Enzymatic determination of carnosine in meat and fish using β-Ala-Xaa dipeptidase and histidine ammonia-lyase derived from Pseudomonas putida NBRC100650

Hisashi Muramatsu1 · Taisuke Harada2 · Daiki Sugihara3 · Karen Hashimoto4 · Shin-ichiro Kato1 · Shinji Nagata1 · Tomoko Shimamura1

Received: 8 August 2021 / Accepted: 25 October 2021 © The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2022

Abstract
Carnosine is a naturally occurring dipeptide and a functional component in foods, while also showing health-promoting effects. Generally, food-derived carnosine is quantified via high-performance liquid chromatography (HPLC). We have developed a method for quantifying carnosine in foods using microbial enzymes, β-Ala-Xaa dipeptidase (BapA) and histidine ammonia-lyase (HAL). The carnosine concentrations in extracts of chicken, pork, beef, bonito, and tuna were determined via both HPLC and enzymatic determination. The carnosine contents measured via enzymatic determination were in agreement with those determined via conventional HPLC analysis. Relative standard-deviation values of the conventional HPLC method and the enzymatic determination of carnosine in foods were 0.728–5.76% and 0.504–4.58%, respectively. The recovery of carnosine in food extracts via enzymatic determination was 97–103%. Therefore, the developed enzymatic determination technique using BapA and HAL can be used for the determination of carnosine in meats and fishes with comparable accuracy to that of conventional HPLC analysis.

Keywords Carnosine · Imidazole dipeptide · β-Ala-Xaa dipeptidase · Histidine ammonia-lyase · Enzymatic determination

Introduction
Carnosine is a naturally occurring dipeptide comprising l-histidine and β-alanine and is present in mammalian tissues, such as brain and skeletal muscle tissues [1, 2]. Carnosine and its naturally occurring derivatives (anserine, ophidine (balenine), homocarnosine, and acetyl carnosine) are the most common imidazole dipeptides (Fig. 1). Livestock-derived meat, such as beef and pork, contains a high concentration of carnosine; chicken meat contains a high concentration of anserine [3]. Anserine is also present in tissues of fishes, such as tuna and rainbow trout [4, 5]. Ophidine is found in snake and whale muscle tissues [6]. However, homocarnosine is found in human urine and the brain tissues of pigs, dogs, and cats [7]. Acetyl carnosine is found in mammalian cardiac muscles [8]. Carnosine has various physiological functions, such as in the maintenance of pH balance as well as anti-glycation, anti-oxidation, and anti-crosslinking effects [9–13]. Moreover, it was reported that carnosine supplementation may represent an effective strategy for inducing anti-senescence, anti-fatigue and the prevention of type 2 diabetes [14–16]. Therefore, carnosine is used as a functional component in foods that show health-promoting effects; various dietary supplements containing carnosine are commercially available. In Japan, the system of “Foods with function claims” was launched in 2015. Food products can be labeled with a function claim, which is based on scientific evidence, under the food business operators’ responsibility. Fresh produce products are subject to...
labeling under this system, and a homebred chicken (Hakata Jidori) labeled with the carnosine concentration is in the market. Simple and cost-effective methods used to determine carnosine in food can enable food business operators to indicate the concentration of carnosine on labels of various foods, and customers can use this information to help maintain their health.

Generally, the concentration of carnosine and its derivatives in food is determined using high-performance liquid chromatography (HPLC). It is difficult to separate carnosine and anserine via HPLC using conventional octadecylsilyl columns. Therefore, an appropriate column, such as a hydrophilic interaction chromatography column or carbon column, is used for the analysis of imidazole dipeptides [17, 18]. HPLC analysis shows high accuracy; however, it requires expensive equipment and trained staff for operating this equipment. In contrast, enzyme assays can be used for quantification, because they reduce the initial cost and are easy to perform. Enzymatic determination is also suitable for high-throughput analysis. For example, a flow-injection analytical (FIA) system with an immobilized cholesterol oxidase capillary and an electrochemical detector for cholesterol determination was developed recently [19]. Cholesterol oxidase converts cholesterol to hydrogen peroxide and cholestenone in the capillary, and hydrogen peroxide is detected with a three electrode system. The FIA system with cholesterol oxidase can determine cholesterol without a complex sample preparation method, and at a low cost. A unique spectrophotometric method to determine polyhexamethylene biguanide (PHMB) with glucose oxidase has also been reported [20]. PHMB promotes the glucose oxidase reaction with ferricyanide ion. Utilizing this promotion effect, PHMB can be determined using a microplate reader. Thus, we attempted to develop a method to determine carnosine in food with enzymes. To the best of our knowledge, the determination of imidazole dipeptides via enzyme assays has not been reported.

