Genetic Diversity of Natural *Morchella* spp. from the Southern Gansu Province Based on rDNA-ITS, China

L. Wang, Q.P. Zhou, J.M. Liu, G.H. Shi

ABSTRACT

Background: China is a mainland country rich in natural *Morchella* spp. resources. At present, about half of the natural *Morchella* spp. in the world has been recorded in China. The current study was aimed at the classification and cultivation of *Morchella* spp. This study provided a more accurate molecular trait for the systematic classification of *Morchella* spp. in southern Gansu Province, China.

Methods: From April to May 2019. Based on the molecular biological analysis of 16 natural *Morchella* spp. strains collected from the southern Gansu province, China, the ITS fragments between transcripts of the rDNA gene were amplified by PCR and sequenced.

Result: The results of BLAST comparison according to GenBank showed that the 16 tested strains of *Morchella* spp. were classified into 5 species, which were *M. angusticeps*, *M. esculenta*, *M. elata*, *M. crapssipes* and *M. conica*. According to the molecular evolutionary trees constructed by the Maximum-Parsimony method (MP) and the Neighbour-Joining method (NJ), the topological structures of the two molecular evolutionary trees were similar and the Bootstrap verification had a high support rate, indicating that the phylogenetic relationship had high credibility.

Key words: Genetic diversity, *Morchella* spp., rDNA-ITS, Sequence analysis.

INTRODUCTION

Morel, It is the general name of all species of *Morchella* in Morchaceae. It belongs to a kind of rare natural edible and medicinal fungi with high economic value. It has high nutritional and medicinal value and is highly recognized in the world (Hawksworth, 2004). According to the relevant data, it contains a variety of physiologically active substances, especially the protein content is very rich, but also contains all kinds of essential amino acids, vitamins and iron, zinc, and other mineral elements (Pilz et al. 2007, Kuo, 2008). However, in the taxonomic study of *Morchella* spp., because its morphological characteristics are very malleable and artificial, it brings a lot of difficulties to the classification research, and it is difficult to solve the systematic problems of *Morchella* spp. only by relying on the traditional morphological classification. The rapid development of molecular biology provides a new technical method and research platform for solving the systematic problems of *Morchella* spp. at the molecular level (Du et al. 2015, Zhao et al. 2009, Wu et al. 1996). At present, in the fungal index database (http://www.indexfungorum.org/Names/Names.asp), there are a total of 327 valid record species (including subspecies and varieties) of *Morchella* spp. in the world. According to the color morphology of the fruit body, *Morchella* spp. can be divided into black morel group, yellow morel group, red-brown morel group, and half-free morel group (Kuo et al. 2012).

The southern region of Gansu province, China. (100°46'~104°44'E, 33°06'-36°10'N) is the water culvert area of the Yangtze River and the Yellow River, with many rivers and unique hydropower resources. The Yellow River, Bailong River, Tao River, Daxia River, and more than 100 tributaries across the whole territory. However, for the southern region of Gansu, which is one of the main producing areas of natural *Morchella* spp. in China, except for the research reports on resources of *Morchella* spp. by some scholars in the 1980s (Gu, 1984, Luo, 1986), there are few studies on the molecular systematics of *Morchella* spp. in this area. Given this problem, this study attempted to explore the phylogenetic relationship of natural *Morchella* spp. in southern Gansu from morphological taxonomy and molecular systematics. It will be helpful to protect and develop the biodiversity of this famous edible fungus in the ecological key area of China.

MATERIAL AND METHODS

Collection of *Morchella* spp.

Sixteen fresh *Morchella* spp. were collected under a broad-leaved forest below 2300m altitude in the southern Gansu province from April to May 2019. Details of each collection,
including information on the serial numbers, locus, and habit/
dominant plants were listed in Table 1.

Morphological description

A small part of the pileus from each sample was removed
and placed on a slip glass for 5 min, immersed in 100µL
water, and then sliced to 10~15 nm thick particle size by
hand. The sliced samples were transferred to new slip
glasses and covered with a thin cover, which was pressed
to spread the sample. The morphological assessment
focused on paraphyses, septate orientation, spore, asci, and
the number of ascospores. Images were taken with an
Olympus microscope (Olympus Ltd., Nanjing China) at 40×
and 100× magnifications.

