Efficacy and tolerability of artemisinin-based and quinine-based treatments for uncomplicated falciparum malaria in pregnancy: a systematic review and individual patient data meta-analysis

Makoto Saito, Rashid Mansoor, Kalynnn Kenyon, Anupkumar R Anvikar, Elizabeth A Ashley, Daniel Chandramohan, Lauren M Cohee, Umberto D’Alessandro, Blaise Genton, Mary Ellen Gilder, Elizabeth Juma, Linda Kalilani-Phiri, Irene Kuepfer, Miriam K Laufer, Khin Maung Lwin, Steven R Meshnick, Dominic Masha, Victor Mwapasa, Norah Miweba, Michael Nanbozi, Jean-Louis A Ndiaye, François Nosten, Myaing Nyunt, Bernhards Ogutu, Sunil Parikh, Moo Kho Paw, Aung Pyae Phyo, Mupowjay Pimanpanarak, Patrice Piola, Marcus J Rijken, Kanlaya Siriprawat, Harry K Tagbor, Joel Tarning, Halidou Tinto, Innocent Valéa, Neema Valecha, Nicholas J White, Jacher Willadphaingern, Kasia Stepniewska, Rose McGready, Philippe J Guérin

Summary

Background Malaria in pregnancy affects both the mother and the fetus. However, evidence supporting treatment guidelines for uncomplicated (including asymptomatic) falciparum malaria in pregnant women is scarce and assessed in varied ways. We did a systematic literature review and individual patient data (IPD) meta-analysis to compare the efficacy and tolerability of different artemisinin-based or quinine-based treatments for malaria in pregnant women.

Methods We did a systematic review of interventional or observational cohort studies assessing the efficacy of artemisinin-based or quinine-based treatments in pregnancy. Seven databases (MEDLINE, Embase, Global Health, Cochrane Library, Scopus, Web of Science, and Literatura Latino Americana en Ciencias da Saude) and two clinical trial registries (International Clinical Trials Registry Platform and ClinicalTrials.gov) were searched. The final search was done on April 26, 2019. Studies that assessed PCR-corrected treatment efficacy in pregnancy with follow-up of 28 days or more were included. Investigators of identified studies were invited to share data from individual patients. The outcomes assessed included PCR-corrected efficacy, PCR-uncorrected efficacy, parasite clearance, fever clearance, gametocyte development, and acute adverse events. One-stage IPD meta-analysis using Cox and logistic regression with random-effects was done to estimate the risk factors associated with PCR-corrected treatment failure, using artemether-lumefantrine as the reference. This study is registered with PROSPERO, CRD42018104013.

Findings Of the 30 studies assessed, 19 were included, representing 92% of patients in the literature (4968 of 5360 episodes). Risk of PCR-corrected treatment failure was higher for the quinine monotherapy (n=244, adjusted hazard ratio [aHR] 6·11, 95% CI 2·57–14·54, p=0·001) but lower for artesunate-amodiaquine (n=840, 0·27, 95% 0·14–0·52, p<0·0001), artesunate-mefloquine (n=1028, 0·56, 95% 0·34–0·94, p=0·03), and dihydroartemisinin-piperine (n=872, 0·35, 95% CI 0·18–0·68, p=0·002) than artemether-lumefantrine (n=1278) after adjustment for baseline asexual parasitaemia and parity. The risk of gametocyte carriage on day 7 was higher after quinine-based therapy than artemisinin-based treatment (adjusted odds ratio [OR] 7·38, 95% CI 2·29–23·82).

Interpretation Efficacy and tolerability of artemisinin-based combination therapies (ACTs) in pregnant women are better than quinine. The lower efficacy of artemether-lumefantrine compared with other ACTs might require dose optimisation.

Funding The Bill & Melinda Gates Foundation, ExxonMobil Foundation, and the University of Oxford Clarendon Fund.

Copyright © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
Evidence before this study

We did a systematic literature search for studies assessing treatment efficacy of artemisinin-based or quinine-based treatments for uncomplicated falciparum malaria (including asymptomatic malaria) in pregnancy using seven databases (MEDLINE, Embase, Global Health, Cochrane Library, Scopus, Web of Science, and Literatura Latino Americana en Ciencias da Saúde) and two clinical trial registries (International Clinical Trials Registry Platform and ClinicalTrials.gov). The final search was done on April 26, 2019, without restrictions on publication year or language. Previous aggregated data meta-analyses showed a lower efficacy of quinine-based treatment than artemisinin-based treatments, though the strength of evidence was low as the number of randomised control trials (RCTs) was very small, and different study designs and outcome measures were used. It was impossible to compare efficacy of different ACTs because of the paucity of RCTs.

Added value of this study

This meta-analysis includes the largest dataset of malaria treatments in pregnancy, being composed of individual patient data of 4968 episodes in 19 studies across ten countries, representing 92% (4968 of 5360 episodes) of data identified in the systematic literature review. Quinine is recommended to treat malaria in the first trimester of pregnancy and is still commonly used for all trimesters. Our study shows that quinine was less preferable than ACTs because of higher treatment failure, unless combined with clindamycin, higher occurrence of acute adverse events (ie, lower tolerability), and higher risk of gametocyte development (ie, higher risk of transmission). Artemether-lumefantrine (AL), the most commonly used ACT, shows the best tolerability but a lower efficacy than other standard ACTs. In moderate- to high-falciparum malaria transmission areas, the risk of treatment failure was higher in nulliparous women. Dose optimisation of AL for pregnant women should be further investigated. Although the numbers of first trimester pregnancies studied were small, these findings support recommendations in 2017 that ACTs should replace quinine as the treatment of choice for falciparum malaria in all trimesters.

