Availability of Essential Medicines for Pediatric Oncology in Armenia

Tamara Simonyan, Ruzanna Papyan, Samvel Danielyan, Lilit Sargsyan, Varduh Grigoryan, Hakob Topchyan, Arpina Azaryan, Armen Tananyan, Armen Muradyan, Gevorg Tamamyan

Abstract

Background: One of the main contributors in low survival rate in LMIC is the lack of availability of cancer medications for curative, supportive and palliative care. In many developing countries access to cytotoxic medicine is a major challenge. The information about the availability of essential medicines for pediatric cancer in the country is not known. The main objective of this study was to determine whether the medications used during the treatment of pediatric cancer are available in Armenia. Methods: In summer 2016 we conducted a survey in the 3 main pharmacies in Yerevan, which import pediatric cancer medications to Armenia to evaluate whether medications used during cancer treatment are officially registered and available in the country. In addition, the information on official registration was cross-checked with the Ministry of Health of the Republic of Armenia (MOH). Simultaneously, detailed information about the drugs, on type of produced drug company, doses and price intervals was confined from the price lists of the national drug importer companies. Results: The survey included 64 agents in three classes of medication: anti-neoplastics, anti-microbials, and drugs used in supportive care. All of these medications were included in the recent version of the WHO model list of essential medicines. From 30 anti-neoplastic medications on the essential medicines list 22 (73%) were officially registered in Armenia; from 19 anti-microbial drugs all were registered except caspofungin and from 15 supportive care agents 13 (87%) were registered. From registered anti-neoplastic drugs 18% and from antimicrobial drugs 33% were not available in the drug stores. Conclusion: This study showed that not all the drugs from the SIOP PODC Essential Medication list for pediatric oncology are officially registered and available in Armenia, and effective drug regulation focusing on the childhood cancer care medicine is needed for improving the situation in the country.

Keywords: Oncology, cancer, Armenia

Asian Pac J Cancer Prev, 20 (4), 991-994

Introduction

Cancer is one of the leading causes of morbidity and mortality among children until 15 years of age (Ward et al., 2014). Approximately 160,000 new cases of childhood cancer are registered globally each year (Rodriguez-Galindo et al., 2015), and during last 20 years there was around 13% rise in the global incidence of childhood cancer (Stelianova-Foucher et al., 2017). Recent decades’ progress in science and medicine made crucial changes in the outcomes of childhood cancer. Currently, in high-income countries, where around 20% of global pediatric cancer cases are reported, through the implementation of modern diagnostic and treatment methods, policy changes for increasing early detection, the long-term survival of pediatric cancer reaches up to 85% and more (Howard et al., 2008). However, the overall picture is totally different in low- and middle- income countries (LMIC), where the vast majority of pediatric cancer patients reside: in LMIC pediatric cancer survival can range from 0 up to 50-60%. A number of reasons contribute for such inferior outcomes: under and delayed diagnosis, treatment refusals and abandonment, lack of access to surgery, delivering chemotherapy and/or radiotherapy, limitations in supportive care, shortage of specialists, lack of multidisciplinary cancer management teams, and others (Rodriguez-Galindo et al., 2015; Rodriguez-Galindo et al., 2013; Ribeiro et al., 2016; Eden, 2012; Mehta et al., 2013; Denburg et al., 2017; Barr and Robertson, 2016).

Among them, one of the main contributors in low survival rate in LMIC is the lack of availability of cancer medications for curative, supportive and palliative care. In many developing countries access to cytotoxic...
medicine is a major challenge. Therefore, achieving equitable access to affordable medication will significantly improve childhood cancer outcomes in developing world (Rodriguez-Galindo et al., 2015; Rodriguez-Galindo et al., 2013; Eden, 2012; Denburg et al., 2017; Barr and Robertson, 2016; Robertson et al., 2015).

The Pediatric Oncology in Developing Countries (PODC) committee of the International Society of Pediatric Oncology (SIOP), originated a working group to set the list of essential medicine in LMIC’s. The group separated 51 agents in three groups of medication: anti-neoplastics, anti-microbials and supportive care agents based on the 3rd WHO model list of essential medicines for children. During selection of medications the prices of drugs, resource limitations and inequalities in health care system in LMIC’s were considered. In addition, 13 agents were recommended for more advanced care for those countries that are LMIC’s but performed substantial improvement in childhood cancer treatment (Mehta et al., 2013).

