Two-body charmed baryon decays involving vector meson with

$SU(3)$ flavor symmetry

Y.K. Hsiao,1,∗ Yu Yao,2,† and H.J. Zhao1

1School of Physics and Information Engineering,
Shanxi Normal University, Linfen 041004, China
2Chongqing University of Posts & Telecommunications, Chongqing, 400065, China

Abstract

We study the two-body anti-triplet charmed baryon decays of $B_c \to B_n V$, with $B_c = (\Xi^0_c, -\Xi^+_c, \Lambda^+_c)$ and $B_n(V)$ the baryon (vector meson) states. Based on the $SU(3)$ flavor symmetry, we predict that $B(\Lambda^+_c \to \Sigma^+ \rho^0, \Lambda^0 \rho^+) = (0.61 \pm 0.46, 0.74 \pm 0.34)\%$, in agreement with the experimental upper bounds of $(1.7, 6)\%$, respectively. We also find $B(\Lambda^+_c \to \Xi^0 K^{*+}, \Sigma^0 K^{*+}, \Lambda^0 K^{*+}) = (8.7 \pm 2.7, 1.2 \pm 0.3, 2.0 \pm 0.5) \times 10^{-3}$ to be compatible with the pseudoscalar counterparts. For the doubly Cabibbo-suppressed decay $\Xi^+_c \to p\phi$, measured for the first time, we predict its branching ratio to be $(1.5 \pm 0.7) \times 10^{-4}$, together with $B(\Xi^+_c \to pK^*0, \Sigma^+ \phi) = (7.8 \pm 2.2, 1.9 \pm 0.9) \times 10^{-3}$. The $B_c \to B_n V$ decays with $B \simeq O(10^{-4} - 10^{-3})$ are accessible to the BESIII, BELLEII and LHCb experiments.

∗yukuohsiao@gmail.com
†yuyao@cqupt.edu.cn
I. INTRODUCTION

The two-body $B_c \rightarrow B_n V$ decays have not been abundantly measured as the $B_c \rightarrow B_n M$ counterparts, where $B_c = (\Xi^0_c, -\Xi^+_c, \Lambda^+_c)$ are the anti-triplet charmed baryon states, together with B_n and $V(M)$ the baryon and vector (pseudo-scalar) meson states, respectively. For example, all Cabibbo-favored (CF) $\Lambda^+_c \rightarrow B_n M$ decays have been measured [1], including the recent BESIII observation for $\Lambda^+_c \rightarrow \Sigma^+ \eta'$ [2], whereas for the CF vector modes only $\Lambda^+_c \rightarrow pK^*0, \Sigma^+ \omega, \Sigma^+ \phi$ have absolute branching fractions [1]. In addition, the first absolute branching ratio for the Ξ^+_c decays is $\Xi^+_c \rightarrow \Xi^-\pi^+$ [3], instead of any $\Xi^+_c \rightarrow B_n V$ decays.

Nevertheless, the $B_c \rightarrow B_n V$ decays are not less important than the $B_c \rightarrow B_n M$ counterparts. First, the participations of BESIII, BELLEII and LHCb Collaborations are expected to make more accurate measurements for $B_c \rightarrow B_n V$, such as $\Lambda^+_c \rightarrow \Sigma^+ \rho^0, \Lambda^0 \rho^+$, presented as $\mathcal{B}(\Lambda^+_c \rightarrow \Sigma^+ \rho^0, \Lambda^0 \rho^+) < (1.7, 6\%)$ due to the previous measurements [4]. Second, in the three-body $B_c \rightarrow B_n MM'$ decays, the MM' meson pair is assumed to be mainly in the S-wave state [4]. However, the resonant $B_c \rightarrow B_n V, V \rightarrow MM'$ decay causes MM' to be in the P-wave state, of which the contribution to the total $\mathcal{B}(B_c \rightarrow B_n MM')$ needs clarification. Note that (S,P) denote $L = (0, 1)$ as the quantum numbers for the orbital angular momentum between M and M'. Third, the three-body Ξ^+_c decays can be measured as the ratios of $\mathcal{B}(\Xi^+_c \rightarrow B_n V)/\mathcal{B}(\Xi^+_c \rightarrow B_n MM')$. Particularly, the doubly Cabibbo-suppressed $\Xi^+_c \rightarrow p\phi$ decay is observed for the first time, with $\mathcal{B}(\Xi^+_c \rightarrow p\phi)/\mathcal{B}(\Xi^+_c \rightarrow pK^-\pi^+) = (19.8 \pm 0.7 \pm 0.9 \pm 0.2) \times 10^{-3}$ [5]. The information of $\mathcal{B}(\Xi^+_c \rightarrow B_n V)$ is hence helpful to determine $\mathcal{B}(\Xi^+_c \rightarrow B_n MM')$.

