The Non-random Location of Autosomal Genes That Participate in X Inactivation

Barbara R. Migeon*

Departments of Genetic Medicine and Pediatrics, The Johns Hopkins University, Baltimore, MD, United States

Mammals compensate for sex differences in the number of X chromosomes by inactivating all but one X chromosome. Although they differ in the details of X inactivation, all mammals use long non-coding RNAs in the silencing process. By transcribing XIST RNA, the human inactive X chromosome has a prime role in X-dosage compensation. Yet, the autosomes also play an important role in the process. Multiple genes on human chromosome 1 interact with XIST RNA to silence the future inactive Xs. Also, it is likely that multiple genes on human chromosome 19 prevent the silencing of the single active X – a highly dosage sensitive process. Previous studies of the organization of chromosomes in the nucleus and their genomic interactions indicate that most contacts are intra-chromosomal. Co-ordinate transcription and dosage regulation can be achieved by clustering of genes and mingling of interacting chromosomes in 3D space. Unlike the genes on chromosome 1, those within the critical eight MB region of chromosome 19, have remained together in all mammals assayed, except rodents, indicating that their proximity in non-rodent mammals is evolutionarily conserved. I propose that the autosomal genes that play key roles in the process of X inactivation are non-randomly distributed in the genome and that this arrangement facilitates their coordinate regulation.

Keywords: single active X, intra-chromosomal interaction, inter-chromosomal interaction, X-chromosome dosage compensation, autosomes in X inactivation, evolutionary conservation, clustered gene interactions

When female mammals compensate for sex differences in the dosage of X linked genes by inactivating X chromosomes, the X chromosome(s) that is silenced has a major role in the process. In all mammals, a non-coding RNA, encoded by the X, is essential to its being inactivated by epigenetic factors (Grant et al., 2012). Clearly, the bi-directional spread of Xist RNA from its locus in the middle of the X chromosome initiates the inactivation process in eutherian mammals (Brockdorff et al., 1992; Brown et al., 1992). In addition, the other long non coding RNAs, implicated in the process, i.e., the potential Xist repressors, rodent-specific Tsix (Lee and Lu, 1999), and the primate specific XACT (Vallot et al., 2017), are also encoded by the X chromosome. Once coated with enough Xist RNA, the future inactive X moves toward the nuclear lamina, where its chromatin is transformed from euchromatin to heterochromatin (McHugh et al., 2015; Moindrot and Brockdorff, 2016).

The silencing of the future inactive X, or Xs, is attributable to a Rube-Goldberg type of mechanism that not only brings it close to the nuclear periphery (where inactive chromatin tends to reside), but also attracts the epigenetic factors that silence it. Ultimately, the binding of Xist RNA results in expulsion of factors from the inactive X that make chromatin accessible for transcription (Jegu et al., 2019). The few active (escape) genes on that X chromosome manage to find their way out of the heterochromatin mass of inactive chromatin towards the center of the nucleus, where transcription occurs (Fraser and Bickmore, 2007). Yet, Xist RNA cannot do this alone, as autosomal
gene products are essential to complete the silencing process (McHugh et al., 2015; Moindrot and Brockdorff, 2016; Patil et al., 2016).

In pursuit of autosomal genes that cooperate with the X chromosome, Percece et al. (2003) used ENU chemical mutagenesis to screen for autosomal mutations involved in the initiation of X inactivation in mice. They identified regions of mouse chromosomes 5, 10, and 15, which seemed to affect the choice of the mouse inactive X. More recent studies in mice have elucidated the essential autosomal products that interact with Xist RNA to silence the chromosome (McHugh et al., 2015; Chen et al., 2016; Moindrot and Brockdorff, 2016; Sunwoo et al., 2017) (Table 1). These include the lamin B receptor (Lbr), the satellite attachment factor A (Saf-A) and Sharp (Smrt and Hdac Associated Repressor Protein, also called Spen). SPEN, LBR, and SAFA map to human chromosome 1; Lbr and Safa also map to mouse chromosome 1, whereas Sharp is on mouse chromosome 4 (orthologous to human chromosome 1). Other genes that have been implicated in the silencing process are RBM 15 and SETDB1, on human chromosome 1, and mouse chromosome 3 – also orthologous to human chromosome 1. Therefore, the genes on human chromosome 1 that play a role in silencing the future inactive X also map to mouse chromosome 1 or its orthologs (Table 1 and Figure 1A). Conceivably, genes that were on three different chromosomes in mice have evolved to be on a single human chromosome to facilitate their interaction in silencing the X.

