Review complementary and integrative interventions for cancer-related cognitive changes

Jamie S. Myers¹,²
¹School of Nursing, University of Pittsburgh, Pittsburgh, PA
²School of Nursing, University of Kansas, Kansas City, KS, USA

Abstract

Cognitive sequelae from a diagnosis of cancer and the subsequent treatment impact survivors’ quality of life and can interfere with both social relationships and employment. The search for evidence-based prevention and intervention strategies continues for both central nervous system (CNS) and non-CNS cancer-related cognitive changes. Complementary therapies in conjunction with conventional medicine are being included in integrative programs designed to maximize symptom management in cancer treatment centers providing survivorship care. The purpose of this article is to review the existing evidence for the use of complementary and integrative interventions to prevent or treat cancer-related cognitive changes and to discuss the rationale for current and future research. Search terminology included: Complementary, alternative, and integrative medicine, cognition, cognitive function, and cancer, and yielded 20 studies that met criteria for inclusion. Preliminary results published to date indicate that some complementary therapies may be beneficial to cancer survivors experiencing cognitive concerns. A number of gaps in the literature remain primarily due to preliminary study designs, small sample sizes, lack of objective cognitive testing, and cognitive function not being a primary endpoint for much of the published work.

Keywords

Cancer; cognition; cognitive function; complementary; integrative; interventions

Introduction

Cognitive sequelae from a diagnosis of cancer and the subsequent treatment have a significant impact on survivors’ quality of life and can interfere with both social relationships and employment.¹⁻³ Primary and secondary tumors of the central nervous system (CNS) long have been recognized to cause impairment in cognitive function due to
both direct injury to the CNS by tumor invasion as well as from injury caused by surgery, radiation therapy, and chemotherapy.\[4\] More recently, cognitive sequelae from non-CNS malignancies have been recognized and may persist as long as 20 years in a subset of individuals.\[5–7\] For these survivors, the level of severity and duration varies, but in many studies has been shown to be mild with only a subset of survivors having prolonged difficulties.\[8\] Objective neuropsychological testing indicates difficulties across a number of domains, most frequently including executive function, attention and concentration, short-term memory, and processing speed.\[9\] Survivors complain of difficulties with multi-tasking, word-finding, remembering appointments, misplacing items, reading comprehension, and aspects of driving and directions.\[2,3\]

A number of causal mechanisms for non-CNS cognitive sequelae have been postulated including: Inflammatory cytokine release, impairment of DNA repair mechanisms, genetic predisposition, chemotherapy-induced anemia and/or estrogen suppression, telomere shortening, cell senescence, alteration in the blood-brain barrier, and neural progenitor cell injury.\[10–14\] Many of these proposed mechanisms are consistent with a model of accelerated aging.\[8,14\] Confounding factors may include the impact of the cancer diagnosis on mood states (anxiety and depression) and the ability to direct attention.\[15\] Fatigue, sleep disturbance, and neuropathy also may be related to cognitive complaints.\[2,16\] Research to identify risk factors that may predispose some individuals to more severe and long-lasting complaints is on-going. The search for evidence-based prevention and intervention strategies continues for both CNS and non-CNS cancer-related cognitive changes. A number of pharmacologic and nonpharmacologic interventions have been studied.\[17,18\] Due to mixed study results and variation in study design, a standard of care for prevention or treatment of cognitive sequelae has not been established.\[17] However, the National Comprehensive Cancer Network guidelines recommend regular exercise as one strategy to mitigate the cognitive impact of cancer and cancer therapy.\[19\]

In recent years, the investigation of complementary therapies in the United States has been supported by the development of the National Center for Complementary and Integrative Health (NCCIH), an organization within the National Institutes of Health. Complementary therapy is defined by the NCCIH as a “nonmainstream practice used together with conventional medicine” as opposed to alternative medicine which is used “in place of conventional medicine.”\[20\] Complementary therapies in conjunction with conventional medicine are being included in integrative programs designed to maximize symptom management in cancer treatment centers providing survivorship care. The use of complementary therapies has been demonstrated to be acceptable to individuals with cancer. Results of a recent survey of 1471 cancer survivors indicated that 66.5% reported use of complementary and alternative medicine, 43.3% of whom report use within the past year.\[21\] To date, preliminary work has been done to explore the use of various complementary or integrative approaches to cognitive sequelae for cancer survivors. The purpose of this article is to review the existing evidence for the use of complementary and integrative interventions to prevent or treat cancer-related cognitive changes and to discuss the rationale for current and future research.
Methods

PubMed and CINAHL databases were searched using the following terminology: Complementary, alternative, and integrative medicine, cognition, cognitive function, and cancer. Due to the limited amount of published data in this area of research, criteria for inclusion in this review were articles in which outcomes of perceived cognitive function and/or objective cognitive performance were planned or reported for interventional research conducted with cancer survivors. Articles were included regardless of study design or limitations in an effort to identify all complementary intervention research conducted to date. This search yielded 11 studies[22–31] (10 completed and 1 planned) and 4 review articles.[32–35] The review articles were utilized to identify two studies not found using the search terminology.[36,37] Six additional studies[38–43] were identified from the recent Oncology Nursing Society Putting Evidence into Practice initiative[17] and one study was added due to awareness of current literature related to exercise as a potential intervention.[18,44]

Results

Complementary and integrative therapy research for cancer-related cognitive changes conducted to date includes the investigation of a variety of diverse interventions. The articles included in this review are summarized in Table 1 and are organized into categories for nutritional supplements, mindfulness-based interventions such as meditation and physical activity with a mindfulness component, and other interventions such as haptotherapy, neurofeedback, acupuncture, and the use of restorative environments. A brief description of the various interventions and rationale for investigation is provided below.

