RELACOES ENTRE ASMA E OBESIDADE: ANALISE DE MULTIPLOS FATORES

Relations between asthma and obesity: an analysis of multiple factors

Leticia Nabuco de Oliveira Madeiraa,*, Maria Alice Neves Bordalloa, Marcos Antonio Borgesa, Agnaldo José Lopesa, Isabel Rey Madeiraa, Fábio Chigres Kuschnira

ABSTRACT

Objective: Asthma and obesity are prevalent and interrelated diseases. In the pediatric population, the effect of systemic inflammation associated to obesity, leading to inflammation of the airways, is currently controversial. Our aim was to compare inflammatory, clinical and spirometric patterns between children with asthma and obesity and those within the normal weight status range.

Methods: A total of 79 boys and girls from 6 to 10 years old were selected and divided into four groups: obese asthmatics, non-obese asthmatics, obese non-asthmatics, and non-obese non-asthmatics. In addition to collecting clinical and anthropometric data, all children underwent spirometry and skin prick tests for inhalant allergens. Blood samples for measurement of cytokines and adipokines were also collected.

Results: Obese asthmatics had significantly worse control of asthma than non-obese asthmatics (OR 4.9; 95%CI 1.1–22.1), regardless of sex, physical activity and atopy. No differences in spirometry, Th1 and Th2 cytokines and adipokines levels were observed among the four groups. The prick tests were positive in 81.8 and 80% of non-obese asthmatics and obese asthmatics, respectively.

Conclusions: The degree of control of asthma was significantly lower in the obese group, regardless of the findings of no differences in spirometry. Extra-pulmonary factors could be responsible for this symptomatic profile. High positivity of skin test in both groups, which is considered a good marker of atopy, shows a preponderant atopic component in the genesis of asthma, both in children with obesity and in those within the normal weight status.

Keywords: Asthma; Pediatric obesity; Child health; Interleukins; Spirometry.
INTRODUÇÃO

Asma e obesidade estão entre as doenças mais prevalentes na infância. Vários estudos mostram que a prevalência de asma aumentou nas últimas décadas em todo o mundo.¹ A obesidade é considerada pela Organização Mundial de Saúde (OMS) uma epidemia mundial, apresentando um crescimento alarmante nos últimos 20 anos, principalmente em crianças.² especificidades é de grande interesse.

Estudos longitudinais indicam que a obesidade precede a asma e que o risco relativo de asma aumenta com a obesidade.³ Uma metanálise indicou uma relação dose-resposta entre o peso corporal e a incidência de asma, relatando um risco relativo (RR) de asma de 1,19 (intervalo de confiança de 95% [IC95%] 1,03–1,37) para crianças com excesso de peso e um RR de 2,02 (IC95% 1,16–3,50) para crianças com obesidade.⁴ Em adultos, a redução de peso em asmáticos obesos resultou em um declínio na gravidade e intensidade dos sintomas de asma.⁵

A obesidade, como a asma, é considerada um estado pró-inflamatório. A inflamação sistêmica criada pelo excesso de adiposidade está envolvida na fisiopatologia de várias condições e foi identificada como um possível mecanismo para o desenvolvimento de asma em indivíduos com obesidade.⁶ De fato, asma e obesidade parecem estar conectadas de maneira multifatorial. Porém, os mecanismos intrínsecos e a causalidade dessa associação não foram totalmente elucidados. Diferentes hipóteses foram propostas para explicar a patogênese dessa associação, à medida que mudanças na mecânica das vias aéreas, resposta imune, influências hormonais e fatores genético-ambientais foram demonstradas.⁷

Na população pediátrica, no entanto, o efeito da inflamação sistêmica associada à obesidade, levando à inflamação das vias aéreas, é atualmente controverso. Assim, o objetivo do nosso estudo foi comparar os padrões clínicos, inflamatórios e espirométricos de asma em crianças com obesidade e aqueles dentro da faixa de peso normal para ajudar a esclarecer as interações entre essas duas entidades.

