De novo cobalamin biosynthesis, transport and assimilation and cobalamin-mediated regulation of methionine biosynthesis in Mycobacterium smegmatis

Running Title: Regulation of methionine biosynthesis in M. smegmatis

Terry Kipkorir¹, Gabriel T. Mashabela¹#, Timothy J. de Wet¹,², Anastasia Koch¹, Lubbe Wiesner³, Valerie Mizrahi¹,⁴, Digby F. Warner¹,⁴*

¹SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
²Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
³Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
⁴Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.

#Current address: DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, SOUTH AFRICA

*Corresponding author. Email: digby.warner@uct.ac.za; Tel. +27 21 406 6556
ABSTRACT

Cobalamin is an essential co-factor in all domains of life, yet its biosynthesis is restricted to some bacteria and archaea. *Mycobacterium smegmatis*, an environmental saprophyte frequently used as surrogate for the obligate human pathogen, *M. tuberculosis*, carries approximately 30 genes predicted to be involved in *de novo* cobalamin biosynthesis. *M. smegmatis* also encodes multiple cobalamin-dependent enzymes, including MetH, a methionine synthase which catalyses the final reaction in methionine biosynthesis. In addition to *metH*, *M. smegmatis* possesses a cobalamin-independent methionine synthase, *metE*, suggesting that enzyme use – MetH or MetE – is regulated by cobalamin availability. Consistent with this notion, we previously described a cobalamin-sensing riboswitch controlling *metE* expression in *M. tuberculosis*. Here, we apply a targeted mass spectrometry-based approach to confirm *de novo* cobalamin biosynthesis in *M. smegmatis* during aerobic growth *in vitro*. We also demonstrate that *M. smegmatis* can transport and assimilate exogenous cyanocobalamin (CNCbl; a.k.a. vitamin B_{12}) and its precursor, dicyanocobinamide ((CN)$_2$Cbi). However, the uptake of CNCbl and (CN)$_2$Cbi in this organism is restricted and seems dependent on the conditional essentiality of the cobalamin-dependent methionine synthase. Using gene and protein expression analyses combined with single-cell growth kinetics and live-cell time-lapse microscopy, we show that transcription and translation of *metE* are strongly attenuated by endogenous cobalamin. These results support the inference that *metH* essentiality in *M. smegmatis* results from riboswitch-mediated repression of MetE expression. Moreover, differences observed in cobalamin-dependent metabolism between *M. smegmatis* and *M. tuberculosis* provide some insight into the selective pressures which might have shaped mycobacterial metabolism for pathogenicity.
26 **Keywords:** vitamin B$_{12}$, riboswitch, $cobK$, tuberculosis

27 **IMPORTANCE**

28 Alterations in cobalamin-dependent metabolism have marked the evolution of
29 *Mycobacterium tuberculosis* as human pathogen. However, the role(s) of cobalamin
30 in mycobacterial physiology remain poorly understood. Using the non-pathogenic
31 saprophyte, *M. smegmatis*, we investigated the production of cobalamin, transport
32 and assimilation of cobalamin precursors, and the role of cobalamin in regulating
33 methionine biosynthesis. We confirm constitutive *de novo* cobalamin biosynthesis in
34 *M. smegmatis*, in contrast with *M. tuberculosis*, which appears to lack *de novo*
35 cobalamin biosynthetic capacity. We also show that uptake of cyanocobalamin
36 (vitamin B$_{12}$) and its precursors is restricted in *M. smegmatis*, apparently depending
37 on the co-factor requirements of the cobalamin-dependent methionine synthase.
38 These observations establish *M. smegmatis* as informative foil to elucidate key
39 metabolic adaptations enabling mycobacterial pathogenicity.

40 **INTRODUCTION**

41 Several mycobacterial species have been identified among the subset of prokaryotes
42 which possess the genetic capacity for *de novo* cobalamin biosynthesis (1–5).
43 Included in this list of potential cobalamin producers is *Mycobacterium smegmatis,*
44 the saprophytic mycobacterium commonly used as a surrogate for *Mycobacterium*
45 *tuberculosis*, which causes tuberculosis (TB), a deadly respiratory disease claiming
46 over 1 million lives globally every year (6–8). Cobalamin has one of the most
47 complex structures of any of the biological cofactors, comprising a tetrpyrrole
48 framework with a centrally chelated cobalt ion, dimethylbenzimidazole (DMB) as the
lower axial base (α ligand), and an upper axial ligand (R-group; β ligand) (Figure 1A).

The nomenclature and catalytic activity of cobalamin depends on the β ligand. For example, in adenosylcobalamin (AdoCbl; a.k.a. coenzyme B₁₂), the β ligand is a deoxyadenosyl group utilised by isomerases such as the methylmalonyl-CoA mutase and class II ribonucleotide reductases. In methylcobalamin (MeCbl), which serves as substrate of methyltransferases such as methionine synthase, the β ligand is a methyl group (Figure 1A) (9, 10).

Cobalamin biosynthesis is a complex multi-step process requiring nearly thirty enzyme-catalysed biotransformations including eight SAM-dependent methylations, ring contraction, six amidations, decarboxylation, cobalt insertion, aminopropanol attachment and the assembly and attachment of the α ligand (11). Owing to the heavy energetic investment necessary to support the de novo pathway, this process is typically augmented in many organisms by the capacity for uptake and salvage (1). Interestingly, cobalamin-producing bacteria encode a much larger complement of genes involved in biosynthesis and salvage than the number of cobalamin-dependent metabolic pathways in those organisms. The preservation of de novo biosynthetic capacity therefore suggests the contribution of cobalamin to adaptation to specific lifestyles – an interpretation which is especially intriguing in the context of pathogenic, parasitic and symbiotic bacteria (4).

Like most mycobacteria, M. smegmatis encodes several cobalamin-dependent enzymes (Table 1) (12), some of which appear redundant given the existence of isoenzymes or alternative mechanisms for the same metabolic pathway (13). Among these are the methionine synthases, MetH (5-methyltetrahydrofolate-homocysteine methyltransferase, EC: 2.1.1.14) and MetE (5-
methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, EC: 2.1.1.13), which catalyse the non-reversible transfer of a methyl group from 5-methyltetrahydrofolate to homocysteine in the final step in the biosynthesis of methionine, an essential amino acid required for translation initiation, DNA methylation and cysteine biosynthesis (14, 15). MetH requires cobalamin for activity while MetE is a cobalamin-independent methionine synthase (Figure 1B) (9, 16, 17).

We previously demonstrated that a cobalamin-sensing riboswitch located in the 5' untranslated region (5' UTR) of the metE gene in M. tuberculosis attenuated metE transcript levels in the presence of exogenous cyanocobalamin (CNCbl; a.k.a. vitamin B_{12}) (18). We also showed that M. tuberculosis CDC1551, a well-characterised strain isolated during a TB outbreak in the US (19), contains a natural truncation of the metH gene which renders the strain sensitive to exogenous CNCbl. This phenotype, which was recapitulated in an engineered M. tuberculosis H37Rv mutant containing an analogous metH truncation, suggested that the observed growth inhibition was due to methionine depletion resulting from the effective elimination of all methionine synthase activity in the CNCbl-replete environments (18).

We postulated that metE would similarly be subject to riboswitch-mediated repression in M. smegmatis, given the inferred genetic capacity for de novo cobalamin biosynthesis in this organism (5). Moreover, the cobalamin-mediated repression of metE would render metH essential for growth of M. smegmatis in vitro. In this study, we provide direct biochemical confirmation that M. smegmatis constitutively produces cobalamin in vitro. We further show that M. smegmatis utilises exogenous CNCbl and dicyanocobinamide ((CN)_{2}Cbi) as precursors for the biosynthesis of the physiologically relevant cobalamin co-factor. However, our results
indicate that the uptake of these corrinoid precursors by *M. smegmatis* is restricted. Finally, we demonstrate that the expression of *metE* in *M. smegmatis* is under constitutive repression by a cobalamin riboswitch, a finding which explains the essentiality of *metH* in this non-pathogenic mycobacterium under standard culture conditions.

