Multi-objective semi-supervised clustering to identify health service patterns for injured patients
Hadi Akbarzadeh Khorshidi, Uwe Aickelin, Gholamreza Haffari, Behrooz Hassani-Mahmooei

Abstract

Purpose: This study develops a pattern recognition method that identifies patterns based on their similarity and their association with the outcome of interest. The practical purpose of developing this pattern recognition method is to group patients, who are injured in transport accidents, in the early stages post-injury. This grouping is based on distinctive patterns in health service use within the first week post-injury. The groups also provide predictive information towards the total cost of medication process. As a result, the group of patients who have undesirable outcomes are identified as early as possible based on health service use patterns.

Methods: We propose a multi-objective optimization model to group patients. An objective function is the cost function of k-medians clustering to recognize the similar patterns. Another objective function is the cross-validated root-mean-square error to examine the association with the total cost. The best grouping is obtained by minimizing both objective functions. As a result, the multi-objective optimization model is a semi-supervised clustering which learns health service use patterns in both unsupervised and supervised ways. We also introduce an evolutionary computation approach includes stochastic gradient descent and Pareto optimal solutions to find the optimal solution. In addition, we use the decision tree method to reproduce the optimal groups using an interpretable classification model.

Results: The results show that the proposed multi-objective semi-supervised clustering identifies distinct groups of health service use and contributes to predict the total cost. The performance of the multi-objective model has been examined using two metrics such as the average silhouette width and the cross-validation error. The examination proves that the multi-objective model outperforms the single-objective ones. In addition, the interpretable classification model shows that imaging and therapeutic services are critical services in the first-week post-injury to group injured patients.

Conclusion: The proposed multi-objective semi-supervised clustering finds the optimal clusters that not only are well-separated from each other but can provide informative insights regarding the outcome of interest. It also overcomes two drawbacks of clustering methods such as being sensitive to the initial cluster centers and need for specifying the number of clusters.

Keywords: Multi-objective optimization, Semi-supervised clustering, Health service patterns, Injured patients, Evolutionary computation

Introduction

Transport accidents play an important role in public health as they are a leading cause for injury and mortality globally [1]. Therefore, an early distinct grouping of patients who are injured in transport accidents is informative for providing a customized level of care for patients [2]. This study aims to group injured patients based on minimal historical information in such a way that groups are meaningfully related to the outcome of interest. The historical information, we investigate in this study, is the health service used by patients in the first-week post-injury. The health service use is a rich source of information that can provide insights for the recovery process [3, 4], however, to the best of our knowledge, grouping patients based on health service use patterns and their association with injury outcomes has not been studied. In this study, we considered the total cost of recovery as the outcome of interest. This study gives insights to health service providers and health insurance policy makers for making appropriate decision by identifying the patients, with a high-risk of costly medication, as early as possible.

In this study, we use the payment data for patients who are injured within the state of Victoria, Australia. This data is part of a bigger cohort of data which recorded by the Transport Accident Commission and stored in an administrative database called the Compensation Research Database [5]. The sample data includes the patients with a non-fatal transport injury who their injury had occurred between 1 January 2010 and 31 December 2012 and their age at time of injury was over 15 and under 80 years old. After cleaning the data, the sample includes more than 1.6 million payment records which belong to 20,692 unique patients. We then transformed the dataset in a way to be
used to achieve the study’s aims. As a result, in the transformed
data, each row represents a patient, each column is a health
service and the values are the amount paid on each health service
for a patient within the first week post-injury. There are 19
columns (health services) in the dataset. These services are
categorized in eight standard Medicare categories [6] as
ambulance services, pharmacy, hospital services, medical
services, paramedical services, long-term care, vocational and
educational and other services include prosthetics and legislated
post-hospital support.

We developed a semi-supervised clustering method using
multi-objective optimization to achieve the aims of this study.
Both unsupervised and supervised information are used in semi-
supervised clustering [7]. Semi-supervised clustering has
attracted much interest recently [8-10]. Our proposed semi-
supervised clustering optimally divides the patients in groups
based on both health service use and association with the total
cost simultaneously. The proposed multi-objective optimization
model is to find the optimal clusters (groups) that minimize both
the clustering cost function and the prediction error. To find the
optimal groups, i.e. solve the optimization model, we introduce
an evolutionary computation approach which uses stochastic
gradient descent to update solution across generations. Also, as
we solve a multi-objective optimization model, the Pareto
optimal (non-dominated) solutions are considered.

