Lawrence Berkeley National Laboratory

Recent Work

Title
Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at root s=510 GeV

Permalink
https://escholarship.org/uc/item/03s1k2wx

Journal
PHYSICAL REVIEW D, 99(5)

ISSN
2470-0010

Authors
Adam, J
Adamczyk, L
Adams, JR
et al.

Publication Date
2019-03-14

DOI
10.1103/PhysRevD.99.051102

Peer reviewed
Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at $\sqrt{s} = 510$ GeV

J. Adam, J. Adamczyk, J. R. Adams, J. K. Adkins, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Aleskinev, D. M. Anderson, R. Aoyama, A. Aparin, D. Arkhipkin, E. C. Aschenauer, M. U. Ashraf, F. Atefalla, A. Attir, G. S. Averichev, V. Bairathi, K. Barish, A. J. Bassili, A. Behera, R. Bellwied, A. Bhasin, A. K. Bhati, J. Bielcik, J. Bielcikova, L. C. Bland, I. G. Bordyuzhin, J. D. Brandenburg, A. V. Brandin, D. Brown, J. Brylskowskyj, I. Bunzarov, J. Butterworth, H. Caines, M. Calderón de la Barca Sánchez, D. Cebra, I. Chakaberia, B. K. Chan, F-H. Chang, Z. Chang, N. Chankova-Bunzarova, A. Chatterjee, C. Zhou, X. Zhu, Z. Zhu, M. Zurek, and M. Zyzak

Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia

AGH University of Science and Technology, FPACS, Cracow 30-059, Poland

Abilene Christian University, Abilene, Texas 79699

Brookhaven National Laboratory, Upton, New York 11973

Argonne National Laboratory, Argonne, Illinois 60439

Physical Review D 99, 051102(R) (2019)

(STAR Collaboration)
6University of California, Berkeley, California 94720
7University of California, Davis, California 95616
8University of California, Los Angeles, California 90095
9University of California, Riverside, California 92521
10Central China Normal University, Wuhan, Hubei 430079
11University of Illinois at Chicago, Chicago, Illinois 60607
12Creighton University, Omaha, Nebraska 68178
13Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic
14Technische Universität Darmstadt, Darmstadt 64289, Germany
15Eötvös Loránd University, Budapest, Hungary H-1117
16Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
17Fudan University, Shanghai, 200433
18University of Heidelberg, Heidelberg 69120, Germany
19University of Houston, Houston, Texas 77204
20Huzhou University, Huzhou, Zhejiang 313000
21Indiana University, Bloomington, Indiana 47408
22Institute of Physics, Bhubaneshwar 751005, India
23University of Jammu, Jammu 180001, India
24Joint Institute for Nuclear Research, Dubna 141 980, Russia
25Kent State University, Kent, Ohio 44242
26University of Kentucky, Lexington, Kentucky 40506-0055
27Lawrence Berkeley National Laboratory, Berkeley, California 94720
28Lehigh University, Bethlehem, Pennsylvania 18015
29Max-Planck-Institut für Physik, Munich 80805, Germany
30Michigan State University, East Lansing, Michigan 48824
31National Research Nuclear University MEPhI, Moscow 115409, Russia
32National Institute of Science Education and Research, HBNI, Jatni 752050, India
33National Cheng Kung University, Tainan 70101
34Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic
35Ohio State University, Columbus, Ohio 43210
36Institute of Nuclear Physics PAN, Cracow 31-342, Poland
37Panjab University, Chandigarh 160014, India
38Pennsylvania State University, University Park, Pennsylvania 16802
39National Research Centre “Kurchatov Institute”- Institute of High Energy Physics, Protvino 142281, Russia
40Purdue University, West Lafayette, Indiana 47907
41Pusan National University, Pusan 46241, Korea
42Rice University, Houston, Texas 77251
43Rutgers University, Piscataway, New Jersey 08854
44Universidade de São Paulo, São Paulo, Brazil 05514-970
45University of Science and Technology of China, Hefei, Anhui 230026
46Shandong University, Qingdao, Shandong 266237
47Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
48Southern Connecticut State University, New Haven, Connecticut 06515
49State University of New York, Stony Brook, New York 11794
50Temple University, Philadelphia, Pennsylvania 19122
51Texas A&M University, College Station, Texas 77843
52University of Texas, Austin, Texas 78712
53Tsinghua University, Beijing 100084
54University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
55United States Naval Academy, Annapolis, Maryland 21402
56Valparaiso University, Valparaiso, Indiana 46383
57Variable Energy Cyclotron Centre, Kolkata 700064, India
58Warsaw University of Technology, Warsaw 00-661, Poland
59Wayne State University, Detroit, Michigan 48201
60Yale University, New Haven, Connecticut 06520
We report new STAR measurements of the single-spin asymmetries A_L for $W^+\rightarrow W^+\rightarrow e^+\nu$ and $W^-\rightarrow W^-\rightarrow e^-\bar{\nu}$ decay channels. Provide sensitivity to the helicity distributions of the quarks, Δu and Δd, and antiquarks, $\Delta \bar{u}$ and $\Delta \bar{d}$, that is free of uncertainties associated with nonperturbative fragmentation. The cross sections are well described [1]. The primary observable is the longitudinal single-spin asymmetry $A_L \equiv (\sigma_+ - \sigma_-)/\sigma_+\sigma_-$ where $\sigma_+(-)$ is the cross section when the helicity of the polarized proton beam is positive (negative). At leading order,