Since the study of $B_c \rightarrow B_n V$ is necessary, it is important to provide a corresponding theoretical approach. The factorization approach for the heavy hadron decays [6–8] seems applicable to $B_c \rightarrow B_n V$. Nonetheless, it has been shown that, besides the factorizable effects, there exist significant non-factorizable contributions in $B_c \rightarrow B_n M$ [9], such that the factorization approach fails to explain the data. In contrast, with both factorizable and non-factorizable effects [10–18], the $SU(3)$ flavor symmetry ($SU(3)_f$) approach can accommodate the measurements for $B_c \rightarrow B_n M$ [19–25], such as the purely non-factorizable $\Lambda^+_c \rightarrow \Xi^0 K^+$ decay [31]. In addition, the predicted values of $\mathcal{B}(\Lambda^+_c \rightarrow \Sigma^+ \eta')$ and $\mathcal{B}(\Xi^+_c \rightarrow \Xi^-\pi^+)$ are in agreement with the recent observations [2, 3, 22, 23]. Therefore, we propose to extend the $SU(3)_f$ symmetry to $B_c \rightarrow B_n V$, while the existing observations have been sufficient for the
numerical analysis. In this report, we will extract the \(SU(3)_f \) amplitudes, and predict the to-be-measured \(B_c \rightarrow B_n V \) branching fractions.

II. FORMALISM

To obtain the amplitudes for the two-body \(B_c \rightarrow B_n V \) decays, where \(B_{c(n)} \) is the singly charmed (charmless) baryon state and \(V \) the vector meson, we present the relevant effective Hamiltonian (\(\mathcal{H}_{eff} \)) for the tree-level \(c \) quark decays, given by

\[
\mathcal{H}_{eff} = \sum_{i=+,-} \frac{G_F}{\sqrt{2}} c_i (V_{cs} V_{ud} O_{i} + V_{cq} V_{uq} O'_{i} + V_{cd} V_{us} O'_{i}) ,
\]

with \(q = d \) or \(s \), where \(G_F \) is the Fermi constant, \(V_{ij} \) are the CKM matrix elements, and \(c_{\pm} \) the scale-dependent Wilson coefficients. In Eq. (1), \(O^{(q,\prime)}_{\pm} \) are the four-quark operators:

\[
O_{\pm} = \frac{1}{2} \left[(\bar{u}d)(\bar{s}c) \pm (\bar{sd})(\bar{uc}) \right] ,
\]

\[
O'_{\pm} = \frac{1}{2} \left[(\bar{u}q)(\bar{q}c) \pm (\bar{qq})(\bar{uc}) \right] ,
\]

\[
O'_{\pm} = \frac{1}{2} \left[(\bar{us})(\bar{dc}) \pm (\bar{ds})(\bar{uc}) \right] ,
\]

with \((\bar{q}_1 q_2) \equiv \bar{q}_1 \gamma_\mu (1 - \gamma_5) q_2 \). By neglecting the Lorentz indices, the operator of \((\bar{q}_1 q_2)(\bar{q}_3 c) \) transforms as \((\bar{q}_1 q_2)(\bar{q}_3 c) \) under the \(SU(3)_f \) symmetry, where \(q_i = (u, d, s) \) represent the triplet of 3. The operator can be decomposed as irreducible forms, which is accordance with \((3 \times 3 \times 3)c = (\bar{3} + \bar{3'} + 6 + 15)c \). One hence has

\[
O^{(q,\prime)}_{-(+)} \sim O^{(q,\prime)}_{6(15)} = \frac{1}{2} \left[(\bar{ud})(\bar{sd}) \mp (\bar{sd})(\bar{uc}) \right] c ,
\]

\[
O^{q}_{-(+)} \sim O^{q}_{6(15)} = \frac{1}{2} \left[(\bar{u}q)(\bar{q}c) \mp (\bar{qq})(\bar{uc}) \right] c ,
\]

\[
O'^{q}_{-(+)} \sim O'^{q}_{6(15)} = \frac{1}{2} \left[(\bar{us})(\bar{dc}) \mp (\bar{ds})(\bar{uc}) \right] c ,
\]

with the subscripts \((6, 15) \) denoting the two irreducible \(SU(3)_f \) operators. By substituting \(O^{(q,\prime)}_{6(15)} \) for \(O^{(q,\prime)}_{-(+)} \), the effective Hamiltonian in Eq. (1) becomes

\[
\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[c_+ \epsilon^{ijkl} H(6)_{lk} + c_+ H(15)_{lj}^{ij} \right] ,
\]

where the tensor notations of \(1/2 \epsilon_{ijkl} H(6)_{lk} \) and \(H(15)_{lj}^{ij} \) contain \(O^{(q,\prime)}_{6(15)} \) and \(O^{(q,\prime)}_{15} \), respectively. In terms of \((V_{cs} V_{ud}, V_{cd} V_{ud}, V_{cs} V_{us}, V_{cd} V_{us}) = (1, -s_c, s_c, -s_c^2) \) with \(s_c \equiv \sin \theta_c \), where \(\theta_c \) represents the well-known Cabbibo angle, we have \(H_{22}(6) = 2, H_{23,32}(6) = -2s_c, \)
$H^3_{12,21}(\Omega) = -H^3_{13,31}(\Omega) = s_c$, $H^{33}(6) = 2s_c^2$, and $H^3_{12,21}(\Omega) = -s_c^2$ as the non-zero entries \[15\]. Note that $n = 0, 1$ and 2 in s_n^2 correspond to the Cabibbo-flavored (CF), singly Cabibbo-suppressed (SCS), and doubly Cabibbo-suppressed (DCS) decays, respectively. We also need B_c and B_n (V) to be in the irreducible representation of the $SU(3)_f$ symmetry, given by

