Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Vitamin D deficiency is Associated with Increased Risk of Delirium and Mortality among Critically Ill, Elderly Covid-19 Patients

Zahra Gholi a, Davood Yadegarynia b, Hassan Eini-Zinab c, Zahra Vahdat Shariatpanahi a, *

a Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
b Infectious Disease and Tropical Medicine Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
c Department of Community Nutrition, National Nutrition and Food Technology Research Institute; and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

A R T I C L E I N F O

Keywords:
COVID-19
SARS-CoV-2
Elderly
ICU
Vitamin D

A B S T R A C T

Background and aim: Data on the associations of vitamin D levels with severe outcomes of coronavirus disease 2019 (COVID-19) among critically ill elderly patients are not conclusive and also no information is available about some outcomes such as delirium. Therefore, the current study was done to assess these associations in critically ill elderly COVID-19 patients.

Methods: In total, 310 critically ill COVID-19 patients, aged ≥ 65 years, were included in the current single center prospective study. All patients were hospitalized in the intensive care unit (ICU). We collected data on demographic characteristics, laboratory parameters, blood pressure, comorbidities, medications, and types of mechanical ventilation at baseline (the first day of ICU admission). Patients were categorized based on serum 25(OH)D3 levels at the baseline (normal levels (>30 ng/mL), insufficiency (20–30 ng/mL), deficiency (<20 ng/mL)). Data on delirium incidence, mortality, invasive mechanical ventilation (IMV) requirement during treatment, length of ICU and hospital admission, and re-hospitalization were recorded until 45 days after the baseline.

Results: Vitamin D deficiency and insufficiency were prevalent among 12 % and 37 % of study participants, respectively. In terms of baseline differences, patients with vitamin D deficiency were more likely to be older, have organ failure, take propofol, need IMV, and were less likely to need face mask compared to patients with normal levels of vitamin D. A significant positive association was found between vitamin D deficiency and risk of delirium. After controlling for potential confounders, patients with vitamin D deficiency had a 54 % higher risk of delirium compared to those with vitamin D sufficiency (HR: 1.54, 95 % CI: 1.02–2.33). Such a positive association was also seen for 45-day COVID-19 mortality (HR: 3.95, 95 % CI: 1.80–8.67). Also, each 10 ng/mL increase in vitamin D levels was associated with a 45 % and 26 % lower risk of 45-day mortality (HR: 0.55, 95 % CI: 0.40–0.74) and ICU mortality due to COVID-19 (HR: 0.74, 95 % CI: 0.60–0.92), respectively. In terms of other COVID-19 outcomes including IMV requirement during treatment, prolonged hospitalization, and re-hospitalization, we found no significant association in relation to serum 25(OH)D3 levels either in crude or fully adjusted models.

Conclusion: Vitamin D deficiency was associated with an increased risk of delirium and mortality among critically ill elderly COVID-19 patients.

1. Introduction

Coronavirus disease 2019 (COVID-19) pandemic has become a major threat to global public health and has imposed a high cost to the health care system. This disease has significantly increased the number of hospitalizations during the last two years. Hospitalized COVID-19 patients usually suffer from aggravated symptoms (i.e., cough, fever, acute respiratory failure, fatigue, and inflammation) and may have severe outcomes such as delirium, prolonged hospital and intensive care unit (ICU) admission, invasive mechanical ventilation (IMV) requirement,
and death. Overall, it is necessary to find contributing factors to the incidence of severe outcomes in hospitalized COVID-19 patients.

Previous studies have shown that advanced age, malnutrition, comorbidities, and pre-existing respiratory diseases are associated with severe outcomes in hospitalized COVID-19 patients. Recently, it has been shown that the majority of COVID-19 patients have vitamin D deficiency. Furthermore, the positive association between vitamin D deficiency and risk of hospitalization and mortality among COVID-19 patients has been reported. In a large population-based study, Orlstrell et al. reported that COVID-19 patients supplemented with vitamin D had normal levels of 25-hydroxy vitamin D3 (25(OH)D3) (≥30 ng/mL) and better clinical outcomes compared with those who did not use this supplement. Also, there is evidence indicating the preventive role of vitamin D consumption for COVID-19 disease. Vitamin D has an important role in immune response and inflammation regulation. In a review article, Mercola et al. found strong enough evidence that people and physicians can use or recommend vitamin D supplements to prevent or treat COVID-19 in light of their safety and wide therapeutic window. However, findings on the associations of serum concentrations of vitamin D with severe outcomes of COVID-19 are conflicting. Some studies demonstrated a positive association between vitamin D deficiency and COVID-19 severity and mortality. Also, Hariyanto et al. suggested the beneficial effect of vitamin D supplementation on COVID-19 outcomes. However, some studies have shown that vitamin D levels are not associated with disease severity and prolonged hospitalization in patients with COVID-19. In addition, Chen et al. reported that vitamin D deficiency was not associated with death due to COVID-19. Therefore, given the inconsistent results, further studies are required in this regard.

