Mutational Analysis of Two Highly Conserved UGG Sequences of 23 S rRNA from Escherichia coli*

(Received for publication, July 2, 1996, and in revised form, September 12, 1996)

Christian M. T. Spahn‡, Jaanus Remme§, Markus A. Schäfer‡, and Knud H. Nierhaus¶§

From the ‡Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany and the §Institute of Molecular and Cell Biology, Tartu University, Riia 23, EE-2400 Tartu, Estonia

The 23 S-type rRNA contains two phylogenetically conserved UGG sequences, which have the potential to bind the universal CCA-3′-ends of tRNAs at the ribosomal peptidyltransferase center by base pairing. The first two positions, UG, of these sequences at the helix-loop 80 (U2249G2250) and helix-loop 90 (U2507G2581) and some related nucleotides were tested by site-directed mutagenesis for their involvement in ribosomal function, i.e. peptidyltransferase. The plasmid-derived mutated 23 S rRNA comprised about 50% of the total 23 S rRNA. None of the single mutations caused an assembly defect, and all 50 S subunits carrying an altered 23 S rRNA could freely exchange with the pools of 70S ribosomes and polysomes. The mutations at the helix-loop 80 region hardly affected bacterial growth. However, mutations at the helix 90 caused severe growth effects and severely impaired the in vitro protein synthesis, showing that this 23 S rRNA region is of high importance for ribosomal function.

The central enzymatic activity of ribosomes is the formation of peptide bonds. The corresponding peptidyltransferase (PTF) center is located on the large ribosomal subunit (1, 2). Reconstitution analyses have identified the ribosomal proteins L2, L3, and L4, and the 23 S rRNA as PTF candidates in Escherichia coli ribosomes (3–5). A complex derived from the large subunit of Thermus aquaticus ribosomes consisting of 23 S rRNA and only two of which are universally conserved in non-mitochondrial 23 S-type rRNA, and are therefore candidates for binding the universal CCA-3′-end of tRNAs, possibly via canonical base pairing. One of these UGG sequences is U2249G2250 at helix-loop 80, and the other is U2507G2581 at helix 90, adjacent to the PTF ring. The U (Ψ) and the middle G were mutated in both sequences, and the effects on growth, expression, ribosomal assembly, and functions were studied in this and the accompanying paper (28).

MATERIALS AND METHODS

Plasmids and Strains—The plasmid pNO2680 contains the E. coli rnrB operon under the control of the λ leftward promoter (29). This plasmid with the single point mutation A1067U in the 23 S rRNA gene (30) is called pNOt. Plasmids ptac-1 and ptac-2 carry the rnrB operon or the 23 S rRNA gene, respectively, under control of the tac-promoter (31). Plasmids ptac-1 and ptac-2 also contain the A1067U mutation that confers thiostrepton resistance. E. coli C2326 (dut1, ung1, thi-1, relA1) was used for the preparation of uracil containing single-stranded DNA template for site-directed mutagenesis, and strain XL-1 Blue was used for propagating the M13 derivatives as well as the plasmids ptac-1 and ptac-2. XL-1 transformed with pC857, which encodes the temperature-sensitive λ repressor and a neomycin resistance marker, was the host of the pNO2680 derivatives.

Site-directed Mutagenesis—The EcoRI-BamHI fragment, containing the 3′ part of the rnrB 23 S rRNA gene, was cloned into M13mp18 and used for oligo-directed construction (32) of the mutations U2249C, G2250A, G2250U, G2250T, U2507C, G2581A, and G2250A/C2254U. The double mutation C2507U/G2581A was constructed taking advantage of an M13mp18 derivative already carrying the mutation G2581A as a template for the introduction of the second mutation, C2507U. The EspI-PstI fragments containing the base changes G2581A and G2250A were cloned into ptac-1 by performing a partial restriction of

* This work was supported by DFG Grant Ni1747–1 and EC Grant ERBCIPA CT930136. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Tel.: 49-30-8413-1217; Fax: 49-30-8413-1380; E-mail: nierhaus_kh@mpig-berlin-dahlem.mpg.de.

§ The abbreviation used is: PTF, peptidyltransferase.
the vector with PvuII. The other mutants were cloned into ptc-2 using BamHI and EcoXI. The EspI-XbaI fragment of the mutated ptc-1 or ptc-2 vectors was cloned into pNO2680, yielding a pNO2680 derivative carrying the A1067U mutation as well as the mutation in domain V of the 23S rRNA gene. All base changes were verified by DNA sequencing (33) of the M13 inserts and the reconstructed expression vectors. The DNA manipulations followed standard procedures (34, 35), and competent cells for plasmid transfection were prepared according to the SEM protocol (36).

