Research Article

Physical Aspects of Homogeneous-Heterogeneous Reactions on MHD Williamson Fluid Flow across a Nonlinear Stretching Curved Surface Together with Convective Boundary Conditions

Kamran Ahmed,1 Tanvir Akbar,1 and Taseer Muhammad2

1Department of Mathematics, COMSATS University Islamabad, Islamabad Campus, Islamabad 44000, Pakistan
2Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia

Correspondence should be addressed to Taseer Muhammad; taseer_qau@yahoo.com

Received 8 September 2021; Revised 20 October 2021; Accepted 22 October 2021; Published 15 November 2021

Academic Editor: Amer Rasheed

Copyright © 2021 Kamran Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is concerned with the fluid mechanics of MHD steady 2D flow of Williamson fluid over a nonlinear stretching curved surface in conjunction with homogeneous-heterogeneous reactions with convective boundary conditions. An effective similarity transformation is considered that switches the nonlinear partial differential equations riveted to ordinary differential equations. The governing nonlinear coupled differential equations are solved by using MATLAB bvp4c code. The physical features of nondimensional Williamson fluid parameter λ, power-law stretching index m, curvature parameter K, Schmidt number Sc, magnetic field parameter M, Prandtl number Pr, homogeneous reaction strength k_1, heterogeneous reaction strength k_2, and Biot number γ are presented through the graphs. The tabulated form of results is obtained for the skin friction coefficient. It is noted that both the homogeneous and heterogeneous reaction strengths reduced the concentration profile.

1. Introduction

The fluid is subdivided into two main categories: non-Newtonian fluid and Newtonian. One of its types of non-Newtonian fluid is a shear-thinning (pseudoplastic) fluid [1]. Pseudoplastic takes attention due to its large commercial applicability. Polymer solutions as well as molten polymers, complex fluids, and suspensions like nail polish, whipped cream, blood, ketchup, and paint are the industrial and everyday applications of pseudoplastic fluids. Gogarty [2] considered the porous media to study the rheological properties of pseudoplastic fluids. Researchers use different models to investigate the behaviour of non-Newtonian fluid like the Ellis model, Williamson model, cross model, Carreau model, and the power-law model, but the Williamson model for fluid flow takes more attention for the study of pseudoplastic fluid. Williamson [3] provides an experimentally verified model for the analysis of pseudoplastic fluids. In the last decade, several researchers [4–9] investigated the behaviour of pseudoplastic fluid by using the Williamson fluid model. Hayat et al. [10, 11] used the Homotopy analytical method to examine the impact of joule heating, thermal radiation, and Ohmic dissipation in the two-dimensional flow of Williamson fluid over a stretching surface.

From the last two decades, several investigators have focused on non-Newtonian fluid across nonlinear and linear stretching of a plate, flat surface, cylinder, or disk [12–16]. Flow across a curved surface is firstly introduced by Sajid et al. [17]. Later on, Abbas et al. [18] analyzed the heat transfer flow of MHD fluid across stretching curved surface. Ahmad et al. [19] examined the boundary layer flow across a curved surface embedded in a porous medium. Sanni et al. [20] investigated the flow of viscous fluid due to a nonlinear stretching curved surface. The effect of mass and heat transfer across a curve-shaped surface is numerically examined by Ramana et al. [21]. Saleh et al. [22] investigated the flow of unsteady micropolar fluid flow over a permeable curved stretching/shrinking surface. The transfer of heat and mass of an electrically conducting micropolar fluid with MHD effect across a curved stretching
of nonlinear index parameter \(m = 1/3 \), which provides an entirely similar Williamson fluid parameter. The impact of different parameters, i.e., curvature parameter \(K \), nondimensional Williamson fluid parameter \(\lambda \), Biot number \(\gamma \), magnetic field parameter \(M \), Schmidt number \(Sc \), Prandtl number \(Pr \), homogeneous reaction strength \(k_1 \), heterogeneous reaction strength \(k_2 \), power-law stretching index \(m \) on velocity, pressure, temperature, and concentration profiles, is presented through the graphs, whereas the results of skin friction coefficient and Nusselt number are depicted in a tabulated form.

