Organic Nitrogen of Atmospheric Aerosols in the Coastal Area of Seto Inland Sea

Tokuhiro Nakamura1,2*, Yasushi Narita3, Keizo Kanazawa2, Mitsuo Uematsu3,4

1 Department of Liberal Arts, College of Bioresource Sciences, Nihon University, Fujisawa-shi, Kanagawa 252-0880, Japan
2 Department of General Education, National Institute of Technology, Kagawa College, Mitoyo-shi, Kagawa 769-1192, Japan
3 International Advanced Research, Center for International Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba 277-8564, Japan
4 Center for Environmental Science in Saitama, Kazo-shi, Saitama 347-0115, Japan

ABSTRACT

Chemical compositions and particle number densities of atmospheric aerosols were measured in the coastal area of Seto Inland Sea during the spring of 2015. The mean concentrations of NH4+, NO3–, and water-soluble organic nitrogen (ONws) in the total (fine and coarse) particles were 1.6, 0.85, and 0.28 µg N m–3, respectively. Although NO3– existed in fine and coarse particles, while NH4+ and ONws existed primarily in fine particles. The contribution of ONws to the total nitrogen was approximately 10%, however, these fractions are comparable to the contribution of fine NO3– and coarse NH4+.

The dry deposition fluxes of particulate NH4, NO3–, and ONws were 280, 660 and 83 µg N m–2 day–1, respectively. The dry deposition flux of NO3– was more effective than any other nitrogen compounds, since the deposition rate depends upon the size distribution. The dry deposition flux of ONws was approximately 8.1% of nitrogen compounds, however, it is found that ONws should be considered in evaluating the effects of nitrogen compounds on marine ecosystems.

Keywords: Nitrogen compounds; Atmospheric pollutants; Atmospheric deposition of nutrients.

INTRODUCTION

The Seto Inland Sea is recognized as a beautiful scenic area not only in Japan, but also globally, and it is a treasure trove of valuable fishery resources (Ishii and Yanagi, 2006). It is also one of the most industrialized regions in Japan and characterized by frequent occurrence of red tides, therefore, to prevent this problem, chemical oxygen demand (COD) and total amount of nitrogen and phosphorus have been regulated (Hori et al., 2008). As a result, the water quality has continued to improve, the occurrence of red tides has decreased, and the transparency of the seawater has been restored (Tada et al., 2010). However, recently, concerns impacting the fishery industry have been identified, such as the discoloration of laver aquaculture (Tada et al., 2010) and the reduction in fish caught due to the decrease of nutrients in the seawater (Tanda et al., 2014).

The inflow of atmospheric pollutants such as yellow dust and anthropogenic substances from the East Asian has been actualized (Zhou et al., 1990; Uematsu et al., 1992), and the coastal area of the Seto Inland Sea is also affected by these pollutants (Nakamura et al., 2015). Based on a simulation using the chemical transport model, approximately 48% of the anthropogenic nitrogen compounds transported from China are deposited in the Yellow Sea, the East China Sea, and the Sea of Japan, and the importance of sea salt particles in this deposition process has been indicated (Itahashi et al., 2016). Moreover, these deposits affect marine biological production (Uematsu et al., 2004). Therefore, it is necessary to obtain information on the nitrogen compounds deposited in the ocean from the atmosphere. Previous Studies have indicated that the inflow pathways of nutrients to the Seto Inland Sea are primarily from the open ocean (Pacific) (Ishii and Yanagi, 2006), bottom sediment, and rivers (Tada et al., 2010), but little is understood about the inflow from the atmosphere (Nakamura et al., 2015).

Among the nitrogen compounds present in the atmospheric aerosols, inorganic nitrogen has been generally measured. Although research on organic nitrogen has been increasing in recent years, despite its importance, it has been studied significantly less than inorganic nitrogen (Cornell et al., 2017).
Currently, there is limited information regarding the concentration of organic nitrogen, its ratio to total nitrogen, sources, size distribution, behavior in the atmosphere, and deposition; in addition, these findings vary greatly depending on the individual studies (Jickells et al., 2013).

After the deposition of organic nitrogen in the ecosystems, some forms can be used as nutrients directly (Murphy et al., 2000) or after decomposition (Smidt, 1994) by microorganisms. However, some forms are toxic to organisms (Paumen et al., 2009). As mentioned above, organic nitrogen has various chemical forms, however, it needs to be considered to prevent the underestimation of the deposition of nitrogen compounds (Jickells et al., 2013). To date, there have been no studies on organic nitrogen in atmospheric aerosols in the coastal area of the Seto Inland Sea.

