High-spin structures of five $N = 82$ isotones: ^{136}Xe, ^{137}Cs, ^{138}Ba, ^{139}La, and ^{140}Ce

A. Astier,1 M.-G. Porquet,1 Ts. Venkova,1,2 D. Verney,3 Ch. Theisen,4 G. Duchêne,5 F. Azaiez,5 G. Barreau,6 D. Curien,5 I. Deloncle,1 O. Dorvaux,5 B.J.P. Gall,5 M. Houry,4 R. Lucas,4 N. Redon,7 M. Rousseau,5 and O. Stézowski7

1 CSNSM, IN2P3-CNRS and Université Paris-Sud, Bât 104-108, F-91405 Orsay, France
2 IRNNE, BAS, 1784 Sofia, Bulgaria
3 IPNO, IN2P3-CNRS and Université Paris-Sud, F-91406 Orsay, France
4 CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette Cedex, France
5 IPHC, IN2P3-CNRS and Université Louis Pasteur, F-67037 Strasbourg Cedex 2, France
6 CENBG, IN2P3-CNRS and Université Bordeaux I, F-33175 Gradignan, France
7 IPNL, IN2P3-CNRS and Université Claude Bernard, F-69622 Villeurbanne Cedex, France

(Dated: May 1, 2014)

Five $N = 82$ isotones have been produced in two fusion-fission reactions and their γ rays studied with the Euroball array. The high-spin states of ^{139}La have been identified for the first time, while the high-spin yrast and near-to-yrast structures of the four others have been greatly extended. From angular correlation analysis, spin values have been assigned to some states of ^{136}Xe and ^{137}Cs. Several cascades involving γ rays of ^{139}La have been found to be delayed, they deexcite an isomeric state with $T_{1/2} = 315(35)$ ns located at 1800-keV excitation energy. The excited states of these five $N = 82$ isotones are expected to be due to various proton excitations involving the three high-j subshells located above the $Z = 50$ shell closure. This is confirmed by the results of shell-model calculations performed in this work. In addition, high-spin states corresponding to the excitation of the neutron core have been unambiguously identified in ^{136}Xe, ^{137}Cs, and ^{138}Ba.

PACS numbers: 21.60.Cs,23.20.Lv,25.85.Ge,27.60.+j

I. INTRODUCTION

The study of the low-lying excited states of the $N = 82$ isotones offers the best ground to describe the gradual filling of the active proton orbitals lying above the $Z = 50$ closure, since these states are free of any neutron contribution up to an excitation energy of about 4 MeV. Particularly, the description of the high-spin states mainly involve the effective interactions of the protons when occupying the valence orbits, particularly the high-j ones, $\pi g_{7/2}$, $\pi d_{5/2}$, and $\pi h_{11/2}$, which can thus be tested. Many years ago, a lot of low-spin states of several $N = 82$ isotones were used to define the two-body part of shell-model hamiltonian [1], which was adjusted some times later [2] using new data on some high-spin states of the “light” $N = 82$ isotones produced by spontaneous fission of actinides [3][4]. This set of empirical interactions was then tested on the new high-spin states of ^{137}Cs, identified in a deep-inelastic reaction up to $I^e = (31/2^-)$ [5].

By combining appropriate fusion-fission reactions to a powerful γ-detection array, it is possible to populate and to study the high-spin states of many $N = 82$ isotones. In this paper, we present our results obtained on the high-spin states of five isotones, ^{136}Xe, ^{137}Cs, ^{138}Ba, ^{139}La, and ^{140}Ce, which have been identified in two Euroball experiments. The level schemes of four of them have been well extended to higher-spin values. The high-spin structures of ^{139}La have been identified for the first time, displaying an isomeric state with $T_{1/2} = 315(35)$ ns located at 1800-keV excitation energy. The states of these five $N = 82$ isotones are then compared to the results of shell-model calculations using the set of empirical interactions already used to describe the lightest isotones. In addition, groups of states lying above 4 MeV excitation energy in ^{136}Xe, ^{137}Cs, and ^{138}Ba are assigned to the excitation of the neutron core.

II. EXPERIMENTAL DETAILS

A. Reactions, γ-ray detection and analysis

The $N = 82$ isotones of interest were obtained as fission fragments in two experiments. First, the $^{12}\text{C} + ^{238}\text{U}$ reaction was studied at 90 MeV incident energy, with a beam provided by the Legnaro XTO Tandem accelerator. Secondly, the $^{18}\text{O} + ^{208}\text{Pb}$ reaction was studied with a 85 MeV incident energy beam provided by the Vivitron accelerator of IReS (Strasbourg). The gammarays were detected with the Euroball array [2].

The spectrometer contained 15 Cluster germanium detectors placed in the backward hemisphere with respect to the beam, 26 Clover germanium detectors located around 90° and 30 tapered single-crystal germanium detectors located at forward angles. Each Cluster detector consists of seven closely packed large volume Ge crystals [2] and each Clover detector consists of four smaller Ge crystals [3]. In order to get rid of the Doppler effect, both...
experiments have been performed with thick targets in order to stop the recoiling nuclei (47 mg/cm2 for 238U and 100 mg/cm2 for 208Pb targets, respectively).

The data of the (C+U) experiment were recorded in an event-by-event mode with the requirement that a minimum of five unsuppressed Ge detectors fired in prompt coincidence. A set of 1.9\times109 three- and higher-fold events was available for a subsequent analysis. For the (O+Pb) experiment, a lower trigger condition (three unsuppressed Ge) allowed us to register 4\times109 events with a γ-fold greater or equal to three. The offline analysis consisted of both multi-gated spectra and three-dimensional ‘cubes’ built and analyzed with the Radware package 9.

More than one hundred nuclei are produced at high spin in such experiments, and this gives several thousands of γ transitions which have to be sorted out. Single-gated spectra are useless in most of the cases. The selection of one particular nucleus needs at least two energy conditions, implying that at least two transitions have to be known. The identification of transitions depopulating high-spin levels which are completely unknown is based on the fact that prompt γ rays emitted by complementary fragments are detected in coincidence 10,11. Moreover, the isotopes of interest being produced from two different fissioning compound nuclei, the complementary fragments are different in the two reactions. This gives a fully unambiguous assignment of transitions seen in both experiments.

B. Isomer identification

As reported in previous papers 12,13, another experiment was performed using the SAPHIR4 heavy-ion detector 13, here composed of 32 photovoltaic cells, in order to identify new isomeric states in the fission fragments. Placed in the target chamber of Euroball, SAPHIR was used to detect the escaping fission-fragments of the 12C (90 MeV) + 238U reaction from a thin 0.14 mg/cm2 uranium target. Thus, all recorded γ rays emitted at rest by a fragment implanted in SAPHIR correspond to the decay of an isomeric state, for which the half-life can be measured in a range of several tens to several hundreds of nanoseconds.

C. $\gamma-\gamma$ angular correlations

It is well known that the γ rays emitted by fusion-fission fragments do not show any anisotropy in their angular distributions with respect to the incident beam. However, angular correlations of two successive transitions are meaningful. In order to determine the spin values of excited states, the coincidence rates of two successive γ rays are analyzed as a function of θ, the average relative angle between the two fired detectors. The Euroball spectrometer had C^2_{239}=28441 combinations of 2 crystals, out of which only \sim2000 involved different values of relative angle within 2°. Therefore, in order to keep reasonable numbers of counts, all these angles have been gathered around three average relative angles : 22°, 46°, and 75°. The coincidence rate is increasing between 0° and 90° for the dipole-quadrupole cascades, whereas it decreases for the quadrupole-quadrupole or dipole-dipole ones. The theoretical values of several coincidence rates for the Euroball geometry have been already given in previous papers 15,16. The method has been checked by correctly reproducing the expected angular correlations of γ-transitions having well known multipole orders and belonging to various fission fragments.

III. EXPERIMENTAL RESULTS

A. Study of the odd-Z isotones

1. Level scheme of 137Cs

The yrast states of 137Cs were obtained up to \sim5.5 MeV from the analysis of the 248Cm spontaneous-fission study 8. More recently a few transitions were added to this level scheme, using a 252Cf source 17. Nevertheless the spin-parity values were only based on results of shell-model calculations.

In our work, γ rays emitted by 137Cs are seen in the two fusion-fission reactions, with a slightly higher production in the (C+U) reaction compared to the (O+Pb) one, especially for the high-spin states. The high-spin level scheme of 137Cs has been extended up to \sim7.6 MeV excitation energy and spin (37/2$^+$), thanks to the observation of about 25 new transitions (see Fig. 1).

A 681-keV transition, already identified in the two previous experiments, is also observed in our work, being located just above the 2783-keV level (Structure B). The coincidence relationships of this γ line involve the four yrast transitions, but we could not observe any transition located above the 3464-keV level, although the intensity of the 681-keV transition would have allowed us to see a higher-spin part of the cascade. This level is likely populated by several high-energy transitions which have escaped from our detection apparatus.

We do not confirm two of the six new transitions above the 1893-keV level, which were proposed by the authors of Ref. 17 in addition to the previous level scheme 8. The 2223.6- and 1609.4-keV γ rays are not observed in coincidence with the first yrast transitions. Moreover the decay of the 3495-keV level toward the 3302-keV one by means of a 193-keV transition is not observed.

The most noticeable information obtained in this work is the observation of two structures composed of low-energy transitions (therefore presumably M1) located

1 SAPHIR, Saclay Aquitaine Photovoltaic cells for Isomer Research.
FIG. 1. (Color online) Level scheme of 137Cs established in this work. The colored states are new. The width of the arrows is proportional to the γ-ray intensity.

above the 4350- and 5452-keV levels (Structures C and D in Fig. 1). The decays of their low-lying states are very fragmented and involve high-energy transitions. An example of double-gated spectrum showing the first transitions of Structure D and its links to Structure E is given in Fig. 2.

