Quadboost: A Scalable Concurrent Quadtree

Keren Zhou, Guangming Tan, Wei Zhou

Abstract—Building concurrent spatial trees is more complicated than binary search trees since a space hierarchy should be preserved during modifications. We present a non-blocking quadtree—quadboost—that supports concurrent insert, remove, move, and contain operations. To increase its concurrency, we propose a decoupling approach that separates physical adjustment from logical removal within the remove operation. In addition, we design a continuous find mechanism to reduce its search cost. The move operation combines the searches for different keys together and modifies different positions with atomicity. The experimental results show that quadboost scales well on a multi-core system with 32 hardware threads. More than that, it outperforms existing concurrent trees in retrieving two-dimensional keys with up to 109% improvement when the number of threads is large. The move operation proved to perform better than the best-known algorithm, with up to 47%.

Index Terms—Concurrent Data Structures, Quadtree, Continuous Find, Decoupling, LCA

1 INTRODUCTION

MULTI-CORE processors are currently the universal computing engine in computer systems. Therefore, it is urgent to develop data structures that provide an efficient and scalable multi-thread execution. At present, concurrent data structures [1], such as stacks, linked-lists, and queues have been extensively investigated. As a fundamental building block of many parallel programs, these concurrent data structures provide significant performance benefits [2], [3].

Recently, research on concurrent trees is focused on binary search trees (BSTs) [4], [5], [6], [7], [8], [9], [10], which are at the heart of many tree-based algorithms. The concurrent paradigms of BSTs were extended to design concurrent spatial trees like R-Tree [11], [12]. However, there remains another unaddressed spatial tree—quadtree, which is widely used in applications for multi-dimensional data. For instance, spatial databases, like PostGIS [13], adopt oct-tree, a three-dimensional variant of quadtree, to build spatial indexes. Video games apply quadtree to handle collision detection [14]. In image processing [15], quadtree is used to decompose pictures into separate regions.

There are different categories of quadtree according to the type of data a node represents, where two major types are region quadtree and point quadtree [16]. Point quadtree stores actual keys in each node, yet it is hard to design concurrent algorithms for point quadtree since an insert operation might involve re-balance issues, and a remove operation needs to re-insert the whole subtree under a removed node. The region quadtree divides a given region into several sub-regions, where internal nodes represent regions and leaf nodes store actual keys. Our work focuses on region quadtree for two reasons: (1) The shape of region quadtree is independent of insert/remove operations’ order, which allow us to avoid complex re-balance rules and devise specific concurrent techniques for it. (2) Further, region quadtree could be regarded as a typical external tree that we can adjust existing concurrent techniques from BSTs. Therefore, we will refer to region quadtree as BSTs.

In this paper, we design a non-blocking quadtree, referred to as quadboost, that supports concurrent insert, remove, contain, and move operations. Our key contributions are as follows:

- We propose the first non-blocking quadtree. It records traversal paths, compresses Empty nodes if necessary, adopts a decoupling technique to increase the concurrency, and devises a continuous find mechanism to reduce the cost of retries induced by CAS failures.
- We design a lowest common ancestor (LCA) based move operation, which traverses a common path for two different keys and modifies two distinct nodes with atomicity.
- We prove the correctness of quadboost algorithms and evaluate them on a multi-core system. The experiments demonstrate that quadboost is highly efficient for concurrent updating at different contention levels.

The rest of this paper is organized as follows. In Section 2, we overview some basic operations. Section 3 describes a simple CAS quadtree to motivate this work. Section 4 provides detailed algorithms for quadboost. We provide a sketch of correctness proof in Section 5. Experimental results are discussed in Section 6. Section 7 summarizes related works. Section 8 concludes the paper.

2 PRELIMINARY

Quadtree can be considered as a dictionary for retrieving two-dimensional keys, where $<keyX, keyY>$ is never duplicated. Figure 1 illustrates a sample quadtree and its corresponding region, where we use numbers to indicate keys. Labels on edges are routing directions—Southwest (sw), Northwest (nw), Southeast (se), and Northeast (ne).
The right picture is a mapping of the quadtree on a two-dimensional region, where keys are located according to their coordinates, and regions are divided by their corresponding width \((w)\) and height \((h)\). There are three types of nodes in the quadtree, which represent different regions in the right figure. \textit{Internal} nodes are circles on the left figure, and each of them has four children which indicate four equal sub-regions on different directions. The root node is an \textit{Internal} node, and it is the largest region. \textit{Leaf} nodes and \textit{Empty} nodes are located at the terminal of the quadtree; they indicate the smallest regions on the right figure. \textit{Leaf} nodes are solid rectangles that store keys; they represent regions with the same numbers on the right figure. \textit{Empty} nodes are dashed rectangles without any key.

![Fig. 1: A sample quadtree and its corresponding region](image)

We describe the detailed structures of a quadtree in Figure 2. An \textit{Internal} node maintains its four children and a two-dimensional routing structure \(<x, y, w, h>\), where \(<x, y>\) stands for the upper left coordinate and \(<w, h>\) are the width and height of the region. A \textit{Leaf} node contains a key \(<\text{keyX}, \text{keyY}>\) and its corresponding value. An \textit{Empty} node does not have any field. To avoid some corner cases, we initially split the root node and its children to form two layers of dummy \textit{Internal} nodes with a layer of \textit{Empty} nodes at the terminal. Also, we present routing functions \textit{find} and \textit{getQuadrant} in the figure. For instance, if we have to locate key 1 in Figure 1 we start with the root node and compare key 1 with its routing structures by \textit{getQuadrant}. Then we reach its \textit{nw} and perform a comparison again. In the end, we find the terminal node that contains key 1.

```java
1 class Node\{ 
2     class Internal\{ extends Node\{ 
3         final double x, y, w, h; 
4         Node nw, ne, sw, se; 
5     } 
6     class Leaf\{ extends Node\{ 
7         final double keyX, keyY; 
8         final V value; 
9     } 
10    class Empty\{ extends Node\{ 
11        void find(Node1, double keyX, double keyY) { 
12            while (1.class() == Internal) { 
13                getQuadrant(1, keyX, keyY); 
14            } 
15        } 
16        void getQuadrant(Node1, double keyX, double keyY) { 
17            if (keyX < l = 1, w / 2) { 
18                if (keyY < l = 1, h / 2) l = 1.0w; 
19                    else l = 1.0w; 
20            } else { 
21                if (keyY < l = 1, h / 2) l = 1.0w; 
22                    else l = 1.0w; 
23            } 
24        } 
```

![Fig. 2: Quadtree nodes and routing functions](image)

There are four basic operations that rely on \textit{find}:

1. **insert(key, value)** adds a node that contains key and value into a quadtree.
2. **remove(key)** deletes an existing node with key from a quadtree.
3. **contain(key)** checks whether key is in a quadtree.
4. **move(oldKey, newKey)** replaces an existing node with oldKey and value by a node with newKey and value that is not in a quadtree.

![Fig. 3: Sample quadtree operations](image)

To insert a node, we first locate its position by calling \textit{find}. If we find an \textit{Empty} node at the terminal, we directly replace it by the node. Otherwise, before replacing the candidate node, we recursively divide a \textit{Leaf} node into four corresponding sub-regions until the candidate region is \textit{Empty}. Figure 3A illustrates a scenario of inserting node 7 (insert(7)) as a neighborhood of node 2. The parent node is split, and node 7 is added on the \textit{ne} direction. Likewise, to remove a node, we also begin by locating it and then erase it from a quadtree. Next, we check whether its parent contains a single \textit{Leaf} node. If so, we record the node and traverse up until reaching a node that contains at least a \textit{Leaf} node or the child of the root node. Finally, we use that node as a new parent and re-insert the recorded node as its child. Take Figure 3B as an example, if we remove node 5 (remove(5)) from a quadtree, node 6 will be linked to the upper level. The move operation is a combination of the insert operation and the remove operation. It first removes the node with \textit{oldKey} and then adds a new node with \textit{newKey} into a quadtree. Consider the scenario in Figure 3C after removing node 5 and inserting node 7 with the same value (move(1, 7)), the new tree appears on the right part. Because \textit{contain(key)} just checks whether the node returned by \textit{find} has the same key, it does not need an extra explanation.

1. \textit{Empty} nodes are not drawn
3 CAS QUADTREE

There are a plenty of concurrent tree algorithms, yet a formal concurrent quadtree has not been studied. Intuitively, we can devise a concurrent quadtree by modifying the sequential algorithm described in Section 2 and adopting CAS instruction, which we name CAS quadtree. Figure 4 depicts CAS quadtree’s algorithms. Both the insert operation and the remove operation follow such a paradigm: it starts by locating a terminal node; then, it checks whether the node satisfies some conditions. If conditions are not satisfied, it returns false. Otherwise, it tries to apply a single CAS to replace the terminal node by a new node. After a successful CAS, it returns true. Or else, it restarts locating a terminal node from the root node. For a insert operation, if <keyX, keyY> is not in the tree, it creates a corresponding sub-tree that contains <keyX, keyY> and value (line 58). Then it uses the root of the sub-tree to replace the terminal node by a single CAS (line 59). To remove a node, it creates an Empty node at the beginning (line 43). If <keyX, keyY> is in the tree, it uses the Empty node to replace the terminal node (line 48). Different from the sequential algorithm, we do not adjust the structure as it involves several steps that cannot be implemented with atomicity. The algorithm is non-blocking. In other words, the algorithm provides a guaranteed whole progress, even if some threads starve.

However, CAS quadtree has several limitations. First, consider if there is a considerable proportion of remove operations. By applying the simple mechanism, we still have a large number of nodes in the quadtree because we substitute existing nodes with Empty nodes without structural adjustment. Figure 5 illustrates a detailed example showing that there remains a chain of Empty nodes. Hence, not only we have to traverse a long path to locate the terminal node for basic operations, but also a plenty of nodes are maintained in the memory.

Second, we cannot implement the move operation in the simple algorithm. There might be two different nodes in a quadtree that were under modifying. If we directly erase the node with oldKey and add the node with newKey, the move operation cannot be correctly linearized. Figure 6 shows such an incorrect move operation by combining an insert operation and a remove operation together.

Therefore, these drawbacks motivate us to develop a new concurrent algorithm to make the move operation correct and employ an efficient mechanism to compress nodes.

4 QUADBOOST

4.1 Rationale

In this section, we describe how to design quadboost algorithms to solve the two problems addressed in Section 3. To make the move operation correct, we should ensure that other threads know whether a terminal node is under moving. Hence, we attach an internal node with a separate object—Operation (op) to represent a node’s state and record sufficient information to complete the operation. We instantiate the attachment behavior as a CAS and call it a flag operation. We design different ops for the insert operation, the remove operation and the move operation. The detailed description of structures and a state transition mechanism is presented in Section 4.2.

To erase Empty nodes from a quadtree, we can apply a similar paradigm in the concurrent BST’s removal as shown in Figure 7, which flags both the parent and the
grandparent of a terminal node. This mechanism mixes logical removal and physical removal together. Different from the BST’s removal in which every time the parent node has to be adjusted, we only have to compress the parent when there is only a single Leaf child. Hence, we could separate the removal of a node and the adjustment of the structure into two phases. Meanwhile, we design an op—Compress to indicate a node is underlying the structural adjustment. Figure 7 illustrates how this method increases concurrency: three threads that handle different ops could run in parallel. Further, for simplicity, we relax the adjustment condition to where the parent could be compressed if all children are Empty.

However, there is still a problem left after applying the above two methods. Recall the example in Figure 5. We flag the bottom Internal node to indicate that it should be compressed, but after replacing the bottom Internal node with an Empty node, it results in four Empty nodes in the last level. How do we remove a series of nodes from a quadtree in a bottom-up way? We record the entire traversal path from the root to a terminal node in a stack. Since the traversal path will be altered when a node is compressed, we only have to restart locating the terminal node from its parent if any flag operation other than the flag of Compress fails. This is called the continuous find mechanism.

4.2 Structures and State Transitions

As mentioned before, we add an Operation object to handle concurrency issues. Figure 8 shows the data structures of quadboost. Four sub-classes of Operation, including Substitute, Compress, Move, and Clean, describe all states in our algorithm. Substitute provides information on the insert operation and the remove operation that are designed to replace an existing node by a new node. Hence, we shall let other threads be aware of its parent, child, and a new node for substituting. Compress provides information for physical adjustment. We erase the parent node, previously connected to the grandparent, by swinging the link to an Empty node.

Move stores both oldKey’s and newKey’s terminal nodes, their parents, their parents’ prior ops, and a new node. Moreover, we use a bool variable—allFlag to indicate whether two parents have been attached to a Move op or not. Another bool variable—ifFirst is used to indicate the attaching order. For instance, if ifFirst is true, iParent will be attached with a Move op before rParent. Clean means that there is no thread modifying the node. In contrast to Figure 4, the Internal class adds an op field to hold its state and related information. Note that a flag operation (CAS) is only applied on Internal nodes. We atomically set Move ops in Leaf nodes to linearize the move operation correctly.

Each basic operation, except for the contain operation, starts by changing an Internal node’s op from Clean to other states. The three basic operations, therefore, generate a cor-

Figure 7: At the beginning, three threads are performing different operations concurrently: (a) T1 removes key 1 in the lower level. (b) T2 inserts key 2 in the upper level. (c) T3 removes key 3 in the lower level. Consider the scenario that T1 precedes others threads, and then both 1’s parent and grandparent will be flagged. Hence, T2 and T3 will help T1 remove key 1 before restarting their operations. By applying our decoupling method, only the parent node should be flagged. Hence three threads could run without intervention.

Figure 8: quadboost structures
respective state transition diagram which provides a high-level description of our algorithm. After locating a terminal node, insert, remove, compress, and move transitions are executed as shown in Figure.9 In the figure, we specify the flag operation that restores an op to Clean as unflag, the flag operation that changes an op from Clean to Substitute in insert as iflag, the flag operation that changes an op from Clean to Substitute in remove as rflag, and the flag operation that changes an op from Clean to Compress as cflag. We describe how these transitions execute when a thread detects a state as follows:

- **Clean.** For the insert transition, a thread constructs a new node and changes the parent’s op to Substitute by iflag. For the remove transition, the thread creates an Empty node and changes the parent’s op from Clean to Substitute by rflag. For the move transition, the thread flags both newKey’s and oldKey’s parents by mflag. For the compress transition, the thread uses a cflag operation to flag the parent if necessary.

- **Substitute.** The thread uses a CAS to change the existing node by a given node stored in the op. It then restores the parent’s state to Clean by unflag.

- **Move.** The thread first determines the flag order by comparing oldKey’s parent with newKey’s parent. Suppose it flags newKey’s parent first, it will flag oldKey’s parent later. Then, the thread replaces oldKey’s terminal with an Empty node and replaces newKey’s terminal with a new node. Finally, it unflags their parents’ op to Clean in the reverse order.

- **Compress.** The thread erases the node from the tree so that it cannot be detected. Different than other states, the node with a Compress op cannot be set to Clean by unflag.

4.3 Concurrent Algorithms

Figure 10 reflects quadboost’s insert and contain operations. Both of them start by a find process that locates a terminal node. The find operation (line 98) pushes Internal nodes into a stack (line 95) and keeps recording the parent node’s op (line 96).

The contain operation executes in a similar way as CAS quadtree. It calls the find function to locate a terminal node (line 98). The op at line 96 and the stack at line 95 are created for a modular presentation. We can omit them in a real implementation.

