On the index of a free abelian subgroup in $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$

Gurmeet K. Bakshi and Sugandha Maheshwary

Centre for Advanced Study in Mathematics,
Panjab University, Chandigarh 160014, India
email: gkbakshi@pu.ac.in and msugandha.87@gmail.com

Abstract

Let $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ denote the group of central units in the integral group ring $\mathbb{Z}[G]$ of a finite group G. A bound on the index of the subgroup generated by a virtual basis in $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ is computed for a class of strongly monomial groups. The result is illustrated with application to groups of order p^n, p prime, $n \leq 4$. The rank of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ and the Wedderburn decomposition of the rational group algebra of these p-groups have also been obtained explicitly in terms of p.

Keywords: integral group rings, unit group, central units, generalized Bass units, Wedderburn decomposition, strong Shoda pairs, strongly monomial groups, normally monomial groups.

MSC2000: 16U60; 16K20; 16S34; 20C05

1 Introduction

Let $\mathcal{U}(\mathbb{Z}[G])$ denote the unit group of the integral group ring $\mathbb{Z}[G]$ of a finite group G. The centre of $\mathcal{U}(\mathbb{Z}[G])$ is denoted by $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$. It is well known that $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G])) = \pm \mathcal{Z}(G) \times A$, where A is a free abelian subgroup of $\mathcal{U}(\mathbb{Z}[G])$ of finite rank. In order to study $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$, a multiplicatively independent subset of such a subgroup A, i.e., a \mathbb{Z}-basis for such a free \mathbb{Z}-module A, is of importance, and is known only for a few groups ([11, 2, 15], see also [17], Examples 8.3.11 and 8.3.12). However, other papers deal with determining a virtual basis of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$, i.e., a multiplicatively independent subset of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ which generate subgroups of finite index in $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ (see e.g. [6, 7, 8, 9, 10, 11, 12, 13, 14]).

*Research supported by CSIR, India, is gratefully acknowledged
†Corresponding author
Analogous to well known cyclotomic units in cyclotomic fields, Bass [4] constructed units, so called Bass cyclic units, which generate a subgroup of finite index in $\mathcal{U}(\mathbb{Z}[G])$, when G is cyclic. A virtual basis consisting of certain Bass cyclic units was also given by Bass. Generalizing the notion of Bass cyclic units, Jespers et al [11] defined generalized Bass units and have shown that these units generate a subgroup of finite index in $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ for strongly monomial groups G. Recently, for a class of groups properly contained in finite strongly monomial groups, Jespers et al [13] provided a subset, denoted by $\mathcal{B}(G)$ (say), of the group generated by generalized Bass cyclic units, which forms a virtual basis of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$.

In this paper, we determine a bound on the index of the subgroup generated by $\mathcal{B}(G)$ in $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ for the same class of groups as considered in [13] (Theorem 2). Our result is based on the ideas contained in [13] and Kummer’s work ([19], Theorem 8.2) on the index of cyclotomic units. Further in [13], Jespers et al have provided the rank of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ for a strongly monomial group G, in terms of strong Shoda pairs of G. In section 4, we compute a complete and irredundant set of strong Shoda pairs of non abelian groups of order p^n, p prime, $n \leq 4$, and provide, in terms of p, the rank of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ of these p-groups along with the Wedderburn decomposition of their rational group algebras. We also derive a bound, in terms of p, on the index of subgroup generated by $\mathcal{B}(G)$ for these p-groups.

2 Preliminaries and Notation

We begin by recalling the definition of strong Shoda pair ([10], Definition 3.1). Let K be a normal subgroup of a subgroup H of G. Define $\hat{H} := \frac{1}{|H|} \sum_{h \in H} h$ and

$$\varepsilon(H, K) := \begin{cases} \hat{H}, & H = K; \\ \prod(\hat{K} - \hat{M}) = \hat{K} \prod(1 - \hat{M}), & \text{otherwise}, \end{cases}$$

where M runs through the set of all minimal normal subgroups of H containing K properly. Set

$$e(G, H, K) := \text{the sum of distinct } G-\text{conjugates of } \varepsilon(H, K).$$

If the G-conjugates are orthogonal, then $e(G, H, K)$ is a central idempotent of $\mathbb{Q}[G]$.

2
A strong Shoda pair of G is a pair (H, K) of subgroups of G with the properties that

(i) K is normal in H and H is normal in the normalizer $N_G(K)$ of K in G;

(ii) H/K is cyclic and a maximal abelian subgroup of $N_G(K)/K$ and

(iii) the distinct G-conjugates of $\varepsilon(H, K)$ are mutually orthogonal.

If (H, K) is a strong Shoda pair, then $e(G, H, K)$ is a primitive central idempotent of $\mathbb{Q}[G]$ ([16], Theorem 4.4). A group G is called strongly monomial if every primitive central idempotent of $\mathbb{Q}[G]$ is of the form $e(G, H, K)$ for some strong Shoda pair (H, K) of G.

Two strong Shoda pairs (H_1, K_1) and (H_2, K_2) are said to be equivalent if $e(G, H_1, K_1) = e(G, H_2, K_2)$. A complete set of representatives of distinct equivalence classes of strong Shoda pairs of G is called a complete irredundant set of strong Shoda pairs of G. In order to know a complete irredundant set of primitive central idempotents of $\mathbb{Q}[G]$, G strongly monomial, a complete irredundant set of strong Shoda pairs is of interest.

Recall that a group G is called normally monomial if every complex irreducible character of G is induced from a linear character of a normal subgroup of G. Theorem [1] as stated below, provides an algorithm to determine a complete irredundant set of strong Shoda pairs for a normally monomial group G and also, in particular, yields that a normally monomial group is strongly monomial.

Let \mathcal{N} be the set of all the distinct normal subgroups of a finite group G. For $N \in \mathcal{N}$, set

A_N : a normal subgroup of G containing N such that A_N/N is an abelian normal subgroup of maximal order in G/N.

D_N : the set of all subgroups D of A_N containing N such that $\text{core}(D) = N$, A_N/D is cyclic and is a maximal abelian subgroup of $N_G(D)/D$, where $\text{core}(D) = \bigcap_{x \in G} xDx^{-1}$, the largest normal subgroup of G contained in D.

T_N : a set of representatives of D_N under the equivalence relation defined by conjugacy of subgroups in G.

S_N : $\{(A_N, D) \mid D \in T_N\}$.