The hypothesis for developing a multi-objective optimization
model is that it works better than single-objective ones to achieve the aims of the study as it intends to contribute to
both objective functions. In addition, reformulating a multi-
objective optimization model into a weighted average objective
function or a goal programming model leads to a failure for
finding non-dominated optimal solutions [11].

The main research question in this study is to recognize
patterns of utilizing health services for injured patients based on
the similarity of the patterns and their association with the
outcome of interest. Identifying these patterns as early as
possible provides insights about the medication procedure of
the patients. Developing a semi-supervised clustering is motivated
by taking advantages of multi-objective optimization models.
The proposed multi-objective semi-supervised clustering also
contributes to overcome two drawback of unsupervised
clustering methods as being sensitive to the initial solutions and
dependency on specifying the number of clusters in advance.

The proposed semi-supervised clustering is implemented on
the transformed dataset of transport accident injured patients.
The optimal groups of patients are found based on the health
service use in the first-week post-injury through the
implementation. These groups are well-separated and
informative about the total cost of medication. Once the optimal
groups are found, we compare the performance of the multi-
objective optimization model with single-objective ones. At the
end, we use the decision tree method to develop a set of
operational rules to identify the optimal groups. It should be
noted that this paper is an extended version of [12].

Multi-objective semi-supervised clustering

Objective functions

An objective function which we use in the proposed
optimization model is the cost function of the k-medians
clustering. The k-medians clustering is a robust clustering
method and is less sensitive to outliers in comparison with k-
means clustering [13]. In k-medians clustering, the objective is
to minimize the function formulated in Eq. 1.

$$ f(X) = \sum_{i=1}^{n} E[I_r(Z;X)\|Z - X^r\|_1] $$

where $Z \in \mathbb{R}^d, X = (X^1, ..., X^k)'$ and X^r is the center of ith cluster, $\|\|_1$ is the norm 1 and calculates the absolute distance,
and I_r is the indicator as defined by Eq. 2.

$$ I_r(z;X) = \prod_{j=1}^{k} \frac{1}{\|z - x^j\|_1} I[z - x^j] $$

which means that X^r is the nearest center to z. So, data points
are assigned to the cluster with the nearest centre.

Another objective function aims to measure how much the
clusters are associated with the outcome of interest. It estimates
the cross-validated error of prediction for the multivariate linear
regression model where clusters are predictors. Therefore, in the
regression model, I is the matrix of predictors which is
constructed based on X (the set of cluster centres) so that I_{ik} is
one if th record is allocated to kth cluster; otherwise it is zero.
So, the second objective function minimizes the m-fold Cross-
validation estimation of root-mean-square error as formulated in
Eq. 3.

$$ g(X) = \frac{1}{M} \sum_{m=1}^{M} \sqrt{\frac{\sum_{i \in F_m} (y_i - \hat{y})^2}{n_m}} $$

where M is the total number of folds and F_m is the mth fold
in the dataset, n_m is the number of records in F_m, y_i denotes the
actual values of outcome and \hat{y} represents the predicted values
which are dependent on the set of cluster centres. The \hat{y}, the set
of predicted values for the outcome of interest, can be calculated by
Eq. 4.

$$ \hat{y} = [y_1]_{n \times 1} = [1, I]_{n \times (k+1)} \beta_{(k+1) \times 1} $$

where β is estimated based on cluster assignment ($I = [I_k]$)
and the set of actual values of the outcome ($\hat{y} = [y_1]$) when i is
not a member of F_m (as formulated in Eq. 5).

$$ \beta = ([1, I][1, I]^{-1})'([1, I]') $$

The proposed semi-supervised clustering problem can be
completed as the bi-objective optimization model is formulated in
Eq. 6 at the end.

$$ \begin{align*}
\text{Min } f(X) \\
\text{Min } g(X)
\end{align*} $$

To calculate the objective functions, we need to create
distance and allocation matrices. The function to create these
matrices is outlined in Algorithm 1.
two objective functions, we use Pareto optimal solutions to find the best number of clusters. After constructing the multi-objective semi-supervised clustering model, an algorithm is needed to solve the optimization problem in order to find the best sets. The Pareto optimal solutions are the solutions that are not dominated by any other solution [21, 22]. In the proposed multi-objective semi-supervised clustering, the Pareto optimal solutions are the sets of cluster centres where there is no other set with lower values in both objective functions as both objective functions are to be minimized. We determine the Pareto optimal sets in each iteration and keep them in the next iteration, while we update the other sets using Eq. 7.

