CHARACTERIZING NILPOTENT LIE ALGEBRAS RELY ON THE DIMENSION OF THEIR 2-NILPOTENT MULTIPLIERS

FARANGIS JOHARI AND PEYMAN NIROOMAND

ABSTRACT. There are some results on nilpotent Lie algebras L investigate the structure of L rely on the study of its 2-nilpotent multiplier. It is showed that the dimension of the 2-nilpotent multiplier of L is equal to $\frac{1}{2}n(n - 2)(n - 1) + 3 - s_2(L)$. Characterizing the structure of all nilpotent Lie algebras has been obtained for the case $s_2(L) = 0$. This paper is devoted to the characterization of all nilpotent Lie algebras when $0 \leq s_2(L) \leq 6$. Moreover, we show that which of them are 2-capable.

1. Introduction

For an n-dimensional nilpotent non-abelian Lie algebra L, it is well-know that the dimension of its Schur multiplier is equal to $\frac{1}{2}(n - 1)(n - 2) + 1 - s(L)$ for some $s(L) \geq 0$, by a result of [7, Theorem 3.1]. There are several papers devoted to investigation of the structure of an n-dimensional nilpotent non-abelian Lie algebra L rely on $s(L)$. The structure of all nilpotent non-abelian Lie algebras L is obtain when $s(L) = 0, 1, 2, 3$ in [7, 8, 12]. These results not only characterize a nilpotent Lie algebra in terms of $s(L)$ but also they can help to shorten the processes of finding the structure of a nilpotent Lie algebra L in terms of $t(L) = \frac{1}{2}n(n - 1) - \dim M(L)$ (see [2, 8]).

Let L be a Lie algebra presented as the quotient of a free Lie algebra F by an ideal R. Then the 2-nilpotent multiplier of L, $M^{(2)}(L)$, is isomorphic to $\frac{R \cap F^3}{[R, F, F]}$. It is a less extent the c-nilpotent multiplier $M^{(c)}(L)$ for $c = 2$ (see [10]). The study of the 2-nilpotent multiplier of Lie algebras can lead to the classification of algebras Lie algebra into the equivalence classes as in the group theory case (see [3]). It also gives a criterion for detecting the 2-capability of Lie algebras. Recall that a Lie algebra L is said to be 2-capable provided that $L \cong H/Z_2(H)$ for a Lie algebra H.

In [10], the second author showed that the dimension of the 2-nilpotent multiplier of an n-dimensional non-abelian nilpotent Lie algebra L with the derived subalgebra of dimension m is bounded by $\frac{1}{4}(n - m)((n + 2m - 2)(n - m - 1) + 3(m - 1)) + 3$. Then $\dim M^{(2)}(L) \leq \frac{1}{4}n(n - 2)(n - 1) + 3$ and so we have $\dim M^{(2)}(L) = \frac{1}{4}n(n - 2)(n - 1) + 3 - s_2(L)$ for some $s_2(L) \geq 0$. The structure of all non-abelian nilpotent Lie algebras is obtained when $s_2(L) = 0$ in [10]. The current paper is devoted to
obtain the structure of all nilpotent non-abelian Lie algebras \(L \) when \(1 \leq s_2(L) \leq 6 \). Moreover, we specify which of them are capable.

2. Preliminaries

Following to Shirshov in [15], for a free Lie algebra \(L \) on the set \(X = \{x_1, x_2, \ldots\} \).

(i) The generators \(x_1, x_2, \ldots, x_n \) are basic commutators of length one and ordered by setting \(x_i < x_j \) if \(i < j \).

(ii) If all the basic commutators \(d_i \) of length less than \(t \) have been defined and ordered, then we may define the basic commutators of length \(t \) to be all commutators of the form \([d_i, d_j]\) such that the sum of lengths of \(d_i \) and \(d_j \) is \(t \), \(d_i > d_j \), and if \(d_i = [d_s, d_t] \), then \(d_j \geq d_t \). The basic commutators of length \(t \) follow those of lengths less than \(t \). The basic commutators of the same length can be ordered in any way, but usually the lexicographical order is used.

The number of all basic commutators on a set \(X = \{x_1, x_2, \ldots, x_d\} \) of length \(n \) is denoted by \(l_d(n) \). Thanks to [3], we have

\[
l_d(n) = \frac{1}{n} \sum_{m|n} \mu(m)d^m,
\]

where \(\mu(m) \) is the Möbius function, defined by \(\mu(1) = 1, \mu(k) = 0 \) if \(k \) is divisible by a square, and \(\mu(p_1 \ldots p_s) = (-1)^s \) if \(p_1, \ldots, p_s \) are distinct prime numbers. Using the the topside statement and looking [13, Lemma 1.1] and [15], we have the following.

