Brief Communication

Immune evasion activities of accessory proteins Vpu, Nef and Vif are conserved in acute and chronic HIV-1 infection

Petra Mlcochova, Luis Apolonia, Silvia F. Kluge, Aishwarya Sridharan, Frank Kirchhoff, Michael H. Malim, Daniel Sauter, Ravindra K. Gupta

Department of Infection, University College London, London, UK
Department of Infectious Diseases, King's College London, London, UK
Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany

A R T I C L E I N F O
Article history:
Received 6 February 2015
Returned to author for revisions 24 February 2015
Accepted 2 March 2015
Available online 30 March 2015

Keywords:
HIV
Vpu
Nef
Vif
Accessory
Acute
Chronic

A B S T R A C T
Heterosexual HIV-1 transmission has been identified as a genetic bottleneck and a single transmitted/founder (T/F) variant with reduced sensitivity to type I interferon initiates productive infection in most cases. We hypothesized that particularly active accessory protein(s) may confer T/F viruses with a selective advantage in establishing HIV infection. Thus, we tested vpu, vif and nef alleles from six T/F and six chronic (CC) viruses in assays for 9 immune evasion activities involving the counteraction of interferon-stimulated genes and modulation of ligands known to activate innate immune cells. All functions were highly conserved with no significant differences between T/F and CC viruses, suggesting that these accessory protein functions are important throughout the course of infection.

Introduction

Studies have defined a genetic 'bottleneck' at mucosal HIV-1 transmission with a single inferred variant initiating peripheral viremia in most cases (Baalwa et al., 2013; Fenton-May et al., 2013; Haaland et al., 2009; Ochsenbauer et al., 2012; Parrish et al., 2013; Salazar-Gonzalez et al., 2009). In particular it has been noted that transmitted founder (T/F) Envelope proteins are R5 tropic with both increased sensitivity to broadly neutralizing antibodies (Wilen et al., 2011) and reduced ability to interact with maraviroc-bound CCR5 compared to viruses isolated from chronic infection (Parker et al., 2013). Furthermore, preferential transmission of ancestral as opposed to contemporary strains in donor individuals has been reported (Redd et al., 2012), suggesting specific viral determinants for sexual transmission that differ from determinants for propagation of chronic infection. Intriguingly, it has been reported that T/F viruses are less restricted by interferon (IFN) in primary T cells than chronic controls (Fenton-May et al., 2013; Parrish et al., 2013).

Lentiviral accessory proteins have evolved the ability to mitigate the detrimental effects of an IFN-induced antiviral immune response by interfering with various host immunity factors (Harris et al., 2012; Moll et al., 2010; Shah et al., 2010). For example, HIV-1 Vpu and Vif counteract the IFN-inducible restriction factors tetherin/BST-2/CD317 (Neil et al., 2008; Van Damme et al., 2008) and APOBEC3D/F/G, respectively (Bishop et al., 2004; Hultquist et al., 2011; Sheehy et al., 2002; Zheng et al., 2004). Vpu also prevents expression of IFN and IFN-stimulated genes by inhibiting the activation of NF-κB (Bour et al., 2001; Sauter et al., 2015), and Nef is known to modulate a range of host immune receptors including CD4 and MHC molecules (Kirchhoff, 2010).

We hypothesized that accessory gene(s) from T/F viruses confer advantages to establishment and early propagation of HIV-1 infection either through counteraction of IFN-stimulated genes or modulation of ligands known to activate NK, NKT and other immune cells. We therefore directly compared functional activities of the accessory proteins Vpu, Vif and Nef from six T/F and six CC viruses (see Table 1 for patient characteristics and Supplementary Figs. 1–3 for multiple sequence alignments).

Results

Counteraction of tetherin/BST-2/CD317 and NF-κB activation by Vpu

Vpu proteins from T/F and CC viruses were tested for their ability to increase virion release by counteracting tetherin/BST-2/CD317. Tetherin serves as a physical tether between viral and cellular membranes and
inhibits the egress of budding virions from infected cells. All Vpus were expressed (Fig. 1A) and enabled efficient virus release from tetherin expressing HEK293T cells. Anti-tetherin activity was similar for Vpus from T/F and CC viruses ($p = 0.51$, Fig. 1B), consistent with a previous study demonstrating conservation of tetherin antagonism over extended periods in chronically infected patients (Pickering et al., 2014).

