Investigation of production routes for the 161Ho Auger-electron emitting radiolanthanide, a candidate for therapy

F. Tárkányi · F. Ditrói · A. Hermanne · S. Takács · A.V. Ignatyuk

Received: 2012-11-13 / Accepted: 2012-12-19

Abstract The radiolanthanide 161Ho (2.48 h) is a promising Auger-electron emitter for internal radiotherapy that can be produced with particle accelerators. The excitation functions of the natDy(p,xn)161Ho and natDy(d,x)161Ho reactions were measured up to 40 and 50 MeV respectively by using the stacked foil activation method and γ-ray spectrometry. The experimental data were compared with results of the TALYS code available in the TENDL 2011 library [1]. The main parameters of different production routes are discussed.

Keywords medical radioisotopes · therapeutical isotopes · proton and deuteron irradiation · 161Ho · 162mHo

1 Introduction

The radiolanthanide 161Ho is an Auger-electron emitter having also low energy photons in high abundance. It is very suitable for internal radiotherapy of small tumors because of the low energy electrons emitted. The short range of Auger electrons however requires that labeled compounds approach the cell nucleus. It is also interesting as low-energy narrow-band X-ray source for internal irradiation [2,3,4,5]. Different routes exist to produce 161Ho with particle accelerators. One route is α- or 3He- particle irradiation of 159Tb relying on the 159Tb(α,2n)161Ho and 159Tb(3He,n)161Ho reactions. Another route is the irradiation of dysprosium targets using protons via the 161Dy(p,n), 162Dy(p,2n) or deuterons via 160Dy(d,n) and 161Dy(d,2n) reactions. When using the 159Tb(α,2n)161Ho, 162Dy(p,2n) or 161Dy(d,2n) reactions processes, emission of one neutron also takes place resulting in simultaneous production of 162Ho, which is a radionuclide impurity. This radionuclide has a short half-life ground state 162gHo (15 min, $I^e = 1^+$) and a longer-lived isomeric state (67.0 min, $I^e = 6^-$). From the point of view of 161Ho production, the contamination with the longer-lived excited state has some importance at the beginning after EOB, which will be reduced by the waiting time. The decay through internal transition of 162mHo is followed only by low energy low intensity γ-ray emission, but the 38% electron capture decay results in strong high energy γ-lines (see Table 1). The cross-sections of the 159Tb(α,2n)161Ho reaction was investigated by several authors (see in comparison of production routes). Although the basic cross-section data are still missing the proton induced reaction was also used for practical production [5]. The deuteron induced reaction was not used yet for the production and no cross-section data were published. We decided to investigate the excitation functions of the proton and deuteron routes experimentally. Naturally occurring dysprosium is composed of 7 stable isotopes (156Dy - 0.06%, 158Dy - 0.10%, 160Dy - 2.34%, 161Dy - 18.9%, 162Dy - 25.5%, 163Dy - 24.9% and 164Dy - 28.2%). Taking into account that many of these stable Dy isotopes have a larger mass number than 161Ho, the direct experimental investigation of the 161Dy(p,n), 161Dy(d,2n) or 160Dy(d,n) reactions, and routes leading
to possibly disturbing activation products, should require highly enriched targets. A second possibility is to use natural targets and to use results of theoretical calculations to separate the contributions of the different target isotopes. This supposes an accurate predictivity of the calculations and a method to check the reliability has to be implemented. We adopted this approach by making measurement of production cross-section of 161Ho on natDy target with protons and deuterons and by comparing our experimental data with the predictions of the theoretical model codes. In case of good agreement we can then compare the different charged particle production routes using theoretical results validated by integral experiment.

2 Experimental and data evaluation

The general characteristics and procedures for irradiation, activity assessment and data evaluation (including estimation of uncertainties) were similar as in our many earlier works \cite{1,2,3,4,5,6,7,8,9,10,11}. The main experimental parameters for the present study including the chosen monitor reactions \cite{12} are summarized in Table 1. The main methods used in data evaluation and the used decay data \cite{8,9,11,13,14,15,16,17,18,19,20} are collected in Table 2 and Table 3. The excitation function of simultaneously measured proton and deuteron monitor reactions and comparison with recommended values are shown in Fig. 1.

