The *in vivo* and *in vitro* Roles of Epithelial Pattern Recognition Receptors in Pneumococcal Infections

Seul Gi Shin, Seo Hyun Koh and Jae Hyang Lim*

Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea

Streptococcus pneumoniae, also called pneumococcus, is a major cause of infectious disease in human. Pneumococcus resides in the nasopharynx as an upper respiratory commensal, and most of pneumococcal colonizations are asymptomatic in immunocompetent individuals. When nasopharyngeal mucosal homeostasis is disrupted, pneumococcus migrates into middle ear and lower respiratory tract and causes detrimental colonization. In this regard, the epithelial cells of middle ear and lung act as first line of defense against pneumococcus to prevent invasive pneumococcal diseases. Respiratory epithelial cells express various cell-surface and intra-cellular receptors sensing microbial pathogens and respond to sensed pathogens by triggering intra-cellular signaling pathways and inducing pathogen-specific innate immune responses. Various epithelial cell-surface and intra-cellular receptors, such as Toll-like receptors (TLRs), Nod-like receptors (NLRs), intracellular DNA sensing receptors, and scavenger receptors (SRs), participate in sensing of pneumococcus, and the activation of these receptors by pneumococcal components induces anti-pneumococcal innate immune responses including epithelial apoptosis and inflammatory cytokine/chemokine expressions. Epithelial sensing of pneumococcus is a critical step for setting an early defense against pneumococcal infection, and also is required to recruit and activate innate immune cells and trigger adaptive immunity.

Key Words: *Streptococcus pneumoniae*, Pneumococcus, Epithelial cell, Pattern recognition receptor, Inflammation

INTRODUCTION

Streptococcus pneumoniae, also called pneumococcus, is a gram-positive, facultative anaerobic bacterium, which was first isolated by Louis Pasteur in 1881 (1). Since the first identification of pneumococcus, pneumococcal pathogenicity has been extensively studied over the past 100 years, resulting in developing somewhat effective therapeutics and vaccines. Despite a significant progress in understanding the microbiological and immunological characteristics of pneumococcal infections, it causes about 1.6 million deaths each year, including 0.7 to 1 million deaths in young children under the age 5 (2). Quickly growing resistance to effective antibiotics and limited efficacy of currently available vaccines may in part account for such a high mortality.

Some pneumococci are surrounded with complex polysaccharide capsule, and over 90 different serotypes have been identified based on the antigenic differences in their capsular polysaccharides (3, 4). Further studies found that capsular polysaccharide acts as a key pathogenic factor during invasive pneumococcal diseases (IPDs), but only a
limited number of serotypes contribute to develop IPDs (5, 6). Although there are geographical variations, the 10 most common serotypes are responsible for most IPDs worldwide, and it makes possible to develop pneumococcal conjugate vaccine (PCV), which is effective at preventing IPDs in children (7–10). The use of PCV-7, which contains 7 the most prevalent IPD serotypes in young children, was effective in reducing overall prevalence of and mortality due to IPDs. This effect, however, was temporary and prevalence of overall pneumococcal disease has not been decreased over time mainly due to increased pneumococcal infections with non-vaccine serotypes (11–13). Although PCV-7 has been upgraded by adding 6 newly emerging serotypes, namely PCV-13, it still contains only 13 out of over 90 serotypes (14, 15). Anyone can expect new serotypes to emerge as pathogenic strains in near future. Therefore, extensive researches are ongoing in developing universally effective vaccines for all the serotypes and also even effective for un-encapsulated, nontypeable pneumococcus (16–18). Even if an effective vaccine is available, there is still a big concern that vaccination will not be effective in immunocompromised patients, who are highly susceptible to IPDs and who grow dramatically in number along with advances in medical science (19–21). There is also a concern that underlying mechanism responsible for an emerging of serotype switching has not been fully understood yet.

In the meantime, although many people carry pneumococcus in their nasopharynx, most of the people carry pneumococcus as part of their normal flora and are generally asymptomatic (22, 23). However, some people develop detrimental pneumococcal colonization. Although many risk factors causing detrimental colonization of pneumococcus have been reported including pneumococcal pathogenic factors and host factors down-regulating anti-pneumococcal defense responses, the underlying molecular mechanisms by which pneumococcus develops detrimental, life-threatening colonization has also not been fully understood (24–27). Taken together, it is required to develop novel therapeutic strategies against pneumococcal infections based on the understanding of immunophysiology of pneumococcal infections.

Epithelial sensors of pneumococcus

Microbial pathogens, which migrate to the lung, first come in contact with alveolar epithelium. In this regard, alveolar epithelial cells play critical roles for an early defense against respiratory microbial pathogens by sensing pathogens and providing pathogen-specific anti-microbial defense (28–30). Since the first discovery of Toll-like receptor 4 (TLR4) as a receptor for lipopolysaccharides (LPS), a diverse family of pattern recognition receptors (PRRs) for pathogen associated molecular patterns (PAMPs) have been found, which includes membrane associated TLRs, cytoplasmic NOD-like receptors (NLRs) and RIG-I like receptors (RLRs), and scavenger receptors (SRs) (31–33). Pneumococcus is also sensed by alveolar epithelial cells via multiple PRRs, and sensing of pneumococcus by these cells is a critical step to combat against pneumococcal infections. There is a growing body of research data suggesting specific PRRs as epithelial sensors for pneumococcus (34, 35).

