Bond and Site Percolation in Three Dimensions

Junfeng Wang,1 Zongzheng Zhou,1,2 Wei Zhang,3 Timothy M. Garoni,2† and Youjin Deng1†

1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
2School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia
3Department of Physics, Jinan University, Guangzhou 510632, China

(Dated: May 10, 2013)

We simulate the bond and site percolation models on a simple-cubic lattice with linear sizes up to \(L = 512\), and estimate the percolation thresholds to be \(p_c^{\text{(bond)}} = 0.248\,811\,82(10)\) and \(p_c^{\text{(site)}} = 0.311\,607\,7(2)\). By performing extensive simulations at these estimated critical points, we then estimate the critical exponents \(1/\nu = 1.141\,0(15)\), \(\beta/\nu = 0.477\,05(15)\), the leading correction exponent \(y_t = -1.2(2)\), and the shortest-path exponent \(d_{\text{min}} = 1.375\,6(3)\). Various universal amplitudes are also obtained, including wrapping probabilities, ratios associated with the cluster-size distribution, and the excess cluster number. We observe that the leading finite-size corrections in certain wrapping probabilities are governed by an exponent \(c_t \approx -2\), rather than \(y_t \approx -1.2\).

PACS numbers: 05.50.+q (lattice theory and statistics), 05.70.Jk (critical point phenomena), 64.60.ah (percolation), 64.60.F-(equilibrium properties near critical points, critical exponents)

Keywords:

I. INTRODUCTION

Percolation\[1\] is a cornerstone of the theory of critical phenomena\[2\], and a central topic in probability\[3,4\]. In two dimensions, Coulomb gas arguments\[5,6\] and conformal field theory\[7\] predict the exact values of the bulk critical exponents \(\beta = 5/36\) and \(\nu = 4/3\), which have been confirmed rigorously in the specific case of triangular-lattice site percolation\[8\]. Exact values of the percolation thresholds \(p_c\) on several two-dimensional lattices are also known\[8\]. In particular, it is known rigorously\[9\] that \(p_c = 1/2\) for bond percolation on the square lattice. For all \(d\) greater than or equal to the upper critical dimension\[10\] of \(d_{c1} = 6\), the mean-field values for the exponents \(\beta = 1\) and \(d\nu = 3\) are believed to hold; this has been proved rigorously\[11,12\] for \(d \geq 19\).

For dimensions \(2 < d < 6\) by contrast, no exact values for either the critical exponents or the percolation thresholds are known. Significant effort has therefore been expended on obtaining ever more accurate estimates, especially in three dimensions.

In addition to percolation thresholds and critical exponents, crossing probabilities\[13,14\] also play an important role in studies of percolation. For lattices drawn on a torus, the analogous quantities are wrapping probabilities\[15\], and in two dimensions their values can be determined exactly\[16\]. The three-dimensional case\[17\] has been far less studied however. Precise estimation of wrapping probabilities on the simple-cubic lattice represents one of the central undertakings of the current work.

In addition to their intrinsic importance, wrapping probabilities have proved to be an effective practical means of estimating percolation thresholds\[18,19\]. Using Monte Carlo (MC) simulations and performing a careful finite-size scaling analysis of various wrapping probabilities in the neighborhood of the transition, we obtain very accurate estimates of \(p_c\) for both site and bond percolation. We observe numerically that the leading finite-size corrections for certain wrapping probabilities appear to be governed by an exponent \(y_c \approx -2\), rather than by the leading irrelevant exponent \(y_t \approx -1.2\).

We then estimate the thermal exponent \(y_t = 1/\nu\) by fixing \(p\) to our best estimate of \(p_c\), and studying the divergence with linear size \(L\) of the derivative of the wrapping probability, which is proportional to the covariance of its indicator with the number of bonds. We find this procedure for estimating \(y_t\) preferable to methods in which \(y_t\) is estimated by studying how quantities behave in a neighborhood of \(p\) values around \(p_c\). In particular, we believe the current method produces more reliable error estimates.

The remainder of this paper is organized as follows. The simulation method and the sampled quantities are discussed in Sec. IV. The results for the wrapping probabilities and thresholds are given in Sec. III. Critical exponents and the excess cluster number are discussed in Sec. IV. We then finally conclude with a discussion in Sec. V.

