On the integer \(\{k\} \)-domination number of circulant graphs

Yen-Jen Cheng, ∗ Hung-Lin Fu, † Chia-an Liu ‡

May 9, 2019

Abstract

Let \(G = (V, E) \) be a simple undirected graph. \(G \) is a circulant graph defined on \(V = \mathbb{Z}_n \) with difference set \(D \subseteq \{1, 2, \ldots, \lfloor \frac{n}{2} \rfloor \} \) provided two vertices \(i \) and \(j \) in \(\mathbb{Z}_n \) are adjacent if and only if \(\min\{|i-j|, n-|i-j|\} \in D \). For convenience, we use \(G(n; D) \) to denote such a circulant graph.

A function \(f : V(G) \rightarrow \mathbb{N} \cup \{0\} \) is an integer \(\{k\} \)-domination function if for each \(v \in V(G) \), \(\sum_{u \in N_G[v]} f(u) \geq k \). By considering all \(\{k\} \)-domination functions \(f \), the minimum value of \(\sum_{v \in V(G)} f(v) \) is the \(\{k\} \)-domination number of \(G \), denoted by \(\gamma_k(G) \). In this paper, we prove that if \(D = \{1, 2, \ldots, t\}, 1 \leq t \leq n-1 \), then the integer \(\{k\} \)-domination number of \(G(n; D) \) is \(\lceil \frac{k n}{2t+1} \rceil \).

MSC 2010: 05C69, 11A05.
Keywords: Circulant graph, integer \(\{k\} \)-domination number, Euclidean algorithm.

1 Introduction and preliminaries

The study of domination number of a graph \(G \) has been around for quite a long time. Due to its importance in applications, there are various versions of extension study, see [3] for reference.

The idea of integer \(\{k\} \)-domination was proposed by Domke et al. in [2]. It can be dealt as a labeling problem. The vertices of the graph \(G \) are labeled by integers in \(\mathbb{N} \cup \{0\} \) such that for each vertex \(v \), the total (sum) values in its closed neighborhood \(N_G[v] \) must be at least \(k \). The problem is asking for finding the minimum total value labeled on \(G \). Finally, we say that \(f : V(G) \rightarrow \mathbb{N} \cup \{0\} \)
is an integer \(\{k\}\)-domination function if for each \(v \in V(G) \), \(\sum_{u \in N_G[v]} f(u) \geq k \).

Among all such functions \(f \), the minimum value of \(\sum_{v \in V(G)} f(v) \) is called the integer \(\{k\}\)-domination number of \(G \), denoted by \(\gamma_k(G) \).

It is not difficult to see that the original domination number of a graph \(G \), \(\gamma(G) \), can be recognized as \(\gamma_1(G) \) since the vertices with label ‘1’ gives a dominating set. For more information about domination problem, the readers may refer to \(\{1, 4, 5, 6, 8\} \). Hence, the integer \(\{k\}\)-domination problem is also an NP-hard problem. So far, results obtained are all on special classes of graphs, see \(\{1, 3, 7, 9\} \).

In this paper, we shall consider the class of circulant graph \(G = G(n; D) \) where \(D = \{1, 2, \ldots, t\}, \) \(1 \leq t \leq \frac{2n-1}{3} \), i.e., \(V(G) = \mathbb{Z}_n \) and two vertices \(i \) and \(j \) are adjacent if and only if \(d(i,j) := \min\{|i-j|, n-|i-j|\} \in D \). Since \(D = \{1, 2, \ldots, t\} \), \(G(n; D) \) is exactly the power graph \(C_n^t \) where \(C_n \) is a cycle of order \(n \).

The following results are obtained by Lin \[10\]. For clearness, we also outline its proof in which basic linear algebra is applied.

Proposition 1.1 (III). Let \(G \) be the circulant graph \(G(n; D) \) where \(D = \{1, 2, \ldots, t\} \). Then, \(\gamma_k(G) \geq \lfloor \frac{k n}{2t+1} \rfloor \).

Proof. Let \(A \) be the adjacency matrix of \(G \) and \(f \) be an \(\{k\}\)-domination function of \(G \). Let \(I_n \) denote the all 1 column vector of length \(n \). Then, we have

\[
(2t+1) \sum_{v \in V(G)} f(v) = (f(v_1), f(v_2), \ldots, f(v_n))(A + I_n)1_n \geq 1_n^T \cdot k \cdot 1_n = nk,
\]

which implies the inequality. \(\Box \)

By the aid of an algorithm, Lin was able to show the following.

