High Mobility Ge pMOSFETs with ZrO₂ Dielectric: Impacts of Post Annealing

Huan Liu, Genquan Han*, Yan Liu and Yue Hao

Abstract

This paper investigates the impacts of post metal annealing (PMA) and post deposition annealing (PDA) on the electrical performance of Ge p-type metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ZrO₂ dielectric. For the transistors without PDA, on-state current (I_{ON}), subthreshold swing (SS), and capacitance equivalent thickness (CET) characteristics are improved with PMA temperature increasing from 350 to 500 °C. Crystallization of ZrO₂ dielectric at the higher PMA temperature contributes to the increase of the permittivity of ZrO₂ and the decrease of the density of interface states (D_{it}), resulting in a reduced CET and high effective hole mobility (μ_{eff}). It is demonstrated that Ge pMOSFETs with a PDA treatment at 400 °C have a lower CET and a steeper SS but a lower μ_{eff} compared to devices without PDA.

Keywords: Germanium, MOSFET, ZrO₂, PMA, PDA, Mobility

Background

Germanium (Ge) has been regarded as one of the attractive p-channel materials for advanced CMOS because it offers much higher hole mobility than does Si [1–3]. A high-quality gate dielectric and effective passivation of Ge surface are the keys to realizing the superior effective carrier mobility (μ_{eff}) and high drive current in Ge transistor [4–7]. Several high-κ materials such as HfO₂ [8], ZrO₂ [7, 9], La₂O₃ [10], and Y₂O₃ [11] have been studied as the alternative gate dielectrics for Ge p-type metal-oxide-semiconductor field-effect transistors (pMOSFETs) to achieve capacitance equivalent thickness (CET) scalability toward sub-1 nm. Among these, ZrO₂ dielectric has attracted most attention due to the much higher κ value [12, 13] and the better interfacial quality [14] compared to the Hf-based ones. It has widely been reported that crystallization of ZrO₂ can further improve the electrical performance of Ge pMOSFET, e.g., reducing CET and boosting μ_{eff} [15, 16]. However, there is a lack of study on the impacts of process steps for ZrO₂ crystallization on device performance of Ge transistors.

In this paper, we investigate the impacts of the post metal annealing (PMA) and the post deposition annealing (PDA) on the electrical performance of Ge pMOSFETs with ZrO₂ dielectric. Significantly improved μ_{eff} and reduced CET can be achieved in devices at higher PMA temperature.

Methods

Key process steps for fabricating Ge pMOSFETs with ZrO₂ dielectric are shown in Fig. 1a. The Ge pMOSFETs were fabricated on n-type Ge(001) wafer with a resistivity of 0.088–0.14 Ω·cm. After the several cycles of chemical cleaning in the diluted HF (1:50) solution and rinsing in DI water, Ge wafer was loaded into an atomic layer deposition (ALD) chamber. The Ge surface was passivated by an ozone post oxidation (OPO), i.e., an ultrathin Al₂O₃ layer was deposited at 300 °C, and then, the in situ OPO was carried out at 300 °C for 15 min. After that, a 5-nm-thick ZrO₂ was deposited at 250 °C in the same ALD chamber using TDMAZr and H₂O as precursors of Zr and O, respectively. During the deposition, Zr[N(CH₃)₂]₄ source was heated to 85 °C. PDA process was carried out on some sample at 400 °C for 60 s using the rapid thermal annealing. Samples with and without PDA were denoted wafer II and I, respectively. Then, a 100-nm-thick TaN gate electrode was deposited by reactive sputtering.
After the gate patterning and etching, the source/drain (S/D) regions were formed by BF$_2$+ implantation at an energy of 30 keV and a dose of 1×10^{15} cm$^{-2}$. Fifteen-nanometer nickel S/D contacts were formed by a lift-off process. Finally, the PMA at 350, 400, 450, and 500 °C for 30 s was carried out for dopant activation and S/D metallization.

