Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy

Natalia Rodrigues Mantuano, Marina Natoli, Alfred Zippelius, Heinz Läubli

ABSTRACT

During oncogenesis, tumor cells present specific carbohydrate chains that are new targets for cancer immunotherapy. Whereas these tumor-associated carbohydrates (TACA) can be targeted with antibodies and vaccination approaches, TACA including sialic acid-containing glycans are able to inhibit antitumor immune responses by engagement of immune receptors on leukocytes. A family of immune-modulating receptors are sialic acid-binding Siglec receptors that have been recently described to inhibit antitumor activity mediated by myeloid cells, natural killer cells and T cells. Other TACA-binding receptors including selectins have been linked to cancer progression. Recent studies have shown that glycan-lectin interactions can be targeted to improve cancer immunotherapy. For example, interactions between the immune checkpoint T cell immunoglobulin and mucin-domain containing-3 and the lectin galectin-9 are targeted in clinical trials. In addition, an antibody against the lectin Siglec-15 is being tested in an early clinical trial. In this review, we summarize the previous and current efforts to target TACA and to inhibit inhibitory immune receptors binding to TACA including the Siglec-sialoglycan axis.

INTRODUCTION

Recent advancements in the stimulation of the immune microenvironment and anticancer immune responses with immune checkpoint inhibitors (ICI) has improved the outcome of treatments for patients and has led to impressive long-term remissions in some patients with advanced disease. However, primary and acquired resistance significantly diminish the success of ICI and only a minority of patients benefit from currently available cancer immunotherapies. Thus, new strategies are urgently needed in order to induce long-term remissions with cancer immunotherapy in many more of our patients.

Carbohydrates belong to the major biomolecules of living organisms. Carbohydrates can be attached to proteins (glycoproteins), lipids and exist as chains of carbohydrates (glycosaminoglycans). Glycans—carbohydrate-containing macromolecules—are ubiquitous in biological systems and are essential for numerous biological functions. Cell surfaces and extracellular proteins are significantly glycosylated. In addition, glycosaminoglycans can be found in the extracellular matrix. Glycans are used as storage for energy (glycogen), are structurally important (see later for the stability of programmed cell death protein 1 (PD-1)) and can mediate signals. Whereas proteins undergo substantial post-translational modifications, in particular N-glycosylation and O-glycosylation, intracellular modification of tyrosine with O-GlcNAc serves for intracellular signaling. Changes of glycosylation have a significant impact on cancer biology and cancer progression. Of note, altered glycan structures represent antigenic targets for cancer immunotherapy. In this review, we summarize how cancer-associated changes in glycosylation can be used to improve cancer immunotherapy.

CANCER-SPECIFIC CHANGES IN GLYCOSYLATION

Altered glycosylation is a common feature of tumor cells and leads to the formation of tumor-associated carbohydrates (TACA) (figure 1). Three common changes are often associated with cancer: a) increased expression of truncated or incomplete glycans, b) increased branching of N-glycans and c) augmented or changed presence of sialic acid-containing glycans. Tumor-cell surface glycans are known to promote cancer progression by affecting tumor growth, cell invasiveness and negatively regulate immune responses. Changes of glycosylation observed in cancer depend on the expression and changes of enzymes involved in glycan biosynthesis and glycan-modifying enzymes including transferases and glycosidases as well as transporter for saccharides and precursors. Expression of these glycan-modifying proteins are altered in cancer due...
Increased branching of complex N-glycans

Truncated O-glycans

Increased/changed sialylation

Expression changes in glycosylases, glycosyltransferases - carbohydrate-synthesis enzymes - transporters

Figure 1 Overview on cancer-associated glycosylation.

Three main changes can be found in cancer that are regulated by genetic or epigenetic alterations in genes of glycan-modifying enzymes or enzymes involved in carbohydrate biosynthesis. N-glycans show often an increased branching due to increased MGAT5 expression. Another often observed change is the truncation of O-glycans and the exposure of new tumor-associated carbohydrates (TACA) including the T antigen, Tn antigen and the sialyl-Tn antigen (STn). In addition, changes of sialylation of both glycoproteins and glycolipids can be observed. Increased sialylation (hypersialylation) is often observed. The introduction of the non-human sialic acid Neu5Gc can also be observed. Fuc, fucose; GlcNAc, N-acetyl-glucosamine; Gal, galactose; GalNAc, N-acetyl-galactosamine; Glc, glucose; Man, mannose; N-acetyl-neuraminic acid; Neu5Gc, N-glycosyl-neuraminic acid.

to genetic and epigenetic alterations and differ between cancer types.

Changes in sialylation

Cancer-associated glycans often exhibit an increased amount of sialic acid. Augmented sialylation of tumor cells has been correlated with a metastatic phenotype and poor prognosis in patients with cancer. Sialic acids are predominantly found at the non-reducing end of N-linked and O-linked glycans attached to proteins or glycolipids. Hypersialylation facilitates interactions with sialic acid binding receptors such as selectins and Siglec with consequences for cancer progression. Moreover, the incorporation of the non-human sialic acid N-glycolyl-neuraminic acid (Neu5Gc) into glycans and the interaction with circulating anti-Neu5Gc antibodies influences cancer progression. Neu5Gc is biosynthesized from N-acetyl-neuraminic acid (Neu5Ac) via the enzyme CMP-Neu5Ac hydroxylase (CMAH), which is not present in humans. However, various studies have found an increased presence of Neu5Gc-containing glycans in cancer, which could be associated with uptake of meat from Neu5Gc producing mammals.

Truncation of O-glycoproteins

O-glycans are ubiquitously found on cells and are particularly secreted into the extracellular matrix or into the lumen of internal organs. For example, mucins, highly O-glycosylated proteins such as CA19-9, can serve as a biomarker for some cancer types. One of the most common cancer-associated changes in glycosylation is the truncation of O-linked carbohydrate chains (figure 1). Usually, a GalNAc sugar residue is attached to a serine or threonine of the glycoprotein (GalNAcα1-O-Ser/Thr, Tn antigen) and usually elongated by the T-synthase (core 1 β3-galactosyltransferase) in the Golgi apparatus that attaches a galactose residue to Tn antigen. The resulting glycan is called T antigen (sometimes also called the Thomsen-Friedenreich (TF) antigen). The T-synthase requires a chaperone for the correct folding and enzymatic activity. The chaperone was termed Core 1 β3-galactosyltransferase Specific Molecular Chaperone (COSMC). The X linked COSMC gene is mutated in various cancer types leading to the presence of Tn antigen or its sialylated form, the sialyl-Tn (STn) antigen. Interestingly, truncated O-glycosylation is shown to have an immunomodulatory effect. Tn antigen binds to macrophage galactose-type lectin on dendritic cells and macrophages that inhibits the migration of immature antigen-presenting cells (APCs) and increases M2-like tumor associated macrophages.

