MicroRNAs as the Sentinels of Redox and Hypertrophic Signalling

Filip Kolodziej 1, Brian McDonagh 1, Nicole Burns 1,† and Katarzyna Goljanek-Whysall 1,2,*,†

1 Department of Physiology, School of Medicine, CMNHS, University of Galway, H91TK33 Galway, Ireland
2 Institute of Life Course and Medical Science, University of Liverpool, Liverpool L69 3BX, UK
* Correspondence: kasia.whysall@universityofgalway.ie or kwhysall@liverpool.ac.uk
† These authors contributed equally to this work.

Abstract: Oxidative stress and inflammation are associated with skeletal muscle function decline with ageing or disease or inadequate exercise and/or poor diet. Paradoxically, reactive oxygen species and inflammatory cytokines are key for mounting the muscular and systemic adaptive responses to endurance and resistance exercise. Both ageing and lifestyle-related metabolic dysfunction are strongly linked to exercise redox and hypertrophic insensitivity. The adaptive inability and consequent exercise intolerance may discourage people from physical training resulting in a vicious cycle of under-exercising, energy surplus, chronic mitochondrial stress, accelerated decline and increased susceptibility to serious diseases. Skeletal muscles are malleable and dynamic organs, rewiring their metabolism depending on the metabolic or mechanical stress resulting in a specific phenotype. Endogenous RNA silencing molecules, microRNAs, are regulators of these metabolic/phenotypic shifts in skeletal muscles. Skeletal muscle microRNA profiles at baseline and in response to exercise have been observed to differ between adult and older people, as well as trained vs. sedentary individuals. Likewise, the circulating microRNA blueprint varies based on age and training status. Therefore, microRNAs emerge as key regulators of metabolic health/capacity and hormetic adaptability. In this narrative review, we summarise the literature exploring the links between microRNAs and skeletal muscle, as well as systemic adaptation to exercise. We expand a mathematical model of microRNA burst during adaptation to exercise through supporting data from the literature. We describe a potential link between the microRNA-dependent regulation of redox-signalling sensitivity and the ability to mount a hypertrophic response to exercise or nutritional cues. We propose a hypothetical model of endurance exercise-induced microRNA “memory cloud” responsible for establishing a landscape conducive to aerobic as well as anabolic adaptation. We suggest that regular aerobic exercise, complimented by a healthy diet, in addition to promoting mitochondrial health and hypertrophic/insulin sensitivity, may also suppress the glycolytic phenotype and mTOR signalling through miRNAs which in turn promote systemic metabolic health.

Keywords: microRNAs; muscle; redox; sarcopenia; ageing

1. Introduction

1.1. Challenging the Oxidative Stress Theory of Muscular Function Decline

Maximal aerobic capacity (VO2max) is the maximum volume of oxygen that can be delivered to and consumed by continuously working muscles during a maximal graded exercise test (GXT) [1–3]. The main factors contributing to VO2max are the cardiac output, blood volume, haemoglobin concentration-oxygen carrying capacity. These features determine the O2-carrying capacity. At the molecular level, VO2max is dependent on skeletal muscle mitochondrial density and metabolic enzyme capacity, which determine the O2-extracting capacity [4,5]. VO2max is a strong predictor of both endurance exercise performance [3,4] and increased risk of all-cause mortality [6]. Both the cardiovascular and skeletal muscle components of VO2max deteriorate with age [7,8] in addition to reduced...
or complete cessation in training volume and/or intensity [9]. The functional declines are coupled with reduced mitochondrial oxidative capacity due to the accumulation of dysfunctional mitochondria, elevated production of reactive oxygen species (ROS), consequent damage of the mitochondrial DNA (mtDNA) and decreased protein content and quality in striated muscles [10,11]. Vast evidence points toward mitochondrial dysfunction as the instigating defect for age-related muscle loss (sarcopenia) [12].

Paradoxically, the production of endogenous ROS during exercise is necessary for optimal metabolic and contractile function, as well as adaptive signalling [13,14]. Mitochondrial ROS have been reported to orchestrate muscle cell regeneration following a mechanical injury [15]. An adequate reduction-oxidation (redox) balance is critical for the maintenance of optimal muscle mass, as ROS overload originating from mitochondria and/or cytosolic oxidases, modulates protein/organelle degradation mechanisms including the proteases, autophagic-lysosomal, and proteasome systems [16]. A disrupted redox environment is deemed a culprit or secondary contributor to a plethora of metabolic and age-related pathologies such as atherosclerosis, hypertension, obesity, congestive heart failure (CHF), Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) [17–19]. On the contrary, a pro-oxidant redox disturbance of correct magnitude and frequency is recognised as oxidative eustress [20]. Oxidative eustress elicited by exercise provides the robustness and functionality of muscular tissue by facilitating the activation of the transcriptional factors, nuclear factor erythroid-derived 2-like 2 (Nrf2), a “master regulator of antioxidant response”, and peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a “master regulator of mitochondrial biogenesis” [21–23]. However, there is no consensus whether disrupted redox homeostasis contributes to the fast-twitch dominant age-related muscle atrophy [11]. Sarcopenic mitochondrial dynamics are characterised by impairment of both mitochondrial fusion and fission, resulting in the accumulation of dysfunctional mitochondria, as well as mitophagy and mitochondrial biogenesis. Transgenic mice lacking both mitochondrial fusion (dynamin-like 120 kDa protein; Opa1) and fission (dynamin-related protein 1; Drp1) proteins closely resembled the sarcopenic mitochondrial dynamics, but also exhibited decreased secretion of senescence factors, oxidative stress, denervation, and inflammation, despite a significant muscle weakness [24].

Multiple human and animal-based studies suggest that maintenance of mitochondrial quality control through exercise, nutritional or pharmacological interventions slows down the progression of sarcopenia and rate of functional decline [25]. Moreover, six weeks of isolated knee-extension endurance training enhanced the activity of the mitochondrial enzymes (citrate synthase, mitochondrial complexes I–IV) in the quadriceps muscle of young men independent of the mitochondrial volume and mtDNA content [26]. Conversely, four weeks of deconditioning resulted in a similar magnitude of decline in enzymatic activity, also without any significant alterations to mitochondrial dynamics or mtDNA content [26]. This suggests that the changes in transcription or translatory capacity/output are key determinants of muscle plasticity in both enhancement and decline of muscle function. Several studies showed that cardiovascular and neuromuscular function, as well as skeletal muscle mitochondrial efficiency, followed by oxidative capacity can be significantly improved with several weeks of endurance training in previously inactive individuals [27–29]. Similarly, prolonged resistance training may result in increased muscle strength and hypertrophy [30–32]. However, the degree of mitochondrial [33,34] and hypertrophic [31,35] adaptability is somewhat reduced with ageing. Deconditioning in older adults results in a more pronounced rate of loss of the mitochondrial and hypertrophic adaptations [36,37].

Physiological and anatomical adaptations are believed to occur due to molecular signalling cascades resulting in “mRNA bursts”, increased transcription of specific target genes and subsequent fine-tuning of the translation into proteins which convey the enhanced phenotype [38,39]. Recent studies suggest that the activation of the translatory machinery (phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and the 70-kDa ribosomal protein S6 kinase (S6K1)) and ribosomal biogenesis coupled
with protein synthesis in response to a bout of resistance exercise are significantly reduced in elderly vs. young men [40,41]. Muscles from older individuals also exhibit an impaired differentiation of progenitor cells (myoblasts) into lineage-committed myocytes, strongly correlating to attenuated endoplasmic reticulum (ER) response/protein folding post-exercise [42]. However, the mRNA and protein levels of the differentiation-promoting myogenesis regulating factor (MRF), myogenic differentiation 1 (MyoD1) are significantly higher in older people at rest and post-exercise [43–45], suggesting a failed compensation. The translation of all MRFs, including MyoD1, is tightly regulated by multiple mechanisms, including the endogenous mRNA-silencing molecules, the microRNAs (miRNAs) [46,47]. miRNAs are short, approximately 22 nucleotides long, single-stranded RNAs. Each miRNA family has a unique “seed-sequence” located at the 5′ end, which allows partial binding to a target site usually within the 3′ untranslated region (3′-UTR) of the target mRNA [48,49]. miRNAs play an instrumental role in muscle development and growth [46,47,50], mitochondrial remodelling [51–53] and protein quality control including unfolded protein response (UPR) [54]. Therefore, characterising the links between the deterioration of muscle mass, mitochondrial function, redox homeostasis and miRNA expression with ageing or detraining may be key to deciphering the extent to which disrupted redox signalling contributes to the process of muscular decline.

1.2. miRNA Memory Cloud Perpetuates the Exercise-Induced Adaptive Phenotype

miRNA levels are mainly dictated by their rate of synthesis and degradation. There is limited evidence on the regulation of the miRNA processing in response to an exercise bout and exercise training compared to miRNA expression. A significant increase in miRNA biosynthetic enzymes: Drosha, Exportin 5 and Dicer mRNA, 3 h following a single bout of 60 min continuous stationary cycling at 70% of pre-determined VO\textsubscript{2} peak was reported in young untrained men [55]. However, in the same study, the resting mRNA levels of Drosha, Exportin 5 and Dicer after a 10-day intervention including five sessions of moderate-intensity continuous training (MCT) and four of high-intensity interval training (HIIT) returned to the pre-training values [55]. This suggests that the transcriptional activation of miRNA biogenesis in response to exercise may be transient. miRNAs downregulated at the post-intervention time-point were negatively correlated with histone deacetylase 4 (HDAC4) mRNA, which was elevated 19-fold acutely and only 4-fold at the end of the intervention [55]. HDAC-dependent histone deacetylation results in a more condensed DNA conformation and decreased space for transcriptional complexes to induce their target genes [56]. Aerobic exercise-induced signalling through adenosine monophosphate-activated kinase (AMPK) and calcium/calmodulin-dependent kinase (CaMK) promote translocation of HDAC4 from the nucleus to cytoplasm, releasing the repression of HDAC4 target genes such as myocyte enhancer factor-2C (MEF-2C), glucose transporter 4 (GLUT4), myosin heavy chain (MyHC), PGC-1\textalpha, heat shock cognate 71 kDa protein (Hsc70), and paired box family transcription factor 7 (PAX7) [57]. Therefore, regulation of HDAC4 expression and subcellular localisation may play a key role in muscle adaptation and plasticity. Of note, HDAC4 is upregulated in muscle atrophy due to denervation, immobilisation or ageing [58–60]. Therefore, the counterintuitive increase in HDAC4 mRNA in sedentary participants (all less than 2 h of exercise a week) who suddenly performed nine moderate-heavy sessions in a space of 10 days [55], may suggest that over-reaching/unaccustomed training load might promote a skeletal muscle epigenetic landscape unfavourable for adaptation and regeneration similar to atrophic conditions [61]. On the other hand, lower levels of HDAC4 in muscle-specific knock out mice resulted in improved muscle regeneration following nerve injury due to de-repression of the fibroblastic growth factor (FGF) binding protein-1 (FGFBP-1) [62] suggesting a potentially pleiotropic role of HDAC4.

