Photoclick Reaction Programming Glutathione-Responsive System for Granuloma-Tracking and Anti-Tuberculosis

Judun Zheng
Southern Medical University

Xun Long
The third people's hospital of bijie city

Hao Chen
Southern Medical University

Zhisheng Ji
Jinan University

Bowen Shu
Southern Medical University

Rui Yue
Southern Medical University

Yechun Liao
The third People's Hospital of Bijie city

Kun Qiao
Shenzhen Third people's hospital

Ying Liu
The Third People's Hospital of Bijie City

Yuhui Liao (email liaoyh8@mail.sysu.edu.cn)
Dermatology Hospital Southern Medical University and The Fifth Affiliated Hospital Sun Yat-sen University
https://orcid.org/0000-0003-4702-9516

Short Communication

Keywords: Tuberculosis, granulomas, Mycobacterium tuberculosis, glutathione, photoclick reaction, theranostic system

DOI: https://doi.org/10.21203/rs.3.rs-779101/v1

License: ©️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background:

Tuberculosis (TB) is a virulent form of infectious disease that causes a global burden due to its high infectivity and fatality rate, especially the irrepressible threats of the latent infection. Constructing an efficient strategy for the prevention and control of TB is of great significance. Fortunately, we found that granulomas are endowed with higher reducibility levels possibly caused by internal inflammation and a relatively enclosed microenvironment.

Results:

Therefore, we developed the first targeted glutathione (GSH)-responsive theranostic system (RIF@Cy5.5-HA-NG) for tuberculosis with a rifampicin (RIF)-loaded near-infrared emission carrier, which was constructed by photoclick reaction-actuated hydrophobic-hydrophobic interaction, enabling the early diagnosis of tuberculosis through granulomas-tracking. Furthermore, the loaded rifampicin was released through the dissociation of disulfide bond by the localized GSH in granulomas, realizing the targeted tuberculosis therapy and providing an especially accurate treatment mapping for tuberculosis.

Conclusions:

Thus, this targeted theranostic strategy for tuberculosis exhibits the potential to realize both granulomas-tracking and anti-infection of tuberculosis.

Introduction

Tuberculosis (TB) possessing highly contagious has placed a heavy burden on public health worldwide, and this chronic disease caused by *Mycobacterium tuberculosis* (*M. tb*), most often affects the lungs. And tuberculosis also arises in other organs including bone and spine, then evolving one of the most typical forms of extrapulmonary tuberculosis. Recently, the surgical intervention accompanied by indispensable antitubercular drug therapy is the primary routine treatment. Although rifampicin (RIF) and isoniazid have been widely chosen as clinical anti-tubercular drugs due to their excellent effectiveness and reasonable price, their short plasma-life and relatively low concentration in tuberculosis granulomas, and the inescapable side effects of chemotherapeutic drugs have drawn growing attention from interdisciplinary and clinical medicine research circles. Thus, there is an urgent need to develop an efficient chemotherapy strategy for tuberculosis.

As the typical lesion core of tuberculosis, granuloma formation provides a relatively closed space that could prevent the entrance of anti-tuberculosis drugs. Few drugs can penetrate the central regions due to the compact structure of granulomas, and the nongrowing bacteria inside the granulomas are inherently recalcitrant to killing by most antibiotics. The infection of *M.tbc* can remain ‘silent’ throughout an individual lifetime but can be reactivated by various conditions to stimulate new bacterial growth and
infect new patients, even after decades.29–30 And this is why patients with TB require lengthy multidrug therapy, which would increase the risk of multidrug resistance. As we reported in ACS Nano,23 the granuloma formation possesses the effect of enhanced permeability and retention, which provides the possibility for targeted diagnosis and therapy.

