ON INFINITE MATROIDS WITH STRONG MAPS
PROTO-EXACTNESS AND FINITENESS CONDITIONS

CHRIS EPPOLITO AND JAIUNG JUN

ABSTRACT. This paper investigates infinite matroids from a categorical perspective. We prove that the category of infinite matroids is a proto-exact category in the sense of Dyckerhoff and Kapranov, thereby generalizing our previous result on the category of finite matroids. We also characterize finitary matroids as co-limits of finite matroids, and show that the finite matroids are precisely the finitely presentable objects in this category.

1. Introduction

Matroids combinatorially generalize properties of linear dependence in a finite-dimensional vector space. Finite matroids naturally appear in various fields in mathematics. Meanwhile, theories of infinite matroids have long sought to generalize finite matroids to infinite ground sets while retaining nice combinatorial properties as in the finite case, especially the multitude of equivalent definitions (i.e. cryptomorphisms) they enjoy. Our work uses the definition of infinite matroids from [Bru+13], which successfully generalizes five of the most common axiomatizations from the finite case.

Recent years have seen growing interest in categorical aspects of matroids (e.g. see [HP18; EH20]). In a previous paper, the authors (with M. Szczesny) studied the category of finite matroids with strong maps in connection with combinatorial Hopf algebras, and initiated the study of algebraic K-theory for finite matroids. Our main observation was that the category of finite matroids has the structure of a finitary proto-exact category in the sense of [DK19].

In this paper we define a category \(\text{Mat}_\bullet \) of infinite matroids which contains the category of finite matroids and strong maps as a full subcategory. Theorem 3.9 proves that \(\text{Mat}_\bullet \) has the structure of a proto-exact category, thereby generalizing [EJS20, Theorem 5.11]. Corollary 4.4 characterizes finitary matroids as the co-limits of finite matroids; along the way we obtain Corollary 4.6 yielding a “finitization” functor \(\text{Mat}_\bullet \rightarrow \text{Mat}_{\text{fin}} \). Proposition 4.7 shows that the finitely presentable objects of \(\text{Mat}_\bullet \) are precisely the finite matroids. We end with a short discussion of some open problems.

2. Preliminaries

We denote the powerset of \(E \) by \(\text{pow}(E) \) and denote set of non-negative integers by \(\mathbb{N} \).

2.1. Infinite matroids. First recall the definition of infinite matroid from [Bru+13, Sections 1.3 and 1.4]. A collection \(A \subseteq \text{pow}(E) \) has Property \((M)\) when for all \(A \in A \) and all \(S \subseteq E \) the subcollection \(A(A, S) = \{ X \in A : A \subseteq X \subseteq S \} \) has a maximal element.

Definition 2.1. A function \(\text{cl} : \text{pow}(E) \rightarrow \text{pow}(E) \) is a matroid closure on \(E \) when the following hold:

- **(CLO)** \(\text{cl} \) is a closure operator, i.e., extensive, monotone, and idempotent on \(\text{pow}(E) \).
- **(CLE)** For all \(Z \subseteq E \) and all \(x, y \in E \), if \(y \in \text{cl}(Z \cup x) \setminus \text{cl}(Z) \), then \(x \in \text{cl}(Z \cup y) \).
- **(CLM)** The collection \(I_{\text{cl}} := \{ I \subseteq E : x \notin \text{cl}(I \setminus x) \text{ for all } x \in I \} \) has Property \((M)\).

Definition 2.2. A collection \(C \subseteq \text{pow}(E) \) is the set of circuits of a matroid on \(E \) when the following hold:

- **(C0)** \(\emptyset \notin C \).
(CI) Elements of \(\mathcal{C} \) are pairwise incomparable with respect to inclusion.

(CE) For all \(X \subseteq C \subseteq \mathcal{C} \), all families \(\{ C_x \in \mathcal{C} : x \in X \} \) satisfying \(x \in C_y \) iff \(x = y \), and for all \(z \in C \setminus \bigcup x C_x \), there is a \(C' \in \mathcal{C} \) such that \(z \in C' \subseteq (C \cup \bigcup x C_x) \setminus X \).