\[
(B_c)_i = (\Xi^0, -\Xi^+_c, \Lambda^+_c),
\]

\[
(B_n)_j = \begin{pmatrix}
\frac{1}{\sqrt{6}} \Lambda^0 + \frac{1}{\sqrt{2}} \Sigma^0 & \Sigma^+ & p \\
\Sigma^- & \frac{1}{\sqrt{6}} \Lambda^0 - \frac{1}{\sqrt{2}} \Sigma^0 & n \\
\Xi^- & \Xi^0 & -\sqrt{2} \Lambda^0
\end{pmatrix},
\]

\[
(V)_j = \begin{pmatrix}
\frac{1}{\sqrt{2}} (\rho^0 + \omega) & \rho^- & K^{*-} \\
\rho^+ & -\frac{1}{\sqrt{2}} (\rho^0 - \omega) & \bar{K}^{*0} \\
K^{*+} & K^{*0} & \phi
\end{pmatrix}.
\] \tag{5}

Subsequently, \mathcal{H}_{eff} in Eq. \[1\] is enabled to be connected to the initial and final states in Eq. \[5\], such that we derive the amplitudes of $B_c \rightarrow B_n V$ as

\[
\mathcal{A}(B_c \rightarrow B_n V) = \langle B_n V | \mathcal{H}_{\text{eff}} | B_c \rangle = \frac{G_F}{\sqrt{2}} T(B_c \rightarrow B_n V),
\] \tag{6}

instead of introducing the details of the QCD calculations for the hadronization. Explicitly, the T amplitudes (T-amps) are given by \[15, 16\]

\[
T(B_c \rightarrow B_n V) = T(\mathcal{O}_0) + T(\mathcal{O}_{\mathcal{T}5}),
\]

\[
T(\mathcal{O}_0) = \bar{a}_1 H^{ij}(6) T_{ik}(B_n)^k_i (V)^l_j + \bar{a}_2 H^{ij}(6) T_{jk}(V)^k_i (B_n)^j_l \\
+ \bar{a}_3 H^{ij}(6) (B_n)^k_i (V)^l_j T_{kl} + \bar{h} H^{ij}(6) T_{ik}(B_n)^k_j (V)^l_i,
\]

\[
T(\mathcal{O}_{\mathcal{T}5}) = \bar{a}_4 H^{ij}_{jk}(\mathcal{T}5)(V)^l_i (B_n)^k_j (B_c)^l_i + \bar{a}_5 H(\mathcal{T}5)_{jk}(B_n)^k_j (B_c)^l_i (V)^l_i \\
+ \bar{a}_6 H(\mathcal{T}5)^i_{jk}(B_n)^k_i (V)^l_j (B_c)^l_i + \bar{a}_7 H(\mathcal{T}5)^i_{jk}(B_c)^l_j (B_n)^k_i (V)^l_i \\
+ \bar{h}' H^{ij}_{jk}(\mathcal{T}5)(B_n)^k_i (V)^l_i (B_c)^l_j,
\] \tag{7}

where $T_{ij} \equiv (B_c)^k_e^{i,jk}$, and (c_-, c_+) have been absorbed into the $SU(3)$ parameters ($\bar{a}_i, \bar{h}^{(\theta)}$). With the full expansion of T-amps in Table I, the two-body $B_c \rightarrow B_n V$ decays are presented with the $SU(3)_f$ parameters. Since $\omega = (u\bar{u} + d\bar{d})/\sqrt{2}$ and $\phi = s\bar{s}$ actually mix with $\omega_1 = (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$ and $\omega_8 = (u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$, the (\bar{h}, \bar{h}') terms that are related to $(V)_l^I = \sqrt{2} \omega + \phi = \sqrt{3} \omega_1$ can contribute to the decays with (ω, ϕ) only. In terms of the
TABLE I. The T-amps for the $B_c \to B_n V$ decays, where CF denotes the Cabibbo-favored processes, while SCS (DCS) the singly (doubly) Cabibbo-suppressed ones.

