Exponential laws for spaces of differentiable functions on topological groups

Natalie Nikitin

Abstract
Smooth functions \(f : G \to E \) from a topological group \(G \) to a locally convex space \(E \) were considered by Riss (1953), Boseck, Czichowski and Rudolph (1981), Beltită and Nicolae (2015), and others, in varying degrees of generality. The space \(C^\infty(G, E) \) of such functions carries a natural topology, the compact-open \(C^\infty \)-topology. For topological groups \(G \) and \(H \), we show that \(C^\infty(G \times H, E) \cong C^\infty(G, C^\infty(H, E)) \) as a locally convex space, whenever both \(G \) and \(H \) are metrizable or both \(G \) and \(H \) are locally compact. Likewise, \(C^k(G, C^l(H, E)) \) can be identified with a suitable space of functions on \(G \times H \).

1 Introduction

Exponential laws of the form \(C^\infty(M \times N, E) \cong C^\infty(M, C^\infty(N, E)) \) for spaces of vector-valued smooth functions on manifolds are essential tools in infinite-dimensional calculus and infinite-dimensional Lie theory (cf. works by Kriegl and Michor [10], Kriegl, Michor and Rainer [11], Alzaareer and Schmeding [1], Glöckner [5], Glöckner and Neeb [6], Neeb and Wagemann [12], and others). Stimulated by recent research by Beltită and Nicolae [2], we provide exponential laws for function spaces on topological groups.

Let \(G \) be a topological group, \(U \subseteq G \) be an open subset, \(f : U \to E \) be a function to a locally convex space and \(\mathcal{L}(G) := \text{Hom}_{cts}(\mathbb{R}, G) \) be the set of continuous one-parameter subgroups \(\gamma : \mathbb{R} \to G \), endowed with the compact-open topology. For \(x \in U \) and \(\gamma \in \mathcal{L}(G) \) let us write \(D_\gamma f(x) := \lim_{t \to 0} \frac{1}{t} (f(x \cdot \gamma(t)) - f(x)) \) if the limit exists. Following Riss [14] and Boseck et al. [3], we say that \(f \) is \(C^k \) (where \(k \in \mathbb{N}_0 \cup \{\infty\} \)) if \(f \) is continuous, the iterated derivatives

\[
d^{(i)} f(x, \gamma_1, \ldots, \gamma_i) := (D_{\gamma_i} \cdots D_{\gamma_1} f)(x)
\]

exist for all \(x \in U, i \in \mathbb{N} \) with \(i \leq k \) and \(\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G) \), and the maps \(d^{(i)} f : U \times \mathcal{L}(G)^i \to E \) so obtained are continuous. We endow the space \(C^k(U, E) \) of all \(C^k \)-maps \(f : U \to E \) with the compact-open \(C^k \)-topology (recalled in Definition 2.3). If \(G \) and \(H \) are topological groups and \(f : G \times H \to E \) is \(C^\infty \), then...
\[f^\vee(x) := f(x, \bullet) \in C^\infty(H,E) \text{ for all } x \in G. \] With a view towards universal enveloping algebras, Beltitǎ and Nicolae \cite{2} verified that \(f^\vee \in C^\infty(G,C^\infty(H,E)) \) and showed that the linear map

\[\Phi : C^\infty(G \times H, E) \to C^\infty(G, C^\infty(H,E)), \quad f \mapsto f^\vee \]

is a topological embedding.

Recall that a Hausdorff space \(X \) is called a \(k_R \)-space if functions \(f : X \to \mathbb{R} \) are continuous if and only if \(f|_K \) is continuous for each compact subset \(K \subseteq X \).

We obtain the following criterion for surjectivity of \(\Phi \):

Theorem (A). Let \(U \subseteq G, V \subseteq H \) be open subsets of topological groups \(G \) and \(H \), and \(E \) be a locally convex space. If \(U \times V \times \mathfrak{L}(G)^i \times \mathfrak{L}(H)^j \) is a \(k_R \)-space for all \(i, j \in \mathbb{N}_0 \), then

\[\Phi : C^\infty(U \times V,E) \to C^\infty(U, C^\infty(V,E)), \quad f \mapsto f^\vee \]

is an isomorphism of topological vector spaces.

The condition is satisfied, for example, if both \(G \) and \(H \) are locally compact or both \(G \) and \(H \) are metrizable (see Corollary \cite{3.5}).

Generalizing the case of open subsets \(U \) and \(V \) in locally convex spaces treated by Alzaareer and Schmeding \cite{11} and Glöckner and Neeb \cite{6}, we introduce \(C^{k,l} \)-functions \(f : U \times V \to E \) on open subsets \(U \subseteq G \) and \(V \subseteq H \) of topological groups with separate degrees \(k,l \in \mathbb{N}_0 \cup \{\infty\} \) of differentiability in the two variables, and a natural topology on the space \(C^{k,l}(U \times V,E) \) of such maps (see Definition \cite{2.4} for details). **Theorem (A)** is a consequence of the following result:

Theorem (B). Let \(U \subseteq G, V \subseteq H \) be open subsets of topological groups \(G \) and \(H \), let \(E \) be a locally convex space and \(k,l \in \mathbb{N}_0 \cup \{\infty\} \). If \(U \times V \times \mathfrak{L}(G)^i \times \mathfrak{L}(H)^j \) is a \(k_R \)-space for all \(i, j \in \mathbb{N}_0 \) with \(i \leq k, j \leq l \), then

\[\Phi : C^{k,l}(U \times V,E) \to C^{k}(U, C^l(V,E)), \quad f \mapsto f^\vee \]

is an isomorphism of topological vector spaces.

Notation: All topological spaces are assumed Hausdorff. We call a map \(f : X \to Y \) between topological spaces \(X \) and \(Y \) a topological embedding if \(f \) is a homeomorphism onto its image (it is known that an injective map \(f \) is a topological embedding if and only if the topology on \(X \) is initial with respect to \(f \), that is, \(X \) carries the coarsest topology making \(f \) continuous).

Acknowledgement: I wish to express my deepest thanks to Prof. Dr. Helge Glöckner for precious advice and support. I also wish to thank Rafael Dahmen and Gabor Lukacs for very helpful comments on \(k_R \)-spaces.

2 Differentiability of mappings on topological groups

Definition 2.1. Let \(G \) be a topological group, a one-parameter subgroup is a group homomorphism \(\gamma : \mathbb{R} \to G \). We denote by \(\mathfrak{L}(G) := \text{Hom}_{cts}(\mathbb{R}, G) \) the
set of all continuous one-parameter subgroups, endowed with the compact-open topology.

Remark 2.2. If $\gamma \in \mathcal{L}(G)$ and $\phi : G \to H$ is a continuous group homomorphism, then $\phi \circ \gamma \in \mathcal{L}(H)$ and the map $\mathcal{L}(\phi) : \mathcal{L}(G) \to \mathcal{L}(H), \gamma \mapsto \phi \circ \gamma$ is continuous (cf. Appendix A.5, see also Appendix B).

Further, for $\psi = (\gamma, \eta) \in C(\mathbb{R}, G \times H)$ it is easy to see that $\psi \in \mathcal{L}(G \times H)$ if and only if $\gamma \in \mathcal{L}(G)$ and $\eta \in \mathcal{L}(H)$. Moreover, the natural map $(\mathcal{L}(pr_1), \mathcal{L}(pr_2)) : \mathcal{L}(G \times H) \to \mathcal{L}(G) \times \mathcal{L}(H)$ (where $pr_1 : G \times H \to G$, $pr_2 : G \times H \to H$ are the coordinate projections) is a homeomorphism (cf. Appendix A.5, Appendix B).

Now, we define the notion of differentiability along one-parameter subgroups of vector-valued functions on topological groups:

Definition 2.3. Let $U \subseteq G$ be an open subset of a topological group G and E be a locally convex space. For a map $f : U \to E$, $x \in U$ and $\gamma \in \mathcal{L}(G)$ we define

$$d^{(i)} f(x, \gamma) := df(x, \gamma) := D_\gamma f(x) := \lim_{t \to 0} \frac{1}{t}(f(x \cdot \gamma(t)) - f(x))$$

if the limit exists.

We call f a C^k-map for $k \in \mathbb{N}$ if f is continuous and for each $x \in U$, $i \in \mathbb{N}$ with $i \leq k$ and $\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G)$ the iterative derivatives

$$d^{(i)} f(x, \gamma_1, \ldots, \gamma_i) := (D_{\gamma_i} \cdots D_{\gamma_1} f)(x)$$

exist and define continuous maps

$$d^{(i)} f : U \times \mathcal{L}(G)^i \to E, \quad (x, \gamma_1, \ldots, \gamma_i) \mapsto (D_{\gamma_i} \cdots D_{\gamma_1} f)(x).$$

If f is C^k for each $k \in \mathbb{N}$, then we call f a C^∞-map or smooth. Further, we call continuous maps C^0 and denote $d^{(0)} f := f$.

The set of all C^k-maps $f : U \to E$ will be denoted by $C^k(U, E)$ and we endow it with the initial topology with respect to the family $(d^{(i)})_{i \in \mathbb{N}, i \leq k}$ of maps

$$d^{(i)} : C^k(U, E) \to C(U \times \mathcal{L}(G)^i, E)_{c.o.}, \quad f \mapsto d^{(i)} f$$

(where the right-hand side is equipped with the compact-open topology) turning $C^k(U, E)$ into a Hausdorff locally convex space. (This topology is known as the compact-open C^k-topology.)

Definition 2.4. Let $U \subseteq G$ and $V \subseteq H$ be open subsets of topological groups G and H, let E be a locally convex space. For a map $f : U \times V \to E$, $x \in U$, $y \in V$, $\gamma \in \mathcal{L}(G)$ and $\eta \in \mathcal{L}(H)$ we define

$$d^{(1,0)} f(x, y, \gamma) := D_{(\gamma, 0)} f(x, y) := \lim_{t \to 0} \frac{1}{t}(f(x \cdot \gamma(t), y) - f(x, y))$$

3
and

\[d^{(0,1)}f(x, y, \eta) := D_{(0, \eta)}f(x, y) := \lim_{t \to 0} \frac{1}{t} (f(x, y \cdot \eta(t)) - f(x, y)) \]

whenever the limits exist.

