Analysis of Porosity Defects in Aluminum as Part Handle Motor Vehicle Lever Processed by High-pressure Die Casting

L. Anggraini\(^1\) and Sugeng\(^2\)

\(^1\)Faculty of Engineering, President University, Jalan Ki Hajar Dewantara, Jababeka Education Park, Cikarang Baru, Bekasi 17550, Indonesia.
\(^2\)Undergraduate Study Program of Mechanical Engineering, President University, Jalan Ki Hajar Dewantara, Jababeka Education Park, Cikarang Baru, Bekasi 17550, Indonesia.

E-mail: lydia.anggra@president.ac.id

Abstract. This research discusses the testing and analysis of cracking Aluminum (Al) material. Al as a handle lever was used for a braking device on a motor vehicle. Cracking of handle lever due to the part content of porosity from hydrogen gas. The existence of the H\(_2\) can be caused by the casting process and dies design that is less perfect, especially at the gate or brisquet and overflow. This research is to optimize the process of making Al part handle lever, and the construction dies by following the standard. The results of these improvements were re-evaluated through the chemical and mechanical testing properties stages, such as density test and tensile test on the workpiece as part handle lever. The loads on the tensile test are 25 kg and 35 kg, and the tensile test result has met the standard set by the motor vehicle company. The optimization result has the porosity defect can be reduced by 99%. Therefore the best part handle lever can be produced.

Keywords. Aluminum, manufacturing, microstructure, part handle lever, and properties.

1. Introduction

Aluminum (Al) is a light metal that has properties against corrosion resistance and good electrical conductivity [1]. Future Al usage is expected to be wide open as the main material and supporting material, with the availability of the abundant Al seeds on earth. Al can be used for household appliances, aircraft materials, automotive, ships, constructions and others [2–5]. The aluminum products can be produced through the casting and forming process.

Al alloys have been used in many applications and have been widely used in industry because they have superior properties [6–12]. These properties make aluminum alloys into metals that are very suitable and economical for various applications and have made aluminum alloy as the most widely used metal after steel [13]. Al is commonly used for the manufacturing part produced in the motor vehicle companies [14–15]. Handle lever is a part that serves as braking or reduction of production rate in a motor vehicle.

Al is a common element found in the earth's crust and is the third most abundant element after oxygen (O) and silicon (Si) [16]. The excess of Al compared to other metals is that Al has a low specific gravity which makes this material light and has good corrosion resistance due to the 20
passivation phenomenon [1, 17–20]. In order to improve the mechanical properties, other elements were added into Al. On the other hand, Al also has some shortcomings, lack of Al among others, such as easy to mix with gases; hydrogen in liquid conditions that can cause porosity [21–23].

In any manufacturing or production process, various problems that can affect the quality of production are generally found. Those are because the production process is not perfect and the design needs to be an improvement. The manufacturing process of handle lever in an automotive company, especially handles lever part was found porous during the initial trial of production. Therefore, to overcome that problem, our study is to examine the cause of the occurrence of porosity made from Al as part handle lever produced by high pressure die casting.

2. Materials and methods
The purpose of simulation performed on the Al handle lever is to estimate the use of parts in the application, as an example: the part is used for braking at the speed of the motor vehicle. In the work system to clarify the problem on the Al part handle lever, can be seen in Figure 1.

![Figure 1](image1.png)

Figure 1. The braking system on a motor vehicle.

![Figure 2](image2.png)

Figure 2. Optical microscope image of Al part handle lever.

Analysis performed on the cracked or broken part is done based on five aspects: user, working method, materials, machine, and environment. Before the parts are manufactured, testing should be made to ensure that the parts fit into the quality standard. The first procedure of part handle lever from the casting process is done by simulation test in function. The second step is to determine the mass of the type of time on the object by density testing. The density examination resulted from the outcome of the weighing of the specimen, it is theoretically performed, namely Archimedes test. Discovery of crack or broken cases found in the production of Al part handle lever, part analysis problem was carried out by Scanning Electron Microscope with Energy Dispersive X-ray Spectroscopy (SEM-EDS) microstructure image analysis.

3. Results and discussion
In advance of the parts are being manufactured, the first test has been made to ensure that the parts fit into the quality standard. In this simulation test, the result of Al part handle lever is NG (No Good), that part has a crack (broken) obtained from the casting process. The density result which was performed by Archimedes test has 92.105 % density or 7.894 % porosity.

By microstructure analysis, the crack propagation was obtained from the O point. However, the initial crack was not found. Figure 2 was obtained by an optical microscope (OM). The SEM images clearly show the fracture surface of Al part handle lever in different magnifications. Figure 3 shows the crack obtained by a casting process and the morphology of H₂ inserted to the Al part. In the observations with EDS, the impurities with element contents of carbon and oxygen were found more
clearly. The SEM-EDS results show that the defects were not in the direction of fault propagation. In addition, the cause means of the fracture is not due to the impurities as shown in Figure 4.

The summary of the above analysis is: the 'cause' of the crack case in the Al part handle lever is the porosity of the casting process, gas porosity or shrinkage porosity.

From the material composition analysis results obtained by the spectrometer observation, the composition contained in the part handle lever corresponds to the composition of the material specification. Figure 5 shows the test location of material and Table 1 shows the composition results of materials by the spectrometer.

Figure 3. SEM fracture images of Al part handle lever with different area and various magnification.
Figure 4. EDS analysis results of Al part handle lever and fractography with impurity.

Figure 5. Material test location.