MÉTODO

Estudo transversal com população composta por meninos e meninas pré-puberescentes, de 6 a 10 anos, entre março de 2016 e agosto de 2018, nas clínicas de Pediatria e Endocrinologia do Hospital Universitário Pedro Ernesto (cidade do Rio de Janeiro, Brasil). Todos os participantes consultaram-se previamente pelo menos uma vez em nosso hospital.

O protocolo do estudo foi aprovado pelo Comitê de Ética e Pesquisa da instituição, e todos os responsáveis pelos participantes assinaram um termo de consentimento escrito de acordo com a Declaração de Helsinque.

A amostra da pesquisa foi de conveniência e os pacientes foram recrutados de acordo com a ordem de chegada para consulta. Nesta ocasião, os participantes foram alocados em quatro grupos diferentes: asmáticos obesos, asmáticos não obesos, não asmáticos obesos e não asmáticos não obesos. Pacientes em uso crônico de corticosteróides orais ou tratamentos imunossupressores e doenças crônicas que não asma ou obesidade foram excluídos do estudo.

Questionários contendo itens sobre dados demográficos e socioeconômicos, asma, rinite, uso de medicamentos, presença de tabagismo passivo, histórico familiar de atopia e atividade física foram preenchidos. Foram realizados testes clínicos, antropométricos e cutâneos de leitura imediata para aeroalérgenos. A coleta de exames laboratoriais e espirometria ocorreu no prazo máximo de uma semana.

O diagnóstico de asma foi realizado com a avaliação de um alergista pediátrico, complementado por uma resposta afirmativa à seguinte pergunta: “Seu filho apresentou sibilância (chiado no peito) nos últimos 12 meses?”, Segundo o módulo de asma do International Study of Asthma and Allergies in Childhood (ISAAC), validado para crianças brasileiras.⁸

A asma foi classificada de acordo com as recomendações da Global Initiative for Asthma (GINA) 2012, da seguinte forma:

- Controlada: sintomas diurnos ou necessidade de medicação de resgate ≤2x/semana; ausência de limitação de atividade e sintomas ou exacerbações noturnas; e pico do fluxo expiratório (PFE) ou volume expiratório forçado dentro de 1 segundo (VEF1) dos valores normais.
- Parcialmente controlado: presença de qualquer uma dessas manifestações: sintomas diurnos ou necessidade de medicação de resgate ≥2x/semana; qualquer limitação de atividades ou sintomas ou despertares noturnos; e PFE ou VEF1 <80% dos valores previstos.
- Não controlado: 3 ou mais manifestações de asma parcialmente controlada nas últimas 4 semanas.⁹

O diagnóstico clínico de rinite alérgica também foi realizado com avaliação de um alergista pediátrico, complementado por uma resposta afirmativa à seguinte pergunta: “Nos últimos 12 meses, seu filho teve problemas com espirros, coriza ou obstrução nasal quando não estava gripado ou resfriado”, do módulo referente à rinite do ISAAC, validado para crianças brasileiras.¹⁰

O histórico familiar de atopia foi definido como a presença de um parente de primeiro grau com asma, rinite ou dermatite atópica. A presença de atopia foi determinada por pelo menos um teste cutâneo de leitura imediata para aeroalérgenos com resultado positivo.

Os pacientes foram classificados de acordo com a atividade física da seguinte forma: 1) sedentários: caminham ou correm...
menos de 1 km/dia e, quando não estavam na escola, passavam a maior parte do tempo sentados; ou 2) ativo: caminham ou correm pelo menos 1 a 2 km/dia e, quando não estavam na escola, passavam a maior parte do tempo em brincadeiras ativas.11

A pesagem das crianças foi realizada em balança digital; a estatura foi medida com estadiômetro de parede. A medida da circunferência da cintura foi realizada na altura das cristas ilíacas, seguindo as recomendações da \textit{National Health and Nutrition Examination Survey (NHANES)} III.12 Os dados antropométricos foram analisados de acordo com as curvas de peso, altura e índice de massa corporal das diretrizes da OMS de 2007. Os seguintes critérios de IMC para idade e sexo foram utilizados para classificar os pacientes: eutróficos, entre -2DP (desvio padrão) e ≤+2DP; obesidade: >+2DP, e obesidade grave, >+3DP.13

