Anaemia in Waldmann’s disease: A rare presentation of a rare disease

Shahira A El-Etreby, Ahmed Y Altonbary, Mohamed El Sorogy, Wagdi Elkashef, Jehan A Mazroa, Monir H Bahgat

Shahira A El-Etreby, Ahmed Y Altonbary, Mohamed El Sorogy, Wagdi Elkashef, Jehan A Mazroa, Monir H Bahgat, Divisions of Hepatology and Gastroenterology, Pathology, and Diagnostic Radiology, Specialized Medical Hospital and Gastrointestinal Surgery Center, Mansoura 35516, Egypt

Author contributions: All authors performed the research, designed, wrote, critically analysed the manuscript; El-Etreby SA, Altonbary AY and Bahgat MH were responsible for medical assessment and follow up of the patient; Mazroa JA was responsible of radiological assessment; Elkashef W examined the pathological specimens; El Sorogy M performed the surgical procedure; finally, El-Etreby SA and Bahgat MH analyzed the data, revised the draft and approved of the final version of the paper to be published.

Supported by Specialized Medical Hospital and Gastrointestinal Surgery Center, Mansoura University, Mansoura, Egypt.

Ethics approval: The study was reviewed and approved by the Mansoura Faculty of Medicine Institutional Review Board, Mansoura University, Egypt.

Informed consent: The study participant, or her legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest: None.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Shahira A El-Etreby, MD, Divisions of Hepatology and Gastroenterology, Pathology, and Diagnostic Radiology, Specialized Medical Hospital and Gastrointestinal Surgery Center, Ghomhria street, Mansoura 35516, Egypt. aly_shahira@yahoo.com

Telephone: +2-114-3543995
Fax: +2-50-2230287
Received: October 11, 2014
Peer-review started: October 11, 2014
First decision: November 14, 2014
Revised: November 29, 2014
Accepted: February 9, 2015

Article in press: February 11, 2015
Published online: May 16, 2015

Abstract

A 32-year-old female presented with 5-year history of iron deficiency anemia, marked pallor and edema of both lower limbs. Laboratory investigations including complete blood count, blood film, iron studies, lipid profile, ascitic fluid analysis, test of stool for occult blood and alpha 1 anti-trypsin. Upper, lower gastrointestinal (GIT) endoscopies, and enteroscopy were performed. Imaging techniques as abdominal ultrasonography and computed tomography were done. Echocardiography, lymph node biopsy and bone marrow examination were normal. The case was diagnosed as Waldmann’ disease with protein losing enteropathy and recurrent GIT bleeding. Management started with low fat diet with medium chain triglyceride, octreotide 200 µg twice a day, tranexamic acid and blood transfusion. Then, exploratory laparotomy with pathological examination of resected segment was done when recurrent GIT bleeding occurred and to excluded malignant transformation.

Key words: Waldmann’s disease; Lymphangiectasia; Gastrointestinal bleeding; Iron deficiency anemia

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: To our knowledge, this is the first “Egyptian” case of primary intestinal lymphangiectasia. In addition, its presentation is rare with blood loss anemia in contrast to the more common presentation with hypo-proteinemia and edema. So, we are reporting a case with a rare clinical presentation of a rare disease. Double balloon enteroscopy was so beneficial in the diagnosis of the case superior to capsule endoscopy
because the advantage of biopsy and histopathologic examination. There is controversy about medical treatment options, surgical treatment may be preferred in localized lesions otherwise, has no role. Prognosis may be favorable.

El-Etreby SA, Altonbary AY, El Sorogy M, Elkashef W, Mazroa JA, Bahgat MH. Anaemia in Waldmann’s disease: A rare presentation of a rare disease. World J Gastrointest Endosc 2015; 7(5): 567-572 Available from: URL: http://www.wjgnet.com/1948-5190/full/v7/i5/567.htm DOI: http://dx.doi.org/10.4253/wjge.v7.i5.567

INTRODUCTION

Waldmann’s disease; also called primary intestinal lymphangiectasia (PIL) is a rare form of protein losing enteropathy caused by leakage of lymph inside the small intestinal lumen from dilated lacteals. The manifestations begin before the age of 30 years in 90% of cases, often in childhood. Whether bleeding into gastrointestinal tract a feature of PIL or not is still controversial. Here, we present a case of a young women with chronic blood loss anemia (iron deficiency and positive fecal occult blood test) caused by Waldmann’s disease.