In this study, we focused on the nitrogen compounds in aerosols that are utilized as nutrients in the ecosystems. The purpose of this study was to determine the chemical forms of the nitrogen compounds (organic and inorganic) based on their particle size, importance and sources of organic nitrogen, and the deposition of nutrients by atmospheric aerosols in the coastal area of the Seto Inland Sea.

METHODS

Atmospheric aerosols were measured on a rooftop (approximately 15 m above the ground) at the National Institute of Technology, Kagawa College (Mitoyo City, Kagawa Prefecture), between February 15 and March 20, 2015 (Fig. 1).

An automated sequential air sampler (Tokyo Dylec Co., Ltd., GS-10) was used to collect the atmospheric aerosols on pre-combusted (4 h at 450°C) quartz fiber filters (Pallflex Products Co., Model 2500QAT-UP). The samples were collected at 24 h intervals at a flow rate of 20 L min⁻¹. The inline 2-stage filter folders (Nilu, NL-I-02) equipped with a multi-nozzle cascade impactor (Tokyo Dylec Co., Ltd., NL-2.5A) were used to separate the atmospheric aerosols into fine (< 2.5 µm) and coarse (> 2.5 µm) particles. The concentrations of no-sea-salt sulfate (nss-SO₄²⁻) and nss-calcium (nss-Ca²⁺) were calculated from the weight ratios of SO₄²⁻/Na⁺ (0.251) and Ca²⁺/Na⁺ (0.038) in the seawater.

The concentration of water-soluble organic nitrogen (ONws) in the atmospheric aerosols was obtained by subtracting the water-soluble inorganic nitrogen INws (NO₃⁻ + NH₄⁺) from TNws (ONws = TNws – INws). In this study, negative values of ONws were set to zero. However, when calculating the concentrations of ONws, the measurement errors of INws and TNws were propagated, and the errors were significant when the concentrations of INws were high and those of ONws were low (Cornell et al., 2003). When ONws was 50% of TNws, the coefficient of variation was approximately 10%, whereas, when ONws was 10% of TNws, the coefficient of variation was approximately 80% (Hansell, 1993; Cornell et al., 2003). Additionally, when measuring TNws, ONws potentially was not completely oxidized to NO₃ (Scudlark et al., 1998), and ONws volatilized during the aerosol sampling (Matsumoto and Yamato, 2016). Given that the ONws values in this study were partly negative, it is assumed that the ONws values may have been underestimated.
Simultaneously, the mass concentration of the atmospheric aerosols with aerodynamic diameters smaller than 2.5 µm (PM2.5) (Thermo, FH62C14) was measured at 30 min intervals, and the particle number density was measured using an optical particle counter (Rion Co., Ltd., KC01D) in five size fractions of > 0.3, > 0.5, > 1, > 2, and > 5 µm at 15 min intervals.

A backward trajectory analysis was conducted to estimate the air mass history that reached the observation station using the NOAA HYSPLIT4 model (Draxler and Rolph, 2016) with a tracking time of 72 h at an altitude of 500 m. The meteorological field was also estimated using weather maps provided by Japan Meteorological Agency.

RESULTS AND DISCUSSION

Overviews of the Observation Results

The variations in the particle number densities (> 0.3, > 2 µm) are shown in Fig. 2. These particle sizes indicate the distinction between the fine and coarse classifications. The variations of nss-SO42– and nss-Ca2+ in the aerosols are shown in Fig. 3. Periods A–F are treated as high-concentration events, which demonstrated continuous rapid increases. In particular, the daily averages of PM2.5 were 27–35 µg m–3 in Period B (2/23–2/26) and 28–34 µg m–3 in Period F (3/16–3/18), near the environmental standard value of 35 µg m–3. On February 23 and 24 (Period B), the Japan Meteorological Agency reported the observation of a Kosa (aeolian dust) event in Takamatsu (http://www.data.jma.go.jp/gmd/env/kosahp/kosa_table_2015.html; accessed 17 April 2016). In this study, a rapid increase in the >2 µm particle number densities and the concentration of nss-Ca2+, which is an indicator of mineral particles, were also observed (Fig. 3).

