Implementation of a postoperative handoff protocol

JJN Van Der Walt*, AT Scholl†, IA Joubert‡ and MA Petrovic∥∥

*Department of Anaesthesia, University of Cape Town, Cape Town, South Africa
†Business Professional, Orlando, FL, USA
‡Department of Anaesthesia and Perioperative Medicine, University of Cape Town, Cape Town, South Africa
∥Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
∥∥University of Central Florida College of Medicine, Orlando, FL, USA
*Corresponding author, email: michelle.petrovic@jhmi.edu

Background: Standardised handoff protocols have become necessary patient safety tools in the perioperative venue. In this study, the authors took a validated standardised perioperative handoff protocol and implemented it into their institution to improve the perioperative handoff communications from the cardiac operating theatres to the ICU.

Methods: This was a prospective, unblinded cross-sectional study. During a 6-week pre-intervention phase, 30 perioperative handoffs were observed and data were collected. Then a new structured hand-off protocol was implemented for one month, which focused on training all participating healthcare providers. This was followed by a post-intervention audit consisting of 30 operating room theatre-to-ICU handoffs using the same methodology as the pre-intervention period.

Results: Overall attendance significantly increased from 20 to 86.7%. The percentage of parallel conversations decreased from 100% pre-intervention to 60% post-intervention (p < 0.0001). The mean number of interruptions of the anaesthesiology handoff report decreased from 3.37 to 0.77 (p < 0.0001) and of the surgery report from 1.84 to 0.27 (p < 0.0001). Information-sharing scores improved among all handoff attendees with the Overall Information Sharing Score (OISS) increasing from 51.47 to 88.24% (p < 0.0001).

Conclusions: The implementation of a perioperative handoff protocol resulted in a drastic improvement in attendance, decrease in the number of interruptions, and improved information sharing. Future research should focus on patient-specific outcomes.

Keywords: handoffs, handover, ICU handoff, patient safety, perioperative handoff

Introduction
Handoffs have been defined as the transfer of responsibility and patient-specific information from one group of caregivers to another to ensure the continuity and safety of patient care.1–4 Postoperative handoffs are a specific type of handoff that represent a critical step in the management of surgical patients. Surgical patients’ postoperative management is complex and adequate knowledge of intraoperative events is critical to managing their ICU stay. Communication between the senders of the handoff report (anaesthesiologists, surgeons and theatre nursing staff) and receivers of the report (ICU physicians and ICU nursing staff) is often poor.5 The unstructured presentation of information, noisy ICU environment, and discussion between healthcare workers from different disciplines and at different levels of training add to the burden of communication.1,5 On arrival at the ICU, patients may be clinically unstable and require urgent intervention, yet time to review the medical record prior to these critical interventions is limited. The postoperative handoff serves as an important source of information, ensuring coordinated management by multiple disciplines.6

Despite its importance, the practice of a structured postoperative handoff protocol in our region’s hospitals is non-existent. The practice of transferring patients without the attendance of a surgeon, and handing patients over to the ICU team with little clinical discussion, is commonplace. The authors set about studying the current nature of postoperative handoffs in the cardiac surgical ICU at a tertiary-level hospital. A validated handoff protocol was implemented and the handoff process re-evaluated. The hypothesis was that the implementation of a validated structured handoff protocol would improve the quality of the handoff with regards to attendance, information sharing, and healthcare provider satisfaction. The successful implementation of a structured handoff protocol would validate such a tool for broader implementation in our health care environment.

Methods
A prospective, unblinded study with pre- and post-intervention design was performed at a large provincial South African tertiary hospital from August 2012 to March 2013. Institutional ethical review gave permission for the attendance of an independent observer to observe and record handoffs during this period. This observational study consisted of 30 pre- and 30 post-interventional evaluations and audio recording of cardiac theatre to ICU handoffs.

