The mechanism by which hypoxia induces gene transcription involves the inhibition of hypoxia-inducible factor (HIF)-1α prolyl hydroxylase activity, which prevents von Hippel-Lindau (vHL)-dependent targeting of HIF-1α to the ubiquitin-proteasome pathway. HIF-1α is stabilized, translocates to the nucleus, interacts with hypoxia-responsive elements, and promotes the activation of target genes. This report shows that cyclosporin A (CsA) interferes with the hypoxic signaling cascade in C6 glioma cells. CsA inhibits hypoxia-dependent transcription in a reporter gene assay and prevents the hypoxic accumulation of HIF-1α. Addition of the 330–603 C-terminal oxygen-dependent degradation (ODD) domain of HIF-1α to the green fluorescent protein (GFP) destabilized the protein in an oxygen-dependent manner. CsA increased the hypoxic stabilization of an ODD-GFP fusion protein. An assay for 2-oxoglutarate-dependent dioxygenases was developed using a light mitochondrial kidney fraction as a source of enzyme. It uses the capacity of specific peptides to stimulate the degradation of [14C]-2-oxoglutarate. CsA stimulated the enzymatic activity in the presence of a peptide that mimicked the 557–576 sequence of HIF-1α. The enzyme promoted [35S]vH binding to glutathione S-transferase (GST)-ODD fusion protein. This association increased in the presence of CsA. CsA effects were not observed when the proline residue corresponding to Pro-564 in the HIF-1α sequence was replaced by a hydroxyproline or an alanine residue. Finally, CsA increased vHL-ODD interaction during hypoxia. We conclude that CsA destabilizes HIF-1α by promoting hydroxylation of Pro-564 in the ODD domain. Such a mechanism may prevent hypoxic adaptation during CsA-induced nephrotoxicity and contribute to the adverse effects of this drug.

Cells respond to low oxygen tensions by up-regulating the expression of genes involved in angiogenesis (e.g. vascular endothelial growth factor), erythropoiesis (e.g. erythropoietin), and glycolysis. The transcriptional activation of target genes is induced by a common transcription factor, hypoxia-inducible factor-1 (HIF-1). HIF-1 was first identified as a heterodimeric transactivator that recognizes a specific DNA sequence, termed hypoxia-responsive element (HRE) in the 3′-untranslated region of the erythropoietin gene. HIF-1 consists of two subunits, HIF-1α and the aryl hydrocarbon receptor nuclear translocator, both of which belong to the large family of basic helix-loop-helix-Per-ARNT-Sim transcription factors. Under normoxic conditions, HIF-1α subunits are unstable, being rapidly targeted to the ubiquitin-proteasome pathway. Degradation is mediated by a ubiquitin-protein isopeptide ligase (E3) complex, in which the von Hippel-Lindau protein (vHL) binds to a specific hydroxylated proline residue (Pro-564) within the oxygen-dependent degradation (ODD) domain of HIF-1α. CsA inhibits hypoxia-dependent gene transcription by preventing hypoxia-induced activation of target genes.

Cyclosporin A (CsA) is a potent immunosuppressive agent used after organ transplantation and in the treatment of several autoimmune diseases. CsA is well known to be nephrotoxic probably as a consequence of the constriction of renal vessels and of the resulting hypoxia. Circumstantial evidence further suggests that CsA interferes with the hypoxic signaling cascade. (i) Maruyama et al. reported that vascular endothelial growth factor production by human lymphocytes is inhibited by CsA. (ii) CsA inhibits erythropoietin production in anemic mice. (iii) Kang et al. reported that vascular endothelial growth factor reverses some of the post-CsA-mediated hypertension and nephropathy in the rat. (iv) Erythropoietin deficiency has been proposed as a cause of the anemia observed in children following cardiac transplantation. These would suggest that CsA inhibits the cellular responses that are mediated by HIF-1α and HRE.

In the present study, we examine the possible influence of CsA on the hypoxic signaling. Results show that CsA inhibits hypoxia-induced gene transcription by preventing hypoxia-induced and ODD-dependent stabilization of HIF-1α. We also show that CsA stimulates a kidney prolyl hydroxylase activity that specifically modifies Pro-564 in the ODD domain of HIF-1α.