II. SAMPLED QUANTITIES

We study bond and site percolation on a periodic \(L \times L \times L\) simple-cubic lattice with linear system sizes \(L = 8, 12, 16, 24, 32, 48, 64, 128, 256\), and \(512\). For each system size, we produced at least \(2 \times 10^7\) independent samples. Each independent bond (site) configuration is generated by independently occupying each bond (site) with probability \(p\). The clusters in each configuration are...
TABLE I: Fits of the wrapping probabilities $R^{(x)}$, $R^{(y)}$, and $R^{(z)}$, and the ratios Q_1 and Q_2 for bond percolation. We did not obtain stable fits with y free for $R^{(z)}$.

L_{min}	χ^2/DF	y_0	Q_c	p_c	b_1	y_1	b_2	
16	53/40	0.2481203(5)	1.16(1)	0.86537(1)	-0.36(1)	-0.0423(5)	-1.2	0.341(5)
24	33/33	0.2481198(6)	1.16(2)	0.86535(2)	-0.31(2)	-0.040(2)	-1.2	0.31(2)
28/26	0.248193(7)	1.19(3)	0.86533(2)	-0.31(3)	-0.036(3)	-1.2	0.25(5)	
16	44/39	0.248184(8)	1.16(1)	0.86539(3)	-0.36(1)	-0.10(4)	-1.34(9)	0.50(8)
24	31/32	0.248188(9)	1.19(2)	0.86529(4)	-0.32(3)	-0.10(8)	-1.3(2)	0.5(2)
32	28/25	0.248196(14)	1.19(3)	0.8654(2)	-0.31(3)	-0.02(4)	-1.0(5)	0.2(3)
32	28/25	0.248196(14)	1.19(3)	0.8654(2)	-0.31(3)	-0.02(4)	-1.0(5)	0.2(3)
48	16/18	0.248195(14)	1.14(2)	0.86350(3)	-0.39(8)	-0.088(9)	-1.2	-0.3(2)
64	10/11	0.248184(11)	1.12(3)	0.8634(2)	-1.0(2)	-0.05(4)	-1.2	-1(1)
32	28/25	0.248196(14)	1.19(3)	0.8654(2)	-0.31(3)	-0.02(4)	-1.0(5)	0.2(3)
48	16/19	0.248193(14)	1.14(2)	0.86346(7)	-0.89(8)	-0.15(4)	-1.22(7)	
64	10/12	0.248182(11)	1.12(3)	0.8633(2)	-1.0(2)	-0.05(4)	-1.5(4)	

We sampled the following observables in our simulations:

(a) The number of occupied bonds N_b for bond percolation, and the number of occupied sites N_c for site percolation.

(b) The number of clusters N_c.

(c) The size C_1 of the largest cluster.

(d) The cluster-size moments $S_m = \sum C |C|^m$ with $m = 0, 2, 4$. The sum runs over all clusters C, and S_0 is simply the number of clusters.

(e) An observable $S := \max \max d(x_C, y)$ used to determine the shortest-path exponent. Here $d(x, y)$ denotes the graph distance from site x to site y, and x_C is the vertex in cluster C with the smallest vertex label, according to some fixed (but arbitrary) vertex labeling.

(f) The indicators $R^{(x)}$, $R^{(y)}$, and $R^{(z)}$, for the event that a cluster wraps around the lattice in the x, y, or z direction, respectively.

From these observables we calculated the following quantities:

(i) The mean size of the largest cluster $C_1 = \langle C_1 \rangle$, which at p_c scales as $C_1 \sim L^{y_h}$ with $y_h = d_f - \beta/\nu$, where d_f is the fractal dimension.

(ii) The cluster density $\rho = \langle N_c \rangle/L^d$.

(iii) The mean size of the cluster at the origin, $\langle C \rangle = \langle C \rangle_0$, which at p_c scales as $\langle C \rangle \sim L^{2y_h-d}$.

(iv) The dimensionless ratios

$$Q_1 = \frac{\langle C_1 \rangle^2}{\langle C_1 \rangle^2}, \quad Q_2 = \frac{\langle S_2 \rangle^2}{3 \langle S_2 \rangle^2 - 2 \langle S_4 \rangle}.$$

(v) The shortest-path length $S = \langle S \rangle$, which at p_c scales as $S \sim L^{d_{min}}$ with d_{min} the shortest-path fractal dimension.

(vi) The wrapping probabilities

$$R^{(x)} = \langle R^{(x)} \rangle = \langle R^{(y)} \rangle = \langle R^{(z)} \rangle,$$

$$R^{(a)} = 1 - (1 - R^{(x)})(1 - R^{(y)})(1 - R^{(z)}),$$

$$R^{(3)} = \langle R^{(x)} R^{(y)} R^{(z)} \rangle.$$
Here \(R^{(x)} \) gives the probability that a winding exists in the \(x \) direction, \(R^{(a)} \) gives the probability that a winding exists in at least one of the three possible directions, and \(R^{(3)} \) gives the probability that windings simultaneously exist in all three possible directions. Near \(p_c \), we expect each of these wrapping probabilities to behave as \(\sim f((p - p_c)L^\nu) \), where \(f \) is a scaling function.