Conditional deletion of DICER in skeletal muscles resulted in impaired regeneration in response to injury [63] but did not affect the protein expression and enhancement of maximal oxidative capacity in isolated fibres following endurance exercise training in mice [64]. Therefore, immediate miRNA biogenesis appears more important for promot-
ing adaptation and/or recovery from damaging modalities such as heavy weightlifting, unaccustomed eccentric loading or unusually intense/prolonged endurance exercise [65]. However, both studies reported only a partial reduction in miRNA expression following several weeks of inhibiting Dicer [63,64]. Therefore, based on current evidence determining if miRNA response is mandatory for mounting exercise-induced muscle adaptation is unclear. A recent study by Margolis explored the miRNA blueprint induced by exercise over time [66,67]. Specifically, 3 days of military training in energy deficit was shown to increase skeletal muscle miRNA levels of rate-limiting fatty-acid transporter carnitine-palmitoyl transferase A (CPT1A) more than in energy balance, despite that expression of its upstream transcriptional factor, peroxisome proliferator-activated receptor-α (PPAR-α) was not significantly different between the two groups [66]. Notably, miR-34a-5p, a negative regulator of PPAR-α was significantly more abundant in the negative energy balance group, suggesting that other compensatory mechanisms maintained the elevated levels of CPT1A transcripts despite the apparent suppression of the key activator. Analogously, muscle protein synthesis rates were reported to remain elevated in chronically exercised rats, despite a significant fall in the activation of the “anabolic master switch” mechanistic target of rapamycin (mTOR) with subsequent exercise sessions [68]. Therefore, it is plausible that exercise-induced changes in the skeletal muscle miRNA blueprint downregulate the acute effectors of exercise-stress response, but simultaneously allow “more efficient” transcription and subsequently translation owing to favourable miRNA-induced epigenetic cloud [67], with miRNA cloud concept, similar to feedback or feedforward loops, suggesting that a set of microRNAs is regulated following a specific stimulus that can convey or perpetuate the response to a stimulus such as exercise over time. Moreover, significantly higher pre-miRNA pools were reported in older relative to younger adults suggesting the impairment of exercise-triggered miRNA processing with age and sedentary lifestyle [69]. Thus, potentially contributing to the differential miRNA signature and reduced hypertrophic and translatory adaptability in old compared to young [31,35,40,41].

1.3. Role of miRNAs in Myogenesis—The Orchestration of the Metabolic Symphony

The exact involvement of satellite/muscle stem cells (MuSCs) and myogenesis in adaptation to endurance exercise remain undefined [70]. Despite contradictory evidence, recent experiments utilising timed in vivo myonuclear labelling suggest that satellite cells play an important role in training-induced hypertrophy [71]. In addition to participation in acute response through myonuclear accretion, MuSCs were suggested to contribute to synthesis of ribosomal proteins and satellite cell-derived myonuclei were shown to have altered methylation status that favours cell-to-cell signalling, possibly “rejuvenating” the myofibers and promoting long-term hypertrophy [71–73]. It also appears that MuSC miR-1 expression reflects the epigenetic memory of previous training, as it enhances ongoing growth and likely facilitates re-growth after a period of detraining in mice [74].

miRNAs play key roles in myogenic development and regeneration from injury. Dicer KO mouse embryos failed to thrive, while the conditional muscle-specific KO resulted in profound muscle hypoplasia and delayed muscle development [50,75]. Marked shifts in the expression of miRNAs including muscle-specific myomiRs occur during the transitions between the stages of myogenesis [76,77]. The transcription of myomiRs is regulated by the MRFs including the MyoD1, MYF5 (myogenic factor 5), MYOG (myogenin) and MYF6 (myogenic factor 6), as well as MEF-2C [78,79]. Together, with the paired box family transcription factors PAX3 and PAX7, a timely transcriptional activity of the MRFs is crucial for orderly myogenesis during embryonic development and regeneration [80,81]. Consistently, miRNAs also exhibit a time-dependent expression pattern throughout the myogenic programme. Progression of myogenesis depends on timely shifts between glycolytic and mitochondrial energy metabolism [82–84] and mitochondrial dynamics [85–87].

miRNAs promote MuSC commitment by regulating Pax7 expression [88–91] and de-repressing of MEF-2C by targeting HDAC4 [92]. Of note, miRNAs initiate the initial myoblast differentiation in vitro by targeting the uncoupling protein 2 (UCP2) [93]. UCP2 is a chemios-
motic decoupler, protecting from proton leak and ROS generation [94]. This highlights the link between miRNAs and redox balance for adequate muscle growth/regeneration. Differentiation into myocytes is also promoted by miRNA-dependent silencing of phosphatase and tensin homolog (PTEN) and forkhead box protein O1a (FOXO1a) [95], the downstream effectors of the phosphoinositide-3 kinase/protein kinase B (PI3K/Akt) pathway [96]. IGF-1-dependent activation of the PI3K/Akt/mTOR pathway has been strongly linked to anaerobic/glycolytic phenotype, myoblast proliferation and muscle hypertrophy [97]. This again suggests that miRNAs modulate the progression of the myogenic program by regulating the metabolism-regulating signalling pathways. Thus, miRNA-dependent post-transcriptional regulation emerges as the bridge connecting muscle metabolic phenotype with skeletal muscle development, regeneration and hypertrophy.

1.4. The Role of miRNA Networks in Muscle and Metabolic Health—The Context Matters as Much as the Content

miRNAs regulate muscle fibre-type and metabolic performance [98,99] and muscle plasticity/adaptability to imposed stressors. miR-208a, miR-208b and miR-499 form a loop responsible for the maintenance of the slow-twitch skeletal muscle fibres during inactivity and protection from fast-twitch hypertrophy in the overloaded heart [98,100]. Furthermore, miR-499 promotes PGC-1α activation in skeletal muscle by targeting the AMPK suppressor, folliculin-interacting protein 1 (Fnip1) [101]. AMPK is well known to oppose pro-glycolytic mTOR signalling through several pathways [102,103]. Hence, miRNAs cross-regulate the antagonistic pathways and their resultant phenotypes.

miR-378a-5p and its passenger strand, miR-378a-3p are encoded within the first intron of PPARγ coactivator-1β (PGC-1β) [104]. The global deletion of both miR-378 strands in mice promoted their resistance to HFD-induced obesity, by improving hepatic fatty-acid oxidation [104]. Paradoxically, miR-378-3p appears to mediate the anti-diabetic properties of AMPK-activating metformin in muscle cells exposed to hyperglycaemic stress, by promoting the expression of the mitochondrial transcription factor A (TFAM) and enhanced mitophagy [105]. Analogously, metformin is a well-known anti-diabetic drug restoring insulin sensitivity [106]. However, middle-aged to older adults at risk of or suffering from metabolic syndrome who undertook an exercise intervention in combination with metformin therapy exhibited a reduced VO₂max increase [107,108]. Thus, the contrasting effects of miR-378 KO suggests that miRNA function may depend on the context of the tissue it is expressed in and the systemic stressors, such as exercise.

miR-378-3p also favoured a pro-oxidative and suppressed hypertrophic/glycolytic phenotype in the myoblasts [109], cardiomyocytes [110], and adipocytes [111]. Consistently, miR-378 was shown to prompt myogenic differentiation by targeting the HDAC4 [112] and BMP4 [113], both of which play an integral part in setting the proliferative/glycolytic muscle cell identity [114,115]. HDAC4 suppresses the slow-twitch oxidative fibre development through deacetylation of the MEF-2C [116] as well as PGC-1α and MyHC genes [117]. Considering that in vitro treatment of myotubes with tumour necrosis factor α (TNF-α) or interferon γ (IFN-γ) resulted in decreased expression of miR-378 [109], an inflammatory/diseased state could impair the miRNA-dependent orchestration of muscle and systemic metabolism.

HDAC4 expression is upregulated in skeletal muscles in multiple atrophy-favouring conditions such as denervation, immobilisation or ageing [58–60]. Remarkably, mice injected with an HDAC4 inhibitor into their gastrocnemius muscle were resistant to denervation-induced atrophy, as their PGC-1α expression and oxidative capacity were preserved [117]. This finding is consistent with endurance exercise-induced AMPK and CaMK reducing HDAC4 in nuclear domain [57], however muscle-specific HDAC4 KO resulted in more rapid regeneration of muscle following nerve injury [62]. Moreover, other MEF-2C repressors, PURB-β and SP3, targeted by miR-208b and miR-499, were shown to be associated with the inactivity-induced muscle atrophy [118]. Both miR-208b and miR-499 are downregulated in skeletal muscles following a prolonged hindlimb suspension in
mice [119], and spinal cord injury in humans [120]. Of note, the expression of miR-208b and miR-499, as well as the critical pro-oxidative factor, oestrogen-related receptor-γ (ERR-γ), strongly correlated with the enhanced oxidative capacity (fibre ATPmax and VO2max) and the slow-twitch fibre content in physically active and sedentary adults [121]. Moreover, miR-1 is increased following acute endurance training (ET) compared to long-term (ET) and decreased after acute hypertrophy training [47]. Therefore, muscle miRNA-dependent re-configuration of the epigenetic histone modifications and consequent regulation of oxidative metabolism and phenotype might contribute to the decline in muscle aerobic function and mass with ageing, detraining or declined physical activity (Figure 1).

Figure 1. Muscle miRNAs regulate muscle oxidative/slow twitch phenotype and mass. HDAC4 is upregulated in pro-atrophic conditions [58–60], inhibiting the expression of MEF-2C and PGC-1α [116,117]. This is associated with decreased transcription of muscle-contractile, mitochondrial and antioxidant proteins. HDAC4 also suppresses the expression of FGFBP-1, reducing the binding and activation of neurogenic FGFs [62]. miR-206 is upregulated following acute high-intensity exercise [47], contributing to increased muscle innervation. HDAC4 is targeted by miR-378, which promotes autophagy by releasing PDK1/mTOR-dependent suppression of autophagy-inducing ULK1 [109,112]. miR-378 levels are diminished by pro-inflammatory cytokines, TNF-α and IFN-γ [109]. HDAC4 nuclear abundance/activity decreases in response to endurance exercise [57] and in differentiating muscle progenitors [112]. miR-1 blocks HDAC4 expression and is elevated in slow-twitch relative to fast-twitch fibres. miR-1 is increased following acute endurance training (ET) compared to long-term (ET) and decreased after acute hypertrophy training [47]. Thus, ET may acutely promote miRNA profile permissive to the enhancement of oxidative phenotype while maintaining muscle protein synthesis and proliferative potential long-term. miR-499 opposes the effects of HDAC4 and strongly correlates with aerobic and metabolic capacity [121]. Red arrow—inhibition; green arrow—upregulation.