Para avaliar a circunferência da cintura (CC), foram utilizados os padrões de referência do \textit{National Center of Health and Survey (NCHS-2000)}, que considerou medidas normais abaixo do percentil 90 para idade e sexo (incluindo dados de indivíduos de etnia mista).12

Foram realizados os seguintes exames laboratoriais: hemoograma completo (incluindo contagem de eosinófilos e neutrófilos), glicemia, colesterol total e frações, triglicérides, insulina, leptina, adiponectina, IL-4, IL-5, IL-6, IL-8 e TNF-α. As interleucinas (IL-4, IL-5, IL-6, IL-8 e TNF-α) e adipocinas (leptina e adiponectina) foram medidas usando o equipamento Luminex 200 (Luminex Corporation, Austin, TX, EUA). Foi utilizada a metodologia de análise simultânea de múltiplos analitos (multiplexação). Todos os testes foram duplicados. Os kits utilizados para citocinas foram kits \textit{Ultrasonic Magnetic Custom Luminex} (Life Technologies, Camarillo, CA, EUA). Os kits de adipocinas eram do fabricante EMD Millipore (Darmstadt, Alemanha). Os valores de citocinas, adiponectina e leptina foram descritos respectivamente em pg/mL, μg/mL e ng/mL.

Na avaliação da atopia, os seguintes extratos padronizados de alérgenos (Immunotech8, Rio de Janeiro, Brasil) foram utilizados em testes cutâneos de hipersensibilidade imediata à aeroalérgenos: ácaros da poeira doméstica (\textit{Dermatophagoides pteronyssinus}, \textit{Dermatophagoides farinae}, \textit{Blomia tropicalis}), epi-dermiano e baratas (\textit{Periplaneta americana} e \textit{Blatella germanica}). Os controles positivos e negativos utilizados foram cloridrato de histamina (1 mg/mL) e solução salina, respectivamente. Os testes cutâneos foram realizados por um único investigador, utilizando a técnica de Pepys modificada.14

A avaliação funcional pulmonar foi realizada com espirometria simples e com o teste broncodilatador. As medidas foram obtidas utilizando HD CPL (nSpire Health, Inc., Longmont, CO, EUA), de acordo com as regras e interpretação do procedimento.15 Os resultados da função pulmonar foram expressos como uma porcentagem dos valores previstos para crianças brasileiras.16 Todas as avaliações foram realizadas por um único pneumologista.

As variáveis foram descritas através de suas distribuições de frequência, médias e respectivos desvios-padrão, de acordo com suas características. A comparação das médias de variáveis contínuas entre os dois grupos de asmáticos e entre os quatro grupos de estudo foi realizada usando o teste \textit{t} de Student e análise de variância usando o teste de Tukey, respectivamente. O teste do qui-quadrado, razões de prevalência (OR) e respectivos intervalos de confiança de 95% (IC95%) foram utilizados para comparar a distribuição das variáveis categóricas entre os grupos asmáticos. Modelos de regressão logística foram criados para verificar possíveis fatores de confusão. Um modelo “completo” foi realizado com todas as variáveis explicativas de relevância clínica. As correlações entre variáveis espirométricas, citocinas, escore \textit{Z} do IMC (ZBMI) e circunferência da cintura (CC), que mostraram uma distribuição normal de acordo com o teste de Kolmogrov-Smínov, foram avaliadas pela correlação linear de Pearson. As mesmas análises foram realizadas separadamente para ambos os sexos. As análises foram realizadas no software estatístico SPSS para Windows, versão 20.0 (IBM, Armonk, NY, EUA). O nível de significância de 0,05 foi considerado para todos os testes realizados.

