Nonadherence to treatment and quality of life among patients with chronic obstructive pulmonary disease

Shorouk Mohsen, Fadia Zaki Hanafy, Aya Ahmed Fathy, Abdel-Hady El-Gilany

Department of Public Health and Community Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt

ABSTRACT

Objectives: Chronic obstructive pulmonary disease (COPD) is one of the most common respiratory diseases. Assessment of medication nonadherence and quality of life (QOL) is important in such chronic diseases. The aim of the study was to describe treatment nonadherence and QOL of COPD patients and their associated factors. Materials and Methods: A cross-sectional study was performed in Mansoura Chest Hospital on 133 already diagnosed inpatient cases of COPD from March to August 2017. Data were collected using two validated questionnaires, Morisky Medication Adherence Scale to assess medication adherence and St George’s Respiratory Questionnaire for COPD patients (SGRQ-c) to assess QOL. Results: About 45% of studied group were nonadherent to prescribed medications. Logistic regression analysis showed that duration of disease is the only independent risk factor for nonadherence. The scores on SGRQ-c indicated severe QOL affection in COPD. SGRQ-c scores show significant impairment with the presence of comorbidities, hospital admission, and frequency of exacerbations. Conclusions: Nonadherence to treatment was affected mainly by the duration of disease. QOL impairment in COPD is influenced by broad range of factors suggesting the importance of QOL assessment in those patients. No association was found between nonadherence to treatment and QOL.

KEY WORDS: Chronic obstructive pulmonary disease, Morisky Medication Adherence Scale, St George’s Respiratory Questionnaire for chronic obstructive pulmonary disease

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is one of the most common respiratory illnesses in the world.[1] In 2016, COPD was the fourth leading cause of death in middle-income countries[2] and it is predicted that COPD will be the third leading cause of death by 2030.[3] In North Africa and Middle East, COPD prevalence was about 3.6%.[4] In Egypt, it was estimated that COPD prevalence among high risk groups was 10%.[5]

Adherence to treatment can be broadly defined as “the extent to which a person’s behavior corresponds with the agreed recommendations from a health-care provider.”[6] COPD is a chronic disease that typically necessitates the regular use of pharmacotherapies.[7,8] Nonadherence rate in COPD has been estimated to be more than 50%.[9] Poor adherence in COPD is influenced by many factors related to the patients, the illness, the prescribed medications, the society, and the health system.[10]

Quality of life (QOL) is an important domain of measuring the impact of chronic disease.[11] It includes physical, emotional, and social aspects of health and well-being, and it is a measure used to understand the health status...
COPD markedly affect patients' QOL due to physical, social, and free time activity limitation. Worse QOL in COPD is associated with many factors such as sex, severity of disease, smoking status, presence of comorbidities, number of exacerbations, and hospital admissions. To the best of the authors knowledge, there is a dearth of information about nonadherence and QOL in COPD in Egypt. Therefore, studying nonadherence and QOL among COPD patients will be helpful to health-care providers and policy makers. In the present study, we aim to describe treatment nonadherence and QOL of COPD patients and their associated factors.

MATERIALS AND METHODS

A cross-sectional hospital-based study was carried out in Mansoura Chest Hospital (a major referral hospital in Dakhilia, Egypt) on inpatients of COPD from March to August 2017. The Institution Research Board of Faculty of Medicine, Mansoura University, approved the study protocol. Informed written consent from each participant in the study was obtained. COPD patients with at least 1-year duration were included in the study. Other inclusion criteria involved COPD diagnosis confirmed by a chest consultant. Severe cases who are not alert to answer the questionnaire, those having dementia, or those having any mental problems were excluded.

Target population

COPD patients with at least 1-year duration were included in the study. Other inclusion criteria involved COPD diagnosis confirmed by a chest consultant. Severe cases who are not alert to answer the questionnaire, those having dementia, or those having any mental problems were excluded.

Study tools

A questionnaire was used to collect demographic data (e.g., age, sex, education, and occupation), medical data (e.g., presence of comorbidities, hospital admission, and frequency of exacerbations), adherence to treatment, and QOL scores.

Morisky Medication Adherence Scale

It is a generic, validated (alpha reliability = 0.61) medication taking behavior scale. Morisky Medication Adherence Scale (MMAS) was used to measure the patient adherence to treatment over the 4 weeks preceding their clinical visit. This scale measures adherence through four yes/no response items: forgetting, carelessness, stopping medication when feeling better, and stopping medication when feeling worse. The MMAS four items are given a scoring scheme of "Yes = 0" and "No = 1." The items are summed and adherence was graded; scores 0–1 were considered nonadherent.