In the insert operation, we create a stack at the beginning to record the traversal path (line 95) and a pOp to record the parent node’s op (line 96). After locating a terminal node, we check whether the key of the node is in the tree and whether the node is moved at line 108. We will show the reason why we have to check whether a node is moved in Section 4.4. Then, we flag the parent of the terminal node before replacing it. In the next step, we call the helpSubstitute function at line 114, which first invokes the helpReplace function at line 145 to replace the terminal node and then unflag the parent node at line 146. If the flag operation fails, we update pOp at line 116 and help it finish at line 118. More than that, we have to execute the continueFind function to restart from the nearest parent. The continueFind function (line 122) pops nodes from the path until reaching a node whose op is not Compress. If the node’s op is Compress, it helps the op finish. Or else, it breaks the loop and performs the find operation from the last node.
popped at line \[132\].

The remove operation has a similar paradigm as the insert operation. It first locates a terminal node and checks whether the node is in the tree or moved. After that, it flags the parent node and replaces the terminal node with an \textit{Empty} node. An extra step in the remove operation is the compress function at line \[171\]. In the algorithm, we perform the compress function before the remove operation returns true. In this way, the linearization point of the remove operation belongs to the execution of itself, and extra adjustment induced by the compress function do affect the effectiveness. The compress function should examine three conditions before compressing the parent node. First, because the remove operation must return true, we do not compress nor help if the state of the parent is not \textit{Clean} (line \[152\]). Second, we check if the grandparent node (\(gp\)) is the root (line \[184\]) as we maintain two layers of dummy \textit{Internal} nodes. At last, we check whether four children of a parent node are all \textit{Empty} (line \[186\]).

\begin{verbatim}
bool remove(double keyX, double keyY, V value) {
 Stack<node> path;
 Node l = root, newNode = new Empty();
 Operation pOp;
 while (true) {
 if (!inTree(l, keyX, keyY)) return false;
 if (pOp.class == Clean) {
 Operation op = new Substitute(l, newValue);
 if (helpFlag(p, pOp, op) {
 helpReplace(pOp, pOp, op);
 Compress(path, p);
 // compress the path if necessary
 return true;
 } else pOp = pOp;
 }
 helper(pOp);
 continueFindCommon(pOp, path, 1, p);
 }
 }
void compress(Stack<node> path, Internal p) {
 Operation pOp = pOp;
 if (pOp.class == Clean) {
 if (gp == root) return; // two layers of Internal nodes are maintained
 }
 Operation op = new Compress(gp, p);
 if (!check(iPath, ip)) return;
 else helpCompress(op);
 p = gp;
 return;
}
bool helpCompress(Compress op) {
 return helpReplace(op, op, parent, new Empty();
}
bool check(Internal node) {
 return node.mv == Empty & & node.mv == Empty & & node.mv == Empty;
}
\end{verbatim}

Fig. 11: quadboost remove

\subsection{4.4 LCA-based Move Operation}

Tree-based structures share a property that two nodes in the tree have a common path starting from the root, and the lowest node in the path is called the lowest common ancestor (LCA). Figure 12 demonstrates the LCA node of a quadtree by a concrete example. Based on the observation, our LCA-based move operation is defined to find two different terminal nodes sharing a common path, remove a node with oldKey, and insert a node with newKey.

Figures 13 and 14 present the algorithm of the move operation. In contrast with the insert operation and the remove operation, the move operation begins by calling the findCommon function (line \[212\]) that combines searches for two nodes together. The two searches share a common path that allows us to record them only once. We use two stacks to record nodes at line \[199\]. The shared path and the remove path are pushed into rPath; and the insert path is pushed into iPath. By doing this, we could avoid considering complicated corner cases in terms of node compressions in rPath. The findCommon function begins by reading a child node from the parent for oldKey and checks whether newKey is in the same direction (line \[271\]). If not, it terminates the traversal, and searches for individual keys separately (line \[282\] and line \[279\]). If oldKey is not in the tree or is moved, or if newKey is in the tree and not moved, it returns false.

The move operation then checks two parents' \textit{op} (iOp and rOp) before flag operations. If neither of them is \textit{Clean} (line \[216\]), or \textit{rp} and \textit{ip} are the same but their \textit{ops} are different (line \[218\]), it starts the continueFindCommon function at line \[223\] which we will discuss later in the section. Otherwise, it creates a new node for inserting and an \textit{op} to hold essential information for a CAS at line \[220-224\].

There are two specific cases. If two terminal nodes share a common parent, we directly call the helpMove function at line \[228\]. Or else, to avoid live locks, we flag two nodes in a specific order. In our algorithm, we use the getSpatialOrder function at line \[223\] to compare \textit{ip} and \textit{rp} in the following order: \(x \rightarrow y \rightarrow w\), where \(x, y\), and \(w\) are the fields of an \textit{Internal} node. We prove that this method produces a unique order among all \textit{Internal} nodes in a quadtree in appendix A.

To start, the helpMove function flags a parent and checks whether both parents are successfully flagged at line \[248\]. If both flag operations succeed, it sets allFlag to true at line \[250\]. Note that we assign the \textit{op} to oldRChild at line \[253\] letting other threads know whether the CAS on \textit{iParent} has finished, which is the linearization point of the move operation. Because simultaneously oldRChild is aware that it is removed, it also explains why we should examine whether a node is moved. Then, we check whether two terminal nodes are the same. If so, we could combine two CASs into a single one. If not, we should remove oldKey's terminal and replace newKey's terminal. In the end, we reset the parents' \textit{op} to \textit{Clean} in the reverse order (line \[261\]).

The continueFindCommon function is also invoked when one of the flag operations fails. If \textit{rp} cannot be flagged, it pops nodes from \textit{rPath} until it reaches the LCA node (line \[291\]) or a node's \textit{op} is \textit{Compress} (line \[297\]). It then starts from the last popped node to search for a new terminal of
oldKey at line 302. If ip cannot be flagged, it pops nodes from iPath until it is empty (line 315) or a node’s op is not Compress (line 317). It again continues to search for newKey at line 323. If either rPath has popped the LCA node or iPath is empty, it clears iPath at line 335 and pops all nodes above the LCA node from rPath at line 334. In the end, it calls the findCommon function to locate terminal nodes again at line 343. We prove that if oldKey’s terminal and newKey’s terminal share an LCA node, the common path will never be changed unless the LCA is altered.

Fig. 13: quadboost move

4.5 One Parent Optimization

In practice, we notice that pushing a whole stack during a traversal is highly expensive. When detecting a failed flag operation, we only have to restart from the parent of a terminal node because we do not change Internal nodes unless the compress function erases them from a quadtree. Thus, to reduce the pushing cost, we could only record the parent of the terminal node during a traversal.

Meanwhile, we have to change the continuous find
mechanism. For the insert operation and the remove operation, encountering a \textit{Compress op}, we straightforwardly restart from the root. For the move operation, if either \texttt{oldKey’s} or \texttt{newKey’s} parent is under compression, we restart from the LCA node. If the LCA node also has a \textit{Compress op}, we restart from the root.

5 Proof Sketch

In this section, we prove that quadboost is both linearizable and non-blocking, and we propose a lengthy proof in appendix \texttt{A}.

There are four kinds of basic operations in quadboost: the insert operation, the remove operation, the move operation, and the contain operation. Other functions are called subroutines, which are invoked by basic functions. The insert operation and the remove operation only modify one terminal node, whereas the move operation might operate two different terminals—one for inserting a node with \texttt{newKey}, the other for removing a node with \texttt{oldKey}. We call them \texttt{newKey’s} terminal and \texttt{oldKey’s} terminal, and we call their parents \texttt{newKey’s} parent and \texttt{oldKey’s} parent, respectively. We define \texttt{snapshot}\textsubscript{T} as the state of our quadtree at some time, \texttt{T}.

In our proofs, a CAS that changes a node’s \texttt{op} is a flag operation and a CAS that changes a node’s child is a replace operation. Specifically, we use \texttt{iFlag}, \texttt{rFlag}, \texttt{mFlag}, and \texttt{cFlag} to denote flag operations for the insert operation, the remove operation, the move operation, and the compress operation separately. Likewise, we use \texttt{ireplace}, \texttt{rreplace}, \texttt{mreplace}, and \texttt{creplace} for replace operations. Moreover, we specify a flag operation that attaches a \texttt{Clean op} on a node as an unflag operation.

First, we present some observations from quadboost. Then, we propose lemmas to show that our subroutines satisfy their pre-conditions and post-conditions because proofs on basic operations depend on these conditions. Next, we demonstrate that there are three categories of successful CAS transitions according to Figure 9. We also derive some invariants of these transitions. Using above post-conditions of subroutines and invariants, we could demonstrate that a quadtree’s structure is maintained during concurrent modifications. In following proofs, we show that quadboost is linearizable because it can be ordered equivalently as a sequential one by its linearization points. In the last part, we prove the non-blocking progress condition of quadboost.

Observation 1. The key field of a Leaf node is never changed. The op field of a Leaf node is initially null. The space information of an Internal node is never changed.

Observation 2. The root node is never changed.

Observation 3. A flag operation attaches an \texttt{op} on a Internal node.

Observation 4. The \texttt{allFlag} and \texttt{iFirst} field in Move are initially false, and they will never be set back after assigning to true.

Observation 5. If a Leaf node is moved, its \texttt{op} is set before the replace operation on \texttt{op.iParent}, which is before the replace operation on \texttt{op.rParent}.

Observation 6. The help function, the helpCompress function, the helpMove function, and the helpSubstitute function are not called in a mutual way. (If method A calls method B, and method B also calls method A, we say A and B are called in a mutual way.)

5.1 Basic Invariants

We use \texttt{find(keys)} to denote a set of find operations: \texttt{find, continueFind, findCommon, and continueFindCommon}. The find function and the continueFind function return a tuple \((l, pOp, path)\). The findCommon function and the continueFindCommon function return two such tuples. We specify functions outside the \texttt{while} loop in the insert operation, the remove operation, and the move operation are at \texttt{iteration}0, and functions inside the \texttt{while} loop are at \texttt{iteration}i, \(0 < i\) ordered by their invocation sequence.

We suppose that \texttt{find(keys)} executes from a valid \texttt{snapshot}\textsubscript{T} to derive the following conditions. Proofs for conditions of other subroutines are included in appendix \texttt{A}.

Lemma 1. The post-conditions of \texttt{find(keys)} returned at \texttt{T}_{i} with tuples \((l^{k}, pOp^{k}, path^{k})\), \(0 \leq k \leq |\texttt{keys}|\).

1) \(l^{k}\) is a Leaf node or an Empty node.
2) At some \(T_{i1} < T_{i}\), the top node in \texttt{path}^{k} has contained \texttt{pOp}^{k}.
3) At some \(T_{i2} < T_{i}\), the top node in \texttt{path}^{k} has contained \texttt{l}^{k}.
4) If \texttt{pOp}^{k} is read at \(T_{i1}\), and \(l^{k}\) is read at \(T_{i2}\), then \(T_{i1} < T_{i2} < T_{i}\).
5) For each node \texttt{n in the path}^{k}, size(\texttt{path}^{k}) \geq 2, \texttt{n} is on the top of \texttt{n}−\texttt{1}, and \texttt{n} is on the direction \texttt{d} \in \{nw, ne, sw, se\} of \texttt{n}−\texttt{1} at \(T_{i1} < T_{i}\).

Based on these post-conditions, we show that each \texttt{op} created at \(T_{i}\) store their corresponding information.

Lemma 2. For \texttt{op created at T}_{i}:

1) If \texttt{op} is Substitute, \texttt{op.parent} has contained \texttt{op.oldChild} that is a Leaf node at \(T_{i1} < T_{i}\) from the results of \texttt{find(keys)} at the prior iteration.
2) If \texttt{op is Compress, op.grandparent} has contained \texttt{op.parent} that is an Internal node at \(T_{i1} < T_{i}\) from the results of \texttt{find(keys)} at the prior iteration.
3) If \texttt{op is Move, op.iParent} has contained \texttt{op.oldIChild} that is a Leaf node and \texttt{op.oldIOP} before \(T_{i}\), and \texttt{op.rParent} has contained \texttt{op.oldRChild} that is a Leaf and \texttt{op.oldROp} before \(T_{i}\) from the results of \texttt{find(keys)} at the prior iteration.

Though we have not presented details of the createNode function, our implementation could guarantee that it has following conditions.

Lemma 3. For createNode\textsubscript{T}(\texttt{l, p, newKeyX, newKeyY, value}) that returns a \texttt{new Node} invoked at \(T_{i}\), it has the post-condition:

1) The \texttt{new Node} returned is either a Leaf node with \texttt{newKey} and \texttt{value}, or a sub-tree that contains both \texttt{l.key} node and \texttt{newKey} node with the same parent.

Using prior conditions, we derive some invariants during concurrent executions and prove that there are three...
kinds of successful CAS transitions. We put successful flag operations that attach ops on nodes at the beginning of each CAS transition. We say every successive replace operations that read op belongs to it and follows the flag operations.

Let flag_0, flag_1, ..., flag_i be a sequence of successful flag operations. flag_i, reads pOp, and attaches op, replace_i and unflag_i, read op, and follows it. Therefore, we say flag_i, replace_i, and unflag_i belong to the same op. In addition, if there are more than one replace operation belongs to the same op, we denote them as replace_0, replace_1, ..., replace_i ordered by their successful sequence. Similarly, if there is more than one flag operation that belonging to op on different nodes, we denote them as flag_0, flag_1, ..., flag_i. A similar notation is used for unflag_i.

The following lemmas prove the correct ordering of three different transitions.

Lemma 4. For a new node n:

1) It is created with a Clean op.
2) rflag, iflag, mflag or cflag succeeds only if n's op is Clean.
3) unflag succeeds only if n's op is Substitute or Move.
4) Once n's op is Compress, its op will never be changed.

Lemma 5. For an Internal node n, it never reuses an op that has been set previously.

Lemma 6. replace_i will not occur before flag_i that belongs to the same op that has been done.

Lemma 7. The flag → replace → unflag transition occurs when rflag_i, iflag_i, or mflag_i succeeds, and it has following properties:

1) replace_i never occurs before flag_i.
2) flag_i, 0 ≤ k < |flag_i| is the first successful flag operation on op_i.parentk after T_i when pOp_i is read.
3) replace_i, 0 ≤ k < |replace_i| is the first successful replace operation on op_i.parentk* after T_i when op_i.oldChildk is read.
4) replace_i, 0 ≤ k < |replace_i| is the first successful replace operation on op_i.parentk* that belongs to op_i.
5) unflag_i, 0 ≤ k < |unflag_i| is the first successful unflag operation on op_i.parentk after flag_i.
6) There is no successful unflag operation that occurs before replace_i.
7) The first replace operation on op_i.parentk that belongs to op_i must succeed.

Lemma 8. The flag → replace transition occurs only when cflag_i succeeds, and it has following properties:

1) creplace_i never occurs before cflag_i.
2) cflag_i is the first successful flag operation on op_i.parent after T_i when pOp_i is read.
3) creplace_i is the first successful replace operation on op_i.grandparent after T_i when op_i.parent is read.
4) creplace_i is the first successful replace operation on op_i.grandparent that belongs to op_i.
5) There is no unflag operation after creplace_i.
6) The first replace operation on op_i.grandparent that belongs to op_i must succeed.

