Improving CoQ_{10} Productivity by Strengthening Glucose Transmembrane of *Rhodobacter Sphaeroides*

Yuying Yang
Qilu University of Technology

Lu Li
Qilu University of Technology

Haoyu Sun
Qilu University of Technology

Zhen Li
Qilu University of Technology

Qi Zhengliang (✉ qzl2012@aliyun.com)
Qilu University of Technology
https://orcid.org/0000-0001-9176-5858

Xinli Liu
Qilu University of Technology

Research Article

Keywords: R. sphaeroides, glucose transmembrane, glucose metabolism, CoQ10 productivity

Posted Date: September 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-895662/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
[Read Full License](https://creativecommons.org/licenses/by/4.0/)
Abstract

Background: Many *Rhodobacter sphaeroides* have been widely applied in commercial CoQ₁₀ production, but they have poor glucose use. Strategies for enhancing glucose use have been widely exploited in *R. sphaeroides*. Nevertheless, little research has focused on the role of glucose transmembrane in the improvement of production.

Results: There are two potential glucose transmembrane pathways in *R. sphaeroides* ATCC 17023: the fructose specific-phosphotransferase system (PTS_{Fru}, *fruAB*) and non-PTS that relied on glucokinase (*glk*). *fruAB* mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase (12–24 h) and promotion since 36 h. Glucose metabolism showed a corresponding change in characteristic vs. the growth. For Δ*fruA*Δ*fruB*, maximum biomass (Bio_{max}) was increased by 44.39 % and the CoQ₁₀ content was 27.08 % more than that of the WT. *glk* mutation caused a significant decrease in growth and glucose metabolism. Overexpressing a galactose:H⁺ symporter (*galP*) in the Δ*fruA*Δ*fruB* relieved the inhibition and enhanced the growth further. Finally, a mutant with rapid growth and high CoQ₁₀ yield was constructed (Δ*fruA*Δ*fruB*/<i>tac</i>:*galP_{OP}*) using several glucose metabolism modifications and was verified by fermentation in a 10-L fermenter.

Conclusions: The PTS_{Fru} mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase and promotion later. Additionally, biomass yield to glucose (<i>Y</i>_{bio/glc}) and CoQ₁₀ synthesis can be promoted using *fruAB* mutation, and *glk* plays a key role in glucose metabolism. Strengthening glucose transmembrane via non-PTS improves the productivity of CoQ₁₀ fermentation.

Introduction

Glucose is a common monosaccharide that is available in abundance. As glucose is cheap and easy to use for microorganisms, it can serve as an ideal source of carbon for producing high-value products, such as CoQ₁₀, through microbial fermentation [1]. Studies related to microbial glucose metabolism have always been a hot topic in industrial microbiology [1, 2]. As glucose metabolism pathways have been well established for many microorganisms, many novel biotechnologies, particularly metabolic engineering, synthetic biology, and systems biology, have been applied to modify intracellular metabolic pathways to enhance the glucose utilization efficiency in microorganisms. Besides the functional enzymes for glucose metabolism, glucose utilization also requires a set of genes that encode specific transporters and regulators [1, 3]. Glucose transmembrane is an important step because exogenous glucose cannot go into cells through free diffusion and must rely on a transporter to cross the cell membrane. Recently, researchers have realized the importance of glucose transport efficiency during microbial fermentation and focused on microbial sugar transmembrane studies [4, 5]. So far, the sugar transmembrane mechanisms of many industrial microbes are still unknown, limiting metabolic modification of sugar transmembrane in these microbes.
Microorganisms depend on more than one system to transport exogenous glucose; the glucose transmembrane mechanisms for *E. coli* have been widely investigated [4, 6]. *E. coli* can use two pathways for glucose transmembrane: phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) and non-PTS [4]. The non-PTS include the ATP binding cassette (ABC) system and the major facilitator superfamily (MFS) system. PTS$^{\text{Glc}}$ is a multiprotein phosphorelay system that accompanies the import and simultaneous phosphorylation of carbohydrates. Since the discovery of the PTS$^{\text{Glc}}$ in *E. coli*, it has existed in many other bacteria [4, 7]. It has been confirmed that the PTS$^{\text{Glu}}$ is primarily composed of enzymes including IIIC$^{\text{Glc}}$/IIA$^{\text{Glc}}$(EIIa), HPr, and enzyme I (EI). EI and HPr, the two sugar-nonspecific protein constituents of the PTS, are soluble cytoplasmic proteins participating in the transport of all PTS carbohydrates [4]. EIIa are sugar-specific transporters connecting the common PEP/EI/HPr phosphoryl transfer pathway. PTS$^{\text{Glc}}$ is considered an effective way to use glucose because only one phosphoenolpyruvate is coupled with the translocation phosphorylation of glucose when forming an ATP. In contrast, use of glucose through the ABC transporter requires extra ATP for glucose phosphorylation in the carbohydrate kinase reaction [8]. Therefore, PTS$^{\text{Glc}}$ is a preferred channel for transferring exogenous glucose into cells in industrial bacteria, such as *E. coli*, *Bacillus subtilis*, and *Corynebacterium glutamicum* [2, 9, 10]. *E. coli* activates the non-PTS system for glucose transmembrane when exogenous glucose concentration is low (< 1 mM), or PTS$^{\text{Glc}}$ function is defective [4, 6]. Some bacteria lacking PTS$^{\text{Glc}}$, such as *Pseudomonas putida*, utilize the ABC system to transfer exogenous glucose into cells [7].