(CM) The collection \(\mathcal{I}_\mathcal{C} := \{ I \subseteq E : C \not\subseteq I \text{ for all } C \in \mathcal{C} \} \) has Property (M).

These are “cryptomorphic” descriptions of a matroid on \(E \) by \[\text{Bru+13}\]. These axiomatizations agree with standard definitions of finite matroids; see \[\text{Whi80}, \text{Appendix}\], noting that (CLM) and (CM) are redundant by finiteness of the ground set.

A \textit{loop} of \(M \) is an element of \(\text{cl}_M(0) \) (equivalently an element \(e \in E \) with \(\{e\} \) a circuit of \(M \)).

A \textit{pointed matroid} is a matroid with a distinguished loop \(* \). We often denote the ground set of a (pointed) matroid \(M \) by \(E(M) \), or simply \(E \) when the matroid is clear from context.

\textbf{Example 2.3.} The set \(\mathcal{C}_r(E) \) of \(r \)-subsets of \(E \) is the set of circuits of \(U_r(E) \), the uniform matroid of rank \(r \) on \(E \), for all positive integers \(r \). Similarly, the set \(\mathcal{C}_{r*}(E) \) of subsets of \(E \) with complement an \(r \)-subset of \(E \) is the set of circuits of \(U_{r*}(E) \), the uniform matroid of corank \(r \) on \(E \), for all positive integers \(r \).

By matroid, we mean possibly infinite pointed matroid unless otherwise stated. In particular, we explicitly state when ground sets are finite, and all of our matroids come with a distinguished loop. We often suppress the word “pointed” in our terminology.

\textbf{Definition 2.4.} Let \(M \) be a matroid with circuit set \(\mathcal{C} \) and let \(S \subseteq E \). The \textit{restriction} of \(M \) to \(S \) is the matroid \(M|S \) on ground set \(S \) with circuit set \(\mathcal{C}|S = \{ C \in \mathcal{C} : C \subseteq S \} \). The \textit{contraction} of \(M \) by \(S \) is the matroid \(M/S \) on ground set \(E \setminus S \) with circuits the nonempty, inclusion-wise minimal elements of \(\mathcal{C}/S = \{ C \setminus S : C \in \mathcal{C} \} \).

When working with pointed matroids, we consider only pointed restrictions and pointed contractions, i.e. restrictions and contractions which preserve the distinguished loop. Effectively, this means pointed restrictions have the form \(M|(S \cup *) \) and pointed contractions have the form \(M/(S \setminus *) \).

\textbf{2.2. Proto-exact categories.}

\textbf{Definition 2.5.} A \textit{proto-exact} category is a pointed category \(\mathcal{C} \) equipped with two distinguished classes of morphisms, \textit{admissible monomorphisms} \(\mathfrak{M} \) and \textit{admissible epimorphisms} \(\mathfrak{E} \), which satisfy the following conditions:

1. Every morphism \(0 \to M \) is in \(\mathfrak{M} \), and every morphism \(M \to 0 \) is in \(\mathfrak{E} \).
2. The classes \(\mathfrak{M} \) and \(\mathfrak{E} \) are closed under composition and contain all isomorphisms.
3. A commutative square of the following form in \(\mathfrak{E} \) with \(i, i' \in \mathfrak{M} \) and \(j, j' \in \mathfrak{E} \)

\[
\begin{array}{ccc}
M & \xrightarrow{i} & N \\
\downarrow j & & \downarrow j' \\
M' & \xrightarrow{i'} & N'
\end{array}
\]

is Cartesian if and only if it is co-Cartesian.

4. Every diagram \(M' \xrightarrow{i'} N' \leftarrow j' N \) with \(i' \in \mathfrak{M} \) and \(j' \in \mathfrak{E} \) can be completed to a bi-Cartesian square \(\square \) with \(i \in \mathfrak{M} \) and \(j \in \mathfrak{E} \).