We call a continuous map \(f : U \times V \to E \) a \(C^{k,l} \)-map for \(k, l \in \mathbb{N}_0 \cup \{ \infty \} \) if the derivatives

\[d^{(i,j)}f(x, y, \gamma_1, \ldots, \gamma_i, \eta_1, \ldots, \eta_j) := (D_{(\gamma_1, 0)} \cdots D_{(\gamma_i, 0)}D_{(0, \eta_1)} \cdots D_{(0, \eta_j)}f)(x, y) \]

exist for all \(x \in U, y \in V, i, j \in \mathbb{N}_0 \) with \(i \leq k, j \leq l \) and \(\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G), \eta_1, \ldots, \eta_j \in \mathcal{L}(H) \), and define continuous functions

\[d^{(i,j)} : C^{k,l}(U \times V, E) \to C(U \times V \times \mathcal{L}(G)^i \times \mathcal{L}(H)^j, E)_{c.o.}, \quad f \mapsto d^{(i,j)}f, \]

where the right-hand side is equipped with the compact-open topology. (The so obtained topology on \(C^{k,l}(U \times V, E) \) is called the compact-open \(C^{k,l} \)-topology.)

Remark 2.5. If \(k = 0 \) or \(l = 0 \), then the definition of \(C^{k,l} \)-maps \(f : U \times V \to E \) also makes sense if \(U \) or \(V \), respectively, is any Hausdorff topological space. All further results for \(C^{k,l} \)-maps on topological groups carry over to this situation.

Remark 2.6. Simple computations show that for \(k \geq 1 \) a map \(f : U \to E \) is \(C^k \) if and only if \(f \) is \(C^1 \) and \(df : U \times \mathcal{L}(G) \to E \) is \(C^{k-1,0} \), in this case we have \(d^{(i,0)}(df) = d^{(i+1)}f \) for all \(i \in \mathbb{N} \) with \(i \leq k - 1 \).

Similarly, we can show that a map \(f : U \times V \to E \) is \(C^{k,0} \) if and only if \(f \) is \(C^{1,0} \) and \(d^{(1,0)}(f : U \times (V \times \mathcal{L}(G))) \to E \) is \(C^{k-1,0} \) with differentials \(d^{(i,0)}(d^{(1,0)}f) = d^{(i+1,0)}f \) for all \(i \) as above.

Further, if a map \(f : U \times V \to E \) is \(C^{k,l} \), then for each \(i, j \in \mathbb{N}_0 \) with \(i \leq k, j \leq l \) and fixed \(\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G), \eta_1, \ldots, \eta_j \in \mathcal{L}(H) \) the map

\[D_{(\gamma_1, 0)} \cdots D_{(\gamma_i, 0)}D_{(0, \eta_1)} \cdots D_{(0, \eta_j)}f : U \times V \to E \]

is \(C^{k,l-i-j} \) if \(i = 0 \), and \(C^{k-i,0} \) otherwise.

We warn the reader that the full statement of Schwarz’ Theorem does not carry over to non-abelian topological groups; for a function \(f : G \to \mathbb{R} \) and \(\gamma, \eta \in \mathcal{L}(G) \) such that \(D_\gamma f, D_\eta f, D_\gamma D_\eta f : U \to \mathbb{R} \) are continuous functions it may happen that \(D_\gamma D_\eta f \neq D_\eta D_\gamma f \) (see Example 3.1). Nevertheless, we can prove the following restricted version of Schwarz’ Theorem for \(C^{k,l} \)-maps:
Proposition 2.7. Let $U \subseteq G$ and $V \subseteq H$ be open subsets of topological groups G and H, let E be a locally convex space and $f : U \times V \to E$ be a $C^{k,l}$-map for some $k,l \in \mathbb{N} \cup \{\infty\}$. Then the derivatives

$$(D_{(0,\eta_j)} \cdots D_{(0,\eta_1)} D_{(\gamma_i,0)} \cdots D_{(\gamma_1,0)} f)(x,y)$$

exist for all $(x,y) \in U \times V$, $i,j \in \mathbb{N}$ with $i \leq k$, $j \leq l$ and $\gamma_1,\ldots,\gamma_i \in \mathcal{L}(G)$, $\eta_1,\ldots,\eta_j \in \mathcal{L}(H)$ and we have

$$(D_{(0,\eta_j)} \cdots D_{(0,\eta_1)} D_{(\gamma_i,0)} \cdots D_{(\gamma_1,0)} f)(x,y) = (D_{(\gamma_i,0)} \cdots D_{(\gamma_1,0)} D_{(0,\eta_j)} \cdots D_{(0,\eta_1)} f)(x,y).$$

Proof. First we prove the assertion for $j = 1$ by induction on i.

Induction start: Let $(x,y) \in U \times V$, $\gamma \in \mathcal{L}(G)$ and $\eta \in \mathcal{L}(H)$. For suitable $\varepsilon,\delta > 0$ we define the continuous map

$$h : [\varepsilon,\varepsilon] \times [-\delta,\delta] \to E, \quad (s,t) \mapsto f(x \cdot \gamma(s), y \cdot \eta(t)),$$

and obtain the partial derivatives of h via

$$\frac{\partial h}{\partial s}(s,t) = \lim_{r \to 0} \frac{1}{r}(h(s + r, t) - h(s, t))$$

$$= \lim_{r \to 0} \frac{1}{r}(f(x \cdot \gamma(s) \cdot \gamma(r), y \cdot \eta(t)) - f(x \cdot \gamma(s), y \cdot \eta(t)))$$

$$= D_{(\gamma,0)} f(x \cdot \gamma(s), y \cdot \eta(t)),$$

and analogously,

$$\frac{\partial h}{\partial t}(s,t) = D_{(0,\eta)} f(x \cdot \gamma(s), y \cdot \eta(t))$$

and

$$\frac{\partial^2 h}{\partial s \partial t}(s,t) = (D_{(\gamma,0)} D_{(0,\eta)} f)(x \cdot \gamma(s), y \cdot \eta(t)).$$

The obtained maps $\frac{\partial h}{\partial s}$, $\frac{\partial h}{\partial t}$ and $\frac{\partial^2 h}{\partial s \partial t}$ are continuous, hence we apply [6, Lemma 1.3.18], which states that in this case also the partial derivative $\frac{\partial^2 h}{\partial s \partial t}$ exists and coincides with $\frac{\partial^2 h}{\partial s \partial t}$. Therefore, we have

$$(D_{(\gamma,0)} D_{(0,\eta)} f)(x,y) = \frac{\partial^2 h}{\partial s \partial t}(0,0) = \frac{\partial^2 h}{\partial s \partial t}(0,0) = \lim_{r \to 0} \frac{1}{r} \left(\frac{\partial h}{\partial s}(0, r) - \frac{\partial h}{\partial s}(0, 0) \right)$$

$$= \lim_{r \to 0} \frac{1}{r} \left(D_{(\gamma,0)} f(x, y \cdot \eta(r)) - D_{(\gamma,0)} f(x, y) \right)$$

$$= (D_{(0,\eta)} D_{(\gamma,0)} f)(x,y).$$
Thus the assertion holds for $i = 1$.

Induction step: Now, let $2 \leq i \leq k$, $(x, y) \in U \times V$, $\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G)$ and $\eta \in \mathcal{L}(H)$. Consider the map

$$g_1 : U \times V \to E, \quad (x, y) \mapsto (D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} f)(x, y),$$

which is $C^{1,0}$ (see Remark 2.6). Further, g_1 is $C^{0,1}$, because

$$D_{(0,\eta)} g_1(x, y) = (D_{(0,\eta)} D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} f)(x, y)$$

$$= (D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} D_{(0,\eta)} f)(x, y),$$

by the induction hypothesis, and we see that

$$g_j(y) = (D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} g_j)(x, y),$$

whence g_1 is $C^{1,1}$. By the induction start, the derivative $(D_{(0,\eta)} D_{(\gamma_1,0)} g_1)(x, y)$ exists and equals $(D_{(\gamma_1,0)} D_{(0,\eta)} g_1)(x, y)$, thus we get

$$D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} D_{(0,\eta)} f(x, y) = (D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} g_1)(x, y)$$

$$= (D_{(0,\eta)} D_{(\gamma_1,0)} g_1)(x, y)$$

$$= (D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} D_{(0,\eta)} f)(x, y).$$

Hence the assertion holds for $j = 1$.

Now, let $2 \leq j \leq l$, $1 \leq i \leq k$, $\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G)$, $\eta_1, \ldots, \eta_j \in \mathcal{L}(H)$ and $(x, y) \in U \times V$. By Remark 2.6 the map

$$g_2 : U \times V \to E, \quad (x, y) \mapsto (D_{(0,\eta_{j-1})} \cdots D_{(0,\eta_1)} f)(x, y)$$

is $C^{k,1}$, whence we have

$$D_{(0,\eta_j)} D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} D_{(0,\eta_{j-1})} \cdots D_{(0,\eta_1)} f(x, y)$$

$$= (D_{(0,\eta_j)} \cdots D_{(\gamma_i,0)} g_2)(x, y)$$

$$= (D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} D_{(0,\eta_j)} g_2)(x, y)$$

$$= (D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} D_{(0,\eta_j)} \cdots D_{(0,\eta_1)} f)(x, y),$$

(1)

using the first part of the proof. But we also have

$$D_{(0,\eta_j)} D_{(\gamma_1,0)} \cdots D_{(\gamma_i,0)} D_{(0,\eta_{j-1})} \cdots D_{(0,\eta_1)} f(x, y)$$

$$= (D_{(0,\eta_j)} \cdots D_{(\gamma_i,0)} D_{(0,\eta_{j-1})} \cdots D_{(0,\eta_1)} f)(x, y),$$

(2)

by induction, whence (2) equals (1), that is

$$D_{(0,\eta_j)} \cdots D_{(\gamma_i,0)} D_{(\gamma_1,0)} \cdots D_{(\gamma_1,0)} f(x, y)$$

$$= (D_{(\gamma_1,0)} \cdots D_{(\gamma_1,0)} D_{(0,\eta_j)} \cdots D_{(0,\eta_1)} f)(x, y),$$

and the proof is finished.
Corollary 2.8. Let $U \subseteq G$ and $V \subseteq H$ be open subsets of topological groups G and H, let E be a locally convex space and $k, l \in \mathbb{N}_0 \cup \{\infty\}$. A map $f : U \times V \to E$ is $C^{k,l}$ if and only if the map

$$g : V \times U \to E, \quad (y, x) \mapsto f(x, y)$$

is $C^{l,k}$. Moreover, we have

$$d^{(i,j)}g(y,x,\eta_1,\ldots,\eta_j,\gamma_1,\ldots,\gamma_i) = d^{(i,j)}f(x,y,\gamma_1,\ldots,\gamma_i,\eta_1,\ldots,\eta_j)$$

for each $x \in U$, $y \in V$, $i, j \in \mathbb{N}_0$ with $i \leq k$, $j \leq l$ and $\gamma_1,\ldots,\gamma_i \in \Sigma(G)$, $\eta_1,\ldots,\eta_j \in \Sigma(H)$.