In addition to COVID-19 mortality, few studies have assessed IMV requirement and duration of hospital or ICU stay in relation to vitamin D levels in critically ill COVID-19 patients and data in this regard are not conclusive. Nevertheless, as far as we know, the relationship between vitamin D deficiency and delirium incidence among ICU patients with COVID-19 has not been studied. Delirium is the most common form of acute brain dysfunction affecting approximately 80% of ICU patients. In total, this study was done to investigate the associations of vitamin D levels with severe outcomes of COVID-19 including mortality, prolonged hospitalization, delirium incidence, and IMV requirement among critically ill elderly COVID-19 patients.

2. Materials and methods

2.1. Study design and participants

This was a single center prospective study that was conducted in Khatam hospital, which was a government-designated hospital for patients with COVID-19. This study was conducted from 30 August 2021 to 5 January 2022. We recruited critically ill elderly cases of COVID-19 patients who were hospitalized in ICU. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was diagnosed by reverse transcriptase polymerase chain reaction (RT-PCR) test and also chest CT scan lesions. Based on the classification of the Guidance for Coronavirus Disease 2019 (6th edition), published by the National Health Commission of China, we defined critically ill COVID-19 patients according to the following criteria: (1) respiratory failure requiring a form of mechanical ventilation; (2) septic shock; having at least one organ failure necessitating monitoring and treatment in the intensive care unit (ICU). Other inclusion criteria were willingness to participate in the study and having an age range of ≥65 years. We did not include COVID-19 patients if (1) they were admitted to ICU for the second time; (2) they had severe comorbidities including any brain damage, severe liver or kidney disease, and cancer; (3) they had a history of pre-existing neurodegenerative disorders, mental illness, dementia, and cognitive disorders. In addition, COVID-19 patients who died or were discharged within the first 48 h of hospitalization were excluded because of the avoidance of bias in collecting information on complications and reviewing the effectiveness of treatments prescribed in ICU. In total, 392 elderly patients with COVID-19 were included. We collected data on demographic characteristics, laboratory parameters, nutritional status, blood pressure, comorbidities, types of mechanical ventilation at baseline (the first day of ICU admission), and medications that were used for controlling the infection, and. Patients were followed up during the ICU admission and also until 45 days after the baseline. During the follow-up period, we recorded data on delirium incidence, mortality, IMV requirement, duration of ICU or hospital admission, and re-hospitalization for each patient.

2.1.1. Ethics

We took written informed consent from each participant. If a patient was not conscious, the consent was taken from his/her first-degree relatives. Patients were reassured that data collected from medical records would be used for the current study in accordance with privacy laws. The study was approved by the Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran. We conducted this study based on the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

2.1.2. Sample size calculation

We calculated the required sample size using Power Analysis Software (PAS). By considering the type 1 error of 5%, study power of 80%, estimated hazard ratio (HR) of 1.2 for mortality, and mortality rate of 60% among critically ill patients with COVID-19, we needed a sample size of 272 elderly COVID-19 patients. However, we recruited 392 patients in the current study to increase study power and consider the probable drop-out.

2.2. Baseline assessment

During the first 24 h of ICU admission, data on demographic characteristics, laboratory parameters, blood pressure, comorbidities, medications used for controlling the infection, and types of mechanical ventilation were collected.

2.2.1. Demographic and clinical characteristics

We collected data on age, sex, weight, height, marital status, education, smoking, systolic and diastolic blood pressure, and history of alcohol consumption by evaluating the hospital’s electronic medical records or questionnaires and also by a direct interview with patients if needed. Body mass index (BMI) was determined as weight in kilograms divided by height in meters squared. In addition, by reviewing the medical records, we obtained data on comorbidities including pulmonary diseases (i.e., asthma, chronic obstructive pulmonary disease, etc.), hyperlipidemia, diabetes, hypertension, cardiovascular disease (CVD), hypothyroidism, acute and chronic renal failure, liver disease, rheumatoid arthritis, incidence of organ failure from the time of entering in ICU, and ear and eye problems. The treatment protocols including medications and types of mechanical ventilation (IMV, non-invasive mechanical ventilation (NIMV), high-flow nasal cannula, face mask) used for controlling COVID-19 and its symptoms were also recorded. By using data on demographic (age), clinical (body temperature, mean arterial pressure, blood PH, heart rate, respiratory rate, oxygen partial pressure, Glasgow coma scale), and laboratory variables (sodium, potassium, creatinine, hematocrit, and white blood cells), we calculated acute physiology and chronic health examination II (APACHE II) score for each patient. APACHE II scores range between zero and 71, with higher scores indicating a more severe condition.

2.2.2. Laboratory parameters

On the first day of ICU admission, patients’ medical records were assessed to obtain data on fasting blood sugar (FBS), serum levels of inflammatory biomarkers (C-reactive protein (CRP) and interleukin-6
(IL-6), albumin, creatinine, urea, bilirubin, and 25(OH)D3. Serum levels of 25(OH)D3 were measured using enzyme-linked immunosorbent assay (ELISA) (Immunoasays S.A., Belgium). The intra- and inter-assay precision by the coefficient of variation (CV) for the ELISA approach were less than 10% and 12%, respectively.