Implications of all the available evidence

This meta-analysis, together with previous research on the safety of ACTs in the first trimester, provides compelling evidence that both efficacy and safety of ACTs in pregnant women are better than quinine-based treatments. Suboptimal dosing of lumefantrine with pregnant women might explain a slightly lower efficacy of AL than other ACTs. Dose optimisation of antimalarial drugs in pregnancy, supported by pharmacokinetic studies, will be required to achieve the highest treatment success in pregnancy to protect both mother and fetus from the adverse effects of malaria infection.

Research context

Evidence before this study

We did a systematic literature search for studies assessing treatment efficacy of artemisinin-based or quinine-based treatments for uncomplicated falciparum malaria (including asymptomatic malaria) in pregnancy using seven databases (MEDLINE, Embase, Global Health, Cochrane Library, Scopus, Web of Science, and Literatura Latino Americana en Ciencias da Saúde) and two clinical trial registries (International Clinical Trials Registry Platform and ClinicalTrials.gov). The final search was done on April 26, 2019, without restrictions on publication year or language. Previous aggregated data meta-analyses showed a lower efficacy of quinine-based treatment than artemisinin-based treatments, though the strength of evidence was low as the number of randomised control trials (RCTs) was very small, and different study designs and outcome measures were used. It was impossible to compare efficacy of different ACTs because of the paucity of RCTs.

Added value of this study

This meta-analysis includes the largest dataset of malaria treatments in pregnancy, being composed of individual patient data of 4968 episodes in 19 studies across ten countries, representing 92% (4968 of 5360 episodes) of data identified in the systematic literature review. Quinine is recommended to treat malaria in the first trimester of pregnancy and is still commonly used for all trimesters. Our study shows that quinine was less preferable than ACTs because of higher treatment failure, unless combined with clindamycin, higher occurrence of acute adverse events (ie, lower tolerability), and higher risk of gametocyte development (ie, higher risk of transmission). Artemether-lumefantrine (AL), the most commonly used ACT, shows the best tolerability but a lower efficacy than other standard ACTs. In moderate- to high-falciparum malaria transmission areas, the risk of treatment failure was higher in nulliparous women. Dose optimisation of AL for pregnant women should be further investigated. Although the numbers of first trimester pregnancies studied were small, these findings support recommendations in 2017 that ACTs should replace quinine as the treatment of choice for falciparum malaria in all trimesters.

Implications of all the available evidence

This meta-analysis, together with previous research on the safety of ACTs in the first trimester, provides compelling evidence that both efficacy and safety of ACTs in pregnant women are better than quinine-based treatments. Suboptimal dosing of lumefantrine with pregnant women might explain a slightly lower efficacy of AL than other ACTs. Dose optimisation of antimalarial drugs in pregnancy, supported by pharmacokinetic studies, will be required to achieve the highest treatment success in pregnancy to protect both mother and fetus from the adverse effects of malaria infection.

Methods

Search strategy and selection criteria

We did a systematic review on the efficacy of ABT and QBT on uncomplicated falciparum malaria, including asymptomatic parasitaemia (hereafter referred as uncomplicated falciparum malaria) in pregnancy without any restrictions on language or publication year, and this was published elsewhere. Two reviewers (MS and MEG) assessed eligibility independently, and discrepant results were resolved by a second assessment. Seven databases (MEDLINE, Embase, Global Health, Cochrane Library, Scopus, Web of Science, and LILACS) and two clinical trial registries (ICTRP and ClinicalTrial.gov) were used.
Prospective treatment efficacy studies of uncomplicated falciparum malaria, including pregnant women in any trimester, were identified using a combination of five components: malaria, pregnancy, treatment or names of antimalarial drugs, study design (interventional or observational cohort studies), and outcome types (efficacy), up until the final date of April 26, 2019.

Studies were included in this meta-analysis if Plasmodium falciparum parasitaemia was confirmed by microscopy before treatment, regardless of the patient’s symptoms, the length of active follow-up was 28 days and over, and PCR was used to differentiate the recurrence of infections with P falciparum during follow-up.16 Investigators of published and unpublished studies that were identified by the systematic literature review were included in the multivariable models on PCR-corrected efficacy as a priori forced variables, regardless of statistical significance (p<0.05). Few women had multiple episodes recorded, thus previous history of malaria 28 days before treatment was included taking account for this within-person correlation.

Interaction between parity and malaria transmission intensity (categorised into three groups as defined in the protocol),17 or age and transmission was assessed if age or parity was included in the multivariable model, as the effect of age and parity (ie, pregnancy-specific immunity) can be different depending on transmission intensity. Any antimalarial use (including intermittent preventive treatment) was censored on the documented day. Plasmodium vivax intercalated infection (ie, P vivax mono-infection before the recurrence of P falciparum parasitaemia) was regarded as a time-dependent covariate if the original study genotyped falciparum recurrences regardless of intercalated infection with P vivax. Otherwise, intercalated infection with P vivax was regarded as censored following the WHO guidelines.18 AL, the most commonly used drug, was used as the reference group, and comparison between every pair of drugs was not done to avoid multiple testing. In the Cox regression, global test was used for checking the proportional hazard assumption. We used the piecewise-Cox model by introducing time-by-covariate interactions if the proportional-hazards assumption of constant HRs was violated. As a prespecified sensitivity analysis, the model was refitted, excluding one study site at a time to identify any influential studies. For the other outcomes, the treatment group was always included in the final models.

