Current derivative measurement using closed-loop Hall-effect current sensor

Anuchin, A., Zharkov, A., Shpak, D., Aliamkin, D., and Vagapov, Y

This article is published by IET. The definitive version of this article is available at: https://ieeexplore.ieee.org/document/8737265

Recommended citation:

Anuchin, A., Zharkov, A., Shpak, D., Aliamkin, D., and Vagapov, Y. (2019). Current derivative measurement using closed-loop Hall-effect current sensor, The Journal of Engineering, vol. 2019, issue 17, pp. 4027-4030, doi: 0.1049/joe.2018.8101
Encoderless (or self-sensing) control has received much attention during the last decade for design of electric drive systems. Many investigations have been recently conducted in order to implement the self-sensing approach into control systems for various electrical machines including induction motors [1], permanent magnet synchronous motors [2, 3], synchronous reluctance motors [4], switched reluctance drives [5] etc. The operation principle of self-sensing control strategies is based on analysis of motor saliency inductances required for an encoderless or self-sensing control. The method is based on the current transformation feature of the closed-loop sensor where a sensing inductor is connected in series with the measuring resistor. The voltage drop across the inductor is proportional to the current derivative. The experimental results are demonstrated that the measurement of the current derivative can be performed under a good accuracy, though the measurement should be executed while inverter is in the steady-state condition.

1 Introduction

Encoderless (or self-sensing) control has received much attention in the last decade for design of electric drive systems. Many investigations have been recently conducted in order to implement the self-sensing approach into control systems for various electrical machines including induction motors [1], permanent magnet synchronous motors [2, 3], synchronous reluctance motors [4], switched reluctance drives [5] etc. The operation principle of self-sensing control strategies is based on analysis of motor saliency inductances required for an encoderless or self-sensing control. The method is based on the current transformation feature of the closed-loop sensor where a sensing inductor is connected in series with the measuring resistor. The voltage drop across the inductor is proportional to the current derivative. The experimental results are demonstrated that the measurement of the current derivative can be performed under a good accuracy, though the measurement should be executed while inverter is in the steady-state condition.

Abstract: This paper discusses a method of the current derivative measurement using a standard closed-loop Hall-effect current sensor. The proposed method can operate with PWM-driven inverters and provides the estimation of motor-phase inductances required for an encoderless or self-sensing control. The method is based on the current transformation feature of the closed-loop sensor where a sensing inductor is connected in series with the measuring resistor. The voltage drop across the inductor is proportional to the current derivative. The experimental results are demonstrated that the measurement of the current derivative can be performed under a good accuracy, though the measurement should be executed while inverter is in the steady-state condition.

2 Current derivative measurement circuit

The closed-loop Hall-effect current sensor has a primary-side winding, which is actually a conducting part of the power-electronic device (see Fig. 1). The measured current flown through the primary conductor produces a magnetic flux in the core of the sensor. A Hall-element located in the gap of the core produces a signal proportional to the flux value. This signal is amplified and then applied to the secondary winding, which has usually 1000 turns. Thus, the current of the secondary winding produces a magnetic flux in the opposite direction to the primary-side flux. The opposite flux is increased until the signal from the Hall-effect sensor becomes zero. The number of turns in the secondary winding \(w_2 \) is usually equal to the current sensor transformation coefficient \(K_x \). Therefore, the output of the current sensor is a transformed current converted into a voltage across of the measurement resistor \(R_m \). This voltage follows shape of the current in the primary winding including AC and DC components. However, as the output of the current sensor is originally the current output, the inductor in the secondary circuit produces a voltage drop which is proportional to the derivative of the phase current.

The circuit in Fig. 1 shows the implementation of the proposed derivative measurement circuit. The measurement inductor is connected in series with the measurement resistor whereas the RC-snubber circuit is connected in parallel to the inductor. The differential operational amplifier removes common mode voltage and provides a filtered signal to the microcontroller ADC.

The value of measurement inductor can be selected with respect to the phase inductance of the motor. The voltage over inductance should be large enough for noise immunity. Considering the phase
The current derivative can be evaluated from the measured voltage:

\[v_L = L_m \frac{w_1}{K_s} \frac{di}{dt} \tag{1} \]

The current derivative can be evaluated from the measured voltage according to:

\[\frac{di}{dt} = \frac{K_s L_m}{w_1} v_L \tag{2} \]

where \((K_s/L_m w_1)\) is the coefficient of the derivative estimation circuit, \(K_s\).