MATERIALS AND METHODS

Materials—Culture medium, restriction, and DNA-modifying enzymes were from Promega. Culture media and fetal calf serum were from GIBCO. GST, glutathione S-transferase; HRE, hypoxia-responsive elements; ODD, oxygen-dependent degradation; PHD, prolyl hydroxylase; vHL, von Hippel-Lindau; Luc, luciferase; PBS, phosphate-buffered saline.
Cyclosporin A Activates HIP-1α Prolyl Hydroxylase

from Invitrogen. All chemicals were purchased from Sigma. Mouse monoclonal antibodies were obtained from the following sources: HIP-1α (Novus Biologicals), GFP (Roche Molecular Biochemicals), o-tubulin (Sigma), vHL (Pharmingen). HIF peptides were synthesized by Genex Biotechnology (Nimes, France). Horseradish peroxidase-coupled sheep anti-mouse antibodies were from Jackson ImmunoResearch Laboratories. [5-32P]-2-OG (2.07 GBq/mmol) and 1-185[3H]methionine (37 TBq/mmol) were purchased from Amerham Biosciences.

Cell Lines and Culture Conditions—C6 glial cells were obtained from the American Type Culture Collection. Cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum, 2 mM l-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. Cells were maintained at 37°C in 5% CO2, 95% air in a humidified incubator. Hypoxic incubations (2% O2) were performed using a CO2 water incubator (Forma Scientific, Labtech, Model 3110). Hypoxic incubations were performed according to the manufacturer’s protocol. Luciferase activity was normalized by the total amount of cellular protein as determined by the Bradford protein assay. Protein extracts were electroblotted. The membranes were blocked with 5% (w/v) non-fat milk powder in PBS, 0.1% Tween 20 for 1 h at room temperature followed by overnight incubation at 4°C with the primary monoclonal antibodies against HIP-1α (1:1,000), GFP (1:1,000), or o-tubulin (1:5,000). Monoclonal antibodies against GFP (1:1,000) or against VHL (1:2,000) were used to probe the immunoprecipitates. Blots were washed three times in PBS, 0.1% Tween 20, and incubated for 1 h at 100°C followed by exposure to x-ray films.

HIF Peptide Hydroxylation Assay—Rat kidneys were homogenized at 4°C in 250 mM sucrose, 50 mM Tris-HCl (pH 7.5), 1 μM leupeptin, 1 μM bacitracin, and 0.1 mM phenylmethylsulfonyl fluoride. The homogenate was centrifuged at 1,000 × g for 10 min to remove cellular debris and nuclei. The supernatant was recovered and centrifuged at 5,000 × g for 10 min. The supernatant was recovered and centrifuged at 10,000 × g for 10 min. The pellet, usually referred to as the light mitochondrial fraction, was suspended in 40 mM Tris-HCl buffer at pH 7.5. Kidney extracts (0.3 mg of protein/ml) were incubated at 37°C for 30 min in 40 mM Tris-HCl (pH 7.5), 0.5 mM diithiothreitol, 50 μM ammonium ferrous sulfate, 1 mM ascorbate, 2 mM glutathione, 0.4 mM/ml bovine serum albumin, 0.5 mM dithiothreitol, 10% glycerol) supplemented with a mixture of protease inhibitors (Roche Molecular Biochemicals). After centrifugation at 12,000 × g for 10 min, the supernatant was recovered and centrifuged at 100,000 × g for 30 min, the clarified sonicates were incubated with glutathione-S-phosphate 4B (Amersham Biosciences) for 1 h at 4°C. After four washes in PBS, the GST-tagged fusion proteins were eluted in 50 mM Tris-HCl, 10 mM reduced glutathione (pH 8). The integrity and yield of purified GST fusion proteins were assessed by SDS-PAGE followed by Coomassie Blue staining.

