Drawing the Tensile Curve for Pure Metals and Alloys Depending On Crystal Structure and Acoustic Impedance

Arshed Abdulhamed Mohammed1,2 and Wessam Al Azzawi1
1Department of Materials Engineering College of Engineering University of Diyala, Baquba, Diyala- Iraq
2E-mail: arshad_ald@yahoo.com

Abstract. A new method to predict the stress-strain relation of the pure metals and alloys has been presented in this paper by using the acoustic impedance property. The method involves developing new algorithms that were programmed in a MATLAB code. Also, it compromises the experimental measurement of some physical properties, such as longitudinal wave velocity, density, and crystal structure. The study considered 19-samples, which have been put in three different groups depending on the crystal structure (seven FCC samples, six BCC samples, and six HCB samples). The samples' crystal structure was examined using the X-ray diffraction method before the samples' density, and longitudinal wave velocity were experimentally measured. To evaluate the validity of the developed model, a comparison between its prediction for the stress-strain relation and the corresponding curves in the literature was done. The results, also, verified the existence of a relation between pressure transmission coefficient (PrTr) and each of the σ_u, σ_y, and modulus of elasticity (E) properties for the metals in the same crystal structure group.

1. Introduction

The tensile tests play an important role in the detection of the mechanical properties of the specimens for many companies that use it in their works. These companies face some difficulties in test long tubes or big size specimens unless conducting many mechanical works before conducting tensile tests, time and rise the production cost. In fact, there are two factors that have the most influence on tensile resistance. The first one is crystal structure\cite{1-5} and the mechanical properties represented by the modulus of elasticity and density (ρ)\cite{6}. This study gives a new view through linking among crystal structure, acoustic impedance, and tensile strength. The importance of this vision is that it can be used to test the tensile strength of complex shapes such as pipeline, curvature beams, or complex shape of plates…etc. The drawing of tensile strength depends on three essential points. These three-point are: first, modulus of elasticity, which represents the slope of the elastic line (within the elastic region), second, yield strength point (σ_y), and finally the ultimate strength point (σ_u). This research gives a new idea through estimate E, σ_y, and σ_u, for pure metal and alloys, by using the acoustic impedance of these metals and alloys. From another side, for many materials, there is a miss-match of values of E calculated from tensile tests and those calculated from the non-destructive test (NDT). Where most of NDTs utilize equation (1) to calculate the value of E\cite{7-13}, where CL is the longitudinal velocity of wave and v is the Poisson's ratio

$$E = \frac{C_L^2 \rho (1 + v)(1 - 2v)}{(1 - v)}$$

(1)
For example, this equation gives correct values of E for normal material such as Fe, Al, and Cu…etc, but, this equation gives incorrect values of E for refractory metals such as Niobium titanium and tantalum[14]. The advantage of this study is dependence on a new method to calculate values of E for the metals and alloys.

There are four steps to draw the tensile curve for pure metals and alloys. Firstly, sorting the metals and alloys based on their crystal structure. Secondly calculation pressure transmission coefficient ($PrTr$) through measure CL and ρ. Thirdly, deriving a mathematical relationship between $PrTr$ and each of E, σ_y, and σ_u severally. Finally, programming a MATLAB code to help in drawing the tensile strength curve for each metal and alloy.

2. Theoretical Part

The pressure of the transmitted wave between any connected materials depends on the acoustic impedance (Z) of these bodies

$$PrTr = \frac{2Z_2}{Z_1 + Z_2}$$ \hspace{1cm} (2)

Z_1 in equation (2) represents the acoustic impedance of magnesium ($Z_1 = Z_{Mg} = 9.9761 \times 10^6 \frac{Kg}{m^2s}$), while Z_2 represents the acoustic impedance of the metal or alloy that has needed test it (Z_{SP}), which is needed to find the values of E, σ_y, and σ_u for it. This research chose Mg to be Z_1 because the magnesium metal has one of the lowest values of E among the solid metals. Therefore equation (2) becomes:

$$PrTr = \frac{(39.9Z_{SP})}{(1.5 + Z_{SP})(Z_{SP} + 9.97612)}$$ \hspace{1cm} (3)

The relationship between E, σ_y, and σ_u with $PrTr$ is a disciplined relationship in case these metals or alloys were sorted according to their crystal structures. The values of $PrTr$ in all the figure 1,2, and 3 were evaluated from equation (3), while the σ_y and σ_u values in all these figures were collected from references[15-17].

