Intelligent Bayesian regularization networks for bio-convective nanofluid flow model involving gyro-tactic organisms with viscous dissipation, stratification and heat immersion

Saeed Ehsan Awana, Muhammad Asif Zahoor Raja, Muhammad Awais and Chi-Min Shu

Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock, Pakistan; Future Technology Research Center, National Yunlin University of Science and Technology, Douliou, Taiwan, ROC; Department of Mathematics, COMSATS University Islamabad, Attock, Pakistan; Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan, ROC

ABSTRACT

In the current study, a novel intelligent numerical computing paradigm based upon the foundation of the artificial neural networks legacy involving the Bayesian regularization (ANN-BR) approach has been implemented for the investigation of the non-uniform heat preoccupation process with the bio-convective flow dynamics of nanomaterial involving gyro-tactic microorganisms. The designed bio-convective stratified nanofluid flow (BCSNF) model initially represented by a system of PDEs is transformed into nonlinear ODEs by exploring appropriate transformations. The reference dataset for the BCSNF model was generated by the Adams numerical method for six scenarios by variation of the magnetic number, Brownian motion parameter, Prandtl number, bio-convection Lewis number, thermophoretic parameter, and bio-convection Peclet number. The approximate solutions were determined with 5–7 decimal places of accuracy and interpreted for the BCSNF model by the testing, training, and validation processes of the designed ANN-BR scheme. To check the efficiency of the introduced ANN-BR method, absolute error analysis, histogram studies, regression indices, and mean squared error (MSE) based figures of merit were used exhaustively to solve the variants of the BCSNF model involving gyro-tactic microorganisms with viscous dissipation, stratification, and heat immersion to study the influence of prominent parameters on the velocity, temperature, concentration, and motile density profiles.

Nomenclature

Symbol	Description
V	Velocity profile (ms⁻¹)
u	Velocity component in the x-direction (m s⁻¹)
v	Velocity component in the y-direction (m s⁻¹)
w	Velocity component in the z-direction (m s⁻¹)
(x, y, z)	Cartesian coordinates
Ec	Eckert number
T, C	Temperature (K) and concentration (M)
Tₐ, Cₐ	Ambient temperature (K) and ambient concentration (M)
ρf	Nanofluid density (kg m⁻³)
ρm	Microorganism density (kg m⁻³)
g	Gravitational angle
q	Non uniform heat generation/absorption
Dm	Microorganism motile density
DB	Brownian diffusion coefficient (m² s⁻¹)
DT	Thermophoresis diffusion coefficient (m² s⁻¹)
f	Dimensionless velocity component
C_f	Skin friction coefficient
Pr	Prandtl number
Nb	Dimensionless Brownian motion parameter
Nt	Dimensionless thermophoresis parameter
Lb	Bio-convection Lewis number
M	Hartmann number
Nr	Buoyancy ratio parameter
D	Diffusion coefficient (m² s⁻¹)
Tw	Wall temperature (K)
Cw	Wall concentration (M)
ρ	Density (kg m⁻³)
v	Kinematic viscosity (m² s⁻¹)
θ	Dimensionless parameter
φ	Dimensionless concentration
α	Inclination angle
α₁	Thermal diffusivity (m² s⁻¹)
η	Dimensionless parameter
ξ	Motile density
Rb	Bio-convection Rayleigh number
S	Thermal stratification

CONTACT Muhammad Asif Zahoor Raja rajamaz@yuntech.edu.tw

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Mixed convection

Schmidt number

Bio-convection Peclet number

Microorganism concentration

Motile density

1. Introduction

Commercial products including bio-fertilizers, biofuel, etc. are prepared industrially by utilizing microorganisms, e.g. algae, cyanobacteria, and eukaryotic microalgae, that have metabolic characteristics and are useful in biofuel manufacturing (Bruzaite et al., 2020; Majid et al., 2018; Qin et al., 2020; Sartaj et al., 2020). Bio-nanoconvection dynamics involving microorganisms have tremendous medical applications and are of significant importance as a tactic in removing/reducing/controlling microorganism activities in human health (Basha & Sivaraj, 2021; Bhatti, Marin, et al., 2020; Waqas et al., 2019). Moreover, motile microorganisms have been extensively utilized by industry to prepare physical items such as biofuel, ethanol, hydrogen gas, biodiesel, etc. (Khan et al., 2017; Khan, Raja, et al., 2020). In view of promising applications and demand for biofluids, researchers and scientists are engaged in analyzing different problems involving microorganisms with bio-convective effects due to gyro-tactic microorganisms. They investigated flow over a convective wall. Their analysis found that self-propelled microorganisms present resistance to nanomaterial accumulation. Convective boundary layer fluid dynamics over a horizontal flat wall entrenched in a porous medium occupied by nanomaterial involving gyro-tactic microorganisms has been analyzed by Rao et al. (2021). The authors’ analysis found that bio-convexion constraints considerably affect the promulgation rate of motile microorganisms. Hydromagnetic flow of nanofluid involving gyro-tactic microorganisms in a boundary layer region past a vertical wall with slippage effects have been investigated by Kumaraswamy Naidu et al. (2021). Rashad & Nabwey (2019) analyzed hydromagnetic nanomaterial rheology with bio-convective effects due to gyro-tactic microorganisms. They investigated flow over a convective wall. Zhang et al. (2020) investigated the bio-convexion phenomenon involving oxytactic microorganisms in the rheology of nanomaterial. The authors analyzed a Riga plate incorporating Darcy–Brinkman–Forchheimer medium properties. A study of entropy generation in hydromagnetic radiative nanomaterial rheology involving gyro-tactic microparticles has been presented by Sohail et al. (2020). They considered the effects of chemical reaction and nonlinear thermal radiation. Heat and mass transport properties in bio-convexion nanomaterial rheology have been studied by Elanchezhiyan et al. (2020). They incorporated the effects of convective mass flux phenomena. Rehman et al. (2018) analyzed motile bio-convexion characteristics in hydromagnetic stratified nanomaterial. Awais, Awan, Raja, Parveen, et al. (2021) explored variable transport properties in the analysis of simultaneous heat and mass transfer in hydromagnetic bio-convective nanomaterial rheology. They discussed the properties of gyro-tactic microorganisms and performed computational numerical analysis. The properties of bio-convexion analysis of nanomaterial rheology with heat immersion effects have been presented by Awais, Awan, Raja, and Shoaib (2021). They evaluated stratification and viscous dissipation phenomena. Recent investigations related to gyro-tactic organism characteristics in bio-convective nanofluid flow with stratification can be found in Alhussain et al. (2021), Arafa et al. (2021), Chu et al. (2021), Haq et al. (2020), Khan, Nadeem, et al. (2020), Majeed et al. (2020) and Rana et al. (2020) and the references cited therein. All these techniques introduced for the analysis of gyro-tactic organism phenomena in bio-convective nanofluid flow models involve deterministic analytical and numerical solvers, while artificial intelligence (AI) methodologies based on stochastic numerical solvers look promising for the investigation of such systems.

