استیپا ریکتریانا (تیوه گنده‌نما) و گالیوم سنگاریکوم (تیره رونسیان): دو گزارش جدید از گونه‌های آسیای مرکزی برای فلور ایران

مریم بهرزوبیان، حمید اجتهادی، فرشید ممیرانی، محمد رضا جوهرچی و منصور مصداقی

چکیده. گزارش جدیدی از دو گونه Galium songaricum و Stipa richteriana برای فلور ایران در این مطالعه ارائه می‌شود. گزارش یکدیگر گزارش جدیدی از این گونه‌ها که از کوه‌های بین‌النهرین و هزار مسجد در استان خراسان جنوبی جمع‌آوری شده‌اند، به طور عمده مربوط به آسیای مرکزی است. یکدیگر، این گونه‌های جدید برای ایران به‌عنوان نویسندگان ماتوریه مفید و اطلاعاتی درباره آراوشان بوده، بوم‌شناسی، جغرافیای گیاهی و وضعیت حفاظتی آنها ارائه می‌شود.

ویژه‌های کلیدی. آراوشان بوم‌شناسی، جغرافیای گیاهی، حفاظت، خراسان-کپداغ

Stipa richteriana (Poaceae) and Galium songaricum (Rubiaceae): two new additions of the Central Asian species to the flora of Iran

Maryam Behroozian¹, Hamid Ejtehadi¹, Farshid Memariani², Mohammad Reza Joharchi² & Mansour Mesdaghi³

¹Quantitative Plant Ecology and Biodiversity Research Lab., Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; ²Department of Botany, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran; ³Department of Range and Watershed Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran

Correspondent author: Farshid Memariani, memariani@um.ac.ir.

Abstract. Stipa richteriana and Galium songaricum are newly recorded species for the flora of Iran, collected from Binalood and Hezar-Masjed Mountains in Razavi Khorasan Province. The geographical distribution of both species is mainly confined to the Middle Asia. Morphological characters of two newly recorded species are compared with their close relatives. Notes on taxonomy, ecology, phytogeography, and conservation status of both species are provided.

Keywords. biodiversity, conservation, Khorasan-Kopet Dagh, phytogeography, taxonomy
INTRODUCTION

The Khorassan-Kopet Dagh floristic province (KK) is situated mostly in the mountains of northeastern Iran and partly extending to the neighboring parts of southern Turkmenistan. The area encompasses very diverse flora and vegetation types. As a transitional zone, KK is a corridor connecting different phytogeographical units of the Irano-Turanian region such as Central Iranian, Afghan, Aralo-Caspian, and the Middle/Central Asian, as well as the Hycranian province of the Euro-Siberian region. Moreover, the presence of a local center of plant endemism has made the area a unique and separate biogeographical entity (Memariani et al., 2016a). A comprehensive analysis of the plant diversity showed that the level of endemism in KK is about %14 (Memariani et al., 2016b), which is higher than the average in neighboring Central Asia (Sennikov, 2016). The KK is a part of the Irano-Anatolian mountain system, which is recognized to be amongst the thirty-five so-called hotspots of biodiversity in the World (Mittermeier et al., 2011).

In growing seasons of 2017-2018, during ecological studies on selected endemic plants in Khorassan-Kopet Dagh, we recorded and collected some unknown plant specimens, in phytosociological relevés, belonging to the genera *Stipa* and *Galium*. Using the identification keys in the relevant Floras, they were determined as two new species not previously recorded from Iran.

Stipa L. is one of the largest genera in the family Poaceae. Based on the narrow taxonomic concept, it comprises over 150 species in temperate regions of the Old World (Barkworth & Everett, 1987; Nobis, 2014). Central Asia is an important center of diversity of *Stipa* with ca. 70 species (Nobis et al., 2013, 2017). According to Bor (1970), in Flora Iranica, this genus is represented by 18 species in Iran. In the monograph of *Stipa* in the southwest and south Asia, Freitag (1985) recorded 22 species from Iran. Based on published works, 13 species of *Stipa* are recognized for the flora of Khorassan in northeastern Iran (Freitag, 1985; Joharchi et al., 2007; Gahremaninejad et al., 2012; Memariani et al., 2016c).