Nutritional supplements

Ginkgo biloba—The use of Ginkgo biloba to treat cognitive changes has been investigated for individuals with brain tumors with cognitive complaints following treatment with radiation[23] and for the prevention of cognitive dysfunction for women receiving adjuvant therapy for breast cancer.[24] The rationale for studying G. biloba is based on previous research conducted to investigate the use of the herb for individuals with Alzheimer’s disease and dementia. Results have been mixed, but G. biloba is thought to demonstrate antioxidant activity, increase cerebral blood flow, improve glucose utilization, and stimulate hippocampal choline uptake. Attia et al. reported that 24 weeks of therapy with 40 mg of G. biloba 3 times a day was associated with improvements on objective tests of executive function, attention, concentration, and verbal memory for 34 patients treated with radiation therapy for brain tumors.[23] Attia et al. noted a high drop-out rate for participants in the intervention arm. In contrast, Barton et al. found no significant results for the use of G. biloba 60 mg twice a day during chemotherapy for breast cancer versus placebo (n = 166) for the prevention of cognitive changes.

Vitamin E—The anti-oxidant properties of Vitamin E have attracted researchers investigating interventions for cognitive dysfunction resulting from temporal lobe radiation necrosis[38] and for studying the potential for combined effects with the cholinesterase inhibitor, donepezil.[42] Chan et al. found that 1000 international units of Vitamin E per day...
for a year improved results of the objective tests for global cognitive functioning, attention, verbal memory, language ability, and cognitive flexibility for patients with nasopharyngeal cancer who developed temporal lobe necrosis as a result of radiation therapy. Jatoi et al. attempted to study Vitamin E in combination with donepezil as a treatment to prevent cognitive impairment for patients with small cell lung cancer following completion of therapy. However, due to narrow inclusion criteria, they were unable to successfully recruit participants and closed the trial after 15 months and a sample size of nine.

Omega-3 fatty acids—Omega-3 fatty acids (also referred to as n-3 polyunsaturated fatty acids) are purported to reduce the production of inflammatory cytokines. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are obtained from fish oil and have been investigated as treatment for cognitive impairment. A recent meta-analysis indicated positive results for adults with cognitive impairment without dementia. One study has been published in which EPA and DHA were evaluated in patients with nonsmall cell lung cancer receiving chemoradiotherapy. In this small study, the intervention group did report better cognitive function than controls, although cognition was not a primary endpoint for the study and no objective cognitive testing was done.

Mindfulness-based interventions

Mindfulness has been operationally defined by a two-component model. The first component of the model consists of developing skills to sustain attention (typically by focusing on the breath via meditation techniques) on the current experience and developing flexibility for switching focus to keep attention anchored in the current experience. The second component involves cultivating an orientation of curiosity and acceptance to the current experience. Bishop et al. summarize the definition of mindfulness as “the self-regulation of attention, which involves sustained attention, attention switching, and the inhibition of elaborative processing.”

Mindfulness also involves gaining insights into one’s thoughts and feelings in order to adopt a decentered perspective and cope with challenges.

Meditation—Rationale for the investigation of meditation and other mindfulness-based techniques is related to evidence linked to the reduction of anxiety, depression, and the stress response as well as enhancing the immune system. Results of meditation studies conducted in children and adults with attention deficit-hyperactive disorder demonstrated positive results for improving cognitive function and laid the foundation for investigation in the cancer population. Several mechanisms for improved cognitive function have been proposed, including increased activity in neural circuitry associated with attention; prefrontal, temporal, and parietal cortical thickening; and decreases in stress-induced cortisol levels. Meditation has been postulated to have neuroprotective effects and may reduce age-related cognitive decline. Meditation, including foci on breathing regulation and control of thoughts and feelings, is postulated as a type of attentional training exercise and has been explored as an intervention for a number of cancer-related symptoms such as anxiety, depression, and fatigue. Three randomized, controlled trials have been published in which meditation has been investigated as a potential intervention for cognitive complaints following treatment for breast or other types of cancer.
one of these studies was designed with performance on objective tests of cognitive function as a primary outcome.[143] Milbury \textit{et al.} found significant improvements for verbal memory, short-term memory, and processing speed following a 6-week intervention of Tibetan sound meditation for a small sample of breast cancer survivors with posttreatment cognitive complaints. Results from the other two studies demonstrated improvements in subjective cognitive function for larger samples following mindfulness-based meditation/stress reduction programs.[30,41]

Mindfulness-based music therapy—Lesiuk recently published results from a small study conducted to assess the impact of 4 weeks of mindfulness-based music therapy for women with breast cancer receiving adjuvant chemotherapy.[45] Music stimuli was identified as a good alternative source for mindfulness focus versus the more traditional focus on the breath. Participants improved on the objective tests of attention following the intervention. Due to the small sample size and lack of a control group, the conclusions that can be drawn from this study are limited.

Mindfulness-based exercise

As with meditation, several forms of exercise include a mindfulness-based component. Exercise and physical activity are of great interest as potential interventions for cancer-related cognitive complaints due to the proposed mechanism of decreasing markers of inflammation associated with cognitive dysfunction and increasing levels of brain-derived neurotrophic factor and hippocampal volume.[18,49,50] Likewise, exercise combined with the potential added benefit of mindfulness may potentiate the benefits of either intervention alone as the two interventions may work through different mechanistic pathways.[44]

Yoga, Tai Chi, and Qigong share many similarities in that each combines physical movements or postures with breathing techniques and meditation with the goal of improving health and well-being.[51] Yoga practices originate in India and Tibet. Qigong, of which Tai Chi is one form, originates in China. These mind-body practices have been studied as strategies for stress reduction and symptom management in a number of populations and are sometimes referred to as meditative-movement therapies.[52]

