Regulator of G protein signaling 14 (RGS14) is a multifunctional brain scaffolding protein that integrates G protein and Ras/ERK signaling pathways. It is also a nucleocytoplasmic shuttling protein. RGS14 binds active \(\text{G}\alpha_i \) via its RGS domain, Raf and active H-Ras–GTP via its R1 Ras-binding domain (RBD), and inactive \(\text{G}\alpha_{i3} \) via its G protein regulatory (GPR) domain. RGS14 suppresses long-term potentiation (LTP) in the CA2 region of the hippocampus, thereby regulating hippocampally based learning and memory. The 14–3–3 family of proteins is necessary for hippocampal LTP and associative learning and memory. Here, we show direct interaction between RGS14 and 14–3–3\(\gamma \) at two distinct sites, one phosphorylation-independent and the other phosphorylation-dependent at Ser-218 that is markedly potentiated by signaling downstream of active H-Ras. Using bioluminescence resonance energy transfer (BRET), we show that the pSer-218–dependent RGS14/14–3–3\(\gamma \) interaction inhibits active \(\text{G}\alpha_{i1} \)–AlF\(_4^- \) binding to the RGS domain of RGS14 but has no effect on active H-Ras and inactive \(\text{G}\alpha_{i1} \)–GDP binding to RGS14. By contrast, the phosphorylation-independent binding of 14–3–3 has no effect on RGS14/\(\text{G}\alpha_i \) interactions but, instead, inhibits (directly or indirectly) RGS14 nuclear import and nucleocytoplasmic shuttling. Together, our findings describe a novel mechanism of negative regulation of RGS14 functions, specifically interactions with active \(\text{G}\alpha_i \) and nuclear import, while leaving the function of other RGS14 domains intact. Ongoing studies will further elucidate the physiological function of this interaction between RGS14 and 14–3–3\(\gamma \), providing insight into the functions of both RGS14 and 14–3–3\(\gamma \) in their roles in modulating synaptic plasticity in the hippocampus.

The regulator of G protein signaling (RGS)\(^2\) and RGS-like family of proteins (nearly 40 members) is characterized by their GTPase-activating protein activity on G protein \(\alpha \) (\(\text{G}\alpha \)) subunits (1, 2). One RGS protein family member, RGS14, is an unusual brain scaffolding protein that integrates G protein and mitogen-activated protein kinase signaling pathways to regulate synaptic plasticity relating to hippocampally based learning and memory (3). RGS14 integrates signaling through multiple GTases by binding active \(\text{G}\alpha_{i1} \) subunits (4), inactive \(\text{G}\alpha_{i1} \) and \(\text{G}\alpha_{i3} \) (5), and small GTases, including active H-Ras (6, 7) and Rap2 (8). Besides binding \(\text{G}\alpha_{i1} \) at its RGS domain, RGS14 also interacts with GDP-bound \(\text{G}\alpha_{i1/3} \) subunits at its G protein regulatory (GPR) motif (4, 5, 9, 10). Although RGS14 was originally discovered as a Rap-binding protein via its R1 Raf-like Ras/Rap-binding domain, studies suggest that RGS14 likely interacts preferentially with active H-Ras in cells (6, 7). RGS14 also interacts with both G protein–couple receptors and the nonreceptor guanine nucleotide exchange factor Ric-8A in a G protein–dependent manner (6, 10, 11). Whereas RGS14 interacts with multiple signaling proteins at the plasma membrane, we and others have shown that RGS14 is also a nucleocytoplasmic shuttling protein (5, 12–14), suggesting it serves as yet undefined roles in the nucleus.

Although RGS14 binds to a variety of signaling GTases, other regulatory protein-binding partners have not been identified. Members of the 14–3–3 family of proteins are ubiquitous regulatory proteins abundant in brain (15). They consist of seven distinct isoforms in mammals, although differences in their function are largely unclear, with all 14–3–3 isoforms often referred to generally as 14–3–3 proteins (16–19). These proteins exist as dimers (20, 21) with each monomer capable of interacting with a distinct 14–3–3–binding site (22, 23), typically centered at a phosphorylated serine or threonine (22, 24, 25), although there are exceptions (26–31). In some cases, 14–3–3 can bind to poorly defined protein sequences in a phosphorylation-independent manner (26–31). Upon binding, 14–3–3 proteins exert multiple effects on their substrates, including changes in conformation, masking of binding sites for other proteins (26), and changes in subcellular localization (17, 21, 26, 27).
Phosphorylation-independent. In HEK 293 cells, we found that distinct sites, one phosphorylation-dependent and the other inhibits active \(\Gamma \) at the R1 domain and nuclear import, respectively, demonstrating two distinct mechanisms through which 14-3-3 modulates RGS14 function and subcellular localization in hippocampal neurons.

Results

Previous work reported that 14-3-3 regulates the functions of several RGS proteins (26, 35–39). To explore the possibility that 14-3-3 might bind to and regulate the function of RGS14, we immunoprecipitated native RGS14 out of mouse brain and subsequently probed for interactions with 14-3-3 proteins via immunoblotting (Fig. 1). Because RGS14 is highly and selectively expressed in the CA2 area of the hippocampus (41), we used isolated hippocampi as a tissue source for these studies. 14-3-3\(\gamma \) was highly enriched in samples in which RGS14 was specifically immunoprecipitated as opposed to the beads-only condition where RGS14 was not enriched (Fig. 1). In combination, these data show that endogenously expressed 14-3-3 specifically interacts with native RGS14 from the CA2 region of the mouse hippocampus.

To better understand the subcellular signaling events that affect and control the interaction between RGS14 and 14-3-3, we transitioned to the more manipulation-friendly system of transient transfection in HEK 293 cells. Following FLAG immunoprecipitation from HEK 293 cells expressing FLAG-tagged RGS14 (FLAG–RGS14) and 14-3-3\(\gamma \), we saw little or no interaction between RGS14 and 14-3-3 (Fig. 2A) when compared with a baseline condition in which the immunoprecipitation was performed in the absence of RGS14 and the presence of 14-3-3. However, when RGS14’s binding partner at the R1 domain, active \(\Gamma \)-Ras(G12V) (6, 7), was expressed along with RGS14 and 14-3-3\(\gamma \), we observed a clear interaction. The specificity of this interaction was further validated by the inclusion of a condition in which 14-3-3\(\gamma \)(K50E), which contains a mutation in the amphipathic helix of 14-3-3 that significantly decreases affinity for known 14-3-3 substrates (42, 43), was expressed. As expected, 14-3-3\(\gamma \)(K50E) showed decreased binding when compared with the wildtype (WT) protein (Fig. 2A), indicating that induction of 14-3-3 association with RGS14 by active \(\Gamma \)-Ras is specific.

Because active \(\Gamma \)-Ras has been reported to interact directly with RGS14 (6, 7, 44, 45), it was unclear whether downstream \(\Gamma \)-Ras signaling or direct \(\Gamma \)-Ras binding to RGS14 was responsible for its induction of a 14-3-3\(\gamma \)RGS14 complex. To parse out the role of active \(\Gamma \)-Ras in relation to 14-3-3\(\gamma \) and RGS14, we used a mutation, RGS14(R333L), that has been shown to greatly reduce binding of \(\Gamma \)-Ras at the R1 domain (6, 45). Using RGS14(R333L), any observed enhancement of the RGS14/14-3-3\(\gamma \) interaction by active \(\Gamma \)-Ras can be attributed only to downstream signaling of \(\Gamma \)-Ras and not direct interaction with RGS14. We saw no difference in 14-3-3\(\gamma \) binding to RGS14 or RGS14(R333L) in the presence of active \(\Gamma \)-Ras (Fig. 2B), indicating that 14-3-3 association with RGS14 is not dependent on \(\Gamma \)-Ras signaling.
14-3-3 regulation of RGS14

