Current-driven vortex oscillations in metallic nanocontacts: zero-field oscillations and training effects

M van Kampen1, L Lagae1,2, G Hrkac3, T Schrefl3, J-V Kim4,5, T Devolder4,5 and C Chappert4,5

1 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
2 Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
3 Department of Engineering Materials, University of Sheffield, Sheffield S1 4DU, UK
4 Institut d’Electronique Fondamentale, CNRS, UMR 8622, 91405 Orsay, France
5 Université Paris-Sud, UMR 8622, 91405 Orsay, France

E-mail: joo-von.kim@u-psud.fr

Received 4 June 2009, in final form 11 September 2009
Published 26 November 2009
Online at stacks.iop.org/JPhysD/42/245001

Abstract

We present an experimental and theoretical study of the low-field dynamics of current-driven vortex oscillations in nanocontacts based on spin-valve multilayers. These oscillations appear as low-frequency (250–500 MHz) excitations in the electrical power spectrum which arise from variations in the giant magnetoresistance. We show that the vortex oscillations, once nucleated at large fields applied perpendicular to the film plane, persist at zero applied magnetic fields. Some training effects on the oscillation frequency and linewidth are also observed for small in-plane magnetic fields.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetic vortices are topological micromagnetic structures that arise from the competition between the exchange interaction and a planar anisotropy. In patterned magnetic materials, such as a magnetic dot for example, the stray dipolar fields at the sample edges define a shape anisotropy that can lead to the formation of vortices. While magnetic vortices have been much studied over many decades, vast improvements in fabrication and lithography techniques in recent years have allowed for more detailed and controllable experimental studies, thereby generating a renewed interest in these topological objects.

In patterned materials the dynamics of vortices are governed by the geometry of the sample, because the potential energy of the vortex is mainly determined by the dipolar stray field energy of the system. In addition to spin-wave modes, vortex excitations also include a translational motion whereby the vortex core precesses about its equilibrium position. In submicrometre structures, it has been shown in a number of experiments and theoretical works that the confining potential gives rise to vortex oscillations, which involve translational motion, in the range 0.1–1 GHz [1–8]. These modes are typically lower than the frequency of the ferromagnetic resonance mode in such structures.

In continuous systems such as thin films, there is no confining potential (aside from possible material defects) for a vortex structure, a priori, since the translational symmetry in the film plane assures that the vortex energy is independent of its lateral position in the film. This is not the case for the nanocontact system, however, in which large electric currents are injected through a metallic point, typically with radii of 40–100 nm in size, in contact with the magnetic film [9]. Because a magnetoresistive spin-valve stack is usually employed in nanocontact systems, the electric current becomes spin-polarized upon its passage through the pinned magnetic layer and transfers spin-angular momentum to the free magnetic layer as it impinges upon this layer, through what is referred to as the ‘spin-transfer’ effect [10, 11]. The large current densities required for observable spin-transfer effects
also mean that large Oersted–Ampère fields are generated by the current, which break the translational symmetry of the film and lead to a magnetic potential for a vortex through the Zeeman interaction. For a nanocontact with a radius of 100 nm, for example, the Oersted–Ampère field at the contact edges, assuming the contact to be an infinite circular wire, is approximately 60 mT for an applied current of 30 mA. For soft magnetic materials such as permalloy, such fields are much larger than the coercive fields required for magnetization reversal.

The dynamics of magnetic vortices present a number of interesting features from the point of view of fundamental and applied physics. Interesting questions concerning the fundamental aspects of single and pair-vortex dynamics, driven by magnetic fields [5] or spin-polarized currents [12], have been brought to light in recent experiments. The latter example concerning current-driven dynamics is particularly interesting, because, to the best of our knowledge, it pertains to the first experimental demonstration of self-oscillatory dynamics of a magnetic vortex [12]. The spin transfer effect makes such self-oscillatory dynamics possible, because the additional torques introduced by the spin transfer can be made to compensate the intrinsic damping associated with magnetization dynamics under certain conditions. In light of these results, a number of applications for nanoscale oscillators and resonators based on magnetic vortices are envisaged.

