ON THE GENERALIZED FERMAT EQUATION $a^2 + 3b^6 = c^p$

ANGELOS KOUTSIANAS

Abstract. In this paper, we prove that the equation $a^2 + 3b^6 = c^p$ has no non–trivial primitive integer solutions for $p \geq 239$. Our proof is based on the modularity of Galois representations of \mathbb{Q}–curves and the work of Ellenberg [Ell04].

1. Introduction

The remarkable breakthrough of Andrew Wiles about the proof of Taniyama–Shimura conjecture which leaded to the proof of Fermat’s Last Theorem introduced a new and very rich area of modern number theory. A variety of techniques and ideas have been developed for solving the generalized Fermat equation of the form

$$Aa^p + Bb^q = Cc^r.$$

Because the literature is very rich we refer to [BCDY15] for a detailed exposition of the cases of (1) that have been solved. In this paper we prove the following

Theorem 1. Let $p \geq 239$ be an odd prime. The equation

$$a^2 + 3b^6 = c^p$$

does not have non–trivial primitive solutions. A solution (a, b, c) is called primitive if a, b, c are pairwise coprime integers and non–trivial if $ab \neq 0$.

The paper is organised as follows. In Section 2 we recall the terminology and theory of \mathbb{Q}–curves. In Section 3 we introduce a Frey curve which we prove it is a \mathbb{Q}–curve and we study its arithmetic properties. In Section 4 we prove Theorem 1 while in Section 5 we explain and apply Ellenberg’s analytic method [Ell04]. Finally, in Section 6 we compute an explicit upper bound of $|E(\mathbb{Q})|$ in Theorem 2.

The computations of the paper were performed in Magma [BCP97] and the programs can be found in author’s homepage [https://sites.google.com/site/angeloskoutsianas/]

2. Preliminaries

In the section we recall the main definitions of the \mathbb{Q}–curves and their attached representations; we recommend [BC12, ES01, Que00] and [Rib04] for a more detailed exposition.

Let K be a number field and E/K be an elliptic curve without CM such that for every $\sigma \in G_K$ there exists an isogeny $\mu_E(\sigma) : E \to E$. Then E is called a \mathbb{Q}–curve defined over K. We make a choice of the isogenies above such that μ_E is locally constant.

Date: June 1, 2018.

2010 Mathematics Subject Classification. Primary 11D61.

Key words and phrases. Fermat equations, \mathbb{Q}–curves, Galois representations.
Let
\[c_E(\sigma, \tau) = \mu_E(\sigma)^\sigma \mu(\tau) \mu(\sigma \tau)^{-1}, \in (\text{Hom}(E, E) \otimes \mathbb{Q})^* = \mathbb{Q}^* \]
where \(\mu_E^{-1} := (1/\deg \mu_E) \mu_E^* \) and \(\mu_E^* \) is the dual of \(\mu_E \). Thus \(c_E \) determines a class in \(H^2(G_\mathbb{Q}, \mathbb{Q}^*) \) which depends only on the \(\mathbb{Q} \)-isogeny class of \(E \). Tate has showed that \(H^2(G_\mathbb{Q}, \mathbb{Q}^*) \) is trivial when \(G_\mathbb{Q} \) acts trivially on \(\mathbb{Q}^* \). So, there exists a continuous map \(\beta : G_\mathbb{Q} \to \mathbb{Q}^* \) such that
\[c_E(\sigma, \tau) = \beta(\sigma) \beta(\tau) \beta(\sigma \tau)^{-1} \]
The map \(\beta \) is called a splitting map of \(c_E \).

We define an action of \(G_\mathbb{Q} \) on \(E_p \otimes \mathbb{Q}_p \) given by
\[\hat{\rho}_{E,p}(\sigma)(1 \otimes x) = \beta(\sigma)^{-1} \otimes \mu(\sigma)(\sigma(x)) \]
From the definition of \(\hat{\rho}_{E,p} \) we have that \(\mathbb{P} \hat{\rho}_{E,p} |_{G_K} \cong \mathbb{P} \hat{\rho}_{E,p} \) where
\[\hat{\rho}_{E,p} : \text{Gal}(\bar{K}/K) \to \text{GL}_2(\mathbb{Z}_p) \]
is the usual Galois representation attached to the \(p \)-adic Tate module of \(E \) (see [ES01, Proposition 2.3]). Given a splitting map \(\beta \), Ribets [RI91] attaches an abelian variety \(A_\beta \) over \(\mathbb{Q} \) of \(\text{GL}_2 \)-type such that \(E \) is a simple factor over \(\mathbb{Q} \).