Carnosinase from vertebrates [21, 22] and β-Ala-Xaa dipeptidase (BapA) from Pseudomonas sp. [23] catalyze the conversion of carnosine to l-histidine and β-alanine. The use of histidine ammonia-lyase (HAL) from P. putida to determine l-histidine in plasma and urine samples has been reported [24]. Therefore, we considered that l-histidine generated from carnosine could also be determined with HAL. In analysis using two kinds of enzymes, it is desirable that the optimum temperature and pH for each enzymatic reaction are similar. Because we expected that the optimum reaction conditions for enzymes from an identical organism might be similar, BapA and HAL from P. putida were selected as enzymes to determine the carnosine concentration (Fig. 2). HAL catalyzes the conversion of l-histidine to urocanic acid and ammonia. Since urocanic acid shows absorbance at 277 nm, [25] the concentration of carnosine can be determined by measuring the absorbance of urocanic acid using a spectrophotometer. To the best of our knowledge, the use of HAL to determine l-histidine in food samples has not been tested. Herein, we demonstrate the enzymatic determination of l-histidine in meats and fishes using HAL.
Experimental

Reagents and chemicals

Carnosine and l-alanine p-nitroanilide (l-Ala-pNA) were obtained from Peptide Institute (Osaka, Japan). Anserine was purchased from Bachem AG (Bubendorf, Switzerland). Acetyl carnosine was purchased from Cayman Chemical (Ann Arbor, MI, USA). d-Alanine p-nitroanilide (d-Ala-pNA) was obtained from Watanabe Chemical Industries (Hiroshima, Japan). 3-Methyl-l-histidine was purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Polypepton was obtained from Nihon Pharmaceutical (Tokyo, Japan). Yeast extract was obtained from Oriental Yeast (Tokyo, Japan). Restriction enzymes and kits for performing genetic manipulation were obtained from Takara Bio (Kyoto, Japan), Nippon gene (Tokyo, Japan), New England Biolabs (Beverly, MA, USA), Bioneer (Alameda, CA, USA), and Roche (Indianapolis, IN, USA). The DNeasy UltraClean Microbial Kit was obtained from QIAGEN (Venlo, Netherland). All other reagents were of analytical grade and were obtained from Nacalai Tesque (Kyoto, Japan) and FUJIFILM Wako Pure Chemical Corporation.

Enzyme assays

The dipeptidase activity of BapA was assayed using d-Ala-pNA as a substrate [23]. The dipeptidase activity was assayed by monitoring the increase in absorbance at 405 nm (V-730 BIO spectrophotometer; JASCO, Tokyo, Japan) due to the production of p-nitroaniline at 30 °C in a 1 mL standard reaction mixture containing 5 mM d-Ala-pNA and 0.1 M Tris–HCl buffer (pH 8.0). One unit (U) of the enzyme was defined as the amount of enzyme that catalyzed the formation of 1 μmol of p-nitroaniline/min in the reaction. Specific activity was expressed as U/mg of protein. The concentration of p-nitroaniline was determined from the molar extinction coefficient of 11,500 M⁻¹ cm⁻¹ [26].

The HAL activity was assayed by measuring the increase in absorbance at 277 nm due to the production of urocanic acid at 30 °C in a 1 mL standard reaction mixture containing 3.3 mM l-histidine and 0.1 M Tris–HCl buffer (pH 8.0). One U of the enzyme was defined as the amount of enzyme that catalyzed the formation of 1 μmol of urocanic acid/min in the reaction. Specific activity was expressed as U/mg of protein. The concentration of urocanic acid was determined from the molar extinction coefficient of 18,800 M⁻¹ cm⁻¹ [25].

Microorganisms and culture conditions

Pseudomonas putida NBRC100650 was cultivated in the Luria–Bertani (LB) medium at 30 °C with reciprocal shaking for 20 h. Escherichia coli DH5α was cultivated in the LB medium in a reciprocal shaker at 37 °C overnight. Recombinant Rosetta-gami B(DE3) cells were cultured aerobically in the LB medium containing 30 μg/mL chloramphenicol and 0.1 mg/mL ampicillin at 37 °C for 18 h. The culture was supplemented with 1 mM isopropyl-β-d-thiogalactopyranoside and grown for a further 3 h. The cells were harvested via centrifugation (7000×g, 20 min, 4 °C), washed with 0.85% NaCl, and stored at −80 °C until use.

Cloning of P. putida-derived bapA and hutH genes

Genomic DNA was isolated using the DNeasy UltraClean Microbial Kit. The gene encoding BapA (bapA; PP_3844, UniProtKB database accession number Q88G81) was amplified via a polymerase chain reaction (PCR) in a 25 μL reaction mixture containing 1× pfuUltra High-Fidelity DNA polymerase reaction buffer, 0.2 mM deoxynucleotide triphosphates, 13 pmol of each primer (5’-GGAATTCCA TATGAAAAGACAGATGAGCCACG-3’ and 5’-CCC AAGCTTACGTTCGGCCGCCGACC-3’), 83 ng of P. putida NBRC100650 genomic DNA, and 1.3 U of pfu Ultra High-Fidelity DNA polymerase. PCR was performed as follows: pre-incubation at 95 °C for 2 min and then 30 cycles at 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 90 s, and final elongation at 72 °C for 10 min. The PCR product was digested using NdeI and HindIII and ligated into pET21α, which had been previously digested using the same restriction enzymes. The resultant plasmid was transformed
into Rosetta-gami B(DE3) to produce the recombinant histidine-tagged BapA.