The present authors have shown that the combination of Oersted–Ampère fields and spin-transfer torques in metallic nanocontact systems can give rise to controllable vortex dynamics in a laterally extended system [13]. In that experiment, the spin-transfer torque is applied only locally within the nanocontact region, while the Oersted–Ampère field generated by the applied electric current leads to a long-range magnetic potential in which well-defined vortex oscillations can be established. Furthermore, it was shown that the dynamics involve a large-amplitude translation of the vortex core along an orbit outside the nanocontact itself, leading to vortex oscillations with frequencies in the range 250–500 MHz. Similar low-frequency oscillations have been reported in a different experiment [14]. In this paper, we present an experimental and numerical study of the low-field dynamics of such current-driven vortex motion in metallic nanocontact systems. We present evidence of a threshold for vortex nucleation and show that once nucleated the vortex oscillations persist at zero applied fields. We study these oscillations at small in-plane fields and present evidence of training effects. It is shown that the experimental results are consistent with micromagnetics simulations, in which a clear vortex orbit is shown to be established by the spin-transfer torques. Moreover, the simulations highlight the importance of the details concerning the spin-transfer torques, whereby a comparison between different mathematical forms of the spin transfer is shown to lead to differences in orbital behaviour.

2. Samples and experimental setup

The experimental system studied comprises a metallic nanocontact deposited on a metallic spin-valve stack. The multilayer is composed of Ta(3.5 nm)/Cu(40)/Ta(3.5)/Ni80Fe20(3)/IrMn(6)/Co80Fe10(4.5)/Cu(3.5)/Co80Fe10(1.5)/Ni80Fe20(2)/Pt(3), where the figures in parentheses denote the layer thicknesses in nanometres. The composite CoFe/NiFe layer is the magnetic free layer of the spin valve, while the 4.5 nm thick CoFe layer, which is exchange biased by the IrMn antiferromagnet, serves as a reference layer for the giant magnetoresistance variations and spin-transfer torques. The films are sputter-grown in an ultrahigh vacuum system with a base pressure of \(3 \times 10^{-8}\) Torr. The sample mesa is rectangular and is \(27 \times 17 \mu m^2\) in size. The contacts are made to the laterally extended film stack which is incorporated in the central conductor of a coplanar waveguide (CPW) structure. After patterning by conventional lift-off lithography, the stack is passivated by a 50 nm SiO2 layer deposited using rf sputtering. The point contacts are defined in a poly(methyl methacrylate) (PMMA) layer by electron-beam lithography and etched into the SiO2 by a short dip in a buffered HF solution. The CPW structure is then deposited and patterned by lift-off lithography. The devices are annealed at 250 °C for 10 min to improve the exchange bias coupling between the IrMn and the Co80Fe10 layers.

Studies of the point-contact morphology in our systems have been made in detail using scanning electron microscopy, atomic force microscopy (AFM), ellipsometry and optical microscopy measurements. The target diameter of the point contacts are nominally 100 nm; however, due to the isotropic wet etch the diameter of the contacts is increased with respect to the 100 nm holes in the PMMA layer. Indeed, a significant variation in the diameter as a function of depth is found, with AFM measurements indicating a typical variation between 130 and 270 nm over a thickness of 40 nm. Based on the measured depth profile and the multilayer structure, the contact diameter at the free magnetic layer is estimated to be approximately 160 nm.

The magnetic properties of the free and reference layers were characterized using standard magnetometry methods. From hard-axis hysteresis loop measurements, we estimate the uniaxial anisotropy field for the free layer to be in the range 0 < \(\mu_0 H_k < 0.7\) mT, while easy-axis loop measurements reveal a small bias field of 1.7 mT acting on the free layer, which we attribute to Néel coupling between the free and fixed layers. The exchange-bias field acting on the reference layer is found to be \(-60\) mT. The free layer saturation magnetization is found to be \(\mu_0 M_s = 1.5\) T from voltage noise spectroscopy measurements.

