KRISM — Krylov Subspace-based Optical Computing of Hyperspectral Images

VISHWANATH SARAGADAM and ASWIN C. SANKARANARAYANAN, Carnegie Mellon University, USA

We present an adaptive imaging technique that optically computes a low-rank representation of a scene's hyperspectral image. The proposed imager, KRISM, provides optical implementation of two operators on the scene's hyperspectral image: a spatially-coded spectrometer and a spectrally-coded spatial imager. By iterating between the two, we can acquire a low rank approximation of the hyperspectral scene in a light efficient manner with very few measurements. The left image is the proposed optical setup with the two operators implemented. On the right, we show a scene with rich spatial texture that is illuminated by a Compact Fluorescent Lamp (CFL). The proposed method enables high spatial and spectral resolution, evident from the zoomed-in image patches and CFL peaks respectively.

1 INTRODUCTION

Hyperspectral images (HSIs) capture light intensity of a scene as a function of space and wavelength and have been used in numerous vision [Kim et al. 2012; Pan et al. 2003; Tarabalka et al. 2010], geoscience and remote sensing applications [Cloutis 1996; Harsanyi and Chang 1994]. Traditional approaches for hyperspectral imaging, including tunable spectral filters and pushbroom cameras, rely on sampling the HSI, i.e., measuring the amount of light in each spatio-spectral voxel. When imaging at high-spatial and spectral resolutions, the amount of light in a voxel can be quite small, requiring long exposures to mitigate the effect of noise.

HSIs are often endowed with rich structures that can be used to alleviate the challenges faced by traditional imagers. For example, natural scenes are often comprised of a few materials of distinct spectra and further, illumination of limited spectral complexity [Chakrabarti and Zickler 2011; Finlayson et al. 1994]. This implies that collection of spectral signatures observed at various locations in a scene lies close to a low-dimensional subspace. Instead of sampling the HSI of the scene, one spatio-spectral voxel at a time, we can dramatically speed-up acquisition and light throughput by measuring only projections on this low-dimensional subspace. However, such a measurement scheme requires a priori knowledge of the scene since this subspace is entirely scene dependent. This paper introduces an optical computing technique that identifies this subspace from an iterative and adaptive sensing strategy and constructs a low-rank approximation to the scene’s HSI.

We propose the design of an imager that estimates a low-rank approximation of a HSI by optically implementing the so called Krylov subspace method. At its core, the proposed imager optically implements two operators: a spatially-coded spectrometer and a spectrally-coded spatial imager; when we interpret the HSI as a 2D matrix, these two operators correspond to left and right multiplication of the matrix with a vector. The two operators are subsequently...
used in an iterative and adaptive imaging procedure whose eventual output is a low-rank approximation to the HSI. The proposed imager is adaptive, i.e., the measurement operator used to probe the scene’s HSI at a given iteration depends on previously made measurements. This is a marked departure from current hyperspectral imaging strategies where the signal model is merely used as a prior for recovery from non-adaptive measurements.

Contributions. We propose an optical architecture that we refer to as KRYlov subspace-based Imaging and SpectroMetry (KRISM) and make the following three contributions:

- **Optical computation of HSIs.** We show that optical computing of HSIs to estimate its dominant singular vectors provides significant advantages in terms of increased light throughput and reducing measurement time.
- **Coded apertures for resolving space and spectrum.** While high-resolution imaging and spectrometry have been studied extensively before, architectures suitable for one are often undesirable for others. In particular, we show that the use of slits in spectrometry and large open apertures in conventional imaging are ill-suited for the alternate task. To mitigate this, we study the effect of aperture plane coding on HSI and propose to use a coded aperture design that is simultaneously capable of high spatial and spectral resolutions.
- **Optical setup.** We design and validate a novel and versatile optical implementation for KRISM that uses a single camera and a single spatial light modulator to efficiently implement spatially-coded spectral and spectrally-coded spatial measurements.

The contributions above are supported via an extensive set of simulations as well as real experiments performed using a lab prototype.

Limitations. The benefits and contributions described above come with a key limitation:

- **Limited effectiveness when sensing few spectral bands.** Our method is only advantageous if there are sufficient number of spectral bands and the hyperspectral image is sufficiently low rank. If we only seek to image with very few spectral bands or if the scene is not well approximated by a low-rank model, then the proposed method performs poorly against traditional sensing methods.

2 PRIOR WORK

Nyquist sampling of HSIs. Classical designs for hyperspectral imaging based on Nyquist sampling include the tunable filter — which scans the scene, one narrow spectral band at a time, measuring the image associated with spectral bands at each instant — or using a pushbroom camera — which scans the scene one row at a time, measuring the entire spectrum associated with pixels on the row at each instant. Both approaches are time-consuming as well as light inefficient since each captured image wastes a large percentage of light incident on the camera.

Multiplexed sensing. The problem of reduced light throughput can be mitigated by the use of multiplexing. One of the seminal results in computational imaging is that the use of multiplexing codes including the Hadamard transform can often lead to significant efficiencies either in terms of increased SNR or faster acquisition

![Fig. 2. HSIs are very well modeled by a low-rank approximation. We validate this observation by plotting reconstruction error of a low-rank approximation, in terms of SNR, as a function of the rank of the approximation. We do this for many commonly used HSI datasets. We observe that, across all datasets, the SNR is much higher than 30dB for a rank 10 approximation.](image)

[Harwit and Sloane 1979]. This can either be spectral multiplexing [Mohan et al. 2008] or spatial multiplexing [Sun and Kelly 2009]. While multiplexing mitigates light throughput issues, it does not reduce the number of measurements required. Sensing at high spatial and/or spectral resolution still requires long acquisition times to maintain a high SNR. Fortunately, HSIs have concise signal models that can be exploited to reduce the number of measurements.

Low-rank models for HSIs. There are many approaches to approximate HSIs using low-dimensional models; this includes group sparsity in transform domain[Rasti et al. 2013], low rank model [Golbabae and Vanderheynst 2012; Li et al. 2012], as well as low-rank and sparse model [Saragadam et al. 2017; Waters et al. 2011]. Of particular interest to this paper is the low-rank modeling of HSIs when they are represented as a 2D matrix (See Figure 2). Low-rank models of HSIs and their variants have found numerous uses in vision and graphics including color constancy [Finlayson et al. 1994], color displays [Kaurvar et al. 2015], endmember detection [Winter 1999], source separation [Hui et al. 2018], anomaly detection [Saragadam et al. 2017], compressive imaging [Golbabae and Vanderheynst 2012] and denoising [Zhao and Yang 2015]. Chakrabarti and Zickler (2011) also provide empirical justification that HSIs of natural scenes are well represented by low rank models.

Compressive hyperspectral imaging. The low-rank model has also been used for compressive sensing (CS) of HSIs. CS aims to recover a signal from a set of linear measurements that are fewer than its dimensionality [Baraniuk 2007]. CS achieves this by modeling the sensed signal using lower dimensional representations — low-rank matrices being one such example. The technique that is most relevant to this paper is that of row/column projection [Fazel et al. 2008]. Here, the measurement model is restricted to obtaining row and column projections of a matrix. Given a matrix $X \in \mathbb{R}^{m \times n}$, and measurement operators $S_{\text{row}} \in \mathbb{R}^{p \times m}$, $S_{\text{column}} \in \mathbb{R}^{n \times p}$, the measurements acquired are of the following form:

$$Y_{\text{row}} = S_{\text{row}} X, \quad Y_{\text{column}} = XS_{\text{column}}.$$
When the matrix X has a rank k, it can be shown that it is sufficient to acquire p images and p spectral profiles with $p \propto k^2$. In contrast, the method proposed in this paper requires only a number of measurements proportional to the rank of the matrix; however, these measurements are adaptive to the scene. At an increased cost of optical complexity, adaptive sensing promises accurate results with far fewer measurements than CS.

Hyperspectral imaging architectures. Several architectures have been proposed for CS acquisition of HSIs. The Dual-Disperser Coded Aperture Snapshot Spectral Image (DD-CASSI) [Gehm et al. 2007] obtains a single image, multiplexed in both spatial and spectral domains by dispersing the image using a prism, passing it through a coded aperture and then recombining using a second prism. In contrast, the Single Disperser CASSI (SD-CASSI) [Wagadarikar et al. 2008] relies on a single prism that does a spatial coding using a binary mask followed by a spectral dispersion with a prism. Back et al. [2017] disperse the image by placing a prism right before an SLR camera. The HSI is then reconstructed by studying the dispersion of color at the edges in the obtained RGB image. Takatani et al. [2017] instead propose a snapshot imager that relies on a combination face of reflectors with filters. Various other snapshot techniques have been proposed which rely on the general idea of space-spectrum multiplexing [Cao et al. 2016; Jeon et al. 2016; Lin et al. 2014a]. While snapshot imagers require only a single image, they often produce HSIs with reduced spatial or spectral resolutions.

Significant improvements can be obtained by acquiring multiple measurements instead of a single snapshot image. Kittle et al. [2010] obtaining multiple SD-CASSI like measurements by moving the coded aperture. Li et al. [2012] relied on spatially-multiplexed spectral measurements of the scene to reconstruct the HSI. Lin et al. [2014b] improved upon spatially-multiplexed CS by separately coding spatial and spectral domains. To this end, all existing methods trade-off spatial resolution, or spectral resolution, or take long durations to capture. A key insight is that most of these methods are non-adaptive — a sharp contrast to the proposed approach. Table 1 provides an overview of various HS imaging strategies and their relative merits. We next discuss the concept of Krylov subspaces for low-rank approximation of matrices, which motivates iterative and adaptive techniques and paves way to the proposed method.

Krylov subspaces. Central to the proposed method is a class of techniques, collectively referred to as Krylov subspaces, for estimating singular vectors of matrices. Recall that the Singular Value Decomposition (SVD) of a matrix $X \in \mathbb{R}^{m \times n}$, $m \leq n$ is given as $X = U \Sigma V^T$, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthonormal matrices, referred to as the singular vectors, and $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix of singular values. Krylov subspace methods allow for efficient estimation of the singular values and vectors of a matrix and enjoy two key properties. First, the singular values and vectors are computed using operators that probe the matrix X via left and right multiplications with vectors, i.e., we do not need direct access to the elements of the matrix X. Second, the top singular values and vectors of a low-rank matrix can be estimated using a small set of matrix-vector multiplications. These two properties are invaluable when the matrix is very large or when it is implicitly represented using operators or, as is the case in this paper, the matrix is the scene’s HSI and we only have access to optical implementations of the underlying matrix-vector multiplications.

