Abstract

The UC Berkeley team participated in the SemEval 2007 Task #4, with an approach that leverages the vast size of the Web in order to build lexically-specific features. The idea is to determine which verbs, prepositions, and conjunctions are used in sentences containing a target word pair, and to compare those to features extracted for other word pairs in order to determine which are most similar. By combining these Web features with words from the sentence context, our team was able to achieve the best results for systems of category C and third best for systems of category A.

1 Introduction

Semantic relation classification is an important but understudied language problem arising in many NLP applications, including question answering, information retrieval, machine translation, word sense disambiguation, information extraction, etc. This year’s SemEval (previously SensEval) competition has included a task targeting the important special case of Classification of Semantic Relations between Nominals. In the present paper we describe the UCB system which took part in that competition.

The SemEval dataset contains a total of 7 semantic relations (not exhaustive and possibly overlapping), with 140 training and about 70 testing sentences per relation. Sentence classes are approximately 50% negative and 50% positive (“near misses”). Table 1 lists the 7 relations together with some examples.

#	Relation Name	Examples
1	Cause-Effect	hormone-growth, laugh-wrinkle
2	Instrument-Agency	laser-printer, ax-murderer
3	Product-Producer	honey-bee, philosopher-theory
4	Origin-Entity	grain-alcohol, desert-storm
5	Theme-Tool	work-force, copyright-law
6	Part-Whole	leg-table, door-car
7	Content-Container	apple-basket, plane-cargo

Table 1: SemEval dataset: Relations with examples (context sentences are not shown).

Each example consists of a sentence, two nominals to be judged on whether they are in the target semantic relation, manually annotated WordNet 3.0 sense keys for these nominals, and the Web query used to obtain that example:

"Among the contents of the <e1>vessel</e1> were a set of carpenters <e2>tools</e2>, several large storage jars, ceramic utensils, ropes and remnants of food, as well as a heavy load of ballast stones."

WordNet(e1) = "vessel%1:06:00::",

WordNet(e2) = "tool%1:06:00::",

Content-Container(e2, e1) = "true",

Query = "contents of the * were a"

2 Related Work

Lauer (1995) proposes that eight prepositions are enough to characterize the relation between nouns in a noun-noun compound: of, for, in, at, on, from, with or about. Lapata and Keller (2005) improve on his results by using Web statistics. Rosario et al. (2002) use a “descent of hierarchy”, which characterizes the relation based on the semantic category of the two nouns. Girju et al. (2005) apply SVM, decision trees, semantic scattering and iterative seman-
tic specialization, using WordNet, word sense dis-
ambiguation, and linguistic features. Barker and Sz-
pakowicz (1998) propose a two-level hierarchy with
5 classes at the upper level and 30 at the lower level.
Turney (2005) introduces latent relational analysis,
which uses the Web, synonyms, patterns like “X for
Y”, “X such as Y”, etc., and singular value decom-
position to smooth the frequencies. Turney (2006)
induces patterns from the Web, e.g. CAUSE is best
characterized by “Y * causes X”, and “Y in * early
X” is the best pattern for TEMPORAL. Kim and Bal-
dwin (2006) propose to use a predefined set of seed
verbs and multiple resources: WordNet, CoreLex,
and Moby’s thesaurus. Finally, in a previous publi-
cation (Nakov and Hearst, 2006), we make the claim
that the relation between the nouns in a noun-noun
compound can be characterized by the set of inter-
vening verbs extracted from the Web.

3 Method

Given an entity-annotated example sentence, we re-
duce the target entities e_1 and e_2 to single nouns
noun_1 and noun_2, by keeping their last nouns
only, which we assume to be the heads. We then
mine the Web for sentences containing both noun_1
and noun_2, from which we extract features, con-
sisting of word(s), part of speech (verb, preposi-
tion, verb+preposition, coordinating conjunction),
and whether noun_1 precedes noun_2. Table 2 shows
some example features and their frequencies.

