Introduction

Non-Hodgkin lymphoma (NHL) is the seventh most common malignancy.\(^1\) Diffuse large B cell lymphomas (DLBCls) are the commonest subtype of NHL. They constitute about 30 to 40% of adult NHLs. Diffuse large B cell by definition is a large transformed B cell with nuclear diameter more than twice that of a normal lymphocyte. In the recent 2008 WHO classification, DLBCL is classified under the diagnostic heading of “mature B cell neoplasms.” DLBCL is a distinct group in itself with many subtypes and entities based on morphology, immunophenotypic characteristics, and clinical presentation. DLBCL Not Otherwise Specified (NOS) is the commonest variety.\(^2,3\) Using gene-expression profiling, cell-of-origin studies suggested that there are at least 3 distinct subtypes of DLBCL: Activated B-cell (ABC), germinal center B-cell (GCB), and primary mediastinal DLBCL. These differ in the postulated stage of cell of origin, gene expression, and response to anthracycline-based chemotherapy. The GCB DLBCL has better response rate than ABC DLBCL.\(^4,5\) DLBCL could present de novo or as a histologic transformation of other low-grade B cell lymphomas like follicular or chronic lymphocytic leukemia/small lymphocytic lymphoma. The de novo DLBCLs have better prognosis than the latter group.\(^6\) Rituximab with CHOP is the widely accepted first line regimen for the management of DLBCL.\(^7\)

Relapsed/refractory DLBCL

Approximately 50 to 60% of patients with DLBCL achieve and maintain complete remission after first-line therapy; 30 to 40% relapse and 10% have refractory disease.\(^8,9\) Relapsed refractory DLBCL (RR-DLBCL) is defined as per criteria proposed by Cheson et al. \(^10\) Patients with RR-DLBCL have a poor outlook. If left untreated, RR-DLBCL has a life expectancy of 3 to 4 months.\(^11\)

Diagnosis

Refractory disease is diagnosed during response assessment to primary treatment. Relapsed DLBCL can be clinically silent and is often diagnosed on routine follow-up. If clinical features and/or imaging findings suggest relapse, an excision biopsy should always be performed because RR-DLBCL has poor prognosis. Disease should be restaged at relapse with a CT scan of the chest/abdomen/pelvis and a bone marrow biopsy as it has prognostic value.\(^12\) A PET-CT may further delineate extranodal and/or new site involvement.\(^13\) Patients with CNS symptoms should be evaluated with CT-head and lumbar puncture for CSF cytology and flow cytometry. The IPI (international prognostic index) should be determined again at relapse.\(^13\)

Standard treatment

High-dose therapy followed by autologous stem cell transplant (HD-ASCT) is the mainstay of therapy for RR-DLBCL. But, all patients are not fit or eligible for this therapeutic option. The treatment of RR-DLBCL is described under the headings of treatment for patients eligible for HD-ASCT and not eligible for HD-ASCT.

Patients eligible for HD-ASCT

The landmark PARMA trial has established HDT-ASCT as the standard of care for RR-DLBCL. This approach salvages 30 to 40% of patients with DLBCL, who relapse after initial therapy.\(^14\) Therefore, the initial approach to RR DLBCL management is to determine whether the patient is suitable for HD-ASCT.
For patients suitable for HD-ASCT, various salvage chemotherapeutic regimens are available. Before the Rituximab era, DHAP, ICE, MIME, and Mini-BEAM were some of the commonly used salvage therapies [Table 2]. Refractory DLBCL is also managed with these salvage regimens but has poor outcome.

The overall response rates with MIME[18] and EPOCH[19] were 60% and 74%, respectively. The wide range of response rate in these trials is attributed not only to the differential efficacy of various chemotherapeutic drugs, but also to the patient population belonging to different age groups. At our center, we prefer R-DHAP as the HDT because it is cheaper and has fewer infectious complications than other HDTs. Our observation is supported by the good results observed in our subset of patients (unpublished personal observation).

