Superconductivity in Ta$_3$Pd$_3$Te$_{14}$ with quasi-one-dimensional PdTe$_2$ chains

Wen-He Jiao, Lan-Po He, Yi Liu, Xiao-Feng Xu, Yu-Ke Li, Chu-Hang Zhang, Nan Zhou, Zhu-An Xu, Shi-Yan Li & Guang-Han Cao

We report bulk superconductivity at 1.0 K in a low-dimensional ternary telluride Ta$_3$Pd$_3$Te$_{14}$ containing edge-sharing PdTe$_2$ chains along crystallographic b axis, similar to the recently discovered superconductor Ta$_4$Pd$_3$Te$_{16}$. The electronic heat capacity data show an obvious anomaly at the transition temperature, which indicates bulk superconductivity. The specific-heat jump is $\Delta C / \gamma (T_c) \approx 1.35$, suggesting a weak coupling scenario. By measuring the low-temperature thermal conductivity, we conclude that Ta$_3$Pd$_3$Te$_{14}$ is very likely a dirty s-wave superconductor. The emergence of superconductivity in Ta$_3$Pd$_3$Te$_{14}$ with a lower T_c compared to that of Ta$_4$Pd$_3$Te$_{16}$ may be attributed to the lower density of states.

Superconductivity (SC) in low-dimensional systems attracts sustained attention in SC community. The discovery of first layered cuprate superconductor (La, Ba)$_2$CuO$_4$, has set off a wave of exploring high-T_c superconductors. Since after, a number of new superconductors with low dimensional structures, such as quasi-two-dimensional (Q2D) strontium ruthenate, ferroarsenides, bismuth oxysulfides, quasi-one-dimensional (Q1D) transition-metal chalcogenides, ternary tellurides, and newly discovered chromium-based compounds, were reported to display the features of novel SC. The spin (charge) fluctuations, strong electron-electron correlations, or metal-insulator boundaries among low-dimensional systems constitute the newly strategic prerequisites to explore high-T_c superconductors. Generally, the presence of some transition metal elements among them, which bear strong electron correlations, are believed to play a significant role in producing the exotic pairing glue.

Owing to the inherent nature of transition metal chalcogenides, the low-dimensional structures and rich physical properties, e.g., density-wave instability, thermoelectricity, and SC, are prevalent among them. The tellurides, as compared with sulfides or selenides, are quite special in terms of its structures and properties because of the diffuse nature of the tellurium orbitals, and thus far rarely studied. Recently, we reported the observation of SC with $T_c = 4.6$ K in a ternary telluride Ta$_4$Pd$_3$Te$_{16}$ with Q1D PdTe$_2$ chains. The detailed studies of its pairing symmetry were followed in applying the techniques of scanning tunneling microscopy, low-temperature heat capacity and thermal conductivity. The results indicate an anisotropic gap structure with the possible presence of nodes, although electronic structure calculations show the contributions of Pd 4d electrons to the density of states at Fermi level are pretty small.

From a crystal-structure viewpoint, Ta$_3$Pd$_3$Te$_{14}$ also belongs to a layered compound resulting from the condensation of Pd-based octahedral chains, Ta-based bicapped trigonal prismatic chains, and Ta-based double octahedral chains. If the Ta-based double octahedral chains are replaced by Ta-based single octahedral chains, the condensation of the three different types of chains would form the atomic layer of a new compound Ta$_3$Pd$_3$Te$_{14}$, which was firstly synthesized by Limatta and Ibers in 1980. The major difference between them in structure is well reflected from Fig. 1(f), which shows the projection view of one atomic layer of Ta$_3$Pd$_3$Te$_{14}$ and Ta$_4$Pd$_3$Te$_{16}$ along the b axis. The structural details of Ta$_3$Pd$_3$Te$_{14}$ are discussed below. Then, considering the close structural relationship of this material with the superconductor Ta$_4$Pd$_3$Te$_{16}$, a natural question is whether the former is as well a superconductor.

1Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China. 2State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China. 3Department of Physics, Zhejiang University, Hangzhou 310027, China. 4Department of Physics, Hangzhou Normal University, Hangzhou 310036, China. 5Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093, China. Correspondence and requests for materials should be addressed to W.-H.J. (email: whjiao@zust.edu.cn) or S.-Y.L. (email: shiyan_li@fudan.edu.cn)
In this paper, we report the observation of SC with $T_c = 1.0\,\text{K}$ in layered ternary telluride $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$ with Q1D PdTe_2 chains. The bulk SC was identified by the electronic heat capacity data, which shows an obvious anomaly at the transition temperature. The specific-heat jump $\Delta C/(\gamma n T_c)$ ≈ 1.35 indicates $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$ may be a weakly coupled superconductor. In addition, the result of low-temperature thermal conductivity measurements of $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$ crystal down to 80 mK suggests a dirty s-wave superconducting gap. We summarize our results by discussing the similarities and differences between the closely related superconductors of $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$ and $\text{Ta}_4\text{Pd}_3\text{Te}_{16}$, and compiled an extended list of their physical properties.

Results

Single crystals of $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$ were grown using a self-flux method, rather than the vapor transport method previously used21. Shiny flattened needle-like crystals with a typical size of $2 \times 0.15 \times 0.1\,\text{mm}^3$ were harvested, as shown in Fig. 1(a). The X-ray diffraction (XRD) pattern at 298 K by a conventional $0-2\theta$ scan for the crystals lying on a sample holder is shown in Fig. 1(b), in which we can observe only multiple peaks arising from the diffraction from (101) planes, consistent with the layered crystal structure of $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$. $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$ crystallizes in space group $\text{P}2_1/m$ with a monoclinic unit cell of $a = 14.088(19)\,\text{Å}$, $b = 3.737(3)\,\text{Å}$, $c = 20.560(19)\,\text{Å}$, and $\beta = 103.73(5)^\circ$ at 123 K21. As seen in Fig. 1(d), the layered slabs compose of successively six different chains of three different types. The three types of chains are Ta-based bicapped trigonal prismatic chains, Pd-based octahedral chains, and Ta-based octahedral chains, respectively. The arrangement of the chains, in such a way that every Pd-based chain has two adjacent Ta-based chains and vice versa, constitute the layered slab as clearly depicted in Fig. 1(e). For simplicity, hereafter we define the a' axis as to be parallel to the [101] direction and the c' axis as to be perpendicular to the (010) plane. The interplane spacing at room temperature is determined to be 6.418 Å, and this value is well consistent with the calculated one of 6.397 Å using the above mentioned parameters at 123 K, when taking into account the temperature difference. To compare the obvious difference of the interlayer spacing of $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$ and $\text{Ta}_4\text{Pd}_3\text{Te}_{16}$, we plot the third reflection together, namely (-606) and (-309) peaks, in the inset of Fig. 1(b), from which one can easily find the interplane spacing of $\text{Ta}_3\text{Pd}_3\text{Te}_{14}$ is $\sim 2\%$ smaller than that of $\text{Ta}_4\text{Pd}_3\text{Te}_{16}$.

Figure 2. **Electrical transport and superconducting phase-diagram.** (a) Temperature dependence of electronic resistivity of Ta₃Pd₃Te₁₄ crystal (Sample 1) along the b axis. (b) shows the power-law fit to ρ₀ = ρ₀ + ATⁿ in the data range of 2 and 25 K. (c) zooms into the low-temperature range to clearly show the superconducting transition. (d) The low-temperature resistivity in fields H || cʰ up to 0.1 T, from which the upper critical field (Hc₂) is derived. (e) The red dashed line represents the Werthamer-Helfand-Hohenberg (WHH) fitting. (f) The extracted upper critical field Hc₂ of Ta₃Pd₃Te₁₄ crystal (Sample 2) for different field orientations.

full width at half-maximum is only 0.05°, indicating the high quality of the crystals. The chemical composition determined by an energy-dispersive X-ray spectroscopy (EDS), are collected in a number of crystals, and the average results confirm that composition of the crystals is the stoichiometric Ta₃Pd₃Te₁₄ within the measurement errors. The SEM image, shown in the upper right corner of Fig. 1(c), has a morphology with stripes along the b axis (chain direction), consistent with the preferential crystal growth along the chain direction.

