Comparative Antimicrobial Activities of *Alchornea cordifolia* Leaf Crude Extracts and Cephalosporin Antibiotics on Some Pathogenic Clinical Isolates

* A. A. Agboke¹, C. N. Nwosu¹, D. O. Obindo¹, M. H. Ekanem¹, E. V. Edet¹, I. F. Ubak²

¹Department of Pharmaceutics and Pharmaceutical Technology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
²Department of Genetics and Biotechnology, University of Calabar, Calabar, Cross River State, Nigeria

ABSTRACT

Comparative antimicrobial activities of the aqueous and ethanol leaf extracts of *Alchornea cordifolia* and some Cephalosporin antibiotics of different generations available in Uyo, LGA of Akwa Ibom state of Nigeria were evaluated using macro dilution assay to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the plant aqueous and ethanol leaf extracts and of the Cephalosporin antibiotics against some pathogenic Gram positive and Gram negative organisms. Results: The extraction yielded 59.9g for aqueous leaf extract (ALE) and 74.10 g of the ethanol leaf extract. The MIC of the leaf extracts ranging from (1.953 mg/mL - 15.625 mg/mL) and MBC ranging from (3.906 mg/mL - 62.50 mg/mL). The cephalosporin antibiotics; Ceftriaxone (Chupet®) MIC ranging from (0.0078-0.25 mg/mL), MBC (0.0312 mg/mL - 0.25 mg/mL), Cephalexin (Sporidex®) MIC ranging from (0.009766 mg/mL - 0.625 mg/mL), MBC (0.0195 mg/mL - 2.50 mg/mL) and Cefuroxime with MIC ranging from (0.0078 mg/mL-0.25 mg/mL) and MBC (1.25 mg/mL - 2.5 mg/mL). Antimicrobial substances are considered as bactericidal agent when the ratio MBC/MIC ≤ 4 and bacteriostatic when the ratio MBC/MIC > 4.

The antimicrobial activities evaluated increased in the following order of potency; A. cordifolia leaf extracts > Ceftriaxone > Cefalexin > Cefuroxime considering the values of MBC/MIC.

Keywords: Antimicrobial activities, bacteriostatic, bactericidal, cephalosporin, comparative.

1. INTRODUCTION

The term antibiotic was coined from the word Antibiosis which literally means against life ⁷. It was originally broadly defined as a substance produced by one micro-organism ² or of biological origin which at low concentrations can inhibit the growth of, or are lethal to other micro-organisms ². These definitions have been modified in modern terms to include antimicrobials that are also produced partly or wholly through synthetic means or extracted from plants.

Infections were the major cause of death during the nineteenth century. The introduction of antibiotics not only helped in the treatment of infections but also have a major role in decreasing mortality and morbidity ⁵. These drugs prescribed by the physicians have gained importance across the globe mainly because of an increase in antibiotic use, persistence of infections and drug resistance ⁵,⁶.

Cephalosporin are a broad class of bactericidal antibiotics that include the beta-lactam ring and share a structural similarity and mechanism of action with other beta-lactam antibiotics e.g. penicillin, carbapenems, and monobactams ⁷. They are a class of antibiotics routinely used for variety of infections, many of which are recommended first line therapies in North American Infectious Diseases Society Guidelines such as Infectious Diseases Society of America (IDSA) ⁸. They are widely used antibiotics because of their clinical efficiency and desirable safety profile.

Commonly available cephalosporin antibiotics in the Pharmaceutical chemist outlets in Uyo LGA are mostly unbranded products from Asian countries China and India. This is possibly due to cost effectiveness and availability of these antibiotics.

