Corrugation crack front waves

J.R. Willis1, N.V. Movchan2 and A.B. Movchan2

1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, U.K.
2 Department of Mathematical Sciences, University of Liverpool, Liverpool, U.K.

Abstract

The paper presents a model of a dynamic crack with a wavy surface. So far, theoretical analysis of crack front waves has been performed only for in-plane perturbations of the crack front. In the present paper, generalisation is given to a more general three-dimensional perturbation, and equations that govern corrugation crack front waves are derived and analysed.

Keywords: Dynamic fracture, crack front waves, asymptotic analysis.

1 Introduction

The paper analyses singular fields around a dynamic crack whose surface is slightly perturbed from the original plane configuration. Crack front waves in the plane of the crack were discovered numerically by Morrissey and Rice in \cite{1}, and later confirmed analytically by Ramanathan and Fisher \cite{2}, using the results of the perturbation analysis of Willis and Movchan \cite{3}. Experimental observations of persistent crack front waves were reported by Sharon, Cohen and Fineberg \cite{4}. The more general development of Willis and Movchan \cite{5} and Woolfries \textit{et al.} \cite{6} extended the analysis to a crack propagating through a viscoelastic medium. The perturbation formulae for the stress intensity factors, specialised to a plane strain formulation, have been used by Obrezanova \textit{et al.} \cite{7} in the stability analysis of rectilinear propagation. A quasi-static advance of a tunnel crack under a mixed mode loading has been analysed by Lazarus and Leblond \cite{8}.

The aim of the present paper is to develop a model describing corrugation (out-of-plane) waves along the front of a moving crack. This work is based
on the ideas of the earlier publication by Willis [9]. The plan of the paper
is as follows. We begin, in Section 2, with the description of the geometry,
governing equations and perturbation functions. A summary of the first-
order approximations for the stress intensity factors is presented in Section
2.2. Section 3 includes the study of the corrugation waves in the first-order
asymptotic approximation for a basic Mode I loading. In Section 4, we
derive the dispersion equation for crack front waves in the mixed mode I-
III loading. The technical appendix contains an outline of the fundamental
integral identity, and the expressions for effective tractions.

2 Basic perturbation formulae

For a linearly elastic medium, we consider a semi-infinite crack with a slightly
perturbed surface. The unperturbed configuration of the crack at time t is
defined by

$$S_0(t) = \{ x : -\infty < x_1 < Vt, -\infty < x_2 < \infty, x_3 = 0 \},$$ \hspace{1cm} (1)

where V is a constant crack speed, which does not exceed the Rayleigh wave
speed. The perturbation is introduced through deviations of the crack front
in both in-plane and out-of-plane directions. The perturbed surface of the

crack at time t is

$$S_\varepsilon(t) = \{ x : -\infty < x_1 < Vt + \varepsilon \varphi (x_2, t),
-\infty < x_2 < \infty, x_3 = \varepsilon \psi(x_1 - Vt, x_2) \}. \hspace{1cm} (2)$$

The functions φ and ψ are smooth and bounded, and ε is a small non-
dimensional parameter, $0 \leq \varepsilon \ll 1$. It is helpful to use the moving-frame
coordinates, so that $X = x_1 - Vt$.

It is assumed that the medium is loaded so that a stress σ^{nc} and a
displacement u^{nc} would be generated in the absence of the crack. The crack
induces additional fields σ, u. They satisfy the equations of motion and the
traction boundary conditions on the crack faces:

$$\sigma_{ij,j} - \rho \ddot{u}_i = 0, \ i = 1, 2, 3, \ \text{outside the crack} \hspace{1cm} (3)$$

and

$$\sigma_{ij} n_j + \sigma_{ij}^{nc} n_j = 0, \ \text{on the crack faces}, \hspace{1cm} (4)$$

and correspond to waves outgoing from the crack as $x_3 \to \pm \infty$.

