A green, efficient and precise hydrogen therapy of cancer based on *in vivo* electrochemistry

Guohua Qi¹,²⁺, Bo Wang¹⁺, Xiangfu Song³, Haijuan Li¹ and Yongdong Jin¹,²,∗

ABSTRACT

By combined use of traditional Chinese acupuncture Fe needle electrode and *in vivo* electrochemistry, we achieved *in vivo* H₂ generation in tumors in a controllable manner and exploited it for effective and green therapy of tumors for the first time. The cathodic acupuncture electrodes working under an applied voltage of ∼3 V (with minimal damage to the living body) undergo effective electrochemical reactions in the acidic tumor area that produce sufficient H₂ locally to cause cancer cells to burst and die. Due to puncture positioning, the acidic tumor microenvironment and gas diffusion effect, the developed H₂ generation electrochemotherapy (H₂-ECT) strategy enables precise and large-scale tumor therapy, as demonstrated by *in vivo* treatment of diseased mice (glioma and breast cancers). Such green H₂-ECT is simple, highly efficient and minimally invasive, requiring no expensive medical equipment or nano materials and medication, and is therefore very promising for potential clinical applications.

Keywords: hydrogen therapy of cancer, *in vivo* electrochemistry, acupuncture Fe needle

INTRODUCTION

Up to now, cancer is still one of the major diseases that threaten the survival of mankind, and it is difficult to cure clinically [1]. In addition to single or combined surgery, chemotherapy and radiotherapy, which are commonly used clinically [2], a number of promising therapeutic strategies have been recently put forward including immunotherapy and gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), and so on [3–10]. However, these techniques usually rely on chemical and genetic drugs or exotic nanomaterials to actualize treatments, making them quite difficult or debatable for practical clinical applications in the near future due to the uncertainties of potential biotoxicity and biohazards, and related genetic and ethical issues [11,12]. Also, immunotherapy and gene therapy are complex and expensive [13,14]. Therefore, the popularization of these techniques in clinical practice is restricted. Consequently, the development of simple, green, efficient and cheap treatment methods is urgently needed to combat cancer.

Hydrogen (H₂), owing to its small molecular size and physiological inertness, resistance to oxidation, and good gas diffusivity in *vivo*, is considered as a kind of green and endogenous gas [15]. H₂ can easily penetrate into the biological membrane to disperse into cytoplasm and other organelles such as the nucleus, mitochondria and so on due to its small size. It performs eminent physiological/pathological regulatory functions, and this has been exploited for the treatment of many diseases, such as Alzheimer’s disease, arthritis and diabetes [16–19]. In 2007, Shigeo Ohta *et al.* demonstrated that the use of H₂ as a therapeutic antioxidant can selectively reduce cytotoxic oxygen radicals [16]. Several reports have also confirmed that a low concentration of H₂ has therapeutic effects against local inflammation such as eye, ear, nose, liver and systemic inflammation [20–24]. Dole *et al.* attempted to use the antioxidant ability of hyperbaric H₂ to treat skin squamous cell carcinoma in 1975 [25], but the need to provide hyperbaric H₂ with diving medical equipment limited the possible clinical application of hyperbaric H₂ in tumor therapy. Subsequently, to obtain a high concentration of H₂, the conventional routes of H₂ administration are to inhale H₂ gas and intake of H₂-rich water or saline [22,23,26]. These approaches,
due to the lack of targeting for the tumor, along with poor bioavailability caused by poor water solubility of H2, limited their therapeutic efficacy. More recently, Zhao et al. tried using near-infrared (NIR) light-responsive PdH0.2 nanocrystals as carriers to deliver H2 and realize synergistic therapy of photothermal and H2 therapy [27]. However, it is still difficult to achieve sufficient H2 release in vivo with this method and it has potential biotoxicity due to the introduction of nanoparticles. To the best of our knowledge, no successful cancer therapy by the exploitation of H2 alone has been reported. In fact, how to produce H2 non-invasively and sufficiently without using nanomaterials and how to achieve the release of H2 on demand in vivo are two huge challenges facing the H2 therapy of cancers.

