Outcomes after first-line immunochemotherapy for primary mediastinal B cell lymphoma patients: a LYSA study

Tracking no: ADV-2021-004778R2

Vincent Camus (INSERM U1245, France) Cédric Rossi (CHU Dijon, France) Pierre Sesques (Hospices Civils de Lyon, France) Justine Lequesne (Centre Henri Becquerel, France) David Tonnelet (Centre Henri Becquerel, France) Corinne Haioun (CHU Henri Mondor, France) Eric Durot (Hôpital Robert Debré CHU de Reims, France) Alexandre Willaume (Hôpital Claude Huriez, France) Martin Gauthier (University Cancer Institute Toulouse Oncopole, France) Marie-Pierre Molea-Moreau (chu angers, France) Chloé Antier (Nantes University Hospital, France) Julien Lazarovici (Gustave Roussy Cancer Campus Grand Paris, France) Helene Monjanel (CH Aurillac and CHU Clermont-Ferrand, France) Sophie Bernard (Assistance Publique Hôpitaux de Paris, Hôpital Saint-Louis, Service Hématologie Oncologie, France) Magalie Tardy (CLCC Antoine Lacassagne, France) Caroline Besson (Centre Hospitalier de Versailles, France) Laure Lebras (Centre Léon Bérard, France) Sylvain Choquet (Groupe Hospitalier Pitié Salpêtrière, France) Katell Le Dû (Confluent Private Hospital, France) Christophe Bonnet (CHU LIEGE, Belgium) Sarah Bailly (Cliniques Universitaires Saint Luc, Belgium) Gandhi Damaj (Normandy University, Hematology Institute, France) Kamel Laribi (Department of Hematology, Centre Hospitalier Le Mans, Le Mans, France, France) Herve Maisonneuve (chd les oudairies, France) Roch Houot (CHU Rennes, France) Adrien Chauchet (CHU, France) Fabrice Jardin (INSERM U1245, France) Alexandre Traverse-Glehen (Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, France) Pierre Decazes (Quantif LITIS, France) Stéphanie Becker (QUANTIF-LITIS, France) Alina Berriolo-Riedinger (Centre G. F. LECLERC, France) Herve Tilly (INSERM U1245, France)

Abstract:
Primary mediastinal B-cell lymphoma (PMBL) is a rare type of aggressive lymphoma typically affecting young female patients. The first-line standard of care remains debated. We performed a large multicenter retrospective study in 25 centers in France and Belgium to describe PMBL patient outcomes after first-line treatment in real-life settings. Three hundred thirteen patients were enrolled and received rituximab (R) plus ACVBP (n=180) or CHOP delivered every 14 (R-CHOP14, n=76) or 21 days (R-CHOP21, n=57) and consolidation strategies in modalities that varied according to time and institution, mainly guided by positron emission tomography. Consolidation autologous stem cell transplantation was performed for 46 (25.6%), 24 (31.6%) and one (1.8%) patients in the R-ACVBP, R-CHOP14 and R-CHOP21 groups, respectively (p<0.001); only 17 (5.4%) patients received mediastinal radiotherapy. The end-of-treatment complete metabolic response rates were 86.3%, 86.8% and 76.6% (p=0.23) in the R-ACVBP, R-CHOP14 and R-CHOP21 groups, respectively. The median follow-up was 44 months, and the R-ACVBP, R-CHOP14 and R-CHOP21 3-year progression-free survival (PFS) probabilities were 89.4% [95% confidence interval: 84.8-94.2%], 89.4% [82.7-96.6%] and 74.7% [64-87.1%] (p=0.018), respectively. A baseline total metabolic tumor volume (TMTV) [greater than or equal to]360 cm³ was associated with a lower PFS (hazard ratio=2.18 [1.05-4.53]). Excess febrile neutropenia (24.4% vs 5.3% vs 5.3%, p<0.001) and mucositis (22.8% vs 3.9% vs 1.8%, p<0.001) were observed with R-ACVBP compared to R-CHOP regimens. PMBL patients treated with dose-dense immunochemotherapy without radiotherapy have excellent outcomes. R-ACVBP acute toxicity was higher than that of R-CHOP14. Our data confirmed the prognostic importance of baseline TMTV.

Conflict of interest: No COI declared

COI notes:

Preprint server: No;

Author contributions and disclosures: VC designed and supervised the study; analyzed and interpreted the data; wrote the manuscript CR, PS, CH, ED, AW, MG, MPPM, CA, JL, HM, SB, MT, CB, LL, SC, KLD, CB, SB, GD, KL, HM, RH, AC, FK, and ATG collected the data DT, PD, SB, and ABR collected the data and reviewed all available PET images JL performed the statistical analysis HT designed and supervised the study, analyzed and interpreted the data, and edited the paper

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: emails to the corresponding author
Clinical trial registration information (if any):
Regular Article

Title:

OUTCOMES AFTER FIRST-LINE IMMUNOCHEMOTHERAPY FOR PRIMARY MEDIASTINAL B CELL LYMPHOMA PATIENTS: A LYSA STUDY

Running title: Outcomes after first-line treatment for PMBL

Authors: Vincent Camus (1), Cédric Rossi (2), Pierre Sesques (3), Justine Lequesne (4), David Tonnelet (5), Corinne Haioun (6), Eric Durot (7), Alexandre Willaume (8), Martin Gauthier (9), Marie-Pierre Moles-Moreau (10), Chloé Antier (11), Julien Lazarovici (12), Hélène Monjanel (13) (14), Sophie Bernard (15), Magalie Tardy (16), Caroline Besson (17), Laure Lebras (18), Sylvain Choquet (19), Katell Le Du (20), Christophe Bonnet (21), Sarah Bailly (22), Ghandi Damaj (23), Kamel Laribi (24), Hervé Maisonneuve (25), Roch Houot (26), Adrien Chauchet (27), Fabrice Jardin (1), Alexandra Traverse-Glehen (28), Pierre Decazes (5), Stéphanie Becker (5), Alina Berriolo-Riedinger (29), Hervé Tilly (1)

Affiliations:

1) Department of Hematology and INSERM U1245, Centre Henri Becquerel, Rouen, France
2) Department of Hematology, University Hospital, Dijon, France
3) Department of Hematology, Hospices Civils de Lyon, Pierre-Bénite, France
4) Clinical Research Unit, Centre Henri Becquerel, Rouen, France
5) Department of Nuclear Medicine and QUANTIF-LITIS, Centre Henri Becquerel, Rouen, France
6) Lymphoid malignancies Unit, Henri Mondor University Hospital, Assistance Publique Hôpitaux de Paris, Créteil, France
7) Department of Hematology, CHU de Reims, Reims, France
8) Department of Hematology, Lille University Hospital – Hopital Claude Huriez, Lille, France
9) Department of Hematology, IUCT Oncopole, Toulouse, France
10) Department of Hematology, Angers University Hospital, Angers, France
11) Department of Hematology, University Hospital, Nantes, France
12) Department of Hematology, Institut Gustave Roussy, Villejuif, France
13) Department of Hematology, CH Aurillac, Aurillac, France
14) Department of Hematology, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
15) Department of Hematology, CHU Saint Louis, Paris, France
16) Department of Hematology, Centre Antoine Lacassagne, Nice, France
17) Service d’Hématéo-oncologie, Centre Hospitalier de Versailles, Le Chesnay, France
18) Department of Hematology, Centre Léon Bérard, Lyon, France
19) Department of Hematology, CHU La Pitié Salpêtrière, Paris, France
20) Department of Hematology, Clinique Victor Hugo, Le Mans, France
21) Department of Hematology, Liege University Hospital, Liege, Belgique
22) Department of Hematology, Cliniques Universitaires Saint Luc, Bruxelles, Belgique
23) Department of Hematology, Côte de Nacre University Hospital, Caen, France
24) Department of Hematology, CH Le Mans, Le Mans, France
25) Department of Hematology, CH départemental de Vendée, La-Roche-Sur-Yon, France
26) Department of Hematology, Rennes University Hospital, Rennes, France
27) Department of Hematology, CH Besançon, Besançon, France
28) Department of Pathology, hospices civils de Lyon, centre hospitalier Lyon-Sud, UMR CNRS 5239, Pierre-Bénite, France
29) Department of Nuclear Medicine, University Hospital, Dijon, France

Corresponding author: Vincent Camus
Adress: Centre Henri Becquerel
Département d’Hématologie
1 rue d’amiens
76038 ROUEN Cedex, France
Phone: +33 2 32 08 29 47
Fax: +33 2 32 08 22 83
Mail: Vincent.camus@chb.unicancer.fr

Prior presentation footnotes: Presented in abstract form at the 62nd American Society of Hematology Annual Meeting in December 2020 and will be presented as an oral communication at ICML 2021 (Lugano): abstract 50 (June 2021).