Yoga—Results of three studies designed to investigate the potential benefits of yoga for cancer-related cognitive complaints in women with breast cancer have been published to date.[26,31,44] These studies include a case series for women taking part in an Iyengar-inspired yoga program, a secondary analysis of a randomized controlled trial of a hatha yoga program following the completion of breast cancer treatment and a randomized controlled trial of an integrated yoga program with a supportive counseling component delivered throughout treatment with radiation therapy. Galantino \textit{et al.} reported improvement trends for tests of objective cognitive function and no difference in perceived cognitive function following the Iyengar-inspired yoga program.[26] However, they were unable to recruit to their desired sample size and limited their publication of results to four women. Derry \textit{et al.} and Vadiraja \textit{et al.} did not assess objective cognitive function.[31,44] Results from both studies demonstrated improvements in subjective cognitive function and a dose-response was noted for the hatha yoga program. Markers of inflammatory cytokine levels did
decrease for participants who took part in the hatha yoga program, however an association was not demonstrated with subjective cognitive function.\cite{44} Cognitive function was not a primary endpoint for the investigation of the integrated yoga program.\cite{31}

Tai Chi—One small study was conducted to evaluate a 10-week Tai Chi course for women with any type of cancer at least 12 months following the completion of all cancer therapy.\cite{29} Improvements in objective tests of cognitive function were demonstrated 1 month after the intervention. The Yang form of Tai Chi was employed and is considered to be a moderate intensity form of exercise designed not to exceed 50% of participants’ oxygen intake. The small sample size and lack of a control group limit the conclusions that can be drawn from these encouraging results.

Qigong—Oh et al. studied the effects of 10 weeks of Qigong for individuals with any type of cancer exposed to, or receiving, chemotherapy.\cite{28} Improvement in subjective cognitive function was demonstrated at the completion of the intervention. No association between subjective cognitive function and a marker of inflammation (C-reactive protein) was demonstrated. The study design did not include objective tests of cognitive function.

Other

Haptotherapy—Haptotherapy is a complementary therapy combining touch, counseling, and talking to achieve relaxation and facilitate getting in touch with one’s feelings.\cite{53} This intervention is based on haptonomy in which thoughts, feelings, and words are combined into what is referred to as psycho-tactile contact.\cite{53} This form of complementary therapy is practiced primarily in the Netherlands and much of the source material is written in the Dutch language.\cite{54} One study has been published in English in which haptotherapy was investigated as an intervention for perceived well-being in patients receiving chemotherapy.\cite{36} The intervention involved five sessions over the course of treatment for a very small sample. Subjective cognitive function improved for the intervention group. The interpretation of results is limited by the lack of randomization and the small sample size. Cognition was not a primary outcome for the study.

Neurofeedback—Neurofeedback (also referred to as electroencephalographic [EEG] — biofeedback) involves the presentation of real-time feedback to individuals regarding their brain waves as measured by EEG electrodes placed on the scalp.\cite{22,25} One type of neurofeedback provides the individual with positive reinforcement when a desired brain wave is produced. Reinforcement may be visual or auditory such as seeing a move or hearing music.\cite{25} Results from studies in which neurofeedback was associated with improved cognitive function for attentional-deficit hyperactivity disorder and traumatic brain injury provided a framework for investigating neurofeedback in the oncology population.\cite{22,25} Proposed mechanisms for neurofeedback include enhancement of neuroplasticity and training of the brain to shift away from pathological brain wave patterns through positive reinforcement not unlike operant conditioning.\cite{22,25} Description of a planned neurofeedback trial for children treated for primary brain tumors was published in 2012.\cite{25} More recently, Alvarez et al. reported results of a 10-week neurofeedback intervention for women with breast cancer between 6 and 60 months of completing...
chemotherapy who report cognitive impairment. This method of neurofeedback differs from that used by de Ruiter et al. in that rather than providing positive feedback for specific brain waves, the participant’s brain is allowed to utilize the feedback (brief interruptions in recorded music) to enable self-organization. Alvarez et al. noted improvements for all self-reported cognitive measures across all study time points. The participants served as their own controls and the sample size was small.

Acupuncture—Acupuncture involves the insertion of wire-thin needles into particular locations (acupoints) along specific meridians (channels in the body that transport energy). Rationale for the investigation of acupuncture involves neurofunctional modulation of the CNS to increase neuroplasticity after injury and increase cerebellar circulation. A combination of patient education and acupuncture was investigated for the relief of cancer-related fatigue. No differences in subjective cognitive function, the secondary endpoint, were demonstrated.

Restorative environment—One of the earliest complementary therapies investigated for improving cancer-related cognitive complaints was exposure to a restorative environment (such as spending time in a park or garden, observing wildlife, or participating in activities of the arts such as music or painting). Cimprich and Ronis postulated that exposure to activities that engage fascination and have restorative properties would decrease or prevent attentional fatigue associated with cancer and cancer therapy. Positive results were published from two studies in which improvements were demonstrated for objective cognitive function following the intervention.

Discussion

The investigation of complementary and integrative therapies as interventions for cancer and cancer-related cognitive changes is a relatively nascent field of research. Cimprich’s early work in restorative environments for women receiving surgery for breast cancer dates back to 1993, however her follow-up study was not conducted until 2003 and no further work with this intervention has been published. All other studies included in this review have been published since 2003 and no more than three studies have been published for each intervention. Small sample sizes, heterogeneity of tumor types, and variations in study designs limit the conclusions that can be drawn.

Most of the work (nine studies) has been conducted in the area of mindfulness-based interventions. A number of gaps in the literature remain primarily due to preliminary study designs, small sample sizes, lack of objective cognitive testing, and cognitive function not being a primary endpoint for much of the published work. Of the mindfulness-based studies, five were related to mindfulness-based exercise. Three of these studies were randomized, controlled trials, although one involved secondary analysis for a cognitive endpoint added to a larger trial. The results from these three studies investigating yoga, tai chi, and qigong were positive for self-reported cognitive function. The small tai chi study results also were positive for objective cognitive function. Four studies were designed to investigate the types of meditation (Tibetan sound - 1, mindfulness meditation-based stress reduction - 2, and mindfulness-based music therapy - 1). Although results all were positive, only one study...
design included cognitive function as a primary outcome and included objective cognitive testing.

To date, the bulk of the research conducted in the area of cancer and cancer treatment-related cognitive changes has been with breast cancer survivors. The studies reviewed here are no exception as 11 of 20 are specific to breast cancer. Of note, two studies were focused on primary brain tumors and three involved survivors of any type of cancer.