RESULTADOS

Foram estudadas 79 crianças, distribuídas em 4 grupos de estudo: (1) não asmáticos não obesos; (2) asmáticos não obesos; (3) obesos não asmáticos e (4) obesos asmáticos. A Tabela 1 mostra a distribuição por sexo e as médias de idade, ZBMI e CC nos grupos estudados. Não houve diferenças significativas entre as médias de ZBMI (\textit{p}=0,46) e CC (\textit{p}=0,32) por sexo.

A Tabela 2 compara as características clínicas e de estilo de vida entre os dois grupos de asmáticos. Não houve diferenças significativas em relação à presença de rinite, histórico familiar de atopia e testes cutâneos de leitura imediata entre os asmáticos não obesos e testes cutâneos positivos foram 81,8 e 80%, respectivamente.

Por outro lado, uma comparação do critério de gravidade clínica entre os grupos de asmáticos revelou que, entre os pacientes não obesos, apenas 14,3% apresentavam asma controlada/não controlada, enquanto esse percentual entre os obesos era de 45% (OR=4,99, IC95% 1,08–22,14, \textit{p}=0,043). Essa associação permaneceu significativa após o ajuste para idade e outras variáveis categóricas (Tabela 2).

A Tabela 3 mostra os principais resultados dos testes funcionais entre asmáticos. Não foram observadas diferenças significativas na distribuição dos valores médios espirométricos.
Análise da relação entre asma e obesidade

Tabela 1 Características sociodemográficas e antropométricas dos pacientes estudados.

	Não Obesos Não Asmáticos (n=16)	Não Asmáticos Obesos (n=21)	Asmáticos Não Obesos (n=22)	Asmáticos Obesos (n=20)	p-valor
Sexo					
Feminino	7 (56,2%)	10 (47,6%)	5 (22,7%)	9 (45,0%)	0,66
Masculino	9 (43,8%)	11 (52,4%)	17 (77,3%)	11 (55,0%)	
Idade (anos)	8,4±1,5	8,9±1,4	7,9±1,7	8,4±1,6	0,19
ESC (cm)	0,3±0,8	3,0±0,7	-0,1±0,8	2,9±0,6	<0,001
CC (cm)	59,9±5,6	85,3±15,0	56,6±6,1	79,0±12,7	<0,001

IMC: Índice de massa corporal, CC: circunferência da cintura

Tabela 2 Comparação das características clínicas e sociodemográficas entre os asmáticos obesos e não-obesos.

	Não Obesos Asmáticos (n=22)	Obesos Asmáticos (n=20)	RP (IC95%)a	p-valor	aRP (IC95%)b	p-valor
	N %	N %				
Rinite	19 86,4	16 80,0	0,63 (0,12–3,20)	0,44	0,44 (0,04–4,40)	0,48
Histórico familiar de atopia	21 95,5	19 95,0	0,90 (0,05–15,40)	0,73	5,30 (0,58–47,80)	0,08
Teste cutâneo positivoc	18 81,8	16 80,0	1,18 (0,23–6,11)	0,58	3,30 (0,31–36,00)	0,31
Uso de corticosteroidesd	8 36,3	5 25,0	0,65 (0,19–2,34)	0,42	1,80 (0,20–15,30)	0,25
Fumante passivo	2 9,0	3 15,0	1,57 (0,23–10,40)	0,22	3,80 (0,31–37,30)	0,14
Atividade física						
Ativo	12 70,6	12 60	0,62 (0,15–2,40)	0,73	1,50 (0,20–11,50)	0,67
Sedentário	5 29,4	8 40				
Classificação da Asma						
Controlada	18 85,7	11 55	4,90 (1,08–22,1)	0,043	18,30 (1,23–271)	0,035
Não Controlada	3 14,3	9 45				

a teste qui-quadrado; RP: Razão de Prevalências; IC95%: Intervalo de Confiança de 95%; aRP: Razão de Prevalências ajustada; c: testes cutâneos de hipersensibilidade imediata a aeroalérgenos; d: dipropionato de beclometasona: dose alta (>200 mcg).

