VOID ANALYSIS AS A TEST FOR DARK MATTER COMPOSITION?

Sebastiano Ghigna¹ & Silvio A. Bonometto
Dipartimento di Fisica dell’Università di Milano, Via Celoria 16, I-20133 Milano, Italy and
INFN, Sezione di Milano, Italy

Jörg Retzlaff & Stefan Gottlöber
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D–14482 Potsdam, Germany

Giuseppe Murante
Istituto di Cosmogeofisica del C.N.R., C.so Fiume 4, 10133 Torino, Italy

Received ______________; accepted ______________

¹Physics Department, University of Durham, Science Laboratories, South Road, Durham
DH1 3LE, England (present address)
ABSTRACT

We use the void probability function (VPF) to compare the redshift–space galaxy distribution in the Perseus–Pisces redshift survey with artificial samples extracted from N–body simulations of standard cold dark matter (CDM) and broken scale invariance (BSI) models. Observational biases of the real data set are reproduced as well as possible in the simulated samples. Galaxies are identified as residing in peaks of the evolved density field and overmerged structures are fragmented into individual galaxies in such a way as to reproduce both the correct luminosity function and the two–point correlation function (assuming suitable \(M/L\) values). Using a similar approach, it was recently shown that the VPF can discriminate between CDM and a cold+hot dark matter (CHDM) model with \(\Omega_{\text{cold}}/\Omega_{\text{hot}}/\Omega_{\text{baryon}} = 0.6/0.3/0.1\). Our main result is that both CDM (as expected from a previous analysis) and BSI fit observational data. The robustness of the result is checked against changing the observer’s position in the simulations and the galaxy identification in the evolved density field. Therefore, while the void statistics is sensitive to the passage from CDM to CHDM (different spectrum and different nature of dark matter), it is not to the passage from CDM to BSI (different spectrum but same dark matter). On such a basis, we conjecture that the distribution of voids could be directly sensitive to the nature of dark matter, but scarcely sensitive to the shape of the transfer function.

Subject headings: cosmology: theory – dark matter – galaxies: clustering – large–scale structure of the Universe
1. Introduction

The Void Probability Function (VPF) is used as a statistical tool to explore the properties of the Large Scale Structure (LSS) of galaxies. This statistics provides a quantitative estimate of the probability of finding empty regions in the galaxy distribution and gives information on the LSS that cannot be predicted from the observed low order correlation functions (White 1979) and that is however beyond the content of measurable correlation functions for any finite part of the Universe. The void statistics has been analyzed for many galaxy samples: the Southern Sky redshift survey (Maurogordato, Schaeffer & da Costa 1992), the 1.2 Jy IRAS redshift survey (Bouchet et al. 1993), the Center for Astrophysics survey (CfA; Vogeley et al. 1992 and 1994). A preliminary version of the Perseus–Pisces Survey (PPS; Giovanelli & Haynes 1991, and references therein) was studied by Fry et al. (1989), who also made a comparison with CDM N–body simulations. Other works on the VPF for observational data include examination of the sky–projected galaxy distribution (Sharp 1981; Bouchet & Lachièze–Rey 1986) and the distribution of clusters of galaxies (Huchra et al. 1990; Jing 1990; Cappi, Maurogordato & Lachièze–Rey 1991). Theoretical properties of the VPF in the framework of the hierarchical scaling model (HS) have been considered by Fry (1986). A VPF analysis of N–body simulations has been carried out by Einasto et al. (1991) and Weinberg & Cole (1992), who used the VPF to discriminate between Gaussian and non–Gaussian initial conditions. Little & Weinberg (1994) investigated the effects of varying the biasing prescription used to identify “galaxies” in the simulations. Vogeley et al. (1994) compared the VPF for the CfA and for various N–body simulations, including three variants of the CDM model. The void statistics of the CDM and CHDM models in the non–linear clustering regime was addressed by Bonometto et al. (1995), using PM simulations in a box of 50 h^{-1}Mpc with a cell side of about 98 h^{-1}kpc, and confronted with HS predictions. The above simulations are described in detail by Klypin, Nolthenius & Primack (1995) and were also considered by Ghigna et
al. (1994; Paper A in the following), who estimated the VPF for artificial galaxy samples extracted from them and a sample of galaxies from the PPS database.

In Paper A the close comparison between real and artificial samples showed that the VPF discriminates between CDM and CHDM (with density parameters $\Omega_{\text{baryon}}/\Omega_{\text{cold}}/\Omega_{\text{hot}} = 0.1/0.6/0.3$). It was also shown that the VPF is scarcely affected by the bias level of CDM (i.e. by the amplitude of its linear spectrum of density fluctuations) and it was then suggested that the void statistics could be chiefly determined by the composition of dark matter (DM) and/or the shape of the spectrum. Here we want to explore its dependence on the latter point further, by performing a similar analysis of the BSI and standard CDM models, which differ in their power spectrum but have the same DM composition.

The standard CDM model relies on the assumption of an Einstein-deSitter universe ($\Omega_{\text{baryon}} + \Omega_{\text{cold}} = 1$) with $H_0 = 50 \text{ km s}^{-1}\text{Mpc}^{-1}$ and a Harrison-Zeldovich spectrum of adiabatic perturbations of the primordial density field. Normalizing the standard CDM model with the COBE data, it became evident that this model is in conflict with observational data on scales less than 10 Mpc (see e.g. Ostriker 1993). In models with broken scale invariance of the initial density fluctuation spectrum this spectrum is of Harrison-Zeldovich type only in the limits of small and large scales, however on intermediate scales it is tilted. Such spectra arise naturally in double inflationary scenarios (Gottlöber, Müller, Starobinsky 1991). As was discussed by Gottlöber, Mücke, Starobinsky (1994), the parameters of the underlying inflationary model can be chosen in such a way that the predictions of the model are in agreement with observational results. As in standard CDM two matter components ($\Omega_{\text{baryon}} = 0.05$, $\Omega_{\text{cold}} = 0.95$) and a Hubble constant $H_0 = 50 \text{ km s}^{-1}\text{Mpc}^{-1}$ are assumed in the BSI model.