RESULTS

*The de novo cobalamin biosynthesis pathway is functional in *M. smegmatis***

Genomic analyses indicate that *M. smegmatis* encodes the complete pathway for *de novo* cobalamin biosynthesis (5). To investigate the ability of *M. smegmatis* to synthesise cobalamin using the *de novo* pathway, we developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the derivatisation of cobalamin to CNCbl by potassium cyanide (KCN). Then, utilizing multiple reaction monitoring (MRM) of two co-eluting transitions corresponding to α-ribazole 5’-phosphate and DMB (Figure 1A), we identified cobalamin in the cell extracts as derivatised CNCbl, validated by two transitions co-eluting at 2.79 min (Figure 1C). Using this method, high intensity CNCbl peaks were identified in cell extracts of wild-type *M. smegmatis* mc²155 grown aerobically to stationary phase in standard Middlebrook 7H9-OADC medium (Figure 1D). To confirm *de novo* cobalamin production in *M. smegmatis*, we generated an unmarked, in-frame deletion of *cobK* (Figure S1A, C-E). Homologs of this gene, which encodes a putative precorrin-6x reductase required for corrin ring synthesis (5, 11, 20), have been shown in other organisms to be required for corrin ring synthesis (21–23). To ensure that all phenotypes reflected the consequences of the specific gene deletions and/or disruptions, and were not confounded by off-site mutations, the parental strain
and derivative mutants were subjected to whole-genome sequencing. Single nucleotide mutations (SNMs) in six genes were uniquely identified in the ΔcobK strain but not in the parental wild-type strain but none of the SNMs could be linked to cobalamin or methionine metabolic pathways (Table 2).

In contrast to wild-type cell extracts, the ΔcobK extracts lacked the dual co-eluting peaks characteristic of CNCbl (Figure 1E). This observation indicated the indispensability of CobK for cobalamin biosynthesis and provided further evidence that the cobalamin signal detected in the wild-type strain (Figure 1D) resulted from de novo biosynthesis. We also confirmed the absence of cobalamin production in a double ΔmetE ΔcobK::hyg knock-out (KO) strain during growth in L-methionine-supplemented medium (Figure 1F). This strain, in which the entire metE open reading frame (ORF) is deleted and cobK is disrupted by the insertion of a hygromycin (hyg) resistance marker (Figure S1B, S1F), is a methionine auxotroph that can only be propagated in media supplemented with methionine or CNCbl (Figure 1G).

M. smegmatis assimilates exogenous CNCbl and (CN)$_2$Cbi in vitro

The ability to propagate the ΔmetE ΔcobK::hyg mutant in media containing methionine or CNCbl indicated that *M. smegmatis* can utilise exogenous methionine and CNCbl in the absence of an intact de novo cobalamin biosynthesis pathway, pointing to functional transport and assimilation pathways. We previously showed that *M. tuberculosis* could utilise dicyanocobinamide ((CN)$_2$Cbi) during growth in vitro (12).

To determine whether *M. smegmatis* could also assimilate this cobalamin precursor, we tested the ability of the ΔmetE ΔcobK::hyg double mutant to grow in medium supplemented with (CN)$_2$Cbi. First, the strain was grown to exponential phase with
excess methionine (1mM), after which 10-fold serial dilutions were spotted onto Middlebrook 7H10-OADC agar containing 10μM (CN)$_2$Cbi. After 3 days’ incubation at 37°C, (CN)$_2$Cbi uptake was qualitatively assessed by examining colony sizes (Figure 2A). For comparison, serial dilutions were also spotted on agar supplemented with 10μM CNCbl. Interestingly, the growth of ΔmetE cobK::hyg strain was very limited on agar supplemented with (CN)$_2$Cbi (Figure 2A). In fact, growth was observed only in the most concentrated (undiluted) bacterial spots (Figure 2A). While this might have been as a consequence of methionine carryover, the fact that similar growth was not observed in the unsupplemented 7H10 plate (Figure 2A) suggested that was not the case. Instead, these observations implied the ability of *M. smegmatis* to utilise (CN)$_2$Cbi, albeit to a much lesser extent than CNCbl (Figure 2A). To test the potential for (CN)$_2$Cbi to support growth in liquid culture, an “MIC-type” Alamar Blue assay (24) was performed in which growth from an inoculum of ~5 × 103 ΔmetE cobK::hyg cells was determined in medium containing 2-fold serial dilutions of (CN)$_2$Cbi (Figure 2B). The ΔmetE cobK::hyg strain was viable at (CN)$_2$Cbi concentrations higher than 7.5μM (Figure 2B), consistent with the ability to convert the corrinoid precursor to cobalamin.

To confirm the assimilation of (CN)$_2$Cbi in *M. smegmatis*, we used LC-MS/MS to analyse cell extracts of wild-type, ΔcobK and ΔmetE cobK::hyg strains grown to stationary-phase in 7H9-OADC medium with or without excess (30μM) (CN)$_2$Cbi (Figure 3A-F). As a positive control for *de novo* cobalamin biosynthesis, we analysed the wild-type strain grown in parallel without supplementation (Figure 3B). For the ΔmetE cobK::hyg mutant, methionine supplementation was used to enable propagation in the absence of (CN)$_2$Cbi (Figure 3C). We observed that all the
Cbi-supplemented strains reached stationary phase simultaneously. However, the dual co-eluting peaks characteristic of CNCbl were detected only in the Cbi-supplemented ΔmetE cobK::hyg strain (Figure 3C, D), strongly suggesting uptake and conversion of Cbi to cobalamin. Interestingly, cobalamin was not detectable in the Cbi-supplemented ΔcobK strain (Figure 3E, F), which did not require supplementation for growth. The assimilation of Cbi in the ΔmetE cobK::hyg strain was also accompanied by a distinct change in the colour of the spent medium from purple to pale yellow (Figure 3D, inset). By comparison, the colour of the spent medium in the Cbi-supplemented wild-type and ΔcobK cultures changed only slightly to a rusty hue (Figure 3B (inset) & Figure 3F (inset)), consistent with limited uptake in these strains.

MetE expression in M. smegmatis is regulated by a cobalamin-sensing riboswitch

We previously reported that the cobalamin-sensing riboswitch located in the 5' UTR of metE strongly attenuated the transcription of this gene in M. tuberculosis in the presence of exogenous CNCbl (18). To investigate whether the corresponding riboswitch in M. smegmatis operated similarly, we analysed relative metE transcript levels during the exponential growth phase in wild-type and ΔcobK strains grown in the presence or absence of CNCbl using droplet digital (dd)PCR. We found low but detectable levels of metE transcripts in the wild-type strain (Figure 4A). By comparison, metE transcripts were 19× more abundant in the ΔcobK strain (Figure 4A), supporting the notion that the abrogation of de novo cobalamin biosynthesis in the mutant released metE transcription from riboswitch-mediated repression. There was no significant difference in metE transcript levels between the CNCbl-
supplemented and unsupplemented wild-type strain (Figure 4A). In contrast, a small but statistically significant reduction (0.86×) in *metE* transcript levels was observed in the Δ*cobK* strain in the presence of exogenous CNCbl (Figure 4A). The absent to modest change in *metE* levels in these strains following CNCbl supplementation suggested that the uptake/assimilation of exogenous CNCbl might be restricted in *M. smegmatis*, consistent with the LC-MS/MS results. Alternatively, these results could indicate selective repression of cobalamin uptake/assimilation systems in strains which do not require the co-factor for viability or growth.