GST Pull-down Asssay—Glutathione- purified GST-ODD and GST-ODD P564A fusion proteins were in vitro hydroxylated using a kidney homogenate prepared as described above. The reaction products were incubated at 4°C in 200 μl of buffer (50 mM Tris-HCl (pH 7.5), 250 mM NaCl, 2 mM MgCl2, 1 mM diithiothreitol, 10% glycerol) supplemented with a mixture of protease inhibitors (Roche Molecular Biochemicals). After centrifugation at 100,000 × g for 30 min, the clarified sonicates were incubated with glutathione-S-phosphate 4B (Amersham Biosciences) for 1 h at 4°C. After four washes in PBS, the GST-tagged fusion proteins were eluted in 50 mM Tris-HCl, 10 mM reduced glutathione (pH 8). The integral and yield of purified GST fusion proteins were assessed by SDS-PAGE followed by Coomassie Blue staining.

Cloning, Mutagenesis, and Production of Glutathione S-transferase (GST)-ODD Fusion Proteins—The 222-bp DNA fragment (nucleotides 1616–1837) of human HIP-1α (pcDNA3-HIP-1α) was PCR-amplified with the forward 5'-GAATTCAGTGAAGAATGTTG-3' and reverse 5'-CCGCTGAGCTGCTTACTGTAATCGT-3' set of primers. The P564A mutant was generated by PCR using primers 5'-GGATCCATTGATAGATGAC-3' and the reverse orientation. The 1616–1741 fragment was PCR-amplified with the forward 5'-GAATTCAGTGAAGAATGTTG-3' and the reverse 5'-GTCGACATCATGCGGATTTGACGTCG-3' set primers. The P564A mutation was inserted into the GST-ODD-eGFP plasmid (vector kindly provided by Dr. F. Lesage). It was originally described as N-terminal GST-tagged fusion proteins.

HIF-1α ODD Domain Cloning and Expression—The ODD domain of human HIF-1α (GenBankTM accession number U22431) fused in-frame to the GFP (1:1,000) was obtained by PCR amplification of the sense primer 5'-GGCCTGAGGCCACCTGTAAGCTAGTAATCGT-3', corresponding to positions 1616–1636, and the reverse primer 5'-GTCGACATCATGCGGATTTGACGTCG-3', corresponding to positions 1837–1923. The sequence includes the Pro-564 residue that is hydroxylated by prolyl hydroxylases (PHDs) (4, 5). The PCR product was digested by XhoI, blunted, and digested by XhoI. The resulting fragment was inserted into a XhoINotI-blunted pSV40-Luc plasmid.

Construction of GST-ODD-eGFP Fusion Proteins—The pCMV-OVD-eGFP vector was prepared as follows. The XhoINotI fragment was purified and inserted into the EcoRINotI-digested pCDNA3.1 (+) vector (Invitrogen). The pcDNA3-HIP-1α plasmid was digested with EcoRI and NotI. The EcoRI-eGFP-NotI fragment was purified and inserted into the EcoRINotI-digested pCDNA3.1 (+) vector. Sequences of all products were confirmed by DNA sequencing using the dioxygenase terminator method.

Transient Transfection and Luciferase Assays—Cells were transfected using Lipofectamine (Invitrogen). They were incubated with a mixture of Lipofectamine and LipofectAMINE dissolved in 400 μl of OPTI-MEM for 5 h at 37°C. After a 16-h incubation, cells were dissociated and seeded into 12-well tissue culture clusters. Eight h after seeding, cells were submitted to hypoxic conditions in the presence or absence of Ca2+ as indicated. Luciferase assays (Promega) were performed according to the manufacturer’s protocol. Luciferase activity was normalized by the total amount of cellular protein asayed by the Bradford protein assay (Bio-Rad). Stable GFP and ODD GFP cells were selected using 1.5 mg/ml G418 and cloned by limiting dilution.