Word counts:
Text: 4341
Abstract: 246

Number of figures: 5
Number of tables: 3
Number of references: 67
Key points:

- Excellent outcome of primary mediastinal B-cell lymphoma patients treated with first-line R-CHOP14 and R-ACVBP without radiotherapy.

- Confirmation of the prognostic importance of baseline total metabolic tumor volume in this population.
Abstract

Primary mediastinal B-cell lymphoma (PMBL) is a rare type of aggressive lymphoma typically affecting young female patients. The first-line standard of care remains debated.

We performed a large multicenter retrospective study in 25 centers in France and Belgium to describe PMBL patient outcomes after first-line treatment in real-life settings.

Three hundred thirteen patients were enrolled and received rituximab (R) plus ACVBP (n=180) or CHOP delivered every 14 (R-CHOP14, n=76) or 21 days (R-CHOP21, n=57) and consolidation strategies in modalities that varied according to time and institution, mainly guided by positron emission tomography. Consolidation autologous stem cell transplantation was performed for 46 (25.6%), 24 (31.6%) and one (1.8%) patients in the R-ACVBP, R-CHOP14 and R-CHOP21 groups, respectively (p<0.001); only 17 (5.4%) patients received mediastinal radiotherapy. The end-of-treatment complete metabolic response rates were 86.3%, 86.8% and 76.6% (p=0.23) in the R-ACVBP, R-CHOP14 and R-CHOP21 groups, respectively. The median follow-up was 44 months, and the R-ACVBP, R-CHOP14 and R-CHOP21 3-year progression-free survival (PFS) probabilities were 89.4% [95% confidence interval: 84.8-94.2%], 89.4% [82.7-96.6%] and 74.7% [64-87.1%] (p=0.018), respectively. A baseline total metabolic tumor volume (TMTV) ≥360 cm³ was associated with a lower PFS (hazard ratio=2.18 [1.05-4.53]). Excess febrile neutropenia (24.4% vs 5.3% vs 5.3%, p<0.001) and mucositis (22.8% vs 3.9% vs 1.8%, p<0.001) were observed with R-ACVBP compared to R-CHOP regimens.

PMBL patients treated with dose-dense immunochemotherapy without radiotherapy have excellent outcomes. R-ACVBP acute toxicity was higher than that of R-CHOP14. Our data confirmed the prognostic importance of baseline TMTV.
Introduction

Primary mediastinal B-cell lymphoma (PMBL) is a rare type of aggressive B-cell lymphoma that is clinically and biologically distinct from diffuse large B-cell lymphoma (DLBCL). Accounting for approximately 2-4% of newly diagnosed non-Hodgkin lymphomas\(^1\), it typically affects young female patients\(^2\). Most studies have shown a very favorable prognosis for PMBL, with a survival rate exceeding 80% at 5 years\(^3\)-\(^5\), and this excellent prognosis is a particular feature of PMBL.

However, therapeutic management of PMBL differs across countries, with no fully established standard of care. Therapeutic options include standard R-CHOP\(^5\),\(^6\), dose-dense immunochemotherapy with rituximab (R) plus ACVBP\(^3\),\(^7\) or DA-EPOCH-R\(^4\),\(^8\), and mediastinal consolidation radiation therapy (CRT)\(^9\),\(^10\). The use of CRT remains controversial among hematology centers worldwide; some centers choose to apply it systematically\(^9\),\(^11\) or optionally (for metabolic partial responders) CRT\(^12\)-\(^14\), and other centers no longer employ this approach\(^15\)-\(^17\). Finally, the place of autologous stem cell transplant (ASCT) in first-line consolidation\(^18\),\(^19\), mainly guided by fluorodeoxyglucose (FDG) positron emission tomography (PET) response assessment\(^20\), also remains a cause of debate due to the paucity of available evidence in PMBL. Indeed, because PMBL is uncommon, there exist few prospective data, resulting in the present situation of no clearly established standard of care. PMBL patients are poorly represented in clinical trials (CTs), and treatment practices are quite heterogeneous. This prompted us to conduct a real-life, large, multicenter retrospective study in LYSA centers.
Methods:

Patients and data collection

All adult patients with newly diagnosed PMBL treated in France and Belgium by participating Lymphoma Study Association (LYSA) centers from 01/01/2007 to 31/12/2017 were identified from local databases. The inclusion criteria were as follows: first-line ACVBP or CHOP plus anti-CD20, available pre-treatment (baseline) PET and patients’ non-opposition statement. PMBL diagnosis was made locally in each center and based on typical clinical presentation and histological criteria described in the 2008 and 2016 WHO classification, with the support of the French Lymphopath network after 2009. Data were retrospectively collected from medical records in all centers. “Bulky” was defined as disease ≥10 cm in axial diameter. Primary refractory disease (PRD) was defined as lymphoma progression during treatment or within 3 months of treatment completion.

The primary endpoint was progression-free survival (PFS). Secondary endpoints were: overall survival (OS), baseline total metabolic tumor volume (TMTV) prognostic impact, OS according to uptake levels based on the Deauville Score (DS) at the end of treatment (EoT), complete metabolic response (CMR) rates, and maximum standardized uptake value (SUVmax) reduction between baseline (PET0) and PET4 (ΔSUVmax PET0-4). The study was approved by Centre Henri Becquerel’s institutional review board (CHB - 1801B) and by the LYSA scientific committee (01/2018). The study was conducted according to the criteria set by the Declaration of Helsinki.

Treatments and positron emission tomography (PET) response assessment

The “induction” phase was defined as 4 cycles of immunochemotherapy. Granulocyte colony stimulating factor (GCSF) use and Central nervous system (CNS) prophylaxis was left up to the discretion of the investigators. PET was routinely performed before treatment (baseline),
after 2, 3 or 4 cycles of chemotherapy (PET2, PET3, PET4), and at EoT, depending on the center’s usage. Centers mainly used interim PET (iPET) results to guide “post-induction” treatments in modalities that varied according to the time and institutions, mainly guided according to the design of the major LYSA CTs20,24. Patients received one or more of the following options, according to their physician’s decision (details in Supplemental Table 1): (i) continuation of R-CHOP to achieve 6-8 cycles; (ii) consolidation ASCT (BEAM25 conditioning regimen or equivalent)20; (iii) LYSA sequential consolidation chemotherapy (SCC) 20,24 (mainly after ACVBP induction), and/or CRT. Notably, patients could receive ASCT at the discretion of the investigators in each of the treatment groups. EoT PET assessment was performed after consolidation ASCT or at the end of standard chemotherapy if patients did not receive an ASCT.

Response evaluation was performed in each institution and was mainly based on the DS26 or the International Harmonization Project criteria (IHP)27, depending on the time and the centers’ habits. CMR was defined as follow: DS 1-3 (5-point scale, for PET exams performed in 2010 and after), or negative PET (IHP criteria, for PET exams performed between 2007 and 2009). TMTV using the 41% SUVmax threshold method and ΔSUVmax PET0-4 were centrally retrospectively assessed by four independent senior nuclear medicine physicians.

