Examination of Comfort Temperature in the Traditional and Modern Building of Warm Humid Region

R. Shanthi Priya

Abstract— A Questionnaire survey to understand the Thermal Comfort of the inhabitants was carried out in the traditional and modern residential buildings in the coastal region of Nagappattinam during various seasons. The list of Questionnaire was prepared based on the Literature studies from Thermal Comfort Survey – ASHRAE 55 standards to comprehend the effect of diverse Climatic factors such as temperature, humidity, air flow and overall thermal comfort factors in the evaluation of thermal comfort in traditional and modern residential buildings. The findings of this study were based on the collection of answers from the survey. The findings of the survey are compared with the technical investigations which is included at the end of this paper. These findings reveal that people living in the traditional buildings of the coastal belts of Nagappattinam are well modified to the harsh environment of traditional houses than modern houses.

Keywords— Thermal Comfort Survey, Comfort Temperature, Comfort Models

I. INTRODUCTION

The Questionnaire survey was carried out to understand the Environmental performance of typical vernacular dwellings and Modern buildings in the coastal belts of Tamil Nadu. Solar Passive features in traditional buildings and Modern buildings are described in Table 2. The survey report comprises of detailed Questionnaire survey of 50 vernacular and Modern houses (Table 3) and the values of Experimental Investigation and TSV of 200 residents on ASHRAE thermal sensation scale was recorded. Through this survey, the author has assessed the Environmental performance of these residences in varied seasons. The comfort conditions of the inhabitants living in the traditional typologies were studied through questionnaire, comfort temperature and neutral temperature was also calculated by thermal comfort models (Singh et al 2010). Recent studies on traditional buildings exposed that the findings got from the field measurements are commonly acknowledged to envisage the comfort temperature of traditional and Modern buildings. The comfort temperature range involves various Climatic parameters, adjustment of human being from harsh weather, sensitivity and expectations. So, in this survey both objective and personal measurements were organized concurrently during the investigation.

II. THE ASHRAE SCALE

The ASHRAE scale is an universal thermal scale developed by ASHRAE 55 standard which signifies Thermal Environmental Conditions for Human Occupancy (Figure-1).

cold	cool	Slightly cool	Neutral	Slightly warm	Warm	Hot
-3	-2	-1	0	+1	+2	+3

Figure -1 ASHRAE thermal comfort model

Source: ASHRAE Standard 55P, “Thermal Environmental Conditions for Human Occupancy”.

III. INVESTIGATION METHODOLOGY

The investigation followed a comparable prototype of questionnaires performed by Wong & Kho (2003), Wong et al (2002) in Singapore, Sadhan Mahapatra (2010), Abel Tablada (2005), Henry Feriadi (2004) in Indonesia. These Literature reviews were chosen for the valid comparison of the Environmental setting and for the coincidence of objectives. The questionnaire consisted of three sections. Private data, Environmental parameters and their opinion about overcoming the uncomfortable situation was also asked from the occupants of traditional and Modern dwellings. In the private data, occupants were asked about feeling of temperature by subjects depends on many aspects like age, sex, weight, height, clothes, occupation etc. The occupants of the traditional residences voted on ASHRAE 7 point thermal sensation scale by filling up the questions in the format. (Table-1). Table -3 and 4 shows the number of occupants interviewed during various seasons in varied typologies.

A set of questions were also given to ease the observational study on the frequent behavioral adjustment by the inhabitants and the responses were in the form of five-scale frequency of actions (Figure-1). The occupants were requested to estimate how frequently in a day they take the diverse flexible measures.
planned. Before the respondents replied the opinion poll, they were requested to be seated and settle down for about 30 minutes when the reviewer enlightened the intention of the survey and the process to update opinion poll formats. (Table-4). The Questionnaire was prepared in the regional language Tamil as per ASHRAE Format.

Table -2 Solar passive features in the traditional and Modern houses of Warm humid zone)

Bio climatic Zone	Wind catcher house	Modern House
Built –up area (sq.m)	110	120
Building Envelope (walls)	mad, Brick(0.2m) lime mortar, timber, bamboo	Brick wall
Roofing	thatch roofing, country roof tiles	RCC roof
Ventilation	Doors, windows and Wind catchers	Doors and Windows
Building layout and Orientation	Open layout, East and West orientation	East and West orientation
Solar Passive elements	Thick external cavity walls, verandas, sloping roofs, courtyards, wind catchers, doors and windows	Nil

Table -3 Sampling distribution in the study area of coastal region

Study area of Coastal region, Tamil Nadu	Summer season	Winter Season
Number of questions	200	200
Number of Residences	50	50
Survey date	5th May – 5th June	8th Nov. – 10th Dec
Time (no. of questions)*	Morning - 10, Afternoon -25, Evening - 15	Morning - 10, Afternoon -25, Evening - 15