1.1. First generation

These are active against *Viridans Streptococci*, group *A haemolytic Streptococci*, *Staphylococcus aureus*, they don't work on *Enterococci* ⁹. They are effective against *Escherichia Coli*, Proteus mirabilis, *Klebsiella pneumonia* though susceptibilities may vary ¹⁰. They are not effective against multi-drug resistant *staphylococci* and penicillin resistant
Several pharmacological investigations have been carried out to validate some of the claimed ethnomedical uses of the plant. It has been reported to exhibit various pharmacological activities such as antibacterial, antifungal, antiplasmodial, anti-inflammatory, hepatoprotective, antitumor, antioxidant, wound healing, anti-diarrhoeal, antiinociceptive, antidepressant, immunomodulatory, anxiolytic, antidiabetic and antisypmodic activities among others. The anti-HIV potentials of the plant have been documented.

A number of constituents responsible for the observed activities have also been mentioned in the literature review reported that the parts of the plant mostly used for medicine are the leaves and stem bark but the leaves exhibit more potency. However, no comprehensive study has been carried out to confirm this. This research study is therefore geared towards validating or repudiating this claim. The antimicrobial activity of the leaves and stem bark extracts of *A. cordifolia* was evaluated and compared.

MATERIAL AND METHOD

2.1. Plant Collection and Authentication

Fresh leaves of *Alchornea cordifolia* (Schum. & Thonn) Müll. Arg. was collected from a farm land within Itak community in Ikono Local Government Area of Akwa Ibom State, Nigeria in the month of June 2018. The plant was identified and authenticated by Mr. O. U. Etiefa, a naturalist of the Pharmacognosy Department, Faculty of Pharmacy, University of Uyo.

2.2. Sample preparation and extraction

The 650 g of the powdered leaves of *Alchornea cordifolia* was weighed and macerated in 1000 mL of distilled water and 70% ethanol separately in 2000 mL conical flasks at room temperature for 24 hours with intermittent stirring. The samples were filtered three times on sterile cotton wool and filter paper and the filtrates obtained was heated to dryness using a water bath at 40°C for about three days. The extract obtained was 59.90 g for aqueous leaf extract (ALE) and 74.10 g for ethanol leaf extract (ELE), the concentrated extracts were transferred to beakers sealed with aluminum foil, labeled appropriately as ALE and ELE and stored in the refrigerator pending analysis.

2.3. Test organisms

The organisms used were pathogenic clinical isolates of three (3) Gram-positive bacteria (*Staphylococcus aureus, Streptococcus pneumonia*, and *Bacillus subtilis*), three (3) Gram-negative bacteria (*Escherichia coli, Pseudomonas aeruginosa*, and *Salmonella typhi*). They were obtained from the medical centre laboratory of University of Uyo, Uyo, Akwa Ibom, Nigeria.

Table 1: Drug samples of some commercially available Cephalosporin in Uyo LGA

First generation	Second generation	Third generation
Sporidex (Cefalexin capsule 500mg)	Axacef (Cefuroxime axetil tablet 500mg)	Chupet (Ceftriaxone powder sodium 1g)
Batch no: 3990692	Batch no: 850001	Batch no: 180201
Manufacturer: Sun Pharmaceutical Ltd, India	Manufacturer: Medreich Ltd, India.	Manufacturer: Zhongnan Kelun Pharmaceutical Co.Ltd, China
Mfg date: December 2018	Mfg date: January 2018	Mfg date: February 2018
Nafdac Reg no: 04-1430	Nafdac Reg no: 04-1430	Nafdac Reg no: A4-9142

2.3. Test organisms

The organisms used were pathogenic clinical isolates of three (3) Gram-positive bacteria (*Staphylococcus aureus, Streptococcus pneumonia*, and *Bacillus subtilis*), three (3) Gram-negative bacteria (*Escherichia coli, Pseudomonas aeruginosa*, and *Salmonella typhi*). They were obtained from the medical centre laboratory of University of Uyo, Uyo, Akwa Ibom, Nigeria.

2.4. Antibacterial assay

2.4.1. Inoculum standardization

Standard bacterial cultures were prepared by sub cultivating a loopful of each of the bacteria into sterile Muller Hilton....
broth and incubated at 37°C for 24 hours. The suspensions were adjusted to a turbidity of 10^6 colony forming units (cfu)/mL which is equal to 0.5 McFarland standard using visual comparison.