Truncated O-glycans represent epitopes which may selectively target cancer cells. Various cancer tissues have been analyzed for the expression for the T, Tn and STn antigen. The human-mucin 1 (MUC1) is over-expressed in many adenocarcinomas, presenting high levels of truncated glycans as STn-MUC1, Tn-MUC1 and T-MUC1. Yet, these antigens are rarely expressed in normal tissue compared with cancer tissue. Further studies are needed to determine the specificity of the expression patterns if we consider to target these epitopes with antibodies and chimeric antigen receptors (CARs).

Altered branching of N-glycoproteins

Increased branching of N-glycans, mediated by β1,6-N-acetylglucosaminyltransferase V (MGAT5, figure 1), can influence cell adhesion, migration and metastasis of tumor cells. Upregulation of MGAT5 has also been shown to directly influence cytokine signaling and tumor progression while the knockdown of Mga5t led to activation of CD4+ T cells and macrophages in breast cancer. Altered N-glycosylation of immune cells could also affect the antitumor immune response. Increased branching of N-glycans can directly inhibit T cell activation by increasing T cell receptor (TCR) clustering. This effect was attributed to interaction with galectin-3. On the other side, TCR signaling also directly influences enzymes modulating N-glycosylation.

Alterations in glycolipids

Gangliosides are sialylated glycan-containing lipids of the cell membrane show also often changes on cancer cells. The gangliosides GM3, GM2, CD3 and GD2 are present in normal tissue but are often overexpressed in different cancers including lung cancer, melanoma and neurogenic
tumors such as neuroblastoma.52–55 Glycolipids can significantly influence cell signaling by mediating the formation of lipid rafts.56 Tumor-associated gangliosides have been investigated for their immunosuppressive properties and role in cancer progression. Furthermore, the plasma concentration of gangliosides is often elevated,37 making them potential therapeutic targets and diagnostic tools. GM3 contains sialic acid-residues and several studies have shown that GM3 containing the non-human sialic acid Neu5Gc (Neu5Gc-GM3) is relatively specific for different types of cancer.29

Cancer-associated changes in glycosylation and immune phenotypes

The association of specific glycan changes with the immune state of a cancer is currently being studied. Immune phenotypes such as T cell excluded tumors were associated recently with galectin-1 expression and interactions with glycan-ligands.58 The Cancer Genome Atlas has been used to study the expression of different glycan-modifying enzymes, for example, for sialic acid-modifying enzymes.59 However, further systematic studies including also lectin stainings are needed on tissue sections to correlate immune phenotypes with.

MODALITIES TO TARGET TUMOR-ASSOCIATED GLYCANS

ADCC and CDC

Antibody-dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC) is triggered by the interaction between antibody-bound target cells—for example, infected or tumor cells—and effector immune cells or complement factors, respectively. Several glycan-targeted monoclonal antibodies (mAbs), which are in clinical use or development, are known to elicit ADCC and/or CDC (figure 2). Among these, dinutuximab, which targets ganglioside GD2 on melanoma, and neuroblastoma (table 1),60–62 is approved for the treatment of high-risk neuroblastoma pediatric patients.63 Similarly, KW871, a chimeric mAb which targets the ganglioside GD3, exhibited antitumor activity in combination with with IFN-α2b in vitro.64 In patients with metastatic melanoma, the combination of KW871 with interferon was shown to be well tolerated, although not highly efficacious.65 An anti-idiotyp antibody was generated to elicit an immune response against Neu5Gc-GM3.66 Early trials have shown interesting activity in patients with non-small cell lung cancer (NSCLC).66 67 Trials testing the efficacy of this antibody called racotumomab in a larger population are currently recruiting (eg, NCT01460472).

Since the 1990s, several other mAbs have been designed that target Lewis antigens (Le), expressed by a broad range of tumor cells, and that are able to elicit ADCC and/or CDC in preclinical and clinical studies. Examples of such mAbs are BR96,68 targeting Le; hu3S193,69 a humanized anti-Leα mAb which showed low toxicity in an early clinical trial,70 but insufficient efficacy in a subsequent phase II trial.71

Figure 2 Overview on targeting approaches for cancer-associated glycosylation. (A) Tumor-associated carbohydrates (TACA) can serve as tumor-specific antigen and be approached with antibody-dependent cellular cytotoxicity (ADCC)-inducing or complement-dependent cytotoxicity (CDC)-inducing antibodies or with antibodies carrying a payload (chemotherapy or even enzyme). (B) Chimeric antigen receptor (CAR) expressing immune cells could be redirected towards TACA-presenting tumors. Similarly, bispecific antibodies could be used to direct immune cells to TACA-expressing tumors (not shown). (C) TACA such as sialoglycans can engage immune receptors including inhibitory Siglec receptors on T cells and myeloid cells and improve anticancer immunity directly. ADC, antibody-drug conjugates.

As for targeting of tumor-associated MUC1 (TA-MUC1) expressed on several malignancies including ovarian, breast and cervical cancers,72 the mAb PankoMab-GEX (gatipotuzumab) has shown therapeutic efficacy, particularly in heavily pretreated patients with ovarian cancer.73 74 Yet, the subsequent phase II trial did not show any outcome advantage.75 Another high-affinity mAb named 5E5 targets the aberrant Tn glycoform of mucin MUC1 and has been shown to lyse breast cancer cells via both ADCC and CDC.76 Glycosylation is also under investigation to be used as tool for the enhancement of ADCC and CDC immune response mechanisms. Indeed, manipulation of specific residues of the Fc N-glycan has been shown to modulate antibody-dependent effector functions via modification of the Fc binding affinity to Fc receptors expressed on different immune cells. Particularly, core fucosylation and sialylation of Fc regions results in decreased ADCC, while N-glycans with low or no sialic acid are better suited to trigger ADCC. These approaches are reviewed by Wang and Ravetch77 and Mastrangelo and colleagues.78