3 Results

3.1 Cross-sections

The measured excitation functions for natDy(p,xn)161,162Ho and natDy(d,xn)161,162Ho are shown in Figs 2-3 and 5-6 in comparison with the results of the model calculations. The numerical data important for further data evaluation are collected in Tables 4 and 5. In both cases the theoretical results reproduce exceptionally well the shape of the measured excitation functions, but an overestimation over the whole energy range is seen for the natDy(p,xn)161,162Ho and natDy(d,xn)161Ho reactions. In case of the natDy(d,xn)162Ho the agreement of the maximum is acceptable. The numerical values of theoretical results by a factor of 0.7 in case of natDy(p,xn)161,162Ho and of 0.55 in case of natDy(d,xn)161Ho should be multiplied as a rough estimation. There is no normalization for natDy(d,xn)162Ho reaction. For further discussion we have normalized the theoretical cross-sections of the contributing reactions involved in 161Ho production with these factors. The comparison of the normalized TENDL 2011 cross-sections of the 161Dy(p,n)161Ho and the 162Dy(p,2n)161Ho reactions and the 162Dy(p,n)162Ho impurity reaction are shown in Fig 4 and of the 160Dy(d,n)161Ho, the 161Dy(d,2n)161Ho reactions and the 161Dy(d,n)162Ho impurity reaction is presented in Fig 7.

Table 1 Main experimental parameters

Reaction	natDy(p,xn)	natDy(d,x)
Incident particle	Proton	Neutron
Method	Stacked foil	Stacked foil
Target and thickness	natDy foil, 100.59 µm	natDy foil, 100.59 µm
Number of target foil	10	10
Accelerator	Cyclotron 90 cyclotron of the University of Brussels	Cyclotron 90 cyclotron of the University of Louvain in City-Catholic University of Louvain in Brussels
Primary energy	36 MeV	36 MeV
Beam current	61 nA	61 nA
Monitor reaction, [recommended values]	27Al(α,x)24Na reaction \cite{19}	27Al(α,x)24Na reaction \cite{19}
Monitor target and thickness	Ti, 10.9 µm	Ti, 10.9 µm
Detector	Hylex	Hylex
Cooling times	1.5 h, 20 h, 80 h	1 h, 20 h, 120 h

Fig. 1 The simultaneously measured monitor reactions for determination of proton beam energy and intensity

Table 2 Main parameters of data evaluation (with references)

Spectrum evaluation	Geant 4, Forgamma
Determination of beam intensity	Pelletron cup (preliminary)
Fitted monitor reaction (final)	
Decay data	Nucl.Data 2/6
Reaction Q-values	Q-value calculator
Determination of beam energy	Andersen (preliminary)
Fitted monitor reaction (final)	
Uncertainty of energy	Cumulative effects of possible uncertainties
Cross-sections	Isotopic cross-section
Uncertainty of cross-sections	Sum in quadrature of all individual contributions
Yield	Physical yield

Table 3 Main experimental parameters
Table 3 Decay characteristics of the 161Ho and 162Ho and Q-values of reactions for their productions

Nuclide	Half-life	E_γ (keV)	I_γ (%)	Contributing reaction	Q-value (keV)	
161Ho	$r = 100\%$	2.45 h	77.42	1.9	162Dy(p,2n)	0.49
162Ho	$e = 72\%$	11.5 h	23.94	10.2	163Dy(p,2n)	103.05
162Ho	$e = 38\%$	57.0 m	184.99	6.8	163Dy(p,2n)	23.7
162Ho	$e = 100\%$	15.0 m	1319.75	6.8	163Dy(p,2n)	-9296.52

Fig. 2 Experimental cross-sections of the natDy(p,xn) 161Ho reaction in comparison with the results of model calculations in TENDL 2011