2.4.2. Susceptibility test
The agar well diffusion method modified for its suitability was used for the bacteria susceptibility test. The media used was prepared according to manufacturer’s instructions and aseptically poured into sterile Petri dishes and allowed to solidify. An overnight culture of each of the test organisms adjusted to a turbidity of 10^6 using the 0.5 McFarland standard was introduced into each dish. A 4mm sterile cork borer was used to bore holes equidistant from each other on the plates. Using a sterile pipette, different concentrations of the extracts were introduced into the wells. 1 mg/mL of Cefalexin was introduced into the wells as control measures. The plates were allowed to stand for one hour before inoculation to allow for the diffusion of the agent into the media. They were then incubated for 24 hours at 37°C. The diameter of the zones of inhibition was then measured to the nearest millimeter confirming the susceptibility of the extracts.

2.5. Determination of minimum inhibitory concentration (MIC)
The Minimum Inhibitory Concentration (MIC) of the aqueous leaf extract (ALE), ethanol leaf extracts (ELE) and the antibiotics were determined using the broth dilution method, as described by Gatsing et al. with some modifications. Stock solutions of the plant extracts were prepared at a concentration of 250mg/mL by reconstituting 2.5g (2500mg) of ALE and ELE respectively in 10ml of sterile water. The mixture was filtered through a filter paper to obtain a stock solution free of insoluble particles. Two-fold serial dilution of the stock solutions were carried out aseptically to obtain the resulting concentrations of the aqueous extract (ALE) and (ELE) of 125 mg/mL, 62.5 mg/mL, 31.25 mg/mL, 15.625 mg/mL, 7.8125 mg/mL, 3.90625 mg/mL, 1.953125 mg/mL, 0.9765625 mg/mL, 0.48828125 mg/mL and 0.244140625 mg/mL respectively. Stock solution for each cephalosporin was prepared to be 5 mg/mL for Cefalexin, 0.25 mg/mL, 0.125 mg/mL, 0.0625 mg/mL, 0.0312 mg/mL, 0.0156 mg/mL, 0.0078 mg/mL, 0.0039 mg/mL and 0.0019 mg/mL. Each tube was aseptically inoculated with a loopful of the respective microbial suspensions and the tubes were incubated at 37°C for 24 hours after which they were observed visually for the presence or absence of turbidity as an indication of the presence or absence of growth respectively. The lowest concentration that inhibited the growth of the microorganisms after 24 hours of incubation was reported as the MIC of the leaf extract against the various test organisms.

2.6. Determination of minimum bactericidal concentration (MBC)
The Minimum Bactericidal Concentration (MBC) of ALE and Cephalosporin antibiotics were derived from the MIC tubes which showed no growth. A loopful aliquot from each tube was aseptically streaked on sterile antibiotic free Muller Hilton agar plates and were labelled appropriately with corresponding concentrations. The plates were further incubated at 37°C for 24 hours after which they were examined for the presence or absence of growth against the respective concentrations. The plate with the least concentration which killed the organisms (or allowed less than 0.1% of the original inoculums to survive) after 24 hours of incubation was taken as the MBC of the plant aqueous leaf extract (ALE) and the antibiotics for the various test organisms.

3. RESULTS
3.1. Percentage yield
The aqueous extract yielded 9.2 % with lower yield compared to ethanol extract of the leaf with 11.4 %.