Serum levels of electrolytes including magnesium, phosphorous, calcium, sodium, and potassium were also assessed. We also collected data on hematological factors including white blood cells (neutrophil, lymphocyte), hematocrit, and platelet. Lactate dehydrogenase (LDH) levels were determined at baseline because previous studies have shown that higher LDH levels are associated with 6-fold increased odds of severe COVID-19 disease.

2.2.2. Statistical analysis
All elderly COVID-19 patients were categorized based on serum 25(OH)D3 levels at the baseline [normal levels (<30 ng/mL), insufficiency (20–30 ng/mL), deficiency (<20 ng/mL)]. We used one-way ANOVA to compare continuous variables across different levels of 25(OH)D3 if the distribution of those variables was normal. For the non-normally distributed continuous variables, we used the Kruskal-Wallis test for the comparison. To determine the distribution of categorical variables across different levels of 25(OH)D3, we used the Chi-square test in order to analyze the associations of serum 25(OH)D3 levels with mortality, delirium, and IMV therapy during treatment, we used univariable and multivariable Cox proportional hazards models. In the time-to-event analysis, follow-up time was considered as the day that outcome occurred or the day that patient was followed up. To assess the associations of serum 25(OH)D3 levels with prolonged stay in ICU (≥7 days) or hospital (≥14 days) and odds of re-hospitalization after discharge, we used univariable and multivariable binary logistic regression. We included potential confounders including age, gender, smoking, pre-existing pulmonary diseases, alcohol consumption, BMI, and blood levels of white blood cell (WBC), albumin, and CRP in the adjusted models. In all analyses, COVID-19 patients with the normal levels of 25(OH)D3 were considered as a reference group. All statistical analyses were done using the SPSS software version 18 (SPSS, Inc. Chicago, IL, USA). P < 0.05 was considered significant.

3. Results
Of the 392 critically ill elderly COVID-19 patients at the baseline, 19 patients were excluded because they died during the first 48 h of hospitalization. Moreover, 63 patients with incomplete data on exposure and outcome variables were excluded. Finally, we performed the statistical analysis on 310 patients with complete data (Fig. 1). All the patients had received antiviral and antibiotic drugs. At the baseline, 12% and 37% of study participants have vitamin D deficiency and insufficiency, respectively. In addition, 1.6% of participants had sever vitamin D deficiency (<12 ng/mL). We recorded 132 (43%) deaths during ICU admission and 190 (61%) deaths during 45 days after the baseline. In addition, during the ICU admission, 217 (70%) cases of delirium were observed and 35 (11%) patients needed IMV therapy during treatment. Also, during the follow-up period, 65 (21%) patients were hospitalized for the second time.

Baseline characteristics of patients across different levels of serum 25(OH)D3 are shown in Table 1. Patients with vitamin D deficiency had higher APACHE II scores, higher levels of WBC, platelet, lactate dehydrogenase, and lower values of albumin and hematocrit compared to patients with vitamin D sufficiency. Also, the mean age of participants was significantly different across different levels of 25(OH)D3. Patients with vitamin D deficiency were more likely to have the incidence of organ failure, take propofol, need IMV and NIMV therapies, and were less likely to need face mask than those with normal levels of vitamin D. We found no significant difference in terms of length of hospital and ICU stay, and other laboratory parameters, comorbidities, and medications. Also, vaccination status of patients (receiving at least one dose of the vaccine) was not significantly different across different levels of 25(OH)D3.

Multivariable-adjusted HRs and 95% confidence intervals (CIs) of delirium, COVID-19 mortality, and IMV therapy across different levels of serum 25(OH)D3 among critically ill elderly COVID-19 patients are indicated in Table 2. A significant positive association was found between vitamin D deficiency and the risk of delirium during ICU admission (HR: 1.48, 95% CI: 1.00–2.19). This association remained significant even after controlling for potential confounders including demographic variables, smoking, history of pulmonary diseases, and blood/serum levels of WBC, albumin, and CRP; such that, patients with vitamin D deficiency had a 54% higher risk of delirium compared to those with vitamin D sufficiency (HR: 1.54, 95% CI: 1.02–2.33). Also, a non-significant inverse linear association was seen between vitamin D levels and delirium incidence based on a-10 ng/mL increase in serum 25(OH)D3 (HR: 0.86, 95% CI: 0.73–1.01). In terms of COVID-19 mortality, we found a significant positive association with vitamin D deficiency. After taking potential confounders into account, vitamin D deficiency was associated with 3.95 times increased risk of 45-day COVID-19 mortality in critically ill elderly COVID-19 patients (HR: 3.95, 95% CI: 1.80–8.67). Such a positive association was seen for COVID-19 mortality during ICU admission (HR: 1.66, 95% CI: 1.00–2.78). However, this association was marginally significant (P = 0.05). In addition, we found significant inverse associations between a-10 ng/mL increase
Table 1
Characteristics of critically ill elderly COVID-19 patients across categories of vitamin D levels.

