Appendix to:

EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance terbuthylazine. EFSA Journal 2019;17(9):5817, 58 pp. doi:10.2903/j.efsa.2019.5817

© European Food Safety Authority, 2017

Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) ‡	Terbuthylazine (ISO 1750)
Function (e.g. fungicide)	Herbicide
Rapporteur Member State	United Kingdom (UK)

Identity (Annex IIA, point 1)

Chemical name (IUPAC) ‡	\(N^2\text{-}\text{tert}\)-butyl-6-chloro-N\(^d\)-ethyl-1,3,5-triazine-2,4-diamine
Chemical name (CA) ‡	6-chloro-N-(1,1-dimethylethyl)-N\(^d\)-ethyl-1,3,5-triazine-2,4-diamine
CIPAC No ‡	234
CAS No ‡	5915-41-3
EC No (EINECS or ELINCS) ‡	227-637-9
FAO Specification (including year of publication) ‡	Yes (1993) terbuthylazine content not less than 930 g/kg. (234/TC/S (1991))
Minimum purity of the active substance as manufactured ‡	Syngenta 960 g/kg Oxon 980 g/kg

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	
Propazine (SYN)	10 g/kg
Atrazine (Oxon)	1 g/kg
Simazine (SYN)	30 g/kg
Simazine (Oxon)	5 g/kg

Molecular formula ‡

Molecular formula ‡	\(C_9H_{16}ClN_5\)
Molecular mass ‡	229.7 g/mol
Structural formula ‡
Physical and chemical properties (Annex IIA, point 2)

Property	Syngenta	Oxon
Melting point (state purity) ‡	175.5°C (99.4%)	175.7°C (99.6%)
Boiling point (state purity) ‡	decomposition observed at 224°C (99.4%)	decomposition after melting (99.6%)
Temperature of decomposition (state purity)	224°C (99.4%)	230°C (99.6%)
Appearance (state purity) ‡	White crystalline powder (99.4%)	White powder (99.6%)
Vapour pressure (state temperature, state purity) ‡	9.0 x 10^-5 Pa at 25 °C (99.4%)	1.52 X 10^-4 Pa at 22 °C (>99%.)
Henry’s law constant ‡	2.3 X 10^-3 Pa m^3 mol^-1	4.18 X 10^-3 Pa m^3 mol^-1
Solubility in water (state temperature, state purity and pH) ‡	9.0 mg/L at 25 °C (pH 7.4) (99.4%)	6.6 mg/L at 20 °C (pH 4-10) (>99%)
Solubility in organic solvents ‡ (state temperature, state purity)	Syngenta: 0.41 hexane, 9.8 toluene, 51 dichloromethane, 18 methanol, 12 octanol, 41 acetone, 35 ethyl acetate	Oxon: 0.275 hexane, 7.17 toluene, 62.7 dichloromethane, 14.9 methanol, 32.8 acetone, 30.5 ethyl acetate
Surface tension ‡ (state concentration and temperature, state purity)	Syngenta: 71.8 mN/m at 20 °C (90 % saturated solution)(96.5%)	Oxon: 70.9 mN/m at 20 °C (90 % saturated solution)(96.8%)
Partition co-efficient ‡ (state temperature, pH and purity)	Syngenta: log P_{O/W} = 3.4 at 25 °C (not pH dependant (99.4%)	Oxon: log P_{O/W} = 3.41 at 20 °C (not pH dependant (99.5%)
Dissociation constant (state purity) ‡	pKa1 = 1.95 (99.4%)	pKa1 = 1.84 (99.5%)
UV/VIS absorption (max.) incl. \(\varepsilon \) ‡
(state purity, pH)

Solution	\(\lambda \) (nm)	\(\varepsilon \) (l/mol cm)	
	neutral	222	38538
		263	3444
	acidic	223	30103
		263	4468
	basic	223	37426
		263	3395

No absorption maximum observed between 290 and 750 nm in neutral and basic solution and between 310 nm and 750 nm in acidic solution.

Flammability ‡ (state purity)

Solution	\(\varepsilon \) (state purity)
	Syngenta: Not highly flammable (96.8%)
	Oxon: Not highly flammable (96.5%)
	Not classified.

Explosive properties ‡ (state purity)

Solution	\(\varepsilon \) (state purity)
	Syngenta: Not explosive (96.8%)
	Oxon: Not explosive (96.5%)

Oxidising properties ‡ (state purity)

Solution	\(\varepsilon \) (state purity)
	Syngenta: Not oxidising (96.8%)
	Oxon: Not oxidising (96.5%)
Summary of representative uses evaluated

a) Syngenta - Tradename: [GARDO® GOLD®]

Active Ingredients: [Terbuthylazine and S-metolachlor]

Crop and/or situation	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Formulation	Conc. of active ingredients (d-f)	Method kind (f-h)	growth stage & season (j)	Application	number interval between applications (min)	Application rate per treatment	PHI (days)	Remarks:		
Maize	S.EU.	GARDO® GOLD®	F	Dicot and monocot weeds	SE	187.5 g/L Terbuthylazine e, 312.5 g/L S-metolachlor	Tractor-mounted sprayer	pre-emergence - 8 leaf	1	Not applicable	0.168-0.422 Terbuthylazine 0.28-0.71 S-metolachlor	200 500	Max. 0.844 Terbuthylazine 1.415 S-metolachlor	Not applicable	[1] [2] [3] [4] [5]
Maize	N.EU.	GARDO® GOLD®	F	Dicot and monocot weeds	SE	187.5 g/L Terbuthylazine e, 312.5 g/L S-metolachlor	Tractor-mounted sprayer	pre-emergence - 8 leaf	1	Not applicable	0.15-0.375 Terbuthylazine 0.25-0.614 S-metolachlor	200 500	Max. 0.75 Terbuthylazine 1.228 S-metolachlor	Not applicable	[1] [2] [3] [4] [5]
b) Oxon - Tradename: [Terbuthylazine 500 g/L SC]

Crop and/or situation	Member State or Country	Product name	FG or I	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks	
Corn	France (N)	Terbuthylazine 500 g/L SC	F	Annual and biennial and biennial broad leaved weeds	SC 500 g/l Spray	Pre-emergence Early post emergence (12-16)	1-0.15-0.5	200-500	0.75-0.844	n.r. [1] [3] [4] [5]
Sorghum	Italy (S)	Terbuthylazine 500 g/L SC	F	Annual and perennial broad leaved weeds	SC 500 g/l Spray	Pre-emergence Early post emergence (14)	1-0.2-0.5	200-500	0.844	n.r. [1] [3] [4] [5]

1. A critical area of concern is identified because a high long-term risk and a high risk from secondary poisoning were indicated for mammals in section 5 of EFSA (2011).
2. A high long-term risk to earthworms was indicated in the risk assessment for the representative uses of the formulation ‘Gardo® Gold®’ according to EFSA (2011).
3. Critical areas of concern were identified for groundwater contamination of metabolites (MT1, MT13, MT14 LM2, LM4 and LM5) for which the groundwater relevance was indicated due to intakes of toddlers and infants being calculated to be above the ADI and because a herbicidally relevant metabolite (MT1) occurs in groundwater, all over a wide range of geoclimatic conditions.
4. For the metabolites LM3, and LM6 the groundwater relevance assessment could not be finalised.
5. A high long-term risk to birds was indicated according to EFSA (2011).

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) GCPF Codes - GIFAP Technical Monograph No 2, 1989
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, dribble
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L.
(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell. ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Include the minimum and maximum number of application possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 0.02 kg/ha)
(m) PHI - minimum pre-harvest interval
(n,r) = not relevant, the pre-harvest interval is covered by the growing period remaining between the envisaged application and harvest

Terbuthylazine is a herbicide used for the control of weeds in agricultural crops. It is effective against a wide range of weed species and can be used in various ways, such as broadcast application, aerial spraying, and row spraying. The active ingredient is a systemic herbicide that is taken up by the plant and moves through the sap, killing the target plants. It is important to use the product according to the label instructions to ensure effective weed control and to minimize environmental impact.
Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Type of Sample	Analytical Method
Technical as (analytical technique)	Syngenta: Method AW52/3. GC-FID and internal calibration with prometryn. Oxon: HPLC-UV at 220nm and external calibration.
Impurities in technical as (analytical technique)	Syngenta: Relevant impurities: GC-FID and internal calibration with prometryn. Oxon: GC-FID and internal calibration with 0.02% solution dibutylphthalate in acetone.
Plant protection product (analytical technique)	Syngenta: Method AF-1301/3. Reverse phase HPLC-UV at 210nm and external calibration. Oxon: Method MAN/024/01. Reverse phase HPLC-UV at 254nm and external calibration.

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for monitoring purposes

Type of Sample	Residue Definition
Food of plant origin	Terbuthylazine (MT0)
Food of animal origin	Not necessary for the representative uses.
Soil	Terbuthylazine (MT0) plus desethyl-terbuthylazine (MT1) plus hydroxyl-terbuthylazine (MT13)
Water surface	Terbuthylazine (MT0) plus desethyl-terbuthylazine (MT1) plus hydroxyl-terbuthylazine (MT13)
Drinking/ground	Terbuthylazine (MT0), desethyl-terbuthylazine (MT1), hydroxy-terbuthylazine (MT13), desethyl-hydroxy-terbuthylazine (MT14). Open regarding LM2, LM3, LM4, LM5 and LM6
Air	Terbuthylazine

Monitoring/Enforcement methods

Type of Sample	Analytical Method
Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	Syngenta: DFG S19. GC-NPD with LOQ of 0.02 mg/kg in grain (acceptable ILV). Terbuthylazine only. Oxon: Published method. GC-NPD with LOQ of 0.02 mg/kg in grain. Terbuthylazine only.
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	Not required
Soil (analytical technique and LOQ)

Syngenta: REM 148.05 GC-MS confirmation with target m/z of 214 and 3 qualifier ions (m/z 216, 229 and 173). LOQ was 0.02 mg/kg.

REM 148.11. HPLC-MS/MS parent ion m/z = 230 and daughter ion m/z was 174. MT1 m/z was 202 and daughter m/z 146. MT13 m/z was 212 and daughter m/z was 156. MT14 m/z was 184 and daughter m/z was 128. LOQ was 0.01 mg/kg for each.

Oxon: HPLC-MS/MS parent ion m/z = 230 and daughter ion m/z was 174. MT1 m/z was 202 and daughter m/z 146. MT13 m/z was 212 and daughter m/z was 156. LOQ was 0.01 mg/kg for each.

Water (analytical technique and LOQ)

Syngenta: RAM 426/01 (validated in river, ground and drinking water). Reverse phase HPLC-MS/MS. Parent ion m/z = 230 and daughter ion m/z was 174. MT1 m/z was 202 and daughter m/z 146. MT13 m/z was 212 and daughter m/z was 156. MT14 m/z was 184 and daughter m/z was 128. LOQ was 0.1 μg/l for each.

Oxon: Reverse phase HPLC-MS/MS (validated in surface and drinking water). Parent ion m/z = 230 and daughter ion m/z was 174. MT1 m/z was 202 and daughter m/z 146. MT13 m/z was 212 and daughter m/z was 156. LOQ was 0.05 μg/l for each.

Air (analytical technique and LOQ)

Syngenta: GC-NPD with confirmation by GC-MS with target m/z 214 and qualifier ions m/z 216, 229 and 173. LOQ was 1 μg/m³.

Oxon: GC-NPD with LOQ of 1 μg/m³.

Body fluids and tissues (analytical technique and LOQ)

Syngenta: No data submitted or required.

Oxon: No data submitted or required.

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

RMS/peer review proposal

Active substance

None
Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

| Toxicologically relevant compounds ‡ (animals and plants) | Terbuthylazine, desethyl-metabolite (MT1), MT13 and MT14 |
| Toxicologically relevant compounds ‡ (environment) | Terbuthylazine, desethyl-metabolite (MT1), MT13, MT14, LM1, LM2, LM4 and LM5 at Step 5 (refined risk assessment for consumers) | Data gap regarding LM3, and LM6 |

Other toxicological studies (Annex IIA, point 5.8)

Mechanism studies ‡

| None submitted |

Studies performed on metabolites or impurities ‡

| MT14 | Acute oral LD₅₀ (rats): > 2000 mg/kg bw.
90-day dietary rats: NOAEL and LOAEL of 10.3 and 45.7 mg/kg bw/day, based on increased mortality and water consumption, changes in haematology, clinical chemistry and urinalysis parameters and increased kidney weight, renal (histo)pathology secondary to chronic renal failure.
Mutagenicity in bacterial cells: negative.
Clastogenicity in CHO (Chinese Hamster Ovary) cells: negative.
Mouse Lymphoma assay: negative |
| MT13 | Acute oral LD₅₀ (rats): > 2000 mg/kg bw.
90-day dietary rats: NOAEL and LOAEL of 3.4 and 10.3 mg/kg bw/day based on changes in haematology and clinical chemistry parameters.
Mutagenicity in bacterial cells: negative
Mouse lymphoma assay in L5178Y cells: negative
Clastogenicity in cultured human lymphocytes: negative |
| MT20 | Acute oral LD₅₀ (rats): > 5500 mg/kg bw
90-day dietary rats:
M: NOAEL and LOAEL of 16.7 and 34.1 mg/kg bw/day, based on decreased bodyweight, changes in clinical chemistry and urinalysis parameters and organ weight effects
F: NOAEL and LOAEL of 0.7 and 7.6 mg/kg bw/day, based on altered oestrous cycle length and prolonged oestrus and/or dioestrus
Mutagenicity in bacterial cells: negative
Mouse micronucleus assay: negative |
MT1
Acute oral LD$_{50}$ (rats): 236 mg/kg bw
Acute oral LD$_{50}$ (rats): 300-500 mg/kg bw
Mutagenicity in bacterial cells: negative
Second Mutagenicity in bacterial cells: negative
In Vitro Cytogenetic Assay in Human Lymphocytes: negative
Gene Mutation Assay: weakly positive
Mouse micronucleus assay: negative
in vivo unscheduled DNA synthesis: negative
90-day rat study Reduced bodyweight gain Total WBC (white blood cells) reduced no NOAEL