(vii) The covariance of \(R^{(x)} \) and \(N_b \)

\[
g_{bR}^{(x)} = \langle R^{(x)}N_b \rangle - \langle R^{(x)} \rangle \langle N_b \rangle = p(1-p)\frac{\partial R^{(x)}}{\partial p}. \tag{3}
\]

At \(p_c \), we expect \(g_{bR}^{(x)} \sim L^\nu \). An analogous definition of \(g_{bR}^{(x)} \) with \(N_b \) being replaced with \(N_a \), was used for site percolation.

To derive \(g_{bR}^{(x)} \), one can explicitly differentiate \(\langle R^{(x)} \rangle \) with respect to \(p \), and use the fact that \(\langle N_b \rangle = p|E| \) where \(|E| \) is the total number of edges on the lattice.

The complete set of data for all observables, for both bond and site percolation, is available as Supplemental Material \[20\].

III. ESTIMATING \(p_c \)

A. Bond percolation

We estimate the thresholds of bond and site percolation by studying the finite-size scaling of the wrapping probabilities \(R^{(x)} \), \(R^{(a)} \), and \(R^{(3)} \), and the dimensionless ratios \(Q_1 \) and \(Q_2 \). Around \(p_c \), we perform least-squares fits of the MC data for these quantities by the ansatz

\[
O(\epsilon, L) = O_c + \sum_{k=1}^{2} q_k \epsilon^k L^{k\nu} + b_1 L^\nu + b_2 L^{-2}, \tag{4}
\]

where \(\epsilon = p_c - p \), \(O_c \) is a universal constant, and \(y_i \) is the leading correction exponent. We perform fits with both \(b_1 \) and \(b_2 \) free, as well as fits with \(b_2 \) being set identically to zero. By performing fits with \(y_i \) free we estimate that \(y_i = -1.2(2) \). We also perform fits with \(y_i \) fixed to \(y_i = -1.2 \).

As a precaution against correction-to-scaling terms that we have neglected in our chosen ansatz, we impose a lower cutoff \(L \geq L_{\text{min}} \) on the data points admitted in the fit, and we systematically study the effect on the \(\chi^2 \) value of increasing \(L_{\text{min}} \). In general, our preferred fit for any given ansatz corresponds to the smallest \(L_{\text{min}} \) for which \(\chi^2 \) divided by the number of degrees of freedom (DFs) is \(O(1) \), and for which subsequent increases in \(L_{\text{min}} \) do not cause \(\chi^2 \) to drop by much more than one unit per degree of freedom.

Table \[\ref{tab:fit_results}\] summarizes the results of these fits. From the fits, we can see that the finite-size corrections of \(Q_1 \) and \(Q_2 \) are dominated by the exponent \(y_i \approx -1.2 \). From \(Q_1 \) and \(Q_2 \), we estimate \(p_c = 0.2488119(3) \), and their universal critical values \(Q_{1,c} = 0.8654(2) \) and \(Q_{2,c} = 0.6335(2) \).

For \(R^{(x)} \) and \(R^{(a)} \), fixing \(y_i = -1.2 \) and including both the \(b_1 \) and \(b_2 \) terms we find that \(b_1 \) is consistent with zero, while \(b_2 \) is clearly nonzero. Furthermore, if we set \(b_2 = 0 \) and leave \(y_i \) free, we find \(y_i \approx -2 \). This suggests that either the amplitudes of the leading corrections of \(R^{(x)} \) and \(R^{(a)} \) vanish identically, or at least that they are sufficiently small that they cannot be detected from our data. Due to these weak finite-size corrections, the values of \(p_c \) fitted from \(R^{(x)} \) and \(R^{(a)} \) are much more stable than those obtained from \(Q_1 \) and \(Q_2 \). From \(R^{(x)} \) and \(R^{(a)} \), we estimate \(p_c = 0.2488118(2) \). For \(R^{(3)} \), we report only the fits with corrections \(b_1 L^{-1.2} + b_2 L^{-2} \). If \(y_i \) is left free the fits become unstable, regardless of whether the \(b_2 L^{-2} \) term is included. From \(R^{(3)} \), we estimate \(p_c = 0.24881185(15) \) which is consistent with the value obtained from \(R^{(x)} \) and \(R^{(a)} \). From these fits, we estimate the universal wrapping probabilities to be \(R_{c}^{(x)} = 0.25778(6) \), \(R_{c}^{(a)} = 0.45997(8) \) and \(R_{c}^{(3)} = 0.08041(8) \).

