Warped Compactification with a Four-Brane

Shoko Hayakawa and Ken-Iti Izawa

1Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
2Research Center for the Early Universe, University of Tokyo, Tokyo 113-0033 Japan

(Received June 20, 2001)

Warped compactification of a six-dimensional bulk with a negative cosmological constant is realized using a 4-brane along with an abelian gauge theory. We find that no fine tuning of couplings is needed to obtain a vanishing cosmological constant in four dimensions, just as in the case of a bulk with a positive cosmological constant.

§1. Introduction

The higher-dimensional approach to the cosmological constant problem employed by Rubakov and Shaposhnikov is based on the idea that a vanishing cosmological constant in four dimensions might be realized through warped compactification, even in the presence of a nonvanishing higher-dimensional cosmological constant. This might be possible, since four-dimensional effective flatness is not necessarily in contradiction with large curvature of spacetime in a higher-dimensional space.

In a previous paper, we investigated the case of a six-dimensional bulk with a positive cosmological constant and realized a vanishing four-dimensional cosmological constant without metric singularity by introducing an abelian gauge field. In this paper, we consider the case of a negative bulk cosmological constant to obtain regular and compact extra dimensions. We are led to introduce a 4-brane in the bulk along with an abelian gauge field, again the case of a positive cosmological constant.

§2. The model

Let us consider an $SO(2)$-symmetric warped metric as a six-dimensional background:

$$ds^2 = g_{MN}dx^M dx^N = \sigma(r)\bar{g}_{\mu\nu}dx^\mu dx^\nu - dr^2 - \rho(r)d\theta^2.$$ \hspace{1cm} (1)

Here, $\bar{g}_{\mu\nu}$ denotes the four-dimensional metric, independent of (r, θ), with $0 \leq \theta < 2\pi$. The action of this metric with an abelian gauge field and a 4-brane at $r = r_1$ is given by

$$S = \int d^6x\sqrt{-g} \left(\frac{1}{2} R - \frac{1}{4} F_{MN} F^{MN} - \Lambda \right) - \int d^5x\sqrt{-g_5} \lambda \delta(r - r_1),$$ \hspace{1cm} (2)

where $\Lambda < 0$ and g_5 is the determinant of the induced metric on the 4-brane.
The gauge field equations of motion are obtained as
\[\partial_M(\sqrt{-g}F^{MN}) = 0, \]
and the background configuration with the SO(2) symmetry is given by
\[A_\mu = A_r = 0, \quad A_\theta = a(r). \]
These yield the field strength
\[F^{r\theta} = \frac{B}{\sigma^2 \sqrt{\rho}}, \]
where \(B \) is an integration constant. With this gauge field configuration, the Einstein equations lead to
\[
\begin{align*}
\frac{3}{2} \frac{\sigma''}{\sigma} + \frac{3}{4} \frac{\sigma'}{\rho} - \frac{1}{4} \rho'' + \frac{1}{4} \rho' - \frac{A_4}{\sigma} = -\frac{B^2}{2\sigma^4} - \Lambda - \lambda \delta(r - r_1), \\
\frac{3}{2} \frac{\sigma'^2}{\sigma^2} + \frac{\sigma'}{\rho} - \frac{2A_4}{\sigma} = \frac{B^2}{2\sigma^4} - \Lambda,
\end{align*}
\]
where the prime denotes differentiation with respect to \(r \) and we have used the four-dimensional Einstein equations for the metric \(\bar{g}_{\mu\nu} \) with the cosmological constant \(A_4 \), which comes out as an integration constant.

We obtain the junction conditions across the 4-brane from the equations of motion as
\[
\begin{align*}
\sigma'(r_1 + 0) - \sigma'(r_1 - 0) &= -\frac{1}{2} \lambda \sigma(r_1), \\
\rho'(r_1 + 0) - \rho'(r_1 - 0) &= -\frac{1}{2} \lambda \rho(r_1).
\end{align*}
\]
In the regions \(r < r_1 \) and \(r > r_1 \), the bulk Einstein equations are reduced to the equation of motion
\[
\begin{align*}
\frac{z''}{z} &= -\frac{\partial V(z)}{\partial z}; \\
V(z) &= \frac{25}{96} B^2 z^{-6/5} + \frac{5}{16} A_4 z^2 - \frac{25}{24} A_4 z^{6/5}, \\
\sigma &= z^{4/5}, \\
\rho &= C_\pm z^{2} z^{-6/5},
\end{align*}
\]
where \(C_- \) and \(C_+ \) are integration constants for the two regions. Note that this equation describes the motion of a particle with position \(z \) at time \(r \) subject to a potential \(V(z) \).