DNA extraction

Refer to the method of Bai et al (2011). To obtain pure
mycelium. After many improvements and verification, the
DNA extraction technology suitable for this experiment
was explored. The details were as follows: (1) the lid of the fruit
body of *Morchella* spp. which was soaked, washed, and
sterilized about 0.5g, chopped and placed in an aseptic pre-
cooled mortar, added the appropriate amount of liquid
nitrogen, and grind to a powder. (2) quickly transferred it
into the centrifuge tube of 2mL, added CTAB (pH8.0)
pyrolysis buffer preheated by 1.5mL to 65°C, slowly reversed
and mixed, as for water bathed at 65°C for 1.5h, mixed once
every 10mins. (3) after 12000r/min centrifugation for 15mins,
the supernatant was transferred to a new centrifuge tube.
(4) added the same volume of phenol: chloroform, shake
slowly, a centrifuge with 12000r/min for 10mins, and moved
the supernatant to a new centrifuge tube. (5) added the same
volume of chloroform: isoamyl alcohol (24purl), shake slowly,
a centrifuge with 12000r/min for 10mins, and moved the
supernatant to a new centrifuge tube. (6) added 2 times
volume of precooled anhydrous ethanol, mixed it gently, put
it at -20°C for 3.0 hours, centrifuged for 10mins, discarded
the supernatant, and left DNA to precipitate. (7) washed DNA
precipitate twice with 75% ethanol and discarded the
supernatant. (8) DNA was obtained by centrifugation and
vacuum drying. The proper amount of aseptic water was
dissolved and precipitated in each tube and stored at low
temperature at -20°C.

The primers used to amplify the ITS region were as
follows: Upstream primer ITS1: 5'-TCCG TAGTGAACCTG
CGG-3', Downstream primer ITS4:5'-TCTTCGGCTTATGTA
TATGC-3’. (synthesized by Shanghai Sheng gong
Biotechnology Service Co., Ltd. China)

PCR amplification and sequencing

All extracted DNA samples were used as substrates of PCR
amplification. The PCR amplification system is 50 µL,
including 10×PCR buffer 5.0µL, dNTPs 1.0µL, template DNA
1.0µL, ITS1 1.0µL, ITS2 1.0µL, Taq polymerase 1.0µL,
double distilled water 40.0µL. PCR amplification program:
pre-denaturation at 94°C, denaturation at 94°C, denaturation
at 40°C, annealing at 55°C, annealing at 60°C, the extension
of 100 mins at 72°C for 35 cycles, and leveling at 72°C for
10mins. The termination temperature was 4°C. The ITS-PCR
amplification products were detected by 0.8% agarose gel
electrophoresis, and the gel imaging system was used to
take pictures and record the electrophoretic bands.

The PCR products were recovered and purified using the
UNIQ-10 column DNA recovery kit provided by Shanghai
Jikang Biotechnology Co., Ltd., and the samples were
submitted to Shanghai Jikang Biotechnology Co., Ltd. for
sequencing. The sequence results of the strains were
analyzed by BLAST on GenBank, and the deletion sites and
complete sites were deleted by the software CLUSTALX
(version 1.81) and then the homology was compared. Finally,
the molecular phylogenetic trees were constructed by the
Maximum-Parsimony method (MP) and the Neighbour-
Joining method (NJ) by the software MEGA6.06 to clarify

Table1: Collections of *Morchella* spp. in this study.

Serial numbers	Locus	Habitats/dominant plants
GN-M1	Kagaman village/Hezuo	Populus simonii
GN-M2	Kagaman village/Hezuo	Populus simonii
GN-M3	Kagaman village/Hezuo	Populus simonii
GN-M4	Dangzhou grassland/Hezuo	Juglans regia
GN-M6	Dangzhou grassland/Hezuo	Juglans regia
GN-M9	Lianhua mountain/Lintan	Quercus aliena
GN-M10	Lianhua mountain/Lintan	Quercus aliena
GN-M12	Lianhua mountain/Lintan	Quercus aliena
GN-M14	Yeliguan/ Lintan	Larix principis-rupprechtii
GN-M17	Yeliguan/ Lintan	Larix principis-rupprechtii
GN-M19	Yeliguan/ Lintan	Larix principis-rupprechtii
GN-M17	Yeliguan/ Lintan	Larix principis-rupprechtii
GN-M19	Yeliguan/ Lintan	Larix principis-rupprechtii
the species and taxonomic status of the tested strains (Richard, 2015, O’Donnell et al. 2011, Taşkin et al. 2015)

RESULTS AND DISCUSSION
Morphological descriptions of *Morchella* spp. (Voucher GN-M1)

