Lecture Series

The Systemic Theory of Living Systems. Part IV: Systemic Medicine—The Praxis

José A. Olalde Rangel, Meyer Magarici, Francis Amendola and Oswaldo del Castillo

Adaptogenic Medical Centers, Calle del Arenal c/c Luis de Camoes, La Trinidad, Caracas 1080, Venezuela

This fourth lecture illustrates the praxis and results of Systemic Medicine (SM) in various therapeutic applications. SM’s success has made it popular throughout Venezuela and Puerto Rico. The treatment of over 300,000 patients by 150 orthodox MD’s, trained and qualified in SM, in 35 medical establishments with above average results corroborate its effectiveness as an eCAM in chronic degenerative diseases. Herein we provide a synopsis of results obtained in four such pathologies—the journal’s necessary space restrictions somewhat limiting content—as well as clinical and photographic evidence. The validity of any medical theory is substantiated by its degree of effectivity and success. The workability of evidence-based SM corroborates Systemic Theory’s transcendence.

Keywords: adaptogen – diabetes – negentropy – polycystic ovarian syndrome – psoriasis – synergetics – systemic medicine – systemic theory – varicose ulcer

Past and Present Naturalists … Tomorrow’s Systemics?

Recent past and even present successful naturalists and phyto-therapeutic practitioners share a long and honorable tradition of knowledge and pride in the cure of illnesses, which goes back to written history and beyond. These qualities have been substantiated by the success of Chinese (1,2), Kampo (3,4), Ayurvedic (5), Chumash (6) or Mayan (7) among many other traditional medicines. These traditional medicines have ‘demonstrated that every culture is capable of understanding and “inventing” the meaning of disease and its cure, even when it is different from our modern medical views’ (7). The variability and extent of cultures to provide answers—traditional medicines—to pathologies are embedded in the curiosity and observational capabilities of the human race. There are collective factors such as ‘a background of extensive family in traditional medicine’ (8) which play an important role in the transmission and survival of medicinal plant knowledge among ethnic groups. A potential issue, though, is the possible curtailment of the wisdom—and therapies—of traditional medicines within geographical and ethnic boundaries. In any case, the amount of plants, potential formulations or properties are a massive concern for any given individual caregiver or group to understand, store and transmit.

But, perhaps, it may be possible to set up a system or periodic table where plants and other natural remedies could, according to their properties, be arranged to produce specific formulae that provide well-being for a given pathology. Some exceptional individuals seem to have come by this ability. One of these gifted health care practitioners was Maurice Messegue, whom Mistinguet and Konrad Adenaur—among his famous patients—swore that only he could treat their illnesses. More recently, both, Dr. Rusudan Lomidze, using the Georgian Kohlkian traditional medicine, and Lonrig Dangar, a Tibetan physician who applied the rich Tibetan traditional medicine have also obtained significant success. These gifted individuals have shown that traditional medicine is a successful medicine. But a question still hangs in the air? Might a theory be devised by which regular practitioners, health care specialists devoid of the naturalists’ extensive background, might formulate natural organic therapeutic protocols?
The Systemic Theory is set forth herein to provide an answer to this crucial question. Systemic Theory postulates that Health (H) is directly proportional to the integrity of a living system’s Energy (E), Bio-Intelligence (I) and Organization (O) as shown in Fig. 1. Systemic Theory also establishes a common denominator to all sickness (Fig. 2) and ascertains the cause of all disease to be an entropy increase: ‘disorder augmenting within the biologically open system, stemming from energo-informational and organizational impacts, either of external or internal nature’ (9–11). Therapeutics should then include a negentropy supply to enhance the system’s energy–work capacity (E), its informational potential (I) intelligence, and finally structure and functional organization (O).

Systemic Medicine’s (SM) treatment strategy is based on identifying and prescribing superior herbs—tonic or adaptogenic—or any nutraceuticals or medicine with potential to strengthen E, I, O by providing energo, informational and organizational aid to the overall network of intelligent cells and cell systems that constitute the body. The main premise proposes that when all three factors are brought back to ideal levels patients’ conditions begin recovery to normal health.

