Complete Genome Sequence of *Neisseria gonorrhoeae* Multilocus Sequence Type ST7363 Isolated from Thailand

Thitima Cherdtrakulkiat,a,b,c Thidathip Wongsurawat,d,e Piroon Jenjaroenpun,d,e Sawannee Sutheeworapong,f Wanna Leelawiwat,a,b Joseph V. Woodring,a,b Eileen F. Dunne,a,b John R. Papp,g Somporn Srifuengfung,h Chanwit Tribuddharati

aDivision of HIV/AIDS Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
bThailand Ministry of Public Health-U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
cMolecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
dDivision of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
eDepartment of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
fPilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
gDivision of Sexually Transmitted Disease Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
hFaculty of Pharmacy, Siam University, Bangkok, Thailand
iDepartment of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

ABSTRACT A *Neisseria gonorrhoeae* multilocus sequence type (MLST) ST7363 strain was isolated from a patient at the Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, in 2010 and completely sequenced. This strain is susceptible to ceftriaxone and ceftizoxime. A complete circular chromosome and circular plasmids were assembled from combined Oxford Nanopore Technologies (ONT) and Illumina sequencing.

Gonorrhea, caused by *Neisseria gonorrhoeae*, is among the most common sexually transmitted infections worldwide (1). Antimicrobial-resistant (AMR) *N. gonorrhoeae* is considered a high priority by the World Health Organization and an urgent threat by the U.S. Centers for Disease Control and Prevention (CDC) (2–5). Genomic analysis has been used to address the evolution and transmission of ceftriaxone-resistant genes (6, 7). We report here the complete genome sequence of a multilocus sequence type (MLST) ST7363 *N. gonorrhoeae* strain. This study was approved by the institutional review boards (IRBs) of the Faculty of Medicine Siriraj Hospital (certificate of approval number Si479/2015). The National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP), CDC, also reviewed and approved this study protocol and determined that it did not involve identifiable human subjects, using unlinked or anonymous data or specimens, and therefore, CDC IRB approval was not required.

Based on our published data (8, 9), we selected the MLST ST7363 isolate from all frozen *N. gonorrhoeae* stock that was resistant to fluoroquinolone, penicillin, and tetracycline by disk diffusion (10) and harbored the *bla*TEM gene for β-lactam resistance. The frozen isolates were cultured on chocolate agar in 5% CO₂ at 35°C and confirmed using Gram staining, oxidase and superoxol assays, and the API-NH (bioMérieux) biochemical test kit. An Etest (bioMérieux) was used to determine the MICs for ceftriaxone, ceftizoxime, azithromycin, tetracycline, and gentamicin.

Genomic DNA was extracted from the colonies scraped from a chocolate agar plate using the Gentra Puregene yeast/bacteria kit (Qiagen). The extracted DNA was used for the Oxford Nanopore Technologies (ONT) and Illumina sequencing.

Citation Cherdtrakulkiat T, Wongsurawat T, Jenjaroenpun P, Sutheeworapong S, Leelawiwat W, Woodring J, Dunne EF, Papp JR, Srifuengfung S, Tribuddharat C. 2021. Complete genome sequence of *Neisseria gonorrhoeae* multilocus sequence type ST7363 isolated from Thailand. Microbiol Resour Announc 10:e00573-21. https://doi.org/10.1128/MRA.00573-21.

Editor Julie C. Dunning Hotopp, University of Maryland School of Medicine
This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Address correspondence to Chanwit Tribuddharat, chanwit.tri@mahidol.ac.th.

Received 20 July 2021
Accepted 20 September 2021
Published 14 October 2021
The ONT library preparation followed the rapid barcoding sequencing protocol (SQK-RBK004; ONT), and sequencing was performed using an R9.4.1/FLO-MIN106 flow cell on a MinION device. We used Guppy v3.0.3 for base calling and demultiplexing of the reads. Quality control of the ONT reads followed the workflow from Jenjaroenpun et al. (11). The ONT adapters were trimmed using Porechop v0.2.3 (https://github.com/rrwick/Porechop). Reads with a mean quality score of 8 and a minimum read length of 1,000 bases were retained using NanoFilt v2.5.0 (12) for de novo assembly.