5. Every diagram \(M' \leftarrow j M \xrightarrow{i} N \) with \(i \in \mathfrak{M} \) and \(j \in \mathfrak{E} \) can be completed to a bi-Cartesian square \(\square \) with \(i' \in \mathfrak{M} \) and \(j' \in \mathfrak{E} \).

See \[\text{EJS20}\] for examples and motivation regarding proto-exact categories. For proto-exact categories in connection with algebraic geometry, see \[\text{ELY20}, \text{JS20}\].
In this section we prove that the category of pointed infinite matroids is proto-exact (Theorem 3.9).

Let E be a set. For $X \subseteq E$ and $e \in E$, let $X \cup e$ denote the union $X \cup \{e\}$. The proof of the following lemma is straightforward, mimicking the proof of the finite case.

Lemma 3.1. Let M be a matroid on E. Then
\[
\text{cl}_M(X) = X \cup \{e \in E : \text{there is a circuit satisfying } e \in C \subseteq X \cup e\}.
\]

We say $X \subseteq E$ is a flat of M when $\text{cl}_M(X) = X$.

Lemma 3.2. The set $L(M)$ of flats of a matroid M under inclusion is a complete, atomic lattice. Meet and join are given by $X \wedge Y = X \cap Y$ and $X \vee Y = \text{cl}_M(X \cup Y)$ respectively.

Proof. Let $X, Y \in L(M)$. Notice $X, Y \subseteq \text{cl}_M(X \cup Y)$; if $X, Y \subseteq Z$, then $X \cup Y \subseteq Z$ yields $\text{cl}_M(X \cup Y) \subseteq \text{cl}_M(Z) = Z$. Hence $X \vee Y = \text{cl}_M(X \cup Y)$ and $L(M)$ is a join semilattice. If $Z \subseteq X, Y$, then $Z \subseteq X \cap Y \subseteq \text{cl}_M(X \cap Y)$; thus $X \wedge Y \subseteq \text{cl}_M(X \cap Y)$. Assuming to the contrary that $e \in \text{cl}_M(X \cap Y) \setminus (X \cap Y)$, there is a circuit satisfying $e \in C \subseteq X \cap Y \cup e$. Thus $e \in \text{cl}_M(X) \cap \text{cl}_M(Y) = X \cap Y$, contradicting our assumption. Completeness follows from the fact that $L(M)$ is the collection of closed sets of a closure operator. \hfill \square

Lemma 3.3. Let M be a matroid. For all $S \subseteq E(M)$ we have both
\[
L(M/S) = \{F \setminus S : S \subseteq F \in L(M)\} \quad \text{and} \quad L(M|S) = \{F \cap S : F \in L(M)\}.
\]
The corresponding matroid closure operators are given by
\[
\text{cl}_{M/S}(T) = \text{cl}_M(T \cup S) \setminus S \quad \text{and} \quad \text{cl}_{M|S}(T) = \text{cl}_M(T) \cap S.
\]

Proof. The full claim follows from our description of the closure operator. We denote the collection of minimal nonempty sets in a family \mathcal{F} by $\min(\mathcal{F})$.

We compute the closure on the contraction for all $T \subseteq E(M) \setminus S$ via
\[
\text{cl}_{M/S}(T) = T \cup \{e \in E(M) \setminus S : \exists C \in \mathcal{C}(M/S) \text{ with } e \in C \subseteq T \cup e\}
\]
\[
= T \cup \{e \in E(M) \setminus S : \exists C \in \min(D \setminus S : D \in \mathcal{C}(M)) \text{ with } e \in C \subseteq T \cup e\}
\]
\[
= T \cup \{e \in E(M) \setminus S : \exists C \in \mathcal{C}(M) \text{ with } e \in (C \setminus S) \subseteq T \cup e\}
\]
\[
= T \cup \{e \in E(M) \setminus S : \exists C \in \mathcal{C}(M) \text{ with } e \in C \subseteq T \cup S \cup e\}
\]
\[
= T \cup (\text{cl}_M(T \cup S) \setminus S)
\]
\[
= \text{cl}_M(T \cup S) \setminus S.
\]