3.2. Antimicrobial activities of *Alchornea cordifolia* leaf extract and Cephalosporin antibiotics
The antimicrobial activities of concentrations of each extract and antibiotics against the selected test organisms are recorded as shown below:

Table 2: Summary of minimum inhibitory concentrations of the plant extracts and the cephalosporin antibiotics against test organisms after 24 hours exposure

Test organism	Cefalexin (Sporidex®)	Cefuroxime (Axacef®)	Ceftriaxone (Chupet®)	ALE	ELE
Staphylococcus aureus	0.01953	0.3125	0.0078	3.906	1.953
Streptococcus pneumoniae	0.009766	0.3125	0.0039	1.953	3.906
Bacillus subtilis	0.03906	0.625	0.0156	7.813	3.906
Escherichia coli	0.625	-	0.25	7.813	3.906
Pseudomonas aeruginosa	0.07813	0.625	0.0156	15.625	15.625
Salmonella spp	0.009766	-	0.25	15.625	7.813

ALE = Aqueous leaf extract ELE = Ethanol leaf extract
Table 3: Summary of minimum bactericidal concentrations of the plant extracts and the cephalosporin antibiotics against test organisms after 24 hours exposure

Test organism	Cefalexin (Sporidex®)	Cefuroxime (Axacef®)	Ceftriaxone (Chupet®)	ALE	ELE
Staphylococcus aureus	0.01953	1.25	0.25	7.813	3.906
Streptococcus pneumoniae	1.25	2.5	0.0312	3.906	7.813
Bacillus subtilis	2.5	2.5	0.25	15.625	7.813
Escherichia coli	> 2.5	-	0.5	> 125	> 125
Pseudomonas aeruginosa	0.3125	2.5	0.125	62.50	31.25
Salmonella spp	0.625	-	0.25	31.25	15.625

ALE = Aqueous leaf extract ELE = Ethanol leaf extract

3.3. Antimicrobial activities of the plant leaf extracts and cephalosporin antibiotics.
Antimicrobial substances are considered as bactericidal agent when the ratio MBC/MIC ≤ 4 and bacteriostatic when the ratio MBC/MIC is > 4 (Joseph et al., 2015).

Table 4: Antimicrobial activity of aqueous leaf extract of *Alchornea cordifolia* against selected test organisms

Test Organism	ALE MIC (mg/mL)	ALE MBC (mg/mL)	R = MBC/MIC	Inference
Staphylococcus aureus	3.906	7.813	2.00	Bactericidal
Streptococcus pneumoniae	1.953	3.906	2.00	Bactericidal
Bacillus subtilis	7.813	15.625	1.99	Bactericidal
Escherichia coli	7.813	> 125	> 16	Bacteriostatic
Pseudomonas aeruginosa	15.625	62.50	4.00	Bactericidal
Salmonella spp	15.625	31.25	2.00	Bactericidal

R = Ratio

Table 5: Antimicrobial activity of ethanol leaf extract of *Alchornea cordifolia* against selected test organisms

Test Organism	ELE MIC (mg/mL)	ELE MBC (mg/mL)	R = MBC/MIC	Inference
Staphylococcus aureus	1.953	3.906	2.00	Bactericidal
Streptococcus pneumoniae	3.906	7.813	2.00	Bactericidal
Bacillus subtilis	3.906	7.813	2.00	Bactericidal
Escherichia coli	3.906	> 125	> 32	Bacteriostatic
Pseudomonas aeruginosa	15.625	31.25	2.00	Bactericidal
Salmonella spp	7.813	15.625	1.99	Bactericidal

R = Ratio

Table 6: Antimicrobial activity of first generation cephalosporin (Cefalexin) against selected test organisms

Test Organism	Cefalexin (Sporidex®) MIC (mg/mL)	Cefalexin (Sporidex®) MBC (mg/mL)	R = MBC/MIC	Inference
Staphylococcus aureus	0.01953	0.01953	1.0	bactericidal
Streptococcus pneumoniae	0.009766	1.25	ND	ND
Bacillus subtilis	0.03906	2.5	64	bacteriostatic
Escherichia coli	0.625	> 2.5	> 4	bacteriostatic
Pseudomonas aeruginosa	0.07813	0.3125	3.9	bactericidal
Salmonella spp	0.009766	0.625	64	bacteriostatic

R = Ratio ND = Not Determined
Table 7: Antimicrobial activity of second generation cephalosporin (Cefuroxime) against selected test organisms