To examine how cobalamin availability in *M. smegmatis* affected MetE protein content, we adapted a targeted MS method (25) to measure MetE peptide levels in wild-type and Δ*cobK* strains grown in the presence or absence of exogenous CNCbl. This analysis indicated that MetE protein levels were 3× more abundant in the Δ*cobK* mutant than in the parental wild-type strain (Figure 4B). In the presence of exogenous CNCbl, the Δ*cobK* mutant exhibited a 2× decrease in MetE protein levels (Figure 4B). Unexpectedly, exposure of the wild-type strain to exogenous CNCbl caused a 48× reduction in MetE protein levels (Figure 4B). This result contrasted with the modest impact of CNCbl on *metE* transcript levels (Figure 4A) and suggested that MetE expression was likely primarily controlled at the translational level by this riboswitch.

metH is essential in *M. smegmatis*

The inferred cobalamin-mediated repression of *metE* in turn implied that MetH function would be indispensable for the growth of wild-type *M. smegmatis*. To test this prediction, we attempted to generate an in-frame *metH* deletion mutant (Figure S1A) by two-step allelic exchange mutagenesis (26). The Δ*metH* construct was
designed to mimic a naturally-occurring *metH* truncation which partially disrupts the cobalamin-binding domain and eliminates the S-adenosyl-L-methionine (SAM)-binding domain of MetH in *M. tuberculosis* CDC1551 (18). Another *metH* KO construct containing a *hyg* marker (Figure S1A) was also designed to enable the recovery of *metH* double crossover (DCO) mutants by “forced” selection on Hyg. Anticipating the loss of viability owing to *metH* essentiality, all media were supplemented with 1 mM L-methionine. Of 154 putative *metH* DCO recombinants screened by PCR, none (0/154) carried the Δ*metH* allele; instead, all 154 colonies were wild-type revertants. Similarly, 60 putative *hyg*-marked DCOs were screened by PCR, none of which bore the Δ*metH* allele. These results strongly suggested that *metH* was essential in *M. smegmatis*, consistent with recent genetic screens which identified *metH* among the subset of essential genes in *M. smegmatis* (27, 28).

Conditional depletion by CRISPRi confirms *metH* essentiality

Since our attempts to delete *metH* in *M. smegmatis* were unsuccessful, we instead opted to generate a *metH* conditional knock-down (cKD). For this purpose, we employed the anhydrotetracycline (ATc)-inducible mycobacterial CRISPRi system (29), utilizing a panel of 13 short guide (sg)RNAs targeting different regions of the *metH* ORF and with different target complementarity scores (Table S3). An sgRNA targeting *mmpL3*, an essential gene involved in mycolic acid biosynthesis (30), was used as a positive control. Gene silencing in transformed cells was assessed by growth inhibition on ATc-containing selection media. The induction of *metH* silencing by ATc inhibited colony formation in wild-type *M. smegmatis*, confirming the essentiality of *metH* under the conditions tested (Figure 5A). Consistent with previous work (28, 29, 31), sgRNAs with higher complementarity scores displayed
stronger gene silencing, leading to more robust growth inhibition than sgRNAs with lower scores (Figure S2). ATc-dependent growth inhibition was rescued by supplementation with exogenous methionine (Figure 5A), indicating that the lack of growth in the *metH* cKD strains resulted from methionine starvation.

To investigate this phenotype further, we traced the growth of the *metH* cKD strain at the single-cell level using microfluidics and time-lapse microscopy. A log-phase culture of cells carrying the *metH* cKD construct was pre-incubated with ATc for 6 h at 37°C and then loaded into the CellASIC® ONIX2 microfluidic device and imaged in real time over the course of 43 h with constant perfusion with 7H9-OADC medium containing ATc. In parallel, an uninduced (No ATc) control was perfused with 7H9-OADC medium only. Analysis of the time-lapse images showed that the induced *metH* cKD strain shared similar morphological features of shape and size with the No ATc control (Figure 5B). Moreover, in both the *metH* cKD strain and the No ATc control, cells divided by v-snapping (Supplementary Movies 1-5), which is typical of mycobacterial cell division (32, 33). However, the growth rates of the *metH* cKD strain and the No ATc control were markedly different (Figure 5C). In the No ATc control, microcolonies displayed an exponential-phase doubling time of 2.94 ± 0.3 h (Figure 5C). In this control, tracing of distinct cells was feasible only for the first 18 h of the experiment; by 24 h, microcolonies had attained confluence, occupying the entire field of view (Figure 5B; Supplementary Movies 1-5). Consistent with methionine depletion in the *metH* cKD strain, this mutant exhibited a much slower replication rate, doubling every 5.23 ± 0.4 h until the 18-h time-point when the growth rate flat-lined (Figure 5C) and the expansion of microcolonies slowed and appeared to halt by 24 h (Figure 5B; Supplementary Movies 1-5).
Abrogation of cobalamin biosynthetic capacity alleviates metH essentiality in *M. smegmatis*

The time-lapse microscopy data suggested that the essentiality of the *metH* gene might depend on both the presence of endogenous cobalamin and a functional *metE* riboswitch in *M. smegmatis*. Therefore, we reasoned that it would be possible to create a *metH* deletion in the cobalamin-deficient ΔcobK strain. To test this hypothesis, we generated an unmarked in-frame *metH* deletion in the ΔcobK background and screened the resultant DCOs by PCR. As expected, PCR screening identified 9 out of 34 putative DCOs as ΔcobK ΔmetH double KO mutants (Figure S1C-E), linking the essentiality of *metH* to endogenous cobalamin availability. We found that silencing of *metH* had no effect on the viability of the cobalamin-deficient ΔcobK mutant (Figure 6A), confirming that endogenous cobalamin was required to block methionine biosynthesis via riboswitch-mediated repression of *metE*.

Moreover, consistent with the limited impact of exogenous CNCbl on MetE protein levels (Figure 4B), CNCbl supplementation had a negligible effect during the growth of the ΔcobK strain on solid medium following ATc-induced *metH* silencing (Figure 6A).

Next, we investigated the impact of exogenous CNCbl during growth of the ΔcobK ΔmetH strain on solid versus in liquid media. To this end, a late log-phase (OD₆₀₀ ~ 1) culture was 10-fold serially diluted and spotted on 7H10-OADC agar supplemented with or without 10μM CNCbl (Figure 6B). There was no impairment of growth of the CNCbl-supplemented ΔcobK ΔmetH mutant on solid medium (Figure 6B). To determine if this phenotype were also true in liquid media, we seeded an inoculum of 2.5 × 10³ ΔcobK ΔmetH cells and analysed cell proliferation after an
overnight incubation at 37°C with or without 10μM CNCbl using the Alamar blue assay (24) (Figure 6C). Interestingly, CNCbl supplementation led to approximately 80% inhibition of the growth of the ΔcobK Δmeth strain (Figure 6C). This result confirmed the ability of M. smegmatis to assimilate exogenous CNCbl, although the uptake of the corrinoid was seemingly better in liquid than on solid media.

DISCUSSION

Cobalamin production in M. smegmatis

The production of cobalamin by M. smegmatis was previously inferred indirectly from microbiological assays (34–36). Using targeted LC-MS/MS approach, we provide direct proof of constitutive de novo cobalamin biosynthesis in M. smegmatis under aerobic conditions. The LC-MS/MS method optimised in this work utilised MRM of two mass spectra corresponding to DMB, the lower base in physiologically relevant cobalamin. Hence, we infer that M. smegmatis is able to synthesise and use DMB. Cobamides known as “pseudo-coenzyme B₁₂,” comprising an adenosine group, rather than DMB, as the α-axial ligand, have been found in other bacteria (37, 38). M. smegmatis CobT is homologous to the corresponding proteins in S. meliloti and S. enterica which have been implicated in the incorporation of adenine as the α-ligand of pseudo-coenzyme B₁₂ under limited DMB availability (38). It is conceivable, therefore, that M. smegmatis might possess similar capacity for pseudo-coenzyme B₁₂ synthesis. Since this remains unexplored, we cannot exclude the possibility that our DMB-dependent LC-MS/MS detection method did not capture the full variety of cobamides present in M. smegmatis. Nonetheless, these results indicated substantial cobalamin production in M. smegmatis, consistent with an early study which detected low-level cobalamin production in M. smegmatis using the L.
leichmannii tube assay (34). The disruption of cobK, encoding a predicted precorrin-6x reductase, abrogated cobalamin production, confirming that a single genetic lesion can cripple the entire pathway. It is noteworthy, therefore, that the loss of cobF, encoding a putative precorrin-6a synthase occurring immediately upstream of CobK in the pathway, has been identified as one of the defining molecular events in the evolution of pathogenic mycobacteria (39–41).