The function of each miRNA is not only dependent on the context of the tissue it is operating in but also the functionality of the “network-companion” miRNAs. miR-499 and miR-378 corresponding targets Fnip1 and HDAC4, suppress the activation of the heat shock protein 90 (Hsp90) and Hsc70, respectively [117,122]. Heat shock proteins are molecular chaperones necessary for the cellular stress response, including the recognition of damaged/misfolded proteins [123]. Therefore, dysregulation of the miRNA networks may result in the inaccurate balancing of the signalling pathways as well as inadequate protein quality control, compromising muscle development and maintenance [124] including the metabolic, oxidative and mechanical stress response [125–127]. Hence, recognising the
differences in the miRNA network in adaptive stress response (e.g., exercise) vs. maladaptive (e.g., disease) can unveil the mechanisms behind muscular decline with detraining or ageing.

1.5. Muscle miRNA Networks in Metabolic Disease, Ageing and Exercise Training—Fine-Tuning Thermostat of Redox and Anabolic Sensitivity

Mitochondrial quality control plays a prominent role in sarcopenia \[16,24,25\]. Abnormally swollen mitochondria were observed in skeletal muscles of old mice despite the upregulated expression of autophagic proteins including p62, PARK-2, and DJ-1 suggesting impaired autophagy \[53\]. The apparent mitophagy arrest was released by treatment with miR-181a, which prevented accumulation of the above proteins and restored the mitophagic flux in vitro and in vivo. miR-181a appears to regulate both mitochondrial biogenesis and mitophagy. The effects of miR-181a on the autophagic markers in old sedentary mice were similar to those that were subjected to in situ stimulation protocol mimicking exercise. Consistently, miR-181a treatment increased peak isometric force, muscle fibre size and expression of electron transport chain proteins owing to induction of transcriptional factor TFAM \[53\]. TFAM expression is upregulated by the exercise-dependent Nrf2 response \[23\]. Exercise-induced Nrf2 transcriptional activity was shown to be essential to igniting both mitochondrial fusion and fission by regulating the stability of the mitochondrial fission protein Drp1 \[128,129\]. Furthermore, Nrf2 deletion in mice severely accelerated muscle atrophy, by directly disrupting mitochondrial dynamics in an age-dependent fashion \[130\]. Notably, inhibition of Drp1-dependent mitochondrial division markedly blunted myogenic differentiation \[86\]. Thus, considering the impaired Nrf2 exercise response in old rodents and elderly sedentary adults \[22,131,132\] progressing “hormetic impotence” could be linked to the aberrant miRNA blueprint perpetuating the sarcopenic phenotype. Correspondingly, a ROS-induced master pro-inflammatory transcriptional factor, nuclear factor of activated B-cells Kappa (NF-κB) is chronically active in ageing muscles markedly diminishing the regenerative capacity through restraining MuSC differentiation \[133,134\].

In addition to changes in Nrf2 activation, the induction of other redox-sensitive transcription factors such as heat shock factor 1 (HSF1), NF-KB and activating protein 1 (AP-1) fails in old mice following exercise \[135–137\]. Consistently, acute activation of NF-κB with exercise is minimal in obese and effectively unnoticeable in type 2 diabetic young adults \[138\]. Cobley and colleagues suggested that this acute transcriptional inability is due to persistent baseline Nrf2 activation, as well as elevated NF-κB levels, contributing to chronic oxidative stress noise in inactive muscles, decreasing the signal-to-noise ratio and leading to dampened exercise-elicited pro-oxidant shifts \[132\]. This is reflected by the baseline elevation of the antioxidant enzymes SOD2 and catalase in the muscles of the aged compared to young rodents \[135–137\]. The non-functional hyper-expression and activity of the antioxidant systems shift redox balance toward excessively reduced, resulting in “reductive stress” that hampers myogenic differentiation \[139\].

Of note, antioxidant supplementation significantly improves strength performance, as well as mitochondrial and metabolic adaptability in elderly men and women participating in routine combined exercise training (CXT) \[140\]. Therefore, reduction of the oxidant “noise” in the aged muscular milieu plausibly returns the hormetic redox sensitivity. However, a detrimental effect of long-term Vitamin C and E supplementation was observed in young adults, who experienced diminished SOD2, PGC-1α and p38 mitogen-activated protein kinase (p38 MAPK) induction by endurance training in comparison to the placebo groups \[141–143\].

Increasing sedentary behaviour with age does not appear to be fully responsible for hormetic signalling dysfunction. Men older than 55 years of age, who engaged in lifelong endurance training, were reported to preserve some but not all translational responses to an acute bout of exercise. SOD2, Hsp72 and peroxiredoxin-5 (PRX5) failed to increase from baseline, in comparison to the increase seen in subjects between 18 and 30 years old \[144\]. Transcriptional p38 MAPK and PGC-1α responses responsible for mitochondrial biogenesis
are retained in older individuals irrespective of training status, pointing to the failure of the antioxidant/hormetic response specifically [145,146]. However, the translatory response of mitochondrial proteins tends to decline with age, suggesting a post-transcriptional block [144]. This observation is in line with the numerous studies showing reduced protein synthetic potential and quality control in aged muscle [16,24,25,31–35]. This in turn could be explained by the divergent muscle miRNA profile in aged men compared to young adults at baseline and post-exercise [69]. Of note, pathway analysis of 23 miRNAs differentially expressed in young vs. older men after a single bout of resistance exercise revealed that ubiquitin-mediated proteolysis, insulin, PI3K/Akt and mTOR pathways were among those strongly influenced by age, suggesting that miRNA blueprint is directly responsible for the biosynthetic failure and age-related anabolic resistance [147]. This is consistent with data published by D’Souza and colleagues who reported a strong correlation between the changes in the expression of the critical myogenic miRs -206, -208a and -499a with the phosphorylation of mTOR pathway constituents, Akt and P70S6K, in elderly men post-resistance exercise [148]. In the same study, the anabolism-permissive miRNA blueprint was enhanced by whey protein ingestion following the training bout, pointing toward the miRNAs as the key sentinels of muscle plasticity in response to stress as well as nutritional cues [148].

Several studies reported that miR-34a, miR-93, and miR-144 targeting Nrf2 are upregulated in various tissues in aged rodents [149–151]. Notably, Nrf2 disrupted activation has been strongly linked to the induction of cellular senescence [152]. Recently, the expression of long non-coding RNA, MALAT1, acting as a sponge (negative regulator) for miR-34a was shown to decrease in ageing muscle cells [153]. The downregulation of MALAT1 and consequently increased miR-34a availability were shown to be ROS-dependent and resulted in the induction of the major pro-inflammatory cytokine, transforming growth factor-β1 (TGF-β1) [153]. miR-34a suppresses Sirt1 [154], which in turn is involved in PGC-1α activation and Nrf2 de-repression [23]. Sirt1 is also targeted by miR-181a, which is significantly downregulated in the skeletal muscles of old mice, likely representing a failed compensatory mechanism owing to disturbed miRNA-target interaction [155]. This impairment of target binding might be due to increased RNA oxidative damage seen with ageing and metabolic disease [156,157]. Conversely, the position-specific oxidation of miRNAs can also be conducive to maladaptive post-transcriptional modulation, as observed in cardiac hypertrophy [158].

In addition to modulation of Nrf2 expression and electrophilic sensitivity, a great number of miRNAs including miR-24, target pro-oxidant and antioxidant enzymes [159]. miR-24 was shown to induce senescence by targeting PRDX6 in ageing myoblasts [160]. Importantly, the persistent changes to the intertwined antioxidant systems, maintained by the miRNA blueprint may result in reversible redox modifications of regulatory proteins to diverge the energy metabolism toward NADPH biosynthetic pathways, resulting in redox desensitisation [161]. Conclusively, persistent oxidant noise in metabolically inefficient/aged muscle can result in low-level chronic Nrf-2 activation and induction of particular miRNAs which in turn modulate the expression of the anti- and pro-oxidant arms of the redox system to compensate for chronic baseline ROS overload, further disrupting effective redox signalling and perpetuating the vicious cycle of hormetic and functional decline [159] (Figure 2).
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 23

Figure 2. Chronic baseline ROS overload prompts miRNA-mediated pro-reductive shift, and consequent decline in redox and hypertrophic sensitivity. Nrf2 activation in response to endurance training (ET) declines in ageing muscles. This results in decreased PGC-1β, which regulates the expression of miR-499. Downregulation of miR-499 correlates with reduced mTOR phosphorylation in response to hypertrophy training (HT) in older individuals, potentially contributing to reduced muscle protein synthesis (MPS). Mitochondrial ROS production increases in older individuals or metabolically inefficient mitochondria in younger individuals. Increased ROS induces TGF-β1/MALAT1/miR-34 cascade leading to decreased Sirt1 expression. Elevated ROS levels stimulate the antioxidant systems, resulting in NAD⁺ consumption. Decreased NAD⁺ levels contribute to lower Sirt1 activation. Decreased Sirt1 deacetylase activity results in KEAP1 (negative Nrf2 regulator) downregulation. Consequently, Nrf2 nuclear translocation increases at rest, resulting in the induction of antioxidant genes (SOD2 and catalase). Hyperactivity of the antioxidant system masks the ROS bursts induced by exercise, inhibiting the expression of the ROS-induced miR-24, which normally suppresses key antioxidants (SOD1 and PRDX6). miR-181a, targeting Sirt1 is elevated in response to a single bout (but not long-term) of high-intensity ET, possibly re-adjusting the Nrf2 breakdown rate and therefore elevating redox sensitivity via the Sirt1/KEAP1 pathway.

1.6. Chronic Endurance Training-Induced miRNA Cloud and the Adaptation-Permissive Epigenetic Landscape—Revised Molecular Basis of Exercise Adaptation Model

Muscle miRNA profiles vary significantly between the response to a single bout and consistent long-term endurance exercise. Muscle miR-1, miR-133a, miR-133b, and miR-206 were significantly downregulated in young adults following 2 weeks of moderate cycling training [162]. In the same study, a single 60 min bout of high-intensity cycling resulted in the increased expression of these myomiRs. However, this acute response was not present when the same protocol was repeated after the training intervention [162]. This is in line with the markers of miRNA biogenesis machinery returning to pre-training intervention values despite daily training [55] and suggests that miRNA stress-response may be a part of adaptive response and muscle memory. Notably, mathematical modelling reveals that mRNA burst trajectory is strongly coupled to microRNA trajectory, promoting effective
gene expression with reduced noise [39]. Based on this evidence we propose a revised model of the molecular basis of adaptation to exercise [163] (Figure 3). The accumulation of miRNA bursts targeting histone modifying enzymes (HDACs and sirtuins) with long-term training can modulate the epigenetic landscape [61], perpetuating the initial transcriptional hormetic response into the pro-adaptive memory [66,67,74]. This epigenetic memory cloud facilitates exercise sensitivity and overload-dependent improvement of molecular and physiological status, as well as relatively swift re-acquisition of the enhanced phenotype when returning to exercise following a detraining period (Figure 3). Older adults display diminished translational response [40,41], and inferior adaptations to both aerobic and resistance exercise compared to young adults [31,33–35]. Consistently, the increase of 21 miRNAs in young adults in response to single bout of resistance exercise was absent in muscles of older individuals [147]. Therefore, reduced age-related signal sensitivity in exercise could be responsible for diminished miRNA burst and slower adaptation to long-term exercise as well as accelerated loss of fitness and muscle mass owing to a “stubborn” epigenetic landscape.