Figure 2(a) shows temperature dependence of electronic resistivity along the b axis (ρ₀) for the Ta₃Pd₃Te₁₄ crystal (Sample 1). The larger room temperature resistivity (1.18 μΩ cm), than that (0.61 μΩ cm) of Ta₄Pd₃Te₁₆, indicates Ta₃Pd₃Te₁₄ is less conductive, consistent with the previous reports₂¹,₂². The temperature dependence of resistivity shows a metallic behavior without any obvious anomaly down to Tc = 1.0 K, at which a sharp superconducting transition appears, as clearly depicted in Fig. 2(c). The value of Tc is 3.6 K less than that of Ta₄Pd₃Te₁₆. The onset, midpoint, and zero-resistance temperatures are 1.02 K, 0.94 K, and 0.81 K, respectively, and the superconducting transition width ΔTc is 0.13 K. The ρ₀(T) data between 2 and 25 K can be well fitted by to ρ₀ = ρ₀ + ATⁿ, giving a residual resistivity ρ₀ = 5.13 μΩ cm and n = 2.83 [Fig. 2(b)]. The value of n more than 2 was also observed in Ta₄Pd₃Te₁₆, which was attributed to the phonon-assisted s-d interband scattering. The residual resistivity ratio (RRR) is estimated to be RRR = ρ₀(300 K)/ρ₀ ~ 23, similar to that of Ta₄Pd₃Te₁₆ (see Table 1).

Figure 2(d) plots the low-temperature resistivity of Ta₃Pd₃Te₁₄ crystal (Sample 1) for H || cʰ up to 0.1 T. Upon increasing the field, the superconducting transition is suppressed to lower temperature. The extracted upper critical fields Hc₂(T) for H || cʰ, determined by using 90% criterion, i.e., the field at which ρ₀ reaches 90% of the normal state resistivity, are shown in Fig. 2(e). We applied the isotropic one-band Werthamer-Helfand-Hohenberg (WHH) formalism to roughly estimate Hc₂. As can be seen in Fig. 2(e), Hc₂ for H || cʰ is estimated to be 0.075 T at zero temperature with the derived Maki parameter α = 1.7 and spin-orbit coupling parameter λso = 1.2. However, by employing the orbital limiting field μ0Hc₂orb = −0.69 μ0μd(Hc₂/ΔTc)Tc = 0.1 T in WHH model and the BCS Pauli-limiting field μ0Hc₂BCS = 1.84Tc = 1.84 T, the Maki parameter α = √μ0Hc₂/ΔTc is calculated to be 0.077. This inconsistence between the calculated value of α and the fitted one may originate from the anisotropic effect in Ta₃Pd₃Te₁₄. The extracted Hc₂ with fields applied along a’, b, and c’ directions for Sample 2 are shown in Fig. 2(f), and the resistivity data of Sample 2 are not shown here. By roughly linear extrapolations, the anisotropic Hc₂ at zero temperature are estimated to be 0.21, 0.27 and 0.086 T for the a’, b and c’ directions. Using the Ginzburg-Landau formula, the superconducting coherence length ξ are calculated to be 545, 703 and 223 Å for a’, b and c’ directions, respectively, which are much larger than those of its analog Ta₄Pd₃Te₁₆. The SC in Ta₃Pd₃Te₁₄ is anisotropic but as well three-dimensional in nature, similar to other superconductors with Q1D
Table 1. Comparison of some physical parameters of the superconductors Ta₃Pd₃Te₁₄ (present work) and Ta₄Pd₃Te₁₆²₀ and Ta₄Pd₃Te₁₆¹⁷,¹⁹,²⁰. RRR, ΔTₚ, ΔH₀, γ, γ₁, λ, λ₁, N₀(E_F), and ΔC/γ₂T_c denote the residual resistivity ratio, superconducting transition temperature, transition width, upper critical field, electronic specific-heat coefficient, Debye temperature, electron-phonon coupling constant, electron-nonphonon coupling constant, density of states at Fermi level, and dimensionless specific-heat jump, respectively.

