Spin-resolved bunching and noise characteristics in double quantum dots coupled to ferromagnetic electrodes

JunYan Luo, HuJun Jiao, BiTao Xiong, Xiao-Ling He and Changrong Wang

1 School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, People’s Republic of China
2 Department of Physics, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China

E-mail: jyluo@zust.edu.cn

Received 8 January 2013, in final form 17 February 2013
Published 25 March 2013
Online at stacks.iop.org/JPhysCM/25/155304

Abstract

We study spin-resolved noise in Coulomb blockaded double quantum dots coupled to ferromagnetic electrodes. The modulation of the interdot coupling and spin polarization in the electrodes gives rise to an intriguing dynamical spin blockade mechanism: bunching of up (down) spins due to dynamical blockade of an up (down) spin. In contrast to the conventional dynamical spin ↑→↓ bunching (bunching of up spins associated with a dynamical blockade of a down spin), this new bunching behavior is found to be intimately associated with the spin mutual-correlation, i.e. the noise fluctuation between opposite spin currents. We further demonstrate that the dynamical spin ↑→↑ and ↑→↓ bunching of tunneling events may be coexistent in the regime of weak interdot coupling and low spin polarization.

(Some figures may appear in colour only in the online journal)

1. Introduction

The measurement of signal-to-noise ratios in mesoscopic transport devices is of vital importance as it enables access to intriguing information about the statistics of quasiparticles and various intrinsic dynamics that are not available from conventional current measurements alone [1, 2]. For transport through a localized state, the nonequilibrium noise is generally suppressed due to the Pauli exclusion principle, leading thus to a sub-Poissonian statistics [3–5]. However, in systems of multiple nonlocal states, such as double quantum dot devices, the intrinsic quantum coherence and many-particle interactions give rise to different sources of correlations [6]. Electron transport can exhibit a unique dynamical blockade mechanism, leading thus to a super-Poisson fluctuation [7–12].

In spintronic structures, transport is governed not only by the charge flow, but more importantly, by the spin transfer [13–20]. The involving spin degrees of freedom introduce additional correlated mechanisms. The study of spin current fluctuations is crucial for possible applications in the control and manipulation of individual spins. A number of investigations have been devoted to the noise characteristics of spin-dependent transport through various nanostructures, such as quantum dots [19–22], molecules [23–25], and nanotubes [26–29]. Different tunneling processes such as sequential tunneling, cotunneling [30, 31], etc were revealed to have vital roles to play in spin transport. In order to distinguish various spin dynamics it is instructive to unravel the charge noise into spin-resolved components. Consider a general mesoscopic device of a quantum dot (QD) system connected to terminals α, α′, The charge current through the terminal ‘α’ is ⟨Iα⟩ = ⟨Iασ⟩ + ⟨Iα′σ⟩, where ⟨Iασ⟩ is the spin-σ component of the current. The temporal correlation of spin transport is characterized by the spin-resolved correlation function Cσσ′(t − t′) = 1/2(ΔIσσ′(t), ΔIσ′σ′(t′)), with ΔIσσ′(t) = Iσσ′(t) − ⟨Iσσ′⟩. Straightforwardly, the individual spin-resolved noise power is given by Sσσ′(ω) = ∫−∞∞ dt e+iωt Cσσ′(t). By choosing an arbitrary spin axis z, the total charge current noise can be readily unraveled into Szz = S↑↑ + S↓↓ +

0953-8984/13/155304+07$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA
\[S_{\sigma\sigma'}^{\uparrow\uparrow} + S_{\sigma\sigma'}^{\downarrow\downarrow} \]. Here, the spin self-correlation \(S_{\sigma\sigma'}^{\uparrow\uparrow} \) (\(S_{\sigma\sigma'}^{\downarrow\downarrow} \)) represents fluctuation between the same spin currents, which was recently shown to be capable of serving as a sensitive tool to identify the dynamical spin \(\uparrow\downarrow \) (\(\downarrow\uparrow \)) bunching, i.e. bunching of up (down) spins due to dynamical blockade of a down (up) spin [32–34]. We then naturally come to the following question. What can we infer from the spin mutual-correlation noise (fluctuation between opposite spin currents) \(S_{\sigma\sigma'}^{\uparrow\downarrow} \) or \(S_{\sigma\sigma'}^{\downarrow\uparrow} \)?