Tetherin does not only restrict virion release but also acts as an innate sensor activating NF-κB-dependent expression of type I IFN and IFN-stimulated genes (Galao et al., 2012). We therefore investigated whether T/F Vpus are more efficient in blocking tetherin signaling than Vpus from CC viruses. A dual luciferase reporter assay in HEK293T cells revealed that all Vpus efficiently inhibited the activation of NF-κB with no significant differences between the T/F and CC groups ($p = 0.81$, Fig. 1C). Since Vpu has also been reported to block activation of NF-κB independently of tetherin (Bour et al., 2001; Sauter et al., 2015), we repeated the experiment using a constitutively active mutant of IKKβ instead of tetherin as the inducer. Again, T/F and CC Vpus suppressed NF-κB activation to similar degrees ($p = 0.31$, Fig. 1D).

Cell surface downregulation of CD4, NTB-A and CD1d by Vpu

Besides counteracting tetherin and inhibiting NF-κB activation, Vpu also decreases cell surface expression of CD4, NTB-A and CD1d. While downmodulation of CD4 prevents superinfection and enables the release of fully infectious progeny virions from infected cells (Kimura et al., 1994; Lam et al., 1999; Wildum et al., 2006), downmodulation of NTB-A and CD1d has been suggested to protect HIV-1 infected cells from NK or NKT cell mediated killing, respectively (Moll et al., 2010; Shah et al., 2010). Using flow cytometry, we monitored expression of these receptors on the surface of HEK293T cells transfected with Vpu or a vector control. Vpu reduced surface levels of all three receptors as expected, with significant differences between T/F and CC viruses (CD4: $p = 0.84$, NTB-A: $p = 0.61$, CD1d: $p = 0.34$, Fig. 1E–J).

Counteraction of APOBEC3F/G by Vif

The accessory protein Vif induces the ubiquitination and subsequent degradation of the restriction factors APOBEC3F/G/H to prevent their incorporation into viral particles (Bishop et al., 2004; Hultquist et al., 2011; Sheehy et al., 2002). APOBEC3F/G are cytidine deaminases, inhibiting HIV-1 replication through G to A hypermutation of viral cDNA as well as direct inhibition of reverse transcription itself (Gillick et al., 2013). We analyzed the activity of T/F and CC Vif proteins against human APOBEC3F and APOBEC3G by co-transfecting HEK293T cells with plasmids encoding vif-deficient HIV-1 along with APOBEC3F or APOBEC3G and vif alleles/empty plasmid. As Vif expression/stability varied between alleles tested, the amount of Vif expression plasmid was modified in order to achieve similar amounts of Vif protein in the producer cells (Fig. 2A). Under these conditions the infectivity of supernatant viruses was determined, revealing that Vifs from T/F and CC viruses have equivalent activity against APOBEC3F and APOBEC3G (Fig. 2B and C).

Cell surface downregulation of CD4, CD28 and MHC class I by Nef

The accessory protein Nef downregulates various cell surface proteins including CD4, MHC class I and CD28 to escape immune surveillance (Garcia and Miller, 1991; Schwartz et al., 1996; Swigut et al., 2001) and may thus also be involved in the reduced sensitivity of T/F viruses to IFN. CD4 and CD28 downregulation were analyzed by transient transfection of HEK293T cells with vectors expressing Nef and either CD4 or CD28. All Nef proteins were efficiently expressed (Fig. 3A) and reduced surface expression of both receptors with no significant differences between T/F and CC viruses (CD4: $p = 0.71$, CD28: $p = 0.76$, Fig. 3B–E). To explore MHC class I down-regulation, a HeLa cell line expressing HLA-B*27 was transfected with different nef alleles and MHC class I cell surface expression was analyzed by FACS 48 h post-transfection. Nef proteins of both groups of viruses downmodulated MHC class I to a similar extent ($p = 0.22$, Fig. 3F and G).