In prokaryotes, interactions between genes with a common function are facilitated because such genes are contiguous in the genome, organized into operons, with a common promoter (Jacob, 2011). On the other hand, most eukaryotic genes that interact with each other, do not share promoters, and are less well clustered (Dekker and Misteli, 2015). Yet, it has become apparent that the spatial arrangement of genes in the mammalian nucleus is non-random; chromosome folding and intermingling enable the proximity of genes that reside on the same chromosome, by looping, and even on different chromosomes, by chromosome clustering. The likely advantage of interactions between genes is coordination of their expression – perhaps in the same transcription factory, thought to occur in a discrete nuclear region (Rieder et al., 2014).

Based on HI-C studies of the human genome (Lieberman-Aiden et al., 2009), Thevenin et al. (2014) showed that a significant number of functional groups (pairs of interacting proteins, genes with common functions and those in interactive pathways) are either clustered within the same chromosome or dispersed over a relatively few chromosomes. Those on different chromosomes tend to co-localize in space. These investigators found that, genes, which function together, tend to reside on fewer chromosomes than expected by chance. On the same chromosome, they are closer to each other than randomly chosen genes; on different chromosomes, they tend to be closer to each other in 3D space (Thevenin et al., 2014). Among the best documented inter-chromosomal interactions are those between the mouse X chromosomal gene, Xist, and the autosomal epigenetic factors mentioned above, that help silence the X chromosome from which the up-regulated Xist locus is being transcribed (Dekker and Misteli, 2015).

When extending her observations in mice to other mammals, Lyon suggested there was only a single active X, no matter the number of X’s in a cell (Lyon, 1962); however, the literature has persisted in labeling the mammalian process of X dosage compensation, X inactivation, which focuses us on the process of silencing the inactive X. Therefore, the salient question has been, “How does one choose the X chromosome that becomes inactive?” Because Xist RNA is able to silence any chromosome into which it is inserted (Jiang et al., 2013; Migeon et al., 1999), it is surprising that few ask the pertinent question, “What protects the single active X from silencing by its own Xist locus?” (Migeon, 2017; Migeon et al., 2017).

Further, it has not been easy to show how the mouse inactive X is chosen. Earlier studies suggested that an infrequent physical association (kissing) between the Xist loci of the two X chromosomes in mouse embryos determined the choice of inactive X (Xu et al., 2006; Augui et al., 2007), but more recent studies indicate that neither the expression of Xist nor Tsix, its antisense RNA, is affected by the interaction (Cheng et al., 2019; Pollex and Heard, 2019).

In addition, Inoue et al. (2018) and Harris et al. (2019) recently showed that in mice, the choice of active X is determined prenatally. Having been imprinted during oocyte differentiation [as predicted by Lyon and Rastan (1984)], the active X is always maternal in trophectoderm – the first tissue to undergo dosage compensation in the mouse embryo. Because X inactivation in the placenta occurs relatively early in mice, it is likely that the paternal X hasn’t had time to erase the inactivation imprint imposed during the early stages of spermatogenesis (Migeon, 2016). It remains to be seen if the rodent specific Tsix RNA, which is transcribed only from the maternal X in trophectoderm, protects the active X, regardless of its parental origin, from silencing by Xist in other mouse embryonic tissues.

