Abstract

Numerical simulations of the scattering of a linear plane wave incoming onto a nonlinear medium (sine-Gordon) reveals that: i) nonlinearity allows energy transmission in the forbidden band, ii) this nonlinear transmission occurs beyond an energy threshold of the incoming wave, iii) the process begins (at the threshold) with large amplitude breathers, and then energy is generically transmitted both by kink-antikink pairs and breathers.

Introduction From the Fermi-Pasta-Ulam recursion phenomenon [1], nonlinear lattice and their numerical simulations have played a key role in the development of nonlinear studies. Since then a whole branch of theoretical physics has evolved with the birth of the concepts of soliton [2] and integrability [3], for continuous, discrete and higher dimensional systems [4]. These discoveries have had a enormous impact on the understanding of nonlinear physics [5].

One of the fundamental studied problem is the energy localization (and transport) by generation (and propagation) of nonlinear coherent structures (solitons, breathers, nonlinear modes) by many different processes such as external forcing, noise, local potential, inhomogeneous forcing, anharmonic perturbation, modulated external forcing etc... [6]. We note that nowadays this problem is more largely studied in the context of discrete systems where intrinsic nonlinear modes (breathers for short) have been shown to play the main part in storage and transport of energy [7].

Another basic question is the scattering of waves incoming onto a nonlinear medium. Two classes of problems related to wave scattering have been considered in detail: the resonant wave coupling which includes self-induced transparency (SIT) [8], stimulated Raman scattering [9], two-photon propagation [10], etc..., and the self modulation resulting from Kerr effect in optical media [11] [12]. Within these two classes of problems, solitons have been shown to play the central role in propagating energy in regions of parameter (frequency, energy,...) usually forbidden by the linear theory.

The resonant wave coupling describes the process of interaction of an electromagnetic radiation with a two-level medium through Brillouin selection rules (the nonlinearity is extrinsic). For SIT the linear theory would conclude with resonant absorption of radiation while nonlinearity allows for perfect transparency. The model equations read as coupled Maxwell-Bloch system and the scattering of waves results in a boundary-value problem for the reduced system. The point there is that this boundary-value problem is integrable - see also [14] - and it has been shown that the soliton (actually a kink for the phase) is the means which propagates energy through the medium without loss or distortion, provided the input pulse obeys the area theorem [8]. Hence in SIT, the soliton is created by a sufficiently energetic boundary condition. In the inverse spectral transform scheme, this boundary value problem actually maps to a Cauchy problem and the area theorem simply states that the initial datum must produces at least one discrete eigenvalue [8] [14].
In the case of self modulation, the nonlinearity finds its origin in the medium itself (intrinsic Kerr effect). A process similar to SIT (corresponding to a Cauchy problem in the IST scheme), but with different origin, occurs in fiber guides in nonlinear regime (and with anomalous dispersion) where a sufficiently energetic input light pulse evolves as a soliton of the nonlinear Schrödinger equation (NLS) along the fiber \[15\] \[12\]. Here and in SIT, the energy flows with solitons created by a localized high energy pulse.

A different soliton effect arises in the study of the propagation of light in a medium with forbidden bands (photonic band gaps) for which the concept of gap soliton have been introduced \[16\]. There it has been shown that the nonlinearity in a dielectric periodic thin-film stack (medium with spatial periodic variation of the refraction index) allows for transmission of radiation inside the gap by means of an envelope soliton. In short, the presence of an envelope soliton in the medium shifts locally the gap and allows for transparency \[17\]. The model for the slowly varying envelope is the NLS equation \[18\]. For that reason (transmission of radiation in the gap), and the related switching properties (transmission with soliton - reflection without), photonic band gap media are the subject of active research, see e.g. \[19\]. Notice that the creation of the envelope soliton in those media is an open question. Indeed, while the nonlinearity, via NLS, offers possible existence of a soliton, the mechanism of its generation itself is still to be understood. Such a mechanism has been for instance analytically described in the case of stimulated Raman scattering in \[10\] with the tool of the inverse spectral transform applied to boundary value problems (another example can be found in \[20\]).