Physical parameters	Ta₃Pd₃Te₁₄	Ta₄Pd₃Te₁₆
RRR	23	26
T_c (K)	1.0	4.6
ΔT_c (K)	0.13	0.76
ρ(T)/ρ₀ (Ω cm)	-0.14	-0.44
ρₚ(T)/ρₚ₀ (Ω cm)	0.075	3.3
γₑ (mJ mol⁻¹ K⁻²)	28.2	46.1
Θ_D (K)	151.6	148.8
γ₁	0.51	0.77
λ₁	1.99	1.53
λ₁h	1.53⁶	0.12⁶
N₀(E_F) (eV⁻¹ fu⁻¹)	3.4⁹	9.6¹⁹, 8.5¹⁹
ΔC/γ₂T_c	1.35	1.40

Figure 3. Temperature dependence of specific heat. (a) C/T vs T, in which the red dashed line represents the fit with the formula C/T = γₑ + βT² for the normal-state data from 1.2 to 6.5 K. (b) The electronic specific heat divided by temperature Cₑ/T in the superconducting state, where Cₑ/T = C - βT³.

characteristics, e.g., Ta₃Pd₃Te₁₄¹⁷, Nb₃Pd₃Se₇²⁴, and Nb₄Pd₃Se₅²⁵, since the interchain coherence length ξₑ and ξₜₑ are much larger than the distance between two arbitrarily adjacent chains.

The low-temperature specific heat data of Ta₃Pd₃Te₁₄ crystals, plotted as C/T vs T, are shown in Fig. 3(a). We fit the normal-state data from 1.2 to 6.5 K, employing the usual formula C/T = γₑ + βT², which is represented as the red dashed line. The fitting yields an electronic heat capacity coefficient γₑ = 28.2 ± 0.9 mJ mol⁻¹ K⁻², and a phononic coefficient β = 11.14 ± 0.04 mJ mol⁻¹ K⁻⁴. The calculated Debye temperature Θ_D = 151.6 K is close to the value of Ta₄Pd₃Te₁₆ consistent with the fact that the structures of two tellurides are closely related. However, the value of extracted coefficient γₑ is nearly 40% smaller than that of Ta₄Pd₃Te₁₆. Using the relation N₀(E_F) = 3γ₁/κₕ₀²π² for noninteracting electron systems, where κₕ₀ is the Boltzmann constant, we estimated the density of states at the Fermi level N₀(E_F) to be about 11.9 ± 0.8 eV⁻¹ fu⁻¹, which is 3.5 times that of the bare density of states N₀₀(E_F), obtained from the previous band-structure calculations. Therefore, the larger renormalization factor [N₀(E_F)/N₀₀(E_F) = 1 + λ], than that for Ta₄Pd₃Te₁₆ suggests much stronger electron-electron correlations in Ta₃Pd₃Te₁₄, although the recent band-structure calculations are concluded with a higher N₀₀(E_F) = 9.6 eV⁻¹ fu⁻¹ for Ta₄Pd₃Te₁₆ thus resulting in a much lower renormalization factor. To extract the electron-nonphonon coupling strength λ₁ₜₑ in λ, we estimate the electron-phonon coupling constant λ₁ₜₑ by employing the McMillan formula, λ₁ₜₑ = [1.04 + μ l'(θ_D/1.45T_c)]/[1 - 0.62μ l'(θ_D/1.45T_c) - 1.04], where the Coulomb repulsion parameter μ is empirically set to be 0.13. The estimated value of λ₁ₜₑ is 0.51, a little bit smaller than that of the superconductor Ta₄Pd₃Te₁₆. However, the resultant constant λ₁ₜₑ = λ - λ₁ₜₑ = 1.99 is much larger than that of Ta₄Pd₃Te₁₆, possibly indicating much larger electron correlations in the former compound.
Discussion

We discuss the electronic heat capacity C_{el} of Ta$_3$Pd$_3$Te$_{14}$ crystals in low-temperature range, obtained by $C_{el} = C - \beta T$. As can be seen in Fig. 3(b), a characteristic superconducting jump (ΔC_{el}) shows up around ~1 K, confirming the bulk SC. The $\Delta C_{el}/T_c$ is estimated to be 38.0 mJ mol$^{-1}$K$^{-2}$ and the midpoint temperature of the thermodynamic transition is 1.0 K, consistent with the superconducting transition in low-temperature resistivity.