Polysome Preparation and Quantification of Plasmid-born 23S rRNA—100 ml of 2× YT (16 g/liter tryptone, 10 g/liter yeast extract, 5 g/liter NaCl) supplemented with 0.2 mg/ml ampicillin and 0.05 mg/ml neomycin was inoculated with XL-1/pCI857 transformed with the pNO derivatives. Cultures were grown until \(A_{560} = 0.1 \) and then shifted to

Fig. 1. Schematic representation of the secondary structure of the domain V of E. coli 23S rRNA according to Ref. 44. Helix 80 and helix 90 containing the two highly conserved UGG sequences are highlighted and enlarged. Site-specific protections by or cross-links to tRNAs are indicated by colored arrows, RNA regions cross-linked to puromycin are in blue, and nucleotides at or near the binding site of antibiotics identified by cross-links, protections, or resistance mutations are in red (for review see Refs. 8, 9, 14, 16, and 20)
42 °C. After 90 min at 42 °C, the cultures were poured over crushed ice. The cells were pelleted and resuspended in 1 ml of buffer A (20 mM Tris-HCl (pH 8.0 at 0°C), 6 mM MgCl₂, 100 mM KCl) containing 16% (w/v) sucrose and lysozyme (0.5 mg/ml), and broken by freezing and thawing. Lysates were applied onto a 10–40% sucrose gradient in binding buffer (20 mM Hepes-KOH (pH 7.6), 6 mM MgCl₂, 150 mM NH₄Cl, 4 mM β-mercaptoethanol, 2 mM spermidine, and 0.05 mM spermine. Long poly(U) chains used in this system were isolated over a Sephacryl S-400 gel filtration column. In a volume of 225 µl, 45 pmol of 70 S ribosomes were incubated with 67.5 pmol of [³²P]AcPhe-tRNA³⁰⁰ (1,030 dpm/pmol) and 55 µg of poly(U) for 30 min at 37 °C. Where indicated, thiostrepton was added to a final concentration of 1.6 µM. Two aliquots of 25 µl containing 5 pmol of 70 S were withdrawn and filtered over nitrocellulose to determine the amount of AcPhe-tRNA³⁰⁰ bound to ribosomes. Poly(Phe) synthesis was started by mixing the rest of the binding mix (35 pmol of 70 S ribosomes) with 105 µl of charging mix (preincubated for 2 min, 37 °C) containing 31.5 µl of 100,000 × g supernatant enzymes freed from tRNA, 0.2 mM GTP, 2 mM ATP, 4 mM phosphoenolpyruvate, 10.5 µg of pyruvate kinase, 350 pmol of tRNA³⁰⁰, and 70,000 pmol of [³²P]Phe (22 dpm/pmol). Aliquots of 25 µl were withdrawn at the indicated times, and the reaction was stopped by hot trichloroacetic acid precipitation.

RESULTS

Construction of Mutants, in Vivo Effects and Distribution of Mutant rRNA—The two highly conserved UGG sequences in 23 S rRNA, UGG2582 and UGG2251, are shown in Fig. 1. The mutations C2507U, C2581A, and C2507U/C2581A are located in helix 90, and U2249C, C2250A, C2254U, and C2250A/G2254U are in helix-loop 80. C2507Δ/G2581A was obtained by chance and was included in the further analysis. The plasmids pNO2680 (29) and ptac-1 or ptac-2 (31) were used as expression vectors. ptac-1 contains the crrb operon and, ptac-2 contains the 3’ part of the crrb operon, including the gene for 23 S rRNA. Both genes are under the control of the isopropyl-1-thio-D-galactopyranoside-inducible tac promoter and contain the mutation A1067U of 23 S rRNA, which confers resistance to thiostrepton. pNO2680 contains the crrb operon under the control of the λ leftward promoter λ₉L. The promoter was blocked by the heat-labile Cλ₉L repressor that was supplied by the plasmid pCI₉L. For the sake of clarity, we call the pNO2680 plasmid pNO(wt), where wt stands for wild type. The derivative pNOt carries the A1067U mutation in the 23 S rRNA gene (pNOt, where t stands for thiostrepton resistance (30)). The effects of mutations under the control of the tac promoter (ptac derivatives) were tested by streaking the cells on plates in the absence or presence of isopropyl-1-thio-D-galactopyranoside, whereas the plates with the mutations under the λ₉L promoter (pNOt derivatives) were incubated at 30 or 42 °C. Cells containing the mutation C2507U, G2581A, C2507U/G2581A, and C2507A/G2581A were not able to form colonies when expressed, i.e., the mutations were dominant lethal. pNOt2580C showed a reduced size of the colonies when expressed from ptac-2 but grew well when expressed from pNOt. All the mutations within helix-loop 80 grew normal. The type of induction had no effect on the expression with the exception of pNOt2580C.