Tabela 3 Comparação de variáveis espirométricas entre os asmáticos obesos e não-obesos.

	Não obesos Asmáticos	Obesos Asmáticos	p-valora
CVF (%)	92,8±13,1	89,1±11,8	0,34
VEF1 (%)	89,4±15,6	85,9±13,4	0,45
VEF1/CVF (%)	95,5±11,1	94,7±10,3	0,82
FEF2575 (%)	94,4±33,1	82,1±24,2	0,18

a Teste T de Student. CVF: capacidade vital forçada; VEF1: volume expiratório forçado em 1 segundo; FEF2575: fluxo expiratório forçado entre 25–75%

Entre os dois grupos. Também não houve diferença na resposta broncodilatadora com agonista B2.

A Tabela 4 mostra a comparação entre as concentrações séricas de citocinas, celularidade sanguínea e adipocinas nos quatro grupos estudados. Não foram observadas diferenças significativas nas médias das citocinas avaliadas. A concentração de adiponectina foi maior no grupo não obeso do que no grupo obeso, mas essa diferença não mostrou significância estatística. Por outro lado, os valores médios de leptina foram significativamente maiores no grupo obeso do que em outros participantes, independentemente da presença de asma (p<0,001). Esses resultados permaneceram
Tabela 4 Comparação de citocinas, adipocinas e celularidade sanguínea entre os quatro grupos de estudo.

	Não Asmáticos Não Obesos	Não Asmáticos Obesos	Asmáticos Não Obesos	Asmáticos Obesos	p-valor*
FNT-α	0,18±0,42	2,36±7,02	0,04±0,08	0,02±0,05	0,25
IL-6	0,30±0,39	1,58±1,97	1,00±2,00	4,26±9,28	0,12
IL-4	0,10±0,21	2,01±6,57	0,05±0,14	0,04±0,14	0,31
IL-5	0,20±0,45	0,28±0,51	0,47±0,75	0,82±1,53	0,32
IL-8	11,14±9,05	8,62±7,36	8,33±11,50	8,44±7,07	0,87
Adiponectina	49,90±33,30	30,20±41,60	63,10±46,40	32,50±23,60	0,07
Leptina	3,12±3,77	23,50±15,20	2,93±2,45	16,57±13,10	<0,001
Neutrófilos	3236±966	3946±2526	4819±2634	5175±2432	0,38
Eosinófilos	489±333	246±158	371±238	439±183	0,016

*Análise de variância, teste de Tukey. Expressa por meios e desvio padrão. FNT: fator de necrose tumoral; IL: interleucina.

significativos quando analisamos meninos (p<0,001) e meninas (p=0,018) separadamente.

Não houve correlação significativa entre as variáveis espirométricas e o ZBMI e a CC. A leptina foi correlacionada positivamente com o ZBMI (r=0,706, p<0,001) e com a CC (r=0,804, p<0,001), enquanto a adiponectina foi negativamente correlacionada com o ZBMI (r=-0,462, p=0,001) e CC (r=-0,361, p=0,013).

Eosinofilia significativamente maior foi observada em pacientes não asmáticos e não obesos em comparação com indivíduos obesos não asmáticos (p<0,01); no entanto, não houve diferenças nessa medida entre os dois grupos asmáticos (p=0,31).

DISCUSSÃO

A literatura médica atual mostra que a associação entre asma e obesidade ainda é objeto de controvérsia, principalmente em crianças. Assim, procurou-se avaliar a relação entre essas doenças de maneira mais amplo, analisando aspectos clínicos, laboratoriais e espirométricos.

Um achado importante deste estudo foi a diferença significativa na avaliação clínica do controle da doença entre os dois grupos de asmáticos, com o grupo de obesos mais sintomático. Por outro lado, não houve diferença nos padrões espirométricos e no uso de corticosteroides entre asmáticos obesos e asmáticos não-obesos. Esse achado sugere que fatores extrapulmonares podem ser responsáveis pelo perfil sintomático. Sah et al. demonstraram que, embora os obesos não apresentassem pior controle da asma, apresentavam mais dispnéia, mais despertares noturnos, menor qualidade de vida associada à asma e maior uso dos serviços de saúde. Postulou-se que esse achado seria justificado por alterações na parede torácica (com pior dinâmica respiratória) encontradas em pacientes obesos e não diretamente relacionadas à patologia pulmonar.