Evaluating the Praxis of Systemic Theory: Systemic Medicine

To corroborate the validity of the Systemic approach, we examined the results of its clinical application in chronic degenerative diseases (CDD) through retrospective studies carried out at the Adaptogenic Medical Centres located in Venezuela and Puerto Rico. Also included in the studies, were patients attending the following public hospitals (in Venezuela): Dr Domingo Luciani Hospital, Caracas; Dr Raúl Leoni Hospital, San Félix; and the Rehabilitation Center of the Venezuelan Social Security Institute, Caracas. Three parameters were compared, ante and post-SM treatment, and these factors were as follows: Clinical results; Quality of Life (QoL) (12); and Tolerance to treatment. All patients included in these studies had formerly received orthodox treatments without any success in preventing disease progression. Thus, SM became the first choice treatment or even the unique alternative therapy. The complete studies of the pathologies included in this lecture as well as other CDD studies may be found at www.adaptogeno.com.

Outcomes of these as well as other studies have been presented at several scientific events such as 8th International Electrotherapy Congress in Nanning, China, September 2004; First International Neurobiotelekom Congress, in Saint Petersburg, Russian Federation, December 2004; First International Systemic Medicine Congress in Caracas, Venezuela, January 2005; Latin American Center Symposium on Environment and Health: Exploring Natural Products, UCLA, April 2005; First International Congress on Complementary and Alternativ Treatments in Cancer, in Madrid, Spain, May 2005; and finally at the Science Information and Spirit Seminar in St Petersburg, Russian Federation, June 2005.

Clinical Study I: Diabetic Foot. Summary of Outcomes and Comparative Photographic Evidence

The therapeutic outcome is examined in 110 patients with diverse degrees of diabetic foot (13) through a retrospective, multicenter, descriptive 2 year long study (14). This treatment clinically improved 80.9% of the total diabetic foot population studied \((P < 0.00001)\). SM prevented amputation in 40 patients (80%) of all cases diagnosed for surgical removal of limbs (50 patients). There was a significant improvement in QoL—86.36% of all diabetic foot cases \((P < 0.00001)\). Tolerance to treatment was found to be excellent (Table 1).

Number of patients	Clinical improvement	QoL improvement	Treatment tolerance	Other
110	80.9%	86.36%	97.27%	Amputation avoided in 80% of cases diagnosed for surgery
(89 patients)	(95 patients)	(107 patients)		
Results (Fig. 3) suggest that SM is the best therapeutic option for patients affected with diabetic foot.

Clinical Study II: Severe Psoriasis. Resume´ of Results and Illustrative Before and After Case Contrast

The outcome on the effects of SM in 123 patients with severe psoriasis was examined through a retrospective, multicenter, descriptive 2 year long study (15). Improvement in clinical remission was observed in 77.23% of patients \((P < 0.00001)\). Almost two-thirds of all patients achieved clinical improvement in <46 days. QoL improvement is observed in 82.93% of patients \((P < 0.00001)\). This therapeutic formula was particularly effective in severe varieties of this pathology. Treatment tolerance was excellent (Table 2). Results confirm a high remission rate, without side effects, in patients treated with SM. This suggests that SM is a superior therapeutic tool (Fig. 4).

Table 2. Synopsis of SM treatment results in severe psoriasis

Number of patients	Clinical improvement	QoL improvement	Remission time ≤45 days	Treatment tolerance
123	77.23%	66.3%	82.93%	100%

(Fig. 3) Photographic evidence of diabetic foot remissions, including length of treatment between photos.
Clinical Study III: Varicose Ulcer. Synopsis of Results, Before and After Photo Comparison

SM protocol was evaluated in 129 patients with chronic varicose ulcers through a retrospective, multicenter, descriptive 2 year long study (16). This treatment improved ulcers in 79% of the population. A remission of 21% of all patients was achieved in only 2 months. Systemic treatment also significantly improved the most frequent symptoms (cramps 71.4%, pain 78% and edema 88.7%) (Table 3). About 105 patients had QoL improvement. Some examples of results are seen in Fig. 5. The tolerance was excellent.