2
2.1 Local coordinates and asymptotics for stresses

At a point \(\mathbf{x}^0 = (x_1^0, x_2^0, x_3^0) \), which is on the crack edge at time \(t \), so that
\[
x_1^0 = Vt + \varepsilon \varphi(x_2^0, t), \quad x_3^0 = \varepsilon \psi(x_1^0 - Vt, x_2^0),
\]
we define a coordinate system such that
\[
\mathbf{x} - \mathbf{x}^0 = \sum_{i=1}^{3} x_i' \mathbf{e}_i',
\]
where
\[
\begin{pmatrix} \mathbf{e}_1' \\ \mathbf{e}_2' \\ \mathbf{e}_3' \end{pmatrix} = \left\{ \mathbf{I} + \varepsilon \begin{pmatrix} 0 & -\varphi_2 & \psi_1^* \\ \varphi_2 & 0 & \psi_2^* \\ -\psi_1^* & -\psi_2^* & 0 \end{pmatrix} \right\} \begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{pmatrix}.
\]
Here \(\psi^* \) denotes \(\psi \) evaluated for \(x_1 = Vt \). The above transformation involves a shift to the crack edge and a further rotation of coordinate axes.

In the new frame, the stress components \((\sigma_i'') \) have the asymptotic form
\[
\sigma_i''(x_1', x_2', 0) \sim (K_i''(0) + \varepsilon K_i''(1))/2\pi {x_1'}^{1/2} - (P_i''(0) + \Delta P_i) x_1' + (N_i''(0) + \Delta N_i)(x_1')^{3/2}, \quad i = 1, 2, 3.
\]

The first-order asymptotic approximation of stress-intensity factors was constructed and studied in [3], [10], [11], [12]. In Appendix we include a description of the fundamental identity, which is essential for this work. We also require the dynamic crack face weight function \([U] \), as defined in Appendix. The field \([U] \) has a singularity proportional to \(X^{-1/2}H(X)\delta(x_2)\delta(t) \) as \(X \to 0 \).

2.2 First-order perturbations of the stress intensity factors

We begin with the first-order approximation for the stress intensity factors, when
\[
K_j \sim K_j^{(0)} + \varepsilon K_j^{(1)}, \quad j = I, II, III.
\]
For the Mode-I unperturbed case, \(K_{II}^{(0)} = K_{III}^{(0)} = 0 \), and the perturbation terms are defined by (see [11], [12])
\[
K_{II}^{(1)} = -Q_{11} \psi^* \Theta_{13} K_I^{(0)} - \psi_1^* \omega_{13} K_I^{(0)} - \psi^* \left(\Sigma_{11} + \frac{V^2}{2b_2} \Sigma_{12} \right) A_3^{(0)} \sqrt{\pi/2}.
\]
\[K_{III}^{(1)} = -Q_{12} * \psi^* \Theta_{13} K_I^{(0)} - \psi^* \omega_{23} K_I^{(0)} \]
\[+ [U]_{12} * \langle P_1^{(1)} \rangle + [U]_{22} * \langle P_2^{(1)} \rangle - \langle U \rangle_{32} * [P_3^{(1)}] \]
\[K_I^{(1)} = Q_{33} * \varphi K_I^{(0)} + \left(\frac{\pi}{2} \right)^{1/2} \varphi A_3^{(0)} - \langle U \rangle_{13} * [P_1^{(1)}] \]
\[- \langle U \rangle_{23} * [P_2^{(1)}] + [U]_{33} * \langle P_3^{(1)} \rangle \].