The fruit body was generally large, height was 6.05–8.10 (6.90) cm, the diameter of the cap was 3.5–4.5 (3.88) cm, long conical or oval, light loess, or yellowish-brown, and its longitudinal veins were long. The inside of the stalk was hollow up to the lid, and the fungus meat was thin (Fig 1 A). When cultured on compound PDA medium at 23°C for 7 days, the color of mycelium gradually deepened, from white to light yellow at first, and finally to dark brown, in the middle and later stage of mycelium growth, the brown pigment secreted by mycelium made the compound PDA medium turned dark brown (Fig 1 B). The hyphae were colorless and transparent in the early stage, brown and transparent

Lanes	No.	ITS sequences (bp)	GC percentage (%)	Strains
1	GN-M1	732	50.33	*Morchella angusticeps*
2	GN-M2	738	50.14	*Morchella angusticeps*
3	GN-M3	1138	55.33	*Morchella esculenta*
4	GN-M4	1138	56.80	*Morchella esculenta*
5	GN-M6	736	50.64	*Morchella angusticeps*
6	GN-M9	1138	55.85	*Morchella esculenta*
7	GN-M10	675	50.92	*Morchella angusticeps*
8	GN-M12	1138	55.61	*Morchella esculenta*
9	GN-M14	679	50.29	*Morchella elata*
10	GN-M22	675	50.19	*Morchella elata*
11	GN-M17	675	50.61	*Morchella elata*
12	GN-M19	673	50.53	*Morchella elata*
13	GN-M25	1131	55.41	*Morchella crassipes*
14	GN-M27	737	50.70	*Morchella conica*
15	GN-M31	1209	55.13	*Morchella crassipes*
16	GN-M32	738	50.38	*Morchella conica*
in the middle stage, with a smooth surface and a diameter of 2.6~11.3 μm. The hyphae were elongated, bamboo-like, septate, branched and intertwined into a network (Fig 1 C, D), the ascus was nearly cylindrical, generally containing 8 spores (Fig 1 E), the spores were oval, colorless and smooth, 18.7~24.5 μm × 10.0~13.0 μm (Fig 1 F), the lateral filaments were slender and thicker at the top.

Phylogenetic analysis based on ITS rDNA

The changes of ITS sequence length and GC content of 16 *Morchella* spp. strains were shown in Table 2. Logged in the Genbank and carried out BLASTN alignment analysis of the obtained sequences. The results showed that the nucleotide sequences of GN-M1, GN-M2, GN-M6, and GN-M10 were 99% similar to the ITS sequence of *M.angusticeps* with the accession number JQ691485, DQ257338, AJ698476, JX069625. The sequence similarity of GN-M3, GN-M4, GN-M9, and GN-M12 to the ITS sequence of *M.esculenta* was 99% with the accession number U51851 and AJ543741. The sequence similarity of GN-M14, GN-M22, GN-M17, and GN-M19 to the ITS sequence of *M.elata* with accession number EU701002 reached 99%. The sequence similarity of GN-M27 and GN-M32 to the ITS sequence of *M.conica* with accession number AM269501 reached 97% ~ 98%.

Construction of systematic Tree based on ITS sequence

To better explore the phylogenetic relationship of natural *Morchella* spp. in southern Gansu, China. Three ITS sequences of *verpa* of Morchaceae (accession numbers GU551670, GU551672, and JN043311) and *M.vulgaris*, *M.spongiola*, *M.semilibera* and *M.rufobrunnea* (accession numbers AF000971, JQ691480, AF008233, and DQ355921) were downloaded from GenBank. After BLASTN alignment analysis, the molecular evolution tree was constructed by Neighbour-Joining (NJ) and Maximum Parsimony (MP), as shown in Fig 2 and Fig 3.

In Fig 2 and 3, the topological structure of the phylogenetic tree constructed by NJ and MP is similar, and each branch of the Bootstrap verification system tree has a high support rate, indicating that the credibility of the system relationship was high. Combined with the analysis of sequencing results, 16 strains of *Morchella* spp. in this experiment. It was finally classified into 5 species after molecular identification. They were *M.angusticeps* (GN-M1, GN-M2, GN-M6, GN-M10), *M.esculenta* (GN-M3, GN-M4, GN-M9, GN-M12), *M.elata* (GN-M14, GN-M22, GN-M17, GN-M19), *M.crassipes* (GN-M25, GN-M31) and *M.conica* (GN-M27, GN-M32). These five species of *Morchella* spp. were mainly classified into the yellow morel group (*M.esculenta*, *M.crassipes*) and the black Morel group (*M.conica*, *M.angusticeps*, *M.elata*).