Acupuncture is a traditional and unique minimally invasive method to treat diseases in China. It is quite effective for the treatment of systemic diseases, especially arthritis, cervical spondylopathy, psoriatic strain and so on [28,29], but applying it to the treatment of major diseases, such as cancers, is still a great challenge. In this study, by innovative combined use of the traditional Chinese acupuncture Fe needle (electrode) and in vivo electrochemistry, we developed a simple and precise cancer therapy approach based on selective electrochemical
generate H₂ in the tumor region, termed *in vivo* H₂ generation electrochemotherapy (H₂-ECT). Very impressively and excitingly, as depicted in Fig. 1A, the two acupuncture electrodes inserted into the tumor lump work well at ~3 V direct current (DC) electric field (which causes minimal damage to healthy tissues), driving the electrochemical H₂ generation reaction effectively under the acidic tumor microenvironment and destroys solid tumors. Importantly, the H₂-ECT method enables large-scale tumor therapy by applying a gas diffusion effect, avoiding the shortcoming of limited effective area for classic electrochemical reactions. Moreover, due to the puncture positioning and acidic tumor microenvironment (compared to normal tissue), the method provides ideal selectivity and targeting to precisely kill tumors with minimal damage to normal tissue, which is very promising for potential clinical applications. The effectiveness of the method has been demonstrated by successful and fast treatment of glioma and breast cancers in mice in this study.

RESULTS

Characterization of H₂ generation *in vitro* by the H₂-ECT method

To verify the production of H₂ during the *in vivo* electrochemical (EC) process, we first carried out *in vitro* EC studies by using two medical acupuncture needles, whose main component is stainless steel, as cathode and anode electrodes. Figure 1B depicts the two-electrode system used in the experiments. The whole EC reactions are carried out at the electrode/electrolyte interfaces under an applied DC electric field and the simulated body fluid (SBF, pH = 6.0), in which the H₂ evolution reaction and the acupuncture electrode corrosion process were carried out at the cathode and anode, respectively. The reaction equations are as follows:

- Cathode reaction: \(2H^+ + 2e^- \rightarrow H_2\)
- Anode reaction: \(Fe - 2e^- \rightarrow Fe^{2+}\).

Figure 1C shows typical polarization curves of the cathode in the SBF under three different voltages. H₂ is gradually generated during the EC process when the cathode voltage is greater than ~−1.64 V. The known half-reaction standard electrode potentials \(E^0\) for Fe/Fe²⁺, Fe/Fe³⁺ and Fe²⁺/Fe³⁺ are 0.44, 0.036 and −0.77 V, respectively, relative to the standard electrode potential of H₂ [30–32]. In this study, the overpotential of acupuncture electrode to produce H₂ was about 1.2 V, which is much higher than the \(E^0\) of Fe/Fe²⁺ for iron dissolution. The overpotential is caused by the surface passivation of iron in a weakly acidic solution [33,34]. When cathode potential exceeded the passivation potential, the anode electrolysis was increased (Fig. S1 in the online supplementary material). Under the EC conditions, the anode and cathode produced ferrous iron (Fe²⁺) and H₂, respectively, affirmed by X-ray photoelectron spectroscopy (XPS) and methyl blue (MB) probe UV–Vis spectrum characterizations (Figs S2 and S3). The pH effect of media on the H₂ production of the system was also checked by recording the polarization curves of the electrodes in SBF with various pH values. The results showed that the more acidic the solution, the more H₂ was produced (Fig. 1D). The result is the same when using fresh pork (to simulate complex tumor tissue) of two pH values (Fig. 1E and Fig. S4B), which is favorable for potential H₂-ECT applications *in vivo* since tumor tissue is weakly acidic compared to neutral healthy tissue. To facilitate the evaluation of the therapeutic efficacy of the method, we measured the iron consumption of the acupuncture electrode semiquantitatively using inductively coupled plasma mass spectrometry (ICP-MS), and calculated the volume of H₂ generation under the various conditions (see online supplementary material for detailed calculation).