The representative weather charts are shown in Fig. 4 to estimate the causes of the increase in pollutants for each period. In Periods A, B, C, and E, high concentrations of pollutants were observed due to their transport to the observation station by high-pressure systems near the continent with the development and passage of cold fronts. In Period D, the atmospheric pollutants were transported by a migratory high-pressure system, and in Period F, the observation area was covered with a high-pressure system, rising temperatures, and minimal air mass movement. The Period F atmospheric conditions were thought to have been primarily affected by the industrial area of the Seto Inland Sea and were supported by 72-hour backward trajectories (Fig. 5).

Nitrogen Components in Atmospheric Aerosols

The variations of water-soluble inorganic nitrogen (NH4+, NO3–) and water-soluble organic nitrogen (ONws) are shown in Fig. 6. The aerosol samples corresponding to the high-concentration events in Periods A–F (shown in Fig. 2) were
defined as polluted atmospheric conditions, and all the other samples were defined as normal atmospheric conditions. The mean concentrations and the ratios of each nitrogen component classified by particle size and categorized into normal or polluted atmospheric conditions are shown in Fig. 7.

Inorganic Nitrogen Components

The variation of NH$_4^+$ in the fine particles (Fig. 6) was similar to that of the nss-SO$_4^{2–}$ in the fine particles (Fig. 3), and the >0.3 µm particle number density (Fig. 2). The mean concentrations and standard deviations of the total (fine and coarse) NH$_4^+$ in the normal and polluted conditions were 1.0 ± 0.46 and 2.1 ± 0.80 µg N m$^{-3}$, respectively, indicating that the concentration level was approximately 2.1 times higher in the polluted conditions than in the normal conditions. The proportions of fine particles in the normal and polluted conditions were 97% and 92%, respectively. Although the proportion of fine particles decreased slightly during the dust event, the size distribution did not change significantly.

The variation of NO$_3^–$ in Periods A and B was similar to that of the >2 µm particle number density (Fig. 2) and the coarse nss-Ca$^{2+}$ (Fig. 3). In Period F, that potentially had been affected by the industrial area of the Seto Inland Sea, NO$_3^–$ primarily existed as fine particles. As indicated here, the size distribution of NO$_3^–$ shifted significantly by atmospheric conditions. The mean concentrations and standard deviations of NO$_3^–$ in the normal and polluted conditions were 0.47 ± 0.23 and 1.2 ± 0.41 µg N m$^{-3}$, respectively; thus, the concentration level was approximately 2.6 times higher in the polluted conditions than in the normal conditions. Coarse particles have a high deposition velocity, which affects the amount of deposition. Therefore, the formation of coarse NO$_3^–$ was investigated. The correlation between the nss-Ca$^{2+}$ and NO$_3^–$ coarse particles is very high ($R^2 = 0.94$) (Fig. 8(a)) at equivalent concentrations (neq m$^{-3}$); this implies that the formation of coarse NO$_3^–$ is correlated with mss-Ca$^{2+}$. Furthermore, the chlorine loss (Cl-loss) estimated from

Fig. 4. Weather charts at 0900 JST on (A) February 17, (B) 24, (C) March 2, (D) 7, (E) 12 and (F) 17, 2015 provided by Japan Meteorological Agency (http://www.data.jma.go.jp/fcd/yoko/hibiten; accessed 17 Arp. 2016).

Fig. 5. 72 hours backward trajectories during the Period F at every 2 hours starting from 0900. JST on 15 March to 0900 on 17 March (NOAA ARL HYSPLIT5 Model).
Eq. (1) from the Cl⁻ concentration, with Na⁺ entirely from sea salt. By adding this value to nss-Ca²⁺, the relationship between NO₃⁻ and nss-Ca²⁺ + Cl-loss is almost 1:1 (Fig. 8(b)). Here, the concentration unit is equivalent concentrations (neq m⁻³).

\[\text{Cl-loss} = 1.174 \times \text{Na}^+ - \text{Cl}^- \]

Despite the slight existence of coarse nss-SO₄²⁻, approximately 65% of NO₃⁻ is combined with nss-Ca²⁺ as evidenced by the slope value of 0.65 in Fig. 8(a). Based on the relationship between NO₃⁻ (x) and Cl-loss (y) \((y = 0.28x + 3.8, \text{coefficient of determination } R^2 = 0.64)\), it is estimated that approximately 28% of NO₃⁻ has combined with sea salt. It can be assumed that the remaining 72% of NO₃⁻ has combined with other cations except nss-Ca²⁺ and Na⁺. This assumption also can be supported by the slope value of 0.93 in Fig. 8(b). Based on these findings, coarse NO₃⁻ has a relationship with mineral and sea salt particles, affecting the deposition rate of NO₃⁻.

