The role of optical coherence tomography angiography in moderate and advanced primary open-angle glaucoma

Yadollah Eslami · Sepideh Ghods · Massood Mohammadi · Mona Safizadeh · Ghasem Fakhraie · Reza Zarei · Zakieh Vahedian · Seyed Mehdi Tabatabaei

Glaucoma Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Qazvin Square, Tehran, Iran
e-mail: Meh.Tabatabaei@gmail.com

Received: 12 July 2021 / Accepted: 24 April 2022 / Published online: 17 May 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract

Purpose To evaluate the relationship between structure and function in moderate and advanced primary open-angle glaucoma (POAG) and to determine the accuracy of structure and vasculature for discriminating moderate from advanced POAG.

Methods In this cross-sectional study, 25 eyes with moderate and 40 eyes with advanced POAG were enrolled. All eyes underwent measurement of the thickness of circumpapillary retinal nerve fiber layer (cpRNFL) and macular ganglion cell complex (GCC), and optical coherence tomography angiography (OCTA) of the optic nerve head (ONH) and macula. Visual field (VF) was evaluated by Swedish interactive threshold algorithm and 24–2 and 10–2 patterns. The correlation between structure and vasculature and the mean deviation (MD) of the VFs was evaluated by a partial correlation coefficient. The area under the receiver operating characteristic curve (AUC) was applied for assessing the power of variables for discrimination moderate from advanced POAG.

Results Including all eyes, whole image vessel density (wiVD) of the ONH area, and vessel density (VD) in the inferior quadrant of perifovea were the parameters with significant correlation with the mean deviation (MD) of the VF 24–2 in OCTA of the ONH and macula (r = .649 and .397; p < .05). The greatest AUCs for discriminating moderate and advanced POAG belonged to VD of the inferior hemifield of ONH area (.886; 95% CI (.805, .967)), and VD in the inferior quadrant of perifovea (.833; 95% CI (.736, .930)) without statistically significant difference (.886 Versus .833; p = .601).

Conclusion Among vascular parameters of the ONH area, wiVD had the strongest correlation with the MD of the VF 24–2 while VD of the inferior hemifield of the ONH area had the greatest AUC for discriminating moderate and advanced POAG. Vessel density in the inferior quadrant of perifovea had a significant correlation with the MD of VF 24–2 and also the greatest AUC for discriminating moderate and advanced POAG.

Keywords Primary open-angle glaucoma · Optical coherence tomography angiography · Structure–function correlation · Vasculature–function correlation

Introduction

Glaucomatous optic neuropathy as the sine qua non of glaucoma will result due to the damage to retinal ganglion cells (RGCs). Continuous and progressive damage to the axons of RGCs will lead to characteristic
optic nerve head (ONH) appearance and visual field defects [1]. In addition to intraocular pressure (IOP) which is the main risk factor for the development and progression of glaucoma, impaired blood flow to the ONH may have a role in the pathophysiology of the disease [2–4].

Quantitative measurements of the thickness of the circumpapillary retinal nerve fiber layer (cpRNFL) and inner macular layers are provided by spectral-domain optical coherence tomography (SD-OCT) [5]. Because of a “floor effect” in the thickness of the cpRNFL in the advanced stages of glaucoma, following the patients with visual fields is a better indicator of progression and establishes a practical mean for adjusting the treatment [6–9]. The thickness of the inner macular layers is less likely to be suffered from such effect and is useful even in the advanced stages of glaucoma [10, 11].

In recent years non-invasive qualitative and quantitative imaging of ocular blood flow has been provided by optical coherence tomography angiography (OCTA) [12]. Vessel density (VD) measurements by OCTA in the circumpapillary and macular area are repeatable and reproducible and are affected in different stages of glaucoma to various extents [4, 13, 14]. Compared to OCT, OCTA reaches the floor in more advanced stages of glaucoma [15]. Albeit, macular VD may not have a detectable floor and be useful for monitoring the progression in the advanced stage [16].

Given the advantages of OCTA in later stages of the glaucoma continuum when OCT reaches the floor, the current investigation aimed to evaluate the correlation between different structural parameters and visual field sensitivity. Determination of the accuracy of VD in different areas for the detection of severe glaucoma was another purpose of the study.

Methods

Eyes suffering from moderate and advanced primary open-angle glaucoma (POAG) followed at the glaucoma clinic of the Farabi Eye Hospital were recruited to this cross-sectional study from September 2018 to November 2020. The ethics committee of Tehran University of Medical Sciences approved the study protocol and the tenets of the declaration of Helsinki have adhered. All patients signed the informed consent form.

All patients underwent a thorough and comprehensive ophthalmic examination including corrected distance visual acuity (CDVA) using a Snellen chart, slit-lamp biomicroscopy, measurement of IOP by Goldmann applanation tonometry, pachymetry, and funduscopy. Evaluation of the visual field (VF) by the Swedish Interactive Thresholding Algorithm (SITA) standard strategy and 24–2 and 10–2 patterns was done for each patient (Humphrey Field Analyzer, Carl Zeiss Meditec, Fremont, CA). The mean deviation (MD) of the VF 24–2 was the basis for categorizing eyes as moderate or advanced glaucoma. Eyes with MD between –6.00 and –12.00 dB and worse than -12.00 dB were considered as moderate glaucoma and advanced glaucoma respectively.

A total of 65 eyes of 45 patients having primary open-angle glaucoma (POAG) were included in the current investigation. Patients older than 18 years with spherical and astigmatic refractive error in the range of ±5 and ±3 diopters, CDVA of 20/200 or better, and MD worse than –6.00 dB in the VF 24–2 by SITA standard strategy were included in the current study.

Eyes with a history of intraocular surgery other than uncomplicated cataract and glaucoma surgery, diabetic retinopathy, age-related macular degeneration, retinal vascular disorders, media opacity including cataract and trauma were excluded.

POAG was defined as the presence of an open-angle in gonioscopy, glaucomatous optic neuropathy (e.g., generalized enlargement of the cup, notching of the neuroretinal rim), or thinning of the cpRNFL evidenced by SD-OCT and associated VF defects without secondary causes.