Proof. First, we assume that $l = 0$, that is, $f : U \times V \to E$ is $C^{k,0}$. Then for $x \in U$, $y \in V$ and $\gamma \in \Sigma(G)$ we have

$$d^{(1,0)}f(x,y,\gamma) = \lim_{t \to 0} \frac{1}{t} (f(x \cdot \gamma(t), y) - f(x, y))$$

and similarly we get $d^{(0,i)}g(y,x,\gamma_1,\ldots,\gamma_i) = d^{(i,0)}f(x,y,\gamma_1,\ldots,\gamma_i)$ for each $i \in \mathbb{N}$ with $i \leq k$ and $\gamma_1,\ldots,\gamma_i \in \Sigma(G)$. The obtained maps $d^{(0,i)}g : V \times U \times \Sigma(G)^i \to E$ are obviously continuous, hence g is $C^{0,k}$. The other implication, as well as the case $k = 0$, can be proven analogously.

If $k, l \geq 1$, then the assertion follows immediately from Proposition 2.6. \qed

Remark 2.9. Using Remark 2.6 and Corollary 2.8, we can easily show that if $f : U \times V \to E$ is $C^{k,l}$, then for all $i, j \in \mathbb{N}_0$ with $i \leq k$, $j \leq l$ and fixed $\gamma_1,\ldots,\gamma_i \in \Sigma(G)$, $\eta_1,\ldots,\eta_j \in \Sigma(H)$ the maps

$$D_{(\gamma_1,0)} \cdots D_{(\gamma_1,0)} D_{(0,\eta_j)} \cdots D_{(0,\eta_j)} f : U \times V \to E$$

are $C^{k-i,l-j}$.

The following lemma will be useful:

Lemma 2.10. Let $U \subseteq G$, $V \subseteq H$ be open subsets of topological groups G and H, let E, F be locally convex spaces, $\lambda : E \to F$ be a continuous and linear map and $k, l \in \mathbb{N}_0 \cup \{\infty\}$.

(a) If $f : U \to E$ is a C^k-map, then the map $\lambda \circ f : U \to F$ is C^k.

(b) If $f : U \times V \to E$ is a $C^{k,l}$-map, then the map $\lambda \circ f : U \times V \to F$ is $C^{k,l}$.

Proof. To prove (a), let $x \in U$, $\gamma \in \Sigma(G)$ and $t \neq 0$ small enough, then we have

$$\frac{\lambda(f(x \cdot \gamma(t))) - \lambda(f(x))}{t} = \lambda \left(\frac{f(x \cdot \gamma(t)) - f(x)}{t} \right) \to \lambda(df(x, \gamma)), \quad t \to 0, \quad (x, \gamma) \in U \times \Sigma(G).$$
as $t \to 0$, because λ is assumed linear and continuous. Therefore, the derivative $d(\lambda \circ f)(x, \gamma)$ exists and we have $d(\lambda \circ f)(x, \gamma) = (\lambda \circ df)(x, \gamma)$.

Proof. First, assume that the map $x \in U$ as such that $d \circ f(x, \gamma, t, y) ∈ t$ as $t → 0$. Hence $d^0(\lambda \circ f)(x, \gamma) = (\lambda \circ d^0 f)(x, \gamma)$, since each of the obtained maps $d^0(\lambda \circ f) = \lambda \circ d^0 f : U × E \to F$ is continuous, we see that the map $\lambda \circ f$ is C^k.

Analogously, assertion (b) can be proved showing that for each $i, j \in N_0$ with $i ≤ k$, $j ≤ l$ we have $d^{(i, j)}(\lambda \circ f) = \lambda \circ d^{(i, j)} f$.

Let us introduce the following notation (the analogue for C^1-maps is Lemma A.3):

Lemma 2.11. Let $U ⊆ G$, $V ⊆ H$ be open subsets of topological groups G and H, let E be a locally convex space. A continuous map $f : U × V → E$ is $C^{1, 0}$ if and only if there exists a continuous map

$$f^{[1, 0]} : U^{[1]} × V → E,$$

where

$$U^{[1]} := \{(x, γ, t) ∈ U × E : x : γ(t) ∈ U\},$$

such that

$$f^{[1, 0]}(x, γ, t, y) = \frac{1}{t}(f(x, γ(t), y) - f(x, y))$$

for each $(x, γ, t, y) ∈ U^{[1]} × V$ with $t ≠ 0$.

In this case we have $d^{[1, 0]} f(x, y, γ) = f^{[1, 0]}(x, γ, 0, y)$ for all $x ∈ U$, $y ∈ V$ and $γ ∈ E$.

Proof. First, assume that the map $f^{[1, 0]}$ exists and is continuous. Then for $x ∈ U$, $y ∈ V$, $γ ∈ E$ and $t ≠ 0$ small enough we have

$$\frac{1}{t}(f(x, γ(t), y) - f(x, y)) = f^{[1, 0]}(x, γ, t, y) → f^{[1, 0]}(x, γ, 0, y)$$

as $t → 0$. Hence $d^{[1, 0]} f(x, y, γ)$ exists and is given by $f^{[1, 0]}(x, γ, 0, y)$, whence the map

$$d^{[1, 0]} f : U × V × E → E, \quad (x, y, γ) → f^{[1, 0]}(x, γ, 0, y)$$

is continuous. Thus f is $C^{1, 0}$.

Conversely, let f be a $C^{1, 0}$-map. Then we define

$$f^{[1, 0]} : U^{[1]} × V → E, \quad f^{[1, 0]}(x, γ, t, y) := \begin{cases} \frac{f(x, γ(t), y) - f(x, y)}{t} & \text{if } t ≠ 0 \\ d^{[1, 0]} f(x, y, γ) & \text{if } t = 0. \end{cases}$$

8
Since f is continuous, the map $f^{[1,0]}$ is continuous at each (x, γ, t, y) with $t \neq 0$. Given $x_0 \in U$ and $\gamma_0 \in \mathcal{L}(G)$, we have $(x_0, \gamma_0, 0) \in U^{[1]}$: let $W := U_{x_0} \times U_{\gamma_0} \times \epsilon > 0$. Then for $t \in [1, 0]$ be an open neighborhood of $(x_0, \gamma_0, 0)$ in $U^{[1]}$, where $U_{x_0} \subseteq U$ and $U_{\gamma_0} \subseteq \mathcal{L}(G)$ are open neighborhoods of x_0 and γ_0, respectively, and $\epsilon > 0$. Now, for fixed $(x, \gamma, y) \in U_{x_0} \times U_{\gamma_0} \times V$ define the continuous curve

$$h : [-\epsilon, \epsilon] \to E, \quad h(t) := f(x \cdot \gamma(t), y).$$

Then for $t \in [-\epsilon, \epsilon], s \neq 0$ with $t + s \in [-\epsilon, \epsilon]$ we have

$$\frac{h(t + s) - h(t)}{s} = \frac{f(x \cdot \gamma(t + s), y) - f(x \cdot \gamma(t), y)}{s} = \frac{f(x \cdot \gamma(t) \cdot \gamma(s), y) - f(x \cdot \gamma(t), y)}{s} \to d^{(1,0)} f(x \cdot \gamma(t), y, \gamma)$$

as $s \to 0$. Thus, the derivative $h'(t)$ exists and is given by $d^{(1,0)} f(x \cdot \gamma(t), y, \gamma)$. The so obtained map $h' : [-\epsilon, \epsilon] \to E$ is continuous, hence h is a C^1-curve (see [6] for details on C^1-curves with values in locally convex spaces and also on weak integrals which we use in the next step). We use the Fundamental Theorem of Calculus ([6 Proposition 1.1.5]) and obtain for $t \neq 0$

$$f^{[1,0]}(x, \gamma, t, y) = \frac{1}{t} \left(f(x \cdot \gamma(t), y) - f(x, y) \right) = \frac{1}{t} \left(h(t) - h(0) \right)$$

$$= \frac{1}{t} \int_0^t h'(\tau) d\tau = \frac{1}{t} \int_0^t d^{(1,0)} f(x \cdot \gamma(\tau), y, \gamma) d\tau$$

$$= \frac{1}{t} \int_0^1 t d^{(1,0)} f(x \cdot \gamma(tu), y, \gamma) du = \int_0^1 d^{(1,0)} f(x \cdot \gamma(tu), y, \gamma) du.$$

But if $t = 0$, then

$$\int_0^1 d^{(1,0)} f(x \cdot \gamma(0), y, \gamma) du = d^{(1,0)} f(x, y, \gamma) = f^{[1,0]}(x, \gamma, 0, y),$$

hence

$$f^{[1,0]}(x, \gamma, t, y) = \int_0^1 d^{(1,0)} f(x \cdot \gamma(tu), y, \gamma) du$$

for all $(x, \gamma, t, y) \in W \times V$. Since the map

$$W \times V \times [0, 1] \to E, \quad (x, \gamma, t, y, u) \mapsto d^{(1,0)} f(x \cdot \gamma(tu), y, \gamma)$$

is continuous, also the parameter-dependent integral

$$W \times V \to E, \quad (x, \gamma, t, y) \mapsto f^{[1,0]}(x, \gamma, t, y) = \int_0^1 d^{(1,0)} f(x \cdot \gamma(tu), y, \gamma) du$$

is continuous (by [6 Lemma 1.1.11]), in particular in $(x_0, \gamma_0, 0, y)$. Consequently, $f^{[1,0]}$ is continuous. \[\square\]
The following two propositions provide a relation between C^k- and $C^{k,1}$-maps on products of topological groups (a version can also be found in [3]), in particular, we will conclude that $C^{\infty,\infty}(U \times V, E) \cong C^{\infty}(U \times V, E)$ as topological vector spaces (Corollary 2.14).

Proposition 2.12. Let $U \subseteq G, V \subseteq H$ be open subsets of topological groups G and H, let E be a locally convex space and $k \in \mathbb{N}_0 \cup \{\infty\}$. If $f : U \times V \to E$ is $C^{k,k}$, then f is C^k.

Moreover, the inclusion map

$$\Psi : C^{k,k}(U \times V, E) \to C^k(U \times V, E), \quad f \mapsto f$$

is continuous and linear.

Proof. The case $k = 0$ is trivial. For $k \geq 1$, we show by induction on $i \in \mathbb{N}$ with $i \leq k$ that for all $(x, y) \in U \times V$, $(\gamma_1, \eta_1), \ldots, (\gamma_i, \eta_i) \in \mathcal{L}(G \times H)$ the derivatives of f are given by

$$d^i f((x, y), (\gamma_1, \eta_1), \ldots, (\gamma_i, \eta_i)) = \sum_{j=0}^i \sum_{I_j: I_j \supseteq \{1, \ldots, i\}} \left(\sum \prod \right)$$

where $I_j := \{r_1, \ldots, r_j\} \cup \{s_1, \ldots, s_{i-j}\} = \{1, \ldots, i\}$.

