СОВРЕМЕННЫЕ МЕТОДЫ ОЦЕНКИ ВОССТАНОВИТЕЛЬНОГО ПОТЕНЦИАЛА ПЕЧЕНИ ПОСЛЕ ЕЕ РЕЗЕКЦИИ (ОБЗОР)

DOI: 10.17691/stm2019.11.4.20
УДК 616.36–089.87–073.582–092.11
Поступила 5.08.2019 г.

С.А. Родимова, лаборант научной лаборатории регенеративной медицины НИИ экспериментальной онкологии и биомедицинских технологий1;
Д.С. Кузнецова, к.б.н., научный сотрудник научной лаборатории регенеративной медицины НИИ экспериментальной онкологии и биомедицинских технологий1;
Н.В. Бобров, ассистент кафедры факультетской хирургии и трансплантологии; хирург онкологического отделения2;
Н.В. Вдовина, к.б.н., доцент, старший научный сотрудник научной лаборатории флюоресцентного биоимиджинга НИИ экспериментальной онкологии и биомедицинских технологий1;
В.Э. Загайнов, д.м.н., зав. кафедрой факультетской хирургии и трансплантологии; главный специалист по хирургии2;
Е.В. Загайнова, д.м.н., член-корреспондент РАН, директор НИИ экспериментальной онкологии и биомедицинских технологий1

1 Приволжский исследовательский медицинский университет, пл. Минина и Пожарского, 10/1, Н. Новгород, 603005;
2 Приволжский окружной медицинский центр ФМБА России, Нижне-Волжская набережная, 2, Н. Новгород, 603001

Рассмотрены основные методы оценки функции и восстановительного потенциала печени. Представлены как стандартные, широко применяемые в клинической практике, так и новейшие перспективные методы, показавшие свою эффективность для анализа патологических изменений на клеточном и тканевом уровнях и позволяющие в будущем расширить возможности клинической диагностики.

Известно, что динамику регенеративного процесса печени отражают такие параметры, как метаболический статус ее клеток, их морфология, а также структурные особенности на молекулярном уровне. Исследование изменений данных параметров позволит определить критерии снижения функциональной активности клеток печени и в конечном итоге — снижения регенераторного потенциала органа в целом.

Наиболее перспективным методом для решения данной задачи в настоящее время можно назвать мультифотонную микроскопию с возможностью генерации второй гармоники, а также с дополнительными модальностями, такими как микроскопия на основе когерентного антистоксового рамановского рассеяния (coherent anti-stokes Raman spectroscopy — CARS), микроскопия стимулированного комбинационного рассеяния (stimulated Raman scattering — SRS) и времяразрешенная флюоресцентная микроскопия (fluorescence lifetime imaging — FLIM). Кроме того, широкий спектр возможностей для анализа метаболических и структурных изменений дает масс-спектрометрия, в частности времяпролетная масс-спектрометрия вторичных ионов (time-of-flight secondary ion mass spectrometry — ToF-SIMS). Многочисленные примеры исследований с применением данных методов на моделях in vivo, а также на биопсийных образцах пациентов демонстрируют их востребованность и перспективность как в биомедицинских исследованиях, так и в клинической практике.

Ключевые слова: восстановительный потенциал печени; функция печени; регенерация печени; пролиферация гепатоцитов; FLIM; ToF-SIMS; CARS.

Как цитировать: Rodimova S.A., Kuznetsova D.S., Bobrov N.V., Vdovina N.V., Zagaynov V.E., Zagaynova E.V. Modern methods for assessing the regenerative potential of the liver after partial heptectomy (review). Sovremennye tehnologii v medicine 2019; 11(4): 175–190, https://doi.org/10.17691/stm2019.11.4.20

Для контактов: Родимова Светлана Алексеевна, e-mail: srodimova123@gmail.com
Modern Methods for Assessing the Regenerative Potential of the Liver after Partial Hepatectomy (Review)

S.A. Rodimova, Laboratory Assistant, Laboratory of Regenerative Medicine, Institute of Experimental Oncology and Biomedical Technologies; D.S. Kuznetsova, PhD, Researcher, Laboratory of Regenerative Medicine, Institute of Experimental Oncology and Biomedical Technologies; N.V. Bobrov, Assistant, Department of Intermediate Level Surgery and Transplantation; Surgeon, Oncology Department; N.V. Vdovina, PhD, Associate Professor, Senior Researcher, Laboratory of Fluorescence Bioimaging, Institute of Experimental Oncology and Biomedical Technologies; V.E. Zagainov, MD, DSc, Head of the Department of Intermediate Level Surgery and Transplantation; Chief Specialist in Surgery; E.V. Zagaynova, MD, DSc, Corresponding Member of the Russian Academy of Sciences, Director of the Institute of Experimental Oncology and Biomedical Technologies

1 Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; 2 Privolzhsky District Medical Center of Federal Medico-Biologic Agency of Russia, 2 Nizhne-Volzhskaya naberezhnaya St., Nizhny Novgorod, 603001, Russia

The review addresses the main methods for assessing the function and regenerative potential of the liver. They include both the traditional methods, commonly used in clinical practice, and the latest promising techniques suitable for the analysis of cellular and tissue pathology and having a proven diagnostic value.

It is known that the dynamics of liver regeneration is reflected in the metabolic status of liver cells, their morphology, and the molecular rearrangement. Therefore, by looking at these parameters we will be able to assess the regenerative potential of the liver as a whole.

At present, the most promising method is represented by multiphoton microscopy able to generate the second harmonic; there are also such techniques as coherent anti-stokes Raman spectroscopy (CARS), stimulated Raman scattering (SRS) microscopy, and fluorescence lifetime imaging microscopy (FLIM). In addition, a number of options for analyzing metabolic and structural changes are provided by mass spectrometry, in particular time-of-flight secondary ion mass spectrometry (ToF-SIMS). Studies using these methods with in vivo models and with human biopsy samples demonstrate their relevance in biomedical research and in clinical practice alike.

Key words: regenerative potential of the liver; liver function, liver regeneration; hepatocyte proliferation; FLIM; ToF-SIMS; CARS.

Введение

Регенерация печени является важным компонентом репаративного процесса при потере объема функционирующей паренхимы в результате повреждения (некроза) или после хирургической резекции [1]. Регенеративный процесс в печени представляет собой активацию гиперпластической реакции зрелых функционирующих клеток неповрежденной ткани органа (гепатоциты и синусоидальные клетки). При этом в случае обширных потерь печеночной массы (80–90%) происходит активация стволового резерва — стволовых/прогениторных клеток. Процесс регенерации носит компенсаторный характер, включающий в себя восстановление объема, массы, а также функции печени, достаточной для обеспечения необходимого уровня метаболизма организма в целом [2–4].

В данном обозре не затрагиваются клеточные механизмы активации стволового резерва печени, а регенерация рассматривается как процесс восстановления органом своих изначальных параметров только за счет пролиферации зрелых функционирующих клеток. Комплексная оценка регенераторного потенциала и функции будущего ремнанта (остающегося фрагмента печени) позволяет планировать объем оперативного вмешательства в случае резекции печени при первичных и метастатических опухолях, а также при трансплантации фрагмента печени от живого родственного донора [1].

Известно [5–9], что 25% — это минимальный объем печеночного ремнанта для адекватного восстановления у пациентов с морфологически не измененной печенью. При наличии лекарственно-индукционного повреждения (химиотерапии) или при фоновых патологиях (цирроз, фиброз, гепатоз) печени требуется не менее 40% от исходного объема остатка. При резекции массы, превышающей данный предел, печень не способна восстановить функцию, достаточную для жизнедеятельности организма. Кроме того, даже в случаях удаления меньших фрагментов печени может развиться фатальная острая пострезекционная печеночная недостаточность, которая встречается у 5–8% пациентов и остается основной причиной летальных исходов в хирургии этого органа.
Оценка регенераторного потенциала печени, или способности восстанавливать свои размеры и функции, актуальна для прогнозирования результатов реэкционного или трансплантационного вмешательства [10]. Применение стандартных предоперационных тестов не решает данной задачи. В настоящее время решение о выполнении необходимого реэкционного вмешательства основывается как на предоперационной оценке функции печени, так и на интраоперационной оценке опытного гепатобилиарного хирурга.

Мы полагаем, что предпочтение следует отдавать интраоперационной оценке по следующим причинам. Предоперационная оценка функционального резерва печени затруднительна ввиду того, что вместе с патологическим очагом в обязательном порядке удаляется и неизмененная часть печени в силу необходимости соблюдения принципа абластии (RO) и профилактики образования ишемических зон и желчнекаменных.

Кроме того, в момент проведения реэкционных вмешательств ткань печени уже может быть патологически изменена ниже предела обнаружения стандартных маркеров, таких как билирубин, алкогмин, профиль свертывания крови, уровень трансамина и щелочной фосфатазы [11, 12]. Период распада стандартных маркеров печеночной функции, используемых в рутинной клинической практике, слишком велик, чтобы отразить изменения функции органа в реальном масштабе времени. Наконец, функциональная и восстановительная активность печени зачастую не коррелирует с ее объемом. Резекционное вмешательство по анатомическим линиям может по-разному отразиться на остаточной функции печени в зависимости от индивидуальных особенностей ее анатомии [1, 13].

В последние годы широко используется оценка объема, массы органов и их гемодинамики с применением методов УЗИ, КТ и МРТ. Оценка пролиферативной активности выполняется морфологическими и иммуногистохимическими методами. Интенсивно развиваются физические методы исследования структуры, функции и метаболической активности клеток и тканей: эластография, различные типы спектроскопии, мультифотонная микросякскопия, метод генерации второй оптической гармоники (ГВГ), времяразрешенная флюоресцентная микроскопия (fluorescence lifetime imaging — FLIM). Комплексное использование данных методов расширяет возможности оценки регенераторного потенциала печени, в том числе и интраоперационно.

В данном обзоре рассмотрены современные инструменты оценки активности пролиферации клеток, а также методы анализа восстановления объема, массы и функции печени как в эксперименте, так и в клинике.

Методы оценки линейных размеров, объема и массы печени в эксперименте

Основным методом в экспериментальной науке служит определение отношения массы печени к массе тела до и после резекции, что позволяет давать количественную оценку динамики восстановления печени [14]. Подобная оценка изменения массы данного органа является наиболее простым методом анализа, однако она не показывает развитие восстановительных процессов и может быть использована только в исследовательских работах [1].