LM1
Mutagenicity in bacterial cells: negative
Mammalian cell Gene Mutation Assay: negative
In Vitro Chromosome Aberration: negative

LM2
Mutagenicity in bacterial cells: negative
Mammalian cell Gene Mutation Assay: negative
In vitro Chromosome Aberration: negative

LM3
Mutagenicity in bacterial cells: negative
Mammalian cell Gene Mutation Assay: negative
In vitro Chromosome Aberration: negative
TTC class III: 1.5 µg/kg bw per day (for all sources of LM3 and LM6) (EFSA PPR Panel, 2019)

LM4
Mutagenicity in bacterial cells: negative
Mammalian cell Gene Mutation Assay: negative
In vitro Chromosome Aberration: negative

LM5
Mutagenicity in bacterial cells: negative
Mammalian cell Gene Mutation Assay: negative
In vitro Chromosome Aberration: negative

LM6
Mutagenicity in bacterial cells: negative
Gene Mutation Assay: weakly positive
In Vitro Chromosome Aberration: negative
Mouse micronucleus assay: negative
TTC class III: 1.5 µg/kg bw per day (for all sources of LM3 and LM6) (EFSA PPR Panel, 2019)
Peer review of the pesticide risk assessment of the active substance terbuthylazine

Summary (Annex IIA, point 5.10)

Substance	Value (mg/kg bw (per day))	Study	Uncertainty factor
ADI ‡	0.004	dog, 1-year & rat, 2-year	100
AOEL ‡	0.0032	dog, 1-year	Overall 126* (100 + 79 %*)
ARfD ‡	0.008	rabbit developmental study	100

*correction for oral absorption (79 %)

Metabolites MT1, MT13, MT14

Substance	Value (mg/kg bw (per day))	Study	Uncertainty factor
ADI ‡	0.004	dog, 1-year & rat, 2-year	100
ARfD ‡	0.008	rabbit developmental study	100

Metabolites LM2, LM4, LM5

Substance	Value (mg/kg bw (per day))	Study	Uncertainty factor
ADI ‡	0.004	Read across considerations	100
ARfD ‡	0.008	Read across considerations	100

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

Substance : Terbuthylazine

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:

- **Acute Tox.4 - H302** “Harmful if swallowed”
- **STOT-RE-2 – H373** May cause damage to organs through prolonged or repeated exposure.

1 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

2 Commission Regulation (EU) 2017/776 of 4 May 2017 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures. OJ L 116, 5.5.2017, 1-19.
Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

Parameter	Description	Value
ADI		0.004 mg/kg bw/day
TMDI (%)	ADI according to WHO European diet	Highest TMDI: 21.6 % ADI (WHO cluster B) considering as a worst case, the STMRs of 0.06 mg/kg (total residues) in maize, sorghum and in rotational oilseed crops, root crops, and cereals (rice, wheat/ rye, oat/ barley)
IEDI (%)	ADI according to EFSA PRIMo rev2 model	Population groups (EFSA PRIMo) with profile similar to consumer group defaults for drinking water assessment (WHO, 2011) Adult: 12.6 % ADI (IE); Toddler: 9.1 % ADI (FR 1-1.5 yrs, 10.6 kg) Infant: 9.0% ADI (UK; 0.5-1 yr, 8.7 kg) Highest estimated potential total intake via food and drinking water: Adult (60 kg): 55 % ADI; Toddler (10 kg): 136 % ADI Infant (5 kg): 200% ADI
NEDI (%)	ADI according to national diets (to be specified)	Factors included in IEDI and NEDI
ARfD		0.008 mg/kg bw
IESTI (%)	ARfD according to EFSA PRIMo rev2 model	Highest IESTI: 63% ARfD (Carrot as rotational crop, HR 0.08 mg/kg)
NESTI (%)	ARfD according to national (to be specified)	Factors included in IESTI and NESTI

Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite(s)
Concentration in groundwater [µg parent equivalents/L]

FOCUS scenario	MT13	MT1	MT14	LM2	LM4	LM5	Sum	Adult	Toddler	Infant	Adult	Toddler	Infant
Châteaudun	16.3	0.07	2.72	2.77	5.54	3.18	30.6	0.0010	0.0031	0.0046	25.5	76.5	114.7
Hamburg	19.9	0.32	4.31	4.95	9.90	5.01	44.4	0.0015	0.0044	0.0067	37.0	**111.0**	166.5
Kremsmünster	13.9	0.21	2.87	2.44	5.11	2.96	27.5	0.0009	0.0028	0.0041	22.9	68.8	103.1
Okehampton	14.5	0.36	3.62	2.44	5.17	2.96	29.0	0.0010	0.0029	0.0044	24.2	72.5	108.8
Piacenza	16.7	0.19	2.82	1.57	3.94	2.84	28.1	0.0009	0.0028	0.0042	23.4	70.3	105.4
Porto	8.30	0.05	1.57	1.33	2.53	1.78	15.6	0.0005	0.0016	0.0023	13.0	38.9	58.3
Sevilla	4.56	0.00	0.24	0.69	1.02	0.91	7.41	0.0002	0.0007	0.0011	6.2	18.5	27.8
Thiva	22.8	0.01	2.08	2.30	4.55	2.98	34.8	0.0012	0.0035	0.0052	29.0	86.9	**130.3**

Consumer intakes through drinking water [mg/kg bw per day]

ADI (drinking water only)

FOCUS scenario	MT13	MT1	MT14	LM2	LM4	LM5	Sum	Adult	Toddler	Infant	Adult	Toddler	Infant
Châteaudun	18.7	0.09	3.15	3.16	6.36	3.64	35.1	0.0012	0.0035	0.0053	29.2	87.7	**131.6**
Hamburg	22.7	0.38	4.98	5.59	11.43	5.76	50.9	0.0017	0.0051	0.0076	42.4	**127.2**	190.7
Kremsmünster	16.0	0.26	3.32	2.76	5.85	3.38	31.5	0.0011	0.0032	0.0047	26.3	78.9	**118.3**
Okehampton	16.5	0.46	4.18	2.76	5.91	3.37	33.2	0.0011	0.0033	0.0050	27.7	83.0	**124.5**
Piacenza	19.2	0.23	3.26	2.30	4.55	3.25	32.8	0.0011	0.0033	0.0049	27.4	82.1	**123.1**
Porto	9.45	0.07	1.81	1.50	2.90	2.06	17.8	0.0006	0.0018	0.0027	14.8	44.4	66.7
Sevilla	5.31	0.00	0.28	0.78	1.17	1.05	8.59	0.0003	0.0009	0.0013	7.2	21.5	32.2
Thiva	26.2	0.01	2.42	2.62	5.23	3.44	39.9	0.0013	0.0040	0.0060	33.3	99.8	**149.7**

3 Default assumptions from WHO Guidelines for drinking water quality (WHO, 2011) for (a) a 60 kg adult drinking 2 litres of water per day, (b) a 10 kg child drinking 1 litre of water per day and (c) a 5 kg bottle-fed infant drinking 0.75 litre of water per day have been used for the calculation.
Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1) – SYN and OXON

Parameter	Description
Mineralisation after 100 days ‡	0.4 – 10.35 % after 112 - 120 d at 20 °C, [14C-triazine ring]-label (n²= 17)
	0.29 % after 118 d at 10 °C, [14C-triazine ring]-label (n= 1; SYN only)
Non-extractable residues after 100 days ‡	17.3 – 30.8 % after 112 - 120 d at 20 °C, [14C-triazine ring]-label (n= 17)
	9.31 % after 118 d at 10 °C, , [14C-triazine ring]-label (n= 1; SYN only)
Metabolites requiring further consideration ‡	Max values from studies:
- name and/or code, % of applied (range and maximum)	desethyl-terbuthylazine (MT1) – 3.0 – 25.1 % at 56 - 210 d at 20 °C (n= 17)
	14.6 % at 118 d at 10 °C (n=1; SYN only)
	hydroxy-terbuthylazine (MT13) – 4.2 – 34.5 % at 90 - 311 d at 20 °C (n= 17)
	1.4 % at 98 d at 10 °C (n= 1; SYN only)
	[14C-triazine ring]-label

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2) – SYN and OXON

Anaerobic degradation ‡

Parameter	Description
Mineralisation after 100 days	≤ 0.1 % after 100 - 118 d, [14C-triazine ring]-label (n= 2)
Non-extractable residues after 100 days	30.1 – 39.43 % after 100 - 118 d, [14C-triazine ring]-label (n= 2)
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	Max values from studies:
	desethyl-terbuthylazine (MT1) – 0.3 – 4.5 % at 30 - 56 d (n= 2)
	hydroxy-terbuthylazine (MT13) – 1.0 – 8.16 % at 91 - 100 d (n= 2)
	[14C-triazine ring]-label

Soil photolysis ‡

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	DT50 in light exposed samples = 52 d; DT50 in dark control = 117 d (DT50 via photolysis only = 93.6 d; SYN)
DT50 in light exposed samples = 28.2 d; DT50 in dark control = 126.6 d (DT50 via photolysis only = 36.3 d; OXON)	Max values from studies (irradiated value

³ n corresponds to the number of soils.
minus non-irradiated value):

Compound	Effect	Conditions
Desethyl-terbuthylazine (MT1)	3.6%	at 31 d exposure 12 hours irradiated at 550 W.m²/12 hours dark (n= 1; SYN)
	12.59%	at 15 d – exposure 700 W.m² continuous (n= 1; OXON).
Hydroxy-terbuthylazine (MT13)	5.49%	at 15 d – exposure 700 W.m² continuous (n= 1; OXON)
Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1) – SYN and OXON

Laboratory studies

Terbutylazine	Aerobic conditions	% OM (KCl or CaCl₂)	pH	temp. °C / soil moisture for study (% w/w)	Soil moisture at pH 2 (% w/w)	DT₅₀, actual (d)	DT₅₀, ref 20 °C pF2 (d)	Min chi² error (%)	Method of calc.
Gartenacker Sandy Loam		3.79	7.25	20 °C / 26.73 %	48.92	78.7	51.6	1.7	SFO
Pappelacker Loamy Sand		1.9	7.6	20 °C / 15.8 %	29.3	93.1	60.4	2.9	SFO
Weide Sandy Loam		2.24	7.5	20 °C / 18.96 %	36.6	65.0	41.0	2.5	SFO
Speyer 2.2 Loamy Sand		3.91	6.1	20 °C / 19.2 %	12.1	167	167	2.1	SFO
Borstel Loamy Sand		2.59	5.8	20 °C / 10.88 %	14b	143	120	1.0	SFO
Lorsch Sandy Clay Loam		3.1	5.3	20 °C / 19.92 %	22b	110	103	1.4	SFO
Gartenacker Silt Loam 1.57 kg/ha		3.59	7.32	20 °C / 29.17 %	48.61	77.0	53.9	4.4	SFO
Gartenacker Silt Loam 0.15 kg/ha		3.59	7.32	20 °C / 29.17 %	48.61	59.7	41.8	4.9	SFO
Collombey Sand		2.29	7.7	20 °C / 16.8 %	25.31	80.0	60.0	5.9	SFO
Les Evouettes Silt Loam		2.41	6.1	20 °C / 22.12 %	40.21	58.4	38.2	7.7	SFO
Speyer 2.2 Loamy Sand		4.4	6.0	20 °C / 16.16 %	21.21	122	101	2.2	SFO
Speyer 2.3 Sandy Loam		1.28	6.6	20 °C / 12.56 %	18.61	112	85.2	2.4	SFO
Les Evouettes Loam		6.4	6.8	20 °C / 35.85 %	47.8	69.7	57.0	4.3	SFO
Speyer 2.2 Loamy Sand		3.95	6.18	20 °C / 17.72 %	14b	136	138	5.6	SFO
Sisseln Sandy Loam		2.71	7.16	20 °C / 20.96 %	19b	83.7	83.7	4.1	SFO
Collombey Loamy Sand		2.02	7.45	20 °C / 16.12 %	14b	73.6	73.6	4.2	SFO
Diegten Clay Loam		2.74	6.9	20 °C / 20.76 %	28b	117	94.9	1.9	SFO
Geometric mean				**91.1**	**72.0**				
Median				**88.4**	**75.1**				

- (a) Geometric mean for replicate soil values calculated first (excluding the two Les Evouettes soils that were considered to be substantially different from each other due to contrasting organic matter contents e.g. 2.41 and 6.4% organic matter)
- (b) FOCUS default moisture content based on soil texture

 Note that the t-test result was >99% for every soil
| Soil name and classification | % OM | pH (KCl or CaCl₂) | temp. °C / soil moisture for study (% w/w) | Soil moisture at pF 2 (% w/w) | DT₅₀, actual (d) | DT₅₀, ref 20 °C pF2 (d) | Min chi² error (%) | Method of calc. |
|-----------------------------|-------|------------------|--|-----------------------------|-----------------|--------------------------|-------------------|----------------|
| Borstel – Loamy Sand | 2.63 | 5.79 | 20 °C / 10.9 % | 14⁺ | 83.9 | 70.3 | 1.9 | SFO |
| Gartenacker* - Loam | 3.20 | 7.28 | 20 °C / 26.7 % | 25⁺ | 61.8 | 61.8 | 3.1 | SFO |
| Lorsch – Sandy Clay Loam | 3.16 | 5.25 | 20 °C / 19.9 % | 22⁺ | 40.7 | 38.0 | 3.3 | SFO |
| Speyer 2.3 – Sandy Loam | 2.1 | 6.4 | 20 °C / 15.6 % | 19⁺ | 61.8 | 53.8 | 6.7 | SFO |
| Speyer 2.1 – Sand | 1.07 | 5.9 | 20 °C / 12.4 % | 12⁺ | 45.2 | 45.2 | 4.9 | SFO |
| Speyer 2.2 – Loamy Sand | 4.00 | 5.6 | 20 °C / 19.2 % | 14⁺ | 50.7 | 50.7 | 4.1 | SFO |
| Westmaas – Silt Loam | 2.41 | 7.4 | 20 °C / 15.6 % | 26⁺ | 93.8 | 65.6 | 6.0 | SFO |

