A Note on Contractible Edges in Chordal graphs

N.S.Narayanaswamy, N.Sadagopan, and Apoorve Dubey

Department of Computer Science and Engineering, Indian Institute of Technology, Chennai-600036, India.

{{swamy,sadagopu}@cse.iitm.ac.in, apoorvedubey82@gmail.com}

Abstract. Contraction of an edge merges its end points into a new vertex which is adjacent to each neighbor of the end points of the edge. An edge in a k-connected graph is contractible if its contraction does not result in a graph of lower connectivity. We characterize contractible edges in chordal graphs using properties of tree decompositions with respect to minimal vertex separators.

1 Introduction

Chordal graphs are also known as triangulated graphs [3] and have applications in the study of linear sparse systems, scheduling and relational database systems. In this paper, we focus on k-connected chordal graphs. We study the impact of contraction on connectivity in k-connected chordal graphs. In a graph G, contraction of an edge e with endpoints u, v is the replacement of u and v with a single vertex z. In the resulting graph, the edges incident on u and v are incident on z. Edge contraction and in general clique contraction plays a significant role in the proof of the Perfect Graph Theorem, see [8]. Edge contraction also plays a significant role in min-cut algorithms by using the basic property that the contraction of an edge can only increase the size of the min-cut. The basic idea exploited in randomized algorithms for min-cut is that contracting a randomly chosen edge does not increase the size of the min-cut [9]. This leads to expected polynomial time algorithms for min-cut, and these algorithms are fundamentally different from the classical max-flow based techniques.

1.1 Past Results on Contractible Edges

As with many a problem in Graph Theory, the study of contractible edges was initiated by Tutte in [7] where a constructive characterization of 3-connected graphs was presented. One consequence of this characterization was that in any 3-connected graph with at least five vertices, there is at least one contractible edge. In the work by Saito et. al [6], this lower bound was improved to $\frac{|V(G)|}{2}$, and the structure of graphs that have exactly so many contractible edges is studied. For k-connected graph with $k \geq 4$, it is still ongoing research to find necessary and sufficient conditions for the presence of contractible edges. For example, Thomassen [2] has shown that there is a contractible edge in triangle-free k-connected graphs in which the minimum degree is more than $\frac{2k-3}{2}$. Kriesell’s
survey of contractible edges [4] is an excellent source for many results in this area, and is also the motivation point of our work.

1.2 Definitions

We have, to a large extent, followed the notation and definitions as in the Graph Theory text by West[1]. Let $G = (V, E)$ be an undirected non weighted graph where $V(G)$ is the set of vertices and $E(G) \subseteq \{\{u, v\}|u, v \in V(G), u \neq v\}$. Order of G and size of G are $|V(G)|$ and $|E(G)|$, respectively. The neighborhood of a vertex v in a graph G is the set $\{u|\{u, v\} \in E(G)\}$ and is denoted by $N_G(v)$. A separating set or cut set of a graph G is a set $S \subseteq V(G)$ such that the induced subgraph, denoted by $G - S$, on the vertex set $V(G) \setminus S$ has more than one connected component. The vertex connectivity of a graph G, written $\kappa(G)$, is the minimum cardinality of a vertex set S such that $G - S$ is disconnected or has only one vertex. γ_G is the set of all minimum order cut sets. We let $G.e$ denote the graph obtained by contracting an edge $e = \{u, v\}$ in G such that $V(G.e) = V(G) \setminus \{u, v\} \cup \{z_{uv}\}$ and $E(G.e) = \{\{z_{uv}, x\}|\{u, x\} \in E(G)\} \cup \{\{x, y\}|x \neq u, y \neq v \in E(G)\}$. An edge $e \in E(G)$ is contractible if the connectivity of $G.e$ is same as the connectivity of G. $E_c(G)$ denotes the set of contractible edges in G. A k-connected graph G is said to be contraction critical, if for each edge e, connectivity of $G.e$ is smaller than the connectivity of G. The following lemma relates cut sets and contractible edges [4].

Lemma 1. An edge $e = \{u, v\}$ of G is non contractible if and only if there is a minimum cut set $T \in \gamma_G$ such that $u \in T$ and $v \in T$.