In the context of spin-dependent transport through a system of multiple nonlocal states, we investigate in this work these spin-resolved noise components and their connections to spin-resolved bunching behavior. Specifically, we consider a double quantum dot, where only one of the dots is tunnel-coupled to the ferromagnetic (FM) electrodes (see figure 1). The system, which can be mapped to the one investigated recently in experiments [35–38], is of particular interest, as it is arranged in such a configuration that we can maximize locality versus nonlocality contrast [39–42]. In the Coulomb blockade regime, we observe a unique dynamical spin \(\uparrow\uparrow \) (\(\downarrow\downarrow \)) blockade phenomenon, namely, bunching of up (down) spins due to dynamical blockade of an up (down) spin. Different from the conventional spin \(\uparrow\downarrow \) bunching, it is revealed that this new mechanism is intimately associated with positive spin mutual-correlation. We further demonstrate that the spin \(\uparrow\downarrow \) and \(\uparrow\downarrow \) bunching of tunneling events may be coexistent in the regime of low spin polarization and weak interdot tunnel-coupling.

The paper is organized as follows. In section 2, we describe the double quantum dot system tunnel-coupled to FM electrodes. In section 3, a Monte Carlo approach is introduced to simulate real-time single spin tunneling events. The spin-resolved noises, together with spin-resolved bunching of tunneling events will be discussed in detail. This is then followed by the conclusion in section 4.

2. Model description

The system under study is sketched in figure 1, in which only QD1 is connected to the FM electrodes, whereas QD2 is side-connected to QD1. The Hamiltonian of the entire system is \(\hat{H} = \hat{H}_B + \hat{H}_S + \hat{H}' \), where \(\hat{H}_B = \sum_{k,\sigma} \epsilon_{ak\sigma} c_{ak\sigma}^\dagger c_{ak\sigma} \) denote the left and right FM electrodes; \(\epsilon_{ak\sigma} \) is the electron annihilation (creation) operator of the electrode \(\alpha = L \) or \(R \), with spin \(\sigma = \uparrow \) or \(\downarrow \). The ferromagnetism of the electrode \(\alpha \) is accounted for by the spin-dependent density of states \(g_{\sigma\sigma'}(\omega) \). Throughout all of our calculations presented here, we approximate the density of states to be energy independent, \(g_{\sigma\sigma'}(\omega) = g_{\sigma\sigma'} \). (Real ferromagnets have a structured density of states, which only modifies details of our results but not the general physical picture.) The asymmetry in the density of states is characterized by the degree of spin polarization \(p_\sigma = (g_{\uparrow\sigma} - g_{\downarrow\sigma})/(g_{\uparrow\sigma} + g_{\downarrow\sigma}) \) with \(-1 \leq p_\sigma \leq 1\), in which \(p_\sigma = 0 \) denotes a nonmagnetic electrode and \(p_\sigma = \pm 1 \) corresponds to a half-metallic electrode.

The Hamiltonian for the coupled dots reads

\[
\hat{H}_S = \sum_{\ell=1,2} \sum_{\sigma=\uparrow,\downarrow} E \hat{n}_{\ell\sigma} + U_0 \hat{n}_{\ell\uparrow} \hat{n}_{\ell\downarrow} + U' \hat{n}_{1\uparrow} \hat{n}_{2\downarrow} + \Omega \sum_{\sigma} (d_{1\sigma}^\dagger d_{2\sigma} + d_{2\sigma}^\dagger d_{1\sigma}),
\]

where \(d_{\sigma} \) (\(d_{\sigma}^\dagger \)) is the creation (annihilation) operator of an electron with spin \(\sigma = \uparrow \) or \(\downarrow \) in QD1 (\(\ell = 1 \)) or QD2 (\(\ell = 2 \)); \(\hat{n}_{\ell\sigma} = d_{\sigma\ell}^\dagger d_{\ell\sigma} \) and \(\hat{n}_{\ell} = \sum_{\sigma} \hat{n}_{\ell\sigma} \) are the corresponding particle number operators. Each QD has a spin-degenerate level within the bias window \(V = V_L - V_R \), \(U_0 \) and \(U' \) are respectively the intradot and interdot Coulomb repulsions; \(\Omega \) denotes the strength of interdot tunnel-coupling. Hereafter, we consider the double-dot Coulomb blockade regime [43, 44], i.e. \(U_0 \) and \(U' \) are large enough such that states with two or more electrons in the double dots are not allowed. The involved states are both dots empty \(|0\rangle \), one electron with spin \(\sigma \) in QD1 \(|1\sigma\rangle \) or QD2 \(|2\sigma\rangle \). Experimentally, it can be realized by properly tuning the gate and bias voltages [6, 45–47].

