The cyclin-dependent kinase inhibitor p16INK4A is frequently inactivated in childhood T-cell acute lymphoblastic leukemia. To investigate possible consequences of this genetic alteration for tumor development, we conditionally expressed p16INK4A in the T-cell acute lymphoblastic leukemia line CCRF-CEM, which carries a homozygous deletion of this gene. In agreement with its reported function, p16INK4A expression was associated with hypophosphorylation of the retinoblastoma protein pRB and stable cell cycle arrest in G\textsubscript{0}/G\textsubscript{1}, documenting that the pRB/E2F pathway is functional in these cells. Unexpectedly, p16INK4A expression increased the sensitivity threshold for glucocorticoid (GC)-induced apoptosis from therapeutic to physiologic levels. As a possible explanation for this phenomenon, we found that p16INK4A-arrested cells had elevated GC receptor expression, associated with enhanced GC-mediated transcriptional activity and increased responsiveness of the GC-regulated cyclin D3 gene. These data are supported by our previous findings that GC receptor levels critically influence GC sensitivity and imply that p16INK4A inactivation, in addition to allowing unrestricted proliferation, represents a mechanism by which lymphoid tumor cells might escape cell death triggered by endogenous GC.

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The cyclin-dependent kinase inhibitor p16INK4A is frequently inactivated in childhood T-cell acute lymphoblastic leukemia. To investigate possible consequences of this genetic alteration for tumor development, we conditionally expressed p16INK4A in the T-cell acute lymphoblastic leukemia line CCRF-CEM, which carries a homozygous deletion of this gene. In agreement with its reported function, p16INK4A expression was associated with hypophosphorylation of the retinoblastoma protein pRB and stable cell cycle arrest in G\textsubscript{0}/G\textsubscript{1}, documenting that the pRB/E2F pathway is functional in these cells. Unexpectedly, p16INK4A expression increased the sensitivity threshold for glucocorticoid (GC)-induced apoptosis from therapeutic to physiologic levels. As a possible explanation for this phenomenon, we found that p16INK4A-arrested cells had elevated GC receptor expression, associated with enhanced GC-mediated transcriptional activity and increased responsiveness of the GC-regulated cyclin D3 gene. These data are supported by our previous findings that GC receptor levels critically influence GC sensitivity and imply that p16INK4A inactivation, in addition to allowing unrestricted proliferation, represents a mechanism by which lymphoid tumor cells might escape cell death triggered by endogenous GC.

The cyclin-dependent kinase inhibitor p16INK4A is frequently inactivated in childhood T-cell acute lymphoblastic leukemia. To investigate possible consequences of this genetic alteration for tumor development, we conditionally expressed p16INK4A in the T-cell acute lymphoblastic leukemia line CCRF-CEM, which carries a homozygous deletion of this gene. In agreement with its reported function, p16INK4A expression was associated with hypophosphorylation of the retinoblastoma protein pRB and stable cell cycle arrest in G\textsubscript{0}/G\textsubscript{1}, documenting that the pRB/E2F pathway is functional in these cells. Unexpectedly, p16INK4A expression increased the sensitivity threshold for glucocorticoid (GC)-induced apoptosis from therapeutic to physiologic levels. As a possible explanation for this phenomenon, we found that p16INK4A-arrested cells had elevated GC receptor expression, associated with enhanced GC-mediated transcriptional activity and increased responsiveness of the GC-regulated cyclin D3 gene. These data are supported by our previous findings that GC receptor levels critically influence GC sensitivity and imply that p16INK4A inactivation, in addition to allowing unrestricted proliferation, represents a mechanism by which lymphoid tumor cells might escape cell death triggered by endogenous GC.