Таким способом в экспериментах у крыс определяли среднее отношение массы печени к массе тела, а также масса ее долей (или отношение массы ее доли к массе всей печени) [15, 16]. На основании этих данных после удаления определенной части печени, к примеру левой латеральной доли, путем взвешивания резецируемого фрагмента можно оценить массу всей печени и рассчитать отношение ее массы к массе тела. Затем, взвизиваемый больной через определенный срок после резекции, что делается только путем выведения животного из эксперимента, можно оценить восстановление массы печени, сравнив отношение ее массы к массе тела до операции и после регенерации органа.

Традиционные методы оценки линейных размеров, объема и структуры печени в клинической практике

Прижизненная оценка морфологии печеночной ткани невозможна без современных методов визуализации. В клинической практике линейные размеры, объем и структура печени исследуются с применением таких традиционных методов визуализации, как УЗИ, КТ, МРТ и ультразвуковая эластография. Наличие нового патологии требует обязательной оценки состояния структуры паренхимы печени, поскольку при ней снижается регенераторный потенциал, повышается риск развития печеночной недостаточности после оперативного вмешательства [17, 18].

Ультразвуковое исследование. Оценка размера печени с помощью УЗИ широко применяется в клинической практике для диагностики заболевания, выявления элемента на печени (химотерапия, химиоэмболизация печеночной артерии и др.) и для контроля послеоперационного вмешательства в течение длительного времени. УЗИ является доступным методом визуализации в реальном масштабе времени, основанном на неионизирующем излучении [19]. Преимуществами метода являются низкая стоимость и неинвазивность, что дает возможность многократного исследования акустических свойств паренхимы печени.

Исследование проводится путем сравнения эхогенности печени и другой ткани (в частности, почки). При наличии в гепатоцитах жировой капель яркость паренхимы печени увеличивается и становится больше яркости почечной паренхимы. Однако данный метод имеет ряд недостатков, а именно: наличие спекл-шумов (вызваны энергетическими помехами из-за беспорядочного отражения сигнала от структур с разной плотностью, слишком малых для того, чтобы их могла
отобразить систему); низкое качество изображения [20]; недостаточность метода для дифференциации печеночной патологии. В частности, как описано в работе Y.N. Zhang и соавт. [21], сложность представляет дифференциация фиброза, жировой болезни печени с воспалением и другими признаками хронического заболевания органа, при которых наблюдается схожая эхогенность ткани.

Ультразвуковая допплерография помимо оценки структуры патримони печен позволяет проводить анализ состояния кровотока в печеночных сосудах. Данный метод применим и для интраоперационной оценки качества перфузии репанта или трансплантанта [22]. Кроме того, с его помощью определяются признаки, специфичные для разных заболеваний печени (в частности, цирроза) [23]. Характеристики скорости кровотока и индекс резистентности главных печеночных сосудов (печеночной артерии, печеночной вены и воротной вены) в настоящее время хорошо описаны.

Однако патологический процесс, поражающий печень, оказывает характерное влияние на структуру кровотока и, следовательно, специфически влияет на характеристики волновых смещений трех основных печеночных сосудов [24].

Компьютерная томография и магнитно-резонансная томография. «Золотым стандартом» для оценки объема печени являются КТ-волюметрии [25] и МРТ [26]. Объем органа определяется путем получения послойных изображений печени, которые затем проходят постобработку. В результате получаются трехмерное изображение исследуемого органа и определяют его размеры.

При отсутствии предоперационной биопсии повреждение или заболевание паренхимы часто остается не выявленным до момента операции [27]. Технология КТ позволяет проводить оценку объема печени путем получения послойных срезов тела человека при прохождении рентгеновских лучей сквозь ткань. После этого можно рассчитать отношение объема репанта к ее общему объему [28]. В настоящее время предложено множество формул и коммерческих программ расчета объема печени при постобработке изображений КТ. Выбор соответствующей формулы зависит от возраста и пола пациента [29]. В среднем объем печени у мужчин составляет 1467,0±28,0 см³, у женщин — 1271,1±28,9 см³ [30]. Однако с помощью данного метода невозможно осуществлять корректный прогноз состояния печеночной ткани после операции, в особенности при наличии фоновых заболеваний (стеватоз, холестаз) [31].

Для более качественного анализа состояния и оценки регенераторного потенциала печени после оперативного вмешательства используется система однофotonной эмиссионной КТ (single-photon emission computed tomography — SPECT), которая позволяет проводить одновременную оценку функции печени и ее объема [32, 33].

С применением контрасти-усиленной МРТ с контрастными агентами на основе гадолиния выполняют более точную визуализацию доброкачественных или злокачественных поражений печени по сравнению с КТ. Скорость вымывания гадолиния служит показателем функционального состояния паренхимы печени. Контрасти-усиленная МРТ уже является частью стандартной подготовки к резекции печени в различных центрах по всему миру [34].

Помимо этого проводить оценку функции печени можно путем введения контрастной метки на основе гадолиния Gd-EOB-DTPA. Поглощение Gd-EOB-DTPA в синусоидах печени происходит с вовлечением органических анионных транспортных белков и Na+-таурохолатных котранспортирующих полиептидов с последующим элиминированием в желчь без предварительной биотрансформации. В настоящее время рассматривается перспектива использования МРТ с Gd-EOB-DTPA в качестве функционального теста [6, 27, 31].

Следует учитывать, что плотность печени может изменяться в зависимости от степени отложения липидов, гликогена и нерезидентных воспалительных клеток, которые могут быть и не связаны с регенеративной или гиперплазической активностью [14]. В связи с чем точность методов КТ и МРТ для определения функции и восстановительного потенциала будет ограничена. К недостаткам можно отнести также необходимость контроля при использовании КТ-волнометрии дозы рентгеновского излучения, которое может привести к тяжелым сердечно-сосудистым осложнениям [35]. Однако применение контрастных агентов на основе гадолиния Gd-EOB-DTPA. Поглощение Gd-EOB-DTPA в синусоидах печени происходит с вовлечением органических анионных транспортных белков и Na+-таурохолатных котранспортирующих полиептидов с последующим элиминированием в желчь без предварительной биотрансформации. В настоящее время рассматривается перспектива использования МРТ с Gd-EOB-DTPA в качестве функционального теста [6, 27, 31].

Визуализация сосудистого русла. Анализ структуры сосудистого древа (портальной и/или печеночной вены) дает представление о качестве перфузии при восстановлении объема печени. Данная технология внедрена в клиническую практику и позволяет определять области печени, подверженные риску обструкции оттока. Визуализация сосудистого древа выполняется с использованием контрастного вещества при проведении спиральной КТ или с помощью бесконтрастной МР-ангиографии.

Данная технология имеет потенциал для оценки сосудистой реновации и восстановления внутрипеченочной сосудистой архитектуры, а также для анализа распределения областей возможной неоднородности пролиферативного ответа гепатоцитов. Такое явление зачастую наблюдается в процессе восстановления печени и зависит от качества гемодинамики в данной области [35]. Однако применение контрастных агентов может привести к тяжелым сердечно-сосудистым осложнениям. Кроме того, ограничением данной технологии является длительное время выведения контраста, что препятствует повторной визуализации, если она запланирована с интервалами времени менее 24 ч [36].
Эластография. С развитием технологии ядерной визуализации появился ультразвуковой эластография и магнитно-резонансная эластография как главные методы для оценки фиброза печени. Проведенное исследование, что эластографические значения жесткости ткани печени бывают более показательны для прогнозирования прогрессирующего фиброза и цирроза печени, чем наличие морфологических признаков на МРТ-изображениях [37, 38]. В работе A. Srinivasa Babu с соавт. [39] представлены основные ограничения данного метода, в частности неточность измерения жесткости печени у пациентов с тяжелым ожирением и асцитом. Однако, как показано в работе L. Castéra с соавт. [40], разработка зонда (XL-зонд FibroScan; Echosens, Франция) в определенной степени решила данный проблему.

Оценка уровня фиброгенеза с помощью метода эластографии актуальна и для анализа восстановительного потенциала печени в связи со значительным снижением ее функции при отложении копланген и развитии портальной гипертензии, связанной с изменением гемодинамики остаточного ренанта.

Клинические методы оценки пролиферативной активности гепатоцитов

Пролиферативная активность гепатоцитов является неотъемлемой частью процесса восстановления печени и исследуется с применением различных морфологических и иммуногистохимических методов. Такие методы основаны на прямом подсчете митотического индекса (отношение количества делящихся клеток к общему количеству клеток).

Определение количества митотических клеток. Подсчет клеток, находящихся на стадии митоза в гистологических срезах, окрашенных гематоксилином и эозином, является широко используемым методом оценки пролиферации клеток. Однако он не лишен некоторых недостатков. Во-первых, его сложно реализовать в клинических условиях из-за небольшого объема образцов, получаемых при чрескожной пункционной биопсии печени. Во-вторых, митоз — это относительно быстро протекающий процесс, занимающий всего один из 24 ч, необходимых клетке для прохождения клеточного цикла, соответственно, данный метод не позволяет подсчитать абсолютное количество активно пролиферирующих гепатоцитов. В-третьих, известно, что митотическая активность в разных участках печени неодинакова. Ее интенсивность выше в периферической области (ацинарная зона), чем в среднедолевой или перцентиальной области дольки печени. В связи с этим образцы биопсии, которые захватывают различные участки печеночной дольки, содержат различное количество митотических клеток [41–43].

Количественную оценку митотической активности клеток можно проводить по включению нуклеоидов в цепочку ДНК или по экспрессии различных маркеров [44].

Окрашивание тимидином. Измерение количества включенных в ДНК молекул 3Н-тимидина в качестве маркера активности фазы S является одной из наиболее распространенных методик, используемых для подтверждения активации процесса восстановления печени [45].

Подобная оценка применяется in vitro при исследовании биопсийных материалов печени или изолированных гепатоцитов, которые инкубируют с радиоактивной меткой тимидина в течение 1 ч, после чего измеряют уровень радиоактивной метки методом автогисторадиографии. Этот метод включает подсчет количества ядер, маркированных тимидином, на 100 клеток в широком поле зрения [46]. Данные, полученные на модели крыс с использованием окрашивания тимидином, показывают, что и при покойном состоянии печени в норме всего 0,3% клеток будут содержать маркер, тогда как в период максимальной регенерации (после 70% гепатэктомии) до 40% клеток содержат маркер. Пролиферация синосуидальных клеток также варьирует: около 0,9% клеток — в покоящейся печени и 30% — в регенерирующей. Известно [47], что гепатоциты и синосуидальные клетки имеют различные пики пролиферативной активности. Через 24 ч после резекции наблюдается наибольшее количество делящихся гепатоцитов, а максимум пролиферативной активности синосуидальных клеток отмечается через 42–50 ч после резекции. К недостаткам данного метода можно отнести невозможность применения радиоактивной метки для пациентов in vivo и необходимость в длительной подготовке биопсийного образца. Кроме того, включение тимидина происходит не только при синтетических процессах в ДНК, но и при репарации ДНК и синтезе РНК.