There are many variants of Krylov subspace techniques which differ mainly on their robustness to noise and model mismatches. The techniques in this paper are based on an implementation called the Lanczos bidiagonalization with full orthogonalization [Golub and Kahan 1965; Hernandez et al. 2007]. Algorithm 1 summarizes this technique.

Optical computing of low-rank signals. Matrix-vector and matrix-matrix multiplications can often be implemented as optical systems. Such systems have been used for matrix-matrix multiplication [Athale and Collins 1982], matrix inversion [Rajbenbach et al. 1987], as well as computing eigenvectors [Kumar and Casasent 1981]. Of particular interest to our paper is the optical computing of the light transport operator using Krylov subspace methods [O’Toole and Kutulakos 2010]. The light transport matrix T represents the linear mapping between scene illumination and a camera observing the scene. Each column of the matrix T is the image of the scene when

Table 1. Various sensing strategies for hyperspectral imaging of $N_x \times N_y$ spatial dimension and N_λ spectral bands. Noise in measurement is assumed to be AWGN with σ^2 variance. While CS techniques require fewer measurements, it is not immune to noise. Our method outperforms CS techniques with higher reconstruction accuracy and needs far fewer measurements.

Method	Approach	Number of measurements	Estimation accuracy under noise	Advantages	Disadvantages
Sampling	Tunable spectral filter	$N_x N_y N_\lambda$	$\sigma \sqrt{N_x N_y N_\lambda}$	Easy calibration	Low spectral resolution; high acquisition time
	Pushbroom			High spectral resolution	Optical complexity; high acquisition time
Multiplexed	Spatial multiplexing	$N_x N_y N_\lambda$	$\sigma \sqrt{N_x N_y}$	Hadamard multiplexing gain	High acquisition time
	Spectral multiplexing	$N_x N_y N_\lambda$	$\sigma \sqrt{N_x N_\lambda}$		
Compressive sensing	CASSI	depends on signal model		Fewer measurements	Loss in spatial/spectral resolution
	Row/column projection	$\propto k^2 (N_x N_y + N_\lambda)$	[Fazel et al. 2008]		
KRISM (proposed method)	Optical Krylov subspace	$\propto k (N_x N_y + N_\lambda)$	prop. to model misfit + noise	Fewest number of measurements; very high light efficiency	Complex optics

KRISM • :3

2018-07-20 00:16. Page 3 of 1–29, Vol. 1, No. 1, Article . Publication date: June 2018.
Algorithm 1 Lanczos bidiagonalization with full orthogonalization

Require: Left and right multiplication operators to the matrix $X \in \mathbb{R}^{m \times n}$, target rank k, and total iterations $L > k$

Initialize $\ell_1 \in \mathbb{R}^n$ as a non-zero unit-norm vector

for $j = 1$ to L
 $r_j \leftarrow X\ell_j$ › (right multiplication)
 Orthogonalize r_j with respect to the set $\{r_1, \cdots, r_{j-1}\}$
 $\alpha_j \leftarrow ||r_j||_2$
 $r_j \leftarrow r_j/\alpha_j$
 $\ell_{j+1} \leftarrow X^T r_j$ › (left multiplication)
 Orthogonalize ℓ_{j+1} with respect to the set $\{\ell_1, \cdots, \ell_j\}$
 $\beta_j \leftarrow ||\ell_{j+1}||_2$
 $\ell_{j+1} \leftarrow \ell_{j+1}/\beta_j$

end for

$T \leftarrow [r_1, \ldots, r_L] B [\ell_1, \ldots, \ell_L]^T$, where

$$B = \begin{bmatrix}
\alpha_1 & \beta_1 \\
\alpha_2 & \beta_2 \\
\vdots & \ddots \\
\alpha_L & \beta_L
\end{bmatrix}$$

return $\tilde{X}_r \leftarrow \text{svds}(T, k)$ › (truncated SVD)

only a single illuminant is turned on. Hence, given a vector ℓ that encodes the scene illumination, the image captured by the camera is given as $r = Tf$. By Helmholtz reciprocity, if we replaced every pixel of the camera by a light source and every illuminant with a camera pixel, then the light transport associated with the reversed illumination/sensing setup is given as T^T. Hence, by co-locating a projector with the camera and a camera with the scene’s illuminants, we have access to both left- and right-multiplication of the light transport operator with vectors; we can now apply Krylov subspace techniques for optically estimating a low-rank approximation to the light transport matrix. This delightful insight is one of the key results in [O’Toole and Kutulakos 2010].

This paper proposes a translation of the ideas in [O’Toole and Kutulakos 2010] to hyperspectral imaging. However, as we will see next, this translation is not straightforward and requires novel imaging architectures.

3 OPTICAL KRYLOV SUBSPACES FOR HYPERSPECTRAL IMAGING

In this section, we provide a high-level description of optical computing of HSIs using Krylov subspace methods.

Notation. We represent HSIs in three different ways:

- $H(x, y, \lambda) -$ a real-valued function over 2D space (x, y) and 1D spectrum λ.
- $S \in \mathbb{R}^{N_x \times N_y \times N_\lambda} -$ a three-dimensional tensor with $N_x \times N_y$ spatial “pixels” and N_λ spectral bins; this is a sampling of the three-dimensional function, and
- $X \in \mathbb{R}^{N_x \times N_y \times N_\lambda} -$ a matrix with $N_x N_y$ rows and N_λ columns, such that each column corresponds to the vectorized image at a specific spectrum.

The goal is to optically build the following two operators:

- **Spectrally-coded imager I** — Given a spectral code $x \in \mathbb{R}^{N_\lambda}$, we seek to measure the image $y \in \mathbb{R}^{N_x N_y}$ given as

$$y = I(x) = X x.$$ \hfill (1)

The image y corresponds to a grayscale image of the scene with a camera whose spectral response is x.

- **Spatiotemporally-coded spectrometer S** — Given a spatial code $\tilde{x} \in \mathbb{R}^{N_x N_y}$, we seek to measure a spectral measurement $\tilde{y} \in \mathbb{R}^{N_\lambda}$ given as

$$\tilde{y} = S(\tilde{x}) = X^T \tilde{x}.$$ \hfill (2)

The measurement \tilde{y} corresponds to the spectral measurement of the scene, where-in the spectral profile of each pixel is weighted by the corresponding entry in the spatial code \tilde{x}.

Note that these two operators correspond to left and right multiplications in Algorithm 1; hence, we can optically implement Algorithm 1 to obtain top k singular vectors and values of the HSI matrix X.

Number of measurements required. To obtain a rank-k approximation of the matrix X, we would require at least k spatially-coded spectral measurements — each of dimensionality N_λ, and k spectrally-coded images — each of dimensionality $N_x N_y$. Hence, the number of measurements required by the approach is proportional to $k(N_x N_y + N_\lambda)$ and, over traditional Nyquist sampling, it represents a reduction in measurements by a factor of

$$k(N_x N_y + N_\lambda) N_x N_y N_\lambda = k \left(\frac{1}{N_\lambda} + \frac{1}{N_x N_y} \right).$$ \hfill (3)

Given that the complexity of the scene is encoded in its low-rank, we can envision dramatic reductions in measurements required over Nyquist-sampling techniques especially when sensing at high spatial and spectral resolutions (see Table 1).

Challenges in implementing operators I and S. Spatially-coded spectral measurements have been implemented in the context of compressive hyperspectral imaging [Sun and Kelly 2009]. Here, light from a scene is first focused onto a spatial light modulator, that performs spatial coding, and then directed into a spectrometer. For spectral coding at a high-resolution, we could replace the sensor in a spectrometer with a spatial light modulator; subsequently, we can form and measure an image of the coded light using a lens. However, high-resolution spectrometers invariably use a slit aperture that produces a large one-dimensional blur in the spatial image due to diffraction. We show in Section 4 that simultaneous spatio-spectral localization is not possible with either a slit or an open aperture. This leads our discussion to the design of optimal binary coded apertures which enable high spectral and spatial resolutions. Subsequently, in Section 6, we present the design of KRISM — a novel and versatile imaging system, and validate its performance in Section 7.

4 CODED APERTURES FOR SIMULTANEOUS SENSING OF SPACE AND SPECTRUM

In this section, we introduce an optical system capable of simultaneously resolving space and spectrum at high resolutions. Along the way, we explain why traditional systems for measuring images and spectrum are mutually incompatible.
4.1 Optical setup

The ideas proposed in this paper rely on the optical setup shown in Figure 15 which is a slight modification of a traditional spectrometer. An objective lens focuses a scene onto its image plane, that we denote as P1. This is followed by two 4f relays with a coded aperture placed on the first pupil plane, P2, and a diffraction grating placed at the plane marked as P3. We are interested in the intensity images formed at the planes marked at the “rainbow plane” P4 and the “spatial plane” P5, and their relationship to the image formed on P1, the coded aperture, and the grating parameters.

We assume that the field formed on the plane P1 is incoherent and, hence, we only need to consider its intensity and how it propagates, and largely ignore its phase. Let \(H(x, y, \lambda) \) be the intensity of the field as a function of spatial coordinates \((x, y)\) and wavelength \(\lambda\). Let \(a(x, y) \) be the aperture code placed at the plane P2, \(v_0 \) be the groove density (measured in grooves per unit length) of the diffraction grating in P3, and \(f \) be the focal length of the lenses that form the 4f relays. The hyperspectral field intensity at the plane P4 is given as

\[
F_4(x, y, \lambda) = \frac{1}{f^2} a^2(-x + f\lambda v_0, -y) S(\lambda), \quad (4)
\]

where \(S(\lambda) \) is the scene’s overall spectral content defined as

\[
S(\lambda) = \int_x \int_y H(x, y, \lambda) dx dy.
\]

The intensity field at the spatial plane P5 is given as

\[
F_5(x, y, \lambda) = H(x, y, \lambda) \star \left| \frac{1}{f^2} A \left(-\frac{x}{\lambda f}, -\frac{y}{\lambda f} \right) \right|^2, \quad (5)
\]

where \(A(u, v) \) is the 2D spatial Fourier transform of the aperture code \(a(x, y) \), and \(\star \) denotes two-dimensional spatial convolution along \(x \) and \(y \) axes. These expressions arise from Fourier optics [Goodman 2005] and their derivations are provided in the supplemental material.