Risk of bias was assessed using the Cochrane risk of bias assessment tool for randomised controlled trials (RCTs) and the Newcastle-Ottawa scale for observational cohort studies. Statistical analysis was done using R (R Foundation for Statistical Computing, Vienna, Austria) or Stata MP15.1 (StataCorp, College Station, TX, USA).

Role of the funding source
The funders did not participate in the study design, the writing of the paper, decision to publish, or preparation of the manuscript.

Results
Our search identified 30 studies with PCR-corrected efficacy. With the exception of two unpublished studies, individual patient data from 4968 (92%) of 5360 episodes in 19 studies19–23 were shared and pooled for the analyses of PCR-corrected efficacy (figure 1).
The included studies were done between 1995 and 2014 in ten different countries (appendix pp 2–4): nine studies (comprising 3813 episodes) were done in sub-Saharan Africa and ten (comprising 1155 episodes) in Asia.

Ten antimalarial treatments were included in this analysis: AL (1278 [89·7%] of 1425 episodes in the literature), artesunate-amodiaquine (ASAQ; 840 [91·8%] of 915 episodes), artesunate-mefloquine (ASMQ; 1028 [96·0%] of 1071 episodes), dihydroartemisinin-piperaquine (DP; 872 [98·6%] of 884 episodes), artesunate-sulfadoxine-pyrimethamine (ASSP; 173 [84·4%] of 205 episodes), artesunate monotherapy (230 [100%] of 230 episodes), artesunate with clindamycin (AC; 142 [100%] of 142 episodes), artesunate-ataovaquone-progynalin (AAP; 91 [100%] of 91 episodes), quinine monotherapy (244 [81·6%] of 299 episodes), and quinine with clindamycin (QC; 67 [100%] of 67 episodes). The fixed-dose formulation was used in all participants who took ASAQ and in 962 (93·6%) of the 1028 participants who took ASMQ (appendix pp 5–7).

Of the 4968 episodes in 4745 women, the mean age was 23·5 years (SD 6·0), and the median parity was one (range zero to ten; table 1). Most episodes were either in the second trimester (weeks 14–27, 3325 [67·0%] of 4965 episodes) or third trimester (≥28 weeks, 1610 [32·4%] of 4965 episodes) with 33 (0·7%) of 4968 episodes considered to be hyperparasitaemic (defined as >100000 parasites per µL). Only 504 (10·4%) of the 4854 women were febrile (>37·5°C) at presentation.

For all patients who took ABTs or QC, PCR-corrected treatment efficacy by the Kaplan-Meier method was more than 90% at day 28, 42, or 63, pooled by random effects (table 2, and appendix p 8). Quinine monotherapy had the lowest pooled efficacy at 87·7% (95% CI 58·2–99·3%, n=181 in three studies) on day 28.

In univariable analysis, four risk factors were associated with recrudescence: treatment, age, baseline asexual parasite density, and parity (table 3). After adjustment for other risk factors in the multivariable analysis, the risk of PCR-corrected treatment failure compared with AL was decreased for ASAQ (aHR 0·27, 95% CI 0·14–0·52, p<0·0001), ASMQ (0·56, 0·34–0·94, p=0·03), DP (0·35, 0·18–0·68, p=0·002), and AC (0·37, 0·15–0·91, p=0·03), but higher in quinine monotherapy (6·11, 2·57–14·54, p<0·0001). For AAP, artesunate monotherapy, ASSP, and QC, the risk of failure was not statistically different to that for AL (table 3). Higher baseline parasite density was associated with an increased risk of treatment failure (1·93 per ten-fold increase, 1·61–2·32, p<0·0001).

The effect of parity was different depending on the malaria transmission intensity (p value for interaction 0·02). Compared with nulliparous women, the risks of treatment failure were decreased in primiparous women in moderate (aHR 0·29, 95% CI 0·10–0·81, p=0·02) and high transmission areas (0·73, 0·34–1·57, p=0·42); and in multiparous women in moderate (0·22, 0·08–0·63, p=0·004) and high transmission areas (0·49, 0·25–0·95, p=0·04); but not different in low transmission areas.

Figure 1: Study selection

ACT = artemisinin-based combination therapies. IPD = individual patient data. Q = quinine monotherapy.
Sensitivity analyses were done by a piece-wise Cox model that split the observation time to satisfy the proportionality assumption and also for different handling of indeterminate PCR and *P. vivax* intercalated infection. The estimates for these models were similar to the main analysis above (appendix pp 13–16).

Parasite clearance on days 1 and 2 was analysed, including those with recurrent infection that was not genotyped, or was indeterminate (appendix pp 19–22). The adjusted risk of positive parasitaemia by microscopy on day 2 (n=4876) was higher for quinine monotherapy (adjusted OR [aOR] 33·64, 95% CI 13·63–83·00, p<0·0001) and QC (22·92, 7·90–66·50, p<0·0001) than for AL. The risk was not different in ACTs compared with AL. Fever clearance is described in the appendix (p 23).