3 Experimental results

3.1 Experimental setup

The experimental setup consists of a frequency converter with diode rectifier, DC-link capacitors, a three-phase inverter, and a control system based on TMS320F28335 microcontroller. Two phases of the inverter have been connected to the choke to the inductance of an IPM motor of 100 kW (traction motor) of 1 mH, the voltage drop across the inductor of 1 mH is in 1000 times smaller than the voltage applied to the motor winding. The output voltage can be expressed according to:

\[v_L = L_m \frac{w_1}{K_s} \frac{di}{dt}. \]

The current derivative can be evaluated from the shape of the current signal seems to remain constant. This happens because the sensing inductor has a very small but non-zero ohmic resistance. This resistance is \(\sim 1\) Ohm which is much smaller than the measurement resistance \(R_m\). However, the voltage drop in the sensing inductor is also small. Therefore, the impact of the ohmic component cannot be neglected.

During the first experiment, the current reference was set to zero and the sawtooth current was swinging around zero (see Fig. 3).

Table 1 Set of parameters of experimental setup

Item	Value
current sensor	LA 125-P
current transformation coefficient, \(K_s\)	1000
number of turns in the primary winding, \(w_1\)	4
sensing resistor, \(R_m\) [Ohm]	83
current to voltage coefficient [V/A]	0.33
voltage to current coefficient [A/V]	3.0
choke in the load [mH]	6.0
sensing inductance at 1 kHz, \(L_m\) [mH]	1.02
resistance of the sensing inductance, \(R_L\) [Ohm]	1.9
calculated coefficient of the derivative estimation circuit, \(K_0\) [(kA/s)/V]	245
snubber resistance, \(R_s\) [Ohm]	470
snubber capacitance, \(C_s\) [μF]	0.47

The shape of the signal from the Rogovsky probe is clean from any noises and repeats the signal from the resistor. The current derivative can be measured as a voltage drop across the sensing inductor, but this experiment highlights several issues that should be taken into account. First, the voltage drop across the sensing inductor is changed significantly during single commutation cycle while the visible current derivative from the shape of the current signal seems to remain constant. This happens because the sensing inductor has a very small but non-zero ohmic resistance. This resistance is \(\sim 1\) Ohm which is much smaller than the measurement resistance \(R_m\). However, the voltage drop in the sensing inductor is also small. Therefore, the impact of the ohmic component cannot be neglected.

3.2 Zero current reference experiment

The next interesting result is that the current measured by the closed-loop current sensor and sensing inductor. For this particular experiment, it was \(\sim 330\) kHz (see Fig. 5). The snubber RC-circuit can be used to supress these oscillations.

3.3 Operation with snubber circuit and offset in the current reference

To supress the oscillations, the RC-snubber is connected in parallel to the sensing inductor as shown in Fig. 1. The resistance value is 470 Ohm and capacitor value is 470 nF. The problem with the zero
crossing was solved by adjusting the current reference to the control system, so that the current stayed positive all the time. The results for these conditions are shown in Fig. 6.

According to the oscillogram in Fig. 6 and data in Table 1, the accuracy of the derivative measurement can be estimated. The current rises or fall for 125 μs and its deviation is 10.8 A, which corresponds to 86.4 A/ms. The current in the secondary winding of the current sensor is 250 times smaller:

$$i_2 = \frac{w_1}{K_s} i_1 = \frac{4}{1000} i_1 = \frac{i_1}{250}.$$ (3)

The derivative is in the same times smaller and the voltage drop can be evaluated by its multiplication by the sensing inductor:

$$v_L = L_m \frac{di_2}{dt} = 1.02 \times 10^{-3} \times \frac{86.4 \times 10^3}{250} = 352 \text{ mV}.$$ (4)

The curve of the derivative signal contains both derivative and current components. The voltage drop across the inductor can be evaluated from this signal by the following equation:

$$v'_L = v_L - i_R L = v_L - w_1 \frac{i_1}{K_s} R_L.$$ (5)

For the point of the maximum current that gives:

$$V_{L,\text{max}} = 500 - 4 \times \frac{18}{1000} \times 1.8 = 370 \text{ mV},$$ (6)

and for the minimum value:

$$V_{L,\text{min}} = -320 - 4 \times \frac{7.2}{1000} \times 1.8 = -372 \text{ mV}.$$ (7)

This result shows that the positive and negative values of the current derivative are approximately the same as it should be according to the test conditions. The difference between measured values according to (6) or (7) and the estimated value according to (4) is caused by inaccuracy of the oscilloscope data processing and the initial accuracy of the inductor value. In order to use the proposed method in a self-sensing control system, the inductor value should be calibrated for each current derivative sensor installed in the system for each motor phase.