The Illumina library was prepared using a TruSeq DNA PCR-free library to generate 100-bp paired-end reads using the Illumina HiSeq platform. Quality control of the reads was performed using Fastp v0.19.5 (13). Hybrid assembly (ONT and Illumina data) was performed using Unicycler v0.4.4 (14) for genome error correction, circularization, and rotation. The genome sequence quality was determined using QUAST v5.0.2 (15) and submitted to the NCBI Prokaryotic Genome Annotation Pipeline v4.9 for genome annotation (16). Default parameters were used for all software.

The genome size was 2,218,399 bp. The assembly statistics and GenBank accession numbers are provided in Table 1. The \(N_{50} \) value/total read length (bp) of the ONT and Illumina reads were 4,248/182,670 and 100/13,878,684, respectively. A complete circular chromosome and plasmids, constructed using Unicycler software to check for overlapping sequences at the contig ends, demonstrated that the ST7363 isolate contained 3 circular plasmids, namely, conjugative, \(\text{bla}_{\text{TEM}} \), and cryptic plasmids. In silico analysis confirmed sequence types of \(\text{bla}_{\text{TEM-135}} \), MLST ST7363, and \(N. \ gonorrhoeae \) multiantigen sequence typing (NG-MAST) ST5225 (por90/tbpB1106). A novel sequence type, ST2209 (penA2.002, mtrR19, porB11, pona100, gyrA1, parC18, and 23s100), was uploaded to the NG-STAR database (17). The AMR determinants were defined using PubMLST (http://www.pubmlst.org/neisseria) (18). Type II non-mosaic penA possessed F504L, A511V, and A517G mutations, while gyrA had S91F and D95G mutations and parC had a D86N mutation. In contrast to the reported cephalosporin-resistant \(\text{ST7363-penA10.001/37.001/64.001} \), our MLST \(\text{ST7363-penA2.002} \) was susceptible (Fig. 1) (19–21).

Data availability. The genome sequence has been submitted to GenBank under BioProject accession number PRJNA609415 and BioSample accession number SAMN13151449. The Illumina and ONT raw reads have been deposited in the SRA database under accession numbers SRR10362752 and SRR10388020.
ACKNOWLEDGMENTS

This work was supported by the Siriraj Foundation for Graduate Students (D003474) and the Division of HIV/AIDS Prevention, NCHHSTP, CDC. We thank Andrew Hickey for technical advice and support.

Disclaimers: The findings and conclusions of the manuscript are those of the authors and do not necessarily represent the official views of the CDC. Use of trade names is for identification only and does not imply endorsement by the CDC or by the U.S. Department of Health and Human Services.

REFERENCES

1. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M. 2015. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 10:e0143304. https://doi.org/10.1371/journal.pone.0143304.
2. Unemo M, Shafer WM. 2014. Antimicrobial resistance in *Neisseria gonorrhoeae* in the 21st century; past, evolution, and future. Clin Microbiol Rev 27:587–613. https://doi.org/10.1128/CMR.00010-14.

3. Cole MJ, Spiteri G, Jacobsson S, Woodford N, Tripodo F, Unemo M, Euro-GASP network. 2017. Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in *Neisseria gonorrhoeae* in 24 European countries, 2015. BMC Infect Dis 17:617. https://doi.org/10.1186/s12879-017-2707-z.

4. WHO. 2014. Antimicrobial resistance: global report on surveillance. WHO, Geneva, Switzerland.

5. CDC. 2019. Antibiotic resistance threats in the United States, 2019. U.S. Department of Health and Human Services, CDC. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.

6. Unemo M, Golparian D, Eyre DW. 2019 Antimicrobial resistance in *Neisseria gonorrhoeae* and treatment of gonorrhoea, p 37–58. In Christodoulides M (ed), *Neisseria gonorrhoeae*: methods and protocols, vol 1997. Springer, New York, NY.

