PROOF OF GROTHENDIECK-SERRE CONJECTURE ON
PRINCIPAL BUNDLES OVER REGULAR LOCAL RINGS
CONTAINING A FINITE FIELD

IVAN PANIN

ABSTRACT. Let R be a regular local ring, containing a finite field. Let G be a reductive group scheme over R. We prove that a principal G-bundle over R is trivial, if it is trivial over the fraction field of R. In other words, if K is the fraction field of R, then the map of non-abelian cohomology pointed sets

$$H^1_{\text{et}}(R, G) \rightarrow H^1_{\text{et}}(K, G),$$

induced by the inclusion of R into K, has a trivial kernel.

Certain arguments used in the present preprint do not work if the ring R contains a characteristic zero field. In that case and, more generally, in the case when the regular local ring R contains an infinite field this result is proved in [FP].

1. INTRODUCTION

Assume that U is a regular scheme, G is a reductive U-group scheme. Recall that a U-scheme G with an action of G is called a principal G-bundle over U, if G is faithfully flat and quasi-compact over U and the action is simple transitive, that is, the natural morphism $G \times_U G \rightarrow G \times_U G$ is an isomorphism, see [Gro3, Section 6]. It is well known that such a bundle is trivial locally in étale topology but in general not in Zariski topology. Grothendieck and Serre conjectured that G is trivial locally in Zariski topology, if it is trivial generically. More precisely

Conjecture. Let R be a regular local ring, let K be its field of fractions. Let G be a reductive group scheme over $U := \text{Spec } R$, let G be a principal G-bundle. If G is trivial over $\text{Spec } K$, then it is trivial. Equivalently, the map of non-abelian cohomology pointed sets

$$H^1_{\text{et}}(R, G) \rightarrow H^1_{\text{et}}(K, G),$$

induced by the inclusion of R into K, has a trivial kernel.

The main result of this paper is a proof of this conjecture for regular semi-local domains R, containing a finite field. Our proof was inspired by the preprint [FP], where the conjecture is proven for semi-local regular domains containing an infinite field. Thus, the conjecture holds for semi-local regular domains containing a field.

The proof in the present preprint uses [Pan1, Thm.1.1], [Pan2, Thm.1.0.1], the key ideas of the paper [FP] and a Bertini type theorem from [Poo].

Our result implies that two principal G-bundles over U are isomorphic, if they are isomorphic over $\text{Spec } K$ as proved in the next section. This result is new even...
for constant group schemes (that is, for group schemes coming from the ground field).
Recall that a part of the Gersten conjecture asserts that the natural homomorphism of K-groups $K_n(R) \to K_n(K)$ is injective. Very roughly speaking, the Grothendieck–Serre conjecture is a non-abelian version of this part of the Gersten conjecture.

1.1. **History of the topic.** Here is a list of known results in the same vein, corroborating the Grothendieck–Serre conjecture.

- The case, where the group scheme G comes from an infinite ground field, is completely solved by J.-L. Colliot-Thélène, M. Ojanguren, and M. S. Raghunathan in [CTO] and [Rag1][Rag2]; O. Gabber announced a proof for group schemes coming from arbitrary ground fields.
- The case of an arbitrary reductive group scheme over a discrete valuation ring or over a henselian ring is completely solved by Y. Nisnevich in [Nis1]. He also proved the conjecture for two-dimensional local rings in the case, when G is quasi-split in [Nis2].
- The case, where G is an arbitrary reductive group scheme over a regular semi-local domain containing an infinite field, was settled by R. Fedorov and I. Panin in [FP].
- The case, where G is an arbitrary torus over a regular local ring, was settled by J.-L. Colliot-Thélène and J.-J. Sansuc in [CTS].
- For some simple group schemes of classical series the conjecture is solved in works of the author, A. Suslin, M. Ojanguren, and K. Zainoulline; see [Oja1], [Oja2], [PS1], [OP], [Zai], [OPZ].
- Under an isotropy condition on G and assuming that the ring contains an infinite field the conjecture is proved in a series of preprints [PSV] and [Pa2].
- The case of strongly inner simple adjoint group schemes of the types E_6 and E_7 is done by the second author, V. Petrov, and A. Stavrova in [PPS]. No isotropy condition is imposed there, however it is supposed that the ring contains an infinite field.
- The case, when G is of the type F_4 with trivial g_2-invariant and the field is of characteristic zero, is settled by V. Chernousov in [Che]; the case, when G is of the type F_4 with trivial f_3-invariant and the field is infinite and perfect, is settled by V. Petrov and A. Stavrova in [PS2].

1.2. **Acknowledgments.** The author thanks A. Suslin for his interest to the topic of the present preprint.

2. **Main results**

Let R be a commutative unital ring. Recall that an R-group scheme G is called reductive, if it is affine and smooth as an R-scheme and if, moreover, for each algebraically closed field Ω and for each ring homomorphism $R \to \Omega$ the scalar extension G_Ω is a connected reductive algebraic group over Ω. This definition of a reductive R-group scheme coincides with [DG] Exp. XIX, Definition 2.7. A well-known conjecture due to J.-P. Serre and A. Grothendieck (see [Ser] Remarque, p.31), [Gro1] Remarque 3, p.26-27, and [Gro2] Remarque 1.11.a) asserts that
given a regular local ring \(R \) and its field of fractions \(K \) and given a reductive group scheme \(G \) over \(R \), the map
\[
H^1_{\text{ét}}(R, G) \to H^1_{\text{ét}}(K, G),
\]
induced by the inclusion of \(R \) into \(K \), has a trivial kernel. The following theorem, which is the main result of the present paper, asserts that this conjecture holds, provided that \(R \) contains a finite field. If \(R \) contains an infinite field, then the conjecture is proved in [FP].

Theorem 1. Let \(R \) be a regular semi-local domain containing a finite field, and let \(K \) be its field of fractions. Let \(G \) be a reductive group scheme over \(R \). Then the map
\[
H^1_{\text{ét}}(R, G) \to H^1_{\text{ét}}(K, G),
\]
induced by the inclusion of \(R \) into \(K \), has a trivial kernel. In other words, under the above assumptions on \(R \) and \(G \), each principal \(G \)-bundle over \(R \) having a \(K \)-rational point is trivial.

Theorem 1 has the following
Corollary. Under the hypothesis of Theorem 1, the map
\[
H^1_{\text{ét}}(R, G) \to H^1_{\text{ét}}(K, G),
\]
induced by the inclusion of \(R \) into \(K \), is injective. Equivalently, if \(G_1 \) and \(G_2 \) are two principal bundles isomorphic over \(\text{Spec} K \), then they are isomorphic.