In Armenia childhood cancer statistics reported by the National Institute of Health (no cancer registry exists in the country) are mostly comparable with the world statistics. Our recent small reports showed significant therapeutic and diagnostic limitations, as well as diagnosis delay for pediatric cancer in Armenia (Safaryan et al., 2017). However, the information about the availability of essential medicines for pediatric cancer in the country is not known. The main objective of this study was to determine whether the medications used during the treatment of pediatric cancer are available in Armenia.

Materials and Methods

In summer 2016 we conducted a survey in the 3 main pharmacies in Yerevan, which import pediatric cancer medications to Armenia to evaluate whether medications used during cancer treatment are officially registered and available in the country. In addition, the information on official registration was cross-checked

Anti-neoplastics	Registered	Available	Anti-microbials	Registered	Available	Supportive care agents	Registered	Available
Asparaginase			Acyclovir			Allopurinol		
Bleomycin			Amikacin			Amitritypine		
Carboplatin			Amoxicillin			Codeine		
Cisplatin			Ampoterocin B			Diazepam		
Cyclophosphamide			Ampicillin			Docusate		
Cytarabine			Cefotaxime			Folinic acid		
Dacarbazine			Ceftaxime			Heparin		
Dactinomycin			Ceftriazone			Lactulose		
Daunorubicin			Clindamycin			MESNA		
Dexamethasone			Fluconazole			Metoclopramide		
Doxorubicin			Gentamicin			Midazolam		
Etoposide			Mopopem			Morpine[1]		
Hydrocortisonene			Metronidazole			Ondansetro		
Hydroxyurea			Trimethoprim – selfamethaxozole			Senna		
Ifosfamide			Vancomycin					
Mercaptopurine								
Methotrexate								
Methylprednisolone								
Prednisolone								
Thioguanine								
Vinblastine								
Vincristine								
All trans retinoic acid			Caspofungin			Gabapentin		
13 cis retinoic acid			Cefepime					
Busulfan			Gancyclovir					
Imatinib			Voriconazole					
Irinotecan								
Melphalan								
Topotecan								
Vinorelbine								

At the time of survey only IV morphine was registered, and there was a shortage at the hospitals
with the Ministry of Health of the Republic of Armenia (MOH). Simultaneously, detailed information about the
drugs, on type of produced drug company, doses and price
intervals was confined from the price lists of the national
drug importer companies. The list of essential drugs for
pediatric oncology in developing countries, created by
the International Society of Pediatric Oncology (SIOP),
Pediatric Oncology in Developing Countries (PODC) committee in 2013 was used as a reference (Mehta et
al., 2013).

To evaluate the results of the study, descriptive
statistical methods were incorporated.

Results

The survey included 64 agents in three classes of
medication: anti-neoplastics, anti-microbials, and drugs
used in supportive care. All of these medications were
included in the recent version of the WHO model list of
essential medicines (Mehta et al., 2013).

From 30 anti-neoplastic medications on the essential
medicines list 22 (73%) were officially registered in
Armenia. The non-registered drugs were 13-cis retinoic
acid, All-trans retinoic acid, busulfan, daunorubicin,
imatinib, melphalan, thioguanine and topotecan. From
19 anti-microbial drugs all were registered except
caspofungin (Table 1).

From 15 supportive care agents 13 (87%) were
registered; the non-registered ones were codeine and
docusate. IV morphine is registered in Armenia and is
provided free by prescription for children with cancer.
(Table 1). However, at the time of survey there was a
shortage of IV morphine at the hospitals. Oral morphine
was not registered in Armenia at the time of our survey.

From registered anti-neoplastic drugs 18% were not
available in the drug stores (dacarbazine, irinotecan,
methylprednisolone, vinorelbine). From registered
anti-microbial drugs 33% (amphotericin B, cefepime,
ceftazidime, gancyclovir, vancomycin, voriconazole) and
from supportive care drugs only one drug (gabapentin)
were not available.