Study designs vary as to whether both subjective (self-report) and objective (neuropsychological testing) measures are included. Some have postulated that subjective and objective instruments actually measure different constructs of cognitive function with subjective tests being influenced by mood states such as anxiety and depression.\[56,57] This hypothesis is supported by the frequent lack of correlation between subjective and objective tests. Survivors’ perception of cognitive changes has been documented to precede physiological changes in activation and structural changes assessed by neuroimaging.\[58\] Neuropsychological testing requires specialized training and can be time-consuming from both a resource and survivor burden perspective. However, documentation of objective cognitive changes has been considered necessary for verifying impairment and may be required for survivors’ seeking medical disability. Recent work by Von Ah et al. indicated that the perceived cognitive abilities subscale of the Functional Assessment Cancer Therapy-cognition may be clinically relevant and useful as an assessment tool in clinical practice outside the constraints of a clinical trial.\[3\] Eight of the 20 studies reviewed here were designed to assess both subjective and cognitive functions. The majority (11 studies) included the self-report measures alone.

The sheer volume of available neuropsychological measures complicates comparing results across trials. Recently, the International Cancer and Cognition Task Force published recommendations for core measures to be included in prospective trials.\[58\] These measures are specific to the cognitive domains of executive function, memory, and processing speed and are believed to be more appropriate for capturing the subtlety of cognitive changes for this patient population than global cognitive measures.\[58\]

Conclusions and Recommendations for Future Research

The study results published to date indicate that some complementary therapies may be beneficial to cancer survivors experiencing cognitive concerns. Further work is needed to ascertain the mechanisms behind mindfulness-based interventions. However, the preliminary results discussed here indicate some promise in the use of mindfulness-based interventions for cancer and cancer treatment-related cognitive complaints. Larger, randomized controlled trials are needed to establish effect sizes for specific types of mindfulness-based interventions. Comparisons between nonmindfulness-based exercise, mindfulness-based exercise, and meditation would be of interest to ascertain potential differences in mechanisms and efficacy. Likewise, further work is needed to determine the most efficacious timing, duration, and intensity of the interventions. Study populations need to continue to be expanded beyond breast cancer as the phenomenon of cancer and cancer treatment-related cognitive changes is not restricted to breast cancer survivors. Additional
prospective trials designed to measure both subjective and objective cognitive functions following complementary and integrative interventions to minimize cognitive changes still are needed to inform evidence-based practice changes.

Acknowledgments

Financial support and sponsorship

National Institute of Nursing Research (T32TNR011972A).

References

1. Boykoff N, Moieni M, Subramanian SK. Confronting chemobrain: An in-depth look at survivors’ reports of impact on work, social networks, and health care response. J Cancer Surviv. 2009; 3:223–232. [PubMed: 19760150]

2. Myers JS. Chemotherapy-related cognitive impairment: The breast cancer experience. Oncol Nurs Forum. 2012; 39:E31–E40. [PubMed: 22201666]

3. Von Ah D, Habermann B, Carpenter JS, Schneider BL. Impact of perceived cognitive impairment in breast cancer survivors. Eur J Oncol Nurs. 2013; 17:236–241. [PubMed: 22901546]

4. Bohan EM. Cognitive changes associated with central nervous system malignancies and treatment. Semin Oncol Nurs. 2013; 29:238–247. [PubMed: 24183155]

5. Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: An update on the state of the science. J Clin Oncol. 2012; 30:3675–3686. [PubMed: 23008308]

6. Koppelmans V, Breteler MM, Boogerd W, Seynaeve C, Schagen SB. Late effects of adjuvant chemotherapy for adult onset non-CNS cancer; cognitive impairment, brain structure and risk of dementia. Crit Rev Oncol Hematol. 2013; 88:87–101. [PubMed: 23768778]

7. Koppelmans V, de Groot M, de Ruiter MB, Boogerd W, Seynaeve C, Vernooij MW, et al. Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Hum Brain Mapp. 2014; 35:889–899. [PubMed: 23281152]

8. Ahles TA. Cognitive changes associated with cancer and cancer treatment. Semin Oncol Nurs. 2013; 29:229–231. [PubMed: 24183153]

9. Von Ah D. Cognitive changes associated with cancer and cancer treatment: State of the science. Clin J Oncol Nurs. 2015; 19:47–56. [PubMed: 25689649]

10. Ahles TA, Saykin AJ. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer. 2007; 7:192–201. [PubMed: 17318212]

11. Cleeland CS, Bennett GJ, Dantzer R, Dougherty PM, Dunn AJ, Meyers CA, et al. Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism? A cytokine-immunologic model of cancer symptoms. Cancer. 2003; 97:2919–2925. [PubMed: 12767108]

12. Dietrich J, Han R, Yang Y, Mayer-Pröschel M, Noble M. CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. J Biol. 2006; 5:22. [PubMed: 17125495]

13. Jansen C, Miaskowski C, Dodd M, Dowling G, Kramer J. Potential mechanisms for chemotherapy-induced impairments in cognitive function. Oncol Nurs Forum. 2005; 32:1151–1163. [PubMed: 16270111]

14. Mandelblatt JS, Hurria A, McDonald BC, Saykin AJ, Stern RA, VanMeter JW, et al. Cognitive effects of cancer and its treatments at the intersection of aging: What do we know; what do we need to know? Semin Oncol. 2013; 40:709–725. [PubMed: 24331192]

15. Cimprich B, So H, Ronis DL, Trask C. Pre-treatment factors related to cognitive functioning in women newly diagnosed with breast cancer. Psychooncology. 2005; 14:70–78. [PubMed: 15386786]

16. Myers JS. Neuropsychologic testing for chemotherapy-related cognitive impairment. Adv Exp Med Biol. 2010; 678:55–69. [PubMed: 20738007]