Galium L., with about 667 species distributed worldwide, is the largest genus of the tribe Rubieae in the family Rubiaceae (Yang et al., 2018). It is a taxonomically problematic genus and its species groups are often poorly differentiated morphologically and geographically. In the Flora Iranica, 45 *Galium* species are recorded for Iran (Ehrendorfer et al., 2005). Based on current data, 12 *Galium* species occur in Khorassan provinces (Joharchi et al., 2007; Gahremaninejad et al., 2010).

In this paper, we aim to document the new records of *Stipa* and *Galium* species for the flora of Iran as well as revised descriptions of both species based on collected specimens from Binalood and Hezar-Masjed mountains in Razavi Khorassan Province. We also provide additional notes on their taxonomy, ecology, and biogeography.

MATERIALS AND METHODS

The plant specimens were collected during 2017-2018 field excursions in Khorassan-Kopet Dagh Mountains and vegetation data were recorded in phytosociological relevés. The herbarium specimens were examined using identification keys and species descriptions in relevant Floras and monographs (Tzvelev, 1976; Freitag, 1985; Pobedimova, 2000; Ehrendorfer et al., 2005). We consulted the images of the type and representative specimens of newly recorded species and their close relatives in B, MW, and W herbaria in order to confirm their identity (herbarium codes based on Thiers, 2018). The plant specimens are preserved in the Herbarium of Ferdowsi University of Mashhad (FUMH). We produced a distribution map for both species using collection data of the herbarium specimens in ArcGIS 10.3 software. The threat status of the species was determined based on the IUCN Red List categories and criteria (IUCN, 2016).

RESULTS AND DISCUSSION

New records

Stipa richteriana Kar. & Kir., Bull. Soc. Imp. Nat. Moscow 14 (4): 862 (1841). (Fig. 1, 2 A-D)

Type: E. Kazakhstan, in lapidosis mont. Arganaty, 1840, Karelin 907 (LE).

Perennial, caespitose, densely tufted, basal branching intravaginal, with few culms and many vegetative shoots; culms 59-60 (-70) cm, 3-noded, densely pubescent below the nodes; leaf-sheaths densely pubescent, outer margin hairy, at the junction with the blades densely bearded; ligules obscure, up to 0.2 mm long, ciliate at the margin; blades at the culm leaves up to 7 (-8) cm long, at the vegetative shoots up to 15 (-20) cm long, usually involute, 0.3-0.5 mm diam., upper surface densely pubescent, beneath pubescent at the base; panicle (15-) 20-25 × (1-) 2 cm, open, linear, exserted or embraced at base by subtending leaf, the branches ascending with 1-5 spikelets; spikelets 10-15 mm long, glumes persistent, subequal, acuminate, margins and tip hyaline, setulose along the primary vein, the lower 3-5-nerved, the upper 7-nerved; anthecium 6-7 mm long; callus 0.6-0.8 mm long, densely bearded; lemma lanceolate, coriaceous,
Fig. 1. Herbarium specimen of *Stipa richteriana* (Memariani & Behroozian 46440, FUMH).
Fig. 2. A-D. Some details of morphological characters in *Stipa richteriana* (Memariani & Behroozian 46440, FUMH), scale bars = 1 mm. A. the minutely pubescent awn with twisted columna. B. the entire lemma apex with a crown of hairs. C. the densely pubescent culm below the nodes. D. the collar showing the short membranous and ciliolate ligule with densely pubescent leaves on upper surface. E. the dwarf *Galium songaricum* plant (Joharchi & Behroozian 46259, FUMH).

without keel, with 0.5 mm long ascending hairs, only the marginal hairs reaching the top, the top with a crown of 0.5-1.5 mm long hairs; awn bigeniculate, (5-) 6-7 cm long, minutely pubescent throughout, columna densely twisted, with 0.2 mm long hairs, seta falcate with 0.5 mm long hairs; palea equalling lemma in length, glabrous, with a tuft of a few hairs at the apex; lodicules 3, 1.5 mm long, glabrous; anthers 3, 3-4 mm long, yellow; ovary glabrous, with 2 stigmas; Caryopsis fusiform.

Specimen seen: Razavi Khorassan province: NW Neyshabur, Bargish (Baharkish), above Oghbaei garden, 2210 m, 36° 41′ 41.9″N, 58° 40′ 6.9″E, Memariani & Behroozian 46440 (FUMH).