We compute the closure on the restriction for all $T \subseteq S$ via
\[
\text{cl}_{M|S}(T) = T \cup \{e \in S : \exists C \in \mathcal{C}(M|S) \text{ with } e \in C \subseteq T \cup e\}
\]
\[
= T \cup \{e \in S : \exists C \in \mathcal{C}(M) \text{ with } C \subseteq S \text{ and } e \in C \subseteq T \cup e\}
\]
\[
= T \cup \{e \in S : \exists C \in \mathcal{C}(M) \text{ with } e \in C \subseteq T \cup e\}
\]
\[
= T \cup (\text{cl}_M(T \cap S)
\]
\[
= \text{cl}_M(T) \cap S.
\]

The claimed formulas for $L(M|S)$ and $L(M/S)$ now follow trivially. \hfill \square

We thus obtain the usual result that the deletion and contraction operations commute. We state this result below in terms of restriction and contraction (the proof is routine).

Corollary 3.4. If M is a matroid with disjoint $S, T \subseteq E$, then $(M|(S \cup T))/T = (M/T)|S$.

Next we discuss the maps of our category.
Proposition 3.5. Let \(M \) and \(N \) be matroids and \(f : E(M) \to E(N) \) be a map of ground sets. The following are equivalent.

1. For all \(A \subseteq E(M) \) one has \(f(\text{cl}_M(A)) \subseteq \text{cl}_N(f(A)) \).
2. The preimage of every flat of \(N \) is a flat of \(M \).
3. The map \(f^\#: L(M) \to L(N) \) induced by \(f \) is a morphism of complete lattices which restricts to a map \(A_M \to A_N \cup \{0\} \) of atoms.

Proof. This follows from [Whi86, Proof of Proposition 8.1.3], noting completeness of the corresponding lattices for \((3) \Rightarrow (1) \). \(\square \)

Definition 3.6. Let \(M \) and \(N \) be matroids. A \textbf{strong map} of (pointed) matroids is a map \(f : E(M) \to E(N) \) of (pointed) sets satisfying any (hence all) of the conditions given in Proposition 3.5.

Let \(\text{Mat}_\bullet \) be the category of pointed matroids with pointed strong maps. Lemma 3.3, Corollary 3.4 and Corollary 3.7 all hold for pointed restrictions and pointed contractions. The details from the finite case in [EJS20, Section 2] carry over to the infinite case verbatim. We obtain the following from Proposition 3.5 and Lemma 3.3.

Corollary 3.7. Restriction \(M|S \xrightarrow{i_S} M \) and contraction \(M \xrightarrow{c_S} M/S \) are strong maps.

Theorem 3.9. The triple \((\text{Mat}_\bullet, \mathfrak{M}, \mathfrak{C}) \) is a proto-exact category.

Proof. We have proved the following extensions of our results in [EJS20, Section 5]:

1. For \(T \subseteq S \subseteq E \), one has \(L((M|S)/T) = \{ (F \cap S) \setminus T : T \subseteq F \in L(M) \} \).
2. For disjoint \(S, T \subseteq E \), one has \((M|(S \cup T))/T = (M/T)|S \).
3. The restriction and contraction maps are strong maps.
4. A strong map is monic (resp. epic) in \(\text{Mat}_\bullet \) if and only if it is injective (resp. surjective) on ground sets.

The proof from [EJS20, Section 5] now shows that \(\text{Mat}_\bullet \) is a proto-exact category. \(\square \)

4. Finiteness Conditions

The propositions in this section illustrate the utility of applying categorical language to study infinite matroids. We focus primarily on two finiteness conditions for matroids in this analysis. The first condition (i.e. finitarity) is a well-studied condition in the literature on infinite matroids—indeed, this was one of the earliest definitions for infinite matroids. The second condition (i.e. finite presentability) is a well-studied categorical notion, which has not been considered in the context of infinite matroids to the best of our knowledge.
4.1. Finitary Matroids. A matroid is finitary when all of its circuits are finite. Since restrictions and contractions of a finitary matroid are again finitary, the following is clear from Theorem 3.9.