The gene encoding HAL (hutH; PP_5032, UniProtKB database accession number Q88CZ7) was amplified via PCR in a 25 μL reaction mixture containing 1× Prime STAR GXL buffer, 2.5 mM deoxynucleotide triphosphates, 6.3 pmol of each primer (5‘-GGAGATATACATGACCAGAACTC ACCCTCAAGCCTG-3‘ and 5‘-GTGGTGTGTGTGTGTGTG CAGGCTTGGCGATACACCGCCCGC-3‘), 83 ng of P. putida NBRC100650 genomic DNA, and 0.63 U of Prime STAR GXL DNA polymerase. PCR was performed as follows: pre-incubation at 95 °C for 2 min and then 30 cycles at 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 50 s, and a final elongation at 72 °C for 10 min. The DNA fragment derived from pET21a was amplified via PCR in a 25 μL reaction mixture containing 1× Prime STAR GXL buffer, 2.5 mM deoxynucleotide triphosphates, 6.3 pmol of each primer (5‘-CATATGTATATCTCTTCTTAAGTAAAC AAA-3‘ and 5‘-CACCACACCACACCACACTAGATCCG GCTGCTAA-3‘), 47 ng of pET21a plasmid, and 0.63 U of Prime STAR GXL DNA polymerase. PCR was performed as follows: pre-incubation at 95 °C for 2 min and then 30 cycles at 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 5 min 30 s, and a final elongation at 72 °C for 10 min. PCR products containing hutH were ligated together with the DNA fragment derived from pET21a using the In-Fusion HD cloning Kit according to the manufacturer’s instructions. The resultant plasmid was transformed into Rosetta-gami B(DE3) to produce the recombinant histidine-tagged HAL.

Purification of the recombinant enzyme

Histidine-tagged BapA-expressing Rosetta-gami B(DE3) cells were suspended in a binding buffer containing 5 mM imidazole, 0.5 M NaCl, 20 mM Tris–HCl (pH 7.9), and 1 mM phenylmethylsulfonyl fluoride, and disrupted on ice via sonication. Subsequent processes were performed at 4 °C. The crude extract obtained via sonication was applied to a nickel-nitriolotriacetic acid Hist•Bind Resin (Novagen, Madison, WI, USA) column equilibrated using the binding buffer. Histidine-tagged BapA was eluted using a linear gradient of 0.06–1 M imidazole in the binding buffer. The enzyme solutions were pooled and concentrated using VIVASPIN 20, 30,000 MWCO, PES (Sartorius, Göttingen, Germany), and dialyzed against 20 mM Tris–HCl buffer (pH 8.0) containing 5 mM 2-mercaptoethanol and 0.1 mM ethylenediaminetetraacetic acid (EDTA) twice. Histidine-tagged HAL was purified using the same method with a modified dialysis step. HAL was dialyzed against 20 mM potassium phosphate buffer (pH 7.2) twice. The final preparation of both histidine-tagged enzymes was stored at -80 °C until use for molecular characterization of the enzymes.

Since the HAL-catalyzed reaction was inhibited by EDTA, BapA was dialyzed using 20 mM Tris–HCl buffer (pH 8.0) before use for enzymatic determination of carnosine in food. HAL was incubated with 130 mM Tris–HCl buffer (pH 9.0) containing 1.3 mM 2-mercaptoethanol and 0.1 mM MnCl2 at 25 °C for 15 min to activate the enzyme before use for enzymatic determination of carnosine in food.

Kinetic analysis

The initial rates of the BapA and HAL-catalyzed reactions were measured using various concentrations of the substrate. Data were incorporated in the hyperbolic Michaelis–Menten equation, and the kinetic parameters were calculated using nonlinear least-squares regression using Kaleida Graph version 4.0 (Adelbeck Software, Reading, PA, USA).

Preparation of food extracts

The extraction of carnosine from foods was performed according to a method described by Mori et al. [18], with minor modifications. Minced meats (chicken, pork, and beef) and sliced raw fishes (bonito and tuna) were obtained from local commercial sources in Kochi, Japan. Sliced raw fishes were minced on ice. Each minced food (10 g) was heated at 95 °C for 30 min, and then centrifuged at 20,000×g for 60 min at 4 °C. The supernatant was collected and used as a food extract in subsequent experiments.

