Morphological patterns of lip prints in Mangaloreans based on Suzuki and Tsuchihashi classification

Prabhakar A Jeergal, Siddharth Pandit, Dinkar Desai, R Surekha, Vasanti A Jeergal

Department of Oral and Maxillofacial Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad, Haryana, 1Department of Oral and Maxillofacial Pathology, A. J. Institute of Dental Sciences, 2Department of Oral and Maxillofacial Pathology, Navodaya Dental College and Hospital, Raichur, 3Department of General Medicine, Srinivas Institute of Medical Sciences and Research Centre, Mangalore, Karnataka, India

Abstract

Introduction: Cheiloscopy is the study of the furrows or grooves present on the red part or vermilion border of the human lips. The present study aims to classify the characteristics of lip prints and to know the most common morphological pattern specific to Mangalorean people of Southern India. For the first time, this study also assesses the association between gender and different lip segments within a population.

Materials and Methods: A total of 200 residents of Mangalore (100 males and 100 females) were included of age ranging from 18 years to 60 years. Materials used to take the impression of lips included red lipstick, A4 size white bond paper and cellophane tape. The prints obtained were scanned using a Canon Image Scanner and stored in a folder on a personal computer. The images were cropped and inverted in gray scale using Adobe Photoshop software. Each lip print was divided into eight segments and was examined. Suzuki and Tsuchihashi's classification (1970) was used to classify the types of grooves, and the results were statistically analyzed. Six types of grooves were recorded in the Mangalorean's lips.

Statistical Analysis: Association between gender and different lip segments was tested using Chi-square analysis in the given population.

Results: In males, the groove Type I' was the highest recorded followed by Type III, Type II, Type I, Type IV and Type V in descending order. In females, Type I' was the highest recorded followed by Type II, Type III, Type IV, Type I and Type V in descending order.

Conclusion: Males and females displayed statistically significant differences in lip print patterns for different lip sites: lower medial lip, as well as upper and lower lateral segments. Only the upper medial lip segment displayed no statistically significant difference in lip print pattern between males and females. This shows that the distribution of lip prints is generally dissimilar for males and females, with varying predominance according to lip segment.

Key Words: Cheiloscopy, forensic odontology, lip prints, personal identification

Address for correspondence:
Dr. Prabhakar A Jeergal, Department of Oral and Maxillofacial Pathology, Sudha Rustagi College of Dental Sciences and Research, Sector 89, Faridabad - 121 002, Haryana, India. E-mail: dr.prabhakaraj@rediffmail.com
Received: 01.01.2015, Accepted: 14.06.2016

Access this article online
Quick Response Code:
Website: www.jomfp.in
DOI: 10.4103/0973-029X.185896

How to cite this article: Jeergal PA, Pandit S, Desai D, Surekha R, Jeergal VA. Morphological patterns of lip prints in Mangaloreans based on Suzuki and Tsuchihashi classification. J Oral Maxillofac Pathol 2016;20:320-7.
INTRODUCTION

Personal identification is of great importance in forensic investigation. It is based on the theory that all individuals are unique and can be identified on the basis of individual characteristics. Dental, fingerprint and DNA comparisons are probably the most common techniques used for this purpose. However, there is still a need for reliable alternative methods of establishing identity in cases where the above techniques are unavailable.

Cheiloscopy is one such technique. It studies the furrows or grooves present on the red part or vermilion border of human lips. These furrows or grooves form a characteristic pattern over the external surface of lip, referred to as lip prints. The importance of cheiloscopy is linked to the fact that lip prints are unique to each individual, except in monozygotic twins. Lip prints are identifiable as early as the 6th week of intrauterine life, and from then on, their pattern rarely changes, resisting many afflictions such as herpetic lesions. Lip prints can be obtained directly from a body or indirectly at a crime scene from a number of sources such as clothing, cups, cigarette butts, letters, windows and doors.

In 1902, Fischer first described the biologic phenomenon of characteristic patterns of furrows on the vermilion border of human lips. But not until 1950, when Synder suggested the idea of using lip prints for identification, did cheiloscopy gain a useful purpose. Since then, Japanese scientists, Tsuchihashi and Suzuki have carried out the most extensive research in this field. Based on that research, it was established that lip print patterns are unique for each human being. Tsuchihashi and Suzuki also proposed a classification of lip prints, that is the most widely used classification in literature to date.

For the first time, the present study intends to report on the morphological patterns of lip prints specific to Mangalorean people in Southern India. The study also intends to assess the association between gender and different lip segments within this population and confirms that lip print patterns are unique to each individual.