All patients were under standard care at the glaucoma clinic of Farabi Eye Hospital and were familiar with perimetry. Evaluation of the central 10 and 24 degrees of VF was done by SITA standard strategy and HFA II for each patient on the same day. A 2-h gap was considered for resting between perimetrics. Glaucomatous damage of VF was defined as the presence of a glaucoma hemifield test outside normal limits or a pattern standard deviation (PSD) with a P less than 5% on two reliable (Fixation loss <25% and False positive <15%) consecutive VFs. The last VF was included in the analysis.
Spectral-domain optical coherence tomography

All eyes underwent cpRNFL and macular scan by RTVue-100 SD-OCT (Optovue, Inc., Fremont, CA, USA). Topical tropicamide 0.5% was used for dilation of the pupil before imaging. This device measures the thickness of the cpRNFL on a 3.45 mm diameter circle. The thickness of cpRNFL as average (average cpRNFL), inferior, and superior hemifield and in the superotemporal (ST), temporal upper (TU), temporal lower (TL), inferotemporal (IT), inferonasal (IN), nasal lower (NL), nasal upper (NU), and superonasal (SN) sectors and temporal, inferior, nasal and superior quadrants were included in the analysis.

RTVue measures the thickness of macular RNFL, ganglion cell, and inner plexiform layers (IPL) as ganglion cell complex (GCC) which are representative of axons, cell bodies, and dendrites of RGCs, respectively. A 7*7 mm² area was used to measure the thickness of GCC 1 mm temporal to the fovea. The thickness of average, superior, and inferior GCC is provided in the printout. Global loss volume (GLV) and focal loss volume (FLV) which represent the global and focal loss of GCC in the entire GCC map are also available. Only images with a signal strength index (SSI) of more than 40 were included in the analysis.

Optical coherence tomography angiography

Three-dimensional OCTA of the ONH and macula (RTVue XR Avanti, Optovue Inc., Fremont, CA, USA) with the AngioVue OCT Angiography software (software 2.0.5.39, Optovue, Inc., Fremont, CA, USA) was done for all the study eyes after proper dilation of the pupil with tropicamide 0.5% and between 9 a.m. and 11 a.m. The software calculates the area occupied by actively flowing vessels as percentages by the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm [12]. Pixels that have a decorrelation value above the threshold will be recognized as blood flow in this algorithm.

The OCTA of the ONH was done in a 4.5*4.5 mm² area with the center of the optic disc.

Vessel density (VD) and capillary density (CD) with automated removal of the large vessels was measured in the radial peripapillary slab (RPC) between the internal limiting membrane (ILM) and posterior border of RNFL [17]. Parameters included in the analysis were whole image VD (wiVD), inside disc VD (idVD), circumpapillary VD (cpVD), superior hemi VD (shVD), inferior hemi VD (ihVD), whole image CD (wiCD), inside disc CD (idCD), circumpapillary CD (cpCD), superior hemi CD (shCD) and inferior hemi CD (ihCD).

Table 1	Baseline demographic and clinical data in eyes with moderate and advanced glaucoma				
	Moderate glaucoma	Severe glaucoma	p		
Age (Years, Mean ± SD)	56.5 ± 16.3	60.2 ± 17.9	0.404†		
Gender (Male/Female, %)	13/12 (52.0/48.0)	30/10 (75.0/25.0)	0.066‡		
CDVA (LogMAR, Mean ± SD)	25 ± 24	29 ± 18	0.305¥		
VCDR (Mean ± SD)	.83 ± .10	.89 ± .13	0.035†		
IOP (mmHg, Mean ± SD)	16.7 ± 7.7	17.0 ± 6.0	0.855†		
CCT (µm, Mean ± SD)	532.76 ± 34.76	523.35 ± 31.19	0.262†		
Medications (Number, %)	0	9 (36.0)	0		
	1	0 (0.0)	7 (17.5)	0.081*	
	2	5 (20.0)	2	6 (15.0)	
	3	8 (32.0)	3	10 (25.0)	
	4	3 (12.0)	4	10 (25.0)	

†Based on independent samples T Test
‡Based on Fisher’s Exact Test
¥Based on Mann–Whitney U Test
*Based on Pearson Chi-Square Test

CDVA Corrected distance visual acuity, LogMAR Logarithm of minimal angle of resolution, VCDR Vertical cup to disc ratio, IOP Intraocular pressure, CCT Central corneal thickness
Table 2 Comparison of different structural and functional parameters between moderate and severe glaucoma