The constructs C2507U, G2581A, C2507U/G2581A, and C2507A/G2581A in pNOt also showed a reduced growth in liquid cultures. When expression was induced at a cell density of A₅₆₀ = 0.2 by shifting the temperature from 30 to 42 °C, the growth was severely reduced after one dilution of the culture, and the doubling time was enlarged by a factor of two to three as compared with that of the wild type or the 1067U control. However, after prolonged incubation at 42 °C, we observed that the cells resumed a normal growth rate, and after streaking

Two Universally Conserved UGG Sequences in 23S rRNA

C. M. T. Spahn and K. H. Nierhaus, unpublished result.

Fig. 2. Sucrose gradient patterns from S30 lysates of XL1-Blue/pCIB857/pNOt (A) and XL1-Blue/pCIB857/pNOtG2581A (B).

Preparation of Ribosomes—E. coli XL1-3/pCIB857 transformed with the pNO plasmids were grown at 30 °C in 2 × YT (16 g/liter tryptone, 10 g/liter yeast extract, 5 g/liter NaCl) supplemented with 0.2 mg/ml ampicillin to A₅₆₀ = 0.2. Neomycin was omitted in the preparative culture because it interferes with the thiostrepton resistance of the isolated A1067U ribosomes, but it was added to 0.05 mg/ml in all stages before. The culture was shifted to 42 °C to induce synthesis of the plasmid-borne rRNA. After 2 h, cells were collected and lysed by lysozyme (0.5 mg/ml) in buffer A (20 mM Tris-HCl (pH 8.0), 6 mM MgCl₂, 100 mM KCl) containing 16% (w/v) sucrose by three freeze-thaw cycles. S-30 lysate was prepared by centrifugation at 12,000 × g for 30 min in an SA600 rotor (Sorvall). The volume of the lysate was enlarged fourfold, and the final concentrations were 20 mM Hepes-KOH (pH 7.6), 6 mM MgCl₂, 500 mM NH₄Cl, and 4 mM β-mercaptoethanol. The sample was loaded onto a 5-ml sucrose cushion (20% sucrose in 20 mM Hepes-KOH (pH 7.6), 6 mM MgCl₂, 500 mM NH₄Cl, 4 mM β-mercaptoethanol) in a Beckman SW-40 rotor, and the ribosomal particles were pelleted by centrifugation at 55,000 × g for 20 h. The crude ribosomes were redissolved in standard buffer (20 mM Hepes-KOH (pH 7.6), 6 mM MgCl₂, 150 mM NH₄Cl, 4 mM β-mercaptoethanol), loaded onto a 10–30% (w/v) sucrose gradient in standard buffer, and centrifuged in a Beckman SW-27 rotor for 17 h at 40,000 × g. The fractions containing 70 S ribosomes were combined, and the ribosomes were pelleted in a Beckman SW-40 rotor by centrifugation at 55,000 × g for 20 h. Pellets were redissolved in standard buffer, shock-frozen in liquid nitrogen, and stored in aliquots at −80 °C.

