Double Beta Decay in Gauge Theories

J.D. Vergados

Institute of Theoretical Physics, University of Tuebingen, D–72076 Tuebingen, Germany

Abstract. Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. From the elementary particle point of view it pops up in almost every model. In addition to the traditional mechanisms, like the light neutrino mass, $\lambda$ and $\eta$ terms etc we can have direct R-parity violating supersymmetric (SUSY) contributions. In any case its observation will severely constrain the existing models and will signal that the neutrinos are massive Majorana particles. From the nuclear physics point of view it is challenging, because: 1) The relevant nuclei have complicated nuclear structure. 2) The energetically allowed transitions are exhaust a small part of all the strength. 3) One must cope with the short distance behavior of the transition operators, especially when the intermediate particles are heavy (eg in SUSY models). Thus novel effects, like the double beta decay of pions in flight between nucleons, have to be considered. 4) The intermediate momenta involved are about $100\ MeV/c$. Thus one has to take into account possible momentum dependent terms in the nucleon current. We find that, for the mass mechanism, such modifications of the nucleon current for light neutrinos reduce the nuclear matrix elements by about 25%, almost regardless of the nuclear model. In the case of heavy neutrino the effect is much larger and model dependent. Taking the above effects into account, the available nuclear matrix elements for the experimentally interesting nuclei $A = 76, 82, 96, 100, 116, 128, 130, 136$ and $150$ and the presently available experimental limits on the half-life of the $0\nu\beta\beta$-decay we have extracted the following

1 Permanent address: Theoretical Physics Section, University of Ioannina, GR–451 10, Ioannina, Greece
E-mail:vergados@cc.uoi.gr
new limits: $\langle m_\nu \rangle < 0.3 eV/c^2 \, \lambda_{111} < 4.0 \times 10^{-4}$ for the R-parity violating parameter with reasonable choices of the parameters of SUSY models.

1. Introduction

The nuclear double beta decay can occur whenever the ordinary (single) beta decay is forbidden due to energy conservation or greatly suppressed due to angular momentum mismatch. The exotic neutrinoless double beta decay ($0\nu\beta\beta$-decay) is the most interesting since it violates lepton number by two units. It is a very old process. It was first considered by Furry exactly half a century ago as soon it was realized that the neutrino might be a Majorana particle. It was continued with the work of Primakoff and Rosen especially when it was recognized that kinematically it is favored by $10^8$ compared to its non exotic sister $2\nu\beta\beta$-decay. When the corresponding level of the $10^{15}$ lifetime was reached and the process was not seen, it was tempting to interpret this as an indication that the neutrino was a Dirac particle. The interest in it was resurrected with the advent of gauge theories which favor Majorana neutrinos and through the pioneering work of Kotani and his group it was brought again to the attention of the nuclear physics community. To-day, fifty years later, $0\nu\beta\beta$-decay continues to be one of the most interesting processes.

From a theoretical point of view it is the most likely, if not the only, process capable of deciding whether or not the neutrino is a Majorana particle, i.e. it coincides with its own antiparticle. It is expected to occur whenever one has lepton number violating interactions. Lepton number, being a global quantity is not sacred, but it is expected to be broken at some level. In short this process pops up almost everywhere, in every theory.

From a nuclear physics point of view calculating the relevant nuclear matrix elements it is indeed a challenge. First almost all nuclei, which can undergo double beta decay, are far from closed shells and some of them are even deformed. One thus faces a formidable task. Second the nuclear matrix elements represent a small fraction of a canonical value (i.e. the matrix element to the energy non allowed transition double Gamow-Teller resonance or some appropriate sum rule). Thus effects which are normally negligible become important here. Third in many models the dominant mechanism for $0\nu\beta\beta$-decay does not involve intermediate light neutrinos, but very heavy particles and one must be able to cope with the short distance behavior of the relevant operators and wave functions.
From the experimental point of view it also very challenging to measure the slowest perhaps process accessible to observation. Especially since it is realized that, even if one obtains only lower bounds on the life time for this decay, the extracted limits on the theoretical model parameters may be comparable, if not better, and complementary to those extracted from the most ambitious accelerator experiments.

The recent superkamiokande results have given the first evidence of physics beyond the Standard Model (SM) and in particular they indicate that the neutrinos are massive particles. It is important to proceed further and find out whether the neutrinos are Dirac or Majorana particles. As we have mentioned there might be processes other than the conventional intermediate neutrino mechanism, which may dominate $0\nu\beta\beta$-decay. It has, however, been known that whatever the lepton violating process is, which gives rise to this decay, it can be used to generate a Majorana mass for the neutrino [10]. The study of the $0\nu\beta\beta$-decay is further stimulated by the development of grand unified theories (GUT’s) and supersymmetric models (SUSY) representing extensions of the $SU(2)_L \otimes U(1)$ SM. The GUT’s and SUSY offer a variety of mechanisms which allow the $0\nu\beta\beta$-decay to occur [11].

The best known possibility is via the exchange of a Majorana neutrino between the two decaying neutrons [4, 5, 6, 7, 12, 8]. Nuclear physics dictates that we study the light and heavy neutrino components separately. In the presence of only left-handed currents for light intermediate neutrinos the obtained amplitude is proportional to a suitable average neutrino mass, which vanishes in the limit in which the neutrinos become Dirac particles. In the case of heavy Majorana neutrino components the amplitude is proportional to the average inverse neutrino mass, i.e. it is again suppressed. In the presence of right handed currents one has one can have a contribution similar to the one above for heavy neutrinos but involving a different (larger) average inverse mass and some suppression due to the heaviness of $W_R$.

It is also possible to have, in addition, interference between the leptonic left and right currents, $j_L - j_R$ interference. In this case the amplitude in momentum space becomes proportional to the 4-momentum of the neutrino and, as a result, only the light neutrino components become important. One now has two possibilities. First the two hadronic currents have a chirality structure of the same kind $J_L - J_R$. Then one can extract from the data a dimensionless parameter $\lambda$, which is proportional to the square of the ratio of the masses of the L and R gauge bosons, $\kappa = (m_L/m_R)^2$. Second the two hadronic currents are left-handed, which can happen via the mixing of the two bosons. The relevant lepton violating parameter $\eta$ is now proportional to this mixing. Both of these parameters, however, involve the neutrino mixing and they are proportional to the mixing between the light
and heavy neutrinos.

In gauge theories one has, of course, many more possibilities. Exotic intermediate scalars may mediate $0\nu\beta\beta$-decay \cite{1}. These are not favored in current gauge theories and are not going to be further discussed. In superstring inspired models one may have siglet fermions in addition to the usual right handed neutrinos. Not much progress has been made on the phenomenological side of these models and they are not going to be discussed further.

In recent years supersymmetric models are taken seriously and semirealistic calculations are taking place. In standard calculations one invokes universality at the GUT scale, employing in all 5 parameters, and use the renormalization group equation to obtain all parameters (couplings and particle masses) at low energies. Hence, since such parameters are in-principle calculable one can use $0\nu\beta\beta$-decay to constrain some of the R-parity violating couplings, which cannot be specified by the theory \cite{13, 14, 15, 16, 17, 18, 19}. Recent review articles \cite{9, 8} give a detailed account of the latest developments in this field.

From the above discussion it clear that one has to consider the case of heavy intermediate particles. One thus has to consider very short ranged operators in the presence of the nuclear repulsive core. If the interacting nucleons are point-like one gets negligible contributions. We know, however that the nucleons are not point like and they have structure described by a form factor, which can be calculated in the quark model or parameterized in a dipole shape. This approach was first considered by Vergados \cite{20} adopted later by almost everybody. The resulting effective operator has a range somewhat less than the proton mass (see sect. 4 below).

The other approach is to consider particles other than the nucleons present in the nuclear soup. For $0^+ \rightarrow 0^+$ the most important such particles are the pions. One thus may consider the double beta decay of pions in flight between nucleons, like

$$\pi^- \rightarrow \pi^+ e^- e^- \ , \quad n \rightarrow p \pi^+ e^- e^-$$

(1)

This contribution was first considered by Vergados \cite{21} and was found to yield results of the same order as the nucleon mode with the above recipe for treating the short range behavior. It was revived by the Tuebingen group \cite{17, 18} in the context of R-parity violating interactions, in which it appears to dominate.

The other recent development is the better description of nucleon current by including momentum dependent terms, such as the modification of the axial current due to PCAC and the inclusion of the weak magnetism terms. These contributions have been considered previously \cite{22, 12}, but only in connection with the extraction of the $\eta$ parameter mentioned above. Indeed these terms were very important in this case since they compete with
the p-wave lepton wave function, which, with the usual currents, provides
the lowest non vanishing contribution. In the mass term, however, only
s-lepton wave functions are relevant. So these terms have hitherto been
neglected.