The matrix Q is a block-diagonal matrix defined in [11]; other functions that appear in the above equations are

\[\Theta_{13} = \Sigma_{11} + \frac{V^2}{2a^2} \Sigma_{12}, \quad \omega_{13} = \frac{\alpha - \beta}{R(V)} (1 + \beta^2)(\alpha + 2\beta) - 2, \]
\[\omega_{23} = \frac{2\nu}{R(V)} (1 + \beta^2)(\alpha^2 - \beta^2) - 1, \]
\[\Sigma_{11} = -\frac{4\alpha \beta - (1 + 2\alpha^2 - \beta^2)(1 + \beta^2)}{R(V)}, \quad \Sigma_{12} = -\frac{2(1 + \beta^2 - 2\alpha \beta)}{R(V)}, \]
\[\alpha^2 = 1 - \frac{V^2}{a^2}, \quad \beta^2 = 1 - \frac{V^2}{b^2}, \quad R(V) = 4\alpha \beta - (1 + \beta^2)^2. \]

Here, a and b denote the speeds of longitudinal and shear waves, respectively. The representations for the effective tractions $P_i^{(1)}, i = 1, 2, 3$, are given in Appendix.

2.3 Crack front waves confined to the plane $x_3 = 0$

Assuming that the out-of-plane deflection is not present ($\psi = 0$), we consider a first-order in-plane perturbation of the crack front and loading in Mode I, so that $\sigma_{13}^{inc} = \sigma_{23}^{inc} = 0$ on the plane $x_3 = 0$. In this special case, the only non-zero stress intensity factor is K_I, and the corresponding perturbation formula reduces to

\[K_I^{(1)} = Q_{33} * \varphi K_I^{(0)} + \left(\frac{\pi}{2} \right)^{1/2} \varphi A_3^{(0)} \].

According to the Griffith energy balance equation, the energy flux G into the crack edge is constant, denoted here by G_c:

\[G \equiv \frac{1 - \nu^2}{E} f_1(v) K_I^2 = G_c. \]
Here, \(v \) is the local crack speed (to the first-order approximation, \(v = V + \varepsilon \dot{\varphi} \)) and \(f_I(v) \) is a known function (e.g., \[13\]):

\[
f_I(v) = \frac{v^2 \alpha(v)}{(1-\nu) b^2 R(v)}.
\] (14)

Expanding the Griffith energy balance equation (13) to order \(\varepsilon \), we obtain

\[
2Q_{33} \varphi + \frac{f_I'(V)}{f_I(V)} \dot{\varphi} + 2m \varphi = 0,
\] (15)

where \(m = (\pi/2)^{1/2} A_3^{(0)}/K_3^{(0)} \). Applying the Fourier transform with respect to \(t \) and \(x_2 \) we deduce that a non-zero solution is possible only if the dispersion relation

\[
2Q_{33}(\omega,k) - i\omega \frac{f_I'(V)}{f_I(V)} + 2m = 0
\] (16)

is satisfied. Here, the Fourier transform \(Q_{33} \) is a homogeneous function of degree 1 in \((\omega,k)\). At high frequency and large wavenumber, the third term in the above equation can be neglected. Such an equation can be solved for \(\omega/k \), and a real root represents a speed of wave propagating along the crack front. This computation was performed by Ramanathan and Fisher [2].

3 Corrugation waves for a Mode-I basic loading.

First-order analysis.

Can a Mode-I basic loading generate a corrugation wave propagating along the crack front? This case corresponds to a non-zero out-of-plane perturbation characterised by the function \(\psi(x_1 - Vt, x_2) \). Crack stability with respect to out-of-plane deflections can be studied, once a fracture criterion is identified.

If we suppose that \(K_{II} = 0 \) then, to lowest order, \(\psi \) must satisfy \(K_{II}^{(1)}(\psi) = 0 \), where \(K_{II}^{(1)} \) is given by (8). The proposition that the crack propagates so as to maintain \(K_{II} = 0 \) together with the Griffith energy balance has recently received theoretical support, on the basis of a version of Hamilton’s principle [14].

Assuming that the in-plane perturbation of the crack front equals zero, we look into stability against out-of-plane deflections. It is also assumed
that $\omega \equiv k_1 V$ and k_2 are large. The leading-order approximation of the stress intensity factor K_{II} yields

$$K_{II}^{(1)} = \{ -Q_{11} \Theta_{13} + i(\omega/V)\omega_{13} \} K_{I}^{(0)} \psi^* = 0.$$

This relation is homogeneous of degree 1 in ω and k_2, and so is non-dispersive.