Type 1 transmembrane protein TLRs sense a diversity of microbial products, PAMPs. To date, 10 human Toll-like receptors (TLR1 to 10) and 12 mouse TLRs (Tlr1 to 9, and Tlr11 to 13) have been identified (31, 33). Human respiratory tract epithelium expresses all 10 known human TLRs (TLR1-10) on the apical surface (TLR1, 2, 4, 5, 6, 9), on the basolateral surface (TLR4, 5), and also on the endosomal membrane (TLR3, 4, 7, 8) (36–39). It is interesting to know that expression of TLR5 has been known to be exclusively limited to the basolateral surface of epithelial cells in gut, but alveolar epithelial TLR5 seems to be also expressed on the apical surface following stimulation of cells with its ligand flagellin (40, 41). Moreover, expression of TLR9 is limited to the cytoplasm in immune cells, but apical TLR9 expression was also found in alveolar epithelial cells (37, 42, 43). Such distinctive findings on the experssional pattern of TLRs in alveolar epithelial cells suggest a possible existence of alveolar epithelial specific regulation and role of PRRs.

Multiple pneumococcal components have been found as
ligands for TLRs, including peptidoglycan (PGN), lipoteichoic acid (LTA), pneumococcal capsular polysaccharides (PCP), RgaA oligomer of type 1 pilus, pneumolysin (PLY), ClpP, and unmethylated CpG DNA (44–50). Among many alveolar epithelial TLRs, TLR2 seems to be a main receptor for pneumococcal PAMPs, but the in vivo function of TLR2 in regulating pneumococcal infections is still under debate. Pneumococcal cell wall, which contains LTA and PGN, is recognized by TLR2 with help from co-receptors and adaptors, TLR1, LPS binding protein (LBP), CD14, and CD36 (45–47, 49, 50). Treatment of cell wall active antibiotics, such as β-lactam antibiotics, thus was known to increase pneumococcal cell wall-mediated activation of TLR2 signaling pathways, probably by releasing active components of PGN and LTA (48, 51). There is no doubt in the concept that TLR2 senses pneumococcal LTA. The idea that TLR2 is a receptor for PGN, however, has been challenged by the study of Travassos et al., which showed that the activation of TLR2 by PGN is due to contaminated gram-negative lipoprotein or gram-positive LTA (52). Further studies by multiple research groups, however, showed clear role of TLR2 for sensing PGN. TLR2 also has been found to serve as a receptor for pneumococcal capsular polysaccharide and RgaA oligomer of pneumococcal type 1 pilus (45, 49).

Following finding of TLR2 as a major receptor for pneumococcal PAMPs, various degrees of animal studies have been conducted in TLR2 knock out (KO) mice to seek the in vivo roles of TLR2 in pneumococcal infections. In mice models of pneumococcal pneumonia, TLR2 KO mice showed modest or no defect on the responses to pneumococcal infections, which results in no differences on pneumococcal clearance or survival rate between TLR2 KO and wild-type (WT) mice following pulmonary pneumococcal infections (53–55). However, in mice models of meningitis TLR2 KO mice showed severe defects in controlling pneumococcal growth, which causes development of more severe forms of meningitis and enhancement in lethality (56–59). Such an indispensable role of TLR2 in defending against pneumococcal infections was also found in mice models of otitis media. TLR2 KO mice showed enhanced tissue damage, uncontrolled pneumococcal outgrowth, enhanced dissemination of pneumococcus to the circulation, and higher lethality during pneumococcal otitis media (60, 61).

Human studies on the role of TLR2 in pneumococcal infections also showed such controversial results. The impact of three most common TLR2 polymorphisms (R557H, P631H, and R753Q) on pneumococcal infections was studied to seek the in vivo role of TLR2. Study by Telleria-Orriols JJ et al. found a significant association of TLR2-R753Q polymorphism with pneumococcal meningitis, but studies by other groups found no association of these 3 polymorphisms of TLR2 with pneumococcal diseases (62–66). However, Berenson CS et al. showed that chronic obstructive pulmonary disease (COPD) patients, who are commonly prone to pneumococcal infections, showed reduced TLR2 expression (67). Studies by Fallah MP et al. and Boyd AR et al. also suggest that enhanced pneumococcal pathogenesis by aging is due to defect in TLR2 signaling, which results in increased pneumococcal growth and mortality (68, 69). Such controversial findings from the in vivo studies on the role of TLR2 in pneumococcal infections may be explained in part by coordinated sensing of pneumococcal PAMPs by multiple PRRs and by complex activation of multiple cellular pathways by TLR2.