Test Organism	Cefuroxime (Axacef ®) MIC (mg/mL)	Cefuroxime (Axacef ®) MBC (mg/mL)	R = MBC/MIC	Inference
Staphylococcus aureus	0.3125	1.25	4	bactericidal
Streptococcus pneumoniae	0.3125	2.5	8	bacteriostatic
Bacillus subtilis	0.625	2.5	4	bactericidal
Escherichia coli	-	-	ND	ND
Pseudomonas aeruginosa	0.625	2.5	4	bactericidal
Salmonella spp	-	-	ND	ND

R = Ratio ND = Not Determined

Table 8: Antimicrobial activity of third generation cephalosporin (Ceftriaxone) against selected test organisms

Test Organism	Ceftriaxone (Chupet ®) MIC (mg/mL)	Ceftriaxone (Chupet ®) MBC (mg/mL)	R = MBC/MIC	Inference
Staphylococcus aureus	0.0078	0.25	32	bacteriostatic
Streptococcus pneumoniae	0.0039	0.0312	8	bacteriostatic
Bacillus subtilis	0.0156	0.25	16	bacteriostatic
Escherichia coli	0.25	0.5	2	bactericidal
Pseudomonas aeruginosa	0.0156	0.125	8	bacteriostatic
Salmonella spp	0.25	0.25	1	bactericidal

R = Ratio ND = Not Determined

Table 9: Comparative antimicrobial activities of aqueouse and ethanol leaf extract of A. cordifolia and some cephalosporin antibiotics against pathogenic clinical isolates

Concentrations of the cephalosporin antibiotics and plant extracts mg/mL
Test organism

Staphylococcus aureus
Streptococcus pneumoniae
Bacillus subtilis
Escherichia coli
Pseudomonas aeruginosa
Salmonella spp

ND = Not Determined

4. DISCUSSION

Medicinal plants constitute an important source of bioactive compounds because of the chemical diversity found in several species. In recent years, certain plants have been successfully evaluated for their antibacterial activity worldwide 23.

Though, the aqueous extract gave higher yield than ethanol extract of the leaf of A. cordifolia, they are both very potent. A number of constituents responsible for the observed activities of A. cordifolia have also been mentioned in the literature review 18, 24 reported that the parts of the plant mostly used for medicine are the leaves and stem bark but the leaves exhibit more potency. However, no comprehensive study has been carried out to confirm this. This research study is therefore geared at comparing the antimicrobial activities of the crude extracts of leaves of A. cordifolia with the activity of standard antibiotics of Cephalosporin to justify the ethnomedical use of the leaves of A. cordifolia 15.

The results of the comparative activity studies were reflected in Tables 2-9:

In table 2 and 3, minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the plant extracts and the cephalosporin antibiotics on the test organisms were reported. The MIC and MBC of Ceftriaxone was lower in all the bacteria than other cephalosporin.
antibiotics and the crude leaves extracts of *A. cordifolia*, except against *Salmonella spp* and *S. aureus* that the Cefalexin had the lowest concentration in MIC and MBC respectively. This is in agreement with (Newton and Abraham, 1954) that Cephalosporins showed antibiotic activity against *S. aureus*, *S. typhi*. The MIC and MBC results confirmed that all the Cephalosporins antibiotics and the crude leaves extracts of *A. cordifolia* had antimicrobial activities against the test bacteria.

The antimicrobial activities of aqueous leaf extract (ALE) on the Gram positive organisms (*S. aureus*, *S. pneumoniae*, *B. subtilis*) were bactericidal with the ratio (R) MBC/MIC ≤ 2, also bactericidal for two of the Gram negative organisms (*P. aeruginosa*, *Salmonella spp*), but the antimicrobial property for *Escherichia coli* was bacteriostatic as shown in (Table 4). The effect of ethanol leaf extract (ELE) was similar to that of ALE on Gram positive and Gram negative bacteria including for *E. coli* as observed in (Table 5). The result obtained from the aqueous leaf extract is in line with the work of Ebenyi, et al. who assessed the antibiotic activities of the aqueous and ethyl acetate extracts of the leaves of *A. cordifolia* against *S. aureus*, *S. pneumoniae*, *E. coli*, *P. aeruginosa* and *K. pneumoniae* through antimicrobial susceptibility testing, MIC and killing rates studies. In their study, the result of the effect of aqueous extract on bacteria killing rate showed that the extract was bactericidal to *S. aureus*, *S. pneumoniae*, *P. aeruginosa* and *K. pneumoniae* but bacteriostatic to *E. coli*.