The stopping criterion for the iterative algorithm is set to reach a prespecified maximum number of iterations (τamax). The best set of cluster centres is selected among the Pareto optimal solutions in the last iteration. We firstly normalize the objective function values of the Pareto optimal sets using Eq. 9 [23].

\[
\text{NormPOS}_p = \frac{\text{POS}_{po} - \text{POS}_{Po}}{\text{sd}(\text{POS}_{Po})} \quad p = 1, 2, ..., n_p; \alpha = 1, 2
\]

where \(\text{POS}_{po}\) refers to the \(0\)th objective function value for the \(p\)th Pareto optimal solution, \(n_p\) is the number of Pareto optimal solutions in the last iteration, \(\text{POS}_{Po}\) and \(\text{sd}(\text{POS}_{Po})\) are the mean and standard deviation values of the \(0\)th objective function for Pareto optimal solutions.

Then, we determine the positive ideal solution which includes the minimum value of objective functions across all Pareto optimal solutions (formulated as Eq. 10). After that, we measure the similarity between each Pareto optimal solution and the positive ideal solution using the cosine similarity measure as shown in Eq. 11 [24, 25]. Finally, we select the Pareto optimal solution with the highest similarity value as the best set of cluster centres which denotes the optimal clusters.

\[
\text{Pl} = \left(\min_\sigma \text{NormPOS}_{po} | p = 1, 2, ..., n_p; \alpha = 1, 2 \right) = (\text{Pl}_1, \text{Pl}_2) \quad (10)
\]

\[
\text{Similarity} (\text{NormPOS}_p, \text{Pl}) = \cos(\theta) = \frac{\text{NormPOS}_p, \text{Pl}}{\|\text{NormPOS}_p\|_2 \|\text{Pl}\|_2} \quad (11)
\]

where \(\text{Pl}\) is the positive ideal vector, \(\| \|_2\) is the norm 2 to calculate the magnitude of each vector and \(\text{NormPOS}_p, \text{Pl}\) is the inner product of two vectors.

The proposed evolutionary algorithm is outlined in Algorithm 2.

Algorithm 1: Allocation-Distance function

Input: A dataset \(Z\) and a set of cluster centres \(X\)

Output: A distance matrix \(D\) and an allocation matrix \(I\)

1. \(n \leftarrow \text{number of rows of } Z; k \leftarrow \text{number of rows of } X\)
2. \(D \leftarrow \text{An empty matrix with } n \text{ rows and } k \text{ columns}\)
3. \(I \leftarrow \text{An empty matrix with } n \text{ rows and } k \text{ columns}\)
4. **for** \(i\) from 1 to \(n\) **do**
5. **for** \(j\) from 1 to \(k\) **do**
6. \(D_{ij} = \text{sum}(\|Z_i - X_j\|)\)
7. **end for**
8. **end for**
9. **if** \(D_{ij} = \min_i D_{ij}\) **then** \(I_{ij} = 1\) **else** \(I_{ij} = 0\)
10. **end if**
11. **end for**

Algorithm 2: The proposed semi-supervised clustering

Input: A dataset \(Z\); A vector for the outcome of interest \(Y\)

- The maximum number of clusters \(K\)
- Number of sets in the pool \(n_{pool}\)
- Maximum number of iterations (\(Iter_{max}\)) /* Stopping criterion */
- Learning rate parameters \(\alpha, c_y\), and \(c_a\)

Output: The optimal set of cluster centres \(X\)