Cell Lysis, Immunoblotting, and Immunoprecipitation—Cells were washed twice in ice-cold PBS and lysed at 4°C in lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5% NP-40, 1.5% Nonidet P-40, 5 mM sodium orthovanadate, 5 mM sodium fluoride, 50 μM leupeptin, 50 μM ml aprotinin, and 1 mM phenylmethylsulfonyl fluoride) for 20 min with continuous rocking and then centrifuged at 12,000 × g for 10 min. The supernatants were collected, and protein concentrations were determined by the Bradford protein assay. Protein extracts were electrophoresed on nitrilotriacetic acid membranes (Schleicher & Schuell) using standard procedures. For immunoprecipitation, lysis was performed in lysis buffer. After clearance by centrifugation, 250-μg aliquots of cell lysate were incubated for 1 h at 4°C with 5 μg of anti-GFP monoclonal antibody followed by addition of protein A-Sepharose beads (10 μl) and an overnight incubation. Immunoprecipitates were washed with lysis buffer, eluted with sample buffer, and immunoblotted. The membranes were blocked with 5% (w/v) instant non-fat milk powder in PBS, 0.1% Tween 20 for 1 h at room temperature followed by overnight incubation at 4°C with the primary monoclonal antibodies against HIP-1α (1:1,000), GFP (1:1,000), or o-tubulin (1:5,000). Monoclonal antibodies against GFP (1:1,000) or against VHL (1:2,000) were used to probe the immunoprecipitates. Blots were washed three times in PBS, 0.1% Tween 20, and incubated for 1 h at 100°C followed by exposure to x-ray films.
RESULTS

CsA Inhibits HRE-mediated Transcription and Prevents the Hypoxic Stabilization of HIF-1α—HRE-mediated transcriptional activation was analyzed using the pHRE4-Luc construct. The kinetics of transcriptional activation reveals that luciferase expression reached a 4-fold increase after 16 h of hypoxia (data not shown). Fig. 1A shows that hypoxia-induced luciferase expression was inhibited by CsA in a dose-dependent manner. In contrast, CsA did not alter reporter gene expression under normoxic conditions. Previous studies have demonstrated that HIF-1α is rapidly degraded by ubiquitin-proteasome pathway under normoxic conditions (15). Activation of HIF-1α to a functional form requires protein stabilization. Expression of HIF-1α was analyzed using Western blots. Fig. 1B shows that a 4-h hypoxia induced a large accumulation of endogenous HIF-1α protein. Stabilization of HIF-1α was also observed under hypoxia in the presence of the proteasomal inhibitor MG132. CsA prevented most of the hypoxia-induced degradation of HIF-1α. CsA inhibits the inhibitory action of CsA requires a functional proteasomal somally blocked hypoxic cells. These data thus indicated that the inhibitory action of CsA requires a functional proteasomal machinery.

CsA Abrogates ODD-mediated Protein Stabilization—The ODD domain of HIF-1α is responsible for the proteasomal degradation of HIF-1α in normoxic cells. It has been located to the amino acid residues 401–603 of human HIF-1α. This region overlaps with a vHL binding domain (526–641) (16, 17) and comprises two essential proline residues (Pro-402 and Pro-564) that are hydroxylated by PHDs under normoxic conditions (4, 5). To gain further insight into the mechanism of ODD-dependent protein stabilization, we generated chimeric proteins in which the C-terminal part of the ODD region of human HIF-1α (residues 530–603) was fused to the GFP or luciferase open reading frames (Fig. 2A). Stable transfecants expressing either ODD-GFP or control GFP were prepared. Expression of both proteins was analyzed by Western blots using an anti-GFP antibody. As expected, the antibody recognized a 27-kDa protein in GFP-expressing cells and a larger, 35–40-kDa, protein in ODD-GFP-expressing cells (Fig. 3A).

GFP is well known to be highly stable in mammalian cells with an estimated half-life of 24 h. Addition of an ODD domain to GFP was expected to destabilize the protein. The stability of ODD-GFP was determined after blocking protein synthesis with 100 μg/ml cycloheximide to block protein synthesis. Expressions of GFP, ODD-GFP, or α-tubulin were analyzed after different times using Western blots. B, representative blots showing the degradation of ODD-GFP, C, normalized ODD-GFP/α-tubulin ratio. Means of triplicates are shown. Essentially identical results were obtained in four independent experiments.

We next exposed the cells to hypoxia. Fig. 3A shows that hypoxia increased the expression of ODD-GFP but not that of GFP. The time course of hypoxia-induced protein expression is analyzed in Fig. 3B by using an ODD-luciferase reporter assay. Expression of luciferase reached a maximum after 4–6 h of hypoxia. An identical result was obtained with an ODD-GFP reporter or endogenous HIF-1α.