Nef-mediated enhancement of virion infectivity

It has been shown that HIV-1 virion infectivity is reduced in the absence of a functional nef gene (Aiken and Trono, 1995; Chowers et al., 1994). We thus tested the effect of Nef proteins on virion infectivity by transfecting HEK293T cells with nef alleles and nef-deficient HIV-1 NL4-3. Supernatants harvested two days post-transfection were used to infect TZM-bl cells with normalized amounts of p24. Despite variation between individual Nef proteins in their ability to enhance virion infectivity, there was no statistical difference when T/F and CC Nefs were compared ($p = 0.77$, Fig. 3H).

Discussion

In summary, our results show that established functions of the accessory proteins Vpu, Vif and Nef are conserved across T/F and CC viruses. Specifically, our results from transient expression studies suggest that the increased IFN resistance of newly transmitted HIV-1 strains is not the result of a particularly efficient Vpu-mediated inhibition of NF-κB activation or counteraction of the restriction factors tetherin and APOBEC3F/G. An important limitation is that viral proteins were not expressed from a provirus in our experiments, and therefore it is possible that *in vivo* expression may differ.

Table 1 Origins and characteristics of viruses used in this study.

Virus	Country of origin	Gender	Transmission route	Fiebig stage	Viral load at isolation	Cd4 count at isolation	Coreceptor tropism	TF/CC	HIV-1 subtype
ZM246F	Zambia	F	Heterosexual	II	10,013,800	NA	RS	TF	C
ZM247F	Zambia	F	Heterosexual	II	10,823,500	NA	RS	TF	C
ZM245M	Zambia	M	Heterosexual	IV	> 2,000,000	NA	RS	TF	C
CH040	USA	M	MSM	II/III	2,197,248	NA	RS	TF	B
WITO	USA	M	Heterosexual	II	325,664	NA	RS	TF	B
CH077	USA	M	MSM	II/III	394,649	NA	RS/X4	TF	B
CH432	Malawi	M	Heterosexual	NA	40,570	261	RS	CC	C
CH457	Tanzania	F	Heterosexual	NA	234,671	450	RS	CC	C
CH534	South Africa	F	Heterosexual	NA	NA	NA	NA	NA	NA
RHG4	USA	M	MSM	NA	50,000	571	RS	CC	C
WAR1	USA	F	MSM	NA	16,758	598	RS/X4	CC	B
STCl01	USA	M	MSM	NA	67,964	796	RS/X4	CC	B

Key: MSM: men who have sex with men; TF – transmitted/founder virus; CC- Chronic virus; NA – not available; Fiebig stage as described previously (Fiebig et al., 2003)
The identification of traits that are shared by T/F viruses may ultimately provide novel targets for strategies aiming to prevent the acquisition of HIV-1 at mucosal surfaces. Thus, further analyses of accessory viral gene function in primary human cells and systematic comparison of other HIV-1 gene products are highly warranted to decipher the reason(s) for the increased IFN resistance and selection advantage of T/F viruses during transmission and acute infection.

Materials and methods

Cell culture and transfections

HEK293T, TZM-bl and HeLa.B27 cells were grown under standard conditions in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum, 120 mg/ml streptomycin, 120 mg/ml penicillin and 2 mM l-glutamine. Cells were
transfected using the calcium-phosphate precipitation method, polyethyleneimine (PEI) or Fugene 6 (Roche Applied Science).

Expression vectors

Vpu, Nef, CD1d, CD4, NTB-A (transcript variant 2) and BST-2/
tetherin alleles were cloned into the CMV-promoter-based pCG
expression vector, vpu and nef encoding vectors co-expressing eGFP
or DsRed via an IRES as previously described (Sauter et al., 2009).
CD28 was cloned into a pcDNA3.1 + vector. HA-tagged subtype B
and C Vif alleles were amplified from transmitted/founder and
chronic full-length IMCs (infectious molecular clones) kindly provided
by Beatrice Hahn and cloned into pcDNA3 using NotI and XhoI
restriction sites. The plasmids encoding T7-A3F/G have been pre-
viously described (Apolonia et al., 2015). The firefly luciferase reporter
plasmid containing three NF-kB binding sites as well as the constit-
tively active mutant of IkKβ were kindly provided by Bernd
Baumann. A minimal promoter gaussia luciferase construct was
purchased from Clontech (#631909) and used for normalization. It
contains the TATA-like promoter (pTAL) region from the Herpes
simplex virus thymidine kinase (HSV-TK) that is not responsive to
NF-kB.