R. sphaeroides has received significant attention because of its wide biotechnological applications, such as its ability to synthesize a high content of CoQ$_{10}$, carotenoids, and isoprenoids as a source of pharmaceutical materials [11, 12, 13]. CoQ$_{10}$ is an oil-soluble quinone that has a decaprenyl side chain. So far, it has been widely used in functional food and cosmetics industries because of its antioxidant function. Researchers have recently found that CoQ$_{10}$ can regulate several genes that play an important role in cholesterol metabolism, inflammatory responses, or both [13]. Moreover, it is beneficial to patients with cardiovascular diseases, hypertension, and Parkinson's disease [14]. Compared with the methods of animal and plant extraction and chemosynthesis, the production of CoQ$_{10}$ by microbial fermentation is low-cost, safe, and efficient [5]. Additionally, *R. sphaeroides*, a CoQ$_{10}$ producer with high contents of CoQ$_{10}$, has been widely used in the industrial production of CoQ$_{10}$. For the commercial production of CoQ$_{10}$ with microbial fermentation, glucose acts as a major carbon source. Various strategies for guiding the metabolic flux toward CoQ$_{10}$ biosynthesis have been exploited for *R. sphaeroides* [5, 15]. Nevertheless, presently, there is little research on improving CoQ$_{10}$ production by modifying the glucose transmembrane. Although *R. sphaeroides* has a wide spectrum of carbon source utilization, it had a low glucose consumption rate than *E. coli* [16, 17]. Fuhrer reported that the glucose uptake rate of *R. sphaeroides* was 1.8 ± 0.1 mmol/g dry cells weight (DCW)/h, which was only approximately 23.07% as that of *E. coli* [17]. Therefore, the glucose transmembrane process of *R. sphaeroides* was a bottle-neck step for glucose metabolism, which may be a new way to further promote the productivity of CoQ$_{10}$.

Considering the importance of glucose transmembrane for glucose metabolism and poor glucose utilization efficiency of *R. sphaeroides*, the first potential pathway of glucose transmembrane of *R. sphaeroides* were analyzed in this work. Later, a deep study was conducted to show the function of these pathways on glucose metabolism. Finally, we evaluated the influence of glucose transmembrane on CoQ\textsubscript{10} synthesis efficiency and optimized CoQ\textsubscript{10} fermentation by *R. sphaeroides* by modifying glucose transmembrane. Moreover, *R. sphaeroides* ATCC 17023 is a paradigmatic organism among isolated *R. sphaeroides* strains with clear genetic background and mature genetic manipulation tools that we chose as a research object in this study.

Material And Methods

Bacterial strains, media and growth conditions

All the strains and plasmids used in this study were summarized in Table 1 and related primers and restriction enzymes were presented in Table S1. *R. sphaeroides* ATCC 17023 (wild type, WT) was used as the parental strain in this work. The mutant strains were constructed in this background. *E. coli* JM109 was used as a plasmid host, and *E. coli* S17-1 was used to conjugate DNA into *R. sphaeroides*. *R. sphaeroides* ATCC 17023 and mutant strains were routinely cultivated at 32°C in medium A (3 g/L glucose, 2 g/L NaCl, 8 g/L yeast extract, 0.256 g/L MgSO\textsubscript{4}·7H\textsubscript{2}O, 0.13 g/L KH\textsubscript{2}PO\textsubscript{4}, 15 µg/L biotin, 1 mg/L thiamine hydrochloride, 1 mg/L nicotinic acid, pH 7.2) as seed (exponentially phase cells, OD\textsubscript{600} > 3). *R. sphaeroides* cultures were incubated at 32°C in Sistrom’s minimal medium (SMM) lacking succinate and with glucose replaced with an alternative carbon source (6.5 g/L) [13, 16]. Before inoculation the seeds of these strains were washed with fresh SMM, and then resuspended with fresh SMM to adjust the cell density equal (OD\textsubscript{600} approximately equals to 1). Antibiotics were added into the medium A and SMM when necessary. *E. coli* JM109 and *E. coli* S17-1 were grown at 37°C in Luria-Bertani (LB) medium with antibiotics when necessary. The concentrations of antibiotics and chemicals used in experiments were as follows: kanamycin (25 µg/mL) and K\textsubscript{2}TeO\textsubscript{3} (150 µg/mL) for *R. sphaeroides*, and kanamycin (100 µg/mL) for *E. coli* strains.
Table 1

Strains and plasmids	Description	Reference or source
Strains		
Wild-type	*Rhodobacter sphaeroides* ATCC 17025	Lab preservation
△ glk	*glk* markerless deletion mutant	This work
△ fruA△ fruB	*fruAB* markerless deletion mutant	This work
△ fruA△ fruB/bp	△ fruA△ fruB harboring pBBR1MCS-2	This work
△ fruA△ fruB/*galP*	△ fruA△ fruB harboring pBBR1MCS-2:: *galP*	This work
△ fruA△ fruB/*tac:*galP*	△ fruA△ fruB harboring pBBR1MCS-2:: *tac:*galP	This work
△ fruA△ fruB/*tac:*glk*	△ fruA△ fruB harboring pBBR1MCS-2:: *tac:*glk	This work
E.coli S17-1	*recA*, harboring the genes *tra, proA, thi-1* (pRP4-2-Tc::Mu-Km::Tn7)	Lab preservation
Plasmids		
pK18mobsacB	suicide vector, *sacB* (sucrose sensitivity), Km	
Lab preservation		
pBBR1MCS-2	*ori* pBBR1, lacZa, Km	
Lab preservation		
pK18mobsacB:*glk-L-R*	For *glk* deletion	This work
pK18mobsacB:*fruA-L-R*	For *fruA* deletion	This work
pK18mobsacB:*fruB-L-R*	For *fruB* deletion	This work
pBBR1MCS-2:*galP*	For *galP* expression	This work
pBBR1MCS-2:*tac:*galP*	For *galP* expression with strong promoter *tac*	This work
pBBR1MCS-2:*tac:*glk*	For *glk* expression with strong promoter *tac*	This work

Construction of mutants and expression plasmids

△ fruA△ fruB, △ glk, △ fruA and △ fruB were constructed as in-frame markerless deletions of almost the entire open reading frames, as previously described [13]. Plasmid constructs for the ectopic expression of *galP* was made using sequence-specific primers (Table S1) and conjugated into the relevant *R. sphaeroides* strains selecting for plasmid-encoded kanamycin resistance.