Although some of animal and human studies did not find exclusive roles of TLR2 in regulating pneumococcal growth and mortality, these studies still observed defects in early inflammatory responses in TLR2 KO mice (70). Sensing of pneumococcal components by TLR2 activates multiple intracellular signalings, resulting in expression of pro- and anti-inflammatory mediators, activation of cellular apoptosis, and modulation of epithelial barrier function (71–73). Although deficiency of TLR2 seems to be compensable in not severe forms of pneumococcal infections, we still observe the requirement of TLR2 for controlling severe pneumococcal infections, such as meningitis (56–59). Thus, it is suggested that TLR2 acts as a receptor for pneumococcal PAMPs, and sensing of pneumococcus by TLR2 is more likely to control severe forms of pneumococcal infections not only by regulating epithelial immune/
inflammatory responses but also by preventing pneumococcal dissemination into circulation.

Since the observation of reduced survival in pneumococcus-infected TLR4-defective C3H/HeJ mice (74), the roles of TLR4 in sensing pneumococcal PAMPs and regulating pneumococcal infections have been studied. As results, PLY, one of the most well characterized pneumococcal pathogenic factors, and pneumococcal HSP100/ClpP were found to interact with TLR4 (46, 47). Alveolar epithelial cells were found to respond to PLY in a TLR4 dependent manner (47, 75–77). It is, however, suggested that the expressions of TLR4 adaptor molecules, such as MD2 and CD14, are not enough to sense TLR4 ligands in the alveolar epithelial cells. Alveolar epithelial cells thus show unresponsiveness to LPS when serum is not supplied (78). Based on these observations, it has been suggested that alveolar epithelial cells may activate TLR4 signaling by sensing endogenous TLR4 ligand, which is induced by or released from host cells following pneumococcal infections, rather than directly sense PLY. Our study in alveolar epithelial A549 cells also found that PLY-induced TLR4 signaling activations are abrogated by addition of cholesterol or serum or by depleting cholesterol from plasma membrane (data not shown). These data suggest that plasma membrane cholesterol, which was originally found as a membrane-binding partner for PLY, plays critical role in activating TLR4 signaling pathways. Results of human studies on the role of TLR4 in pneumococcal infections are more skeptical. Human studies found that the two most common TLR4 polymorphisms (D299G and T399I) showed no contribution of these polymorphisms to the prevalence of IPDs (62–65), and even higher frequency of TLR4 polymorphisms were found in healthy controls compared to IPD groups (66). Thus, it is not conclusive if PLY directly interacts with and activates TLR4 in alveolar epithelial cells and if TLR4 is required for the protection against pneumococcal infections.

Pneumococcal regulatory function of TLR9 also has been investigated, and epithelial sensing of pneumococcus by TLR9 has been found (44, 79–81). These studies found that TLR9 responds to pneumococcal infections by sensing unmethylated CpG DNA of pneumococcus, and TLR9 KO mice fail to control pneumococcal pneumonia (44, 79). In addition, study by Ripoll VM et al. also showed that susceptibility to pneumococcal infections is coincide with the expression level of TLR9 in mice as pneumococcal susceptible strain CBA/Ca expresses lower level of TLR9 compared to that of resistant strain BALB/c (80). These findings suggest a possible critical implication of TLR9 in regulating pneumococcal infections in vivo in human patients. However, by considering relatively limited information on the immunological function of TLR9 compared to that of TLR2 and TLR4, it might not be the right point to make conclusion on the role of TLR9 in regulating pneumococcal infections.

Pneumococci are known to invade cells via Platelet Activating Factor (PAF)-receptor and polymeric IgR (plgR) of alveolar epithelial cells. As many intracellular microbes actively interact with cytoplasmic receptors, pneumococci inside epithelial cells are also sensed by cytoplasmic nucleotide-binding oligomerization domain protein 2 (NOD2) via PGN of pneumococcal cell wall (52, 81–84). Deficiency of NOD2 in mice results in reduced pneumococcal clearance along with enhanced sepsis and sepsis-associated neuronal damage (SAND) (82, 85), which suggests that NOD2 also participates in regulating pathophysiology of pneumococcal infections by sensing of pneumococcal PAMP. It is interesting to know that NOD1, a meso-DAP receptor, is critically involved in regulating pathogenesis of pneumococcal infections. NOD1 KO mice are highly susceptible to early pneumococcal sepsis, while activation of NOD1 by its agonist KF565 inhibits pneumococcal disruption of epithelial barrier (86, 87). Since NOD1 is not thought as a direct sensor for pneumococcus, these findings also support the idea that TLR4 responds to pneumococcus indirectly by detecting host-driven TLR4 ligands.