HPLC analysis of carnosine, anserine, and l-histidine in food extracts

HPLC analysis was performed according to a method described by Mora et al. [17]. Carnosine, anserine, and histidine present in food extracts were analyzed using an HPLC system (system controller, SCL-10A; column oven, CTO-10AC; pump, LC-10AD; detector, SPD-M10AC; degasser, DGU-14A; Shimadzu, Kyoto, Japan) equipped with an Atlantis HILIC Silica column (ϕ 4.6×150 mm, 3 μm, Waters, Milford, MA, USA). The column was maintained at 40 °C. The mobile phases consisted of solvent A containing 0.65 mM ammonium acetate (pH 5.5) in water:acetonitrile (25:75), and solvent B containing 4.55 mM ammonium acetate (pH 5.5) in water:acetonitrile (70:30). The separation conditions involved a linear gradient from 0 to 100% of solvent B in 13 min at a flow rate of 1.4 mL/min. The food extract was filtered through a 0.22 μm membrane filter and injected. The absorbance of the effluent at 214 nm was continuously monitored for carnosine, anserine, and histidine. The column was equilibrated for 15 min under the initial conditions before each injection.
Enzymatic determination of \(\text{l}-\text{histidine} \) in food extracts

The concentration of \(\text{l}-\text{histidine} \) in food extracts was determined using a 1 mL \(\text{l}-\text{histidine} \) assay mixture containing 0.1 M Tris-HCl buffer (pH 8.0), 0.1 mg/mL HAL, and food extract. The \(\text{l}-\text{histidine} \) assay mixture was incubated at 30 °C for 60 min and then heated at 95 °C for 5 min to denature HAL. After stopping the HAL-catalyzed reaction, denatured HAL in the \(\text{l}-\text{histidine} \) assay mixture was removed via centrifugation at 12,000 rpm for 5 min at room temperature (20–28 °C). The absorbance of the supernatant at 277 nm associated with the production of urocanic acid by the HAL-catalyzed reaction was measured. A blank solution (\(\text{l}-\text{histidine} \) assay mixture without food extract) was heated at 95 °C for 5 min, centrifuged at 12,000 rpm for 5 min at room temperature, and the absorbance of the blank solution at 277 nm was measured. The absorbance value of the blank solution at 277 nm was subtracted from the absorbance value of the \(\text{l}-\text{histidine} \) assay mixture at 277 nm, and the concentration of \(\text{l}-\text{histidine} \) was calculated by incorporating the subtracted absorbance value at 277 nm into the standard curve.

Enzymatic determination of carnosine in food extract

The concentration of carnosine in food extracts was determined using a 1 mL carnosine assay mixture containing 0.1 M Tris–HCl buffer (pH 8.0), 0.1 mg/mL HAL, and food extract. The carnosine assay mixture was incubated at 30 °C for 60 min and then heated at 95 °C for 5 min to denature HAL. After stopping the HAL-catalyzed reaction, denatured HAL in the carnosine assay mixture was removed via centrifugation at 12,000 rpm for 5 min at room temperature. The absorbance of the supernatant at 277 nm associated with the production of urocanic acid by the HAL-catalyzed reaction was measured. A blank solution (carnosine assay mixture without food extract) was heated at 95 °C for 5 min, centrifuged at 12,000 rpm for 5 min at room temperature, and the absorbance of the blank solution at 277 nm was measured. The absorbance value of the blank solution at 277 nm was subtracted from the absorbance value of the carnosine assay mixture at 277 nm, and the subtracted absorbance value was incorporated into the standard curve of carnosine.

Recovery of carnosine in food extract via enzymatic determination of carnosine

The extracts from meats (chicken, pork, and beef) and fishes (bonito and tuna) were diluted with distilled water by 80-fold and 960-fold, respectively. Carnosine at final concentrations of 4.52 and 9.04 μg/mL was added to the diluted food extracts and the enzymatic determination of carnosine was performed.