Then the mechanism of soliton creation by radiation is of fundamental interest and we consider here the (nonlinear) scattering of waves from a quite elementary point of view. Namely we explore the possibility for a nonlinear medium to build up nonlinear coherent structures under “exposition” to input radiation. The problem we are interested in, very simple in linear systems, concerns the reflection and transmission of a plane wave in an inhomogeneous medium with band pass type dispersion relation: a plane wave created in a medium 1 is sent onto a medium 2 with a different dispersion relation. In particular total reflection occurs when the incoming wave of medium 1 falls onto medium 2 with a frequency inside a forbidden band. We consider then this generic question in the case when the medium 2 is intrinsically nonlinear and modelized by an integrable equation (sine-Gordon).

Statement of the problem. We consider then two different media defined by the wave equations

\[
\begin{align*}
 x < 0 : & \quad u_{tt} - c_1^2 u_{xx} + \omega_1^2 u = 0 , \\
 x > 0 : & \quad u_{tt} - c_2^2 u_{xx} + \omega_2^2 \sin u = 0 ,
\end{align*}
\]

with continuity conditions in \(x = 0 \) (inferred here from the natural discrete version of the above system, see later). The scattering of a wave of given frequency \(\Omega \) and normalized amplitude incoming from medium 1 to medium 2, when \(\Omega \) lies in the phonon gap of the nonlinear medium \(\Omega < \omega_2 \), is described in the linear limit by the general solution (the normalization is chosen such as to have an incident wave \(A \sin(Kx - \Omega t) \))

\[
\begin{align*}
 x < 0 : & \quad u(x, t) = \frac{1}{2i} e^{-i\Omega t} \left[Ae^{iKx} + Be^{-iKx} \right] + c.c. , \\
 x > 0 : & \quad u(x, t) = \frac{1}{2i} e^{-i\Omega t} \left[Ce^{-\kappa x} + De^{\kappa x} \right] + c.c. ,
\end{align*}
\]

with \(K \) and \(\kappa \) given from \(\Omega \) by

\[
\Omega^2 = \omega_1^2 + K^2 c_1^2 = \omega_2^2 - \kappa^2 c_2^2 .
\]
While the linear theory produces an evanescent wave \((D = 0)\), the nonlinearity does not prevent in principle nonlinear superposition\(^1\) of exponentials in \((\ref{eq:1})\) and \((\ref{eq:2})\), possibly allowing energy transmission to the nonlinear medium by means of a soliton. We address then the question wether or not solitons build up under scattering and allow nonlinear transmission of radiation within the gap.

The present study is fully based on numerical simulations and, before going further, it is worth stressing that we will discover that indeed solitons (actually kink-antikink pairs and breathers) are created to allow for energy transmission. Moreover, this process is in essence different either from self-induced transparency in two-level media, or else from gap solitons in photonic band gap media, because reductive perturbation method (or multi-scale expansions) do not apply: the incoming radiation creates large amplitude nonlinear objects.

Method. The system \((\ref{eq:1})\)\((\ref{eq:2})\) is first mapped to the following discrete analog where the first nonlinear pendulum \(u_1\) is coupled to the last linear pendulum \(u_0\) by the spring \(c_1\) of the linear chain:

\[
\begin{align*}
n < 1 & : \quad \ddot{u}_n - c_1^2(u_{n+1} - 2u_n + u_{n-1})/h^2 + \omega_1^2 u_n = 0 \ , \\
n = 1 & : \quad \ddot{u}_1 - c_2^2(u_2 - u_1)/h^2 + c_1^2(u_1 - u_0)/h^2 + \omega_2^2 \sin u_1 = 0 \ , \\
n > 1 & : \quad \ddot{u}_n - c_2^2(u_{n+1} - 2u_n + u_{n-1})/h^2 + \omega_2^2 \sin u_n = 0 \ .
\end{align*}
\]

This maps to \((\ref{eq:1})\)\((\ref{eq:2})\) in the continuous limit \(h \to 0\) and has natural unconstrained continuity conditions in \(n = 1\).