Statistical analysis

Comparisons of characteristics according to treatments were conducted with chi-squared tests (or Fisher's exact tests) for qualitative variables and nonparametric Wilcoxon Mann-Whitney tests for quantitative variables. The best cutoff value for baseline TMTV was determined with receiver operating curve (ROC) analysis.

OS was calculated from the date of diagnosis to the date of death from any cause or the date of last follow-up while alive. PFS was calculated from the date of diagnosis until disease
progression, relapse or death from any cause or the last patient follow-up. Patients free of disease progression and relapse were censored on the date of the last follow-up visit or contact. Second PFS (PFS2) was calculated from the date of first disease relapse until subsequent disease progression, relapse or death from any cause or the last patient follow-up.

Survival outcomes were estimated by the Kaplan-Meier method, with significant differences evaluated with the log-rank test. Multivariable analysis (MVA) was carried out using a Cox proportional hazards model. As soon as a patient has missing data in one of the MVA variables, patient was no longer part of the model. The level of significance retained for each test was 5%. Statistics were performed with R software v4.0.2.
Results

Patients’ characteristics

Three hundred thirteen patients were enrolled from 25 LYSA centers. The patients’ characteristics are listed in Table 1. The median age at diagnosis was 32 [18-88] years, the majority of patients were female (n=190, 60.7%) and presented at diagnosis with a good performance status (ECOG 0-1: 81.8%), stage I-II (57.5%), elevated LDH (81.8%), bulky disease (58.5%), IPI 1-2 (60.7%), and CNS IPI 2-3 (36.4%). No patient had CNS involvement at diagnosis. Sixteen (5.1%) patients presented thrombotic events related to tumor mass before treatment. Mediastinal masses were reported in 278 (96%, NA=23) patients and were the main biopsy site for diagnosis. Tumors typically display a CD20+/CD30+/CD23+/MUM1+/CD15- profile (Supplemental Table 1). Extra nodal (EN) involvement was reported in 151 (48%) patients (Supplemental Table 2).

Treatments received

Three induction chemotherapy regimens were used: ACVBP7 delivered every 14 days (n=180) and CHOP administered every 14 days (CHOP1428,29, n= 76) or every 21 days (CHOP215, n=57, Figure 1). Anti-CD20 combined with chemotherapy was rituximab (R): n=296 (94.6%) or obinutuzumab (G): n=17 (5.4%). CNS prophylaxis was performed in 261 (83.4%, Table 2) patients. Patients treated with R-CHOP21 were enrolled homogeneously over the entire study period, similar to the other patients. Forty-seven (15%) patients were treated in an LYSA trial open at the time of diagnosis7,20,24,30,31 (Supplemental Table 3). The total median number of R-CHOP cycles received by patients was 7.5 (1-8) vs 6 (1-8) in the R-CHOP14 and R-CHOP21 groups, respectively.

Consolidation ASCT was performed for 46 (25.6%), 24 (31.6%) and one (1.8%) patient (p<0.001), and CRT was delivered to 4 (2.2%), 11 (14.5%) and 2 (3.5%) patients in the R-
ACVBP, R-CHOP14 and R-CHOP21 groups, respectively (p<0.001, Table 2). By regrouping the R-CHOP groups, ASCT was performed for 25 [R-CHOP] vs 46 [R-ACVBP] patients (p=0.2) and CRT was delivered to 13 [R-CHOP] vs 4 [R-ACVBP] patients (p=0.0047).

Interim PET results

Three hundred and eight (98.4%) patients had at least an iPET after 2 (n=178, 56.9%), 3 (n=13, 4.2%) or/and 4 (n=241, 77%) cycles of chemotherapy (supplemental Table 4). Regarding patients in the R-CHOP groups, we only had PET results after 2, 3 or 4 cycles of chemotherapy, but no consecutive PET2/PET4 results (data missing or PET exam not done), in contrast to the R-ACVBP group.

The CMR rates after induction for the 229 (73.2%) evaluable patients with available PET4 were similar across the R-ACVBP, R-CHOP14 and R-CHOP21 groups: 64.1%, 77.4% and 67.9% (p=0.35, Figure 1), respectively. We then selected 72 patients who had both an interpretable PET0 and PET4 and we observed that ΔSUVmax PET0-4 ≤70% was associated with unfavorable outcomes (Supplemental figure S1).

Patient outcomes

EoT CMR rates were fairly similar across the R-ACVBP, R-CHOP14 and R-CHOP21 groups: 86.3%, 86.8% and 76.6% (p=0.23, Figure 1), respectively. Thirty-seven (11.8%) patients progressed, including 32 (10.2%) who had a PRD. Among those 37 events, 15 (40.6%) patients had an extra mediastinal relapse, and 6 (16.2%) progressed after first-line consolidation ASCT in a median time of 3 (2-58) months. A single late relapse was observed beyond 2 years post diagnosis (Figure 2). CNS relapse occurred in 9 (2.9%) patients, of whom 8 had received CNS intrathecal methotrexate prophylaxis (supplemental Table 5).
PFS and OS by treatment groups

The median follow-up was 44 (1-153) months, and the R-ACVBP, R-CHOP14 and R-CHOP21 3-year PFS and OS were 89.4% (84.8-94.2%), 89.4% (82.7-96.6%), and 74.7% (95% CI: 64-87.1%), (p=0.018, Figure 2), respectively, and 92.4% (88.4-96.7%), 100% (100-100%), and 87.5% (78.6-97.6%), (p=0.0036, Figure 3), respectively. Twenty-two patients died (R-CHOP21: n=8, R-ACVBP: n=14), mainly due to lymphoma progression (n=15) and toxicity (n=2, supplemental Table 6).

By univariate analysis, R-CHOP21 treatment (hazard ratio [HR]=2.37, 95% CI: 1.20-4.67, Table 3), presence of B symptoms (HR=1.91, 95% CI: 1.05-3.47), and baseline TMTV≥360 cm³ (HR=2.18, 95% CI: 1.05-4.53, supplemental Figure S2) were associated with a shorter PFS. The type of anti-CD20 antibody (R or G) had no impact on outcome (2-year PFS: 86.4% vs. 93.3%, p=0.35, data not shown). In the TMTV≥360 cm³ subgroup, the numbers of events were too low to test the impact of the treatment modalities on PFS. The outcome was similar between patients receiving R-ACVBP plus ASCT, R-ACVBP plus SCC, R-CHOP14 alone, and R-CHOP14 plus ASCT, but R-CHOP21 still did worse in this subgroup analysis (3-year PFS: 74.7%, p=0.001, supplemental Figure S3). In a MVA including treatment group (Table 3), IPI 3-5, bulky disease, TMTV, pericardial or pleural effusion and B symptoms, TMTV≥360 cm³ was associated with inferior OS (HR=5.68, 95% CI: 1.61-20.06, p=0.007), independent of treatment modality. CRT was not included in the model due to the low number of patients (5.4%). Treatment group was not associated with outcome in the MVA.

EoT PET results for prognostic assessment

Patients with a negative PET (DS1-3) at EoT (n= 202) had favorable outcomes compared to those with a positive PET (DS4-5, n=45, Supplemental Table 7), with a 3-year OS rate of 99.3% (98-100%) vs 72% (58.6-88.6%) (p=<0.0001, Figure 4). When using a different
threshold, patients with DS1-4 at the EoT (n= 228) also had excellent outcomes compared to DS5 (n=19), with a 3-year OS rate of 98.3% (96.3-100%) vs 43.3% (23.4-80.2%) (p=<0.0001, Figure 5). No statistically significant prognostic difference was observed between DS3 (n=71) and DS4 (n=26) at EoT, with a 3-year OS rate of 98% (94.1-100%) for DS3 versus 89.8% (77.3-100%) for DS4, with only 1 event in each subgroup (supplemental Figure S4). The outcome (PFS, OS) of patients who obtained a negative PET at EoT is excellent and identical between the 3 treatment arms, whether using the IHP or DS criteria (Supplemental Figure S5).