St George’s Respiratory Questionnaire for chronic obstructive pulmonary disease patients

St George’s Respiratory Questionnaire for COPD patients (SGRQ-c) Arabic version was used. It is a disease-specific, validated questionnaire developed by Jones and translated into Arabic and validated by Metwally. The questionnaire consists of forty items (33 items of the questionnaire are dichotomous while Likert scale was used in 7 items of the questionnaire). Each item in the questionnaire has item weight. Item weights range from 0 (the lowest item weight) to 100 (the highest item weight).

The questionnaire has three components: symptom component which consists of questions 1–7 which is part 1 of the questionnaire; activity component that is present in part 2 of the questionnaire and consists of questions 9 and 12; and the rest of the questions in part 2 of the questionnaire represent the impact component.

The score was calculated as follows:

a. Calculating score of each component:

\[
\text{Summed weights from all positive responses in that component} \times 100
\]

\[
\frac{\text{Sum of maximum possible weights for all items in that component}}{100}
\]

b. Calculating total score:

\[
\text{Summed weights from all positive items in the questionnaire} \times 100
\]

\[
\frac{\text{Sum of maximum possible weights for all items in the questionnaire}}{100}
\]

For each component and total, sum of maximum possible weights is 566.2 for symptom, 982.9 for activity, and 1652.8 for impact components, and the total (sum of maximum for all three components) is 3201.9.

(Note: These are the maximum possible weights that could be obtained for the poorest possible condition of the patient as higher score indicates worse QOL).

Statistical analysis

The collected data were coded, processed, and analyzed using SPSS (Version 17, SPSS Inc., Chicago, IL) for Windows. Categorical variables were described according to number and percentage of participants in each category, and nonnormally distributed continuous variables were described as median (min-max). Before inferential analysis, test of normality (Shapiro–Wilk) was conducted to assess the normality of QOL scores. The data were not normally distributed; therefore, to test the significance of continuous data, nonparametric tests were used (Mann–Whitney [Z] test to compare two unpaired groups and Kruskal–Wallis test to compare three or more groups). Whereas, Chi-square test was used to test the significance of categorical data. Odds ratio (OR) with 95% confidence interval (CI) were calculated. Significant variables in univariate analysis were included in binary stepwise logistic regression model using Forward Wald method. \(P \leq 0.05 \) was considered statistically significant.

RESULTS

The demographic and medical characteristics of studied patients are shown in Table 1. Of the 133 studied
patients, there were 60 patients (45.1%) nonadherent to prescribed medications. Significant independent variables by univariate analysis (sex, comorbidities, and duration of disease) were included in multivariate logistic regression analysis. The only independent risk factor for nonadherence by regression analysis was duration of disease (OR = 2.8, P = 0.005).

The mean SGRQ-c total, symptom, impact, and activity component QOL scores were 66.6 ± 18.71, 66.39 ± 20.15, 60.86 ± 22.87, and 76.35 ± 21.06, respectively, where the activity component score was the most affected as it is the highest score. Patients with comorbidities had worse QOL than patients without comorbidities (P = 0.03). QOL scores were worse among patients with a history of hospital admission than patients without a history of hospital admission (P ≤ 0.001). Patients with more frequent exacerbations had lower QOL compared to patients with less frequent exacerbations (P ≤ 0.001) [Table 2].

DISCUSSION

Nonadherence to treatment is a major problem in COPD. The present study confirmed poor adherence to medications in COPD patients. Nonadherence to medications in 45.1% of studied patients is consistent with the result of earlier studies which assessed medication adherence using self-reported methods. However, this result is far away from Galal et al.’s study who found that nonadherence was 93% among COPD patients. Patients recruited from the inpatient setting in our study may be the cause of this discrepancy. It seems that hospitalized patients adhere to treatment more precisely.

In the current study, nonadherent patients had short duration of disease compared to adherent patients. This is inconsistent with Devonshire et al. who found significant association between long duration of disease and nonadherence in patients with multiple sclerosis and attributed this finding to more exposure to factors limiting medication adherence with long duration of disease.

Despite significant association between female sex and nonadherence, patient’s sex was not a predictor of nonadherence in final regression model. This is in agreement with evidence provided by previous studies. However, group difference between males and females was reported in previous literature.