![Figure 3](https://example.com/figure3.png)

Figure 3. A revised model of the molecular basis of adaptation to exercise. Changes in mRNA expression (dark blue), miRNA (light blue) and protein content (green) due to acute and chronic exercise. Individual bouts of exercise are necessary for adaptation but insufficient to significantly alter the phenotype. Rapid bursts of mRNA during post-exercise recovery facilitate the expression of target genes. Alterations in mRNA expression several-fold from basal levels are typically greatest at 3–12 h after exercise and generally return to basal levels within 24 h. miRNA response follows a similar burst-like trajectory and miRNAs are thought to respond to changes in the environment quickly. The translational response is modest in comparison to mRNA and miRNAs. However, superimposing exercise bouts chronically results in the gradual accumulation of protein content contributing to enhanced exercise performance (orange). During a period of detraining, the baseline mRNA, miRNA and protein levels decrease steadily, but epigenetic changes decelerate the phenotypic decline. Initially, exercise performance does not suffer due to reduced residual fatigue (i.e., tapering). Upon return to training, people with longer exercise history achieve their previous phenotype at a faster rate than in the past or less trained individuals. This effect is likely due to the miRNA-dependent establishment or enhancement of the pro-adaptive epigenetic profile (model revised based on [39,163]).

Of note, divergent miRNA profiles were observed at baseline and following resistance training in high- and low-responding (in terms of muscle hypertrophy assessed with magnetic resonance imaging) men in their early twenties [164]. Another study reported that miR-378 was increased in young high vs. low responders following a 12-week resistance program [165]. Considering miR-378 is also strongly downregulated in old compared to young men [147] and promotes glucose tolerance with improved metabolism [105,166], muscle miRNAs have the potential to serve as the predictors of susceptibility to metabolic
with resistance training (RT) results in the downregulation of muscle miR-378, enhanced with increased IGF-1 expression. ET-induced AMPK and CaMK signalling reduces HDAC nuclear (MPS) [167]. This consequently would increase HDAC4 expression. HDAC4 has been (and consequently redox homeostasis) possibly maintains a miRNA cloud that is permissive to both mitochondrial and hypertrophic adaptation (Figure 4).

Disease and muscle atrophy at a young age. Additionally, miR-378-mediated link between glucose tolerance and anabolic responsiveness suggests that muscle metabolic efficiency (and consequently redox homeostasis) possibly maintains a miRNA cloud that is permissive to both mitochondrial and hypertrophic adaptation (Figure 4).

![Figure 4](image_url)

Figure 4. Long-term endurance training-induced miRNA cloud may facilitate oxidative and hypertrophic sensitivity (exercise memory). miR-378 is significantly higher in high responders compared to low responders following 12 weeks of hypertrophy training. Anabolic responsiveness correlates with increased IGF-1 expression. ET-induced AMPK and CaMK signalling reduces HDAC nuclear abundance. Correspondingly, miR-378 downregulates HDAC4 expression. Decreased HDAC4 epigenetic activity is permissive to the expression of muscle-specific, antioxidant, mitochondrial, and pro-oxidative miRNAs genes. The pro-oxidative miRNAs may establish a positive feedback loop maintaining the expression of the slow twitch/oxidative muscle genes and potentially be responsible for increased responsiveness/sensitivity to hypertrophic stimuli. The acute RT-dependent downregulation of miR-378 and subsequent increase in HDAC4 activity allows mounting of regenerative/inflammatory response. However, lifelong, regular aerobic training is needed to control HDAC4 activity and optimise its regulatory effects on muscle plasticity and homeostasis.

Of note, miR-378 supresses the expression of HDAC4 [112]. Acute HIIT combined with resistance training (RT) results in the downregulation of muscle miR-378, enhanced activation of the mTOR pathway, and consequently increased muscle protein synthesis (MPS) [167]. This consequently would increase HDAC4 expression. HDAC4 has been shown to increase at the peak of inflammatory response following muscle injury, promoting in vivo regeneration through pro-inflammatory soluble factors [168]. Skeletal muscle-specific HDAC4 KO (mHDAC4 KO) mice lose muscle structural integrity and antioxidant enzyme response following four weeks after denervation [169]. Hence, suggesting that the activation of HDAC4 activity is essential for triggering muscle regenerative and preservation responses. Similar to the sarcopenic phenotype [53], the denervated mHDAC4 KO mice fail to progress autophagy past the autophagosome formation [169]. Of note, denervated mHDAC4 KO mice treated with a lipophilic antioxidant (Trolox), methylene blue or intermittent fasting to stimulate proteasome assembly and autophagy, respectively,
exhibited reduced necrosis, inflammation, and fibrosis [169]. Conclusively, the chronic upregulation of HDAC4 expression [60] and reductive shift [135–137] in ageing muscles may suggest a “necessary evil” allowing to preserve the less active muscles, at a price of reduced ability to transcribe muscle-specific and mitochondrial proteins [116,117], respond to redox exercise stimuli [22,131,132], timely coordinate inflammatory response and thus differentiate/mature new and grow pre-existing fibres [133,134,139]. While the consistent physical-activity and endurance exercise promoting CaMK and AMPK signalling “keep HDAC4 in check” by reducing its nuclear abundance [57]. The importance of balance between acute upregulation of HDAC4 expression with injury [168] or unaccustomed training volume/intensity [55] with fine-tune regulation of epigenetic activity [57] for maintaining muscle mass is possibly reflected in a recent study involving obese older women, where aerobic combined with resistance exercise training more effectively augmented muscle protein synthesis and myocellular quality than either intervention alone [170].

In line with the idea of stress-response specificity, a single session of resistance training has a contrasting effect on the muscle miRNA profile, compared to a single bout of aerobic exercise and appears to explain the anabolic resistance in older men due to dysregulated IGF-1 signalling [69,147,171,172]. Notably, both miR-378 strands were reportedly elevated in the plasma of obese and diabetic patients [173,174]. This observation highlights that the miRNA profile must be interpreted within the context of the investigated tissue as well as the redox and inflammatory status and the entire co-expressed miRNA network. Similarly, to maximise the potential of miRNAs as the markers of training status or trainability, they should be measured and compared against the metabolites reflective of the biosynthetic and energetic potential such as amino acids or creatine metabolites, respectively [175,176].

1.7. Circulating miRNAs as the Universal Language of the Hormesis Response—Biomarkers of Systemic Metabolic Health and Adaptability

The changes in miRNA blueprint in muscle atrophy depend on the context of catabolic conditions as different miRNAs had more pronounced change in starved, muscle-denervated, diabetic and cachectic mice [177]. Of note, miR-206 and miR-21 were found to be critical pro-atrophic agents in the denervated model [177]. Remarkably, silencing miRNA-206 in SOD1-G93A transgenic mice led to an HDAC4-induced reduction in the muscle secretion of FGF, affecting re-innervation process [62]. This suggests that miRNA-mediated modulation of intramuscular signalling and transcriptional activity regulates plasticity of the entire neuromuscular niche.

The effect of exercise extends beyond the neuromuscular milieu. Skeletal muscles secrete various sizes of extracellular vesicles (EVs) in the form of microparticles (MPs) or exosomes [178]. The selectively-packaged content of the muscle-derived EVs includes miRNAs, which appear to coordinate the systemic cross-talk and effective adaptation to exercise stress [179–181]. Vechetti and colleagues performed a gene ontology analysis of previously identified exercise-induced EV-miRNAs and found that the two mostly influenced sets of genes were involved in antioxidant response and insulin secretion [181]. Additionally, EV-miRNAs were revealed to influence immune response, protein catabolism and nervous system plasticity [178]. Electrically evoked contractile activity of sufficient intensity in one limb results in the activation of the Nrf2 response in the unstimulated limb [182]. Thus, suggesting that an unidentified “exerkine” facilitates the systemic antioxidant response. Circulating miRNAs (ci-miRNAs) emerge as attractive candidates, as EVs isolated from the aged muscle were observed to increase miR-34a content, promoting cellular senescence by inhibiting Sirt1 expression [154]. Consistently, Sirt1 has a recognised role in metabolic homeostasis and activation of the PGC-1α/Nrf2 pathway [23]. Muscle-released ci-miRNAs could potentiate the systemic effects of various hormones. Vechetti and colleagues demonstrated that muscle-derived EVs induced by mechanical overload had a permissive effect on catecholamine-stimulated white adipose tissue lipolysis via miR-1-dependent targeting of pro-lipogenic factors [183]. Additionally, Ingenuity Pathway Analysis of ci-miRNAs induced by a single bout of resistance exercise revealed that differences between young
and old adults explained the magnitude of anabolic response [184]. The expression levels of six of these miRNAs were strongly correlated to the phosphorylation status of Akt and S6K1 in young vs. old adults [184]. Therefore, similarly to muscle, ci-miRNAs could act as redox and insulin sensitivity modulators at the systemic level.

Ci-miRNA responses varied significantly between the strength, endurance, and hypertrophy exercise protocols, and strongly correlated to the cytokine as well as hormonal (cortisol and testosterone) responses in young adult men [185]. However, some of the results from earlier studies on ci-miRNAs’ systemic effect have to be interpreted carefully as the responses were not specified for the free/plasma and EV-bound fractions [184,185]. Recent evidence suggests that plasma and exosomal miRNA exercise-induced changes are unrelated to one another and that of skeletal muscle in response to a single bout of MCT and HIIT in young adults [186,187]. Moreover, apart from muscles, multiple tissues including adipose, vascular endothelium and blood cells secrete EVs in response to exercise stress [188]. Hence, ci-miRNAs cannot be considered the proxies of muscular adaptations alone. Instead, vesicle-bound ci-miRNAs, in particular, could be interpreted as biomarkers of systemic health as well as redox and insulin sensitivity. Indeed, a recent study reported that exosome-derived miRNAs induced by an acute bout of endurance exercise are strongly related to the activation of IGF-1 signalling in trained vs. sedentary elderly men [189]. Furthermore, KEGG pathway analysis of exosomal miRNAs in sedentary vs. exercising young and older adults revealed a significant involvement in the signalling cascades linked to the development of diabetes, cancer, viral infections and neurodegenerative diseases [190]. Nonetheless, bearing in mind that the ci-miRNA profile changes are intensity sensitive [191], blood miRNA network responses have the potential to serve as a sophisticated marker of the systemic stress response to exercise. Therefore, ci-miRNAs may help in the future to individualise training load/intensity to optimise the systemic effects of exercise. Alternatively, considering the evidence of EVs transferred from HIIT-exercised mice enhancing glucose tolerance in sedentary mice [192], EV-miRNAs emerge as potential therapeutics for metabolic disease. Finally, there is a possibility that exercise-induced EVs derived at a young age and peak fitness can be preserved or their cargo sequenced so that they are re-administered later in life as a highly personalised “silver bullet” against the age-related muscular and systemic decline, as well as redox and insulin/anabolic resistance [193].