A crucial point to test structure formation models by means of VPF in dissipationless simulations is the galaxy identification scheme: changing the efficiency of galaxy formation
in low density areas bears an obvious impact on the resulting VPF (Betancort–Rijo 1990; Einasto et al. 1991; Little & Weinberg 1994). As was discussed by Little & Weinberg (1994), three criteria have been generally used to identify galaxies in the density field: (i) They can be set on the peaks of the linear density field (linear biasing; e.g., Davis et al. 1985). (ii) They can be set in high–density regions of the evolved density field. (iii) The biasing relation derived by Cen & Ostriker (1993) from their CDM hydrodynamic simulations can be used. However, it is not clear whether the linear biasing approach yields the seeds where non–linear structures later form (Kates, Kotok & Klypin 1991; Katz, Quinn, & Gelb 1993), while the physical biasing relation of Cen & Ostriker (1993) is derived only from CDM simulations spanning a limited dynamical range. Referring to the evolved density field seems then the most reliable prescription. Accordingly, as in Paper A, we shall identify galaxies as corresponding to high–density peaks (our dark haloes in the following) in the simulation volumes (criterion (ii)). More complicated variants of this prescription, however, have also been considered: e.g. one can attempt to estimate the thermal history of gas particles (even in the absence of hydrodynamics, by following DM trajectories) and use cooled particles as tracers of galaxies (Kates, Kotok & Klypin 1991; Klypin & Kates 1991; Kates et al. 1995).

To properly address the subject of galaxy identification, we still have to face an intrinsic limitation of dissipationless simulations: these ones are known to yield large haloes in central parts of groups or clusters, with masses $M > 10^{13} M_\odot$, well beyond the galaxy mass range (e.g., Gelb & Bertschinger 1994). This overmerging is partly due to lack of numerical resolution, but is also an effect of neglecting the dissipative processes which act on galaxy mass scales. In the absence of these processes, tidal forces disrupt galaxy–size objects (e.g. Moore, Katz & Lake 1996). In the real world, dissipation allows baryons to cool down and condense earlier forming potential wells of galactic size, before galaxies are assembled in clusters. In this way substructures arise in time to prevent overmerging. The
recipe defined by criterion \((ii)\) needs then to be supplemented with further prescriptions, since many patterns can be followed to assign galaxies to peaks, according to different ways to fragment overmerged structures into individual objects. A first general requirement is that the galaxy identification scheme must agree with the luminosity function and the two–point correlation function.

In Paper A, a method was devised to fragment dark haloes into galaxies, with luminosities distributed according to a Schechter function (Schechter 1976), whose output depends on two parameters: (i) the average separation of the galaxy population to be reproduced and (ii) the mass–to–light ratio \(M/L\), assumed to be constant for all dark haloes in the simulation (whose connection with the physical \(M/L\) will be discussed shortly). This same method will be adopted for the present analysis. Let us outline that a more detailed procedure could not be efficiently tested on data, as this two–parameter fragmentation prescription already allows us to reproduce the correct slope and amplitude for the galaxy two–point correlation function.

Once galaxies are identified from simulations, their distribution in the computational volume is to be dealt with in order to reproduce a sample with characteristics similar to the one extracted from PPS. The starting point is then to reduce the distribution to an artificial redshift–space galaxy set. It must have the same galaxy number density as the real sample and must reproduce its geometrical shape, to account for boundary effects. The reduction procedure depends on the choice of an observer’s viewpoint and observing each simulation from several viewpoints allows an estimate of the sky variance within a given real–space volume. The fit of simulations to real data will then be made by considering a large set of observers, in order to verify whether, within the estimated sky variance, a galaxy sample with the same properties as the PPS one could be observed in a world arising from the cosmological model considered.

This article is organized as follows. In Section 2, we present the VPF statistics. In
Section 3, we briefly review the theoretical background of the BSI model and provide details on the simulations. In Section 4, we describe the observational material and give the characteristics of the galaxy sample we use for our analysis. In Section 5, the procedure to reduce the simulations and create the artificial galaxy samples to be compared with PPS is debated. The VPF analysis is performed and its results are given in Section 6, while Section 7 is devoted to the conclusions we draw from our analysis.

2. The void probability function

The VPF is a tool to characterize a spatial distribution of objects and is defined as the probability, P_0, of finding no objects within a given randomly placed sampling volume V_r (characterized by the scale r). The VPF conveys information about correlations of any order. It can be shown (White 1979) that the following relation holds:

$$P_0(r) = \exp \left[\sum_{q=1}^{\infty} \frac{(-\bar{N}_r)^q}{q!} \bar{\xi}_q(r) \right]$$

(1)

where \bar{N}_r is the average number of objects within V_r, $\bar{\xi}_1(r) \equiv 1$ and $\bar{\xi}_q(r)$ are q–th order correlation functions averaged over V_r (in particular, $\bar{\xi}_2$ is the variance of counts, simply variance in the following). However, since P_0 depends only on the number of non–empty cells, regardless of the number of objects contained inside them, it can be said from a qualitative point of view that the VPF of a point distribution is related to its geometry, rather than to its clustering. For a completely uncorrelated (i.e. Poissonian) distribution, it is $P_0(r) = \exp (-\bar{N}_r)$, so that any departure from the latter quantity represents the signature for the presence of clustering. Here, as in Paper A, we use spheres of different radii r to estimate the VPF for (real and artificial) galaxy samples. Spheres are completely contained within the samples, i.e. their centers are positioned at distance $\geq r$ from the sample boundaries. If V_{VLS} is the volume of the sample, we take $N_r = 2V_{\text{VLS}}/V_r$ spheres.
(V_r = 4\pi r^3/3), where the factor of 2 accounts for the presence of clustering (Fry & Gaztañaga 1994). We estimate sampling errors through the bootstrap method (e.g., Ling, Frenk & Barrow 1986; Efron & Tibshirani 1991).