1. **for** \(r\) from 1 to \(n_{pool}\) **do**
2. **for** \(k\) from 2 to \(K\) **do**
3. \(X_r \leftarrow \text{Randomly select } k \text{ samples from } Z \text{ as a set of cluster centres}\)
4. end for
5. end for
6. ObjFunc ← An empty matrix with $Iter_{max} \times n_{pool}$ rows and 2 columns
7. $\tau_a ← 1$
8. while $\tau_a \leq \tau_{a_{max}}$ do
9. for r from 1 to n_{pool} do
10. $Dr ←$ Distance matrix via applying algorithm 1 on Z and X_r
11. $Ir ←$ Allocation matrix via applying algorithm 1 on Z and X_r
12. $ObjFunc[1,] ← f(X_r)$ /* Using Eq. 1 */
13. $ObjFunc[2,] ← g(X_r)$ /* Using Eq. 3 */
14. end for
15. $n ← 0; P ←$ An empty vector to record Pareto solutions
16. for r from 1 to n_{pool} do
17. $m ← 0$
18. for t from 1 to n_{pool} not including r do
19. if both $ObjFunc$ values of set r are bigger than set t
20. then $m = m + 1$
21. if $m > 0$ then
22. for j from 1 to the number of rows of X_r do
23. $Zq ←$ Randomly select a sample from data points
24. allocate to cluster j
25. Update the cluster centre j by Zq /* Using Eq. 6 */
26. end for
27. else
28. $P[n] = r$
29. end if
30. end for
31. $\tau_a = \tau_a + 1$
32. $NormP ←$ Normalize the objective values of Pareto solutions /* Using Eq. 8 */
33. $PL ←$ Find the positive ideal solution /* Using Eq. 10 */
34. for l from $P[1]$ to $P[n]$ do
35. $S[l] ←$ Calculate similarity between PL and $NormP[l,]/* Using Eq. 11 */
36. end for
37. The set with the maximum value in S is the optimal set

Implementation

In this section, we present the results of implementing the proposed semi-supervised clustering on the transformed dataset of the first-week post-injury health service use of injured patients. The outcome of interest is the total cost to recovery. The aim of this implementation is to find the separate groups of patients who have similar patterns of health service use and also have distinct level of the total costs at the end of their medication process. As a result, the group of patients who may lead to costly medication process (unwanted outcomes) can be identified at the early stages of their medication for receiving extra care.

For this implementation, we specify the number of cluster centre sets in the initial pool as 100 ($n_{pool}=100$). The number of clusters varies from 2 to 11 ($K=11$). The iteration process continues for 500 times ($\tau_{a_{max}}=500$). For the learning rate, we set parameters as $a = 3/4, c_a = 1$ (as recommended in [14]), and $c_v = 2000$ (based on experiments).

Fig. 1 (a) shows the initial pool of cluster centre sets using their clustering’s cost function and regression’s cross-validation error values. The red points are the Pareto optimal solutions. Fig. 1 (b) visualizes the final pool of cluster centre sets once the algorithm stops after 500 iterations. As can be seen, the number of Pareto optimal solutions increases, and sets move towards the Pareto frontier during the iteration process.

![Fig. 1 The pool of sets in the first iteration (a) and the 500th iteration (b)](image-url)
There are 36 Pareto optimal solutions in the final pool. Table 1 gives a summary on the frequency of number of clusters among Pareto optimal solution sets.

Table 1 Frequency of number of clusters

Number of clusters	2	3	4	5	6	7	8	9	10
Frequency	10	10	6	4	0	1	2	1	1

We find the optimal set among Pareto optimal solutions based on their similarity with the positive ideal solution as described in Algorithm 2. The final optimal set contains three cluster centres i.e. it divides the patients into three groups. Fig. 2 shows different values of objective functions for the optimal set during the iterative algorithm. The optimal set becomes a Pareto optimal solution after 415 iterations.

Fig. 3 visualizes the clusters resulted from the optimal set of cluster centres using the first principal component (PC1) and the second principal component (PC2). It shows how well these clusters are separated from each other. Table 2 shows how many patients has been allocated into each cluster.

Table 2 Number of patients in each cluster

Cluster	Cluster 1	Cluster 2	Cluster 3
Number of patients	12,206	6,396	2,090

To compare the performance of the proposed multi-objective optimization model against the single-objective ones, we find the best sets of cluster centres when we just have one of the objective functions. For this comparison, we use two metrics. The first metric is the average silhouette width [18, 23, 26], which is a validity index, to measure the clustering performance. The average silhouette width value lies between -1 and 1 and the higher value demonstrates a better partitioning result. The second one measures the prediction accuracy using the cross-validation error of the regression model which the logarithm of total cost is the response variables and clusters are predictors. Table 3 presents the comparison results using the metric values of the optimal solutions, the average and standard deviation of the final pool. The comparison results show that the multi-objective optimization model provides clusters with better average silhouette width values. The results show that the single-objective model with the objective function of regression error find the optimal set with the lowest cross-validation error. However, the average silhouette width value for this set is very low. In addition, the average value of cross-validation error in the final pool for the multi-objective optimization model is lower than the single-objective ones. As a result, the multi-objective semi-supervised clustering model outperforms two other models by considering both metrics.