Ξ^0	CF T-amp	Ξ^0	SCS T-amp	Ξ^0	DCS T-amp		
$\Sigma^+ K^-\bar{\Lambda}$	$2(a_2 + \frac{3a_3 + a_4}{2})$	$\Sigma^+ \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$	$\Sigma^- K^+	-2(a_1 + \frac{3a_3 + a_4}{2})s_c$	$p \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$
$\Xi^0 K^0$	$-\sqrt{2}(a_2 + a_3 - \frac{3a_5 - a_7}{2})$	$\Sigma^+ \rho^-	-2(a_1 + \frac{3a_3 + a_4}{2})s_c$	$\Sigma^- K^+	-2(a_1 + \frac{3a_3 + a_4}{2})s_c$	$p \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$
$\Xi^0 \rho^0	-\sqrt{2}(a_1 - a_3 - \frac{3a_5 - a_7}{2})$	$\Sigma^- \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$	$\Sigma^0 K^0	\sqrt{2}(a_1 + \frac{3a_3 + a_4}{2})s_c$	$p \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$
$\Xi^0 \omega	-\sqrt{2}(a_1 - a_3 + 2h + \frac{3a_5 - a_7}{2})$	$\Sigma^0 \rho^-	-2(a_3 + a_4 - \frac{3a_5 + a_6 - a_7}{2})s_c$	$n \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$		
$\Xi^0 \phi	a_2 + h + \frac{3a_5 + a_7}{2}$	$\Sigma^0 \rho^-	-2(a_3 + a_4 - \frac{3a_5 + a_6 - a_7}{2})s_c$	$n \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$		
$\Xi^- \rho^-	2(a_1 + \frac{3a_3 + a_4}{2})$	$\Xi^- \rho^-	2(a_1 + \frac{3a_3 + a_4}{2})s_c$	$n \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$		
$\Lambda^0 K^0	-\sqrt{2}(2a_1 - a_2 - a_3)$	$p \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$	$\Lambda^0 K^0	-\sqrt{2}(a_1 - a_2 - a_3)$	$n \rho^-	-2(a_2 + \frac{3a_3 + a_4}{2})s_c$

$\Xi^+	CF T-amp	$\Xi^+	SCS T-amp	$\Xi^+	DCS T-amp						
$\Sigma^+ K^0$	$-2(a_3 - \frac{3a_4 + a_5}{2})$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	2(a_1 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ K^0	\sqrt{2}(a_1 - a_2)$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$		
$\Xi^0 \rho^+	2(a_3 + \frac{3a_4 + a_5}{2})$	$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ K^0	2(a_1 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^- K^+	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$		
$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$		
$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$
$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$
$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$
$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$
$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$
$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- K^+	\sqrt{2}(a_1 - a_2)$	$\Sigma^- \rho^-	\sqrt{2}(a_2 + a_3 - \frac{3a_4 + a_5}{2})s_c$	$\Sigma^+ \rho^+	\sqrt{2}(a_1 - a_2)$
measured by BELLE \cite{3}. In addition, the ratio of \(B \) measured to be relative to input for the CKM matrix elements. By using the equation of \cite{9} independent parameters to be extracted, whereas there exist 10 data points for the numerical analysis. To have a practical fit, we follow Refs. \cite{19, 22, 23, 25} to reduce the parameters. In \(\mathcal{H}_{\text{eff}} \propto c_-H(6) + c_+H(\bar{15}) \), since the QCD calculation at the scale \(\mu = 1 \) GeV leads to \((c_+, c_-) = (0.76, 1.78)\) in the naive dimensional regularization (NDR) scheme \cite{27, 28}, the ratio of \((c_-/c_+)^2 \simeq 0.17\) indicates the suppression of \(H(\bar{15}) \). We hence ignore \((\bar{a}_{4, 5, \ldots, \tau, h'})\).

On the other hand, \((\bar{a}_{1, 2, 3, h})\) from \(H(6) \) are kept for the fit, represented as
\[
\bar{a}_1, \bar{a}_2 e^{i\delta_2}, \bar{a}_3 e^{i\delta_3}, \bar{h} e^{i\delta_h},
\]
with the phases \(\delta_{a_{2, 3, h}}, \) and \(\bar{a}_1\) set to be relatively real.

III. NUMERICAL ANALYSIS

For the numerical analysis, we collect (the ratios of) the branching fractions for the observed \(B_c \to BV \) decays in Table II where \(B(\Xi_c^+ \to pK^{*0}, \Sigma^0, \Sigma^+ K^{*0}) \) are in fact measured to be relative to \(B(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) \) \cite{1, 29}, recombined as \(R_{1,2}(\Xi_c^+) \). We obtain \(B(\Xi_c^0 \to \Lambda^0) \) from \(B(\Xi_c^0 \to \Lambda^0 \phi)/B(\Xi_c^0 \to \Xi^- \pi^+) \) \cite{1}, with the input of \(B(\Xi_c^0 \to \Xi^- \pi^+) \) measured by BELLE \cite{3}. In addition, the ratio of \(R(\Lambda_c^+) = (\Lambda_c^+ \to \Sigma^+ \rho^0)/B(\Lambda_c^+ \to \Sigma^+ \omega) \) comes from the data events in Ref. \cite{32}. Besides, \(s_c = 0.22453 \pm 0.00044 \) \cite{1} is the theoretical input for the CKM matrix elements. By using the equation of \(\bar{a}_1, \bar{a}_2 e^{i\delta_2}, \bar{a}_3 e^{i\delta_3}, \bar{h} e^{i\delta_h} \),

\[
\chi^2 = \sum_i \left(\frac{B_{\text{th}}^i - B_{\text{ex}}^i}{\sigma_{\text{ex}}^i} \right)^2 + \sum_j \left(\frac{R_{\text{th}}^j - R_{\text{ex}}^j}{\sigma_{\text{ex}}^j} \right)^2,
\]
we are able to obtain the minimum \(\chi^2 \) value, such that the \(SU(3)_f \) parameters can be extracted with the best fit. Note that \(B'(R^j) \) represents (the ratio of) the branching fraction, with the subscript \(\text{th} (\text{ex}) \) denoting the theoretical (experimental) input, while \(\sigma_{\text{th}}^{(j)}(\sigma_{\text{ex}}^{(j)}) \) stands for the experimental error. As the inputs in Eq. (10), \(B(R)_{\text{th}} \) come from the \(T \)-amps in Table II while \(B(R)_{\text{ex}} \) and \(\sigma_{\text{ex}} \) the data points in Table II. Subsequently, the global fit gives
TABLE II. The (ratios of) branching fractions of the $B_c \to B_n V$ decays. In column 2, the numbers are calculated with the extracted parameters, in comparison with the initial experimental inputs in column 3.