It was recently found [23] that for light neutrinos the inclusion of these
momentum dependent terms reduces the nuclear matrix element by about
25%, independently of the nuclear model employed. For the heavy neutrino,
however, the effect can be larger and depends on the nuclear wave functions.
The reason for expecting them to be relevant is that the average momentum
< q > of the exchanged neutrino is expected to be large [24]. In the case of
a light intermediate neutrino the mean nucleon-nucleon separation is about
2 fm which implies that the average momentum < q > is about 100 MeV.
In the case of a heavy neutrino exchange the mean internucleon distance is
considerably smaller and the average momentum < q > is supposed to be
considerably larger.

Since 0νββ decay is a two step process, one should in principle con-
bstruct and sum over all the intermediate nuclear steps, a formidable job
indeed in the case of the Shell Model Calculations (SMC). Since, however,
the average neutrino momentum is much larger compared to the nuclear ex-
citations, one can invoke closure using some average excitation energy (this
does not apply in the case of 2νββ decays). Thus one need construct only
the initial and final 0+ nuclear states. In Quasiparticle Random Phase Ap-
proximation (QRPA) one must construct the intermediate states anyway.
In any case it was explicitly shown, taking advantage of the momentum
space formalism developed by Vergados [25], that this approximation is
very good [26, 27]. The same conclusion was reached independently by
others [28].

Granted that one takes into account all the above ingredients in order
to obtain quantitative answers for the lepton number violating parameters
from the the results of 0νββ-decay experiments, it is necessary to evaluate
the relevant nuclear matrix elements with high reliability. The most
extensively use methods are the SMC ( for a recent review see [8]) and
QRPA ( for a recent review see [1]). The SMC is forced to use few single
particle orbitals, while this restriction does not apply in the case of QRPA.
The latter suffers , of course, from the approximations inherent in the RPA
method. So a direct comparison between them is not possible.

The SMC has a long history [29, 30, 31, 32, 33, 34, 35] in in double beta
decay calculations. In recent years it has lead to large matrices calculations
in traditional as well as Monte Carlo types of calculations [36, 37, 38, 39,
40, 41] (For a more complete set of references see Ref. [8]) and suitable
effective interactions.

There have been a number of QRPA calculations covering almost all
nuclear targets [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. We also have
seen some refinements of QRPA, like proton neutron pairing and inclusion of renormalization effects due to Pauli principle corrections \[53, 54\].

The above schemes, in conjunction with the other improvements mentioned above offer, some optimism in our efforts for obtaining nuclear matrix elements accurate enough to allow us to extract reliable values of the lepton violating parameters from the data. We will review this in the case of most of the nuclear targets of experimental interest (\(^{76}\text{Ge}\), \(^{82}\text{Se}\), \(^{96}\text{Zr}\), \(^{100}\text{Mo}\), \(^{116}\text{Cd}\), \(^{128}\text{Te}\), \(^{130}\text{Te}\), \(^{136}\text{Xe}\), \(^{150}\text{Nd}\)).

2. Theory

2.1. Majorana neutrino mass mechanism

We shall consider the \(0\nu\beta\beta\)-decay process assuming that the effective beta decay Hamiltonian acquires the form:

\[
\mathcal{H}^0 = \frac{G_F}{\sqrt{2}} \left[ \bar{e} \gamma_\mu (1 - \gamma_5) \nu_L^0 \right] J^{\mu \dagger}_L + \left[ \bar{e} \gamma_\mu (1 + \gamma_5) \nu_R^0 \right] J^{\mu \dagger}_R + \text{h.c.} \tag{2}
\]

where \(e\) and \(\nu_L^0, \nu_R^0\) are field operators representing the electron and the left handed and the right handed electron neutrinos in the weak interaction basis, respectively. We suppose that neutrino mixing does take place according to

\[
\nu_{eL}^0 = \sum_{k=1}^{3} U_{ek}^{(11)} \nu_{kL} + \sum_{k=1}^{3} U_{ek}^{(12)} N_{kL}, \tag{3}
\]

\[
\nu_{eR}^0 = \sum_{k=1}^{3} U_{ek}^{(21)} \nu_{kL} + \sum_{k=1}^{3} U_{ek}^{(22)} N_{kL}, \tag{4}
\]

where, \(\nu_k (N_k)\) are fields of light (heavy) Majorana neutrinos with masses \(m_k (m_k << 1 \text{ MeV})\) and \(M_k (M_k >> 1 \text{ GeV})\), respectively. The matrices \(U^{(11)}_{ek}\) and \(U^{(12)}_{ek}\) are approximately unitary, while the matrices \(U^{(12)}_{ek}\) and \(U^{(22)}_{ek}\) are very small (of order of the up quark divided by the heavy neutrino mass scales) so that the overall matrix is unitary. \(\nu_k, N_k\) satisfy the Majorana condition: \(\nu_k \xi_k = C \overline{\nu}_k^T, \ N_k \Xi_k = C \overline{N}_k^T\), where \(C\) denotes the charge conjugation and \(\xi, \Xi\) are phase factors (the eigenmasses are assumed positive).

We assume both outgoing electrons to be in the \(s_{1/2}\) state and consider only \(0^+ \rightarrow 0^+\) transitions are allowed. For the ground state transition restricting ourselves to the mass mechanism we obtain for the \(0\nu\beta\beta\)-decay inverse half-life

\[
[T_{1/2}^{0\nu}]^{-1} = G_{01} \left| \frac{m_\nu}{m_e} \right| M_{light}^{<m_\nu>} \left[ \right. \eta_N L M_{heavy}^{\eta_N} \left. \right|^{2} + \left[ \right. \eta_N R M_{heavy}^{\eta_N} \left. \right|^{2} \right] \tag{5}
\]
The lepton-number non-conserving parameters, i.e. the effective neutrino mass \( <m_\nu> \) and \( \eta^L_N, \eta^R_N \) are given as follows:

\[
<m_\nu> = \sum_1^3 (U_{e k}^{(11)})^2 \xi_k m_k,
\eta^L_N = \sum_1^3 (U_{e k}^{(12)})^2 \Xi_k \frac{m_p}{M_k}, \tag{6}
\]

\[
\eta^R_N = (\kappa^2 + \epsilon^2) \sum_1^3 (U_{e k}^{(22)})^2 \Xi_k \frac{m_p}{M_k}, \tag{7}
\]

with \( m_p (m_e) \) being the proton (electron) mass, \( \kappa \) is the mass squared ratio of \( W_L \) and \( W_R \) and \( \epsilon \) their mixing. \( G_{01} \) is the integrated kinematical factor [5,12]. The nuclear matrix elements associated with the exchange of light \( (M_{\text{light}}^\nu) \) and heavy neutrino \( (M_{\text{heavy}}^\nu) \) must be computed in a nuclear model. Eq. (5), however, applies to any intermediate particle.

At this point we should stress that the main suppression in the mass terms comes from the smallness of neutrino masses. In the case of heavy neutrino not only from the large values of neutrino masses but the small couplings, \( U_{e k}^{(12)} \) for the left handed neutrinos and \( \kappa \) and \( \epsilon \) for the right-handed ones.

2.2. The leptonic left-right interference mechanism (\( \lambda \) and \( \eta \) terms).

As we have already mentioned in the presence of right handed currents one can have interference between the leptonic currents of opposite chirality. This leads to different kinematical functions and two new lepton violating parameters \( \lambda \) and \( \eta \) defined by

\[
\eta = \epsilon \eta_{RL} , \quad \lambda = \kappa \eta_{RL} , \quad \eta_{RL} = \sum_1^3 (U_{e k}^{(21)}U_{e k}^{(11)}) \xi_k \tag{8}
\]

The parameters \( \lambda \) and \( \eta \) are small not only due to the smallness of the parameters \( \kappa \) and \( \epsilon \) but in addition because of the smallness of \( U_{(21)} \).

All the above contributions vanish in the limit in which the neutrino is a Dirac particle.

Many nuclear matrix elements appear in this case, but they are fairly well known and they are not going to be reviewed here (see e.g. [4,8] and [5,7,9] and in our notation [12]). We only mention that in the case of \( \eta \) we have additional contributions coming from the nucleon recoil term and the kinematically favored spin antisymmetric term. These dominate and lead to values of \( \eta \) much smaller than \( \lambda \).[12]
3. The R-parity violating contribution

In SUSY theories R-parity is defined as

\[ R = (-1)^{3B+L+2s} \]  

(9)

with \( B = \text{baryon} \), \( L = \text{lepton} \) numbers and \( s \) the spin. It is +1 for ordinary particles and -1 for their superpartners. R-parity violation has recently been seriously considered in SUSY models.

R-parity violating terms may induce a Majorana neutrino mass and may, therefore, lead to \( 0\nu\beta\beta \) decay. But the relevant masses are small, at least 10 times smaller \[55\] than those deduced from the present data. The bilinear terms in the superpotential also lead to mixings between the neutrinos and neutralinos as well as between the leptons and the charginos, leading to lepton violating processes \[56\]. We are not going, however, to consider such effects in this review.