3. Characteristics of BSI model and simulations

The cold dark matter BSI model arises from a double-inflationary scenario. Two subsequent inflationary stages which are driven by a R^2 term and a massive scalar field in the Lagrangian density lead to a power spectrum of potential fluctuations which exhibits broken scale invariance (cf. Gottlöber, Müller, & Starobinski 1991). Compared to a flat Harrison-Zeldovich spectrum resulting from single inflation, the BSI spectrum is characterized by a step between the two asymptotically flat regions $k \to 0$ and $k \to \infty$. Besides the step’s location at k_{break}, its relative height Δ constitutes the second free parameter in addition to those of the standard CDM model. From the inflationary scenario we expect fluctuations with initially Gaussian statistics. The transfer function linearly maps the initial power spectrum of perturbations to the present epoch. We use the transfer function for adiabatic fluctuations in a CDM model with $\Omega_{\text{tot}} = 1$, $\Omega_{\text{baryon}} = 0.05$, and a present Hubble constant $H_0 = 50 \text{ km s}^{-1} \text{Mpc}^{-1}$, as computed by Bond & Efstathiou (1984).

Gottlöber, Mücke & Starobinski (1994) compared a number of linear predictions of the BSI model with the corresponding observational quantities. In particular, they analyzed the variance of counts in cells of IRAS galaxies, the two-point angular correlation function for the APM sample, bulk flow velocities, the Mach number, and studied the compatibility of the model with observed high-redshift galaxy and quasar number densities. From such comparisons they worked out the following best fit values for the BSI parameters: $k_{\text{break}}^{-1} = 3 \text{ Mpc}$ (for $h = 0.5$ as in this paper) and $\Delta = 3$. Here we shall consider BSI simulations run by Kates et al. (1995), starting from a BSI spectrum with k_{break}^{-1} and Δ as
above normalized to the first–year COBE quadrupole data (Smoot et al. 1992), yielding a bias parameter $b_8 \equiv \sigma^{-1}(8h^{-1}\text{Mpc}) = 2.2$. (A reanalysis of the simulation based on second–year COBE data (Górski et al. 1994) yields $b_8 = 1.7$).

Kates et al. (1995) already submitted such simulation outputs to various statistical tests; in particular they found good fits for counts in cells, the probability distribution function of matter, the mass function of galaxies and clusters, their two-point spatial correlation function and integral bias, streaming motions, and peculiar velocity dispersions. Amendola et al. (1995) also found good fits of such simulations to the power spectrum reconstructed from the CfA survey, as well as to the angular correlation functions of APM galaxies and higher order moments of cell counts from APM-Stromlo data.

4. Observational catalog

Observational data are provided by the Perseus–Pisces redshift survey (for details see Giovanelli & Haynes 1989 and 1991). The sample we consider is limited to the region bound by $22^h \leq \alpha \leq 3^h 10^m$ and $0^\circ \leq \delta \leq 42^\circ 30'$, in order to exclude areas of sky of high galactic extinction. Zwicky magnitudes (m_{Zw}) are corrected for extinction using the absorption maps of Burstein & Heiles (1978), and all galaxies brighter than $m_{Zw} = 15.5$ are included. The resulting sample is virtually 100% complete for all morphological types to this limiting magnitude, and contains 3395 galaxies. The galaxy distribution described by these data is a pure redshift–space one. The only correction applied to observed velocities consists in subtracting our motion with respect to the Cosmic Microwave Background radiation (CMB). By this transformation the observer is put at rest in the frame of reference where the CMB dipole vanishes.

Our analyses are made on a volume–limited subsample (VLS) of the PPS survey, with the limiting magnitude $M_{\text{lim}} = -19 + 5 \log h$, corresponding to $79h^{-1}\text{Mpc}$ for the limiting
depth d_{lim}. With the angular boundaries given above, the geometry of the sample is that of a broad wedge extending over 107.5° in ascension and 42.5° in declination and therefore covering a volume $V_{\text{VLS}} = 1.5 \times 10^5 h^{-3} \text{Mpc}^3$. The sample contains 902 galaxies with mean galaxy separation $d_{\text{gal}} = 5.5 \ h^{-1} \text{Mpc}$. (This sample differs from the one used in Paper A, which was obtained by correcting for our motion with respect to the centroid of the Local Group and included 1032 galaxies with an average separation of $5.2 \ h^{-1} \text{Mpc}$. An analysis of the CDM and CHDM simulations of Paper A compared to the present observational sample confirms the conclusions of Paper A and will be presented in a forthcoming paper, Ghigna et al. 1996).