RNA extraction and RT-qPCR assay
Different growth-phase cells \((1 \times 10^7)\) cultured in SMM medium were harvested by centrifugation at 8000×g for 3 min at 4°C. Total RNA was extracted from \(R.\ sphaeroides\) strains using a Total RNA Extraction Kit and purified as described by the procedures. Synthesis of cDNA was performed by the reverse transcription reaction according to the HiFiScript cDNA Synthesis Kit instructions. Quantitative real-time PCR was performed using Ultra SYBR Mixture as quantitative reagent on a Light Cycler 96(Roche) real-time PCR system. Oligonucleotides used in RT-qPCR were listed in Table S2. Additionally, primers used for mutant strains verification were listed in Table S3.

CoQ\(_{10}\) production in Lab-scale bioreactor

For the lab-scale CoQ\(_{10}\) fermentation, three 1-L quadruple fermentation tanks (Sartorius Stedim, Aubagne, France) were used. The operation procedure was base on the Zhang et al. [13]. Bacterial growth (OD\(_{600}\)), glucose consumption and CoQ\(_{10}\) yield were detected each 12 h. The detailed aeration and agitation protocol were 1vvm and 400 rpm.

Analytical methods

Cultured broth was fetched each 12 h for biomass determination at OD\(_{600}\) by spectrophotometer (MAPADA INSTRUMENTSUV-1800, China) and calculated using a calibration curve which indicated the relationship between OD\(_{600}\) and dry cell weight(DCW) \((10\text{OD}_{600} \text{ approximately equaled to 0.40 g DCW/L})\). In this study, 100 mL of cultivated broth were centrifugated to obtain cell pellets, and then used to get dry cells through lyopilization for DCW measuring. Residual glucose was detected by a SBA-40 Biosensor (Biology Institute of Shandong Academy of Sciences, China). pH was measured at the starting and end of cultivation by a SevenCompact™ pH meter S220 (METTLER TOLEDO, China). The method of extraction and quantification of CoQ\(_{10}\) was according to Zhang et al. [13]. In the study, all experiments were repeated three times. The data shown in the corresponding tables and figures were the mean values of the experiments and the error bars indicated the standard deviation. Data was treated via one-way ANOVA method \((P > 0.05)\). Statistical significance was determined using the SAS statistical analysis program, version 8.01 (SAS Institute, Cary, NC, USA).

Results

Potential glucose transmembrane pathways for \(R.\ sphaeroides\ ATCC 17023\)

By retrieving the NCBI database, the only integral PTS, fructose-specific PTS (PTS\(^{\text{Fru}}\)), was found in the genome of \(R.\ sphaeroides\ ATCC 17023\), which is encoded by the gene cluster \(fruAB\) (RSP_1788 and RSP_1786). \(fruB\) encodes EI and HPr, the two sugar-nonspecific protein constituents of the PTS, and \(fruA\) encodes the sugar-specific transporter. It was reported that PTS\(^{\text{Fru}}\) encoded by \(fruAB\) simultaneously had a function of glucose transmembrane in some \(E.\ coli\) strains [4]. Additionally, \(fruAB\) in \(R.\ sphaeroides\) may have a similar function as that of the abovementioned \(E.\ coli\) strains. Glucose transported into cells with non-PTS must be phosphorylated before subsequent metabolism. Although the non-PTS-type glucose-specific transporter in \(R.\ sphaeroides\ ATCC 17023\) has not been identified, the enzyme
glucokinase (glk, RSP_2875), which plays a role in glucose phosphorylation, exists in the genome [3, 18]. Additionally, the glucokinase activity had been determined in some *R. sphaeroides* strains when cultured with glucose as the sole carbon source [19]. Considering the above information, *R. sphaeroides* ATCC 17023 should possess the non-PTS. *R. sphaeroides* ATCC 17023 metabolizes glucose exclusively with the Entner–Doudoroff pathway (ED) under aerobic and anaerobic conditions because of the lack of phosphofructokinase in the Embden–Meyerhof–Parnas pathway (EMP) [16]. According to the abovementioned analysis, metabolic networks that contain the glucose transmembrane and catabolism were constructed and the result is depicted in Fig. 1.

Influence of PTS and non-PTS on bacterial growth and glucose metabolism

To clarify whether PTS (fruAB), non-PTS, or both of *R. sphaeroides* ATCC 17023 influences cellular glucose metabolism, two mutants (ΔfruAΔfruB and Δglk) were constructed using an in-frame markerless deletion method. The ΔfruAΔfruB was a mutant with double knock out of fruA and fruB. Considering that no non-PTS type glucose transporter has been identified in *R. sphaeroides* presently, glk was knocked out to study the function of non-PTS in glucose metabolism. Subsequently, these mutants’ growth and glucose consumption were studied under aerobic incubation using glucose as the sole carbon source (Fig. 2). All mutant strains showed a lag phase at the beginning of cultivation (between 0 and 12 h), which was similar to that of the *R. sphaeroides* ATCC 17023 (WT) (Fig. 2a). Evident variations were observed among these strains since then. The WT went into an exponential growth phase and displayed a rapid growth rate than others between 12 and 24 h. Furthermore, the ΔfruAΔfruB went into an exponential growth phase though the growth rate was slower than the WT; however, Δglk still showed a slow growth rate. After that, the growth rate of the WT became slower from 36 to 72 h, going into a decline phase at 72 h. ΔfruAΔfruB showed a faster growth rate between 24 and 36 h, and then the rate gradually slowed. The stationary growth phase was observed at approximately 60 h, and the decline phase appeared at 72 h for ΔfruAΔfruB.