Note that if $N \in \mathcal{N}$ is such that G/N is abelian, then, by ([1], Eq.(1)),

$$S_N = \begin{cases} \{(G, N)\}, & G/N \text{ cyclic;} \\ \emptyset, & \text{otherwise.} \end{cases} \quad (1)$$
Theorem 1 ([3], Theorem 1, Corollaries 1 and 2) The following statements are equivalent:

(i) G is normally monomial;
(ii) $|G| = \sum_{N \in \mathcal{N}} \sum_{D \in \mathcal{D}_{N}} [G : A_{N}] \varphi([A_{N} : D])$, where φ is the Euler phi function;
(iii) $S(G) := \bigcup_{N \in \mathcal{N}} S_{N}$ is a complete irredundant set of strong Shoda pairs of G.

Let ζ_n denote a complex root of unity of order n, $n > 1$ and k an integer coprime to n. Then

$$\eta_k(\zeta_n) = \frac{1 - \zeta_n^k}{1 - \zeta_n} = 1 + \zeta_n + \zeta_n^2 + \ldots + \zeta_n^{k-1}$$

is a unit of $\mathbb{Z}[\zeta_n]$. The notation is extended by setting $\eta_k(1) = 1$. The units of the form $\eta_k(\zeta_j^n)$, with integers j, k and n such that $(k, n) = 1$ are called cyclotomic units of $\mathbb{Q}(\zeta_n)$, where (k, n) denotes the greatest common divisor of k and n.

Let g be an element of G of order n and k and m positive integers such that $k^m \equiv 1 \pmod{n}$. Then,

$$u_{k,m}(g) = (1 + g + \ldots + g^{k-1})^m + \frac{1 - k^m}{n}(1 + g + \ldots + g^{n-1})$$

is a unit in the integral group ring $\mathbb{Z}[G]$. The units in $\mathbb{Z}[G]$ of this form are called Bass cyclic units (see [18], (10.3)).

Next, we recall the definition of generalized Bass unit of $\mathbb{Z}[G]$ defined by Jespers et al [14]. For a normal subgroup M of G, $g \in G$ with parameters k and m as above,

$$u_{k,m}(1 - \hat{M} + g\hat{M}) = 1 - \hat{M} + u_{k,m}(g)\hat{M}$$

is an invertible element of $\mathbb{Z}[G](1 - \hat{M}) + \mathbb{Z}[G]\hat{M}$ and some power of it is invertible in $\mathbb{Z}[G]$. If $n_{G,M}$ is the minimal positive integer satisfying $u_{k,m}(1 - \hat{M} + g\hat{M})^{n_{G,M}} \in \mathcal{U}(\mathbb{Z}[G])$ for all $g \in G$, then the element

$$u_{k,m}(1 - \hat{M} + g\hat{M})^{n_{G,M}} = 1 - \hat{M} + u_{k,mn_{G,M}}(g)\hat{M}$$

is called a generalized Bass unit based on G and M with parameters k and m.

Let G be a strongly monomial group with $\{(H_i, K_i) : 1 \leq i \leq m\}$, a complete and irredundant set of strong Shoda pairs such that $[H_i : K_i] = p_i^{n_i}$, p_i prime, $n_i \geq 1$, where $[H_i : K_i]$ denotes the index of K_i in H_i. Let $H_i/K_i = \langle g_iK_i \rangle$, and $L_j = \langle g_i^{p_i^{n_i-j}}, K_i \rangle$, $0 \leq j \leq n_i$. Let k be a positive integer coprime with p_i and let r be an arbitrary integer. For every $0 \leq j \leq s \leq n_i$,

$$c_s^r(H_i, K_i, k, r) = 1,$$

and

$$c_j^i(H_i, K_i, k, r) = \left(\prod_{h \in L_j} u_{k, o_i n_i (k)}(g_i^{r p_i^{n_i-j}} h \hat{K}_i + 1 - \hat{K}_i) \right) \times \left(\prod_{l = j + 1}^{s-1} c_l^i(H_i, K_i, k, r) \right) \left(\prod_{l = 0}^{j-1} c_l^{i+l-j}(H_i, K_i, k, r)^{-1} \right),$$

where $o_i(k)$ denotes the multiplicative order of k modulo l. The empty products equal 1. Let T_i be a right transversal of $N_i = N_G(K_i)$ in G and I_i be a subset of $\{ k : 1 \leq k < \frac{p_i^{n_i}}{2}, (k, p_i) = 1 \}$, containing 1, which forms a set of representatives of $U(\mathbb{Z}/[H_i] : K_i[\mathbb{Z}])$ modulo $\langle N_i/H_i, -1 \rangle$. As explained in $[13]$, N_i/H_i is identified as a subgroup of $Gal(\mathbb{Q}(\zeta_{p_i^n})/\mathbb{Q})$. Also, N_i/H_i is either $\langle r_i \rangle$ or $\langle r_i \rangle \times \langle -1 \rangle$ for some $r_i \equiv 1 (mod 4)$. Call $d_i = 1$ if $-1 \in \langle r_i \rangle$ and 2 otherwise. Define

$$B(H_i, K_i) = \left\{ \prod_{x \in N_i/H_i} c_0^u(H_i, K_i, k, x) | k \in I_i \setminus \{1\} \right\}$$

and

$$B(H_i, K_i) = \left\{ \prod_{t \in T_i} u^t | u \in B(H_i, K_i) \right\},$$

where $u^t = t^{-1}ut$.

Jespers et al ($[13]$, Theorem 3.5) proved that $B(G) = \bigcup_{i=1}^m B(H_i, K_i)$ is a virtual basis of $\mathcal{Z}(U(\mathbb{Z}[G]))$.

3 A bound on the index of $\langle B(G) \rangle$ in $\mathcal{Z}(U(\mathbb{Z}[G]))$

Throughout this section, we assume that G is a strongly monomial group with $\{(H_i, K_i) : 1 \leq i \leq m\}$, a complete and irredundant set of strong Shoda pairs such that $[H_i : K_i] = p_i^{n_i}$, p_i prime, $n_i \geq 1$. Without any specific mention, we continue to use the notation developed in Section 2. The following theorem provides a bound on the index $[\mathcal{Z}(U(\mathbb{Z}[G])) : \langle B(G) \rangle]$ of the subgroup generated by $B(G)$ in $\mathcal{Z}(U(\mathbb{Z}[G]))$:
Theorem 2 The index of the subgroup generated by $B(G)$ in $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$ is at most
$$\prod_{i=1}^{m} h_{p_i}^{*} \mathfrak{o}_i (p_i^{d-1}[N_i : H_i])^{l_i - 1},$$
where $\mathfrak{o}_i = \prod_{1 < k < p_i} (k)p_i^{n_i - 1}$ and $h_{p_i}^{*}$ denotes the class number of the maximal real subfield of $\mathbb{Q}(\zeta_{p_i^{n_i}})$.

