BRINQUEDOS TERAPÊUTICOS DE SOPRO: A SOBREPOSIÇÃO DE ESTÍMULOS VENTILATÓRIOS ALTERA A MECÂNICA RESPIRATÓRIA DE ESCOLARES SAUDÁVEIS?

Therapeutic blowing toys: Does the overlap of ventilatory stimuli alter the respiratory mechanics of healthy schoolchildren?

Camila Isabel Santos Schivinski, Bruna Cardoso Manna, Fabíula Joanita da Mata Belém, Tayná Castilho

ABSTRACT

Objective: To verify whether the overlapping of ventilatory stimuli, resulting from playing with blowing toys, changes the respiratory mechanics of healthy schoolchildren.

Methods: Cross-sectional study with healthy schoolchildren aged seven to 14 years old from Florianópolis, Santa Catarina, Southern Brazil. Spirometric data were obtained, a health questionnaire and the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire were also applied. The procedure consisted of playing with the following blow toys in a random order: soap bubbles, party whistles and balloon. Before and after the intervention, the assessment of respiratory mechanics was carried out by impulse oscillometry — IOS (Erich Jaeger, Germany®). The ANOVA for repeated measures test was applied.

Results: 71 students of both genders with mean age of 9.7±2.1 years participated in the study. Results showed a progressive decrease of impedance (Z5), total airway resistance (R5) and resonance frequency (Fres) when the moment before the use of the first toy was compared with the moment after the third toy (Z5/p=0.048; R5/p=0.049; Fres/p=0.004). Fres also differed between the moment before the first and the second toy (p=0.048). After the use of each of the three blowing toys, the oscillometric parameters did not differ.

Conclusions: The difference in oscillometric parameters of R5 before the use of each toy indicates that the overlap of ventilatory stimuli produced by them provided a reduction in the R5.

Keywords: Adolescent; Child; Physical therapy specialty; Play and playthings; Respiratory mechanics.
INTRODUÇÃO

A fisioterapia respiratória tem como objetivos mobilizar secreções das vias aéreas, adequar a ventilação pulmonar, manter a função pulmonar e prevenir complicações respiratórias. Entretanto, cada população tem suas especificidades e o fisioterapeuta deve considerar tal fato.1 Em pediatria, os pacientes apresentam interesses e necessidades peculiares e, por meio de avaliação, o papel do fisioterapeuta é reconhecer as limitações, as dificuldades e as condições clínicas de cada indivíduo. Dessa maneira, estratégias terapêuticas devem ser traçadas, a fim de tornar o atendimento pediátrico mais agradável, de acordo com os interesses e a faixa etária de cada paciente.2,3

Nesse sentido, o uso de brinquedos por profissionais da saúde é uma das formas de auxiliar a criança a assimilar o que é solicitado, servindo como instrumento de comunicação e orientação, além de tornar a terapia mais agradável. Sua inclusão na terapia melhora o vínculo com o profissional, promove diversão, relaxamento e recuperação mais rápida e favorece melhor adesão ao tratamento.4,5

Na fisioterapia respiratória, o uso de brinquedos de sopro é frequente, pois estes se apresentam como facilitadores para o alcance dos objetivos do tratamento,6 estimulando e otimizando diferentes padrões respiratórios.7 A língua de sopro, por exemplo, quando inserida na prática clínica do fisioterapeuta, remete as crianças a um momento festivo e viabiliza a realização efetiva da inspiração e da expiração no simples ato de soprar o brinquedo.8

Sendo assim, durante a terapia, o profissional da fisioterapia recorre a diferentes brinquedos, com utilização às vezes em ordem aleatória, por vezes oferecidos às crianças de acordo com suas preferências ou respeitando o objetivo do terapeuta. O “brincar” e o uso de brinquedos de sopro, apesar de ser parte da rotina de atendimento fisioterapêutico, não têm sido planejado, uma vez que não existem estudos sobre a eficácia do uso de tais recursos no sistema respiratório, da somatória de seus efeitos ou da importância da ordem de sua utilização quanto a possíveis repercussões na mecânica respiratória de crianças.