The introduction of AI methods for the stochastic numerical analysis and precise detection of indent arrangements of these complex problems has been reported exhaustively (Khan et al., 2020; Peng et al., 2021). Recently, AI methods involving ‘learning’ and ‘generalization’ through artificial neural networks (ANNs), i.e. mathematical models inspired by human genetic processes, have been presented. In the past few years, researchers and scientists have utilized ANNs as modern AI techniques for analyzing several industrial and technical problems in the fields of weather forecasting (Andelković and Bajatović, 2020), nonlinear transport models (Çolak, 2021), nanofluid heat transfer management (Awais, Bibi, et al., 2021; Shoaib et al., 2021; Uddin et al., 2021), and medicine (Liu et al., 2021; Yang & Yu, 2021), as well as heuristic computational analysis with optimized cubic splines for nonlinear Thomas–Fermi systems (Ahmad et al., 2020). Mehmood et al. (2019) investigated integrated computing methodology for heat transfer analysis in the rheology of micropolar fluids. A new stochastic methodology for nonlinear Painlevé II equations arising in some applications of random matrix theory was presented by Raja et al. (2018). Neuro-evolutionary computing methodology for Painlevé II
equations with applications in nonlinear optics was analyzed by Ahmad et al. (2018). A fractional order cuckoo search algorithm for hyper-chaotic financial systems was presented by Yousri and Mirjalili (2020). Kang (2020) presented a recurrent neural network to predict fault diagnosis in chemical processes. Parveen et al. (2020) investigated the pressure rise phenomenon and heat transfer for hybrid nanomaterial rheology via ANNs. All these valuable contributions have inspired or motivated authors to investigate an AI based computing paradigm for solving fluid dynamics problems of paramount interest.

In the current investigation, our aim is to venture further into the regime of ANN applications. The contributions and innovative insights of the present study are summarized as follows.

- A novel AI based numerical computing application premised on artificial neural networks supported by a Bayesian regularization (ANN-BR) approach is presented to investigate the non-uniform heat absorption process and bio-convective flow dynamics of nanomaterial involving gyro-tactic microorganisms.
- The reference dataset for the BCSNF model is generated by exploiting the Adams numerical technique in Mathematica software for six scenarios by varying the magnetic number, Brownian motion parameter, Prandtl number, bio-convection Lewis number, thermophoretic parameter, and bio-convection Peclet number.
- Approximate solutions are calculated for the designed BCSN system by the ANN-BR testing, training, and validation process, and results are consistently found to be in good agreement with standard solutions.
- To check the efficiency of the designed ANN-BR, regression analyses, histogram studies, and mean squared error indices are used to analyze the solution of the BCSNF model effectively.
- Furthermore, the influence of prominent system model parameters on the velocity, temperature, concentration, and motile density profile is also examined and exhaustively interpreted for different physical scenarios.
- Ease in implementation, simplicity of the concept, provision of continuous solutions, reliability, stability, expendability, and convergence are noticeable characteristics of the proposed ANN-BR computing paradigm.

2. System model

Consider the flow dynamics of gyro-tactic microbes in a stratified bio-convective nanofluid as presented in

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \]
(1)

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho_f}[(\rho_p - \rho_f)g(C - C_{\infty})] - \frac{1}{\rho_f}[(n - n_{\infty})g\gamma(\rho_m - \rho_f)] + \frac{\mu}{\rho_f} \frac{\partial^2 u}{\partial y^2} - \frac{\sigma}{\rho_f} B_0^2 \sin^2(\alpha) u + (1 - C_{\infty}) \beta g(T - T_{\infty}) \]
(2)

\[u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} + \frac{\mu}{\rho_c \rho_f} (\frac{\partial u}{\partial y})^2 + \frac{\sigma}{\rho_c} B_0^2 \sin^2(\alpha) u^2 + \frac{\bar{q}}{\rho_c \rho_f} \]
(3)

\[u \frac{\partial n}{\partial x} + v \frac{\partial n}{\partial y} + \frac{b W_c}{C_w - C_0} \left[\frac{\partial}{\partial y} \left(n \frac{\partial C}{\partial y} \right) \right] = D_m \frac{\partial^2 n}{\partial y^2} \]
(4)

Note that u and v are the velocities along the x- and y-directions. Moreover ρ_f, ρ_m, T, α, and α are the nanofluid density, microorganism mass per unit volume ratio, temperature, thermal diffusivity, and inclination angle of the wall, respectively. Furthermore, D_B, D_T, D_m, and \bar{q} represent the Brownian motion, thermophoresis, microorganisms motile density, non-uniform heat generation ($\bar{q} > 0$) or absorption ($\bar{q} < 0$), respectively. The
mathematical relation for \tilde{q} is

$$\tilde{q} = \frac{k u_x}{x y} \left[A (T_s - T_\infty) f' + B (T - T_\infty) \right]$$

The wall properties in the presence of stratification are expressed by as (Awais et al. (2021a))

$$u = \begin{cases}
U_s = \alpha x, & v = 0, \\
T = T_s = T_0 + b_1 x, \\
C = C_0 + d_1 x, & \text{at } y = 0 \\
n = n_s = n_0 + \epsilon_1 x \\
0, & T \to T_\infty, \\
C \to C_\infty, & n = n_\infty \quad \text{as } y \to \infty
\end{cases}$$

Invoking the following variables

$$\eta = \sqrt{\frac{a}{v y}}, \quad \psi = \sqrt{\nu x f} (\eta), \quad \theta(\eta) = \frac{T - T_\infty}{T_s - T_0}$$

$$\phi(\eta) = \frac{C - C_\infty}{C_s - C_0}, \quad \xi(\eta) = \frac{n - n_\infty}{n_s - n_0}$$

Equations (2)–(7) become (Awais et al. (2021a))

$$\frac{d^3 f}{d \eta^3} + f \frac{d^2 f}{d \eta^2} - M^3 \sin^2(\alpha) \frac{df}{d \eta} - \left(\frac{df}{d \eta} \right)^2 + \lambda (\theta - N_\tau \phi - Rb \xi) = 0$$

$$\frac{d^2 \theta}{d \eta^2} + N_b \frac{d \phi}{d \eta} \frac{d \theta}{d \eta} + N_t \left(\frac{d \theta}{d \eta} \right)^2$$

$$+ M^2 \sin^2(\alpha) \left(\frac{df}{d \eta} \right)^2 + A_1 \frac{df}{d \eta}$$

$$+ A_2 \theta + Pr \left(f \frac{d \theta}{d \eta} + Ec \left(\frac{d^2 f}{d \eta^2} \right)^2 - S \frac{df}{d \eta} - \frac{df}{d \eta} \right)$$

$$= \frac{df}{d \eta}$$

$$\frac{d^2 \varphi}{d \eta^2} + Sc \left(f \frac{d \varphi}{d \eta} - \frac{df}{d \eta} \varphi - Q \frac{df}{d \eta} \right) + \frac{N_t}{N_b} \frac{d^2 \theta}{d \eta^2} = 0$$

$$\frac{d^2 \xi}{d \eta^2} + Lb \left(f \frac{d \xi}{d \eta} - \frac{df}{d \eta} \xi - B \frac{df}{d \eta} \right)$$

$$- Pe \left[\frac{d^2 \varphi}{d \eta^2} (\xi + \Omega) + \frac{df}{d \eta} \frac{d \xi}{d \eta} \right] = 0$$

along with the wall properties

$$f(0) = 0, \quad \theta(0) = 1 - S, \quad \frac{df}{d \eta}(0) = 1, \quad \varphi(0) = 1 - Q,$$

$$\xi(0) = 1 - B \frac{df}{d \eta}(\infty) = \theta(\infty) = \varphi(\infty) = \xi(\infty) = 0$$

3. Solution methodology

The necessary description of the solution methodology adopted for the BCSNF model as represented with Equations (9)–(13) is presented here based on ANNs backpropagated with Bayesian regularization. The overall work flow of the solution methodology is presented in Figure 2, the layer structures are portrayed in Figure 3, and a thorough development of the single neuron model is shown in Figure 4. The neural networks environment in MATLAB software is exploited via ‘nftool’ for the execution of the developed scheme based on ANNs backpropagated with Bayesian regularization, i.e. ANN-BR. The solution procedure comprises a significant dataset description and an execution process for executing the proposed ANN-BR.