Through the analysis of the phylogenetic tree, it was found that two species of *Verpa* with accession numbers GU551670 and GU551672 were clustered into one branch, but one strain of Verpa with accession number JN043311 was clustered into the same group as *Morchella* spp. *M.vulgaris* (accession number AF000971) and *M.spongiola*
Genetic Diversity of Natural *Morchella* spp. from the Southern Gansu Province Based on rDNA-ITS, China

(accession number JQ691480) were closely related to *M.esculenta* (GN-M3, GN-M4, GN-M9, and GN-M12) and *M.angusticeps* (GN-M1, GN-M6, GN-M10), and could be grouped into one group. *M.urobrunnea* with accession number DQ355921 was roughly grouped with *M.conica* (GN-M27, GN-M32) and *M.crassipes* (GN-M25, GN-M31). *M.semilibera* with accession number AF008233 was far away from other *Morchella* spp. and seemed to be clustered into the same group with two strains of *Verpa* (GU551670 and GU551672). The reasons need to be further studied.

CONCLUSION

The evaluation of *Morchella* spp. species diversity is often complicated by the plasticity of macro-and micro morphological characteristics. Genomics is therefore important for aiding in species recognition, and they are often used instead of the morphology to identify these cryptic species(Chenna et al. 2003). In this study, 16 strains of natural *Morchella* spp. from southern Gansu, China were classified into 5 species. It was finally classified into 5 species after molecular identification. They are *M.angusticeps* (GN-M1, GN-M2, GN-M6, GN-M10), *M.esculenta* (GN-M3, GN-M4, GN-M9, GN-M12), *M.elata* (GN-M14, GN-M22, GN-M17, GN-M19), *M.crassipes* (GN-M25, GN-M31) and *M.conica* (GN-M27, GN-M32). These five species of *Morchella* spp. were mainly classified into the yellow morel group (*M.esculenta*, *M.crassipes*) and the black morel group (*M.conica*, *M.angusticeps*, *M.elata*). According to the molecular evolutionary tree, the topological structure of the phylogenetic tree constructed by the maximum-parsimony method (MP) and the Neighbour-Joining method (NJ) was similar, and the Bootstrap verification of each branch of the phylogenetic tree has a high support rate, indicating that the phylogenetic relationship has high credibility. At the same time, it also showed that this study has provided a clear molecular basis for the systematic classification of *Morchella* spp. in this area.

In this paper, the results of the molecular identification of *Morchella* spp. were different from those of morphological classification, which might be due to the morphological variation of the fruit body of *Morchella* spp. in this region. The morphological characteristics and physiological indexes of *Morchella* spp. species were affected by a variety of external factors, which has great restrictions on its morphological classification. As for how many species of *Morchella* spp. were still distributed in southern Gansu, more fresh samples need to be collected for isolation and identification in the future. The development of this work can not only enrich the strain resource database of *Morchella* spp. but also provide scientific theory and the basis for local artificial cultivation and future development and utilization of *Morchella* spp.

Nevertheless, molecular phylogenetic studies have indicated that many epithets may be synonymous species, homonymous species, or incorrectly named species, given that the majority of *Morchella* spp. species appear to exhibit high continental endemism and provincialism in the Northern hemisphere. Initially, the Internal Transcribed Spacer (ITS) rDNA region was used as the sole locus in most studies for assessing *Morchella* genetic diversity. Although ITS sequences were useful for identifying 77.4% of the known phylodiversity, at least 66% of the named *Morchella* sequences in GenBank were misidentified (Du, 2012). Thus, the use of multilocus DNA sequence datasets and phylogenetic species recognition based on genealogical concordance and nondiscordance was initiated and accepted by academia (Taylor, 2000, Taşkin et al. 2010). Currently, 61 phylodiversity, including from China, Europe, and North America, respectively, have been resolved by employing maximum parsimony and maximum-likelihood frameworks based on genealogical concordance phylogenetic species recognition (GCPSR) (Du et al.2012, Rajalaxmi, 2020, ChilDesh war et al. 2020, Burcu and Volkan, 2020). Therefore, a uniform recognition of this cryptic species using GCSPR methods will be highly necessary.

ACKNOWLEDGEMENT

This research was supported by the Science & Technology Research Project of Colleges and Universities in Hebei Province, grant number ZD2020403. Scientific Research Project of Tangshan Normal University, grant number 2020A13. And Agricultural Science and Technology Projects of Tangshan, China, grant number 19150203E.