From the definition of \(\hat{\rho}_{E,p} \) we understand that the representation depends on \(\beta \). Let \(M_\beta \) be the field generated by the values of \(\beta \). We want to make a choice of \(\beta \) such that it factors over a number field of low degree and \(c_E(\sigma, \tau) = \beta(\sigma) \beta(\tau) \beta(\sigma \tau)^{-1} \) as elements in \(H^2(G_\mathbb{Q}, \mathbb{Q}^*) \). Then we choose a twist \(E_\beta/K_\beta \) such that \(c_{E_\beta}(\sigma, \tau) = \beta(\sigma) \beta(\tau) \beta(\sigma \tau)^{-1} \) as cocycles and \(K_\beta \) is the splitting field of \(\beta \). In this case, the abelian variety \(A_\beta \) is a quotient of \(\text{Res}_{K_\beta/Q} E_\beta \) over \(\mathbb{Q} \). The endomorphism algebra of \(A_\beta \) is equal to \(M_\beta \) and the representation on the \(\pi_n \)-torsion points of \(A_\beta \) coincides with the representation \(\hat{\rho}_{E,p} \) above, where \(\pi \) is a prime ideal in \(M_\beta \) above \(p \).

Finally, we define the \(\epsilon : G_\mathbb{Q} \to \mathbb{Q}^* \) given by
\[\epsilon(\sigma) = \frac{\beta(\sigma)^2}{\deg \mu(\sigma)} \]
Then, \(\epsilon \) is a character such that
\[\det(\hat{\rho}_{E,p}) = \epsilon^{-1} \cdot \chi_p \]
where \(\chi_p \) is the the \(p \)-th cyclotomic character. We can attach a residual representation associate to \(\hat{\rho}_{E,p} \) (see [ES01, p. 107])
\[\rho_{E,p} : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{F}_p^* \text{GL}_2(\mathbb{F}_p). \]
Similarly, we denote by \(\phi_{E,p} \) the residual representation associate to \(\hat{\phi}_{E,p} \).

3. Frey \(\mathbb{Q} \)-curve attached to \(a^2 + 3b^6 = c^3 \)

In this section we attach a Frey \(\mathbb{Q} \)-curve over \(K = \mathbb{Q}(\sqrt{3}) \) to a primitive solution \((a, b, c)\) of \([2]\). Let \(p \) be an odd prime. We define
\[E : Y^2 = X^3 - 9\sqrt{-3}b(4a - 5\sqrt{-3}b^3)X + 18(2a^2 - 14\sqrt{-3}ab^3 - 33b^6) \]
The invariants of E are given by

\begin{align}
(11) \quad j(E) &= 432 \cdot \sqrt{-3} \cdot b^3 \cdot \frac{(4a - 5\sqrt{-3}b^3)^3}{(a + \sqrt{-3}b^3)^3 \cdot (a - \sqrt{-3}b^3)^3}, \\
(12) \quad \Delta(E) &= -2^8 \cdot 3^7 \cdot (a - \sqrt{-3}b^3) \cdot (a + \sqrt{-3}b^3)^3, \\
(13) \quad c_4(E) &= 2^4 \cdot 3^3 \cdot \sqrt{-3} \cdot b \cdot (4a - 5\sqrt{-3}b^3), \\
(14) \quad c_6(E) &= -2^6 \cdot 3^5 \cdot (2a^2 - 14\sqrt{-3}b^3a - 33b^6).
\end{align}

Lemma 3.1. Let $a/b^3 \in \mathbb{P}^1(\mathbb{Q})$. Then the j–invariant of E lies in \mathbb{Q} only when

- $a/b^3 = 0$ and $j = 54000$, or
- $a/b^3 = \infty$ and $j = 0$.

Proof. From (11) and for $a/b^3 = \infty$ we have that $j = 0$. Let assume that $a/b^3 \neq \infty$. After cleaning denominators of (11) and taking real and imaginary parts using the restriction that $j,a/b \in \mathbb{Q}$ we end up with

\begin{align}
\begin{align*}
-A^4 j' + 720A^2 + 9j' - 1125 &= 0 \\
(-A^2 j' + 32A^2 - 3j' - 450)A &= 0,
\end{align*}
\end{align}

where $j' = j/432$ and $A = a/b^3$. From the second equation we have that either $A = 0$ or $j' = \frac{32A^4 - 450}{A^2 + 3}$. For $A = 0$ we have the first case of the lemma. Replacing j' to the first equation above we end up with

\begin{align}
(15) \quad -32A^4 + 1266A^2 - 2475 &= 0.
\end{align}

which we can easily check that does not have any solution over \mathbb{Q}.