Figure 1b shows the scanning electron microscope (SEM) image of a fabricated Ge pMOSFET. Figure 1c shows the cross-sectional transmission electron microscope (XTEM) image of Ge pMOSFET, showing the source/drain region, metal gate, and ZrO$_2$ dielectric. Figure 1d and e show the high-resolution TEM (HRTEM) images of the gate stacks of Ge pMOSFETs on wafer I annealed at 400 °C and 500 °C, respectively.

Results and Discussion

Inversion capacitance C_{inv} vs. V_{GS} curves measured at a frequency of 300 kHz for the devices on wafer I are shown in Fig. 2. The CET values are extracted to be ~1.95, 1.80, 1.67, and 1.52 nm for the devices with PMA at 350, 400, 450, and 500 °C, respectively. The smaller CET is achieved at a higher PMA temperature due to the crystallization of ZrO$_2$. In general, the κ values for amorphous and crystalline ZrO$_2$ are about 20–23 and 28–30, respectively. A 5-nm-thick crystalline ZrO$_2$ contributes an EOT of ~0.7 nm. The shift of $C-V$ curves with various PMA temperature is due to the fact that

![Image of process steps](image_url)
crystallization reduces the density of bulk traps in ZrO2 dielectric.

Figure 3a shows the measured transfer characteristics and gate leakage currents I_G of Ge pMOSFETs on wafer I with the different PMA temperatures. All the devices have a gate length L_G of 4 μm and a gate width W of 100 μm. Ge pMOSFETs exhibit the much lower I_G compared to I_{DS} for all the PMA temperatures. An I_{ON}/I_{OFF} ratio above 10^{4} is achieved for the device with a PMA at 500 °C. The $I_{DS}-V_{DS}$ curves of the devices measured at the different gate overdrive $|V_{GS}-V_{TH}|$ are shown in Fig. 3b. It is noted that the threshold voltage V_{TH} is defined as the V_{GS} at I_{DS} of 10^{-7} A/μm. The Ge transistor with a PMA at 500 °C obtains the −47% and 118% drive current improvement compared to the devices annealed at 450 °C and 350 °C, respectively, at a V_{DS} of −1.0 V and a $|V_{GS}-V_{TH}|$ of 0.8 V. Figure 3c shows the statistical plot of the I_{ON} at a V_{DS} of −0.5 V and a $V_{GS}-V_{TH}$ of −1 V for Ge pMOSFETs with the various PMA temperatures. All the transistors in this plot have an L_G of 4 μm and a W of 100 μm. Devices with a PMA at 500 °C exhibit an improved I_{ON} as compared to those with the lower PMA temperatures, which is attributed to the decreased S/D resistance, the reduced CET, and the higher μ_{eff}, which will be discussed later.

Figure 4 shows the statistical plots of midgap D_{it}, SS, and V_{TH} characteristics for the devices with the different PMA temperatures. As shown in Fig. 4a, based on the maximum conductance method [17], the midgap D_{it} values are extracted to be 1.3×10^{13}, 9.5×10^{12}, 9.2×10^{12}, and 6.3×10^{12} cm$^{-2}$ eV$^{-1}$ for the devices with the PMA at 350, 400, 450, and 500 °C.
respectively. Figure 4b presents that Ge pMOSFETs annealed at 500 °C have the improved SS characteristics than the transistors annealed at the lower temperatures, due to the smaller midgap D_{it} and CET. The values of D_{it} and SS of Ge pMOSFETs with PMA are still higher than those of the best reported Ge transistors. It could possibly be reduced by optimizing the OPO passivation module, e.g., Al$_2$O$_3$ thickness and ozone oxidation temperature and duration. V_{TH} shifts to the positive V_{GS} with the increasing of PMA temperature, which is originated from the reduced CET and D_{it}. It is concluded that the best electrical performance is achieved for Ge pMOSFETs with a PMA at 500 °C.