2. Formulation of Problem

We examined the 2-dimensional steady, incompressible, fully developed magnetohydrodynamic Williamson fluid flow across a nonlinear stretching curved surface having radius \(H \). We consider \((r, s)\) coordinate system. The \(s \)-axis represents the flow direction, whereas the radial direction is taken along \(r \). The stretching of the curved surface is along the \(s \)-axis with velocity \(u = b_1 s^m \) where \(b_1 \) is the initial stretching rate. The variable magnetic field \(B = B_0 s^{-m-1} \) is applied in the radial direction. For \(h-h \) reactions, we consider two chemical species \(A \) and \(C \), respectively. Figure 1 shows the geometry of flow. In the case of Williamson fluid flow, Cauchy stress tensor is defined as \(\tau = -\rho I + \tau \) in which \(\tau \) represents extra stress tensor and defined as \(\tau = (\mu_{\infty} + (\mu_0 - \mu_{\infty})/(1 - \Gamma))A_1 \) where \(A_1 \Gamma, \mu_0, \) and \(\mu_{\infty} \) are the first Rivlin–Erickson tensor; positive time constant; limiting viscosities at zero and infinite shear stress rates, respectively; and \(\gamma \) is defined as \(\gamma = \sqrt{1/2\pi} \), whereas \(\pi = \text{trace}(A_1)^2 \). Here we consider the case in which \(\Gamma \gamma \) and \(\mu_{\infty} = 0 \). The homogeneous reaction for cubic autocatalysis with two chemical species \(A \) and \(C \) is represented by the equation below:

\[
A + 2C \rightarrow 3C, \quad \text{rate} = h_A a C^2. \tag{1}
\]

For cubic autocatalysis, the heterogeneous reaction on the catalyst surface is mathematically represented as follows:

\[
A \rightarrow C, \quad \text{rate} = h_A a, \tag{2}
\]

where \(h_A \) and \(h_C \) are the rate constants and \(a \) and \(c \) represent the concentrations for chemical species \(A \) and \(C \). Under these conditions, the governing boundary layer equations [9, 17–24, 26–32] are

\[
\frac{\partial}{\partial r} [(H + r)\nu] + H \frac{\partial u}{\partial s} = 0, \tag{3}
\]

\[
\frac{\partial p}{\partial s} = \frac{\rho}{H + r} \frac{\partial u^2}{\partial s}, \tag{4}
\]

\[
\rho \left(\frac{u}{r + H} \frac{\partial u}{\partial s} + \nu \frac{\partial u}{\partial r} + \frac{1}{r + H} \frac{\partial u}{\partial \nu} \right) = \left(\frac{H}{r + H} \right) \frac{\partial p}{\partial s} + \mu \left[\sqrt{2} \Gamma \left(\frac{\partial u}{\partial r} - \frac{u}{H + r} + 1 \right) \right] \cdot \left[\frac{\partial^2 u}{\partial r^2} + \left(\frac{1}{r + H} \right) \frac{\partial u}{\partial r} - \frac{1}{(r + H)^2} \right] - \sigma B^2 u, \tag{5}
\]
\[l_f \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r + H} \frac{\partial T}{\partial r} \right) = \rho c_p \left(\nu \frac{\partial T}{\partial r} + \frac{H}{r + H} u \frac{\partial T}{\partial s} \right), \]

\[D_A \left(\frac{\partial^2 a}{\partial r^2} + \frac{1}{r + H} \frac{\partial a}{\partial r} \right) - h_c a c^2 = \nu \frac{\partial a}{\partial r} + \left(\frac{R}{r + R} \right) u \frac{\partial a}{\partial s} \]

\[D_c \left(\frac{\partial^2 c}{\partial r^2} + \frac{1}{r + H} \frac{\partial c}{\partial r} \right) + h_c a c^2 = \nu \frac{\partial c}{\partial r} + \left(\frac{H}{r + H} \right) u \frac{\partial c}{\partial s} \]

The accompanying boundary conditions are [20, 27]

\[u = u_w = b_1 s^m, \]
\[v = 0, \]
\[-h_f \frac{\partial T}{\partial r} = l_f(T_f - T), \]
\[D_A \frac{\partial a}{\partial r} = h_c a, \]
\[D_c \frac{\partial c}{\partial r} = -h_c a, \]

For \(r = 0 \)
\[u(s, r) \to 0, \]
\[c \to 0, \]
\[\frac{\partial u}{\partial r} \to 0, \]
\[T \to T_\infty, \]
\[a \to a_0, \]

for \(r \to \infty, \)

where \(u \) symbolizes the velocity component in the \(s \) direction and \(v \) describes the velocity component in the \(r \) direction. Furthermore, \(\rho \) represents the density, \(\nu \) and \(\sigma \) are the kinematic viscosity and the electrical conductivity, respectively.