Figure 2. RGS14-specific association with 14-3-3\(\gamma\) is promoted by signaling events downstream of active H-Ras. **A**, active H-Ras enhances RGS14 association with 14-3-3\(\gamma\). 10-cm dishes of HEK 293 cells were transfected with 1.5 \(\mu\)g of FLAG–RGS14, 3 \(\mu\)g of His-tagged 14-3-3\(\gamma\) (His-14-3-3\(\gamma\)), and 3 \(\mu\)g of constitutively active H-Ras (H-Ras(G12V)) as indicated. Whole-cell lysates were subjected to FLAG immunoprecipitation (IP: FLAG) and recovered proteins were subjected to SDS-PAGE followed by immunoblotting (IB). **B**, active H-Ras does not influence 14-3-3 binding through direct interaction with RGS14. HEK 293 cells were transfected with 1.5 \(\mu\)g of FLAG–RGS14, 3 \(\mu\)g of His-tagged 14-3-3\(\gamma\), 1.5 \(\mu\)g of active H-Ras, and/or 14-3-3\(\gamma\) binding-incompetent mutant of 14-3-3\(\gamma\) (His-14-3-3\(\gamma\)(K50E)), and/or 3 \(\mu\)g of constitutively active H-Ras (H-Ras(G12V)) as indicated. Whole-cell lysates were subjected to FLAG immunoprecipitation (IP: FLAG) and recovered proteins were subjected to SDS-PAGE before being analyzed using immunoblotting. C, H-Ras must be active to potentiate RGS14/14-3-3 interaction. 1.5 \(\mu\)g of FLAG–RGS14 and 3 \(\mu\)g of His-tagged 14-3-3\(\gamma\) were transfected into HEK 293 cells along with either 1.5 \(\mu\)g of empty vector, 1.5 \(\mu\)g of WT, 1.5 \(\mu\)g of constitutively active (G12V), or 1.5 \(\mu\)g of dominant-negative (S17N) H-Ras. RGS14 and associated proteins were isolated via FLAG immunoprecipitation and subjected to SDS-PAGE before being analyzed using immunoblotting. D, RGS14 selectively interacts with the \(\gamma\) isoform of 14-3-3. HEK 293 cells were transfected overnight with FLAG–RGS14, H-Ras(G12V), and His-tagged 14-3-3\(\gamma\), \(\beta\), \(\tau\), or \(\zeta\). Samples were then lysed and subjected to FLAG immunoprecipitation before being subjected to SDS-PAGE and analyzed for 14-3-3 interactions with RGS14 by immunoblotting for the hexahistidine tag on the 14-3-3 isoforms. The cell lysate immunoblots represent 2\% of the whole-cell lysates used for the immunoprecipitation. These findings are representative of three independent experiments.

dating that H-Ras induces RGS14 association with 14-3-3\(\gamma\) through a downstream signaling mechanism.

To further confirm that downstream signaling by active H-Ras is necessary to promote 14-3-3\(\gamma\) interaction with RGS14 in HEK 293 cells, we immunoprecipitated FLAG–RGS14 and probed for an interaction with 14-3-3\(\gamma\) in the presence of active H-Ras(G12V), WT H-Ras, and the dominant-negative mutant H-Ras(S17N). As expected, only H-Ras(G12V) greatly enhanced 14-3-3 binding to RGS14 (Fig. 2C), indicating that downstream signaling through active H-Ras is necessary for the potentiation of the interaction between RGS14 and 14-3-3.

To test for possible specific interactions between RGS14 and distinct 14-3-3 isoforms, we performed a screen of multiple 14-3-3 isoforms (\(\beta\), \(\gamma\), \(\tau\), and \(\zeta\)) in the presence of H-Ras(G12V). We blotted for the hexahistidine tag on each of the 14-3-3 isoforms following immunoprecipitation of FLAG–RGS14 so that all of the isoforms could be compared equally. Besides 14-3-3\(\gamma\), 14-3-3\(\zeta\) also appeared to interact with RGS14 with 14-3-3\(\gamma\) appearing to interact most strongly (Fig. 2D). Therefore, our subsequent studies focused on the specific interaction between RGS14 and 14-3-3\(\gamma\).

14-3-3 proteins typically bind substrates at specific motifs centered at a phosphorylated serine or threonine (24, 25). However, 14-3-3 proteins are also capable of binding target proteins at nonphosphorylated residues (26–31). To determine whether the H-Ras–potentiated 14-3-3\(\gamma\) interaction with RGS14 was phosphorylation-dependent, we overexpressed FLAG–RGS14 and 14-3-3\(\gamma\) and immunoprecipitated RGS14 from HEK 293 cells in the presence or absence of constitutively active H-Ras(G12V). Samples were either collected in the presence of a phosphatase inhibitor mixture to preserve phosphorylation sites or treated with a phosphatase to dephosphorylate any phosphorylated residues on RGS14. Although little interaction between RGS14 and 14-3-3\(\gamma\) was seen in the absence of
active H-Ras, the sample collected in the presence of both the phosphatase inhibitor mixture and H-Ras(G12V) showed a robust interaction between RGS14 and 14-3-3. Notably, the sample collected in the absence of phosphatase inhibitor mixture and treated with λ-phosphatase showed a greatly reduced interaction compared with the positive control (Fig. 3A), indicating that 14-3-3 interacts with RGS14 through a phosphorylated serine or threonine.

One major caveat of using coimmunoprecipitation from whole cells as a technique to examine protein/protein interactions is the inability to determine whether an interaction between two proteins is direct or indirect. In the case of RGS14, it was imperative to determine whether 14-3-3–binding to RGS14 was direct because RGS14 is reported to interact with Raf in an active H-Ras–dependent manner (45), and Raf is a well known binding partner of 14-3-3 (20, 24, 31, 42, 46–49). Therefore, we used a far-Western blotting overlay experiment to determine whether 14-3-3–binding to RGS14 was direct under the same conditions in which it interacts with RGS14 using coimmunoprecipitation (Fig. 3B). FLAG–RGS14 expressed in HEK 293 cells in the presence or absence of H-Ras(G12V) was immunoprecipitated to enrich the RGS14 in each sample. The samples were denatured, run on an SDS-polyacrylamide gel, and transferred to a nitrocellulose membrane, which was incubated with His-tagged 14-3-3

or threonine, we created truncations of RGS14 to map the location of the 14-3-3–binding site (Fig. 4A). All truncated proteins were created with an N-terminal FLAG tag so they could be immunoprecipitated equally and their expression could be directly compared. Full-length FLAG–RGS14 and the four truncations were expressed in HEK 293 cells with 14-3-3–binding and active H-Ras and subjected to FLAG immunoprecipitation. Notably, only RGS14 constructs that contained the linker region between the RGS domain and the tandem RBDs (constructs 1, 3, and 4) communoprecipitated with 14-3-3 (Fig. 4B), indicating that 14-3-3 binds a site within that linker region including RGS14 residues 186–301 (Fig. 4).

Having mapped the possible 14-3-3–binding site to the linker region between the RGS and R1 domains, we submitted the RGS14 amino acid sequence to Scansite3 to identify possible 14-3-3–binding motifs (50). At low stringency, Scansite3 predicted seven possible 14-3-3–binding motifs throughout RGS14 with three of those sites included within residues 205–301, the region determined to contain the 14-3-3–binding site by the truncations. Although mutation of serines 258 and 286 to phospho-null alanines had no effect on 14-3-3–association with RGS14 (Fig. S1), mutation of serine 218 to alanine (RGS14(S218A)) greatly decreased H-Ras–potentiated binding of 14-3-3 to RGS14 (Fig. 5B). Furthermore, serine 218 and the surrounding region are completely conserved in human, rat, and mouse RGS14 (Fig. 5A), and serine 218 has been shown to be phosphorylated in multiple MS experiments (51) with peptides unique to RGS14 being found to contain phospho-Ser-218 of RGS14 from rat (52, 53), mouse (54), and human (55) cells. Taken together, these findings show that RGS14 contains a conserved 14-3-3–binding motif centered at serine 218.