The numerical study of equation (17) produced the following results.

- For crack speeds V greater than a critical value V_c (which is close to 0.6 of the Rayleigh wave speed) there is a value $\eta = \omega/|k_2|$ with small, negative, imaginary part that satisfies (17). The position of the root is shown in Figure 1; the calculation is produced for the case of $V/b = 0.69$, and the diagram shows the level curves of the modulus of the expression in the curly
brackets on the left side of (17).

Figure 1 is accompanied by a three dimensional surface plot, shown in Figure 2, of the function $W = |Q_{11} \Theta_{13} - i(\omega/V)\omega_{13}|$; the surface touches the η-plane at the point corresponding to the root of equation (17).

![Surface plot of the function $W = |Q_{11} \Theta_{13} - i(\omega/V)\omega_{13}|$, for $V/b = 0.69$ and $\nu = 0.3$.](image)

Figure 2: Surface plot of the function $W = |Q_{11} \Theta_{13} - i(\omega/V)\omega_{13}|$, for $V/b = 0.69$ and $\nu = 0.3$.

- The "corrugation wave" suffers slow attenuation as it propagates. The imaginary part of η, which characterises the rate of attenuation of the "corrugation wave", is shown in Fig. 3 for different values of the crack front velocity V, and it decreases with V.

Figure 2: Surface plot of the function $W = |Q_{11} \Theta_{13} - i(\omega/V)\omega_{13}|$, for $V/b = 0.69$ and $\nu = 0.3$.

- The "corrugation wave" suffers slow attenuation as it propagates. The imaginary part of η, which characterises the rate of attenuation of the "corrugation wave", is shown in Fig. 3 for different values of the crack front velocity V, and it decreases with V.

7
4 First-order coupling between in-plane and out-of-plane crack front perturbations for mixed Mode I-III loading

Here, we assume that $K_{II}^{(0)} = 0$, whereas $K_{I}^{(0)}$ and $K_{III}^{(0)}$ are non-zero for a half-plane crack propagating with constant speed V (unperturbed configuration). To first order, the stress intensity factors are represented by the formulae (7), where the perturbation terms $K_{j}^{(1)}$, $j = I, II, III$, are defined by (see [11], [12])

$$K_{II}^{(1)} = -Q_{11} \psi^{*} \Theta_{13} K_{I}^{(0)} - \psi^{*}_{11} \omega_{13} K_{I}^{(0)} - \psi^{*} \left(\Sigma_{11} + \frac{V^2}{2b^2} \Sigma_{12} \right) A_{3}^{(0)} \sqrt{\frac{\pi}{2}}$$
+Q_{21}*(φK_{III}^{(0)}) - ϕ,2K_{III}^{(0)} + √(π/2)φA_1^{(0)}
+ [U]_{11} * ⟨P_1^{(1)}⟩ + [U]_{21} * ⟨P_2^{(1)}⟩ - ⟨U⟩_{31} * [P_3^{(1)}],
K_{III}^{(1)} = -Q_{12} * ψ^*Ω_{13}K_I^{(0)} - ψ^*ω_{23}K_I^{(0)} + Q_{22} * (φK_{III}^{(0)}) + √(π/2)φA_2^{(0)}
+ [U]_{12} * ⟨P_1^{(1)}⟩ + [U]_{22} * ⟨P_2^{(1)}⟩ - ⟨U⟩_{32} * [P_3^{(1)}],
K_I^{(0)} = Q_{33} * ϕK_I^{(0)} + (π/2)^{1/2}ϕA_3^{(0)} - ϕ^*(1 - V^2/2b^2 Σ_{12})A_1^{(0)} √(π/2)
- 2ψ^*K_{III}^{(0)} - ⟨U⟩_{13} * [P_1^{(1)}] - ⟨U⟩_{23} * [P_2^{(1)}] + [U]_{33} * (P_3^{(1)}).