Geometric mean

	60.0	**54.0**				

Median

	61.8	**53.8**				

* NB. Significant volatiles observed for Gartenacker soil
⁺ FOCUS default moisture content based on soil texture
⁻ t-test result was >99% for every soil
Desethyl-terbuthylazine (MT1)

Aerobic conditions (where metabolite formed from parent terbuthylazine during the study)

Soil name and classification	% OM	pH (KCl or CaCl₂)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT₅₀, actual (d)	Form. frac. (ffm)	DT₅₀, ref 20 °C pF2 (d)	Min chi² error (%)	Method of calc.
Gartenacker Sandy Loam	3.79	7.25	20 °C / 26.73 %	48.92	66.0	0.606	43.2	5.8	SFO
Pappelacker Loamy Sand	1.9	7.6	20 °C / 15.8 %	29.3	105.7	0.591	68.6	6.2	SFO
Weide Sandy Loam	2.24	7.5	20 °C / 18.96 %	36.6	87.4	0.536	55.2	4.6	SFO
Gartenacker Silt Loam 1.57 kg/ha	3.59	7.32	20 °C / 29.17 %	48.61	112.8	0.430	78.9	11.3	SFO
Gartenacker Silt Loam 0.15 kg/ha	3.59	7.32	20 °C / 29.17 %	48.61	42.9	0.575	30.0	9.3	SFO
Collombey Sand	2.29	7.7	20 °C / 16.8 %	25.31	26.9	0.498	20.2	18.1	SFO
Les Evouettes Silt Loam	2.41	6.1	20 °C / 22.12 %	40.21	21.7	0.594	14.3	13.7	SFO
Speyer 2.3 Sandy Loam	1.28	6.6	20 °C / 12.56 %	18.61	91.6	0.346	69.6	11.7	SFO
Sisseln Sandy Loam	2.71	7.16	20 °C / 20.96 %	19b	76.6	0.536	76.6	6.0	SFO
Collombey Loamy Sand	2.02	7.45	20 °C / 16.12 %	14b	60.4	0.580	60.4	3.5	SFO
Diegten Clay Loam	2.74	6.9	20 °C / 20.76 %	28b	63.5	0.323	51.5	7.7	SFO

Arithmetic mean^a - 0.484 - - -

Geometric mean^a 61.8 - 46.9 - -

Median^a 68.4 0.536 51.5 - -

(a) Average formation fraction and geometric mean DT₅₀ for replicate soil values calculated first
(b) FOCUS default moisture content based on soil texture
Note that the t-test result was >99% for all soils except Collombey (>95%), Les Evouettes (>98%) and Speyer 2.3 (>92%)
Hydroxy-terbuthylazine (MT13)

Aerobic conditions (where metabolite applied as starting material)

Soil type	% OM	pH (KCl)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pH 2 (% w/w)	DT50, actual (d)	DT50, ref 20 °C pF2 (d)	Min chi² error (%)	Method of calc.
Borstel – Loamy Sand	2.6	5.8	20 °C / 10.88 %	14a	207	173	4.7	SFO
Gartenacker – Loam	2.8	7.6	20 °C / 25.08 %	25a	298	298	2.2	SFO
Vetroz – Silt Loam	3.1	7.7	20 °C / 23.56 %	26a	281	278	2.9	SFO
Cranfield 115 – Clay Loam	2.9	7.4	20 °C / 22.1 %	30.4c	>1000	>1000	3.3	SFO
Cranfield 164 – Silt Loam	5.2	6.5	20 °C / 29.12 %	41.2c	>1000	>1000	3.7	SFO
Cranfield 243 – Sandy Loam	1.9	4.3	20 °C / 20.44 %	22.7a	645	600	1.7	SFO

Geometric mean

| 473ᵇ | 453ᵇ | - | - |

* a FOCUS default moisture content based on soil texture
* b the geometric mean was calculated assuming a default DT50 of 1000 d for Cranfield 115 and Cranfield 164 soils
* c measured pF2.5 value was above the FOCUS default pF2 and the measured pF2.5 was used as a worst-case assessment.
Hydroxy-terbuthylazine (MT13)

Aerobic conditions (where metabolite formed from parent terbuthylazine during the study)

Soil type	% OM	pH (KCl or CaCl₂)	Visual inspection	Form. frac. (ffm)	Min chi² error (%)	Method of calc.
Gartenacker Sandy Loam (Out)	3.79	7.25	Acceptable	0.076	10.1	SFO using a fixed DT₅₀ of 473 d
Pappelacker Loamy Sand	1.9	7.6	Acceptable	0.065	27.7	SFO using a fixed DT₅₀ of 473 d
Weide Sandy Loam	2.24	7.5	Acceptable	0.057	28.5	SFO using a fixed DT₅₀ of 473 d
Speyer 2.2 Loamy Sand*	3.91	6.1	Acceptable	0.302	25.9	SFO using a fixed DT₅₀ of 473 d
Borstel Loamy Sand	2.59	5.8	Very good	0.212	2.7	SFO using a fixed DT₅₀ of 473 d
Lorsch Sandy Clay Loam	3.1	5.3	Very good	0.367	6.3	SFO using a fixed DT₅₀ of 473 d
Gartenacker Silt Loam 2.6 kg/ha*	3.59	7.32	Acceptable	0.06	16.1	SFO using a fixed DT₅₀ of 473 d
Gartenacker Silt Loam 0.25 kg/ha*	3.59	7.32	Acceptable	0.07	22.4	SFO using a fixed DT₅₀ of 473 d
Collombey Sand*	2.29	7.7	Acceptable	0.287	18.7	SFO using a fixed DT₅₀ of 473 d
Les Evouettes Silt Loam	2.41	6.1	Good	0.363	10.8	SFO using a fixed DT₅₀ of 473 d
Speyer 2.2 Loamy Sand*	4.4	6.0	Good	0.362	12.8	SFO using a fixed DT₅₀ of 473 d
Speyer 2.3 Sandy Loam	1.28	6.6	Acceptable	0.238	27.6	SFO using a fixed DT₅₀ of 473 d
Speyer 2.2 Loamy Sand*	3.95	6.18	Reasonable	0.474	20	SFO using a fixed DT₅₀ of 473 d
Sisseln Sandy Loam	2.71	7.16	Acceptable	0.14	13.4	SFO using a fixed DT₅₀ of 473 d
Collombey Loamy Sand*	2.02	7.45	Good	0.106	13.5	SFO using a fixed DT₅₀ of 473 d
Diegten Clay Loam	2.74	6.9	Very good	0.191	3.3	SFO using a fixed DT₅₀ of 473 d

Arithmetic mean

- 0.207

Median

- 0.196

(Out) = Outlier excluded.

* Average for replicate soil values calculated first [Gartenacker 0.069; Speyer 2.2 0.379; Collombey 0.196]. Note the actual value selected for modelling purposes included additional information from the field dissipation studies.

Desethyl hydroxy-terbuthylazine (MT14)

Aerobic conditions (where metabolite applied as starting material)

Soil type	% OM	pH (K Cl)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pH 2 (% w/w)	DT₅₀, actual (d)	DT₅₀, ref 20 °C pH2 (d)	Min chi² error (%)	Method of calc.
Borstel – Loamy	2.6	5.8	20 °C / 10.88 %	14*	135	113	7.7	SFO

*(Out) = Outlier excluded.

a Average for replicate soil values calculated first [Gartenacker 0.069; Speyer 2.2 0.379; Collombey 0.196]. Note the actual value selected for modelling purposes included additional information from the field dissipation studies.
Desethyl hydroxy-terbuthylazine (MT14)

Soil type	% OM	pH (KCl)	Temp. °C / soil moisture for study (% w/w)	Soil moisture at pH 2 (% w/w)	DT$_{50}$, actual (d)	DT$_{50}$, ref 20 °C pF2 (d)	Min chi² error (%)b	Method of calc.
Gartenacker – Loam	2.8	7.6	20 °C / 25.08%	25	50.1	50.1	5.3	SFO
Lorsch – sandy clay loam	3.1	5.3	20 °C / 19.92%	22	377	351	5.1	SFO
Vetroz – Silt Loam	3.1	7.7	20 °C / 23.56%	26	69.7	65.1	4.0	SFO
Geometric mean					**115**	**107**		

a FOCUS default moisture content based on soil texture

b t-test result was >99% for every soil except Lorsch where it was >97%

Desethyl hydroxy-terbuthylazine (MT14)

Soil type	% OM	pH (KCl)	Visual inspection	Form. frac. (fm)	Min chi² error (%)	Method of calc.
Borstel – Loamy Sand	2.6	5.8	Very good	0.203	2.7	SFO using a fixed DT$_{50}$ of 135 d
Gartenacker – Loam	2.8	7.6	Very good	0.179	9.1	SFO using a fixed DT$_{50}$ of 50.1 d
Lorsch – sandy clay loam	3.1	5.3	Very good	0.458	3.5	SFO using a fixed DT$_{50}$ of 377 d
Arithmetic mean				**0.280**		

All studies performed at 20°C

LM1 (MT24)

Soil type	% OM	pH (water)	Temp. °C / soil moisture for study (% w/w)	Soil moisture at pH 2 (% w/w)	DT$_{50}$, actual (d)	DT$_{50}$, ref 20 °C pF2 (d)	Min chi² error (%)	Method of calc.
Gartenacker – Loam	1.96	7.5	20 °C / pF2	35.3	0.41	0.41	4.1 (p=5.3E-009)	SFO
18 Acres	2.88	7	20 °C / pF2	29.8	0.48	0.48	10.1 (p=1.5E-006)	SFO
Vetroz – Silt Loam	2.36	7.6	20 °C / pF2	26.4	0.33	0.33	24.2 (p=2.8E-004)	SFO
Geometric mean					**0.4**	**0.4**		

All studies performed at 20°C
LM2 (MT28)
Aerobic conditions (where metabolite was applied as parent)

Soil type	% OM	pH (water)	temp. °C / pH	Soil moisture at pH 2 (% w/w)	DT_{50, actual} (d)	DT_{50, ref} 20 °C pH2 (d)	Min chi² error (%)	Method of calc.
Gartenacker – Loam	3.1	7.5	20 °C / pH2	35.3	19.1	19.1	8.8	SFO
18 Acres	3.4	6.5	20 °C / pH2	29.8	11.5	11.5	7.9 (2.2E-008)	SFO
Vetroz – Silt Loam	3.9	7.8	20 °C / pH2	26.4	20.5	20.5	6.3 (3.1E-011)	SFO
Geometric mean								
	16.5	16.5						

LM3
Aerobic conditions (where metabolite was applied as parent)

Soil type	% OM	pH (water)	temp. °C / pH	Soil moisture at pH 2 (% w/w)	DT_{50, actual} (d)	DT_{50, ref} 20 °C pH2 (d)	Min chi² error (%)	Method of calc.
Gartenacker – Loam	3.1	7.5	20 °C / pH2	35.3	7.3	7.3	7.2 (3.4E-009)	SFO
18 Acres	3.4	6.5	20 °C / pH2	29.8	38.7	38.7	13.2 (1.3E-006)	SFO
Vetroz – Silt Loam	3.9	7.8	20 °C / pH2	26.4	6.5	6.5	5.1 (1.6E-010)	SFO
Geometric mean								
	12.2	12.2						

LM4
Aerobic conditions (where metabolite was applied as parent)

Soil type	% OM	pH (water)	temp. °C / pH	Soil moisture at pH 2 (% w/w)	DT_{50, actual} (d)	DT_{50, ref} 20 °C pH2 (d)	Min chi² error (%)	Method of calc.
Gartenacker – Loam	3.1	7.5	20 °C / pH2	35.3	49.9	49.9	2.5 (1.1E-013)	SFO
18 Acres	3.4	6.5	20 °C / pH2	29.8	65.2	65.2	6.8 (2.0E-008)	SFO
Vetroz – Silt Loam	3.9	7.8	20 °C / pH2	26.4	47.4	47.4	3.1 (1.7E-012)	SFO
Geometric mean								
	53.6	53.6						

LM5 (MT23)
Aerobic conditions (where metabolite was applied as parent)

Soil type	% OM	pH (water)	temp. °C / pH	Soil moisture at pH 2 (% w/w)	DT_{50, actual} (d)	DT_{50, ref} 20 °C pH2 (d)	Min chi² error (%)	Method of calc.
Gartenacker – Loam	3.0	7.5	20 °C / pH2	35.3	40.2	40.2	2.9 (7.6E-012)	SFO
LM5 (MT23)

Aerobic conditions (where metabolite was applied as parent)

Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT$_{50}$, actual (d)	DT$_{50}$, ref 20 °C pF2 (d)	Min chi2 error (%)	Method of calc.
18 Acres	4.7	6.5	20 °C / pF2	29.8	70.6	70.6	5.9 (1.4E-008)	SFO
Vetroz – Silt Loam	4.1	8.0	20 °C / pF2	26.4	36.5	36.5	7.1 (4.2E-009)	SFO

Geometric mean

| | 47.0 | 47.0 | - | - |

LM5

Aerobic conditions (where metabolite was formed from parent desethyl-hydroxy terbuthylazine)

Soil type	% OM	pH (KCl)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT$_{50}$, actual (d)	DT$_{50}$, ref 20 °C pF2 (d)	Formation fraction	Min chi2 error (%)	Method of calc.
Gartenacker – Loam	2.8	7.6	20 °C / 25.08 %	25	119	119	0.491	4.72 (p = 0.0812)	SFO
Vetroz – Silt Loam	3.1	7.7	20 °C / 23.56 %	26	146	136	0.440	3.00 (p = 0.1570)	SFO

Geometric mean

| | 132 | 128 | 0.466 (arithmetic mean) | - | - | |

a FOCUS default moisture content based on soil texture

b due to the high degree of uncertainty associated with the LM5 DT$_{50}$ values derived from this study the modelling endpoint has been taken from the LM 5 dosed studies only (i.e. geometric mean of 47.0 d).

