A Shin¹, HR Shin², D Kang¹, SK Park¹, C-S Kim¹ and K-Y Yoo*¹
¹Department of Preventive Medicine, Seoul National University College of Medicine, 28 Yongon-dong, Changwon-gu, Seoul 110-799, Republic of Korea; ²Division of Cancer Control and Epidemiology, National Cancer Center Research Institute, 809 Modu-dong, Ilsan-gu, Goyang-si, Gyeonggi-do 411-769, Republic of Korea; ³Department of Preventive Medicine, Kankuk University College of Medicine, 322 Danwil-Dong, Chungju, Chungcheongbuk-Do 380-701, Republic of Korea

In a nested case–control study of 86 cases of gastric adenocarcinoma in relation to Helicobacter pylori infection in the Korean Multi-center Cancer Cohort, the H. pylori IgG seropositivity was 83.7% and that of the 344 matched controls was 80.8%, with a matched odds ratio for H. pylori infection of 1.06 (95% CI, 0.80–1.40).

British Journal of Cancer (2005) 92, 1273 – 1275. doi:10.1038/sj.bjc.6602467 www.bjcancer.com
Published online 8 March 2005
© 2005 Cancer Research UK

Keywords: gastric cancer; Helicobacter pylori; risk factors; nested case–control study; Korean

In 1994, the International Agency for Research on Cancer (IARC) classified Helicobacter pylori as a group 1 carcinogen (IARC, 1994), whereas that same year, a US body concluded that there was insufficient evidence for a causal association between H. pylori infection and gastric adenocarcinoma (NIH Consensus Development Panel, 1994). During the last decade, several nested case–control studies of H. pylori infection and gastric adenocarcinoma, including a meta-analysis (Huang et al, 1998; Danesh, 1999; Eslick et al, 1999; Helicobacter and Cancer Collaborative Group, 2001), were carried out. In high H. pylori infection areas, such as Eastern Asia and Africa, the findings from epidemiological studies have shown inconsistent results (Miwa et al, 2002; Tajima, 2002; Lunet and Barros, 2003).

Gastric cancer is the cancer with the most frequent incidence and is the second most common cause of cancer death in Korea (Korea Central Cancer Registry, 2002; National Statistical Office, 2002), where the prevalence of H. pylori infection is also high. In view of its potential importance, we carried out a nested case–control study of the subjects in a Korean cancer cohort.

MATERIALS AND METHODS

The Korean Multi-center Cancer Cohort (KMCC) consisted of male and female subjects aged over 30 years, who were voluntary participants in a cancer-screening survey in four geographically defined areas of Korea (Yoo et al, 2002). Each participant completed a detailed questionnaire administered by trained interviewers. In total, 10 ml of blood collected was fractionated and all the samples were stored at a temperature of −70°C. Informed consent was obtained from all the participants and the study protocol was approved by the Institutional Review Board of the Seoul National University Hospital and National Cancer Center.

Cases of cancer were identified through record linkage with the Korean Central Cancer Registry and the National Health Insurance Cooperation database. To validate the cancer diagnosis and obtain additional detailed clinical information, a medical record review was undertaken for potential gastric cancer patients. Among the 10927 participants recruited between 1993 and 1999, 228 participants who had cancer prior to recruitment were excluded from the study. Among the remaining 10699 potential study population, 86 incident gastric cancer cases were identified. The average time interval between the blood collection and the diagnosis of gastric cancer was 2.6 years. Four controls from the eligible cancer-free cohorts were matched to each cancer case by incidence density sampling based on their age within 5 years, gender, and the year and site of their recruitment. Thus, 86 newly diagnosed gastric adenocarcinoma patients and 344 matched controls were included in the final analysis.

A Genedia™ (Greencross Life Science) H. pylori IgG enzyme-linked immunosorbent assay (ELISA) kit, with a sensitivity of 100% and a specificity of 81.3% in the Korean population (Eom et al, 2001), was used to determine seropositivity of the cases and controls according to the manufacturer’s protocol.

