RESEARCH ARTICLE

The combination of ADSCs and 10% PRP increases Rb protein expression on senescent human dermal fibroblasts [version 1; peer review: 1 approved]

Sinta Murlistyarini1,2, Lulus Putri Aninda3, Ufida Aini Afridafaz3, Sri Widyarti1,4, Agustina Tri Endharti1,5,6, Teguh Wahju Sardjono1,5

1Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
2Department of Dermatology and Venerology, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
3Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
4Department of Biology, Universitas Brawijaya, Malang, 65145, Indonesia
5Department of Parasitology, Universitas Brawijaya, Malang, 65145, Indonesia
6Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia

Abstract

Background: The senescence process in human dermal fibroblasts (HDFs) is caused by cell cycle withdrawal processes, one of which is the result of the retinoblastoma (Rb) protein being in a hypophosphorylated state. Since adipose-derived stem cells (ADSCs) have a paracrine effect, ADSCs were utilized to improve the senescence process of HDFs. The use of non-autologous cell culture media to grow ADSCs can be legally problematic; therefore, platelet-rich plasma (PRP) can be considered as an alternative medium. PRP contains various growth factors that can be used to process the reversal of senescent HDFs. The combination of ADSCs and PRP is expected to increase the expression of Rb protein in HDFs that have undergone the senescence process.

Methods: This study was performed in vitro with a randomized sample, and non-blinded pre-and post-test control group. The primary culture of senescent HDFs was transfected with a combination of ADSCs and 10% PRP. The effect on migration was observed through the scratch test, while the effect of PRP on reversal senescence was observed through Sa-β-gal analysis and the expression of protein Rb with ELISA.

Results: The senescent HDFs that received a combined transfection of ADSCs and 10% PRP proliferated rapidly in the scratch test. Based on the Sa-β-gal assay, they showed fewer senescent HDFs cells. The combination of ADSCs and 10% PRP elevated the expression of Rb protein significantly \((P < 0.001)\).

Conclusions: The combination of ADSCs and 10% PRP was shown to have a reversal effect on the senescence process of HDFs in vitro.

Open Peer Review

Reviewer Status ✔

Invited Reviewers

1. Prasetyadi Mawardi1, Sebelas Maret University, Surakarta, Indonesia
Dr. Moewardi General Hospital, Surakarta, Indonesia
Loeki Enggar Fitri, Universitas Brawijaya, Malang, Indonesia

Any reports and responses or comments on the article can be found at the end of the article.
Keywords
Cellular senescence, human dermal fibroblasts, adipose-derived stem cells, platelet-rich plasma, protein retinoblastoma

Corresponding author: Sinta Murlistyarini (sintamur@ub.ac.id)

Author roles: Murlistyarini S: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing; Aninda LP: Formal Analysis, Investigation, Methodology, Writing – Review & Editing; Afridafaz UA: Formal Analysis, Investigation, Methodology; Widyarti S: Formal Analysis, Investigation, Supervision, Writing – Review & Editing; Endharti AT: Formal Analysis, Supervision, Writing – Review & Editing; Sardjono TW: Formal Analysis, Funding Acquisition, Investigation, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This study was supported by the Institute of Research and Community Services Universitas Brawijaya (Contract Number 1/UN10.F08/PN/2019).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Murlistyarini S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Murlistyarini S, Aninda LP, Afridafaz UA et al. The combination of ADSCs and 10% PRP increases Rb protein expression on senescent human dermal fibroblasts [version 1; peer review: 1 approved] F1000Research 2021, 10:516
https://doi.org/10.12688/f1000research.53170.1

First published: 30 Jun 2021, 10:516 https://doi.org/10.12688/f1000research.53170.1
Introduction

Adipose-derived stem cells (ADSCs) are mesenchymal stem cells that reside in fat tissue and were first identified by Zuk et al.⁴ ADSCs with a unique secretome have a paracrine effect on surrounding cells giving rise to the theory that the efficacy of stem cell therapy is more due to the paracrine effect of cell secretion than the effect of cell differentiation.⁵ The paracrine effect of ADSCs is widely used in regenerative medicine such as tissue repair, wound healing, and as an anti-aging therapy.⁶ Conditioned media from adipose-derived stem cells (ADSC-CM) contains all the bioactive components of ADSCs, and is easy to store and safer during application.⁶ The cells are often cultured using a basal medium containing foetal bovine serum (FBS). FBS is important in the cell culture process. However, when it is used for regenerative medicine, this serum is less safe because it contains xenoproteins, which can cause rejection or transmission of infectious products. As a result, nowadays, the use of non-autologous cell culture media, like FBS in ADSCs for clinical applications is legally challenged. Thus, to reduce the use of animal products in ADSC cultures, a study was conducted using platelet-rich plasma (PRP) instead of FBS.²⁵