Proof. Let \(G_1 \) and \(G_2 \) be two principal \(G \)-bundles isomorphic over \(\text{Spec} \ K \). Let \(\text{Iso}(G_1, G_2) \) be the scheme of isomorphisms. This scheme is a principal \(\text{Aut} G_2 \)-bundle. By Theorem 1 it is trivial, and we see that \(G_1 \cong G_2 \). □

Note that, while Theorem 1 was previously known for reductive group schemes \(G \) coming from the ground field (an unpublished result due to O.Gabber), in many cases the corollary is a new result even for such group schemes.

For a scheme \(U \) we denote by \(\mathbb{A}^1_U \) the affine line over \(U \) and by \(\mathbb{P}^1_U \) the projective line over \(U \). Let \(T \) be a \(U \)-scheme. By a principal \(G \)-bundle over \(T \) we understand a principal \(G \times_U T \)-bundle.

In Section 3 we deduce Theorem 1 from the following result of independent interest (cf. [PSV, Thm.1.3]).

Theorem 2. Let \(R \) be the semi-local ring of finitely many closed points on an irreducible smooth affine variety over a finite field \(k \), set \(U = \text{Spec} R \). Let \(G \) be a simple simply-connected group scheme over \(U \) (see [DG] Exp. XXIV, Sect. 5.3 for the definition). Let \(\mathcal{E}_t \) be a principal \(G \)-bundle over the affine line \(\mathbb{A}^1_U = \text{Spec} R[t] \), and let \(h(t) \in R[t] \) be a monic polynomial. Denote by \((\mathbb{A}^1_U)_h \) the open subscheme in \(\mathbb{A}^1_U \) given by \(h(t) \neq 0 \) and assume that the restriction of \(\mathcal{E}_t \) to \((\mathbb{A}^1_U)_h \) is a trivial principal \(G \)-bundle. Then for each section \(s : U \to \mathbb{A}^1_U \) of the projection \(\mathbb{A}^1_U \to U \) the \(G \)-bundle \(s^* \mathcal{E}_t \) over \(U \) is trivial.

The derivation of Theorem 1 from Theorem 2 is based on [Pan2, Thm.1.0.1] and [Pan1, Thm.1.1].

Let \(Y \) be a semi-local scheme. We will call a simple \(Y \)-group scheme quasi-split if its restriction to each connected component of \(Y \) contains a Borel subgroup scheme.
Theorem 3. Let R, U, and G be as in Theorem 2. Let $Z \subset \mathbb{P}^1_U$ be a closed subscheme finite over U. Let $Y \subset \mathbb{P}^1_U$ be a closed subscheme finite and étale over U and such that (i) $G_Y := G \times_U Y$ is quasi-split, (ii) $Y \cap Z = \emptyset$ and $Y \cap \{\infty\} \times U = Z \cap \{\infty\} \times U$, (iii) for any closed point $u \in U$, one has $\text{Pic}(\mathbb{P}^1_u - Y_u) = 0$, where $Y_u := \mathbb{P}^1_u \cap Y$. Let \mathcal{G} be a principal G-bundle over \mathbb{P}^1_U such that its restriction to $\mathbb{P}^1_U - Z$ is trivial. Then the restriction of \mathcal{G} to $\mathbb{P}^1_U - Y$ is also trivial. In particular, the principal G-bundle \mathcal{G} is trivial locally for the Zariski topology.

The proof of this result is inspired by [FP, Thm.3].

2.1. Organization of the paper. In Section 3, we reduce Theorem 1 to Theorem 2. In Section 4, we reduce Theorem 2 to Theorem 3. This reduction is based on [Pan2, Thm.1.0.1], [Pan1, Thm.1.1], on a theorem of D. Popescu [Pop] and on Proposition 4.1. The latter proposition is a new ingredient comparing with respecting arguments from [FP, Section 4].

In Section 5 we prove Theorem 3. We give an outline of the proof in Section 5.1. We use the technique of henselization.

In Section 6 we give an application of Theorem 1.

In the Appendix we recall the definition of henselization from [Gab, Section 0].

3. Reducing Theorem 1 to Theorem 2

In what follows “G-bundle” always means “principal G-bundle”. Now we assume that Theorem 2 holds. We start with the following particular case of Theorem 1.

Proposition 3.1. Let R, $U = \text{Spec} R$, and G be as in Theorem 2. Let \mathcal{E} be a principal G-bundle over U, trivial at the generic point of U. Then \mathcal{E} is trivial.

Proof. Under the hypothesis of the proposition, the following data are constructed in [Pan1 Thm.1.1]:
(a) a principal G-bundle \mathcal{E}_t over \mathbb{A}^1_U;
(b) a monic polynomial $h(t) \in R[t]$.
Moreover these data satisfies the following conditions:
(1) the restriction of \mathcal{E}_t to $(\mathbb{A}^1_U)_h$ is a trivial principal G-bundle;
(2) there is a section $s : U \to \mathbb{A}^1_U$ such that $s^* \mathcal{E}_t = \mathcal{E}$.

Now it follows from Theorem 2 that \mathcal{E} is trivial. □

Proposition 3.2. Let U be as in Theorem 2. Let G be a reductive group scheme over U. Let \mathcal{E} be a principal G-bundle over U trivial at the generic point of U. Then \mathcal{E} is trivial.

Proof. Firstly, using [Pan2 Thm.1.0.1], we can assume that G is semi-simple and simply-connected. Secondly, standard arguments (see for instance [PSV, Section 9]) show that we can assume that G is simple and simply-connected. (Note that for this reduction it is necessary to work with semi-local rings.) Now the proposition is reduced to Proposition 3.1. □

Proof of Theorem 4. Let us prove a general statement first. Let k' be a finite field, X be a k'-smooth irreducible affine variety, H be a reductive group scheme over X. Denote by $k'[X]$ the ring of regular functions on X and by $k'(X)$ the field of rational functions on X. Let \mathcal{H} be a principal H-bundle over X trivial over $k'(X)$.
Let \(p_1, \ldots, p_n \) be prime ideals in \(k'[X] \), and let \(\mathcal{O}_{p_1, \ldots, p_n} \) be the corresponding semi-local ring.

Lemma 3.3. The principal \(H \)-bundle \(\mathcal{H} \) is trivial over \(\mathcal{O}_{p_1, \ldots, p_n} \).

