Introduction

Several Palaeogene sites of plant and animal assemblages connected with the magmatic complex of the České středohoří Mountains (Böhmisches Mittelgebirge in German) and adjacent Saxony well known since Sternberg’s times have been newly revisited and reviewed in several monographs (e.g. Bůžek et al. 1976, Kvaček and Walther 1995, 1998, 2004, Walther and Kvaček 2007, Kvaček and Teodoridis 2011). All these studies contributed new information on the palaeo-world of this region. In addition to the classic localities we return now to those recovered and studied in detail after the Second World War, situated on the northern periphery of the mountains. A monograph on the early Oligocene flora of Seifhennersdorf was published in 2007 (Walther and Kvaček 2007) along with diatoms, fishes and insects. Another site – Hrazený hill (formerly Pirskenberg) in Knížecí near Šluknov – has also yielded numerous plant fossils, but so far no new revised data have been available (Text-fig. 1). The plant...
material was collected from the diatomite layers there and worked out by Knobloch (1958, 1961) but the data are outdated and required revision. Beside the original material housed in the National Museum in Prague in 2014 we also sorted out and examined numerous additional fossils collected by Knobloch, which he had left aside for future study but never returned to these collections. Contrary to observations by Knobloch (1961, p. 248), some of the plant remains yielded cuticles that have enabled more precise identification (see Table 1).

Besides fossil plants, co-occurring fishes are known also from this locality (Obrhelová 1961, Gaudent in Bellon et al. 1998, Böhme 2007, Přikryl 2014) and some new specimens were recovered from the collections and offered to our colleague Tomáš Přikryl (Geological Institute CAS, v. v. i., Prague) for a re-evaluation. A few other animal remains (e.g. beetle wing-cases) found at the same time are too incomplete and have not as yet been subjected to detailed study.

Geological setting and age

The site of Hrazený hill, previously known as Přiršken or Piršken in the village of Knížecí in North Bohemia (Knobloch 1961, Oberhelová 1961) lies ca. 10 km NW from the town of Rumburk and 4 km SSW from Šluknov (Plate 21). It lies on the periphery of the České středohoří magmatic complex in Šluknov hills (Bellon et al. 1998), where Hrazený hill is the highest peak at an altitude of 609.7 m above sea level. The fossiliferous diatomite lies under basaltoid (Kopecký in Knobloch 1959) and tephritic (Bellon in Bellon et al. 1998) lava flows and reaches about 5 m in thickness. It is not accessible in outcrops but samples are available from old waste heaps in Knížecí village following an unsuccessful search for lignite in the 19th century.

The first reports on fossil plant remains from this area were published by Weise (1890). Further geological and palaeontological data were obtained during geological mapping by Herrmann and Beck (1897) who also provided a list of recovered fossil plants identified by H. Engelhardt from Dresden. This collection was not illustrated nor described in detail. Another site of fossiliferous diatomite is situated near the village of Lipová (formerly Heinspach) mentioned by Herrmann and Beck (1897), where also fossil plants occur (see Jeremies 2006).

Knobloch (1959, p. 102–103) reported on his geological mapping in the area of Hrazený hill and the village of Knížecí in the following text (shortened translation from Czech): “The freshwater Tertiary deposit was not visible in the complete section. The thickness is very variable (from 0.3 m to 3–5 m on average). It starts with fine-grained green-brown tuffitic clay and continues upwards as variegated clay with interbeds of sandy and clayey bedded diatomite. It also includes a black layer of bituminous clay 0.2 m thick, which was obviously interpreted as poor quality lignite. The layers are not laid horizontally and incline towards the basin center at maximum angles of ca. 50° or less. The richest fossiliferous layers are represented by bedded reddish to light brown diatomite with abundant fossil flora showing regular bedding similar to the diatomite at Bechlejovice and Varnsdorf. The Tertiary complex ends with an eruption of basaltoid magma. L. Kopecký who kindly assessed thin sections of the magmatic rock from Hrazený hill identified it as common basalt sensu stricto. However, the existence of 2–3 flows cannot be ruled out.”

An extensive correlative study of the České středohoří Mountains by Bellon et al. (1998) assigned the flora of Knížecí to the early Oligocene and concluded that the nearest plant assemblages were described from the slightly older sites of Seifhennersdorf-Varnsdorf and Kundratice (Kvaček and Walther 1998, Walther and Kvaček 2007). Bellon (in Bellon et al. 1998) attempted radiometric dating of several sites in the České středohoří magmatic complex by a detailed petrological and geochemical study. He carried out K-Ar dating on whole rock samples and obtained data suggesting an age from 23.7 to 38.3 Ma. He also analyzed one sample of a lava flow immediately covering the diatomite layer at Hrazený hill and an age of 29.5±1.5 Ma was suggested. Böhme (2007, p. 189) estimated the ectothermic vertebrate fauna from Knížecí also to be early Oligocene.

Material and methods

The collecting activities of Erwin Knobloch between the years 1956 – 1957 on waste dumps left after old mining attempts in the village of Knížecí (50°58’33”N, 14°24’51”E) provided almost all the study material (Knobloch 1958, 1959, 1961, Oberhelová 1961). A few plant specimens were added by Kotlaba and Bartoš later (collections in the National Museum in Prague). The exact position and lithology of the fossiliferous diatomite at Knížecí was described in detail by Knobloch (1958, 1959, 1961) who also personally excavated most of the material studied. Some of the layers are thinly bedded, fine grained and quite hard; the mechanical preparation to reveal complete plant impressions was obviously difficult because many specimens show traces left by a knife (Knobloch 1961, pl. 8, fig. 3 etc.). In addition to the thinly bedded diatomite we also noticed in the collections samples of coarser diatomite facies with accumulations of disintegrated Tetracrinis twigs and fragmentary plant fossils. The majority of the specimens studied represents flat leaf impressions, occasionally infructescences (Platanus neptuni, Alnus) and catkins (Alnus), fruits (Acer, Craugia, etc.) or seeds (Carpolithes spp.). In rare cases a detached stamen and fruitlets of Platanus neptuni were recovered. Conifer needles and a smaller proportion of leaf fossils are impressions/ compressions with preserved coaly material and cuticle on the surface. The material is heavily oxidized. We used a shortened maceration procedure, in which the leaf fragments were first treated in diluted HF, rinsed in water and then in diluted 5% KOH. The coaly material was mostly naturally oxidized and could be dissolved without any additional maceration. The cuticles were then transferred into a drop of water on a slide, embedded in glycerol and sealed with a cover glass bordered with nail varnish.

The illustrated specimens and cuticle preparations have been transferred to the collections of the palaeontological department of the National Museum in Prague (numbers prefixed by NM), duplicate material is housed in the Czech Geological Survey, Prague (numbers prefixed by EK and without numbers) together with unidentified or fragmentary
Table 1. Current taxonomic assignments compared with the designations of Knobloch (1961).

Present treatment	Knobloch (1961)
Muscites sp.	Muscites sp.
Pinus cf. rigias	
Taxodium dubium	Taxodium distichum miocenicum
Tetraclinis salicornioides	Libocedrus salicornioides
Taxus engelhardii	
Torreya bilinica	
Liriodendron haueri	Liriodendron haueri
Laurophyllum mediomontanum	Salix longa
Laurophyllum sp.	Laurus princeps + Laurophyllum sp. + ? Benzoin attenuatum + cf. Laurus primigenia
Daphnogene cinnamomifolia	Cinnamomum scheuchzeri
Smilax weberi	Smilax grandifolia
“Typha” latissima	Typha latissima
Poacites sp.	Poacites cf. aequalis
Platanus neptuni	Ceratopetalum bilinicum + Comptonia difformis p.p.
Cercidiphyllum crenatum	Cercidiphyllum crenatum
Ampelopsis hibschi	Platanus cf. aceroides + Vitis sp. + Zelkova ungeri p.p.
Phaseolites sp. 1	Leguminosites sp. p.p.
Phaseolites sp. 2	Leguminosites sp. p.p.
Phaseolites sp. 3	? Cassia sp.
Phaseolites sp. 4	Dalbergia bella
Parvileguminophyllum haeringianum	Mimosites cf. haeringiana
Rosa lignitum	Rosa sp. + Engelhardia macroptera p.p. + ? Rhus pyrrhae
Crataegus pirskenbergensis	Crataegus pirskenbergensis
Ulmus fischeri	cf. Ulmus braunii var. plurinervia + Zelkova ungeri p.p.
Zelkova zelkovifolia	
Celtis pirskenbergensis	Celtis begonioides + Celtis begonioides var. pirskenbergensis
Comptonia difformis	Comptonia difformis p.p.
Engelhardia orsbergensis	Myrica lignitum p.p.
Engelhardia macroptera	Engelhardia macroptera
Carya fragiliformis	Carya serraefolia
Cyclocarya sp.	Cyclocarya cyclocarpa + Juglans (Carya) bilinica p.p.
Betula alboides	Betula cf. dryadum
Betula buzekii	Betula prisca
Alnus gaudini	? Pterocarya denticulata + cf. Alnus kefersteinii
Alnus kefersteinii	Alnus sp. + Betula sp. p.p.
Carpinus grandis	Carpinus orientalis
Carpinus roscheri	Betula brongniartii
Carpinus cordataeformis	
Carpinus mediomontana	Carpinus cf. neilreichii
specimens. The cuticle preparations transferred to the National Museum bear the same collection numbers as the macrofossil, from which they were taken, but with additional letters a–x. Most of the specimens described by Knobloch (1961) were available and re-examined here, except for some which were obviously lost, e.g. illustrated fruits of Craigia, Engelhardia, foliage of Rosa and some impressions of angiosperms.

Systematic palaeontology

The general characteristics of the flora were described by the late Erwin Knobloch who submitted it as a diploma thesis (Knobloch 1958) and later published it in an abbreviated form (Knobloch 1961). The cuticle analysis allowed the addition of several new elements not recognized in Knobloch’s study and treated here in detail anew. The nomenclature published by Knobloch (1961) was rectified and notes on affinities of some other specimens were included according to present knowledge. English translations of the descriptions given in Czech by Knobloch (1958) are used in selected cases and new descriptions are provided, where necessary. Extensive synonym lists have been avoided and references to the basionyms and previous monographs are quoted instead. The chapter “Material studied” refers to the specimens investigated personally by the present authors. For the systematic arrangement of taxa newly proposed classifications and linear sequence of extant gymnosperms and angiosperms (Christenhusz et al. 2011, Reveal 2012) have been adopted.

Table 1. [continued]

Specimen	Genus	Species
Populus zaddachii	Populus zaddachii	
Salix sp.	Populus rottensis	
Toxicodendron herthae	Rhus herthae	
Acer angustilobum	Acer cf. angustilobum	
Acer palaeosaccharinum	Acer palaeosaccharinum	
Acer integrilobum	Acer sp.	
Craigia bronii	Pteleaecarpum bronii	
Cornus studeri	Cornus studeri + Rhamnus graeffii	
Hydrangea microcalyx	Myrica thurmannii	
Oleinites halbaueri	Myrica lignitum p.p. + cf. Ilex rottensis	
Saportaspernum cf. occidentale		
Dicotylophyllum cf. heerii		
Dicotylophyllum sp. 1	Juglans acuminata + Ficus arcinervia + cf. Rhus pteleaeolia	
Dicotylophyllum sp. 2	Leguminosites sp. p.p.	
Dicotylophyllum sp. 3	Juglans (Carya) bilinica p.p.	
Dicotylophyllum sp. 4	Sibirea rottensis	
Dicotylophyllum sp. 5	Aesculus cf. palaeocastanum	
Dicotylophyllum sp. 6	Celastrus persei	
Carpolithes sp. 1	? Pisonia eocenica	
Carpolithes sp. 2	Carpolithes sp.	

Bryophytes

Muscites Brongniart

Muscites sp.

Pl. 1, Fig. 1–3

1961 _Muscites sp. (Hypnum heppii Heer); Knobloch, p. 249, pl. 10, fig. 1._

Delicate impressions of sterile moss gametophyte plants monopodially branched and covered with leaflet appendages less than 1 mm in size showing thin midribs.

Discussion. The preservational state of the examined moss remains is quite poor, anatomical and morphological details that would allow a more precise identification are not visible. Similar but better preserved are impressions published as _Hypnum lycopodioides Weber_ by Weyland (1937, p. 69, pl. 9, fig. 1–3) from the upper Oligocene of Rott, Rhineland, and housed in the collections of the Geological-Palaeontological Institute of the University in Bonn, which we could examine personally. The branching pattern seems to correspond to both fossil records. Before the Rhineland material is revisited no definite judgment can be made about the material from Knížecí.

Material. Fragmentary moss gametophytes, NM-G2888, NM-G11514 and a few un-numbered EK specimens.
Conifers

Pinaceae Lindley

Pinus Linnaeus

*Pinus (subgen. *Pinus*) cf. *rigios* (Unger) Ettingshausen

Pl. 1, Fig. 4–5

? 1866 *Pinus rigios* (Unger) Ettingshausen, p. 41, pl. 13, fig. 11–12.

Fragmentary pine needles in ternate fascicle, ca. 0.5–0.7 mm thick, trigonal in cross section, the maximum preserved length 45 mm, sheath permanent, 2 mm long.

Discussion. Fossil pine needles are rare in the Palaeogene deposits of the České středohoří Mountains (e.g. Žichov and Matrý – see Ettingshausen 1886, Akhmetiev et al. 2009, as *Pinus rigios* (Unger) Ettingshausen). Some previously reported needle-like fossils assigned by Menzel (1901) to pines from Sušetice-Berand turned out to represent monocots (Kvaček and Walther 1995). The occurrence of pine pollen noted in several cuticle preparations confirms determination of the present material is not really possible because of its fragmentary nature. Co-occurring seed cones, interpreted it as ordinary epidermal structure of *Taxodium dubium* with stomata mostly transversally orientated to the leaf length.

Material. Leafy twigs, NM-G2815a, b with cuticle, NM-G2892, EK numerous specimens without number.

Tetraclinis Masters

Tetraclinis salicornioides (Unger) Kvaček

Pl. 1, Fig. 8–10, Pl. 2, Fig. 2–3

1847 *Thuites salicornioides* Unger, p. 11, pl. 3, fig. 1–4.

1961 *Libocedrus salicornioides* (Unger) Heer; Knobloch, p. 251, pl. 1, fig. 12, pl. 14, fig. 9.

1989 *Tetraclinis salicornioides* (Unger) Kvaček, p. 48, pl. 2, fig. 3, 10, 12, 14.

Knobloch (1958, as *Libocedrus salicornioides*) described some of the recovered remains as follows (translated from Czech): “Leaves on the twigs strongly adpressed, so that they look as if fused, forming the twig itself. They are approximately rhombic in form. The wider end bears a blunt tip, or it has projections on both sides and a medial small depression, where the next leaf is attached, or it is semicircular with six small projections. The leaves are scaly and show 2–6 (mostly 3) longitudinal ribs. They are verticillate and vary in size, the smallest being 2 mm long, the longest 12 mm.” The newly obtained epidermal structure matches other records of this conifer from North Bohemia (see e.g. Kvaček 1989, Kvaček et al. 2014).