Water-soluble Organic Nitrogen

The mean concentrations of the total water-soluble organic nitrogen (ONws) were 0.24 and 0.31 µg N m⁻³ in the normal and polluted conditions, respectively. The concentration level was approximately 1.3 times higher in the polluted conditions than in the normal conditions, indicating a small difference between normal and polluted conditions. During all observation periods, approximately 87% of ONws existed as fine particles, and the size distribution was similar to that of NH₄⁺. However, although the size distribution of NH₄⁺ did not shift during the dust event (Period B), it has been reported that ONws related to mineral particles increased during a dust event in the eastern Mediterranean region (Mace et al., 2003). In the East China Sea in spring, the concentration of coarse ONws increased during a dust event, which suggests that this increase is also related to mineral dust (Nakamura et al., 2006). On the other hand, in the Yellow Sea and Qingdao, the concentrations of both INws and ONws increased during a dust event; the rate of increase for INws was the higher of the two, resulting in a decreased overall proportion of ONws (Shi et al., 2010). In the coastal area of the Seto Inland Sea in this study, almost no coarse ONws was detected in Period B during the dust event. This is because the source of the ONws was not soil, and the concentration of INws had increased, especially with the notable increase in coarse NO₃⁻ during Period B (Fig. 6), affecting the calculated value of ONws. A portion of the ONws could be lost during the long-distance transport between the observation station in this study and the significant pollutant sources, compared with that in the eastern Mediterranean region and the East China Sea.

The contribution of ONws to the total nitrogen in the aerosol samples classified as the normal condition was 14% in both the fine and coarse particles, as shown in Fig. 7. These fractions are comparable to the contribution of fine NO₃⁻ and coarse NH₄⁺. The ONws contribution to total nitrogen in the aerosol samples, classified as polluted air, was 9.3% for the fine and 5.0% for the coarse particles. These results indicated that ONws cannot be ignored as a nitrogen compound at this observation station.

Table 1 shows the comparison of the mean concentration of ONws (total) and its contribution to total nitrogen in this study and other regions. The mean concentration of ONws in the coastal region of the Seto Inland Sea was similar to that in an urban area, Kofu (Matsumoto et al., 2014), lower than in coastal areas strongly affected by continental pollutants (Shi et al., 2010), and higher than in the open ocean (Luo et al., 2016). The contribution of ONws was high in the East China Sea and the South China Sea and was comparable to that in the other regions.

A correlation analysis between ONws and the origins of combustion (nss-SO₄²⁻ and NO₃⁻), sea salt (Na⁺), and soil (nss-Ca²⁺) was conducted for each particle size to determine the sources of the ONws in the aerosols (Fig. 9). However, samples with INws concentrations higher than TNws potentially contain measurement errors, so these were excluded from the graphed data. Significant correlations were seen with the fine particles, though not with the coarse particles. Because ONws is not a single component, it is assumed that the size...
Fig. 7. Fractions of nitrogen compounds in (a) Normal and (b) Polluted conditions.

Fig. 8. Relationships between (a) NO$_3^-$ and nss-Ca$^{2+}$, and (b) NO$_3^-$ and nss-Ca$^{2+}$ + Cl-loss in the coarse particles (> 2.5 µm).

distribution and behavior differ depending on each component. However, based on the correlations between ON$_{ws}$ with nss-SO$_4^{2-}$ and NO$_3^-$, combustion could be considered as a source of ON$_{ws}$ (Figs. 9(a) and 9(b)). Fine ON$_{ws}$ could be generated by combustion, the reactions between gaseous organic compounds and NO$_2$, and secondary photochemical processes such as the photooxidation of gaseous organic nitrogen (Matsumoto et al., 2014). The increasing trend of the ON$_{ws}$ concentrations with higher pollutant concentrations is consistent with that reported in previous studies (Scudlark et al., 1998; Mace et al., 2003; Nakamura et al., 2006; Shi et al., 2010; Matsumoto et al., 2014; Luo et al., 2016; Matsumoto and Yamato, 2016). The ON$_{ws}$ was not detected during Period F, which was thought to have been strongly affected by the local industries, and the concentration of nss-SO$_4^{2-}$ was high. The relationship between the ON$_{ws}$ and local atmospheric pollutants could not be identified because of the possibility of measurement errors due to high concentrations of IN$_{ws}$.