We first prove the following lemma:

Lemma 1 Let $\mathcal{A}(H_i, K_i) = \mathcal{Z}(1 - e_i + \mathcal{U}(\mathbb{Z}[G]e_i))$ and $A(H_i, K_i) = \mathcal{Z}(1 - \varepsilon_i + \mathcal{U}(\mathbb{Z}[N_i]\varepsilon_i))$, where $e_i = e(G, H_i, K_i)$ and $\varepsilon_i = \varepsilon(H_i, K_i)$, $1 \leq i \leq m$. Then,
$$[\mathcal{A}(H_i, K_i) : \langle B(H_i, K_i) \rangle] = [A(H_i, K_i) : \langle B(H_i, K_i) \rangle].$$

Proof. From the proof of ([16], Proposition 3.4), we have isomorphism
$$\mathbb{Q}[G]e_i \overset{\theta_i}{\cong} M_{m_i}(\mathbb{Q}[N_i]\varepsilon_i),$$
where $m_i = [G : N_i]$, $N_i = N_G(K_i)$. Indeed, the above isomorphism is given by
$$\alpha e_i \overset{\theta_i}{\mapsto} (\alpha_{rs})_{m_i \times m_i},$$
where $\alpha_{rs} = \varepsilon_i t_r \alpha e_i t_s^{-1} \varepsilon_i$ and $\{t_j| 1 \leq j \leq m_i\}$ is a transversal of N_i in G. This isomorphism in turn yields the group isomorphism
$$\mathcal{Z}(\mathcal{U}(\mathbb{Q}[G]e_i)) \overset{\theta_i}{\cong} \mathcal{Z}(\mathcal{U}(M_{m_i}(\mathbb{Q}[N_i]\varepsilon_i)))$$
given by
$$\alpha e_i \overset{\theta_i}{\mapsto} \varepsilon_i \alpha e_i \varepsilon_i I_{m_i \times m_i}.$$
As $\varepsilon_i \alpha e_i \varepsilon_i = \varepsilon_i \alpha \varepsilon_i$, the restriction of the above isomorphism θ_i to $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]e_i))$ gives the isomorphism
$$\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]e_i)) \overset{\theta_i}{\cong} \mathcal{Z}(\mathcal{U}(M_{m_i}(\mathbb{Z}[N_i]\varepsilon_i))).$$
However, $\mathcal{Z}(\mathcal{U}(M_{m_i}(\mathbb{Z}[N_i]\varepsilon_i)))$ being equal to $\{\beta \varepsilon_i I_{m_i \times m_i} : \beta \varepsilon_i \in \mathcal{Z}(\mathcal{U}(\mathbb{Z}[N_i]\varepsilon_i))\}$, there is a natural group isomorphism $\mathcal{Z}(\mathcal{U}(M_{m_i}(\mathbb{Z}[N_i]\varepsilon_i))) \cong \mathcal{Z}(\mathcal{U}(\mathbb{Z}[N_i]\varepsilon_i))$ given by $\beta \varepsilon_i I_{m_i \times m_i} \mapsto \beta \varepsilon_i$. Consequently, we have the group isomorphism
$$\Theta_i : \mathcal{A}(H_i, K_i) \longrightarrow A(H_i, K_i).$$
by setting

\[1 - \varepsilon_i + \alpha \varepsilon_i \xrightarrow{\Theta_i} 1 - \varepsilon_i + \varepsilon_i \alpha \varepsilon_i.\]

We further see that if \(u = 1 - \varepsilon_i + \gamma \varepsilon_i \in B(H_i, K_i)\), \(\gamma \varepsilon_i \in \mathcal{Z}(\mathcal{U}(\mathbb{Z}[N_i] \varepsilon_i))\), then \(\Theta_i(\prod_{t \in T} u_t) = \Theta_i(1 - \varepsilon_i + \sum_{t \in T} \gamma^t \varepsilon_i) = 1 - \varepsilon_i + \varepsilon_i (\sum_{t \in T} \gamma^t \varepsilon_i) = 1 - \varepsilon_i + \gamma \varepsilon_i = u\).

This yields \(\Theta_i(B(H_i, K_i)) = B(H_i, K_i)\) and consequently Lemma \ref{lemma} follows.

Proof of Theorem \ref{theorem} Since \(\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))\) is a subgroup of \(\prod_{i=1}^m A(H_i, K_i)\), we have

\[
[\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G])) : \langle B(G) \rangle] \leq \prod_{i=1}^m A(H_i, K_i) : \langle B(G) \rangle
= \prod_{i=1}^m A(H_i, K_i) : \langle \cup_{i=1}^m B(H_i, K_i) \rangle
= \prod_{i=1}^m [A(H_i, K_i) : \langle B(H_i, K_i) \rangle].
\]

In view of Lemma \ref{lemma} it is enough to prove that

\[
[A(H_i, K_i) : \langle B(H_i, K_i) \rangle] \leq h_{\nu_i}^+ p_i^\nu_i a_i (p_i^d - 1[N_i : H_i])|H_i|^{-1}. \tag{3}
\]

The center of \(\mathbb{Q}(1 - \varepsilon_i) + \mathbb{Q}[N_i] \varepsilon_i\), which is equal to \(\mathbb{Q}(1 - \varepsilon_i) + (\mathbb{Q}[H_i] \varepsilon_i)^{N_i/H_i}\), is embedded inside the algebra \(\mathbb{Q}[H_i] \hat{K}_i \oplus \mathbb{Q}(1 - \hat{K}_i)\), via the embedding

\[
r(1 - \varepsilon_i) + u \varepsilon_i \mapsto (r(1 - \varepsilon_i) + u \varepsilon_i) \hat{K}_i + r(1 - \hat{K}_i), \tag{4}
\]

where \(r \in \mathbb{Q}, u \varepsilon_i \in (\mathbb{Q}[H_i] \varepsilon_i)^{N_i/H_i}\). Here, \(N_i/H_i\) acts on \(\mathbb{Q}[H_i] \varepsilon_i\) by the action \((\alpha \varepsilon_i)^{n_i} = n_i^{-1} \alpha n_i \varepsilon_i, \alpha \varepsilon_i \in \mathbb{Q}[H_i] \varepsilon_i, n_i H_i \subset N_i/H_i\) and \((\mathbb{Q}[H_i] \varepsilon_i)^{N_i/H_i}\) are the elements kept fixed under this action.