MATERIALS AND METHODS

The participants included in the present study were 100 females and 100 males, all residents of Mangalore, a coastal city along the West coast of South India of age ranging from 18 years to 60 years. Informed consent was obtained prior to taking the lip prints. Participants with any evidence of disease and injury of the lips, dry lips, cleft lip, laceration and scars were excluded from the study.

Recording the lip prints

The lips of the participants were thoroughly cleaned with cleansing milk and gauze for hygienic purpose. The lipstick was cleaned with tissue paper. Lipstick was applied in a single motion, evenly on the upper lip, then on the lower lip. The participants were asked to rub his or her upper and lower lips together, which would help to spread the lipstick evenly on all segments of the lips and were allowed to dry for 3 min. The lip prints of each lip were taken separately using (Wonder-555 Tape) cellophane tape 2.4 cm in width, cut out into 10 cm strips. The participants were asked to open the mouth slightly and to keep the mouth stationary during the procedure. The glued portion of the cellophane tape was applied on the lower lip and held in place, applying gentle and even pressure for a few seconds, to allow the print to mark the tape. Then, the tape was carefully lifted from the lip, from one end of the strip to the other, avoiding any smudging of the print. The tape was then stuck carefully on A4 size white bond paper taking care to avoid stretching or folding of the tape. In the same way, the upper lip was also recorded. The lip prints obtained were scanned, using a Canon Image Scanner set at a resolution of 600 ppi and viewed using Adobe® Photoshop® 7.0 software. The scanned images were cropped, inverted in gray scale and each side was further divided into equal grids using the ruler in the software and stored in a separate folder as a PSD (Adobe Photoshop Image) file [Figure 1].

Examination of lip prints

The lip print was divided into two quadrants at the midline and then, each quadrant was further divided into two equal parts as medial and lateral. Each segment was named according to the side they expressed as upper right lateral, upper right medial, upper left medial, upper left lateral, lower right lateral, lower right medial, lower left medial and lower left lateral [Figure 2]. The lip prints were classified using the classification proposed by Suzuki and Tsuchihashi in 1970 [Figure 3]. During the analysis of lip prints, the most dominant pattern was considered for the classification.
in each quadrant. Therefore, the used classification was as follows: Type I: a clear-cut groove running vertically across the lip [Figure 4], Type I’: a partial length groove of Type I [Figure 5], Type II: a branched groove [Figure 6], Type III: an intersected groove [Figure 7], Type IV: a reticular groove [Figure 8] and Type V: other patterns [Figure 9].

Statistical analysis
All data were analyzed statistically using a current SPSS® Inc statistical package (version 13) for determining the frequencies of the pattern types in each quadrant of the lip, frequencies of the pattern types in each gender and for comparison between the entire upper and lower lip of male and females, and also
the medial and lateral segments of the upper and lower lips were done. Chi-square tests were applied to the sum total of lip print patterns in the upper, lower, medial and lateral segments separately.

RESULTS

The participants were 200 residents of Mangalore (100 females and 100 males) of age ranging from 18 to 60 years. Lip print patterns of 100 males and 100 females revealed Type I: (5%) male, (1%) female; Type I’: (57%) male, (35%) female; Type II: (5%) male, (31%) female; Type III: (15%) male, (22%) female; Type IV: (1%) male, (4%) female; Type V: (1%) male, (1%) female; and combination Types I and I’ (16%) male, and I and I’ (6%) female.

Upper lip of males

It was observed among 100 males that the upper lip showed a predominance of Type I’ pattern constituting 46.25% of all the patterns, this was followed in the occurrence by Type II (18.25%), Type III (15.5%), Type V (8.5%), Type IV (7.75%) and Type I (3.75%). Type I’ was more predominant in lateral and medial quadrants of upper lip as it was uniformly distributed. Type II pattern showed slight predominance in the left medial quadrant, followed by Type IV, Type III, Type V and Type I patterns. Type I’ was more common in lateral segments, followed by Type III, Type II, Type V, Type I and Type IV. Type V pattern was slightly more common in the lateral segments compared to medial segments [Table 1]. Chi-square test was applied to the distribution of different patterns in different areas of the upper lip of males. The test result revealed that the difference was statistically significant (P ≤ 0.033).

Lower lip of males

The lower lip of males also showed a predominance of Type I’ pattern which constituted 38.5% of all the patterns. This was followed by Type III (23%), Type II (17.25%), Type I (11.75%), Type IV (5.5%) and Type V (4%) patterns. On the other hand, Type I was the most common pattern in the medial part of the lower lip. This was followed by Type III, Type IV, Type V, Type II and Type I patterns. While Type III and Type II pattern predominated in the lateral segments as compared to the medial segments. This was followed by Type I’, Type I, Type V and Type IV patterns [Table 2]. Chi-square test was applied to the distribution of different patterns in different areas of the lower lip of males. The test result revealed that the difference was statistically significant (P ≤ 0.001).

