Evidence of decoupling of surface and bulk states in Dirac semimetal \(\text{Cd}_3\text{As}_2 \)

W Yu\(^1\), D X Rademacher\(^1\), N R Valdez\(^1\), M A Rodriguez\(^1\), T M Nenoff\(^1\) and W Pan\(^2\)

\(^1\) Sandia National Laboratories, Albuquerque, New Mexico NM-87185, United States of America
\(^2\) Sandia National Laboratories, Livermore, California CA-94551, United States of America

E-mail: wpan@sandia.gov

Received 1 March 2022, revised 16 June 2022
Accepted for publication 27 June 2022
Published 25 July 2022

Abstract

Dirac semimetals have attracted a great deal of current interests due to their potential applications in topological quantum computing, low-energy electronic devices, and single photon detection in the microwave frequency range. Herein are results from analyzing the low magnetic field weak-antilocalization behaviors in a Dirac semimetal \(\text{Cd}_3\text{As}_2 \) thin flake device. At high temperatures, the phase coherence length \(l_\phi \) first increases with decreasing temperature \(T \) and follows a power law dependence of \(l_\phi \propto T^{-0.4} \). Below \(\sim 3 \) K, \(l_\phi \) tends to saturate to a value of \(\sim 180 \) nm. Another fitting parameter \(\alpha \), which is associated with independent transport channels, displays a logarithmic temperature dependence for \(T > 3 \) K, but also tends to saturate below \(\sim 3 \) K. The saturation value, \(\sim 1.45 \), is very close to 1.5, indicating three independent electron transport channels, which we interpret as due to decoupling of both the top and bottom surfaces as well as the bulk. This result, to our knowledge, provides first evidence that the surfaces and bulk states can become decoupled in electronic transport in Dirac semimetal \(\text{Cd}_3\text{As}_2 \).

Keywords: Dirac semimetal, surface and bulk states, weak anti-localization

Some figures may appear in colour only in the online journal.
The weak antilocalization (WAL) effect has commonly been used to examine the coupling/decoupling of the surface and bulk states in topological quantum materials [22–42]. In a system with spin-momentum locking and the resulting \(\pi \) Berry phase, the constructive interference of two time-reversal paths gives rise to a magnetoconductivity correction (equation (1)) [26, 34, 43] as follows:

\[
\Delta \sigma(B) = \sigma_{xx}(B) - \sigma_{xx}(0) = \alpha \times (e^2/\pi \hbar) f(B_0/B),
\]

where \(\sigma_{xx}(B) \) is the conductivity at a magnetic field of \(B \), \(\sigma_{xx}(0) \) the conductivity at \(B = 0 \), \(e \) the electron charge, \(h \) the Planck constant, \(f(x) \equiv \ln(x) - \Psi(1/2 + x) \) with \(\Psi \) being the digamma function. \(B_0 \) is the magnetic field associated with the phase coherence length \(l_\phi = (h/eB_0)^{1/2} \). \(\alpha \) is related to the number of independent transport channels. In previous studies on WAL in topological insulators, such as Bi\(_2\)Se\(_3\), \(\alpha \) is determined by coupling/decoupling of the surfaces and bulk [26, 28–33, 38]. When the surfaces and bulk are strongly coupled, they are treated as one coherent channel and \(\alpha = 0.5 \). When the top and bottom surfaces are decoupled from the bulk, \(\alpha = 1 \). Figure 1(a) shows an optical image of an as-grown Cd\(_3\)As\(_2\) ingot. (b) Powder XRD plot simulated using single crystal data.

Figure 1, (a) Optical image of an as-grown Cd\(_3\)As\(_2\) ingot. (b) Powder XRD plot simulated using single crystal data.
terminal longitudinal resistance ρ_{xx} and Hall resistance ρ_{xy} are measured using the low-frequency (~ 11 Hz) phase lock-in technique. Two Stanford Research Systems Inc. SR830 lock-in amplifiers are used. Lock-in amplifier 1 provides a constant AC voltage (1 V) to induce a current of 10 nA into the sample, through a current-limiting resistor of 100 MΩ (much larger than the sample resistance) [52]. This lock-in amplifier measures ρ_{xx}. The second lock-in amplifier, synchronized with lock-in amplifier 1, measures the Hall resistance ρ_{xy}. At the excitation current of 10 nA, we estimate that electron self-heating is negligible.