Angular correlations of successive γ rays have been extracted for the most intense transitions of 137Cs. The experimental results are given in Table I. The three first results indicate that the transitions at 1184 keV, 487 keV, and 890 keV have the same multipole order, while the last one indicates that the multipole order of the 222-keV transition is different from that of the three others. An $E2$ character is ruled out for the 222-keV transition, because the 1893-keV level would then be an isomeric state, with a half-life of a few tens to a few hundreds of ns, at variance with the fact that the 1184-487-222 keV cascade is not observed in the SAPhIR experiment. Thus the 222-keV transition is assigned to be a dipole transition, while the 1184-, 487-, and 890-keV transitions have an $E2$ character. These arguments result in the spin values of $11/2^+$, $15/2^+$, $17/2^+$, and $21/2^+$ for the levels at 1184, 1671, 1893, and 2783 keV, belonging to Structure B.

$\gamma-\gamma$ coincidence	R(22°)	R(46°)	R(75°)
1184 - 487	1.19(9)	1.07(8)	1.00(6)
890 - 487	1.20(8)	1.08(7)	1.00(4)
890 - 1184	1.09(9)	1.07(7)	1.00(6)
222 - 1184	0.93(7)	0.99(6)	1.00(5)

a The number in parentheses is the error in the last digit.

The spin assignments of the higher-lying states are based on the following assumptions: (i) In the yrast decays, spin values increase with excitation energy, (ii) The low-energy transitions have a $M1$ character. In addition the negative parity proposed in Ref. 5 to the states of the group labeled E because of the comparison with calculations is in agreement with its single link to the $21/2^+$ state. The parity of the states of Structures C and D will be discussed in Sect. IV C 2, from the comparison with theoretical predictions.

The properties of the 137Cs transitions are given in Table I. The intensity values have been extracted as fol-
The properties of the transitions assigned to 137Cs observed in this work.

| E_x (keV) | I_x | $I_x^*
ightarrow I_y^*$ | E_y | E_f |
|-----------|------|----------------|------|-------|
| 174.4(3) | 4.5(22) | (27/2$^+$) \rightarrow (25/2$^+$) | 5626.5 | 5452.2 |
| 216.9(3) | 5.5(20) | (33/2$^+$) \rightarrow (31/2$^+$) | 6451.3 | 6234.4 |
| 221.8(3) | 7.0(10) | 17/2$^+$ \rightarrow 15/2$^+$ | 1893.0 | 1671.2 |
| 228.5(3) | 8.2(25) | (29/2$^+$) \rightarrow (27/2$^+$) | 5855.0 | 5626.5 |
| 306.7(4) | 1.0(5) | | 5766.1 | 5459.4 |
| 311.9(4) | 1.0(5) | | 6866.1 | 6554.2 |
| 323.5(4) | 3.8(19) | (25/2$^+$) \rightarrow (23/2$^+$) | 5098.2 | 4774.7 |
| 365.4(6) | 4.0(20) | (35/2$^+$) \rightarrow (33/2$^+$) | 6816.7 | 6451.3 |
| 372.6(4) | 3.5(17) | (15/2$^+$) \rightarrow (15/2$^+$) | 2043.8 | 1671.2 |
| 379.4(4) | 8.4(25) | (31/2$^+$) \rightarrow (29/2$^+$) | 6234.4 | 5855.0 |
| 383.3(4) | 3.5(17) | (27/2$^+$) \rightarrow (25/2$^+$) | 5480.5 | 5098.2 |
| 424.9(4) | 5.9(24) | (23/2$^+$) \rightarrow (21/2$^+$) | 4774.7 | 4349.8 |
| 470.6(4) | 4.5(18) | (31/2$^+$) \rightarrow (29/2$^+$) | 5492.2 | 5021.6 |
| 486.8(3) | 88(13) | 15/2$^+$ \rightarrow 11/2$^+$ | 1671.2 | 1184.4 |
| 614.8(4) | 11(3) | (29/2$^+$) \rightarrow (27/2$^+$) | 5021.6 | 4406.8 |
| 618.0(4) | 3.4(17) | (21/2$^+$) \rightarrow (19/2$^+$) | 3493.1 | 2875.1 |
| 677.5(5) | 4.6(18) | (25/2$^+$) \rightarrow (23/2$^+$) | 5452.2 | 4774.7 |
| 681.3(4) | 10(3) | (23/2$^+$) \rightarrow (21/2$^+$) | 3464.3 | 2783.0 |
| 710.3(5) | 1 < 1 (21/2$^+$) \rightarrow (21/2$^+$) | 3493.1 | 2783.0 |
| 712.1(4) | 37.7(7) | (23/2$^+$) \rightarrow (21/2$^+$) | 3495.1 | 2783.0 |
| 726.7(4) | 0.8(4) | \rightarrow (19/2$^+$) | 3893.9 | 3167.2 |
| 805.7(6) | 0.5(2) | (21/2$^+$) \rightarrow | 4349.8 | 3544.3 |
| 810.5(3) | 3.7(18) | (37/2$^+$) \rightarrow (35/2$^+$) | 7629.7 | 6816.7 |
| 831.2(4) | 3.5(17) | (19/2$^+$) \rightarrow (15/2$^+$) | 2875.1 | 2043.8 |
| 851.7(5) | 2.1(10) | (27/2$^+$) \rightarrow (23/2$^+$) | 5626.5 | 4774.7 |
| 859.7(6) | 0.7(3) | (15/2$^+$) \rightarrow 11/2$^+$ | 2043.8 | 1184.4 |
| 890.0(4) | 62(9) | 21/2$^+$ \rightarrow 17/2$^+$ | 2783.0 | 1893.0 |
| 911.7(4) | 21.5(7) | (27/2$^+$) \rightarrow (23/2$^+$) | 4406.8 | 3945.1 |
| 927.2(5) | 1.6(8) | (27/2$^+$) \rightarrow | 5626.5 | 4699.6 |
| 982.2(4) | 2.5(12) | (19/2$^+$) \rightarrow 17/2$^+$ | 2875.1 | 1893.0 |
| 1085.6(4) | 1.5(7) | (31/2$^+$) \rightarrow (27/2$^+$) | 5492.2 | 4406.8 |
| 1102.5(5) | < 1 (25/2$^+$) \rightarrow (21/2$^+$) | 5452.2 | 4349.8 |
| 1130.5(4) | 1.8(9) | \rightarrow (25/2$^+$) | 6228.7 | 5098.2 |
| 1184.4(4) | 100(15) | 11/2$^+$ \rightarrow 7/2$^+$ | 1184.4 | 0.0 |
| 1206.5(4) | 1.8(9) | \rightarrow (21/2$^+$) | 4699.6 | 3945.1 |
| 1219.4(4) | 1.9(9) | (27/2$^+$) \rightarrow (27/2$^+$) | 5626.5 | 4406.8 |
| 1274.3(6) | 3.1(18) | (19/2$^+$) \rightarrow 17/2$^+$ | 3167.2 | 1893.0 |
| 1281.9(4) | 2.1(10) | (23/2$^+$) \rightarrow (21/2$^+$) | 4774.7 | 3945.1 |
| 1409.3(4) | 2.5(12) | (19/2$^+$) \rightarrow 17/2$^+$ | 3302.3 | 1893.0 |
| 1448.5(4) | 1.6(8) | (29/2$^+$) \rightarrow (27/2$^+$) | 5855.0 | 4406.8 |
| 1495.7(6) | 1.3(6) | (19/2$^+$) \rightarrow 15/2$^+$ | 3167.2 | 1671.2 |
| 1532.6(5) | 2.1(10) | \rightarrow (29/2$^+$) | 6554.2 | 5021.6 |
| 1566.5(5) | 8.9(27) | (21/2$^+$) \rightarrow 21/2$^+$ | 4349.8 | 2783.0 |
| 1651.3(7) | 0.5(2) | \rightarrow 17/2$^+$ | 3544.3 | 1893.0 |
| 1957.2(7) | 1.4(7) | (25/2$^+$) \rightarrow (23/2$^+$) | 5452.2 | 3945.1 |
| 1964.3(8) | 1.7(9) | \rightarrow (23/2$^+$) | 5494.4 | 3951.1 |
| 2397(1) | 3.0(15) | (19/2$^+$) \rightarrow 17/2$^+$ | 4290 | 1893.0 |

TABLE II. Properties of the transitions assigned to 137Cs observed in this work.

a The number in parentheses is the error in the last digit.

b The relative intensities are normalized to I_x(1184) = 100.
new γ-lines which have to be located above the 1381-keV state of 139La. Finally, all the coincidence relationships between these new transitions have been carefully analyzed in order to build the level scheme shown in Fig. 3.

Two levels at very close excitation energies are reported in the literature at 1537.7 and 1537.9 keV, with proposed spin assignments of $\left(1/2^+\right)$ for the former, which only decays to the ground state, and $7/2^+$ for the latter, which populates equally the ground state and the first excited state at 166 keV [13]. The 1537-keV γ-line is only present in our data in coincidence with the Nb transitions, meaning that only the $(1/2^+)$ state has been populated in our experiment.