Outro estudo mostrou que, embora relatos de asma, dispnéia e uso de broncodilatadores após o exercício tenham sido mais frequentes em obesos, eles apresentaram menor possibilidade de obstrução do fluxo aéreo do que em não obesos, sugerindo que um número substancial de obesos, que se autorreferem como asmáticos, não são verdadeiramente asmáticos e, portanto, recebem tratamento inapropriado. Resultados semelhantes foram encontrados por Caprio et al., que demonstraram que indivíduos obesos com diagnóstico de asma autorreferido, mas sem critérios objetivos nos testes espirométricos, apresentaram maior percepção de dispnéia durante o exercício, possivelmente associada à inflamação sistêmica e ventilação excessiva para demandas metabólicas relacionadas à obesidade.

Não houve diferença no nível de atividade física entre crianças obesas e não obesas. Esses dados são importantes para desencadear um possível viés de confusão, pois pode haver confusão entre a intolerância ao exercício relacionada à asma e o mau condicionamento físico.

Nosso estudo não mostrou diferenças quanto à presença de rinite, histórico familiar de atopia, eosinofilia e neutrofilia entre os dois grupos de asmáticos. Esses resultados, juntamente com a alta positividade do teste cutâneo nos dois grupos, conside-rado um bom marcador de atopia, sugerem um componente atópico preponderante na gênese da asma, tanto em crianças obesas quanto não obesas.

Os níveis aumentados de eosinofilia encontrados em nosso estudo (>300 μl⁻¹) no grupo asmático estão relacionados na literatura a maior gravidade da asma, embora esses dados devam ser analisados com restrições devido ao parasitismo endêmico no Brasil. Essa consideração é reforçada pelo
aumento dos níveis de eosinófilos no grupo de crianças não obesas e não asmáticas.

Recentemente, foi questionado se existem fenótipos inflamatórios distintos que caracterizam asmáticos obesos e não-obesos. Ao contrário da asma atópica “clássica” infantil, caracterizada por um fenótipo Th2 com níveis elevados de IL-4, IL-5 e IL-13,22 a asma associada à obesidade teria um padrão de linfócitos Th1, associado a níveis elevados de TNF-α, IFN-γ e IL-6.23 Estudos em adultos asmáticos obesos demonstraram inflamação das vias aéreas com padrão predominantemente Th1, não nosofílico e com neutrofilia significativa.24 Resultados em crianças são mais controversos. Visness et al. mostram uma associação entre asma e obesidade, que foi mais forte na ausência de atopia.25 Por outro lado, Yoo et al. relataram que crianças acima do peso eram mais propensas a serem atópicas quando comparadas a crianças não obesas, sugerindo que a atopia poderia mediar o efeito da adiposidade na asma.26

Não foram demonstradas diferenças no padrão inflamatório das citocinas entre os participantes do estudo, independentemente da presença de obesidade. Da mesma forma, não houve diferenças nessa distribuição entre os grupos asmáticos, nas citocinas associadas à resposta Th2 (IL-4, IL-5) ou naquelas associadas à resposta Th1 (TNF-α, IL-6, IL-8). Também não houve correlação significativa de citocinas com medidas antropométricas. Resultados semelhantes foram observados em um estudo de Rastogi et al., que não demonstraram aumento das vias aéreas ou inflamação sistêmica por óxido nítrico exalado, eosinófilos no escarro, proteína C reativa plasmática e IL-6 em crianças e adolescentes de 8 a 17 anos com asma e obesidade.27