We introduce the following dimensionless variable transformations:

\[\eta = \sqrt{\frac{b_1 s^{m-1}}{\nu}} r, \]
\[v = \frac{R}{r + R} \sqrt{b_1 s^{m-1}} \left[m - \frac{1}{2} \eta f' (\eta) + \frac{m + 1}{2} f (\eta) \right] \]
\[u = b_1 s^m f' (\eta), \]
\[p = \rho b_1^2 s^m P (\eta), \]
\[K = \sqrt{\frac{b_1 s^{m-1}}{\nu}} H, \]
\[\theta (\eta) = \frac{T - T_\infty}{T_f - T_\infty}, \]
\[a = a_0 f (\eta), \]
\[c = c_0 h (\eta), \]

where \(f \) shows the dimensionless velocity, \(\eta \) shows the similarity variable, and \(p \) is the pressure.

Using equation (10) in equations (3)–(9), equation (3) satisfies identically, we get

\[Pr (\eta) = \frac{f' (\eta)^2}{\eta + K}, \]

\[P = \frac{1}{2Km(\eta + K)} \left[(\eta + K)^2 f^{(3)} + (\eta + K) f'' + \frac{1}{2} K (m + 1)(\eta + K) f f'' - \frac{1}{2} \eta K (m - 1) f^{12} \right. \]
\[\left. - \frac{1}{2} K (\eta + 2Km + \eta m) f^{12} - \frac{1}{2} (2 - f K (m + 1)) f' - M (\eta + K) f' \right. \]
\[+ \lambda \left((\eta + K) f'' + \frac{f'^2}{\eta + K} (\eta + K)^2 f^{(3)} f' - (\eta + K) f^{(3)} f' - 2 f' f'' \right), \]
\[
\frac{1}{Pr} \left(\theta' + \frac{\theta}{K + \eta} \right) + \frac{K}{K + \eta} \left(\frac{m+1}{2} \right) f \theta' = 0, \tag{13}
\]

\[
\frac{\delta}{Sc} \left(h'' + \frac{h'}{K + \eta} \right) + \frac{K}{K + \eta} \left(\frac{m+1}{2} \right) f h' + k_1 \phi h^2 = 0, \tag{14}
\]

\[
f(0) = 0, \quad \phi'(0) = k_2 \phi(0), \quad \theta'(0) = -\gamma(1 - \theta(0)), \quad f'(0) = 1, \quad \delta h'(0) = k_2 \phi(0), \quad \theta(\infty) \longrightarrow 0, \quad f'(\infty) \longrightarrow 0, \quad \phi(\infty) \longrightarrow 1, \quad f''(\infty) \longrightarrow 0, \quad h(\infty) \longrightarrow 0. \tag{15}
\]

where \(\lambda = \sqrt{2b_1^2} T_s^{-1/2} \sqrt{\nu} \) represents the parameter for Williamson fluid; magnetic field parameter is expressed as \(M = B_0^2 b_1 / \nu \), \(Sc = \nu / D_A \) is the Schmidt number, \(Pr = \nu / \alpha \) is the Prandtl number, \(k_1 = a_2 \lambda b_1 \) is the heterogeneous reaction strength, \(\gamma = l_f / h_f \sqrt{\nu b_1} \) is the Biot number, \(\delta = D_C / D_A \) is the proportion of diffusion coefficients, and \(k_2 = h_J / D_A \sqrt{\nu b_1} \) is the heterogeneous reaction strength.

Abolishing \(P(\eta) \) from the equations (11) and (12) produces the following equation:

\[
f^{(4)} = \frac{2Km}{K + \eta - \lambda f' + (K + \eta) \lambda f''} \left[\frac{(K (1 + m) (K + \eta) f - 2(K + \eta)) f'}{4Km(K + \eta)^3} + \frac{(3m - 1)f r^2}{4m(K + \eta)} + \frac{\lambda f r^2}{Km(K + \eta)^3} + \frac{f'}{2Km(K + \eta)} - \frac{(1 + m)f f''}{4m(K + \eta)} + \frac{(3m - 1)f f'''}{4m} - \frac{2\lambda f f' f''}{Km(K + \eta)^3} - \frac{4Km(K + \eta)^3 + (K + m)(K + \eta)^3 f}{Km(K + \eta)^3} \right] + \frac{\lambda f f^{(3)}}{Km(K + \eta)} \left[-\frac{(K + \eta)\lambda f^{(3)}}{2Km} + \frac{\lambda f r^2}{Km(K + \eta)} - \frac{f f^{(3)}}{2Km} + M \left(\frac{f'}{2Km} + \frac{(K + \eta)f''}{2Km} \right) \right]. \tag{16}
\]

When \(D_A = D_C \), then \(\delta = 1 \), we have

\[
\phi(\eta) + h(\eta) = 1. \tag{17}
\]

Thus equations (14) and (15) take the form

\[
k_1 \phi(1 - \phi)^2 - \frac{1}{Sc} \left(\phi'' + \frac{\phi'}{K + \eta} \right) - \frac{K}{K + \eta} \left(\frac{m+1}{2} \right) f \phi' = 0. \tag{18}
\]