Cell-free Protein Synthesis—The protocol essentially followed Bartetzkko and Nierhaus (38) with the modifications of Rheinberger and Nierhaus (39). The ionic conditions in all steps were 20 mM Hepes-KOH (pH 7.6), 3 mM MgCl₂, 150 mM NH₄Cl, 4 mM β-mercaptoethanol, 2 mM spermidine, and 0.05 mM spermine. Long poly(U) chains used in this system were isolated over a Sephacryl S-400 gel filtration column. In a volume of 225 µl, 45 pmol of 70 S ribosomes were incubated with 67.5 pmol of [³²P]AcPhe-tRNA³⁰⁰ (1,030 dpm/pmol) and 55 µg of poly(U) for 30 min at 37 °C. Where indicated, thiostrepton was added to a final concentration of 1.6 µM. Two aliquots of 25 µl containing 5 pmol of 70 S were withdrawn and filtered over nitrocellulose to determine the amount of AcPhe-tRNA³⁰⁰ bound to ribosomes. Poly(Phe) synthesis was started by mixing the rest of the binding mix (35 pmol of 70 S ribosomes) with 105 µl of charging mix (preincubated for 2 min, 37 °C) containing 31.5 µl of 100,000 × g supernatant enzymes freed from tRNA, 0.2 mM GTP, 2 mM ATP, 4 mM phosphoenolpyruvate, 10.5 µg of pyruvate kinase, 350 pmol of tRNA³⁰⁰, and 70,000 pmol of [³²P]Phe (22 dpm/pmol). Aliquots of 25 µl were withdrawn at the indicated times, and the reaction was stopped by hot trichloroacetic acid precipitation.
them onto plates, they were also able to form single colonies at 42 °C. We pursued this effect a little further with the mutant G2581A. A second site mutation in the plasmid was responsible for the observed effect. 2

The severe growth effects seen with some of the mutants must not necessarily be due to ribosomes defective in a distinct essential function but rather due to assembly effects preventing the formation of active ribosomes. A sensitive measure for assembly defects are sucrose-density profiles of S30 extracts. Assembly defects will lead to accumulation of precursor particles and distort in a characteristic way the profile derived from wild-type cells (31). S30 extracts were prepared from all pNOt constructs; the profiles of all the mutants were indistinguishable from that of the wild type. An example is shown in Fig. 2. None of the mutants, therefore, affected the assembly of 50 S ribosomal subunits.

50 S particles, 70 S ribosomes, and polysomes were isolated from sucrose gradients as indicated in Fig. 2. The 23 S rRNA was isolated from all fractions, and the relative amount of the mutant 23 S rRNA in the polysomal fraction indicates that the functional turnover of mutant 50 S subunits. A reduced relative amount of the mutant 23 S rRNA in the polysomal fraction indicates that the functional turnover of mutant 50 S subunits in the ribosomal cycle is impaired. Possible reasons are a hampered capability to form initiation complexes, a reduced processivity, and/or an increased tendency toward framshifts, which will cause a premature termination at out-of-frame stop codons.

A summary of the growth effects and the relative amounts of the various mutant 23 S rRNAs in the 70 S subunits, 70 S ribosomes, and the polysomes is given in Table I.

Table I

Growth on plates	Polysomes	70 S	50 S
Tac promoter	1067U		
-thio	+	0.86	1.11
+thio		1.08	0.55
+thio		0.56	0.58
Wild type		0.57	0.49

Table II

Binding of AcPhe-tRNA to mutant ribosomes given as AcPhe-tRNA bound per 70 S ribosome
Wild type
Poly(U) 3 mM Mg²⁺
(EF-G) +thio
Wild type
1.06
0.96
0.92
0.95
1.01
0.87

The next step was to check whether the mutations influence...
the overall elongation cycle that can be tested with the poly(U)-dependent poly(Phe) synthesis. An in vitro system with near in vivo characteristics concerning speed and accuracy was used to look at the influence of the mutations (38, 39). [14C]AcPhe-tRNA was bound to poly(U)-programmed 70S ribosomes, and the incorporation of [3H]Phe was measured. Kinetics were performed in the absence (open circles) and in the presence of 1 mM thiostrepton (filled circles). The panel at the top shows the overall poly(Phe) synthesis given as Phe incorporation per ribosome. The panel in the middle indicates the hot TCA precipitable AcPhe residues per ribosome, which is the fraction of ribosomes participating in the poly(Phe) synthesis. The bottom panel presents the ratio Phe/ AcPhe in the hot TCA precipitable material, which corresponds to the statistical chain length of the synthesized poly(Phe) chains.

![Fig. 3. Kinetics of poly(U)-dependent poly(Phe) synthesis.](image-url)
good internal control that only the mutated ribosomes are affected.

All mutations in the helix 90 severely affect poly(Phe) synthesis. The G2581A and ψ2580C ribosomes show a three-fold reduced Phe incorporation (Fig. 4A) caused by a reduction of the active fraction (Fig. 4B), and the elongation rate was retarded by a factor of two (Fig. 4C). As already mentioned, the C2507U/G2581A and also the C2507Δ/G2581A double mutants are practically inactive in the poly(U) translation system. The effects seen with the mutations in the helix-loop 80 are less pronounced but still significant. All mutations show a slightly reduced speed of elongation (Fig. 4C). The relatively strongest effect is seen with the G2250A mutation concerning the overall Phe incorporation (Fig. 4A). This effect is mainly due to a reduction of the active fraction of ribosomes (Fig. 4B).