Table 1. The composition result of materials by the spectrometer

Items	Composition of Elements (%)	Result						
	Si	Fe	Cu	Mn	Mg	Zn	Ni	
Standard								
HD4	0.50–	0.50–	0.10	0.50–	4.00–	0.10–	0.10–	OK
HES C-101-03	1.10	0.80	Max	0.80	5.50	Max	Max	
Spark 1	0.89	0.72	0.05	0.60	4.63	0.03	0.01	
Spark 2	0.87	0.70	0.04	0.59	4.61	0.03	0.01	

The following tensile test simulation results on the Al part handle lever based on updated parameters. The illustrations and results of the tensile test can be seen as following Figure 6 to 10, respectively.

Based on the standard that has been set by the company on the strength of the part handle lever, it can be concluded that the production of Handle Lever parts is fine and safe for the use of mass production. Compared with the production of other parts with the similar material Al alloy, and the similar process die-casting shows increasing mechanical properties, which has been proofed by Avalle et al. described the influence of casting defects on static and fatigue strength is investigated for a high pressure die cast aluminum alloy. In this case, defects count for their size and location, while quality control often takes no account of component working conditions [24]. Besides, other researchers Nakata et al. have proven improvement in the mechanical properties was accomplished due to the microstructural modification of an aluminum die casting alloy by multi-pass friction stir processing (MP-FSP), which is a solid-state microstructural modification technique using a frictional heat and stirring action. The hardness of the MP-FSP sample is about 20 Hv higher than that of the base metal.
The tensile strengths of the MP-FSPed specimens were significantly increased to about 1.7 times if compared to the base metal [25]. Thus, the application of the high pressure die-casting is a very effective method for the mechanical improvement of aluminum alloys.

![Figure 6. Illustration of tensile test workpiece](image1)

![Figure 7. The values of compressive extension test at preset point 1 at preset point is 2.80856 mm](image2)

![Figure 8. Results of compression testing](image3)

![Figure 9. The values of compressive extension test at preset point 2 at preset point is 3.66180 mm](image4)

4. Conclusions
Analysis of porosity defects in Al as the part handle motor vehicle lever has been processed by high pressure die casting, by a standard operational procedure such as the fluxing process frequency standard and the optimization of special particle lever parameter on the casting process has been well determined. The optimum dies design with the addition of two runners is accompanied by the change of gate and overflow. From the results clearly, show the improvements in the process have been successfully made, and the mechanical properties and safety have met the standards. Therefore, the application of the high pressure die-casting is proven as a very effective method for the mechanical improvement of aluminum alloys.

References
[1] Davis J R 1999 Aluminum and Aluminum Alloys (ASM International)
[2] Starke E A and Staley J T 1996 Application of modern aluminum alloys to aircraft Progress in Aerospace Sciences 32 131 – 172
[3] Hu Y, Bakker M C M, and De Heij P G 2011 Recovery and distribution of incinerated aluminum packaging waste Waste Management 31 2422 – 2430
[4] Das S. J. Minerals, Metals, and Materials Society 52 41 – 44
[5] Minghua Q 2012 Construction Technology 6 011
[6] Rao S K et al 2005 Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds Materials Characterization 55 345 – 354
[7] Polmear I J and Couper M J 1988 Design and development of an experimental wrought aluminum alloy for use at elevated temperatures Metallurgical and Materials Transactions A 19 1027 – 1035
[8] Sankaran K K and Grant N J 1980 The structure and properties of splat-quenched aluminum alloy 2024 containing lithium additions Materials Science and Engineering 44 213 – 227
[9] Yar A A et al 2009 Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO Alloys and Compounds 484 400 – 404
[10] Elangovan K and Balasubramanian V 2008 Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints Materials Characterization 59 1168 – 1177
[11] Ferrasse S et al 1997 Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Metallurgical and Materials Transactions A 28 1047 – 1057
[12] Wang W T et al 2010 Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate J. Alloys and Compounds 491 366 – 371
[13] Barnes T A and Pashby I R 2000 Joining techniques for aluminium spaceframes used in automobiles: Part I—solid and liquid phase welding. J. Materials Processing Technology 99 62 – 71
[14] Miracle D B 2005 Metal matrix composites—from science to technological significance Composites Science and Technology 65 2526 – 2540
[15] Watarai H 2006 NISTEP Science & Technology Foresight Center
[16] Exley C and Darwin 2009 Darwin, natural selection and the biological essentiality of aluminium and silicon Trends in Biochemical Sciences 34 589 – 593
[17] Schweitzer P A 2005 Paint and Coatings: Applications and Corrosion Resistance (CRC Press)
[18] Schwartz M 2002 Encyclopedia of Materials, Parts, and Finishes (CRC Press)
[19] DeGarmo E P et al 1997 Materials and Process in Manufacturing (Prentice Hall)
[20] Seah K H W et al 2002 Effects of temperature and reinforcement content on corrosion characteristics of LM13/albite composites Corrosion Science 44 761 – 772
[21] Zhao H, White D R and DebRoy T 1999 Current issues and problems in laser welding of automotive aluminium alloys International Materials Reviews 44 238 – 266
[22] Chen J K and Huang I S 2013 Thermal properties of aluminum–graphite composites by powder metallurgy Composites Part B: Engineering 44 698 – 703
[23] Tsui T Y, Oliver W C, and Pharr G M J. Materials Research 11 752 – 759
[24] Avalle M et al 2002 Casting defects and fatigue strength of a die cast aluminium alloy: a comparison between standard specimens and production components International Journal of Fatigue 24 1 – 9
[25] Nakata K et al 2006 Improvement of mechanical properties of aluminum die casting alloy by multi-pass friction stir processing Materials Science and Engineering: A 437 274 – 280