Tunneling between QD1 and electrodes is described by \(\hat{H}' = \sum_{aL,R} (\epsilon_{ak\sigma} c_{ak\sigma} d_{1\sigma} + \text{H.c.}) \). The FM electrodes result in spin-dependent tunnel couplings \(\Gamma_{a\sigma} = 2\pi \sum_k |\epsilon_{ak\sigma}|^2 \delta(\epsilon_{ak\sigma} - \omega) \). In what follows, we consider two magnetic configurations. (i) The parallel (P) alignment, when the majority of electrons in both electrodes point in the same direction. (ii) The antiparallel (AP) case, in which the magnetizations of the two electrodes are opposite to each other.

Thus for the P alignment we have

\[
\Gamma_{L1/L1} = \frac{1}{2}(1 \pm p_L) \Gamma_L \quad \text{and} \quad \Gamma_{R1/R1} = \frac{1}{2}(1 \pm p_R) \Gamma_R,
\]

while for the AP configuration we set

\[
\Gamma_{L1/L1} = \frac{1}{2}(1 \pm p_L) \Gamma_L \quad \text{and} \quad \Gamma_{R1/R1} = \frac{1}{2}(1 \mp p_R) \Gamma_R.
\]

Here \(\Gamma_{\sigma} = (\Gamma_{\sigma\uparrow} + \Gamma_{\sigma\downarrow}) \) is the total coupling strength regardless of the spin orientation.

3. Results and discussions

In order to get a deep understanding of the spin dynamics and fluctuations in transport, a Monte Carlo method is employed to simulate the real-time single spin tunneling events in the quantum-jump regime. We introduce two stochastic point variables \(dN_{\sigma}(t) \) and \(dN_{\sigma'}(t) \) (with values either 0 or 1)
to stand for, respectively, the numbers of spin-σ ($\sigma = \uparrow, \downarrow$) electrons that have tunneled from the left electrode and from the double dots to the right electrode, in the time interval dt. The conditional quantum master equation for the reduced density matrix reads [48]

$$d\rho_c = -iL\rho_c(t)dt - \sum_{\sigma=\uparrow,\downarrow} \left(\Gamma_{\sigma L} A[d_{\sigma L}^\dagger] + \Gamma_{\sigma R} A[d_{\sigma R}] \right)\rho_c(t)dt$$

$$\quad - \mathcal{P}_{\sigma L}(t) - \mathcal{P}_{\sigma R}(t)\rho_c(t)dt$$

$$\quad + \sum_{\sigma=\uparrow,\downarrow} d\mathcal{N}_{\sigma L} \left[\frac{\Gamma_{\sigma L} J[d_{\sigma L}]}{\mathcal{P}_{\sigma L}(t)} - 1 \right] \rho_c(t)$$

$$\quad + \sum_{\sigma=\uparrow,\downarrow} d\mathcal{N}_{\sigma R} \left[\frac{\Gamma_{\sigma R} J[d_{\sigma R}]}{\mathcal{P}_{\sigma R}(t)} - 1 \right] \rho_c(t),$$

where the attached subscript ‘c’ indicates that the quantum state is conditional on previous measurement results. Here the superoperators are defined as $L(\cdot) \equiv \{H_S, \ldots, J[X]\rho_c \equiv X'_L X'^R \rho_c + \rho_c X'_R X'^L\}$. The involving stochastic point variables satisfy

$$E[d\mathcal{N}_{\sigma L}(t)] = \mathcal{P}_{\sigma L}(t)dt = \text{Tr}[\sqrt{\Gamma_{\sigma L} J[d_{\sigma L}]}\rho_c]dt,$$ \hspace{1cm} (4a)

$$E[d\mathcal{N}_{\sigma R}(t)] = \mathcal{P}_{\sigma R}(t)dt = \text{Tr}[\sqrt{\Gamma_{\sigma R} J[d_{\sigma R}]}\rho_c]dt,$$ \hspace{1cm} (4b)

where $E[\dots]$ denotes an ensemble average of a large number of quantum trajectories. In this quantum trajectory approach, spin tunneling events condition the future evolution of the system state (see (3)), while the instantaneous quantum state conditions the measured spin tunneling events through the double dots (see (4a) and (4b)) in a self-consistent manner. One thus is propagating in parallel the information of the conditioned (stochastic) state evolution (ρ_c) and the detection record ($\mathcal{N}_{\sigma L}$) in a single realization of the readout measurement experiment.