The number of patients with gametocytaemia on different days, stratified by baseline gametocytaemia, is summarised in the appendix (p 9). Further analyses of the risk of gametocyte carriage in women without gametocytaemia on day 0 were done by categorising treatments into ABT and QBT because of the small number of outcomes in each treatment. Overall, the pooled Kaplan-Meier estimates of women without gametocytes at baseline but positive by day 7 were 4·0% (95% CI 2·3–6·5, n=4256 in 18 studies) after ABT and 23·9% (7·0–46·3, n=261 in five studies) after QBT. The risk was not different in ACTs compared with AL AAP AC AS ASAQ ASMQ ASSP DP Q QC

Table 1: Baseline characteristics of the pregnant women assessed for PCR-corrected treatment efficacy

AL	AAP	AC	AASQ	AS	AQ	ASSP	DP	Q	QC	
Age (years)	21 (14–45)	23 (16–38)	25 (15–43)	25·5 (14–44)	22 (15–46)	22 (15–45)	22 (15–42)	21 (15–43)	22 (16–41)	25 (15–41)
Gravidity	2 (1–13)	2 (1–9)	3 (1–13)	3 (1–11)	2 (1–10)	2 (1–13)	2 (1–8)	2 (1–12)	2 (1–12)	3 (1–9)
Height (cm)	156·0 (130–184)	153·0 (124–161)	152·0 (140–166)	151·0 (140–167)	158·0 (132–179)	156·0 (125–187)	149·8 (134–186)	155·0 (125–178)	153·0 (141–166)	154·0
Weight (kg)	53 (34–88)	49 (39–69)	51 (38–67)	49 (37–74)	55 (40–107)	53 (33–98)	48 (31–65)	54 (35–115)	52 (30–98)	49 (40–64)
Parasitaemia (log10/µL)	3·1 (0–5·7)	3·6 (1·5–5·5)	3·3 (1·2–5·5)	3·4 (1·2–5·5)	2·8 (1·2–5·0)	3·0 (1·2–5·4)	3·3 (1·5–5·3)	2·9 (0·7–5·6)	3·3 (1·6–5·3)	3·3 (1·2–5·0)
Gametocytaemia	54/1242 (4·3%)	4/91 (4·4%)	18/141 (12·8%)	21/225 (9·3%)	24/815 (2·9%)	17/1007 (1·7%)	4/122 (3·3%)	32/874 (3·7%)	18/243 (7·4%)	5/66 (7·6%)
Malaria transmission*	Low 200/1278 (15·6%)	91/91 (100·0%)	141/142 (99·3%)	230/230 (100·0%)	26/841 (3·1%)	188/1028 (18·3%)	122/173 (70·5%)	82/874 (9·4%)	172/244 (70·5%)	67/67 (100·0%)
Moderate	776/1278 (60·7%)	0	1/142 (0·7%)	0	482/841 (57·3%)	507/1028 (49·3%)	18/173 (10·4%)	738/874 (84·4%)	72/244 (30·0%)	0
High	302/1278 (23·6%)	0	0	0	333/841 (39·6%)	333/1028 (32·4%)	33/173 (19·1%)	54/874 (6·2%)	0	0

Fever is defined as body temperature >37·5°C. Trimesters are categorised as follows: first (≤13 weeks), second (14–27 weeks), and third (≥28 weeks). AAP=artesunate with atovaquone-proguanil. AC=artesunate with clindamycin. AL=artemether-lumefantrine. AS=artesunate monotherapy. ASAQ=artesunate-amodiaquine. ASMQ=artesunate-mefloquine. ASSP=artesunate-sulfadoxine-pyrimethamine. DP=dihydroartemisinin-piperaquine. Pf=Plasmodium falciparum. Q=quinine monotherapy. QC=quinine with clindamycin. *Data are presented as the number in the category divided by total number assessed.
with higher parasitaemia who are treated with AL need to be followed up closely. Dose optimisation, including courses longer than the recommended 3 days, might be necessary.

Although ASAQ, ASMQ, and DP showed higher efficacy than AL, the adjusted risk of treatment failure of ASSP was higher than AL (aHR 2.05, 95% CI 0.38–11.03, p=0.40), although not significant. ASSP efficacy was essentially equivalent to artesunate monotherapy (but given only for 3 days) in areas of sulfadoxine-pyrimethamine (SP) resistance. Considering the spread of SP resistance, ASSP provides a suboptimal therapeutic option for pregnant women compared with other ACTs. As was shown in non-pregnant populations, adding clindamycin to quinine resulted in efficacy equivalent to ABT, although poor tolerability of quinine could affect the adherence and acceptability to patients. Furthermore, clindamycin is not widely available in malaria-endemic countries.

Higher baseline asexual parasite density was associated with a higher risk of PCR-corrected treatment failure, as described in non-pregnant populations. This analysis found that nulliparous women were more likely to result in treatment failure in areas where transmission levels are moderate and high. This effect was most likely due to pregnancy-specific (ie, parity-dependent) immunity and was not observed in low transmission areas. These findings suggest that in an era of declining malaria endemicity, pregnant women might lose pregnancy-specific immunity and the risk of treatment failure might increase.