2. Conclusions

Since the discovery of miRNAs nearly three decades ago, our understanding of these intriguing molecules has grown immensely. It is now evident that miRNAs play a paramount role in regulating skeletal muscle plasticity and systemic physiology. Energy metabolism and mitochondrial dynamics are tightly coordinated with cellular functions and signalling. This principle also applies to skeletal muscles where timely rewiring of mitochondrial metabolism and mitochondrial recycling are instrumental for hypertrophy, repair and adaptation to the stress of exercise. Based on the literature to date, we suggest that miRNAs are critical in regulating the metabolism-signalling cellular symphony. Mitochondrial dysfunction and oxidative stress have been linked to disease and ageing. miRNAs may be responsible for the coordination of mitochondrial metabolism with cellular functionality and hormesis. Mitochondrial quality and function decrease with age, further accelerated by poor physical activity and diet. miRNA profiles may change to compensate for the chronic disturbance of homeostasis. However, this shift may be associated with a reduced ability for allostasis, that is change of cellular milieu in the face of hormetic challenge. This pertains to the reduced ability to sense the hormetic signals which are dampened by the ever-persisting noise of cellular stress. Enhanced mitochondrial function promotes a miRNA profile that sustains the oxidative phenotype of the skeletal muscle cells while sensitising them to anabolic stimuli. This could in part explain why mitochondria-rich oxidative muscle fibres are less prone to atrophy compared to glycolytic fibres. The limitation of this review is that it is a microRNA-centric interpretation of the literature. Future models should aim to
include other global factors regulating muscle homeostasis, such as changes in transcription rate or splicing or protein modifications and stability. Our findings bring a new perspective to the exercise interference debate highlighting how endurance training may contribute to the hypertrophic adaptation. We conclude that regular endurance training suppresses the glycolytic phenotype and mTOR signalling through pro-oxidative miRNAs (miR-1, miR-378, miR-499). However, the insulin/IGF-1 signalling sensitivity is maximised owing to redox balance and optimum oxidation status of redox sensitive proteins. This potentially explains why endurance-trained athletes can maintain muscle mass despite the alleged interference. Finally, our findings emphasise the importance of regular aerobic exercise and a healthy diet for minimising the risk of sarcopenia as well as the development of systemic diseases.

Author Contributions: Conceptualization: F.K., K.G.-W., N.B., B.M., writing—original draft preparation: F.K.; writing—review and editing: F.K., K.G.-W., N.B., B.M. All authors have read and agreed to the published version of the manuscript.

Funding: This review forms a part of work under funding from the Health Research Board (HRB) (COV19-2020-060). K.G.-W. and B.M. are funded by Science Foundation Ireland (SFI) FFFP (19/FFP/6709) and Irish Research Council (IRC) (IRCLA/2017/101).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bassett, D.R.; Howley, E.T. Maximal oxygen uptake: “Classical” versus “contemporary” viewpoints. Med. Sci. Sport. Exerc. 1997, 29, 591–603. [CrossRef]

2. Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [CrossRef] [PubMed]

3. Lee, J.; Zhang, X.L. Physiological determinants of VO2max and the methods to evaluate it: A critical review. Sci. Sport. 2021, 36, 259–271. [CrossRef]

4. Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sport. Exerc. 2000, 32, 70–84. [CrossRef] [PubMed]

5. van der Zwaard, S.; de Ruiter, C.J.; Noordhof, D.A.; Sterrenburg, R.; Bloemers, F.W.; de Koning, J.J.; Jaspers, R.T.; van der Laarse, W.J. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists. J. Appl. Physiol. 2016, 121, 636–645. [CrossRef] [PubMed]

6. Myers, J.; Prakash, M.; Froelicher, V.; Do, D.; Partington, S.; Atwood, J.E. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [CrossRef] [PubMed]

7. Rogers, M.A.; Hagberg, J.M.; Martin, W.H.; Ehsani, A.A.; Holloszy, J.O. Decline in VO2max with aging in master athletes and sedentary men. J. Appl. Physiol. 1990, 68, 2195–2199. [CrossRef] [PubMed]

8. Ogawa, T.; Spina, R.J.; Martin, W.H.; Kohrt, W.M.; Schechtman, K.B.; Holloszy, J.O.; Ehsani, A.A. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 1992, 86, 494–503. [CrossRef]

9. Neufer, P.D. The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training. Sport. Med. 1989, 8, 302–321. [CrossRef]

10. Tatarková, Z.; Kuka, S.; Racay, P.; Lehotsky, J.; Dobrota, D.; Mistuna, D.; Kaplan, P. Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol. Rese 2011, 60, 281–289. [CrossRef]

11. Picard, M.; Ritchie, D.; Thomas, M.M.; Wright, K.J.; Hepple, R.T. Alterations in intrinsic mitochondrial function with aging are fiber type-specific and do not explain differential atrophy between muscles. Aging Cell 2011, 10, 1047–1055. [CrossRef]

12. Alway, S.E.; Mohamed, J.S.; Myers, M.J. Mitochondria initiate and regulate sarcopenia. Exerc. Sport Sci. Rev. 2017, 45, 58–69. [CrossRef]

13. Steinbacher, P.; Eckl, P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015, 5, 356–377. [CrossRef] [PubMed]

14. Margaritelis, N.V.; Paschalis, V.; Theodorou, A.A.; Kyparos, A.; Nikolaidis, M.G. Redox basis of exercise physiology. Redox Biol. 2020, 35, 101499. [CrossRef]

15. Horn, A.; Van der Meulen, J.H.; Defour, A.; Hogarth, M.; Sreetama, S.C.; Reed, A.; Scheffer, L.; Chandel, N.S.; Jaiswal, J.K. Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci. Signal. 2017, 10, eaj1978. [CrossRef]
16. Romanello, V.; Sandri, M. Mitochondrial quality control and muscle mass maintenance. *Front. Physiol.* 2016, 6, 422. [CrossRef] [PubMed]

17. Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. *Annu. Rev. Biochem.* 2017, 86, 715–748. [CrossRef] [PubMed]

18. Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Capó, X.; Bouzas, C.; Mateos, D.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic syndrome is associated with oxidative stress and proinflammatory state. *Antioxidants* 2020, 9, 236. [CrossRef] [PubMed]

19. Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. *Nat. Rev. Drug Discov.* 2021, 20, 689–709. [CrossRef] [PubMed]

20. Sies, H. Oxidative eustress: On constant alert for redox homeostasis. *Redox Biology* 2021, 41, 101867. [CrossRef] [PubMed]

21. Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelman, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. *Cell* 1999, 98, 115–124. [CrossRef] [PubMed]

22. Done, A.J.; Gage, M.J.; Nieto, N.C.; Traustadóttir, T. Exercise-induced nrf2-signaling is impaired in aging. *Free Radic. Biol. Med.* 2016, 96, 130–138. [CrossRef] [PubMed]

23. Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. *Front. Genet.* 2019, 10, 435. [CrossRef] [PubMed]

24. Romanello, V.; Scalabrini, M.; Albiero, M.; Blauw, B.; Scorrano, L.; Sandri, M. Inhibition of the fission machinery mitigates opta1 impairment in adult skeletal muscles. *Cells* 2019, 8, 597. [CrossRef]

25. Sligar, J.; DeBruin, D.A.; Saner, N.J.; Philip, A.M.; Philip, A. The importance of mitochondrial quality control for maintaining skeletal muscle function across health span. *Am. J. Physiol. Cell Physiol.* 2022, 322, C461–C467. [CrossRef] [PubMed]

26. Fritzen, A.M.; Thøgersen, F.D.; Krag, T.; Ørngreen, M.C.; Vissing, J.; Jeppesen, T.D. Effect of aerobic exercise training and deconditioning in human skeletal muscle. *Cells* 2019, 8, 237. [CrossRef]

27. Mikkola, J.; Rusko, H.; Izquierdo, M.; Gorostiaga, E.; Häkkinen, K. Neuromuscular and cardiovascular adaptations during concurrent strength and endurance training in untrained men. *Int. J. Sport. Med.* 2012, 33, 702–710. [CrossRef]

28. Milanović, Z.; Sporiš, G.; Weston, M. Effectiveness of high-intensity interval training (hit) and continuous endurance training for VO2MAX improvements: A systematic review and meta-analysis of controlled trials. *Sport. Med.* 2015, 45, 1469–1481. [CrossRef]

29. Layec, G.; Haseler, L.J.; Hoff, J.; Hart, C.R.; Liu, X.; Le Fur, Y.; Jeong, E.-K.; Richardson, R.S. Short-term training alters the control of mitochondrial enzymatic activity occurs dependent of genomic dosage in response to aerobic exercise training and deconditioning in human skeletal muscle. *Cells* 2019, 8, 237. [CrossRef]

30. Hughes, D.C.; Ellefsen, S.; Baar, K. Adaptations to endurance and strength training. *Cold Spring Harb. Perspect. Med.* 2018, 8, a029769. [CrossRef] [PubMed]

31. Koopman, R.; van Loon, L.J. Aging, exercise, and muscle protein metabolism. *J. Appl. Physiol.* 2009, 106, 2040–2048. [CrossRef] [PubMed]

32. Murton, A.J.; Greenhaff, P.L. Resistance exercise and the mechanisms of muscle mass regulation in humans: Acute effects on VO2MAX improvements: A systematic review and meta-analysis of controlled trials. *Sport. Med.* 2015, 45, 1469–1481. [CrossRef]

33. Johnson, M.L.; Irving, B.A.; Lanza, I.R.; Vendelbo, M.H.; Konopka, A.R.; Robinson, M.M.; Henderson, G.C.; Klaus, K.A.; Morse, D.M.; Heppelmann, C.; et al. Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging. *J. Gerontol. Ser. A: Biol. Sci. Med. Sci.* 2014, 70, 1386–1393. [CrossRef]

34. Carter, H.N.; Kim, Y.; Erlich, A.T.; Zarrin-khat, D.; Hood, D.A. Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity. *J. Physiol.* 2018, 596, 3567–3584. [CrossRef]

35. Haran, P.H.; Rivas, D.A.; Fielding, R.A. Role and potential mechanisms of anabolic resistance in sarcopenia. *J. Cachexia Sarcopenia Muscle* 2012, 3, 157–162. [CrossRef]