As shown in Fig. 1F and G, the iron consumption of the acupuncture electrode and the volume of H₂ generated were gradually decreased as the pH of SBF increased from 5.5 to 7.5 during the 3 V electrolytic process. We then examined the amount of iron consumption and H₂ generation volume at pH 7.4 and 6.0, respectively, under three different applied voltages (0, 1.2, 2.1 and 3.0 V) each for 10 min duration. The results indicated that at the two pH levels the volume of H₂ generated was rapidly increased as voltage increased, especially at pH 6.0 (Fig. 1H and I). This dependency and flexibility of H₂ generation on pH and voltage make the method promising and operational in a controlled manner for precise H₂ therapy of cancer *in vivo*.

Before applying the method to *in vivo* cancer therapy, we assessed the potential cytotoxicity of the dissolved Fe²⁺ *in vitro* by live/dead staining and MTT assay, using MCF-7 and C6 cells as models. The cells were treated with different concentrations of Fe²⁺ (from 5 μM to 50 mM). As shown in Fig. S5, the cytotoxicity of Fe³⁺ with concentrations less than 5 mM was negligible as iron is an essential nutrient and the most abundant transition metal in the human body [35]. In our system, since the maximum concentration of Fe²⁺ produced by 10 min electrolysis of the electrode at the applied voltage of 3 V (at pH 6.0) was estimated to be about 2.5 μM, the biotoxicity of Fe²⁺ is not a concern. For safety, before cancer treatment *in vivo*, we also checked the injury degree of the H₂-ECT method for healthy tissue versus can-
Characterizations of H\textsubscript{2} generation \textit{in vivo} during the H\textsubscript{2}-ECT process

Firstly, for better observing the therapeutic effect, the tumor-bearing BALB/c mice with similar average tumor size were divided into different groups before H\textsubscript{2}-ECT (Fig. S7). To assess H\textsubscript{2} production efficiency \textit{in vivo} during the H\textsubscript{2}-ECT process, two closely spaced acupuncture electrodes were inserted carefully and precisely with the naked eyes into the tumor lump of a C6 tumor-bearing mouse and the depth of insertion of the electrodes was decided by the depth and thickness of the tumor. The part of the electrode outside the tumor was insulated by encasing with plastic hose to avoid short circuits and unnecessary damage to normal tissue (Fig. S8). As shown in Fig. 2A, the acupuncture electrodes were gradually electrolyzed with increasing voltages applied from 0 to 3 V, with some surface corrosion observed by microscope after the \textit{in vivo} treatment, indicating the occurrence of the EC reactions. The voltage-related H\textsubscript{2} production in nude mouse solid tumors was further evaluated by \textit{in vivo} T1-weighted magnetic resonance imaging (MRI) and computed tomography (CT) imaging. As clearly shown in Fig. 2B and C, as the treatment voltage became higher than 2.1 V, cavities emerged in the tumors, indicating effective gas (H\textsubscript{2}) production within the tumor after the H\textsubscript{2}-ECT treatment. Moreover, with the increase of voltage, the cavity area increased gradually, confirming the effectiveness and flexibility of the method for cancer therapy \textit{in vivo}.