Um instrumento que permite a avaliação da mecânica respiratória e pode ser utilizado para verificar os efeitos dos brinquedos de sopro nas vias aéreas é o sistema de oscilometria de impulso (IOS), o qual tem se mostrado de fácil aplicação na população infantil, pois não exige manobras respiratórias forçadas.9 Esse sistema gera pressões oscilatórias, de diferentes frequências (5–20 Hz) que são transmitidas ao tecido pulmonar, e também mensura a resistência (R) e a reatância (X) das vias aéreas. Os parâmetros comumente analisados são: R, X, impedância das vias aéreas (Z), frequência de ressonância (Fres) e área de reatância (AX).10 Até o momento não foram conduzidos trabalhos semelhantes com o IOS, para análise da repercussão de brinquedos de sopro na via aérea de crianças, sejam elas hígidas ou com comprometimento respiratório, apesar do uso frequente dessa estratégia terapêutica em pediatria.

Nesse contexto, o objetivo desta pesquisa foi investigar se a sobreposição de estímulos ventilatórios, independentemente do tipo e da ordem de execução de cada brinquedo de sopro, tem efeito na mecânica respiratória de escolares saudáveis.

MÉTODO

Realizou-se um estudo transversal, tendo um braço quase experimental do tipo before-after.11 Nessa amostra de conveniência participaram escolares saudáveis de ambos os sexos, com idade de sete a 14 anos. Após convite e contato prévio com escolas públicas e particulares da grande Florianópolis, Santa Catarina, Brasil, feito pelos pesquisadores, responsáveis pelos escolares interessados em participar agendaram a data para avaliação, a qual aconteceu na clínica escola de fisioterapia da Universidade do Estado de Santa Catarina (Udesc). A pesquisa foi aprovada pelo Comitê de Ética em Pesquisa (CEP) da Udesc (CAAE: 52891215.7.0000.0118), e realizou-se o registro do presente estudo no site Registro Brasileiro de Ensaios Clínicos (ReBEC), sob o número RBR-96MZ5C.

Todos os participantes interessados foram submetidos aos procedimentos de avaliação para seleção da amostra, mas só foram incluídos crianças e adolescentes saudáveis, orientados e colaborativos, nascidos a termo sem necessidade de ventilação pulmonar mecânica invasiva no período neonatal, com ausência de qualquer doença cardiorrespiratória, reumática, musculoesquelética, neurológica e de déficits visuais ou auditivos. Essas informações foram obtidas aplicando-se um recordatório de saúde (elaborado pelos pesquisadores) encaixado pela escola aos pais e/ou responsáveis, juntamente com o questionário International Study of Asthma and Allergies in Childhood (ISAAC).12,13 Aplicou-se o módulo I do ISAAC para identificação da asma e considerou-se pontuação maior que cinco para crianças de seis a nove anos, e maior que seis pontos para crianças de dez a 14 anos, como pontos de corte para identificação da doença. Exigiu-se também espirometria (EasyOne® Medizintechnik AG, Zurich), a qual foi realizada de acordo com as diretrizes da American Thoracic Society,14 com mínimo de três e máximo de oito manobras, com valores de volume expiratório forçado no primeiro segundo (VEF₁) e capacidade vital forçada (CVF) acima de 80% do previsto,15 e relação VEF₁/CVF maior que 0,7. O exame foi conduzido sempre pelo mesmo avaliador e os dados obtidos fizeram parte da caracterização da amostra. As crianças que não obedeceram aos critérios de inclusão não foram selecionadas para participar do estudo.
Considerou-se como critério de exclusão a incapacidade em realizar adequadamente qualquer um dos procedimentos propostos, parâmetros do IOS alterados e a presença de doença respiratória aguda no dia da coleta de dados. Todos os participantes entregaram os termos de assentimento pelo menor e de consentimento livre e esclarecido devidamente preenchidos.

O organograma dos procedimentos realizados está descrito na Figura 1. Inicialmente, os participantes preencheram uma ficha de avaliação padronizada e foram submetidos à avaliação antropométrica de massa (em quilogramas), por meio de uma balança digital previamente calibrada (marca ISP®, São Paulo/Brasil), com capacidade de 180 kg e precisão de 100 g, e de estatura (em centímetros/cm), por um estadiômetro fixo (Filizola®, São Paulo/Brasil). Essas medições foram coletadas em uma sala isolada, com o participante na postura ereta e alinhada, descalço e trajando roupas leves. Após a obtenção dos dados de estatura e peso, calculou-se o índice de massa corpórea (IMC) em kg/m², de acordo com o Programa Nacional T elessaúde Brasil Redes.16