With respect to human cells, we have learned that (1) human oocytes do not express PRC2 (which imprints the mouse oocyte) (Harris et al., 2019), (2) the human maternal X is not imprinted (Migeon, 2016), and (3) human TSIX is ineffective, having been truncated during human evolution (Migeon et al., 2001). Therefore, another means of repressing the XIST locus on the future active human X is needed to protect it from being silenced. Recent studies suggest that to prevent its heterochromatization by XIST, the future human active X needs to interact with human chromosome 19 (Migeon et al., 2017). They reveal a previously unsuspected eight MB region on the short arm of human chromosome 19 (19p13.3-13.2), which contains at least one dosage sensitive gene that is likely to play a role in silencing the XIST locus on one X chromosome in each cell (Migeon, 2017; Migeon et al., 2017) (Table 2). Candidate genes include satellite attachment factors SAFB and SAFB2, a cluster of zinc finger proteins that surround DNMT1 and its co-factor UHRF1, among many others. Although most of the zinc finger proteins clustered in the relevant region of human chromosome 19 arose after the split between rodents and humans, the other genes in this region can be found on mouse chromosomes 8, 9, and 17 – orthologous to human...
FIGURE 1 | (A) Human chromosome 1 with relevant genes, bent to show telomeres in proximity: SPEN 1p36.2, HDAC1 1p35.2, RBM15 1p13.3, LBR 1q42.12, and SAFA 1q44 (see Table 1). (B) Human chromosome 19 insert with relevant genes, showing proximity of genes in 19p13.1-13.2: UHRF1, SAFB2, SAFB, ZNF 358, ZNF 699, DNMT1, ZNF 823, and ZNF 69 (see Table 2).
TABLE 1 | Location of mouse and human genes that silence the inactive X.

Human GENE	Human CHROMOSOME	5′ location of Human Gene (GRCh38)	Mouse GENE	5′ location of Mouse Gene (GRCm38)	Citation for Mouse Genes
SPEN	1p36.21	1:15,847,863*	Sharp**	4:141,467,890	McHugh et al., 2015; Moindrot and Brockdorff, 2016
RBM15	1p13.3	1:110,336,928	Rbm15	3:107,325,421	McHugh-MoindrotPatil (Patil et al., 2016)
LBR	1q42.12	1:225,401,501	Lbr	1:181,815,315	McHugh Chen (Chen et al., 2016)
HNRNPC	14q11.2	14:21,209,135	Hnrnpc	14:52,073,380	McHugh
RALY	8q21.2	8:84,182,764	Raly	3:13,471,655	McHugh
HNRNPCM	5q13.3	5:141,620,875	Hn npc	2:154,791,096	McHugh
HNRNPCM	1q44	1:244,850,299	Hnrnpc	1:178321108	McHugh
CEF1	11p11.2	11:47,465,932	Celf1	2:90940387	Moindrot
PTBP1	19p13.3	19:797,391	Ptbp1	2:125,084,628	Moindrot
Not found					
NCOB1	9q34.11	9:128,166,064	Ciz1	2:32363005	Moindrot Sunwoo (Sunwoo et al., 2017)
SETDB1	1p21.3	1:150,926,245	Setdb1	3:95323525	Moindrot
WTAP	6q25.3	6:159,726,695	Wt ap	12:966799	Moindrot
HDAC1	1p35.2-p35.1	1:32,292,102	Hdac1	4:129,516,104	This paper

*Bold italics: Human chromosome 1 or mouse orthologs of human chromosome 1. **SPEN(SMART/HDAC1 associated repressor protein = SHARP.

chromosome 19 (Table 2 and Figure 1B). Again, perhaps human 19 evolved to facilitate the interaction of genes that protect the future active X.

In the genomics era, many human geneticists tend not to specify which particular autosome encodes genes of interest; therefore, I was surprised to see that many of the proteins that interact with XIST to silence the X are encoded by human chromosome 1 (Migeon et al., 2017) (Table 1 and Figure 1A), and in the mouse, by the three orthologs of chromosome 1 (chromosomes 1, 3, and 4)

TABLE 2 | Location of mouse and human genes that may maintain the active X.