Lemma 9. For the flag → unflag transition, it only results from mflag (Suppose iFirst is false) when:

1) unflag_i is the first successful unflag operation on op_i.rParent.
2) The first flag operation on op_i.iParent must fail, and no later flag operation succeeds.
3) op_i.iParent and op_i.rParent are different.

Claim 1. There are three kinds of successful transitions belong to an op: (1) flag → replace → unflag, (2) flag → unflag, (3) flag → replace.

Then, we prove that a quadtree maintains its properties during concurrent modifications.

Definition 1. Our quadtree has the following properties:

1) Two layers of dummy Internal nodes are never changed.
2) An Internal node n has four children located in the direction d ∈ {nw, ne, sw, se} according to their ⟨x, y, w, h⟩, or (keyX, keyY).

For Internal nodes residing on four directions:

- n.nw.x = n.x, n.nw.y = n.y;
- n.ne.x = n.x + w/2, n.ne.y = n.y;
- n.sw.x = n.x, n.sw.y = n.y + n.h/2;
- n.se.x = n.x + w/2, n.se.y = n.y + n.h/2;

All children have their w′ = n.w/2, h′ = n.h/2.

For Leaf nodes residing on four directions:

- n.x ≤ n.nw.keyX < n.x + n.w/2, n.y ≤ n.nw.keyY < n.y + n.h/2;
- n.nw.x ≤ n.nw.keyX < n.x + n.w, n.nw.y ≤ n.nw.keyY < n.y + n.h;
- n.x ≤ n.sw.keyX < n.x + n.w/2, n.y + n.h/2 ≤ n.sw.keyY < n.y + n.h;
- n.x + n.w/2 ≤ n.se.keyX < n.x + n.w, n.y + n.h/2 ≤ n.se.keyY < n.y + n.h.

To help clarify a quadtree’s properties during concurrent executions, we define active set and inactive set for different kinds of nodes. For an Internal node or an Empty node, if it is reachable from the root in snapshot_T, it is active; otherwise, it is inactive. For a Leaf node, if it is reachable from the root in snapshot_T, and not moved, it is active; otherwise, it is inactive. We say a node n is moved in snapshot_T, if the function moved(n) returns true at T. We denote path(keys)^k, 0 ≤ k < |replace_i| as a stack of nodes pushed by find(keys) in a snapshot. We define physical_path(keys)^k to be the path for keys^k in snapshot_T, consisting of a sequence of Internal nodes with a Leaf node or an Empty node at the end. We say a subpath of path(keys)^k is an active_path if all nodes from the root to node n ∈ path(keys)^k are active. Hence a physical_path(keys)^k is active only if the end node is not moved.

Lemma 10. Two layers of dummy nodes are never changed.

Lemma 11. Children of a node with a Compress op will not be changed.

Lemma 12. Only an Internal node with all children Empty could be attached with a Compress op.

Lemma 13. An Internal node whose op is not Compress is active.
Lemma 14. After the invocation of find(keys) which reads \(l^k \), there is a snapshot in which the path from the root to \(l^k \) is physical_path(keys\(^k\)).

Lemma 15. After ireplace, rreplace, mreplace, and creplace, a quadtree’s properties remain.

Proof. We shall prove that in any snapshot\(_T_i\), a quadtree’s properties remain.

First, Lemma 10 shows that two layers of dummy nodes remain in the tree. We have to consider other layers of nodes that are changed by replace operations.

Consider creplace that replaces an Internal node by an Empty node. Because the Internal node has been flagged on a Compress op before creplace (Lemma 8), all of its children are Empty and not changed (Lemma 11 and Lemma 12). Thus, creplace does not affect the second claim of Definition 1.

Consider ireplace, rreplace, or mreplace that replaces a terminal node by an Empty node, a Leaf node, or a sub-tree. By Lemma 7, before replace\(^k\), \(\text{op.parent}^k \) is flagged with op such that no successful replace operation could happen on \(\text{op.parent}^k \). Therefore, if the new node is Empty, it does not affect the tree property. If the new node is a Leaf node or a sub-tree, based on the post-conditions of the createNode function (Lemma 3), after replace operations the second claim of Definition 1 still holds.

Claim 2. A quadtree maintains its properties in every snapshot.

5.2 Linearizability

In this section, we define linearization points for basic operations. As the compress function is included in the move operation and the remove operation that return true, it does not affect the linearization points of these operations. If an algorithm is linearizable, its result be ordered equivalently as a sequential history by the linearization points. Since all modifications depend on find(keys), we first point out its linearization point. For find(keys), we define its linearization point at \(T_i \) such that \(l^k \) returned is on the physical_path(keys\(^k\)) in snapshot\(_T_i\).

For the contain operation that returns true, we show that there is a corresponding snapshot in which \(l^k \) in physical_path(keys\(^k\)) is active. For the contain operation, the insert operation, the remove operation, or the move operation that returns false, we show there is a corresponding snapshot in which \(l^k \) in physical_path(keys\(^k\)) is inactive. For the insert, remove, and move operations that returns true, we define the linearization point to be its first successful replace operation—replace\(^0\). To make a reasonable demonstration, we first show that replace\(^i\), \(0 \leq k < |\text{replace}| \) belongs to each operation that creates \(\text{op} \), and illustrate that \(op \) is unique for each operation.

Lemma 16. For find(keys) that returns tuples \((l^k, p\text{Op}^k, path^k) \), there is a snapshot\(_T_i\) such that \(path^k \) returned with \(l^k \) at the end is physical_path(key\(^k\)) in snapshot\(_T_i\).

Lemma 17. If the insert operation, the remove operation, or the move operation returns true, the first successful replace operation occurs before returning, and it belongs to the op created by the operation itself at the last iteration in the while loop.

Lemma 18. If the insert operation, the remove operation, or the move operation returns false, there is no successful replace happens during the execution.

The next lemma points out the linearization points of the contain operation.

Lemma 19. For the contain operation that returns true, there is a corresponding snapshot that \(l^k \) in physical_path(keys\(^k\)) is active in snapshot\(_T_i\). For the contain operation that returns false, there is a corresponding snapshot that \(l^k \) in physical_path(keys\(^k\)) is inactive in snapshot\(_T_i\).

We list out the linearization points of other operations as follows:

- insert(key). The linearization point of the insert operation that returns false is \(T_i \) after calling find(key) at which \(l \) at the end of physical_path(key) contains the key and is not moved. For the insert operation that returns true, the linearization point is at the first successful replace operation (line 145).
- remove(key). The linearization point of the remove operation that returns false is \(T_i \) after calling find(key) at which \(l \) at the end of physical_path(key) does not contain the key or is moved. For the successful remove operation, we define the linearization point where the node with key is replaced by an Empty node (line 145).
- move(oldKey, newKey). For the unsuccessful move operation, the linearization point depends on both newKey and oldKey. If \(rl \) at the end of physical_path(oldKey) does not contain oldKey or is moved, the linearization point is \(T_{i1} \) after calling find(keys). Or else, if \(rl \) at the end of physical_path(newKey) contains newKey and is not moved, the linearization point is at \(T_{i2} \) after calling find(keys).

For the successful move operation, the linearization point is the first successful replace operation. (line 255 or line 257)

Claim 3. quadboost is linearizable.

5.3 Non-blocking

Finally, we prove that quadboost is non-blocking, which means that the system as a whole is making progress even if some threads are starving.

Lemma 20. A node with a Compress op will not be pushed into path more than once.

Lemma 21. For path(keys\(^k\)), if \(n_t \) is active in snapshot\(_T_i\), then \(n_0, \ldots, n_{t-1} \) pushed before \(n_t \) are active.

Lemma 22. If \(n \) is the LCA node in snapshot\(_T_i\) on physical_path for oldKey and newKey. Then at \(T_{i1}, T_{i1} > T_i \), \(n \) is still the LCA on active_path for oldKey and newKey if it is active.

Lemma 23. path\(^k\) returned by find(keys) consists of finite number of keys.

Lemma 24. There is a unique spatial order among nodes in a quadtree in every snapshot.
Lemma 25. There are a finite number of successful flag → replace →, flag → replace, flag → unflag transitions.

Lemma 26. If the help function returned at T_i, and find(keys) at the prior iteration reads p^k.op at T_{i+1}, keys in snapshot$_{T_i}$ and snapshot$_{T_{i+1}}$ are different.

Claim 4. quadboost is non-blocking.

Proof. We have to prove that no process will execute loops infinitely without changing keys in a quadtree. First, we prove that path is terminable. Next, we prove that find(keysk) starts from an active node in physical_path(keysk) in snapshot$_{T_i}$ between ith iteration and $i+1$th iteration. Finally, some Leaf nodes in snapshot$_{T_{i+1}}$ at the returning of find(keys) at ith iteration are different from snapshot$_{T_i}$ at the returning of find(keys) at $i+1$th iteration.

For the first part, we initially start from the root node. Therefore, path is empty. Moreover, as Lemma 22 shows that pathk consists of finite number of keys, we establish this part.

For the second part, the continueFind function and the continueFindCommon function pop all nodes with Compress op from path. For the insert operation and remove operation, since Lemma 13 shows that an Internal nodes whose op is not Compress is active, and Lemma 21 shows that nodes above the active node are also active, there is a snapshot in which the top node of path is still in physical_path(keysk). For the move operation, if either rFail or iFail is true, it is equivalent with the prior case. If cFail is true, Lemma 22 illustrates that if the LCA node is active, it is in physical_path for both oldKey and newKey. Thus, there is also a snapshot that the start node is in physical_path.

The third part is proved by contradiction, assuming that a quadtree is stabilized at T_i, and all invocations after T_i are looping infinitely without changing Leaf nodes.

For the insert operation and the remove operation, before the invocation of find(keys) at the next iteration, they must execute the help function at line 118 and line 175 accordingly. In both cases, the help function changes the snapshot (Lemma 26).

For the move operation, different situations of the continueFindCommon function are considered. If rFail or iFail is true, two situations arise: (1) iOp or rOp is Clean but mflag fails; or (2) iOp or rOp is not Clean. In both cases, before the invocation of find(keysk), the help function is performed at line 311 and line 257. Thus by Lemma 26, the snapshot is changed between two iterations. Now consider if cFail is true. If ip and rp are the same, it could result from the difference between rOp and iOp. In this case, the snapshot might be changed between reading rOp and iOp. It could also result from the failure of mflag. For the above cases, the help function at line 332 would change the quadtree. If ip and rp are different, it results from either iPath or rPath that have popped the LCA node. We have proved the case in which either iFail or rFail is true and derives a contradiction.

From the above discussions, we prove that quadboost is non-blocking. □

6 Evaluation

We ran experiments on a machine with 64GB main memory and two 2.6GHz Intel(R) Xeon(R) 8-core E5-2670 processors with hyper-threading enabled, rendering 32 hardware threads in total. We used the RedHat Enterprise Server 6.3 with Linux core 2.6.32, and all experiments were ran under Sun Java SE Runtime Environment (build 1.8.0_65). To avoid significant run-time garbage collection cost, we set the initial heap size to 6GB.

For each experiment, we ran eight 1-second cases, where the first 3 cases were performed to warm up JVM, and the median of the last 5 cases was used as the real performance. Before the start of each case, we inserted half keys from the key set into a quadtree to guarantee that the insert and the remove operation have equal success opportunity initially.

We apply uniformly distributed key sets that contain two-dimensional points within a square. We use the range to denote the border of a square. Thus, points are located inside a range * range square. In our experiments, we used two different key sets: 10^2 keys to measure the performance under high contention, and 10^6 keys to measure the performance under low contention. For simplicity, we let the range of the first category experiment be 10, rendering $1 - 10^2$ consecutive keys for one-dimensional structure. For the second category experiment, we let the range be 1000, generating $1 - 10^6$ consecutive keys.

Table 1: The concurrent quadtree algorithms with different optimization strategies.

Type	Insert	Remove	Move
qb-o	flag CAS, continuous find, recursive compression	flag CAS, continuous find, recursive compression	flag CAS, continuous find, recursive compression
qb-s	flag CAS, continuous find, recursive compression	flag CAS, continuous find, recursive compression	flag CAS, continuous find, recursive compression

We evaluate quadboost algorithms via comparing with the state-of-the-art concurrent trees (kary, ctric, and patria) for throughput (Section 6.1) and presenting the incremental effects of the optimization strategies proposed in this work (Section 6.2). Table 1 lists the concurrent quadtree algorithms. qb-o (quadboost-one parent) is the one parent optimization based on qb-s (quadboost-stack) mentioned in Section 4.4. qc is the CAS quadtree introduced in Section 3.

6.1 Throughput

To the best of our knowledge, a formal concurrent quadtree has not been published yet. Hence, we compare our quadtrees with three one-dimensional non-blocking trees:

- kary is a non-blocking k-way search tree, where k represents the number of branches maintained by an internal node. Like the non-blocking BST [4], keys are kept in leaf nodes. When $k = 2$, the structure is similar as the non-blocking BST; when $k = 4$, each internal node has four children, it has a similar structure to quadtree. However, kary’s structure depends on the modification order, and it does not have a series of internal nodes representing the two-dimensional space hierarchy.

- ctric is a concurrent hash trie, where each node can store up to 2^k children. We use $k = 2$ to make a
4-way hash trie that resembles quadtree. The hash trie also incorporates a compression mechanism to reduce unnecessary nodes. Different from quadtree, it uses a control node (INODE as the paper indicates) to coordinate concurrent updates. Hence, the search depth could be longer than quadtree.

- **patricia** is a binary search tree, which adopts Ellen’s BST techniques. As the author points out, it can be used as quadtree by interleaving the bits of x and y. It also supports the move (replace) operation like quadboost. Unlike our LCA-based operation, it searches two positions separately without a continuous find mechanism.

Since the above structures only store one-dimensional keys, we had to transform a two-dimensional key into a one-dimensional key for comparison. Though patricia could store two-dimensional keys using the above method, ctrie and kary cannot use it. Thus, we devised a general formula: \(key^1 = key^2 \times range + key^3 \). Given a two-dimensional key-key*, and range, we transformed it into a one-dimensional key-key*. To refrain from trivial transformations by floating numbers, we only considered integer numbers in this section.

Due to the lack of the move operation in CAS quadtree (qc), we compare throughput with/without the move operation respectively. Figure 15 plots throughput without any move operation for the concurrent algorithms. It is not surprising to observe that qc achieves the highest throughput. To some extent, qc represents an upper bound of throughput because it maintains the hierarchy without physical removal, i.e., its remove operation only applies a CAS on edges to change links, which leads to less contention than other practical concurrent algorithms. However, both qb-s and qb-o can achieve comparable throughput when the key set becomes larger. This phenomenon occurs due to: (i) given the large key set, fewer thread interventions result in a lesser number of CAS failures on nodes; and (ii) both algorithms compress nodes and use the continuous find mechanism to reduce the length of traverse path.

As a comparison, ctrie, kary, and patricia show lower performances with the increasing number of threads. For instance, in Figure 15a at 32 threads, qb-o outperforms ctrie by 49%, patricia by 79%, and kary by 109%. Note that qb-o and qb-s incorporate the continuous find mechanism to reduce the length of traverse path. Further, both kary and patricia flag the grandparent node in the remove operation, which allows less concurrency than ctrie, qb-o and qb-s with the decoupling approach shown in Figure 7. qb-s is worse than qb-o due to its extra cost of recording elements and compressing nodes recursively. Figure 15b exhibits results from when the key set was large. There is less collision among threads but deeper depths of trees than the smaller key set. In the scenario, qb-o and qb-s show a similar performance as qc because of less number of CAS failures caused by thread interventions. qb-o is only 12% worse than qc at 32 threads, but 47% better than ctrie, 35% better than kary, and 39% better than patricia mainly for its shorter traversal paths caused by its static representation and the continuous find mechanism. As we discussed in the next section, qb-s and qb-o save a significant number of nodes as shown in Figure 15a. It implies that qb-s and qb-o occupy less memory and result in a shorter path for traversal.