A second doublet of close-lying states is known at 1420.5 keV and 1420(12) keV [13]. The first one, populated in the β-decay of 139Ba ($I_{\pi}^o = 7/2^-$) with $\log ft = 7.6$, shows a main decay to the ground state and a weak component to the first excited state (9%). The second one was populated with a $L=5$ transfer in (β, d^3), $(\alpha, 3\alpha)$, and $(\alpha, 6\alpha)$ reactions [13], thus assigned as $I^o = 11/2^-$ (from the $\pi h_{11/2}$ orbit). Its γ-decay, not measured, likely involves two branches, the one toward the ground state with a $M2$ multipolarity and the one toward the 166-keV level with an $E3$ multipolarity, i.e., similar to those measured in the neighboring isotones, 141Pr and 143Pm [13]. Thus such a de-excitation is the same as that measured for the 1420.5-keV level identified in the β-decay of 139Ba. This could indicate that there is only one state at 1420.5 keV. Nevertheless the measured value of the direct β-feeding is too high for a second-forbidden non-unique transition ($\Delta J = 2$, $\Delta \pi = +$). Thus the results of β-decay and transfer reactions cannot be reconciled and two states very close in energy do exist in 139La. The 1420-keV state identified in the present work only decays toward the ground state, but a weak decay to the 166-keV state cannot be excluded when taking into account the low intensity measured for the 1420-keV line. In Fig. 3 we have chosen the value $I^o = 11/2^-$, as discussed below.

Noteworthy is the fact that the 232-keV transition has to be a doublet in order to satisfy all its coincidence relationships, the first member is located above the 1800-keV state and the second one above the 2917-keV state. Some examples of double-gated spectra showing the most intense 139La transitions are displayed in Fig. 4.

By using the data from the SAPhIR experiment, the three cascades involved in the decay of the 1800-keV level have been found to be delayed. The time distribution between the detection of two fragments by SAPhIR and of the 1215- or the 330-keV transition by Euroball is shown in Fig. 5. In order to reduce the background, we have selected the events containing an additional γ-ray belonging to the 330-1215-166 cascade. Thus the half-life of the 1800-keV level has been obtained, $T_{1/2} = 315(35)$ ns.

The level scheme of 139La includes five transitions with an energy lower than 100 keV. We have observed all their γ lines but the 9- and the 58-keV transitions. The former is located between the levels at 3184 keV and 3175 keV because of some coincidence relationships. Indeed the spectrum gated by the 1068- and 389-keV lines exhibits both the 1375-keV transition and the 298/853-keV cascade [see Fig. 4(c)], while the spectrum gated by 1322- and 130-keV lines only exhibits the 1375-keV transition. For the 58-keV transition, it is needed to account for all the coincidence relationships of the 1322- and 1486-keV transitions.

The determination of the transition intensities is rather delicate because of the isomeric state at 1800 keV which induces a loss in intensity $\sim 50\%$ for many transitions in the gated spectra, while some others keep their relative intensity, as they belong to decay paths by-passing the isomeric state. Therefore we do not give any intensity value in Table III. On the other hand, the de-excitation branching ratios of levels, if any, can be determined as they do not suffer the drawback mentioned above, they are given in Table IV.

E_i (keV)	$I^o_1 \rightarrow I^o_2$	E_f	E_f
9.0$^+$	(22/2) \rightarrow (21/2)	3183.7	3174.7
70.8$^+$	(15/2) \rightarrow (13/2)	3305.0	3247.3
88.7(5)	(17/2) \rightarrow (15/2)	1799.8	1711.1
97.6(5)	(21/2) \rightarrow (19/2)	3247.3	3149.7
130.3(3)	(25/2) \rightarrow (23/2)	3305.0	3174.7
165.6(3)	(5/2) \rightarrow (7/2)	165.6	0.0
174.0(3)	(13/2) \rightarrow (11/2)	1711.1	1537.0
186.7(4)	(21/2) \rightarrow (19/2)	3247.3	3060.6
232.3(4)	(15/2) \rightarrow (13/2)	2032.1	1799.8
232.3(4)	(19/2) \rightarrow (17/2)	3149.7	2917.4
291.3(3)	(13/2) \rightarrow (11/2)	1711.1	1420.0
298.4(3)	(23/2) \rightarrow (19/2)	3183.7	2885.3
330.3(3)	(13/2) \rightarrow (9/2)	1711.1	1380.8
388.9(3)	(25/2) \rightarrow (23/2)	4640.6	4251.7
425.2(3)	(13/2) \rightarrow (11/2)	1962.2	1537.0
478.6(4)	(21/2) \rightarrow (19/2)	3363.9	2885.3
495.0(3)	(15/2) \rightarrow (11/2)	2032.1	1537.0
576.4(4)	(27/2) \rightarrow (25/2)	4627.3	4115.6
853.2(4)	(19/2) \rightarrow (15/2)	2885.3	2032.1
887.8(4)	(23/2) \rightarrow (21/2)	4251.7	3363.9
940.9(4)	(25/2) \rightarrow (21/2)	4115.6	3174.7
1068.0(4)	(23/2) \rightarrow (21/2)	4251.7	3183.7
1215.2(5)	(9/2) \rightarrow (5/2)	1380.8	165.6
1206.3(5)	(17/2) \rightarrow (13/2)	2917.4	1711.1
1260.8(5)	(19/2) \rightarrow (17/2)	3060.6	1799.8
1322.3(5)	(27/2) \rightarrow (23/2)	4627.3	3305.0
1374.9(5)	(21/2) \rightarrow (17/2)	3174.7	1799.8
1380.9(6)	(9/2) \rightarrow (7/2)	1380.8	0.0
1420.0(5)	(11/2) \rightarrow (7/2)	1420.0	0.0
1485.6(6)	(23/2) \rightarrow	4790.6	3305.0
1537.0(4)	(11/2) \rightarrow (7/2)	1537.0	0.0

a The number in parentheses is the error in the last digit.

b Not observed, inferred from the coincidence relationships.
FIG. 3. (Color online) Level scheme of 139La established in this work. The colored states are new. The width of the arrows is indicative of the γ-ray intensity (see text).

TABLE IV. Branching ratios of the states of 139La measured in this work.

State (keV)	$E - I_{tot}^{\alpha,b}$ (keV)-(%)	$E - I_{tot}^{\alpha,b}$ (keV)-(%)	$E - I_{tot}^{\alpha,b}$ (keV)-(%)
1381	1215 - 93(9)	1381 - 5(2)	
1711	174 - 35(6)	291 - 10(3)	330 - 55(8)
2032	70 - 20(4)	232 - 60(8)	495 - 20(4)
3184	298 - 55(8)	9 - 45(7)	
3247	98 - 55(8)	187 - 45(7)	
3305	58 - 70(9)	130 - 30(5)	
4252	888 - 14(3)	1068 - 86(9)	
4627	512 - 10(3)	1322 - 90(9)	

α The intensity balances used to measure the branching ratios take into account the conversion electrons of the low-energy transitions.

β The number in parentheses is the error in the last digit.

Angular correlations of transitions emitted by 139La could not be measured due to their too weak intensities in the (O+Pb) experiment. Spin and parity assignments have been therefore deduced by using the following arguments: (i) The spin values increase with excitation energy, (ii) The high-energy (low-energy) transitions likely have an $E2$ ($M1$) character, (iii) The measured branching ratios as well as the existence or the absence of cross-over transitions place some conditions on the multipolarities. Starting from the two values already known, $I^\pi=7/2^+$ for the ground state and $I^\pi=5/2^+$ for the first excited state, we have obtained the values given in parentheses in Fig. 3, some of them are discussed now.

First of all, it is important to note that the level scheme of 139La does not resemble the one of 137Cs, particularly its $5/2^+$ state at 166 keV takes part to the yrast structure, while the $5/2^+$ state of 137Cs, being higher in energy (455 keV), is not observed in our work (see Fig. 1). On the other hand, the low-lying part of the level scheme of 139La can be compared to the one of 141Pr, which exhibits both the $5/2^+$ and the $7/2^+$ one in the in-beam studies. This leads the spin values of the 1381-, 1537- and 1711-keV states to be $9/2^+$, $11/2^+$, and $13/2^+$, respectively. The 13/2$^+$ state of 141Pr also decays to the 11/2$^-$ level at 1118 keV. Thus we propose that the 1420-keV state measured in the present work is the 11/2$^-$ level already identified in transfer reactions, as the spin value assigned to the other level, observed in the β-decay, $I^\pi=5/2^+$ or $7/2^+$ is too low. For the isomeric state at 1800 keV, we choose $I^\pi=17/2^+$, assuming that the 89-keV transition is $E2$. This leads to
58-keV transition is assumed to be $M1$ while the 130-keV transition would be $E2$, as imposed by their relative branching ratios (Table IV).

B. Study of the even-Z isotones

1. **Level scheme of $^{136}_{54}\text{Xe}$**

The yrast excitations of ^{136}Xe, studied using a ^{248}Cm source, were identified up to an excitation energy of 6.2 MeV and a spin value of (13^+) [4]. Since ^{136}Xe is produced in both reactions used in the present work and the fusion-fission process brings higher angular momenta than that obtained in the spontaneous fission of actinides, we have looked for new γ-ray cascades emitted by ^{136}Xe. The level scheme built from these analyses is shown in Fig. 6. We have gathered in Table V the properties of all $^{136}_{54}\text{Xe}$.

FIG. 4. Examples of double-gated spectra illustrating the most intense ^{139}La transitions.

FIG. 5. (Color online) Time distribution between the detection of two fragments by S6PhR and of a γ transition by Euroball (the γ multiplicity being two) showing the half-life of the 1800-keV state of ^{139}La: the γ transition is either the 1215- or the 330-keV one, with a gate set on the second γ, the 166-keV or the 330-1215-keV transition.