Human GENE	Human CHROMOSOME	5′ location of Human Gene (GRCh38)	Mouse GENE	5′ location of Mouse Gene (GRCm38)	Citation
UHRF1	19p13.3	19:4,903,079	Uhrf1	17:56,303,367	Migeon et al., 2017
SAFB	19p13.3	19:5,623,034	Safb	17:56,584,830	
SAFB2	19p13.3	19:5,586,992	Safb2	17:56,560,965	
DNMT1	19p13.2	19:10,333,345	Dnmt1	9:20,907,209	
HNRNPCM	19p13.2	19:8,444,574	Hnrnpc	17:33,646,233	
MBD3	19p13.3	19:1,576,670	Mbd3	10:80,392,539	
MBDSL-3.5L	19p13.2	19:8,842,392	Mbd3l	9:18,478,359	
PRMT4 or CARM1	19p13.2	19:10,817,576	CARM1	9:51,546,894	
ZNF358	19p13.2	19:7,780,178	Zfp358	8:3,493,138	
ZNF699	19p13.2	19:9,291,139	Not found		
ZNF627	19p13.2	19:11,575,254	Znf 867	11:59,461,197	
ZNF823	19p13.2	19:11,832,080	Not found		
ZNF69	19p13.2	19:11,887,772	Not found		
ZNF44	19p13.2	19:12,224,685	Not found		
ZNF443	19p13.2	19:12,540,521	Znf 709	8:71,882,068	

*Bold italics: Human chromosome 19 or mouse orthologs of human chromosome 19.
In mice, these genes are bound to Xist at the same developmental stage (McHugh et al., 2015). To my knowledge, no one has examined the Xist-autosomal interactions by RNA FISH to determine if there is clustering of the three murine chromosome 1 orthologs. The positions of these genes on human chromosome 1 is of interest as some of the genes are present on opposing ends of the chromosome, which would require a large fold in the chromosome to facilitate any interaction (Figure 1A). Such intermingling and folding are frequently observed in the 3D nuclear space (Lieberman-Aiden et al., 2009).

Table 3 presents conservation data obtained from the UCSC Genome Browser; it shows that of four relevant genes on chromosome 1 that aid Xist in silencing the inactive

MAMMAL	GENE	CHROM	5’ LOCATION (nucleotides)	GENE	CHROM	5’ LOCATION (nucleotides)
HUMAN	DNMT1	19*	10,133,346	SPEN	1	15,847,864
	UHRF1	19	4,910,367	LBR	1	225,401,503
	SAFB	19	5,623,099	SAFA	1	244,850,297
	SAFB2	19	5,586,999	RBM15	1	110,286,375
GORILLA	DNMT1	19	9,911,947	SPEN	1	15,818,157
	UHRF1	19	4,549,324	LBR	1	205,129,423
	SAFB	19	5,391,167	SAFA	1	224,804,897
	SAFB2	19	5,343,115	RBM15	1	111,770,116
ORANGUTAN	DNMT1	19	10,128,395	SPEN	1	212,361,620
	UHRF1	19	4,819,523	LBR	1	24,182,913
	SAFB	19	5,532,720	SAFA	1	4,279,561
	SAFB2	19	5,496,867	RBM15	1	116,356,665
MARMOSSET	DNMT1	22	9,536,311	SPEN	7	50,174,237
	UHRF1	22	4,640,990	LBR	19	18,374,272
	SAFB	22	5,347,272	SAFA	7	146,230,306
	SAFB2	22	5,310,815	RBM15	10	75,015,891
Pig	DNMT1	2	68,982,341	SPEN	6	13,389,915
	UHRF1	2	73,898,195	LBR	10	17,485,493
	SAFB	2	73,300,630	SAFA	10	17,485,493
	SAFB2	2	73,334,753	RBM15	4	109,778,998
COW	DNMT1	7	15,914,205	SPEN	16	52,882,374
	UHRF1	7	20,436,673	LBR	16	29,148,981
	SAFB	7	19,846,024	SAFA	16	33,162,888
	SAFB2	7	19,908,323	RBM15	3	33,196,547
SHEEP	DNMT1	5	12,315,683	SPEN	12	49,635,296
	UHRF1	5	16,747,203	LBR	12	26,512,015
	SAFB	5	16,167,299	SAFA	12	30,479,650
	SAFB2	5	16,230,105	RBM15	1	86,670,575
HORSE	DNMT1	7	49,751,153	SPEN	2	37,048,480
	UHRF1	7	3,014,835	LBR	30	8,017,554
	SAFB	7	3,400,307	SAFA	30	0,184,666
	SAFB2	7	3,388,372	RBM15	5	57,896,671
DOG	DNMT1	20	50,880,023	SPEN	2	81,683,829
	UHRF1	20	54,858,675	LBR	7	39,291,511
	SAFB	20	54,381,519	SAFA	7	35,833,232
	SAFB2	20	54,381,353	RBM15	6	41,645,993
CAT	DNMT1	A2	7,689,975	SPEN	1	11,528,828
	UHRF1	A2	3,678,067	LBR	F1	1,574,749
	SAFB	A2	4,176,193	SAFA	F1	5,103,486
	SAFB2	A2	4,143,427	RBM15	1	94,297,141
OPPOSUM	DNMT1	3	431,238,772	SPEN	4	375,579,105
	UHRF1	3	441,797,772	LBR	2	137,055,167
	SAFB	3	443,046,263	SAFA	2	142,860,792
	SAFB2	3	443,045,746	RBM15	2	479,906,213