Lemma 3.2. The curve E does not have complex multiplication unless

- $a/b^3 = 0$, $j = 54000$ and $d(O) = -12$ or
- $a/b^3 = \infty$, $j = 0$ and $d(O) = -3$.

Proof. Let assume that E has complex multiplication. Then from the theory of complex multiplication we know that the $j(E)$ is a real algebraic number. Because $j(E) \in \mathbb{Q}(\sqrt{-3})$ we conclude that $j(E) \in \mathbb{Q}$. Because the list of j–invariants of elliptic curves with complex multiplication with $j \in \mathbb{Q}$ it is known (see [Cox89]) we have the result.

Lemma 3.3. Let (a,b,c) be a non–trivial primitive solution of (2), then c is divisible by a prime different from 2 and 3.

Proof. Because (a,b,c) is a solution of $a^2 + 3b^6 = c^p$ we have that $3 \mid c$. Because $p \geq 3$ and $a^2 + 3b^6 \neq 0 \mod 8$ we have that $2 \not\mid c$.

Because of Lemma [km2] we assume that E has no complex multiplication. The curve E is a \mathbb{Q}–curve because it is 3–isogenous to its conjugate and the isogeny is defined over K (see IsQcurve.m). We make a choice of isogenies $\mu(\sigma) : E \rightarrow E$ such that $\mu(\sigma) = 1$ for $\sigma \in G_K$ and $\mu(\sigma)$ equal to the 3–isogeny above for $\sigma \not\in G_K$.

Let d be the degree map (see [Que00]), then we have that $d(G_3) = \{1,3\} \subset \mathbb{Q}^*/\mathbb{Q}^{*2}$. The fixed field K_d of the kernel of the degree map is $\mathbb{Q}(\sqrt{-3})$. Then $(a,d) = (-3,3)$ is a dual basis in the terminology of [Que00]. We can see that $(-3,3)$ is unramified and so $c = 1$, $K_c = \mathbb{Q}$ and $K_\beta = \mathbb{Q}(\sqrt{-3})$. Moreover, we have $\beta(\sigma) = \sqrt{d(\sigma)}$ and so $M_\beta = \mathbb{Q}(\sqrt{3})$.
Let \(A_\beta = \text{Res}_{K/Q} E \). Since \(K_\beta = K \) we understand that \(\xi_K(E) \) has trivial Schur class. Thus from \cite{Que00} Theorem 5.4 we have that \(A_\beta \) is a \(GL_2 \)-type variety with \(\mathbb{Q} \)-endomorphism algebra isomorphic to \(M_\beta \).

Let \(p_2 \) and \(p_3 \) be the primes in \(K \) above 2 and 3 respectively.

Lemma 3.4. The elliptic curve \(E \) is a minimal model with conductor equal to \(\left[2 \right] \). Let \(A_\beta = E \). Since \(K_\beta = K \) we understand that \(\xi_K(E) \) has trivial Schur class. Thus from \cite{Que00, Theorem 5.4} we have that \(A_\beta \) is a \(GL_2 \)-type variety with \(\mathbb{Q} \)-endomorphism algebra isomorphic to \(M_\beta \).

Let \(p_2 \) and \(p_3 \) be the primes in \(K \) above 2 and 3 respectively.

Lemma 3.5. The conductor of \(A_\beta \) is
\[
\left(\frac{d_{K_\beta/Q} \cdot \text{Norm}_{K_\beta/Q}(N(E))}{2^4 \cdot 3^{10} \cdot \prod p^2} \right).
\]

Proposition 3.6. The representation \(\phi_{E,p} \mid_{I_p} \) is finite flat for \(p \neq 2, 3 \).

Proof. Let \(p \) be a prime above \(p \). ByLemma 3.4 we know that \(E \) has good or multiplicative reduction at \(p \). In the case of multiplicative reduction the exponent of \(p \) in the minimal discriminant of \(E \) is divisible by \(p \). Finally, \(K \) is only ramified at 3 and so \(I_p \subseteq G_K \).

Proposition 3.7. The representation \(\phi_{E,p} \mid_{I_\ell} \) is trivial for \(\ell \neq 2, 3, p \).