Figure 2(a) shows ρ_{xx} as a function of temperature at zero magnetic field. Three regimes with different temperature dependencies are observed. In the temperature range of $10 < T < 50$ K, it is clearly seen that ρ_{xx} follows a linear T dependence and $\rho_{xx} = 928 - 0.77x$, in units of Ω. Between ~ 3 and 10 K, ρ_{xx} displays a logarithmic T dependence, as shown in figure 2(b). This logarithmic temperature dependence is caused by the weak localization effect. Indeed, in a diffusive electron system the destructive quantum interference between two identical self-crossing paths (in which an electron propagates in the opposite directions) leads to an increase in resistivity, which follows a logarithmic temperature dependence [53]. Below 3 K, ρ_{xx} increases at a much slower rate and tends to saturate to a value $\sim 931 \, \Omega$. Figure 2(c) shows the magneto-resistivity $\rho_{xx}(B)$, taken at $T = 1.3$ K, in a large magnetic (B) field range. The pronounced weak-antilocalization cusp near the zero magnetic field is clearly seen, consistent with previous work in topological insulators and semimetals [22–42, 44, 45]. Fluctuations are also observed in magneto-resistivity.

Figures 3(a) and (b) show $\rho_{xx}(B)$ and Hall resistivity $\rho_{xy}(B)$, respectively, around $B = 0$ T at a few selected temperatures. As shown in figure 3(a), the amplitude of fluctuations becomes weaker and eventually disappears at higher temperatures. The Hall resistivity (figure 3(b)) displays a linear B field dependence in the low magnetic fields range around $B = 0$. All the traces overlap with each other, indicating a constant electron density in the temperature range studied. In figure 3(c), we plot the area density n_{3D}, obtained from the slope of $\rho_{xy}(B)$ as a function of temperature. In the temperature range of $0.5 < T < 38$ K, $n_{3D} \sim 1.5 \times 10^{13}$ cm$^{-2}$. We note that a constant electron density at low temperatures has also been observed before [54].

Moreover, it is believed that a finite electron density in unintentionally doped Cd$_3$As$_2$ is due to arsenic vacancies [55]. The 3D density is estimated to be $n_{3D} \sim 7.5 \times 10^{17}$ cm$^{-3}$, considering the thickness of the thin flake is ~ 200 nm. Consequently, the Fermi energy E_F of the system, estimated by using the following formula (equation (2)), is ~ 100 meV, which is close to the theoretically calculated Lifshitz transition point [48]

$$E_F = \hbar^2 (3\pi^2 n_{3D})^{2/3} / 2m^*.$$

(2)

Here, the effective electron mass in Cd$_3$As$_2$ is taken as $m^* = 0.03$ (in the units of free electron mass).

We caution here that the Fermi energy is calculated based on a simplified model and does not consider the ellipsoid correction [48]. Moreover, there exists a large discrepancy in the literature on the position of the Lifshitz transition point in Cd$_3$As$_2$ [6, 10, 48, 56–58]. Theoretically, it was estimated to be ~ 130 meV in reference [48]. Experimentally, the measured value differs significantly from one work to another. In [58], it was estimated ~ 200 meV using the electronic transport technique. On the other hand, a value of as small as ~ 10 meV was estimated in [10] using the STM technique. Understanding the origin of this discrepancy, though extremely important, is beyond the scope of this work. More future studies are needed.

In the following, we will focus on the weak-antilocalization behavior. As shown in figure 3(a), the WAL behavior is weakened as T increases. To analyze the weak-antilocalization effect, we follow the previous practices in topological insulators and topological semimetals and use the HLN formula [43] to analyze the weak-antilocalization effect. In fitting the experimentally measured data, we first convert the resistivity to conductivity, $\sigma_{xx}(B) = \rho_{xx}(B)/(\rho_{xx}(B)^2 + \rho_{xy}(B)^2)$. The magneto-conductivity $\Delta \sigma(B) = \sigma_{xx}(B) - \sigma_{xx}(0)$ is then fitted by the formula (equation (3)):

$$\Delta \sigma(B) = \alpha \varepsilon^2 / \pi \hbar \times [\ln(h/4e\varepsilon^2 B) - \Psi(1/2 + h/4e\varepsilon^2 B)].$$

(3)

In figure 3(d), we show a representative fitting at one temperature of 6.8 K. A good fitting is seen in the low magnetic field range.