Включение бромдезоксиуридина в ДНК. Бромдезоксиуридин (BrdU) является аналогом тимидина, который также включается в ДНК в процессе ее синтеза. Однако, один из преимуществ использования BrdU в оценке восстановления потенциала является то, что он может вводиться в устойчивой дозе в течение 4–5 дней с водой или пищей, и, следовательно, метка накапливается в клетках, прошедших митоз за данный период времени. Его включение в ДНК может быть обнаружено с помощью иммуногистохимического анализа с применением специфических антител или проточного цитометрии [48, 49].

Количество гепатоцитов с меткой BrdU составляет менее 1% в покоящейся печени и 25–36% — в гепатоцитах и синосуидальных клетках, полученных из печени через 24 и 48 ч после частичной гепатэктомии [50]. Основные преимущества маркировки BrdU — это короткий период времени (относительно тимидина), необходимый для получения результатов, и отсутствие влияния радиоактивной метки. Основные недостатки подобны недостаткам метода с применением тимидина. Кроме того, процедура in vitro детекции включения BrdU несколько дороже, так как требует специального оборудования и реагентов, а инкубация тканей или
клеток должна проводиться в тщательно подобраных условиях [51]. Общим серьезным недостатком методов с включением меток в ДНК является возможное возникновение мутаций, проявляющихся в изменении экспрессии генов [50].

Проточная цитометрия (комбинированный метод). Она применяется для измерения уровня флюоресценции химических соединений, входящих в состав клетки (автофлюоресценция), или маркеров, внесенных в образец перед проведением проточной цитометрии. Метод позволяет измерить оптические характеристики клеток, микроорганизмов, клеточных ядер и хромосомного материала в потоке жидкости при пересечении клетками источника излучения. Особенности рассеяния света напрямую отражают структурные и морфологические свойства клетки. Полученные данные позволяют судить о биохимических, биофизических и молекулярных характеристиках изучаемых клеток. Степень возбуждения флюорофара определяется детектором, переводящим сигнал в электронную форму, пригодную для обработки. С применением проточной цитометрии, в частности, возможно оценить количество включенных в ДНК тимидина и BrdU [52, 53].

Основное преимущество проточной цитометрии заключается в том, что получаемые данные обладают высокой статистической точностью. Кроме того, проточная цитометрия может быть использована для определения различных стадий митоза клеток в процессе регенерации. Клетки в G1-фазе являются диплоидными, G2 — тетралипидами, а в S-фазе имеют промежуточное количество ДНК. К недостаткам относятся высокая стоимость оборудования и необходимость деструкции тканей, что приводит к потере связей между субпопуляциями клеток [53].

Иммуногистохимические методы. Они основаны на применении антител к эндогенным молекулам в тканях. Для анализа регенерации ткани, как правило, используют следующие маркеры: ядерный антиген Ki-67. Для анализа активности репликации ДНК используется BrdU [52, 53].

Белок PCNA. Является вспомогательным белком ДНК-полимеразы в эукариотических клетках, необходимым для репликации ДНК. Его экспрессия зависит от клеточного цикла: она появляется в конце фазы G1 и максимальна в фазе S. Считается, что сильно окрашенные ядра — это признак фаза G1/S или G2 [46, 54].

Преимуществом детекции PCNA является хорошая корреляция ее результатов с результатами других маркеров пролиферации клеток. Также существует возможность изучения детекции PCNA по архивным материалам, что позволяет проводить ретроспективные исследования [48]. Недостатком применения данного метода является невозможность оценки внутриядерной вариабельности митотических событий, что может привести к различным результатам в зависимости от того, какие зоны дольки анализируются. Кроме того, интенсивность окраски со временем снижается, что связано с ослаблением иммунореактивности реагентов при сушке образцов или при воздействии света [54, 55].

Ki-67. Данный ядерный антителен связан со всеми фазами клеточного цикла. Он детектируется в начале фазы G1 и достигает пиковых значений в фазах S и M. Ki-67 выявляется с помощью иммунопероксидазного окрашивания с использованием моноэлламинного антитела MIB-1. Индекс маркировки представляет собой процент положительных гепатоцитов Ki-67 в 1000 клетках в широком поле зрения [56]. Преимущества анализа Ki-67 — в его легком применении в клинических условиях, а результаты коррелируют с другими показателями пролиферации клеток. Несмотря на это, антителен чувствителен к фиксации и интенсивность окраски может снижаться со временем, однако процедура выскокотемпературного восстановления антигенной активности позволяет восстановить окраску через длительный промежуток времени [7, 14].

Полимеразная цепная реакция. Оценку интенсивности клеточной пролиферации можно проводить с применением метода ПЦР в реальном масштабе времени. Для анализа активности регенераторного процесса наиболее актуально определение уровня экспрессии мРНК циклинов, связанных с активацией клеточного цикла. Ccn1 и Ccne1 — специфичные циклины стадий G1 и S клеточного цикла, Ccna2 и Ccnb1 специфичны для фаз G2 и M. Кроме того, данный метод позволяет оценивать уровень экспрессии генов, кодирующих ферменты, участвующие в метаболизме аминокислот (Hal), углерода (Got1) и деградации жирных кислот (Gcdh), что дает возможность проводить анализ не только пролиферативной, но и синтетической активности регенерирующей печени [57–59]. К недостаткам данного метода относится необходимость использования дорогостоящего оборудования и реагентов. Кроме того, анализ проводится в условиях in vitro, в связи с чем разрушается структура клеток. Это может приводить к значительной ошибке измерений и потере клеточного материала. В качестве маркеров активации пролиферативного процесса могут также выступать сывороточные белки: тимидинкиназа, орнитинкарбоксилаза и фибронектин. Анализ изменений концентрации данных белков в крови указывает на запуск соответствующих синтетических реакций.

Тимидинкиназа. Данный фермент регулирует скорость синтеза ДНК. Он отвечает за вызывливозование тимидина и его последующее включение в ДНК пролиферирующих клеток. Фермент присутствует в надосадочной фракции гепатоцитов после них гомогенизации и центрифугирования [60, 61]. Его уровень измеряется путем инкубации меченого радиоактивной меткой тимидина с супернатантом. Радиоактивность в проточной цитометрии может быть использована для оценивания количества включенных в ДНК тимидина и его последующего включения в ДНК пролиферирующих клеток.
Орнитиндекарбоксилаза. Этот фермент участвует в синтезе полиаминов, необходимых для нормального протекания регенерации печени. Его измеряют в гомогенатах печени путем количественного определения CO_2, выделенного из меченного изотопом C14 субстрата орнигин. Лик концентрации на- бладает через 6 и 24 ч после частичной гепатэктомии. Уровень орнитиндекарбоксилазы измеряют методом ионообменной хроматографии. Недостатком является относительно длительное время получения результатов анализа и необходимость использования радио- активной метки [14, 63]. Кроме того, отмечается низкая чувствительность метода, так как для выявления заметных изменений ферментативной активности в сыворотке крови требуются большие регенеративные стимулы (например, объемные резекции печени) [64].

Фибронектин. Этот белок — растворимый в плазме крови гликопротеин, синтезируемый гепатоци- тами и эндоотелиальными клетками [65]. Концентрация фибронектина в плазме крови определяется методом агглютинации латекса с желатиновым покрытием. Главным преимуществом определения уровня плазменного фибронектина служит простота выполнения процедуры. Однако фибронектин не является специфичным маркером пролиферации клеток печени и может повышаться при опухолевом перерождении кле- ток и во время беременности [14].

Клинические методы оценки изменения функциональной способности и структуры печени при регенерации

Клиренс-тесты. В настоящее время существует ряд функциональных тестов, основанных на оценке скорости выделения (клиренса) печенью различных экзогенных субстанций: аминопириновый дыхательный тест, тест элиминации галактозы, фенилаланиновый дыхательный тест, тест элиминации сорбита, тест на метаболизм лидокаина и клиренс-тест с индоцианином зеленым (ИЦЗ) [66, 67].

Из всех перечисленных тестов наиболее часто в клинической практике применяются клиренс-тесты с ИЦЗ, элиминации галактозы, а также лидокаиновый тест.

Индоцианин зеленый элиминируется из плазмы гепатоцитарными транспортерами, расположенными на базолатеральной мембране, и экскретируется в желчь. Он элиминируется исключительно гепатоцитами через органические анно-транспортирующие белки с вы- делением в желчь без биотрансформации. В связи с этим данный тест позволяет оценивать детоксикационную функцию печени [11, 68, 69]. Стандартным методом количественного определения клиренса ИЦЗ в печени является фотовотометрический анализ ex vivo последовательных образцов крови, полученных в течение 15 мин после внутривенной венной инъекции [70]. Однако существуют ограничения для применения данного метода. Как отмечено в работе T. Urade с соавт. [71], флюоресцентная томография с ИЦЗ не позволяет четко дифференцировать границы пече- ночных сегментов, имеющих сложную трехмерную структуру, затрудняя проведение эндометрической пал- раскопии. Кроме того, флюоресцентная томография с ИЦЗ обладает ограниченным проникновением в ткани в диапазоне ближнего инфракрасного света, применяемого в современных системах визуализации.

Оценка скорости элиминации галактозы из крови показывает уровень интенсивности процесса фосфор- рилирования галактозы галактокиназой, происходящего в клетках печени. Концентрация галактозы в плазме крови и в моче анализыровается спектрофотометрически на основе реакции галактозы и никотинамидаденин- динуклеотида (НАД) с образованием галактогалактона и НАДН. Данный тест позволяет проводить косвенную оценку как функции печени, так и метаболической ак- тивности гепатоцитов. Низкая способность к элимина- ции галактозы свидетельствует о печечно-нестабильности и некоторых других осложнениях [72, 73].