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),

The INK4A gene locus is located at chromosome 9p21 and encodes two different cell cycle inhibitors, namely p16INK4A and p19ARF (p14ARF), transcribed from alternative exons of the same gene, but dissimilar in their protein structures (1, 2). Inactivation of this gene locus is observed in up to 80% of primary T-cell acute lymphoblastic leukemias (T-ALLs),
Briefly, ~1 x 10^7 mid-log phase cells in 800 μl of PBS containing 30 μg of linearized pUHD10-3-p16INK4A plasmid and 25 μg of pKS-tkHyg plasmid were electroporated at 300 V and 500 microfarads using a Bio-Rad Gene Pulser. The cells were cultured in two 96-well plates for 2 days and then exposed to 0.25 mg/ml hygromycin B. Resistant transformants were selected and analyzed for conditional p16INK4A expression by Northern and Western blot analyses.

Northern Blot Analysis—Total RNA was extracted from 5 x 10^6 cells with TriReagent™ (LPS Industries, Munochain, NJ). Approximately 10 μg of RNA were separated by electrophoresis on a denaturing 1% agarose gel containing formaldehyde in MOPS buffer and blotted overnight onto Zetabind™ nylon membranes (Cuno, Inc., Meriden, CO) according to standard protocols. RNA was cross-linked to the membranes by UV light. Filters were then prehybridized in phosphate blocking buffer containing SDS and bovine serum albumin at 65 °C for 3 h and hybridized for 12 h to a 32P-dATP-labeled, heat-denatured, full-length p16INK4A probe. After hybridization, blots were washed in 1× saline/sodium phosphate/EDTA and 0.1% SDS at 65 °C and in 0.1× saline/sodium phosphate/EDTA and 0.1% SDS at 65 °C and exposed to Agfa Curix x-ray films with an amplifying screen at ~90 °C for several hours to days. After each hybridization, the blots were stripped by boiling in 0.1% SDS and rehybridized with a full-length glyceraldehyde-3-phosphate dehydrogenase probe.

Determination of Apoptosis—For quantification of apoptosis, nuclear staining with propidium iodide in concert with forward/sideward scatter analysis was used (20). Briefly, cells were centrifuged, and the pellets were resuspended in 0.7 ml of hypotonic propidium iodide solution. The tubes were kept at 4 °C in the dark overnight. Nuclear fluorescence intensity and forward/sideward scatter were analyzed with a Becton Dickinson FACScan. Cell debris and small particles were excluded from analysis, and nuclei in the sub-G1 marker window were considered to represent apoptotic cells.

Immunoblotting—Cells were washed in PBS and lysed for 30 min on ice in PBS lysis buffer containing 1% Nonidet P-40 and 10 mM sodium fluoride, to which 1 mM phenylmethylsulfonyl fluoride, 10 μM doxycycline added just before use. Cell lysates were cleared by centrifugation. An equal amount of 2× SDS sample buffer containing 10% β-mercaptoethanol was added, and proteins were denatured by boiling for 2 min. Samples were separated by SDS-polyacrylamide gel electrophoresis on 7.5–15% polyacrylamide gels. Proteins were then transferred to nitrocellulose membranes by a Bio-Rad semidry transfer apparatus and stained using Ponceau red. The membranes were incubated with Tris-buffered saline blocking buffer containing SDS and bovine serum albumin at 65 °C for 1 h. The tubes were kept at 4 °C in the dark overnight. Nuclear fluorescence intensity and forward/sideward scatter were analyzed with an enhanced chemiluminescence substrate ECL (Amersham Pharmacia Biotech, Buckinghamshire, United Kingdom) diluted in blocking buffer. Finally, the blots were developed using monoclonal or polyclonal antibodies directed against human cyclin D3, p16INK4A (Pharmingen, Hamburg, Germany), pRB, and α-tubulin (Oncogene Research, Cambridge, MA). Membranes were washed in Tris-buffered saline and incubated with a horseradish peroxidase-conjugated anti-mouse secondary antibody (Amersham Pharmacia Biotech, Buckinghamshire, United Kingdom) incubated in blocking buffer. Finally, the blots were developed using the enhanced chemiluminescence substrate ECL (Amersham Pharmacia Biotech) according to the manufacturer’s instructions and exposed to Agfa Curix x-ray films from seconds to several minutes. Stripping and reprobing were performed as described by the manufacturer.