In contrast, Δglk continually kept a slow growth status between 24 and 36 h and went into a long stationary growth phase till the end of the experiment. Interestingly, the Bio\(_{\text{max}}\) obtained by ΔfruAΔfruB was 3.22 ± 0.04 g DCW/L, which was much higher than that of the WT (Bio\(_{\text{max}}\) was 2.23 ± 0.07 g DCW/L) (Table 2). Although the Δglk showed a typical bacterial growth process, both the growth rate and Bio\(_{\text{max}}\) were much weaker than the WT during the whole culture process. Additionally, the Bio\(_{\text{max}}\) was 0.82 ± 0.01 g DCW/L achieved by the Δglk, and glucose concentration was determined simultaneously (Fig. 2b). At the beginning of cultivation (0–12 h), the strains showed slow glucose consumption rates that fit the characteristics of the lag phase. During the culture time between 12 and 24 h, the WT and ΔfruAΔfruB sped up glucose consumption, though ΔfruAΔfruB had a little slower consumption rate than the WT. The result could explain the reason why ΔfruAΔfruB grew slower than the WT. Afterward, the residual glucose concentration in the group with ΔfruAΔfruB was less than the WT. Finally, ΔfruAΔfruB exhausted the glucose within 72 h, which was 12 h earlier than the WT. Compared with the WT, Δglk showed a low
ability on glucose consumption during the entire process. After incubation for 96 h, there was still 3.73 ± 0.21 g/L residual glucose in the medium. The r_{glc} of $\triangle glk$ was only 0.026 ± 0.001 g/L/h, whereas the r_{glc} of the $\triangle fruA\triangle fruB$ could get to 0.086 ± 0.002 g/L/h, which was approximately 1.18 times that of the WT (Table 2). Besides the r_{glc}, the $Y_{b/glc}$ of the $\triangle fruA\triangle fruB$ was also promoted, approximately 43.4% higher than that of WT. Additionally, we constructed the mutant strains, $\triangle fruA$ and $\triangle fruB$. The results revealed that the two mutants showed similar growth and glucose metabolism status as those of the $\triangle fruA\triangle fruB$ (unpublished data). Summarily, glk mutation seriously inhibited the growth and glucose metabolism of $R. sphaeroides$. Considering that glk is a vital gene involved in non-PTS, we speculated that the non-PTS played a major role in transporting glucose for $R. sphaeroides$ ATCC 17023 during the entire process. However, deleting $fruAB$ also influenced bacterial growth and glucose metabolism. The depressing effect of the $fruAB$ mutation on growth appeared at the early incubation phase (12–24 h), whereas it showed a promotion effect on growth at the later phase (24–72 h). The influence of $fruAB$ mutation on growth could be indirectly explained by the status of glucose metabolism. Therefore, we supposed that the PTS and non-PTS had a synergistic influence on glucose metabolism at the early culture phase. The relative expression level of the $fruA$ and glk in WT during cultivation was determined by RT-qPCR to verify the hypothesis further. The result was depicted in Fig. 2c; both $fruA$ and glk showed an increasing tendency in the early culture phase (12–24 h). After that, the expression level of $fruA$ showed a decreased tendency since 36 h, whereas the glk still kept increasing from 36 to 48 h. The results illustrate that non-PTS and PTS have a synergistic function on glucose metabolism during the early phase, and the non-PTS played a major role in glucose metabolism.

Strain	Time (h)	Glucose metabolism (g/L)	Bio_{max}^* (g DCW/L)	r_{glc}^{**} (g/L/h)	$Y_{b/glc}^{***}$ (g/g)
WT	84b	6.21 ± 0.21a	2.23 ± 0.07b	0.074 ± 0.003b	0.36 ± 0.02b
$\triangle glk$	96a	2.47 ± 0.04b	0.82 ± 0.01c	0.026 ± 0.001c	0.33 ± 0.01c
$\triangle fruA\triangle fruB$	72c	6.19 ± 0.16a	3.22 ± 0.04a	0.086 ± 0.002a	0.52 ± 0.03a

Note: *, Bio_{max} the maximum biomass; **, r_{glc} the average glucose consumption rate; ***, $Y_{b/glc}$ biomass yield to glucose consumption vs. the Bio_{max}. Statistics analysis was performed based on one-way ANOVA method and the data in the same column with the same letters (a-c) meant no significant difference ($P \leq 0.05$).
Enhancing the non-PTS pathway to promote cellular glucose metabolism