\footnote{For some of the computations it is more convenient to use the isomorphic to \(E \) curve \(E' : Y^2 + 6\sqrt{-3}bXY - 12(\sqrt{-3}b^3 + a)Y = X^3 \).}
ON THE GENERALIZED FERMAT EQUATION $a^2 + 3b^6 = c^p$

Proof. Let l be a prime above $ℓ$. Because of Lemma 3.4 we know that E has good or multiplicative reduction at l. In the case of multiplicative reduction the exponent of l in the minimal discriminant of E is divisible by p. Finally, K is only ramified at 3 and so $I_ℓ ⊆ G_K$. □

Proposition 3.8. Suppose $p \neq 2, 3$. Then $N_ρ = 972$.

Proof. Because we want to compute the Artin conductor of $ρ_{E,p}$, we consider only ramification at primes above $ℓ \neq 2, 3$. Let consider $ℓ \neq 2, 3, p$. We recall that $K = K_β$. Because $ℓ \neq 3$ we have that $K_β$ is unramified at $ℓ$, so $I_ℓ ⊆ G_K$. Because $ρ_{E,p}|G_K \simeq φ_{E,p}$ and $φ_{E,p} | I_ℓ$ is trivial we have that $ρ_{E,p}$ is trivial at $I_ℓ$. Thus, $ρ_{E,p}$ is unramified outside $2, 3, p$.

Suppose $ℓ = 2, 3$. From (11) we understand that E has potential good reduction at primes above $2, 3$. That means that $φ_{E,p}|I_ℓ$ factors through a finite group of order divisible only by $2, 3$. Thus, $ρ_{E,p}|I_ℓ$ factors through a finite group of order divisible only by $2, 3$. It follows that the exponent of $ℓ$ in the conductor of $ρ_{E,p}$ is the same as in the conductor of $ρ_{E,p}$ as $p \neq 2, 3$. □

Proposition 3.9. Suppose $p \neq 2, 3$. Then $k_ρ = 2$.

Proof. The weight is determined by $ρ_{E,p}|I_p$. For $p \neq 3$ we have that K is unramified at p and so $I_p ⊆ G_K$. Because $ρ_{E,p}|G_K \simeq φ_{E,p}$, $φ_{E,p} | I_p$ is finite flat and the determinant of $φ_{E,p}$ is the cyclotomic p–th character then from [Ser87, Prop. 4] we have the conclusion. □

Proposition 3.10. The character $ε_ρ$ is trivial.

Proof. This is a consequence of the fact that $ε$ is trivial and the properties of $ρ_{E,p}$. □

From [EH04 Proposition 3.2] and Lemma 3.3 we have

Proposition 3.11. Let assume that $ρ_{E,p}$ is reducible for $p \neq 2, 3, 5, 7, 13$. Then E has potentially good reduction at all primes above $ℓ > 3$.

4. PROOF OF THEOREM

Proof. Let assume that $p \geq 239$ be an odd prime. Let (a, b, c) be a non–trivial primitive solution of (2). We attach to (a, b, c) the curve E. Because of the modularity of Q–curves which follows from Serre’s conjecture (see [KW99a], [KW99b], [Kis09]), the Ribet’s level lowering [Rib90] and the results in Section 3 we have that there exists a newform $f ∈ S_2(Γ_0(972))$ such that $ρ_{E,p} \simeq ρ_{f,p}$.

There are 7 newforms of level 972. Four of them are rational with complex multiplication by $Q(√−3)$ and the other three are irrational. In Section 5 we show how we can prove that non–solutions arise from the rational newforms, see Proposition 5.6. For the irrational newforms we use Proposition 4.1 and we prove that $p ≤ 7$ (see CongruenceCriterion.m). □

2Let f be a newform and K_f the eigenvalues field of f. Then we say that f is rational when $K_f = Q$ and irrational when $K_f \neq Q$.
Proposition 5.1. Let \(f \in S_2(\Gamma_0(972)) \) and \(p, q \) be primes such that \(p \geq 11 \), \(q \geq 5 \) and \(q \neq p \). We define

\[
B(q, f) = \begin{cases}
N(a_q(E) - a_q(f)) & \text{if } a^2 + 3b^6 \equiv 0 \mod q \text{ and } \left(\frac{a^2}{q} \right) = 1, \\
N(a_q(f)^2 - a_q(E) - 2q) & \text{if } a^2 + 3b^6 \equiv 0 \mod q \text{ and } \left(\frac{a^2}{q} \right) = -1, \\
N((q + 1)^2 - a_q(f)^2) & \text{if } a^2 + 3b^6 \equiv 0 \mod q.
\end{cases}
\]

where \(a_q(E) \) is the trace of \(\text{Frob}_q \) acting on the Tate module \(T_p(E) \). Then \(p | B(q, f) \).