In order to generate in the linear medium 1 an \textit{incoming plane wave} we follow the work \cite{[21]} by making the change of variable from \(u_n(t)\) to \(f_n(t)\):

\[
u_n(t) = f_n(t) + AP(n) \sin(Knh - \Omega t) ,
\]

where \(\Omega\) is given from \(K\) by \((\ref{eq:3})\), where \(A\) is the amplitude of the incoming wave and where the function \(P(n)\) (a polynomial) is chosen such as to vary from the value 1 for large negative \(n\) to the value 0 far before the nonlinear medium 2. To set things clear, we have used a medium 1 made of a (linear) chain of 10500 oscillators and the pynomial \(P(n)\) varies from the value 1 at \(n = -10500\) to zero around \(n = -3000\). The medium 2 (nonlinear chain) is constituted of 4500 pendula. Finally, to simulate the infinite line, strong damping is included at both ends of the interval (so called \textit{absorbing boundaries}) on a length of about 450 particles. All these settings are summarized in figure \ref{fig:1}. The link with the continuous system is achieved with step \(h = 1/30\), for which we shall check that the generated nonlinear structures are continuous objects.

The expression \((\ref{eq:4})\) is inserted in system \((\ref{eq:3})\) which is then solved for \(f_n(t)\) as a system of \(2N\) coupled first order differential equations in the variable \(t\) \((N = 15000)\) with the subroutine DOPRI 5. This method allows to launch a plane wave in the system and its efficiency is first checked by equating both media to the linear one and we obtain a nice plane wave propagating without distortion for very long times (longer than the actual nonlinear experiments) as seen on figure \ref{fig:2}(a) where the parameters of the (homogeneous, linear) medium are \(c_1^2 = 8\), \(\omega_1^2 = 1\) and the input wave has frequency \(\Omega = 1.29\) and amplitude \(A = 1.42\). Note in particular that the created wave does vanish for large \(x = nh\) thus testing the efficiency of the absorbing boundaries (the left-hand side absorbing boundary from \(x = -300\) to \(x = -315\) is not represented but works as well).

Second we have verified that, if the right hand side medium is linear, a wave with frequency in the phonon gap is indeed totally reflected as seen on figure of \ref{fig:2}(b), in which the amplitude of

\(^1\)See the comment at the end of the paper
Figure 1: Grid data for numerical integration

Figure 2: Graphs of $u(x,t)$ at $t = 250$. a) evidence of plane wave generation in a linear homogenous medium. b) evidence of total reflection on the stop gap of a linear right-hand-side medium.

the incident wave largely exceeds the threshold amplitude required for nonlinear transmission described later. Here the parameters are $c_1^2 = 8$, $\omega_1^2 = 1$ for the left (linear) medium and $c_2^2 = 1$, $\omega_2^2 = 3$ for the right (still linear) medium. The frequency of the input plane wave is $\Omega = 1.29 < \omega_2$ and its amplitude $A = 1.5$.

Results. Thanks to the scale invariance of the system (1)(2), we can always fix the parameters of one of the two media and vary the others. Thereafter we shall then chose the parameters of the nonlinear medium to be

$$c_2^2 = 1, \quad \omega_2^2 = 3,$$

and vary the linear medium (c_1 and ω_1) and the incident plane wave $A \sin(Kx - \Omega t)$. We obtain the following results.

1 - An incoming wave with frequency inside the gap of the nonlinear medium ($\Omega < \omega_2$) is transmitted if its average energy E exceeds a threshold energy E_0. For the choice (8) we found $E_0 = 1.68$. The value of E we refer to is obtained by averaging over one period the hamiltonian of the linear chain i.e.

$$E = \frac{1}{2} A^2 \Omega^2.$$

This energy transmission is accomplished by the generation of kink-antikink pairs and large amplitude breathers. The former occur alone when the incident energy equals the threshold
E_0. Both breathers and kink-antikinks then propagate in the medium. To illustrate this, a

typical experiment at energy $E > E_0$ is shown on figure 3 where the function $u(x, t)$ is drawn

during $t = 120$ in both media. By looking the picture at different times, we can state that the

transmitted wave is made of two breathers followed by two kink-antikink pairs, followed
themselves by a new breather. The various behaviors are then depicted on fig. 4 where the wave

in the nonlinear medium is drawn for different times either for an incident energy $E < E_0$ (total

reflection), $E = E_0$ (breather generation) and $E > E_0$ (kink-antikink and breather creation).

