Control of Sulfate and Nitrate Reduction by Setting Hydraulic Retention Time and Applied Potential on a Membraneless Microbial Electrolysis Cell for Perchloroethylene Removal

Edoardo Dell’Armi, Marco Zeppilli,* Federica De Santis, Marco Petrangeli Papini, and Mauro Majone

ABSTRACT: A membraneless microbial electrolysis cell (MEC) has been developed for perchloroethylene (PCE) removal through the reductive dechlorination reaction. The MEC consists of a tubular reactor of 8.24 L equipped with a graphite-granule working electrode which stimulates dechlorinating microorganisms while a graphite-granule cylindrical envelopment contained in a plastic mesh constituted the counter electrode of the MEC. Synthetic PCE-contaminated groundwater has been used as the feeding solution to test the nitrate and sulfate reduction reactions on the MEC performance at different hydraulic retention times (HRTs) (4.1, 1.8, and 1.2) and different cathodic potentials [−350, −450, and −650 mV vs standard hydrogen electrode (SHE)]. The HRT decrease from 4.1 to 1.8 d promoted a considerable increase in sulfate removal from 38 ± 11 to 113 ± 26 mg/Ld with a consequent current increase, while a shorter HRT of 1.2 d caused a partial inhibition of sulfate reduction with a consequent current decrease from −99 ± 3 to −52 ± 6 mA. Similarly, the cathodic potential investigation showed a direct correlation of current generation and sulfate removal in which the utilization of a cathodic potential of −350 mV versus SHE allowed for an 80% decrease in the sulfate removal rate with a consequent current decrease from −163 ± 7 to 41 ± 5 mA. The study showed the possibility to mitigate the energy consumption of the process by avoiding side reactions and current generation, through the selection of an appropriate HRT and applied cathodic potential.

1. INTRODUCTION

The wide diffusion of chlorinated aliphatic hydrocarbons (CAHs) as perchloroethylene (PCE) and trichloroethylene (TCE) over the past years and their incorrect disposal and storage made these substances become one of the most common contaminants of both subsoil and groundwater in the world.1−3 These compounds can be naturally degraded directly in the contaminated matrix by various species of microorganisms; in case of anaerobic conditions, the reaction is known by the name of organohalide respiration or reductive dechlorination (RD).4,5 This microbial consortium can couple growth with dehalogenation, but only Dehalococcoides mccartyi can degrade PCE to a harmless product, ethene.6−9 Indeed, the RD reaction usually promotes the accumulation of less toxic chlorinated byproducts like vinyl chloride (VC). Enhanced in situ bioremediation (EISBR) consists of the stimulation of dechlorinating microorganisms by adding organic fermentable compounds to the contaminated aquifer,10−12 which allows slow H₂ release. EISBR represents an effective strategy for CAH remediation,13,14 particularly when sustainable fermentable byproducts are used.15−18 An innovative approach used for the control of microbial activity is offered by a bioelectrochemical system (BES) in which the microbial metabolism is stimulated by the presence of a polarized electrode. During the years, many environmental applications of the BES have been developed;19−22 indeed, microbial electrolysis cells (MECs)23,24 have been used for remediation applications of contaminants including CAHs and heavy metals.15−19 Recently, a new membraneless MEC configuration has been successfully adopted for the complete mineralization of PCE through a sequential reductive/oxidative step. The introduction of synthetic groundwater, prepared according to a real groundwater composition, introduced sulfate and nitrate in the reductive reactor, which were responsible for the current increase due to the establishment of sulfate and nitrate bioelectrochemical reduction. Iron, sulfate, and nitrate reductions29,30 usually compete with CAH RD,
being reducing-power consuming reactions; moreover, various studies indicate similar H₂ threshold concentrations for dechlorinating and sulfate-reducing microorganisms.35–38 Sulfate and nitrate reduction reactions under bioelectrochemical conditions have been widely described by several authors.39,40 Under potentiostatic conditions, the establishment of these additional power consumption reactions, along with bioelectromethanogenesis, promotes a current increase which is directly linked to an increase in power consumption. In order to control the sulfate and nitrate reduction reactions under the adopted operating conditions, hydraulic retention time (HRT) and cathodic potential (Ecath) effects have been explored by using synthetic groundwater containing sulfate and nitrate anions. Furthermore, three different HRTs (4.1 d, 1.8 d, and 1.2 d) and three different Ecath [−450, −650, and −350 mV vs standard hydrogen electrode (SHE)] have been adopted for the membraneless reductive reactor to allow the optimization of PCE RD in terms of the dechlorination rate, Coulombic efficiency, and energy consumption.

