Degree Formula for Grassmann Bundles

HAJIME KAJI* AND TOMOHIDE TERASOMA**

Abstract. Let X be a non-singular quasi-projective variety over a field, and let E be a vector bundle over X. Let $G_X(d, E)$ be the Grassmann bundle of E over X parametrizing corank d subbundles of E with projection $\pi : G_X(d, E) \to X$, and let $Q \leftarrow \pi^*E$ be the universal quotient bundle of rank d, and denote by θ the Plücker class of $G_X(d, E)$, that is, the first Chern class of the Plücker line bundle, det Q. In this short note, a closed formula for the push-forward of powers of the Plücker class θ is given in terms of the Schur polynomials in Segre classes of E, which yields a degree formula for $G_X(d, E)$ with respect to θ when X is projective and $\wedge^d E$ is very ample.

0. Introduction

Let X be a non-singular quasi-projective variety of dimension n defined over a field of arbitrary characteristic, and let E be a vector bundle of rank r over X. Let $G_X(d, E)$ be the Grassmann bundle of E over X parametrizing corank d subbundles of E with projection $\pi : G_X(d, E) \to X$, and let $Q \leftarrow \pi^*E$ be the universal quotient bundle of rank d on $G_X(d, E)$. We denote by θ the first Chern class $c_1(\text{det } Q) = c_1(Q)$ of Q, and call θ the Plücker class of $G_X(d, E)$. Note that the determinant bundle $\text{det } Q$ is isomorphic to the pull-back of the tautological line bundle $\mathcal{O}_{\mathbb{P}_X(\wedge^d E)}(1)$ of $\mathbb{P}_X(\wedge^d E)$ by the relative Plücker embedding over X.

The purpose of this short note is to give a closed formula for $\pi_* \theta^N$, the push-forward of powers θ^N of the Plücker class θ to X by π, in terms of the Schur polynomials in Segre classes of E, where $\pi_* : A^{*+d(r-d)}(G_X(d, E)) \to A^*(X)$ is the push-forward by π between the Chow rings.

The result is

Theorem 0.1. For each integer $N \geq d(r-d)$, we have

$$
\pi_* \theta^N = \sum_{|\lambda| = N - d(r-d)} f^{\lambda+\varepsilon} \Delta_{\lambda}(s(E))
$$

in $A^{N-d(r-d)}(X)$, where $\lambda = (\lambda_1, \ldots, \lambda_d)$ is a partition with $|\lambda| := \sum_{1 \leq i \leq d} \lambda_i$, $\Delta_{\lambda}(s(E)) := \text{det}[s_{\lambda_i+j-i}(E)]_{1 \leq i, j \leq d}$ is the Schur polynomial in Segre classes of E corresponding to λ, $\varepsilon := (r-d)^d = (r-d, \ldots, r-d)$, and $f^{\lambda+\varepsilon}$ is the number of standard Young tableaux with shape $\lambda + \varepsilon$.

The Segre classes $s_i(E)$ here are the ones satisfying $s(E)c(E^\vee) = 1$ as in [1], [5], [6], where $s(E)$ and $c(E)$ denote respectively the total Segre class and the total Chern class of E. Note that our Segre class $s_i(E)$ differs by the sign $(-1)^i$ from the one in [2].

2010 Mathematics Subject Classification. Primary: 14M15; Secondary: 14C17,

* Department of Mathematics, School of Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku, Tokyo 169–8555, JAPAN.
E-mail address: kaji@waseda.jp.

** Department of Mathematical Science, University of Tokyo.
3-8-1 Komaba, Meguro, Tokyo 153-8914, JAPAN.
E-mail address: terasoma@ms.u-tokyo.ac.jp

2015/04/14.
Corollary 0.2 (degree formula for Grassmann bundles). If X is projective and $\wedge^d \mathcal{E}$ is very ample, then $G_X(d, \mathcal{E})$ is embedded in the projective space $\mathbb{P}(H^0(X, \wedge^d \mathcal{E}))$ by the tautological line bundle $\mathcal{O}_{G_X(d, \mathcal{E})}(1)$, and its degree is given by

$$\deg G_X(d, \mathcal{E}) = \sum_{|\lambda| = n} f^{\lambda + \varepsilon} \int_X \Delta_\lambda(s(\mathcal{E})).$$

Here a vector bundle \mathcal{F} over X is said to be very ample if the tautological line bundle $\mathcal{O}_{\mathcal{F}}(1)$ of $\mathbb{P}(\mathcal{F})$ is very ample.