Proposition 1.2 (III). For \(t \leq 5 \), \(\gamma_k(G(n; \{1, 2, \ldots, t\})) = \lfloor \frac{k n}{2t+1} \rfloor \).

But, for larger \(t \), it remains unsettled. Our main result of this paper shows that the equality holds for all \(1 \leq t \leq \frac{4n-4}{3} \).

2 The main result

By Proposition 1.1, in order to determine \(\gamma_k(G) \), it suffices to show that \(\gamma_k(G) \leq \lfloor \frac{n k}{2t+1} \rfloor \). That is, we need a proper distribution of values for \(f(v_1), f(v_2), \ldots, f(v_n) \) such that for each \(v_i \), \(\sum_{u \in N_G[v_i]} f(u) \geq k \) and \(\sum_{i=1}^n f(v_i) \leq \lfloor \frac{k n}{2t+1} \rfloor \). Since we are dealing with circulant graphs, \(\sum_{u \in N_G[v_i]} f(u) \) is in fact the sum of \(2t + 1 \) consecutive labels assigned to the circle \(C_n = (v_1, v_2, \ldots, v_n) \). Therefore, we turn our focus on providing suitable labels to meet the condition.

For example, let \(n = 8 \) and \(t = 2 \). Then, the following labeling of \((v_1, v_2, \ldots, v_8) \), \((x_4, x_3, x_1, x_2, x_0, x_4, x_3, x_1)\) will satisfy the requirement, where \(x_i = \lfloor \frac{4i}{9} \rfloor \), \(i = 0, 1, 2, 3, 4 \).

We are considering \(1 \leq t \leq \frac{4n-4}{3} \) in what follows. First, we need an estimation of the sum of rational numbers which take its floor or ceiling values.
Lemma 2.1. For positive integers \(a, b\) and nonnegative integer \(k\), we have the following.

1. \(\left\lfloor \frac{k+x}{a} \right\rfloor = \left\lfloor \frac{k+x}{a} \right\rfloor\) for any real number \(x\),
2. \(k = \sum_{i=0}^{a-1} \left\lfloor \frac{k+i}{a} \right\rfloor\), and
3. \(\left\lceil \frac{ak}{b} \right\rceil = \sum_{i=1}^{a} \left\lfloor \frac{k+\lfloor (i+1)b/a \rfloor - 1}{b} \right\rfloor\).

Proof. (1) and (2) are easy to check, we prove (3).

\[
\left\lceil \frac{ak}{b} \right\rceil = \sum_{i=0}^{a-1} \left\lfloor \frac{k+i}{b} \right\rfloor = \sum_{i=0}^{a-1} \frac{(ak+b-1)/b+i}{a} = \sum_{i=0}^{a-1} \frac{k + ((i+1)b-1)/a}{b} = \sum_{i=0}^{a-1} \frac{k + [((i+1)b-1)/a]}{b} = \sum_{i=0}^{a-1} \frac{k + [((i+1)b-1)/a] - 1}{b}.
\]

Since the variables \(a, b\) and \(k\) are all integers, the uniqueness of the formula in Lemma 2.1(3) can be confirmed.

Corollary 2.2. If integers \(0 \leq s_0 \leq s_1 \leq \cdots \leq s_{a-1} < b\) satisfy

\[
\left\lceil \frac{ak}{b} \right\rceil = \sum_{i=0}^{a-1} \frac{k+s_i}{b}
\]

for positive integers \(a, b\) and nonnegative integer \(k\), then \(s_i = \lceil (i+1)b/a \rceil - 1\) for \(i = 0, 1, \ldots, a - 1\).}

According to the \(s_i\)'s given above, we split \([b] := \{0, 1, \ldots, b-1\}\) into subintervals with maximal elements \(s_i\)'s. For positive integers \(a < b\), let \([b]\) be partitioned into \(a\) subsets such that

\[
S_i = \left\{ \left\lceil \frac{b_i}{a} \right\rceil, \left\lceil \frac{b_i}{a} \right\rceil + 1, \ldots, \left\lfloor \frac{b(i+1)}{a} \right\rfloor - 1 \right\}
\]

for \(i = 0, 1, \ldots, a - 1\). It is clear that \(|S_i| - |S_j|\leq 1\) for all \(i, j\). We analyze the subsets containing more elements in the following.