Antibody-drug conjugates

Antibody-drug conjugates (ADCs) unify the properties of cytotoxic chemotherapy and mAbs, in an effort to selectively target and lyse cancer cells. Similarly, antiglycan-directed antibodies can be exploited to deliver selected anticancer payloads specifically to tumor cells (figure 2). First attempts used the previously mentioned anti-Leα BR96 mAb, conjugated to doxorubicin and docetaxel. This ADC was tested in phase II trials for advanced NSCLC.
Monomethyl auristatin E (MMAE). These ADCs showed a subset of these mAbs as ADCs by conjugating them to expressing STn with high avidity and further exploited et al developed murine mAbs able to target tumor cells cytotoxicity specific to STn-gated to MMAE have been shown to determine in vitro Furthermore, humanized anti- models, including breast and colorectal cancer.82 These effects were particularly dependent on high Tn expression in tumor cells.81 Similarly, Prendergast et al developed murine mAbs able to target tumor cells expressing STn with high avidity and further exploited a subset of these mAbs as ADCs by conjugating them to monomethyl auristatin E (MMAE).82 These ADCs showed high efficacy in vitro, in the presence of STn-expressing cancer cell lines, as well as tumor inhibition in multiple in vivo model, including breast and colorectal cancer.82 Furthermore, humanized anti-STn antibodies conjugated to MMAE have been shown to determine in vitro cytototoxicity specific to STn-expressing ovarian cancer cell lines as well as efficacy in tumor control in in vivo models for ovarian cancers, including in patient-derived xenografts.83 These humanized aSTn-ADCs were further shown to present a low toxicity profile as they did not cross-react to any tissue of human origin. Most recently, the murine mAb FG129 and corresponding chimeric human variant CH129, were developed to target sialyl-di-Le–containing glycoproteins and shown to bind to a range of cancer tissues including colorectal, pancreatic, gastric and ovarian tumors.84 Conjugation of CH129 to either MMAE or maytansinoid (DM1 and DM4) resulted in cell death in vitro, as well as in vivo tumor control.84

Bispecific antibodies

Bispecific antibodies (bsAbs) are molecules designed to recognize two distinct antigens or epitopes and have been recently emerging as potential key actors in cancer immunotherapy. In terms of tumor-associated glycans, research on bsAbs has so far focused on targeting GD2 ganglioside and MUC1 combined (table 1).85–88 Recent developments involve also targeting of glyccan-binding lectins on tumor cells. bsAbs designed to target lectins including Siglecs are currently under investigation, for example, bsAb against CD22/CD19 on B cells—currently in a phase I–II trial, targeting B cell malignancies89 or bsAb bridging CD33 on AML cells to CD3 on T cells90 or to CD16 on natural killer (NK) cells.92

Redirection of immune cells

CARs can redirect immune cells to tumor cells or the tumor microenvironment by targeting tumor-specific antigens.93 94 However, design of CARs directed at solid cancers presents several challenges, due to the immunosuppressive mechanisms within the TME and the difficulty in finding antigens that are solely cancer-specific.94 Targeting CARs to glycans may be advantageous due to the specificity of aberrant glycosylation on tumor cells. Several attempts at designing glycan-targeted CARs have been made and are currently being tested in preclinical and clinical studies (table 1). Tumor-associated glycoprotein

Table 1 Previous and ongoing clinical trials targeting tumor-associated glycans or lectins

Target	Drug candidate	Modality	Phase	Cancer type	Citation/Trial ID
NeuGcGM3	Racotumomab	Vaccine	II/III	NSCLC	(68, 69, NCT01460472)
Lewis-Y antigen	hu3S193	mAb	I/II	Advanced epithelial cancer; platinum resistant/ refractory ovarian, Fallopian tube and primary peritoneal carcinoma	(70, 71)
MUC1	PankoMab-GEX (Gatipotuzumab)	mAb	I/II	Advanced carcinoma; recurrent ovarian carcinoma	(74, 75)
Lewis-Y antigen	SGN-15	ADC	II	NSCLC	(76)
Lewis-Y antigen	BMS-1 82248–1	ADC	II	Metastatic breast cancer	(77)
CD22/CD19	DT2219	BsAb	I	Refractory B-cell malignancies	(78)
TAG72	CART72	CAR T	I	Advanced colorectal cancer	(79)
Lewis-Y antigen	Le7-CAR T	CAR T	I	AML	(80)
Lewis-Y antigen	Le7-CAR T	CAR T	I	Advanced solid tumors	NCT03851146
GD2	GD2-CAR-PBT	CAR T	I	Metastatic melanoma	(81)
GD2	GD2-CAR3 combined with lymphodepletion and PD-1 blockade	CAR T	I	Relapsed or refractory neuroblastoma	(82)
IL15-GD2	GINAKIT	CAR-NKT	I	Pediatric neuroblastoma	NCT03294954
STn	Theratope	ADC	III	Metastatic breast adenocarcinoma	(85, 86)
Siglec-15	NC318	mAb	I/II	Advanced or metastatic solid tumors	NCT03665285

ADC, antibody-drug conjugates; AML, acute myeloid leukemia; mAb, monoclonal antibody; MUC1, mucin 1; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein 1.
72 (TAG72) antigen is the truncated sialyl-Tn found on many O-glycoproteins and overexpressed by various types of cancer cells, including lung, colorectal and ovarian cancer cells. TAG72-directed CAR T cells were shown to be effective in vitro on gastrointestinal cancer cell lines. A much more recent clinical trial using anti-TAG72 CAR T cells in advanced colorectal cancer patients failed to show effective clinical responses; this was potentially due to the murine origin of the scFv or to lack of co-stimulation; the second-generation TAG72-targeted CAR was shown to effectively target ovarian cancer cell lines and patient-derived primary ovarian cancer cells in vitro, as well as to reduce tumor growth and improve survival in mice, with sequential intraperitoneal administrations. Attempts at designing MUC1-targeted CARs relied on two main antibodies, SM3 and HMFG2. More recent Tn-MUC1-targeting CARs have been developed from the 5E5 mAb and shown to present cancer-specific and weak reactivity against healthy tissues, as well as to effectively target and kill cancer cells in pancreatic and leukemia xenograft models. A successful target for CAR T cell therapy is the TACA Le⁺. A second generation fully humanized CAR construct targeting Le⁺ was shown to be effectively transduced in PBMC-derived T cells and to lyse Le⁺ positive tumor cell lines in vitro. Similarly, in vivo, adoptive transfer of Le⁺-targeted CAR T cells resulted in tumor homing and subsequently inhibiting growth of myeloma and ovarian cancer xenografts.