Salvage treatments and PFS2
Among the 37 progression events, salvage treatments administered at first progression were high-dose chemotherapy (HDC: R-ICE or R-DHAOX-like regimens) (n=30) followed by second-line consolidation ASCT (n=11/30) or ASCT+CRT (n=5/11); CRT alone (n=1); other regimens (R-CHOP, R-GEMOX) (n=3); and none (n=3). Among the 6 patients who received second-line CRT, 5 progressed, and 1 was still alive in a CR (the patient who received salvage ASCT+CRT).
The 2-year PFS2 and OS2 were 29% and 59.7%, respectively (supplemental Figure S6).

Toxicity
Safety data were retrospectively collected for 313 (100%) patients. All grade treatment-related adverse events were similar among the groups, except for an excess of febrile neutropenia (5.3% vs 5.3% vs 24.4%, p<0.001) and mucositis (1.8% vs 3.9% vs 22.8%, p<0.001, supplemental Table 8) in the R-ACVBP group. Two toxic deaths were observed (R-CHOP21: n=1, R-ACVBP: n=1). A very low rate (n=7, 2.2%) of cardiac events was
reported (including 2 chest pain and 1 atrial fibrillation), with only 3 events (1%) related to acute anthracycline toxicity (cardiomyopathy with the development of heart failure).

Secondary malignancies (SM) appeared in 7 (2.2%) patients (R-CHOP21: n=2, R-ACVBP: n=5 (2.8%)), including 3 cases of acute myeloid leukemia (R-ACVBP group), 1 Ewing sarcoma, 1 thyroid papillary microcarcinoma, 1 carcinoma in situ of the uterine cervix and 1 squamous cell carcinoma. Only 2/7 patients who developed SM had received an ASCT and no one developed AML. Median time between first-line treatment and SM appearance was 3.1 (1.1-6.2) years. One patient died from a SM (R-ACVBP group, Supplemental Table 9).
Discussion

We conducted a large retrospective study describing the outcome of newly diagnosed PMBL treated in 25 LYSA centers in real-life settings. In this study, patients who received R-CHOP14 or R-ACVBP had excellent outcomes with limited acute toxicity. The majority of failure occurred in primary refractory patients. These results are consistent with other published data confirming the excellent outcomes of PMBL patients receiving first-line immunochemotherapy.6,16,32–34

Regarding the factors explaining these favorable results, we note that dose intensity seems to play a role in the outcome of PMBL. Patients treated with standard R-CHOP21 had a trend toward inferior results compared to R-ACVBP and R-CHOP14. However, the MVA demonstrates that treatment group was not associated with outcome in our study. However, the inferior results of R-CHOP21 in our study can be explained partly by a higher proportion of patients >60 years of age in this subgroup, usually not eligible for R-ACVBP, and for whom the prognosis is generally less favorable. In total, 4.5% of patients were older than 60 years. This small proportion of elderly PMBL is consistent with other data in the literature.12,35–37 Higher median age of the R-CHOP21 group (40 years and almost 20% over 60 years) probably influenced the decision to not treat these patients with R-CHOP14 or R-ACVBP. These dose-dense regimens are associated with higher toxicity in patients over 60 years.38,39 This is also the likely reason why patients in the R-CHOP21 group did not receive consolidation ASCT for the most part.

In the pre rituximab era, Massoud et al.3 included 67 patients treated with ACVBP and 38 treated with CHOP21 and CRT and demonstrated a better OS and PFS with ACVBP. Gleeson et al.5 also established in a small subgroup analysis of UK NCRI R-CHOP21 vs R-CHOP14 plus CRT at the physician’s discretion that R-CHOP14 performed better than R-CHOP21. In
addition, a recent randomized study that included 96 PMBL Ukrainian patients confirmed that DA-EPOCH-R is more effective than standard R-CHOP; however, DA-EPOCH-R had a higher rate of grade 3-4 neutropenia and the use of CRT.

However, a recent study report in the form of abstract by Held et al. revealed no outcome differences between PMBL treated with R-CHOP21 and R-CHOP14 in a cohort of 131 patients. In this subgroup analysis of the UNFOLDER trial, only patients with aaIPI=0 plus bulky disease or aaIPI=1 were included and received either CRT or observation at EoT, which could partially explain the results. In our study, the R-ACVBP and R-CHOP14 groups were comparable based on clinical characteristics, but the groups were unbalanced in size, with more patients who received R-ACVBP. R-CHOP14 was associated with a comparable PFS as R-ACVBP but led to a slightly more frequent use of consolidation ASCT and CRT. Variations in the criteria for the interpretation of PET over time, as well as the habits of the centers, may have partially contributed to this greater number of ASCT and CRT in the R-CHOP14 group, whereas the tumor control at the end of induction seems similar. The centers mainly chose between two treatment strategies: either R-ACVBP or R-CHOP14 with consolidation ASCT if TEP2+/TEP4-, or a classic strategy with no ASCT consisting in 6 to 8 cycles of R-CHOP21. As a result, almost all of the ASCT occurred in the R-ACVBP and R-CHOP14 groups. As the post-induction treatments were adapted to iPET results, the outcomes were similar between R-ACVBP plus ASCT, R-ACVBP plus SCC, R-CHOP14 plus ASCT and R-CHOP14 alone. In addition, the CNS relapse rate was low (2.9%) and consistent with the literature. No consensus exists to recommend CNS prophylaxis in PMBL, so CNS-IPI is commonly used, as in DLBCL.

Regarding safety, the treatments were generally well-tolerated in our study and the reported cardiac event rate while on anthracycline therapy was low (2.2%), far from the 7-18% of
cardiac event rates commonly described in the literature at cumulative doses of 150-350 mg/m². Such observation is possibly due to the young age of the population and the insufficient follow-up and the missing reports linked to retrospective data collection. Nevertheless, R-ACVBP was more toxic than R-CHOP, with a higher rate of febrile neutropenia and mucositis, without taking into account the number of re-hospitalizations which it is not possible to specify in this retrospective work. Furthermore, the incidence of SM in the R-ACVBP arm at 2.8% is notable with 3 AML cases. This finding was previously described in the literature. Considering retrospective data collection with limited follow up (44 months) and time between chemotherapy and SM appearance in our cohort, we may expect additional SM onset in the future. A watchful follow-up of these young patients is recommended.

PMBL is a radiosensitive disease and various procedures historically combined chemotherapy with CRT, but there are many concerns about the long-term toxicity of CRT in this young, mostly female population. However, real-life data on large cohorts of patients treated with chemotherapy with or without CRT are lacking, so no consensus exists on omitting CRT. In our study, the number of patients who received CRT was very low (n=17), and none received CRT after 2014, probably due to an evolution of practices in LYSA centers. This means that from that date, in the event of a positive iPET, physicians preferred consolidation ASCT to CRT. The study reported by Dunleavy et al. previously demonstrated that treatment with an intensive chemotherapy regimen (DA-EPOCH-R) obviated the need for CRT. Hayden et al. also reported in a large series of PMBL treated with R-CHOP that a PET-guided approach may reduce CRT use in the majority of patients. In our experience, CRT can be safely omitted in this population of predominantly young female patients treated with dose-dense immunochemotherapy to avoid CRT long-term side effects. In addition, the frequent extra mediastinal relapses observed in our study also argue against CRT. The results of the IELSG-
37 (NCT01599559) study are awaited to provide results based on a randomized study and may conclusively settle the debate51.

