Surgathon: a new model for creating a surgical innovation ecosystem in low-resource settings

Shivani Mitra, Joanna Ashby, Arsen Muhumuza, Isaac Ndayishimiye, Isaac Wasserman, Vyshalan Santhirapala, Alexander W Peters, Dominique Vervoort, Oshin Jacob, Jesudian Gnanaraj, Praveen Ganesh, Salim Afshar

ABSTRACT

Innovation ecosystems and emerging technologies can potentially accelerate the access to safe, affordable surgical care in low-resource settings. There is a need to develop localised innovation ecosystems that can establish an initial culture and catalyse the creation, adoption and diffusion of innovation. The surgathon model outlines one approach to seeding surgical innovation ecosystems. International academic institutions collaborated on six global surgery, innovation and ethics-themed hackathons ('surgathons') across India and Rwanda between 2016 and 2019. Over 1598 local multidisciplinary students participated, learning about challenges in the delivery of surgical care and ideating solutions that could leverage appropriate technology and resources for impact. Pursuing student ideas and evaluating their implementation past the surgathons continues to be an active effort. Surgathons have unfolded in different permutations based on local faculty, institution and health system context. The surgathon model is a novel method of priority setting challenges in global surgery and utilises locally driven expertise and innovation capacity to derive ethical solutions. The model offers a path for low-resource setting students and faculty to learn, advocate and innovate for improved surgical care.

INTRODUCTION

Surgery is at a crossroads of two major inflection points. The first is the public recognition of surgery as one of the defining inequities of global health: the poorest 33% of the world has access to 6% of surgical procedures performed every year, resulting in up to 17 million preventable deaths every year. The second is the ripe opportunity to leverage innovation ecosystems and emerging technologies in computer science and material science to tackle the challenges in surgical care delivery in low-resource settings. In addition to impacting patient-level care, powerful opportunities now exist to rapidly improve the operational challenges in surgical care at a population level, even in low-resource settings, because of the accessibility of low-cost technologies like smartphones and sensors. However, what is often missing in low-resource communities is the initial support and culture needed to establish an effective local innovation ecosystem that can catalyse the creation, adoption, and diffusion of innovation.

THE NEED

For innovation to be effective in improving surgical care delivery within low-resource settings, there is a need to develop a local innovation ecosystem. A local innovation ecosystem is defined as having local access, funding, policies and a culture towards collaboration, consultation and experimentation. Such ecosystems—often situated within academic centres and in proximity to the private sector—can unite and incentivise individuals, institutions and a community to...
solve problems sustainably. In countries like the USA, for example, local innovation ecosystems have successfully facilitated newer, faster, cheaper and better solutions across sectors.5 We believe that those academic institutions in high-resource settings that focus on innovation, or in particular on healthcare innovation, have an opportunity to extend their reach by sharing their knowledge in underserved regions. High-resource academic institutions can accompany and collaborate with institutions in low-resource settings towards developing local innovation ecosystems. The ecosystem must be led by a local coalition, not a single stakeholder, to prevent silos, as clinicians, engineers, business leaders and policymakers in low-resource settings will all have a key role to play.

In addition, we know that innovation efforts need to be focused on a specific area to build and sustain momentum.6 Focusing on a set of pressing problems is critical as it can enable stakeholders to engage with one another fluidly, embedding a meaningful purpose and legitimacy to the solution-making efforts. In our experience, surgery provides a unique and diverse range of challenges across multiple domains of a health system. We define surgical innovation as the design, invention, development and/or implementation of a new or altered product, service, process, system, business model or organisational structure that focuses on the delivery of surgical care. Importantly, the barriers that prevent access to safe, affordable and timely surgical care for 5 billion people are multiple. These barriers are not only bound to supply chain and workforce shortages seen by the health system but also extend out and impact all aspects of surgical care delivery from care coordination, communication, finances and even patient transport, to name a few. Solutions can be targeted within a health system and have multiple entry points for local stakeholders to engage with. Global surgical innovation to date has targeted within a health system and have multiple entry points for local stakeholders to engage with. Global surgical innovation to date has targeted challenges in healthcare.9–13 A ‘surgathon’ shares problem statements that are focused on local challenges in the delivery of surgery and anaesthesia to multidisciplinary participants. The participants then build teams that focus on proposing potential solutions in a constrained time frame. Teams with promising ideas, or, at times, prototypes, win awards and may be offered financial support and mentorship. The surgathon model builds on the ‘health hackathon’ in two ways: (1) ideas that optimise existing resources (people, materials and knowledge) in the local community are prioritised in the judging and (2) successive surgathons (over an extended period of time) can seed a local innovation ecosystem.