Lemma 2.3. Let \(q\) and \(r\) be the quotient and remainder of \(b\) divided by \(a\), respectively. Then the cardinality \(|S_i| = q + 1\) if \(i = \left\lfloor \frac{a}{r} \right\rfloor\) for \(j = 0, 1, \ldots, r - 1\).
Proof. By definition, \(|S_i| = [(i + 1)b/a] - [ib/a] = q + [(i + 1)r/a] - [ir/a] \). Therefore, \(|S_i| = q + 1 \) if and only if there exists some integer \(0 \leq j \leq r - 1 \) such that \(ir/a \leq j < (i + 1)r/a \). The above inequality can be rewritten as \(i \leq ja/r < i + 1 \), and hence \(i = \lfloor ja/r \rfloor \).

Example 2.4. Let \(a = 3 \), \(b = 8 \), and \(r = 2 \) be the remainder of \(b \) divided by \(a \). Then

\[
\left\lfloor \frac{3k}{8} \right\rfloor = \sum_{i=1}^{3} \left\lfloor \frac{k + \left\lfloor \frac{8i}{3} - 1 \right\rfloor}{8} \right\rfloor = \left\lfloor \frac{k + 2}{8} \right\rfloor + \left\lfloor \frac{k + 5}{8} \right\rfloor + \left\lfloor \frac{k + 7}{8} \right\rfloor,
\]

and \(\{8\} = \{0,1,\ldots,7\} \) can be partitioned into 3 subsets such that

\[
S_0 = \{0,1,2\}, \ S_1 = \{3,4,5\} \text{ and } S_2 = \{6,7\},
\]

where the subsets numbered with \(\lfloor \frac{a_j}{r} \rfloor = 0 \) and 1 as \(j = 0 \) and 1, respectively, have more than 1 elements. Note that the maximal elements 2, 5, 7 of subsets \(S_i \)'s are the integers in \(\{1\} \) that construct \(\lfloor \frac{3k}{8} \rfloor \).

Additionally, we need a result of the comparison between two sequences. For two real finite non-decreasing sequences \(A = (a_i), A' = (a'_i) \) of the same length \(n \), we say that \(A \leq A' \) if \(a_i \leq a'_i \) for \(i = 0,1,\ldots,n-1 \).

Lemma 2.5. Let \(A \) and \(A' \) be two subsequences of a real finite non-decreasing sequence \(B \) which have equal length \(0 < |A| = |A'| < |B| \). Then \(A \leq A' \) if and only if \(B \setminus A' \leq B \setminus A \).

Proof. Because of the symmetry, we prove \(A \leq A' \) implies \(B \setminus A' \leq B \setminus A \) by induction on \(|A| \) in the following. It is clearly true when \(|A| = 1 \). Suppose the statement is correct for \(|A| < m < |B| \). Assume that \(A = (a_i)_{i=0}^{m-1} \) and \(A' = (a'_i)_{i=0}^{m-1} \) satisfying \(A \leq A' \). From induction hypothesis, \(B \setminus (a'_i)_{i=0}^{m-1} \leq B \setminus (a_i)_{i=0}^{m-1} \). It is clear that the non-decreasing sequence obtained by exchanging an entry \(a \) of the original sequence into \(\tilde{a} \geq a \) (and inserting \(\tilde{a} \) to the appropriate position) is not less than the original sequence. Thus, we have

\[
B \setminus A' \leq B \setminus \tilde{A} \leq B \setminus A,
\]

where \(\tilde{A} \) is obtained from \(A \) by deleting \(a_0 \) and adding \(a'_0 \). The result follows.

Now, we are ready to find the desired integer \(\{k\} \)-domination function \(f \). Let \([a] := \{0,1,\ldots,a-1\} \) for each positive integer \(a \). For a sequence \(A \) of length \(a \), let the entries of \(A \) indexed by \([a] \) and \(A(i) \) be the \(i \)-th entry of \(A \). For \(0 \leq i < j \leq a \), the subsequence \(A[i : j] := [A(i), A(i+1), \ldots, A(j-1)] \). If \(A \) is a permutation of \([a] \), then the complement of \(A \) is a sequence \(\overline{A} \) of length \(a \) defined as \(\overline{A}(i) = a - 1 - A(i) \) for \(0 \leq i \leq a - 1 \). The concatenation \(A \circ B \) of two sequences \(A \) and \(B \) of lengths \(a \) and \(b \), respectively, is a sequence of length
In this case, the remainders of \(j \) case 2:

\(a \) result is straightforward by the definition of extension sequence.