DISCUSSION

In this study and in the following paper (28), regions of helices 80 and 90 of the 23S rRNA have been investigated for their possible involvement in the PTF reaction. Both regions contain a UGG sequence that is universally conserved among non-mitochondrial 23 S-type rRNA and has, therefore, the potential to bind the universal conserved CCA-3′-end of tRNAs via base pairing. Only a few mitochondrial 23 S-type rRNA from animals contain only two out of the three otherwise universally conserved UGG sequences (44); the corresponding ribosomes synthesize proteins with low efficiency and translate only a few mRNAs (45).

In agreement with the high evolutionary conservation of both sequences, all mutations tested show some defect in the in vitro poly(Phe) translation system. However, none of the mutations introduced in helix 80 (U2249C, G2250A, C2254U, and G2250A/C2254U) affects the growth of the bacteria. This is not necessarily a contradiction. For example, the G2661C mutation of 23S rRNA has no effect on bacterial growth until expressed in a mutant S12 background (46), but the 23S rRNA mutation alone significantly reduces the translational efficiency (47). As shown in the following paper (28), the mutations introduced in helix 80 only slightly reduce the puromycin reaction. Therefore, none of the changed bases is essential for peptide bond formation. The effects of these mutations on the poly(Phe) synthesis is not caused by a specific block of a single elongation step, but rather the kinetic efficiency of A site binding, the translocation reaction, or the processivity might be affected. Among the altered bases is C2254, a base protected by an A site-bound tRNA (18). Our data suggest that this protection is either an indirect effect or, alternatively, the interaction between tRNA and 23S rRNA at this position is not essential. Furthermore, weakening or destruction of the base pair G2250-C2254 (i.e., the mutations C2254U and G2250A, respectively) have no disastrous effect on any of the ribosomal activities tested. It follows that this base pair does not seem to be required for functions of the ribosomal elongation cycle and might not even exist within the ribosome.

Fig. 4. Summary of the results of the poly(Phe) synthesis obtained with the various constructs. The poly(Phe) synthesis was described in detail for some ribosome preparations in Fig. 3. A, Phe incorporation in the presence of thiostrepton relative to the pNOt derived ribosomes carrying only the A1067U mutation. The average value for all time points ≥ 20 s from at least two independent experiments is shown, and the standard deviation is given. B, the active fractions of ribosomes (AcPhe/70S). All time points ≥ 20 s of the kinetics were used for the calculation. The total height of the columns represents the active fraction without drug. The standard deviation of the active fractions was around ± 10%. The thiostrepton-sensitive fraction (thio sensitive) represented by the lower columns was obtained as the difference between the active fraction of ribosomes without thiostrepton and the active fraction in the presence of thiostrepton. The numbers over the columns indicate the ratio of thiostrepton-resistant active fraction versus the thiostrepton-sensitive fraction, relative to the control ribosomes carrying only the A1067U mutation. 56% of the active fraction of the control ribosomes were resistant against thiostrepton; 100% corresponds, therefore, to a ratio 56/44 = 1.27. C, the relative average velocity of the growth of the chain length Phe/AcPhe within the first 20 s in the presence of thiostrepton derived from a regression line (see Fig. 3, third panel). The control ribosomes (relative velocity of 100) derived from pNOt had an average velocity of 1.3 Phe/AcPhe/sec in the presence of thiostrepton.
In contrast, most of the mutations within helix 90 (C2507U, G2581A, C2507U/G2581A, and C2507A/G2581A) have a dominant lethal phenotype. At least the single mutations do not affect the assembly of the 50 S subunits and the flow of the assembled subunit into the polysome fraction. Poly(Phe) synthesis is severely impaired. In the following paper, we were able to demonstrate that the helix 90 mutations G2581A, C2507U/G2581A, and C2507A/G2581A completely block the puromycin reaction, and the mutation G2580C drastically impairs this reaction (28). Also C2507U reduces the AcPhe-puromycin formation by approximately 50%.