Along with boundary conditions

\[
\phi(\infty) \longrightarrow 1, \quad \phi'(0) = k_2 \psi(0). \tag{19}
\]

The local skin friction coefficient \(C_f \) and Nusselt number \(Nu \) are defined as

\[
C_f = \frac{\tau_w}{1/2(\rho u_w^2)}, \tag{20}
\]

\[
Nu = \frac{\sqrt{\text{q}_w}}{h_f(T_w - T_\infty)}.
\]

Shear stress \(\tau_w \) and heat flux \(q_w \) near to the surface are mathematically represented as
of Kumar et al. [38] and Sajid et al. [17] by fixing certain acceptable result in Table 1. We assumed selection and error control are built on the residual of the mesh points which formed the initial guess structure. Mesh the interval of integration from 0 to 4 and divided it into 30 continuous solution. HX he relative error tolerance considered in all discussions.

Using equation (10) in equation (21), equation (20) takes the form

\[
\sqrt{\text{Re}_f} C_f = 2 \left(f''(0) - \frac{1}{R} \right) \left[1 + \frac{\lambda}{2} \left(f''(0) - \frac{1}{R} \right) \right],
\]

where \(\text{Re}_s = u_w s/\nu \).

\[\text{3. Solution Procedure} \]

The coupled nonlinear system of ODEs, (11), (13), (17), and (18), along with boundary conditions (16) and (19), are solved by using built-in MATLAB code bvp4c. In order to find out the solution of coupled ODEs, first of all, we rewrite equations (11) and (13), (17) and (18), with boundary conditions (16), (19) as an equivalent system of first-order differential equations by using the substitutions \(f = z_1, f' = z_2, f'' = z_3, f''' = z_4, P = z_5, \theta = z_6, \theta' = z_7, \phi = z_8, \) and \(\phi' = z_9 \). In the next step, we code these systems of first-order ODEs and the boundary conditions with function names "exlode" and "exlbc" in MATLAB. Furthermore, we choose the interval of integration from 0 to 4 and divided it into 30 mesh points which formed the initial guess structure. Mesh selection and error control are built on the residual of the continuous solution. The relative error tolerance considered in this study is \(10^{-6} \). Finally, we call "bvp4c" function

\[
\text{sol} = \text{bvp4c (@exlode, @exlbc, solinit, options)}. \tag{23}
\]

The "deval" built-in MATLAB function is used to evaluate the solution at a specific point. The Comparison of skin friction coefficient from the present study with the work of Kumar et al. [38] and Sajid et al. [17] by fixing \(\lambda = K = M = k_1 = k_2 = y = Pr = Sc = 0 \) and \(m = 1 \) shows the acceptable result in Table 1. We assumed \(m = 1/3, M = 1.5, Wb = 0.2, Pr = 7.0, Sc = 0.6, k_1 = 0.5, k_2 = 0.5, g = 0.3, \) and \(K = 5 \) in all discussions.

\(K \)	Ref. [17]	Ref. [38]	Present study
5	0.75763	0.74356	0.75763
10	0.87349	0.86435	0.87349
20	0.93561	0.92940	0.93561
30	0.95686	0.95212	0.95686
40	0.96759	0.96745	0.96759
50	0.79405	0.97403	0.79405
100	0.98704	0.98699	0.98704
200	0.99356	0.99356	0.99356
1000	0.99880	0.99880	0.99880

\[\text{4. Results and Discussion} \]

The physical interpretation of the results obtained in the above section is presented here. The results of different physical parameters are analyzed graphically and presented in the tabular form. The skin friction \(-\sqrt{\text{Re}_f} C_f \) and Nusselt number \(-\theta(0) \) are presented through the table, and the impact of power-law stretching index \(m \), magnetic field parameter \(M \), the radius of curvature \(K \), Williamson fluid parameter \(\lambda \), Schmidt number \(Sc \), homogeneous reaction strength \(k_1 \), heterogeneous reaction strength \(k_2 \), Prandtl number \(Pr \), Biot number \(y \) on velocity \(f'(\eta) \), temperature \(\theta(\eta) \), pressure \(P(\eta) \), and concentration \(\phi(\eta) \) profiles is presented through the graphs.