Here we will be concerned with trilinear couplings in the superpotential given by:

\[ W = \lambda_{ijk} L^a_i L^b_j E^c_k \epsilon_{ab} + \lambda'_{ijk} L^a_i U^b_j D^c_k \epsilon_{ab} + \lambda''_{ijk} U^a_i U^b_j D^c_k \epsilon_{ab} \]  

(10)

where a summation over the flavor indices \( i,j,k \) and the isospin indices \( a,b \) is understood (\( \lambda_{ijk} \) is antisymmetric in the indices \( i \) and \( j \)). The last term has no bearing in our discussion, but we will assume that it vanishes due to some discreet symmetry to avoid too fast proton decay. The \( \lambda \)'s are dimensionless couplings not predicted by the theory.

In the above notation \( L,Q \) are isodoublet and \( E^c,D^c \) isosinglet chiral superfields, i.e they represent both the fermion and the scalar components. It has been recognized quite sometime ago that the second term in the superpotential could lead to neutrinoless double beta decay \[13, 14\] and re-examined quite recently \[17\]. Typical diagrams at the quark level are shown in Fig.1. Note that as intermediate states, in addition to the s-leptons and s-quarks, one must consider the neutralinos, 4 states which are linear combinations of the gauginos and higgsinos, and the colored gluinos (supersymmetric partners of the gluons). Whenever the process is mediated by gluons a Fierz transformation is needed to lead to a colorless combination. The same thing is necessary whenever the fermion line connects a quark to a lepton. As a result one gets at the quark level not only scalar (S) and pseudoscalar (P) couplings, but tensor (T) couplings as well. This must be contrasted to the V and A structure of the traditional mechanisms. One, therefore, must consider how to transform these operators from the quark to the nucleon level.

The effective lepton violating parameter, assuming that pion exchange
Figure 1. The R-parity violating contribution to $0\nu\beta\beta$ decay mediated by s-fermions and neutralinos (gluinos).

mode dominates, as the authors of Ref [17, 9] claim, is given by

$$
\eta_{SUSY} = (\lambda'_{111})^2 \frac{3}{8} (\chi_{PS} \eta_{PS} + \eta_T)
$$

with $\eta_{PS}(\eta_T)$ associated with the scalar and pseudoscalar (tensor) quark couplings given by

$$
\eta_{PS} = \eta_{\tilde{\chi}, \tilde{\chi}} + \eta_{\tilde{\chi}, \tilde{\chi}} + \tilde{\eta}_{\tilde{\chi}} + 7\tilde{\eta}_{\tilde{\chi}}', \quad \eta_T = \eta_{\tilde{\chi}, \tilde{\chi}} - \eta_{\tilde{\chi}, \tilde{\chi}} + \tilde{\eta}_{\tilde{\chi}} - \tilde{\eta}_{\tilde{\chi}}'.
$$

They find $\chi_{PS} = (2/3)$, but as we shall see it depends on ratios of nuclear matrix elements. For the diagram of Fig.1a one finds

$$
\eta_{\tilde{\chi}, \tilde{\chi}} = \frac{2\pi}{(G_F m_W^2)^2} (\kappa_{\tilde{\chi}})^2 \frac{m_p}{m_{\tilde{\chi}}} \bar{e}\tilde{e}
$$
For the diagram of Fig.1b one finds

$$\tilde{\eta} = \frac{\pi}{2(G_F m^2_W)} \left[ \kappa_d (\frac{m_p}{m_{\tilde{d}}})_{\tilde{d}\tilde{d}} + \frac{(\kappa_d)^2}{m_{\tilde{d}}} \right] (14)$$

$$\tilde{\eta} = \frac{\pi}{6} \alpha_s \left[ \kappa_d (\frac{m_p}{m_{\tilde{d}}})_{\tilde{d}\tilde{d}} + \frac{(\kappa_d)^2}{m_{\tilde{d}}} \right] (15)$$

For the diagram of Fig.1c one finds

$$\tilde{\eta} = \frac{\pi}{2(G_F m^2_W)} \left[ \kappa_d (\frac{m_p}{m_{\tilde{d}}})_{\tilde{d}\tilde{d}} + \frac{(\kappa_d)^2}{m_{\tilde{d}}} \right] (16)$$

$$\tilde{\eta} = \frac{\pi}{12} \alpha_s \left[ \kappa_d (\frac{m_p}{m_{\tilde{d}}})_{\tilde{d}\tilde{d}} + \frac{(\kappa_d)^2}{m_{\tilde{d}}} \right] (17)$$

where

$$\kappa_X = (\frac{m_W}{m_X})^2, X = \tilde{e}_L, \tilde{u}_L, \tilde{d}_R$$

$$\epsilon_{\tilde{\eta}, \tilde{f}} = \sum_1^4 \epsilon_{\tilde{\eta}, \tilde{f}} m_p (m_{\tilde{e}})_{\tilde{e}\tilde{e}} (m_{\tilde{u}})_{\tilde{u}\tilde{u}}$$

where $\epsilon_{\tilde{\eta}, \tilde{f}}$ and $\epsilon_{\tilde{\eta}, \tilde{f}'}$ are the couplings of the $i$th neutralino to the relevant fermion-fermion, which are calculable (see e.g. Ref. [57]). Thus ignoring the small Yukawa couplings coming via the Higgsinos and taking into account only the gauge couplings we find

$$\epsilon_{\tilde{\eta}, \tilde{e}} = \frac{Z_{2i} + tan\theta_W Z_{1i}}{sin\theta_W} (20)$$

$$\epsilon_{\tilde{\eta}, \tilde{u}} = \frac{Z_{2i} + (tan\theta_W /3) Z_{1i}}{sin\theta_W}$$

$$\epsilon_{\tilde{\eta}, \tilde{d}} = -\frac{Z_{1i}}{3cos\theta_W} (21)$$

where $Z_{1i}, Z_{2i}$ are the coefficients in the expansion of the $\tilde{B}, \tilde{W}_3$ in terms of the neutralino mass eigenstates. Note that in this convention some of the masses $m_{\tilde{\chi}}$ may be negative.

4. The effective nucleon current

As we have mentioned the effective nucleon current in addition to the usual V and A terms (P,S,T in SUSY contributions) contains momentum dependent terms $\frac{2}{2}$. Within the impulse approximation the nuclear current $J_L^\mu$ in Eq. (4) expressed with nucleon fields $\Psi$ takes the form

$$J_L^\mu = \frac{\Psi}{2m_p} \left[ g_V(q^2)\gamma^\mu - ig_M(q^2)\frac{\sigma^{\mu\nu}q^\nu}{2m_p} - g_A(q^2)\gamma^\mu\gamma^5 + g_F(q^2)\gamma^\mu\gamma^5 \right] \Psi$$

(22)
where $M$ is the nucleon mass, $q^\mu = (p - p')_\mu$ is the momentum transferred from hadrons to leptons ($p$ and $p'$ are four momenta of neutron and proton, respectively) and $\sigma^{\mu\nu} = (i/2)[\gamma^\mu, \gamma^\nu]$. $g_V(q^2)$, $g_M(q^2)$, $g_A(q^2)$ and $g_P(q^2)$ are real functions of a Lorenz scalar $q^2$. The values of these form factors in the zero-momentum transfer limit are known as the vector, weak-magnetism, axial vector and induced pseudoscalar coupling constants, respectively.

For nuclear structure calculations it is necessary to reduce the nucleon current to the non-relativistic form. We shall neglect small energy transfers between nucleons in the non-relativistic expansion. Then the form of the nucleon current coincides with those in the Breit frame and we arrive at

$$ J^{\mu}(\vec{x}) = \sum_{n=1}^{A} \tau_n^+ [g^{\mu 0} J^0(\vec{q}^2) + g^{\mu k} J^k_n(\vec{q}^2)] \delta(\vec{x} - \vec{r}_n), \quad k = 1, 2, 3 \quad (23) $$

with

$$ J^0(\vec{q}^2) = g_V(q^2), \quad J^k_n(\vec{q}^2) = g_M(q^2) i \vec{\sigma}_n \times \vec{q} / 2M + g_A(q^2) [\vec{q} - \vec{q}_n \cdot \vec{q} / \vec{q}^2 + m_n^2] \quad (24) $$

$\vec{r}_n$ is the coordinate of the $n$th nucleon.