Results and discussion

Properties of BapA derived from \(\text{P. putida} \) NBRC100650

The amino acid sequence identity between BapA (PP_3845) derived from \(\text{P. putida} \) NBRC100650 and previously reported BapA from \(\text{Pseudomonas} \) sp. MCI3434 is 64% [23]. BapA derived from \(\text{P. putida} \) NBRC100650 has not been characterized previously. Therefore, we analyzed the properties of histidine-tagged BapA derived from \(\text{P. putida} \) NBRC100650 to determine the reaction conditions for the enzymatic determination of carnosine. The optimum temperature of the BapA-catalyzed reaction was determined by measuring the activity in a standard reaction mixture, and varying the temperature from 20 to 70 °C (Fig. S1A, Supporting Information). The enzyme showed maximum activity at 55 °C, and 70% of the maximum activity was observed at 30 °C. The optimum pH of the BapA-catalyzed reaction was analyzed using various 0.1 M buffer solutions at 30 °C (Fig. S1B, Supporting Information). The enzyme showed maximum activity at pH 9.0 in glycine–NaOH buffer. After the incubation of BapA at different temperatures for 1 h in a 20 mM Tris–HCl buffer (pH 8.0) containing 5 mM 2-mercaptoethanol and 0.1 mM EDTA, the enzyme activity was measured in the standard reaction mixture at 30 °C (Fig. S1C, Supporting Information). BapA was stable at up to 35 °C, and 93% of the enzyme activity was lost at 50 °C. The pH stability of BapA was examined by incubating the enzyme for 1 h at 30 °C in various buffers prior to performing assays in the standard reaction mixture at 30 °C (Fig. S1D, Supporting Information). More than 80% of the enzyme activity was retained between pH 7.0 and pH 8.5. The \(K_m \) and \(V_{max} \) values of BapA for \(\alpha \)-Ala-\(p \)-NA were 2.3 ± 0.2 mM and 15 ± 1 U/mg, respectively. The \(K_m \) and \(V_{max} \) values of BapA for \(\alpha \)-Ala-\(p \)-NA were 25 ± 3 mM and 1.2 ± 0.1 U/mg, respectively. BapA derived from \(\text{P. putida} \) NBRC100650 to determine the reaction conditions for the enzymatic determination of carnosine. The optimum temperature of the BapA-catalyzed reaction was determined by measuring the activity in a standard reaction mixture, and varying the temperature from 20 to 70 °C (Fig. S1A, Supporting Information). The enzyme showed maximum activity at 55 °C, and 70% of the maximum activity was observed at 30 °C. The optimum pH of the BapA-catalyzed reaction was analyzed using various 0.1 M buffer solutions at 30 °C (Fig. S1B, Supporting Information). The enzyme showed maximum activity at pH 9.0 in glycine–NaOH buffer. After the incubation of BapA at different temperatures for 1 h in a 20 mM Tris–HCl buffer (pH 8.0) containing 5 mM 2-mercaptoethanol and 0.1 mM EDTA, the enzyme activity was measured in the standard reaction mixture at 30 °C (Fig. S1C, Supporting Information). BapA was stable at up to 35 °C, and 93% of the enzyme activity was lost at 50 °C. The pH stability of BapA was examined by incubating the enzyme for 1 h at 30 °C in various buffers prior to performing assays in the standard reaction mixture at 30 °C (Fig. S1D, Supporting Information). More than 80% of the enzyme activity was retained between pH 7.0 and pH 8.5. The \(K_m \) and \(V_{max} \) values of BapA for \(\alpha \)-Ala-\(p \)-NA were 2.3 ± 0.2 mM and 15 ± 1 U/mg, respectively. The \(K_m \) and \(V_{max} \) values of BapA for \(\alpha \)-Ala-\(p \)-NA were 25 ± 3 mM and 1.2 ± 0.1 U/mg, respectively. BapA derived from \(\text{P. putida} \) NBRC100650 has not been characterized previously. Therefore, we analyzed the properties of histidine-tagged BapA derived from \(\text{P. putida} \) NBRC100650 to determine the reaction conditions for the enzymatic determination of carnosine. The optimum temperature of the BapA-catalyzed reaction was determined by measuring the activity in a standard reaction mixture, and varying the temperature from 20 to 70 °C (Fig. S1A, Supporting Information). The enzyme showed maximum activity at 55 °C, and 70% of the maximum activity was observed at 30 °C. The optimum pH of the BapA-catalyzed reaction was analyzed using various 0.1 M buffer solutions at 30 °C (Fig. S1B, Supporting Information). The enzyme showed maximum activity at pH 9.0 in glycine–NaOH buffer. After the incubation of BapA at different temperatures for 1 h in a 20 mM Tris–HCl buffer (pH 8.0) containing 5 mM 2-mercaptoethanol and 0.1 mM EDTA, the enzyme activity was measured in the standard reaction mixture at 30 °C (Fig. S1C, Supporting Information). BapA was stable at up to 35 °C, and 93% of the enzyme activity was lost at 50 °C. The pH stability of BapA was examined by incubating the enzyme for 1 h at 30 °C in various buffers prior to performing assays in the standard reaction mixture at 30 °C (Fig. S1D, Supporting Information). More than 80% of the enzyme activity was retained between pH 7.0 and pH 8.5. The \(K_m \) and \(V_{max} \) values of BapA for \(\alpha \)-Ala-\(p \)-NA were 2.3 ± 0.2 mM and 15 ± 1 U/mg, respectively. The \(K_m \) and \(V_{max} \) values of BapA for \(\alpha \)-Ala-\(p \)-NA were 25 ± 3 mM and 1.2 ± 0.1 U/mg, respectively. BapA derived from \(\text{P. putida} \)
NBRC100650 may potentially metabolize other N-terminal β-alanyl dipeptides, because BapA derived from Pseudomonas sp. MCI3434 metabolizes N-terminal β-alanyl dipeptides such as β-alanyl-l-alanine, β-alanylglucose, β-alanyl-l-leucine, and β-alanyl-β-alanine [23]. ZnCl₂ inhibited the BapA-catalyzed reaction, whereas CoCl₂, NiCl₂, and CuCl₂ activated the reaction (Table S1, Supporting Information). EDTA (50 μM) had no effect on the BapA-catalyzed reaction.