The mathematical expressions for bio-convective stratified nanofluid flow (BCSNF) model (9–12) using numerical values for scenario 5 of case 3 can be expressed as follows:

$$\frac{d^3 f}{d \eta^3} + f \frac{d^2 f}{d \eta^2} - 0.75 \frac{df}{d \eta} - \left(\frac{df}{d \eta} \right)^2 + 0.5 \theta$$

$$- 0.25 \varphi - 0.05 \xi = 0$$

$$\frac{d^2 \theta}{d \eta^2} + 0.5 \frac{d \varphi}{d \eta} \frac{d \theta}{d \eta} + 1.5 \left(\frac{d \theta}{d \eta} \right)^2 + 3 \left(\frac{df}{d \eta} \right)^2 + 0.4 \frac{df}{d \eta}$$

$$+ 0.5 \theta + f \frac{d \theta}{d \eta} + 0.1 \left(\frac{d^2 f}{d \eta^2} \right)^2 - 0.5 \frac{df}{d \eta} - \frac{df}{d \eta} = 0$$

$$\frac{d^2 \varphi}{d \eta^2} + 0.5 \left(f \frac{d \varphi}{d \eta} - \frac{df}{d \eta} \varphi - 0.5 \frac{df}{d \eta} \right) + 3.0 \frac{d^2 \theta}{d \eta^2} = 0$$

$$\frac{d^2 \xi}{d \eta^2} + 0.1 \left(f \frac{d \xi}{d \eta} - \frac{df}{d \eta} \xi - 0.5 \frac{df}{d \eta} \right) - 0.1 \left[\frac{d^2 \varphi}{d \eta^2} (\xi + 0.5) + \frac{df}{d \eta} \frac{d \xi}{d \eta} \right] = 0$$

along with the boundary conditions

$$f(0) = 0, \quad \theta(0) = 0, \quad \varphi(0) = \xi(0) = 0.5, \quad \frac{df}{d \eta}(0) = 1,$$

$$\frac{df}{d \eta}(\infty) = \theta(\infty) = \varphi(\infty) = \xi(\infty) = 0$$

In above equations, M, N_b, N_t, Sc, λ, α, N_r, Rb, and Pr represent the Hartman number, the Brownian motion index, the thermophoresis parameter, the Schmidt number, the mixed convective parameter, the inclination angle, the buoyancy ratio parameter, the bio-convection parameter, and the Prandtl number, respectively. Note
Figure 2. Workflow diagram of the proposed ANN-BR algorithm for solving the BCSNF model.

Figure 3. A mathematical equivalent representation of a neuron model in neural network methodology for the BCSNF model.
that $\lambda > 0$ represents assisting flow, $\lambda < 0$ indicates opposing flow and $\lambda = 0$ implies the forced convection effect. Moreover $S = b_2/b_1$, Ec, Lb, Pe, $\Omega = d_2/d_1$, $B = e_2/e_1$, respectively, represent the thermal stratification, the Eckert number, the bio-convection Lewis number, the bio-convection Peclet number, the concentration difference of microorganisms, the mass stratification number, and the motile density. Furthermore, A and B represent the heat generation and absorption phenomena. For non-uniform heat generation, $A > 0$ and $B > 0$, while for internal heat absorption, $A < 0$ and $B < 0$. These dimensionless quantities are expressed mathematically as follows:

$$M^2 = \frac{\sigma B_0^2}{\rho c}, \quad Sc = \frac{\nu}{D_B}, \quad N_b = \frac{\tau D_B (C_s - C_\infty)}{\nu}, \quad \lambda = \frac{Gr_x}{Re_x^2},$$

$$Gr_x = \frac{g_0 \beta_T (T_s - T_\infty) x^3}{\nu^2}, \quad Re_x = \frac{U_j x}{\nu},$$

$$N_i = \frac{\tau D_T (T_s - T_\infty)}{v T_\infty},$$

$$Pr = \frac{\nu}{a_m}, \quad Ec = \frac{U_i^2}{c_p (T_s - T_2)}, \quad Lb = \frac{\nu}{D_m}, \quad Pe = \frac{b W_c}{D_m}.$$

Similarly, mathematical expressions for all scenarios of all cases for the BCSNF model can be expressed in the same manner. The reference dataset of the proposed ANN-BR is generated through the Ademical numerical approach (Awais, Raja, et al., 2021; Awan et al., 2020, Awan, Awais, et al., 2021, Awan, Raja, et al., 2021; Qureshi et al., 2021; Ullah, Ali, et al., 2021, Ullah, Hayat, Alsaedi, et al., 2021) for inputs within the range of 0–3 having a time interval 0.05. For the generation of a reference dataset, the Mathematica software package was utilized through the built-in routine ‘NDSolve’ by varying the magnetic number, the Brownian motion parameter, the Prandtl number, the bio-convection Lewis number, the thermophoretic parameter, and the bio-convection Peclet number as represented in Table 1. The values of the physical parameters of interest in the system model, i.e. Equations (14)–(17) as tabulated in Table 1, are set with extreme care, detailed literature review, convergence, and stability analysis of the model for an inclusive and exhaustive description of the findings.

The reference datasets for the velocity profile, i.e. $f(\eta)$, $f'(\eta)$, and $f''(\eta)$, the temperature profile, i.e. $\theta(\eta)$ and $\theta'(\eta)$, the concentration profile $\varphi(\eta)$ and $\varphi'(\eta)$, and the motile density profile $\xi(\eta)$ and $\xi'(\eta)$ are generated for 61 inputs in which 75% of the data are utilized for training, 20% for testing, and 5% for validation of the proposed ANN-BR using a neural network, as shown in Figure 4.

4. Analysis and discussion of the results

The outcomes of the BCSNF model presented in Equations (9)–(13) through artificial numerical computation for the developed artificial neural networks backpropagated with Bayesian regularization are analyzed. The six different scenarios of the BCSNF model by varying the magnetic number, the Brownian motion parameter, the

Scenario	Case	M	N_b	Pr	Lb	N_i	Pe
1	1	0.5	0.5	1.0	0.1	0.5	0.1
2	1	1.0	0.5	1.0	0.1	0.5	0.1
3	1.5	0.5	1.0	0.1	0.5	0.1	0.1
4	2.0	0.5	1.0	0.1	0.5	0.1	0.1
5	1	1.0	0.1	1.0	0.1	0.5	0.1
6	1	1.0	0.1	1.0	0.1	0.5	0.1
3	1	1.0	0.5	0.5	0.1	0.5	0.1
2	1.0	0.5	1.0	0.1	0.5	0.1	0.1
3	1.0	0.5	1.5	0.1	0.5	0.1	0.1
4	1.0	0.5	2.0	0.1	0.5	0.1	0.1
1	1.0	0.5	1.0	0.1	0.5	0.1	0.1
2	1.0	0.5	1.0	0.4	0.5	0.1	0.1
3	1.0	0.5	1.0	0.7	0.5	0.1	0.1
4	1.0	0.5	1.0	1.0	0.5	0.1	0.1
5	1	1.0	0.5	1.0	0.1	0.5	0.1
6	1	1.0	0.5	1.0	0.1	0.5	0.1
3	1.0	0.5	1.0	0.1	0.5	0.1	0.1
4	1.0	0.5	1.0	0.1	0.5	0.1	0.1
1	1.0	0.5	1.0	0.1	0.5	0.1	0.1
2	1.0	0.5	1.0	0.1	0.5	0.1	0.1
3	1.0	0.5	1.5	0.1	0.5	0.1	0.1
4	1.0	0.5	2.0	0.1	0.5	0.1	0.1

Figure 4. Neural network architecture for solving the BCSNF model.
Prandtl number, the bio-convection Lewis number, the thermophoretic parameter, and the bio-convection Peclet number are formulated for four different cases for the velocity, temperature, concentration, and motile density profile of the BCSNF model as listed in Table 1.