Em seguida, realizou-se a randomização, por meio de sorteio simples, para determinar a ordem de aplicação de cada um dos brinquedos de sopro. Cada criança sorteou um, de três envelopes lacrados, cada qual com o nome de um dos três brinquedos de sopro, de forma sucessiva. A criança escolheu um envelope de cada vez e a ordem do brinquedo de sopro do sorteio determinou a ordem de execução de cada um. Garantiu-se a familiarização do participante em relação aos exames de avaliação do sistema respiratório (IOS e espirometria) e quanto aos três brinquedos de sopro: língua de sogra (Festalita, São Paulo, Brasil), bola de sabão (Magic bubble, Brasilflex®, São Paulo, Brasil) e balão (Ballontech®, São Bernardo do Campo, Brasil). Para isso, o avaliador explicou e demonstrou os procedimentos e as manobras respiratórias envolvidas. Os três brinquedos de sopro respeitaram as especificações do Instituto Nacional de Metrologia, Normatização e Qualidade Industrial — INMETRO (Portaria INMETRO nº 006/2011).

A execução de cada brinquedo de sopro foi realizada da seguinte forma:

- Bola de sabão: a criança foi instruída a realizar uma respiração normal, com inspiração em volume correto (VC) e expiração bucal lenta por no mínimo seis segundos e com fluxo laminar. Foi dado o comando verbal para que fizessem “bolas grandes”. Cada criança realizou dez ciclos respiratórios consecutivos, tendo ou não a formação de bolhas de sabão.
- Língua de sogra: foi solicitada uma inspiração a médio volume, seguida de uma expiração bucal com força e velocidade média, com duração de, no mínimo, três segundos, a fim de vencer a R do brinquedo e desenrolar o filamento de papel. Cada criança realizou dez ciclos respiratórios consecutivos, tendo ou não sucesso no desenrolar do filamento de papel.
- Balão: foi solicitada uma inspiração nasal profunda, próxima da capacidade pulmonar total (CPT), e na sequência uma expiração bucal com força e velocidade suficientes para vencer a R desse brinquedo de sopro. Cada criança realizou dez ciclos respiratórios consecutivos, independentemente do enchimento (parcial ou total) ou não do brinquedo.

Antes e imediatamente após o uso de cada brinquedo de sopro, registrou-se os parâmetros cardiorrespiratórios de frequência cardíaca (FC), frequência respiratória (FR) e saturação de O2 (SpO2) e conduziu-se a avaliação da mecânica respiratória pelo IOS (Master Screen IOS, Eric Jaeger, Germany®) (Figura 1), de acordo com as indicações da American Thoracic Society,17 realizados sempre pelo mesmo pesquisador. Foram realizadas três medidas do IOS, com registros de 30 segundos de duração e intervalo de 30 segundos entre elas. Dos registros gráficos, foram admitidos os que não tiveram tosse, deglutição ou fala durante a manobra. Analisou-se o primeiro registro válido,14,18,19 desde que as três manobras fossem reprodutíveis, ou seja, que os valores não variassem mais de 10% entre elas.

As variáveis oscilométricas analisadas foram Z, resistência a 5 hertz (R5 — compatível com resistência total das vias aéreas), resistência a 20 hertz (R20 — resistência central das

Figura 1 Organograma do procedimento de coleta de dados.
vias aéreas), reatância respiratória a 5 hertz (X5) e AX, apresentadas em valores absolutos e porcentagens do predito, segundo Assumpção et al.⁸

Para o cálculo amostral foi utilizado o software G*Power. Elencou-se o parâmetro de R5 para análise, com um pequeno tamanho de efeito e parcial Eta quadrado de 0,1. Para um poder de teste de 80% e nível de significância de 5%, o cálculo apontou uma amostra de 46 escolares. Somando-se a esse cálculo um conforto amostral de 10%, considerou-se 51 indivíduos em cada grupo como suficientes para a pesquisa.

Todos os dados obtidos foram armazenados em uma planilha do Microsoft Excel® e transportados para um banco de dados no software IBM SPSS™ 20.0 (New York, Estados Unidos) para Windows®, para posterior análise.

Realizou-se a estatística descritiva e de frequências, com apresentação dos dados em média, desvio padrão, mediana, mínimo e máximo. Inicialmente, aplicou-se o teste de Kolmogorov-Smirnov e, de acordo com o resultado, conduziu-se a análise de variância (ANOVA) para medidas repetidas para comparação entre os momentos antes e entre os momentos depois do uso dos brinquedos de sopro, com localização das diferenças pelo teste e post-hoc de Bonferroni. Os resultados da ANOVA de medidas repetidas foram apresentados em média, desvio padrão, grau de liberdade e tamanho de efeito. Adotou-se nível de significância de 5% (p≤0,05) em todos os testes.