$B(E2; 17/2^+ \rightarrow 13/2^+) = 81(9) e^2 fm^4$, i.e., 1.9(2) W.u. The yrast cascades of ^{141}Pr and ^{143}Pm also contain one delayed $E2$ transition which exhibits a similar value of hindrance, 0.87(10) W.u. and 1.52(6) W.u., respectively. Nevertheless the spin value of their isomeric states is one unit less, 15/2+. This change is due to the number of protons occupying the two orbits close to the Fermi level, namely $\pi g_{7/2}$ and $\pi d_{5/2}$. For the decay of the 3184-keV state of ^{139}La, the fact that a 9-keV transition competes with a 298-keV one implies that the former is $M1$ while the latter has to be hindered, such as expected for an $E2$ transition of low energy. Similar argument is used for the choice of the parity value of the 3305-keV level: The

FIG. 6. (Color online) Level scheme of ^{136}Xe established in this work. The colored states are new. The width of the arrows is proportional to the γ-ray intensity. The half-life value of the 61+ state is from Ref. [3].
the transitions assigned to 136Xe from this work.

TABLE V. Properties of the transitions assigned to 136Xe observed in this experiment.

E_x (keV)	I_x	$I_x \rightarrow I_f$	E_f	E_t
70.2	6.2(19)	(12$^+$) → (11$^+$)	5949.5	5878.8
196.8(3)	-	6$^+$ → 4$^+$	1890.8	1694.0
219.5(3)	29(6)	(13$^+$) → (12$^+$)	6169.0	5949.5
254.6(3)	44(7)	10$^+$ → 8$^+$	3482.8	3228.1
284.0(4)	8.8(26)	(13$^+$) → (11$^+$)	5139.8	4855.8
329.8(4)	7(2)	(15$^+$) → (14$^+$)	7066.3	6736.5
336.4(4)	3.4(14)	→ (16$^+$)	7847.2	7510.8
369.7(3)	53(8)	6$^+$ → 4$^+$	2260.5	1890.8
381.2(2)	-	4$^+$ → 2$^+$	1694.0	1312.8
398.2(4)	7.8(23)	(11$^+$) → (10$^+$)	5878.8	5480.6
435.4(4)	5.1(15)	(17$^+$) → (16$^+$)	7946.2	7510.8
441.2(3)	10(3)	(14$^+$) → (13$^+$)	6610.3	6190.0
444.5(4)	8.5(25)	(16$^+$) → (15$^+$)	7510.8	7066.3
459.9(4)	7(2)	(15$^+$) → (14$^+$)	7066.3	6610.3
469.1(5)	1.6(8)	(12$^+$) → (10$^+$)	5949.5	5480.6
567.0(5)	3(2)	6$^+$ → 4$^+$	2260.5	1940.0
567.5(5)	7(2)	(14$^+$) → (13$^+$)	6736.5	6190.0
568.5(0)	7(2)	→ (15$^+$)	7634.3	7066.3
600.8(4)	8(3)	(9$^+$) → 8$^+$	3282.9	3228.1
617.0(3)	39(6)	10$^+$ → 8$^+$	3482.8	2865.9
897.5(4)	7(2)	(15$^+$) → (13$^+$)	7066.3	6190.0
967.6(3)	56(8)	8$^+$ → 6$^+$	3228.1	2260.5
975.1(3)	47(7)	(8$^+$) → 6$^+$	2865.9	1890.8
1014.6(4)	6(3)	(14$^+$) → (13$^+$)	6154.4	5139.8
1027.1(4)	4(2)	(11$^+$) → (9$^+$)	4855.8	3828.9
1093.7(3)	11(3)	(12$^+$) → (11$^+$)	5949.5	4855.8
1101.3(3)	9.7(29)	(10$^+$) → (8$^+$)	5480.6	4379.3
1151.2(3)	13(3)	(8$^+$) → 6$^+$	4379.3	3228.1
1312.8(2)	-	2$^+$ → 0$^+$	1312.8	0.0
1373.0(4)	23(5)	(11$^+$) → 10$^+$	4558.5	3482.8
1657.0(5)	6(3)	(13$^+$) → 10$^+$	5139.8	3482.8
2467.2(5)	5.0(25)	(12$^+$) → 10$^+$	5949.5	3482.8

TABLE VI. Coincidence rates between a few γ rays of 136Xe lying above its long-lived isomeric state, as a function of their relative angle of detection, normalized by the ones obtained around 75$^\circ$.

γ-γ coincidence	R(2260)$^{(a)}$	R(4855)$^{(a)}$	R(7510)$^{(a)}$
968 - 370	1.5(3)	1.2(1)	1.0(0)
255 - 968	1.2(1)	1.0(1)	1.0(0)

a The number in parentheses is the error in the last digit.

The level scheme has been extended up to 7.9 MeV excitation energy by means of several γ rays in cascade. Moreover three new decay paths of the (12$^+$) state at 5950 keV have been observed. The spin values of states lying below 2.3 MeV excitation energy are those proposed in the previous works [18]. In addition we have measured the angular correlations of a few γ rays of 136Xe lying above its long-lived isomeric state (see Table VI). The results indicate that the 968- and 255-keV transitions have an E2 character, knowing that the 370-keV γ-ray is a dipole transition linking two states having the same spin value [18]. It has to be noticed that a new γ-ray linking the 2261-keV level to the 4$^+$ state at 1694 keV has been observed, which is in good agreement with the involved spin values. Finally, the 2866-keV state has $I^\pi = 8^+$, as it is directly populated by a 10$^+$ state and it decays toward a 6$^+$ state (see Fig. 6). For the highest-spin part, we have assumed that the spin values increase with excitation energy and that the low-energy transitions have a M1 character.

We have looked for isomeric states in 136Xe by using the data registered with the SAPhIR detector. Only one γ-cascade has been found to be delayed, that decay ing the known isomorphic state at 1891 keV.

2. Level scheme of 138Ba

Previous information regarding the medium-spin states of 138Ba comes from results of the (α,2n) reaction, where levels with spin values up to 12 h and excitation energies of 4.7 MeV were identified [21]. All the yrast levels have been confirmed by the analyses of both data sets of the present work. Moreover, the spectra doubly-gated on the known transitions allowed us to identify many new γ-lines which extend the level scheme up to 9.3 MeV excitation energy. We have gathered in Table VII the properties of all the transitions assigned to 138Ba from this work and its level scheme is drawn in Fig. 7.

First, several transitions have been found to populate the 12$^+$ state at 4687 keV. The most intense is the 705-keV transition [see the spectrum of Fig. 6(a)] which defines the new level at 5392 keV. Above it, the gamma intensity is spread over several lines. Secondly, a new structure has been built above the 9$^-$ state already known from the (α,2n) reaction (see the right part of Fig. 7). Thirdly, the high-energy part of the yrast structure of 138Ba consists of ten transitions in mutual coincidences which are located between 5740 keV and 9333 keV. The three first states of this new band show many decay paths involving states lying in the excitation-energy range [3620-5357] keV, indicating a large change of configuration, which will be discussed in Sect. XV.

For the spin assignments, we have first used the results of the previous experiment [21], particularly the angular distributions and linear polarizations. It is worth mentioning that the (α,2n) reaction populates both yrast and yrare states of the produced nuclei. Thus in many cases, the knowledge of the transition multipolarity was not enough to determine unambiguously the spin and parity values of the decaying state. For instance, even though the multipolarity of the 449-keV transition was measured to be stretched E1 (see Table 2 of Ref. [21]),
FIG. 7. (Color online) Level scheme of 138Ba established in this work. The colored states are new. The width of the arrows is proportional to the γ-ray intensity. The half-life value of the 6$^+$ state is from Ref. [18].

the authors had given the spin value of the 3631-keV level with parentheses, $I^\pi=(9^−)$, because $I^\pi=7^−$ could not be excluded. Since in the fusion-fission reactions the yrast states are the most populated, the spin value of the 3631-keV level cannot be $7^−$ but is $9^−$, without ambiguity. The same arguments hold for the 3909-keV level ($I^\pi=10^+$) and 4687-keV level ($I^\pi=12^+$), as the 727- and the 778-keV γ-rays are stretched $E2$ transitions (see Table 2 of ref. [21]).

The three first states of the high-energy part of the yrast structure of 138Ba are proposed to have $I^\pi=(11^+, 12^+, 13^+)$ respectively, that are consistent with their links to the 10^+_1 and 12^+_1 states, assuming that the spin values increase with excitation energy and that the low-energy transitions have a $M1$ character. Then the 4702-keV state is (11^-), since it is populated by the (12^+) state at 5924 keV and it decays toward the $9^-\gamma$ state at 3631 keV and the $10^-\gamma$ state at 3620 keV. Finally assuming that all the transitions located above the 6209-keV levels have a $M1$ multipolarity, we assign $I^\pi=(20^+)$ to the 9333-keV level.

We have looked for isomeric states in 138Ba by using the data registered with the SAPhIR detector. Only one γ-ray cascade has been found to be delayed, that decaying the known isomeric state at 2089 keV (see Fig. 7). The spectrum of γ rays which have been detected in the time interval 50 ns-1 \(\mu \)s after the detection of two fragments by SAPhIR and in coincidence with the 1435-keV line is shown in Fig. 9. In addition to the expected 462- and 191-keV transitions belonging to the known delayed cascade, we observe a small peak at 180 keV. The latter is emitted by one of the complementary fragments, 101Mo, which also exhibits an isomeric state with $T_{1/2}=95(15)$ ns [22]. Such a spectrum demonstrates the selectivity of an apparatus such as SAPhIR + Euroball when looking for the decay of isomeric states of the fission fragments.

3. Level scheme of $^{140}_{58}$Ce

$^{140}_{58}$Ce is the heaviest $N=82$ isotone obtained in the fusion-fission reactions used in the present work. Since it is in the light-A tail of the Ce fragment distribution, its population is unfortunately low. Nevertheless we have identified several new high-spin states located above the
TABLE VII. Properties of the transitions assigned to 138Ba observed in this work.