Upper lip of females

Among 100 females, the upper lip showed a predominance of Type I’ pattern constituting 33.25% of all the patterns. This was followed in the occurrence by Type II (29.25%), Type III (18.5%), Type IV (8.75%), Type V (6.75%) and Type I (3.5%). Type I’ pattern was the most common in the medial segment of the lower lip followed by Type II, Type IV,
Type III, Type V and Type I patterns. The lateral segments were composed predominantly of Type I' and Type II followed by Type III, Type V, Type I and Type IV patterns. Type III pattern was slightly more common in the lateral segment than in the medial segment [Table 1]. Chi-square test was applied to the distribution of different patterns in different areas of upper lip of females; the test result revealed that the difference was statistically significant ($P \leq 0.001$).

Lower lip of females
The lower lip of females also showed a predominance of Type I' pattern (27.75%). This was followed by Type II (25.75%), Type III (24.5%), Type IV (10.75%), Type I (8.75%) and Type V (2.5%). Type I' pattern was the most common in the medial segments of the lower lip followed by Type IV, Type II, Type III, Type I and Type V patterns. The medial segments were composed predominantly of Type III pattern followed by Type II, Type I, Type I', Type V and Type IV patterns. Type IV and Type V patterns were more common in the medial areas of the lower lip than the lateral areas [Table 2]. Chi-square test was applied to the distribution of different patterns in different areas of the lower lip of females. The test result revealed that the difference was statistically significant ($P \leq 0.001$).

Upper lip and lower lip of males and females combined
Among males and females, the upper lip showed a predominance of Type I' (39.75%) of all the patterns. This was followed in the occurrence by Type II (23.75%), Type III (22.25%), Type IV (9.75%), Type I (4%) and Type V (2.5%) [Table 3]. The lower lip showed a predominance of Type III (34.5%) among all patterns. This was followed in the occurrence by Type II (32.75%), Type I (16.5%), Type I' (13.5%), Type V (2.5%) and Type IV (0.25%) [Table 4]. Chi-square test was applied to the distribution of different patterns in lateral segments of males and females. The difference in pattern between upper and lower lips was found to be statistically significant ($P \leq 0.001$).

Lateral segments of the upper lip and lower lip of males and females
The lip print patterns of males and females in the lateral segments of upper lip showed a predominance of Type I' (37.75%) followed in order by Type II (23.75%), Type III (22.25%), Type V (9.75%), Type I (4%) and Type IV (2.5%) [Table 4]. The lower lip showed a predominance of Type III (34.5%) among all patterns. This was followed in the occurrence by Type II (32.75%), Type I (16.5%), Type I' (13.5%), Type V (2.5%) and Type IV (0.25%) [Table 4]. Chi-square test was applied to the distribution of different patterns in lateral segments of males and females. The difference in pattern between upper and lower lips was found to be statistically significant ($P \leq 0.001$).

Medial segments of the upper lip and lower lip of males and females
The lip print patterns of males and females in the medial segments of upper lip showed a predominance of Type I' (41.75%) followed in order by Type II (23.75%), Type IV (14%), Type III (11.75%), Type V (5.5%) and Type I (3.25%) [Table 5]. The lower lip also showed a predominance of Type I' (52.75%) among all patterns. This was followed in the occurrence by Type IV (16%), Type III (13%), Type II (10.25%), Type I (4%) and Type V (4%) [Table 5]. Chi-square test was applied to the distribution of different patterns in medial segments of males and females. The difference in pattern between the upper and lower lips was found to be statistically significant ($P \leq 0.001$).

Lateral segments of the upper lip in males
The lip print patterns of males in the lateral segments of upper lip showed a predominance of Type I' (45%) followed in order by Type III (20%), Type II (17%), Type V (11%), Type I (4%) and Type IV (3%) [Table 6].

Lateral segments of the upper lip in females
In females, the predominant pattern was Type I' and Type II (30.5%) of all the patterns. This was followed in the
occurrence by Type III (24.5%), Type V (8.5%), Type I (4%) and Type IV (2%) patterns [Table 6]. Chi-square test was applied to the distribution of different patterns in lateral segments of the upper lip in males and females. The difference in pattern between males and females lip was found to be statistically significant ($P \leq 0.0096$).