Flow Cytometric Analysis of Glucocorticoid Receptor (GR) Expression—Cultured cells were washed twice in PBS and 1% bovine serum albumin. Aliquots of 1 x 10^6 cells were fixed in 1% paraformaldehyde at room temperature for 30 min, washed, and permeabilized with 0.1% Triton X-100 in 0.1% citrate buffer for 5 min on ice. Cells were washed twice and incubated at room temperature for 70 min in the presence of either FITC-conjugated anti-GR antibody 5E4 (a kind gift from Dr. A. Falus) (21) or an FITC-conjugated isotype control (IgG1, Pharmingen). Finally, cells were washed three times, incubated with propidium iodide, resuspended in PBS and 1% bovine serum albumin, and analyzed on a FACScan.

Radioisotopic Binding Assay—For determination of ligand binding by the GR, whole cell ligand binding assays were performed as described previously (22). Briefly, 5 x 10^6 cells were incubated in triplicate with increasing amounts of [3H]triamcinolone acetonide (PerkinElmer Life Sciences, Boston, MA) and 1× tetracycline-hydroxypthalide as the reference compound for a 500-fold molar excess of unlabeled triamcinolone acetonide at 37 °C for 1 h, washed three times, and resuspended in scintillation mixture (Packard Instrument Co., Groningen, The Netherlands). The samples were counted in a scintillation counter.

Luciferase Reporter Assay—For transient MMTV reporter transfections, 5 x 10^5 mid-log phase cells were washed in PBS and resuspended in 4 ml of RPMI 1640 medium containing 10% fetal calf serum. In each experiment, 5 μg of pMMTV-luc and 1 μg of pRL-SV40 DNA were transfected using Superfect™ (QIAGEN Inc., Valencia, CA) according to the manufacturer’s instructions. After a 3-h incubation, 15 ml of medium were added, and cells were split and incubated in the presence or absence of 200 ng/ml doxycycline for another 18 h. Cultures were then split again, and 100 μl dexamethasone was added for another 10 h to study specific induction of the MMTV reporter. Thereafter, the cells were harvested washed once in PBS, and cell pellets were lysed in 25 μl of reporter lysis buffer for 15 min at room temperature and centrifuged. The supernatant of each sample was analyzed using the dual-luciferase reporter system (Promega) according to the manufacturer’s instructions.

RESULTS

Ectopic Expression of p16INK4A in CCRF-CEM Leukemia Cells Causes G1/G0 Arrest—To determine whether the CDK4/6 inhibitor p16INK4A can induce cell cycle arrest in CCRF-CEM cells, we generated stably transfected CCRF-CEM derivatives with tetracycline-inducible p16INK4A expression. For this purpose, C7H2-2C8, a CEM-C7H2 subclone with constitutive reverse tetracycline-responsive transactivator expression (12), was cotransfected with a plasmid expressing p16INK4A from a reverse tetracycline-transactivator-responsive promoter and a hygromycin resistance plasmid. Three hygromycin-resistant
clones, referred to as 6E2/p16, 1D2/p16, and 1E10/p16, showed high levels of p16INK4A mRNA (Fig. 1A) and protein expression (Fig. 1B) upon addition of the tetracycline analog doxycycline, but essentially no p16INK4A expression in its absence. The p16INK4A protein expression level was comparable to that found in aged human fibroblasts (data not shown). Two of these subclones, 6E2/p16 and 1D2/p16, were selected for further analysis. Induction of p16INK4A increased the electrophoretic mobility of pRB (Fig. 2), presumably by prevention of pRB phosphorylation. Cyclin D3, which forms a functional complex with CDK4 and CDK6, remained at unchanged levels. Twenty-four hours after addition of doxycycline, p16INK4A-expressing cells were completely arrested in the G0/G1 phase of the cell cycle, as demonstrated by FACS cell cycle analysis (Fig. 3), suggesting that the downstream components of the p16INK4A/pRB pathway are intact. p16INK4A-mediated cell cycle arrest was maintained over 72 h without signs of reduced viability.