Western blotting

Protein expression was assessed by standard immunoblots using
anti AU-1 antibody (bs-2114R, Bioss) to detect AU1 tagged Vpu and
Nef proteins or anti HA (3F10, Roche) to identify HA-tagged Vif. Anti-
HSP90 (H114, Santa Cruz Biotechnology) and anti-actin antibody
(AC-15, Abcam) were used to detect the loading control proteins.

Flow cytometry

To determine the effect of Vpu on CD1d or NTB-A, HEK293T cells
were transfected with 1 µg of the CD1d or NTB-A expression vector
and 5 µg of pCG_IRES eGFP constructs expressing eGFP alone or
together with Vpu. Two days post-transfection CD1d or NTB-A
expression was examined by FACS analysis, essentially as described
previously (Sauter et al., 2013). A phycoerythrin-conjugated anti-
CD1d antibody (BD 550255) or an APC-conjugated anti-SLAM6
antibody (R&D FAB19081A) were used for staining. Fluorescence of
stained cells was detected by two-color flow cytometry and Vpu-
ediated down-modulation of the respective protein was calculated.
Briefly, the mean fluorescence intensities were determined for cells
showing specific ranges of eGFP expression. The fluorescence values
obtained for cells transfected with the control construct expressing
only eGFP was compared with the corresponding number obtained
for cells coexpressing Vpu and eGFP to determine the efficiency of
CD1d or NTB-A down-modulation.

To determine the effect of Vpu and Nef on CD4, HEK293T cells
were transfected with 0.05 µg of the CD4 expression vector and
0.15 µg of pCG_IRES eGFP constructs expressing eGFP alone or
together with Vpu or Nef. Two days post-
transfection CD4 expression
was examined by FACS analysis. A PE/Cy5 anti-human CD4
Antibody (BioLegend) was used for staining. Fluorescence of stained
cells was detected by two-color flow cytometry and quantified as
described above.

To determine the effect of Nef on CD28, HEK293T cells were
transfected with 1 µg of the CD28 expression vector and 0.15 µg of
pCG_IRES eGFP constructs expressing eGFP alone or together with
Nef. Two days post-transfection CD28 expression was examined
by FACS analysis. APC-conjugated anti-human CD28 antibody
(CD28.2, BD Biosciences) was used for staining.

To determine the effect of Nef on MHC I, HeLa.B27 cells [a kind gift
from Anthony Antoniou] were transfected with 0.5 µg of pCG_IRES
eGFP constructs expressing eGFP alone or together with Nef. Two days
post-transfection MHC I expression was examined by FACS analysis. A
PE/Cy5 anti-human HLA-A,B,C antibody, clone W6/32 (BioLegend)
was used for staining. Fluorescence of stained cells was detected by two-
color flow cytometry and quantified as described above.

NF-kB reporter assay

Transfections for luciferase assays were performed in 96-well
plates and each transfection was performed in triplicate as described
before (Sauter et al., 2013). Briefly, Vpu expression plasmids (100 ng)
were transfected in HEK293T cells along with a plasmid expressing
human tetherin or a constitutively active mutant of IkKβ (40 ng),
an NF-kB-dependent firefly luciferase construct (100 ng) and a pTAL
promoter gaussia luciferase reporter plasmid (25 ng). 40 h post-
transfection, dual luciferase assays were performed. Firefly luciferase
signals were normalized to the corresponding gaussia luciferase
signals.