![Fig. 15: Throughput of different concurrent trees under both high and low contention (50% insert, 50% remove).](image)

(a) 10^2 keys
(b) 10^6 keys

Figure 16 demonstrates that quadboost has an efficient move operation. Using the small key set, where the depth is not a significant impact, Figure 16a shows that qb-o is more efficient than patricia especially when contention is high. For example, it performs better than patricia by 47% at 32 threads because it adopts the continuous find mechanism to traverse less path and decouples physical adjustment for higher concurrency. However, qb-s is similar to patricia since it has to maintain a stack and recursively compress nodes in a quadtree. Figure 16b illustrates that qb-s and qb-o have a similar throughput for the large key set. qb-o outperforms patricia by 31% at 32 threads. When the key set is large, the depth becomes a more significant factor due to less contention. Since each Internal node in a quadtree maintains four children while patricia maintains two, the depth of patricia is deeper than quadboost. Further, the combination of the LCA node and the continuous find mechanism ensures that qb-o and qb-s do not need to restart from the root even if flags on two different nodes fail.

6.2 Analysis

To determine how quadboost algorithms improve the performance, we devised two algorithms that incrementally use parts of techniques in qb-o:

- qb-f flags the parent of a terminal node in the move operation, the insert operation, and the remove operation. It restarts from the root without a continuous find mechanism. Further, it adopts the traditional remove mechanism mentioned in Figure 7a.
• **qb-d** decouples the physical adjustment in the remove operation based on **qb-f**.

 range here was set to $2^{32} - 1$, and both key_x and key_y could be floating numbers. We used an insert dominated experiment and a remove dominated experiment to demonstrate the effects of different techniques. We used a remove dominated experiment to show the effect of decoupling, where insert:remove ratio was 1:9. In the insert dominated experiment, the insert:remove ratio was 9:1; hence, there were far more insert operations. Since fewer compress operations were induced, the experiment showed the effect of the continuous find mechanism. Figure 17a illustrates that quadtrees with decoupling exhibit a higher throughput than **qb-f**, the basic flag concurrent quadtree. Besides, **qb-o** which incorporates the continuous find is more efficient than **qb-d**. Specifically, at 32 threads, **qb-o** performs 15% better than **qb-d** and 51% better than **qb-f**. From Figure 17b, we determine that **qb-o** outperforms **qb-f** by up to 35%. Therefore, it demonstrates that the continuous find mechanism and the decoupling approach play a significant role in our algorithm.

![Fig. 17: Throughput comparison in insert dominated and remove dominated cases (10^2 keys).](image)

Another advantage of quadboost results from the compression technique, which reduces the search path for each operation and the memory consumption. Figure 18 plots the number of nodes left and the throughput of each quadtree at different insert:remove ratios. As **qc** only replaces a terminal node with an *Empty* node without compression, it results in the greatest number of nodes in the memory (Figure 18a). In contrast, **qb-s** and **qb-o** compress a quadtree if necessary. When **qc** contains much more nodes than other quadtrees, the remove operation dominates (the first groups bars to the left) and has three times the amount of nodes of **qb-s**. The result also indicates that **qb-o** contains a similar number of nodes to **qb-s** despite it only compresses one layer of nodes. Figure 18b illustrates the effectiveness of compression in the face of tremendous contain operations. **qb-s** outperforms **qc** by 30% at 9:1 insert:remove ratio because **qb-s** adjusts the quadtree’s structure by compression to reduce the length of the search path. With the increment of the insert ratio, **qb-s** performs similar to **qc** due to the extra cost of maintaining a stack and the recursive compression. However, **qb-o** achieves good balance between **qb-s** and **qc**, which compresses one layer of nodes without recording the whole traverse path.

7 Related Works

Because there are few formal works related to concurrent quadtrees, we present a roadmap to show the development of state-of-the-art concurrent trees in Figure 19.

![Fig. 19: Concurrent trees roadmap](image)

Ellen [4] provided the first non-blocking BST and proved it correct. This work is based on the cooperative method described in Turek [17] and Barnes [18]. Brown [19] used a similar approach for the concurrent k-ary tree. Shafiei [20] also applied the method for the concurrent patricia trie. It also showed how to design a concurrent operation where two pointers need to be changed. The above concurrent trees have an external structure, where only leaf nodes contain actual keys. Howley [5] designed the first internal BST by the cooperative method. Recently, Brown [21] presented a generalized template for all concurrent down-trees. Ellen [22] exhibited how to incorporate a stack to reduce the original complexity from $O(ch)$ to $O(h + c)$. Our quadboost is a hybrid of these techniques. It uses a cooperative method for concurrent coordination, changes two different positions with atomicity, and devises a continuous find mechanism to reduce restart cost.

Different from the previously mentioned methods that apply flags on nodes, Natarajan [6] illustrated how to apply flags on edges for a non-blocking external BST. Ramachandran [7] adopted CAS locks on edges to design a concurrent internal BST and later extended the work to non-blocking [8]. Their experiments showed that internal trees are more scalable than external trees with a large key range. On one hand, internal trees take up less memory; on the other hand, the remove operation is more complicated than
that in external trees. Chatterjee [9] provided a threaded-BST with edge flags and claimed it has a low theoretical complexity. Unlike the above trees that have to flag their edges before removal, our CAS quadtree uses a single CAS in both the insert operation and the remove operation.

The first balanced concurrent BST was proposed by Bronson [23] in which they used an optimistic and relaxed balance method to build an AVL tree. Besa [27] employed a similar method for a red-black tree. Crain [25] proposed a method that decouples physical adjustment from logical removal by a background thread. Drachsler [10] mentioned an alternative technique called logical ordering, which uses the key order of the BST to optimize the contain operation. All of these works were constructed on fine-grained locks and are deadlock free. Based on the special properties of quadtree, we also decoupled physical adjustment from logical removal and achieved a high throughput.

There are numerous studies on concurrent trees in addition to ours and the ones mentioned in this work. Crain [25] designed a concurrent AVL tree based on STM. Prokopec [27] used a control node, which is similar to our Operation object to develop a concurrent trie. Arbel [28] provided a balanced BST with RCU and fine-grained locks.

8 Conclusions
In this paper, we present a set of concurrent quadtree algorithms—quadboost, which support concurrent insert, remove, contain, and move operations. In the remove operation, we decouple physical updates from the logical removal to improve concurrency. The continuous find mechanism analyses flags on nodes to decide whether to move down or up. Further, our LCA-based move operation can modify two pointers with atomicity. The experimental results demonstrate that quadboost outperforms existing one-dimensional tree structures while maintaining a two-dimensional hierarchy. The quadboost algorithms are scalable with a variety of workloads and thread counts.

References
[1] M. Moir and N. Shavit, “Concurrent data structures,” Handbook of Data Structures and Applications, pp. 47–14, 2007.
[2] N. Shavit, “Data structures in the multicore age,” Communications of the ACM, vol. 54, no. 3, pp. 76–84, 2011.
[3] T. David, R. Guerraoui, and V. Trigoniakis, “Asynchronized concurrency: The secret to scaling concurrent search data structures,” in Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 2015, pp. 631–644.
[4] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel, “Non-blocking binary search trees,” in Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing. ACM, 2010, pp. 131–140.
[5] S. V. Howley and J. Jones, “A non-blocking internal binary search tree,” in Proceedings of the twenty-fourth annual ACM symposium on Parallelism in algorithms and architectures. ACM, 2012, pp. 161–171.
[6] A. Natarajan and N. Mittal, “Fast concurrent lock-free binary search trees,” in ACM SIGPLAN Notices, vol. 49, no. 8. ACM, 2014, pp. 317–328.
[7] A. Ramachandran and N. Mittal, “Castle: fast concurrent internal binary search tree using edge-based locking,” in Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM, 2015, pp. 281–282.
[8] ———, “A fast lock-free internal binary search tree,” in Proceedings of the 2015 International Conference on Distributed Computing and Networking. ACM, 2015, p. 37.
[9] B. Chatterjee, N. Nguyen, and P. Tsagias, “Efficient lock-free binary search trees,” in Proceedings of the 2014 ACM symposium on Principles of distributed computing. ACM, 2014, pp. 322–331.
[10] D. Drachsler, M. Veech, and E. Yahav, “Practical concurrent binary search trees via logical ordering,” in ACM SIGPLAN Notices, vol. 49, no. 8. ACM, 2014, pp. 343–356.
[11] V. Ng and T. Kameda, “Concurrent accesses to r-trees,” in Advances in Spatial Databases. Springer, 1993, pp. 142–161.
[12] J. Chen, Y.-F. Huang, and Y.-H. Chin, “A study of concurrent operations on r-trees,” Information Sciences, vol. 98, no. 1, pp. 263–300, 1997.
[13] R. Obe and L. Hsu, PostGIS in action. Manning Publications Co., 2011.
[14] A. C. Tassiou Knop, “Qollide - Quadtrees and Collisions,” https://graphics.ethz.ch/~achapiro/gc.html. 2010, [Online; accessed 29-August-2015].
[15] G. J. Sullivan and R. L. Baker, “Efficient quadtree coding of images and video,” Image Processing, IEEE Transactions on, vol. 3, no. 3, pp. 327–331, 1994.
[16] D. P. Mehta and S. Sahni, Handbook of data structures and applications. CRC Press, 2004.
[17] J. Turek, D. Shasha, and S. Prakash, “Locking without blocking: making lock based concurrent data structure algorithms nonblocking,” in Proceedings of the eleventh ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. ACM, 1992, pp. 212–222.
[18] G. Barnes, “A method for implementing lock-free shared-data structures,” in Proceedings of the fifth annual ACM symposium on Parallel algorithms and architectures. ACM, 1993, pp. 261–270.
[19] T. Brown and J. Helga, “Non-blocking k-ary search trees,” in Principles of Distributed Computing. ACM, 2014, pp. 332–340.
[20] N. Shafiei, “Non-blocking Patricia tries with replace operations,” in Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International Conference on. IEEE, 2013, pp. 216–225.
[21] T. Brown, F. Ellen, and E. Ruppert, “A general technique for non-blocking trees,” in ACM SIGPLAN Notices, vol. 49, no. 8. ACM, 2014, pp. 329–342.
[22] F. Ellen, P. Fatourou, J. Helga, and E. Ruppert, “The amortized complexity of non-blocking binary search trees,” in Proceedings of the 2014 ACM symposium on Principles of distributed computing. ACM, 2014, pp. 332–340.
[23] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun, “A practical concurrent binary search tree,” in ACM Sigplan Notices, vol. 45, no. 5. ACM, 2010, pp. 257–268.
[24] J. Besa and Y. Eterovic, “A concurrent red-black tree,” Journal of Parallel and Distributed Computing, vol. 73, no. 4, pp. 434–449, 2013.
[25] T. Crain, V. Gramoli, and M. Raynal, “A contention-friendly binary search tree,” in Euro-Par 2013 Parallel Processing. Springer, 2013, pp. 229–240.
[26] ———, “A speculation-friendly binary search tree,” ACM Sigplan Notices, vol. 47, no. 8, pp. 161–170, 2012.
[27] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky, “Concurrent tries with efficient non-blocking snapshots,” in ACM Sigplan Notices, vol. 47, no. 8. ACM, 2012, pp. 151–160.
[28] M. Arbel and H. Attiya, “Concurrent updates with rcu: Search tree as an example,” in Proceedings of the 2014 ACM symposium on Principles of distributed computing. ACM, 2014, pp. 196–205.
APPENDIX

.1 Basic Invariants

We provide a detailed proof of quadboost in this section. We follow the same naming convention in the paper. There are four kinds of basic operations in quadboost, i.e. the insert operation, the remove operation, the move operation, and the contain operation. Other functions are called subroutines, which are invoked by basic operations. The insert operation and the remove operation only operate on one terminal node, whereas the the move operation operates two different terminals—one for inserting a node with newKey, the other is for removing a node with oldKey. We call them newKey’s terminal and oldKey’s terminal, and we call their parents newKey’s parent and oldKey’s parent accordingly. Moreover, we name a CAS that changes a node’s op a flag operation and a CAS that changes a node’s child a replace operation. We define snapshotT_i as the state of our quadtree at some time T_i.

.1.1 Subroutines

To begin with, we have following observations from quadboost.

Observation 1. The key field of a Leaf node is never changed. The op field of a Leaf node is initially null.

Observation 2. The space information—{(x, y, w, h)} of an Internal node is never changed.

Observation 3. The root node is never changed.

Based on Observation 3, we derive a Corollary as follows:

Corollary 1. Two nodes in quadtree must share a common search path starting from the root.

Using these observations, we prove that each subroutine satisfies their specific pre-conditions and post-conditions. Because all basic operations invoke the find function at line 134 that returns \(\langle l, pOp, path \rangle \) and the findCommon function at line 270 that returns \(\langle il, iOp, iPath, rl, rOp, rPath \rangle \), we prove that the two functions satisfy their pre-conditions and post-conditions beforehand. We suppose that they execute from a snapshotT_i to derive these conditions.

Definition 1. The pre-condition of find(l, pOp, path, keyX, keyY) invoked at T_i:

1) If path is not empty, l was on the direction \(d \in \{nw, ne, sw, se\} \) of the top node in path at \(T_{i1} \leq T_i \).

 The post-conditions of find(l, pOp, path, keyX, keyY) that returns a tuple \(\langle l, pOp, path \rangle \) at T_i:

 1) l is a Leaf node or an Empty node.
 2) At some \(T_{i1} < T_i \), the top node in path has contained pOp.
 3) At some \(T_{i1} < T_i \), the top node in path has contained l.
 4) If pOp was read at \(T_{i1} \), and l was read at \(T_{i2} \), then \(T_{i1} < T_{i2} < T_i \).
 5) For each node n in path, \(\text{size}(path) \geq 2 \), \(n_i \) is on the top of \(n_{i-1} \), and \(n_i \) was on the direction \(d \in \{nw, ne, sw, se\} \) of \(n_{i-1} \) at \(T_{i1}\text{keyT}_i \).

Definition 2. The pre-conditions of findCommon(il, rl, lca, rOp, iOp, iPath, rPath, oldKeyX, oldKeyY, newKeyX, newKeyY) invoked at T_i:

1) If iPath is not empty, il was on the direction \(d \in \{nw, ne, sw, se\} \) of the top node in iPath at \(T_{i1} \leq T_i \).
2) If rPath is not empty, rl was on the direction \(d \in \{nw, ne, sw, se\} \) of the top node in rPath at \(T_{i1} \leq T_i \).

