The pharmaceutical biochemistry group: where pharmaceutical chemistry meets biology and drug delivery

KALIA, Yogeshvar, PEROZZO, Remo, SCAPOZZA, Leonardo

Abstract

Successful drug discovery and development of new therapeutics is a long, expensive multidisciplinary process needing innovation and the integration of smart cutting edge science and technology to overcome the challenges in taking a drug from the bench to the bedside. The research activities of the Pharmaceutical Biochemistry group span the drug discovery and development process, providing an interface that brings together pharmaceutical chemistry, biochemistry, structural biology, computational chemistry and biopharmaceutics. Formulation and drug delivery are brought into play at an earlier stage when facing the perennial challenge of transforming a potent molecule in vitro into a therapeutic agent in vivo. Concomitantly, drug delivery results can be understood at a molecular level. This broad range of interdisciplinary research activities and competences enables us to address key challenges in modern drug discovery and development, provides a powerful collaborative platform for other universities and the pharmaceutical industry and an excellent training platform for pharmacists and pharmaceutical scientists who will [...]
The Pharmaceutical Biochemistry Group: Where Pharmaceutical Chemistry Meets Biology and Drug Delivery

Yogeshvar N. Kalia*, Remo Perozzo*, and Leonardo Scapozza*

Abstract: Successful drug discovery and development of new therapeutics is a long, expensive multidisciplinary process needing innovation and the integration of smart cutting edge science and technology to overcome the challenges in taking a drug from the bench to the bedside. The research activities of the Pharmaceutical Biochemistry group span the drug discovery and development process, providing an interface that brings together pharmaceutical chemistry, biochemistry, structural biology, computational chemistry and biopharmaceutics. Formulation and drug delivery are brought into play at an earlier stage when facing the perennial challenge of transforming a potent molecule in vitro into a therapeutic agent in vivo. Concomitantly, drug delivery results can be understood at a molecular level. This broad range of interdisciplinary research activities and competences enables us to address key challenges in modern drug discovery and development, provides a powerful collaborative platform for other universities and the pharmaceutical industry and an excellent training platform for pharmacists and pharmaceutical scientists who will later be involved in drug discovery and development.

Keywords: Cancer · Drug delivery · Drug discovery and development · Neglected diseases · Pharmaceutical biochemistry and chemistry · Transdermal

Research Activities of the Pharmaceutical Biochemistry Group

The research of the Pharmaceutical Biochemistry Group aims at addressing some of the challenges in taking a drug from the bench to the patient(1,2) by integrating cutting-edge science and technology(3) using an interdisciplinary approach. Solving the twin problems of lack of efficacy and high toxicity goes through the selection of the right target, the right molecule and the appropriate delivery technology and formulation for the appropriate clinical trial.(4) The research of the group tackles the issues related to choosing the right targets, molecules and formulations by combining two complementary research fields. Research in the Pharmaceutical Biochemistry/Chemistry field led by Prof. Scapozza and Dr. Perozzo focuses on molecular recognition for a better understanding of ligand–macromolecule interactions to develop therapeutic strategies involving new chemical entities and targets, using an approach based on the combination of biochemistry/biophysics, organic chemistry and computational chemistry/molecular modelling techniques, and covers three main topics:

• Cancer: we have two main objectives, namely the development of inhibitors of the tyrosine kinase domain of oncogenic fusion proteins involved in signalling pathways and the development of a thymidine kinase-based safety and monitoring tool for stem cell therapy.
• Antibiotics: in the context of a Sinergia (SNF) project we aim to find antibiotics with novel mechanisms of action that inhibit bacterial virulence.
• Neglected diseases: we aim to elucidate and to validate new drug targets against the major parasitic diseases of the Third World (malaria, leishmaniasis, African trypanosomiasis) and to find active lead compounds.

In addition, a new activity has recently been initiated to develop a molecular recognition-based approach for improving antibody formulation.