	Total	Normal levels (<30 ng/mL)	Insufficiency (20–30 ng/mL)	Deficiency (<20 ng/mL)	P-value*
Demographic characteristics					
Age, y	73 ± 7	72 ± 6	74 ± 8	74 ± 6	0.04
Weight, kg	73 ± 10	73 ± 8	71 ± 13	75 ± 11	0.06
BMI, kg/m²	27 ± 3	27 ± 3	26 ± 4	28 ± 4	0.12
Female, %	41	46	46	29	0.17
Smokers, %	26	29	22	29	0.35
Married, %	79	82	76	71	0.24
University educated, %	12	11	13	7.9	0.67
Alcohol intake, %	7.7	11	5.2	2.6	0.10
Hematology					
WBC, 10³/µL	9 ± 5	9 ± 4	9 ± 5	11 ± 3	0.03
Neutrophil, 10³/µL	83 ± 9	84 ± 8	82 ± 10	84 ± 7	0.18
Lymphocyte, 10⁹/µL	12 ± 12	12 ± 14	13 ± 11	10 ± 5	0.42
Platelet, 10⁹/µL	220 ± 71	220 ± 65	200 ± 71	250 ± 85	0.002
Biochemical assessment					
CRP, mg/L	88 ± 47	89 ± 48	87 ± 48	84 ± 43	0.83
IL6, pg/mL	160 ± 220	140 ± 180	180 ± 260	200 ± 210	0.14
Creatinine, mg/dL	1.4 ± 0.6	1.3 ± 0.7	1.4 ± 0.5	1.6 ± 0.6	0.10
FBS, mg/dL	170 ± 54	170 ± 53	170 ± 57	173 ± 49	0.84
Lactate dehydrogenase, U/L	520 ± 260	490 ± 210	530 ± 280	630 ± 360	0.09
Vitamin D, ng/mL	30 ± 9	37 ± 4	25 ± 3	16 ± 3	< 0.001
Bilirubin, mg/dL	0.83 ± 1.1	0.80 ± 1.1	0.84 ± 1	0.95 ± 1.7	0.76
Urea, mg/dL	28 ± 16	29 ± 18	26 ± 14	28 ± 10	0.46
Magnesium, mEq/L	2 ± 0.4	2 ± 0.4	2 ± 0.4	1.9 ± 0.4	0.48
Phosphorus, mg/dL	3 ± 0.5	3 ± 0.5	3 ± 0.6	3 ± 0.6	0.81
Calcium, mg/dL	8.1 ± 0.57	8.1 ± 0.6	8.2 ± 0.5	8.3 ± 0.5	0.14
Sodium, mEq/L	140 ± 10	140 ± 4	130 ± 13	140 ± 5	0.71
Potassium, mmol/L	4 ± 0.7	4.1 ± 0.6	3.9 ± 0.7	4.1 ± 0.7	0.17
Blood pressure					
SBP, mmHg	139 ± 22	137 ± 21	140 ± 23	142 ± 24	0.43
DBP, mmHg	81 ± 15	80 ± 13	83 ± 16	82 ± 19	0.39
Mean arterial pressure, mmHg	100 ± 17	99 ± 15	102 ± 18	102 ± 20	0.39
Comorbidities					
Pulmonary disease, %	25	24	25	26	0.95
Hyperlipidemia, %	40	43	35	45	0.34
Diabetes, %	46	46	43	50	0.68
Hypertension, %	55	55	60	40	0.09
CVD, %	45	45	42	55	0.34
Hypothyroidism, %	21	22	18	24	0.37
Acute renal failure, %	27	26	24	37	0.29
Chronic renal disease, %	36	29	42	45	0.054
Liver disease, %	9.0	6.4	12	10	0.24
Stroke, %	5.5	3.9	7.8	5.3	0.37
Rheumatoid arthritis, %	1.3	1.3	0.9	2.6	0.70
Organ failure, %*	48	46	44	68	0.03
Ear problems, %	8.7	8.3	9.6	7.9	0.91
Eye problems, %	5.5	5.1	7.0	2.6	0.57
Medication					
Propofol, %	6.5	5.7	4.3	16	0.04
Opioid drugs, %	59	54	63	66	0.23
Glucocorticoids, %	66	64	66	71	0.68
Benzodiazepine, %	71	69	73	71	0.74
Vasopressor, %	47	49	45	42	0.68
Oxygen therapy at baseline					
Invasive MV, %	6.5	5.7	4.3	16	0.04
NIV, %	60	52	68	66	0.02
High flow nasal cannula, %	2.3	3.2	0.9	2.6	0.44
Face mask, %	59	67	57	29	< 0.001
Hospitalization					
Length of hospital stay (day)	14 (10–19)	14 (11–19)	14 (10–20)	12 (8–19)	0.24
Length of ICU stay (day)	8 (6–10)	8 (6–10)	7 (6–10)	8 (6–11)	0.51
APACHE II score	17 (11–21)	15 (10–20)	17 (12–20)	20 (17–22)	< 0.001
Vaccination, %	50	50	50	47	0.94

Data are presented as mean ± SD for normally-distributed continuous variables, median (interquartile range) for non-normally distributed continuous variables, and percent for categorical variables: all numbers were rounded based on the Cole study[^6].