The use of PRP is intended as a safer alternative supplement medium for ADSC culture. PRP is blood plasma that contains many platelets which are often used for wound healing.⁶ Platelets are a natural source of various growth factors such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), and epidermal growth factor (EGF). They are efficient at triggering cell proliferation, differentiation, and tissue regeneration.⁶,⁷ There are many protocols for PRP preparation, from conventional blood centrifugation to other innovative methods, and the PRP can be activated by adding other materials or methods, for example, calcium, collagen, and/thrombin, or by glass contact or freeze-thaw cycles.⁸,⁹

Cellular senescence is an arrest of the cell cycle with a phenotypic change in which the cell will lose its replicative ability.¹⁰ In the past, cellular senescence was considered an irreversible process as protection against cancer, however, recent findings have shown its role in aging, tissue repair and development of senescent fibroblasts.¹¹ In vitro, cells that experience senescence will undergo morphological changes such as cell flattening and enlargement, the apparition of vacuoles, and sometimes multiple nuclei; these contribute significantly to the aging process.¹²⁻¹⁴

Cells that experience senescence will lower the expression of genes involved in the cell cycle and several components of the extracellular matrix, and increase the expression of cell cycle inhibitor genes and matrix-degrading enzymes.¹⁵ Cell cycle withdrawal associated with cellular senescence is triggered by the p53-p21 and p16-Rb pathways.¹⁶,¹⁷ In senescent human dermal fibroblasts (HDFs), retinoblastoma (Rb) proteins accumulate in an active state; a hypo-phosphorylation state. In this condition, this protein is unable to phosphorylate in the middle or the end of the G1 phase and thus it is unable to enter the S phase.¹⁸ Research by Song et al. showed that ADSCs decreased p16 expression in senescent fibroblasts, thus it appears that ADSCs can reverse the aging process.¹⁹

Several extensive studies on PRP have been conducted, however, the biological mechanisms and clinical effects of PRP on HDFs are unclear. Besides, there has been no research on the combination of ADSC-CM and 10% PRP on Rb protein in senescent HDFs.

Methods

Our research has been done at the Biomedical and Parasitology laboratory, Faculty of Medicine, Universitas Brawijaya, Malang Indonesia. The HDFs as a culture source for fibroblast cells and ADSCs were isolated from a 25-year-old pregnant woman during an elective caesarean operation. The participant provided informed written consent prior to the study and all of the procedures in this research were approved by the Ethics Committee of the Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia (No. 169/EC/KEPK-S3/05/2019). The HDF cells were an explant culture from human skin and were put into a 6-well plate until the explant attached. The cells were grown in a solution containing 20% FBS and Dulbecco’s Modified Eagle Medium (FBS-DMEM, ThermoFisher). The method used was a modified version of the method used by Takashima (1998), while the senescent HDF method used was that of Radiono et al. (2016).²⁰,²¹ The HDFs were shifted into a senescent state by replacing the medium with 10% PRP in DMEM (ThermoFisher).

ADSCs from the pregnant woman were cultivated in 6-well plates and cultured in a complete culture medium (10% PRP in DMEM). The PRP preparation mentioned above was adopted from Amable et al.²² Briefly, whole blood was placed in tubes containing anticoagulants, and was centrifuged for 20 min (3,000 × g). After obtaining three layers in the whole blood, the upper layer was transferred into 10 ml empty sterile micro centrifuge tubes. The PRP was activated with 20mM CaCl₂.

The expression of senescence-associated β-galactosidase (Sa-β-Gal) was analysed in HDFs using purchased Sa-β-Gal staining kit (MyBioSource, San Diego, CA, CAT# MBS168501) referring to manufacturer’s procedures. Concisely, the
cells were fixed with 25% glutaraldehyde for 5 min, then they were washed with phosphate-buffered saline (PBS). Subsequently, the cells were incubated in cell staining solution overnight. The stained HDFs were washed with PBS and examined using an IX71 inverted microscope (Olympus) at 200× magnification.

