Metal-insulator transition in PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$ investigated by optical spectroscopy

MATSUNAMI M., CHEN L., TAKIMOTO M., OKAMURA H., NANBA T., SEKINE Chihiro, SHIROTANI Ichimin

Physical review. Third series. B, Condensed matter and materials physics

volume 72
number 7
page range 073105-1-073105-4
year 2005-08
URL http://hdl.handle.net/10258/213
doi: info:doi/10.1103/PhysRevB.72.073105
Metal-insulator transition in PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$ investigated by optical spectroscopy

Matsunami, M., Chen, L., Takimoto, M., Okamura, H., Nanba, T., Sekine, Chihiro, Shirotani, Ichimin

Journal or publication title: Physical Review. Third series. B, Condensed matter and materials physics

Volume: 72
Number: 7
Page range: 073105-1-073105-4
Year: 2005-08

URL: http://hdl.handle.net/10258/213
doi: info:doi/10.1103/PhysRevB.72.073105
Metal-insulator transition in PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$ investigated by optical spectroscopy

M. Matsunami,* L. Chen, M. Takimoto, H. Okamura, and T. Nanba

Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan

C. Sekine and I. Shirotani

Department of Electrical and Electronic Engineering, Muroran Institute of Technology, 27-1, Mizumoto, Muroran 050-8585, Japan

(Received 20 January 2005; revised manuscript received 16 May 2005; published 10 August 2005)

Electronic structures of the filled-skutterudite compounds PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$, which undergo a metal-insulator transition (MIT) at $T_{\text{MI}}=60$ K and 16 K, respectively, have been studied by means of optical spectroscopy. Their optical conductivity spectra have clearly revealed an energy gap of ~ 10 meV below T_{MI}. The detailed temperature and energy dependences of the energy gap are shown, which give much more information about the gap compared with that from the electrical resistivity experiment. For PrRu$_4$P$_{12}$, in addition, optical phonon peaks in the spectra show anomalies upon the MIT, including broadening and shifts at T_{MI} and an appearance of new peaks below T_{MI}. These results are discussed in terms of density waves or orbital ordering previously predicted for these compounds.

DOI: 10.1103/PhysRevB.72.073105

PACS number(s): 78.30.–j, 71.27.+a, 71.30.+h

Ternary compounds RM_X_3 (R=rare earth elements; M =Fe, Ru, Os; X=P, As, Sb) with the filled-skutterudite structure (space group $Im\bar{3}$) exhibit a wide variety of physical properties. Among them, PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$ are known to undergo a metal-insulator transition (MIT) at $T_{\text{MI}}\sim 60$ K (Ref. 1) and 16 K, respectively. For PrRu$_4$P$_{12}$, the magnetic susceptibility shows no anomaly at T_{MI}, and the valence of Pr is 3+ and independent of temperature. Thus, the MIT in PrRu$_4$P$_{12}$ is driven neither by a magnetic transition nor by a valence change. Recently, evidence for superlattice formation below T_{MI} has been found by electron and x-ray diffraction experiments. Also, the band calculation study points out that the Fermi surfaces of PrRu$_4$P$_{12}$ should have a strong tendency for nesting in spite of the isotropic crystal structure. In fact, the band calculation for PrRu$_4$P$_{12}$ assuming the displacement of P ions predicts an energy gap at the Fermi level (E_F). From these results, the MIT in PrRu$_4$P$_{12}$ has been considered to result from a charge-density wave (CDW) transition caused by Fermi surface nesting. In contrast, for SmRu$_4$P$_{12}$, the magnetic susceptibility clearly shows an anomaly near T_{MI}. Moreover, recent works have revealed that the MIT involves two successive transitions at ~ 14 K and ~ 16 K. The two transitions and their magnetic-field dependencies appear qualitatively very similar to those of CeO$_2$, which shows an antiferroquadrupolar (AFQ) ordering at the higher transition temperature T_Q and an antiferromagnetic ordering at the lower one. Therefore, it has been suggested that the MIT in SmRu$_4$P$_{12}$ should be related to an orbital ordering.