Research on Cutaneous Drug Delivery led by Dr. Kalia focuses on topical and transdermal delivery of therapeutic agents by investigating the effect of molecular properties on both passive and active transport processes and exploring how innovative technologies can be used to increase the range of therapeutic agents that can be delivered across the skin and increase options for therapy. The main areas of research are:

• Synthesis and characterization of prodrugs optimized for topical and transdermal administration.
• Development of new formulations to increase topical and transdermal drug delivery.
• Development of new technologies for the non- and minimally invasive delivery of biotechnology-derived therapeutics across the skin; evaluation of alternatives to parenteral administration.

Here, we present a brief overview of some of our research activities.

Cancer Research: Tyrosine Kinase Plasticity and the Development of Protein Kinase Inhibitors

Protein tyrosine kinases (PTyrKs) are critical components of the cellular signalling pathways(5) that are involved in the control of cell growth, metabolism and apoptosis.(6) Deregulated protein kinases have been linked to numerous diseases including cancer, diabetes and inflammation.(7) Targeted therapy using small molecule tyrosine kinase (TyrK) inhibitors is now well established, e.g. imatinib is an Abl TyrK inhibitor used as first line treatment in chronic myeloid leukemia (CML) and several solid tumours. The central feature of the TyrK enzymatic regulation is the protein plasticity which allows reversible transition between active and inactive confor-
mations. Intensive research has been done to design novel protein kinase inhibitors targeting oncogenic fusion proteins and to identify the key amino acids involved in the regulation of the conformational changes and, hence, the relationship between mutations and resistance observed in patients undergoing targeted therapies.[8,9]

Development of Small Molecules Inhibiting Oncogenic Npm-ALK

In anaplastic large-cell lymphomas, chromosomal translocations involving the kinase domain of anaplastic lymphoma kinase (ALK) and nucleophosmin produce highly oncogenic ALK fusion proteins that deregulate the cell cycle, differentiation, and apoptosis. Different fusion oncoproteins involving ALK kinase have been found in patients with non-small cell lung, breast, neuroblastoma and colorectal cancers.[10] Within the framework of the ProKinase European project, research has focused on developing inhibitors for targeted therapy of these ALK-positive tumours. Combining a virtual screening approach with the knowledge of two known inhibitors targeting inactive kinases, doramapimod and sorafenib, we designed new urea derivatives as ALK inhibitors with IC₅₀ values in the high nanomolar range and selective antiproliferative activity on ALK-positive cells (Fig. 1).[11–13] Within the same framework, two further series of Npm-ALK inhibitors (thiazole derivatives and α-Carboline) have been developed. Both series show nanomolar inhibition of Npm-ALK and its gatekeeper mutant L1196M Npm-ALK and clear structure–activity relationships as well as selective antiproliferative activity on ALK and ALK-mutant-positive cells with IC₅₀ values in the high nanomolar range.[12,13] In vivo tests using a Karpas299 cells xenograft model demonstrated that 8 h treatment with these inhibitors produced a noticeable reduction in ALK-phosphorylation and activity (Prof. Gambacorti, personal communication). More extended preclinical studies are now ongoing with newly designed and optimized compounds.

Binding Kinetics of Protein Kinase Inhibitors make the Difference

Resistance to imatinib is an important clinical issue in the treatment of Philadelphia chromosome positive leukemias[8,14] which is being tackled by the development of new, more potent drugs, such as the dual Src/Abi inhibitors dasatinib and bosutinib.[15,16] To increase the potency and eventually overcome some of the resistance related to mutations distant from the ATP binding site,[8] we designed and synthesized cmp-584, a compound with enhanced shape complementarity with the kinase domain of Abl (Fig. 2) and with ~20–300-fold greater cellular activity in vitro and in vivo than imatinib, which was attributed to a slower off-rate.[17] To our knowledge, this represented the first evidence of higher anti-Abi activity potentially caused by a slower off-rate emphasising the importance of understanding binding kinetics in drug discovery.[18] Studies of binding kinetics are now implemented in the process of the hit to lead optimization and to develop quantitative structure–kinetics relationships (QSKR).