5. Simulations and artificial samples

We consider the BSI model with the parameters discussed in Section 3 and, for comparison, an unbiased CDM model ($\sigma_{\text{DM}} = 1$ on the $8 \ h^{-1} \text{Mpc}$ scale; this normalization is within one standard deviation from the amplitude detected by COBE on the quadrupole scale during its first year of activity, and is compatible with the second–year data). Simulations are performed with a Particle–Mesh code (PM) for $75 \ h^{-1} \text{Mpc}$ boxes with 128^3 particles on a 256^3–cell grid. This is well suited for comparison with the observational VLS of limiting depth $d_{\text{lim}} = 79 \ h^{-1} \text{Mpc}$. The cell size is $l_c \simeq 0.29 h^{-1} \text{Mpc}$ corresponding to an expected spatial resolution $\sim 3l_c \simeq 0.88 h^{-1} \text{Mpc}$. We took our simulations from those performed by Kates et al. (1995). Initial conditions were set at redshift $z = 25$, using the CDM transfer function from Bond & Efstathiou (1984). The COBE–normalized perturbation spectra are shown in Figure 1.

The simulations provide the positions of the particles at the present epoch. We employ the TSC interpolation scheme (Hockney & Eastwood 1981) to obtain the density field on the grid. In this set of data, we identify cells which correspond to local density maxima
(peaks) exceeding a suitable overdensity threshold w_{th}, whose value depends on the model and on the galaxy identification scheme used (through the M/L parameter). Each selected peak, given the mass of the 3^3 surrounding cells, is a dark matter halo and is assigned a radius $R_h \simeq 0.55 h^{-1}\text{Mpc}$ (R_h is defined such that $4\pi R_h^3/3 \equiv 27 l_3^3$; here it exceeds the corresponding quantity of Paper A by a factor of 3, the difference being due to the joint effects of the reduced spatial resolution, a factor of 2, and the larger box size, a factor of 1.5). Any such halo is not a single galactic halo. According to its size, it is expected to be a group, housing a certain number of galaxies (each one carrying a galactic halo of its own). Small haloes can also be expected to yield only one galaxy, with its galactic halo located somewhere inside the R_h sphere we do not resolve.

Once haloes are singled out in the simulation box, our purpose is then to assign a population of galaxies to them analogous to that contained in the observational sample from PPS. Henceforth, from haloes we aim to obtain galaxies brighter than $L_{\text{lim}} = 3.06 \times 10^9 h^{-2} L_\odot$ (corresponding to M_{lim} of Section 4) with average separation d_{gal}. To do this, we first calculate the expected total luminosity L_{total} of galaxies in the computational volume $V = l_3^3 = (75 h^{-1}\text{Mpc})^3$. Let us take a Schechter luminosity function (Schechter 1976) $\phi(L) dL = \phi_\ast (L/L_\ast)^\alpha \exp(-L/L_\ast) d(L/L_\ast)$, with $\alpha = -1.07$, and L_\ast being the luminosity of galaxies whose absolute magnitude is $M_\ast = -19.68$ (Efstathiou, Ellis & Peterson 1988). Moreover, we take $\phi_\ast = 1.17 \times 10^{-2} h^3 \text{Mpc}^{-3}$, so as to obtain the correct galaxy separation d from the normalization condition $\int_{L_{\text{lim}}}^\infty \phi(L) dL \equiv d_{\text{gal}}^{-3}$. The expected total luminosity is then given by the integral $L_t = l^3 \int_{L_{\text{lim}}}^\infty L \phi(L) dL$. For our box, $L_t = 1.55 \times 10^{13} h^{-2} L_\odot$.

The next step amounts to assuming a suitable mass-to-light ratio M/L (which is the effective parameter in our fitting procedure) for our galaxy population and calculating the total mass expected in the box $M_t = (M/L) \times L_t$. Then, for a fixed M/L, we select the most massive N_{hal} haloes, so that $\sum_{k=1}^{N_{\text{hal}}} M_k = M_t$ (in order to facilitate galaxy allocation in peaks
as described below, we give the peaks a mass exceeding M_t by $\sim 5\%$; this is needed because of the finite luminosity of the faintest galaxies considered and yields slight variations, peak by peak, of the effective M/L, whose relative standard deviation is $\sim 1.5\%$). Afterwards, we produce a realization of the mass function $n(M) dM = \phi(L) dL$ with M and L related through the M/L ratio we have fixed. This amounts to generating a set of values for the masses of $N_{\text{gal}} = (l_{\text{box}}/d_{\text{gal}})^3$ galaxies. Again, if M_i is the mass assigned to the i–th galaxy, the following condition holds: $\sum_{i=1}^{N_{\text{gal}}} M_i = M_t$. Finally, such sets of “galaxies” are distributed among the DM haloes selected. We take the most massive galaxy and assign it to the most massive halo in the simulation. Because the halo is more massive than the galaxy, there is some halo mass left for another galaxy. If the mass left in the halo is larger than the mass of the second largest galaxy, we assign that galaxy to the halo. If not, then the next most massive galaxy is tried and so on until we find a galaxy whose mass smaller than the remaining mass of the halo. This procedure is repeated until the mass of the most massive halo is subdivided into galaxies. Then we take the most massive galaxy left and assign it to the second most massive halo, and operate on it following the same steps as above. We end our procedure when all galaxies have been given a “parent” halo.

In this way, several haloes contain more than one galaxy. In the real world these galaxies would have different redshifts because of their velocities inside the halo to which they belong. This feature can be suitably reproduced by giving each galaxy a velocity $v_g = v_i + \Delta v_g$, where v_i is the global velocity of the i–th halo and Δv_g results from local motions. We shall assume that local motions are approximately virialized. Henceforth Δv_g shall have Gaussian–distributed components, with variance $\langle \Delta v_i^2 \rangle / 3$, where $\langle \Delta v_i^2 \rangle = GM_i/R_h$ (M_i is the halo mass). This amounts to assume virial equilibrium within the halo radius R_h. We verified that such velocity corrections do not modify the small–scale profile of the pairwise galaxy velocity dispersion in a significant way.