Parameter	Moderate glaucoma	Severe glaucoma	p
SITA 24–2 MD (dB, Mean ± SD)	–8.73 ± 1.74	–21.62 ± 6.19	<0.001†
SITA 24–2 PSD (dB, Mean ± SD)	7.39 ± 2.13	9.41 ± 2.95	0.004†
SITA 10–2 MD (dB, Mean ± SD)	–5.81 ± 4.37	–13.88 ± 8.86	<0.001†
SITA 10–2 PSD (dB, Mean ± SD)	5.02 ± 4.24	7.65 ± 3.81	0.012†
Average cpRNFL (µm, Mean ± SD)	47.84 ± 44.25	37.57 ± 36.43	0.115‡
Superior cpRNFL (µm, Mean ± SD)	85.18 ± 11.86	70.23 ± 15.34	<0.001‡
Inferior cpRNFL (µm, Mean ± SD)	85.51 ± 13.96	68.37 ± 14.48	<0.001‡
cpRNFL, Temporal Quadrant (µm, Mean ± SD)	73.48 ± 11.35	62.34 ± 15.18	<0.001‡
cpRNFL, Superior Quadrant (µm, Mean ± SD)	84.92 ± 21.57	67.19 ± 23.02	0.010‡
cpRNFL, Nasal Quadrant (µm, Mean ± SD)	83.91 ± 25.84	69.48 ± 20.01	0.480‡
cpRNFL, Inferior Quadrant (µm, Mean ± SD)	89.73 ± 22.62	71.19 ± 17.64	<0.001‡
cpRNFL, Temporal Upper (µm, Mean ± SD)	82.041 ± 17.410	69.02 ± 19.38	0.001‡
cpRNFL, Superotemporal (µm, Mean ± SD)	94.63 ± 26.49	71.13 ± 25.26	0.002‡
cpRNFL, Superonasal (µm, Mean ± SD)	94.51 ± 21.37	79.07 ± 21.75	0.360‡
cpRNFL, Nasal Upper (µm, Mean ± SD)	84.66 ± 28.90	69.94 ± 21.81	0.602‡
cpRNFL, Nasal Lower (µm, Mean ± SD)	69.60 ± 14.44	61.78 ± 15.39	0.066‡
cpRNFL, Inferonasal (µm, Mean ± SD)	82.57 ± 20.54	65.85 ± 16.42	0.001‡
cpRNFL, Inferotemporal (µm, Mean ± SD)	101.70 ± 24.85	80.39 ± 22.46	<0.001‡
cpRNFL, Temporal Lower (µm, Mean ± SD)	79.97 ± 22.23	65.37 ± 20.186	0.001‡
Average GCC (µm, Mean ± SD)	84.06 ± 9.54	72.80 ± 12.01	<0.001‡
GCC, Superior (µm, Mean ± SD)	86.23 ± 10.15	72.31 ± 10.98	<0.001‡
GCC, Inferior (µm, Mean ± SD)	81.91 ± 11.85	73.33 ± 14.49	0.001‡
GCC, FLV (Mean ± SD)	4.30 ± 3.51	8.11 ± 3.49	<0.001‡
GCC, GLV (Mean ± SD)	12.74 ± 7.94	23.40 ± 10.55	<0.001‡

ONH

Parameter	Moderate glaucoma	Severe glaucoma	p
wiVD (%)	48.77 ± 4.62	40.23 ± 5.37	<0.001‡
idVD (%)	50.11 ± 4.32	46.15 ± 8.42	0.105‡
cpVD (%)	52.06 ± 6.29	43.24 ± 7.81	<0.001‡
shVD (%)	51.95 ± 5.48	42.07 ± 6.71	<0.001‡
ihVD (%)	48.32 ± 4.68	38.74 ± 6.02	<0.001‡
wiCD (%)	48.26 ± 12.07	41.49 ± 10.83	0.024‡
idCD (%)	44.44 ± 10.34	39.39 ± 9.60	0.900‡
cpCD (%)	45.35 ± 10.30	36.55 ± 10.15	0.093‡
shCD (%)	48.71 ± 6.06	38.83 ± 8.29	<0.001‡
ihCD (%)	48.43 ± 8.31	38.76 ± 7.68	<0.001‡

Macula

Parameter	Moderate glaucoma	Severe glaucoma	p
wiVD (%)	50.31 ± 11.29	42.87 ± 9.05	0.004‡
shVD (%)	42.32 ± 9.30	37.24 ± 6.77	0.383‡
ihVD (%)	42.78 ± 9.19	36.98 ± 7.25	0.186‡
wETDRSVD (%)	41.83 ± 9.86	36.79 ± 6.94	0.312‡
fVD (%)	30.83 ± 14.35	34.14 ± 60.83	0.296‡
parafVD (%)	31.38 ± 16.36	39.56 ± 60.96	0.731‡
parasfVD (%)	45.73 ± 6.46	55.44 ± 94.98	0.057‡
parasfihVD (%)	47.17 ± 8.48	40.36 ± 5.97	0.067‡
parasfVD (%)	44.06 ± 10.87	39.68 ± 8.74	0.417‡
parasfsVD (%)	45.18 ± 12.31	38.62 ± 11.56	0.767‡
Vessel density in the slabs of the superficial capillary plexus (SCP) and deep capillary plexus (DCP) was measured by a 6*6 mm² volumetric macular scan in the parafoveal and perifoveal region. Capillaries between ILM and posterior boundary of the IPL and capillaries between the posterior boundary of the IPL and posterior boundary of the outer plexiform layer (OPL) conform SCP and DCP, respectively [18]. The parafoveal region refers to an annulus centered on the fovea with an inner radius of 1 mm and an outer radius of 3 mm. The annulus surrounding the parafoveal region with the same center and outer radius of 6 mm forms the perifoveal region. Whole image vessel density (wiVD), superior hemi vessel density (shVD), inferior hemi vessel density (ihVD), whole ETDRS vessel density (wETDRSVD), Foveal vessel density (fVD), parafocal vessel density (paraFVD), parafocal superior hemi vessel density (paraFshVD), parafocal inferior hemi vessel density (paraFihVD), parafocal vessel density in the inferior quadrant (paraFVD), parafocal vessel density in the superior quadrant (paraFsVD), parafocal vessel density in the nasal quadrant (paraFnVD), parafocal vessel density in the temporal quadrant (paraFtVD), perifoveal vessel density (perifVD), perifoveal superior hemi vessel density (perifshVD), perifoveal inferior hemi vessel density (perifihVD), perifoveal vessel density in the inferior quadrant (perifsVD), perifoveal vessel density in the superior quadrant (periftVD), perifoveal vessel density in the nasal quadrant (perifnVD) and perifoveal vessel density in the temporal quadrant (periftVD) in the SCP were included in the analysis.