Table 1: Bivariate and multivariate logistic regression analysis of factors associated with nonadherence

Variables	Total, n (%)	Nonadherent, n (%)	Bivariate analysis	Logistic regression analysis
			P	COR (95%CI)

Overall

Variables	n (%)	Nonadherent, n (%)		COR (95%CI)		AOR
--------------------------------	-------	--------------------				
Overall	133	60 (45.1)	-	-	-	-

Variables	n (%)	Nonadherent, n (%)		COR (95%CI)		AOR
--------------------------------	-------	--------------------				
Age (years) ≤60	54	27 (50)	0.4	1.4 (0.7–2.8)		-
>60	79	33 (41.8)	1	-	-	-

Sex						
--------------------------------	-------	--------------------				
Male	111	45 (40.5)	0.017	1	-	-
Female	22	15 (68.2)	3.1 (1.12–8.3)	-	-	-

Educational status						
--------------------------------	-------	--------------------				
Literate	71	28 (45.2)	0.9	1 (0.5–1.9)	-	-
Illiterate	62	32 (45.1)	1	-	-	-

Occupation						
--------------------------------	-------	--------------------				
Homemaker	14	11 (71.4)	0.06	3.9 (0.8–17.5)	-	-
Farmer	26	12 (46.2)	0.6	1.3 (0.4–4.6)	-	-
Manual worker	75	31 (41.3)	0.8	1.1 (0.4–3.2)	-	-
Professional or semiprofessional	18	7 (38.9)	1	-	-	-

| Duration of COPD (years) ≤10 | 70 | 40 (57.1) | 0.003 | 2.9 (1.4–5.8) | 0.005 | 2.8 (1.4–5.8) |
| >10 | 63 | 20 (31.7) | 1 | - | - | - |

Smoking habit						
--------------------------------	-------	--------------------				
Smoker	35	15 (42.9)	1	-	-	-
Ex-smoker	61	25 (41)	0.9	0.9 (0.4–2.1)	-	-
Nonsmoker	37	20 (54.1)	0.3	1.6 (0.6–3.9)	-	-

Comorbidity						
--------------------------------	-------	--------------------				
Absent	86	33 (38.4)	0.04	1	-	-
Present	47	27 (57.4)	2.2 (1.1–4.5)	-	-	-

Hospital admission						
--------------------------------	-------	--------------------				
Absent	116	11 (64.7)	0.08	2.5 (0.9–7.2)	-	-
Present	17	4 (23.5)	1	-	-	-

Exacerbation number						
--------------------------------	-------	--------------------				
≥3	54	25 (46.3)	1	-	-	-
1–2	62	24 (38.7)	0.4	0.7 (0.4–1.5)	-	-
None	17	11 (64.7)	0.18	2.1 (0.7–6.6)	-	-
The possible reason for this is that females are more likely than males to be preoccupied with children and families. In fact, caring for dependents is associated with lower medication adherence. Furthermore, multivariate analysis failed to find significant association between nonadherence and comorbidities. This is inconsistent with previous studies that have suggested that comorbidities are one of the greatest barriers to achieve medication adherence.

QOL in COPD show significant impairment. In the current study, COPD patients perceive low QOL with symptom and activity components were the most affected. Indeed, the low exercise tolerance has been confirmed in COPD patients and the interest of pulmonary rehabilitation in COPD patients has already been verified. On comparing these findings with related literature, it was found that QOL scores vary across countries with lower QOL among Egyptian COPD patients compared to their counterparts. Jones et al. attributed this discrepancy to variations in characteristics of studied patients (e.g. age, sex, smoking habits, and frequency of exacerbations) between countries.

Obviously, more patient hospitalizations usually indicate disease severity. Hence, it is predicted that patients with repeated hospital admission had worse QOL. The current study confirm adverse effect of hospital admission on QOL in COPD patients. This is consistent with findings of earlier studies in different countries. Jones et al. attributed this discrepancy to variations in characteristics of studied patients (e.g. age, sex, smoking habits, and frequency of exacerbations) between countries.