For the form factors we shall use the following parameterization \[23\]:

$$ g_V(q^2) = g_V / (1 + \vec{q}^2 / \Lambda_V^2)^2, \quad g_M(q^2) = (\mu_p - \mu_n) g_V(q^2), \quad g_A(q^2) = g_A / (1 + \vec{q}^2 / \Lambda_A^2)^2 $$

where $g_V = 1$, $g_A = 1.254$, $(\mu_p - \mu_n) = 3.70$, $\Lambda_V^2 = 0.71 \text{ (GeV)}^2$ \[59\] and $\Lambda_A = 1.09 \text{ GeV}$ \[60\]. In previous calculations only one general cut-off $\Lambda_V = \Lambda_A \approx 0.85 \text{ GeV}$ was used. In this work we take the empirical value of $\Lambda_A$ deduced from the antineutrino quasielastic reaction $\bar{\nu}_\mu p \rightarrow \mu^+ n$. A larger value of the cut-off $\Lambda_A$ is expected to increase slightly the values of corresponding nuclear matrix elements. It worth noting that with these modifications of the nuclear current one gets a new contribution in the neutrino mass mechanism, namely the tensor contribution. The two body effective transition operator takes in momentum space the form

$$ \Omega = \tau_+ \tau_+ (-g_V(q^2)^2 + h_{GT} \sigma_{12} - h_T S_{12}) \quad (25) $$

where the three terms correspond to Fermi (F), Gamow-Teller (GT) and Tensor (T). One finds that

$$ S_{12} = 3(\vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q}) - \sigma_{12}, \quad \sigma_{12} = \vec{\sigma}_1 \cdot \vec{\sigma}_2. \quad (26) $$

Note that the tensor operator is defined in momentum space ($\vec{q}$ rather than $\vec{r}$) and there is a change of sign in going to the coordinate space.

$$ \frac{h_{GT}(q^2)}{g_A^2(q^2)} = [1 - \frac{2}{3} \frac{\vec{q}^2}{\vec{q}^2 + m_n^2} + \frac{1}{3} \left( \frac{\vec{q}^2}{\vec{q}^2 + m_n^2} \right)^2] + \frac{2}{3} \frac{g_M^2(q^2)}{4m_n^2}, $$
Table 1. The Fermi, Gamow-Teller and Tensor nuclear matrix elements for the light Majorana neutrino exchange of the 0νββ-decay of 76Ge and 130Te with (rows 2 and 4) and without (rows 1 and 3) short-range correlations.

| transition | Gamow-Teller | Tensor | M_{light}^{AP} | M_{light}^{PP} | M_{light}^{GT} | M_{light}^{T} |
|------------|--------------|--------|----------------|----------------|----------------|--------------|
| 76Ge       |              |        |                |                |                |              |
|            | 5.132        |        | -1.392         | 0.302          | -0.243         | 0.054        |
|            | -2.797       |        | -0.790         | 0.176          | -0.246         | -0.055       |
| 130Te      |              |        | 4.158          | -1.173         | 0.258          | 0.074        |
|            | -2.797       |        | 2.797          | 0.790          | -0.246         | 0.055        |

Table 2. Nuclear matrix elements for the light and heavy Majorana neutrino exchange modes of the 0νββ-decay for the nuclei studied in this work calculated within the renormalized pn-QRPA.

| M.E. | Light Majorana neutrino (I=light) | Heavy Majorana neutrino (I= heavy) |
|------|-----------------------------------|-----------------------------------|
|      | 76Ge | 82Se | 86Kr | 98Mo | 100Cd | 130Te | 136Xe | 150Nd |
| M_{1V} |        |        |        |        |        |        |        |        |
|        | 0.80  | 0.74  | 0.45  | 0.82  | 0.50  | 0.75  | 0.66  | 0.32  | 1.14  |
| M_{1AA} |       |       |       |       |       |       |       |       |       |
|        | 2.80  | 2.66  | 1.54  | 3.30  | 2.08  | 2.21  | 1.84  | 0.70  | 3.37  |
| M_{1PP} |       |       |       |       |       |       |       |       |       |
|        | 0.23  | 0.22  | 0.15  | 0.26  | 0.15  | 0.24  | 0.21  | 0.11  | 0.35  |
| M_{1AP} |       |       |       |       |       |       |       |       |       |
|        | -1.04 | -0.98 | -0.65 | -1.17 | -0.69 | -1.04 | -0.91 | -0.48 | -1.53 |
| M_{1\nu}^{\nu>} |       |       |       |       |       |       |       |       |       |
|        | 2.80  | 2.64  | 1.49  | 3.21  | 2.05  | 2.17  | 1.80  | 0.66  | 3.33  |
| M_{2V} |        |        |        |        |        |        |        |        |        |
|        | 23.9  | 22.0  | 16.1  | 28.3  | 17.2  | 25.8  | 23.4  | 13.9  | 39.4  |
| M_{2MM} |       |       |       |       |       |       |       |       |       |
|        | -55.4 | -51.6 | -38.1 | -67.3 | -39.8 | -60.4 | -54.5 | -31.3 | -92.0 |
| M_{2AA} |       |       |       |       |       |       |       |       |       |
|        | 106.  | 98.3  | 68.4  | 123.  | 74.0  | 111.  | 100.  | 58.3  | 167.  |
| M_{2PP} |       |       |       |       |       |       |       |       |       |
|        | 13.0  | 12.0  | 9.3   | 16.1  | 9.1   | 14.9  | 13.6  | 7.9   | 23.0  |
| M_{2AP} |       |       |       |       |       |       |       |       |       |
|        | -55.1 | -50.7 | -41.1 | -70.1 | -39.0 | -64.9 | -59.4 | -34.8 | -101. |
| M_{2\nu}^{\nu>} |       |       |       |       |       |       |       |       |       |
|        | 32.6  | 30.0  | 14.7  | 29.7  | 21.5  | 26.6  | 23.1  | 14.1  | 35.6  |

\[ \frac{h_T(q^2)}{g_A^2(q^2)} = \frac{2}{3} \frac{q^2}{q^2 + m_n^2} - \frac{1}{3} \frac{q^2}{q^2 + m_n^2} \left( q^2 + m_n^2 \right)^2 + \frac{1}{3} \frac{g_{SM}^2(q^2)q^2}{4m_p^2}, \quad (27) \]

The exact results will depend on the details of the nuclear model, since the new operators have different momentum (radial) dependence than the traditional ones and the tensor component is entirely new. We can get a crude idea of what is happening by taking the above average momentum \( \langle q \rangle = 100 \text{ MeV/c} \). Then we find that the GT ME is reduced by 22%. Then assuming that T matrix element is about half the GT one, we find that the total reduction is 28%. This is in perfect agreement with the exact results for the A=76 system, 29%, but a bit smaller than the 38% obtained for the A=130 system. We will now summarize the results obtained with
the above modifications of the nucleon current for light neutrino (see Eq. (5)) for the two representative 0νββ-decay nuclei $^{76}$Ge and $^{130}$Te in Table 1. The details of our calculations will be given elsewhere [23]. One notices significant additional contributions to GT (AP and PP) and tensor (AA and PP) nuclear matrix elements coming from higher order nucleon current terms. AP and PP originate from the second (first) and third (second) terms in $g_{GT}(hT)$ of Eq. (27).

By glancing at the Table 1 we also see that, with proper treatment of short-range two-nucleon correlations (see e.g. Vergados [6]), all matrix elements are strongly suppressed. The effect is even stronger in the case of heavy intermediate particles. Detailed results [23] for various nuclei are presented in Table 2.

5. Extraction of the lepton violating parameters

The limits deduced for the lepton-number violating parameters depend on the values of nuclear matrix element, of the kinematical factor and of the current experimental limit for a given isotope [see Eq. (5)].

5.1. Traditional lepton violating parameters

Even, though, we expect the nuclear matrix elements entering the light neutrino mass mechanism to be decreased by about 30%, independently of the nuclear model, we will stick to the calculations as reported. Thus the present best experimental limits [61, 71] can be converted to upper limits on $<m_\nu>$ and $\eta_N$.

The thus obtained results are given in Table 4. The references of Table 4 are defined as follows: Ex1=Heidelberg-Moscow Collaboration [61], Ex2=Elliott et al [62], Ex3=Kawashima et al [63], Ex4=Ejiri et al [64], Ex5=Davenich et al [65], Ex6=Bernatovicz et al [66], Ex7=Alessandrello et al [67], Ex8=De Silva et al [68], Ex9=Busto et al [69]. Thus, the most restrictive limits are as follows:

$$<m_\nu>_{best} < 0.62 \text{ eV}, \quad <\eta_N>_{best} < 1.0 \times 10^{-7} \tag{28}$$

(see Ref. [23, 61]) By assuming $<m_\nu> = <m_\nu>_{best}$ and $\eta_N = \eta_N_{best}$, we calculated half-lives of the 0νββ-decay $T_{1/2}^{0\nu}$ ($<m_\nu>_{best}$) and $T_{1/2}^{exp-0\nu} (\eta_N^{best})$ for nuclear systems of interest using specific mechanisms with the "best" parameters. The thus obtained results are given in Table 4. The references of Table 4 are defined as follows: Ex1=Heidelberg-Moscow Collaboration [61], Ex2=Elliott et al [62], Ex3=Kawashima et al [63], Ex4=Ejiri et al [64], Ex5=Davenich et al [65], Ex6=Bernatovicz et al [66], Ex7=Alessandrello et al [67], Ex8=Busto et al [69], Ex9=De Silva et
Table 3. The present state of the Majorana neutrino mass searches in $\beta\beta$-decay experiments. $T_{1/2}^{exp-0\nu}$ (present) is the best presently available lower limit on the half-life of the $0\nu\beta\beta$-decay for a given isotope. The corresponding upper limits on lepton number non-conserving parameters $< m_\nu >$ and $\eta_N$ are presented. For the definition of the references and "best" see text.