Discussion. Numerous specimens at hand have yielded cuticle structure and one specimen removed from rock shows even the typical stomatal topography of this species. It widely differs from the xeromorphic disposition of stomata in the narrow areas sunk between leaves in *T. brachyodon* (Brongniart) Mai et Walther (Kvaček et al. 2000).

Material. Short fragments of twigs, many isolated segments, NM-G2810, NM-G8584, NM-G11495b, c, NM-G11496a, b, NM-G11507, EK 240–245, further specimens not numbered.

Taxaceae Gray

Taxus Linnaeus

Taxus engelhardtii Kvaček

Pl. 1, Fig. 11–13, Pl. 2, Fig. 4–5

1976 *Taxus engelhardtii* Kvaček, p. 294, fig. 8–9.

Needle-like leaves isolated, flattened, univeined, only reaching 1 mm in width and 6–12 mm in length. Epidermal...
structure shows adaxially rectangular cells with straight anticlines. Abaxial cuticle reflects two stomatal bands and three non-stomatal zones; medial non-stomatal zone papillate, lateral only beside stomata covered with low papillae. Stomatal apparatus longitudinally arranged, monocyclic, composed of a pair of sunken guard cells and usually four papillate subsidiary cells.

Discussion. Knížecí is the third site, from which proven foliage of *Taxus engelhardtii* has been recorded. The first occurrence is from the type locality at Kundratice, where whole twigs are preserved (Kvaček and Walther 1998). Thanks to the very typical epidermal structure we can record the presence of this conifer based on separated needles with very particular papillate monocyclic stomata on the lower leaf side. In addition to the type locality it was only recorded in the upper Oligocene of Enspel in western Germany (Köhler and Uhl 2014). The needles of *Cephalotaxus parvifolia* (Walther) Kvaček et Walther are morphologically indistinguishable but differ decidedly by the absence of papillae on the stomata (Kvaček and Walther 1998). The presence of this conifer based on separated needles with very typical epidermal structure we can record the first occurrence is from the type locality at Kundratice, where whole twigs are preserved (Kvaček and Walther 1998). Thanks to the very typical epidermal structure we can record the presence of this conifer based on separated needles with very particular papillate monocyclic stomata on the lower leaf side. In addition to the type locality it was only recorded in the upper Oligocene of Enspel in western Germany (Köhler and Uhl 2014).

Material. Isolated needles with cuticle structure, NM-G11481a, b, NM-G11482a, b, NM-G11501a–c.

Torreyana Arnott

Torreyana bilinica SAPORTA et MARION

Pl. 1, Fig. 14–16, Pl. 2, Fig. 6–8

1866 *Sequoia langsfordii* ETTINGHAUSEN (non (BRONGNIART) HEER), p. 39, pro parte, pl. 13, fig. 9.

1876 *Torreyana bilinica* SAPORTA et MARION, p. 221.

1984 *Torreyana bilinica* SAPORTA et MARION; Kvaček, p. 478, fig. 5–6.

Needles linear, up to 20 mm long, 1.5 mm wide, apex bluntly acute, with a single broad midrib, epidermis prosenchymatous, cells straight-walled, very narrow, ca. 10–15 µm wide and more than 250 µm long, with blunt cuneate ends, abaxially papillate near stomatal bands, with two stomatal bands much more strongly papillate, ca. 120 µm wide, elliptic outlines of stomata barely visible under the thick papillate cover, stomata monocyclic, longitudinally aligned, otherwise scattered, not forming lines, guard cells sunken, with thinly demarcated elongate stomatal pit surrounded by a ring of ca. 8 subsidiary cells forming the broadly oval apparatus up to 80 µm wide and 110 µm long.

Discussion. The fossil record of needles of *Torreyana* from the Czech Republic was reviewed by Kvaček (1984) who used evidence from epidermal anatomy to confirm the view of Saporta and Marion (1976) that the fragmentary twig from the Oligocene site of Zichov in North Bohemia, which had been misidentified as *Sequoia* by Ettinghausen (1866), should belong to *Torreyana* in spite of the aberrant blunt apex of the needles. Similar rounded apices as in other occurrences of *Torreyana bilinica* at Seifhennersdorf and also at Knížecí appear in ancient representatives of the genus (*Torreyana gracilis* FLORIN, 1958) while the Neogene records (e.g. Kvaček et al. 2008) share the cuspidate apex with all living species (Florin 1948, Li et al. 2001). The Palaeogene of North Bohemia (Zichov – Kvaček 1984, Kundratice – Kvaček and Walther 1998, Matrý – Akhmetiev et al. 2009, Roudničky – Kvaček et al. 2014, Knížecí – present paper) and Saxony (Kleinsaubernitz – Walther 1999, Seifhennersdorf – Walther and Kvaček 2007) is the limited area of this species, which is not known elsewhere.

Material. Fragmentary needles with cuticle structure, NM-G11508a, b, NM-G11509a, b, NM-G11510a, b, all with cuticle, EK 246.

Magnoliaceae Jussieu

Liriodendron LINNAEUS

Liriodendron haueri ETTINGHAUSEN

Pl. 3, Fig. 1–4, Pl. 6, Fig. 1

1869 *Liriodendron haueri* ETTINGHAUSEN, p. 9, pl. 41, fig. 10–10b.

1961 *Liriodendron procaccinii* UNGER; Knobloch, p. 273, pl. 7, fig. 1, 3.

1961 *Styrax* sp.; Knobloch, p. 288, pl. 14, fig. 4.

Leaves broadly ovate with four lobes arising from a point one third of the blade width or only shallowly bilobate, leaf blade 41–82 mm long and 21 – ca. 90 mm wide, base widely cuneate, petiolate, petiole maximum 50 mm long. Midrib strong and straight, secondary veins arising at an angle of 40–50°, opposite or alternate, every second joined by a broken tertiary vein to the next vein above and then looping. Lowermost pairs sending fine outer loops towards the margin. Tertiary venation forms polygonal fields. Mesophyll tissue with small lens-shaped secretory cells, cuticles smooth, the abaxial surface with scattered stomata openings, otherwise cell structure poorly preserved.

Discussion. One aberrant leaf impression with only two shallow lobes was referred to *Styrax* by Knobloch (1961) but a similar leaf impression from Markvarite was assigned to *Liriodendron* on account of its epidermal anatomy (Bůžek et al. 1976, pl. 3, fig. 8). Of the available names for fossil species of *Liriodendron* (see e.g. Archenegg 1894) we prefer here *Liriodendron haueri* ETTINGHAUSEN rather than *L. procaccinii* UNGER (selected by Knobloch 1958, 1961) because the former name is based on a leaf impression from the Oligocene of North Bohemia (see Hably et al. 2001, p. 27, pl. 20, fig. 2, Akhmetiev et al. 2009, pl. 13, fig. 3) and was accepted by the previous authors dealing with other Palaeogene occurrences of Tulip tree foliage in this region (see e.g. Bůžek et al. 1976, Walther 1998). *L. procaccinii* is a common designation for fossil foliage of *Liriodendron* distributed mainly in Europe during the late Neogene (see Saporta and Marion 1876 – Meximieux, Knobloch 1998 – Willershauzen). *L. haueri* differs from *L. procaccinii* in acute lobes contrary to mostly rounded lobes in the Italian Neogene populations (Knobloch 1998, p. 14). Revision of the latter species type material from Senigallia, Italy (Massalongo and Scarabelli 1859, Kustatcher et al. 2014) is required. Two extant species differ in the surface sculpture of the abaxial
cuticle. The leaves in *L. tulipifera* L. from E and SE North America are abaxially smooth, in *L. chinense* (Hemsley) Sargent from eastern China and Vietnam are papillate. In this respect our material looks to be similar to *L. tulipifera*.

It is noteworthy that in living species of Tulip tree the fruitlets survive in large quantities after the season under the trees while foliage readily decomposes over the winter. This is perhaps a reason why leaf impressions are less common than fruitlets in the fossil state (e.g., at Markvartice – Bůžek et al. 1976), widely distributed at Markvartice, 1971 but later recognized as an independent fossil species *Sargent* from eastern China and Vietnam are papillate. In America are abaxially smooth, in *L. chinense* without clearly discernible cuticle structure and thus their identification to species level is very imprecise. One specimen (NM-G2885) yielded a very thinly cutinized abaxial epidermis, which is similar to the material from Markvartice assigned to Magnoliaceae (?) gen. et sp. by Bůžek et al. (1976).

Material studied: Leaf impressions, NM-G2884, NM-G2885a, b, NM-G2890a, b, NM-G2977, NM-G2890a, b, NM-G11998a, b, EK 258.

Daphnogene Unger

Daphnogene cinnamomifolia (Brongniart) Unger

Pl. 5, Fig. 1–4, Pl. 6, Fig. 4

1822 *Phyllites cinnamomifolia* Brongniart in Cuvier, p. 359, fig. 11, fig. 12.

1850 *Daphnogene cinnamomifolia* (Brongniart) Unger, p. 424.

1961 *Cinnamomum scheuchzeri* (Heer) Rentzen; Knobloch, p. 276, pl. 1, fig. 7, pl. 10, fig. 9.

Knobloch (1961) identified cinnamomoid leaves from Knížecí according to the slender form as *Cinnamomum scheuchzeri* from the middle Miocene of Öhningen and described them as follows: (translated from Czech) “Leaves lanceolate, entire. Midrib straight, conspicuous. Basal veins running near the margin. In the leaves’ lower two thirds they end and connect with the secondary veins, which depart from the midrib. Basal veins are connected with the leaf margin by tertiaries either perpendicular or oblique or broken. In the leaves’ upper third secondary veins arise from the midrib and interconnect by loops. Higher-order venation is formed by a reticulum of polygonal fields.” The leaves vary in size from very small, 21 mm long and 13 mm wide to slightly broader, ca. 40 mm wide, fragmentary in length. The mesophyll tissue contains numerous lens-shaped secretory cells. The recently obtained structure of the adaxial cuticle shows polygonal cells with straight anticlinale walls or occasionally only very shallowly wavy, the abaxial cuticle is densely hairy and the trichomes are only 5 µm thick, very narrow, and ca 100 µm long.

Discussion. The record of *Daphnogene* from Knížecí is similar in epidermal patterns to those known from other Oligocene localities in Europe (e.g. Kvaček and Knobloch 1967, Bůžek et al. 1976). The abaxial epidermal structure, namely long narrow trichomes, corresponds to that described from the Oligocene material of Markvartice (Kvaček in Bůžek et al. 1976). As any connection between Palaeogene foliage with fruits of *Cinnamomum* has not yet been proven, we continue including the above fossil species in the fossil genus *Daphnogene*.

Material studied: Leaf impressions-compressions, NM-G2811, NM-G2851a,b, NM-G8600, NM-G11497, NM-G11498, NM-G11499, NM-G11500, NM-G11513, EK 247, 248, partly with cuticles.

Smilaceae Ventenat

Smilax Linnaeus
Smilax weberi Wessel

Pl. 5, Fig. 9–10
1856 Smilax weberi WESSEL; Wessel and Weber, p. 17, pl. 2, fig. 1.
1961 Smilax grandifolia (UNGÉR) HEER; Knobloch, p. 251, pl. 13, fig. 7, pl. 15, fig. 9.

Leaves entire-margined, blade 37 to ca. 65 mm long, 29 to 34 mm wide, ovate, at base more or less cordate, towards the apex gradually narrowing. Midrib straight, with one or two arch-like basal veins on either side, the outermost interconnected by large fields. Tertiary venation consists of polygonal fields of variable size.

Discussion. The newly studied type material from the upper Oligocene of Rott (Winterscheid et al., personal communication) confirms the correct identification of the Knížecí material, as suggested above.

Material studied: Leaf impression, NM-G8581a, b, NM-G8608, EK 249.

Monocotyledoneae inc. fam.

“Typha” latissima A. BRAUN
Pl. 5, Fig. 5–6, 8
1961 Typha latissima A. BRAUN; Knobloch, p. 251, pl. 12, fig. 7.

Strap-like fragmentary foliage with parallel venation attaining a mean width of 10–15 mm, parallel veins of two orders; between slightly thicker veins 1 mm apart run 2–4 thinner veins. Cross veins almost perpendicular, 1.5–2 mm apart.

Discussion. The generic affinity of the foliage described above is open and due to fragmentary nature of fossils uncertain.

Material studied: Leaf fragments, NM-G8593, EK 250–254.

Poacites HEER (non SCHLOTHEIM)
Poacites sp. div.
Pl. 5, Fig. 7
1961 Poacites cf. aequalis ETTINGHAUSEN; Knobloch, p. 252.

Strap-like fragmentary leaves with parallel venation, attaining a mean width of 6 to 17 mm. Thicker veins irregularly interspaced with thinner veins.

Discussion. The affinity of these fragments to monocots is obvious but otherwise not determinable more exactly. Heer (1855) was the first who connected the fossil genus Poacites correctly with angiosperms, contrary to previous authors, who had applied it mostly to lycopod foliage (see Andrews 1955, 1970). Hence the name Poacites in the sense of Heer (1855) requires conservation.

Material studied: Leaf impressions, NM-G3001, EK 255–257.
where other veins emerge. A row of thinner veins start from basal veins and run towards the leaf margin, they loop and send veinlets into marginal teeth. Tertiary venation consists of variously sized fields”. Leaf blades attain 30 to 64 mm in length and 21 to ca. 50 mm in width.

Discussion. The typical variation in leaf form from narrower elliptical to rounded and broadly cordate is developed in the plant assemblage of Knížecí in the same way as in some other records of this species in the České středohoří Mountains, e.g. at Bechlejovice (Kvaček and Walther 2004).

Material studied: Leaf impressions, NM-G8580, NM-G8595, NM-G8599, NM-G11492, EK 264–266.

Vitaceae Jussieu

Ampelopsis Michaux

Ampelopsis hibschii Bůžek, Kvaček et Walther

Pl. 8, Fig. 1–6

1961 *Platanus cf. aceroides Göppert*; Knobloch, p. 277, pl. 10, fig. 3 [NM-G2891].

1961 *Vitis sp*.; Knobloch, p. 288, pl. 8, fig. 3 [NM-G2869].

1961 *Zelkova ungeri Kováts*; Knobloch, p. 270, pro parte, pl. 7, fig. 7 [NM-G2855].

1981 *Ampelopsis hibschii Bůžek, Kvaček et Walther*, p. 127, pl. 1–6, text-fig. 1–7.