Table 2 depicts the effect of \(m, M, y, K, Pr, \) and \(\lambda \) on \(-\sqrt{\text{Re}_f} C_f \) and \(-\theta(0) \). As we increase the value of \(m \), there is an increase in \(-\sqrt{\text{Re}_f} C_f \) and \(-\theta(0) \). The graph shows that increment in Williamson fluid parameter \(\lambda \) reduces the value of skin friction coefficient and Nusselt number because the collision of the fluid particles slows down. By the increase in the value of \(K \), \(-\sqrt{\text{Re}_f} C_f \) and \(-\theta(0) \) both decrease. The higher the value of \(M \), the higher the increase in the value of \(-\sqrt{\text{Re}_f} C_f \) and the decrease in the value of \(-\theta(0) \). By raising the value of \(Pr \) and \(y \), \(-\theta(0) \) is rising for both parameters, but \(-C_f \) remains unchanged because the velocity profile is independent of these parameters.

The effect of \(K \) on \(f'(\eta) \) is observed in Figure 2(a). The graph exhibits the obvious results that, by an increase in the value of \(K \), the radius of the surface enhances and hence boosts the velocity of the fluid. Figures 2(b)–2(d) display the changes of \(\theta(\eta), P(\eta), \) and \(\phi(\eta) \) profiles, for increasing radius of curvature \(K \). It is seen that there is a decrease in \(\theta(\eta), P(\eta), \) and \(\phi(\eta) \) for larger values of \(K \). This is because rising curvature makes the curved surface flat. The influence of \(M \) on \(f'(\eta), \theta(\eta), P(\eta), \) and \(\phi(\eta) \) is shown in Figures 3(a)–3(d). It is noted that fluid velocity, pressure, and concentration for higher values of \(M \) reduced. However, the temperature profile increases for greater values of \(M \). Practically, this effect is shown when the magnetic field is applied perpendicular to the flow direction, which creates resistance for the fluid flow. Figures 4(a)–4(d) illustrate the effect of nonlinearity parameter \(m \) on \(f'(\eta), \theta(\eta), P(\eta), \) and \(\phi(\eta) \) profiles. It is easy to discern that the velocity, temperature, and pressure decrease, whereas concentration profile increases by increasing \(m \) which is as expected practically.
Table 2: Variation of $-\sqrt{Re} C_f$ and $-\theta (0)$ for various values of physical parameters.

m	M	λ	K	Pr	γ	k_1	k_2	Sc	$-C_f Re^{1/2}$	$-\theta (0)$
1/3	0.2	0.3	5	4	0.3	0.5	0.5	0.3	1.87306	0.23740
0.5	1.98728	0.24006
1	2.28650	0.24620
...	0.2	1.87306	0.23740
...	0.3	1.98957	0.23656
...	0.4	2.09402	0.23576
...	...	0.1	2.00936	0.23786
...	...	0.2	1.94315	0.23765
...	...	0.3	1.87306	0.23740
...	...	1	3.11378	0.23905
...	...	5	1.87306	0.23740
...	...	10	1.69968	0.23682
...	3	1.87306	0.22866
...	4	1.87306	0.23740
...	5	1.87306	0.24349
...	0.2	1.87306	0.17010
...	0.3	1.87306	0.23740
...	0.4	1.87306	0.29595

![Figure 2](a) ![Figure 2](b)

Figure 2: Continued.
Figure 2: Impacts of K on (a) $f'(\eta)$, (b) $\theta(\eta)$, (c) $P(\eta)$, and (d) $\phi(\eta)$.

Figure 3: Continued.
Figure 3: Impacts of M on (a) $f'(\eta)$, (b) $\theta(\eta)$, (c) $P(\eta)$, and (d) $\phi(\eta)$.

Figure 4: Continued.
Figure 5 portrays the impact of λ on velocity and temperature profiles for different values of λ. We see that by raising the values of λ, the fluid velocity declines, as depicted in Figure 5(a). Figure 5(b) presents the effect of λ on the temperature profile. It is easy to detect an increase in the temperature of the fluid particles for a better value of λ. HX_he Williamson fluid parameter λ is defined as the proportion of relaxation time to retardation time. HX_he increasing values of Williamson fluid parameter λ enhance the relaxation time; as a result of this, the fluid particles need additional time to reinstate their previous path.

Figure 6(a) shows the effect of c on $\theta(\eta)$. For better values of c, the increment in the temperature profile is observed. Consequently, Biot number c gives a simple index of the ratio of heat transfer resistance inside and at the surface of geometry. HX_he nature of temperature for different values of Pr is well portrayed in Figure 6(b). As thermal conductivity is inversely proportional to Pr, a decrement is
observed for higher values of Pr. Hence for conducting fluids, Pr is responsible for enhancing the cooling rate.