Induction start: Let $(x, y) \in U \times V$ and $(\gamma, \eta) \in \mathcal{L}(G \times H)$, that is, $\gamma \in \mathcal{L}(G)$ and $\eta \in \mathcal{L}(H)$, see Remark 2.2. For $t \neq 0$ small enough we have

$$
\begin{align*}
\frac{f((x, y) \cdot (\gamma(t), \eta(t)) - f(x, y)}{t} &= \frac{f(x \cdot \gamma(t), y \cdot \eta(t)) - f(x, y)}{t} \\
&= \frac{f(x \cdot \gamma(t), y \cdot \eta(t)) - f(x \cdot \gamma(t), y)}{t} + \frac{f(x \cdot \gamma(t), y) - f(x, y)}{t} \\
&= \frac{g(y \cdot \eta(t), x \cdot \gamma(t)) - g(y, x \cdot \gamma(t))}{t} + \frac{f(x \cdot \gamma(t), y) - f(x, y)}{t},
\end{align*}
$$

where g is the map $g : V \times U \to E, (y, x) \mapsto f(x, y)$. By Corollary 2.8 the map g is $C^{1,1}$, whence the map $g^{[1,0]}$ is defined and continuous, as well as $f^{[1,0]}$ (see Lemma 2.7). Thus we have

$$
\begin{align*}
g(y \cdot \eta(t), x \cdot \gamma(t)) - g(y, x \cdot \gamma(t)) &= \frac{f(x \cdot \gamma(t), y) - f(x, y)}{t} \\
&= g^{[1,0]}(y, \eta, t, x \cdot \gamma(t)) + f^{[1,0]}(x, \gamma, t, y) \\
&\to g^{[1,0]}(y, \eta, 0, x) + f^{[1,0]}(x, \gamma, 0, y)
\end{align*}
$$

as $t \to 0$. Therefore, the derivative $df((x, y), (\gamma, \eta))$ exists and is given by

$$
\begin{align*}
df((x, y), (\gamma, \eta)) &= g^{[1,0]}(y, \eta, 0, x) + f^{[1,0]}(x, \gamma, 0, y) \\
&= d^{(1,0)} g(y, x, \eta) + d^{(1,0)} f(x, y, \gamma) \\
&= d^{(0,1)} f(x, y, \eta) + d^{(1,0)} f(x, y, \gamma).
\end{align*}
$$
Induction step: Now, let \(2 \leq i \leq k\), \((x, y) \in U \times V\), \((\gamma_1, \eta_1), \ldots, (\gamma_i, \eta_i) \in \mathcal{L}(G \times H)\). Then for \(t \neq 0\) small enough we have

\[
\frac{1}{t} \left(d^{(i-1)} f((x \cdot \gamma_i(t), y \cdot \eta_i(t)), (\gamma_1, \eta_1), \ldots, (\gamma_{i-1}, \eta_{i-1})) - d^{(i-1)} f((x, y), (\gamma_1, \eta_1), \ldots, (\gamma_{i-1}, \eta_{i-1})) \right)
\]

\[
= \sum_{j=0}^{i-1} \sum_{I_{j,i-1}} \frac{1}{t} \left(d^{(j,i-j-1)} f(x, \gamma_j(t), \gamma_{j+1}(t), \ldots, \gamma_{i-1}, \eta_j, \ldots, \eta_{i-1}) \right)
\]

\[
= \sum_{j=0}^{i-1} \sum_{I_{j,i-1}} \frac{1}{t} \left(D_{(\gamma_j,0)} \cdots D_{(\gamma_{j-i},0)} D_{(0,\eta_{i-j-1})} \cdots D_{(0,\eta_1)} f(x, \gamma_j(t), \gamma_{j+1}(t), \ldots, \gamma_{i-1}, \eta_j, \ldots, \eta_{i-1}) \right)
\]

Each of the maps

\[
D_{(\gamma_j,0)} \cdots D_{(\gamma_{j-i},0)} D_{(0,\eta_{i-j-1})} \cdots D_{(0,\eta_1)} f : U \times V \to E
\]

is \(C^1,1\) (see Remark 2.9), hence \(C^1\) and we have

\[
\sum_{j=0}^{i-1} \sum_{I_{j,i-1}} \frac{1}{t} \left(D_{(\gamma_j,0)} \cdots D_{(\gamma_{j-i},0)} D_{(0,\eta_{i-j-1})} \cdots D_{(0,\eta_1)} f(x, \gamma_j(t), \gamma_{j+1}(t), \ldots, \gamma_{i-1}, \eta_j, \ldots, \eta_{i-1}) \right)
\]

\[
= \sum_{j=0}^{i-1} \sum_{I_{j,i-1}} d^{(j,i-j)} f(x, y, \gamma_j, \ldots, \gamma_{j-i}, \eta_j, \ldots, \eta_{i-1})
\]

as \(t \to 0\) (using Proposition 2.7). Thus (3) holds, and we have

\[
d^{(i)} f = \sum_{j=0}^{i} \sum_{I_{j,i}} d^{(j,i-j)} f \circ g_{t,j,i},
\]

where

\[
g_{t,j,i} : U \times V \times \mathcal{L}(G \times H)^j \to U \times V \times \mathcal{L}(G)^j \times \mathcal{L}(H)^{i-j},
\]

\((x, y, (\gamma_1, \eta_1), \ldots, (\gamma_i, \eta_i)) \mapsto (x, y, \gamma_j, \ldots, \gamma_{j-i}, \eta_j, \ldots, \eta_{i-1})\)
are continuous maps (see Remark 2.2). Hence f is C^k.
The linearity of the map Ψ is clear. Further, each of the maps

$$g^*_{I_{j,i}} : C(U \times V \times \mathcal{L}(G)^j \times \mathcal{L}(H)^{i-j}, E)_{c.o} \to C(U \times V \times \mathcal{L}(G \times H)^{i-j}, E)_{c.o},$$

$h \mapsto h \circ g^*_{I_{j,i}}$ is continuous (see [6, Appendix A.5] or [4, Lemma B.9]), whence each of the maps

$$d^{(i)} \circ \Psi = \sum_{j=0}^{i} \sum_{I_{j,i}} g^*_{I_{j,i}} \circ d^{(i,i-j)}$$

is continuous. Since the topology on $C^k(U \times V, E)$ is initial with respect to the maps $d^{(i)}$, the continuity of Ψ follows.

Proposition 2.13. Let $U \subseteq G$, $V \subseteq H$ be open subsets of topological groups G and H, let E be a locally convex space and $k, l \in \mathbb{N}_0$. If $f : U \times V \to E$ is a C^{k+l}-map, then f is $C^{k,l}$.

Moreover, the inclusion map

$$\Psi : C^{k+l}(U \times V, E) \to C^{k,l}(U \times V, E), \quad f \mapsto f$$

is continuous and linear.

Proof. We denote by $\varepsilon_G \in \mathcal{L}(G)$ the constant map $\varepsilon_G : \mathbb{R} \to G, t \mapsto e_G$, where e_G is the identity element of G, and $\varepsilon_H \in \mathcal{L}(H)$ is defined analogously.

Let $x \in U$, $y \in V$, $\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G)$ and $\eta_1, \ldots, \eta_j \in \mathcal{L}(H)$ for some $i, j \in \mathbb{N}_0$ with $i \leq k$, $j \leq l$. Then we obviously have

$$d^{(i,j)}f(x, y, \gamma_1, \ldots, \gamma_i, \eta_1, \ldots, \eta_j) = d^{(i+j)}f((x, y, (\gamma_1, \varepsilon_H), \ldots, (\gamma_i, \varepsilon_H), (\varepsilon_G, \eta_1), \ldots, (\varepsilon_G, \eta_j))).$$

Each of the maps

$$\rho_{i,j} : U \times V \times \mathcal{L}(G)^i \times \mathcal{L}(H)^{j} \to U \times V \times \mathcal{L}(G \times H)^{i+j}$$

$$(x, y, \gamma_1, \ldots, \gamma_i, \eta_1, \ldots, \eta_j) \mapsto (x, y, (\gamma_1, \varepsilon_H), \ldots, (\gamma_i, \varepsilon_H), (\varepsilon_G, \eta_1), \ldots, (\varepsilon_G, \eta_j))$$

is continuous (see Remark 2.2) and we have

$$d^{(i,j)}f = d^{(i+j)}f \circ \rho_{i,j}.$$

Therefore, f is $C^{k,l}$.

The linearity of the map Ψ is clear. Further, by [6, Appendix A.5] (see also [4, Lemma B.9]), each of the maps
\[\rho_{i,j}^* : C(U \times V \times \mathcal{L}(G \times H)^{i+j}, E)_{c.o} \to C(U \times V \times \mathcal{L}(G)^i \times \mathcal{L}(H)^j, E)_{c.o} \]

\[h \mapsto h \circ \rho_{i,j} \]

is continuous, whence each of the maps

\[d^{(i,j)} \circ \Psi = \rho_{i,j}^* \circ d^{(i+j)} \]

is continuous. Hence, the continuity of \(\Psi \) follows, since the topology on the space \(C^{k,l}(U \times V, E) \) is initial with respect to the maps \(d^{(i,j)}. \)

Corollary 2.14. Let \(U \subseteq G, V \subseteq H \) be open subsets of topological groups \(G \) and \(H \), let \(E \) be a locally convex space. A map \(f : U \times V \to E \) is \(C^\infty \) if and only if \(f \) is \(C^{\infty, \infty} \). Moreover, the map

\[\Psi : C^\infty(U \times V, E) \to C^{\infty, \infty}(U \times V, E), \quad f \mapsto f \]

is an isomorphism of topological vector spaces.

Proof. The assertion is an immediate consequence of Propositions 2.12 and 2.13.

3 The exponential law

We recall the classical Exponential Law for spaces of continuous functions, which can be found, for example, in [6, Appendix A.5]:

Proposition 3.1. Let \(X_1, X_2, Y \) be topological spaces. If \(f : X_1 \times X_2 \to Y \) is a continuous map, then also the map

\[f^\vee : X_1 \to C(X_2, Y)_{c.o}, \quad x \mapsto f^\vee(x) := f(x, \bullet) \]

is continuous. Moreover, the map

\[\Phi : C(X_1 \times X_2, Y)_{c.o} \to C(X_1, C(X_2, Y))_{c.o}, \quad f \mapsto f^\vee \]

is a topological embedding. If \(X_2 \) is locally compact or \(X_1 \times X_2 \) is a \(k \)-space, or \(X_1 \times X_2 \) is a \(kR \)-space and \(Y \) is completely regular, then \(\Phi \) is a homeomorphism.

The following terminology is used here:

Remark 3.2. (a) A Hausdorff topological space \(X \) is called a \(k \)-space if functions \(f : X \to Y \) to a topological space \(Y \) are continuous if and only if the restrictions \(f|_K : K \to Y \) are continuous for all compact subsets \(K \subseteq X \). All locally compact spaces and all metrizable spaces are \(k \)-spaces.