Knobloch (1958) described the material as follows (translated from Czech): “Base slightly cordate, leaf probably palmately veined and trilobate. From the base three basal veins and secondaries emerge, which are slightly wavy and end in the marginal teeth. Tertiary veins are perpendicular or oblique between secondaries and form variable large fields. Petiole 18 mm long” (under *Platanus cf. aceroides*). “A rounded leaf, probably shallowly trilobed (leaf margin and apex not preserved). Base cordate, basal veins slightly arched, secondaries also wavy. Tertiaries forked between secondaries producing a broken line. Quaternary venation composed of a network of polygonal areoles” (under *Vitis* sp.). Morphologically variable fragmentary foliage attains 38 to ca. 78 mm in length and 68 to ca. 80 mm in width.

Discussion. Besides large fragmentary leaves and a petiolate base assigned to *Platanus cf. aceroides*, *Vitis* and partly *Zelkova* by Knobloch (1961), we recovered from the additional fragmentary material from Knížecí leaf apices with a separated tip, a diagnostic feature of *A. hibschii* (Bůžek et al. 1981). We assume that other fragmentary leaf fossils apparently belonging to Vitaceae, as listed in the synonymy, belong to this species known from Bechlejovice, Kundratice and elsewhere. One impression assigned to *Zelkova* (Knobloch 1961, pl. 7, fig. 7) may represent a leaflet of a compound leaf only rarely encountered in this species (e.g. Walther in Mai and Walther 1978, pl. 7, fig. 2–3, as *Ampelopsis* sp.).

Material studied: Leaf impressions, NM-G2855, NM-G2869, NM-G2891, EK 267–271, more specimens not numbered.

Leguminosae Jussieu

Phaseolites Unger

Phaseolites sp. 1

Pl. 9, Fig. 4

1961 *Leguminosites sp.;* Knobloch, p. 279, pro parte, pl. 5, fig. 15.

Leaflets entire-margined, ovate, almost sessile, obliquely attached and asymmetric at base, fragmentary in length, 20 mm wide.

Discussion. Similar legume leaflets have been described from Bechlejovice (Kvaček and Walther 2004, p. 31, pl. 13, fig. 5–7, as *Leguminosites* sp. 1) and Kundratice (Kvaček and Walther 1998, p. 20, pl. 10, fig. 9–10, as Leguminosae gen. et sp., forma 1–2). We use the fossil taxon *Phaseolites* for such legume foliage instead of *Leguminosites*, which is typified by carpological material (Bowerbank 1840).

Material studied: Leaflet impressions, NM-G2839, EK 273–275.

Phaseolites sp. 2

Pl. 9, Fig. 7–8

1961 *Leguminosites sp.,* Knobloch, p. 279, pro parte, pl. 8, fig. 10.

Leaflets entire-margined, ovate, almost sessile, obliquely attached and asymmetric at base, fragmentary in length, 20 mm wide.

Discussion. Knobloch (1961) stated that he did not find any reference to similar legume foliage in the literature and we share his opinion.

Material studied: Impressions of isolated leaflets, NM-G2983, NM-G2868, EK 276.

Phaseolites sp. 3

Pl. 9, Fig. 5

1961 ? *Cassia sp.;* Knobloch, p. 280, pl. 11, fig. 5.

Fragmentary compound leaf, with leaflets entire-margined, ovate (?), obviously belonging to but detached from a long straight petiole, sessile, showing two basal veins starting asymmetrically from the rounded base.

Discussion. Knobloch (1961) believed that this incomplete fossil remain may resemble *Dalbergia rottensis* Weyland (1937, p. 98, pl. 11, fig. 11–14, text-fig. 39). Due to its very fragmentary nature the generic affinity of this single specimen is very uncertain.

Material studied: Incomplete leaf impression, NM-G2903.
Phaseolites sp. 4
Pl. 9, Fig. 6
1961 Dalbergia bella Heer; Knobloch, p. 280, pl. 10, fig. 10.

Leaflet sessile, entire-margined, emarginate, obovate, 24 mm long, 12 mm wide, midrib thin, straight, secondary veins eucamptodromous, steep, closely spaced, occasionally forked near margin, tertiary venation reticulate.

Discussion. The generic affinity of this single leaflet obviously belonging to legume foliage is uncertain.

Material studied: Leaflet impression, NM-G2862a, b.

Parvileguminophyllum HERENDEEN et DILCHER
1990 Parvileguminophyllum HERENDEEN et DILCHER, p. 348.

Type: Parvileguminophyllum georgianum (BERRY) HERENDEEN et DILCHER.

Parvileguminophyllum haeringianum (ETTINGSHAUSEN) KVAČEK comb. nov.
Pl. 9, Fig. 1–3
1853 Mimosites haeringiana ETTINGSHAUSEN, p. 92, pl. 30, fig. 23–37 (basionym).
1961 Mimosites cf. haeringiana ETTINGSHAUSEN; Knobloch, p. 280, pl. 12, fig. 1, pl. 14, fig. 8.
2010 Mimosites haeringiana ETTINGSHAUSEN; Meller, p. 140–141, pl. 41, fig. 7–8, pl. 42, fig. 1–9.

Lectotypus selected here: leaflet illustrated by Ettingshausen (1853, pl. 30, fig. 31) and Meller (2010, pl. 42, fig. 6a, b), GBA 1853/001/0173/8 at the Geologische Bundesanstalt, Vienna (Häring, Lower Oligocene).

Linear basally asymmetrical leaflets of delicate legume foliage, blunt at the apex and with asymmetrical basal venation, 11–19 mm long and 4 mm wide.

Discussion. Previous records of this legume, elsewhere often occurring as compound leaves (e.g. at Kundratice – Kvaček and Walther 1998, Bechlejovice – Kvaček and Walther 2004, as Mimosites haeringianus) were described from the České středohoří Mountains under the designation Mimosites haeringiana ETTINGSHAUSEN (Kvaček and Walther 1998, 2004). Because the generic name Mimosites is based on pods (Bowerbank 1840), a newly introduced fossil genus Parvileguminophyllum for morphologically similar foliage of uncertain affinities (Herendeen and Dilcher 1990) is given preference. The late Eocene flora of Florissant includes very similar leaf impressions known as Prosopis linearifolia (LEIQUEUX) MACGINITIES (1953, p. 126, pl. 46, fig. 1, 5 (non pl. 73, fig. 7); Meyer 2003, p. 105, fig. 95). A more precise comparison has not yet been done.

Material studied: Leaflet impressions, NM-G2865, NM-G2871, NM-G2876b, EK numerous not numbered.

Rosaceae JUSSIEU

Rosa LINNAEUS

Rosa lignitum HEER
Pl. 10, Fig. 1–9
1869 Rosa lignitum HEER, p. 99, pl. 30, fig. 33.
1961 Rosa sp.; Knobloch, p. 278, pl. 8, fig. 4.
1961 Engelhardtia macroptera (BRONGNIART) ETTINGSHAUSEN; Knobloch, p. 311, pro parte, only pl. 4, fig. 4.
1961 ? Rhus pyrrhae UNGER; Knobloch, p. 287, pl. 8, fig. 2, pl. 11, fig. 11.

Leaflets mostly ovate, small-sized, 19–54 mm long, 22–19 mm wide, crenulate to finely denticulate on margin, sub-sessile, venation dense, semi-craspedodromous. Knobloch (1961) characterized the material very briefly: (translated from German): “Leaflets oval, simple dentate, at base slightly asymmetrical, teeth apically orientated, secondary veins steep and entering the marginal teeth.”

Discussion. Knobloch (1961) referred to a monograph of fossil roses, predicted to have been accomplished by the Czech expert Dr. Ivan Klášterský but which was never finished, and therefore treated the remains of roses very superficially. Detached leaflets of similar type and crenulate margin as well as complete compound leaves had been since known from other localities in the České středohoří Mountains, e.g. Kundratice (Kvaček and Walther 1998), Roudníky (Kvaček et al. 2014) and in particular Bechlejovice (Kvaček and Walther 2004).

Material studied: Leaflet impressions, NM-G2865, NM-G2871, NM-G2876b, EK 277–286.

Crataegus Linnaeus

Crataegus pirskenbergensis KNOBLOCH
Pl. 10, Fig. 10–11
1961 Crataegus pirskenbergensis KNOBLOCH, p. 278, pl. 8, fig. 7–8.

Leaves broadly ovate, divided into 3 lobes, 32 to 78 mm long, 26 to ca. 60 mm wide, finely serrate. For a more detailed description and diagnosis see Knobloch (1961).

Discussion: Similar leaf impressions have also been recorded in the Oligocene floras at Bechlejovice (Kvaček and Walther 2004), Roudníky (Kvaček et al. 2014) and probably at Seifhennersdorf (Walther and Kvaček 2007).

Material studied: Leaf impressions, NM-G2861a, b, NM-G2867a, b.

Ulmaceae MIRBEL

Ulmus LINNAEUS

Ulmus fischeri HEER
Pl. 11, Fig. 1–4
1856 Ulmus fischeri HEER, p. 57, pl. 57, fig. 1–3.
Zelkova Spach

Zelkova zelkovifolia (UNGER) BĚŽEK et KOTLABA

Pl. 11, Fig. 5

1844 Ulmus zelkovifolia UNGER, p. 94, pl. 24, fig. 7 right, 9–13.
1845 Ulmus zelkovifolia UNGER; Unger, p. 95, pl. 26, fig. 7 (lectotype).
1963 Zelkova zelkovifolia (UNGER) BĚŽEK et KOTLABA in KOTLABA, p. 59, pl. 3, fig. 7–8.

Two leaf fragments showing coarsely dentate margins and which prove the occurrence of this fossil species at Knížecí.

Discussion. In general both fragments match a much more diversified record from Kundraatic and Bechlejovice (Kvaček and Walther 1998, 2004). They differ from the simple dentate elm foliage, e.g. Ulmus fischeri HEER, in having fewer secondary veins, although in some critical cases the differentiation might be arbitrary.

Material studied: Leaf impressions, NM-G2804, NM-G2807, NM-G2808, NM-G2809, NM-G2855, NM-G2858, EK 287, some other fragments not numbered.

Celtidaceae Link

Celtis TOURNEFORT

Celtis pirskenbergensis (KNOBLOCH)

KVAČEK et WALTHER

Pl. 12, Fig. 1–6

1961 Celtis begonioides GöPPERT var. pirskenbergensis KNOBLOCH, p. 273, pl. 6, fig. 3, 5, 8 (holotype).
1961 Celtis begonioides GöPPERT; Kno- blobch, p. 273, pl. 6, fig. 9, pl. 12, fig. 4.
2006 Celtis sp.; Radoň et al., p. 101, pl. 5, fig. 5–7.
2007 Celtis pirskenbergensis (KNOBLOCH) KVAČEK et WALTHER; Walther and Kvaček, p. 101, pl. 7, fig. 1–8, text-fig. 4a–c.

Leaves shortly petiolate, ovate to ovate-elongate or oval, 13–45 mm long, 15–31 mm wide, simple or double dentate. Midrib straight, up to 11 secondary veins, straight to slightly bent, partly forked, tertiary veins perpendicular to secondary veins.

Discussion. Knobloch (1961) incorrectly assigned some coarsely simple dentate elm leaves to Zelkova which differs in having less densely spaced secondary veins. These simple dentate leaves fall into the normal variation of Ulmus fischeri foliage which is widely distributed in the Oligocene of the České středohoří Mountains (e.g. Bechlejovice – Kvaček and Walther 2004) and Saxony (Walther and Kvaček 2007).

Material studied: Leaf impressions, NM-G2804, NM-G2807, NM-G2808, NM-G2809, NM-G2855, NM-G2858, EK 287, some other fragments not numbered.

Myricaceae Richard ex Kunth

Comptonia l’HÉRITIER

Comptonia difformis (STERNBERG) BERRY

Pl. 6, fig. 6, Pl. 13, Fig. 1–8

1961 Comptonia difformis (STERNBERG) BERRY; Knobloch, p. 257 pro parte (non infructescence on pl. 3, fig 6 left = Platanus neptuni), pl. 3, fig. 4–7, 9–10, pl. 12, fig. 6, pl. 15, fig. 8.

Leaves coriaceous, variable in size from minute specimens hardly attaining 21 mm in length and 5 mm in width to larger, up to 80 mm long, acuminate, at base abruptly narrowing into a short petiole. Leaf lamina pinnately dissected into triangular rounded segments (lobes) at base reaching usually to the midrib, opposite to alternate, variable in size and form in this respect matching the living Comtonia peregrina L. Segments at apex usually blunt, but also mucronate; 2–8 perpendicular secondaries entering the lobes, three of them are usually thicker than the others and stretch to the margin from the straight midrib. They are connected by oblique tertiary veins that form a polygonal field (Knobloch 1958, translated from Czech, emended). The newly obtained epidermal structure is very fragmentary. Adaxial cuticle is smooth and shows outlines of cells ca. 20–25 µm in diameter with almost straight to wavy anticlones. Abaxial cuticle is extremely thin, hairy, and shows rounded short uniseriate stalks ca. 12 µm in diameter and even disc-shaped glandular trichomes up to 50 µm in diameter.

Discussion. The occurrence of Comptonia in the European Palaeogene is connected with two fossil species, C. difformis later widely spread in the Neogene and the more xeromorphic, small-leaved C. dryandriifolia BRONGNIART (= C. schrankii (STERNBERG) BERRY). The population from
Knížecí corresponds to *C. difformis* morphologically, as stated by Knobloch (1961), as well as in epidermal anatomy. In general the epidermal structure matches that obtained from leaves of *Comptonia difformis* from the upper Oligocene of Kleinsaubernitz (Walther 1999).

Material studied: Leaf compressions-impres- sions, NM-G2805, NM-G2824, NM-G8582, NM-G11511a, b, EK 290–302, numerous specimens not numbered.

Engelhardia A. Richard ex Künth

Engelhardia orsbergensis (Wessel et Weber)

Jähnichen, Mai et Walther

Pl. 6, Fig. 9, Pl. 14, Fig. 1–5

1856 *Banksia orsbergensis* Wessel et Weber, p. 146, pl. 25, fig. 9a–d.

1961 *Myrica lignitum* (Unger) Saporta; Knobloch, p. 256, pro parte, pl. 1, fig. 13, pl. 2, fig. 10, pl. 2, fig. 3, pl. 12, fig. 5.

1977 *Engelhardia orsbergensis* (Wessel et Weber) Jähnichen, Mai et Walther, p. 326, pl. 38–49, text-fig. 1–3.

Leaflets narrow elongate, 34–55 mm long and 13 mm wide, straight to slightly bent, minutely widely dentate, base asymmetrical. The epidermal structure rarely preserved on delicate leaflets, showing rounded stalks of peltate trichomes and sunken stomata.