Knowing the specific site at which 14-3-3 binds RGS14, we next attempted to determine the kinase that phosphorylates serine 218 of RGS14 to better understand the role that 14-3-3 interaction with RGS14 plays in relation to both RGS14 and 14-3-3 signaling. We focused on MEK, Akt, and CaMKII as possible kinases that could phosphorylate serine 218 because all of these kinases are downstream of active H-Ras signaling and
because Akt and CaMKII are both predicted to phosphorylate serine 218 by Scansite3 (50) under the minimum stringency. Following treatment of HEK 293 cells expressing FLAG–RGS14, 14-3-3γ, and H-Ras(G12V) with selective inhibitors of either MEK (U0126), PI3K (LY294002), or CaMKII (KN-93) for 2 h, cells were collected, subjected to FLAG immunoprecipitation, and probed for RGS14/14-3-3 interactions. However, none of the kinase inhibitors had any effect (Fig. S2A), indicating that ERK, Akt, and CaMKII are not responsible for the phosphorylation of serine 218 of RGS14.

We next tested whether acute activation of endogenous H-Ras is sufficient to promote 14-3-3γ binding to RGS14 or whether long-term activation is necessary. To activate endogenous Ras acutely, HEK 293 cells expressing FLAG–RGS14 and 14-3-3γ were treated with EGF for 0, 10, 60, or 120 min. EGF treatment did not markedly enhance RGS14 pulldown of 14-3-3γ at the earlier time points, but increased interaction was evident at the 2-h time point, indicating that prolonged H-Ras signaling is necessary (Fig. S2B). This suggests that changes at a protein translation level are likely necessary to enhance the RGS14/14-3-3 interaction in HEK cells. These findings indicate that the kinase responsible for phosphorylating serine 218 of RGS14 is unlikely to be directly downstream of active H-Ras, making the kinase responsible immensely difficult to predict and identify. Therefore, in subsequent efforts to identify a function for 14-3-3γ interaction with RGS14, we focused on the functional consequences of 14-3-3γ binding to RGS14 rather than the specific phosphorylation site and responsible kinase.

14-3-3 has been shown to interact with multiple RGS proteins (26, 35, 37, 38), competing with Gα for binding at the RGS domain and consequently inhibiting GTPase activity (26, 35). Interestingly, even 14-3-3 binding near but outside of the RGS...
The maximum measured interaction between Go11-AlF4 and RGS14 was decreased by ~50% (Fig. 7A), indicating that binding of 14-3-3-y to RGS14 inhibits G protein binding at the RGS domain. We also performed this experiment with Luc–RGS14(S218A) to confirm that 14-3-3-y binding centered at serine 218, as opposed to a possible off-target effect, was responsible for inhibition of active Go11 binding at the RGS domain. Using this Luc–RGS14(S218A) point mutant, we saw no effect on maximal G protein binding when 14-3-3-y was overexpressed (Fig. 7B). Furthermore, to examine whether 14-3-3-y inhibition of Go11 interaction with RGS14 is specific to the RGS domain, we performed the same experiment in the absence of AlF4 with RGS14–Luc to measure any contributions that 14-3-3-y binding to RGS14 might have to Go11 binding to the GPR motif at the C-terminal end of the protein. In this case, expression of 14-3-3-y had no effect (Fig. 7C), indicating that 14-3-3-y binding to RGS14 only decreases active Go11 interaction with the RGS domain.

After demonstrating that 14-3-3 specifically affects Go11 binding to the RGS domain of RGS14, we next sought to examine the effect of 14-3-3 on RGS14 subcellular localization because 14-3-3 proteins have been shown to often affect the distribution of binding partners within the cell (17, 21, 26). We and others have previously shown that although RGS14 is predominantly cytosolic it is nonetheless a nucleocytoplasmic shuttling protein (5, 12, 13) as demonstrated by the fact that treatment of HEK cells with leptomycin B (LMB), which inhibits nuclear export, leads to a buildup of RGS14 in the nucleus as it is constantly being imported but unable to be shuttled out of the nucleus (5, 12). Here, we show that YFP–RGS14 shuttles in and out of the nucleus in primary hippocampal neurons, the cell type in which RGS14 is natively expressed in the adult brain (41) (Fig. 8). Notably, coexpression of 14-3-3-y prevented RGS14 translocation into the nucleus over the course of a 2-h treatment with LMB. Furthermore, coexpression of the binding-null mutant 14-3-3-y(K50E) with RGS14 still allowed RGS14 to be transported into the nucleus (Fig. 8), indicating that 14-3-3-y is binding specifically to substrates in the cell, presumably RGS14, to block RGS14 nuclear localization.

Next, we tested RGS14(S218A) to determine whether 14-3-3's interaction with RGS14 at that specific site contributed to its effect on RGS14's nuclear localization. Quite unexpectedly, RGS14(S218A) behaved identically to WT RGS14 in the presence of 14-3-3-y following treatment with LMB. 14-3-3-y was still able to prevent transport of RGS14(S218A) into the nucleus (Fig. 9), suggesting the possibility of a second 14-3-3-y–binding site on RGS14 with its own distinct function.

To explore this idea of a second 14-3-3-binding site and in an effort to make sense of 14-3-3's effect on RGS14 nuclear localization, we reexamined previous data (Fig. 3B), noticing faint bands in the control conditions in the far-Western blot. These findings were consistent with direct 14-3-3 binding to RGS14, thus providing evidence of a potential second, phosphorylation-independent binding site on RGS14 for 14-3-3.
ine 218) and RGS14 purified from *Escherichia coli*, which is assured to be unphosphorylated by mammalian kinases. Notably, 14-3-3/H9253 directly binds RGS14 in both of these conditions (Fig. 10A), confirming the presence of a phosphorylation-independent 14-3-3–binding site on RGS14. To confirm that we were looking at a 14-3-3–binding site that is completely separate from that centered at Ser-218 of RGS14, we created two truncation mutants of RGS14, RGS14(N-298) and RGS14(300-C), and partially purified them out of *E. coli*. We then performed far-Western blotting comparing direct binding of 14-3-3 to these truncations as well as full-length RGS14. 14-3-3/H9253 interacts with full-length RGS14 and RGS14(300-C) but does not interact with RGS14(N-298) (Fig. 10B), confirming the presence of a second, phosphorylation-independent 14-3-3–binding site on RGS14 that is separate from the phosphorylation-dependent 14-3-3–binding site that requires Ser-218 phosphorylation.

Discussion

Here, we provide evidence that RGS14 directly interacts with 14-3-3 in both a phosphorylation-dependent and phosphorylation-independent manner. The phosphorylation-dependent interaction is markedly enhanced by downstream signaling through active H-Ras and is mediated by phosphorylation of serine 218 of RGS14, located adjacent to the RGS domain, in the linker region between the RGS domain and the R1 domain. Functionally, this interaction blocks active Goi binding at the RGS domain but does not affect H-Ras binding to RGS14. Meanwhile, the phosphorylation-independent binding of 14-3-3 is correlated with the blockade of nuclear import of RGS14, thereby trapping it in the cytosol. One or both of these interactions take place within the mouse hippocampus, suggesting that 14-3-3 plays a role in regulating RGS14’s suppression of synaptic plasticity in the CA2 region of the hippocampus.

H-Ras signaling promotes the specific phosphorylation-dependent interaction between RGS14 and 14-3-3

Our findings (Fig. 2) demonstrate that the 14-3-3 interaction with RGS14 is promoted by downstream signaling of active H-Ras independently of H-Ras binding directly to RGS14. As RGS14 interacts with Raf (45), a well known 14-3-3–binding partner (20, 23, 31, 46, 47), it was unclear to us whether 14-3-3 interacts directly with RGS14 or through an indirect interaction bridged by Raf. However, analysis by far-Western blotting showed that 14-3-3 is able to interact directly with RGS14 in the absence of any other RGS14–interacting partners (Fig. 3B). Furthermore, decreased interaction between RGS14 and 14-3-3 following treatment with λ-phosphatase indicated that 14-3-3 binds at a motif centered at a phosphorylated serine or threonine on RGS14 (Fig. 3). Mapping of the 14-3-3–binding site with truncation mutants of RGS14 followed by creation of phospho-null point mutants at potential 14-3-3–binding sites revealed a 14-3-3–binding site centered around serine 218 on...
RGS14 in the linker region between the RGS and R1 domains (Figs. 4 and 5). This serine and the surrounding sequence are fully conserved among human, rat, and mouse RGS14, making it a likely candidate for 14-3-3 interaction and subsequent regulation of RGS14 activity (Fig. 5).