Table -4 personal parameters

Personal parameters	India	
	Winter	Summer
1. Clo value	0.4	0.3
2. Met. rate	1	1
3. Height (cm)	158	160
4. Weight (kg)	60	
5. Gender	Male	120
	Female	80
6. Age (years)	<20	10
	21-30	100

Table -5 represents the Indoor and Outdoor temperature measured using Hobo data loggers at the selected traditional and Modern House and the results were published in the journal (Shanthi Priya et al.). In Table – 7, the comfort temperature is evaluated by Humphreys and Auxiliems Models. In Table -6, Comfort temperature range is calculated for all the seasons which also consist of Temperature swings for all months and the Thermal Lag calculated from the data obtained from meteorological station. Different age group of the occupants casted their vote based on their state of emotions and actions. Based on this fact, it was observed that at similar temperature, occupants of varied age group, and gender have varied thermal sensation or else similar sensation at varied temperature.

![Figure-2(a) Regression on TSV on indoor operative temperature (January, February, March)](image)

![Figure -2(b) Regression on TSV on indoor operative temperature (April, May, June)](image)
6. Questionnaire Survey – Comfort Levels - Summer

In traditional typology 64% of the residents felt very comfortable during harsh weather (summer) and the left over 36% of the residents selected for comfortable, slightly uncomfortable, uncomfortable, very uncomfortable with an allocation of 20%, 4%, 2% and 1% correspondingly. In Modern typology not even a single person preferred for comfortable and around 70% of the inhabitants found that their buildings were uncomfortable.

Figure -5

5. Questionnaire Survey – Comfort Level - Winter

From Fig.4, it is found that 68% of the residents of traditional typologies preferred that their houses are very comfortable in winter and the left over 32% of the residents opted for comfortable, 5% opted for slightly uncomfortable, 3% opted for uncomfortable, 2% opted for very uncomfortable. Only 20% of the residents of modern typology stated that their buildings are very comfortable in winter and left over 80%, 15 % of the residents opted for comfortable,20% of the residents opted for slightly uncomfortable, 25% residents opted for uncomfortable, 20% of the residents opted for very uncomfortable during winter.

Figure -4 Questionnaire - thermal comfort - winter season

In warm humid climatic zones of coastal Tamil Nadu, the respondents also voted their preferences (prefer warmer, Just right, Prefer Cooler). From the above chart it was found that more people preferred cooler environment than warmer environment. More people preferred cooler environment though they have voted for -1 (slightly cool), 0 (Neutral) and +1 (slightly warm) in ASHRAE 7 point scale (Figure-3).

Figure -3 Thermal sensation votes (ASHRAE scale)

y = 0.2561x - 6.6507
R^2 = 0.8677
y = 0.4743x - 12.182
R^2 = 0.8118
y = 0.282x - 7.4248
R^2 = ...

Figure -2(c) Regression on TSV on indoor operative temperature (October, November, December)

Figure -6 PMV and PPD vs. Time

Figure -7 PMV vs. PPD

Figure -5: questionnaire on comfort –Various Seasons in Modern Buildings.
7. Assessment of Thermal Comfort in Traditional and Modern Typologies using Fanger’s Model

Thermal comfort of a person is determined by certain environmental factors such as AT, MRT, RH, air movement, type of clothing and action. Most of the occupants feel comfortable in their clothing levels and activity ranges under given environmental conditions. PMV and PPD based on Fanger’s comfort theory was carried out for both the buildings. In both the buildings people wearing normal clothing, their clo value and performing normal activities-metabolic rate were assumed. From Figures-6 and 7, it was found apparent that the traditional typology is relaxing for the most part of the time in summer compared to the modern one. The assessment using PMV –PPD study, proves that the traditional typologies are comfortable during summer.

Table-7 Calculation of comfort and neutral temperatures

Place	Months	(Humphreys) CT° C	(Auxiliems) CT° C	Neut. Temp. °C (regression analysis)	Neut. Temp. °C (survey)
Traditional building in the study area of Coastal region in Tamil Nadu	Jan.	25.8	25.9	25.2	25.8
	April	29.2	27.9	27.5	27.2
	May	29.8	29.5	27.8	28.4
	June	29.2	30.0	28.5	29.0
	November	26.8	26.8	26.5	26.1
	December	26.9	26.8	26.5	25.3
Modern building in the study area of Coastal region in Tamil Nadu	January	30.8	29.9	28.2	28.7
	April	33.2	27.9	32.9	33.9
	May	34.8	35.0	33.8	34.2
	June	34.2	34.9	32.5	33.2
	November	30.8	29.8	29.5	28.1
	December	29.6	29.8	28.4	29.3

7. Adaptive Behavior

Adaptive behavior model is excellent verification method from the occupants to understand the users original occupancy level.

