A New Quadrannulate Species of Orobdella (Hirudinida: Arhynchobdellida: Orobdellidae) from Kii Peninsula, Japan

Takafumi Nakano¹,²

¹ Department of Science Education, Graduate School of Education, Hiroshima University, Higashihiroshima, Hiroshima 739-8524, Japan
² Present address: Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
E-mail: nakano@zoo.zool.kyoto-u.ac.jp

(Received 6 November 2017; Accepted 28 December 2017)

http://zoobank.org/2C257CD8-0C8B-47F3-8158-FD3F4D853081

A quadrannulate leech species, Orobdella angustata sp. nov., from Kii Peninsula, Honshu, Japan is described. This new species is characterized by its peculiar male atrial cornua. Phylogenetic analyses using nuclear 18S rRNA, histone H3, mitochondrial cytochrome c oxidase subunit I, tRNA\(^{Cys}\), tRNA\(^{Met}\), 12S rRNA, tRNA\(^{Val}\), 16S rRNA, tRNA\(^{Leu}\) and NADH dehydrogenase subunit 1 markers showed that O. angustata is genetically close to the small quadrannulate species, O. brachyepididymis Nakano, 2016, O. kanaekoikeae Nakano, 2017 and O. naraharaetmagarum Nakano 2016, distributed in Chugoku District of Honshu and Shikoku, Japan.

Key Words: Erpobdelliformes, terrestrial, macrophagous, atrial cornu, molecular phylogeny.

Introduction

The terrestrial macrophagous leech genus Orobdella Oka, 1895 consists of 19 species inhabiting the Japanese Archipelago, Taiwan, and the Korean Peninsula (Nakano 2017a, b; Nakano and Lai 2017), and one unidentified species was recorded from the Russian Far East (Gilyarov et al. 1969; Nakano 2012). They can be grouped into three morpho-types each based on the mid-body somite annulation (quad-, sex-, and octannulate), and the body length of mature individuals (small, middle, and large-types), respectively (Nakano 2017a). Orobdella leeches can be also characterized by the possession of the gastroporal duct in their digestive tracts, which receives a spermatophore during copulation (Nakano 2017b). While the Orobdella species, in which the gastroporal duct is developed, possesses developed ovate or ellipsoidal atrial cornua, the species with a vestigial gastroporal duct bears undeveloped atrial cornua, or lacks a cornu-like structure in the male median reproductive system (Nakano and Lai 2017). Unidentified quadrannulate Orobdella leeches were collected from the Kii Peninsula, Honshu, Japan, and are described as a new species in this study. The phylogenetic position of the new species within Orobdella was estimated using nuclear and mitochondrial genetic markers.

Materials and Methods

Sampling and morphological examination. Leeches were collected from a montane forest in Kii Peninsula, Honshu, Japan. Elevation and geographical coordinates for the collection site were obtained using a Garmin eTrex GPS unit.

Specimens were relaxed by the gradual addition of absolute ethanol (EtOH) to freshwater. For DNA extraction, botryoidal tissue was removed from the posterior part around the caudal sucker of every specimen, and then preserved in absolute EtOH. The reminder of the body was fixed in 10% formalin and preserved in 70% EtOH. Four measurements were taken: body length (BL) from the anterior margin of the oral sucker to the posterior margin of the caudal sucker, maximum body width (BW), caudal sucker length (CL) from the anterior to the posterior margin of the caudal sucker, and caudal sucker width (CW) from the right to the left margin of the caudal sucker. Examination, dissection, and drawing of the specimens were conducted using a stereoscopic microscope with a drawing tube (Leica M125). Specimens used in this study have been deposited in the Zoological Collection of Kyoto University (KUZ). The numbering convention is based on Moore (1927): body somites are denoted by Roman numerals, and the annuli in each somite are given alphanumeric designations.

Molecular phylogenetic analyses. The phylogenetic position of the newly identified Orobdella species within the genus was estimated based on two nuclear and three mitochondrial markers, i.e., 1) 18S rRNA, 2) histone H3, 3) cytochrome c oxidase subunit I (COI), 4) tRNA\(^{Cys}\), tRNA\(^{Met}\), 12S rRNA, tRNA\(^{Val}\), 16S rRNA (tRNA\(^{Cys}\)–16S), and 5) tRNA\(^{Leu}\) and NADH dehydrogenase subunit 1 (tRNA\(^{Leu}\)–ND1). Methods for the genomic DNA extraction, PCR and cycle sequencing reactions were elucidated in Nakano and Lai (2017). In total, five sequences from the unidentified...
Orodella specimen were newly obtained in this study, and deposited with the International Nucleotide Sequence Database Collaboration (INSDC) through DNA Data Bank of Japan (Table 1).