CASE REPORT

A 32-year-old female with 5 year history of iron deficiency anemia was referred to our Gastroenterology Unit for further evaluation. History was irrelevant apart from easily fatigability and repeated blood transfusions as well as iron therapy. Examination revealed marked pallor and edema of both lower limbs.

Laboratory findings of a 32 years old female with Waldmann’s disease are shown in Table 1.

Test	Result	Normal reference
Complete blood count		
Hemoglobin	5.2 g/dL	12-18 g/dL
HCT	18.30%	37%-51%
MCV	70.2 µg	80-97 µg
MCHC	28.4 g/dL	31-36 g/dL
Platelets	284	140-440 cell/cm³
WBCs	3.8	4.1-10.9 cell/cm³
Lymphocytes	500	600-1400
Blood film		
Hypercellular bone marrow with no blast cells		
Blood chemistry		
s. Albumin	2.1 g/dL	3.5-5.5 g/dL
AST	30 IU/L	Up to 40 U/L
ALT	25 IU/L	Up to 45 U/L
s. Cholesterol	107 mg/dL	Up to 200 mg/dL
s. Triglyceride	54 mg/dL	Up to 160 mg/dL
s. Iron	23 ng/dL	28-170 mg/dL
s. Ferritin	12 ng/mL	40-430 ng/mL
TIBC	750 ng/dL	261-478 ng/dL
s. TSH	1.2 mIU/L	0.3-3.04 mIU/L

Blood film

Hypercellular bone marrow with no blast cells

Blood chemistry

Table 1 Laboratory results for the patient

Management started with low fat diet with medium chain triglyceride, octreotide 200 µg/twice a day, tranexamic acid and blood transfusion till an acceptable level of hemoglobin was achieved (about 9 g/dL). She was discharged on diet regimen and regular follow up.

Nine months later during routine follow up, clinical examination showed marked pallor (Hb 6 g/dL) and abdominal ultrasonography revealed moderate ascites and mild right sided pleural effusion. Ascitic fluid was milky and turbid. Chemical analysis of ascitic fluid sample revealed glucose of 108 mg/dL, total protein of 1170 mg/dL, lactate dehydrogenase of 195 U/L, triglycerides of 1232 mg/dL (diagnostic of chylous ascites), WBCs of 250 cell/cm³ mainly lymphocytes.
and RBCs of 0.01×10^6. Cytological examination of ascitic fluid revealed no atypical or malignant cells. ZN stain and adenosine deaminase were negative. Triphasic CT scan was performed by 8 multi-slice G.E. CT scanner. It revealed right pleural effusion, mild ascites; both had uncomplicated fluid density: 0-20HU (Figure 2) and multiple splenic hemangiomas (Figure 3). Regarding small intestine, CT revealed dilated small intestinal loops with diffuse, nodular wall thickening (reaching up to 9 mm), mesenteric hypodense bands representing dilated lymphatic channels and mesenteric edema (Figure 4). Neither lymphadenopathy nor hepatomegaly was detected.

Surgical opinion was sought and malignant transformation was suspected. So, exploratory laparotomy was done through midline incision. Findings include minimal ascites, multiple cysts related to the small intestinal wall and its mesentry and a discolored segment of the proximal jejunum previously marked with India Ink by enteroscopy (Figure 5) but no masses were found. Resection anastomosis of the discolored segment was done. Histopathological examination revealed large gaping vascular spaces lined by flat endothelial cells and filled by lymph fluid, picture consistent with primary intestinal lymphangectasia (Figure 6).
anemia[^14], necrolytic migratory erythema[^15], recurrent hemolytic uremic syndrome[^16], and osteomalacia[^17].

Recurrent gastrointestinal bleeding was even more rare being reported in only 2 cases[^18,19].