In spite of much discussion about the nature of MIT in PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$, however, microscopic characteristics of the energy gap had been largely unknown, since the electrical resistivity was the only experiment that had clearly detected the energy gap. In this work, therefore, we have probed the microscopic electronic structures associated with the gap formation in PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$. The optical technique is a powerful means for studying the electronic structures near E_F and has been applied to several skutterudite compounds including FeP$_{12}$, CeRu$_4$Sb$_{12}$, and YbFe$_4$Sb$_{12}$. We have clearly observed the energy gap formation in PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$. In addition, anomalies of optical phonon peaks are observed around T_{MI}. We will discuss the microscopic mechanism for the gap formation in these compounds, based on the detailed T and energy dependences of the gap in the present data.

The polycrystalline samples that were used of PrRu$_4$P$_{12}$ (Ref. 1) and SmRu$_4$P$_{12}$ (Ref. 2) had sizes of $3 \times 3 \times 1$ mm3, and their surfaces were mechanically polished. Temperature-dependent reflectivity spectra $[R(\omega)]$ were measured under near-normal incidence, using a Fourier-transform interferometer and thermal sources at photon energies between 8 meV and 2 eV. A gold or silver film deposited in situ onto the sample surface was used as a reference of reflectivity. Between 2 and 30 eV at room temperature, a grating spectrometer and synchrotron radiation source were used at the beamline BL7B of UVSOR, Institute for Molecular Science. The optical conductivity $\sigma(\omega)$ was obtained from Kramers-Kronig transformation applied to the measured $R(\omega)$. A Hagen-Rubens or a constant extrapolation was used below 8 meV, and a ω^{-4} extrapolation above 30 eV.

Figure 1 shows the temperature (T) dependence of $R(\omega)$ for PrRu$_4$P$_{12}$ and SmRu$_4$P$_{12}$. The insets show $R(\omega)$ up to 30 eV. Between 295 K and 80 K, both compounds show typically metallic $R(\omega)$, with a plasma edge at ~ 0.4 eV. The peaks above 0.4 eV are due to interband transitions. Below 80 K, in contrast, $R(\omega)$ decreases rapidly with decreasing T, indicating strong variations of the electronic structures near E_F. In addition, sharp phonon peaks appear below 50 meV. The corresponding $\sigma(\omega)$ spectra are shown in Fig. 2. For both compounds, $\sigma(\omega)$ at 295 and 80 K are characterized by a Drude-type component due to free carriers, rising toward zero photon energy. Below 80 K, however, $\sigma(\omega)$ at the low-energy region is suppressed, and an energy gap is progressively formed with decreasing T. Associated with the gap formation, a broad peak grows around 60 meV for PrRu$_4$P$_{12}$.
and around 30 meV for SmRu4P12. These peaks are due to optical excitations across the energy gap, and below we refer to them as the “gap excitation peaks.”13 The effective carrier density, calculated as \(N_{\text{eff}}(\omega) = (2m_0/\pi\varepsilon^2)\int_0^{\omega}\sigma(\omega')d\omega' \),18 is plotted in the insets of Figs. 2(a) and 2(b). They show that the optical sum rule is satisfied within a range of \(\omega \sim 0.5 \) eV. This shows that the MIT is accompanied with the variation of electronic structures over \(\sim 0.5 \) eV from \(E_F \), which is much larger than the gap magnitude.