A tree decomposition of a graph $G = (V, E)$ is a tree T, where each node x has a label $l(x) \subseteq V(G)$ such that:

- $\bigcup_{x \in V(T)} l(x) = V(G).$(We say that "all vertices are covered.")
- For any edge $\{v, w\} \in E(G)$, there exists a node x in T such that $v, w \in l(x).$(We say that "all edges are covered.")
- For any $v \in V(G)$, the set of all nodes of T whose label contains v form a connected subtree in $T.$(We call this the "connectivity condition")

Chordal Graph Preliminaries

A **chord** of a cycle C is an edge not in C whose endpoints lie in C. A **chordless cycle** in G is a cycle of length at least 4 in G that has no chord. A graph G is **chordal** if it is simple and has no chordless cycle. We can represent a chordal graph G using a tree decomposition T as follows: for each vertex $x \in V(T)$ the associated label $l(x) \subseteq V(G)$ induces a maximal clique in G, and for each $v \in V(G)$, T_v, the subgraph of T induced by the set $\{x \in V(T)|v \in l(x)\}$, is a tree. We use M to denote the set of minimal vertex separators of G, and the graph to which the symbol M applies is always clear from the context. A stable (or independent) set is a set of pairwise nonadjacent vertices of the graph G. A **split** graph G is a graph with two partitions, a stable set I and a clique K.
such that $V(G) = I \cup K$. $E(G) \subseteq \{\{u, v\} | u \in I, v \in K\}$. For a chordal graph G and its tree decomposition T, a minimal vertex separator S, and an edge $e \in E(G)$, we consider fixed tree decompositions of $G \setminus S$ and G, e, denoted by $T \setminus S$ and T, e, respectively. $T \setminus S$ and T, e are defined as follows: The vertex set of both $T \setminus S$ and T, e are same as the vertex set of T. The removal of S and the contraction of e only changes the labels associated with the vertices. In $T \setminus S$, for each $x \in V(T \setminus S)$, we write $l(x) = l(x) \setminus S$, if $S \cap l(x) \neq \phi$, otherwise $l(x)$ is the same set as in T. In T, e, for each $x \in V(T, e)$, $l(x) = l(x) \setminus \{u, v\} \cup \{z_{uv}\}$, if $l(x) \cap \{u, v\} \neq \phi$. Otherwise, $l(x)$ is the same set as in T. Clearly, $T \setminus S$ and T, e are tree decompositions of $G \setminus S$ and G, e, respectively.

2 The Structure of Contractible edges in k-connected Chordal Graphs

We first prove a theorem which characterizes the set of minimal vertex separators of a chordal graph. This result is used subsequently to prove our characterisation of contractible edges in chordal graphs.

Lemma 2. Let G be a chordal graph and T be its tree decomposition. G is connected iff for each edge $\{x, y\} \in E(T)$, $l(x) \cap l(y) \neq \phi$.

Proof. Necessity: If G is connected then we need to show that for each edge $\{x, y\} \in E(T)$, $l(x) \cap l(y) \neq \phi$. We prove this by contradiction. Suppose there exists an edge $\{x, y\} \in E(T)$ and $l(x) \cap l(y) = \phi$. Consider the two components C_1 and C_2 obtained by removing the edge $\{x, y\}$. Assume that $x \in C_1$ and $y \in C_2$. Let $A = \bigcup_{z \in C_1} l(z)$, $B = \bigcup_{z \in C_2} l(z)$. Since T is a tree decomposition and $l(x) \cap l(y) = \phi$, it follows that $A \cap B = \phi$. Further, each edge $e \in E(G)$ is contained in the graph induced by A or B but not both. Hence G is disconnected. However, by our hypothesis G is connected. Hence our assumption is wrong. Therefore, if G is connected then for each edge $\{x, y\} \in E(T)$, $l(x) \cap l(y) \neq \phi$.

Sufficiency: Given that for each edge $\{x, y\} \in E(T)$, $l(x) \cap l(y) \neq \phi$, we now show that G is connected. We show that $\forall u, v \in V(G), u \neq v$, there exists a path between u and v in G. Let x, y be any two vertices in $V(T)$ such that $u \in l(x)$ and $v \in l(y)$. Consider the path $x = z_1, z_2, ..., z_j = y$ in the tree T. Further, $l(z_i) \cap l(z_{i+1})$ is non empty in T. This implies that there exists a vertex $r_i \in l(z_i) \cap l(z_{i+1})$. Hence the sequence of edges $\{u, r_1\} \{r_1, r_2\} ... \{r_{j-1}, v\}$ is a uv path in G. The reason this is true in G is because G is a chordal graph and label of each node in T is a maximal clique. Therefore u and v are connected in G. Hence G is connected.

Note: For a simple graph G and any tree decomposition T, if G is connected then for each edge $\{x, y\} \in E(T)$, $l(x) \cap l(y) \neq \phi$.