We shall use the criterion of local symmetry $K_{II} = 0$, together with the Griffith energy balance equation

$G = (2μ)^{-1}f_I(v)K^2 + (2μ)^{-1}f_{III}(v)K_{III}^2 = G_c = \text{const.}$

(21)

Taking into account that, to first order, $v \sim V + εφ$, we deduce

$G = (2μ)^{-1}f_I(V)(K_I^{(0)})^2 + (2μ)^{-1}f_{III}(V)(K_{III}^{(0)})^2$

$+ ε(2μ)^{-1}(φf'_I(V)(K_I^{(0)})^2 + 2f_I(V)K_I^{(0)}K_I^{(1)})$

$+ φf'_{III}(V)(K_{III}^{(0)})^2 + 2f_{III}(V)K_{III}^{(0)}K_{III}^{(1)} + O(ε^2).$

(22)

It follows from (21), (22) and the local symmetry criterion $K_{II} = 0$ that

$φ(f'_I(V)(K_I^{(0)})^2 + f'_{III}(V)(K_{III}^{(0)})^2) + 2f_I(V)K_I^{(0)}K_I^{(1)}(φ,ψ)$

$+ 2f_{III}(V)K_{III}^{(0)}K_{III}^{(1)}(φ,ψ) = 0,$

(23)

$K_{III}^{(1)}(φ,ψ) = 0.$

(24)

The above equations define the coupling between the in-plane and out-of-plane perturbations of the crack front.

Applying the Fourier transform with respect to t and x_2 and assuming that $ω = k_1 V$ and k_2 are large, we deduce

$\mathcal{F}\{\left(2f_I(V)Q_{33} - iωf'_I(V)\right)(K_I^{(0)})^2 + \left(2f_{III}(V)Q_{22} - iωf'_{III}(V)\right)(K_{III}^{(0)})^2\}$

$+ \mathcal{F}\{K_I^{(0)}K_{III}^{(0)}\left(2f_{III}(V)\left(-Q_{12}Ω_{13} + ik_2ω_{23}\right) + 4ik_2f_I(V)\right)\} = 0,$

(25)
The system (25), (26) is linear in \(\psi \) and \(\psi^* \), and it possesses a nontrivial solution if and only if the matrix of this system is degenerate. This yields the following dispersion relation:

\[
\{ -Q_{11}\Theta_{13} + i(\omega/V)\omega_{13} \} \overline{\psi} K_j^{(0)} + (Q_{21} + i k_2)\overline{\psi} K_{III}^{(0)} = 0. \tag{26}
\]

Here \(K_0 = K_{III}^{(0)}/K_{I}^{(0)} \). The above dispersion equation, connecting \(\omega \) and \(k_2 \), is to be analysed numerically to identify possible crack front waves associated with the external mixed mode I-III load.

Appendix. Fundamental identity and effective tractions.

Here, we briefly describe the method developed in [3], [10], [11]. We use the relation

\[
u = -G \ast \sigma, \tag{A1}
\]

where \(\mathbf{u} \) and \(\mathbf{\sigma} \) denote the values of the displacement vector \((u_i)\) and the traction vector \((\sigma_{ij})\) on the surface \(x_3 = 0 \) of the half-space \(x_3 > 0 \); \(G \) is the Green’s matrix function. The symbol \(\ast \) denotes convolution over \(x_1, x_2 \) and \(t \). It is assumed that all waves emanate from the surface \(x_3 = 0 \). A similar identity applies to the half-space \(x_3 < 0 \), with \(G \) being replaced by \(-G^T \).

Three column vectors like \(\mathbf{u} \) can be written side by side to form a matrix \(\mathbf{U}(+0) \), and similarly \(\mathbf{\Sigma}(+0) \) represents the matrix formed from the three corresponding vectors \(\mathbf{\sigma} \). Then

\[
\mathbf{U}(+0) = -G \ast \mathbf{\Sigma}(+0). \tag{A2}
\]

The argument \((+0)\) signifies values on the boundary of the upper half-space.