Fortunately, we have found that granulomas are endowed with higher reducibility levels possibly caused by the internal inflammation and the relatively enclosed microenvironment.31–33 Therefore, we developed the first targeted glutathione (GSH)-responsive theranostic system (RIF@Cy5.5-HA-NG) for tuberculosis with a rifampicin (RIF)-loaded near-infrared emission carrier, which was constructed by photoclick reaction-actuated hydrophobic-hydrophobic interaction, enabling the early diagnosis of tuberculosis through granulomas-tracking (Scheme 1). The constructed GSH-activatable RIF@Cy5.5-HA-NG realized the \textit{M. tb}-selective imaging, affording precise and effective inhibition of the localized tuberculosis via released RIF for the synergistic treatment of persistent bacteria. This work demonstrated that the rifampicin-loaded GSH-activatable hyaluronic acid (HA) system is a reliable tool for effective tuberculosis therapy.

In order to realize the theranostic effect on tuberculosis, the GSH-responsive nanoagent was rationally designed for targeted imaging and therapy of tuberculosis. RIF@Cy5.5-HA-NG was first synthesized between two types of extensively biocompatible hyaluronic acid (HA) as the host material and near-infrared dye Cy5.5 as a contrast agent via the photo-initiated bioorthogonal reaction and the hydrophilic-hydrophilic interaction. Furthermore, the loaded rifampicin was released through the dissociation of disulfide bonds by the original GSH in granulomas, realizing targeted tuberculosis therapy and providing especially accurate treatment mapping for tuberculosis. The resulting system was characterized for GSH-responsive rifampicin release, realtimely monitoring, and antibiosis properties. And then, the prolonged retention time of drug release in vitro and the in vivo was demonstrated using fluorescence imaging techniques.

In this study, HA-Cys-MA and HA-Lys-Tet, which could first form nanocages via UV-induced click reaction, were mixed with rifampicin (RIF) to create a RIF-loaded carrier (RIF@HA-NG). Photo-inducible click chemistry has been widely applied to functionalize and investigate the dynamics and roles of biomolecules in living systems.34–37 The fluorescent imaging contrast Cy5.5, was then modified on the RIF@HA-NG through amidation in the existence of carbodiimide (EDC) and \textit{N}-hydroxysuccinimide (NHS) to obtain the aimed nanosystem which combined the diagnosis and therapy of tuberculosis (Scheme 1). Among them, the synthetic routes of HA-Cys-MA and HA-Lys-Tet are summarized in Figure S1 and S2, respectively. On the one hand, GSH plays an important role in many diseases including cancer and tuberculosis.38–39 And the cysteine (Cys) containing disulfide bond40–41 was reasonably chosen to possess the GSH-responsive peculiarity. On the other hand, a polymer pre-monomer containing the photoclick functional groups including methacryloyl (MA)42 and tetrazolium (Tet)35,43 was designed and synthesized to obtain a controllable nano-delivery system.
The synthesis of RIF@HA-NG was first characterized by the dynamic light scattering (DLS) analyzer. As shown in the Fig. 1A, RIF@HA-NG nanoagent had a hydrodynamic diameter of approximately 120 nm, which was slightly larger than that of HA-NG owning to the RIF-loading (Fig. 1A). To further confirm the successfully loading of RIF, the zeta potential was measured, showing the zeta potential change from ~27.5 mV to -31.3 mV. In other words, the negative RIF obviously decreased the potential of the nanoagent RIF@HA-NG (Fig. 1B). Transmission electron microscopy (TEM) revealed that RIF@HA-NG exhibited a uniform morphology and size with a diameter of 100 nm, indicating that no obvious changes were recorded in the size and shape of the nanoprobe after loading RIF (Fig. 1C). Meanwhile, the drug-release ability of nanocarriers was assessed, so the RIF release analysis was explored (Fig. 1D). Obviously, the ~55% of the total release was observed within 10 h, and the total release reached ~70% upon GSH-treating for 70 h. Whereas, the total release reached only ~20% in PBS solution up to 70 h. In vitro drug release analysis with GSH-triggered indicated that a greater amount of RIF can be released in *Mycobacterium*-infected macrophage cells. Collectively, these results confirmed that the GSH-responsive water-soluble RIF@HA-NG was successfully synthesized.