(b) A Hausdorff topological space \(X \) is called a \(kR \)-space if real-valued functions \(f : X \to \mathbb{R} \) are continuous if and only if the restrictions \(f|_K : K \to \mathbb{R} \) are
continuous for all compact subsets $K \subseteq X$. Each k-space is a kR-space, hence also each locally compact and each metrizable space is a kR-space.

(c) A Hausdorff topological space X is called completely regular if its topology is initial with respect to the set $C(X, \mathbb{R})$. Each Hausdorff locally convex space (moreover, each Hausdorff topological group) is completely regular, see [7].

Theorem 3.3. Let $U \subseteq G$, $V \subseteq H$ be open subsets of topological groups G and H, let E be a locally convex space and $k, l \in \mathbb{N}_0 \cup \{\infty\}$. Then the following holds:

(a) If a map $f : U \times V \to E$ is $C^{k,l}$, then the map

$$f^\vee(y) := f(x, y) : V \to E, \quad y \mapsto f^\vee(x)(y) := f(x, y)$$

is C^l for each $x \in U$ and the map

$$f^\vee : U \to C^l(V, E), \quad x \mapsto f^\vee(x)$$

is C^k.

(b) The map

$$\Phi : C^{k,l}(U \times V, E) \to C^k(U, C^l(V, E)), \quad f \mapsto f^\vee$$

is linear and a topological embedding.

Proof. (a) We will consider the following cases:

The case $k = l = 0$: This case is covered by the classical Exponential Law [3,4]

The case $k = 0$, $l \geq 1$: Let $x \in U$; the map $f^\vee(x) = f(x, \bullet)$ is obviously continuous, and for $y \in V$, $\eta \in \mathfrak{L}(H)$ and $t \neq 0$ small enough we have

$$\frac{1}{t}(f^\vee(y \cdot \eta(t)) - f^\vee(y)) = \frac{1}{t}(f(x, y \cdot \eta(t)) - f(x, y)) \to D_{(0,\eta)}f(x, y)$$

as $t \to 0$. Thus the derivative $D_{\eta}(f^\vee(x))(y)$ exists and equals $D_{(0,\eta)}f(x, y) = (D_{(0,\eta)}f^\vee)(x)(y)$. Proceeding similarly, for each $j \in \mathbb{N}$ with $j \leq l$ and $\eta_1, \ldots, \eta_j \in \mathfrak{L}(H)$, we obtain the derivatives

$$(D_{\eta_j} \cdots D_{\eta_1}(f^\vee(x))) (y) = (D_{(0,\eta_j)} \cdots D_{(0,\eta_1)}f^\vee(x))(y)$$

(4)

The obtained differentials $d^{(j)}(f^\vee(x)) = (d^{(0,j)}f^\vee)(x) : V \times \mathfrak{L}(H)^j \to E$ are continuous, therefore $f^\vee(x)$ is C^l. Further, by the classical Exponential Law [3,4] each of the maps

$$f^\vee : U \to C(V, E)_{c.o.}, \quad x \mapsto f^\vee(x),$$

$$(d^{(0,j)}f^\vee) : U \to C(V \times \mathfrak{L}(H)^j, E)_{c.o.}, \quad x \mapsto (d^{(0,j)}f^\vee)(x)$$

14
is continuous, and we have $d^{(j)} \circ f^\vee = (d^{(0,j)} f)^\vee$ for all $j \in \mathbb{N}_0$ with $j \leq l$. Thus, the continuity of f^\vee follows from the fact that the topology on $C^l(V,E)$ is initial with respect to the maps $d^{(j)}$.

The case $k \geq 1$, $l \geq 0$: By the preceding steps, the map $f^\vee(x)$ is C^l for each $x \in U$ (with derivatives given in (3)). Now we show by induction on $i \in \mathbb{N}$ with $i \leq k$ that

$$(D_{\gamma_i} \cdots D_{\gamma_1} (f^\vee))(x) = (D_{\gamma_1,0} \cdots D_{\gamma_i,0} f)^\vee (x)$$

for all $x \in U$ and $\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G)$.

Induction start: Since f is $C^{1,0}$, by Lemma 2.11 the map $f^{[1,0]} : U^{[1]} \times V \to E$ is continuous, hence so is the map $(f^{[1,0]})^\vee : U^{[1]} \to C(V,E)_{c.o}$ (see Proposition 3.11). Let $(x, \gamma, t) \in U^{[1]}$ such that $t \neq 0$ and let $y \in V$, then we have

$$\frac{1}{t} (f^\vee(x \cdot \gamma(t))(y) - f^\vee(x)(y)) = \frac{1}{t} (f(x \cdot \gamma(t), y) - f(x, y)) = f^{[1,0]}(x, \gamma, t, y) = (f^{[1,0]})^\vee(x, \gamma, t)(y).$$

Therefore

$$\frac{1}{t} (f^\vee(x \cdot \gamma(t)) - f^\vee(x)) = (f^{[1,0]})^\vee(x, \gamma, t)$$

$$\to (f^{[1,0]})^\vee(x, \gamma, 0) = (D_{\gamma,0} f)^\vee(x)$$

as $t \to 0$. Thus, $D_{\gamma}(f^\vee)(x)$ exists and is given by $(D_{\gamma,0} f)^\vee(x)$.

Induction step: Now, let $2 \leq i \leq k$, $x \in U$ and $\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G)$. For $t \neq 0$ small enough we have

$$\frac{1}{t} ((D_{\gamma_{i-1}} \cdots D_{\gamma_1} (f^\vee))(x \cdot \gamma_i(t)) - (D_{\gamma_{i-1}} \cdots D_{\gamma_i} (f^\vee))(x))$$

$$= \frac{1}{t} ((D_{\gamma_1,0} \cdots D_{\gamma_i,0} f)^\vee(x \cdot \gamma_i(t)) - (D_{\gamma_1,0} \cdots D_{\gamma_i,0} f)^\vee(x))$$

by the induction hypothesis. But the map $D_{\gamma_{i-1},0} \cdots D_{\gamma_1,0} f : U \times V \to E$ is $C^{1,0}$ (see Remark 2.13), hence by the induction start we have

$$\frac{1}{t} ((D_{\gamma_{i-1},0} \cdots D_{\gamma_1,0} f)^\vee(x \cdot \gamma_i(t)) - (D_{\gamma_{i-1},0} \cdots D_{\gamma_1,0} f)^\vee(x))$$

$$\to D_{\gamma_i}((D_{\gamma_{i-1},0} \cdots D_{\gamma_1,0} f)^\vee(x)) = (D_{\gamma_i,0} \cdots D_{\gamma_1,0} f)^\vee(x),$$

which shows that the derivative $(D_{\gamma_1,0} \cdots D_{\gamma_i,0} f)^\vee(x)$ exists and is given by $(D_{\gamma,0} \cdots D_{\gamma_i,0} f)^\vee(x)$, thus (5) holds.

From Remark 2.13 we know that each of the maps

$$D_{\gamma_1,0} \cdots D_{\gamma_i,0} f : U \times V \to E$$

15
is $C^{0,l}$, hence $(D_{(\gamma_0, 0)} \cdots D_{(\gamma_l, 0)} f)^\gamma(x) \in C^l(V, E)$ for each $x \in U$. Now, it remains to show that each of the maps

\[d^{(i)}(f^\gamma) : U \times \mathcal{L}(G)^l \to C^l(V, E),\]

\[(x, \gamma_1, \ldots, \gamma_l) \mapsto (D_{\gamma_1} \cdots D_{\gamma_l}(f^\gamma))(x) = (D_{(\gamma_0, 0)} \cdots D_{(\gamma_l, 0)} f)^\gamma(x)\]

is continuous. To this end, let $y \in V$, $j \in \mathbb{N}_0$ with $j \leq l$ and $\eta_1, \ldots, \eta_j \in \mathcal{L}(H)$. Then we have

\[(d^{(i)} \circ d^{(i)}(f^\gamma))(x, \gamma_1, \ldots, \gamma_l)(y, \eta_1, \ldots, \eta_j)\]

\[= d^{(j)}(d^{(i)}(f^\gamma))(x, \gamma_1, \ldots, \gamma_l)(y, \eta_1, \ldots, \eta_j)\]

\[= [D_{\eta_j} \cdots D_{\eta_1}[(D_{\gamma_l} \cdots D_{\gamma_1}(f^\gamma))(x)](y)\]

Using (5) and (4) in turn we obtain

\[[D_{\eta_j} \cdots D_{\eta_1}[(D_{\gamma_l} \cdots D_{\gamma_1}(f^\gamma))(x)](y)\]

\[= (D_{(0, \eta_j)} \cdots D_{(0, \eta_1)} D_{(\gamma_l, 0)} \cdots D_{(\gamma_1, 0)} f)^\gamma(x)(y)\]

Finally, from Proposition 2.7 we conclude

\[(D_{(0, \eta_j)} \cdots D_{(0, \eta_1)} D_{(\gamma_l, 0)} \cdots D_{(\gamma_1, 0)} f)^\gamma(x)(y)\]

\[= d^{(i,j)} f(x, y, \gamma_1, \ldots, \gamma_l, \eta_1, \ldots, \eta_j)\]

\[= (d^{(i,j)} f \circ \rho_{i,j})(x, \gamma_1, \ldots, \gamma_l, y, \eta_1, \ldots, \eta_j)\]

\[= (d^{(i,j)} f \circ \rho_{i,j})^\gamma(x, \gamma_1, \ldots, \gamma_l)(y, \eta_1, \ldots, \eta_j),\]

where each $\rho_{i,j}$ is the continuous map

\[\rho_{i,j} : U \times \mathcal{L}(G)^l \times V \times \mathcal{L}(H)^j \to U \times V \times \mathcal{L}(G)^l \times \mathcal{L}(H)^j,\]

\[(x, \gamma, y, \eta) \mapsto (x, y, \gamma, \eta)\]

Now, from the classical Exponential Law \[6.1\] follows that the maps

\[(d^{(i,j)} f \circ \rho_{i,j})^\gamma : U \times \mathcal{L}(G)^l \to C(V \times \mathcal{L}(H)^j, E)_{c.o}\]

are continuous, and we have shown that

\[d^{(j)} \circ d^{(i)}(f^\gamma) = (d^{(i,j)} f \circ \rho_{i,j})^\gamma,\]