Clinical Study IV: Polycystic Ovarian Syndrome. Results, Before and After Graphic Differences

Thirty-five patients with polycystic ovarian syndrome (PCOS) were included in a retrospective, multicenter, descriptive 2 year long study to evaluate their response to a systemic protocol
designed to improve their condition and/or obtain remission to the aforementioned pathology (17). SM improved pelvic pain in all 20 symptomatic patients \((P < 0.00001)\); menstrual disorders (amenorrhea, dysmenorrhea, menorrhagia, menometrorrhagia, oligomenorrhea) in all 22 symptomatic patients \((P < 0.00001)\); asthenia and cephalae in all 17 symptomatic patients \((P < 0.0001)\); as well as acne and hirsutism in 8 out of 9 (89%) symptomatic patients \((P < 0.0133)\). Pelvic ecsonograms revealed that 29 patients (82.8%) experienced a total disappearance of cysts, whereas 6 patients (17.2%) showed decrease in cyst size (Table 4). QoL improved in 100% of patients \((P < 0.0001)\). Tolerance to treatment was outstanding (100%). To conclude, evidence-based results in PCOS treatment, with SM, suggest a remarkable CAM therapy (Fig. 6).

Table 4. Synopsis of SM treatment results in PCOS

Number of patients	Clinical improvement	Total cyst disappearance	QoL improvement	Treatment tolerance
35	100%	82.85% (29 patients)	100%	100%

E, I, O Classification of Superior Medicines

Adaptogens, tonics and nutraceuticals, in SM, are classified according to their E, I, O potential, i.e. as Energoceuticals, Infoceuticals and Organoceuticals. Examples of these by category are in Table 5.
Systemic Protocol for Diabetic Foot

A complete description of each systemic protocol exceeds the scope of this article; however, a summarized example for diabetic foot is illustrated below.

E:
Leuzea carthamoides
Ecdysone phytosteroids activate enzyme synthesis pro-cellular ATP synthesis (27,30).

I:
Ganoderma lucidum
Ganoderan B and dozens of other polysaccharides and beta-glucans stimulate neuroendocrine intelligence and cell immunity (46,47,105,106). Glycans’ path for immune enhancement is not certain but Chihara et al. (107) have proposed a likely model modified by Kidd (108) (Fig. 7).

O:
Gingko biloba
Flavonoglycosides, bioflavonoids, ginkgolides and bilobalides increase vascular flow (77,78).

The Healing Law of Synergetics

Healing potential, negentropy gain, is directly proportional to synergetic contribution (SC) (11). SC is exponentially proportional to the number of contributive active principles \(n\) in a formula—ergo in a protocol. The Healing Law of Synergetics is thus derived: Remission in chronic degenerative diseases, \(\Delta S \gg 0\), depends on \((n^2 + n)/2\). Figure 8 demonstrates the exponential number of SC as \(n\) increases.

This law is valid as long as genetic functioning is minimally intact. The greater the SC is, the greater the probability of recovery. Thus all therapeutic formulations should in consequence include as many E, I, O nutraceuticals as possible.

Analysis

There is probably greater potential in developing formulations of synergetic natural supplements than in synthetics for CDD. The potential ‘... to introduce these compounds in the treatment of human diseases in order to raise public awareness on the richness and diversity of natural products that could be
Table 5. Superior medicines E, I and O classification