General distribution: Central Asiatic, mainly in Kazakhstan, Uzbekistan, Western China, and Eastern Afghanistan, and also in NE Iran (in the present work).

Taxonomy: *Stipa richteriana* belongs to section *Stipa*, species group of “*Eriostipa*” (Freitag, 1985). *S. bungeana* Trin. is another Central Asiatic species which is known as one of the close relatives of *S. richteriana*. Freitag (1985) recorded *S. richteriana* from Afghanistan on the basis of a specimen from higher mountains of Hindukush in Ghazni Province, which was misidentified by Bor (1970) as *S. bungeana*. The latter species can be distinguished from *S. richteriana* by some morphological characters such as its shorter anthecium, glabrous awn, and different leaf and lemma indumentum (Table 1). *S. richteriana* can be confused with *S. haussknechtii* Boiss. (sect. *Lasiaagrostis* (Link) Hackel), which is an endemic feather grass to Iran. However, it clearly differs from the latter by its contracted linear vs. very loose ovate panicle, among other characters (Table 1). The Central Asiatic *S. breviflora* Griseb. is separated from *S. richteriana* by its longer awns (over 9 cm long) and longer hairs on seta (1-2 mm long) (Nobis et al., 2016).

Galium songaricum Schrenk ex Fisch. & C.A.Mey., Enum. Pl. Nov. 1: 57 (1840) (Fig. 2E).

Annual; roots thin, thread-like, reddish or brown; stems fragile, prostrate, thin, branched, (3-) 5-20 cm long, glabrous, rarely with scattered, long hairs, quadrangular; leaves 2, arranged in a whorl with two smaller leaf-like stipules, (2.5-) 5-15 (-23) mm long, (1.5-) 2.5-5 (-8) mm wide, lowest leaves obovate to
Table 1. Morphological and chorological comparison of *Stipa richteriana* with its closely relates species.

Character	*Stipa bungeana*	*Stipa haussknechtii*	*Stipa richteriana*
Ligule	Eciliate	Eciliate	ciliolate
Leaf-blade state	conduplicate	involute	
Leaf-blade width	0.76-1.3 mm	2-3 mm	0.3-0.5 mm
Leaf-blade surface	glabrous	glabrous	pubescent
Panicle shape	lanceolate	ovate	linear
Upper glume	3-5-veined	3-veined	7-veined
Anthecium	4.5-5 mm long	7 mm long	6-7 mm long
Column of lemma awn	scabrous	puberulous	puberulous
Lemma surface hairy	below	all along	all along
Lemma apex shape	entire	Dented	entire
Palea apex	undifferentiated	undifferentiated	ciliate
Geographical distribution	Middle/Central Asia	Endemic to Iran (C, SW, S)	Middle/Central Asia, E Afghanistan, NE Iran (new record)

spatulate, other leaves elliptic to lanceolate-elliptic, obtuse to slightly acute, 1-nerved, thin, glabrous on both sides, less commonly covered with scattered, upright hairs, petiole 0.5-1.5 mm long; inflorescence as axillary cymes, 1-2(-3)-flowered; pedicels glabrous, thin, (3-) 12-20 (-40) mm long, longer than leaves, often with a pair of small bracts somewhat above the middle of the pedicel, rarely 2-3 flowers on short pedicel, usually horizontally directed, corolla white, sometimes with purplish lobes, rotate, (0.2-) 0.5-1 mm in diameter, lobes 4 (rarely 3), wide, ovate-triangular, acute; stamens 4 (-5)-lobed, anthers yellow; style two-parted almost from the middle; ovary glabrous to rarely hispid; Mericarps 2, globular to reniform, less commonly with one mericarp, 0.2-2 × 0.2-2.5 mm, glabrous or covered with long, hooked-curved, white hairs.

Specimen seen: Razavi Khorassan province: N Mashhad, SW Balghour, 2150 m, 36° 49' 58.3"N, 59° 35' 54.7"E, Joharchi & Behroozian 46259 (FUMH).

General distribution: Central Asia, Western Siberia, Western Himalaya, Turkmenistan (Central Kopet Dagh), and NE Iran (in the present work).