Figure 7(a) shows the effect of homogeneous parameter k_1 on concentration distribution $\phi(\eta)$. From this figure, we observe that the concentration profile decreases as there is a rise in k_1. Hence it is concluded that reaction rate dominates diffusion coefficients. Figure 7(b) shows the strength of a heterogeneous reaction k_2 on $\phi(\eta)$. The plot shows that the concentration of the fluid and associated boundary layer thickness is reduced for higher values of k_2. Figure 8 illustrates the effect of Sc on $\phi(\eta)$. Sc is the ratio of momentum to mass.
diffusivity. An increase in Sc means momentum diffusivity is dominated, resulting in an increment in the concentration profile.

5. Conclusions

In this article, we have modelled the MHD flow of Williamson fluid across a nonlinear stretching curved surface with h-h reactions and convective boundary conditions. The governing partial differential equations are adapted into ordinary differential equations by using suitable similarity transformation. The impact of involving parameters on pressure, velocity, concentration, and temperature profiles are examined. Some examples of this problem in biochemical science and engineering processes are blood flow, plasma flow, lubrication flow, wire drawing, continuous casting, metal extrusion, paper production, glass fibre production, hot rolling, crystal growing, etc. The main consequences are noted below:

(i) Williamson fluid parameter becomes globally similar byfixing \(m = 1/3 \).

(ii) Skin friction coefficient rises for \(m, M \), whereas it decreases for \(\lambda \) and \(K \).

(iii) For better values of \(m, M, \lambda \), \(-\theta(0) \) increases for \(m \) and decreases for \(M, \lambda \), and \(K \).

(iv) As we increase the values of \(K, m, M \), and \(\lambda \), \(f'(\eta) \) decreases for \(m, M \), and \(\lambda \) but increases for \(K \).

(v) As we increase \(m, K, \lambda, y \), and \(Pr \), \(\theta(\eta) \) decreases for \(K, m \), and \(Pr \), whereas it increases for \(M, \lambda \), and \(y \).

(vi) As we increase the values \(m, M, k_1, k_2 \) and \(K \), the concentration profile settles at lower values, whereas it settled as higher values for \(m \) and Sc.

(vii) Pressure decreases for higher values of \(m, M \), and \(K \).

Nomenclature

\[A, C: \] Chemical species
\[u, v: \] Velocity component \((\text{ms}^{-1})\)
\[\tau_w: \] Wall shear stress
\[\mu: \] Dynamic viscosity \((\text{kgm}^{-1}\text{s}^{-1})\)
\[\nu: \] Kinematic viscosity \((\text{m}^2\text{s}^{-1})\)
\[m: \] Power-law stretching index
\[\lambda: \] Williamson fluid parameter
\[h_{c}, h_{s}: \] Rate constant
\[c_{p}: \] Specific heat capacity
\[u_{w}: \] Velocity at surface
\[\eta: \] Similarity variable
\[H: \] Radius
\[\theta: \] Dimensionless temperature
\[Nu_{h}: \] Local Nusselt number
\[K: \] Curvature parameter
\[Pr: \] Prandtl number
\[k_{1}: \] Homogeneous reaction parameter
\[C_{f}: \] Skin friction coefficient
\[f': \] Dimensionless velocity
\[s, r: \] Coordinate axes
\[a, c: \] Concentrations
\[\rho: \] Fluid density
\[p: \] Dimensional pressure
\[q_{w}: \] Heat flux at the wall \((\text{Wm}^{-2})\)
\[T_{\infty}: \] Ambient fluid temperature
\[l_{c}, t: \] Convective coefficient
\[T_{s}: \] Convective surface temperature
\[b_{1}: \] Positive constant
\[D_{A}, D_{C}: \] Diffusion coefficient
\[k_{2}: \] Heterogeneous reaction parameter
\[\delta: \] The ratio of the diffusion coefficient
\[Sc: \] Schmidt number
\[\phi(\eta): \] Dimensionless concentration
\[\gamma: \] Biot number
\[Re_{h}: \] Local Reynolds number
\[h-h: \] Homogeneous and heterogeneous
\[\eta: \] Thermal conductivity
\[T: \] Temperature.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] C. M. Ionescu, I. R. Birs, D. Copot, C. I. Muresan, and R. Caponetto, “Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids,” Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, vol. 378, Article ID 20190284, 2020.

[2] W. B. Gogarty, “Rheological properties of pseudoplastic fluids in porous media,” Society of Petroleum Engineers Journal, vol. 7, no. 2, pp. 149–160, 1967.
[3] R. V. Williamson, "The flow of pseudoplastic materials," *Industrial and Engineering Chemistry*, vol. 21, no. 11, pp. 1108–1111, 1929.

[4] M. Bibi, A. Zeeshan, and M. Y. Malik, "Numerical analysis of unsteady flow of three-dimensional Williamson fluid-particle suspension with MHD and non-linear thermal radiations," *The European Physical Journal Plus*, vol. 135, 2020.