Corrinoid transport in M. smegmatis

Both CNCbl and (CN)$_2$Cbi supported the growth of the ΔmetE cobK::hyg strain by enabling MetH-dependent production of methionine. These results demonstrate that *M. smegmatis* is capable of corrinoid transport and assimilation. However, our observation of strikingly restricted corrinoid transport in *M. smegmatis* raises questions about the corrinoid concentrations encountered in its natural habitats, and suggests the unlikelihood that exogenous corrinoids constitute a reliable source. CNCbl and (CN)$_2$Cbi must undergo decyanation and adenosylation to produce adenosylcobalamin. While it is possible that *M. smegmatis* might encode enzymes for these reactions, work in other bacteria has demonstrated that decyanation can occur via the reduction of Co(III) to Co(II) without the need of specific decyanases (42). It has further been proposed that the steps involved in the reduction of Co(III) to Co(I), which is required for adenosylation, are not driven by reductases but, rather, are likely facilitated by electron transfer proteins (43). It seems probable, therefore, that bioconversion of CNCbl and (CN)$_2$Cbi in *M. smegmatis* similarly occurs without the need for specific enzymes.

Interestingly, our data showed a seemingly enhanced capacity for (CN)$_2$Cbi assimilation in the ΔmetE cobK::hyg strain compared to wild-type and ΔcobK strains. Since both these strains are able to grow without cobalamin owing to the presence of
MetE as alternative methionine synthase, the reduced (CN)\(_2\)Cbi uptake might suggest the potential for selective assimilation/transport as a function of methionine biosynthetic capacity. The peak intensity of the recovered cobalamin in the (CN)\(_2\)Cbi-supplemented \(\Delta metE\ cobK::hyg\) strain was significantly lower than that of \textit{de novo}-synthesised cobalamin in the wild-type (Figure 3B, D), possibly indicating that much lower amounts of co-factor are necessary to support growth.

In \textit{M. tuberculosis}, the nonspecific ABC-type transporter, BacA (Rv1819c) has been identified as the sole cobalamin and corrinoid transporter (12). Until recently, the mechanistic details of cobalamin transport by Rv1819c had remained elusive. However, the resolution of the crystal structure of Rv1819c (44) has provided key insights into its function in the uptake of hydrophilic molecules, suggesting that this protein passes a cargo slowly along its cavity via facilitated diffusion. Facilitated diffusion is a very low-efficiency process and, if the \textit{M. smegmatis} homologue functions similarly in corrinoid uptake, it might explain the poor uptake of CNCbl and (CN)\(_2\)Cbi. \textit{M. smegmatis} also contains two predicted Rv1819c homologues, encoded by paralogous genes located at different genomic loci (MSMEG_3655 & MSMEG_4380). In addition, \textit{M. smegmatis} encodes an operon containing putative homologues of BtuF (MSMEG_4560), BtuC (MSMEG_4559) and BtuD (MSMEG_4558), all components of the classic TonB-ExBD-BtuFCD cobalamin transport system in Gram-negative bacteria (45). Whether these genes encode functional transporters is still unknown and further research is needed to determine which proteins are involved in ferrying corrinoids and their precursors across the notoriously complex mycobacterial cell wall (46).
A riboswitch controls metE expression in M. smegmatis

We previously reported that a cobalamin-sensing riboswitch controlled metE transcription in M. tuberculosis (18). In that work, the level of metE transcript was decreased in the presence of exogenous CNCbl, leading to the conclusion that this riboswitch functioned as a transcriptional “off” switch. In the current study, we found that the levels of metE transcript were much lower in the cobalamin-replete wild-type M. smegmatis strain compared to the ΔcobK mutant. Since riboswitches sense ligand levels to attenuate expression (47), the low-level metE transcripts found in the wild-type strain likely reflects a physiological equilibrium between ligand-bound and unbound riboswitch states which allow for limited gene expression. Therefore, although the uptake of exogenous CNCbl is restricted in both wild-type and ΔcobK strains, the low level of uptake was still enough to shift the endogenous ligand-riboswitch equilibrium more significantly in wild-type than in mutant cells which exhibited elevated MetE protein content (Figure 4A, B). Unlike in M. tuberculosis, exogenous CNCbl was unable to exert significant changes to metE transcript levels in M. smegmatis, presumably owing to the limited uptake. While these results imply transcriptional regulation, we also observed an unexpected and dramatic reduction in MetE protein levels in the wild-type strain in the presence of exogenous CNCbl. These results suggested that this riboswitch might utilise a coupled translational-transcriptional regulation mechanism by which the inhibition of translation initiation precedes transcription termination and mRNA instability (48–50). Future work will elucidate the precise mechanism of cobalamin-sensing riboswitches in mycobacteria.
Lack of MetH activity is detrimental to the growth of *M. smegmatis*. Our *in vitro* results support the conclusion that constitutive endogenous production of cobalamin compels *M. smegmatis* to rely on MetH for the biosynthesis of methionine. We found that the disruption of MetH activity was growth-retarding in the presence of cobalamin, ostensibly owing to methionine depletion. In contrast, in the absence of cobalamin, bacilli were relieved of riboswitch-mediated repression of MetE, allowing the alternative methionine synthase to substitute for the inactivated MetH. We predict that *metH* will be essential in all mycobacteria capable of *de novo* cobalamin biosynthesis, representing an important deviation from cobalamin-deficient pathogenic mycobacteria like *M. tuberculosis*. The corollary is that mycobacterial species which are incapable of *de novo* cobalamin biosynthesis will accommodate MetH inactivation. Indeed, *metH*-null *M. tuberculosis* mutants have been generated (18) and several naturally-occurring, potentially inactivating mutations in *metH* have been found in circulating *M. tuberculosis* clinical isolates (13). Consistent with our findings, a recent Tn-screen identified *metH* among the subset of genes essential for the growth of *M. smegmatis* *in vitro* (27). Another recent study reported the inactivation of MetH in *M. smegmatis*, but in contrast to our findings, the authors did not observe any growth inhibition in their *metH*-null mutants in supplement-free media (36). The results presented here, together with our own independent Tn-seq and CRISPRi-seq analyses of *M. smegmatis* gene essentiality (28), demonstrate that *metH* cannot be disrupted in a cobalamin-replete strain without sacrificing viability. This apparent conflict might be explained by the possibility that the *metE* riboswitch in the parental strains used by Guzzo *et al.* to generate their *metH*-null mutants harboured inactivating mutations, which can accumulate spontaneously during the serial passage of mycobacterial cultures (51,
To eliminate the potential confounding effect of mutations in our study, the wild-type and its derivative mutant strains were subjected to whole-genome sequencing.

Concluding remarks

In summary, we have shown that *M. smegmatis*, a non-pathogenic mycobacterium, is a constitutive producer of cobalamin *in vitro*. Surprisingly, the transport of corrinoids in *M. smegmatis* appears restricted despite the presence in the genome of multiple putative transporters. Notably, this study also revealed differences in the regulation of methionine biosynthesis between *M. smegmatis* and *M. tuberculosis*. These differences in cobalamin-dependent metabolism between an environmental mycobacterium and an obligate pathogen might be informative in understanding the selective pressures which have shaped *M. tuberculosis* metabolism for pathogenicity and host tropism.

MATERIALS AND METHODS

Bacterial strains and culture conditions. The bacterial strains and plasmids used in this study are described in Table S1. Unless specified, *M. smegmatis* cultures were grown in either Middlebrook (Difco) 7H9 broth supplemented with 10% Oleic Albumin Dextrose Catalase (OADC) (Becton Dickinson) and 0.05% Tween 80 or on Middlebrook (Difco) 7H10 agar supplemented with 10% OADC. For mycobacterial cultures, kanamycin (Km) and hygromycin (Hyg) were used at final concentrations of 25µg/mL and 50µg/mL, respectively. *E. coli* was cultured in LB or LA with 50µg/mL Km or 200µg/mL Hyg, where appropriate. All cultures were incubated at 37°C. To generate growth curves, 50µL *M. smegmatis* cells were seeded at a concentration of 1 × 10^6 cfu/mL in 96-well culture plates (Greiner Bio-One) and absorbance
measurements were recorded every 1.5 h, over a period of 30 h, in a FLUOstar OPTIMA microplate reader (BMG Labtech).