Corollary 4.1. The full subcategory \(\text{Mat}^{\text{fin}} \) of \(\text{Mat} \), with objects the finitary matroids, is proto-exact with the induced proto-exact structure.

The following is the core result of this section, and drives the remainder of our results.

Proposition 4.2. The collection \(\mathcal{C}^{\text{fin}} \) of finite circuits of matroid \(M \) is also a set of circuits of a matroid \(M^{\text{fin}} \). Moreover, the identity map on \(E(M) \) is a strong map \(M^{\text{fin}} \to M \).

Proof. The circuit elimination axiom yields that eliminations between finite circuits are again finite, and the directed union of every chain of \(\mathcal{C}^{\text{fin}} \)-independent sets is trivially \(\mathcal{C}^{\text{fin}} \)-independent; thus \(\mathcal{C}^{\text{fin}} \) is a set of matroid circuits. We compute as follows to verify condition 1 of Proposition 3.5.

\[
\text{cl}_{\text{fin}}(S) = S \cup \{ e \in E(M) : \exists C \in \mathcal{C}(M) \text{ finite with } e \in C \subseteq S \cup e \} \\
\subseteq S \cup \{ e \in E(M) : \exists C \in \mathcal{C}(M) \text{ with } e \in C \subseteq S \cup e \} \\
= \text{cl}_M(S).
\]

Proposition 4.3. The matroid \(M^{\text{fin}} \) is the co-limit of the diagram \(\{ M|S \hookrightarrow M|T : S \subseteq T \text{ finite} \} \) in \(\text{Mat} \).

Proof. We prove that \(M^{\text{fin}} \) satisfies the universal property of co-limits. Let \(N \) be a matroid and \(M|S \twoheadrightarrow N \) be a strong map for each \(S \subseteq E(M) \) such that \(\alpha_T|_S = \alpha_S \) for all pairs \(S \subseteq T \) of finite sets. Applying the forgetful functor \(\mathcal{F} : \text{Mat} \to \text{Set} \), we obtain a unique co-limit map \(E(M) \twoheadrightarrow E(N) \) of pointed sets. We claim that \(\alpha \) is a strong map \(M^{\text{fin}} \twoheadrightarrow N \). Let \(A \subseteq E(M) \) and \(e \in \text{cl}_{M^{\text{fin}}}(A) \setminus A \) be arbitrary. There is a finite circuit \(C \) of \(M \) with \(e \in C \subseteq A \cup e \) by Lemma 3.1. Hence

\[
\alpha(e) \in \alpha(C) \subseteq \alpha(\text{cl}_{M^{\text{fin}}}(C)) \subseteq \text{cl}_N(\alpha(C))
\]

yields that \(\alpha \) is a strong map by Proposition 3.5.

Corollary 4.4. A matroid is finitary if and only if it is a co-limit of finite matroids.

Proof. If \(M \) is finitary, then \(M = M^{\text{fin}} \) is a co-limit of finite matroids by Proposition 4.3. Conversely, suppose that

\[
M = \text{colim} \left\{ M_i \xrightarrow{f_{ij}} M_j : i, j \in I \right\}
\]

is a co-limit of finite matroids with strong maps \(M_i \twoheadrightarrow M \). Note that \(\text{cl}(A) = \text{cl}_{\text{fin}}(A) \) for all finite \(A \subseteq E(M) \) by Lemma 3.1. Thus the set maps \(g_i \) are also strong maps for matroids \(M_i \to M^{\text{fin}} \). This induces a strong map \(M \to M^{\text{fin}} \), which is necessarily the identity as a set map. Hence \(M = M^{\text{fin}} \) by Proposition 4.2.

We obtain the following as a special case of Corollary 4.4.

Corollary 4.5. A matroid on a countable set is finitary if and only if it is a direct limit of finite matroids.

Proof. If \(M \) is finitary on a countable ground set, then identifying the elements of \(M \) with \(\mathbb{N} \) it is easy to show that \(M \) is the co-limit of \(M|\{0, 1, \ldots, n\} \hookrightarrow M|\{0, 1, \ldots, n+1\} \) where 0 is represents the distinguished loop. The reverse implication follows trivially from Corollary 4.4 and the fact that a direct limit of finite sets is countable.

