Theoretical frameworks and approaches used within the Reserve, Resilience and Protective Factors professional interest area of the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment

David Bartrés-Faz1,2 | Eider Arenaza-Urquijo3 | Michael Ewers4 | Sylvie Belleville5 | Gaël Chételat6 | Nicolai Franzmeier4 | Julie Gonneaud7 | José María González de Echevarri3 | Ozioma Okonkwo8 | Stephanie Schultz8 | Michael Valenzuela9 | Yaakov Stern10 | Prashanthi Vemuri11

1 Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
2 Guttmann Brain Health Institute, Institut Universitari de Neurorehabilitació Guttmann, Autonomous University of Barcelona, Badalona, Spain
3 Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
4 Institute for Stroke and Dementia Research (ISD), University HospitalLMU Munich, Munich, Germany
5 Research Center, Institut Universitaire de Gériatrie de Montréal and Department of Psychology, Université de Montréal, Montreal, Canada
6 UNICAEN, INSERM, U1237, PhInD “Physiopathology and Imaging of Neurological Disorders,”, Normandie University, Paris, France
7 Douglas Mental Health Institute, McGill University, Montreal, Canada
8 Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
9 School of Psychiatry, Medicine, University of New South Wales, Sydney, Australia
10 Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, New York, USA
11 Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA

Correspondence
Prof. David Bartrés-Faz, Department of Medicine, Faculty of Medicine and Health Sciences; Institute of Neurosciences; University of Barcelona, c/Casanova, 143, 08036 Barcelona, Spain.
Email: dbartres@ub.edu

David Bartrés-Faz and Eider Arenaza-Urquijo contributed equally to this work.

Abstract

Introduction: Reserve, resilience, maintenance, and related concepts are intensely debated in aging and Alzheimer’s disease research.

Methods: Through a short survey, we gathered information about theoretical concepts and methodologies used among research groups of the Reserve, Resilience, and Protective Factors Professional Interest Area of the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment.

Results: Overall 53 research groups responded. Reserve and resilience were the most frequently used conceptual frameworks. Education, occupation, leisure, and social activities were frequently used as measures, as were longitudinal designs. Neuropsychological assessments were almost universal, and usage of imaging biomarkers was frequent. In observational-epidemiological study designs, resilience and reserve together (vs reserve alone) were commonly used as theoretical frameworks.
Discussion: We provide a first description of concepts and methodologies used among reserve and resilience researchers. This will inform initiatives aiming to reach consensus on terminology and applications to establish common definitions.

KEYWORDS
brain reserve, cognitive reserve, maintenance, methodologies, outcome measures, resilience, techniques

INTRODUCTION

Beginning with the recognition of the disconnect between pathology and cognition in aging and dementia,1 the field of reserve, resilience, and protective factors has evolved tremendously. The first theoretical frameworks included concepts such as brain reserve capacity2 or cognitive reserve versus brain reserve,3 which have been instrumental in propelling the research into inter-individual differences that allow some people to cope better with aging and disease. In the cognitive aging field, several models aiming to explain inter-individual differences have also emerged.5 Through autopsy6 and biomarker-based investigations of Alzheimer’s disease (AD) patients, our understanding of these processes has evolved across the years.

The recent biological definition of AD, acknowledging a long preclinical phase of the disease7 and the emergence of specific biomarkers (cerebrospinal fluid [CSF] and neuroimaging8,9) have allowed further study of individual differences regarding the factors and mechanisms responsible for the stability of cognitive and clinical function, despite evident neuropathology.10 These observations have led to novel terms and concepts including resistance and resilience to describe the pathology–cognition mismatch.11,12 The rapid turnover of ideas and theoretical frameworks has led to recent consensus statements, aiming to integrate the definitions and the study of brain mechanisms underlying concrete concepts.4,13 Further, initiatives such as the National Institute on Aging (NIA)-supported Collaboratory on Research Definitions (https://reserveandresilience.com/) have been funded to support workshops as a platform to exchange ideas and develop operational definitions.

We aimed to describe the most common conceptual frameworks, terminologies, experimental designs, outcome variables, and specific techniques used among researchers working in this field. For this, we conducted a survey within the Reserve, Resilience and Protective Factors professional interest area (PIA) of the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment (ISTAART) and present the results as part of this work.