In high-risk neuroblastoma patients with Epstein-Barr virus (EBV)-associated malignancies, infusion of EBV-specific and GD2 CAR-transduced T cells persisted presence of these cells and tumor necrosis in some patients, with three patients showing complete responses and two long-term remission (up to 48 months) in a long-term follow-up study. Combination of GD2-targeted CARs with PD-1 blockade is also under investigation, with studies showing that, in vitro, anti-PD-1 can rescue GD2 CARs from activation-induced cell death, a phenomenon also observed in vivo in patients with metastatic melanoma treated with GD2-specific CAR T cells in a phase I clinical trial. In another phase I clinical trial is now testing the safety and tolerability of using these CAR T cells in patients with advanced solid tumors presenting Le⁺ surface expression (NCT03851146).

Glycan modifications can also be used to target shared or neo-antigens to APCs including dendritic cells. Dendritic cells express lectins binding to glycan epitopes. For example, dendritic cells express the lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) and Langerin that can be targeted with fucosylated glycans of Lewis-type oligosaccharides. In another work, Siglec-1 on macrophages was targeted to induce an immune response to a lipid antigen and robustly activate NK T cells.

Vaccination

Several vaccines have been developed based on different glycans Tn-MUC1, MUC16, GD2, GM2 and Neu5Gc-GM5, but most vaccines had major issues relating to the poor immunogenicity of glycans and glycopeptides. Glycan-based vaccine research is therefore currently focused on addressing these problems and enhancing immunogenicity of these immunotherapies. A strategy to increase immunogenicity is conjugation to carrier proteins; one such example is Theratope, an STn-based vaccine conjugated to carrier protein keyhole limpet hemocyanin. Though initial evaluations of Theratope in patients with metastatic adenocarcinomas produced encouraging results, including increased antibody titres and prolonged survival, this vaccine was later shelved after failing to meet its primary endpoints in a phase III clinical trial. Other strategies to enhance glycan immunogenicity include designing polyvalent vaccines which contain multiple glycan structures, such as Globo-H, STn, Tn, TF and Le⁺ or using peptide mimetics of TACAs, such as for SLex, SLea, SLe⁺ or Tn, to prevent enzymatic degradation and improve antitumor efficacy.

Glycan modifications can also be used to target shared or neo-antigens to APCs including dendritic cells. Dendritic cells express lectins binding to glycan epitopes. For example, dendritic cells express the lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) and Langerin that can be targeted with fucosylated glycans of Lewis-type oligosaccharides. In another work, Siglec-1 on macrophages was targeted to induce an immune response to a lipid antigen and robustly activate NK T cells.
that can be divided into two groups. On one side, there are evolutionary conserved Siglec receptors including Siglec-1, Siglec-2 (CD22), Siglec-4 and Siglec-15. On the other side, CD33-related Siglecs have rapidly evolved also within mammalian species. Siglec-3 (CD33), Siglec-5, Siglec-6, Siglec-7, Siglec-8, Siglec-9, Siglec-10, Siglec-11 and Siglec-14 belong to the CD33-related Siglecs and there are for most of them no direct orthologs, for example, in mice and humans. Most Siglec receptor have intracellular domains containing immunoreceptor tyrosine-based inhibitory motifs (ITIM) or ITIM-like motifs. Engagement of these inhibitory receptors lead to a phosphorylation of Src homology region 2 domain-containing phosphatase (SHP)-1 and SHP-2, which inhibit cell activation. Most Siglec receptors are expressed on immune cells and engagement inhibits immune cell activation. Diversification of CD33-related Siglecs is probably due to interactions with pathogens exploiting inhibitory Siglec receptors by covering themselves with sialoglycans. Some pathogens as the group B streptococci have even developed proteins to engage inhibitory Siglecs on myeloid cells and thereby evade immune-mediated killing. The role of Siglec receptors as new targetable immune checkpoints has been recently reviewed in depth. Expression of inhibitory Siglec receptors on innate immune cells have been linked to inhibition of anticancer immunity. Siglec-7 is expressed on the majority of NK cells and Siglec-9 can be found on some subpopulations of NK cells. Upregulation of sialoglycans on cancer cells can inhibit NK cell-mediated tumor cell killing by engaging Siglec-7 and in some instances also Siglec-9. Siglec-9 expression has been shown to skew macrophage polarization to a protumorigenic phenotype and increased programmed death ligand 1 (PD-L1) expression on macrophages. Siglec-9 engagement was shown to be dependent in this set of experiments on STn-modified mucins. Other experiments in mice showed that myeloid polarization is affected by inhibitory Siglec

Siglec	Expression	Function	Binding specificity
Siglec-1, sialoadhesin	Macrophages, monocytes	No intracellular ITIM or ITIM-like motifs, supports phagocytosis	α2,3>α2,6
Siglec-2, CD22	B cells	Inhibitory Siglec, inhibitory B cell receptor	α2,6
Siglec-3, CD33	Myeloid cells (including neutrophils, monocytes and progenitors)	Inhibitory Siglec (ITIM, ITIM-like)	α2,6>α2,3
Siglec-4, myelin-associated glycoprotein	Myelin producing cells	No intracellular ITIM or ITIM-like motifs, important for	α2,3>α2,6
Siglec-5	Monocytes, macrophages, neutrophils, activated T cells	Inhibitory Siglec (ITIM, ITIM-like), paired receptor with Siglec-14	α2,3
Siglec-6	Trophoblast, chronic lymphocytic leukemia cells	Inhibitory Siglec (ITIM, ITIM-like)	α2,6
Siglec-7	NK cells, intratumoral T cells	Inhibitory Siglec (ITIM, ITIM-like)	α2,8>α2,6>α2,3
Siglec-8	Eosinophils	Inhibitory Siglec (ITIM, ITIM-like)	α2,3>α2,6
Siglec-9	Myeloid cells, NK cells, intratumoral T cells, dendritic cells	Inhibitory Siglec (ITIM, ITIM-like)	α2,3>α2,6, broadly binding, also binding to some protein ligand
Siglec-10	B cells, T cells	Inhibitory Siglec (ITIM, ITIM-like)	α2,3>α2,6
Siglec-11	Macrophages, microglia	Inhibitory Siglec (ITIM, ITIM-like), paired receptor with	α2,8
Siglec-XII	Epithelial cells, cancer cells	No binding to sialic acid-containing ligands (mutation of essential arginine in carbohydrate-recognition)	No binding to sialic acid ligands
Siglec-14	Monocytes, macrophages, neutrophils	Activating Siglec, positively charged amino acid mediates binding to DAP12, paired receptor with Siglec-5	α2,3 similar binding as its paired receptor Siglec-5
Siglec-15	Macrophages, dendritic cells, osteoclasts	Activating Siglec, positively charged amino acid mediates binding to DAP12	α2,6
Siglec-16	Macrophages, microglia	Activating Siglec, positively charged amino acid mediates binding to DAP12, paired receptor with Siglec-11	α2,8 similar binding as its paired receptor Siglec-11