p16INK4A Expression Sensitizes Cortisol-resistant CEM Cells to Physiologic Concentrations of Cortisol—We next studied the sensitivity of these cells to the physiologic GC, cortisol. The parental 2C8 control line and its p16INK4A-transfected subclones (in the absence of doxycycline) were highly resistant to cortisol at concentrations up to 5000 nM, which is 100-fold higher than free cortisol in healthy humans (Fig. 5A). Surprisingly, massive apoptosis induction was observed in p16INK4A-expressing cells treated with as little as 50 nM cortisol (Fig. 5A). Apoptosis induction by physiologic cortisol in G0/G1-arrested cells was prevented by addition of RU486, suggesting that the observed effect was mediated by the GR (Fig. 5B). Thus, p16INK4A expression sensitized the cells to physiologic concentrations of cortisol.

Reintroduction of p16INK4A Increases Expression of the

FIG. 3. p16INK4A expression in stably transfected CCRF-CEM leukemia cells is followed by a stable arrest in G0/G1. C7H2-2C8 control (2C8/Ctr) and p16INK4A-transfected 6E2/p16 and 1D2/p16 cells were cultured in the presence (+Dox) or absence (−Dox) of 200 ng/ml doxycycline for 36 h. The cells were subjected to cell cycle determination by FACS analysis of propidium iodide-stained nuclei.

FIG. 4. p16INK4A expression sensitizes CCRF-CEM cells to GC-induced apoptosis. Parental C7H2-2C8 control (2C8/Ctr.) cells and sublines 6E2/p16 and 1D2/p16 were maintained for 24 h in the presence (■) or absence (▲) of 200 ng/ml doxycycline (Dox). Subsequently, the cell populations were split and cultured either in the presence (▲ and ▲) or absence (● and △) of 10 nM (right panels) or 100 nM (left panels) dexamethasone (Dex) for the times indicated. The cells were then subjected to apoptosis detection by FACS analysis of propidium iodide-stained nuclei. Each panel represents the mean ± S.D. from three independent experiments.
To investigate possible mechanisms for the increased GC sensitivity of p16INK4A-expressing cells, GR protein levels were determined in p16INK4A-expressing and nonexpressing cells by flow cytometry using an FITC-labeled anti-human GR antibody. As indicated by mean fluorescence intensity, GR expression in doxycycline-treated, and hence G0/G1-arrested, 6E2/p16 and 1D2/p16 cells exceeded that in untreated controls by 32–38%, whereas no alteration was found in the parental control cell line, C7H2-2C8 (Fig. 6, left panels). Increased GR expression, measured by antibody detection, was paralleled by whole cell radioligand binding assays that showed 30–50% increases in binding of the radiolabeled GC analog triamcinolone in p16INK4A-expressing cells compared with their corresponding controls. Again, ligand binding of parental C7H2-2C8 cells was not significantly influenced by addition of doxycycline (Fig. 6, right panels).

p16INK4A Expression Increases the Activity of the GR—The increased expression and ligand-binding activity of the GR led to a 2–4-fold increase in transcriptional activity, as shown in transient transfection experiments with a GC-responsive MMTV-luciferase reporter construct, thereby proving that the increased levels of the GR were functional (Fig. 7A). Next, we investigated whether the sensitivity of endogenous genes to regulation by GC might also be increased in p16INK4A-arrested cells. For these experiments, we studied cyclin D3, which is repressed by GC treatment in mouse lymphoma cells (23) and seems to be critical in the induction of GC-mediated cell cycle arrest in CEM cells.