We note here that the HLN formula, developed for two-dimensional electron systems (2DES), fits our data well, considering that our device is 200 nm thick. On the other
hand, this is not surprising by comparing the $\rho_{xx}(B)$ data in our specimen (figure 2(c)) with the magneto-resistivity data that are well fitted by a 3D WAL model in [42]. $\rho_{xx}(B)$ in our specimen shows the strong cusp feature typically observed in 2DES. In contrast, the $\rho_{xx}(B)$ data that are well fitted by the 3D WAL model generally shows a quadratic-like B field dependence (see figure 3 in [42]). In fact, the $\rho_{xx}(B)$ curve that shows the cusp feature in their least-doped sample needs to be fitted by the HLN formula, even though the thickness is also about 200 nm (see supplementary materials in [42]). In the following, we discuss a couple of possible mechanisms. First, it is known that the spin–orbit coupling in Cd$_3$As$_2$ is strong. As a result, the spin–orbit scattering time can be significantly shorter than the phase coherence time [42] in our specimen. Consequently, the single coherence channel HLN formula can be valid in the bulk [25]. Second, in our specimen, the phase coherence length is on the order of the device thickness (\sim200 nm). This can also make the HLN formula a good approximation in fitting the weak-antilocalization effect for the bulk.

In figures 4(a) and (b), we plot the obtained l_0 and α as a function of T. l_0 follows a power-law temperature dependence in the range of \sim4–40 K, $l_0 \sim T^{-0.4}$, with a power law coefficient of 0.4, suggesting that electron–electron scattering is the main mechanism for the dephasing process [53] in our device. When T is lower than 3 K, l_0 increases at a much slower rate and tends to saturate to a value of \sim180 nm. The value of α also increases with decreasing T and follows a logarithmic dependence between $T\sim$10 and 40 K (see figure 4(b)). At present, the exact origin of this logarithmic T-dependence is not known. Nevertheless, it indicates that the decoupling of the surfaces and bulk states is a not sudden transition. Rather, it is a gradual process. As T is further reduced below \sim3 K, α also increases at a much slower rate and tends to saturate to a value of \sim1.45. This low-temperature value of 1.45 is larger than 1, suggesting contributions

Figure 3. (a) Magneto-resistivity ρ_{xx} around $B = 0$ T at five selected temperatures of 0.5, 0.7, 4.8, 13.7, and 30.9 K. (b) Hall resistivity ρ_{xy} as a function of B at the same selected temperature. Linear B dependence is seen. (c) 2D electron density, obtained from the slope of the linear B dependence of ρ_{xy}, as a function of temperatures. (d) HLN fitting of the weak antilocalization effect at the temperature of 6.8 K.
from more than two independent channels. Considering it is very close to 1.5, we suggest that at low temperatures there exist three independent parallel channels. In a 3D Dirac semimetal like Cd₃As₂, these three parallel channels can become possible if both the top and bottom surfaces as well as the bulk all become decoupled. Indeed, both the 2D WAL effect from the top and bottom surfaces and the 3D WAL effect have been observed before [23]. Also, independent surface and bulk channels are observed in the studies of Josephson junctions in Cd₃As₂ [11, 12]. Mechanisms other than decoupled surfaces and bulk states might also be possible. For example, the Weyl orbits [59] may contribute to the weak anti-localization effect and cause α to be close to 1.5 in Dirac semimetals. More studies are needed.

Our obtained value of l_ϕ at low temperatures is consistent with that previously reported in Cd₃As₂ samples grown by MBE technique [35, 37]. This seems to suggest that l_ϕ is independent of how the materials is prepared. On the other hand, the value of α is significantly different. In the MBE grown Cd₃As₂ thin films [35, 37], α is considerably less than 0.5. It only approaches to 0.5 at low temperatures [37]. This low value of α is probably due to a small film thickness in their samples, which can result in strong coupling of the two surfaces and bulk. Consequently, only one independent transport channel exists. The asymmetric contribution from the surface and the bulk [26] can further reduce α to a value of less than 0.5. Our Cd₃As₂ thin flake device is significantly thicker. As a result, at low temperatures, the two (top and bottom) surfaces and the bulk can become decoupled and give rise to three independent channels and, thus, a large α value.