| Nucleus  | $^{76}Ge$ | $^{82}Se$ | $^{96}Zr$ | $^{100}Mo$ | $^{116}Cd$ |
|----------|-----------|-----------|-----------|-----------|-----------|
| $T_{1/2}^{exp-0\nu}$ (present) [y] | $1.1 \times 10^{25}$ | $2.7 \times 10^{22}$ | $3.9 \times 10^{19}$ | $5.2 \times 10^{22}$ | $2.9 \times 10^{22}$ |
| Ref.     | [Ex1]     | [Ex2]     | [Ex3]     | [Ex4]     | [Ex5]     |
| $< m_\nu >$ [eV] | 0.62       | 6.3       | 203.      | 2.9       | 5.9       |
| $T_{1/2}^{0\nu}$ [y] | ($< m_\nu >_{\text{best}}$) | $1.1 \times 10^{25}$ | $2.8 \times 10^{24}$ | $4.2 \times 10^{24}$ | $1.2 \times 10^{24}$ | $2.6 \times 10^{24}$ |
| $\eta_N$ | $1.0 \times 10^{-7}$ | $1.1 \times 10^{-6}$ | $4.0 \times 10^{-5}$ | $6.2 \times 10^{-7}$ | $1.1 \times 10^{-6}$ |
| $T_{1/2}^{0\nu}$ ($\eta_N^{\text{best}}$) [y] | $1.1 \times 10^{25}$ | $2.9 \times 10^{24}$ | $5.8 \times 10^{24}$ | $1.8 \times 10^{24}$ | $3.2 \times 10^{24}$ |

| Nucleus  | $^{128}Te$ | $^{130}Te$ | $^{136}Xe$ | $^{136}Nd$ |
|----------|-----------|-----------|-----------|-----------|
| $T_{1/2}^{exp-0\nu}$ (present) [y] | $7.7 \times 10^{24}$ | $8.2 \times 10^{24}$ | $4.2 \times 10^{25}$ | $1.2 \times 10^{21}$ |
| Ref.     | [Ex6]     | [Ex7]     | [Ex8]     | [Ex9]     |
| $< m_\nu >$ [eV] | 1.8       | 13.       | 4.9       | 8.5       |
| $T_{1/2}^{0\nu}$ [y] | ($< m_\nu >_{\text{best}}$) | $6.6 \times 10^{25}$ | $3.8 \times 10^{24}$ | $2.7 \times 10^{25}$ | $2.3 \times 10^{23}$ |
| $\eta_N$ | $2.9 \times 10^{-7}$ | $2.0 \times 10^{-6}$ | $4.5 \times 10^{-7}$ | $1.6 \times 10^{-6}$ |
| $T_{1/2}^{0\nu}$ ($\eta_N^{\text{best}}$) [y] | $5.9 \times 10^{25}$ | $3.1 \times 10^{24}$ | $7.9 \times 10^{24}$ | $2.7 \times 10^{23}$ |

al [68]. Since the quantities $< m_\nu >$, $\eta_N$ depend only on particle theory parameters these quantities indicate the experimental half-life limit for a given isotope, which the relevant experiments should reach in order to extract the best present bound on the corresponding lepton number violating parameter from their data. Some of them have a long way to go to reach the Ge target limit.

A summary involving most of the available nuclear matrix elements and taking into account what, at present, is a good guess as canonical values of the lepton violating parameters is provided in Tables 3 and 4. The references in these tables are defined as follows: R=Retamosa et al [38], H=Haxton et al [40], E1=Engel et al [15], E2=Engel et al [12], S=Suhonen et al [28], M=Muto et al [44], T=Tomoda et al [7], P1=Pantis et al [13], P2=Pantis et al [13] (p-n pairing), S1=Simkovic et al [21] (and private communication), F=Faessler et al [18]. P=Present calculation (see Simkovic et al [21] for the nuclear Matrix elements). Notice in particular that the present calculation, marked P in the table, involves not only renormalized QRPA [21, 7], but takes into account the corrections in the hadronic current [23] discussed above (see table 3).
Table 4. The lifetimes predicted for $0^+ \rightarrow 0^+ 0\nu\beta\beta$-decay in various mechanisms (light neutrino, heavy neutrino, $\lambda$ and $\eta$ terms and SUSY contribution) for suitable input of lepton violating parameters and available nuclear calculations. For the definitions of the references see text.

| Ref. | $^{48}$Ca | $^{76}$Ge | $^{82}$Se | $^{90}$Zr | $^{100}$Mo | $^{116}$Cd | $^{130}$Te | $^{136}$Te | $^{150}$Nd |
|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| R    | 12.8     | 34.8     | 4.80     |          |          |          |          |          |          |
| H    | 6.34     | 3.36     | 1.16     | 0.80     | 0.32     |          |          |          |          |
| E1   | 4.60     | 1.84     | 0.90     |          |          |          |          |          |          |
| E2   | 28.0     | 11.2     | 3.00     | 1.32     | 6.60     |          |          |          |          |
| S    | 8.12     | 2.86     | 3.60     | 1.66     |          |          |          |          |          |
| M    | 4.66     | 1.20     | 2.54     | 1.54     | 0.98     | 4.42     | 6.74     |          |          |
| P1   | 5.00     | 7.20     | 3.00     | 1.22     | 7.80     | 9.40     | 3.80     | 1.72     | 6.60     |
| P2   | 56.0     | 36.0     | 5.60     | 54.0     | 9.80     | 30.0     | 4.20     | 5.60     |          |
| S1   | 17.9     | 1.22     | 0.52     | 1.96     | 1.08     | 2.80     | 8.90     |          |          |
| P    | 4.22     | 1.08     | 1.61     | 0.46     | 0.99     | 2.53     | 1.46     | 10.1     | 8.78     |
| R    | 7.45     | 50.2     | 3.25     |          |          |          |          |          |          |
| S    | 7.75     | 1.14     |          | 14.8     | 0.89     |          |          |          |          |
| M    | 7.35     | 0.99     | 0.95     | 13.5     | 0.95     | 4.90     | 3.73     |          |          |
| T    | 8.02     | 1.07     | 0.55     | 21.1     | 1.18     | 3.47     | 6.71     |          |          |
| P1   | 2.71     | 8.90     | 2.08     | 0.94     | 30.6     | 39.1     | 22.7     | 1.34     | 2.73     |
| P2   | 27.9     | 41.2     | 4.39     | 27.7     | 10.3     | 10.8     | 165      | 2.22     | 4.42     |

5.2. R-parity induced lepton violating parameters

In this section we will elaborate a bit further on the R-parity violating parameters. We will consider the pionic contribution (1). We will first attempt to evaluate the relevant amplitude using harmonic oscillator wave functions, but adjusting the parameters to fit related experiments.

Let us begin with the second process of Eq. (1). This process involves a direct term and an exchange term. The direct term is nothing but a decay of the pion into two leptons with a simultaneous change of a neutron to a proton by the relevant nucleon current, which in this case can only be of the PS type. The tensor contribution cannot lead to a pseudoscalar coupling at the nucleon level, which is needed to be coupled to the usual pion nucleon coupling in the other vertex to get the relevant operator for a $0^+ \rightarrow 0^+$ decay. Thus the amplitude involving the meson is related to $\pi, \mu$ decay.

$$A_{1\pi}(direct) = 4 \alpha_1 \frac{\sigma_1 \vec{q}}{(2 m_N)} m_\pi^2 \exp(-\frac{(q b)^2}{6})$$  (29)
Table 5. The previous table continued.

| R  | 6.42 | 27.2 | 6.24 | 22.2 |
|----|------|------|------|------|
| S  | 36.7 | 11.1 |      |      |
| M  | 7.35 | 0.99 | 0.95 | 13.5 | 0.95 | 4.90 | 3.73 |
| T  | 2.25 | 0.65 | 0.28 | 0.67 | 0.44 | 1.21 | 3.39 |
| P1 | 15.11| 3.10 | 6.51 | 1.48 | 3.44 | 19.2 | 1.20 | 0.62 | 1.23 |
| P2 | 43.2 | 22.8 | 5.16 | 7.95 | 102  | 83.2 | 1.90 | 1.05 | 0.96 |
| P  | 15.4 | 4.10 | 8.10 | 0.97 | 8.40 | 8.51 | 4.54 | 3.94 | 40.6 |
| F  | 4.5  | 1.0  | 1.4  | 0.59 | 1.4  | 1.5  | 2.0  | 5.2  |

with

\[
\tilde{\alpha}_{1\pi} = (2\pi)^3 \frac{m_N}{3 m_q} \chi(0) \quad (30)
\]

The exchange contribution, in which the produced up quark of the meson is not produced from the "vacuum" but it comes from the initial nucleon, is a bit more complicated. The harmonic oscillator quark model, however can be used to get its relative magnitude (including the sign) with respect to the direct term. This way we find

\[
A_{1\pi}(\text{exchange}) = -3 \tilde{\alpha}_{1\pi} \left[ \frac{\sigma_{1\pi}}{2 m_N} \right] m_{\pi}^2 \exp\left(-\frac{(qb)^2}{6}\right) \quad (31)
\]

