Pancreatic cancer resistance conferred by stellate cells: looking for new preclinical models

Pei Pei Che1,2, Alessandro Gregori2, Omidreza Firuzi3, Max Dahele1, Peter Sminia1, Godefridus J. Peters2,4* and Elisa Giovannetti2,5

Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor response to chemo- and (modest-dose conventionally fractionated) radio-therapy. Emerging evidence suggests that pancreatic stellate cells (PSCs) secrete deoxycytidine, which confers resistance to gemcitabine. In particular, deoxycytidine was detected by analysis of metabolites in fractionated media from different mouse PSCs, showing that it caused PDAC cells chemoresistance by reducing the capacity of deoxycytidine kinase (dCK) for gemcitabine phosphorylation. However, data on human models are missing and dCK expression was not associated with clinical efficacy of gemcitabine. We recently established co-culture models of hetero-spheroids including primary human PSCs and PDAC cells showing their importance as a platform to test the effects of cancer- and stroma-targeted drugs. Here, we discuss the limitations of previous studies and the potential use of above-mentioned models to study molecular mechanisms underlying chemo- and radio-resistance.

Keywords: Pancreatic cancer, Therapy resistance, Stellate cells, Deoxycytidine

To the Editor
We read with great interest the recent article by Dalin and collaborators [1] on liquid chromatography-mass spectrometry analysis and cell viability assays in different models of PDAC cells and PSCs, showing that secretion of deoxycytidine by PSCs conferred resistance to gemcitabine.

PDAC is typically characterized by features associated with poor prognosis: therapy resistance, early metastasis and recurrence [2]. Approximately 80% of PDAC volume is stroma comprising a liquid milieu of cytokines/growth factors and extracellular vesicles, a cellular component (PSCs, fibroblasts, endothelial and immune cells), and an extracellular matrix. These components are interconnected and their communication with cancer cells might affect aggressive behavior and therapy response (Fig. 1a).

Despite inherent and acquired resistance against most chemotherapeutic drugs, cytotoxic chemotherapy remains the mainstay of the treatment for PDAC patients, the majority of whom present with advanced-stage disease. Gemcitabine resistance is multifactorial and PSCs have been implicated in several of the underlying processes [3]. Dalin and collaborators [1] performed an elegant analysis of metabolites in fractionated media from different mouse PSCs, showing that deoxycytidine is present and protects PDAC cells from gemcitabine cytotoxicity, raising the question of whether deoxycytidine affects key oncogenic pathways as well. Notably, mouse macrophages are also able to secrete deoxycytidine [4], but hepatic stellate cells do not. No data are available from primary human PSCs from cancer patients. Primary human PSCs and commonly used PSC-cultures differ both phenotypically and in their interactions with...
PDAC cells [5], emphasizing the importance of appropriate PSC-PDAC co-culture models, with paired primary cancer cells and PSCs. Moreover, when a PDAC organoid was assessed for the influence of PSC conditioned media, no significant protection against gemcitabine cytotoxicity was observed [1]. This interesting observation suggests that under particular physiological conditions and in 3D models, the microenvironment could behave differently. This motivates efforts to investigate these findings in even more appropriate tumor-TME preclinical models.

We recently established PSC/PDAC spheroids to be used as an important tool for screening of cancer- and stroma-targeted drugs (Fig. 1b). These co-culture spheroids exhibited higher resistance to gemcitabine compared to PDAC-only spheroids, whereas c-MET inhibitors tivantinib, PHA-665752 and crizotinib were equally effective in both spheroid models [6]. The potential of targeting c-MET receptor as a valuable therapeutic strategy in selected cases of PDAC was also shown in a recent in vivo study which demonstrated that a triple combination of gemcitabine with HGF and c-MET inhibitors was the most effective strategy to both reduce the size of primary tumours as well as to completely eliminate metastases [7].

In order to combat the drug- and radioresistance mediated by PSCs in PDAC [8], these novel 3D preclinical model studies are highly preferred to investigate the interaction between pharmacological and radiotherapeutic strategies, for example through testing of combinations of radiosensitizing and cytotoxic agents with radiation. Similar studies have been performed using 3D preclinical models in glioblastoma [9].

Another important question arises concerning the hypothetical role of dCK in gemcitabine resistance. Treatment with PSC media did not reduce intracellular levels of gemcitabine, suggesting no uptake competition, but rescued dCK-catalyzed formation of intracellular deoxycytidine triphosphate (dCTP) levels [1]. It would be of interest to determine the formation of gemcitabine-diphosphate, which inhibits ribonucleotide-reductase, responsible for synthesizing deoxynucleotides required for DNA synthesis/repair. A decreased dCTP would indeed result in reduced feedback inhibition of dCK, and potentiate gemcitabine activation, favoring gemcitabine-triphosphate in its competition with dCTP for incorporation into DNA [10]. Data on the synthesis of gemcitabine-triphosphate and its incorporation into DNA are therefore warranted to further elucidate the mechanism of resistance.