Evaluation focused on the handoff duration, technical aspects of the handoff, and information sharing between healthcare providers. An unblinded observer who was not a member of the clinical team captured a description of the ICU environment and post-handoff events. Healthcare providers completed a post-handoff satisfaction survey and an overall handoff score was calculated. Only elective cardiac surgery cases were included with handoffs occurring between 7:00 am and 7:00 pm. Following the pre-intervention audit, a validated structured handoff protocol was implemented.7 This protocol was developed at a large tertiary institution in the United States and was implemented after minor additions (e.g. changed the order of the handoff protocol; limited nurse checklist to six items; added an element to the surgical checklist to comment on the pacemaker) were made to satisfy institutional requirements. The
The new structured handoff protocol was implemented over a one-month period via focused training of all participating healthcare providers. Training was conducted through presentations, booklets, and visual aids in the cardiac theatre and ICU. Following the implementation of the handoff protocol, a four-week period of guided intervention was completed. This consisted of healthcare providers familiar with the handoff protocol observing and guiding the use of the protocol in ICU. This was followed by a post-intervention audit consisting of 30 theatre-to-ICU handoffs using the same methodology as for the pre-intervention period. The independent observer monitored data points during the postoperative handoff (see Table 2).

Senders of the handoff report were expected to communicate certain information regarding the patient and procedure that were deemed essential for a thorough handoff report, starting with the anaesthesiology checklist. Each sender of the handoff report was expected to end with a comment regarding anticipatory guidance for the ICU team. Once the ICU team clarified any questions from the anaesthesiologist, the surgeon (and then the theatre nursing staff) proceeded to report on the six points included in their checklist. The theatre nursing staff checklist was based on current nursing council guidelines implemented in our institution (Figure 1).

An information sharing score (ISS) was calculated for each discipline’s handoff report and the handoff as a whole. The ISS for each discipline was calculated with the following formula: (number of categories verbally reported by each discipline/number of categories that should be reported for that discipline) x 100. An Overall Information Sharing Score was calculated using the following formula: (number of categories verbally reported by all disciplines/number of categories for all disciplines) x 100. During the handoff report the independent observer counted the number of interruptions, parallel conversations, and questions from the ICU team. The audibility of the report was recorded as being audible always, mostly, or sometimes. Two hours after the handoff report, the observer contacted the unit to capture data regarding any phone calls made to senders of the handoff report to clarify information. He also enquired regarding any unintended interruptions or complications with intravenous (iv) lines, additional procedures required or return to the operating theatre (OT), requirements for re-intubation or cardiopulmonary resuscitation (CPR), and whether the routine medications were prescribed correctly.

Upon completion of the handoff report all members of the handoff team were asked to complete a post-handoff survey. This consisted of nine statements and a five-point Likert scale with the options strongly disagree, disagree, neutral, agree, and strongly agree. Since some handoff providers felt that certain questions did not pertain to them, a sixth option ‘not applicable’ was included (see Table 3).

Due to the fact that patient outcome was not measured, an overall handoff score was calculated which contained subjective and objective handoff elements that reflected the efficiency, efficacy, safety and order of the handoff (see Table 4). Staff satisfaction with the handoff was the last element counted in the overall handoff score.

Data capturing was done with EpiData® software (“The EpiData Association”, Odense, Denmark) and analysis performed with Stata MP® (StataCorp LP, College Station, TX, USA). Kruskal–Wallis

Table 1: Handoff sequence of events

Step	Action
1	Theatre staff to phone ICU 30 min prior to arrival to prepare the ICU bed
2	Upon arrival the patient is connected to the ICU ventilator and monitor with no verbal communication of handoff information during this time
3	Once the patient is stable and all monitoring in place all team members introduce themselves
4	The anaesthesiologist does a handoff following the 20 points on the handoff checklist and takes questions from the ICU team
5	The surgeon and then the theatre scrub sister do their respective handoff following the six points included in the handoff checklist
6	The ICU team formally ends the handoff report once all questions have been clarified