The Difference in Flexibility Regulates the Accessibility of Druggable Conformations

Despite intensive research, it is not completely known which amino acids are involved in the regulation of the changes between active and inactive conformations of tyrosine kinases[19–23] and the question of the conformational propensity of tyrosine kinases and thus their targetability by small molecule inhibitors remains partially unanswered. A comparative structural analysis of all tyrosine kinases from the human genome using molecular modelling identified a pool of residues at the hydrophobic interface that appears to be important for protein conformation and motion.[24] In collaboration with Dr. Gervasio of the CNIO (Madrid), we analyzed the DFG conformational transition of the two model kinases, c-Src and Abi, that show a very different imatinib sensitivity despite high homology.[25] The results of massive molecular dynamics simulations, free energy calculations and isothermal titration calorimetry led to the hypothesis that the different flexibility of the two kinases results in a different stability of the DFG-out conformation and this might be the main determinant of imatinib selectivity.[25,26] We have also recently identified a single

![Fig. 1. Binding mode of representative urea derivatives as depicted by docking into the inactive ALK model. M259 of the hinge region, E227 of the C-helix and D330 of the DFG motif are shown as sticks with carbon atoms in cyan. H-bonds are shown as black dotted lines. For the sake of clarity, the gatekeeper L256 is not displayed. A: Compound 1 (IC₅₀ on purified ALK = 2.3 µM, IC₅₀ on Npm-ALK transduced BaF3 cells = 49 µM, IC₅₀ on parental BaF3 cells = 74 µM) representing the 1-methylpyrazolyl urea derivatives. B: Compound 17 (IC₅₀ on purified ALK = 0.6 µM, IC₅₀ on Npm-ALK transduced BaF3 cells = 0.7 µM, IC₅₀ on parental BaF3 cells = 0.7 µM) representing the 1-phenylpyrazolyl urea derivatives. C: Compound 19 (IC₅₀ on purified ALK = 5 µM, IC₅₀ on Npm-ALK transduced BaF3 cells = 1.5 µM, IC₅₀ on parental BaF3 cells = 10 µM) of the phenyl urea derivatives (Reprinted with permission from ref. [11]. Copyright Wiley 2011)](image)

![Fig. 2. cmp-584 shows higher shape complementarity with the Abl kinase domain. Structural formula and binding mode of imatinib (A) and cmp-584 (B) in Abl tyrosine kinase (PDB code: 1EP)](image)
Antibiotic Research: Identification and Characterization of Novel Antibacterial Compounds

Herpes simplex type I thymidine kinase (HSV1 TK) displays a broad substrate acceptance and is able to phosphorylate both pyrimidine and purine analogues featuring modified sugar mimicry such as the antiviral drugs aciclovir and ganciclovir. Due to this broader substrate diversity in comparison to their cellular counterpart,[28] they represent a selectivity filter for anti-viral therapy using aciclovir and its analogues. More recently it emerged as a suitable suicide gene to be used as safety tools for stem cell transplantation (SCT) within cancer therapy,[29] gene replacement therapy[30] and as a powerful reporter gene for in situ monitoring of protein expression and localization of stem cells.[31]

Our research focuses on characterizing the molecular mechanism governing the broad substrate specificity of HSV1 TK compared to human cytosolic TK[32–38] in order to address the problem of resistance towards antiviral compounds and the clinical limitations such as immunogenicity and treatment incompatibility discovered during the clinical application of the suicide gene approach based on HSV1 TK/ ganciclovir[39] using the interdisciplinary approach of the group. An effort has been made in order to design and develop new PET tracers for monitoring cancer and stem cells in vivo,[40–43] in collaboration with Prof. Ametamey of the ETHZ.

Neglected Diseases Research: An Interdisciplinary Approach

Among the neglected diseases, tropical diseases describe a group of disabling conditions that include the most common chronic infections in people living in areas of extreme poverty. When taken together, the disease burden of neglected diseases accounts for 90% of the global disease burden. Remarkably, given their incidence, of the new drugs developed over 30 years (1975–2004) only 1.3% are dedicated to neglected diseases.[46,47] Despite the recent progress in understanding parasite biology and host–parasite interactions, this has not led to new products, resulting in a severe lack not only of safe, affordable, effective and field-adapted drugs, but also vaccines and diagnostics.