LM6

Aerobic conditions (where metabolite was applied as parent)

Soil type	% OM	pH (water)	temp. °C / soil moisture for study (% w/w)	Soil moisture at pF 2 (% w/w)	DT$_{50}$, actual (d)	DT$_{50}$, ref 20 °C pF2 (d)	Min chi2 error (%)	Method of calc.
Gartenacker – Loam	3.0	7.5	20 °C / pF2	35.3	211	211	3.3 (2.5E-007)	SFO
18 Acres	4.7	6.5	20 °C / pF2	29.8	390	390	2.1 (2.2E-006)	SFO
Vetroz – Silt Loam	4.1	8.0	20 °C / pF2	26.4	171	171	2.6 (1.7E-009)	SFO

Geometric mean

| | 241 | 241 | - | - | |

www.efsa.europa.eu/efsajournal 23 EFSA Journal 2019;17(9):5817
Field studies ‡

Terbutylazine	Aerobic conditions								
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	% OM	pH	Depth (cm)	DT90_{soil} 20 °C pH2 (d)	DT90_{soil} 20 °C pH2 (d)	Min chi² error (%)	t-test (%)	Method of calc.
Loam – Bare soil	St Aubin, Switzerland	3.1	7.2	0 – 10	17.4	58	5.2	> 99%	SFO
Silt loam – Bare soil	Eschwege, Germany	4.0	6.2	0 – 20	16.9	56.1	16.7	> 99%	SFO
Silt loam – Bare soil	Goch, Germany	6.4	6.25	0 – 20	28.8	95.8	8.2	> 99%	SFO
Silty clay loam – Bare soil	Keeken, Germany	7.6	6.1	0 – 20	24.3	80.9	17.7	> 99%	SFO
Silt loam – Bare soil	Pleisheim, Germany	2.1	6	0 – 20	15.4	51.1	19.2	> 99%	SFO
Loamy sand – Bare soil	Lorsch Helming, Germany	1.4	5.25	0 – 20	6.43	21.4	21	> 99%	SFO
Loamy sand – Bare soil	Wemb, Germany	3.8	6.2	0 – 20	11.1	36.8	17.7	> 99%	SFO
Clay loam – Bare soil	Grisolles, Southern France	1.62	7.3	0 – 30	52.5	175	13.2	> 99%	SFO
Silt loam – Bare soil	Molinella, Italy	1.31	7.6	0 – 30	149	497	12.9	> 99%	SFO
Silt loam – Bare soil	St Firmin, France (North) (1.0)	1.6	8.4	0 – 10	24.8	82.3	8.7	> 99%	SFO
Silt loam – Bare soil	St Firmin, France (North) (1.5)	1.6	8.4	0 – 10	21.2	70.5	9.5	> 99%	SFO
Sand – Bare soil	Nevoy, France (North) (1.0)	1.0	8.6	0 – 10	12.5	41.5	8.8	> 99%	SFO
Sand – Bare soil	Nevoy, France (North) (1.5)	1.0	8.6	0 – 10	19.4	64.4	6.5	> 99%	SFO
Silt loam – Bare soil	Charny, France (North) (1.0)	1.0	5.9	0 – 10	12.5	41.5	8.8	> 99%	SFO
Silt loam – Bare soil	Charny, France (North) (1.0)	1.0	5.9	0 – 10	17.6	58.5	9.4	> 99%	SFO
Silty sand – Bare soil	Ports sur Vienne, France (North) (1.0)	1.9	6.6	0 – 10	13.9	46.3	4.9	> 99%	SFO
Silty sand – Bare soil	Ports sur Vienne, France (North) (1.5)	1.9	6.6	0 – 10	27.9	92.8	13.7	> 99%	SFO
Sandy silt loam – Bare soil	Eraclea, Italy (1.0)	3.4	7.6	0 – 10	67.7	225	39.6	> 81%	SFO
Sandy silt loam – Bare soil	Eraclea, Italy (1.0)	3.4	7.6	0 – 10	9.51	31.6	20.2	> 98%	SFO
Clay – Bare soil	Emilia, Italy	3.3	7.5	0 – 10	32.6	1.8	7	> 99%	SFO
Clay – Bare soil	Emilia, Italy	3.3	7.5	0 – 10	31.8	1.6	5.3	> 99%	SFO
Soft clayey sand – Bare soil	Hilgermissen, Germany	1.5	5.9	0 – 10	33.5	111	11.8	> 99%	SFO
Clayey sand – Bare soil	Leutzke, Germany	2.9	5.5	0 – 10	9.72	32.3	25.7	> 99%	SFO
Field studies ‡

Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	Aerobic conditions							
Terbuthylazine		% OM	pH	Depth (cm)	DT50, ref 20 °C pF2 (d)	DT90, ref 20 °C pF2 (d)	Min chi² error (%)	t-test (%)	Method of calc.
Geometric mean‡		21.8	72.6	-	-	-	-	-	
Median‡		20.0	66.5	-	-	-	-	-	

NK – not known

‡ soils were normalised for temperature assuming a Q10 of 2.58 using a time step normalisation procedure. Soil moisture content was assumed to be at pF2 and not corrected for.

b Excluded from statistical evaluations due to poor fits

c Geometric mean of replicate trials calculated first; median based on n = 16

d The un-normalised SFO DT50 at the Molinella field site (SEU) was 149.9 d (chi² error level = 12.8%, acceptable visual fit)

d The un-normalised SFO DT50 at the Hilgermissen field site (NEU) was 46.6 d (chi² error level = 17.2%, acceptable visual fit up to approximate DT90)
Field studies

Desethyl terbutylazine	Aerobic conditions (where metabolite formed from parent terbutylazine during the study)								
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	% OM	pH	DT₅₀ ref 20 °C pF2 (d)	DT₉₀ ref 20 °C pF2 (d)	Form. frac. (ffm)	Min. chi² error (%)	t-test (%)	Method of calc.
Loam – Bare soil	St Aubin, Switzerland	3.1	7.2	16.6	55.3	0.292	17.6	>99%	SFO
Silt loam – Bare soil	Pleidsheim, Germany	2.1	6	31	103	0.112	17	>76%	SFO
Loamy sand – Bare soil	Lorsch Helming, Germany	1.4	5.25	2.13	7.08	0.256	22.1	>68%	SFO
Clay loam – Bare soil	Grisolles, Southern France	1.62	7.3	51	169	0.767	15.6	>99%	SFO
Silt loam – Bare soil	Molinella, Italy	1.31	7.6	208	693	0.513	6.6	>77%	SFO
Silt loam – Bare soil	St Firmin, France (North) (1.0)	1.6	8.4	15.5	51.6	0.829	18.1	>99%	SFO
Silt loam – Bare soil	St Firmin, France (North) (1.5)	1.6	8.4	19	63.2	0.445	3.1	>96%	SFO
Silt loam – Bare soil	Charny, France (North) (1.0)	1.0	5.9	47.3	157	0.306	5.8	>97%	SFO
Silt loam – Bare soil	Charny, France (North) (1.5)	1.0	5.9	69.9	231	0.258	11.4	>97%	SFO
Soft clayey sand – Bare soil	Hilgermissen, Germany	1.5	5.9	23.4	77.8	0.695	8	>99%	SFO

Arithmetic mean^{a,b} | - | - | 0.444 | - | - | - |

Geometric mean^{a,c} | 26.8 | 89.2 | - | - | - | - |

Median^{a,c} | 27.2 | 90.4 | - | - | - | - |

^a only valid datasets considered
^b arithmetic mean of replicate soils calculated first
^c geometric mean of replicate soils calculated first
^d soils were normalised for temperature assuming a Q10 of 2.58 using a time step normalisation procedure. Soil moisture content was assumed to be at pF2 and not corrected for.

NB the applicant proposed a geometric mean of 29.6 d based on a marginally different set of soils considered acceptable.
Field studies

Hydroxy-terbuthylazine	Aerobic conditions (where metabolite formed from parent terbuthylazine during the study)						
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	% OM	pH	Visual inspection	Form. frac. (ffm)	Min chi² error (%)	Method of calc.
Clay loam – Bare soil	Grisolles, Southern France	1.62	7.3	Acceptable	0.068	12.1	SFO using a fixed DT₅₀ of 453 d
Silt loam – Bare soil	Molinella, Italy	1.31	7.6	Reasonable	0.122	14.5	SFO using a fixed DT₅₀ of 453 d
Loam – Bare soil	St Aubin, Switzerland	3.1	7.2	Reasonable	0.079	24.2	SFO using a fixed DT₅₀ of 453 d
Silt loam – Bare soil	St Firmin, France (North) (1.5)	1.6	8.4	Good	0.056	11.3	SFO using a fixed DT₅₀ of 453 d
Sand – Bare soil	Nevoy, France (North) (1.0)	1.0	8.6	Acceptable	0.163	20.1	SFO using a fixed DT₅₀ of 453 d
Sand – Bare soil	Nevoy, France (North) (1.5)	1.0	8.6	Good	0.431	15.4	SFO using a fixed DT₅₀ of 453 d
Silty sand – Bare soil	Ports sur Vienne, France (North) (1.5)	1.9	6.6	Reasonable	0.198	20.9	SFO using a fixed DT₅₀ of 453 d
Soft clayey sand – Bare soil	Hilgermissen, Germany	1.5	5.9	Acceptable	0.154	32.4	SFO using a fixed DT₅₀ of 453 d
Arithmetic mean					**0.139**	-	-
Median					**0.122**	-	-

φ arithmetic mean of replicate soils calculated first
b arithmetic mean of replicate soils calculated first
Note the actual formation fraction proposed for modelling was derived from combined lab and field datasets and was calculated to be 0.197

pH dependence ‡	Possible weak negative correlation between degradation of terbuthylazine and soil pH based on laboratory studies ($r² = 0.3485$). No correlation observed based on field dissipation studies.
(yes / no) (if yes type of dependence)	Soil accumulation and plateau concentration ‡
No evidence of accumulation of terbuthylazine, desethyl-terbuthylazine, hydroxy-terbuthylazine or desethyl-hydroxy-terbuthylazine after repeated applications at 7 locations in Northern Italy.	
Laboratory studies ‡

Terbutylazine	Anaerobic conditions						
Soil type	OM %	pH	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	DT₅₀ (d) 20 °C pF2/10kPa	St. (r²)	Method of calculation
Gartenacker – Sandy loam - SYN	3.79	7.25	20 oC / flooded soil	108.3 / 359.9	N/A	0.981	SFO
Speyer 2.3 – Sandy Loam - SYN	2.07	6.3	20 oC / flooded soil	131 / 436	N/A	0.966	SFO

Geometric mean | 119.1

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Terbutylazine ‡	Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Speyer 2.2 Loamy Sand – OXON	2.29	6.0	N/A	N/A	5.34	233	0.98	
Les Evouettes Sandy Loam – OXON	1.20	5.9	N/A	N/A	2.95	246	0.90	
Sisseln Sandy Loam – OXON	1.57	7.1	N/A	N/A	2.37	151	0.93	
Vetroz Silt Loam - OXON	4.1	7.3	N/A	N/A	8.18	200	0.90	
Pappelacker Loamy Sand – SYN	1.1	7.6	N/A	N/A	2.10	191	0.92	
Lorsch Sandy Clay Loam – SYN	1.8	5.3	N/A	N/A	5.86	318	0.94	
Gartenacker Loam – SYN	2.0	7.1	N/A	N/A	3.74	187	0.88	
Vetroz Silt Loam - SYN	4.7	7.2	N/A	N/A	10.49	223	0.97	
Borstel Loamy Sand – SYN*	1.48	6.1	N/A	N/A	4.93	333	0.91	

Arithmetic mean | 5.1 | 231 | 0.93 |

pH dependence, Yes or No | Possible weak negative correlation between sorption and soil pH (r² = 0.5456) |

NR = not recorded
Desethyl-terbuthylazine (MT1)

Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	I/n
Collombey Loamy Sand - SYN	0.80	7.3	N/A	N/A	0.594	74.0	0.85
Les Evouettes Silt Loam – SYN	2.40	7.2	N/A	N/A	1.43	59.0	0.86
Vetroz Silt Loam - SYN	4.70	7.2	N/A	N/A	3.29	70.0	0.91
Speyer 2.1 Sand – OXON	0.6	5.9	N/A	N/A	0.43	67.2	0.95
Speyer 2.2 Loamy Sand – OXON	2.3	5.6	N/A	N/A	1.9	81.7	0.91
Beek Silt Loam – OXON	0.6	6.6	N/A	N/A	0.28	43.8	0.94
Marknesse Silt Loam - OXON	1.3	7.5	N/A	N/A	1.24	96.9	0.92

Arithmetic mean

| | 1.39* | 77.7* | 0.89 |

pH dependence (yes or no) No

a arithmetic mean based on all data

Hydroxy-terbuthylazine (MT13)

Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	I/n
Cranfield 115 Clay Loam – OXON	1.7	7.9	N/A	N/A	3.51	208.6	0.82
Cranfield 164 Silt Loam – OXON	3.0	7.1	N/A	N/A	5.94	196.9	0.8
Cranfield 243 Sandy Loam - OXON	1.1	5.4	N/A	N/A	2.14	193.1	0.85
Borstel Sandy Loam - SYN	1.3	5.0	N/A	N/A	3.64	279.7	0.87
Collombey Loamy Sand - SYN	0.80	7.3	N/A	N/A	1.19	149	0.91
Les Evouettes Silt Loam - SYN	2.40	7.2	N/A	N/A	2.49	104	0.79
Vetroz Silt Loam - SYN	4.70	7.2	N/A	N/A	8.36	178	1.31