Work up of diagnosis consist of laboratory, imaging studies and GIT endoscopy with confirmatory histopathological examination[^20].

The most common laboratory finding is hypoproteinemia. Hypo-albuminemia is most prominent and lymphopenia. Cholesterol levels are not usually elevated. PLE can be confirmed by presence of excess fecal α1-antitrypsin[^21,22].

Abdominal CT scan may show dilated thickened small intestinal loops, ascites, halo sign and edematous mesentery. It also helps rule out secondary causes[^23,24].

Diagnosis can only be confirmed by finding dilated lacteals both on endoscopic and histopathologic examination[^25,26]. Video capsule endoscopy imaging provides the same information and allow exploration of the whole small bowel but does not allow biopsies[^27].

PIL has to be differentiated from secondary causes of intestinal lymphangiectasia such as Crohn’s disease, intestinal tuberculosis, and Whipple’s disease as well as from causes of PLE without lymphangiectasia such as Menetrier’s disease and systemic lupus erythematosus (SLE)[^20].

Medical management relies on diet modification with low fat replaced by medium-chain triglycerides.
thus preventing fat overloading of intestinal lacteal.\[28,29\]
Response to other medications, such as octreotide\[30-31\] and steroids\[37\] is variable.
Small intestinal resection is indicated in localized forms of the disease\[38,39\].
Natural history of PIL is greatly variable; depending on involvement of intestine either generalized or localized with blockage of mesenteric lymphatic drainage. Prognosis may be favorable unless it is complicated by Mesenteric malformations of lymphatic Retropertitoneal fibrosis

Table 2 Causes of protein losing enteropathy\[41\]
Erosive gastrointestinal disease
Inflammatory bowel disease
Gut malignancy
Non steroid anti-inflammatory drug enteropathy
Erosive gastropathy
Acute graft vs host disease
Pseudomembranous enterocolitis
Ulcerative jejunoenterocolitis
Intestinal lymphoma
Sarcoïdosis
Non erosive gastrointestinal disease
Celiac disease
Hypertrophic gastropathies
Eosinophilic gastroenteritis
Connective tissue disorders
Small intestinal bacterial overgrowth
Amyloidosis
Microscopic colitis
Tropical sprue
Whipple's disease
Parasitic diseases
Viral gastroenteritis
Increased intestinal pressure
Intestinal lymphangiectasia
Congestive heart failure
Congstrictive pericarditis
Congential heart diseases
Fontan procedure for single ventricle
Portal hypertensive gastroenteropathy
Hepatic venous outflow obstruction
Enteric lymphatic fistula
Mesenteric venous thrombosis
Sclerosing mesenteritis
Mesenteric tuberculosis or sarcoïdosis
Neoplasia involving mesenteric lymph nodes or lymphatics
Chronic pancreatitis with pseudocysts
Chronic malformations of lymphatic