Identifying and Developing New Therapeutic Concepts for the Treatment of Neglected Diseases

It is our aim to study and to understand the fundamentals of important metabolic pathways suitable for medical intervention in parasites and thus to propose new therapeutic concepts against the diseases and to supply structural information as well as molecular probes for validation purposes and lead structures that could be further optimized.

Using a genome/target-based approach we combine molecular biology with structural biology and computational methods to characterize the targets and develop molecular probes that are needed to chemically validate the targets and further understand the biology of the parasite. This approach has been applied successfully for the validation of the enzymes involved in the fatty acid biosynthesis pathway of *P. falciparum* as a novel drug target. We have cloned and expressed all four enzymes involved in chain elongation and crystallized three of them either in their apo form or as complex with substrate and/or inhibitors. All necessary assays are established, and chemical library screening and natural product screening afforded a series of highly active hits/leads.[48–55] More recently, we started activities in the area of methionine salvage in *Trypanosoma brucei*. We have cloned genes for both methionine synthase and homocysteine S-methyltransferase (recently identified drug target)[56,57] and are now producing recombinant protein for target characterization and hit/lead discovery.

For compounds that arise within the probe/lead finding process and that exhibit high activity against parasites, but for which the target is unknown or seems different from that hypothesized, we follow two approaches to isolate and to identify the corresponding target. The chemical proteomics approach, based on affinity chromatography techniques, has been applied successfully for the identification of adenosine kinase (AK) as the target of 4’-5’-[4-(4-phenoxyphenyl)-2H-pyrazol-3-yl]-morpholine in *Trypanosoma brucei rhodesiense*.[57,58] Chemical validation using recombinant protein indeed showed specific and tight interaction. Interestingly,
the compound toxicity is conferred by enzyme activation. We have constructed an overexpressing ak strain, an ak knockdown strain, and work is in progress to produce the corresponding full ak knock-out strain, aiming at the genetic validation and elucidation of the mechanism of action of 4-[5-(4-phenoxypHENYL)-2H-pyrazol-3-y1]-morpholine at the cellular level. We have also solved the crystal structure of ak in complex with a bisubstrate inhibitor and with 4-[5-(4-phenoxypHENYL)-2H-pyrazol-3-y1]-morpholine.[99] Similar projects are currently ongoing and aim to isolate and identify targets in Plasmodium falciparum K1 and Leishmania spp. The in silico inverse screening[60,61] aimed at target prediction/discovery is a complementary tool to the more labour-intensive chemical prot- otics. We have successfully applied such tools for the isolation and identification of targets of Triclosan in Plasmodium falci- parum K1, which provided two enzymes with the potential to serve as drug targets. The cloning, expression, characterization and validation of the putative targets are subject of ongoing research in our labora- tory.

Molecular Recognition-based Formulation of Antibodies

Therapeutic antibodies are susceptible to deamidation, isomerisation, racemisation, oxidation, denaturation, aggregation and other covalent modifications.[62] In addition to regulatory and quality control burdens, antibody aggregation can result in decreased efficacy and increased immunogenicity during clinical trials. Antibody ’stabilizing’ agents include polysorbate-based surfactants, amino acids, glucose, sorbitol, and dextran sulphate but neither these nor mutation of single amino acids in Igs that target hydrophobic patches im- plicated in aggregation has had much suc- cess.[63] Our work, in collaboration with Prof. Robert Gurny of the University of Geneva, has aimed at finding novel excipients able to reduce antibody aggregation of the monoclonal IgG1 antibody bevacizumab (Avastin®). It has involved the in silico discovery and in vitro validation of small molecule aggregation breakers exploiting specific molecular recognition patterns formed during the aggregation process. Early results showed that dexamethasone phosphate stabilized bevacizumab by re- ducing dimer formation or by converting aggregates into an essentially monomeric state.[64] Monomer and a dimer aggregation model of bevacizumab, built using homol- ogy modelling, revealed a unique contact region between the Fc of one monomer and one Fab of the adjacent monomer, which is conserved in marketed IgG1 antibodies like trastuzumab (Herceptin®) and rituxi- mab (MabThera®). A ligand-based search for similar aggregation breaking molecules based on a pharmacophore derived from the tested steroids yielded a small mol- ecule[61,65,66] that is generally recognized as safe by the FDA. This was confirmed by both docking and experimental validation to be an aggregation breaker. Given the conserved primary aggregation region in IgG1 antibodies, this molecule could be broadly applicable to current antibody aggregation problems.[61,65,66] This hypothe- sis is now being tested and small mole- cules with aggregation breaking properties further developed.