Cloning. The oligonucleotides (oligos) used for cloning and PCR are listed in Table S2. An in-frame, unmarked deletion in *M. smegmatis cobK* (*MSMEG_3875*) was generated by joining a 912-bp PCR-generated fragment (FR1) containing 40bp of the 5' end of *cobK* to a second 923-bp PCR-generated fragment (FR2) containing 107bp of the 3' end of *cobK* in a three-way ligation reaction with p2NIL backbone (Addgene plasmid #20188; (53)), using *Asp*I, *Bg*I, and *Hind*III restriction. The resultant vector (p3875K) contained a deleted 120-bp *cobK* allele. To generate an in-frame, unmarked deletion in *M. smegmatis metH* (*MSMEG_4185*), an 1524-bp amplicon (FR1) of the 5' coding sequence of *metH* and another 1480-bp amplicon (FR2) containing 354bp of the 3' end of *metH* were joined in a three-way ligation reaction with p2NIL using *Asp*I, *Hind*III and *Bgl*II to produce the p4185K vector carrying a truncated *metH* allele of 1848bp. Counter-selection fragments carrying the *lacZ*, *hyg*, and *sacB* genes was excised from pGOAL19 (Addgene plasmid #20190; (53)) and cloned at *Pac*I sites of p3875K and p4185K to generate the suicide vectors p3875K19 and p4185K19, respectively. To generate the *hyg*-marked *metH* construct, a *hyg* cassette was excised from the pIJ963 vector (54) and cloned into the *Bgl*II site of p4185K. A counter-selection cassette derived from pGOAL17 (Addgene plasmid #20189; (53)) was then inserted into p4185K to generate p4185K17. Constructs were validated by restriction enzyme mapping and Sanger sequencing using the primers listed in Table S2.

Isolation of allelic exchange mutants. *M. smegmatis ΔcobK* and Δ*cobK ΔmetH* mutants were generated by allelic exchange mutagenesis (26). A total of 100μL
competent cells were incubated in a 1mm cuvette with 1–8μg DNA for 20 min on ice prior to pulsing in a GenePulser XcellTM electroporator (Bio-Rad) with time constant and voltage settings at 5 ms and 1200V, respectively. Single crossover (SCO) transformants were selected with Km and Hyg on 7H10-OADC plates. As colonies became visible, 50μL of 2% (w/v) 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal) was underlain in each plate for blue/white screening of SCOs. PCR-verified SCOs were then cultured in antibiotic-free 7H9-OADC, followed by 10-fold serial dilutions and plating on 7H10-OADC containing 2% (w/v) sucrose. DCOs were screened by PCR and confirmed with Southern blotting or Sanger sequencing. For Southern blotting confirmation of ΔcobK, 2-3μg DNA was digested overnight with Styl, separated on 1% agarose gel at 80V and transferred and fixed onto a HydrobondTMN+ membrane (Amersham), and hybridised overnight at 42°C with target-specific PCR-generated probes labelled with the ECL Direct Nucleic Acid Labelling and Detection Systems (Amersham). The target DNA fragments were visualised on Kodak hypersensitive X-ray films.

Cobalamin extraction. Wild-type or mutant *M. smegmatis* strains were cultured until stationary phase (OD₆₀₀ ~2) in 50mL 7H9-OADC supplemented with 3μg/mL cobalt chloride. Cells were harvested by centrifugation at 4000 × g for 10 min at 4°C, re-suspended in 8mL of 50mM sodium acetate buffer, pH4.5, and stored at -80°C until needed. Once thawed, the cells were lysed by 5 min of sonication using a microtip sonicator set at 30 amplitude,15 s pulse on and 15 s pulse off. Next, 16μL of 100mM KCN was added to the lysed cells and, with the extraction tube tightly closed, the samples were incubated at room temperature for 30 min in a chemical fume hood, followed by boiling at 90°C for 45 min inside the hood. The tube was then cooled on
ice briefly and centrifuged at 4°C at 4000 × g for 10 min. The supernatant was filtered through a 0.22μm filter and loaded onto a Sep-Pak C18 Plus Light Cartridge (Waters), which had been washed with 5mL 75% (v/v) ethanol and conditioned with 10mL sterile water. Next, the cartridge was washed with 10mL of water and eluted with 75% ethanol, collecting about 15 drops. The eluent was analysed immediately by LC-MS/MS or stored in -20°C until needed. When analysis was done on frozen samples, a centrifugation at 14000 × g for 10 min on a bench-top centrifuge was first performed, followed by chloroform purification.

LC-MS/MS detection and analysis of cobalamin. Eluents were analysed using LC-MS/MS in a positive ionisation mode and quantitated using the following multiple reaction monitoring (MRM) parameters: m/z, 678→359 and m/z, 678→147.

Chromatographic separation was performed through a HPLC reverse phase column (Phenomenex SynergiTM Polar-RP 100Å, 50 x 2mm (Separations)) using an Agilent 1200 Rapid Resolution HPLC system equipped with a binary pump, degasser, and auto sampler, coupled to an AB Sciex 4000 QTRAP hybrid triple quadrupole linear ion-trap spectrometer. Mobile phases were A: 0.1% formic acid in water; and B: 0.1% formic acid in acetonitrile. The following gradients were run: 0-2 min, 95% A; 2-4 min, 5% A; 4-6 min, 95% A; and 6-8 min, 95% A at a flow rate of 400μL/min. The mass spectrometry analysis was performed on an AB Sciex 4000 QTRAP LC mass spectrometer using the following parameters: Curtain gas (25.00); IS (5500.00); Temperature (200.00°C); GS1 (80.00); GS2 (55.00); EP (12.0). Data processing was done using the SCIEX Analyst® software.

Quantitative gene expression analysis by ddPCR. Droplet digital PCR (ddPCR) and data analysis was performed as described previously (55). Total RNA was
extracted using the FastRNA® Pro Blue kit (MP Biomedicals) and DNase-treated with TURBO DNase (Ambion) after which 0.5µg was used as template for cDNA synthesis, using the High Capacity RNA to cDNA kit (Thermofisher). Primers and minor groove binder (MGB) Taqman probes (Table S2) were designed using Primer Express 3.0 (Applied Biosystems). For duplexing, TaqMan MGB probes homologous to the target genes were labelled with 2'-chloro-7'-phenyl-1, 4-dichloro-6-carboxyfluorescein (VIC) whereas those binding the reference gene, sigA, were labelled with 6-carboxyfluorescein (FAM).

Targeted protein mass spectrometry. Triplicate cultures of *M. smegmatis* were grown to OD₆₀₀ ~1.2 in 7H9-OADC with or without 10µM CNCbl. Cell lysis, fractionation and the generation of tryptic peptides was done as described (25). Selected Reaction Monitoring (SRM) assays were developed in Skyline (version 4.1) using a spectral library generated from previous discovery MS data (25) with a cut-off score of 0.9. Skyline was set up to select two peptides per input protein, with the highest picked MS1 intensity in the discovery data, and then the top 5 most intense fragment ions for each of those peptides. A transition list was then generated for the Thermo Scientific triple stage quadrupole (TSQ) Vantage mass spectrometer. Samples were separated using a Thermo Accella LC system on a 10-cm monolithic C18 column (Phenomenex) with a 4.6-mm ID with a mobile phase that comprised a mixture of solvent A (water + 0.1% formic acid) and solvent B (HPLC-grade acetonitrile + 0.1% formic acid). The method run time was 45 min in total with a flow rate of 300µL/min. The gradient program began with 3% B, followed by a gradient of 8%-45% B from 5-25 min, then an increase to 80% B at the 30-min mark for a 5-min wash, before returning to 3% B for the remainder of the method. The LC system was
run in-line into a Thermo TSQ Vantage through a heated electrospray ionisation (HESI) source. The source voltage was +3500V, with a capillary temperature of 300°C, a vaporiser temperature of 200°C, sheath gas of 30, and aux gas of 10. To determine the retention time for each peptide, methods were generated for the TSQ Vantage with a maximum of 20 transitions monitored per method. Since the original list contained 5 transitions, a total of 8 unscheduled methods were generated, with a cycle time of 5 s to maximise the amount of signal, a collision gas pressure of 1.5 mTorr, a Q1 peak width (FWHM) of 0.7, and collision energies as determined by Skyline. The unscheduled methods were then run with consecutive 2μL injections of a reference sample to further refine the list of transitions and determine the retention time for each peptide. The reference sample was generated by pooling all samples. The unscheduled runs were analysed in Skyline to determine the retention times for each peptide. Any transitions with no intensity, background-level intensity, interference, or ambiguous signal were removed from the method, and a minimum of 3 transitions per peptide were kept in the final list. The spectral library was used to further refine the assays and any peptides with a dotp score lower than 0.7 were removed from the final list.