Theorem 2.1. Let \(F \) be a free Lie algebra on set \(X \), then \(F^c/F^{c+i} \) is an abelian Lie algebra with the basis of all basic commutators on \(X \) of lengths \(c, c+1, \ldots, c+i-1 \) for all \(0 \leq i \leq c \). In particular, \(F^c/F^{c+1} \) is an abelian Lie algebra of dimension \(l_d(c) \), where \(F^c \) is the \(c \)-th term of the lower central series of \(F \).

The following theorem improves the result of [1] Theorem 2.5] for \(c = 2 \) when \(L \) is a non-abelian nilpotent Lie algebra.

Theorem 2.2. [10, Theorem 2.14] Let \(L \) be an \(n \)-dimensional nilpotent Lie algebra with the derived subalgebra of dimension \(m \) \((m \geq 1) \). Then \(\dim M^{(2)}(L) \leq \frac{1}{3}(n-m)((n+2m-2)(n-m-1)+3(m-1)) + 3\). If \(m = 1 \), then \(\dim M^{(2)}(L) = \frac{1}{3}n(n-1)(n-2) + 3 \) if and only if \(L \cong H(1) \oplus A(n-3) \).

3. Main Results

This section is devoted to obtain new result on the dimension of the 2-nilpotent multiplier of a non-abelian nilpotent Lie algebra. We are going to obtain the structure of all Lie algebras \(L \) such that \(1 \leq s_2(L) \leq 6 \). We need the following two easy lemmas for the next investigation.

Lemma 3.1. Let \(L \) be an \(n \)-dimensional nilpotent Lie algebra with the derived subalgebra of dimension \(m \) \((m \geq 3) \). Then \(\dim M^{(2)}(L) \leq \frac{1}{4}n(n-2)(n-1)-2 \).
Proof. By using Theorem 2.2 and our assumption, we have
\[
\dim \mathcal{M}^{(2)}(L) \leq \frac{1}{3} \left(n - m \right) \left(n + 2m - 2 \right) \left(n - m - 1 \right) + 3(m - 1) + 3 \leq \frac{1}{3} (n - 3) \left(n + 4 \right) \left(n - 4 \right) + 3(3 - 1) + 3 \\
= \frac{1}{3} (n - 3) \left(n + 4 \right) \left(n - 4 \right) + 3 = \frac{1}{3} (n^3 - 3n^2) - \frac{10n}{3} + 10 + 3 - 2 + 2 \\
= \frac{1}{3} (n^3 - 3n^2) - 3(\frac{2n}{3} - 3) - 2 \leq \frac{1}{3} n(n - 2)(n - 1) - 2.
\]
The result is obtained.

Lemma 3.2. Let \(L \) be an \(n \)-dimensional nilpotent Lie algebra with the derived subalgebra of dimension 2. Then \(\dim \mathcal{M}^{(2)}(L) \leq \frac{1}{3} n(n - 2)(n - 1) + 1 \).

Proof. By invoking Theorem 2.2 we have
\[
\dim \mathcal{M}^{(2)}(L) \leq \frac{1}{3} (n - 2) \left(n + 2 \right) (n - 3) + 3 \leq \frac{1}{3} (n - 2) (n^2 - n - 3) + 3 \\
= \frac{1}{3} (n^3 - 3n^2) - (\frac{n}{3} - 5) \leq \frac{1}{3} (n^3 - 3n^2) + \frac{2n}{3} + 1 = \frac{1}{3} n(n - 2)(n - 1) + 1,
\]
as required.

Theorem 3.3. Let \(L \) be an \(n \)-dimensional nilpotent Lie algebra and \(\dim L^2 = 1 \). Then \(L \cong H(k) \oplus A(n - 2k - 1) \) and
\[(i) \quad \mathcal{M}^{(2)}(L) \cong A(\frac{1}{3} n(n - 1)(n - 2) + 3), \text{ if } k = 1.
(ii) \quad \mathcal{M}^{(2)}(L) \cong A(\frac{1}{3} n(n - 1)(n - 2)), \text{ for all } k \geq 2.
\]

Corollary 3.4. There is no \(n \)-dimensional nilpotent Lie algebra \(L \) with the derived subalgebra of dimension \(m \geq 1 \) such that \(\dim \mathcal{M}^{(2)}(L) = \frac{1}{3} n(n - 2)(n - 1) + 2 \) or equally \(s_2(L) = 1 \).