Proof. From Section 3 we recall that \(A_{\beta} = \text{Res}_{K/Q}(E) \) and \(M_{\beta} = \mathbb{Q}(\sqrt{3}) \). Let \(\pi \) be a prime of \(M_{\beta} \) above \(p \). As we mentioned in Section 2 we have that \(\rho_{\beta, \pi} = \rho_{E, p} \) where \(\rho_{\beta, \pi} \) is the mod \(\pi \) representation of \(G_Q \) on the \(\pi^n \)-torsion points of \(A_{\beta} \). We recall that

\[
\rho_{E, p}(\sigma)(1 \otimes x) = \beta(\sigma)^{-1} \otimes \mu(\sigma)(\phi_{E, p}(\sigma)(x))
\]

where \(\phi_{E, p} \) is the representation of \(G_K \) acting on \(T_p(E) \) and \(1 \otimes x \in M_{\beta, \pi} \otimes T_p(E) \). We also recall that \(\rho_{\beta, \pi} = \rho_{E, p} \simeq \rho_{f, p} \) and \(\beta(\sigma) = \sqrt{d(\sigma)} \).

Let assume the case \(a^2 + 3b^6 \equiv 0 \mod q \). By \([13]\) we have that \(q || N_{A_{\beta}} \) and from \([20]\) we have that \(p | N(a_q(f)^2 - (q + 1)^2) \).

For the rest of the proof we assume that \(a^2 + 3b^6 \equiv 0 \mod q \). When \(\left(\frac{a^2}{q} \right) = 1 \) we have that \(\sigma = \text{Frob}_q \in G_K \) and \(\mu(\sigma) = 1 \), \(d(\sigma) = 1 \), so \(\text{Tr} \rho_{\beta, \pi}(\sigma) = \text{Tr} \phi_{E, p}(\sigma) \).

Because \(\rho_{\beta, \pi} = \rho_{E, p} \simeq \rho_{f, p} \) we conclude that \(a_q(E) \equiv a_q(f) \mod \pi \) and so \(p | N(a_q(E) - a_q(f)) \).

Suppose \(\left(\frac{a^2}{q} \right) = -1 \), then \(\sigma = \text{Frob}_q \not\in G_K \). Because \(\sigma^2 \in G_K \) and similarly to the above lines we have that \(\text{Tr} \rho_{\beta, \pi}(\sigma^2) = \text{Tr} \phi_{E, p}(\sigma^2) = a_{q^2}(E) \). We know that

\[
\frac{1}{\det(I - \rho_{\beta, \pi}(\sigma)q^{-s})} = \exp \sum_{n=1}^{\infty} \frac{\text{Tr} \rho_{\beta, \pi}(\sigma^n) q^{-ns}}{n} = \frac{1}{1 - \text{Tr} \rho_{\beta, \pi}(\sigma)q^{-s} + q^{-2s}}
\]

From the coefficient of \(q^{-2s} \) we have that \(\text{Tr} \rho_{\beta, \pi}(\sigma^2) = \text{Tr} \rho_{E, p}(\sigma^2) = a_{q^2}(E) - 2q \). As above we conclude that \(a_q(f)^2 \equiv a_{q^2}(E) + 2q \mod \pi \), so \(p | N(a_q(f)^2 - a_{q^2}(E) - 2q) \). \(\square \)

5. Eliminating the CM forms

In this section we explain and apply the method of Ellenberg \([13]\) which allows us to prove that no solutions of \(\mathbb{F}_p \) arise from the rational newforms for \(p > 239 \).

Proposition 5.1 (Proposition 3.4 \([13]\)). Let \(K \) be an imaginary quadratic field and \(E/K \) a \(\mathbb{Q} \)-curve of squarefree degree \(d \). Suppose the image of \(\mathbb{F}_{p}E \) lies in the normalizer of a split Cartan subgroup of \(\text{PGL}_2(\mathbb{F}_p) \), for \(p = 11 \) or \(p > 13 \) with \((p, d) = 1 \). Then \(E \) has potentially good reduction at all primes of \(K \) not dividing \(6 \).