The risk of recurrent falciparum malaria was high after AL and quinine monotherapy, as was expected from the shorter half-life and post-treatment prophylactic effect. Considering the cumulative effect of malaria recurrences on the fetus, PCR-uncorrected efficacy is an important consideration when choosing the most appropriate drug for pregnant women, particularly in high transmission settings.

The use of QBT leads to a higher risk of gametocyte development than ABT because artemisinin derivatives have a gametocytocidal effect but quinine does not. Lower bodyweight and higher baseline parasite density were associated with a higher risk of gametocytaemia on day 7, similar to non-pregnant populations. Nulliparous women were at a higher risk of developing gametocytaemia, possibly due to lower pregnancy-specific immunity.

Quinine was associated with higher risks of abdominal pain, anorexia, dizziness, and vomiting than for AL. The risk of tinnitus was higher for quinine (aOR 249.84, 80.90–771.56, p<0.001) and QC (71.91, 19.45–265.86, p<0.001) than AL. The risks of musculoskeletal pain (2.83, 1.88–4.24, p<0.001) and fatigue (12.65, 8.70–18.38, p<0.001) were higher after ASAQ than after AL.

Discussion

We present here the results of, to our knowledge, the largest IPD meta-analysis to date assessing the efficacy and tolerability of ABTs and QBTs for uncomplicated falciparum malaria in pregnancy, representing 92% of all patients enrolled in published studies. The PCR-corrected efficacy of evaluated antimalarial drugs was greater than 90% after 28–63 days of follow-up, except for quinine monotherapy, which is the recommended treatment for pregnant women with *P falciparum* infection in their first trimester. The slightly lower efficacy of AL, the most widely used ACT in pregnancy, compared with other standard ACTs (ie, ASAQ, ASMQ, and DP) in the multivariable analysis might be due to its under-dosing in pregnant women, particularly if the immunity level is low (appendix pp 17–18). The pharmacokinetics of antimalarial drugs are affected by physiological changes of pregnancy, and lower blood concentration of lumefantrine on day 7 were reported in this patient group. Pregnant women

Table 2: PCR-corrected treatment efficacy for each treatment at fixed timepoints in each shared study pooled by random effects

	Day 28					
	N	% (95% CI)	N	% (95% CI)	N	% (95% CI)
AL	1168	96.9 (94.5–98.5)	929	95.5 (92.6–97.5)	598	93.6 (89.1–96.7)
AAP	58	99.9 (98.4–100.0)	49	98.9 (91.5–100.0)	40	98.5 (91.4–99.9)
AC	106	99.9 (97.4–99.9)	73	98.6 (85.4–100.0)	39	97.5 (71.4–100.0)
AS	169	95.9 (88.4–99.1)	140	95.6 (87.3–99.1)	91	95.3 (85.7–99.2)
ASAQ	811	99.6 (99.2–99.9)	782	99.2 (98.5–99.7)	611	98.8 (97.2–99.6)
ASMQ	982	99.9 (99.6–100.0)	948	99.5 (98.3–99.9)	717	99.2 (97.0–99.9)
ASSP	559	99.0 (95.4–99.9)	120	99.2 (95.7–99.9)	113	99.2 (95.7–99.9)
DP	815	99.5 (98.0–99.9)	799	99.4 (97.0–99.9)	705	98.4 (95.6–99.6)
Q	181	87.7 (58.2–99.3)	164	86.8 (56.6–99.3)	128	84.9 (51.6–99.3)
QC	43	99.9 (97.6–100.0)	37	99.9 (97.0–100.0)	28	99.9 (96.3–100.0)

Treatment success was estimated by pooling the Kaplan-Meier survival estimates in each study by random effects method. AAP=artesunate with atovaquone-proguanil. AC=artesunate with clindamycin. AL=artemether-lumefantrine. AS=artesunate monotherapy. ASAQ=artesunate-amodiaquine. ASMQ=artesunate-mefloquine. ASSP=artesunate-sulfadoxine-pyrimethamine. DP=dihydroartemisinin-piperaquine. Q=quinine monotherapy. QC=quinine with clindamycin.
Among ACTs, adverse events were considered to be mainly due to the partner drug, and AL and DP were the better tolerated regimens. The risk of anorexia, nausea, vomiting, and dizziness was higher in ASAQ and ASMQ than in AL or DP, although none of the studies included in this pooled analysis were double-blinded. Pregnancy outcomes are described in detail by Saito and colleagues, but there was no difference among the ACTs tested (ie, AL, ASAQ, ASMQ, and DP).