Os procedimentos foram realizados sempre pelos mesmos pesquisadores, previamente treinados, os quais inicialmente preencheram uma ficha de avaliação e conduziram a antropometria.

RESULTADOS

Foram avaliadas 105 crianças, das quais 34 não foram compatíveis com os critérios de inclusão (espirometria anormal, ISAAC alterado). Assim, participaram deste estudo 71 escolares saudáveis, sendo a maioria do sexo feminino (40). Do total de participantes, 47 eram eutróficos, um baixo peso, 17 apresentaram sobrepeso e seis eram obesos (Tabela 1). Nenhuma criança foi excluída da pesquisa.

 Houve diferença estatisticamente significante dos valores brutos dos parâmetros oscilométricos de R5, Fres e AX no momento antes entre o primeiro e o terceiro brinquedo de sopro (R5/p=0,050; Fres/p=0,008; AX/p=0,016). No parâmetro Fres, a diferença também aconteceu entre o primeiro e o segundo brinquedo de sopro (p=0,041). Na comparação dos valores da porcentagem do predito de cada um dos parâmetros oscilométricos antes da realização de cada brinquedo de sopro, observou-se que houve diferença nos parâmetros de impedância respiratória a 5 hertz (Z5), R5 e Fres no momento antes entre o primeiro e o terceiro brinquedo de sopro. Em Z5, observou-se diferença no momento antes entre o primeiro e o terceiro brinquedo de sopro (Z5/p=0,048; R5/p=0,049; Fres/p=0,004), e no parâmetro Fres, o momento antes entre o primeiro e o segundo brinquedo de sopro (p=0,048) também diferiu (Tabela 2).

Os parâmetros oscilométricos, em valor bruto e porcentagem do predito na Tabela 3, ao serem comparados logo após o uso de cada um dos três brinquedos de sopro, não apresentaram diferença estatística (Tabela 3).

DISCUSSÃO

Os brinquedos de sopro estão presentes na prática clínica e seu uso durante a fisioterapia respiratória viabiliza o ensino e a execução de exercícios respiratórios de forma lúdica e agradável.²⁰ No entanto, é necessário entender se a ordem de execução ou a somatória de estímulos ventilatórios com o uso durante a fisioterapia altera parâmetros da mecânica respiratória, o que estimulou a corrente investigação. O presente estudo se destaca pelo ineditismo em investigar essa repercussão e evidenciou que a sobreposição de estímulos com o uso dos brinquedos de sopro proporcionou melhora na R das vias aéreas de crianças saudáveis, com redução, no momento antes entre o primeiro e o terceiro brinquedo de sopro, em Z5, R5 e Fres.

O parâmetro de Z5 representa toda carga mecânica ofertada pelo sistema respiratório e consiste na somatória dos parâmetros de R e X.²¹ Na presente investigação houve redução de Z5, provavelmente como consequência da redução de R5. Este representa a R total das vias aéreas,²² e o fato de não ter havido alteração de R20, relacionada à R central das vias aéreas, indica que os brinquedos de sopro repercutem positivamente

| Tabela 1 Caracterização da amostra em relação à idade, ao peso, à altura e ao índice de massa corpórea. |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|
| Idade (anos) | Média | DP | Mediana | Mínimo | Máximo |
| 9,7 | 2,1 | 9,0 | 7,0 | 14,0 |
| Peso (kg) | 37,6 | 10,1 | 36,2 | 20,0 | 66,7 |
| Altura (cm) | 141,8 | 11,9 | 141,0 | 116,0 | 163,0 |
| IMC (kg/m²) | 18,1 | 3,11 | 17,4 | 12,8 | 26,4 |