The dimensionless specific-heat jump can be calculated to be 1.35, smaller than the theoretical value (1.43) of the well-known BCS theory, indicating Ta$_3$Pd$_3$Te$_{14}$ may be a weakly coupled superconductor. Unfortunately, due to the insufficient data points, we are unable to fit $\Delta C_{el}(T)$ with standard gap functions to give valuable information about the gap symmetry.

To shed light on the superconducting gap structure, we measured the thermal conductivity of Ta$_3$Pd$_3$Te$_{14}$ single crystal (Sample 2) in zero and magnetic fields (along c^* direction). The dashed lines are fits to the formula $\kappa/T = \kappa_0 + bT$. The black dashed line is the normal-state Wiedemann-Franz law expectation L_0/ρ_0. (b) The field dependence of κ/T at 0.1 K. (c) Normalized residual linear term κ_0/T as a function of normalized field H/H_c for the clean s-wave superconductor Nb36, the dirty s-wave superconducting alloy InBi32, the multi-band s-wave superconductor NbSe$_2$37, and an overdoped d-wave cuprate superconductor Tl-220138.

Figure 4. Low-temperature thermal conductivity data. (a) Low-temperature thermal conductivity of Ta$_3$Pd$_3$Te$_{14}$ crystal (Sample 2) in zero and magnetic fields applied along c^* direction. The dashed lines are fits to the formula $\kappa/T = \kappa_0 + bT$. The black dashed line is the normal-state Wiedemann-Franz law expectation L_0/ρ_0. (b) The field dependence of κ/T at 0.1 K. (c) Normalized residual linear term κ_0/T as a function of normalized field H/H_c for the clean s-wave superconductor Nb36, the dirty s-wave superconducting alloy InBi32, the multi-band s-wave superconductor NbSe$_2$37, and an overdoped d-wave cuprate superconductor Tl-220138.

Figure 4. Low-temperature thermal conductivity data. (a) Low-temperature thermal conductivity of Ta$_3$Pd$_3$Te$_{14}$ crystal (Sample 2) in zero and magnetic fields applied along c^* direction. The dashed lines are fits to the formula $\kappa/T = \kappa_0 + bT$. The black dashed line is the normal-state Wiedemann-Franz law expectation L_0/ρ_0. (b) The field dependence of κ/T at 0.1 K. (c) Normalized residual linear term κ_0/T as a function of normalized field H/H_c for the clean s-wave superconductor Nb36, the dirty s-wave superconducting alloy InBi32, the multi-band s-wave superconductor NbSe$_2$37, and an overdoped d-wave cuprate superconductor Tl-220138.

The dimensionless-specific heat jump can be calculated to be 1.35, smaller than the theoretical value (1.43) of the well-known BCS theory, indicating Ta$_3$Pd$_3$Te$_{14}$ may be a weakly coupled superconductor. Unfortunately, due to the insufficient data points, we are unable to fit $\Delta C_{el}(T)$ with standard gap functions to give valuable information about the gap symmetry.