Fig. 4A shows that CsA inhibited hypoxia-induced ODD-GFP
Cyclosporin A Activates HIF-1α Prolyl Hydroxylase

protein stabilization. The dose-response curve for the action of CsA is shown in Fig. 4B. CsA did not decrease expression of GFP (Fig. 4C). Thus, CsA required the presence of an ODD domain to be active. Note that the extent of the inhibitory effects of CsA on hypoxia-induced ODD-GFP fusion protein stabilization was comparable with those of HRE-mediated reporter gene transcription (Fig. 1B) and of hypoxia-induced HIF-1α protein expression (Fig. 2B). All together, these observations indicated that CsA prevented the ODD-dependent stabilization of HIF-1α in hypoxic cells.

CsA Activates in Vitro Prolyl Hydroxylase Activity. The oxygen-dependent destabilization of HIF-1α is governed by a novel family of PHDs that specifically modify HIF-1α at two conserved proline residues (Pro-402 and Pro-564) located in the ODD domain of HIF-1α. One hypothesis for the previous results could be that CsA increased activity of PHDs. We therefore developed an assay for PHDs. Prolyl hydroxylations are mediated by 2-OG-dependent dioxygenases (18, 19) and can be followed by measuring the conversion of $[5,14\text{C}]2\text{-OG}$ into $[14\text{C}]\text{succinate}$. Experiments were performed in the absence or presence of a HIF peptide that reproduced the 557–576 sequence of the ODD domain and that included Pro-564.

Experiments were first performed with extracts from normoxic cultured cells. We observed a degradation of 2-OG by cell extracts, but this activity was not stimulated by the HIF peptide (data not shown). It represents undefined enzymatic activities that are unrelated to PHDs. The absence of peptide-stimulated activity does not mean that PHDs were not present. It could be that the specific activity of 2-OG was too low to detect low levels of activity.

We then prepared homogenates from rat tissues and detected a large, peptide-dependent activity in whole kidney homogenates. The homogenate was fractionated by differential centrifugations. Activity was recovered in a light mitochondrial fraction. The peptide-dependent activity did not require Fe(II) or ascorbate. It required 2-OG. The dose-response curve for 2-OG-induced activation of the enzyme is presented in Fig. 5A. Half-maximal activation was observed at 0.3 mM 2-OG. We also noticed that the peptide-independent enzymatic activity was more sensitive to 2-OG. As a consequence, large concentrations of 2-OG (0.3–1 mM) provide a better signal-to-noise ratio and should be used to monitor activity with precision.

Fig. 5B documents the influence of different concentrations of the Pro-564 peptide on the enzymatic activity. It also shows that CsA increased the degradation of 2-OG. CsA did not modify the basal, peptide-independent activity. The stimulating action of CsA was dose-dependent (Fig. 5C). Two immunosuppressive drugs, FK506 and rapamycin, were inactive (data not shown).

We then performed experiments to demonstrate that 2-OG degradation was indeed associated to hydroxylation of Pro-564 by substituting the Pro-564 residue by a 4-hydroxyproline residue. This peptide was largely devoided of activity. We generated GST-ODD and GST-ODD P564A fusion proteins. GST-ODD promoted degradation of 2-OG to the same extent as the Pro-564 peptide (data not shown). The reaction products were probed with $[^{35}\text{S}]\text{vHL}$. Fig. 5D shows that (i) degradation of...
of 2-OG was accompanied by an increased 35S-vHL binding to ODD-GFP; (ii) CsA increased 35S-vHL binding, as expected if it had stimulated PHD activity; and (iii) 35S-vHL did not bind to GST-ODD P564A. Taken together, these results strongly support the hypothesis that CsA inhibited hypoxic responses by promoting hydroxylation of Pro-564 in the ODD domain.

Another substrate for PHDs is Pro-402. It is located in the N-terminal part of the ODD domain. The ODD domain used in the previous experiments comprised the 530–603 sequence of HIF-1α and did not include Pro-402. We therefore synthesized a peptide that mimicked the 395–603 sequence of HIF-1α and contains the Pro-402 residue. This peptide stimulated the degradation of 2-OG to the same extent as the Pro-564 peptide. Although we did not demonstrate hydroxylation of Pro-402, it would indicate that a light mitochondrial kidney fraction supported hydroxylations of both Pro-564 and Pro-402 peptides. Yet the Pro-402-dependent 2-OG degradation was insensitive to CsA. All together, our data suggest that CsA specifically promoted hydroxylation of Pro-564. Finally we tested poly(T-Pro-Gly-1-Pro), a well known substrate of procollagen prolyl hydroxylase(s). It was inactive in this assay.