Abbreviations: BMI: body mass index; WBC: white blood cell; IL-6: interleukin – 6; CRP: C-reactive protein; FBS: fasting blood sugar; SBP: systolic blood pressure, DBP: diastolic blood pressure; CVD: cardiovascular disease, MV: mechanical ventilation; NIV: non-invasive ventilation, SD: standard deviation, APACHE II: acute physiology and chronic health examination II

[^6]: Considered as the incidence of failure of ≥ 2 organs
in 25(OH)D3 and COVID-19 mortality in ICU (HR: 0.74, 95% CI: 0.60-0.92) and during 45 days (HR: 0.55, 95% CI: 0.40-0.74). Regarding IMV requirement during treatment, we found no significant association with serum 25(OH)D3 levels either in crude or fully adjusted models. Such the non-significant association was also seen in the dose-response analysis.

Table 3 shows multivariable-adjusted odds ratios (ORs) and 95% CIs for the associations of serum 25(OH)D3 levels with re-hospitalization and prolonged stay in ICU and hospital among critically ill elderly COVID-19 patients. We found no evidence of a significant positive association between serum 25(OH)D3 levels and prolonged stay in ICU (OR: 1.37, 95% CI: 0.61-3.07) and hospital (OR: 0.94, 95% CI: 0.43-2.06). This association was non-significant even after taking potential confounders into account. In addition, serum 25(OH)D3 levels were not significantly associated with re-hospitalization after discharge in both unadjusted and multivariable adjusted models (OR: 1.80, 95% CI: 0.77-4.20). In the linear dose-response analysis, we found no significant association as well.

4. Discussion

In this current study, we found that vitamin D deficiency was associated with an increased risk of delirium and COVID-19 mortality among critically ill elderly COVID-19 patients. These associations were obtained after controlling for potential confounding factors. For other outcomes of COVID-19 including IMV requirement and prolonged admission in ICU and hospital, we observed no significant association with serum 25(OH)D3 levels. To the best of our knowledge, the present prospective study is one of the few studies in the Middle East, if not the first, to determine the association of serum 25(OH)D3 levels with severe outcomes in elderly COVID-19 patients. As we know, most studies in this regard that were done in the Middle East were retrospective or cross-sectional.

COVID-19 among elderly individuals, particularly those with comorbidities, is associated with severe prognosis and high mortality. Some modifiable risk factors such as malnutrition or micronutrient deficiencies may aggravate the infection and increase the incidence of severe outcomes. In the current study, vitamin D deficiency (<20 ng/mL) was associated with a higher risk of mortality among critically ill elderly COVID-19 patients. In line with our findings, a prospective study on 551 COVID-19 patients showed that vitamin D deficiency (<12 ng/mL or <30 nmol/L) was significantly associated with COVID-19 mortality after controlling for visceral fat (epicardial fat thickness). In a retrospective study on 257 COVID-19 patients, Jenei et al. reported that vitamin D deficiency is a potential risk factor for mortality among elderly COVID-19 patients with comorbidities (cancer, diabetes, and/or pulmonary disease). In contrast, a single-center retrospective study on 39 patients with COVID-19 and acute respiratory distress syndrome (ARDS) indicated that vitamin D levels were not associated with COVID-19 survival. Different findings in the last study might be due to the low sample size and its low power to detect a true association between vitamin D levels and COVID-19 mortality. However, further studies are needed to confirm the positive association between vitamin D deficiency and COVID-19 mortality.

Vitamin D deficiency is associated with higher concentrations of CRP and IL-6. Therefore, COVID-19 patients with vitamin D deficiency may provide a greater inflammatory response that is positively associated with mortality risk. Vitamin D has a modulatory role in the inflammatory response caused by COVID-19 through inhibiting adaptive immunity by decreasing B cell proliferation and production of antibodies. This plays an important role in the regulation of T cell phenotype. Therefore, a significant change occurs in the adaptive immune response from Th1 to a more regulatory Th2 response that increases the production of Th2 associated cytokines. Moreover, vitamin D can increase the expression of angiotensin-converting enzyme-2 (ACE-2) and suppress the angiotensin-renin system and angiotensin II production, which is a pro-inflammatory biomarker. As a result, these processes may attenuate the cytokine storm perpetuating a pro-inflammatory state and worsening severe outcomes of COVID-19. In the current study, we found a significant positive association between vitamin D deficiency and delirium risk among critically ill elderly COVID-19 patients hospitalized in ICU. In a review article, Menéndez et al. concluded that vitamin D is a neuroprotective agent in COVID-19 patients that may prevent delirium in these patients. However, other reasons such as APOE e4 Genotypes have been shown to be associated with an increased risk of delirium during COVID-19-related hospitalizations. A cohort study also showed that delirium linked to APOE e4
Genotypes in Covid-19 patients. Also, the positive link between vitamin D deficiency and other neurological disorders such as dementia and Alzheimer’s disease was reported in previous studies. In addition, the association between vitamin D deficiency and delirium was assessed in other health conditions. In a retrospective study, a significant inverse association was reported between serum 25(OH)D3 concentrations and delirium risk among patients in a surgical ICU. In a community-based cohort study of adults from 22 cities across the United Kingdom (the UK Biobank), Pilling et al. reported that progressively lower vitamin D levels predicted increased risk of incident hospital-diagnosed delirium. In addition, Velayati et al. concluded that preoperative severe vitamin D deficiency was associated with the occurrence of delirium after coronary artery bypass grafting surgery. It has been proposed that vitamin D has a neuroprotective role through preventing oxidative damage to nervous tissue and influencing on neurotransmitter synthesis. Also, vitamin D receptor (VDR) has been found in some brain areas such as the hippocampus that are involved in Alzheimer’s disease and other neurodegenerative conditions. Another proposed mechanism is the influence of vitamin D on attenuating inflammation, which contributes to delirium pathogenesis.

