A Different Prompt Length

We have provided the comparison of the performance of DualCoOp with different lengths of prompt context (i.e. $N = 2, 4, 6, 8, 16, 32, 64$) in all three different experiment scenarios (see Fig. 1 and 2). In MLR with partial labels, we learn class-specific prompts and thus DualCoOp performs good when N is small, such as 8, 16. For zero-shot learning in MLR, we learn uniform prompts shared by all classes and it requires larger N (e.g. 32 or 64) for good performance. In the main paper, we use $N = 16$ for all experiments of MLR with partial labels and use $N = 32$ for experiments in zero-shot learning.

In the main paper, we set $N_+ = N_-$ for simplicity. Here, we conduct experiments in both partial-label MLC and Zero-Shot MLC settings to check the performance of different N_-s by controlling the N_+ as the same. As shown Table 1 and 2, F1-Score generally improves with larger N_- in both partial label and zero-shot settings.
| Table 1: Performance of different N_-s with 10% labels on MS-COCO |
|-----------------------------|-----------------|----------------|-----------------|-----------------|---------------|-----------------|-----------------|
| (N_+, N_-) | CP | CR | CF1 | OP | OR | OF1 | mAP |
| (16, 2) | 67.1 | 77.9 | 71.8 | 69.8 | 82.2 | 75.5 | 78.7 |
| (16, 4) | 67.7 | 77.6 | 72.1 | 70.3 | 81.8 | 75.6 | 78.7 |
| (16, 8) | 68.4 | 77.8 | 72.6 | 70.9 | 81.8 | 76.0 | 78.9 |
| (16, 16) | 69.1 | 77.5 | 72.6 | 71.4 | 81.6 | 76.2 | 78.7 |

| Table 2: Zero-Shot performance of different N_-s on MS-COCO |
|-----------------------------|-----------------|-----------------|-----------------|-----------------|---------------|-----------------|
| (N_+, N_-) | ZS-P | ZS-R | ZS-F1 | GZS-P | GZS-R | GZS-F1 |
| (32, 2) | 31.2 | 77.4 | 44.4 | 55.1 | 64.3 | 59.3 |
| (32, 4) | 33.1 | 82.1 | 47.1 | 57.1 | 66.6 | 61.5 |
| (32, 8) | 34.0 | 84.4 | 48.4 | 57.6 | 67.2 | 62.0 |
| (32, 16) | 34.8 | 86.6 | 49.7 | 57.5 | 67.1 | 61.9 |
| (32, 32) | 35.8 | 88.9 | 51.0 | 57.4 | 67.0 | 61.9 |

B Full performance of MLR with Partial Labels

In this section, we provide the average per-class and average overall precisions (CP and OP), recalls (CR and OR) and F1 scores (CF1 and OF1) of DualCoOp in the experiment of MLR with Partial Labels on MS-COCO [3], VOC2007 [2] and BigEarth [1] (see Table 3, 4 and 5 in supplementary material) as a supplementary for Table ?? and ?? in the main paper.

C Visualization of Class-Specific Region Feature Aggregation

We have visualized the class-specific region feature aggregation on MS-COCO dataset (in Fig. 3). We can see DualCoOp generates the high attention score at the correct objects.

| Table 3: Performance of MLR with partial labels on MS-COCO |
|-----------------------------|-----------------|----------------|-----------------|-----------------|---------------|-----------------|
| Amount of Labels | CP | CR | CF1 | OP | OR | OF1 | mAP |
| 10% | 69.1 | 77.5 | 72.6 | 71.4 | 81.6 | 76.2 | 78.7 |
| 20% | 70.1 | 79.4 | 74.2 | 72.1 | 83.0 | 77.2 | 80.9 |
| 30% | 71.2 | 80.1 | 75.1 | 72.9 | 83.5 | 77.8 | 81.7 |
| 40% | 71.3 | 80.2 | 75.2 | 73.2 | 83.8 | 78.1 | 82.0 |
| 50% | 72.1 | 80.4 | 75.8 | 73.7 | 83.9 | 78.5 | 82.5 |
| 60% | 72.4 | 80.6 | 76.0 | 73.9 | 84.0 | 78.6 | 82.7 |
| 70% | 72.5 | 80.5 | 76.1 | 74.1 | 83.9 | 78.7 | 82.8 |
| 80% | 72.9 | 80.7 | 76.3 | 74.3 | 84.1 | 78.9 | 83.0 |
| 90% | 72.9 | 80.7 | 76.4 | 74.5 | 84.1 | 79.0 | 83.1 |
| 100% (No Finetune) | 73.2 | 80.8 | 76.6 | 74.6 | 84.2 | 79.1 | 83.2 |
| 100% (Finetune Aggre. Func.)| 75.7 | 80.4 | 77.8 | 77.1 | 83.7 | 80.3 | 84.2 |
| 100% (Finetune Img. Enc.) | 92.5 | 68.0 | 77.3 | 93.5 | 70.8 | 80.6 | 85.3 |
Table 4: Performance of MLR with partial labels on VOC2007

Amount of Labels	CP	CR	CF1	OP	OR	OF1	mAP
10%	69.6	91.3	78.0	72.4	92.4	81.2	90.3
20%	74.2	92.6	81.7	76.2	93.6	84.0	92.2
30%	74.9	92.8	82.3	78.6	93.3	85.3	92.8
40%	78.4	92.5	84.5	80.8	93.3	86.6	93.3
50%	80.6	93.4	86.3	82.4	94.0	87.8	93.6
60%	80.1	93.7	86.0	81.4	94.4	87.4	93.9
70%	80.9	93.4	86.5	82.7	94.0	88.0	94.0
80%	80.8	93.8	86.5	82.9	94.2	88.2	94.1
90%	80.5	93.9	86.3	82.4	94.4	88.0	94.2
100% (No Finetune)	81.2	94.1	86.8	83.2	94.5	88.5	94.4

Table 5: Performance of MLR with partial labels on BigEarth

Amount of Labels	CP	CR	CF1	OP	OR	OF1	mAP
10%	76.9	84.3	78.8	71.9	85.9	78.3	88.2
20%	81.6	94.2	86.9	73.4	93.1	82.1	92.9
30%	83.7	93.1	87.4	75.7	92.5	83.3	93.1
40%	82.7	93.9	87.2	75.8	92.0	83.1	93.5
50%	81.3	93.2	85.9	74.4	90.4	81.6	93.7
60%	86.2	92.3	88.9	80.2	91.1	85.3	94.3
70%	86.0	92.8	88.8	79.4	91.7	85.1	94.2
80%	85.1	94.8	89.2	77.9	93.2	84.9	94.1
90%	83.9	94.4	88.2	77.2	93.4	84.5	94.7
100% (No Finetune)	85.8	95.5	90.0	78.7	93.8	85.6	95.2
Figure 3: Visualization of Class-Specific Region Feature Aggregation
References

[1] Bindita Chaudhuri, Begüm Demir, Subhasis Chaudhuri, and Lorenzo Bruzzone. Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method. *IEEE Transactions on Geoscience and Remote Sensing*, 56(2):1144–1158, 2018.

[2] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. *IJCV*, 88(2):303–338, 2010.

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.