(6)

thus the continuity of $d^{(i)}(f^\gamma)$ follows from the fact that the topology on $C^l(V, E)$ is initial with respect to the maps $d^{(i)}$, whence f^γ is C^k. 16
(b) The linearity and injectivity of \(\Phi \) is clear. To show that \(\Phi \) is a topological embedding we will prove that the given topology on \(C^{k,l}(U \times V, E) \) is initial with respect to \(\Phi \). We define the functions

\[
\rho^*_{i,j} : C(U \times V \times \mathfrak{L}(G)^i \times \mathfrak{L}(H)^j, E)_{c.o} \to C(U \times \mathfrak{L}(G)^i \times V \times \mathfrak{L}(H)^j, E)_{c.o},
\]

\[g \mapsto g \circ \rho_{i,j}, \]

and

\[
\Psi_{i,j} : C(U \times \mathfrak{L}(G)^i \times V \times \mathfrak{L}(H)^j, E)_{c.o} \to C(U \times \mathfrak{L}(G)^i, C(V \times \mathfrak{L}(H)^j, E)_{c.o})_{c.o},
\]

\[g \mapsto g^\vee \]

for \(i, j \in \mathbb{N}_0 \) such that \(i \leq k, j \leq l \). Then we have

\[
(d^{(i,j)} f \circ \rho_{i,j})^\vee = (\Psi_{i,j} \circ \rho^*_{i,j} \circ d^{(i,j)})(f).
\]

On the other hand, we have

\[
d^{(j)} \circ d^{(i)}(f^\vee) = (C(U \times \mathfrak{L}(G)^i, d^{(j)}(d^{(i)}(f) \circ \Phi))(f),
\]

where \((C(U \times \mathfrak{L}(G)^i, d^{(j)}) \) are the maps

\[
C(U \times \mathfrak{L}(G)^i, C^l(V, E))_{c.o} \to C(U \times \mathfrak{L}(G)^i, C(V \times \mathfrak{L}(H)^j, E)_{c.o})_{c.o},
\]

\[g \mapsto d^{(j)} \circ g. \]

Thus, from (6) follows the equality

\[
C(U \times \mathfrak{L}(G)^i, d^{(j)}) \circ d^{(i)} \circ \Phi = \Psi_{i,j} \circ \rho^*_{i,j} \circ d^{(i,j)}.
\]

The maps \(d^{(i,j)}, \rho^*_{i,j} \) and \(\Psi_{i,j} \) are topological embeddings (see definition of the topology on \(C^{k,l}(U \times V, E) \), Appendix A.5, and Proposition 5.1 respectively), hence by the transitivity of initial topologies Appendix A.2 the given topology on \(C^{k,l}(U \times V, E) \) is initial with respect to the maps \(\Psi_{i,j} \circ \rho^*_{i,j} \circ d^{(i,j)} \).

But by the above equality, this topology is also initial with respect to the maps \(C(U \times \mathfrak{L}(G)^i, d^{(j)}) \circ d^{(i)} \circ \Phi \). Since \(d^{(i)} \) and \(C(U \times \mathfrak{L}(G)^i, d^{(j)}) \) are topological embeddings (see definition of the topology on \(C^l(V, E) \) and Appendix A.5), respectively) we conclude from Appendix A.2 that the topology on the space \(C^{k,l}(U \times V, E) \) is initial with respect to \(\Phi \). This completes the proof.

Now, we go over to the proof of Theorem (B):

Proof of Theorem (B). We need to show that if \(g \in C^k(U, C^l(V, E)) \), then the map

\[
g^\wedge : U \times V \to E, \quad g^\wedge(x,y) := g(x)(y)
\]
(which is continuous, since the locally convex space \(E \) is completely regular and we assumed that \(U \times V \) is a \(k_\mathbb{R} \)-space, see Proposition \ref{prop:continuous}). Since \(\Phi(g^\wedge) = (g^\wedge)' = g \), the map \(\Phi \) will be surjective, hence a homeomorphism (being a topological embedding by Theorem \ref{thm:topological_embedding}).

To this end, we fix \(x \in U \), then \(g(x) \in C^l(U, E) \) and for \(y \in V, \eta \in \mathcal{L}(H) \) and \(t \neq 0 \) small enough we have

\[
\frac{1}{t}(g^\wedge(x, y \cdot \eta(t)) - g^\wedge(x, y)) = \frac{1}{t}(g(x)(y \cdot \eta(t)) - g(x)(y)) \to d(g(x))(y, \eta)
\]

as \(t \to 0 \). Consequently \(d^{(0,1)}(g^\wedge)(x, y, \eta) \) exists and equals \(d(g(x))(y, \eta) = (d^{(1)} \circ g)(x, y, \eta) = (d^{(1)} \circ g)^\wedge(x, y, \eta) \). Analogously, for \(j \in \mathbb{N}_0 \) with \(j \leq l \) and \(\eta_1, \ldots, \eta_j \in \mathcal{L}(H) \) we obtain the derivatives

\[
d^{(0,j)}(g^\wedge)(x, y, \eta_1, \ldots, \eta_j) = (d^{(j)} \circ g)^\wedge(x, y, \eta_1, \ldots, \eta_j).
\]

But for fixed \((y, \eta_1, \ldots, \eta_j)\) we have

\[
(d^{(j)} \circ g)^\wedge(x, y, \eta_1, \ldots, \eta_j) = (d^{(j)} \circ g)(x)(y, \eta_1, \ldots, \eta_j)
\]

\[
= (\text{ev}_{(y, \eta_1, \ldots, \eta_j)} \circ d^{(j)} \circ g)(x),
\]

where \(\text{ev}_{(y, \eta_1, \ldots, \eta_j)} \) is the continuous linear map

\[
\text{ev}_{(y, \eta_1, \ldots, \eta_j)} : C(V \times \mathcal{L}(H)^j, E)_{c.o} \to E, \quad h \mapsto h(y, \eta_1, \ldots, \eta_j).
\]

Since also \(d^{(j)} : C^l(V, E) \to C(V \times \mathcal{L}(H)^j, E)_{c.o} \) is continuous and linear, the composition \(\text{ev}_{(y, \eta_1, \ldots, \eta_j)} \circ d^{(j)} \circ g : U \to E \) is \(C^k \), by Lemma \ref{lem:composition}. Thus for \(\gamma \in \mathcal{L}(G) \) and \(t \neq 0 \) small enough we obtain

\[
\frac{1}{t}(d^{(0,j)}(g^\wedge)(x \cdot \gamma(t), y, \eta_1, \ldots, \eta_j)) - d^{(0,j)}(g^\wedge)(x, y, \eta_1, \ldots, \eta_j))
\]

\[
= \frac{1}{t}((\text{ev}_{(y, \eta_1, \ldots, \eta_j)} \circ d^{(j)} \circ g)(x \cdot \gamma(t)) - (\text{ev}_{(y, \eta_1, \ldots, \eta_j)} \circ d^{(j)} \circ g)(x))
\]

\[
\to d((\text{ev}_{(y, \eta_1, \ldots, \eta_j)} \circ d^{(j)} \circ g)(x, \gamma),
\]

as \(t \to 0 \). Thus \(d^{(1,j)}(g^\wedge)(x, y, \gamma, \eta_1, \ldots, \eta_j) \) is given by

\[
d((\text{ev}_{(y, \eta_1, \ldots, \eta_j)} \circ d^{(j)} \circ g)(x, \gamma) = (\text{ev}_{(y, \eta_1, \ldots, \eta_j)} \circ d^{(j)} \circ dg)(x, \gamma)
\]

\[
= (d^{(j)} \circ dg)(x, \gamma)(y, \eta_1, \ldots, \eta_j)
\]

\[
= (d^{(j)} \circ dg)^\wedge(x, \gamma, y, \eta_1, \ldots, \eta_j).
\]

Analogously, for each \(i \in \mathbb{N}_0 \) with \(i \leq k \) and \(\gamma_1, \ldots, \gamma_i \in \mathcal{L}(G) \) we obtain

\[
d^{(i,j)}(g^\wedge)(x, y, \gamma_1, \ldots, \gamma_i, \eta_1, \ldots, \eta_j) = (d^{(j)} \circ d^{(i)} g)^\wedge(x, \gamma_1, \ldots, \gamma_i, y, \eta_1, \ldots, \eta_j).
\]
To see that \(g^\wedge \) is \(C^{k,l} \) we need to show that the maps

\[
d^{(i,j)}(g^\wedge) : U \times V \times \mathcal{L}(G)^i \times \mathcal{L}(H)^j \to E, \quad (x, y, \gamma_1, \ldots, \gamma_i, \eta_1, \ldots, \eta_j) \mapsto (d^{(j)} \circ d^{(i)} g)^\wedge(x, \gamma_1, \ldots, \gamma_i, y, \eta_1, \ldots, \eta_j)
\]

are continuous for all \(i, j \in \mathbb{N}_0 \) with \(i \leq k, j \leq l \). To this end, consider the continuous maps

\[
d^{(j)} \circ d^{(i)} g : U \times \mathcal{L}(G)^i \to C(V \times \mathcal{L}(H)^j, E_{c.o}).
\]

By Proposition 3.1 the maps \((d^{(j)} \circ d^{(i)} g)^\wedge : U \times \mathcal{L}(G)^i \times V \times \mathcal{L}(H)^j \to E\) are continuous, since \(E \) is completely regular and we assumed that \(U \times V \times \mathcal{L}(G)^i \times \mathcal{L}(H)^j \) is a \(k_{\mathbb{R}} \)-space, hence the maps \(d^{(i,j)}(g^\wedge) \) are continuous and \(g^\wedge \) is \(C^{k,l} \).

\[\square\]

Remark 3.4. Theorem (A) follows from Theorem (B), since \(C^\infty \infty(U \times V, E) \cong C^\infty(U \times V, E) \) as a topological vector space, by Corollary 2.14.

Corollary 3.5. Let \(U \subseteq G, V \subseteq H \) be open subsets of topological groups \(G \) and \(H \), let \(E \) be a locally convex space and \(k, l \in \mathbb{N}_0 \cup \{\infty\} \). Assume that at least one of the following conditions is satisfied:

(a) \(l = 0 \) and \(V \) is locally compact,

(b) \(k, l < \infty \) and \(U \times V \times \mathcal{L}(G)^k \times \mathcal{L}(H)^l \) is a \(k_{\mathbb{R}} \)-space,

(c) \(G \) and \(H \) are metrizable,

(d) \(G \) and \(H \) are locally compact.

Then the map

\[
\Phi : C^{k,l}(U \times V, E) \to C^k(U, C^l(V, E)), \quad f \mapsto f^\circ
\]

is a homeomorphism.

Proof. (a) As in the proof of Theorem (B), we need to show that if \(g \in C^k(U, C(V, E)) \), then \(g^\wedge \in C^{k,0}(U \times V, E) \). The computations of the derivatives of \(g^\wedge \) carry over (with \(j = 0 \)), hence it remains to show that the maps \(d^{(i,0)}(g^\wedge) \) in (4) are continuous for all \(i \in \mathbb{N}_0 \) with \(i \leq k \). But since \(V \) is assumed locally compact, each of the maps \((d^{(i,0)} \circ d^{(i)} g)^\wedge : U \times \mathcal{L}(G)^i \times V \to E \) is continuous by Proposition 3.1, hence so is each of the maps \(d^{(i,0)}(g^\wedge) \), as required.