Relapses occurred in 12\% of patients in our study, consistent with previously published data52–54. In this situation, retreatment with salvage high-dose chemotherapy followed by ASCT is the standard of care55,56. Nevertheless, relapsed PMBL is often chemoresistant, and the patients will either not actually undergo ASCT or will relapse early after ASCT with a poor prognosis (2-year PFS2: 30\%). Because PMBL is associated with genetic aberrations at 9p24 and overexpression of programmed cell death-1 (PD-1) ligands (PD-L1), pembrolizumab, an anti-PD-1 checkpoint antibody, was tested as a single agent57 in PMBL patients relapsing after ASCT with good results and a manageable safety profile. In addition, a combination of checkpoint inhibitors and brentuximab vedotin58 has been reported as promising in 3rd-line or more.

Our results confirm favorable outcomes of DS4 at EoT, as previously reported in the literature but mainly after CRT. Indeed, the recent prospective IELSG-26 study 59 evaluated PET after first-line R-CHOP-like plus CRT in 115 PMBL patients and the positive predictive value was only 32\% for DS4. Filippi et al.60 also reported in a series of 51 PMBL patients that all 17 patients with EoT DS4 had excellent outcomes. We think EoT PET is useful to establish an overall prognosis. Similar to other teams, we think DS4 at the EoT should lead to serial PET surveillance61 and not to CRT45.

We also demonstrated that a baseline TMTV\geq360 cm3 was associated with an unfavorable prognosis independent of treatment. This threshold is different from the cutoff values reported in the literature62 for DLBCL (65 cm3 to 600 cm3) and cHL (147 cm3 to 313 cm3), mainly determined by ROC analyses, but all studies agree that a higher baseline TMTV predicts a significantly worse PFS and OS in patients with various types of lymphoma. Three methods
exist for PET volume autosegmentation, which complicates TMTV use as a prognostic factor in real life. Nevertheless, expert nuclear medicine physicians independently re-evaluated all available images, reinforcing the identified threshold’s value. There is probably an interaction in the MVA between TMTV and R-ACVBP which is not significant due to a lack of power.

Regarding iPET, Lazarovici et al. previously reported the low predictive value of positive iPET scored by IHP or DS, which pinpoints the need for an additional tool to help physicians to more precisely assess therapeutic response. As a consequence, we suggest using the semiquantitative tool ΔSUVmax PET0-4 (cutoff \leq70% or $>$70%), as previously reported in DLBCL patients, to help guide consolidation decisions, as previously described by Casasnovas et al., who demonstrated that the prognostic impact of iPET results could be increased using ΔSUVmax as compared to visual analysis.

Our study has several limitations that should be highlighted. First, it is a retrospective study that inevitably involves missing data. More centers from the former Groupe d’Etude des Lymphomes de l’Adulte (GELA), who are used to R-ACVBP, participated in this study in contrast to the former Groupe Ouest Est des Leucémies et Autres Maladies du Sang (GOELAMS) centers who are used to R-CHOP and who participated less, which may represent a selection bias. We have no information on the factors that motivated the centers to choose R-CHOP over R-ACVBP. The decision was left to each investigator and mainly corresponded to a center’s habit. Patients’ comorbidities were taken into account in addition to patients’ age, but comorbidity data were not collected. Regarding other limitations, we do not have sufficient data on physicians’ motivations for their choice of consolidative options (ASCT, CRT, SCC) according to iPET results for several reasons: (i) iPET performed at different times during the treatment course in a heterogeneous way; (ii) missing serial
PET2/PET4 data in the R-CHOP groups; (iii) variable methods for interpreting PET responses; (iv) local treatment guidelines have evolved over time; and (v) no data are available on whether biopsies were performed by the centers based on DS4 at EoT. Our cohort may not be representative of the overall PMBL population because baseline PET was mandatory for inclusion. PMBL is sometimes diagnosed in an emergency context and patients may receive treatment with no baseline PET, so we possibly missed the sickest patients. Furthermore, no dedicated PMBL registry exists in LYSA centers. The identification of PMBL patients in this study has called on local databases and selection biases are inevitable.

In addition, our study does not have enough power to explore the results of the three regimens in the IPI 0 subgroup. We cannot directly compare our results with those published with DA-EPOCH-R4,66,67, but the outcomes seem globally similar. We did not review biopsies to confirm the local PMBL diagnosis, but since 2009, LYSA centers routinely address all lymphoma biopsies to the French Lymphopath Network23 so we can therefore hypothesize that there are very few samples that would not have been diagnosed by experts in our cohort. In addition, the patients’ clinical characteristics and outcomes presented here correspond to a typical PMBL population. Finally, regarding the features correlated with an excellent R-CHOP14 outcome, we cannot conclude whether RCHOP14 is the important "key" factor or if it is the consolidation phase. However, the results of our study suggest that next PMBL patients may be treated with R-ACVBP or R-CHOP14 without CRT according to the "GAINED" trial20 design with an iPET-driven consolidation strategy. A prospective trial in the PMBL population evaluating this treatment design and the role of circulating tumor DNA as a biomarker of molecular response in compliment to PET is actually ongoing (NCT04824950).
Finally, these results confirm the remarkable outcomes of PMBL patients treated with dose-dense immunochemotherapy without CRT. Our data also support the prognostic importance of baseline TMTV and the favorable outcomes of DS4 at EoT.
Acknowledgments:

We thank the patients and their families, the reviewers at the Lymphoma Study Association (LYSA), notably Pr. Thierry Lamy and Pr. Hervé Ghesquière, the LYSARC and all of the investigators in the LYSA centers.

The authors thank Mrs. Julie Libraire, clinical data manager at the Clinical Research Unit, Centre Henri Becquerel, and Mrs. Doriane Richard, CRA manager, for support in this study.

The authors thank Mr Arthur Dumouchel and Mr Pierrick Gouel for imaging data management in this study.

This work was supported by grants from the Centre Henri Becquerel and the Ligue Contre le Cancer (Comité de la Manche).

Data sharing statement
For data sharing, contact the corresponding author: vincent.camus@chb.unicancer.fr.

Authorship Contributions

Authorship:

VC designed and supervised the study; analyzed and interpreted the data; wrote the manuscript

CR, PS, CH, ED, AW, MG, MPMM, CA, JL, HM, SB, MT, CB, LL, SC, KLD, CB, SB, GD, KL, HM, RH, AC, FK, and ATG collected the data

DT, PD, SB, and ABR collected the data and reviewed all available PET images

JL performed the statistical analysis

HT designed and supervised the study, analyzed and interpreted the data, and edited the paper

Disclosure of Conflicts of Interest

The authors declare no conflicts of interest relevant to this study.

Relevant financial activities outside the submitted work:

VC: Honoraria: Roche, Amgen; Gilead-Kite, BMS, Sanofi; Travel Grants: Pfizer, Roche

HT: Honoraria: Celgene, Roche, Karyopharm, Astra-Zeneca, Bristol-Myers Squibb, Grants: Celgene

References
1. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127(20):2375–2390.

2. Liu P-P, Wang K-F, Xia Y, et al. Racial patterns of patients with primary mediastinal large B-cell lymphoma: SEER analysis. Medicine (Baltimore) 2016;95(27):e4054.

3. Massoud M, Koscielny S, Lapusan S, Bosq J, Ribrag V. Primary mediastinal large B-cell lymphomas treated with dose-intensified CHOP alone or CHOP combined with radiotherapy. Leuk Lymphoma 2008;49(8):1510–1515.

4. Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-Adjusted EPOCH-Rituximab Therapy in Primary Mediastinal B-Cell Lymphoma. N Engl J Med 2013;368(15):1408–1416.

5. Gleeson M, Hawkes EA, Cunningham D, et al. R-CHOP in Primary Mediastinal B-Cell Lymphoma (PMBL): Results from the UK NCRI R-CHOP 14 v 21 Trial. Blood 2015;126(23):2689–2689.

6. Hayden A, Tonseth P, Lee DG, et al. Outcome of Primary Mediastinal Large B-cell Lymphoma Using R-CHOP: Impact of a PET Adapted Approach. Blood [Epub ahead of print].