We next attempted to determine the kinase downstream of H-Ras that facilitates the interaction of 14-3-3 and RGS14 through the phosphorylation of serine 218 of RGS14. Although Scansite3 set on minimum stringency predicted the phosphorylation of serine 218 by CaMKII and Akt (50), which are both

Figure 8. 14-3-3 blocks RGS14 import into the nucleus of hippocampal neurons. A, primary neurons were transfected with 1 μg of YFP–RGS14 and 1 μg of empty vector, 1 μg of His-tagged 14-3-3-γ, or 1 μg of His-tagged 14-3-3-γ(K50E) per coverslip. Twenty-four hours later, neurons were treated with 40 nM leptomycin B (+LMB) or vehicle for 2 h before being fixed in 4% paraformaldehyde in PBS. YFP–RGS14 was visualized by the intrinsic fluorescence of YFP (green). 14-3-3-γ immunostaining was performed using an anti-14-3-3-γ primary antibody and Alexa Fluor 546 (red) secondary antibody, and nuclei were visualized by staining DNA with Hoechst 33258 (blue). Images are representative of at least three separate experiments. Scale bars represent 10 μm. B, relative fluorescence intensity of YFP–RGS14, 14-3-3, and nuclear staining was measured through a cross-section of each cell as indicated by the white line through each cell in A.
activated downstream of H-Ras, treatment of cells with selective MEK, PI3K, and CaMKII inhibitors to block ERK, Akt, and CaMKII kinase activity, respectively, had no effect (Fig. S2A). Additional experiments showed that treatment of cells with EGF to activate kinases downstream of activated Ras, including ERK, does not begin to potentiate the interaction between RGS14 and 14-3-3 until approximately 2 h after treatment even though ERK activation occurs very rapidly (Fig. S2B). Taken
Figure 10. 14-3-3γ interacts with RGS14 at a unique binding site in a phosphorylation-independent manner. A, 9 μg of FLAG–RGS14 was expressed in HEK 293 cells and recovered by immunoprecipitation (IP: RGS14). 30% of the IP: RGS14 sample and 5 μg of purified recombinant RGS14 expressed in E. coli (Purified RGS14) were subjected to SDS-PAGE and then transferred to a nitrocellulose membrane. The membrane (left panel) was incubated with pure His-tagged 14-3-3γ overnight and probed for interactions between RGS14 and 14-3-3 via immunoblotting for 14-3-3γ. Equal amounts of the same protein samples were loaded in parallel on a separate gel and stained with Ponceau S (right panel) to show the relative abundance of the proteins in the immunoblot. Lines to the right of the right panel indicate the bands of RGS14 truncations at the expected sizes in the Ponceau-stained membrane as well as nonspecific, unidentified proteins (NS) in the partially purified preparations. These findings are representative of three independent experiments.

Together, these data suggest that active H-Ras enhancement of the interaction between RGS14 and 14-3-3 likely takes place due to long-term H-Ras activation, likely independent of ERK signaling, that influences changes in transcription and translation in the cell. These data coupled with the failure of the most highly predicted kinases to phosphorylate the 14-3-3–binding site on RGS14 makes identification of a kinase that phosphorylates serine 218 of RGS14 extremely difficult. Although the Scansite3 database takes many kinases into account, not all kinases are included, potentially excluding the kinase relevant to this discussion. Furthermore, there are many kinases for which there is no clear phosphorylation motif, making prediction of phosphorylation by those kinases difficult. H-Ras has many reported effectors that engage many more downstream kinases (56). Thus, at this time, we are unable to identify the kinase responsible for phosphorylating RGS14 at serine 218.

14-3-3 interaction with RGS14 inhibits active Gαi binding at the RGS domain

The interaction of 14-3-3 with target substrate proteins can elicit various effects, including conformational change, change in subcellular localization, and/or enhancement or inhibition of protein/protein interactions (16, 17, 19). Looking specifically at RGS proteins, 14-3-3 has been shown in several cases to inhibit Gαi binding at the RGS domain (26, 35). These previously reported effects of 14-3-3 on RGS functions, coupled with the proximity of the RGS14 14-3-3–binding site adjacent to the RGS domain, led us to examine effects of 14-3-3 binding on RGS14 interactions with its known binding partners, active Gαi/o, active H-Ras, and inactive Gαi1. For these studies, ideally, we would examine the effects of 14-3-3 on direct protein/protein interactions using pure proteins to gain insight into the function of the RGS14/14-3-3 interaction. However, our inability to phosphorylate RGS14 *in vitro* with the appropriate kinase to promote 14-3-3 interaction limited this approach. In an attempt to mimic phosphorylation of RGS14 at serine 218, we replaced the residue with a phosphomimetic aspartate as well as glutamate. However, these phosphomimetic residues have been shown to be a poor mimic for a phosphate with respect to 14-3-3 binding (25, 57, 58), and these residue changes failed to promote 14-3-3 binding to RGS14 (data not shown). Therefore, with such limited options, we were forced to analyze interactions between RGS14 and associated proteins in live cells using BRET.

We first determined the effect of 14-3-3 interaction on the binding of active Gαi at the RGS domain and found that 14-3-3 does indeed decrease active Gαi interaction with the RGS domain, presumably inhibiting RGS14's negative regulation of Gαi downstream signaling. Because H-Ras signaling enhances 14-3-3 binding to RGS14 and 14-3-3 binds within the linker region between the Ras and Gαi-binding domains of RGS14, we also examined the effect of 14-3-3 on H-Ras interaction with RGS14. Here, we saw no effect, indicating that 14-3-3 interactions with RGS14 selectively inhibit only active Gαi binding at the RGS domain, leaving intact RGS14 interaction with H-Ras at the R1 domain and inactive Gαi at the GPR motif. This selective inhibition by 14-3-3 of active Gαi/o interaction could function as a regulatory mechanism in which RGS14 could promote or enhance signaling through interactions at the R1 domain and GPR motif while selectively silencing RGS14 activity through the RGS domain.

RGS14 nuclear localization is prevented by phosphorylation-independent interaction with 14-3-3

A common function of 14-3-3 proteins is to affect the subcellular localization of their substrates (17, 21, 32, 34). Because...
we have previously shown that RGS14 shuttles in and out of the nucleus (5, 12, 14), we wanted to examine the effect of 14-3-3 interaction on RGS14 nuclear localization. Surprisingly, we found that 14-3-3 prevents RGS14 from translocating to the nucleus but that 14-3-3 binding at the phosphorylation-dependent binding site at serine 218 is not responsible for this effect (Figs. 8 and 9). Further examination showed that 14-3-3 is able to interact with RGS14 in a phosphorylation-independent manner at a unique 14-3-3-binding site on RGS14 (Fig. 10B), providing a bifunctional mechanism by which 14-3-3 can modulate RGS14 nuclear localization at one binding site while regulating active Gαi binding at another (Fig. 11). However, we should note that the phosphorylation-independent binding of 14-3-3 is only correlated with blockade of RGS14 nuclear import, and we cannot rule out the possibility that 14-3-3 may be interacting with other proteins to indirectly inhibit RGS14 transport into the nucleus.

Because this RGS14/14-3-3 interaction is not mediated by phosphorylation of a typical 14-3-3-binding site, there remains the question of how this interaction is regulated in the cell. RGS14 levels in the CA2 region of the hippocampus increase into adulthood and remain stable (41). However, 14-3-3 expression has been shown to change based on conditions in the cell (59). It is possible that expression levels of 14-3-3 may be a unique mechanism by which RGS14 nuclear localization is regulated. Insight into the actual function of 14-3-3’s blockade of RGS14 nuclear localization is limited at this time because a function for RGS14 in the nucleus has not yet been determined.