Arithmetic mean

| | 3.90 | 187 | 0.91 |

pH dependence (yes or no) No

Desethyl-hydroxy-terbuthylazine (MT14)

Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	I/n
Borstel Loamy Sand	1.3	5.0	1.8	136	1.44	111	0.93
Lorsch Sandy Clay Loam	1.8	5.3	3.8	211	3.39	188	0.97
Gartenacker Loam/Silt Loam	2.0	7.1	1.2	59	1.10	55	0.98
Vetroz Silt Loam	4.7	7.2	2.8	60	2.67	57	0.98
Wisborough- Silty Clay Loam	3.44	5.02	4.40	375	3.36	98	0.8892
Terbutryn (MT26) ‡

Soil Type	OC %	Soil pH (KCl)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Pappelacker - Sandy Loam	1.1	7.6	N/A	N/A	4.3	392	1.01
Speyer 2.1 - sand	0.6	7.4	N/A	N/A	3.7	605	1.06
Gartenacker Loam/Silt Loam	2.1	7.3	N/A	N/A	10.5	504	1.39
Vetroz Silt Loam	4.7	7.2	N/A	N/A	25.1	533	1.01
Illarsaz – silt loam	19.8	6.7	N/A	N/A	109.9	555	1.02
Arithmetic mean	13	518			33.2	1.02	

pH dependence (yes or no) No evidence from narrow pH range studied

LM1

Soil Type	OC %	Soil pH (CaCl₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker Silt Loam	2.95	7.1	0.507	30	0.51	30.2	1.03
18 Acres Clay Loam	4.34	7.2	0.853	34	0.82	32.7	0.98
Vetroz Loam	4.09	7.6	0.832	35	0.87	36.6	1.05
Arithmetic mean	0.73	33.2				1.02	

pH dependence (yes or no) No evidence from narrow pH range studied

LM2

Soil Type	OC %	Soil pH (CaCl₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Gartenacker Silt Loam	2.95	7.1	0.16	8.7	0.16	9	1.07
18 Acres Clay Loam	4.74	6.1	0.35	13.7	0.35	13	0.93
Vetroz Loam	4.09	7.6	0.15	6.1	0.15	6	1.1

www.efsa.europa.eu/efsajournal

EFSA Journal 2019;17(9):5817
Peper review of the pesticide risk assessment of the active substance terbuthylazine

www.efsa.europa.eu/efsajournal

| Arithmetic mean | 0.22 | 9.4 | 1.03 |
| pH dependence (yes or no) | Yes - slight trend relating increasing Kfoc with decreasing pH. However given the low sorption the mean was considered appropriate for modelling. |

LM3

Soil Type	OC %	Soil pH (CaCl2)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	I/n
Gartenacker Silt Loam	2.95	7.1	0.083	4.8	0.071	4.2	0.85
18 Acres Clay Loam	4.74	6.1	0.101	3.7	0.091	3.3	0.9
Vetroz Loam	4.09	7.6	0.098	4.1	0.087	3.7	0.87
Arithmetic mean							
pH dependence (yes or no)	No evidence from narrow pH range studied						

LM4

Soil Type	OC %	Soil pH (CaCl2)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	I/n
Gartenacker Silt Loam	2.95	7.1	0.103	6	0.097	4.9	0.81
18 Acres Clay Loam	4.74	6.1	0.474	17.2	0.463	15.4	0.91
Vetroz Loam	4.09	7.6	0.108	4.5	0.096	3.8	0.84
Arithmetic mean							
pH dependence (yes or no)	Yes - trend relating increasing Kfoc with decreasing pH. However given the low sorption the mean was considered appropriate for modelling.						

LM5

Soil Type	OC %	Soil pH (CaCl2)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	I/n
Gartenacker Silt Loam	2.95	7.1	0.414	24	0.32	19	0.87
18 Acres Clay Loam	4.74	6.1	0.549	20	0.39	14	0.88
Vetroz Loam	4.09	7.6	0.486	21	0.31	13	0.83
Arithmetic mean							
pH dependence (yes or no)	No evidence from narrow pH range studied						

www.efsa.europa.eu/efsajournal 31 EFSA Journal 2019;17(9):5817
Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2) – SYN and OXON

Soil Type	OC %	Soil pH (CaCl₂)	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	I/n
Gartenacker Silt Loam	2.95	7.1	0.282	16	0.23	13	0.92
18 Acres Clay Loam	4.74	6.2	0.485	18	0.4	14	0.93
Vetroz Loam	4.09	7.6	0.43	18	0.31	13	0.89
Arithmetic mean					0.38	13.3	0.91

pH dependence (yes or no) No evidence from narrow pH range studied

Column leaching ‡ (SYN)
- Eluation (mm): 200 mm
- Time period (d): 2 d
- Leachate: < 0.01 - 0.04 % total residues/radioactivity in leachate
- 82.45 - 90.14 % active substance and 0.46 - 1.49 % extractable metabolites in soil.
- 45.48 – 87.37 % total residues/radioactivity retained in top 2 cm

Lysimeter/ field leaching studies ‡ (SYN)
- Location: Schmallenberg/Grafschaft, Germany
- Study type (e.g. lysimeter, field): lysimeter (x2)
- Soil properties (0 – 30 cm): Borstel Sandy Loam, pH = 5.7, OC= 1.5 %, MWHC = not stated (FC = 20 – 34 % by volume)
- Dates of application: 28/05/1990
- Crop: maize followed by the rotational crops winter wheat and winter barley.
- Number of applications: 1 application to maize in first year only
- Duration: 2 years,
- Application rate: 700 - 790 g/ha
- Average annual rainfall (mm): 863 mm
- Average annual leachate volume (mm): 418.3 mm
- % radioactivity in leachate (maximum/year): 1.45 – 1.48 % AR
- Annual average maximum concentrations (e.g. 1st or 2nd yr, Lysimeter 38 or 44):
 - < 0.02 µg/L terbuthylazine,
 - < 0.02 µg/L desethyl-terbuthylazine,
Peer review of the pesticide risk assessment of the active substance terbutylazine

www.efsa.europa.eu/efsajournal

EFSA Journal 2019;17(9):5817

Lysimeter/ field leaching studies ‡ (SYN)

Location: Itingen, Switzerland
Study type (e.g. lysimeter, field): lysimeter
Soil properties (0 – 30 cm): Neustadt Sand, pH = 6.1, OC= 1.05, MWHC = 34.5 %
Dates of application: May 1992
Crop: maize followed by two rotations of winter wheat
Interception estimated: 25 % (based on standard crop interception values and growth stage of maize at time of application)
Number of applications: 1 application to maize in first year only
Duration:
Application rate: 891 g/ha
Average annual rainfall (mm): 1090 mm
Average annual leachate volume (mm): 413.2 mm
% radioactivity in leachate (maximum/year): 2.34 % AR
Structural assignments for the parent and metabolites in the leachate were determined

Compound	Concentration (μg/L)
hydroxy-terbutylazine	0.03
G 28273 (MT20)	0.03
G 17792 (MT19)	0.05
G 28279, G 28260 (MT22, MT14)	< 0.02
Unidentified radioactivity	1.96
Bi-annual average concentrations	
terbutylazine	< 0.02
desethyl-terbutylazine	< 0.02
hydroxy-terbutylazine	0.02
G 28273 (MT20)	0.02
G 17792 (MT19)	0.03
G 28279, G 28260 (MT22, MT14)	< 0.02
Unidentified radioactivity	1.21

Amount of radioactivity in the soils at the end of the study = 65.6 – 75.2 % AR; consisting of:
5.9 – 6.4 % AR as terbutylazine,
1.2 – 1.5 % AR as desethyl-terbutylazine,
0.2 – 0.5 % AR as hydroxy-terbutylazine,
< LOD – 0.2 % AR as G 28279 (MT22),
0.1 – 0.2 % AR as GS 28260 (MT14)
based on analysis during the original study coupled with additional information from further more recent accurate mass structural elucidation work. Parent and desethyl terbuthylazine were identified in the original study. Two further metabolites were plausibly assigned to LM3 and LM6 based on the additional mass spectral elucidation work. Assignment of other peaks was less certain based on matching relative retention times since matching HPLC conditions between this study and later definitive studies were not available. Quantitative concentrations are also uncertain due to the presence of multiple components in single peaks.

Annual average concentrations (μg/l parent equivalents)

Lysimeter 27:

< 0.05 μg/L terbuthylazine (1st year); < 0.05 μg/L terbuthylazine (2nd year); < 0.05 μg/L terbuthylazine (mean of 1st and 2nd year)

< 0.05 μg/L desethylterbuthylazine (1st year);
< 0.05 μg/L desethylterbuthylazine (2nd year);
< 0.05 μg/L desethylterbuthylazine (mean of 1st and 2nd year)

0.12 μg/L LM1* (1st year); 0.33 μg/L LM1* (2nd year); 0.25 μg/L LM1* (mean of 1st and 2nd year)

0.17 μg/L LM2* (1st year); 0.17 μg/L LM2* (2nd year); 0.17 μg/L LM2* (mean of 1st and 2nd year)

0.43 μg/L LM3 (1st year); 1.09 μg/L LM3 (2nd year); 0.84 μg/L LM3 (mean of 1st and 2nd year)

0.36 μg/L LM5* (1st year); 0.70 μg/L LM5* (2nd year); 0.57 μg/L LM5* (mean of 1st and 2nd year)

0.07 μg/L MT14 and LM4* (1st year); 0.11 μg/L MT14 and LM4* (2nd year); 0.09 μg/L MT14 and LM4* (mean of 1st and 2nd year)

0.05 μg/L LM6 (1st year); 0.50 μg/L LM6 (2nd year); 0.33 μg/L LM6 (mean of 1st and 2nd year)

0.25 μg/L LM7* (1st year); 0.05 μg/L LM7* (2nd year); 0.12 μg/L LM7* (mean of 1st and 2nd year)

* = structures tentatively assigned to peaks
Lysimeter/ field leaching studies \(\downarrow\) (OXON)

Additional unidentified radioactivity (sum of smaller peaks) 0.11 μg/L (1st year); 0.29μg/l (2nd year); 0.22μg/l (mean of 1st and 2nd year)

Amount of radioactivity in the soils at the end of the study = 67.7 % AR; consisting of (0 – 18 cm depth only)
0.92 % AR as parent
0.92 % AR as desethyl-terbuthylazine,
11.97 % AR as hydroxy-terbuthylazine,
1.52 % as desethyl-hydroxy-terbuthylazine,
6.29 % unidentified

| Location: Itingen, Switzerland |
| Study type (e.g. lysimeter, field): lysimeter (x2) |
| Soil properties (0 – 30 cm): Neustadt Sand, pH = 6.1, OC= 1.05, MWHC = 34.5 % |
| Dates of application : 18/05/93 |
| Crop : maize, followed by two rotations of winter wheat |
| Number of applications: 1 application to maize in first year only. |
| Duration: 2 years |
| Application rate: 905 g/ha/lysimeter 7; 929 g/ha/lysimeter 9 (application in first year only) |
| Average annual rainfall (mm): 1090 mm |
| Average annual leachate volume (mm): 485.6 mm |
| % radioactivity in leachate (maximum/year): 1.60 - 1.70 % AR |

Annual average concentrations (e.g. 1st and 2nd yr, Lysimeter 7 and 9):
not detected – terbuthylazine, desethyl terbuthylazine, hydroxy terbuthylazine

- 0.04/0.06μg/l LM1 (lysimeter 7/9, 1st year);
- 0.12/0.15μg/l LM1 (lysimeter 7/9, 2nd year)
- 0.04/0.03μg/l LM2 (lysimeter 7/9, 1st year);
- 0.10/0.10μg/l LM2 (lysimeter 7/9, 2nd year)
- 0.26/0.31μg/l LM3 (lysimeter 7/9, 1st year);
- 0.85/0.83μg/l LM3 (lysimeter 7/9, 2nd year)
- 0.38/0.40μg/l LM4 (lysimeter 7/9, 1st year);
- 0.14/0.18μg/l LM4 (lysimeter 7/9, 2nd year)
- 0.10/0.08μg/l LM5 (lysimeter 7/9, 1st year);
- 0.71/0.62μg/l LM5 (lysimeter 7/9, 2nd year)
- 0.03/0.01μg/l LM6 (lysimeter 7/9, 1st year);
- 0.53/0.40μg/l LM6 (lysimeter 7/9, 2nd year)
- 0.08/0.08μg/l LM7 (lysimeter 7/9, 1st year);
| Study Type | Location | Soil Properties | Dates of Application | Crop | Interception Estimated | Annual Rainfall | Number of Applications | Application Rate | Average Annual Leachate Volume | % Radioactivity in Leachate | Annual Average Concentrations |
|--------------------------------|---------------------------|--------------------------|----------------------|------------------------------------|------------------------|------------------|------------------------|-----------------|-------------------------------|-----------------------------|-----------------------------|
| Lysimeter/field leaching studies‡ (OXON) | Itingen, Switzerland | Neustadt Sandy loam, pH = 6.18, OC = 1.43, MWHC = 45.35 % | 10/05/05 | bare soil followed by plot being split and one of the following crops being sown: radish, spinach, wheat | 0 % | 798.5 mm | 1 application to bare soil | 972 g/ha (Lysimeter 4); 980 g/ha (Lysimeter 6) | 731 mm | 1.60 - 1.70 % AR | 0.03/0.02 μg/l LM1 (lysimeter 4/6, 1st year); 0.07/0.08 μg/l LM2 (lysimeter 4/6, 1st year); 0.24/0.23 μg/l LM3 (lysimeter 4/6, 1st year); 0.11/0.21 μg/l LM4 (lysimeter 4/6, 1st year); 0.68/0.78 μg/l LM5 (lysimeter 4/6, 1st year); 0.18/0.19 μg/l LM6 (lysimeter 4/6, 1st year); 0.08/0.08 μg/l LM7 (lysimeter 4/6, 1st year); |
Study type (e.g. lysimeter, field): Field leaching study
Soil properties (0 – 30 cm): sandy loam, pH = 5.2 – 6.3, OC= 2.3 – 2.6, MWHC = not reported
Dates of application: 1990, 1992, 1994 – 1997, 1999 - 2000
Crop: maize in application years.
Interception estimated: 25 % (based on standard crop interception values and growth stage of maize at time of application)
Number of applications: 8 applications, maximum of 1 per year
Duration: 11 years
Application rate: 735 g/ha in 1990; 750 g/ha in all other application years
Average annual rainfall (mm): 587 mm (NB. data from 1993, 1995 and 1998 not reported)
Average annual leachate volume (mm): Not applicable
% radioactivity in leachate (maximum/year): Not applicable.
Frequency of detections, detections above >0.1μg/l and maximum conc.:

Compound	Detection(s)	Concentration
Terbuthylazine	1	0.09μg/l
Desethyl terbuthylazine	0	
Desethyl hydroxyterbuthylazine	17	0.41μg/l
2-Hydroxy terbuthylazine	10	0.08μg/l

Individual annual maximum concentrations (e.g. 1st, 2nd, 3rd yr):
- < 0.05 μg/L terbuthylazine
- < 0.05 μg/L desethyl-terbuthylazine
- 0.06 μg/L 2-hydroxy-terbuthylazine
- 0.25 μg/L desethylhydroxy-terbuthylazine

Individual annual average concentrations (e.g. 1st, 2nd, 3rd yr):
< 0.05 µg/L terbuthylazine
< 0.05 µg/L desethyl-terbuthylazine
< 0.05 µg/L 2-hydroxy-terbuthylazine
< 0.05 - 0.12 µg/L desethylhydroxy-terbuthylazine

Amount of radioactivity in the soils at the end of the study = not reported

Note that 2-hydroxy terbuthylazine was only analysed for in 1999-2000 and 2000-2001. Desethylhydroxy terbuthylazine was only analysed for in 1997-1998, 1999-2000 and 2000-2001.

| Location: 10 sites in 5 regions (Emilia Romagna, Friuli Venezia – Giulia, Lombardia, Piemonte, Veneto) in Northern Italy |
| Study type (e.g. lysimeter, field): field leaching study |
| Soil properties: texture class – 5 sandy loams, 3 loams, 1 sandy clay and 1 clay loam; pH = 4.9 - 7.7; OC = 0.9 – 3.6%; MWHC = not reported |
| Groundwater depth: 0.12 to 7.1m below ground surface |
| Dates of application : 2005 to 2007 |
| Crop : maize |
| Irrigation: sprinkler, basin, border or no irrigation |
| Interception estimated: 0 % (applications made shortly after seeding maize) |
| Number and rate of applications: between 2005 and 2007, 7 sites had 3 annual applications of 856 g terbuthylazine/ha. The remaining 3 sites had either 2 or 1 annual application. |
| Duration: bi-monthly sampling for 3 years (17 sampling events) |
| Average annual rainfall (mm): Reported to be below the overall average for the period 2000-2007 but supplemented by irrigation at 9 out of 10 sites. |

Frequency of detections, detection >0.1µg/l and maximum conc. (excluding basin irrigated sites, n=8):

Terbuthylazine: 62 detections out of 395 samples; 3% (~13 samples) >0.1µg/l; maximum concentration = 3.20µg/l.

Desethyl terbuthylazine: 125 detections out of
395 samples; 5% (~21 samples) >0.1μg/l; maximum concentration = 3.18μg/l. Excluding results from the V2 site after April 2007 when contamination may have occurred, the peak monitored concentration was 1.984μg/l and actual concentrations >0.1μg/l were observed in 17 out of 384 samples (4.4%).

Desethyl hydroxyterbuthylazine: 57 detections out of 144 samples; 29% (~42 samples) >0.1μg/l; maximum concentration = 2.65μg/l.

2-hydroxy terbuthylazine: 2 detections out of 144 samples, 0%(0 samples) >0.1μg/l; maximum concentration = 0.05μg/l.

LM5: 11 detections out of 21 samples; 29% (~6 samples) > 0.1μg/l; maximum concentration = 0.68μg/l.

LM6: 9 detections out of 21 samples; 38% (~8 samples >0.1μg/l; maximum concentration = 1.58μg/l.

Annual average concentrations:
0.03 – 0.58 μg/L terbuthylazine (basin irrigation)
<0.01 – 0.07 μg/L terbuthylazine (sprinkler or border irrigation)
0.07 – 0.73 μg/L desethyl terbuthylazine (basin irrigation)
<0.01 – 0.22 μg/L desethyl terbuthylazine (sprinkler or border irrigation)

< 0.05 – 0.05 μg/L (single sample) 2-hydroxy terbuthylazine (analysed for 2007 only)
0.04 – 0.37 μg/L desethyl hydroxyterbuthylazine (analysed for the 2007 season only)
<0.05 – 0.48 μg/L GS16984 (LM5) (analysed for the 2007 season only)
<0.05 – 1.3 μg/L CSCD648241 (LM6) (analysed for the 2007 season only)

Additional monitoring between 2009-2010 at 7 sites across 4 regions (Emilia Romagna, Lombardy, Veneto and Friuli-Venezia-Giulia) to measure residues of LM2, 3, 4, 5 and 6.

LM2 maximum concentration = 0.26μg/l
LM3 maximum concentration = 0.29μg/l
LM4 maximum concentration = 0.50μg/l
Route and rate of degradation in water (Annex IIA, point 7.2.1) – SYN and OXON

Route and type of degradation	SYN - pH 5: 73 d at 25 °C (1st order)	Hydroxy-terbuthylazine: 16 % AR (50 d)	OXON - pH 4: > 1 year at 20 °C (1st order, extrapolated beyond study duration)			
Hydrolytic degradation of terbuthylazine and metabolites > 10 % ‡	pH 7: SYN - 205 d at 25 °C (1st order)	OXON - No significant degradation at 50 °C after 5 days				
	pH 9: SYN - 194 d at 25 °C (1st order)	OXON - No significant degradation at 50 °C after 5 days				
Photolytic degradation of terbuthylazine and metabolites above 10 % ‡	SYN - Xenon arc lamp (wavelengths filtered < 290 nm), 12 hours light/12 hours dark for 10 days. Light equivalent to 13.4 days of midsummer sunlight at 30/40° N.	DT₅₀: No significant degradation	OXON - Xenon arc lamp (wavelengths filtered < 290 nm) for 30 days. 1 day equivalent to 1.64 days of summer sunlight at 40° N.	DT₅₀: 14.1 d under the test conditions; equivalent to 29.5 d in natural sunlight at 40° N in the summer.	hydroxy-terbuthylazine: 38.9 % AR (30 d)	desethyl-terbuthylazine: 11.4 % AR (30 d)

Note that as high concentrations were also found in the upstream monitoring wells (all substances), parts of residues found in downstream monitoring wells are likely to derive from previous usage following several years of commercial application in the upstream areas.
Property	Value
Quantum yield of direct phototransformation in water at Σ > 290 nm	3 x 10^{-6} mol · Einstein^{-1}
Readily biodegradable ‡ (yes/no) (OXON and SYN)	No
Hydrolytic degradation of desethyl-terbuthylazine (MT1) and metabolites > 10 % ‡ (SYN)	pH 4: 135.9 d at 25 °C (1st order) desethyl-2-hydroxy-terbuthylazine: 11.5 % AR (30 d) pH 5: No significant degradation at 50 °C after 5 days pH 7: No significant degradation at 50 °C after 5 days pH 9: No significant degradation at 50 °C after 5 days SYN - Xenon arc lamp (wavelengths filtered < 290 nm) for 15 days. Light equivalent to 13, 15 and 23 days of summer sunlight at 30 and 50 °N on a 12 h light: 12 dark basis at pH 5, 7 and 9 respectively. DT_{50}: No significant degradation
Photolytic degradation of desethyl-terbuthylazine (MT1) and metabolites above 10 % ‡	pH 4: No significant degradation at 50 °C after 5 days pH 7: No significant degradation at 50 °C after 5 days pH 9: No significant degradation at 50 °C after 5 days SYN - Xenon arc lamp (wavelengths filtered < 290 nm) for 15 days. Light equivalent to 13, 15 and 23 days of summer sunlight at 30 and 50 °N on a 12 h light: 12 dark basis at pH 5, 7 and 9 respectively. DT_{50}: No significant degradation
Quantum yield of direct phototransformation in water at Σ > 290 nm	A valid molar absorption coefficient could not be calculated because of very little or no absorption occurring over the wavelength range 290 – 800 nm.
Readily biodegradable ‡ (yes/no)	No. Not readily biodegradable
Hydrolytic degradation of hydroxy-terbuthylazine (MT13) and metabolites > 10 % ‡ (SYN)	pH 4: No significant degradation at 50 °C after 5 days pH 7: No significant degradation at 50 °C after 5 days pH 9: No significant degradation at 50 °C after 5 days
Photolytic degradation of hydroxy-terbuthylazine (MT13) and metabolites above 10 % ‡	Not performed
Quantum yield of direct phototransformation in water at Σ > 290 nm	A valid molar absorption coefficient could not be calculated because of very little or no absorption occurring over the wavelength range 290 – 800 nm.
Readily biodegradable ‡ (yes/no)	No. Not readily biodegradable
PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

As a result of the confirmatory information assessment, quantified predictions of LM2, LM3, LM4, LM5 and LM6 in groundwater above 0.1μg/l are available. The UK RMS therefore considers that LM2, LM3, LM4, LM5 and LM6 could be added to residue definition for surface water and sediment (by default). Endpoints for use in the surface water assessment are proposed as follows:-

LM2
DT₅₀: 16.5d
K₇₀C: 9.4 L/kg, 1/n = 1.03

LM3
DT₅₀: 12.2d
K₇₀C: 3.7 L/kg, 1/n = 0.87

LM4
DT₅₀: 53.6d
K₇₀C: 8.0 L/kg, 1/n = 0.85

LM5
DT₅₀: 47.0d
K₇₀C: 15.3 L/kg, 1/n = 0.86

LM6
DT₅₀: 241d
K₇₀C: 13.3 L/kg, 1/n = 0.91

In the absence of information on peak occurrence in soil and degradation rates in water, it is proposed that for the purposes of a simple, conservative assessment, peak occurrence in soil is set at 100% and water/sediment DT50 values set to 1000 d. These values may be refined if necessary.
PEC (ground water) (Annex IIIA, point 9.2.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

For FOCUS gw modelling, values used –
Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.
Model(s) used: PEARL 4.4.4 and PELMO 4.4.3
Scenarios (list of names): Châteaudun (C), Hamburg (H), Kremsmünster (K), Okehampton (N), Piacenza (P), Porto (O), Sevilla (S), Thiva (T)

Scenario	Q_{10}	Crop	Terbuthylazine: DT_{50}	K_{FOC}	$\frac{1}{n}$
	2.58	maize	20.0 d (normalised median of field studies)	worst case assessment using lowest K_{foc} value of 151 L/kg and associated $\frac{1}{n}$ of 0.93 to reflect possible pH dependence:	

Metabolites:
Desethyl-terbuthylazine:
DT_{50}: 26.8 d (geomean of field studies).
K_{FOC}: 77.7 L/kg, $\frac{1}{n}$ = 0.89 (mean values).
Formation fraction: 0.44 from parent

Hydroxy-terbuthylazine:
DT_{50}: 453 d (geomean of lab studies)
K_{FOC}: 187 L/kg, $\frac{1}{n}$ = 0.91 (mean values).
Formation fraction: 0.17 from parent (Applicant) and 0.197 (RMS)

Desethylhydroxy-terbuthylazine:
DT_{50}: 107 d (geomean of lab studies).
K_{FOC}: 121 L/kg, $\frac{1}{n}$ = 0.92 (median values, Applicant) or 111 L/kg, $\frac{1}{n}$ = 0.92 (median values excluding results from the Bosket loam soil, RMS)
Formation fraction: 0.28 (from desethyl-terbuthylazine)

LM1
DT_{50}: 0.4d
K_{FOC}: 33.2 L/kg, $\frac{1}{n}$ = 1.02
Formation fraction: 0.59 (from LM5)

LM2
DT_{50}: 16.5d
K_{FOC}: 9.4 L/kg, $\frac{1}{n}$ = 1.03
Formation fraction: 1 (from LM4)
LM3
DT₅₀: 12.2d
KₚOC: 3.7 L/kg, ¹/n₀ = 0.87
Formation fraction: 1 (from LM2)
LM4
DT₅₀: 53.6d
KₚOC: 8.0 L/kg, ¹/n₀ = 0.85
Formation fraction: 0.08 (from parent terbuthylazine)
LM5
DT₅₀: 47.0d
KₚOC: 15.3 L/kg, ¹/n₀ = 0.86
Formation fraction: 0.47 (from MT14)
LM6
DT₅₀: 241d
KₚOC: 13.3 L/kg, ¹/n₀ = 0.91
Formation fraction: 0.41 (from LM5)

Application rate
Application rate: 750 g/ha Northern Europe
850 g/ha Southern Europe
No. of applications: 1
Time of application (month or season): 1 day before crop emergence
PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

FOCUS-PEARL PEC_{GW} values for Terbuthylazine (using minimum measured K_{foc} = 151 ml/g; K_{fom} = 87.6 ml/g) and three metabolites, following application to Maize at 750 g/ha (RMS simulations)