The surgathon model uniquely places critical importance on investing time to build relationships and accompanying the faculty of local academic institutions with a programme of activities that is tailored to the social, cultural and health objectives of the community.14 Faculty and students gather support from their departments to deliver surgathons, and, with time, institutional excitement can result in the launch of a surgical innovation centre. The centre cements cross-discipline collaborations and extends the opportunity to problem-solve for improved surgical care to the wider community. The surgathons and designated innovation centre symbolise the nascent beginnings of a local surgical innovation ecosystem.

Core Pillars of the Model

There are three key core pillars that make up the foundation of the surgathon model: global surgery, innovation and ethics (figure 1). Within each pillar, there are concepts that drive the content and structure of the surgathons and encourage relationships and potential tangible outputs that may unfold in different permutations based on the local context.

The global surgery pillar focuses on sharing three buckets of knowledge with individuals: (1) the current pain points that exist in surgical care delivery globally and nationally for wider context, (2) the economic, political and human impacts of lacking surgical care and (3) the systems-thinking approach that can be applied to improve surgical care within a health system.15 During the surgathon, speakers and problem statements provide the buckets of knowledge (table 1). In the longer term, interested faculty members can broaden global surgery education for the institution through pursuits in surgical research and advocacy.

A NEW MODEL IN SURGICAL INNOVATION

We propose a new conceptual model for global surgical innovation that aims to be comprehensive in its approach to community engagement, resource allocation and human investment. We have applied this conceptual model to health hackathons in low-resource settings that, over the past decade, have become a common tool for sparking excitement and inspiring solutions for challenges in healthcare.9–13 A ‘surgathon’ shares problem statements that are focused on local challenges in the delivery of surgery and anaesthesia to multidisciplinary participants. The participants then build teams that focus on proposing potential solutions in a constrained time frame. Teams with promising ideas, or, at times, prototypes, win awards and may be offered financial support and mentorship. The surgathon model builds on the ‘health hackathon’ in two ways: (1) ideas that optimise existing resources (people, materials and knowledge) in the local community are prioritised in the judging and (2) successive surgathons (over an extended period of time) can seed a local innovation ecosystem.

The surgathon model uniquely places critical importance on investing time to build relationships and accompanying the faculty of local academic institutions with a programme of activities that is tailored to the social, cultural and health objectives of the community.14 Faculty and students gather support from their departments to deliver surgathons, and, with time, institutional excitement can result in the launch of a surgical innovation centre. The centre cements cross-discipline collaborations and extends the opportunity to problem-solve for improved surgical care to the wider community. The surgathons and designated innovation centre symbolise the nascent beginnings of a local surgical innovation ecosystem.

COAUTHORS

Mitra S, et al. BMJ Global Health 2020;5:e002162. doi:10.1136/bmjgh-2019-002162
The innovation pillar highlights activities that can begin in a surgathon—problem definition, ideation, pitching, prototyping—and continue after implementation, commercialisation and scaling. Each activity in the lifecycle of an innovation disseminates skills and knowledge the participants while creating cultural shifts in

![Figure 1](image)

Figure 1 The Surgathon model consists of three pillars: global surgery, innovation, and ethics. Within each pillar there are key goals and concepts outlined.

Table 1 Suggested key lectures for a surgathon

Surgathon lectures	**Global surgery**	**Ethics**	**Innovation**
Surgery Systems: Global & National Level	'Why Innovate for Impact?' **Lecturer:** any suitable ► Define meaningful impact ► Provide examples of solutions that have uplifted communities ► Frame resource constraints as opportunities	'What is Innovation?' **Lecturer:** entrepreneur in healthcare ► Define the innovation process ► Introduce emerging trends and challenges in healthcare innovation in the country ► Discuss digital health and material science	'Applying the Innovation Process to a Challenge' **Lecturer:** invited business/start-up leader ► Presentation on how this leader moved from prototyping to implementation ► Emphasis on how the individual navigated the local contexts
The Need for Surgery in (country)	'How We Built _____' **Lecturer:** SAO* Faculty ► Contextualise the national and local challenges ► Discuss rural versus urban setting challenges in surgical care		

*Surgeon, anaesthesiologist or obstetrician.
†Source: Meara, et al.¹
the academic environment—including interdisciplinary collaboration and the generation of intellectual property. The surgathon model encourages those solutions that add meaningful value within a low-resource context in the long term.

The ethics pillar pushes for the empowerment of local individuals, the institution and the greater community to the forefront of all engagement. Ethics are uniquely incorporated in the surgathon model as its principles guide decision-making to ensure that power remains within and for low-resource academic centres and their communities. Values such as universal participation and the equitable flow of knowledge dampen a tendency in health hackathons to solve a problem without consideration to local needs and impact.