METHODS

During the Alzheimer’s Association International Conference (AAIC) 2018 held in Chicago (Illinois, USA), the Reserve, Resilience and Protective Factors PIA discussed a proposal to collect information about the theoretical backgrounds and methodological approaches commonly used by ISTAART members. At a subsequent meeting, the executive committee agreed to undertake this initiative as part of the PIA’s activity.

Survey data collection was completed between October 2018 and April 2020. In September 2018, the Executive Committee reached a consensus regarding relevant items and questions of the survey, which were planned as non-mutually exclusive fixed responses, but also leaving some open fields (see Table 1 and supporting information). By October 2018, the survey was formatted into a web-based platform by the Alzheimer’s Association ISTAART and sent out to all PIA members. The first wave of responses had a total of 30 identifiable research groups working within the field complete the surveys. Between May and July 2019, and in September 2019, after the first workshop on research definitions of the Reserve & Resilience meeting held in Bethesda, Maryland, USA, further individual group responses were collected. A final round was undertaken using the PIA social media channels (Linkdln [PIA group] and PIA hashtag #ReservePIA) during March and April 2020.

RESULTS

The present survey reports responses of 53 clinical and research teams. In terms of geography, 23 groups represented eight different European countries, 21 were from the USA or Canada, 4 were from South America, 3 from Australia, 1 from China, and 1 from India (Figure 1A).

Theoretical model/concept framework and examples of research findings

Most groups (84.9%) indicated that the term “reserve” best defined their current research activity. The concept of resilience was the second most commonly addressed (66% of the teams) followed by the use of maintenance (50.9%) and neuroprotection (39.6%; Figure 1B).

Determinants and mechanisms of reserve and resilience

We asked participants about potential determinants of cognitive reserve. Up to 86.8% of participants answered that they considered environmental determinants, but the majority of teams also consider genetic aspects (50.9%) and to a lesser extent investigated gene–environment approaches (35.8%). The high frequency of considering...
TABLE 1 Specific questions included in the survey

Group identification	
Key members	
Institution	

Theoretical framework

What is the theoretical model/concept framework that best defines your group’s research work?

Specific aspects of cognitive reserve	
Determinants of Cognitive Reserve tick box:	
□ Environmental	
□ Genetic	
□ EXG	
If not, please specify...	
□ Mechanisms of Reserve, tick box:	
□ Biological	
□ Psychological	
□ Psychosocial	
If not, please specify...	
□ Clinical outcomes of Cognitive Reserve, tick box:	
□ Cognitive status	
□ Cognitive decline	
□ Incidence of dementia	
□ Incidence MCI	

Key measures

| Classical Cognitive Reserve measures (education, occupation, social, leisure) | |
| □ Residual approaches etc. | |

Methods employed

Study designs, tick box:	
□ Observational-Epidemiologic	
□ Longitudinal	
□ Experimental	
□ Brain series	
□ RCT	
□ Animal models If not, please specify	

Specific Techniques, tick box:

□ Neuropsych	
□ CSF and imaging biomarkers	
□ Autopsy studies	
If not, please specify	

| Top 3-5 findings and relevant references, also please feel free to provide a link to your website or Pubmed search for relevant publications | |

Abbreviations: CSF, cerebrospinal fluid; MCI, mild cognitive impairment; RCT, randomized controlled trial.

Environmental determinants of reserve appears to be aligned with key measures used to study reserve and resilience. Here, most reported (84.9%) that they termed the measures as “classical” from the CR reserve theory (ie, independent or composite scores of education, occupation, social, and leisure activities; Figure 1C).

With regard to the mechanisms underlying the general concept of reserve (ie, irrespective of the theoretical approaches selected), most groups focused their activity on the biological mechanisms (86.8%), which were often combined with psychological (67.9%), psychosocial (54.7%), or the consideration of all three kinds of mechanisms (37.7%).