In order to estimate the \(T \) dependence of the energy gap, we identify the position of the gap excitation peak as the characteristic energy for the gap formation. To evaluate the peak position accurately, we have carried out spectral fittings, an example of which is shown in Fig. 3(a) for PrRu4P12. We have used the Lorentz oscillator to fit the gap excitation peak and the usual Drude function to fit the free-carrier component.18 To fit the background continuum, another Lorentz oscillator was placed at \(\sim 100 \) meV for all \(T \).20 The phonon peaks were also fitted as described later and were subtracted out. Figure 3(b) shows the \(T \) dependence of the peak position obtained by the fitting. It is clear that the peak energy increases with cooling for both PrRu4P12 and SmRu4P12. Also plotted in Fig. 3(b) is the \(T \) dependence of the intensity of a superlattice spot of PrRu4P12 investigated by x-ray diffraction.3 The \(T \) evolution of the gap excitation peak closely follows that of the superlattice diffraction, hence the lattice deformation due to CDW. This result strongly suggests that the observed gap in PrRu4P12 is indeed related to the CDW formation. The observed characteristics of the gap for PrRu4P12 are in sharp contrast to those for the Kondo semiconductors, such as Ce3Bi4Pt321 and YbB12,22 where the gap width in \(\sigma(\omega) \) is nearly unchanged with \(T \).21,22

For SmRu4P12, it is noteworthy that a decrease of \(\sigma(\omega) \) is already seen at 20 K (below \(\sim 15 \) meV), although a clear gap develops only below 16 K. The decrease of \(\sigma(\omega) \) above \(T_{MI} \) probably indicates a precursor to the MIT, i.e., the density of states near \(E_F \) starts decreasing already above \(T_{MI} \). This is consistent with the result that the resistivity increases gradually with cooling below \(\sim 50 \) K, before rapidly rising below \(T_{MI} = 16 \) K.2 In view of the prediction that the MIT in SmRu4P12 is related with an AFQ ordering,10,11 one possible origin for these results above \(T_{MI} \) is the fluctuation of the quadrupole moments above \(T_Q (\approx T_{MI}) \): Although the long-range AFQ ordering can exist only below \(T_Q \), short-range ordering may exist even above \(T_Q \) with a strong fluctuation of quadrupole moments.23 In fact, it has been reported that \(T_Q \) increases under magnetic field,10,11 which can be understood as resulting from a suppression of the fluctuations, similarly to the case of CeB6.23 Such strong fluctuation of the quadrupole moments may have reduced the density of states and \(\sigma(\omega) \) above \(T_{MI} \). For example, for a perovskite oxide which forms an energy gap due to charge ordering, both a decrease in \(\sigma(\omega) \) and an increase of resistivity with cooling have been observed above the ordering temperature.24 A fluctuation of charge order has been proposed as a possible origin for this case.

Although the factor group analysis for the filled-

\[\text{FIG. 1. (Color online) Optical reflectivity spectra } [R(\omega)] \text{ of PrRu}_4P_{12} \text{ (a) and SmRu}_4P_{12} \text{ (b) at different temperatures. Each inset shows } R(\omega) \text{ in a wider range of photon energies.} \]