The spin tunneling events ($d\mathcal{N}_{\sigma L}$) lead straightforwardly to the spin-σ dependent current $I_{\sigma}^L(t) = ed\mathcal{N}_{\sigma L}(t)/dt$, and consequently to the total charge current $I_{\sigma}^\text{ch} = I_{\uparrow}^L + I_{\downarrow}^L$. Hereafter, we will use $I = E[I_{\sigma}^\text{ch}(t)]_{t \to \infty}$ to represent the ensemble stationary current. The spin-resolved time correlation function $C_{\sigma\sigma'}(t)$ and its corresponding noise spectrum $S_{\sigma\sigma'}(\omega) = \mathcal{S}_{\sigma\sigma'}(\omega = 0)$ can be evaluated following [49], or alternatively by using a spin-resolved quantum master equation approach [50, 51]. In what follows, noise between different electrodes is not considered as it simply satisfies $S_{\sigma\sigma'} = -S_{\sigma\sigma'}$ for the present two-terminal device. (Note such a relation generally does not hold for a multi-terminal structure [52, 53, 54].) For simplicity, we assume symmetric tunnel couplings ($\Gamma_L = \Gamma_R = \Gamma/2$) and equal magnitude of spin polarization in the two electrodes ($\mathcal{P}_L = \mathcal{P}_R = \rho$).

First let us focus on the P alignment. Figures 2(a)–(f) show the set of measured spin tunneling events ($d\mathcal{N}_{\downarrow L}$) and the corresponding real-time quantum state (ρ_c) for polarization $p = 0.8$ and interdot coupling $\Omega/\Gamma = 1.0$. We observe unambiguously the bunching of up spin tunneling events. When a down spin is injected into the double dots, it will stay there and experience some oscillations between the two dots, until it finally escapes to the right electrode (see figures 2(e) and (f) the instantaneous quantum states of a down spin in QD1 and QD2). The up spins can flow only in short time windows where the current is not blocked by a down spin (see figures 2(a)–(c)), leading thus to the conventional dynamical spin blockade, as discussed in [32–34]. For clarity, we refer to this mechanism as a dynamical spin $\uparrow\downarrow$ blockade to specify the bunching of up spins due to dynamical blockade of a down spin. The dynamical spin $\uparrow\downarrow$ blockade gives rise to a prominent super-Poisson spin self-correlation $S_{\alpha\alpha'}^{\text{trans}}(t)$, as shown in figure 3(a). Note here we only need to consider $S_{\alpha\alpha'}^{\text{trans}}$ due to the fact that $S_{\alpha\alpha'}^{\text{trans}}$ and $S_{\alpha\alpha'}^{\text{meas}}$ are symmetric with respect to the spin polarization p, i.e. figures 3(a) versus (b).

The spin self-correlation $S_{\alpha\alpha'}^{\text{trans}}$ increases monotonically with the polarization, as displayed in figure 3(a). Only

Figure 2. Sets of typical detection records (up and down spin tunneling events) and corresponding real-time quantum states under parallel magnetic alignment. (a)–(f) $\Omega/\Gamma = 1.0$ and $p = 0.8$, (g)–(l) $\Omega/\Gamma = 0.2$ and $p = 0$, and (m)–(r) $\Omega/\Gamma = 0.1$ and $p = 0.25$. Each quantum dot has only one level (assumed to be in resonance, i.e. $E_1 = E_2$) within the bias window $V = V_L = V_R$. In the Coulomb blockade regime and for temperature $k_B T \ll V$, the Fermi functions can be approximated by either one or zero, so the temperature is not involved here.
for sufficient spin polarization does the ‘↑→↓’ competition mechanism take place, which leads eventually to the super-Poisson spin self-correlation $S_{aα}^{↑}$. Yet, it is also instructive to investigate the noise at low polarization, for instance at $p = 0$. The total charge current noise $S_{wα}^{p}$ as shown in figure 3(d) exhibits unambiguously super-Poisson statistics for $Ω/Γ = 0.2$ (dashed line). It implies bunching of charge tunneling events regardless of the spin orientations. However, neither of its components ($S_{wα}^{↑}$ or $S_{wα}^{↓}$) exceeds the Poisson value $[S_{wα}^{↑}]/(2eT)|_{p=0} = S_{wα}^{↓}/(2eT)|_{p=0} = 0.46$. This means that the super-Poisson charge noise does not stem from the dynamical spin ↑↓ or ↓↑ bunching. In other words, the spin self-correlations $S_{αα}^{↑↓}$ and $S_{αα}^{↓↑}$ do not capture the whole picture of spin bunching.