Note that the average full width at half maximum of the breather, e.g. the one appearing in

fig. 4 at $E = E_0$, contains about 73 particles, hence being a continuous object.

2 - The found threshold energy E_0 for nonlinear transmission has the following properties:

does not depend on the incident frequency Ω and it does not depend either on the nature

of the linear left-hand-side medium (electromagnetic vacuum for $\omega^2_1 = 0$ or dielectric medium

for $\omega^2_1 \neq 0$). This is illustrated on fig. 5 where the dots denote values above which nonlinear

transmission becomes effective as functions of the incident frequency Ω.

3 - This transmission process does not occur if the nonlinear system does not possess soli-

ton solutions. For instance, replacing the nonlinearity $\sin u$ by any of its truncated Taylor

expansions, we do not obtain energy transmission. We illustrate this on fig. 6 where $\sin u$

has been replaced by its Taylor expansion up to order u^7. This indicates that this process does not

result from a shift of the stop gap due to nonlinearity. If such would be the case, one would also

observe transmission with the Taylor expansion of $\sin u$ (and moreover one would also observe

transmission of radiation as waves, not as nonlinear objects).

Conclusion By modelizing the scattering of a plane wave incoming onto a nonlinear medium,

we have discovered the phenomenon that we call nonlinear transmission, and which relies on

the property of a soliton-bearing system (like sine-Gordon but unlike nonlinear Klein-Gordon)

of being able to superimpose nonlinearly exponential waves. With respect to gap solitons

where the incident radiation flows through the medium thanks to the presence of a soliton who

shifts the gap (or “opens the door”), here the radiation is totally converted into localized large

amplitude nonlinear objects. These nonlinear objects cannot be described by perturbation

approaches but require fully nonlinear treatment (e.g. via inverse spectral transform).

This nonlinear transmission has immediate important implications such as nonlinear ab-

sorption of radiation (which could play a role in the interpretation of anomalous absorption

bands), or else nonlinear tunelling, both in continuous and discrete systems. All this issues will

be displayed in forthcoming works but we want to stress here that the theoretical interpretation

of the threshold E_0 of incident average energy is still to be understood.
Figure 4: Representation of nonlinear oscillators $u(x,t)$ for a incident wave at $\Omega = 1.29 < \omega_2$ as a function of x for different times. The energy E is varied with the amplitude A of incident wave. The parameters of the linear chain are $c_1^2 = 8$, $\omega_1^2 = 1$.

Note that we have checked that this threshold is not due to discreteness effects (Peierls barrier to overcome) by duplicating the numerical simulations with different steps. Varying the step size from $h = 1/10$ to $h = 1/100$ we have obtained the same threshold of nonlinear transmission.

Comment The nonlinear superposition of exponentials, say $\exp[\xi_1(x,t)]$ and $\exp[\xi_2(x,t)]$, is obtained by just writing down the two-soliton solution of sine-Gordon under the form

$$u(x,t) = 4 \arctan \left[\frac{a_1 + a_2}{a_1 - a_2} \frac{e^{\xi_2} - e^{\xi_1}}{1 + e^{\xi_2 + \xi_1}} \right],$$

(10)

where a_1 and a_2 are two arbitrary parameters, and where

$$2\xi_j = (a_j + 1/a_j)\omega_2/c_2(x - x_j) + (a_j - 1/a_j)\omega_2(t - t_j),$$

(11)

with arbitrary constants x_j and t_j (note that those values allows us to fix arbitrarily amplitudes and phases of both exponentials). It is remarkable that the functions $\exp[\xi_j(x,t)]$ are precisely solutions of the linearized sine-Gordon equation

$$v_{tt} - c_2^2 v_{xx} + \omega_2^2 v = 0,$$

(12)

and the formula (10) indeed furnishes a nonlinear superposition recipe.
Figure 5: Energy threshold for nonlinear absorption. The parameters of the linear chain are: \(\square \rightarrow c_1^2 = 10, \omega_1^2 = 0\}, \{\circ \rightarrow c_1^2 = 8, \omega_1^2 = 1\} \{\times \rightarrow c_1^2 = 16, \omega_1^2 = 1\}.