For the electrical measurements, the current is applied perpendicular to the spin-valve stack and is generated by applying a dc voltage to a 200 Ω resistor in series with the sample. Two bias tees are connected to the device, in order to inject and collect the signals at its both ends. They allow for dc and RF routing. Along one of the RF routes, an amplifier bank is used to amplify signals by +43 dB over the frequency range 0.1–26 GHz, which is subsequently connected to a spectrum analyser. The other RF route is terminated by a 50 Ω load while the dc route is shorted. The final power spectra are obtained after subtracting a reference curve taken with a zero current bias. The RF measurements are made under applied
magnetic fields in the film plane and perpendicular to the film plane. A 0.3% giant magnetoresistance value (20 mΩ variation on a 6.18 Ω resistance—see figure 1) is typical for our spin valves. In our convention, positive currents describe the flow of electrons from the fixed to the free layer.

3. High-frequency measurements

As described elsewhere [13], the vortex oscillations we study are characterized by sub-gigahertz excitations in the electrical power spectrum of the multilayer structure. The excitation mode consists of a translational motion whereby the vortex orbits the nanocontact outside the contact region. The Zeeman energy from the Oersted–Ampère field, generated by the applied electrical current, gives rise to a central potential for the vortex motion. The addition of the spin-transfer effect gives rise to a torque that leads to a steady-state orbital motion of the vortex. The change in magnetization direction underneath the contact, as a result of this vortex motion, gives rise to a time-varying giant magnetoresistance which appears as high-frequency voltage oscillations. The power spectrum of these oscillations is studied with a spectrum analyser.

An example of the low-frequency power spectra that we observe is given in figure 2. The oscillations are typically in the range 250–500 MHz, with linewidths of the order of 1 MHz, for the range of perpendicular fields and currents studied. Harmonics up to third order are detectable, but these are typically a few orders of magnitude smaller than the fundamental mode, which suggests that the vortex gyration is largely circular. We would also like to stress that in most cases no other excitation modes are seen up to 1 GHz, so in the rest of the paper the discussion will be focused entirely on this one excitation mode. In figure 2(a), we present an example of a clear field threshold for oscillations at a given current (31 mA). Below a field of approximately 115 mT, the oscillations is studied with a spectrum analyser.

Figure 1. Schematic overview of electrical measurement setup and field-swept magnetoresistance hysteresis loop. (Colour online.)
In contrast to the case of uniform precession, for which the frequency dependence for small applied fields can be written as \(\omega_0 \simeq \gamma_0 \sqrt{(H_{||} + H_k)M_s} \), the slope of the frequency versus field curve at zero applied field given by

\[
\frac{\partial \omega_0}{\partial H_{||}} = \frac{\gamma_0}{2} \sqrt{\frac{M_s}{H_k}}
\]

leads to a slope of approximately 392 MHz mT\(^{-1}\) with our material parameters, which is clearly much larger than the frequency variation observed in experiment.

With repeated cycling of the in-plane field, we observe some training effects on the frequency and linewidth of the oscillations. An example of this behaviour is shown in figure 6, where the oscillation frequency and linewidth are presented at zero applied fields, with different field histories. Three examples of different field histories are presented. In region A, the zero-field state is obtained after cycling the perpendicular applied field, first from large positive fields, through zero, then to large negative fields and back to zero. We observe a small difference in oscillation frequency and linewidth between the two cases, which suggests that a small change in micromagnetic structure may have taken place. In region B, the zero-field spectra are measured after repeated in-plane field cycles between \(-5\) and \(5\) mT. In this region, in which the field was cycled twice, there is little variation in the oscillation frequency, with a small change in the linewidth. At these small cycling fields, we do not expect the vortex structure to lose stability, so there is no surprise that the frequencies remain approximately constant. In region C, the zero-field spectra are presented for larger in-plane field cycles,
between −12 and 12 mT. At these applied fields, there is some evidence in the power spectra of a significant change in the micromagnetic structure, for example, the appearance of two peaks with similar frequencies. These double peaks only persist over a small range of applied fields (10–12 mT), and for field magnitudes smaller than these values, only one peak is observed. Nevertheless, the field cycling in this case presents more significant training effects, both in the frequency and the linewidth. Moreover, in contrast to regions A and B, the linewidth and frequency do not vary in the same manner.

