Research Paper:
Responsiveness of Impairment-based Outcome Measures in Individuals With Anterior Cruciate Ligament Reconstruction Following Physiotherapy

Neda Mostafaee1, Hossein Negahban2, Mohammad Jafar Shaterzadeh Yazdi3, Shahin Goharpey3, Mohammad Mehravar3, Nahid Pirayeh3*

1. Department of Physical Therapy, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
2. Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
3. Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Objective
The primary purpose of physiotherapy in patients with Anterior Cruciate Ligament (ACL) reconstruction is to reduce pain, improve Range of Motion (ROM), muscle strength, and balance after surgery. Thus, therapists need outcome measurement tools with acceptable validity, reproducibility, and responsiveness to assess these changes after the intervention. This study investigates the responsiveness of the tools used to measure pain, ROM, knee muscle strength, and dynamic balance. We also want to determine minimal clinically significant change for these outcomes in patients with ACL reconstruction after physiotherapy.

Materials & Methods
The study participants were 54 young patients with ACL reconstruction evaluated using impairment-based outcome measures of visual analog scale, goniometer, hand-held dynamometer, and Star Excursion Balance Test (SEBT) at baseline (2 weeks after ACL reconstruction) and 4 weeks after physiotherapy. At the second phase of evaluation, the participants also completed the 7-point global change rating scale. For assessing the responsiveness of the tools, we used the Receiver Operating Characteristics (ROC) curve and correlation analysis.

Results
Analyzing the ROC curve showed that the knee extension ROM, quadriceps and hamstring strength, and medial and posteromedial directions under SEBT had acceptable responsiveness (>0.70). The Spearman correlation coefficient between the scores obtained for these outcomes and the score of 7-point global change rating scale were significant in the range of 0.36-0.51. For all the study outcome measurement tools, minimal significant clinical changes were reported.

Conclusion
The results of this study support the responsiveness of goniometer for knee extension ROM, hand-held dynamometer for quadriceps and hamstring strength, and SEBT for dynamic balance at medial and posteromedial directions in the assessment of clinical changes in patients with ACL reconstruction. The reported minimal significant clinical changes for each tool can help the clinicians and researchers to decide on determining the actual significant change in the ACL patient’s clinical conditions after physiotherapy.

Abstract

Objective: The primary purpose of physiotherapy in patients with Anterior Cruciate Ligament (ACL) reconstruction is to reduce pain, improve Range of Motion (ROM), muscle strength, and balance after surgery. Thus, therapists need outcome measurement tools with acceptable validity, reproducibility, and responsiveness to assess these changes after the intervention. This study investigates the responsiveness of the tools used to measure pain, ROM, knee muscle strength, and dynamic balance. We also want to determine minimal clinically significant change for these outcomes in patients with ACL reconstruction after physiotherapy.

Materials & Methods: The study participants were 54 young patients with ACL reconstruction evaluated using impairment-based outcome measures of visual analog scale, goniometer, hand-held dynamometer, and Star Excursion Balance Test (SEBT) at baseline (2 weeks after ACL reconstruction) and 4 weeks after physiotherapy. At the second phase of evaluation, the participants also completed the 7-point global change rating scale. For assessing the responsiveness of the tools, we used the Receiver Operating Characteristics (ROC) curve and correlation analysis.

Results: Analyzing the ROC curve showed that the knee extension ROM, quadriceps and hamstring strength, and medial and posteromedial directions under SEBT had acceptable responsiveness (>0.70). The Spearman correlation coefficient between the scores obtained for these outcomes and the score of 7-point global change rating scale were significant in the range of 0.36-0.51. For all the study outcome measurement tools, minimal significant clinical changes were reported.

Conclusion: The results of this study support the responsiveness of goniometer for knee extension ROM, hand-held dynamometer for quadriceps and hamstring strength, and SEBT for dynamic balance at medial and posteromedial directions in the assessment of clinical changes in patients with ACL reconstruction. The reported minimal significant clinical changes for each tool can help the clinicians and researchers to decide on determining the actual significant change in the ACL patient’s clinical conditions after physiotherapy.

Keywords:
Responsiveness, Anterior cruciate ligament reconstruction, Range of motion, Muscle strength, Balance

* Corresponding Author:
Nahid Pirayeh, PhD.
Address: Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Tel: +98 (916) 3054015
E-Mail: nahid_pt8287@yahoo.com
Extended Abstract

Introduction

Anterior Cruciate Ligament (ACL) rupture is one of the most common knee joint injuries, especially in active and young people. It accounts for about 50% of knee injuries. This ligament is usually damaged during recreational or competitive sports activities [1]. ACL reconstruction surgery is usually recommended following an ACL rupture to restore the knee mechanical stability and achieve normal knee function [1, 2]. Studies have shown that many people still do not resume normal knee function after ACL reconstruction and report disorders such as knee instability, pain, decreased Range of Motion (ROM), defects in quadriceps and hamstrings, and neuromuscular dysfunction, which can lead to very different consequences among these people [3, 4]. Therefore, rehabilitation interventions are essential for patients with ACL reconstruction to reduce pain, improve ROM, muscle strength, dynamic and functional stability of the reconstructed knee, balance, and finally help return the patient to functional activities [5]. According to systematic review studies, the most common disorder-based outcome measures used to evaluate the effect of treatment and determine the success of treatment in randomized clinical trials on patients with ACL reconstruction are knee pain, ROM, hamstrings, and quadriceps muscle strength, and dynamic balance using Star Excursion Balance Test (SEBT) [6-8].

In this regard, therapists need repetitive, valid, and responsive tests (sensitive to change) to detect significant changes during the treatment process [9, 10]. Responsiveness is an essential feature of a measurement tool and can detect the least clinically significant change in a patient’s health status over time. Responsiveness includes internal and external types [11, 12]. Internal responsiveness refers to the ability of a tool to detect changes over time, regardless of whether these changes are clinically significant or not [13, 14]. External responsiveness indicates how much of a change in the instrument has occurred in a given period in accordance with the change in the reference instrument. The reference measurement is based on the retrospective 7-point Likert scale [15]. Although clinical trial studies have repeatedly used pain, ROM, quadriceps, and hamstring muscle strength, and dynamic balance control to assess patients’ recovery from ACL reconstruction and the effect of treatment, no study has yet examined the responsiveness of these measures. Therefore, this study aims to investigate the responsiveness of tools measuring pain, ROM, quadriceps and hamstring muscle strength, and dynamic balance control in patients with ACL reconstruction following a rehabilitation treatment.

Materials and Methods

This research is a prospective cohort study. The study participants were 54 patients with an ACL injury who had undergone reconstructive surgery. The inclusion criteria were being 18-45 years old and passing 2 weeks from the ACL reconstruction surgery. The exclusion criteria were having a history of diabetes, neurologic disorder, inflammatory arthritis, malignancy, musculoskeletal pain, musculoskeletal injury other than ACL rupture, and bilateral ACL rupture.

Study measures

The Visual Analog Scale (VAS) was used to assess pain outcomes. It consists of a 10-cm horizontal line, with the left-hand side labeled “no pain” and the right-hand side labeled “most intense pain imaginable”. The VAS score was determined by measuring in centimeters from the left-hand side to the point that the patient marks [16].