Applying similar reasoning to the identity for the lower half-space \(x_3 < 0 \) gives

\[
\mathbf{U}(-0) = G^T \ast \mathbf{\Sigma}(-0). \tag{A3}
\]

Next, we note that

\[
\{ \mathbf{U}(+0) \}^T \mathbf{\sigma}(-0) = -\{ \mathbf{\Sigma}(+0) \}^T G^T \mathbf{\sigma}(-0)
\]
\[
\begin{align*}
 \{\mathbf{U}(0)\}^T \ast \mathbf{\Sigma}(0) &= -\{\mathbf{u}(0)\}^T, \\
 \{\mathbf{U}(0)\}^T \ast \mathbf{\sigma}(0) &= \{\mathbf{\Sigma}(0)\}^T \ast \mathbf{G}^T \ast \mathbf{\sigma}(0)
\end{align*}
\]
\begin{equation}
(A4)
\end{equation}

Subtracting the second line from the first and rearranging gives the identity
\[
\begin{align*}
 \{\mathbf{U}(0)\}^T \ast \mathbf{\Sigma}(0) &= \{\mathbf{u}(0)\}^T
\end{align*}
\]
\begin{equation}
(A5)
\end{equation}

where \(f = \frac{1}{2}(f(+0) + f(-0))\) and \([f] = f(+0) - f(-0)\).

In the moving frame associated with the crack edge, we use the coordinate \(X = x_1 - Vt\). The operation of convolution survives, with functions regarded as functions of \(X, x_2, t\) and the convolutions taken over these new variables.

For the unperturbed crack problem,
\[
\begin{align*}
 [\mathbf{\sigma}] &\equiv 0, \quad [\mathbf{u}] = 0 \text{ when } X > 0, \quad \mathbf{\sigma} \equiv \langle \mathbf{\sigma} \rangle = -\mathbf{\sigma}^{nc} \text{ when } X < 0. \\
\end{align*}
\]
\begin{equation}
(A7)
\end{equation}

We interpret equation (A6) relative to the moving frame, and perform factorizations of the Green’s function so that \(\mathbf{U}\) and \(\mathbf{\Sigma}\) display the related properties
\[
\begin{align*}
 [\mathbf{\Sigma}] &\equiv 0, \quad [\mathbf{U}] = 0 \text{ when } X < 0, \quad \mathbf{\Sigma} \equiv \langle \mathbf{\Sigma} \rangle = 0 \text{ when } X > 0.
\end{align*}
\]
\begin{equation}
(A8)
\end{equation}

Equations (A2), (A3) yield
\[
\begin{align*}
 [\mathbf{U}] &= -(\mathbf{G} + \mathbf{G}^T) \ast \langle \mathbf{\Sigma} \rangle, \\
 \langle \mathbf{U} \rangle &= -\frac{i}{\pi}(\mathbf{G} - \mathbf{G}^T) \ast \langle \mathbf{\Sigma} \rangle.
\end{align*}
\]
\begin{equation}
(A9)
\end{equation}

The first of these relations defines a Wiener–Hopf problem; the second then gives \(\langle \mathbf{U} \rangle\) directly. The Wiener–Hopf problem uncouples into two subproblems. One, associated with the opening mode I of the crack, is a scalar problem. It was solved in the case of elasticity in [3], and for a viscoelastic medium in [6]. The remaining problem involves modes II and III, coupled. It was solved in [10].

The field \([\mathbf{U}]\) has a singularity proportional to \(X^{-1/2} \mathcal{H}(X)\delta(x_2)\delta(t)\) as \(X \to 0\). With the constant of proportionality chosen as \((2/\pi)^{1/2}\mathbf{I}\), we call \([\mathbf{U}]\) the \textit{dynamic weight function} for the crack problem. With this choice, letting \(X \to +0\) in the identity (A6) generates
\[
\begin{align*}
 \mathbf{K} &= \lim_{X \to +0} \left\{ (\mathbf{U})^T \ast [\mathbf{\sigma}(0)] - [\mathbf{U}]^T \ast \langle \mathbf{\sigma}(0) \rangle \right\}, \\
\end{align*}
\]
\begin{equation}
(A10)
\end{equation}
where \(\mathbf{K} \) denotes the vector of stress-intensity factors \((K_{II}, K_{III}, K_{I})^T\). The matrix function \(\langle \mathbf{U} \rangle \) represents a dynamical version of Bueckner’s non-symmetric weight function, as described in [15] and [10].