We start with a set of exact phrase queries
against Google: “infl_1 THAT * infl_2”, “infl_1
THAT * infl_1”, “infl_1 * infl_2”, and “infl_2 *
infl_1”, where infl_1 and infl_2 are inflectional vari-
ts of noun_1 and noun_2, generated using WordNet
(Fellbaum, 1998); THAT can be that, which, or who;
and * stands for 0 or more (up to 8) stars separated
by spaces, representing the Google * single-word
wildcard match operator. For each query, we collect
the text snippets from the result set (up to 1000 per
query), split them into sentences, assign POS tags
using the OpenNLP tagger\(^1\), and extract features:

Verb: If one of the nouns is the subject, and the
other one is a direct or indirect object of that verb, we
extract it and we lemmatize it using WordNet
(Fellbaum, 1998). We ignore modals and auxil-

\(^1\)OpenNLP: http://opennlp.sourceforge.net

Freq.	Feature	POS	Direction
2205	of	P	2 → 1
1923	be	V	1 → 2
771	include	V	1 → 2
382	serve on	V	2 → 1
189	chair	V	2 → 1
189	have	V	1 → 2
169	consist of	V	1 → 2
148	comprise	V	1 → 2
106	sit on	V	2 → 1
81	be chaired by	V	1 → 2
78	appoint	V	1 → 2
77	on	P	2 → 1
66	and	C	1 → 2

Table 2: Most frequent features for committee member. V stands for verb, P for preposition, and C for coordinating conjunction.

\(^2\)Features have type prefix to prevent them from mixing.

For each query, we collect

verbs, and retain the passive be, verb particles and
prepositions (in case of indirect object).

Preposition: If one of the nouns is the head of
an NP which contains a PP, inside which there is an
NP headed by the other noun (or an inflectional form thereof), we extract the preposition heading that PP.

Coordination: If the two nouns are the heads of
two coordinated NPs, we extract the coordinating
conjunction.

In addition, we include some non-Web features\(^2\):

Sentence word: We use as features the words
from the context sentence, after stop words removal
and stemming with the Porter stemmer.

Entity word: We also use the lemmas of the words
that are part of e_i (i = 1, 2).

Query word: Finally, we use the individual
words that are part of the query string. This feature
is used for category C runs only (see below).

Once extracted, the features are used to calculate
the similarity between two noun pairs. Each feature
triplet is assigned a weight. We wish to downweight
very common features, such as “of” used as a prepo-
sition in the 2 → 1 direction, so we apply tf.idf
weighting to each feature. We then use the following
variant of the Dice coefficient to compare the weight
vectors A = (a_1, …, a_n) and B = (b_1, …, b_n):

\[
Dice(A, B) = \frac{2 \times \sum_{i=1}^{n} \min(a_i, b_i)}{\sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i} \quad (1)
\]

This vector representation is similar to that of
Lin (1998), who measures word similarity by using triples extracted from a dependency parser. In particular, given a noun, he finds all verbs that have it as a subject or object, and all adjectives that modify it, together with the corresponding frequencies.

4 Experiments and Results

Participants were asked to classify their systems into categories depending on whether they used the WordNet sense (WN) and/or the Google query (GC). Our team submitted runs for categories A (WN=no, QC=no) and C (WN=no, QC=yes) only, since we believe that having the target entities annotated with the correct WordNet senses is an unrealistic assumption for a real-world application.

Following Turney and Littman (2005) and Barker and Szpakowicz (1998), we used a 1-nearest-neighbor classifier. Given a test example, we calculated the Dice coefficient between its feature vector and the vector of each of the training examples. If there was a single highest-scoring training example, we predicted its class for that test example. Otherwise, if there were ties for first, we assumed the class predicted by the majority of the tied examples.

If there was no majority, we predicted the class that example as negative.

Table 3: Task 4 results. UCB systems A1-A4.

Table 4: Task 4 results. UCB systems C1-C4.
consistently better than for A for all measures \((P, R, F, Acc)\), which suggests that knowing the query is helpful. Interestingly, systems UCB-A2 and UCB-C2 performed worse than UCB-A1 and UCB-C1, which means that having more training data does not necessarily help with a 1NN classifier.

Table 5 shows additional analysis for A4 and C4. We study the effect of adding extra Google contexts (up to 10 stars, rather than 8), and using different subsets of features. We show the results for: (a) leave-one-out cross-validation on the training data, (b) on the test data, and (c) our official UCB runs.

Acknowledgements: This work is supported in part by NSF DBI-0317510.