REFERENCES

1. Greenwald D. Protein-Losing Gastroenteropathy. In: Feldman M, Friedman LS, Brandt LJ, Sleisenger MH, editors. Sleisenger & Fordtran’s Gastrointestinal and Liver Disease. 8th ed. Saunders: Philadelphia, 2006: 557-563
2. Waldmann TA, Steinfeld JL, Dutcher TF, Davidson JD, Gordon RS. The role of the gastrointestinal system in “idiopathic hypo-proteinemia”. Gastroenterology 1961; 41: 197-207 [PMID: 13782654]
3. Boursier V, Vignes S. Lymphangiectasies intestinales primitives (maladie de Waldmann) révélées par un lymphoédeème des membres. J Mal Huc 2004; 29: 103-106 [DOI: 10.1016/S0398-0499(04)96722-4]
4. Tift WL, Lloyd JK. Intestinal lymphangiectasia. Long-term results with MCT diet. Arch Dis Child 1975; 50: 269-276 [PMID: 50050 DOI: 10.1136/adc.50.4.269]
5. Le Bougnont P, Delbrel X, Grenouillet M, Leon S, Djossou F, Beylot J, Lebras M, Longy-Boursier M. Familial Waldmann’s disease. Ann Med Interne (Paris) 2000; 151: 511-512 [PMID: 1104932]
6. Vardy PA, Lembenthal E, Shwachman H. Intestinal lymphangiectasia: a reappraisal. Pediatrics 1975; 55: 842-851 [PMID: 1134884]
7. Goktan C, Pekindil G, Orguc S, Coskun T, Serter S. Bilateral breast edema in intestinal lymphangiectasia. Breast J 2005; 11: 360 [PMID: 16174162 DOI: 10.1111/j.1755-2124.2005.21578.x]
8. Lee WS, Boye CC. Chronic diarrhoea in infants and young children: causes, clinical features and outcome. J Paediatr Child Health 1999; 35: 260-263 [PMID: 10404444 DOI: 10.1046/j.1440-1754.1999.00356.x]
9. Rao R, Shashidhar H. Intestinal lymphangiectasia presenting as abdominal mass. Gastrointest Endosc 2007; 65: 522-523, discussion 523 [PMID: 17321261 DOI: 10.1016/j.gie.2006.10.026]
10. Lobo B, Casellas F, de Torres I, Chicharro L, Malagelada JR. Usefulness of jejunal biopsy in the study of intestinal malabsorption in the elderly. Rev Esp Enferm Dig 2004; 96: 259-264 [PMID: 15171239 DOI: 10.4321/S1130-010820040000400005]
11. Lenzhofer R, Lindner M, Moser A, Berger J, Schuchnigg C, Thurner J. Acute jejunal ischaemia in intestinal lymphangiectasia. Clin Investig 1993; 71: 568-571 [PMID: 8374252 DOI: 10.1007/BF00208483]
12. O’Driscoll JB, Chalmers RJ, Warnes TW. Chylous reflux into

COMMENTS

Case characteristics
A 32-year-old female presented with 5-year history of iron deficiency anemia, marked pallor and edema of both lower limbs.

Clinical diagnosis
Examination revealed marked pallor and edema of both lower limbs.

Differential diagnosis
Primary intestinal lymphangiectasia has to be differentiated from secondary causes of intestinal lymphangiectasia such as Crohn’s disease, intestinal tuberculosis, and Whipple’s disease as well as from causes of protein losing enteropathy without lymphangiectasia such as Mentrier’s disease and systemic lupus erythematosus.

Laboratory diagnosis
Patient hemoglobin level and serum albumin were 5.2 g/dL, 2.1 g/dL respectively.
abdominal skin simulating lymphangioma circumscriptum in a patient with primary intestinal lymphangiectasia. Clin Exp Dermatol 1991; 16: 124-126 [PMID: 2032374 DOI: 10.1111/j.1365-2230.1991. th00322.x]

Karg E, Bereczki C, Kovacs I, Korom I, Várkonyi A, Megyeri P, Turi S. Primary lymphoedema associated with xanthomatosis, vaginal lymphorrhoea and intestinal lymphangiectasia. Br J Dermatol 2002; 146: 134-137 [PMID: 11841381 DOI: 10.1046/j.1365-2133.2002.04477.x]

Iida F, Wada R, Sato A, Yamada T. Clinicopathologic consideration of protein-losing enteropathy due to lymphangiectasia of the intestine. Surg Gynecol Obstet 1980; 151: 391-395 [PMID: 7404312]

Barcault S, Soubrane JC, Courville P, Young P, Joly P. [Necrotic migratory erythema in Waldmann’s disease]. Ann Dermatol Venereol 2006; 133: 693-696 [PMID: 17053741 DOI: 10.1016/S0151-9638(06)70994-2]

Kalman S, Bakkaloğlu S, Daligic B, Ozkaya O, Söylemezoğlu O, Buyan N. Recurrent hemolytic uremic syndrome associated with intestinal lymphangiectasia. J Pediatr 2007; 20: 246-249 [PMID: 17514630]

Sadli H, Ben Mbarak R, Elleuch M, Azzouz D, Meddeb N, Chéour E, Azzouz MM, Sellami S. Osteomalacia in a patient with primary intestinal lymphangiectasia (Waldmann’s disease). Joint Bone Spine 2008; 75: 73-75 [PMID: 17900962 DOI: 10.1016/j.jbspin.2007.01.045]