Comparison of the poly(Phe) translation data with the results of the puromycin reactions (28) raises the following question. How is it possible that a ribosomal activity essential for protein synthesis such as peptide-bond formation is completely blocked in assay systems specifically testing this activity, whereas in systems testing the overall elongation such as poly(Phe) synthesis a significant although residual activity can be detected?

Let us consider the G2581A mutation. In contrast to the total inhibition of the puromycin reaction, there is a strongly decreased but still significant activity of this mutant 70 S in the poly(U) translation system (30–50% compared with the 70 S derived from pN0t). Various factors have to be considered for an explanation of this apparent discrepancy. First of all, one has to consider that the PTF activity is not the rate-limiting step of elongation and is much faster than A site occupation or translocation. It follows that even a severe effect on the rate of the PTF activity is not necessarily detected in a complete translation system. Second, the puromycin reaction takes place at 0°C and the poly(U) translation at 37°C. The higher temperature might cause a higher flexibility of the PTF center, thus partially overcoming the negative effect of the mutation.

And third, the reactants in the poly(U) translation system, peptidyl-tRNA and aminoacyl-tRNA, are bound to the ribosome mainly outside of the PTF center and are tightly fixed. If the mutation weakens the binding of the P site-bound CCA-3′-end but does not affect the stably fixed aminoacyl-tRNA at the A site, peptidyl transfer will occur when the loosely bound peptidyl residue will have sufficiently moved. If the central loop of domain V are of high importance for ribosomal function but also the nucleotides at the top of helix 90.

Acknowledgments—We are grateful to Drs. C. O’Neil, N. Burkhardt, R. Junemann, and G. Diedrich for help and discussion and to J.-U. Bittner for expert assistance.

REFERENCES

1. Monro, R. E. (1967) J. Mol. Biol. 26, 147–151
2. Monro, R. E., Traut, R. R., and Monro, R. E. (1968) J. Mol. Biol. 35, 333–345
3. Hamps, H., Schulze, H., and Nierhaus, K. H. (1981) J. Biol. Chem. 256, 2294–2298
4. Schulze, H., and Nierhaus, K. H. (1982) EMBO J. 1, 609–613
5. Franceschi, F. J., and Nierhaus, K. H. (1990) J. Biol. Chem. 265, 16676–16682
6. Noller, H. F., Hoffiart, V., and Zinniak, L. (1992) Science 256, 1416–1419
7. Noller, H. F. (1990) J. Bacteriol. 172, 5907–5910
8. Noller, H. F. (1991) Annu. Rev. Biochem. 60, 191–227
9. Brimacone, R. (1995) Eur. J. Biochem. 230, 365–383
10. Gutell, R. R. (1993) in The Translational Apparatus: Structure, Function, Regulation, Evolution (Nierhaus, K. H., Franceschi, F., Subramanian, A. R., Erdmann, V. A., and Wittmann-Liebold, B., eds) pp. 477–488, Plenum Publishing Corp., New York
11. Egelberg, J., Larsen, N., and Garrett, R. A. (1990) in The Ribosome: Structure, Function & Evolution (Hill, W. E., Dahlberg, A., Garrett, R. A., Moore, P. B., Schlessinger, D., and Warner, J. R., eds) pp. 168–179, American Society for Microbiology, Washington, DC.
12. Barts, A., Steiner, G., Broseta, J., Noller, H. F., and Kuechler, E. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3607–3611
13. Steiner, G., Kuechler, E., and Barta, A. (1988) EMBO J. 7, 3949–3955
14. Coulterman, B. S., Weitzman, C. J., and Fernandez, C. L. (1990) in The Ribosome: Structure, Function & Evolution (Hill, W. E., Dahlberg, A., Garrett, R. A., Moore, P. B., Schlessinger, D., and Warner, J. R., eds) pp. 491–501, American Society for Microbiology, Washington, D.C.
15. Stade, K., Reims, S., Bochkariov, D., and Brimacone, R. (1994) Nucleic Acids Res. 22, 1394–1399
16. Cundliffe, E. (1990) in The Ribosome: Structure, Function & Evolution (Hill, W. E., Dahlberg, A., Garrett, R. A., Moore, P. B., Schlessinger, D., and Warner, J. R., eds) pp. 479–490, American Society for Microbiology, Washington, D.C.
17. Deutschatle, S., Vester, B., Aagaard, C., and Rosendahl, G. (1993) in The Translational Apparatus: Structure, Function, Regulation, Evolution (Nierhaus, K. H., Franceschi, F., Subramanian, A. R., Erdmann, V. A., and Wittmann-Liebold, B., eds) pp. 339–346, Plenum Publishing Corp., New York
18. Muazd, D., and Noller, H. F. (1989) Cell 57, 585–597
19. Muazd, D., and Noller, H. F. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 6725–6729
20. Rodriguez-Fonseca, C., Amils, R., Garrett, R. A. (1995) J. Mol. Biol. 247, 224–235
21. Gregory, S. T., Lieberman, K. R., and Dahlberg, A. E. (1994) Nucleic Acids Res. 22, 279–284
22. Lieberman, K. R., and Dahlberg, A. E. (1994) J. Biol. Chem. 269, 16163–16169
23. Samaha, R. R., Green, R., and Noller, H. F. (1995) Nature 371, 309–314
24. Besset, B. T., and Garrett, R. A. (1995) J. Biol. Chem. 270, 1–10
25. Kravyevsky, A. A., and Kukhanova, M. K. (1979) Proc. Eur. Acad. Sci. 23, 1–51
26. Chladek, S., and Sprinzl, M. (1985) Angew. Chem. 81, 377–388
27. Tamura, K. (1994) FEBS Lett. 353, 173–176
28. Spahn, C. M. T., Schäfer, M. A., Kravyevsky, A. A., and Nierhaus, K. H. (1996) J. Mol. Biol. 271, 32857–32862
29. Gourre, R. L., Stark, M. J. R., and Dahlberg, A. E. (1988) Cell 32, 1347–1354
30. Thompson, J., Cundliffe, E., and Dahlberg, A. E. (1988) J. Mol. Biol. 203, 457–465
31. Lewicki, B. T., Margus, T., Remme, J., and Nierhaus, K. H. (1993) J. Mol. Biol. 231, 581–593
32. Kunkel, T. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 488–492
33. Sanger, F., Nickelsen, F., and Coulson, A. R. (1977) Science 198, 746–750
34. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
35. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Smith, J. A., Seidman, J. G., and Struhl, K. (1991) Current Protocols in Molecular Biology, John Wiley & Sons, Inc., NY
36. Inoue, H., Nojima, H., and Okayama, H. (1990) Gene (Amst.) 96, 23–29
37. Sigmund, C. D., Ettayebi, M., Borden, A., and Morgan, E. A. (1988) Methods Enzymol. 164, 673–690
Two Universally Conserved UGG Sequences in 23S rRNA