Microplate Alamar Blue Assay. Cell viability was determined using the microplate Alamar blue assay (24) as follows: 50μL of 1:1000 diluted exponential-phase cultures (OD600 ~ 0.5) was added to 50μL 7H9-OADC with or without 10μM CNCbl in a 96-well plate. Plates were incubated overnight at 37°C, after which 10μL of 100μg/mL resazurin was added to each well. The plates were incubated for an additional 5 h at 37°C before fluorescence intensity measurements were taken using
a FLUOstar OPTIMA microplate reader (BMG Labtech) using excitation and emission wavelengths of 485 nm and 508 nm, respectively.

Gene silencing using CRISPRi. Thirteen pairs of sgRNA oligos targeting the \textit{M. smegmatis} \textit{methH} ORF (Table S3) were designed as described previously (28). The oligos were annealed and cloned into the PLJR962 plasmid using \textit{BsmBI} restriction sites in an overnight ligation reaction with T4 DNA ligase (NEB). Following ligation, the entire reaction mix (10\(\mu\)L) was transformed into 50\(\mu\)L electrocompetent \textit{E. coli} DH5\(\alpha\) cells and selected on LB plates with 50\(\mu\)g/mL Km. Plasmid DNA was extracted from single colonies and validated by Sanger sequencing using primer 1834 (Table S3). Next, competent \textit{M. smegmatis} cells were transformed by electroporation with 200ng of \textit{methH} cKD constructs or an \textit{mmpL3} cKD control and selected on 7H10-OADC containing 25\(\mu\)g/mL Km with or without 100ng/mL ATc.

WGS, genome assembly and variant detection. Genomic DNA was extracted as described by van Helden \textit{et al.} (56) from exponential phase cultures of single colonies. Genomic libraries, prepared using the TruSeq Nano DNA (Illumina) sample preparation kit according to the manufacturer’s instructions, were sequenced using a 150-bp paired-end strategy on an Illumina HiSeq 4000 instrument. Trimmomatic v0.35 (57) was used to remove adapters, leading or trailing bases with a quality score < 3, reads shorter than 36bp in length, and bases with an average quality score of < 15 based on a 4-base sliding window. BWA v0.7.12 (58, 59) was then used to map paired-end reads to the \textit{M. smegmatis} mc2155 reference genome (CP000480.1) (60). SAMtools v0.1.2 (61) was used to call bases. Sites that had Phred scores lower than 20 or coverage below 10-fold were removed from further
analysis. SNPeff v4.1 (62), using the *M. smegmatis* mc²155 (uid57701) reference, was used to annotate variant positions.

Live-cell imaging and quantification of the growth of microcolonies. A 100μL bacterial suspension of 2.0 × 10⁶ cells/mL was prepared and loaded on the four-chambered CellASIC ONIX B04A-03 microfluidic platform (Merck). Cells were trapped with the following pressure and flow time settings: channel A8 at 13.8 kPa for 15 s; channel A6 at 27.6kPa for 15 s. Channel A6 was then rinsed at 6.9kPa for 30 s. Untrapped cells were washed out by flowing inlet solution at 34.5kPa for 5 min. 7H9-OADC medium containing 25μg/mL Km with or without 100ng/mL ATc was perfused continuously for 43 h. Live-cell imaging was performed on a Zeiss AxioObserver using a 100X, 1.4NA Objective with Phase Contrast and Colibri.7 fluorescent illumination system. Images were captured every 15 min using a Zeiss Axiocam 503 and analysed using FIJI software (https://fiji.sc/). To quantify the growth of microcolonies, a thresholded for the time-lapse images was set with a Yen filter in FIJI and the thresholded area over time was then quantified. For each strain type, data extraction and all subsequent analyses were performed on four independent fields of view. The data was analysed using “R” software. Growth curves were generated by subtracting initial background objects from the size data over time and smoothed with a loess regression. Growth rates were predicted from fitting a linear model to the log₂ microcolony size obtained between 3 h and 18 h.

ACKNOWLEDGEMENTS

We thank Clemens Hermann and Bridget Calder from Jonathan Blackburn’s proteomics facility for advice and assistance; Sarah Fortune and Jeremy Rock for
kindly providing the mycobacterial CRISPRi system; and Stephanie Dawes for providing the ΔmetE cobK::hyg mutant. We also thank Gopinath Krishnamoorthy and Kristine Arnvig for the helpful advice and critical reading of the manuscript. We acknowledge Caitlin Taylor for technical assistance with the CellASIC platform and members of the MMRU for their advice and helpful discussions. This work was supported by grants from the Howard Hughes Medical Institute (Senior International Research Scholar’s grant to V.M.), the South African Medical Research Council (to V.M.) and the National Research Foundation of South Africa (to V.M. and D.F.W.).

Data Availability

Raw fastq files for whole genome sequencing data for *M. smegmatis* mc²155, ΔcobK, and ΔcobK ΔmetH are available in the European Nucleotide Archive under the accession numbers ERS3716042, ERS3716043, and ERS3716041, respectively. Supplementary Movies S1–5 can be accessed at https://uct.figshare.com/s/65105b9914196c4b4654.

REFERENCES

1. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative genomics of the vitamin B₁₂ metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159.

2. Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN. 2009. Comparative genomic analyses of nickel, cobalt and vitamin B₁₂ utilization. BMC Genomics 10:78.

3. Minias A, Minias P, Dziadek J. 2018. Purifying selective pressure suggests the
functionality of a vitamin B₁₂ biosynthesis pathway in a global population of *Mycobacterium tuberculosis*. Genome Biol Evol 10:2326–2337.

4. Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, Taga ME. 2018. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME J 13:789–804.

5. Gopinath K, Moosa A, Mizrahi V, Warner DF. 2013. Vitamin B₁₂ metabolism in *Mycobacterium tuberculosis*. Future Microbiol 8:1405–1418.

6. Reyrat J-M, Kahn D. 2001. *Mycobacterium smegmatis*: an absurd model for tuberculosis? Trends Microbiol 9:472–473.

7. Barry CE. 2001. *Mycobacterium smegmatis*: an absurd model for tuberculosis? Response from Barry, III. Trends Microbiol 9:473–474.

8. WHO. 2019. Global tuberculosis report 2019. Geneva.

9. Ragsdale SW. 2008. Catalysis of methyl group transfers involving tetrahydrofolate and B₁₂. Vitam Horm 79:293–324.

10. Giedyk M, Goliszewska K, Gryko D. 2015. Vitamin B₁₂ catalysed reactions. Chem Soc Rev 44:3391–3404.

11. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 2002. The biosynthesis of adenosylcobalamin (vitamin B₁₂). Nat Prod Rep 19:390–412.

12. Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD, Mizrahi V, Warner DF. 2013. A vitamin B₁₂ transporter in *Mycobacterium tuberculosis*. Open Biol 3:120175.
13. Young DB, Comas I, de Carvalho LPS. 2015. Phylogenetic analysis of vitamin B₁₂-related metabolism in *Mycobacterium tuberculosis*. Front Mol Biosci 2:1–14.

14. Ferla MP, Patrick WM. 2014. Bacterial methionine biosynthesis. Microbiol (United Kingdom) 160:1571–1584.

15. Ferguson SJ. 2016. SAM – a helping hand in many places. FEBS Lett 590:2536–2537.

16. Koutmos M, Datta S, Pattridge KA, Smith JL, Matthews RG. 2009. Insights into the reactivation of cobalamin-dependent methionine synthase. Proc Natl Acad Sci 106:18527–18532.