Statistical analyses

To present data we used mean, standard deviation, median, and interquartile range. To compare the groups considering the probable correlation of the measurements in the eyes, we used repeated Generalized Estimating Equation (GEE) models taking the outcome variable as moderate glaucoma and severe glaucoma coding it as 0 (moderate glaucoma) and 1 (severe glaucoma). To assess the predictive ability of variables to detect the severity of glaucoma, we used the receiver operating characteristic (ROC) curve and area under the ROC curve (AUC). To detect a significant difference between AUCs, a pairwise comparison was performed. To obtain the relation of the...
Table 3 Partial Correlation between functional and structural parameters

	SITA 24–2 MD	SITA 10–2 MD		
	r	p	r	p
Average cpRNFL	0.119	0.364†	−0.189	0.147†
Superior cpRNFL	0.351	0.006†	0.223	0.086†
Inferior cpRNFL	0.341	0.008†	0.215	0.099†
cpRNFL, Temporal Quadrant	0.199	0.127†	0.172	0.188†
cpRNFL, Superior Quadrant	0.312	0.015†	0.099	0.451†
cpRNFL, Nasal Quadrant	0.280	0.003†	0.316	0.014†
cpRNFL, Inferior Quadrant	0.251	0.053†	0.022	0.867†
cpRNFL, Temporal Upper	0.172	0.189†	0.224	0.086†
cpRNFL, Superior Quadrant	0.319	0.013†	0.107	0.416†
cpRNFL, Nasal Upper	0.333	0.009†	0.274	0.034†
cpRNFL, Nasal Lower	0.225	0.084†	0.123	0.349†
cpRNFL, Inferonasal	0.262	0.043†	0.097	0.459†
cpRNFL, Inferotemporal	0.215	0.099†	0.069	0.600†
cpRNFL, Temporal Lower	0.113	0.389†	0.210	0.108†
Average GCC	0.475	<0.001‡	0.433	<0.001‡
GCC, Superior	0.558	<0.001‡	0.472	<0.001‡
GCC, Inferior	0.326	0.010‡	0.329	0.010‡
GCC, FLV	−0.434	<0.001‡	−0.407	0.001‡
GCC, GLV	−0.511	<0.001‡	−0.433	<0.001‡
ONH				
wiVD	0.649	<0.001†	0.321	0.012‡
idVD	0.328	0.011†	0.211	0.105†
cpVD	0.479	<0.001†	0.445	<0.001†
shVD	0.510	<0.001†	0.382	0.003‡
ihVD	0.529	<0.001†	0.335	0.009‡
wiCD	0.169	0.198†	0.134	0.307†
idCD	0.256	0.048†	0.211	0.106†
cpCD	0.347	0.007†	0.289	0.025‡
shCD	0.520	<0.001†	0.441	<0.001‡
ihCD	0.314	0.015†	0.303	0.018‡
Macula				
wiVD	0.175	0.192‡	0.174	0.196‡
shVD	0.334	0.011‡	0.286	0.031‡
ihVD	0.346	0.008‡	0.294	0.027‡
wETDRSVVD	0.321	0.015‡	0.250	0.061‡
rVD	0.093	0.492‡	0.319	0.016‡
paraVD	0.250	0.061‡	−0.053	0.695‡
paraFshVD	0.175	0.192‡	0.089	0.510‡
paraFshhVD	0.231	0.083‡	0.155	0.250‡
paraFtVD	0.296	0.026‡	0.166	0.218‡
paraFSVD	0.221	0.098‡	0.084	0.536‡
paraFnsVD	0.084	0.533‡	0.149	0.267‡
paraFtVD	0.046	0.737‡	0.071	0.601‡
variables, while considering the dependency of the eyes, we used a partial correlation coefficient. All statistical analysis was performed by SPSS (version 26.0). A two-sided P-value less than 0.05 was considered statistically significant.

Results

Twenty-five eyes with moderate and 40 eyes with advanced glaucoma were enrolled in the current investigation. The mean age for the entire group was 56.5 ± 18.9 years and 16 (35.6%) patients were female. Baseline clinical and demographic data are shown in Table 1. Corrected distance visual acuity wasn’t different between eyes with moderate and advanced glaucoma (0.25 ± 0.24 versus. 0.29 ± 0.18; p = 0.305). Eyes with advanced glaucoma had higher vertical cup to disc ratio (VCDR) (0.83 ± 0.10 versus. 0.89 ± 0.13; p < 0.035).

A comparison between different structural and functional parameters is presented in Table 2. The eyes with severe glaucoma had worse functional status based on the comparison between MD and PSD in VF 10–2 and 24–2. Considering structural parameters related to cpRNFL and macula, almost all factors were lower in eyes suffering from advanced glaucoma. Albeit, average cpRNFL thickness was not different between groups (47.84 ± 44.25 µm versus. 37.57 ± 36.43 µm; p = 0.115). Eyes with advanced glaucomatous damage had lower wiVD, cpVD, shVD, and ihCD (p < 0.001, p < 0.001, p < 0.001, and p < 0.001, respectively). Whole image vessel density of the macular area, perifiVD and perifnVD were significantly lower in advanced glaucoma (p = 0.004, p = 0.027, p = 0.001, and p = 0.039, respectively).

Partial correlation controlling for patient, age, gender, SSI, and disc area between circumpapillary structural parameters and MD of the VF 24–2 and 10–2 is presented in Table 3. Superior (r = 0.35; p = 0.006) (Fig. 1) and inferior cpRNFL (r = 0.341; p = 0.008) and RNFL thickness in the nasal upper sector (r = 0.333; p = 0.009) had fair correlation with the MD of the VF 24–2. Partial correlation controlling for patient, age, gender, and SSI was significant between all macular structural parameters and MD of the VF 24–2 and 10–2 (Table 3). Among macular structural parameters, average GCC thickness in the

Table 3 (continued)

	SITA 24–2 MD		SITA 10–2 MD	
	r	p	r	p
perifVD	0.349	0.008‡	0.184	0.170‡
perifshVD	0.361	0.006‡	0.345	0.009‡
perifihVD	0.373	0.004‡	0.341	0.010‡
PerifsVD	0.270	0.043‡	0.291	0.028‡
perifnVD	0.291	0.028‡	0.273	0.040‡
perifVd	0.348	0.008‡	0.183	0.173‡
perifVd	0.397	0.002‡	0.429	0.001‡

† Based on partial correlation coefficient and controlling for patient, age, gender, signal strength index and disc area
‡ Based on partial correlation coefficient and controlling for patient, age, gender and signal strength index