A multivariate conditional logistic regression model was used to calculate the adjusted matched odds ratio (OR) and 95% confidence intervals. Statistical analysis was performed with the SAS v8.1 statistical package.

RESULTS

The demographic and clinical characteristics of the gastric adenocarcinoma cases are shown in Table 1; their mean age was 63 years at recruitment and 66% of the cases were male. Most of cases developed adenocarcinoma in the non-cardia region of the stomach (six cardia, 70 non-cardia, one both cardia and non-cardia, nine unspecified).
Cumulative smoking of more than 26 pack-years (OR, 1.22; 95% CI, 0.88–1.67) and a history of gastritis or gastric ulcer were not associated with increased risk (OR, 1.15; 95% CI, 0.80–1.67). Frequent consumption of yellow–green vegetables showed a decreased risk of gastric cancer, which was not significant (OR, 0.66; 95% CI, 0.35–1.27).

Table 1 Demographic and clinical characteristics of gastric adenocarcinoma cases in the nested case–control study

Characteristics	Categories	Number	(%)
Age (years)	40–59	27	(31.4)
	60–69	41	(47.7)
	70–82	18	(20.9)
Sex	Male	57	(66.3)
	Female	29	(33.7)
Areas at recruitment	Haman county	50	(58.2)
	Choongju city	26	(30.2)
	Uljin county	5	(5.8)
	Youngil county	5	(5.8)
Tumour sites	Cardia	6	(7.0)
	Non-cardia	70	(81.3)
	Both	1	(1.2)
	Unspecified	9	(10.5)
Follow-up duration	< 1 year	24	(27.9)
	1–2 years	33	(38.4)
	3–5 years	16	(18.6)
	> 5 years	13	(15.1)
Total		86	(100.0)

DISCUSSION

The present study suggests that there might be no direct association between *H. pylori* infection and gastric adenocarcinoma risk in South Korea.

The confidence intervals of our study (0.80–1.40) are exclusive of those in the meta-analysis from 12 nested case–control studies (Helicobacter and Cancer Collaborative Group, 2001). The major heterogeneity among the studies in the meta-analysis was from age and time interval between sample collection and cancer diagnosis. There was a 2.4-fold (95% CI, 1.82–3.12) increase in risk when samples were collected less than 10 years before the diagnosis of cancer, as were our own. A Taiwanese study, which had a median 2.0 years of follow-up showed 1.55-fold nonsignificantly increased risk (95% CI, 0.68–3.54), whereas a Japanese study and a Chinese study with median 3.6 years of follow-up showed 3.38 (95% CI, 1.15–9.90)- and 1.66 (95% CI, 1.08–2.54)-fold increased risk, respectively (Webb et al, 1996; Watanabe et al, 1997; Yuan et al, 2001).

Table 2 Seropositivity for *Helicobacter pylori* IgG antibody and adjusted matched odds ratios (ORs) for their relationship stratified by clinical characteristics and demographics

Strata	Cases Infected/total	*Hp* (+) (%)	Controls Infected/total	*Hp* (+) (%)	Adjusted matched OR (95% CI)
Overall	72/86 (83.7)		278/344 (80.8)		1.06 (0.80–1.40)
Tumour sites					
Cardia	4/6 (66.7)		20/24 (83.3)		0.88 (0.38–2.28)
Non-cardia	60/70 (85.7)		231/280 (82.5)		1.07 (0.77–1.49)
Follow-up duration	< 1 year	21/24 (87.5)	80/96 (83.3)		1.10 (0.63–1.92)
	1–3 years	27/33 (81.8)	109/132 (82.6)		1.02 (0.63–1.65)
	3–5 years	12/16 (75.0)	51/64 (79.7)		0.96 (0.51–1.81)
	> 5 years	12/13 (92.3)	38/52 (73.1)		1.26 (0.64–2.48)
Age (years)					
40–59	25/27 (92.6)		88/108 (81.5)		1.25 (0.73–2.14)
60–69	33/41 (80.5)		135/164 (82.3)		0.97 (0.64–1.47)
70–82	14/18 (77.8)		55/72 (76.4)		1.03 (0.59–1.77)
Sex					
Male	47/57 (82.5)		179/228 (78.5)		1.08 (0.78–1.50)
Female	25/29 (86.2)		99/116 (85.3)		1.03 (0.60–1.77)
Recruited areas					
Haman county	41/50 (82.0)		159/200 (79.5)		1.05 (0.74–1.49)
Choongju city	22/26 (84.6)		85/104 (81.7)		1.06 (0.62–1.81)
Uljin county	5/5 (100.0)		18/20 (90.0)		1.03 (0.18–6.02)
Youngil county	4/5 (80.0)		16/20 (80.0)		1.06 (0.29–3.84)