(b) By [5] Proposition, p.62, if \(U \times V \times \mathcal{L}(G)^k \times \mathcal{L}(H)^l \) is a \(k_{\mathbb{R}} \)-space, then so is \(U \times V \times \mathcal{L}(G)^i \times \mathcal{L}(H)^j \) for each \(i, j \in \mathbb{N}_0 \) with \(i \leq k, j \leq l \). Hence, Theorem (B) holds and \(\Phi \) is a homeomorphism.

(c) Since \(G \) is metrizable, the space \(C(\mathbb{R}, G) \) is metrizable (see [6] Appendix A.5 or [3] Lemma B.21), whence so is \(\mathcal{L}(G) \subseteq C(\mathbb{R}, G) \) as well as \(U \times \mathcal{L}(G)^i \) for each \(i \in \mathbb{N}_0, i \leq k \) as a finite product of metrizable spaces. With a similar
argumentation we conclude that also $V \times \mathfrak{L}(H)^J$ is metrizable for each $j \in \mathbb{N}_0$ with $j \leq l$, whence so is $U \times V \times \mathfrak{L}(G)^i \times \mathfrak{L}(H)^j$. But each metrizable space is a k-space, hence a $k_\mathcal{R}$-space. Therefore, Theorem (B) holds in this case and Φ is a homeomorphism.

(d) As G is locally compact, it is known that the identity component G_0 of G (being a connected locally compact subgroup of G) is a pro-Lie group (in the sense that G_0 is complete and every identity neighborhood of G_0 contains a normal subgroup N such that G/N is a Lie group, see [5, Definition 3.25]). Hence, by [5, Theorem 3.12], $\mathfrak{L}(G)$ is a pro-Lie algebra, and from [5, Proposition 3.7] follows that $\mathfrak{L}(G) \cong \mathbb{R}^I$ for some set I as a topological vector space. Since also H is assumed locally compact, for each $i, j \in \mathbb{N}_0$ with $i \leq k, j \leq l$ we have $U \times V \times \mathfrak{L}(G)^i \times \mathfrak{L}(H)^j \cong U \times V \times (\mathbb{R}^I)^i \times (\mathbb{R}^J)^j$ for some set J. Now, from [13, Theorem 5.6 (ii)] follows that $U \times V \times \mathfrak{L}(G)^i \times \mathfrak{L}(H)^j$ is a $k_\mathcal{R}$-space (being isomorphic to a product of completely regular locally compact spaces), whence Theorem (B) holds and Φ is a homeomorphism.

\[\square\]

A Some properties of C^k- and $C^{k,l}$-functions on topological groups

First, we prove a simple chain rule for compositions of continuous group homomorphisms and C^k-functions:

Lemma A.1. Let G and H be topological groups, E be a locally convex space. Let $\phi : G \to H$ be a continuous group homomorphism and $f : V \to E$ be a C^k-map ($k \in \mathbb{N} \cup \{\infty\}$) on an open subset $V \subseteq H$. Then for $U := \phi^{-1}(V)$ the map

$$f \circ \phi|_U : U \to E, \quad x \mapsto f(\phi(x))$$

is C^k.

Proof. Obviously, the map $f \circ \phi|_U$ is continuous. Now, let $x \in U$ and $\gamma \in \mathfrak{L}(G)$. For $t \neq 0$ small enough we have

$$\frac{f(\phi(x \cdot \gamma(t))) - f(\phi(x))}{t} = \frac{f(\phi(x) \cdot \phi(\gamma(t))) - f(\phi(x))}{t} \to df(\phi(x), \phi \circ \gamma)$$

as $t \to 0$, since $\phi \circ \gamma \in \mathfrak{L}(H)$, see Remark 2.2. Therefore $df(\phi \circ \phi|_U)(x, \gamma)$ exists and is given by $df(\phi(x), \phi \circ \gamma)$. Repeating the above steps, we obtain for $i \in \mathbb{N}$ with $i \leq k$, $\gamma_1, \ldots, \gamma_i \in \mathfrak{L}(G)$ the derivatives $d^{(i)}(f \circ \phi|_U)(x, \gamma_1, \ldots, \gamma_i) = d^{(i)}f(\phi(x), \phi \circ \gamma_1, \ldots, \phi \circ \gamma_i)$.

Now, recall that the map $\Sigma(\phi) : \mathfrak{L}(G) \to \mathfrak{L}(H), \eta \mapsto \phi \circ \eta$ is continuous (Remark 2.2), whence also each of the maps

$$d^{(i)}(f \circ \phi|_U) := (d^{(i)}f) \circ (\phi|_U \times \mathfrak{L}(\phi) \times \cdots \times \mathfrak{L}(\phi)) : U \times \mathfrak{L}(G)^i \to E$$

is continuous. Hence $f \circ \phi|_U$ is C^k. \[\square\]
Lemma A.2. Let $U \subseteq G$, $V \subseteq H$ be open subsets of topological groups G and H, let $(E_α)_{α \in A}$ be a family of locally convex spaces with direct product $E := \prod_{α \in A} E_α$ and the coordinate projections $pr_α : E \to E_α$. For $k, l \in \mathbb{N}_0 \cup \{\infty\}$ the following holds:

(a) A map $f : U \to E$ is C^k if and only if all of its components $f_α := pr_α \circ f$ are C^k.

(b) A map $f : U \times V \to E$ is $C^{k,l}$ if and only if all of its components $f_α := pr_α \circ f$ are $C^{k,l}$.

Proof. To prove (a), first recall that because each of the projections $pr_α$ is continuous and linear, the compositions $pr_α \circ f$ are C^k if f is C^k, by Lemma 2.10 (a).

Conversely, assume that each $f_α$ is C^k and let $x \in U$, $γ \in \Sigma(G)$ and $t \neq 0$ small enough. Then we have

$$
\frac{1}{t} \left(f(x \cdot γ(t)) - f(x) \right) = \left(\frac{1}{t} (f_α(x \cdot γ(t)) - f_α(x)) \right)_{α \in A}.
$$

Since $\frac{1}{t} (f_α(x \cdot γ(t)) - f_α(x))$ converges to $df_α(x, γ)$ as $t \to 0$ for each $α \in A$, the derivative $df(x, γ)$ exists and is given by $(df_α(x, γ))_{α \in A}$.

Repeating the above steps, we obtain for $i \in \mathbb{N}$ with $i \leq k$ and $γ_1, \ldots, γ_i \in \Sigma(G)$ the derivatives $d^{(i)} f(x, γ_1, \ldots, γ_i) = (d^{(i)} f_α(x, γ_1, \ldots, γ_i))_{α \in A}$, which define continuous maps

$$
d^{(i)} f = \left(d^{(i)} f_α \right)_{α \in A} : U \times \Sigma(G)^i \to E.
$$

Therefore, f is C^k.

The assertion (b) can be proven similarly, by using Lemma 2.10 (b) and showing that for all $i, j \in \mathbb{N}_0$, with $i \leq k$, $j \leq l$ we have $d^{(i,j)} f = (d^{(i,j)} f_α)_{α \in A}$.

The following lemma is a special case of Lemma 2.11.

Lemma A.3. Let $U \subseteq G$ be an open subset of a topological group G, and E be a locally convex space. A continuous map $f : U \to E$ is C^1 if and only if there exists a continuous map

$$
f^{[1]} : U^{[1]} \to E
$$

on the open set

$$
U^{[1]} := \{(x, γ, t) \in U \times \Sigma(G) \times \mathbb{R} : x \cdot γ(t) \in U\}
$$

such that

$$
f^{[1]}(x, γ, t) = \frac{1}{t}(f(x \cdot γ(t)) - f(x))
$$

for each $(x, γ, t) \in U^{[1]}$ with $t \neq 0$.

In this case we have $df(x, γ) = f^{[1]}(x, γ, 0)$ for all $x \in U$ and $γ \in \Sigma(G)$.
We use this lemma, as well as the analogue for \(C^4 \)-maps on locally convex spaces (which can be found in \([5\), Lemma 1.2.10\]), for the proof of a chain rule for compositions of \(C^k \)-functions \(f : G \to E \) and \(g : E \to F \), which will be provided after the following version:

Lemma A.4. Let \(G \) be a topological group, \(P \) be a topological space and \(E, F \) be locally convex spaces. Let \(U \subseteq G, V \subseteq E \) be open subsets, and \(k \in \mathbb{N} \cup \{ \infty \} \). If \(f : U \times P \to E \) is a \(C^{k,0} \)-map such that \(f(U \times P) \subseteq V \), and \(g : V \to F \) is a \(C^k \)-map (in the sense of differentiability on locally convex spaces), then

\[
g \circ f : U \times P \to F
\]

is a \(C^{k,0} \)-map.

Proof. We may assume that \(k \) is finite and prove the assertion by induction.

Induction start: Assume that \(f \) is \(C^{1,0} \), \(g \) is \(C^1 \) and let \(x \in U, p \in P \) and \(\gamma \in \mathfrak{L}(G) \). For \(t \neq 0 \) small enough we have

\[
g(f(x \cdot (t), p)) - g(f(x, p)) = \frac{g(f(x, p) + \frac{t(f(x, p))}{2} - f(x, p))}{t} - g(f(x, p))
\]

\[
= \frac{g(f(x, p) + t \cdot f^{[1,0]}(x, \gamma, t, p))}{t} - g(f(x, p))
\]

where \(g^{[1]} \), \(f^{[1,0]} \) are the continuous maps from \([6\), Lemma 1.2.10\] and Lemma \(2.11 \). As \(t \to 0 \) we consequently have

\[
g(f(x \cdot (t), p)) - g(f(x, p)) \to g^{[1]}(f(x, p), f^{[1,0]}(x, \gamma, 0, p), 0)
\]

\[
= dg(f(x, p), d^{[1,0]} f(x, p, \gamma)).
\]

Therefore, the derivative \(d^{[1,0]}(g \circ f)(x, p, \gamma) \) exists and is given by the directional derivative \(dg(f(x, p), d^{[1,0]} f(x, p, \gamma)) \).

Consider the continuous map

\[
h : U \times P \times \mathfrak{L}(G) \to E, \quad (x, p, \gamma) \mapsto f(x, p).
\]

Since \(d^{[1,0]}(g \circ f)(x, p, \gamma) = (dg \circ (h, d^{[1,0]} f))(x, p, \gamma) \), the map

\[
d^{[1,0]}(g \circ f) = dg \circ (h, d^{[1,0]} f) : U \times P \times \mathfrak{L}(G) \to F
\]

is continuous, whence \(g \circ f \) is \(C^{1,0} \).