Endogenous RGS14 interacts with 14-3-3 in mouse hippocampus

Within the brain, RGS14 is selectively expressed in the CA2 subregion of the hippocampus (41) where it has been shown to suppress synaptic plasticity and associated learning and memory (3). Importantly, we found that endogenous RGS14 and 14-3-3 can form a stable complex in this part of the brain as shown via coimmunoprecipitation of 14-3-3 with RGS14 from isolated mouse hippocampus (Fig. 1). 14-3-3 interacts with RGS14 (Fig. S1), is highly expressed in hippocampal neurons as well (60), putting this isoform in position to regulate RGS14 function. Of note, 14-3-3 proteins are also linked to synaptic plasticity. Functional knockout of 14-3-3 has been shown to inhibit hippocampal LTP and associative learning and memory (18). Additionally, 14-3-3 proteins have been shown to be necessary for activation of the Ras/Raf/MEK/ERK signaling pathway (20, 47), which we show here indirectly promotes the phosphorylation-dependent interaction between RGS14 and 14-3-3. Furthermore, this signaling cascade has been shown to be necessary for normal synaptic plasticity and the expression of LTP (61) behind mammalian associative learning (62), which native RGS14 has been shown to suppress in the CA2 region (3). Additionally, it is unclear where and how RGS14 is acting to suppress LTP. Phosphorylation-independent interaction between RGS14 and 14-3-3 could regulate the balance of RGS14 in the cytoplasm and nucleus, changing RGS14’s distribution to either reduce or enhance its suppression of LTP in the hippocampus. Because of the effect of 14-3-3 on RGS14’s subcellular localization (Figs. 8 and 9) and interaction with functional binding partners, we speculate that 14-3-3 interactions could regulate RGS14 suppression of synaptic plasticity.

Conclusions and future directions

Here, we show that RGS14 interacts with a novel binding partner, 14-3-3, in both a phosphorylation-dependent and phosphorylation-independent manner. The phosphorylation-dependent interaction is promoted by signaling downstream of activated H-Ras. This interaction specifically inhibits interaction of active Gαi3 at the RGS domain while leaving association with active Gαi unperturbed. Meanwhile, 14-3-3 also binds within the C-terminal half of RGS14 in a phosphorylation-independent manner and blocks (either directly or indirectly) RGS14 import into the nucleus of neurons. These interactions provide novel mechanisms of regulation of RGS14 interactions and localization, respectively, that give us further insight into RGS14 function in its native environment, the hippocampus, where we demonstrated that endogenous RGS14 interacts with native 14-3-3. Furthermore, both H-Ras and 14-3-3 have been shown to play critical roles in the proper expression of LTP with RGS14 suppressing this form of synaptic plasticity. Future studies will be directed at determining whether and how H-Ras signaling in CA2 pyramidal neurons functions to control phosphorylation-dependent RGS14/14-3-3 interactions. Also of great interest is understanding the role of RGS14 in the nucleus and 14-3-3’s role in blocking RGS14 localization there. To our knowledge, this is the first report
demonstrating 14-3-3–mediated inhibition of RGS protein nuclear translocation, although the possibility has been suggested for other RGS proteins (36, 63). Multiple other RGS proteins have been found in the nucleus, including RGS3 (64), RGS6 (65), RGS7 (66, 67), RGS9-2 (67), RGS10 (68, 69), and RGS12 (70, 71). It is possible that 14-3-3 acts similarly on all of these RGS proteins, preventing their nuclear import. Future studies elucidating the conditions necessary for phosphorylation-dependent and-independent RGS14:14-3-3 complex formation will allow us to understand whether and how 14-3-3 plays a definitive role in RGS14 regulation of synaptic plasticity.

Experimental procedures

Plasmids and antibodies

Rat RGS14 cDNA (GenBank™ accession number U92279) used throughout this study was obtained as described previously (4). The plasmids encoding full-length FLAG–RGS14 in pcDNA3.1 (Invitrogen) as well as FLAG–RGS14 truncation mutants encompassing residues 1–202, 205–490, 371–544, and 444–544 were created as described previously (5). The plasmid encoding rat RGS14 cDNA was used to generate Luc–RGS14 and RGS14–Luc constructs in the phRLucN2 vector as described previously (6). The plasmid encoding His6–MBP–TEV–RGS14 in a pLIC-MBP vector was obtained as described previously (9). His6–MBP–TEV–RGS14(300-C) was cloned into the pLIC-MBP vector using ligation-independent cloning with the following primers: forward, 5’-TAC TTC CAA TCC AAT GGC ATG TAG TAC TGC TGCG GTG ATG TAT CTA CC-3’; reverse, 5’-TTA CCC ACT TCC AAT GGC CGG AAG GAC CAG GTC CTC TTT GCC GGC-3’. His6–MBP–TEV–RGS14(N-298) was created by inserting a stop codon at residue 299 of full-length RGS14 in the same vector using the QuikChange kit (Stratagene) with the following primers: forward, 5’-AGC GAA AGC CGG CCC TAG AAG TAC TGC TGG GTG TAT CTA CC-3’; reverse, 5’-CAAC GCA GCA GTA CTT CTA GGG CGG CCT GCT TCT GCT-3’. RGS14(N-333L) was cloned into the pLIC-MBP vector using ligation-independent cloning with the following primers: forward, 5’-AGC GAA AGC CGG CCC TAG AAG TAC TGC TGG GTG TAT CTA CC-3’; reverse, 5’-CAAC GCA GCA GTA CTT CTA GGG CGG CCT GCT TCT GCT-3’. RGS14(N-298) was obtained as described previously (6) and graciously provided by Dr. Haian Fu (Emory University) along with the binding-incompetent 14-3-3-3-y(K50E) construct. Antibodies used include anti-penta-His (Qiagen, 34660), anti-14-3-3 (Santa Cruz Biotechnology Inc., sc-629), anti-14-3-3-3-y (Santa Cruz Biotechnology Inc., sc-398423), anti-H-Ras (Santa Cruz Biotechnology Inc., sc-250), anti-phospho-p44/p42 mitogen-activated protein kinase (Cell Signaling Technology, Inc., 9101), HRP-conjugated anti-FLAG (Sigma, A8592), HRP-conjugated goat anti-mouse IgG (Rockland Immunocchemicals, 610-1302), HRP-conjugated goat anti-rabbit IgG (Bio-Rad, 1706515), and Alexa Fluor 546 goat anti-mouse IgG (Thermo Fisher, A11030).

Immunoblotting

Protein samples in Laemmli buffer were loaded onto 11% acrylamide gels, and proteins were resolved via SDS-PAGE before being transferred onto a nitrocellulose membrane. Membranes were blocked at room temperature for 1 h at 4 °C overnight in buffer containing 5% nonfat milk (w/v), 0.1% Tween 20, and 0.02% sodium azide in 20 mm TBS, pH 7.6. Membranes were then incubated with primary antibody in the same buffer, except for anti-FLAG, for 2 h at room temperature or overnight at 4 °C. Membranes were washed three times for 8 min with TBS containing 0.1% Tween 20 (TBST) before being incubated with either anti-mouse or anti-rabbit HRP-conjugated secondary antibody diluted in TBST (1:5,000 and 1:25,000, respectively) for 45 min at room temperature. Membranes were then incubated with primary antibody in the same buffer, except for anti-FLAG, for 2 h at room temperature or overnight at 4 °C. Membranes were washed three times for 8 min each in TBST before visualizing protein bands using enhanced chemiluminescence and exposing membranes to X-ray films.

Ponceau red stain stock was made from 20 mg/ml Ponceau S in water. Membranes were stained in a 1:100 stock-to-water dilution for 5 min before being rinsed in water and imaged.
14-3-3 regulation of RGS14

Cell culture and transfection

HEK 293 cells were incubated in 1 × Dulbecco’s modified Eagle’s medium with phenol red pH indicator supplemented with 10% fetal bovine serum and 100 units/ml each penicillin and streptomycin. Cells were maintained at 37 °C in 5% CO₂. Transfections were carried out using polyethyleneimine (PEI) as described previously (73).