Proof. The result follows from Lemmas 3.1, 3.2 and Theorem 3.3.

By using the notation and terminology of 4.6, we have

Proposition 3.5. The 2-nilpotent multiplier of the Lie algebras
\[
L_{4,3} = \langle x_1, x_2, x_3, x_4 | [x_1, x_2] = x_3, [x_1, x_3] = x_4 \rangle,
L_{5,8} = \langle x_1, x_2, x_3, x_4, x_5 | [x_1, x_2] = x_3, [x_1, x_3] = x_4, [x_1, x_4] = x_5 \rangle
\]
and
\[
L_{5,5} = \langle x_1, x_2, x_3, x_4, x_5 | [x_1, x_2] = x_3, [x_1, x_3] = x_5, [x_2, x_4] = x_5 \rangle
\]
is abelian of dimension 6, 18 and 17, respectively.

Proof. Let \(L \cong L_{4,3} \) and \(F \) be a free Lie algebra on the set \(\{x_1, x_2\} \) and \(R = \langle [x_1, x_2, x_3] \rangle \). Since \(L_{4,3} \) is of class 3, \(F^4 \subseteq R \) and so
\[
\mathcal{M}^{(2)}(L_{4,3}) \cong \frac{\langle [x_1, x_2, x_3] \rangle + F^4/F^6}{\langle [x_1, x_2, x_3] \rangle + F^4/F^6}.
\]

Theorem 2.1 implies \(\dim F^4/F^6 = l_2(4) + l_2(5) = 3 + 6 = 9 \). It is easy to see that
\[
\langle [x_1, x_2, x_3], F, F \rangle/F^6 = \langle [x_1, x_2, x_3], F, F \rangle/F^6/F^6 = \langle [x_1, x_2, x_3] + F^6, [x_1, x_2, x_3], [x_1, x_2, x_3] + F^6 \rangle
\]
and so \(\dim [R, F, F]/F^6 = 4 \).

It follows \(\dim \mathcal{M}^{(2)}(L_{4,3}) = 10 - 4 = 6 \).

Now, let \(L \cong L_{5,8} \). Clearly, \(L = \langle x_1, x_2, x_3 | [x_2, x_3] = x_5, 0 \leq i, j, k \leq 3 \rangle \).
Proof. \(\dim M_{4 F} \).} JoHari and P. Niroomand

Therefore \([R, F, F]/F^5 = \langle [x_2, x_3, x_1, x_1] + F^5, [x_2, x_3, x_2, x_1] + F^5, [x_2, x_3, x_2, x_2] + F^5, [x_2, x_3, x_3, x_1] + F^5, [x_2, x_3, x_3, x_2] + F^5, [x_2, x_3, x_3, x_3] + F^5, [x_1, x_2, [x_1, x_3]] + F^5\) and so \(\dim [R, F, F]/F^5 = 8\). It follows \(\dim M^{(2)}(L_{5,8}) = 26 - 8 = 18\).

Let \(L \cong L_{5,5}\) and \(F\) be a free Lie algebra on the set \(\{x_1, x_2, x_4\}\) and \(R = \langle [x_1, x_2, x_3], [x_2, x_4, x_1], [x_2, x_4, x_2], [x_2, x_4, x_4], [x_1, x_4, x_1], [x_1, x_1, x_2], [x_2, x_4, x_4], [x_1, x_1, x_1] + F^4\) so \(R/F^6 \cong F^3/\langle [x_1, x_1, x_1]\rangle/\langle [x_1, x_2, x_1]\rangle + F^6\). Since \(L_{5,5}\) is of class 3, \(F^4 \subseteq R\) and so

\[
M^{(2)}(L_{5,5}) \cong \frac{F^3/\langle [x_1, x_2, x_1]\rangle + F^6}{\langle [x_1, x_4]\rangle, [F, F] + \langle [x_1, x_2, x_1]\rangle + F^5/\langle [x_1, x_2, x_1]\rangle + F^6}.
\]

Theorem 2.1 implies \(\dim F^3/F^6 = l_3(3) + l_3(4) + l_3(5) = 8 + 18 + l_3(5)\). It is easy to see that \([R, F, F]/F^6 = \langle [x_1, x_4, x_1, x_1], [x_1, x_4, x_2, x_1], [x_1, x_4, x_4, x_1], [x_1, x_4, x_4, x_2], [x_1, x_4, x_4, x_4], [x_1, x_2, [x_1, x_4]] + F^5/F^6\) and so \(\dim [R, F, F]/F^6 = 8 + l_3(5)\). Therefore \(\dim M^{(3)}(L_{5,5}) = l_3(3) + l_3(4) + l_3(5) - 1 - l_3(5) - 8 = 17\), as required.