\[\text{FIG. 2. (Color online) Optical conductivity spectra } \sigma(\omega) \text{ of (a) PrRu}_4P_{12} \text{ and (b) SmRu}_4P_{12} \text{ at different temperatures. Each inset shows the integrated spectral weight } N_{\text{eff}}(\omega) \text{ (see text). The low-energy portion of the spectra in (a) and (b) are shown in (c) and (d), respectively. For clarity, each spectra are offset by } 2 \times 10^3 \Omega^{-1} \text{ cm}^{-1} \text{ for (c) and } 3 \times 10^3 \Omega^{-1} \text{ cm}^{-1} \text{ for (d).} \]
skutterudite structure predicts eight infrared-active phonon modes, the \(\sigma(\omega) \) spectra of \(\text{PrRu}_4\text{P}_{12} \) and \(\text{SmRu}_4\text{P}_{12} \) at 295 K show only four phonon peaks, similarly to other filled-skutterudite compounds.\(^{14-16}\) Below \(T_{\text{MI}} \) for \(\text{PrRu}_4\text{P}_{12} \), however, several additional peaks appear in \(\sigma(\omega) \), as shown in Fig. 2(b) and plotted in Fig. 4(a). The total number of observed phonon peaks below \(T_{\text{MI}} \) is larger than eight, which strongly suggests that the crystal structure of \(\text{PrRu}_4\text{P}_{12} \) undergoes a symmetry lowering below \(T_{\text{MI}} \). To evaluate the detailed \(T \) dependence of the phonons, we have fitted the phonon peaks using the Lorentz oscillator functions.\(^{25}\) The peak energies and the linewidths obtained from the fitting are shown as a function of \(T \) in Fig. 4.\(^{26}\) The phonon peaks near 285 and 347 cm\(^{-1}\) for \(\text{PrRu}_4\text{P}_{12} \), which are already present above \(T_{\text{MI}} \), show blueshifts of \(\sim 3 \) cm\(^{-1}\) and a narrowing of about 40% below \(T_{\text{MI}} \). These two phonon modes involve the vibrations of \(P \). This result and the observation of more than eight phonon peaks appear consistent with the slight displacement of \(P \) atoms below \(T_{\text{MI}} \) indicated by the superlattice diffraction data.\(^{4-6}\) Namely, displacement of \(P \) atoms may change the strength of bonding, leading to the peak shifts, and the associated symmetry lowering may result in more than eight phonon peaks. The observed narrowing is likely to result from the rapid decrease of free carriers below \(T_{\text{MI}} \), since it should reduce the phonon damping due to carrier-phonon interaction. Clearly, the present results regarding the phonons are consistent with a CDW formation. It is noteworthy that the phonon peak characteristics of \(\text{PrRu}_4\text{P}_{12} \) are qualitatively similar to those of \(1T\)-\(\text{TaS}_2 \),\(^{27}\) which is a typical CDW compound. Namely, the infrared spectra of \(1T\)-\(\text{TaS}_2 \) also show many additional phonon peaks, peak shifts, and peak narrowing below the CDW transition temperature.

The results of similar fitting for the phonons of \(\text{SmRu}_4\text{P}_{12} \) are shown in Figs. 4(d)–4(f). In contrast to \(\text{PrRu}_4\text{P}_{12} \), no additional phonon peaks appear below \(T_{\text{MI}} \), and the peaks show red shifts below \(T_{\text{MI}} \) with almost no changes in the linewidth. The shifts are much smaller than those observed for \(\text{PrRu}_4\text{P}_{12} \). Although a Fermi surface nesting is also predicted for \(\text{SmRu}_4\text{P}_{12} \), the present result shows that the modulation in the charge density below \(T_{\text{MI}} \) is much weaker than that in \(\text{PrRu}_4\text{P}_{12} \). This is consistent with the previous results that the ordering in \(\text{SmRu}_4\text{P}_{12} \) should be of orbital or magnetic origin.\(^{10,11}\) In any case, the variations of the optical phonon peaks in \(\sigma(\omega) \) upon the MIT are very different between \(\text{PrRu}_4\text{P}_{12} \) and \(\text{SmRu}_4\text{P}_{12} \). Remarkably, the elastic constants of these compounds, which are closely related to the acoustic phonons, have also shown very different variations around \(T_{\text{MI}} \).\(^{28}\)

In conclusion, we have measured \(\sigma(\omega) \) spectra of \(\text{PrRu}_4\text{P}_{12} \) and \(\text{SmRu}_4\text{P}_{12} \) to study the evolution of electronic structures upon the MIT. Their \(\sigma(\omega) \) spectra have clearly shown the formation of an energy gap below \(T_{\text{MI}} \). For \(\text{PrRu}_4\text{P}_{12} \), the \(T \) evolution of the energy gap and the phonon peaks in \(\sigma(\omega) \) are consistent with those associated with a CDW transition involving a symmetry lowering and a slight displacement of \(P \) atoms. For \(\text{SmRu}_4\text{P}_{12} \), no clear sign of a density wave was observed in the evolution of \(\sigma(\omega) \). The data suggest a decrease in the density of states even above \(T_{\text{MI}} \), which was discussed in terms of short-range orbital ordering preceding the MIT. The present results strongly suggest that the origin of the MIT is different between these compounds, similarly to the prediction by other experiments.