Herfarth H, Hofstädter F, Feuerbach S, Jürgen Schlitt H, Hofstädter F, Trigo S, San Martin F, Schröder W, Rust C, Wiebecke B, Homann N, Ludwig D. Type I intestinal lymphangiectasia treated successfully with slow-release octreotide. Gastroenterology 2001; 120: 129-132 [PMID: 11227670 DOI: 10.1056/ajg.2001.00142]

Klingenberg RD, Homann N, Ludwig D. Type I intestinal lymphangiectasia treated successfully with slow-release octreotide. Dig Dis Sci 2003; 48: 1506-1509 [PMID: 12924644]

Rechlin S. Somatostatin. N Engl J Med 1983; 309: 1495-1501 [PMID: 6139753]

Nakabayashi H, Sageshita T, Sekiguchi I, Nishio K, Iwata N, Yamasaki H. Somatostatin. Gastroenterology 1980; 79: 73-75 [PMID: 7632724 DOI: 10.1016/0016-5085(80)90636-1]

Kazemi F, Lemann M, Modigliani R. Interet des explorations digestives invasives pour le diagnostic des lymphangiectasies intestinales primitives. Gastroenterologie clinique et biologique 2001; 25: 0399-8320

Oh TG, Chung JW, Kim HM, Han SJ, Lee JS, Park JY, Song SY. Primary intestinal lymphangiectasia diagnosed by capsule endoscopy and double balloon enteroscopy. World J Gastrointest Endosc 2011; 3: 235-240 [PMID: 22108411 DOI: 10.4253/wjge.v3.i11.235]

Alfano V, Trittì G, Alfonso L, Cella A, Pasanisi F, Contaldo F. Stable reversal of pathologic signs of primitive intestinal lymphangiectasis with a hypolipidic, MCT-enriched diet. Nutrition 2000; 16: 303-304 [PMID: 10758368 DOI: 10.1016/s0899-9007(00)00223-9]

Aoyagi K, Iida M, Matsumoto T, Sakisaka S. Enteral nutrition as a primary therapy for intestinal lymphangiectasia: value of elemental diet and polymeric diet compared with total parenteral nutrition. Dig Dis Sci 2005; 50: 1467-1470 [PMID: 16110837 DOI: 10.1007/s00269-005-2863-7]

Mine K, Matsuhashi S, Nakay M, Nakagawa T. Intestinal lymphangiectasia markedly improved with antiplasmin therapy. Gastroenterology 1989; 96: 1596-1599 [PMID: 2714582]

MacLean JE, Cohen E, Weinstein M. Primary intestinal and thoracic lymphangiectasia: a response to antiplasmin therapy. Pediatrics 2002; 109: 1177-1180 [PMID: 12042562 DOI: 10.1542/peds.109.6.1177]

Ballinger AB, Farthing MJ. Osteoedema in the treatment of intestinal lymphangiectasia. Eur J Gastroenterol Hepatol 1998; 10: 699-702 [PMID: 9744700]

Kuroiwa G, Takayama T, Sato Y, Takahashi Y, Fujita T, Nobuoka A, Kikutsu T, Kato J, Sakamaki S, Nishi T. Primary intestinal lymphangiectasia successfully treated with octreotide. J Gastroenterol 2001; 36: 129-132 [PMID: 11227670 DOI: 10.1056/ajg.2001.00142]

Klingenberg RD, Homann N, Ludwig D. Type I intestinal lymphangiectasia treated successfully with slow-release octreotide. Dig Dis Sci 2003; 48: 1506-1509 [PMID: 12924644]

Wijeyekoon D, Cook I, Varley M, Salmon I. Somatostatin. J Clin Pathol 2006; 59: 1264-1269 [PMID: 17289300 DOI: 10.1136/jcp.2005.040760]

Kawasaki T, Shimosato Y. Somatostatin. J Clin Pathol 2006; 59: 1264-1269 [PMID: 17289300 DOI: 10.1136/jcp.2005.040760]