Table 3 Comparison results for optimization models

Model	Metric	Multi-objective	k-Medians	Regression
	average	cross-	average	cross-
	silhouette	validation	silhouette	validation
Optimal solution	0.505	1.239	0.109	1.527
Average	0.109	1.247	0.019	1.359
standard	0.246	0.095	0.267	0.091
deviation	0.011	1.266	0.236	0.106

The implementation results show that the optimal clusters can provide informative insights regarding the total cost of
medication. However, we need an interpretable algorithm to allocate future patients into the right groups based on the first-week post-injury health service use. To reach this goal, we use decision tree method to develop the algorithm. The developed algorithm can be interpreted into operational procedures that can be used easily by operators to find the proper groups for patients.

Fig. 4 shows how the decision tree allocates the patients into resultant clusters by defining a set of rules. The classification and regression tree method is used to create the decision tree. This classification model provides a transparent algorithm to group injured patients at the early stages. As can be seen, imaging and therapeutic services play an important role to define the classification rules.

We also investigate the performance of the interpretable algorithm derived by decision tree in predicting the resulted clusters. We set half of the dataset as training and the rest as testing datasets. We compare the testing dataset’s misclassification rate of the algorithm with classification models created by linear discriminant analysis (LDA) and naïve Bayes classifiers. Table 4 shows the comparison results where we can see the algorithm has the lowest misclassification rate. So, decision tree not only provides an interpretable algorithm, but also classify patients into their true clusters accurately.

Table 4 Classification comparison results

Model	Decision tree	LDA	Naïve Bayes
Misclassification rate (%)	2.1	13.8	31.4

Conclusions

In this paper, we propose a semi-supervised clustering approach to group transport accident injured patients based on using similar patterns of health services in the first week post-injury and having similar total cost. This grouping is helpful for health service providers and policy makers to identify groups which need special care in the early stages of medication process using the minimum historical information.

For semi-supervised clustering, we develop a multi-objective optimization model with two objective functions for clustering and regression. We use stochastic gradient descent and Pareto optimal solutions within an evolutionary algorithm to find the optimal solutions. The proposed semi-supervised clustering not only finds the best clusters by minimizing both clustering cost function and regression cross-validation error but also contributes to overcome two drawback of clustering methods such as sensitivity to the initial cluster centres and prespecifying the number of clusters.

The implementation of the proposed semi-supervised method shows that the resultant clusters identify distinct groups of health service uses and contribute to predict the total cost. Also, we examine the performance of the multi-objective model using average silhouette width and cross-validation metrics. The examination proves that the research hypothesis is true, and the multi-objective approach outperforms the single-objective approaches. Finally, we use decision tree method as an interpretable algorithm to classify patients to clusters. The classification algorithm denotes that using imaging and therapeutic services in the first-week post-injury are critical services in health service use patterns.

For further research, we suggest implementing the proposed semi-supervised learning in different medical informatics problems. In addition, the various injury outcomes such return to work (RTW) [27] can be considered.

Acknowledgement

This project was funded by the Transport Accident Commission (Transport Accident Commission) through the Institute for Safety, Compensation and Recovery Research (ISCRR).

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Statement not required. This study was performed using a de-identified administrative dataset, with ethics approval granted by Monash University Human Research Ethics Committee (CF09/3150—2009001727).

REFERENCES

[1] Azmin M, Jafari A, Rezaei N, Bhatta K, Bose D, Shahraz S, Dehghani M, Niloofar P, Fatholahi S, Hedayati J, Jamshidi H, and Farzadfar F. An Approach Towards Reducing Road Traffic Injuries and Improving Public Health Through Big Data Telematics: A Randomised Controlled Trial Protocol. *Archives of Iranian medicine*. 2018;21 (11):495-501.