This study has some limitations. Firstly, although this meta-analysis includes over 90% of patients that are available in the literature, some non-standard treatments were documented in only a small number of women. Nine studies (8% of individual patient data) were not included, but the pooled efficacy at the fixed timepoints was similar when aggregated data of those unshared studies were included (appendix p 8). Study designs and handling of indeterminate PCR or P vivax intercalated infection also did not affect our conclusions (appendix p 13–16), thereby confirming the robustness of our analysis as the most accurate global summary. Secondly, although the efficacy of ACTs shown in this study was satisfactory, careful consideration is needed when applying these results to specific settings because of variable patterns of drug resistance. Sensitivity to the partner drugs and immunity level differs depending on the location and study year, although a sensitivity analysis in which one study site was removed at a time did not change the conclusion of the meta-analysis (data not shown). The data from southeast Asia included in this study were collected before widespread artemisinin resistance in the area, but the spread of resistance in this region will affect the general recommendations for antimalarials, requiring alternative strategies and the safety of those formulations will have to be assessed in pregnant women. Thirdly, as study participants were mostly enrolled at antenatal clinics by screening for peripheral parasitaemia, the women included in this pooled analysis were more likely to be afebrile and with lower baseline parasite densities than patients in most antimalarial efficacy studies in non-pregnant populations. Thus, the efficacy at fixed time points might not be directly comparable to the results in non-pregnant populations or in settings where antenatal screening is not provided. Indeed, as baseline parasite density is a known risk factor for PCR-corrected treatment failure, the pooled efficacy at fixed timepoints in this study could have been overestimated. The lower efficacy of quinine and AL (under the dosing currently recommended by WHO) shown in this analysis could thus actually be worse for infections with higher parasitaemia. Nonetheless, the results of this study will be practically useful and more relevant than only including symptomatic patients because even asymptomatic parasitaemia leads to adverse pregnancy outcomes and most pregnant women with parasitaemia were asymptomatic. Finally, evidence on the safety and efficacy of antimalarial treatment in the first

| Table 3: Risk factors for PCR-corrected treatment failure in pregnant women infected with falciparum malaria |
|---|-----------------|------------------|-----------------|
| Treatment | Number assessed (failure) | Univariable analysis | Multivariable analysis* |
| Treatment | HR (95% CI) | p-value | HR (95% CI) | p-value |
| AL | 1278 (68) | ... | ... | ... |
| AAP | 91 (2) | 0.39 (0.07-2.11) | 0.27 | 0.31 (0.06-1.61) | 0.17 |
| AC | 142 (6) | 0.46 (0.19-1.15) | 0.10 | 0.37 (0.15-0.91) | 0.03 |
| AS | 230 (15) | 0.72 (0.37-1.42) | 0.35 | 0.64 (0.34-1.23) | 0.18 |
| ASAQ | 841 (12) | 0.27 (0.14-0.52) | <0.0001 | 0.27 (0.14-0.52) | <0.0001 |
| ASMQ | 1028 (25) | 0.56 (0.33-0.94) | 0.03 | 0.56 (0.34-0.94) | 0.03 |
| ASSP | 173 (4) | 1.68 (0.30-9.31) | 0.55 | 2.05 (0.38-11.03) | 0.40 |
| DP | 874 (14) | 0.38 (0.20-0.76) | 0.004 | 0.35 (0.18-0.68) | 0.002 |
| Q | 244 (31) | 5.70 (2.09-15.55) | <0.0001 | 6.11 (2.57-14.54) | <0.0001 |
| QC | 67 (1) | 0.63 (0.05-7.22) | 0.71 | 0.48 (0.04-5.24) | 0.55 |
| Age (years) | 4968 (128) | 0.96 (0.93-0.98) | 0.002 | ... | ...
| Parity | ... | ... | ... | ...
0	2130 (89)	
1	1040 (31)	0.60 (0.40-0.90)	0.01	0.59 (0.39-0.89)	0.01
≥2	1733 (56)	0.51 (0.36-0.72)	0.0002	0.62 (0.44-0.89)	0.009
Trimester	
1	27 (1)	0.45 (0.06-3.31)	0.44
2	3225 (131)	
3	1610 (46)	0.81 (0.58-1.15)	0.24
Weight (kg)	4943 (127)	1.00 (0.98-1.03)	0.78
Parasitaemia (log10/µL)	4963 (128)	1.97 (1.65-2.35)	0.0001	1.93 (1.61-2.32)	<0.0001
Hyperparasitaemia	
Yes	79 (6)	1.74 (0.76-4.00)	0.19
No	4889 (122)	
Fever >37.5°C	
Yes	504 (32)	1.46 (0.98-2.18)	0.07
No	4550 (142)	
Haemoglobin (g/dL)	4912 (175)	0.97 (0.88-1.08)	0.60
Presence of gametocytes	
Yes	197 (12)	1.28 (0.70-2.33)	0.42
No	4629 (157)	
Mixed infection	
Yes	54 (5)	1.76 (0.70-4.43)	0.23
No	4914 (123)	
Intercalated vivax infection	
Yes	233 (10)	0.59 (0.30-1.18)	0.14
No	4735 (168)	
Transmission intensity	
Low	1319 (81)	1.75 (0.46-6.73)	0.41
Moderate	2594 (49)	1.26 (0.30-5.26)	0.75
High	1055 (48)	

p-value for shared frailty < 0.001. AAP=artesunate with atovaquone-proguanil. AC=artesunate with clindamycin. AL=artemether-lumefantrine. AS=artesunate monotherapy. ASMQ=artesunate-amodiaquine. ASMQ=artesunate-mefloquine. ASSP=artesunate-sulfadoxine-pyrimethamine. DP=dihydroartemisinin-piperaquine. HR=hazard ratio. Q=quinine monotherapy. QC=quinine with clindamycin. *Adjusted by treatment, parity, parasitaemia, and previous antimalarial treatment.
trimester both in this meta-analysis and in the literature is scarce. Although safety of ACTs is reassuring\(^8\) and there was no apparent effect of gestational age on the risk of PCR-corrected treatment efficacy indicated in this meta-analysis, collecting further evidence on the safety and efficacy of antimalarial treatment in first trimester women should be continued.