The reference dataset for the velocity profile, i.e. \(f(\eta) \), \(f'(\eta) \), and \(f''(\eta) \), the temperature profile, i.e. \(\theta(\eta) \) and \(\theta'(\eta) \), the concentration profile \(\phi(\eta) \) and \(\phi'(\eta) \), and the motile density profile \(\xi(\eta) \) and \(\xi'(\eta) \) of the developed ANN-BR network as shown in Figure 1. The obtained dataset in terms of the velocity profile, i.e. \(f(\eta) \), \(f'(\eta) \), and \(f''(\eta) \), temperature profile, i.e. \(\theta(\eta) \) and \(\theta'(\eta) \), concentration profile \(\phi(\eta) \) and \(\phi'(\eta) \), and motile density profile \(\xi(\eta) \) and \(\xi'(\eta) \) are used later on as the reference outcome in the current study.

The ANN-BR executes the solution of the bio-convection nanofluid flow model by using the ‘nftool’ built-in command in MATLAB neural networks toolbox. The reference/standard datasets for velocity profile, i.e. \(f(\eta) \), \(f'(\eta) \), and \(f''(\eta) \), the temperature profile, i.e. \(\theta(\eta) \) and \(\theta'(\eta) \), the concentration profile \(\phi(\eta) \) and \(\phi'(\eta) \), and the motile density profile \(\xi(\eta) \) and \(\xi'(\eta) \) of the developed ANN-BR is generated by utilizing the strengths of the Adams numerical approach in the range 0–3, having a step size of 0.05 for all four cases of each scenario of the BCSNF model. The obtained dataset in terms of the velocity profile, i.e. \(f(\eta) \), \(f'(\eta) \), and \(f''(\eta) \), temperature profile, i.e. \(\theta(\eta) \) and \(\theta'(\eta) \), concentration profile \(\phi(\eta) \) and \(\phi'(\eta) \), and motile density profile \(\xi(\eta) \) and \(\xi'(\eta) \) are created for 61 inputs in which 75% of the data samples are utilized for training, 20% for testing and 5% for validation of the ANN-BR networks as shown in Figure 1.

The solutions of ANN-BR for all six scenarios of various cases in terms of performance index, state transition, histogram plots, regression, and fitness function are illustrated in Figures 5–10. Furthermore, convergence via MSE learning curves for testing and training samples, best performance index, gradient, Mu, epochs, sum of squares parameters, effective parameters, and time taken are presented in Tables 2–7 for each scenario of all cases.

Figure 5 illustrates the outputs of ANN-BR for case 3 of scenario 1 of the BCSNF model. Figure 5(a) shows the convergence or learning curves on MSE for both training and testing, with the best MSE training performance being 5.53303E-12, which is achieved at 132 epochs. Figure 5(b) shows the state transition results and it is observed that the gradient and Mu parameter of the Bayesian regularization are 1.1302E-08 and 5000, respectively, at 132 epochs, whereas the \(\text{Nu}_m \) parameter and sum of squares parameter values are 100.4185 and 112.2329, respectively. The error histogram plot is shown in Figure 5(c), while correlation studies are also performed to investigate the regression analysis as illustrated in Figure 5(d). The efficient outcome of ANN-BR is achieved by matching outcomes of the Adams numerical solver for scenario 2 of case 3 as shown in Figure 5(e). One may observe that the correlation value \(R \) being close to unity specifies perfect modeling in terms of training and testing, which certifies the correctness of the proposed ANN-BR for the BCSNF model. Table 2 is constructed for scenario 1 of all four cases and it is noticed that MSE is around E-10 to E-13, while the gradient is E-05 to E-08. Moreover, the Mu, epoch, effective parameter, sum of squares parameter and time taken for the case of scenario 1 are listed in Table 2.

Figure 6 illustrates the results/outcomes of ANN-RB for case 4 of scenario 2 of the BCSNF model. Figure 6(a) shows the learning curves on MSE for both training and testing samples with the best MSE training performance being 5.53303E-12, which is achieved at 132 epochs. Figure 6(b) shows the state transition results and it is observed that the gradient and Mu parameter of the Bayesian regularization are 1.1302E-08 and 5000, respectively, at 132 epochs, whereas the \(\text{Nu}_m \) parameter and sum of squares parameter values are 100.4185 and 112.2329, respectively. The error histogram plot is shown in Figure 6(c), while correlation studies are also performed to investigate the regression analysis as illustrated in Figure 6(d). The efficient outcome of ANN-BR is achieved by matching outcomes of the Adams numerical solver for scenario 2 of case 4 as shown in Figure 6(e). One may observe that a correlation value \(R \) close to unity specifies perfect modeling in terms of training and testing, which certifies the correctness of the proposed ANN-BR for the BCSNF model. Table 3 is constructed for scenario 2 of all four cases and it is noticed that the MSE is around E-09 to E-13, while the gradient is E-06 to E-08. Moreover, Mu, epoch, effective parameter, sum of squares parameter and time taken for the case of scenario 2 is listed in Table 3.

Figure 7 represents the outcomes of ANN-RB for scenario 3 of case 3 of the BCSNF model. Figure 7(a) shows the convergence of MSE for both training and testing with the best MSE training performance being 1.681E-12, which is achieved at 134 epochs. Figure 7(b) shows the state transition results and it is observed that the gradient and Mu parameter of Bayesian regularization are 8.929E-08 and 500, respectively, at 134 epochs, whereas the \(\text{Nu}_m \) parameter and sum of squares parameter values are 110.1462 and 160.6779, respectively. The error histogram plot is shown in Figure 7(c), while \(C_0 \) relation studies are also performed to investigate the regression analysis as illustrated in Figure 7(d). The efficient outcome of ANN-BR is achieved by matching outcomes of the Adams numerical solver for scenario 3 of case 3 as presented in Figure 7(e). One may observe that the correlation value \(R \) being close to unity specifies perfect modeling in terms of training and testing, which certifies the correctness of the proposed ANN-BR for the BCSNF model. Table 4 is constructed for scenario 3 of all four
Figure 5. Outcomes of ANN-BR for scenario 1 of case 3 for solving the BCSNF model.
Figure 6. Outcomes of ANN-RB for scenario 2 for solving the BCSNF model.
Figure 7. Outcomes of ANN-RB for scenario 3 of case 3 for solving the BCSNF model.
Figure 8. Outcomes of ANN-RB for scenario 4 of case 4 for solving the BCSNF model.
Figure 9. Outcomes of ANN-RB for scenario 5 for solving the BCSNF model.
Figure 10. Outcomes of ANN-RB for scenario 6 for solving the BCSNF model.
Table 2. Summary of results for ANN-BR in the case of scenario 1 of the BCSNF model.

Case	Training MSE	Testing MSE	Performance index	Gradient	Mu	Epoch	Sum of squares parameter	Effective parameter	Time
1	5.85E-12	6.92E-13	5.86E-12	9.86E-08	500	97	79.7	99.8	0.00
2	3.49E-11	1.22E-11	3.50E-11	2.75E-08	500	75	93.9	96.4	0.00
3	1.30E-10	2.86E-10	1.30E-10	1.73E-07	500	1000	6.09E+03	98.6	0.00
4	3.12E-10	3.64E-10	3.13E-10	3.24E-05	500	1000	6.28E+03	106	0.00

Table 3. Summary of results for ANN-BR in the case of scenario 2 of the BCSNF model.

