One of the most important tasks of modern pharmaceutical science is the search for new biologically active substances, which have high efficacy and low toxicity. Derivatives of 1,2,4-triazole and theophylline are a promising class of compounds for synthesis of biologically active substances on their basis, due to a wide range of biological activity of these heterocycles’ derivatives.

The purpose of work is the development of efficient methods for synthesis of new amides and hydrazides of 2-[(4-R-5-(theophylline-7'-yl)]-1,2,4-triazole-3-ylthio]acetic acid (R = CH₃, C₂H₅, C₃H₇) with variation of the reaction conditions and the study of physical properties of the obtained compounds.

Materials and methods. As a key source of reagents we used 7’-(3-thio-4-R-4H-1,2,4-triazole-5-yl)methyl)theophylline and esters of 2-[(4-R-5-(theophylline-7'-yl)]-1,2,4-triazole-3-ylthio]acetic acid, which were obtained by known methods from readily available raw materials. By heating in ethanol medium the corresponding amines (ammonia, methylamine, ethylamine, monoethanolamine, diethanolamine), α-propyl ether 2-[(4-R-5-(theophylline-7'-yl)]-1,2,4-triazole-3-ylthio]acetic acid were obtained. Hydrazide of 2-[(4-R-5-(theophylline-7'-yl)]-1,2,4-triazole-3-ylthio]acetic acid was synthesized by interaction of corresponding esters of 2-[(4-R-5-(theophylline-7'-yl)]-1,2,4-triazole-3-ylthio]acetic acid with an aqueous solution of hydrazine hydrate in ethanol medium. The structure of the obtained compounds is confirmed by data of elemental analysis, ¹H NMR spectroscopy and IR-spectrophotometry. The individuality of substances is established by using high performance liquid chromatography with diode-array and mass spectrometric detection.

Results. Optimal methods of obtaining amides and hydrazides of 2-[(4-R-5-(theophylline-7'-yl)]-1,2,4-triazole-3-ylthio]acetic acid have been developed. Getting investigated amides by two alternative ways of synthesis, it was established that the initial interaction of thiol with 2-chloroacetamide proceeds with high yield product of the reaction compared to the reaction between a corresponding ester with ammonia.

Conclusions. 15 amide and 3 hydrazide 2-[(4-R-5-(theophylline-7'-yl)]-1,2,4-triazole-3-ylthio]acetic acids have been synthesized, their structure has been established and physical properties have been studied.

Key words: theophylline, 1,2,4-triazole, amides, hydrazide, synthesis, physical properties.

Current issues in pharmacy and medicine: science and practice 2017; 10 (3), 254–258
Синтез, строение и свойства N-R-амидов 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты

А. С. Гоцуля

Одной из важнейших задач современной фармацевтической науки является поиск новых биологически активных веществ, которые обладают высокой эффективностью и низкой токсичностью. Производные 1,2,4-триазола и теофиллина являются перспективным классом химических соединений для синтеза на их основе биологически активных веществ, что обусловлено широким спектром биологической активности производных этих гетероциклов.

Цель работы – разработка эффективных методов синтеза новых амидов и гидразидов 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты (R = CH₃, C₂H₅, C₆H₅) и исследование физических свойств полученных соединений.

Материалы и методы. В качестве ключевых исходных реагентов использованы 7’-((3-тио-4-R-4₉-1,2,4-триазол-5-il)метил)теофиллин и эфир 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты, которые были получены по известным методикам из доступного сырья. Нагревание в этаноле соответствующих аминов (аммиак, метиламин, этиламин, моноэтаноламин, диэтаноламин) с n-пропиоловым эфиром 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты получен ряд амидов 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты. Взаимодействием 7’-(3-тио-4-R-4₉-1,2,4-триазол-3-илтио)ациетной кислоты с 2-хлоракетамидом в присутствии NaOH с высокими выходами получены соответствующие амиды. Гидразиды 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты синтезированы взаимодействием соответствующих эфиров 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты с водным раствором гидразин гидрата в среде этанола. Структура полученных соединений подтверждена данными элементного анализа, ¹Н ЯМР-спектроскопии и ИК-спектрометрии. Индивидуальность веществ установлена с помощью высокоэффективной жидкостной хроматографии с диодно-матричной и масс-спектрометрической детекцией.

Результаты. Разработаны оптимальные методы получения амидов и гидразидов 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты. Исследовано получение амидов двумя альтернативными путями синтеза с использованием исходного тиола и полученного на его основе сложного эфира: установлено, что взаимодействие исходного тиола с 2-хлоракетамидом протекает с большим выходом продукта реакции в сравнении с реакцией взаимодействия соответствующего эфира с амином.