SITA, Swedish Interactive Threshold Algorithm; MD, Mean Deviation; PSD, Pattern Standard Deviation; cpRNFL, circumpapillary Retinal Nerve Fiber Layer; GCC, Ganglion Cell Complex; FLV, Focal Loss Volume; GLV, Global Loss Volume; ONH, Optic Nerve Head; wiVD, whole image Vessel Density; idVD, inside disc Vessel Density; cpVD, circumpapillary Vessel Density; shVD, superior hemi Vessel Density; ihVD, inferior hemi Vessel Density; wiCD, whole image Capillary Density; idCD, inside disc Capillary Density; cpCD, circumpapillary Capillary Density; shCD, superior hemi Capillary Density; ihCD, inferior hemi Capillary Density; fVD, foveal Vessel Density; paraVD, parafoveal Vessel Density; parafshVD, parafoveal superior hemi Vessel Density; parafihVD, parafoveal inferior hemi Vessel Density; paraftVD, parafoveal temporal Vessel Density; paraftsVD, parafoveal superior Vessel Density; paraftnVD, parafoveal nasal Vessel Density; paraftnVD, parafoveal temporal Vessel Density; perifsVD, perifoveal superior Vessel Density; perifnVD, perifoveal nasal Vessel Density; perifiVd, parafoveal inferior Vessel Density
superior hemifield (Fig. 1), average GCC, and GLV had stronger correlations with the MD of VF 24–2 and 10–2 (Table 3).

Whole image vessel density, ihVD and shCD had the strongest correlation (controlling for patient, age, gender, SSI and disc area) with the MD of VF 24–2 (r = 0.649, r = 0.529, r = 0.520, respectively; p < 0.001) (Table 3) (Fig. 1). Circumpapillary vessel density, shCD and shVD were the factors with strongest correlation with the MD of the VF 10–2 (r = 0.445, p < 0.001; r = 0.441, p < 0.001 and r = 0.382, p = 0.003; respectively) (Table 3) (Fig. 1). Among macular vascular parameters perifihVD (r = 0.397; p = 0.002) (Fig. 1), perifihVD (r = 0.373; p = 0.004) and perifshVD (r = 0.361; p = 0.006) had stronger correlations with the MD of VF 24–2. Also, the correlation itself was weak (Table 3). Also, the same parameters had stronger correlation with the MD of VF 10–2 in comparison to other macular vascular parameters (r = 0.429, p = 0.001; r = 0.342, p = 0.010; r = 0.345, p = 0.009; respectively) (Fig. 1) (Table 3). Again, the correlation itself was a weak correlation.

Table 4 shows the AUC of different parameters for the detection of the severity of glaucoma. The AUCs for the wiVD of the ONH area and macula were 0.869 (95% CI (0.777, 0.961)) and 0.720 (95% CI (0.593, 0.847)), respectively. The best cut-off value for the wiVD in the ONH area for differentiating moderate from severe POAG was 43.47% with a sensitivity of 96% and specificity of 82.5%. For the wiVD of the macula, the best cut-off value was 43.82% with a sensitivity of 83.3% and specificity of 66.7%. Structural parameters related to cpRNFL and macula with greatest AUC were inferior cpRNFL and superior GCC, respectively (AUC = 0.789 (95% CI (0.679, 0.899)) and AUC = 0.818 (95% CI (0.717, 0.919)); p < 0.001). Vascular parameters with the greatest AUC were ihVD in the ONH area and perifihVD in SCP of the macula (AUC = 0.886 (95% CI (0.805, 0.967)) and AUC = 0.833 (95% CI (0.736, 0.930)); p < 0.001). Global and average parameters in each of the imaging modalities and structural and vascular parameters with the greatest AUCs are shown in Fig. 2.

Tables 5 and 6 are related to the comparison of the AUC of the different parameters. Among global and average variables only wiVD in the ONH are had greater AUC than average cpRNFL (0.869 versus. 0.666; p = 0.001). As presented in Table 6 in the pairwise comparison of the variables with the greatest AUC no significant difference was found.

Discussion

In the current investigation, we showed that circumpapillary vessel and capillary density and macular vessel density have a stronger positive correlation with the MD of VF 24–2 and 10–2 than structural parameters related to cpRNFL and macula. Also, our study showed that vascular parameters have greater accuracy for the detection of the severity of glaucoma.

Intraocular pressure is the most significant risk factor for the development and progression of glaucoma [19]. The goal of the current medical and surgical treatments is the reduction of the IOP for preventing progression. The deterioration of the VF and RNFL may occur despite proper IOP reduction, so other mechanisms besides IOP have been postulated for glaucoma [20]. Since there is an association between diabetes, systemic hypertension, autoimmune diseases, Raynaud’s phenomenon, migraine, and glaucoma, a vascular theory is highly possible [21–24]. Optical coherence tomography angiography provides a non-invasive and 3-dimensional evaluation of retinal and choroidal microvasculature in different conditions including glaucoma. Decreasing vascular density in the continuum of the POAG had been the subject of various studies. In a study by Yarmohammadi et al. wiVD, cpVD and global RNFL were compared between healthy, glaucoma suspects and glaucomatous eyes.
Table 4 The prediction ability of different structural parameters to detect the severity of glaucoma