E	Names	References	Names	References	Names	References	
	Acantopanacis senticosus	Wu et al. (18), Gaffney et al. (19)	Uncaria tomentosa	Sheng et al. (36), Akeson et al. (37)	Glycyrrhiza glabra	Acharya et al. (66)	
	Cornu Cervi pantotrichum	Kim et al. (20), Zhang et al. (21)	Aloe vera	Kim et al. (38)	Carcuma Longa	Chainani-Wu (67)	
	Ilex paraguariensis	Gorgen et al. (22)	Andrographis paniculata	Matsuda et al. (39), Puri et al. (40)	Ulmus fulva	Brown et al. (68)	
	Lepidium meyenii	Lopez-Fando et al. (23)	Astragalus membranaceus	Wang et al. (41), Shao et al. (42)	Angelica sinesis	Mei et al. (69), Yin (70)	
	Ocimum sanctum	Agrawal et al. (24)	Croton lechleri	Risco et al. (43)	Chondroitin/ glucosamine	Houpt et al. (71)	
	Panax ginseng	Yang et al. (25)	Echinacea purpurea and E. angustifolia	Randolph et al. (44), Cundell (45)	Chitin fiber	Jing et al. (72)	
	Panax quinquefolius	Wang et al. (26)	Ganoderma lucidum	Kohguchi et al. (46), Jiang et al. (47)	Crataegus oxyacantha	Rigelsky and Sweet (73), Lacaille-Dubois et al. (74)	
	Pfaffia paniculata	Kotsiriuba et al. (27), Tashmukhamedova et al. (28)	Griffola frondosa	Odama et al. (48), Lin et al. (49)	Dioscorea villosa	Shealy (75), Ladrerie et al. (76)	
	Ptychopetalum olacoides	Siqueira et al. (29)	Hydrastis canadensis	Rehman et al. (50)	Plants enzymes	Popiela et al. (77)	
	Rhaponticum carthamoides	Kutazorova et al. (30)	Morinda citrifolia	Su et al. (51)	Equisetum arvense	Blumenthal et al. (78), Fleming (79)	
	Rhodiola rosea	Maslova et al. (31), Spasov et al. (32)	Petiveria alliacea	Ruffa et al. (52), Malpezzis et al. (53)	Ginkgo biloba	Kubota et al. (80), Pepe et al. (81)	
	Schizandra chinensis	Antoshechkin (33)	Sutherlandia frutescens	Bence and Crooks (54), Interleigh et al. (55)	Gotu kola	Incandela et al. (82)	
	t-arginine	Gupta et al. (34)	Tabebuia avellanedae	Planchon et al. (56), Li et al. (57)	Sargassum fusiforme	Ji et al. (83)	
	Ubiquinone (Coenzyme Q10)	Baggio et al. (35)	Valeriana officinalis	Dietz et al. (58)	Horapogonphyma procumbens	Chrubasik et al. (84)	
			Vitis agnus castus	Kobayakawa and Yano (59), Ohyama et al. (60)	Vitamins	Carrero et al. (85)	
			Lentinus edodes	Borchers et al. (61), Wasser and Weis (62)	Minerals	Hercberg et al. (86)	
			Coriolus versicolor	Sun and Zhu (63), Sun et al. (64)	Pycnopetalum olacoides	Bucci (87), Suqueira et al. (29)	
			Cordyceps sinensis	Leu et al. (65)	Pygeum africanum	Freeman and Soloman (88), Santa Maria Margalef et al. (89)	
						Rhamnus purshiana	Ma et al. (90)
						Ruscus aculeatus	Redman (91), Bouaziz et al. (92)
						Salix alba	Chrubasik et al. (93)
						Sena alejadrida	Franz (94)
						Serrona repens	Goldmann et al. (95), Iguchi et al. (96)
						Silibum marianum	Halim et al. (97), Chrugoo et al. (98)
						Smilax china	Lee et al. (99)
						Tribulus terrestris	Hong et al. (100)
						Vaccinium myrtillus	Zaragoza et al. (101), Savickiene et al. (102)
						Viburnum spp.	Calle et al. (103)
						Zingiber officinalis	Young et al. (104)

Energoceuticals that enhance mitochondrial ATP synthesis and resynthesis
Infoceuticals that enhance bio-intelligence on cellular, neuroendocrine and immune levels
Organoceuticals that specifically enhance organ function and structure
carefully harvested for the benefit of mankind’ as Cooper points out, is enormous (109).

Conclusion

Based on the Law of Synergetics future therapeutics should consist of thousands of potentially active E, I, O active principles from all organic sources available. This opens up a huge potential—hitherto ignored—for humanity.

Acknowledgements

We express sincere appreciation and gratitude to Professor Edwin L. Cooper for his invaluable support in making possible the four publications of the Systemic Theory and Praxis.

References

1. Wago H, Deng H. Chinese medicine and immunity. In: Cooper EL, Yamaguchi N (eds). Complementary and Alternative Approaches to Biomedicine. New York: Kluwer Academic/Plenum Publishers, 2004, 167–79.
2. Chen CF, Shum YC, Yang SP. The modernization of traditional Chinese medicine in Taiwan—past, present and future. In: Cooper EL, Yamaguchi N (eds). Complementary and Alternative Approaches to Biomedicine. New York: Kluwer Academic/Plenum Publishers, 2004, 35–42.
3. Terasawa K. Evidence-based reconstruction of Kampo medicine: part I—is Kampo CAM?. Evid Based Complement Alternat Med 2004;1:11–6.
4. Yamada H. New scientific approach for natural medicines. In: Cooper EL, Yamaguchi N (eds). Complementary and Alternative Approaches to Biomedicine. New York: Kluwer Academic/Plenum Publishers, 2004, 27–33.
5. Naik Gh, Priyadarsini KI, Satav JG, Banavalikar MM, Sohoni DP, Biyani MK, Mohan H. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine. Phytochemistry 2003;1:97–104.
6. Adams JD, Garcia C. The advantages of traditional Chumash healing. Evid Based Complement Alternat Med 2005;1:19–23.
7. Pena JC. The concept of illness and kidney disease in Nahuaat medicine. Synthesis of Mesoamerican and pre-Columbian medicine. Rev Invest Clin 2002;54:474–81. (in Spanish).
8. Vandenbroek I, Van Damme P, Van Puyldee L, Arrazola S, De Kimpe N. A comparison of traditional healer’s medicinal plant knowledge in the Bolivian Andes and Amazon. Soc Sci Med 2004;59:837–49.
9. Olalde J. The systemic theory of living systems and relevance to CAM: part I: the theory. Evid Based Complement Alternat Med 2005;1:13–8.
10. Olalde J. The systemic theory of living systems and relevance to CAM: the theory (part II). Evid Based Complement Alternat Med 2005;2: 129–37.