It is important to outline that the meaning of the M/L parameter is to be treated
with much caution. The cell size in the simulation has a critical impact on the value of M/L. The numerical procedure carried out in the PM method has a smoothing effect on forces, which become simply absent below a scale of the order of l_c, while in the real world there is a length scale l_g, corresponding to a typical galactic mass scale, below which the dynamics is dominated by dissipative forces. The values of M/L worked out by fitting a Schechter function (Schechter 1976) to a simulation and in the real world can be expected to be comparable only if l_c and l_g are of the same order of magnitude. For $l_c \gg l_g$, as is the case here, forces are smoothed over too large a scale: although the matter distribution can be faithfully reproduced over scales greater than $3l_c$, the density contrast reached is never high enough to permit us to give a direct physical significance to the values of M/L that we shall be working out. In spite of that, although the individual values of M/L do not make sense, the ratios among values obtained for different cosmological models do. As we shall show, standard CDM and BSI yield different values of M/L and from their ratio we can gain information on the physical M/L.

Once galaxies are defined and v_g is assigned to each of them, we construct the galaxy distribution in redshift space, for a given observer’s location. The depth of the VLS (whose geometry is described in Section 4) slightly exceeds the size of the simulation (79 to 75), but this difficulty can be easily overcome by having the axis of the simulated VLS close to the direction of the box diagonal, which stretches over $130 h^{-1}$Mpc. We however verified that, even when taking the axis of the sample along the side of the box and therefore accepting a small set of replicas, the statistical results do not change. This is fully expected, since at worst the points replicated (and then given double statistical weight) are only those located in the tip of the “wedge” within a distance $l_{\text{tip}} \approx d_{\text{lim}} - l_{\text{box}} = 4 h^{-1}$Mpc from the observer. This tiny region contains on average less than 1 object ($l_{\text{tip}} < d_{\text{gal}}$) and, because of its wedge shape, allows very few sampling cells within its boundaries even for the smallest sphere radii. For each case, we then construct 20 artificial volume–limited samples with the
same boundary shapes as the observational VLS and the same number of objects (with a 2% tolerance).

In order to set the M/L parameter of our galaxy identification scheme, we require the resulting galaxy distribution to have a variance $\bar{\xi}_2(r)$ in agreement with the one measured for the real sample. The variance is estimated by using the same sampling cells as for the VPF described in Section 2 (r is the radius of the cell). In Figure 2 we plot the $\bar{\xi}_2(r)$ for the PPS galaxies (error bars are 3–σ bootstrap errors over 20 resamplings) and that obtained for the artificial ones by averaging over the 20–sample sets from the BSI and CDM simulations for two different values of M/L: in both panels, the lower (dotted) curves correspond to the M/L values providing the best fits to the observed data, which are $1200\, h$ and $2400\, h$ for BSI and CDM respectively (we refer to these “best–fitting” galaxy populations as Gal_1). Curves corresponding to $M/L = 900\, h$ (for BSI) and $1800\, h$ (for CDM) are also given (Gal_2; dot–dashed lines), to show the sensitivity of the result to a 25% change of the assumed M/L ratio. The mass, $M_{l,h}$, of the lightest halo selected and the overdensity threshold w_{th} used in each case are reported in Table 1. The values of w_{th} are conspicuously smaller than those of Paper A because of the different scale on which haloes are defined.

The best–fit M/L values will then be used in the following VPF analysis. They are fairly high with respect to those suggested by observations of galaxy groups (e.g., Ramella, Geller, & Huchra 1989; Nolthenius 1993; Mamon 1993; Moore, Frenk, & White 1993), although with quite large uncertainties. However, a comparison with the M/L found for CDM in Paper A confirms the strong dependence of M/L on the size of the cell l_c. As we discussed above, the absolute values of the best–fit M/L parameters we work out in the present analysis cannot be given physical significance, but the ratios between values for different cosmological models can have a physical meaning. The M/L for BSI is about 0.4 times the one for CDM, approximately the same ratio that was found between CHDM ($M/L \simeq 250\, h$) and CDM ($M/L \simeq 600\, h$ for bias $b = 1.0$ like here) in Paper A.
Therefore, we expect BSI and CHDM models to have comparable M/L values. Since the simulations considered in Paper A had $l_c \simeq 0.1 \, h^{-1}\text{Mpc}$ and therefore provided more reliable estimates of M/L, this fact seems to favor the BSI model over standard CDM in reproducing observations, which point towards rather low values of M/L. However, the limited resolution of our simulations does not allow us to draw a firm conclusion on this point.

To try to avoid the difficulties connected with the choice of M/L and check the robustness of our results, we will also perform our VPF analysis directly on the halo population. In this case, each halo is regarded as a galaxy and assigned a luminosity proportional to its mass. We take then the $N_{\text{hal},2}$ most massive haloes such that $N_{\text{hal},2} = (l_{\text{box}}/d_{\text{gal}})^3$, where $d = 5.5 \, h^{-1}\text{Mpc}$ is the average galaxy separation of real galaxies as above (in the following we will refer to this halo population as Hal). The mass and overdensity thresholds we found are reported in Table 1, along with the M/L ratios for our halo–based “galaxies”. Their variance $\bar{\xi}_2(r)$ is shown in Figure 3 (dashed line for BSI and dotted for CDM) and is obtained as usual by averaging over 20 observer’s locations for each case. Both halo populations are less correlated than the PPS galaxies (filled circles in the Figure), though BSI data generally agree with observations within the errors. CDM Hal fares worse and displays a variance significantly smaller than the real data on all scales below $6 \, h^{-1}\text{Mpc}$.