*Chromosome numbers in bold indicate conservation.
Table 4 | Site of genes on human chromosome 19 in other mammals.

MAMMAL	GENE	CHROMOSOME	SITE 5’ (nucleotide)
HUMAN	SIRT6	19	4,174,109
	PLIN3	19	4,852,208
	UHRF1	19	4,910,367
	KDM4B	19	4,969,121
	TINCR	19	5,560,774
	RFX2	19	5,993,164
	VAV1	19	6,772,726
	MBDS3L4	19	7,037,748
	INSR	19	7,112,226
	ZNF358	19	7,518,118
	MAP2K7	19	7,903,891
	FBN3	19	8,130,286
	HNRNPM	19	8,269,278
	ZNF558	19	8,806,170
	OLFM2	19	9,853,718
	DNMT1	19	10,133,346
	DNMT2	19	10,828,755
	CARM1	19	10,871,513
ORANGUTAN	SIRT6	19	4,083,376
	PLIN3	19	4,752,733
	UHRF1	19	4,819,523
	KDM4B	19	4,940,648
	TINCR	19	5,468,562
	RFX2	19	5,907,338
	VAV1	19	6,738,253
	MBDS3L4	19	7,005,357
	INSR	19	7,065,165
	ZNF358	19	7,328,128
	MAP2K7	19	7,862,957
	FBN3	19	8,037,199
	HNRNPM	19	8,412,645
	ZNF558	19	8,801,446
	OLFM2	19	9,841,684
	DNMT1	19	10,128,395
	DNMT2	19	10,719,521
	CARM1	19	10,872,517
MARMOSET	SIRT6	22	3,843,381
	PLIN3	22	4,576,676
	UHRF1	22	4,640,990
	KDM4B	22	4,752,547
	TINCR	22	5,280,800
	RFX2	22	5,714,269
	VAV1	22	6,492,055
	MBDS3L4	22	6,745,638
	INSR	22	6,884,705
	ZNF358	22	7,258,135
	MAP2K7	22	7,564,197
	FBN3	22	7,702,224
	HNRNPM	22	8,116,508
	ZNF558	22	8,418,995
	OLFM2	22	9,242,165
	DNMT1	22	9,536,311
	DNMT2	22	10,141,800
	CARM1	22	10,298,967