CsA Activates in Vivo Prolyl Hydroxylase Activity—The previous results indicated that CsA increases in vitro PHD activity when experiments were performed at ambient oxygen tensions. An obvious hypothesis for the inhibitory action of CsA on ODD-dependent protein stabilization is that CsA also increased PHD activity under conditions of reduced oxygen supply. To test this hypothesis, the ODD-GFP fusion protein was immunoprecipitated from normoxic or hypoxic cell extracts, and the bound, endogenous vHL was detected by Western blots using an anti-vHL antibody. Fig. 5E shows that hypoxia-stabilized ODD-GFP did not bind to vHL as expected since it was not hydroxylated. Addition of CsA destabilized ODD-GFP and increased vHL association. This is a direct demonstration that CsA promoted hydroxylation of ODD-GFP by activating Pro-564 PHD under hypoxic in vivo conditions.

DISCUSSION

The mechanism by which hypoxia induces gene transcription involves the inhibition of HIF-1α prolyl hydroxylase activity, which prevents vHL-dependent targeting of HIF-1α to the ubiquitin-proteasome pathway. HIF-1α is stabilized, associates with the aryl hydrocarbon receptor nuclear translocator, and interacts with HRE to promote the activation of target genes (see the Introduction). This study demonstrates that CsA inhibits the hypoxic signaling pathway by activating Pro-564 hydroxylation. (i) CsA prevents HRE-dependent gene expression in a dose-dependent manner. (ii) CsA blocks hypoxia-induced HIF-1α protein accumulation, and this blockade is overcome by the proteasomal inhibitor MG132. (iii) CsA inhibits the hypoxia-induced stabilization of an ODD-GFP chimeric protein, indicating that its action requires the C-terminal part of ODD. This sequence comprises the Pro-564 residue that is hydroxylated by PHDs and that is recognized by vHL (4, 5). (iv) CsA increases a kidney PHD activity that selectively hydroxylates Pro-564 in the ODD domain. (v) Finally, we present experimental evidence that CsA increases PHD activity in hypoxic cells. Inhibitors of PHDs have been developed (20) to promote hypoxic responses. CsA is the first known activator of a PHD activity. The major consequence of this stimulating action is an inhibition of hypoxic responses.

This report also describes an assay for PHDs. It was based on the capacity of peptides to stimulate the degradation of labeled 2-OG. Results indicated the presence in kidney extracts of enzymatic activities that were stimulated by Pro-402 and Pro-564 peptides. Both activities were enriched in light mitochondrial fractions and required exogenous 2-OG. They did not require Fe(II) or ascorbate, probably because cofactors were tightly bound to the enzymes. Based on our results, we cannot conclude that different PHDs mediate Pro-402 and Pro-564 hydroxylations. The same enzyme could mediate both reactions; however, only Pro-564 hydroxylation is activated by CsA. Four different PHDs are now identified (18, 19, 21). The identity of the enzyme(s) present in our light mitochondrial kidney fractions is not known. However, it is of interest to note that SM-20 contains a mitochondrial targeting sequence (22) and that the newly described PHD-4 isoform is highly expressed in kidney tissues and associates to light microsomes (21).

CsA is a well known immunosuppressive drug that binds to cyclophils, a family of ubiquitous and conserved proteins with peptidyl-prolyl cis-trans isomerase and molecular chaperone activities (23, 24). We now show, for the first time, that CsA specifically stimulates Pro-564 hydroxylation. A hypothesis could be that hydroxylation of Pro-564 requires a specific configuration of the proline residue and that a cyclophilin controls in some way the presentation of the peptide to the enzyme. This hypothesis is unlikely, however, since CsA should not be active in hypoxic cells in which PHD activity is limited by oxygen availability. Indeed, in agreement with this observation, we were unable to show by immunoprecipitation experiments, us-
Cyclosporin A Activates HIF-1α Prolyl Hydroxylase