[5] H. Hashim, M. K. Anuar Mohamed, N. Ishak, N. M. Sarif, and M. Z. Saleh, "Thermal radiation effect on MHD stagnation point flow of Williamson fluid over a stretching surface," *Journal of Physics: Conference Series*, vol. 1366, 2019.

[6] W. Ibrahim and M. Negera, "The investigation of MHD Williamson nanofluid over stretching cylinder with the effect of activation energy," *Advances in Mathematical Physics*, vol. 2020, Article ID 9523630, 2020.

[7] M. Ijaz Khan, S. Javed, T. Hayat, M. Waqas, and A. Alsaedi, "Entropy optimization in cubic autocatalysis chemical reactive flow of Williamson fluid subjected to viscous dissipation and uniform magnetic field," *Journal of Central South University*, vol. 26, no. 5, pp. 1218–1232, 2019.

[8] L. A. Lund, Z. Omar, and I. Khan, "Analysis of dual solution for MHD flow of Williamson fluid with slippage," *Heliyon*, vol. 5, Article ID e01345, 2019.

[9] K. A. Kumar, J. V. R. Reddy, V. Sugunamma, and N. Sandeep, "MHD flow of chemically reacting Williamson fluid over a curved/flat surface with variable heat source/sink," *International Journal of Fluid Mechanics Research*, vol. 46, no. 5, pp. 407–425, 2019.

[10] T. Hayat, A. Shafiq, A. Farooq, H. Alsulami, and S. Shehzad, "Newtonian and joule heating effects in two-dimensional flow of Williamson fluid," *Journal of Applied Fluid Mechanics*, vol. 9, no. 6, pp. 1969–1975, 2016.

[11] T. Hayat, A. Shafiq, and A. Alsaedi, "Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation," *Alexandria Engineering Journal*, vol. 55, no. 3, pp. 2229–2240, 2016.

[12] M. Turkyilmazoglu, "Stretching/shrinking longitudinal fins of rectangular profile and heat transfer," *Energy Conversion and Management*, vol. 91, pp. 199–203, 2015.

[13] A. Shafiq, S. A. Lone, T. N. Sindhu, Q. M. A. Mdallal, and G. Rasool, "Statistical modeling for bioconvective tangent hyperbolic nanofluid towards stretching surface with zero mass flux condition," *Scientific Reports*, vol. 11, no. 1, Article ID 13869, 2021.

[14] S. Asghar, M. Jalil, M. Hussan, and M. Turkyilmazoglu, "Lie group analysis of flow and heat transfer over a stretching rotating disk," *International Journal of Heat and Mass Transfer*, vol. 69, pp. 140–146, 2014.

[15] M. Turkyilmazoglu, "Suspension of dust particles over a stretchable rotating disk and two-phase heat transfer," *International Journal of Multiscale Coupling Phenomena*, vol. 127, Article ID 103260, 2020.

[16] A. Shafiq, Z. Hammouch, and F. Ortìop, "Radiative MHD flow of third-grade fluid towards a stretched cylinder," in *Proceedings of the International Conference on Computational Mathematics and Engineering Sciences*, pp. 166–185, Antalya, Turkey, April 2019.

[17] M. Sajid, N. Ali, T. Javed, and Z. Abbas, "Stretching a curved surface in a viscous fluid," *Chinese Physics Letters*, vol. 27, pp. 2–5, 2010.

[18] Z. Abbas, M. Naveed, and M. Sajid, "Heat transfer analysis for stretching flow over a curved surface with magnetic field," *Journal of Engineering and Thermophysics*, vol. 22, no. 4, pp. 337–345, 2013.

[19] S. Ahmad, S. Nadeem, and N. Muhammad, "Boundary layer flow over a curved surface imbedded in porous medium," *Communications in Theoretical Physics*, vol. 71, no. 3, pp. 344–348, 2019.

[20] K. M. Sanni, S. Asghar, M. Jalil, and N. F. Okechi, "Flow of viscous fluid along a non-linearly stretching curved surface," *Results in Physics*, vol. 7, pp. 1–4, 2017.

[21] J. V. Ramana Reddy, V. Sugunamma, and N. Sandeep, "Dual solutions for nanofluid flow past a curved surface with non-linear radiation, Soret and Dufour effects," *Journal of Physics: Conference Series*, vol. 1000, 2018.

[22] S. H. M. Saleh, N. M. Afirin, R. Nazar, and I. Pop, "Unsteady micropolar fluid over a permeable curved stretching shrinking surface," *Mathematical Problems in Engineering*, vol. 2017, Article ID 3085249, 2017.

[23] A. Yasmin, K. Ali, and M. Ashraf, "Study of heat and mass transfer in MHD flow of micropolar fluid over a curved stretching sheet," *Scientific Reports*, vol. 10, pp. 1–11, 2020.