The above chart shows the % of adaptive activities of the inhabitants in the traditional typologies of coastal belts in Tamil Nadu. Around 60% of the people preferred to open the windows, 40%-50% of the people preferred to switch on the fan, 30%-40% of the people prefer to drink water, 20%-30% prefer to change their clothes, very less percentage (<10%) prefer to take bath and switch on AC (less than 10%) to make them thermally comfortable (Figure-8). Reasonably many people liked to open windowpane and switch on fans in coastal region of Tamil Nadu signifies that wind movement in the interior of the residence is greatly favorable to overcome the humidity prevailing in the coastal regions.

IV. DISCUSSIONS

This study on Thermal Comfort Survey showed that ASHRAE scales had predicted higher thermal comfort level in the traditional typologies of coastal region in Tamil Nadu. From the study, it is found that the results obtained from the adaptive models lie in harmony with the temperature recorded in the traditional buildings through experimental investigation during summer and winter months. The most important conclusion which can be drawn from this study is that other than 80% of the inhabitants stated that, their harsh thermal interior surroundings were tolerable, yet the TSV surpassed tolerable thermal conditions set by the ASHRAE standards. The neutral temperature and comfort range were acquire through linear regression analysis of TSV (Table-7). From the individual evaluation, it was recognized that the inhabitants admitted the thermal range beyond the ASHRAE comfort zone. This paper also discusses the resident’s actions in utilizing the diverse ecological and individual control to make them relaxing from the harsh weather.

V. CONCLUSIONS

The Comfort Temperature prevailing in the traditional houses and Modern houses of coastal region was evaluated using various Thermal Comfort Survey Models and it was found that the findings of the survey lies in harmony with the comfort temperature evaluated from experimentation methods. The results from the questionnaire survey also showed the preference of the inhabitants to become accustomed to the tropical humid existing surroundings by generating a better wind movement (rotating fans, opening the windows). It is apparent from the lessons that a appropriate material usage, spatial association, Building technique and Environmental strategies might fetch the much required relaxed thermal environment inside the typologies. These findings reveal that people living in the traditional typologies of the coastal region are well adapted to the harsh environment of traditional houses than modern houses.
Table 5 - Indoor and Outdoor Temperature

Months	Traditional House	Modern House				
	outside ambient Temp.°C (a)	Inside Temp. °C	outside ambient Temp. °C (b)	Outside ambient Temp. °C (a)	Mean inside Temp °C	outside ambient Temp °C (b)
Jan.	35	26.5	34.2	35.1	32.3	33.8
April	37.9	30.1	38.2	37.9	35.4	38.2
May	39.3	29.3	38.2	39.3	34.2	38.2
June	38.1	31.2	38.5	38.1	34.9	37.5
November	34.2	25.4	33.8	34.2	31.1	33.0
December	33.4	24.1	34.1	33.4	30.3	32.9

b Site Measurement – Data Logger

a Weather Station

Table 6 Comfort temperature range based on comfort

Typology-Study area	Months	Temperature swings	Thermal lag	comfort temperature range	
	Outdoor	Indoor			
Traditional buildings in the study area of Coastal region of Tamil Nadu	January	12	8	0	22- NA
	April	14	7	0	22.0 - 29.0
	May	18	9	0	23.4 - 29.0
	June	18	9	0	24.0 – 30.0
	November	13	7	1	22.4- 26.5
	December	13	7	1	22.1 – 26.2
Modern buildings in the study area of Coastal region of Tamil Nadu	January	12	10	5	26.2-29.3
	April	14	12	4	30.3-33.9
	May	17	14	5	30.3-34.5
	June	17	13	5	31.3-35.3
	November	12	8	3	26.6-30.2
	December	13	9	3	28.7-32.4

REFERENCES:

1. ASHRAE standard 62.1-2004, ‘Ventilation for acceptable indoor air quality’, Atlanta, GA: ASHRAE, Inc.
2. ANSI/ASHRAE Standard 55-2004, ‘Thermal environmental conditions for human occupancy. Atlanta’, American Society of Heating, Refrigerating and Air Conditioning Engineers.
3. Abel Tablada, AM De la Peña, Frank De Troyer, 2005, Thermal comfort of naturally ventilated buildings in warm-humid climates: field survey, Proceedings of Passive Low Energy Architecture (PLEA), Beirut
4. Bouden, C & Ghrab, N 2005, ‘An adaptive thermal comfort model for the Tunisian context: a field study results’, Energy and Buildings, vol. 37, no. 9, pp. 952-963.
5. AS Dili, MA Naseer, TZ Varghese, Thermal comfort study of Kerala traditional residential buildings based on questionnaire survey among occupants of traditional and modern buildings, Energy and Buildings 42 (11), 2139-2150
6. Henry Feriadi, Nyuk Hien Wong, 2004, Thermal comfort for naturally ventilated houses in Indonesia, Energy and Buildings
7. Nyuk Hien Wong, Shan Shan Khoo, 2003, Thermal comfort in classrooms in the tropics, Energy and buildings
8. Madhavi Indraganti 2010, ‘Using the adaptive model of thermal comfort for obtaining indoor neutral temperature: Findings from a field study in Hyderabad, India’, Building and Environment, vol. 45, pp. 519-536.
Examination of Comfort Temperature in the Traditional and Modern Building of Warm Humid Region