A goniometer was used to measure the passive ROM of the knee in the supine position during flexion and extension. Thus, the amplitude of knee flexion and extension was recorded [16].

To evaluate the isometric strength of quadriceps and hamstrings, a manual tension/compression dynamometer (Danesh Salar Iranian Company, Iran) was used. The dynamometer was placed just above the malleolus in the anterior and posterior parts of the leg, and the person was asked to press the involved leg against the strap as much as possible. The primary test was performed by taking maximum contraction of quadriceps and hamstring muscles with 3 repetitions during maximum effort from each person. There was a 30-second rest interval. The strength values obtained from the three maximum contractions of each muscle group were averaged [17].

To evaluate the dynamic balance using the SEBT, a circle was assumed on the ground, and 8 lines were drawn at a 45-degree angle (like a star). The patient was asked to stand on the affected leg in the center of the circle and move the other leg as far as possible on the lines (in the selected direction), touch the ground with the toe at maximum reach without maintaining weight, and then return to the starting position (standing on two legs). The distance between the center of the star and the point of contact of the contralateral leg was considered the reach distance, an indicator of dynamic balance. This test was repeated three times, and their average was calculated and determined as the final score. The errors that cause exclusion from the test were displacement of the leg placed in the star center, loss of balance during the test, and putting weight on the reaching leg when the toe was in contact with the ground [18]. In previous studies,
the reproducibility and high validity of these scales have been reported to evaluate the outcomes in patients with ACL reconstruction [19-23].

All participants were evaluated in the first stage of evaluation (2 weeks after ACL reconstruction surgery) and again in the second stage of evaluation (after 4 weeks of physiotherapy) using the mentioned instruments. In the last treatment session, the patients were asked to report changes in their health status from the beginning to the last session of treatment on a 7-point retrospective Likert scale [15, 24]. This scale was divided into two general subscales of improved (score 5-7) and not-improved (score 1-4) to create a two-part outcome variable [15]. Since the purpose of responsiveness studies is to evaluate the instrument’s specificity rather than to evaluate the effectiveness of the intervention, the control of physiotherapy intervention was not necessary for the present study [24]. However, all patients received similar rehabilitation interventions after the surgery.

Data analysis

The obtained data were analyzed in SPSS v. 21 software. First, we used the Kolmogorov-Smirnov test to investigate the normal distribution of variables. The paired t-test was used to examine the relationship between pre- and post-treatment scores. The Receiver Operating Characteristics (ROC) curve (with 95% confidence interval) was used to evaluate the responsiveness [25]. To do this, after two stages of evaluation, a change score (difference between the scores of two evaluation stages) was first obtained using the instruments for each patient. One by one, the change scores were determined as the cut-off point and compared with the score obtained from the 7-point Likert scale as a standard external criterion. Thus, sensitivity and specificity were calculated at each stage [10, 26, 27]. Then, the ROC curve was plotted, with the vertical axis corresponding to the sensitivity and the horizontal axis corresponding to the specificity [26]. In the ROC curve analysis, a point with the highest sensitivity and specificity was selected on the left and top of the curve, representing the minimum clinical change score of the outcome [14]. Besides, the correlation between the change score obtained from each instrument (as a quantitative variable) and the score obtained from the 7-point Likert scale (as a qualitative variable) were examined. The Spearman correlation coefficient in the range of 0.250-0.50 indicates a weak correlation, 0.50-0.70 moderate correlation, and >0.70 indicates a strong correlation [10]. Similarly, the area below the ROC curve in the range of 0.25-0.50 indicates poor responsiveness, 0.50-0.70 shows moderate responsiveness, and >0.70 indicates good responsiveness [26].

Results

The demographic and clinical characteristics of participants are presented in Table 1, and the results of the paired t-test are presented in Table 2. As seen, 34 patients (63%) were classified as an improved group, and 20 patients (37%) as a not-improved group. The results obtained from the area below the ROC curve showed that the knee extension ROM, quadriceps and hamstring strength, and dynamic balance at medial and posteromedial directions had a good response (<0.70). The Spearman correlation coefficient for these four outcomes between the change score and the score of 7-point global change rating Likert scale ranged from 0.36 to 0.51. Significant clinical changes were reported for all study tools (Table 3).

Discussion and Conclusion

One of the most critical problems and complications after ACL reconstruction is the loss of knee extension and ROM (5-10 degrees) [28]. This ROM loss can lead to significant pain and functional impairment, especially during walking and running in young and active patients, because the loss of more than 10 degrees prevents normal gait and leads to increased loads on the patellofemoral joint and, as a result, anterior knee pain [28]. Loss of knee flexion end ROM is usually not as debilitating as loss of knee extension end ROM [28]. Therefore, changes in ROM in the direction of extension rather than in the direction of flexion are more consistent with changes perceived by the young patients, and this factor can be a reason for greater responsiveness of goniometer for assessing knee extension ROM. Another major problem after ACL reconstruction is the weakness of the quadriceps and hamstring muscles [29]. Several studies have shown a greater reduction in the quadriceps strength than in hamstring strength in these patients [29]. It has also been shown that the correlation between reduced quadriceps strength and knee function is higher than the correlation between reduced hamstring strength and knee function [30]. The results of our study also showed that the hand-held dynamometer’s ability to respond to the knee extension strength (quadriceps muscle strength) was greater than the ability to respond to the knee flexion strength (hamstring muscle strength). However, it was reasonably responsive to both knee extension and flexion and can monitor the actual recovery of young and active ACL patients in clinical and research settings.

The results of the ROC curve and correlation analysis showed that VAS was not so much responsive to diagnose the ACL patient’s real and significant recovery. In a systematic review and meta-analysis by Collins et al. on the measurement characteristics of the knee injury and osteoarthritis outcome score instrument in young patients with
an ACL injury or knee osteoarthritis, it was shown that the pain subscale of the instrument had poor content validity and therefore had no good capacity to show improvement [31]. Consistent with this study, VAS in our study had the poor potential to show the changes in patients’ real recovery after treatment, maybe, due to the participation of young and active patients. Another possible reason can be that the assessments were performed after the initial acute phase and in the intermediate phase of rehabilitation (2-6 weeks after surgery). During this period, patients typically have minimal pain and symptoms, and exercise during this period tends to be more difficult; hence, no significant change in pain is expected for ACL patients.

Table 1. Demographic and clinical characteristics of the participates (n=54)

Variables	Mean±SD/No. (%)
Demographic Information	
Age (y)	26.37±5.12
Height (cm)	175.14±8.42
Weight (kg)	73.64±5.79
Gender	
Male	54(100)
Female	0(0)
Years of education	
9-12	17(31.5)
>12	37(68.5)
Marital status	
Single	41(75.9)
Married	13(24.1)
Clinical	
Dominant leg	
Right leg	46(85.1)
Left leg	8(14.9)
Affected leg	
Duration after surgery (wk)	6
Duration of physiotherapy (wk)	4

SEBT in medial and posteromedial directions showed acceptable responsiveness. The greater responsiveness in these two directions compared to other directions can be because these two directions exert more rotational force on the reconstructed knee during the test [32]. Thus, these two directions can more accurately identify important clinically significant changes in the dynamic balance of ACL patients. This result is somehow consistent with the findings of Herrington et al., who showed that the medial and posteromedial directions were more capable of differentiating between patients with ACL injury and controls [32]. The optimal cut-off point obtained from the ROC curve, which is considered as the least clinically significant change in the patient’s health status, can provide researchers and therapists with practical and valuable information to make decisions about the actual change in ACL patient’s health status.