Exposure to 10 nM dexamethasone had no detectable effect upon cyclin D3 expression in C7H2-2C8 control cells. It did, however, lead to its down-regulation in G0/G1-arrested 6E2/p16 cells (Fig. 7B). The combined data clearly showed that cells arrested in G0/G1 by p16INK4A had elevated

Fig. 5. **p16INK4A-expressing CEM cells are sensitive to physiologic concentrations of cortisol.** A, C7H2-2C8 cells and their subclones 6E2/p16 and 1D2/p16 were cultured for 24 h in the presence or absence of 200 ng/ml doxycycline (Dox) and then for another 36 h in the presence of various concentrations of cortisol and finally subjected to apoptosis determination by FACS analysis of propidium iodide-stained nuclei. The results obtained with the two p16INK4A-transfected cell lines were very similar and have been combined (for better readability). Shown is the mean ± S.D. of two independent experiments. B, 6E2/p16 and 1D2/p16 cells were cultured for 24 h in the presence or absence of 200 ng/ml doxycycline and then for an additional 24 and 48 h in the presence of 50 nM cortisol with or without 500 nM RU486. Apoptosis was determined by FACS analysis. Shown is the mean ± S.D. of the data derived from both cell lines and two independent experiments.

Fig. 6. **p16INK4A increases expression of the GR.** A, C7H2-2C8 control (2C8/Ctr.), 6E2/p16, and 1D2/p16 cells were cultured for 36 h in the presence (solid lines) or absence (dotted lines) of 200 ng of doxycycline (Dox), fixed, stained with either an FITC-conjugated anti-GR antibody (solid and dotted lines) or an FITC-labeled isotype control (dashed lines), and subjected to FACS analysis. B, C7H2-2C8 control cells and conditional p16INK4A-expressing sublines cultured for 36 h with or without 200 ng/ml doxycycline were subjected to whole cell ligand binding assays with the indicated amounts of labeled triamcinolone. A representative experiment performed in triplicate is shown.
levels of functional GR, which might explain, at least in part, the increased sensitivity to GC-induced cell death.

Increased GR Expression Is Not Secondary to Accumulation of Cells in G0/G1-To investigate whether the observed up-regulation of the GR was simply a consequence of cell accumulation in a cell cycle phase with high GR expression, the cells were double-stained with propidium iodide and anti-GR antibody, and cell cycle phase-specific GR protein levels were determined. In cycling cells, endogenous GR levels were decreased by 33% in G0/G1 phase compared with cells in S/G2/M (Fig. 8A). In contrast, p16INK4A-arrested G0/G1 cells showed a 55% increase in receptor expression compared with cycling cells in G0/G1 (Fig. 8B), suggesting that the increased GR expression is not the result of enriching cells in G0/G1, but of a specific induction in p16INK4A-expressing cells.

DISCUSSION

Deletion of the INK4 gene locus is the most frequent genetic alteration in T-ALLs (3, 5, 24), suggesting a critical role of p16INK4A and/or p19ARF in the development of these tumors. Using the T-ALL model CCRF-CEM, we show that p16INK4A expression alone is sufficient to mediate G0/G1 arrest and dramatically sensitizes these cells for apoptosis induced by GC, a hormone routinely used in the therapy of malignant lymphoproliferative disorders. The former was in good agreement with numerous studies on various malignancies that suggested a tumor suppressor role of p16INK4A due to its known inhibitory effect upon cell cycle progression (1, 7, 25). The latter observation was, however, unexpected and raises questions regarding its underlying mechanism, possible significance, and implications.

As to possible mechanisms for the increased GC sensitivity, we observed up-regulation of functional GR, as evidenced by flow cytometry, radio receptor assays, transient transfection studies with a GC-responsive reporter construct, and down-regulation of an endogenous GC-responsive gene. We (26) and others (27) have shown previously that GR expression levels are critical parameters for sensitivity to GC-induced apoptosis. Thus, although GR up-regulation may not be the sole cause of the dramatic increase in GC sensitivity, it may well contribute to this phenomenon. Interestingly, the observed increase in GR expression was not simply due to cell accumulation in the G0 phase of the cell cycle since proliferating cells going through G1 had reduced GR levels. Rather, it appeared specific for the p16-induced cell cycle arrest.