Induction step: Now, assume that \(f \) is \(C^{k,0} \) and \(g \) is \(C^k \) for some \(k \geq 2 \). By Remark \(23 \) the map \(d^{[1,0]} f : U \times (P \times \mathfrak{L}(G)) \to E \) is \(C^{k-1,0} \), and it is easily seen that the map \(h : U \times (P \times \mathfrak{L}(G)) \to E \) defined in the induction start is \(C^{k,0} \). Hence, using Lemma \(A.2 \)(b), we see that \((h, d^{[1,0]}) : U \times (P \times \mathfrak{L}(G)) \to E \times E \)

22
is a $C^{k-1,0}$-map. Since $dg : V \times E \to F$ is C^{k-1} (see [6, Definition 1.3.1]), the map

$$d^{(1,0)}(g \circ f) = dg \circ (h, d^{(1,0)}) : U \times (P \times \mathcal{L}(G)) \to F$$

is $C^{k-1,0}$, by the induction hypothesis, and from Remark 2.6 follows that $g \circ f$ is $C^{k,0}$.

Lemma A.5. Let G be a topological group, E, F be locally convex spaces and $k \in \mathbb{N} \cup \{\infty\}$. Let $U \subseteq G$, $V \subseteq E$ be open subsets. If $f : U \to E$ is a C^k-map with $f(U) \subseteq V$ and also $g : V \to F$ is a C^k-map, then the map

$$g \circ f : U \to F$$

is C^k.

Proof. We may assume that k is finite and prove the assertion by induction.

Induction start: Assume that f and g are C^1-maps. Analogously to the preceding lemma, for $x \in U$, $\gamma \in \mathcal{L}(G)$ and $t \neq 0$ small enough we have

$$\frac{1}{t}(g(f(x \cdot \gamma(t))) - g(f(x))) = g^{[1]}(f(x), f^{[1]}(x, \gamma, t), t),$$

with continuous maps $f^{[1]}$ as in Lemma A.3 and $g^{[1]}$ as in [6, Lemma 1.2.10]. Thus, the derivative $d(g \circ f)(x, \gamma)$ exists and we have

$$d(g \circ f)(x, \gamma) = g^{[1]}(f(x), f^{[1]}(x, \gamma, 0), 0) = dg(f(x), df(x, \gamma)).$$

Using the continuous function

$$h : U \times \mathcal{L}(G) \to E, \quad (x, \gamma) \mapsto f(x),$$

we see that

$$d(g \circ f) = dg \circ (h, df) : U \times \mathcal{L}(G) \to F$$

is continuous, hence $g \circ f$ is a C^1-map.

Induction step: Now, let f and g be C^k-maps for some $k \geq 2$. Then the map $df : U \times \mathcal{L}(G) \to E$ is $C^{k-1,0}$, by Remark 2.6 and the map $h : U \times \mathcal{L}(G) \to E$ is obviously C^{k-0}. We use Lemma A.2 (b) and see that $(h, df) : U \times \mathcal{L}(G) \to E \times E$ is a $C^{k-1,0}$-map. By [6, Definition 1.3.1], the map $dg : V \times E \to F$ is C^{k-1}, hence by Lemma A.4, the composition

$$d(g \circ f) = dg \circ (h, df) : U \times \mathcal{L}(G) \to F$$

is $C^{k-1,0}$, whence $g \circ f$ is C^k, by Remark 2.6. \qed
Finally, the following example illustrates that the statement of Schwarz’ Theorem does not hold for maps on non-abelian topological groups.

Example A.6. Consider the following subgroup G of $GL_3(\mathbb{R})$:

\[
G := \left\{ x = \begin{pmatrix} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{pmatrix} : x_1, x_2, x_3 \in \mathbb{R} \right\}
\]

(known as the Heisenberg group) and $\gamma, \eta \in \mathcal{L}(G)$ defined as

\[
\gamma(t) := \begin{pmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \eta(t) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix} \quad (\forall t \in \mathbb{R}).
\]

Then $G \cong \mathbb{R}^3$ via

\[
\phi : G \to \mathbb{R}^3, \quad x := \begin{pmatrix} 1 & x_1 & x_2 \\ 0 & 1 & x_3 \\ 0 & 0 & 1 \end{pmatrix} \mapsto (x_1, x_2, x_3).
\]

Let $g : \mathbb{R}^3 \to \mathbb{R}$ be a partially C^2-map in the usual sense and define

\[
f := g \circ \phi : G \to \mathbb{R}.
\]

Then for each $x \in G$, the derivatives $D_\gamma f(x)$, $D_\eta f(x)$, $(D_\eta D_\gamma f)(x)$ and $(D_\gamma D_\eta f)(x)$ can be expressed using the partial derivatives of g.

First, we have

\[
D_\gamma f(x) = \lim_{t \to 0} \frac{1}{t} (f(x \cdot \gamma(t)) - f(x)) = \lim_{t \to 0} \frac{1}{t} (g(\phi(x \cdot \gamma(t))) - g(\phi(x)))
\]

\[
= \lim_{t \to 0} \frac{1}{t} (g(x_1 + t, x_2, x_3) - g(x_1, x_2, x_3))
\]

\[
= \lim_{t \to 0} \frac{1}{t} (g((x_1, x_2, x_3) + t(1, 0, 0)) - g(x_1, x_2, x_3)) = \frac{\partial}{\partial x_1} g(x_1, x_2, x_3).
\]

Further,

\[
D_\eta f(x) = \lim_{t \to 0} \frac{1}{t} (f(x \cdot \eta(t)) - f(x)) = \lim_{t \to 0} \frac{1}{t} (g(\phi(x \cdot \eta(t))) - g(\phi(x)))
\]

\[
= \lim_{t \to 0} \frac{1}{t} (g(x_1, x_2 + tx_1, x_3 + t) - g(x_1, x_2, x_3))
\]

\[
= x_1 \frac{\partial}{\partial x_2} g(x_1, x_2, x_3) + \frac{\partial}{\partial x_3} g(x_1, x_2, x_3).
\]

Now,
\[(D_\eta D_\gamma f)(x) = \lim_{t \to 0} \frac{1}{t} (D_\gamma f(x \cdot \eta(t)) - D_\gamma f(x))\]
\[= \lim_{t \to 0} \frac{1}{t} \left(\frac{\partial}{\partial x_1} g(x_1, x_2 + tx_1 + t, x_3 + t) - \frac{\partial}{\partial x_1} g(x_1, x_2, x_3) \right)\]
\[= x_1 \cdot \frac{\partial^2}{\partial x_1 \partial x_2} g(x_1, x_2, x_3) + \frac{\partial^2}{\partial x_1 \partial x_3} g(x_1, x_2, x_3).\]

And, finally
\[(D_\gamma D_\eta f)(x) = \lim_{t \to 0} \frac{1}{t} (D_\eta f(x \cdot \gamma(t)) - D_\eta f(x))\]
\[= \lim_{t \to 0} \frac{1}{t} \left((x_1 + t) \cdot \frac{\partial}{\partial x_2} g(x_1 + t, x_2, x_3) + \frac{\partial}{\partial x_3} g(x_1, x_2, x_3) \right)\]
\[= \lim_{t \to 0} \frac{x_1}{t} \left(\frac{\partial}{\partial x_2} g(x_1 + t, x_2, x_3) - \frac{\partial}{\partial x_3} g(x_1, x_2, x_3) \right)\]
\[+ \lim_{t \to 0} \frac{1}{t} \left(\frac{\partial}{\partial x_3} g(x_1 + t, x_2, x_3) - \frac{\partial}{\partial x_2} g(x_1, x_2, x_3) \right) + \lim_{t \to 0} \frac{\partial}{\partial x_2} g(x_1 + t, x_2, x_3)\]
\[= x_1 \cdot \frac{\partial^2}{\partial x_1 \partial x_2} g(x_1, x_2, x_3) + \frac{\partial^2}{\partial x_1 \partial x_3} g(x_1, x_2, x_3) + \frac{\partial}{\partial x_2} g(x_1, x_2, x_3)\]
\[= (D_\eta D_\gamma f)(x) + \frac{\partial}{\partial x_2} g(x_1, x_2, x_3).\]

Thus we see that if \(\frac{\partial}{\partial x_2} g(x_1, x_2, x_3) \neq 0\), then \((D_\gamma D_\eta f)(x) \neq (D_\eta D_\gamma f)(x)\).

References

[1] Alzaareer, H., Schmeding, A., Differentiable mappings on products with different degrees of differentiability in the two factors, *Expo. Math.* 33, No. 2 (2015), 184-222

[2] Beltiţă, D., Nicolae, M., On universal enveloping algebras in a topological setting, *Stud. Math.* 230, No. 1 (2015), 1-29

[3] Boseck, H., Czichowski, G., Rudolph, K.-P., *Analysis on Topological Groups - General Lie Theory*, Teubner-Texte zur Mathematik, Bd.37, Teubner Verlagsgesellschaft Leipzig, 1981

[4] Glöckner, H., Exponential laws for ultrametric partially differentiable functions and applications, extended preprint version [arXiv:1209.1384](http://arxiv.org/abs/1209.1384) (cf. publication in *p-Adic Numbers Ultrametric Anal. Appl.* 5, No. 2 (2013), 122 -159)

[5] Glöckner, H., Regularity properties of infinite-dimensional Lie groups, and semiregularity, preprint, [arXiv:1208.0715](http://arxiv.org/abs/1208.0715)
[6] Glöckner, H., Neeb, K.-H., *Infinite-dimensional Lie Groups*, book in preparation

[7] Hewitt, E., Ross, K. A., *Abstract Harmonic Analysis I*, Springer New York, 1963

[8] Hofmann, K. H., Morris, S. A., *The Lie Theory of Connected Pro-Lie Groups - A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups, and Connected Locally Compact Groups*, EMS Publishing House, 2007

[9] Hušek, M., Products of quotients and of k’-spaces, *Comment. Math. Univ. Carolinae* 12 (1971), 61-68

[10] Kriegl, A., Michor, P. W., *The convenient setting of global analysis*, Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, 1997

[11] Kriegl, A., Michor, P. W., Rainer, A., The exponential law for spaces of test functions and diffeomorphism groups, *Indagationes Mathematicae (N.S.)* 27, No. 1 (2016), 225265

[12] Neeb, K.-H., Wagemann, F., Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds, *Geom. Dedicata* 134 (2008), 17 - 60

[13] Noble, N., The continuity of functions on cartesian products, *Trans. Amer. Math. Soc.* 149 (1970), 187198

[14] Riss, J., Eléments de calcul différentiel et théorie des distributions sur les groupes abéliens localement compacts, *Acta Math.* 89 (1953), 45-105