Fig. 3 Experimental cross-sections of the natDy(p,xn) 162mHo reaction in comparison with the results of model calculations in TENDL 2011

Table 4 Measured cross-sections of the natDy(p,x) 161,162mHo reactions

E (MeV)	161Ho	162mHo
35.5	25.3	34.4
53.4	25.2	36.6
38.6	35.2	50.7
32.7	28.5	42.7
27.2	23.4	33.0
23.6	20.6	11.4
21.6	18.6	11.6
19.7	16.5	10.6
17.4	14.5	9.1
15.8	12.6	8.9
14.8	10.9	8.9
14.4	9.7	8.9

Fig. 4 Experimental cross-sections of the natDy(d,xn) 161Ho reaction in comparison with the results of model calculations in TENDL 2011

Fig. 5 Experimental cross-sections of the natDy(d,xn) 162mHo reaction in comparison with the results of model calculations in TENDL 2011
Table 5 Measured cross-sections of the 161,162mHo reactions

E (MeV)	σ (mb)	$\delta\sigma$ (mb)	σ (mb)	$\delta\sigma$ (mb)
11.0	56.7	4.7	56.7	4.7
13.0	74.5	6.5	74.5	6.5
15.0	92.0	7.0	92.0	7.0
17.0	109.5	7.5	109.5	7.5
19.0	126.0	8.0	126.0	8.0
21.0	142.5	8.5	142.5	8.5
23.0	158.0	9.0	158.0	9.0
25.0	173.0	9.5	173.0	9.5
27.0	188.0	10.0	188.0	10.0

3.2 Integral yields

The integral yields calculated on the basis of the normalized TENDL 2011 cross-sections for the 161Dy(p,xn)161Ho, 162Dy(p,xn)162mHo, 162Dy(d,xn)162mHo and 162Dy(d,xn)162mHo production reactions are shown in Fig. 8. The calculated integral yield represents so called physical yield i.e. yield obtained in a short irradiation [19]. The 161Dy(p,xn)161Ho yields are compared with the experimental data of Stephens [5]. The value calculated by the Stephens’ result for 11.6 MeV proton bombardment is significantly lower than our result, but it can be caused by the fact that the irradiation time was not published in that paper. Comparing the saturation activities, which are 1.8 GBq by Stephens (after 3.6 hours) and 1.89 GBq in our measurement/calculation, the agreement can be considered as good.

Fig. 6 Comparison of the cross-sections of the 161Dy(p,n)161Ho and the 162Dy(p,2n)161Ho reactions and the 161Dy(p,n)162mHo impurity reaction in TENDL 2011

Fig. 7 Comparison of the cross-sections of the 161Dy(d,n)161Ho and the 161Dy(d,2n)161Ho reactions and the 161Dy(d,n)162mHo impurity reaction in TENDL 2011

Fig. 8 Integral yields of the 161Dy(p,xn)161Ho, 162Dy(p,xn)162mHo, 162Dy(d,xn)162mHo and 162Dy(d,xn)162mHo reactions

4 Comparison of production routes on different target materials

The main parameters of the selected low and medium energy reactions that can lead to production of 161Ho on different target materials are collected in Table 6. The excitation functions of the proton and deuteron routes are shown in Figs. 2-3 and Fig 4-5. Mukherjee [21] and Bonesso [22] reported earlier experimental cross-section data on 159Tb(α,2n)161Ho and Mukherjee [21] and Singh [23] on total cross-section of and 159Tb(α,2n)162Ho. The 162mHo/162gHo isomeric ratio was measured by Tulinov [24], Baskova [25]. No experimental data were found for the 159Tb(3He,n)161Ho reaction. The experimental data from literature and the
Investigation of production routes for the 161Ho Auger-electron emitting radiolanthanide, a candidate for therapy

Theoretical excitation functions of the 159Tb(α,2n)161Ho and 159Tb(α,n)162mHo reactions are shown in Fig. 9 and 10 respectively. The theoretical excitation functions of the 159Tb(α,2n)161Ho and 159Tb(n,n)162mHo and the 159Tb(3He,n)161Ho reactions are compared in Fig. 11. From the excitation functions of the above mentioned reactions the following conclusions can be drawn:

- The production yields for the 162Dy(p,2n) is the highest followed by the 161Dy(d,2n), 159Tb(α,2n) and 161Dy(p,n)
- No 162mHo impurity is produced when using of 159Tb(3He,n), 161Dy(p,n) and the 160Dy(d,n) reactions. Among them the 161Dy(p,n) reaction has the highest cross-section (max 260 mb) followed by the 160Dy(d,n) reaction (max 60 mb) and the less productive 159Tb(3He,n) (max 1 mb)
- The element Tb is monoisotopic, relatively cheap and recovery is practically not necessary
- In case of proton and deuteron induced reactions highly enriched 160, 161 or 162 Dy targets are required
- The production cross-sections of the 162mHo from 169Tb(α,n), 161Dy(d,n) and 162Dy(d,n) are low
- The impurity level depends on the selected energy range. The ratio of the saturation yields of the main reaction and of competing impurity reaction is shown in Fig. 12 as a function of energy. In the production energy range the ratio is lower than 3
- The half-life of 162mHo is three times shorter, therefore by using a short irradiation, the activity impurity level will reach 3%. But by using irradiations lasting two half-life of 161Ho and taking into account 1 hour needed for the chemical separation and the labeling process the impurity level of 162mHo will be reduced to 1% by decay.

5 Summary and conclusions

The principal aim of this work was an investigation of the production possibility of the radiotherapy related 161Ho. We present first experimental cross-sections for natDy(p,xn)161Ho, natDy(p,xn)162mHo, natDy(d,x)161Ho and natDy(d,x)162mHo up to 40 and 50 MeV incident particle energies respectively. The TENDL 2011 theoretical data predict well the shape of the excitation functions but overestimate the absolute values with a nearly constant factor in the whole energy range. The comparison of the different production routes shows that for production of 161Ho with high radionuclide purity the 161Dy(p,n)161Ho, 162Dy(p,2n) and 161Dy(d,2n) reactions give the highest production yields. The 162mHo radionuclide impurity level of the last two reactions however is significant. No enriched target material is necessary in case of 159Tb(α,2n) (Tb is monoisotopic) but it requires accelerators having medium energy alpha particles. The 159Tb(3He,n) and 160Dy(d,n) reactions have very low cross-sections, and accelerators disposing of 3He beam are rare and the 3He irradiation without recovery of 3He gas is expensive. On the basis of the production yields, the impurity levels and the requirements of the medical application the 161Dy(p,n) reaction is the production method of best choice.

Acknowledgements This work was performed in the frame of the HAS-FWO Vlaanderen (Hungary-Belgium) project. The authors acknowledge the support of the research project and of the respective institutions in providing the beam time and experimental facilities.
Table 6 Summary of the production parameters for selected reactions

Reaction	Q-value	Impurity reaction	Optimal energy range (MeV)	161Ho thick target yield (GBq/C)	Impurity level (%)	Optimal energy range at low impurity yield (MeV)	161Ho thick target yield (GBq/C)	Impurity level (%)
159Tb(α,α)161Ho	-14053.93	159Tb(α,α)161Ho	35-19	165	6	30-22	107	2.8
161Dy(p,n)161Ho	-1640.64	no	15-8	165	6	30-22	107	2.8
159Tb(α,n)162mHo	35-19	159Tb(α,n)162mHo	30-12	1459	8.5	22-15	868	4.6
159Tb(3He,n)161Ho	2383.18	no	15-7	34	0	24-20	955	1.5
161Dy(p,γ)161Ho	-3865.2	161Dy(p,n)162mHo	30-16	1454	1.8	24-20	955	1.5

Fig. 11 Comparison of the cross-sections of the 159Tb(α,2α)161Ho and the 159Tb(α,n)162mHo reactions and the 159Tb(α,n)161Ho impurity reaction (TENDL 2011)