Setting $n := 0$, we recover the degree formula of Grassmann varieties, as follows:

Corollary 0.3 ([2 Example 14.7.11 (iii)]). Let $G(d, r)$ be the Grassmann variety parametrizing codimension d subspaces of a vector space of dimension r. Then its degree with respect to the Plücker embedding is given by

$$\deg G(d, r) = \frac{(d(r - d))! \prod_{1 \leq l \leq d - 1} l!}{\prod_{1 \leq l \leq d} (r - l)!}.$$

1. Proofs

Proof of Theorem 0.1. Let ξ_1, \ldots, ξ_d be the Chern roots of the universal quotient bundle \mathcal{Q}. Then we can write $\theta = \xi_1 + \cdots + \xi_d$ formally. Using Pieri’s formula [3, §2.2] repeatedly, and applying Jacobi-Trudi identity [7, I, (3.4)], we obtain that

$$\theta^N = \sum_{|\mu| = N} f^\mu \Delta_\mu(\xi) = \sum_{|\mu| = N} f^\mu \Delta_\mu(s(\mathcal{Q})), $$

where $\Delta_\mu(\xi)$ is the Schur polynomial in $\xi := (\xi_1, \ldots, \xi_d)$ corresponding to a partition μ. It follows from the push-forward formula of Józefiak-Lascoux-Pragacz [4, Proposition 1] that

$$\pi_* \Delta_\mu(s(\mathcal{Q})) = \Delta_{\mu - \varepsilon}(s(\mathcal{E})).$$

Therefore we obtain

$$\pi_* \theta^N = \sum_{|\mu| = N} f^\mu \Delta_{\mu - \varepsilon}(s(\mathcal{E})) = \sum_{|\lambda| = N - (r - d)} f^{\lambda + \varepsilon} \Delta_\lambda(s(\mathcal{E})),$$

where λ is a partition, and $\varepsilon := (r - d)^d = (r - d, \ldots, r - d)$.

Proof of Corollary 0.2. By the assumption $G_X(d, \mathcal{E})$ is projective and the tautological line bundle $\mathcal{O}_{G_X(d, \mathcal{E})}(1)$ defines an embedding $\mathbb{P}(\wedge^d \mathcal{E}) \hookrightarrow \mathbb{P}(H^0(X, \wedge^d \mathcal{E}))$. Therefore $G_X(d, \mathcal{E})$ is considered to be a projective variety in $\mathbb{P}(H^0(X, \wedge^d \mathcal{E}))$ via the relative Plücker embedding $G_X(d, \mathcal{E}) \hookrightarrow \mathbb{P}(\wedge^d \mathcal{E})$ over X defined by the quotient $\wedge^d \pi^* \mathcal{E} \rightarrow \wedge^d \mathcal{Q} = \det \mathcal{Q}$. Since the hyperplane section class of $G_X(d, \mathcal{E})$ is equal to the Plücker class θ, we obtain the conclusion, taking $N := \dim G_X(d, \mathcal{E}) = d(r - d) + n$ in Theorem 0.1.

Proof of Corollary 0.3. The conclusion follows from Corollary 0.2 with $n := 0$, since the number $f^{\lambda + \varepsilon}$ is known to be given as follows ([31 p.53] and [33 p.54, Exercise 9]):

$$f^{\lambda + \varepsilon} = \frac{N! \prod_{1 \leq i < j \leq d} (\lambda_i - \lambda_j - i + j)}{\prod_{1 \leq i \leq d} (r + \lambda_i - i)!}.$$

□

Remark 1.1. Under the same assumption as in Theorem 0.1 one can prove a push-forward formula of the following form:

$$\pi_* \theta^N = \sum_{|k| = N - (r - d)} \frac{N! \prod_{1 \leq i < j \leq d} (k_i - k_j - i + j)}{\prod_{1 \leq i \leq d} (r + k_i - i)} \prod_{i=1}^d s_{k_i}(\mathcal{E})$$
in $A^{N-d(r-d)}(X) \otimes \mathbb{Q}$, where $k = (k_1, \ldots, k_d) \in \mathbb{Z}_{\geq 0}^d$ with $|k| := \sum_i k_i$, and $s_i(\mathcal{E})$ is the i-th Segre class of \mathcal{E}.

Acknowledgements. The authors would like to thank the first referee for his/her detailed comments and invaluable advice: In fact, our original proof is much longer than and completely different from the one given here, which is due to the referee. The authors thank Professor Hiroshi Naruse and Professor Takeshi Ikeda, too, for useful discussion and kind advice.

The first author is supported by JSPS KAKENHI Grant Number 25400053. The second author is supported by JSPS KAKENHI Grant Number 15H02048.

References

[1] T. Fujita: Classification theories of polarized varieties. London Mathematical Society Lecture Note Series, 155. Cambridge University Press, Cambridge, 1990.
[2] W. Fulton: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 2. Springer-Verlag, Berlin, 1984.
[3] W. Fulton: Young tableaux. With applications to representation theory and geometry. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
[4] T. Józefiak, A. Lascoux, P. Pragacz: Classes of determinantal varieties associated with symmetric and skew-symmetric matrices. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 662–673.
[5] D. Laksov: Splitting algebras and Gysin homomorphisms. J. Commut. Algebra 2 (2010), no. 3, 401–425.
[6] D. Laksov, A. Thorup: Schubert calculus on Grassmannians and exterior powers. Indiana Univ. Math. J. 58 (2009), no. 1, 283–300.
[7] I. G. Macdonald: Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.