We ascribe the occurrence of the super-Poisson charge noise to a unique dynamical spin ↑↑ or ↓↓ bunching, which is confirmed by the numerical simulation of real-time spin tunneling as shown in figures 2(g)–(j) for $p = 0$ and $Ω/Γ = 0.2$. When a down spin is injected into QD1, it cycles to the QD2, where it is localized due to weak interdot tunnel-coupling. The current is thus blocked until the down spin finally tunnels to the right electrode, which is then followed by a bunch of down spins flowing through the system, i.e. bunching of down spins due to dynamical blockade of a down spin (see figures 2(k)–(i)). We call this new mechanism the dynamical spin ↓↓ blockade to distinguish it from the ↑↓ one. Similarly, dynamical spin ↑↑ bunching is observed, as shown in figures 2(g)–(i). However, the dynamical spin ↑↑ or ↓↓ blockade does not necessarily give rise to super-Poissonian spin self-correlations. We will reveal that this new spin bunching mechanism is intimately associated with the spin mutual-correlation $S_{αα}^{↑↑}$, which thus can be utilized as an additional diagnostic tool for the dynamics and fluctuations in spin transport.

For a quantitative analysis, we first evaluate some fundamental time scales involved in transport (for $Ω/Γ = 0.2$ and $p = 0$). By using 2000 independent trajectories analogous to the ones shown in figures 2(g)–(i), we get the average delay between the occupancy of the dots by two consecutive up spins $τ_0 = 1.01Γ^{-1}$ and the average dwell time of up spins on the double dots $τ_↑ = 4.00Γ^{-1}$. The average duration of the ‘bunch’ of up spins is then obtained as $τ_b = 6.01Γ^{-1}$. (An alternative approach to obtain these quantities can be found in [32]). The above time scales are able to reveal the intrinsic dynamics in spin transport. Consider, for instance, the spin-resolved time correlation function $C_{αα}^{↑↑}(t)$, as shown by the solid line in figure 4. It is negative for times shorter than $τ_b$. It then rises, becomes positive, and reaches a maximum at a time comparable to $τ_f$. Finally, it decreases on a time scale of $τ_f + τ_b$. For the time scales of tunneling of down spins, analogous analysis can be applied. The above characteristic times in the correlation function thus allow us to attribute the positive $S_{αα}^{↑↑}$ to the dynamical spin ↑↑ or ↓↓ blockade mechanism. In comparison, these unique time features cannot be identified in the case of large interdot coupling ($Ω/Γ = 1.0$) and strong magnetic polarization ($p = 0.8$), as shown by the dotted line in figure 4.

The requirements to observe the dynamical spin ↑↑ or ↓↓ bunching of tunneling events thus can be inferred from the spin mutual-correlation. For the P alignment, the analytic expression is given by

$$S_{αα}^{↑↓} = 2eT(1 - p^2)Γ^2 - 16Ω^2.$$ (5)

It might be either positive or negative, depending on the degree of spin polarization and the strength of interdot tunnel-
coupling. For $\Omega < \frac{1}{4} \Gamma$, positive spin mutual-correlation is observed provided the electrodes are weakly polarized, implying thus the occurrence of dynamical spin $\uparrow \uparrow$ or $\downarrow \downarrow$ bunching (see figures 2(g)–(i)). It is worth noting that the presented spin transport behavior persists over a wide range of polarization as long as the interdot coupling is weak enough. It thus offers an opportunity to observe the coexistence of spin $\uparrow \uparrow$ and $\downarrow \downarrow$ bunching of tunneling events, as displayed in figures 2(m)–(t) for spin polarization $p = 0.25$ and interdot coupling $\Omega / \Gamma = 0.1$. In the opposite regime of $\Omega > \frac{1}{4} \Gamma$, the interdot coupling is large enough to overcome electron localization in QD2, leading thus to the disappearance of the dynamical spin $\uparrow \downarrow$ or $\downarrow \uparrow$ bunching, as confirmed by our numerical real-time simulation (not shown explicitly). The resultant spin mutual-correlation is negative at arbitrary strength of spin polarization (see the dotted ($\Omega / \Gamma = 1$) and dash-dotted ($\Omega / \Gamma = 5$) lines in figure 3(c)).