Interestingly, a significant correlation between nss-Ca$^{2+}$ and ON$_{ws}$ in fine particles was observed (Fig. 9(d)), probably owing to the formation of secondary particles that are formed when gaseous organic nitrogen and other acidic substances react with mineral particles. However, because
no correlation was seen with the coarse particles (Fig. 9(h)), the ONw was not considered to be originated soil itself. These results suggest that some components of organic nitrogen in anthropogenic substances are adsorbed onto or react with mineral particles and exist stably in relatively aged air masses. Further research is necessary, including research on the ONw relationship with coarse particles.

Dry Deposition Flux of Nitrogen Compounds by Aerosols

The dry deposition flux \(F \) of particulate nitrogen compounds was calculated using Eq. (2) to estimate the effect of nitrogen components on the biota of the sea surface.

\[
F = V_d C_a
\]

(2)

Here, \(V_d \) represents the deposition velocity (cm s\(^{-1}\)), and \(C_a \) represents the concentration of each nitrogen component in the atmosphere (µg N m\(^{-3}\)). The dry deposition velocity is a critical factor in estimating the deposition flux, but the velocity differs substantially due to the particle size distribution.

In this study, because the atmospheric aerosols were collected in two stages based on their size, we used 0.1 cm s\(^{-1}\) as the dry deposition velocity for fine particles and 2.0 cm s\(^{-1}\) for coarse particles (Duce et al., 1991; Nakamura et al., 2005, Uematsu et al., 2010), although the dry deposition velocity differed depending on weather conditions (such as wind speed, humidity, and air temperature). By calculating the deposition velocity based on the proportion of fine and coarse particles of each nitrogen component, we found the deposition velocity based on the proportion of fine and coarse particles of each nitrogen component, we found the deposition velocity based on the proportion of fine and coarse particles of each nitrogen component.

The atmospheric aerosol concentrations and dry deposition fluxes of each nitrogen compound in this study and other regions (coastal waters) previously reported are shown in Table 2. In the East China Sea, the estimation of the NO\(_3^-\) dry deposition flux was 720 µg N m\(^{-2}\) day\(^{-1}\) for 0.48 µg N m\(^{-3}\) of atmospheric concentration (Nakamura et al., 2005). Although the NO\(_3^-\) atmospheric concentration was 0.85 µg N m\(^{-3}\) in this study, which is higher than that in the East China Sea, the dry deposition flux was 660 µg N m\(^{-2}\) day\(^{-1}\), which was equivalent to the East China Sea. These differences reported can be attributed to the high proportion of NO\(_3^-\) existing as fine particles, and the low deposition velocity in the coastal area of the Seto Inland Sea. The atmospheric concentration and dry deposition flux of NH\(_4^+\) in the East China Sea were 2.3 µg N m\(^{-3}\) and 450 µg N m\(^{-2}\) day\(^{-1}\), respectively (Nakamura et al., 2005), while in the coastal region of the Seto Inland Sea, these concentrations were 1.6 µg N m\(^{-3}\) and 280 µg N m\(^{-2}\) day\(^{-1}\), respectively. This is because the size distributions are comparable, which means that the deposition flux is roughly proportional to the concentration in the atmosphere. The NO\(_3^-\) deposition flux from the atmosphere is the largest among the nitrogen compounds, accounting for 64% of the total, because the size distribution is mostly biased toward the coarse sizes.

In this study, the dry deposition of gaseous substances (HNO\(_3\) and NH\(_3\)) and wet deposition (NO\(_3^-\) and NH\(_4^+\)) were not measured; however, the deposition flux of inorganic nitrogen (dry and wet) was estimated with reference to the observation results from the Oki Islands, located in the Sea of Japan (Ban et al., 2016). In the Oki Islands, of the total deposition flux of approximately 3,500 µg N m\(^{-2}\) day\(^{-1}\), dry deposition flux of aerosols and gaseous substances was approximately 990 and 710 µg N m\(^{-2}\) day\(^{-1}\), while the wet deposition flux was approximately 1,800 µg N m\(^{-2}\) day\(^{-1}\), respectively, indicating that the dry deposition flux from particulate matter accounts for approximately 28% of the total. The annual rainfall in the Oki Islands was 1,339 mm (Ban et al., 2016), while for the same period at a location approximately 15 km from the observation station in this study, it was 1,108 mm, as calculated from rainfall data by

Table 1. Comparison of ONw in total (fine and coarse) aerosols in different regions.