It is surprising that all three parameters, the resistivity, l_ϕ, and α, tend to saturate below ~3 K. We speculate that the decoupling of top/bottom surfaces and the bulk may be responsible for the tendency. Indeed, if the bulk-surface scattering is the main mechanism for the sample resistivity in Cd₃As₂ and dephasing of quantum interference, when all three are decoupled, this scattering mechanism is strongly suppressed. Consequently, ρ_{xx}, l_ϕ, and α can saturate to a constant value, respectively. Additional measurements are ongoing to further explore whether and how the decoupling is related to the π phase difference between the surface and bulk states [11].

In conclusion, we have synthesized single crystals of pure Cd₃As₂ and fabricated thin flake devices to measure their electronic transport properties. We present results from our systematic studies of the weak-antilocalization effect. The HLN formula is used to analyze WAL, from which the phase coherence length l_ϕ and the constant α (which is related to independence transport channels) are obtained. It is observed that l_ϕ follows a power law dependence with T at high temperatures, but saturates to ~180 nm below $T \sim 3$ K. α displays a logarithmic dependence for $T > 3$ K, and saturates below ~3 K. Surprisingly, the saturation value α is very close to 1.5, indicating three independent transport channels probably due to the decoupling of both the top and bottom surfaces as well as the bulk states in our Cd₃As₂ thin flake sample. This observation of decoupled surface channels is expected to have important implications for topologically-protected device applications.

We would like to thank Anna Lima-Sharma and James Park for their help and guidance in the Cd₃As₂ crystal growth. The work was supported by a Laboratory Directed Research and Development project at Sandia National Laboratories. Device fabrication was carried out at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy or the United States Government.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