A Lie algebra \(L\) is called capable if \(L \cong H/Z(H)\) for a Lie algebra \(H\). See 9 for more information on this topic.

Proposition 3.6. Let \(L\) be a non-capable \(n\)-dimensional nilpotent Lie algebra of class \(3\) with the derived subalgebra of dimension \(2\) and \(n \geq 6\). Then \(\dim M^{(2)}(L) = \frac{1}{6}(n - 1)(n - 2)(n - 3) + 2\).

Proof. By 11 Lemma 4.5, Corollary 4.11 and Theorem 5.1, \(Z^*(L) = L^3 \cong A(1)\) and so \(L/L^3 \cong H(1) \oplus A(n - 4)\). Since \(L\) is not 2-capable, we have \(\dim M^{(2)}(L) = \dim M^{(2)}(L/L^3) - 1 = \frac{1}{6}(n - 1)(n - 2)(n - 3) + 2\), by using Theorem 5.3 and 10 Lemma 2.2 and Theorem 3.2.

Lemma 3.7. There is no \(n\)-dimensional nilpotent Lie algebra \(L\) with the derived subalgebra of dimension \(2\) such that \(\dim M^{(2)}(L) = \frac{1}{6}n(n - 2)(n - 1) + 1\) or equally \(s_2(L) = 2\).

Proof. By contrary, let there be an \(n\)-dimensional nilpotent Lie algebra \(L\) with the derived subalgebra of dimension \(2\) such that \(\dim M^{(2)}(L) = \frac{1}{6}n(n - 2)(n - 1) + 1\). Let \(B\) be a one dimensional central ideal of \(L\) is contained in \(L^2\). Since \(\dim (L/B)^2 = 1\), we have \(\dim M^{(2)}(L/B) \leq \frac{1}{6}(n - 1)(n - 2)(n - 3) + 3\) by using Theorem 5.3.
Theorem 3.8. There is no n-dimensional nilpotent Lie algebra L with the derived subalgebra of dimension 2 such that $\dim \mathcal{M}(2)(L) = \frac{1}{3}n(n-2)(n-1)$ or equally $s_2(L) = 3$.

Proof. By contrary, let there be an n-dimensional nilpotent Lie algebra L with the derived subalgebra of dimension 2 such that $\dim \mathcal{M}(2)(L) = \frac{1}{3}n(n-2)(n-1)$. Let B be a one dimensional central ideal of L is contained in L^2. Since $\dim(L/B)^2 = 1$, we have $\dim \mathcal{M}(2)(L/B) \leq \frac{1}{3}(n-1)(n-2)(n-3) + 3$, by using Theorem 3.3. Now Theorem 2.4 implies

$$\frac{1}{3}(n-2)(n^2-n) + 1 = \frac{1}{3}n(n-1)(n-2) + 1 = \dim \mathcal{M}(2)(L) \leq \dim \mathcal{M}(2)(L/B) + \dim(L/L^2 \otimes L/L^2 \otimes B) \leq \frac{1}{3}(n-1)(n-2)(n-3) + 3 + (n-2)^2 - \dim L^3 \cap B$$

$$= \frac{1}{3}(n-2)(n^2-n-3) + 3 - \dim L^3 \cap B.$$

If $\dim(L) = 2$, then $L^3 = 0$ so $n \leq 5$. If $\dim(L) = 3$, then since $B = L^2 \cap Z(L) = L^3 \cong A(1)$, we have $n \leq 4$. Let $\dim(L) = 2$. Hence, our assumption and looking at the classification of all nilpotent Lie algebras listed in [9] show that $L \cong L_{5,8}$. By Proposition 3.5 we have $\dim \mathcal{M}(2)(L_{5,8}) = 18$. It contradicts our assumption that $\dim \mathcal{M}(2)(L_{5,8}) = 20$. Now, let $\dim(L) = 3$. By a similar way, we have $L \cong L_{4,3}$. Using Proposition 3.5 we have $\dim \mathcal{M}(2)(L_{4,3}) = 6$. It contradicts our assumption that $\dim \mathcal{M}(2)(L_{4,3}) = 8$. Hence, the supposition is false and the statement is true.

