Connecting The Non-Singular Origin of the Universe, The Vacuum Structure and The Cosmological Constant Problem

Eduardo I. Guendelman

Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

Pedro Labraña

Departamento de Física, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile and Departament d’Estructura i Constituents de la Matèria, Institut de Ciències del Cosmos, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain.
Abstract

We consider a non-singular origin for the Universe starting from an Einstein static Universe, the so called “emergent universe” scenario, in the framework of a theory which uses two volume elements $\sqrt{-g} d^4x$ and Φd^4x, where Φ is a metric independent density, used as an additional measure of integration. Also curvature, curvature square terms and for scale invariance a dilaton field ϕ are considered in the action. The first order formalism is applied. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of scale invariance (S.I.). After S.S.B. of S.I., it is found that a non trivial potential for the dilaton is generated. In the Einstein frame we also add a cosmological term that parametrizes the zero point fluctuations. The resulting effective potential for the dilaton contains two flat regions, for $\phi \to \infty$ relevant for the non-singular origin of the Universe, followed by an inflationary phase and $\phi \to -\infty$, describing our present Universe. The dynamics of the scalar field becomes non linear and these non linearities produce a non trivial vacuum structure for the theory and are responsible for the stability of some of the emergent universe solutions, which exists for a parameter range of values of the vacuum energy in $\phi \to -\infty$, which must be positive but not very big, avoiding the extreme fine tuning required to keep the vacuum energy density of the present universe small. The non trivial vacuum structure is crucial to ensure the smooth transition from the emerging phase, to an inflationary phase and finally to the slowly accelerated universe now. Zero vacuum energy density for the present universe defines the threshold for the creation of the universe.

PACS numbers: 98.80.Cq, 04.20.Cv, 95.36.+x
I. INTRODUCTION

One of the most important and intriguing issues of modern physics is the so called “Cosmological Constant Problem” \([1-5]\) (CCP), most easily seen by studying the apparently uncontrolled behaviour of the zero point energies, which would lead to a corresponding equally uncontrolled vacuum energy or cosmological constant term. Even staying at the classical level, the observed very small cosmological term in the present universe is still very puzzling.

Furthermore, the Cosmological Constant Problem has evolved from the “Old Cosmological Constant Problem”, where physicists were concerned with explaining why the observed vacuum energy density of the universe is exactly zero, to different type of CCP since the evidence for the accelerating universe became evident, for reviews see \([6, 7]\). We have therefore since the discovery of the accelerated universe a “New Cosmological Constant Problem” \([8]\), the problem is now not to explain zero, but to explain a very small vacuum energy density.

This new situation posed by the discovery of a very small vacuum energy density of the universe means that getting a zero vacuum energy density for the present universe is definitely not the full solution of the problem, although it may be a step towards its solution.

One point of view to the CCP that has been popular has been to provide a bound based on the “anthropic principle” \([9]\). In this approach, a too large Cosmological Constant will not provide the necessary conditions required for the existence of life, the anthropic principle provides then an upper bound on the cosmological constant.

One problem with this approach is for example that it relies on our knowledge of life as we know it and ignores the possibility that other life forms could be possible, for which other (unknown) bounds would be relevant, therefore the reasoning appears by its very nature subjective, since of course if the observed cosmological constant will be different, our universe will be different and this could include different kind of life that may be could have adjusted itself to a higher cosmological constant of the universe. But even accepting the validity of anthropic considerations, we still do not understand why the observed vacuum energy density must be positive instead of possibly a very small negative quantity. Accepting the anthropic explanation means may be also giving up on discovering important physics related to the CCP and this may be the biggest objection.

Nevertheless, the idea of associating somehow restrictions on the origin of the universe
with the cosmological constant problem seems interesting. We will take on this point of view, but leave out the not understood concept of life out from our considerations. Instead, we will require, in a very specific framework, the non-singular origin of the universe. The advantage of this point of view is that it is formulated in terms of ideas of physics alone, without reference to biology, which unlike physics, has not reached the level of an exact science. Another interesting consequence is that we can learn that of a non-singularly created universe may not have a too big cosmological constant, an effect that points to a certain type of gravitational suppression of UV divergences in quantum field theory.

In this respect, one should point out that even in the context of the inflationary scenario [10–13] which solves many cosmological problems, one still encounters the initial singularity problem which remains unsolved, showing that the universe necessarily had a singular beginning for generic inflationary cosmologies [14–18].