IN PRACTICE

The surgathon model described in this manuscript has been demonstrated with over 1598 medical, engineering and business student participants and 153 faculty members across three institutions in India and Rwanda over the last 4 years. The model was initially led by a core group from the Programme in Global Surgery and Social Change at Harvard Medical School and Boston Children’s Hospital, in collaboration with students, residents and faculty from Karunya Institute of Technology and Sciences, Saveetha Institute of Technical and Medical Sciences, University of Rwanda and InciSioN, the International Student Surgical Network. Six surgathons occurred between 2016 and 2019, each run by local faculty or students who facilitated lectures and sourced problem statements for a 2-day surgical innovation challenge. The surgathon follows a 10-step schedule: registration and event kick-off, introduction talks, keynote speaker presentations, pitching workshop, problem statements released, team formation, hacking, practice pitches, final presentation and prizes awarding. In our experience, the average surgathon involved 150 students, 10 problem statements and 14 total teams of 5–7 multidisciplinary students. Awards were given to the best ideas and the judging was constructive and transparent with the goal of maximising the teams’ collective learning. The judging panels at surgathons included professionals in surgery, engineering, computer science and business who were locally based. The fivefold judging criteria to determine the winner hinged on the value of the solution for impact, sustainability, equity, applicability, and feasibility.

Pursuing student ideas and evaluating their implementation past the surgathons continues to be an active effort in India and Rwanda. Our team’s experiences in India are with universities located in both rural and semiurban Tamil Nadu. Initially, a collaboration was formed with a faculty member who was interested, and with institutional support, they went on to establish an innovation centre at the university. To provide sustainable growth of the innovation centre, four medical and engineering students and five academic-surgeons were identified as a local leadership team, managing the vision and execution of two surgathons between 2017 and 2019. Team members from high-resource institutions assisted with activities and workshops for each surgathon (table 3). Three 1-day surgical innovation workshops for an average of 300 students additionally occurred in between surgathons in India. These follow-up events encouraged ongoing engagement from the local community and helped establish the centre as a permanent resource in the eyes of local stakeholders and partners. Didactic lectures, invited speakers and previous surgathon winners were included, giving students an opportunity to show their progress to mentors and funding partners at the workshops.

In Rwanda, a partnership stemmed from the organisation InciSioN. InciSioN involves more than 5000 medical students and public health students, residents and young doctors in the fields of surgery, anaesthesia and obstetrics around the world. The two national coordinators for InciSioN Rwanda were cognizant of the technological advances that could be applied to strengthen a country’s existing gaps in surgical education and surgical care. So, they chose to champion three surgathons between 2018 and 2019. Local and international faculty members were invited to join Rwanda’s surgathons to deliver sessions, give talks and assist in mentorship for the purpose of growing a local surgical innovation ecosystem. Several public and private stakeholders took part in supporting, financing and contributing to the surgathons.

Surgathons in India focused on highlighting unsolved challenges for underserved rural communities while in Rwanda, problem statements were broader, and sourced from local medical trainees. The initial objectives of both the Indian and Rwandan surgathons were facilitating multidisciplinary partnerships, as well as connecting students, faculty and local businesses to tackle surgical challenges. The surgical innovation centres in India thus far have been instrumental in providing a home for solution-making efforts and uniting partners, mentorship and funding bodies under one banner. Across Rwanda and India, a total of nine winning solutions have been developed by teams beyond the surgathons, three of which are currently undergoing a local patent review process and one of which has successfully secured a patent. The patented solution is a mouth blowing gesture-based communication and actuator system for paralytic patients. In the patent publication, the innovator describes how they first pitched their idea at a surgathon and then worked with faculty over the following year to create a prototype. The communication system is low-cost, built using locally available materials and intended to address a pressing patient challenge in the local health system—qualities that demonstrate how the surgathon model can materialise ethical and sustainable innovation.