According to the above study, blocking the non-PTS inhibited the glucose metabolism of *R. sphaeroides* ATCC 17023. Whether overexpressing the non-PTS-type glucose transporter helps in improving glucose catabolism. In this section, the galactose: H\(^+\) symporter (galP) from *E. coli* K-12 substr. W3110A was selected for the study. First, three mutants, \(\Delta fruA\Delta fruB/bp\), \(\Delta fruA\Delta fruB/ galP_{OP}\), and \(\Delta fruA\Delta fruB/ tac::galP_{OP}\), were constructed with the overexpression vector, pBBR1MCS-2. The \(\Delta fruA\Delta fruB/bp\) was directly introduced to the blank plasmid in \(\Delta fruA\Delta fruB\). The \(\Delta fruA\Delta fruB/ galP_{OP}\) was introduced to the plasmid, only harboring the gene, *galP*. The \(\Delta fruA\Delta fruB/ tac::galP_{OP}\) is inserted with a strong promoter *tac* before the gene *galP* based on the \(\Delta fruA\Delta fruB/ galP_{OP}\). Subsequently, these mutant strains were separately cultivated with glucose as the carbon source, and the biomass and glucose concentration was determined every 12 h. The \(\Delta fruA\Delta fruB/bp\) showed almost no difference from that of \(\Delta fruA\Delta fruB\) in growth and glucose metabolism (Fig. 3). This means that the plasmid introduction did not influence bacterial growth and glucose metabolism. Compared with \(\Delta fruA\Delta fruB/bp\), the growth rate of \(\Delta fruA\Delta fruB/ galP_{OP}\) was increased at the early phase (12–24 h), but the growth status was the same as that of \(\Delta fruA\Delta fruB/bp\) between 24 and 48 h (Fig. 3a). From 48 h, the biomass achieved by \(\Delta fruA\Delta fruB/ galP_{OP}\) was higher than that of \(\Delta fruA\Delta fruB/bp\) though the growth trends were similar.

The higher biomass achieved by \(\Delta fruA\Delta fruB/ galP_{OP}\) could be explained by the faster glucose consumption rate than the \(\Delta fruA\Delta fruB/bp\) during this period. The result also suggested that the overexpression of *galP* could improve cellular glucose metabolism. For \(\Delta fruA\Delta fruB/ tac::galP_{OP}\), the growth improved further than \(\Delta fruA\Delta fruB/ galP_{OP}\) at the early phase (12–24 h), and then, it still kept a fast growth status than others until the time glucose was nearly exhausted. Additionally, the biomass quantity achieved was higher than that of \(\Delta fruA\Delta fruB/ galP_{OP}\). The *Bio\(_{max}\)* was 4.01 ± 0.15 g DCW/L achieved by \(\Delta fruA\Delta fruB/ tac::galP_{OP}\), which was the highest value among these strains. For glucose metabolism, \(\Delta fruA\Delta fruB/ tac::galP_{OP}\) exhausted the glucose in the medium within 60 h, and the *r\(_{glc}\)* reached 0.107 ± 0.003 g/L/h (Table 3). Furthermore, *glk* was overexpressed in \(\Delta fruA\Delta fruB\) (\(\Delta fruA\Delta fruB/tac::glk\)). However, both the growth and glucose metabolism decreased compared with \(\Delta fruA\Delta fruB/bp\) (Fig. S4). Additionally, the result suggested that the original *glk* expression level was fitting for glucose metabolism. Maybe, overexpression of the *glk* produced excessive glucose-6P, which is toxic to cells.
Table 3
Growth and glucose metabolism of R. sphaeroides strains

Strain	Time (h)	Glucose metabolism (g/L)	\(Bio_{max}^* \) (g DCW/L)	\(r_{glc}^{**} \) (g/L/h)	\(Y_{bio/glc}^{***} \) (g/g)
WT	84\(^b\)	6.21 ± 0.21\(^a\)	2.23 ± 0.07\(^d\)	0.074 ± 0.003\(^c\)	0.36 ± 0.02\(^b\)
\(\triangle \text{fruA} \text{\triangle fruB/bp} \)	72\(^c\)	6.18 ± 0.32\(^a\)	3.21 ± 0.11\(^c\)	0.086 ± 0.002\(^b\)	0.52 ± 0.02\(^c\)
\(\triangle \text{fruA} \text{\triangle fruB/galP_{OP}} \)	72\(^c\)	6.21 ± 0.12\(^a\)	3.43 ± 0.17\(^b\)	0.086 ± 0.008\(^b\)	0.55 ± 0.05\(^b\)
\(\triangle \text{fruA} \text{\triangle fruB/tac::galP_{OP}} \)	60\(^a\)	6.20 ± 0.17\(^a\)	4.01 ± 0.15\(^a\)	0.103 ± 0.003\(^a\)	0.65 ± 0.07\(^a\)

Note: \(^*\), \(Bio_{max} \) the maximum biomass; \(^**\), \(r_{glc} \) the average glucose consumption rate; \(^***\), \(Y_{bio/glc} \) biomass yield to glucose consumption versus the \(Bio_{max} \). Statistics analysis was performed based on one-way ANOVA method and the data in the same column with the same letters (a-d) meant no significant difference (\(P \leq 0.05 \)).

Improving CoQ\(_{10}\) productivity of R. sphaeroides

The CoQ\(_{10}\) content of these mutants was determined, and the result is presented in Table 4. Compared with the WT, \(\triangle \text{glk} \), \(\triangle \text{fruA} \text{\triangle fruB} \), and \(\triangle \text{fruA} \text{\triangle fruB/tac::galP_{OP}} \) synthesized a low content of CoQ\(_{10}\) when incubated for 24 h; especially, the CoQ\(_{10}\) content of \(\triangle \text{glk} \) was 1.12 ± 0.04 mg/g DCW. After that, the CoQ\(_{10}\) content of \(\triangle \text{fruA} \text{\triangle fruB} \) and \(\triangle \text{fruA} \text{\triangle fruB/tac::galP_{OP}} \) increased after 48 h, whereas the CoQ\(_{10}\) content of the WT and \(\triangle \text{glk} \) showed a slight reduction. As incubation proceeded (48–96 h), the CoQ\(_{10}\) content of the WT and \(\triangle \text{glk} \) stopped reducing and increased. Simultaneously, \(\triangle \text{fruA} \text{\triangle fruB} \) and \(\triangle \text{fruA} \text{\triangle fruB/tac::galP_{OP}} \) increased in the CoQ\(_{10}\) content. Finally, the CoQ\(_{10}\) content of \(\triangle \text{fruA} \text{\triangle fruB} \) and \(\triangle \text{fruA} \text{\triangle fruB/tac::galP_{OP}} \) reached 5.02 ± 0.18 and 5.11 ± 0.14 mg/g DCW, respectively. The maximum CoQ\(_{10}\) content of \(\triangle \text{fruA} \text{\triangle fruB/tac::galP_{OP}} \) was increased by 29.4% than the WT. It can be proposed that the mutation of \(\text{fruAB} \) improved biomass yield to glucose and bacterial glucose metabolism rate but also enhanced the CoQ\(_{10}\) synthesis of R. sphaeroides. Moreover, strengthening glucose transportation by overexpressing \(\text{galP} \) showed little help to strengthen CoQ\(_{10}\) synthesis.
Table 4
The CoQ₁₀ content of WT and mutants cultured in SMM