Image formed at the rainbow plane P4. A camera with spectral response \(c(\lambda) \) placed at the rainbow plane would measure

\[
I_{GR}(x, y) = \int_{\lambda} a^2(-x + f\lambda v_0, -y) \frac{1}{\lambda^2 f^2} S(\lambda) c(\lambda) d\lambda
\]

\[
\propto a^2(-x, -y) \star \left(S \left(\frac{x}{f v_0} \right) c \left(\frac{x}{f v_0} \right) \right), \quad (6)
\]

where \(\bar{c}(\lambda) = c(\lambda) / \lambda^2 f^2 \). Here, the dimensionless term \(f v_0 \) provides a scaling of the spectrum of the scene and indicates the resolving power of the diffraction grating. For example, we used a focal length \(f = 100 \text{mm} \) and a grating with groove density \(v_0 = 300 \text{ grooves/mm} \) for the prototype discussed in Section 6; here, \(f v_0 = 30,000 \). This implies that the spectrum is stretched by a factor of 30,000. Therefore, a 1nm of the spectrum maps to 30 \(\mu \text{m} \), which is about 6-7 pixel-widths on the cameras that we used. The key insight this expression provides is that the image \(I_{GR} \) is the convolution of the scene’s spectrum — denoted as a 1D image — with the aperture code \(a(\cdot, \cdot) \). This implies that we can measure the spectrum of the scene, albeit convolved with the aperture code on this plane; this motivates our naming of this plane as the rainbow plane.

Image at the spatial plane P5. A camera with the spectral response \(c(\lambda) \) placed at the spatial plane P5 would measure

\[
I_{GS}(x, y) = \int_{\lambda} H(x, y, \lambda) \star \left| \frac{1}{\lambda^2 f^2} A \left(-\frac{x}{\lambda f}, -\frac{y}{\lambda f} \right) \right|^2 c(\lambda) d\lambda \quad (7)
\]

\(I_{GS} \) is a “spatial image” in that spectral components of the HSI have been integrated out. Hence, we refer to P5 as the spatial plane.

Implementing KRISM operations. The derivation above suggests that we get a spatial image of the scene formed at the spatial plane P5 and a spectral profile at the rainbow plane P4. We can therefore build the two operators central to KRISM by coding the light at one of the planes while measuring it at the other. For the spectrally-coded imager \(I \), we will place an SLM at the rainbow plane P4 while measuring the image, with a camera, at P5. For the spatially-coded spectrometer \(S \), we will place an SLM at P5 — which optically identical to P5 — while measuring the image form at P4.
4.2 Failure of slits and open apertures

We now consider the effect of the traditional apertures used in imaging and spectrometry — namely, an open aperture and a slit, respectively — on the images formed at the rainbow and the spatial planes.

Suppose that the aperture code \(a(x,y)\) is a box function of width \(W\) mm and height \(H\) mm, i.e.,

\[
a(x,y) = \text{rect}_W(x) \text{rect}_H(y).
\]

Its Fourier transform \(A(u,v)\) is the product of two sincs

\[
A(u,v) = \text{sinc}(Wu) \text{sinc}(Hv).
\]

The spatial image \(I_S\) is convolved with the PSD \(|A(u,v)|^2\) scaled by \(f/\lambda\) and so, the blur observed on it has a spatial extent of \(f/\lambda/W \times f/\lambda/H\) units. Suppose that \(f = 100\text{mm}\) and \(\lambda = 0.5\text{\mu m}\), the observed blur is \(50/W \times 50/H(\text{\mu m})^2\). The rainbow plane image \(I_R\), on the other hand, simply observes a box blur whose spatial extent is \(W \times H\) mm\(^2\). Armed with these expressions, we can study the effect of an open and a slit apertures on the spatial and rainbow images.

Scenario #1 — An open aperture. Suppose that \(W = H = 10\text{ mm}\), then we can calculate the spatial blur to be \(5\text{\mu m}\) in both height and width, and hence, we can expect a very sharp spatial image of the scene. The blur on the rainbow image has a spread of \(10\text{ mm}\); for relay lenses with focal length \(f = 100\text{mm}\) and grating with groove density \(g = 300\text{ grooves/mm}\), this would be equivalent of a spectral blur of \(500/100 = 5\text{ nm}\). Hence, we cannot hope to achieve high spectral resolution with an open aperture.

Scenario #2 — A slit. A slit is commonly used in spectrometers; suppose that we use a slit of width \(W = 100\text{\mu m}\) and height \(H = 10\text{ mm}\). Then, we expect to see a spectral blur of \(10/30 \approx 3.3\text{ nm}\). The spatial image is blurred along the \(y\)-axis by a \(5\text{\mu m}\) blur and along the \(x\)-axis by a \(500/100 = 5\text{\mu m}\) blur; effectively, with a \(5\text{\mu m}\) pixel pitch, this would correspond to a 1D blur of 100 pixels. In essence, the use of a slit leads to severe loss in spatial resolution.

Figure 4 shows images formed at the rainbow and spatial planes for various aperture codes. This validates our claim that conventional imagers are unable to simultaneously achieve high spatial and spectral resolutions due to the nature of the apertures used. We
next design apertures with carefully engineered spectral and spatial blurs, which can be deblurred in post-processing.

4.3 Design of aperture codes

We now design an aperture code that is capable of resolving both space and spectrum at high-resolutions. Our use of coded apertures is inspired by seminal works in coded photography for motion and defocus deblurring [Levin et al. 2007; Raskar et al. 2006; Veeraraghavan et al. 2007].

Observation. Recall that the rainbow plane image \(f \) is a convolution between a 1D spectral profile \(s(\lambda) \) and a 2D aperture code \(a(x,y) \). This convolution is one dimensional, i.e., along the x-axis; hence, we can significantly simplify the code design problem by choosing an aperture of the form

\[
a(x, y) = a(x) \text{rect}(H, y),
\]

with \(H \) being as large as possible. The choice of the rect function along the y-axis leads to a high light throughput. In addition to this, from the separability of Fourier transformations as well as convolutions, we can show that the resulting spatial blur along y direction is compact.

For ease of fabrication, we further restrict the aperture code to be binary and of the form

\[
a(x) = \sum_{k=0}^{N-1} a_k \delta[k\Delta,(k+1)\Delta](x), \tag{8}
\]

where \(\delta[a,b](x) = 1 \) when \(x \in [a, b] \) and zero otherwise. Hence, the mask design reduces to finding an N-bit codeword \(a = \{a_0, \ldots, a_{N-1}\} \). The term \(\Delta \), with units in lengths, specifies the physical dimension of each bit in the code. We fix its value based on the desired spectral resolution. For example, for \(f = 100\text{mm} \) and \(v_0 = 300 \) grooves/mm, a desired spectral resolution of 1nm would require \(\Delta \leq 30\mu\text{m} \).

Our goal is to design masks that enable the following:

- **High light throughput.** For a given code length \(N \), we seek codes with large light throughput which is equal to the number of ones in the code word \(a \).
- **Invertibility of the spatial and spectral blur.** The code is designed such that the resulting spatial and spectral blur are both invertible.

An invertible blur can be achieved by engineering its PSD to be flat. Given that the spectrum is linearly convolved with \(a(x) \), a \((N + N_1 - 1)\)-point DFT of the code word \(a \) captures all the relevant components of the PSD of \(a(x) \). Denoting this \((N + N_1 - 1)\)-point DFT of \(a \) as \(A[k] \), we aim to maximize its minimum value in magnitude. Recall from (7) that the spatial PSF is the power spectral density (PSD) of \(a(x) \), with suitable scaling. Specifically, the Fourier transform of spatial blur is given by \(c(\ell,F) \), where \(c(x) = a(x) * a(-x) \) is the linear autocorrelation of \(a(x) \) and \(\ell \) represents spatial frequencies. From (8), we get,

\[
c(x) = a(x) * a(-x) = \sum_{k=-N}^{N-1} c_k \left[\sum_{\ell=-\infty}^{\infty} \delta[k\Delta,(k+1)\Delta](x) * \delta[\ell\Delta,(\ell+1)\Delta](x) \right], \tag{9}
\]

where \(c_k \) is the discrete linear autocorrelation of \(a_k \). Thus, it is sufficient to maximize \(c_k \) to obtain an invertible spatial blur.

We select an aperture code that leads to invertible blurs for both space and spectrum by solving the following optimization problem:

\[
\max_{a_0, \ldots, a_{N-1}} \alpha \min_k (|A[k]|) + (1 - \alpha) \min_k c_k, \tag{10}
\]

under the constraint that the elements of \(a \) are binary-valued, and \(\alpha \in (0, 1) \) is a constant. For code length \(N \) sufficiently small, we can simply solve for the optimal code via exhaustive search of all \(2^N - 1 \) code words. For our optical implementation, we used \(N = 32 \) and an exhaustive search for the optimal code took over a day. The resulting code and its performance in delivering high spatial and spectral resolutions is shown in Figure 5 and 6; we used \(\Delta = 100\mu\text{m} \) and \(H = 6.4\text{mm} \) for this result. However, such a brute force optimization is not scalable for larger codes. Instead of searching for optimal codes, we can search for approximately optimal codes by iterating over a few candidate solutions. This strategy has previously been explored in [Raskar et al. 2006], where 6 million candidate solutions are searched for a 52-dimensional code. Another alternative would be to start with optimal codes for other applications, such as M-sequences and MURA codes, and perturb them by flipping bits and searching for the best solution.

Figure 6 shows the frequency response of both spectral and spatial blurs for the 32-dimensional optimized code. The advantages of optimized codes are immediately evident — an open aperture has several nulls in spectral domain, while a slit attenuates all high spatial frequencies. The optimized code retains all frequencies in both domains, while increasing light throughput.
We tested KRISM via simulations on four different datasets and compared it against alternate approaches for hyperspectral imaging.

Datasets. We used the hyperspectral data set in [Arad and Ben-Shahar 2016], which consists of several high spatial and spectral resolution hyperspectral images covering 519 bands in visible and near IR wavelengths. We downsampled the HSI to $256 \times 256 \times 260$ to keep computation with CASSI-type simulations tractable. We also used datasets from [Choi et al. 2017] with 31 spectral bands to compare with learning-based techniques. Finally, we present one example from [SpecTIR [n. d.]] to compare KRISM against Row/Column CS techniques with a single coded image and recovered the HSI using spectral prior in wavelet domain. As with CASSI, we reduced the number of spectral bands to 31.