7. Récé C, Coiffier B, Haïoun C, et al. Intensified chemotherapy with ACVBP plus rituximab versus standard CHOP plus rituximab for the treatment of diffuse large B-cell lymphoma (LNH03-2B): an open-label randomised phase 3 trial. The Lancet 2011;378(9806):1858–1867.

8. Stepanishyna Y, et al. DA-EPOCH-R VS R-CHOP in Patients with Primary Mediastinal Large B-Cell Lymphoma: Results of Prospective Randomized Ukrainian Multicenter Study. ASH 2020. Abstract 2106.

9. Xu L-M, Fang H, Wang W-H, et al. Prognostic significance of rituximab and radiotherapy for patients with primary mediastinal large B-cell lymphoma receiving doxorubicin-containing chemotherapy. Leuk Lymphoma 2013;54(8):1684–1690.

10. Giulino-Roth L. How I treat primary mediastinal B-cell lymphoma. Blood 2018;132(8):782–790.

11. Xu L-M, Li Y-X, Fang H, et al. Dosimetric evaluation and treatment outcome of intensity modulated radiation therapy after doxorubicin-based chemotherapy for primary mediastinal large B-cell lymphoma. Int J Radiat Oncol Biol Phys 2013;85(5):1289–1295.

12. Pinnix CC, Dabaja B, Ahmed MA, et al. Single-institution experience in the treatment of primary mediastinal B cell lymphoma treated with immunochemotherapy in the setting of response assessment by 18fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys 2015;92(1):113–121.

13. Hayden A, Tonseth P, Lee DG, et al. Outcome of Primary Mediastinal Large B-cell Lymphoma Using R-CHOP: Impact of a PET Adapted Approach. Blood [Epub ahead of print].

14. Tai WM, Quah D, Yap SP, et al. Primary mediastinal large B-cell lymphoma: optimal therapy and prognostic factors in 41 consecutive Asian patients. Leuk Lymphoma 2011;52(4):604–612.

15. Chan EHL, Koh LP, Lee J, et al. Real world experience of R-CHOP with or without consolidative radiotherapy vs DA-EPOCH-R in the first-line treatment of primary mediastinal B-cell lymphoma. Cancer Med 2019;8(10):4626–4632.
16. Goldschmidt N, Kleistern G, Orevi M, et al. Favorable outcome of primary mediastinal large B-cell lymphoma patients treated with sequential RCHOP-RICE regimen without radiotherapy. Cancer Chemother Pharmacol 2016;77(5):1053–1060.

17. Messmer M, Tsai H-L, Varadhan R, et al. R-CHOP without radiation in frontline management of primary mediastinal B-cell lymphoma. Leuk Lymphoma 2019;60(5):1261–1265.

18. Liu X, Deng T, Guo X, et al. A retrospective analysis of outcomes for primary mediastinal large B-cell lymphoma treated with RCHOP followed by radiotherapy or front-line autologous stem cell transplantation. Hematol Amst Neth 2017;22(5):258–264.

19. Avivi I, Boumendil A, Finel H, et al. Autologous stem cell transplantation for primary mediastinal B-cell lymphoma: long-term outcome and role of post-transplant radiotherapy. A report of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 2018;53(8):1001–1009.

20. Le Gouill S, Ghersquieres H, Obéric L, et al. Obinutuzumab versus Rituximab in young patients with advanced DLBCL, a PET-guided and randomized phase 3 study by LYSA. Blood [Epub ahead of print].

21. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127(20):2375–2390.

22. Swerdlow S, Campo E, Harris N, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 2008. p.

23. Laurent C, Baron M, Amara N, et al. Impact of Expert Pathologic Review of Lymphoma Diagnosis: Study of Patients From the French Lymphopath Network. J Clin Oncol 2017;35(18):2008–2017.

24. Casasnovas R-O, Ysebaert L, Thieblemont C, et al. FDG-PET–driven consolidation strategy in diffuse large B-cell lymphoma: final results of a randomized phase 2 study. Blood 2017;130(11):1315–1326.

25. Mills W, Chopra R, McMillan A, Pearce R, Linch DC, Goldstone AH. BEAM chemotherapy and autologous bone marrow transplantation for patients with relapsed or refractory non-Hodgkin’s lymphoma. J Clin Oncol 1995;13(3):588–595.

26. Meignan M, Gallamini A, Meignan M, Gallamini A, Haioun C. Report on the First International Workshop on interim-PET scan in lymphoma. Leuk Lymphoma 2009;50(8):1257–1260.

27. Cheson BD, Pfistner B, Juweid ME, et al. Revised Response Criteria for Malignant Lymphoma. J Clin Oncol 2007;25(5):579–586.

28. Pfreundschuh M. Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 2004;104(3):634–641.

29. Pfreundschuh M, Schubert J, Ziepert M, et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol 2008;9(2):105–116.
30. Le Gouill S, Milpied NJ, Lamy T, et al. First-line rituximab (R) high-dose therapy (R-HDT) versus R-CHOP14 for young adults with diffuse large B-cell lymphoma: Preliminary results of the GOELAMS 075 prospective multicenter randomized trial. J Clin Oncol 2011;29(15_suppl):8003–8003.

31. Fitoussi O, Belhadj K, Mounier N, et al. Survival impact of rituximab combined with ACVBP and upfront consolidation autotransplantation in high-risk diffuse large B-cell lymphoma for GELA. Haematologica 2011;96(8):1136–1143.

32. Dunleavy K, Pittaluga S, Maeda LS, et al. Dose-Adjusted EPOCH-Rituximab Therapy in Primary Mediastinal B-Cell Lymphoma. N Engl J Med 2013;368(15):1408–1416.

33. Massoud M, Koscielny S, Lapusan S, Bosq J, Ribrag V. Primary mediastinal large B-cell lymphomas treated with dose-intensified CHOP alone or CHOP combined with radiotherapy. Leuk Lymphoma 2008;49(8):1510–1515.

34. Pytlík R, Belada D, Kubáčková K, et al. Treatment of high-risk aggressive B-cell non-Hodgkin lymphomas with rituximab, intensive induction and high-dose consolidation: long-term analysis of the R-MegaCHOP-ESHAP-BEAM Trial. Leuk Lymphoma 2015;56(1):57–64.

35. Shah NN, Szabo A, Huntington SF, et al. R-CHOP versus dose-adjusted R-EPOCH in frontline management of primary mediastinal B-cell lymphoma: a multi-centre analysis. Br J Haematol [Epub ahead of print].

36. Casadei B, Argnani L, Morigi A, et al. Treatment and outcomes of primary mediastinal B cell lymphoma: a three-decade monocentric experience with 151 patients. Ann Hematol [Epub ahead of print].

37. Aoki T, Izutsu K, Suzuki R, et al. Prognostic significance of pleural or pericardial effusion and the implication of optimal treatment in primary mediastinal large B-cell lymphoma: a multicenter retrospective study in Japan. Haematologica 2014;99(12):1817–1825.

38. Tilly H, Lepage E, Coiffier B, et al. Intensive conventional chemotherapy (ACVBP regimen) compared with standard CHOP for poor-prognosis aggressive non-Hodgkin lymphoma. Blood 2003;102(13):4284–4289.

39. Delarue R, Tilly H, Mounier N, et al. Dose-dense rituximab-CHOP compared with standard rituximab-CHOP in elderly patients with diffuse large B-cell lymphoma (the LNH03-6B study): a randomised phase 3 trial. Lancet Oncol 2013;14(6):525–533.

40. Held G, et al. ROLE OF RADIOTHERAPY AND DOSE-DENSIFICATION OF R-CHOP IN PRIMARY MEDIASTINAL B-CELL LYMPHOMA: A SUBGROUP ANALYSIS OF THE UNFOLDER TRIAL OF THE GERMAN LYMPHOMA ALLIANCE (GLA). Abstract N° S230, EHA 2020.