In Fig. \[\ref{fig:results}\] we illustrate our estimate of \(p_c \) by plotting...
TABLE II: Fits of the wrapping probabilities $R^{(x)}$, $R^{(a)}$, and $R^{(3)}$, and the ratios Q_1 and Q_2 for site percolation. For $R^{(x)}$ we obtain unstable results when y_i is free.

L_{min}	χ^2/DF	p_c	y_1	Q_c	q_1	b_1	y_2	b_2
32	19/16	0.311 606 9(2)	1.14(2)	0.865 05(2)	−0.22(2)	0.062(2)	−1.2	0(3)
48	11/11	0.311 607 0(2)	1.11(3)	0.865 09(3)	−0.25(3)	0.054(6)	−1.2	0.2(2)
32	19/16	0.311 606 9(2)	1.15(2)	0.865 06(3)	−0.22(2)	0.063(4)	−1.1(2)	-
48	10/11	0.311 607 1(2)	1.11(3)	0.865 12(4)	−0.25(3)	0.09(2)	−1.2(2)	-
32	10/11	0.311 607 3(2)	1.12(6)	0.865 27(5)	−0.24(6)	0.09(10)	−1.8(3)	-
64	3/6	0.311 607 6(2)	1.12(4)	0.633 3(1)	−0.56(9)	0.02(3)	−1.2	5.1(7)
48	13/11	0.311 607 2(1)	1.14(2)	0.633 06(4)	−0.52(4)	0.9(1)	−1.52(3)	-
64	2/6	0.311 607 6(2)	1.12(4)	0.633 29(8)	−0.56(9)	0(2)	−1.9(2)	-

$R^{(x)}$ and $R^{(a)}$ vs L. Precisely at $p = p_c$, as $L \to \infty$ the data should tend to a horizontal line, whereas the data with $p \neq p_c$ will bend upward or downward. Figure 1 shows that our estimate of p_c lies slightly below the central value 0.248 812 6 reported in [21].

In Fig. 2 we plot the data at $p = 0.248 811 8$ for $R^{(x)}$ and $R^{(a)}$ vs $L^{-1.2}$, and for Q_1 and Q_2 vs $L^{-1.2}$. The figure strongly suggests that the correction $L^{-1.2}$ dominates in Q_1 and Q_2, but vanishes (or is very weak) in $R^{(x)}$ and $R^{(a)}$.

B. Site percolation

For site percolation, we again estimate p_c by fitting Q_1 and Q_2, $R^{(x)}$, $R^{(a)}$, and $R^{(3)}$ with Eq. (1). The fitting procedure is similar to that of bond percolation, and the results are summarized in Table I. From the table, we can see that the fits of Q_1 and Q_2 are less stable for site percolation than for bond percolation. The ratio of χ^2 per DF remains large until $L_{\text{min}} \geq 32$ for Q_1 and $L_{\text{min}} \geq 48$ for Q_2, and the resulting estimates of p_c range from 0.311 606 9(2) to 0.311 607 7(3).

The fits of the wrapping probabilities are better behaved, as was the case for bond percolation. For $R^{(3)}$, fixing $y_i = -1.2$ and including both the b_1 and b_2 terms, we find that b_1 is consistent with zero, while b_2 is clearly nonzero. Furthermore, if we set $b_2 = 0$ and leave y_i free, we find $y_i \approx -2$. This suggests that the amplitude of the leading correction of $R^{(3)}$ is smaller than the resolution of our fits, and might possibly be zero. The fits of the $R^{(a)}$ data, however, quite clearly indicate the presence of the $b_1 L^{-1.2}$ term. For $R^{(a)}$, we report only the fits with corrections $b_1 L^{-1.2} + b_2 L^{-2}$; if y_i is left free the fits become unstable, regardless of whether the $b_2 L^{-2}$ term is included. As for $R^{(a)}$, the amplitude b_1 appears to take a nonzero value. These observations suggest that the leading correction $L^{-1.2}$ does not generically vanish for all wrapping probabilities, but rather that the amplitudes in some cases are smaller than the resolution of our simulations.