11. Olalde Rangel JA. The systemic theory of living systems and relevance to CAM. Part III. The theory. Evid Based Complement Alternat Med 2005;2:267–75.

12. Grogono AW, Woodgate DJ. Index for measuring health. Lancet 1971;2: 1024–6.

13. Wagner FW. The dysvascular foot: a system of diagnosis and treatment. Foot Ankle 1981;2:64–122.

14. Olalde JA, Magarici M, Amendola F, del Castillo O. Diabetic Foot Improvement using Systemic Medicine’s framework 2005 Jan-Mar. Available from www.adaptogeno.com.

15. Olalde JA, Magarici M, Amendola F, del Castillo O. Benefits of Systemic Medicine in patients with Severe Psoriasis 2005 Jan-Mar. Available from www.adaptogeno.com.

16. Olalde JA, Magarici M, Amendola F, De Arriba C, del Castillo O. Remission of varicose ulcers with Systemic Medicine. 2005; Jan-Jun. Available from http://www.adaptogeno.com.

17. Olalde JA, Magarici M, Amendola F, de Arriba C, del Castillo O. Effectiveness of the Systemic Medicine in patients with Polycystic Ovarian Syndrome 2005 Jan-Jun. Available from http://www.adaptogeno.com.

18. Wu Y, Wang X, Li M. Effect of ginseng polypeptide induced hypoglycemia. Int J Clin Pharmacol Ther 1990;25: 1207–11.

19. Zhang L, Wang Y, Wang LZ, Gao XM. Immunopotentiating effect of a polysaccharide from Ilex paraguariensis. Int Immunopharmacol 2004;4:963–73.

20. Kim KS, Choi YH, Kim KH, Lee YC, Kim CH, Moon SH, et al. Modulation of intracellular pools of cyclic purine nucleotides by biologically active oxysterol-ecdysterone and vitamin D3. Mol Aspects Med 1994;15:287–94.

21. Zhang L, Wang Y, Wang LZ, Gao XM. Immunopotentiating effect of a polysaccharide from Ilex paraguariensis. Int Immunopharmacol 2004;4:963–73.

22. Gorgen M, Turatti K, Medeiros AR. Aqueous extract of Ptychopetalum olacoides stimulates immune function of normal mice. Phytother Res 2004;18:857–61.

23. Bence AK, Crooks PA. The mechanism of 5-arginyl tRNA synthetase as a novel target for anticancer drug discovery. J Enzyme Inhib Med Chem 2003;18:1051–6.

24. Cundell DR. The effect of aerial parts of Echinacea on the circulating white blood cells and selected immune functions of the aging male Sprague-Dawley rat. Int Immunopharmacol 2003;3:1041–8.

25. Kaniwa M, Kunikata T, Watanabe H, Kudo N, Shibuya T, Ishihara T, et al. Immuno-potentiating effects of the antler shaped fruiting body of Ganoderma lucidum Biosk Biotechnol Biomol 2004:68:881–7.

26. Jiang J, Slivova V, Valachovicova T, Harvey K, Silva D. Ganoderma lucidum inhibits proliferation and induces apoptosis in human prostate cancer cells PC-3. Int J Oncol 2004;24:1093–9.

27. Okada N, Murata Y, Namba H. Administration of a polysaccharide from Grifola frondosa stimulates immune function of normal mice. J Med Food 2004:7:141–5.

28. Shang L, Shi Y, Cassileth BR, Sirotnak F. Protective and anti-arthritic effects of deer antler aqua-acupuncture. Phytomedicine 2005;2:267–75.