Here we do not discuss the qualitative aspects of the “galaxy” distributions obtained from these BSI and CDM simulations. A visual inspection of BSI vs. CDM has already been carried out by Kates et al. (1995), by using a set of simulations which includes the present ones (although their galaxy identification scheme was different). Also, our artificial galaxy populations, being bound to mimic the bright galaxies of the PPS sample, are rather sparse, thus making a visual approach quite poor. However, our purpose here is to provide quantitative estimates of the void distribution in BSI and CDM in an observational context,
i.e. facing the same constraints as those holding for a real galaxy sample. This is what we attempt to achieve by the VPF analysis of the artificial VLSs.

6. The VPF analysis

In this Section, we evaluate the VPF for the set of real and artificial VLSs according to the technique illustrated in Section 2. Figure 4 shows the results for real (PPS) and simulated Galaxies, for BSI (panel a) and CDM (panel b). The VPF for real data is expected to be within the error bars plotted, which correspond to 3 times the bootstrap errors. VPFs obtained from our Schechter–distributed Galaxies are shown by 5 (dotted) curves, corresponding to 5 different observer's locations (selected at random among the 20–observer sets considered for each model). Let us recall that Gal1 curves are obtained with the best–fit M/L values of Figure 2 (see also Table 1). For the sake of comparison, both in panel (a) and (b), we also plot an observer–averaged VPF curve (dot–dashed line) obtained for Gal2 galaxies, which have the alternative M/L value considered in Figure 2. It is noticeable how the choice of a value of M/L, performed just to obtain the observed $\bar{\xi}_2(r)$ behavior, has a direct impact on the fit of the VPF with real data, namely the M/L which gives the best–fitting $\bar{\xi}_2$ also ensures a good fit to the observational VPF. In the Figure, we also plot the Poissonian VPF as a long–dashed curve.

Both standard CDM and BSI models correctly reproduce the PPS data within errors. This can be more carefully checked by examining Table 2, where we report the VPF values at eight different scales along with the full sky variance for the simulations, (i.e. the scatter among the VPFs measured by the 20 different observers).

Figure 5 allows us a test of the dependence of our results on the galaxy identification scheme. The Figure shows the dependence of the VPF on r for the halo populations (Hal) defined in the previous Section, both for BSI and CDM. The error bars are still 3–σ
bootstrap errors for the real sample, whereas the short–dashed and dotted curves refer to the VPFs averaged over 20 observers for BSI and CDM respectively. As a reference, we always plot the Poissonian VPF (long–dashed). Clearly, the BSI model provides a good fit to the observational data also when haloes are directly treated as galaxies, whereas the Hal curve for CDM tends to diverge slightly from the PPS one at scales below $3 \, h^{-1}\text{Mpc}$. Nonetheless, in the intermediate scale range ($3 \, h^{-1}\text{Mpc} < r < 6 \, h^{-1}\text{Mpc}$), where the VPF discriminates between CHDM and PPS as shown in Paper A, the CDM curve is still in agreement with observational data, and BSI data as well. The fact that no difference between BSI and CDM is found in that range of scales is an important point. In fact, on these scales, because of the coupling among density fluctuations of different wavelength in the non–linear regime (see Kauffmann & Melott 1992, in particular), we could expect the feature in the BSI spectrum (occurring at $r \simeq \lambda_{\text{break}} = 9.4 \, h^{-1}\text{Mpc}$) to start playing its effects and cause deviations between the VPFs of the two models.

7. Discussion

In this paper we debated the void probability function statistics as a discriminator between models on the scales of non–linear clustering ($1 \, h^{-1}\text{Mpc} \leq r \lesssim 8 \, h^{-1}\text{Mpc}$). We considered N–body simulations of BSI and standard CDM (both normalized to first–year COBE data) and estimated the redshift–space VPF for artificial galaxy samples so as to perform a close comparison with a large volume–limited sample of the Perseus–Pisces survey. Artificial galaxies were suitably identified as residing inside peaks of the evolved density field. We tested the robustness of our results against the details of the galaxy identification method, by also considering the simplest scheme in which each peak is directly associated with a galaxy. Of course, this does not compensate for our ignorance on how galaxies actually form and our results should still be regarded with some caution.
We showed that both BSI and standard CDM fit observational data quite well. For the CDM, this confirms the findings of Ghigna et al. (1994, Paper A). As mentioned in the previous Section, the fact that the VPF results for BSI can match those for CDM so well is rather remarkable in view of the feature exhibited by the linear spectrum of density fluctuations in the BSI model. As is known, in the non–linear evolution of density fluctuations components characterized by different wavelengths have no longer a separate evolution, and a feature on $\lambda_{\text{break}} \simeq 9.4 \, h^{-1}\text{Mpc}$ should have an influence on a fairly wide range of scales, at least down to $\sim \lambda_{\text{break}}/3$ (Kauffmann and Melott 1992). In our VPF analysis this spectral feature has no significant effect.