	Area under the curve	Standard error	Asymptotic significance	Asymptotic 95% confidence interval	
				Lower bound	Upper bound
Average cpRNFL	0.666	0.068	0.025	0.532	0.800
Superior cpRNFL	0.765	0.058	< 0.001	0.651	0.879
Inferior cpRNFL	0.789	0.056	< 0.001	0.679	0.899
cpRNFL, Temporal Quadrant	0.686	0.065	0.012	0.558	0.814
cpRNFL, Superior Quadrant	0.750	0.062	0.001	0.628	0.782
cpRNFL, Nasal Quadrant	0.668	0.069	0.023	0.532	0.804
cpRNFL, Inferior Quadrant	0.759	0.061	< 0.001	0.640	0.878
cpRNFL, Temporal Upper	0.678	0.067	0.016	0.547	0.809
cpRNFL, Superotemporal	0.779	0.057	< 0.001	0.667	0.891
cpRNFL, Superonasal	0.743	0.064	0.001	0.618	0.868
cpRNFL, Nasal Upper	0.667	0.071	0.024	0.529	0.805
cpRNFL, Nasal Lower	0.633	0.069	0.073	0.498	0.768
cpRNFL, Inferonasal	0.729	0.062	0.002	0.608	0.850
cpRNFL, Inferotemporal	0.750	0.067	0.001	0.618	0.882
cpRNFL, Temporal Lower	0.670	0.068	0.022	0.537	0.803
Average GCC	0.784	0.058	< 0.001	0.670	0.898
GCC, Superior	0.818	0.052	< 0.001	0.717	0.919
GCC, Inferior	0.728	0.066	0.002	0.599	0.857
GCC, FLV	0.811	0.057	< 0.001	0.699	0.923
GCC, GLV	0.789	0.057	< 0.001	0.677	0.901
ONH					
wiVD	0.869	0.047	< 0.001	0.777	0.961
idVD	0.662	0.067	0.028	0.530	0.795
cpVD	0.837	0.051	< 0.001	0.736	0.938
shVD	0.868	0.046	< 0.001	0.779	0.957
ihVD	0.886	0.041	< 0.001	0.805	0.967
wiCD	0.673	0.068	0.020	0.540	0.806
idCD	0.664	0.067	0.027	0.532	0.796
cpCD	0.807	0.057	< 0.001	0.696	0.918
shCD	0.831	0.050	< 0.001	0.734	0.928
ihCD	0.823	0.051	< 0.001	0.724	0.923
Macula					
wiVD	0.720	0.065	0.004	0.593	0.847
shVD	0.784	0.065	< 0.001	0.657	0.911
ihVD	0.815	0.058	< 0.001	0.700	0.929
wETDRSV D	0.797	0.066	< 0.001	0.667	0.926
fVD	0.637	0.073	0.070	0.493	0.780
para fV D	0.531	0.076	0.681	0.383	0.679
para fshV D	0.762	0.068	0.001	0.628	0.895
para fihV D	0.768	0.066	< 0.001	0.638	0.898
para fV D	0.704	0.071	0.006	0.566	0.843
para fV D	0.719	0.069	0.003	0.585	0.854
para fV D	0.686	0.081	0.014	0.526	0.845
para fV D	0.671	0.072	0.021	0.530	0.812
Whole image vessel density, cpVD, and average RNFL were significantly lower in glaucoma and wiVD had the greatest accuracy for differentiating glaucoma and glaucoma suspects from healthy eyes.

In another study by Kumar et al., the discriminant function of the vascular parameters for determining disease severity was evaluated [26]. They enrolled normal and both POAG and primary angle-closure glaucoma (PACG) eyes with different severities in their investigation. They found a lower inside disc VD and en face VD in the RPC slab in the glaucomatous eyes in comparison to the normal eyes. Also, the VD between different stages of glaucoma was different. Geyman and his colleagues showed decreasing perfused capillary density of the ONH by worsening the stage of the POAG [27]. In our study, eyes with advanced glaucoma had lower vessel density in different areas except for idVD. By automated removal of the large vessels eyes with advanced glaucoma had lower wiCD, shCD, and ihCD. The interesting finding was the non-significant difference in the average RNFL thickness between moderate and advanced stages of glaucoma probably due to reaching the floor while the vascular parameters of the ONH showed significant difference. Considering macular vascular parameters, Rao et al. showed lower VD of the whole image and different quadrants of the parafoveal regions in the SCP of POAG eyes in comparison to the normal subjects in two different studies [28, 29]. We showed lower wiVD and in the temporal, superior, and nasal quadrants of the perifoveal region in eyes with advanced glaucoma. There was no significant difference in the VD of different quadrants of the parafoveal region.

Generally, in our study, the correlation between vascular parameters and the MD of the VF 24–2 and 10–2 was stronger than the correlation between structural parameters and the MD of visual fields, similar to previous studies [30, 31]. This finding shows the importance of VD in the functional status of glaucomatous patients. By taking into account the impaired blood supply as an etiology of POAG, it is meaningful that VD will drop earlier than the structural parameters in a stage in which the RGCs are dysfunctional but not atrophied [30]. In addition, we enrolled eyes with moderate and advanced glaucoma approaching the floor of the structural parameters while there may not be a detectable floor for vascular parameters [16]. Another finding in the current investigation was the stronger correlation of the vascular parameters of the ONH area with the MD of the VF 24–2 and VF 10–2 than the correlation between macular vascular parameters and the MD of VFs which is in concordance with Chen et al. study [16]. As the macular vascular

Table 4 (continued)

Area under	Standard error	Asymptotic significance	Asymptotic 95% confidence interval
the curve			Lower bound
perifVD	0.765	0.067	<0.001
perifshVD	0.780	0.065	<0.001
perifihVD	0.825	0.056	<0.001
PerifVD	0.789	0.064	<0.001
PerifsVD	0.770	0.065	<0.001
perfnVD	0.768	0.060	<0.001
perifiVD	0.833	0.049	<0.001

Legend:
- cpRNFL: circumpapillary Retinal Nerve Fiber Layer
- GCC: Ganglion Cell Complex
- FLV: Focal Loss Volume
- GLV: Global Loss Volume
- ONH: Optic Nerve Head
- wiVD: whole image Vessel Density
- idVD: inside disc Vessel Density
- cpVD: circumpapillary Vessel Density
- shVD: superior hemi Vessel Density
- ihVD: inferior hemi Vessel Density
- wiCD: whole image Capillary Density
- idCD: inside disc Capillary Density
- cpCD: circumpapillary Capillary Density
- shCD: superior hemi Capillary Density
- ihCD: inferior hemi Capillary Density
- fVD: foveal Vessel Density
- parafVD: parafoveal Vessel Density
- parafshVD: parafoveal superior hemi Vessel Density
- parafihVD: parafoveal inferior hemi Vessel Density
- parafnVD: parafoveal nasal Vessel Density
- parafiVD: parafoveal inferior Vessel Density
- perfVD: perifoveal Vessel Density
- perfshVD: perifoveal superior hemi Vessel Density
- perfihVD: perifoveal inferior hemi Vessel Density
- perfnVD: perifoveal nasal Vessel Density
- perfifiVD: parafoveal inferior Vessel Density
parameters don’t seem to have a detectable floor the reason for this finding is unclear [16]. One possible explanation is that by assessment of the macula only a limited area of the vascular network is evaluated while the glaucomatous damage may originate beyond the macula which may be presented at the