Properties of HAL derived from P. putida NBRC100650

Histidine-tagged HAL was characterized to determine the optimal reaction conditions for the enzymatic determination of carnosine. The optimum temperature of the HAL-catalyzed reaction was determined by measuring the activity in a standard reaction mixture, and varying the temperature from 20 to 60 °C (Fig. S2A, Supporting Information). HAL showed the maximum activity at 40 °C, and 94% of the maximum activity was observed at 30 °C. The optimum pH of the HAL-catalyzed reaction was analyzed using various 0.1 M buffer solutions at 30 °C (Fig. S2B, Supporting Information). HAL showed maximum activity at pH 8.0 in Tris–HCl buffer. After the incubation of HAL at different temperatures for 1 h in a 20 mM potassium phosphate buffer (pH 7.2), the enzyme activity was measured in the standard reaction mixture at 30 °C (Fig. S2C, Supporting Information). HAL was stable at up to 30 °C, and 96% of the enzyme activity was lost at 60 °C. The pH stability of HAL was examined by incubating the enzyme for 1 h at 30 °C in various buffers prior to performing assays in the standard reaction mixture at 30 °C (Fig. S2D, Supporting Information). More than 85% of the enzyme activity was retained at between pH 7.0 and pH 10.0. The Kₘ and V_max values of HAL for l-histidine were 3.9 ± 0.3 mM and 4.8 ± 0.1 U/mg, respectively. CuCl₂ activated the HAL-catalyzed reaction, whereas CoCl₂, NiCl₂, and BaCl₂ inhibited the reaction (Table S1, Supporting Information). l-Cysteine (5.0 mM) inhibited the reaction by 81%. EDTA (50 μM) inhibited the reaction by 94%. Therefore, a purified BapA solution containing 0.1 mM EDTA was dialyzed using 20 mM Tris–HCl buffer (pH 8.0) before use for the enzymatic determination of carnosine.

HPLC analysis of carnosine, anserine, and l-histidine in food extracts

The retention times for carnosine, anserine, and l-histidine were 9.9 min, 11.9 min, and 6.1 min, respectively. The linear range and correlation coefficient of the carnosine calibration curve were 0–0.5 mg/mL and 0.998, respectively. The linear range and correlation coefficient of the anserine calibration curve were 0–0.5 mg/mL and 0.997, respectively. The linear range and correlation coefficient of the l-histidine calibration curve were 0–0.5 mg/mL and 0.997, respectively. Thus, the concentrations of carnosine, anserine, and l-histidine could be determined using the same HPLC conditions. The amounts of carnosine, anserine, and l-histidine present in foods (chicken, pork, beef, bonito, and tuna), determined using the conventional HPLC method, are summarized in Table 1. The relative standard deviation (RSD) values of HPLC analysis of carnosine in chicken, pork, beef, bonito, and tuna were 1.97%, 0.728%, 1.47%, 5.76%, and 4.15%, respectively. The RSD values of an HPLC analysis of l-histidine in bonito and tuna were 1.13% and 2.38%, respectively.

Enzymatic determination of l-histidine and carnosine in food extracts

The linear range and correlation coefficient of the l-histidine calibration curve generated using HAL were 0–15.5 μg/mL and 0.999, respectively (Fig. 3). The limit of detection (LOD) and quantification (LOQ) of the enzymatic determination of l-histidine were 0.675 μg/mL and 2.14 μg/mL, respectively. The linear range and correlation coefficient of the carnosine calibration curve generated using BapA and HAL were 0–22.6 μg/mL and 0.999, respectively (Fig. 3).

Table 1 HPLC determination and enzymatic determination of the amount of carnosine, anserine, and l-histidine in food

Foods	HPLC determination	Enzymatic determination			
	Carnosine/mg 100 g⁻¹	Anserine/mg 100 g⁻¹	l-histidine/mg 100 g⁻¹	carnosine/mg 100 g⁻¹	l-histidine/mg 100 g⁻¹
Chicken	251 ± 5	630 ± 20	N. D⁺	258 ± 4	N. D⁺
Pork	320 ± 2	N. D⁺	N. D⁺	317 ± 4	N. D⁺
Beef	390 ± 6	96.0 ± 2.6	N. D⁺	385 ± 2	N. D⁺
Bonito	46.5 ± 2.7	253 ± 1	1660 ± 20	47.8 ± 2.2	1650 ± 30
Tuna	175 ± 7	741 ± 12	945 ± 23	178 ± 6	956 ± 14

All experiments were performed in triplicate and all data are expressed as the mean ± standard deviation

HPLC, high-performance liquid chromatography

⁺Not detected
The LOD and LOQ of the enzymatic determination of carnosine were 0.844 μg/mL and 2.73 μg/mL, respectively. The amounts of \(\text{l}-\text{histidine}\) and carnosine in chicken, pork, beef, bonito, and tuna analyzed via enzymatic determination are summarized in Table 1. The results of the enzymatic determination of carnosine and \(\text{l}-\text{histidine}\) in food samples were in agreement with the results of conventional HPLC analysis. RSD values of the enzymatic determination of \(\text{l}-\text{histidine}\) using HAL in bonito and tuna were 1.79% and 1.50%, respectively. The RSD values of the developed enzymatic determination of carnosine using BapA and HAL in chicken, pork, beef, bonito, and tuna were 1.52%, 1.17%, 0.504%, 4.58%, and 3.56%, respectively. The repeatability was considered to be satisfactory, since the RSD of the enzymatic determination process was below 5%, and is comparable to that of HPLC analysis. The recovery of carnosine added to the food extracts was 97–103% (Table 2). Therefore, enzymatic determination using BapA and HAL can be used for determining \(\text{l}-\text{histidine}\) and carnosine in meats and fishes with comparable accuracy to that of conventional analysis using the HPLC method.