In Paper A it was also found that the VPF can discriminate between CDM and a CHDM model with $\Omega_{\text{baryon}}/\Omega_{\text{cold}}/\Omega_{\text{hot}} = 0.1/0.6/0.3$ and one neutrino flavor. This, together with the fact that both unbiased and biased ($b = 1.5$) CDM had the same VPF, was taken as an indication that the void statistics is directly and mostly sensitive to the shape of the linear spectrum and/or the nature of the dark matter. Here, we could separately test its dependence on the shape of the spectrum, since BSI and CDM are both based on pure cold dark matter. Given that our results do not show such a dependence, we can tentatively propose the following conjecture: The statistics of voids in the non–linear clustering regime can be influenced by the nature (i.e. the composition) of DM more effectively than by the shape of the density fluctuation spectrum. A dominant role in determining the void distribution could be played by the velocity dispersion of hot particles and by their ability (or difficulty) to follow cold dark matter when it clusters.

However, there seems to exist a complicated dynamical interplay. A counter–example is provided by a CHDM model with $\Omega_{\text{baryon}}/\Omega_{\text{cold}}/\Omega_{\text{hot}} = 0.05/0.75/0.2$ and two equal–mass neutrino flavors (Primack et al. 1995). In that case, which involves even more neutrinos carrying a non–vanishing mass, preliminary results on the VPF indicate a good agreement with PPS data (Ghigna et al. 1996). This case also represents an instance of how our
conjecture can be used to constrain the “particle physics” at the basis of a given cosmological model. In fact, if our conjecture is true, the agreement shown by the two-neutrino model could be a point specifically in support of such a “recipe” for the composition of mixed dark matter. Anyway, as far as the analysis performed in this paper is concerned, there is clearly no way to say which one is better among the models passing the VPF test.

We wish to thank the referee for his careful reviewing of the paper which greatly helped us to improve its presentation. Thanks are also due to Stefano Borgani for a number of discussions on specific points. S. Ghigna is grateful to Durham University for giving him access to the Starlink facility and acknowledges use of its editing software during the completion of the paper. J. R. thanks the Physics Department of Milano University for its hospitality during the preparation of this work and acknowledges the financial support of E. C. through the HCM network program.
Model	Scheme	M/L	$M_{\text{h},/M_{\odot}}$	w_{th}	N_{hal}
BSI:	Gal_1	1200 h	$4.2 \times 10^{12} h^{-1}$	86	2115
	Gal_2	900 h	$6.7 \times 10^{12} h^{-1}$	130	1112
	Hal	1400 h	$3.7 \times 10^{12} h^{-1}$	77	2534
CDM:	Gal_1	2400 h	$8.5 \times 10^{12} h^{-1}$	110	1865
	Gal_2	1800 h	$1.5 \times 10^{13} h^{-1}$	290	664
	Hal	2800 h	$3.6 \times 10^{12} h^{-1}$	80	2534

Table 1: Values of the M/L parameter, $M_{\text{h},}$ (mass of the lightest halo associated with a galaxy), and w_{th} (overdensity threshold) for different galaxy identification schemes, for BSI and CDM. Gal refers to Schechter–distributed galaxies obtained from DM haloes through fragmentation, after assuming a value for M/L: Gal_1 galaxies provide the best fit to the observational $\bar{\xi}_2$; Gal_2 ones are obtained after a 25% increase of M/L. Hal refers to DM haloes directly associated with galaxies. N_{hal} is the number of haloes used in the simulation volume for each case. The connection of M/L with the physical mass–to–light ratio is discussed in Section 5.
Table 2: The VPF, P_0, at various scales r for observational data (PPS), for “best–fitting” artificial galaxies (Gal_1) and DM haloes (Hal) in the simulations. Errors are 3 standard deviations over 20 bootstrap resamplings for the observational data, and over 20 different observers for simulated samples (sky variance).

r (h^{-1}Mpc)	PPS	BSI: Gal_1	BSI: Hal	CDM: Gal_1	CDM: Hal
2.04	86.3 ± 0.7	86.3 ± 2.0	85.8 ± 1.9	86.7 ± 2.5	84.7 ± 1.5
2.42	79.9 ± 1.2	80.4 ± 3.7	78.9 ± 2.7	80.6 ± 3.1	77.9 ± 3.4
2.85	70.1 ± 1.2	72.1 ± 5.4	71.3 ± 3.8	72.5 ± 5.5	69.4 ± 4.4
3.37	59.3 ± 3.0	62.8 ± 6.7	60.9 ± 7.4	61.5 ± 5.4	58.8 ± 6.3
3.98	49.4 ± 3.5	52.0 ± 8.8	49.7 ± 9.8	49.6 ± 5.4	47.1 ± 8.9
4.70	36.2 ± 3.2	37.5 ± 7.2	36.6 ± 9.5	36.2 ± 8.5	35.2 ± 10.6
5.56	25.7 ± 4.2	25.4 ± 7.9	23.8 ± 9.6	23.5 ± 7.3	23 ± 12
6.57	11.5 ± 6.5	15 ± 12	13 ± 10	14 ± 10	13 ± 16
REFERENCES