Variables	Total	QOL scores, median (minimum–maximum)	Test of significance
Overall	133 (100)	66.33 (15.52–98.06)	
Age (years)			
≤60	54 (40.6)	61.43 (33.6–98.0)	Z=0.89
>60	79 (59.4)	68.86 (15.5–97.6)	P=0.37
Sex			
Male	111 (83.5)	64.8 (15.5–98.0)	Z=1.6
Female	22 (16.5)	76.9 (36.5–97.6)	P=0.11
Educational status			
Literate	71 (53.4)	64.12 (15.5–98.0)	Z=0.87
Illiterate	62 (46.6)	67.29 (36.5–98.0)	P=0.39
Occupation			
Homemaker	14 (10.5)	78.14 (36.51–97.67)	KW=2.1
Farmer	26 (19.5)	67.16 (38.30–91.99)	P=0.55
Manual worker	75 (56.4)	63.57 (15.52–98.06)	
Professional or semiprofessional	18 (13.5)	67.01 (33.67–97.15)	
Duration of COPD (years)			
≤10	70 (52.6)	70.55 (15.52–98.06)	Z=1.69
>10	63 (47.4)	60.60 (33.67–97.10)	P=0.09
Smoking habit			
Smoker	35 (26.3)	67.29 (15.52–97.15)	KW=2.52
Ex-smoker	61 (45.9)	61.41 (37.13–98.06)	P=0.28
Nonsmoker	37 (27.8)	76.05 (33.67–98.06)	
Comorbidity			
Absent	86 (64.7)	63.57 (15.52–95.87)	Z=2.13
Present	47 (35.3)	70.03 (39.34–98.06)	P=0.033
Hospital admission			
Absent	116 (87.2)	47.43 (15.52–67.29)	Z=4.19
Present	17 (12.8)	70.48 (36.51–98.06)	P<0.001
Exacerbation number			
≥3	54 (40.6)	81.18 (40.39–98.06)*,†	KW=35.82
1–2	62 (46.6)	60.08 (36.51–97.15)*,‡	P≤0.001
None	17 (12.8)	47.43 (15.52–67.29)	‡‡
Adherence to treatment			
Adherent	73 (54.9)	66.33 (33.67–98.06)	Z=0.36
Nonadherent	60 (45.1)	66.49 (15.52–97.67)	P=0.71

*Statistical significance was defined as P≤0.05. *,†,‡ Mean significant difference between corresponding groups by multiple comparisons.
Z: Mann–Whitney test, KW: Kruskal–Wallis test, COPD: Chronic obstructive pulmonary disease, QOL: Quality of life
The relationship between nonadherence and QOL is complex and poorly understood. The results showed no significant association between nonadherence and total QOL in agreement with other studies.\cite{40,41} Van Boven et al.\cite{40} explained this by the fact that the better QOL, the less the patient is triggered to adhere to treatment. Furthermore, better adherence requires lifestyle adjustment that has negative effect on immediate perceived QOL which covers the benefit of decreased hospitalization later on.

The present study has some limitations, one is that evidence from a cross-sectional study cannot demonstrate causal relationships compared to clinical trials which provide evidence from daily life practice and its results are more reliable. Furthermore, the sample was recruited from a major hospital in Egypt, and the generalizability of the findings in other cultures and other samples of COPD patients is limited. Furthermore, some factors that could affect data interpretation were not addressed in our study as psychological status and disease severity.