Let \(\pi\) denote the projection of \(\mathbb{Q}[H_i] \hat{K}_i \oplus \mathbb{Q}(1 - \hat{K}_i)\) onto \(\mathbb{Q}(\zeta_{p_i^{n_i}})\) under the isomorphism \(\mathbb{Q}[H_i] \hat{K}_i \oplus \mathbb{Q}(1 - \hat{K}_i) \cong \oplus_{k=0}^\tau \mathbb{Q}(\zeta_{p_i^{n_i}}) \oplus \mathbb{Q}(1 - \hat{K}_i)\) given by

\[
x \hat{K}_i + a(1 - \hat{K}_i) \mapsto (\sum_{j=0}^{\nu_i - 1} x_j, \sum_{j=0}^{\nu_i - 1} x_j \zeta_{p_i^j}, \ldots, \sum_{j=0}^{\nu_i - 1} x_j \zeta_{p_i^{\nu_i - 1}}, a(1 - \hat{K}_i)), \tag{5}
\]

where \(x \hat{K}_i = \sum_{j=0}^{\nu_i - 1} x_j g_j^i \hat{K}_i, x_j \in \mathbb{Q}\). Since \(\pi \circ \tau \circ \iota\) is injective on \(\mathcal{Z}(\mathbb{Q}(1 - \varepsilon_i) + \mathbb{Q}[N_i] \varepsilon_i)\) and \(\pi \circ \tau \circ \iota(A(H_i, K_i)) \subseteq \mathcal{U}(\mathbb{Z}[\zeta_{p_i^{n_i}}]^{N_i/H_i})\), we have

\[
[A(H_i, K_i) : \langle B(H_i, K_i) \rangle] = \left[\pi \circ \tau \circ \iota(A(H_i, K_i)) : \pi \circ \tau \circ \iota(\langle B(H_i, K_i) \rangle)\right]
\leq \left[\mathcal{U}(\mathbb{Z}[\zeta_{p_i^{n_i}}]^{N_i/H_i}) : \pi \circ \tau \circ \iota(\langle B(H_i, K_i) \rangle)\right]. \tag{6}
\]
Set
\[N_{(H, K_i)} = \langle \pi_{N_i/H_i}(\eta_k(\zeta_{p_{ni}}^{n_i})^{\alpha_{p_{ni}}(k)p_{ni}^{n_i-1}a_i}) : k \in I_i \setminus \{1\} \rangle, \]
\[F_{(H, K_i)} = \langle \eta_k(\zeta_{p_{ni}}^{n_i})^{\alpha_{p_{ni}}(k)p_{ni}^{n_i-1}a_i} : 1 < k < \frac{p_{ni}}{2}, (k, p_i) = 1 \rangle, \]
\[O_{(H, K_i)} = F_{(H, K_i)} \times \langle \zeta_{p_{ni}}^{n_i-1} \rangle, \]
\[P_{(H, K_i)} = \langle \eta_k(\zeta_{p_{ni}}^{n_i}) : k \in \mathcal{U}(\mathbb{Z}/p_{ni}\mathbb{Z}) \rangle = \langle \eta_k(\zeta_{p_{ni}}^{n_i}) : 1 < k < \frac{p_{ni}}{2}, (k, p_i) = 1 \rangle \times \langle \zeta_{p_{ni}}^{n_i} \rangle, \]
\[Q_{(H, K_i)} = \mathcal{U}(\mathbb{Z}[\zeta_{p_{ni}}^{N_i/H_i}]) \cap O_{(H, K_i)}. \]

where \(\pi_{N_i/H_i}(u) = \prod_{\sigma \in N_i/H_i} \sigma(u), \ u \in \mathcal{Q}(\zeta_{p_{ni}}^{n_i}). \)

By (13), Proposition 3.4,
\[\pi \circ \tau \circ \iota \langle B(H_i, K_i) \rangle = N_{(H, K_i)}. \] (7)

Therefore,
\[\mathcal{U}(\mathbb{Z}[\zeta_{p_{ni}}^{N_i/H_i}]) \cap \langle B(H_i, K_i) \rangle \]
\[= \mathcal{U}(\mathbb{Z}[\zeta_{p_{ni}}^{N_i/H_i}]) \cap (B(H_i, K_i)) \]
\[= \mathcal{U}(\mathbb{Z}[\zeta_{p_{ni}}^{N_i/H_i}]) \cap O_{(H, K_i)}[Q_{(H, K_i)} : N_{(H, K_i)}] \]
\[\leq \mathcal{U}(\mathbb{Z}[\zeta_{p_{ni}}^{N_i/H_i}]) \cap Q_{(H, K_i)}[Q_{(H, K_i)} : N_{(H, K_i)}]. \] (8)

Further,
\[\mathcal{U}(\mathbb{Z}[\zeta_{p_{ni}}^{N_i/H_i}]) \cap O_{(H, K_i)} \]
\[= \mathcal{U}(\mathbb{Z}[\zeta_{p_{ni}}^{N_i/H_i}]) \cap P_{(H, K_i)}[O_{(H, K_i)} : P_{(H, K_i)}] \] (9)

Clearly,
\[P_{(H, K_i)} : O_{(H, K_i)} = p_{i}^{n_i-1} \prod_{1 < k < \frac{p_{ni}}{2}, (k, p_i) = 1} o_{p_{ni}}(k)p_{ni}^{n_i-1}a_i = p_{i}^{n_i-1}o_i. \] (10)

Also, by (19), Theorem 8.2,
\[\mathcal{U}(\mathbb{Z}[\zeta_{p_{ni}}^{N_i/H_i}]) : P_{(H, K_i)} = h_{p_{ni}}^{N_i/H_i}. \] (11)