Amendola, L., Gottlöber, S., Mücke, J. P., & Müller, V. 1995, ApJ, 451, 444
Betancort–Rijo, J. 1990, MNRAS, 246, 608
Bond, J. R., & Efstathiou, G. 1984, ApJ, 285, L45
Bonometto, S. A., Borgani, S., Ghigna, S., Klypin, A., & Primack, J. R. 1995, MNRAS, 273, 101
Bouchet, F. R., & Lachièze–Rey, M. 1986, ApJ, 302, L37
Bouchet, F. R., Strauss, M. A., Davis, M., Fisher, K. B., Yahil, A., & Huchra, J. P. 1993, ApJ, 417, 36
Burstein, D., & Heiles, C. 1978, ApJ 225, 40
Cappi, A., Maurogordato, S., & Lachièze–Rey, M. 1991, A&A, 243, 28
Cen, R., & Ostriker, J. P. 1993, ApJ, 417, 415
Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371
Efron, B., & Tibshirani, R. 1991, Science, 253, 390
Efstathiou, G., Ellis, R. S., & Peterson, B. A. 1988, MNRAS 232, 431
Einasto, J., Einasto, M., Gramann, M., & Saar, E. 1991, MNRAS, 248, 593
Fry, J. N. 1986, ApJ, 306, 358
Fry, J. N., & Gaztañaga, E. 1994, ApJ, 425, 1
Fry, J. N., Giovanelli, R., Haynes, M. P., Melott, A. L., & Scherrer, R. J. 1989, ApJ, 340, 11
Gelb, J. M, & Bertschinger, E. 1994, ApJ 436, 467
Ghigna, S., Borgani, S., Bonometto, S. A., Guzzo, L., Klypin, A., Primack, J. R., Giovanelli, R., & Haynes, M. P. 1994, ApJ, 437, L71 (Paper A)
Ghigna S., et al. 1996, in preparation
Giovanelli, R., & Haynes, M. P. 1989, AJ, 97, 633
Giovanelli, R., & Haynes, M. P. 1991, ARA&A, 29, 499
Górski, K. M., Hinshaw, G., Banday, A. J., Bennett, C. L., Wright, E. L., Kogut, A.,
Smoot, G. F., & Lubin, P. 1994, ApJ, 430, L89
Gottlöber, S., Müller, V., & Starobinski, A. A. 1991, Phys. Rev., D 43, 2510
Gottlöber, S., Mücke, J. P., & Starobinski A. A. 1994, ApJ, 434, 417
Hockney, R. W., & Eastwood, J. W. 1981, Computer Simulation Using Particles (New
York: McGraw-Hill)
Huchra, J. P., Geller, M. J., Henry, J. P., & Postman M. 1990, ApJ, 365, 66
Jing, Y. 1990, A&A, 233, 309
Kates, R. E., Kotok, E. V., & Klypin, A. A. 1991, A&A, 243, 295
Kates, R., Müller, V., Gottlöber, S., Mücke, J. P., & Retzlaff J. 1995, MNRAS, 277, 1254
Katz, N., Quinn, T., & Gelb, J. M. 1993, MNRAS, 265, 689
Kauffmann, G., & Melott, A. L. 1992, ApJ, 393, 415
Klypin, A., & Kates, R. 1991, MNRAS, 251, 41p
Klypin, A., Nolthenius, R., & Primack, J. 1995, ApJ, submitted [astro-ph/9502062]
Ling, E. N., Frenk, C. S., & Barrow, J. D. 1986, MNRAS, 223, 21p
Little, B., & Weinberg, D. H. 1994, MNRAS, 267, 605
Mamon, G. A. 1993, in N–body Problems and Gravitational Dynamics, ed. F. Combes &
E. Athanassoula (Meudon: Observatoire de Paris), 188
Maurogordato, S., Schaeffer, R., & da Costa L. N. 1992, ApJ, 390, 17
Moore, B., Frenk, C. S., & White, S. D. M. 1993, MNRAS, 261, 827
Moore, B., Katz, N., & Lake, G. 1996, ApJ, 457, 455
Nolthenius, R. 1993, ApJS, 85, 1
Ostriker, J. P. 1993, ARA&A, 31, 689
Primack, J. R., Holtzman, J., Klypin, A., & Caldwell, D. O. 1995, Phys. Rev. Lett., 74, 2160
Ramella, M., Geller, M. J., & Huchra, J. P. 1989, ApJ, 344, 57
Schechter, P. 1976, ApJ, 203, 297
Sharp, N. A. 1981, MNRAS, 195, 857
Smoot, G. F., et al. 1992, ApJ, 396, L1
Vogeley, M. S., Park, C., Geller, M. J., & Huchra, J. P. 1992, ApJ, 391, L5
Vogeley, M. S., Geller, M. J., Park, C., & Huchra, J. P. 1994, AJ, 108, 745
Weinberg, D. H., & Cole, S. 1992, MNRAS, 259, 652
White, S. D. M. 1979, MNRAS, 186, 145

This manuscript was prepared with the AAS \LaTeX{} macros v3.0.
Fig. 1.— Linear power spectrum of density fluctuations for the standard CDM model and the BSI model (with the parameters considered in the text), both normalized to first–year COBE data. The double bar near the bottom of the plot indicates the dynamical range covered by the simulations used in this paper. The size of the computational box, $L = 75 \, h^{-1}\text{Mpc}$, yields $k_{\min} = 2\pi/L$, while the Nyquist wavenumber of the grid gives $k_{\max} = k_{\min}N_g/2$ ($N_g = 256$).

Fig. 2.— Variance $\bar{\xi}_2$ vs. scale r (radius of the spherical sampling volumes) for real (PPS; error bars are 3–σ bootstrap errors) and simulated galaxies (Gal_1 and Gal_2). Panels (a) and (b) are for BSI and CDM models, respectively. Gal galaxies are described in Table 1.

Fig. 3.— Variance $\bar{\xi}_2$ vs. r for DM haloes (Hal) compared with the PPS one, both for BSI and CDM.

Fig. 4.— Void probability function P_0 vs. r for observational data (PPS), for five artificial VLSs of Gal_1 galaxies and averaged over the 20 VLSs of Gal_2 galaxies. Panel (a) is for BSI and (b) is for CDM. The Poissonian curve refers to a completely uncorrelated distribution.

Fig. 5.— VPF vs. r for DM haloes (Hal) compared with the PPS one, both for BSI and CDM.