The migration of HDF cells was investigated using a scratch assay. HDFs were grown to 80% confluence in 24-well plates and scraped with a 200 μl pipette tip. Next, the media were replaced to reduce the debris. HDF cells were photographed at 0 and 72h thereafter. After that, the HDFs were washed with PBS and detached by trypsin. The cell suspension was collected and centrifuged for 5 min (1000× g). The measurement of Rb protein levels was done using an enzyme-linked immunosorbent assay kit (ELISA) according to the protocol issued by the manufacturer’s instruction (MyBioSource, Cat#MBS2509425, RRID: AB_10568804). In brief, 100 μl of standard or sample were added to each well and incubated for 90 min at 37°C. The liquid was replaced with the provided biotinylated monoclonal antibody (60 min, 37°C) and followed by washing 3 times. The biotinylated detection antibody is specific to Human Rb1 and Avidin-Horseradish Peroxidase (HRP) conjugate. A 100 μl HRP conjugate was added (30 min, 37°C). After washing 5 times, 90 μl of substrate reagent was added and incubated for 15 min at 37°C. The reaction was stopped with 50 μl stop solution and the optical density (OD) was directly determined at 450 nm.

The data obtained was analysed using SPSS software version 25 (IBM). The normality test was carried out by the Shapiro Wilk test. If the P-value >0.05, then the normality assumption was fulfilled so an independent t-test was carried out. However, if the normality test was not fulfilled, the Mann-Whitney test was performed.

Results

The 10% PRP - DMEM media was used to culture ADSCs and these media were used to shift the senescence state in HDFs. HDF explant culture began to grow on the seventh day. After the seventh passage, the HDF culture medium was replaced with 0.5% FBS for 72 hours to allow HDF cells to undergo senescence. The HDF media was then removed and the cells were transfected with the ADSCs - 10% PRP for another 72 h and subsequently examined by ELISA to determine the Rb protein level.

The scratch test showed that the senescent HDF cell group that received the ADSCs – 10% PRP medium proliferated faster than the control group (Figure 1). The Sa-β-Gal investigation showed that cells with ADSCs – 10% PRP medium had a lower number of senescent cells than the control group (Figure 2).

Based on the Shapiro Wilk normality test, the P-value obtained for both groups was > 0.05, thus the independent t-test was carried out and gave a statistically significant result (P < 0.001) (Table 1,38).

Discussion

Besides being easy to develop in vitro, ADSCs have similar capabilities to bone marrow stem cells, but they can be obtained easily from subcutaneous adipose tissue without invasive action, can maintain concentrations and proliferation consistently, and represent a more biologically relevant model for studying aging mechanisms when compared to other stem cells.23,24

PRP is a fraction of autologous blood plasma with a high platelet concentration.26 PRP also produces various cytokines, chemokines, and growth factors that can trigger recruitment, adhesion, proliferation, and maintain the differentiation of ADSCs.25,27

Research by Jia et al. (2017), which examined the effect of PRP in an in vitro photo-aging model, showed that PRP reduced the number of aging cells by 1% based on Sa-β-Gal positive cell tests. Furthermore, PRP prevents cell cycle arrest caused by irradiation by reducing the expression of p53 and p21, and decreasing the expression of matrix metalloproteinase (MMP) -1, -3, and -9 but not MMP-2 at the mRNA level.28

Research conducted by Kocaoemer et al. (2007) stated that 10% of non-autologous PRP activated by shock freezing or thrombin after being cultured for 11 days will increase ADSC proliferation faster than 10% FBS.29 Meanwhile, Pham et al. (2013) found that 15% PRP is the optimal concentration that will stimulate ADSC proliferation.30 Also, using the supernatant of the 10% activated PRP increases the proliferation of mesenchymal stem cells compared to other supplementary media such as whole blood, non-activated PRP, and non-activated platelet-poor plasma.31

Higher PRP concentrations will interfere with cell growth in vitro because the platelets will release protein complexes that negatively affect the action of the PRP growth factor.32 Besides, the concentration of proteolytic enzymes such as collagenase, cathepsin, elastase, and acid phosphatase is very high in PRP; therefore, it causes inhibition of cell growth.33
Figure 1. **Scratch test results.** Scratch test of HDFs in the control group on day 0 (A) and after 72 hours (B). Scratch test of HDFs in the ADSCs – 10% PRP group on day 0 (C) and after 72 hours (D). ADSCs: adipose-derived stem cells; HDF: human dermal fibroblasts; PRP: platelet-rich plasma.