Proposition 5.2 (Proposition 3.6 \([13]\)). Let \(K \) be an imaginary quadratic field and \(E/K \) a \(\mathbb{Q} \)-curve of squarefree degree \(d \). Then there exists a constant \(M_{K, d} \) such that if the image of \(\mathbb{F}_{p}E \) lies in the normalizer of a nonsplit Cartan subgroup of \(\text{PGL}_2(\mathbb{F}_p) \) and \(p > M_{K, d} \) then \(E \) has potential good reduction at all primes of \(K \).
The constant $M_{K,d}$ can be chosen to be a lower bound of the primes Proposition \ref{prop3.2} holds.

Proposition 5.3 (Proposition 3.9 \cite{Ell04}). Let K be an imaginary quadratic field and χ_K be the associate Dirichlet character. Then for all but finitely many primes p, there exists a weight 2 cusp form f, which is either

- a newform in $S_2(\Gamma(dp^2))$ with $w_pf = f$ and $w_pf = -f$,
- a newform in $S_2(\Gamma(d'p^2))$ with d' a proper divisor of d and $w_pf = f$

such that $A_{f\otimes\chi}(\mathbb{Q})$ is a finite group.

The reasons why Proposition \ref{prop5.3} implies Proposition \ref{prop5.2} are explained in \cite{Ell04, Ell05}. From the practical point of view it is important to make the above estimates explicit.

Let f be a modular form with q–expansion

$$f = \sum_{m=0}^{\infty} a_m(f)q^m. \quad (22)$$

We define $L_\chi(f) := L(f \otimes \chi, 1)$ where χ is a Dirichlet character. We can think a_m and L_χ as linear functions in the space of modular forms.

Moreover, we denote by \mathcal{F} a Petersson–orthonormal basis for $S_2(\Gamma_0(N))$ and define

$$\langle a_m, L_\chi \rangle_N := \sum_{f \in \mathcal{F}} a_m(f)L_\chi(f) \quad (23)$$

For $M \mid N$ we denote by $(a_m, L_\chi)_N^M$ the contribution to $(a_m, L_\chi)_N$ of the forms which are new at level M. We also define

$$(a_m, L_\chi)_{p^2}^{p-\text{new}} := (a_m, L_\chi)_{p^2} - (a_m, L_\chi)_{p^2}^0. \quad (24)$$

In \cite{Ell04} it is explained that Proposition \ref{prop5.3} holds as long as $|(a_1, L_\chi)_{p^2}^{p-\text{new}}| > 0$. For p sufficiently large $|(a_1, L_\chi)_{p^2}^{p-\text{new}}| > 0$ because $(a_1, L_\chi)_{p^2} = 4\pi + O(p^{-2}\log^2 p)$ and $(a_1, L_\chi)_{p^2}^0 = O(p^{-1})$ \cite{Ell04, Ell05}. From the practical point of view it is important to make the above estimates explicit.

From \cite{Ell04} Lemma 3.12 we have

$$\langle a_m, L_\chi \rangle_{p^2} = \frac{p}{p^2 - 1}(a_m - p^{-1}\chi(p)a_{mp}, L_\chi)_p. \quad (25)$$

We use the following result in \cite{Ell04} to bound $(a_m, L_\chi)_p$ for $m = 1, p$.

Lemma 5.4. Let p be a prime, m a positive integer, χ a quadratic character of conductor q prime to p. Then

$$|(a_m, L_\chi)_p| \leq 2\sqrt{3}m^{1/2}d(m)(1 - e^{-2\pi/q\sqrt{p}})^{-1}(4\pi + 16\xi^2(3/2)p^{-3/2}). \quad (26)$$

So, from Lemma \ref{lem5.4} and \ref{eq25} we have an explicit bound for $|(a_1, L_\chi)_{p^2}|$. We focus on $(a_m, L_\chi)_{p^2}$ now. In \cite{Ell05} the author proves the following

Theorem 2 (\cite{Ell05}). Suppose $N \geq 400$, $N \nmid q$ where q is the conductor of χ and let σ be a real number with $q^2/2\pi \leq \sigma \leq Nq/\log N$. Then

$$\langle a_m, L_\chi \rangle_N = 4\pi \chi(m)e^{-2\pi m/\sigma N\log N} - E_3 - E_2 - E_1 + (a_m, B(\sigma N\log N)) \quad (27)$$