New Formulation Strategies and Technologies for Topical and Transdermal Delivery

The skin is the largest organ in the body and is an easily accessible portal for the ad- ministration of medicinal agents for local or systemic therapy. However, one of its principal physiologic functions is to pre- vent the entry of substances into the body. This protective barrier function resides principally in the stratum corneum (SC) – the outermost layer of the epidermis – which is particularly effective in limiting the permeation of hydrosoluble polar sub- stances. So how can we overcome the chal- lenge posed by Mother Nature if we wish to exploit this delivery route? This is the question addressed by the research of the Cutaneous Drug Delivery Group. Some specific areas of interest are described be- low.

Dermatopharmacokinetics and the Development of New Formulations to Increase Cutaneous Bioavailability

A pharmaceutical company wishing to introduce a generic topical dermatological product must demonstrate bioequivalence to the existing product. Although it is pos- sible to measure drug concentrations in the blood or urine, they do not necessarily represent drug levels at the target site – the skin. In order to simplify and to accelerate the assessment of topical bioavailability and bioequivalence, the US FDA explored the possibility of introducing a dermato- pharmacokinetic approach. The drug for- mulation is in contact with the skin for a fixed application period, after which its concentration in the skin is determined as a function of time. In this context, we investi- gated the topical delivery of terbinafine and ibuprofen in human volunteers and de- termined drug concentrations as a function of position in the SC.[67,68] Mathematical models were used to separate the contri- butions of thermodynamic and kinetic pa- rameters to drug transport, which can be of use in formulation optimisation; in ad- dition, they enable short-exposure data to be used for the prediction of drug bioavail- ability at longer time-points.

In 2010, we began to explore the po- tential of using polymeric micellar systems based on amphiphilic MPEG-hexPLA block copolymers to improve and to target delivery of dermatology therapeutics.[69] A recent study comparing the topical deliv- ery of econazole nitrate from an aqueous micellar formulation to that from a mar- keted product (Pevaryl®) into porcine and human skin in vitro demonstrated a signifi- cant increase in econazole nitrate delivery over the marketed formulation.[69] Studies are currently underway to explore other potential applications of these micellar systems in dermatology.

Iontophoresis: Using Electrically- assisted Transport to Deliver Charged Molecules across Intact Skin

Iontophoresis involves the application of a small electric potential to drive ions across the skin; transport is due to the con- centration and potential gradients across the skin and given that passive diffusion is poor for these species, it is dominated by electromigration. Transport rates are con- trolled by the intensity, duration and pro- file of current application and these can be modulated to obtain precise/individualized drug delivery kinetics.[70] We have investigated the iontophoretic transport of small molecules for topical action (e.g. herpes labialis[71] and the local delivery of anti-oxidants[72]) and for sys- temic effect (e.g. migraine[73,74] and chem- otherapy-induced emesis[75–77]), therapeutic peptides (triporelin and vaptrope),[78,79] and conducted mechanistic studies that re- sulted in the first published reports on the non-invasive transdermal delivery of functional proteins across the skin.[80–83] Experiments with valaciclovir, a cleav- able valine ester produg of aciclovir with superior oral bioavailability, showed that its transdermal iontophoresis resulted in several hundred-fold increases in aci- clovir delivery due to the charged amino group.[71] Sumatriptan and zolmitriptan are 5HT1B agonists used in the treatment of acute migraine episodes; their iontophoret- ic administration was investigated in vitro and in vivo and the results illustrated how the current profile controlled iontophoretic delivery kinetics and, as a result, drug concentra- tions in the plasma.[73,74] The ionto- phoretic delivery of therapeutic amounts of anti-emetics used in the treatment of chem- otherapy induced nausea and vomiting has also been successfully demonstrated in vitro and in vivo.[75–77] Ongoing projects con- tinue to investigate the controlled iontopho-
retic delivery of therapeutics to treat CNS disorders and the iophoretic transport of glycomimetics.[84,85] In 2007, we published the first report on the transdermal iophoresis of an intact protein (cytochrome c; 12.4 kDa) across intact skin.[86] Prior to this report it was generally thought that iophoresis could only be used with molecules of lower molecular weight (of up to a few kDa).[86] Recently completed studies into the transdermal iophoresis of ribonuclease A[81] (13.6 kDa), human basic fibroblast growth factor[82] (17.4 kDa) and negatively charged ribonuclease T1[83] (11.1 kDa) demonstrate that intact, biologically active proteins can be delivered non-invasively across the skin (Fig. 3).