Figure 2D shows the \textit{in vivo} H\textsubscript{2}-generation polarization curves of the cathode Fe electrodes recorded inside the tumor in a three-electrode system (with the AgCl-treated Ag puncture electrode as the reference electrode), under three different applied voltages. The result is quite similar to the \textit{in vitro} curves in SBF (pH = 6, cf. Fig. 1C), indicating effective occurrence of the EC reactions in the acidic tumor microenvironment (which provides sufficient protons for the reaction). We further checked electrogravimetric loss (Fe dissolution) of the anode after the H\textsubscript{2}-ECT treatment (Fig. 9). The electrogravimetric loss of the electrode increases with increasing voltage, illustrating increased iron consumption (Fig. 2E). Then, the average amount of H\textsubscript{2} produced by a single cathode electrode during each 10-min treatment session can be calculated electrochemically according to the above-mentioned equations, to be \(\sim 0.35, 2.95\) and 7.69 mL under the applied voltages of 1.2, 2.1 and 3.0 V, respectively. Therefore, in the whole H\textsubscript{2}-ECT process (10 min twice a day for 3 days), the total amount of H\textsubscript{2} produced in a diseased mouse at a corresponding voltage was \(\sim 2.1, 17.7\) and 46.1 mL, respectively. The calculated results are consistent with that obtained by Faraday’s law of electrolysis (Fig. S10). These results also agreed well with the electrogravimetric analysis. For further safe tumor therapy \textit{in vivo}, dynamic processes of H\textsubscript{2} generation and Fe consumption of the electrodes during the \textit{in vivo} H\textsubscript{2}-ECT treatment were monitored (Fig. S11) and the results showed that the amounts of H\textsubscript{2} generation and Fe consumption tended to stop increasing after the electrolysis time reached more than 10 min during one treatment (Fig. S11B). The reason is that limited tumor local electrolytes near the electrodes will be depleted during one rushing EC run due to the diffusion limitation. In addition, locally growing H\textsubscript{2} bubbles will increase the EC resistance and slow down the reaction. Fortunately, such self-protection mechanism further reduces the damage to healthy tissue, and these can be easily addressed by intermittent H\textsubscript{2}-ECT or multi-needle treatment (especially for large tumors) to improve therapeutic effects. Therefore, 10 min per treatment is safe and effective and will be used as an optimal time in the following studies.

Evaluation of the therapeutic effect of H\textsubscript{2}-ECT \textit{in vivo}

The developed H\textsubscript{2}-ECT approach was then exploited for \textit{in vivo} treatment of glioma in diseased mice as it is one of the deadliest cancers and difficult to cure, with a 5-year survival rate of patients less than 5\% [36] due to the strongest malignant degree. Consequently, the C6 tumor-bearing BALB/c nude mice were used as a tumor xenograft model to evaluate the \textit{in vivo} tumor therapy capability of the H\textsubscript{2}-ECT method. The control groups and therapeutic groups were administrated to assess the therapeutic performances, respectively (Fig. 3A).
Tumor-bearing mice with similar average tumor size were randomly divided into five groups: the blank, needle stimulation (NS + 0 V), NS + 1.2 V, NS + 2.1 V and NS + 3.0 V groups. Although the establishment of the tumor model and feeding of the mice were exactly under the same conditions, there was some obvious volume variation of tumor lumps in the same group due to the individual differences between mice. When the tumor size reached \(\sim 200 \text{ mm}^3 \), each tumor-bearing mouse was treated for 10 min a time twice a day for 3 days using H\(_2\)-ECT and then observed for 12 days, as shown in Fig. S8. The tumor sizes and body weights of the mice were recorded every day. As shown in Fig. 3B, D and E, C6 tumor growth could be effectively inhibited after the H\(_2\)-ECT treatment as the dose of voltage was boosted. In addition, compared to the control groups (blank and NS + 0 V) and therapeutic groups (1.2 V, 2.1 V and 3.0 V), the NS + 3.0 V group presented a significant suppression effect, which is attributed to the highest H\(_2\) production of the group. The suppression rate in terms of relative tumor volume has been calculated to be 22.19, 16.59, 14.04, 7.03 and 0.38, respectively, for the all tested groups (Fig. 3F). During the 3-day treatment and subsequent 12-day physical recovery, the body weights of mice in control and all therapeutic groups showed no significant changes (Fig. 3C), manifesting the low systemic toxicity of the H\(_2\)-ECT method. Although scab of the treatment area was observed after the H\(_2\)-ECT treatment at 3.0 V, it recovered very well during the recovery process, as shown in Fig. S12. Impressively, the NS + 3.0 V group had the H\(_2\)-ECT treatment conducted...
A SPF BALB/c nude mice 4 weeks old C6 tumor cell C6 xenograft establishing 5 weeks old

B Control NS NS+ES (1.2 V) NS+ES (2.1 V) NS+ES (3.0 V)