Discussion. The material from Knížecí was partly identified as *Myrica lignitum* (Knobloch 1961, p. 256, morphotype 1, cf. Deyandrodes acuminata). All specimens studied correspond morphologically to the variation in *Engelhardia orsbergensis* as known from the type locality Orsberg in the Rhineland (Jähnichen et al. 1977, Winterscheid and Kvaček 2014) and other occurrences in the Czech středohoří Mountains (e.g. Kvaček and Walther 1995, 1998). Similar leaflets, but lacking epidermal structure, have been described from the early Oligocene site Häringer in Austria under several fossil species, e.g. *Rhus prisca* Ettingshausen and *R. juglandogene* Ettingshausen.

Material studied: Leaflets, NM-G2805, NM-G2824, NM-G8582, NM-G11511a, b, EK 303–311, some more not numbered.

Engelhardia macroptera (Brongniart) Unger

Pl. 14, Fig. 5

1828 *Carpinus macroptera* Brongniart, p. 48, pl. 3, fig. 6.

1866 *Engelhardia macroptera* (Brongniart) Unger, p. 52, pl. 16, fig. 9–12.

1961 *Engelhardia macroptera* (Brongniart) Unger; Knobloch, p. 261, pl. 4, fig. 4, 10.

Fruits are rounded nuts attached to a four-winged involucrum. The main three wings are triveined, the medial wing is longer, rounded at the apex, the very short forth wing envelopes the fruit basally. Venation consists of elongate fields along the main veins, forming smaller areoles towards the lobe margin (translated and emended from Knobloch 1958).

Discussion. The fruits of *Engelhardia* occur only rarely in the Knížecí plant assemblage and match other occurrences in the European Tertiary (see Mai in Jähnichen et al. 1977).

Material studied: Fragmentary involucres, EK 312.

Engelhardia macroptera (Brongniart) Unger

Knobloch, p. 261, pl. 4, fig. 4, 10.

1887 *Phyllites fragiliformis* Sternberg, p. 42, index iconum, pl. 50, fig. 1.

1961 *Carya serraefolia* (Goppert) Krause; Knobloch, p. 260, pl. 9, fig. 9, 12, pl. 11, fig. 1–3.

2007 *Carya fragiliformis* (Sternberg) Kvaček et Walther; Walther and Kvaček, p. 110, pl. 11, fig. 1–3, pl. 23, fig. 8–10, text-fig. 6b.

Leaflets ovate-oval, 36–115 mm long and 26–36 mm wide, on margin double serrate, base decurrent, asymmetrical, midrib straight or slightly bent, distinct, secondary veins at almost right angle at leaflet base, higher up at a more steep angle. Often forked near margin, sometime twice, particularly those from near the leaflet base, tertiary veins running perpendicularly or slightly oblique, higher-order venation areolate (Knobloch 1958, translated from Czech, modified).

Discussions: The material assigned by Knobloch (1961) to *Carya* represents variable foliage, which is partly difficult to distinguish from leaflets of *Cyclocarya*, as described below.

Material studied: Impressions of leaflets, NM-G2878, NM-G2894, NM-G2895, NM-G2978, EK 313–316.

Cyclocarya Iljinskaya

Cyclocarya sp.

Pl. 14, Fig. 8

1897 *Pterocarya cyclocarpa* D.H.R. Schlechtendal, p. 20, pro parte, pl. 4, fig. 1–3.

1961 *Cyclocarya cyclocarpa* (D.H.R. Schlechtendal) Knobloch, p. 262, pl. 15, fig. 5–7.

1961 *Juglans* (Carya) bilinica A. Braun; Knobloch, p. 258, pl. 4, fig. 5–9.

Leaflets lanceolate to narrow ovate, cuneate at base, 33–70 mm long, 14–22 mm wide, margin fine serrate, midrib bent, secondary veins widely regularly spaced, looping near margin, semicraspedodromous, tertiary veins forming polygonal fields (Knobloch 1961, emended).

Discussion. Knobloch (1961) was the first who corrected Ilijinskaya’s combination of *Cyclocarya “cycloptera”*
for this species (Iljinskaya 1953) to “cyclocarpa”. The morphology of foliage corresponds in general with the records from Bechlejovice (Kvaček and Walther 2004) and Seifhennersdorf (Walther and Kvaček 2007). So far no associated fruits of *Cyclocarya* have been recovered in the České středohoří Mountains and thus an open nomenclature is applied (see also Walther and Kvaček 2007).

Material studied: Impressions of leaflets, NM-G2833, NM-G2836, NM-G2837, NM-G2929, NM-G2932, NM-G2984, NM-G8589, EK 317–319.

Betulaceae

Betula Linnaeus

Betula alboïdes Engelhardt

1870 *Betula alboïdes* Engelhardt, p. 16, pl. 3, fig. 22–23.

1961 *Betula* cf. *dryadum* Bronniant; Knobloch, p. 266, pl. 14, fig. 3.

Leaves broadly ovate or oval, rounded at base, 26–30 mm long, 13–22 mm wide, margin simple to double dentate, midrib thin, secondary vein in 6–7 pairs, craspedodromous, at medium acute angles (47–62°).

Discussion. The smaller leaves of birch recovered at Knížecí and assigned by Knobloch (1961) to *Betula dryadum* Bronniant; Knobloch, (2007) was assigned by Knobloch (1961) to *B. priscia* Ettingshausen; Knobloch, p. 265, pl. 2, fig. 5, 7, pl. 5, fig. 1–13, pl. 10, fig. 11.

1998 *Betula buzekii* Kvaček et Walther, p. 9, pl. 3, fig. 8–10, text-fig. 5, 13.1.

Leaves long petiolate, ovate to ovate elongate, ca 40 mm long and 25 mm wide, on the apex acute to acuminate, at base rounded to subcordate or slightly decurrent, margin simple to double serrate; midrib straight or slightly bent, secondary veins diverging at angles of (25–) 30–40 (–45)°, mostly opposite, 7–9, 3–5 mm apart, craspedodromous, tertiär veins slightly bent between secondary veins (Knobloch 1961, as *Betula priscia*, emended).

Discussion. The prevailing birch foliage from Knížecí was assigned by Knobloch (1961) to *Betula priscia* Ettingshausen. It corresponds well in gross leaf morphology to the newly established species *B. buzekii* Kvaček et Walther (1998) based on another early Oligocene population from Kundratice.

Material studied: Leaf impressions, NM-G2821, NM-G2822, NM-G2823, NM-G2838, NM-G2841, NM-G2842, NM-G2843, NM-G2844, NM-G2845, NM-G2846, NM-G2847, NM-G2848, NM-G2849, NM-G2882, NM-G2980, NM-G2982, NM-G2994, NM-G4389, NM-G4840, NM-G4841, EK 320–323, some more not numbered.

Alnus Miller

Alnus gaudinii (Heer) Knobloch et Kvaček

Pl. 15, Fig. 5–7

1859 *Rhamnus gaudinii* Heer, p. 79, pl. 124, fig. 4–15, pl. 125, fig. 1, 7, 13.

1961 *Pterocarya aff. denticulata* (Göppert) Schlechtendal; Knobloch, p. 264, pl. 11, fig. 10.

1961 *cf. Alnus kefersteinii* (Göppert) Unger; Knobloch, p. 267, pl. 2, fig. 9, 11.

1976 *Alnus gaudinii* (Heer) Knobloch et Kvaček, p. 33, pl. 6, fig. 1, 3, pl. 7, fig. 1, 5, pl. 13, fig. 4, pl. 15, fig. 1–4, 7–8, 10–11, 15, 17, pl. 16, fig. 1–5, pl. 19, fig. 15, pl. 20, fig. 10, text-fig. 11–12.

Leaves oblong to narrow ovate, incomplete in length, 23–30 mm wide, on margin simple serratate, teeth blunt, almost glandular, quite widely spaced, secondary veins eucamptodromous-semicraspedodromous, at angles of 30–35°, partly looping, tertiär veins oblique or perpendicular, prominent, higher-order venation distinct.

Discussion. Knobloch (1961) compared some alder leaf impressions from Knížecí with *Alnus kefersteinii*, which is based on generative organs, and erroneously compared some leaf impressions with the Juglandaceae (as *Pterocarya aff. denticulata* (Göppert) Schlechtendal). Similar foliage occurs e.g. at Kundratice, from where the epidermal structure has also been obtained (Kvaček and Walther 1998).

Material studied: Leaf impressions-compressions, NM-G8603, a, b, EK 328–341.

Alnus kefersteinii (Göppert) Unger

Pl. 15, Fig. 8–9

1838 *Alnites kefersteinii* Göppert, p. 364, pl. 41, fig. 1–19.

1847 *Alnus kefersteinii* (Göppert) Unger, p. 115, pro parte, pl. 33, fig. 1–3.

1961 *Betula* sp.; Knobloch, p. 267, pro parte, pl. 5, fig. 14 (non pl. 10, fig. 8 = indeterminable object).

1961 *Alnus* sp.; Knobloch, p. 268, pl. 2, fig. 3, 12.

Alder infructescences 14–21 mm long, 10–12 mm wide, catkins containing in situ pentaporate pollen of *Alnus*.

Discussion. Both female and male reproductive organs are assigned to the same fossil species following the original Göppert’s (1838) concept. The same type of *A. gaudinii* foliage has been found in association with similar infructescences at many other Oligocene sites, e.g. Kundratice (Kvaček and Walther 1998) and Seifhennersdorf (Walther and Kvaček 2007).
Material studied: Infrauctescences and catkins with pollen in situ, NM-G2819, NM-G2820, NM-G2840, EK 342–343.

Carpinus LINNAEUS
Carpinus grandis UNGER
Pl. 16, Fig. 1

1850 *Carpinus grandis* UNGER, p. 409.
1961 *Carpinus orientalis* GAUDIN et STROZZI; Knobloch, p. 269, pl. 13, fig. 6, pl. 14, fig. 1.

Leaves ovate, 27–35 mm long, 12–18 mm wide, fine simple or double serrate on margin, subcordate to rounded at base, midrib straight, secondary veins craspedodromous, parallel, densely spaced, tertiary veins not preserved.

Discussion. The above described hornbeam foliage may not be placed without question in the above relatively formal taxon, as it is accompanied at various sites either by fruits of the *C. betulus* type or the *C. orientalis* type described below.

Material studied: Leaf impressions, NM-G8587, NM-G8601, EK 345–348, 358.

Carpinus roscheri KVAČEK et WALThER
Pl. 16, Fig. 2–3

1961 *Betula brongniartii* ETTINGHAUSEN; Knobloch, p. 266, pl. 2, fig. 1–2, 6.
2007 *Carpinus roscheri* KVAČEK et WALThER; Walther and Kvaček, p. 105, pl. 10, fig. 1–5, text-fig. c–e.

Leaves broadly ovate, 45–65 mm long, 31–39 wide, base rounded to subcordate, margin coarsely double serrate, midrib almost straight, thick, secondary veins regularly parallel, at angles of 50°, in leaf base up to 70°, opposite or slightly alternate, in 10 pairs ca. 6 mm apart.

Discussion. Foliage similar to the newly described fossil species *C. roscheri* from Seifhennersdorf (Walther and Kvaček 2007) was recovered by Knobloch (1961, as *Betula*) also at Knížecí. As at Seifhennersdorf this type of foliage is accompanied by involucres, assigned to *Carpinus cordataeformis* and differing from the *C. orientalis* type in shallow lobed margins.

Material studied: Leaf impressions, NM-G2816a, b, NM-G2817, NM-G2818, NM-G2821, NM-G2825, NM-G2981, EK 344.

Carpinus cordataeformis MAI
Pl. 16, Fig. 6–7

1963 *Carpinus cordataeformis* MAI, p. 55, pro parte, pl. 4, fig. 1–2, text-fig. 6a–b.

Involucrum elongate, very shallow bluntly dentate on one side partly covering the fruit, and almost entire on the opposite side.

Discussion. Similar fruits accompany leaves of *C. roscheri* at Seifhennersdorf (Walther and Kvaček 2007).

Material studied: Involucres, NM-G2995b, EK 349.

Carpinus mediomontana MAI
Pl. 16, Fig. 4–5

1961 *Carpinus neilreichii* KOVÁTS; Knobloch, p. 268, pl. 12, fig. 3.
1963 *Carpinus cordataeformis* MAI, p. 55, pro parte, pl. 4, fig. 3–4, text-fig. 6d.
1978 *Carpinus mediomontana* MAI; Mai and Walther, p. 68, pl. 6, fig. 6, pl. 28, fig. 21–27.

According to Knobloch (1958, translated from Czech) the involucres are asymmetric, not divided into lobes, on one side entire, on the opposite coarsely dentate with double denticulate larger teeth, venation palmate, including up to 7 basal primary veins, thicker stretching to the teeth, thinner veinlets ending before margin at about 2/3 of the involucre, higher order veins perpendicular or slightly oblique.

Discussion. Similar involucres and fruits have been found at Seifhennersdorf associated with foliage of *C. grandis* (Walther and Kvaček 2007). At Knížecí they occur quite often and clearly prevail over *Carpinus cordataeformis*.

Material studied: Involucres, partly with fruits, NM-G2998b, NM-G8586, EK 350–356, 405, some more not numbered.

Salicaceae MIRBEL

Populus LINNAEUS
Populus zaddachii HEER
Pl. 17, Fig. 4–6

1859 *Populus zaddachii* HEER, p. 307
1869 *Populus zaddachii* HEER; Heer, p. 30, pl. 5, pl. 6, fig. 1–7, pl. 12, fig. 1c.
1961 *Populus zaddachii* HEER; Knobloch, p. 254, pl. 12, fig. 9, pl. 13, fig. 5, pl. 14, fig. 2, 7.

According to Knobloch (1958, translated from Czech), the leaves are broadly ovate elongate to cordate with crenulate-serrate margin, at base rounded to slightly cordate; the midrib is straight extending into a flattened petiole up to 2 mm broad and accompanied by two lateral primaries, from which thin secondary veins arise. They attain a size ranging from 36 mm to more than 120 mm in length and 29–73 mm in width.

Discussion. Knobloch (1961, p. 254) stressed the large variation in leaf morphology of *P. zaddachii* and compared it with the living *P. balsamifera* L. This fossil species typical of the European Oligocene (see Mai and Walther 1978) is known from several other Oligocene sites in North Bohemia and Saxony (see Walther and Kvaček 2007).

Material studied: Leaf impressions, NM-G2990, NM-G2991, NM-G8578, NM-G8579a, b, NM-G8590, NM-G8604a, b, EK 359.
Populus rottensis WEYLAND; Knobloch, p. 254, pl. 1, fig. 9, pl. 11, fig. 9.

Leaves narrow lanceolate, up to 85 mm long and 16–18 mm wide, base rounded with thick petiole, margin glandular serrate. Midrib thick, secondary veins quite steep, camptodromous to semicraspedodromous, bent along the margin, lower pair almost opposite. Tertiary veins reticulate.

Discussion. Knobloch (1961) followed Weyland (1937) who suggested similar material from Rott to belong to *Populus* and assigned also his fragmentary impressions to *Populus*, mainly because of lacking intersecondary veinlets. In our opinion these leaf impressions are more comparable with foliage of willows, described from other Oligocene sites as *Salix varians* Göppert with preserved epidermal anatomy important for distinguishing both genera (see Walther in Mai and Walther 1978, Walther and Kvaček 2007).