We thank A. Irizawa, N. Ogita, C. H. Lee, Y. Nakanishi, M. Yoshizawa, and H. Harima for helpful discussions. This work was partly supported by a Grant-in-Aid for Scientific Research Priority Area “Skutterudite” (Nos. 15072201 and 15072204) of the Ministry of Education, Culture, Sports, Science, and Technology, Japan. A part of this work was performed as a Joint Studies Program of Institute for Molecular Science (2002). A part of this study was performed using the infrared microspectroscopy apparatus at BL43IR of SPring-8, under the approval of JASRI (2003B0508-NSa-np). We thank Y. Ikemoto, T. Moriwaki, and H. Kimura of JASRI for technical assistance.
A preliminary part of this work appeared in M. Matsunami, L. J. M. Effantin, J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Ku-nii, and T. Kasuya, J. Phys.: Condens. Matter 13, L45 (2001).

C. Sekine, T. Uchiumi, K. Matsuhira, A. Yamamoto, T. Ohta, H. Takazawa, K. Ueno, C. Sekine, I. Shirotani, and T. Hirayama, J. Phys.: Condens. Matter 13, L45 (2001).

L. Hao, K. Iwasa, K. Kuwahara, M. Kohgi, S. R. Saha, H. Sugawara, Y. Aoki, H. Sato, C. Sekine, C. H. Lee, and H. Harima, J. Magn. Magn. Mater. 272–276, Suppl. 1, E271 (2004).

C. H. Lee, H. Matsuhata, H. Yamaguchi, C. Sekine, K. Kihou, T. Suzuki, T. Noro, and I. Shirotani, Phys. Rev. B 70, 153105 (2004).

H. Harima and K. Takegahara, Physica B 312–313, 843 (2002).

K. Matsuura, Y. Hinatsu, C. Sekine, and I. Shirotani, Physica B 312–313, 829 (2002).

K. Matsuura, Y. Hinatsu, C. Sekine, T. Togashi, H. Maki, I. Shirotani, H. Kitazawa, T. Takamasu, and G. Kidó, J. Phys. Soc. Jpn. 71, Suppl. 237 (2002).

C. Sekine, T. Uchiumi, K. Matsuhira, P. Haen, S. D. Brion, G. Chouteau, H. Suzuki, and H. Kitazawa, Acta Phys. Pol. B 34, 983 (2003).

I. Schützmann, S. Tajima, S. Shimizu, and T. Takabatake, Phys. Rev. B 58, R7496 (1998).

B. Bucher, Z. Schlesinger, P. C. Canfield, and Z. Fisk, Phys. Rev. Lett. 72, 522 (1994).

H. Okamura, S. Kimura, H. Shinozaki, T. Nanba, F. Iga, N. Shimizu, and T. Takubatake, Phys. Rev. B 58, R7496 (1998).

N. Fukushima and Y. Kuramoto, J. Phys. Soc. Jpn. 67, 2460 (1998).

T. Katsufuji, T. Tanabe, T. Ishikawa, Y. Fukuda, T. Arima, and Y. Tokura, Phys. Rev. B 54, R14230 (1996).

The asymmetric line shapes of some of the peaks were treated using a fitting function discussed in J. Schützmann, S. Tajima, S. Miyamoto, Y. Sato, and R. Hauff, Phys. Rev. B 52, 13665 (1995).

The spectral weights (not shown) related with the oscillator strength show no drastic change around T_{MI}.

L. V. Gasparov, K. G. Brown, A. C. Wint, D. B. Tanner, H. Berger, G. Margaritondo, R. Giàl, and L. Forró, Phys. Rev. B 66, 094301 (2002).