Cytoplasmic pneumococcal DNA was also found to be sensed by DNA-dependent activator of IFN-regulatory factors (DAI) and stimulator of IFN genes (STING), which are cytoplasmic nucleic acid sensing receptors, in alveolar epithelial cells (88). Since the activation of these cytoplasmic DNA receptors by pneumococcus upregulates interferon-
Epithelial Sensing of Pneumococcus

regulatory factor 3 (IRF3)-dependent type 1 IFN expressions, these findings somehow can be used for explaining the reason why pre-disposition of pneumococcus is protective for infections with influenza A virus or other respiratory viral infections.

Alveolar epithelial scavenger receptors for pneumococcus were also found, including scavenger receptor A1 (SR-A1), mannose receptor, and macrophage receptor with collagenous structure (MARCO, also known as SR-A2), and CD36 (73, 89, 90). These non-opsonic scavenger receptors are expressed in lung and known to detect respiratory pneumococcus (73). Studies in KO mice found significant defects in pneumococcal clearance in MARCO KO and CD36 KO mice following pneumococcal infections, but no

Figure 1. Schematic diagram of epithelial sensors for pneumococcus. Abbrs: AP-1 activator protein 1; DAI, DNA-dependent activation of IRF; IRF, Interferon regulatory factor; LTA, lipoteichoic acid; NFκB, nuclear factor kappaB; NOD, Nucleotide-binding oligomerization domain 2; PGN, peptidoglycan; plgR, polymeric immunoglobulin receptor; PLY, pneumolysin; TLR, Toll-like receptor.
significant impact of loss of SR-A1 or mannose receptor on regulating pneumococcal infections has been found (73, 89). In addition, polymorphism of mannose binding lectin (MBL) in human was found to be associated with higher colonization of pneumococcus in the nasopharynx (65). Since scavenger receptors were originally found as opsonic receptors of immune cells, their non-opsonic functions in alveolar epithelial cells, especially as epithelial sensors for pneumococcus, have not been fully investigated yet. Further investigations on these topics are required.

As shown in Fig. 1, among many known microbial PRRs, three TLRs, TLR2, TR4, and TLR9, cytoplasmic receptors NOD2, DAI, and STING, and cell surface scavenger receptors SR-A1, MARCO, mannose receptor, and CD36 have been found to recognize pneumococcal PAMPs in alveolar epithelial cells. TLR2 is likely to be a major sensing receptor for pneumococcus in these cells. Although it is clear that sensing of pneumococcal PAMPs by these PRRs activates specific receptor-dependent intracellular signaling pathways in vitro, the roles of sensing pneumococcal PAMPs by these receptors seem not to be simply conclusive in vivo as live pathogens, such as pneumococcus, not only contain PAMPs for multiple PRRs but also contains many other pathogenic factors which are not exclusively recognized by PRRs but play critical roles for the pathogenesis of pneumococcal infections (34).

Epithelial anti-pneumococcal responses

Sensing of microbial pathogens by PRRs triggers down-
stream signaling pathways of these receptors, which are engaged in a diversity of immunophysiological cellular responses. Intracellular signaling pathways of PRRs are largely classified into two groups based on their primary intracellular adaptors, which form cytoplasmic signaling complex, a MyD88-denepdent pathway and a MyD88-independent, TRIF-dependent pathway. These two signaling pathways activate a various signaling molecules, but finally they are converged into three transcription factor families, nuclear factor-κB (NF-κB), activating protein-1 (AP-1), and IRF3 (32, 33, 91). Pneumococcal sensing by these PRRs and subsequent activation of these signaling pathways regulate various epithelial innate immune responses (Fig. 2): 1) expression of pro- and anti-inflammatory cytokines and chemokines, such as IL-1β, TNF-α, IL-6, IL-8, IL-10, TGF-β, type 1 IFNs, and so on (71, 79, 81, 83, 87, 90, 92), 2) expression of epithelial anti-microbial peptides, such as defensins and plasminogen activator inhibitor-1 (PAI-1) (77, 93, 94), 3) expression of mucin (75, 95), 4) regulation of epithelial barrier function (71, 77, 87), 5) expression of bacterial and viral PRRs, such as TLR2, TLR7, NOD1, and NOD2 (39, 50, 59, 76, 84, 96), 6) expression of negative regulator of innate immune signaling pathways, such as MAPK phosphatase-1 (MKP-1) and cylindromatosis (CYLD) (75, 77, 92), and 7) regulation of cellular apoptosis (46, 72, 97). Since pneumococcus regulates such a diversity of innate immune responses, we are likely to observe the outcomes of complex interactions between these signals when the roles of PRRs are studied in vivo. Therefore, it is also not surprising even if we do not observe a significant impact of deficiency in a single PRR on regulating pneumococcal infections in vivo, and their immunological roles should not be underestimated.

CONCLUSION

Despite extensive studies on pneumococcus, we still did not find the right way to deal with this old friend of man, and it is still a major cause of death worldwide. Since the first discovery of TLR4 as a receptor for microbial endotoxin LPS (98), the tremendous progress has been made in understanding the molecular mechanisms by which microbial pathogens are sensed by host cells and intracellular signaling pathway are activated by these pathogens. The roles of PRRs, including TLRs, NLRs, and scavenger receptors, in pneumococcal infections also have been extensively studied, but the in vivo roles of these receptors are not conclusive yet.