The present study results provide evidence for the responsiveness of goniometer for knee extension ROM, hand-held dynamometer for quadriceps and hamstring strength, and SEBT for dynamic balance at medial and posteromedial directions in the assessment of clinical changes in patients with ACL reconstruction. The minimum clinically significant change score obtained for each tool in this study can help therapists and researchers to decide on determining the actual significant change in the ACL patient’s clinical conditions after physiotherapy.
Table 2. Mean scores of pre-treatment, post-treatment, and change for the study variables

Variables	Pre-Treatment Score	Post-Treatment Score	Change	P
	Mean±SD	Mean±SD		
Total (n=54)	2.83±1.71	1.87±1.81	0.96±1.80	<0.001
Pain				
Improved (n=34)	2.65±1.45	1.53±1.41	1.11±1.83	0.001
Not improved (n=20)	3.15±2.08	2.45±2.25	0.70±1.75	0.09
Knee flexion ROM				
Total (n=54)	117.86±11.34	125.29±10.74	8.40±7.75	<0.001
Improved (n=34)	119.44±10.28	127.88±8.64	8.37±7.47	<0.001
Not improved (n=20)	115.16±12.78	120.90±12.64	8.46±8.28	0.02
Knee extension ROM				
Total (n=54)	2.95±2.33	1.01±1.56	1.88±1.98	<0.001
Improved (n=34)	3.65±1.85	0.72±1.19	2.80±1.53	<0.001
Not improved (n=20)	1.78±2.63	1.50±1.99	0.30±1.66	0.47
Quadriceps strength				
Total (n=54)	21.15±12.68	25.73±12.02	4.56±6.93	0.004
Improved (n=34)	21.91±12.89	26.61±11.91	5.31±14.00	0.006
Not improved (n=20)	19.86±12.54	24.22±12.37	0.29±9.47	0.16
Hamstring strength				
Total (n=54)	10.92±6.89	15.87±8.19	4.44±10.95	<0.001
Improved (n=34)	10.92±7.31	15.76±8.52	5.81±7.18	<0.001
Not improved (n=20)	10.92±6.30	16.06±7.82	0.28±13.79	0.01
Balance at anterior direction				
Total (n=54)	82.17±6.33	88.19±7.22	6.01±5.30	<0.001
Improved (n=34)	81.96±6.82	87.83±8.06	6.87±5.76	<0.001
Not improved (n=20)	82.55±5.55	88.79±5.64	6.25±4.54	<0.001
Balance at lateral direction				
Total (n=54)	59.70±11.31	68.18±11.15	8.47±6.41	<0.001
Improved (n=34)	58.82±11.87	67.69±11.62	8.87±4.54	<0.001
Not improved (n=20)	61.20±10.41	69.01±10.55	7.80±8.84	0.001
Balance at medial direction				
Total (n=54)	71.06±9.75	78.41±7.91	7.35±8.85	<0.001
Improved (n=34)	69.93±10.46	78.83±8.98	8.89±8.35	<0.001
Not improved (n=20)	72.97±8.33	77.69±5.80	4.71±9.26	0.03
Balance at posteromedial direction				
Total (n=54)	69.75±9.12	76.29±9.52	6.54±7.43	<0.001
Improved (n=34)	67.74±9.04	76.39±10.04	8.65±6.26	<0.001
Not improved (n=20)	73.17±8.40	76.14±8.81	2.96±8.04	0.111

ROM: Range of Motion.
Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them. was approved by the Ethics Committee of Ahvaz Jundishapur University of Medical Sciences (Code: IR.AJUMS.REC.1394.275).

Funding

This study was extracted from a PhD. dissertation of the first author at the Musculoskeletal Rehabilitation Research Center, Ahvaz University of Medical Sciences, Ahvaz. Also, this study was supported by the Ahvaz Jundishapur University of Medical Sciences.

Authors' contributions

Conceptualization: Mohammad Jafar Shaterzadeh Yazdi, Hossein Negahban, Neda Mostafaee; Supervision: Mohammad Jafar Shaterzadeh Yazdi, Hossein Negahban, Shahin Goharpey; Methodology: Hossein Negahban, Shahin Goharpey, Neda Mostafaee; Writing – original draft: Neda Mostafaee; Writing – review & editing: All authors; Data collection: Neda Mostafaee, Nahid Pirayeh; Data analysis: Mohammad Mehravar, Neda Mostafaee.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

Table 3. The Spearman correlation coefficient and area under the Receiver Operating Characteristics (ROC) curve for the study variables

Variables	The Spearman Correlation Coefficient (P-Value)	Area Under the Curve (95% CI)	Cut-Point	Sensitivity (95% CI)	Specificity (95% CI)
Pain	0.16	0.61 (0.45-0.76)	1.50	0.52 (0.35-0.69)	0.85 (0.61-0.96)
Knee flexion ROM	0.07	0.54 (0.38-0.70)	8.83	0.47 (0.30-0.64)	0.70 (0.45-0.87)
Knee extension ROM	0.51	0.85 (0.73-0.97)	1.50	0.82 (0.64-0.92)	0.85 (0.61-0.96)
Quadriiceps strength	0.41	0.73 (0.58-0.89)	1.52	0.85 (0.68-0.94)	0.65 (0.40-0.83)
Hamstring strength	0.36	0.70 (0.54-0.86)	1.77	0.82 (0.64-0.92)	0.60 (0.36-0.80)
Reach at anterior direction (cm)	-0.01	0.45 (0.29-0.60)	10.91	0.26 (0.13-0.44)	0.90 (0.66-0.98)
Balance at lateral direction (cm)	0.12	0.56 (0.40-0.72)	10.50	0.41 (0.25-0.59)	0.85 (0.61-0.96)
Balance at medial direction (cm)	0.38	0.71 (0.56-0.86)	5.08	0.73 (0.55-0.86)	0.70 (0.45-0.87)
Balance at posteromedial direction (cm)	0.43	0.74 (0.59-0.88)	4.25	0.73 (0.55-0.86)	0.65 (0.40-0.83)
مقاله پژوهشی:
قابلیت پاسخگویی مقیاس‌های پیامد اختلال محور در افراد با بازسازی لیگامان متقاطع قدم‌ی پس از فیزیوتراپی

ندا مصطفایی، علی‌اصفهانی، حمید بروجردی، شاهین گوهرپی، محمد مهرآور، ناهید پیرایه

1. گروه فیزیوتراپی، مرکز تحقیقات ارتوپدی، دانشکده علوم پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران.
2. مرکز تحقیقات توانبخشی عضلانی-اسکلتی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران.