S. V. Dordevic, N. R. Dilley, E. D. Bauer, D. N. Basov, M. B. Maple, and L. Degiorgi, Phys. Rev. B 60, 11321 (1999).

M. Matsunami, H. Okamura, T. Nanba, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 72, 2722 (2003).

C. Homes, M. A. Reedyk, D. A. Crandels, and T. Timusk, Appl. Opt. 32, 2976 (1993).

M. Dressel and G. Grüner, *Electrodynamics of Solids* (Cambridge University Press, Cambridge, UK, 2002).

To compare with the transport gap given by the resistivity, the gap magnitude in $\sigma(\omega)$ can be estimated by extrapolating the linearly varying portion of $\sigma(\omega)$ at lowest T in Fig. 2(c) and 2(d). This gives ~ 15 meV for PrRu$_4$P$_{12}$ and ~ 10 meV for SmRu$_4$P$_{12}$, which are consistent with the transport gaps (see Refs. 1 and 2).

This continuum is due to interband transitions associated with T-independent electronic structures. The fitted position of the gap excitation peak was insensitive to the details of this component.

B. Bucher, Z. Schlesinger, P. C. Canfield, and Z. Fisk, Phys. Rev. Lett. 72, 522 (1994).

H. Okamura, S. Kimura, H. Shinozaki, T. Nanba, F. Iga, N. Shimizu, and T. Takubatake, Phys. Rev. B 58, R7496 (1998).

N. Fukushima and Y. Kuramoto, J. Phys. Soc. Jpn. 67, 2460 (1998).

T. Katsufuji, T. Tanabe, T. Ishikawa, Y. Fukuda, T. Arima, and Y. Tokura, Phys. Rev. B 54, R14230 (1996).

The asymmetric line shapes of some of the peaks were treated using a fitting function discussed in J. Schützmann, S. Tajima, S. Miyamoto, Y. Sato, and R. Hauff, Phys. Rev. B 52, 13665 (1995).

The spectral weights (not shown) related with the oscillator strength show no drastic change around T_{MI}.

L. V. Gasparov, K. G. Brown, A. C. Wint, D. B. Tanner, H. Berger, G. Margaritondo, R. Giàl, and L. Forró, Phys. Rev. B 66, 094301 (2002).

M. Dressel and G. Grüner, *Electrodynamics of Solids* (Cambridge University Press, Cambridge, UK, 2002).

To compare with the transport gap given by the resistivity, the gap magnitude in $\sigma(\omega)$ can be estimated by extrapolating the linearly varying portion of $\sigma(\omega)$ at lowest T in Fig. 2(c) and 2(d). This gives ~ 15 meV for PrRu$_4$P$_{12}$ and ~ 10 meV for SmRu$_4$P$_{12}$, which are consistent with the transport gaps (see Refs. 1 and 2).

This continuum is due to interband transitions associated with T-independent electronic structures. The fitted position of the gap excitation peak was insensitive to the details of this component.

B. Bucher, Z. Schlesinger, P. C. Canfield, and Z. Fisk, Phys. Rev. Lett. 72, 522 (1994).

H. Okamura, S. Kimura, H. Shinozaki, T. Nanba, F. Iga, N. Shimizu, and T. Takubatake, Phys. Rev. B 58, R7496 (1998).

N. Fukushima and Y. Kuramoto, J. Phys. Soc. Jpn. 67, 2460 (1998).

T. Katsufuji, T. Tanabe, T. Ishikawa, Y. Fukuda, T. Arima, and Y. Tokura, Phys. Rev. B 54, R14230 (1996).

The asymmetric line shapes of some of the peaks were treated using a fitting function discussed in J. Schützmann, S. Tajima, S. Miyamoto, Y. Sato, and R. Hauff, Phys. Rev. B 52, 13665 (1995).

The spectral weights (not shown) related with the oscillator strength show no drastic change around T_{MI}.

L. V. Gasparov, K. G. Brown, A. C. Wint, D. B. Tanner, H. Berger, G. Margaritondo, R. Giàl, and L. Forró, Phys. Rev. B 66, 094301 (2002).