Asia-Pac J Oncol Nurs. Author manuscript; available in PMC 2015 December 28.
17. Von Ah D, Jansen CE, Allen DH. Evidence-based interventions for cancer- and treatment-related cognitive impairment. Clin J Oncol Nurs. 2014; 18(Suppl):17–25. [PubMed: 25427606]

18. Asher A, Myers JS. The effect of cancer treatment on cognitive function. Clin Adv Hematol Oncol. 2015; 13:441–450. [PubMed: 26353040]

19. NCCN Guidelines Survivorship. [Last updated on 2/27/15; Last accessed on 2015 Apr 01] National Comprehensive Cancer Network. 2015. Available from: http://www.nccn.org/

20. NCCIH. [Last accessed on 2015 May 14] Complementary, Alternative, or Integrative Health: What’s in a Name?. 2015. Available from: https://www.nccih.nih.gov/health/integrative-health

21. Mao JJ, Palmer CS, Healy KE, Desai K, Amsterdam J. Complementary and alternative medicine use among cancer survivors: A population-based study. J Cancer Surviv. 2011; 5:8–17. [PubMed: 20924711]

22. Alvarez J, Meyer FL, Granoff DL, Lundy A. The effect of EEG biofeedback on reducing postcancer cognitive impairment. Integr Cancer Ther. 2013; 12:475–487. [PubMed: 23584550]

23. Attia A, Rapp SR, Case LD, D’Agostino R, Lesser G, Naughton M, et al. Phase II study of Ginkgo biloba in irradiated brain tumor patients: Effect on cognitive function, quality of life, and mood. J Neurooncol. 2012; 109:357–363. [PubMed: 22700031]

24. Barton DL, Burger K, Novotny PJ, Fitch TR, Kohli S, Soori G, et al. The use of Ginkgo biloba for the prevention of chemotherapy-related cognitive dysfunction in women receiving adjuvant treatment for breast cancer. N00C9. Support Care Cancer. 2013; 21:1185–1192. [PubMed: 23150188]

25. de Ruiter MA, Schouten-Van Meeteren AY, van Mourik R, Janssen TW, Greidanus JE, Oosterlaan J, et al. Neurofeedback to improve neurocognitive functioning of children treated for a brain tumor: Design of a randomized controlled double-blind trial. BMC Cancer. 2012; 12:581. [PubMed: 23217162]

26. Galantino ML, Greene L, Daniels L, Dooley B, Muscatello L, O’Donnell L. Longitudinal impact of yoga on chemotherapy-related cognitive impairment and quality of life in women with early stage breast cancer: A case series. Explore (NY). 2012; 8:127–135. [PubMed: 22385567]

27. Johnston MF, Hays RD, Subramanian SK, Elashoff RM, Axe EK, Li JJ, et al. Patient education integrated with acupuncture for relief of cancer-related fatigued randomized controlled feasibility study. BMC Complement Altern Med. 2011; 11:49. [PubMed: 21703001]

28. Oh B, Butow PN, Mullan BA, Clarke SJ, Beale PJ, Pavlakis N, et al. Effect of medical Qigong on cognitive function, quality of life, and a biomarker of inflammation in cancer patients: A randomized controlled trial. Support Care Cancer. 2012; 20:1235–1242. [PubMed: 21688163]

29. Reid-Arndt SA, Matsuda S, Cox CR. Tai Chi effects on neuropsychological, emotional, and physical functioning following cancer treatment: A pilot study. Complement Ther Clin Pract. 2012; 18:26–30. [PubMed: 22196570]

30. Speca M, Carlson LE, Goodey E, Angen M. A randomized, wait-list controlled clinical trial: The effect of a mindfulness meditation-based stress reduction program on mood and symptoms of stress in cancer outpatients. Psychosom Med. 2000; 62:613–622. [PubMed: 11020090]

31. Vadiraja HS, Rao MR, Nagarathna R, Nagendra HR, Rekha M, Vanitha N, et al. Effects of yoga program on quality of life and affect in early breast cancer patients undergoing adjuvant radiotherapy: A randomized controlled trial. Complement Ther Med. 2009; 17:274–280. [PubMed: 19942107]

32. Avisar A, River Y, Schiff E, Bar-Sela G, Steiner M, Ben-Arye E. Chemotherapy-related cognitive impairment: Does integrating complementary medicine have something to add? Review of the literature. Breast Cancer Res Treat. 2012; 136:1–7. [PubMed: 22915072]

33. Biegler KA, Chaoul MA, Cohen L. Cancer, cognitive impairment, and meditation. Acta Oncol. 2009; 48:18–26. [PubMed: 19031161]

34. Johnston MF, Yang C, Hui KK, Xiao B, Li XS, Ruskiewicz A. Acupuncture for chemotherapy-associated cognitive dysfunction: A hypothesis-generating literature review to inform clinical advice. Integr Cancer Ther. 2007; 6:36–41. [PubMed: 17351025]

35. van den Berg M, Visser A, Schoolmeesters A, Edelman P, van den Borne B. Evaluation of haptotherapy for patients with cancer treated with chemotherapy at a day clinic. Patient Educ Couns. 2006; 60:336–343. [PubMed: 16426798]
36. van der Meij BS, Langius JA, Spreeuwenberg MD, Slootmaker SM, Paul MA, Smit EF, et al. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: An RCT. Eur J Clin Nutr. 2012; 66:399–404. [PubMed: 22234041]

37. Chan AS, Cheung MC, Law SC, Chan JH. Phase II study of alpha-tocopherol in improving the cognitive function of patients with temporal lobe radionecrosis. Cancer Metastasis Rev. 2004; 100:398–404.