4. Micromagnetic simulations

For a better understanding of the nature of low-frequency oscillations found in experiments at zero field, we performed full micromagnetic simulations of a representative trilayer CoFe(3.5 nm)/Cu(3)/NiFe(4) stack. The inhomogeneous current distribution flowing through the free layer is computed self-consistently from diffusion equations and magnetoresistance variations. The Oersted–Ampère field generated as the current flows through the contact is then computed self-consistently from this current distribution. Furthermore, the simulations were performed with the symmetric and asymmetric Slonczewski term for the spin transfer [15, 16]. The spin-transfer torque \(\langle \delta \hat{m} / \delta t \rangle_a = \vec{N}_{st} \) can be incorporated into the Landau–Lifshitz equation as an additional term of the form

\[
\vec{N}_{st} = \eta(\theta) \frac{\hbar}{2e} d \hat{m} \times (\hat{m} \times \hat{p}),
\]

where \(\hat{m} \) and \(\hat{p} \) are unit vectors representing the orientation of the free and fixed layer magnetizations, respectively, \(J \) is the current density, \(d \) is the free layer film thickness and \(\theta \) is the angle between \(\hat{m} \) and \(\hat{p} \), \(\cos \theta = \hat{m} \cdot \hat{p} \). For the symmetric Slonczewski torque, the function \(\eta(\theta) \) is found to be

\[
\eta_S(\theta) = \frac{q}{A + B \cos \theta},
\]

while for the asymmetric torque, the angular dependence of the spin transfer is

\[
\eta_{AS}(\theta) = \frac{q^+}{A + B \cos \theta} + \frac{q^-}{A - B \cos \theta}.
\]

where \(q^+ \) and \(A \) and \(B \) are material parameters that depend on the exact configuration of the multilayer structure [15, 17, 18]. We have assumed a spin polarization of 0.3. The simulation area is a circular film 1000 nm in diameter, with the 160 nm diameter point contact at the centre. The system is discretized with a finite element method, using a linear basis function and a discretization size of 4 nm, which is below the exchange length of 4.5 nm. An exchange-bias field of 162 mT is applied to the reference CoFe layer to simulate pinning in the real stacks. The voltage variations due to the GMR effect are computed by summing over all local variations in magnetization between the free and reference layers.

The simulations are performed as follows. First, we calculate the remanent state with an external field applied perpendicular to the film plane and in the absence of currents. From an initial uniform state in the film plane, we allow the magnetization to relax towards the applied field direction through time integration of the equations of motion. During this process, a vortex first forms under the point contact (which is situated at the centre of the simulation grid) and is followed by the creation and annihilation of multiple vortices. After this transient phase, a single vortex state emerges as the system relaxes to its remanent state. Next, a current of 30 mA is applied through the point contact with the remanent state...
Figure 7. Snapshots of the simulated micromagnetic state of the magnetic free layer, at four successive instants, showing the orbital motion of the vortex around the point contact. The greyscale indicates the magnetization orientation in the film plane, with black representing magnetization oriented to left, and white magnetization oriented to the right. The red circle denotes the edges of the circular point contact. (Colour online.)

serving as the initial state for this step of the calculation. We observe that the additional spin torque drives the vortex out of the contact area and towards a stable orbit around the contact. Then the external field is reduced to zero and remains zero for the whole computational time of 120 ns. These simulations show that the oscillations observed in experiment are related to a large-amplitude translational motion of a magnetic vortex, while a field is applied, shown in a previous paper [13]. Unlike the vortex dynamics observed in nanopillars where the vortex core precesses within the confining part of the Oersted field, the dynamics here correspond to an orbital motion outside the contact region.