Table 2: Postoperative handoff data points monitored

No.	Data points observed
1	Whether ICU was phoned prior to patient arrival
2	Time from arrival of patient to start of handoff report
3	Time from start to completion of handoff report
4	Description of ICU environment
5	Healthcare providers attending the handoff report and reasons for their absence
6	Equipment problems during handoff and description thereof
7	Information shared during handoff report
8	Number of interruptions, parallel conversations and questions during the handoff report

Figure 1: Structured handoff checklist

ANAESTHESIA
- Past medical Hx
- Past surgical Hx
- Allergies
- Baseline vital Tx
- Baseline labs
- Procedures e.g. epidural/spinal
- Invasive lines e.g. CVP/A-line
- IV access, size & location
- Fluid totals
- Blood loss
- Paralytic status
- Narcotic totals
- Antibiotics
- Last act
- Bypass yes/no
- Bypass time
- Aortic X-clamp time
- Ventilation strategy
- Pacemaker setting
- Anticipatory guidance

SURGICAL
- Chief surgical problem
- Surgery performed
- Surgical complications
- Drains/tubes & positions
- Pacing required
- Anticipatory guidance

THEATRE STAFF
- Procedure
- Skin closure & integrity
- Theatre time
- Drains
- Adverse theatre events
- Anticipatory guidance
Implementation of a Post-Operative Handoff Protocol

Results

The implementation of the handoff process resulted in decreased parallel conversations, increased audibility of the report, and an increase in the number of attendees present during the handoff (Table 5). Anaesthesiologists, theatre nursing staff, and ICU staff were present at all pre- and post-intervention handoffs. The surgical team was not present 5 times (out of 30), and there was one instance of the ICU physician being absent. Moreover, it was noteworthy that the number of interruptions and questions asked by the ICU team decreased (Table 6).

There was no significant association between the handoff implementation and data points collected during the first two hours post-handoff. Only one patient required an emergency sternotomy for pericardial tamponade. All prescription charts were filled in correctly.

The Information Sharing Scores increased for clinical services and overall (Table 8). The Likert scores for the nine statements showed a statistically significant improved score for the option ‘strongly agree’ by members of the theatre and ICU nursing staff. However, this reached statistical significance only for the scrub technician’s report (see Table 3) (p = 0.038). The only two questions that did not reach statistical significance for improvement in the ICU nursing staff responses were for Q1 (see Table 3) (p = 0.155) and for Q7 (see Table 3) (p = 0.273). The anaesthesiologist reported an improved response to the option ‘strongly agree’ to statements 4, 5, 6, 8 and 9. Only statement 8 did not reach significance (p = 0.273). Neither the anaesthesiologist, ICU physician, nor surgeon reported an improved response for option ‘strongly agree’ to Q1 (see Table 3). However, this only reached statistical significance for the surgical team (p = 0.024). The overall handoff score as calculated from a total of 13 (see Table 4) improved from a mean of 3.47 to 8.27 (p < 0.0001).

Discussion

Ours is another handoff study which demonstrates that using a handoff protocol improves communication and teamwork.8−14 This was shown first by the improvement in provider attendance at handoffs. Attendance of providers at the handoff is essential in order for teamwork to occur: a team does not exist unless its members are present. Furthermore, attendance establishes the context for the sharing of relevant patient data amongst providers. Although this study did not quantify the reasons for

Table 3: Post-handoff survey questions

No.	Questions
1	I was satisfied with the OR to ICU handoff for this patient
2	The report given by the surgery provider was satisfactory
3	The report given by the anaesthesiology provider was satisfactory
4	I could hear all of the report
5	I received information about potential problems that could arise in this patient
6	I received information about things I need to follow up
7	The physical act of transferring monitors and equipment went smoothly
8	It was clear when the handoff started and ended
9	I received guidance on what to do if certain problems arise

Note: ISS = information sharing score.