Next, observe that \(Q_{(H, K_i)} \cap F_{(H, K_i)} \) is a free abelian group, and by (13), Lemma 3.2, it has rank at most \(|I_i| - 1 \). Furthermore, any element of \(Q_{(H, K_i)} \cap F_{(H, K_i)} \) is of order at most \(p_{i}^{n_i-1}|N_i/H_i| \). To see this, let \(u \in Q_{(H, K_i)} \cap F_{(H, K_i)} \) and write \(u = \prod_{1 < k < \frac{p_{ni}}{2}, (k, p_i) = 1} (\eta_k(\zeta_{p_{ni}}^{n_i})^{\alpha_{p_{ni}}(k)p_{ni}^{n_i-1}a_k})^{\alpha_k}, \alpha_k \geq 0 \). Since \(\pi_{N_i/H_i}(\eta_k(\zeta_{p_{ni}}^{n_i})) = 1 \) and
\[\pi_{N_i/H_i}(\eta_k(\zeta_{p_{ni}}^{n_i})) = \pi_{N_i/H_i}(-\zeta_{p_{ni}}^{n_i})^{\pi_{N_i/H_i}(\eta_k(\zeta_{p_{ni}}^{n_i}))}, \]
\(t \geq 0, j \in I_i, \) it turns out that \(u^{N_i/H_i}|p_{ni}^{n_i-1} = (\pi_{N_i/H_i}(u))^{p_{ni}^{n_i-1}} \in N_{(H, K_i)} \cap F_{(H, K_i)} \).
Consequently,

\[[Q(H_i, K_i) \cap F(H_i, K_i) : N(H_i, K_i) \cap F(H_i, K_i)] \leq (p_i^{d_i-1}|N_i/H_i|)^{|I_i|-1} \] \hspace{1cm} (12)

and therefore,

\[[Q(H_i, K_i) : N(H_i, K_i)] \leq [Q(H_i, K_i) : Q(H_i, K_i) \cap F(H_i, K_i)] [Q(H_i, K_i) : N(H_i, K_i) \cap F(H_i, K_i)] \leq p_i (p_i^{d_i-1}|N_i/H_i|)^{|I_i|-1}. \] \hspace{1cm} (13)

Finally, Eqs. (12)-(13) yield the claim, i.e., Eq. (13), which in view of Eq. (2) and Lemma 1 completes the proof. □

The above theorem, in particular, for abelian \(p \) groups yields the following:

Corollary 1 Let \(G \) be an abelian \(p \) group, \(p \) prime, and let \(K_i, 1 \leq i \leq m \), be all the cyclic subgroups of \(G \). If \(|K_i| = p^{n_i}, 1 \leq i \leq m \), then the index of the subgroup generated by \(B(G) \) in \(U(Z[G]) \) is at most

\[\prod_{i=1}^{m} h_{p_i}^{+} p^{n_i} \left(\prod_{1 < k < p_i^{n_i}} o_{p_i}(k) p^{n_i} n_i \right). \]

4 Non Abelian groups of order \(p^n \), \(n \leq 4 \)

4.1 Non Abelian groups of order \(p^3 \)

If \(p \) is an odd prime, then up to isomorphism, the only two non-abelian groups of order \(p^3 \) are:

\[\langle a, b \mid a^p = b^p = 1, \ ba = a^{p+1} b \rangle \]

and

\[\langle a, b, c \mid a^p = b^p = c^p = 1, ab = bac, ac = ca, bc = cb \rangle. \]

In (3), Theorems 3, 4), a complete and irredundant set of strong Shoda pairs for these groups has been found. Applying Theorem 2 and (13), Theorem 3.1), we obtain that for any of these two non-abelian groups \(G \) of order \(p^3 \), \(p \) odd prime,

\[\text{Rank of } Z(U(Z[G])) = \frac{(p - 3)(p + 2)}{2} \]

and

\[[Z(U(Z[G])) : \langle B(G) \rangle] \leq \left(p^{\frac{p-1}{2}} h_{p}^{+} \prod_{1 < k < \frac{p}{2}} o_{p}(k) \right)^{p+2}. \]
If \(p = 2 \), then \(G \) is either isomorphic to \(D_4 \), the dihedral group of order 8 or is isomorphic to \(Q_8 \), the group of quaternions. Both these groups satisfy the hypothesis of ([18], Theorem 6.1). Therefore, we already know that the group of central units in integral group rings of these groups consist of only trivial units.

4.2 Non Abelian groups of order \(p^4 \)

We first assume that \(p \) is an odd prime. The following is the complete list of non abelian groups of order \(p^4 \), \(p \) an odd prime (see [5], §117):

1. \(G_1 = \langle a, b : a^{p^3} = b^p = 1, ba = a^{1+p^2}b \rangle \);
2. \(G_2 = \langle a, b, c : a^{p^2} = b^p = c^p = 1, cb = a^pbc, ab = ba, ac = ca \rangle \);
3. \(G_3 = \langle a, b : a^{p^2} = b^{p^2} = 1, ba = a^{1+p}b \rangle \);
4. \(G_4 = \langle a, b, c : a^{p^2} = b^p = c^p = 1, ca = a^{1+p}c, ba = ab, cb = bc \rangle \);
5. \(G_5 = \langle a, b, c : a^{p^2} = b^p = c^p = 1, ca = abc, ab = ba, bc = cb \rangle \);
6. \(G_6 = \langle a, b, c : a^{p^2} = b^p = c^p = 1, ba = a^{1+p}b, ca = abc, cb = bc \rangle \);
7. \(G_7 = \begin{cases} \langle a, b, c : a^{p^2} = b^p = 1, c^p = a^p, ab = ba^{1+p}, ac = cab^{-1}, cb = bc \rangle, & \text{if } p = 3; \\
\langle a, b, c : a^{p^2} = b^p = c^p = 1, ba = a^{1+p}b, ca = a^{1+p}bc, cb = a^pbc \rangle, & \text{if } p > 3; \end{cases} \)
8. \(G_8 = \begin{cases} \langle a, b, c : a^{p^2} = b^p = 1, c^p = a^{-p}, ab = ba^{1+p}, ac = cab^{-1}, cb = bc \rangle, & \text{if } p = 3; \\
\langle a, b, c : a^{p^2} = b^p = c^p = 1, ba = a^{1+p}b, ca = a^{1+dp}bc, cb = a^{dp}bc \rangle, & \text{if } p > 3 \\
d \not\equiv 0, 1(\mod p) \end{cases} \)
9. \(G_9 = \langle a, b, c, d : a^p = b^p = c^p = d^p = 1, dc = acd, bd = db, ad = da, bc = cb, ac = ca, ab = ba \rangle \);
10. \(G_{10} = \begin{cases} \langle a, b, c : a^{p^2} = b^p = c^p = 1, ab = ba, ac = cab, bc = ca^{-p}b \rangle, & \text{if } p = 3, \\
\langle a, b, c, d : a^p = b^p = c^p = d^p = 1, dc = bcd, db = abd, ad = da, \\
bc = cb, ac = ca, ab = ba \rangle, & \text{if } p > 3. \end{cases} \)
Theorem 3 A complete and irredundant set $S(G_i)$ of strong Shoda pairs for each G_i, $1 \leq i \leq 10$, is as follows:

(i) $S(G_1) = \{(a, \langle 1 \rangle), (G_1, \langle a \rangle), (G_1, G_1)\} \cup \{(G_1, \langle a^p, a^p b \rangle), (G_1, \langle a^p a b \rangle) \mid 0 \leq i \leq p - 1\};$

(ii) $S(G_2) = \{(a, b), (G_2, \langle a, b \rangle), (G_2, G_2)\} \cup \{(G_2, \langle a b, c \rangle), (G_2, \langle b a^i, c a^j \rangle) \mid 0 \leq i, j \leq p - 1\};$

(iii) $S(G_3) = \{(a, b^p), (G_3, \langle a \rangle), (G_3, G_3)\} \cup \{(a, b^p, \langle a^{p^i} b^p \rangle), (G_3, \langle a^p, b a^i \rangle) \mid 0 \leq i \leq p - 1\} \cup \{(G_3, \langle a^p, a^k b^p \rangle) \mid 1 \leq k \leq p - 1\};$

(iv) $S(G_4) = \{(a, b), (G_4, G_4)\} \cup \{(a, \langle a^p \rangle), (G_4, \langle a, b \rangle), (G_4, \langle b a^i, c a^j \rangle) \mid 0 \leq i, j \leq p - 1\};$

(v) $S(G_5) = \{(a, \langle a \rangle), (G_5, \langle a^p, b, c \rangle), (G_5, \langle a, b \rangle), (G_5, G_5)\} \cup \{(G_5, \langle b, c a^p \rangle) \mid 0 \leq i \leq p - 1\} \cup \{(a, \langle a b^k \rangle), (G_5, \langle b, c a^k \rangle) \mid 1 \leq k \leq p - 1\};$

(vi) $S(G_6) = \{(a^p, b, c), (a, b), (G_6, \langle a^p, b, c \rangle), (G_6, G_6)\} \cup \{(a^p, b, c, \langle b, c a^p \rangle) \mid 0 \leq i \leq p - 1\} \cup \{(G_6, \langle b, c a^k \rangle) \mid 1 \leq k \leq p - 1\};$

(vii) $S(G_7) = \{(b, c), (b, c), \langle c \rangle, (G_7, \langle a, b \rangle), (G_7, G_7)\} \cup \{(G_7, \langle b, c a^i \rangle) \mid 0 \leq i \leq p - 1\};$

(viii) $S(G_7) = \{(b, \langle c \rangle), (b, \langle c \rangle), \langle c \rangle, (G_7, \langle a, b \rangle), (G_7, G_7)\} \cup \{(G_7, \langle b, c a^i \rangle) \mid 0 \leq i \leq p - 1\};$

(ix) $S(G_8) = \{(b, \langle c \rangle), (b, \langle c \rangle), \langle c \rangle, (G_7, \langle a, b \rangle), (G_7, G_7)\} \cup \{(G_8, \langle b, c a^i \rangle) \mid 0 \leq i \leq p - 1\};$

(x) $S(G_8) = \{(b, \langle c a^d \rangle), (b, \langle c a^d \rangle), \langle c a^d \rangle, (G_7, \langle a, b \rangle), (G_7, G_7)\} \cup \{(G_8, \langle b, c a^i \rangle) \mid 0 \leq i \leq p - 1\};$

(xi) $S(G_9) = \{(G_9, \langle a, b, d \rangle), (G_9, G_9)\} \cup \{(a, b, d), \langle d, b a^i \rangle, \langle d, b a^i \rangle, \langle d, c b^i, d b^i \rangle \mid 0 \leq i, j \leq p - 1\};$

(xii) $S(G_{10}) = \{(a, b), (b, a), (G_{10}, \langle a, b \rangle), (G_{10}, G_{10})\} \cup \{(G_{10}, \langle b, c a^d \rangle) \mid 0 \leq i \leq p - 1\};$

(xiii) $S(G_{10}) = \{(a, b, c), (a, c), (G_{10}, \langle a, b, d \rangle)\} \cup \{(a, b, c), \langle c a^b, b \rangle, (G_{10}, \langle a, b, c a^d \rangle), (G_{10}, G_{10}) \mid 0 \leq i \leq p - 1\};$

Proof (i) Define $N_0 := \langle 1 \rangle$, $N_1 := \langle a^p \rangle$, $N_2 := \langle a^p \rangle$, $N_3 := \langle a \rangle$, $H_i := \langle a^p, a^p b \rangle$, $K_j := \langle a^p, a^j b \rangle$ where $0 \leq i, j \leq p - 1$. Observe that these subgroups are normal in G_1. Using Eq. [3] we have $S_{N_1} = S_{N_2} = \emptyset$, $S_{N_3} = \{(G_1, N_3)\}$, $S_{H_i} = \{(G_1, H_i)\}$, $S_{K_j} = \{(G_1, K_j)\}$. In order to find S_{N_0}, we see that $\langle a \rangle$ is a maximal abelian subgroup of G_1. Further, the only subgroup D of $\langle a \rangle$ which is corefree in G_1 is
$D = \langle 1 \rangle$. This gives $S_{N_0} = \{ \langle a \rangle, \langle 1 \rangle \}$. Define

$$N_1 = \{ \langle 1 \rangle, \langle a^p \rangle, \langle a \rangle, \langle a, b \rangle \} \cup \{ \langle a^p, a^{p^j} b \rangle, \langle a^p, a^j b \rangle | 0 \leq i, j \leq p - 1 \}.$$

Observe that $\sum_{N \in N_1} \sum_{D \in D_N} [G : A_N]|\varphi([A_N : D]) = p^4$. Now, if \mathcal{N} is the set of all normal subgroups of G_1, then

$$p^4 = |G_1| = \sum_{N \in N} \sum_{D \in D_N} [G : A_N]|\varphi([A_N : D]) \quad \text{(by Theorem 1)}$$

$$\geq \sum_{N \in N_1} \sum_{D \in D_N} [G : A_N]|\varphi([A_N : D]) \quad \text{(as $N_1 \subseteq \mathcal{N}$)}$$

$$= p^4.$$

This yields $S_N = \phi$ if $N \not\in N_1$ and consequently, by Theorem 1, $\bigcup_{N \in N_1} S_N$ is a complete irredundant set of strong Shoda pairs of G_1.