(Continued)
MAMMAL	GENE	CHROMOSOME	SITE 5' (nucleotide)
DOG	CARM1	7	16,571,428
	SIRT6	20	55,416,563
	PLIN3	20	54,924,119
	UHRF1	20	54,858,675
	KDM4B	20	54,715,308
	RFX2	20	54,013,618
	TINCR	not found	
	VAV1	20	53,482,255
	MBD3L4	20	53,213,540
	INSR	20	52,017,347
	ZNF358	20	52,997,963
	MAP2K7	20	52,594,536
	FBN3	20	52,723,997
	HNRNPM	20	51,897,297
	ZNF558	20	50,331,081
	CAT		
	SIRT6	A2	3,162,759
	PLIN3	A2	3,851,793
	UHRF1	A2	3,678,067
	KDM4B	A2	3,765,143
	RFX2	A2	4,427,650
	TINCR	not found	
	VAV1	A2	5,108,402
	MBD3L4	A2	5,395,765
	INSR	A2	6,443,171
	ZNF358	A2	6,267,306
	MAP2K7	A2	6,004,415
	FBN3	A2	5,820,368
	HNRNPM	A2	5,569,560
	ZNF558	A2	6,657,696
	OLFM2	A2	7,484,626
	DNM1	A2	7,889,975
	DNM2	A2	8,118,334
	CARM1	A2	8,257,736
	OPOSSUM	SIRT6	3
	PLIN3	3	440,652,009
	UHRF1	3	441,797,772
	KDM4B	3	441,910,670
	RFX2	3	443,674,276
	TINCR	not found	
	VAV1	3	444,980,624
	MBD3L4	20	not found
	INSR	3	463,520,164
	ZNF358	3	not found
	MAP2K7	3	462,757,443
	FBN3	3	461,508,720
	HNRNPM	3	460,359,655
	ZNF558	4	409,014,310
	OLFM2	3	431,584,923
	DNM1	3	431,238,772
	DNM2	3	430,280,994
	RABBIT	SIRT6	3
	PLIN3	3	440,652,009
	UHRF1	3	441,797,772
	KDM4B	3	441,910,670
	RFX2	3	443,674,276
	TINCR	not found	
	VAV1	3	444,980,624
	MBD3L4	20	not found
	INSR	3	463,520,164
	ZNF358	3	not found
	MAP2K7	3	462,757,443
	FBN3	3	461,508,720
	HNRNPM	3	460,359,655
	ZNF558	4	409,014,310
	OLFM2	3	431,584,923
	DNM1	3	431,238,772
	DNM2	3	430,280,994

(Continued)
X, only SAFA and LBR have been on the chromosome since we evolved from marsupials. SPEN and RBM15 although on the same chromosome as SAFA and LBR in primates, are on other chromosomes in marmosets and non-primate mammals. In contrast, except in rodents (rat, mouse, and rabbit), the region on chromosome 19 that protects the active X is preserved in primates such as gorilla, orangutang, and marmoset, and other mammals such as cat, dog, pig, horse, cow, and opposum (Table 4). The exceptional genes that have left the group include the long noncoding RNA, TINCR, and the MD3L3-5, methyl CPG binding domain proteins, which are on chromosome 19 in primates and in marmoset but are not found in all mammals. The conserved cluster in pig, horse and cow is in the reverse orientation (Table 4). These differences interrupt what would otherwise be an exceptionally long synteny block, but the preservation of so many genes in this region, in spite of multiple evolutionary structural alterations, suggests that the local landscape may be important to function. That the chromosome 19 genes in rodents are not conserved as a group argues that their process of ensuring that one X will remain active differs from that of other mammals (Shevchenko et al., 2019), perhaps because only rodents have Tisix to protect the active X from silencing by Xist.

Most likely, the relevant genes on the same chromosome are co-regulated. The advantage of genes clustered in interphase is that they can be programmed for simultaneous transcription. To silence XIST on the future active X, some genes in the chromosome 19 cluster might be transcribed together, perhaps if they are close enough in 3D space, as a single transcript. The telomeric location of genes on primate chromosome 1 that participate in XIST silencing (Figure 1A) suggest that the two ends of the chromosome might physically interact at the time of transcription.

Several important questions remain unanswered: First, how do multiple genes in the inactivation pathway on human chromosome 1 (or in the activation pathway on chromosome 19) coordinate interact with each other? And then, how do autosomal genes encoding protein products, interact with the X chromosome?

Recent studies suggest that the intra-chromosomal gene interactions occur within the same topologically-associated-domain (TAD) (Nora et al., 2012; Galupa and Heard, 2018) and that TADS align with co-coordinately regulated gene clusters, fostering long-range contacts and preventing deleterious interactions between genes in different TADs (Galupa and Heard, 2018) One would like to examine the candidate genes on human chromosomes 1 and 19, at the appropriate time in development, to determine if they are located within the same TAD, or are otherwise coordinately regulated. It is unlikely that the occurrence of multiple silencers of the inactive X on human chromosome 1 and XIST repressors on human chromosome 19 is coincidental.