Cases	Training MSE	Testing MSE	Performance index	Gradient	Mu	Epoch	Sum of squares parameter	Effective parameter	Time
1	2.022E-09	3.15E-09	2.02E-09	8.24E-06	500	1000	6.30E+03	105	0.00
2	1.478E-12	3.849E-13	1.48E-12	9.91E-08	500	254	157	105	0.00
3	1.649E-11	1.171E-11	1.65E-11	1.83E-08	500	113	116	101	0.00
4	5.33E-12	1.01E-10	5.53E-12	1.13E-08	500	132	112	100	0.00

cases and it is noticed that the MSE is E-11 to E-13, while the gradient is E-08. Moreover, the Mu, epoch, effective parameter, sum of squares parameter and time taken for the case of scenario 3 are listed in Table 4.

Figures 8–10 represent the outcomes of ANN-RB for scenario 4 of case 4, scenario 5 of case 4 and scenario 6 of case 3 of the BCSNF model. Figures 8(a), 9(a), and 10(a) show the convergence of the MSE for both training and testing with the best MSE training performances being 4.407E-12, 5.792E-13, and 1.935E-12 for scenarios 4–6, respectively, which are achieved at 136, 321, and 191 epochs for scenarios 4–6, respectively. Figures 8(b), 9(b), and 10(b) show the state transition results and it is observed that the gradient and Mu parameter of Bayesian regularization are 1.291E-08, 3.5569E-09, and 7.456E-09 and Mu 5000 at epochs 136, 321, and 191 for scenarios 4–6, whereas the Nu_m parameters and sum of squares parameter values are 105.5395, 110.7292, and 107.681, and 135.4491, 159.7407, and 231.5897, for scenarios 4–6, respectively. Error histogram plots are shown in Figures 8(c), 9(c), and 10(c), while correlation studies are also performed to investigate the regression analysis as illustrated in Figures 8(d), 9(d), and 10(d) for scenarios 4–6, respectively. The efficient outcome of ANN-BR is achieved by matching the outcomes of the Adams numerical solver for scenario 4 of case 4, scenario 5 of case 1, and scenario 6 of case 2 as illustrated in Figures 8(e), 9(e), and 10(e) for scenarios 4–6, respectively. One may witness that correlation values R close to unity specify perfect modeling in terms of training and testing, which certifies the correctness of the proposed ANN-BR for the BCSNF model. Tables 5–7 are constructed for scenarios 4–6 of all four cases and it is noticed that the MSEs are around E-11 to E-12, E-11 to E-13, and E-11 to E-13, respectively, while the gradients are E-08 to E-09 for each scenario. Moreover, the Mu, epoch, effective parameter, sum of squares parameter values are 105.5395, 110.7292, and 107.681, and 135.4491, 159.7407, and 231.5897, for scenarios 4–6, respectively.

Table 4. Summary of results for ANN-BR in case of scenario 3 of the BCSNF model.

Cases	Training MSE	Testing MSE	Performance index	Gradient	Mu	Epoch	Sum of squares parameter	Effective parameter	Time
1	1.83E-12	4.11E-13	1.83E-12	9.45E-08	500	187	158	103	0.01
2	9.31E-13	1.49E-13	9.31E-13	9.97E-08	500	352	201	106	0.01
3	1.68E-12	9.45E-12	1.68E-12	8.93E-08	500	134	161	110	0.00
4	1.17E-11	2.04E-11	1.18E-11	1.53E-08	500	84	106	105	0.00

Table 5. Summary of results for ANN-BR in case of scenario 4 of the BCSNF model.

Cases	Training MSE	Testing MSE	Performance index	Gradient	Mu	Epoch	Sum of squares parameter	Effective parameter	Time
1	3.90E-11	1.33E-11	3.90E-11	3.21E-08	500	84	107	90.5	0.00
2	6.27E-12	3.07E-12	6.28E-12	1.13E-08	500	135	142	100	0.00
3	1.75E-12	2.04E-11	1.76E-12	4.37E-09	500	184	157	101	0.00
4	4.40E-12	1.84E-11	4.41E-12	1.29E-08	500	136	135	106	0.01
Table 6. Summary of results for ANN-BR in case of scenario 5 of the BCSNF model.

Cases	Training	Testing	Performance index	Gradient	Mu	Epoch	Sum of squares parameter	Effective parameter	Time
1	5.70E-11	5.70E-11	5.70E-11	7.12E-08	5000	64	105	101	0.00.00
2	1.79E-12	2.68E-13	1.79E-12	9.99E-08	500	315	155	106	0.00.01
3	2.55E-11	8.13E-11	2.55E-11	3.26E-08	5000	111	111	101	0.00.00
4	5.79E-13	2.51E-10	5.79E-13	3.36E-09	5000	321	321	0.00.00	0.00.01

Table 7. Summary of results for ANN-BR in case of scenario 6 of the BCSNF model.

Cases	Training	Testing	Performance index	Gradient	Mu	Epoch	Sum of squares parameter	Effective parameter	Time
1	3.26E-11	5.31E-11	3.26E-11	4.22E-08	5000	75	118	102	0.00.00
2	7.31E-13	8.03E-13	7.32E-13	3.93E-09	5000	281	217	110	0.00.01
3	1.93E-12	4.00E-12	1.94E-12	7.46E-09	5000	191	232	108	0.00.01
4	5.06E-13	2.98E-13	5.07E-13	2.87E-09	5000	437	283	106	0.00.02

The reliable, precise and stable performance of the proposed design paradigm ANN-BR is verified and validated by the numerical data in Tables 2–7.

4.1. Effects of prominent parameters on velocity, temperature, concentration and motile density profile

Figures 11–21 are plotted in order to show a comparison between ANN-BR along with the Adams numerical method for velocity, temperature, concentration, and motile density profile. The outcomes of ANN-BR were examined via MATLAB software for investigating the influence of the variation of the magnetic number on velocity, temperature, and concentration profile with an absolute error as presented in Figures 11–21.

From Figure 11(a), it is noticed that the velocity profile decreases with an enhancement in the magnetic number values, whereas the absolute error (AE) is found to be in the range $10^{-04} \rightarrow 10^{-08}$, which proves the validity of the proposed algorithm, as shown in Figure 11(b).

From the point of view of physical and technical analysis, it can be stated that, for the situation in which any liquid is exposed to a magnetic field, then its seeming viscosity surges to critical values up to the point of viscoelastic solid. In this regard, it is noted that the yield stress of liquids can be controlled with the assistance of magnetic field variations. These technical properties give rise to several control-based applications in engineering processes including hydro-magnetic power generation, electromagnetic casting of metals, ion propulsion, generators, etc. It can be observed from

![Figure 11](image-url)

(a) Variation of M with $f'(\eta)$

(b) Analysis on AE

Figure 11. Comparison of ANN-RB outcomes from numerical solutions for M with $f'(\eta)$.
Figure 12. Comparison of ANN-RB outcomes from numerical solutions for \(M \) with \(\eta \).

Figure 13. Comparison of ANN-RB outcomes from numerical solutions for \(M \) with \(\eta \).