پارگی لیگامان متقاطع قدامی با سطح بالای هماهنگی و توانمندیحمایت است. برای ارزیابی توانمندی و هماهنگی بالینی چهار مقیاس پیامد مطرح شده‌اند که برای ارزیابی تحقیقاتی بهبودی در عملکرد بدنی افراد با این آسیب مورد استفاده قرار می‌گیرند. این مقاله به منظور بررسی قابلیت پاسخگویی مقیاس‌های پیامد محور در افراد با بازسازی لیگامان متقاطع قدامی پس از فیزیوتراپی انجام شده است.

مقدمه
پارگی لیگامان متقاطع قدامی یکی از شایع‌ترین آسیب‌های زانوست. این آسیب باعث درد و ایجاد تعادل نیمه‌پای، محرومیت، کاهش قدرت عضلات زانو و مشکلات پیامدی قابل حساب می‌شود. در این مطالعه، به منظور بررسی قابلیت پاسخگویی مقیاس‌های پیامد محور در افراد با بازسازی لیگامان متقاطع قدامی پس از فیزیوتراپی، چهار مقیاس انتخاب شد که از آن‌ها مقیاس‌های چشمی درد، گونیامتر و دینامومتر دستی و آزمون تعادلی ستاره ای بودند. نتایج نشان داد که تمام مقیاس‌ها می‌توانند با قابلیت تکرار، اعتبار و پاسخگویی قابل قبولی برای بررسی تغییرات بالینی تأثیر گذار باشند.

کلیدواژه‌ها: قابلیت پاسخگویی، بازسازی لیگامان متقاطع قدامی، دامنه حرکتی، قدرت عضله، تعادل
تاکنون مطالعات فقط به بررسی قابلیت پاسخ‌گویی یک ابزار سنجش، نمرات حاصله از این روش سنجش یکنواختی، عاری از خطای اندازه‌گیری هستند. درواقع در صورت تکرار پذیری یک ابزار سنجش، نمرات حاصله از این روش سنجش یکنواختی، عاری از خطای اندازه‌گیری هستند. درواقع در صورت تکرار پذیری یک ابزار سنجش، نمرات حاصله از این روش سنجش یکنواختی، عاری از خطای اندازه‌گیری هستند. درواقع در صورت تکرار پذیری یک ابزار سنجش، نمرات حاصله از این روش سنجش یکنواختی، عاری از خطای اندازه‌گیری هستند.

روش بررسی

شرکت‌کنندن

این پژوهش به صورت همبوعه آینده‌نگر اندازه‌گیری می‌باشد. در این مطالعه، در نظر گرفته شد که در صورت اجرای برنامه‌های درمانی، افرادی که با آسیب لیگام‌های پا مواجه هستند، می‌توانند بهبودی در عملکردی و بهبود تعادل داشته باشند.

ظنه اندازه‌گیری، استفاده از پرسش‌نامه‌های تگنر، کووس و لیشو اختلال محور در افراد با بازسازی لیگام‌های پا است. می‌تواند به بررسی قابلیت پاسخ‌گویی این پیامدها در افرادی با آسیب لیگام‌های پا کمک کند. در این مطالعه، میزان تعادل و قدرت عضله کوادریسپس و بهبود تعادل در افرادی با آسیب لیگام‌های پا به‌عنوان متغیرهای تحقیق بود.

در این مطالعه، میزان تعادل و قدرت عضله کوادریسپس و بهبود تعادل در افرادی با آسیب لیگام‌های پا به‌عنوان متغیرهای تحقیق بود.