§3. The solutions

Now we seek regular metric solutions in the case of interest, \(A_4 = 0 \). The junction conditions Eqs. (9) and (10) can be expressed in terms of \(z \) with the condition \(\lambda \neq 0 \)
\[z'_+ - z'_- = -\frac{5}{8}\lambda z_1, \quad (13) \]
\[z'_+ z'_- = -\frac{5}{16}B^2z_1^{-6/5} + \frac{5}{8}A\bar{z}_1^2, \quad (14) \]

where \(z'_\pm = z'(r_1 \pm 0) \) and \(z_1 = z(r_1) \) (which may be normalized to 1 without loss of generality). Equations (13) and (14) can be solved for \(z'_\pm \), provided \(5\lambda^2 + 32A \geq 0 \), with \(z'_- > 0 \) and \(z'_+ < 0 \). This change of the velocity \(z' \) from positive to negative is crucial for compactification of the extra dimensions, which is achieved by means of the 4-brane with \(\lambda > 0 \).

The equation of motion (11) implies \(z' = 0 \) at \(r = r_0, \bar{r} \), with \(z' \neq 0 \), for \(r_0 < r < r_1 \) and \(r_1 < r < \bar{r} \). The conservation of ‘energy’ as \(z \) changes in each of the ‘time’ regions \(r_0 \leq r < r_1 \) and \(r_1 < r \leq \bar{r} \) implies

\[\frac{25}{96}B^2z_0^{-6/5} + \frac{5}{16}A\bar{z}_0^2 = \frac{1}{2}z'_- + \frac{25}{96}B^2z_1^{-6/5} + \frac{5}{16}A\bar{z}_1^2, \quad (15) \]
\[\frac{25}{96}B^2\bar{z}^{-6/5} + \frac{5}{16}A\bar{z}_0^2 = \frac{1}{2}z'_+ + \frac{25}{96}B^2z_1^{-6/5} + \frac{5}{16}A\bar{z}_1^2, \quad (16) \]

respectively. Here we have defined \(z_0 = z(r_0) \) and \(\bar{z} = z(\bar{r}) \), whose values are determined by these equations.

The continuity of \(\rho \) across the 4-brane imposes the condition

\[C_-^{-2}z_-^2 = C_+^{-2}z_+^2 \quad (17) \]

from Eq. (12). For regularity of the higher-dimensional metric, we have the condition

\[(\sqrt{\rho})'(r_0) = -(\sqrt{\rho})'(\bar{r}) = 1, \quad (18) \]

which gives

\[C_-^{-3/5}z_0^{-11/5} = \frac{5}{16}B^2z_0^{-11/5} - \frac{5}{8}A\bar{z}_0, \quad (19) \]
\[C_+^{-3/5}\bar{z}^{-11/5} = \frac{5}{16}B^2\bar{z}^{-11/5} - \frac{5}{8}A\bar{z}. \quad (20) \]

The above three conditions can be solved for the three integration constants \(B \) and \(C_\pm \). This yields a reflection-symmetric metric with respect to the 4-brane. In other words, the effective four-dimensional cosmological constant \(\Lambda_4 \) can vanish for generic values of \(\Lambda < 0 \) and \(\lambda > 0 \) with the extra dimensions compactified.

We note that, in addition to the 4-brane at \(r = r_1 \), 3-branes may be introduced at \(r = r_0 \) and/or \(r = \bar{r} \) straightforwardly. For example, if we put a 3-brane with tension \(\lambda_0 \) at \(r = r_0 \), the regularity condition Eq. (19) is replaced by \(^2\)

\[C_- \left(1 - \frac{\lambda_0}{2\pi} \right) z_0^{-3/5} = \frac{5}{16}B^2z_0^{-11/5} - \frac{5}{8}A\bar{z}_0, \quad (21) \]

which also allows the full equations of motion to be satisfied without a singularity.
§4. Conclusion

We have obtained a regular metric with compact extra dimensions in the case of a negative bulk cosmological constant in six dimensions. We found that the four-dimensional cosmological constant Λ_4 can vanish even without the fine tuning of the Lagrangian parameters $\Lambda < 0$ and $\lambda > 0$ (or the tensions of the 3-branes, if such exist).

We note that regular and compact metrics also exist for $\Lambda_4 \neq 0$ in the case of a negative bulk cosmological constant, just as in the case of a positive bulk cosmological constant. It is thus seen that Λ_4 is simply an integration constant to be determined by the boundary conditions, which might be supplied by some other sector to be added to the model.

References

1) V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125 (1983), 139.
2) S. Hayakawa and Izawa K.-I., Phys. Lett. B 493 (2000), 380, hep-th/0008111.
3) C. Wetterich, Nucl. Phys. B 255 (1985), 480.
 G. W. Gibbons and D. L. Wiltshire, Nucl. Phys. B 287 (1987), 717.
4) Z. Chacko and A. E. Nelson, Phys. Rev. D 62 (2000), 085006, hep-th/9912186.
5) K.-I. Izawa, Prog. Theor. Phys. 105 (2001), 185, hep-ph/0007079.