[2] Scheetz LJ, Zhang J, and Kolassa J. Classification tree modeling to identify severe and moderate vehicular injuries in young and middle-aged adults. *Artificial Intelligence in Medicine*. 2009;45 (1):1-10.

[3] Mitchell RJ, Cameron CM, and McClure R. Patterns of health care use of injured adults: A population-based matched cohort study. *Injury*. 2017;48 (7):1393-1399.

[4] Pinaire J, Azé J, Bringay S, and Landais P. Patient healthcare trajectory. An essential monitoring tool: a systematic review. *Health Information Science and Systems*. 2017;5 (1):1-18.

[5] Prang KH, Hassani-Mahmooei B, and Collie A. Compensation Research Database: population-based injury data for surveillance, linkage and mining. *BMC Research Notes*. 2016;9 (1):1-11.

[6] Department of Health, *MBS online*. 2017: http://www9.health.gov.au/mbs/search.xfm?adv=1.

[7] Saha S, Ekbai A, and Alok AK. Semi-supervised clustering using multiobjective optimization. in *Proceedings of the 2013 12th International Conference on Hybrid Intelligent Systems, HIS 2012*. 2012.
Handl J and Knowles J. On semi-supervised clustering via multiobjective optimization. in GECCO 2006 - Genetic and Evolutionary Computation Conference. 2006.

Santos L, Veras R, Aires K, Britto L, and Machado V. Medical Image Segmentation Using Seeded Fuzzy C-means: A Semi-supervised Clustering Algorithm. in Proceedings of the International Joint Conference on Neural Networks. 2018.

Yang J, Sun L, and Wu Q. Constraint projections for semi-supervised spectral clustering ensemble. Concurrency Computation. 2019.

Charkhgard H and Eshragh A. A new approach to select the best subset of predictors in linear regression modelling: bi-objective mixed integer linear programming. ANZIAM Journal. 2019;61 (1):64-75.

Khorshidi HA, Haffari G, Aickelin U, and Hassani-Mahmooei B, Early identification of undesirable outcomes for transport accident injured patients using semi-supervised clustering, in Health Informatics Conference 2019: Melbourne, Australia.

García-Escudero LA, Gordaliza A, Matrán C, and Mayo-Iscar A. A review of robust clustering methods. Advances in Data Analysis and Classification. 2010;4 (2):89-109.

Cardot H, Cénac P, and Monnez JM. A fast and recursive algorithm for clustering large datasets with k-medians. Computational Statistics and Data Analysis. 2012;56 (6):1434-1449.

Rahim MS and Ahmed T. An initial centroid selection method based on radial and angular coordinates for K-means algorithm. in 20th International Conference of Computer and Information Technology, ICCIT 2017. 2018.

Khan F. An initial seed selection algorithm for k-means clustering of georeferenced data to improve replicability of cluster assignments for mapping application. Applied Soft Computing. 2012;12 (11):3698-3700.

Bezdek JC and Pal NR. Some new indexes of cluster validity. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 1998;28 (3):301-315.

Aloak AK, Saha S, and Ekbal A. Semi-supervised clustering for gene-expression data in multiobjective optimization framework. International Journal of Machine Learning and Cybernetics. 2017;8 (2):421-439.

Milligan GW and Cooper MC. A study of standardization of variables in cluster analysis. Journal of Classification. 1988;5 (2):181-204.

Forestier G, Petitjean F, Senin P, Riffaud L, Henaux PL, and Jannin P. Finding discriminative and interpretable patterns in sequences of surgical activities. Artificial Intelligence in Medicine. 2017;82 11-19.

Nikfalazar S, Khorshidi HA, and Hamadani AZ. Fuzzy risk analysis by similarity-based multi-criteria approach to classify alternatives. International Journal of Systems Assurance Engineering and Management. 2016;7 (3):250-256.

Mihaljević B, Benavides-Piccione R, Guerra L, DeFelipe J, Larrañaga P, and Bielza C. Classifying GABAergic interneurons with semi-supervised projected model-based clustering. Artificial Intelligence in Medicine. 2015;65 (1):49-59.

Zhang J, Cao P, Gross DP, and Zaiane OR. On the application of multi-class classification in physical therapy recommendation. Health Information Science and Systems. 2013;1 (1):15.