7. De Silva D, Peters J, Cole K, Cole MJ, Cresswell F, Dean G, Dave J, Thomas DR, Foster K, Waldram A, Wilson DJ, Didelez X, Grad YH, Crook DW, Petri TEA, Walker AS, Paul J, Eyre DW. 2016. Whole-genome sequencing to determine *Neisseria gonorrhoeae* transmission: an observational study. Lancet Infect Dis 16:1295–1303. https://doi.org/10.1016/S1473-3099(16)30157-8.

8. Tribuddharat C, Pongpech P, Charoenwatanachokchai A, Lokpichart S, Srifuengfung S, Sonprasert S. 2017. Gonococcal antimicrobial susceptibility and prevalence of *blaTEM* and *blaTIA* genes in *Neisseria gonorrhoeae* isolates from Thailand. Jpn J Infect Dis 70:213–215. https://doi.org/10.7883/yoken.JJID.2016.209.

9. Cherdtrakulkit T, Wongsurawat T, Jenjaroenpun P, Sutheworapong S, Leeawiwat W, Hickey AC, Dunne EF, Raengsakulrach B, Tribuddharat C. 2020. Complete genome sequences of three *Neisseria gonorrhoeae* isolates from Thailand with multidrug resistance and multilocus sequence type 1903. Microbiol Resour Announc 9:e00198-20. https://doi.org/10.1128/MRA.00198-20.

10. Clinical and Laboratory Standards Institute. 2019. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100, 29th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

11. Jenjaroenpun P, Wongsurawat T, Udaondo Z, Anderson C, Lopez J, Mohan M, Tytarenko R, Walker B, Nookaew I, Usery D, Kothari A, Jun S-R. 2020. Complete genome sequences of four isolates of vancomycin-resistant *Enterococcus faecium* with the vanA gene and two daptomycin resistance mutations, obtained from two inpatients with prolonged bacteremia. Microbiol Resour Announc 9:e01380-19. https://doi.org/10.1128/MRA.01380-19.

12. De Coster W, D’Hert S, Schulz DT, Cruts M, Van Broekhoven C. 2018. NanoPac: visualizing and processing long-read sequencing data. Bioinformatics 34:2666–2669. https://doi.org/10.1093/bioinformatics/bty149.

13. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastsp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560.

14. Wick RR, Judd LM, Gorris CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

15. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086.

16. Tatusova T, DiCuccio M, Badgett A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadsze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.

17. Demczuk W, Sidhu S, Unemo M, Whitey DL, Allen VG, Dillon JR, Cole M, Seah C, Trembizki E, Trees DL, Kersh EN, Abrams AJ, de Vries HC, van Dam AP, Medina I, Bharat A, Mulvey MR, Van Domselaar G, Martin I. 2017. *Neisseria gonorrhoeae* sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of *N. gonorrhoeae* strains. J Clin Microbiol 55: 1454–1468. https://doi.org/10.1128/JCM.00100-17.

18. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. https://doi.org/10.12688/wellcomeopenres.14826.1.

19. Nakayama S-I, Shimuta K, Furubayashi K-I, Kawahata T, Unemo M, Ohnishi M. 2016. New ceftriaxone- and multidrug-resistant *Neisseria gonorrhoeae* strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother 60:4339–4341. https://doi.org/10.1128/AAC.00504-16.

20. Lahra MM, Martin I, Demczuk W, Jennison AV, Lee K-I, Nakayama S-I, Lefebvre B, Longtin J, Ward A, Mulvey MR, Wi T, Ohnishi M, Whitey D. 2018. Cooperative recognition of internationally disseminated ceftriaxone-one-resistant *Neisseria gonorrhoeae* strain. Emerg Infect Dis 24:735–740. https://doi.org/10.3201/eid2404.171873.

21. Yahara K, Ma KC, Mortimer TD, Shimuta K, Nakayama S-I, Hirabayashi A, Suzuki M, Jinna M, Ohya H, Kuroki T, Watanabe Y, Yasuda M, Deguchi T, Eldholm V, Harrison OB, Maiden MCJ, Grad YH, Ohnishi M. 2021. Emergence and evolution of antimicrobial resistance genes and mutations in *Neisseria gonorrhoeae*. Genome Med 13:51. https://doi.org/10.1186/s13073-021-00860-8.