With the nanoagent in hand, we then aimed to estimate the deliverability of RIF in targeting cells. To determine whether the RIF-loaded nanoagent were endocytosed by the macrophage cell, the RIF@HA-NG was modified by the near-infrared fluorescence dye Cy5.5, simultaneously realizing the imaging of tuberculosis. As shown in the Fig. 2, the obviously red fluorescence was been detected in the RIF@Cy5.5-HA-NG-treated group compared to the Cy5.5-treated group, indicating that RIF@HA-NG can accumulate in the granuloma. That is to say, the RIF@HA-NG was successfully modified by Cy5.5, and thus it can be rationally used to monitor tuberculosis.

Owing to the outstanding drug-release properties of RIF@Cy5.5-HA-NG toward GSH-enriched tuberculosis, we then investigated its antibacterial performance. To investigate the antibacterial activity of RIF and RIF@HA-NG *in vitro*, *Mycobacterium*-infected M1 macrophage cells were first incubated with RIF and RIF@Cy5.5-HA-NG at different times. Survival analysis was performed to confirm the antibacterial effects of RIF and RIF@Cy5.5HA-NG. As displayed in Fig. 3A, the survival rate of the group treated with RIF@Cy5.5-HA-NG for 1 to 3 h was lower than that of the RIF-treated group. In particular, RIF@Cy5.5-HA-NG or RIF was co-incubated with cells for 3h, and the survival rate of bacteria decreased to 28% and 63%, respectively. When the processing time was extended, the bacterial damage caused RIF@Cy5.5-HA-NG to increase, but the survival rate changed gently, which may have been caused by the phytocytosis of macrophages. Meanwhile, the survival analysis of RIF@Cy5.5-HA-NG and RIF treated with *Mycobacterium*-infected M2 macrophage cells also showed a similar antibacterial tendency, indicating the antibacterial activity of NPs was superior to that of pure RIF. Taken together, these results performed that RIF@Cy5.5-HA-NG NPs have clipping high antibacterial efficiency against cellular bacteria in vitro and therefore hold potential for tuberculosis treatment.

Having established that RIF@Cy5.5-HA-NG NPs were able to efficiently kill *Mycobacterium*, our next goal was to validate its potential to monitor the mycobacterium-infected mice. First, we established the tuberculosis model by injecting *Mycobacterium marinum* into the tail vein of mice according to our
previously reported methods. The mice were imaged under a 633 nm laser using the fluorescence in vivo imaging system at different times (0, 6, 12 and 24 h). As exhibited in Fig. 4A, the fluorescence intensity at 690 nm in the granuloma region was found to reach the maximum at 24 h, and it is to say that the concentration of RIF@Cy5.5-HA-NG increased gradually over time and were maintained at a relatively high level even at 24 h post-injection. To further investigate the distribution of nanoagent in various organs at 2, 4 and 24 h time point, ex vivo fluorescence imaging was also studied. Intense fluorescence signals at 690 nm were observed in the liver (Fig. 4B), which indicated that the nanoagent was preferred to selectively accumulate in liver. The selective accumulation may be own to reticuloendothelial system44–45, which indicated that these nanoagents could be metabolized through the liver. Furthermore, hematoxylin and eosin (HE) staining of various important organs revealed no pathological changes after RIF@Cy5.5-HA-NG nanoagents injection at different timepoints (Fig. 4C). Taken together, these results firmly demonstrate that RIF@Cy5.5-HA-NG is capable of directly reflecting the tuberculosis, revealing the feasibility of our nanoagent for monitoring the mycobacterium in vivo as an excellent biomaterial.