Let \(A \) be a permutation of \([a]\) and thus a sequence of length \(a \). For positive integers \(a < b \), we call \(B \) the extension sequence of the pair \((A, b)\) if \(B \) is a permutation of \([b]\) satisfying \(B(i) < B(j) \) if and only if \(A(i_0) < A(j_0) \) or \(A(i_0) = A(j_0) \) with \(i < j \), where \(i_0 \) and \(j_0 \) are the remainders of \(i \) and \(j \) divided by \(a \), respectively. For example, when \((a, b) = (3, 7)\) and \(A = [0, 1, 2] \), the extension sequence of \((A, b)\) is \(B = [0, 3, 5, 1, 4, 6, 2] \), which is attained by extending \(A \) to the sequence \([0, 1, 2, 0, 1, 2, 0]\) of length 7 and renumbering it with \([0, 1, \ldots, 6]\).

A permutation \(A \) of \([a]\) is said to be nice corresponding to some \(b > a \) with \(a \nmid b \) if

\[
A(i) < A(i + r) \quad \text{for } 0 \leq i \leq a - r - 1
\]

and

\[
A(j) < A(j - a + r) \quad \text{for } a - r \leq j \leq a - d - 1,
\]

where \(r \) is the remainder of \(b \) divided by \(a \) and \(d = \gcd(a, b) \). Note that if \(r = d \) then the condition \(\mathbf{[3]} \) can be ignored. For example, \([1, 3, 0, 2, 4]\) is nice corresponding to 8 (or any larger integer congruent to 3 modulo 5) and \([4, 1, 6, 3, 0, 5, 2, 7]\) is nice corresponding to 13.

The following properties will carry out the recursive constructions.

Proposition 2.6. Suppose that \(R \) is a nice permutation of \([r]\) corresponding to some \(a > r \) with \(r \nmid a \). Let \(\overline{R} \) be the complement of \(R \). Then the extension sequence of \((\overline{R}, a)\) is also nice corresponding to some \(b > a \) with \(b \equiv r \pmod{a} \).

Proof. Let \(A \) be the extension sequence of \((\overline{R}, a)\). Note that \(A(i) < A(i + r) \) for \(0 \leq i \leq a - r - 1 \) can be verified directly by the definition of extension sequences. Assume that \(s \) is the remainder of \(a \) divided by \(r \). It’s left to consider the case \(a - r \leq j \leq a - d - 1 \) where \(r \) is the remainder of \(b \) divided by \(a \) and \(d = \gcd(a, b) \).

Assume that \(s \) is the remainder of \(a \) divided by \(r \). By Euclidean algorithm, \(s \geq d \).

Case 1: \(a - r \leq j \leq a - s - 1 \).

\(a - r \leq j \leq a - s - 1 \) in order to show \(A(j) < A(j - a + r) \), we observe that the remainders of \(j \) and \(j - a + r \) divided by \(r \) are \(j' + s \) and \(j' \), respectively, where \(j' = j - a + r \). Moreover, since \(R \) is nice, we have \(\overline{R}(i + s) < \overline{R}(i) \) for \(0 \leq i \leq r - s - 1 \). The result is straightforward by the definition of extension sequences.

Case 2: \(a - s \leq j \leq a - d - 1 \).

In this case, the remainders of \(j \) and \(j - a + r \) divided by \(r \) become \(j' - r + s \) and \(j' \), respectively, where \(j' = j - a + r \). Once again, since \(R \) is nice, \(\overline{R}(i - r + s) < \overline{R}(i) \) for \(r - s \leq i \leq r - d - 1 \). We have the proof. \(\square \)
Proposition 2.7. Let positive integers $a < b$ with $r > 0$ the remainder of b divided by a and R a permutation of $[r]$ with complement \overline{R}. If the extension sequence A of (R, a) satisfies

$$\left\lfloor \frac{rk}{a} \right\rfloor = \sum_{i=a-r}^{a-1} \left\lfloor \frac{k + A(i)}{a} \right\rfloor,$$

then the extension sequence B of (A', b) satisfies

$$\left\lfloor \frac{ak}{b} \right\rfloor = \sum_{i=b-a}^{b-1} \left\lfloor \frac{k + B(i)}{b} \right\rfloor$$

where A' is the extension sequence of (\overline{R}, a).