Our protocol for culturing neurons was adapted from Beaudoin et al. (74). Brains were removed from E18–19 embryos obtained from a timed pregnant Sprague-Dawley rat (Charles River). All animal housings and procedures were approved by the Emory University Institutional Animal Care and Use Committee (IACUC), and all procedures were approved by IACUC protocol. The meninges were removed, and the hippocampi were isolated by dissection. Hippocampi were homogenized using a Dounce homogenizer in lysis buffer containing phosphatase inhibitor mixture (Thermo Scientific), and 1% Triton X-100. Brain lysate was incubated on a rotator at 4 °C for 1 h and then cleared by spinning it down at 13,000 rpm for 10 min. Protein G-Sepharose beads (GE Healthcare) were pre-blocked with 3% bovine serum albumin (BSA) before lystate was added. Half of the brain lystate was incubated with 50 μl of preblocked beads in the absence of RGS14 antibody, and the other half of the lystate was incubated with 50 μl of beads along with 5 μl (1.63 μg) of anti-RGS14 (ProteinTech) antibody for 2 h on a rotator at 4 °C. Immunocomplexes were then washed four times with PBS containing 0.1% Tween 20 before being boiled off the beads in 2 × Laemmli buffer for 5 min. Samples were then resolved via SDS-PAGE and subjected to immunoblotting for analysis. All animal housings and procedures were approved by the Emory University IACUC, and all procedures were approved by IACUC protocol.

FLAG immunoprecipitation

Twenty-four hours following transfection, cells were washed twice in ice-cold PBS and collected in lysis buffer of the same composition used for RGS14 immunoprecipitation from mouse brain. Lysates were rotated at 4 °C for 1 h. Lysates were cleared by spinning down samples at 13,000 rpm for 10 min with 30 μl put aside to determine total cell lystate expression of proteins of interest, and the remaining supernatant was incubated with anti-FLAG M2 affinity gel (Sigma), which was previously blocked in 3% BSA in PBS for 1 h. Cleared lysates were rotated at 4 °C for 1.5 h. Immunocomplexes were then washed three times with 1 ml of PBS containing 0.1% Tween 20 before being suspended in 2 × Laemmli buffer, boiled for 5 min, resolved by 11% SDS-PAGE, and transferred to a nitrocellulose membrane for immunoblotting.

Purification of recombinant proteins

RGS14 and truncated RGS14 (N-298 and 300-C) were expressed in E. coli and partially purified as described previously (9). Recombinant hexahistidine–14-3-3-γ was expressed from a pDEST17-based plasmid in BL21(DE3) E. coli cells and purified using Ni²⁺-affinity gel chromatography in the manner described previously (76) with minor modifications. Specifically, cells were lysed using sonication instead of a French pressure cell. Purified protein was snap frozen in liquid nitrogen and stored in aliquots at −80 °C until use.

λ-Phosphatase treatment of lysates

FLAG immunoprecipitation was performed as described above with the exception of the addition of 1 × Halt phosphatase inhibitor mixture. Before washing the immunocomplexes and eluting samples, the anti-FLAG affinity gel was resuspended in fresh lysis buffer with the addition of 2 mM MnCl₂ and 900 units of Mn²⁺-dependent λ-phosphatase and rotated at room temperature for 1 h to cleave phosphate groups from potentially phosphorylated serine and threonine residues. Following treatment with phosphatase, lysates were washed, eluted, and analyzed as described above.

Blot overlay “far-Western blotting”

HEK 293 cells were transfected with FLAG–RGS14 in the presence or absence of active H-Ras using PEI. Twenty-four
hours after transfection, FLAG–RGS14 and associated proteins were isolated via FLAG immunoprecipitation, resolved by SDS-PAGE, and transferred to a nitrocellulose membrane. The membrane was then treated with pure His-tagged 14-3-3 at 7.5 μg/ml in a buffer containing 50 mM Tris, 50 mM NaCl, and 2 mM DTT on a rocking incubator at 4 °C overnight. The membrane was then immunoblotted as described above for 14-3-3 to determine whether 14-3-3 directly bound the RGS14 in the membrane.

BRET

BRET experiments were performed as described previously (6, 9). Briefly, HEK 293 cells were transfected with a donor and acceptor as well as any additional constructs using PEI. To determine whether 14-3-3 affects active H-Ras association with RGS14, we expressed H-Ras(G12V)–Venus with RGS14–Luc or RGS14(S218A)–Luc in the presence or absence of 14-3-3. To measure YFP–Gα11 interactions with the RGS14 GαS domain, Luc–RGS14 was expressed, whereas YFP–Gα11 interactions with the RGS14 GPR motif were measured using RGS14–Luc because the GRS domain and GPR motif are closer to the N and C termini of RGS14, respectively. Luc–RGS14(S218A) was used as a negative control to determine the effect of 14-3-3 interaction with RGS14 on active YFP–Gα11 binding at the RGS domain. Twenty-four hours after transfection, cells were suspended in Tyrode’s solution containing 140 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 1 mM CaCl₂, 0.37 mM Na₂HPO₄, 24 mM NaHCO₃, 10 mM HEPES, and 0.1% glucose, pH 7.4. Cells treated with AlF₄⁻ were harvested in Tyrode’s solution containing the addition of 10 mM NaF, 9 mM MgCl₂, and 30 μM AlCl₃ for 30 min before readings were taken. Cells were plated onto white 96-well OptiPlates (PerkinElmer Life Sciences). Acceptor expression was determined by measuring fluorescence using a TriStar LB 941 plate reader (Berthold Technologies) with 485- and 530-nm excitation and emission filters, respectively. BRET was measured using 485- and 530-nm emission filters after a 2-min application of 5 μM coelenterazine H (Nanolight Technologies). The change in BRET (net BRET) was determined by dividing the 530 nm (YFP) signal by the 485 nm (Luc) signal and subtracting the signal from Luc–RGS14 or RGS14–Luc alone. All data were collected using MikroWin 2000 software and analyzed in Microsoft Excel followed by GraphPad Prism.

Kinase inhibitor treatments

HEK 293 cells were treated with the MEK inhibitor U0126 (Sigma) at 10 μM, the PI3K inhibitor LY294002 (Sigma) at 50 μM, or the CaMKII inhibitor KN-93 (Sigma) at 100 μM for 2 h before cells were collected and lysed. Samples were then submitted to FLAG immunoprecipitation before being analyzed via immunoblotting.

EGF treatment of cells

HEK 293 cells were treated with EGF (Sigma) at 100 ng/ml for 0, 10, 60, or 120 min before being collected and lysed for FLAG immunoprecipitation.

Leptomycin B treatment of cells and immunocytochemistry

Primary hippocampal neurons were treated with LMB (Sigma) at 40 ng/ml or vehicle (70% ethanol) for 2 h before being fixed for 15 min in 4% paraformaldehyde in 1 × PBS. Cells were then permeabilized for 10 min in PBS containing 0.1% Triton X-100 and incubated in 8% BSA in PBS blocking buffer for 1 h before being incubated with primary antibody in 4% BSA in PBS for 2 h. Following three washes with 0.05% Triton X-100 in PBS, coverslips were incubated with secondary antibody in 4% BSA in PBS for 1 h before being stained with 1.6 μM Hoechst dye (Thermo Fisher) for 4 min. Coverslips were then washed three times in PBS before being mounted on slides using ProLong Diamond antifade mountant (Thermo Fisher). Images were taken on an Olympus FV1000 inverted confocal microscope at 100× and then processed using ImageJ software. Approximately 10 images per condition were obtained, and representative images are shown.

Author contributions—K. J. G. and J. R. H. conceptualization; K. J. G. and K. E. S. data curation; K. J. G. and K. E. S. formal analysis; K. J. G. and J. R. H. funding acquisition; K. J. G. validation; K. J. G. and K. E. S. investigation; K. J. G. visualization; K. J. G. and K. E. S. methodology; K. J. G. writing–original draft; K. J. G., K. E. S., and J. R. H. writing–review and editing; J. R. H. resources; J. R. H. supervision; J. R. H. project administration.

Acknowledgments—We thank Dr. Haian Fu (Emory University, Atlanta, GA) for the very generous contribution of the 14-3-3-plasmids used for this study. We also thank Suneela Ramineni for outstanding technical assistance. The Emory University Integrated Cellular Imaging Microscopy Core of the Emory Neuroscience was supported by NINDS, National Institutes of Health Core Facilities Grant 5P30NS055077.