2. RESULTS AND DISCUSSION

2.1. Effect of HRT on Reductive Reactor Performances. The reductive reactor feeding solution, composed of PCE-contaminated synthetic groundwater, was acclimated to nitrate and sulfate presence in a previous study, in which the effects on bioelectrochemical performance of the synthetic groundwater were highlighted.41 To investigate more in detail the effects of operating conditions on the RD reaction, the reductive reactor has been separated from the sequential bioelectrochemical process to characterize the HRT and applied cathodic potential effects.39 The first operating condition explored was the HRT which was decreased from 4.1 to 1.8 and 1.2 days by increasing the synthetic groundwater flow rate from 2.0 to 4.5 and 7 L/d (i.e. empty volume of the reductive reactor is 8.24 L). During the HRT effect investigation, the cathodic chamber of the reductive reactor was polarized at −450 mV versus SHE. As reported in Figure 1A, under the first operating condition, at 4.1 days, a complete PCE removal was obtained, with PCE not being present in the outlet of the reductive reactor. The subsequent HRT decrease from 4.1 to 1.8 days allowed for the maintenance of complete PCE removal from the synthetic groundwater, with an average PCE removal efficiency of 100 ± 3%; however, a further HRT decrease from 1.8 to 1.2 caused the partial loss of the PCE removal capacity with a decrease in the PCE removal efficiency to 95 ± 6%. Even if the HRT of 1.2 days promoted a slight decrease in PCE removal efficiency, as summarized in Table 1, the PCE removal rate increased from 22 ± 3 to 74 ± 13 μmol/L according to the HRT decrease. As reported in Figure 1B, the RD byproduct composition remained stable during the operating periods of 4.1 and 1.8 days, with a predominance of medium−low chlorinated RD byproducts such as cisDCE and VC present at an average concentration of 5 and 4 μmol/L, respectively. Moreover, by the adoption of an HRT of 1.2 days, a considerable increase in cisDCE was observed, reaching a concentration around 35 μmol/L (Figure 1B). As shown in Figure 1B, the adoption of different HRTs influenced the byproduct composition, that is, the HRT decrease promoted the production of medium and high chlorinated PCE byproducts, showing the possible correlation of the HRT with the activity of the specific reductive dehalogenase enzymes involved in each dechlorination step.37 Despite the predominance of medium chlorinated RD byproducts, the HRT decrease promoted an increase in terms of reducing equivalents involved in the RD reaction, which increased from 61 ± 3 to 134 ± 11 μeq/Ld.

The principal effect of the HRT decrease detected during the reductive reactor operation was the current profile generated by the cathodic reactions, as shown in Figure 2. Indeed, while the average current increased from −65 ± 3 to −99 ± 3 with the decrease in HRT from 4.1 to 1.8 days, a further HRT decrease to 1.2 days caused a current decrease

![Figure 1](https://doi.org/10.1021/acsomega.1c03001) PCE removal (A) and CAH RD byproducts (B) during the three operating periods at different HRTs.

HRT (d)	4.1	1.8	1.2
PCE removal rate (μmol/Ld)	22 ± 5	52 ± 9	74 ± 13
PCE removal efficiency (%)	99 ± 3	100 ± 3	95 ± 6
RD rate (μeq/Ld)	61 ± 3	80 ± 7	134 ± 11
CE_RD (%)	0.8 ± 0.1	0.7 ± 0.2	2.1 ± 0.5