Proof. By Corollary 2.2

$$\{ A(i) \mid a - r \leq i \leq a - 1 \} = \left\{ \left\lfloor \frac{aj}{r} \right\rfloor - 1 \mid 1 \leq j \leq r \right\}.$$

Let q and s be the quotient and remainder of a divided by r, respectively. Claim that the set of $A'[0 : r]$ equals the set of $a - 1 - A[a - r : a - 1]$. It is clear for $s = 0$. If $s > 0$, we have

$$A(i) = a - 1 - A'(a - s + i) \quad \text{for } i = 0, 1, \ldots, s - 1,$$

since entries in A that larger than $A(i)$ become smaller than $A'(a - s + i)$ in A', and vice versa. Therefore, the set of $A[s+j r : s + (j + 1)r]$ equals to the set of $a - 1 - A'[a - s - (j + 1)r : a - s - jr]$ for $j = 0, 1, \ldots, q$. The claim follows by taking $j = q - 1$. Moreover, since

$$a - 1 - (\left\lfloor \frac{ai}{r} \right\rfloor - 1) = a + \left\lfloor \frac{-ai}{r} \right\rfloor = \left\lfloor \frac{a(r-i)}{r} \right\rfloor$$

for $1 \leq i \leq r$, we have

$$\{ A'(i) \mid 0 \leq i \leq r - 1 \} = \left\{ \left\lfloor \frac{aj}{r} \right\rfloor \mid 0 \leq j \leq r - 1 \right\}$$

which exactly indicates the indices of subsets defined in Lemma 2.3. Hence the set of $B[b - a : b]$ gives the maximal elements in each of the subsets $S_0, S_1, \ldots, S_{a-1}$, and this fact completes the proof.

For each pair of positive integers (a, b) with $a < b$, define two codes C_1 and C_2 as follows. If a divides b, then

$$C_1(a, b) := [0, 1, \ldots, a - 1].$$

If the remainder r of b divided by a is positive, then

$$C_1(a, b) := \text{the extension sequence of } (C_1(r, a), a)$$
where $C_1(r, a)$ is the complement of $C_1(r, a)$. Now C_2 can be constructed subsequently. Let $C_2(a, b)$ be the extension sequence of $(C_1(a, b), b)$. It is clear that $C_1(a, b)$ and $C_2(a, b)$ are permutations of $[a]$ and $[b]$, respectively. Suppose that each entry a in $C_2(a, b)$ is corresponding to $\lfloor \frac{k + a}{b} \rfloor$. Then the following result can be obtained by proving that

$$C := B[b - a : b] \circ B \circ \cdots \circ B$$

is a feasible distribution of the circulant graph G, where $b = 2t + 1$, $n = qb + a$, and $B = C_2(a, b)$.

Theorem 2.8.

$$\gamma_k(G) = \left[\frac{kn}{2t + 1} \right].$$

Proof. By Proposition 1.1, it suffices to show that $\gamma_k \leq \left[\frac{kn}{2t + 1} \right]$. Let $G = G(n; \{1, 2, \ldots, t\})$, $n = qb + a$ and $b = 2t + 1$. First, we construct $B[b - a : b]$. If a divides b such that $b = \ell a$, then

$$B[b - a : b] = [\ell - 1, 2\ell - 1, \ldots, a\ell - 1]$$

which collects the numbers $\lfloor ib/a \rfloor - 1$ for $1 \leq i \leq a$ given in Lemma 2.1.

Therefore, any substring of C of length a is not larger than $B[b - a : b]$. By Lemma 2.5 every length b string of $B \circ B[b - a : b]$ or $B[b - a : b] \circ B$ is not less than $[0, 1, \ldots, b - 1]$, so does C. Furthermore, the sequence $[0, 1, \ldots, b - 1]$ is of sum

$$\sum_{i=0}^{b-1} \left\lfloor \frac{k + i}{b} \right\rfloor = k,$$

which confirms the case for a divides b.