9. Shanthi Priya, R, Sundarraja, MC & Radhakrishnan, S 2012, ‘Evaluation of traditional architecture in the coastal region of Nagapattinum using Mahoney tables’, Journal of Applied Sciences Research, INSInet Publications. vol. 8, no.1, pp. 582-588. (Impact Factor: 0.240).

10. Shanthi Priya, R, Sundarraja, MC & Radhakrishnan, S & Vijayalakshmi, S 2012, ‘Solar passive techniques in the vernacular buildings of coastal regions in Nagapattinum, Tamil Nadu-India - a qualitative and quantitative analysis’, Energy and Buildings, Elsevier Publications. vol. 49, pp.50-61. (Impact factor: 2.386, Citations:1).

11. Shanthi Priya, R, Sundarraja, MC & Radhakrishnan, S 2012, ‘Comparing the thermal performance of traditional and modern building in the coastal region of Nagappattinam, Tamil Nadu’, Indian Journal of Traditional Knowledge, NISCAIR Publications, vol.11, no. 3, pp. 542-547. (Impact factor: 0.399, Citations:1).

12. Shanthi Priya, R, Nirmal Raj, AR, Sundarraja, MC & Jinu Louishidha Kitchley 2011, ‘Climate sensitive Architecture of tribal vernacular settlements in hilly regions of mattupatti village, idukki district, kerala, India’, ABACUS, vol. 6, no. 2, pp. 1-7, Monsoon. (Impact factor: 0.080).

13. Shanthi Priya, R, Sundarraja, MC & Radhakrishnan, S 2012, ‘Comparing the thermal performance of traditional and modern building in the coastal region of Nagappattinam’, Indian Journal of Traditional Knowledge, NISCAIR Publications, vol.11, no. 3, pp. 542-547. (Impact factor: 0.399, Citations:1).

14. Shanthi Priya, R, Sundarraja, MC & Radhakrishnan, S 2012, ‘Experimental study on the thermal performance of a traditional house with one sided wind catcher during summer and winter’, Energy Efficiency, Springer Publications. vol. 5, no. 4, pp. 483-496. (Impact factor: 1.085).

15. Singh, MK, Mahapatra, S & Atreya, SK 2009, ‘Bioclimatism and vernacular architecture of North-east India’, Building and Environment, vol. 44, pp. 878-888.

16. Singh, MK, Mahapatra, S & Atreya, SK 2010, ‘Thermal performance study and evaluation of comfort temperatures in vernacular buildings of North-East India’, Building and Environment, vol. 45, pp. 320-329.

17. Singh, MK, Mahapatra, S & Atreya, SK 2007, ‘Development of bio-climatic zones in North East India’, Energy Buildings, vol. 39, no. 12, pp.1250-1257.

18. NH Wong, H Feriadi, PY Lim, KW Tham, C Sekhar, KW Cheong, 2002, Thermal comfort evaluation of naturally ventilated public housing in Singapore, Building and Environment.

19. Yao, R, Li, B & Liu, J 2009, ‘A theoretical adaptive model of thermal comfort. Adaptive predicted Mean vote (a PMV)’, Build Environ, vol. 44, no. 10, pp. 2089-2096.

20. baadalsg.inflibnet.ac.in

21. Ibrahim Husseink, M, Hazrin A. Rahman, Tina Maria. "Field studies on thermal comfort of air-conditioned and non air-conditioned buildings in Malaysia", 2009 3rd International Conference on Energy and Environment (ICEE), 2009

22. Singh, M.K. “Thermal performance study and evaluation of comfort temperatures in vernacular buildings of North-East India”, Building and Environment

23. "Sustainable Houses and Living in the Hot-Humid Climates of Asia", Springer Nature, 2018

24. Manoj Kumar Singh, Sahdian Mahapatra, Jacques Teller. "Development of thermal comfort models for various climatic zones of North-East India", Sustainable Cities and Society, 2015

25. Deb, C. "Evaluation of thermal comfort in a rail terminal location in India", Building and Environment, 2010-11

26. Sushil B. Bajracharya. "The Thermal Performance of Traditional Residential Buildings in Kathmandu Valley", Journal of the Institute of Engineering, 2014

27. Shanthi Priya, Anna University, Ph.D report- 2013