Luciferase reporter virus assay

HEK293T cells were co-transfected with 0.3 µg of p8.91 HIV-
1 gag-pol expression vector, 0.3 µg VSV-G, and 0.45 µg of
pCSLUCW retroviral expression vector encoding luciferase. For tetherin counteraction experiments, 0.25 μg of T/F or CC Vpu constructs were co-transfected with 0.05 μg of tetherin, or empty vector (pcDNA3.1). 48 h post-transfection, viral supernatants were harvested, filtered using 0.45 μm pore-sized filters and used to infect TZM-bl cells. Luciferase activity of the TZM-bl cells was measured 24 h post-infection using the Steady Glo Firefly Luciferase assay (Promega) and GloMax96 Luminometer (Promega).

Nef infectivity assay

HEK293T cells were cotransfected with 0.4 μg pBR_HIV-1 M NL4-3 (nef STOP) and 2 μg of pcG_Nef IRES eGFP in six well plates

Fig. 3. Nef-mediated downmodulation of CD4, CD28, MHC class I and enhancement of virion infectivity. (A) Immunoblot showing expression of T/F and CC Nef proteins in HEK293T cells transfected with pCG_nef IRES eGFP expression constructs. An antibody against AU-1 was used to detect C-terminally tagged Nef. (B–E) HEK293T cells were transfected with (B and C) CD4 or (D and E) CD28 expression vector and constructs expressing eGFP alone or together with Nef. Two days post-transfection CD4 or CD28 expression was detected by flow cytometry. Mean fluorescence intensities were normalized to the control construct expressing only eGFP (vector control). (F and G) MHC class I downregulation using HeLa.B27 cells transfected with constructs expressing eGFP alone or together with Nef. Two days post-transfection MHC I expression was analyzed by flow cytometry as described above. (H) Virion infectivity enhancement by Nef was measured using HEK293T cells co-transfected with HIV-1 NL4-3 and eGFP Nef. Supernatants were harvested 48 h post-transfection and p24-normalized virus was used to infect TZM-bl cells. Infectivity was normalized to the control construct expressing no nef allele (vector control). The mean of at least three independent experiments ± sd is shown. (B,D and F) Example of primary experimental data from flow cytometry for one T/F and CC Nef.
using the Calcium phosphate method. Virus was harvested from supernatant 48 h post-transfection and normalized using p24Ag ELISA. Normalized virus was used to infect indicator TZM-bl cells and β-galactosidase activity measured 72 h post-infection using Gal-screen substrate (Applied Biosystems, USA).

A3F/G restriction assay

HEK293T cells were co-transfected with vif-deficient NL4-3 (Phalora et al., 2012) and T7-A3F/G (Apolonia et al., 2015) at a 1:1 ratio. Cells were also co-transfected with plasmids encoding HA-tagged Vif proteins from T/F and CC viruses 48 h after transfection, supernatants containing viruses were harvested, filtered through a 45 μm pore-sized filter and quantified using a p24Ag ELISA (Perkin Elmer). Viruses were then used to infect indicator TZM-bl cells and luciferase activity was measured 48 h post-infection. Producer cells were lysed in RIPA buffer (50 mM Tris–HCl pH 7.4, 100 mM NaCl, 1 mM MgCl2, 1% NP-40, 0.1% SDS and 0.5% sodium deoxycholate). Protein expression was assessed by standard immunoblot, anti HA (3F10, Roche) to identify HA-tagged Vif and anti-HSP90 (H114, Santa Cruz Biotechnology). Proteins were then detected by LiCor Odyssey infrared imaging using IRDye800CW or IRDye 680LT-labeled secondary antibodies.

Acknowledgments

T/F and CC infectious molecular clones were kindly provided by Drs Beatrice Hahn and Robert Doms. The firefly luciferase reporter plasmid containing three NF-κB binding sites as well as the constitutively active mutant of IKKβ were kindly provided by Bernd Baumann. We would like to thank Susanne Engelhart for assistance with experiments. The HeLaB27 cell line was a kind gift from Anthony Antoniou. LA and MHM were supported by the U.K. Medical Research Council. (Grant no. GI000196) RKG was supported by a Wellcome Trust Fellowship (WT093722MA).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.virol.2015.03.015.

References

Aiken, C., Trono, D., 1995. NF stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J. Virol. 69, 5048–5056.

Apolonia, L., Schulz, R., Kurc, T., Rocha, P., Swanson, C.M., Schaller, T., Ule, J., Malim, M.H., 2015. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1. PloS Pathog. 11, e1004609.