The values of σ_y and σ_u for FCC metals (Face Center Cubic metals) were grouped then the relations between them and their $PrTr$ values were drawn as shown in figure 1.

![Relationship of σ_y and σ_u with $PrTr$ for FCC metals.](image)

Figure 1. Relationship of σ_y and σ_u with $PrTr$ for FCC metals.
The equation (4) and (5) were constructed by utilizing the curve fitting technique for the two curves in figure 1. Equation (4) and (5) refer to the uniform (polynomial) relationship between the \(\sigma_y \) and \(\sigma_u \) with PrTr, where the increase in values of \(\sigma_y \) and \(\sigma_u \) for FCC is associated with decreasing of values of PrTr.

\[
\sigma_{y_{FCC}} = 4274.76 - 48701.1 \times PrTr + 241443 \times (PrTr^2) - 635316 \times (PrTr^3) \\
+ 953657 \times (PrTr^4) - 818338 \times (PrTr^5) + 373112 \times (PrTr^6) \\
- 70012.1 \times (PrTr^7)
\]

(4)

\[
\sigma_{u_{FCC}} = 40151 - 419670 \times PrTr + 1840250 \times (PrTr^2) - 4300940 \times (PrTr^3) \\
+ 5788240 \times (PrTr^4) - 4502280 \times (PrTr^5) + 1881010 \times (PrTr^6) \\
- 326639 \times (PrTr^7)
\]

(5)

The same behavior (the disciplined relationship between \(\sigma_y \) and \(\sigma_u \) with PrTr) for FCC metal was repeated with BCC metal too, as shown in figure 2. The equation (5) and equation (6) indicate the mathematical expression for the curves shown in figure 2.

\[
\sigma_{y_{BCC}} = 127772 - (1588710 \times PrTr) + (8242590 \times PrTr^2) - (23016300 \times PrTr^3) \\
+ (37392900 \times PrTr^4) - (35434900 \times PrTr^5) + (18188700 \times PrTr^6) \\
- (3912140 \times PrTr^7)
\]

(6)

\[
\sigma_{u_{BCC}} = -2336.06 + 15257.1 \times PrTr - 6856.14 \times (PrTr^2) - 71417.21 \times (PrTr^3) + 120448 \times (PrTr^4) - 55118.3 \times (PrTr^5)
\]

(7)

![Figure 2](image.png)

Figure 2. Relationship between \(\sigma_y \) and \(\sigma_u \) with PrTr for body center cubic metals.

The curve of \(\sigma_y \) for HCP metals in figure 3 was divided into two portions A1 and A2, in order to find suitable curve fitting as shown in equation (8) (a and b). The portion A1 is for PrTr<1.11 and PrTr>1.11 is for portion A2.

For section A1:
\[
\sigma_y(A1)_{HCP} = 87005.7 - 388401 \times PrTr + 647564 \times PrTr^2 - 476290 \times PrTr^3 \\
+ 130272 \times PrTr^4
\]

Section A2:
\[
\sigma_y(A2)_{HCP} = 8658.89 - 25203.4 \times (PrTr) + 27714.7 \times (PrTr^2) - 13444.7 \times (PrTr^3) \\
+ 2420.17 \times (PrTr^4)
\]

Equation (9) clarifies the relationship between \(\sigma_u\) and PrTr, as shown in figure 3, for hexagonal closest packed (HCP) metals:
\[
\sigma_u_{HCP} = 20576.01 - 81541.201 \times (PrTr) + 127710 \times (PrTr^2) - 96409.6 \times (PrTr^3) + 34862.6 \times (PrTr^4) - 4817.61 \times (PrTr^5)
\]

Figure 3. Relationship between \(\sigma_y\) and \(\sigma_u\) with PrTr for HCP metal.