Role of rituximab

Rituximab monotherapy yielded good results in RR DLBCL.[30] Encouraged with these results, Rituximab was added to almost every salvage regimen available. Addition of Rituximab improved the response rates. This allowed more number of patients to undergo ASCT and improved the progression-free survival (PFS), disease-free survival, and overall survival (OS). The major drawback of these trials in the present scenario is that majority of patients had not been previously exposed to Rituximab. In the relapsed setting, the PFS and OS is better in R naïve patients (R-) than those who have been exposed to R previously (R+), especially for the early relapses (relapse within 12 months). In the current scenario where majority patients have already been exposed to Rituximab, its role in the salvage chemotherapy needs to be reestablished, especially with respect to the emergence of Rituximab resistance, like in follicular lymphoma. Several other chemotherapeutic regimens have also shown increased response after addition of Rituximab to salvage chemotherapy. These responses are seen without any increase in toxicity and without affecting the stem cell collection [Table 3].

Gold standard salvage chemotherapy

An ideal salvage chemotherapeutic regimen should have higher response rates with minimal toxicity and should not have adverse effect on the stem cell harvest. Many options are available as salvage chemotherapy. RDHAP and RICE are the two widely used regimens worldwide. Which one is the best regimen? This issue has been addressed in the recently completed multicenter phase 2 CORAL STUDY, with an initial randomization between R-ICE x 3 vs. R-DHAP x 3 followed by BEAM-ASCT [Table 4]. A second randomization then allocated patients to maintenance treatment with Rituximab vs observation. In the first phase results of the trial, there was no significant difference in the response rate, 3-year EFS, or OS between the 2 salvage regimens. However, an updated analysis of the CORAL study revealed that patients with GCB DLBCL (but not non-GCB DLBCL) appeared to benefit from salvage treatment with R-DHAP rather than R-ICE.[31]

Patients ineligible for HD-ASCT

According to standard bone marrow transplant guidelines, patients with severe concomitant medical or psychiatric illness, active central nervous system involvement, or HIV seropositivity are considered ineligible for ASCT. Other criteria for ineligibility includes a bilirubin level >2 mg/dL, creatinine level >1.5 mg/dL, low cardiac ejection fraction (<50%), and a forced expiratory volume in 1 second <50% and/or carbon monoxide diffusion test <50% of predicted level.[32] These patients have little chance at prolonged control of disease with a dismal outcome. The treatment option for these patients includes participation in phase 1/2 clinical trials with novel and experimental agents (vide infra in the future trends section). Patients are often offered palliation with radiotherapy[33] radioimmunoconjugates[14] or rituximab monotherapy.[35]

Table 1: Response criteria for NHL

Criteria	Relapsed disease	Progressive disease/ non-responders
Appearance of any new lesion or increase by more than 50% in the size of previously involved sites after achieving remission	More than 50% increase from nadir in the SPD* of any previously identified abnormal node	Appearance of any new lesion during or at the end of therapy
More than 50% increase in greatest diameter of any previously identified node greater than 1 cm in its short axis or in the SPD* of more than one node	*SPD=Sum of product of diameters, NHL=Non-Hodgkin lymphoma	

Table 2: Salvage chemotherapeutic regimens in the pre-rituximab era

Regimen (reference)	n	Response rate (%)	Number transplanted (%)	Event-free survival (%)
DHAP[14]	215	58	55 (26)	24 at 3 years
ICE[15]	163	66	96 (59)	35 at 3 years
Mini BEAM[16]	102	43	38 (37)	22 at 3 years
ESHAP[17]	122	645	-	10 DFS at 40 months

DFS= Disease-free survival, DHAP=Dexa, high dose cytarabine, cisplatin, ICE=Ifosfamide, carboplatin, etoposide, BEAM=Carmustine, etoposide, cytarabine, melphalan, ESHAP=Etoposide, solumedrol, high dose cytarabine, cisplatin

For patients suitable for HD-ASCT, various salvage chemotherapeutic regimens are available. Before the Rituximab era, DHAP, ICE, MIME, and Mini-BEAM were some of the commonly used salvage therapies [Table 2]. Refractory DLBCL is also managed with these salvage regimens but has poor outcome.