Culture time (h)	CoQ₁₀ content (mg/g DCW)	WT	△glk	△fruA△fruB	△fruA△fruB/tac::galP_{OP}
24		3.79 ± 0.11^a	3.12 ± 0.04^d	3.23 ± 0.17^c	3.43 ± 0.16^b
48		3.62 ± 0.06^b	2.53 ± 0.33^c	3.65 ± 0.05^b	3.76 ± 0.21^a
72		3.83 ± 0.13^b	2.85 ± 0.05^c	4.97 ± 0.15^a	5.01 ± 0.33^a
96		3.95 ± 0.21^c	3.02 ± 0.19^d	5.02 ± 0.18^b	5.11 ± 0.14^a

Note: statistical analysis was performed based on one-way ANOVA and the data with the same letters (a-e) means no significant difference (P ≤ 0.05) for each line.

Although *galP* overexpression in △fruA△fruB played a role in promoting the CoQ₁₀ synthesis ability of *R. sphaeroides*, the strategy can promote glucose metabolism rate, which shortens the fermentation time. The inactivation of fruAB improved biomass yield to glucose and the bacterial CoQ₁₀ synthetic ability. Considering the advantages of the two strategies, △fruA△fruB/tac::galP_{OP} was applied to CoQ₁₀ fermentation in a lab-scale tank (10 L), evaluating whether the CoQ₁₀ fermentation is improved.

△fruA△fruB/tac::galP_{OP} showed an evident improvement in growth compared with the WT/bp during the fermentation process (12–72 h) (Fig. 4a). The Bio_{max} of △fruA△fruB/tac::galP_{OP} was harvested at 72 h of fermentation, which was 24 h earlier than the WT/bp. Moreover, the value of the Bio_{max} reached 17.24 ± 0.97 g DCW/L, which was promoted by approximately 16% higher than that of the WT/bp (14.85 ± 0.57 g DCW/L). Simultaneously, the glucose concentration in the medium was almost exhausted after 72 h for △fruA△fruB/tac::galP_{OP} (< 5 g/L), whereas there was more than 10-g/L residual glucose residual for the WT/bp. In the aspect of CoQ₁₀ synthesis (Fig. 4b), the yield gradually increased as the fermentation proceeded for both strains. At 48 h incubation, the yield of △fruA△fruB/tac::galP_{OP} showed a higher level than that of the WT/bp, and the phenomenon lasted to the end. The maximum CoQ₁₀ yield of △fruA△fruB/tac::galP_{OP} reached 78.14 ± 2.31 mg/L, which was approximately 49.76% higher than that of the WT/bp. Moreover, △fruA△fruB/tac::galP_{OP} achieved the maximum CoQ₁₀ yield at 72 h, which was 24 h earlier than the WT/bp.

Discussion

For many bacteria, PTS^{Glc} is the first-selected pathway to transport exogenous glucose [20]. After that, some other sugar-specific-PTTs, such as the PTS^{Fru} (fruAB), have been identified with the same function as that of the PTS^{Glc} [4, 18]. In *R. sphaeroides* ATCC 17023, no PTS^{Glc}-encoding genes are identified presently, but it has a PTS^{Fru} encoding gene cluster (fruAB). It is revealed that glucose metabolism and bacterial growth were influenced by the mutation of the fruAB in *R. sphaeroides* ATCC 17023 (Fig. 2).
Interestingly, the result of fruAB mutation revealed two effects on bacterial growth during the whole culture process. It showed an inhibition effect at the early cultivation phase (12–24 h) and displayed a promoting effect at the late phase at 36 h. Finally, the Bio$_{max}$ received by △fruA△fruB was much higher than that of the WT. The glucose metabolism of △fruA△fruB also displayed a fit change characteristic vs. that of the growth change. Additionally, RT-qPCR assay revealed that the transcription level of the fruA in the WT kept a relatively high level at the early cultivation phase (12–24 h) and then decreased at 36 h. With the comprehensive analysis of the results, we supposed that the PTS$_{Fru}$ in R. sphaeroides ATCC 17023 majorly joined in the glucose metabolism at the early cultivation phase. The PTS$_{Glc}$ is considered an effective way to utilize glucose because only one PEP is coupled with the translocation-phosphorylation of PTS carbohydrates when forming one ATP [4, 8]. In contrast, glucose utilization through a non-PTS active transporter requires extra ATP to phosphate a carbohydrate molecule in the carbohydrate kinase reaction [4]. Regarding energy consumption, bacteria synthesize cellular skeleton materials at the early cultivation phase, requiring a large amount of energy; thus, the PTS type system is a good choice for saving energy at the early growth phase. As cultivation continued, the function of fruAB was weakened. The result might be due to the energy production ability of the bacteria, which is not as a limiting factor for cell growth after the lag phase. The high biomass achieved by △fruA△fruB meant that more carbon fluxed to cellular assimilation metabolism. For the native glucose utilization pathway in E. coli, half of the PEP produced is used for glucose uptake and phosphorylation. PEP is an essential precursor for synthesizing many chemicals, such as succinate, malate, and aromatic compounds. In this sense, fruAB mutation might reduce PEP catabolism, which helps to synthesize cytoskeleton substances after the lag growth phase. The similar phenomenon is also found in the mutation of PTS$_{Ntr}$ in P. putida, which is due to the enhancement of catabolism [7]. The phenomenon obtained from fruAB mutation is interesting though the mechanism is unclear. In future studies, more efforts will be put on disclosing the mechanism for promoting growth and its use.