The values of \(C_1, \rho, \sigma_{y\text{ASTM}}\) and \(\sigma_{u\text{ASTM}}\) in table 1 were collected from sources[15, 18, 19] according to ASTM, while \(\sigma_{y\text{cal}}\) and \(\sigma_{u\text{cal}}\). in table 1, represent the values of \(\sigma_y\) and \(\sigma_u\) evaluated from the suggested method in this study (equations (4),(6),(8) and equations (5),(7),(8)).

\(Cg1\) in equation (10) represents the convergence between \(\sigma_{y\text{ASTM}}\) and \(\sigma_{y\text{cal}}\), while \(Cg2\) indicates the convergence between \(\sigma_{u\text{ASTM}}\) and \(\sigma_{u\text{cal}}\). The results of these two equations (10 and 11) were listed in table 1 also.

\[
Cg1 = 100 - \sqrt{\left[\frac{(\sigma_{y\text{ASTM}} - \sigma_{y\text{cal}})}{\sigma_{y\text{ASTM}}}\right] \times 100}^2
\]

\[
Cg2 = 100 - \sqrt{\left[\frac{(\sigma_{u\text{ASTM}} - \sigma_{u\text{cal}})}{\sigma_{u\text{ASTM}}}\right] \times 100}^2
\]

The column \(E_{cal}\) in table 1 were evaluated from equation (8) in the sources [14, 20].
Table 1. Sorting Mechanical properties according to their crystal structure [15-17].

Crystal Structure	Metal Name	Cl. Name [ASTM]	\(\rho \) (kg/m\(^3\))	\(Z \) (Kg/m\(^2\) s) \(\times 10^6 \)	PrTr	\(\sigma_{ASTM} \) MPa	\(\sigma_{cal} \) MPa	Cg1. %	\(\sigma_{ASTM} \) MPa	\(\sigma_{cal} \) MPa	Cg2. %	\(E_{cal} \) GPa	Cg3. %
FCC	AL	6320	2710	17.127	1.3535	12	14.014	45	48.787	91.582	68.136	90.1	
	Ge	5450	5470	29.811	0.9547	130	130.62	150	158.39	94.403	163.13	83.47	
	Thorium	2850	11720	33.402	0.8803	144	144.25	217	203.83	93.93	57.597	80	
	Ge	6190	12410	76.817	0.4509	200	199.91	99.518	99.958	99.986	371.98	98.14	
	Ir	5380	22650	121.85	0.2989	234	233.96	99.967	99.967	99.967	443.62	84.01	
BCC	Nb	3480	8570	29.82	0.95	105	101.62	98.17	99.97	99.934	103.98	99.036	
	V	6000	6160	36.96	0.81	150	158.06	96.421	96.421	96.450	132.36	99.951	
	Fe	5900	7800	46.02	0.69	131	141.29	92.138	92.138	92.138	213.83	212.51	
	Ta	3400	16654	56.62	0.58	172	178.32	96.325	96.325	96.325	173.76	99.960	
	Mo	6370	10220	65.1	0.51	345	322.79	93.56	93.56	93.56	399.67	99.979	
	W	5180	19300	99.97	0.35	550	550.51	99.906	99.906	99.906	407.43	99.991	
HCP	Mg	5740	1738	9.9761	1.7383	69	70.952	97.17	97.17	97.17	184.22	92.625	
	Be	12800	1850	23.68	1.1148	117	124.44	93.641	93.641	93.641	378.37	97.078	
	Ti	6100	4450	27.145	1.0185	140	131.51	93.942	93.942	93.942	380.2	97.759	
	Zr	4650	6480	30.132	0.9476	207	201.38	97.287	97.287	97.287	378.93	64.726	
	Hf	3000	13310	39.93	0.7705	230	229.85	99.936	99.936	99.936	444.97	56.369	
	Colt	5730	8900	50.997	0.6356	758	707	93.272	93.272	93.272	775.78	94.849	

(C10200)Cu(C10100)

It is worth mentioning the elongation of pure metals and alloys is also required to complete the steps of getting the program for drawing the stress-strain curve. Figure 4 represents the relationship between the elongation values of pure metals and alloys and their PrTr values. The elongation values were gathered from sources [15, 18, 19].
Figure 4. The elongations relationships for pure metals with PrTrs.