Location	Date	ONw totals µg N m\(^{-3}\)	ONw/ONwTN %	References
Seto Inland Sea (Normal)	Feb.–Mar. 2015	0.24	14	This study
Seto Inland Sea (Polluted)	Feb.–Mar. 2015	0.31	8.6	This study
Pacific Ocean and East China Sea (Autumn)	Sep.–Oct. 2002	0.76	24	Nakamura et al., 2006*
Pacific Ocean and East China Sea (Spring)	Mar. 2004	0.22	10	Nakamura et al., 2006*
Yellow Sea	Mar. 2005	2.9	17	Shi et al., 2010*
Yellow Sea	Apr. 2006	1.2	17	Shi et al., 2010*
Qingdao	Mar.–Apr. 2006	2.5	20	Shi et al., 2010*
South China Sea	Apr. 2005	0.91	34	Shi et al., 2010*
Urban site, Kofu	Aug. 2009–Jan. 2013	0.22	14	Matsumoto et al., 2014*
North Western Pacific Ocean (dust)	Mar.–Apr. 2014	0.16	5	Luo et al., 2016*
North Western Pacific Ocean (Background)	Mar.–Apr. 2014	0.15	14	Luo et al., 2016*

* Calculated value from the origin data.
Fig. 9. Relationships between nss-SO$_4^{2-}$, NO$_3^-$, Na$^+$, and nss-Ca$^{2+}$ and ON$_{ws}$ in fine (a)–(d) and coarse (e)–(h) particles.

the Japan Meteorological Agency (http://www.data.jma.go.jp/gmd/risk/obsdl/index.php; accessed 02 Dec. 2016). The amount of rainfall at the observation point in this study was slightly less, but the wet deposition flux was similar at both locations; therefore, the total deposition flux would be expected to be approximately four times the dry deposition flux. Therefore, it is also necessary to consider both gaseous substances and wet deposition to estimate the total deposition flux of nitrogen compounds.

The dry deposition flux of ON$_{ws}$ was small, accounting for approximately 8.1% of nitrogen compounds, but the behavior of ON$_{ws}$ was different from that of NH$_4^+$ and NO$_3^-$.
Table 2. Comparison of average ambient concentrations of nitrogen compounds and deposition flux in different coastal regions.

Location	Seto Inland Sea	Pacific Ocean	East China Sea				
	NO₃⁻	NH₄⁺	ON ws	NO₃⁻	NH₄⁺	NO₃⁻	NH₄⁺
Ambient concentration (µg N m⁻³)	0.85	1.6	0.28	0.17	0.30	0.48	2.3
Deposition flux (µg N m⁻² day⁻¹)	660	280	83	250	66	720	450
Deposition flux Ratio (%)	65	27	8.1	79	21	62	38
Reference	This study	Nakamura et al., 2006					

in some samples; in addition, the atmospheric concentrations of ON ws may account for up to 40% of TN ws. Therefore, ON ws should be considered in evaluating the effects of nitrogen compounds on marine ecosystems.

CONCLUSIONS

The chemical compositions of atmospheric aerosols were measured in the coastal area of Seto Inland Sea between February 15 and March 20, 2015. In this study, we focused on the nitrogen compounds by the chemical forms (organic and inorganic) in aerosols that are utilized as nutrients in the ecosystems.

During all observation periods, the mean concentrations of NH₄⁺, NO₃⁻ and ON ws in the total (fine and coarse) particles were 1.6, 0.85, 0.28 µg N m⁻³, respectively. The contribution of ON ws to the total nitrogen was approximately 10%, however, these fractions are comparable to the contribution of fine NO₃⁻ and coarse NH₄⁺.

A correlation analysis between ON ws and nss-SO₄²⁻, NO₃⁻, Na⁺ and soil nss-Ca²⁺ was conducted for each particle size to determine the sources of ON ws in the aerosols. Significant correlations were seen with the fine particles, though not with the coarse particles. Based on the correlations between ON ws with nss-SO₄²⁻ and NO₃⁻, combustion could be considered as a source of ON ws. But it could not be identified whether ON ws was from long distance transport or locally derived.