The non-PTS composes of sugar transporters and glucokinase (glk). Glucose transports into cells by non-PTS in a non-phosphorylated form and then phosphorylated by the glucokinase for subsequent metabolism. A glk gene exists in the genome of R. sphaeroides ATCC 17023. The result revealed that the mutation of glk decreased bacterial growth when cultured in the medium with glucose as the sole carbon source. In addition, a poor glucose consumption status was observed for the mutant, △glk. RT-qPCR assay revealed that the transcriptional level of glk in WT kept an increased tendency as the cultivation continued. The above results revealed that the non-PTS played a role in controlling glucose metabolism of R. sphaeroides ATCC 17023 during the entire culture process. The result agrees with other R. sphaeroides strains [16]. However, the corresponding sugar-specific transporters were still unidentified.

Galactose permease (galP) is a galactose:H$^+$ symporter belonging to the MFS [4, 8]. It was reported that the E. coli PTS$^-$glucose$^+$ strain could transport glucose by a non-PTS mechanism as fast as its WT parental strain [4]. Further research showed that the gal regulon genes, which encode non-PTS transporter and enzymes for galactose metabolism, are enhanced in this mutant; furthermore, rapid glucose consumption depends on the low-affinity GalP. However, the overexpression of a heterogeneous galP in
$\Delta \text{fruA} \Delta \text{fruB}$ improved the decrease in growth generated by the fruAB mutation at the early cultivation phase (Fig. 3). Alternatively, it could enhance glucose metabolism and promote biomass accumulation during the entire cultivation process. The results further illustrated that R. sphaeroides ATCC 17023 metabolized glucose and mainly relied on the non-PTS. Additionally, it suggested the glucose transmembrane was an important limitation for the glucose metabolism of this bacterium. Furthermore, overexpressing glk was harmful to bacterial growth (Fig. 4S); bacterial glucose metabolism was also inhibited. Excessive glucose-6-p was accumulated in the cytoplasm, which may be toxic to bacterial metabolism. Finding an appropriate expression level of glk may solve the question.

Mutation of the fruAB influenced glucose metabolism and mediated the synthesis of CoQ$_{10}$ in R. sphaeroides ATCC 17023. Presently, the mechanism of fruAB mutation on increasing bacterial CoQ$_{10}$ synthesis is unknown. PEP is an important precursor for synthesizing aromatic compounds by the shikimate pathway. Aromatic compounds are vital sources of the benzene ring of CoQ$_{10}$. Additionally, we previously knocked out the pyruvate kinase (pykA) of R. sphaeroides ATCC 17023, transforming PEP to pyruvate. The mutant showed higher CoQ$_{10}$ content than that of the WT (unpublished data). Considering the relationship between PEP and CoQ$_{10}$, we supposed that PTS$^{\text{Fru}}$ inactivation might reduce the catabolism quantity of PEP, which was promoted more PEP flow to CoQ$_{10}$ synthesis. However, the CoQ$_{10}$ content of $\Delta \text{fruA} \Delta \text{fruB} / \text{tac::galP}_\text{OP}$ showed no evident increase compared with that of $\Delta \text{fruA} \Delta \text{fruB}$. The result suggested that only enhancing glucose transport cannot promote bacterial CoQ$_{10}$ synthesis ability.

Conclusion

The two glucose transmembrane pathways in R. sphaeroides ATCC 17023 influenced growth and glucose metabolism. The PTS$^{\text{Fru}}$ mutation revealed two effects on bacterial growth: inhibition at the early cultivation phase and promotion. glk mutation decreased growth and glucose metabolism. Additionally, compared with the non-PTS, PTS$^{\text{Fru}}$ had a relationship with CoQ$_{10}$ synthesis that destroying the PTS$^{\text{Fru}}$ could enhance bacterial CoQ$_{10}$ synthesis ability. Enhancing glucose transport of the non-PTS with overexpressing a galactose:H^+ symporter (galP) in $\Delta \text{fruA} \Delta \text{fruB}$ relieved the inhibition effect and enhanced growth. Moreover, the overexpression of galP has little effect on enhancing bacterial CoQ$_{10}$ synthesis ability. According to the functional study of fruAB and glk, CoQ$_{10}$ fermentation was improved through several modifications in glucose metabolism (constructed the $\Delta \text{fruA} \Delta \text{fruB} / \text{tac::galP}_\text{OP}$) and was verified as available for fermentation in a 10-L fermenter. Summarily, our study provided a new guidance for improving CoQ$_{10}$ productivity of R. sphaeroides.

Declarations

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.
Consent for publication

The authors declare that they have no conflict of interest.

Availability of data and material

The data and material in the manuscript are availability.

Competing interests

There are no competing interests.

Fundings

This study was funded by the Project was Supported by the Foundation (No. 202012) of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry, National Natural Science Foundation of China (31800108), Natural Science Foundation of Shandong (ZR2019QC019), Key Technology Research and Development Program of Shandong (2019GHY112026), and Key Research and Development Plan of Shandong Province (2018YYSP018).