Кроме того, детоксикационную функцию печени можно оценивать с помощью лидокаинового теста. Лидокайн метаболизируется в печени. Однако данные методы оценивают функциональное состояние печени лишь на момент оперативного вме- шательства, не позволяя определять будущую функ- циональную способность реманта [70]. Однако существуют ограничения для примене- ние 15 мин после внутривенной инъекции лидокаина, флюоресцентной томографии с ИЦЗ не

Однофотонная эмиссионная компьютерная томография. В последние десятилетия разрабо- тан ряд технологий ядерной визуализации в качест- ве неинвазивных методов оценки функции печени. В частности, это метод однофотонной эмиссионной компьютерной томографии (single-photon emission computed tomography — SPECT). Для данного метода широко применяется изотоп 99mTc. Разработан ряд
Перспективные методы для оценки структурно-функционального состояния и метаболической активности регенерирующей печени

Представленные в данном разделе методы в настоящее время в клинической практике не применяются. Они позволяют получить дополнительную информацию об энергетическом статусе клеток, их молекулярном составе и морфологии. Оценка патологических изменений, выраженных на клеточном уровне, дает возможность выполнять раннюю диагностику различных печеночных патологий и также проводить предиктивную оценку динамики регенераторного процесса после оперативного вмешательства. Такие возможности методов делают их использование весьма актуальным.

Методы масс-спектрометрии. В последние несколько лет быстрыми темпами развиваются и постоянно совершенствуются методы, основанные на масс-спектрометрии, такие как инфракрасная, ультрафиолетовая спектроскопия (ИК- и УФ-спектроскопия) и масс-спектрометрия.

Различные биомолекулы имеют характерные спектры поглощения в инфракрасной области. Выделив специфические резонансные частоты функциональных групп преобладающих в исследуемых образцах, можно определять химический состав в любой его области [72]. Спектроскопия в УФ-диапазоне позволяет исследовать уровень автофлюоресценции компонентов клеток и тканей. Многие метаболические маркеры обладают характерными спектрами флюоресценции, возбуждаемой в этом диапазоне. При использовании масс-спектрометрии вторичных ионов (time-of-flight secondary ion mass spectrometry — ToF-SIMS), дают возможность определять молекулярное строение различных соединений, присутствующих на поверхности срезов исследуемой ткани.

ToF-SIMS используется сфокусированный импульсный первичный пучок ионов для десорбции и ионизации молекул на поверхности срезов образца. С использованием данного метода можно определять как сложные липиды, такие как фосфатидилхолины, фосфатидилэтаноламины, сультфатиды или даже гликосфинголипиды, так и соединения с низкой молекулярной массой, такие как жирные кислоты, коллаген, триптофан, липопигменты, эластин и пиродоксин, позвоحي детектировать изменения микроокружения, которые включают в себя жировые дистрофии печени, и с помощью этого метода можно идентифицировать метаболические маркеры, которые могут быть связаны с процессами метаболизма, включая окислительно-восстановительные реакции в клетках или их оксигенации по изменению локально- го спектра эмиссии флюоресценции [80]. Очевидно, анализ уровня оксигенации гепатоцитов является перспективным инструментом для оценки состояния послеоперационного реминанта. Кроме того, анализ измерений таких метаболических маркеров, как НАДН, коллаген, триптофан, липопигменты, эластин и пиродоксин, позволит проводить комплексную оценку метаболического статуса клеток печени.

Спектроскопия в УФ-диапазоне позволяет исследовать уровень автофлюоресценции компонентов клеток и тканей. Многие метаболические маркеры обладают характерными спектрами флюоресценции, возбуждаемой в этом диапазоне. При использовании масс-спектрометрии вторичных ионов (time-of-flight secondary ion mass spectrometry — ToF-SIMS), дают возможность определять молекулярное строение различных соединений, присутствующих на поверхности срезов исследуемой ткани.

ToF-SIMS применяется для фракционирования импульсных пучков ионов для десорбции и ионизации. Каждый слой клеток или их оксигенации по изменению локально-го спектра эмиссии флюоресценции [80]. Очевидно, анализ уровня оксигенации гепатоцитов является перспективным инструментом для оценки состояния послеоперационного реминанта. Кроме того, анализ измерений таких метаболических маркеров, как НАДН, коллаген, триптофан, липопигменты, эластин и пиродоксин, позволит проводить комплексную оценку метаболического статуса клеток печени.

Методы, основанные на масс-спектрометрии, в частности масс-спектрометрия вторичных ионов (time-of-flight secondary ion mass spectrometry — ToF-SIMS), дают возможность определять молекулярное строение различных соединений, присутствующих на поверхности срезов исследуемой ткани.

Кроме того, они позволяют не только проводить анализ компонентов клетки на основе их специфического химического строения, но и оценивать распределение интересующих метаболитов клетки на основе данных химического картографирования [81].
закономерности распределения липидов в образцах скелетных мышц человека у пациентов с дистрофией Дюшенна [85], показано накопление холестерина в коре головного мозга при болезни Альцгеймера [86].

В настоящее время значительно возрос интерес к визуализации живых тканей на клеточном уровне. Уже накопилось определенное количество данных о молекулярных структурах и функциях нормальной и патологической печени [17]. Основными недостатками метода являются слабая чувствительность в диапазоне высоких масс вторичных ионов и недостаток разрешающей способности — достижение XY-разрешения менее 1 μm в биологических образцах на данный момент остается сложной задачей, что ограничивает применение ToF-SIMS для анализа состава более мелких липидных капель [92]. Данное ограничение можно преодолеть путем комбинации ToF-SIMS с другими методами визуализации, в частности флюоресцентной микроскопией, как было показано S.K. Saka с соавт. [93]. Ученые продемонстрировали корреляцию результатов ToF-SIMS как с конфокальной, так и со STED-микроскопией.

В настоящее время значительно возрос интерес к визуализации живых тканей на клеточном уровне. Неинвазивные биомедицинские методы визуализации удобны для стандартной процедуры детектирования заболеваний печени, однако они не обладают достаточными чувствительностью, пространственным разрешением и специфичностью для выявления и определения стадии заболевания печени, а также не дают представления о молекулярных изменениях ее клеток, специфичных для процесса регенерации.

В настоящее время значительно возрос интерес к визуализации живых тканей на клеточном уровне. Флюоресцентная микроскопия позволяет оценивать наличие и распределение концентрических молекул и исследовать клеточные события в реальном масштабе времени. Уже накопилось определенное количество данных, полученных с использованием методов флюоресцентной микроскопии, о структуре и функции нормальной и патологической печени [17]. В частности, исследована микроструктура печени в режиме реального времени как на моделях животных, так и у человека было описано в работе M. Goetz с соавт. [97]. Данная технология позволяет осуществлять интерактивную флуоресцентную визуализацию структуры и потенциально может использоваться для динамического наблюдения за процессами восстановления печени после её резекции [97–99]. Однако при таком подходе даже при ограничении области изучения образец подвергается фотопоражению, что снижает качество изображения и значительно повреждает ткани [100].

Применение однофотонной конфокальной лазерной микрохирографии для гистологического обследования печени в режиме реального времени как на моделях животных, так и у человека было описано в работе M. Goetz с соавт. [97]. Данная технология позволяет осуществлять интерактивную флуоресцентную визуализацию структуры и потенциально может использоваться для динамического наблюдения за процессами восстановления печени после её резекции [97–99]. Однако при таком подходе даже при ограничении области изучения образец подвергается фотопоражению, что снижает качество изображения и значительно повреждает ткани [100].
являются особенно актуальными для оценки тяжести фиброза печени [95, 96, 100]. Кроме того, в работе S. Ranjit с соавт. [123] были показаны возможности изменение состояний печени и в процессе ее регенерации. В настоящий момент все большее распространение находят новые методы флюоресцентного имиджинга, позволяющие оценивать метаболическую и синтетическую активность клеток [119]. Изменение метаболического статуса гепатоцитов является чувствительным параметром для оценки тяжести печеночного поражения [118]. Тем не менее определение жировых капелек в гепатоцитах, при этом возможен анализ как крио-, так и депаутилизированных срезов [109].

В настоящий момент разработан простой метод качественной и количественной оценки фиброза печени, основанный на гепатограмм, который хорошо коррелирует с оценкой уровня фиброза по шкале METAVIR. Система испытана в клинике и может стать альтернативой традиционному гистологическому анализу, значительно снизив время клинической диагностики заболевания [110]. Кроме того, на основе проанализированных ГВГ-изображений печени с различной степенью тяжести фиброза была получена корреляция между изменениями морфологии, структуры и толщины коллагена капсул Глисона и стадией заболевания [107].

Методы CARS, SRS. Методы гиперспектральной микроскопии на основе когерентного антистоксового рамановского рассеяния (coherent anti-stokes Raman spectroscopy — CARS) и микроскопии стимулированного комбинационного рассеяния (stimulated Raman scattering — SRS) — это перспективные методы, которые позволяют проводить качественную и количественную оценку конкретных типов липидов на тканевом и клеточном уровнях. Данные методы дают информацию о химическом строении липидов, так и об их распределении, детектируя внутренние колебательные спектры химических связей углерода с водородом и азотом, а также характеристических колебаний различных функциональных групп (гидроксильной -OH, аминогруппы -NH, -N= и т.д.) [115]. С использованием гиперспектральной SRS-микроскопии D. Fu с соавт. смогли идентифицировать определенные типы эфирых холестерина и триглицеридов на уровне единичных лиpidных капель [114, 116]. Наличие тех или иных типов триглицеридов связано с различными (возможно, патологическими) молекулярными изменениями печеночных клеток, которые могут указывать на снижение регенераторного потенциала.

Эффективный способ одновременной визуализации фиброзированной и жировой ткани печени — объединение МФМ, ГВГ и методов гиперспектральной микроскопии в одну имиджинговую платформу, называемую мультимодальной нелинейно-оптической микроскопией [117]. Мультимодальная нелинейно-оптическая микроскопия обладает потенциалом для более детальной оценки изменений печени на клеточном уровне в сравнении с отдельными модальностями. Преимущество мультимодальной микроскопии заключается в одновременной визуализации различных гистологических и патологических характеристик тканей без использования каких-либо красителей. Кроме того, система позволяет не только определять наличие жировых капелек в гепатоцитах, но и проводить качественную оценку их липидного состава [118].

Времяразрешенная флюоресцентная микроскопия. В настоящий момент все большее распространение находят новые методы флюоресцентного имиджинга, позволяющие оценивать метаболическую и синтетическую активность клеток [119]. Изменение метаболического статуса гепатоцитов является чувствительным параметром для оценки тяжести печеночного поражения [118]. Тем не менее определение жировых капелек в гепатоцитах, при этом возможен анализ как крио-, так и депаутилизированных срезов [109].