5 SYNTHETIC EXPERIMENTS

We now present an optical design for implementing the two operators into one compact setup.

Figure 9 shows a schematic that uses polarization to achieve both operators with a single SLM and a single camera. First, in Figure 9(a), an SLM is placed $2f$ away from the grating, and an image sensor $2f$ away from the SLM, implementing spectrally coded spatial measurement operator T. In Figure 9(b), light follows an alternate path where in the SLM is $4f$ away from the grating; the camera is still $2f$ away from the SLM. This light path allows us to achieve the spatial-coded spectral measurement operator S. The two light pathways are combined using a combination of polarizing beam splitters (PBS) and liquid crystal rotators (LC). The input light is pre-polarized to be either S-polarized or P-polarized. When the light is P-polarized, the SLM is effectively $2f$ units away from the grating leading to implementation of T, the spectrally-coded imager. When the light is S-polarized, the SLM is $4f$ units away, provided the polarizing
of input light and the LC rotator, we can implement both I and S operators with a single camera and SLM.

Figure 10 shows our lab prototype with the entire light pathway including the coded aperture placed in the relay system between the objective lens and diffraction grating. The input polarization is controlled by using a second LC rotator with a polarizer, placed before the diffraction grating. Finally, an auxiliary camera is used to image the pattern displayed on the SLM. This camera is used purely for alignment of the pattern displayed on the SLM. A detailed list of components can be found in the supplemental material.

Calibration. Our optical setup requires three broad calibration processes. The first one is camera to SLM calibration. We used an auxiliary camera (Component 12 in Figure 10) that is directly focused on the SLM for this purpose. The second one is calibration of wavelengths. We used several narrowband filters to figure out the location of wavelengths. Finally, third one is radiometric calibration. We used a calibrated Tungsten-Halogen light source to estimate the spectral response of the setup. A detailed description of the calibration procedure can be found in the supplementary material.

System characterization. Spectral resolution (FWHM) of the setup was computed using several 1nm narrowband filters across visible wavelengths. Our optical setup provided an FWHM of 2.9nm. Spatial resolution was computed by capturing photo of a Siemen star, and then deconvolving with a pointspread function, obtained by capturing image of a 10µm pinhole. The frequency at 30% of Modulation Transfer Function, MTF30 was found to be an average of 0.4 line pairs/pixel. All computation details, as well as relevant figures, can be found in the supplementary material.
Diffraction due to LCoS pattern. Since the SLM is placed at the conjugate plane of either spectral or spatial measurements, the displayed pattern introduces diffraction blur, which potentially makes the measurement model non-linear. To counter this, we add a constant offset to both positive and negative patterns, which makes the diffraction blur compact enough that the non-linearities can be neglected. Since the model is linear, the added offset does not change the final answer.

Spectral deconvolution. Measurements by our optical system return spectra at each point, convolved by the aperture code. To get the true spectrum, we deconvolved the measured singular vector using a smoothness prior. The specific objective function we used:

$$
\min_{v_k} \frac{1}{2} \| y_k - a * v_k \|^2 + \eta \| \nabla v_k \|^2.
$$

(11)

where v_k is the true spectrum, y_k is the measured spectrum, a is the aperture code, ∇x is the first order difference of x, and η is weight of penalty term. Solution to 11 was computing using conjugate gradient descent. Higher η favors smoother spectra, and hence is preferred for illuminants with smooth spectra, such as tungsten-halogen bulb or white LED. For peaky spectra such as Compact Fluorescent Lamp (CFL), a lower value of η is preferred. In our experiments, we found $\eta = 1$ to be appropriate for peaky spectra, whereas, $\eta = 10^3$ was appropriate for experiments with tungsten-halogen illumination. We provided performance of deconvolution with some other algorithms in the supplementary section.

Spatial deconvolution. Equation (7) suggests that the spatial blur kernel varies across different spectral bands. More specifically, the blur kernels at two different spectra are scaled versions of each other. However, we observed that the variations in blur kernels were not significant when we image over a small waveband — for example, the visible waveband of 420 – 680nm. Given this, we approximate the spatial blur as being spectrally independent, which leads to the following expression:

$$
I(x, y) \propto \int_{\lambda} H(x, y, \lambda)c(\lambda)d\lambda \star p(x, y),
$$

where $p(x, y)$ is the spatial blur. We estimated the spatial blur kernel by imaging a pinhole and subsequently deconvolved the spatial singular vectors. We used a TV prior based deconvolution using the technique in [Bioucas-Dias and Figueiredo 2007] using the image of a pinhole as the PSF. Details of the deconvolution procedure are in the supplementary section.

7 REAL EXPERIMENTS

We present several results from real experiments which show the effectiveness of our method. Specifically, we evaluate the ability
to measure singular vectors with high accuracy, ability to get high spatial resolution and high spectral resolution. Unless specified, experiments involved a capture of a rank-4 approximation of the HSI, with 6 spectral and 6 spatial measurements. Apart from reconstruction SNR, we present Spectral Angular Mapper (SAM) [Yuhas et al. 1992] similarity between spectra measured by our optical setup and that measured with a spectrometer. SAM between two vectors x and \hat{x} is defined as $\text{SAM} = \cos^{-1}\left(\frac{x \cdot \hat{x}}{\|x\| \|\hat{x}\|}\right)$. Since this can be treated as a high-dimensional approximation of angle between two vectors, we use SAM to evaluate closeness of spatial and singular vectors as well. We computed the singular vectors with our own implementation of Algorithm 1 in Matlab, with X_v and $X^\top v$ implemented as function handles. The routine was initialized with all-ones spatial image to speed up convergence. The spatial resolution was 560×550 pixels and the spectral resolution was 256 bands between 400nm to 700nm, with 3 nm FWHM. The PSF for image blur was estimated by placing a 10\(\mu\)m pinhole in front of the camera. Deconvolution was then done using TV-penalty on spatial singular vectors. For verifying spectroradiometric capabilities, we obtained spectral measurements at a small set of spatial points using an Ocean Optics FLAME spectrometer.

Visualization of Lanczos iterations. Figure 11 shows iterations for the "Color checker" scene in Figure 13. The algorithm starts with capture of the brightest parts of the image, corresponding to the spectralon, and the white and yellow patches. Consequently, by iteration 5, the blue and red parts of the image are isolated. The iterations are representative of the signal energy in various wavelengths. Maximum energy is concentrated in yellow wavelengths, due to tungsten-halogen illuminant and spectral response of the camera. This is then followed by the red wavelengths, and finally the blue wavelengths.

Comparison of measured singular vectors. We obtain the complete hyperspectral image through a permuted Hadamard multiplexed sampling in the spectral domain for comparison with ground-truth singular vectors. We chose a scene with four colored dice for this purpose, shown in Figure 12 (a). We then computed 4 singular vectors of spectrally Hadamard-multiplexed data. Figure 12 shows a comparison of the spatial and spectral singular vectors. The singular vectors obtained via Krylov subspace technique are close to the ones obtained through Nyquist sampling. On an average, the reconstruction accuracy between KRISM and Hadamard multiplexing was found to be greater than 30dB, while the angle between the singular vectors was no worse than 20°, with the top three singular vector having an error of 8° or small. While Hadamard sampling method took 49 minutes for 256 measurements, KRISM took under 2 minutes for 6 spatial and 6 spectral measurements, thus offering a speedup of $20\times$. Notice that Hadamard multiplexing gives a \sqrt{N} increase in speed up, and hence, KRISM offers a speed up of $25 \times \sqrt{256} \approx 400\times$ over Nyquist methods.

Color checker. Since our setup is optimized for viewing in 400nm-700nm, we evaluated our system for color reconstruction of the 24-color Macbeth color chart. The Macbeth color chart consists of a wide gamut of colors in visible spectrum that are spectrally well separated, and forms a good test bench for visible spectrometry. We placed the "Color passport" and spectralon plug in front of our camera and illuminated it with a tungsten-halogen DC light source. The spectralon has a spectrally flat response, and hence helps estimate the spectral response of the illuminant+spectrometer system. This enables measurement of true radiance of the color swatches. Since the spectra is smooth, we used least squares recovery of the spectrum, with f_2 penalty on the first difference of spectral singular vectors. The captured data was then normalized by dividing spectrum of all points with the spectrum of the spectralon. Figure 13 shows the captured image against reference color chart. Also shown are spectra at select locations plotted along with ground truth spectra. On an average, the RSNR between spectra measured by KRISM and that measured by spectrometer is greater than 19dB, while the SAM is less than 6°.

Peaky spectrum illumination. We imaged a small toy figurine of "Chopper", placed under compact fluorescent lamp illumination...
Fig. 12. Comparison of singular vectors captured via spectrally Hadamard-multiplexed sensing and KRISM for the dice scene. The left image singular vector is from Hadamard multiplexed data and the right one is from KRISM. Blue represents negative values and red represents positive values. KRISM method required capturing a total of 6 spectral and 6 spatial measurements to construct 4 singular vectors. While the Nyquist sampling method took a total of 59 minutes, KRISM took under 5 minutes. The SAM value between the singular vectors was less than 6°.

For verification with groundtruth, we captured spectral data at select spatial locations. The "Dice" and "Objects" scene captures several more colorful objects with high texture. The zoomed-in pictures show the spatial resolution, while the comparison of spectra highlights the fidelity of our system as a spectral measurement tool. "Ace" scene was captured by placing the toy figure under CFL illuminant, which is peaky. We could not obtain groundtruth with a spectrometer, as the toy was too small to reliably probe with a spectrometer. The peaks are located within 2nm of groundtruth peaks, and the relative heights of the peaks match the underlying color. "Crayons" scene consists of numerous colorful wax crayons illuminated with a tungsten-halogen lamp. The closeness of spectra w.r.t spectrometer readings shows the spectral performance of our setup. Finally, "Feathers" consists of several colorful feathers illuminated by tungsten-halogen lamp. The fine structure of feathers is well captured by our setup. Across the board, our setup promises high spatial as well as spectral resolution. Most importantly, all this data was obtained with only 6 spatial and 6 spectral measurements, a 20× compression over Nyquist method.