2. KOOS, Tagger, Kyhholm

3. Visual Analogue Scale
جستجوی قابلیت پاسخگویی برای پرسش‌نامه‌های ابزاری که به دنبال بررسی اثر مداخله است کنترل از آنجایی که هدف از مطالعات قابلیت پاسخگویی، بررسی با اندازه‌گیری اچ‌پی۶ دارد. چنین مطالعاتی که در مطالعات ماسبقه‌ای شامل عضلات مومونی و همسترینگ و کنترل تعادل درمان فیزیوتراپی (تمرینات بازآموزی اسکلتی و مسواد) از طریق ابزارهای پیامدهای درد، دامنه حرکتی لیگامان) و دوباره در دومین مرحله ارزیابی (بعد از چهار هفته جهت بررسی قابلیت پاسخگویی، همه افراد شرکت‌کننده در بیمارستان را در مطالعات پژوهشی حاضر ضروری نبود. در مطالعات گذشته داشته است که این ابزار در نظر گرفته شود. از بیمار خواسته شد که پای خود را به طور مداوم و با قدرتی برای دامنه تحتانی (عضلات کوادریسپس و همسترینگ) رساند. در بخش قدامی و خلفی ساق، درست بالای مالئول‌ها قرار گرفت. آزمون کناره‌گیری از نظر سوی و بخش دیگر آن مربوط به شدت دردی است که فرد تجربه می‌کند. فاصله بین سمت چپ و سمت راست، به سانتی‌متر محاسبه شده و به عنوان شدت درد محاسبه شد. گزارش شده است که این ابزار برای بررسی اثر مداخله است کنترل از آنجایی که هدف از مطالعات قابلیت پاسخگویی، بررسی با اندازه‌گیری اچ‌پی۶ دارد. چنین مطالعاتی که در مطالعات ماسبقه‌ای شامل عضلات مومونی و همسترینگ و کنترل تعادل درمان فیزیوتراپی (تمرینات بازآموزی اسکلتی و مسواد) از طریق ابزارهای پیامدهای درد، دامنه حرکتی لیگامان) و دوباره در دومین مرحله ارزیابی (بعد از چهار هفته جهت بررسی قابلیت پاسخگویی، همه افراد شرکت‌کننده در بیمارستان را در مطالعات پژوهشی حاضر ضروری نبود. در مطالعات گذشته داشته است که این ابزار در نظر گرفته شود. از بیمار خواسته شد که پای خود را به طور مداوم و با قدرتی برای دامنه تحتانی (عضلات کوادریسپس و همسترینگ) رساند. در بخش قدامی و خلفی ساق، درست بالای مالئول‌ها قرار گرفت. آزمون کناره‌گیری از نظر سوی و بخش دیگر آن مربوط به شدت دردی است که فرد تجربه می‌کند. فاصله بین سمت چپ و سمت راست، به سانتی‌متر محاسبه شده و به عنوان شدت درد محاسبه شد. گزارش شده است که این ابزار برای بررسی اثر مداخله است کنترل از آنجایی که هدف از مطالعات قابلیت پاسخگویی، بررسی با اندازه‌گیری اچ‌پی۶ دارد. چنین مطالعاتی که در مطالعات ماسبقه‌ای شامل عضلات مومونی و همسترینگ و کنترل تعادل درمان فیزیوتراپی (تمرینات بازآموزی اسکلتی و مسواد) از طریق ابزارهای پیامدهای درد، دامنه حرکتی لیگامان) و دوباره در دومین مرحله ارزیابی (بعد از چهار هفته جهت بررسی قابلیت پاسخگویی، همه افراد شرکت‌کننده در بیمارستان را در مطالعات پژوهشی حاضر ضروری نبود. در مطالعات گذشته داشته است که این ابزار در نظر گرفته شود. از بیمار خواسته شد که پای خود را به طور مداوم و با قدرتی برای دامنه تحتانی (عضلات کوادریسپس و همسترینگ) رساند. در بخش قدامی و خلفی ساق، درست بالای مالئول‌ها قرار گرفت. آزمون کناره‌گیری از نظر سوی و بخش دیگر آن مربوط به شدت دردی است که فرد تجربه می‌کند. فاصله بین سمت چپ و سمت راست، به سانتی‌متر محاسبه شده و به عنوان شدت درد محاسبه شد. گزارش شده است که این ابزار برای بررسی اثر مداخله است کنترل از آنجایی که هدف از مطالعات قابلیت پاسخگویی، بررسی با اندازه‌گیری اچ‌پی۶ دارد. چنین مطالعاتی که در مطالعات ماسبقه‌ای شامل عضلات مومونی و همسترینگ و کنترل تعادل درمان فیزیوتراپی (تمرینات بازآموزی اسکلتی و مسواد) از طریق ابزارهای پیامدهای درد، دامنه حرکتی لیگامان) و دوباره در دومین مرحله ارزیابی (بعد از چهار هفته جهت بررسی قابلیت پاسخگویی، همه افراد شرکت‌کننده در بیمارستان را در مطالعات پژوهشی حاضر ضروری نبود. در مطالعات گذشته داشته است که این ابزار در نظر گرفته شود. از بیمار خواسته شد که پای خود را به طور مداوم و با قدرتی برای دامنه تحتانی (عضلات کوادریسپس و همسترینگ) رساند. در بخش قدامی و خلفی ساق، درست بالای مالئول‌ها قرار گرفت. آزمون کناره‌گیری از نظر سوی و بخش دیگر آن مربوط به شدت دردی است که فرد تجربه می‌کند. فاصله بین سمت چپ و سمت راست، به سانتی‌متر محاسبه شده و به عنوان شدت درد محاسبه شد. گزارش شده است که این ابزار برای بررسی اثر مداخله است کنترل از آنجایی که هدف از مطالعات قابلیت پاسخگویی، بررسی با اندازه‌گیری اچ‌پی۶ دارد. چنین مطالعاتی که در مطالعات ماسبقه‌ای شامل عضلات مومونی و همسترینگ و کنترل تعادل درمان فیزیوتراپی (تمرینات بازآموزی اسکلتی و مسواد) از طریق ابزارهای پیامدهای درد، دامنه حرکتی لیگامان) و دوباره در دومین مرحله ارزیابی (بعد از چهار هفته جهت بررسی قابلیت پاسخگویی، همه افراد شرکت‌کننده در بیمارستان را در مطالعات پژوهشی حاضر ضروری نبود. در مطالعات گذشته داشته است که این ابزار در نظر گرفته شود. از بیمار خواسته شد که پای خود را به طور مداوم و با قدرتی برای دامنه تحتانی (عضلات کوادریسپس و همسترینگ) رساند. در بخش قدامی و خلفی ساق، درست بالای مالئول‌ها قرار گرفت. آزمون کناره‌گیری از نظر سوی و بخش دیگر آن مربوط به شدت دردی است که فرد تجربه می‌کند. فاصله بین سمت چپ و سمت راست، به سانتی‌متر محاسبه شده و به عنوان شدت درد محاسبه شد. گزارش شده است که این ابزار برای بررسی اثر مداخله است کنترل از آنجایی که هدف از مطالعات قابلیت پاسخگویی، بررسی با اندازه‌گیری اچ‌پی۶ دارد. چنین مطالعاتی که در مطالعات ماسبقه‌ای شامل عضلات مومونی و همسترینگ و کنترل تعادل درمان فیزیوتراپی (تمرینات بازآموزی اسکلتی و مسواد) از طریق ابزارهای پیامدهای درد، دامنه حرکتی لیگامان) و دوباره در دومین مرحله ارزیابی (بعد از چهار هفته
مثبت صحیح. در این مطالعه، به بررسی توزیع نرمال متغیرها، برای ارزیابی میزان همبستگی بین متغیرهای پیامدهای مختلف، ضریب همبستگی اسپیرمن استفاده گردید. این ضریب، برای تعیین نسبت بهبود یا بهبود نیافته در یک گروه بهبود یافته، به عنوان یکی از ابزارهای پیامد بهبود یافته، در جلسه اخیر درمان، بهبود یافته یا بهبود نیافته، به طور مثبت و منفی قرار گرفتند. مقدار ضریب همبستگی اسپیرمن بین نمرات تغییر قبل و بعد از درمان، به میزان 0.70-0.50 در دامنه بین 0.50-0.25 و 0.70-0.50 مناسب به نظر می‌رسید.

نتیجه‌گیری

بنابراین، انتخاب ضریب همبستگی اسپیرمن به عنوان یکی از ابزارهای پیامد بهبود یافته بهترین راه‌حلی است. این کسب‌کردن به بررسی توزیع نرمال بهبود یافته یا بهبود نیافته، به عنوان یکی از ابزارهای پیامد بهبود یافته، در جلسه اخیر درمان، بهبود یافته یا بهبود نیافته، به طور مثبت و منفی قرار گرفتند. مقدار ضریب همبستگی اسپیرمن بین نمرات تغییر قبل و بعد از درمان، به میزان 0.70-0.50 در دامنه بین 0.50-0.25 و 0.70-0.50 مناسب به نظر می‌رسید.

نتیجه‌گیری

بنابراین، انتخاب ضریب همبستگی اسپیرمن به عنوان یکی از ابزارهای پیامد بهبود یافته بهترین راه‌حلی است. این کسب‌کردن به بررسی توزیع نرمال بهبود یافته یا بهبود نیافته، به عنوان یکی از ابزارهای پیامد بهبود یافته، در جلسه اخیر درمان، بهبود یافته یا بهبود نیافته، به طور مثبت و منفی قرار گرفتند. مقدار ضریب همبستگی اسپیرمن بین نمرات تغییر قبل و بعد از درمان، به میزان 0.70-0.50 در دامنه بین 0.50-0.25 و 0.70-0.50 مناسب به نظر می‌رسید.

نتیجه‌گیری

بنابراین، انتخاب ضریب همبستگی اسپیرمن به عنوان یکی از ابزارهای پیامد بهبود یافته بهترین راه‌حلی است. این کسب‌کردن به بررسی توزیع نرمال بهبود یافته یا بهبود نیافته، به عنوان یکی از ابزارهای پیامد بهبود یافته، در جلسه اخیر درمان، بهبود یافته یا بهبود نیافته، به طور مثبت و منفی قرار گرفتند. مقدار ضریب همبستگی اسپیرمن بین نمرات تغییر قبل و بعد از درمان، به میزان 0.70-0.50 در دامنه بین 0.50-0.25 و 0.70-0.50 مناسب به نظر می‌رسید.