The overall response rates with MIME[18] and EPOCH[19] were 60% and 74%, respectively. The wide range of response rate in these trials is attributed not only to the differential efficacy of various chemotherapeutic drugs, but also to the patient population belonging to different age groups. At our center, we prefer R-DHAP as the HDT because it is cheaper and has fewer infectious complications than other HDTs. Our observation is supported by the good results observed in our subset of patients (unpublished personal observation).

Role of rituximab

Rituximab monotherapy yielded good results in RR DLBCL.[30] Encouraged with these results, Rituximab was added to almost every salvage regimen available. Addition of Rituximab improved the response rates. This allowed more number of patients to undergo ASCT and improved the progression-free survival (PFS), disease-free survival, and overall survival (OS). The major drawback of these trials in the present scenario is that majority of patients had not been previously exposed to Rituximab. In the relapsed setting, the PFS and OS is better in R naïve patients (R-) than those who have been exposed to R previously (R+), especially for the early relapses (relapse within 12 months).[21,22] In the current scenario where majority patients have already been exposed to Rituximab, its role in the salvage chemotherapy needs to be reestablished, especially with respect to the emergence of Rituximab resistance, like in follicular lymphoma. Several other chemotherapeutic regimens have also shown increased response after addition of Rituximab to salvage chemotherapy. These responses are seen without any increase in toxicity and without affecting the stem cell collection [Table 3].[23-30]

Gold standard salvage chemotherapy

An ideal salvage chemotherapeutic regimen should have higher response rates with minimal toxicity and should not have adverse effect on the stem cell harvest. Many options are available as salvage chemotherapy. RDHAP and RICE are the two widely used regimens worldwide. Which one is the best regimen? This issue has been addressed in the recently completed multicenter phase 2 CORAL STUDY, with an initial randomization between R-ICE x 3 vs. R-DHAP x 3 followed by BEAM-ASCT [Table 4]. A second randomization then allocated patients to maintenance treatment with Rituximab vs observation. In the first phase results of the trial, there was no significant difference in the response rate, 3-year EFS, or OS between the 2 salvage regimens.[22] However, an updated analysis of the CORAL study revealed that patients with GCB DLBCL (but not non-GCB DLBCL) appeared to benefit from salvage treatment with R-DHAP rather than R-ICE.[31]

Patients ineligible for HD-ASCT

According to standard bone marrow transplant guidelines, patients with severe concomitant medical or psychiatric illness, active central nervous system involvement, or HIV seropositivity are considered ineligible for ASCT. Other criteria for ineligibility includes a bilirubin level >2 mg/dL, creatinine level >1.5 mg/dL, low cardiac ejection fraction (<50%), and a forced expiratory volume in 1 second <50% and/or carbon monoxide diffusion test <50% of predicted level.[32] These patients have little chance at prolonged control of disease with a dismal outcome. The treatment option for these patients includes participation in phase 1/2 clinical trials with novel and experimental agents (vide infra in the future trends section). Patients are often offered palliation with radiotherapy[33] radioimmunoconjugates[14] or rituximab monotherapy.[35]
The optimal management of relapsed/refractory diffuse large B cell lymphoma (DLBCL) is challenging. Second autologous stem cell transplant (ASCT) or non-myeloablative therapy is rarely feasible. [28] The prognosis of patients who relapse after HD-ASCT is extremely poor and the median survival is approximately 3 months. [30] The optimal management of patients with DLBCL relapsing after HD-ASCT is difficult and no standard treatment has been defined. [29]

Palliation, [27] as a means of extending survival and improving quality of life, is an important aspect of the management of relapsed/refractory DLBCL. Various efforts are being made to improve the outcomes of RR DLBCL. [26]