![Figure 2](https://doi.org/10.1021/acsomega.1c03001) Average current flow in the reductive reactor during the three operating periods at different HRTs.
The reductive reactor during the three diﬀerent HRT operating periods is reported in Figure 3A; due to the low concentration of nitrate in synthetic groundwater (around 15 mg/L), under all the conditions explored, the nitrate was completely removed in the reductive reactor. The consequent Coulombic eﬃciency for the RD rate was almost constant in the diﬀerent HRT operating periods (Figure 6B). As described in Figure 4A, the PCE removal was almost complete under the three explored conditions at diﬀerent cathodic potentials; indeed, as also summarized in Table 3, the resultant PCE removal rates were 28 ± 8, 28 ± 6, and 43 ± 11 μmol/L. Besides, the complete PCE removal was not inﬂuenced by the applied potential; as reported in Figure 5, a strong inﬂuence of the cathodic potential was observed with an average current ﬂow in the reductive reactor. However, while the current increased from −93 ± 3 to −163 ± 7 mA at cathodic potentials of −450 and −650 mV versus SHE, a sharp current decrease from −163 ± 7 to −41 ± 5 mA was obtained using a cathodic potential of −350 mV versus SHE.

The RD byproduct distribution during the three operating periods at the three diﬀerent cathodic potentials was almost stable. The main RD byproducts consisted of a mixture of cis DCE and VC at an average concentration of 20 ± 5 and 5 ± 1 μmol/L, respectively. Only during a cathodic potential of −350 mV versus SHE, the less reductive explored condition, was TCE with an average concentration of 6 ± 1 μmol/L detected in the reductive reactor eﬄuent. As reported in Table 2, the resultant RD rate was almost constant in the diﬀerent operating periods with average values of 73 ± 5, 62 ± 9, and 84 ± 7 μeq/L/d for the −450, −650, and −350 mV versus SHE conditions, respectively. Moreover, the less the reducing potential applied, the higher the RD Coulombic eﬃciency; that is, the Coulombic eﬃciency at −350 mV versus SHE was 1.8 because of the current decrease promoted by the adoption of a less reductive potential.

The current proﬁle correlated with the sulfate and nitrate reduction as shown in Figure 6, which reports the inﬂuent and eﬄuent anion concentrations in the reductive reactor. Although complete nitrate removal was obtained in all the three cathodic potentials explored (Figure 6A) due to the low concentration of nitrate in synthetic groundwater, sulfate reduction was mainly responsible for current generation under the diﬀerent potentiostatic conditions explored (Figure 6B). As reported in Table 4, sulfate reduction Coulombic eﬃciency allowed for the justiﬁcation of 78 ± 12, 59 ± 10, and 58 ± 8% of the ﬂowing current under the diﬀerent operating conditions. Furthermore, the utilization of −350 mV versus SHE in the

Table 2. Sulfate and Nitrate Contribution to Current Generation under the Three Diﬀerent Operating Conditions

HRT (d)	4.1	1.8	1.2
SO₄²⁻ removal rate (mg/L)	38 ± 11	113 ± 26	60 ± 9
NO₃⁻ removal rate (mg/L)	3 ± 1	8 ± 3	9 ± 2
current (mA)	−65 ± 3	−99 ± 3	−52 ± 6
CE₉O₂ (%)	45 ± 5	88 ± 13	89 ± 7
CE₉S (%)	4 ± 2	6 ± 1	12 ± 4
reductive reactor caused a strong inhibition of sulfate reduction reaction which decreased from 124 ± 9 mgSO₄/Ld under the −650 mV versus SHE condition to 28 ± 4 mg/Ld at a cathodic potential of −350 mV versus SHE. Probably, the less reducing power available for the reduction reaction promoted the sulfate-reducing microorganism activity due to the less availability of reducing equivalents or molecular hydrogen concentration.

As reported in the literature, sulfate- and nitrate-reducing microorganisms have a similar hydrogen threshold value with respect to organohalide-respiring bacteria, that is, the microorganisms responsible for PCE RD. This similar hydrogen threshold value implies that at intermediate and more reducing potential values, the two types of reactions occur simultaneously, while under the lower reducing condition, the hydrogen production only sustained RD. Even though the dechlorinating microbial consortium resulted not inhibited by the less reductive condition, a partial PCE dechlorination with TCE production was observed, probably indicating the selection of different microbial species able to perform only the first step of the PCE dechlorination.37

2.3. Methane Generation under the Explored Condition. Bioelectromethanogenesis is a well-known scavenging reaction of reducing-power consumption, as already reported in previous studies;40 bioelectromethanogenesis was responsible for the higher flowing current consumption. Under all the explored conditions, methane has been detected in the reductive reactor effluent mainly as a separated gaseous phase.