Because pneumococcus resides in the nasopharynx of healthy individuals, respiratory epithelium is the primary entry site of the pneumococcus. However, its role in regulating anti-pneumococcal defense has long been underestimated compared to the extensive studies in immune cells. As we discussed above, alveolar epithelial cells showed distinctive expression regulation of PRRs from immune cells and also from intestinal epithelial cells, which suggests a possible existence of alveolar epithelial specific regulation and role of PRRs.

Future studies in these aspects may open new insight in understanding the roles of PRRs, and also bring novel therapeutic strategies, which will be effective in both immunocompetent and immunocompromised individuals.

REFERENCES

1) Watson DA, Musher DM, Jacobson JW, Verhoef J. A brief history of the pneumococcus in biomedical research: a panoply of scientific discovery. Clin Infect Dis 1993;17:913-24.
2) Pneumococcal conjugate vaccine for childhood immunization--WHO position paper. Wkly Epidemiol Rec 2007;82:93-104.
3) Kalin M. Pneumococcal serotypes and their clinical relevance. Thorax 1998;53:159-62.
4) van Dam JE, Fleer A, Snippe H. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Van Leeuwenhoek 1990;58:1-47.
5) Sankilampi U, Herva E, Haikala R, Liimatainen O, Renkonen OV, Leinonen M. Epidemiology of invasive Streptococcus pneumoniae infections in adults in Finland. Epidemiol Infect 1997;118:7-15.
6) Shapiro ED, Berg AT, Austrian R, Schroeder D, Parcells...
V. Margolis A, et al. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 1991;325:1453-60.

7) Butler JC, Breiman RF, Lipman HB, Hofmann J, Facklam RR. Serotype distribution of Streptococcus pneumoniae infections among preschool children in the United States, 1978-1994: implications for development of a conjugate vaccine. J Infect Dis 1995;171:885-9.

8) Nielsen SV, Henrichsen J. Incidence of invasive pneumococcal disease and distribution of capsular types of pneumococci in Denmark, 1989-94. Epidemiol Infect 1996;117:411-6.

9) Scott JA, Hall AJ, Dagan R, Dixon JM, Eykyn SJ, Fenoll A, et al. Serogroup-specific epidemiology of Streptococcus pneumoniae: associations with age, sex, and geography in 7,000 episodes of invasive disease. Clin Infect Dis 1996;22:973-81.

10) Vitharsson G, Jönsdóttir I, Jónsson S, Valdimarsson H. Opsonization and antibodies to capsular and cell wall polysaccharides of Streptococcus pneumoniae. J Infect Dis 1994;170:592-9.

11) Isaacman DJ, McIntosh ED, Reinert RR. Burden of invasive pneumococcal disease and serotype distribution among Streptococcus pneumoniae isolates in young children in Europe: impact of the 7-valent pneumococcal conjugate vaccine and considerations for future conjugate vaccines. Int J Infect Dis 2010;14:e197-209.

12) Weinberger DM, Malley R, Lipstich M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011;378:1962-73.

13) Whitney CG, Plishivili T, Farley MM, Schaffner W, Craig AS, Lynfield R, et al. Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. Lancet 2006;368:1495-502.

14) Bryant KA, Block SL, Baker SA, Gruber WC, Scott DA. Safety and immunogenicity of a 13-valent pneumococcal conjugate vaccine. Pediatrics 2010;125:866-75.

15) Cooper D, Yu X, Sidhu M, Nahm MH, Fernsten P, Jansen KU. The 13-valent pneumococcal conjugate vaccine (PCV13) elicits cross-functional opsonophagocytic killing responses in humans to Streptococcus pneumoniae serotypes 6C and 7A. Vaccine 2011;29:7207-11.

16) Choi SY, Tran TD, Briles DE, Rhee DK. Inactivated pep27 mutant as an effective mucosal vaccine against a secondary lethal pneumococcal challenge in mice. Clin Exp Vaccine Res 2013;2:58-65.

17) Daniels CC, Kim KH, Burton RL, Mirza S, Walker M, King J, et al. Modified opsonization, phagocytosis, and killing assays to measure potentially protective antibodies against pneumococcal surface protein A. Clin Vaccine Immunol 2013;20:1549-58.

18) Nguyen CT, Kim SY, Kim MS, Lee SE, Rhee JH. Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice. Vaccine 2011;29:5731-9.

19) Janoff EN, Rubins JB. Invasive pneumococcal disease in the immunocompromised host. Microb Drug Resist 1997;3:215-32.

20) Sousa D, Justo I, Dominguez A, Manzur A, Izquierdo C, Ruiz L, et al. Community-acquired pneumonia in immunocompromised older patients: incidence, causative organisms and outcome. Clin Microbiol Infect 2013;19:187-92.