Author Contributions

L.Wang performed experiment investigations, data analysis, and wrote the original manuscript. Q.P. Zhou conceived and designed the experiments, contributed reagents/materials/ analysis tools, wrote the paper. J.M. Liu and G.H. Shi provided parts of resources and materials. All authors reviewed the manuscript.

Competing Interests

The authors declare no competing interests.

REFERENCES

Amand Rajalaxmi. (2020). Analysis of Total Factor Productivity of Chickpea in the Major Producing States in India, Indian Journal of Agricultural Research. 3: 293-300.

Bai, Y.H., Chen, G.L., Yan, D. (2011). Comparative study on several methods of extracting total DNA from the fruit body of edible fungi. Anhui agricultural science. 19: 11409-11410. (in Chinese)

Burcu, S.D., Volkan, G. (2020). Comparative Analysis of Defence Response of Soybean by Seed Soaking in Gibberellic Acid to Salinity. 3: 365-369.

Chenna, R., Sugawara, H., Koike, T. (2003). Multiple sequence with the Clustal series of programs. Nucleic Acids Research. 13: 3497-3500.

Du, X.H. (2012). How well do ITS rDNA sequences differentiate species of true morels (Morchella)? Mycologia. 104: 1351-1368.

Du, X.H., Zhao Q., Yang Z.L. (2015). A review of research advances, issues, and perspectives of morels. Mycologia. 6: 78-85.
Genetic Diversity of Natural *Morchella* spp. from the Southern Gansu Province Based on rDNA-ITS, China

Du, X.H., Zhao Q., O'Donnell K. (2012). Multigene molecular phylogenetics reveals true morels (*Morchella*) are especially species-rich in China. Fungal Genetics and Biology. 49: 455-469.

Gu, Y.L. (1984). Investigation of *Morchella* in Gannan Tibetan Autonomous Prefecture. Chinese Edible Fungi (original Edible Fungi Science and Technology), 01: 34-36. (in Chinese)

Hawksworth, D. (2004). Fungal diversity and its implications for genetic resource collections. Studies in Mycology. 50: 9-18.

Kuo, M., Dewsbury, D.R., O'Donnell, K. (2012). Taxonomic revision of true morels (*Morchella*) in Canada and the United States. Mycologia. 5: 1159-1177.

Kuo, M. (2008). *Morchella tomentose*, a new species from western North America, and notes on *M. rufobrunnea*. Mycotaxon. 105: 441-446.

Luo, Z.Y. (1986). A preliminary study on the Ecology of Wild *Morchella* in Gannan. Chinese Edible Fungi (original Edible Fungi Science and Technology), 01: 30-32. (in Chinese)

O'Donnell, K. (2011). Phylogeny and historical biogeography of true morels (*Morchella*) reveal an early Cretaceous origin and high continental endemism and provincialism in the Holarctic. Fungal Genetics and Biology. 48: 252-265.

Pilz David, Mclain Rebecca. (2007). Ecology and Management of Morels Harvested From the Forests of Western North America. Usda. 6: 170.

Richard, F. (2015). True morels (*Morchella*, *Pezizales*) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia. 107: 359-382.

T. Chitdeshwari, D. Jegadeeswari, A.K. Shukla. (2020). Screening groundnut (*Arachis hypogaea*) genotypes for sulphur efficiency. 3: 320-325.

Taşkin, H., Büyükalaca, S., Doğan, H.H. (2010). A multigene molecular phylogenetic assessment of true morels (*Morchella*) in Turkey. Fungal Genetics and Biology. 47: 672-682.

Taşkin, H., Doğan H., Buyukalaca, S. (2015). An autumn species from Turkey. Mycotaxon 130: 215-221.

Taylor, J.W. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology. 31: 21-32.

Wu, Z.Y., Wu, S.G. (1996). A proposal for a new floristic kingdom (realm)–the E.Asian kingdom, its delimitation, and characteristics.In: Zhang AL & Wu SG(Eds.). Proceedings of the First International Symposium on Floristic Characteristics and Diversity of East Asian Plants. China Higher Education Press/Springer-Verlag, Beijing, China/Berlin, Germany, 14: 3-42.

Zhao, Q., Xu, Z.Z., Cheng, Y.H. (2009). Bionic cultivation of *Morchella conica* Southwest China. Journal of Agricultural Science. 22: 1690-1693. (in Chinese).