Taxonomy: *Galium songaricum* belongs to sect. Depauperata Pobed. subsect. Quadrifolia Pobed., which includes only annual taxa having two leaves with usually two smaller leaf-like stipules, resembling four-leaflet whors. *Galium* sect. Depauperata includes few closely related species such as the North American *G. bifolium* S.Watson and the Himalayan *G. exile* Hook.f. (= *G. handelii* Cufod.) (Ehrendorfer et al. 2005; Chen & Ehrendorfer, 2011). There are several morphological characters which differentiate *G. songaricum* from the closely related species *G. exile* and another similar perennial species i.e. *G. triflorum* Michx. (Table 2).

Table 2. Morphological comparison between *Galium songaricum* and its closely related species.

Character	*Galium songaricum*	*Galium exile*	*Galium triflorum*
Growth form	annual	annual	perennial
Stem height	(3-)5-30 cm	4-20 cm	(15-)25-80(-120) cm
Stem state	branched	somewhat branched	somewhat branched
Leaf number in a whorl	4	4	4 to 6(-8)
Leaf shape	elliptic	ovate or ob lanceolate to linear-elliptic	narrowly ovate to broadly oblong-lanceolate
Leaf size	(7-)12-15(-23) × (2-)5(-8) mm	(2-)3.5-10(-12) × 1-3.5(-5) mm	(15-)20-25(-45) × (6-)7-8(-15) mm
Petiole size (in fruit)	short or elongate	short	short or sub sessile
Cymes	1 or 2(-3)-flowered	1-flowered	3 to several-flowered
Corolla lobes number	4	3(4)	4
Notes on ecology and biogeography of the newly recorded species

Stipa richteriana is widely distributed in Aralo-Caspian lowlands to the montane and subalpine steppes and shrublands of Pamir-Alai and Eastern Tian Shan Mountains (Freitag, 1985; Nobis *et al.*, 2016). It grows on stony and clay slopes, rarely on sands and pebbles (Tzvelev, 1976). Based on the data collected from the habitats in NE Iran, it grows in high montane steppes of the western parts of Binalood mountain range, on northwest-faced slopes at the elevations around 2200 m a.s.l., which is dominated by dwarf shrubs and thorn-cushion plants such as *Astragalus verus* Olivier and *Acantholimon erinaceum* (Jaub. & Spach.) Lincz., respectively. The habitats of *S. richteriana* in the area are also co-dominated by *Dianthus polylepis* Bien. ex Boiss. subsp. *binaludensis* (Rech.f.) Vaezi & Behrooz. which is known as a vulnerable plant and endemic to Khorassan-Kopet Dagh (Farsi *et al.* 2013, Memariani *et al.*, 2016b).

The distribution range of *Galium songaricum* is mainly confined to the Central Asian spruce and juniper forests. The closest habitat to the Iranian recorded locality is the high mountains of Kopet Dagh in southern Turkmenistan (Pobedimova, 2000). Based on our recorded locality in NE Iran, it occurs on northwest-faced slopes at the elevations above 2100 m a.s.l. in Hezar-Masjed Mountains. The habitat is a montane steppe which is mainly dominated by thorn-cushion *Onobrychis cornuta* (L.) Desv. and inhabited by another endemic taxon, i.e. *Dianthus polylepis* subsp. *polylepis*.

The new records of *Stipa richteriana* and *Galium songaricum* extend the distribution range of these Eastern Irano-Turanian species more south-westward to NE Iran (Fig. 3), which belongs to Khorassan- Kopet Dagh (KK) floristic province. In KK, about 100 plant species (ca. 3.7% of the flora) have a distribution pattern such as that of the newly recorded species, which is well known as Khorassan- Kopet Dagh/Eastern Irano-Turanian chorotype (IT KK-E).

![Fig. 3. Distribution map of the newly recorded species Stipa richteriana and Galium songaricum in Iran.](image-url)
Their distribution ranges are restricted mainly to the lowlands and/or mountains of the Middle/Central Asia with a disjunction in KK and some of them are connected to KK through the north of Afghanistan (Memariani et al., 2016a). A number of these plant species have been discovered and recorded for the flora of Iran during the last 15 years, such as Galatella itinovii Novopokr. (Aydani et al., 2006), Anemone tschernjajewii Regel (Joharchi & Akhani, 2006), Allium barsczewskii Lipsky and A. tenuicauca Regel (Memariani et al., 2007), Allium turcicum Regal (Fritsch & Maroofi, 2010), Festuca karatavica (Bunge) B.Fedtsch. (Memariani & Arjmandi, 2013), Primula fedtschenkoi Regel (Joharchi & Nejati, 2015), Piptatherum latifolium (Roshev.) Nevski (Memariani et al. 2016c), and Rosa kokanica (Regel) Regal ex Juz. (Arjmandi et al., 2016).