In conclusion, this meta-analysis, together with the evidence of safety shown in previous research,\(^8\) provides compelling evidence that quinine monotherapy provides lower efficacy and tolerability than ACTs. Although the efficacy of QC was as high as that of ACTs, its practical use is discouraged considering the slow parasite clearance, the longer treatment period needed, the higher risk of gametocyte development, and poor tolerability. Although patients treated with AL had fewer acute adverse events, its efficacy was lower than other ACTs with the currently recommended dosing.\(^9\) In addition, the post-treatment prophylactic period of AL is shorter than other ACTs, leading to a higher risk of recurrences, which can cumulatively affect the fetus, particularly in higher transmission areas. ASAQ, ASMQ, and DP showed better efficacy compared with AL, but the tolerability of ASAQ and ASMQ was lower than AL. Considering the adverse effect of malaria on pregnant women and their offspring, all pregnant women infected with malaria, regardless of trimester, should be treated with the most effective drugs available.

Contributors

MS, RMc, KSt, and PJG conceived the idea, interpreted the results, and drafted the manuscript. MS and MEG did systematic review. KK was responsible for the management of data. RMa and MS did the statistical analyses. ARA, EAA, DC, LMC, UDA, BG, EJ, HK, P, IK, MKL, KML, SRM, DM, VM, NM, J-LAN, AN, BO, SP, MKP, APP, MP, PP, MJR, Ks, HKT, JT, HT, IV, NV, NJW, and JW conceived and undertook the individual studies, and enrolled the patients. All authors revised the drafts and approved the final manuscript.

Figure 2: Adjusted odds ratio of developing symptoms after treatment compared with artemether-lumefantrine

AAP = artesunate-atoquaone-proguanil. AC = artesunate with clindamycin. AL = artemether-lumefantrine. AS = artesunate monotherapy. ASAQ = artesunate-amodiaquine. ASMQ = artesunate-mefloquine. ASSP = artesunate-sulfadoxine-pyrimethamine. DP = dihydroartemisinin-piperazine. Q = quinine monotherapy. QC = quinine with clindamycin.
Declarations of interests
We declare no competing interests.

Data sharing
De-identified data are available from The WorldWide Antimalarial Resistance Network data repository.

Acknowledgments
The WorldWide Antimalarial Resistance Network is funded by the Bill & Melinda Gates Foundation and the ExxonMobil Foundation. MS is supported by the University of Oxford Clarendon Fund. We thank all the pregnant women who participated in the original studies and all the people who worked on the original clinical studies, and the Malaria Atlas Project for transmission estimates.