DP: desvio padrão; IMC: índice de massa corpórea; kg: quilograma; cm: centímetro; m²: metro quadrado.
	Média±DP	F	DF	Partial Eta	p-valor
Z5					
BS1	0,6±0,1				
BS2	0,6±0,1	3,9	1,7; 124,4	0,053	0,062
BS3	0,6±0,1				
Z5 % predito					
BS1	155,4±37,8				
BS2	160,7±42,3	3,1	2; 140	0,044	0,044*
BS3	147,9±37,2				
R5					
BS1	0,6±0,1				
BS2	0,6±0,1	4,2	1,7; 121,8	0,057	0,022*
BS3	0,5±0,1				
R5 % predito					
BS1	106,2±20,3				
BS2	103,1±20,7	3,9	1,7; 123,0	0,054	0,026*
BS3	101,1±19,8				
R20					
BS1	0,4±0,1				
BS2	0,4±0,9	0,8	2; 140	0,012	0,428
BS3	0,4±0,8				
R20 % predito					
BS1	101,3±18,9				
BS2	99,4±18,7	0,8	2; 140	0,012	0,431
BS3	99,7±18,1				
X5					
BS1	-0,1±0,7				
BS2	-0,2±0,1	0,7	2; 140	0,011	0,460
BS3	-0,2±0,07				
X5 % predito					
BS1	124,4±41,2				
BS2	127,4±42,9	0,8	2; 140	0,012	0,428
BS3	121,9±38,9				
Fres					
BS1	18,3±5,4	6,4	2; 140	0,084	0,002*
BS2	17,4±5,0				
BS3	17,0±5,2				
Fres % predito					
BS1	111,7±29,1				
BS2	106,5±27,3	7,1	2; 140	0,092	0,001*
BS3	103,6±26,3				
AX					
BS1	1,3±1,0				
BS2	1,1±0,9	5,7	1,7; 121,1	0,076	0,006*
BS3	1,1±0,9				
AX % predito					
BS1	132,2±103,4				
BS2	132,0±117,7	0,3	1,3; 92,6	0,005	0,606
BS3	118,9±93,0				

Z5: impedância respiratória a 5 hertz (kPa/L/s); R5: resistência a 5 hertz (kPa/L/s); R20: resistência a 20 hertz (kPa/L/s); X5: reatância a 5 hertz (kPa/L/s); Fres: frequência de ressonância (1/s); AX: área de reatância (kpa/L); DP: desvio padrão; F: razão F; DF: grau de liberdade; partial Eta: tamanho do efeito; p-valor: nível de significância de acordo com o teste de ANOVA Medidas Repetidas (*p<0,05) e post-hoc de Bonferroni.
Parâmetro	Média±DP	F	DF	Partial Eta	p-valor
Z5					
BS1,1	0,6±1,8				
BS2,1	0,6±0,1	0,38	2; 140	0,005	0,684
BS3,1	0,6±0,1				
Z5 % predito					
BS1,1	161,9±44,9				
BS2,1	160,7±43,3	0,1	2; 140	0,002	0,889
BS3,1	161,4±42,0				
R5					
BS1,1	0,6±0,1				
BS2,1	0,6±0,1	0,1	2; 140	0,003	0,826
BS3,1	0,6±0,1				
R5 % predito					
BS1,1	110,0±24,2				
BS2,1	109,3±21,3	0,1	2; 140	0,001	0,911
BS3,1	109,4±21,9				
R20					
BS1,1	0,5±0,1				
BS2,1	0,5±0,1	0,02	1,7; 123,5	0,001	0,979
BS3,1	0,5±0,9				
R20 % predito					
BS1,1	102,5±20,8				
BS2,1	102,8±20,5	0,02	1,8; 169,3	0,001	0,964
BS3,1	102,3±21,6				
X5					
BS1,1	-0,1±0,1				
BS2,1	-0,1±0,8	0,4	2; 140	0,006	0,635
BS3,1	-0,1±0,8				
X5 % predito					
BS1,1	130,8±60,6				
BS2,1	125,5±50,3	0,4	2; 140	0,006	0,626
BS3,1	126,6±53,8				
Fres					
BS1,1	18,7±5,4				
BS2,1	18,5±5,7	0,4	2; 140	0,007	0,631
BS3,1	18,4±5,4				
Fres % predito					
BS1,1	113,5±28,0				
BS2,1	113,0±28,9	0,1	2; 140	0,002	0,871
BS3,1	112,2±28,5				
AX					
BS1,1	1,4±1,1				
BS2,1	1,3±1,2	1,7	2; 140	0,024	0,182
BS3,1	1,3±1,0				
AX % predito					
BS1,1	157,3±141,0				
BS2,1	147,0±121,3	1,2	2; 140	0,018	0,286
BS3,1	120,3±129,3				