The signal itself is clean from the noise after 20 μs from the last inverter state change. The results can be improved by precise adjustment of the snubber circuit. In any case, the control system should take into account the PWM pattern at which the inverter is operating in order to avoid current derivative measurement during or right after commutation of the switches.

4 Conclusions

The proposed current derivative measurement circuit is designed to provide the instant measurement of the phase current derivative. The measured current derivative and the applied voltage can help to estimate the phase inductance of the motor which is used for observation of the rotor position in encoderless or self-sensing control systems. The proposed circuit is simple and requires an inductor and a differential input amplifier only, and an extra ADC input in the microcontroller.

The current derivative cannot be measured straight after commutation of the inverter switches. At least a 20 μs time interval is required to skip the oscillation process after each inverter state change, although this interval can be decreased by proper selection of the snubber circuit parameters. In order to increase the duration of the steady states of the inverter, the special PWM patterns should be implemented at slow speeds where self-sensing control strategies are to be run. This issue will be investigated by authors as a further work.

5 Acknowledgments

The research is supported by the Russian Science Foundation grant (Project № 16-19-10618).
References

[1] Brando, G., Dannier, A., Del Pizzo, A., et al.: ‘Torque derivative control in induction motor drives supplied by multilevel inverters’. *IET Power Electron.*, 2016, 9(11), pp. 2249–2261, doi: 10.1049/iet-pel.2014.0958

[2] Jarzębowicz, L.: ‘Sensorless IPMSM drive with rotor position estimator based on analysis of phase current derivatives’. 2011 IEEE Int. Symp. on Industrial Electronics, Gdansk, Poland, 2011, pp. 733–738, doi: 10.1109/ISIE.2011.5984248

[3] Foo, G., Xinan, Z., Maskell, D.L., et al.: ‘Sensorless direct torque control of interior permanent magnet synchronous motor drives using the current derivative approach’. 2015 IEEE Symp. on Sensorless Control for Electrical Drives (SLED), Sydney, Australia, 2015, pp. 1–6, doi: 10.1109/SLED.2015.7339262

[4] Lashkevich, M., Anuchin, A., Aliamkin, D., et al.: ‘Investigation of self-sensing rotor position estimation methods for synchronous homopolar motor in traction applications’. Proc. of IECON 2017–43rd Annual Conf. of the IEEE Industrial Electronics Society, Beijing, China, 2017, pp. 8225–8229

[5] Aliamkin, D., Anuchin, A., Lashkevich, M., et al.: ‘Sensorless control of two-phase switched reluctance drive in the whole speed range’. Proc. of IECON 2016–42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, Italy, 2016, pp. 2917–2922

[6] Bu, M.X., Guan, D.Q., Xiao, D., et al.: ‘Sensorless control of interior permanent magnet synchronous motor based on the fundamental pulse width modulation excitation over a wide speed range’. 2016 19th Int. Conf. on Electrical Machines and Systems (ICEMS), Chiba, Japan, 2016

[7] Hua, Y., Sumner, M., Asher, G., et al.: ‘Sensorless control for a PM machine with reduced current distortion using space vector PWM excitation’. 2009 13th European Conf. on Power Electronics and Applications, Barcelona, Spain, 2009

[8] Hind, D., Li, C., Sumner, M., et al.: ‘Realising robust low speed sensorless PMSM control using current derivatives obtained from standard current sensors’. Int. Conf. on Electric Machines And Drives, Miami, Florida, 2017

[9] Liu, C., Yi, H., Liu, J.-G., et al.: ‘A novel method for measuring current derivative signal with closed loop hall-effect current sensor’. Proc. of PCIM Europe 2015; Int. Exhibition and Conf. for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2015