To shed light on the superconducting gap structure, we measured the thermal conductivity of Ta$_3$Pd$_3$Te$_{14}$ single crystal (Sample 2) in zero and magnetic fields (along c^* direction), the results of which are plotted as κ/T vs T in Fig. 4(a). Since all the curves presented in Fig. 4(a) are roughly linear as previously reported in Ta$_4$Pd$_3$Te$_{16}$18 and some iron-based superconductors27,28, we fit all the curves to $\kappa/T = a + bT^{\alpha-1}$ by fixing α to 2. The two terms aT and $bT^{\alpha-1}$ represent contributions from electrons and phonons, respectively29,30. From the curve in magnetic field $H = 0.09$ T, which is close to the critical field $H_c(0)$ for $H||c^*$, one can see that the obtained κ_0/T roughly meets the normal-state Wiedemann-Franz law expectation $\kappa_0/T = L_0/\rho_0 = 2.44$ mW K$^{-2}$ cm$^{-1}$. Here, L_0 is the Lorenz number 2.45×10^{-8} W K$^{-2}$ and $\rho_0 = 10.04 \mu\Omega$ cm is the residual resistivity of Sample 2. The verification of the Wiedemann-Franz law in the normal state demonstrates that our thermal conductivity measurements are reliable. For the curves in $H = 0$ and 0.01 T, however, the linear fittings give two negative values, $\kappa_0/T = -0.24$ and -0.16 mW K$^{-2}$ cm$^{-1}$, respectively. These negative κ_0/T have no physical meaning, just because the temperature
of our measurement is not low enough, comparing to the T_c. Down to lower temperature, the curve in zero field should deviate from the linear behavior.

Since we can not extrapolate κ_0/T at low field, we plot the field dependence of κ/T at $T = 0.1 T_c$, well below T_c, in Fig. 4(b) to get more information about the superconducting gap structure of Ta$_4$Pd$_3$Te$_{16}$. One can see that the increase of κ/T at low field is rather slow, and the curve is similar to that of dirty s-wave superconducting alloy InBi$_2$, which is shown in Fig. 4(c). By using the estimated value of the coherence length ξ along b direction, the formula $\xi = 0.18 \hbar v_F/\kappa_0 T_c$ gives the Fermi velocity $v_F = 5.11 \times 10^5$ m s$^{-1}$. Then, according to the relationship $\kappa_0 T_c/\gamma = \Delta/\sqrt{3}$, the electron mean free path is estimated to be $\ell_e = 322 \AA$, which is much smaller than the b-direction ξ. This result indicates that the s-wave superconductor, Ta$_4$Pd$_3$Te$_{14}$, is very likely a dirty s-wave superconductor.

It is instructive to compare the physical properties of the two structural closely related compounds of Ta$_3$Pd$_3$Te$_{14}$ and Ta$_4$Pd$_3$Te$_{16}$ which we summarize in Table 1. Both of the two tellurides show Q1D characteristic with Q1D PdTe$_2$ chains. The larger RRR could account for the much sharper superconducting transition for Ta$_3$Pd$_3$Te$_{14}$. Although T_c of Ta$_4$Pd$_3$Te$_{16}$ is 3.6 K less than that of Ta$_3$Pd$_3$Te$_{14}$, the former compound show much stronger electron correlations, verified by the larger renormalization factor and larger electron-nonphonon coupling strength λ_{nnp}. The small values of both $\Delta C(\gamma T_c)$ and λ_{nnp} indicate Ta$_4$Pd$_3$Te$_{16}$ is a weakly coupled superconductor. In addition, if assuming the Drude model, in which the electron-electron interactions are neglected, is applicable, a superconductor is expected to have a lower T_c for a lower value of Sommerfeld coefficient γT_c, which in this case signifies the lower density of states at Fermi level. This simple conclusion is compatible with the general trend for the above two superconductors. Therefore, the lower T_c in the title compound, may be attributed to the lower density of states at Fermi level. In this sense, by tuning the Fermi level of Ta$_3$Pd$_3$Te$_{14}$ or Ta$_4$Pd$_3$Te$_{16}$ by the way of doping or proper intercalations, the value of T_c may be enhanced. By the way, in recently discovered PdTe$_2$ or PdS chains based superconductors, there have been several pieces of work that show the evidences of two-gap SC17,34,35. However, our results presented above indicate the new superconductor Ta$_4$Pd$_3$Te$_{16}$ with PdTe$_2$ chains is very likely a fully gapped s-wave one. We have previously reported that Ta$_3$Pd$_3$Te$_{14}$ is possibly a two-gap superconductor with a gap symmetry of $s + \delta$ waves17. Thus, if assuming the reduced part of electronic states at the Fermi level in Ta$_3$Pd$_3$Te$_{14}$ compared to that in Ta$_4$Pd$_3$Te$_{16}$, is primarily due to the reduced contribution from the Pd d states, it would be reasonable to see only a s-wave gap left in the former compound.