Z5: impedância respiratória a 5 hertz (kPas/L/s); R5: resistência a 5 hertz (kPas/L/s); R20: resistência a 20 hertz (kPas/L/s); X5: reatância a 5 hertz (kPas/L/s); Fres: frequência de ressonância (1/s); AX: área de reatância (kpa/L); DP: desvio padrão; F: razão F; DF: grau de liberdade; partial Eta: tamanho do efeito; p-valor: nível de significância de acordo com o Teste de ANOVA Medidas Repetidas (*p<0,05) e post-hoc de Bonferroni.
na porção mais periférica da árvore brônquica. Essa informação pode ser reforçada pelo parâmetro FRS, o qual se refere ao comportamento de vias aéreas periféricas, e também demonstrou melhora dos valores após a intervenção.22

A redução progressiva dos parâmetros de Z5, R5 e FRS sugere que os brinquedos de sopro são capazes de gerar redução da R da via aérea; sendo assim, um possível fenômeno de desinsuflação pulmonar também deve ser investigado no futuro. Os demais parâmetros e a análise dos momentos após o uso dos três brinquedos de sopro não variaram. Isso pode ter acontecido em razão da manutenção dos efeitos dos brinquedos de sopro após o uso, o que se identifica na análise do momento antes, ou ainda porque a utilização desses brinquedos foi rápida e incluiu poucas repetições, o que pode ser considerado uma limitação do estudo, assim como o fato de a amostra ser composta de indivíduos sem comprometimento respiratório. Também em relação à amostra, é relevante justificar a manutenção das crianças obesas, uma vez que parâmetros do IOS alterados foram identificados nessa população.23 As crianças com esse perfil foram mantidas na amostra por apresentarem compatibilidade com os critérios de inclusão e valores de IOS na faixa de normalidade, conforme valores de referência para crianças brasileiras.7 Cabe comentar que este estudo se caracteriza por ter uma amostra de conveniência, na qual duas crianças (de 11 e 13 anos), ao realizarem a espirometria, manifestaram valores alterados e foram excluídas da amostra, o que pode ser justificado pela dificuldade na realização do exame, o qual necessita de grande colaboração do indivíduo,24 e não necessariamente de presença de doença respiratória.

O IOS avalia a mecânica respiratória de forma não invasiva e tem sido aplicado como um instrumento diagnóstico, que proporciona avaliação da função pulmonar, mais especificamente da mecânica respiratória, de indivíduos com asma, fibrose cística, entre outros acometimentos respiratórios.24-26 Até o momento, não foi encontrado, na literatura científica, trabalho que investigou os efeitos de técnicas de fisioterapia respiratória na mecânica respiratória. Espera-se que exercícios respiratórios realizados por meio de inspiração nasal e expiração lenta e prolongada, como o freno labial, aumentem o VC, promovam desinsuflação pulmonar e estabilidade das vias aéreas.27,28 Esses efeitos, porém, ainda não foram totalmente elucidados, nem de forma isolada ou associados aos brinquedos de sopro.

Pensando na finalidade de cada um dos brinquedos de sopro e na execução conforme orientações prévias, sugere-se que as sessões de fisioterapia envolvendo o uso de brinquedos de sopro promovam protocolos terapêuticos que estimulem diferentes fluxos e volumes pulmonares, a partir do uso de diferentes brinquedos desse tipo. É importante ressaltar que os três brinquedos de sopro aqui investigados, assim como a maioria das técnicas de remoção de secreção, estimulam a fase expiratória, o que é de grande relevância nos atendimentos fisioterapêuticos.

Nessa pesquisa, o uso dos brinquedos de sopro também motivou as crianças, desde as mais novas até as mais velhas, a realizarem padrões respiratórios específicos. Os participantes identificaram o efeito na execução dos brinquedos de sopro ao formarem bolas de sabão, esticarem o filamento da língua de soga e inflarem balões, o que se atribuiu à orientação prévia e sistematizada que receberam para utilização. Esse comportamento proporcionou maior envolvimento dos participantes, o que pode repercutir positivamente na fisioterapia respiratória. Além disso, os brinquedos de sopro selecionados foram recursos simples e de baixo custo, assim como o apito e o cata-vento, sendo familiares e aplicáveis à rotina terapêutica, até mesmo com extensão domiciliar, em comparação a dispositivos mais caros e de maior complexidade de utilização.