We found that serum levels of 25(OH)D3 were not significantly associated with IMV requirement, prolonged hospitalization, and rehospitalization. In a retrospective study, vitamin D levels were not associated with the length of hospitalization; however, vitamin D deficiency was associated with prolonged IMV therapy. In addition, Bulca-Acar et al. reported no significant association between serum 25(OH)D3 levels and the length of hospital stay due to the COVID-19 in adult patients. In contrast, Reiz et al. reported that COVID-19 patients with severe vitamin D deficiency (<10 ng/mL) exhibited a trend for longer hospital stay compared with those with normal concentrations of vitamin D. Different findings on the link between vitamin D levels and prolonged hospitalization might be due to different treatment protocols, different hospital admission capacities, and controlling for different confounders among previous studies. Because of a high incidence of COVID-19 and limited hospital beds, patients may be discharged as soon as possible. Therefore, the lack of significant association between serum 25(OH)D3 levels and prolonged hospitalization should be considered with caution. Further studies are needed to confirm these findings.

Some limitations should be considered when interpreting our results. We included a low number of COVID-19 patients in the current study and therefore, we could not perform subgroup analyses based on gender and other important variables. Also, the number of COVID-19 patients with vitamin D deficiency was too small which may reduce the robustness of the analysis result. Due to limited number of patients with severe vitamin D deficiency (<12 ng/mL), we could not assess the link between severe vitamin D deficiency and clinical outcomes of COVID-19 patients. Although we obtained data on serum 25(OH)D3 concentrations from medical records, the accuracy of these values was not clear. Despite controlling for several potential confounders, our results might be still affected by residual confounders such as lifestyle information and therapeutic protocols used for controlling COVID-19. Vaccination may distort our findings on the link between vitamin D deficiency and clinical outcomes of COVID-19 patients. However, the rate of vaccination was not different across the different levels of 25(OH)D3. In addition, we included vaccination status in the adjusted model and found no change in our results. Since this was a single-center study and the sample size was low, the generalizability of our findings to all COVID-19 patients should be done with caution.

In conclusion, vitamin D deficiency was associated with an increased risk of delirium and COVID-19 mortality among critically ill elderly COVID-19 patients. However, serum levels of vitamin D were not associated with other outcomes of COVID-19 such as IMV requirement, prolonged hospitalization, and rehospitalization. Further prospective studies with a high sample size are needed to substantiate our findings. Also, future studies should examine the effect of vitamin D supplementation on severe outcomes of COVID-19 in critically ill patients.

Table 3

	Normal levels (<30 ng/mL)	Insufficiency (20–30 ng/mL)	Deficiency (<20 ng/mL)	Linear dose-response (per 10 ng/mL increase)
	n 157	115	38	310
Hospital stay ≥ 14 days				
Cases	83	61	17	161
Unadjusted	1	1.00 (0.62–1.63)	0.72 (0.35–1.47)	1.13 (0.88–1.46)
Model 1	1	1.03 (0.61–1.72)	0.75 (0.35–1.57)	1.08 (0.82–1.40)
Model 2	1	1.14 (0.67–1.93)	0.94 (0.43–2.06)	0.96 (0.73–1.28)
ICU stay ≥ 7 days				
Cases	96	71	26	193
Unadjusted	1	1.02 (0.62–1.68)	1.37 (0.64–2.93)	0.90 (0.68–1.20)
Model 1	1	0.97 (0.56–1.64)	1.52 (0.69–3.33)	0.86 (0.65–1.13)
Model 2	1	0.96 (0.56–1.64)	1.37 (0.61–3.07)	0.89 (0.69–1.16)
Re-hospitalization				
Cases	33	20	12	65
Unadjusted	1	0.79 (0.42–1.46)	1.73 (0.79–3.80)	0.90 (0.66–1.23)
Model 1	1	0.79 (0.41–1.49)	1.94 (0.85–4.41)	0.89 (0.64–1.24)
Model 2	1	0.74 (0.38–1.41)	1.80 (0.77–4.20)	0.95 (0.67–1.33)

Data are presented as OR (95% CI). Abbreviations: BMI: body mass index, ICU: intensive care unit, WBC: white blood cell, CRP: C-reactive protein, OR: odds ratio

Model 1: Adjusted for age, gender, smoking, history of pulmonary diseases, alcohol consumption, and BMI

Model 2: Further adjustments for WBC, albumin, and CRP levels

ORs were obtained from the binary logistic regression

Funding

This study was funded by the Shahid Beheshti University of Medical Sciences, Tehran, Iran (code 28405). We acknowledged the funder for the financial support. The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication. Authors and funder declared no personal or financial conflicts of interest. A DoCi (declaration-of-competing-interests) form was submitted.
Ethical approval
All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Furthermore, we took written informed consent from each participant. The study was approved by the Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran.