ITIM, immunoreceptor tyrosine-based inhibitory motif.
receptors including Siglec-E, the functional paralog of Siglec-9 in mice. Recent evidence demonstrated that Siglec-10 on macrophages can act as a “don’t eat me” signal to inhibit phagocytosis.

Of note, the expression of Siglecs on adaptive immune cells including CD8 T cells are inhibiting effective anticancer immunity as shown by us and others. Siglec-9 is upregulated on tumor-infiltrating T cells in various cancers including NSCLC, colorectal cancer, epithelial ovarian cancer and melanoma. Tumor growth was significantly enhanced in a transgenic mouse model of overexpression of Siglec-9 on T cells. Siglec-9 was expressed mainly on tumor-specific T cells shown by a reduced TCR repertoire in tumor infiltrating CD8 T cells. Interestingly, Siglec-9 positive CD8 T cells represent a less dysfunctional intratumoral T cell subtype and Siglec-9 blockade could reactivate these T cells. The conserved Siglec-15 was identified as inhibitor of T cell activation on APCs.

Approaches to target sialoglycan-Siglec interactions could involve both blocking the Siglec receptor, for example, with an antibody. Siglec-15 was targeted with an antibody in preclinical mouse models and is already in an early clinical trial for advanced solid tumors (NCT03665285). On the other side, the ligand could be targeted enzymatically with sialidases or with small molecules interfering with sialoglycan biosynthesis. The use of sialic acid analogs in vivo by intratumoral injection could block the sialoglycan biosynthesis and led to a strong activation intratumoral T cells, however the systemic application of these analogs would be quite toxic. Bacterial sialidase was tested in a system linked to the HER2-targeting antibody trastuzumab and NK cell-mediated tumor cell killing was tested in vitro. Recently, HER2-targeted bacterial sialidase was tested in vivo in syngeneic mice and showed efficacy. Currently, a humanized version of this tumor-targeted sialidase is in clinical development and the toxicity profile needs to be further tested.

Targeting selectins

Selectins belong to the class of C-type lectins and bind mainly to sialoglycans. The three selectins, E-selectin, P-selectin, and L-selectin (CD62E, CD62P and CD62L) bind to different sialylated ligands, often containing sialyl-Leα in a relatively selective manner and mediate interactions between platelets expressing P-selectin, leukocytes expressing L-selectin and endothelial cells expressing P-selectin and E-selectin. Expression of L-selectin on T cells can enhance cancer immunotherapy in mouse models. The P-selectin ligand carrying protein P-selectin glycoprotein ligand (PSGL-1) was identified to be involved in T cell exhaustion, and was also shown to inhibit in anticancer immunity through its protein-protein interaction with the immune checkpoint VISTA, an inhibitory receptor expressed on T cells. However, these studies have not directly implicated interactions of the carbohydrate-modification of PSGL-1 to their effect on anticancer immunity and these effects are probably P-selectin independent. As sialoglycan-selectin interactions play an important role in leukocyte trafficking and mediation of immune responses, it is likely that sialoglycan-selectin interactions could influence anticancer immunity. Indeed, recent experiments demonstrate that modification of CAR T cells to bind to selectins can improve anticancer efficacy. However, further studies are needed to determine the role of selectins in anticancer immunity and how these interactions can be exploited for cancer immunotherapy.

Galectin-mediated interactions

Galectins are a class of carbohydrates-binding proteins capable of recognizing β-galactose via their carbohydrate-binding domain. Aberrant expression of galectins is frequent in cancer cells as well as in stromal cells and is associated with tumor progression. Importantly, galectins are involved in mediating interactions between tumor cells and innate and adaptive immune cells; upregulation of galectins by tumor cells is regarded as a mechanism of tumor immune escape, with some galectins being ligands for immune checkpoint receptors. For example, galectin-3 binds to cytotoxic T lymphocyte antigen 4 (CTLA-4) and lymphocyte activation gene 3 (LAG-3) whereas galectin-9 binds to T cell immunoglobulin and mucin-domain containing-3 (TIM-3). Galectin-1 is found upregulated in many different tumors and has been shown to antagonistically bind to the TCR, thus disrupting TCR signaling, and to determine T cell apoptosis, via redistribution of CD3 and CD45 clusters as well as CD7 and CD43 clusters. Early studies suggested that silencing expression of galectin-1 in tumor cells may be a strategy to enhance T-cell-mediated anti-tumor responses. Recently, a novel Gal-1-targeting DNA aptamer (AP-74 M-545) was developed and shown to suppress lung carcinoma growth in immunocompetent models. This was accompanied by an increase in CD4+ and CD8+ T cells, possibly by blocking the binding of galectin-1 to CD45. Nambal and colleagues showed that galectin-1 also prevents T cell migration into the tumor by upregulating PD-L1 and galectin-9 expression on endothelial cells. Blockade of galectin-1 resulted in increased T cell infiltration in multiple head and neck cancer mouse models as well as enhanced response to PD-1 blockade and radiotherapy combinations. Similarly, knockdown of galectin-1 in a mouse model of pancreatic ductal adenocarcinoma increased survival and enhanced T cell infiltration. In NSCLC, high expression of galectin-3 in the tumor microenvironment is associated with poor outcome and targeting of this galectin with an antagonist has been shown to inhibit lung adenocarcinoma growth and enhance response to PD-L1 blockade in vivo. Moreover, LAG-3 and interactions with galectin-3 are also under investigation as a target for cancer immunotherapy in preclinical and clinical studies.
Similarly, galectin-9/TIM-3 interactions are a recent target of immunotherapeutic intervention due to its suppressive properties of the antitumor immune response.