Thus the effective two-body transition operator in momentum space at the nucleon level becomes:

\[
\Omega_{1\pi}^{PS} = c_{1\pi} \left[ \frac{\sigma_{1\pi} q_1 q_2}{(2 m_N)^2} \right] m_{\pi}^2 \exp\left(-\frac{(qb)^2}{6}\right) \quad (32)
\]

with

\[
c_{1\pi} = g_r \tilde{\alpha}_{1\pi} \quad \text{i.e.}
\]

\[
c_{1\pi} = (2\pi)^3 \frac{m_N}{3 m_q} g_r \chi(0) \quad (33)
\]

where \( g_r = 13.5 \) is the pion nucleon coupling and \( m_q \) is the constituent quark mass. Note the presence of the exponential form factor in the harmonic oscillator model, which has been ignored in other treatments. We see that, in going from the quark to the nucleon level, the factor of three coming from the mass gain is lost due to the momentum being reduced by a factor of three. The quantity \( \chi(0) \) is essentially the meson wave function at the origin given by:

\[
\chi(0) = \frac{\sqrt{6}}{2^{1/4}} m_{\pi}^{-3/2} \psi(0) \quad (34)
\]
The quantity $\chi(0)$ can be obtained from the $\pi \rightarrow \mu, \nu$ decay via the expression

$$\frac{1}{\tau} = \frac{1}{\pi} \left( \frac{G_F}{\sqrt{2}} \right)^2 m_\pi^2 m_\mu^2 (1 - \frac{m_\pi^2}{m_\mu^2})^2 \chi^2(0)$$  \hspace{1cm} (35)$$

From the measured lifetime $\tau = 2.6 \times 10^{-8}$ we obtain $\chi(0) = 0.46$.

The first process of Eq. 1 is easier to handle. Now both the PS and T terms contribute. We thus get

$$A_{2\pi}(T) = \frac{3}{8} \hat{\alpha}_{2\pi} m^4 \ , \ A_{2\pi}(PS) = \frac{1}{8} \hat{\alpha}_{2\pi} m^4 \ ,$$

$$(36)$$

$$\hat{\alpha}_{2\pi} = 4 \left( 2\pi \right)^3 \chi^2(0)$$

$$(37)$$

$$\Omega_{2\pi}^T = \frac{\sigma_1 \bar{q} \sigma_2 \bar{q}}{(2 m_N)^2 (q^2 + m_\pi^2)^2} \ , \ \Omega_{2\pi}^{PS} = \frac{2}{3} \Omega_{2\pi}^T$$

$$(38)$$

Using the above value of $\chi(0)$ and $g_r = 13.5$ we get $c_{1\pi} = 109$ and $c_{2\pi} = 198$ which are in good agreement with the values 132.4 and 170.3 respectively obtained by Faessler et al [18].

It is now customary, but it can be avoided [25], to go to coordinate space and express the nuclear matrix elements in the same scale with the standard matrix elements involving only nucleons. Thus we get

$$M_{E_k} = \left( \frac{m_A}{m_p} \right)^2 \alpha_{k\pi} m_p m_e \left[ M_{GT}^{k\pi} + M_T^{k\pi} \right]$$

$$(40)$$

Where the two above matrix elements are the usual GT and T matrix elements with the additional radial dependence given by

$$F_{GT}^{1\pi} = e^{-x} \ , \ F_{GT}^{1\pi} = (3 + 3x + x^2) \frac{e^{-x}}{x}$$

$$(41)$$

$$F_{GT}^{2\pi} = (x - 2)e^{-x} \ , \ F_T^{2\pi} = (1 + x) e^{-x}$$

$$(42)$$

$$\alpha_{1\pi} = - \ c_{1\pi} \rho \ , \ \alpha_{2\pi} = c_{2\pi} \rho \ , \ \rho = \frac{1}{48 f_A^2} \left( \frac{m_p}{m_A} \right)^4 \left( \frac{m_p}{m_A} \right)^2$$

$$(43)$$

In the above formulas we have tried to stick to the definition of $\eta_{SUSY}$ given above (see [4]), but since the tensor (at the quark level) does not contribute to the $1\pi$ diagram the "effective" nuclear matrix element is not the sum of the two matrix elements of Eq. (40), but only $M_{E2}$, and $\chi_{PS}$ depends on the nuclear matrix elements, i.e.

$$M_{E_{eff}} = M_{E2} \ , \ \chi_{PS} = \frac{2}{3} \left( 4 \frac{M_{E1}}{M_{E2}} + 1 \right)$$

$$(44)$$
There is no difference, of course, between the two expressions if $M_{E2}$ is dominant, as is actually the case).

Before proceeding further we should remark that for the experimentally derived harmonic oscillator parameter for the $\pi$ meson, $b = 1.8 \, f$, $\alpha_{2\pi}$ is dominant and $\chi_{PS}$ approaches the value of $2/3$. In fact we find $\alpha_{1\pi} = -1.2 \times 10^{-2}$ and $\tilde{\alpha}_{1\pi} = 0.15$ which are in good agreement with the values $-4.4 \times 10^{-2}$ and 0.20 respectively obtained by Faessler et al. Furthermore from the nuclear matrix elements of Ref. one can see that the $M_{2\pi}$ is favored, since, among other things, its tensor and Gamow-Teller components are the same magnitude and sign (in the $1\pi$ mode they are opposite). Thus nuclear physics also favors the $2\pi$ mode.

With the above ingredients and using the nuclear matrix elements of we can extract from the data values of $\eta_{SUSY}$.

Then one can use these values of $\eta_{SUSY}$ in order to extract values for the R-parity violating parameters $\lambda_{111}'$. As we have already mentioned one must start with 5 parameters in the allowed SUSY parameter space and solve the RGE equations to obtain the values of the needed parameters at low energies. For our purposes is adequate to utilize typical parameters, which have already appeared in the literature. One then finds

$$\lambda_{111}' = C_{\tilde{\chi}_0}(\eta_{SUSY})^{1/2} \quad (\text{neutralinos only}) \quad (45)$$

$$\lambda_{111}' = C_{\tilde{g}}(\eta_{SUSY})^{1/2} \quad (\text{gluino only}) \quad (46)$$

When both neutralinos and gluinos are included we write

$$\lambda_{111}' = C_{\tilde{\chi}_0,\tilde{g}}(\eta_{SUSY})^{1/2} \quad (47)$$

The values of these coefficients are given in Tab. 6 for the nine SUSY models mentioned above. From Table 6 we see that there is quite spread in the quantities $C_{\tilde{\chi}_0}, C_{\tilde{g}}$ and $C_{\tilde{\chi}_0,\tilde{g}}$, depending on the SUSY parameter space. We will see that this is the largest uncertainty in estimating the SUSY contribution to $0\nu\beta\beta$ decay. In all of these cases the intermediate selectron-neutralino mechanism appears to be the most dominant. The most favorable situation occurs in the case # 7 of Table 6. And this what we will consider in extracting the limits on $\lambda_{111}'$. Combining the above values of the couplings $\alpha_{k\pi}$, $k=1,2$, with the corresponding nuclear matrix elements of Faessler et al. (F) and the two nucleon ME of Wodecki et al. (W) we obtain the limits listed as $Pr$ in Table 7.

Thus the most stringent limit is obtained from the $^{76}Ge$ data and is

$$\lambda_{111}' \leq 6.0 \times 10^{-4} \quad (\text{for case #7}) \quad (48)$$

The above quantities are assumed positive. If not, the absolute value is understood.
In addition to the light neutrino mass, the model can set useful limits not only on the light neutrino mass but also on other lepton violating parameters like $\alpha$ in the dominant mediates mechanism using the values of $\alpha$ or the parameters $\lambda$. It is clear that in all cases the neutralino limit extracted on the $\eta$ parameter (48). A set of parameters used in the computation have been multiplied by $10^{-3}$.