Figure 12(a) that temperature enhances with increments in the values of \(M \), while the opposite trend is noticed for the concentration profile with the variation of \(M \), as presented in Figure 13(a). The AE for both \(\theta(\eta) \) and \(\phi(\eta) \) for various values of \(M \) is found to be in the negligible range, i.e. \(10^{-04} \rightarrow 10^{-08} \), which validates the proposed algorithm. Increase in the magnetic field retards the liquid velocity, which results in less molecular movement. The vibrations of molecules are the main cause of temperature control. For the case when molecular vibration is low, temperature rise within the system results in increased temperature profile, whereas the opposite behavior is observed for the concentration of species. Figures 14 and 15 illustrated the variation of the Brownian motion parameter with both temperature and concentration profile, respectively. It is found from Figure 14(a) that \(\eta \) increases with an enhancement in the values of \(N_b \), whereas the opposite trend is noticed for the concentration profile as presented in Figure 15(a). The AE for both \(\theta(\eta) \) and \(\phi(\eta) \) for different values of \(N_b \) found in the negligible limit is illustrated in Figures 14(b) and 15(b). A rise in the Brownian motion parameter enhances the temperature profile owing to the fact that the Brownian motion parameter is directly proportional to temperature and inversely proportional to the kinematic viscosity of the material. Larger values of the Brownian motion parameters increase the temperature profile and decreases in the concentration profile. The influence of the Prandtl number \(Pr \) on \(\theta(\eta) \) and \(\phi(\eta) \) is presented in Figures 16 and 17, respectively. It is noticed from Figure 16 that \(\eta \) decreases for higher values of \(Pr \), while \(\eta \) enhances for higher values of \(Pr \) as
Figure 14. Comparison of ANN-RB outcomes from numerical solutions for N_b with η.

Figure 15. Comparison of ANN-RB outcomes from numerical solutions for N_b with η.

Figure 16. Comparison of ANN-RB outcomes from numerical solutions for Pr with η.
Figure 17. Comparison of ANN-RB outcomes from numerical solutions for Pr with η. The AE observed from Figures 16(b) and 17(b) lies within the limits 10^{-05} to 10^{-09}, hence it can easily be neglected and verifies the correctness of the proposed ANN-BR algorithm. The Prandtl number is the ratio of momentum diffusivity to thermal diffusivity. For larger values of the Prandtl number, diffusive momentum dominates thermal diffusivity results, decreasing the temperature profile significantly.

Figure 18. Comparison of ANN-RB outcomes from numerical solutions for Lb with η. The effect of varying the bio-convection Lewis number on the motile density profile is presented in Figure 18. It is quite clear from Figure 18(a) that an enhancement in value of Lb will tend to decrease the motile density profile, which means that motile density has lower values for higher values of Lb. From a physical point of view, the bio-convective Lewis number Lb has an inverse relationship with microorganism motile density, and therefore larger values of bio-convective Lewis number Lb result in a decrease in microorganism motile density. The AE exists in the negligible range, i.e. 10^{-05} to 10^{-09}, as illustrated in Figure 18(b).
Figure 19. Comparison of ANN-RB outcomes from numerical solutions for N_t with η.

Figure 20. Comparison of ANN-RB outcomes from numerical solutions for N_t with η.

Figure 21. Comparison of ANN-RB outcomes from numerical solutions for Pe with η.
in Figure 20(a). The validity of the proposed algorithm can be verified from the graphs of AE, which is found to be within the limits of $10^{-04} → 10^{-09}$ as presented in Figures 19(b) and 20(b). The variation of the bio-convection Peclet number with the motile density profile is depicted in Figure 21(a) mean, while it is noticed that the motile density profile decreases for higher values of Pe owing to the fact that the bio-convection Peclet number is inversely proportional to the microorganism motile density. It is also observed from Figure 21(b) that AE is found to be within negligible limits, i.e. $10^{-04} → 10^{-08}$ hence the correctness of our proposed algorithm is verified.

5. Conclusions

A novel application of an intelligent numerical computing paradigm via artificial neural networks optimized with a Bayesian regularization approach has been presented for the investigation of the non-uniform heat absorption process with the bio-convective flow dynamics of nanomaterial involving gyro-tactic microorganisms. The PDEs governing the gyro-tactic microorganism characteristics in a bio-convective nanofluid flow model with a stratification process were transformed into nonlinear ODEs through similarity variables. The state-of-the-art Adams numerical method was applied for the generation of a dataset of transformed ODEs to model the BCSNF to measure the effects of velocity, temperature, concentration, and motile density profiles on various physical parameters such as the magnetic number, the Brownian motion parameter, the Prandtl number, the Lewis number, the thermophoretic parameter, and the Peclet number. In the ANN-BR method, 75% arbitrarily selected data were used for training, 20% for testing and 5% for validation to find approximate solutions with the BCSNF model for each scenario. The proposed and reference outcomes show the authenticity of the model with a precision of the order of 10^{-11} to 10^{-04} consistently for each case. The reliability, stability, and convergence of the proposed ANN-BR algorithm were further certified by a mean squares errors based fitness metric, histogram illustrations, and regression analysis for each variant of the BCSNF model.

In the future, new variants of artificial intelligence based integrated intelligent networks (Ahmadi, Sadeghzadeh, et al., 2019; Alotaibi et al., 2020; Duan et al., 2020; Park et al., 2020; Sabir et al., 2020) will be developed by the interested researcher for solving stiff/nonlinear/singular systems representing the fluid mechanics models (Ahmadi, 2021; Ahmadi, Mohseni-Gharyehsafa, et al., 2019; Awais, Raja, et al., 2021; Siddiqua et al., 2018; Ullah, Hayat, et al., 2021; Ullah, Ullah, et al., 2021), circuit theory dynamics (Mehmood, Zameer, Aslam, et al., 2020, Mehmood, Zameer, Ling, et al., 2020), mathematical biological systems (Umar et al., 2020; Wang et al., 2020), information security models (Liu et al., 2020), and astro/plasma/nuclear/atomic physics models (Bukhari et al., 2020; Ilyas et al., 2021; Jadoon et al., 2021; Zameer et al., 2020).

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Ahmad, I., Ahmad, S., Awais, M., Ul Islam Ahmad, S., & Raja, M. A. Z. (2018). Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics. The European Physical Journal Plus, 133(5), 184. https://doi.org/10.1140/epjp/i2018-12013-3

Ahmad, I., Cheema, T. N., Raja, M. A. Z., Awan, S. E., Alias, N. B., Iqbal, S., & Shoaib, M. (2021). A novel application of Lobatto IIIA solver for numerical treatment of mixed convection nanofluidic model. Scientific Reports, 11(1), 1–16. https://doi.org/10.1038/s41598-020-79139-8

Ahmad, S., Faisal, E, Shoaib, M., & Raja, M. A. Z. (2020). A new heuristic computational solver for nonlinear singular Thomas–Fermi system using evolutionary optimized cubic splines. The European Physical Journal Plus, 135(1), 1–29. https://doi.org/10.1140/epjp/s13360-019-00066-3

Ahmadi, M. H., Mohseni-Gharyehsafa, B., Farzaneh-Gord, M., Jilte, R. D., Kumar, R., & Chau, K. W. (2019). Applicability of connectionist methods to predict dynamic viscosity of silver/water nanofluid by using ANN-MLP, MARS and MPR algorithms. Engineering Applications of Computational Fluid Mechanics, 13(1), 220–228. https://doi.org/10.1080/19942060.2019.1571442

Ahmadi, M. H., Sadeghzadeh, M., Raffiee, A. H., & Chau, K. W. (2019). Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes. Engineering Applications of Computational Fluid Mechanics, 13(1), 327–336. https://doi.org/10.1080/19942060.2019.1582109