Table 3: Salvage chemotherapeutic regimens in the rituximab era

Salvage regimen (reference)	Response rate (%)	Progression-free survival
R-DHAP-VIM-DHAP vs DHAP-VIM-DHAP [24]	75 vs 54; OR 73; CR 56%	3-year probability survival: 75% vs 54%
R-ICE vs ICE [24]	53 vs 27; CR	2-year probability of overall survival and progression-free survival: 75% vs 43%
R-ESHAP [25]	OR 92	2-year probability at median 17 months, median OS and PFS not reached
RICE vs ICE [26]	CR 55 vs 28	2-year probability of overall survival and progression-free survival: 75% vs 43%
R-GemOx [27]	OR 82 after 4 cycles	2-year probability of overall survival and progression-free survival: 75% vs 43%
R-DHAX [28] (DLBCL+Follicular Lymphoma)	OR 75, CR 57	2-year probability of overall survival and progression-free survival: 75% vs 43%
RGIFOX [29] (DLBCL+Mantle+ Follicular Lymphoma)	OR 77	Failure-free survival: 79.6% at median follow-up of 6 months
High-dose sequential therapy with rituximab [30]	-	With R (n=303) and without R (n=251) 5-yr OS: 56%; EFS: 45%

*OR=Overall response rate, CR=Complete response rate, NR=Not reached, DHAP=Dexa, high dose cytarabin, cisplatin, ICE=Ifosfamide, carboplatin, etoposide, R-ESHAP=Rituximab, etoposide, solumedo, high dose cytarabin, cisplatin, R-DHAX=Rituximab, Dexa, high dose cytarabin, cisplatin, R-ICE=Rituximab, ICE, R-GemOx=Rituximab, gemcitabine, ifosfamide, oxaliplatin, R-DHAP-Ascorbic acid, R-ICE-Ascorbic acid, R-DHAX-Ascorbic acid, R-ICE-VIM, EFS=Event free survival, VIM=Ifosfamide, ifosfamide, oxaliplatin, R-GemOx=Rituximab, gemcitabine, oxaliplatin, PFS=Progression-free survival, ASCT=Autologous stem cell transplant

Can we predict which patients will relapse or prove refractory?

Search for the predictors of relapse or refractory disease in DLBCL is on. The probable candidates in line are IPI at presentation, [42] CNS status, [43] immunoblastic histology, [44] molecular markers such as c-myc, [45] stromal signatures, [46] and interval PET scan. [47] Simple markers like absolute monocyte to absolute lymphocyte ratio at presentation [48] can also be useful in resource-constrained settings. In future, the treatment of DLBCL will be tailored according to the risk of relapse. Further studies need to validate this approach.

Conclusions

High-dose chemotherapy followed by ASCT is the ideal treatment for eligible chemosensitive patients with RR DLBCL.

- Addition of rituximab post ASCT as maintenance/consolidation [49]
- Addition of other monoclonal antibodies to rituximab [50]
- Use of radioimmunoconjugates as palliation, as augmentation of HDT, or as part of conditioning regimen [51]
- Use of novel agents like bortezomib [52] enzastaurin, [53] everolimus, [54] lenalidomide, [55] fostamatinib, [56] etc.

- Time to relapse
 - Relapse within one year is a poor risk factor. [23,36]

Interestingly, the molecular subtype GCB or ABC have no prognostic value for relapsed/refractory DLBCL. [37,38]

References

1. Cancer Facts and Figures 2012. American Cancer Society. Available from: http://www.cancer.org/. [Last accessed in 2013 Jan].
2. de Leval L, Hasserjian RP. Diffuse Large B-Cell Lymphomas and Burkitt Lymphoma. Hematol Oncol Clin North Am 2009;23:791-827.
3. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: Evolving concepts and practical applications. Blood 2011;117:5019-32.
4. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al. Stromal gene signatures in large B cell lymphomas. N Engl J Med 2008;359:2313-23.
5. Lenz G, Staudt LM. Aggressive lymphomas. N Engl J Med 2010;362:1417-29.
Raut and Chakrabarti.: Management of relapsed-refractory diffuse large B cell lymphoma

How to cite this article: Raut LS, Chakrabarti PP. Management of relapsed-refractory diffuse large B cell lymphoma. South Asian J Cancer 2014;3:66-70.

Source of Support: Nil. Conflict of Interest: None declared.