Comparing the various fits, we estimate $p_c = 0.311 607 7(2)$ for site percolation, which is consistent with the previous result 0.311 607 7 (4) [22]. In addition, we estimate the universal wrapping probabilities to be $R^{(x)} = 0.257 82(6)$, $R^{(a)} = 0.459 99(8)$, and $R^{(3)} = 0.080 46(6)$, which are consistent with those estimated from bond percolation. In Fig. 3 we show plots of $R^{(x)}$ and $R^{(a)}$ which illustrate our estimate of p_c.

IV. RESULTS AT p_c

In this section, we estimate the critical exponents y_i, y_h, and d_{min}, as well as the excess cluster number. Fixing p at our estimated thresholds for bond and site percolation, we study the covariances g_{bR} and g_{sR}, the mean
size of the largest cluster C_1, the mean size of the cluster at the origin, χ, the shortest-path length S, and the cluster density ρ. The MC data for $g_{bR}(x)$, $g_{sR}(x)$, C_1, χ and S are fitted by the ansatz

$$A = L^{y_s}(a_0 + b_1 L^{-1.2} + b_2 L^{-2})$$

We perform fits using different combinations of the two corrections $b_1 L^{-1.2}$ and $b_2 L^{-2}$ and compare the results.

A. Estimating y_t

We estimate y_t by studying the covariances $g_{bR}(x)$ and $g_{sR}(x)$ both of which scale as $\sim L^{y_t}$ at the critical point. We find this procedure for estimating y_t preferable to methods, such as that employed in [22], in which y_t is estimated by studying how quantities behave in the neighborhood of p_c as the system deviates from criticality. In particular, we believe the current method produces more reliable error estimates.

We fit the data for $g_{bR}(x)$ at $p = 0.2488118$ and $g_{sR}(x)$ at $p = 0.3116077$ to Eq. [22], and the results are shown in Table III. The estimate of y_t from $g_{sR}(x)$ produces a smaller error bar than that from $g_{bR}(x)$. From these fits we take our final, somewhat conservative, estimate to be $y_t = 1.1410(15)$.

In Fig. [3] we plot $(\ln g_{bR}(x) - y_t \ln L)$ and $(\ln g_{sR}(x) - y_t \ln L)$ vs $\ln L$ using three different values of y_t: our estimate, as well as our estimate plus or minus three standard deviations. Using the true value of y_t should produce a horizontal line for large L. In the figure, the data using $y_t = 1.1365$ and $y_t = 1.1455$ respectively bend upward and downward, suggesting that the true value of

![Fig. 2: Plots of Q_1 and Q_2 vs $L^{-1.2}$ (top), and $R^{(x)}$ and $R^{(s)}$ vs L^{-2} (bottom), with $p = 0.2488118$, for bond percolation. The solid lines are simply to guide the eye.](image1)

![Fig. 3: Plots of $R^{(x)}(p,L)$ (top) and $R^{(s)}(p,L)$ (bottom) vs L for fixed values of p, for site percolation. In both cases, the curves correspond to our preferred fit of the MC data for $R(p,L)$ by ansatz [22]: the dashed curve corresponds to setting $p = 0.3116077$. The shaded blue strips indicate an interval of 1σ above and below the estimates $R^{(x)}_c = 0.25782(6)$ and $R^{(s)}_c = 0.45999(8)$.](image2)
TABLE IV: Fits of C_1 and χ. The superscripts b and s denote bond and site percolation, respectively.

L_{min}	χ^2/DF	y_h	a_0	b_1	b_2
C_1^b					
16	3/4	2.52286(5)	0.9394(3)	-0.014(6)	0.22(4)
24	3/3	2.52289(7)	0.9393(4)	-0.009(11)	0.2(1)
24	5/4	2.52298(3)	0.9388(2)	0.009(2)	-
32	3/3	2.52294(4)	0.9390(2)	0.005(3)	-
χ^s					
16	4/4	2.5230(3)	1.1257(5)	0.14(1)	0.18(7)
24	3/3	2.52300(5)	1.1262(7)	0.12(2)	0.3(2)
24	6/4	2.52308(3)	1.1251(3)	0.15(4)	-
32	4/3	2.52305(3)	1.1255(4)	0.151(6)	-
C_1^s					
16	5/3	2.52299(3)	0.4716(7)	0.024(2)	-0.44(2)
24	5/3	2.52300(5)	0.4712(2)	0.024(4)	-0.45(4)
χ^s					
32	0.9/2	2.52291(5)	0.2841(2)	-0.001(7)	-1.15(9)
48	0.7/1	2.52294(9)	0.2840(4)	-0.007(18)	-1.3(3)
32	0.9/3	2.52292(1)	0.2840(6)	-	-1.16(1)
48	0.9/2	2.52291(2)	0.2840(8)	-	-1.17(5)

y_h does indeed lie within 3σ of our estimate. The data with $y_h = 1.141$ appear to be consistent with an asymptotically horizontal line. We note that while the curve appears to be increasing around the point at $L = 512$ for bond percolation, it instead slightly decreases for site percolation, suggesting that in fact this movement is dominated (or even entirely caused) by noise.