E_{γ} (keV)	I_{γ}a	I_{γ}a to I_{γ}b	E_{γ}	E_{γ}
112.1(5)	27(5)	$6^+ \rightarrow 6^+$	2201.4	2089.3
183.7(5)	3.3(13)	$12^+ \rightarrow 11^+$	5923.7	5740.1
191.5(3)		$6^+ \rightarrow 4^+$	2089.3	1897.8
239.0(4)	2.2(10)	$15^+ \rightarrow 14^+$	7225.9	6986.9
285.4(3)	12(4)	$13^+ \rightarrow 12^+$	6209.0	5923.7
288.2(3)	12(4)	$10^+ \rightarrow 10^+$	3908.6	3620.3
301.4(4)	4.4(18)	$18^+ \rightarrow 17^+$	8280.1	7978.7
306.1(3)	7.3(22)	$16^+ \rightarrow 15^+$	7532.0	7225.9
396.1(5)	2.1(10)	$20^+ \rightarrow 19^+$	9332.6	8936.5
438.3(3)	40(6)	$10^+ \rightarrow 8^+$	3620.3	3182.0
446.7(3)	7.4(22)	$14^+ \rightarrow 13^+$	6655.7	6209.0
446.7(5)	5.6(17)	$17^+ \rightarrow 16^+$	7978.7	7532.0
449.1(3)	9.6(29)	$9^+ \rightarrow 8^+$	3631.1	3182.0
462.4(3)		$4^+ \rightarrow 2^+$	1897.8	1435.4
481.8(3)	8.3(25)	$13^+ \rightarrow 11^+$	5184.2	4702.4
516.7(4)	3.2(13)	$5^+ \rightarrow 4^+$	2414.5	1897.8
527.4(4)	6.9(20)	$14^+ \rightarrow 13^+$	5919.6	5392.2
567.3(3)	6.1(18)	$12^+ \rightarrow 11^+$	5923.7	5356.8
570.1(3)	7.1(21)	$15^+ \rightarrow 14^+$	7225.9	6655.7
656.4(5)	3.2(15)	$19^+ \rightarrow 18^+$	8936.5	8280.1
705.5(3)	23(5)	$13^+ \rightarrow 12^+$	5392.2	4687.0
726.7(3)	35(7)	$10^+ \rightarrow 8^+$	3908.6	3182.0
778.0(4)	5.4(19)	$14^+ \rightarrow 13^+$	6986.9	6209.0
778.4(3)	41(6)	$12^+ \rightarrow 10^+$	4687.0	3908.6
797.1(4)	3.0(15)	$12^+ \rightarrow 10^+$	5923.7	5266.0
804.2(3)	9.4(28)	$15^+ \rightarrow 13^+$	6196.4	5392.2
837.8(4)	5.1(18)	$16^+ \rightarrow 14^+$	6757.4	5919.6
856.9(5)	2.4(12)	$17^+ \rightarrow 15^+$	8010.7	7153.8
944.0(5)	1.7(8)	$7^+ \rightarrow 5^+$	3358.5	2414.5
957.4(5)	3.1(15)	$17^+ \rightarrow 15^+$	7153.8	6196.4
980.3(5)	23(5)	$8^+ \rightarrow 6^+$	3182.0	2201.4
1067.1(5)	3.5(15)	$14^+ \rightarrow 12^+$	6986.9	5919.6
1071.3(3)	7.8(23)	$11^+ \rightarrow 9^+$	4702.4	3631.1
1082.1(3)	7.8(23)	$11^+ \rightarrow 10^+$	4702.4	3620.3
1092.7(3)	73(11)	$8^+ \rightarrow 6^+$	3182.0	2089.3
1205.2(5)	2(1)	$15^+ \rightarrow 13^+$	7401.6	6196.4
1221.2(5)	2.7(13)	$12^+ \rightarrow 11^+$	5923.7	4702.4
1236.4(4)	6.0(18)	$12^+ \rightarrow 12^+$	5923.7	4687.0
1353(4)	2$^+ \rightarrow$	$10^+ \rightarrow 8^+$	1435.4	0.0
1506.3(5)	2.4(12)	$10^+ \rightarrow 8^+$	5126.0	3620.3
1521.9(5)	4.2(15)	$13^+ \rightarrow 12^+$	6209.0	4687.0
1736.4(5)	4.9(17)	$10^+ \rightarrow 8^+$	5356.8	3620.3
1802.6(6)	2.9(14)	$14^+ \rightarrow 13^+$	6986.9	5184.2
2119.8(8)	2.1(10)	$11^+ \rightarrow 10^+$	5740.1	3620.3
2303.6(8)	1.4(7)	$12^+ \rightarrow 10^+$	5923.7	4687.0

a The number in parentheses is the error in the last digit.

b The relative intensities are normalized to the sum of the populations of the 6^+_1 isomeric state, $I_\gamma(112) + I_\gamma(1093) = 100$.

13$^-$ state at 5102 keV, which was the highest-spin level obtained in the ($\alpha,2n$) reaction 23. Most of the new states have likely a negative parity, as they are only linked to the 13$^-$ state.

All the levels observed in this work are drawn in Fig. 10. Those lying below 5200 keV are the same as the yrast states previously obtained in the ($\alpha,2n$) reaction, their spin and parity values being determined from results of angular distributions and linear polarizations 23. The properties of the transitions observed in the present work are gathered in Table VIII. Even though most of them were already known from the previous work, they are repeated here for completeness. For the spin assignments of the new levels, we have used the same arguments as those given in the previous sections. Lastly, we have looked for isomeric states in 140Ce by using the data registered with the SAPhIR detector. Only the γ rays decaying the two known isomeric states at 2108 keV and 3714 keV (see Fig. 10) are weakly observed.
The high-spin level schemes of the $N=82$ isotones with $Z>50$ are expected to involve only the three high-j orbits, $\pi g_{7/2}$, $\pi d_{5/2}$, and $\pi h_{11/2}$. The two former being very close to the Fermi level for $Z \leq 58$, positive-parity structures dominate the low-energy part of the spectra of the isotones studied in the present work. In this section, we present general features of their high-spin behaviors, particularly the maximum spin values which can be obtained when all the proton pairs are broken; we discuss the breaking of one proton pair for some simple configurations and we point out the main differences which may occur in the odd-Z isotones; we compare the results of shell-model calculations to the experimental levels, and lastly we show that the excitation of the $N=82$ core is the only way to get the highest-spin values of the lightest $N=82$ isotones.

IV. DISCUSSION

Simple excitation modes are expected in the $N=82$ isotones lying just above the doubly-magic 132Sn because of the low number of available proton orbits. Being close in energy, the first two orbits, $\pi g_{7/2}$ and $\pi d_{5/2}$, can be assumed to be filled together, thus the configurations are written as $(\pi g_{7/2}\pi d_{5/2})^n$, instead of $(\pi g_{7/2})^i(\pi d_{5/2})^j$, with $i+j=n$. The maximum value of angular momentum, which can be achieved when proton pairs are broken, depends on the total number of valence protons. For 134Te, the breaking of the proton pair gives $I_{\text{max}} = 6^+$, while one gets the very maximum value, $I^* = 25/2^+$, for mid-occupation of the two orbits in 137La. Noteworthy is the fact that, due to the presence of two different orbits, the same value of I_{max}^* is obtained for two different configurations of the even-Z isotones, such as 6^+ for $(\pi g_{7/2})^2$ and $(\pi g_{7/2})^2(\pi d_{5/2})^1$, or 10^+ for $(\pi g_{7/2})^3(\pi d_{5/2})^1$ and $(\pi g_{7/2})^2(\pi d_{5/2})^2$, meaning that we expect two 6^+ states or two 10^+ states in the corresponding nuclei.

The maximum values of angular momentum obtained for the complete alignment of the angular momenta of the protons lying in the $\pi g_{7/2}$ and $\pi d_{5/2}$ orbits are given in the first part of Table IX for the $N=82$ isotones with $52 \leq Z \leq 58$. These values are well lower than

TABLE VIII. Properties of the transitions assigned to 140Ce observed in this work.

E_m (keV)	I_a	T^*	T^*	E_i	E_f
16$^+$	-	9$^+$	8$^+$	3491.8	3476
24$^+$	-	6$^+$	4$^+$	2107.6	2083
52(1)	-	8$^+$	7$^+$	3476	3442.4
188.9(5)	4(2)	(12$^+$)	11$^+$	5099.1	4904.2
202.0(3)	28(6)	10$^+$	8$^+$	3731.9	3512.0
222.0(3)	52(8)	10$^+$	9$^+$	3731.9	3491.8
250.9(3)	33(7)	13$^+$	12$^+$	5101.6	4850.7
318.0(4)	5.8(17)	(14$^+$)	13$^+$	5419.6	5101.6
407(1)	-	4$^+$	2$^+$	2083	1596
493.0(4)	4.4(20)	(12$^+$)	(15$^+$)	6797.2	6304.2
502.3(5)	4(2)	13$^+$	12$^+$	5693.9	5101.6
734.6(5)	4(2)	(15$^+$)	(17$^+$)	7038.8	6304.2
1136.8(3)	51(8)	12$^+$	10$^+$	4850.7	3713.9
1190.3(4)	8.8(25)	11$^+$	10$^+$	4904.2	3713.9
1202.6(3)	13(3)	(15$^+$)	(12$^+$)	6304.2	5101.6
1316.8(3)	51(8)	7$^+$	6$^+$	3424.4	2107.6
1384.2(3)	14(4)	9$^+$	6$^+$	3491.8	2107.6
1404.4(3)	35(8)	8$^+$	6$^+$	3512.0	2107.6
1470.2(7)	4.3(17)	(15,16)	(14$^+$)	6889.8	5419.6
1596(1)	-	2$^+$	0$^+$	1596	0.0

- The number in parentheses is the error in the last digit.
- The relative intensities are normalized to the sum of the populations of the 6$^+$ isomeric state.
- The number in parentheses is the error in the last digit.
- Not observed in the present work, from Ref. [23].
- Excitation energy from Ref. [24].
- Transition having a very weak intensity in this experiment because of the long half-life of the 6$^+$ state.