Figure 2. **Sa-β-Gal staining of fibroblasts in the control group (A) and senescent fibroblasts treated with ADSCs – 10% PRP (B).** ADSCs, adipose-derived stem cells; PRP, platelet-rich plasma.
Stessuk et al. (2016) studied the combination of PRP with ADSC-CM in vitro and found significant proliferation stimulation in fibroblasts cultured with 25% PRP combined with ADSC-CM after 48 hours, while keratinocyte proliferation also increased insignificantly after 24 hours. Park et al. (2011) found that 10% PRP stimulates fibroblast cell migration and proliferation within 24 hours, presumably because PRP releases the PDGF-AA growth factor. However, PRP did not have a significant effect on the activity of MMP-1, MMP-2, and MMP-9 on HDFs cells. This is appropriate because fibroblast cells will be strongly reactive to PDGF, b-FGF, and EGF.

Liu et al. (2014) examined the ability of PRP to improve cellular conditions from the senescence process and subsequently be able to slow down aging in animals. The research showed that PRP can change the expression of senescence markers such as p16, p19, and p53 on transgenic mice. In addition, PRP also can trigger cell growth, proliferation, and colony formation, and increase osteogenesis, reduce adipogenesis, and fight oxidative stress in stem cells from aged mice.

Cho et al. (2012) examined the effects of PRP on cell migration, proliferation, and expression of various cell cycle regulatory proteins in HDFs cells. From this study, it was found that low concentrations of PRP (0.05 – 0.5%) would increase the expression of cyclin-A in HDFs cells, and 5% PRP would enhance the expression of proteins involved in the cell cycle, for example, Rb protein, cyclin-E, cyclin-A, and Cdk2. It seems that PRP through various growth factors will promote the progression of the cell cycle back into the G1 phase by regulating the expression level and activation of cyclin-Cdks.

In summary, this study found an increase in Rb protein expression on senescent HDFs which were given a combination of ADSCs and 10% PRP. However, further studies are still needed to determine the effect of the combination of ADSCs and PRP on other senescence markers.

Data availability

Underlying data

Figshare: Supplementary Data - The combination of ADSCs and 10% PRP increase Rb protein expression on senescent human dermal fibroblasts, https://doi.org/10.6084/m9.figshare.14716314.v1.

This project contains the following underlying data:

- The combination of ADSCs and 10% PRP increase Rb protein expression on senescent human dermal fibroblasts.xlsx
- Statistic Result The combination of ADSCs and 10% PRP increase Rb protein expression on senescent human dermal fibroblasts.docx
- Picture 1A. Scratch test of HDFs in the control group on day 0.jpeg
- Picture 1B. Scratch test of HDFs in the control group after 72 h.jpeg
- Picture 1C. Scratch test of HDFs in the ADSCs – 10% PRP group on day 0.jpeg
- Picture 1D. Scratch test of HDFs in the ADSCs – 10% PRP group after 72 h.jpeg
- Picture 2A. SaBGal staining of fibroblasts in the control group.jpeg
- Picture 2B. SaBGal staining of senescent fibroblasts treated with ADSCs – 10% PRP.jpeg

Group	Average Rb protein expression ± SD (ng/ml)	P value
Control	0.04 ± 0.012	<0.001
ADSCs – 10% PRP	0.127 ± 0.049	

ADSCs: adipose-derived stem cells; PRP: platelet-rich plasma; Rb: retinoblastoma; SD: standard deviation.

Table 1. The results of the independent t-test of Rb protein expression.
Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Acknowledgments
The authors would like to thank RSIA Melati Husada Malang, Indonesia, for providing the fat and dermal tissue. The authors would like to thank Dr. Tinny Endang Hernowati, SpPK (K), for her kindness and support during the research, may she Rest In Peace.