The four eropodelliform outgroup taxa were identical to those used in the phylogenetic analyses by Nakano and Lai (2017) (Table 1). The alignments of H3 and COI were trivial, as no indels were observed. The sequences of 18S, tRNA\(^{\text{COI}}\), 16S, and tRNA\(^{\text{ND1}}\) were aligned using MAFFT v. 7.310L-INS-i (Katoh and Standley 2013). The lengths of the 18S, H3, COI, tRNA\(^{\text{COI}}\), 16S, and tRNA\(^{\text{ND1}}\) sequences were 1844, 328, 1267, 1135, and 637 bp, respectively. The concatenated sequences yielded 5211 bp of aligned positions.

Phylogenetic trees were constructed using maximum likelihood (ML) and Bayesian inference (BI). The ML phylogeny was constructed using RAxML v. 8.2.8 (Stamatakis 2014) with the substitution model set as GTR\(^G\); for tRNACys, tRNAMet, 12S, tRNAVal, tRNALeu, and ND1, HKY\(^G\); for 3rd positions of COI and ND1, HKY\(^G\); and for 16S, GTR\(^G\)+I; and for H3 2nd position, JC\(^G\); for H3 3rd position, HKY\(^G\); and for tRNA\(^{\text{COI}}\), tRNA\(^{\text{Alu}}\), 12S, tRNA\(^{\text{Val}}\), tRNA\(^{\text{Leu}}\), and ND1 1st position, GTR\(^G\)+I; and for 16S, GTR\(^G\)+2. Two independent runs of four Markov chains were conducted for 20 million generations, and the tree was sampled every 100 generations. The parameter estimates and convergence were checked using Tracer v. 1.6.0 (Rambaut and Drummond 2013), and the first 50001 trees were discarded based on the results.

Orodella angustata sp. nov.

[New Japanese name: kubire-kugabiru]

(Figs 1–3)

Diagnosis. Body length of pre-mature individuals exceeding 5 cm; possibly middle-type. Somite IV unannulate, somites VIII–XXV quadrannulate. Male gonopore in middle of somite XI b6, female gonopore slightly anterior to

Table 1. Samples used for the phylogenetic analyses. The information on the vouchers is accompanied by the INSDC accession numbers. Sequences marked with an asterisk (*) were obtained for the first time in the present study. Acronyms: KUZ, the Zoological Collection of Kyoto University; and UNIMAS, the Universiti Malaysia Sarawak.

Species Voucher	INSDC accession #					
Species	**Voucher**	**18S**	**H3**	**tRNA\(^{\text{COI}}\)–16S**	**tRNA\(^{\text{Leu}}\)–ND1**	
Orodella	KUZ Z1433 Holotype	LC323140*	LC323138*	LC323139*	LC323141*	LC323137*
O. angustata sp. nov.	KUZ Z1673 Holotype	LC106319	LC106321	LC106320	LC106318	LC106322
O. brachyepidymis Nakano, 2016	KUZ Z120 Holotype	AB663665	AB698876	AB679680	AB679681	AB828558
O. dolichopharynx Nakano, 2011	KUZ Z29 Holotype	AB663655	AB698873	AB679664	AB679665	AB828553
O. esakuta Nakano, 2010	KUZ Z110 Holotype	AB663659	AB698877	AB679672	AB679673	AB828559
O. ittani Oka, 1895	KUZ Z110 Topotype	LC184551	LC184553	LC184552	LC184550	LC184554
O. kawakatsuworum Richardson, 1975	KUZ Z167 Holotype	AB663661	AB698878	AB679704	AB679705	AB828561
O. ketagalan Nakano and Lai, 2012	KUZ Z208 Holotype	AB704785	AB704786	AB704787	AB828582	AB828563
O. kokie Nakano, 2012	KUZ Z156 Holotype	AB698883	AB698882	AB679688	AB679689	AB828560
O. massaikirinai Nakano, 2014	KUZ Z694 Holotype	AB938003	AB938013	AB938006	AB937997	AB938016
O. mesai Nakano and Lai, 2017	KUZ Z1917 Holotype	LC314423	LC314425	LC314424	LC314422	LC314426
O. mononoke Nakano, 2012	KUZ Z224 Holotype	AB698868	AB698869	AB698866	AB698867	AB828564
O. nakahama Nakano, 2016	KUZ Z1672 Holotype	LC106330	LC106332	LC106331	LC106329	LC106333
O. narashinaemacharum Nakano, 2016	KUZ Z1652 Holotype	LC087143	LC087145	LC087144	LC087142	LC087146
O. octonaria Oka, 1895	KUZ Z181 Holotype	AB698870	AB698871	AB679708	AB679709	AB828562
O. okamoto Nakano, 2016	KUZ Z1671 Holotype	LC106341	LC106343	LC106342	LC106340	LC106344
O. shimadae Nakano, 2012	KUZ Z128 Holotype	AB663663	AB698875	AB679676	AB679677	AB828557
O. shishiminesis Nakano, 2011	KUZ Z134 Holotype	AB663653	AB698872	AB679662	AB679663	AB828554
O. whitmani Oka, 1895	KUZ Z45 Topotype	AB663657	AB698874	AB679668	AB679669	AB828556
O. yamanaca Nakano, 2016	KUZ Z1678 Holotype	LC106349	LC106351	LC106350	LC106348	LC106352