*Hp (+) = Helicobacter pylori seropositivity. Adjusted matched OR controlling for education, alcohol consumption, and cumulative dose of smoking.
REFERENCES

Aromaa A, Kosunen TU, Knekt P, Maatela J, Teppo L, Heinonen OP, Harkonen M, Hakama MK (1996) Circulating anti-Helicobacter pylori immunoglobulin A antibodies and low serum pepsinogen I level are associated with increased risk of gastric cancer. Am J Epidemiol 144: 142–149

Danesh J (1999) Helicobacter pylori infection and gastric cancer: systematic review of the epidemiological studies. Aliment Pharmacol Ther 13: 851 – 856

Eom HS, Kim PS, Lee JW, Pai SH, Lee JW, Choi W, Lee DH, Kwon KS, Cho HG, Kim HG, Shin YW, Kim YS (2001) Evaluation of four commercial enzyme immunoassay for detection of Helicobacter pylori infection (Korean). Korean J Gastroenterol 37: 312 – 318

Eslick GD, Lim LL, Byles JE, Xia HH, Talley NJ (1999) Association of Helicobacter pylori infection with gastric carcinoma: a meta-analysis. Am J Gastroenterol 94: 2373–2379

Helicobacter and Cancer Collaborative Group (2001) Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49: 347 – 353

Huang JQ, Sridhar S, Chen Y, Hunt RH (1996) Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 114: 1169 – 1179

International Agency for Research on Cancer Working Group on the Evaluation of Carcinogenic Risks to Humans (1994) Infection with Helicobacter pylori. In Schistosomes, Liver Flukes and Helicobacter pylori. Lyon: International Agency for Research on Cancer

Korea Central Cancer Registry (2002) Annual Report of the Korea Central Cancer Registry Program. Republic of Korea: Ministry of Health and Welfare

Lunet N, Barros H (2003) Helicobacter pylori infection and gastric cancer: facing the enigmas. Int J Cancer 106: 953 – 960

Miwa H, Go MF, Sato N (2002) H. pylori and gastric cancer: the Asian enigma. Am J Gastroenterol 97: 1106 – 1112

National Statistical Office (2002) Annual Report on the Cause of Death Statistics. Republic of Korea

The major limitations of our study are its relatively small size of the cohort and short follow-up period, and a larger study with longer follow-up period will be needed to confirm its findings in this study region. The study participants were mostly farmers, so a generalisation with respect to the entire Korean population cannot be assumed. The disappearance of incidence of childhood infection may have introduced temporality bias (Ohata et al, 2004). The history of gastric ulcer or gastritis did not affect the association of H. pylori infection to gastric cancer in our data (data not shown). The use of serum pepsinogen as a marker of chronic gastritis could usefully be applied in a future study.

ACKNOWLEDGEMENTS

We thank Drs Soung-Hoon Chang and Kun-Sei Lee of Konkuk University for designing and establishing the KMCC cohort; Dr Nathaniel Rothman of the National Cancer Center in the US for sharing his knowledge in regard to establishing cohort; Dr Mihi Yang and Ji-Hyun Yoo for their laboratory assistance. This study was sponsored by the Seoul National University Hospital (800-20030135).