) 131 (1990), no. 2, 239–330.

[12] H. Karcher, The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions, Manuscripta Math. 64 (1989), no. 3, 291–357.

[13] T. Kato, Perturbation theory for linear operators, Reprint of the 1980 edition. Classics in Mathematics. Springer–Verlag, Berlin, 1995.

[14] H. Kielhöfer, Bifurcation theory. An introduction with applications to partial differential equations, Second edition. Applied Mathematical Sciences, 156. Springer, New York, 2012.

[15] M. Koiso, B. Palmer, P. Piccione, Bifurcation and symmetry breaking of nodoids with fixed boundary, preprint 2014, to appear in Advances in Calculus of Variations.

[16] R. Mazzeo, F. Pacard and D. Pollack, Connected sums of constant mean curvature surfaces in Euclidean 3 space. J. Reine Angew. Math. 536 (2001), 115–165.

[17] R. Mazzeo and F. Pacard, Constant mean curvature surfaces with Delaunay ends. Comm. Anal. Geom. 9 (2001), no. 1, 169–237.

[18] W. H. Meeks III, The theory of triply periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990), no. 3, 877–936.

[19] T. Nagano, B. Smyth, Minimal varieties and harmonic maps in tori, Comment. Math. Helv. 50 (1975), 249–265.

[20] J. Pérez and A. Ros, The space of properly embedded minimal surfaces with finite total curvature, Indiana Univ. Math. J. 45 (1996), no. 1, 177–204.

[21] M. Ross, Schwarz’ P and D surfaces are stable, Differential Geometry and its Applications 2 (1992), 179–195.

[22] H. G. von Schnering, R. Nesper, Nodal surfaces of Fourier series: Fundamental invariants of structured matter, Zeitschrift für Physik B Condensed Matter 1991, Volume 83, Issue 3, 407–412.

[23] A. H. Schoen, Infinite periodic minimal surfaces without self-intersections, NASA Technical Note No. TN D-5541 (1970).

[24] M. Traizet, On the genus of triply periodic minimal surfaces, J. Differential Geom. 79 (2008), no. 2, 243–275.

[25] B. White, The space of m-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J. 36 (1987), 567–602.

Institute of Mathematics for Industry
Kyushu University
744, Motoooka Nishi-ku
FUKUOKA 819-0395
JAPAN
koiso@math.kyushu-u.ac.jp

Department of Mathematics
Faculty of Culture and Education
Saga University
Saga, SAGA 840
JAPAN
tshoda@cc.saga-u.ac.jp