![Figure 5. Average current flow in the reductive reactor during the three operating periods at different applied cathodic potentials.](image)

Table 3. PCE Removal and RD Rate under the Three Operating Conditions at Different Applied Cathodic Potentials

E_{cath} (mV vs SHE)	−450	−650	−350
PCE removal rate (μmol/Ld)	28 ± 8	28 ± 6	43 ± 11
PCE removal efficiency (%)	96 ± 4	100 ± 2	98 ± 4
RD (μeq/Ld)	73 ± 5	62 ± 9	84 ± 7
CE_{RD} (%)	0.7 ± 0.2	0.4 ± 0.1	1.8 ± 0.4

![Figure 6. Nitrate (A) and sulfate (B) removal in the reductive reactor during the three operating periods at different applied cathodic potentials.](image)

Table 4. Sulfate and Nitrate Contribution to Current Generation under the Three Different Operating Conditions at Different Applied Cathodic Potentials

E_{cath} (mV vs SHE)	−450	−650	−350
SO₄²⁻ removal rate (mg/Ld)	94 ± 8	124 ± 9	28 ± 4
NO₃⁻ removal rate (mg/Ld)	6 ± 2	6 ± 3	6 ± 2
current (mA)	−93 ± 3	−163 ± 7	−41 ± 5
CE_{SN} (%)	78 ± 12	59 ± 10	58 ± 8
CE_{EN} (%)	5 ± 2	3 ± 1	10 ± 4
With respect to sulfate and nitrate reduction, methane generation gave a lower contribution in terms of reducing-power consumption, with Coulombic efficiencies in the range of 0.5–9% as reported in Table 5. During the exploration of the HRT effects on the investigated process, methanogenesis was considerably higher in terms of the highest production rate at an HRT of 4.1 d; moreover, the HRT decrease promoted the decrease in the methane production rate from 94 ± 7 to 27 ± 8 μmol/L.d. On the contrary, during the exploration of the cathodic potential, the methane production rate was much lower with respect to the HRT conditions with a methane production rate of 6 μmol/L.d at −450 and −650 mV versus SHE, while under a less reductive condition of −350 mV versus SHE, further methanogenesis inhibition has been detected due to the lower availability of reducing power. Methanogenesis was inhibited by a lower HRT, below 2 days, which led to a progressive inhibition during the study of the cathodic potentials, which was conducted at an intermediate HRT of 1.8 d. The analysis of the bioelectrochemical methane production clearly indicates the combined effect of HRT and cathodic potential in the mitigation of the methanogenesis side reaction.

2.4. Overall Evaluation of the HRT and \(E_{\text{cath}} \) on the Reductive Reactor. The overall analysis of the reductive reactor performance under the investigated operating condition allowed the evaluation of the RD reaction in the presence of side reactions such as nitrate and sulfate reduction. With the reductive reactor being operated under a potentiostatic condition, RD and nitrate/sulfate reduction are not competitive because higher species are able to be reduced and higher current flowed in the circuit. The current generation in the reductive reactor was related to the sulfate load rate available in the cathodic chamber of the reductive reactor (controlled by HRT) and to the cathodic potential applied to the electrode. Indeed, Figure 7A shows the RD rates and current generation as a function of both HRT and cathodic potential. It is possible to underline that current generation has been driven mainly by the sulfate reduction reaction; for this reason, the regulation of the applied cathodic potential and the HRT allowed for the minimization of competing reactions with a limited influence on the RD rate. The increase in the flowing current is directly linked to an increase in the applied cell voltage and, for instance, to the energy consumption of the overall process; Table 6 and Figure 7B summarize the different energy consumptions obtained during the treatment of synthetic groundwater under all the explored conditions.

3. CONCLUSIONS

In this paper, bioelectrochemical sulfate and nitrate reduction reactions as side reactions of PCE RD have been investigated at three different HRTs and cathodic potentials. The HRT decrease from 4.1 to 1.8 promoted a considerable increase in sulfate reduction which contributed to the current increase, while a further decrease in HRT to 1.2 d led to a partial inhibition of sulfate reduction, promoting the consequent current decrease. Applying the intermediate HRT of 1.8 days with three different cathodic potentials (−350, −450, and −650 mV vs SHE) showed their predominant effect on sulfate and nitrate reduction and consequently on current generation.