Interactions with other lectins
C-type lectins are known to be involved in immunity, cell proliferation, tumor invasion and metastasis making them potential targets for cancer research such as selectins, DC-SIGN, Mincle, Dectin 1 and NKG2D. The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands which the main feature is the C-type lectin-like domain. Cells of the adaptive and innate immune system commonly express c-type lectins including all myeloid cells, lymphocytes and dendritic cells. The lectin DC-SIGN can be recognized by glycosylated intercellular adhesion molecule 2 (ICAM-2) forming a DC-SIGN-ICAM-2 complex. This complex allows the maturation of dendritic cells that induces a specific cytotoxic T lymphocyte-modulated immune response promoting anti-tumor activity. Consisted with this, the DC-SIGN-Mac-2 complex also inhibited the maturation of dendritic cells in colorectal carcinoma. DC-SIGN also has other ligands such as carcinoembryonic antigen and Le. A recent work has found that sialylation of antibodies could dampen autoimmune disease with potential consequences. Dectin-1 expressed on dendritic cells and macrophages is critical to the NK-mediated killing of tumor cells that expressed N-glycans in high levels. Furthermore, NK62DG is expressed on the surface of dendritic cells and its soluble ligands are very high in cancer leading to immunosuppression and poor prognosis in patients with cancer. In addition, the engagement of macrophage-inducible C-type lectin (Mincle) has been associated with immunosuppression and tumor progression.

Impact of glycosylation on immune checkpoints
Glycosylation can mediate stability of different receptors and can influence cancer progression. Immune checkpoints are also glycosylated and targeting glycosylation of PD-1 can improve anticancer immunity. PD-1 in T cells is N-glycosylated and its N-glycosylation is critical for the stability on the cell surface. In addition, a glycosylation site on PD-1 was critical for interaction with PD-L1. On the other side, glycosylation of PD-L1 is also critical for its stability and targeting PD-L1 glycosylation could be used to improve anticancer immunotherapy. Moreover, the detection of PD-L1 in human cancers is dependent on glycosylation and could influence the predictive power of PD-L1 staining and the use of PD-(L)1 blocking antibodies in patients. Also, CTLA-4-mediated interactions are glycan-dependent and binding as well as stability could be influenced.

Glycosylation and signaling pathways involved in resistance to immune checkpoint inhibitors
Several intracellular signaling pathways have been associated with resistance to ICI therapy including the activation of WNT/β-catenin signaling, MYC signaling and loss of phosphatase and tensin homolog (PTEN). Activation of the WNT/β-catenin signaling pathway has been shown to increase the production of immunosuppressive cytokines, prevention of the recruitment of BATF3+ dendritic cells and a shift towards an increase in regulatory T cells in the tumor. WNT/β-catenin signaling is also regulating glycosylation by promoting the expression of the enzyme DPAGT1 and thereby enhancing increased N-glycosylation. Increased N-glycosylation could further enhance immune evasion by providing ligands for immunomodulatory receptors such as Siglecs. MYC can influence the expression of PD-L1 and thereby influence the immune microenvironment in tumors. In addition, MYC signaling can directly mediate immune cell exhaustion in NSCLC. MYC is directly regulated by O-GlcNAcylation. O-GlcNAcylation was needed for proliferation and MYC stability.

CONCLUSION AND OUTLOOK
Recent discoveries and progress have revealed that tumor-associated carbohydrates are an interesting new target for cancer immunotherapy interventions. Many therapeutic opportunities are ready to be explored and targeting of TACA has just started as new field within cancer immunotherapy. Further studies are needed to determine patient populations that could benefit from such interventions. Whereas for proteins, the epidemiology and expression patterns are often well studied, the epidemiology of glycan expression will be important in order to determine the frequency of specific expression in cancer types and also during therapeutic interventions. In addition, glycan-mediated interactions with immunomodulatory lectins on leukocytes including Siglecs can directly affect anticancer immunity. Siglec-sialoglycan interactions have been described as potential new immune checkpoint. A first successful application in an early clinical trials with the Siglec-15 blocking agent (NC318) is promising. Besides the role as antigen and immunomodulatory factor, glycans can directly influence the stability and turnover of immune receptors including immune checkpoints.

We are confident that the field of glyco-immunology will enable us to improve cancer immunotherapy and help many of our patients by further studying mechanisms involved in glycan-mediated immune suppression and developing new approaches to target cancer-associated glycans.

Contributors NRM, MN, AZ and HL have written the manuscript. All authors have approved the final version for publication.

Funding This work was supported by funding from the Goldschmidt-Jacobson Foundation, the Swiss National Science Foundation (SNSF grant #3 10 030–1 84 720), the Schoenmakers-Müller Foundation and the Cancer League of Basel (Kbb).

Competing interests HL received travel grants and consultant fees from Bristol Myers Squibb (BMS) and Merck, Sharp and Dohme (MSD). HL received research support from BMS and Pallee Pharmaceuticals.
with recurrent epithelial ovarian carcinoma. *Annals of Oncology* 2017:28:v626–49.

56 Lavrenk K, Madsen CB, Rasch MG, et al. Abrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. *Glycobiology* 2013:30:227–36.

57 Wang TT, Ravetch JV. Functional diversification of IgGs through Fc glycosylation. *J Clin Invest* 2019:129:3492–8.

58 Mastrandeli R, Palinsky W, Bierau H. Glycoengineered antibodies: towards the next-generation of immunotherapeutics. *Glycobiology* 2019:29:190–210.

59 Ross HJ, Hart LL, Swanson PM, et al. A randomized, multicenter study to determine the safety and efficacy of the immunocolog conjugate SGN-15 plus docetaxel for the treatment of non-small cell lung cancer (NSCLC). *Lung Cancer* 2006;54:69–77.

60 Tolcher AW, Sugarman S, Gelmon KA, et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. *JCO* 1999;17:478–84.

61 Sedlik C, Heitzmann A, Vieil S, et al. Effective anti-CD33 therapy based on a novel antibody-drug conjugate demonstrates strong tumor specificity and anti-tumor activity. *MABs* 2017;8:615–27.