Proof. For each \(i = 1, 2, \ldots, n \) choose a maximal ideal \(m_i \subset k'[X] \) containing \(p_i \). One has inclusions of \(k' \)-algebras

\[
\mathcal{O}_{m_1, \ldots, m_n} \subset \mathcal{O}_{p_1, \ldots, p_n} \subset k'(X).
\]

By Proposition 3.2 the principal \(H \)-bundle \(\mathcal{H} \) is trivial over \(\mathcal{O}_{m_1, \ldots, m_n} \). Thus it is trivial over \(\mathcal{O}_{p_1, \ldots, p_n} \). \(\square \)

Let us return to our situation. Let \(m_1, \ldots, m_n \) be all the maximal ideals of \(R \). Let \(\mathcal{E} \) be a \(G \)-bundle over \(R \) trivial over the fraction field of \(R \). Clearly, there is a non-zero \(f \in R \) such that \(\mathcal{E} \) is trivial over \(Rf \). Let \(k \) be the prime field of \(R \). Note that \(k \) is perfect. It follows from Popescu’s theorem ([Pop, Swa]) that \(R \) is a filtered inductive limit of smooth \(k \)-algebras \(R_\alpha \). Modifying the inductive system \(R_\alpha \) if necessary, we can assume that each \(R_\alpha \) is integral. There are an index \(\alpha \), a reductive group scheme \(G_\alpha \) over \(R_\alpha \), a principal \(G_\alpha \)-bundle \(\mathcal{E}_\alpha \) over \(R_\alpha \), and an element \(f_\alpha \in R_\alpha \) such that \(G = G_\alpha \times_{\text{Spec } R_\alpha} \text{Spec } R \), \(\mathcal{E} \) is isomorphic to \(\mathcal{E}_\alpha \times_{\text{Spec } R_\alpha} \text{Spec } R \) as principal \(G \)-bundle, \(f \) is the image of \(f_\alpha \) under the homomorphism \(\varphi_\alpha : R_\alpha \to R \), \(\mathcal{E}_\alpha \) is trivial over \((R_\alpha)_{f_\alpha} \).

For each maximal ideal \(m_i \) in \(R \) \((i = 1, \ldots, n)\) set \(p_i = \varphi_\alpha^{-1}(m_i) \). The homomorphism \(\varphi_\alpha \) induces a homomorphism of semi-local rings \((R_\alpha)_{p_1, \ldots, p_n} \to R \). By Lemma 3.3 the principal \(G_\alpha \)-bundle \(\mathcal{E}_\alpha \) is trivial over \((R_\alpha)_{p_1, \ldots, p_n} \). Whence the \(G \)-bundle \(\mathcal{E} \) is trivial over \(R \). \(\square \)

4. Reducing Theorem 2 to Theorem 3

Now we assume that Theorem 3 is true. Let \(k, U \) and \(G \) be as in Theorem 2. Let \(u_1, \ldots, u_n \) be all the closed points of \(U \). Let \(k(u_i) \) be the residue field of \(u_i \). Consider the reduced closed subscheme \(u \) of \(U \), whose points are \(u_1, \ldots, u_n \). Thus \[
u \cong \prod_i \text{Spec } k(u_i).
\]

Set \(G_u = G \times_U u \). By \(G_{u_i} \), we denote the fiber of \(G \) over \(u_i \); it is a simple simply-connected algebraic group over \(k(u_i) \).

Proposition 4.1. Let \(Z \subset \mathbb{A}^1_U \) be a closed subscheme finite over \(U \). There is a closed subscheme \(Y \subset \mathbb{A}^1_U \) which is étale and finite over \(U \) and such that

(i) \(G_Y := G \times_U Y \) is quasi-split,

(ii) \(Y \cap Z = \varnothing \),

(iii) for any closed point \(u \in U \) one has \(\text{Pic}(\mathbb{P}^1_u - Y_u) = 0 \), where \(Y_u := \mathbb{P}^1_u \cap Y \).

(Note that \(Y \) and \(Z \) are closed in \(\mathbb{P}^1_U \) since they are finite over \(U \).)

Proof. For every \(u_i \in u \) choose a Borel subgroup \(B_{u_i} \) in \(G_{u_i} \). The latter is possible since the fields \(k(u_i) \) are finite. Let \(B \) be the \(U \)-scheme of Borel subgroup schemes of \(G \). It is a smooth projective \(U \)-scheme (see [DG, Cor. 3.5, Exp. XXVI]). The subgroup \(B_{u_i} \) in \(G_{u_i} \) is a \(k(u_i) \)-rational point \(b_i \) in the fibre of \(B \) over the point \(u_i \). Using a variant of Bertini theorem (see [Poo, Thm.1.2]), we can find a closed subscheme \(Y' \) of \(B \) such that \(Y' \) is étale over \(U \) and all the \(b_i \)'s are in \(Y \) (take an embedding of \(B \) into a projective space \(\mathbb{P}^N_U \) and intersect \(B \) with appropriately chosen family of hypersurfaces containing the points \(b_i \). Arguing as in the proof of
Lemma 4.2. Let U be as in the Proposition. Let $Z \subset A^1_U$ be a closed subscheme finite over U. Let $Y' \to U$ be a finite étale morphism such that for any closed point u_i in U the fibre Y'_u of Y' over u_i contains a $k(u_i)$-rational point (it is the point b_i).

To prove this Lemma note that it’s easy to find field extensions k_1 and k_2 subjecting (i) to (ii). To satisfy (iv) it suffices to require that for any closed point u_i in U and for $r = 1$ and $r = 2$ the number of closed points in $Y'_u \otimes_k k_r$ is the same as the number of closed points in Y'_u, and to require that for any integer $n > 0$ and any closed point u_i in U the number of points $y \in Y''_u$ with $[k(y) : k(u_i)] = n$ is not more than the number of points $x \in A^1_{u_i}$ with $[k(x) : k(u_i)] = n$. Clearly, these requirements can be satisfied, which proves the item (iv).

The condition (v) holds for any closed U-embedding $i : Y'' \hookrightarrow A^1_U$ from item (iv), since the property (iii). The condition (vi) holds since the property (i).

Now complete the proof of Proposition 4.1. Take the U-scheme $Y' \subset B$ as in the beginning of the proof. This U-scheme Y' satisfies the assumption of Lemma 4.2. Take the closed subscheme Y of A^1_U as in the item (v) of the Lemma. For this Y the conditions (ii) and (iii) of the Proposition are obviously satisfied. The condition (i) is satisfied too, since already it is satisfied for the U-scheme Y'. The Proposition follows.

Proof of Theorem 3. Set $Z := \{h = 0\} \cup s(U) \subset A^1_U$. Clearly, Z is finite over U. Since the principal G-bundle E_t is trivial over $(A^1_U)_h$, it is trivial over $A^1_U - Z$. Note that $\{h = 0\}$ is closed in P^1_U and finite over U because h is monic. Further, $s(U)$ is also closed in P^1_U and finite over U because it is a zero set of a degree one monic polynomial. Thus $Z \subset P^1_U$ is closed and finite over U.

Since the principal G-bundle E_t is trivial over $(A^1_U)_h$, and G-bundles can be glued in Zariski topology, there exists a principal G-bundle G over P^1_U such that

(i) its restriction to A^1_U coincides with E_t;

(ii) its restriction to $P^1_U - Z$ is trivial.