Outgroup

Species Voucher	INSDC accession #					
Erpobdella japonica Pawlowski, 1962	KUZ Z178	AB663648	AB698879	AB679654	AB679655	AB828542
Gastrostomobdella monticola Moore, 1929	UNIMAS/A3/BH01/10	AB663649	AB698880	AB679656	AB679657	AB828543
Mimobdella japonica Blanchard, 1897	KUZ Z179	AB663650	AB698881	AB679658	AB679659	AB828544
Odontobdella blanchardi (Oka, 1910)	KUZ Z180	AB663651	AB938012	AB938004	AB937995	AB938014
middle of somite XIII a1, behind gastropore, gonopores separated by 1/2 + 4 + 1/3 annuli. Pharynx reaching to somite XIV a1/a2–a2. Gastropore conspicuous, slightly anterior to middle of somite XIII a1. Gastroporal duct bulbous. Paired epididymides in somites XVIII–XX, occupying 6–7 annuli. Paired ejaculatory ducts thick. Atrial cornua developed, hyperboloidal, i.e., each middle part constricted, then expanding at respective junction with ejaculatory duct.

Material examined. Holotype: KUZ Z1439, dissected, collected from Mt. Gomadanzan, Ryujinmura, Tanabe, Wakayama Prefecture (Kii Peninsila, Honshu island), Japan

![Fig. 1. Preserved specimen of Orobdella angustata sp. nov., holotype, KUZ Z1439. A, dorsal view; B, ventral view. Scale bar: 5 mm.](image)

![Fig. 2. Orobdella angustata sp. nov., holotype, KUZ Z1439. A, dorsal view of somites I–VIII; B, ventral view of somites I–VIII; C, dorsal view of somites XXIV–XXVII and caudal sucker; D, ventral view of somites XXIV–XXVI and caudal sucker; E, ventral view of somites XI–XIII; F, ventral view of gastropore and female gonopore; G, ventral view of gastroporal duct. Scale bars: 1 mm (A, B, G); 2 mm (C–E); 0.25 mm (F). Abbreviations: af, annular furrow; an, anus; cp, crop; fg, female gonopore; gd, gastroporal duct; gp, gastropore; mg, male gonopore; np, nephridiopore; ph, pharynx.](image)
Description. Body firm and muscular, elongate, with constant width in caudal direction, dorsoventrally compressed, BL 54.3 mm, BW 5.5 mm (Fig. 1A, B). Caudal suck-
er ventral, elliptic, CL 2.6 mm, CW 3.2 mm (Figs 1B, 2D).

Somite I completely merged with prostomium (Fig. 2A). Somites II (=peristomium), III and IV uniannulate (Fig. 2A); somite II not separated from somite I. Somite V biannulate, (a1+a2)=a3; a3 forming posterior margin of oral sucker (Fig. 2A, B). Somites VI and VII triannulate, a1=a2=a3 (Fig. 2A, B). Somites VIII–XXV quadran- nulate, a1+a2=b5=b6 (Fig. 2A–E). Somite XXVI dorsally quadran- nulate, a1+a2>b5+b6, ventrally triannulate, a1>a2<a3; a3 (=dorsally b5 and b6) being ventrally last complete annulus (Fig. 2C, D). Somite XXVII biannulate; a3 being dorsally last annulus with slight furrow (Fig. 2C). Anus behind somite XXVII; post-anal annulus absent (Fig. 2C).