THE IMPACT

The surgathon model can be a catalyst in developing a vibrant local innovation ecosystem in low-resource settings.
Table 2 Judging criteria of a surgathon

		1	2	3	4	5	
Presentation							
	Team members demonstrate cohesion and effort						
Not polished		1	2	3	4	5	Clearly polished
Creativity and ingenuity of the idea							
Not a unique solution		1	2	3	4	5	A unique solution
Story of the team moving from problem to solution							
Unclear progression		1	2	3	4	5	Clear progression
Applicability							
What is the problem, and why is it important?							
Not well described		1	2	3	4	5	Clearly described
Ability to articulate pain point(s) around the problem.							
Unable to articulate		1	2	3	4	5	Well-articulated
Clearly defined use-case that matches articulated pain points.							
No use-case		1	2	3	4	5	Clearly defined
Sustainability							
Plans for a beta version are clearly laid out							
No plans		1	2	3	4	5	Clearly laid out
Path to market							
No path		1	2	3	4	5	Clear path
Business model/scalability/distribution							
No model		1	2	3	4	5	Clear model
Feasibility							
Solution provided is technically sound							
Major technical flaws		1	2	3	4	5	Technically sound
Feasibility of implementation in the local health system							
Unfeasible		1	2	3	4	5	Very Feasible
Equity							
Solution positively impacts individuals, institutions and/or the community							
No impact		1	2	3	4	5	Strong Impact
Solution harnesses local resources and capacities							
Does not use local resources		1	2	3	4	5	Uses resources
Solution has a perceived meaningful value							
No perceived value		1	2	3	4	5	Strong perceived value
Impact							
Positive economic impact on individuals, institutions and community							
No impact		1	2	3	4	5	Strong, positive impact
Wellness impact on individuals, institutions and community							
No impact		1	2	3	4	5	Strong, positive impact

around surgical care delivery. We found that the collaboration of multidisciplinary individuals around challenges related to surgical care not only empowered them but also enabled an institutional shift in focus and identification of talent and internal knowledge. Ultimately, some ideas from surgathons will evolve to potential solutions that can result in social and economic partnerships that address both the local and global needs in surgery. However, the development of solutions should not be the initial metric for determining success or worthiness of the model. Value should be given to the ability to break down social and professional barriers and to encourage collaboration and consultation across disciplines for a local health challenge. This is only possible through the experiential learning format of innovation challenges such as a surgathon as they facilitate collective learning and creation
for the purpose of targeted problem solving. Surgathons have encouraged low-resource setting academic institutions to make curriculum changes so that students have time and money to pursue innovation. We have observed that as partnerships with the local private sector became stronger, the institution took tangible steps to help students develop solutions past the surgathons. If the surgathon model is to be propagated to create a surgical innovation ecosystem, and impact local patients, it is crucial that low-resource setting institutions build structured mentorship, partnership or funding mechanisms for interested faculty and students. We are actively working to capture and analyse the detailed outcomes of our collective experiences to help facilitate this next step of the surgathon model.

The surgathon model is challenging to implement as it involves multiple stages in collaboration and local adoption. Key challenges include the time and resources required to develop relationships and trust, gaining institutional participation and navigating perceived barriers regarding the role of innovation. In addition, patience is required from those accompanying institutions if it is to be led by local champions, as there are a multitude of factors that can lead to delays and changes. A humble, learning posture is required if the aim is to develop a local surgical innovation ecosystem that is driven by local needs and priorities. The surgathon model outlines that an ethical approach can help address and prevent biases and power dynamics that may occur when well-funded and well-resourced global health teams engage in low-resource settings. The potential pitfalls we particularly try to mitigate include the influence of finances, status and research capacity, to name a few, on institutions as they collaborate with one another internationally. A focus on grass-roots level sustainable development and local resource optimisation translates the ethical approach to ethical action.

By engaging and accompanying local universities in surgathons, it is our hope that sustainable surgical innovation ecosystems are seeded within local health systems. If we can create the space and impetus for students from all disciplines to collaborate for a common goal with faculty, clinicians, policymakers, businesses, then we may empower them to find their roles in advancing their communities for improved surgical care and health for all.

Table 3 Suggested activities/workshops for a surgathon

Suggested activity	Pitching your idea	‘The marshmallow challenge’	Design thinking workshop
Description	Volunteer students practice three types of pitching: 1. Themed: pitch a product, service or concept 2. Speed: pitch in 2 min, 1 min or 30 s 3. Style: speak with a logical, emotional or persuasive tone	Teams of 6–7 work on this specific challenge involving height and a marshmallow with constrained resources and time	A discussion-based workshop on the core principles of design thinking and solution-making with an audience in mind
Intended outcome	Encourages students to condense their ideas into an impactful narrative. Skills in public speaking and communication directly apply to entrepreneurship	Learn about internal team dynamics and practice adopting ‘out of the box’ thinking when faced with a challenge	Motivate students to think about how to frame their problem and understanding the human behaviour that drives it

Table 4 Overview of the surgathon model conducted in India and Rwanda between 2016 and 2019

Category	Total
Local faculty attendees	153
Local student attendees	1598
One-day workshops	3
One-day workshop attendees	908
Surgathons	6
Surgathon participants	690
Teams formed	54
Problem statements presented	52
Winning solutions	25
Digital	10
Hardware	6
Digital and hardware combined	6
Process innovation	3
Solution developed post-surgathon	9
Patent pending	3
Patented	1