References

1. Zuk P: Adipose-derived stem cells in tissue regeneration: a review. ISRN Stem Cells. 2013 Article ID 713959. Publisher Full Text
2. Lai RC, Yeo RW, Lim SK: Mesenchymal stem cell exosomes. Semin Cell Dev Biol. 2015; 40: 82–88. PubMed Abstract | Publisher Full Text
3. Shen X, Du Y, Shen W, et al: Adipose-derived stem cells promote human dermal fibroblast function and increase senescence-associated β-galactosidase mRNA expression through paracrine effects. Mol Med Rep. 2014; 10: 3068–3072. PubMed Abstract | Publisher Full Text
4. Wang T, Guo S, Liu X, et al: Protective effects of adipose-derived stem cells secretome on human dermal fibroblasts from ageing damages. Int J Exp Pathol. 2015; 9(12): 15739–15748. PubMed Abstract | Free Full Text
5. Jia C, Lu Y, Bi B, et al: Platelet-rich plasma ameliorates senescence-like phenotypes in a cellular photoaging model. RSC Adv. 2015; 5: 3152–3160. Publisher Full Text
6. Pham PV, Bui KH, Ngo DQ, et al: Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther. 2013; 4(6): 91. PubMed Abstract | Publisher Full Text | Free Full Text
7. Atashi F, Serre-Beinier V, Nayernia Z, et al: Platelet-rich plasma promotes proliferation of adipose derived mesenchymal stem cells via activation of AKT and Smad2 signaling pathways. Stem Cell Res Ther. 2015; 5(6): 1–10. Publisher Full Text
8. Oudeelaar BW, Peerbooms JC, Veld RHL, et al: Concentrations of blood components in commercial platelet-rich plasma separation systems: a review of the literature. Am J Sports Med. 2019; 47(2): 279–287. PubMed Abstract | Publisher Full Text
9. Charles-de-Sa L, Gontijo-de-Amorim N, Sbarbati A, et al: Phototherapeutic skin therapy with PRP and ADSC: a comparative study. Stem Cells Int. 2020; Article ID 2032359. PubMed Abstract | Publisher Full Text | Free Full Text
10. Marthandan S, Priebe S, Hemmerich P, et al: Long-term quiescent fibroblast cells transit into senescence. Plos ONE. 2014; 9(12): e115597. PubMed Abstract | Publisher Full Text | Free Full Text
11. Van-Deursen JM: The role of senescent cells in aging. Nature. 2014; 509: 439–446. PubMed Abstract | Publisher Full Text | Free Full Text
12. Schaubuß S, Klement K, Marthandan S, et al: Quantitative model of cell cycle arrest and cellular senescence in primary human fibroblasts. Plos ONE. 2012; 7(8): e24150. PubMed Abstract | Publisher Full Text | Free Full Text
13. Munoz-Espino D, Serrano M: Cellular senescence: from physiology to pathology. Mol Cell Biol. 2014; 15: 482–496. PubMed Abstract | Publisher Full Text
14. Hernandez-Segura A, Nehmje J, Demaria M: Hallmarks of cellular senescence. Trends Cell Biol. 2018; 28(6): 436–453. PubMed Abstract | Publisher Full Text
15. Banito A, Lowe SW: A new development in senescence. Cell. 2013; 155(5): 977–978. PubMed Abstract | Publisher Full Text | Free Full Text
16. Gu Z, Jang J, Tan W, et al: p53/G1 pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients. Clin Dev Immunol. 2013; 13:4243. PubMed Abstract | Publisher Full Text | Free Full Text
17. Mijit M, Caracciolo V, Melillo A, et al: Role of p53 in the regulation of Cellular Senescence. Biomolecules. 2020; 10: 420. PubMed Abstract | Publisher Full Text | Free Full Text
18. Stein GH, Dulle V: Origins of 61 arrest in senescent human fibroblasts. BioEssays. 1995; 17(6): 537–543. PubMed Abstract | Publisher Full Text
19. Song SY, Jung JE, Jeon YR, et al: Determination of adipose-derived stem cell application on photo-aged fibroblasts, based on paracrine function. Cytotherapy. 2011; 13: 378–384. PubMed Abstract | Publisher Full Text
20. Takashima A: Establishment of fibroblast culture. Curr Protoc Cell Biol. 1998; 00(1): 2.2.1–2.2.12. PubMed Abstract | Publisher Full Text
21. Radiono S, Wirohardjoko YW, Budiyanto A: The effect of platelet-rich fibrin (PRF) on serum-starved human dermal fibroblast. Stem Cells Adv. 2020; Article ID 516. PubMed Abstract | Publisher Full Text
22. Amable PR, Carias RB, Teixeira MVT, et al: Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther. 2013; 4(6): 1–18. Publisher Full Text
23. Wang Y, Wu J, Chou P, et al: Characterization and Evaluation Of The Differentiation Ability Of Human Adipose-Derived Stem Cells Growing In Scaffold-Free Suspension Culture. Cytotherapy. 2014; 16: 485–495. PubMed Abstract | Publisher Full Text
24. Shank S, Roberts C, Kim EJ, et al: Transcriptional and cell cycle alterations mark aging of primary human adipose-derived stem cells. Stem Cells. 2017; 35: 1392–1401. PubMed Abstract | Publisher Full Text | Free Full Text
25. Carbone A, Rucci M, Annacconii L, et al: Adipose-derived stem cells and platelet-rich plasma: inputs for regenerative medicine. Med Res Arch. 2017; 5(10): 1–12. Reference Source
26. Hildner F, Albrecht C, Gabriel C, et al: The role of senescent cells in aging. Nature. 2014; 509: 439–446. PubMed Abstract | Publisher Full Text | Free Full Text
27. Gawaz M, Vogel S: Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood. 2013; 122: 2550–2554. PubMed Abstract | Publisher Full Text
28. Jia C, Lu Y, Bi B, et al: Platelet-rich plasma ameliorates senescence-like phenotypes in a cellular photoaging model. RSC Advances. 2017; 7(6): 3152–3160. PubMed Abstract | Publisher Full Text
29. Kocaoemer A, Kern S, Kluter H, et al.: Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem cells. 2007; 25: 1270–1278. PubMed Abstract | Publisher Full Text