38. Cimprich B. Development of an intervention to restore attention in cancer patients. Cancer Nurs. 1993; 16:83–92. [PubMed: 8477404]

39. Cimprich B, Ronis DL. An environmental intervention to restore attention in women with newly diagnosed breast cancer. Cancer Nurs. 2003; 26:284–292. [PubMed: 12886119]

40. Hoffman CJ, Ersser SJ, Hopkinson JB, Nicholls PG, Harrington JE, Thomas PW. Effectiveness of mindfulness-based stress reduction in mood, breast- and endocrine-related quality of life, and well-being in stage 0 to III breast cancer: A randomized, controlled trial. J Clin Oncol. 2012; 30:1335–1342. [PubMed: 22430268]

41. Jatoi A, Kahanic SP, Frytak S, Schaefer P, Foote RL, Sloan J, et al. Donepezil and vitamin E for preventing cognitive dysfunction in small cell lung cancer patients: Preliminary results and suggestions for future study designs. Support Care Cancer. 2005; 13:66–69. [PubMed: 15480814]

42. Milbury K, Chaoul A, Biegler K, Wangyal T, Spelman A, Meyers CA, et al. Tibetan sound meditation for cognitive dysfunction: Results of a randomized controlled pilot trial. Psychooncology. 2013; 22:2354–2363. [PubMed: 23657969]

43. Derry HM, Jaremka LM, Bennett JM, Peng J, Andridge R, Shapiro CL, et al. Yoga and self-reported cognitive problems in breast cancer survivors: A randomized controlled trial. Psychooncology. 2014; 23:958–966. [PubMed: 25336068]

44. Lesiuk T. The effect of mindfulness-based music therapy on attention and mood in women receiving adjuvant chemotherapy for breast cancer: A pilot study. Oncol rs Forum. 2015; 42:276–282.

45. Chan JS, Yan JH, Payne VG. The impact of obesity and exercise on cognitive aging. Front Aging Neurosci. 2013; 5:97. [PubMed: 24391586]

46. Mazereeuw G, Lancôt KL, Chau SA, Swardfager W, Herrmann N. Effects of ω-3 fatty acids on cognitive performance: A meta-analysis. Neurobiol Aging. 2012; 33:1482.e17–1482.e29. [PubMed: 22305186]

47. Bishop SR, Lau M, Shapiro S, Carlson L, Anderson ND, Carmody J, et al. Mindfulness: A proposed operational definition. Clin Psychol Sci Pract. 2004; 11:230–241.

48. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011; 108:3017–3022. [PubMed: 21282661]

49. Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015; 60:56–64. [PubMed: 2545510]

50. Chaoul A, Milbury K, Sood AK, Prinsloo S, Cohen L. Mind-body practices in cancer care. Curr Oncol Rep. 2014; 16:417. [PubMed: 25325936]

51. Kelley GA, Kelley KS. Meditative movement therapies and health-related quality-of-life in adults: A systematic review of meta-analyses. PLoS One. 2015; 10:e0129181. [PubMed: 26053053]

52. ONS. [Last accessed on 2015 Jun 05] Haptotherapy: PEP Topic-Fatigue. Available from: https://www.ons.org/intervention/haptotherapy

53. Bosscher, R.; van Leeuwen, A.; Pluimers, C. [Last accessed on 2013 Feb 03] The clinical effectiveness of haptotherapy in routine practices. J Haptonomy Haptotherapy, published online 3/2/13. Available from: http://www.ijhh.org/userfiles/1362266844.pdf

54. ONS. [Last accessed on 2015 Jun 05] Acupuncture: PEP Topic-Fatigue. 2015. Available from: https://www.ons.org/intervention/acupuncture-3

55. Lai JS, Butt Z, Wagner L, Sweet JJ, Beaumont JL, Vardy J, et al. Evaluating the dimensionality of perceived cognitive function. J Pain Symptom Manage. 2009; 37:982–995. [PubMed: 19500722]

56. Lai JS, Wagner LI, Jacobsen PB, Cella D. Self-reported cognitive concerns and abilities: Two sides of one coin? Psychooncology. 2014; 23:1133–1141. [PubMed: 24700645]

Asia-Pac J Oncol Nurs. Author manuscript; available in PMC 2015 December 28.
57. Saykin AJ, Wishart HA, Rabin LA, Santulli RB, Flashman LA, West JD, et al. Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology. 2006; 67:834–842. [PubMed: 16966547]

58. Wefel JS, Vardy J, Ahles T, Schagen SB. International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011; 12:703–708. [PubMed: 21354373]
Table 1