CONCLUSIONS

Medication nonadherence in COPD was affected mainly by the duration of disease. QOL impairment in COPD is influenced by the presence of comorbidities, hospital admission, and frequent exacerbations. No association was found between nonadherence to treatment and QOL. Evaluating COPD patients should include assessing medication adherence and QOL. More efforts must be directed to decrease hospital admission and to decrease exacerbations with special attention to patients with comorbidities. Future studies should address most cost-effective interventions to improve patient QOL and adherence to treatment.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Sharma K, Joshi S. Quality of life of patients with chronic obstructive pulmonary disease in Chitwan, Nepal: A pilot study report. Int J Med Sci Public Health 2015;4:1235-41.
2. World Health Organization. The Top 10 Causes of Death. Available from: http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. [Last accessed on 2018 Jul 01].
3. World Health Organization. Burden of COPD. Available from: http://www.who.int/respiratory/copd/burden/en/. [Last accessed on 2018 Jul 01].
4. Artyukhov IP, Arshukova IL, Dobretsova EA, Dugina TA, Shulmin AV, Demko IV, et al. Epidemiology of chronic obstructive pulmonary disease: A population-based study in Krasnoyarsk Region, Russia. Int J Chron Obstruct Pulmon Dis 2015;10:1781-6.
5. Said AF, Ewis AA, Omran AA, Magdy ME, Saleeb MF. Prevalence and predictors of chronic obstructive pulmonary disease among high-risk Egyptians. Egypt J Bronchol 2015;9:27-33.
6. Mäkelä MJ, Backer V, Hedegaard M, Larson K. Adherence to inhaled therapies, health outcomes and costs in patients with asthma and COPD. Respir Med 2013;107:1483-90.
7. Toy EL, Beaulieu NU, McHale JM, Welland TR, Plauschinitz CA, Swensen A, et al. Treatment of COPD: Relationships between daily dosing frequency, adherence, resource use, and costs. Respir Med 2011;105:415-41.
8. Coqurt JB, Le Rouzic O, Racil G, Wallaert B, Grosbois JM. Real-life feasibility and effectiveness of home-based pulmonary rehabilitation in chronic obstructive pulmonary disease requiring medical equipment. Int J Chron Obstruct Pulmon Dis 2017;12:3549-56.
9. Lareau SC, Yawn BP. Improving adherence with inhaler therapy in COPD. Int J Chron Obstruct Pulmon Dis 2010;5:401-6.
10. Ágh T, Imotai A, Mézáros Á. Factors associated with medication adherence in patients with chronic obstructive pulmonary disease. Respircare 2011;82:328-34.
11. Katsura H, Yamada K, Kida K. Both generic and disease specific health-related quality of life are deteriorated in patients with underweight COPD. Respir Med 2005;99:624-30.
12. Brown DW, Pleasants R, Ohar JA, Kraft M, Donohue JF, Mannino DM, et al. Health-related quality of life and chronic obstructive pulmonary disease in North Carolina. N Am J Med Sci 2010;2:665-73.
13. Jones PW, Brusselle G, Dal Negro RW, Ferrie P, Karidos P, Levy ML, et al. Health-related quality of life in patients by COPD severity within primary care in Europe. Respir Med 2011;105:57-66.
14. Obaseki DO, Erhabor GE, Awopeju OF, Obaseki JE, Adewole OO. Determinants of health related quality of life in a sample of patients with chronic obstructive pulmonary disease in Nigeria using the St. George's respiratory questionnaire. Afr Health Sci 2013;13:694-702.
15. Alkhalil KM, Daniel PS, Noohu AM, Sirajudeen SA. Patient medication adherence and physician prescribing among congestive heart failure patients of Yemen. Indian J Pharm Sci 2013;75:557-62.
16. Waheedli M, Awad A, Hatoum HT, Enlund H. The relationship between patients’ knowledge of diabetes therapeutic goals and self-management behaviour, including adherence. Int J Clin Pharm 2017;39:45-51.
17. Jones PW, St. George’s Respiratory Questionnaire for COPD Patients (SGRQ-C) Manual; 2008. Available from: http://www.healthstatus.sglf.ac.uk. [Last accessed on 2018 Mar 03].
18. Farmer A, Williams V, Velando C, Shah SA, Yu LM, Rutter H, et al. Self-management support using a digital health system compared with usual care for chronic obstructive pulmonary disease: Randomized controlled trial. J Med Internet Res 2017;19:e144.
19. Meguro M, Barley EA, Spencer S, Jones PW. Development and validation of an improved, COPD-specific version of the St. George respiratory questionnaire. Chest 2007;132:456-63.
20. Metwally MM. Validity and reliability of the first Arabic version of St. George's respiratory questionnaire after adaptation to a completely different language and culture. Eur Respir J 2004;24 Suppl 48:142S.
21. Wiśniewski D, Porzeżewska M, Gruchała-Niedziolko M, Niedziolko M, Skomoroski JM, Jusem E, et al. Factors influencing adherence to treatment in COPD patients and its relationship with disease exacerbations. Pneumonol Alergol Pol 2014;82:96-104.
22. Galal I, Mohamad Y, Nada A, Mohran Y. Medication adherence and treatment satisfaction in some Egyptian patients with chronic obstructive pulmonary disease and bronchial asthma. Egypt J Bronchol 2018;12:33-40.
23. Devonshire V, Lapiere Y, Macdonell R, Ramo-Tello C, Patti F, Fontoura P, et al. The Global Adherence Project (GAP): A multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. Eur J Neurol 2011;18:69-77.
24. Khdour MR, Hawwa AF, Kidney JC, Smyth BM, McElnay JC. Potential risk factors for medication non-adherence in patients with chronic obstructive pulmonary disease (COPD). Eur J Clin Pharmacol 2012;68:1365-73.
25. Gulbay BE, Doğan R, Yildiz OA, Gürkan OU, Acican T, Saryal S, et al. Factors affecting adherence in patients with chronic obstructive pulmonary disease requiring medical equipment. Feasibility and effectiveness of home-based pulmonary rehabilitation in chronic obstructive pulmonary disease (COPD). Int J Chron Obstruct Pulmon Dis 2017;12:3549-56.
26. Braverman J, Dedier J. Predictors of medication adherence for African American patients diagnosed with hypertension. Ethn Dis 2009;19:396-400.
27. Dhamane AD, Schwab P, Hopson S, Moretz C, Annaravuru S, Burslem K, et al. Association between adherence to medications for COPD and medications for other chronic conditions in COPD patients. Int J Chron Obstruct Pulmon Dis 2017;12:115-22.
28. Wei YJ, Simoni-Wastila L, Albrecht JS, Huang TY, Moyo P, Khokhar B, et al. The Global Adherence Project (GAP): A multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. Eur J Neurol 2011;18:69-77.
et al. The association of antidepressant treatment with COPD maintenance medication use and adherence in a comorbid medicare population: A longitudinal cohort study. Int J Geriatr Psychiatry 2018;33:e212-20.