(Ratio of) Branching fraction	This work	Data
$10^2 B(\Lambda_c^+ \to pK^{*0})$	1.9 ± 0.3	1.94 ± 0.27 [1]
$10^2 B(\Lambda_c^+ \to \Sigma^+ \omega)$	1.6 ± 0.7	1.69 ± 0.21 [1]
$10^3 B(\Lambda_c^+ \to \Sigma^+ \phi)$	3.9 ± 0.6	3.8 ± 0.6 [1]
$R(\Lambda_c^+)$	0.4 ± 0.3	0.3 ± 0.2 [32]
$10^3 B(\Lambda_c^+ \to \Sigma^+ K^{*0})$	2.3 ± 0.6	3.4 ± 1.0 [1]
$10^4 B(\Lambda_c^+ \to p\omega)$	11.4 ± 5.4	9.4 ± 3.9 [33]
$10^4 B(\Lambda_c^+ \to p\phi)$	10.4 ± 2.1	10.6 ± 1.4 [1]
$10^4 B(\Xi_c^0 \to \Lambda^0 \phi)$	8.4 ± 3.9	6.1 ± 2.2 [1, 3]
$R_1(\Xi_c^0)$	(1.6 ± 0.2)s^2_c	(2.8 ± 1.0)s^2_c [1]
$R_2(\Xi_c^0)$	(0.4 ± 0.1)s^2_c	(1.7 ± 1.2)s^2_c [1, 29]

$(\bar{a}_1, \bar{a}_2, \bar{a}_3, \bar{h}) = (0.22 \pm 0.02, 0.23 \pm 0.04, 0.39 \pm 0.05, 0.16 \pm 0.01) \text{ GeV}^3$,

$(\delta a_2, \delta a_3, \delta \bar{h}) = (-85.5 \pm 13.0, 78.4 \pm 8.8, 99.3 \pm 7.7) \degree$,

$\chi^2/n.d.f = 6.3/3 = 2.1$,

where n.d.f represents the number of the degree of freedom. With the fit results in Eq. (11), we calculate the branching ratios, $R(\Lambda_c^+)$ and $R_{1,2}(\Xi_c^0)$ to be compared to their data inputs in Table III. Moreover, we predict the branching fractions for the $B_c \to B_n V$ decays, given in Table III.

IV. DISCUSSIONS AND CONCLUSIONS

With $\chi^2/n.d.f \simeq 2$ to present a reasonable fit, the approach based the $SU(3)_f$ symmetry is demonstrated to be reliable for $B_c \to B_n V$. Besides, our prediction

$$B(\Lambda_c^+ \to \Sigma^+ \rho^0, \Lambda^0 \rho^+) = (0.61 \pm 0.46, 0.74 \pm 0.34)\%,$$

agrees with the experimental upper bounds of 1.7%, respectively [1]. We also find

$$B(\Lambda_c^+ \to \Xi^0 K^{*+}, \Sigma^0 K^{*+}, \Lambda^0 K^{*+}) = (8.7 \pm 2.7, 1.2 \pm 0.3, 2.0 \pm 0.5) \times 10^{-3},$$

(13)
TABLE III. The numerical results of the $B_c \to B_n V$ decays, with $B_{B_n V} \equiv B(B_c \to B_n V)$.

Ξ_c^0	Ξ_c^0	Ξ_c^0	Ξ_c^0		
$10^3 B_{\Sigma^+ K^0}^+$	9.3 ± 2.9	$10^4 B_{\Sigma^+ \rho^{-}}^+$	5.6 ± 1.8	$10^5 B_{p\rho^{-}}^+$	3.6 ± 1.1
$10^3 B_{\Sigma^0 K^+}^+$	2.7 ± 2.2	$10^4 B_{\Sigma^- \rho^{+}}^+$	5.3 ± 0.7	$10^5 B_{\Sigma^- K^{++}}^+$	2.5 ± 0.3
$10^3 B_{\Xi^0 \rho}^+$	1.4 ± 0.4	$10^5 B_{\Sigma^0 \rho}^+$	8.2 ± 6.7	$10^5 B_{\Sigma^0 K^+}^+$	1.3 ± 0.2
$10^3 B_{\Xi^0 \phi}^+$	1.0 ± 8.6	$10^4 B_{\Sigma^0 \omega}^+$	1.0 ± 0.8	$10^5 B_{n\rho}^+$	1.8 ± 0.6
$10^4 B_{\Xi^0 \phi}^+$	1.5 ± 7.1	$10^4 B_{\Sigma^0 \phi}^+$	2.4 ± 1.1	$10^5 B_{n\omega}^+$	9.9 ± 1.6
$10^3 B_{\Xi^- \rho}^+$	8.6 ± 1.2	$10^4 B_{\Xi^- K^{++}}^+$	3.9 ± 0.5	$10^5 B_{n\phi}^+$	3.7 ± 1.8
$10^3 B_{\Lambda^0 K^+}^+$	4.6 ± 2.1	$10^4 B_{\Xi^0 K^{+0}}^+$	6.3 ± 2.0	$10^4 B_{\Lambda^0 K^{0+}}^+$	8.1 ± 7.2
$10^4 B_{pK^-}^+$	3.0 ± 2.2	$10^4 B_{nK^+}^+$	4.5 ± 3.4	$10^4 B_{n\rho}^+$	9.2 ± 2.2
$10^4 B_{\Lambda^0 \rho}^+$	0.1 ± 0.5	$10^4 B_{\Lambda^0 \omega}^+$	0.1 ± 0.1		