Alhussain, Z. A., Renuka, A., & Muthamisilvan, M. (2021). A magneto-bioconvective and thermal conductivity enhancement in nanofluid flow containing gyrotactic microorganism. Case Studies in Thermal Engineering, 23, 100809. https://doi.org/10.1016/j.csite.2020.100809

Alotaibi, S., Amooie, M. A., Ahmadi, M. H., Nabipour, N., & Chau, K. W. (2020). Modeling thermal conductivity of ethylene glycol-based nanofluids using multivariate adaptive regression splines and group method of data handling artificial neural network. Engineering Applications of Computational Fluid Mechanics, 14(1), 379–390. https://doi.org/10.1080/19942060.2020.1715843

Andelković, A. S., & Bajatović, D. (2020). Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas consumption prediction. Journal of Cleaner Production, 266, 122096. https://doi.org/10.1016/j.jclepro.2020.122096

Arafa, A. A., Rashed, Z. Z., & Ahmed, S. E. (2021). Radiative MHD bioconvective nanofluid flow due to gyrotactic microorganisms using Atangana–Baleanu Caputo fractional
Awais, M., Awan, S. E., Raja, M. A. Z., Parveen, N., Khan, W. U., Malik, M. Y., & He, Y. (2021). Effects of variable transport properties on heat and mass transfer in MHD bioconvective nanofluid rheology with gyrotactic microorganisms: Numerical approach. *Coatings, 11*(2), 231. https://doi.org/10.3390/coatings11020231

Awais, M., Awais, S. E., Raja, M. A. Z., & Shoaib, M. (2021). Effects of gyro-tactic organisms in bio-convective nanomaterial with heat immersion, stratification, and viscous dissipation. *Arabian Journal for Science and Engineering, 46*(6), 5907–5920. https://doi.org/10.1007/s13369-020-05070-9

Awais, M., Bibi, M., Raja, M. A. Z., Awan, S. E., & Malik, M. Y. (2021). Intelligent numerical computing paradigm for heat transfer effects in a Bodewadt flow. *Surfaces and Interfaces, 26*, 101321. https://doi.org/10.1016/j.surfint.2021.101321

Awais, M., Ehsan Awan, S., Raja, M. A. Z., Nawaz, M., Ullah, Khan, W., Yousaf Malik, M., & He, Y. (2021). Heat transfer in nanomaterial suspension (CuO and Al2O3) using KKL model. *Coatings, 11*(4), 417. https://doi.org/10.3390/coatings11040417

Awais, M., Raja, M. A. Z., Awan, S. E., Shoaib, M., & Ali, H. M. (2021). Heat and mass transfer phenomenon for the dynamics of Casson fluid through porous medium over shrinking wall subject to Lorentz force and heat source/sink. *Alexandria Engineering Journal, 60*(1), 1355–1363. https://doi.org/10.1016/j.aej.2020.10.056

Awan, S. E., Awais, M., Raja, M. A. Z., Parveen, N., Ali, H. M., Khan, W. U., & He, Y. (2021). Numerical treatment for dynamics of second law analysis and magnetic induction effects on ciliary induced peristaltic transport of hybrid nanomaterial. *Frontiers in Physics, 9*, 68. https://doi.org/10.3389/fphy.2021.631903

Awan, S. E., Raja, M. A. Z., Gul, F., Khan, Z. A., Mehmood, A., & Shoaib, M. (2021). Numerical computing paradigm for investigation of micropolar nanofluid flow between parallel plates system with impact of electrical MHD and hall current. *Arabian Journal for Science and Engineering, 46*(1), 645–662. https://doi.org/10.1007/s13369-020-04736-8

Awais, S. E., Raja, M. A. Z., Mehmood, A., Niazi, S. A., & Siddiqua, S. (2020). Numerical treatments to analyze the nonlinear radiative heat transfer in MHD nanofluid flow with solar energy. *Arabian Journal for Science and Engineering, 45*(6), 4975–4994. https://doi.org/10.1007/s13369-020-04593-5

Basha, H. T., & Sivaraj, R. (2021). Numerical simulation of blood nanofluid flow over three different geometries by means of gyrotactic microorganisms: Applications to the flow in a circulatory system. *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235*(2), 441–460. https://doi.org/10.1177/0954406220947454

Bhatti, M. M., Marin, M., Zeeshan, A., Ellahi, R., & Abdelsalam, S. I. (2020). Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. *Frontiers in Physics, 8*, 95. https://doi.org/10.3389/fphy.2020.00095

Bhatti, M. M., Shahid, A., Abbas, T., Alamri, S. Z., & Ellahi, R. (2020). Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate. *Processes, 8*(3), 328. https://doi.org/10.3390/pr8030328

Bruzaita, I., Rozene, J., Morkvenaitė-Vilkoniene, I., & Ramanauskas, A. (2020). Towards microorganism-based biofuel cells: The viability of saccharomyces cerevisiae modified by multiwalled carbon nanotubes. *Nanomaterials, 10*(5), 954. https://doi.org/10.3390/nano10050954

Bukhari, A. H., Sulaiman, M., Raja, M. A. Z., Islam, S., Shoaib, M., & Kumam, P. (2020). Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system. *Alexandria Engineering Journal, 59*(5), 3325–3345. https://doi.org/10.1016/j.aej.2020.04.051

Chu, Y. M., ur Rahman, M., Khan, M. I., Kadry, S., Rehman, W. U., & Abdelmalek, Z. (2021). Heat transport and bioconvective nanomaterial flow of Walter’s-B fluid containing gyrotactic microorganisms. *Ain Shams Engineering Journal, 12*(3), 3071–3079. https://doi.org/10.1016/j.asej.2020.10.025

Çolak, A. B. (2021). Experimental study for thermal conductivity of water-based zirconium oxide nanofluid: Developing optimal artificial neural network and proposing new correlation. *International Journal of Energy Research, 45*(2), 2912–2930. https://doi.org/10.1002/er.5988

Duan, Y., Zheng, Q., & Jiang, B. (2020). Use of computational fluid dynamics to implement an aerodynamic inverse design method based on exact Riemann solution and moving wall boundary. *Engineering Applications of Computational Fluid Mechanics, 14*(1), 284–298. https://doi.org/10.1080/19942060.2020.1711812

Elanchezhian, E., Nirmalkumar, R., Balamurugan, M., Mohana, K., Prabu, K. M., & Viloria, A. (2020). Heat and mass transmission of an Oldroyd-B nanofluid flow through a stratified medium with swimming of motile gyrotactic microorganisms and nanoparticles. *Journal of Thermal Analysis and Calorimetry, 141*(1), 2613–2623. https://doi.org/10.1007/s10973-020-09847-w

Haq, F., Saleem, M., & ur Rahman, M. (2020). Investigation of natural bio-convective flow of cross nanofluid containing gyrotactic microorganisms subject to activation energy and magnetic field. *Physica Scripta, 95*(10), 105219. https://doi.org/10.1088/1402-4896/abb966

Hayat, T., Alsaedi, A., & Ahmad, B. (2021). Thermo diffusion and diffusion thermo impacts on bioconvection Walter-B nanomaterial involving gyrotactic microorganisms. *Alexandria Engineering Journal, 60*(6), 5537–5545. https://doi.org/10.1016/j.aej.2021.04.061

Ilyas, H., Ahmad, I., Raja, M. A. Z., Tahir, M. B., & Shoaib, M. (2021). Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions. *International Journal of Hydrogen Energy, 46*(7), 4947–4980. https://doi.org/10.1016/j.ijhydene.2020.11.097