B. Estimating y_h

We estimate y_h by studying the divergence of C_1 and χ as L increases with p fixed to our best estimates of p_c. We fit the MC data for C_1 and χ with Eq. (5), with the exponent y_A then corresponding to y_h and $2y_h - d$, respectively. The results are reported in Table IV. We use superscripts b and s to distinguish bond and site percolation. For C_1^b and χ^s, the amplitude b_1 is quite small, while b_1 in χ^b and C_1^s is clearly present. In the fits of χ^s with one correction term $b_1 L^{-1.2}$, the ratio of χ^2 per DF remains large until $L_{\text{min}} \geq 64$. We therefore show the fits with the correction $b_2 L^{-2}$ instead. Comparing these fits, we estimate $y_h = 2.52295(15)$.

In Fig. 5, we plot $(\ln C_1^b - y_h \ln L)$ and $(\ln C_1^s - y_h \ln L)$ vs $\ln L$ using three different values of y_h: our estimate, as well as our estimate plus or minus three standard deviations. As L increases, the data with $y_h = 2.52250$ and 2.52340 respectively slope upward and downward, while the data with $y_h = 2.52295$ are consistent with an asymptotically horizontal line.

C. Estimating d_{min}

We estimate the shortest-path fractal dimension d_{min} by studying the quantity S at our estimated thresholds.
TABLE V: Fits of S. The superscripts b and s denote bond and site percolation, respectively.

L_{min}	χ^2/DF	d_{min}	a_0	b_1	b_2
24	2/3	1.375 26(5)	1.814 9(5)	$-0.65(2)$	$-3.8(2)$
32	1/2	1.375 33(7)	1.814 2(7)	$-0.59(5)$	$-4.4(4)$
48	0/2	1.375 30(9)	1.815 1(1)	$-0.63(9)$	$-4(1)$
16	5/4	1.375 80(2)	1.383 4(2)	$-3.32(5)$	$2.72(3)$
24	4/4	1.375 77(3)	1.383 6(3)	$-3.45(2)$	$2.82(3)$
32	4/2	1.375 76(5)	1.383 7(4)	$-3.45(3)$	$2.9(3)$

TABLE VI: Fits of ρ. The superscripts b and s denote bond and site percolation, respectively.

L_{min}	χ^2/DF	ρ_c	b	b_0
10	3/5	0.272 932 83(1)	0.679(3)	0.1(6)
24	1/4	0.272 932 83(1)	0.674(6)	3(4)
10	2/7	0.272 932 83(1)	0.678 9(6)	-
24	2/6	0.272 932 83(1)	0.679(2)	-
12	4/6	0.052 438 218(3)	0.674 5(5)	0.02(8)
16	4/5	0.052 438 218(3)	0.674 7(8)	$-0.02(21)$
24	4/4	0.052 438 218(3)	0.674 2(2)	$0.2(10)$
12	4/7	0.052 438 218(3)	0.674 6(2)	-
16	4/6	0.052 438 218(3)	0.674 6(3)	-
24	4/5	0.052 438 218(3)	0.674 6(5)	-

The MC data for S are fitted to Eq. (1) with the exponent y_A replaced by d_{min}, and the results are reported in Table V. We again use the superscripts b and s to distinguish bond and site percolation. In the fits, both b_1 and b_2 are clearly observable for S^b and S^s. And when we set $b_2 = 0$, the ratio of χ^2 per DF remains relatively large. We also did the fits by replacing the correction with b_2 by a constant term c_0 in Eq. (1), and obtained $d_{\text{min}}(\text{bond}) = 1.375 55(6)$ and $d_{\text{min}}(\text{site}) = 1.375 59(6)$. Comparing these fits, we estimate $d_{\text{min}} = 1.375 6(3)$.

To illustrate this estimate, Fig. 6 shows a log-log plot of S versus L.