Medial segments of the upper lip in males
The lip print patterns of males in the medial segments of upper lip showed a predominance of Type I’ (47.5%) followed in order by Type II (19.5%), Type IV (12.5%), Type III (11%), Type V (6%) and Type I (3.5%) [Table 7].

Medial segments of the upper lip in females
In females, the predominant pattern was Type I’ (36%) among all patterns. This was followed in the occurrence by Type II (28%), Type IV (15.5%), Type III (12.5%), Type V (5%) and Type I (3%) [Table 7]. Chi-square test was applied to the distribution of different patterns in medial segments of the upper lip in males and females. The difference was not found to be statistically significant ($P \leq 0.199$).

Lateral segments of the lower lip in males
The lip print patterns of males in the lateral segments of lower lip showed a predominance of Type III (30.5%) followed in order by Type II (29%), Type I’ (19.5%), Type I (18.5%), Type V (2%) and Type IV (0.5%) [Table 8].

Lateral segments of the lower lip in females
In females, the predominant pattern was Type III (38.5%) among all the patterns. This was followed in the occurrence by Type II (36.5%), Type I (14.5%), Type I’ (7.5%) and Type V (3%) [Table 8]. Chi-square test was applied to the distribution of different patterns in lateral segments of the lower lip in males and females. The difference in pattern between male and female lips was found to be statistically significant ($P \leq 0.0041$).

Medial segments of the lower lip in males
The lip print patterns of males in the medial segments of lower lip showed a predominance of Type I’ (57.5%) followed in order by Type III (15.5%), Type IV (10.5%), Type V (6%), Type II (5.5%) and Type I (5%) [Table 9].

Medial segments of the lower lip in females
In females, the predominant pattern was Type I’ (48%) among all the patterns. This was followed in the occurrence by Type IV (21.5%), Type II (15%), Type III (10.5%), Type I (3%) and Type V (2%) [Table 9]. Chi-square test was
applied to the distribution of different patterns in medial segments of the lower lip in males and females. The difference in pattern between male and female lips was found to be statistically significant ($P \leq 0.001$).

DISCUSSION

Over the lips, the Klein’s zone is the area usually where the identification is concerned, and is covered with grooves and wrinkles that form a unique characteristic pattern.\(^3\) The present study is the first to describe the morphological patterns of lip prints specific to Mangalorean people in Southern India. This study also confirms the uniqueness of Mangalorean lip prints as no identical lip print patterns appeared in any two participants, in agreement with the studies of different populations around the world.\(^6\)

In males, the Type I’ lip pattern was the highest recorded followed by Type III, Type II, Type I, Type IV and Type V in descending order. In females, Type I’ was the highest recorded followed by Type II, Type III, Type IV, Type I and Type V in descending order. These results are in contrast to a number of other studies that offer varying results themselves.

Tsuchihashi studied the lip prints of 1,364 Japanese men and women and found that in both genders, Type III predominated followed in descending order by Types I, II, IV and V.\(^4, 5\) Sivapathasundharam studied 200 people’s lip prints in Chennai, India, revealing Type III pattern as the most predominant and Type IV as least commonly occurring.\(^5\) Whereas Prabhu et al. studied 100 students from Goa, India, finding Type V to be the predominant pattern followed by Type I.\(^11\) This suggests that lip print patterns may vary geographically.

Hereditary factors have also been suggested as having possible influence on lip prints, some of which were found by the study of twins. The effect of age and seasonal influences on lip print patterns remains an unknown factor, which needs further study, perhaps also contributing to the variability between different studies.\(^6\)

Every individual’s segment did not have just one pattern, but appeared to have a mixture of different patterns. In this study, only the most dominant pattern was considered for the classification for each segment. If the sums of individual lines were used as Prabhu et al. had done, then this may have possibly changed our results.\(^11\)

The present study has also assessed the association between gender and different lip segments within the Mangalorean population. Males and females displayed statistically significant differences in lip print patterns for different lip sites: lower medial lip, as well as upper and lower lateral segments. Only the upper medial lip segment displayed no statistically significant difference in lip print pattern between males and females. This shows that the distribution of lip prints are generally dissimilar for males and females, with varying predominance according to lip segment. However, despite lip print patterns showing dissimilarity from each other, it cannot be used as an identification tool for gender determination, as a particular pattern is not specific to any gender or any lip segment in a particular gender.

Comparing different lip segments (both genders combined), there are statistically significant differences in lip print patterns between upper versus lower lips, upper medial versus lower medial lip segments and upper lateral versus lower lateral lip segments.

Similarly, comparing different lip segments, for males only and females only (genders considered separately), there are also statistically significant differences in lip print patterns between upper and lower lips and also between medial and lateral segments of each lip, respectively. This shows that the distribution of lip prints is dissimilar between different lip segments.