The question of how genes on an autosome interact with the genes on the X chromosome is especially challenging because in the human species either one or several X chromosomes can be silenced within a cell, the number dependent upon the number of X chromosomes in the genome. All but one X chromosome are silenced no matter how many are in the cell, nor the sex of the individual (Grunibach et al., 1963). Therefore, only one X chromosome resists silencing no matter the number of X chromosomes in the cell.

Clearly, suppressing the XIST locus on the future active X is easier for males than females. We know this because of the specific loss of females who reduplicate the essential chromosome 19 gene(s), presumably because replication enables both Xs to be active – a known lethal event in diploid cells. At least five percent more pre-implantation human females are miscarried than are males (Migeon et al., 2017). If males reduplicate the XIST repressor, it has little consequence, but females who by chance inactivate both XIST loci, die before they implant into the uterus. This suggests that not only when this region of chromosome 19 is duplicated, but even, when the chromosome is normal, the required interaction is difficult one, as either too little or too much XIST repressor would lead to a lethal event (too many active Xs or no active X). The former does not occur as often in males who have only one X chromosome: too much repressor is not lethal, although too little might be.

And there is the question of gene dosage. How in a diploid cell do two autosomes cooperate to make an inhibitor for a single X chromosome? In the case of more than two X chromosomes, how is the right dosage of gene product from chromosome 1 achieved? On one hand, Lyon (1971) and more recently, Nguyen et al. (2019) that the two autosomes might pair to synthesize a single product. One such product might be a dimeric protein, There is also the possibility of competitive inhibition. Once, a molecule of gene product arrives on one X chromosome then the other(s) are unable to be hit. On the other hand, perhaps, not all attempts to activate or inactivate the chromosome are successful, and so the process is stochastic. That many errors occur while repressing XIST on the future active X might explain a significant loss of pre-implantation females, even in absence of gene reduplication.

To answer these questions one needs to identify genome interactions during the pre-implantation development of the human embryo, at the time of X inactivation. One can use chromosome capture such as Hi-C, 3D RNA-FISH (Shiura and Abe, 2019) (to see if nascent transcripts are transcribed together). Single-cell RNA-Seq as has been recently described in the mouse (Cheng et al., 2019), examining the candidate genes. The best human model would be the beginning of cleavage to embryonic day 10. The inability to study available human embryos is a decided disadvantage for American investigators, but I hope that my colleagues in other countries will carry out such studies.
For the human X: 19 interaction, embryonic day 4–7 would probably be appropriate, whereas human embryonic day 6–9 should capture the chromosome 1: X interaction.

AUTHOR CONTRIBUTIONS

BM conceived the study, obtained the data, and wrote the manuscript.

REFERENCES

Augui, S., Filion, G. J., Huart, S., Nora, E., Guggiari, M., Maresca, M., et al. (2007). Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318, 1632–1636. doi: 10.1126/science.1149420

Brockdorff, N., Ashworth, A., Kay, G., McCabe, V., Norris, D. P., Cooper, P., et al. (1992). The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526. doi: 10.1016/0092-8674(92)90519-i

Brown, C. J., Hendrich, B. D., Rupert, J. L., Lafreniere, R. G., Xing, Y., Lawrence, J., et al. (2019). Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354, 468–472. doi: 10.1126/science.aee0047

Cheng, S., Pei, Y., He, L., Peng, G., Reinius, B., Tam, P. P. L., et al. (2019). Single-cell RNA-seq reveals cellular heterogeneity of pluripotency transition and X chromosome dynamics during early mouse development. Cell Rep. 26, 2593–2607.e3. doi: 10.1016/j.celrep.2019.02.031

Dekker, J., and Misteli, T. (2015). Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. 7:a019356. doi: 10.1101/cshperspect.a019356

Fraser, P., and Bickmore, W. (2007). Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413–417. doi: 10.1038/nature05916

Galupa, R., and Heard, E. (2018). X-chromosome inactivation: a crossovers between chromosome architecture and gene regulation. Annu. Rev. Genet. 52, 535–566. doi: 10.1146/annurev-genet-120116-024611

Grant, J., Mahadevaiah, S. K., Khil, P., Sangrithi, M. N., Royo, H., Duckworth, J., et al. (2012). Rax is a metathetic RNA with X-like properties in X-chromosome inactivation. Nature 487, 254–258. doi: 10.1038/nature11171

Grumbach, M. M., Morishima, A., and Taylor, J. H. (1963). Human sex chromosome abnormalities in relation to DNA replication and heterochromatization. Proc. Natl. Acad. Sci. U.S.A. 69, 3136–3141.