17. Gonzalez JC, Banerjee R V., Huang S, Sumner JS, Matthews RG. 1992. Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from *Escherichia coli*: two solutions to the same chemical problem. Biochemistry 31:6045–6056.

18. Warner DF, Savvi S, Mizrahi V, Dawes SS. 2007. A riboswitch regulates expression of the coenzyme B₁₂-independent methionine synthase in *Mycobacterium tuberculosis*: implications for differential methionine synthase function in strains H37Rv and CDC1551. J Bacteriol 189:3655–3659.

19. Valvay SE, Sanchez MPC, Shinnick TF, Orme I, Agerton T, Hoy D, Jones JS, Westmoreland H, Onorato IM. 1998. An outbreak involving extensive transmission of a virulent strain of *Mycobacterium tuberculosis*. N Engl J Med 338:633–639.
20. Mattes TA, Escalante-Semerena JC, Deery E, Warren MJ. 2017. Cobalamin biosynthesis and insertion, p. 1–24. In Scott, RA (ed.), Encyclopedia of Inorganic and Bioinorganic Chemistry.

21. Shearer N, Hinsley AP, Van Spanning RJM, Spiro S. 1999. Anaerobic growth of Paracoccus denitrificans requires cobalamin: characterization of cobK and cobJ genes. J Bacteriol 181:6907–6913.

22. Kim W, Major TA, Whitman WB. 2005. Role of the precorrin 6-X reductase gene in cobamide biosynthesis in Methanococcus maripaludis. Archaea 1:375–384.

23. Blanche F, Thibaut D, Famechon A, Debussche L, Cameron B, Crouzet J. 1992. Precorrin-6x reductase from Pseudomonas denitrificans: purification and characterization of the enzyme and identification of the structural gene. J Bacteriol 174:1036–1042.

24. Cho S, Lee HS, Franzblau S. 2015. Microplate alamar blue assay (MABA) and low oxygen recovery assay (LORA) for Mycobacterium tuberculosis, p. 281–292. In Parish, T, Roberts, DM (eds.), Mycobacteria Protocols. Springer New York, New York, NY.

25. Hermann C, Giddey AD, Nel AJM, Soares NC, Blackburn JM. 2018. Cell wall enrichment unveils proteomic changes in the cell wall during treatment of Mycobacterium smegmatis with sub-lethal concentrations of rifampicin. J Proteomics 191:166–179.

26. Gopinath K, Warner DF, Mizrahi V. 2015. Targeted gene knockout and
essentiality testing by homologous recombination, p. 131–149. In Parish, T, Roberts, DM (eds.), Mycobacteria Protocols: Third Edition.

Dragset MS, Iorger TR, Zhang YJ, Mærk M, Ginbot Z, Sacchettini JC, Flo TH, Rubin EJ, Steigedal M. 2019. Genome-wide phenotypic profiling identifies and categorizes genes required for Mycobacterial low iron fitness. Sci Rep 9:1–11.

de Wet TJ, Gobe I, Mhlanga MM, Warner DF. 2018. CRISPRi-Seq for improved identification, targeting and phenotyping of essential Mycobacterial genes. OSF.

Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, Pritchard JR, Church GM, Rubin EJ, Sassetti CM, Schnappinger D, Fortune SM. 2017. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol 2.

Xu Z, Meshcheryakov VA, Poce G, Chng S-S. 2017. MmpL3 is the flippase for mycolic acids in mycobacteria. Proc Natl Acad Sci 114:7993–7998.

de Wet TJ, Winkler KR, Mhlanga M, Mizrahi V, Warner DF. 2020. Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of essential mycobacterial genes. Elife 9:e60083.

Takade A, Takeya K, Taniguchi H, Mizuguchi Y. 1983. Electron microscopic observations of cell division in Mycobacterium vaccae V1. J Gen Microbiol 129:2315–2320.

Dahl JL. 2004. Electron microscopy analysis of Mycobacterium tuberculosis cell division. FEMS Microbiol Lett 240:15–20.
34. Karasseva V, Weiszfeiler JG, Lengyel Z. 1977. Synthesis of vitamin B₁₂ by various species of mycobacteria. Zentralblatt für Bakteriol Parasitenkunde, Infekt und Hyg Erste Abt:514–520.

35. Upton AM, McKinney JD. 2007. Role of the methylcitrate cycle in propionate metabolism and detoxification in *Mycobacterium smegmatis*. Microbiology 153:3973–3982.

36. Guzzo MB, Nguyen HT, Pham TH, Wyszczelska-Rokiel M, Jakubowski H, Wolff KA, Ogwang S, Timpona JL, Gogula S, Jacobs MR, Ruetz M, Kräutler B, Jacobsen DW, Zhang GF, Nguyen L. 2016. Methylfolate trap promotes bacterial thymineless death by sulfa drugs. PLoS Pathog 12:1–28.

37. Crofts TS, Seth EC, Hazra AB, Taga ME. 2013. Cobamide structure depends on both lower ligand availability and CobT substrate specificity. Chem Biol 20:1265–1274.

38. Anderson PJ, Lango J, Carkeet C, Britten A, Kräutler B, Hammock BD, Roth JR. 2008. One pathway can incorporate either adenine or dimethylbenzimidazole as an α-axial ligand of B₁₂ cofactors in *Salmonella enterica*. J Bacteriol 190:1160–1171.

39. Orgeur M, Brosch R. 2018. Evolution of virulence in the *Mycobacterium tuberculosis* complex. Curr Opin Microbiol 41:68–75.

40. Supply P, Brosch R. 2017. The biology and epidemiology of *Mycobacterium canettii*, p. 27–41. In Gagneux, S (ed.), Advances in Experimental Medicine and Biology. Springer International Publishing.
41. Ngabonziza JCS, Loiseau C, Marceau M, Jouet A, Menardo F, Tzfadia O, Antoine R, Niyigena EB, Mulders W, Fissette K, Diels M, Gaudin C, Duthoy S, Ssengooba W, André E, Kaswa MK, Habimana YM, Brites D, Affolabi D, Mazarati JB, de Jong BC, Rigouts L, Gagneux S, Meehan CJ, Supply P. 2020. A sister lineage of the *Mycobacterium tuberculosis* complex discovered in the African Great Lakes region. Nat Commun 11:1–11.

42. Fonseca M V., Escalante-Semerena JC. 2000. Reduction of cob(III)alamin to cob(II)alamin in *Salmonella enterica* serovar Typhimurium LT2. J Bacteriol 182:4304–4309.

43. Mera PE, Escalante-Semerena JC. 2010. Dihydroflavin-driven adenosylation of 4-coordinate Co (II) corrinoids: are cobalamin reductases enzymes or electron transfer proteins? J Biol Chem 285:2911–2917.

44. Rempel S, Gati C, Nijland M, Thangaratnarajah C, Karyolaimos A, de Gier JW, Guskov A, Slotboom DJ. 2020. A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature 580:409–412.

45. Noinaj N, Guillier M, Barnard, TJ, Buchanan SK. 2010. TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60.

46. Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H. 2010. Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18:109–116.

47. Henkin TM. 2008. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 22:3383–3390.
48. Nou X, Kadner RJ. 2000. Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci 97:7190–7195.

49. Polaski JT, Holmstrom ED, Nesbitt DJ, Batey RT. 2016. Mechanistic insights into cofactor-dependent coupling of RNA folding and mRNA transcription/translation by a cobalamin riboswitch. Cell Rep 15:1100–1110.

50. Nou X, Kadner RJ. 1998. Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli. J Bacteriol 180:6719–6728.

51. Kucukyildirim S, Long H, Sung W, Miller SF, Doak TG, Lynch M. 2016. The rate and spectrum of spontaneous mutations in Mycobacterium smegmatis, a bacterium naturally devoid of the postreplicative mismatch repair pathway. G3 Genes, Genomes, Genet 6:2157–2163.

52. Ioerger TR, Feng Y, Ganesula K, Chen X, Dobos KM, Fortune S, Jacobs WR, Mizrahi V, Parish T, Rubin E, Sassetti C, Sacchettini JC. 2010. Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. J Bacteriol 192:3645–3653.