Costa et al.7 já constataram o quão benéfico são os recursos lúdicos e a relevância deles quando se trata da reabilitação fisioterapêutica pediátrica. Esses autores elaboraram um protocolo de utilização de brinquedos de sopro para as manobras e técnicas respiratórias. Os brinquedos de sopro utilizados foram canudo, língua de soga e bolinha de sabão, a fim de possibilitar a realização de exercícios respiratórios. Os resultados mostraram que as crianças do grupo que fizeram fisioterapia com esses brinquedos de sopro apresentaram maior colaboração durante a terapia e manifestaram redução do estresse. Esses resultados corroboram com o que tem sido observado na prática clínica e discutido na literatura.29

Por fim, identificou-se que a sobreposição de diferentes brinquedos de sopro parece ter potencial efeito na mecânica respiratória de crianças saudáveis, uma vez que a somatória de estímulos ventilatórios reduziu a resistência da via aérea, identificada pela diferença nos parâmetros de FRS e R5 antes do uso de cada brinquedo de sopro. Pouco se sabe sobre o uso de brinquedos, jogos e brincadeiras durante a prática clínica do fisioterapeuta, o que torna o presente estudo de grande relevância, proporcionando um breve conhecimento e respaldo científico do uso desses brinquedos na prática clínica. A partir deste trabalho outras pesquisas poderão surgir, de modo a verificar respostas fisiológicas e ventilatórias em crianças com comprometimento respiratório.

Financiamento
Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC/Brasil) (PAP-UDESC, Chamada Pública nº 04/2018, Termo de Outorga 2019TR658).

Conflito de interesses
Os autores declaram não haver conflito de interesses.
REFERÊNCIAS

1. Martins AP, Segre CA. Chest physiotherapy in neonatology: importance and management. Pediatr Mod. 2010;46:56-60.

2. Lester MK, Flume PA. Airway-clearance therapy guidelines and implementation. Respir Care. 2009;54:733-50. 10.4187/002013209790983205

3. Caricchio MB [homepage on the Internet]. Tratar brincando: o lúdico como recurso da fisioterapia pediátrica no Brasil. Rev Eletron Atual Sau. 2017;6:43-57 [cited 2018 jun. 10]. Available from: http://atualizareview.com.br/article/tratar-brincando-o-ludico-como-recurso-da-fisioterapia-pediatriaca-no-brasil-v-6-n-6/

4. Neirahuerth EP. Preparing the child and his family for surgical procedures: nursing intervention. Rev Esc Enferm USP. 1996;30:340-53. http://dx.doi.org/10.1590/S0080-62341996000200014

5. Fujisawa DS, Manzini EJ. Professional training in physiotherapy: the use of play activities in the treatment of children. Rev Bras Educ. Spec. 2006;12:65-84. http://dx.doi.org/10.1590/S0080-62342002000100009

6. Schenkel IC, Garcia JM, Berretta MS, Schivinski CS, Silva MM. Therapeutic play as technique supporting to physiotherapeutic treatment in children with respiratory disorders. Psicol Teor Prat. 2013;15:130-4.

7. Costa EF, Mansour NR, Valentini EA, Silva CR. Recursos lúdicos aplicados na clínica pediátrica do Hospital Municipal de Foz do Iguaçu-PR. ConSciente Saúde. 2015;14:125-32. https://doi.org/10.1590/S1413-65382317000100006

8. Jorge PP, Lima JH, Silva DC, Medeiros D, Solé D, Wandalsen PLF, Schivinski CIS. Oscilometria de impulso e obesidade em crianças. J Pneumol. 2016;51:183-8. https://doi.org/10.1002/ppul.23220

9. Assumpção MS, Gonçalves RM, Bobbio TG, Schivinski CS. Reference equation for Impulse Oscillometry System Parameters in healthy Brazilian children and adolescents. Respir Care. 2016;61:1090-9. https://doi.org/10.4187/rescare.04226

10. Jorge PP, Lima JH, Silva DC, Medeiros D, Solé D, Wandalsen GF. Impulse oscillometry in the assessment of children’s lung function. Allergol Immunopathol (Madri). 2019;47:295-302. https://doi.org/10.1016/j.allerj.2018.03.003

11. Bastos JLD, Duquia RP. One of the most used epidemiological designs: cross-sectional study. Sci Med. 2007;17:229-32.

12. Solé D, Vanna AT, Yamada E, Rizzo MC, Naspitz CK. International study of asthma and allergies in childhood (ISAAC) written questionnaire: validation of the asthma component among Brazilian children. J Invest Allergol Clin Immunol. 1998;8:376-82.