μ_{eff} as a crucial factor affecting device drive current and transconductance in Ge pMOSFETs, was measured using the $\Delta R_{tot}/\Delta L_G$ method [18]. A large number of devices were measured with L_G ranging from 1.5 to 9 μm. Figure 5a illustrates the total resistance R_{tot} extracted at a $|V_{GS}-V_{TH}|$ of −1 V and a V_{DS} of −0.05 V as a function of L_G. The R_{SD} is the value at which the fitted line intersects at the y-axis. The R_{SD} values were estimated about to be 7.85, 7.15, 6.10, and 4.35 kΩ·μm for devices with PMA at 350, 400, 450, and 500 °C, respectively. This is indicative of the better dopant activation of S/D at higher PMA temperature. μ_{eff} can be extracted by $\mu_{eff} = 1/[WQ_{inv}(\Delta R_{tot}/\Delta L_G)]$, where Q_{inv} is the inversion charge density in Ge channel and $\Delta R_{tot}/\Delta L_G$ is the slope of the R_{tot} vs. L_G as shown in Fig. 5a. The smaller $\Delta R_{tot}/\Delta L_G$ for devices with PMA at 500 °C indicates an enhancement in μ_{eff} as compared with transistors with PMA at 450 °C. Figure 5b shows μ_{eff} as a function of Q_{inv} curves, extracted using the split C-V method. The peak hole mobility is 384 cm2/V·s for devices with a PMA at 500 °C, which is 31% higher than that of the devices with a PMA at 400 °C. At a high Q_{inv} of 1×10^{13} cm$^{-2}$, Ge
pMOSFETs which underwent a PMA at 500 °C achieve a mobility enhancement in comparison with the devices annealed at 400 °C. Ge transistors with crystalline ZrO₂ have the lower density of bulk trap charge resulting in the lower remote Coulomb scattering of holes, compared to the devices with amorphous ZrO₂. Owing to the smooth interface between crystalline ZrO₂ and Ge, Ge devices annealed at 500 °C have a lower surface roughness scattering and show a shift of peak mobility to the higher Q_{inv}.

Next, we discuss the impacts of PDA on the electrical characteristics of Ge pMOSFETs. Figure 6 shows the measured C_{inv} vs. V_{GS} of the Ge pMOSFETs on wafer I and wafer II with a PMA at 400 °C. The device which underwent a PDA at 400 °C has a much lower CET value of 1.29 nm compared to the device without PDA, 1.80 nm. Figure 7a shows the I_D, I_S, and I_G-V_{GS} characteristic curves of Ge pMOSFETs on wafer I and wafer II, and the devices which underwent a PMA at 400 °C. A larger gate leakage current is obtained for the device with PDA compared to the transistor without PDA, which is due to the lower CET. The corresponding I_{DS}-V_{DS} curves of the devices measured at different gate overdrive V_{GS}-V_{TH} are shown in Fig. 7b. The Ge transistor without PDA shows a ~24% improvement in drive current over the one with PDA at 400 °C at the same overdrive of ~0.8 V in the saturation region.

Figure 8 plots the statistical results of midgap D_{it}, SS, and V_{TH} of the Ge pMOSFETs with and without PDA. Figure 8a shows that the smaller D_{it} is achieved in Ge pMOSFETs with PDA at 400 °C compared to devices without PDA. In Fig. 8b, the lower value of mean subthreshold swing of 142 mV/decade is achieved for devices with PDA at 400 °C, corresponding to the lower CET and the lower D_{it}. It indicates that devices with PDA at 400 °C have a superior ZrO₂/Ge interface. Figure 8c shows that devices with and without PDA have a different V_{TH}; it may be attributed to the density of traps in the lower bandgap half dominant in the V_{TH}.
Figure 9a shows the R_{tot} vs. L_G curves at a gate overdrive of -1 V and V_{DS} of -0.05 V for devices with a PMA at 400 °C. The R_{SD} values are estimated about to be 7.15 and 7.30 kΩ·μm for devices without and with PDA at 400 °C, respectively. As shown in Fig. 9b, a remarkable higher peak μ_{eff} is achieved for Ge pMOSFETs without PDA, corresponding the smaller $\Delta R_{\text{tot}}/\Delta L_G$ in Fig. 9a, compared to devices with PDA. The devices with a PDA at 400 °C exhibit a peak μ_{eff} of 211 cm²/V·s; the lower hole mobility might be mainly attributed to the strong remote Coulomb scattering contributed by the fixed charge in ZrO₂ dielectric.