Once the external field is reduced to zero the orbit of the vortex approaches the periphery of the physical point contact. We observe two distinct behaviours which are related to the choice of the Slonczewski term used to model the spin transfer. For the symmetric term, the vortex orbits for 50 ns outside the point-contact region, after which it moves under the point contact area where it continues along a circular orbit around the point contact centre. For the asymmetric term, the vortex immediately approaches the physical point contact boundary and resumes an elliptical trajectory around the contact centre, leading to a motion that traverses the regions both inside and outside the point contact area, as shown in figure 7. A Fourier analysis of the high-frequency magnetoresistance oscillations gives a central frequency of 280 MHz for both cases, but higher harmonics at 421 and 560 MHz are more visible for the asymmetric case, as shown in figure 8.

Figure 8. PSD calculated from simulation, for $I = 30 $ mA at zero applied magnetic field, with a comparison between the symmetric and asymmetric Slonczewski terms.

see that good quantitative agreement between the simulation and experimental frequencies is achieved.

5. Discussion and concluding remarks

We believe that the low-field dynamics presented here lend further support to the hypothesis of current-driven vortex oscillations in our nanoccontact systems. The two key observations presented here, namely the persistence of oscillations in zero applied field and the weak field dependence of the frequency for small in-plane fields, cannot be explained with a uniform precession model. Moreover, the frequencies of the oscillations observed are much lower than those expected for spin-wave modes at the same applied fields.

There are some features observed in experiment, however, that are not immediately captured in the simple analytical model for vortex oscillations, based on a Thiele equation [13].

For example, the appearance of steps in the frequency versus perpendicular field curves is suggestive of a change in the micromagnetic structure of the vortex (e.g., in the range 100–200 mT in figure 4(b)). The theory presented in [13], on the other hand, led to an expression for the frequency which varies continuously as a function of perpendicular applied field (see equation (4) in [13]). The results of micromagnetics simulations presented here, which show a change in the vortex orbit as the perpendicular field is varied, give a hint as to the origin of these steps. We speculate that these steps may be a result of this change in orbit, whereupon executing an orbit near the contact region the vortex undergoes some small change in its micromagnetic structure. We point out that this can be accounted for in the analytical model by carefully integrating the vortex profile across the point-contact region. Further analytical and numerical studies on this point are currently in progress.

Another example concerns zero-field oscillations. It was argued in [13] that a component of spin torque p_\perp, perpendicular to the film plane, is required for self-oscillatory dynamics. This is naturally present in a non-zero perpendicular magnetic field, because the magnetization of the fixed layer
is tilted out of the film plane under these conditions, which gives rise to a small perpendicular spin-torque component. In the absence of applied fields, however, one would expect this component to vanish, because it is energetically more favourable for the fixed layer magnetization to lie in the film plane. But the condition of non-zero p_\perp for self-oscillations was derived for the simple case where $\eta(\theta) = 1$ in equation (2). We argue that the spin transfer may have a modified form to that presented in equation (2) in realistic multilayer stacks, whereby a non-trivial angular dependence, such as a ‘wavy’ variation [19], might exist to give a non-vanishing p_\perp even when the fixed layer magnetization is in the film plane. This could be verified experimentally by changing the layer thickness of the spin-valve structure, by choosing different ferromagnetic materials for the free and fixed layers, or both. Indeed, our micromagnetic simulations, which use a non-trivial form for $\eta(\theta)$, confirm the possibility of exciting vortex oscillations at zero field.

In summary, we have presented an experimental and numerical study of the low-field dynamics of current-driven vortex oscillations in magnetic nanocontacts. We have shown that the vortex oscillations, once nucleated at sufficiently large fields, applied perpendicular to the film plane, persist down to zero fields as these are reduced. Some training effects, notably on the mode frequency and linewidth, are observed for small field sweeps in the film plane. Micromagnetics simulations confirm the possibility of zero-field vortex oscillations, and also show the possibility of a change in vortex orbit whereby the orbit begins from outside the contact and falls within the contact region.

Acknowledgments

This work was supported by the European Communities programmes IST STREP, under Contract No IST-016939 TUNAMOS, and ‘Structuring the ERA’, under Contract No MRTN-CT-2006-035327 SPINSWITCH and by the local government of Région Île-de-France within the framework of C’Nano IdF.