3.3 Research study designs and methodologies

Most groups claimed they were currently engaged in observational-epidemiologic investigations (75.5%), and in particular in longitudinal studies (84.9%), and fewer were conducting experimental studies (37.7%), brain series-autopsy investigations (26.4%), or randomized clinical trials (22.6%). Only one group was conducting reserve and resilience-related research on animal models. The high prevalence of groups engaged in longitudinal studies is probably reflective of the fact that most of them indicated that they considered cognitive decline (96.2%) in their study designs with lower percentage of groups working on incidence of mild cognitive impairment (MCI; 45.3%) or dementia (43.4%) as primary outcomes (Figure 1D). Concerning the main techniques used, most investigations include neuropsychological assessments (88.7%), and frequently consider imaging (75.5%) as well as CSF markers (54.7%) data (Figure 1E).

We finally investigated whether the two main frameworks, namely reserve and resilience, were associated with distinct study designs, clinical outcomes, main measures, and principal techniques. To investigate this, we compared the responses of those groups that had indicated that their main conceptual model was reserve but did not include resilience (N = 12), to those groups that included resilience (N = 36; all but four including reserve too). Those groups that had selected resilience as a theoretical framework more frequently used observational-epidemiological study designs (Figure 2A; Fisher’s exact test: 8.15, P < .005). They also appear to include more frequently a “biological component” in their techniques (ie, CSF, key measures (ie, biological) or study designs (ie, brain series), as well as mental health status as key measures (Figure 2A-D); however, formal testing did not reveal significant differences (not shown).

4 DISCUSSION

Here, we surveyed and present an overview of the concepts and methodological approaches currently used by groups mainly pertaining to the Resilience and Protective Factors’ PIA of ISTAART. This survey captured the breadth of the theoretical model/concept framework and determinants/approaches that are used in our
research area and also highlights the opportunity present in unifying the language across research groups and methodologies.

Present findings indicate that the term reserve is the most frequently used in AD research. However, the concept of resilience is also commonly incorporated. It should be noted that according to current conceptual definitions, resilience refers to a more general term that aggregates multiple reserve-related processes. In the overall sample, more than 20% of professionals use all four main concepts (reserve, resilience, maintenance, neuroprotection) in their research. A comparison between groups that used the term resilience versus reserve (without resilience) showed similar use of methodologies, techniques, clinical outcomes, or general study designs, except for the fact that they tended to be more frequently engaged in observational-epidemiological studies. Whether the resilience term is more frequently associated with the use of "biological" or mental health aspects (personality, stress, psychoaffective states, Figure 2A, B, and D) should be addressed in follow-up investigations.

Most of our respondents focus on the study of environmental determinants of reserve followed by genetic aspects and consider classical measures within neuropsychological and neuroimaging investigations. Finally, we noted that a large percentage of respondents informed that they were engaged in longitudinal studies, which due to their advantages over cross-sectional designs appears to be a prevailing approach. This may also be related to the fact that "cognitive decline" was one of the main outcomes used by PIA members and that it is the design of choice to investigate protective mechanisms.

Biomarkers were widely used across all research groups reflecting the emergence and increased use of in vivo measurements in AD. More
than 50% of groups used CSF-based markers and >75% used “imaging biomarkers.” This latter term was not further specified in the survey, although some groups designated that they were using “PET [positron emission tomography]-based biomarkers,” to be in accordance with the relevance of molecular imaging markers in the discipline.15,16 Altogether and provided the high prevalence of groups stating that they use “neuroimaging” information, either as key measures or specific techniques, a future detailed survey should include more fine-graded questions about the particular PET tracers or magnetic resonance imaging (MRI) sequences they use in their research. Finally, other professionals specifically stated they were using blood-based information, which also likely reflects the advent of these biomarkers in the AD research field17 and which should also be assessed in more detail in further versions of the survey.

In summary, this report represents a first survey of the terms and methodologies used by the Reserve, Resilience and Protective Factors PIA. Repeating this type of questionnaire in the future may be useful to measure how the focus of professionals’ work within the area, as well as the use of emerging technologies, evolve in response to the progressive incorporation of new consensus on theoretical and empirical research within the field.