| Table 6 | A sample of relevant parameters obtained by some choices in the allowed SUSY parameter space. It clear that in all cases the neutralino mediated mechanism is dominant (for definitions see text). The parameters C shown have been multiplied by $10^{-3}$ |
|-------|--------------------------------------------------------------------------------------|
| tan$\beta$ | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 |
| $m_{\chi_1}$ | 10. | 10. | 10. | 10. | 10. | 10. | 10. | 10. | 10. |
| $m_{\chi_2}$ | 237. | 237. | 237. | 237. | 237. | 237. | 237. | 237. | 237. |
| $m_{\chi_3}$ | 455. | 455. | 455. | 455. | 455. | 455. | 455. | 455. | 455. |
| $m_{\chi_4}$ | 471. | 471. | 471. | 471. | 471. | 471. | 471. | 471. | 471. |
| $m_L$ | 328. | 328. | 328. | 328. | 328. | 328. | 328. | 328. | 328. |
| $m_W$ | 700. | 700. | 700. | 700. | 700. | 700. | 700. | 700. | 700. |
| $m_{\eta}$ | 676. | 676. | 676. | 676. | 676. | 676. | 676. | 676. | 676. |
| $C_{\chi_0} \times 10^{-3}$ | 3.3 | 0.023 | 0.46 | 5.9 | 14 | 14 | 0.0068 | 0.0089 | 0.019 |
| $C_{\chi} \times 10^{-3}$ | 14 | 1.6 | 54 | 56 | 110 | 13 | 0.97 | 1.5 | 3.1 |
| $C_{\chi_0, \eta} \times 10^{-3}$ | 3.2 | 0.023 | 0.46 | 5.9 | 14 | 14 | 0.0068 | 0.0089 | 0.019 |

| Table 7 | The limits for $\eta_{SUSY}$ and $\lambda'_{111}$ obtained : a) For the pion mechanism using the values of $\alpha_1$ and $\alpha_2$, computed in this work and the nuclear ME of Faessler et al (F) b) Using the nuclear ME of the two nucleon mode of Ref. Wodecki et al (W). In extracting the values of $\lambda'_{111}$ we used the SUSY data of #7 of Table 6. The experimental lifetimes employed are those of Table 4. |
|-------|---------------------------------------------------------------------------------------------------------------|
| (A, Z) | $\eta_{SUSY}(P_{Pr})$ | $\lambda'_{111}(P_{Pr})$ | $\eta_{SUSY}(F)$ | $\lambda'_{111}(F)$ | $\eta_{SUSY}(P_{Pr})$ | $\lambda'_{111}(P_{Pr})$ |
| $^{76}Ge$ | 8.4 x 10^{-9} | 6.0 x 10^{-9} | 5.5 x 10^{-9} | 4.8 x 10^{-9} | 2.6 x 10^{-8} | 1.1 x 10^{-3} |
| $^{100}Mo$ | 3.2 x 10^{-9} | 1.8 x 10^{-9} | 2.4 x 10^{-8} | 1.1 x 10^{-7} | 1.1 x 10^{-7} | 2.2 x 10^{-3} |
| $^{116}Cd$ | 7.6 x 10^{-9} | 1.8 x 10^{-9} | 5.4 x 10^{-9} | 1.5 x 10^{-9} | 2.6 x 10^{-9} | 3.3 x 10^{-3} |
| $^{128}Te$ | 1.6 x 10^{-9} | 8.1 x 10^{-9} | 1.1 x 10^{-8} | 5.6 x 10^{-8} | 1.6 x 10^{-8} | 6.5 x 10^{-3} |
| $^{130}Te$ | 1.0 x 10^{-8} | 1.8 x 10^{-8} | 5.5 x 10^{-8} | 1.5 x 10^{-7} | 1.3 x 10^{-7} | 6.5 x 10^{-3} |
| $^{136}Xe$ | 2.4 x 10^{-8} | 9.4 x 10^{-9} | 1.7 x 10^{-8} | 7.8 x 10^{-8} | 8.7 x 10^{-7} | 2.2 x 10^{-3} |
| $^{150}Nd$ | 7.3 x 10^{-8} | 2.3 x 10^{-8} | 5.2 x 10^{-8} | 1.4 x 10^{-7} | 2.4 x 10^{-7} | 3.0 x 10^{-3} |

6. Conclusions

We have seen that $0\nu\beta\beta$ decay pops up in almost any fashionable particle model. Thus it can set useful limits not only on the light neutrino mass but in addition on other lepton violating parameters like $<\eta_N>$ of the parameters $\lambda$ and $\eta$ (see sect. 2.2). Finally we mention again the limit extracted on the R-parity violating parameter $\eta$. A set of limits, for our choice of nuclear matrix elements, derived from the various
Table 8. Summary of the results presented in this work.

| [A,Z] | ⟨mν⟩ | (λ) | (η) | (η_N) | (η_{SUSY}) | λ'_{111} |
|-------|-------|-----|-----|-------|-------------|----------|
|       | eV    | 10^{-6} | 10^{-8} | 10^{-8} | 10^{-8} | 10^{-4} |
| 76Ge  | 0.27  | 0.56  | 0.32  | 0.44  | 0.31  | 4.0 |
| 100Mo | 2.9   | 26    | 8.8   | 6.2   | 3.2   | 18  |
| 116Cd | 5.9   | 37    | 26    | 11    | 7.6   | 18  |
| 128Te | 1.8   | 5.6   | 1.3   | 2.9   | 1.6   | 8.1 |
| 130Te | 13    | 7.6   | 5.2   | 20    | 10    | 18  |
| 136Xe | 49    | 2.1   | 1.4   | 4.5   | 2.4   | 9.4 |
| 150Nd | 8.5   | 5.6   | 5.3   | 16    | 7.3   | 23  |

nuclear targets is given in Table 8. For 76Ge our results are different from the ones given above, since we have used here the unpublished new limit of the Heidelberg-Moscow experiment \( T_{1/2} \geq 5.7 \times 10^{25} \) yr.

We see that limits are quite stringent, but they, of course, have uncertainties in them. They come from nuclear physics, especially for the short ranged operators or from particle physics, as, e.g., in the case of supersymmetry. It is however evident that in the extraction of \( \lambda'_{111} \) the main uncertainty comes from the parameters of supersymmetry. After all \( \lambda'_{111} \) depends on the inverse fourth root of the lifetime and the inverse square root of the nuclear matrix elements. On the other hand it depends in the second power of the masses of the mediating SUSY scalars. This is not true of the models considered here but it is found in other calculations as well [74].

It is clear that during the last year the interest of most people is being focused on the light neutrino mass mechanism. This due to the experimental indications for neutrino oscillations of solar (Homestake [75], Kamiokande [76], Gallex [77] and SAGE [78]), atmospheric (Kamiokande [79], IMB [80] and Soudan [81], Super-Kamiokande [82]) and terrestrial (LSND experiment [83]) experiments.

One can use the constraints imposed by the results of neutrino oscillation experiments on \( <\Delta m_{\nu}^2> \). These experiments, of course, cannot predict the scale of the masses or the Majorana phases. The predictions differ from each other due the different input and structure of the neutrino mixing matrix and assumptions. Bilenky et al [84] and others [85] have shown that under quite reasonable assumptions in a general scheme with three light Majorana neutrinos and mass hierarchy \( |<m_{\nu}>| \) is smaller than \( 10^{-2} \) eV. In another study outlined in Ref. [86] the authors end up with \( |<m_{\nu}>| \approx 0.14 \) eV. Thus one can see that, the current limit on \( <m_{\nu}> \) in [28] is quite a bit higher than the neutrino oscillation data.

There is a new experimental proposal for measurement of the \( 0\nu\beta\beta-\)
decay of $^{76}$Ge, which intents to use 1 ton (in an extended version 10 tons) of enriched $^{76}$Ge and to reach the the half-life limit $T_{1/2}^{0\nu - \text{exp}} \geq 5.8 \times 10^{27}$ and $T_{1/2}^{0\nu - \text{exp}} \geq 6.4 \times 10^{28}$ after one and 10 years of measurements, respectively. From these half-life values one can deduce [see Eq. (5)] and Table 2 the possible future limits on the effective light neutrino mass $2.7 \times 10^{-2}$ eV and $8.1 \times 10^{-3}$ eV, respectively. From the comparison with limits advocated by the neutrino oscillation phenomenology we conclude that GENIUS experiment [61, 87] would be able to measure this lepton number violating process, provided, of course, that the neutrinos are Majorana particles.

We must emphasize that the plethora of other $0\nu\beta\beta$-decay mechanisms predicted by GUT’s and SUSY do not diminish the importance of this reaction in settling the outstanding neutrino properties. One can show that the presence of these exotic mechanisms implies that the neutrinos are massive Majorana particles, even if the mass mechanism is not the dominant one [5].

Thus one can say with certainty that the experimental detection of the $0\nu\beta\beta$-decay process would be a major achievement with important implications on the field of particle and nuclear physics as well as on cosmology.

Acknowledgments

I would like to express my appreciation to the Humboldt Foundation for their award and my thanks to the Institute of Theoretical Physics at the University of Tübingen for its hospitality. I am also indebted to F. Simkovic and O. Haug for their help in the preparation of the manuscript.

References

[1] Furry W 1939 Phys. Rev. 56, 1184.
[2] Primakoff H 1952 Phys. Rev. 85, 888
H. Primakoff H and S.P Rosen S P 1969 Phys. Rev. 184 1925 ; ——1961 Proc. Roy.Soc. (London) 78 464 .
[3] Doi M, Kotani T, Nishiura N, Okuda K and Takasugi E 1981 Phys. Lett. 103B 219 ; ——1982 113B 513(E).
[4] Haxton W C and Stephenson G S 1984 Prog. Part. Nucl. Phys. 12 409 .
[5] Doi M , Kotani T and Takasugi E 1985 Prog. Theor. Phys. (Supp.) 83 1
[6] Vergados J D 1986 Phys. Rep. 133 1 .
[7] Tomoda T 1991 Rep. Prog. Phys. 54 53 .
[8] Suhonen J and Civitarese O 1998 Phys. Rep. 300 123.
[9] Faessler A and F. Šimkovic F 1998 J. Phys. G 24 2139 .
[10] Schechter J and Valle J W F 1982 Phys. Rev. D 25 2951.