References
1 Desai M, ter Kuile FO, Nosten F, et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 2007; 7: 93–104.
2 Rijken MJ, McGready R, Boel ME, et al. Malaria in pregnancy in the Asia-Pacific region. Lancet Infect Dis 2012; 12: 75–88.
3 Dell’Isolour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med 2010; 7: e1000221.
4 Elle AC, Dooley KE, Sheffield JS. Pharmacologic research in pregnant women—time to get it right. N Engl J Med 2019; 380: 1291–95.
5 White NJ, McGready RM, Nosten FH. New medicines for tropical diseases in pregnancy: catch-22. PLoS Med 2008; 5: e133.
6 Saito M, Gilder ME, Nosten F, McGready R, Guérin PJ. Systematic literature review and meta-analysis of the efficacy of artemisinin-based and quinine-based treatments for uncomplicated falciparum malaria in pregnancy: methodological challenges. Malar J 2017; 16: 488.
7 Clark RL. Embryotoxicity of the artemisinin antimalarials and potential consequences for use in women in the first trimester. Reprod Toxicol 2009; 28: 285–96.
8 Moore KA, Simpson JA, Paw MK, et al. Safety of artemisinins in first trimester of prospectively followed pregnancies: an observational study. Lancet Infect Dis 2016; 16: 576–83.
9 Dell’Isolour S, Severine E, McGready R, et al. First-trimester artemisinin derivatives and quinine treatments and the risk of adverse pregnancy outcomes in Africa and Asia: a meta-analysis of observational studies. PLoS Med 2017; 14: e1002290.
10 WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization, 2009.
11 Nosten F, Rogerston SJ, Besson JG, McGready R, Mutahingwa TK, Brabin B. Malaria in pregnancy and the endemcity spectrum: what can we learn? Trends Parasitol 2004; 20: 425–32.
12 Rogerston SJ, Hvidt I, Duffy PE, Leke RF, Taylor DW. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 2007; 7: 105–17.
13 Burger RJ, Visser BJ, Grobusch MP, van Vugt M. The influence of pregnancy on the pharmacokinetic properties of artemisinin combination therapy (ACT): a systematic review. Malar J 2016; 15: 99.
14 WHO. Guidelines for the treatment of malaria, 3rd edn. Geneva: World Health Organization, 2015.
15 Saito M, Mansoor R, Kennon K, et al. Efficacy of artemisinin-based and quinine-based treatments for uncomplicated falciparum malaria in pregnancy: a protocol for systematic review and individual patient data (IPD) meta-analysis. BMJ Open 2019; 9: e027503.
16 Saito M, Mansoor R, Kennon K, et al. Pregnancy outcomes and risk of placental malaria after artemisinin-based and quinine-based treatment for uncomplicated falciparum malaria in pregnancy: a WorldWide Antimalarial Resistance Network systematic review and individual patient data meta-analysis. BMC Med (in press).
17 Klein JP, Logan B, Hartzoff M, Andersen PK. Analyzing survival curves at a fixed point in time. Stat Med 2007; 26: 4905–19.
18 Anvikar AR, Kupfer I, Mishra V, et al. Efficacy of two artemisinin-based combinations for the treatment of malaria in pregnancy in India: a randomized controlled trial. Malar J 2018; 17: 246.
19 Cohee LM, Kalilani-Phiri L, Mawindo F, et al. Parasite dynamics in the peripheral blood and the placenta during pregnancy-associated malaria infection. Malar J 2016; 15: 483.
38 WorldWide Antimalarial Resistance Network. SP Molecular Surveyor. 2018. http://www.wwarn.org/dhfr-dhps-surveyor/ (accessed Sept 20, 2019).
39 Oboonyo CO, Juma EA. Clindamycin plus quinine for treating uncomplicated falciparum malaria: a systematic review and meta-analysis. Malar J 2012; 11: 2.
40 Worldwide Antimalarial Resistance Network (WWARN) AL Dose Impact Study Group. The effect of dose on the antimalarial efficacy of artemether-lumefantrine: a systematic review and pooled analysis of individual patient data. Lancet Infect Dis 2015; 15: 692–702.
41 Mayor A, Barjañi A, Macete E, et al. Changing trends in P. falciparum burden, immunity, and disease in pregnancy. N Engl J Med 2015; 373: 1607–17.
42 Moore KA, Simpson JA, Wiladphaingern J, et al. Influence of the number and timing of malaria episodes during pregnancy on prematurity and small-for-gestational-age in an area of low transmission. BMC Med 2017; 15: 117.
43 Landis SH, Lokomba V, Ananth CV, et al. Impact of maternal malaria and under-nutrition on intrauterine growth restriction: a prospective ultrasound study in Democratic Republic of Congo. Epidemiol Infect 2009; 137: 294–304.
44 Price RN, Nosten F, Luxemburger C, et al. Effects of artemisinin derivatives on malaria transmissibility. Lancet 1996; 347: 1654–58.
45 Chotivanich K, Sattabongkot J, Udomsangpetch R, et al. Transmission-blocking activities of quinine, primaquine, and artesunate. Antimicrob Agents Chemother 2006; 50: 1927–30.
46 WWARN Gametocyte Study Group. Gametocyte carriage in uncomplicated Plasmodium falciparum malaria following treatment with artemisinin combination therapy: a systematic review and meta-analysis of individual patient data. BMC Med 2016; 14: 79.
47 Price R, Nosten F, Simpson JA, et al. Risk factors for gametocyte carriage in uncomplicated falciparum malaria. Am J Trop Med Hyg 1999; 60: 1019–23.
48 Adam I, Ali DM, Abdalla MA. Artesunate plus sulfadoxine-pyrimethamine in the treatment of uncomplicated Plasmodium falciparum malaria during pregnancy in eastern Sudan. Trans R Soc Trop Med Hyg 2006; 100: 632–35.
49 Adam I, Elwasisa E, Mohammed Ali DA, Elansari E, Elbashir MI. Artemether in the treatment of falciparum malaria during pregnancy in eastern Sudan. Trans R Soc Trop Med Hyg 2004; 98: 509–13.
50 Adam I, Ibrahim MH, A/elbasit IA, Elbashir MI. Low-dose quinine for treatment of chloroquine-resistant falciparum malaria in Sudanese pregnant women. East Mediterr Health J 2004; 10: 554–59.
51 Adam I, Tarning J, Lindegardh N, Mahgoub H, McGready R, Nosten F. Pharmacokinetics of piperaquine in pregnant women in Sudan with uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg 2012; 87: 35–40.
52 Bounyasong S. Randomized trial of artesunate and mefloquine in comparison with quinine sulfate to treat P. falciparum malaria pregnant women. J Med Assoc Thai 2008; 91: 1289–99.
53 Carmona-Fonseca J, Aguadul-Garcia OM, Arango-Flórez E. Eficacia terapéutica y eventos adversos de tratamientos para malaria vivax y malaria falciparum en gestantes en las regiones de Urabá y Alto San Jorge, Colombia, 2008-2011. Rev Colomb Obstet Ginecol 2013; 64: 27–37.
54 Kaye DK, Nshemerirwe R, Mutyalu TS, Ndezi G. A randomized clinical trial comparing safety, clinical and parasitological response to artemether-lumefantrine and chlorproguanil-dapsone in treatment of uncomplicated malaria in pregnancy in Mulago hospital, Uganda. J Infect Dev Ctries 2008; 2: 115–19.
55 Mutabingwa TK, Muze K, Ovd R, et al. Randomized trial of artesunate+amodiaquine, sulfadoxine-pyrimethamine+amodiaquine, chlorproguanil-dapsone and SP for malaria in pregnancy in Tanzania. PLoS One 2009; 4: e5138.
56 Mutagonda RF, Kamuhawwa AAR, Minzi OMS, et al. Effect of pharmacogenetics on plasma lumefantrine pharmacokinetics and malaria treatment outcome in pregnant women. Malar J 2017; 16: 267.