Ξ_c^+	Ξ_c^+	Ξ_c^+			
$10^2 B_{\Sigma^+ K^0}^+$	10.1 ± 2.9	$10^3 B_{\Sigma^0 \rho}^+$	1.9 ± 0.6	$10^5 B_{\Sigma^0 K^{++}}^+$	5.0 ± 0.7
$10^2 B_{\Xi^0 \rho}^+$	9.9 ± 2.9	$10^3 B_{\Sigma^+ \rho}^+$	1.9 ± 0.6	$10^5 B_{\Sigma^+ K^{+0}}^+$	9.9 ± 1.3
$10^4 B_{\Sigma^+ \omega}^+$	8.2 ± 5.9	$10^5 B_{p\rho}^+$	7.1 ± 2.2		
$10^3 B_{\Sigma^+ \phi}^+$	1.9 ± 0.9	$10^4 B_{p\omega}^+$	3.9 ± 0.6		
$10^4 B_{\Xi^0 K^{++}}^+$	9.6 ± 7.9	$10^4 B_{p\phi}^+$	1.5 ± 0.7		
$10^3 B_{pK^+}^+$	7.8 ± 2.2	$10^4 B_{n\rho}^+$	1.4 ± 0.4		
$10^3 B_{\Lambda^0 \rho}^+$	7.1 ± 1.7	$10^5 B_{\Lambda^0 K^{++}}^+$	3.2 ± 2.9		

Λ_c^+	Λ_c^+	Λ_c^+			
$10^2 B_{\Sigma^0 \rho}^+$	6.1 ± 4.6	$10^4 B_{p\rho}^+$	3.5 ± 2.9	$10^4 B_{pK^+}^+$	1.6 ± 0.5
$10^2 B_{\Sigma^+ \rho}^+$	6.1 ± 4.6	$10^4 B_{n\rho}^+$	7.0 ± 5.8	$10^4 B_{nK^+}^+$	1.6 ± 0.5
$10^2 B_{\Xi^0 K^{++}}^+$	8.7 ± 2.7	$10^3 B_{\Sigma^0 K^{++}}^+$	1.2 ± 0.3		
$10^2 B_{\Lambda^0 \rho}^+$	7.4 ± 3.4	$10^3 B_{\Lambda^0 K^{++}}^+$	2.0 ± 0.5		

To be compatible with the pseudo-scalar counterparts. According to Table II, we obtain

\[
T(\Lambda_c^+ \to \Sigma^0 \rho^+) + T(\Lambda_c^+ \to \Sigma^+ \rho^0) = 0,
\]

\[
T(\Lambda_c^+ \to \Sigma^+ K^{*0}) - \sqrt{2}T(\Lambda_c^+ \to \Sigma^0 K^{*+}) = -2a_5 s_c,
\]

8
\[T(\Lambda_c^+ \rightarrow n\rho^+) - \sqrt{2}T(\Lambda_c^+ \rightarrow p\rho^0) = -(\bar{a}_4 + \bar{a}_6)s_c, \]
\[T(\Lambda_c^+ \rightarrow nK^{*+}) + T(\Lambda_c^+ \rightarrow pK^{*0}) = -2(\bar{a}_4 + \bar{a}_5)s_c^2. \quad (14) \]

By ignoring the parameters in \(H(15) \), we obtain
\[\mathcal{B}(\Lambda_c^+ \rightarrow \Sigma^0\rho^+; \Sigma^+\rho^0) = (6.1 \pm 4.6) \times 10^{-3}, \]
\[\mathcal{B}(\Lambda_c^+ \rightarrow p\rho^0) = \frac{1}{2}\mathcal{B}(\Lambda_c^+ \rightarrow n\rho^+) = (3.5 \pm 2.9) \times 10^{-4}, \]
\[\mathcal{B}(\Lambda_c^+ \rightarrow nK^{*+}, pK^{*0}) = (1.6 \pm 0.5) \times 10^{-4}, \quad (15) \]