Table 5. Methane Coulombic Efficiency Obtained under the Different Conditions Explored

HRT (d)	4.1	1.8	1.2
CH₄ production rate (μmol/L.d)	94 ± 7	57 ± 4	27 ± 8
CECH₄ (%)	9 ± 3	2 ± 1	2 ± 1
\(E_{\text{cath}} \) (mV vs SHE)	−450	−650	−350
CH₄ production rate (μmol/L.d)	6 ± 3	6 ± 2	1 ± 1
CECH₄ (%)	0.5 ± 0.1	0.44 ± 0.04	0.47 ± 0.12

Table 6. Energy Consumption (kW h/m³) in the Treated Synthetic Groundwater for the Different Operating Conditions Explored

HRT (d)	4.1 (d)	1.8 (d)	1.2 (d)
\(E_{\text{cath}} \) (mV vs SHE)	−350	−450	−650
0.6 ± 0.1	2.2 ± 0.3	3.6 ± 0.2	

Finally, by regulating the HRT and the applied cathodic potential, the current, generated mostly by sulfate reduction, can be adjusted to the desired optimum which, in this case, indicates the necessity to minimize the current and the consequent Coulombic efficiency of the RD reaction and the energy consumption of the bioelectrochemical reactor.
and energy consumption. By using the less reductive potential of −350 mV versus SHE, the sulfate reduction strongly reduced, promoting a considerable current decrease and energy consumption minimization. RD Coulombic efficiency maximized under the −350 mV versus SHE condition with an HRT of 1.8 d; that is, the RD rate remained almost constant despite the obtained current decrease. The present research study suggests that in the bioelectrochemical process under investigation, side reaction control, mainly represented by sulfate and nitrate reduction, is fundamental to limit current generation and energy consumption in favor of a higher Coulombic efficiency for the RD reaction.

4. EXPERIMENTAL SECTION

4.1. Reactor Setup and the Operating Conditions Explored. The reductive reactor consisted of a borosilicate glass column with an empty volume of 8.24 L. Three sampling ports allowed for the insertion of the Ag/AgCl reference electrode (3 M KCl +0.199 V vs SHE) and the electric connections for the working and counter electrode. The working electrode of the reactor was an external chamber polarized by using a three-electrode configuration, controlling the reductive potential of the external cathodic chamber by using a VSP300 Biologic potentiostat (BioLogic).

During this study, three different HRTs and three different cathodic potentials have been used for process performance characterization. Table 7 summarizes the operating conditions adopted.

HRT (d)	4.1	1.8	1.2
\(E_{\text{on}} \) potential	−450	−450	−650

4.2. Analytical Methods. The analysis of the CAHs in the inlet and in the outlet of the reactor is made by the manual injection of a 50 µL head space gas phase in a Dani Master gas chromatograph with a flame ionization detector. The injection was made by using a gastight syringe (gas-tight syringe, Hamilton Company USA, Nevada) with a sample lock to maintain the same pressure of the sampling cells for the injected volume. The analysis of nitrate and sulfate anions was made using an ionic liquid chromatograph (Dionex) equipped with a suppressor and by using a mobile phase that consists of a solution of Na₂CO₃ and NaHCO₃; the liquid phase for the anion analysis was sampled directly from the bags.

4.3. Calculation. The Coulombic efficiency represents the fraction of flowing current generated by proton reduction, which comes from water autoproteolysis, that is used for reductive reactions. The RD Coulombic efficiency can be expressed with the equation

\[
\text{CE}_{\text{RD}} (\%) = \frac{\text{RD (mA)}}{i (\text{mA})} \times 100
\]

in which RD is the quantification of the RD product in milliamps, calculated with the subsequent equation

\[
\text{RD (mA)} = \left(\left(\text{[TEC]} \times 2 \right) + \left(\text{[DCE]} \times 4 \right) + \left(\text{[VC]} \times 6 \right) + \left(\text{[Eth]} \times 8 \right) \right)/1000
\]

\times Q_\text{out} \times (F/86400)

where \(Q_\text{out} \) = liquid flow rate; \(F \) = Faraday’s constant = 96,485 C/mol; and 86,400 are the seconds in one day.