Let us now turn to the situation where the electrodes are of AP alignment. The self-correlations $S_{\uparrow\uparrow}$ and $S_{\downarrow\downarrow}$ versus spin polarization p are plotted in figures 5(a) and (b), respectively. Again, we take $S_{\uparrow\uparrow}$ for illustration. If the left electrode is fully spin-down polarized, transport of up spins is completely suppressed, which leads to a vanishing $S_{\uparrow\uparrow}$ as $p \to -1$. In the opposite limit of $p \to 1$, only up spins are allowed to tunnel into the coupled dots; however, under the AP alignment the rate of tunneling out to the right electrode is strongly inhibited. In this case, tunneling of up spins is in close analogy to electron tunneling through an extremely asymmetric double barrier structure [3]. The up spin tunneling events are thus uncorrelated, and the resultant noise correlation turns out to be of Poisson type ($S_{\uparrow\uparrow} \to 1$), independent of interdot coupling strength Ω. In a wide range in between, the noise is very sensitive to the interdot coupling strength. In particular, we observe a super-Poissonian spin self-correlation $S_{\uparrow\uparrow}$, as shown by the solid line in figure 5(a). The occurrence of dynamical spin $\uparrow \downarrow$ bunching relies on two conditions: (i) appropriate spin polarization in the electrodes, and (ii) strong localization of a down spin in QD2, which is fulfilled at weak interdot coupling Ω ($\Omega < \frac{1}{4} \Gamma$ according to our calculation). A rising interdot coupling leads to delocalization of the down spin. The dynamical spin $\uparrow \downarrow$ blockade is lifted, which results eventually in a sub-Poissonian self-correlation for arbitrary polarization (see, for instance, the dashed line in figure 5(a) for $\Omega / \Gamma = 0.2$).

Although neither of the two spin self-correlations ($S_{\uparrow\uparrow}$ and $S_{\downarrow\downarrow}$) exhibits super-Poisson statistics for $\Omega / \Gamma = 0.2$, the total charge current noise displays unambiguously super-Poissonian characteristics (dashed line in figure 5(d)). Analogous to the situation of the P configuration, the super-Poissonian noise here arises from the dynamical spin $\uparrow \downarrow$ or $\downarrow \uparrow$ bunching, as one can infer from the positive spin mutual-correlation (dashed line in figure 5(c)). A decrease in the strength of interdot tunnel-coupling leads to enhancement of the dynamical spin $\uparrow \uparrow$ or $\downarrow \downarrow$ bunching, and finally increases the spin mutual-correlation (see figure 5). Thus, if the interdot tunnel-coupling is low enough one may observe the coexistence of dynamical spin $\uparrow \downarrow$ ($\downarrow \uparrow$) and $\uparrow \uparrow$ ($\downarrow \downarrow$) bunching of tunneling events, as indicated by the super-Poissonian spin self-correlation and positive mutual-correlation figures 5(a) and (b), respectively. Yet, different from the P alignment, the dynamical spin $\uparrow \uparrow$ blockade survives even for a strong interdot coupling Ω, as long as the electrodes are not weakly polarized. In this case, an up spin injected into the double dots may experience some oscillations between the two dots before it can tunnel out to the right electrode owing to a small Γ_R. Its dwell on the double dots serves as an ‘effective’ dynamical spin $\uparrow \uparrow$ blockade mechanism, yielding thus a positive spin mutual-correlation. On the other hand, the small Γ_R also inhibits tunneling of up spins, which explains the suppressed spin mutual-correlation observed in figure 5(c).

We note that current transport through a similar structure has also been investigated recently in [31, 53] and super-Poissonian noise was reported. There, the existence of a very much lower tunneling rate between QD2 and the electrodes than that between QD1 and the electrodes leads to finite occupation of QD2, which gives rise eventually to the super-Poissonian fluctuations. Although the mechanisms are different, the final results happen to be qualitatively consistent. That is, the total charge current noise is larger in the P configuration than in the AP one for a large polarization, see figures 3(d) and 5(d).
4. Conclusion

In the context of spin-dependent transport through a Coulomb blockaded double quantum dot system, we revealed unambiguously unique dynamical spin $\uparrow\rightarrow\downarrow$ and $\downarrow\rightarrow\uparrow$ bunching of tunneling events, as confirmed by the real-time Monte Carlo simulation of spin tunneling. Different from the conventional dynamical spin $\uparrow\rightarrow\downarrow$ bunching, this new mechanism is found to be intimately associated with the spin mutual-correlation for both (parallel and antiparallel) magnetic configurations. Under conditions of low spin polarization and weak interdot tunnel-coupling, we demonstrated the coexistence of the dynamical spin $\uparrow\rightarrow\downarrow$ and $\uparrow\rightarrow\downarrow$ bunching events. Our analysis together with recent suggestions on the measurement of spin-resolved noise correlations [54–56] may shed light on possible applications in the feedback control of spin transport through quantum dot systems [57, 58].

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos 11204272, 11147114, and 11004124) and the Zhejiang Provincial Natural Science Foundation (grant nos Y6100171, Y6110467, and LY12A04008).