Corollary 4.6. Every strong map \(M \xrightarrow{f} N \) induces a strong map \(M^{\text{fin}} \xrightarrow{f^{\text{fin}}} N^{\text{fin}} \). In particular, \(\bullet^{\text{fin}} : \text{Mat} \to \text{Mat}^{\text{fin}} \) constitutes a full functor.
Proof. The map f yields strong maps $M[S] \to N[S] \to N^{\text{fin}}$ for all $S \subseteq E(M)$. Hence we obtain a strong map $M^{\text{fin}} \to N^{\text{fin}}$ by Proposition 4.3. The second statement is clear from Proposition 4.2.

4.2 Finite Presentability. An object X in a category \mathcal{C} is finitely presented when the functor $\text{Hom}(X, -)$ preserves filtered co-limits. We now investigate the finitely presented matroids.

The functor $G : \text{Set}_* \to \text{Mat}_*$ sending a pointed set E to the free (pointed) matroid on E has a left adjoint, namely the forgetful functor $F : \text{Mat}_* \to \text{Set}_*$. In particular, there is a natural bijection between the sets $\text{Hom}_{\text{Mat}_*}(GE, N)$ and $\text{Hom}_{\text{Set}_*}(E, FN)$: indeed, the natural isomorphism is the identity map. On the other hand, a set X is finite if and only if $\text{Hom}(X, -)$ preserves filtered co-limits, so $\text{Hom}(GE, -)$ preserves filtered co-limits if and only if E is finite. Hence the free matroid on E is finitely presented if and only if E is finite. In fact, this argument generalizes as follows.

Proposition 4.7. A matroid is finitely presented if and only if it is finite.

Proof. Let M be a matroid. Assuming M is finitely presented, we note by Proposition 4.2 that morphisms $M \to N$ induce $M^{\text{fin}} \to N^{\text{fin}}$. As M^{fin} is a co-limit of its finite restrictions by Proposition 4.3 we have $\text{colim}_i \text{Hom}(M, M[S]) \cong \text{Hom}(M, \text{colim}_i M[S])$. Thus there is an element of the co-limit $f = \text{colim}_i (f_S : M \to M_S)$ and $i_S : M[S] \to M$ satisfying $i_S \circ f = \text{id}_{M^{\text{fin}}}$. As a set map, this is the identity; thus i_S is surjective, yielding M is finite.

Conversely, assuming M is finite and $\text{colim}_i N_i$ is filtered, then note $f : M \to \text{colim}_i N_i$ has image contained in the ground set of N_j for some $j \in I$; thus $f \in \text{Hom}(M, N_j)$. As $\text{colim} \text{Hom}(M, N_i) = \bigcup_j \text{Hom}(M, N_j)$ we have that the identity function is the desired bijection $\text{colim}_i \text{Hom}(M, N_i) \cong \text{Hom}(M, \text{colim}_i N_i)$.

In particular, not all finitary matroids are finitely presented in Mat_* (or even in $\text{Mat}^{\text{fin}}_*$).

Remark 4.8. We initially hoped that the category of finitary matroids might be locally finitely presentable, but this fails spectacularly. The full subcategory of finite matroids is neither complete nor co-complete as it has neither products nor co-equalizers by [HP18, Propositions 3.5 and 3.7].

5. Future Directions

Our initial motivation for this project was to employ categorical language to study infinite matroids, generalizing theorems from finite matroid theory when possible. We now discuss some future directions.

5.1 Tutte-Grothendieck Invariants. Our initial main goal was to use categorical language to introduce a Tutte-Grothendieck invariant for infinite matroids. We discuss here an impossibility result we obtained on Tutte-Grothendieck invariants for infinite matroids.\footnote{The example described below was also discovered independently by R. Pendavingh (private communication).}

Ideally such an invariant should be determined by homomorphisms from some ring, as in the finite case with the general framework of [Bry72]. It should satisfy (at least) the following conditions to account for the matroid structure:

1. There is a generator for each matroid isomorphism class.
2. For all matroids M and all elements e of M which is neither a loop nor a coloop we have $[M] = [M \setminus e] + [M/e]$.