The dry deposition flux of particulate nitrogen compounds was estimated. The NO₃⁻ deposition flux from the atmosphere is the largest among the nitrogen compounds, accounting for 64% of the total, because the size distribution is mostly biased toward the coarse sizes. The dry deposition flux of ON ws was small, accounting for approximately 8.1% of nitrogen compounds, but the behavior of ON ws was different from that of NH₄⁺ and NO₃⁻ in some samples; in addition, the atmospheric concentrations of ON ws may account for up to 40% of TN ws. Therefore, ON ws should be considered in evaluating the effects of nitrogen compounds on marine ecosystems.

Further research is necessary, including observations of other seasons and the measurements of ON ws in wet deposits and gaseous matter to understand the sources and formation of ON ws, and the nitrogen cycle in this study area.

ACKNOWLEDGMENTS

This research was supported by the Cooperative Program (No. 148, 2016; No. 146, 2015) of Atmosphere and Ocean Research Institute, The University of Tokyo.

REFERENCES

Ban, S., Matsuda, K., Sato, K. and Ohizumi, T. (2016). Long-term assessment of nitrogen deposition at remote EANET sites in Japan. Atmos. Environ. 146: 70–78.

Chen, H.Y., Hung, C.C., Fang, T.H. and Gong, G.C. (2008). Dry deposition and particle-size distribution of phosphorus in the marine atmosphere over the northeastern coast of Taiwan. Cont. Shelf Res. 28: 756–766.

Cornell, S.E., Jickells, T.D., Cape, J.N., Rowland A.P. and Duce, R.A. (2003). Organic nitrogen deposition on land and coastal environments: A review of methods and data. Atmos. Environ. 37: 2173–2191.

Cornell, S., Rendell, A. and Jickells, T. (1995). Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376: 243–246.

Draxler, R.R. and Rolph, G.D. (2016). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, NOAA Air Resources Laboratory, Silver Spring, MD, http://ready.arl.noaa.gov/HYSPLIT.php, Last Access: 26 September 2016.

Duce, R., Liss, P., Merrill, J., Atlas, E., Buat-Menard, P., Hicks, B., Miller, J., Prospero, J., Arimoto, R. and Church, T. (1991). The atmospheric input of trace species to the world ocean. Global Biogeochem. Cycles 5: 193–259.

Hansell, D.A. (1993). Results and observations from the measurement of DOC and DON in seawater using a high-temperature catalytic oxidation technique. Mar. Chem. 41: 195–202.

Hori, Y., Mochizuki, S. and Shimamoto, N. (2008). Relationship between the discoloration of cultivated Porphyra thalli and long-term changes of the environmental factors in the northern part of Harima-Nada, eastern Seto Inland Sea, Japan. Bull. Jpn. Soc. Fish. Oceanogr. 72: 107–112 (in Japanese).

Ishii, D. and Yanagi, T. (2006). Pacific Ocean Originated Phosphorus and Nitrogen in the Seto Inland Sea, Japan. Bull. Coastal Oceanogr. 43: 119–127 (in Japanese).

Itahashi, S., Hayami, H., Uno, I., Pan, X. and Uematsu, M. (2016). Importance of coarse-mode nitrate produced via sea salt as atmospheric input to East Asian oceans. Geophys. Res. Lett. 43: 5483–5491.

Jickells, T., Baker, A.R., Cape, J.N., Cornell, S.E. and Nemitz, E. (2013). The cycling of organic nitrogen through the atmosphere. Philos. Trans. R. Soc. London, Ser. B 368: 20130115, doi: 10.1098/rstb.2013.0115.
Kang, J., Cho, B.C. and Lee, C.B. (2010). Atmospheric transport of water-soluble ions (NO$_3^-$, NH$_4^+$ and nss-SO$_4^{2-}$) to the southern East Sea (Sea of Japan). Sci. Total Environ. 408: 2369–2377.

Luo, L., Yao, X.H., Gao, H.W., Hsu, S.C., Li, J.W. and Kao, S.J. (2016). Nitrogen speciation in various types of aerosols in spring over the northwestern Pacific Ocean. Atmos. Chem. Phys. 16: 325–341.

Mace, K.A., Kubilay, N. and Duce, R.A. (2003). Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: An association with atmospheric dust. J. Geophys. Res. 108: 4320, doi: 10.1029/2002JD002997.