The post-conditions of findCommon(il, rl, lca, rOp, iOp, iPath, rPath, oldKeyX, oldKeyY, newKeyX, newKeyY) that returns two tuples \(\langle il, iOp, iPath \rangle \) and \(\langle rl, rOp, rPath \rangle \) at T_i:

1) rl was a Leaf or an Empty node.
2) il was a Leaf or an Empty node.
3) At some \(T_{i1} < T_i \), the top node in rPath has contained rOp.
4) At some \(T_{i1} < T_i \), the top node in iPath has contained iOp.
5) At some \(T_{i1} < T_i \), the top node in rPath has contained rl.
6) At some \(T_{i1} < T_i \), the top node in iPath has contained il.
7) If iOp was read at \(T_{i1} \), and il was read at \(T_{i2} \), then \(T_{i1} < T_{i2} < T_i \).
8) If rOp was read at \(T_{i1} \), and rl was read at \(T_{i2} \), then \(T_{i1} < T_{i2} < T_i \).
9) For each node n in rPath, \(\text{size}(rPath) \geq 2 \), \(n_i \) is on the top of \(n_{i-1} \), and \(n_i \) was on the direction \(d \in \{nw, ne, sw, se\} \) of \(n_{i-1} \) at \(T_{i1} \leq T_i \).
10) For each node n in iPath, \(\text{size}(iPath) \geq 2 \), \(n_i \) is on the top of \(n_{i-1} \), and \(n_i \) was on the direction \(d \in \{nw, ne, sw, se\} \) of \(n_{i-1} \) at \(T_{i1} \leq T_i \).

By observing the find function and the findCommon function, we have following lemmas.

Lemma 1. At the first time calling the find function, the contain operation, the insert operation, and the remove operation start with l as an Internal node and an empty path.

Proof. The contain operation at line 97, the insert operation at line 105 and the remove operation at line 161 start with the root node by \(l = \text{root} \), an Internal node that is never changed (Observation 3).

Besides, the contain operation at line 95, the insert operation at line 103 and the remove operation at line 160 start with an empty stack to record nodes.

Lemma 2. At the first time the move operation calls the findCommon function, it starts with rl as an Internal node and rPath and iPath are empty.

Proof. The move operation begins with the root node at line by \(rl = \text{root} \) that is never changed (Observation 3) at line 204. Both rPath and iPath are initialized as empty stacks at line 199.

Lemma 3. All nodes pushed by the find function (line 134) and the continueFind function (line 122) are Internal nodes.

Proof. Before pushing into the stack, the find function at line 135 first check the class of a node. Also, the continueFind function calls the find function at line 132 to push nodes into path. Thus, nodes other than Internal cannot be pushed.
Lemma 4. All nodes pushed by the findCommon function (line 270) the continueFindCommon function (line 285) are Internal.

Proof. Before pushing into the stack, the findCommon function first checks the class of a node at line 271. Also, the continueFindCommon function calls the findCommon function at line 282. Or it calls the find function at line 286 and line 302 to push Internal nodes according to Lemma 3. Thus, nodes other than Internal cannot be pushed.

Lemma 5. For the loop in the find function at line 134 and the findCommon function at line 270, we suppose that path(rPath) is empty and refer lr(l) and pop(rOp) to each field updated by the loop. If the loop executes at least once and breaks at \(T \), \(l(l) \), \(pop(rOp) \), and \(path(rPath) \) satisfy following conditions:

1. \(l(l) \) is a Leaf node or an Empty node.
2. At some \(T_{11} < T_i \), the top node in \(path(rPath) \) has contained \(pop(rOp) \).
3. At some \(T_{11} < T_i \), the top node in \(path(rPath) \) has contained \(l(l) \).
4. If \(pop(rOp) \) was read at \(T_{11} \), and \(l(l) \) was read at \(T_{12} \), then \(T_{11} < T_{12} < T_i \).
5. For each node \(n \) in \(path(rPath) \), \(size(path) \geq 2 \), \(n_t \) is on the top of \(n_{t-1} \), and \(n_t \) is on the direction \(d \in \{ nw, ne, sw, se \} \) of \(n_{t-1} \) at \(T_{11} \leq T_i \).

Proof. Apart from the terminate condition that the findCommon function judges whether two directions are the same or not, it performs in the same pattern as the find function. By Lemma 4 and Lemma 3 Leaf nodes and Empty nodes will never be pushed into the \(path(rPath) \).

We then prove part 2-4. At the last iteration, \(pop(rOp) \) and \(l(l) \) are read from \(l' \) which has already been pushed into the \(path(rPath) \). Hence, part 2 and part 3 are correct. Besides, \(pop(rOp) \) is read before \(l(l) \) so that part 4 holds.

For the last part, we assume that at \(T_{11} \) the lemma holds, so at \(T_{12} > T_{11} \) \(l \) is read from \(l' \) which has already been pushed into the \(path(rPath) \). As \(path(rPath) \) is initially empty, and \(T_i \) is at the end of the last iteration, \(l \) which on the top of \(l' \) has been a child of it.

Lemma 6. Every call to the find function satisfies its pre-condition and post-conditions.

Proof. Now we prove the base case. We prove that initially the lemma holds.

The pre-condition:

By Lemma 4 the contain operation, the insert operation, and the remove operation start with an empty stack to record nodes.

For the move operation, by Lemma 2 it starts with \(rl \) as an Internal node and empty paths. Therefore it executes the loop more than once to push Internal nodes into path. In the last iteration \(rl \) is pushed at line 272, and the parent of it has already been push at the prior iteration. Then, \(rl \) is read from line 278. Hence, \(rl \) at line 279 is a child of the top node in \(rPath \) if it is not empty. \(iPath \) is empty since it starts with an empty stack.

Therefore, initially the pre-conditions are satisfied.

The post-conditions:

The first condition always satisfies as the class of a node is checked at line 135.

By Lemma 1 the contain operation, the insert operation, and the remove operation start with an empty stack. Thus Lemma 5 indicates that post-conditions are satisfied.

For the find function within the findCommon function, by Lemma 5 it satisfies post-conditions when it breaks out. Hence, at line 282 post-conditions are satisfied because \(iPath \) is empty. At line 279 if \(rl \) starts as a Leaf node, the post-conditions are also satisfied. Otherwise, there are two parts of \(rPath \) at the time the loop breaks out, where we have proved each of them satisfy post-conditions by Lemma 5. Moreover, by the pre-condition, \(rl \) has been a child of the top node in \(rPath \) of the find function. Thus, all nodes pushed later also satisfy the post-conditions.

We have proved the base case. Then we assume that for invocations \(find_0, find_1, find_2...find_k \), the first \(k \) invocations satisfy the pre-conditions and post-conditions. We should prove that \(find_{k+1} \) also satisfy the conditions. We have to consider all places where the find function is invoked.

The pre-condition:

First we consider the contain operation, the insert operation, and the move operation.

At line 108, line 163 the invocations follow the base case which we have proved satisfy the pre-condition.

At line 122, there are two scenarios \(l \) is read. \(l \) could either be read from the \(path \) at line 126 or be assigned to its parent node at line 123. In the latter case, \(p \) was at the top of \(path \) at \(T_{11} < T_i \) (line 109) and \(size(path) \geq 2 \) by the hypothesis. Otherwise \(l \) is assigned to a node in \(path \). As there’s no other push operations, \(n_t \) on the top of \(n_{t-1} \) must be its child at some \(T_{11} < T_i \) by the hypothesis.

Then, we discuss the move operation.

At line 279 the find function is wrapped by the findCommon function. Since Lemma 5 shows that the loop set \(rl \) as a child of the top node in \(rPath \), we have to prove that either it is an Internal node or a Leaf node that was a child of the top node before entering the loop. At line 272 the findCommon function follows the base case. At line 342 Corollary 1 shows that the root node will always be a LCA node. Hence, after setting \(rPath \) to its lca index at line 334 it contains at least one node. By Lemma 3 and Lemma 4 \(rl \) is an Internal node popped from \(rPath \) at line 337.

At line 282 the find function is also wrapped by the findCommon function. We could prove that \(iPath \) is empty. At line 212 the findCommon function follows the base case. At line 342 \(iPath \) is set to empty before the invocation (line 335).

At line 302 \(rl \) is either assigned to \(rp \) (line 288) or a node popped from \(rPath \) (line 295). If it is popped from \(rPath \), our hypothesis ensures that it was a child of the top node from \(rPath \). If it is read from \(rp \), which is an Internal node
popped from $rPath$ at line 214. Likewise, il is either assigned to ip or a node popped from $iPath$ at line 312. If it is popped from $iPath$, our hypothesis ensures that il was a child node of the top node from $iPath$ if it is not empty. If it is read from ip, which is an Internal node popped from $iPath$ at line 213, it also satisfies the claim.

The post-conditions:

The first condition always holds. By Lemma 8, if l is an Internal node, it will be pushed into $path$.

We then prove other conditions.

First we consider the contain operation, the insert operation, and the move operation.

At line 99, line 106, line 163 the invocations follow the base case which we have proved satisfy the post-conditions.

At line 132, there are two scenarios l is read. l could either be read from the $path$ at line 125 or be assigned to its parent node at line 122. In both cases, l was an Internal node in $path$. Therefore Lemma 5 indicates that all nodes followed by l satisfy the post-conditions.

Then, we discuss the move operation.

At line 279 the find function is wrapped by the findCommon function. The pre-condition indicates rl was a child of $rPath$ if it is not empty. Hence, it suffices to show that the post-conditions are satisfied by Lemma 5.

At line 282 the find function is also wrapped by the findCommon function. The pre-condition indicates $iPath$ is an empty. In this way, by Lemma 5 we prove the post-conditions.

At line 302 likewise, the pre-condition suggests that rl was an Internal node in $rPath$. By Lemma 5 we also prove the post-conditions.

At line 324 the pre-condition suggests that il was an Internal node in $iPath$. Therefore, by Lemma 5 we prove the post-conditions.

After showing the pre-condition and post-conditions of the find function, we prove that the findCommon function that returns $\langle il, iOp, iPath, rl, rOp, rPath \rangle$ satisfies its pre-conditions and post-conditions.

Lemma 7. Every call to the findCommon function satisfies its pre-conditions and post-conditions.

Proof. The pre-condition:

We prove the lemma by induction. First we prove the base case.

At line 212 the findCommon function is initially invoked, and both $iPath$ and $rPath$ are empty (line 199).

Then we assume that for invocations $findCommon_0, findCommon_1, findCommon_2 \ldots findCommon_k$, the first k invocations satisfy the pre-conditions. We prove that $findCommon_{k+1}$ also satisfies the conditions.

There are two places the findCommon function is invoked.

At line 212 the base case proves the post-conditions.

At line 342 Corollary 1 shows that the root node will always be an LCA node. Hence, after setting $rPath$ to its LCA index at line 334 it contains at least one node. By Lemma 3 and Lemma 4, rl is an Internal node popped from $rPath$ at line 337. Hence, we prove the pre-condition.

The post-conditions:

The findCommon function wraps two find functions at line 282 and line 279. Because $\langle rl, rOp, rPath \rangle$ that passed from the find function for rl and $\langle il, iOp, iPath \rangle$ that passed from the find function for il hold the post-conditions, the lemma is true.

After proving the pre-conditions and post-conditions of the find function and the findCommon function, we shall prove that the continuous find mechanism (i.e. the continueFind function and the continueFindCommon function) satisfies its pre-conditions and post-conditions.

Definition 3. The pre-conditions of continueFind($pOp, path, l, p$):

1) l was child of p.
2) p was child of the top node in $path$ if it is not empty.

The post-conditions are the same as the find function.

Definition 4. The pre-conditions of continueFindCommon($il, rl, lca, rOp, ip,-ipath, rPath, ip, rp, oldKeyX, oldKeyY, newKeyX, newKeyY, iFail, rFail, cFail$):

1) At least one of $iFail$, $rFail$ or $cFail$ is true.
2) il was a child of ip.
3) ip was a child of the top node in $iPath$ if it is not empty.
4) rl was a child of rp.
5) rp was a child of the top node in $rPath$ if it is not empty.

The post-conditions are the same as the continueFindCommon function.

We now prove that the continueFind function satisfies its pre-conditions and post-conditions.

Lemma 8. Every call to the continueFind function satisfies its pre-conditions and post-conditions.

Proof. The post-conditions:

At line 132 of the continueFind function, it executes the find function. Because the find operation satisfies its post-conditions by Lemma 6, the continueFind function also satisfies the same conditions.

The pre-condition:

The continueFind function is invoked at line 119 and line 176.

Initially, the continueFind function follows the find function at line 106 and line 163. For the first part, the post-condition of the find function shows that l was a child of p which popped at line 109 or line 166 (Lemma 5). For the second part, after popping p, it becomes a child of the top node in $path$ if it is not empty.

Otherwise, it reads results from the continueFind invocation at the prior iteration. As the post-conditions of the continueFind function is the same as the find function, we prove the lemma.

We now prove that the continueFindCommon function satisfies its pre-conditions and post-conditions.

Lemma 9. Every call to the continueFindCommon function satisfies its pre-conditions and post-conditions.

Proof. The post-conditions:

There are three cases, the first part of the pre-condition shows that it must enter one of the loop. We consider each case by the program execution order.
1) If $rFail$ is true and $cFail$ is false, it executes the case from line 236. If $cFail$ is not set to true, it executes the find function at line 302. Because the find function satisfies its post-conditions (Lemma 6), the lemma holds. If $iFail$ is true, it comes to the second part of the proof. If $cFail$ is set to true, it comes to the third part of the proof.

2) If $iFail$ is true and $cFail$ is false, it executes the case from line 235. If $cFail$ is not set to true, it executes the find function at line 323. Because the find function satisfies its post-conditions, part 1 and Lemma 6 indicate the Lemma holds. If $cFail$ is true, it comes to the third part of the proof.

3) If $cFail$ is true, it executes the case from line 240. Because the findCommon function satisfies its post-conditions (Lemma 7), it establishes this part of the lemma.

The pre-condition:
The continueFindCommon function is invoked at line 245.

For the first condition, line 216, line 217, line 218, line 232, line 233, line 236, line 240 indicate that at least one of three flags is set to true.

For the next conditions, initially the continueFindCommon follows the findCommon function at line 212. As ip and rp are popped at line 213 and line 214, il was a child of ip and rl was a child of rp. Further, ip and rp was a child of the top node in iPath and rPath. All these claims are based on Lemma 8. Otherwise, the continueFindCommon function reads results from its invocation at the prior iteration. In such a case, our post-conditions prove the pre-conditions.

We observe that the find function, the continueFind function, the findCommon function, and the continueFindCommon function return a similar pattern of results. The find function and the continueFind function return a tuple (l, pOp, path). The findCommon function and the continueFindCommon function return two such tuples. Hence, we use $find(keys)$ to denote such a set of find operations for searching keys. Further, we number $find(keys)$ by their invocation orders. Invocations at line 106, line 165 and line 212 are at iteration 0. Invocations at line 106, line 165 and line 212 are at iteration 1, 0 < i.

Definition 5. For compress(path, p) invoked at T_i, it has following pre-conditions:

1) p is an Internal node.
2) path is read from the result of $find(keys)$ at the prior iteration.
3) If path is not empty, p was a child node of the top node in path at $T_{i+1} < T_i$.

Lemma 10. Every call to the compress function satisfies its pre-conditions.

Proof. The compress function is called at line 171 or line 229. At line 171, p is a node popped from path (line 166). At line 229, rp is an Internal node popped from rPath (line 214). This proves the first part.

For the last two parts, since the compress function reads result following $find(keys)$, it suffices to prove the post-conditions of $find(keys)$ satisfy the preconditions. By Lemma 8, Lemma 9, Lemma 6, and Lemma 7, the post-conditions of the find function, the findCommon function, the continueFind function, and the continueFindCommon function establish the lemma.

Corollary 2. Every call to the check function satisfies its pre-conditions that p is an Internal node.

Definition 6. For moved(node) invoked at T_i, it has following pre-conditions that node is a Leaf node or an Empty node.