Laser-assisted Microporation: A New Approach to Minimally Invasive Transdermal Delivery

In 2007, we began a collaboration to investigate a new Er:YAG laser-based microporation technology (P.L.E.A.S.E.8) for minimally invasive drug delivery into and across the skin.[86,87–92] The P.L.E.A.S.E.8 device applies short duration energy pulses (a few µs) at 2.94 µm that excite water molecules in the epidermis and result in their evaporation. This leads to the formation of transport channels whose depth can be controlled by varying the applied energy. Several hundred pores with reproducible size can be created in a few seconds. Experimental studies have been conducted into the delivery of small molecules (e.g. lidocaine,[89] prednisone[91] and diclofenac[92],) peptides (e.g. exenatide[93]), and proteins (e.g. cytochrome c[87] and follicle stimulating hormone). Laser microporation increases both the rate and extent of drug delivery; e.g. for lidocaine, a local anaesthetic, it was shown that significant levels were present in the skin after a 5 min application following microporation.[89] It has recently been shown that this technology can also be used for the local ‘needle-less’ delivery of functional therapeutic antibodies (anti-thymocyte globulin (ATG) and basiliximab (~150 kDa)) into the skin.[92] Biologics are playing an increasing role in dermatology and their targeted local delivery may expand potential therapeutic applications since high local concentrations may be achievable without the risk of systemic side-effects. These will be investigated in collaboration with clinical partners.

In summary, these results clearly show the extensive experience of Cutaneous Drug Delivery Group in drug formulation and the use of new technologies to expand the range of drug molecules including cosmeceuticals[94] that can be administered into and across the skin. The published studies with biopharmaceuticals challenge the perceived limitations of topical and transdermal delivery and suggest that there are less invasive, more patient-friendly alternatives to the parenteral administration of these therapeutics. It is no longer necessary to consider the transdermal route as being exclusively reserved for small, moderately lipophilic compounds.

Conclusions

The broad range of interdisciplinary research activities and competences within the Pharmaceutical Biochemistry group enable it to address some of the key challenges in modern drug discovery and development and to offer a powerful collaborative platform for other universities, the pharmaceutical industry and for the training of future pharmaceutical chemists and technologists.