Material studied: Leaf impressions, NM-G2806, NM-G2893a, b, EK 360a, b, more fragments not numbered.

Anacardiaceae Lindley

Toxicodendron MILLER

Toxicodendron herthae (UNGER) Kvaček et Walther

Pl. 18, Fig. 1

1849 *Rhus herthae* Unger, p. 6 (non pl. 14, fig. 21= Fagus sp.).
1850 *Rhus herthae* Unger; Unger, p. 473.
1961 *Rhus herthae* Unger; Knobloch, p. 286, pl. 13, fig. 4.
1998 *Toxicodendron herthae* (UNGER) Kvaček et Walther, p. 27, pl. 15, fig. 3–8, text-fig. 13.16.

Leaflets oval, very fragmentary, on the apex bluntly acute, on margin irregularly bluntly coarsely serrate, midrib straight, distinct, secondary veins bent, craspedodromous, accompanied by single intersecondaries, not reaching the margin, tertiary veins oblique. Resin ducts have been recorded in the mesophyll during maceration. Epidermal structure not preserved except distinct and dense wavy cuticle striation.

Discussion. Fragmentary specimens clearly correspond with the more complete material from Březovice, Kundratice and other sites of North Bohemia and Saxony, from which well recognizable accessory element has been reported (Kvaček and Walther 1998, 2004). For nomenclatural details see Kovar-Eder et al. (2004).

Material studied: Impressions of fragmentary leaflets, NM-G2916a, b, EK 361.

Sapindaceae Jussieu

Acer LINNAEUS

Acer angustilobum HEER

Pl. 6, Fig. 7, Pl. 18, Fig. 2–3

1859 *Acer angustilobum* HEER, p. 57, pl. 117, fig. 25a, pl. 118, fig. 4–9.
1961 *Acer cf. angustilobum* HEER; Knobloch, p. 285, pl. 9, fig. 4, pl. 11, fig. 4.

Leaves deeply tricuspidate, blades 19 to more than 65 mm long and 22–74 mm wide, lobes of almost the same width, with subparallel margins, widely simple dentate. Abaxial cuticle fine papillate.

Discussion. Maple leaves with a prominently double dentate middle lobe have usually been assigned to *Acer palaeosaccharinum* Stür but transitional forms connect them with typical *Acer angustilobum* with only simple dentation on the main lobe. Both fossil morpho-types are connected with transition as expressed in the Procházka’s monographs (Procházka 1952, Procházka and Bůžek 1975) by establishing infraspecific taxa (*Acer palaeosaccharinum* forma *subplatanoides* Procházka et Bůžek and forma *subdasycarpoides* Procházka et Bůžek). We apply the same system as in Knobloch (1961) and maintain both fossil species independently. The epidermal structure obtained from one fragmentary specimen corresponds exactly to the structure described for *A. angustilobum* from Seifhennersdorf (Walther and Kvaček 2007, p. 117). We follow this treatment stressing that foliage from the České středohoří Mountains assigned to *A. angustilobum* is difficult to discriminate from some forms of *A. palaeosaccharinum* as described below, which differ in epidermal anatomy (Walther 1972).

Material studied: Leaf impressions, NM-G2877, NM-G2993, NM-G8607, NM-G11505a, b, EK 363–371.

Acer palaeosaccharinum Stür

Pl. 18, Fig. 6–7

1867 *Acer palaeosaccharinum* Stür, p. 177, pl. 5, fig. 8.
1961 *Acer palaeosaccharinum* Stür; Knobloch, p. 284, pl. 1, fig. 11, pl. 9, fig. 3, 5–8, 10, pl. 9, fig. 6–7.

Knobloch (1958) described leaf forms which he assigned to *Acer palaeosaccharinum* Stür as follows (translation from Czech): “Leaves 3–5 lobed, base rounded to subcordate, margin widely simple to double dentate with teeth of different size. Venation palmate, basal veins at 45–50°, secondary veins craspedodromous, only slightly bent, tertiary veins forming polygonal fields.” The blades are 16 to 76 mm long and 22 to 85 mm wide. The epidermal structure was not preserved.

Discussion. This species prevails in the Knížecí leaf assemblage. As noted above, aberrant leaf forms of *Acer palaeosaccharinum* can be misinterpreted as *A. angustilobum*.

Material studied: Leaf impressions, NM-G2814, NM-G2872, NM-G2874, NM-G2875, NM-G2876, NM-G2879, NM-G2880, NM-G2900, NM-G8605, EK several impressions not numbered.
Acer integrilobum Weber

1852 Acer integrilobum C.O. WEBER, p. 196, pl. 22, fig. 5a–5b (non fig. 5c).

Leaf trilobate, ca. 20 mm long and fragmentary in width, lobes entire-margined.

Discussion. Such maple leaves with almost entire margin are rare in the Oligocene leaf assemblages of the České středoohoří Mountains (Walther 1972, Kvaček and Walther 1998). They occur commonly in the Oligocene localities Rott and Seifhennersdorf and differ from entire-margined trilobed forms of Acer integerrimum (VIVIANI) MASSOLONGO in acuminate apices of lobes (Walther 1972).

Material studied: Leaf impression, EK 362.

Acer sp.

1961 Acer sp.; Knobloch, p. 286, pl. 7, fig. 8, pl. 11, fig. 8.

Isolated mericarps of winged double samaras, 22–45 mm long, 8–35 mm wide, seed part rounded, 5–7 mm in diameter, attachment scar at a very narrow angle to the fruit length.

Discussion. Knobloch (1961) proposed that the fruits occurring at Knížecí belong to foliage of Acer palaeosaccharinum which prevails in the Knížecí plant assemblage. Such fruits have been described as Acer cyclospermum Göppert from the upper Oligocene deposits in the Rhineland (Winterscheid and Kvaček 2014). The connection between fossil maple fruits and foliage has not so far been firmly resolved.

Material studied: Detached maple mericarps, NM-G2860, NM-G2992, NM-G8596, EK 372–376.

Malvaceae Jussieu

Craigia W.W. Smith et W.E. Evans

Craigia bronni (UNGER) Kvaček, Bůžek et Manchester

1845 Ulmus bronni Unger, p. 79, pro parte, pl. 25, fig. 2–4 (non fig. 1).

1948 Ptelea carpum bronni (UNGER) WEYLAND, p. 130, pl. 21, fig. 5, text-fig. 5–9.

1961 Ptelea carpum bronni (UNGER) WEYLAND; Knobloch, p. 280, pl. 6, fig. 11, pl. 13, fig. 12.

1991 Craigia bronni (UNGER) Kvaček, Bůžek et Manchester, p. 522.

Winged broadly oval to rounded fruit valves 10–12 mm wide and 12–17 mm long with spindle-shaped medial locule, rarely with a small ovate seed inside. Venation of the wing composed of narrow elongated fields radiating from the locule, steeper in the upper part.

Discussion. These fruit remains agree in size and morphology with other records of the same species, commonly recovered from the Oligocene and Miocene of Central Europe (Kvaček et al. 2005).

Material studied: Detached fruit valves, EK 374–376.

Cornaceae Berchtold et J. Presl

Cornus Linnaeus

Cornus studeri Heer

1859 Cornus studeri Heer, p. 27, pl. 105, fig. 18–21.

1861 Rhamnus graeffii Heer; Heer, p. 287, pl. 10, fig. 13.

1961 Cornus studeri Heer; Knobloch, p. 288, pl. 13, fig. 1–3, 11.

Leaves rounded elliptical, blade 31–74 mm long, 17–50 mm wide, entire-margined, secondary veins very steep, directed subparallel towards the apex. Tertiary venation not preserved.

Discussion. The exact affinity of this morpho-type is equivocal (see discussion in Knobloch 1961, p. 288) and is not supported by any epidermal study.

Material studied: Leaf impressions, NM-G2999, NM-G8598, NM-G8606, NM-G2883a, b, EK 378–380.

Hydrangeaceae Dumortier

Hydrangea Linnaeus

Hydrangea microcalyx Sieber

1880 Hydrangea microcalyx Sieber, p. 16, pro parte, fig. 26–27, 31.

1961 Paliurus thurmannii Heer; Knobloch, p. 287, pl. 11, fig. 11.

Petaloid sepal entire-margined, described by Knobloch (1958, as Paliurus thurmannii translated from Czech) as follows: “The main vein is straight and accompanied on both sides by bent basal veins running towards the apex. The outer side of the basal veins is bordered by small loops. The inner area between main veins shows irregularly disposed areoles”. The only specimen available is 18 mm long and 13 mm wide.

Discussion. The single petaloid sepal recovered at Knížecí was erroneously assumed by Knobloch (1961) to represent a leaf impression. Similar, more complete remains of Hydrangea microcalyx are also known from Kučín (Kvaček and Teodoridis 2011), Suletice-Berand (Kvaček and Walther 1995) and Seifhennersdorf (Walther and Kvaček 2007).

Material studied: One sepal impression, NM-G8585.
Oleaceae Hoffmann et Link

Oleinites Cookson

Oleinites hallbaueri (MAI) Sachse

Pl. 6, Fig. 8, Pl. 19, Fig. 5–7

1885 Carya elaenoides Unger; Engelhardt, p. 67, pl. 25, fig. 1–4.

1961 Myrica lignitum (UNGER) Saporta; Knobloch, p. 256, pro parte, pl. 3, fig. 1–2.

1961 cf. Ilex rotensis Weyland; Knobloch, p. 282, pl. 13, fig. 10.

1963 Myrica hallbaueri Mai, p. 46, pl. 2, fig. 4–6, text-fig. 3a.

2001 Oleinites hallbaueri (MAI) Sachse, p. 319, pl. 2, fig. 8–9.

Leaves elongate, up to 142 mm long and 65 mm wide, widely coarsely dentate, acuminate at the apex, rounded at the base, venation semicraspedodromous, midrib straight. Secondary veins regularly spaced, at wide angles, at the ends abruptly looping, and sending side veinlet into the teeth. Simple intersecondaries occasionally present, tertiary venation very fine, forming irregular fields. The cuticle structure poorly preserved, showing straight-walled cells on the adaxial epidermis and peltate trichomes with unicellular base, which is reflected in the outline as a double line.

Discussion. Knobloch (1961) merged this morpho-type with Myrica lignitum but stressed the heterogeneity of this species in his concept. Mai (1963) separated it as a new species of Myrica. Later studies of the epidermal anatomy (Sachse 2001) confirmed the affinity to the Oleaceae and not to the Myricaceae. Our structure of the peltate trichomes from specimen NM-G2812 matches the pattern found on the holotype (Bůžek et al. 1976).

Material studied: Leaf impressions, NM-G2812, NM-G2828, NM-G2832, NM-G4859a, b, NM-G8602, EK 381–382, more specimens not numbered.

Dicotyledonae inc. fam.

Saportaspermum Meyer et Manchester

Saportaspermum cf. occidentale Meyer et Manchester

Pl. 20, Fig. 9

Winged seeds 10 mm long and 4 mm wide matching previous records from the Oligocene and Miocene of North America (Meyer and Manchester 1997) and Central Europe (see Walther and Kvaček 2007).

Discussion. The affinity of these winged seeds described above has not yet been resolved, although such remains regularly accompany similar leaf assemblages of Oligocene and Miocene age. As they have been dispersed by wind and occur sporadically, their parent plants may belong to elements growing far from the nearby vegetation.

Material studied: Leaf impressions, NM-G2834, NM-G2857, NM-G2864.

Dicotylophyllum Saporta

Dicotylophyllum cf. heerii (Engelhardt)

Kvaček et Walther

Pl. 20, Fig. 5

cf. 1998 Dicotylophyllum heerii (ENGELHARDT) Kvaček et Walther, p. 14, pl. 6, fig. 5–6, text-fig. 7–8, 13.28.

Fragsments of (?) ovate leaves, rounded at base, long petiolate, with two glands next the leaf base, margin glandular serrate-crenate. Venation semicraspedodromous, midrib stout, secondary veins bent along the margin, at wider angles. Poorly preserved cuticle reflects only oval openings of stomata. Cuticle of the midrib is hairless and consists of isodiametric polygonal straight-walled cells.

Discussion. The affinuity to Prunus is suggested by the presence of glands on the leaf base.

Material studied: Leaf fragments, NM-G11488a, b, NM-G11512.

Dicotylophyllum sp. 1

Pl. 20, Fig. 1

1961 Juglans acuminata A. Braun; Knobloch, p. 258, pl. 4, fig. 2.

1961 Ficus arcinervia (ROSSMÄSSLER) Heer; Knobloch, p. 273, pl. 7, fig. 5–6.

1961 cf. Rhus pteleaefolia Weber; Knobloch, p. 286, pl. 8, fig. 1.

Leaflets (?) elongate oval, entire-margined, 45–81 mm long, 23–30 mm wide. Midrib straight, thick, secondary veins looping well within the margin. Tertiary veins almost perpendicular to the secondaries, forming loops along the margin. One specimen has a long tip.

Discussion. This entire-margined morpho-type has been assigned to various genera (e.g. Cedrela by Palamarev and Petkova 1987) but so far no definite solution has been reached. The foliage is chartaceous, not suitable for cuticle studies.

Material studied: Leaf impressions, NM-G2834, NM-G2857, NM-G2864.

Dicotylophyllum sp. 2

Pl. 20, Fig. 2–3

1961 Leguminosites sp.; Knobloch, p. 280, pl. 14, fig. 6.

1998 "Palaeolobium" sp. 1; Kvaček and Walther, p. 23, pl. 13, fig. 1–2, text-fig. 13.24.

Leaves long petiolate, entire-margined with narrow elliptical to elongate blade, 19 mm long, 9 mm wide, rounded at apex, cuneate at base.

Discussion. The affinity of these leaf forms is quite uncertain (Kvaček and Walther 1998); Knobloch (1961) believed that such morpho-types may represent foliage of legumes. Contrary to most legume leaflets, the discussed leaf remains are long petiolate and in our opinion may more likely represent simple leaves.

71
Material studied: Leaf impressions, NM-G8597a, b, EK 383–386.

Dicotylophyllum sp. 3

Pl. 20, Fig. 4

1961 *Juglans* (*Carya*) *bilinica* UNGER; Knobloch, p. 258, pro parte, pl. 4, fig. 9.

Along with specimens identified as *Juglans* (*Carya*) *bilinica* and included here to *Cyclocarya* (see above) one broader leaf fragment ca. 45 mm wide assigned by Knobloch (1961) to *Juglans* deviates in its forked secondaries.

Discussion. This fragmentary specimen may indeed represent a large leaflet, but a better interpretation would be as *Fraxinus* rather than *Juglans*.

Material studied: Leaf impression, NM-G2837.