Conclusions

In summary, the GSH-activatable theranostic nanoagent RIF@Cy5.5-HA-NG, which is a rifampicin (RIF)-loaded near-infrared emission carrier, was constructed via photoclick reaction-actuated hydrophobic-hydrophobic interaction, realizing the early diagnosis of tuberculosis through granulomas-tracking. Under the trigger of GSH, RIF@CY5.5-HA-NG exhibited not only excellent *Mycobacterium tuberculosis* targeting selectivity and biocompatibility but also a high anti-tuberculosis effect. Therefore, this study exploited an original access to develop the tuberculosis-specific degradable theranostic strategy for targeted imaging and therapy of tuberculosis.

Abbreviations

TB: tuberculosis; GSH: glutathione; RIF: rifampicin; HA: hyaluronic acid; M. tb: Mycobacterium tuberculosis; HE: hematoxylin and eosin; MA: methacryloyl; Tet: tetrazolium; EDC: 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; NHS: N-hydroxysuccinimide; Cys: cysteine; MA: methacryloyl; Tet: tetrazolium; DLS: dynamic light scattering; TEM: transmission electron microscopy.

Declarations

Associated Content

Not applicable.

Authors’ contributions

JDZ, XL, YL and YHL is responsible for the design of the experiment and the writing of the thesis. HC, and ZSJ are responsible for data collation and draft the manuscript. ZSJ and KQ is responsible for the animal
experiments. JDZ, BWS and RY, YCL edited the manuscript draft. YL and YHL are responsible for providing funds and unified management of work. All authors read and approved the final manuscript.

Funding

This work was supported by the Science and Technology Foundation of Guizhou Province ((2018)1002), the National Natural Science Foundation of China (81972019, 21904145, 21804044), Training project of National Science Foundation for Outstanding/Excellent Young Scholars of Southern Medical University (C620PF0217), China Postdoctoral Science Foundation (2020M682783), Guangdong Basic and Applied Basic Research Foundation (2020A1515010754), Special Fund of Foshan Summit Plan (2020B019, 2020B012).

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its additional file 1.

Ethics approval and consent to participate

All procedures involving experimental animals and clinical samples were carried out under guidelines approved by the Ethics Committee of Southern Medical University.

Consent for publication

All authors agree to be published.

Competing interests

The authors declare no conflict of interest, financial or otherwise.

Supplementary Information

The online version contains supplementary material available at https://doi.org/

References

1. Zwerling, A., Understanding spending trends for tuberculosis. *Lancet Infect. Dis.* 2020, *20* (8), 879-880.

2. Xu W, et al. Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection. *Immunity* 2021, *54* (3), 526-541.

3. Dai T, et al. A Fluorogenic Trehalose Probe for Tracking Phagocytosed Mycobacterium tuberculosis. *J. Am. Chem. Soc.* 2020, *142* (36), 15259-15264.

4. Daftary A, et al. Dynamic needs and challenges of people with drug-resistant tuberculosis and HIV in South Africa: a qualitative study. *The Lancet. Global health* 2021, *9* (4), e479-e488.
5. Pai M, et al. Tuberculosis. *Nat. Rev. Dis. Primers* 2016, 2 (1), 16076.

6. Fernández-García M, et al. Comprehensive Examination of the Mouse Lung Metabolome Following Mycobacterium tuberculosis Infection Using a Multiplatform Mass Spectrometry Approach. *Proteome Res.* 2020, 19 (5), 2053-2070.

7. Allue-Guardia A, García JI, Torrelles JB, Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. *Front Microbiol.* 2021, 12, 612675.

8. Arcos J, et al. Mycobacterium tuberculosis cell wall released fragments by the action of the human lung mucosa modulate macrophages to control infection in an IL-10-dependent manner. *Mucosal Immunology* 2017, 10 (5), 1248-1258.

9. Alissa C Rothchild, et al. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response to Mycobacterium tuberculosis in vivo. *Immunol.* 2019, 4 (37), e6693.

10. Pandey V, et al. The role of polymerase chain reaction in the management of osteoarticular tuberculosis. *International Orthopaedics* 2009, 33 (3), 801-805.