News

9th SFO (SAARC Federation of Oncologists), conference 2014
Organizing Chairman : Dr. Ashok Vaid
Web: www.sfo2014.com
Mail: saarconology14@gmail.com

News

30th ICON Conference.
Organizing Secretary : Dr. Chirag Desai,
Organizing Secretary : Dr. Bhavesh Parekh,
4th - 6th April, 2014
Web: www.iconconferences.com
Mail: 30thicon@gmail.com

News

Best Of ASCO India 2014.
Organizing Chairman : Prof. Raghunadhrao D.,
Organizing Secretary & Program Director : Dr. Senthil Rajappa
27th - 29th June, 2014
Web: www.bestofascoindia.com
Mail: indiabestofasco@gmail.com

monotherapy after high-dose chemotherapy and autologous stem cell transplantation. BMJ Case Rep 2012;2012.
41. Rezvani AR, Norasetthada L, Gooley T, Sorror M, Bouvier ME, Sahebi F, et al. Non-myeloablative allogeneic haematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: A multicentre experience. Br J Haematol 2008;143:395-403.
42. Anon. The international non-Hodgkin’s lymphoma prognostic factors project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 1993;329:987-94.
43. Boehrke V, Schmitz N, Zeynalova S, Loeffler M, Pfreundschuh M. CNS events in elderly patients with aggressive lymphoma treated with modern chemotherapy (CHOP-14) with or without rituximab: An analysis of patients treated in the RICOVER-60 trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Blood 2009;113:3896-902.
44. Engelhard M, Brittinger G, Huhn D, Gerhartz HH, Meusers P, Siegert W, et al. Subclassification of diffuse large B-cell lymphomas according to the Kiel classification: Distinction of centroblastic and immunoblastic lymphomas is a significant prognostic risk factor. Blood 1997;89:2291-7.
45. Savage KJ, Johnson NA, Ben-Neriah S, Meusers P, Siegert W, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood 2009;114:3533-7.
46. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008;359:2313-23.
47. Yang DH, Ahn JS, Byun BH, Min JJ, Kweon SS, Chae YS, et al. Interim PET/CT-based prognostic model for the treatment of diffuse large B cell lymphoma in the post-rituximab era. Ann Hematol 2012 in press.
48. Porrata LF, Ristow K, Habermann TM, Ozsan N, Dogan A, Macon W, et al. Absolute monocyte/lymphocyte count prognostic score is independent of immunohistochemically determined cell of origin in predicting survival in diffuse large B-cell lymphoma. Leuk Lymphoma 2012;53:2159-65.
49. Haioun C, Mounier N, Emile JF, Bologna S, Coiffier B, Gisselbrecht C, et al. Rituximab compared to observation after high-dose consolidative first-line chemotherapy (HDC) with autologous stem cell transplantation in poor-risk diffuse large B-cell lymphoma: Updated results of the LNH98-B3 GELA study. J Clin Oncol 2007;25:Abstract 8012.
50. Straus SJ, Morschhauser F, Rech J, Repp R, Solal-Celigny P, Zinzani PL, et al. Multicenter phase II trial of immunotherapy with the humanized anti-CD22 antibody, epratuzumab, in combination with rituximab, in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol 2006;24:3880-6.
51. Gisselbrecht C, Vose J, Nademanee A, Gianni AM, Nagler A. Radioimmunotherapy for stem cell transplantation in Non-Hodgkin’s lymphoma: In pursuit of a complete response. Oncologist 2009;14(Suppl 2):41-51.
52. Dunlevy K, Pittaluga S, Czuczman MS, Dave SS, Wright G, Grant N, et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 2009;113:6069-76.
53. Portlock CS. Enzastaurin, a Targeted PKCβ Inhibitor, in Relapsed or Refractory DLBCL: A promising new strategy based on gene expression signature. Curr Oncol Rep 2007;9:371.
54. Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 2011;25:341-7.
55. Hernandez-Illizaliturri FJ, Debb G, Zinzani PL, Pileri SA, Malik F, Macon WR, et al. Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminatal center B-cell-like than in germinal center B-cell-like phenotype. Cancer 2011;117:5058-66.
56. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasse A, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010;115:2578-85.