В данной работе был показан значительный потенциал гиперспектральной микроскопии для оценки метаболических изменений при первичном склерозирующем холангите и фиброзе желчевых путей, хроническом фиброзе, стеатозе, гепатоцеллюлярной карциноме и синдроме ишемии-реперфузии печени [95, 96, 100]. Кроме того, в работе S. Ranjit с соавт. [123] были показаны возможности FLIM для анализа интенсивности таких метаболических пиктов, как гликолиз, окислительно-фосфорилирование, лентозофосфатный путь, и комплекса бисоциклических процессов в клетке [120–122]. В эксперименте была показана применимость метода FLIM для оценки метаболических изменений и их вкладов — кофакторов дегидрогеназ НАД и ФАД — указывают на изменения интенсивности таких метаболических пиктов, как гликолиз, окислительно-фосфорилирование, лентозофосфатный путь, и комплекса бисоциклических процессов в клетке [95, 96, 100]. Кроме того, в работе S. Ranjit с соавт. [123] были показаны возможности FLIM для анализа интенсивности пиктов в клетках.

Таким образом, использование МФМ в сочетании с FLIM перспективно для анализа минимальных патологических и динамических изменений, определить которые невозможно с применением клинического гистологического анализа, функциональных тестов и других методов визуализации. Полученные в эксперименте результаты требуют дополнительного анализа и корректной интерпретации, необходимо дальнейшее накопление данных об изменении метаболического статуса гепатоцитов при различных патологических состояниях печени и в процессе ее регенерации.
Заключение

Несмотря на прогресс пекарственной терапии забо
болеваний печени, ее резекция и трансплантация до
сих пор остаются основными методами лечения, не
имеющими альтернативы. Без анализа регенераторногó
потовенциала, а также функционального статуса
печени невозможны планирование хирургических и
трансплантологических вмешательств при лечении
большинства заболеваний этого органа и проведени
е качественной предиктивной оценки состояния
печени во время и после оперативных вмешательств.

Наличие фоновых заболеваний приводит к снижению
функции печени и регенераторного потенциала, что
повышает риск развития печеночной недостаточности
и других осложнений. Стандартные морфологические
и иммуногистохимические методы, широко использу
емые в клинической практике, зачастую неприменимы
для анализа динамики патологических изменений
на ранних стадиях и позволяют оценить активность
клеточной пролиферации только на момент взятия
образца ткани. Клинические методы визуализации и
различные функциональные тесты дают информа
цию об объеме и общей функции печени, что не от
ражает ее восстановительных способностей в целом.

В связи с этим актуальной задачей остается поиск
перспективных методов, позволяющих проводить
оценку функциональной способности и регенератор
ного потенциала печени до и во время оперативных
вмешательств с возможностью интраоперационного
исследования.

Известно, что динамику восстановительного про
цесса печени отражают изменения метаболического
статуса, морфологии клеток, а также химического
состава на молекулярном уровне. Дальнейшие ис
следования данных изменений позволят определить
критерии снижения функциональной активности
клеток и в конечном итоге ухудшения их пролифе
ративного потенциала. Наиболее перспективными
методами для анализа указанных параметров на
клеточном и молекулярном уровнях можно назвать
мультифотонную микроскопию с различными мо
dальностями (ГВГ, CARS, SRS и FLIM) и масс-спектр
тометрию (в частности, ToF-SIMS). Комплексное
применение данных методов позволит осуществ
лять предиктивную оценку динамики регенератор
ного процесса печени. При этом важным аспектом
остается проведение интраоперационной оценки
изменений на молекулярном, клеточном и тканевом
уровнях, что значительно расширяет возможности
клинической диагностики.

Финансирование исследования. Работа выполнена
при финансовой поддержке Российского научного
фонда (проект №19-15-00263).

Конфликт interessov. Авторы подтверждают от
сутствие конфликтов интересов, о которых необходимо
сообщить.

Литература/References

1. Wei W., Dirsch O., Mcean A.L., Zafarnia S., Schwier M.,
Dahmen U. Rodent models and imaging techniques to study
liver regeneration. Eur Surg Res 2015; 54(3-4): 97–113,
https://doi.org/10.1159/000368573.

2. Michalopoulos G.K. Liver regeneration. J Cell Physiol
2007; 213(2): 286–300, https://doi.org/10.1002/jcp.21172.

3. Riehle K.J., Dan Y.Y., Campbell J.S., Fausto N.
New concepts in liver regeneration. J Gastroenterol
Hepatol 2011; 26: 203–212, https://doi.org/10.1111/j.1440-
1746.2010.06539.x.

4. Taub R. Liver regeneration: from myth to mechanism.
Nat Rev Mol Cell Biol 2004; 5(10): 836–847, https://doi.
org/10.1038/nrm1489.

5. Moris D., Vermadakis S., Papalampros A., Vailas M.,
Dimitrokallis N., Petrou A., Dimitroulis D. Mechanistic
insights of rapid liver regeneration after associating liver
partition and portal vein ligation for stage hepatectomy.
World J Gastroenterol 2016; 22(33): 7613, https://doi.org/10.3748/wjg.
v22.i33.7613.

6. Nilsson H., Karlgren S., Blomqvist L., Jonas E.
The inhomogeneous distribution of liver function: possible
impact on the prediction of post-operative remnant liver
function. HPB 2015; 17(3): 272–277, https://doi.org/10.1111/
hpb.12348.

7. Golse N., Bucur P.O., Adam R., Castaing D.,
Cunha A.S., Vibert E. New paradigms in post-hepatectomy
liver failure. J Gastrointest Surg 2013; 17(3): 593–605,
https://doi.org/10.1007/s11605-012-2048-6.

8. Guglielmi A., Ruzzeneante A., Concì S., Valdegamberì A.,
Iacono C. How much remnant is enough in liver resection?
Dig Surg 2012; 29(1): 6–17, https://doi.org/10.1159/000353713.

9. Truant S., Boleslawski E., Sergent G., Leteurtre E.,
Duhamel A., Hebbar M., Pruvo F.R. Liver function following
extended hepatectomy can be accurately predicted using
remnant liver volume to body weight ratio. World J Surg
2015; 39(5): 1193–1201, https://doi.org/10.1007/s00268-014-2929-9.

10. Краснов О.А., Павленко В.В., Краснов К.А.,
Краснов А.О., Пельц В.А., Ставреч А.Б., Аминов И.Х.,
Сохарев А.С., Керопян С.Е. Современные методы оценки
функционального резерва печени в резекционной хирургии
органа. Медицина и образование в Сибири 2014; 6: 37.

11. Краснов О.А., Павленко В.В., Краснов К.А.,
Краснов А.О., Пельц В.А., Ставреч А.Б., Аминов И.Х.,
Сохарев А.С., Керопян С.Е. Современные методы оценки
функционального резерва печени в резекционной хирургии
органа. Медицина и образование в Сибири 2014; 6: 37.

12. Никольсон М., Керопян С.Е., Керопян С.Е.
Современные методы оценки функционального резерва
печени в резекционной хирургии органа. Медицина и
образование в Сибири 2014; 6: 37.

13. Thomas M.N., Weninger E., Angele M., Bösch F.,
Pratschke S., Andrassy J., Guba M. Intraoperative simulation
of remnant liver function during anatomic liver resection
with indocyanine green clearance (LIMON) measurements.
HPB 2015; 17(6): 471–476, https://doi.org/10.1111/hpb.12380.
14. Assy N., Minuk G.Y. Liver regeneration: methods for monitoring and their applications. *J Hepatol* 1997; 26(4): 945–952, https://doi.org/10.1016/s0168-8278(97)80266-8.

15. Fernández M.A., Albor C., Ingelmo-Torres M., Nixon S.J., Ferguson C., Kurzchalía T., Pol A. Cavelino-1 is essential for liver regeneration. *Science* 2006; 313(5793): 1628–1632, https://doi.org/10.1126/science.1130773.

16. Jia C. Advances in the regulation of liver regeneration. *Expert Rev Gastroenterol Hepatol* 2011; 5(1): 105–121, https://doi.org/10.1586/egr.10.87.

17. Will O.M., Damm T., Campbell G.M., von Schönfells W., Açı Y., Will M., Chalaris-Rissmann A., Ayna M., Drucker C., Glüer C.C. Longitudinal micro-computed tomography monitoring of progressive liver regeneration in a mouse model of partial hepatectomy. *Lab Anim* 2017; 51(4): 422–426, https://doi.org/10.1177/0023677216678824.

18. McNaughton D.A., Abu-Yousef M.M. Doppler US of the liver made simple. *Radiographics* 2011; 31(1): 161–188, https://doi.org/10.1148/rg.31105093.

19. Childs J.T., Thoirs K.A., Esterman A.J. The development of a practical and uncomplicated predictive equation to determine liver volume from simple linear ultrasound measurements of the liver. *Radiography* 2016; 22(2): 125–130, https://doi.org/10.1016/j.radi.2015.12.009.

20. Goceri E., Shah Z.K., Layman R., Jiang X., Gurcan M.N. Quantification of liver fat: a comprehensive review. *Comput Biol Med* 2016; 71: 174–199, https://doi.org/10.1016/j.compbiomed.2016.02.013.

21. Zhang Y.N., Fowler K.J., Hamilton G., Cui J.Y., Sy E.Z., Bailanay M., Srinivasa Babu A., Wells M.L., Teytelboym O.M., Mackey J.E., Miller F.H., Yeh B.M., Venkatesh S.K., Wu J., Li H., Chen Z., Zhong Q., Gao H., Fu L., Sandrasegaran K. Value of gadoxetate biliary transit time in determining hepatocyte function. *Abdom Imaging* 2015; 40(1): 95–101, https://doi.org/10.1007/s00261-014-0200-3.

22. Parekh M. Kruger M.D., Griesserme A., Bentley-Hibbert S. Regenerative liver surgeries: the alphabet soup of mechanisms and models to clinical application. *Gastroenterol Hepatol* 2017; 1952, https://doi.org/10.1016/s0168-8278(97)80266-8.

23. Famularo S., Gianotti L., Riggio O. Small-for-flow liver failure after extended hepatectomy: hot questions and an update. *Gastroenterology Insights* 2017; 8(1): 6–10, https://doi.org/10.4081/gi.2017.6968.

24. Choi S.H., Kwon J.H., Kim K.W., Jeong J.J., Shin H.J., Lee J., Song G.W., Lee S.G. Measurement of liver volumes by portal vein flow by Doppler ultrasound in living donor liver transplantation. *Clin Transplant* 2017; 31(9): 1–7, https://doi.org/10.1111/citr.13050.