نتیجه‌گیری

بنابراین، انتخاب ضریب همبستگی اسپیرمن به عنوان یکی از ابزارهای پیامد بهبود یافته بهترین راه‌حلی است. این کسب‌کردن به بررسی توزیع نرمال بهبود یافته یا بهبود نیافته، به عنوان یکی از ابزارهای پیامد بهبود یافته، در جلسه اخیر درمان، بهبود یافته یا بهبود نیافته، به طور مثبت و منفی قرار گرفتند. مقدار ضریب همبستگی اسپیرمن بین نمرات تغییر قبل و بعد از درمان، به میزان 0.70-0.50 در دامنه بین 0.50-0.25 و 0.70-0.50 مناسب به نظر می‌رسید.

نتیجه‌گیری

بنابراین، انتخاب ضریب همبستگی اسپیرمن به عنوان یکی از ابزارهای پیامد بهبود یافته بهترین راه‌حلی است. این کسب‌کردن به بررسی توزیع نرمال بهبود یافته یا بهبود نیافته، به عنوان یکی از ابزارهای پیامد بهبود یافته، در جلسه اخیر درمان، بهبود یافته یا بهبود نیافته، به طور مثبت و منفی قرار گرفتند. مقدار ضریب همبستگی اسپیرمن بین نمرات تغییر قبل و بعد از درمان، به میزان 0.70-0.50 در دامنه بین 0.50-0.25 و 0.70-0.50 مناسب به نظر می‌رسید.
بحث

با توجه به بررسی مطالعات انجام شده تاکنون، این مطالعه اولین مطالعه‌ای است که به بررسی قابلیت پاسخ‌گویی و تعیین حداقل تغییرات بالینی مهم برای مقیاس پیامد درد، دامنه حرکتی، قدرت عضله زانو و کنترل تعادل پویا پرداخته است. نتایج این مطالعه می‌تواند اطلاعات مفیدی را برای انتخاب بهترین و مناسب‌ترین مقیاس پیامد اختلال محور برای ارزیابی تغییرات بالینی، متعاقب درمان فیزیوتراپی در اختیار درمانگران و محققان قرار دهد.

یکی از مهم‌ترین مشکلات و عوارض پس از بازسازی لیگامان، کاهش قدرت عضلات کوادریسپس و همسترینگ است. البته تحقیقات متعدد نشان می‌دهد که کاهش قدرت عضله کوادریسپس نسبت به عضله همسترینگ است. همچنین نشان داده شده است که کاهش قدرت عضله کوادریسپس و همسترینگ باعث ایجاد ضعف و نقص عملکردی مربوط به کاهش قدرت عضله همسترینگ و عملکرد زانو، بالاتر است.

نتایج این مطالعه نشان می‌دهد که بررسی قابلیت پاسخ‌گویی با توجه به مطالعات انجام شده تاکنون، این مطالعه اولین مطالعه‌ای است که به بررسی قابلیت پاسخ‌گویی و تعیین حداقل تغییرات بالینی مهم برای مقیاس پیامد درد، دامنه حرکتی، قدرت عضله زانو و کنترل تعادل پویا پرداخته است. نتایج این مطالعه می‌تواند اطلاعات مفیدی را برای انتخاب بهترین و مناسب‌ترین مقیاس پیامد اختلال محور برای ارزیابی تغییرات بالینی، متعاقب درمان فیزیوتراپی در اختیار درمانگران و محققان قرار دهد.

متغیرهای دموگرافیک و بالینی	تعداد (درصد)	نتایج (درصد)	
سن (سال)	میانگین (انحراف معیار)	175/14 (8/42)	17/31/5 (9 - 12)
وزن (کیلوگرم)	میانگین (انحراف معیار)	54/0/100 (0)	17/4/6 (9)
جنسیت	مرد 0/0 (0)	زن 17/31/5 (9 - 12)	
وضعیت تحصیلات	مجرد 0/0 (0)	متأهل 46/85/1 (0)	
پای غالب	چپ 31/57/4 (0)	راست 23/42/6 (0)	
مدت زمان پس از جراحی (هفته)	مدت زمان مداخله فیزیوتراپی (هفته)	10/0/0 (0)	5/0/0 (0)

به نظر می‌رسد که تغییرات در دامنه حرکتی در جهت اکستنشن، نسبت به جهت فلکشن، با توجه به سطح فعالیت بازیاد شده، اثرات مثبتی در جهت خاصیت نشان می‌دهد. این مطالعه به نظر می‌رسد که تغییرات در دامنه حرکتی در جهت اکستنشن، نسبت به جهت فلکشن، با توجه به سطح فعالیت بازیاد شده، اثرات مثبتی در جهت خاصیت نشان می‌دهد.
میانگین و انحراف معیار نمرات اولیه (اولین جلسه ارزیابی)، ثانویه (دومین جلسه ارزیابی و نمرات تغییر برای پیامد های درد، دامنه حرکتی، قدرت عضلات

پیامد	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
خصوصیات	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
میانگین تغییر	مجموع (میانگین ± انحراف معیار)	پیامدهای نخستین	پیامدهای ثانویه	پیامدهای نمرات تغییر
هدایت حسایبی در این پرسش نامه در بیماران جوان با آسیب و همکارانش انجام شده است که نشان می‌دهد خردی‌ها در درد در این پرسش‌نامه در بیماران جوان با آسیب و فعال در فضای بالین و تحقیق بهره‌برد.

همچنین نتایج آنالیز ROC و همسنجشی نشان داد که درد مقایسه در درد در پرسش‌نامه در بیماران جوان با آسیب و همکارانش انجام شده است که نشان می‌دهد خردی‌ها در درد در این پرسش‌نامه در بیماران جوان با آسیب و فعال در فضای بالین و تحقیق بهره‌برد.

همچنین از میان جه‌های دسترس آزمون SEBT جه‌های داخلی و خلفی داخلی قابلیت پاسخ‌دهی قابل قبولی را نشان داده. به‌طور کلی، بیشتر بودن قابلیت پاسخ‌دهی در این دو جهت نسبت به سایر جهات، می‌تواند به این علت باشد که این دو جهت نیروی روتوسوری بیشتری داشته باشد. درحقیقت، در جهات داخلی آزمون وارد می‌کند. بنابراین این دو جهت به طور دقیق‌تر می‌تواند تغییرات بینمی معنی‌داری را تغییرات دهد. به‌طور کلی، این نتایج می‌تواند به این ترتیب باشد که نشان می‌دهد جه‌های داخلی و خلفی داخلی نسبت به سایر جهات قابلیت بیشتری در افزایش میزان افراد مبتلا به آسیب لیگوپاتی پاسخ‌دهی‌های هم‌روز می‌کنند.