Nutritional supplements	Authors	Design and sample	Intervention description	Measures	Outcomes	Limitations
G. biloba	Attia et al. 2012	Open label, prospective, phase II, interventional. *n* = 34 patients with primary brain tumors ≥6 months after partial or whole brain radiation, no evidence of tumor progression within previous 3 months, stable or tapering steroid dose	*G. biloba* 40 mg tid PO for 24 weeks followed by 6-week washout period	Assessments at baseline, 12, 24 (end of treatment) and 30 weeks (after washout). KPS, FACT-BR, POMS, MMSE (global cognitive function). TMT-A (attention/concentration) and B executive function. DST (attention/concentration and working memory). ROCF (immediate and delayed recall). CVLT-II, F-A-S (verbal fluency).	Significant improvement noted for executive function (*P* = 0.007). Attention/concentration (*P* = 0.002), and immediate and delayed nonverbal memory (*P* = 0.001/0.002) at 24 weeks. 68% completed 12 weeks, 56% completed 24 weeks of intervention. 5 went off treatment due to toxicity (4 GI symptoms, 1 intracranial bleed).	No control group. Small sample size. High drop-out rate (44%) due to toxicity.
G. biloba	Barton et al. 2013	RDBPC phase III prevention trial. *n* = 166 chemotherapy naive women with breast cancer preparing to start adjuvant chemotherapy	*G. biloba* 60 mg bid versus placebo initiated prior to second cycle of chemotherapy and continued 1-month past completion of chemotherapy	HSCS, TMT-A and B, PHS, POMS	No differences noted between intervention and placebo arms. HSCS now known for large practice effect.	
Vitamin E	Chan et al., 2004	Nonrandomized, controlled, interventional with pre- and post-intervention assessments *n* = 29 NPC patients with TLN (19 intervention, 10 control)	Vitamin 3, 1000 IU PO bid for 1-year versus control	CMMSE (global cognitive functioning). Computerized reaction time attention test. HKLLT (verbal memory). WMS-III VR (visual memory). CFT (expressive language ability). Computerized cognitive flexibility test. Self-evaluation of cognitive function for 8 domains.	Improvement at 1-year for intervention group in: Global cognitive functioning (*P* = 0.035). Visual memory = *P* = 0.007. Verbal memory = *P* = 0.036. Executive function = *P* = 0.04. No difference seen for attention, language, or self-evaluation.	Two instruments were developed by the authors and no information was provided on psychometrics. No randomization or blinding. Small sample size. No long-term follow-up past 1-year.
Vitamin E	Jatoi et al., 2005	DBPC *n* = 9 SCLC patients with complete response or minimal disease after completion of all therapy, including PCI	Donepezil, 5 mg/day PO for 1-month and increased to 10 mg/day if well tolerated and Vitamin E, 1000 IU/day PO versus identical placebos	MMSE, Blessed dementia scale	Unable to draw conclusions from this trial. Closed due to poor accrual (only 9 of 104 patients enrolled over 15 months). Median time on intervention was 42 days compared to 69 days for placebo.	Eligibility criteria too narrow for enrollment.
Nutritional supplements	Authors	Design and sample	Intervention description	Measures	Outcomes	Limitations
---------------------------------	--------------------------------------	--	--	--	---	--
Omega-3 fatty acids	van der Meij et al. 2012[37]	RDBPC n=40 patients with stage III NSCLC receiving chemo-radiotherapy	Oral nutritional supplement containing EPA 2.02 g and DHA 0.92 g in 2 cans/day over 5 weeks versus an isocaloric control supplement (ensure)	EORTC-QoL C-30 KPS Handgrip strength PAM accelerometer	Intervention group reported better cognitive function than controls (P<0.01) and trended towards higher physical activity (P=0.05)	Small sample size. Cognitive function was not a primary endpoint
Mindfulness-based interventions	Mediation	RCT n=47 women with stage I-III breast cancer, 6-60 months postchemotherapy who reported cognitive impairment	Twice weekly 60 min TSM group sessions for 6 weeks versus wait-list control	Assessments at baseline, end of treatment, and 1-month late Digit span (attention and working memory) Digit symbol (visuomotor coordination, attention, processing speed) COWA (verbal fluency) RAVLT (verbal memory) FACT-COG CES-D (depression) PSQI (sleep) BPI (fatigue) MOS SF-36 (HRQoL) FACT Spiritual Well-Being Scale	- TSM group demonstrated better verbal memory (P=0.06), short-term memory and processing speed (P=0.09), and reported improved cognitive function/abilities (P=0.06, 0.08) and less depression (P=0.05) 72.2% attended 75% of the sessions. 23.5% attended 100%	Small sample size. No control group. Eligibility based on self-report instead of objective tests of cognitive function. No measure of home practice during follow-up period
Mindfulness-based interventions	Specia et al. 2000[30]	RCT n=90 patients with a history of any type of cancer (86 women, 23 men; 38 with breast cancer)	7 weekly 90 min mindfulness meditation-based stress reduction program sessions versus wait-list control	Assessments pre- and post-intervention POMS SOSI	Intervention group demonstrated less mood disturbance (including confusion, P<0.05) and symptoms of stress (including cognitive disorganization, P<0.01) than controls	Small sample size. Cognition was not a primary outcome. No objective cognitive testing
Mindfulness-based interventions	Hoffman et al., 2012[41]	RCT n=229 women with breast cancer after completion of surgery, chemotherapy, and radiation therapy	8-week MBSR program (2.25 h weekly and one 6 h session in week 6) versus wait-list control	Assessments at baseline (T1), 8 weeks (T2), and 12 weeks (T3) POMS FACT-Breast FACT-Endocrine symptoms WHO-5 (mood, QoL, well-being)	MBSR group demonstrated main effect improvement for all measures. Improvement noted for POMS confusion subscale at T2 (P=0.002)	Cognition was not a primary outcome. No objective cognitive testing
MBMT	Lesnick, 2015[45]	Nonrandomized longitudinal n=15 women with stage I-III	MBMT-60 min/week for 4 weeks	Assessments of attention at baseline (T1) and conclusion of intervention (T2)	Attention was improved at T2 (P=0.022) as was mood (P<0.001),	No randomization or control. Small sample size
Nutritional supplements	Authors	Design and sample	Intervention description	Measures	Outcomes	Limitations
------------------------	---------	-------------------	-------------------------	----------	----------	-------------
Mindfulness-based exercise						
Yoga	Galantino, et al. 2012[26]	Case series	Iyengar-inspired yoga program twice a week for 12 weeks	Assessments at baseline, and at the conclusion of each session	Improvement trends noted for objective tests of cognitive function (speed, accuracy, and reduced errors)	Unable to recruit desired sample size (sample size goal not reported). Results limited to case series of four women who were representative of different aspects of the sample