13. Assumpção MS, Gonçalves RM, Bobbio TG, Schivinski CS, Martins R. Reference equation for Impulse Oscillometry System Parameters in healthy Brazilian children and adolescents. Respir Care. 2016;61:1090-9. https://doi.org/10.4187/rescare.04226

14. Miller MR, Hankinson J, Brusacoo Y, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319-38. https://doi.org/10.1183/09031936.05.00034085

15. Polgar CJ, Weng TR. The functional development of the respiratory system. Am Rev Respir Dis. 1979;120:625-95. https://doi.org/10.1164/arrd.1979.120.3.625

16. Biblioteca Virtual em Saúde – Atenção Primária à Saúde [homepage on the Internet]. Programa Nacional Telessaúde Brasil Redes [cited 2018 maio 15]. Available from: http://aps.bvs.br/apps/calculadoras/?page=7.

17. Beydon N, Davis SD, Lombardi E, Allen JL, Arets HG, Aurora P, et al. An official American Thoracic Society/ European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007;175:1304-45. https://doi.org/10.1164/rccm.200606-642ST

18. Malmberg LP, Pelkonen A, Poussa T, Pohianpalo A, Haathela T, Turpeinen M. Determinants of respiratory system input impedance and bronchodilator response in healthy Finnish preschool children. Clin Physiol Funct Imaging. 2002;22:64-71.

19. Bickel S, Popler J, Lesnick B, Eid N. Impulse oscillometry: interpretation and practical applications. Chest. 2014;146:841-7. https://doi.org/10.1378/chest.13-1875

20. Costa EF, Mansour NR, Valentini EA, Silva CR. Recursos lúdicos aplicados na clínica pediátrica do Hospital Municipal de Foz do Iguaçu-PR. ConSciente Saúde. 2015;14:125-32. https://doi.org/10.1590/S1413-65382317000100006

21. Cavalcante JV, Jansen JM, Melo PA. Avaliação da alterações mecânicas ao longo do ciclo respiratório: metodologia e aplicação em asmáticos. In: Müller-Karger C, Wong S, La Cruz A, editors. IV Latin American Congress on Biomedical Engineering 2007, Biobringering Solutions for Latin America Health. IFMBE Proceedings, v. 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74474-0_139

22. Assumpção MS, Gonçalves RM, Ferreira LG, Schivinski CS. Impulse oscillometry system in pediatrics: review. Medicina (Ribeirão Preto). 2014;47:131-42.

23. Santos K, Fausto LL, Camargos PAM, Kviecinski MR, Silva J. Impulse oscillometry in the assessment of asthmatic children and adolescents: from a narrative to a systematic review. Paediatr Respir Rev. 2017;23:61-7. https://doi.org/10.1016/j.prrv.2016.09.002

24. Santos K, Fausto LL, Camargos PAM, Kviecinski MR, Silva J. Impulse oscillometry in the assessment of asthmatic children and adolescents: from a narrative to a systematic review. Paediatr Respir Rev. 2017;23:61-7. https://doi.org/10.1016/j.prrv.2016.09.002

25. Assumpção MS, Gonçalves RM, Ferreira LG, Schivinski CS. Impulse oscillometry system in pediatrics: review. Medicina (Ribeirão Preto). 2014;47:131-42.

26. Tomich GM, França DC, Diório ACM, Brito RR, Sampaio RF, Parreira VF. Breathing pattern, thoracoabdominal motion and muscular activity during three breathing exercises. Braz J Med Biol Res. 2007;40:1409-17. http://dx.doi.org/10.1590/S0100-879X20060005000165

27. Subbarao P, Lu Z, Kowalik B, Brown M, Balkovec S, Gustafsson P, et al. Changes in multiple breath after raised volume rapid thoracoabdominal compression maneuvers in infants. Pediatr Pulmonol. 2016;51:183-8. https://doi.org/10.1002/ppul.23220

28. Olsén MF, Lannefors L, Westerdahl E. Positive expiratory pressure – interpretation and practical applications. Chest. 2014;146:841-7. https://doi.org/10.1378/chest.13-1875

29. Olsén MF, Lannefors L, Westerdahl E. Positive expiratory pressure – interpretation and practical applications. Chest. 2014;146:841-7. https://doi.org/10.1378/chest.13-1875