A. General features

FIG. 10. (Color online) Level scheme of 140Ce established in this work. The colored states are new. The width of the arrows is proportional to the γ-ray intensity. The half-life values of the 6$^+$ and 10$^+$ states are from Ref. [18].
The promotion of one proton in the $\pi h_{11/2}$ orbit leads to higher values of angular momenta as well as a change of parity (see the second part of Table IX). One can remark that some negative-parity structures observed in 136Xe, 137Cs, and 138Ba agree with these quoted values of I_{max}^π.

Finally, the values of I_{max}^π are increased by 10h when a proton pair occupying the $\pi h_{11/2}$ orbit is broken (see the last part of Table IX). Nevertheless such a process is expected at high excitation energy in the nuclei of interest, since that orbit is located far from their Fermi levels.

Neutron excitation across the $N = 82$ gap was proposed to be involved in the highest-spin part of the yrast band of 134Te, 135I, and 136Xe [3, 4]. The gain in angular momentum is 9^+ for the ($\nu h_{11/2}$)$^{-1}$($\nu f_{7/2}$)$^{+1}$ excitation. While such an excitation is much more favorable for $Z = 52 - 54$ than the breaking of a $\pi h_{11/2}$ pair mentioned above, it has not to be excluded for higher Z values. Indeed two excited states of 137Cs lying at 4.35 MeV and 4.77 MeV were related to the excitation of the $N = 82$ core [3]. The clues of neutron excitation across the $N = 82$ gap will be presented in Sec. IV D using the experimental results obtained in the present work.

TABLE IX. Maximum values of angular momentum obtained from various configurations with several broken proton pairs, expected in the $N = 82$ isotones with $52 \leq Z \leq 58$. The degeneracy, d, is the number of the configurations ($\pi g_{7/2}$)i($\pi d_{5/2}$)j, $i + j = n$, leading to the same value of I_{max}^π.

configuration	I_{max}^π	d	nucleus
($\pi g_{7/2}$)n			
n = 2	6$^+$	2	134Te, 136Xe, 138Ba, 140Ce
n = 3	17$^+$	1	135I, 137Cs, 139La
n = 4	10$^+$	2	136Xe, 138Ba, 140Ce
n = 5	23$^+$	1	137Cs, 139La
n = 6	12$^+$	2	138Ba, 140Ce
n = 7	25$^+$	1	139La
($\pi g_{7/2}$)n($\pi h_{11/2}$)1			
n = 1	9$^+$	1	134Te, 136Xe, 138Ba, 140Ce
n = 2	23$^+$	2	135I, 137Cs, 139La
n = 3	14$^+$	1	136Xe, 138Ba, 140Ce
n = 4	31$^+$	2	137Cs, 139La
n = 5	17$^+$	1	138Ba, 140Ce
n = 6	35$^+$	2	139La
n = 7	18$^+$	1	140Ce
($\pi g_{7/2}$)n($\pi h_{11/2}$)2			
n = 1	27$^+$	1	135I, 137Cs, 139La
n = 2	16$^+$	2	136Xe, 138Ba, 140Ce
n = 3	37$^+$	1	137Cs, 139La
n = 4	20$^+$	2	138Ba, 140Ce
n = 5	43$^+$	1	139La
n = 6	22$^+$	2	140Ce

The first breaking of a proton pair in the $N = 82$ isotones having $52 \leq Z \leq 58$ gives rise to different multiplets which depend on the total number of protons occupying the $\pi g_{7/2}$ and $\pi d_{5/2}$ orbits.

In the even-Z isotones, we expect two simple configurations having a broken pair, ($\pi g_{7/2}$)2 and ($\pi g_{7/2}$)1($\pi d_{5/2}$)1, the remaining protons lying as pairs in the $\pi g_{7/2}$ or $\pi d_{5/2}$ orbit according to the Pauli principle. Both configurations lead to $I_{\text{max}}^\pi = 6^+$. These two 6^+ states were identified in 134Te, 136Xe, 138Ba, and 140Ce [3, 4, 21, 23]. Their excitation energies evolve as a function of the position of the proton Fermi level within the two orbits, as shown in Fig. 11 (see the filled circles).

The case of the odd-Z isotones is more delicate. If the odd proton is located in the $\pi g_{7/2}$ orbit, the first breaking of a ($\pi g_{7/2}$)2 pair leads to the ($\pi g_{7/2}$)3 configuration, with $I_{\text{max}}^\pi = 15/2^+$. When the odd proton is promoted to the $\pi d_{5/2}$ orbit, the multiplet of the ($\pi g_{7/2}$)2($\pi d_{5/2}$)1 configuration extends up to $I_{\text{max}}^\pi = 17/2^+$. First, it is interesting to notice the similar behaviors of the I_{max}^π states of the odd-Z and even-Z isotones, the $15/2^+$ level of ($\pi g_{7/2}$)3 and the 6^+ level of ($\pi g_{7/2}$)2 on the one hand, the $17/2^+$ level of ($\pi g_{7/2}$)2($\pi d_{5/2}$)1 and the 6^+ level of ($\pi g_{7/2}$)1($\pi d_{5/2}$)1 on the other hand (see Fig. 11). Secondly, it is worth noting that large changes in the structure of the ($\pi g_{7/2}$)2($\pi d_{5/2}$)1 multiplet are foreseen with Z, since the interaction between the three unpaired protons depends on the total number of protons occupying the $\pi g_{7/2}$ orbit. Indeed the two-body interaction evolves from an attractive particle-particle one (for low Z value) to a repulsive particle-hole one (for high Z value). The evolution of the multiplets can be easily predicted following the procedures described in Ref. [24], which have been already used in similar cases [15, 23, 20]. For that...
purpose, we only need the values of the residual interactions in the \((\pi g_{7/2})^2\) and \((\pi g_{7/2})(\pi d_{5/2})^1\) configurations. They are extracted from the multiplets of states identified in \(^{134}\text{Te}\) (see Fig. 12).

![FIG. 12. (Color online) Experimental level scheme of \(^{134}\text{Te}\) showing the states issued from the \((\pi g_{7/2})^2\) and \((\pi g_{7/2})(\pi d_{5/2})^1\) configurations [13], with even values of angular momentum (circles) and odd ones (squares).](image)

The results of the computations of the \((\pi g_{7/2})^2(\pi d_{5/2})^1\) configuration are shown in Fig. 13 as compared to the results of the simple configuration, \((\pi g_{7/2})^3\), which is also active in the nuclei of interest. The yrast line of the latter comprises the 7/2\(^+\), 11/2\(^+\) and 15/2\(^+\) states [see Fig. 13(a)]. Noteworthy is the fact that, due to the particle-hole symmetry, the \((\pi g_{7/2})^{-3}\) configuration leads to the same states. On the other hand, three different sets are obtained for the \((\pi g_{7/2})^2(\pi d_{5/2})^1\) configuration, depending on the number of protons filling the \(\pi g_{7/2}\) orbit: Fig. 13(b) shows the results obtained for two particles in the \(\pi g_{7/2}\) orbit, Fig. 13(c) for mid-occupation of the \(\pi g_{7/2}\) orbit (i.e., for 4 particles) and Fig. 13(d) for two holes in the \(\pi g_{7/2}\) orbit. It has to be noticed that the yrast lines which extend from \(I^\pi=5/2^+\) to \(17/2^+\) do not comprise exactly the same intermediate states. Thus the low-lying yrast states of the odd-Z isotopes with \(N=82\) are expected to evolve with \(Z\), as observed in the present work (compare the bottoms of the \(^{137}\text{Cs}\) and \(^{139}\text{La}\) schemes, Figs. 1 and 3). Moreover this very simple approach may explain why the 17/2\(^+\) state can suddenly become an isomeric state, as measured in \(^{139}\text{La}\), while no measurable half-life is found in the other odd-Z isotopes. Depending on the occupation rate of the \(\pi g_{7/2}\) orbit, the 15/2\(^+\) state belongs to the yrast line or does not belong to it. In the first case, the \(M1\) decay of the 17/2\(^+\) state is fast, while in the second case, the 17/2\(^+\) state decays by emitting an \(E2\) transition of low energy [see, for instance, Fig. 13(c)], which leads to an isomeric state. However we cannot make a one-to-one mapping between the four cases shown in Fig. 13 and the odd-Z isotopes, since the two proton orbits are gradually filled together. Thus a shell-model approach with configuration mixings has to be used to precisely discuss the yrast states of the \(N=82\) isotones, this is presented in the next section.