References

[1] Blanter Ya M and Büttiker M 2000 Shot noise in mesoscopic conductors Phys. Rep. 336 1
[2] Nazarov Yu V 2003 Quantum Noise in Mesoscopic Physics (Dordrecht: Kluwer)
[3] Chen L Y and Ting C S 1991 Theoretical investigation of noise characteristics of double-barrier resonant-tunneling system Phys. Rev. B 43 4534–7
[4] Oliver W D, Kim J, Liu R C and Yamamoto Y 1999 Hanbury brown and twiss-type experiment with electrons Science 284 299–301
[5] Henny M, Oberholzer S, Strunk C, Heinzel T, Ensslin K, Holland M and Schönberger C 1999 The fermionic hanbury brown and twiss experiment Science 284 296–8
[6] van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Electron transport through double quantum dots Rev. Mod. Phys. 75 1
[7] Kiellisch G, Schöll E, Brandes T, Hohls F and Haug R J 2007 Noise enhancement due to quantum coherence in coupled quantum dots Phys. Rev. Lett. 99 206602
[8] Lindebaum S, Urban D and König J 2009 Spin-induced charge correlations in transport through interacting quantum dots with ferromagnetic leads Phys. Rev. B 79 245303
[9] Michalek G and Bulkha B R 2009 Dynamical correlations in electronic transport through a system of coupled quantum dots Phys. Rev. B 80 035320
[10] Luo J Y, Jiao H J, Shen Y, Cen G, He X-L and Wang C R 2011 Full counting statistics of level renormalization in electron transport through double quantum dots J. Phys.: Condens. Matter 23 145301
[11] Luo J Y, Shen Y, He X-L, Li X-Q and Yan Y J 2011 Full counting statistics of renormalized dynamics in open quantum transport system Phys. Lett. A 376 59–64
[12] Lambert N and Nori F 2008 Detecting quantum-coherent nanomechanical oscillations using the current-noise spectrum of a double quantum dot Phys. Rev. B 78 214302
[13] Prinz G A 1998 Magnetoelectronics Science 282 1660–3
[14] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, van Motnár S, Roukes M L, Chcthelkanova A Y and Treger D M 2001 Spintronics: a spin-based electronics vision for the future Science 294 1488–95
[15] Jedema F J, Filip A T and van Wees B J 2001 Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve Nature 410 345–8
[16] Jedema F J, Heersche H B, Filip A T, Baselmans J J A and van Wees B J 2002 Electrical detection of spin precession in a metallic mesoscopic spin valve Nature 416 713–6
[17] Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer)
[18] Morton J J L, McMney D R, Eriksson M A and Lyon S A 2011 Embracing the quantum limit in silicon computing Nature 479 345–53
[19] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Spins in few-electron quantum dots Rev. Mod. Phys. 79 1217–65
[20] Žutić I, Fabian J and Sara M D 2004 Spintronics: fundamentals and applications Rev. Mod. Phys. 76 323–410
[21] Thielmann A, Hettler M H, König J and Schön G 2005 Cotunneling current and shot noise in quantum dots Phys. Rev. Lett. 95 146806
[22] Braun M, König J and Martinez J 2006 Frequency-dependent current noise through quantum-dot spin valves Phys. Rev. B 74 075328
[23] Weymann I, Barnaš J and Krompiewski S 2012 Manifestation of the shape and edge effects in spin-resolved transport through graphene quantum dots Phys. Rev. B 85 205306
[24] Yu H and Liang J-Q 2005 Spin current and shot noise in single-molecule quantum dots with a phonon mode Phys. Rev. B 72 075351
[25] Misiriony I, Weymann I and Barnaš J 2009 Spin effects in transport through single-molecule magnets in the sequential and cotunneling regimes Phys. Rev. B 79 224420
[26] Weymann I and Barnaš J 2010 Eightfold shell-filling patterns in spin-dependent transport through double-wall carbon nanotube quantum dots Phys. Rev. B 82 165450
[27] Weymann I, Barnaš J and Krompiewski S 2008 Transport through single-wall metallic carbon nanotubes in the cotunneling regime Phys. Rev. B 78 035422
[28] Lipiński S and Krychowski D 2010 Spin-polarized current and shot noise in a carbon nanotube quantum dot in the Kondo regime Phys. Rev. B 81 115327
[29] Wu F, Queipo P, Nasibulin A, Tsuneta T, Wang T H, Kauppinen E and Hakonen P J 2007 Shot noise with interaction effects in single-walled carbon nanotubes Phys. Rev. Lett. 99 156803
[30] Weymann I, Bulka B R and Barnaš J 2011 Dark states in transport through triple quantum dots: the role of cotunneling Phys. Rev. B 83 195302
[31] Weymann I and Barnaš J 2008 Shot noise and tunnel magnetoresistance in multilevel quantum dots: effects of cotunneling Phys. Rev. B 77 075305
[32] Cottet A, Belzig W and Bruder C 2004 Positive cross-correlations due to dynamical channel blockade in a three-terminal quantum dot Phys. Rev. B 70 115315
[33] Cottet A, Belzig W and Bruder C 2004 Positive cross correlations in a three-terminal quantum dot with ferromagnetic contacts Phys. Rev. Lett. 92 206801
[34] Dong B, Lei X L and Horing N J M 2009 Positive quantum noise cross correlations in capacitively coupled double quantum dots with ferromagnetic leads Phys. Rev. B 80 153305
[35] Nauen A, Hapke-Wurst I, Hohls F, Zeitler U, Haug R J and Pierz K 2002 Shot noise in self-assembled ins quantum dots Phys. Rev. B 66 161303
[36] Safonov S S, Savchenko A K, Bagrets D A, Jouravlev O N, Nazarov Yu V, Linfield E H and Ritchie D A 2003 Enhanced shot noise in resonant tunneling via interacting localized states Phys. Rev. Lett. 91 136801