Dicotylophyllum sp. 4

Pl. 20, Fig. 8

1961 *Sibirea rottensis* WEYLAND; Knobloch, p. 278, pl. 8, fig. 12.

Leaf elongate, entire-margined, in the preserved specimen a length of 50 mm, 11 mm wide, apex bluntly rounded. Venation brochidodromous, irregular, midrib straight, secondary veins very steep, almost parallel with the midrib, forming elongated fields. Tertiary venation very fine, reticulate (according to Knobloch 1958, 1961, emended).

Discussion. Knobloch (1961) compared the single fragment described above with foliage of *Sibirea rottensis* WEYLAND, 1941 from the upper Oligocene of Rott. This interpretation has not been confirmed so far.

Material studied: Leaf impression, NM-G2889.

Dicotylophyllum sp. 5

Pl. 20, Fig. 7

1961 *Aesculus* cf. *palaeocastanum* ETTINGSHAUSEN; Knobloch, p. 283, pl. 1, fig. 6, pl. 8, fig. 12.

Leaflets (?) elongate, shortly petiolulate, blades incomplete, more than 36 mm long, 31 mm wide, margin doubles serrate, midrib bent, quite thick. Secondary veins at narrow angles, craspedodromous. Tertiary veins perpendicular or oblique between secondary veins.

Discussion. Knobloch (1961) interpreted one leaf impression (NM-G2866) as a leaflet belonging to *Aesculus* and another fragment (NM-G8594) as a slightly different form of the same species (Knobloch 1958). In our opinion the affinity of both these impressions is very doubtful.

Material studied: Leaf impressions, NM-G2866, NM-G8594.

Dicotylophyllum sp. 6

Pl. 20, Fig. 5

1961 *Celastrus persei* UNGER; Knobloch, p. 281, pl. 8, fig. 6.

Leaf oval, 23 mm long, 17 mm wide, widely cuneate at base, apex bluntly acute, margin crenulate, venation semi-craspedodromous, secondary veins at wide angles, bent along the margin, sending out veinlets which end between the teeth.

Discussion. Knobloch (1961) believed according to the architecture and venation of this single impression that it certainly belonged to *Celastrus*. Perhaps more reasons should be put forward for such a determination, although the morpho-type is quite distinct and noteworthy.

Material studied: Leaf impression, NM-G2862.

Carpolithes STERNBERG

Carpolithes sp. 1

Pl. 20, Fig. 11

1961 *Pisonia eocenica* ETTINGSHAUSEN; Knobloch, p. 289, pl. 1, fig. 10

A minute narrow elliptical object with a long bent stalk or style.

Discussion. This fossil described from Knížecí resembles a separated fruitlet of *Platanus neptuni* but no additional material is available to support a more precise identification.

Material studied: ? fruitlet impression, NM-G2813 a, b.

Carpolithes sp. 2

Pl. 20, Fig. 10

1961 *Carpolithes* sp.; Knobloch, p. 289, pl. 8, fig. 11

Flattened rounded unidentifiable seeds (or fruits) ca. 2.5 mm in diameter, partly on a short stout stalk.

Discussion. The objects are poorly preserved and require a more detailed comparative study.

Material studied: Compressed seeds or fruits, NM-G2870, EK 396–398.

Excluded objects inc. sed.

1961 *Betula* sp.; Knobloch, p. 267, pro parte, pl. 10, fig. 6.

The fossil originally interpreted as a birch catkin did not yield any pollen. On detailed examination it seemed to be composed of fragments of fish scales and may represent a coprolite.

Material studied: One enigmatic fossil, NM-G2886a.

Comparison with other palaeobotanical sites in north Bohemia and adjacent Saxony

The Knížecí plant assemblage is from a recently examined site and the available collection is not so extensive in comparison with historical localities, such as e.g.
Implications on vegetation and palaeoclimatology

The IPR analysis of the plant assemblage of Knížecí produces the following scores for the key components, i.e. broad-leaved deciduous (BLD) – 78.7 %, broad-leaved evergreen (BLE) – 17.8 %, sclerophyllous + legume-like (SCL+LEG) – 3.6 % and zonal herbaceous (ZONAL HERB) – 2.1 %. This indicates a transitional zonal vegetation type between Mixed Mesophytic Forest and Broad-leaved Deciduous Forest sensu Teodoridis et al. (2011). The species diversity is not very high and some morphotypes included in the analysis may contain more natural species (e.g. Laurophyllum sp.), some others are not preserved well enough for accurate evaluation. However this ecotonal type of zonal vegetation was also estimated for the other early Oligocene plant assemblages of Kundratice (Kvaček and Walther 1998), Hammerunterwiesenthal (Walther 1998), Seifhennersdorf (Walther and Kvaček 2007), Suletice-Berand (Kvaček and Walther 1995) and Markvartice-Veselíčko (Bůžek et al. 1976) – for detail see Teodoridis and Kvaček (2015).

The studied material is in some cases fragmentary and not really suitable for statistical physiognomical studies, such as CLAMP and any results must be taken cautiously. The CLAMP results (using the 144 site calibration dataset) estimate the climatic character of Hrazený to be as follows: mean annual temperature (MAT) – 11.3 °C, warmest month mean temperature (WMMT) – 22.1 °C, coldest month mean temperature (CMMT) – 1.7 °C, precipitation during 3 consecutive wettest months (3-WET) – 1357 mm and precipitation during 3 consecutive driest months (3-DRY) – 254 mm. The MAT proxy derived from Leaf Margin Analysis sensu Su et al. (2010) shows a result comparable with CLAMP, i.e., 11.2 °C (Sampling Error is 2.5 °C). We are indebted to Torsten Utescher, who kindly provided parallel proxy data based on the Coexistence Approach (CA) for the following characters: MAT (14.6–18.9°C) WMMT (24.7–28.3°C), CMMT (5–12.2°C) and mean annual precipitation – MAP (979–1213 mm). The CA estimates produces higher values than those from physiognomic techniques. In general, the proxy-data from Knížecí fit well into the palaeoclimatic evolution of the Bohemian Massif during the Paleogene, as formulated by Teodoridis and Kvaček (in press), corresponding to a slight warming trend after the late Eocene/early Oligocene climatic collapse.

Acknowledgements

We are grateful to the curators of the collections of the Czech Geological Survey in Prague who allowed us to use the undescribed material collected by Erwin Knobloch for the present study. We are also indebted to Jiří Kvaček who made accessible the collections of the National Museum in Prague and also technically supported this study by making the microscopic technique available. Greatly appreciated are also the suggestions and notes made by two reviewers on the first version of the manuscript. We acknowledge consultations with Tomáš Přikryl (Prague) on the fish fauna. The study was financially supported by the grant project GAČR No. 14-23108S.

References

Akhmetiev, M., Walther, H., Kvaček, Z. (2009): Mid-latitude Palaeogene floras of Eurasia bound to volcanic setting and palaeoclimatic events – experience obtained from the Far East Russia (Sikhote-Alin’) and Central Europe (Bohemian Massif). – Acta Musei nationalis Pragae, Series B – historia naturalis, 65(3-4): 61–121.

Andrews, H. N. jun. (1955): Index of generic names of fossil plants, 1820–1950. – Bulletin of the US Geological Survey, 1013: 1–262.

Andrews, H. N. jun. (1970): Index of generic names of fossil plants, 1820–1965. – Bulletin of the US Geological Survey, 1300: 1–354.

Archenegg, A. N. v. (1894): Über atavistische Blattformen des Tulipenbaumes. – Denkschriften der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 61: 269–284.
Bellon, H., Bůžek, Č., Gaudant J., Kvaček, Z., Walther, H. (1998): The České Štědroňí magmatic complex in Northern Bohemia. 40K, 40Ar ages for volcanism and biostratigraphy of the Cenozoic freshwater formations. – Newsletters on Stratigraphy, 36(2-3): 77–103.

Böhme, M. (2007): Revision of the cyprinids from the Early Oligocene of the České Štědroňí Mountains, and the phylogenetic relationships of Protothymallus Laube 1901 (Teleostei, Cyprinidae, Gobioninae). – Acta Musei nationalis Pragae, Series B – historia naturalis, 63: 175–194.

Bowerbank, J. S. (1840): A history of the fossil fruits and seeds of the London Clay. – John Van Voorst, London, 144 pp.

Brongniart, A. (1822): Sur la classification et la distribution des végétaux fossiles ein general, et sur ceux des terrains de sediment supérieur en particulier. – Mémoires du Muséum National d’histoire naturelle, 8: 203–248.

Brongniart, A. (1828): Notice sur les plantes d’Armissan près de Montauban. – Mém. Acad. Sci. Inst. Fr., 17: 175–194.

Brown, R. W. (1935): Miocene leaves, fruits, and seeds of the London Clay. – John Van Vorst, London.

Christenhusz M. J. M., Reveal J. L., Farjon A., Gardner M. F., Mill R. R., Chase M. W. (2011): A new classification and linear sequence of extant gymnosperms. – Phytotaxa, 69–132.

Florin, R. (1948): On the morphology and relationships of the Taxaceae. – Botanical Gazette, 110(1): 31–39.

Florin, R. (1958): On Jurassic taxads and conifers from northwestern Europe and eastern Greenland. – Acta Horti Bergiani, 17(10): 257–402.

Göppert, H. R. (1838): De floribus in statu fossilis commentatio. – Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher, 18: 547–572.

Il’inskaya, I. A. (1953): Monografiya roda Pterocarya Kunth [Monography of the genus Pterocarya Kunth]. – Trudy Botanicheskogo Instituta imeni V. L. Komarov AN SSSR, Series 1, 10: 7–123. (in Russian)

Jähnichen, H., Mai, D. H., Walther, H. (1977): Blätter und Früchte von Engelhardia Lesch. ex Bl. (Juglandaceae) aus den Schlukenauer Hügeldach bei Kundratitz in Nordböhmen. – Sborník Akademie der Wissenschaften zu Berlin, 9: 55–70.

Knobloch, E., Kvaček, Z. (1976): Miozäne Blätterfloren vom Pirskenberg bei Kundratitz in Nordböhmen. – Nova Acta Academiae Leopoldinae, 48: 275–324.

Knobloch, E. (1958): Terciärflora des Jesuitengrabens bei Kundratitz in Nordböhmen. – Nova Acta Academiae Leopoldinae, 48: 275–324.

Knobloch, E. (1961): Die oberoligozäne Flora des Pirskenberges bei Sluknov in Nord-Böhmen. – Sborník Ústředního ústavu geologického, Paleontologie, 18: 69–132.

Knobloch, E., Kvaček, Z., Walther, H. (1981): Blattreste von Vitaceae aus dem Oligozän Mitteleuropas. – Palaeontographica, Abteilung B, 175: 126–155.

Kvaček, Z. (1976): Tertiary flora from the volcanicogenic Series at Markvarticke and Veselíčko near Česká Kamenice (České Štědroňí Mts.). – Sborník Akademie der Wissenschaften zu Berlin, 9: 55–70.

Kvaček, Z., Holý, F., Kvaček, Z. (1976): Eine bemerkenswerte Art der Familie Platanaceae Lindl. (1836) im nordböhmischem Tertiär. – Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, 9: 203–215.

Kvaček, Z., Holý, F., Kvaček, Z. (1967): Eine bemerkenswerte Art der Familie Platanaceae Lindl. (1836) im nordböhmischem Tertiär. – Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin, 9: 203–215.

Kvaček, Z., Holý, F., Kvaček, Z. (1976): Tertiary flora from the Volcanogenic Series at Markvarticke and Veselíčko near Česká Kamenice (České Štědroňí Mts.). – Sborník Ústředního ústavu geologického, Paleontologie, 18: 69–132.

Kvaček, Z., Holý, F., Kvaček, Z., Walther, H. (1981): Blattreste von Vitaceae aus dem Oligozän Mitteleuropas. – Palaeontographica, Abteilung B, 175: 126–155.

Knobloch, E. (1958): Terciärflora des Jesuitengrabens bei Kundratitz in Nordböhmen. – Nova Acta Academiae Leopoldinae, 48: 275–324.

Knobloch, E. (1961): Die oberoligozäne Flora des Pirskenberges bei Sluknov in Nord-Böhmen. – Sborník Ústředního ústavu geologického, Paleontologie, 26: 241–315.

Knobloch, E. (1998): Der pliozäne Laubwald von Willershausen am Harz (Mitteleuropa). – Documenta Naturae, 120: 1–302.

Knobloch, E., Kvaček, Z. (1976): Miozäne Blätterfloren vom Westrand der Böhmischen Masse. – Rozpravy Ústredniho ústavu geologického, 42: 1–131.
Köhler, J., Uhl, D. (2014): Die Blatt- und Karpoﬂora der oberoligozänen Lagerstätte Enspel (Westertal, Rhineland-Pfalz, W-Deutschland). – Mainzer Naturwissenschaftliches Archiv, Beihefte, 35: 1–87.

Kotlaba, F. (1963): Tertiary plants from three new localities in Southern Slovakia. – Sbornik Národního muzea, řada B, 19(2): 53–72.

Kovar-Eder, J., Kvaček, Z., Ströblitzer-Hermann, M. (2004): The Miocene Flora of Parschlug (Styria, Austria) – Revision and Synthesis. – Annalen des Naturhistorischen Museums, Wien, 105A: 45–159.

Kunzmann L., Kvaček Z., Mai D. H., Walther H. (2009): The Miocene Flora of the North Bohemian Tertiary. – Sborník Ústředního ústavu geologického, Pragae, Series B – historia naturalis, 50: 25–54.

Kvaček, Z., Walther, H. (1995): The Oligocene volcanic flora of Suletice-Berand near Ústí nad Labem, North Bohemia – a review. – Acta Musei nationalis Pragae, Series B – historia naturalis, 60: 9–60.

Kvaček, Z. (2007): Tracing Eocene-Oligocene transition: a case study from North Bohemia. – Bulletin of Geosciences, 89(1): 21–66.
Němejc, F., Kvaček, Z., Paclírová, B., Konzalová M. (2003): Tertiary plants of the Plzeň Basin (West Bohemia). – Acta Universitatis Carolinae, Geologica, 46(4, 2002): 121–176.

Obrhelová, N. (1961): Vergleichende Osteologie der tertiären Süßwasserfische Böhmens (Gobioidei). Srovnanáci osteologie třetihorních sledkovodních ryb (Gobioidi) v Čechách. – Sborník Ústředního ústavu geologického, Paleontologie, 26(1959): 103–192.

Palamarev, E. H., Petkova, A. S. (1987): La macroflore du Sarmatien. – In: Tzankov, V. (ed.), Les fossiles de Bulgarie VIII.1, Academie Bulgarie des Sciences, Sofia, p. 1–275. (in Bulgarian with French summary)

Procházka, M. (1952): Javory severočeských třetihor (České středohoří Mountains, Czech Republic). – Rigorózní práce [RNDr. thesis]. – MS, Univerzita Karlova, Přírodovědecká fakulta [Charles University, Faculty of Sciences], Prague, Czech Republic, 250 pp. (in Czech) (Geological Library, Faculty of Sciences, Charles University)

Procházka, M., Bůžek, Č. (1975): Maple leaves from the Tertiary of North Bohemia. – Rozpravy Ústředního ústavu geologického, 41: 1–86.