Baabwa, J., Wang, S., Parrish, N.F., Becker, J.M., Keefe, B.F., Learn, G.H., Yue, L., Ruzagira, E., Ssemwanga, D., Kamali, A., Amornkul, P.N., Price, M.A., Kappes, J.C., Haynes, B.F., Cormier, E., Hahn, B.H., Shaw, G.M., 2013. Phenotypic properties of transmitted/founder HIV-1. Proc. Natl. Acad. Sci. USA, 110; , pp. 6626–6633.

Phalora, P.K., Sherer, N.M., Wolinsky, S.M., Swanson, C.M., Malim, M.H., 2012. HIV-1 replication and APOBEC3 antiviral activity are not regulated by P bodies. J. Virol. 86, 1172–11724.

Pickering, S., Hue, S., Kim, E.Y., Reddy, S., Wolinsky, S.M., Neil, S.J., 2014. Preservation of tetherin and CD4 counter-activities in circulating Vpu alleles despite extensive sequence variation within HIV-1 infected individuals. PLoS Pathog. 10, e1003855.

Rudd, A.D., Collisson-Streng, A.N., Chatizianaphael, N., Mullis, C.E., Layeenderckx, M., Martens, C., Rickels, S., Kiwanuka, N., Nyein, P.H., Lutalo, T., Grabowski, M.K., Kong, X., Manucci, J., Sewankambo, N., Wawer, M.J., Gray, R.H., Porcella, S.F., Fauci, A.S., Sagar, M., Serwadda, D., Quinn, T.C., 2012. Previously transmitted HIV-1 strains are preferentially selected during subsequent sexual transmissions. J. Infect. Dis. 206, 1433–1442.

Salazar-Gonzalez, J.F., Salazar, M.G., Keefe, B.F., Learn, G.H., Giorgi, E.E., Li, H., Becker, J.M., Wang, S., Baabwa, J., Kaess, M.H., Parrish, N.F., Shaw, G.S., Kuffey, M.B., Bar, K.J., Davis, K.L., Ochsner-Janhvorl, C., Kappes, J.C., Saag, M.S., Cohen, M.S., Malugana, D., Dreyder, C.A., Allen, S., Hunter, E., Markowitz, E., Hultquist, J.F., 2009. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder HIV-1. Science. 15, 1010–1020.

Bieniasz, P., Hahn, B.H., Hatziioannou, T., Kirchhoff, F., 2009. Tetherin-driven restriction of human immunodeficiency virus type 1 envelope glycoproteins: vpu liberates Gag-pentameric gp120 and APOBEC3G-dependent retention in the endoplasmic reticulum. J. Biochem. 201, 1010–1020.

Kirkhoff, F., 2010. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8, 55–67.

Lana, J., Mangasarian, A., Trono, D., 1998. Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env infection in a Nef- and Vpu-inhibitable manner. J. Biol. Chem. 273, 6222–6231.

Moll, M., Andersson, S.K., Smed-Sorensen, A., Sandberg, J.K., 2010. Inhibition of lipid antigen presentation in dendritic cells by HIV-1 Vpu interferes with CD1d recycling from endosomal compartments. Blood 116, 1876–1884.

Neil, S.J., Zang, T., Bieniasz, P.D., 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430.

Ochsenbauer, C., Heldebrant, C., Smith, R., Conrad, A., Kleinman, S.H., Busch, M.P., 2003. Dynamics of founder viruses to control by interferon-alpha. Retrovirology 10, 146.

Haaland, R.E., Hawkins, P.A., Salazar-Gonzalez, J., Johnson, A., Tichacek, A., Karita, E., Mlcochova, E., Kieser, A., Kubisch, C., Kirchhoff, F., 2007. Recognition of transmitted founder HIVs by human neutralizing antibodies. J. Virol. 81, 1372–1380.

Kong, X., Manucci, J., Sewankambo, N., Wawer, M.J., Gray, R.H., Porcella, S.F., Fauci, A.S., Sagar, M., Serwadda, D., Quinn, T.C., 2012. Previously transmitted HIV-1 strains are preferentially selected during subsequent sexual transmissions. J. Infect. Dis. 206, 1433–1442.