which respect the isospin symmetry. We also get
\[\frac{1}{\sqrt{2}}T(\Lambda_c^+ \rightarrow pK^{*0}) - \frac{1}{s_c}T(\Lambda_c^+ \rightarrow p\rho^0) = T(\Lambda_c^+ \rightarrow \Sigma^0\rho^+), \]
\[\frac{1}{\sqrt{2}}T(\Lambda_c^+ \rightarrow pK^{*0}) + \frac{1}{s_c}T(\Lambda_c^+ \rightarrow p\rho^0) = \sqrt{3}T(\Lambda_c^+ \rightarrow \Lambda^0\rho^+), \quad (16) \]

which lead to
\[\mathcal{B}(\Lambda_c^+ \rightarrow p\rho^0) \simeq \frac{s_c^2}{2}[3.6\mathcal{B}(\Lambda_c^+ \rightarrow \Lambda^0\rho^+) + 1.3\mathcal{B}(\Lambda_c^+ \rightarrow \Sigma^0\rho^+) - 1.1\mathcal{B}(\Lambda_c^+ \rightarrow p\bar{K}^{*0})], \quad (17) \]

where the pre-factors (3.6,1.3,1.1) have taken into account the differences for \(|\bar{p}_{\text{cm}}| \) in Eq. (8).

It is interesting to note that the \(\Lambda_c^+ \rightarrow p\pi^0 \) decay has a similar relation to that in Eq. (17), where \((\rho, \bar{K}^{*0}) \) are replaced by \((\pi, \bar{K}^0) \). However, the relation for \(\Lambda_c^+ \rightarrow p\pi^0 \) causes \(\mathcal{B}(\Lambda_c^+ \rightarrow p\pi^0) \simeq 5 \times 10^{-4} \), disapproved by the data [1]. This indicates that, even though the ignoring of \(H(15) \) is viable, the possible interferences between \(H(6) \) and \(H(15) \) might give sizeable contributions to some decay modes [25]. In this work, since the fit still accommodates the data, it is not clear which of the \(\Lambda_c^+ \rightarrow B_n V \) decays receives sizeable interferences between \(H(6) \) and \(H(15) \). Like the \(\mathcal{B}(\Lambda_c^+ \rightarrow p\pi^0) \) case, the precise measurement of \(\mathcal{B}(\Lambda_c^+ \rightarrow p\rho^0) \) can test the ignoring of \(H(15) \). For the \(\Xi_c^+ \) decays, we obtain
\[B(\Xi_c^+ \rightarrow \Sigma^+\bar{K}^{*0}, \Xi^0\rho^+) = (10.1 \pm 2.9, 9.9 \pm 2.9) \times 10^{-2}, \]
\[B(\Xi_c^+ \rightarrow p\bar{K}^{*0}, \Sigma^+\phi) = (7.8 \pm 2.2, 1.9 \pm 0.9) \times 10^{-3}. \quad (18) \]

With \(f_{\tau_{B_c}} \equiv \tau_{\Xi_c^+}/\tau_{\Lambda_c^+} \simeq 2.2, B(\Xi_c^+ \rightarrow \Sigma^+\bar{K}^{*0}, \Xi^0\rho^+) \simeq (2 - 4)f_{\tau_{B_c}} \mathcal{B}(\Lambda_c^+ \rightarrow p\bar{K}^{*0}) \) is found to be in accordance with \(|\bar{a}_3|^2 \simeq (2 - 4)|\bar{a}_1|^2 \), which can be tested by more accurate measurements.

By means of \(\mathcal{B}(B_c \rightarrow B_n V, V \rightarrow MM') = \mathcal{B}(B_c \rightarrow B_n V)\mathcal{B}(V \rightarrow MM') \), the resonant contribution to the total \(\mathcal{B}(B_c \rightarrow B_n MM') \) can be investigated, where \(MM' \) from the
vector meson decay are in the P-wave state. On the other hand, the theoretical study of $B_c \to B_n M M'$ needs $M M'$ to be mainly in the S-wave state [4]. Using $\mathcal{B}(\rho^0(+) \to \pi^+\pi^-(0)) \simeq 100\%$ [1] and the predictions for $\mathcal{B}(\Lambda_c^+ \to \Sigma \rho, \Lambda^0 \rho^+)$, we obtain

$$\begin{align*}
\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \rho^0, \rho^0 \to \pi^+\pi^-) &= (6.1 \pm 4.6) \times 10^{-3}, \\
\mathcal{B}(\Lambda_c^+ \to \Sigma^0 \rho^+, \rho^+ \to \pi^+\pi^0) &= (6.1 \pm 4.6) \times 10^{-3}, \\
\mathcal{B}(\Lambda_c^+ \to \Lambda^0 \rho^+, \rho^+ \to \pi^+\pi^0) &= (7.4 \pm 3.4) \times 10^{-3},
\end{align*}$$

which are within the total branching ratios of $(4.42 \pm 0.28, 2.2 \pm 0.8, 7.0 \pm 0.4) \times 10^{-2}$ [1], respectively, showing that the P-wave contributions from $V \to M M'$ are indeed minor to these decays. By putting $\mathcal{B}(\Xi_c^+ \to p\phi) = (1.5 \pm 0.7) \times 10^{-4}$ into the measured ratio of $\mathcal{B}(\Xi_c^+ \to p\phi)/\mathcal{B}(\Xi_c^+ \to pK^-\pi^+) = (19.8 \pm 0.7 \pm 0.9 \pm 0.2) \times 10^{-3}$ [3], we obtain $\mathcal{B}(\Xi_c^+ \to pK^-\pi^+) = (0.8 \pm 0.4)\%$, which is a little smaller than the predicted value of $(1.7 \pm 0.5)\%$ [4].