REFERENCES

1. Semenza, G. L., and Wang, G. L. (1992) Mol. Cell. Biol. 12, 5447–5454
2. Wang, G. L., and Semenza, G. L. (1993) J. Biol. Chem. 268, 21513–21518
3. Wang, G. L., Jiang, B. H., Rao, E. A., and Semenza, G. L. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 5510–5514
4. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J. M., Lane, W. S., and Kaelin, W. G. (2001) Science 292, 464–468
5. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., von Kriegsheim, A., Hoberstrait, H. F., Mikherji, M., Schofield, C. J., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001) Science 292, 468–472
6. Huang, L. E., Gu, J., Schau, M., and Bunn, H. F. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7987–7992
7. Kallio, P. J., Wilson, W. J., O'Brien, S., Makino, Y., and Poellinger, L. (1999) J. Biol. Chem. 274, 6519–6523
8. Carmeliet, P., Dur, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Iono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., Keshet, E., and Keshet, E. (1999) Nature 394, 485–490
9. Maruyama, K., Tomizawa, S., Seki, Y., Arai, H., and Kouroume, T. (1992) Nephron 62, 27–30
10. Vannucci, A. M., Grassi, A., Bosi, A., Rafanelli, D., Guidi, S., Saccardi, R., Alterini, R., and Ferrini, P. R. (1991) Blood 78, 1615–1618
11. Kang, D. H., Kim, Y. G., Andoh, T. F., Gordon, K. L., Suga, S., Mazzali, M., Jefferson, A. J., Hughes, J., Bennett, W., Schreiner, G. F., and Johnson, R. J. (2001) Am. J. Physiol. 280, F727–F736
12. Blackburn, M. E., Kendall, R. G., Gibbs, J. L., Dickinson, D. F., Parsons, J. M., and Norblin, D. (1992) Int. J. Cardiol. 36, 263–266
13. Ema, M., Taya, S., Yokotani, N., Sugawara, K., Matuda, Y., and Fujii-Kuriyama, Y. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 4273–4278
14. Baader, E., Tschank, G., Baringhaus, K. H., Burghardt, H., and Gunzler, V. (1994) Biochem. J. 300, 525–530
15. Saleda, S., and Caro, J. (1997) J. Biol. Chem. 272, 22642–22647
16. Sutter, C. H., Laughner, E., and Semenza, G. L. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 4748–4753
17. Tanimoto, R., Makino, Y., Pereira, T., and Poellinger, L. (2000) EMBO J. 19, 4298–4309
18. Epstein, A. C., Gleidle, J. M., McNell, I. A., Hewitson, K. S., O'Rourke, J., Moore, D. R., Makherji, M., Metzen, E., Wilson, M. I., Dhand, A., Tian, Y. M., Masson, N., Hamilton, D. L., Jaakkola, P., Barstead, R., Hodgkin, J., Maxwell, P. H., Pugh, C. W., Schofield, C. J., and Ratcliffe, P. J. (2001) Cell 107, 43–54
19. Bruick, R. K., and McKnight, S. L. (2001) Science 294, 1337–1340
20. Ivan, M., Haberberger, T., Gervasi, D. C., Michelon, K. S., Ganzler, V., Kondo, K., Yang, H., Sokolina, I., Conaway, R. C., Conaway, J. W., and Kaelin, W. G. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 13459–13464
21. Ohme, F., Ellinghaus, P., Kolkhof, P., Smith, T. J., Ramakrishnan, S., Hutter, J., Schramm, M., and Flamme, I. (2002) Biochem. Biophys. Res. Commun. 296, 343–349
22. Lipscomb, E. A., Sarmiere, P. D., and Freeman, R. S. (2001) J. Biol. Chem. 276, 5085–5089
23. Fischer, G., Trudler, T., and Zarrt, T. (1998) FEBS Lett. 426, 17–20
24. Getzel, S. F., and Marahiel, M. A. (1999) Cell Mol. Life Sci. 55, 423–436
25. Hudson, C. C., Liu, M., Chiang, G. G., Ottersen, O. O., Loomis, D. C., Kaper, F., Giaccia, A. J., and Abraham, R. T. (2000) Mol. Cell. Biol. 20, 7904–7914
26. Chan, D. A., Sutphin, P. D., Denko, N. C., and Giaccia, A. J. (2002) J. Biol. Chem. 277, 40112–40117