C Body weight (g)

D Blank 0 V 1.2 V 2.1 V 3.0 V

E Tumor volume (mm^3)

F V / V₀

G Blank 0 V 1.2 V 2.1 V 3.0 V

H Blank 0 V 1.2 V 2.1 V 3.0 V

TUNEL

DAPI

Merge
only for the first 3 days, but maintained remarkable tumor inhibition effect during the following 12-day observation, indicating that H$_2$-ECT is a simple and effective method for tumor therapy. Simultaneously, we also compared the therapeutic process under the 1.2 and 2.1 V treatments and found that the volumes of tumor showed no significant change in the first 4 days after the treatment, but the volumes of the tumor increased gradually during the following recovery process. It implied that insufficient dosage of H$_2$ generated during the whole H$_2$-ECT process may lead to the rebound of suppressed tumor growth (Fig. S12).

To gain insights into the therapy efficacy, tumor tissues of mice in the different groups were collected and analyzed by hematoxylin and eosin (H&E) staining assays. As shown in Fig. 3G, clear deformation and shrinking of the nuclei and destruction of the membrane integrity were observed in the NS + 3.0 V and NS + 2.1 V groups, indicating that tumor cells were seriously damaged. The tumors of the other groups had no distinct injury. To further confirm the destruction of the tumor by this method, the tumors were sliced after H$_2$-ECT and stained using the immunofluorescence terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). As clearly seen from Fig. 3H, an intensive green fluorescence, a characteristic of apoptotic signal caused by DNA fragmentation, was observed in the NS + 3.0 V group as compared to the other groups, confirming that the H$_2$-ECT is capable of activating cell apoptosis in tumor tissues. However, the underlying molecular and cellular mechanisms are unknown and require further study.

To confirm the vital role of H$_2$ generation in the H$_2$-ECT, we further investigated the effects of temperature and applied DC electric field on tumor growth. As shown in Fig. S13, since the temperature of the tumor remained basically unchanged before and after the H$_2$-ECT treatment, the thermal effect in the H$_2$-ECT process can be ignored. To check possible electrical field effect on tumor treatment, we also performed experiments under the same EC conditions (3 V, 10 min) but using a silver needle with poorer EC$_2$ production capability instead of a stainless steel needle. As seen from Fig. S14, since the EC activity of silver (compared to Fe) is too low to effectively generate enough H$_2$, the tumor suppression effect was obviously weakened. All these results fully illustrated the important role of sufficient H$_2$ generation in the tumor therapy.

Next, to verify the generality of the method, we also applied the H$_2$-ECT approach for the therapeutic treatment of another tumor model (MCF-7 breast cancer tumor), which was established by subcutaneously injecting MCF-7 breast cancer cells into the hind limb space of BALB/c nude mice (5 weeks old). Tumor-bearing mice were randomly divided into three groups: the blank, NS + 0 V and NS + 3.0 V groups. Similarly, the H$_2$-ECT treatment under an applied voltage of 3 V was also applied for the MCF-7 tumor-bearing mice for 10 min twice a day for 3 days. After successive 3-day therapeutic periods and subsequent 12 days of observation, similar high-efficiency tumor suppression on the breast cancer was also achieved in the NS + 3.0 V group (Fig. S15). Our preliminary results implied the generality and rosy prospect of the H$_2$-ECT for future minimally invasive treatments of cancers.

In vivo biosafety of the H$_2$-ECT

To evaluate the biosafety of the H$_2$-ECT method, bio-distribution of iron element in the main organs for two kinds of tumor was determined using ICP-MS. As shown in Fig. 4A and B, iron element was found mainly accumulated into the tumor, without serious effects on other organs (heart, liver, spleen, lung, kidney and muscle). Moreover, the histopathological evaluation of major organs and hematology-related assays were carried out after the in vivo H$_2$-ECT experiments. As shown in Fig. 4C and Fig. S16, major organs stained by H&E showed no significant pathological changes in the main organs between the control groups and the treatment groups. Meanwhile, the blood chemistry analyses were performed via checking the standard nine
hematological biomarkers (see Figs S17 and S18),
the results of which showed no distinct abnormality
before and after the treatment for 15 days, indicating
negligible side effects of the H$_2$-ECT method. In
addition, the microelements analyses (Fig. 4D
and E, and Figs S19 and S20) showed no distinct
microelement abnormality before and after the
H$_2$-ECT treatment, and the iron element in blood
remained at a healthy level even after the treatment
of H$_2$-ECT at 3 V. All the above results showed the
excellent biosafety of the H$_2$-ECT method.