References

[1] Guslienko K Yu, Ivanov B A, Novosad V, Otani Y, Shima H and Fukamichi K 2002 Eigenfrequencies of vortex state excitations in magnetic submicron-size disks J. Appl. Phys. 91 8037–9

[2] Novosad V, Grimsditch M, Guslienko K Yu, Vavassori P, Otani Y and Bader S D 2002 Spin excitations of magnetic vortices in ferromagnetic nanodots Phys. Rev. B 66 052407

[3] Park J P, Eames P, Engebrecht D M, Berezovsky J and Crowell P A 2003 Imaging of spin dynamics in closure domain and vortex structures Phys. Rev. B 67 020403

[4] Ivanov B A and Zaspel C E 2004 Gyrotropic mode frequency of vortex-state permalloy disks J. Appl. Phys. 95 7444–6

[5] Buchanan K S, Roy P E, Grimsditch M, Fradin F Y, Guslienko K Yu, Bader S D and Novosad V 2005 Soliton-pair dynamics in patterned ferromagnetic ellipses Nature Phys. 1 172–6

[6] Novosad V, Fradin F Y, Roy P E, Buchanan K S, Guslienko K Yu and Bader S D 2005 Magnetic vortex resonance in patterned ferromagnetic dots Phys. Rev. B 72 024445

[7] Guslienko K Yu, Han X F, Keaveny D J, Divan R and Bader S D 2006 Magnetic vortex core dynamics in cylindrical ferromagnetic dots Phys. Rev. Lett. 96 067205

[8] Buchanan K S, Roy P E, Grimsditch M, Fradin F Y, Guslienko K Yu, Bader S D and Novosad V 2006 Magnetic-field tunability of the vortex translational mode in micron-sized permalloy ellipses: experiment and micromagnetic modeling Phys. Rev. B 74 064404

[9] Rippard W H, Pufall M R, Kaka S, Russek S E and Silva T J 2004 Direct-current induced dynamics in Co$_9$_Fe$_{10}$/Ni$_8$_Fe$_{20}$ point contacts Phys. Rev. Lett. 92 027201

[10] Slonczewski J 1996 Current-driven excitation of magnetic multilayers J. Magn. Magn. Mater. 159 1–L7

[11] Berger L 1996 Emission of spin waves by a magnetic multilayer traversed by a current Phys. Rev. B 54 9353–8

[12] Pribaig V S, Krivorotov I N, Fuchs G D, Braganca P M, Ozatay O, Sankey J C, Ralph D C and Bulmahn R A 2007 Magnetic vortex oscillator driven by d.c. spin-polarized current Nature Phys. 3 498–503

[13] Mistral Q, van Kampen M, Hrkac G, Kim J-V, Devolder T, Crozat P, Chappert C, Lague L and Schrefl T 2008 Current-driven vortex oscillations in metallic nanointerfaces Phys. Rev. Lett. 100 257201

[14] Pufall M R, Rippard W H, Schneider M L and Russek S E 2007 Low-field current-hysteretic oscillations in spin-transfer nanocontacts Phys. Rev. B 75 140404

[15] Xiao J, Zangwill A and Stiles M D 2005 Macrospin models of spin transfer dynamics Phys. Rev. B 72 014446

[16] Ertl O, Hrkac G, Suess D, KSchriner M, Dorfbauer F, Fidler J and Schrefl T 2006 Multiscale micromagnetic simulation of giant magneto-resistance read heads J. Appl. Phys. 99 08S303

[17] Xiao J, Zangwill A and Stiles M D 2004 Boltzmann test of Slonczewski’s theory of spin-transfer torque Phys. Rev. B 70 172405

[18] Bertotti G, Serpico C, Mayergoyz I D, Magni A, d’Aquino M and Bonin R 2005 Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents Phys. Rev. Lett. 94 127206

[19] Boule O, Croz V, Grolier J, Pereira L G, Deranlot C, Petroff F, Faini G, Barnas J and Ferr A 2007 Shaped angular dependence of the spin-transfer torque and microwave generation without magnetic field Nature Phys. 3 492–7