25. McCollough C.H., Primak A.N., Braun N., Koffer J., Yu L., Christner J. Strategies for reducing radiation dose in CT. *Radiol Clin North Am* 2009; 47(1): 27–40, https://doi.org/10.1016/j.rcl.2008.10.006.

26. Spouse E., Gedroyc W.M. MRI of the claustrophobic patient: interventionally configured magnets. *Br J Radiol* 2000; 73(866): 146–151, https://doi.org/10.1259/bjr.73.866.10884726.

27. Di Martino M., Koryukova K., Bezzi M., Catalano C. Imaging features of non-alcoholic fatty liver disease in children and adolescents. *Children* 2017; 4(8): 73, https://doi.org/10.3390/children4080073.

28. Wagener G. Assessment of hepatic function, operative candidacy, and medical management after liver resection in the patient with underlying liver disease. *Semin Liver Dis* 2013; 33(3): 204–212, https://doi.org/10.1055/s-0033-1351777.

29. Izraiov V.A., Kazantseva N.B., Belencka M.A. Измерение объема печени с помощью визуализационных методов различной модальности. Вестник Балтийского федерального университета им. И. Канта. Серия: Эстетические и медицинские науки 2017; 2: 52–64. Izraiov V.A., Kazantseva N.V., Beletskaya M.A. Measurement of liver volume using imaging techniques of various modalities. *Vestnik Baltijskogo federal'nogo universiteta im. I. Kanta. Seriya: Estetstvennye i meditsinskie nauki* 2017; 2: 52–64.

30. Чапыгина Е.В., Губарь А.С. Значение объемных показателей печени в связи с типом телосложения и половой принадлежностью обследованных лиц. Журнал анатомии и гистопатологии 2017; 6(1): 101–104. Chaplygina E.V., Gubar A.S. Values of liver volume in association with body type and sex identity. *Zhurnal anatomii i gistopatologii* 2017; 6(1): 101–104.

31. Cieslak K.P., Runge J.H., Heger M., Stoker J., Bennink R.J., Van Gulik T.M. New perspectives in the assessment of future remnant liver. *Dig Surg* 2014; 31(4–5): 255–268, https://doi.org/10.1159/000364836.

32. Hayashi H., Beppu T., Okabe H., Kuroki H., Nakagawa S., Imai K., Baba H. Functional assessment versus conventional volumetric assessment in the prediction of operative outcomes after major hepatectomy. *Surgery* 2015; 157(1): 20–26, https://doi.org/10.1016/j.surg.2014.06.013.

33. Thirunavukarasu P., Aloia T.A. Preoperative assessment and optimization of the future liver remnant. *Surg Clin North Am* 2016; 96(2): 197–205, https://doi.org/10.1016/j.tcl.2015.11.001.

34. Forbes S.J., Newsome P.N. Liver regeneration — mechanisms and models to clinical application. *Nat Rev Gastroenterol Hepatol* 2016; 13(8): 473–485, https://doi.org/10.1038/nrgastro.2016.97.

35. Selle D., Preim B., Schenk A., Peitgen H.O. Analysis of vasculature for liver surgical planning. *IEEE Trans Med Imaging* 2002; 21(11): 1344–1357, https://doi.org/10.1109/tmi.2002.801166.

36. Wu J., Li H., Lin Y., Chen Z., Zhong Q., Gao H., Fu L., Sandrasegaran K. Value of gadoxetate biliary transit time in determining hepatocyte function. *Abdom Imaging* 2015; 40(1): 95–101, https://doi.org/10.1007/s00261-014-0200-3.

37. SRINIVASA BABU A., WELLS M.L., TETELEYBOYM O.M., MACKY J.E., MILLER F.H., YEH B.M., VENKATESHK S. Elastography in chronic liver disease: modalities, techniques, limitations, and future directions. *Radiographics* 2016; 36(7): 1987–2006, https://doi.org/10.1148/rg.2016160042.

38. Herrmann E., de Lédinghen V., Cassinotto C., Chu W.C., Leung V.Y., Ferraioli G., Filice C., Castlera L., Vilgrain V., Ronot M., Dumortier J., Guibal A., Pol S., Trebicka J., Jansen C., Strassburg C., Zheng R., Zheng J., Franèque S., Vanwellegeh T., Vonghia L., Manesis E.K., Zoumpoulis P., Sporea I., Thiele M., Krag A., Cohen-Bacrie C., Ciron A., Gay J., Deffieux T., Friedrich-Rust M. Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: an individual patient data-based meta-analysis. *Hepatology* 2018; 67(1): 260–272, https://doi.org/10.1002/hep.29177.

39. SRINIVASA BABU A., WELLS M.L., TETELEYBOYM O.M., MACKY J.E., MILLER F.H., YEH B.M., EHMANN R.L., VENKATESHK S. Elastography in chronic liver disease: modalities, techniques, limitations, and future directions. *Radiographics* 2016; 36(7): 1987–2006, https://doi.org/10.1148/rg.2016160042.

40. Castéra L., Foucher J., Bernard P.H., Carvalho F., Allaix D., Merrouche W., Couzigou P., de Lédinghen V. Pitfalls of liver stiffness measurement: a 5-year prospective
study of 13,369 examinations. *Hepatology* 2010; 51(3): 828–835, https://doi.org/10.1002/hep.23425.

41. Fukuda T., Fukuchi T., Yagi S., Shioji N. Immunohistochemical analyses of cell cycle progression and gene expression of biliary epithelial cells during liver regeneration after partial hepatectomy of the mouse. *Exp Anim* 2016; 65(2): 135–146, https://doi.org/10.1538/ expansim.15-0082.

42. Selzner M., Clavien P.A. Failure of regeneration of the steatotic rat liver: disruption at two different levels in the regeneration pathway. *Hepatology* 2000; 31(1): 35–42, https://doi.org/10.1002/hep.10310108.

43. Sumer F., Colakoglu M.K., Ozdemir Y., Ozsay O., Ilter O., Bostanci E.B., Akoglu M. Effect of nebulonol on liver regeneration in an experimental 70% partial hepatectomy model. *Asian J Surg* 2017; 40(6): 375–379, https://doi.org/10.1016/j.asjsur.2015.12.005.

44. Stratton S.A., Barton M.C. Hierarchy of a regenerative cell cycle: Cyclin E1 multitasks. *Hepatology* 2014; 59(2): 370–371, https://doi.org/10.1002/hep.26658.

45. Galand P., Degraef C. Cyclin/PCNA immunostaining as an alternative to tritiated thymidine pulse labelling for marking S phase cells in paraffin sections from animal and human tissues. *Cell Tissue Kinet* 1989; 22(5): 383–392, https://doi.org/10.1111/j.1365-2184.1989.tb03223.x.

46. Holecek M., Vodenicarova M. Phenylbutyrate exerts adverse effects on liver regeneration and amino acid concentrations in partially hepatectomized rats. *Int J Exp Pathol* 2016; 97(3): 276–284, https://doi.org/10.1111/ije.12190.

47. Shibuya M., Saito F., Miwa T., Davis R.L., Wilson C.B., Hoshino T. Histochemical study of pituitary adenomas with Ki-67 and anti-DNA polymerase α monoclonal antibodies, bromodeoxyuridine labeling, and nucleolar organizer region counts. *Acta Neuropathol* 1992; 84(2): 178–183, https://doi.org/10.1007/bf03011392.

48. Iatropoulos M.J., Williams G.M. Proliferation markers. *Exp Toxicol Pathol* 1996; 48(2–3): 175–181, https://doi.org/10.1016/s0940-2939(96)80039-x.

49. Hamano M., Ezaki H., Kiso S., Furuta K., Egawa M., Kizu T., Chatani N., Kamiada Y., Yoshida Y., Takehara T. Lipid overloading during liver regeneration causes delayed hepatocyte DNA replication by increasing ER stress in mice with simple hepatic steatosis. *J Gastroenterol* 2017; 52: 305–316, https://doi.org/10.1007/s00535-013-0780-7.

50. Webster A.F., Williams G.M., Recio L., Yauk C.L. Bromodeoxyuridine (BrdU) treatment to measure hepatocellular proliferation does not mask furan-induced gene expression changes in mouse liver. *Toxicology* 2014; 323: 26–31, https://doi.org/10.1016/j.tox.2014.06.002.

51. Cheng R., Liang X., Zhao Q., Lian Z., Tang L., Qiu C., Zhang P. APCCdh1 controls cell cycle entry during liver regeneration. *Exp Cell Res* 2017; 354(2): 78–84, https://doi.org/10.1016/j.yexcr.2017.03.038.

52. Adan A., Alizada G., Kiraz Y., Baran Y., Nalbant A. Flow cytometry: basic principles and applications. *Crit Rev Biotechnol* 2017; 37(2): 163–176, https://doi.org/10.1080/01993102.2015.1128876.

53. Fukazawa K., Nishida S. Size mismatch in liver transplantation. *J Hepatobiliary Pancreat Sci* 2016; 23(8): 457–466, https://doi.org/10.1002/jhbp.371.

54. Lai J.P., Chen Z.M., Lok T., Chan O.T., Himmelfarb E., Zhai Q., Lin F., Wang H.L. Immunohistochemical stains of proliferating cell nuclear antigen, insulin-like growth factor 2 and clusterin help distinguish malignant from benign liver nodular lesions. *J Clin Pathol* 2014; 67(6): 464–469, https://doi.org/10.1136/jclinpath-2013-201907.

55. De Graaf W., Bennink R.J., Veteläinen R., van Gulik T.M. Nuclear imaging techniques for the assessment of hepatic function in liver surgery and transplantation. *J Nucl Med* 2010; 51(5): 742–752, https://doi.org/10.2967/jnumed.109.069435.

56. Li H.H., Qi L.N., Ma L., Chen Z.S., Xiang B.D., Li L.Q. Effect of Ki-67 positive cellular index on prognosis after hepatectomy in Barcelona Clinic Liver Cancer stage A and B hepatocellular carcinoma with microvascular invasion. *Onco Targets Ther* 2018; 11: 4747–4754, https://doi.org/10.2147/ott. s165244.

57. Sato Y., Katoh Y., Matsumoto M., Sato M., Ebina M., Itô-Nakadai A., Funayama R., Nakayama K., Unno M., Igarashi K. Regulatory signatures of liver regeneration distilled by integrative analysis of mRNA, histone methylation, and proteomics. *J Biol Chem* 2017; 292(19): 8019–8037, https://doi.org/10.1074/jbc.m116.774547.