Anserine, ophidine, homocarnosine, and acetyl carnosine are carnosine derivatives. HPLC analysis indicated that BapA catalyzed the reaction of anserine to \(\beta\)-alanine and 1-methyl histidine; however, HAL did not metabolize 1-methyl histidine. Therefore, anserine was undetected by the developed enzymatic determination system. Previously, it was reported that \(\text{l}-\text{histidine}\) present in plasma and urine samples can be estimated using HAL, and the presence of histidine derivatives such as 1-methyl histidine and 3-methyl histidine do not affect the determination of \(\text{l}-\text{histidine}\) [24]. The determination of carnosine in food extracts using BapA and HAL was not affected by the carnosine derivative, containing 0.1 M Tris–HCl buffer (pH 8.0), 0.1 mg/mL HAL, and 0–15.5 μg/mL \(\text{l}-\text{histidine}\). All experiments were performed in triplicate and all data are expressed as the mean ± standard deviation. BapA \(\beta\)-Ala-Xaa dipeptidase, HAL histidine ammonia-lyase.

![Fig. 3 Standard curves for carnosine and \(\text{l}-\text{histidine}\) obtained via enzymatic determination. The standard curve of carnosine was generated for a 1 mL mixture containing 0.1 M Tris–HCl buffer (pH 8.0), 2.0 mg/mL BapA, 0.1 mg/mL HAL, and 0–22.6 μg/mL carnosine. The standard curve of \(\text{l}-\text{histidine}\) was generated for a 1 mL mixture containing 0.1 M Tris–HCl buffer (pH 8.0), 0.1 mg/mL HAL, and 0–15.5 μg/mL \(\text{l}-\text{histidine}\). All experiments were performed in triplicate and all data are expressed as the mean ± standard deviation. BapA \(\beta\)-Ala-Xaa dipeptidase, HAL histidine ammonia-lyase.](image)

Table 2 Recovery of carnosine added to the food extracts

Foods	Concentration added/μg mL\(^{-1}\)	Concentration present/μg mL\(^{-1}\)	Concentration found/μg mL\(^{-1}\)	Recovery, %	
Chicken	0	6.18	10.7	10.6 ± 0.3	99.4 ± 2.4
	4.52	10.7	14.6 ± 0.4	97.0 ± 2.4	
	9.04	15.1	13.0	13.2 ± 0.4	102 ± 3
Pork	0	4.52	13.8	13.6 ± 0.2	98.4 ± 1.3
	9.04	18.3	17.3 ± 0.1	98.9 ± 0.5	
Beef	0	9.04	9.28	18.2 ± 0.4	99.2 ± 1.9
Bonito	0	4.52	4.61	4.74 ± 0.27	103 ± 5
	9.04	9.13	9.20 ± 0.02	101 ± 1	
Tuna	0	4.52	4.90	4.94 ± 0.05	101 ± 2
	9.04	9.43	9.30 ± 0.13	98.6 ± 2.4	

The concentration of carnosine in the food extracts was determined via high-performance liquid chromatography analysis. Authentic carnosine was added to each diluted food extract, and the analysis of carnosine was performed via an enzymatic determination. All experiments were performed in triplicate, and all data are expressed as the mean ± standard deviation.
developed enzymatic method. Komeda et al. reported that homocarnosine was not hydrolyzed by BapA [23]. Therefore, homocarnosine cannot be detected using the developed enzymatic method. The reaction mixture containing 20 μg/mL acetyl carnosine, 0.1 M Tris–HCl (pH 8.0), 2.0 mg/mL BapA, and 0.1 mg/mL HAL was incubated for 30 °C for 60 min. There was no increase in the absorbance of the mixture at 277 nm. Thus, acetyl carnosine cannot be detected using the developed enzymatic method. N-Terminal β-alanyl dipeptides are good substrates for BapA [23]; thus, BapA probably distinguishes the β-alanine moiety of imidazole dipeptides. Moreover, HAL is specific to L-histidine and its reaction is not interfered with histidine analog, such as 1-methyl histidine and 3-methyl histidine. Because two kinds of enzymes, which act on different substrates, were used in the developed enzymatic method, carnosine in food extracts was determined with a high accuracy. Zn2+ strongly inhibited the BapA-catalyzed reaction and Co2+, Ni2+, and L-cysteine strongly inhibited the HAL-catalyzed reaction. Moreover, it was reported that 4-fluorohistidine and 4-nitrohistidine are poor substrates and competitive inhibitors of HAL [28]. Therefore, the developed method may not be applicable for food samples containing a large amount of these compounds. HPLC analysis requires filtration of the sample before injection, whereas a pretreatment of the sample is not required for the developed enzymatic method. The developed method is easy to operate and does not involve the disposal of fluid waste, such as acetonitrile, which is used as a mobile phase in HPLC analysis. The developed method may not only be used for carnosine analysis in foods, but also in the quality management for dietary supplements containing carnosine. Furthermore, the developed enzymatic method may be applied in a microplate-based assay, and is suitable for high-throughput analysis.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.2116/analsci.21P239.