21) Vila-Corcoles A, Ochoa-Gondar O, Rodriguez-Blanco T, Raga-Luría X, Gomez-Bertomeu F. Epidemiology of community-acquired pneumonia in older adults: a population-based study. Respir Med 2009;103:309-16.

22) Kalin M. Bacteremic pneumococcal pneumonia: value of culture of nasopharyngeal specimens and examination of washed sputum specimens. Eur J Clin Microbiol 1982;1:394-6.

23) Krantz I, Alestig K, Trollfors B, Zackrisson G. The carrier state in pertussis. Scand J Infect Dis 1986;18:92.

24) Bisharat N, Omari H, Lavi I, Raz R. Risk of acquiring pneumococcal meningitis in splenectomy patients. J Infect Dis 1982;146:2179-85.

25) Lipsky BA, Boyko EJ, Inui TS, Koepsell TD. Risk factors for acquiring pneumococcal infections. Arch Intern Med 1986;146:2179-85.

26) Balduzzi G, Butler JC, Farley MM, Harrison LH, McGeer A, Kolczak MS, et al. Cigarette smoking and invasive pneumococcal disease. Arch Intern Med 1996;156:256-61.
posing to bacterial infections: role of neuraminidase. Pediatr Infect Dis J 2004;23:S87-97.
28) Chuquimia OD, Petursdottir DH, Rahman MJ, Hartl K, Singh M, Fernández C. The role of alveolar epithelial cells in initiating and shaping pulmonary immune responses: communication between innate and adaptive immune systems. PLoS One 2012;7:e32125.
29) Gentry M, Taormina J, Pyles RB, Yager L, Kirtley M, Popov VL, et al. Role of primary human alveolar epithelial cells in host defense against Francisella tularensis infection. Infect Immun 2007;75:3969-78.
30) Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the 'epimmunome'. Nat Immunol 2010;11:656-65.
31) Broz P, Monack DM. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol 2013;13:551-65.
32) Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity 2011;34:665-79.
33) Kondo T, Kawai T, Akira S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 2012;33:449-58.
34) Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 2008;6:288-301.
35) Koppe U, Suttrop N, Opitz B. Recognition of Streptococcus pneumoniae by the innate immune system. Cell Microbiol 2012;14:460-6.
36) Greene CM, Carroll TP, Smith SG, Taggart CC, Devaney J, Griffin S, et al. TLR-induced inflammation in cystic fibrosis and non-cystic airway epithelial cells. J Immunol 2005;174:1638-46.
37) Greene CM, McElvaney NG. Toll-like receptor expression and function in airway epithelial cells. Arch Immunol Ther Exp (Warsz) 2005;53:418-27.
38) Muir A, Soong G, Sokol S, Reddy B, Gomez MI, Van Heeckeren A, et al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 2004;30:777-83.
39) Uehara A, Fujiimoto Y, Fukase K, Takada H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol 2007;44:3100-11.
40) Adamo R, Sokol S, Soong G, Gomez MI, Prince A. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5. Am J Respir Cell Mol Biol 2004;30:627-34.
41) Hershberg RM. The epithelial cell cytoskeleton and intracellular trafficking. V. Polarized compartmentalization of antigen processing and Toll-like receptor signaling in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2002;283:G833-9.
42) Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 2004;5:190-8.
43) Platz J, Beisswenger C, Dalpke A, Koczulla R, Pinkenburg O, Vogelmeier C, et al. Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J Immunol 2004;173:1219-23.
44) Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H, et al. Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol 2007;9:633-44.
45) Basset A, Zhang F, Benes C, Sayeed S, Herd M, Thompson C, et al. Toll-like receptor (TLR) 2 mediates inflammatory responses to oligomerized RrgA pneumococcal pilus type 1 protein. J Biol Chem 2013;288:2665-75.
46) Cao J, Gong Y, Dong S, Zhang L, Lai X, Zhang X, et al. Pneumococcal ClpP modulates the maturation and activation of human dendritic cells: implications for pneumococcal infections. J Leukoc Biol 2013;93:737-49.
47) Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, et al. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 2003;100:1966-71.
48) Moore LJ, Pridmore AC, Dower SK, Read RC. The glycopeptidol vancocin does not enhance toll-like receptor 2 (TLR2) activation by Streptococcus pneumoniae. J Antimicrob Chemother 2004;54:76-8.
49) Sen G, Khan AQ, Chen Q, Snapper CM. In vivo
humoral immune responses to isolated pneumococcal polysaccharides are dependent on the presence of associated TLR ligands. J Immunol 2005;175:3084-91.

50) Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999;163:1-5.

51) Karlström A, Heston SM, Boyd KL, Tuomanen EL, McCullers JA. Toll-like receptor 2 mediates fatal immunopathology in mice during treatment of secondary pneumococcal pneumonia following influenza. J Infect Dis 2011;204:1358-66.