Jadoon, I., Raja, M. A. Z., Junaid, M., Ahmed, A., ur Rehman, A., & Shoaib, M. (2021). Design of evolutionary optimized finite difference based numerical computing for dust density model of nonlinear Van-der Pol Mathieu’s oscillatory systems. *Mathematics and Computers in Simulation, 181*, 444–470. https://doi.org/10.1016/j.matcom.2020.10.004

Kang, J. L. (2020). Visualization analysis for fault diagnosis in chemical processes using recurrent neural networks. *Journal of the Taiwan Institute of Chemical Engineers, 112*, 137–151. https://doi.org/10.1016/j.jtice.2020.06.016
Khan, I., Raja, M. A. Z., Shoib, M., Kumam, P., Alrabiah, H., Shah, Z., & Islam, S. (2020). Design of neural network with Levenberg-Marquardt and Bayesian regularization backpropagation for solving pantograph delay differential equations. *IEEE Access*, 8, 137918–137933. https://doi.org/10.1109/ACCESS.2020.3011820

Khan, M. I., Alzahrani, F., & Hobiny, A. (2020). Heat transport and nonlinear mixed convective nanomaterial slip flow of Walter-B fluid containing gyrotactic microorganisms. *Alexandria Engineering Journal*, 59(3), 1761–1769. https://doi.org/10.1016/j.aej.2020.04.042

Khan, M. I., Haq, F., Khan, S. A., Hayat, T., & Khan, M. I. (2020). Development of thixotropic nanomaterial in fluid flow with gyrotactic microorganisms, activation energy, mixed convection. *Computer Methods and Programs in Biomedicine*, 187, 105186. https://doi.org/10.1016/j.cmpb.2019.105186

Khan, M. I., Waqas, M., Hayat, T., Khan, M. I., & Alsaeedi, A. (2017). Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field. *International Journal of Mechanical Sciences*, 131-132, 426–434. https://doi.org/10.1016/j.ijmecsci.2017.07.009

Khan, M. N., Nadeem, S., Ullah, N., & Saleem, A. (2020). Theoretical treatment of radiative Oldroyd-B nanofluid with microorganism pass an exponentially stretching sheet. *Surfaces and Interfaces*, 21, 100686. https://doi.org/10.1016/j.surfinf.2020.100686

Khan, S. U., Al-Khaled, K., & Khan, M. I. (2020). Convective nonlinear thermally developed flow of thixotropic nanoliquid configured by Riga surface with gyrotactic microorganism and activation energy: A bio-technology and thermal extrusion model. *International Communications in Heat and Mass Transfer*, 119, 104966. https://doi.org/10.1016/j.ijheatmasstransfer.2020.104966

Khan, W. U., Awais, M., Parveen, N., Ali, A., Ehsan Awans, S., Malik, M. Y., & He, Y. (2021). Analytical assessment of (Al2O3–Ag/H2O) hybrid nanofluid influenced by induced magnetic field for second law analysis with mixed convection, viscous dissipation and heat generation. *Coatings*, 11(5), 498. https://doi.org/10.3390/coatings11050498

Kumarsawamy Naidu, K., Harish Babu, D., Harinath Reddy, S., & Satya Narayana, P. V. (2021). Radiation and partial slip effects on magnetohydrodynamic Jeffrey nanofluid containing gyrotactic microorganisms over a stretching surface. *Journal of Thermal Science and Engineering Applications*, 13(3), 031011. https://doi.org/10.1115/1.4048213

Liu, F., Huo, W., Han, Y., Yang, S., & Li, X. (2020). Study on network security based on PCA and BP neural network under green communication. *IEEE Access*, 8, 53733–53749. https://doi.org/10.1109/ACCESS.2020.2981490

Liu, X., Zhou, Y., & Wang, Z. (2021). Deep neural network-based recognition of entities in Chinese online medical inquiry texts. *Future Generation Computer Systems*, 114, 581–604. https://doi.org/10.1016/j.future.2020.08.022

Majeed, A., Zeeshan, A., Amin, N., Jaz, N., & Saeed, T. (2020). Thermal analysis of radiative bioconvection magnetohydrodynamic flow comprising gyrotactic microorganism with activation energy. *Journal of Thermal Analysis and Calorimetry*, 1–12.

Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M. P., & Chisti, Y. (2018). Metabolic engineering of microorganisms for biofuel production. *Renewable and Sustainable Energy Reviews*, 82, 3863–3885. https://doi.org/10.1016/j.rser.2017.10.085

Mehmood, A., Afzar, K., Zameer, A., Awan, S. E., & Raja, M. A. Z. (2019). Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat transfer in a permeable walled channel. *Applied Soft Computing*, 79, 139–162. https://doi.org/10.1016/j.asoc.2019.03.026

Mehmood, A., Zameer, A., Aslam, M. S., & Raja, M. A. Z. (2020). Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits. *Neural Computing and Applications*, 32(11), 7121–7137. https://doi.org/10.1007/s00521-019-04197-7

Mehmood, A., Zameer, A., Ling, S. H., ur Rehman, A., & Raja, M. A. Z. (2020). Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming. *Neural Computing and Applications*, 32(14), 10337–10357. https://doi.org/10.1007/s00521-019-04573-3

Nadeem, S., Khan, M. N., Muhammad, N., & Ahmad, S. (2019). Mathematical analysis of bio-convective micropolar nanofluid. *Journal of Computational Design and Engineering*, 6(3), 233–242. https://doi.org/10.1016/j.jcde.2019.04.001

Park, D., Cha, J., Kim, M., & Go, J. S. (2020). Multi-objective optimization and comparison of surrogate models for separation performances of cyclone separator based on CFD, RSM, GMHD-neural network, back propagation-ANN and genetic algorithm. *Engineering Applications of Computational Fluid Mechanics*, 14(1), 180–201. https://doi.org/10.1016/10994060.2019.1691054

Parveen, N., Awais, M., Mumraz, S., Ali, A., & Malik, M. Y. (2020). An estimation of pressure rise and heat transfer rate for hybrid nanofluid with endoscopic effects and induced magnetic field: Computational intelligence application. *The European Physical Journal Plus*, 135(11), 1–41. https://doi.org/10.1140/epjp/s13360-020-00874-y

Feng, Y., Ghahnaviyeh, M. B., Ahamd, M. N., Abdollahi, A., Bagherzadeh, S. A., Azmy, H., Mosavi, A., & Karimipour, A. (2021). Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: An experimental and numerical study. *International Journal of Thermal Sciences*, 165, 106863. https://doi.org/10.1016/j.ijthermalsci.2021.106863

Qin, L., Guo, L., Xu, B., Hsueh, C. C., Jiang, M., & Chen, B. Y. (2020). Exploring community evolutionary characteristics of microbial populations with supplementation of Camellia green tea extracts in microbial fuel cells. *Journal of the Taiwan Institute of Chemical Engineers*, 113, 214–222. https://doi.org/10.1016/j.jtice.2020.08.015

Qureshi, I. H., Awais, M., Awan, S. E., Abrar, M. N., Raja, M. A. Z., Alharbi, S. O., & Khan, I. (2021). Influence of radially magnetic field properties in a peristaltic flow with internal heat generation: Numerical treatment. *Case Studies in Thermal Engineering*, 26, 101019. https://doi.org/10.1016/j.csite.2021.101019

Raja, M. A. Z., Malik, M. F., Chang, C. L., Shoaib, M., & Shu, C. M. (2021). Design of backpropagation networks for bioconvection model in transverse transportation of rheological fluid involving Lorentz force interaction and gyrotactic microorganisms. *Journal of the*