36. Fritzen, A.M.; Andersen, S.P.; Qadri, K.A.; Thøgersen, F.D.; Krag, T.; Ørn green, M.C.; Vissing, J.; Jeppesen, T.D. Effect of aerobic exercise training and deconditioning on oxidative capacity and muscle mitochondrial enzyme machinery in young and elderly individuals. *J. Clin. Med.* 2020, 9, 3113. [CrossRef]

37. Suetta, C.; Frandsen, U.; Mackey, A.L.; Jensen, L.; Hvid, L.G.; Bayer, M.L.; Petersson, S.J.; Schröder, H.D.; Andersen, J.L.; Aagaard, P.; et al. Ageing is associated with diminished muscle re-growth and myogenic precursor cell expansion early after immobility-atrophy in human skeletal muscle. *J. Physiol.* 2013, 591, 3789–3804. [CrossRef] [PubMed]

38. Egan, B.; O’Connor, P.L.; Zierath, J.R.; O’Gorman, D.J. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. *PLoS ONE* 2013, 8, e74098. [CrossRef]

39. Bokes, P.; Hojcka, M.; Singh, A. MicroRNA based feedforward control of intrinsic gene expression noise. *IEEE/ACM Trans. Comput. Biol. Bioinform.* 2019, 18, 272–282. [CrossRef]

40. Kumar, V.; Selby, A.; Rankin, D.; Patel, R.; Atherton, P.; Hildebrandt, W.; Williams, J.; Smith, K.; Seynes, O.; Hiscock, N.; et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. *J. Physiol.* 2009, 587, 211–217. [CrossRef] [PubMed]

41. Brook, M.S.; Wilkinson, D.J.; Mitchell, W.K.; Lund, J.N.; Phillips, B.E.; Szewczyk, N.J.; Greenhaff, P.L.; Smith, K.; Atherton, P.J. Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. *J. Physiol.* 2016, 594, 7399–7417. [CrossRef]
42. Hart, C.R.; Ryan, Z.C.; Pfaffinenbach, K.T.; Dasari, S.; Parvizi, M.; Lalia, A.Z.; Lanza, I.R. Attenuated activation of the unfolded protein response following exercise in skeletal muscle of older adults. *Aging 2019*, 11, 7587–7604. [CrossRef]

43. Kim, J.-S.; Kosek, D.J.; Petrella, J.K.; Cross, J.M.; Bamman, M.M. Resting and load-induced levels of myogenic gene transcripts differ between older adults with demonstrable sarcopenia and young men and women. *J. Appl. Physiol. 2005*, 99, 2149–2158. [CrossRef]

44. Kosek, D.J.; Kim, J.-S.; Petrella, J.K.; Cross, J.M.; Bamman, M.M. Efficacy of 3 days/WK resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. *J. Appl. Physiol. 2006*, 101, 531–544. [CrossRef]

45. Fritzen, A.M.; Thuegersen, F.D.; Qadri, K.A.; Krag, T.; Sveen, M.-L.; Vissing, J.; Jeppeesen, T.D. Preserved capacity for adaptations in strength and muscle regulatory factors in elderly in response to resistance exercise training and deconditioning. *J. Clin. Med. 2020*, 9, 2188. [CrossRef] [PubMed]

46. Sjögren, R.J.; Lindgren Niss, M.H.; Krook, A. Skeletal muscle microRNAs: Roles in differentiation, disease and exercise. In *Hormones, Metabolism and the Benefits of Exercise. Research and Perspectives in Endocrine Interactions*; Spiegelman, B., Ed.; Springer: Cham, Switzerland, 2017; pp. 67–81. [CrossRef]

47. Archacka, K.; Ciemerych, M.A.; Florkowski, A.; Romanzuk, K. Non-coding RNAs as regulators of myogenesis and postexercise muscle regeneration. *Int. J. Mol. Sci. 2021*, 22, 11568. [CrossRef]

48. Kehl, T.; Backes, C.; Kern, F.; Fehlmann, T.; Ludwig, N.; Meese, E.; Lenhof, H.-P.; Keller, A. About Mirnas, MiRNA seeds, target genes and target pathways. *Onctarget 2017*, 8, 107167–107175. [CrossRef]

49. Riolo, G.; Cantara, S.; Marzocchi, C.; Ricci, C. MiRNA targets: From prediction tools to experimental validation. *Methods Protoc. 2010*, 4, 1. [CrossRef]

50. Goljanek-Whysall, K.; Sweetman, D.; Abu-Elmagd, M.; Chapnik, E.; Dalmay, T.; Hornstein, E.; Münsterberg, A. MicroRNA regulation of the paired-box transcription factor PAX3 confers robustness to developmental timing of myogenesis. *Proc. Natl. Acad. Sci. USA 2011*, 108, 11936–11941. [CrossRef]

51. Houzelle, A.; Dahlmans, D.; Nascimento, E.B.; Schaart, G.; Jörgensen, J.A.; Moonen-Kornips, E.; Kersten, S.; Wang, X.; Hoeks, J. MicroRNA-204-5p modulates mitochondrial biogenesis in C2C12 myotubes and associates with oxidative capacity in humans. *J. Cell. Physiol. 2020*, 235, 9851–9863. [CrossRef]

52. Zhou, C.; Hu, Y.; Duan, S.; Gu, M.; Jiang, D.; Wang, Y.; Deng, Z.; Chen, J.; Chen, S.; Wang, L. Oxidative stress-induced mitophagy is suppressed by the mir-106b-93-25 cluster in a protective manner. *Cell Death Dis. 2021*, 12, 209. [CrossRef]

53. Goljanek-Whysall, K.; Soriano-Arroquia, A.; McCormick, R.; Chinda, C.; McDonagh, B. Mir-181a regulates p62/SQSTM1, Parkin, and protein DJ-1 promoting mitochondrial dynamics in skeletal muscle aging. *Aging Cell 2020*, 19, e13140. [CrossRef] [PubMed]

54. Fields, C.J.; Li, L.; Hiers, N.M.; Li, T.; Sheng, P.; Huda, T.; Shan, J.; Gu, T.; Blass, J.; et al. Sequencing of argonaute-bound miRNA/mRNA hybrids reveals regulation of the unfolded protein response by microRNA-320a. *PLoS Genet. 2021*, 17, e1009934. [CrossRef] [PubMed]

55. Russell, A.P.; Lamon, S.; Boon, H.; Wada, S.; Güller, I.; Brown, E.L.; Chibalina, A.V.; Zierath, J.R.; Snow, R.J.; Stepto, N.; et al. Regulation of miR-206 in human skeletal muscle following acute endurance exercise and short-term endurance training. *J. Physiol. 2013*, 591, 4637–4653. [CrossRef]

56. Ruijter, A.J.M.; Gennip, A.H.; Caron, H.N.; Kemp, S.; Kuienburg, A.B.P. Histone Deacetylases (HDACS): Characterization of the classical HDAC family. *Biochem. J. 2003*, 370, 737–749. [CrossRef]

57. Tian, H.; Liu, S.; Ren, J.; Lee, J.K.; Wang, R.; Chen, P. Role of histone deacetylases in skeletal muscle physiology and systemic energy homeostasis: Implications for metabolic diseases and therapy. *Front. Physiol. 2020*, 11, 949. [CrossRef]

58. Bodine, S.C.; Latres, E.; Baumbuehler, S.; Lai, V.K.-M.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Fanaro, F.J.; Na, E.; Dharmarajan, K.; et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. *Science 2001*, 294, 1704–1708. [CrossRef]

59. Cohen, T.J.; Waddell, D.S.; Barrientos, T.; Lu, Z.; Feng, G.; Cox, G.A.; Bodine, S.C.; Yao, T.-P. The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming. *J. Biol. Chem. 2007*, 282, 33752–33759. [CrossRef]

60. Zahn, J.M.; Sonu, R.; Vogel, H.; Crane, E.; Mazan-Mamczarz, K.; Rabkin, R.; Davis, R.W.; Gwin, J.A.; Henninger, S.R.; McClung, J.P.; et al. Circulating and skeletal muscle miRNA profiles are more sensitive to sustained aerobic exercise than energy balance in males. *J. Physiol. 2022*, 600, 3951–3963. [CrossRef] [PubMed]

61. Soci, U.P.; Melo, S.C.; de Oliveira, C.; de Oliveira, C.; Brega, C.; de Oliveira, C. Exercise training and epigenetic regulation: Multilevel profiling of aging in human muscle reveals a common aging signature. *PLoS Genet. 2006*, 2, e115. [CrossRef] [PubMed]

62. Williams, A.H.; Valdez, G.; Moresi, V.; Qi, X.; McAnally, J.; Elliott, J.L.; Bassel-Duby, R.; Sanes, J.R.; Olson, E.N. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. *Science 2009*, 326, 1549–1554. [CrossRef]

63. Oikawa, S.; Lee, M.; Akimoto, T. Conditional deletion of dicer in adult mice impairs skeletal muscle regeneration. *Int. J. Mol. Sci. 2019*, 20, 5686. [CrossRef]

64. Oikawa, S.; Lee, M.; Motohashi, N.; Maeda, S.; Akimoto, T. An inducible knockout of Dicer in adult mice does not affect endurance exercise-induced muscle adaptation. *Am. J. Physiol. Cell Physiol. 2019*, 316, C285–C292. [CrossRef]

65. Markus, I.; Constantini, K.; Hoffman, J.R.; Bartolomei, S.; Gepner, Y. Exercise-induced muscle damage: Mechanism, assessment and nutritional factors to accelerate recovery. *Eur. J. Appl. Physiol. 2021*, 121, 969–992. [CrossRef] [PubMed]

66. Margolis, L.M.; Hatch-McChesney, A.; Allen, J.T.; DiBella, M.N.; Carrigan, C.T.; Murphy, N.E.; Karl, J.P.; et al. Circulating and skeletal muscle microRNA profiles are more sensitive to sustained aerobic exercise than energy balance in males. *J. Physiol. 2022*, 600, 3951–3963. [CrossRef] [PubMed]
67. Kolodziej, F.; McLysaght, A.; Golanjek-Whysall, K. Micro(RNA)-cloud can perpetuate physiological adaptation of skeletal muscle to exercise and energy imbalance. J. Physiol. 2022, in press. [CrossRef] [PubMed]

68. Langer, H.T.; West, D.; Senden, J.; Spuler, S.; van Loon, L.J.; Baar, K. Myofibrillar protein synthesis rates are increased in chronically exercised skeletal muscle despite decreased anabolic signaling. Sci. Rep. 2022, 12, 7553. [CrossRef] [PubMed]

69. Drummond, M.J.; McCarthy, J.J.; Fry, C.S.; Esser, K.A.; Rasmussen, B.B. Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1333–E1340. [CrossRef]

70. Abreu, P.; Mendes, S.V.; Cecatto, V.M.; Hirabara, S.M. Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents. Life Sci. 2017, 170, 33–40. [CrossRef]

