Equality of Secure Domination and Inverse Secure Domination Numbers

V.R. KULLI

Department of Mathematics, Gulbarga University, Gulbarga, 585106, (INDIA)
Email of Corresponding author :- E-mail: vrkulli@gmail.com
http://dx.doi.org/10.22147/jusps-A/280601

Acceptance Date 27th September, 2016, Online Publication Date 2nd Nov., 2016

Abstract

Let $G = (V, E)$ be a graph. Let D be a minimum secure dominating set of G. If $V - D$ contains a secure total dominating set D' of G, then D' is called an inverse secure dominating set with respect to D. The smallest cardinality of inverse secure dominating set of G is the secure domination number $\gamma_s^{-1}(G)$ of G. In this paper, we obtain some graphs for which $\gamma_s(G) = \gamma_s^{-1}(G)$ and establish some results on this respect. Also we obtain some graphs for which $\gamma_s(G) = \gamma_s^{-1}(G) = \frac{p}{2}$, where p is the number of vertices of G.

Key words: dominating set, secure dominating set, inverse secure dominating set, inverse secure domination number.

Mathematics Subject Classification: 05C69, 05C78

1. Introduction

All graphs considered here are finite, undirected without isolated vertices, loops and multiple edges. For all further notation and terminology we refer the reader to 1. Let $G = (V, E)$ be a graph. A set D of vertices in a graph G is a dominating set if every vertex in $V - D$ is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. Recently several domination parameters are given in the books by Kulli in $^2, 3, 4$. Let D be a minimum dominating set of G. If $V - D$ contains a dominating set D' of G, then D' is called an inverse dominating set of G with respect to D. The inverse domination number $\gamma^{-1}(G)$ of G is the minimum cardinality of an inverse dominating set of G. This concept was introduced by Kulli and Sigarkanti in 5. Many other inverse domination parameters were studied, for example, in $^6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24$.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)
A secure dominating set of a graph G is a dominating set $D \subseteq V$ with the property that for each $u \in V - D$, there exists $v \in D$ adjacent to u such that $(D - \{v\}) \cup \{u\}$ is a dominating set. The smallest cardinality of a secure dominating set is the secure domination number $\gamma_s(G)$ of G. This concept was studied, for example, in \cite{21,22}. Let D be a minimum secure dominating set of G. If $V - D$ contains a secure dominating set D' of G, then D' is called an inverse secure dominating set with respect to D. The inverse secure domination number $\gamma_{s}^{-1}(G)$ of G is the minimum cardinality of an inverse secure dominating set of G. This concept was introduced by Enriquez in \cite{22} and was studied by Kulli in \cite{23}.

A γ_{s}^{-1}-set is a minimum inverse secure dominating set. Similarly other sets can be expected. If $D = \{u\}$ is a secure dominating set of G, then u is called a secure dominating vertex of G. A vertex u of G is said to be a γ_{s}-required vertex of G if u lies in every γ_{s}-set of G.

An application of inverse secure domination is found in Computer Science. In the event that there is a need for all nodes in a system to have direct access to needed resources (for example, large database) a secure dominating set furnishes such a configuration. If a second important resource is needed, then a separated disjoint secure dominating set provides duplication in case the first is corrupted in some way. We have $\gamma_{s}(G) \leq \gamma_{s}^{-1}(G)$.

From the point of above, one may demand $\gamma_{s}(G) = \gamma_{s}^{-1}(G)$, whereas many graphs do not enjoy such a property.

For Example, we consider the graph G in Figure 1. Then $\gamma_{s}(G) = 2$ and $\gamma_{s}^{-1}(G) = p - 2$. In this case, if p is large, then $\gamma_{s}^{-1}(G)$ is sufficiently large compared to $\gamma_{s}(G)$.

\begin{figure}[h]
\centering
\includegraphics{figure1.png}
\caption{Figure 1}
\end{figure}

2. Graphs with $\gamma_{s}(G) = \gamma_{s}^{-1}(G)$

Proposition 1. If K_p is a complete graph with $p \geq 2$ vertices, then
\[\gamma_{s}(K_p) = \gamma_{s}^{-1}(K_p) = 1. \]