30. Pham PV, Bui KH, Ngo DQ, et al.: Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther. 2013; 4(4): 31. PubMed Abstract | Publisher Full Text

31. Kakudo N, Minakata T, Mitsui T, et al.: Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg. 2008; 122(5): 1352–1360. PubMed Abstract | Publisher Full Text

32. Hsu OW, Yuan K, Tseng CC: The negative effect of platelet-rich plasma on the growth of human cells is associated with secreted thrombospondin-1. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 107: 85–92. PubMed Abstract | Publisher Full Text

33. Mills DC, Robb IA, Roberts GC: The release of nucleotides, 5-hydroxytryptamine, and enzymes from human blood platelets during aggregation. J Physiol. 1965; 195: 715–729. PubMed Abstract | Publisher Full Text | Free Full Text

34. Stessuk T, Puzzi MB, Chaim EA, et al.: Platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells: stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro. Arch Dermatol Res. 2016; 308: 511–520. PubMed Abstract | Publisher Full Text

35. Park B, Yang J, Chung K: Characterization of the cytokine profile of platelet-rich plasma (PRP) and PRP-induced cell proliferation and migration: upregulation of matrix metalloproteinase-1 and -9 in HaCaT cells. Korean J Hematol. 2011; 46: 265–273. PubMed Abstract | Publisher Full Text | Free Full Text

36. Liu H, Huang C, Lin T, et al.: Delayed animal aging through the recovery of stem cell senescence by platelet-rich plasma. Biomaterials. 2014; 35: 9767–9776. PubMed Abstract | Publisher Full Text

37. Cho J, Kim S, Lee K: Platelet-rich plasma induces increased expression of G1 cell cycle regulators, type 1 collagen, and matrix metalloproteinase-1 in human skin fibroblasts. Int J Mol Med. 2012; 29: 32–36. PubMed Abstract | Publisher Full Text

38. Murlistyarini S, Aninda LP, Aini Afrida Laz U, et al.: Supplementary Data - The combination of ADSCs and 10% PRP increase Rb protein expression on senescent human dermal fibroblasts. figshare Dataset. 2021. Publisher Full Text
This study presents the results of how the senescence process is not an irreversible process, which will spur other studies in the mystery of the cellular senescence process. The role of PRP and ADSC in increasing the migration process of human dermal fibroblast cells has proven that cellular senescence is a dynamic, continuous process that will be useful in aging therapy in the future. This research is also carefully structured, coherent, methodological, and has adequate analysis. In some respects, Sa-β-Gal, has its own characteristics as a parameter of cellular senescence. Determination of the Rb protein is an important biomarker in the cell cycle and is the right choice to support the research excellence.