Now let E be any infinite set, let $U_r(E)$ denote the finitary uniform matroid of rank $r \geq 1$ on E (i.e. the circuits of $U_r(E)$ are the subsets of E of size $r + 1$), and let $e \in E$. Now we compute $[U_r(E)] = [U_r(E) \setminus e] + [U_r(E)/e] = [U_r(E \setminus e)] + [U_{r-1}(E \setminus e)] = [U_r(E)] + [U_{r-1}(E)]$.

Hence $U_r(E) = 0$ for all $r \geq 0$ and all infinite sets E. Hence every ring satisfying both 1 and 2 above must identify the finitary uniform matroids on infinite sets with 0. In particular, no
ring can be a universal isomorphism invariant of infinite matroids which respects single-element deletion-contraction relations and evaluates nontrivially on all matroids.

One way to circumvent this issue is to give up additive inverses, instead seeking a universal object satisfying (1) and (2) in the spirit of semirings.

Problem 5.1. Develop a meaningful generalization of the Tutte-Grothendieck theory of finite matroids for infinite matroids using the ideas above. Can this theory be practically applied to solve other problems on infinite matroids?

5.2. *K-Theory for Infinite Matroids.* The categories Mat_\bullet and $\text{Mat}^\text{fin}_\bullet$ are proto-exact by Theorem 3.9 and Corollary 4.1, so we have a K-theory using the Waldhausen construction. This suggests the following problem:

Problem 5.2. Compute the K-theory of Mat_\bullet and/or $\text{Mat}^\text{fin}_\bullet$.

We directly computed the Grothendieck group of the category of finite matroids in [EJS20, Theorem 6.3]. Our computation relies heavily on finitarity (in the category-theoretic sense) of the category of finite matroids; we showed that the class of a finite M can be identified with $(r, \#E(M) - r)$ where r is the rank of M. Neither Mat_\bullet nor $\text{Mat}^\text{fin}_\bullet$ is a finitary category, and the following *a priori* simpler problem seems like the place to start.

Problem 5.3. Compute the class of $U_r(E)$ in $K_0(\text{Mat}^\text{fin}_\bullet)$ for all $r \geq 0$ and all sets E.

References

[Bru+13] Henning Bruhn et al. “Axioms for infinite matroids”. In: *Adv. Math.* 239 (2013), pp. 18–46.
[Bry72] T. H. Brylawski. “The Tutte-Grothendieck ring”. In: *Algebra Universalis* 2 (1972), pp. 375–388.
[DK19] Tobias Dyckerhoff and Mikhail M Kapranov. *Higher Segal spaces*. Springer, 2019.
[EH20] Christopher Eur and June Huh. “Logarithmic concavity for morphisms of matroids”. In: *Adv. Math.* 367 (2020), pp. 107094, 19.
[EJS20] Chris Eppolito, Jaiung Jun, and Matt Szczesny. “Proto-exact categories of matroids, Hall algebras, and K-theory”. In: *Math. Z.* 296.1-2 (2020), pp. 147–167.
[ELY20] Jens Niklas Eberhardt, Oliver Lorscheid, and Matthew B Young. “Algebraic K-theory and Grothendieck-Witt theory of monoid schemes”. 2020. arXiv: [2009.12636].
[HP18] Chris Heunen and Vaia Patta. “The category of matroids”. In: *Applied Categorical Structures* 26.2 (2018), pp. 205–237.
[JS20] Jaiung Jun and Matt Szczesny. “Toric Hall algebras and infinite-dimensional Lie algebras”. 2020. arXiv: [2008.11302].
[Whi86] Neil White, ed. *Theory of matroids*. Vol. 26. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1986, pp. xviii+316.

Department of Mathematical Sciences, Binghamton University, Binghamton, NY, 13902, USA

Email address: eppolito-at-math-dot-binghamton-dot-edu

Department of Mathematics, State University of New York at New Paltz, NY 12561, USA

Email address: junj@newpaltz.edu