The nitrate and sulfate Coulombic efficiencies are calculated by using the same expressions by replacing the numerator term with the quantification of the nitrate and sulfate removal and total reduction in milliamps

\[
\text{CE}_{\text{NR}} (\%) = \frac{\text{NR (mA)}}{i (\text{mA})} \times 100
\]

\[
\text{CE}_{\text{SR}} (\%) = \frac{\text{SR (mA)}}{i (\text{mA})} \times 100
\]

in which

\[
\text{SR (mA)} = \left\{ \left[\text{SO}_4^{2-}\text{in} - \text{SO}_4^{2-}\text{out} \right]/\text{MW}_{\text{SO}_4^{2-}} \right\} \times 8 \times Q_\text{out}
\]

\times \frac{F}{86400} \text{MW}_{\text{SO}_4^{2-}} = 96.06 \text{g/mol}

and

\[
\text{NR (mA)} = \left\{ \left[\text{NO}_3^{-}\text{in} - \text{NO}_3^{-}\text{out} \right]/\text{MW}_{\text{NO}_3^{-}} \right\} \times 5 \times Q_\text{out}
\]

\times \frac{F}{86400} \text{MW}_{\text{NO}_3^{-}} = 62 \text{g/mol}

The energy consumption in terms of kW h per m³ of treated water was calculated using the following equations

\[
\frac{\text{kW h}}{d} = \frac{i (\text{mA}) \times \Delta V (\text{mV}) \times 10^{-6} \times 24}{m_\text{treatedwater}}
\]

\[
\times \frac{i (\text{mA}) \times \Delta V (\text{mV}) \times 10^{-6} \times 24}{Q_\text{in} \times 10^{-3}}
\]

■ AUTHOR INFORMATION

Corresponding Author

Marco Zeppilli – Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; orcid.org/0000-0002-4470-9666; Phone: +39 0649913716; Email: marco.zeppilli@uniroma1.it; Fax: +39 06490631

Authors

Edoardo Dell’Armi – Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy

Federica De Santis – Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
Marco Petrangeli Papini — Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
Mauro Majone — Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c03001

Funding
This project received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 826244-ELECTRA

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Marcelle Kwenze Tonda is acknowledged for her skillful assistance in the experimental activity.

■ ABBREVIATIONS
CAHs, chlorinated aliphatic hydrocarbons; PCE, perchloroethylene; TCE, trichloroethylene; cisDCE, cis dichloroethylene; VC, vinyl chloride; Eth, ethylene; BES, bioelectrochemical systems; MEC, microbial electrolysis cell; RD, reductive dechlorination; CE, Coulombic efficiency; HRT, hydraulic retention time