The program below represents the equations from (3-9). Longitudinal velocity (C_L), density (ρ) and crystal structure (Cy) are the only input to this program to draw the tensile strength curve.

```matlab
clc
%If the crystal structure (Cy) of materials is FCC then Cy=1. Cy=2 if BCC and Cy=3 if HCP YS=\sigma_y and UTS= \sigma_u
%FCC=1, BCC=2 and HCP=3
Cy=1; % (Cy)Crystal structure
P=8890; % (P)Density
CL =5780; % (CL)Longitudinal velocity
Z= (P*CL)/10^6
PRTR=(39.9*Z)/((1.5+Z)*(Z+9.97612)) %for z<29
if Z>=50.99
E = ((-5.66211+73.0387*PRTR-275.856*(PRTR^2)+425.253*(PRTR^3)-
234.885*(PRTR^4))/P)*(10^7)
elseif Z>29 && Z<50.99
E = ((-6.86293+58.1587*(PRTR)-
102.833*((PRTR)^2)+52.8154*((PRTR)^3))*10^6)/P
elseif Z<= 29
E = (12533000.0-460076000*(PRTR)+675849000*(PRTR^2)-
493640000*(PRTR^3)+1783970000*(PRTR^4)-255258000*(PRTR^5))/P
end
sprintf('%.2f',PRTR)
if Cy == 1
YS=4274.76-48701.1*PRTR+241443*(PRTR^2)-635316*(PRTR^3)+953657*(PRTR^4)-
818338*(PRTR^5)+373112*(PRTR^6)-70012.1*(PRTR^7)
UTS=40151-419670*PRTR+1840250*(PRTR^2)-4300940*(PRTR^3)+5788240*(PRTR^4)-
4502280*(PRTR^5)+1881010*(PRTR^6)-326639*(PRTR^7)
Elong=-9733.76+107627*(PRTR)-482622*(PRTR^2)+1141490*(PRTR^3)-
1542520*(PRTR^4)+1195950*(PRTR^5)-494744*(PRTR^6)+84585.9*(PRTR^7)
elseif Cy == 2
```

Elongation vs. PrTr for different crystal structures.
YS=127772 – (1588710*PRTR)+824590*(PRTR^2) –
23016300*(PRTR^3)+37392900*(PRTR^4) –
35434900*(PRTR^5)+18188700*(PRTR^6) –39121400*(PRTR^7)
UTS= -2336.06+15257.1*(PRTR)-6856.14*(PRTR^2) –
71417.2*(PRTR^3)+120448*(PRTR^4) –55118.3*(PRTR^5)
Elong = 82696.5 –807505*(PRTR)+3198520*(PRTR^2) –6599990*(PRTR^3) +
7503080*(PRTR^4)–4465200*(PRTR^5)+1088620*(PRTR^6)
else if Cy == 3
UTS=20576.81541.2*(PRTR)+127710*(PRTR^2) –
96409.6*(PRTR^3)+34862.6*(PRTR^4) –4817.61*(PRTR^5)
Elong = 463.981–1906.27*(PRTR)+2883.43*(PRTR^2) –
1794.42*(PRTR^3)+391.038*(PRTR^4)
%for section A1
if PRTR<=1.11
YS=87005.7–388401*PRTR+647564*(PRTR^2) –476290*(PRTR^3) + 130272*(PRTR^4)
elseif PRTR>1.11
%For Section A2:
YS=8658.89–25203.4*(PRTR)+27714.7*(PRTR^2) –
13444.7*(PRTR^3)+2420.17*(PRTR^4)
end
end
if Elong> 15
EE1=YS/(E);
theta = linspace((2*pi)/(2.0), pi/6, 10);
beta = linspace((pi/(2.0)), 0, 10);
RRR = UTS-YS;
dd=Elong-EE1;
x1 = ddd*cos(beta)+EE1;
y1 = RRR*sin(theta) + YS;