Scenario	PEC at 1 m Soil Depth (µg/l)	PEC_{GW} at 1 m Soil Depth (µg/l)		
	Terbuthylazine	Hydroxy-terbuthylazine (GS23158 or MT13)	Desethyl-terbuthylazine (GS26379 or MT1)	Desethyl-hydroxy-terbuthylazine (GS28620 or MT14)
Châteaudun	<0.001	15.0	0.061	2.17
Hamburg	0.005	18.3	0.28	3.44
Kremsmünster	0.002	12.8	0.186	2.29
Okehampton	0.007	13.3	0.316	2.89
Piacenza	0.003	15.4	0.163	2.25
Porto	<0.001	7.63	0.047	1.25
Sevilla	<0.001	4.19	<0.001	0.188
Thiva	<0.001	21.0	0.009	1.66

1: 2-hydroxy terbuthylazine DT_{50} = 453 d, formation fraction = 0.197
2: desethyl-hydroxy terbuthylazine K_{foc} = 111 ml/g; K_{fom} = 64.4 ml/g (median of 11 values)

FOCUS-PEARL PEC_{GW} values for Terbuthylazine (using minimum measured K_{foc} = 151 ml/g; K_{fom} = 87.6 ml/g) and three metabolites, following application to Maize at 850 g/ha (RMS simulations)

Scenario	PEC at 1 m Soil Depth (µg/l)	PEC_{GW} at 1 m Soil Depth (µg/l)		
	Terbuthylazine	2-Hydroxy-terbuthylazine (GS23158 or MT13)	Desethyl-terbuthylazine (GS26379 or MT1)	Desethyl-hydroxy-terbuthylazine (GS28620 or MT14)
Châteaudun	< 0.001	17.2	0.075	2.51
Hamburg	0.006	20.9	0.336	3.97
Kremsmünster	0.002	14.7	0.225	2.65
Okehampton	0.008	15.2	0.4	3.33
Piacenza	0.003	17.7	0.2	2.6
Porto	<0.001	8.69	0.058	1.44
Sevilla	<0.001	4.88	<0.001	0.223
Thiva	<0.001	24.1	0.011	1.93

1: 2-hydroxy terbuthylazine DT_{50} = 453 d, formation fraction = 0.197
2: desethyl-hydroxy terbuthylazine K_{foc} = 111 ml/g; K_{fom} = 64.4 ml/g (median of 11 values)
FOCUS-PEARL PEC\textsubscript{GW} values for Terbuthylazine six lysimeter metabolites LM1-LM6 (using minimum measured K\textsubscript{foc} = 151 ml/g; K\textsubscript{fom} = 87.6 ml/g) following application to Maize at 750 g/ha (RMS simulations)

Scenario	PEC\textsubscript{GW at 1 m Soil Depth (µg/L)}					
	LM1	LM2	LM3	LM4	LM5	LM6
Châteaudun	0.01	2.57	2.1	5.82	2.55	3.97
Hamburg	0.014	4.59	3.4	10.4	4.02	4.72
Kremsmünster	0.009	2.26	1.74	5.37	2.37	2.78
Okehampton	0.009	2.26	1.64	5.43	2.37	1.8
Piacenza	0.008	1.46	1.88	4.14	2.28	4.54
Porto	0.006	1.23	0.93	2.66	1.43	1.67
Sevilla	0.003	0.64	0.54	1.07	0.728	3.71
Thiva	0.009	2.13	1.88	4.78	2.39	8.0

FOCUS-PEARL PEC\textsubscript{GW} values for Terbuthylazine six lysimeter metabolites LM1-LM6 (using minimum measured K\textsubscript{foc} = 151 ml/g; K\textsubscript{fom} = 87.6 ml/g) following application to Maize at 850 g/ha (RMS simulations)

Scenario	PEC\textsubscript{GW at 1 m Soil Depth (µg/L)}					
	LM1	LM2	LM3	LM4	LM5	LM6
Châteaudun	0.011	2.93	2.39	6.68	2.92	4.49
Hamburg	0.016	5.19	3.86	12	4.62	5.32
Kremsmünster	0.01	2.56	1.97	6.14	2.71	3.13
Okehampton	0.01	2.56	1.86	6.21	2.7	2.02
Piacenza	0.009	2.13	1.66	4.78	2.61	5.14
Porto	0.007	1.39	1.06	3.05	1.65	1.88
Sevilla	0.003	0.727	0.619	1.23	0.838	4.21
Thiva	0.01	2.43	2.15	5.49	2.76	9.06
Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology) or for which a groundwater exposure assessment is triggered.

Soil:	terbuthylazine, desethyl-terbuthylazine, hydroxy-terbuthylazine
Surface Water:	terbuthylazine, desethyl-terbuthylazine, hydroxy-terbuthylazine (MT13), desethyl-hydroxy terbuthylazine and terbutryn (MT26)
Sediment:	terbuthylazine, desethyl-terbuthylazine, hydroxy-terbuthylazine (MT13), desethyl-hydroxy terbuthylazine and terbutryn (MT26)
Groundwater:	terbuthylazine, desethyl-terbuthylazine, hydroxy-terbuthylazine (MT13) and desethyl-hydroxy-terbuthylazine, LM1, LM2, LM3, LM4, LM5 and LM6
Air:	terbuthylazine

The above is the original residue definition for environmentally occurring metabolites requiring further assessment by other disciplines. As a result of the confirmatory information assessment, quantified predictions of LM2, LM3, LM4, LM5 and LM6 in groundwater above 0.1μg/l were available. LM2, LM3, LM4, LM5 and LM6 were additionally included in the residue definition for surface water and sediment (by default) to cover situations where groundwater can become surface water.

Monitoring data, if available (Annex IIA, point 7.4) - SYN

Soil (indicate location and type of study)

Surface water (indicate location and type of study)

a) Two sites in Germany susceptible to run-off and adjacent to streams in typical maize growing areas were selected. Upstream and downstream points of streams were monitored for terbuthylazine and desethyl-terbuthylazine (MT1) from May to August in 1999 and 2000 following terbuthylazine application to maize in adjacent field. Samples were taken every hour and combined into weekly samples. Samples also taken after heavy rainfall events. Neither analyte detected at ‘Ramholz’ site at concentrations > 0.05 µg/L (LOQ). Max weekly concentrations at the ‘Kemading’ site were 0.28 and 0.08 µg/L for terbuthylazine and desethyl-terbuthylazine (MT1) respectively. Max concentrations in event samples were 0.87 µg/L and 0.20 µg/L. Concentrations similar at upstream and downstream sample sites indicate residues arose from applications in
Groundwater (indicate location and type of study)

Details	Study Location	Results
a) Full sample details not provided. 27103 sample data from Germany for the occurrence of terbuthylazine in groundwater. 328 detections of terbuthylazine were observed with 41 > (0.15% of the total analyses) displaying residues in excess of 0.1 µg/L. The Applicant states that none of these exceedences were due to the correct GAP for approved uses being applied.	Germany	328 detections of terbuthylazine
b) Full sample details not provided. Groundwater samples from more than 1000 intakes from 15 municipalities in counties around Denmark in 1990 – 2001 were analysed for residues of plant protection products and their degradation products. The mean depth to the top of the groundwater sample was 24 - 25 m with a mean intake length of 3.5 m. In addition to the groundwater survey, the report also contained information on the analyses of water samples taken from a group of “other borings” which are not used to extract groundwater for drinking purposes. 1016 intakes were analysed for terbuthylazine (the number of analyses was 4086). There were 17 (1.7 %) intakes with detections of terbuthylazine, however, none of them contained concentrations ≥ 0.1 µg/L. With regard to the group “other borings”, 1156 and 311 borings were analysed for terbuthylazine and desethyl-terbuthylazine (MT1) respectively with 1492 and 527 individual analyses respectively. Terbuthylazine and desethyl-terbuthylazine (MT1) were found in 18 (1.6 %) and 14 (4.5 %) borings, with 3 (0.3 %) and 4 (1.3 %) of these findings being detected at concentrations ≥ 0.1 µg/L.	Denmark	1016 intakes were analysed
c) Danish government monitoring programme selected two sites (Jyndevad and Silstrup) in Denmark to assess the leaching potential of pesticides including terbuthylazine. Applications were made to maize in May 2001 at Jyndevad and in May/June 2002 at Silstrup. Soil pore waters and groundwaters were analysed monthly for terbuthylazine and desethyl-terbuthylazine, additionally	Denmark	Two sites (Jyndevad and Silstrup)
at Silstrup hydroxy-terbuthylazine, hydroxy-desethyl-terbuthylazine (MT1) and atrazine-desisopropyl-2-hydroxy (MT22) were also monitored for from February 2003.

At Jyndevad, terbutylazine was not detected in either the soil pore water or the groundwater at concentrations > 0.01 µg/L in the two year monitoring period. Desethyl-terbuthylazine (MT1) was detected in pore water at 1 m depth in all but three of the monthly samples between October 2001 (five months after application) and May 2003 at concentrations of 0.020 – 0.056 µg / L, however it was not detected in pore waters at 2 m and was only detected once in any of the downstream groundwater monitoring wells.

At Silstrup terbuthylazine residues in well water at 1.5-2.5 m depth ranged from 0.013-0.124 µg/L over the year with one sample containing > 0.1 µg/L. Residues of desethyl-ranged from 0.046-0.143 µg/L over the year with two samples containing > 0.1 µg/L. Residues from deeper screens were always < 0.08 µg/L for both terbuthylazine and desethyl-terbuthylazine. Of the remaining metabolites hydroxy-terbuthylazine (MT13) was not detected in the well water. Hydroxy-desethyl-terbuthylazine (MT1) was only detected once in the well water at a depth of 1.5 – 2.5 m at a concentration of 0.016 µg/L. Atrazine-desisopropyl-2-hydroxy (MT22) was detected three times in the well at 1.5 – 2.5 m depth at concentrations around 0.01 µg/L. It was also detected once at a depth of 3.5 – 4.5 m at a concentration of 0.047 µg/L.

d) Targeted groundwater monitoring studies were conducted in Germany in areas of documented use of terbuthylazine containing products. Typical maize regions were investigated i.e. Schleswig-Holstein, Mecklenburg-West Pomerania, Muenster-Emsland (stretching from the federal state North Rhine-Westfalia to Lower Saxony), Rottal (Bavaria) and the Upper Rhine Valley (stretching from the federal state Baden-Wuerttemberg to Hesse). Groundwater was collected from monitoring screen typically situated 5 m below ground surface. Confirmed usage of terbuthylazine containing products in upstream areas (2.5 x 2.5km or 625 ha) was determined via farmer surveys and interviews over three years (2002 – 2004). Results for each site represent the sum over this period as follows:- Wanderup 277 ha, Alt-Bennebek 497ha, Breiholz-Ost 198 ha, Hagen-Suedost 61 ha, Luettow 57 ha, Torgelow 225 ha, Lelkendorf 72 ha, Warnow 60 ha, Pinnow 288ha, Tabeckendorf 114 ha, Postmuenster 92 ha, Hammersbach 102 ha, Kirchham-Pfaffenhof 336 ha, Simbach-Stoelln 137 ha, Biblis 82 ha, Lorsch 56 ha, Rheinhausen-Oberhausen 198 ha, Breisach-Weingenossenschaft 240 ha, Grezhausen 69 ha, Rehderfeld 154 ha, Flechum 114 ha, Dalumer Moor 174
The overall mean hectarage treated was reported to be 120 ha across all sites and only those sites that received at least 50 ha of treatment were included in the final 25 sites monitored. The groundwater table was mostly less than 5 meters below ground surface and a wide range of soil properties was covered by the selected regions. No residues of terbuthylazine and desethyl-terbuthylazine were detected in any of the ground water monitoring samples analysed. Small residues of GS 28620 (MT14) and GS 23158 (MT13) were found in water samples taken from ground water monitoring wells at two locations. The residues of GS 28620 (MT14) occurred in May-July 2003 and ranged from 0.05-0.06 µg/l. The residues of GS 23158 (MT13) were detectable but not quantifiable (i.e. < 0.05 but > 0.02 µg/l). In addition, the lysimeters metabolites LM3, LM5 and LM6 were detected at 19 of the 25 locations, confirming the linkage to terbuthylazine treated areas in the catchment.

Residues of the metabolite CSCD648241 (LM6) in 29 samples from 25 individual sampling points were determined to be between < 0.05 µg/l and 0.66 µg/l. Residues of the metabolite GS16984 (MT23, LM5) in 29 samples from 25 individual sampling points, were determined to be between < 0.05 µg/l and 0.98 µg/l. The metabolite CSCD692760 (LM3) was detected at 19 (10 above the LOQ and 9 below the LOQ) of the 25 locations. Quantifiable residues ranged from 0.06-0.69 µg/l.

e) In 1997, a monitoring study was carried out in four maize cultivated areas in the plain of the river Po in Italy to evaluate the degree of contamination of the groundwater table. No residues of terbuthylazine were detected above 0.1µg/l in the 1997 study. A follow-up study was conducted in 2006 in the same areas identified in the previous monitoring study. The majority of superficial wells sampled were over 20 m deep, with deep wells often greater than 50m. In these follow-up studies 8 out of approximately 100 wells were found to contain residues of terbuthylazine or its metabolites desethyl-terbuthylazine and hydroxy-terbuthylazine above 0.1 µg/l. However the average age of the wells was over 30 years and characterised by degraded materials, rust, holes or cracks etc and as a whole, the 90th percentile terbuthylazine and metabolite residues were all <0.05 µg/l on the basis of this monitoring.

f) A retrospective monitoring study was conducted in four regions of Portugal from 1999 to 2007. As a retrospective study, only limited details on the history of pesticide use in the upstream areas was available. However throughout the eight year duration of the study, 773 water samples were taken and analysed for terbuthylazine and desethyl-terbuthylazine from 68 different sampling sites, generating a total of 1546 data points. Sampling sites covered a relatively wide variety.
of sales history, cropping density, depth to groundwater and nitrate concentration (this last parameter used as general indicator for the vulnerability of an aquifer to agricultural practices). Although terbuthylazine has not been in widespread use in two of the monitored regions, it has been extensively used in vineyards in the Oeste and the Douro valley at a rate of 490 g/ha (1400 g/ha in row). Neither terbuthylazine nor desethyl-terbuthylazine residues exceeded 0.05 µg/l at the 90th percentile of the population. Overall the RMS considered that the additional data from the Portuguese monitoring programs did provide useful information. However it should be noted that the monitoring is only of partial relevance in the regions where prior use of terbuthylazine is known to be extensive, and also taking into account that the use covers applications to vineyards rather than the extensive use on maize as investigated in the German and Italian studies. Taking these caveats into account, the RMS considers that the data should be viewed as providing supporting information alongside the monitoring data from other regions, as well as taking into account the results of the standard first tier FOCUS groundwater exposure assessments.