Lemma 11. Every call to the moved function satisfies its pre-condition.

Proof. The moved function is called at line 108. If line 108 reads il from line 106 or line 119, hence, according to Lemma 6, il is a Leaf node or an Empty node.

At line 165, it reads il from line 163 or line 176. Hence, according to Lemma 6, il is a Leaf node or an Empty node.

At line 283 and line 280, it reads il from line 282 and rl from line 279. Therefore, according to Lemma 6, il and rl are Leaf node or Empty nodes.

At line 324, it reads il from line 323. Therefore, according to Lemma 6, il is a Leaf node or an Empty node.

At line 303, it reads rl from line 302. Therefore, according to Lemma 6, rl is a Leaf node or an Empty node.

Based on these post-conditions, we show that each op created at T_i store their corresponding information.

Lemma 12. For op created at T_i:

1) If op is a Substitute object, op.parent has contained op.oldChild, a Leaf node, at $T_{i+1} < T_i$ from the result of $find(keys)$ at the previous iteration.
2) If op is a Compress object, op.grandparent has contained op.parent, an Internal node, at $T_{i+1} < T_i$ from the result of $find(keys)$ at the previous iteration.
3) If op is a Move object, op.iParent has contained op.oldChild, a Leaf node, op.rParent has contained op.oldRChild, a Leaf node, op.iParent has contained op.oldROp, and op.rParent has contained op.oldROp before T_i from the result of $find(keys)$ at the previous iteration.

Proof.

1) A Substitute object is created at line 112 or line 168 by assigning (p, l, newNode). Since p read from the top node in path at line 109 or line 166 and l is returned by the find function or findCommon function, the post-conditions of them establish the claim according to Lemma 6, Lemma 7, and Lemma 8.

2) A Compress object is created at line 185 by assigning (path, p). p is passed from the top of path at line 166 or line 214 the post-conditions of $find(keys)$ and the property of path establishes the claim (Lemma 6, Lemma 7, Lemma 9, Lemma 8, Lemma 5, and Lemma 4).

3) A Move object is created at line 224 by assigning (ip, rp, il, rl, newNode, iOldOp, rOldOp). ip is assigned to the top node of iPath at line 213 rp is...
assigned to the top node of \(rPath \) at line 214, \(il \) was a child of the top node of \(iPath \), \(rl \) was a child of the top node of \(rPath \), and \(ip \) and \(rp \) are read from \(ip \) and \(rp \) by the post-conditions of the findCommon function and the continueFindCommon function (Lemma 9 and Lemma 7).

Then we prove the pre-conditions of other functions which use the result of above functions to modify quadtree. The following lemmas satisfy a basic pre-condition that their arguments are the same type as indicated in algorithms.

Lemma 13. 1) Every call to the help function satisfies its pre-conditions.
2) Every call to the helpSubstitute function satisfies its pre-conditions.
3) Every call to the helpCompress function satisfies its pre-conditions.
4) Every call to the helpMove function satisfies its pre-conditions.

Proof.
1) The help function is called at line 118, line 175, line 311, line 287, line 333, and line 332. At line 118 and line 175, \(pOp \) might be obtained from the result of the find function and the continueFind function. Hence, the post-conditions of them ensure that \(pOp \) is an Operation object read from \(p \). Otherwise, \(pOp \) might be obtained from line 118 or line 175 by reading a node’s \(op \).
At line 311 and line 287, \(rOp \) and \(iOp \) are passed the move operation. The post-conditions of the continueFindCommon function and the findCommon function (Lemma 7 and Lemma 9), with line 235, line 236, and line 240 guarantee that arguments’ type are the same.
At line 333 and line 332, \(rOp \) and \(iOp \) could be passed from the move function or read from \(ip \) and \(rp \) in the continueFindCommon function at lines that have been mentioned.
2) The helpSubstitute function is called at line 114, line 170, and line 150. At line 114 and line 170, \(op \) is created at line 112 or line 168 respectively. At line 150 it checks whether \(op \) is Substitute before calling the helpSubstitute function.
3) The helpCompress function is called at line 185, line 317, line 297, and line 339. For each invocation, it checks whether \(op \) is Compress beforehand.
4) The helpMove function is invoked at line 225, line 239, and line 151. At line 228 and line 239, \(op \) is created at line 224. At line 151 it checks whether \(op \) is Move before the invocation.

Corollary 3. For help\((op)\), \(op \) is read from an Internal node.

Definition 7. For helpFlag\((p, oldOp, newOp)\) invoked at \(T_i \), it has the pre-conditions:

1) \(p \) is an Internal node.
2) For cFlag, \(p \) has contained \(pOp \) at \(T_{i1} < T_i \) after reading \(p \); otherwise, \(p \) has contained \(pOp \) at \(T_{i1} < T_i \) from the result of find\((keys)\) at the prior iteration.

Lemma 14. Every call to the helpFlag function satisfies its pre-conditions.

Proof. The helpFlag function is invoked at line 113, line 169, line 186, line 226, line 248, line 250, and line 261. At line 113 and line 169, the post-conditions of the find function and the continueFind function (Lemma 6 and Lemma 8) imply that \(p \) is an Internal node and has contained \(pOp \).
At line 186, the pre-condition of the compress function (Lemma 10) shows that \(p \) and nodes from \(path \) are read from find\((keys)\) at the prior iteration, and \(pOp \) is read at line 181. Thus, \(p \) has \(pOp \) at \(T_{i1} < T_i \) after reading \(p \).
At line 226, \(ip \) and \(rp \) are popped from \(iPath \) at line 213 and line 214 or read from the continueFindCommon function. By Lemma 7 and Lemma 9, either \(op \).\(iParent \) has been read from \(iPath \) or \(op \).\(rParent \) has been read. Therefore, according to Lemma 12, either \(op \).\(iParent \) has contained \(op \).\(iOp \) or \(op \).\(rParent \) has contained \(op \).\(rOp \).

Lemma 15. Every call to the hasChild function satisfies its pre-conditions that parent is an Internal node.

Proof. According to Lemma 11, \(node \) is a Leaf node or an Empty node. According to Lemma 14, flag operations only perform on Internal nodes. Therefore line is the only place that set a Move op on a Leaf node. By Observation 11, \(op \) is initially null. After checking the condition, \(op \) is assigned to a Leaf node where \(op \).\(iParent \) is an Internal node by Lemma 12.

Definition 8. For helpReplace\((p, oldChild, newChild)\) invoked at \(T_i \), it has the pre-conditions:

1) \(p \), \(oldChild \), and \(newChild \) are read from the same op.
2) \(newChild \) is a node that has not been in quadtree.
3) \(p \) is an Internal node that has contained \(oldChild \) at \(T_{i1} < T_i \).

Lemma 16. Every call to the helpReplace function satisfies its pre-conditions.

Proof. For the first condition:
The helpReplace function is invoked at line 145, line 193, line 254, and line 259. By Lemma 13, at line 193 it reads a Compress object; at line 145 it reads a Substitute object; at line 254 and 259 it reads a Move object.
For the second condition:
Since part 1 illustrates that \(p \), \(oldChild \), and \(newChild \) are read from the same \(op \), if \(op \) is a Substitute object, \(op \).\(newNode \) is created at line 111 or line 161. If \(op \) is a Compress object, each time the helpCompress function creates a new Empty node at line 193 if \(op \) is a Move object, \(op \).\(newIChild \) is created at line 220, and an empty node is created at line 145.
For the third condition:
Since part 1 illustrates that \(p \), \(oldChild \), and \(newChild \) are read from the same \(op \), Lemma 12 shows that \(p \) has contained \(oldChild \).

Definition 9. For createNode\((l, p, newKeyX, newKeyY, value)\) that returns a newNode invoked at \(T_i \), it has the pre-conditions:
1) \(p \) is an Internal node.
2) \(p \) has contained \(l \) at \(T_i \), from the result of find(keys) at the prior iteration.

post-conditions:
The newNode returned is either a Leaf node with newKey and value, or a sub-tree that contains both l.key node and newKey node with the same parent.

Lemma 17. Every call to the createNode function satisfies its pre-conditions and post-condition.

Proof. The createNode function is invoked at line 111 and line 112.

At line 111 the post-conditions of the find function and the continueFind function ensure that \(l \) has been a child of \(p \) that popped from path at line 109 (Lemma 6 and Lemma 8).

At line 112 the post-conditions of the findCommon function and the continueFindCommon function ensure that \(l \) has been a child of \(p \) that popped at line 213 (Lemma 7 and Lemma 9).

Though we have not presented the details of the createNode function, our implementation guarantee that the post-condition must be satisfied.

1.2 Flag and replace operations
We argue that each successful CAS operation occurs in a correct order. At outset, we argue that CAS behaviours for each helpFlag function. A flag operation involves three arguments: node, oldOp, newOp. A replace operation involves three arguments: \(p \), oldChild, newChild. From Figure 9 we denote each flag operation accordingly. iFlag occurs in the insert operation, rFlag occurs in the remove operation, and mFlag occurs in the move operation. Moreover, we specify a flag operation which attaches a Clean node as an unflag operation. We call iReplace as the replace operation occurs in the insert operation, rReplace as the replace operation occurs in the remove operation, and mReplace as the replace operation occurs in the move operation, and creplace as the replace operation occurs in the compress operation. The next lemmas describe the behaviours of the helpFlag function according to the state transition diagram.

Observation 4. op is only attached on an Internal node.

Lemma 18. For a new node \(n \):

1) It is created with a Clean op.
2) rFlag, iFlag, mFlag or cFlag succeeds only if \(n \)'s op is Clean.
3) unFlag succeeds only if \(n \)'s op is Substitute or Move.
4) Once \(n \)'s op is Compress, its op will never be changed.

Proof. 1) As shown at line 71, Internal nodes are assigned a Clean op when they are created.

2) Before iFlag, op is checked at line 110 before rFlag, op is checked at line 167 before cFlag, op is checked at line 182. For the move operation, before mFlag on oldKey's parent and newKey's parent, they are checked at line 217 and line 216.

3) unFlag is called at line 146 and line 261 line 267, where the pre-conditions specify that op is Move or Substitute according to Lemma 15.

4) By part 3, there's no unflag operation happens on an Internal node with a Compress op.

Next we illustrate that there's no ABA problem on any op. That is to say, in terms of an Internal node \(n \), its op at \(T_i \) that has not appeared at \(T_{i+1} \) should not be \(op \). We prove the following lemma:

Lemma 19. For an Internal node \(n \), it never reuse an op that has been set previously.

Proof. If a node's op is set to \(op \) at \(T_i \), it has never been appeared before. We prove the lemma by discussing different types of flag operations.

For iFlag, a Substitute op is created at line 112 before its invocation. For an rFlag, a Substitute op is created at line 168 before its invocation. For a cFlag, a Compress op is created at line 185 before its invocation. For an unFlag, each time it creates a new Clean op to replace the prior Move op or Substitute op by Lemma 18. Therefore, the new Clean op has never appeared before.

We have shown that for each successful flag operation, it never set an op that has been used before. Every Internal node is initialized with Clean op by Lemma 18 and we use a flag operation to change op at the beginning of each CAS transition. We say successive replace operations and unflag operations first op read op and come after it. Therefore we say flag, replace, and unflag, belong to the same op. In addition, if there are more than one replace operations belong to the same op, we denote them as replace, replace, ... replace ordered by their successful sequence. Similarly, if there are more than one flag operations that belong to op on different nodes, we denote them as flag, flag, ... flag. A similar notation is used for unflag.

The following lemmas prove the correct ordering of three different transitions.

Lemma 20. 1) ireplace will not be done before the success of iFlag which belongs to the same op.
2) rreplace will not be done before the success of rFlag which belongs to the same op.

Proof. For the insert operation and the remove operation, at line 145 the helpReplace function is wrapped by the helpSubstitute function. The helpSubstitute function is called at line 114 line 170 and line 150. At line 114 it is called after the success of iFlag at line 113. At line 170 it is called after the success of rFlag at line 169. At line 150 by Corollary 3 and Lemma 18, there must have been rFlag or iFlag that change the node's op from Clean to Substitute.

Lemma 21. creplace will not be done before the success of cFlag which belongs to the same op.

Proof. The helpCompress function which wraps cReplace is called at line 185 line 317 line 297 and line 339 and
Lemma 22. \textit{mreplace} will not be be performed before the success of \textit{mflag} which belongs to the same op.

\textbf{Proof.} The helpMove function which wraps two \textit{mreplaces} is called at line 228, line 239, and line 151. At line 228 and line 151, Lemma 3 shows that \textit{op} is read from an Internal node. Hence, by Lemma 18, a successful \textit{cflag} must have changed the node’s \textit{op} from Clean to Compress.

From the above lemmas, we have the following corollary:

\textbf{Corollary 4.} A successful replace operation which belongs to an \textit{op} will not succeed before it’s flag operations have been done.

We discuss each CAS transition accordingly. We begin by discussing the \textit{flag} \rightarrow \textit{replace} \rightarrow \textit{unflag} transition. We refer to \langle oldIOp, oldIChild, newIChild \rangle and \langle oldROp, oldRChild, newRChild \rangle to different tuples of \langle oldOp, oldChild, newChild \rangle.

Lemma 23. \textit{flag} \rightarrow \textit{replace} \rightarrow \textit{unflag} occurs when \textit{rflag}, \textit{iflag}, or \textit{mflag} succeeds, and it has following properties:

1) replace; \textit{never occurs before \textit{flag}.} \hfill (Lemma 14)
2) \textit{flag} \textit{k}; 0 \leq k < |\textit{flag}| is the first successful flag operation on \textit{op}, \textit{parent} \textit{k} after \textit{T} \textit{i} when \textit{opP} is read.
3) replace; 0 \leq k < |\textit{replace}| is the first successful replace operation on \textit{op}, \textit{parent} \textit{k} after \textit{T} \textit{i} when \textit{opP}, \textit{oldChild} \textit{k} is read.
4) replace; 0 \leq k < |\textit{replace}| is the first successful replace operation on \textit{op}, \textit{parent} \textit{k} that belongs to \textit{op}.
5) unflag; 0 \leq k < |\textit{unflag}| is the first successful unflag operation on \textit{op}, \textit{parent} \textit{k} after \textit{flag} \textit{k}.
6) There is no successful unflag operation occurs before replace.
7) The first replace operation on \textit{op}, \textit{parent} \textit{k} that belongs to \textit{op} must succeed.

\textbf{Proof.} 1) Corollary 4 proves the claims.
2) By Lemma 14 for each flag operation, \textit{p} has contained \textit{opP} at some time \textit{T} \textit{i}. Suppose that there’s another \textit{flag} \textit{k} that occurs after \textit{T} \textit{i} but before \textit{flag} \textit{k}. Then \textit{flag} \textit{k} fails because Lemma 19 shows that \textit{opP} is not reused. Therefore, it contradicts to the definition that \textit{flag} \textit{k} is a successful flag operation.
3) By Lemma 16 for each replace operation, \textit{p} has contained \textit{oldChild} at some time \textit{T} \textit{i}. Suppose that there’s another \textit{replace} that occurs after \textit{T} \textit{i} but before \textit{replace} \textit{k}, then \textit{replace} \textit{k} fails because Lemma 16 shows that \textit{newChild} is never a node in the tree. Therefore, it contradicts to the definition that \textit{replace} \textit{k} is a successful flag operation.
4) Suppose there’s \textit{replace} \textit{k} that belongs to \textit{op} and occurs before \textit{replace} \textit{k}. It must follow \textit{flag} \textit{k} according to Corollary 4. If \textit{flag} \textit{k} happens before \textit{flag} \textit{k}, it fails because \textit{fail} \textit{k} will fail by consequence.