C. Results of shell-model calculations

Many years ago, a first shell-model (SM) analysis was carried out on the proton configurations of the \(N=82\) isotones lying above the doubly-magic \(^{132}\text{Sn}\) nucleus \([27, 28]\). The two-body part of the SM Hamiltonian was parametrized in terms of the modified surface delta interaction (MSDI). The parameters of the interaction, as well as the single particle energies, were adjusted in order to give the best fit of the experimental data known at that time. Many years later, using the wealth of new data on the \(N=82\) isotones, Wildenthal has modified a lot of the previously obtained values of the two-body matrix elements (TBME) in order to fit as well as possible known excitations energies in nuclei from \(^{132}\text{Sn}\) to \(^{154}\text{Hf}\) \([3]\). Then Blomqvist has updated these TBME using new experimental information in \(^{133}\text{Sn} - 138\text{Ba}\): The new set of diagonal and non-diagonal proton-proton matrix elements including the five orbits of the 50-82 major shell, are given in Ref. \([2]\). Afterwards, these empirical effective interactions were used to describe the new yrast level scheme of \(^{137}\text{Cs}\) \([5]\), the calculated energies were found to be very close to the experimental ones.

In this section, we make a detailed comparison between the experimental information obtained in the five \(N=82\) isotones studied in the present work and the SM predictions using these empirical effective interactions \([2]\). The calculations were performed using the ANTOINE code \([29]\).

1. The even-Z isotones

The results of the SM calculations of the yrast states of \(^{136}\text{Xe}\), \(^{138}\text{Ba}\), and \(^{140}\text{Ce}\) are drawn in Fig. 14, where they are compared to the experimental results. The positive-parity states up to the \(10^+\) level in \(^{136}\text{Xe}\) and to the \(12^+\) level in \(^{138}\text{Ba}\) and \(^{140}\text{Ce}\) are obviously well reproduced (see the red asterisks and circles), since they took part of the data set used to fit the two-body matrix elements \([5]\). For the negative-parity states (drawn in blue), the SM results show that the yrast structures strongly depend on the available configurations. While \(^{136}\text{Xe}\) only displays the \(14^-\rightarrow 13^-\rightarrow 11^-\rightarrow 9^-\) sequence from the \((\pi g_{7/2}\pi d_{5/2})^3(\pi h_{11/2})^1\) configuration, the addition of the \((\pi g_{7/2}\pi d_{5/2})^5(\pi h_{11/2})^1\) configuration in \(^{138}\text{Ba}\) and \(^{140}\text{Ce}\) leads to almost regular structures extending up to \(I^\pi = 17^-\). This is in good agreement with the new levels observed in \(^{138}\text{Ba}\) and \(^{140}\text{Ce}\) [see the blue crosses in Fig. 14(b) and (c)]. More precisely, two 13\(^-\) states are predicted close in energy in \(^{138}\text{Ba}\), as measured experimentally. Their main configurations explain their different decays. The 13\(^1\)\(^-\) and 11\(^1\)\(^-\) states have the same
FIG. 13. States issued from four odd-Z configurations, \((\pi g_{7/2})^3\), \((\pi g_{7/2})^2(\pi d_{5/2})^1\), \((\pi g_{7/2})^4(\pi d_{5/2})^1\), and \((\pi g_{7/2})^6(\pi d_{5/2})^1\), calculated using the residual interactions extracted from two multiplets of \(^{134}\)Te (see text). The yrast states are linked by a solid line.

As mentioned before (see Table IX), when restricting excitations to the proton valence space, the high values of the angular momenta need to promote a proton pair into the \(\pi h_{11/2}\) orbit and to break that pair. In that way and by breaking another pair in the \(\pi g_{7/2}\) and \(\pi d_{5/2}\) orbits, states with \(I^\pi\) values up to \(16^+\) are obtained. The multiplet \((12^+ \leq I \leq 16^+)\) is predicted almost degenerated in energy in the three isotones [see the red squares in Fig. 14]. In \(^{138}\)Ba and \(^{140}\)Ce, such a structure extends up to higher spin values, as more pairs of protons lying in the \(\pi g_{7/2}\) and \(\pi d_{5/2}\) orbits can be broken. The resulting levels \((16^+ \leq I \leq 20^+)\) are no longer degenerated, being spread over an interval of \(\sim 2\) MeV [see the upper red squares in Figs. 14(b) and (c)]. The new structure of \(^{136}\)Xe, which extends from the 5481-keV state to the 7946-keV one [see the red crosses in Fig. 14(a)], is too low in energy to come from the \((\pi g_{7/2})^2(\pi h_{11/2})^2\) configuration. In \(^{138}\)Ba and \(^{140}\)Ce, such a structure extends up to higher spin values, as more pairs of protons lying in the \(\pi g_{7/2}\) and \(\pi d_{5/2}\) orbits can be broken. The resulting levels \((16^+ \leq I \leq 20^+)\) are no longer degenerated, being spread over an interval of \(\sim 2\) MeV [see the upper red squares in Figs. 14(b) and (c)]. The new structure of \(^{136}\)Xe, which extends from the 5481-keV state to the 7946-keV one [see the red crosses in Fig. 14(a)], is too low in energy to come from the \((\pi g_{7/2})^2(\pi h_{11/2})^2\) configuration. It will be discussed in Sec. IV D in terms of neutron excitation across the \(N = 82\) gap, as already done for the highest-spin states observed in \(^{134}\)Te [3]. The behavior of \(^{138}\)Ba is more complex. The SM results fit reasonably...
well the high part of the experimental sequence (from the 14^+_1 state to the 20^+_1 one) but not its low part (from the 11^+_1 state to the 14^+_1 one). Thus the latter is likely issued from the neutron excitation across the $N = 82$ gap, while the configuration of the former is likely $(\pi g_{7/2} \pi d_{5/2})^4(\pi h_{11/2})^2$.

For 130Ce, because of its low population in the reactions used in the present work, no cascade of low-energy transitions lying in the top of its level scheme could be observed, thus its highest-spin states with positive parity remain unobserved.

2. **The odd-Z isotones**

When Blomqvist had updated the TBME values [2], the states of 137Cs having $I^+ \geq 11/2$ were not yet identified, thus they were not considered in the fit. A few time later, the newly-observed levels of 137Cs were compared to the theoretical results showing a very good agreement [3]. Results of the calculations of the yrast states, as well as some of them close to the yrast line, are shown in Fig. 15 (see the circles), in comparison with the experimental results (drawn with asterisks and crosses). The theoretical yrast line displays several irregularities. For instance, the two $19/2^+_1$ states are located above the first $21/2^+_1$ state, thus the latter decays directly toward the $17/2^-_1$ state. As well, the $13/2^+_1$ state is located higher in energy than the $15/2^+_1$ one, thus the latter decays toward the $11/2^+_1$ state.

The negative-parity states behave similarly. The $25/2^-_1$ state is located higher in energy than the $27/2^-_1$ state, thus the latter decays toward the $23/2^-_1$ state, as observed experimentally. The predicted behavior of the first states is very peculiar, showing a quasi-degeneracy of the six states with $I^+ = 13/2^- - 23/2^-$. This explains why the three observed states ($19/2^-_1$, $21/2^-_1$, and $23/2^-_1$) only decay to the positive-parity states.

As discussed in Sec. IV A, a proton pair has to be promoted to the $\pi h_{11/2}$ orbit in order to describe the higher values of angular momentum (see the bottom part of Table IX). The calculated states of 137Cs having the $(\pi g_{7/2} \pi d_{5/2})^3(\pi h_{11/2})^2$ configuration are shown in Fig. 16 (see the circles). The yrast line is irregular, sever-

![Fig. 15](image-url) **Fig. 15.** (Color online) Excitation energy as a function of angular momentum of the states of 137Cs. The states predicted by the SM calculations for the $(\pi g_{7/2} \pi d_{5/2})^5$ (a) and $(\pi g_{7/2} \pi d_{5/2})^4(\pi h_{11/2})^1$ configuration (b) are drawn with circles. The new experimental states identified in this work are drawn with crosses. The already known experimental states are drawn with asterisks, a few of them were used to fit the two-body matrix elements (see text).

![Fig. 16](image-url) **Fig. 16.** (Color online) High-energy level scheme of 137Cs. States of structure C are drawn with \times and those of structure D with \ast. The SM states from the $(\pi g_{7/2} \pi d_{5/2})^3(\pi h_{11/2})^2$ configuration are drawn with circles.

Results of calculation performed for 139La are shown in Fig. 17 (see the circles), where we have drawn one or two states for each spin value. First of all, it is important to notice that the positive-parity yrast line is different from the results obtained in 137Cs. Indeed several states of 139La are found at lower energy and can now take part to the yrast decay, such as the $9/2^-_1$, $13/2^-_1$, and $19/2^-_1$ states. This change is related to the discussion done in Sec. IV B. It is worth noting that the $15/2^+_1$ state is predicted to lie 20 keV below the $17/2^+_1$ state, thus the latter would not exhibit any delayed decay. This is at variance with the experimental results showing an isomeric state with $T_{1/2} = 315$ ns. We surmise that the energy of the $15/2^+_1$ state is predicted slightly too low. Such a discrepancy is in agreement with the observed deviations between the experimental and calculated energies, see for...
the SM calculations are those of Ref. [2].

gies of the yrast states of 139La. The states predicted by the SM calculations are drawn with circles. The new experimental states identified in this work are drawn with crosses. The experimental states, which were used to fit the two-body matrix elements (see text), are drawn with asterisks.

FIG. 17. (Color online) Excitation energy as a function of angular momentum of the states of 139La. The states predicted by the SM calculations are drawn with circles. The new experimental states identified in this work are drawn with crosses. The experimental states, which were used to fit the two-body matrix elements (see text), are drawn with asterisks.

TABLE X. Comparison of experimental and calculated energies of the yrast states of 139La. The TBME values used in the SM calculations are those of Ref. [2].