11. Pigrau-Serrallach C, Rodríguez-Pardo D. Bone and joint tuberculosis. *European Spine Journal* 2013, 22 (4), 556-566.

12. Magnussen A, Dinneen A, Ramesh P. Osteoarticular tuberculosis: increasing incidence of a difficult clinical diagnosis. *British Journal of General Practice* 2013, 63 (612), 385.

13. Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings. *RadioGraphics* 2019, 39 (7), 2023-2037.

14. Moosa MS, et al. A Randomized Controlled Trial of Intravenous N-Acetylcysteine in the Management of Anti-tuberculosis Drug–Induced Liver Injury. *Clin. Infect. Dis.* 2020, DOI: 10.1093/cid/ciaa1255.

15. Phillips R, et al. Rifampicin and clarithromycin (extended release) versus rifampicin and streptomycin for limited Buruli ulcer lesions: a randomised, open-label, non-inferiority phase 3 trial. *Lancet* 2020, 395 (10232), 1259-1267.

16. Shrivastava N, et al. The Spectrum of Clinical and Urodynamic Findings in Patients with Spinal Tuberculosis Exhibiting Lower Urinary Tract Symptoms, before and after Spinal Surgical Intervention with Antitubercular Treatment: A Prospective Study. *Asian Spine J.* 2019, 13 (4), 615-620.

17. Mukewar S, et al. Colon tuberculosis: endoscopic features and prospective endoscopic follow-up after anti-tuberculosis treatment. *Clin. Transl. Gastroenterol* 2012, 3, e24.

18. Campbell JR, et al. Adverse events in adults with latent tuberculosis infection receiving daily rifampicin or isoniazid: post-hoc safety analysis of two randomised controlled trials. *Lancet Infect. Dis.* 2020, 20 (3), 318-329.

19. Villa S, et al. Latent Tuberculosis Infection Treatment Completion while Shifting Prescription from Isoniazid-Only to Rifampicin-Containing Regimens: A Two-Decade Experience in Milan, Italy. *J. Clin. Med.* 2020, 9 (1), 101-113.

20. Sterling TR, et al. Guidelines for the treatment of latent tuberculosis infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020. *J. Transplant.* 2020, 20 (4),
21. Hakkimane SS, et al. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. *Int. J. Nanomedicine* 2018, 13, 4303-4318.

22. Kabir S, Junaid K, Rehman A. Variations in rifampicin and isoniazid resistance associated genetic mutations among drug naïve and recurrence cases of pulmonary tuberculosis. *Inter. J. Infect. Dis.* 2021, 103, 56-61.

23. Liao Y, et al. Targeted Theranostics for Tuberculosis: A Rifampicin-Loaded Aggregation-Induced Emission Carrier for Granulomas Tracking and Anti-Infection. *ACS Nano* 2020, 14 (7), 8046-8058.

24. Dartois V, The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. *Rev. Microbiol.* 2014, 12 (3), 159-167.

25. DuToit LC, Pillay V, Danckwerts MP. Tuberculosis chemotherapy: current drug delivery approaches. *Respiratory Res.* 2006, 7 (1), 118.

26. Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. *Front Immunol.* 2013, 3(411), 1664-3224.

27. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. *Nat. Rev. Immunol.* 2012, 12 (5), 352-66.

28. Bhavanam S, et al. Understanding the pathophysiology of the human TB lung granuloma using in vitro granuloma models. *Future Microbiology* 2016, 11 (8), 1073-1089.

29. Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. *FEMS Microbiol.* 2012, 36(3), 514-32.

30. Ahmad S. New approaches in the diagnosis and treatment of latent tuberculosis infection. *Respiratory Research* 2010, 11 (1), 169.

31. Kiran D, et al. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. *Seminars in Immunopathology* 2016, 38 (2), 167-183.