Another issue is whether the observed increase in GC sensitivity bears any significance for tumor development. Given that lymphocytes at certain stages of differentiation are sensitive to apoptosis induction by endogenous GC (28), malignant transformation of such cells might require inactivation of this lymphocyte-specific form of tumor surveillance. Whether p16INK4A inactivation contributes to this escape mechanism and, if so, how this might happen is unclear. In circulating cells, p16INK4A is not expressed and therefore cannot influence GC sensitivity. Stimulated lymphocytes have only a limited life span, and leukemogenesis has to invoke a program to extend the life span of proliferating T-cells, e.g. by suppressing apoptotic pathways. In addition, leukemia cells have to evolve ways to overcome replicative senescence, and inactivation of p16INK4A might be one of those means. The dramatically increased sensitivity to GC associated with induction of p16INK4A suggests a novel role for GC in the regulation of lymphocyte homeostasis, i.e. the

![Image](http://www.jbc.org/)

FIG. 7. p16INK4A expression increases the activity of the GR. A, C7H2-2C8 control (2C8/Ctr.), 6E2/p16, and 1D2/p16 cells were transfected with a GC-responsive MMTV-firefly luciferase vector and an SV40-driven Renilla luciferase control vector, cultured in the presence (black bars) or absence (white bars) of 200 ng/ml doxycycline (Dox) for 18 h, and thereafter treated with 100 nM dexamethasone for another 10 h to detect GC-mediated transcriptional activity. Specific induction of the MMTV reporter is expressed as a percentage of the untreated controls (adjusted to the SV40-driven Renilla luciferase transfection control). Shown is the mean of two independent transient transfection experiments. B, C7H2-2C8 cells and p16INK4A-expressing 6E2/p16 cells were maintained for 24 h in the presence of 200 ng/ml doxycycline and subsequently treated with 10 nM dexamethasone for the times indicated. Thereafter, lysates were analyzed by immunoblotting using specific antibodies directed against cyclin D3 (Cyc D3) and α-tubulin (α-Tub).

FIG. 8. Increased GR expression is not secondary to accumulation of cells in G0/G1. 1D2/p16 cells were cultured for 36 h in the presence or absence of 200 ng/ml doxycycline, fixed, stained with an FITC-conjugated anti-GR antibody and propidium iodide, and subjected to FACS analysis. Shown are the GR fluorescence intensity of cycling cells in G0/G1, phase (dotted line) versus S/G2/M phase (solid line) (A) and the GR staining of proliferating cells in G0/G1 cells (solid line) (B).

![Image](http://www.jbc.org/)
induction of cell death in p16INK4A-expressing lymphocytes. Loss of p16INK4A might contribute to leukemogenesis by reducing GC sensitivity and causing inability to undergo replicative senescence. In addition, the dramatic increase in GC sensitivity in p16INK4A-expressing cells may have implications for the therapy of malignant lymphoproliferative disorders. Thus, combination of GC with substances that mimic p16INK4A function, such as CDK4/6-inhibiting peptides or specific kinase inhibitors, might improve T-ALL therapy.

Acknowledgments—We thank Drs. A. Helmberg and S. Schwarz for valuable discussion; Drs. D. Beach, H. Gossen, and B. Auer for donating vectors; S. Lobenwein for excellent technical assistance; and M. Kat Occhipinti for editing the manuscript.