Clitellum undeveloped.

Male gonopore in middle of somite XI b6 (Fig. 2E). Female gonopore slightly anterior to middle of somite XIII a1, inconspicuous, located posterior to gastropore (Fig. 2E, F). Gonopores separated by 1/2+4+1/3 annuli (Fig. 2E).

Anterior ganglionic mass in somite VI a2 and a3. Ganglion VII in a1 and a2. Ganglia VIII–XIII, of each somite, in a2 (Fig. 3A). Ganglia IX–XV, of each somite, in a1 and a2 (Fig. 3A). Gangion X–XV, of each somite, in a2 (Fig. 3A). Ganglia X–XVII, of each somite, in a1 and a2 (Fig. 3A). Ganglia X–XVIII, of each somite, in a1 and a2 (Fig. 3A). Ganglia XIX–XX b6 (Fig. 3A); on right side, in total ~22 testisacs, 1 in XX, 4 in XXI, 4 in XXII, 6 in XXIII, 4 in XXIV, 3 in XXV; on left side, in total ~22 testisacs, 2 in XX, 4 in XXI, 4 in XXII, 5 in XXIII, 4 in XXIV, 3 in XXV. Paired epididymides in somite XVII–XIX to somite XX b5, occupying 7 annuli (Fig. 3A). Paired ejaculatory ducts thick, in somite XI b5 to somite XVII–XIX (Fig. 3A); loosely coiled in position posterior to ovisacs; each duct crossing ventrally beneath each ovisac, then nearly straight in position anterior to ovisacs; each noticeably winding from respective junction with epididymis,

terior to middle of somite XIII a1 (Fig. 2E, F). Gastroporal duct bulbous, winding at junction with gastropore, reaching to somite XIV a2 (Fig. 2G). Intestine tubular, accenate, reaching to somite XXIV a1/a2. Rectum tubular, thin-walled, straight.

Testisacs multiple, in somite XX b5 to somite XXVIII b6 (Fig. 3A); on right side, in total ~22 testisacs, 1 in XX, 4 in XXI, 4 in XXII, 6 in XXIII, 4 in XXIV, 3 in XXV; on left side, in total ~22 testisacs, 2 in XX, 4 in XXI, 4 in XXII, 5 in XXIII, 4 in XXIV, 3 in XXV. Paired epididymides in somite XVII–XIX to somite XX b5, occupying 7 annuli (Fig. 3A). Paired ejaculatory ducts thick, in somite XI b5 to somite XVII–XIX (Fig. 3A); loosely coiled in position posterior to ovisacs; each duct crossing ventrally beneath each ovisac, then nearly straight in position anterior to ovisacs; each noticeably winding from respective junction with epididymis,

Table 2	Comparisons of morphological characters between Orobdella angustata sp. nov. and 11 quadranulate congeneric species.							
Species	Body length	Somite IV	Somite XVX	Annuli between gonopores	Pharynx length	Gastroporal duct	Epididymides	Atrial cornua
---------	-------------	-----------	------------	--------------------------	----------------	----------------	--------------	--------------
O. angustata	middle?	1	4	1/2+4+1/3	to anterior XIV	bulbous	XVIII to XX	developed, hyperboloidal
O. brachyepididymis	small	1	4	1/2+4+1/1/2	to anterior XIV	tubular	XX to XIX	small, ovate
O. esulcata	middle	1	4	2/3+4+1/3	to anterior to posterior XIV	bulbous	XVI to XX	developed, ovate
O. kawakatsuorum	middle	1	4	1/2+4+1/2	to posterior XIII to XIV	bulbous	XIV to XVIII	developed, ovate
O. ketagalan	middle	1	4	2/3+4+1/2	to anterior to posterior XIV	simple tubular	XVI to XVII	undeveloped
O. koikei	small	1	3	1/2+4+1/2	to posterior XIII to XIV	simple tubular	absent	undeveloped
O. masaakikuroiwai	small	1	4	1/2+4+1/2	to anterior to middle XIV	bulbous	XVI to XVIII	developed, ovate
O. meissi	middle	1	4	5+1/4	to posterior XV	rudimentary tubular	absent	absent
O. naraharaisetmagarum	small	1	4	1/2+4+1/2	to posterior XIV	bulbous	XVII to XIX	developed, ovate
O. tsuashimensis	middle	1	4	1/2+5	to posterior XIII to posterior XIV	bulbous	XVI to XVIII	developed, ovate
narrowing at junction with atrial cornua, then turning proximally toward atrial cornua without pre-atrial loop (Fig. 3A, B). Pair of muscular atrial cornua developed, hyperboloidal, in somite XI b5 and b6 (Fig. 3A–D); each middle part constricted, then expanding at respective junction with ejaculatory duct. Atrium short, muscular, globular, in somite XI b5 and b6 (Fig. 3B–D). Penis sheath and penis absent.