8 DISCUSSION AND CONCLUSION

We presented a novel hyperspectral imaging methodology called KRISM, and provided an associated novel optical system for enabling optical computation of hyperspectral scenes to acquire the top few singular vectors in a fast and efficient manner. Through several real experiments, we establish the strength of KRISM in three important aspects: 1) the ability to capture singular vectors of the hyperspectral image with high fidelity, 2) the ability to capture an approximation of the hyperspectral image with 20× or fast acquisition rate compared to Nyquist sampling, and 3) the ability to measure simultaneously at high spatial and spectral resolution. We believe that our setup will trigger several new experiments in adaptive imaging for fast and high resolution hyperspectral imaging.

Added advantages. There are two more advantages to KRISM. One, since we capture the top few singular vectors directly, there is a data compression from the acquisition itself. Two, the only
Fig. 14. Real data captured with our optical setup. We show the physical setup used for capturing the data, rendered RGB image with some interesting patches zoomed in, and spectra at some points, compared with a spectrometer. The results are promising, as the spectra is very close to spectrometer readings (SNR > 20dB), and the spatial images are captured in high resolution.
recovery time involves deconvolution of the spectra, which is far less than the time required for recovery of hyperspectral images from CS measurements.

Effect of photon noise. Although Krylov subspace based methods are very robust to noise [Simoncini and Szyl, 2003], the quality of the singular vectors degrades as the rank of acquisition is increased. This is primarily due to photon noise, as we progressively block most of the energy contained in initial singular vectors. This can be mitigated by increasing the exposure time of measurements for higher singular vectors. All said, the problem of noisy higher singular vectors exists with any kind of sampling scheme and hence needs separate attention via a good noise model.

9 ACKNOWLEDGEMENT

The authors would like to acknowledge Prof. Ioannis Gkioulekas (Robotics Institute, Carnegie Mellon University) for the valuable feedback. The authors acknowledge support via the NSF CAREER grant CCF-1652569, the NGA grant HM0476-17-1-2000, and the Intel ISRA on compressive sensing.

REFERENCES

Boaz Arad and Ohad Ben-Shahar. 2016. Sparse Recovery of Hyperspectral Signal from Natural RGB Images. In European Conf. Computer Vision.

Ravindra A Athale and William C Collins. 1982. Optical matrix–matrix multiplier based on outer product decomposition. Appl. optics 21, 12 (1982), 2089–2090.

Seung-Hwan Baek, Incheol Kim, Diego Gutierrez, and Min H Kim. 2017. Compact single-shot hyperspectral imaging using a prism. ACM Trans. Graphics 36, 6 (2017), 217.

Richard G Baraniuk. 2007. Compressive sensing. IEEE Signal Processing Magazine 24, 4 (2007), 118–121.

José M Bioucas-Dias and Mário AT Figueiredo. 2007. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image processing 16, 12 (2007), 2992–3004.

Xun Cao, Tao Yue, Xin Lin, Stephen Lin, Xin Yuan, Qionghai Dai, Lawrence Carin, and David J Brady. 2016. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world. IEEE Signal Processing Magazine 33, 5 (2016), 95–108.

A. Chakrabarti and T. Zickler. 2011. Statistics of Real-World Hyperspectral Images. In IEEE Conf. Computer Vision and Pattern Recognition.

Inchang Choi, Daniel S. Jeon, Giljoo Nam, Diego Gutierrez, and Min H. Kim. 2017. High Quality Hyperspectral Reconstruction Using a Spectral Prior. ACM Trans. Graphics 36, 6 (2017), 218–1–13.

EA Cloutis. 1996. Review Article Hyperspectral geological remote sensing: evaluation of analytical techniques. International J. Remote Sensing 17, 12 (1996), 2215–2242.

M. Fazel, E Candés, B Recht, and P. Parrilo. 2008. Compressed sensing and robust recovery of low rank matrices. In Asilomar Conf. Signals, Systems and Computers.

Graham D Finlayson, Mark S Drew, and Brian V Funt. 1994. Color constancy: generalized diagonal transforms suffice. JOSA A 11, 11 (1994), 3091–3019.

ME Gehin, RJ John, DJ Brady, RM Willett, and TJ Scholz. 2007. Single-shot compressive spectral imaging with a dual-disperser architecture. Optics Express 15, 21 (2007), 14013–14027.

Mohammad Golbabaee and Pierre Vanderghynst. 2012. Hyperspectral image compressed sensing via low-rank and joint-sparse matrix recovery. In ICASSP.

Gene Golub and William Kahan. 1965. Calculating the singular values and pseudo-inverse of a matrix. 3 of the Society for Industrial and Appl. Mathematics, Series B: Numerical Analysis 2, 2 (1965), 205–224.

Joseph W Goodman. 2005. Introduction to Fourier optics. Roberts and Company Publishers.

Joseph C Harsanyi and C-I Chang. 1994. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geoscience and Remote Sensing 32, 4 (1994), 779–785.

Martin Harwit and Neil J Sloane. 1979. Hadamard transform optics.

V Hernandez, JE Roman, A Tomas, and V Vidal. 2007. Restarted Lanczos bidiagonalization for the SVD in SLICE. STR-8, Tech. Rep. (2007).

Zhui Hui, Kalyan Sunkavalli, Sunil Hadap, and Ashwin C. Sankaranarayanan. 2018. Illuminant Spectra-based Source Separation using Flash Photography. In IEEE Intl. Conf. Computer Vision and Pattern Recognition (CVPR).

Daniel S Jeon, Inchung Choi, and Min H Kim. 2016. Multisampling compressive video spectroscopy. In Computer Graphics Forum.

Isaac Kauvar, Samuel J Yang, Liang Shi, Ian McDowall, and Gordon Wetzstein. 2015. Adaptive color display via perceptually-driven factorial spectral projection. ACM Trans. Graphics (TOG) 34, 6 (2015), 165–1.

Min H Kim, Todd Alan Harvey, David S Kittle, Holly Rushmeier, Julie Dorsey, Richard O Prum, and David J Brady. 2012. 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graphics (TOG) 31, 4 (2012), 38.

David Klette, Kerki Choi, Ashwin Wagadarikar, and David J Brady. 2010. Multiframe image estimation for coded aperture snapshot spectral imagers. Appl. optics 49, 36 (2010), 6824–6833.

BVJ Vijaya Kumar and David Casasent. 1981. Eigenvector determination by iterative optical methods. Applied optics 20, 21 (1981), 3707–3710.

Anat Levin, Rob Fergus, Frodo Durand, and William T Freeman. 2007. Image and depth from a conventional camera with a coded aperture. ACM transactions on graphics (TOG) 26, 3 (2007), 70.

Chengho Li, Ting Sun, Kevin F Kelly, and Yin Zhang. 2012. A compressive sensing and unmixing scheme for hyperspectral data processing. IEEE Trans. Image Processing 21, 3 (2012), 1200–1210.

Xin Lin, Yebin Liu, Jiamin Wu, and Qionghai Dai. 2014a. Spatial-spectral encoded compressive hyperspectral imaging. ACM Trans. Graphics 33, 6 (2014), 233.

Xin Lin, Gordon Wetzstein, Yebin Liu, and Qionghai Dai. 2014b. Dual-coded compressive hyperspectral imaging. Optics letters 39, 7 (2014), 2044–2047.

Ankit Mohan, Ramesh Raskar, and Jack Tumblin. 2008. Agile spectrum imaging: Programmable wavelength modulation for cameras and projectors. In Computer Graphics Forum.

Matthew O’Toole and Kiriakos N Kutulakos. 2010. Optical computing for fast light transport analysis. ACM Trans. Graph. 29, 6 (2010), 164.

Zhizong Pan, Glenn Healey, Manish Prasad, and Bruce Tromberg. 2003. Face recognition of analytical techniques. In Intl. Conf. Comp. Photography.

Valeria Simoncini and Daniel B Szyld. 2003. Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J. Scientific Computing 25, 2 (2003), 467–497.

SpectTr. [n.d.]. SpectTr. Advanced Hyperspectral and Geospatial Solutions. http://www.spectitr.com/free-data-samples/. (n.d.).

Ting Sun and Kevin Kelly. 2009. Compressive sensing hyperspectral image. In Computational Optical Sensing and Imaging.

Tatsuyoshi Takataki, Takahito Aoto, and Yasuhiro Mukaigawa. 2017. One-shot Hyperspectral Imaging using Faced Reflectors. In CVPR.

Yuliya Tarabalka, Jocelyn Chauvotuss, and Jon Atli Benediktsson. 2010. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition 43, 7 (2010), 2367–2379.

Ashok Verrarraghavan, Ramesh Raskar, Amit Agrawal, Ankit Mohan, and Jack Tumblin. 2007. Dappled photography: Mask enhanced cameras for hetordyned light fields and coded aperture refocusing. ACM Trans. Graph. 26, 3 (2007), 69.

Ashwin Wagadarikar, Remu John, Rebecca Willett, and David Brady. 2008. Single disperser design for coded aperture snapshot spectral imaging. Appl. Optics 47, 10 (2008), B44–B51.

Andrew E Waters, Ashwin C Sankaranarayanan, and Richard Baraniuk. 2011. SpaRCS: Recovering low-rank and sparse matrices from compressive measurements. In Adv. Neural Info. Processing Systems.

Michael E. Winter. 1999. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. (1999).

Fumihito Yasuma, Tomoo Matsuana, Daisuke Iso, and Shree K Nayyar. 2010. Generalized approximated pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE trans. on image processing 19, 9 (2010), 2241–2253.

Robertta H Yulas, Alexander H Goetz, and Joe W Boardman. 1999. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. (1992).

Yong-Qing Zhao and Jingxiang Yang. 2013. Hyperspectral image denoising via sparse representation and low-rank constraint. IEEE Trans. Geoscience and Remote Sensing 51, 3 (2013), 296–308.
which means that there is no dispersion along the y-axis. Finally, we derive in the sequel relies on the so called Fourier transform property says that the complex phasor field that is formed at the plane \(z = 2f \) is given as

\[
i_{\text{2f}}(x', y', \lambda) = \frac{1}{j\lambda f} l_0 \left(\frac{x'}{\lambda f}, \frac{y'}{\lambda f}, \lambda \right),
\]

where \(l_0(u, v, \lambda) \) is the 2D Fourier transform of \(i_0(x, y, \lambda) \) along the first two dimensions. We can compute the 2D Fourier transform of \(i_{\text{2f}} \) using the scaling property.

\[
i_{\text{2f}}(u', v', \lambda) = \frac{1}{j\lambda f} (\lambda f)^2 i_0(-\lambda f u', -\lambda f v', \lambda).
\]

The negative signs in the argument of \(i_0(\cdot) \) comes from the Fourier transform being the Hermitian of the inverse Fourier transform. If we now placed a second ideal thin lens of focal length \(f \) at \(z = 3f \), then the field at \(z = 4f \) can be computed as

\[
i_{\text{4f}}(x'', y'', \lambda) = \frac{1}{j\lambda f} i_{3f} \left(\frac{x''}{\lambda f}, \frac{y''}{\lambda f}, \lambda \right),
\]

where \(i_{3f} \) is referred as a 3f system. We see that the 4f system replicates the field at \(z = 0 \) at \(z = 3f \), barring a flip of the coordinate axis; this property is useful for the following discussion.