Conclusions

In summary, the impacts of PMA and PDA on Ge pMOSFET with ZrO₂ dielectric were extensively investigated. Crystallization of ZrO₂ gate dielectric provides for significantly enhanced hole mobility and reduced CET compared to devices at the lower PMA temperature. A peak hole mobility of 384 cm²/V·s and enhanced drive current have been achieved in devices with PMA at 500 °C. Devices with PDA at 400 °C exhibited the lower CET and the smaller D_i but the poor hole mobility and the larger leakage current compared with transistors without PDA.

Abbreviations

ALD: Atomic layer deposition; BF₂⁺: Boron fluoride ion; CET: Capacitive effective thickness; Ge: Germanium; HF: Hydrofluoric acid; HRTEM: High-resolution transmission electron microscope; IL: Interfacial layer; MOSFETs: Metal-oxide-semiconductor field-effect transistors; Ni: Nickel; PDA: Post deposition annealing; PMA: Post metal annealing; SS: Subthreshold swing; TaN: Tantalum nitride; TDMAZr: Tetrakis (dimethylamido) hafnium; ZrO₂: Zirconium dioxide; μ_{eff}: Effective carrier mobility

Acknowledgements

Not applicable.
Author's Contributions
HL carried out the experiments and drafted the manuscript. GQH and YL supported the study and helped to revise the manuscript. YH provided constructive advice in the drafting. All the authors read and approved the final manuscript.

Funding
The authors acknowledge the support from the National Natural Science Foundation of China under Grant No. 61534004, 61604112, 61622405, 61874081, and 61851406

Availability of Data and Materials
The datasets supporting the conclusions of this article are included in the article.

Competing Interests
The authors declare that they have no competing interests.