Table 5: Key indicators of improved communication

Factor	Pre-intervention	Post-intervention	p
Parallel conversations	100%	60%	<0.001
Report could be heard	53.3%	96.7%	<0.001
Overall attendance	20%	86.7%	<0.001

Table 6: Mean interruptions and questions asked during handoffs

Interruptions/ questions	Pre-intervention	Post-intervention	p
Anaesthesiology report	3.37	0.77	<0.0001
Surgery report	1.84	0.27	<0.0001
Nursing report	0.79	0.2	<0.01
Total amount of questions from ICU team	5.7	1.83	<0.0001

and Mann–Whitney tests were used to determine whether or not the median values of valued variables differed, and they were used in place of the ANOVA or t-test methods because the distributions of the continuous valued variables were non-normal.
surgical team absence, it appears that the writing of operation notes or surgical preparation for the next case placed the biggest burden on surgeons’ ability to attend handoffs. Second, we demonstrated that parallel conversations and interruptions decreased with use of the handoff protocol. We believe that the protocol creates an improved environment for information exchange and dialogue. This leads to better team-based decision-making processes and empowers the ICU staff through the dissemination of anticipatory guidance by theatre providers. Third, the improved ISS for each discipline demonstrates the dissemination of anticipatory guidance by theatre providers. ISS is partly dependent on the use of checklists; however, the use of checklists should not add to the administrative burden of healthcare workers and should not be seen as an easy fix in response to the complex nature of handoffs. Simply giving structure to information does not necessarily make information useful or relevant. Lastly, we found that there were fewer questions asked in the structured handoff cohort, which we believe reflects improved communications. We believe that the protocol creates an improved environment for information exchange and dialogue. This leads to better team-based decision-making processes and empowers the ICU staff through the dissemination of anticipatory guidance by theatre providers.

Table 8: Summary of information sharing scores (ISS)

Score	Pre-intervention Mean ± SD	Post-intervention Mean ± SD	p-value
AISS*	49.5% ± 13.73	89.67% ± 11.89	< 0.0001
SISS†	54.76% ± 31.85	90% ± 25.49	< 0.0001
NISS‡	46.19% ± 15.32	70% ± 19.26	< 0.0001
OISS§	50.39% ± 11.48	85.98% ± 10.89	< 0.0001

*AISS: anaesthetic information sharing score. †SISS: surgical information sharing score. ‡NISS: nursing information sharing score. §OISS: overall information sharing score.

There were also many lessons learned during this study. First, it is important to ensure and validate that each and every team member understands his/her importance in the process. A valued team member quickly becomes the flag-bearer for the intervention. Second, the intervention must be perceived as not impinging upon the rapid time management and turnover of the theatre. If time spent during a handoff is perceived as wasted time, providers will quickly abandon the process. Third, a quintessential lesson learned while assisting other institutions in implementing their handoff protocol is the need for upper management support (e.g. division chiefs, chief of staff, president, and so forth). This is due to the major cultural paradigm shift that must be made. Management support provides a means to deal with the cultural resistance that will ensue during use of the new handoff process; such support manifests itself first vocally and then, if warranted, through interventions for those still unwilling to comply. Lastly, sustainability is the means of ensuring that a process continues to be used correctly over time. A few studies have shown that erosion of proper use of the handoff occurs with time while a recent sustainability study of a postoperative handoff protocol incorporated checklists, which have been proven to be beneficial in the handoff process; however, they can serve as a barrier to communication if they are designed incorrectly. For instance, lengthy checklists may negatively influence their own function, since there is a tendency to perform other tasks while reading the checklist in an effort to expedite the handoff.

While we have demonstrated much success with use of the handoff protocol, there were also barriers to its implementation. One such barrier was that, prior to this study, the anaesthesia and surgical teams were never required, asked, or expected to attend a handoff. Non-attendance was, in fact, a common accepted practice in the local culture. Moreover, the providers never spoke as a team about a patient’s management. Changing this behaviour required a major institutional paradigm shift. This daunting task was left to the handoff implementation team and, as you can imagine, there was push-back to the change. Another significant barrier was the sceptical viewpoint held by many clinicians as to whether a structured handoff process could really improve communication or, more importantly, could result in improved patient care. It was therefore also necessary that the study implementation team overcome and eliminate such scepticism through educational efforts. Lastly, the handoff protocol incorporated checklists, which have been proven to be beneficial in the handoff process; however, they can serve as a barrier to communication if they are designed incorrectly. For instance, lengthy checklists may negatively influence their own function, since there is a tendency to perform other tasks while reading the checklist in an effort to expedite the handoff.