Embora não tenha havido diferença significativa nas concentrações de adipocina entre os dois grupos de asmáticos, as diferenças encontradas nos níveis séricos de leptina e adiponectina entre as crianças obesas em relação às não-obesas reforçam a qualidade da seleção da amostra com base em medidas antropométricas. A leptina está positivamente correlacionada com o IMC e reflete a massa gorda corporal, diferentemente da adiponectina.7

Nosso estudo tem algumas limitações. O tamanho da amostra pode ter limitado a descoberta de diferenças entre os grupos. Além disso, o desenho transversal impede a inferência de causalidade. Algumas outras variáveis, como o uso de beta-agonistas de ação curta, poderiam ter sido controladas, apesar da baixa chance de interferência no resultado final do estudo. No entanto, devido à escassez de estudos na faixa etária estudada, esses resultados contribuíram para um melhor conhecimento dessas relações e podem informar a direção de estudos mais abrangentes.

Em conclusão, a asma em crianças não parece ter um perfil inflamatório diferente entre os obesos e os não-obesos, embora os asmáticos obesos sejam significativamente mais sintomáticos. Medidas objetivas, como testes de função pulmonar, devem ser priorizadas para evitar possíveis hipertratamentos desse grupo, considerando que a maioria da sintomatologia exuberante pode não estar relacionada exclusivamente à asma. O perfil inflamatório semelhante sugere que o tratamento padrão com corticosteróïdes inalados poderia ser usado como normalmente recomendado em crianças asmáticas obesas.

Financiamento
O estudo não recebeu financiamento.

Conflito de interesses
Os autores declaram não haver conflito de interesses.

REFERÊNCIAS

1. Solé D, Rosário Filho NA, Sarinho ES, Camelo-Nunes IC, Barreto BA, Medeiros ML, et al. Prevalence of asthma and allergic diseases in adolescents: nine-year follow-up study (2003-2012). J Pediatr (Rio J). 2015;91:30-5. https://doi.org/10.1016/j.jped.2014.05.002
2. United Nations Children’s Fund, World Health Organization, World Bank. Levels and trends in child malnutrition: UNICEF-WHO-World Bank joint child malnutrition estimates. Geneva: WHO;2015.
3. Di Genova L, Penta L, Biscarini A, Di Cara G, Esposito S. Children with obesity and asthma: which are the best options for their management? Nutrients. 2018;10:E1634. https://doi.org/10.3390/nu10111634
4. Chen YC, Dong GH, Lin KC, Lee YL. Gender difference of childhood overweight and obesity in predicting the risk of incident asthma: a systematic review and meta-analysis. Obes Rev. 2013;14:222-31. https://doi.org/10.1111/j.1467-789X.2012.01055.x
5. Dixon AE, Holguin F. Diet and metabolism in the evolution of asthma and obesity. Clin Chest Med. 2019;40:97-106. https://doi.org/10.1016/j.ccm.2018.10.007
6. Raucci R, Rusolo F, Sharma A, Colonna G, Castello G, Costantini S. Functional and structural features of adipokine family. Cytokine. 2013;61:1-14. https://doi.org/10.1016/j.cytoc.2012.08.036
7. Beuther DA. Obesity and asthma. Clin Chest Med. 2009;30:479-88. https://doi.org/10.1016/j.ccm.2009.05.002
8. Solé D, Vanna AT, Yamada E, Rizzo MC, Naspitz CK. International Study of Asthma and Allergies in Childhood (ISAAC) written questionnaire: validation of the asthma component among Brazilian children. J Investig Allergol Clin Immunol. 1998;8:376-82.
9. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention. Fontana: GINA; 2015.