29. Kim HS, Kacew S, Lee BM. In vitro chemopreventive effects of plant polysaccharides (Aloe barbadensis miller, Lentinus edodes, Ganoderma lucidum and Coriolus versicolor. Carcinogenesis 1999;20:1637–40.

30. Matsuda T, Kuroyanagi M, Sugiyama S. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem Pharm Bull (Tokyo) 1994;42:1216–25.

31. Puri A, Saxena R, Saxena RP. Immunostimulant agents from Andrographis paniculata. J Nat Prod 1993;56:995–9.

32. Wang RT, Shan BE, Li QX. Extracorporeal experimental study on immuno-modulatory activity of Astragalus membranaceus extracts. Zhonggguo Zhong Xi Yi Jie He Za Zhi 2002:42:543–6.

33. Sheng Y, Ghia F, Vila R, Iglesias J, Alvarez E, Canigueral S. Immunomodulatory effect and chemical characterisation of sangre de drago (dragon’s blood) from Croton lechleri. Planta Med 2003;69:785–94.

34. Randolph RK, Gellenbeck K, Stonebrook K, Brovelli E, Qian Y, Bankaitis-Davis D, Cheronis J. Regulation of human immune gene expression as influenced by a commercial blended Echinacea product: preliminary studies. Exp Biol Med (Maywood) 2003;228:1051–6.

35. Speroni E, Ghia F, Vila R, Iglesias J, Alvarez E, Canigueral S. Immunomodulatory effect and chemical characterisation of sangre de drago (dragon’s blood) from Croton lechleri. Planta Med 2003;69:785–94.

36. Cavallaro L. Cytotoxic effect of Argentine medicinal plant extracts on urchin egg development. Int J Oncol 2003;228:1051–6.

37. Gorgen M, Turatti K, Medeiros AR. Aqueous extract of Ilex paraguariensis decreases nucleotide hydrolysis in rat blood serum. J Ethnopharmacol 2005;97:73–7.

38. Lopez-Fando A, Gomez-Serrallillos MP, Iglesias I, Lock O, Umapaty UP, Carretto ME. Lepidium peruvianum chiu chiu restores homeostasis impaired by restraint stress. Phytother Res 2004;18:471–4.

39. Agrawal P, Rai V, Singh RB. Randomized placebo-controlled, single blind trial of holy basil leaves in patients with noninsulin-dependent diabetes mellitus. Int J Clin Pharmacol Ther 1996;34:406–9.

40. Yang M, Wang BX, Jin YL. Effects of ginseng polysaccharides on reducing blood glucose and liver glycoprotein. Zhonggguo Yao Li Xue Bao 1990;11:520–4.

41. Wang BX, Yang M, Jin YL. Studies on the mechanism of ginseng polysapride induced hypoglycemia. Yao Xue Xue Bao 1990;25: 727–31.

42. Kotsisurba AV, Bukhaneyvch OM, Tarakanov SS, Khodolova IUd. Modulation of intracellular pools of cyclic purine nucleotides by biologically active oxysterol-ecdysterone and vitamin D3. Ukr Biokhim Zh 1993;65:76–83.

43. Tsamihakamedova MA, Almatov KT, Syrov VN, Sultanov MB, Abhlov AA. Comparative study of the effect of ecdysterone, turkesterone and nerobol on the function of rat liver mitochondria in experimental diabetes. Vopr Med Khim 1986;32:24–8.

44. Siqueira IR, Fochesatto C, da Silva AL, Nunes DS, Battistini AM, Netto CA, Elisabetsky E. Pachypetalum olacoides, a traditional Amazonian “nerve tonic”, possesses anticholinesterase activity. Pharmacol Biochem Behav 2003;75:645–50.

45. Kuzuzova NM, Filippovich IuB, Khodolova IuD, Miladera K. Ecdysterone induces the activity of multiple forms of acid phosphatase and malate dehydrogenase. Ukr Biokhim Zh 1991;63:41–5.

46. Maslova LV, Kondrat’ev’ Bhu, Maslov LN, Lishmanov IuB. The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress. Eksp Klin Farmakol 1994;57:61–3.

47. Spasov A, Wikman G, Mandrikov VH. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 2000;7:85–9.

48. Antohechkin A. The Primary Adaptogens. Clearwater: Ceptoma Publishing Co., 2001.

49. Gupta V, Gupta A, Saggu S, Divesak HM, Grover SK, Kumar R. Anti-stress and adaptogenic activity of l-arginine supplementation. Evid Based Complement Alternat Med 2005;2:93–7.