Our study has several limitations. First, this study was performed in the cardiac theatres of a tertiary-level hospital with around 40 elective cardiac admissions per month. The results may therefore not be applicable to other kinds of hospitals, types of ICU, or high-acuity environments. Second, the study was not designed to show a difference in terms of hard outcomes such as morbidity, mortality, or length of ICU stay. Third, in theory, the Hawthorne effect may have played a role in influencing handoff providers’ participation in the study. This was, however, limited by the observer’s nonparticipation in the handoff. The observer did not interact with...
the handoff providers and did not have any clinical authority over them. Fourth, the unblinded observer knew the intervention had occurred, which may have biased him in the recording of the observation data. Finally, the same handoff observation sheets and surveys were used for all cases in this study. They were based on similar assessment tools in studies with the same design using the same handoff protocol. There is, however, no agreed standard for such instruments.

The goal for future research is to focus on integrating patient-specific outcome measures. The measures may include analysing reduction in hospital stay, reduction in the number of returns to the ORs, reduction in the length of stay in the ICU, and so forth. Future studies may also explore the entire perioperative journey of a patient and look at handoffs that occur ward-to-theatre, between anaesthetists, and also from ICU-to-ward. As patients travel along the healthcare pathway from admission to theatre and beyond, the content of communication often disintegrates and the recollection of treatment can become increasingly fragmented. Informed healthcare professionals may recognise this phenomenon for the hazard that it is and institute adequate interventions to prevent it from occurring.

This study confirms that the implementation of a structured handoff protocol improves the quality of the information exchange. However, the best mode of information exchange and method to measure patient outcome is yet to be determined. A standardised handoff protocol that combines verbal communication with a written template may offer the best solution to communication failures during transfer of patient care. We believe that our findings demonstrate and emphasise the importance of a structured handoff process regardless of the country wherein the handoff occurs.

Acknowledgements – Johns Hopkins University School of Medicine Department of Anaesthesiology & Critical Care Medicine, Baltimore, MD. The Armstrong Institute for Patient Safety and Quality at the Johns Hopkins University School of Medicine.

Conflict of Interests – Dr Michelle A. Petrovic donated her royalties from the sale of The Perioperative Handoff Toolkit to the Johns Hopkins University School of Medicine. The toolkit is now available free of charge at http://www.handovers.org.

Disclosure of funding – The University of Cape Town Department of Anaesthesia and Critical Care.