where

- $|(a_m, B(\sigma N\log N))| \leq 30(400/399)^3 2\pi q^2 m^{3/2} N^{-1/2}d(N)N^{-2\pi/q^2}$
\begin{itemize}
\item \(|E_1| \leq (16/3)\pi^3 m^{3/2} \sigma \log N e^{-N/2 \pi m \sigma \log N}\)
\item \(|E_2| \leq (3/8) \pi^3 \zeta(3/2) m^{5/2} \sigma^2 N^{-3/2} \log^2 N\)
\item \(|E_3| \leq (8/3) \zeta(3/2) \pi^3 \sigma m^{3/2} N^{-1/2} \log N d(N) e^{-N/2 \pi m \sigma \log N}\)
\item \(|E(3)| \leq 16 \pi^3 m \sum_{c > 0, N | c} \min \{ \frac{2}{\pi} \phi(q) c^{-1} \log c, \frac{1}{\sigma} \sigma N \log N m^{1/2} c^{-3/2} d(c) \} \).
\end{itemize}

The only upper bound that it is not explicit is the one for \(E(3)\). In Section 6 we give an explicit upper bound for the case \(m = 1\) in terms of \(q\) and \(N\).

In our case we have \(d = 3\), \(\chi_{-3} = (\frac{\cdot}{3})\) and \(q = 3\). We have written a Magma script which shows that \(|(a_1, L_\chi)^{p_{\text{new}}} > 0|\) for \(p \geq 239\) (see AnalyticMethod.m).

So we have proved the following.

Proposition 5.5. Let \(p \geq 239\) be a prime. Then there exists a newform \(f \in S_2(\Gamma_0(p^2))\) such that \(w_p f = f\) and \(L(f \otimes \chi_{-3}) \neq 0\).

Remark: For \(p < 239\) the method in Ellenberg’s method requires to compute newforms of the space \(S_2(\Gamma_0(p^2))\) which is computationally hard problem when \(p\) is large.

Proposition 5.6. Let \(p \geq 239\) be a prime. Then non–trivial primitive solutions of \((28)\) do not arise from a rational newform \(f \in S_2(\Gamma_0(972)).\)

Proof. Let \(f\) be a rational newform of \(S_2(\Gamma_0(972))\). Then we know that \(f\) has complex multiplication and so the image of \(\rho_{f,p}\) lies in the normalizer of a Cartan group. Because of Lemma 6.3 there exists a prime in \(K\) not above 6 such that \(E\) does not has potential good reduction. Because of Propositions 5.1, 5.2 and 5.3 we have that \(\rho_{E,p}\) does not lie in the normalizer of a Cartan group. However, this is a contradiction to the fact that \(\rho_{E,p} \simeq \rho_{f,p}\).

\[\square\]

6. Upper bound for \(|E(3)|\)

Here we give upper bounds for \(E(3)\) in [Ell05] for \(m = 1\). Then we have

Proposition 6.1. Let \(N \geq 400\) be the level of the newforms and \(q\) be the conductor of the character. Then we have

\[|E(3)| \leq 16 \pi^3 \left(\frac{2 \phi(q)}{\pi} \cdot \frac{3 \log N (2 \log N + 2)}{N} + \frac{\sqrt{3} \sigma \log N}{6} \cdot \frac{4 \log N + 4 \gamma + 4.4}{N} \right).\]

Proof. From [Ell05] we have that

\[|E(3)| \leq 16 \pi^3 \left(\frac{2 \phi(q)}{\pi} \sum_{0 < c < N^2} \frac{\log(cN)}{cN} + \frac{\sigma N \log N}{6} \sum_{c \geq N^2} \frac{d(cN)}{(cN)^{3/2}} \right)\]

Then from lemmas 6.2 and 6.3 we have the result. \(\square\)

Lemma 6.2. Let \(N\) be a positive integer, then

\[\sum_{c < N^2} \frac{\log(cN)}{cN} \leq \frac{3 \log N (2 \log N + 2)}{N}\]

\[\text{For the computations of the upper bound of } E(3) \text{ we choose } \sigma = q^2/2\pi.\]
ON THE GENERALIZED FERMAT EQUATION $a^2 + 3b^6 = c^p$

Proof. We have that

\[\sum_{c < N^2} \frac{\log(cN)}{cN} = \frac{3 \log N}{N} \left(\sum_{c < N^2} \frac{1}{c} \right). \]

However, we can prove that (see [Apo76, Chapter 3])

\[\sum_{c < N^2} \frac{1}{c} \leq 2 \log N + 2. \]

□

Lemma 6.3. For $N \geq 32$ we have

\[\sum_{c \geq N^2} \frac{d(cN)}{(cN)^{3/2}} \leq \frac{\sqrt{3}}{N} \left(\frac{4 \log N + 4\gamma + 4.4}{N} \right) \]

where γ is Euler’s constant.