ACKNOWLEDGMENTS

This manuscript was facilitated by the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment (ISTAART), through the Reserve, Resilience and Protective Factors professional interest area (PIA). The views and opinions expressed by authors in this publication represent those of the authors and do not necessarily reflect those of the PIA membership, ISTAART, or the Alzheimer’s Association. The Reserve, Resilience and Protective Factors PIA executive board members are grateful to Jodi Titiner, ISTAART Member Service Specialist, for her constant support and technical guidance in designing the web-based survey platform. The authors are grateful to all research groups and investigators that provided their responses and agreed to be included in the supplementary table (names and affiliations appear as provided): Emily Rogalski, Changiz Geula, Marsel Mesulam (Northwestern University); Anje Soldan (Johns Hopkins University School of Medicine); Corinne Pettigrew (Johns Hopkins); Paulo Caramelli, Leonardo Cruz de Souza, Elisa de Paula França Resende (Universidade Federal de Minas Gerais [UFMG], Belo Horizonte, Brazil); Nikolaos Scarmeas (National and Kapodistrian University of Athens); Rik Ossenkoppele and Anita van Loenhoud (VU University Medical Center); Henne Holstege (Amsterdam UMC); Renata Kochhann (Pontifical Catholic University of Rio Grande do Sul – Brazil); Dharma Singh Khalsa (Alzheimer’s Research and Prevention Foundation); Corinne Fischer (St. Michaels Hospital); Tarek Rajji (University of Toronto and Centre for Addiction and Mental Health [CAMH]); Miranka Wirth (Charité - Universitätsmedizin Berlin); Joe Verghese, Roei Holtzer, Helena Blumen, Emmeline Ayers (Albert Einstein College of Medicine); Marcio Soto (Universidad Católica San
CONFLICTS OF INTEREST

The authors do not report any relevant conflicts related to this manuscript submission.

REFERENCES

1. Katzman R, Terry R, DeTeresa R, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 1988;23:138-144.

2. Satz P, Morgenstern H, Miller EN, et al. Low education as a possible risk factor for cognitive abnormalities in HIV-1: findings from the multicenter AIDS Cohort Study (MACS). J Acquir Immune Defic Syndr (1988). 1993;6:503-511.

3. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8:448-460.

4. Cabeza R, Albert M, Belleville S, et al. Maintenance, reserve and compensation: the cognitive neuroscience of healthy aging. Nat Rev Neurosci. 2018;19:701-710.

5. Nyberg L, Lövölé D, Riklund K, Lindenberger U, Bäckman L. Memory aging and brain maintenance. Trends Cogn Sci. 2012;16:292-305.

6. Bennett DA, Arnold SE, Valenzuela MJ, Brayne C, Schneider JA. Cognitive and social lifestyle: links with neuropathology and cognition in late life. Acta Neuropathol. 2014;127:137-150.

7. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535-562.

8. Vemuri P, Weigand SD, Przybelski SA, et al. Cognitive reserve and Alzheimer’s disease biomarkers are independent determinants of cognition. Brain. 2011;134:1479-1492.

9. Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies. Mol Psychiatry. 2020 Apr 6. https://doi.org/10.1038/s41380-020-0721-9. Epub ahead of print. PMID: 32251378.

10. Ewers M, Insel PS, Stern Y, Weiner MW, Alzheimer’s Disease Neuroimaging Initiative (ADNI). Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease. Neurology. 2013;80:1194-1201.

11. Arenaza-Urquijo EM, Vemuri P. Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies. Neurology. 2018;90:695-703.

12. Montine TJ, Cholerton BA, Corrada MM, et al. Concepts for brain aging: resistance, resilience, reserve, and compensation. Alzheimers Res Ther. 2019;11(1):22.

13. Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, et al. Whitepaper: theoretical frameworks and approaches used within the Reserve, Resilience and Protective Factors professional interest area of the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment. Alzheimer’s Dement. 2020;12:e12115. https://doi.org/10.1002/dad2.12115.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Bartrés-Faz D, Arenaza-Urquijo E, Ewers M, et al. Theoretical frameworks and approaches used within the Reserve, Resilience and Protective Factors professional interest area of the Alzheimer’s Association International Society to Advance Alzheimer’s Research and Treatment. Alzheimer’s Dement. 2020;12:e12115. https://doi.org/10.1002/dad2.12115.