On the other hand, let $a > \gcd(a, b)$ and r be the remainder of b divided by a. Since the initial case is examined above, by Proposition 2.7 $B[b - a : b]$ collects the elements $\{\lfloor ib/a \rfloor - 1\}_{i=1}^{a}$. For the initial case, if r divides a then $C_1(r, a) = [0, 1, \ldots, r - 1]$. Moreover, by Proposition 2.6 $C_1(a, b)$ is always nice, and hence

$$C[i : i + a] \leq B[b - a : b] \quad \text{for} \quad 0 \leq i \leq a - d - 1,$$

where $d = \gcd(a, b)$. Moreover, we also have $C[i : i + a] \leq B[b - a : b]$ for $a - d \leq i \leq qb - 1$ immediately from the construction of C. The result follows. \(\square\)

Example 2.9. Assume that $G(n; D)$ is a circulant graph on $n = 8$ vertices with $D = \{1, 2\}$ (i.e., $t = 2$). Let $b = 2t + 1 = 5$ and $a = 3$ be the remainder of n divided by b. First of all, we obtain $C_1(3, 5)$ by the process of Euclidean algorithm. Since the initial condition $C_1(1, 2) = [0], C_1(2, 3) = [0, 1]$ is directly
the extension code of \([0\). Next, the complement of \(C_1(2, 3)\) is \(\overline{C_1(2, 3)} = [1, 0]\). Thus, \(C_1(3, 5) = [1, 0, 2]\), the extension code of \([1, 0, 3]\). Hence,
\[
C_2(3, 5) = [2, 0, 4, 3, 1],
\]
the extension code of \((C_1(3, 5), 5)\). Attach the last 3 entries in front of \(C_2(3, 5)\), we attain the distribution \([4, 3, 1, 2, 0, 4, 3, 1]\). Then the circular sequence \(f(v) : v \in V(G)\) is given by
\[
\begin{align*}
\left\lfloor \frac{k}{5} \right\rfloor, & \left\lfloor \frac{k + 3}{5} \right\rfloor, \left\lfloor \frac{k + 1}{5} \right\rfloor, \left\lfloor \frac{k + 2}{5} \right\rfloor, \left\lfloor \frac{k}{5} \right\rfloor, \left\lfloor \frac{k + 4}{5} \right\rfloor, \left\lfloor \frac{k + 3}{5} \right\rfloor, \left\lfloor \frac{k + 1}{5} \right\rfloor
\end{align*}
\]
which satisfies \(\sum_{v \in V(G)} f(v) = \lceil 8k/5 \rceil\) and \(\sum_{u \in N_G[v]} f(u) \geq k\) for each \(v \in V(G)\).

3 Concluding remark

We remark finally that the construction of code \(C_2\) can be obtained by giving an algorithm with inputs \(a\) and \(b\).

\begin{verbatim}
Data: Positive integers \(a < b\).
Result: \(C_2(a, b)\).
\end{verbatim}

\begin{verbatim}
C_1(a, b) \text{ if } a = \gcd(a, b) \text{ then }
| \quad \text{return } [0, 1, \ldots, a - 1];
| \text{end}
\text{else}
\quad r \leftarrow \text{the remainder of } b \text{ divided by } a;
\quad R \leftarrow C_1(r, a);
\quad \text{return the extension sequence of } (\overline{R}, a);
\text{end}
\end{verbatim}

Main(\(a, b\) return the extension sequence of \((C_1(a, b), b)\);

References

[1] B. Brešar, M. A. Henning and S. Klavžar, On integer domination in graphs and vizing-like problems, Taiwanese J. Math. 10(2006) 1317-1328.

[2] T. T. Chelvam and S. Mutharasu, Bounds for domination parameter in circulant graphs, Advanced Studies in Contemporary Mathematics (Kyungshang) 22(4)(2012) 525-529.

[3] G. Domke, S. T. Hedetniemi, R. C. Laskar and G. Fricke, Relationships between integer and fractional parameters of graphs, Graph Theory, Combinatorics, and applications 1(1991) 371-387.

[4] D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé, The domination number of grids, SIAM J. Discrete Math. 25(3)(2011) 1443-1453.
R. M. Gray, Toeplitz and circulant matrix: a review, *Fundation and Trends in Communication Theory* 2(2006) 155-239.

T. W. Haynes and S. T. Hedetniemi, P. J. Slater, Domination in graphs: advanced topics, Marcel Dekker, New York (1998).

X. Hou and Y. Lu, On the \(k \)-domination number of Cartesian products of graphs, *Discrete Math.* 309(2009) 3413-3419.

N. John and S. Suen, Graph products and integer domination, *Discrete Math.* 313(2013) 217-224.

Y.-T. Kuan, A study of integer domination number, M. S. Thesis, National Chian Tung University (2017).

X. Lin, Integer \(k \)-domination number of circulant graphs, M. S. thesis, National Chiao Tung University (2018).