Proposition 2. If $K_{m,n}$ is a complete bipartite graph with $4 \leq m \leq n$, then
\[\gamma_{s}(K_{m,n}) = \gamma_{s}^{-1}(K_{m,n}) = 4. \]

Proposition 3. If $K_{m,n}$ is a complete bipartite graph with $4 \leq m \leq n$, then
\[\gamma_{s}(K_{m,n}) = \gamma_{s}^{-1}(K_{m,n}) = 2. \]

Proof: Clearly $K_{m,n} = K_m \cup K_n$. Therefore
\[\gamma_{s}(K_{m,n}) = \gamma_{s}(K_m) + \gamma_{s}(K_n) = 2. \]
\[\gamma_{s}^{-1}(K_{m,n}) = \gamma_{s}^{-1}(K_m) + \gamma_{s}^{-1}(K_n) = 2. \]

Hence the result follows.

Theorem 4: Let G be a graph with $\gamma_{s}(G) = \gamma_{s}^{-1}(G)$. Then G has no γ_{s}-required vertex.

Proof: Let G be a graph with $\gamma_{s}(G) = \gamma_{s}^{-1}(G)$. Let D be a γ_{s}-set and D' be a γ_{s}^{-1}-set of G. On the contrary, assume G contains a γ_{s}-required vertex u. Then u lies in every γ_{s}-set of G. Hence $u \in D$ and $u \in D'$, which is a contradiction to $D \subseteq V - D$. Thus the result follows.

Theorem 5. Let u be a secure dominating vertex of a graph G. Then
\[\gamma_{s}^{-1}(G) = \gamma_{s}(G - u). \]
Proof: Let u be a secure dominating vertex of G. Then $\{u\}$ is a γ_s-set of G. Thus any γ_s^{-1}-set of G lies in $G - \{u\}$ and is a minimum dominating set of $G - \{u\}$. Hence $\gamma_s^{-1}(G) = \gamma_s(G - u)$.

Construct the graph G as follows:

Let $H_i = K_{m_i}, i = 1, 2, ..., r$ and $2 \leq m_1 \leq m_2 \leq \ldots \leq m_r$. Let $v_i \leq H_i, i = 1, 2, \ldots, r$. Consider the graph G obtained from joining the vertices $v_i, v_{i+1}, i = 1, 2, \ldots, r-1$, see Figure 2. Consider the vertices $u_i \in H_i$ such that $u_i \neq v_i, i = 1, 2, \ldots, r$.

![Graph illustration](image.png)

Figure 2

Proposition 6. Let G be a graph as shown in Figure 2. Then $\gamma_s(G) = \gamma_s^{-1}(G) = r$.

Proof: The set $D = \{v_1, v_2, \ldots, v_r\}$ is a γ_s-set in G. Then the set $D' = \{u_1, u_2, \ldots, u_r\}$ is a γ_s^{-1}-set in G for $u_i, u_{i+1}, i = 1, 2, \ldots, r$. Thus $\gamma_s(G) = \gamma_s^{-1}(G) = r$.

Corollary 7. Let G be a graph as shown in Figure 2 such that $m_1 = m_2 = \ldots = m_r = 2$. Then $\gamma_s(G) = \gamma_s^{-1}(G) = \frac{p}{2}$, where $p = 2r$ is the number of vertices of G.

Proposition A: Let G be a connected non-complete graph with $p \geq 4$ vertices. If $\gamma_s^{-1}(G) = 2$, then $\gamma_s(G) = 2$.

Proposition 8. If G be a connected graph with $p \geq 4$ vertices such that $G \neq K_p$ and $\gamma_s^{-1}(G) = 2$, then $\gamma_s(G) = \gamma_s^{-1}(G) = 2$.

Proof: This follows from Proposition A.

Proposition 9. Let G and H be complete graphs. Then $\gamma_s(G + H) = \gamma_s^{-1}(G + H) = 1$.

Proof: If G and H are complete graphs, then $G + H$ is complete. Thus $\gamma_s(G + H) = \gamma_s^{-1}(G + H) = 1$.

3. Graphs with $\gamma(G) = \gamma_s^{-1}(G) = \frac{p}{2}$
In this section, we establish some results for which \(\gamma(G) = \gamma_s^{-1}(G) = \frac{p}{2} \).