Přikryl, T. (2014): A new species of the sleeper goby (Gobioidei, Eleotridae) from the České Středohoří Mountains (Czech Republic, Oligocene) and analysis of the validity of the family Pirkseniidae. – Paläontologische Zeitschrift, 88: 187–188.

Reveal, J. L. (2012): An outline of a classification system for extant flowering plants. – Phytoneuron, 37: 1–221.

Sachse, M. (2001): Oleaceous laurophyllous leaf fossils and pollen from the European Tertiary. – Review of Palaeobotany and Palynology, 115: 213–234.

Saporta, G., Marion, A. F. (1876): Recherches sur les végétaux fossils de Meximieux. – Archives du Museum Naturalis des Sciences, 1: 203–289.

Stur, D. (1867): Beiträge zur Kenntnis der Flora der Süßwasserquarzite, der Congerien- und Cerithienschichten im Wiener und ungarischen Becken. – Jahrbuch der Geologischen Reichsanstalt, 17(1): 77–188.

Su, T., Xing, Y. W., Liu, Y. S., Jacques, F. M. B., Chen, W. Y., Huang, Y. J., Zhou, Z. K. (2010): Leaf margin analysis: A new equation from humid to mesic forests in China. – Palaios, 25: 234–238.

Teodoridis, V., Kovar-Eder, J., Mazouch, P. (2011): The IPR-vegetation analysis applied to modern vegetation in SE China and Japan. – Palaios, 26(10): 623–638.

Walther, H. (1998): Die Tertiärflora von Hammerunterwiesenthal (Freistaat Sachsen). – Abhandlungen des Staatlichen Museums der Mineralogie und Geologie zu Dresden, 90(3): 695–720.

Walther, H. (1999): Die Tertiärflora von Klein sauernitz bei Bautzen. – Palaeontographica, Abteilung B, 249: 61–188.

Walther, H., Kvaček, Z. (2007): Early Oligocene flora of Seiffhnersdorf (Saxony). – Acta Musei nationalis Pragae, Series B – historia naturalis, 63(2-4): 85–174.

Weber, C.O. (1852): Die Tertiärflora von Hammerunterwiesenthal (Freistaat Sachsen). – Abhandlungen des Staatlichen Museums der Mineralogie und Geologie zu Dresden, 43-44: 239–364.

Walther, H. (1972): Studien über tertiäre Acer Mitteleuropas. – Abhandlungen des Staatlichen Museums der Mineralogie und Geologie zu Dresden, 19: 1–309.

Walther, H. (1998): Die Tertiärflora von Hammerunterwiesenthal (Freistaat Sachsen). – Abhandlungen des Staatlichen Museums der Mineralogie und Geologie zu Dresden, 90(3): 695–720.

Weise, A. (1890): Braunkohlschichten in der Gegend von Schluckenaus. – Mitteilungen des nordböhmischen Exkursions-Klubs, 15 (1): 15–19.

Weyland, H. (1941): Beiträge zur Kenntnis der Rheinischen Tertiärflora. V. Dritte Ergänzungen und Berichtigungen zur Flora der Blätterkohle und des Polierschiefers von Rott im Siebengebirge. – Palaeontographica, Abteilung B, 86(4-6): 79–112.

Wessel, Ph., Weber, O. (1856): Neuer Beitrag zur Tertiärflora der niederdeutschen Braunkohlenformation. – Palaeontographica, 4: 1–57.

Weyland, H. (1937): Beiträge zur Kenntnis der rheinischen Tertiärflora. II. Erste Ergänzungen und Berichtigungen zur Flora der Blätterkohle und des Polierschiefers von Rott im Siebengebirge. – Palaeontographica, Abteilung B, 83(1-3): 67–122.

Weyland, H. (1948): Beiträge zur Kenntnis der rheinischen Tertiärflora. VII. – Palaeontographica, Abteilung B, 88: 115–188.
Explanation of the plates

PLATE 1

Muscites sp.
1. Most complete specimen, NM-G11514 (scale bar 5 mm).
2. Counter-impression to the missing Knobloch's original (1961, pl. 10, fig. 1). NM-G2888 (scale bar 3 mm).
3. Magnified detail of the previous figure (scale bar 1 mm).

Pinus cf. rigios (UNGER) ETTINGSHAUSEN
4. Fascicle of three needle leaves joined with sheath, EK 237a (scale bar 5 mm).
5. Three fragmentary needle leaves, obviously from the same fascicle, EK 238 (scale bar 5 mm).

Taxodium dubium (STERNBERG) HEER
6. Most complete shoot with cuticle structure shown in Pl. 2, Fig. 1, Knobloch's original (1961, pl. 2, fig. 8), NM-G2815a (scale bar 5 mm).
7. Impression of another shoot, Knobloch's original (1961, pl. 10, fig. 2), NM-G2892 (scale bar 5 mm).

Tetraclinis salicornioides (UNGER) Kvaček
8. Fragment of a branched twig composed of wide medial segments with attached simple ultimate segments, EK 243 (scale bar 5 mm).
9. Another branched twig fragment, EK 242 (scale bar 9 mm).
10. Simple twig segment with cuticle isolated from the rock shown in Pl. 2, Fig. 2–3, NM-G11507 (scale bar 3 mm).

Taxus engelhardtii Kvaček
11. Needle base with cuticle, NM-G11482a (scale bar 3 mm).
12. Short needle with cuticle, NM-G11481a (scale bar 3 mm).
13. Needle base with cuticle, NM-G11501a (scale bar 3 mm).

Torreya bilinica SAPORTA et MARION
14. Needle fragment with cuticle (see arrow), NM-G11508a (scale bar 3 mm).
15. Needle fragment with cuticle (see arrow), NM-G11510a (scale bar 1.5 mm).
16. Complete needle compression with cuticle, NM-G11509a (scale bar 5 mm).

PLATE 2

Taxodium dubium (STERNBERG) HEER
1. Cuticle of the specimen shown in Pl. 1, Fig. 6 reflecting stomata, NM-G2815b (scale bar 100 µm).

Tetraclinis salicornioides (UNGER) Kvaček
2. Cuticle of the specimen shown in Pl. 1, Fig. 10 reflecting stomatal zone, NM-G11507a (scale bar 100 µm).
3. Cuticle of the same specimen shown in Pl. 1, Fig. 10 reflecting non-stomatal zone, NM-G11507a (scale bar 100 µm).

Taxus engelhardtii Kvaček
4. Cuticle of the specimen shown in Pl. 1, Fig. 13 reflecting medial non-stomatal zone, NM-G11501b (scale bar 100 µm).
5. Cuticle of the specimen shown in Pl. 1, Fig. 13 reflecting medial stomatal zone, NM-G11501b (scale bar 100 µm).

Torreya bilinica SAPORTA et MARION
6. Cuticle of the specimen NM-G11509a reflecting lateral non-stomatal zone showing papillae near stomatal band, NM-G11509b (scale bar 100 µm).
7. Stomatal band of the previous specimen, NM-G11509b (scale bar 100 µm).
8. Cuticle of the specimen shown in Pl. 1, Fig. 15 reflecting stomatal band devoid of distal parts of papillae, NM-G11510b (scale bar 100 µm).

PLATE 3

Liriodendron haueri ETTINGSHAUSEN
1. Long petiolate leaf base, Knobloch’s original (1961, pl. 7, fig. 1), NM-G2859 (scale bar 10 mm).
2. Shallowly lobed small leaf, Knobloch’s original (1961, pl. 14, fig. 4, as *Styrax* sp.), NM-G8591 (scale bar 10 mm).
3. Lobed leaf with cuticle shown in Pl. 6, Fig. 1, Knobloch’s original (1961, pl. 7, fig. 3), NM-G2856a (scale bar 10 mm).
4. Incomplete lobed leaf with well-preserved venation, NM-G2997 (scale bar 10 mm).

PLATE 4

Laurophyllum medimontanum BŮŽEK, HOLÝ et Kvaček
1. Leaf compression with cuticle shown in Pl. 6, Fig. 2, NM-G3002a (scale bar 10 mm).
2. Leaf impression, Knobloch’s original (1961, pl. 8, fig. 9, as *Salix longa* A. BRAUN), NM-G2563a (scale bar 10 mm).

Laurophyllum sp.
3. Leaf impression, Knobloch’s original (1961, pl. 10, fig. 7, as cf. Laurus primigenia UNGER), NM-G2890a (scale bar 5 mm).
4. Impression of a leaf fragment, EK 258 (scale bar 5 mm).
5. Leaf compression with cuticle shown in Pl. 6, Fig. 3, Knobloch’s original (1961, pl. 10, fig. 4, as Laurus princeps HEER), NM-G2885a (scale bar 10 mm).
6. Petiolate base of leaf impression, Knobloch’s original (1961, not figured, as ? Benzoin attenuatum HEER), NM-G2977 (scale bar 10 mm).
7. Impression of leaf fragment, Knobloch’s original (1961, pl. 10, fig 8), NM-G2884 (scale bar 10 mm).

PLATE 5

Daphnogene cinnamomifolia (BRONGNIART) UNGER
1. Leaf impression with cuticle, Knobloch’s original (1961, pl. 1, fig. 7, as Cinnamomum scheuchzeri (HEER) FRENZEN), NM-G2811a (scale bar 5 mm).
2. Broad leaf fragment with cuticle, NM-G11497 (scale bar 5 mm).
3. Small leaf compression with cuticle, NM-G11500a (scale bar 5 mm).
4. Narrow leaf impression, EK 247 (scale bar 5 mm).

“Typha” latissima A. BRAUN
5. Leaf impression with preserved venation, EK 250 (scale bar 5 mm).
6. Leaf impression with preserved venation, Knobloch’s original (1961, pl. 12, fig. 7, as Typha latissima A. BRAUN), NM-G8593 (scale bar 5 mm).
8. Narrow leaf impression longitudinally torn in two parts, EK 253 (scale bar 5 mm).

Poacites sp.
7. Narrow leaf impression, EK 255 (scale bar 5 mm).

Smilax weberi WESSEL
9. Impression of incomplete leaf base, Knobloch’s original (1961, pl. 15, fig. 9, as Smilax grandifolia (UNGER) HEER), NM-G8081a (scale bar 50 µm).

Laurophyllum medimontanum BŮŽEK, HOLÝ et KVAČEK
2. Strongly papillate abaxial cuticle of lower leaf side of leaf compression shown in Pl. 4, Fig. 1, NM-G3704c (scale bar 50 µm).

Laurophyllum sp.
3. Thin cuticle with a trichome base from lower leaf side of leaf compression shown in Pl. 4, Fig. 5, NM-G2885b (scale bar 50 µm).

Daphnogene cinnamonifolia (BRONNIART) UNGER
4. Hairy abaxial cuticle of leaf compression shown in Pl. 5, Fig. 1, NM-G2811b (scale bar 50 µm).

Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVAČEK
5. Abaxial cuticle of the specimen shown in Pl. 7, Fig. 2, NM-G11504b (scale bar 50 µm).

Comptonia difformis (STERNBERG) BERRY
6. Abaxial cuticle with peltate trichomes from the specimen shown in Pl. 13, Fig. 3, NM-G11506b (scale bar 50 µm).

Acer angustilobum HEER
7. Papillate abaxial cuticle from the specimen shown in Pl. 18, Fig. 3, NM-G11505b (scale bar 50 µm).

Oleinites hallbaueri (MAI) SACHSE
8. Adaxial cuticle with peltate trichome from the specimen shown in Pl. 19, Fig. 5, NM-G2812b (scale bar 50 µm).

Engelhardia orsbergensis (WESSEL et WEBER) JÄHNICHEN, MAI et WALTHER
9. Abaxial cuticle from the specimen shown in Pl. 14, Fig. 5, NM-G11511b (scale bar 50 µm).

PLATE 6

Liriodendron haueri ETTINGSHAUSEN
1. Smooth cuticle of lower leaf side reflecting outlines of stomata obtained from leaf impression published by Knobloch (1961, pl. 7, fig. 3), NM-G2856b (scale bar 50 µm).

Laurophyllum medimontanum BŮŽEK, HOLÝ et KVAČEK
2. Strongly papillate abaxial cuticle of lower leaf side of leaf compression shown in Pl. 4, Fig. 1, NM-G3704c (scale bar 50 µm).

Laurophyllum sp.
3. Thin cuticle with a trichome base from lower leaf side of leaf compression shown in Pl. 4, Fig. 5, NM-G2885b (scale bar 50 µm).

Daphnogene cinnamonifolia (BRONNIART) UNGER
4. Hairy abaxial cuticle of leaf compression shown in Pl. 5, Fig. 1, NM-G2811b (scale bar 50 µm).

Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVAČEK
5. Abaxial cuticle of the specimen shown in Pl. 7, Fig. 2, NM-G11504b (scale bar 50 µm).

Comptonia difformis (STERNBERG) BERRY
6. Abaxial cuticle with peltate trichomes from the specimen shown in Pl. 13, Fig. 3, NM-G11506b (scale bar 50 µm).

Acer angustilobum HEER
7. Papillate abaxial cuticle from the specimen shown in Pl. 18, Fig. 3, NM-G11505b (scale bar 50 µm).

PLATE 7

Platanus neptuni (ETTINGSHAUSEN) BŮŽEK, HOLÝ et KVAČEK
1. Leaf impression, Knobloch’s original (1961, pl. 10, fig. 12, as Ceratopetalum bilinicum ETTINGSHAUSEN), NM-G2887 (scale bar 5 µm).
2. Leaf compression with cuticle, NM-G11504a (scale bar 5 mm).
3. Leaf compression with cuticle, NM-G11503a (scale bar 10 mm).
4. Leaf compression with cuticle, EK 260 (scale bar 5 mm).
5. Isolated stamen, NM-G11918c (scale bar 1 mm).
6. Infructescence, Knobloch’s original (1961, pl. 3, fig. 9 left, as Comptonia difformis (STERNBERG) BERRY), NM-G2830b (scale bar 5 mm).
7. Isolated stipule, EK 263 (scale bar 3 mm).

Cercidiphyllum crenatum (UNGER) R. BROWN
8. Impression of broad leaf, Knobloch’s original (1961, pl. 15, fig. 1), NM-G2998a (scale bar 10 mm).
9. Impression of elliptic leaf, Knobloch’s original (1961, pl. 15, fig. 3), NM-G8595 (scale bar 10 mm).