32. Muefong CN, Sutherland JS. Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. *Front Immunol.* 2020, 11, 962-962.

33. Singh M, et al. Understanding the Relationship between Glutathione, TGF-β, and Vitamin D in Combating Mycobacterium tuberculosis Infections. *J. Clin. Medicine* 2020, 9 (9), 2757.

34. Nainar S, et al. Temporal Labeling of Nascent RNA Using Photo-click Chemistry in Live Cells. *J. Am. Chem. Soc.* 2017, 139 (24), 8090-8093.

35. Liu S, et al. Fluorogenic probes for mitochondria and lysosomes via intramolecular photoclick reaction. * Analyst* 2021, 146 (4), 1369-1375.

36. Le Droumaguet C, Wang C, Wang Q. Fluorogenic click reaction. *Chem. Soc. Rev.* 2010, 39 (4), 1233-1239.

37. Zhou M, et al. Photo-click construction of a targetable and activatable two-photon probe imaging protease in apoptosis. *Chem. Comm.* 2016, 52 (11), 2342-2345.
38. Zheng J, et al. Dynamic-Reversible Photoacoustic Probe for Continuous Ratiometric Sensing and Imaging of Redox Status in Vivo. J. Am. Chem. Soc. 2019, 141 (49), 19226-19230.
39. Allen M, et al. Mechanisms of Control of Mycobacterium tuberculosis by NK Cells: Role of Glutathione. Front Immunol. 2015, 6, 508.
40. Yang L, et al. Constructing a FRET-based molecular chemodosimeter for cysteine over homocysteine and glutathione by naphthalimide and phenazine derivatives. Analyst 2015, 140 (1), 182-189.
41. Wang Q, et al. Disulfide based prodrugs for cancer therapy. RSC Advances 2020, 10 (41), 24397-24409.
42. Maiti B, et al. Thermoresponsive Shape-Memory Hydrogel Actuators Made by Phototriggered Click Chemistry. Adv. Funct. Mater. 2020, 30 (24), 2001683.
43. Wu Y, et al. Fluorogenic "Photoclick" Labeling and Imaging of DNA with Coumarin-Fused Tetrazole in Vivo. ACS Sens. 2019, 4 (1), 44-51.
44. Zheng J, et al. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res. 2019, 12 (4), 931-938.
45. Peng J, et al. Real-Time In Vivo Hepatotoxicity Monitoring through Chromophore-Conjugated Photon-Upconverting Nanoprobes. Chem. Int. Ed. Engl. 2017, 56 (15), 1521-3773.

Additional File

Additional File is not available with this version.

Figures
Figure 1

Characterizations of the RIF@HA-NG. (A) The dynamic light scattering (DLS) analysis of HA-NG and RIF@HA-NG. (B) The zeta potential results of HA-NG and RIF@HA-NG. (C) The transmission electron microscopy (TEM) images of RIF@HA-NG, scale bars are 200 nm. (D) The RIF release of RIF@HA-NG (PBS) in the absence or presence of GSH.
Figure 2

Uptake of RIF@Cy5.5-HA-NG. Blue fluorescent image indicates image of DAPI stained cells; Red fluorescence indicates uptake of Cy5.5 and RIF@Cy5.5-HA-NG and Green fluorescent image indicates the image of Actin.

Figure 3

A

B

Survival rate (%) vs Time (h)
Antibacterial activity of RIF and RIF@Cy5.5-HA-NG in vitro. Survival analysis of (A) macrophage cells (M1) and (B) macrophage cells (M2) with RIF and RIF@Cy5.5-HA-NG.

Figure 4

Evaluation of the Antibacterial Activity and Toxicity of the RIF@Cy5.5-HA-NG. (A) Fluorescence imaging of mice at 0, 6, 12, 24 hours postinjection. (B) Fluorescence imaging of major organs (liver, spleen, lung, kidney) collected from animals at 0, 6, 12, 24 hours postinjection. (C) Tissue damage analysis of different important organs in mice after intravenous injection of RIF@HA-NG in different times.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.docx
- SupportingInformation.docx
- Scheme1.jpg