DISCUSSION

Although H$_2$ therapy with several successful clinical
trials has been developed in the past decade,
there remain huge challenges regarding its efficacy
and methods. Compared to other biomedical applica-
tions, H$_2$ therapy of cancer is rarely reported due
to the lack of effective methods to control the pro-
duction and release of enough H$_2$ in the body. Due
to the disadvantages of insufficient and uncontroll-
able release of H$_2$ along with potential metabolic
toxicity, current attempts to use nanomaterials as H$_2$
carriers are still far from clinical oncotherapy.

In our study, we report a green and conceptually
new in vivo H$_2$ generation electrochemotherapy
(H$_2$-ECT) of tumors, by combined use of Chinese
acupuncture Fe needle electrode and in vivo elec-
trochemistry. The method solves the above prob-
lems by virtue of the acidic microenvironment of the
tumor and in vivo electrochemical technology. The
acupuncture electrodes inserted in the acidic tumor
area, and working under the applied voltage of 3 V,
produce effectively sufficient H$_2$ to damage and kill
cancer. The method is highly biosafe without an ob-
vious poisoning effect, solving the difficult problems
of material metabolism and biotoxicity in conven-
tional therapeutic methods for clinical applications.
By taking advantage of the puncture positioning, gas
diffusion effect and self-protection mechanism of H$_2$
generation, the H$_2$-ECT method provides strong se-
lectivity and targeting to effectively and precisely kill
tumors, with minimal damage to healthy tissues. The
effectiveness of the method has been demonstrated
by in vivo treatment of glioma and breast cancers
of diseased mice. More importantly, as the volume
of the tumor tissue determines the total amount of
hydrogen ions within the tumor, the larger tumors
provide more hydrogen ions to produce enough hydrogen for effective treatment. Consequently, in
principle, irrespective of the size of the tumor, the inherent volume effect of the method can solve the defect of insufficient hydrogen generation during the therapy process.

Although currently the method may not be valid for the treatment of non-solid tumors like lung cancer and liver cancer, our method is promising and reliable for the treatment of solid tumors. With the help of various advanced imaging techniques and cytopathology knowledge, we can accurately locate the tumor and carry out accurate treatment in future clinic applications, avoiding damage to normal tissue to the greatest extent. The developed H₂-ECT is simple, safe, efficient and minimally invasive and therefore very promising for potential clinic applications to cure solid tumors. We believe that the H₂-ECT method will also be used for the treatment of deep tumors with the help of accurate medical imaging technology in the future.

METHODS

Cell culture

The glioma cells (C6) and breast cancer cells (MCF-7) cells were obtained from the American Type Culture Collection (ATCC, USA). The MCF-7 and C6 cells were treated in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 μg/mL streptomycin at 37 °C in an atmosphere containing 5% CO₂.

Animal experiments

BALB/c nude mice (4 weeks old, 15 ± 0.2 g, male) were purchased from Beijing HFK Biotechnology Ltd (Beijing, China). Animal care and handling procedures were in agreement with the guidelines of the Regional Ethics Committee for Animal Experiments.