Now choose Y in A^1_U as in Proposition 4.1. Clearly, Y is finite étale over U and closed in P^1_U. Moreover, $Y \cap \{\infty\} \times U = \varnothing = Z \cap \{\infty\} \times U$ and $Y \cap Z = \varnothing$. Applying Theorem 3 with this choice of Y and Z, we see that the restriction of G to $P^1_U - Y$ is a trivial G-bundle. Since $s(U)$ is in $A^1_U - Y$ and $G|_{A^1_U}$ coincides with E_t, we conclude that s^*E_t is a trivial principal G-bundle over U. □
5. Proof of Theorem \[5\]

We will be using notation from Theorem \[3\]. Let \(u \) be as in Section \[4\]. For \(u \in u \) set \(G_u = G|_u \).

Proposition 5.1. Let \(E \) be a \(G \)-bundle over \(\mathbb{P}^1_U \) such that \(E|_{\mathbb{P}^1_U} \) is a trivial \(G_u \)-bundle for all \(u \in u \). Assume that there exists a closed subscheme \(T \) of \(\mathbb{P}^1_U \) finite over \(U \) such that the restriction of \(E \) to \(\mathbb{P}^1_U - T \) is trivial and \((\infty \times U) \cap T = \emptyset \). Then \(E \) is trivial.

Proof. This follows from Theorem 9.6 of [PSV], since \(E|_{(\infty \times U)} \) is a trivial \(G \)-bundle. \(\square \)

5.1. An outline of the proof of Theorem \[3\]. Our proof of this Theorem almost literally coincides with the proof of [FP] Thm.3. Our arguments are simpler at certain points.

An outline of the proof.

Denote by \(Y^h \) the henselization of the pair \((\mathbb{A}_U^1, Y)\), it is a scheme over \(\mathbb{A}_U^1 \). Let \(s : Y \to Y^h \) be the canonical closed embedding, see Section 5.2 for more details. Set \(\hat{Y}^h := Y^h - s(Y) \). Let \(\gamma' \) be a \(G \)-bundle over \(\mathbb{P}^1_U - Y \). Denote by \(\text{Gl}(\gamma', \varphi) \) the \(\gamma' \)-bundle over \(\mathbb{P}^1_U \) obtained by gluing \(\gamma' \) with the trivial \(G \)-bundle \(G \times_U Y^h \) via a \(G \)-bundle isomorphism \(\varphi : G \times_U Y^h \to \gamma'|_{Y^h} \).

Note that the \(G \)-bundle \(\gamma' \) can be presented in the form \(\text{Gl}(\gamma', \varphi) \), where \(\gamma' = \text{Gl}(\gamma'|_{Y^h}) \). The idea is to show that

There is \(\alpha \in \text{G}(\hat{Y}^h) \) such that the \(G_u \)-bundle \(\text{Gl}(\gamma', \varphi \circ \alpha)|_{\mathbb{P}^1_U} \) is trivial (here \(\alpha \) is regarded as an automorphism of the \(G \)-bundle \(G \times_U Y^h \) given by the right translation by the element \(\alpha \)).

If we find \(\alpha \) satisfying condition \((*)\), then Proposition 5.1 applied to \(T = Y \cup Z \), shows that the \(G \)-bundle \(\text{Gl}(\gamma', \varphi \circ \alpha) \) is trivial over \(\mathbb{P}^1_U \). On the other hand, its restriction to \(\mathbb{P}^1_U - Y \) coincides with the \(G \)-bundle \(\gamma' = \text{Gl}(\gamma'|_{\mathbb{P}^1_U - Y}) \). Thus \(\gamma'|_{\mathbb{P}^1_U - Y} \) is a trivial \(G \)-bundle.

To prove \((*)\) it suffices to show that

(i) the bundle \(\text{Gl}(\gamma'|_{\mathbb{P}^1_U - Y}) \) is trivial;

(ii) each element \(\gamma_u \in G_u(\hat{Y}^h_u) \) can be written in the form

\[
\alpha|_{\hat{Y}^h_u} \cdot \beta_u|_{\hat{Y}^h_u}
\]

for certain elements \(\alpha \in \text{G}(\hat{Y}^h) \) and \(\beta_u \in G_u(Y^h_u) \).

A realization of this plan in details is given below in the paper.

5.2. Henselization of affine pairs. We will use the theory of henselian pairs and, in particular, a notion of a henselization \(A^h_I \) of a commutative ring \(A \) at an ideal \(I \) (see Appendix and [Gab], Section 0). We refer to [FP] subsection 5.2 for the geometric counterpart. Let \(S = \text{Spec} A \) be a scheme and \(T = \text{Spec}(A/I) \) be a closed subscheme. Let \((T^h, \pi : T^h \to S, s : T \to T^h) \) be the henselization of the pair \((S, T)\) (cf. Definition [A,3]). By definition the scheme \(T^h \) is affine and the composite morphism \(\pi \circ s : T \to S \) is the closed embedding \(T \hookrightarrow S \). Recall that the pair \((T^h, s(T))\) is henselian, which means that for any affine étale morphism \(\pi : Z \to T^h \), any section \(\sigma \) of \(\pi \) over \(s(T) \) uniquely extends to a section of \(\pi \) over \(T^h \). It is known that \(\pi^{-1}(T) = s(T) \).
In the notation of \[\text{Gab}\] Section 0 we have \(T^h = \text{Spec} A^h\), \(\pi : T^h \to S\) is induced by the structure of \(A\)-algebra on \(A^h\).

Recall three properties of henselization of affine pairs

(i) Let \(T\) be a semi-local scheme. Then the henselization commutes with restriction to closed subschemes. In more details, if \(S' \subset S\) is a closed subscheme, then there is a natural morphism \((T \times_S S')^h \to T^h \times_S S'\). This morphism is an isomorphism and the canonical section \(s' : T \times_S S' \to (T \times_S S')^h\) coincides under this identification with

\[s \times_S \text{Id}_{S'} : T \times_S S' \to T^h \times_S S'.\]

(ii) If \(T = \coprod_i T_i\) is a disjoint union, then \(T^h = \coprod_i T^h_i\).

(iii) If we replace in a pair \((S, T)\) the scheme \(S\) by an étale affine neighborhood of \(T\), then the \((T^h, \pi, s)\) remains the same. In more details, given a pair \((S, T)\) as above we write temporarily \((S^\text{hens}, \pi_{S,T}, s_{S,T})\) for \((T^h, \pi, s)\). If \(p : W \to S\) is an étale morphism and \(t : T \to W\) is such that \(p \circ t : T \to S\) coincides with the closed embedding \(T\) into \(S\), then there is a canonical isomorphism \(\rho : W^\text{hens}_{T} \to S^\text{hens}_T\) of the \(S\)-schemes \((W^\text{hens}_T, \pi_{W,T})\) and \((S^\text{hens}_T, \pi_{S,T})\) such that \(\rho \circ s_{W,T} = s_{S,T}\).