53. Parish T, Stoker NG. 2000. Use of flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975.

54. Blondelet-Rouault M-H, Weiser J, Lebrihi A, Branny P, Pernodet J-L. 1997. Antibiotic resistance gene cassettes derived from the Ω interposon for use in E. coli and Streptomyces. Gene 190:315–317.
55. Singh V, Brecik M, Mukherjee R, Evans JC, Svetlíková Z, Blaško J, Surade S, Blackburn J, Warner DF, Mikušová K, Mizrahi V. 2015. The complex mechanism of antimycobacterial action of 5-fluorouracil. Chem Biol 22:63–75.

56. van Helden PD, Victor TC, Warren RM, Helden EG Van. 2001. Isolation of DNA from Mycobacterium tuberculosis. Methods Mol Med 54:19–29.

57. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.

58. Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595.

59. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.

60. Fleischmann RD, Dodson RJ, Haft DH, Merkel JS, Nelson WC, Fraser CM. 2006. Direct submission. Bethesda, MD Natl Cent Biotechnol Information, NIH.

61. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.

62. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92.

63. Kapopoulou A, Lew JM, Cole ST. 2011. The MycoBrowser portal: a
comprehensive and manually annotated resource for mycobacterial genomes.

Tuberculosis 91:8–13.

796
Figure 1. De novo cobalamin biosynthesis in M. smegmatis. A. Cobalamin structure. The cobalt ion is coordinated equatorially by four nitrogen atoms of a corrin ring and axially by variable lower (α) and upper (β) ligands (R-group). Examples of β ligands are CN in cyanocobalamin (CNCbl; a.k.a. vitamin B₁₂), adenosyl in adenosylcobalamin (AdoCbl; a.k.a. coenzyme B₁₂) and methyl in methylcobalamin (MeCbl). The α ligand in the physiologically relevant cobalamin is typically dimethylbenzimidazole (DMB; outlined in red box). B. The final step in the methionine biosynthesis pathway is a non-reversible transfer of a methyl group from methyltetrahydrofolate (Me-THF) to homocysteine to produce methionine and tetrahydrofolate (THF). This reaction is catalysed by either MetH using cobalamin as co-factor, or MetE. MetE expression is attenuated by cobalamin via a cobalamin sensing riboswitch. C. The LC-MS/MS method optimised to detect co-eluting peaks corresponding to α-ribazole 5'-phosphate (highlighted in blue shade in A; blue trace) and DMB (red trace) transitions in a 20ng/ml CNCbl standard. D-F. Detection of de novo derivatised CNCbl. Cobalamin was detected in wild-type (D) but not in ΔcobK (E) nor ΔmetE cobK::hyg (F) mutants. The wild-type and ΔcobK strains were grown in 7H9-OADC medium and the ΔmetE cobK::hyg strain was grown with 1mM methionine supplementation. Peak intensities are expressed as counts per second (cps). G. Growth curves of the ΔmetE cobK::hyg strain in liquid 7H9-OADC medium in the presence of 10μM CNCbl or 1mM methionine. The mutant cannot grow without supplementation.
Figure 2. Uptake of exogenous CNCbl and (CN)$_2$Cbi in *M. smegmatis*. A. Spotting assays of exponential-phase cultures of wild-type and ΔmetE cobK::hyg strains on 7H10-OADC agar with or without 10μM CNCbl or 10μM (CN)$_2$Cbi shows restricted uptake of (CN)$_2$Cbi relative to CNCbl uptake on solid medium. B. Alamar Blue assay to evaluate the growth of the ΔmetE cobK::hyg strain in liquid medium supplemented with (CN)$_2$Cbi. 5 × 103 cells were seeded in 7H9-OADC medium supplemented with 2-fold dilutions of (CN)$_2$Cbi starting at 30μM as the highest concentration.

Figure 3. Assimilation of (CN)$_2$Cbi in *M. smegmatis*. A. (CN)$_2$Cbi control. B. De novo-synthesised cobalamin in the wild-type strain. C-D. Detection of recovered cobalamin due to (CN)$_2$Cbi assimilation in the ΔmetE cobK::hyg double mutant. E-F. Absence of recovered cobalamin in the ΔcobK strain in the presence of exogenous (CN)$_2$Cbi. (CN)$_2$Cbi uptake was accompanied by changes in the colour of the spent medium from purple (*A, inset*) to a rusty hue in the wild-type (*B, inset*) and ΔcobK strains (*F, inset*), and pale yellow in the ΔmetE cobK::hyg strain (*D, inset*). Supplemented cultures contained 30μM (CN)$_2$Cbi.
Figure 4. Cobalamin-mediated attenuation of MetE expression in *M. smegmatis*. A. ddPCR analysis of *metE* transcription during exponential growth phase in the wild-type and Δ*cobK* strains cultured in the presence (solid bars) or absence (open bars) of exogenous CNCbl. The Δ*cobK* strain exhibited an overabundance of *metE* transcripts relative to the wild-type parental strain. A small but statistically significant decrease in the level of *metE* transcript in the Δ*cobK* strain was observed in the presence of exogenous CNCbl (*p*=0.0359; (*); two-way ANOVA), but the change in *metE* transcript levels in the wild-type strain was not statistically significant. The graphed data are representative of two independent experiments. Error bars show the standard error of the mean. B. Targeted MS analysis of MetE peptide levels (log$_2$ peak area) in the wild-type and Δ*cobK* strains grown in the presence (solid bars) or absence (open bars) of exogenous CNCbl. Exogenous CNCbl more significantly decreased MetE peptide levels in the wild-type strain relative to the Δ*cobK* mutant (*p*=0.0151; (*) two-way ANOVA).

Figure 5. Growth cessation due to methionine depletion in the *metH* cKD. A. ATc-induced growth inhibition in the *metH* cKD is rescued by exogenous methionine (L-Met). B. Representative images from time-lapse microscopy at the 0-h, 12-h, and 24-h time points showing severe growth retardation in the *metH* cKD. Images are taken from Supplementary Movie 2. Scale bars, 5µm. C. Quantification of microcolony growth in the *M. smegmatis metH* cKD using “R” software. * limit of detection.
Figure 6. Sensitivity of MetH mutants to exogenous CNCbl. A. CRISPRi-mediated silencing of metH in the ΔcobK strain in the presence (+) or absence (-) of exogenous CNCbl. Exogenous CNCbl had negligible effect on the growth of metH cKD on solid medium in this background. B. A spotting assay on 7H10 agar containing 10μM exogenous CNCbl showing the failure of exogenous CNCbl to inhibit growth of the ΔcobK ΔmetH strain on solid media. C. Sensitivity of the ΔcobK ΔmetH strain to exogenous CNCbl in liquid medium as determined using the Alamar Blue assay.
Gene	Annotation (63)	Co-factor	Reaction catalysed	
MSMEG_3158 (mutA)	Methylmalonyl-CoA mutase, small subunit	AdoCbl	Isomerisation	
MSMEG_3159 (mutB)	Methylmalonyl-CoA mutase large subunit			
MSMEG_0497	Glycerol dehydratase large subunit	AdoCbl	Isomerisation	
MSMEG_1547	Glycerol dehydratase large subunit			
MSMEG_6321	Glycerol dehydratase large subunit			
MSMEG_1553 (eutB)	Ethanolamine ammonia-lyase, large subunit	AdoCbl	Isomerisation	
MSMEG_1554 (eutC)	Ethanolamine ammonia-lyase, light chain			
MSMEG_4185 (metH)	Methionine synthase	MeCbl	Methyl transfer	
Gene	Annotation (63)	SNP	Type of SNM	Amino Acid Change
--------------	---	-----------	------------------	-------------------
MSMEG_0691	Putative transcriptional regulatory protein	1T>G	5' UTR mutation	
MSMEG_2148	HNH endonuclease domain protein	1135T>C	missense	Trp379Arg
MSMEG_3876	Putative phosphotransferase enzyme family protein	887G>A	missense	Arg296His
MSMEG_6127	Anti-anti-sigma factor	107T>G	missense	Leu36Arg
MSMEG_6270	Hypothetical protein	1A>C	5' UTR mutation	
		1G>A		
MSMEG_6423	Glycerophosphoryl diester phosphodiesterase family protein	1T>C	5' UTR mutation	
		1T>G		