D. Excess number of clusters

The cluster density tends to a finite limit $\rho_c = \lim_{L \to \infty} \lim_{p \to p_c} \rho$ at criticality. While the value of ρ_c is non-universal, the excess cluster number $b := \lim_{L \to \infty} \lim_{p \to p_c} L^d (\rho - \rho_c)$ is universal [28]. To estimate b, we study ρ with p fixed to our estimated thresholds for bond and site percolation and fit the data to the ansatz

$$\rho = \rho_c + L^{-3}(b + b_1 L^{-2}) .$$

The resulting fits are summarized in Table VI, where we again use superscripts b and s to differentiate the bond and site cases. We report fits both with b_1 free and with $b_1 = 0$. We find that ρ_c can be well fitted to (1) with $b_1 = 0$ fixed. Leaving b_1 free, we find that b_1 is consistent with zero, suggesting that the leading correction exponent might be even smaller than -2. We also performed fits in which the leading correction exponent was fixed to -1.2 and -3, and in both cases the resulting estimates of ρ_c and b were consistent with those reported in Table VI. Leaving the leading correction exponent free produces unstable fits however. Comparing these fits, we estimate $b = 0.675(2)$.

Our estimate of b is determined on the periodic $L \times L \times L$ simple cubic lattice; on the $L \times L$ square lattice $b = 0.8835(8)$ [28]. The excess cluster number was studied in [21] on an $L \times L \times L'$ lattice with $L' \gg L$. Naively, extrapolating their results to $L' = L$ gives an estimate of $b \approx 0.412$ which is significantly below our estimate. We also note that our estimate of the number of clusters $\rho_c = 0.272 932 83(1)$ differs slightly from the estimate $\rho_c = 0.272 931 0(5)$ reported in [21].

V. DISCUSSION

We study in this paper standard bond and site percolation on the three-dimensional simple-cubic lattice with periodic boundary conditions. Using extensive Monte Carlo simulations and finite-size scaling analysis, we report the estimates: $p_c = 0.24881182(10)$ (bond) and $p_c = 0.311 607 7(2)$ (site). The bulk thermal and magnetic exponents are estimated to be $y_t = 1.140(5)$ and $y_h = 2.52295(15)$, the shortest-path fractal dimension to be $d_{\text{min}} = 1.375 6(3)$, and the leading irrelevant exponent to be $y_t = -1.2(2)$. The universal value of the excess cluster number is estimated to be $b = 0.675(2)$.

We emphasize that the reported estimates of ρ_c are obtained by studying wrapping probabilities, which are found to have weaker corrections to scaling than dimensionless ratios constructed from moments of magnetic quantities such as C_1 and S_0. In particular, we find evidence suggesting that the leading correction exponent in certain wrapping probabilities ($R(x)$ and $R(y)$ for bond percolation, $R(z)$ for site percolation) may be ≈ -2 rather than -1.2, although the reasons are not clear. The universal values of the wrapping probabilities we studied are estimated to be: $R^{(x)} = 0.25780(6)$,
We obtain less of whether a winding exists in the third direction. It is clear that a winding exists in two given directions, regardless of whether a winding exists in the third direction but not in the other two directions; and in words, \(R^c(1) \) is the probability that a winding exists in two given directions but not in the third; and \(R^c(3) \) is the probability that a winding exists in two given directions, regardless of whether a winding exists in the third direction. We obtain \(R^c(1) = 0.075 \) (14), \(R^c(2) = 0.050 \) (14), and \(R^{(x,y)} = 0.131 \) (29(12)).

Table VII summarizes the estimates presented in this work. For comparison, we also provide an (incomplete) summary of previous estimates.

\[
\begin{array}{cccccccccc}
\text{Ref.} & p_c (\text{bond}) & p_c (\text{site}) & y_t = 1/\nu & y_t = d_f & d_{\text{min}} & y_t & R^{(1)} & R^{(2)} & R^{(3)} & b \\
\hline
[21] & 0.248812(6) & 0.311608(4) & 1.121(2) & 2.523(4) & & & & & & \\
[22] & 0.2490(2) & 0.3115(3) & 1.141(2) & 2.523(4) & & & & & & \\
[24] & 0.2488120(5) & 0.3116077(4) & 1.1456(7) & 2.5226(1) & & & & & & \\
[25] & 0.2488120(5) & 0.3116077(4) & 1.1456(7) & 2.5226(1) & & & & & & \\
[26] & 0.248811(2) & 0.311607(2) & 1.1410(15) & 2.52295(15) & 1.3756(3) & 1.142(6) & 1.3756(3) & 1.142(6) & 0(2) & \\
\end{array}
\]

The final error bars reported in [22] were also underestimated, taking insufficient account of systematic errors.