REFERENCES
1. Serrano, M., Hannon, G. J., and Beach, D. (1993) Nature 366, 704–707
2. Quelle, D. E., Zindy, F., Ashmun, R. A., and Sherr, C. J. (1995) Cell 83, 993–1000
3. Cayuela, J. M., Madani, A., Sanhes, L., Stern, M. H., and Sigaux, F. (1996) Blood 87, 2180–2186
4. Takeuchi, S., Bartram, C. R., Seriu, T., Miller, C. W., Tobler, A., Janssen, J. W., Reiter, A., Ludwig, W. D., Zimmermann, M., and Schwaller, J. (1995) Blood 86, 755–760
5. Hebert, J., Cayuela, J. M., Berkeley, J., and Sigaux, F. (1994) Blood 84, 4038–4044
6. Ohnishi, H., Kawamura, M., Ida, K., Sheng, X. M., Hanada, R., Nobori, T., Yamamori, S., and Hayashi, Y. (1995) Blood 86, 1269–1275
7. Serrano, M., Lee, H., Chin, L., Gorden, C. C., Beach, D., and DePinho, R. A. (1996) Cell 83, 27–37
8. Sherr, C. J. (1996) Science 274, 1672–1676
9. Sherr, C. J., and Roberts, J. M. (1995) Genes Dev. 9, 1149–1163
10. Ogawa, S., Hirano, N., Sato, N., Takahashi, T., Hanpaishi, A., Tanaka, K., Kurokawa, M., Tanaka, T., Mitani, K., Yazaki, Y., and Hirai, H. (1994) Blood 84, 2431–2435
11. Otsuki, T., Clark, H. M., Wellmann, A., Jaffe, E. S., and Raffeld, M. (1995) Cancer Res. 55, 1436–1440
12. Loffler, M., Ausserlechner, M. J., Tonko, M., Hartmann, B. L., Bernhard, D., Geley, S., Helmberg, A., and Kofler, R. (1999) Oncogene 18, 4626–4631
13. Strasser-Wozak, E. M., Hattmannstorfer, R., Hala, M., Hartmann, B. L., Fieggl, M., Geley, S., and Kofler, R. (1995) Cancer Res. 55, 348–353
14. Norman, M., and Thompson, E. B. (1977) Cancer Res. 37, 3785–3791
15. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Science 268, 1766–1769
16. Gossen, M., and Bujard, H. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 5547–5551
17. Hartmann, B. L., Geley, S., Loffler, M., Hattmannstorfer, R., Strasser-Wozak, E. M. C., Auer, B., and Kofler, R. (1999) Oncogene 18, 713–718
18. Drouin, J., Sun, Y. L., Chamberland, M., Gauthier, Y., De Lean, A., Nemer, M., and Schmidt, T. J. (1995) EMBO J. 12, 145–156
19. Geley, S., Hartmann, B. L., Kapelari, K., Egle, A., Villunger, A., Heidacher, D., Greil, R., Auer, B., and Kofler, R. (1997) FEBS Lett. 402, 36–40
20. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F., and Riccardi, C. (1991) J. Immunol. Methods 139, 271–279
21. Berki, T., Kumanovics, G., Kumanovics, A., Falus, A., Ujhelyi, K., and Nemeth, P. (1998) J. Immunol. Methods 214, 19–29
22. Helmberg, A., Fassler, R., Geley, S., Johrer, K., Kroemer, G., Bock, G., and Kofler, R. (1990) J. Immunol. Methods 145, 4332–4337
23. Hebert, J., Cayuela, J. M., Berkeley, J., and Sigaux, F. (1994) Blood 84, 4038–4044
24. Ohnishi, H., Kawamura, M., Ida, K., Sheng, X. M., Hanada, R., Nobori, T., Yamamori, S., and Hayashi, Y. (1995) Blood 86, 1269–1275
25. Serrano, M., Lee, H., Chin, L., Gorden, C. C., Beach, D., and DePinho, R. A. (1996) Cell 83, 27–37
26. Sherr, C. J. (1996) Science 274, 1672–1676
27. Sherr, C. J., and Roberts, J. M. (1995) Genes Dev. 9, 1149–1163
The Cell Cycle Inhibitor p16INK4A Sensitizes Lymphoblastic Leukemia Cells to Apoptosis by Physiologic Glucocorticoid Levels
Michael J. Ausserlechner, Petra Obexer, G. Jan Wiegers, Bernd L. Hartmann, Stephan Geley and Reinhard Kofler

J. Biol. Chem. 2001, 276:10984-10989.
doi: 10.1074/jbc.M008188200 originally published online January 12, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M008188200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 28 references, 16 of which can be accessed free at http://www.jbc.org/content/276/14/10984.full.html#ref-list-1