Figure 6: This figure shows the solution \(u(x, t)\) at \(t = 250\) in the case \(E = 1.89 > E_0 = 1.68\) as in fig.4 when \(\sin u\) is replaced with its Taylor expansion at order \(u^7\).

The kink-antikink results from parameters \(a_j\) real and of same sign (opposite signs produce the 2-kink or the 2-antikink solutions). The breather is obtained by assuming complex constants \(a_j\) with \(a_2 = \bar{a}_1\). A quite simple exercise allows one to have insight on the creation and propagation of such nonlinear structures. In particular the kink and antikink will be seen to separate as time runs, as on the numerical experiments in fig.4 (use for instance the parameters \(a_1 = -0.85, a_2 = -0.9, x_1 = 5, x_2 = 5, t_j = 0\) in the normalized units, i.e. for \(c_2 = \omega_2 = 1\)).

We note finally that the stationary breather furnishes a striking instance of a nonlinear superposition of the evanescent waves in (4). Indeed defining

\[
a_1 = a_2 = -\kappa \frac{c_2}{\omega_2} + i \frac{\Omega}{\omega_2}
\]

we obtain for \(x_j = t_j = 0\)

\[
u(x, t) = 4 \arctan \left[i \frac{\kappa c_2}{\Omega} \frac{e^{-i\Omega t - \kappa x} - e^{i\Omega t - \kappa x}}{1 + e^{-2\kappa x}} \right],
\]

where the relation (5) between \(\kappa\) and \(\Omega\) simply means that we have chosen \(|a_j| = 1\) (for a stationary breather).

References
[1] E. Fermi, J.R. Pasta, S.M. Ulam, *Studies of nonlinear problems*, Los Alamos Sci. Lab. Rep. (1955) LA-1940, reproduced in: A.C. Newell (Ed.) *Nonlinear wave motion*, AMS Lect Appl Math 15 (1974)

[2] N.J. Zabusky, M.D. Kruskal, Phys Rev Lett 15 (1965) 240

[3] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys Rev Lett 19 (1967) 1095. V.E. Zakharov, A.B. Shabat, Sov Phys JETP 37 (1972) 62. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Stud Appl Math 53 (1974) 249.

[4] G.L. Lamb, Jr., *Elements of Soliton Theory*, J. Wiley and Sons (New York 1980). M. J. Ablowitz, H. Segur, *Solitons and the Inverse Scattering Transform*, SIAM (Philadelphia 1981). F. Calogero, A. Degasperis *Spectral Transform and Solitons*, North Holland (Amsterdam 1982). R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, *Solitons and Nonlinear Waves*, Academic Press (London 1982). M. J. Ablowitz, P. Clarkson, *Solitons, Nonlinear Evolutions and Inverse Scattering*, Cambridge Univ. Press (Cambridge 1992).

[5] M. Remoissenet, *Waves Called Solitons*, Springer (Berlin 1999). A.C. Scott, *Nonlinear science*, Oxford University Press (New York 1999).

[6] S.A. Gredeskul, Yu S. Kivshar, A. Sanchez, L. Vazquez, Phys Rev A 45 (1992) 8867. R. Scharf, Yu S. Kivshar, A. Sanchez, A.R. Bishop, Phys Rev A 45 (1992) 5369. G. Reinisch, Int J Mod Phys B 6 (1992) 3395. Yu S. Kivshar, L. Vazquez, Phys Rev Lett 77 (1996) 582. C.R. Willis, Phys Rev E 55 (1997) 6097. A. Sanchez, A.R. Bishop, SIAM Rev 40 (1998) 579. L. Freidland, Phys Rev E 57 (1998) 3494. G. Cohen, *Soliton interaction with an external travelling wave*, preprint http://arXiv.org/ps/patt-sol/9903006.