Discussion

To the best of our knowledge, this is the first study
to evaluate the availability of essential medications for
pediatric oncology in Armenia.

The study showed that not all the drugs from the SIOP
PODC Essential Medication list for pediatric oncology
are officially registered and available in Armenia, which
proves the lack of access for those medications in the
country.

Our research addresses issues of cancer care medicine
shortages in Armenia, which as a wide concept and
includes unavailability and unaffordability of drugs. Lack
of access of medicine because of an expensiveness of
drugs is a main representative of unaffordability.

We have concluded that childhood cancer medicine
in Armenia is also affected by shortages, as in many countries
in the world. In the report from the European Association
of Hospital Pharmacists, based on the results of the
survey from 36 countries, 55% of respondents informed
shortages of cancer medicines (European Association of
Hospital Pharmacists, 2014; The Economist Intelligence
Unit, 2017).

Unavailability and unaffordability of drugs are
closely related with non-registration. Registration of
drugs ensures safety and quality of medicine, giving
opportunity to regulate and monitor the pharmaceutical
market and control what it supplies. Following our results,
as well as considering the reports from the other countries
(Rodriguez-Galindo et al., 2013; Denburg et al., 2017;
Barr and Robertson, 2016), we would recommend, that
effective drug regulation focusing on the childhood cancer
care medicine is needed for improving the situation in
the country.

Statement conflict of interest

The authors has stated that they have no conflicts of
interest.

References

Barr R, Robertson J (2016). Access to cytotoxic medicines by
children with cancer: A focus on low and middle income
countries. *Pediatr Blood Cancer*, 63, 287–91.

Denburg A, Arora B, Arora RS, et al (2017). Access to essential
medicines for children with cancer: a joint SIOP-CCI
position statement. *Lancet Oncol*, 18, 20–2.

Eden Tim (2012). Curing pediatric cancer in the developing
world. pp 10-3.

European Association of Hospital Pharmacist (2014). Medicines
Shortages in European Hospitals. Brussels, pp 1-48.

Howard SC, Metzger ML, Williams JA, et al (2008). Childhood
cancer epidemiology in low-income countries. *Cancer*,
112, 461–72.

Mehta PS, Wiernikowski JT, Petrilli JA, Barr RD, Working
Group on Essential Medicines of the Pediatric Oncology in
Developing Countries committee of SIOP (2013). Essential
medicines for pediatric oncology in developing countries.
Pediatr Blood Cancer, 60, 889–91.

Ribeiro RC, Antillon F, Pedrosa F, Pui CH (2016). Global
pediatric oncology: Lessons from partnerships between
high-income countries and low- to mid-income countries.
J Clin Oncol, 34, 53–61.

Robertson J, Magrini N, Barr R, Forte G, Ondari C (2015).
Medicines for cancers in children: The WHO model for
selection of essential medicines. *Pediatr Blood Cancer*,
62, 1689–93.

Rodriguez-Galindo C, Friedrich P, Alcasabas P, et al (2015).
Toward the cure of all children with cancer through
collaborative efforts: Pediatric oncology as a global
challenge. *J Clin Oncol*, 33, 3065–73.

Rodriguez-Galindo C, Friedrich P, Morrissey L, Frazier L
(2013). Global challenges in pediatric oncology. *Curr Opin
Pediatr*, 25, 3–15.

Safaryan L, Sargsyan L, Hakobyan L, et al (2017). Diagnostic
and therapeutic limitations and delayed diagnosis of pediatric
hematologic malignancies in Armenia: A single-institution
report. *Clin Lymphoma Myeloma Leuk*, 17, 393–4.

Stelianou-Foucher E, Colombet M, Ries LAG, et al (2017).
International incidence of childhood cancer, 2001-10: a
population-based registry study. *Lancet Oncol*, 18, 719–31.

The Economist Intelligence Unit (2017). Cancer medicines
shortages in Europe Policy recommendations to prevent and
manage shortages, pp 1-32.
Ward E, DeSantis C, Robbins A, Kohler B, Jemal A (2014). Childhood and adolescent cancer statistics 2014. *CA Cancer J Clin*, 64, 83–103.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.