Goldstone mode singularities in $O(n)$ models

J. Kaupužša,b, R.V.N. Melnikc and J. Rimšānsa,b

aInstitute of Mathematics and Computer Science, University of Latvia
29 Raina Boulevard, LV–1459 Riga, Latvia E–mail: kaupuzs@latnet.lv

bInstitute of Mathematical Sciences and Information Technologies, University of Liepaja, 14 Liela Street, Liepaja LV–3401, Latvia

cWilfrid Laurier University, Waterloo, Ontario, Canada, N2L 3C5

Monte Carlo (MC) analysis of the Goldstone mode singularities for the transverse and the longitudinal correlation functions, behaving as $G_\perp(k) \approx a k^{−\lambda_\perp}$ and $G_\parallel(k) \approx b k^{−\lambda_\parallel}$ in the ordered phase at $k \to 0$, is performed in the three-dimensional $O(n)$ models with $n = 2, 4, 10$. Our aim is to test the predictions of [1], according to which the exponents λ_\perp and λ_\parallel are non-trivial ($3/2 < \lambda_\perp < 2$ and $0 < \lambda_\parallel < 1$ in three dimensions) and the ratio bM^2/a^2 (where M is the spontaneous magnetization) is universal. The trivial standard–theoretical values are $\lambda_\perp = 2$ and $\lambda_\parallel = 1$. The MC analysis of [2] gives $\lambda_\perp = 1.955\pm0.020$ for the $O(4)$ model. The MC estimation of λ_\parallel, assuming corrections to scaling of the standard theory, yields $\lambda_\parallel = 0.69\pm0.10$ for the $O(2)$ model [3]. This result clearly disagrees with $\lambda_\parallel = 1$. Currently, we have performed a similar MC estimation for the $O(10)$ model, yielding $\lambda_\perp = 1.9723(90)$ and $\lambda_\parallel = 0.85\pm0.06$. We have observed that the plot of the effective transverse exponent for the $O(4)$ model is systematically shifted down with respect to the same plot for the $O(10)$ model by $\Delta \lambda_\perp = 0.0121(52)$. It is consistent with the idea that $2 - \lambda_\perp$ decreases for large n and tends to zero at $n \to \infty$. We have also verified and confirmed the expected universality of bM^2/a^2 for the $O(4)$ model, where simulations at two different temperatures (couplings) have been performed.

References

[1] J. Kaupužš, Progress of Theoretical Physics 124, 613–643 (2010)

[2] J. Kaupužš, R.V.N. Melnik, J. Rimšāns, Phys. Lett. A 374, 1943–1950 (2010)

[3] J. Kaupužš, Can. J. Phys., doi:10.1139/p2012-028.