CRediT authorship contribution statement
ZGh, DY, HEZ, and ZVS designed the research project. ZGh and ZVS conducted the research; ZGh analyzed data; ZGh and ZVS wrote the paper; ZGh and ZVS had primary responsibility for final content. All authors read and approved the final manuscript.

Declaration of Competing Interest
The authors report no declarations of interest.

Acknowledgments
The authors acknowledge all participants that without them this work would not have been possible.

Conflicts of interest
Authors declared no personal or financial conflicts of interest.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.ctim.2022.102855.

References
1. Ciotti M, Ciccozzi M, Pieri M, Bernardini S. The COVID-19 pandemic: viral variants and vaccine efficacy. Crit Rev Clin Lab Sci. 2022;59(1):66–75.
2. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782–793.
3. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–2059.
4. Zhou Y, Yang Q, Chi J, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis. Int J Infect Dis. 2020;94:47–56.
5. Wirth R, Becker C, Djakic M, et al. COVID-19 in old age:The geriatric perspective. Z für Gerontol und Geriat. 2021;54(2):152–60.
6. Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease 2019 (COVID-19) pandemic: an overview. Nutrition. 2021;81, 111016.
7. Kulkarni R, Rajput U, Dawre R, et al. Severe malnutrition and anemia are associated with severe COVID in infants. J Trop Pediatr. 2021:67:1.
8. Gold MS, Sehayek D, Gabrielli S, Zhang X, McCusker C, Ben-Shoshan M. COVID-19 and vitamin D supplementation and COVID-19 outcomes: a systematic review, meta-analysis, and GRADE assessment of cohort studies and RCTs. Nutr J. 2021;20(1):1–10.
9. Angellini AM, Belanger MJ, Llorinasy MK, et al. Vitamin D status is associated with in-hospital mortality and mechanical ventilation: a cohort of COVID-19 hospitalized patients. Mayo Clin Proc. 2021;96(4):875–866.
10. Loia J, Nguyen P, Patel N, Kapur S. Exploring the link between vitamin D and clinical outcomes in COVID-19. Am J Physiol Endocrinol Metab. 2022;320(3):E520–e6.
11. Radajkovic A, Hippench T, Tisvari-Heckler S, Dreher S, Bosberger M, Merle U. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients. 2020;12:9.
12. Luzett A, Grunow JJ, Morgeli R, et al. Innovative ICU solutions to prevent and reduce delirium and post-intensive care unit syndrome. Semin Repar Crit Care Med. 2019;40(5), 573–86.
13. Xu Y, Chen Y, Yang Q, et al. Low vitamin D levels do not aggravate COVID-19 risk or death, and vitamin D supplementation does not improve outcomes in hospitalized patients with COVID-19: a meta-analysis and GRADE assessment of cohort studies and RCTs. Nutr J. 2021;20(1):6–10.
14. Alguwaihas AM, Sabico S, Hasanoz R, et al. Severe vitamin D deficiency is not related to SARS-CoV-2 infection but may increase mortality risk in hospitalized adults: a retrospective case–control study in an Arab Gulf country. Aging Clin Exp Res. 2022;34(S5):1415–22.
15. Al-Dabghar NM, Amer OE, Alotaibi NH, et al. Vitamin D status of Arab Gulf residents screened for SARS-CoV-2 and its association with COVID-19 infection: a multi-centre cross-sectional study. J Privat Med. 2021;15(1–4).
16. AlSafrar HI, Grant BW, Hijazi R, et al. COVID-19 disease severity and death in relation to vitamin D status among SARS-CoV-2-positive UAE residents. Nutrients. 2021;13(5):1714.
17. Fang X, Li S, Yu H, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Acta Derm Venereol. 2020;110(12), 12493–503.
18. Allard L, Ouedraogo E, Molleville J, et al. Malnutrition: percentage and association with prognosis in patients hospitalized for coronavirus disease 2019. Nutrients. 2020;12:12.
19. Silverio R, Goncalves DC, Hewison M, et al. Low vitamin D levels are associated with increased COVID-19 severity and mortality independent of whole-body and visceral adiposity. Front Nutr. 2022;9, 813485.
20. Jenei T, Jenei S, Tamás R, et al. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. J Bone Miner Res. 2020;5:1–6.
21. Mercola J, Grant WB, Wagner CL. Evidence regarding vitamin D and risk of COVID-19 and its severity. Nutrients. 2020;12:11.
22. Amin HA, Drenos F. No evidence that vitamin D is able to prevent or affect the severity of COVID-19 in individuals with European ancestry: a Mendelian randomisation study. Curr Dev Nutr. 2021;5(2):1086.
23. Bulca-Acar A, Nur-Eke R, Taktin S, Koksal-Yasin Y. (25 OHD) vitamin D levels of patients with COVID-19 are not associated with the length of hospital stay. Clin Lab. 2022;68:3.
24. Chen J, Mei K, Xie L, et al. Low vitamin D levels do not aggravate COVID-19 risk or death, and vitamin D supplementation does not improve outcomes in hospitalized patients with COVID-19: a meta-analysis and GRADE assessment of cohort studies and RCTs. Nutr J. 2021;20(1):1–10.
25. Alguwaihas AM, Sabico S, Hasanoz R, et al. Severe vitamin D deficiency is not related to SARS-CoV-2 infection but may increase mortality risk in hospitalized adults: a retrospective case–control study in an Arab Gulf country. Aging Clin Exp Res. 2022;34(S5):1415–22.
26. Al-Dabghar NM, Amer OE, Alotaibi NH, et al. Vitamin D status of Arab Gulf residents screened for SARS-CoV-2 and its association with COVID-19 infection: a multi-centre cross-sectional study. J Privat Med. 2021;15(1–4).
27. AlSafrar HI, Grant BW, Hijazi R, et al. COVID-19 disease severity and death in relation to vitamin D status among SARS-CoV-2-positive UAE residents. Nutrients. 2021;13(5):1714.
28. Fang X, Li S, Yu H, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Acta Derm Venereol. 2020;110(12), 12493–503.
29. Allard L, Ouedraogo E, Molleville J, et al. Malnutrition: percentage and association with prognosis in patients hospitalized for coronavirus disease 2019. Nutrients. 2020;12:12.
30. Silverio R, Goncalves DC, Hewison M, et al. Low vitamin D levels are associated with increased COVID-19 severity and mortality independent of whole-body and visceral adiposity. Front Nutr. 2022;9, 813485.
31. Jenei T, Jenei S, Tamás R, et al. Vitamin D and immune regulation: antibacterial, antiviral, anti-inflammatory. J Bone Miner Res. 2020;5:1–6.
45 Evans RM, Lippman SM. Shining light on the COVID-19 pandemic: a vitamin D receptor checkpoint in defense of unregulated wound healing. Cell Metab. 2020;32 (5):704-709.

