Bychkov, B.; Dunin-Barkowski, P.; Shadrin, S.

Combinatorics of Bousquet-Mélou-Schaeffer numbers in the light of topological recursion. (English) [Zbl 1458.05262]

Eur. J. Comb. 90, Article ID 103184, 34 p. (2020).

Summary: In this paper we prove, in a purely combinatorial-algebraic way, a structural quasi-polynomiality property for the Bousquet-Mélou-Schaeffer numbers. Conjecturally, this property should follow from the Chekhov-Eynard-Orantin topological recursion for these numbers (or, to be more precise, the Bouchard-Eynard version of the topological recursion for higher order critical points), which we derive in this paper from the recent result of A. Alexandrov et al. [Commun. Math. Phys. 375, No. 1, 237–305 (2020; Zbl 1472.37078)]. To this end, the missing ingredient is a generalization to the case of higher order critical points on the underlying spectral curve of the existing correspondence between the topological recursion and Givental’s theory for cohomological field theories.

MSC:

05E14 Combinatorial aspects of algebraic geometry
05A05 Permutations, words, matrices
05A15 Exact enumeration problems, generating functions
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

Keywords:
Givental’s theory for cohomological field theories

Full Text: DOI arXiv

References:

[1] A. Alexandrov, G. Chapuy, B. Eynard, J. Harnad, Weighted Hurwitz numbers and topological recursion. arXiv:1806.09738. · Zbl 1472.37078

[2] Alexandrov, A.; Lewanski, D.; Shadrin, S., Ramifications of hurwitz theory, KP integrability and quantum curves, J. High Energy Phys., 5, 124 (2016), front matter + 30 pp · Zbl 1388.81016

[3] G. Borot, V. Bouchard, N.K. Chidambaram, T. Creutzig, D. Noshchenko, Higher Airy structures, W algebras and topological recursion. arXiv:1812.08738.

[4] Bouchard, V.; Eynard, B., Think globally, compute locally, J. High Energy Phys., 2, 143 (2013), front matter + 34 pp · Zbl 1342.81513

[5] Bouchard, V.; Eynard, B., Reconstructing WKB from topological recursion, J. École Polytech. Math., 4, 845-908 (2017) · Zbl 1426.14009

[6] Bouchard, V.; Klemm, A.; Mariño, M.; Pasquetti, S., Remodeling the B-model, Comm. Math. Phys., 287, 1, 117-178 (2009) · Zbl 1178.81214

[7] Bousquet-Mélou, M.; Schaeffer, G., Enumeration of planar constellations, Adv. Appl. Math., 24, 4, 337-368 (2000) · Zbl 0955.05004

[8] Carrell, S. R.; Goulden, I. P., Contents of partitions and the combinatorics of permutation factorizations in genus \(0\), Trans. Amer. Math. Soc., 370, 7, 5051-5089 (2018) · Zbl 1384.05017

[9] Dumitrescu, O.; Mulase, M.; Safnuk, B.; Sorkin, A., The spectral curve of the eynard-orantin recursion via the Laplace transform, (Algebraic and Geometric Aspects of Integrable Systems and Random Matrices. Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., vol. 593 (2013), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 263-315 · Zbl 1293.14007

[10] Dunin-Barkowski, P.; Kazarian, M.; Orantin, N.; Shadrin, S.; Spitz, L., Polynomality of hurwitz numbers, Bouchard-Mariño conjecture, and a new proof of the ELSV formula, Adv. Math., 279, 67-103 (2015) · Zbl 1318.14054

[11] Dunin-Barkowski, P.; Lewanski, D.; Popolitov, A.; Shadrin, S., Polynomality of orbifold Hurwitz numbers, spectral curve, and a new proof of the Johnson-Pandharipande-Tseng formula, J. Lond. Math. Soc. (2), 92, 3, 547-565 (2015) · Zbl 1328.05191