References

Ken Barker and Stan Szpakowicz. 1998. Semi-automatic recognition of noun modifier relationships. In *Proceedings of COLING-ACL’98*, pages 96–102.

Christiane Fellbaum, editor. 1998. *WordNet: An Electronic Lexical Database*. MIT Press.

Roxana Girju, Dan Moldovan, Marta Tatu, and Daniel Antohe. 2005. On the semantics of noun compounds. *Computer Speech and Language*, 19(4):479–496.

Su Nam Kim and Timothy Baldwin. 2006. Interpreting semantic relations in noun compounds via verb semantics. In *Proceedings of COLING/ACL 2006. (poster)*, pages 491–498.

Mirella Lapata and Frank Keller. 2005. Web-based models for natural language processing. *ACM Transactions on Speech and Language Processing*, 2:1–31.

Mark Lauer. 1995. *Designing Statistical Language Learners: Experiments on Noun Compounds*. Ph.D. thesis, Department of Computing Macquarie University NSW 2109 Australia.

Dekang Lin. 1998. An information-theoretic definition of similarity. In *Proceedings of International Conference on Machine Learning*, pages 296–304.

Preslav Nakov and Marti Hearst. 2006. Using verbs to characterize noun-noun relations. In *Proceedings of AIMSA*, pages 233–244.

Barbara Rosario, Marti Hearst, and Charles Fillmore. 2002. The descent of hierarchy, and selection in relational semantics. In *ACL*, pages 247–254.

Peter Turney and Michael Littman. 2005. Corpus-based learning of analogies and semantic relations. *Machine Learning Journal*, 60(1-3):251–278.

Peter Turney. 2005. Measuring semantic similarity by latent relational analysis. In *Proceedings IJCAI*, pages 1136–1141.

Peter Turney. 2006. Expressing implicit semantic relations without supervision. In *Proceedings of COLING-ACL*, pages 313–320.

Table 5: Accuracy for different features and extra Web contexts

Features Used	Leave-1-out	Test	UCB
Cause-Effect			
sent	45.7	50.0	
p	55.0	53.8	
v	59.3	68.8	
v + p	57.1	63.7	
v + p + c	70.5	67.5	
v + p + c + sent	58.5	66.2	66.2
v + p + c + sent + query	59.3	66.2	66.2
Instrument-Agency			
sent	63.6	59.0	
p	62.1	70.5	
v	71.4	69.2	
v + p	70.7	70.5	
v + p + c	70.0	70.5	
v + p + c + sent	68.6	71.8	71.8
v + p + c + sent + query	70.0	73.1	73.1
Product-Producer			
sent	47.9	59.1	
p	55.7	58.1	
v	70.0	61.3	
v + p	66.4	65.6	
v + p + c	67.1	65.6	
v + p + c + sent	66.4	69.9	66.7
v + p + c + sent + query	67.9	69.9	67.7
Origin-Entity			
sent	64.3	72.8	
p	63.6	56.8	
v	69.3	71.6	
v + p	67.9	69.1	
v + p + c	66.4	70.4	
v + p + c + sent	68.6	72.8	55.6
v + p + c + sent + query	67.9	72.8	64.2
Theme-Tool			
sent	66.4	69.0	
p	56.4	56.3	
v	61.4	70.4	
v + p	56.4	67.6	
v + p + c	57.1	69.0	
v + p + c + sent	52.1	62.0	67.6
v + p + c + sent + query	52.9	62.0	69.0
Part-Whole			
sent	47.9	51.4	
p	57.1	54.1	
v	60.0	66.7	
v + p	62.1	63.9	
v + p + c	61.4	63.9	
v + p + c + sent	60.0	61.1	65.3
v + p + c + sent + query	60.0	61.1	65.3
Content-Container			
sent	56.4	54.1	
p	57.9	59.5	
v	71.4	67.6	
v + p	72.1	67.6	
v + p + c	72.9	67.6	
v + p + c + sent	69.3	67.6	64.9
v + p + c + sent + query	71.4	71.6	63.5
Average A4	67.3	65.4	
Average C4	68.1	67.0	

Table 5: Accuracy for different features and extra Web contexts: on leave-one-out cross-validation, on testing data, and in the official UCB runs.