همچنین نقطه برخ مطلوب که از طریق معنی‌دار

تابستان	تابستان	تابستان	تابستان	تابستان		
0/45-0/87	0/64-0/92	0/35-0/69	0/13-0/44	0/64-0/92		
0/55-0/86	0/73-0/97	0/29-0/60	0/59-0/88	0/54-0/86		
0/70	0/26	0/54	0/85	0/54	0/45	0/70

همچنین نتایج تحقیقهای همبستگی اسپیرمن و سطح زیر منحنی برای پیامدها در دامنه حرکتی و قدرت عضلات زانو و گردن در پرسش‌نامه نشان داد که درد در این دو جهت به طور دقیق‌تر نیروی روتاتوری بیشتری روی زانوی بازسازی شده در زمان انجام

nymانه.
ملاحظات خلاصی

پیروی از اصول اخلاق پژوهش

اصول اخلاقی قانونی در این مطالعه رعایت شده است. شرکت‌کنندگان اجازه داشتند هر زمان که مایل بودند از پژوهش خارج شوند. همچنین همه شرکت‌کنندگان در جریان تحقیق با هم اطلاعاتی باهم درون‌پژوهش نبودند. اطلاعات آن‌ها هر ماه به‌طور جداگانه شد. همچنین این مطالعه بر اساس توصیه‌های ایفای شده، به‌طور منظم مورد تأیید‌کنندگان اداره دند. پس از اطلاع از شرایط داشته باشند، با حفظ حریم‌های آن‌ها، به‌طور خصوصی و مربوط به این مطالعه مورد تایید کمیته اخلاق دانشگاه علوم پزشکی جندی شاپور اهواز قرار گرفت. (کد: IR.AJUMS.REC.1394.275)

مشارکت نویسندهان

مفهوم سازی محمد مجیده‌زاده-فرزین، حسین نگهبان، ندا مصطفایی؛ تهیه مقاله: ندا مصطفایی، حسن نگهبان، شاهین گوهرپی، همایش نویسندگان: ندا مصطفایی، حسن نگهبان، شاهین گوهرپی

مستقلا: نگهبان، بهترین پایان‌رسانی: ندا مصطفایی.

تهیه دوره‌های فیزیوتراپی و داروهای اکستنشن، دانشگاه علوم پزشکی جندی شاپور اهواز است. همچنین دانشگاه علوم پزشکی جندی شاپور اهواز از مطالعه حمایت مالی کرد. استفاده از این گره در مطالعات و تحقیقات نیز کاربرد زیادی دارد.

نتیجه‌گیری

با توجه به یافته‌های این مطالعه و بهتر بودن قابلیت پاسخ‌گویی پیامدهای اختلال محور در جهت اکستنشن، قدرت عضله‌های کوادریسپس و همسترینگ، و جهت‌های داخلی و خلفی داخلی، نتایج مطالعه حاضر شواهدی را جهت انتخاب SEBT آزمون ارائه داده‌ایان.

بنابراین با توجه به اینکه قابلیت پاسخگویی سایر مقیاس‌های پیامد در بیماران با بازسازی لیگامان متقاطع قدامی پس از فیزیوتراپی، این مقیاس‌ها احتمالاً بهتر می‌توانند برای تعیین تغییرات بالینی شناخته شوند. بنابراین بر اساس این نتایج و با توجه به محدودیت‌های مطالعه، در تحقیقات بعدی، می‌توان از مقیاس‌های پیامد دیگری برای تعیین تغییرات بالینی استفاده کرد.

از آنجایی که لیکرت هفت‌ایتمی مورد استفاده در این مطالعه بوده است، بنابراین می‌تواند برای تعریف میزان تغییر در وضعیت سلامتی بیمار به‌طور دقیق‌تر استفاده‌گردد. همچنین، در مطالعات بعدی، می‌توان به استفاده از مقیاس‌های پیامد دیگری نیز پرداخت.

پیشنهاد می‌شود که در مطالعات بعدی به بررسی قابلیت پیامد که بر اساس این مقاله، ارائه گردیده است، ابتدا ارزیابی دقیق با توجه به شرایط طبیعی بیماران انجام شود.

عملکرد کیفیت مطالعه در جهت اکستنشن قدرت عضله‌های کوادریسپس و همسترینگ، و جهت‌های داخلی و خلفی داخلی

پیشنهاد می‌شود که در مطالعات بعدی به بررسی قابلیت پیامد که بر اساس این مقاله، ارائه گردیده است، ابتدا ارزیابی دقیق با توجه به شرایط طبیعی بیماران انجام شود.
References

[1] Bonfim TR, Jansen Paccola CA, Bataia JA. Preproinflammatory and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Archives of Physical Medicine and Rehabilitation. 2003; 84(8):1217-23. [DOI:10.1016/S0003-9993(03)00147-3]

[2] Howells BE, Ardern CL, Webster KE. Is postural control restored following anterior cruciate ligament reconstruction? A systematic review. Knee Surgery, Sports Traumatology, Arthroscopy. 2011; 19(7):1168-77. [DOI:10.1007/s00167-011-1444-x]

[3] Logerstedt D, Lynch A, Axe MJ, Snyder-Mackler L. Symmetry restoration and functional recovery before and after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2015; 23(4):569-75. [DOI:10.1007/s00167-012-1929-2]

[4] Logerstedt D, Lynch A, Axe MJ, Snyder-Mackler L. Pre-operative quadriceps strength predicts IKDC2000 scores 6 months after anterior cruciate ligament reconstruction. The Knee. 2013; 20(3):208-12. [DOI:10.1016/j.jknee.2012.07.011]

[5] Zouita Ben Moussa A, Zouita S, Dziri C, Ben Salah FZ. [Single-translation]. Annals of Physical and Rehabilitation Medicine. 2009; 52(6):475-84. [DOI:10.1016/j.rehab.2009.02.006]

[6] Arna Risberg M, Lewek M, Snyder-Mackler L. A systematic review of evidence for anterior cruciate ligament rehabilitation: How much and what type? Physical Therapy in Sport. 2008; 5(3):125-45. [DOI:10.1016/j.ptsr.2008.02.003]

[7] Lobb R, Turnill S, Claydon LS. A review of systematic reviews on anterior cruciate ligament reconstruction rehabilitation. Physical Therapy in Sport. 2012; 13(4):270-8. [DOI:10.1016/j.ptsr.2012.05.001]

[8] van Grinsven S, van Cingel REH, Holla CJM, van Looen CJM. Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy. 2010; 18(8):1128-44. [DOI:10.1007/s00167-009-1027-2]

[9] Clanden JA, Whitman JM, Houser JL, Wainner RS, Childs JD. Psychometric properties of selected tests in patients with lumbar spinal stenosis. The Spine Journal. 2012; 12(10):921-31. [DOI:10.1016/j.spinee.2012.05.004]

[10] Terwee CB, Bot SDM, de Boer MR, van der Windt DAWM, Knoel DL, Dekker J, et al. Quality criteria were proposed for measurement properties of health status questionnaires. Journal of Clinical Epidemiology. 2007; 60(1):34-42. [DOI:10.1016/j.jclinepi.2006.03.012]

[11] Lehman LA, Velozo CA. Ability to detect change in patient function: Responsiveness designs and methods of calculation. Journal of Hand Therapy. 2010; 23(4):361-70. [DOI:10.1016/j.jht.2010.05.003]

[12] Pengel LHM, Rethrauge KM, Maher CG. Responsiveness of pain, disability, and physical impairment outcomes in patients with low back pain. Spine. 2004; 29(8):879-83. [DOI:10.1097/00007632-200404150-00011]

[13] Salaberripasen P, Vachalathiti R, Vongsirinovnat M, Pheuaik S. Responsiveness of pain, active range of motion, and disability in patients with acute nonspecific low back pain. Hong Kong Physiotherapy Journal. 2011; 29(1):20-4. [DOI:10.1016/j.hkpyj.2011.02.003]