[12] Dunin-Barkowski, P.; Norbury, P.; Orantin, N.; Popolitov, A.; Shadrin, S., Dubrovin’s superpotential as a global spectral
Harnad, J.; Orlov, A., Hypergeometric τ-functions, Hurwitz numbers and enumeration of paths, Comm. Math. Phys., Zbl 1433.14047
Kazarian, M.; Zograf, P., Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Lett. Math. Phys., 328, 2, 669-700 (2014) - Zbl 1293.53090
Dunin-Barkowski, P.; Orlov, A.; Shadrin, S.; Spitza, L., Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys., 328, 2, 669-700 (2014) - Zbl 1293.53090
Dunin-Barkowski, P.; Orlov, A.; Shadrin, S.; Sleptsov, A., Combinatorial structure of colored HOMFLY-PT polynomials for torus knots, Commun. Number Theory Phys., 13, 4, 763-826 (2019) - Zbl 1429.81080
Ekedahl, T.; Lando, S.; Shapiro, M.; Vainshtein, A., Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math., 146, 2, 297-327 (2001) - Zbl 1073.14041
Eynard, B., Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys., 8, 3, 541-588 (2014) - Zbl 1310.14037
Eynard, B., An overview of the topological recursion, (Proceedings of the International Congress of Mathematicians, Seoul 2014. Vol. III (2014), Kyung Moon Sa: Kyung Moon Sa Seoul), 1063-1085 - Zbl 1373.14029
Eynard, B., Counting surfaces, (CRM Aisenstadt Chair Lectures. CRM Aisenstadt Chair Lectures, Progress in Mathematical Physics, vol. 70 (2016), Birkhäuser/Springer: Birkhäuser/Springer Cham) - Zbl 1358.81005
Eynard, B.; Orantin, N., Topological recursion in enumerative geometry and random matrices, J. Phys. A, 42, 29, Article 298001 pp. (2009), 117 pp - Zbl 1177.82049
Goulden, I. P.; Guay-Paquet, M.; Novak, J., Monotone Hurwitz numbers and the HCIZ integral, Ann. Math. Blaise Pascal, 21, 1, 71-89 (2014) - Zbl 1296.05024
Goulden, I. P.; Jackson, D. M., The KP hierarchy, branched covers, and triangulations, Adv. Math., 219, 3, 932-951 (2008) - Zbl 1158.37026
Goulden, I. P.; Jackson, D. M.; Vainshtein, A., The number of ramified coverings of the sphere by the torus and surfaces of higher genera, Ann. Comb., 4, 1, 27-46 (2000) - Zbl 0957.58011
Goulden, I. P.; Jackson, D. M.; Vakil, R., The Gromov-Witten potential of a point, Hurwitz numbers, and Hodge integrals, Proc. Lond. Math. Soc. (3), 83, 3, 563-581 (2001) - Zbl 1073.14041
Guay-Paquet, M.; Harnad, J., 2D Toda $\{\tau\}$-functions as combinatorial generating functions, Lett. Math. Phys., 105, 6, 827-852 (2015) - Zbl 1347.05245
Harnad, J., Weighted Hurwitz numbers and hypergeometric $\{\tau\}$-functions: an overview, (String-Math 2014. String-Math 2014, Proc. Sympos. Pure Math., vol. 93 (2016), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 289-333 - Zbl 1358.33004
Harnad, J.; Orlov, A., Hypergeometric $\{\tau\}$-functions, Hurwitz numbers and enumeration of paths, Comm. Math. Phys., 338, 1, 267-284 (2015) - Zbl 1347.33035
Harnad, J., Ueber die anzahl der Riemann’schen flächen mit gegebenen verzweigungspunkten, Math. Ann., 55, 1, 53-66 (1901) - Zbl 0957.58011
Janda, F., Frobenius manifolds near the discriminant and relations in the tautological ring, Lett. Math. Phys., 108, 7, 1649-1675 (2018) - Zbl 1401.53077
Johnson, P., Double Hurwitz numbers via the infinite wedge, Trans. Amer. Math. Soc., 367, 9, 6415-6440 (2015) - Zbl 1343.14043
Jucys, A.-A. A., Symmetric polynomials and the center of the symmetric group ring, Rep. Math. Phys., 5, 107 (1974) - Zbl 0288.20014
Kac, V. G.; Raina, A. K.; Rozhkovskaya, N., {Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras. Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Mathematical Physics, vol. 29 (2013), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ) - Zbl 1294.17021
Kazarian, M.É.; Lando, S. K., Combinatorial solutions to integrable hierarchies, Uspekhi Mat. Nauk, 70, 3(423), 77-106 (2015), the Russian translation in Russian Math. Surveys 70 (2015), no. 3, 453-482
Kazarian, M.; Zograf, P., Virasoro constraints and topological recursion for Grothendieck’s dessin counting, Lett. Math. Phys., 105, 8, 1057-1084 (2015) - Zbl 1332.37051
Kramer, R.; Lewański, D.; Popolitov, A.; Shadrin, S., Towards an orbifold generalization of Zvonkin’s $\{r\}$-ELSV formula, Trans. Amer. Math. Soc., 372, 6, 4447-4469 (2019) - Zbl 1430.14073
Kramer, R.; Lewański, D.; Shadrin, S., Quasi-polynomiality of monotone orbifold Hurwitz numbers and Grothendieck’s dessins d’enfants, Doc. Math., 24, 857-898 (2019) - Zbl 1433.14047
Lando, S. K.; Zvonkin, A. K., Graphs on surfaces and their applications. With an appendix by Don B. Zagier, (Low-Dimensional Topology, II. Low-Dimensional Topology, II, Encyclopaedia of Mathematical Sciences, vol. 141 (2004), Springer-Verlag: Springer-Verlag Berlin) - Zbl 1040.05001
Lewanski, D.; Orantin, N., Topological recursion and Its Influence in Analysis, Geometry, and Topology. Topological Recursion and Its Influence in Analysis, Geometry, and Topology, Proc. Sympos. Pure Math., vol. 100 (2018), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 517-532

[41] Liu, C.-C. M.; Mulase, M., Preface [topological recursion], (Topological Recursion and Its Influence in Analysis, Geometry, and Topology. Topological Recursion and Its Influence in Analysis, Geometry, and Topology, Proc. Sympos. Pure Math., vol. 100 (2018), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), vii-xxii

[42] B. Louf, Simple formulas for constellations and bipartite maps with prescribed degrees. arXiv:1904.05371. - Zbl 1436.05134

[43] Macdonald, I. G., Polynomials associated with finite cell-complexes. Polynomials associated with finite cell-complexes, J. Lond. Math. Soc. (2), 4, 181-192 (1971) - Zbl 0216.45205

[44] Milanov, T.; Lewanski, D., \mathcal{W}-Algebra constraints and topological recursion for (A_N)-singularity (with an appendix by Danilo Lewanski), Internat. J. Math., 27, 13, Article 1650110 pp. (2016), 21 pp - Zbl 1375.14041

[45] Orlov, A. Yu.; Scherbin, D. M., Multivariate hypergeometric functions as τ-functions of Toda lattice and Kadomtsev-Petviashvili equation. Advances in nonlinear mathematics and science, Phys. D, 152/153, 51-65 (2001) - Zbl 0988.37061

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.