29. Grosbois JM, Riquier C, Chehere B, Coquart J, Béhal H, Bart F, et al. Six-minute stepper test: A valid clinical exercise tolerance test for COPD patients. Int J Chron Obstruct Pulmon Dis 2016;11:657-63.

30. Coquart JB, Grosbois JM, Ollivier C, Bart F, Castres I, Wallaert B, et al. Home-based neuromuscular electrical stimulation improves exercise tolerance and health-related quality of life in patients with COPD. Int J Chron Obstruct Pulmon Dis 2016;11:1189-97.

31. Ahmed MS, Neyaz A, Aslami AN. Health-related quality of life of chronic obstructive pulmonary disease patients: Results from a community based cross-sectional study in Aligarh, Uttar Pradesh, India. Lung India 2016;33:148-53.

32. Martín A, Rodríguez-González Moro JM, Izquierdo JL, Gobartt E, de Lucas P, VICE Study Group. Health-related quality of life in outpatients with COPD in daily practice: The VICE Spanish study. Int J Chron Obstruct Pulmon Dis 2008;3:683-92.

33. Xiang YT, Wong TS, Tsoh J, Ungvari GS, Correll CU, Sareen J, et al. Quality of life in older patients with chronic obstructive pulmonary disease (COPD) in Hong Kong: A case-control study. Perspect Psychiatr Care 2015;51:121-7.

34. Steer J, Gibson GJ, Bourke SC. Longitudinal change in quality of life following hospitalisation for acute exacerbations of COPD. BMJ Open Respir Res 2015;2:e000069.

35. Zamzam MA, Azab NY, El Wahsh RA, Ragab AZ, Allam EM. Quality of life in COPD patients. Egypt J Chest Dis Tuberc 2012;61:281-9.

36. Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA, et al. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;157:1418-22.

37. Ansari K, Shamssain M, Keaney N, Burns G, Farrow M. Predictors of quality of life in chronic obstructive pulmonary disease patients with different frequency of exacerbation. Pak J Med Sci 2007;23:490-6.

38. Kwon HY, Kim E. Factors contributing to quality of life in COPD patients in South Korea. Int J Chron Obstruct Pulmon Dis 2016;11:103-9.

39. Sundh J, Johansson G, Larsson K, Lindén A, Löfdahl CG, Janson C, et al. Comorbidity and health-related quality of life in patients with severe chronic obstructive pulmonary disease attending Swedish secondary care units. Int J Chron Obstruct Pulmon Dis 2015;10:173-83.

40. Van Boven JF, Chavannes NH, van der Molen T, Rutten-van Mölken MP, Postma MJ, Veeger S, et al. Clinical and economic impact of non-adherence in COPD: A systematic review. Respir Med 2014;108:103-13.

41. Boland MR, van Boven JF, Kruis AL, Chavannes NH, van der Molen T, Goossens LM, et al. Investigating the association between medication adherence and health-related quality of life in COPD: Methodological challenges when using a proxy measure of adherence. Respir Med 2016;110:34-45.