5.3. Gluing principal \(G\)-bundles. Recall that \(U = \text{Spec} R\), where \(R\) is the semi-local ring of finitely many closed points on an irreducible \(k\)-smooth affine variety over a finite field \(k\). Also, \(G\) is a simple simply-connected group scheme over \(U\), and \(Y\) is a closed subscheme of \(\mathbb{P}^1_U\) finite and étale over \(U\).

We will assume below in the preprint that \(Y \subset \mathbb{A}^1_U\) (as in the hypotheses of Theorem 3). Let \((Y^h, \pi, s)\) be the henselization of the pair \((\mathbb{A}^1_U, Y)\) and let \(\hat{Y}^h = Y^h - s(Y)\) and let \(\text{in} : \mathbb{A}^1_U \to \mathbb{P}^1_U\) be the open inclusion.

Proposition 5.2. \(\text{FP}\) The schemes \(Y^h\) and \(\hat{Y}^h\) are affine.

Let us make a general remark. Let \(\mathcal{F}\) be a \(G\)-bundle over a \(U\)-scheme \(T\). By definition, a trivialization of \(\mathcal{F}\) is a \(G\)-equivariant isomorphism \(G \times_U T \to \mathcal{F}\). Equivalently, it is a section of the projection \(\mathcal{F} \to T\). If \(\varphi\) is such a trivialization and \(f : T' \to T\) is a \(U\)-morphism, we get a trivialization \(f^*\varphi\) of \(f^*\mathcal{F}\). Sometimes we denote this trivialization by \(\varphi|_{T'}\). We also sometimes call a trivialization of \(f^*\mathcal{F}\) a trivialization of \(\mathcal{F}\) on \(T'\).

The main cartesian square we will work with is

\[
\begin{array}{ccc}
\hat{Y}^h & \longrightarrow & Y^h \\
\downarrow & & \downarrow \text{in}\circ \pi \\
\mathbb{P}^1_U - Y & \longrightarrow & \mathbb{P}^1_U.
\end{array}
\]

Let \(\mathcal{A}\) be the category of pairs \((\mathcal{E}, \psi)\), where \(\mathcal{E}\) is a \(G\)-bundle on \(\mathbb{P}^1_U\), \(\psi\) is a trivialization of \(\mathcal{E}\big|_{\hat{Y}^h} := (\text{in} \circ \pi)^*\mathcal{E}\). A morphism between \((\mathcal{E}, \psi)\) and \((\mathcal{E}', \psi')\) is an isomorphism \(\mathcal{E} \to \mathcal{E}'\) compatible with trivializations.

Similarly, let \(\mathcal{B}\) be the category of pairs \((\mathcal{E}, \psi)\), where \(\mathcal{E}\) is a \(G\)-bundle on \(\mathbb{P}^1_U - Y\), \(\psi\) is a trivialization of \(\mathcal{E}\big|_{\hat{Y}^h}\).

Consider the restriction functor \(\Psi : \mathcal{A} \to \mathcal{B}\).

Proposition 5.3. \(\text{FP}\) The functor \(\Psi\) is an equivalence of categories.
Construction 5.4. \[\text{FP}\] By Proposition 5.3 we can choose a functor quasi-inverse to \(\Psi\). Fix such a functor \(\Theta\). Let \(\Lambda\) be the forgetful functor from \(A\). Let \(\Lambda(\Theta, \psi)\) be the \(\Theta\)-principal \(G\)-bundle over \(\mathbb{P}_1\). For \((\mathcal{E}, \psi) \in \mathcal{B}\) set
\[
\text{GL}(\mathcal{E}, \psi) = \Lambda(\Theta(\mathcal{E}, \psi)).
\]
Note that \(\text{GL}(\mathcal{E}, \psi)\) comes with a canonical trivialization over \(Y^h\).

Conversely, if \(\mathcal{E}\) is a principal \(G\)-bundle over \(\mathbb{P}_1\) such that its restriction to \(Y^h\) is trivial, then \(\mathcal{E}\) can be represented as \(\text{GL}(\mathcal{E}, \psi)\), where \(\mathcal{E}' = \mathcal{E}|_{\mathbb{P}_1 - Y}\), \(\psi\) is a trivialization of \(\mathcal{E}'\) on \(Y^h\).

Let \(\mathfrak{u}\) be as in Section 3. \(Y_u := Y \times_U \mathfrak{u}\). Let \((Y_u^h, \pi_u, s_u)\) be the henselization of \((A_u, Y_u)\). Using property (i) of henselization, we get \(Y_u^h = Y^h \times_U \mathfrak{u}\). Thus we have a natural closed embedding \(Y_u^h \hookrightarrow Y^h\). Set \(\dot{Y}_u^h = Y_u^h - s_u(Y_u)\). We get a closed embedding
\[
Y_u^h \hookrightarrow \dot{Y}_u^h.
\]
Thus the pull-back of the cartesian square (1) by means of the closed embedding \(u \hookrightarrow U\) has the form
\[
\begin{array}{ccc}
\dot{Y}_u^h & \longrightarrow & Y_u^h \\
\downarrow & & \downarrow \text{in}_u \circ \pi_u \\
\mathbb{P}_1 - Y_u & \longrightarrow & \mathbb{P}_1._\mathfrak{u}
\end{array}
\]
where \(\text{in}_u : A_u \rightarrow \mathbb{P}_1._\mathfrak{u}\).

Similarly to the above, we can define categories \(A_u\) and \(B_u\) and an equivalence of categories \(\Psi_u : A_u \rightarrow B_u\). Let \(\Theta_u\) be a functor quasi-inverse to \(\Psi_u\) and \(\Lambda_u\) be the forgetful functor from \(A_u\) to the category of \(G_u\)-bundles over \(\mathbb{P}_1._\mathfrak{u}\). Let \(\mathcal{E}_u\) be a principal \(G_u\)-bundle over \(\mathbb{P}_1._\mathfrak{u} - Y_u\) and \(\psi_u\) be a trivialization of \(G_u\) on \(Y_u^h\). Set
\[
\text{GL}_u(\mathcal{E}_u, \psi_u) = \Lambda_u(\Theta_u(\mathcal{E}_u, \psi_u)).
\]

Lemma 5.5. \[\text{FP}\] Let \((\mathcal{E}, \psi) \in \mathcal{B}\), and let \(\text{GL}(\mathcal{E}, \psi)\) be the \(G\)-bundle obtained by Construction 5.4. Then
\[
\text{GL}_u(\mathcal{E}|_{\mathbb{P}_1._\mathfrak{u} - Y_u}, \psi|_{Y_u^h}) \text{ and } \text{GL}(\mathcal{E}, \psi)|_{\mathbb{P}_1._\mathfrak{u}}
\]
are isomorphic as \(G_u\)-bundles over \(\mathbb{P}_1._\mathfrak{u}\).