Acknowledgements This work was supported by the Kogin Regional Economy Promotion Foundation.

Declarations

Conflict of interest The authors declare no conflicts of interest.

References

1. A.R. Hipkiss, J.E. Preston, D.T. Himsworth, V.C. Worthington, M. Keown, J. Michaelis, J. Lawrence, A. Mateen, L. Allende, P.A. Eagles, N.J. Abbott, Ann. N Y. Acad. Sci. 854, 37 (1998)
2. A.F. Mannion, P.M. Jakeman, M. Dunnett, R.C. Harris, P.L. Wil- lan, Eur. J. Appl. Physiol. Occup. Physiol. 64, 47 (1992)
3. H. Abe, E. Okuma, Nippon Shokuhin Kagaku Kogaku Kaishi 42, 827 (1995)
4. H. Abe, Bull. Jpn. Soc. Sci. Fish. 49, 1683 (1983)
5. H. Abe, Biochemistry (Mosc) 65, 757 (2000)
6. M. Suyama, M. Maruyama, J. Biochem. 66, 405 (1969)
7. D. Abraham, J.J. Pisano, S. Udenfriend, Arch. Biochem. Biophys. 99, 210 (1962)
8. J.J. O’Dowd, D.J. Robins, D.J. Miller, Biochem. Biophys. Acta 967, 241 (1988)
9. E.C. Smith, J. Physiol. 92, 336 (1938)
10. N.W. Seidler, G.S. Yeargans, Life Sci. 70, 1789 (2002)
11. R. Kohen, Y. Yamamoto, K.C. Cundy, B.N. Ames, Proc. Natl. Acad. Sci. USA 85, 3175 (1988)
12. L.J. Hobart, I. Seibel, G.S. Yeargans, N.W. Seidler, Life Sci. 75, 1379 (2004)
13. A.A. Boldyrev, G. Aldini, W. Derave, Physiol. Rev. 2013, 93 (1803)
14. S. Gallant, M. Semyono, M. Yuneva, Biochemistry (Mosc) 65, 866 (2000)
15. M. Nishitani, Y. Munekiyo, T. Sugino, O. Kajimoto, Nihon Hokan Daitai Iryo Gakkaishi 6, 123 (2009)
16. B. De Courten, M. Jakubova, M.P. De Courten, I.J. Kukurova, S. Vallova, P. Krumpolec, L. Valkovic, T. Kurdiyova, D. Garzon, S. Barbaresi, H.J. Teede, W. Derave, M. Krssak, G. Aldini, J. Ukropec, B. Ukropcova, Obesity (Silver Spring) 24, 1027 (2016)
17. L. Mora, M.A. Sentandreu, F. Toldrã, J. Agric. Food. Chem. 55, 4664 (2007)
18. M. Mori, D. Mizuno, K. Konoha-Mizuno, Y. Sadakane, M. Kawa- bara, Biomed. Res. Trace Elements 26, 147 (2015)
19. M. Thiruppathi, C.Y. Tsai, T.W. Wang, Y. Tsao, T.H. Wu, J.A. Ho, Anal. Sci. 36, 1119 (2020)
20. K. Uematsu, A. Shinozaki, H. Katano, Anal. Sci. 35, 1021 (2019)
21. M. Teufel, V. Saudek, J.P. Ledig, A. Bernhardt, S. Boullarand, A. Carreau, N.J. Cairns, C. Carter, D.J. Cowley, D. Duverger, A.J. Ganzzhorn, C. Guenet, B. Heinzelmann, V. Laucher, C. Sauvage, T. Smirnova, J. Biol. Chem. 278, 6521 (2003)
22. T. Oku, S. Ando, T. Hayakawa, K. Baba, R. Nishi, K. Shiozaki, S. Yamada, Peptides 32, 648 (2011)
23. H. Komeda, Y. Asano, FEBS J. 272, 3075 (2005)
24. H. Hassall, Anal. Biochem. 35, 335 (1970)
25. H. Tabor, A.H. Mehler, Methods Enzymol. 2, 228 (1955)
26. L. Fanuel, C. Goffin, A. Cheggour, B. Devreese, G. Van Driessche, B. Joris, J. Van Beeumen, J.M. Frêre, Biochem. J. 341, 147 (1999)
27. M.M. Reghler, H. Tabor, Methods Enzymol. 17, 63 (1971)
28. C.B. Klee, K.L. Kirk, L.A. Cohen, P. McPhie, J. Biol. Chem. 250, 5033 (1975)