Tumor models and in vivo H₂-ECT treatments

The MCF-7 and C6 cells were cultured in DMEM supplemented with 10% FBS at 37 °C in an atmosphere of 5% CO₂. The MCF-7 and C6 cells were then collected and washed in cold PBS three times, respectively. After that 5 × 10⁶ cells/mL was dispersed into PBS and 50 μL of cell solution was injected into each mouse. The mice were used for further experiments when the tumor had grown to 8–10 mm in diameter. The mice were then divided into five groups at random: blank, needle stimulation (NS + 0 V) and NS + (1.2 V, 2.1 V and 3.0 V) and three mice were set as one group. For observation of the therapy effect of H₂-ECT, C6 tumor-bearing mice were firstly anesthetized using intraperitoneal injection of chloral hydrate solution (10 wt%). The purpose of anesthesia was to make the mice unconscious and eliminate pain, and keep them still during the H₂-ECT therapy. Then the tumor sites were disinfected using 75% alcohol and subsequently two acupuncture electrodes were inserted into the tumor lump. The acupuncture electrode was inserted into the central part of the tumor tissue, which can avoid damage to the normal tissue. From an electrochemical point of view, the distance between the two electrodes will affect the efficiency of H₂ generation in vivo to some extent. Therefore, in order to avoid short circuits and excessive electrochemical resistance in tumor tissues, and thus achieve the effectiveness and repeatability of the treatment, we chose the optimal distance (between two electrodes) of ~3–5 mm for the treatment in this study. Finally, the two electrodes were connected to the positive and negative poles of the voltage regulator, respectively, and single H₂-ECT treatment carried out under the various applied voltages from 0 to 3.0 V for 10 min. Each tumor-bearing mouse was treated with H₂-ECT twice per day for 3 days and then observed for another 12 days. To avoid excessive injury to normal tissue, the negative pole should be inserted into the center of the tumor bulk. The insertion depth of the acupuncture electrode depends on the depth and thickness of the tumor and the outside part of the acupuncture electrodes was insulated to avoid unnecessary injury to normal tissue. Although acupuncture Fe electrodes can be reused for H₂-ECT, since they are very cheap (less than $0.1) and readily available, we used them only once per treatment to avoid infection and contamination between mice.

The tumor size was measured using the digital caliper in two dimensions and the tumor volume was calculated by the following equation: tumor volume = (length × width²)/2. Meanwhile, the body weight changes of mice were recorded every day to estimate the efficacy of physical recovery. On the 16th day, all the mice were dissected to collect their organs (heart, liver, lung, kidney and spleen) fixed by paraformaldehyde (4 wt%) for pathological analysis. The tumors were weighed to assess therapy efficacy of different experimental groups.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
FUNDING
This work was supported by the National Key Research and Development Program of China (2016YFA0201300), the National Natural Science Foundation of China (21675146 and 21475125) and the Institute Developing Project of the Chinese Academy of Sciences (Y2016666).

AUTHOR CONTRIBUTIONS
Y.J. conceived the project. G.Q. and Y.J. designed the experiments. G.Q. and B.W. performed H2-ECT for mice. X.S. established the tumor animal model and extirpation eye ball experiments. G.Q. and H.L. performed electrochemistry and cell experiments. G.Q. and B.W. collected the data. G.Q. and Y.J. analyzed the data and wrote the manuscript. All the authors contributed to the discussion during the whole project. All authors have given approval to the final version of the manuscript.

Conflict of interest statement. None declared.