Methods

Powders of the elements Ta (99.97%), Pd (99.995%) and Te (99.999%) with a ratio of Ta: Pd: Te = 2: 3: 10 were thoroughly mixed together, loaded, and sealed into an evacuated quartz ampoule. The sample-loaded quartz ampoule is then heated to 1223 K, held for 24 h, and cooled to 723 K at a rate of 5 K/h, followed by furnace cooling to room temperature. The above procedures are similar to that in growing Ta$_4$Pd$_3$Te$_{16}$ crystals6. The chemical composition is checked by an EDS with an AMETEK EDAX (Model Octane Plus) spectrometer, equipped in a δ-wave gap left in the former compound.

References

1. Bednorz, J. G. & Müller, K. A. Possible high T_c superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189 (1986).
2. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 332 (1994).
3. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O$_x$F$_{1-x}$]FeAs (x = 0.05–0.12) with T_c of 26 K. J. Am. Chem. Soc. 130, 3296 (2008).
4. Mizuguchi, Y. et al. Bi$_2$Se$_3$-based layered superconductor Bi$_2$O$_2$S$_2$, Phys. Rev. B 86, 220510(R) (2012).
5. Zhang, Q. et al. Superconductivity with extremely large upper critical fields in Nb$_3$Pd$_4$S$_{13}$, Sci. Rep. 3, 1446 (2013).
6. Ito, W. H. et al. Superconductivity in a layered Ta$_3$Pd$_3$Te$_{14}$ with PdTe$_2$ chains, J. Am. Chem. Soc. 136, 1284 (2014).
7. Goyal, R., Tiwari B., Jha, R. & Awana, V. P. S. Superconductivity at 4.4 K in PdTe$_2$-chains of a Ta-based compound, J. Supercond. Nov. Magn. 28, 1195 (2015).
8. Bao, J. K. et al. Superconductivity in quasi-one-dimensional K$_2$Cr$_3$As$_2$ with significant electron correlations. Phys. Rev. X 5, 011013 (2015).
9. Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589 (2011).
10. Yashiro, T., Youichi, Y. & Masao, O. Orthorhombic superconductivity in Na$_2$CoO$_2$H$_2$O due to charge fluctuation. J. Phys. Soc. Jpn. 73, 319 (2004).
11. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 88, 033620 (2013).
12. Leibfried, S. et al. Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors. Phys. Rev. Lett. 85, 5420 (2000).
13. Mitchell, K. & Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 102, 1929 (2002).
14. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117 (1975).
15. Tritt, T. M. Holey and unholey semiconductors. Science 283, 804 (1999).
16. Du, Z. Y. et al. Anisotropic superconducting gap and elongated vortices with caroli-de gennes-matricon states in the new superconductor Ta₃Pd₃Te₄. Sci. Rep. 5, 9408 (2015).
17. Jiao, W. H. et al. Multiband superconductivity in Ta₃Pd₃Te₄ with anisotropic gap structure. J. Phys.: Cond. Matt. 27, 325701 (2015).
18. Pan, J. et al. Nodal superconductivity and superconducting dome in the layered superconductor Ta₃Pd₃Te₄. Phys. Rev. B 92, 180505(R) (2015).
19. Singh, D. J. Multiband superconductivity of Ta₃Pd₃Te₄ from Te p states. Phys. Rev. B 90, 144501 (2014).
20. Alemany, P., Jobic, S., Brec, R. & Canadell, E. Oxidation states, transport properties, and Te−Te short contacts in the ternary transition metal tellurides Ta₃Pd₃Te₄ and Ta₃Pd₃Te₅. Inorg. Chem. 36, 5050 (1997).
21. Limatina, E. W. & Ibers, J. A. Synthesis, structures, and conductivities of the new layered compounds Ta₃Pd₃Te₄ and Ta₃NiTe₅. J. Solid State Chem. 78, 7 (1989).