We then discuss the ordering of the \textit{flag} \rightarrow \textit{replace} transition.

Lemma 24. \textit{flag} \rightarrow \textit{replace} occurs only when \textit{cflag} succeeds, it has following properties:

1) \textit{creplace}, \textit{never occurs before \textit{cflag}.}
2) \textit{cflag} is the first successful flag operation on \textit{op}, \textit{parent} \textit{k} after \textit{T} \textit{i} when \textit{opP} is read.
3) \textit{creplace} \textit{i} is the first successful replace operation on \textit{op}, \textit{grandparent} \textit{k} after \textit{T} \textit{i} when \textit{opP}, \textit{parent} \textit{k} is read.
4) \textit{creplace} \textit{i} is the first successful replace operation on \textit{op}, \textit{grandparent} \textit{k} that belongs to \textit{op}.
5) There is no unflag operation after \textit{replace}.
6) The first replace operation that belongs to \textit{op} must succeed.

\textbf{Proof.} 1) Corollary 4 proves the claims.
2) By Lemma 14 for each flag operation, p has contained pOp at some time T_i. Suppose that there’s another $cflag$ that occurs after T_i but before $cflag_i$, then $cflag_i$ fails because Lemma 19 shows that op is not reused. Therefore, it contradicts to the definition that $cflag_i$ is a successful flag operation.

3) By Lemma 16, for each replace operation, p has contained $oldChild$ at some time T_i. Suppose that there’s another $creplace$ that occurs after T_i but before $replace_i$, then $creplace_i$ fails because $oldChild$ remains the same but the link has been changed to another node. Therefore, it contradicts to the definition that $creplace_i$ is a successful flag operation.

4) Suppose there’s a replace operation that belongs to op_i and occurs before $creplace_i$. It must follow $cflag$ according to Corollary 4. If $cflag$ happens before $cflag_i$, it fails because $cflag_i$ will fail by consequence (Lemma 19). If $cflag$ happens after $cflag_i$, it contradicts Lemma 19 that a flag operation starts with a $Clean$ op. Therefore, $cflag$ is the same as $cflag_i$. Because $cflag$ is done after reading $op_i.parent$, $creplace$ is also after reading it. Therefore, if $cflag$ succeeds, it contradicts part 3 that $creplace_i$ is the first successful replace operation after reading $op.iParent$.

5) By Lemma 18 once a node’s op is $Compress$, it will never be changed.

6) Suppose the first replace operation that belongs to op_i fails, there must exist some successful $replace$ after reading $op_i.parent$ and before $creplace_i$. Further, there is $flag$ that precedes $replace$ by Corollary 4. If $flag$ happens between $creplace_i$ and $cflag_i$, $flag$ will fail by Lemma 18. If $flag$ happens between reading op_i and $cflag_i$, it contradicts part 1 that $cflag_i$ is the first successful flag operation after reading op_i. Because op_i is read after $op_i.parent$, we also have to consider if $flag$ happens before reading op_i. Consider if $cflag$ happens, $flag_i$ will fail because $op_i.parent.op$ will not be set back to $Clean$ according to the fourth part. Consider if $mflag$, $iflag$ or $rflag$ happens, it will not change the link from $op_i.parent$ to $op_i.p$ according to Lemma 25.

Corollary 5. The first replace operation belongs to op_i must succeed.

Next we discuss the $flag \rightarrow unflag$ transition, where replace operation occurs between a successful flag operation and an unflag operation that belong to the same op. We suppose that $op_i.First$ is true. The claim for $op_i.First = false$ is symmetric.

Observation 5. allFlag and $iFirst$ in a Move op are initially false, and they will never be set false after assigning to true.

Lemma 25. For $flag \rightarrow unflag$ circle, it only results from a Move object op, such that:

1) $unflag_i$ is the first successful unflag operation on $op_i.rParent$.

2) The first flag operation on $op_i.iParent$ must fail, and no later flag operation will succeed.

3) $op.iFirst$ and $op_i.rParent$ are different.

Proof. 1) We prove it by contradiction. Suppose there’s another unflag operation that reads op_i and succeeds before $unflag_i$ on $op_i.rParent$. It must have changed $op_i.rParent.op$ to a new op, by Lemma 19 $unflag_i$ will fail. This contradicts the definition of $unflag_i$.

2) For the former part of the claim, we prove it by contradiction. Assuming that $op_i.iParent$ is flagged on op_i, and will be unflagged without performing replace operations. However, unflag operations occur after the judgement at line 254. The first process must set $doCAS$ to true. In the next step, it executes line 254-259. According to Corollary 5 the first $replace_i$ must succeed. Therefore it contradicts the definition that there’s no replace operation before an unflag operation. For the latter part, by Lemma 12 $op_i.iParent$ has contained $op_i.oldOp$. Because the first flag operation on $op_i.iParent$ fails, latter flag operations read the $op_i.oldOp$ also fail.

3) Assuming $op_i.iParent$ and $op_i.rParent$ are the same. By part 2, flag operations on $op_i.iParent$ must fail, hence $doCAS$ will never be true. $op_i.allFlag$ is always false by Observation 5. In this way, line 261-267 prevents any unflag operation. This derives a contradiction.

1.3 Quadtree properties

In the Section, we use above lemmas to show that quadtree’s properties are maintained during concurrent modifications.

Definition 10. Our quadtree has these properties:

1) Two layers of dummy Internal nodes are never changed.

2) An Internal node n has four children, which locate in the direction $d \in \{nw, ne, sw, se\}$ respectively according to their (x, y, w, h), or $(keyX, keyY)$.

For Internal nodes reside on four directions:

- $n.nw.x = n.x, n.nw.y = n.y$;
- $n.ne.x = n.x + w/2, n.ne.y = n.y$;
- $n.sw.x = n.x, n.sw.y = n.y + h/2$;
- $n.se.x = n.x + w/2, n.se.y = n.y + h/2$,

and all children have their $w' = n.w/2, h' = n.h/2$.

For Leaf nodes reside on four directions:

- $n.x \leq n.nw.keyX < n.x + n.w/2, n.y \leq n.nw.keyY < n.y + n.h/2$;
- $n.x + n.w/2 \leq n.ne.keyX < n.x + n.w, n.y \leq n.ne.keyY < n.y + n.h/2$;
- $n.x \leq n.sw.keyX < n.x + n.w/2, n.y + n.h/2 \leq n.sw.keyY < n.y + n.h$;
- $n.x + n.w/2 \leq n.se.keyX < n.x + n.w, n.y + n.h/2 \leq n.se.keyY < n.y + n.h$.

Lemma 26. Two layers of dummy nodes are never changed.

Proof. We prove the lemma by induction. Only replace operations will affect the structure of quadtree as we define in Definition 10.

Initially the property holds as we initialize quadtree with two layers of dummy nodes and a layer of Empty nodes.
Suppose that after replace, the lemma holds, we shall prove that after replace_{i+1} the lemma is still true. For ireplace, rreplace, and mreplace, the pre-condition ensures that three nodes are from the same op. Thus, as Lemma [12] further ensures that they only swing Leaf nodes and Empty node, dummy node are not changed. For creplace, since at replace, the property is true, the root is connected to a layer of dummy nodes. Lemma [12] shows that op.oldChild is an Internal node, and line [185] shows that the root node’s child pointer will never be changed. Therefore, replace_{i+1} will not occur on the root node.

Lemma 27. Children of a node with Compress op will not be changed.

Proof. Based on Lemma [18] the node’s op will never be changed after being set to Compress. Lemma [24] and Lemma [23] indicate that for a node flagged with Compress op, only itself will be unlinked. This establishes the Lemma.

Lemma 28. Only an Internal node with all children Empty could be attached with a Compress object.

Proof. Corollary [2] ensures that the pre-conditions of the check function is satisfied. It checks whether all children are Empty before calling the helpFlag function at line [186]. This establishes the Lemma.

Lemma 29. An Internal node whose op is not Compress is reachable from the root.

Proof. We have to consider all kinds of replace operations.

For ireplace, rreplace, and mreplace, by Lemma [16] and Lemma [12] they use a new node to replace a Leaf node or an Empty node. Thus, Internal nodes are still reachable from the root.

For creplace, by Lemma [16] and Lemma [12], it replaces Internal nodes. Lemma [24] shows that it is preceded by cFlag. Lemma [28] implies that all children are Empty nodes. Therefore, an Internal node with a Compress op and its children are not reachable from the root only after the success of creplace.

Next we define active set and inactive set for different kinds of nodes. We say a node is moved if the moved function turns true. For an Internal node or an Empty node, if it is reachable from the root in snapshotT, it is active; otherwise, it is inactive. For a Leaf node, if it is reachable from the root in snapshotT and not moved, it is active; otherwise, it is inactive. We denote path(keys^k), 0 ≤ k < |replace| as a stack of nodes pushed by find(keys) in a snapshot. We define physical_path(keys^k) to be the path for keys^k in snapshotT, consisting of a sequence of Internal nodes with a Leaf node or an Empty node at the end, which is the actual path in the snapshot. We say a subpath of path(keys^k) is active if all nodes from the root to node n ∈ path(keys^k) are active due to their pushing order. Hence a physical path with a Leaf node is active only if path(keys^k) is an active path and the Leaf node is active.

Lemma 30. There’s at most a node with Compress op in the subpath of path(keys^k) that is active, and it resides in the end of the path if exists.

Proof. Assume that there are two nodes n and n' reside in the active_path(keys^k) with Compress op. We prove the lemma by contradiction. Because n and n' are active with Compress op, all children of n and n' are Empty (Lemma [28]). Since n and n' are Internal nodes in the same path, it derives a contradiction.

For the second part of the proof, if n resides in other places in path, its children should be Empty by Lemma [28]. Therefore, only if n is on the end of path, conditions are satisfied.

Lemma 31. For path(keys^k), if n_i is active in snapshotT, then n_0, ..., n_{i-1} above n_i are active.

Proof. By Lemma [29] nodes with op other than Compress are reachable from the root. Lemma [30] indicates that a node with a Compress op is on the end of the path. Therefore, other nodes do not have a Compress op, which establishes the lemma.

Lemma 32. If in the snapshotT, n is the LCA on active_path for oldKey and newKey. Then at T_1, T_2 > T_1, n is still the LCA on active_path for both oldKey and newKey if it is active.

Proof. Nodes from root to the LCA node shares a common path (Observation [1]). Because the LCA node is active, nodes above the LCA node are active. Hence, the subpath from the root to the LCA node is active by Lemma [31].

Lemma 33. Nodes a with a Compress op will not be pushed into path more than once.

Proof. Supposing that a node n is active in snapshotT, and it becomes inactive at T_1 > T_i. Besides, suppose that op of n is Compress and pushed at T_2, T_1 < T_2 < T_i. We prove that after T_2, n will never be pushed again.

Lemma [24] shows that a node with a Compress op will never be unflagged. Hence, based on Lemma [3] and Lemma [6], we have to prove that nodes in path with a Compress op will not be pushed into again. For the insert operation and the remove operation, pOp is checked at line [123] and line [127] before the next find operation. For the move operation, rOp is checked at line [319] and line [323] and iOp is checked at line [296] and line [288] before calling the findCommon function and the find function. Hence, at T_2 < T_i, n must be checked before find(keys) so that nodes with a Compress op will not be pushed more than once.

Lemma [30] shows that for active_path, active nodes with a Compress op will only reside at the end. If other nodes pushed before n will become inactive, we can pop them beforehand until reaching the last node an op other than Compress.

Lemma 34. After the invocation of find(keys) which reads l', there is a snapshot, where the path from the root to l' is physical_path(keys^k).

Proof. We prove the lemma by induction.

In the base case, where path starts from the root node, the claim is true.

We consider the pushing sequence as n_0, n_1, ..., n_k. Suppose that for first k nodes, the path from the root to n_k is
the physical path. We shall prove that for \(n_{k+1} \), the lemma is true. If there is no replace operation before reading \(n_{k+1} \), it is obvious that we can linearize it as the same snapshot before pushing \(n_k \).

Next, we assume that replace occurs on \(n_k \) before reading \(n_{k+1} \), and results in snapshot. There are two cases:

1) Consider if replace occurs after reading \(n_{k+1} \). We could have \(\text{snapshot}_{k+1} = \text{snapshot}_k \) because \(n_{k+1} \) is connected to an active node in a snapshot so that \(n_{k+1} \) is also reachable from the root.

2) Consider if replace occurs before reading \(n_{k+1} \). If the replace operation changes \(n_k \), then \(n_k \) is flagged with a Compress op by Lemma 24. Then we have \(\text{snapshot}_{k+1} = \text{snapshot}_k \) because Lemma 27 demonstrates that a node flagged with a Compress has no successive replace operations on its child pointers. Otherwise, if the replace operation changes \(n_{k+1} \), \(n_k \) is not changed by Lemma 23. Hence, we have \(\text{snapshot}_{k+1} = \text{snapshot}_k \), where \(n_{k+1} \) is reachable from the root in the snapshot just after a replace operation.

\[\text{Lemma 35. After ireplace, rreplace, mreplace, and creplace, quadtree’s properties remain.} \]

Proof. We shall prove that in any snapshot, quadtree’s properties remain.

First, Lemma 10 shows that two layers of dummy nodes remain in the tree. We have to consider other layers of nodes which are changed by replace operations.

Consider creplace that replaces an Internal node by an Empty node. Because the Internal node has been flagged on a Compress op before creplace (Lemma 24), all of its children are Empty and not changed (Lemma 28 and Lemma 27). Thus, creplace does not affect the second claim of Definition 10.

Consider ireplace, rreplace, or mreplace that replaces a terminal node by an Empty node, a Leaf node, or a sub-tree. By Lemma 23 before replace\(^k\), op.parent\(^k\) is flagged with op such that no successful replace operation could happen on op.parent\(^k\). Therefore, if the new node is Empty, it does not affect the tree property. If the new node is a Leaf node or a sub-tree, based on the post-conditions of the createNode function (Lemma 17), after replace operations the second claim of Definition 10 still holds.

\[\text{.2 Linearizability} \]

In this Section, we define linearization points for basic operations. As the compress operation is included in the move operation and the remove operation that returns true, it does not affect the linearization points of them. If an algorithm is linearizable, it could be ordered equivalently as a sequential one by their linearization points. Since all the modifications depend on find(keys), we first point out its linearization point.

To prove that our linearization points are correct, we shall demonstrate that for some time \(T_i \), the key set in snapshot\(_T\) is the same as the results of modifications linearized before \(T_i \). For find(keys), we should define the linearization point at some snapshot\(_T\) so that \(l^i \) happened is on the physical path for key\(^k\) in snapshot\(_T\).

\[\text{Lemma 36. For find(keys) that returns tuples} \]

\((l^k, \text{op}^k, \text{path}^k) \), there’s a snapshot after its invocation and before reading \(l^i \), such that \(\text{path}(\text{keys}^k) \) returned with \(l^i \) at the end is a physical path in snapshot\(_T\).

Proof. Since \(l^i \) is a Leaf node or an Empty node, by Lemma 34 there is a snapshot\(_T\) that \(l^k \) is the last from \(l_{i-1} \) and \(l_0 \) to the path(\(\text{keys}^k \)) are active. Therefore \(\text{path}(\text{keys}^k) \) with \(l^i \) is physical path(\(\text{keys}^k \)) in snapshot\(_T\). We define snapshot\(_T\) as find(\(\text{keys}^k \))’s linearization point.