$$A_L^{W^+}(y_W) \propto \frac{\Delta \bar{d}(x_1)u(x_2) - \Delta u(x_1)d(x_2)}{\bar{d}(x_1)u(x_2) + u(x_1)d(x_2)},\quad (1)$$

$$A_L^{W^-}(y_W) \propto \frac{\Delta \bar{u}(x_1)d(x_2) - \Delta d(x_1)\bar{u}(x_2)}{\bar{u}(x_1)d(x_2) + d(x_1)\bar{u}(x_2)},\quad (2)$$

where $x_1(x_2)$ is the momentum fraction carried by the colliding quark or antiquark in the polarized (unpolarized) beam. $A_L^{W^+}(y_W)$ approaches $-\Delta u/\bar{u}$ in the very forward region of W rapidity, $y_W \gg 0$, and $\Delta d/\bar{u}$ in the very backward region of W rapidity, $y_W \ll 0$. The observed positron and electron pseudorapidities, η, are related to y_W and to the decay angle of the positron and electron in the W rest frame [19]. Higher-order corrections to $A_L(\eta)$ are known [20–22] and have been incorporated into the aforementioned global analyses.

In this article, we report new measurements of the single-spin asymmetries for decay positrons and electrons from W^\pm bosons produced in longitudinally polarized proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 510$ GeV. In addition, we report new results for the double-spin asymmetries A_{LL} for W^\pm and A_L for Z/γ^\ast production and subsequent decay into electron-positron pairs.

DOI: 10.1103/PhysRevD.99.051102

Understanding the spin structure of the proton in terms of its quark, antiquark, and gluon constituents is of fundamental interest. This description is commonly done using polarized parton distribution functions (PDFs), which can be determined using perturbative QCD techniques and global analyses of data from polarized deep-inelastic lepton-nucleon scattering (DIS) experiments and from high-energy polarized proton-proton scattering experiments at the Relativistic Heavy Ion Collider (RHIC). Recent examples of such PDFs are given in Refs. [1,2]. The data from leptonic W-decays in polarized proton-proton collisions at RHIC [3–7] provide constraints in these global analyses, which now show a strong asymmetry in the light sea-quark polarizations for parton momentum fractions, $0.05 < x < 0.25$, at hard perturbative scales. The existence of such an asymmetry in the polarized PDFs has been searched for directly in semi-inclusive DIS experiments [8–10] but has thus far been established only in the case of the unpolarized PDFs. There, Drell-Yan measurements [11,12] and DIS measurements [13,14], in particular, have reported large enhancements in the ratio \bar{d} over \bar{u} antiquark distributions. This has provided a strong impetus for theoretical modeling [15] and renewed measurement [16]. Considerable progress is being made also in lattice-QCD [17].