We assume that the unperturbed steady-state crack is subjected to a Mode-I loading, and the unperturbed displacement field is a vector function \(\mathbf{u}^{(0)} = \mathbf{u}^{(0)}(x_1 - Vt, x_2, x_3) \). We can write the resulting displacement field in the form

\[
\mathbf{u} \sim \mathbf{u}^{(0)} + \varepsilon \mathbf{u}^{(1)},
\]

where \(\varepsilon \) is a perturbation parameter.

The effective tractions \(P_i^{(1)} := -\sigma_{i3}(\mathbf{u}^{(1)})|_{x_3=0}, \ i = 1, 2, 3, \) have the form (see formula (4.11) of [11])

\[
P_i^{(1)} = -2 \sum_{k=1}^2 (\psi \sigma_{ik}^{(0)}/k) + \psi \left(\rho V^2 u_{i,11}^{(0)} - 2\rho V \frac{\partial^2 u_i^{(0)}}{\partial t \partial X} + \rho \frac{\partial^2 u_i^{(0)}}{\partial t^2} \right).
\]

References

[1] Morrissey, J W and Rice, J R (1998) Crack front waves, J. Mech. Phys. Solids 46, 467–487.

[2] Ramanathan, S and Fisher, D S (1997) Dynamics and instabilities of planar tensile cracks in heterogeneous media, Phys. Rev. Lett. 79, 877–880.

[3] Willis, J R and Movchan, A B (1995) Dynamic weight functions for a moving crack. I. Mode I loading, J. Mech. Phys. Solids 43, 319–341.

[4] Sharon, E, Cohen, G and Fineberg, J (2002) Propagating solitary waves along a rapidly moving crack front, Nature 410, 68–71.

[5] Willis, J R and Movchan, A B (2001) The influence of viscoelasticity on crack front waves, J. Mech. Phys. Solids, 49, 2177-2189.

[6] Woolfries, S, Movchan, A B and Willis, J R (2002) Perturbation of a dynamic planar crack moving in a model viscoelastic solid, Int. J. Solids Struct. 39, 5409–5426.
[7] Obrezanova, O, Movchan, A B and Willis, J R (2002) Dynamic stability of a propagating crack, J. Mech. Phys. Solids, 50, 2637–2668.

[8] Lazarus, V and Leblond, J-B (1998) Crack paths under mixed mode (I + III) or (I + II + III) loadings, C. R. Acad. Sci. Paris, Series IIB, 326, Issue 3, 171–177.

[9] Willis, J R (2003) Dynamic perturbation of a propagating crack: implications for crack stability, Asymptotics, Singularities and Homogenization in Problems of Mechanics, edited by A. B. Movchan, Kluwer, Dordrecht.

[10] Movchan, A B and Willis, J R (1995) Dynamic weight functions for a moving crack. II. Shear loading, J. Mech. Phys. Solids 43, 1369–1383.

[11] Willis, J R and Movchan, A B (1997) Three-dimensional dynamic perturbation of a propagating crack, J. Mech. Phys. Solids 45, 591–610.

[12] Willis, J R (1999) Asymptotic analysis in fracture: An update, Int. J. Fract. 100, 85–103.

[13] Freund, L B (1990) Dynamic Fracture Mechanics. Cambridge: Cambridge University Press.

[14] Oleaga, G (2003) On the dynamics of cracks in three dimensions, J. Mech. Phys. Solids, 51, 169-185.

[15] Bueckner, H F (1987) Weight functions and fundamental solutions for the penny shaped and half-plane crack in three space, Int. J. Solids Struct. 23, 57–93.