58. Yoshiya S., Shirabe K., Imai D., Toshima T., Yamashita Y., Ikekami T., Okano S., Yoshizumi T., Kawanaka H., Maehara Y. Blockade of the apelin-APJ system promotes mouse liver regeneration by activating Kupffer cells after partial hepatectomy. *J Gastroenterol* 2015; 50(5): 573–582, https://doi.org/10.1007/s00535-014-0992-5.

59. Wu H., Ploeger J.M., Kamarajugadda S., Masheh D.G., Mashek M.T., Manivel J.C., Shekels L.L., Lapiro J.L., Albrecht J.H. Evidence for a novel regulatory interaction involving Cyclin D1, Lipid Droplets, Lipolysis, and Cell Cycle Progression in hepatocytes. *Hepatol Commun* 2019; 3(3): 406–422, https://doi.org/10.1002/hep4.1316.

60. Reyes-Salcido V., Villalobos-Molina R. Evidence that di-propranolol increases thymidine kinase activity, cell mitosis, and β-adrenergceptors during rat liver regeneration. *Arch Med Res* 2003; 34(4): 273–275, https://doi.org/10.1016/s0188-4409(03)00049-3.

61. Madrigal-Santillán E., Bautista M., Gayoso-De-Lucio J.A., Reyes-Rosales Y., Posadas-Mondragón A., Morales-González Á., Soriano-Ursúa M.A., Garcia-Machorro J., Madrigal-Bujaidar E., Álvarez-González I., Morales-González J.A. Hepatoprotective effect of Geranium schiedeanum against ethanol toxicity during liver regeneration. *World J Gastroenterol* 2015; 21(25): 7718, https://doi.org/10.3748/wjg.v21.i25.7718.

62. Wilmanns W., Sauer H., Pelka-Fleischer R., Nüßler V. Thymidine kinase in leukemic cells: significance for characterization and follow-up of acute leukemia. In: Fleischer J. (editor). *Leukemias*. Springer, Berlin, Heidelberg; 1993; p. 59–64, https://doi.org/10.1007/978-3-642-77083-8_12.

63. Yamashita T., Nishimura K., Saki R., Okudaira H., Tome M., Higashi K., Nakamura M., Terui Y., Fujiwara K., Kashiwagi K., Igarashi K. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle. *Int J Biochem Cell Biol* 2013; 45(6): 1042–1050, https://doi.org/10.1016/j.biocel.2013.02.021.

64. Minuk G.Y., Gauthier T., Benarroch A. Changes in serum and hepatic polyamine concentrations after 30%, 70% and 90% partial hepatectomy in rats. *Hepatology* 1990; 12(3): 542–546, https://doi.org/10.1002/hep.1840120315.

65. Kawelke N., Vasel M., Sens C., Von Au A., Dooley S., Nakhchbandi I.A. Fibrinectin protects from excessive liver
fibrosis by modulating the availability of and responsiveness of stellate cells to active TGF-β. *PLoS One* 2011; 6(11): e28181, https://doi.org/10.1371/journal.pone.0028181.

66. Dadižava I.I., Kotiv B.N., Kachkin D.P., Kochtako V.A., Bucaev S.A., Smordovsky A.B., Slodyborin A.B. Kolichnostnaya oценка функции печени клюнкус-теста с индикатором зеленым. Трансплантология 2010; 1: 30–37. Dzidzava I.I., Kotiv B.N., Kashpin D.K., Kochtkova A.A., Bugayev S.A., Smorodsky A.V. Slobodyanik A.V. Quantitative assessment of hepatic function by indocyanine green clearance test. *Transplantology* 2010; 1: 30–37.

67. Helmske S., Colmenero J., Everson G.T. Noninvasive assessment of liver function. *Curr Opin Gastroenterol* 2015; 31(3): 199, https://doi.org/10.1097/mog.0000000000000167.

68. Ge P.L., Du S.D., Mao Y.L. Advances in preoperative assessment of liver function. *Hepatobiliary Pancreat Dis Int* 2014; 13(4): 361–370, https://doi.org/10.1159/000378721406267-8.

69. van Mierlo K.M., Schap F.G., Dejong C.H., Olde Damink S.W. Liver resection for cancer: new developments in prediction, prevention and management of postresectional liver failure. *J Hepatol* 2016; 65(6): 1217–1231, https://doi.org/10.1016/j.jhep.2016.06.006.

70. limuro Y. ICC clearance test and 99mTc-GSA SPECT/CT fusion images. *Vasc Med* 2017; 33(6): 449–454, https://doi.org/10.1159/000479046.

71. Urade T., Sawa H., Iwatani Y., Abe T., Fujinaka R., Murata K., Mii Y., Man-I M., Oka S., Kuroda D. Laparoscopic anatomical liver resection using indocyanine green fluorescence imaging. *Asian J Surg* 2019, https://doi.org/10.1016/j.asjsur.2019.04.008.

72. Ercolani G., Grazi G.L., Callivà R., Pierangelì F., Cescon M., Cavallari A., Mazzotti A. The lidoaine (MEGX) test as an index of hepatic function: its clinical usefulness in liver surgery. *Surgery* 2000; 127(4): 464–471, https://doi.org/10.1067/msy.2000.104743.

73. Sumiyoshi T., Okabayashi T., Negoro Y., Hata Y., Noda Y., Sui K., Iwata J., Matsumoto M. 99mTc-GSA SPECT/CT fusion imaging for hepatectomy candidates with extremely deteriorated ICG value. *Jpn J Radiol* 2018; 36(9): 537–543, https://doi.org/10.1007/s11604-018-0753-0.

74. Okabayashi T., Shima Y., Morita S., Shimada Y., Sumiyoshi T., Sui K., Iwata J., Iiyama T. Liver function assessment using technetium 99m-Galactosyl single-photon emission computed tomography/CT fusion imaging: a prospective trial. *J Am Coll Surg* 2017; 225(6): 789–797, https://doi.org/10.1016/j.jamcollsurg.2017.08.021.

75. Yoshida M., Shiraishi S., Sakamoto F., Beppu T., Utsunomiya D., Okabe H., Tomiguchi S., Baba H., Yamashita Y. Assessment of hepatic functional regeneration after hepatectomy using 99mTc-GSA SPECT/CT fused imaging. *Ann Nucl Med* 2014; 28(8): 780–788, https://doi.org/10.1007/s12149-014-0872-3.

76. Hall D.W., Marshall S.N., Gordon K.C., Killeen D.P. Rapid quantitative determination of squalene in shark liver oils by Raman and IR spectroscopy. *Lipids* 2016; 51(1): 139–147, https://doi.org/10.1007/s11745-015-0407-6.

77. Rassam F., Zhang T., Cieslak K.P., Lavini C., Stoker J., Petinuk J., Bennink J.R., van Gulik T.M., van Vliet L.J., Runge J.H., Vess F.M. Comparison between dynamic gadoxetate-enhanced MRI and 99mTc-mebrofenin hepatobiliary scintigraphy with SPECT for quantitative assessment of liver function. *Eur Radiol* 2019; 29(9): 5063–5072, https://doi.org/10.1007/s00330-019-06029-7.

78. Bunaciu A.A., Hoang V.D., Aboul-Enein H.Y. Applications of FT-IR spectrophotometry in cancer diagnostics. *Crit Rev Anal Chem* 2015; 45(2): 156–165, https://doi.org/10.1080/10408347.2014.904733.

79. Sreedhar H., Varma V.K., Gambacorta F.V., Guzman G., Walsh M.J. Infrared spectroscopic imaging detects chemical modifications in liver fibrosis due to diabetes and disease. *Biomed Opt Express* 2016; 7(6): 2419–2424, https://doi.org/10.1364/bioe.7.002419.

80. Petit V.W., Réfrégiers M., Guettier C., Jamme F., Sebanyayakam K., Brunelle A., Laprèvot O., Dumas P., Le Naour F. Multimodal spectroscopy combining time-of-flight-secondary ion mass spectrometry, synchrotron-FT-IR, and synchrotron-UV microspectroscopies on the same tissue section. *Anal Chem* 2010; 82(9): 3963–3968, https://doi.org/10.1021/ac100581y.

81. Passarelli M.K., Winograd N. Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). *Bioschim Biophys Acta* 2011; 1811(11): 976–990, https://doi.org/10.1016/j.bbabio.2011.05.007.

82. Le Naour F., Bralet M.P., Debois D., Sandt C., Guettier C., Dumas P., Brunelle A., Laprèvot O. Chemical imaging on liver steatosis using synchrotron infrared and ToF-SIMS microspectroscopies. *PLoS One* 2009; 4(10): e7408, https://doi.org/10.1371/journal.pone.0007408.

83. Toubl D., Brunelle A., Laprévot O. Mass spectrometry imaging: towards a lipid microscope? *Biochimie* 2011; 93(1): 113–119, https://doi.org/10.1016/j.bicho.2010.05.013.

84. Mas S., Toubl D., Brunelle A., Aragoncillo P., Egido J., Laprévot O., Vivanco F. Lipid cartography of atherosclerotic plaque by cluster-TOF-SIMS imaging. *Analyst* 2007; 132(1): 24–26, https://doi.org/10.1039/b614619h.

85. Tahallah N., Brunelle A., De La Porte S., Laprèvot O. Lipid mapping in human dystrophic muscle by cluster-time-of-flight secondary ion mass spectrometry imaging. *J Lipid Res* 2008; 49(2): 438–454, https://doi.org/10.1194/jlr.m004214-jlr200.

86. Lazar A.N., Bich C., Panchal M., Desbenoit N., Petit V.W., Toubl D., Dauphinet L., Marquer C., Laprèvot O., Brunelle A., Duyckaerts C. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. *Acta Neuropathol* 2013; 125(1): 133–144, https://doi.org/10.1007/s00401-012-1041-1.

87. Debois D., Bralet M.P., Le Naour F., Brunelle A., Laprèvot O. In situ lipidomic analysis of nonalcoholic fatty liver by cluster TOF-SIMS imaging. *Anal Chem* 2009; 81(8): 2823–2831, https://doi.org/10.1021/ac900454m.

88. Ezquer F., Bahamonde J., Huang Y.L., Ezquer M. Administration of multipotent mesenchymal stromal cells restores liver function and improves liver function in obese mice with hepatic steatosis after partial hepatectomy. *Stem Cell Res Ther* 2017; 8(1): 20, https://doi.org/10.1186/s13287-016-0469-y.