[7] M. Peyrard, M.D. Kruskal, Physica D 14 (1984) 88. R.S. MacKay, S. Aubry, Nonlinearity 7 (1994) 1623. D. Cai, A.R. Bishop, N. Gronbech-Jensen, Phys Rev Lett 72 (1994) 591. S. Aubry, Physica D 103 (1997) 201. S. Flach, C.R. Willis, Phys. Rep. 295 (1998) 182. D. Hennig, G.P. Tsironis, Phys Rep 307 (1999) 333. T. Dauxois and M. Peyrard, Phys Rev Lett 70 (1993) 3935. M. Peyrard, Physica D 119 (1998) 184.

[8] S.L. McCall, E.L. Hahn, Phys Rev 183 (1969) 457. J.C. Eilbeck, J.D. Gibbon, P.J. Caudrey, R.K. Bullough, J Phys A 6 (1973) 1337. G.L. Lamb Jr, Phys Rev A 8 (1974) 422. M.J. Ablowitz, D.J. Kaup, A.C. Newell, J. Math. Phys. 15 (1974) 1852. D.J. Kaup, Phys Rev A 16 (1977) 704.

[9] F.Y.F. Chu, A.C. Scott, Phys. Rev. A 12 (1975) 2060. K. Drühl, R.G. Wenzel, J.L. Carlsten, Phys Rev Lett, 51 (1983) 1171. D.C. MacPherson, R.C. Swanson, J.L. Carlsten, Phys Rev A 40 (1989) 6745. J.C. Englund, C.M. Bowden, Phys Rev A 42 (1990) 2870, and Phys Rev A 46 (1992) 578. C. Claude, J. Leon, Phys Rev Lett 74 (1995) 3479. C. Claude, F. Ginovart, J. Leon, Phys Rev A 52 (1995) 767.

[10] J. Leon, A.V. Mikhailov, Phys Lett A 253 (1999) 33. M. Boiti, J-G. Caputo, J. Leon, F. Pempinelli, Inverse Problems, 16 (2000) 303

[11] H. Steudel, Physica 6D (1983) 155. D.J. Kaup, Physica 6D (1983) 143, and Physica 19D (1986) 125.

[12] G.P. Agrawal, *Nonlinear fiber optics*, Academic Press (London 1989)

[13] D.L. Mills, *Nonlinear Optics*, Springer Verlag (Berlin 1991)
[14] I.R. Gabitov, V.E. Zakharov, A.V. Mikhailov, Theor Math Phys 63 (1985) 328, and Sov. Phys. JETP, 59 (1984) 703. See also J. Leon, Phys Lett A 170 (1992) 283; Phys Rev A 47 (1993) 3264; J Math Phys 35 (1994) 3054.

[15] A. Hasegawa, F. Tappert, Appl Phys Lett 23 (1973) 142. L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Phys Rev Lett 45 (1980) 1095.

[16] W. Chen, D.L. Mills, Phys Rev Lett 58 (1987) 160. D.L. Mills, S.E. Trulliger, Phys Rev B 36 (1987) 947. W. Chen, D.L. Mills, Phys Rev B 36 (1987) 6269.

[17] E. Lidorikis, Q. Li, C.M. Soukoulis, Phys Rev B 54 (1996) 10249.

[18] C. Martijn de Sterke, J.E. Sipe, Phys Rev A 38 (1988) 5149.

[19] Photonic band gaps and localization, C.M. Soukoulis (Editor) NATO ARW, Plenum (New York 1993). Photonic band gap materials, C.M. Soukoulis (Editor) NATO ASI, Klumer (Dordrecht 1996). Photonic crystals: molding the flow of light, J.D. Joannopoulos, R.D. Meade, J.N. Winn, Princeton Univ. Press (Princeton 1995).

[20] F-X. Hugot, J. Leon, Inverse Problems 15 (1999) 701.

[21] J-G. Caputo, A.C. Newell, M. Shelley, in Integrable Systems and Applications, Eds. M. Balabane, P. Lochak, D.W. McLaughlin and C. Sulem, Springer (Berlin 1990).