References

1. Ross, E. M., and Wilkie, T. M. (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. *Annu. Rev. Biochem.* 69, 795–827 (CrossRef Medline)

2. Hollinger, S., and Hepler, J. R. (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. *Pharmacol. Rev.* 54, 527–559 (CrossRef Medline)

3. Lee, S. E., Simons, S. B., Heldt, S. A., Zhao, M., Schroeder, J. P., Vellano, C. P., Cowan, D. P., Ramineni, S., Yates, C. K., Feng, Y., Smith, Y., Sawa, T. D., Weinschenker, D., Ressler, K. J., Dudek, S. M., et al. (2010) RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. *Proc. Natl. Acad. Sci. U.S.A.* 107, 16994–16998 (CrossRef Medline)

4. Hollinger, S., Taylor, J. B., Goldman, E. H., and Hepler, J. R. (2001) RGS14 is a bifunctional regulator of Gαi/o activity that exists in multiple populations in brain. *J. Neurochem.* 79, 941–949 (Medline)

5. Shu, F. J., Ramineni, S., Anyot, W., and Hepler, J. R. (2007) Selective interactions between Gs and Gi linking the GoLoco/GPR domain of RGS14 influence its dynamic subcellular localization. *Cell. Signal.* 19, 163–176 (CrossRef Medline)

6. Vellano, C. P., Brown, N. E., Blumer, J. B., and Hepler, J. R. (2013) Assembly and function of the regulator of G protein signaling 14 (RGS14)–H-Ras signaling complex in live cells are regulated by Gαs and Gαi-linked G protein-coupled receptors. *J. Biol. Chem.* 288, 3620–3631 (CrossRef Medline)

7. Willard, F. S., Willard, M. D., Kimple, A. J., Soundararajan, M., Oestreich, E. A., Li, X., Sowa, N. A., Kimple, R. J., Doyle, D. A., Der, C. J., Zylka, M. J., Snider, W. D., and Siderovski, D. P. (2009) Regulator of G-protein signal-
14-3-3 regulation of RGS14

12. Abramow-Newley, M., Ming, H., and Chidiac, P. (2006) Modulation of subfamily B/R4 RGS protein function by 14-3-3 proteins. *Cell. Signal.* 18, 2209–2222 CrossRef Medline

13. Campbell, J. K., Gurung, R., Romero, S., Speed, C. J., Andrews, R. K., Berndt, M. C., and Mitchell, C. A. (1997) Activation of the 43 kDa inositol polyphosphate 5-phosphatase by 14-3-3-ζ. *Biochemistry* 36, 15363–15370 CrossRef Medline

14. Fu, H., Coburn, J., and Collier, R. J. (1993) The eukaryotic host factor that activates exoenzyme S of *Pseudomonas aeruginosa* is a member of the 14-3-3 protein family. *Proc. Natl. Acad. Sci. U.S.A.* 90, 2320–2324 CrossRef Medline

15. Masters, S. C., Pederson, K. I., Zhang, L., Barbieri, J. T., and Fu, H. (1999) Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of *Pseudomonas aeruginosa*. *Biochemistry* 38, 5216–5221 CrossRef Medline

16. Alam, R., Hachiya, N., Sakaguchi, M., Kawabata, S., Iwanaga, S., Kitajima, M., Mihara, K., and Osumi, T. (1994) cDNA cloning and characterization of mitochondrial import stimulation factor (MSF) purified from rat liver cytosol. *J. Biochem.* 116, 416–425 CrossRef Medline

17. O’Kelly, I., Butler, M. H., Zilberberg, N., and Goldstein, S. A. (2002) Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. *Cell* 111, 577–588 CrossRef Medline

18. Benzing, T., Yaffe, M. B., Arnold, T., Sellin, L., Schermer, B., Schilling, B., Schreiber, R., Kunzelmann, K., Leparc, G. G., Kim, E., and Walz, G. (2000) 14-3-3 interacts with regulator of G protein signaling proteins and modulates their activity. *J. Biol. Chem.* 275, 28167–28172 CrossRef Medline

19. Niu, J., Scheschkowa, A., Druey, K. M., Davis, A., Reed, E., Kolenko, V., Bodnar, R., Vojno-Yasenetskaya, T., Du, X., Kehrl, J., and Dulin, N. O. (2002) RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS (regulator of G-protein signalling) domain. *Biochem. J.* 365, 677–684 CrossRef Medline

20. Rezabkova, L., Boura, E., Herman, P., Vager, J., Bourova, L., Sulc, M., Svozil, P., Obsilova, V., and Obsil, T. (2010) 14-3-3 interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3). *J. Struct. Biol.* 170, 451–461 CrossRef Medline

21. Rezabkova, L., Man, P., Novak, P., Herman, P., Vager, J., Obsilova, V., and Obsil, T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. *J. Biol. Chem.* 286, 43527–43536 CrossRef Medline

22. Benzing, T., Köttgen, M., Johnson, M., Schermer, B., Zentgraf, H., Walz, G., and Kim, E. (2002) Interaction of 14-3-3 protein with regulator of G protein signaling 7 is dynamically regulated by tumor necrosis factor-α. *J. Biol. Chem.* 277, 32954–32962 CrossRef Medline

23. Hohlér, S., Ramineni, S., and Hepler, J. R. (2003) Phosphorylation of RGS14 by protein kinase A potentiates its activity toward G protein-coupled receptors and resistance to inhibitors of cholinesterase. *J. Biol. Chem.* 278, 35019–35026 CrossRef Medline

24. Niu, J., Scheschkowa, A., Druey, K. M., Davis, A., Reed, E., Kolenko, V., Bodnar, R., Vojno-Yasenetskaya, T., Du, X., Kehrl, J., and Dulin, N. O. (2002) RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS (regulator of G-protein signalling) domain. *Biochem. J.* 365, 677–684 CrossRef Medline

25. Rezabkova, L., Boura, E., Herman, P., Vager, J., Bourova, L., Sulc, M., Svozil, P., Obsilova, V., and Obsil, T. (2010) 14-3-3 interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3). *J. Struct. Biol.* 170, 451–461 CrossRef Medline

26. Rezabkova, L., Man, P., Novak, P., Herman, P., Vager, J., Obsilova, V., and Obsil, T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. *J. Biol. Chem.* 286, 43527–43536 CrossRef Medline

27. Benzing, T., Köttgen, M., Johnson, M., Schermer, B., Zentgraf, H., Walz, G., and Kim, E. (2002) Interaction of 14-3-3 protein with regulator of G protein signaling 7 is dynamically regulated by tumor necrosis factor-α. *J. Biol. Chem.* 277, 32954–32962 CrossRef Medline

28. Hohlér, S., Ramineni, S., and Hepler, J. R. (2003) Phosphorylation of RGS14 by protein kinase A potentiates its activity toward G protein-coupled receptors and resistance to inhibitors of cholinesterase. *J. Biol. Chem.* 278, 35019–35026 CrossRef Medline

29. Niu, J., Scheschkowa, A., Druey, K. M., Davis, A., Reed, E., Kolenko, V., Bodnar, R., Vojno-Yasenetskaya, T., Du, X., Kehrl, J., and Dulin, N. O. (2002) RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS (regulator of G-protein signalling) domain. *Biochem. J.* 365, 677–684 CrossRef Medline

30. Rezabkova, L., Boura, E., Herman, P., Vager, J., Bourova, L., Sulc, M., Svozil, P., Obsilova, V., and Obsil, T. (2010) 14-3-3 interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3). *J. Struct. Biol.* 170, 451–461 CrossRef Medline

31. Rezabkova, L., Man, P., Novak, P., Herman, P., Vager, J., Obsilova, V., and Obsil, T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. *J. Biol. Chem.* 286, 43527–43536 CrossRef Medline

32. Benzing, T., Köttgen, M., Johnson, M., Schermer, B., Zentgraf, H., Walz, G., and Kim, E. (2002) Interaction of 14-3-3 protein with regulator of G protein signaling 7 is dynamically regulated by tumor necrosis factor-α. *J. Biol. Chem.* 277, 32954–32962 CrossRef Medline

33. Hohlér, S., Ramineni, S., and Hepler, J. R. (2003) Phosphorylation of RGS14 by protein kinase A potentiates its activity toward G protein-coupled receptors and resistance to inhibitors of cholinesterase. *J. Biol. Chem.* 278, 35019–35026 CrossRef Medline
45. Shi, F. J., Ramineni, S., and Hepler, J. R. (2010) RGS14 is a multifunctional scaffold that integrates G protein and Ras/Raf MAPK kinase signalling pathways. *Cell. Signal.* **22**, 366–376 CrossRef Medline