Theorem 3.9. There is no n-dimensional nilpotent Lie algebra L with the derived subalgebra of dimension $m = 2$ such that $\dim \mathcal{M}(2)(L) = \frac{1}{3}n(n-2)(n-1)-1$ or equally $s_2(L) = 4$.

Proof. By contrary, let there be an n-dimensional nilpotent Lie algebra L with the derived subalgebra of dimension 2 such that $\dim \mathcal{M}(2)(L) = \frac{1}{3}n(n-2)(n-1)-1$ and B be a one dimensional central ideal of L is contained in L^2. Since $\dim(L/B)^2 = 1$, we have $\dim \mathcal{M}(2)(L/B) \leq \frac{1}{3}(n-1)(n-2)(n-3) + 3$, by using Theorem 3.3. Now
Theorem 2.4] implies
\[
\frac{1}{3}(n-2)(n^2-n) - 1 = \frac{1}{3}n(n-1)(n-2) - 1 = \dim \mathcal{M}^{(2)}(L) \\
\dim \mathcal{M}^{(2)}(L/B) + \dim(L/L^2 \otimes L/L^2 \otimes B) - \dim L^3 \cap B \\
\frac{1}{3}(n-1)(n-2)(n-3) + 3 + (n-2)^2 - \dim L^3 \cap B \\
= \frac{1}{3}(n-2)(n^2 - n-3) + 3 - \dim L^3 \cap B.
\]

If \(cl(L) = 2\), then \(L^3 = 0\) so \(n \leq 6\). If \(cl(L) = 3\), then since \(B = L^2 \cap Z(L) = L^3 \cong A(1), n \leq 5\). Let \(cl(L) = 2\). Hence, our assumption and looking at the classification of all nilpotent Lie algebras listed in [4, 6], we obtain \(L \cong L_{5,5} \oplus A(1), L \cong L_{5,22}(\epsilon) \) or \(L \cong L_{6,7}(\eta)\). By Proposition 3.5 and [10, Theorem 2.5], we have \(\dim(M(2)(L_{5,5})) = 18\) and \(\dim(M(2)(L_{5,8} \oplus A(1))) = 30\). It contradicts our assumption. Now, let \(L \cong L_{5,22}(\epsilon)\) and \(B\) be a one dimensional central ideal of \(L_{5,22}(\epsilon)\) is contained in \(L_{6,22}(\epsilon)^2\). Since \(\dim(L_{6,22}(\epsilon)/B)^2 = 1\) and \(L_{6,22}(\epsilon)/B \cong H(2)\), we have \(\dim(M(2)(H(2))) = 20\), by using Theorem 3.5. Now [11, Theorem 2.4] implies \(\dim(M(2)(L_{6,22}(\epsilon))) \leq \dim(M(2)(H(2))) + \dim(H(2)/H(2)^2 \otimes H(2)/H(2)^2 \otimes B) = 20 + 16 = 36\). Similarly, we have \(\dim(M(2)(L_{6,7}(\eta))) \leq 36\). They contradict our assumption that \(\dim(M(2)(L_{6,22}(\epsilon))) = 39 = \dim(M(2)(L_{6,7}(\eta)))\). Now let \(cl(L) = 3\). Hence, by looking at the classification of all nilpotent Lie algebras listed in [6], we obtain \(L \cong L_{4,3}, L \cong L_{4,3} \oplus A(1)\) or \(L \cong L_{5,5}\). By Proposition 3.5 and [10, Theorem 2.5], \(\dim(M(2)(L_{4,3})) = 6\), \(\dim(M(2)(L_{5,5})) = 17\) and \(\dim(M(2)(L_{4,3} \oplus A(1))) = 12\). They contradict our assumption that \(s_2(L) = 4\). Hence the result is obtained. \(\square\)

Theorem 3.10. Let \(L\) be an \(n\)-dimensional nilpotent Lie algebra with the derived subalgebra of dimension \(m \geq 1\). Then

(i) \(\dim \mathcal{M}^{(2)}(L) = \frac{1}{3}n(n-2)(n-1) + 3\) or equally \(s_2(L) = 0\) if and only if \(L \cong H(1) \oplus A(n-3)\).

(ii) There is no \(n\)-dimensional nilpotent Lie algebra \(L\) with the derived subalgebra of dimension \(m \geq 1\) such that \(\dim \mathcal{M}^{(2)}(L) = \frac{1}{3}n(n-2)(n-1) + 2\) or equally \(s_2(L) = 1\).