theta = linspace((2*pi)/(2.0), pi/(2.0), 10);
beta = linspace((pi/(2.0)), 0, 10);
RRR = (UTS-YS);
y1 = RRR*sin(theta) + YS

else
EE1=YS/(E);
theta = linspace((2*pi)/(2.0), pi/(2.0), 10);
beta = linspace((pi/(2.0)), 0, 10);
RRR = (UTS-YS);
y1 = RRR*sin(theta) + YS

end

end

if Elong> 15
EE1=YS/(E);
theta = linspace((2*pi)/(2.0), pi/6, 10);
beta = linspace((pi/(2.0)), 0, 10);
RRR = UTS-YS;
dd=Elong-EE1;
x1 = ddd*cos(beta)+EE1;
y1 = RRR*sin(theta) + YS;
yy=[0 YS y1];

figure (1)
plot (xx,yy)
xlabel('Strain (%)'), ylabel('Stress (MPa)');
else

EE1=YS/(E)
theta = linspace((2*pi)/(2.0), pi/(2.0), 6)
beta = linspace((pi/(2.0)), 0, 100);
RRR = (UTS-YS);
y1 = RRR*sin(theta) + YS

OO=Elong/2
TT=OO/5
s=EE1
for k=1:6
s=s;
x1(k)=s
s=s+TT
end

yyy=[0 YS y1 UTS];

figure (2)
plot (xxx,yyy)
xlabel('Strain (%)'), ylabel('Stress (MPa)');
end
3. Experimental part
The three experimental steps of this study are:
1- Utilized the X-Ray test to verify from crystal structure for each specimen.
2- Measurement C_L, then ρ for each test specimen to determine The $PrTr$ of these specimens, then σ_y and σ_u are determined by using equations (3-9).
3- The results of step-2 are compared with ASTM for E, σ_y and σ_u.
In this study $Mg, Ni, and Nb$ were selected as the test samples for crystal structures HCP, FCC, and BCC respectively.

Step-1- XRD test
XRD 6000 SHIMDZU was used as a device of XRD testing for Mg, Ni, and HCP samples. Figure 5 illustrate the purity of these test specimen and confirm the symmetrical to the crystal structures of these samples with the crystal structure shown in table 1

![Figure 5](image-url)

Figure 5. (a) XRD for magnesium metal sample, (b) XRD for Nickel metal sample (c) XRD for Niobium metal sample

Step-2 Calculation $PrTr$ through measurement C_L and ρ
Measuring the wave flight time, through employed the echo pulse technique for test samples ($Mg, Ni, and Nb$). Equation (11) and equation (12) explains how the C_L was calculated, [21, 22] where t_{TOF} represents the wave flight time, L is the thickness of the specimen, and t_o is the wedge delay of the probe that used in this study [23, 24] ($t_o = 9 \mu sec$ for the used probe)

$$t_{TOF} = \frac{2L}{C_L} + 2t_o \quad (11)$$

$$\therefore C_L = \frac{2L}{(t_{TOF} - 2t_o)} \quad (12)$$
Table 2. PrTr, σ_y, and σ_u calculations.

