Temperature dependence of the optical nuclear orientation in InP

Atsushi Goto1,2, Seiichi Kato1, Ivan Turkevych1, 3, Shinobu Ohki1, Tadashi Shimizu1, Kenjiro Hashi1, Kanji Takehana1, Tadashi Takamasu1 and Hideaki Kitazawa1

1National Institute for Materials Science, Tsukuba, Ibaraki, Japan
2PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, Japan

Abstract. We report on the temperature dependence of the optical orientation of ^{31}P in semi-insulating iron-doped indium phosphide. The nuclear spin orientation manifests itself as an enhanced NMR signal under the irradiation of circularly polarized infrared light. We find that the temperature dependence of the enhancement is strongly photon-energy ($\hbar\nu$) dependent. At 10 K, the enhancement is observed in a wide range of $\hbar\nu$ between 1.26 and 1.43 eV, but most of them disappear above 20 K. The only exception is that at $\hbar\nu=1.407$ eV (slightly below the band gap ~ 1.42 eV), where the enhancement survives up to 50 K. This difference may originate from that in the spin relaxation times of photo-excited electrons trapped at donor centers.

1. Introduction

Optical pumping NMR is a method of creating highly polarized nuclear spins in a material using electron spin polarizations created by light. For semiconductors with direct band gaps, this is achieved with circularly polarized light with a photon energy close to the band gap.[1] This scheme is quite effective, but it works only at low temperatures below a few tens of Kelvins, [2, 3, 4] which limits potential applications of the scheme. For this reason, we have been exploiting schemes for optical nuclear orientation at higher temperatures. In this paper, we report on the temperature dependence of the nuclear spin orientation in indium phosphide. Possible strategies for the realization of the schemes are also presented.

2. Experimental method

The measurements were performed with the optical-pumping double-resonance NMR system developed by the authors.[5] A semi-insulating iron-doped InP wafer with a thickness of 350 μm and a [100] crystal orientation was set in the probe and inserted in a magnetic field of 6.347 T with the sample surface normal to the field. The pulse sequence used for this study was ‘combs-τ_L-(\pi/2)-FID’. At the beginning of the sequence, comb pulses $[8 \times (\pi/2)$ pulses with 1 ms intervals] were applied to both the nuclei (^{31}P and ^{115}In) to set their initial polarizations to zero. Then, a light with a σ^+ helicity, an intensity of ~ 200 mW and a spot size at the sample surface of $\sim \phi 4$ was applied to the sample for an effective duration of $\tau_L= 120$ s. The nuclear spin polarization created by the light irradiation was detected as a free induction decay (FID) signal of ^{31}P induced by a (\pi/2)-pulse.

3 Present address: National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
3. Results

Figure 1 shows the photon energy dependences of the 31P signal intensity measured at five temperatures between 10 K and 50 K. One finds that the signal intensities are negative for all the photon energies, implying that the nuclear spins are polarized in the opposite direction to that in the thermal equilibrium state. At 10 K, large signal enhancements are observed at two distinct regions below the band gap (~ 1.42 eV), i.e., the region around 1.407 eV ($\equiv \hbar \nu_1$) and that below 1.398 eV with a (negative) peak at 1.382 eV ($\equiv \hbar \nu_2$). The peak intensities at $\hbar \nu_1$ and $\hbar \nu_2$ having similar values at 10 K show quite different temperature dependences, as seen in Fig. 2. The intensity at $\hbar \nu_2$ disappears rather abruptly between 10 K and 20 K, whereas that at $\hbar \nu_1$ decreases rather slowly with increasing temperature, and survives even at 50 K.

4. Discussion

Primarily, the nuclear spin polarization in the optical pumping is determined by the net spin polarization of the photo-excited electrons (S) given by,$^{[6]}$

$$S = \frac{S_0}{1 + \tau/\tau_s},$$

where S_0 is the electron spin polarization at the instant of photo-excitation, and τ and τ_s are the lifetime and the electron spin relaxation time of the photo-excited electrons. Among these parameters, τ_s is the most strongly dependent upon temperature; it changes by a few orders of magnitude in the temperature range between 4.2 K and 300 K. The dominant origin of this temperature dependence is the D’yakonov-Perel’ (DP) mechanism,$^{[7]}$ which depends on the state of the photo-excited electrons, and thus, on the photon energy of the light applied to the sample.

The DP mechanism originates from the effective internal magnetic fields felt by the electrons with $k \neq 0$ caused by spin splittings due to the lack of inversion center in the zincblende structure. Hence, in principle, it can be suppressed by reducing the average momentum of the electrons. For shallow donor electrons, the translational motions are quenched, resulting in the suppression of the DP mechanism. Similar effect is expected for electrons in a magnetic field (H_0), where the
motions of the electrons with \(\mathbf{k} \perp H_0 \) are suppressed due to the cyclotron motions. Note that the DP mechanism is ineffective for the electrons with \(\mathbf{k} \parallel [100] \), i.e., for those moving parallel to \(H_0 \).

5. Conclusion
We report on the effect of temperature on the optical nuclear orientation in InP doped with iron. The enhanced signal intensity of \(^{31}\text{P} \) at 1.407 eV survives even at 50 K, indicating that shallow donors may be effective for the optical nuclear orientation at high temperatures.

Acknowledgments
This work was supported at its early stage by Industrial Technology Research Grant Program in 2002 from New Energy and Industrial Technology Development Organization (NEDO) of Japan. One of the authors (K.H.) acknowledges support by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS). S.O. acknowledges support from the Nanotechnology Support Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. T.S. appreciates support from World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitronics (MANA) at NIMS, from MEXT of Japan. We also acknowledge technical support from Tsukuba Magnet Laboratory, NIMS.

References
[1] 1984 Optical Orientation, Modern Problems in Condensed Matter Science vol 8, ed Meier F and Zakharchenya B P (Amsterdam: North Holland)
[2] Paravastu A K, Hayes S E, Schwickert B E, Dinh L N, Balooch M and Reimer J A 2004 Phys. Rev. B 69 075203
[3] Tycko R 1998 Solid State Nucl. Magn. Reson. 11 1
[4] Goto A, Hashi K, Shimizu T, Miyabe R, Wen X, Ohki S, Machida S, Iijima T and Kido G 2004 Phys. Rev. B 69 075215
[5] Goto A, Ohki S, Hashi K and Shimizu T 2006 Rev. Sci. Instrum. 77 093904
[6] D’yakonov M I and Perel’ V I 1984 Optical Orientation, Modern Problems in Condensed Matter Science Vol 8, ed Meier F and Zakharchenya B P (Amsterdam: North Holland) chapter 2
[7] D’yakonov M I and Perel’ V I 1971 Zh. Eksp. Teor. Fiz. 60 1954 [Translation: Sov. Phys. JETP 33 1053].