Authors’ contributions

Zhengliang Qi and Xinli Liu designed the research; Yuying Yang, Lu Li, Zhen Li and Haoyu Sun performed the experiments; Yuying Yang and Lu Li analyzed data; Zhengliang Qi and Xinli Liu wrote the paper. All authors read and approved the final manuscript.

Acknowledgements

Thanks for the Project was Supported by the Foundation (No. 202012) of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry, National Natural Science Foundation of China (31800108), Natural Science Foundation of Shandong (ZR2019QC019), Key Technology Research and Development Program of Shandong (2019GHY112026), and Key Research and Development Plan of Shandong Province (2018YYSP018).

References

1. Li FF, Zhao Y, Li BZ, Qiao JJ, Zhao GR. Engineering Escherichia coli for production of 4-hydroxymandelic acid using glucose-xylose mixture. Microb Cell Fact. 2016;15:90.
2. Wurm DJ, Veiter L, Ulonska S, Eggenreich B, Herwig C, Spadiut O. The E. coli pET expression system revisited-mechanistic correlation between glucose and lactose uptake. Appl Microbiol Biotechnol. 2016;100:8721–9.
3. Binger IPoblete-Castro,D, Rodrigues A, Becker J, Vitor AP. Martins dos Santos, Wittmann C: In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-
4. Yane Luo, Tao Z, Wu H. The transport and mediation mechanisms of the common sugars in *Escherichia coli*. Biotechnol Adv. 2014;32:905–19.

5. Lee S, Tan TS, Kawamukai M, Chen ES. Cellular factories for coenzyme Q₁₀ production. Microb Cell Fact. 2017;16:39.

6. Wurm DJ, Hausjell J, Ulonska S, Herwig C, Spadiut O. Mechanistic platform knowledge of concomitant sugar uptake in *Escherichia coli* BL21(DE3) strains. Sci Rep. 2017;7:45072.

7. Chavarría M, Kleijn RJ, Sauer U, Pflüger-Grau K, Lorenzo VD. Regulatory Tasks of the Phosphoenolpyruvate-Phosphotransferase System of *Pseudomonas putida* in Central Carbon Metabolism. Mbio. 2012;3:e00028-00012.

8. Lu J, Tang J, Liu Y, Zhu X, Zhang T, Zhang X. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol. 2012;93:2455–62.

9. Ikeda M. Sugar transport systems in *Corynebacterium glutamicum*: features and applications to strain development. Appl Microbiol Biotechnol. 2012;96:1191–200.

10. Gonzy-Tréboul G, Zagorec M, Rain-Guion MC, Steinmetz M. Phosphoenolpyruvate:sugar phosphotransferase system of *Bacillus subtilis*: nucleotide sequence of ptsX, ptsH and the 5’-end of ptsI and evidence for a ptsHI operon. Mol Microbiol. 2010;3:103–12.

11. Qiang S, Su AP, Li Y, Chen Z, Hu CY, Meng YH. Elevated β-carotene synthesis by the engineered *Rhodobacter sphaeroides* with enhanced CrtY expression. Journal of Agricultural food chemistry. 2019;67:9560–8.

12. Su AP, Chi S, Li Y, Tan S, Qiang S, Chen Z, Meng YH. Metabolic Redesign of *Rhodobacter sphaeroides* for Lycopene Production. Journal of Agricultural food chemistry. 2018;66:5879–85.

13. Zhang J, Gao D, Cai J, Liu H, Qi Z. Improving Coenzyme Q₁₀ Yield of *Rhodobacter sphaeroides* via Modifying Redox Respiration Chain. Biochem Eng J. 2018;135:98–104.

14. Raizner AE, Quiones MA. Coenzyme Q₁₀ for Patients With Cardiovascular Disease. J Am Coll Cardiol. 2021;77:609–19.

15. Chen X, Jiang X, Xu M, Zhang M, Huang R, Huang J, Qi F. Co-production of farnesol and coenzyme Q₁₀ from metabolically engineered *Rhodobacter sphaeroides*. Microb Cell Fact. 2013;18:98.

16. Imam S, Noguera DR, Donohue TJ. CceR and AkgR Regulate Central Carbon and Energy Metabolism in Alphaproteobacteria. Mbio. 2015;6:e02461-02414.

17. Fuhrer T, Fischer E, Sauer U. Experimental Identification and Quantification of Glucose Metabolism in Seven Bacterial Species. J Bacteriol. 2005;187:1581–90.

18. Saier MH Jr. Families of transmembrane sugar transport proteins. Mol Microbiol. 2000;35:699–710.

19. Szymona M, Doudoroff M. Carbohydrate metabolism in *Rhodopseudomonas sphaeroides*. J Gen Microbiol. 1960;22:167.

20. Gosset G. Improvement of *Escherichia coli* production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact. 2005;4:14.
Figure 1

Map of potential glucose transmembrane and metabolism pathways in *R. sphaeroides* ATCC 17023.
Figure 2

Growth and glucose metabolism of the WT and the mutant strains cultured in the SMM, and RT-qPCR assay of the fruA and glk in the WT at different culture time. (a) Growth curves, (b) glucose concentration curves, and (c) relative transcription level.
Figure 3

Growth and glucose metabolism of the WT and the mutant strains cultured in the SMM. (a) Growth curves and (b) glucose concentration.
Figure 4

Comparison of the growth, glucose metabolism and CoQ10 yield of the WT and the △fruA△fruB/tac::galPOP cultured in the fermentation medium. (a) Growth and glucose concentration curves, and (b) CoQ10 yield.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Fig.S1.docx
- Fig.S2.docx
- Fig.S3.docx
• Fig.S4.docx
• TableS1.doc
• TableS2.docx
• TableS3.docx