Matsumoto, K., Yamamoto, Y., Kobayashi, H., Kaneyasu, N. and Nakano, T. (2014). Water-soluble organic nitrogen in the ambient aerosols and its contribution to the dry deposition of fixed nitrogen species in Japan. Atmos. Environ. 95: 334–343.

Matsumoto, K. and Yamato, K. (2016). Uncertainties in the measurements of water-soluble organic nitrogen in the aerosol. Atmos. Environ. 144: 220–225.

Murphy, D.V., MacDonald, A.J., Stockdale, E.A., Goulding, K.W.T., Fortune, S., Gaunt, J.L., Poulton, P.R., Wakefield, J.A., Webster, C.P. and Wilmer, W.S. (2000). Soluble organic nitrogen in agricultural soils. Biol. Fertil. Soils 30: 374–387.

Nakamura, T., Matsumoto, K. and Uematsu, M. (2005). Chemical properties of aerosols and transport from the Asian continent to the East China Sea in autumn. Atmos. Environ. 39: 1749–1758.

Nakamura, T., Ogawa, H., Kumar, D.M. and Uematsu, M. (2006). Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific. Atmos. Environ. 40: 7259–7264.

Nakamura, T., Misaki, Y. and Uematsu, M. (2015). The nitrogen components of atmospheric aerosols in the coastal area of Seto Inland Sea in Spring. Proc. of 2015 Annual Meeting of Japan Society for Atmospheric Environment, p. 487 (in Japanese).

Paumen, M.L., de Voogt, P., van Gestel, C.A.M. and Kraak, M.H.S. (2009). Comparative chronic toxicity of homo- and heterocyclic aromatic compounds to benthic and terrestrial terrestrial invertebrates: Generalizations and exceptions. Sci. Total Environ. 407: 4605–4609.

Scudlark, J.R., Russell, K.M., Galloway, J.N., Church, T.M. and Keene, W.C. (1998). Organic nitrogen in precipitation at the mid-Atlantic US coast-methods evaluation and preliminary measurements. Atmos. Environ. 32: 1719–1728.

Shi, J., Gao, H., Qi, J., Zhang, J. and Yao, X. (2010). Sources, compositions, and distributions of water-soluble organic nitrogen in aerosols over the China Sea. J. Geophys. Res. 115: D17303, doi: 10.1029/2009JD013238.

Smidt, S. (1994). Endangering of forest trees by organic air pollutants. J. Plant Dis. Prot. 101: 423–445.

Tada, K., Fujiwara, M. and Honjo, T. (2010). Water Quality and Nori (Porphyra) Culture in the Seto Inland Sea. Bunseki Kagaku 59: 945–955 (in Japanese).

Tanda, M., Akashige, S., Ariyama, H., Yamanoi, H., Kimura, H., Dan, A., Sakamoto, H., Saiki, Y., Ishida, Y., Kotobuki, H. and Yamada, T. (2014). Nutrient environment and fisheries in the Seto Inland Sea. J. Fish. Technol. 7: 37–46 (in Japanese).

Uematsu, M., Sugita, T., Anikiev, V.V. and Medvedev, A.N. (1992). Large-scale transport of pollution aerosol over the East Coast of Asia. Geophy. Res. Lett. 19: 2219–2221.

Uematsu, M., Hattori, H., Nakamura, T., Narita, Y., Jung, J., Matsumoto, K. and Kumar, D. (2010). Atmospheric transport and deposition of anthropogenic substances from the Asia continent to the East China Sea. Mar. Chem. 120: 108–115.

Uematsu, M., Toratani, M., Kajino, M., Narita, Y., Senga, Y. and Kimoto, T. (2004). Enhancement of primary productivity in the western North Pacific caused by the eruption of the Miyake-jima Volcano. Geophy. Res. Lett. 31: L06106, doi: 10.1029/2003GL018790.

Zhang, Y., Liu, X.J., Fangmeier, A., Goulding, K.T.W. and Zhang, F.S. (2008). Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmos. Environ. 42: 1436–1448.

Zhou, M.Y., Yang, S.J., Parungo, F.P. and Harris, J.M. (1990). Chemistry of marine aerosols over the western Pacific Ocean. J. Geophys. Res. 95: 1779–1787.

Received for review, January 2, 2020

Revised, January 2, 2020

Accepted, March 5, 2020