52) Travassos LH, Girardin SE, Philpott DJ, Blanot D, Nahori MA, Werts C, et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptido-glycan recognition. EMBO Rep 2004;5:1000-6.

53) Dessing MC, Florquin S, Paton JC, van der Poll T. Toll-like receptor 2 contributes to antibacterial defence against pneumolysin-deficient pneumococci. Cell Microbiol 2008;10:237-46.

54) Knapp S, Gibot S, de Vos A, Versteeg HH, Colonna M, van der Poll T. Cutting edge: expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. J Immunol 2004;173:7131-4.

55) Lammers AJ, de Porto AP, de Boer OJ, Florquin S, van der Poll T. The role of TLR2 in the host response to pneumococcal pneumonia in absence of the spleen. BMC Infect Dis 2012;12:139.

56) Echchannaoui H, Bachmann P, Letiembre M, Espinosa M, Landmann R. Regulation of *Streptococcus pneumoniae* distribution by Toll-like receptor 2 in *vivo*. Immunobiology 2005;210:229-36.

57) Echchannaoui H, Leib SL, Neumann U, Landmann RM. Adjuvant TACE inhibitor treatment improves the outcome of TLR2--/ mice with experimental pneumococcal meningitis. BMC Infect Dis 2007;7:25.

58) Klein M, Obermaier B, Angele B, Pfister HW, Wagner H, Koedel U, et al. Innate immunity to pneumococcal infection of the central nervous system depends on toll-like receptor (TLR) 2 and TLR4. J Infect Dis 2008;198:1028-36.

59) Letiembre M, Echchannaoui H, Ferracin F, Rivest S, Landmann R. Toll-like receptor-2 deficiency is associated with enhanced brain TNF gene expression during pneumococcal meningitis. J Neuroimmunol 2005;168:21-33.

60) Han F, Yu H, Tian C, Li S, Jacobs MR, Benedict-Alderfer C, et al. Role for Toll-like receptor 2 in the immune response to *Streptococcus pneumoniae* infection in mouse otitis media. Infect Immun 2009;77:1000-8.

61) Li SL, Zhang MY, Li BY, Zheng QY, Zhu HL. Toll-like receptor 2 and Toll-like receptor 4 participates in mediation of acute otitis media and mortality in pneumococcal infections in mice. Zhonghua Er Bi Yan Hou Ke Za Zhi 2011;46:1009-18.

62) Garnacho-Montero J, García-Cabrera E, Jiménez-Álvarez R, Díaz-Martin A, Revuelto-Rey J, Aznar-Martin J, et al. Genetic variants of the MBL2 gene are associated with mortality in pneumococcal sepsis. Diagn Microbiol Infect Dis 2012;73:39-44.

63) Moens L, Verhaegen J, Pierik M, Vermeire S, De Boeck K, Peetermans WE, et al. Toll-like receptor 2 and Toll-like receptor 4 polymorphisms in invasive pneumococcal disease. Microbes Infect 2007;9:15-20.

64) Telleria-Orriols JJ, García-Salido A, Varillas D, Serrano-González A, Casado-Flores J. TLR2-TLR4/CD14 polymorphisms and predisposition to severe invasive infections by *Neisseria meningitidis* and *Streptococcus pneumoniae*. Med Intensiva 2013.

65) Vuononvirta J, Toivonen L, Gröndahl-Yli-Hamukela K, Barkoff AM, Lindholm L, Mertsola J, et al. Nasopharyngeal bacterial colonization and gene polymorphisms of mannose-binding lectin and toll-like receptors 2 and 4 in infants. PLoS One 2011;6:e26198.

66) Yuan FF, Marks K, Wong M, Watson S, de Leon E, McIntyre PB, Sullivan JS. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in *Streptococcus pneumoniae* infection. Immunol Cell Biol 2008;86:268-70.

67) Berenson CS, Kruzel RL, Eberhardt E, Dolnick R, Minderman H, Wallace PK, et al. Impaired innate immune alveolar macrophage response and the predilection for COPD exacerbations. Thorax 2014.

68) Boyd AR, Shivshankar P, Jiang S, Berton MT, Orihuela CJ. Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during
murine pneumococcal pneumonia. Exp Gerontol 2012; 47:507-18.

69) Fallah MP, Cheholvarajan RL, Garvy BA, Bondada S. Role of phosphoinositide 3-kinase-Akt signaling pathway in the age-related cytokine dysregulation in splenic macrophages stimulated via TLR-2 or TLR-4 receptors. Mech Ageing Dev 2011;132:274-86.

70) van Rossum AM, Lysenko ES, Weiser JN. Host and bacterial factors contributing to the clearance of colonization by *Streptococcus pneumoniae* in a murine model. Infect Immun 2005;73:7718-26.

71) Beisswenger C, Coyne CB, Schepetov M, Weiser JN. Role of p38 MAP kinase and transforming growth factor-beta signaling in transepithelial migration of invasive bacterial pathogens. J Biol Chem 2007;282:28700-8.