Acknowledgements

The authors thank: (i) Prof. Carlo Gambacorti of the Milano Bicocca University, Prof. Peter Goekjian of the University of Lyon and Prof. Jari Yli-Kauhaluoma for the long lasting collaboration in the project dealing with the development of tyrosine kinase inhibitors, (ii) Dr. Francesco Gervasio of the CNIO in Madrid for the project related to tyrosine kinase plasticity, (iii) Prof. Yann Seimbile of the University of Geneva for the work on tyrosine kinase inhibitors based PET tracers, (iv) Prof. Simon Ametamey of the ETH Zurich and Silvana Raic-Malic for the work of HSV1 TK-based PET tracers, (v) Profs. Pierre Cosson and Thierry Soldati of the University of Geneva, Prof. Hubert Hilbi of Ludwig-Maximilians-University in Munich and Prof. John McKinney of the EPFL for collaborating on the development of antivirulence compounds, (vi) Prof. Robert Gunny of the University of Geneva for collaborations on the molecular recognition-based formulation of antibodies project and the use of polymeric micelles for topical drug delivery, (vii) Prof. Reto Brun and Dr. Pascal Mäser of the Swiss Tropical & Health Institute for providing materials, work and expertise for projects related to neglected diseases, (viii) Prof. Deniz Tasdemir of the National University of Ireland in Galway for her outstanding contributions regarding isolation of natural products with antiparasitic activity, (ix) Dr. Kouroche Amini (Department of Plastic, Aesthetic and Reconstructive Surgery, Geneva University Hospital) and Dr. Gabor Varadi and Mrs. Amalia Vitozz-Rivero (Clinique Vert-Pré, Geneva) for kindly providing us with excised human skin from aesthetic surgery procedures, (x) Prof. Gérard Hopfgartner for access to the High Resolution Mass Spectrometry Platform of the Faculty of Science, University of Geneva, (xi) Dr. Christoph Bauer and Jerome Bosset of the Bioimaging Platform of the NCCR ‘Frontiers in Genetics’ at the University of Geneva for their help with confocal microscopy, (xii) Profs. Virginia Merino and Alicia Lopez Castellano of the University of Valencia and the University Cardenal Herrera (Murcia, Spain) for their collaboration for pharmacokinetic studies, (xiii) Professor Beat Ernst, Institute of Molecular Pharmacy, University of Basel for the collaboration investigating the delivery of glycomimetics.

The authors thank past and present members of the Group for their scientific contributions to the Group’s activities. Special thanks go to Dr. William Bisson and Dr. Lucile Pernot for supervising the molecular modelling and crystallography activities within the Group.

The authors also thank the SNF (grant no: 3100A0-113830/1, 3100A0-118275, 31003A-120566, 3100A0-126963/1, CRSI33_130016), the EU (grant no: LSHB-CT-2004-503467), Swiss Commission for Technology Innovation (grant no: CTI-9307.1), Oncouisse (OCS 01753-08-05), Indo-Swiss Joint Research Programme (grant no: 123 143), Société Académique de Genève, the University of Geneva and our industrial partners for their financial support of the group’s research activities.

Received: April 4, 2012
[84] T. Gratieri, B. Wagner, D. Kalaria, B. Ernst, Y. N. Kalia, *Biomed. Chromatogr.* 2012, 26, 507.
[85] T. Gratieri, B. Wagner, D. Kalaria, B. Ernst, Y. N. Kalia, *Exp. Dermatol.* 2012, 21, 226.
[86] T. Gratieri, D. Kalaria, Y. N. Kalia, *Expert Opin. Drug Deliv.* 2011, 8, 645.
[87] Y. G. Bachhav, Y. N. Kalia, *Biomed. Chromatogr.* 2010, 24, 732.

[88] Y. G. Bachhav, Y. N. Kalia, *Biomed. Chromatogr.* 2011, 25, 838.
[89] Y. G. Bachhav, S. Summer, A. Heinrich, T. Bragagna, C. Bohler, Y. N. Kalia, *J. Control. Release* 2010, 146, 31.
[90] Y. N. Kalia, Y. G. Bachhav, T. Bragagna, C. Bohler, *Drug Del. Technol.* 2008, 8, 26.
[91] J. Yu, Y. G. Bachhav, S. Summer, A. Heinrich, T. Bragagna, C. Bohler, Y. N. Kalia, *J. Control. Release* 2010, 148, e71.
[92] J. Yu, D. R. Kalaria, Y. N. Kalia, *J. Control. Release* 2011, 156, 53.
[93] Y. G. Bachhav, A. Heinrich, Y. N. Kalia, *Eur. J. Pharm. Biopharm.* 2011, 78, 408.
[94] T. Gratieri, Y. N. Kalia, *Kosmetische Medizin* 2011, 11, 165.