References
1. Petrovic MA, Aboumatar H, Baumgartner WA, et al. Pilot implementation of a perioperative protocol to guide operating room–to-intensive care unit patient handoffs. J Cardiothoracic Vascular Anesthesia. 2012;26(1):11–6. http://dx.doi.org/10.1053/j.jvca.2011.07.009
2. Wayne JD, Tyagi R, Reinhardt G, et al. Simple standardized patient handoff system that increases accuracy and completeness. J Surg Educ. 2008 Nov–Dec;65(6):476–83.
3. Chen JG, Wright MC, Smith PB, et al. Adaptation of a postoperative handoff communication process for children with heart disease: a quantitative study. Am J Med Qual. 2011 Sept–Oct;26(5):380–6.
4. Möllering TR, Madsen MD, Fuhrmann L, et al. Postoperative handover. Eur J Anaesthesiol. 2013;30(5):229–42. http://dx.doi.org/10.1097/EJA.0b013e32835d8520
5. Agarwal HS, Saville BR, Slayton JM, et al. Standardized postoperative handover process improves outcomes in the intensive care unit. Crit. Care Med. 2012;40(7):2109–15. http://dx.doi.org/10.1097/CCM.0b013e3182514bab
6. Mistry KP, Jaggers J, Lodge AJ, et al. Using six sigma methodology to improve handoff communication in high-risk patients. In: Henriksen K, Battles JB, Keyes MA, et al., editors. Advances in patient safety: new directions and alternative approaches (Vol 3: performance and tools). Rockville: Agency for Healthcare Research and Quality (US); 2008: 1–11.
7. Petrovic MA, Martinez EA, Aboumatar H. The perioperative handoff toolkit Johns Hopkins medicine [cited 2016 May 6]. Available from: http://www.handovers.org.
8. Catchpole KR, de Leval MR, McEwan A, et al. Patient handover from surgery to intensive care: using Formula 1 pit-stop and aviation models to improve safety and quality. Paediatr Anaesth. 2007;17(5):470–78.
9. Joy BF, Elliott E, Hardy C, et al. Standardized multidisciplinary protocol improves handover of cardiac surgery patients to the intensive care unit. Pediatr Crit Care Med. 2011;12(3):304–8. http://dx.doi.org/10.1097/PCC.0b013e3181fe25a1
10. Agarwal HS, Saville BR, Slayton JM, et al. Standardized postoperative handover process improves outcomes in the intensive care unit. Crit Care Med. 2012;40(7):2109–15. http://dx.doi.org/10.1097/CCM.0b013e3182514bab
11. Nagpal K, Abboudi M, Manchanda C, et al. Improving postoperative handover: a prospective observational study. Am J Surg. 2013;206(4):494–501. http://dx.doi.org/10.1016/j.amjsurg.2013.03.005
12. Vergales J, Addison N, Vendittelli A, et al. Face-to-face handoff: improving transfer to the pediatric intensive care unit after cardiac surgery. Am J Med Qual. 2015 Mar–Apr;30(2):119–25.
13. Petrovic MA, Aboumatar H, Scholl AT, et al. The perioperative handoff protocol: evaluating impacts on handoff defects and provider satisfaction in adult perianesthesia care units. J Clin Anesth. 2015;27(2):111–9. http://dx.doi.org/10.1016/j.jclinane.2014.09.007
14. Craig R, Mokey L, Young D, et al. Strengthening handover communication in pediatric cardiac intensive care. Paediatr Anaesth. 2012;22(4):393–9.
15. Abraham J, Kannampallil TG, Patel VL. Bridging gaps in handoffs: a continuity of carebased approach. JBI Libr Inform Sci. 2012;45(2):240–54. http://dx.doi.org/10.1111/j.1448-5907.2011.00111.x
16. Jayaswal S, Berry L, Leopold R, et al. Evaluating safety of handoffs between anesthesia care providers. Ochsner J. 2011 Summer;11(2):99–101.
17. Abraham J, Nguyen V, Almoosa KF, et al. Falling through the cracks: information breakdowns in critical care handoff communication. AMIA Annu Symp Proc. 2011;2011:28–37.
18. Chen JG, Wright MC, Smith PB, et al. Adaptation of a postoperative handoff communication process for children with heart disease: a quantitative study. Am J Med Qual. 2011 Sept–Oct;26(5):380–6.
19. Dharmadasa A, Bailes I, Gough K, et al. An audit of the efficacy of a structured handover tool in obstetric anaesthesia. Int J Obstet Anesth. 2014;23(2):151–6. http://dx.doi.org/10.1016/j.ijoa.2013.12.002
20. Chenault K, Moga MA, Shin M, et al. Sustainability of protocolized handover of pediatric cardiac surgery patients to the intensive care unit. Paediatr Anaesth. 2016;26(5):488–94.
21. Li P, Stelfox HT, Ghali WA. A prospective observational study of physician handoff for intensive-care-unit-to-ward patient transfers. Am J Med. 2011;124(9):860–7. http://dx.doi.org/10.1016/j.amjmed.2011.04.027
22. Kalkman CJ. Handover in the perioperative care process. Curr Opin Anaesthesiol. 2010;23(2):151–6. http://dx.doi.org/10.1097/ACO.0b013e3283405a8c

Received: 08-06-2016 Accepted: 22-09-2016