Lemma 5.6. \[\text{FP}\] For any \((\mathcal{E}_u, \psi_u) \in \mathcal{B}_u\) and any \(\beta_u \in G_u(Y_u^h)\) the \(G_u\)-bundles
\[
\text{GL}_u(\mathcal{E}_u, \psi_u) \text{ and } \text{GL}_u(\mathcal{E}_u, \psi_u \circ \beta_u|_{Y_u^h})
\]
are isomorphic (here \(\beta_u|_{Y_u^h}\) is regarded as an automorphism of the \(G_u\)-bundle \(G_u \times_u \dot{Y}_u^h\) given by the right translation by \(\beta_u|_{Y_u^h}\)).

5.4. Proof of Theorem 3 presentation of \(G\) in the form \(\text{GL}(G', \varphi)\). Let \(U\), \(G\), \(Z\), \(Y\) and \(\mathcal{G}\) be as in Theorem 3.

Proposition 5.7. \[\text{FP}\] The \(G\)-bundle \(\mathcal{G}\) over \(\mathbb{P}_1_U\) is of the form \(\text{GL}(G', \varphi)\) for the \(G\)-bundle \(G' := \mathcal{G}|_{\mathbb{P}_1_U - Y}\) and a trivialization \(\varphi\) of \(G'\) over \(\dot{Y}_u^h\).

Proof. In view of Construction 5.4 it is enough to prove that the restriction of the principal \(G\)-bundle \(\mathcal{G}\) to \(Y^h\) is trivial. Let us choose a closed subscheme \(Z' \subset A^1_U\) such that \(Z'\) contains \(Z\), \(Z' \cap Y = \emptyset\), and \(A^1_U - Z'\) is affine. Then \(A^1_U - Z'\) is an affine neighborhood of \(Y\). By the property (iii) from subsection 5.2 the henselization of
the pair \((A^1_U - Z', Y)\) coincides with the henselization of the pair \((A^1_U, Y)\). Since \(G\) is trivial over \(A^1_U - Z'\), its pull-back to \(Y^h\) is trivial too. The proposition is proved.

Our aim is to modify the trivialization \(\varphi\) via an element
\[
\alpha \in G(Y^h)
\]
so that the \(G\)-bundle \(Gl(G', \varphi \circ \alpha)\) becomes trivial over \(\mathbb{P}^1_U\).

5.5. Proof of Theorem \(\mathcal{K}\): proof of property (i) from the outline. Now we are able to prove property (i) from the outline of the proof. In fact, we will prove the following modification of [FP, Lemma 5.11].

Lemma 5.8. Let \(Gl(G', \varphi)\) be the presentation of the \(G\)-bundle \(G\) over \(\mathbb{P}^1_U\) given in Proposition \(\mathcal{K}\). Set \(\varphi_u := \varphi|_{Y^h_u}\). Then there is \(\gamma_u \in G_u(Y^h_u)\) such that the \(G_u\)-bundle \(Gl_u(G'|_{\mathbb{P}^1_u - Y_u}, \varphi_u \circ \gamma_u)\) is trivial.

Proof. We show first that \(G'|_{\mathbb{P}^1_u - Y_u}\) is trivial. One has
\[
\mathbb{P}^1_u = \bigsqcup_{u \in \mathbf{u}} \mathbb{P}^1_u
\]
For \(u \in \mathbf{u}\) set \(Y_u := Y \times_U u\), \(G_u := G \times_U u\), and \(G_u := G \times_U u\).

Take \(u \in \mathbf{u}\). By our assumption on \(Y\), \(\text{Pic}(\mathbb{P}^1_u - Y_u) = 0\). The \(G_u\)-bundle \(G_u\) is trivial over \(A^1_U - Z_u\). Thus, by [Gil1 Corollary 3.10(a)], it is trivial over \(\mathbb{P}^1_u - Y_u\).

We see that \(G'|_{\mathbb{P}^1_u - Y_u} = G'|_{\mathbb{P}^1_u - Y_u}\) is trivial. Choosing a trivialization, we may identify \(\varphi_u\) with an element of \(G_u(Y^h_u)\). Set \(\gamma_u = \varphi_u^{-1}\). By the very choice of \(\gamma_u\) the \(G_u\)-bundle \(Gl_u(G'|_{\mathbb{P}^1_u - Y_u}, \varphi_u \circ \gamma_u)\) is trivial.

5.6. Proof of Theorem \(\mathcal{K}\): reduction to property (ii) from the outline. The aim of this section is to deduce Theorem \(\mathcal{K}\) from the following

Proposition 5.9. [FP] Each element \(\gamma_u \in G_u(Y^h_u)\) can be written in the form
\[
\alpha|_{Y^h_u} \cdot \beta_u|_{Y^h_u}
\]
for certain elements \(\alpha \in G(Y^h)\) and \(\beta_u \in G_u(Y^h_u)\).

Deduction of Theorem \(\mathcal{K}\) from Proposition \(\mathcal{K}\) Let \(Gl(G', \varphi)\) be the presentation of the \(G\)-bundle \(G\) from Proposition \(\mathcal{K}\). Let \(\gamma_u \in G_u(Y^h_u)\) be the element from Lemma 5.8. Let \(\alpha \in G(Y^h)\) and \(\beta_u \in G_u(Y^h_u)\) be the elements from Proposition 5.9. Set
\[
G^{\text{new}} = Gl(G', \varphi \circ \alpha).
\]

Claim. The \(G\)-bundle \(G^{\text{new}}\) is trivial over \(\mathbb{P}^1_U\).

Indeed, by Lemmas 5.5 and 5.6 one has a chain of isomorphisms of \(G_u\)-bundles
\[
G^{\text{new}}|_{\mathbb{P}^1_u} \cong \text{Gl}_u(G'|_{\mathbb{P}^1_u - Y_u}, \varphi_u \circ \alpha|_{Y^h_u}) \cong \text{Gl}_u(G'|_{\mathbb{P}^1_u - Y_u}, \varphi_u \circ \alpha|_{Y^h_u} \circ \beta_u|_{Y^h_u}) = \text{Gl}_u(G'|_{\mathbb{P}^1_u - Y_u}, \varphi_u \circ \gamma_u),
\]
which is trivial by the choice of \(\gamma_u\). The \(G\)-bundles \(G|_{\mathbb{P}^1_U - Y}\) and \(G^{\text{new}}|_{\mathbb{P}^1_U - Y}\) coincide by the very construction of \(G^{\text{new}}\). By Proposition 5.1 applied to \(T = Z \cup Y\), the \(G\)-bundle \(G^{\text{new}}\) is trivial. Whence the claim.

The claim above implies that the \(G\)-bundle \(G|_{\mathbb{P}^1_U - Y} = G^{\text{new}}|_{\mathbb{P}^1_U - Y}\) is trivial. Theorem \(\mathcal{K}\) is proved.
5.7. End of proof of Theorem 5.13 proof of property (ii) from the outline. In the remaining part of Section 5 we will prove Proposition 5.12. This will complete the proof of Theorem 5.13.