10. Vanna AT, Yamada E, Arruda LK, Naspitz CK, Sole D. International Study of Asthma and Allergies in Childhood: validation of the rhinitis symptom questionnaire and prevalence of rhinitis in school children in Sao Paulo, Brazil. Pediatr Allergy Immunol. 2001;12:95-101. https://doi.org/10.1034/j.1399-3038.2001.012002095.x

11. Andersen RE, Crespo CJ, Bartlett SJ, Cheskin LJ, Pratt M. Relationship of physical activity and television watching with body weight and level of fatness among children. JAMA. 1998;279:938-42. https://doi.org/10.1001/jama.279.12.938

12. Fernández JR, Redden DT, Pietrobelli A, Alisson DB. Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J Pediatr. 2004;145:439-44. https://doi.org/10.1016/j.jpeds.2004.06.044

13. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660-7. https://doi.org/10.1080/20018525.2007.12561

14. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardization of spirometry. Eur Respir J. 2005;26:319-38. https://doi.org/10.1183/09031936.05.00034805

15. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardization of spirometry. Eur Respir J. 2005;26:319-38. https://doi.org/10.1183/09031936.05.00034805

16. Burity EF, Pereira CA, Rizzo JA, Brito MC, Sarinho ES. Reference values for spirometry in school children. J Pediatr (Rio J). 2013;89:374-80. https://doi.org/10.1016/j.jped.2013.01.002

17. Sah PK, Gerald Teague W, Demuth KA, Whitlock DR, Brown SD, Fitzpatrick AM. Poor asthma control in obese children may be overestimated because of enhanced perception of dyspnea. J Allergy Clin Immunol Prac. 2013;1:39-45. https://doi.org/10.1016/j.jaip.2012.10.006

18. Sin DD, Jones RL, Man SF. Obesity is a risk factor for dyspnea but not for airflow obstruction. Arch Intern Med. 2002;162:1477-81. https://doi.org/10.1001/archinte.162.13.1477

19. Carpio C, Villasante C, Galera R, Romero D, Cos A, Hernanz A, et al. Systemic inflammation and higher perception of dyspnea mimicking asthma in obese subjects. J Allergy Clin Immunol. 2016;137:718-26.e4. https://doi.org/10.1016/j.jaci.2015.11.010

20. Jago R, Salway RE, Ness AR, Shield JP, Ridd MJ, Henderson AJ. Associations between physical activity and asthma, eczema and obesity in children aged 12-16: an observational cohort study. BMJ Open. 2019;9:e024858. https://doi.org/10.1136/bmjopen-2018-024858

21. Sánchez-García S, Mena AH, Quirce S. Biomarkers in inflammmometry pediatric asthma: utility in daily clinical practice. Eur Clin Respir J. 2017;4:1356160. https://doi.org/10.1080/20018525.2017.1356160

22. Gelfand EW, Joetham A, Wang M, Takeda K, Schedel M. Spectrum of T-lymphocyte activities regulating allergic lung inflammation. Immunol Rev. 2017;278:63-86. https://doi.org/10.1111/imr.12561

23. Rastogi D, Holguin F. Metabolic dysregulation, systemic inflammation, and pediatric obesity-related asthma. Ann Am Thorac Soc. 2017;14 (Suppl 5):S363-7. https://doi.org/10.1513/AnnalsATS.201703-231AW

24. Scott HA, Gibson PG, Garg ML, Wood LG. Airway inflammation is augmented by obesity and fatty acids in asthma. Eur Respir J. 2011;38:594-602. https://doi.org/10.1183/09031936.00139810

25. Visness CM, London SJ, Daniels JL, Kaufman JS, Yeatts KB, Siega-Riz AM, et al. Association of childhood obesity with atopic and nonatopic asthma: results from the National Health and Nutrition Examination Survey 1999–2006. J Asthma. 2010;47:822-9. https://doi.org/10.3109/02770903.2010.489388

26. Yoo S, Kim HB, Lee SY, Kim BS, Kim JH, Yu JH, et al. Association between obesity and the prevalence of allergic diseases, atopy, and bronchial hyperresponsiveness in Korean adolescents. Int Arch Allergy Immunol. 2011;154:42-8. https://doi.org/10.1159/000319207

27. Rastogi D, Canfield SM, Andrade A, Isasi CR, Hall CB, Rubinstein A, et al. Obesity-associated asthma in children: a distinct entity. Chest. 2012;141:895-905. https://doi.org/10.1378/chest.11-0930