B.3 Propagation of Signal

We will use Figure 15 as a guide for the derivation. An objective lens focuses a scene onto its image plane, denoted as P1. Assuming that all light is incoherent, let the complex phasor at P1 be denoted as \(h(x_1, y_1, \lambda) \); note that intensity of this complex field is the hyperspectral image \(I(x_1, y_1, \lambda) \) that we seek to measure, i.e.,

\[
I(x_1, y_1, \lambda) = |h(x_1, y_1, \lambda)|^2.
\]

Since we assume an incoherent model, we analyze the system for a point light source and then extend it to a generic image by adding up only intensities.

Field at Plane P1. Consider a point light source at \((x_0, y_0)\) with complex amplitude \(h(x_0, y_0, \lambda) \). The overall phasor field at P1 is given as

\[
i_1(x, y, \lambda) = \delta(x - x_0, y - y_0) h(x_0, y_0, \lambda).
\]

Field at Plane P2. Using Fourier transform property of lens, we get the field on plane P2 to be,

\[
i_{\text{2f}}(x_2, y_2, \lambda) = \frac{1}{j\lambda f} I_1 \left(\frac{x_2}{\lambda f}, \frac{y_2}{\lambda f}, \lambda \right),
\]

where \(I_1(u, v, \lambda) \) is the continuous 2D Fourier transform of \(i_1(x, y, \lambda) \) along the first two dimensions. The field just after the coded aperture is given by,

\[
i_{\text{2f}}(x_2, y_2, \lambda) = a(x_2, y_2) \tilde{i}_{\text{2f}}(x_2, y_2, \lambda)
\]

\[
= \frac{1}{j\lambda f} a(x_2, y_2) h(x_0, y_0, \lambda) e^{-\frac{2\pi j}{f}(x_0 x_2 + y_0 y_2)},
\]

where \(I_0(u, v, \lambda) \) is the two-dimensional Fourier transform of \(i_0(x, y, \lambda) \) along the first two dimensions.
Field at Plane P3. Using Fourier transform property of lens a second time, the field just before the diffraction grating is

\[i_3(x_3, y_3, \lambda) = \frac{1}{j \lambda f} i_2 \left(\frac{x_3}{\lambda f}, \frac{y_3}{\lambda f}, \lambda \right) \]

\[= \frac{1}{(j \lambda f)^2} h(x_0, y_0, \lambda) A \left(\frac{x_3 + x_0}{\lambda f}, \frac{y_3 + y_0}{\lambda f} \right), \quad (14) \]

where \(A(u, v) \) is the continuous 2D FT of \(a(x, y) \). Since the diffraction grating is assumed to disperse along x-axis, we model it as a series of infinite slits, given by,

\[d(x, y) = \frac{1}{\nu_0} \sum_{k=-\infty}^{\infty} \delta \left(x - \frac{k}{\nu_0} \right), \quad (15) \]

where \(\nu_0 \) is the groove density of the diffraction grating, measured in grooves per unit length. The \(\frac{1}{\nu_0} \) factor ensures that light does not get amplified as it propagates through the setup. The field just after the diffraction grating is hence given by,

\[i_3(x_3, y_3, \lambda) = i_3(x_3, y_3, \lambda) d(x_3, y_3) \]

\[= \frac{h(x_0, y_0, \lambda)}{(j \lambda f)^2} A \left(\frac{x_3 + x_0}{\lambda f}, \frac{y_3 + y_0}{\lambda f} \right) \frac{1}{\nu_0} \sum_{k=-\infty}^{\infty} \delta \left(x_3 - \frac{k}{\nu_0} \right). \quad (16) \]

Field at the Rainbow Plane P4. To calculate the field at P4, we first need an expression for \(D(u, v) \), the 2D Fourier transform of \(d(x, y) \).

\[D(u, v) = \delta(v) \sum_{k=-\infty}^{\infty} \delta(u - k \nu_0) \quad (17) \]

The field on plane P4 is given as:

\[\frac{1}{\lambda f^2} i_3 \left(\frac{x_4}{\lambda f}, \frac{y_4}{\lambda f}, \lambda \right) \ast D \left(\frac{x_4}{\lambda f}, \frac{y_4}{\lambda f} \right) \]

\[= \frac{1}{(j \lambda f)^2} \frac{1}{\nu_0} \sum_{k=-\infty}^{\infty} a(-x_4 - k \nu_0 \lambda f) \ast \delta \left(y_4 + \frac{y_0}{\lambda f} - k \nu_0 \lambda f \right) \]

\[= -\frac{1}{(j \lambda f)^2} h(x_0, y_0, \lambda) \ast \sum_{k=-\infty}^{\infty} a(-x_4 - k \nu_0 \lambda f) \ast \delta \left(y_4 + \frac{y_0}{\lambda f} - k \nu_0 \lambda f \right) \ast \delta \left(x_4 - \frac{k \lambda f}{\lambda f} \right), \quad (18) \]

where "\ast" represents continuous 2D convolution. Since we are only interested in the first order of diffraction, we set \(k = 1 \), giving us,

\[i_4(x_4, y_4, \lambda) = \cdots \]

\[\cdots = \frac{1}{j \lambda f} h(x_0, y_0, \lambda) a(-x_4 - \nu_0 \lambda f, -y_4) \ast \delta \left(x_4 - \frac{x_0 \lambda f}{\lambda f} \right) + y_0 \lambda f. \quad (19) \]

Field at the Spatial Plane P5. Finally, the field on plane P5 is given by,

\[i_5(x_5, y_5, \lambda) = \frac{1}{j \lambda f} i_4 \left(\frac{x_5}{\lambda f}, \frac{y_5}{\lambda f} \right) \]

\[= \frac{1}{(j \lambda f)^2} h(x_0, y_0, \lambda) e^{-j 2\pi x_5 \nu_0} A \left(\frac{x_5 - x_0}{\lambda f}, \frac{y_5 - y_0}{\lambda f} \right). \quad (20) \]

B.4 Measurement by camera

Note that a camera can only measure intensity of the field. Assuming a camera with spectral response \(c(\lambda) \), the measurement on plane P4...
We can observe from (22) that the image formed at the rainbow plane P4 is a convolution of the scene’s spectrum \(S(\lambda) \) modified with the camera response as well as \(1/(\lambda f)^2 \) with the square of the aperture code.

Similarly, the intensity on plane P5 is given by,

\[
M_5(x,y) = \int_\lambda |s_5(x,y,\lambda)|^2 c(\lambda) d\lambda
\]

\[
= \int_\lambda |h(x_0, y_0, \lambda)\frac{1}{1/(\lambda f)^2} a^2(-x-y) c(\lambda) d\lambda
\]

\[
= \int_\lambda \int_\lambda H(x_0, y_0, \lambda) p(x-x_0, y-y_0, \lambda) d\lambda
\]

Extending to a generic incoherent image case, we get the following expression,

\[
M_5(x,y) = \int_\lambda \int_\lambda \int_\lambda \tilde{H}(x_0, y_0, \lambda) p(x-x_0, y-y_0, \lambda) d\lambda
\]

The expression above suggests that the image associated with each spectral channel is convolved with a different blur kernel; further, the blur kernel for different wavelengths are simple scaled versions of each other. This implies that we need to design codes and deconvolve them for each channel separately. However, this can be avoided for the following two reasons. First, since the kernels are scaled versions of each other, if one of them is invertible then so are the rest. Second, since our optical setup imaged within a narrow spectral band of 420 – 680 nm, the variance in spatial blur is not significant. Since the blur of coded aperture is compact, the pixellation makes the differences in blur sizes insignificant. Figure 16 shows a comparison of spatial blur of optimized code at two representative wavelengths of 420nm and 680nm as seen by a camera with 5\(\mu \)m pixel width. As is evident, the blur size is largely invariant to wavelength, and hence we assumed that the spatial blur is spectrally invariant, and hence, the image formed at plane P5 is given as

\[
M_5(x,y) \approx \int_\lambda \tilde{H}(x_0, y_0, \lambda) p(x,y,\lambda) d\lambda.
\]

For optimizing the spatial blur kernel, we chose a design wavelength of \(\lambda = 500\text{nm} \). However, if we were to image over a larger span of wavelengths, such as 300 – 1100nm, spectral bands have to be deconvolved individually.

\section{Code Selection}

We characterize performance of some coded aperture for spatial-spectral resolution, and then explain deconvolution of spectrum and space for the real optical setup.

\subsection{Choice of codes}

We briefly a way of obtaining doubly invertible codes for high spatial and spectral resolution in Section 4.3. In this section, we show an alternate design, and evaluate their performance for spatial deconvolution and spectral deconvolution.
We compare doubly invertible codes, spatially compact codes and M-sequences for their performance in spatial deconvolution and spectral deconvolution. To test spectral deconvolution, we created a spectrum with two closely spaced narrowband peaks and a broadband peak, and blurred them with various codes. Readout noise and shot noise were added to adhere to real world measurements. Finally, deconvolution was done with wiener filter.

To test spatial deconvolution, we used Airforce target and blurred with the scaled PSD of the pupil codes, and added noise. Deconvolution was done with a TV prior in all cases.