Theorem 10. If \(G = K_{s^2}, K_s \) or \(K_s - e \), then \(\gamma(G) = \gamma_s^{-1}(G) = \frac{p}{2} \), where \(p \) is the number of vertices of \(G \).

Proof: If \(G = K_{s^2} \), then by Proposition 2, \(\gamma(G) = \gamma_s^{-1}(G) = \frac{p}{2} \). If \(G = K_s \), then by Proposition 1, \(\gamma(G) = \gamma_s^{-1}(G) = \frac{p}{2} \). If \(G = K_s - e \), then we have \(\gamma(G) = \gamma_s^{-1}(G) = \frac{p}{2} \), where \(p \) is the number of vertices of \(G \).

Construct the graph \(G \) as follows: Let \(e_i = u_i v_i \), \(1 \leq i \leq m \) and \(e_{i+1} = v_{i+1} u_{i+1} \) be the edges of a cycle \(C_{2m} \). For each \(e_i = u_i v_i \), join the vertices \(u_i, v_i \) to new vertices \(x_i, y_i \) to form the graph \(G \), see Figure 3.

Theorem 11: Let \(G \) be a graph with \(4m \) vertices as shown in Figure 3. Then

\[
\gamma(G) = \gamma_s^{-1}(G) = 2m.
\]

Proof: In the graph \(G \) of Figure 3, \(V(G) = \{ u_1, ..., u_m, v_1, ..., v_m, x_1, ..., x_m, y_1, ..., y_m \} \). Then the set \(D = \{ u_1, ..., u_m, v_1, ..., v_m \} \) is a \(\gamma \)-set with \(2m \) vertices and \(D' = \{ x_1, ..., x_m, y_1, ..., y_m \} \) is a \(\gamma_s^{-1} \)-set with \(2m \) vertices. Thus \(\gamma(G) = \gamma_s^{-1}(G) = 2m \).

Remark 10. Let \(G_1, G_2, ..., G_m \) be the \(m \) connected components of a graph \(G \). Let \(D_i \) be a \(\gamma \)-set of \(G_i \), and \(D'_i \) be a \(\gamma_s^{-1} \)-set of \(G_i \), for \(i = 1, 2, ..., m \). Then \(D_1 \cup D_2 \cup ... \cup D_m \) is a \(\gamma \)-set of \(G \) and \(D'_1 \cup D'_2 \cup ... \cup D'_m \) is a \(\gamma_s^{-1} \)-set of \(G \). Thus \(\gamma(G) = \sum_{i=1}^{m} \gamma(G_i) \) and

Theorem 13. Let \(G_1, G_2, ..., G_m \) be the \(m \) components of a graph \(G \). Then \(\gamma(G) = \gamma_s^{-1}(G) \) if and only if \(\gamma(G_i) = \gamma_s^{-1}(G_i) \), for \(i = 1, 2, ..., m \).

Proof: Let \(G_1, G_2, ..., G_m \) be the \(m \) connected components of graph \(G \).

By Remark 12, \(\gamma(G) = \sum_{i=1}^{m} \gamma(G_i) \) and \(\gamma_s^{-1}(G) = \sum_{i=1}^{m} \gamma_s^{-1}(G_i) \). Therefore, \(\gamma(G) = \gamma_s^{-1}(G) \) if \(\gamma(G) = \gamma_s^{-1}(G) \) for \(i = 1, 2, ..., m \).

Conversely suppose \(\gamma(G) = \gamma_s^{-1}(G) \). We have \(\gamma(G_i) \leq \gamma_s^{-1}(G_i) \), for \(i = 1, 2, ..., m \). We now prove that \(\gamma(G_i) = \gamma_s^{-1}(G_i) \), for \(i = 1, 2, ..., m \). On the contrary, assume \(\gamma(G_i) < \gamma_s^{-1}(G_i) \) for some \(i \). Then \(\gamma(G_i) > \gamma_s^{-1}(G_i) \), for some \(j \neq i \), which is a contradiction. Thus \(\gamma(G_i) = \gamma_s^{-1}(G_i) \) for \(i = 1, 2, ..., m \).