72) Bermpohl D, Halle A, Freyer D, Dagaed E, Braun JS, Bechmann I, et al. Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest 2005;115:1607-15.

73) Sharif O, Matt U, Saluzzo S, Lakovits K, Haslinger I, Furtner T, et al. The scavenger receptor CD36 down-modulates the early inflammatory response while enhancing bacterial phagocytosis during pneumococcal pneumonia. J Immunol 2013;190:5640-8.

74) Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, et al. Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 2004;72:788-94.

75) Ha U, Lim JH, Jono H, Koga T, Srivastava A, Malley R, et al. A novel role for IkappaB kinase (IKK) alpha and IKKbeta in ERK-dependent up-regulation of MUC5AC mucin transcription by *Streptococcus pneumoniae*. J Immunol 2007;178:1736-47.

76) Lim JH, Ha U, Sakai A, Woo CH, Kweon SM, Xu H, et al. *Streptococcus pneumoniae* synergizes with nontypeable *Haemophilus influenzae* to induce inflammation via upregulating TLR2. BMC Immunol 2008; 9:40.

77) Lim JH, Stirling B, Derry J, Koga T, Jono H, Woo CH, et al. Tumor suppressor CYLD regulates acute lung injury in lethal *Streptococcus pneumoniae* infections. Immunity 2007;27:349-60.

78) Jia HP, Kline JN, Penisten A, Apicella MA, Gioannini TL, Weiss J, et al. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am J Physiol Lung Cell Mol Physiol 2004;287:L428-37.

79) Mogensen TH, Paludan SR, Kilian M, Ostergaard L. Live *Streptococcus pneumoniae*, *Haemophilus influenzae*, and *Neisseria meningitidis* activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol 2006;80:267-77.

80) Ripoll VM, Kadioglu A, Cox R, Hune DA, Denny P. Macrophages from BALB/c and CBA/Ca mice differ in their cellular responses to *Streptococcus pneumoniae*. J Leukoc Biol 2010;87:735-41.

81) Zahnten J, Steinicke R, Bertrams W, Hocke A, Schaf, S, Schmeck B, et al. TLR9- and Src-dependent expression of Krueppel-like factor 4 controls interleukin-10 expression in pneumonia. Eur Respir J 2013;41:384-91.

82) Davis KM, Nakamura S, Weiser JN. Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of *S. pneumoniae* colonization in mice. J Clin Invest 2011;121:3666-76.

83) Moreira LO, El Kassmi KC, Smith AM, Finkelstein D, Fillon S, Kim YG, et al. The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to gram-positive cell walls. Cell Microbiol 2008;10:2067-77.

84) Opitz B, Püscher A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S, et al. Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized *Streptococcus pneumoniae*. J Biol Chem 2004;279:36426-32.

85) Liu X, Chauhan VS, Young AB, Marriott I. NOD2 mediates inflammatory responses of primary murine glia to *Streptococcus pneumoniae*. Glia 2010;58:839-47.

86) Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 2010;16:228-31.

87) Sorrentino R, de Souza PM, Srisankand S, Duffin C, Paul-Clark MJ, Mitchell JA. Pattern recognition receptors and interleukin-8 mediate effects of Gram-positive and Gram-negative bacteria on lung epithelial cell function.
Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio 2011;2:e00016-11.

90) Sano H, Kuronuma K, Kudo K, Mitsuzawa H, Sato M, Murakami S, et al. Regulation of inflammation and bacterial clearance by lung collectins. Respirology 2006;11 Suppl:S46-50.

91) Thomas CJ, Schroder K. Pattern recognition receptor function in neutrophils. Trends Immunol 2013;34:317-28.

92) Lim JH, Jono H, Komatsu K, Woo CH, Lee J, Miyata M, et al. CYLD negatively regulates transforming growth factor-beta-signalling via deubiquitinating Akt. Nat Commun 2012;3:771.

93) Rijneveld AW, Florquin S, Bresser P, Levi M, De Waard V, Lijnen R, et al. Plasminogen activator inhibitor type-1 deficiency does not influence the outcome of murine pneumococcal pneumonia. Blood 2003;102:934-9.

94) Scharf S, Zahnten J, Szymanski K, Hippenstiel S, Suttorp N, NGuessan PD. Streptococcus pneumoniae induces human beta-defensin-2 and -3 in human lung epithelium. Exp Lung Res 2012;38:100-10.

95) Lim JH, Kim HJ, Komatsu K, Ha U, Huang Y, Jono H, et al. Differential regulation of Streptococcus pneumoniae-induced human MUC5AC mucin expression through distinct MAPK pathways. Am J Transl Res 2009;1:300-11.

96) Schmeck B, Huber S, Moog K, Zahnten J, Hocke AC, Opitz B, et al. Pneumococci induced TLR- and Rac1-dependent NF-kappaB-recruitment to the IL-8 promoter in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006;290:L730-L7.

98) Politorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085-8.