Figure 17 shows a comparison of performance for spectral and spatial deconvolution. As expected, doubly invertible codes perform the best for spectral deconvolution, while spatially compact codes perform worse. Spatially compact codes perform the best in this case, while double invertible codes come close. Since hyperspectral imaging requires good spatial as well as spectral resolution, we chose doubly invertible codes.
C.3 Spectral deconvolution

Recall that our optical setup measures a blurred version of the true spectrum. Specifically, if the aperture code is \(a(x) \) and the spectrum to be measured is \(s(\lambda) \), our optical setup measures
\[
y(\lambda) = a(\lambda) * s(\lambda) + n(\lambda),
\]
where \(n(\lambda) \) is additive white gaussian noise. The addition of noise prevents us from simply dividing in Fourier domain. Fortunately, since the aperture code was designed to be invertible, it is fairly robust to noise. A naive solution, such as Wiener deconvolution, hence, works very well. If the noise is too high, or the spectra is known to be smooth, we can impose an \(\ell_2 \) penalty on the difference and solve the following optimization problem:
\[
\min_s \frac{1}{2} ||y - \alpha * s||^2 + \eta ||\nabla s||^2,
\]
where \(y \) is the measured spectrum, \(\alpha \) is the aperture code, \(s \) is the spectrum to be recovered, and \(\nabla s \) is the first difference of \(s \). Further priors, such as positivity constrains give better results as well. Figure 19 shows a comparison of spectra of various commonly available light sources, as well as a comparison with spectrometric measurements. We showed results for three forms of deconvolution, namely, Wiener deconvolution, \(\ell_2 \) regularized deconvolution, and positivity constrained deconvolution. Figure 18 shows results for some narrowband filters. We computed the central wavelength and Full Width Half Max (FWHM) for each filter and compared it against the numbers provided by the company. As expected, the FWHM of 1nm filters is between 2nm and 3nm, as the FWHM of our optical setup is 3nm. FWHM for 10nm filters and 40nm filters is close to the ground truth values.

\[
\begin{array}{cccc}
\text{True central wavelength (nm)} & \text{Measured central wavelength (nm)} & \text{True FWHM (nm)} & \text{Measured FWHM (nm)} \\
436 & 437.0 & 10 & 10.9 \\
450 & 456.1 & 40 & 31.8 \\
514.5 & 514.3 & 1 & 2.6 \\
514.5 & 514.3 & 1 & 2.3 \\
650 & 641.6 & 40 & 40.4 \\
670 & 670.0 & 3 & 3.7 \\
\end{array}
\]

Fig. 18. Spectra of some narrowband filters with datasheet central wavelength and FWHM (in parenthesis) provided in legend. We used Wiener deconvolution to obtain the true spectra. (b) tabulates the estimated central wavelength and FWHM, along with datasheet values. The accuracy of central wavelength and FWHM established the accuracy as well as high-resolution capabilities of our optical setup.
TV prior on the image gradients. There is a marked improvement in contrast ratio after deconvolution. The MTF30 value for both sectors jumps from 0.15 line pairs/pixel to 0.5 line pairs/mm.

Fig. 20. Deconvolution results of a Siemen star with various deconvolution algorithms. Due to invertible nature of PSF, deconvolution is robust to choice of method. However, TV-prior gave best results in terms of MTF.

Fig. 21. MTF plot before and after deconvolution. PSF was estimated by capturing image of a 10µm pinhole. Deconvolution was then done using a TV prior on the image gradients. There is a marked improvement in contrast ratio after deconvolution. The MTF30 value for both sectors jumps from 0.15 line pairs/mm to 0.5 line pairs/mm.

the MTF30 value, which jumps from 0.15 line pairs/pixel to 0.5 line pairs/pixel.

D LIST OF COMPONENTS

Figure 22 shows an annotated image of the optical setup we built along with a list of components along with their company and item number. The system was optimized for a central wavelength of 580nm and hence the relay arm till the diffraction grating has been tilted at 10° with respect to the diffraction grating to correct for scheimpflug. Lenses in the relay arm are tilted by 5° with respect to the diffraction grating so that the objective can be aligned with the relay arm without any further tilt. The first beamsplitter (component 8) and the second turning mirror (component 10) have been placed on a kinematic platform to correct for misalignments in the cage system. It is of importance that we chose an LCoS instead of a DMD for spatial light modulation. The reasons:

- Since the output after modulation by DMD is not rectilinear to the DMD plane, it introduces further scheimpflug, which is hard to correct.
- DMD acts as a diffraction grating with Littrow configuration, as it is formed of extremely small mirror facets. This will introduce artifacts in measurements which are non-linear.

Some more design considerations are enumerated below:

1. Lenses. We used 100mm achromats for all lenses except the last lens before cameras. Achromats were the most compact and economical choice for our optical setup, while offering low spatial and spectral distortion.

2. Polarizing beam splitters. We used wire grid polarizing beamsplitters everywhere to ensure low dependence of spectral distortion on angle of incidence, and increase the contrast ratio.

3. Using an objective lens for measurement camera. Note that a lens is placed between the LCoS and measurement sensor which converts spatially-coded image to spectrum and coded spectrum to spatial image. Instead of using another achromat, we used an objective lens set to focus at infinity. Since objective lenses are free of any distortions, and are optimized to focus at infinity, this significantly improves resolution of measurements.

4. Diffraction grating. We used an off-the-shelf transmissive diffraction grating with 300 grooves/mm, which offered most compact spectral dispersion without any overlap with higher orders. This ensured that there would be no spectral vignetting at any point in the setup. Further discussion about the choice of groove density is provided in E.

5. Polarization rotators. We bought off-the-shelf Liquid Crystal (Lc) shutters and peeled off the polarizers on either sides to construct polarization shutters. This is the most economic option, while offering contrast ratios as high as 400:1. However, the drawback is that the settling time is 330ms, which prevents their usage at very high rate. A natural workaround is to incorporate binary Ferroelectric shutters which have a low latency rate of 1ms. However, since ours was only a lab prototype, we decided to go with the cheaper option.

E DESIGN CONSIDERATIONS

We outline some design choices we made and the rationale behind them in this section.

E.1 Choice of code size

The pupil code has two free parameters, the length of the code N and the pitch size, ∆. The two parameters control the invertibility of spectrum and imperceptibility of spatial images. To understand our design choices, we present constrains and physical dimensions of various measurements. Let each lens in the optical setup have a focal length f and aperture diameter a_L. Let pixel pitch of measurement camera be p. This implies that the camera can capture all spatial frequencies up to f_{max} = \frac{1}{2p} m^{-1}. Let the size of grating be a_g in each dimension and its groove density be g groves/mm.
We capture wavelengths from $\lambda_1 = 420\,\text{nm}$ to $\lambda_2 = 680\,\text{nm}$. The grating equation is given by, $a\sin(\theta) = m\lambda$, where a is the groves spacing and m is the order of diffraction, 1 in our case. Solving for angular spread of spectrum, we get, $\Delta \theta = \sin^{-1}\left(\frac{\lambda_2}{a}\right) - \sin^{-1}\left(\frac{\lambda_1}{a}\right)$

The size of spectrum then is $f \tan(\Delta \theta) + N\Delta$. The minimum resolvable wavelength is $\Delta a \approx \frac{\Delta \lambda}{f}$. To avoid vignetting in a 4F system, we require that the pupil plane be no larger than $a_p - a_g\,\text{mm}$, giving us $f \tan(\Delta \theta) + N\Delta \leq a_p - a_g$.

Recall that the pupil code is $a(x) = b(x) + \sum_{k=0}^{N-1} a[k]\delta(x - k\Delta)$, where $a[k]$ is the binary pupil code and $b(x) = 1 - \Delta/2 \leq x \leq \Delta/2$. Using the formula for PSF of an incoherent system, we know that the Fourier transform of the PSF is $F_{PSF} = C_a(\lambda f u)$, where $C_a(x)$ is the linear autocorrelation of $a(x)$ and u is spatial frequency in $1/\text{m}$. To capture all spatial frequencies, we need $F_{PSF}(u)$ to be non-zero for $u \geq f_{\text{max}}$, which gives us $\Delta a \geq \frac{\lambda f}{2\pi}$.

In our optical setup, we have $a_p = 25\,\text{mm}$, $a_g = 12.5\,\text{mm}$, $p = 5\,\mu\text{m}$, $f = 100\,\text{mm}$, $\lambda = 500\,\text{nm}$, and $\Delta = 100\,\mu\text{m}$, which leaves us N, and g as free variables. To prevent vignetting, we need $N\Delta$ to be less than $a_p - a_g - f \tan(\Delta \theta)$, which means that N increases as g decreases. Increasing N increases resolution of images, but the optimization problem for optimal binary code becomes very hard. On the other hand, increasing Δ can increase spatial resolution as well, but the spectral resolution reduces. Keeping practical considerations in mind, we set $N = 32$, which took close to a day to optimize. Further, $g = 300\,\text{grooves/mm}$ was the smallest groove density we obtained as off-the-shelf component.

E.2 Handling positive/negative data

When computing singular vectors, the data to be measured, as well as the data to be displayed on the LCoS contains negative values too. Since our optical devices cannot handle negative data, we make two positive measurements and combine them. We split the data to be displayed on the LCoS into positive and negative parts. Then, we capture positive data with positive part on the LCoS, and then repeat the process for negative data. By taking the difference of the positive and negative data, we obtain the required measurement. Figure 23 shows an example of capture of data with positive/negative data. The data in (a) shows the positive/negative image to be displayed on the LCoS, which is split into positive (b) and negative (c) halves, which are separately displayed on the LCoS, to capture positive (e) and negative (f) data. The final required measurement is then obtained by appropriately weighing and subtracting the two measurements.

F CALIBRATION

We now outline calibration steps for the proposed optical setup. Firstly, we need a mapping between the captured image and the image displayed on the SLM. Secondly, we need calibration of wavelengths, and finally, we need spectral response calibration of the system for high-fidelity measurements.

Camera-SLM calibration. Recall that the power method for estimating eigen vectors requires the multiplication $x_2 = Hx_1$, where $x_1 = H^T x_0$ is a spatial measurement, displayed on the SLM and x_2 is the measurement made by the camera. Hence, we need a one-to-one...
mapping between the measured image and the LCoS. To do this, we added a second, calibration camera, henceforth called the auxiliary camera, which directly sees the image on the LCoS. The calibration steps are the following:

1. Find pixel to pixel correspondence between LCoS and auxiliary camera using gray or binary codes.
2. Place known target in front of the camera.
3. Capture the image of the target using the primary camera. Let this image be \(I_1 \).
4. Capture the image of the target on the LCoS using second camera. Let this image be \(I_2 \).
5. Register \(I_1 \) and \(I_2 \) using a similarity transform.