(ii)-(xiii) For $2 \leq i \leq 10$, consider the following set N_i of normal subgroups of G_i:

$$N_2 = \{ \langle 1 \rangle, \langle a^p \rangle, \langle a^p, b \rangle, \langle a, b \rangle, \langle a, b, c \rangle \} \cup \{ \langle a^p, b^i c \rangle, \langle a, b^i c \rangle, \langle a b^i c, a c^i \rangle | 0 \leq i, j \leq p - 1 \};$$

$$N_3 = \{ \langle 1 \rangle, \langle a^p \rangle, \langle a \rangle, \langle b^p \rangle, \langle a^p b^p \rangle, \langle a, b \rangle \} \cup \{ \langle a^{p^i} b^j \rangle, \langle a^{p^i} b^j \rangle | 0 \leq i \leq p - 1 \};$$

$$N_4 = \{ \langle 1 \rangle, \langle a^p \rangle, \langle a^p b \rangle, \langle a, b, c \rangle \} \cup \{ \langle a^p, b^i c \rangle, \langle a, b^i c \rangle, \langle a b^i c, a c^i \rangle | 0 \leq i, j \leq p - 1 \};$$

$$N_5 = \{ \langle 1 \rangle, \langle b \rangle, \langle a^p b \rangle, \langle a^p, b, c \rangle, \langle a, b, c \rangle \} \cup \{ \langle b^i a^p \rangle | 0 \leq i \leq p - 1 \};$$

$$N_6 = \{ \langle 1 \rangle, \langle a^p \rangle, \langle a^p b \rangle, \langle a, b, c \rangle \} \cup \{ \langle b, ca^k \rangle | 1 \leq k \leq p - 1 \};$$

$$N_7 = \{ \langle 1 \rangle, \langle a^p \rangle, \langle a^p b \rangle, \langle a, b, c \rangle \} \cup \{ \langle b, ca^i \rangle | 0 \leq i \leq p - 1 \};$$

$$N_8 = \{ \langle 1 \rangle, \langle a^p \rangle, \langle a^p b \rangle, \langle a, b, c \rangle \} \cup \{ \langle b, ca^i \rangle | 0 \leq i \leq p - 1 \};$$

$$N_9 = \{ \langle 1 \rangle, \langle a \rangle, \langle a, b, d \rangle, \langle a, d \rangle, \langle a, b, c, d \rangle \} \cup \{ \langle b^i a^k \rangle, \langle a, b^i c^k \rangle, \langle a, c^k d \rangle, \langle a, b, c, d \rangle | 0 \leq i, j \leq p - 1 \};$$

$$N_{10} = \{ \langle 1 \rangle, \langle a^3 \rangle, \langle b^3 \rangle, \langle a, b, c \rangle, \langle b, a, c \rangle, \langle b, c a^2 \rangle, \langle a, b \rangle, \langle a, b, c \rangle \} \cup \{ \langle a, b, c d \rangle | 0 \leq i \leq p - 1 \}, \text{if } p = 3;$$

$$\{ \langle 1 \rangle, \langle a \rangle, \langle a, b \rangle, \langle a, b, d \rangle, \langle a, b, c, d \rangle \} \cup \{ \langle a, b, c d \rangle | 0 \leq i \leq p - 1 \}, \text{if } p > 3.$$

Now proceeding as in (i), we get the required complete and irredundant set of strong Shoda pairs of G_i, $2 \leq i \leq 10$. □
Theorem 3 along with ([6], Theorem 3.6) and ([13], Theorem 3.1) also yield the following:

Corollary 2 The Wedderburn decomposition of $\mathbb{Q}[G_i]$ and the rank of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G_i]))$, $1 \leq i \leq 10$, are as follows:

G	$\mathbb{Q}[G]$	Rank of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G]))$
G_1	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p)} \oplus \mathbb{Q}(\zeta_p^2)^{(p)} \oplus M_p(\mathbb{Q}(\zeta_p^3))$	$(p+1)(p^2-5)$
G_2	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p+p^2)} \oplus M_p(\mathbb{Q}(\zeta_p^2))$	$\frac{p^3-p^2-3p-5}{2}$
G_3	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p)} \oplus \mathbb{Q}(\zeta_p^2)^{(p)} \oplus M_p(\mathbb{Q}(\zeta_p))^{(p)}$	$\frac{p^3+p^2-7p-3}{2}$
G_4	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p+p^2)} \oplus M_p(\mathbb{Q}(\zeta_p))^{(p)}$	$\frac{(p-3)(p+1)^2}{2}$
G_5	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p)} \oplus \mathbb{Q}(\zeta_p^2)^{(p)} \oplus M_p(\mathbb{Q}(\zeta_p))^{(p)}$	$\frac{p^3+p^2-7p-3}{2}$
G_6	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p)} \oplus M_p(\mathbb{Q}(\zeta_p))^{(1+p)}$	$(p-3)(p+1)$
G_7	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p)} \oplus M_p(\mathbb{Q}(\zeta_p)) \oplus M_p(\mathbb{Q}(\zeta_p^2))$	p^2-p-4
G_8	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p)} \oplus M_p(\mathbb{Q}(\zeta_p)) \oplus M_p(\mathbb{Q}(\zeta_p^2))$	p^2-p-4
G_9	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p+p^2)} \oplus M_p(\mathbb{Q}(\zeta_p))^{(p)}$	$\frac{(p-3)(p+1)^2}{2}$
G_{10} ($p=3$)	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_3)^{(4)} \oplus M_3(\mathbb{Q}(\zeta_3)) \oplus M_3(\mathbb{Q}(\zeta_9))$	2
G_{10} ($p>3$)	$\mathbb{Q} \oplus \mathbb{Q}(\zeta_p)^{(1+p)} \oplus M_p(\mathbb{Q}(\zeta_p))^{(1+p)}$	$(p-3)(p+1)$