41. Papageorgiou SG, Diamantopoulos P, Levidou G, et al. Isolated central nervous system relapses in primary mediastinal large B-cell lymphoma after CHOP-like chemotherapy with or without Rituximab: CNS relapses after R-CHOP in primary mediastinal large B-cell lymphoma. Hematol Oncol 2013;31(1):10–17.

42. Johnson PWM, Davies AJ. Primary Mediastinal B-Cell Lymphoma. Hematology 2008;2008(1):349–358.
43. Henriksen PA. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart 2018;104(12):971–977.

44. André M, Mounier N, Leleu X, et al. Second cancers and late toxicities after treatment of aggressive non-Hodgkin lymphoma with the ACVBP regimen: a GELA cohort study on 2837 patients. Blood 2004;103(4):1222–1228.

45. Trneny M, Polgarova K, Janikova A, et al. IS IT RADIOTHERAPY NECESSARY FOR PRIMARY MEDIASTINAL B-CELL LYMPHOMA (PMBL) PATIENTS ACHIEVING PET NEGATIVITY AFTER IMMUNOCHEMOTHERAPY? Hematol Oncol 2019;37267–268.

46. Castellino SM, Geiger AM, Mertens AC, et al. Morbidity and mortality in long-term survivors of Hodgkin lymphoma: a report from the Childhood Cancer Survivor Study. Blood 2011;117(6):1806–1816.

47. Gagliardi G, Constine LS, Moiseenko V, et al. Radiation Dose–Volume Effects in the Heart. Int J Radiat Oncol 2010;76(3):S77–S85.

48. van Leeuwen FE, Klokman WJ, Hagenbeek A, et al. Second cancer risk following Hodgkin’s disease: a 20-year follow-up study. J Clin Oncol 1994;12(2):312–325.

49. De Bruin ML, Sparidans J, van’t Veer MB, et al. Breast Cancer Risk in Female Survivors of Hodgkin’s Lymphoma: Lower Risk After Smaller Radiation Volumes. J Clin Oncol 2009;27(26):4239–4246.

50. Nielsen KM, Offersen BV, Nielsen HM, Vaage-Nilsen M, Yusuf SW. Short and long term radiation induced cardiovascular disease in patients with cancer. Clin Cardiol 2017;40(4):255–261.

51. Hawkes EA. Can PET eradicate irradiation in PMBCL? Blood 2020;136(24):2725–2726.

52. Aoki T, Shimada K, Suzuki R, et al. High-dose chemotherapy followed by autologous stem cell transplantation for relapsed/refractory primary mediastinal large B-cell lymphoma. Blood Cancer J 2015;5(12):e372–e372.

53. Kuruvilla J, Pintilie M, Tsang R, Nagy T, Keating A, Crump M. Salvage chemotherapy and autologous stem cell transplantation are inferior for relapsed or refractory primary mediastinal large B-cell lymphoma compared with diffuse large B-cell lymphoma. Leuk Lymphoma 2008;49(7):1329–1336.

54. Hamlin PA, Dickson M, Kewalramani T, et al. Relapsed and Refractory Primary Mediastinal Diffuse Large B-Cell Lymphoma: Outcome with ICE-Based Treatment. Blood 2006;108(11):3057–3057.

55. Vardhana S, Hamlin PA, Yang J, et al. Outcomes of Relapsed and Refractory Primary Mediastinal (Thymic) Large B Cell Lymphoma Treated with Second-Line Therapy and Intent to Transplant. Biol Blood Marrow Transplant 2018;24(10):2133–2138.

56. Avivi I, Boumendil A, Finel H, et al. Autologous stem cell transplantation for primary mediastinal B-cell lymphoma: long-term outcome and role of post-transplant radiotherapy. A report of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 2018;53(8):1001–1009.
57. Armand P, Rodig S, Melnichenko V, et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. J Clin Oncol 2019;37(34):3291–3299.

58. Moskowitz AJ, Santoro A, Gritti G, et al. Nivolumab Combined with Brentuximab Vedotin for Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma: Preliminary Results from the Phase 2 CheckMate 436 Trial. Blood 2018;132(Supplement 1):1691–1691.

59. Ceriani L, Martelli M, Gospodarowicz MK, et al. Positron Emission Tomography/Computed Tomography Assessment After Immunochemotherapy and Irradiation Using the Lugano Classification Criteria in the IELSG-26 Study of Primary Mediastinal B-Cell Lymphoma. Int J Radiat Oncol 2017;97(1):42–49.

60. Filippi AR, Piva C, Levis M, et al. Prognostic Role of Pre–Radiation Therapy 18F-Fluorodeoxyglucose Positron Emission Tomography for Primary Mediastinal B-Cell Lymphomas Treated with R-CHOP or R-CHOP-Like Chemotherapy Plus Radiation. Int J Radiat Oncol 2016;95(4):1239–1243.

61. Melani C, Advani R, Roschewski M, et al. End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted EPOCH-R: a paradigm shift in clinical decision making. Haematologica 2018;103(8):1337–1344.

62. Toledano MN, Vera P, Tilly H, Jardin F, Becker S. Comparison of therapeutic evaluation criteria in FDG-PET/CT in patients with diffuse large-cell B-cell lymphoma: Prognostic impact of tumor/liver ratio. PLOS ONE 2019;14(2):e0211649.

63. Lazarovici J, Terroir M, Arfi-Rouche J, et al. Poor predictive value of positive interim FDG-PET/CT in primary mediastinal large B-cell lymphoma. Eur J Nucl Med Mol Imaging 2017;44(12):2018–2024.

64. Le Gouill S, Casasnovas R-O. Interim PET-driven strategy in de novo diffuse large B-cell lymphoma: do we trust the driver? Blood 2017;129(23):3059–3070.

65. Casasnovas R-O, Meignan M, Berriolo-Riedinger A, et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma. Blood 2011;118(1):37–43.

66. Melani CJ, Advani R, Chen CC, et al. DA-EPOCH-R in Primary Mediastinal B-Cell Lymphoma; Analysis of End of Therapy FDG-PET and Outcome. Blood 2016;128(22):1116–1116.

67. David RJ, Baran A, Loh KP, et al. Complications Associated With Dose-adjusted EPOCH-rituximab Therapy for Non-Hodgkin Lymphoma. Clin Lymphoma Myeloma Leuk 2018;18(12):781–787.
Table 1: Patient characteristics at baseline by treatment group

	Overall population	R(G)-ACVBP	R(G)-CHOP14	R-CHOP21
n=	313	180 (57.5%)	76 (24.3%)	57 (18.2%)
Age (median [min-max])	32 [18-88]	29.5 [18-62]	33 [18-62]	40 [19-88]
Age >60 years	14 (4.5%)	2 (1.1%)	2 (2.6%)	10 (17.5%)
Female	190 (60.7%)	113 (62.8%)	40 (52.6%)	37 (64.9%)
ECOG 0-1	252 (81.8%)	145 (81%)	59 (81.9%)	48 (84.2%)
Ann Arbor Stage I-II	180 (57.5%)	100 (55.6%)	41 (53.9%)	39 (68.4%)
Elevated LDH	256 (81.8%)	151 (83.9%)	67 (88.2%)	38 (66.7%)
IPI 0	33 (10.5%)	17 (9.7%)	5 (6.9%)	11 (19.6%)
IPI 1-2	190 (60.7%)	108 (61.4%)	45 (62.5%)	37 (66.1%)
IPI 3-5	79 (26.2%)	51 (29%)	21 (29.6%)	7 (12.7%)
CNS IPI 0-1	157 (52%)	86 (48.9%)	38 (53.5%)	33 (60%)
CNS IPI 2-3	110 (36.4%)	69 (39.2%)	23 (32.4%)	18 (32.7%)
CNS IPI 4-6	35 (11.6%)	21 (11.9%)	10 (14.1%)	4 (7.3%)
Bulky mass ≥10 cm	182 (58.5%)	103 (57.9%)	45 (59.2%)	34 (59.6%)
Baseline median TMTV (cm³)	261	267.8	333.6	219.4
[min-max]	[2.46-1595.2]	[14.1-1403.6]	[20.2-1595.2]	[2.46-1359.6]
Maximal median mass diameter	100	99	103.5	106.5
(mm) [min-max]	[5.5-240]	[5.5-180]	[5.8-180]	[9-240]
Pericardial and/or pleural effusion	156 (49.8%)	90 (50%)	42 (55.3%)	24 (42.1%)
GCSF use	299 (95.5%)	179 (99.4%)	74 (97.4%)	46 (80.7%)
Included in a clinical trial	48 (15.3%)	24 (13.4%)	19 (25%)	5 (8.8%)
Extra-nodal invasion	151 (48.2%)	96 (53.6%)	31 (40.8%)	24 (42.1%)
Median follow-up (months)	44.6	46.5	47.7	33.3
[min-max]	[1-152.7]	[1-152.7]	[2.9-124.4]	[1.8-135-6]
Abbreviations:

R: rituximab; G: obinutuzumab; CHOP14: cyclophosphamide, doxorubicin, vincristine, prednisone administered every 14 days; R-CHOP21: rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone administered every 21 days; ACVBP: doxorubicin, cyclophosphamide, vindesine, bleomycin, prednisone, administered every 14 days. LDH: lactate dehydrogenase; ECOG: Eastern Cooperative Oncology Group Performance Status. IPI: international prognostic index. TMTV: total metabolic tumor volume; CNS IPI: central nervous system international prognostic index; GCSF: granulocyte colony-stimulating factor.
Table 2: Treatments received

Details of treatments received	Overall population	Treatment subgroups			
		R(G)-ACVBP	R(G)-CHOP14	R-CHOP21	p=
Anti CD20 monoclonal antibody					
rituximab	313 (100%)	180 (100%)	76 (100%)	57 (100%)	<0.001
obinutuzumab	296 (94.6%)	168 (93.3%)	71 (93.4%)	57 (100%)	
	17 (5.4%)	12 (6.7%)	5 (6.6%)	0	
CNS prophylaxis					
Intrathecal methotrexate and/or HD MTX	261 (83.4%)	177 (98.3%)	59 (77.6%)	25 (43.9%)	<0.001
Intrathecal methotrexate	229 (73.2%)	148 (82.2%)	58 (76.3%)	23 (40.4%)	<0.001
HD MTX	140 (44.7%)	132 (73.3%)	6 (7.9%)	2 (3.5%)	<0.001
Consolidation ASCT	71 (22.7%)	46 (25.6%)	24 (31.6%)	1 (1.8%)	<0.001
Consolidation radiation therapy	17 (5.4%)	4 (2.2%)	11 (14.5%)	2 (3.5%)	<0.001
Consolidation ASCT + radiation therapy	8 (2.6%)	3 (1.7%)	5 (6.6%)	0 (0%)	0.043
LYSA sequential consolidation chemotherapy (2x HD MTX, 4x R-IFM-VP16, 2x SC-CYTA)	128 (41%)	128 (71.1%)	-	-	
Patients who have completed 6-8 cycles of R(G)-CHOP	95 (30.4%)	-	44 (57.9%)	51 (89.5%)	

Abbreviations: R: rituximab; G: obinutuzumab; HD MTX: high-dose methotrexate 3 g/m²; R-IFM: rituximab ifosfamide; VP16: etoposide; SC-CYTA: subcutaneous cytarabine; BEAM: bicnu, etoposide, cytarabine, melphalan; BAM: busulfan, cytarabine, melphalan; Z-BEAM: zevalin+BEAM; BENDA-EAM: bendamustine, etoposide, cytarabine, melphalan; CNS: central nervous system.
Table 3: Univariate and multivariable analysis of prognostic factors associated with progression-free survival (PFS) and overall survival (OS). Regarding OS, no deaths were observed in the R-CHOP14 group, so Hazard Ratio is infinite. Bold characters mean “p” is inferior to 0.05.

PFS

	Univariate analysis	Multivariable analysis		
	HR [95% CI]	p	HR [95% CI]	p
Treatment (ref= R-ACVBP)				
R-CHOP14	0.90 [0.40-2.03]	0.798	0.26 [0.06-1.12]	0.071
R-CHOP21	2.37 [1.20-4.67]	0.012	1.06 [0.41-2.76]	0.897
LDH > ULN	0.83 [0.38-1.79]	0.63	1.04 [0.34-3.14]	0.949
IPI 3-5	1.48 [0.77-2.83]	0.24	1.33 [0.56-3.16]	0.511
Presence of B symptoms	1.91 [1.05-3.47]	0.034	1.66 [0.76-3.60]	0.200
TMTV ≥360 cm³	2.18 [1.05-4.53]	0.037	2.13 [0.89-5.10]	0.088
Bulky disease ≥10 cm	1.76 [0.92-3.39]	0.087	1.12 [0.48-2.64]	0.795
Pericardial or pleural effusion	1.09 [0.59-1.99]	0.788	1.10 [0.51-2.39]	0.809

OS

	Univariate analysis	Multivariable analysis		
	HR [95% CI]	p	HR [95% CI]	p
Treatment (ref= R-ACVBP)				
R-CHOP14	Infinite		Infinite	
R-CHOP21	1.95 [0.82-4.66]	0.131	0.76 [0.21-2.83]	0.685
LDH > ULN	1.13 [0.33-3.86]	0.84	2.19 [0.28-17.2]	0.454
IPI 3-5	2.73 [1.13-6.58]	0.025	1.72 [0.58-5.07]	0.326
Presence of B symptoms	2.61 [1.12-6.11]	0.027	2.66 [0.87-8.10]	0.086
TMTV ≥360 cm³	4.26 [1.50-12.11]	0.007	5.68 [1.61-20.06]	0.007
Bulky disease ≥10 cm	1.13 [0.48-2.66]	0.773	0.59 [0.20-1.74]	0.339
Pericardial or pleural effusion	1.08 [0.46-2.54]	0.86	1.07 [0.38-3.02]	0.903
Abbreviations: HR: hazard ratio, ULN: upper limit of normal laboratory value; TMTV: total metabolic tumor volume; LDH: lactate dehydrogenase; ref: reference; IPI: international prognostic.
Figure Legends:

Figure 1: Study flow chart and treatment complete metabolic response (CMR) rate. Complete metabolic response (CMR) was defined as follow: Deauville Score 1-3 (5-point scale, for PET performed in 2010 and after), or negative PET (IHP criteria, for PET exams performed between 2007 and 2009).

Figure 2: Progression-free survival according to ACVBP, CHOP14 and CHOP21 plus anti-CD20 treatment groups.

Figure 3: Overall survival according to ACVBP, CHOP14 and CHOP21 plus anti-CD20 treatment groups.

Figure 4: Overall survival according to levels (Deauville score 1-3 vs 4-5) at the end of the first-line treatment

Figure 5: Overall survival according to uptake levels (Deauville score 1-4 vs 5) at the end of the first-line treatment
Figure 3

Overall Survival Probability

```
p = 0.0036
```

Time (months)	0	12	24	36	48	60	72
ACVBP	180	160	128	107	88	71	50
CHOP-14	76	70	63	48	38	33	23
CHOP-21	57	47	37	28	22	16	9
Figure 4

Overall Survival Probability

Time (months)

Number at risk

Time (months)	1-3	4-5
72	59	3
60	79	7
48	99	9
36	122	14
24	152	24
12	183	37
0	202	45

p < 0.0001
Figure 5

Overall Survival Probability

Time (months)

Number at risk

	1-4	5
228	207	171
133	106	85
61	56	47

p < 0.0001