Paired ovisacs globular; right ovisac in somite XIII a2 and b5; left ovisac in somite XIII a2 (Fig. 3A, E). Oviducts thin-walled, left oviduct crossing ventrally beneath nerve cord (Fig. 3A, E); both oviducts converging in to common oviduct in somite XIII a1/a2. Common oviduct thin-walled, short, directly descending to female gonopore (Fig. 3E).

Variation. Measurements (mean±1SD, followed by ranges in parentheses; n=4, including holotype): BL 51.9±2.7 mm (48.9–54.3 mm), BW 5.1±0.28 mm (4.8–5.5 mm), CL 2.4±0.14 mm (2.4–2.6 mm), CW 2.8±0.45 mm (2.3–3.2 mm). Somite XXVI generally triannulate, a1–a2<2<3. Pharynx reaching to somite XIV a2. Crop reaching to somite XX a2/b5. Gastroporal duct reaching to somite XIV a2/b5. Intestine reaching to somite XXIV a2/b5. Testisacs in somite XIX a2 to somite XXV b5; both sides, ~29 sacs, respectively. Paired epididymides occupying 6 annuli, respectively; right side in somite XVII/XVIII to somite XIX a2/b5; left side in somite XVIII a1 to somite XIX a2/b5. Paired ejaculatory ducts; right side in somite XI b5 to somite XVII/XVIII; left side in somite XI b5 to somite XVIII a1; coiled in position posterior to ovisacs. Paired ovisacs in somite XIII a2 and b5.

Coloration. In life, dorsal surface bluish black; ventral surface bluish white. Color faded in preservative.

Distribution. This species was collected only from its type locality.

Natural history. Although both dissected individuals possessed developed testisacs, their clitella were undeveloped, and hardly detected. The reproductive season of the new species thus remains unclear.

Etymology. The specific name is a participle in nominative singular derived from the Latin word *angustatus* (narrowed) referring to the fact that the male atrial cornua of this new species are constricted in their upper-middle parts.

Molecular analyses results. The BI tree (mean ln L=−28673.07; Fig. 4) for estimating the phylogenetic position of the new species had an identical topology to that of the ML tree (In L=−29119.04; not shown). *Orobdella angustata* belonged to a well-supported clade (BS=99%, PP=1.0) containing the other four quadranulate species inhabiting the western part of Honshu, Shikoku and northern Kyushu. *Orobdella esulcata* Nakano, 2010 formed a sister clade to the other four species including *O. angustata* and the well-supported clade belonging to *O. brachyepidymis* Nakano, 2010 (BS=99%, PP=1.0). Nakano and Lai 2012; Nakano 2014; Nakano and Seo 2014; Nakano 2016a, b, 2017b; Nakano and Lai 2017), the new species clearly differs from the other 11 quadranulate congeners in having short epididymides in somite XVIII–XIX to somite XIX–XX that are occupying 6–7 annuli, thick ejaculatory ducts, and hyperboloidal developed atrial cornua (see Table 2). The new species differs from the six sex-annulate species and two octanulate species by its mid-body somites that are quadranulate.

Because all the present individuals of *O. angustata* bear undeveloped citella, it remains uncertain whether this new species is assigned to the small or middle types. The obtained phylogenies showed that *O. angustata* is phylogenetically close to the three “small-type” species, *O. brachyepidymis*, *O. kanaekoikeae* and *O. naraharaetmagarum*. However, the dissected specimens possessed fully developed genital organs, and thus they could be identified at least as pre-mature leeches. Because the body lengths of the dissected individuals exceed 5 cm, it is highly possible that *O. angustata* can be designated as a “middle-type” species. Future field surveys should collect individuals of *O. angustata* with obvious citella, and reveal the natural history as well as the body length group of this species.