\(R^{(a)} = 0.59598(8) \), and \(R^{(3)} = 0.08044(8) \), by comparing the results for bond and site percolation.

\[
R^c(1) = \langle R^c(x) (1 - R^c(y)) (1 - R^c(z)) \rangle = \frac{1}{3} (2R^c(a) + R^c(3) - 3R^c(x)) ,
\]

\[
R^c(2) = \langle R^c(x) R^c(y) (1 - R^c(z)) \rangle = \frac{1}{3} (3R^c(x) - 2R^c(3) - R^c(a)) ,
\]

\[
R^{(x,y)} = \langle R^c(x) R^c(y) \rangle = \frac{1}{3} (3R^c(x) + R^c(3) - R^c(a)) .
\]

\[R^{(x,y)} = 0.13129(12) .\]

VI. ACKNOWLEDGMENTS

This research was supported in part by NSFC under Grant No. 91024026 and No. 11275185, and the Chinese Academy of Science. It was also supported under the Australian Research Council’s (ARC) Discovery Projects funding scheme (Project No. DP110101141), and T.G. acknowledges support from the Australian Research Council through a Future Fellowship (Project No. FT100100494). Y.D. is grateful for the hospitality of Monash University at which this work was partly completed. The simulations were carried out on the NYU-ITS cluster, which is partly supported by NSF Grant No. PHY-0424082.

\[
[1] S. R. Broadbent and J. M. Hammersley, Proc. Cambridge Philos. Soc. 53, 629 (1957).
[2] D. Stauffer and A. Aharony, Introduction To Percolation Theory, 2nd ed. (Taylor & Francis, London, 1994).
[3] G. R. Grimmett, Percolation (Springer, 2nd ed. Berlin, 1999).
[4] B. Bollobás and O. Riordan, Percolation (Cambridge University Press, Cambridge, 2006).
[5] B. Niemhuis, in Phase Transition and Critical Phenomena, edited by C. Domb, M. Green, and J. L. Lebowitz (Academic Press, London, 1987), Vol. 11.
[6] J. L. Cardy, in Phase Transition and Critical Phenomena, edited by C. Domb, M. Green, and J. L. Lebowitz (Academic Press, London, 1987), Vol. 11.
[7] S. Smirnov and W. Werner, Math. Res. Lett. 8, 729 (2001).
[8] J. W. Essam, in Phase Transition and Critical Phenomena, edited by C. Domb and M. S. Green (Academic Press, New York, 1972), Vol. 2.
[9] H. Kesten, Commun. Math. Phys. 74, 41 (1980).
[10] G. Toulouse, Nuovo Cimento Soc. Ital. Fis., B 23, 234 (1974).
[11] M. Aizenman and C. M. Newman, J. Stat. Phys. 36, 107 (1984).
[12] T. Hara and G. Slade, Comm. Math. Phys. 128, 333 (1990).
[13] P. Langlands, C. Pichet, P. Pouliot, and Y. Saint-Aubin, J. Stat. Phys. 67, 553 (1992).
[14] J. Cardy, J. Phys. A 25, L201 (1992).
[15] R. Langlands, P. Pouliot, and Y. Saint-Aubin, Bull. Am. Math. Soc. 30, 1 (1994).
[16] H. T. Pinson, J. Stat. Phys. 75, 1167 (1994).
[17] P. H. L. Martins and J. A. Plascak, Phys. Rev. E 67, 046119 (2003).
[18] M. E. J. Newman and R. M. Ziff, Phys. Rev. Lett. 85, 4104 (2000).
[19] X. Feng, Y. Deng, and H. W. J. Bl"ote, Phys. Rev. E 78, 031136 (2008).
[20] See Supplemental Material at {URL} for data for all observables for bond and site percolation.
[21] C. D. Lorenz and R. M. Ziff, Phys. Rev. E 57, 230 (1998).
[22] Y. Deng and H. W. J. Blöte, Phys. Rev. E 72, 016126 (2005).
[23] C. D. Lorenz and R. M. Ziff, J. Phys. A 31, 8147 (1998).
[24] H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A 32, 1 (1999).
[25] Z. Zhou, J. Yang, R. M. Ziff, and Y. Deng, Phys. Rev. E 86, 021102 (2012).
[26] Z. Zhou, J. Yang, Y. Deng, and R. M. Ziff, Phys. Rev. E 86, 061101 (2012).
[27] B. Kozlov and M. Laguës, Physica A 389, 5339 (2010).
[28] R. M. Ziff, S. R. Finch, and V. S. Adamchik, Phys. Rev. Lett. 79, 3447 (1997).