Fig. 2 A Receiver operating characteristic curve of the global structural and vascular parameters B Receiver operating characteristic curve of the structural and vascular parameters with the greatest area under the curve
ONH area. A positive correlation between macular VDs and the MD of the VF 10–2 has been shown in a few studies [32, 33]. Unlike previous studies, in the current investigation, VDs were evaluated in a 6*6 mm² area centered on the fovea in both parafoveal and perifoveal regions. None of the VDs of the parafovea had a significant correlation with the MD of the VF 10–2 as opposed to perifsVD, perifsVD, and perifiVD which had a significant positive correlation indicating more temporal and peripheral glaucomatous damage may occur even in moderate and advanced glaucoma.

We also evaluated the diagnostic accuracy of the different structural and vascular parameters for the detection of the severity of glaucoma. Generally, vascular parameters had greater AUC than structural parameters but in pairwise comparison of the parameters with the greatest AUCs in each category (structure and vasculature of the ONH and macula), there was no significant difference. In the pairwise comparison of the average cpRNFL, GLV, and wiVD of the macula and ONH, wiVD of the ONH area had greater AUC and better diagnostic accuracy for detection of the severity of the glaucomatous damage. Comparison of the vascular and structural parameters for discrimination between POAG and healthy eyes have mixed results in previous studies. Similar AUCs for differentiating glaucomatous eyes from normal subjects have been reported previously for cpVD and RNFL thickness [34]. Some studies have shown lower power for vasculature in comparison to structural parameters for discriminating POAG from normal eyes [29, 35, 36]. The aforementioned studies have evaluated the power for discriminating POAG from normal eyes while we compared the power for discriminating moderate from advanced POAG eyes.

We showed greater diagnostic accuracy for wiVD than average cpRNFL for detection of the severity of glaucoma. As is expected in the later stages of the continuum of glaucoma, when the structure is approaching its floor the role of vasculature becomes more prominent.

Our study has certain limitations. First, we didn’t record the axial length and systemic conditions in our study. Due to the substantial effects of the axial length on the VDs of the ONH area, it should be controlled in analyzing the correlation of the vascular and functional parameters [37]. Second, the sample size between our groups wasn’t equal. Third, our study was cross-sectional. So, determining the impaired blood supply as the cause or consequence of the POAG was not possible.

In conclusion, we should say that vasculature has a stronger correlation than the structure with functional parameters in moderate and advanced glaucoma. Also, the accuracy of vascular parameters may be greater for discrimination of the moderate from advanced glaucoma.

Funding The authors received no financial support for the research, authorship, and/or publication of this article.

Data availability The data that support the findings of this study are available from the corresponding author, [SMT], upon reasonable request.

Declarations

Conflict of interest Yadollah Eslami declares that he has no conflict of interest. Sepideh Ghods declares that she has no conflict of interest. Massood Mohammadi declares that he has no conflict of interest. Mona Safizadeh declares that she has no conflict of interest. Ghasem Fakhraie declares that he has no conflict of interest. Reza Zarei declares that he has no conflict.
of interest. Zakieh Vahedian declares that she has no conflict of interest. Seyed Mehdi Tabatabaei declares that he has no conflict of interest.

Ethical approval All procedures performed in this study which involve human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The IRB/ethical committee of Tehran University of the Medical Sciences approved the study (IR.TUMS.MEDICINE.REC.1397.724).

Informed consent Informed consent was obtained from all individual participants included in the study.

Consent for publication There is no identifying information about participants available in the article, so this issue is not applicable.

References

1. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311(18):1901–1911. https://doi.org/10.1001/jama.2014.3192

2. Sit AJ, Pruet CM (2016) Personalizing intraocular pressure: target intraocular pressure in the setting of 24-hour intraocular pressure monitoring. Asia-Pac J Ophthalmol Phila Pa 5(1):17–22. https://doi.org/10.1097/APO.0000000000000178

3. Weinreb RN (2008) Ocular blood flow in glaucoma. Can J Ophthalmol 43(3):281–283. https://doi.org/10.3129/j08-0584

4. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z et al (2017) Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124(5):709–719. https://doi.org/10.1016/j.jophtha.2017.01.004

5. Garas A, Varga J, Holló G (2010) Reproducibility of retinal nerve fiber layer and macular thickness measurement with the RTVue-100 optical coherence tomograph. Ophthalmology 117(4):738–746. https://doi.org/10.1016/j.jophtha.2009.08.039

6. Mwanza J-C, Budenz DL, Warren JL, Webel AD, Reynolds CE, Barbosa DT et al (2015) Retinal nerve fibre layer thickness measurement and corresponding functional loss in glaucoma. Br J Ophthalmol 99(6):732–737. https://doi.org/10.1136/bjophthalmol-2014-305745

7. Mwanza J-C, Kim HY, Budenz DL, Warren JL, Margolis M, Lawrence SD et al (2015) Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: comparison of three OCT platforms. Invest Ophthalmol Vis Sci 56(11):6344–6351. https://doi.org/10.1167/iovs.15-17248

8. Gesseesse GW, Damji KF (2013) Advanced glaucoma: management pearls. Middle East Afr J Ophthalmol 20(2):131–141. https://doi.org/10.4103/0974-9233.110610

9. Bartz-Schmidt KU, Thumann G, Jonas-Cuypers CP, Kriegstein GK (1999) Quantitative morphologic and functional evaluation of the optic nerve head in chronic open-angle glaucoma. Surv Ophthalmol 44(Suppl 1):S41-53. https://doi.org/10.1016/s0393-6257(99)00076-4