I suggest adding the following statement so that there is a relationship between the biomarker senescence-associated β-galactosidase (Sa-β-Gal) activity and Rb protein in the introduction:

"Cellular senescence is a cell cycle arrest process that accompanies depletion of replicative potential in normal somatic cell cultures. The senescent cells are characterized by several molecular and cytological markers, such as an enlarged and flattened morphology and the expression of senescence-associated β-galactosidase (Sa-β-Gal) activity. A large body of evidence suggests that tumor suppressor pathways Rb and p53 are key regulators of cellular senescence."

My suggestion can be included in the introduction before the last paragraph, which can certainly add to the strength of this research, because I noticed in the introductory section the problem of Sa-β-Gal and Rb protein was very little explained; whereas Sa-β-Gal and Rb proteins are the main objects of research. To support this statement I also include the reference that I use (Campisi J: Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005; 120 (4): 513-221).
For keywords: ‘Cellular senescence, human dermal fibroblasts, adipose-derived stem cells, platelet-rich plasma, protein retinoblastoma’. protein retinoblastoma can be replaced by retinoblastoma protein.

References
1. Campisi J: Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005; 120 (4): 513-22 PubMed Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Clinical dermatology, venereology, skin cancer, biomolecular, dermatopathology

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Comments on this article

Version 1

Reader Comment 30 Jun 2021
Anita Bandrowski, SciCrunch Inc, USA, USA

I ran a SciScore.com report for this preprint to highlight which types of rigor criteria were addressed by the authors. Please note, the items specified below are listed on the MDAR
reproducibility checklist (and others). For a full description of the criteria tested for please take a look at the FAQs at the bottom of the report.

SciScore: 6/10

Document Identifier: 102249

SciScore Report

Below you will find your SciScore report containing three tables. Your score is calculated based on adherence to scientific rigor criteria (Table 1) and identification of key biological resources (Table 2).

Table 3 contains statistical tests and oligonucleotides but is not scored. If SciScore makes any mistakes, please contact us to help us learn and improve.

Table 1: Rigor Adherence Table

Ethics

Consent: The participant provided informed written consent prior to the study and all of the procedures in this research were approved by the Ethics Committee of the Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia (No.169/EC/KEPK-S3/05/2019).

IRB: The participant provided informed written consent prior to the study and all of the procedures in this research were approved by the Ethics Committee of the Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia (No.169/EC/KEPK-S3/05/2019).

Inclusion and Exclusion Criteria

not detected.

Attrition

not detected.

Sex as a biological variable

The HDFs as a culture source for fibroblast cells and ADSCs were isolated from a 25-year-old pregnant woman during an elective caesarean operation.

Subject Demographics

Age: The HDFs as a culture source for fibroblast cells and ADSCs were isolated from a 25-year-old pregnant woman during an elective caesarean operation.

Randomization

not detected.

Blinding

not detected.

Power Analysis
not detected.

Replication
not required.

Table 2: Key Resources Table

Antibodies
The measurement of Rb protein levels was done using an enzyme-linked immunosorbent assay kit (ELISA) according to the protocol issued by the manufacturer’s instruction (MyBioSource, Cat#MBS2509425, RRID: AB_10568804).

RRID Verified: (MyBioSource Cat# MBS120046, RRID:AB_10568804)(link)

Software and Algorithms
The data obtained was analysed using SPSS software version 25 (IBM). SPSS RRID Suggestion: (SPSS, RRID:SCR_002865)(link)

Table 3 Other Entities Detected Your Sentences Recognized Entity

Statistical Tests
The normality test was carried out by the Shapiro Wilk test.
Entity detected: Wilk test

If the P-value >0.05, then the normality assumption was fulfilled so an independent t-test was carried out.
Entity detected: t-test

However, if the normality test was not fulfilled, the Mann-Whitney test was performed.
Entity detected: Mann-Whitney test

Please note:
SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore also checks for the presence and correctness of several unique identifiers, including RRIDs (research resource identifiers) in the manuscript, detects sentences that appear to be missing RRIDs, and can even suggest RRIDs under certain circumstances. All RRID suggestions should be verified; only the author can know whether the suggestions are correct.

For a full description of scored criteria and tips for improving your score, please see https://www.scicrunch.com/sciscorereport-faq

Competing Interests: I am a creator of SciScore
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com