[37] Nauen A, Hohls F, Könenmann J and Haug R J 2004 Shot noise in resonant tunneling through a zero-dimensional state with a complex energy spectrum Phys. Rev. B 69 113316

[38] Sasaki S, Tamura H, Akazaki T and Fujisawa T 2009 Fano–Kondo interplay in a side-coupled double quantum dot Phys. Rev. Lett. 103 266806

[39] Kim and T-S and Hershfield S 2001 Suppression of current in transport through parallel double quantum dots Phys. Rev. B 63 245326

[40] Cornaglia P S and Grempel D R 2005 Strongly correlated regimes in a double quantum dot device Phys. Rev. B 71 075305

[41] Djuric I, Dong B and Cui H L 2005 Super-Poissonian shot noise in the resonant tunneling due to coupling with a localized level Appl. Phys. Lett. 87 032105

[42] Luo J Y, Wang S-K, He X-L, Li X-Q and Yan Y J 2010 Real-time counting of single electron tunneling through a t-shaped double quantum dot system J. Appl. Phys. 108 083720

[43] Luo J Y, Li X-Q and Yan Y J 2007 Calculation of the current noise spectrum in mesoscopic transport: a quantum master equation approach Phys. Rev. B 76 085325

[44] Luo J Y, Li X-Q and Yan Y J 2008 Spin-dependent current noises in transport through coupled quantum dots J. Phys.: Condens. Matter 20 345215

[45] Ono K, Austing D G, Tokura Y and Tarucha S 2002 Current rectification by pauli exclusion in a weakly coupled double quantum dot system Science 297 1313–7

[46] Fujisawa T, Hayashi T, Tomita R and Hirayama Y 2006 Bidirectional counting of single electrons Science 312 1634–6

[47] Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2006 Driven coherent oscillations of a single electron spin in a quantum dot Nature 442 766–71

[48] Goan H S, Milburn G J, Wiseman H M and Sun H B 2001 Continuous quantum measurement of two coupled quantum dots using a point contact: a quantum trajectory approach Phys. Rev. B 63 125326

[49] Goan H S and Milburn G J 2001 Dynamics of a mesoscopic charge quantum bit under continuous quantum measurement Phys. Rev. B 64 235307

[50] Gurvitz S A, Mozyrsky D and Berman G P 2005 Coherent effects in magnetotransport through Zeeman-split levels Phys. Rev. B 72 205341

[51] Djuric I and Search C P 2006 Spin current and shot noise from a quantum dot coupled to a quantized cavity field Phys. Rev. B 74 115327

[52] Bagrets D A and Nazarov Yu V 2003 Full counting statistics of charge transfer in coulomb blockade systems Phys. Rev. B 67 085316

[53] Weymann I 2008 Effects of different geometries on the conductance, shot noise, and tunnel magnetoresistance of double quantum dots Phys. Rev. B 78 045310

[54] Sauret O and Feinberg D 2004 Spin-current shot noise as a probe of interactions in mesoscopic systems Phys. Rev. Lett. 92 106601

[55] Foros J, Brataas A, Tserkovnyak Y and Bauer G E W 2005 Magnetization noise in magnetoelectronic nanostructures Phys. Rev. Lett. 95 016601

[56] Covington M, AlHajDarwish M, Ding Y, Gokemeijer N J and Seigler M A 2004 Current-induced magnetization dynamics in current perpendicular to the plane spin valves Phys. Rev. B 69 184406

[57] Brandes T 2010 Feedback control of quantum transport Phys. Rev. Lett. 105 060602

[58] Kießlich G, Emary C, Schaller G and Brandes T 2012 Reverse quantum state engineering using electronic feedback loops LANL e-print arXiv:1209.1226