Author affiliations

1Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
Contributors SM compiled the manuscript and collaborated with local partners for the India surgathons. JA contributed key ideas and collaborated with local partners for the Rwanda surgathons. AM and IN executed surgathons at the University of Rwanda. IW, VS and AP worked on India surgathons through planning, partnerships and lectures. DV contributed to the Rwanda and India surgathons. OJ patented an innovation ideated during a surgathon. JG directed surgathons at Karunya University. PG executed a surgathon at Saveetha University. SA served as supervising faculty member for the surgathon model in conceptualization and in practice.

Funding This study was funded by The Downs Grant.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement No additional data are available.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs Shivani Mitra http://orcid.org/0000-0001-6472-0793
Isaac Wasserman http://orcid.org/0000-0002-6955-0567
Dominique Vervoort http://orcid.org/0000-0002-3142-0388

REFERENCES
1. Meara JG, Leather AJM, Hagander L, et al. Global surgery 2030: evidence and solutions for achieving health, welfare, and economic development. The Lancet 2015;386:569–624.
2. Ng-Kamstra JS, Greenberg SLM, Abdullah F, et al. Global surgery 2030: a roadmap for high income country actors. BMJ Global Health 2016;1:e000011.
3. Archibugi D, Coco A. A new indicator of technological capabilities for developed and developing countries (ArCo). World Dev 2004;32:629–54.
4. Cohen M. Strategies for developing university innovation ecosystems: an analysis, segmentation, and strategic framework based on somewhat Non-Intuitive and slightly controversial findings, 2013. Available: https://pdfs.semanticscholar.org/6876/d9985274dccb664dc4594faa8d7ad46d53.pdf
5. Cross SE. Strategic considerations in leading an innovation ecosystem. Global Business Review 2013;2.
6. Ahuja SB. Why Innovation Labs Fail, and How to Ensure Yours Doesn’t. Harvard Business Review 2019.
7. Vervoort D. The visa conundrum in global health, The BMJ. 2019. Available: https://blogs.bmj.com/bmj/2019/06/21/dominique-vervoort-the-visa-conundrum-in-global-health/
8. Steyn E, Edge J. Ethical considerations in global surgery. BJG 2019;106:e17–19.
9. Olson KR, Walsh M, Garg P, et al. Health hackathons: theatre or substance? A survey assessment of outcomes from healthcare-focused hackathons in three countries. BMJ Innov 2017;3:37–44.
10. Gubin TA, Iyer HP, Liew SN, et al. A systems approach to healthcare innovation using the MIT Hacking medicine model. Cell Syst 2017;5:8–10.
11. Pan SW, Stein G, Bayus B, et al. Systematic review of innovation design contests for health: spurring innovation and mass engagement. BMJ Innov 2017;3:227–37.
12. Wang JK, Pamnani RD, Capasso R, et al. An extended Hackathon model for collaborative education in medical innovation. J Med Syst 2018;42:239.
13. Ramadi K, Sinavasan S, Atun R. Health diplomacy through health entrepreneurship: using hackathons to address Palestinian-Israeli health concerns. BMJ Glob Health 2019;4:e001548.
14. Yarmoshuk AN, Guantai AN, Mwangu M, et al. What makes international global health university partnerships Higher-Value? an examination of partnership types and activities favoured at four East African universities. Ann Glob Health 2018;84:139.
15. Atun R. Health systems, systems thinking and innovation. Health Policy Plan 2012;27 Suppl 4:iv4–8.
16. Wang JK, Roy SK, Barry M, et al. Institutionalizing healthcare hackathons to promote diversity in collaboration in medicine. BMC Med Educ 2018;18.
17. Hedt-Gauthier B, Aribirenbuwa CO, Bawah AA, et al. Academic promotion policies and equity in global health collaborations. Lancet 2018;392:1607–9.
18. Abimbola S. The foreign gaze: authorship in academic global health. BMJ Global Health 2019;4:e002068.
19. Chowdhury J. Hacking health: bottom-up innovation for healthcare. Technol Innov Manag Rev 2012;2:31–5.
20. Banerjee JK, Rural surgery, caring for developing communities. Eur J Surg 1999;165:69–71.
21. Cell LA, Ippolito A, Montgomery RA, et al. Crowdsourcing knowledge discovery and innovations in medicine. J Med Internet Res 2014;16:e216.
22. Herrick C, Reades J. Mapping university global health partnerships. Lancet Glob Health 2016;4:e694.