10. Bowd C, Zangwill LM, Weinreb RN, Medeiros FA, Belghith A (2017) Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma. Am J Ophthalmol 175:37–44. https://doi.org/10.1016/j.ajo.2016.11.010

11. Belghith A, Medeiros FA, Bowd C, Liebmann JM, Girkin CA, Weinreb RN et al (2016) Structural change can be detected in advanced-glaucoma eyes. Invest Ophthalmol Vis Sci. 57(9):511–8. https://doi.org/10.1167/iovs.15-18929

12. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725. https://doi.org/10.1364/OE.20.004710

13. Manalastas PIC, Zangwill LM, Saunders LJ, Mansouri K, Belghith A, Suh MH et al (2017) Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma 26(10):851–859. https://doi.org/10.1097/IJG.0000000000000768

14. Venugopal JP, Rao HL, Weinreb RN, Pradhan ZS, Dasari S, Riyazuddin M et al (2018) repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol 102(3):352–357. https://doi.org/10.1136/bjophthalmol-2017-310637

15. Moghimi S, Hou H, Rao H, Weinreb RN (2019) Optical coherence tomography angiography and glaucoma: a brief review. Asia-Pacific J Ophthalmol (Philadelphia, Pa.) 25:45. https://doi.org/10.22608/APO.20191416

16. Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H et al (2019) Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 126(7):980–988. https://doi.org/10.1016/j.jophtha.2019.03.003

17. Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN (2020) optical coherence tomography angiography in glaucoma. J Glaucoma 29(4):312–321. https://doi.org/10.1097/IJG.00000000000001463

18. Jo YH, Sung KJ, Shin JW (2020) Peripapillary and macular vessel density measurement by optical coherence tomography angiography in pseudoexfoliation and primary open-angle glaucoma. J Glaucoma 29(5):381–385. https://doi.org/10.1097/IJG.00000000000001464

19. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol Chic Ill 1960. 120(6):829–830. https://doi.org/10.1001/archophth.120.6.701

20. Chan KK, Tang F, Tham CCY, Young AL, Cheung CY (2017) Retinal vasculature in glaucoma: a review.
BMJ Open Ophthalmol 1(1):e000032. https://doi.org/10.1136/bmjophthal-2016-000032
21. Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC (1995) Hypertension, pressure, and primary open-angle glaucoma: a population-based assessment. Arch Ophthalmol Chic Ill 1960. 113(2):216–21. https://doi.org/10.1001/archophth.1995.01100021000038
22. Mitchell P, Smith W, Chey T, Healey PR (1997) Open-angle glaucoma and diabetes: the Blue Mountains eye study. Australia Ophthalmol 104(4):712–718. https://doi.org/10.1016/s0161-6420(97)30247-4
23. Flammer J, Konieczka K, Flammer AJ (2013) The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J 4(1):14. https://doi.org/10.1186/1878-5085-4-14
24. Gherghel D, Orgül S, Gugleta K, Gekkieva M, Flammei D, Orgül S, Gugleta K, Gekkieva M, Flammer J (2000) Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol 130(5):597–605. https://doi.org/10.1016/s0002-9394(00)00766-2
25. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N et al (2016) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 57(9):451–459. https://doi.org/10.1167/iovs.15-18944
26. Kumar RS, Anegondi N, Chandapura RS, Sudhakaran S, Kadambi SV, Rao HL et al (2016) Discriminant function of optical coherence tomography angiography to determine disease severity in glaucoma. Invest Ophthalmol Vis Sci 57(14):6079–6088. https://doi.org/10.1167/iovs.16-19984
27. Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S et al (2017) Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol 101(9):1261–1268. https://doi.org/10.1136/bjophthalmol-2016-309642
28. Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S et al (2016) Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am J Ophthalmol 171:75–83. https://doi.org/10.1016/j.ajo.2016.08.030
29. Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP et al (2017) A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma. PLoS ONE 12(3):e0173930. https://doi.org/10.1371/journal.pone.0173930
30. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Yousefi S, Saunders LJ et al (2016) Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 123(12):2498–2508. https://doi.org/10.1016/j.jfphtha.2016.08.041
31. Chen HS-L, Liu C-H, Wu W-C, Tseng H-J, Lee Y-S (2017) Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci 58(9):3637–3645. https://doi.org/10.1167/iovs.17-21846
32. Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T et al (2018) Optical coherence tomography angiography macular vascular density measurements and the central 10–2 visual field in glaucoma. J Glaucoma 27(6):481–489. https://doi.org/10.1097/IJG.0000000000009964
33. Gharah E, Bowd C, Zangwill LM, Proudfoot J, Hasenstab KA, Hou H et al (2019) Association of macular and circumpapillary microvasculature with visual field sensitivity in advanced glaucoma. Am J Ophthalmol 204:51–61. https://doi.org/10.1016/j.ajo.2019.03.004
34. Rao HL, Kadambi SV, Weinreb RN, Puttaihak NK, Pradhan ZS, Rao DAS et al (2017) Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Ophthalmol 101(8):1066–1070. https://doi.org/10.1136/bjophthalmol-2016-309377
35. Chihara E, Dimitrova G, Amano H, Chihara T (2017) Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci 58(1):690–697. https://doi.org/10.1167/iovs.16-20709
36. Rao HL, Riyazuddin M, Dasari S, Puttaihak NK, Pradhan ZS, Weinreb RN et al (2018) Diagnostic abilities of the optical microangiography parameters of the 3x3 mm and 6x6 mm macular scans in glaucoma. J Glaucoma 27(6):496–503. https://doi.org/10.1097/IJG.0000000000009952
37. Wan KH, Lam AKN, Leung CK-S (2018) Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol 136(8):866–874. https://doi.org/10.1001/jamaophthalmol.2018.1627
38. Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB et al (2018) Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol 136(5):507–513. https://doi.org/10.1001/jamaophthalmol.2018.0776

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.