Metal name	Size of test specimen (m3)	mass (Kg) ρ	The Time of flight of the wave (t$_{TOF-Lc}$)	PrTr calculations σ_y calculated (MPa)	σ_u calculated (MPa)	
Ni (FCC)	0.05 × 0.0495 × 0.0075 = 1.856 × 10$^{-6}$	0.16502 × 0.0075 × 0.0075 = 1.856 × 10$^{-6}$	(11.6 − 9) × 10$^{-6}$ = 2.6 × 10$^{-6}$	\[\begin{align*} C_L &= \frac{L \times 2}{t} \\ &= \frac{0.0075 \times 2}{2.6 \times 10^{-6}} \\ &= 5769 \end{align*} \] \(Z = C_L \times \rho \) = 51.38 × 106	147.8 \((\text{In equation (3) because it is FCC})\)	451.17 \((\text{In equation (4) because it is FCC})\)
Nb (BCC)	0.02 × 0.02 × 0.001 = 0.4 × 10$^{-6}$	0.00342 × 0.001 = 0.4 × 10$^{-6}$	(9.57 − 9) × 10$^{-6}$ = 0.57 × 10$^{-6}$	\[\begin{align*} C_L &= \frac{L \times 2}{t} \\ &= \frac{0.01 \times 2}{0.01 \times 2} \\ &= 5708 \end{align*} \] \(Z = C_L \times \rho \) = 30.06 × 106	109 \((\text{In equation (5) because it is BCC})\)	197.4 \((\text{In equation (6) because it is BCC})\)
Mg (HCP)	0.1185 × 0.0915 × 0.0365 = 3.9576 × 10$^{-4}$	0.69	(50 − 9) × 10$^{-6}$ = 41 × 10$^{-6}$	\[\begin{align*} C_L &= \frac{L \times 2}{t} \\ &= \frac{0.1185 \times 2}{0.1185 \times 2} \\ &= 5780 \end{align*} \] \(Z = C_L \times \rho \) = 10.07 × 106	70.22 \((\text{In equation (7) because it is HCP and PrTr} \geq 1.11)\)	177.66 \((\text{In equation (8) because it is HCP})\)
Figure 6. The experimental test system by using the echo pulse technique.

Figure 6 illustrates the all test system. This test system contains the Ultrasonic Pulse UP200 (OSUN) as a generator of electric pulses, the probe to create ultrasonic waves, and the oscilloscope type of DSEX1102A (100MHz). Putting ultrasonic gel on the test sample is essentially before placement the probe on this test sample. After putting the probe, the t_{TOF} will appear on the oscilloscope screen.

Table 2. indicates the details of the test specimen such as dimensions of the specimen, the mass, and the density. This table also involves the calculation of $PrTr$, σ_y, and σ_u.

4. Results and Discussion

The matching between the proposing method represented by black color curves with red color curves which represent the experimental curves, for HCP materials, in figure 7 (a) is more than 93%. Also, the identity between experimental curves in green color, in figure 7 (b) with black color curves (the proposing program results) is more than 90%. These results were proved also in table 1 for the values of E, σ_y, and σ_u. Figure 7 (c) involves two curves stress-strain curve. The first one belongs to the alloy Al 1100-O, while the other the pure Ni, where these to materials represent the FCC group of pure material. For alloy Al 1100-O the matching was excellent (more than 90%), while for Ni was good, but not excellent. The difference between the experimental curve in blue color, in figure 7 (c), for Ni metal and the theoretical curve (black color curve) is beginning from the yield point until the ultimate point. The mismatch in this interval of the curve, (Ni curve) returns to the mathematical approximation shown in the equation below that was used to sketch the plastic deformation area:

$$EE1 = \frac{YS}{(E)}$$

$$\theta = \text{linspace}\left((2 \pi)/(2.0), \pi/6, 10\right)$$

$$\beta = \text{linspace}\left((\pi)/(2.0), 0, 10\right)$$

$$RRR = \text{UTS} - \text{YS}$$

$$\text{ddd} = \text{Elong} - EE1$$

$$x1 = \text{ddd} \times \text{cos} (\beta) + EE1$$

$$y1 = RRR \times \text{sin} (\theta) + \text{YS}$$
IOP Conf. Series: Materials Science and Engineering 1076 (2021) 012084
Figure 7. Approaching between the proposed method results and other experimental works [11, 12, 25-27].