(iii) There is no \(n\)-dimensional nilpotent Lie algebra \(L\) with the derived subalgebra of dimension \(m \geq 1\) such that \(\dim \mathcal{M}^{(2)}(L) = \frac{1}{3}n(n-2)(n-1) + 1\) or equally \(s_2(L) = 2\).

(iv) There is no \(n\)-dimensional nilpotent Lie algebra \(L\) with the derived subalgebra of dimension \(m \geq 2\) such that \(\dim \mathcal{M}^{(2)}(L) = \frac{1}{3}n(n-2)(n-1)\) or equally \(s_2(L) = 3\).

(v) There is no \(n\)-dimensional nilpotent Lie algebra \(L\) with the derived subalgebra of dimension \(m \geq 1\) such that \(\dim \mathcal{M}^{(2)}(L) = \frac{1}{3}n(n-2)(n-1) - 1\) or equally \(s_2(L) = 4\).

Proof. The result follows from Theorem 2.2, Lemma 3.1, Theorem 3.3, Corollary 3.4, Lemma 3.7, Theorems 3.8 and 3.9. \(\square\)

Corollary 3.11. Let \(L\) be an \(n\)-dimensional nilpotent Lie algebra with the derived subalgebra of dimension \(m \geq 2\). Then \(\dim \mathcal{M}^{(2)}(L) \leq \frac{1}{3}n(n-2)(n-1) - 2\).
Proof. The result follows from Theorem 3.10.

Theorem 3.12. There is no n-dimensional nilpotent Lie algebra L with the derived subalgebra of dimension $m \geq 3$ such that $\dim \mathcal{M}^{(2)}(L) = \frac{1}{3} n(n - 2)(n - 1) - 2$ or $\dim \mathcal{M}^{(2)}(L) = \frac{4}{3} n(n - 2)(n - 1) - 3$.

Proof. By contrary, let there be an n-dimensional nilpotent Lie algebra L with the derived subalgebra of dimension $m \geq 3$ such that $\dim \mathcal{M}^{(2)}(L) = \frac{1}{3} n(n - 2)(n - 1) - 2$. Let B be a one dimensional central ideal of L is contained in L^2. Since $\dim(L/B)^2 \geq 2$, we have $\dim \mathcal{M}^{(2)}(L/B) \leq \frac{1}{3}(n - 1)(n - 2)(n - 3) - 2$, by using Corollary 3.11. Now [1] Theorem 2.4] implies

\[
\frac{1}{3}(n - 2)(n^2 - n) - 2 = \frac{1}{3} n(n - 1)(n - 2) - 2 = \dim \mathcal{M}^{(2)}(L) \leq \dim \mathcal{M}^{(2)}(L) + \\
\dim L^3 \cap B \leq \dim \mathcal{M}^{(2)}(L/B) + \dim(L/L^2 \otimes L/L^2 \otimes B) \leq \\
\frac{1}{3}(n - 1)(n - 2)(n - 3) - 2 + (n - 3)^2,
\]

and so $n \leq 3$, which is a contradiction. By a similar way, we can see that there is no n-dimensional nilpotent Lie algebra L with the derived subalgebra of dimension $m \geq 3$ such that $\dim \mathcal{M}^{(2)}(L) = \frac{4}{3} n(n - 2)(n - 1) - 3$. The result follows.

Theorem 3.13. Let L be an n-dimensional nilpotent Lie algebra with the derived subalgebra of dimension 2. Then

(i) $\dim \mathcal{M}^{(2)}(L) = \frac{1}{3} n(n - 1) = 2$ or equally $s_2(L) = 5$ if and only if $L \cong L_{5,8}$ or $L \cong L_{4,3}$.

(ii) $\dim \mathcal{M}^{(2)}(L) = \frac{1}{3} n(n - 1) - 3$ or equally $s_2(L) = 6$ if and only if $L \cong L_{5,5}$.

Proof. (i) Let there be an n-dimensional nilpotent Lie algebra L with the derived subalgebra of dimension 2 such that $\dim \mathcal{M}^{(2)}(L) = \frac{1}{3} n(n - 1) - 2$ and B be a one dimensional central ideal of L in contained L^2. Since $\dim(L/B)^2 = 1$, we have $\dim \mathcal{M}^{(2)}(L/B) \leq \frac{1}{3}(n - 1)(n - 2)(n - 3) + 3$ by using Theorem 3.3. Now [1] Theorem 2.4] implies

\[
\frac{1}{3}(n - 2)(n^2 - n) - 2 = \frac{1}{3} n(n - 1)(n - 2) - 2 = \dim \mathcal{M}^{(2)}(L) \leq \\
\dim \mathcal{M}^{(2)}(L/B) + \dim(L/L^2 \otimes L/L^2 \otimes B) - \dim L^3 \cap B \leq \\
\frac{1}{3}(n - 1)(n - 2)(n - 3) + 3 + (n - 2)^2 - \dim L^3 \cap B
\]

\[
= \frac{1}{3}(n - 2)(n^2 - n) + 3 - \dim L^3 \cap B.
\]