Corollary 14. If the connected components \(G_i \) of \(G \) are either \(K_2 \) or \(K_{s^2} - e \) or \(K_{s^4} \) or \(G \) as shown in Figure 3, then \(\gamma(G) = \gamma_s^{-1}(G) = p \), where \(p \) is the number of vertices of \(G \).

Proof: This follows from Theorems 10, 11, 13.
References

1. V.R. Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
2. V. R. Kulli, *Theory of Domination in Graphs*, Vishwa International Publications, Gulbarga, India (2010).
3. V.R. Kulli, *Advances in Domination Theory I*, Vishwa International Publications, Gulbarga, India (2012).
4. V.R. Kulli, *Advances in Domination Theory II*, Vishwa International Publications, Gulbarga, India (2013).
5. V.R. Kulli and S.C. Sigarkanti, Inverse domination in graphs, *Nat. Acad. Sci. Lett.*, 14, 473-475 (1991).
6. V.R. Kulli, *Inverse total edge domination in graphs*. In *Advances in Domination Theory I*, V.R. Kulli ed., Vishwa International Publications, Gulbarga, India 35-44 (2012).
7. V.R. Kulli, Inverse and disjoint neighborhood total dominating sets in graphs, *Far East J. of Applied Mathematics*, 83(1), 55-65 (2013).
8. V.R. Kulli, The disjoint vertex covering number of a graph, *International J. of Math. Sci. and Engg. Appls.*, 7(5), 135-141 (2013).
9. V.R. Kulli, Inverse and disjoint neighborhood connected dominating sets in graphs, *Acta Ciencia Indica*, Vol. XL, M(1), 65-70 (2014).
10. V.R. Kulli, Inverse total domination in corona and join of graphs, *Journal of Computer and Mathematical Sciences*, 7(2), 61-64 (2016).
11. V.R. Kulli, Graphs with equal total domination and inverse total domination numbers, *International Journal of Mathematics and its Applications*, 4(1-B), 175-179 (2016).
12. V.R. Kulli, Inverse and disjoint secure total domination in graphs, *Annals of Pure and Applied Mathematics*, 12(1), 23-29 (2016).
13. V.R. Kulli and R.R. Iyer, Inverse total domination in graphs, *Journal of Discrete Mathematical Sciences and Cryptography*, 10(5), 613-620 (2007).
14. V.R. Kulli and R.R. Iyer, Inverse vertex covering number of a graph, *Journal of Discrete Mathematical Sciences and Cryptography*, 15(6), 389-393 (2012).
15. V.R. Kulli and B. Janakiram, On n-inverse domination number in graphs, *A.N. International Journal of Mathematics and Information Technology*, 4, 33-42 (2007).
16. V.R. Kulli and M.B. Kattimani, The inverse neighborhood number of a graph, *South East Asian J. Math. and Math. Sci.*, 6(3), 23-28 (2008).
17. V.R. Kulli and M.B. Kattimani, *Inverse efficient domination in graphs*. In *Advances in Domination Theory I*, V.R. Kulli ed., Vishwa International Publications, Gulbarga, India, 45-52 (2012).
18. V.R. Kulli and Nirmala R. Nandargi, Inverse domination and some new parameters. In *Advances in Domination Theory I*, V.R. Kulli ed., Vishwa International Publications, Gulbarga, India, 15-24 (2012).
19. V. R. Kulli and N. D. Soner, Complementary edge domination in graphs, *Indian J. Pure Appl. Math.*, 28(7), 917-920 (1997).
20. T. TamizhChelvam, and G.S. GracePrema, Equality of domination and inverse domination numbers, *Ars. Combin.* 95, 103-111 (2010).
21. E.J. Cockayne, O. Favaron and C.M. Mynhardt, Secure domination weak Roman and forbidden sub graphs, *Bull. Inst. Combin. Appl.*, 39, 87-100 (2003).
22. E.L. Enriquen and E.M. Kiunisala, Inverse secure domination in graphs, *Global Journal of Pure and Applied Mathematics*, 12(1), 147-155 (2016).
23. V.R. Kulli, Inverse and disjoint secure domination in graphs, *International Journal of Mathematical Archive*, submitted.
24. V.R.Kulli, Graphs with equal secure total domination and inverse secure total domination numbers, submitted.