Proof. We have that

\[\sum_{c \geq N^2} \frac{d(cN)}{(cN)^{3/2}} \leq \frac{\sqrt{3}}{N} \sum_{c \geq N^2} \frac{d(c)}{c^{3/2}} \]

because $d(n) \leq \sqrt{3n}$ and $d(cN) \leq d(c)d(N)$. From [BEN10] Lemma 13] we have that

\[\sum_{c \geq x} \frac{d(c)}{c^{3/2}} \leq \frac{2 \log x + 4\gamma + 4.4}{x^{1/2}} \]

for $x \geq 1000$ where γ is Euler’s constant which completes the proof. □

Acknowledgement

The author would like to thank Professor John Cremona for providing access to the servers of the Number Theory Group of Warwick Mathematics Institute where all the computations took place.

References

[Apo76] Tom M. Apostol. *Introduction to Analytic Number Theory*. Undergraduate Texts in Mathematics. Springer-Verlag New York, 1976.

[BC12] Michael A. Bennett and Imin Chen. Multi-Frey \mathbb{Q}-curves and the diophantine equation $a^2 + b^6 = c^n$. *Algebra Number Theory*, 6(4):707–730, 2012.

[BCDY15] Michael A. Bennett, Imin Chen, Sander R. Dahmen, and Soroosh Yazdani. Generalized Fermat equations: A miscellany. *Int. J. Number Theory*, 11(01):1–28, 2015.

[BEN97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. *J. Symbolic Comput.*, 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).

[BEN10] Michael A. Bennett, Jordan S. Ellenberg, and Nathan C. Ng. The diophantine equation $a^4 + b^6 = c^n$. *Int. J. Number Theory*, 6(02):311–338, 2010.

[Car86] H. Carayol. Sur les représentations ℓ-adiques associées aux formes modulaires de Hilbert. *Ann. Sci. École Norm. Sup.*, 19:409–468, 1986.

[Che10] I. Chen. On the equation $a^2 + b^6 = c^3$. *Acta Arith.*, 143:345–375, 2010.

[Cox89] David A. Cox. *Primes of the form $x^2 + ny^2$*. John Wiley & Sons, 1989.

[DDT97] H. Darmon, F. Diamond, and R. Taylor. *Elliptic curves, modular forms & Fermat’s Last Theorem* (Hong Kong, 1993), chapter Fermat’s Last Theorem, pages 2–140. International Press, 1997.
[Ell04] Jordan Ellenberg. Galois representations attached to \mathbb{Q}-curves and the generalized Fermat equation $a^4 + b^2 = c^p$. *American Journal of Mathematics*, 126(4):763–787, 2004.

[Ell05] Jordan Ellenberg. On the Error Term in Dukes Estimate for the Average Special Value of l-Functions. *Canad. Math. Bull.*, 48(4):535–546, 2005.

[ES01] Jordan S. Ellenberg and Chris Skinner. On the modularity of \mathbb{Q}-curves. *Duke Math. J.*, 109(1):97–122, 07 2001.

[Kis09] Mark Kisin. Modularity of 2-adic Barsotti–Tate representations. *Invent. Math.*, 178(3):587–634, 2009.

[KW09a] Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture (I). *Invent. Math.*, 178(3):485–504, 2009.

[KW09b] Chandrashekhar Khare and Jean-Pierre Wintenberger. Serre’s modularity conjecture (II). *Invent. Math.*, 178(3):505–586, 2009.

[Mil72] J. S. Milne. On the arithmetic of abelian varieties. *Invent. Math.*, 17(3):177–190, 1972.

[Pap93] I. Papadopoulos. Neron classification of elliptic curves where the residual characteristics equal 2 or 3. *Journal of Number Theory*, 44(2):119 – 152, 1993.

[Que00] Jordi Quer. \mathbb{Q}-curves and abelian varieties of GL$_2$-type. *Proc. London Math. Soc.*, 81(2):285–317, 2000.

[Rib90] K. A. Ribet. On modular representations of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ arising from modular forms. *Invent. Math.*, 100(1):431–476, 1990.

[Rib04] Kenneth A. Ribet. *Abelian Varieties over \mathbb{Q} and Modular Forms*, pages 241–261. Birkhäuser Basel, Basel, 2004.

[Ser87] Jean-Pierre Serre. Sur les représentations modulaires de degré 2 de $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. *Duke Math. J.*, 54(1):179–230, 1987.