Ruzagira, E., Ssemwanga, D., Kamali, A., Amornkul, P.N., Price, M.A., Kappes, J.C., Haynes, B.F., Cormier, E., Hahn, B.H., Shaw, G.M., 2013. Phenotypic properties of transmitted founder HIV-1. Proc. Natl. Acad. Sci. USA, 110; , pp. 6626–6633.

Bieniasz, P.D., Wolinsky, S.M., Swanson, C.M., Malim, M.H., 2012. HIV-1 replication and APOBEC3 antiviral activity are not regulated by P bodies. J. Virol. 86, 1172–11724.

Pickering, S., Hue, S., Kim, E.Y., Reddy, S., Wolinsky, S.M., Neil, S.J., 2014. Preservation of tetherin and CD4 counter-activities in circulating Vpu alleles despite extensive sequence variation within HIV-1 infected individuals. PLoS Pathog. 10, e1003855.

Rudd, A.D., Collisson-Streng, A.N., Chatizianaphael, N., Mullis, C.E., Layeenderckx, M., Martens, C., Rickels, S., Kiwanuka, N., Nyein, P.H., Lutalo, T., Grabowski, M.K., Kong, X., Manucci, J., Sewankambo, N., Wawer, M.J., Gray, R.H., Porcella, S.F., Fauci, A.S., Sagar, M., Serwadda, D., Quinn, T.C., 2012. Previously transmitted HIV-1 strains are preferentially selected during subsequent sexual transmissions. J. Infect. Dis. 206, 1433–1442.

Salazar-Gonzalez, J.F., Salazar, M.G., Keefe, B.F., Learn, G.H., Giorgi, E.E., Li, H., Becker, J.M., Wang, S., Baabwa, J., Kaess, M.H., Parrish, N.F., Shaw, G.S., Kuffey, M.B., Bar, K.J., Davis, K.L., Ochsner-Janhvorl, C., Kappes, J.C., Saag, M.S., Cohen, M.S., Malugana, D., Dreyder, C.A., Allen, S., Hunter, E., Markowitz, E., Hultquist, J.F., 2009. Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder HIV-1. Science. 15, 1010–1020.
Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F., Heard, J.M., 1996. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat. Med. 2, 338–342.

Shah, A.H., Sowrirajan, B., Davis, Z.B., Ward, J.P., Campbell, E.M., Planelles, V., Barker, E., 2010. Degranulation of natural killer cells following interaction with HIV-1-infected cells is hindered by downmodulation of NTB-A by Vpu. Cell Host Microbe 8, 397–409.

Sheehy, A.M., Gaddis, N.C., Choi, J.D., Malim, M.H., 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650.

Swigut, T., Shohdy, N., Skowronski, J., 2001. Mechanism for down-regulation of CD28 by Nef. The EMBO J. 20, 1593–1604.

Van Damme, N., Goff, D., Katsura, C., Jorgenson, R.L., Mitchell, R., Johnson, M.C., Stephens, E.B., Guatelli, J., 2008. The Interferon-Induced Protein BST-2 Restricts HIV-1 Release and Is Downregulated from the Cell Surface by the Viral Vpu Protein. Cell Host Microbe 3, 245–252.

Wildum, S., Schindler, M., Munch, J., Kirchhoff, F., 2006. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J. Virol. 80, 8047–8059.

Wilen, C.B., Parrish, N.F., Pfaff, J.M., Decker, J.M., Henning, E.A., Haim, H., Petersen, J.E., Wojcieszowskij, J.A., Sodroski, J., Haynes, B.F., Montefiori, D.C., Tilton, J.C., Shaw, G.M., Hahn, B.H., Doms, R.W., 2011. Phenotypic and immunologic comparison of clade B transmitted/founder and chronic HIV-1 envelope glycoproteins. J. Virol. 85, 8514–8527.

Zheng, Y.H., Irwin, D., Kurosu, T., Tokunaga, K., Sata, T., Peterlin, B.M., 2004. Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J. Virol. 78, 6073–6076.