The comparative antimicrobial activities of the *A. cordifolia* leaves crude extracts with the cephalosporin antibiotics in tables 6-8 were summarized in table 9 and the results presented in order of potency or spectrum of activities as follows; The plant extracts showed better spectrum of antimicrobial activities against all the test bacteria. The extracts were bactericidal against *S. aureus*, *S. pneumoniae*, *B. subtilis*, *P. aeruginosa* and *Salmonella spp* but bacteriostatic against *E. coli*, this was in agreement with Agboke et al 2020.

Ceftriaxone a third generation cephalosporin antibiotic is the next potent antibiotic with more promising antimicrobial activities against all the test organisms compared to other first and second generations cephalosporin antibiotics, this can be attributed to its wide spectrum of activity as a third generation cephalosporin. According to Devansh and Anuj (2016) third generation cephalosporins have marked effectiveness against most gram negative bacteria and better gram positive coverage. This was confirmed as this drug showed great activity against both gram-positive and gram-negative bacteria used. It is bacteriostatic against all the Gram positive test organisms, *Staphylococcus aureus*, *Streptococcus pneumonia*, *Bacillus subtilis* and bactericidal against the Gram negative test organisms, *Escherichia coli* and *Salmonella spp*, but bacteriostatic against *Pseudomonas aeruginosa*.

Cefalexin a first generation cephalosporin antibiotic is the next potent cephalosporin after Ceftriaxone against the test organisms used for this study with bactericidal activity against *S. aureus* G+ve and *P. aeruginosa* G-ve but bacteriostatic against *B. subtilis* G+ve and *Salmonella spp* G-ve. Its activity against *Streptococcus pneumonia* G+ve was not determined. According to Kalman et al. (1990) first generation cephalosporin have good antimicrobial activity against gram-positive and gram-negative bacteria but for this study it has almost equal activities against gram positive and gram-negative species used in this study.

Cefuroxime a second generation cephalosporin antibiotic happened to be the least potent compared to the first and third cephalosporin considered for this study, but seems to have better antimicrobial activities against the gram positive bacteria than the gram negative used for this study. It was bactericidal against *S. aureus*, *B. subtilis* and bacteriostatic against *S. pneumoniae* against all gram positive and bactericidal against *P. aeruginosa* but *E. coli* and *Salmonella spp* were not determined.

First generation cephalosporins are predominantly active against gram-positive bacteria while the second and third generations have increased activity against gram-negative bacteria

(Harrison and Bratcher, 2008) The result obtained is in line with this except for Cefuroxime which had no activity against two gram-negative bacteria considered in this study, *E. coli* and *Salmonella spp*.

5. CONCLUSION

Comparative antimicrobial activities of the aqueous and ethanol leaf extracts of Alchornea cordifolia and some Cephalosporin antibiotics available in Uyo LGAs of Akwa Ibom state were evaluated using macro dilution assay to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the plant aqueous and ethanol leaf extracts and of the Cephalosporin antibiotics against some pathogenic Gram positive and Gram negative bacteria.

The results showed that the *A. cordifolia* leaf extracts has the highest antimicrobial activities on the test bacteria used for this study, this was followed by the third generation cephalosporin antibiotic Ceftriaxone that showed broad spectrum activities against the bacteria after the plant extracts, then the first generation cephalosporin antibiotic Cefalexin that showed better spectrum antimicrobial activities against the test bacteria and lastly the second generation cephalosporin Cefuroxime that was active against the gram positive and one of the gram negative bacteria and not active against the remaining gram negative bacteria used for this study.