62 Eavaroa DA, Al-Alem L, Lugovsky A, et al. Humanized anti-Sialyl-Tn antibodies for the treatment of ovarian carcinoma. *PloS One* 2018;13:e020314.

63 Tivadar ST, McIntosh RS, Chua JX, et al. Monoclonal Antibody Targeting Sugar Containing Oligosaccharides of Anti Tumor Glycoconjugates: Development Potential. *Mol Cancer Ther* 2020;19:790–801.

64 Katayose Y, Kudo T, Suzuki M, et al. MUC1-specific targeting immunotherapy with bispecific antibodies: inhibition of xenografted human bile duct carcinoma. *Cancer* 1996:56:4205–12.

65 Kodama H, Suzuki M, Katayose Y, et al. Specific and effective targeting cancer immunotherapy with a combination of three bispecific antibodies. *Immumol Lett* 2002:81:99–106.

66 Li Y, Zhou C, Li J, et al. Single domain based bispecific antibody, MUC1-Bi-1, and its humanized form, MUC1-Bi-2, induce potent cancer killing in MUC1 positive tumor cells. *PloS One* 2018;13:e019124.

67 Hoseini SS, Dobrenkov K, Pankov D, et al. Bispecific antibody does not induce T cell death mediated by chimeric antigen receptor against disialoganglioside GD2. *Oncoimmunology* 2017:6:e120625.

68 Bachanova V, Frankel AE, Cao Q, et al. Phase I study of a bispecific scFv-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. *Clin Cancer Res* 2015:21:1267–72.

69 Friedrich M, Jenni R, et al. Advanced non-small cell lung cancer patients. *Clin Cancer Res* 1990;50:1215–9.

70 Scott AM, Tebbs N, Lee F-T, et al. Phase I biodistribution and pharmacokinetic trial of humanized monoclonal antibody Hu3S193 in patients with advanced epithelial cancers that express the Lewis-Y antigen. *Clin Cancer Res* 2007;13:2826–92.

71 Smalet O, Diz MDPE, do Carmo CC, et al. A phase II trial with anti-Lewis-Y monoclonal antibody (hu3S193) for the treatment of platinum resistant metastatic ovarian carcinoma. *Gynecol Oncol* 2015;138:272–7.

72 Heubeln S, Mayr D, Egger M, et al. Immunoreactivity of the fully humanized therapeutic antibody PankoMab-GEX™ in an independent prognostic marker for breast cancer patients. *J Exp Clin Cancer Res* 2015;34:50.

73 Danielczyk A, Stahn R, Faulstich D, et al. PankoMab: a potent new generation anti-tumour MUC1 antibody. *Cancer Immunol Immunother* 2006;55:1337–47.

74 Fiedler W, DeDossos S, Cresta S, et al. A phase I study of PankoMab-GEX, a humanized glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycoepitope epitope in patients with advanced carcinomas. *Eur J Cancer* 2016;53:55–63.

75 Ledermann J, Sehoul J, Zurawski B, et al. A double-blind, placebo-controlled randomized, phase III study to evaluate the efficacy and safety of switch maintenance therapy with the anti-TA-MUC1 antibody PankoMab-GEX after chemotherapy in patients
membrane mucin MUC1 control adenocarcinoma. **Immunity** 2016;44:1444–54.

100 Westwood JA, Smyth MJ, Teng MWL, et al. Adoptive transfer of T cells modified with a humanized chimeric receptor gene inhibits growth of Lewis lung expressing tumors in mice. **Proc Natl Acad Sci U S A** 2006;102:19051–6.

101 Peinert S, Prince HM, Guru PM, et al. Gene-Modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. **Gene Ther** 2010;17:678–86.

102 Ritchie DS, Neeson PJ, Khot A, et al. Persistence and efficacy of second generation CAR T cells against the Leyt antigen in acute myeloid leukemia. **Mol Ther** 2013;21:2122–9.

103 Pule MA, Savolvo B, Myers GD, et al. Virus-Specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. **Nat Med** 2008;14:1264–70.

104 Louis CU, Savolvo B, Dotti G, et al. Gb3-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. **Mol Ther** 2016;24:1135–49.

105 Hecezy A, Louis CU, Savolvo B, et al. Car T cells administered in combination with Lympheodepletion and PD-1 Inhibition to patients with neuroblastoma. **Mol Ther** 2017;25:2214–24.

106 Zimmermann K, Kuehle J, Dragon AC, et al. Design and Characterization of an "All-in-One" Lentiviral Vector System Combining Constitutive Anti-G, CAR Expression and Inducible Cytokines. **Sci Rep** 2020;12:375.

107 Mitwasi N, Feldmann A, Arndt C, et al. "UniCAR"—modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumor cells. **Sci Rep** 2020;10:2141.

108 O’Boyle KP, Zamore R, Adluri S, et al. Immunization of colorectal cancer patients modified ovine submaxillary gland mucin and adjuvants induces IgM and IgG antibodies to sialylated Tn. **Cancer Res** 1992;52:5663–7.

109 Reinitz S, Köhler S, Schlebusch H, et al. Vaccination of patients with advanced ovarian carcinoma with the anti-idiotypic ACA125, immune response and survival (phase llb1i). **Clin Cancer Res** 2004;10:1580–7.

110 Ragupathi G, Livingston PO, Hood C, et al. Consistent antibody response against ganglioside GD2 induced in patients with melanoma by a GD2 lactone-keyhole limpet hemocyanin conjugate vaccine plus immunoadjuvant QS-21. **Clin Cancer Res** 2003;9:5214–20.

111 Champion PB, Morrissey D, Panagases KS, et al. Vaccination with a bivalent G(M2) and GD2 ganglioside conjugate vaccine: a trial comparing doses of G(D2)-keyhole limpet hemocyanin. **Cancer Res** 2000;60:4692–8.

112 Vázquez AM, Hernández AM, Macias A, et al. Racotumomab: an anti-idiotypic vaccine related to N-glycolyl-containing gangliosides - preclinical and clinical data. **Front Oncol** 2012;2:150.

113 Carr A, Rodriguez E, Arango MdeoC, et al. Immunotherapy of advanced pancreatic cancer with a heterophilic glycan conjugate (NeuGcGa3GM3) cancer vaccine. **J Clin Oncol** 2003;21:1015–21.