Finally, dCK expression is not clearly associated with clinical efficacy of gemcitabine in PDAC [5]. Further studies on the complex TME comprising distinct cell
types, but also hypoxic and stromal dense areas [2], might explain differential effects on pyrimidine metabolism and chemoresistance as well as radio-resistance.

In conclusion, we look forward to additional studies on optimized preclinical models evaluating the effects of chemotherapy and radiotherapy in PDAC and unraveling the mechanisms behind treatment failure.

Abbreviations
dCK: Deoxycytidine kinase; dCTP: Deoxycytidine triphosphate; PDAC: Pancreatic ductal adenocarcinoma; PSCs: Pancreatic stellate cells; TME: Tumor microenvironment.

Authors’ contribution
PPC and AG performed the experiments and wrote the initial draft, concept and supervision (EG, GJP), contribution to the draft (OF, MD, PS), final editing (EG, GJP). All authors read and approved the final manuscript.

Funding
This work was partially supported by the following grants: Zabawas Foundation—Cancer Center Amsterdam Foundation CCA2019-5-55 (PS), CCA2015-1-19 (EG, GJP), CCA2018-5-48 (EG), KWF Dutch Cancer Society—KWF project#11957 (EG), and Associazione Italiana per la Ricerca sul Cancro—AIRC/Start-Up grant (E.G.), National Institute for Medical Research Development (NIMAD), Grant number: 957652 and the Polish National Science Center Project#11957 (E.G.), National Institute for Medical Research Development (E.G., GJP). All authors read and approved the final manuscript.

Competing interests
MD reports research grants from Varian Medical Systems outside the scope of this work. No writing assistance was utilized during production of this manuscript.

Author details
1 Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
2 Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, CCA Room 1.52 De Boelelaan, 1117, 1081 HV, Amsterdam, The Netherlands.
3 Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
4 Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
5 Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy.

Received: 15 May 2020 Accepted: 29 July 2020
Published online: 03 August 2020

References
1. Dalin S, Sullivan MR, Lau AN, Grauman-Boss B, Mueller HS, Kreidl E, et al. Deoxcytidine release from pancreatic stellate cells promotes gemcitabine resistance. Cancer Res. 2019;79(22):5723–33.
2. Giovannetti E, van der Borden CL, Frampton AE, Ali A, Firiuzi O, Peters GJ. Never let it go: stopping key mechanisms underlying metastasis to fight pancreatic cancer. Semin Cancer Biol. 2017;44:43–59.
3. Aasrum M, Aasrum M, Verbeke CS, Gladhaug IP. Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells. BMC Cancer. 2019;19(1):596.
4. Halbrook CJ, Pontious C, Kovalenko I, Lapierre E, Dreyer S, Lee HJ, et al. Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer. Cell Metab. 2019;29(6):1390–9 e6.
5. Lenggenhager D, Amrutkar M, Santha R, Aasrum M, Lohr JM, Gladhaug IP, et al. Commonly used pancreatic stellate cell cultures differ phenotype and in their interactions with pancreatic cancer cells. Cells. 2019;8(1):23.
6. Firiuzi O, Che PP, El Hassouni B, Buijs M, Coppola S, Lohr M, et al. Role of c-MET inhibitors in overcoming drug resistance in spheroid models of primary human pancreatic cancer and stellate cells. Cancers. 2019;11(5):638.
7. Xu Z, Pang TCY, Liu AC, Pothula SP, Mekapogu AR, Perera CJ, et al. Targeting the HGF/c-MET pathway in advanced pancreatic cancer: a key element of treatment that limits primary tumour growth and eliminates metastasis. Br J Cancer. 2020;122(10):1486–95.
8. Mantoni TS, Lunardi S, Al-Assar O, Masumame A, Brunner TB. Pancreatic stellate cells radioprotect pancreatic cancer cells through beta1-integrin signaling. Cancer Res. 2011;71(10):3453–8.
9. Narayan RS, Fedrico CA, Brands E, Dik R, Stalpers LJ, Baumert BG, et al. The allosteric AKT inhibitor MK2206 shows a synergistic interaction with chemotherapy and radiotherapy in glioblastoma spheroid cultures. BMC Cancer. 2019;8(1):23.
10. El Hassouni B, Li Petri G, Liu DSK, Cascioferro S, Pattrino B, Hassan W, et al. Pharmacogenetics of treatments for pancreatic cancer. Expert Opin Drug Metab Toxicol. 2019;15(6):437–47.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.