The antimicrobial activities is in the following order of potency: *A. cordifolia* leaf extracts > Ceftriaxone > Cefalexin > Cefuroxime. The need for isolation of active bioactive compound of *A. cordifolia* leaves is necessary to produce a new generation of broad spectrum antibiotics.

The results of this study justified the ethnomedical use of the aqueous and ethanol extracts of the leaves for treatment of different infectious diseases in Nigeria and Africa as a whole.

6. ACKNOWLEDGEMENT

We acknowledged the assistance of Mr. O. U. Etiea, a naturalist of the Pharmacognosy Department, Faculty of Pharmacy, University of Uyo and Mr Samuel Noah the Medical laboratory scientist of University of Uyo medical centre.

CONFLICT OF INTEREST

Authors have declared that no conflicts of interests exist.

REFERENCES

1. Ebimieowei E, Ibenemoglo A, Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. International Journal of Applied Microbiology and Biotechnology Research, IJAMBR, 2016; 4:90-101.

2. Denyer SP, Hodges NA, German SP, Introduction to pharmaceutical microbiology. In: Denyer SP, Hodges NA &
1. German SP, editors. Hugo and Russell’s pharmaceutical microbiology. 7th ed. UK: Blackwell Science Press; 2004. P. 3-8.
2. Russell A D, Types of antibiotics and synthetic antimicrobial agents: In: Denyer SP, Hodges NA & German SP, editors. Hugo and Russell’s pharmaceutical microbiology.7th ed. UK: Blackwell Science; 2004. P.152-186.
3. Salima Juma and Rafik Karaman. Aromatics: In: Rafik Karaman, editor. Commonly Used Drugs © 2015 Nova Science Publishers, Inc. 42-72.
4. Park SH, Is Antibiotic Resistance Microorganism Becoming a Significant Problem in Acute Cholangitis in Korea? Clin Endosc., 2012; 45:111-112. Available at: http://dx.doi.org/10.5946/ce.2012.45.2.111.
5. Okeke IN, Aboderin OA, Byarugaba DK, Ojo KK, Opintan JA. Growing problem of multidrug-resistant enteric pathogens in Africa Emerg Infect Dis., 2007; 13:1640-1646.
6. Remesh A, Salm I, Gayathri AM, Nair U, Retnawally KG. Antibiotics prescribing pattern in the in-patient departments of a tertiary care hospital. Arch Pharma Pract., 2013; 4:1-7.
7. Lemke LT, Antiparasitic agents. In: Thomas L. Lemke and Davi A. Williams, editors. Foye’s Principles of medicinal Chemistry. 6th Ed, Philadelphia: Lippincott Williams & Wilkins; 2008. p. 1028-1062.
8. Schiepel, HG. General microbiology. 7th ed. Cambridge; Cambridge University Press, 2003. P. 50-55.
9. Russell A D, Types of antibiotics and synthetic antimicrobial agents: In: Denyer SP, Hodges NA & German SP, editors. Hugo and Russell’s pharmaceutical microbiology.7th ed. UK: Blackwell Science; 2004. P.152-186.
10. Salima Juma and Rafik Karaman. Aromatics: In: Rafik Karaman, editor. Commonly Used Drugs © 2015 Nova Science Publishers, Inc. 42-72.
11. Park SH, Is Antibiotic Resistance Microorganism Becoming a Significant Problem in Acute Cholangitis in Korea? Clin Endosc., 2012; 45:111-112. Available at: http://dx.doi.org/10.5946/ce.2012.45.2.111.
12. Okeke IN, Aboderin OA, Byarugaba DK, Ojo KK, Opintan JA. Growing problem of multidrug-resistant enteric pathogens in Africa Emerg Infect Dis., 2007; 13:1640-1646.
13. Remesh A, Salm I, Gayathri AM, Nair U, Retnawally KG. Antibiotics prescribing pattern in the in-patient departments of a tertiary care hospital. Arch Pharma Pract., 2013; 4:1-7.