50. Baggio E, Gandini R, Plancher AC, Passeri M, Carmosino G. Italian multicenter study on the safety and efficacy of coenzyme Q10 as adjunctive therapy in heart failure. CoQ10 Drug Surveillance Investigators. Mol Aspects Med 1994;15:287–94.

51. Sheng Y, Pero RW, Amri A. Induction of apoptosis and inhibition of proliferation in human tumor cells treated with extracts of Uncaria tomentosa. Anticancer Res 1998;18:3963–8.

52. Akesson C, Lindgren H, Pero RW. An extract of Uncaria tomentosa inhibiting cell division and NF-kappa B activity without inducing cell death. Int Immunopharmacol 2003;3:1889–900.

53. Kim HS, Kacew S, Lee BM. In vitro chemopreventive effects of plant polysaccharides (Aloe barbadensis miller, Lentinus edodes, Ganoderma lucidum and Coriolus versicolor. Carcinogenesis 1999;20:1637–40.

54. Antoshechkin A. The primary adaptogens. Clearwater: Ceptoma Publishing Co., 2001.
The systemic theory of living systems (part IV)

55. Jang MH, Jun do Y, Rue SW. Arginine antimetabolite t-canalavine induces apoptotic cell death in human Jurkat T cells via caspase-3 activation regulated by Bcl-2 or Bcl-xL. Biochem Biophys Res Commun 2002;295:283–8.

56. Planchon SM, Wuerzberger S, Frydman B. β-Lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: a p53-independent response. Cancer Res 1995;55:3706–11.

57. Li CJ, Wang C, Pardee AB. Induction of apoptosis by β-lapachone in human prostate cancer cells. Cancer Res 1995;55:3712–5.

58. Dietz BM, Mahady GB, Paul GF, Farnsworth NR. Valerian extracts and valeric acid are partial agonists of the 5-HT5a receptor in vitro. Brain Res Mol Brain Res 2005;138:191–7.

59. Kobayakawa J, Sato-Nishimori F. G2-M arrest and antimitotic activity mediated by casticin, a flavonoid isolated from Vitis Fructus (Vitis rotundifolia Linne. fil.). Cancer Lett 2004;208:59–64.

60. Ohyama K, Akaike T, Hirobe C. Cytotoxicity and apoptotic inducibility of Cordyceps sinensis fruit extract in cultured human normal and cancer cells and effect on growth. Bioll Pharm Bull 2003;26:10–8.

61. Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME. Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 1999;19:95–66.

62. Wasser SP, Weis AL. Search for potential angiotensin converting enzyme (ACE)-inhibitors from plants. J Altern Complement Med 2000;6:539–49.

63. Sun T, Zhu Y. The effect of PSP on immune function and side reactions of chemo- and radiotherapy of cancers. In: Yang Q (ed). Advanced Research in PSP, 1999. Hong Kong: Hong Kong Association for Health Care Ltd, 1999, 304–7.

64. Shealy CN. Complete German Commission E Monographs. Austin: American Botanical Council, 1998.

65. Fleming T (ed). PDR for Herbal Medicines. Montvale: Medical Economies Company, 2000.

66. Kubota Y, Tanaka N, Umegaki K, Takenaka H, Mizuno H, Nakamura K, et al. Ginsko biloba extract induced relaxation of rat aorta is associated with increase in endothelial intracellular calcium level. Life Sci 2001;69:2327–36.

67. Pepe C, Rozza A, Veronesi G. The evaluation by video capillaroscopy of the efficacity of a Ginsko biloba extract with L-arginine and magnesium in the treatment of trophic lesions in patients with stage-IV chronic obliterating arteriopathy. Minerva Cardioangiol 1999;47:223–30.

68. Shealy CN. Complete German Commission E Monographs. Austin: American Botanical Council, 1998.

69. Bucci LR. Selected herbs and human exercise performance. Am J Clin Nutr 2000;72:624–36S.

70. Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem 2004;91:54–69.

71. Santa Maria Margafe L, Paciucchi Barzanti R, Reventos Puigjaner J. Antimitogenic effect of Pygeum africanum extracts on human prostatic cancer cell lines and explants from benign prostatic hyperplasia. Arch Exp Urol 2003;56:369–78.