Theorem 1. Let G be a k-connected chordal graph and let T be its tree decomposition. Let $M' = \{X | X = l(x) \cap l(y) \text{ where } \{x, y\} \in E(T)\}$ and $M'' = \{Y | Y \in M' \text{ and for all } Z \in M', Z \not\subset Y\}$. $M = M''$. In other words, M'' is the set of minimal vertex separators of G.
Theorem 2. Let G be a k-connected chordal graph with $|V(G)| \geq (k + 2)$. An edge $e = \{u, v\} \in E(G)$ is contractible if and only if one of the following holds:

(i) e is in a unique maximal clique in G

(ii) For $x, y \in V(T)$, $\{u, v\} \subseteq l(x) \cap l(y)$ and $\{x, y\} \in E(T)$, $|l(x) \cap l(y)| > k$.

Proof. Necessity:
(i): Given that e is contractible implies that $G.e$ is k-connected. If e is in a unique maximal clique in G, then we are done. In the case when e is not in a unique maximal clique, let $e \in l(x) \cap l(y)$ for some $\{x, y\} \in E(T)$. We now show that $|l(x) \cap l(y)| > k$. We prove this claim by contradiction. Let us assume that $|l(x) \cap l(y)| \leq k$. On contraction of e in G, the tree decomposition of $G.e$ is $T.e$. In $T.e$, the $|l(x) \cap l(y)| \leq k - 1$. From lemma 2 it follows that that $l(x) \cap l(y)$ is a vertex separator of $G.e$, and since $|l(x) \cap l(y)| \leq k - 1$, it follows that $G.e$ is $k - 1$-connected. This is a contradiction to the hypothesis that $G.e$ is k-connected. Therefore, our assumption that $|l(x) \cap l(y)| \leq k$ is wrong. It follows that $|l(x) \cap l(y)| > k$.

Sufficiency: First, we consider the case when e is in a unique maximal clique and show that e is contractible. If e is in a unique maximal clique in G implies that e is contained in the label of a unique node in T. Therefore, for each $x, y \in T$, $|l(x) \cap l(y)|$ remains unchanged in $T.e$. From theorem 1 the connectivity of $G.e$ is at least as much as the connectivity of G. Therefore, e is contractible. In the case when $|l(x) \cap l(y)| > k$ for all $\{x, y\} \in E(T)$, after contracting e, in $T.e$ $|l(x) \cap l(y)|$ is at least k and hence the connectivity of $G.e$ is at least k, by theorem 1. Hence $G.e$ is k-connected. Therefore, e is contractible in G.

As a consequence of this lemma, it follows that each edge incident on a simplicial vertex in a k-connected chordal graph is contractible. Therefore, a k-connected
chordal graph has at least $2k$ contractible edges. We now apply the main lemma to understand contractible edges in split graphs. Let G be a non regular split graph. An edge $e = \{u, v\}$ such that $u \in K$ and $v \in I$ is contractible. Clearly such an edge e is in a unique maximal clique in G. By theorem 2 e is contractible.

For the case when G is a regular k-connected split graph with at least $k + 2$ vertices, it follows that G is contraction critical, that is none of the edges of G are contractible. The reason is that, given that G is regular implies that there is exactly one vertex in I. Thus the resulting graph is a complete graph and each edge in every complete graph is non contractible. Therefore, G is contraction critical.

References

1. Douglas B.West. Introduction to graph theory. Prentice Hall of India, (2003).
2. C.Thomassen. Non-separating cycles in k-connected graphs. *Journal of Graph Theory, Vol No-5, 351-354*, (1981).
3. D.J.Rose. Triangulated graphs and elimination process. *Journal of Mathematical Analysis and Applications, 32, 597-609*, (1970).
4. Matthias Kriesell. A survey on contractible edges in graphs of a prescribed vertex connectivity. *Graphs and Combinatorics, 18, 1-30* (2002).
5. Andrzej Proskurowski. Recursive graphs, recursive labelings and shortest paths. *SIAM Journal of Computing, Vol.10, No.2, 391-397*, (1981).
6. "Akira Saito, K.Ando, and H.Enomoto”. Contractible edges in 3-connected graphs. *Journal of Combinatorial Theory-B, Vol No-42, No-1*, (1987).
7. W.T.Tutte. A theory of 3-connected graphs. *Indag.Math, 23, 441-455*, (1961).
8. M.C.Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.
9. Yang.D, Kazuo.I, and Naoki.K. A new probabilistic analysis of karger’s randomized algorithm for min-cut problems. *Information Processing Letters, Vol 64, Issue 5, 255-261*, 1997.