 Retrospective monitoring studies were conducted in 3 regions of Spain covering use of terbuthylazine on olive crops in Andalucia (2000 to 2003), use on maize and citrus crops in South Eastern Spain (2000 to 2001) and use on maize and vineyards in Northern Spain (2000-2001). As retrospective studies, only limited details on the history of pesticide use in the upstream areas was available. In addition in many cases, the relatively large distance between the discharge point and the upland aquifer made it difficult to relate monitored residues back to a specific product use pattern. However throughout each study sampling sites were selected using local knowledge of cropping density, regional product sales data, hydrogeological information and information pertaining to the integrity of the respective sampling sites. In three regions the 90th percentile concentration was less than 0.1 µg/l for both terbuthylazine and metabolite desethyl-terbuthylazine (the only metabolite monitored for). However it should be noted that methods of analysis were unvalidated and the LOQ was only reported to be 0.1µg/l in the studies conducted in South Eastern Spain. In Andalucia, following extensive use of terbuthylazine on olive crops, the 90th percentile concentration of terbuthylazine was 0.14 µg/l. However the majority of detections in this region came from springs discharging groundwater into lagoons, troughs or drainage canals that were not protected from direct contamination. Overall the RMS considered that the additional data from the Spanish monitoring programs did provide limited useful information. However it should be noted that the monitoring is only of partial relevance in the regions where prior use of terbuthylazine is known to be extensive, and also taking into account that the monitoring covers areas where terbuthylazine may be applied to olive crops, citrus and
vineyards in addition to use on maize in two of the three regions investigated. In addition, the sampling of groundwater from springs discharging to surface water bodies meant that the influence of direct contamination (rather than conventional leaching) could not be excluded. Taking these caveats into account, the RMS considers that the data should be viewed as providing limited supporting information only alongside the monitoring data from other regions, as well as taking into account the results of the standard first tier FOCUS groundwater exposure assessments.

Air (indicate location and type of study)
None

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data
Candidate for chronic (long term) aquatic hazard
Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity\(^1\) (mg/L)
Laboratory tests ‡				
Fish				
Oncorhynchus mykiss	a.s.	96 hr (static)	Mortality, nomLC\(_{50}\)	2.2 mg a.s./L (SYN)
Oncorhynchus mykiss	a.s.	90 d (flow-through)	Early life cycle mmNOEC	0.09 mg a.s./L (SYN)
Oncorhynchus mykiss	Preparation: ‘Gardo Gold’ (A-9476 C)	96 hr (static)	Mortality, mmLC\(_{50}\)	8.32 mg formulation/ L (1.58 mg a.s./L) (SYN)
Oncorhynchus mykiss	Preparation: ‘Terbutylazine 500 g/L SC’	96 hr (static)	Mortality, mmLC\(_{50}\)	12 mg formulation/ L (6.6 mg a.s./L) (OXON)
Oncorhynchus mykiss	Metabolite MT1 (GS 26379, desethyl-terbutylazine)	96 hr (static)	Mortality, nomLC\(_{50}\)	18 mg/L (SYN)
Oncorhynchus mykiss	Metabolite MT13 (GS 23158, 2-hydroyx-terbutylazine)	96 hr (static)	Mortality, mmLC\(_{50}\)	>2.5 mg/L (SYN)
Oncorhynchus mykiss	Metabolite MT26 (GS 14260, terbutryn)	96 hr (static)	Mortality, mmLC\(_{50}\)	1.1 mg/L (SYN)
Aquatic invertebrate				
Daphnia magna	a.s.	48 h	Mortality, EC\(_{50}\)	No definitive endpoint available\(^2\)
Group	Test substance	Time-scale (Test type)	End point	Toxicity\(^1\) (mg/L)
------------------	---------------------------------	------------------------	----------------------------------	------------------------
Daphnia magna	a.s.	21 d (semi-static)	Reproduction, \(_{\text{nom}}\) NOEC	0.019 mg a.s./L (SYN)
	Preparation: ‘Gardo Gold’ (A-9476 C)	48 h (static)	Mortality, EC\(_{50}\)	No definitive endpoint available\(^3\)
	Preparation: ‘Terbuthylazine 500 g/L SC’	48 h (static)	Mortality, EC\(_{50}\)	No definitive endpoint available\(^3\)
	Metabolite MT1 (GS 26379, desethyl-terbuthylazine)	48 h (static)	Mortality, \(_{\text{nom}}\) EC\(_{50}\)	42 mg/L (SYN)
	Metabolite MT13 (GS 23158, 2-hydroxy-terbuthylazine)	48 h (static)	Mortality, \(_{\text{nom}}\) EC\(_{50}\)	>2.8 mg/L (SYN)
Sediment dwelling organisms				
Chironomus riparius	a.s.	27 d (static)	\(_{\text{nom}}\) NOEC (water phase)	0.5 mg a.s./L (SYN)
Chironomus riparius	Metabolite MT13 (GS 23158, 2-hydroxy-terbuthylazine)	28 d (static)	\(_{\text{nom}}\) NOEC (sediment phase)	400 mg/kg (sediment) (SYN)
Chironomus riparius	Metabolite MT26 (GS 14260, terbutryn)	28 d (static)	\(_{\text{nom}}\) NOEC (sediment phase)	16 mg/kg (sediment)
Algae				
Blue green algae (Microcystis aeruginosa)	a.s.	72 h (static)	Biomass: \(_{\text{mm}}\) E\(_{0}\)C\(_{50}\)	0.016 mg a.s./L (OXON)
			Growth rate: \(_{\text{mm}}\) E\(_{1}\)C\(_{50}\)	0.102 mg a.s./L (OXON)
Group	Test substance	Time-scale (Test type)	End point	Toxicity\(^1\) (mg/L)
-------------------------------	----------------	-----------------------	--------------------	-----------------------
Pseudokirchneriella subcapitata	a.s.	72 h (static)	Biomass: \(\text{mm}E_C50\)	0.012 mg a.s./L (OXON)
			Growth rate: \(\text{mm}E_tC50\)	0.028 mg a.s./L (OXON)
Desmodesmus subspicatus	Preparation: ‘Gardo Gold’ (A-9476 C)	72 h (static)	Biomass: \(\text{nom}E_C50\)	0.108 mg formulation/ L (0.0205 mg a.s./L) (SYN)
			Growth rate: \(\text{nom}E_tC50\)	0.211 mg formulation/ L (0.0401 mg a.s./L) (SYN)
Pseudokirchneriella subcapitata	Preparation: ‘Terbutylazine 500 g/L SC’	72 h (static)	Biomass: \(\text{mm}E_C50\)	0.039 mg formulation/ L (0.021 mg a.s./L) (OXON)
			Growth rate: \(\text{mm}E_tC50\)	0.073 mg formulation/ L (0.040 mg a.s./L) (OXON)
Selenastrum capricornutum	Metabolite MT1 (GS 26379, desethyl-terbuthylazine)	72 h (static)	Biomass: \(\text{mm}E_C50\)	0.14 mg/L (SYN)
			Growth rate: \(\text{mm}E_tC50\)	0.38 mg/L (SYN)
Desmodesmus subspicatus	Metabolite MT13 (GS 23158) 2-hydroxy-terbuthylazin e	72 h (static)	Biomass: \(\text{nom} E_C50\)	>3.96 mg/L (OXON)
			Growth rate: \(\text{nom}E_tC50\)	>3.8 mg/L (SYN)
Selenastrum capricornutum	Metabolite MT26(GS 14260) terbutryn)	72 h (static)	Biomass: \(\text{mm}E_C50\)	0.0017 mg/L (SYN)
			Growth rate: \(\text{mm}E_tC50\)	0.0036 mg/L (SYN)
Group	Test substance	Time-scale (Test type)	End point	Toxicity\(^1\) (mg/L)
--	----------------	-----------------------	--------------------	-----------------------
Pseudokirchneriella subcapitata	Metabolite LM3	72h (static)	Growth rate: \(\text{nomE}_C^{50}\)	80
			Yield: \(\text{nomE}_Y^{50}\)	39
			Biomass: \(\text{nomE}_B^{50}\)	39
Pseudokirchneriella subcapitata	Metabolite LM5	72h (static)	Growth rate: \(\text{nomE}_C^{50}\)	>100
			Yield: \(\text{nomE}_Y^{50}\)	>100
			Biomass: \(\text{nomE}_B^{50}\)	>100
Pseudokirchneriella subcapitata	Metabolite LM6	72h (static)	Growth rate: \(\text{nomE}_C^{50}\)	>100
			Yield: \(\text{nomE}_Y^{50}\)	>100
			Biomass: \(\text{nomE}_B^{50}\)	>100
Higher aquatic plants				
Lemna gibba	a.s.	14 d (static)	Frond number: \(\text{nomE}_n^{50}\)	0.0128 mg a.s./L (OXON)
			Growth rate: \(\text{nomE}_r^{50}\)	0.412 mg a.s./L (OXON)
			Biomass: \(\text{nomE}_b^{50}\)	0.0133 mg a.s./L (OXON)
Lemna gibba	Metabolite MT26 (GS 14260, terbutryn)	14 d (static)	Frond density: \(\text{mmEC}^{50}\)	0.025
Myriophyllum aquaticum	Metabolite MT26 (GS 14260, terbutryn)	14 d (static)	Root fresh weight: \(\text{nomEC}^{50}\)	2.0 mg/kg (sediment)

Microcosm or mesocosm tests

Higher tier data are available, but insufficient information is currently available to derive an endpoint.

\(^1\) nominal (\(\text{nom}\)) or mean measured concentrations (\(\text{mm}\)).
\(\text{E}_n^{50}\): effect concentration on frond number

In the case of preparations indicate whether end points are presented as units of preparation or a.s.
As discussed in Section B.9.2.4.3.1 of the DAR no definitive acute toxicity endpoint was derived from the submitted aquatic invertebrate studies as neither of the submitted studies used a suitable method to determine the amount of terbuthylazine in solution. However, the studies were considered to be of adequate quality to clearly demonstrate that terbuthylazine is of less toxicity to aquatic invertebrates than other aquatic species and therefore the risk assessment for fish is deemed to cover the aquatic invertebrate risk assessment.

As discussed in Section B.9.2.4.5 of the DAR no definitive toxicity endpoint for aquatic invertebrates was determined for either of the submitted aquatic invertebrate studies. However, as for the a.s. both studies were considered suitable to clearly demonstrate the formulations are of less toxicity to aquatic invertebrates than other aquatic species and therefore the risk assessment for fish is deemed to cover the aquatic invertebrate risk assessment.

Groundwater

Metabolite TERs for aquatic organisms when groundwater becomes surface water calculated for the Piacenza scenario, assuming a 0.844 kg a.s./ha application of terbuthylazine in Southern Europe. Metabolites LM3 and LM5 calculated from the Hamburg scenario with an application rate of 850 g/ha. Metabolite LM6 calculated from the Thiva scenario with an application rate of 850 g/ha.

Time scale	Organism	Toxicity endpoint µg/L	Diluted groundwater PEC µg/L²	TER	Annex VI trigger value
MT1 (desethyl-terbuthylazine)	Acute Fish	LC₅₀ 18000	0.1429	125962	100
	Acute Aquatic invertebrate	EC₅₀ 42000	0.1429	293912	100
	Algae	E₆C₅₀ 140	0.1429	980	10
MT13 (2-hydroxy-terbuthylazine)	Acute Fish	LC₅₀ >2500	1.283	>1949	100
	Acute Aquatic invertebrate	EC₅₀ >2800	1.283	>2182	100
	Algae	E₆C₅₀ >3800	1.283	>2962	10
MT14 (desethyl-hydroxy-terbuthylazine, GS 28620)	Acute Fish	LC₅₀ 15000¹	0.3627	41356	100
	Acute Aquatic invertebrate	EC₅₀ 15000¹	0.3627	41356	100
	Algae	E₆C₅₀ 15000¹	0.3627	41356	10
LM3	Algae	E₆C₅₀ 39000	3.88	100515	10
LM5	Algae	E₆C₅₀ 100000	4.62	216450	10
LM6	Algae	E₆C₅₀ 100000	9.24	108225	10

¹ The study authors proposed the acute fish and *Daphnia magna* L/EC₅₀ for MT14 was >100 mg/L and the EC₅₀ to algae to be 30.7 mg/L. However, these values are greater than the water solubility of MT14 (18 mg/L) and therefore the Rapporteur has reservations in accepting quantified toxicity endpoints. The water solubility of MT14 is 18 mg/L and therefore to assume the saturation level (the amount of MT14 in solution under the conditions of the study) of 15 mg.
a.s./L is not unreasonable. Assuming the acute fish LC$_{50}$, acute *Daphnia magna* EC$_{50}$ and the algae EC$_{50}$ are 15 mg/L a TER of 2617.3 is calculated which clearly demonstrates that metabolite MT14 does not pose a high risk to fish, aquatic invertebrates and algae

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	Terbuthylazine
water	Terbuthylazine, metabolite MT26 (terbutryn), desethyl terbuthylazine,
sediment	Terbuthylazine
groundwater	None

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

| Active substance | Commission Regulation (EU) 2017/776
Aquatic Acute 1 (H400) with an M-factor of 10
Aquatic Chronic 1 (H410) with an M-factor of 10. |