According to the dwarf habit of G. songaricum and difficultly distinguishable specimens of S. richteriana in their habitats, it is highly probable that these plants have been overlooked by the Iranian field botanists. Therefore, searching more for them may result in finding additional habitats and a wider distribution range in Iran. Concerning the insufficient information on their distribution, and in order to avoid placing more taxa in DD (Data Deficient) category, we refer to the criterion D2 of the IUCN Red List categories and criteria which deals with very small or restricted populations for the IUCN Red List categories and criteria which (Vulnerable) in Iran. Based on this criterion, the conservation status of S. richteriana and G. songaricum is provisionally evaluated as VU (Vulnerable) in Iran.

ACKNOWLEDGEMENT

This paper is a part of the results of the Ph.D. thesis of the first author supported by Grant No. 3/42756, Vice President for Research and Technology of Ferdowsi University of Mashhad. The authors would like to thank the Faculty of Science of Ferdowsi University of Mashhad and the stuff assistance of FUMH for their support.

REFERENCES

Arjmandi, A.A., Sharghi, H.R., Memariani, F. and Joharchi, M.R. 2016. Rosa kokanica (Rosaceae) in Binalood Mountains: A new record for the flora of Iran. – Iranian J. Bot. 22: 11-15.
Aydani, M., Joharchi, M.R. and Gahremaninejad, F. 2006. A new record, Galatella itinovii (Asteraceae) from N Khorasan province. – Iranian J. Bot. 12: 203-204.
Barkworth, M.E. and Everett, J. 1987. Evolution in the Stipeae: Identification and relationships of its monophyletic taxa. In: Sodestrom, T.R., Hiu, K.W., Campbell, C.S., Barkworth, M.E. (eds.), Grass Systematics and Evolution. – Smithsonian Institution Press, Washington, D.C. pp: 251-264.
Bor, N.L. 1970. Gramineae. – In: K.H. Rechinger (ed.), Flora Iranica. No.70. – Akademische Druck-u. Verlagsanstalt, Graz. 573 pp + 72 Tab.
Chen, T. and Ehrendorfer, F. 2011. Galium. – In: Wu, Z.Y. and Hong, D.Y. (eds.) Flora of China, vol. 19: 104-141. – Beijing Science Press & Missouri Botanical Garden Press, St. Louis.
Ehrendorfer, F., Schönbeck-Temesy, E., Puff, C. and Rechinger, W. 2005. Rubiaceae. – In: Rechinger, K.H. (ed.). Flora Iranica. No. 176. – Akademische Druck-u. Verlagsanstalt, Graz.
Farsi, M., Behroozian, M., Vaeezi, J., Joharchi, M.R. and Memariani, F. 2013. The evolution of Dianthus polylepis complex (Caryophyllaceae) inferred from morphological and nuclear DNA sequence data: one or two species? – Plant Syst. Evol. 299: 1419-1431.
Freitag, H. 1985. The genus Stipa (Gramineae) in southwest and south Asia. – Notes Roy. Bot. Gard. Edinburgh 42: 355-489.
Fritsch, R.M. and Maroofi, H. 2010. New species and new records of Allium L. (Alliaceae) from Iran. – Phyton (Horn, Austria) 50: 1-26.
Gahremaninejad, F., Joharchi, M.R. and Vitek, E. 2010. New plant records for Khorassan province, Iran, III. – Ann. Naturhist. Mus. Wien 111B: 135-148.
Gahremaninejad, F., Joharchi, M.R. and Vitek, E. 2012. New plant records for Khorassan province, Iran, V. with complementary notes to its flora. – Ann. Naturhist. Mus. Wien 114B: 59-94.
IUCN. 2016. Guidelines for Using the IUCN Red List Categories and Criteria. Version 12. Prepared by the Standards and Petitions Subcommittee. Available from: http://www.iucnredlist.org/ documents/Red List Guidelines.pdf.
Joharchi, M.R. and Akhani, H. 2006. Notes on the flora of Iran 6: Eight new plant records from Iran collected from Khorassan and Golestan provinces (NE Iran). – Rostanila 7, suppl. 2: 131-141.
Joharchi, M.R., Gahremaninejad, F. and Vitek, E. 2007. New plant records for Khorassan province, Iran [II]. – Ann. Naturhist. Mus. Wien 108B: 277-301.
Joharchi, M.R. and Nejati, M. 2015. A new record of Primula L. (Primulaceae) from Iran. – Iranian J. Bot. 21: 10-12.
Memariani, F., Joharchi, M.R. and Khassanov, F.O. 2007. Allium L. subgen. Rhizarideum sensu lato in Iran, two new records and a synopsis of taxonomy and phytogeography. – Iranian J. Bot. 13: 12-20.
Memariani, F. and Arjmandi, A.A. 2013. Festuca karatavica (Poaceae), a new grass record for the flora of Iran. – Iranian J. Bot. 19: 57-61.
Memariani, F., Zarrinpour, V. and Akhani, H. 2016a. A review of plant diversity, vegetation and phytogeography of the Khorassan-Kopet Dagh floristic province in the Irano-Turanian region (northeastern Iran – southern Turkmenistan). – Phytotaxa 249: 8-30.
Memariani, F., Akhani, H. and Joharchi, M.R. 2016b. Endemic plants of the Khorassan-Kopet Dagh floristic
province in the Irano-Turanian region: diversity, distribution patterns and conservation status. – Phytotaxa 249: 31-117.