[11] Mohapatra R N 1998 hep-ph/9808284.

[12] Pantis G Šimkovic F Vergados J D and Faessler A 1996 Phys. Rev. C 53 695.

[13] Mohapatra R 1986 Phys. Rev. D 34 3457.

[14] Vergados J D 1987 Phys. Lett. B 184 55.

[15] Hirsch M Klapdor-Kleingrothaus H V and Kovalenko S G 1995 Phys. Rev. Lett. 75 17; ——1996 Phys. Rev. Rev. D 53, 13297.

[16] Wodecki A Kamiński W and Pagerka S 1997 Phys. Lett. B 413 342.

[17] Faessler A Kovalenko S Šimkovic F and Schwieger J 1997 Phys. Rev. Lett. 78 183 (1997); ——1998 Phys. Atom. Nucl. 61, 1229.

[18] Faessler A Kovalenko S and Šimkovic F 1998 Phys. Rev. D 58, 115004.

[19] Faessler A Kovalenko S and Šimkovic F 1998 Phys. Rev. D 58 055004.

[20] Vergados J D 1981 Phys. Rev. C24 640.

[21] Vergados J D 1982 Phys. Rev. D25 914.

[22] Tomoda T Faessler A Schmidt K W and Grümmer F 1985 Phys. Lett. B 157 4.

[23] Šimkovic F Pantis G Vergados J D and Faessler A. Additional nucleon current contributions to neutrinoless double beta decay (to be published in Phys. Rev. C), hep-ph/9905509.

[24] Šimkovic F Efimov G V, Ivanov M A Lyubovitskij V E 1992 Z. Phys. A 341 193.

[25] Vergados J D 1990 Nuc. Phys. A506 842.

[26] Pantis G and Vergados J D 1990 Phys. Lett. B242 1.

[27] Faessler A, Kaminski W A, Pantis G and Vergados J D 1991 Phys. Rev. C 43 R21.

[28] Suhonen J Khadkikar S B and Faessler A 1990 Phys. Lett. B 237 8 (1990); ibid 1991 Nucl. Phys. A 529 727.

[29] Vergados J D 1976 Phys. Rev. C 13 825.

[30] Haxton W C Stephenson G S and Strottman D 1982 Phys. Rev. D 25 2360.

[31] Skouras L D and Vergados J D 1983 Phys. Rev. C 28 2122.

[32] Zhao L, Brown B A and Richter W A 1990 Phys. Rev. C 42 1120.

[33] Caurier E, Poves A and Zucker A P 1990 Phys. Lett. B 252 13.

[34] Sinatkas J Skouras L D Strottman D and Vergados J D 1992 J. Phys. G 18 1377.

[35] Zhao L and Brown B A 1993 Phys. Rev. C 47 2641.

[36] Retamosa J, Caurier E and Novacki F 1995 Phys. Rev C 51 371.

[37] Radha P B et al 1996 Phys. Rev. Lett. 76 2642.
[38] Caurier E, Novacki F, Poves A and Retamosa J 1996 Phys. Rev. Lett. 77 154.
[39] Nakada H, Sebe T and Muto K 1996 Nucl. Phys. B 391 243.
[40] Suhonen J, Divari P C Skouras L D and Johnstone I D 1997 Phys. Rev. 55 714.
[41] Koonin S E, Dean D J and Langacke K 1997 Phys. Rep. 278 1.
[42] Vogel P and Zirnbauer M R 1986 Phys. Rev. Lett. 57 3148
Engel J, Vogel P and Zirnbauer M R 1988 Phys. Rev. C 37 731.
[43] Civitarese O, Faessler A and Tomoda T 1987 Phys. Lett. B 194 11.
[44] Muto K, Bender E and Klapdor H V 1988 Z. Phys. A 334, 177
Muto K and Klapdor H V 1988 Phys. Lett B 201 420.
[45] Engel J, Vogel P, Ji X D and Pittel S 1991 Phys. Lett. B 225, 5.
[46] Raduta A A, Faessler A, Stoica S and Kaminski A W, 1991 Phys. Lett. B 254 7.
[47] Griffiths A and Vogel P 1992 Phys. Rev. C 46 46.
[48] Suhonen J and Civitarese O 1993 Phys. Lett. B 308 212.
[49] Civitarese O and Suhonen J 1994 Nucl. Phys. A 575 271.
[50] Šimkovic F, Schwieger J, Veselský M, Pantis G and Faessler A 1997 Phys.
Lett. B 393 267; Šimkovic F, Schwieger J, Pantis G and Faessler A 1997
Found. Phys. 27 1275.
[51] Šimkovic F, Pantis G and Faessler A 1998 Phys. Atom. Nucl. 61, 1218
1998 Prog. Part. Nucl. Phys. 40 285.
[52] Cheoun M K, Bobyk A, Faessler A, Šimkovic F and Teneva G 1993 Nucl.
Phys. A 561 74.
[53] Toivanen T and Suhonen J 1995 Phys. Rev. Lett. 75 410.
[54] Schwieger J, Šimkovic A, and Faessler F 1996 Nucl. Phys. A 600 179.
[55] Haug O, Vergados J D, Faessler A and Kovalenko S 1999 (Private Communication).
[56] Hirsch M and Valle J W F 1998 hep-ph/9812463.
[57] Vergados J D 1996 J. Phys. G 22 253.
[58] Erickson T and Weise W 1988 Pions and Nuclei (Clarendon Press - Oxford)
p 423-426.
[59] Dumbraj O et al 1983 Nucl. Phys. B 216 277.
[60] Towner I S and Hardy J C, Currents and their Couplings in the Weak Sector
of the Standard Model in Haxton W C and Henley E M: Symmetries and
fundamental interactions in nuclei, 183-249, nucl-th/9504015.
[61] Heidelberg-Moscow collaboration, Baudis L et al 1997 Phys. Lett. B 407
219.
[62] Elliot S R et al 1992 Phys. Rev. C 46 1535.
[63] Kawashima A, Takahashi K and Masuda A 1993 Phys. Rev. C 47 2452.
[64] Ejiri H et al 1996 Nucl. Phys. A 611 85.
[65] Danievich F A et al 1995 Phys. Lett. B 344 72.
[66] Bernatovicz T et al 1992 Phys. Rev. Lett. 69, 2341 (1992); ——1993 Phys. Rev. C 47 806.
[67] Alessandrello A et al 1994 Nucl. Phys. B (Proc. Suppl.) 35 366.
[68] Busto J 1996 Nucl. Phys. B (Proc. Suppl.) 48, 251.
[69] De Silva A, Moe M K, Nelson M A and Vient M A 1997 Phys. Rev. C 56 2451.
[70] Günter M et al 1997 Phys. Rev. D 55, 54.
[71] Moe M and Vogel P 1994 Ann. Rev. Nucl. Part. Sci 44, 247.
[72] Kane G L, Golda C, Roszkowski L and Wells J D 1994 Phys. Rev. D 49, 6173.
[73] Kastano D J, Piard E J and Ramond P 1994 Phys. Rev. D 49, 4882.
[74] Wodecki A, Kaminski W A and Simkovic F hep-ph/9902453.
Wodecki A and Kaminski W A 1999 Phys. Rev. C 59, R1232.
[75] B. T. Cleveland et al Nucl. Phys. B Proc. 38, 47 (1995).
[76] Hirata K S et al 1991 Phys. Rev. D 44, 2241.
[77] GALLEX col., 1995 Phys. Lett. B 357 237.
[78] Abdurashitov J N et al 1994 Phys. Lett. B 328, 234.
[79] Fukuda Y et al 1994 Phys. Lett. B 335, 237.
[80] R. Becker-Szendy R et al 1995 Nucl. Phys. B Proc. 38 331.
[81] Goodman M 1995 Nucl. Phys. B 38, 337.
[82] Y. Fukuda Y et al 1998 Phys. Lett. B 433 9.
[83] Athanassopoulos C et al 1995 Phys. Rev. Lett. 75 2650.
[84] Bilenky S M, Giunti C and Grimus W hep-ph/9812360.
[85] Barenboim G and Scheck F 1998 Phys. Lett. B 440 332.
[86] Bednyakov V, Faessler A and Kovalenko S 1998 Phys. Lett. B 442 203.
[87] Hellming J and Klapdor-Kleingrothaus H V 1997 Z. Phys. A 359 351 (1997); Klapdor-Kleingrothaus H V and M. Hirsch M 1997 359 361; Klapdor-Kleingrothaus H V hep-ex/9901021.
[88] Hirsch M, Klapdor-Kleingrothaus H V and Kovalenko S G 1997 Phys. Lett. B 398, 311; ibid B 403, 291.