REFERENCES
1. Torre LA, Bray F and Siegel RL et al. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87–108.
2. Forastiere AA, Goepfert H and Mao M et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl Med 2003; 349: 2091–8.
3. Sharma P and Allison J.P. The future of immune checkpoint therapy. Science 2015; 348: 56–61.
4. Han DL, Liu J and Chen CY et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 2019; 566: 270–4.
5. Verma IM and Sonia N. Gene therapy - promises, problems and prospects. Nature 1997; 389: 239–42.
6. Yin H, Kanasty RL and Eltoukhy AA et al. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15: 541–55.
7. Lal S, Clare S and Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008; 41: 1842–51.
8. Agostinis P. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61: 250–81.
9. Qi GH, Zhang Y and Xu SP et al. Nucleus and mitochondria targeting theranostic plasmonic surface-enhanced Raman spectroscopy nanoprobes as a means for revealing molecular stress response differences in hyperthermia cell death between cancerous and normal cells. Anal Chem 2018; 90: 13356–64.
10. Qi GH, Li HJ and Zhang Y et al. Smart plasmonic nanorobot for real-time monitoring cytotoxic c release and cell acidification in apoptosis during electrostimulation. Anal Chem 2019; 91: 1409–15.
11. Sadelain M, Rivière I and Stanley R. Therapeutic T cell engineering. Nature 2017; 545: 423–31.
12. Hampton T. Targeted cancer therapies lagging. JAMA 2006; 296: 1951–2.
13. Mellman I, Coukos G and Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480: 480–9.
14. Dunbar CE, High KA and Joung JK et al. Gene therapy comes of age. Science 2018; 359: eaan4672.
15. Huang CS, Kawamura T and Toyota Y et al. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res 2010; 44: 971–82.
16. Dunbar CE, High KA and Joung JK et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13: 688–94.
17. Kajiyama S, Hasegaw G and Asano M et al. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 2008; 28: 137–43.
18. Ishibashi T, Sato B and Rikitake M et al. Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Med Gas Res 2012; 2: 27.
19. Wan WL, Lin YJ and Chen HL et al. In situ nanoreactor for photosynthesizing H2 gas to mitigate oxidative stress in tissue inflammation. J Am Chem Soc 2017; 139: 12923–6.
20. Wang R, Wu J and Chen Z et al. Postconditioning with inhaled hydrogen promotes survival of retinal ganglion cells in a rat model of retinal ischemia/reperfusion injury. Brain Res 2018; 1632: 82–90.
21. Zhou Y, Zheng H and Ruan F et al. Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs. Neuroscience 2012; 209: 47–53.
22. Yu S, Zhao C and Che N et al. Hydrogen-rich saline attenuates eosinophil activation in a guinea pig model of allergic rhinitis via reducing oxidative stress. J Inflamm 2017; 14: 1.
23. Zhang JY, Song SD and Pang Q et al. Hydrogen-rich water protects against acetaminophen-induced hepatotoxicity in mice. WJG 2015; 21: 4195–209.
24. Wu Y, Yuan M and Song JB et al. Hydrogen gas from inflammation treatment to cancer therapy. ACS Nano 2019; 13: 8505–11.
25. Dole M, Wilson FR and Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science 1975; 190: 152–4.
26. Chen LC, Zhou SF and Su LC et al. Gas-mediated cancer bioimaging and therapy. ACS Nano 2019; 13: 10887–917.
27. Zhao P, Jin Z and Chen Q et al. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018; 9: 4241.
28. Kaptchuk TJ. Acupuncture: theory, efficacy, and practice. Ann Intern Med 2002; 136: 374–83.
29. Pan TC, Tsai YH and Chen WC et al. The effects of laser acupuncture on the modulation of cartilage extracellular matrix molecules in rats with adjuvant-induced arthritis. PLoS One 2019; 14: e0211341.
30. Lisensky GC, Gagne RR and Koval CA. Ferrocene as an internal standard for electrochemical measurements. Inorg Chem 1980; 19: 2855–7.
31. Drissi SH, Refait PH and Abdelmoula M et al. The preparation and thermodynamic properties of Fe(II) Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corros Sci 1995; 37: 2025–41.
32. Refait PH, Abdelmoula M and Génin JMR. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corros Sci 1998; 40: 1547–60.

33. Kelly EJ. The active iron electrode iron dissolution and hydrogen evolution reactions in acidic sulfate solutions. J Electrochem Soc 1965; 112: 124–31.

34. Keddam M, Mottos OR and Takenouti H. Reaction model for iron dissolution studied by electrode impedance. J Electrochem Soc 1981; 128: 257–66.

35. Hirayama T, Okuda K and Nagasawa H. A highly selective turn-on fluorescent probe for iron(II) to visualize labile iron in living cells. Chem Sci 2013; 4: 1250–6.

36. Marino A, Almici E and Migliorin S et al. Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. J Colloid Interface Sci 2019; 538: 449–61.