W Pan @ https://orcid.org/0000-0002-5629-5296

References

[1] Hasan M Z and Kane C L 2010 Topological insulators Rev. Mod. Phys. 82 3045
[2] Qi X-L and Zhang S-C 2011 Topological insulators and superconductors Rev. Mod. Phys. 83 1057
[3] Armitage N P, Mele E J and Vishwanath A 2018 Weyl and Dirac semimetals in three-dimensional solids Rev. Mod. Phys. 90 015001
[4] Wang A-Q, Ye X-G, Yu D-P and Liao Z-M 2020 Topological Semimetal Nanonanofabrics: From Properties to Topotronics ACS Nano 14 3755
[5] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Dirac semimetal in three dimensions Phys. Rev. Lett. 108 140405
[6] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Three-dimensional Dirac fermion and quantum transport in Cd3As2 Phys. Rev. B 88 125427
[7] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Experimental realization of a three-dimensional Dirac semimetal Phys. Rev. Lett. 113 027603
[8] Neupane M et al 2014 Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 Nat. Commun. 5 3786
[9] Liu Z K et al 2014 A stable three-dimensional topological Dirac semimetal Cd3As2 Nat. Mater. 13 677
[10] Jeon S, Zhou B B, Gyenis A, Feldman B E, Kimchi I, Potter A C, Gibson Q D, Cava R J, Vishwanath A and Yazdani A 2014 Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2 Nat. Mater. 13 851
[11] Yu W, Pan W, Medlin D L, Rodriguez M A, Lee S R, Bao Z-q and Zhang F 2018 7π and 4π Josephson effects mediated by a Dirac semimetal Phys. Rev. Lett. 120 177704
[12] Wang A-Q, Li C-Z, Li C, Liao Z-M, Brinkman A and Yu D-P 2018 4π-periodic supercurrent from surface states in Cd3As2 nanowire-based Josephson junctions Phys. Rev. Lett. 121 237701
[13] Yuan W, Haened R, Rodriguez M A, Lee S R, Zhang F, Franz M, Pikulin D I and Pan W 2020 Zero-bias conductance peak in Dirac semimetal-superconductor devices Phys. Rev. Res. 2 032002
[14] Li C-Z, Wang A-Q, Li C, Zheng W-Z, Brinkman A, Yu D-P and Liao Z-M 2020 Fermi-arc supercurrent oscillations in Dirac semimetal Josephson junctions Nat. Commun. 11 1150
[15] Oveshnikov I N, Davydov A B, Suslov A V, Ril’ A I, Marenkin S F, Vasiliev A L and Aronzon B A 2020 Superconductivity and shubnikov - de haas effect in polycrystalline Cd3As2 thin films Sci. Rep. 10 4601
[16] Zhang S-B, Erdmenger J and Trauzettel B 2018 Chirality Josephson current due to a novel quantum anomaly in inversion-asymmetric Weyl semimetals Phys. Rev. Lett. 121 226604
[17] Yan Z, Wu Z and Huang W 2020 Vortex edge majorana zero modes in superconducting Dirac and Weyl semimetals Phys. Rev. Lett. 124 257001
[18] Elliott S R and Franz M 2015 Majorana fermions in nuclear, particle, and solid-state physics Rev. Mod. Phys. 87 137
[19] Lee S R, Sharma P A, Lima-Sharma A L, Pan W and Nenoff T M 2019 Topological quantum materials for realizing majorana quasiparticles Chem. Mater. 31 26
[20] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Non-abelian anyons and topological quantum computation Rev. Mod. Phys. 80 1083
[21] Chatterjee E, Pan W and Soh D 2021 Microwave photon number resolving detector using the topological surface state of superconducting cadmium arsenide Phys. Rev. Res. 3 023046
[22] Chen J et al 2010 Gate-voltage control of chemical potential and weak antilocalization in Bi2Se3 Phys. Rev. Lett. 105 176602
[23] He H-T, Wang G, Zhang T, Sou I-K, Wong G K L, Wang J-N, Lu H-Z, Shen S-Q and Zhang F-C 2011 Impurity effect on weak antilocalization in the topological insulator Bi2Te3 Phys. Rev. Lett. 106 166805
[24] Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3 Phys. Rev. Lett. 106 196801
[25] Steinberg H, Laloi J-B, Fatemi V, Moodera J S and Jarillo-Herrero P 2011 Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films Phys. Rev. B 84 233101
[26] Garate I and Glazman L 2012 Weak localization and antilocalization in topological insulator thin films with coherent bulk-surface coupling Phys. Rev. B 86 035422
[27] Liu M et al 2012 Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator Phys. Rev. Lett. 108 036805
[28] Taskin A A, Sasaki S, Segawa K and Ando Y 2012 Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films Phys. Rev. Lett. 109 066803
[29] Bansal N, Kim Y S, Braheuk M, Edrey E and Oh S 2012 Thickness-independent transport channels in topological insulator Bi2Se3 thin films Phys. Rev. Lett. 109 116804
[30] Kim D, Syers P, Butch N P, Paglione J and Fuhrer M S 2013 Coherent topological transport on the surface of Bi2Se3 Nat. Commun. 4 2040
[31] Lin C J et al 2013 Parallel field magnetoresistance in topological insulator thin films Phys. Rev. B 88 041307(R)
[32] Braheuk M, Koirala N, Salehi M, Bansal N and Oh S 2014 Emergence of decoupled surface transport channels in bulk insulating Bi2Se3 thin films Phys. Rev. Lett. 113 026801
[33] Li Z et al 2015 Experimental evidence and control of the bulk-mediated intersurface coupling in topological insulator Bi2Te3:Se nanoribbons Phys. Rev. B 91 041401(R)
[34] Lu H-Z and Shen S-Q 2015 Weak antilocalization and localization in disordered and interacting Weyl semimetals Phys. Rev. B 92 035203
[35] Zhao B, Cheng P, Pan H, Zhang S, Wang B, Wang G, Xi F and Song F 2015 Weak antilocalization in Cd3As2 thin films Sci. Rep. 6 22377
[36] Liu W E, Hankiewicz E M and Culcer D 2017 Quantum transport in weyl semimetal thin films in the presence of spin–orbit coupled impurities Phys. Rev. B 96 045307
[37] Schumann T, Galletti L, Kealhofer D A, Kim H, Goyal M and Stemmer S 2018 Observation of the quantum hall effect in confined films of the three-dimensional Dirac semimetal Cd₃As₂ Phys. Rev. Lett. 120 016801

[38] Park H, Chae J, Jeong K, Choi H, Jeong J, Kim D and Cho M-H 2018 Disorder-induced decoupled surface transport channels in thin films of doped topological insulators Phys. Rev. B 98 045411