22. Mar, A. & Ibers, J. A. Temperature, crystal structure and electrical conductivity of a new layered ternary telluride Ta₃Pd₃Te₄. J. Chem. Soc., Dalton Trans. 6, 639 (1991).
23. Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field, Hc₁. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295 (1966).
24. Zhang, Q. R. et al. Anomalous metallic state and anisotropic multiband superconductivity in Nb₃PdₓSe₅. Phys. Rev. B 88, 024508 (2013).
25. Khim, S. et al. Enhanced upper critical fields in a new quasi-one-dimensional superconductor NbPdSe, New J. Phys. 15, 123031 (2013).
26. McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).
27. Dong, J. K. et al. Quantum criticality and nodal superconductivity in the Fe₆ base superconductor KFe₂As₂. Phys. Rev. Lett. 104, 087005 (2010).
28. Qiu, X. et al. Robust nodal superconductivity induced by isovalent doping in Ba(Fe₁₋ₓRuₓ)₂As₂ and BaFe₂(As₁₋ₓPₓ)₂. Phys. Rev. X 2, 011010 (2012).
29. Li, S. Y. et al. Low-temperature phonon thermal conductivity of single-crystalline Nd₆CuO₄: Effects of sample size and surface roughness. Phys. Rev. B 77, 134501 (2008).
30. Sutherland, M. et al. Thermal conductivity across the phase diagram of cuprates: Low-energy quasiparticles and doping dependence of the superconducting gap. Phys. Rev. B 67, 174520 (2003).
31. Shakeripour, H., Petrovic, C. & Taillefer, L. Heat transport as a probe of superconducting gap structure. New J. Phys. 11, 055065 (2009).
32. Willis, J. O. & Ginsberg, D. M. Thermal-conductivity of superconducting alloy-films in a perpendicular magnetic-field. Phys. Rev. B 14, 1916 (1976).
33. See, for example, Tinkham, M. Introduction to superconductivity (McGraw-Hill, New York, 1975).
34. Goyal, R., Tiwari, B., Jha, R. & Awana, V. P. S. Spectroscopic evidence for two-gap superconductivity in the quasi-one dimensional chalcogenide Nb₃PdₓSe₅. Phys. Rev. B 94, 024508 (2011).
35. Park, E. et al. Electron spin and spin-orbit effects. Phys. Rev. Lett. 109, 011004 (2012).
36. Lowell, J. & Sousa, J. B. Mixed-state thermal conductivity of type II superconductors. J. Low Temp. Phys. 3, 65 (1970).
37. Boaknin, E. et al. Heat conduction in the vortex state of NbSe₂: Evidence for multiband superconductivity. Phys. Rev. B 90, 117003 (2003).
38. Proust, C., Boaknin, E., Hill, R. W., Taillefer, L. & Mackenzie, A. P. Heat transport in a strongly overdoped cuprate: Fermi liquid and a pure d-wave BCS superconductor. Phys. Rev. Lett. 89, 147003 (2002).

Acknowledgements
This work was supported by the National Science Foundation of China (Grand Nos 11504329 and 1190023), the National Basic Research Program (No. 2011CB90103), the Fundamental Research Funds for the Central Universities of China, and Zhejiang Provincial Natural Science Foundation of China (Grand No. LQ15A040005).

Author Contributions
W.H.J., Y.L. and C.H.Z. synthesized the crystals of Ta₃Pd₃Te₁₄. W.H.J., X.F.X., Y.K.L. and N.Z. performed transport measurements and heat-capacity measurement. The low-temperature thermal conductivity measurements were performed by L.P.H. W.H.J., S.Y.L., G.H.C. and Z.A.X. analyzed the whole data. W.H.J. and S.Y.L. wrote the main manuscript text. All authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Jiao, W.-H. et al. Superconductivity in Ta₃Pd₃Te₁₄ with quasi-one-dimensional PdTe₂ chains. Sci. Rep. 6, 21628; doi: 10.1038/srep21628 (2016).