38. Bartetzko, A., and Nierhaus, K. H. (1988) Methods Enzymol. 164, 650–658
39. Rheinberger, H. J., and Nierhaus, K. H. (1990) Eur. J. Biochem. 193, 643–650
40. Triana-Alonso, F. J., Dabrowski, M., Wadzack, J., and Nierhaus, K. H. (1995) J. Biol. Chem. 270, 6298–6307
41. Saarma, U., and Remme, J. (1992) Nucleic Acids Res. 20, 3147–3152
42. Pestka, S. (1970) Arch. Biochem. Biophys. 136, 89–96
43. Wagner, E. G. H., Jelenc, P. C., Ehrenberg, M., and Kurland, C. G. (1982) Eur. J. Biochem. 122, 193–197
44. Gutell, R. R., Gray, M. W., and Schnare, M. N. (1993) Nucleic Acids Res. 21, 3055–3074
45. Takemoto, C., Keihe, T., Yokogawa, T., Benkowski, L., Spremulli, L. L., Ueda, T., Nishikawa, K., and Watanabe, K. (1995) Biochimie (Paris) 77, 104–108
46. Tapprich, W. E., and Dahlberg, A. E. (1990) EMBO J. 9, 2649–2655
47. Bilgin, N., and Ehrenberg, M. (1994) J. Mol. Biol. 235, 813–824
48. Welch, M., Chastang, J., and Yarus, M. (1995) Biochemistry 34, 385–390
49. Ulbrich, R., Mertens, G., and Nierhaus, K. H. (1978) Arch. Biochem. Biophys. 190, 149–154
50. Bourd, S. B., Kukhanova, M. K., Gottikh, B. P., and Krayevsky, A. A. (1983) Eur. J. Biochem. 135, 465–470
51. O’Connor, M., Willis, N. M., Bossi, L., Gesteland, R. F., and Atkins, J. F. (1993) EMBO J. 12, 2559–2566
52. Liu, M., and Horowitz J. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 10389–10393