Fig. 12 The ratio of the saturation yield of the main reaction and the satellite impurity reaction

References
1. A.J. Koning, D. Rochman. Talys-based evaluated nuclear data library version 4 (2011)
2. H. Uusijarvi, P. Bernhardt, F. Rosch, H.R. Mæcke, E. Forssell-Aronsson, Journal of Nuclear Medicine 47(5), 807 (2006)
3. F. Rosch, Radiochimica Acta 95(6), 303 (2007)
4. M. Neves, A. Kling, A. Oliveira, Journal of Radioanalytical and Nuclear Chemistry 266(3), 377 (2005)
5. B.J. Stephens, 161Ho + iudr-optimized photon activation therapy, Ph.D. thesis (2010)
6. B.J. Stephens, M.H. Mendenhall, Applied Radiation and Isotopes 68(10), 1928 (2010)
7. S. Takács, F. Tárkányi, A. Hermann, R.A. Rebeles, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 269(23), 2824 (2011)
8. F. Tárkányi, F. Ditrói, S. Takács, B. Király, A. Hermann, M. Sonck, M. Baba, A.V. Ignatyuk, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 274, 1 (2012)
9. A. Hermann, F. Tárkányi, F. Ditrói, S. Takács, R.A. Rebeles, M.S. Uddin, M. Hagiwara, M. Baba, Y. Shubin, S.F. Kovalev, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 274(2), 180 (2006)
10. M.S. Uddin, M. Hagiwara, M. Baba, F. Trknyi, F. Ditri, Applied Radiation and Isotopes 63(3), 367 (2005)
11. F. Tárkányi, F. Ditrói, S. Takács, J. Csikai, A. Hermann, M.S. Uddin, M. Hagiwara, M. Baba, Y.N. Shubin, A.I. Dityuk, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 226(4), 473 (2004)
12. F. Tárkányi, S. Takács, K. Kul, A. Hermann, M.G. Mustafa, M. Nortier, P. Oblozinsky, S.M. Qaim, B. Scholten, Y.N. Shubin, Z. Youxiang, Beam monitor reactions (chapter 4). charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. Tech. rep., IAEA (2001)
13. Canberra. http://www.canberra.com/products/radiochemistry-lab/genie-2000-software.asp.
14. G. Szkely, Computer Physics Communications 34(3), 313 (1985)
15. F. Tárkányi, F. Szleczeni, S. Takács, Acta Radiologica, Supplementum 376, 72 (1991)
16. NuDat. http://www.nndc.bnl.gov/nudat2/ (2011)
17. B. Pritschenko, A. Sonzogni. Q-value calculator (2003)
18. H.H. Andersen, J.F. Ziegler, Hydrogen stopping powers and ranges in all elements. The Stopping and ranges of ions in matter, Volume 3. The Stopping and ranges of ions in matter (Pergamon Press, New York, 1977)
19. I.B. of-Weights-and Measures, Guide to the expression of uncertainty in measurement, 1st edn. (International Organization for Standardization, Geneve, Switzerland, 1993)
20. M. Bonardi. The contribution to nuclear data for biomedical radioisotope production from the milan cyclotron facility (1987)
21. S. Mukherjee, B.B. Kumar, M.H. Rashid, S.N. Chintalapudi, Physical Review C 55(5), 2556 (1997)
22. O. Bonesso, H.O. Mosca, S.J. Nassiff, Journal of Radioanalytical and Nuclear Chemistry-Letters 137(1), 29 (1989)
23. N.L. Singh, M.S. Gadkari, Acta Physica Slovaca 51(5), 271 (2001)
24. A.F. Tulinov, T.V. Chuviilskaya, L.Y. Shavtvalov, Bull.Acad.Sci.USSR, Phys.Ser. 53(11), 209 (1989)
25. K.A. Baskova, Y.V. Krivonogov, B.M. Makuni, E.A. Skakum, T.V. Chugai, L.Y. Shavtvalov. Isomer yields of 73-m,g se, 162-m,g ho and 183-m,g os in (alpha,n) reactions (1985)