[39] Fu B, Wang H-W and Shen S-Q 2019 Quantum interference theory of magnetoresistance in Dirac materials Phys. Rev. Lett. 122 246601

[40] Yu L Q, Hu L, Barreda J L, Guan T, He X, Wu K, Li Y Q and Xiong P 2020 Robust gapless surface state against surface magnetic impurities on (Bi₂Sb₂Te₃)_xTe₁₋ₓ evidenced by In Situ magnetotransport Phys. Rev. Lett. 124 126601

[41] Niu C, Qiu G, Wang Y, Zhang Z, Si M, Wu W and Ye P D 2020 Gate-tunable strong spin–orbit interaction in two-dimensional tellurium probed by weak antilocalization Phys. Rev. B 101 205414

[42] Nakazawa Y, Uchida M, Nishihaya S, Ohno M, Sato S and Kawasaki M 2021 Enhancement of spin–orbit coupling in Dirac semimetal Cd₃As₂ films by Sb doping Phys. Rev. B 103 045109

[43] Hikami S, Larkin A I and Nagaoka Y 1980 Spin–orbit interaction and magnetoresistance in the two dimensional random system Prog. Theor. Phys. 63 707

[44] Li H, He H, Lu H-Z, Zhang H, Liu H, Ma R, Fan Z, Shen S-Q and Wang J 2016 Negative magnetoresistance in Dirac semimetal Cd₃As₂ Nat. Commun. 7 10301

[45] Zheng W-Z, Ye X-G, Lin B-C, Li R-R, Yu D-P and Liao Z-M 2019 Appl. Phys. Lett. 115 183103

[46] Ali M N, Gibson Q, Jeon S, Zhou B B, Yazdani A and Cava R J 2014 The crystal and electronic structures of Cd₃As₂, the three-dimensional electronic analogue of graphene Inorg. Chem. 53 4062

[47] Sankar R et al 2015 Large single crystal growth, transport property and spectroscopic characterizations of three-dimensional Dirac semimetal Cd₃As₂ Sci. Rep. 5 12966

[48] Feng J, Pang Y, Wu D, Wang Z, Weng H, Li J, Dai X, Fang Z, Shi Y and Lu L 2015 Large linear magnetoresistance in Dirac semimetal Cd₃As₂ with fermi surfaces close to the Dirac points Phys. Rev. B 92 081306(R)

[49] Steigmann G A and Goodyear J 1968 The crystal structure of Cd₃As₂ Acta Cryst. B 24 1062

[50] The lattice constants a, b, c in our single crystal are slightly smaller than those obtained in some CVD grown single crystals, for example, a = b = 12.6512Å and c = 25.427Å in Ref. [47], and a = b = 12.6527Å and c = 25.4578Å in Ref. [48]. On the other hand, they are comparable to those in other CVD grown single crystals, for example, a = b = 12.633(3) Å, c = 25.427(7)Å in Ref. [46], and those in [49]

[51] (https://nationalmaglab.org/images/users/dc_field/searchable_docs/sample_environments/nmr3he/manual.pdf)

[52] (https://www.zeninst.com/americas/en/applications/nanotechnology-materials-science/hall-effect-measurements)

[53] Lee P A and Ramakrishnan T V 1985 Disordered electronic systems Rev. Mod. Phys. 57 287

[54] Schumann T, Goyal M, Kealhofer D A and Stemmer S 2017 Negative magnetoresistance due to conductivity fluctuations in films of the topological semimetal Cd₃As₂ Phys. Rev. B 95 241113(R)

[55] Spitzer D P, Castellion G A and Haacke G 1966 Anomalous thermal conductivity of Cd₃As₂ and the Cd₃As₂-Zn₃As₂ Alloys J. Appl. Phys. 37 3795

[56] Hakl M et al 2018 Energy scale of Dirac electrons in Cd₃As₂ Phys. Rev. B 97 115206

[57] Krizman G, Schumann T, Tchoumakov T, Assaf B A, Stemmer S, de Vaulchier L A and Guldner Y 2019 Determination of the crystal field splitting energy in Cd₃As₂ using magnetooptics Phys. Rev B 100 155205

[58] Zhao Y et al 2015 Anisotropic fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd₃As₂ Phys. Rev. X 5 031037

[59] Potter A C, Kimchi I and Vishwanath A 2014 Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals Nat. Commun. 5 5161