■ REFERENCES
(1) Miao, Z.; Brusseau, M. L.; Carroll, K. C.; Carreño-Diazconti, C.; Johnson, B. Sulfate reduction in groundwater: characterization and applications for remediation. Environ. Geochem. Health 2012, 34, 539–550.
(2) Moran, M. J.; Zogorski, J. S.; Squillace, P. J. Chlorinated solvents in groundwater of the United States. Environ. Sci. Technol. 2007, 41, 74–81.
(3) Löffler, F. E.; Edwards, E. A. Harnessing microbial activities for environmental cleanup. Curr. Opin. Biotechnol. 2006, 17, 274–284.
(4) Dohónová, I.; Strojsova, M.; Černík, M.; Němeček, J.; Macháčková, J.; Sevcík, A. Microbial degradation of chloroethanes: a review. Environ. Sci. Pollut. Res. 2017, 24, 13262–13283.
(5) Wang, S.; Qiu, L.; Liu, X.; Xu, G.; Siegert, M.; Lu, Q.; Juneau, P.; Yu, L.; Liang, D.; He, Z.; Qiu, R. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnol. Adv. 2018, 36, 1194–1206.
(6) Maymó-Gatell, X.; Chien, Y.-t.; Gossett, J. M.; Zinder, S. H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 1997, 276, 1568–1571.
(7) He, J.; Ritalahti, K. M.; Yang, K.-L.; Koenigsberg, S. S.; Löffler, F. E. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 2003, 424, 62–65.
(8) Löffler, F. E.; Yan, J.; Ritalahti, K. M.; Adrian, L.; Edwards, E. A.; Konstantinidis, K. T.; Müller, J. A.; Fullerton, H.; Zinder, S. H.; Spormann, A. M. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidiales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 2013, 63, 623–635.
(9) El Fantroussi, S.; Naveau, H.; Agathos, S. N. Anaerobic Dechlorinating Bacteria. Biotechnol. Prog. 1998, 14, 167–188.
(10) Aulenta, F.; Pera, A.; Rossetti, S.; Petrangeli Papini, M.; Majone, M. Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res. 2007, 41, 27–38.
(11) Gerritte, J.; Dryzga, O.; Kloetstra, G.; Keijmel, M.; Wiersum, L. P.; Hutson, R.; Collins, M. D.; Gottschal, J. C. Influence of different electron donors and acceptors on dehalorespiration of Tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl. Environ. Microbiol. 1999, 65, 5212–5221.
(12) Mohn, W. W.; Tiedje, J. M.Microbial reductive dehalogenation. Microbiol. Rev. 1992, 56, 482–507.
(13) Azubuik, C. C.; Chikere, C. B.; Okpokwasili, G. C. Bioremediation techniques—classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180.
(14) Pant, P.; Pant, S. A review: Advances in microbial remediation of trichloroethylene (TCE). J. Environ. Sci. 2010, 22, 116–126.
(15) Piero, L.; Matturro, B.; Rossetti, S.; Saglischi, M.; Sucato, S.; Alesi, E.; Barstch, E.; Armjand, F.; Papini, M. P. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: From laboratory investigation to pilot-scale testing in the field. New Biotechnol. 2017, 37, 60–68.
(16) Aulenta, F.; Fuoco, M.; Canosa, A.; Petrangeli Papini, M.; Majone, M. Use of poly-β-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE. Water Sci. Technol. 2008, 57, 921–925.
(17) Baric, M.; Majone, M.; Beccari, M.; Papini, M. P. Coupling of polyhydroxybutyrate (PHB) and zero valent iron (ZVI) for enhanced treatment of chlorinated ethanes in permeable reactive barriers (PRBs). Chem. Eng. J. 2012, 195–196, 22–30.
(18) Papini, M. P.; Majone, M.; Armjand, F.; Silvestri, D.; Saglischi, M.; Sucato, S.; Alesi, E.; Barstch, E.; Pierro, L. First pilot test on the integration of GCW (groundwater circulation well) with ENA (enhanced natural attenuation) for chlorinated solvents source remediation. Chem. Eng. Trans. 2016, 49, 91–96.
(19) Aulenta, F.; Catervi, A.; Majone, M.; Panero, S.; Reale, P.; Rossetti, S. Electron transfer from a solid-State electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ. Sci. Technol. 2007, 41, 2544–2559.
(20) Aulenta, F.; Tocca, L.; Verdi, R.; Reale, P.; Majone, M. Dechlorination of trichloroethene in a continuous-flow bioelectrocatalyst reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ. Sci. Technol. 2011, 45, 8444–8451.
(21) Verdi, R.; Aulenta, F.; de Tora, F.; Lai, A.; Majone, M. Relative contribution of set cathode potential and external mass transport on TCE dechlorination in a continuous-flow bioelectrocatalyst reactor. Chemosphere 2015, 136, 72–78.
(22) Lai, A.; Aulenta, F.; Mingazzini, M.; Palumbo, M. T.; Papini, M. P.; Verdi, R.; Majone, M. Bioelectrochemical approach for reductive and oxidative dechlorination of chlorinated aliphatic hydrocarbons (CAHs). Chemosphere 2017, 169, 351–360.
(23) Zeppilli, M.; Cristiani, L.; Dell’Armi, E.; Majone, M. Bioelectromethanogenesis reaction in a tubular microbial electrolysis cell (MEC) for biogas upgrading. Renewable Energy 2020, 158, 23–31.
(24) Zeppilli, M.; Cristiani, L.; Dell’Armi, E.; Villano, M. Potentiostatic vs galvanostatic operation of a Microbial Electricity Cell for ammonium recovery and biogas upgrading. Biochem. Eng. J. 2021, 167, 107886.
(25) Lin, X.-Q.; Li, Z.-L.; Liang, B.; Zhai, H.-L.; Cai, W.-W.; Nan, J.; Wang, A.-J. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. Water Res. 2019, 162, 236–245.
(26) Wang, X.; Aulenta, F.; Puig, S.; Esteve-Núñez, A.; He, Y.; Mu, Y.; Rabaey, K. Microbial electrochemistry for bioremediation. Environ. Sci. Technol. 2020, 1, 100013.
(27) Lohner, S. T.; Becker, D.; Mangold, K.-M.; Tiehm, A. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process. Environ. Sci. Technol. 2011, 45, 6491–6497.
(28) Pavlostathis, S. G.; Prytula, M. T.; Yeh, D. H. Potential and limitations of microbial reductive dechlorination for bioremediation applications. Water Air Soil Pollut. Focus 2003, 3, 117–129.
(29) Drzyzga, O.; Gerritse, J.; Dijk, J. A.; Elissen, H.; Gottschal, J. C. Coexistence of a sulfate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulfate and tetrachloroethene. *Environ. Microbiol.* 2001, 3, 92–99.