71. Murach, K.A.; Dungan, C.M.; von Walden, F.; Wen, Y. Epigenetic evidence for distinct contributions of resident and acquired Myonuclei during long-term exercise adaptation using timed in vivo myonuclear labeling. Am. J. Physiol.-Cell Physiol. 2022, 322, C86–C93. [CrossRef]

72. Brook, M.S.; Wilkinson, D.J.; Smith, K.; Atherton, P.J. It’s not just about protein turnover: The role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy. Eur. J. Sport Sci. 2019, 19, 952–963. [CrossRef] [PubMed]

73. Murach, K.A.; Fry, C.S.; Dupont-Versteegden, E.E.; McCarthy, J.J.; Peterson, C.A. Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J. 2021, 35, e21893. [CrossRef]

74. Murach, K.A.; Moley, C.B.; Zdunek, C.J.; Frick, K.K.; Jones, S.R.; McCarthy, J.J.; Peterson, C.A.; Dungan, C.M. Muscle memory: Myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. J. Cachexia Sarcopenia Muscle 2020, 11, 1705–1722. [CrossRef]

75. O’Rourke, J.R.; Georges, S.A.; Seay, H.R.; Tapscott, S.J.; McManus, M.T.; Goldhammer, D.J.; Swanson, M.S.; Harfe, B.D. Essential role for dicer during skeletal muscle development. Dev. Biol. 2007, 311, 359–368. [CrossRef] [PubMed]

76. Horak, M.; Novak, J.; Bienertova-Vasku, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016, 410, 2692. [CrossRef] [PubMed]

77. Xu, M.; Chen, X.; Chen, D.; Yu, B.; Li, M.; He, J.; Huang, Z. Regulation of skeletal myogenesis by microRNAs. J. Cell. Physiol. 2019, 235, 87–104. [CrossRef]

78. Buckingham, M.; Rigby, P.W.J. Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell 2014, 28, 225–238. [CrossRef]

79. Sweetman, D.; Golanjek, K.; Rathjen, T.; Oustanina, S.; Braun, T.; Dalmay, T.; Münsterberg, A. Specific requirements of Mrf8 for the expression of muscle specific micronas, Mir-1, Mir-206 and Mir-133. J. Cell. Physiol. 2019, 238, 379–388. [CrossRef] [PubMed]

80. Schmidt, M.; Schüler, S.C.; Hüttner, S.S.; von Eyss, B.; von Maltzahn, J. Adult stem cells at work: Regenerating skeletal muscle. Dev. Cell 2008, 2019, 76, 2599–2570. [CrossRef]

81. Dell’Orso, S.; Juan, A.H.; Ko, K.-D.; Naz, F.; Gutierrez-Cruz, G.; Feng, X.; Sartorelli, V. Single-cell analysis of adult skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J. Cell Sci. 2018, 131, jcs212977. [CrossRef] [PubMed]

82. Ryall, J.G.; Dell’Orso, S.; Derfoul, A.; Juan, A.; Zare, H.; Feng, X.; Clermont, D.; Koulis, M.; Gutierrez-Cruz, G.; Fulco, M.; et al. The nad+–dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015, 16, 171–183. [CrossRef] [PubMed]

83. Palcic, D.; Di Girolamo, D.; Mella, S.; Yennek, S.; Chatre, L.; Ricchetti, M.; Tajbakhsh, S. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J. Cell Sci. 2018, 131, jcs212977. [CrossRef] [PubMed]

84. Langer, H.T.; West, D.; Senden, J.; Spuler, S.; van Loon, L.J.; Baar, K. Myofibrillar protein synthesis rates are increased in chronically exercised skeletal muscle despite decreased anabolic signaling. Sci. Rep. 2022, 12, 7553. [CrossRef] [PubMed]

85. Hori, S.; Hiramuki, Y.; Nishimura, D.; Sato, F.; Sehara-Fujisawa, A. PDH-mediated metabolic flow is critical for skeletal muscle stem cell differentiation and myotube formation during regeneration in mice. FASEB J. 2019, 33, 8094–8109. [CrossRef] [PubMed]

86. Broo, M.S.; Wilkinson, D.J.; Smith, K.; Atherton, P.J. It’s not just about protein turnover: The role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy. Eur. J. Sport Sci. 2019, 19, 952–963. [CrossRef] [PubMed]

87. Schmidt, M.; Schüler, S.C.; Hüttner, S.S.; von Eyss, B.; von Maltzahn, J. Adult stem cells at work: Regenerating skeletal muscle. Dev. Biol. 2007, 311, 359–368. [CrossRef] [PubMed]

88. Horak, M.; Novak, J.; Bienertova-Vasku, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016, 410, 2692. [CrossRef] [PubMed]

89. Dey, B.K.; Gagan, J.; Dutta, A. Mir-206 and -486 induce myoblast differentiation by downregulating PAX7. Mol. Cell. Biol. 2011, 31, 203–214. [CrossRef] [PubMed]

90. Chen, J.-F.; Tao, Y.; Li, J.; Deng, Z.; Yan, Z.; Xiao, X.; Wang, D.-Z. MicroRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and repressing by expressing PAX7. J. Cell Biol. 2010, 190, 867–879. [CrossRef] [PubMed]

91. Cui, S.; Li, L.; Mubarakoh, S.N.; Meech, R. Wnt/β-catenin signaling induces the myomiRs miR-133b and miR-206 to suppress pax7 and induce the myogenic differentiation program. J. Cell. Biochem. 2019, 120, 12740–12751. [CrossRef] [PubMed]

92. Chen, J.-F.; Mandel, E.M.; Thomson, J.M.; Wu, Q.; Callis, T.E.; Hammond, S.M.; Conlon, F.L.; Wang, D.-Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2005, 38, 228–233. [CrossRef]
93. Chen, X.; Wang, K.; Chen, J.; Guo, J.; Yin, Y.; Cai, X.; Guo, X.; Wang, G.; Yang, R.; Zhu, L.; et al. In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2) is an indispensable step in myogenic differentiation. *J. Biol. Chem.* 2009, 284, 5362–5369. [CrossRef] [PubMed]

94. Cadenas, S. Mitochondrial uncoupling, ROS generation and cardioprotection. *Biochim. Biophys. Acta Bioenerg.* 2018, 1859, 940–950. [CrossRef] [PubMed]

95. Small, E.M.; O’Rourke, J.R.; Moresi, V.; Sutherland, L.B.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. *Proc. Natl. Acad. Sci. USA* 2010, 107, 4218–4223. [CrossRef] [PubMed]

96. Xu, M.; Chen, X.; Chen, D.; Yu, B.; Huang, Z. Foxo1: A novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. *Onco Targets* 2016, 8, 10662–10674. [CrossRef]

97. Glass, D.J. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. *Curr. Top. Microbiol. Immunol.* 2010, 346, 267–278. [CrossRef] [PubMed]

98. van Rooij, E.; Quiat, D.; Johnson, B.A.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Kelm, R.J.; Olson, E.N. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. *Dev. Cell* 2009, 17, 662–673. [CrossRef] [PubMed]

99. Bjorkman, K.K.; Guess, M.G.; Harrison, B.C.; Polmea, M.M.; Peter, A.K.; Leinwand, L.A. Mir-206 enforces a slow muscle phenotype. *J. Cell Sci.* 2020, 133, 5243162. [CrossRef] [PubMed]

100. van Rooij, E.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Hill, J.; Olson, E.N. Control of stress-dependent cardiac growth and gene expression by a MicroRNA. *Science* 2007, 316, 575–579. [CrossRef] [PubMed]

101. Liu, J.; Liang, X.; Zhou, D.; Li, L.; Xiao, L.; Liu, L.; Fu, T.; Kong, Y.; Zhou, Q.; Vega, R.B.; et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/FNIP1/AMPK circuit. *EMBO Mol. Med.* 2016, 8, 1212–1228. [CrossRef] [PubMed]

102. Xu, J.; Ji, J.; Yan, X.-H. Cross-talk between AMPK and mTOR in regulating energy balance. *Crit. Rev. Food Sci. Nutr.* 2012, 52, 373–381. [CrossRef] [PubMed]

103. Ramirez Reyes, J.M.; Cuesta, R.; Pause, A. Folliculin: A regulator of transcription through AMPK and mTOR signaling pathways. *Front. Cell Dev. Biol.* 2021, 9, 667311. [CrossRef]

104. Carrer, M.; Liu, N.; Grueter, C.E.; Williams, A.H.; Frisard, M.I.; Hulver, M.W.; Bassel-Duby, R.; Olson, E.N. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. *Proc. Natl. Acad. Sci. USA* 2012, 109, 15330–15335. [CrossRef] [PubMed]

105. Machado, I.F.; Teodoro, J.S.; Castela, A.C.; Palmeira, C.M.; Rolo, A.P. Mir-378A-3P participates in metformin’s mechanism of action on C2C12 cells under hyperglycemia. *Int. J. Mol. Sci.* 2021, 22, 541. [CrossRef] [PubMed]

106. Hostalek, U.; Gwilt, M.; Hildemann, S. Therapeutic use of metformin in prediabetes and diabetes prevention. *Drugs* 2015, 75, 1071–1094. [CrossRef]

107. Konopka, A.R.; Laurin, J.L.; Schoenberg, H.M.; Reid, J.J.; Castor, W.M.; Wolff, C.A.; Musci, R.V.; Safaraid, O.D.; Linden, M.A.; Biela, L.M.; et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. *Aging Cell* 2018, 18, e12880. [CrossRef] [PubMed]

108. Moreno-Cabañas, A.; Morales-Palomo, F.; Alvarez-Jimenez, L.; Ortega, J.F.; Mora-Rodriguez, R. Effects of chronic metformin treatment on training adaptations in men and women with hyperglycemia: A prospective study. *Obesity* 2022, 30, 1219–1230. [CrossRef] [PubMed]

109. Li, Y.; Jiang, J.; Liu, W.; Wang, H.; Zhao, L.; Liu, S.; Li, P.; Zhang, S.; Sun, C.; Wu, Y.; et al. MicroRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. *Proc. Natl. Acad. Sci. USA* 2018, 115, E10849–E10858. [CrossRef] [PubMed]

110. Mallat, Y.; Trittich, E.; Ladoucette, R.; Winter, D.L.; Friguet, B.; Li, Z.; Mericskay, M. Proteome modulation in H9C2 cardiac cells by microRNAs Mir-378 and Mir-378. *Mol. Cell. Proteom.* 2014, 13, 18–29. [CrossRef] [PubMed]

111. Pan, D.; Hao, C.; Quattrochi, B.; Friedline, R.H.; Zhu, L.J.; Jung, D.Y.; Kim, J.K.; Lewis, B.; Wang, Y.-X. MicroRNA-378 controls classical brown fat expansion to counteract obesity. *Nat. Commun.* 2014, 5, 4725. [CrossRef] [PubMed]