I*	E_{exp} (keV)	E_{SM} (keV)	E_{exp}-E_{SM} (keV)
7/2+	0	0	0
5/2+	106	109	+57
9/2+	1381	1394	-13
11/2-	1420	1382	+38
11/2+	1537	1538	-1
13/2+	1711	1756	-45
15/2+	1832		
17/2+	1800	1852	-52
13/2-	1962	1933	+29
15/2-	2032	1991	+41
19/2-	2885	2915	-30
17/2-	2917	2882	+35
19/2-	3060	3085	-25
19/2+	3150	3115	+35
21/2+	3175	3218	-43
23/2+	3184	3287	-103
23/2-	3305	3384	-79
21/2-	3364	3518	-154
25/2+	4116	4214	-98
27/2-	4627	4765	-138

All the experimental states observed below 4116 keV have a theoretical counterpart (see the stars and the crosses in Fig. 17). For the 15/2+ states, only one experimental level is proposed at 2032 keV, which is close to the prediction of the 15/2_+ state. The fact that the 15/2_+ state was not populated in our experiment could be explained by its configuration, (πg_{7/2})^{6}(πd_{5/2})^{1}, which is different from the one of the states lying above it: The 17/2_+ and 19/2_+ states have the same configuration, (πg_{7/2})^{5}(πd_{5/2})^{2}. It is important to note that the experimental 21/2_+ and 23/2_+ states are located at lower energies than the calculated ones, the deviations being ~ 100 keV (Table X). This could be related to interactions between the states due to proton excitations among the πg_{7/2} and πd_{5/2} orbits (belonging to the valence space used in the SM calculations) and the states of Structure C (see Fig. 3).

Finally, the states of Structure C would be likely due to the breaking of the neutron core, as the corresponding states of 137Cs. Nevertheless since the high-spin states having a broken proton pair in the πh_{11/2} orbit are predicted at lower energy than in 137Cs (about 600 keV less), we expect large mixings of these two excitation modes in 139La.

3. Conclusion

This set of empirical effective interactions within the proton valence space including all the orbits of the 50-82 major shell describes well the yrast states of the five isotones studied in the present work, both the even-Z and the odd-Z ones. The deviations between experimental and calculated energies are mostly below 50 keV, that is well better than the values obtained for SM calculations using effective interactions derived from nucleon-nucleon potential, such as done for one prediction of the yrast states of 137Cs (see Table II of Ref. [17]). The latter approach is broader since it can be used in all the valence spaces, thus it would be interesting to compare the numerical values of the two sets in order to find whether some particular TBME are at the origin of the better description and to understand why they would be unsatisfactorily calculated from nucleon-nucleon potential.

D. Neutron-core excitation

The neutron excitation of the doubly-magic 132Sn nucleus gives rise to its first positive-parity excited states: The multiplet from the (νh_{11/2})^{-1}(νf_{7/2})^{+1} configuration was measured in the 4-5 MeV energy range, with spin values extending from 2+ to 9+ [30, 31]. In 134Te, states with higher spin values are obtained as this first neutron-core excitation can be coupled to the breaking of the proton pair [30] [see the red circles in Fig. 18(a)]. The states of 136Xe, drawn with crosses in Fig. 18(a), extend from 4379 keV [I^e = (8+)] to 7946 keV [I^e = (17+)]. The states of 138Xe extending from 5740 keV [I^e = (11+)] to 6656 keV [I^e = (14+)] are in
good agreement with those of the lighter isotones [see the green triangles in Fig. 18(a)]. The closeness of the states of 134Te, 136Xe, and 138Ba involving the neutron-core excitation is due to the stability of the gap in energy between the $\nu h_{11/2}$ and the $\nu f_{7/2}$ orbits, as shown in Fig. 38 of Ref. [32].

For the breaking of the neutron core in the odd-Z isotones, we compare in Fig. 18(b) the states of 135I lying between 4241 keV and 5576 keV [3] and those of Structure C of 137Cs, both of them being not described by SM calculations within the proton space (see Ref. [3] and Sec. IV C 2). They show the same behavior and are in good agreement with the corresponding states of the even-Z isotones.

Even though the configurations of the highest-spin states of 137Cs and 138Ba observed in the present work can be $(\pi g_{7/2}\pi d_{5/2})^5(\pi h_{11/2})^2$ and $(\pi g_{7/2}\pi d_{5/2})^4(\pi h_{11/2})^2$, respectively (see Sects. IV C 2 and [VC 2]), we cannot exclude other configurations involving the breaking of the neutron core, such as $(\pi g_{7/2}\pi d_{5/2})^5(\nu h_{11/2})^{-1}(\nu f_{7/2})^{+1}$ and $(\pi g_{7/2}\pi d_{5/2})^6(\nu h_{11/2})^{-1}(\nu f_{7/2})^{+1}$, respectively.

V. SUMMARY

Five $N = 82$ isotones have been produced as fission fragments in two fusion reactions, 12C + 238U at 90 MeV and 18O + 208Pb at 85 MeV. Their high-spin level schemes have been built by analyzing the triple γ-ray coincidence data obtained with the Euroball array. In order to identify the new transitions of 139La, we have used their coincidences with the lines emitted by its complementary fragments. Moreover, the use of the fission-fragment detector, SAPhIR, has allowed us to identify a new isomeric state in 139La, at 1800-keV excitation energy. Spin and parity values of several excited states of 136Xe and 137Cs could be assigned from the results of $\gamma-\gamma$ angular correlations. All the states observed in these $N = 82$ isotones have been compared to results of shell model calculations performed in the 50-82 proton valence space and using empirical effective interactions which had been fitted on previous experimental data. Most of the yrast states of the five $N = 82$ isotones are very well described by this approach. In addition, the excitation of the $N = 82$ core gives rise to several structures which have been clearly identified in 136Xe, 137Cs, and 138Ba.

ACKNOWLEDGMENTS

The Euroball project was a collaboration among France, the United Kingdom, Germany, Italy, Denmark and Sweden. The first experiment has been performed under U.E. contract (ERB FHGECT 980 110) at Legnaro. The second experiment has been supported in part by the EU under contract HPRI-CT-1999-00078 (EURO-VIV). We thank many colleagues for their active participation in the experiments, Drs. A. Bogachev, A. Buta, J.L. Durell, Th. Ethvignot, F. Khalfalla, I. Piqueras, A.A. Roach, A.G. Smith and B.J. Varley. We thank the crews of the Vivitron. We are very indebted to M.-A. Saettle for preparing the Pb target, P. Bednarczyk, J. Devin, J.-M. Gallone, P. Médina, and D. Vintache for their help during the experiment.

[1] B. H. Wildenthal, in Understanding the Variety of Nuclear Excitations: Proceedings of the 3rd International Spring Seminar on Nuclear Physics, Ischia, 1990, edited by A. Covello (World Scientific, Singapore, 1991) p. 35.
[2] J. Blomqvist, Acta Phys. Polon. B30, 697 (1999).
[3] C.T. Zhang et al., Phys. Rev. Lett. 77, 3743 (1996).
[4] P.J. Daly et al., Phys. Rev. C 59, 3066 (1999).
[5] R. Broda et al., Phys. Rev. C 59, 3071 (1999).
[6] J. Simpson, Z. Phys. A 358, 139 (1997) and F. A. Beck Prog. Part. Nucl. Phys. A 28, 443 (1992).
[7] J. Eberth et al., Nucl. Instrum. Methods A 369, 135 (1996).
[8] G. Duchène et al., Nucl. Instrum. Methods A 432, 90 (1999).
[9] D. Radford, Nucl. Instrum. Methods A 361, 297 and 306 (1995).
[10] M.A.C. Hotchikis et al., Nucl. Phys. A530, 111 (1991).
[11] M.-G. Porquet et al., Acta Phys. Polonica B 27, 179 (1996).
[12] R. Lucas et al., Eur. Phys. J. A 15, 315 (2002).
[13] M.-G. Porquet et al., Eur. Phys. J. A 24, 39 (2005).
[14] Ch. Theisen et al., Proceedings of the 2nd International Workshop on Nuclear Fission and Fission Product Spectroscopy, Seyssins, France, April 1998, AIP Conf. Proc. 447, 143 (1998).
[15] A. Astier et al., Eur. Phys. J. A 30, 541 (2006).
[16] M.-G. Porquet et al., Phys. Rev. C 84, 054305 (2011).
[17] K. Li et al., Phys. Rev. C 75, 044314 (2007).
[18] ENSDF database, http://www.nndc.bnl.gov/ensdf/.
[19] J.K Hwang et al., Phys. Rev. C 58, 3252 (1998).
[20] H. Prade, W. Enghardt, H.U. Jäger, L. Käubler, H.-J. Keller, and F. Stary, Nucl. Phys. A370, 47 (1981).
[21] H. Prade et al., Nucl. Phys. A472, 381 (1987).
[22] P.H. Regan et al., Acta Phys. Polonica B 36, 1313 (2005).
[23] W. Enghardt, H.U. Jäger, L. Käubler, H.-J. Keller, H. Prade and F. Stary, Nucl. Phys. A449, 417 (1986).
[24] I. Talmi, Simple Models of Complex Nuclei (Harwood Academic Publishers, Chur, Switzerland, 1993).
[25] A. Astier and M.-G. Porquet, Phys. Rev. C 83, 034302 (2011).
[26] M.-G. Porquet et al., Eur. Phys. J. A 20, 245 (2004).
[27] B. H. Wildenthal, Phys. Rev. Lett. 22, 1118 (1969).
[28] B. H. Wildenthal and D. Larson, Phys. Lett. 37B, 266 (1971).
[29] E. Caurier and F. Nowacki, Acta Phys. Pol. B 30, 705 (1999).
[30] B. Fogelberg et al., Phys. Scr. T56, 79 (1995).
[31] P. Bhattacharyya et al., Phys. Rev. Lett. 87, 062502 (2001).
[32] O. Sorlin and M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).