[14] French HP, Fitzpatrick M, FitzGerald O. Responsiveness of physical function outcomes following physiotherapy intervention for osteoarthritis of the knee: An outcome comparison study. Physiotherapy. 2011; 97(4):302-8. [DOI:10.1016/j.physio.2010.03.002]

[15] Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for assessing responsiveness: A critical review and recommendations. Journal of Clinical Epidemiology. 2000; 53(5):459-68. [DOI:10.1016/S0895-4356(99)00206-1]

[16] Kamper SJ, Maher CG, Mackay G. Global rating of change scales: A review of strengths and weaknesses and considerations for design. Journal of Manual & Manipulative Therapy. 2009; 17(3):163-70. [DOI:10.1077/jmt.2009.17.3163]

[17] Briggs KK, Kocher MS, Rodkey WG, Steadman JR. Reliability, validity, and responsiveness of the Lysholm knee score and Tegner activity scale for patients with meniscal injury of the knee. The Journal of Bone & Joint Surgery. 2006; 88(4):698-705. [DOI:10.2106/JBJS.E.00426.200604000.00003]

[18] Briggs KK, Lysholm J, Tegner Y, Rodkey WG, Kocher MS, Steadman JR. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. The American Journal of Sports Medicine. 2009; 37(5):890-7. [DOI:10.1177/0005109808330143]

[19] Roos EM, Roos HP, Ekdahl C, Lohmander LS. Knee injury and osteoarthritis outcome score (KOOS) - validation of a Swedish version. Scandinavian Journal of Medicine & Science in Sports. 1999; 8(6):439-48. [DOI:10.10111/j.1600-0838.1998.tb00465.x]

[20] Shaw T, Chipchase LS, Williams MT. A users guide to outcome measurement following ACL reconstruction. Physical Therapy in Sport. 2004; 5(2):57-67. [DOI:10.1016/S1466-853X(04)00019-7]

[21] Warren KJC, Chua CDM, Tagala AA, Cadiz BO, Maglanque NP. Validity and reliability of selected outcome measures used in rehabilitation for anterior cruciate ligament reconstruction: A literature review. Philippine Journal of Allied Health Sciences. 2006; 1:41-50. [https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=]

[22] Groga PP, Braatz JH, Rose SJ, Norton BJ. Reliability and validity of goniometric measurements at the knee. Physical Therapy. 1987; 67(2):192-5. [DOI:10.1093/ptj/67.2.192]

[23] Janssen JC, Le-Ngoc L. Intratester reliability and validity of concentric measurements using a new hand-held dynamometer. Archives of Physical Medicine and Rehabilitation. 2009; 90(9):1541-7. [DOI:10.1016/j.apmr.2009.02.021]

[24] Chamorro C, Armijo-Olivo S, De la Fuente C, Fuentes J, Javier Chiruva L. Absolute reliability and concurrent validity of hand held dynamometry and isokinetic dynamometry in the hip, knee and ankle joints: Systematic review and meta-analysis. Open medicine. 2017; 12(1):359-75. [DOI:10.1515/med-2017-0052]

[25] Le-Ngoc L, Janssen J. Validity and reliability of a hand-held dynamometer for dynamic muscle strength assessment. In: Kim CT, editor. Rehabilitation Medicine. London: IntechOpen; 2012. pp. 53-66. [DOI:10.5772/37688]
[26] Herrington L, Hatcher J, Hatcher A, McNicholas M. A comparison of Star Excursion Balance Test reach distances between ACL deficient patients and asymptomatic controls. The Knee. 2009; 16(2):149-52. [DOI:10.1016/j.knee.2008.10.004]

[27] Munro AG, Herrington LC. Between-session reliability of the Star Excursion Balance Test. Physical Therapy in Sport. 2010; 11(4):126-32. [DOI:10.1016/j.ptsp.2010.07.002]

[28] Gribble PA, Hertel J, Plisky Ph. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. Journal of Athletic Training. 2012; 47(3):339-57. [DOI:10.4085/1062-6050-47.3.08]

[29] Powden CJ, Dodds TK, Gabriel EH. The reliability of the Star Excursion Balance Test and lower quarter y-balance test in healthy adults: A systematic review. International Journal of Sports Physical Therapy. 2019; 14(5):683-94. [PMID] [PMCID]

[30] Stratford PW, Binley JM, Riddle DL. Health status measures: Strategies and analytic methods for assessing change scores. Physical Therapy. 1996; 76(10):1109-23. [DOI:10.1093/ptj/76.10.1109]

[31] Heijne A, Werner S. Early versus late start of open kinetic chain quadriceps exercises after ACL reconstruction with patellar tendon or hamstring grafts: A prospective randomized outcome study. Knee Surgery, Sports Traumatology, Arthroscopy. 2007; 15(4):472-3. [DOI:10.1007/s00167-007-0313-0]

[32] Deyo RA, Centor RM. Assessing the responsiveness of functional scales to clinical change: An analogy to diagnostic test performance. Journal of Chronic Diseases. 1986; 39(11):897-906. [DOI:10.1016/0021-9681(86)90038-X]

[33] Houweling TAW. Reporting improvement from patient-reported outcome measures: A review. Clinical Chiropractic. 2010; 13(1):15-22. [DOI:10.1016/j.clch.2009.12.003]

[34] Flobtwoski CM. Sensitivity, specificity, Receiver-Operating Characteristic (ROC) curves and likelihood ratios: Communicating the performance of diagnostic tests. The Clinical Biochemist Reviews. 2008; 29 Suppl 1(Suppl 1):S83-7. [PMID] [PMCID]

[35] Lehman LA, Sindhu BS, Sheehman O, Romero S, Velozo CA. A comparison of the ability of two upper extremity assessments to measure change in function. Journal of Hand Therapy. 2010; 23(1):31-40. [DOI:10.1016/j.jht.2009.09.006]

[36] Yazdi H, Moradi A, Sanaie A, Ghadi A. Does the hyperextension maneuver prevent knee extension loss after arthroscopic anterior cruciate ligament reconstruction? Journal of Orthopaedics and Traumatology. 2016; 17(3):327-31. [DOI:10.1007/s10195-016-0408-9]

[37] Keays SL, Bullock-Saxton J, Keays AC, Newcombe P. Muscle strength and function before and after anterior cruciate ligament reconstruction using semitendinosus and gracilis. The Knee. 2001; 8(3):229-34. [DOI:10.1016/S0968-0160(01)00099-9]

[38] de Jong SN, van Caspel DR, van Haeff MJ, Saris DBF. Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy. 2007; 23(1):21.E1-11. [DOI:10.1016/j.arthro.2006.08.024]

[39] Collins NJ, Prinsen CAC, Christensen R, Bartels EM, Terwee CB, Roos EM. Knee injury and Osteoarthritis Outcome Score (KOOS): Systematic review and meta-analysis of measurement properties. Osteoarthritis and Cartilage. 2016; 24(8):1317-29. [DOI:10.1016/j.joca.2016.03.010]
This Page Intentionally Left Blank