114 MacLean GD, Reddish MA, Koganty RR, et al. Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STN vaccine. **J Immunother Emphasis Tumor Immunol** 1996;19:59–68.

115 Miles D, Roché H, Martin M, et al. Phase III multicenter clinical trial of the sialyl-Tn (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer. **Oncologist** 2011;16:1092–100.

116 Ragupathi G, Kuehle J, Livingstone A, et al. Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to antitumor vaccine candidates. **J Am Chem Soc** 2008;130:2715–23.

117 Richichi B, Thomas B, Fiore M, et al. A cancer therapeutic vaccine based on clustered Tn-antigen mimetics induces strong antibody-mediated protective immunity. **Angew Chem Int Ed Engl** 2014;53:11917–20.

118 Kiefer-Emmons T, Saha S, Pashov A, et al. Carbohydrate-Mimetic peptides for pan anti-tumor responses. **Front Immunol** 2014;5:308.

119 Dinkenker S, Li RE, van Haften FJ, et al. Chemically engineered glyc-an-modified cancer vaccines to mobilize skin dendritic cells. **Curr Opin Chem Biol** 2019;53:167–72.

120 Porkolab V, Champa V, Varga N, et al. Rational-Differential design of highly specific Glycomimetic ligands: targeting DC-SIGN and excluding langerin recognition. **ACS Chem Biol** 2018;13:600–8.

121 Kawasaki N, Vela JL, Nycholat CM, et al. Targeted delivery of lipid macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. **Proc Natl Acad Sci U S A** 2013;110:7826–31.

122 Cummings RD, Savolvo B, Esko JD, et al. Principles of Glycan Recognition. In: Var ki A, Cummings RD, Esko JD, et al, eds. Essentials of glycobiology. Harbor, NY: Cold Spring, 2015: 373–85.

123 Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. **Nat Rev Cancer** 2005;5:526–42.

124 Bärenaldi L, Delprete G, and sialyl-ganglioside glyco-immune checkpoint - a target for improving innate and adaptive anti-cancer immunity. **Expert Opin Ther Targets** 2019;23:839–53.

125 Duan S, Paulson JC. Siglecs as immune cell checkpoints in disease. **Annu Rev Immunol** 2020;38:365–95.

126 Var ki A, Schnaar RL, Crocker PR, et al. Type I Lectins. In: Var ki A, Cummings RD, Esko JD, et al, eds. Essentials of glycobiology. Harbor, NY; Cold Spring, 2015: 453–67.

127 Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. **Nat Rev Immunol** 2014;14:855–66.

128 Angata T. Possible influences of endogenous and exogenous ligands on the evolution of human siglecs. **Front Immunol** 2018;9:2885.

129 Chang Y-C, Nizet V. Siglecs at the host-pathogen interface. **Adv Exp Med Biol** 2020;1204:197–214.

130 Carlin AF, Chang Y-C, Areshouc T, et al. Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. *J Exp Med* 2009;206:1691–9.

131 Rodrigues Mantuano N, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. **Blood** 2011;118:6050–6.

132 Jordan DJ, Sterritt ML, Neeson PJ, et al. Persistence and efficacy of second generation CAR T cell against the Leyt antigen in acute myeloid leukaemia. **Mol Ther** 2012;20:483–9.

133 Peinert S, Prince HM, Guru PM, et al. Gene-Modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen. **Gene Ther** 2010;17:678–86.

134 Richichi B, Thomas B, Fiore M, et al. A cancer therapeutic vaccine based on clustered Tn-antigen mimetics induces strong antibody-mediated protective immunity. **Angew Chem Int Ed Engl** 2014;53:11917–20.

135 Kiefer-Emmons T, Saha S, Pashov A, et al. Carbohydrate-Mimetic peptides for pan anti-tumor responses. **Front Immunol** 2014;5:308.

136 Dinkenker S, Li RE, van Haften FJ, et al. Chemically engineered glyc-an-modified cancer vaccines to mobilize skin dendritic cells. **Curr Opin Chem Biol** 2019;53:167–72.

137 Porkolab V, Champa V, Varga N, et al. Rational-Differential design of highly specific Glycomimetic ligands: targeting DC-SIGN and excluding langerin recognition. **ACS Chem Biol** 2018;13:600–8.
Mondal N, Silva M, Castano AP, et al. Glycoengineering of chimeric antigen receptor (CAR) T-cells to enforce E-selectin binding. J Biol Chem 2019;294:18465–74.

Sackstein R. The first step in adoptive cell immunotherapeutics: assuring cell delivery via glycoengineering. Front Immunol 2018;9:3084.

Barondes SH, Castronovo V, Cooper DN, et al. Galectins: a family of animal beta-galactoside-binding lectins. Cell 1994;76:597–8.

Liu F-T, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer 2015;3:412–23.

Zhu C, Anderson AC, Schubart A, et al. An orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and homeostasis. J Biol Chem 2015;20:3791–810.

Chiba S, Ikushima H, Ueki H, et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 2014;3:e04177.

Vyas M, Reynolds D, Hoffmann N, et al. Soluble NKGD2 ligands in the ovarian cancer microenvironment are associated with an adverse clinical outcome and decreased memory effector T cells independent of NKGD2 downregulation. Oncoimmunology 2017;6:e139854.

Maccalli C, Giannarelli D, Chiacci U, et al. Soluble NKGD2 ligands are biomarkers associated with the clinical outcome to immune checkpoint blockade therapy of metastatic melanoma patients. Oncoimmunology 2017;6:e1323618.

Liu F-T, Rabinovich GA, et al. Towards Glycoengineering of chimeric antigen receptor (CAR) T-cells to induce T cell death. J Immunol 2006;176:778–89.

Kouo T, Huang L, Pucsek AB, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunology Research 2015;3:412–23.

Zhu C, Anderson AC, Schubart A, et al. The first step in adoptive cell immunotherapeutics: assuring cell delivery via glycoengineering. Front Immunol 2018;9:3084.

Liu F-T, Rabinovich GA, et al. Galectins as modulators of tumour progression. Nat Rev Cancer 2015;3:412–23.

Zhu C, Anderson AC, Schubart A, et al. The first step in adoptive cell immunotherapeutics: assuring cell delivery via glycoengineering. Front Immunol 2018;9:3084.