In fact, all equation above in this section is a part of the program shown in the theoretical part of this study, and it is just prediction from the proposed program to the metal behaviour in the plastic zone. Despite this small mismatch, however, it does not affect the main results of this program which are modulus of elasticity, yield stress, ultimate stress. In addition, according to table 1 and figure 7, the maximum error was 10% and the minimum error was 1%, therefore the average error is 5% and that might be produced from the random error or any other causes, therefore, in this study, these results were regarded as acceptable results according to the references [28] [29].

Alloys (99.95%)	C_L (m/s)	ρ (kg/m³)	Crystal Structure	Figure
Mg-0.5Zr	5790	1740	HCP	12-a
Cast Iron	4600	7200	BCC	12-b
AL1100-O	6350	2710	FCC	12-c
Ni 233	5515	8890	FCC	
Ni 200	5810	8890	FCC	
AL1199-O	6320	2710	FCC	
AL(2014-O)	6310	2800	FCC	
Table 3 involves three properties (CL, ρ, and crystal structure) for six pure alloys that did not exist in table 1. First three of these six alloys were drawn in figure 7, while the other three were not drawn. The drawing of the last four alloys (Ni 233, Ni 200, AL1199-O, and AL2014-O) did not conduct because figure 7 will be very long, therefore these four alloys were listed in table 3 in order to be more confident in the proposed program through using the data (CL and ρ) for anyone would like to confirm from that.

5. Conclusion
The prediction of the stress-strain relation using the acoustic wave is of great importance for the industry. Companies that purchase big size parts, such as pipeline, cannot perform the ordinary tensile test unless some mechanical works are done to prepare standard test specimens. This study provides a novel MATLAB-code to predict the stress-strain relation for pure metals and alloys. The developed MATLAB-code adopts the experimentally measured wave velocity, density, and crystal structure of the metal to provide the prediction. The results confirmed a disciplined relation between the PrTrs and the mechanical properties of the metals that have the same crystal structure. Further, the results revealed that the developed algorithm is excellent in predicting the mechanical properties when compared with the ASTM. The results, also, confirmed a linear relation between the metals’ mechanical properties and the acoustic impedance, and a reverse relation with the pressure transmission coefficient. Further, the results showed that for the same acoustic impedance, HCP crystal structure metals have higher mechanical properties.

References
[1] Sun, S., et al., Atomistic Mechanism of Stress-Induced Combined Slip and Diffusion in Sub-5 Nanometer Sized Ag Nanowires. ACS Nano, 18 Jul 2019.
[2] Kong, D., et al., Surface Energy Driven Liquid-Drop-Like Pseudoelastic Behaviors and In Situ Atomic Mechanisms of Small-Sized Face-Centered-Cubic Metals. Nano Letters, 2018.
[3] Wang, L., et al., In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum. Nature Communications, 2020.
[4] Wang, L., et al., New twinning route in face-centered cubic nanocrystalline metals. Nature Communications, 2017.
[5] Abdelgneia, M.A.H., et al., The Effect of the Rheocast Process on the Microstructure and Mechanical Properties of Al-5.7Si-2Cu-0.3Mg Alloy. Jurnal Kejuruteraan 2019. 31(2): p. 317-326.
[6] Ching, W.Y., P. Rulis, and A. Misra, Ab initio elastic properties and tensile strength of crystalline hydroxyapatite Acta Biomaterialia, 2009.
[7] Sawpan, M.A., et al., Quasi-static and dynamic mechanical elastic moduli of alkaline aged pultruded fibre reinforced polymer composite rebar. Materials & Design, 2013. 46(0): p. 277-284.
[8] Trippetta, F., et al., Evolution of the elastic moduli of seismogenic Triassic Evaporites subjected to cyclic stressing. Tectonophysics, 2013. 592(0): p. 67-79.
[9] Hotlink, U.K., NDT Inspection of Tensile Strength, Yield Stress, Residual Stress, and Fracture Toughness API Pipe Material Verification for Unknown Steel Grades. https://www.uskoreahotlink.com/products/testing-inspection/ndt-tensile-strength/, 2019.
[10] Ewen, M., et al., Nondestructive Determination of Mechanical Properties of Open-Die Forgings and Potentials for Full Implementation in Production Process Chain in 11th European Conference on Non-Destructive Testing (ECNDT 2014). October 6-10, 2014: Prague, Czech Republic.
[11] Bertarelli, A., et al., Beam Induced Damage Mechanisms and Their Calculation. Joint International Accelerator School, Nov 2014
[12] Meenashisundaram, G.K., et al., Using lanthanum to enhance the overall ignition, hardness, tensile and compressive strengths of Mg-0.5Zr alloy. Journal of Rare Earths, Jul 2017. 35(7): p. 723.