The leptonic $W^+ \rightarrow e^+\nu$ and $W^- \rightarrow e^-\bar{\nu}$ decay channels provide sensitivity to the helicity distributions of the quarks, Δu and Δd, and antiquarks, $\Delta \bar{u}$ and $\Delta \bar{d}$, that is free of uncertainties associated with nonperturbative fragmentation. The cross sections are well described [18]. The primary observable is the longitudinal single-spin asymmetry $A_L \equiv (\sigma_+ - \sigma_-)/\sigma_+\sigma_-$ where $\sigma_+(-)$ is the cross section when the helicity of the polarized proton beam is positive (negative). At leading order,
Electron sum events are characterized by an isolated topological feature that allows discrimination against jets, the ratio of the number of positrons or electrons, and discriminate against jets, the ratio of the number of positrons or electrons to the transverse momentum, p_T, imposed on the transverse momentum of the particle from the curvature of the TPC tracks in the solenoidal magnetic field. Figure 1(a) and 1(b) show the distribution of the reconstructed charge-sign, $Q = \pm 1$, multiplied by

$$Q \cdot E_T/p_T$$

where E_T is the transverse energy and p_T is the transverse momentum of the particle. The positron (red) and electron (blue) candidate events have been excluded in the BEMC (a) and EEMC (b) regions. Star of STAR 2013 is marked by a hatched shade.
the ratio of E_T^e observed in the BEMC and EEMC to p_T^τ determined with the TPC for events in the signal region, $25 < E_T^e < 50$ GeV. The relative yields of the W^+ and W^- follow the pseudorapidity dependence of the cross-section ratio. The distributions were each fitted with two double-Gaussian template shapes, determined from a Monte Carlo simulation in each of the templates. The remaining p_T-balance values were fixed by studies in which simulated $W^+ \rightarrow e^+\nu$ and $W^- \rightarrow e^-\bar{\nu}$ events were embedded (c.f. the paragraph below) in zero-bias data. The hatched regions, $|Q \cdot E_T/p_T| < 0.4$ and $|Q \cdot E_T/p_T| > 1.8$, were excluded to remove tracks with poorly reconstructed p_T and to reduce contamination from events with opposite charge-sign. This contamination is negligible at midrapidity, but increases to 9.6% and 12.0% for W^+ and W^- candidate events, respectively, in the EEMC region. The forward A_t values were corrected for this contamination using the asymmetries observed in the data.

Figure 2 shows the distributions of W^+ and W^- yields as a function of E_T^e for the four central η_e intervals considered in this analysis, along with the estimated residual background contributions from electroweak and QCD processes. The residual electroweak backgrounds are predominantly due to $W^\pm \rightarrow \tau^\pm \nu_\tau$ and $Z/\gamma^* \rightarrow e^+e^-$. These contributions were estimated from Monte Carlo simulations, using events generated with PYTHIA 6.4.28 [29] and the "Perugia 0" tune [30] that passed through a GEANT 3 [31] model of the STAR detector, and were subsequently embedded into STAR zero-bias data. The simulated samples were normalized to the W data using the known integrated luminosity. The TAUOLA package was used for the polarized τ^\pm decay [32]. Residual QCD dijet background in which one of the jets pointed to uninstrumented pseudorapidity regions was estimated using two separate procedures. The contribution from e^\pm candidate events with an opposite-side jet fragment in the uninstrumented region $2 < \eta < -1.1$ was estimated by studying such data in the EEMC, which instruments the region $1.1 < \eta < 2$. This is referred to as the “Second EEMC” procedure. Residual background from the uninstrumented region $|\eta| > 2$ was estimated by studying events that satisfy all isolation criteria, but do not satisfy the cuts on the scalar signed p_T-balance variable. This is referred to as the “Data-driven QCD” procedure. To assess the background remaining in the signal region, the E_T distribution of this background-dominated sample was normalized to the signal candidate distribution that remained after all other background contributions had been removed for E_T values between 14 and 18 GeV. Additional aspects of both procedures are described in Refs. [3, 18].