46. Li, S., Janosch, P., Tanji, M., Rosenfeld, G. C., Waymire, J. C., Mischak, H., Kolch, W., and Sedivy, J. M. (1995) Regulation of Raf-1 kinase activity by the 14-3-3 family of proteins. *EMBO J.* **14**, 685–696 Medline

47. Roy, S., McPherson, R. A., Apolloni, A., Yan, J., Lane, A., Clyde-Smith, J., and Hancock, J. F. (1998) 14-3-3 facilitates Ras-dependent Raf-1 activation *in vitro* and *in vivo*. *Mol. Cell. Biol.* **18**, 3947–3955 CrossRef Medline

48. Light, Y., Paterson, H., and Marais, R. (2002) 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signalling fidelity. *Mol. Cell. Biol.* **22**, 4984–4996 CrossRef Medline

49. Fischer, A., Baljuls, A., Reinders, J., Nekhoroshkova, E., Sibilski, C., Metz, R., Albert, S., Rajalingam, K., Hekman, M., and Rapp, U. R. (2009) Regulation of Raf activity by 14-3-3 proteins: RAF kinases associate functionally with both homo- and heterodimeric forms of 14-3-3 proteins. *J. Biol. Chem.* **284**, 3183–3194 CrossRef Medline

50. Obenauer, J. C., Cantley, L. C., and Yaffe, M. B. (2003) Sclassite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. *Nucleic Acids Res.* **31**, 3635–3641 CrossRef Medline

51. Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., and Srzyypek, E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic Acids Res.* **43**, D512–D520 CrossRef Medline

52. Demirkan, G., Yu, K., Boylan, J. M., Salomon, A. R., and Gruppuso, P. A. (2011) Phosphoproteomic profiling of *in vivo* signaling in liver by the mammalian target of rapamycin complex 1 (mTORC1). *PLoS One* **6**, e21729 CrossRef Medline

53. Lundby, A., Secher, A., Lage, K., Nordsborg, N. B., Dmytryiev, A., Lundby, C., and Olsen, J. V. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. *Nat. Commun.* **3**, 876 CrossRef Medline

54. Pinto, S. M., Niruijogi, R. S., Rojas, P. L., Patil, A. H., Manda, S. S., Subbanayya, Y., Roa, J. C., Chatterjee, A., Prasad, T. S., and Pandey, A. (2015) Quantitative phosphoproteomic analysis of IL-6-mediated signaling. *Proteomics* **15**, 532–544 CrossRef Medline

55. Mayya, V., Lundgren, D. H., Hwang, S. I., Rezaul, K., Wu, L., Eng, J. K., Rodionov, V., and Han, D. K. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. *Sci. Signal.* **2**, ra46 CrossRef Medline

56. Rajalingam, K., Schreck, R., Rapp, U. R., and Albert, S. (2007) Ras oncos, and their downstream targets. *Biochem. Biophys. Acta* **1773**, 1177–1195 CrossRef Medline

57. Johnson, C., Crowther, S., Stafford, M. J., Campbell, D. G., Toth, R., and MacKintosh, C. (2010) Bioinformatic and experimental survey of 14-3-3-binding sites. *Biochem. J.* **427**, 69–78 CrossRef Medline

58. Astuti, P., and Gabrielli, B. (2011) Phosphorylation of Cdc25B3 Ser169 regulates 14-3-3 binding to Ser151 and Cdc25B activity. *Cell Cycle* **10**, 1960–1967 CrossRef Medline

59. Chen, J., Lee, C. T., Errico, S. L., Becker, K. G., and Freed, W. J. (2007) Increases in expression of 14-3-3 eta and 14-3-3z transcripts during neuroprotection induced by 29-tetrahydrocannabinol in AF5 cells. *J. Neurosci. Res.* **85**, 1724–1733 CrossRef Medline

60. Baxter, H. C., Liu, W. G., Forster, J. L., Atiken, A., and Fraser, J. R. (2002) Immunolocalisation of 14-3-3 isoforms in normal and scrapie-infected murine brain. *Neuroscience* **109**, 5–14 CrossRef Medline

61. English, J. D., and Sweatt, J. D. (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. *J. Biol. Chem.* **272**, 19103–19106 CrossRef Medline

62. Atkins, C. M., Selcher, J. C., Petraitis, J. L., Trzaskos, J. M., and Sweatt, J. D. (1998) The MAPK cascade is required for mammalian associative learning. *Nat. Neurosci.* **1**, 602–609 CrossRef Medline

63. Burchett, S. A. (2003) In through the out door: nuclear localization of the regulators of G protein signaling. *J. Neurochem.* **87**, 551–559 CrossRef Medline

64. Dulin, N. O., Pratt, P., Tiruppathi, C., Niu, J., Voyno-Yasenetskaya, T., and Dunn, M. J. (2000) Regulator of G protein signaling RGS3T is localized to the nucleus and induces apoptosis. *J. Biol. Chem.* **275**, 21317–21323 CrossRef Medline

65. Chatterjee, T. K., and Fisher, R. A. (2003) Mild heat and proteotoxic stress promote unique subcellular trafficking and nuclear accumulation of RGS6 and other RGS proteins. Role of the RGS domain in stress-induced trafficking of RGS proteins. *J. Biol. Chem.* **278**, 30272–30282 CrossRef Medline

66. Rose, J. I., Taylor, J. B., Shi, J., Cockett, M. I., Jones, P. G., and Hepler, J. R. (2000) RGS7 is palmitoylated and exists as biochemically distinct forms. *J. Neurochem.* **75**, 2103–2112 CrossRef Medline

67. Witherow, D. S., Wang, Q., Levay, K., Cabrera, J. L., Chen, J., Willars, G. B., and Slepak, V. Z. (2000) Complexes of the G protein subunit Gβ5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. *J. Biol. Chem.* **275**, 24872–24880 CrossRef Medline

68. Lee, J. K., and Tansey, M. G. (2015) Physiology of RGS10 in neurons and immune cells. *Prog. Mol. Biol. Transl. Sci.* **133**, 153–167 CrossRef Medline

69. Burgon, P. G., Lee, W. L., Nixon, A. B., Peralta, E. G., and Casey, P. J. (2001) Phosphorylation and nuclear translocation of a regulator of G protein signaling (RGS10). *J. Biol. Chem.* **276**, 32828–32834 CrossRef Medline

70. Chatterjee, T. K., and Fisher, R. A. (2000) Novel alternative splicing and nuclear localization of human RGS12 gene products. *J. Biol. Chem.* **275**, 29660–29671 CrossRef Medline

71. Chatterjee, T. K., and Fisher, R. A. (2002) RGS12TS-S localizes at nuclear matrix-associated subnuclear structures and represses transcription: structural requirements for subnuclear targeting and transcriptional repression. *Mol. Cell. Biol.* **22**, 4334–4345 CrossRef Medline

72. Gibson, S. K., and Gilman, A. G. (2006) Gαi and Gβγ subunits both define selectivity of G protein activation by α2-adrenergic receptors. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 212–217 CrossRef Medline

73. Oner, S. S., Maher, E. M., Breton, B., Bouvier, M., and Blumer, J. B. (2010) Receptor-regulated interaction of activator of G-protein signaling-4 and Gαi. *J. Biol. Chem.* **285**, 20588–20594 CrossRef Medline

74. Beaudoin, G. M., 3rd, Lee, S. H., Singh, D., Yuan, Y., Ng, Y. G., Reichardt, L. F., and Arikkath, J. (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. *Nat. Protoc.* **7**, 1741–1754 CrossRef Medline

75. Jiang, M., and Chen, G. (2006) High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. *Nat. Protoc.* **1**, 695–700 CrossRef Medline

76. Bernstein, L. S., Ramineni, S., Hague, C., Cladman, W., Chidiac, P., Levey, A. L., and Hepler, J. R. (2004) RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gβγ1, α signaling. *J. Biol. Chem.* **279**, 21248–21256 CrossRef Medline