If $cl(L) = 2$, then $L^3 = 0$ so $n \leq 7$. If $cl(L) = 3$, then since $B = L^2 \cap Z(L) = L^3 \cong A(1)$, $n \leq 6$. Let $cl(L) = 2$. Hence, by looking at the classification of all nilpotent Lie algebras listed in [4, 6, 11], we obtain $L \cong L_{5,8}, L \cong L_{5,8} \oplus A(1), L \cong L_{5,8} \oplus A(2), L \cong L_{6,22}(\epsilon)$, $L \cong L_{6,22}(\epsilon) \oplus A(1), L \cong L_{6,22}(\epsilon) \oplus A(1)$, $L \cong L_{6,7}(\eta), L \cong L_{6,7}(\eta) \oplus A(1), L \cong L_1$ or $L \cong L_2$. By Proposition 3.3 and [10] Theorem 2.5], $\dim(\mathcal{M}^{(2)}(L_{5,8})) = 18$ and so $\dim(\mathcal{M}^{(2)}(L_{5,8} \oplus A(1))) = 30$ and $\dim(\mathcal{M}^{(2)}(L_{5,8} \oplus A(2))) = 50$. It contradicts our assumption that $s_2(L) = 5$.

Now, let $L \cong L_{6,22}(\epsilon)$ and B be a one dimensional central ideal of $L_{6,22}(\epsilon)$ is contained in $L_{6,22}(\epsilon)^2$. Since $\dim(L_{6,22}(\epsilon)/B)^2 = 1$ and $L_{6,22}(\epsilon)/B \cong H(2)$,
we have dim $\mathcal{M}(2)(H(2)) = 20$, by using Theorem 3.3. Now Theorem 2.4 implies dim $\mathcal{M}(2)(L_{6,22}(\epsilon)) \leq \dim \mathcal{M}(2)(H(2)) + \dim(H(2)/H(2)^2 \otimes H(2)/H(2)^2 \otimes B) = 20 + 16 = 36$ and hence $\dim \mathcal{M}(2)(L_{6,22}(\epsilon) \oplus A(1)) \leq 66$. Similarly, we have $\dim \mathcal{M}(2)(L_{6,7}(\eta)) \leq 36$ and hence $\dim \mathcal{M}(2)(L_{6,7}(\eta) \oplus A(1)) \leq 66$. They cannot happen because of our assumption that $s_2(L) = 5$. Also, if $L \cong L_1$ or $L \cong L_2$, then let B be a one dimensional central ideal of L contained in L^2. Since $\dim(L/B)^2 = 1$ and $L/B \cong H(2) \oplus A(1)$, we have $\dim \mathcal{M}(2)(H(2) \oplus A(1)) = 40$, by using Theorem 3.3. Now Theorem 2.4 implies $\dim \mathcal{M}(2)(L) \leq \dim \mathcal{M}(2)(H(2) \oplus A(1)) + \dim(L/L^2 \otimes L/L^2 \otimes B) = 40 + 25 = 65$, which contradicts our assumption that $s_2(L) = 5$. Hence we should have $L \cong L_{5,8}$. In the case that $\mathfrak{cl}(L) = 3$. Hence, by looking the classification of all nilpotent Lie algebras of dimension 4 listed in [6], we obtain $L \cong L_{4,3}$. Proposition 3.5 implies $\dim(\mathcal{M}(2)(L_{4,3})) = 6$ so $S_2(L_{4,3}) = 5$. By a similar way, there is no a Lie algebra such that $s_2(L) = 5$ when $\dim L \geq 5$.

(ii) By a similar technique is used in the proof of part (i), we conclude that $L \cong L_{5,5}$. The converse holds by Proposition 3.5.

\begin{proof}
The result is obtained by using Theorem 3.3, Corollary 3.11, Theorems 3.12 and 3.13.
\end{proof}

Recall from [10], a Lie algebra L is said to be 2-capable if $L \cong H/Z_2(H)$ for a Lie algebra H. In the following corollary, we specify which ones of Lie algebras with $0 \leq s_2(L) \leq 6$ are capable.

\begin{corollary}
Let L be an n-dimensional nilpotent Lie algebra with the derived subalgebra of dimension $m \geq 1$. Then

(a) $s_2(L) = 0$ if and only if $L \cong H(1) \oplus A(n - 3)$.