Figure 3 shows the charge-separated distributions in the EEMC region as a function of the signed p_T-balance variable, together with the estimated residual background contributions. Residual electroweak backgrounds for these regions were estimated in the same way as for the midrapidity data. Residual QCD backgrounds were estimated using the ESMD, where the isolation parameter R_{ESMD} was required to be less than 0.6 for QCD background events. The shape was determined for each charge-sign separately and normalized to the measured yield in the region where the signed p_T-balance variable was between -8 and 8 GeV/c. This region is dominated by QCD backgrounds.

At RHIC, there are four helicity configurations for the two longitudinally-polarized proton beams: $++$, $+-$, $-+$, $--$.
and $--$. The data from these four configurations can be combined such that the net polarization for one beam effectively averages to zero, while maintaining high polarization in the other. The longitudinal single-spin asymmetry A_L for the combination in which the first beam is polarized and the second carries no net polarization was determined from

$$A_L = \frac{1}{\beta P} \frac{R_{++}N_{++} + R_{+-}N_{+-} - R_{--}N_{--} - R_{-+}N_{-+}}{R_{++}N_{++} + R_{+-}N_{+-} + R_{-+}N_{-+} + R_{--}N_{--}},$$

where β is the signal purity, P is the average beam polarization, and R and N are the normalizations for relative luminosity and the raw W^\pm yields, respectively, for the helicity configurations indicated by the subscripts. The relative luminosities were obtained from a large QCD sample that exhibits no significant single-spin asymmetry. Typical values were between 0.993 and 1.009. The purity was evaluated from the aforementioned signal and background contributions and was found to be between 83% and 98%. A_L was determined in a similar way for the combination in which the second beam is polarized and the first carries no net polarization, and the values for the two combinations were then combined.

The A_L results for W^+ and W^- from the data sample recorded by STAR in 2013 are shown in Fig. 4 as a function of η_e. The vertical error bars show the size of the statistical uncertainties, including those associated with the correction for the wrong charge-sign in the case of the points at $|\eta_e| \approx 1.2$. The previously published STAR data [4] are shown for comparison. Shown also are the A_L results on high-energy forward decay muons and midrapidity positrons or electrons from combined W and Z/γ^* production by the PHENIX experiment with their statistical and systematic uncertainties as a function of η_e and η_μ, respectively [6,7].

The size of systematic uncertainties associated with BEMC and EEMC gain calibrations (5% variation) and the data-driven QCD background are indicated by the boxes.
TABLE I. Longitudinal single- and double-spin asymmetries, A_L and A_{LL}, for W^\pm production obtained from the STAR 2013 data sample, as well as the combination of 2013 with 2011 + 2012 results. The longitudinal single-spin asymmetry is measured for six decay positron or electron pseudorapidity intervals. The longitudinal double-spin asymmetry was determined in the same intervals and the results for the same absolute pseudorapidity value were combined. The systematic uncertainties include all contributions and thus also include the point-by-point correlated uncertainties from the relative luminosity and beam polarization measurements that are broken out separately in Figs. 4 and 5.