Theorems 2 and 3 immediately yield the following:

Corollary 3 If I_{G_i} denotes the index of $\langle B(G_i) \rangle$ in $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G_i]))$, $1 \leq i \leq 10$, then

(i) $I_{G_1} \leq 2^{\frac{p^3-p^2-2p}{2}} \cdot 3^{\frac{p^3-p^2-2}{2}} \cdot p^\frac{4p^3-p^2-2p-3}{2} \cdot b_1^{1+p}b_2^pb_3^p$;

(ii) $I_{G_2} \leq 2^{\frac{p^3-p^2-2p}{2}} \cdot p^{\frac{p^3+p^2-2p-1}{2}} \cdot b_1^{1+p}b_2^p$;

(iii) $I_{G_3} \leq 2^{p(p^2-p-2)}p^\frac{2p^3+p-5}{2} \cdot b_1^{1+p}b_2^{2p}$.

13
and the other non abelian groups of order 2^4 phic groups of order 2^4.

Theorem 6.1). Hence, if G has a pair of the rank of H.

References

[1] R. Ž. Aleev, *Higman’s central unit theory, units of integral group rings of finite cyclic groups and Fibonacci numbers*, Internat. J. Algebra Comput. 4 (1994), no. 3, 309–358.

We now take the case, when $p = 2$. Upto isomorphism, there are 9 non isomorphic groups of order 2^4 as listed in ([1], §118). Except the following two groups:

$$H_1 = \langle a, b : a^8 = b^2 = 1, ba = a^7b \rangle$$

and

$$H_2 = \langle a, b : a^8 = b^4 = 1, ba = a^7b, a^4 = b^2 \rangle,$$

the other non abelian groups of order 2^4 again satisfy the hypothesis of ([11], Theorem 6.1). Hence, if G is a non abelian group of order 2^4 other than H_1 and H_2, then $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G])) = \pm \mathcal{Z}(G)$.

For the groups H_1 and H_2, we obtain using Theorem [1] that $\{(\langle a \rangle, \{1\}), (\langle a \rangle, \langle a^4 \rangle), (H_1, \langle a \rangle), (H_1, \langle a^2, b \rangle), (H_1, \langle a^2, ab \rangle), (H_1, H_1)\}$ and $\{(\langle a \rangle, \{1\}), (\langle a \rangle, \langle b^2 \rangle), (H_2, \langle a \rangle), (H_2, \langle a^2, b \rangle), (H_2, \langle a^2, ab \rangle), (H_2, H_2)\}$ are complete irredundant sets of strong Shoda pairs of H_1 and H_2 respectively. Theorem [2] and ([13], Theorem 3.1) now yield that the rank of $\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G])) = 1$ and $[\mathcal{Z}(\mathcal{U}(\mathbb{Z}[G])) : \langle \mathcal{B}(G) \rangle] \leq 3.2^{14}$, $G = H_1$ or H_2.

References

[1] R. Ž. Aleev, "Higman’s central unit theory, units of integral group rings of finite cyclic groups and Fibonacci numbers," Internat. J. Algebra Comput. 4 (1994), no. 3, 309–358.
[2] R. Zh. Aleev and G. A. Panina, *The units of cyclic groups of orders 7 and 9*, Izv. Vyssh. Uchebn. Zaved. Mat. (1999), no. 11, 81–84.

[3] G.K. Bakshi and S. Maheshwary, *The rational group algebra of a normally monomial group*, J. Pure Appl. Algebra 218 (2014), no. 9, 1583–1593.

[4] H. Bass, *The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups*, Topology 4 (1965), 391–410.

[5] W. Burnside, *Theory of groups of finite order*, Dover Publications, Inc., New York, 1955, 2d ed.

[6] R. A. Ferraz and J. J. Simón-Piñero, *Central units in metacyclic integral group rings*, Comm. Algebra 36 (2008), no. 10, 3708–3722.

[7] K. Hoechsmann, *Constructing units in commutative group rings*, Manuscripta Math. 75 (1992), no. 1, 5–23.

[8] K. Hoechsmann, *Unit bases in small cyclic group rings*, Methods in ring theory (Levico Terme, 1997), Lecture Notes in Pure and Appl. Math., vol. 198, Dekker, New York, 1998, pp. 121–139.

[9] K. Hoechsmann and S. K. Sehgal, *Units in regular abelian p-group rings*, J. Number Theory 30 (1988), no. 3, 375–381.

[10] E. Jespers, Á. del Río, and I. Van Gelder, *Writing units of integral group rings of finite abelian groups as a product of Bass units*, Math. Comp. 83 (2014), no. 285, 461–473.

[11] E. Jespers, Á. Olteanu, G.and del Río, and I. Van Gelder, *Central units of integral group rings*, Proc. Amer. Math Soc. 142 (2014), 2193–2209.

[12] E. Jespers, G. Olteanu, and Á. del Río, *Rational group algebras of finite groups: from idempotents to units of integral group rings*, Algebr. Represent. Theory 15 (2012), no. 2, 359–377.

[13] E. Jespers, G. Olteanu, Á. del Río, and I. Van Gelder, *Group rings of finite strongly monomial groups: central units and primitive idempotents*, J. Algebra 387 (2013), 99–116.

[14] E. Jespers and M. M. Parmenter, *Construction of central units in integral group rings of finite groups*, Proc. Amer. Math. Soc. 140 (2012), no. 1, 99–107.
[15] Y. Li and M. M. Parmenter, *Central units of the integral group ring \(\mathbb{Z}A_5 \)*, Proc. Amer. Math. Soc. 125 (1997), no. 1, 61–65.

[16] A. Olivieri, Á. del Río, and J. J. Simón, *On monomial characters and central idempotents of rational group algebras*, Comm. Algebra 32 (2004), no. 4, 1531–1550.

[17] C. Polcino Milies and S. K. Sehgal, *An introduction to group rings*, Algebras and Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2002.

[18] S. K. Sehgal, *Units in integral group rings*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69, Longman Scientific & Technical, Harlow, 1993, With an appendix by Al Weiss.

[19] L. C. Washington, *Introduction to cyclotomic fields*, second ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997.