PLATE 8

Ampelopsis hibschii BŮŽEK, KVAČEK et WALTHER
1. Leaf impression, Knobloch’s original (1961, pl. 8, fig. 3, as Vitis sp.), NM-G2869 (scale bar 10 mm).
2. Impression of leaf apex with separated tip, EK 267 (scale bar 10 mm).
3. Impression of leaf base, EK 271 (scale bar 10 mm).
4. Leaf fragment with separated tip, EK 270 (scale bar 10 mm).
5. Leaf base with petiole, Knobloch’s original (1961, pl. 10, fig. 3, as Platanus cf. aceroides GÖPPERT), NM-G2891 (scale bar 10 mm).
6. Leaflet, Knobloch’s original (1961, pl. 7, fig. 7, as Zelkova ungeri KOVÁTS), NM-G2855 (scale bar 10 mm).

PLATE 9

Parvileguminophyllum haeringianum (ETTINGSHAUSEN) KVAČEK comb. n.
1. Leaflet, Knobloch’s original (1961, pl. 14, fig. 8, as Mimostes cf. haeringiana ETTINGSHAUSEN), NM-G8583 (scale bar 3 mm).
2. Leaflet, Knobloch’s original (1961, pl. 12, fig. 1, as Mimostes cf. haeringiana ETTINGSHAUSEN), NM-G8592 (scale bar 3 mm).
3. Leaflet, NM-G11487 (scale bar 3 mm).
Phaseolites sp. 1
4. Leaflet base, Knobloch’s original (1961, pl. 5, fig. 15), NM-G2839 (scale bar 5 mm).

Phaseolites sp. 3
5. Fragmentary long petiolate leaf with fragmentary leaflets, Knobloch’s original (1961, pl. 11, fig. 5, as ?Cassia sp.), NM-G2903 (scale bar 5 mm).

Phaseolites sp. 4
6. Emarginate leaflet, Knobloch’s original (1961, pl. 10, fig. 10, as Dalbergia bella HEER), NM-G2862b (scale bar 5 mm).

Phaseolites sp. 2
7. Leaflet base, EK 276 (scale bar 5 mm).
8. Leaflet base, Knobloch’s original (1961, pl. 8, fig. 10, as Leguminosites sp.), NM-G2868 (scale bar 5 mm).

PLATE 10
Rosa lignitum HEER
1. Leaflet, Knobloch’s original (1961, pl. 8, fig. 2, as ?Rhus pyrrhae UNGER), NM-G2866 (scale bar 5 mm).
2. Leaflet, NM-G2876b (scale bar 5 mm).
3. Leaflet, EK 285 (scale bar 5 mm).
4. Leaflet, EK 282 (scale bar 5 mm).
5. Small leaflet, EK 284 (scale bar 5 mm).
6. Small leaflet, EK 283 (scale bar 5 mm).
7. Leaflet, EK 280 (scale bar 5 mm).
8. Leaflet, Knobloch’s original (1961, pl. 9, fig. 11, as ?Rhus pyrrhae UNGER), NM-G2871 (scale bar 5 mm).
9. Leaflet, EK 279 (scale bar 5 mm).

Crataegus pirskenbergensis KNOBLOCH
10. Leaf impression, Knobloch’s original (1961, pl. 8, fig. 7), NM-G2861a (scale bar 10 mm).
11. Leaf impression, Knobloch’s original (1961, pl. 8, fig. 8, holotype), NM-G2867a (scale bar 10 mm).

PLATE 11
Ulmus fischeri HEER
1. Leaf impression, Knobloch’s original (1961, pl. 1, fig. 7, as Zelkova ungeri KOVÁTS), NM-G2807 (scale bar 10 mm).
2. Narrow leaf impression, Knobloch’s original (1961, pl. 1, fig. 2, as Zelkova ungeri KOVÁTS), NM-G2804 (scale bar 5 mm).
3. Leaf base, Knobloch’s original (1961, pl. 7, fig. 4, as Zelkova ungeri KOVÁTS), NM-G2868 (scale bar 5 mm).
4. Leaf impression, EK 287 (scale bar 10 mm).

Zelkova zelkovifolia (UNGER) BŮŽEK et KOTLABA
5. Leaf base, EK 288 (scale bar 10 mm).

PLATE 12
Celtis pirskenbergensis (KNOBLOCH) KVÁČEK et WALTHER
1. Leaf base, Knobloch’s original (1961, pl. 6, fig. 9, as Celtis begonioides GÖPPERT), NM-G2851a (scale bar 10 mm).
2. Leaf apex, Knobloch’s original (1961, pl. 6, fig. 5, as Celtis begonioides GÖPPERT var. pirskenbergensis KNOBLOCH), NM-G2852 (scale bar 10 mm).
3. Leaf impressions showing leaf apex and a part of the base, Knobloch’s original (1961, pl. 6, fig. 8, as Celtis begonioides GÖPPERT var. pirskenbergensis KNOBLOCH, holotype), NM-G2850a (scale bar 10 mm).
4. Leaf fragment, NM-G2979, Knobloch’s original (1961, not figured, as Celtis begonioides GÖPPERT var. pirskenbergensis KNOBLOCH), NM-G2853b (scale bar 10 mm).
5. Leaf fragment, counterimpression to Knobloch’s original (1961, pl. 6, fig. 3, as Celtis begonioides GÖPPERT var. pirskenbergensis KNOBLOCH), NM-G2853b (scale bar 10 mm).
6. Leaf base, Knobloch’s original (1961, pl. 12, fig. 4, as Celtis begonioides GÖPPERT), NM-G8600 (scale bar 10 mm).

PLATE 13
Comptonia difformis (STERNBERG) BERRY
1. Leaf apex, EK 209 (scale bar 10 mm).
2. Middle part of leaf, Knobloch’s original (1961, pl. 3, fig. 10), NM-G2827 (scale bar 10 mm).
3. Fragmentary leaf compression with cuticle, NM-G11506a (scale bar 5 mm).
4. Almost complete leaf, EK 298 (scale bar 10 mm).
5. Narrow leaf without apex, EK 300 (scale bar 10 mm).
6. Lower part of leaf, Knobloch’s original (1961, pl. 3, fig. 6), NM-G2826 (scale bar 10 mm).
7. Magnified base of the previous specimen NM-G2826 (scale bar 5 mm).
8. Minute leaf impression, NM-G2987 (scale bar 1.5 mm).
9. Narrow leaf without apex, EK 291 (scale bar 10 mm).

PLATE 14
Engelhardia orsbergensis (WESSEL et WEBER) JÄHNICHEN, MAI et WALTHER
1. Leaflet, Knobloch’s original (1961, pl. 12, fig. 5, as Myrica lignitum (UNGER) SAPORTA), NM-G8582 (scale bar 10 mm).
2. Leaflet fragment, Knobloch’s original (1961, pl. 1, fig. 13, as Myrica lignitum (UNGER) SAPORTA), NM-G2805 (scale 10 bar mm).
3. Large leaflet, NM-G11151b (scale bar 10 mm).
4. Leaflet fragment, Knobloch’s original (1961, pl. 2, fig. 10, as Myrica lignitum (UNGER) SAPORTA), NM-G2824 (scale bar 10 mm).
5. Fragmentary compression of base with cuticle, NM-G11151a (scale bar 5 mm).

Engelhardia macropera (BRONGNIART) UNGER
6. Fragmentary involucre, EK 312 (scale bar 10 mm).

Carya fragiliformis (STERNBERG) KVÁČEK et WALTHER
7. Leaflet base, counter-impression to Knobloch’s original (1961, pl. 9, fig. 12, as Carya serraeolia (GÖPPERT KRAUSEL), NM-G2878b (scale bar 10 mm).
Cyclocarya sp.
8. Upper part of compound leaf, Knobloch’s original (1961, pl. 15, fig. 6, as Cyclocarya cyclocarpa (SCHLECHTENDAL) KNOBLOCH), NM-G2932 (scale bar 10 mm).

PLATE 15
Betula alboides ENGELHARDT
1. Fragmentary leaf, Knobloch’s original (1961, pl. 14, fig. 3, as Betula cf. dryadum BRONGNIART), NM-G8588 (scale bar 10 mm).
2. Almost complete leaf, EK 324 (scale bar 5 mm).

Betula buzekii KVÁČEK et WALTHER
3. Almost complete leaf, Knobloch’s original (1961, pl. 5, fig. 11, as Betula prisca ETTINGSHAUSEN), NM-G2847 (scale bar 10 mm).
4. Almost complete leaf, Knobloch’s original (1961, pl. 5, fig. 4, as Betula prisca ETTINGSHAUSEN), NM-G2848 (scale bar 10 mm).

Alnus gaudinii (HEER) KNOBLOCH et KVÁČEK
5. Leaf base, EK 339 (scale bar 10 mm).
6. Leaf base, EK 330 (scale bar 10 mm).
7. Leaf impression, Knobloch’s original (1961, pl. 11, fig. 10, as ? Pterocarya aff. castaneaefolia (GÖPPERT) SCHLECHTENDAL), NM-G8603 (scale bar 10 mm).

Alnus kefersteinii (GÖPPERT) UNGER
8. Infructescence, Knobloch’s original (1961, pl. 2, fig. 12, as Alnus sp.), NM-G2819a (scale bar 5 mm).

PLATE 16
Carpinus grandis UNGER
1. Leaf impression, Knobloch’s original (1961, pl. 14, fig. 1, as Carpinus orientalis GAUDIN et STROZZI), NM-G8587 (scale bar 10 mm).

Carpinus roscheri KVÁČEK et WALTHER
2. Smaller leaf fragment, Knobloch’s original (1961, pl. 2, fig. 6, as Betula brongniartii ETTINGSHAUSEN), NM-G2817 (scale bar 10 mm).
3. Base of leaf fragment, Knobloch’s original (1961, not figured, as Betula sp.), NM-G2981 (scale bar 10 mm).

Carpinus medimontana MAI
4. Involucre, EK 256 (scale bar 5 mm).
5. Involucre, NM-G2998b (scale bar 5 mm).

Carpinus cordataeformis MAI
6. Involucre, NM-G2995b (scale bar 5 mm).
7. Involucre, EK 349 (scale bar 5 mm).

PLATE 17
Salix sp.
1. Almost complete leaf, Knobloch’s original (1961, pl. 1, fig. 9, as Populus rottensis WEYLAND), NM-G2806 (scale bar 10 mm).
2. Leaf tip, EK 360a (scale bar 10 mm).
3. Upper part of leaf, NM-G2995c (scale 10 bar mm).

Populus zaddachii HEER
4. Long petiolate leaf base, Knobloch’s original (1961, not figured), NM-G8590 (scale bar 10 mm).
5. Leaf blade, Knobloch’s original (1961, not figured), NM-G8579a (scale bar 10 mm).
6. Leaf apex, EK 359 (scale bar 10 mm).

PLATE 18
Toxicodendron herthae (UNGER) KVÁČEK et WALTHER
1. Leaflet apex, counter-impression to Knobloch’s original (1961, pl. 13, fig. 4, as Rhus herthae UNGER) NM-G2916b (scale bar 10 mm).

Acer angustilobum HEER
2. Small leaf, EK 363 (scale bar 5 mm).
3. Leaf fragment with cuticle shown in Pl. 6, Fig. 9, NM-G11505a (scale bar 10 mm).

Acer integrilobum WEBER
4. Small leaf, EK 362 (scale bar 10 mm).
5. Winged mericarp, Knobloch’s original (1961, pl. 11, fig. 8, as Acer sp.), NM-G8596 (scale bar mm).

Acer palaeosaccharinum STUR
6. Long petiolate leaf, Knobloch’s original (1961, pl. 9, fig. 5), NM-G2872 (scale bar 5 mm).
7. Broad leaf, Knobloch’s original (1961, pl. 1, fig. 11), NM-G2814 (scale bar 10 mm).

PLATE 19
Craigia bronnnii (UNGER) KVÁČEK, BŮŽ et MANCHESTER
1. Fruit valve, EK 374 (scale bar 5 mm).
2. Incomplete fruit valve, EK 375 (scale bar 5 mm).

Hydrangea microcalyx SIEBER
3. Petaloid sepal, Knobloch’s original (1961, pl. 11, fig. 11, as Paliurus thurmannii HEER), NM-G8585 (scale bar 5 mm).

Cornus studeri HEER
4. Basal part of leaf, Knobloch’s original (1961, pl. 13, fig. 1), NM-G8606 (scale bar 10 mm).

Oleinites hallbaueri (MAI) SACHSE
5. Leaf fragment with cuticle, Knobloch’s original (1961, pl. 1, fig. 8, as Myrica lignitum (UNGER) SAPORTA), NM-G2812a (scale bar 10 mm).
6. Almost complete leaf, Knobloch’s original (1961, pl. 3, fig. 1, as Myrica lignitum (UNGER) SAPORTA), NM-G4859a (scale bar 10 mm).

7. Detailed venation of the previous specimens, NM-G4859a (scale bar 5 mm).

PLATE 20

Dicotylophyllum sp. 1
1. Leaf fragment, Knobloch’s original (1961, pl. 4, fig. 2, as Juglans acuminata A. BRAUN), NM-G2834 (scale bar 10 mm).

Dicotylophyllum sp. 2
2. Long petiolate leaf base, EK 383 (scale bar 5 mm).
3. Petiolate leaf base, Knobloch’s original (1961, pl. 14, fig. 6, as Leguminosites sp.), NM-G8597a (scale bar 5 mm).

Dicotylophyllum sp. 3
4. Leaf fragment, Knobloch’s original (1961, pl. 4, fig. 9, as Juglans (Carya) bilinica UNGER), NM-G2837 (scale bar 10 mm).

Dicotylophyllum cf. heerii (ENGELHARDT) KVAČEK ET WATHER
5. Petiolate leaf base, NM-G11512 (scale bar 5 mm).

Dicotylophyllum sp. 6
6. Small complete leaf, Knobloch’s original (1961, pl. 14, fig. 6, as Celastrus persei UNGER), NM-G2862 (scale bar 5 mm).

Dicotylophyllum sp. 5
7. Leaf base, Knobloch’s original (1961, pl. 1, fig. 6, as Aesculus cf. palaecostanum ETTINGSHAUSEN), NM-G2806a (scale bar 10 mm).

Dicotylophyllum sp. 4
8. Leaf without base, Knobloch’s original (1961, pl. 8, fig. 12, as Sibirea rottensis WEYLAND), NM-G28089 (scale bar 5 mm).

Saportaspermum cf. occidentale MAYER ET MANCHESTER
9. Winged seed, NM-G11483 (scale bar 3 mm).

Carpolithes sp. 2
10. Rounded seed?, Knobloch’s original (1961, pl. 8, fig. 11, as Carpolithus sp.), NM-G2870 (scale bar 1 mm).

Carpolithes sp. 1
11. Fruitlet?, Knobloch’s original (1961, pl. 1, fig. 10, as ? Pisonia eocenica ETTINGSHAUSEN), NM-G2813a (scale bar 1 mm).

PLATE 21

View of the present landscape at the Hrazený locality, photo P. Gürtlerová 2014.
PLATE 9