$\langle \eta_e \rangle$	$A_L \pm \sigma_{stat} \pm \sigma_{syst}$	$A_L \pm \sigma_{stat} \pm \sigma_{syst}$	$A_{LL} \pm \sigma_{stat} \pm \sigma_{syst}$	$A_{LL} \pm \sigma_{stat} \pm \sigma_{syst}$
	2013	2011–2013	2013	2011–2013
W^+	$-1.24 \pm 0.94 \pm 0.18 \pm 0.022$	$-0.312 \pm 0.145 \pm 0.017$	$0.039 \pm 0.049 \pm 0.014$	$0.016 \pm 0.042 \pm 0.011$
	$-0.72 \pm 0.25 \pm 0.035 \pm 0.016$	$-0.251 \pm 0.030 \pm 0.014$	$0.049 \pm 0.063 \pm 0.014$	$0.072 \pm 0.054 \pm 0.011$
	$-0.25 \pm 0.32 \pm 0.027 \pm 0.014$	$-0.331 \pm 0.023 \pm 0.014$	$-0.052 \pm 0.331 \pm 0.044$	$0.000 \pm 0.262 \pm 0.028$
W^-	$0.25 \pm 0.40 \pm 0.027 \pm 0.016$	$-0.412 \pm 0.023 \pm 0.016$	$0.067 \pm 0.120 \pm 0.025$	$-0.012 \pm 0.101 \pm 0.019$
	$0.72 \pm 0.55 \pm 0.034 \pm 0.024$	$-0.534 \pm 0.029 \pm 0.022$	$-0.096 \pm 0.107 \pm 0.026$	$-0.028 \pm 0.092 \pm 0.020$
	$1.24 \pm 0.36 \pm 0.18 \pm 0.023$	$-0.482 \pm 0.140 \pm 0.020$	$0.038 \pm 0.501 \pm 0.014$	$-0.133 \pm 0.331 \pm 0.061$
	$1.27 \pm 0.26 \pm 0.18 \pm 0.010$	$0.241 \pm 0.146 \pm 0.010$	$0.205 \pm 0.148 \pm 0.009$	$-0.147 \pm 0.260 \pm 0.038$

FIG. 5. Longitudinal single-spin asymmetries, A_L, for W^\pm production as a function of the positron or electron pseudorapidity, η_e, for the combined STAR 2011 + 2012 and 2013 data samples for $25 < E_T < 50$ GeV (points) in comparison to theory expectations (curves and bands) described in the text.

FIG. 6. The difference of the light sea-quark polarizations as a function of x at a scale of $Q^2 = 10$ (GeV/c)2. The data confirm the existence of a sizeable, positive Δu in the range $0.05 < x < 0.25$ [4] and the existence of a flavor asymmetry in the polarized quark sea.

In addition, A_L was determined for Z/γ^* production from a sample of 274 electron-positron pairs with $70 < m_{e^+e^-} < 110$ GeV/c2. The e^+ and e^- were each required to be isolated, have $|\eta_e| < 1.1$, and $E_T > 14$ GeV. The result, $A_L^{Z/\gamma^*} = -0.04 \pm 0.07$, is consistent with that in Ref. [4] but with half the statistical uncertainty.

Reweighting procedure of Refs. [36,37] with the 100 publicly available NNPDFpol1.1 PDFs. The results from this reweighting, taking into account the total uncertainties of the STAR 2013 data and their correlations [38], are shown in Fig. 5 as the blue hatched bands. The NNPDFpol1.1 uncertainties [1] are shown as the green bands for comparison. Figure 6 shows the corresponding differences of the light sea-quark polarizations versus x at a scale of $Q^2 = 10$ (GeV/c)2. The data confirm the existence of a sizeable, positive Δu in the range $0.05 < x < 0.25$ [4] and the existence of a flavor asymmetry in the polarized quark sea.
The systematic uncertainty is negligible compared to the statistical uncertainty. This result is also consistent with theoretical expectations, $A_L^{Z/γ} = -0.08$ from DSSV14 [2] and $A_L^{γ/γ} = -0.04$ from NNPDFpol1.1 [1].

In summary, we report new STAR measurements of longitudinal single-spin and double-spin asymmetries for $W^±$ and single-spin asymmetry for $Z/γ$ bosons produced in polarized proton-proton collisions at $\sqrt{s} = 510$ GeV. The production of weak bosons in these collisions and their subsequent leptonic decay is a unique process to delineate the quark and antiquark polarizations in the proton by flavor. The A_L data for W^+ and W^-, combined with previously published STAR results, show a significant preference for $\Delta u(x, Q^2) > \Delta d(x, Q^2)$ in the fractional momentum range $0.05 < x < 0.25$ at a scale of $Q^2 = 10$ (GeV/c)2. This is opposite to the flavor asymmetry observed in the spin-averaged quark-sea distributions.

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, the Ministry of High Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, RosAtom of Russia and German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF) and the Helmholtz Association.