Memariani, F., Joharchi, M.R. and Akhani, H. 2016c. Plant diversity of Ghorkhod Protected Area, NE Iran. – Phytotaxa 249: 118-158.

Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M. and Gascon, C. 2011. Global biodiversity conservation: the critical role of hotspots. – In: Zachos, F.E. and Habel, J.C. (eds.). Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas. – Springer, Heidelberg. pp: 3-22.

Nobis, M, Nowak, A. and Nobis, A. 2013. Stipa zeravshanica sp. nov. (Poaceae), an endemic species from rocky walls of the western Pamir Alai Mountains (Middle Asia). – Nord. J. Bot. 31: 666-675.

Nobis, M. 2014. Taxonomic revision of the Central Asian Stipa tianschanica complex (Poaceae) with particular reference to the epidermal micromorphology of the lemma. – Folia Geobot. 49: 283-308.

Nobis, M, Nobis, A., Klichowska, E., Nowak, A., Nowak, S. and Gudkova, P.D. 2016. Stipa dickorei sp. nov. (Poaceae), three new records and a checklist of feather grasses of China. – Phytotaxa 267: 29-39.

Nobis, M, Nowak, A., Nobis, A., Nowak, S., Zabicka, J. and Zabicki, P. 2017. Stipa ×fallax (Poaceae: Pooidaeae: Stipeae), a new natural hybrid from Tajikistan, and a new combination in Stipa drobovi. – Phytotaxa 303: 141-154.

Pobedimova, E.G. 2000. Galium. – In: Komarov, V.L. (ed.). Flora of the U.S.S.R., vol. 23: 272-361. – Botanicheskii Institut (Akademiia Nauk SSSR), Moscow & Leningrad.

Sennikov, A.N. 2016. The plant world of the Khorassan-Kopet Dagh Floristic Province: A tribute to Eskandar Firouz. – Phytotaxa 249: 5-7.

Thiers, B. 2018. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 15 December 2018).

Tzvelev, N.N. 1976. Zlaki SSSR [Grasses of the Soviet Union]. – Nauka, Leningrad. 778 pp.

Yang, L.-E., Meng, Y., Peng, D.-L., Nie, Z.-L. and Sun, H. 2018. Molecular phylogeny of Galium L. of the tribe Rubieae (Rubiaceae) – emphasis on Chinese species and recognition of a new genus Pseudogalium. – Mol. Phylogen. Evol. 126: 221-232.

How to cite this article:
Behroozian, M., Ejtehadi, H. Memariani, F., Joharchi, M.R. and Mesdaghi, M. 2019. Stipa richteriana (Poaceae) and Galium songaricum (Rubiaceae): two new additions of the Central Asian species to the flora of Iran. – Nova Biol. Reperta 6: 326-333.