Выводы. Синтезировано 15 амидов и 3 гидразида 2-[4-R-5-(теофиллин-7'-ил)-1,2,4-триазол-3-илтио]ациетной кислоты, установлена их структура и изучены физические свойства.

Ключевые слова: теофиллин, 1,2,4-триазол, амиды, гидразиды, синтез, физические свойства.

Актуальні питання фармацевтичної і медичної науки та практики. – 2017. – Т. 10, №3(25). – С. 254–258
Table 1. Amides and hydrazides of 2-[4-R-5-(theophyllin-7'-yl)-1,2,4-triazol-3-ylthio] acetic acid

![Chemical structure of 2-[4-R-5-(theophyllin-7'-yl)-1,2,4-triazol-3-ylthio] acetic acid]

Compound	R	M. p., °C	Molecular formula	Yield, %
1	CH₃	150–151	C₁₃H₁₆N₂O₃S	83
2	CH₃	187–189	C₁₃H₁₆N₂O₃S	79
3	CH₃	229–231	C₁₃H₂₀N₂O₃S	72
4	CH₃	211–213	C₁₃H₂₀N₂O₃S	77
5	CH₃	280–285	C₁₃H₂₀N₂O₃S	84
6	CH₃	245–247	C₁₃H₂₀N₂O₃S	81
7	C₂H₅	237–240	C₁₄H₂₁N₂O₃S	77
8	C₂H₅	182–185	C₁₄H₂₁N₂O₃S	85
9	C₂H₅	160–162	C₁₄H₂₁N₂O₃S	84
10	C₂H₅	192–194	C₁₄H₂₁N₂O₃S	72
11	C₂H₅	209–211	C₁₄H₂₁N₂O₃S	78
12	C₂H₅	240–242	C₁₄H₂₁N₂O₃S	71
13	C₂H₅	231–233	C₁₄H₂₁N₂O₃S	69
14	C₂H₅	176–177	C₁₄H₂₁N₂O₃S	58
15	C₂H₅	194–196	C₁₄H₂₁N₂O₃S	65
16	C₂H₅	234–235	C₁₄H₂₁N₂O₃S	84
17	C₂H₅	210–212	C₁₄H₂₁N₂O₃S	75
18	C₂H₅	239–241	C₁₄H₂₁N₂O₃S	79

Fig. 1. The scheme of the synthesis of amides and hydrazides of 2-[4-R-5-(theophylline-7'-yl)-1,2,4-triazole-3-ylthio]acetic acid.
The resulting solution is evaporated; the residue is crystallized from ethanol. White crystals are insoluble in water and alcohols. Washed with ethanol and dried. White crystalline substances, practically insoluble in water and slightly soluble in alcohols.

Results and their discussion

The presence of the amide group in the IR-spectrum of the obtained compounds was confirmed by the presence of characteristic absorption bands in the region of 3132–3370 cm\(^{-1}\) (CONH\(_2\)) and in the region 1630–1675 cm\(^{-1}\) (CONH\(_2\)). The absorption band of the secondary amino group was observed in the range of 3165–3200 cm\(^{-1}\). The IR-spectrum of compounds 4, 5, 11, 12, 17, 18 in addition to the above has an additional absorption band within 950–980 cm\(^{-1}\), indicating the presence of OH-groups.

In the NMR \(^{1}H\) synthesized compounds, signals of protons with chemical displacements are present, which confirm the structure of the resulting compounds. Signals of protons of methylene groups (3.75–3.85 ppm), aromatic prototype multiplets – for compounds 13–18 (7.25–8.16 ppm). In addition, proton of amide NH-group (7.65–7.93 ppm), a proton of the hydroxyl group (2.09–4.71 ppm). Intense signals of protons of methyl groups of the xanthine fragment are recorded in intervals at 3.15–3.30 ppm, and at 3.50–3.60 ppm. The signal of the methyl proton of the indicated fragment is registered in the form of a singlet in the range of 8.30–8.43 ppm. The protons of the thiomethylene moiety resonate at 3.88 ppm in the form of a singlet. In compound 13, the magnetic properties of the protons of the phenyl substituent and the amide group were so close that their resonance frequencies practically coincided: in spectra for protons signals of these two groups one single multiplier with a total intensity of \(^{1}H\) can be observed at 6.65–7.75 ppm.

In the mass spectrum, there is a peak of the molecular ion and peaks of fragment ions, which confirm this structure.

Conclusions

A universal method for the preparation of \(2\{4-R-5\)-(theophylline-7'-yl)-1,2,4-triazol-3-ylthio\}acetic acid amides and hydrazides was developed. It was established that while the interaction of the starting thiol with 2-chloroacetamide the product yields of the reaction are greater than in the reaction of the corresponding ester with ammonia.