Harris, C., Cloutier, M., Trotter, M., Hinten, M., Gayen, S., Du, Z., et al. (2019). Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. elife 8:e44258. doi: 10.7554/elife.44258

Inoue, A., Chen, Z., Yin, Q., and Zhang, Y. (2018). Maternal Eed knockout causes loss of H3K27me3 imprinting and random X inactivation in the extraembryonic cells. Genes Dev. 32, 1525–1536. doi: 10.1101/gad.318675.118

Jacob, F. (2011). The birth of the ooperon. Science 332,767. doi: 10.1126/science.1207943

Jegu, T., Blum, R., Cochrane, J. C., Yang, L., Wang, C. Y., Gilles, M. E., et al. (2019). Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X-chromosome. Nat. Struct. Mol. Biol. 26, 96–109. doi: 10.1038/s41594-018-0176-8

Jiang, J., Jing, Y., Cost, G. J., Chiang, J. C., Kolpa, H. J., Cotton, A. M., et al. (2013). Translating dosage compensation to trisomy 21. Nature 500, 296–300. doi: 10.1038/nature12394

Lee, J. T., and Lu, N. (1999). Targeted mutagenesis of Tisx leads to nonrandom inactivation. Cell 99, 47–57. doi: 10.1016/s0092-8674(00)80681-5

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293. doi: 10.1126/science.1181369

Lyon, M. F. (1971). Possible mechanisms of X chromosome inactivation. Nat. New Biol. 232, 229–232. doi: 10.1038/newbio232229a0

Lyon, M. F. (1962). Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 1962, 135–148.

Lyon, M. F., and Rastan, S. (1984). Paternal source of chromosome imprinting and its relevance for X chromosome inactivation. Differentiation 26, 63–67. doi: 10.1111/j.1432-0436.1984.tb01375.x

McHugh, C. A., Chen, C. K., Chow, A., Surka, C. F., Tran, C., McDonel, P., et al. (2015). The Xist IncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236. doi: 10.1038/nature14443

Migeon, B. R. (2016). An overview of X inactivation based on species differences. Semin. Cell Dev. Biol. 56, 111–116. doi: 10.1016/j.semcdb.2016.01.024

Migeon, B. R. (2017). Choosing the active X: the human version of X inactivation. Trends Genet. 33, 899–909. doi: 10.1016/j.tig.2017.09.005

Migeon, B. R., Beer, M. A., and Bjornsson, H. T. (2017). Embryonic loss of human females with partial trisomy 19 identifies region critical for the single active X. PLoS One 12:e0176876. doi: 10.1371/journal.pone.0176876

Nguyen, H., Lee, S. D., and Wu, T. (2019). Paircpointing Trends Genet. (in press).

Noroozian, M., Dementyeva, E. V., Zakharova, I. S., and Zakian, S. M. (2019). Transcriptional conservation analysis. The author appreciates the suggestions to Drs. Haig Kazazian and Roger Reeves for their helpful comments about the manuscript. The author is most grateful to Drs. Hans Bjornsson and Teresa Lupercio for incredibly insightful discussions, and to Drs. Haig Kazazian and Roger Reeves for their helpful comments about the manuscript. The author appreciates the suggestions of the reviewers.

ACKNOWLEDGMENTS
Thevenin, A., Ein-Dor, L., Ozery-Flato, M., and Shamir, R. (2014). Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome. Nucleic Acids Res. 42, 9854–9861. doi: 10.1093/nar/gku667

Vallot, C., Patrat, C., Collier, A. J., Huret, C., Casanova, M., Liyakat Ali, T. M., et al. (2017). XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell 20, 102–111. doi: 10.1016/j.stem.2016.10.014

Xu, N., Tsai, C.-L., and Lee, J. T. (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1107–1109.

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Migeon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.