(30) Hoelen, T. P.; Reinhard, M. Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. *Biodegradation* 2004, 15, 395–403.

(31) Berggren, D. R. V.; Marshall, I. P. G.; Azizian, M. F.; Spormann, A. M.; Semprini, L. Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. *Environ. Sci. Technol.* 2013, 47, 1879–1886.

(32) Chen, Y.; Cheng, J. J.; Creamer, K. S. Inhibition of anaerobic digestion process: A review. *Bioresour. Technol.* 2008, 99, 4044–4064.

(33) Townsend, G. T.; Sulflita, J. M. Influence of sulfur oxyanions on reductive dehalogenation activities in desulmonilie tiedjie. *Appl. Environ. Microbiol.* 1997, 63, 3594–3599.

(34) Mao, X.; Polasko, A.; Alvarez-Cohen, L.; Kelly, R. M. Effects of sulfate reduction on trichloroethene dechlorination by dehalococci-containing microbial communities. *Appl. Environ. Microbiol.* 2017, 83, No. e03384-16.

(35) Gacituá, M. A.; Muñoz, E.; González, B. Bioelectrochemical sulfate reduction on batch reactors: Effect of inoculum-type and applied potential on sulfate consumption and pH. *Bioelectrochemistry* 2018, 119, 26–32.

(36) Park, H. I.; Kim, D. K.; Choi, Y.-J.; Pak, D. Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor. *Process Biochem.* 2005, 40, 3383–3388.

(37) Hug, L. A.; Maphosa, F.; Leys, D.; Löfler, F. E.; Smidt, H.; Edwards, E. A.; Adrian, L. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. *Philos. Trans. R. Soc., B* 2013, 368, 20120322.

(38) Dell’Armi, E.; Zeppilli, M.; Matturro, B.; Rossetti, S.; Petrangeli Papini, M.; Majone, M. Effects of the Feeding Solution Composition on a Reductive/Oxidative Sequential Bioelectrochemical Process for Perchloroethylene Removal. *Processes* 2021, 9, 405.

(39) Zeppilli, M.; Matturro, B.; Dell’Armi, E.; Cristiani, L.; Papini, M. P.; Rossetti, S.; Majone, M. Reductive/oxidative sequential bioelectrochemical process for perchloroethylene (PCE) removal: effect of the applied reductive potential and microbial community characterization. *J. Environ. Chem. Eng.* 2021, 9, 104657.

(40) Zeppilli, M.; Chouchane, H.; Scardigno, L.; Mahjoubi, M.; Gacitua, M.; Askri, R.; Cherif, A.; Majone, M. Bioelectrochemical vs hydrogenophilic approach for CO2 reduction into methane and acetate. *Chem. Eng. J.* 2020, 396, 125243.

(41) Zeppilli, M.; Dell’Armi, E.; Cristiani, L.; Petrangeli Papini, M.; Majone, M. Reductive/Oxidative sequential bioelectrochemical process for perchloroethylene removal. *Water* 2019, 11, 2579.