By our assumption on Y, the group scheme $G_Y = G \times_U Y$ is quasi-split. Thus we can and will choose a Borel subgroup scheme B^+ in G_Y.

Since Y is an affine scheme, by [DG, Exp. XXVI, Cor. 2.3, Th 4.3.2(a)] there is an opposite to B^+ Borel subgroup scheme B^- in G_Y. Let U^+ be the unipotent radical of B^+, and let U^- be the unipotent radical of B^-.}

Definition 5.10. We will write E for the functor, sending a Y-scheme T to the subgroup $E(T)$ of the group $G_Y(T) = G(T)$ generated by the subgroups $U^+(T)$ and $U^-(T)$ of the group $G_Y(T) = G(T)$.

Lemma 5.11. The functor E has the property that for every closed subscheme S in an affine Y-scheme T the induced map $E(T) \to E(S)$ is surjective.

Proof. The restriction maps $U^\pm(T) \to U^\pm(S)$ are surjective, since U^\pm are isomorphic to vector bundles as Y-schemes (see [DG, Exp. XXVI, Cor. 2.5]).

Recall that (Y^h, π, s) is the henselization of the pair (A_U^1, Y). Also, $in : A_U^1 \to \mathbb{P}_U^1$ is the embedding. Denote the projection $A_U^1 \to U$ by pr and the projection $A_U^1 \to Y$ by pr_Y.

Lemma 5.12. [FP] There is a morphism $r : Y^h \to Y$ making the following diagram commutative

$$
\begin{array}{ccc}
Y^h & \longrightarrow & Y \\
\downarrow{in \circ \pi} & & \downarrow{pr|_Y} \\
\mathbb{P}_U^1 & \longrightarrow & U
\end{array}
$$

and such that $r \circ s = \text{Id}_Y$.

We view Y^h as a Y-scheme via r. Thus various subschemes of Y^h also become Y-schemes. In particular, Y^h and Y_u^h are Y-schemes, and we can consider

$$E(Y^h) \subset G(Y^h) \quad \text{and} \quad E(Y_u^h) \subset G(Y_u^h) = G_u(Y_u^{\text{h}}).$$

Lemma 5.13.

$$G_u(Y_u^h) = E(Y_u^h)G_u(Y_u^{\text{h}}).$$

Proof. Firstly, one has $Y_u = \coprod_{u \in u} \coprod_{y \in Y_u} y$. (Note that Y_u is a finite scheme.) Thus by property (ii) of henselization, we have

$$
Y_u^h = \coprod_{u \in u} \coprod_{y \in Y_u} y^h, \quad Y_u^h = \coprod_{u \in u} \coprod_{y \in Y_u} y^h,
$$

where (y^h, π_y, s_y) is the henselization of the pair (A_u^1, y), $y^h := y^h - s_y(y)$. We see that y^h and y^h are subschemes of Y^h, so we can view them as Y-schemes, and $G_{y^h} := G_Y \times_Y y^h$ is quasi-split. Also, $E(y^h)$ makes sense as a subgroup of $G(y^h) = G_u(y^h) = G_{y^h}(y^h)$.

One has
\[G_u(Y^h_u) = \prod_{u \in u} \prod_{y \in Y_u} G_u(y^h) = \prod_{u \in u} \prod_{y \in Y_u} G_{y^h}(y^h), \]
\[E(Y^h_u) = \prod_{u \in u} \prod_{y \in Y_u} E(y^h), \]
\[G_u(Y^h_u) = \prod_{u \in u} \prod_{y \in Y_u} G_u(y^h) = \prod_{u \in u} \prod_{y \in Y_u} G_{y^h}(y^h). \]
Thus it suffices for each \(u \in u \) and each \(y \in Y_u \) to check the equality
\[G_{y^h}(y^h) = E(y^h)G_{y^h}(y^h). \]
This equality holds by Fait 4.3 and Lemma 4.5 of [Gil2]. In fact, \(y^h = \text{Spec} \mathcal{O} \), where \(\mathcal{O} = k(u)[t] \) is a henselian discrete valuation ring, and \(m_y \subset k(u)[t] \) is the maximal ideal defining the point \(y \in A^1_u \). Further, \(y^h = \text{Spec} L \), where \(L \) is the fraction field of \(\mathcal{O} \). The lemma is proved. □

We have the closed embedding (2) and the scheme \(Y^h \) is affine by Proposition 5.2. Recall that we regard \(Y^h \) as a \(Y \)-scheme via the morphism \(r|_{Y^h} \). Thus by Lemma 5.11 the restriction map \(E(Y^h) \to E(Y^h_u) \) is surjective. Since \(E(Y^h) \subset G(Y^h) \), the proposition 5.9 follows. This completes the proof of Theorem 3.

6. An application

The following result is a straightforward consequence of Theorem 1 and an exact sequence for étale cohomology. Recall that by our definition a reductive group scheme has geometrically connected fibres.

Theorem 4. Let \(R \) be as in Theorem 1 and \(G \) be a reductive \(R \)-group scheme. Let \(\mu: G \to T \) be a group scheme morphism to an \(R \)-torus \(T \) such that \(\mu \) is locally in the étale topology on \(\text{Spec} R \) surjective. Assume further that the \(R \)-group scheme \(H := \text{Ker}(\mu) \) is reductive. Let \(K \) be the fraction field of \(R \). Then the group homomorphism
\[T(R)/\mu(G(R)) \to T(K)/\mu(G(K)) \]
is injective.

This theorem extends all the known results of this form proven in [CTO], [PS1], [Zai], [OPZ].

Appendix A. [FP]

For a commutative ring \(A \) we denote by \(\text{Rad}(A) \) its Jacobson ideal. The following definition one can find in [Gab, Section 0].

Definition A.1. If \(I \) is an ideal in a commutative ring \(A \), then the pair \((A, I)\) is called henselian, if \(I \subset \text{Rad}(A) \) and for every two relatively prime monic polynomials \(\bar{g}, \bar{h} \in \bar{A}[t] \), where \(\bar{A} = A/I \), and monic lifting \(f \in A[t] \) of \(\bar{g}\bar{h} \), there exist monic liftings \(g, h \in A[t] \) such that \(f = gh \). (Two polynomials are called relatively prime, if they generate the unit ideal.)

Lemma A.2. [FP] Let \((A, I)\) be a henselian pair with a semi-local ring \(A \) and \(J \subset A \) be an ideal. Then the pair \((A/J, (I + J)/J)\) is henselian.
The following definition one can find in [Gab, Section 0].