89. Rudnick D.A., Davidson N.O. Functional relationships between lipid metabolism and liver regeneration. *Int J Hepatol* 2012; 2012: 549241, https://doi.org/10.1155/2012/549241.

90. Saito Y., Morine Y., Iwahashi S., Ikemoto T., Imura S., Yamanaka-Okumura H., Shimada M. Changes of liver metabolites following hepatectomy with ischemia reperfusion...
towards liver regeneration. *Ann Gastroenterol Surg* 2018; 2(3): 204–211, https://doi.org/10.1002/ags3.12058.

91. Miyamura N., Nakamura T., Goto-Inoue N., Zaima N., Hayasaka T., Yamasaki T., Terai S., Sakaida I., Setou M., Nishina H. Imaging mass spectrometry reveals characteristic changes in triglyceride and phospholipid species in regenerating mouse liver. *Biochem Biophys Res Commun* 2011; 408(1): 120–125, https://doi.org/10.1016/j.bbrc.2011.03.133.

92. Daemen S., van Zandvoort M.A., Parekh S.H., Hesselin K.M. Microscopy tools for the investigation of intracellular lipid storage and dynamics. *Mol Metab* 2016; 5(3): 153–163, https://doi.org/10.1016/j.molmet.2015.12.005.

93. Saka S.K., Vogts A., Kröhner K., Hillion F., Rizzoli S.O., Wessels J.T. Correlated optical and isotopic nanoscopy. *Nat Commun* 2014; 5: 3664, https://doi.org/10.1038/ncomms4664.

94. Marques P.E., Antunes M.M., David B.A., Pereira R.V., Teixeira M.M., Menezes G.B. Imaging liver biology in vivo using conventional confocal microscopy. *Nat Protoc* 2015; 10(2): 258, https://doi.org/10.1038/nprot.2015.006.

95. Wang H., Liang X., Mohammed Y.H., Thomas J.A., Bridle K.R., Thorling C.A., Grice J.E., Xu Z.P., Liu X., Crawford D.H., Roberts M.S. Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging. *Biomed Opt Express* 2015; 6(3): 780–792, https://doi.org/10.1364/boe.6.000780.

96. Thorling C.A., Liu X., Burczynski F.J., Fletcher L.M., Roberts M.S., Sanchez W.Y. Intravalit multiphoton microscopy can model uptake and excretion of fluorescein in hepatic ischemia-reperfusion injury. *J Biomed Opt* 2013; 18(10): 101306, https://doi.org/10.1117/1.jbo.18.101306.

97. Goetz M., Vieth M., Kanzler S., Galle P.R., Delaney P., Neurath M.F., Kiesslich R. In vivo confocal laser laparoscopy allows real time subsurface microscopy in animal models of liver disease. *J Hepatol* 2008; 49(1): 91–97, https://doi.org/10.1016/j.jhep.2007.07.029.

98. Maki H., Kawaguchi Y., Arita J., Akamatsu N., Kaneko J., Sakamoto Y., Hasegawa K., Harihara Y., Kokudo N. Real-time confocal liver endoscopic microscopic evaluation of primary liver cancer based on human liver autofluorescence. *J Surg Oncol* 2017; 115(2): 151–157, https://doi.org/10.1002/jso.24491.

99. Schneider C., Johnson S.P., Gurusamy K., Cook R.J., Desjardins A.E., Hawkes D.J., Davidson B.R., Walker-Samuel S. Identification of liver metastases with probe-based confocal laser endomicroscopy at two excitation wavelengths. *Lasers Surg Med* 2017; 49(3): 280–292, https://doi.org/10.1002/lsm.22617.

100. Thorling C.A., Crawford D., Burczynski F.J., Liu X., Liu I., Roberts M.S. Multiphoton microscopy in defining liver function. *J Biomed Opt* 2014; 19(9): 090901, https://doi.org/10.1117/1.jbo.19.9.090901.

101. Benati E., Bellini V., Borsari S., Dunsby C., Ferrari C., French P., Guanti M., Guardolì D., Koenig K., Pellacani G., Ponti G., Schianchi S., Talbot C., Seidenari S. Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy. *Skin Res Technol* 2011; 17(3): 295–303, https://doi.org/10.1111/j.1600-0846.2011.00496.x.

102. Titov D.V., Cracan V., Goodman R.P., Peng J., Grabarek Z., Mootha V.K. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. *Science* 2016; 352(6282): 231–235, https://doi.org/10.1126/science.aad4017.

103. Musso G., Gambino R., Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). *Prog Lipid Res* 2009; 48(1): 1–26, https://doi.org/10.1016/j.plipres.2008.08.001.

104. Mukherjee S., Chellappa K., Moffitt A., Ndungu J., Dellinger R.W., Davis J.G., Agarwal B., Baur J.A. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. *Hepatology* 2017; 65(2): 616–630, https://doi.org/10.1002/hep.28912.

105. Liu F., Zhao J.M., Rao H.Y., Yu W.M., Zhang W., Theise N.D., Wei A., Wei L. Second harmonic generation reveals subtle fibrosis differences in adult and pediatric nonalcoholic fatty liver disease. *Am J Clin Pathol* 2017; 148(6): 502–512, https://doi.org/10.1093/ajcp/aqx104.

106. Wang B., Sun Y., Zhou J., Wu X., Chen S., Shy I., Wu S., Liu H., Ren Y., Ou X., Jia J., You H. SHG/TPEF-based image technology improves liver fibrosis assessment of minimally sized needle biopsies. *Hepatol Int* 2019; 13(4): 501–509, https://doi.org/10.1007/s12072-019-09955-2.

107. Xu S., Kang C.H., Gou X., Peng Q., Yan J., Zhuo S., Cheng C.L., He Y., Kang Y., Xia W., So P.T., Welsch R., Rajapakse J.C., Yu H. Quantification of liver fibrosis via second harmonic imaging of the Glisson's capsule from liver surface. *J Biophotonics* 2016; 9(4): 351–363, https://doi.org/10.1002/jbio.201500001.

108. Chang P.E., Goh G.B.B., Leow W.Q., Shen L., Lim K.H., Tan C.K. Second harmonic generation microscopy provides accurate automated staging of liver fibrosis in patients with non-alcoholic fatty liver disease. *PLoS One* 2018; 13(6): e0199166, https://doi.org/10.1371/journal. pone.0199166.

109. Gailhouste L., Le Grand Y., Ocin C., Guyader D., Turlin B., Ezan F., Dé silly Y., Guilbert T., Bessard A., Frémín C., Théret N., Baffet G. Fibrillar collagen scoring by second harmonic microscopy: a new tool in the assessment of liver fibrosis. *J Hepatol* 2010; 52(3): 398–406, https://doi.org/10.1016/j.jhep.2009.12.009.

110. Tai D.C., Tan N., Xu S., Kang C.H., Chia S.M., Cheng C.L., Wee A., We L.C., Raja A.M., Xiao G., Chang S., Rajapakse J.C., So P.T., Tang H.H., Chen C.S., Yu H. Fibro-C-Index: comprehensive, morphology-based quantification of liver fibrosis using second harmonic generation and two-photon microscopy. *J Biomed Opt* 2009; 14(4): 044013, https://doi.org/10.1117/1.3183811.

111. Pope I., Langbein W., Borri P., Watson P. Live cell imaging with chemical specificity using dual frequency CARS microscopy. *Methods Enzymol* 2012; 504: 273–291, https://doi.org/10.1016/b978-0-12-391857-4.00014-8.

112. Yan S., Cui S., Ke K., Zhao B., Liu X., Yue S., Wang P. Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer. *Anal Chem* 2018; 90(11): 6362–6366, https://doi.org/10.1021/acs.analchem.8b01312.

113. Satoh S., Otsuka Y., Ozeki Y., Itoh K., Hashiguchi A., Yamazaki K., Hashimoto H., Sakamoto M. Label-free visualization of acetaminophen-induced liver injury by high-speed stimulated Raman scattering spectral microscopy and multivariate image analysis. *Pathol Int* 2014; 64(10): 518–526, https://doi.org/10.1111/pin.12206.

114. Fu D., Yang W., Xie X.S. Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with...
stimulated Raman scattering. J Am Chem Soc 2016; 139(2): 583–586, https://doi.org/10.1021/jacs.6b10727.

115. Yu Y., Ramachandran P.V., Wang M.C. Shedding new light on lipid functions with CARS and SRS microscopy. Biochim Biophys Acta 2014; 1841(8): 1120–1129, https://doi.org/10.1016/j.bbapal.2014.02.003.

116. Fu D. Quantitative chemical imaging with stimulated Raman scattering microscopy. Curr Opin Chem Biol 2017; 39: 24–31, https://doi.org/10.1016/j.cbpa.2017.05.002.

117. Chun W., Do D., Gweon D.G. Design and demonstration of multimodal optical scanning microscopy for confocal and two-photon imaging. Rev Sci Instrum 2013; 84(1): 013701, https://doi.org/10.1063/1.4773232.

118. Lee J.H., Kim J.C., Tae G., Oh M.K., Ko D.K. Rapid diagnosis of liver fibrosis using multimodal multiphoton nonlinear optical microspectroscopy imaging. J Biomed Opt 2013; 18(7): 076009, https://doi.org/10.1117/1. jbo.18.7.076009.

119. Skala M.C., Riching K.M., Bird D.K., Gendron-Fitzpatrick A., Eickhoff J., Eliceiri K.W., Keely P.J., Ramanujam N. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 2007; 12(2): 024014, https://doi.org/10.1117/1.2717503.

120. Becker W. Fluorescence lifetime imaging—techniques and applications. J Microsc 2012; 247(2): 119–136, https://doi.org/10.1111/j.1365-2818.2012.03618.x.

121. De Los Santos C., Chang C.W., Mycek M.A., Cardullo R.A. FRAP, FLIM, and FRET: detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. Mol Reprod Dev 2015; 82(7–8): 587–604, https://doi.org/10.1002/mrd.22501.

122. Liu Z., Pouli D., Alonzo C.A., Varone A., Karaliota S., Quinn K.P., Münger K., Karalis K.P., Georgakoudi I. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Sci Adv 2018; 4(3): eaap9302, https://doi.org/10.1126/sciadv.aap9302.

123. Ranjit S., Dvornikov A., Dobrinskikh E., Wang X., Luo Y., Levi M., Gratton E. Measuring the effect of a Western diet on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy. Biomed Opt Express 2017; 8(7): 3143–3154, https://doi.org/10.1364/boe.8.003143.