Received: 1 April 2019 Accepted: 30 May 2019
Published online: 11 June 2019

References
1. Duriez B, Vellanitis G, van Dal MJH, Doornbos G, Oxlund R, Bhuwalka KK, Holland M, Chang YS, Hsieh CH, Yin KM, See YC, Passlack M, Diaz CH (2013) Scaled p-channel Ge FinFET with optimized gate stack and record performance integrated on 300-mm Si wafers. IEDM Tech Dig, pp 522–525 https://doi.org/10.1109/IEDM.2013.6724666
2. Chem W, Hashemi P, Teherani JT, Yu T, Dong Y, Xia G, Antoniadis DA, Hoyt JL (2012) High mobility high-k-all-around asymmetrical-strained germanium nanowire trigate p-MOSFETs. In: IEDM Tech Dig, pp 387–390 https://doi.org/10.1109/IEDM.2012.6479055
3. Wu H, Luo W, Si M, Zhang J, Zhou H, Ye PD (2014) Deep sub-100 nm Ge CMOS devices on Si with the recessed S/D and channel. In: IEDM Tech Dig, pp 16.7.1–16.7.4 https://doi.org/10.1109/IEDM.2014.7047057
4. Lee CH, Nishimura T, Tabata T, Wang SK, Nagashio K, Kita K, Toriumi A (2010) Ge MOSFETs performance: impact of Ge interface passivation. In: IEDM Tech Dig, pp 18.1.1–18.14 https://doi.org/10.1109/IEDM.2010.5703384
5. Pillarssetty R, Chu-Kung B, Corcoran S, Dewey G, Kavalieros J, Kennel H, Kotyra R, Le V, Lionberger D, Metz M, Mukherjee N, Nah J, Rachmady W, Radasavljevic M, Shah U, Taft S, Then H, Zelick N, Chau R (2010) High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc = 0.5 V) III-V CMOS architecture. In: IEDM Tech Dig, pp 150–153 https://doi.org/10.1109/IEDM.2010.5703312
6. Hashemi P, Chem W, Lee H, Teherani JT, Zhu Y, Gonsalvez J, Shahidi GG, Hoyt JL (2012) Ultrathin strained-Ge channel p-MOSFETs with high-k/metal gate and sub-1-nm equivalent oxide thickness. IEEE Electron Device Lett 33:943–945
7. Shin Y, Chung W, Seo Y, Lee CH, Sohn DK, Cho BJ (2014) Demonstration of Ge MOSFETs with 6 Å EOT using TaH/GeO2/Ge(100) gate stack fabricated by novel vacuum annealing and in-situ metal capping method. In: VLSI Tech Dig, pp 82–83 https://doi.org/10.1109/VLSIT.2014.6894377
8. Yi SH, Chang-Liao KS, Wu TY, Hsu CW, Huang J (2017) High performance Ge pMOSFETs with HfO2/Hf-Cap/GeO2 gate stack and suitable post metal annealing treatments. IEEE Trans Electron Devices 37:544–547
9. Lin CM, Chang HC, Chen YT, Wong IH, Lan HS, Luo SJ, Lin JT, Tseng YJ, Liu CW, Hu C, Yang FL (2012) Interfacial layer-free ZrO2 on Ge with 0.39-nm EOT, κ~43, ~2 × 107 A/cm2 gate leakage, SS =85 mV/dec, IS/IOFF = 6 × 105, and high strain response. In: IEDM Tech Dig, pp 23.21–23.24 https://doi.org/10.1109/IEDM.2011.613630
10. Henkel C, Abermann S, Bethge O, Pozzovivo G, Klang P, Reiche M, Bertagnolli E (2010) Ge p-MOSFETs with scaled ALD La2O3/ZrO2 gate dielectrics. IEEE Trans Electron Devices 57:3295–3302
11. Seo Y, Lee TI, Yoon CM, Park BE, Hwang WS, Kim H (2017) The impact of an ultrathin Y2O3 layer on GeO2 passivation in Ge MOS gate stacks. IEEE Trans Electron Devices 64:3303–3307
12. Chui CO, Ramanathan S, Triplett BB, McIntyre PC, Saraswat KC (2002) Germanium MOS capacitors incorporating ultrathin high-k gate dielectric. IEEE Electron Device Lett 23:473–475
13. Kamata Y, Kamimuta Y, Ino T, Nishiyama A (2005) Direct comparison of ZrO2 and HfO2 on Ge substrate in terms of the realization of ultrathin high-k gate stacks. Jpn J Appl Phys 44:2323–2329
14. Li CC, Chang-Liao KS, Chi WF, Li MC, Chen TC, Su TH, Chang YW, Tsai CC, Liu LJ, Fu CH, Lu CC (2016) Improved electrical characteristics of Ge pMOSFETs with ZrO2-HfO2 stack gate dielectric. IEEE Electron Device Lett 37:12–15
15. Liu H, Han GQ, Xu Y, Liu Y, Liu T, Hao Y (2019) High-mobility Ge pMOSFETs with crystalline ZrO2 dielectric. IEEE Electron Device Lett 40:371–374
16. Hill WA, Coleman CC (1980) A single-frequency approximation for interface-state density determination. Solid State Electronics 23:987–993
17. Greve DW (1998) Field effect devices and application: devices for portable, low-power, and imaging systems. Prentice-Hall, Englewood Cliffs

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.