The male atrial cornua of *Orobdella angustata* show quite unique characteristics among those of the other *Orobdella* species. However, in this new species, the gastroporal duct, which is a spermatophore receptor of *Orobdella* leeches (Nakano 2017b), bears the bulbous feature that is common in the other congeners whose gastroporal ducts are developed. The characteristics of the gastroporal duct of *O. angustata* imply that its spermatophore may not be distinctive despite the noteworthy atrial cornua of the new species.

Acknowledgments

The author is grateful to Mr Naoki Koike for providing specimens of the new species, and to two anonymous reviewers and Dr Keiichi Kakui (Hokkaido University) for their constructive comments on this manuscript. This study was financially supported by JSPS KAKENHI Grant numbers JP26840127 and JP1500720.

References

Gilyarov, M. S., Lukin, E. I., and Perel, T. S. 1969. The first terrestrial leech—*Orobdella whitmani* Oka (Hirudinel. Herpobdellidae)—in the fauna of the USSR: A Tertiary relict of forests of the southern Maritime Territory. Doklady Akademii Nauk SSSR 188: 235–237. [In Russian]

Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. 2017. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773.

Moore, J. P. 1927. The segmentation (metamerism and annulation) of the Hirudinea. Pp. 1–12. In: Harding, W. A. and Moore, J. P. The Fauna of British India, including Ceylon and Burma. Hirudinea. Taylor & Francis, London.

Nakano, T. 2010. A new species of the genus Orobdella (Hirudinida: Arhynchobdellida: Gastrostomobdellidae) from Kumamoto, Japan, and a redescriptions of O. whitmani with the designation of the lectotype. Zoological Science 27: 880–887.

Nakano, T. 2011. A new species of Orobdella (Hirudinida: Arhynchobdellida: Gastrostomobdellidae) from Tsushima Island, Japan. Species Diversity 16: 39–47.

Nakano, T. 2012. A new species of Orobdella (Hirudinida, Arhynchobdellida, Gastrostomobdellidae) and redescriptions of O. kanakatusuorum from Hokkaido, Japan with the phylogenetic position of the new species. ZooKeys 169: 9–30.

Nakano, T. 2014. A new quadrannulate species of Orobdella (Hirudinida, Arhynchobdellida, Orobdellidae) from central Honshu, Japan. ZooKeys 445: 57–76.

Nakano, T. 2016a. Four new species of the genus Orobdella from Shikoku and Awajishima island, Japan (Hirudinida, Arhynchobdellida, Orobdellidae). Zoosystematics and Evolution 92: 79–102.

Nakano, T. 2016b. A new quadrannulate species of Orobdella (Hirudinida, Arhynchobdellida, Orobdellidae) from western Honshu, Japan. ZooKeys 553: 33–51.

Nakano, T. 2017a. Diversity of leeches from Japan: recent progress in macrophagous and blood-feeding taxa. Pp. 319–340. In: Moto-kawa, M. and Kajihara, H. (Eds) Species Diversity of Animals in Japan. Springer Japan, Tokyo.

Nakano, T. 2017b. A new species of Orobdella (Hirudinida: Arhynchobdellida: Orobdellidae) from Japan reveals the function of the Orobdella gastroporal duct. Zoological Science 34: 161–172.

Nakano, T. and Lai, Y.-T. 2012. A new species of Orobdella (Hirudinida, Arhynchobdellida, Orobdellidae) from Taipei, Taiwan. ZooKeys 207: 49–63.

Nakano, T. and Lai, Y.-T. 2017. A new quadrannulate species of Orobdella (Hirudinida: Arhynchobdellida: Orobdellidae) from Ping-tung, Taiwan. Species Diversity 22: 143–150.

Nakano, T. and Seo, H.-Y. 2014. First record of Orobdella tsushimensis (Hirudinida: Arhynchobdellida: Gastrostomobdellidae) from the Korean Peninsula and molecular phylogenetic relationships of the specimens. Animal Systematics, Evolution and Diversity 30: 87–94.

Rambaut, A. and Drummond, A. J. 2013. Tracer v 1.6. Available at http://tree.bio.ed.ac.uk/software/tracer/ (24 May 2015)

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohen, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.