[1] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo (NNPDF Collaboration), Nucl. Phys. B887, 276 (2014).
[2] D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Phys. Rev. Lett. 113, 012001 (2014).
[3] M. M. Aggarwal et al. (STAR Collaboration), Phys. Rev. Lett. 106, 062002 (2011).
[4] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 113, 072301 (2014).
[5] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 106, 062001 (2011).
[6] A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 93, 051103 (2016).
[7] A. Adare et al. (PHENIX Collaboration), Phys. Rev. D 98, 032007 (2018).
[8] B. Adeva et al. (Spin Muon Collaboration), Phys. Lett. B 420, 180 (1998).
[9] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D 71, 012003 (2005).
[10] M. G. Alekseev et al. (COMPASS Collaboration), Phys. Lett. B 693, 227 (2010).
[11] A. Baldit et al. (NA51 Collaboration), Phys. Lett. B 332, 244 (1994).
[12] R. S. Towell et al. (NuSea Collaboration), Phys. Rev. D 64, 052002 (2001).
[13] M. Arneodo et al. (New Muon Collaboration), Nucl. Phys. B483, 3 (1997).
[14] K. Ackerstaff et al. (HERMES Collaboration), Phys. Rev. Lett. 81, 5519 (1998).
[15] S. Kumano, Phys. Rep. 303, 183 (1998) and references therein.
[16] P. E. Reimer (Fermilab SeaQuest Collaboration), J. Phys. Conf. Ser. 295, 012011 (2011).
[17] H. W. Lin et al., Prog. Part. Nucl. Phys. 100, 107 (2018) and references therein.
[18] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. D 85, 092010 (2012).
[19] G. Bunce, N. Saito, J. Soiffer, and W. Vogelsang, Annu. Rev. Nucl. Part. Sci. 50, 525 (2000).
[20] F. Ringer and W. Vogelsang, Phys. Rev. D 91, 094033 (2015).
[21] D. de Florian and W. Vogelsang, Phys. Rev. D 81, 094020 (2010).
[22] P. M. Nadolsky and C. Yuan, Nucl. Phys. B666, 31 (2003).
[23] RHIC Polarimetry Group, The RHIC Polarimetry Group, BNL-209057-2018-TECH, C-A/AP/609 (2018), https://public.bnl.gov/docs/cad/Documents/RHIC%20Polarization%20for%20Runs%2019-17.pdf.
[24] K. H. Ackermann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 499, 624 (2003).
[25] M. Anderson et al., Nucl. Instrum. Methods Phys. Res., Sect. A 499, 659 (2003).
[26] M. Beddo et al., Nucl. Instrum. Methods Phys. Res., Sect. A 499, 725 (2003).
[27] C. E. Allgower et al., Nucl. Instrum. Methods Phys. Res., Sect. A 499, 740 (2003).
[28] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.
[29] T. Sjostrand, S. Mrenna, and P. Z. Skands, J. High Energy Phys. 05 (2006) 026.
[30] P. Z. Skands, Phys. Rev. D 82, 074018 (2010).
[31] R. Brun et al., GEANT: Detector Description and Simulation Tool, CERN Program Library; W5013 (CERN, Geneva, 1993), p. 430.
[32] P. Golonka, B. Kersevan, T. Pierzchała, E. Richter-Was, Z. Was, and M. Worek, Comput. Phys. Commun. 174, 818 (2006).
[33] W. C. Chang and J. C. Peng, Prog. Part. Nucl. Phys. 79, 95 (2014).
[34] Z.-B. Kang and J. Soffer, Phys. Rev. D 83, 114020 (2011).
[35] C. Bourrely and J. Soffer, Nucl. Phys. A941, 307 (2015).
[36] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali (NNPDF Collaboration), Nucl. Phys. B849, 112 (2011); B854, 926(E) (2012); B855, 927(E) (2012).
[37] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, N. P. Hartland, J. I. Latorre, J. Rojo, and M. Ubiali (NNPDF Collaboration), Nucl. Phys. B855, 608 (2012).
[38] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevD.99.051102, for the correlation matrix.