[24] K. Ahmed, T. Akbar, T. Muhammad, and M. Alghamdi, "Heat transfer characteristics of MHD flow of Williamson nanofluid over an exponential permeable stretching curved surface with variable thermal conductivity," *Case Studies in Thermal Engineering*, vol. 28, Article ID 101544, 2021.

[25] R. J. Punith Gowda, F. S. Al-Mubaddel, R. Naveen Kumar et al., "Computational modelling of nanofluid flow over a curved stretching sheet using Koo-Kleinstreuer and Li (KKL) correlation and modified Fourier heat flux model," *Chaos, Solitons & Fractals*, vol. 145, Article ID 110774, 2021.

[26] M. Y. Malik, T. Salahuddin, A. Hussain, S. Bilal, and M. Awais, "Homogeneous-heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method," *AIP Advances*, vol. 5, 2015.

[27] R. S. Saif, T. Muhammad, H. Sadia, and R. Ellahi, "Boundary layer flow due to a nonlinear stretching curved surface with convective boundary condition and homogeneous-heterogeneous reactions," *Physica A: Statistical Mechanics and its Applications*, vol. 551, Article ID 123996, 2020.

[28] N. Khan, M. S. Hashmi, S. U. Khan et al., "Effects of homogeneous and heterogeneous chemical features on Oldroyd-B fluid flow between stretching disks with velocity and temperature boundary assumptions," *Mathematical Problems in Engineering*, vol. 2020, Article ID 5284906, 2020.

[29] S. Ahmed, H. Xu, and Q. Sun, "S stagnation flow of a SWCNT nanofluid towards a plane surface with heterogeneous-homogeneous reactions," *Mathematical Problems in Engineering*, vol. 2020, Article ID 3265143, 2020.

[30] M. Ali, F. Sultan, M. Shahzad, and W. A. Khan, "Influence of homogeneous-heterogeneous reaction model for 3D cross fluid flow: a comparative study," *Indian Journal of Physics*, vol. 95, pp. 315–323, 2020.

[31] M. Javed, M. Farooq, S. Ahmad, and A. Anjum, "Melting heat transfer with radiative effects and homogeneous-heterogeneous reaction in thermally stratified stagnation flow embedded in porous medium," *Journal of Central South University*, vol. 25, no. 11, pp. 2701–2711, 2018.

[32] P. Sreedevi, P. Sudarsana Reddy, and M. A. Sheremet, "Impact of homogeneous-heterogeneous reactions on heat and mass transfer flow of Au-Eg and Ag-Eg Maxwell nanofluid past a horizontal stretched cylinder," *Journal of Thermal Analysis and Calorimetry*, vol. 141, no. 1, pp. 533–546, 2020.

[33] K. Ahmed and T. Akbar, "Numerical investigation of magnetohydrodynamics Williamson nanofluid flow over an exponentially stretching surface," *Advances in Mechanical Engineering*, vol. 13, pp. 1–12, 2021.
[34] S. Qayyum, M. I. Khan, F. Masood, Y. M. Chu, S. Kadry, and M. Nazeer, "Interpretation of entropy generation in Williamson fluid flow with non-linear thermal radiation and first-order velocity slip," *Mathematical Methods in the Applied Sciences*, vol. 44, no. 9, pp. 7756–7765, 2021.

[35] T. Hayat, A. Shafiq, and A. Alsaedi, "Hyromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation," *Alexandria Engineering Journal*, vol. 55, no. 3, pp. 2229–2240, 2016.

[36] M. Ramamoorthy and L. Pallavarapu, "Radiation and Hall effects on a 3D flow of MHD Williamson fluid over a stretchable surface," *Heat Transfer*, vol. 49, no. 8, pp. 4410–4426, 2020.

[37] B. J. Gireesha, S. Sindhu, G. Sowmya, and A. Felicita, "Magnetohydrodynamic flow of Williamson fluid in a microchannel for both horizontal and inclined loci with wall shear properties," *Heat Transfer*, vol. 50, pp. 1–15, 2020.

[38] K. A. Kumar, J. V. R. Reddy, V. Sugunamma, and N. Sandeep, "Simultaneous solutions for MHD flow of Williamson fluid over a curved sheet with nonuniform heat source/sink," *Heat Transfer Research*, vol. 50, no. 6, pp. 581–603, 2019.

[39] K. Ahmed, K. Waqar, T. Akbar, G. Rasool, S. O. Alharbi, and I. Khan, "Numerical investigation of mixed convective Williamson fluid flow over an exponentially stretching permeable curved surface," *Fluids*, vol. 13, 2021.