[13] Olympus, Elastic Modulus Measurement. http://www.olympus-ims.com/en/applications/elastic-modulus-measurement/, 2020.

[14] Mohammed, A.A., S.M. Haris, and M.Z. Nuawi, Utilizing Hilbert–Huang transform in detection some of mechanical properties of the refractory metals. Mechanical Systems and Signal Processing 2016. 68-69: p. 449–461.

[15] Cardarelli, F., Materials Handbook. Vol. 2nd Edition. 2008: Springer-Verlag London Limited. 22.

[16] Matweb. Magnesium. Mg: Annealed Sheet. http://www.matweb.com/search/datasheet.aspx?matguid=7b49605d472d40d393ffe87ea224980c &ckck=1, 21-12-20018.

[17] Nnakwo, K.C., C.N. Mbaha, and C.C. Daniel-Mkpume, Investigation of the structural sensitive behavior of Cu-3Si-xMn ternary alloys. Journal of King Saud University – Science, 2019. 31.

[18] Ashby, M.F. and D.R.H. Jones, Engineering Materials 2. Vol. Third Edition. 2006, Printed and bound in UK: Elsevier

[19] Davis, J.R., Metals Handbook Desk Edition. 1998: ASM International®.

[20] Mohammed, A.A., S.M. Haris, and M.Z. Nuawi, Using the pressure transmission coefficient of a transmitted wave to evaluate some of the mechanical properties of refractory metals. Ultrasonics, 2015. 55.

[21] NDTCalc.com, Time of Flight Visualiser. http://www.ndtcalc.com/tofd.html, 2018.

[22] OLYMPUS, Advanced Calculator User Manual. DMTM 20039-01EN [U8778541] -Revision A, 2012. software version 2.10.

[23] Mohammed, A.A., S.M. Haris, and M.Z. Nuawi, A Smart Way to Increase the Frequency and Degree of Protection of Piezoelectric Ceramic Transducers in IEEE Student Conference on Research & Development 2013. 2013.

[24] Mohammed, A.A., S.M. Haris, and M.Z. Nuawi, Performance Evaluation and Compression of Some Actuators and Sensors Piezoelectric Elements, in Instrumentation & Measurement, Sensor Network and Automation (IMSNA). 2012: China.

[25] Sato, E., et al., Categorization of Ambient-Temperature Creep Behavior of Metals and Alloys on Their Crystallographic Structures. Materials Transactions, 2006. 47: p. 1121 to 1126.

[26] Li, Y. and Z. You, Open-Section Origami Beams for Energy Absorption. International Journal of Mechanical Sciences, July 2019. 157-158: p. 741-757.

[27] Fu, K., et al., An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties. Materials Science and Engineering: A, Feb 2018. 715: p. 108-116.

[28] Q&A, S., What percent error is too high. https://socratic.org/questions/what-percent-error-is-too-high, 2020.

[29] Mohammed, A.A., S.M. Haris, and M.Z. Nuawi, Role of Piezoelectric Elements in Finding the Mechanical Properties of Solid Industrial Materials. Applied science, sept. 2018: p. 1-26.

[30] NDT, R.C., Acoustic Properties for Metals in Solid Form. https://www.nded.org/GeneralResources/MaterialProperties/UT/ut_matlprop_metals.htm, 2019.