112. Wei, X.; Li, H.; Zhang, B.; Li, C.; Dong, D.; Lan, X.; Huang, Y.; Bai, Y.; Lin, F.; Zhao, X.; et al. Mir-378A-3P promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. *RNA Biol.* 2016, 13, 1300–1309. [CrossRef]

113. Ju, H.; Yang, Y.; Sheng, A.; Qi, Y. MicroRNA-378 promotes myogenic differentiation by targeting BMP4. *Mol. Med. Rep.* 2016, 13, 2194–2200. [CrossRef] [PubMed]

114. Backs, J. Cam kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. *J. Clin. Investig.* 2006, 116, 1853–1864. [CrossRef] [PubMed]

115. Terada, K.; Misao, S.; Katase, N.; Nishimatsu, S.-I.; Nohno, T. Interaction of Wnt signaling with BMP/Smad signaling during the transition from cell proliferation to myogenic differentiation in mouse myoblast-derived cells. *Int. J. Cell Biol.* 2013, 201, 616294. [CrossRef] [PubMed]

116. Cohen, T.J.; Choi, M.-C.; Kapur, M.; Lira, V.A.; Yan, Z.; Yao, T.-P. HDAC4 regulates muscle fiber type-specific gene expression programs. *Mol. Cells* 2015, 38, 343–348. [CrossRef] [PubMed]

117. Luo, L.; Martin, S.C.; Parkington, J.; Cadena, S.M.; Zhu, J.; Ibebuon, C.; Summermatter, S.; Londraville, N.; Patora-Komisarska, K.; Widler, L.; et al. HDAC4 controls muscle homeostasis through deacetylation of myosin heavy chain, PGC-1A, and HSC70. *Cell Rep.* 2019, 29, 749–763.e12. [CrossRef]
118. Ji, J.; Tsika, G.L.; Rindt, H.; Schreiber, K.L.; McCarthy, J.J.; Kelm, R.J.; Tsika, R. PURA and PURB collaborate with SP3 to negatively regulate β-myosin chain heavy gene expression during skeletal muscle inactivity. *Mol. Cell. Biol.* 2007, 27, 1531–1543. [CrossRef]

119. McCarthy, J.J.; Esser, K.A.; Peterson, C.A.; Dupont-Versteegden, E.E. Evidence of myomiR network regulation of β-myosin heavy chain gene expression during skeletal muscle atrophy. *Physiol. Genom.* 2009, 39, 219–226. [CrossRef] [PubMed]

120. Boon, H.; Spjøgren, R.J.; Massart, J.; Egan, B.; Kostovski, E.; Iversen, P.O.; Hjeltnes, N.; Chibalin, A.V.; Widegren, U.; Zierath, J.R. MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression. *Physiol. Rep.* 2015, 3, e12622. [CrossRef] [PubMed]

121. Gan, Z.; Rumsey, J.; Hazen, B.C.; Lai, L.; Leone, T.C.; Vega, R.B.; Xie, H.; Conley, K.E.; Auwerx, J.; Smith, S.R.; et al. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism. *J. Clin. Invest.* 2013, 123, 2564–2575. [CrossRef]

122. Sager, R.A.; Woodford, M.R.; Backe, S.J.; Makedon, A.M.; Baker-Williams, A.J.; DiGregorio, B.T.; Loiselle, D.R.; Haystead, T.A.; Zachara, N.E.; Prodromou, C.; et al. Post-translational regulation of NFN1 creates a rheostat for the molecular chaperone hsp90. *Cell Rep.* 2019, 26, 1344–1356.e5. [CrossRef]

123. Reinle, K.; Mogk, A.; Bukau, B. The diverse functions of small heat shock proteins in the proteostasis network. *J. Mol. Biol.* 2022, 434, 167157. [CrossRef]

124. Dubińska-Magiera, M.; Jabłońska, J.; Saczko, J.; Kulbacka, J.; Jagla, T.; Daczewska, M. Contribution of small heat shock proteins to exercise-induced ROS in heat shock proteins response. *Free. Radic. Biol. Med.* 2019, 137, 20160529. [CrossRef] [PubMed]

125. Archer, A.E.; Von Schulze, A.T.; Geiger, P.C. Exercise, heat shock proteins and insulin resistance. *Philos. Trans. R. Soc. B Biol. Sci.* 2017, 373, 20160488. [CrossRef]

126. Dimauro, I.; Mercatelli, N.; Caporossi, D. Exercise-induced ROS in heat shock proteins response. *Free. Radic. Biol. Med.* 2016, 98, 46–55. [CrossRef]

127. Collier, M.P.; Benesch, J.L.P. Small heat-shock proteins and their role in mechanical stress. *Cell Stress Chaperones* 2020, 25, 601–613. [CrossRef] [PubMed]

128. Yan, X.; Shen, Z.; Yu, D.; Zhao, C.; Zou, H.; Ma, B.; Dong, W.; Chen, W.; Huang, D.; Yu, Z. NRF2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating DRP1 stability and mitochondrial fission. *Free. Radic. Biol. Med.* 2022, 178, 59–75. [CrossRef]

129. Sabouny, R.; Fraunberger, E.; Geoffrion, M.; Ng, A.C.-H.; Baird, S.D.; Screaton, R.A.; Milne, R.; McBride, H.M.; Shutt, T.E. The KEAP1–Nrf2 stress response pathway promotes mitochondrial hyperfusion through degradation of the mitochondrial fission protein DRP1. *Antioxid. Redox Signal.* 2017, 27, 1447–1459. [CrossRef] [PubMed]

130. Huang, D.-D.; Fan, S.-D.; Chen, X.-Y.; Yan, X.-L.; Zhang, X.-Z.; Ma, B.-W.; Yu, D.-Y.; Xiao, W.-Y.; Zhuang, C.-L.; Yu, Z. NRF2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner. *Exp. Gerontol.* 2019, 119, 61–73. [CrossRef]

131. Sadjad, A.; deBeer, J.; Tarnopolsky, M.A. Dysfunctional NRF2–KEAP1 redox signaling in skeletal muscle of the sedentary old. *Free. Radic. Biol. Med.* 2010, 49, 1487–1493. [CrossRef] [PubMed]

132. Cobley, J.N.; Moulit, P.R.; Burniston, J.G.; Morton, J.P.; Close, G.L. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: Better late than never! *Biogerontology* 2014, 16, 249–264. [CrossRef] [PubMed]

133. Oh, J.; Sinha, I.; Tan, K.Y.; Rosner, B.; Dreyfuss, J.M.; Gjata, O.; Tran, P.; Shoelson, S.E.; Wagers, A.J. Age-associated NF-KB signaling in myofibers alters the satellite cell niche and restrains muscle stem cell function. *Aging* 2016, 8, 2871–2896. [CrossRef] [PubMed]

134. Proto, J.D.; Lu, A.; Dorrorsorno, A.; Scibetta, A.; Robbins, P.D.; Niedernhofer, L.J.; Huard, J. Inhibition of NF-KB improves the stress resistance and myogenic differentiation of mdscps isolated from naturally aged mice. *PLOS ONE* 2017, 12, e0179270. [CrossRef] [PubMed]

135. Vasilaki, A.; Iwanejko, L.M.; McArdle, F.; Broome, C.S.; Jackson, M.J.; McArdle, A. Skeletal muscles of aged male mice fail to adapt following contractile activity. *Biochem. Soc. Trans.* 2003, 31, 455–456. [CrossRef] [PubMed]

136. Vasilaki, A.; Jackson, M.J.; McArdle, A. Attenuated hsp70 response in skeletal muscle of aged rats following contractile activity. *Muscle Nerve* 2002, 25, 902–905. [CrossRef] [PubMed]

137. Vasilaki, A.; McArdle, F.; Iwanekjo, L.M.; McArdle, A. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. *Mech. Ageing Dev.* 2006, 127, 830–837. [CrossRef]

138. Tantiwong, P.; Shanmugasundaram, K.; Monroy, A.; Ghosh, S.; Li, M.; DeFronzo, R.A.; Cersosimo, E.; Srijwijitkamon, A.; Mohan, S.; Musi, N. NF-KB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. *Am. J. Physiol. Endocrinol. Metab.* 2009, 299, E794–E801. [CrossRef] [PubMed]

139. Rajasekaran, N.S.; Shelar, S.B.; Jones, D.P.; Hoidal, J.R. Reductive stress impairs myogenic differentiation. *Redox Biol.* 2020, 34, 101492. [CrossRef]

140. Alway, S.E.; McCrory, J.L.; Kearcher, K.; Vickers, A.; Frear, B.; Gilleland, D.L.; Bonner, D.E.; Thomas, J.M.; Donley, D.A.; Lively, M.W.; et al. Resveratrol enhances exercise-induced cellular and functional adaptations of skeletal muscle in older men and women. *J. Gerontol. Ser. A* 2017, 72, 1595–1606. [CrossRef]

141. Morrison, D.; Hughes, J.; Della Gatta, P.A.; Mason, S.; Lamon, S.; Russell, A.P.; Wadley, G.D. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. *Free. Radic. Biol. Med.* 2015, 89, 852–862. [CrossRef] [PubMed]
189. Nair, V.D.; Ge, Y.; Li, S.; Pincas, H.; Jain, N.; Seenarine, N.; Amper, M.A.; Goodpaster, B.H.; Walsh, M.J.; Coen, P.M.; et al. Sedentary and trained older men have distinct circulating exosomal microRNA profiles at baseline and in response to acute exercise. *Front. Physiol.* 2020, 11, 605. [CrossRef]

190. Garai, K.; Adam, Z.; Herczeg, R.; Banfai, K.; Gyebrovszki, A.; Gyenesei, A.; Pongracz, J.E.; Wilhelm, M.; Kvell, K. Physical activity as a preventive lifestyle intervention acts through specific exosomal Mirna species—Evidence from human short- and long-term pilot studies. *Front. Physiol.* 2021, 12, 658218. [CrossRef]

191. Ramos, A.E.; Lo, C.; Estephan, L.E.; Tai, Y.-Y.; Tang, Y.; Zhao, J.; Sugahara, M.; Gorcsan, J.; Brown, M.G.; Lieberman, D.E.; et al. Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise. *Am. J. Physiol. Heart Circ. Physiol.* 2018, 315, H273–H283. [CrossRef] [PubMed]

192. Castaño, C.; Mirasierra, M.; Vallejo, M.; Novials, A.; Párrizas, M. Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FOXO1 in mice. *Proc. Natl. Acad. Sci. USA* 2020, 117, 30335–30343. [CrossRef] [PubMed]

193. Siqueira, I.R.; Palazzo, R.P.; Cechinel, L.R. Circulating extracellular vesicles delivering beneficial cargo as key players in exercise effects. *Free. Radic. Biol. Med.* 2021, 172, 273–285. [CrossRef] [PubMed]