In sum, within the framework of the $SU(3)_f$ symmetry, we have studied the $B_c \to B_n V$ decays. We have predicted $\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \rho^0, \Lambda^0 \rho^+) = (0.61 \pm 0.46, 0.74 \pm 0.34)\%$, in agreement with the experimental upper bounds of $(1.7, 6)\%$, respectively. It has also been shown that $\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^{*+}, \Sigma^0 K^{*+}, \Lambda^0 K^{*+}) = (8.7 \pm 2.7, 1.2 \pm 0.3, 2.0 \pm 0.5) \times 10^{-3}$. For the Ξ_c^+ decays, we have obtained $\mathcal{B}(\Xi_c^+ \to \Sigma^+ K^{*0}, \Xi^0 \rho^+) = (10.1 \pm 2.9, 9.9 \pm 2.9) \times 10^{-2}, \mathcal{B}(\Xi_c^+ \to pK^{*0}, \Sigma^+ \phi) = (7.8 \pm 2.2, 1.9 \pm 0.9) \times 10^{-3}$ and $\mathcal{B}(\Xi_c^+ \to p\phi) = (1.5 \pm 0.7) \times 10^{-4}$. The predicted $\mathcal{B}(B_c \to B_n V)$ can be compared to the future measurements by BESIII, BELLE II and LHCb.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation of China (11675030).

[1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D **98**, 030001 (2018).
[2] M. Ablikim et al. [BESIII Collaboration], [arXiv:1811.08028] [hep-ex].
[3] Y.B. Li et al. [Belle Collaboration], [arXiv:1811.09738] [hep-ex].
[4] C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, [arXiv:1810.01079] [hep-ph].
[5] R. Aaij et al. [LHCb Collaboration], [arXiv:1901.06222] [hep-ex].
[6] A. Ali, G. Kramer and C.D. Lu, Phys. Rev. D **58**, 094009 (1998).
[7] C.Q. Geng, Y.K. Hsiao and J.N. Ng, Phys. Rev. Lett. 98, 011801 (2007).
[8] Y.K. Hsiao and C.Q. Geng, Phys. Rev. D 91, 116007 (2015).
[9] H.J. Zhao, Y.K. Hsiao and Y. Yao, arXiv:1811.07265 [hep-ph].
[10] X.G. He, Y.K. Hsiao, J.Q. Shi, Y.L. Wu and Y.F. Zhou, Phys. Rev. D 64, 034002 (2001).
[11] H.K. Fu, X.G. He and Y.K. Hsiao, Phys. Rev. D 69, 074002 (2004).
[12] Y.K. Hsiao, C.F. Chang and X.G. He, Phys. Rev. D 93, 114002 (2016).
[13] X.G. He and G.N. Li, Phys. Lett. B 750, 82 (2015).
[14] M. He, X.G. He and G.N. Li, Phys. Rev. D 92, 036010 (2015).
[15] M.J. Savage and R.P. Springer, Phys. Rev. D 42, 1527 (1990).
[16] M.J. Savage, Phys. Lett. B 257, 414 (1991).
[17] G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett. 57B, 277 (1975).
[18] X.G. He, Y.J. Shi and W. Wang, arXiv:1811.03480 [hep-ph].
[19] C.D. Lu, W. Wang and F.S. Yu, Phys. Rev. D 93, 056008 (2016).
[20] W. Wang, Z.P. Xing and J. Xu, Eur. Phys. J. C 77, 800 (2017).
[21] D. Wang, P.F. Guo, W.H. Long and F.S. Yu, JHEP 1803, 066 (2018).
[22] C.Q. Geng, Y.K. Hsiao, Y.H. Lin and L.L. Liu, Phys. Lett. B 776, 265 (2018).
[23] C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, Phys. Rev. D 97, 073006 (2018).
[24] C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, Eur. Phys. J. C 78, 593 (2018).
[25] C.Q. Geng, C.W. Liu and T.H. Tsai, Phys. Lett. B 790, 225 (2019).
[26] A.J. Buras, hep-ph/9806471.
[27] S. Fajfer, P. Singer and J. Zupan, Eur. Phys. J. C 27, 201 (2003).
[28] H.n. Li, C.D. Lu and F.S. Yu, Phys. Rev. D 86, 036012 (2012).
[29] J.M. Link et al. [FOCUS Collaboration], Phys. Lett. B 571, 139 (2003).
[30] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 97, 091101 (2018).
[31] M. Ablikim et al. [BESIII Collaboration], Phys. Lett. B 783, 200 (2018).
[32] Y. Kubota et al. [CLEO Collaboration], Phys. Rev. Lett. 71, 3255 (1993).
[33] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 97, 091101 (2018).
[34] D. Wang, arXiv:1901.01776 [hep-ph].