Overall, there appears to be a general spread of lip patterns — no pattern exclusively missing between genders and upper, lower, medial, or lateral parts of the lip, in accordance with other studies such as a study by Vahanwala.\(^12\)

Analyzing, recording, visualizing and identification of latent lip prints over building evidence is often a key in investigating a crime.\(^13\) Lip prints on porous surfaces, such as multicolored fabric or paper napkins and lysochrome compounds are quite effective in developing recent as well as older latent lip prints and uses of luminescence will be of immense help as shown by Castelló et al.\(^14, 15\) However, a study by Ramakrishnan et al. proved that lysochrome dyes could be used in the development of latent lip prints and could be applied in sex determination with an individual at its accuracy.\(^16\) With regard to the study method, physically recording lip prints is still a labor-intensive and technique-sensitive process. Prabhu et al.\(^11\) presents a digital approach to cheiloscopy, which has been adopted in this study’s method. Using Adobe Photoshop 7 software to digitally analyze lip prints has indeed proven to be a convenient
and more accurate way of visualizing, identifying and storing lip print patterns. Digital ante-mortem records can be stored permanently and readily accessed, just as DNA, fingerprint and dental records have been for years already.[11] Modern digital methods will hopefully continue to develop the field of cheiloscopy and allow for its wider use.

CONCLUSION

Cheiloscopy provides a useful alternative means of identifying individuals due to the consistent variability in lip print patterns. The present study provides detailed information on the morphological patterns of lip prints specific to Mangalorean people in Southern India for the first time. This information is not only useful as a “snapshot” of the Mangalorean population but also its analysis provides useful insights into how these results compare between different segments of the lip, gender and between other populations.

Acknowledgments
The authors thank all the residents of Mangalore who consented to take part in this study. We also express our gratitude to Prof. B. Sureshchandra, Principal, A.J. Institute of Dental Sciences, Mangalore, India, for his encouragement and continued support to research in forensic odontology.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Jaishankar S, Jaishankar N, Shanmugam S. Lip prints in personal identification. J Indian Acad Dent Spec 2010;1:23-6.
2. El Domiaty MA, Al-gaidi SA, Elayat AA, Safwat MD, Galal SA. Morphological patterns of lip prints in Saudi Arabia at Almadinah Almonawarah province. Forensic Sci Int 2010;200:179.e1-9.
3. Amith HV, Ankola AV, Nagesh L. Lip prints – Can it aid in individual identification. J Oral Health Community Dent 2011;5:113-8.
4. Kavitha B, Einstein A, Sivapathasundaram B, Saraswathi TR. Limitations in forensic odontology. J Forensic Dent Sci 2009;1:8-10.
5. Sivapathasundaram B, Prakash PA, Sivakumar G. Lip prints (cheiloscopy). Indian J Dent Res 2001;12:234-7.
6. Bowers CM, Johansen RJ. Digital analysis of bite marks and human identification. Dent Clin North Am 2001;45:327-42.
7. Augustine J, Barpande SR, Tupkari JV. Cheiloscopy as an adjunct to forensic identification: A study of 600 individuals. J Forensic Odontostomatol 2008;26:44-52.
8. Suzuki K, Tsuchihashi Y. Personal identification by means of lip print. J Forensic Med 1970;17:52-7.
9. Saraswathi TR, Mishra G, Ranganathan K. Study of lip prints. J Forensic Dent Sci 2009;1:244-5.
10. Tsuchihashi Y. Studies on personal identification by means of lip prints. Forensic Sci 1974;3:233-48.
11. Prabhu RV, Dinkar A, Prabhu V. A study of lip print pattern in Goan dental students – A digital approach. J Forensic Leg Med 2012;19:390-5.
12. Vahanwala SP, Parekh DK. Study of lip-prints as aid for sex determination. Medico Legal Update 2005;5:93-8.
13. Castello A, Alvarez Segui M, Verdú F. Use of fluorescent dyes for developing latent lip prints. Colo Technol 2004;120:184-7.
14. Castelló A, Alvarez-Seguí M, Verdú F. Luminous lip-prints as criminal evidence. Forensic Sci Int 2005;155:185-7.
15. Caldas IM, Magalhães T, Afonso A. Establishing identity using cheiloscopy and palatoscopy. Forensic Sci Int 2007;165:1-9.
16. Ramakrishnan P, Bahirwani S, Valambath S. Assessment of cheiloscopy in sex determination using lysochrome – A preliminary study. J Forensic Dent Sci 2015;7:195-200.