72. Jing SB, Li L, Ji D, Takiguchi Y, Yamaguchi T. Effect of chitosan on renal function in patients with chronic renal failure. J Renal Nutr 1999;9:61–70.

73. Hough JB, McMillan R, Wein PC, Paget-Delio SD. Effect of Glucosamine hydrochloride in the treatment of pain of osteoarthritis of the knee. J Rheumatol 1999;26:2423–30.

74. Jung SH, Li L, Ji D, Takiguchi Y, Yamaguchi T. Effect of chitosan on renal function in patients with chronic renal failure. J Pharmacol Pharmacol 2001;47:59–65.

75. Blumenthal M, Busse WR, Goldberg A, Gruenwald J (eds). The Complete German Commission E Monographs. Austin: American Botanical Council, 1998.

76. Fleming T (ed). PDR for Herbal Medicines. Montvale: Medical Economies Company, 2000.

77. Kubota Y, Tanaka N, Umegaki K, Takenaka H, Mizuno H, Nakamura K, et al. Ginsko biloba extract induced relaxation of rat aorta is associated with increase in endothelial intracellular calcium level. Life Sci 2001;69:2327–36.

78. Pepe C, Rozza A, Veronesi G. The evaluation by video capillaroscopy of the efficacity of a Ginsko biloba extract with L-arginine and magnesium in the treatment of trophic lesions in patients with stage-IV chronic obliterating arteriopathy. Minerva Cardioangiol 1999;47:223–30.

79. Shealy CN. Complete German Commission E Monographs. Austin: American Botanical Council, 1998.

80. Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem 2004;91:54–69.

81. Santa Maria Margafe L, Paciucchi Barzanti R, Reventos Puigjaner J. Antimitogenic effect of Pygeum africanum extracts on human prostatic cancer cell lines and explants from benign prostatic hyperplasia. Arch Exp Urol 2003;56:369–78.

82. Ma T, Qi QH, Xu J, Dong ZL, Yang WX. Signal pathways involved in eicosanoid induction of contraction of smooth muscle cells from rat colon. World J Gastroenterol 2004;10:1476–9.

83. Redman DA. Selected herbals and human exercise performance. Am J Clin Nutr 2000;72:624–36S.

84. Bouaziz N, Michiels C, Janssens D. Effects of Ruscus extract and hesperidin methylchalcone on hypoxia-induced activation of endothelial cells. Int Angiol 1999;18:306–12.
100. Hong CH, Hur SK, Oh OJ, Kim SS, Nam KA, Lee SK. Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. *J Ethnopharmacol* 2002;83:153–9.

101. Zaragoza F, Iglesias I, Benedi J. Comparative study of the anti-aggregation effects of anthocyanosides and other agents. *Arch Farmacol Toxicol* 1985;11:383–8.

102. Savickiene N, Dagilyte A, Lukosius A. Importance of biologically active components and plants in the prevention of complications of diabetes mellitus. *Medicina (Kaunas)* 2002;38:970–5.

103. Calle J, Toscano M, Pinzon R, Basquero I, Bautista E. Antinociceptive and uterine relaxant activities of *Viburnum toronis alve* (Caprifoliaceae). *J Ethnopharmacol* 1999;66:71–3.

104. Young HY, Luo YL, Cheng HY, Hsieh WC, Liao JC, Peng WH. Analgesic and anti-inflammatory activities of [6]-gingerol. *J Ethnopharmacol* 2005;96:207–10.

105. Miller S. Echinacea: a miracle herb against aging and cancer? Evidence in vivo in mice. *Evid Based Complement Alternat Med* 2005;3:309–14.

106. Takeda K, Okomura K. CAM and NK cells. *Evid Based Complement Alternat Med* 2004;1:17–27.

107. Chihara G, Hamuro J, Maeda YY, Shio T, Suga T, Takasuoka N, Sasaki T. Antitumor and metastasis-inhibitory activities of lentinan as an immunomodulator: and overview. *Cancer Detect Prev Suppl* 1987;1:423–43.

108. Kidd PM. The use of mushroom glucans and proteoglycans in cancer treatment. *Alter Med Rev* 2000;5:4–27. Review.

109. Cooper EL. CAM, eCAM, bioprospecting: The 21st century pyramid. *Evid Based Complement Alternat Med* 2005;2:1–3.

Received September 29, 2005; accepted October 3, 2005