In the next, we define linearization points for basic operations. For the insert operation, the remove operation, and the move operation that returns true, we define it to be the first replace\(^k\), \(0 \leq k < |\text{replace}| \) belongs to \(\text{op} \). To make a reasonable demonstration, we first show that the first replace\(^k\) belongs to \(\text{op} \) created by each operation itself, and then illustrate that \(\text{op} \) is unique for each operation.

\[\text{Lemma 37. If the insert operation, the remove operation, or the move operation that returns true, the first replace\(^k\) occurs before the returning, and it belongs to \(\text{op} \) created by the operation itself.} \]

Proof. First we prove that replace\(^k\) belongs to \(\text{op} \) created by the operation itself.

For the insert operation, it returns true after successful iflag and ireplace using op created at line 112.

For the remove operation, it returns true after successful rflag and rreplace using op created at line 168.

For the move operation, it returns true after successful mflag and mreplace using op created at line 224.

Corollary 25 indicates that the first replace operation must succeed, therefore all successful replace operations happen before returning.

Then, we define the linearization points of the insert operation, the remove operation, and the move operation that returns true are before returning. We should also point out that there’s only one \(\text{op} \) lead to the linearization point for each operation.

\[\text{Lemma 38. For the insert operation, the remove operation, and the move operation that returns true, op is created at the last iteration in the while loop.} \]

Proof. Based on Lemma 25 all successful insert, remove and move operations follow the flag \(\rightarrow \) replace \(\rightarrow \) unflag transition. flag is the first successful flag operation after reading \(\text{op}.\text{parent} \), so there is no other flag operation further. This establishes the claim.

\[\text{Lemma 39. If the insert operation, the remove operation, and the move operation that return false, successful replace happens before returning.} \]

Proof. As Lemma 38 points out that \(\text{op} \) is created at the last iteration. Moreover, before returning true, mflag, iflag and rflag must succeed according to the program order. As the first replace operation that belongs to \(\text{op} \), must succeed (Lemma 5) replace happens before returning.
Lemma 40. If the insert operation, the remove operation, and the move operation that return false, there’s no successful replace ever happened.

Proof. Consider the execution of the insert operation, it returns false at line 108 where op created are not flagged on nodes. Consider the remove operation, it returns false at line 165. Also, op created are not flagged on nodes. For the move operation, it returns false by calling the findCommon function or the continueFindCommon function so that the helpMove function must fail or it is not called. If the helpMove function is not called, there is no replace operations. If the helpMove function returns false, by the ordering of mflag and unflag (Lemma 23 and Lemma 25), op.iParent and op.rParent are different. Moreover, the flag operation on the latter parent will fail such that doCAS is false and no replace operation will perform.

In the next step, we show that how the algorithm could be ordered as a sequential execution. First we linearize the insert operation, the remove operation and the move operation that returns true, where replace results in changing the key set. Let s1 be a set of Leaf nodes that are active in snapshotT1 after performing operations 00, 01, ..., on, ordered by their linearization points replace0, replace1, ..., replace_n sequentially.

Observation 6. If a Leaf node is moved, its op is set before the replace operation on op.iParent, which is before the replace operation on op.rParent.

Lemma 41. For the contain operation that returns true, there is a corresponding snapshot that l_k is active in snapshotT_i. For the contain operation that returns false, there is a corresponding snapshot that l_k is inactive in snapshotT_i.

Proof. For the first part, we prove that in a snapshot, the end node l_k contains keys_k and is not moved. Lemma 36 shows that there is a snapshot consists of physical_path(keys_k) after calling, thus l_k contains keys_k is in snapshotT_i before judging whether the node is moved. We only have to discuss mreplace in the next cases because other replace operations will not affect l_k.op. If l_k.op is null at verifying, mreplace must have not been done according to Observation 6. In this case, we could linearize it at snapshotT_i. If l_k.op is not null, but mreplace occurs after verifying whether l.op.iParent has l.op.oldIChild, then it is also before the second mreplace on l.op.rParent (Observation 6). We could also linearize it snapshotT_i.

For the second part, Lemma 36 shows that there is a snapshot consists physical_path(keys_k). By Lemma 35 in every snapshot our quadtree’s property maintains. Hence, if l_k does not contain keys_k, we could linearize it at snapshotT_i. Or else, if l_k is in physical_path, but l_k is moved at verifying, we could linearize at snapshotT_i after mreplace.

Lemma 42. 1) For the insert operation, it returns true when key \(\notin s_{i-1} \) and key \(\in s_i \).

2) For the remove operation, it returns true and key \(\in s_{i-1} \) and key \(\notin s_i \).

3) For the move operation, it returns true and oldKey \(\in s_{i-1} \), newKey \(\notin s_{i-1} \), oldKey \(\notin s_i \), and newKey \(\in s_i \).

Proof. Lemma 39 shows that there is successful replace occurs before the insert operation, the remove operation, and the move operation that returns true.

If a replace operation succeeds, op.parent has been flagged with op other than Compress before replace (Lemma 24 and Lemma 23). Lemma 29 implies that op.parent is reachable from the root. Therefore, it is active. Besides, Corollary 31 shows that the path from the root to op.parent is an active. Therefore a snapshot exists such that the path from the root to op.oldChild is a physical_path(key).

First we prove that key \(\notin s_{i-1} \). By Lemma 41 in the snapshot l is inactive. Otherwise, replace operations will not execute. Hence, key \(\notin s_{i-1} \).

Second, by the post-conditions of the createNode function, it creates a node or a sub-tree that contains newKey. According to Corollary 35 after ireplace the node contains newKey is inserted and quadtree’s properties maintained. Hence, key \(\in s_i \).

First we prove that key \(\in s_i \). By Lemma 41 in the snapshot l is active. Otherwise, replace operations will not execute. Hence, key \(\notin s_{i-1} \).

Second, the remove operation creates an Empty node. According to Corollary 35 after replace the node contains oldKey is removed so that key \(\in s_i \).

Finally we order linearization points for the insert operation, the remove operation and the move operation that returns false. We also order the contain operation. We consider they are linearized between replace_i−1 and replace_i if exists.

Lemma 43. 1) For the insert operation returns false, key \(\in s_{i-1} \).

2) For the remove operation returns false, key \(\notin s_{i-1} \).

3) For the move operation returns false, either oldKey \(\notin s_{i-1} \) or newKey \(\in s_{i-1} \).

Proof. The first two parts are equivalent as the case in Lemma 41.

Lemma 44. Our quadboost is a linearizable implementation.

Proof. By lemma 42 and Lemma 43, our algorithm returns the same result as they are finished in the linearized order. Therefore we prove our algorithm is linearizable and our linearization points are correct.
.3 Progress Condition

We say an algorithm is non-blocking if the system as a whole is making progress even if some threads are starving. We prove our quadboost is non-blocking by following set of lemmas. We assume that there are finite number of basic operations invocations.

Observation 7. There are finite number of basic operations.

Lemma 45. path\((key^k)\) returned by find\((keys)\) consists of finite number of keys.

Proof. Observation 7 shows that the number of successful insert operation and move operation is limited. Lemma 40 illustrates that for basic operations return false, there is no successful replace operation. Hence, only successful insert and move operations add nodes into quadtree. The post-conditions of the createNode function (Lemma 17) and the effects of replace (Lemma 35) demonstrate that they will add finite number of nodes into quadtree. We then prove that path\(^k\) is terminable. By Lemma 54, find\((keys)\) returns path\((key^k)\) which is a subpath of physical_path\((keys^k)\) in snapshot\(_T\), which is terminable. Thus, there are finite number of nodes in path\(^k\).

Corollary 6. The compress function must terminate.

Proof. By Lemma 45, path\(^k\) is terminable. Since other functions called by the compress function do not consist loops, the compress function must terminate.

The we shall demonstrate that there are finite number of three different CAS transitions.

Lemma 46. There is an unique spatial order among nodes in quadtree in snapshot\(_T\).

Proof. As illustrated by the algorithm at line 222, the getSpatialOrder function compares ip with rp by the order: \(x \rightarrow y \rightarrow w\). In our quadtree, we only consider square partitions on two-dimensional space. Hence, \(w\) is always equal to \(h\). We prove the lemma by contradiction. Assuming there are two different Internal nodes with the same \(\langle x, y, w\rangle\), they represent the same square starting with left coroner \(\langle x, y\rangle\) with width \(w\). By Lemma 35, in every snapshot quadtree’s properties remain. There cannot be two squares with the same left corner and \(w\). Hence, in snapshot\(_T\), a Internal node consists of a unique \(\langle x, y, w\rangle\) tuple that can be ordered correctly.

Lemma 47. 1) There are finite number of successful flag → replace → unflag transitions.

2) There are finite number of successful flag → replace transitions.

3) There are finite number of successful flag → unflag transitions.

Proof. 1) By Lemma 39, replace operations only occur in basic operations that return true. By Lemma 35, there’s a unique op created for operations that return true. Hence, for the move operation, the insert operation and the remove operation, there are finite number of flag → replace → circles.

2) By Lemma 39, replace operations only occur in basic operations that return true. Lemma 24 shows that the flag → replace transition happens only in the compress function which is called by the successful remove operation or the move operation. Hence, there are a finite number of flag → replace transitions, as Corollary 6 shows that the compress function is terminable.

3) The flag → unflag transition executes only in the helpMove function where op.iParent cannot be flagged according to Lemma 25 (if op.iFirst is true). The case that op.iFirst is false can be proved symmetrically.

From first two parts of the lemma, there are finite number of replace operations that change quadtree’s structure. If the flag → replace → transition happens simultaneously, it will reset a node’s op to Clean. If the flag → replace → unflag transition happens in the meantime. Lemma 33 indicates that a node with Compress op will not be pushed twice. Consider if the helpMove function detects op.iParent as Compress, then op.iParent is not reachable in the next time. Hence, quadtree is stabilized and only when flag → unflag transitions execute infinitely and never set doCAS as true.

According to Lemma 46, we order spatial order on both op.iParent and op.rParent as \(ip_0 > ip_1 > \ldots > ip_n\) and \(rp_0 > rp_1 > \ldots > rp_n\). We assume that there’s a ring such that move\(_i\) which flags \(rp_i\) but fails on \(ip_i\), and move\(_i\)' which flags \(ip_i\) but fails on \(rp_i\). By assumption we order \(rp_i\) and \(ip_i\) as \(rp_i > ip_i\) by move\(_i\)'s order, and \(ip_i > rp_i\) by move\(_i\)'s order. But by Lemma 46, all Internal nodes in a snapshot can be ordered uniquely. Therefore it derives a contradiction.

Then, we prove that there’s no ring among all move\(_i\) in the same snapshot, so at least one of move\(_i\) could set doCAS to true, resulting in the flag → replace → unflag transition. Let’s consider the dependency among all move\(_i\). If move\(_i\) which fails on \(pi\) has been flagged by move\(_i\)' then there is a directed edge from move\(_i\) to move\(_i\)' by order. In this way, the head node in the graph must have no out edge as proved. It will set doCAS to true, all move operations that are directly connected to it will help it finish. After erase the former head node from the graph, there will be other nodes that have no out edge. Finally, all dependency edges are removed. Therefore, there are a finite number of flag → unflag transitions.

Observation 8. The help function, the helpCompress function, the helpMove function, and the helpSubstitute function are not called in a mutual way. (If method A calls method B, and method B calls method A reciprocally, we say method A and B are called in a mutual way.)

Lemma 48. If help function returned at \(T_i\) and find\((keys)\) at the prior iteration reads \(p^0\).op at \(T_{i+1} < T_i\), Leaf nodes in snapshot\(_T\) and snapshot\(_{T_{i+1}}\) are different.

Proof. We prove the lemma by contradiction, there are two
possible scenarios. First, the help function might be in-
terminable. But based on Observation 8, the help function must
terminate. Second, the help function might execute without
changing quadtree. According to Lemma 47, there are finite
number of CAS transitions. So if some help function does
not change quadtree, the structure might be changed before
T_1. For the move function, if ip and rp are the same but
their ops are different, the help function might not change
the structure. Nevertheless, snapshot_{T_1} and snapshot_{T_2} are
different. Or else, there are some interval that all transitions
are $\text{flag} \rightarrow \text{unflag}$. However, Lemma 47 also shows that
all transitions form a acyclic graph that there is no inter-
nal that all transitions are $\text{flag} \rightarrow \text{unflag}$. Therefore, a
$\text{flag} \rightarrow \text{replace} \rightarrow \text{unflag}$ transition or a $\text{flag} \rightarrow \text{unflag}$
transition is executed to change the snapshot.

Lemma 49. Our quadboost algorithms are non-blocking.

Proof. We have to prove that no process will execute loops
infinitely without changing keys in quadtree. First, we prove
that path is terminable. Next, we prove that $\text{find}(\text{keys}^k)$
starts from an active node in $\text{physical_path}(\text{keys}^k)$ in
snapshot_{T_1} between i_{th} iteration and $(i+1)_{th}$ iteration.
Finally, Leaf nodes in snapshot_{T_1} at the returning of
$\text{find}(\text{keys})$ at i_{th} iteration is different from snapshot_{T_2} that
at the returning of $\text{find}(\text{keys})$ at the $(i+1)_{th}$ iteration.

For the first part, initially we start from the root node.
Therefore, path is empty. Moreover, as Lemma 45 shows
that path^k consists of finite number of keys, we establish
this part.

For the second part, the continueFind function and the
continueFindCommon function pop all nodes with a Compress
operation from path. For the insert operation and the
remove operation, since Lemma 29 shows that an Internal
nodes whose op is not Compress is active, and Lemma 31
shows that nodes above the active node are also active,
there is a snapshot in which the top node of path is still
in $\text{physical_path}(\text{keys}^k)$. For the move operation, if either
rFail or iFail is true, it is equivalent with the prior case. If
cFail is true, Lemma 32 illustrates that if the LCA node is
active, it is in physical_path for both oldKey and newKey.
Thus, there is also a snapshot in which the start node is in
physical_path.

We prove the third part by contradiction, assuming that
quadtree is stabilized at T_1, and all invocations after T_1 are
looping infinitely without changing Leaf nodes.

For the insert and remove operations, before the invoca-
tion of $\text{find}(\text{keys})$ at the next iteration, they must execute
the help function at line 118 and line 175 accordingly. In both
cases, the help function changes the snapshot (Lemma 48).

For the move operation, consider different situations of
the continueFindCommon function. If rFail or iFail is true,
two situations arise: (1) iOp or rOp is Clean but mFlag
fails. (2) iOp or rOp is not Clean. Consider the first case
that mFlag fails, iOp and rOp are updated respectively at
line 236 and line 235. If ip and rp are different, before its
invocation of $\text{find}(\text{keys}^k)$, the help function is performed
at line 311 and line 287. Thus by Lemma 48, the snapshot
is changed between two iterations. Now consider if cFail
true. If ip and rp are the same, it could result from the
difference between rOp and iOp. In this case, the snapshot
might be changed between reading rOp and iOp. It could
also result from the failure of mFlag. For above cases, the
help function at line 322 would change quadtree. If ip and
rp are different, it results from that either iPath or rPath
has popped the LCA node. We have proved the case in the
former paragraph. Thus, we derive a contradiction.

From above discussions, we prove that quadboost is
non-blocking. \hfill \Box