	Deny et al. 2014[44]	Secondary analysis of cognitive outcomes for RCT	Hatha yoga intervention twice a week for 12 weeks versus wait-list control	Assessments at baseline, and 6 and 12 weeks during chemotherapy, and 1 and 3 months after chemotherapy	Improvement group reported less cognitive complaints at 3 months (P=0.003) after controlling for distress, fatigue, and sleep disturbance. Dose response noted for participants with frequent yoga practice (P<0.001)	
	Vadraja et al. 2009[31]	RCT	Daily 60 min yoga sessions (at least 3 per week in-person with instructor) for 6 weeks versus supportive counseling (15 min every 10 days by trained social worker)	Assessments at baseline and 6 weeks	Yoga group demonstrated improvement in cognitive functioning dimension for the EORTC-Qol C30 (P=0.03)	Small sample size Cognition not a primary endpoint No assessment of objective cognitive function
	Reid-Arndt et al. 2012[28]	Nonrandomized prospective	10-week Tai Chi course (1 h sessions, twice a week)	Assessments at baseline and within 1-month after intervention	Improvements noted for immediate and delayed memory, verbal fluency, attention, and executive functioning (P<0.05) as well as self-reported verbal (P=0.01) and visual memory (P<0.05)	Small sample size No control
Nutritional supplements	Authors	Design and sample	Intervention description	Measures	Outcomes	Limitations
-------------------------	---------	-------------------	-------------------------	----------	--------	------------
Qigong	Oh et al., 2012	RCT				
n equals 81 patients with history of any type of cancer who had received/were receiving chemotherapy. Subset of patients participating in a parent study once cognitive outcome added	90 min Qigong sessions twice a week for 10 weeks and daily home practice (30 min) versus usual care	IES-R				
POMS short form						
EORTC-QoL-C30 (2 cognitive items)						
FACT-COG						
FACT-General (QoL)						
CRP levels	Qigong group demonstrated self-reported cognitive improvements on both the EORTC items and FACT-COG (P=0.05) after controlling for baseline scores. CRP levels were lower in the Qigong group (P=0.042) but not associated with self-reported cognitive function	Cognitive function not a primary outcome for the parent study. No assessment of objective cognitive function. No blinding of participants.				
Other	van den Berg et al., 2006	Semi-experimental intervention trial with matched controls				
n equals 57 patients with any type of cancer (31 — intervention, 26-controls) adults recruited prior to receiving chemotherapy	Five 45-min haptotherapy sessions over the course of chemotherapy versus usual care	EORTC-QoL-C30				
POMS						
HDI evaluation of psychosocial care	Haptotherapy group scored higher on EORTC cognitive items (OR=5.18, reliability interval 1.07–23.02)	No randomization. Small sample size. Cognition was not primary outcome. No assessment of objective cognitive function.				
Neurofeedback	Alvarez et al., 2013	Prospective, wait-list controlled				
n equals 23 women with breast cancer 6-60 months postchemotherapy with self-reported cognitive impairment	10 weeks of wait-list control followed by 10 weeks of neurofeedback administered over 33 min	EORTC-QoL-C30				
FACT-COG						
FACT-Fatigue						
PSQI						
BSI	Improvements noted on all self-reported cognitive measures across time following the intervention (P<0.001). Participants' scores did not differ from normative populations on 3 of 4 of the FACT-COG subscales	Small sample size. No randomization. No assessment of objective cognitive function.				
de Ruiter et al. 2012	RDBPC					
n equals 70 pediatric brain tumor survivors (ages 8–18) with caregiver reported cognitive complaints and 35 sibling controls	Neurofeedback (33 min sessions) twice a week for 15 weeks	Assessments at baseline (T0), postintervention (T1), and 6 months later (T3)				
Qeeg						
ANT (attention and processing speed)						
Visual sequencing task and age appropriate Wechsler digit span (memory)						
WISC-III/WAIS-III (intellectual functioning)						
Stop signal task (inhibition)		Planned study published in 2012. Results not yet published				
Nutritional supplements	Authors	Design and sample	Intervention description	Measures	Outcomes	Limitations
-------------------------	---------	-------------------	--------------------------	----------	----------	-------------
Acupuncture	Johnson et al. 2011[7]	RCT n = 12 (5 intervention, 7 control women treated for breast cancer with complaints of fatigue (scores >4 on BFI)	Four weekly 50-min education sessions to improve self-care (exercise, nutrition, stress management) and eight 50-min acupuncture sessions versus usual care	Assessments at baseline and following completion of the intervention BFI FACT-COG	Intervention group reported reduction in fatigue (ES = 1.85) but no reduction of cognitive complaints	Unable to achieve desired sample of n = 80. Cognition was secondary endpoint
Restorative environment	Cimprich, 1993[19]	RCT n = 32 women newly diagnosed with stage I/II breast cancer	Participation in restorative activities for 20–30 min at least 3 times a week for 3 months versus usual care	Assessments at 3, 18, 60, and 90 days after primary surgery for breast cancer Digit span Symbol digit Letter cancellation Necker cube pattern control (TAS score = capacity to direct attention) AFI VAMS	Intervention group demonstrated improvement in TAS over the 4 time points. Significant improvement was noted between 3 and 90 day assessments (P=0.01). Both groups demonstrated improvements in AFI over time. The intervention group improvement was more consistent across time points	Specific data not collected re: Control group participation in restorative activities
	Cimprich and Ronis, 2003[40]	RCT n = 157 women newly diagnosed with breast cancer prior to surgery	Exposure to a natural environment for 120 min/week until 19 days postsurgery	Assessments at approximately 17 days presurgery (T1) and 19 days postsurgery (T2) Digit span forward Digit span backward TMT-A and B Necker cube pattern control (TAS score = capacity to direct attention) SDS	The intervention group demonstrated better TAS scores at T2 (P=0.03). Baseline TAS scores and group significantly contribute to the regression model for TAS at T2 (P=0.001 and 0.01 respectively)	26 women (older and less educated) were lost to follow-up at T2. Lack of diversity in sample (majority Caucasian and well-educated)

G. biloba: Ginkgo biloba, AFI: Attentional function index, ANT: Attention network task, BFI: Brief fatigue inventory, BCPT: Breast cancer prevention trial, BRIEF: Behavior rating inventory of executive functioning', BSI: Brief symptom inventory, CES-D: Center for epidemiologic studies depression scale, CFT: Category fluency test, CIS: Checklist individual strength, CLL: Chronic lymphocytic leukemia, CMMSE: Cantonese mini-mental status examination, COWA: Controlled oral word association, CPT-II: Conners' continuous performance test II, CRP: C-reactive protein, CVLT-II: California verbal learning test part II, DBPC: Double blind, placebo controlled, DHA: Docosahexaenoic acid, DST: Digit span test, ROCF: Modified rey osterrieth complex figure, EPA: Eicosapentaenoic acid,