(b) There is no n-dimensional nilpotent Lie algebra L such that $s_2(L) = 1, 2, 4$.

(c) $s_2(L) = 3$ if and only if $L \cong H(k) \oplus A(n - 2k - 1)$ for all $k \geq 2$.

(d) $s_2(L) = 5$ if and only if $L \cong L_{4,3}$ or $L \cong L_{5,8}$.

(e) $s_2(L) = 6$ if and only if $L \cong L_{5,5}$.

\end{corollary}

\begin{proof}
By using Theorem 3.14 L is isomorphic to one of the Lie algebras $H(k) \oplus A(n - 3)$, for all $k \geq 1$, $L_{4,3}$, $L_{5,5}$ or $L_{5,8}$. By invoking [10] Theorem 3.3, $H(1) \oplus A(n - 3)$ is 2-capable. Let $L \cong L_{4,3}$ and B be a one dimensional central ideal of L contained in L^2. Since $\dim(L/B)^2 = 1$, we have $\dim \mathcal{M}(2)(L/B) \leq 3$, by using Theorem 3.3. Since $\dim \mathcal{M}(2)(L/B) \leq \dim \mathcal{M}(2)(L) = 5$, [10] Theorem 3.2 implies $L_{4,3}$ is 2-capable. By a similar way, $L \cong L_{5,5}$ and $L \cong L_{5,8}$ are 2-capable. Hence the result follows.
\end{proof}

\begin{thebibliography}{9}

[1] M. Araskhan, M. R. Rismanchian, Dimension of the c-nilpotent multiplier of Lie algebras. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), no. 3, 353-357.

[2] P. Batten, K. Moneyhun, E. Stitzinger, On characterizing nilpotent Lie algebras by their multipliers. Comm. Algebra 24 (1996), no. 14, 4319-4330.

\end{thebibliography}
[3] Yu.A. Bahturin, Identical Relations in Lie Algebras, VNU Science Press, b.v., Utrecht, 1987, Translated from the Russian by Bahturin.

[4] S. Cical, W. A. de Graaf, C. Schneider, Six-dimensional nilpotent Lie algebras. Linear Algebra Appl. 436 (2012), no. 1, 163-189.

[5] J. Burns, G. Ellis, On the nilpotent multipliers of a group, Math. Z. 226 (1997), no. 3, 405–428.

[6] W. A. de Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, Algebra 309 (2007) 640-653.

[7] P. Niroomand, F.G. Russo, A note on the Schur multiplier of a nilpotent Lie algebra, Comm. Algebra 39 (2011) 1293-1297.

[8] P. Niroomand, On dimension of the Schur multiplier of nilpotent Lie algebras. Cent. Eur. J. Math. 9 (2011), no. 1, 57-64.

[9] P. Niroomand, M. Parvizi, F. G. Russo, Some criteria for detecting capable Lie algebras. J. Algebra 384 (2013), 36–44

[10] P. Niroomand, M. Parvizi, 2-capability and 2-nilpotent multiplier of finite dimensional nilpotent Lie algebras. J. Geom. Phys. 121 (2017), 180-185.

[11] P. Niroomand, F. Johari, M. Parvizi, Capable Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field. To appear in Linear Multilinear Algebra, doi.org/10.1080/03081087.2018.1425356.

[12] F. Saeedi, H. Arabayani, P. Niroomand, On dimension of Schur multiplier of nilpotent Lie algebras II. Asian-Eur. J. Math. 10 (2017), no. 4, 1750076, 8 pp.

[13] A. Salemkar, B. Edalatzadeh, M. Araskhan, Some inequalities for the dimension of the c-nilpotent multiplier of Lie algebras. J. Algebra 322 (2009), no. 5, 1575-1585.

[14] A. Salemkar, A. Aslizadeh, The nilpotent multipliers of the direct sum of Lie algebras. J. Algebra 495 (2018), 220-232.

[15] A.I. Shirshov, On bases of free Lie algebras, Algebra Logika 1 (1) (1962) 14-19.

E-mail address: e-mail: farangis.johari@mail.um.ac.ir, farangisjohary@yahoo.com

DEPARTMENT OF PURE MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD, MASHHAD, IRAN

SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE, DAMGHAN UNIVERSITY, DAMGHAN, IRAN

E-mail address: niroomand@du.ac.ir, p_niroomand@yahoo.com