46 Bilezikian JP, Bikle D, Hewison M, et al. Mechanisms in endocrinology: vitamin D and COVID-19. Eur J Endocrinol. 2020;183(5):R133-R47.

47 Menéndez SG, Giménez VMM, Holick MF, Barrantes FJ, Manucha W. COVID-19 and neurological sequelae: vitamin D as a possible neuroprotective and/or neuroreparative agent. Life Sci. 2022; 120464.

48 Kuo C-L, Pilling LC, Atkins JL, Fortinsky RH, Kuchel GA, Melzer D. APOE e4 genotypes increase risk of delirium during COVID-19-related hospitalizations: evidence from a large UK Cohort. J Gerontol: Ser A. 2022;77(4), 879-80.

49 Chai B, Gao F, Wu R, et al. Vitamin D deficiency as a risk factor for dementia and Alzheimer’s disease: an updated meta-analysis. BMC Neurol. 2019;19(1):1–11.

50 Qiu Y, Sessler DI, Chen L, et al. Preoperative vitamin D deficiency is associated with postoperative delirium in critically ill patients. J Intensive care Med. 2021, 8850666211021330,

51 Pilling LC, Jones LC, Masoli JAH, et al. Low vitamin D levels and risk of incident delirium in 351,000 older UK biobank participants. J Am Geriatr Soc. 2021;69(2) (365-72).

52 Velayati A, Vahdat Shariatpanahi M, Dehghan S, Zayeri F, Vahdat, Shariatpanahi Z. Vitamin D and postoperative delirium after coronary artery bypass grafting: a prospective cohort study. J Cardiothorac Vasc Anesth. 2020;34(7):1774–1779.

53 Wrzosek M, Lukaszkiewicz J, Wrzosek M, et al. Vitamin D and the central nervous system. Pharmacol Rep. PR. 2013;65(2):271–278.

54 Kalueff AV, Eremin KO, Tsushima P. Mechanisms of neuroprotective action of vitamin D3. Biochem Biokhimiia. 2004;69(7):738–741.

55 Gonçalves de Carvalho CM, Ribeiro SM. Aging, low-grade systemic inflammation and vitamin D: a mini-review. Eur J Clin Nutr. 2017;71(4) (434-40).

56 Reis BZ, Fernandes AI, Sales LF, et al. Influence of vitamin D status on hospital length of stay and prognosis in hospitalized patients with moderate to severe COVID-19: a multicenter prospective cohort study. Am J Clin Nutr. 2021;114(2):598–604.

57 Cole TJ. Too many digits: the presentation of numerical data. Arch Dis Child. 2015;100(7):608–609.