The steps are then repeated for the spectrum as well. Instead of placing a known target image, a known narrow band filter is placed. This creates the coded aperture pattern on both the cameras. The image of the coded aperture for the narrow band filters can be used for registering the cameras for spectral measurements. For robustness, we combined images of two narrow band filters, namely 514.5nm with an FWHM of 1nm and 670nm with an FWHM of 3nm, which helped registration of the camera and LCoS over a larger field of view.

Figure 24 shows spatial and spectral calibration results. (a) shows the images of target captured by auxiliary camera and (b) shows capture by measurement camera. The calibration process was verified by displaying the captured target image back on the SLM and then capturing the image of LCoS by auxiliary camera. The result is shown in (c). (d) shows the result if the registration were not successful, showing ghosting of the two images. (e) and (f) show image of spectrum of a narrowband filter. Since the pupil code is vertically symmetric, we stuck a piece of tape at the bottom, creating a trapezoidal shape, which was then easy to register. (g) shows the overlay image captured by the auxiliary camera, for verification. A good registration results in an image that looks like the aperture code itself. (h) shows the result of an intentional shift, to show the effect of a bad registration. In both cases, we used Matlab’s built in SURF based automatic image registration technique for estimating a similarity transform between the two captured images.

Wavelength calibration. Wavelength calibration requires two steps – 1) Estimating the binary code of the coded aperture and 2) Estimating locations of wavelengths. We found thresholding the measured spectrum to be a robust way of estimating the binary code of the coded aperture. To calibrate wavelength locations, we use three filters of known spectral response. Specifically, we use 488nm, 514.5nm and 670nm spectral filters with FWHM of 1nm, 1nm and 3nm respectively. Since spectral spread is linear, two known wavelengths are sufficient. However, for robustness, we use a third filter and then linearly interpolate to get the wavelength positions.

Figure 25 shows the image for wavelength calibration pipeline. We first obtain image of spectrum of a narrow band filter. After correcting for rotation, we obtain spectrum by summing the image vertically. This helps estimate the binary code, which is then used to deconvolve the observed spectrum to get spectrum of the narrow band filter. The peak of the narrow band filter is used as a known
Spectral response of camera / Radiometric calibration. The measured image and spectrum on the camera plane is given by

\[
I_S(x, y) \propto \int \frac{1}{\lambda^2} \left| A \left(\frac{\lambda - \lambda_f}{\lambda_f} \right) \right|^2 c(\lambda) d\lambda
\]

\[
I_R(x, y) \propto a(x, y) \left(x \left(\frac{\lambda - \lambda_f}{\lambda_f} \right) \right)
\]

where \(c(\lambda) \) is the spectral response of the camera. For true spectrometric readings, contribution of \(c(\lambda) \) needs to be removed. Contribution of \(c(\lambda) \) can be removed by calibrating the spectrometric measurements with a known light source. The tungsten-halogen light source, "SL1-CAL" from Stellarnet was used for this purpose. To compute \(c(\lambda) \), we assumed that the true spectrum, \(c_t(\lambda) \) of the light source is known. We then measured spectrum of the light source, \(c_m(\lambda) \) with our optical setup. The spectral response of the system was then computed as \(c(\lambda) = \frac{c_m(\lambda)}{c_t(\lambda)} \). This procedure is illustrated in Figure 26.

G REAL EXPERIMENTS

We provide visualizations for some of the real experiments presented in Section 7. Specifically, we compare the captured singular vectors for three more scenes with spectrally Hadamard multiplexed measurements. We also show spectral band images for Macbeth chart and crayons chart, showing the intensity variation of various colors.

G.1 Comparison of singular values and singular vectors

The ability of KRISM to accurately compute singular vectors has been presented in Section 7. Here, we present two more experimental measurements to show how KRISM is applicable across various settings. Comparison is done against spectrally Hadamard multiplexed data, and then computing singular vectors on computer. We evaluate three metrics, namely, SNR between singular values, SAM between spectral singular vectors and SAM between spatial singular vectors. "Color checker" experiment (first row in Figure 27) was captured by placing the Macbeth chart in front of the camera, and illuminating it with a tungsten-halogen light source. The SNR between singular values was 30dB, average SAM between spectral singular vectors 10° and that between spatial singular vectors was 10°. "Chopper" experiment (second row in Figure 27) was captured by placing the Chopper toy in front of the camera, and illuminating it with CFL, a peaky illuminant. The SNR between singular values was 30dB, average SAM between spectral singular vectors 10° and that between spatial singular vectors was 10°. Finally, the last row shows a comparison between singular values from Hadamard multiplexing and singular values from KRISM for some scenes presented in Section 7. Across the board, KRISM computes the low-rank approximation with very high accuracy, as is evident from the experiments.

G.2 Visualizing spatial images

Figure 28 shows images across various wavelengths for the “color checker” scene and “crayons” scene. In particular, The images show...
the variation of intensity of each color swatch/crayon across wave-
lengths, with blur objects being brighter initially, green objects in
the middle and red objects finally.

H SYNTHETIC EXPERIMENTS
We showed some simulation results in Section 5. We show several
more examples here, with emphasis on diversity of datasets. We
tested KRISM via simulations on four different datasets and com-
pared it against alternate approaches for hyperspectral imaging.

Datasets. We used the hyperspectral data set in [Arad and Ben-
Shahar 2016], which consists of several high spatial and spectral
resolution hyperspectral images covering 519 bands in visible and
near IR wavelengths. We downsampled the HSI to $256 \times 256 \times 260$
to keep computation with CASSI-type simulations tractable. We also used datasets from [Choi et al. 2017; Yasuma et al. 2010] and [Chakrabarti and Zickler 2011] with 31 spectral bands to compare with learning-based techniques. Finally, we present one example from NASA AVIRIS to compare KRISM against Row/Column CS proposed in [Fazel et al. 2008].

Competing methods. We compared KRISM against four competing CS hyperspectral imaging techniques. All methods were simulated with 60dB readout and photon noise and 12-bit quantization. Specifics of each simulation model are given below:

1. **KRISM**: We performed a rank-4 approximation of the HSI with 6 spatial and 6 spectral measurements. Diffraction blur due to coded aperture was introduced both in spectral and spatial profiles. Deconvolution was then done using Wiener deconvolution in both spectral and spatial domains.

2. **Row/Col CS** [Fazel et al. 2008]: As with KRISM, we performed a rank-4 approximation of the HSI by computing random Gaussian projections with 6 spatial and 6 spectral measurements. Diffraction blur due to coded aperture was introduced as well.

3. **CASSI** [Choi et al. 2017]: We used the Single Disperser CASSI (SD-CASSI) architecture from [Wagadarikar et al. 2008] for obtaining a single coded image and recovered the HSI using spectral prior from [Choi et al. 2017]. For data from [Arad and Ben-Shahar 2016], we the number of spectral bands to 31, as recovery with more than 31 bands lead to highly inaccurate results.
We define reconstruction SNR as $\text{rsnr} = 20 \log_{10} \left(\frac{\|\hat{x}\|_F}{\|x - \hat{x}\|_F} \right)$, where $\| \cdot \|_F$ is the Frobenius norm and \hat{x} is the recovered version of x.

H.1 Performance with high spectral resolution

The true potential of KRISM can be exploited when there are a large number of spectral bands, such as the ones in the dataset by Arad and Ben-Shahar [Arad and Ben-Shahar 2016]. The dataset contains several natural scenes with 519 spectral bands. We resized the spatial resolution to 256 × 256, and reduced the number of spectral bands to 260 to keep computational time tractable for CASSI and CASSI++. Results on some representative examples have been shown in Figure 29. Qualitatively, the reconstructed spatial images as well as the spectral signatures are very close to ground truth. KRISM outperforms other methods quantitatively as well, with reconstruction SNR often greater than 5dB, with far higher compression ratios. Figure 30 shows a comparison of reconstruction SNR as a function of compression ratios. As is evident, KRISM works significantly better than other methods despite very high compression ratios. The closest competitor to KRISM is the Row/Column CS idea by [Fazel et al. 2008]. We showed one example on [SpecTIR [n. d.]] dataset in Section 5. We show another comparison between KRISM and Row/Column CS on one example from NASA’s AVIRIS dataset consisting of 224 spectral bands between 400-2400nm, making it a good example to test our method. Results are shown in Figure 31. For the same compression ratio, KRISM offers a 10dB higher accuracy, and is qualitatively more accurate in both spatial images and spectral profiles.

H.2 Performance with low spectral resolution

Most of the visible HSI datasets contain 31-33 spectral bands between 400 - 700nm. In this regime, the performance is very close between various methods. We used the dataset by Chakrabarti et al. [Chakrabarti and Zickler 2011], [Choi et al. 2017] and [Yasuma et al. 2010] for simulations with 31 spectral bands. Spatial resolution has been specified for individual images in Figure 32. KRISM outperforms all methods, both qualitatively and quantitatively.
outperforms other methods qualitatively — this is evident from the spatial images as well as the spectral signature. Quantitatively, reconstruction SNR is higher, but this time, at marginal gains in terms of compression. This is also shown in Figure 33, where reconstruction SNR is show as a function of compression. KRISM is particularly effective for high resolution imaging. However, even with low resolution, performance is either superior in terms of spatial and spectral resolutions. It is worth noting that for low spectral resolution, such as data by [Choi et al. 2017] or [Yasuma et al. 2010], CASSI with spectral prior outperforms CASSI++. This is expected, as it exploits the smooth nature of underlying spectra. However, for larger spectral band which are not necessarily smooth, such as data by [Arad and Ben-Shahar 2016], CASSI++ outperforms CASSI.

Fig. 31. Comparision of Row/Col CS vs KRISM for large number of spectral bands. We took one of NASA's AVIRIS datasets, which consists of 224 spectral bands, making a good candidate for KRISM. Simulations were done with 60dB readout noise, photon noise, and diffraction blur on spatial images and spectra. For the same compression ratio, KRISM outperforms Row/Col CS by 10dB.
and spectral reconstructions and overall accuracy.

Fig. 32. Comparison of reconstructed images low spectral resolution. Description of method names are as described in 29. All experiments were performed with 60dB readout noise and poisson noise. For lower spectral resolution, KRISM offers lower benefits in compression ratios but is superior in terms of spatial and spectral reconstructions and overall accuracy.
Fig. 33. Comparison of reconstruction SNR vs compression ratio for various methods on [Chakrabarti and Zickler 2011] dataset. Simulations were done as described in Figure 32. Despite lower compression ratios, KRISM promises greater overall performance.