Definition A.3. The henselization of any pair \((A, I)\) is the pair \((\hat{A}, \hat{I})\) (over \((A, I)\)) defined as follows

\[
(\hat{A}, \hat{I}) := \text{the filtered inductive limit over the category } \mathcal{N} \text{ of } (A', \ker(\sigma)),
\]

where \(\mathcal{N}\) is the filtered category of pairs \((A', \sigma)\) such that \(A'\) is an étale \(A\)-algebra and \(\sigma \in \text{Hom}_{A-alg}(A', A/I)\).

References

[Che] Vladimir Chernousov. Variations on a theme of groups splitting by a quadratic extension and Grothendieck-Serre conjecture for group schemes \(F_4\) with trivial \(g_3\) invariant. *Doc. Math.*, (Extra volume: Andrei A. Suslin sixtieth birthday):147–169, 2010.

[CTO] Jean-Louis Colliot-Thélène and Manuel Ojanguren. Espaces principaux homogènes localement triviaux. *Inst. Hautes Études Sci. Publ. Math.*, (75):97–122, 1992.

[CTS] Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc. Principal homogeneous spaces under flasque tori: applications. *J. Algebra*, 106(1):148–205, 1987.

[DG] Michel Demazure and Alexander Grothendieck. *Schémas en groupes. III: Structure des schémas en groupes réductifs*. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153. Springer-Verlag, Berlin, 1970.

[FP] Fedorov, R.; Panin, I. A proof of Grothendieck-Serre conjecture on principal bundles over a semilocal regular ring containing an infinite field, Preprint, April 2013, http://www.arxiv.org/abs/1211.2678v2.

[Gab] Ofer Gabber. Affine analog of the proper base change theorem. *Israel J. Math.*, 87(1-3):325–335, 1994.

[Gi1] Philippe Gille. Torseurs sur la droite affine. *Transform. Groups*, 7(3):231–245, 2002.

[Gi2] Philippe Gille. Le problème de Kneser-Tits. *Astérisque*, (326):Exp. No. 983, vii, 39–81 (2010), 2009. Séminaire Bourbaki. Vol. 2007/2008.

[Gro1] Alexander Grothendieck. Torsion homologique et sections rationnelles. In *Anneaux de Chow et applications, Séminaire Claude Chevalley*, number 3. Paris, 1958.

[Gro2] Alexander Grothendieck. Le groupe de Brauer. II. Théorie cohomologique. In *Dix Exposés sur la Cohomologie des Schémas*, pages 67–87. North-Holland, Amsterdam, 1968.

[Gro3] Alexander Grothendieck. Technique de descente et théorèmes d’existence en géométrie algébrique. I. Généralités. Descente par morphismes fidèlement plats. In *Séminaire Bourbaki*, Vol. 5, Exp. No. 96, pages 299–327. Soc. Math. France, Paris, 1995.

[Nis1] Yevsey Nisnevich. Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind. *C. R. Acad. Sci. Paris Sér. I Math.*, 299(1):5–8, 1984.

[Nis2] Yevsey Nisnevich. Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional regular local rings. *C. R. Acad. Sci. Paris Sér. I Math.*, 309(10):651–655, 1989.

[Oja1] Manuel Ojanguren. Quadratic forms over regular rings. *J. Indian Math. Soc. (N.S.),* 44(1-4):109–116 (1982), 1980.

[Oja2] Manuel Ojanguren. Unités représentées par des formes quadratiques ou par des normes réduites. In *Algebraic K-theory, Part II (Oberwolfach, 1980)*, volume 967 of *Lecture Notes in Math.*, pages 291–299. Springer, Berlin, 1982.

[OP] Manuel Ojanguren and Ivan Panin. Rationally trivial Hermitian spaces are locally trivial. *Math. Z.*, 237(1):181–198, 2001.

[OPZ] M. Ojanguren, I. Panin, and K. Zainoulline. On the norm principle for quadratic forms. *J. Ramanujan Math. Soc.*, 19(4):289–300, 2004.

[Pa1] I. Panin. On Grothendieck-Serre’s conjecture concerning principal \(G\)-bundles over reductive group schemes containing a finite field: I. *ArXiv e-prints*, 0905.1418v3, April 2013.

[Pa2] Ivan Panin. On Grothendieck-Serre’s conjecture concerning principal \(G\)-bundles over reductive group containing a finite field schemes:II. *ArXiv e-prints*, 0905.1429v3, April 2013.
[Pan1] Panin, I. On Grothendieck-Serre conjecture concerning principal \(G \)-bundles over regular semi-local domains containing a finite field: I, Preprint, May 2014.

[Pan2] Panin, I. On Grothendieck-Serre conjecture concerning principal \(G \)-bundles over regular semi-local domains containing a finite field: II, Preprint, May 2014.

[Pop] Dorin Popescu. General Néron desingularization and approximation. *Nagoya Math. J.*, 104:85–115, 1986.

[Poo] Poonen, B., Bertini theorems over finite fields, Annals of Mathematics, 160 (2004), 1099–1127.

[PPS] I. Panin, V. Petrov, and A. Stavrova. Grothendieck-Serre conjecture for adjoint groups of types \(E_6 \) and \(E_7 \) and for certain classical groups. *ArXiv e-prints*, 0905.1427, December 2009.

[PS1] Ivan A. Panin and Andrei A. Suslin. On a conjecture of Grothendieck concerning Azumaya algebras. *St.Petersburg Math. J.*, 9(4):851–858, 1998.

[PS2] Victor Petrov and Anastasia Stavrova. Grothendieck-Serre conjecture for groups of type \(F_4 \) with trivial \(f_3 \) invariant. *ArXiv e-prints*, 0911.3132, November 2009.

[PSV] I. Panin, A. Stavrova, and N. Vavilov. On Grothendieck–Serre’s conjecture concerning principal \(G \)-bundles over reductive group schemes: I. *ArXiv e-prints*, 0905.1418v3, April 2013.

[Rag1] Madabusi S. Raghunathan. Principal bundles admitting a rational section. *Invent. Math.*, 116(1-3):409–423, 1994.

[Rag2] Madabusi S. Raghunathan. Erratum: “Principal bundles admitting a rational section” [Invent. Math. 116 (1994), no. 1-3, 409–423; MR1253199 (95f:14093)]. *Invent. Math.*, 121(1):223, 1995.

[Ser] Jean-Pierre Serre. Espaces fibrés algébrique. In *Anneaux de Chow et applications*, Séminaire Claude Chevalley, number 3, Paris, 1958.

[Swa] Richard G. Swan. Néron-Popescu desingularization. In *Algebra and geometry (Taipei, 1995)*, volume 2 of *Lect. Algebra Geom.*, pages 135–192. Int. Press, Cambridge, MA, 1998.

[Zai] Kirill Zainoulline. On Grothendieck conjecture about principal homogeneous spaces for some classical algebraic groups. *St.Petersburg Math. J.*, 12(1):117–143, 2001.

E-mail address: *paniniv@gmail.com*

Steklov Institute of Mathematics at St.-Petersburg, Fontanka 27, St.-Petersburg 191023, Russia