Here we will adopt the very attractive “Emergent Universe” scenario, where those conclusions concerning singularities can be avoided [19–27]. The way to escape the singularity in these models is to violate the geometrical assumptions of these theorems, which assume i) that the universe has open space sections ii) the Hubble expansion is always greater than zero in the past. In [19, 20] the open space section condition is violated since closed Robertson Walker universes with \(k = 1 \) are considered and the Hubble expansion can become zero, so that both i) and ii) are avoided.

In [19, 20] even models based on standard General Relativity, ordinary matter and minimally coupled scalar fields were considered and can provide indeed a non-singular (geodesically complete) inflationary universe, with a past eternal Einstein static Universe that eventually evolves into an inflationary Universe.

Those most simple models suffer however from instabilities, associated with the instability of the Einstein static universe. The instability is possible to cure by going away from GR, considering non perturbative corrections to the Einstein’s field equations in the context of the loop quantum gravity [21], a brane world cosmology with a time like extra dimension [22, 23] considering the Starobinski model for radiative corrections (which cannot be derived from an effective action) [24] or exotic matter [25]. In addition to this, the consideration of a Jordan Brans Dicke model also can provide a stable initial state for the emerging universe scenario [26, 27].

In this review we study a different theoretical framework where such emerging universe
scenario is realized in a natural way, where instabilities are avoided and a successful inflationary phase with a graceful exit can be achieved. The model we will use was studied first in [28], however, in the context of this model, a few scenarios are possible. For example in the first paper on this model [28], a special choice of state to describe the present state of our universe was made. Then in [29], a different candidate for the vacuum that represents our present universe was made. The way in which we best represents the present state of the universe is crucial, since as it should be obvious, the discussion of the CCP depends on what vacuum we take. In [29], we expressed the stability and existence conditions for the non-singular universe in terms of the energy of the vacuum of our candidate for the present Universe. In [29], a few typos in [28] were corrected and also the discussion of some notions discussed was improved in [29] and more deeper studies will be done in this review.

Indeed in this review, all those topics will be further clarified, in particular the vacuum structure of this model will be extended. A very important new feature that will be presented in this review is the existence of a “kinetic vacuum”, that produces a vacuum energy state which is degenerate with the vacuum choice made in [29], this degeneracy is analyzed and the dynamical role of this kinetic vacuum in the evolution of the universe and the CCP is analyzed.

We work in the context of a theory built along the lines of the two measures theory (TMT). Basic idea is developed in [30], [31]-[47], [48], [49]-[52], [54]-[58], [59] and more specifically in the context of the scale invariant realization of such theories [48], [49]-[53], [54]-[58], [59]. These theories can provide a new approach to the cosmological constant problem and can be generalized to obtain also a theory with a dynamical spacetime [61], furthermore, string and brane theories, as well as brane world scenarios can be constructed using Two Measure Theories ideas [62]-[67]. We should also point out that the Hodge Dual construction of [33] for supergravity constitutes in fact an example of a TMT. The construction by Comelli [34] where no square root of the determinant of the metric is used and instead a total divergence appears is also a very much related approach.

The two measure theories have many points of similarity with “Lagrange Multiplier Gravity (LMG)” [69, 72]. In LMG there is a Lagrange multiplier field which enforces the condition that a certain function is zero. For a comparison of one of these lagrange multiplier gravity models with observations see [70]. In the two measure theory this is equivalent to the constraint which requires some lagrangian to be constant. The two measure model presented
here, as opposed to the LMG models of [69, 72] provide us with an arbitrary constant of integration. The introduction of constraints can cause Dirac fields to contribute to dark energy [71] or scalar fields to behave like dust like in [69] and this dust behaviour can be caused by the stabilization of a tachyonic field due to the constraint, accompanied by a floating dark energy component [73, 74]. TMT models naturally avoid the 5th force problem [75].

We will consider a slight generalization of the TMT case, where, we consider also the possible effects of zero point energy densities, thus “softly breaking” the basic structure of TMT for this purpose. We will show how the stated goals of a stable emergent universe can be achieved in the framework of the model and also how the stability of the emerging universe imposes interesting constraints on the energy density of the ground state of the theory as defined in this paper: it must be positive but not very large, thus the vacuum energy and therefore the term that softly breaks the TMT structure appears to be naturally controlled. An important ingredient of the model considered here is its softly broken conformal invariance, meaning that we allow conformal breaking terms only though potentials of the dilaton, which nevertheless preserve global scale invariance. In another models for emergent universe we have studied [76], that rule of softly broken conformal invariance was taken into account. It is also a perfectly consistent, but different approach.

The review will be organized as follows: First we review the principles of the TMT and in particular the model studied in [48], which has global scale invariance and how this can be the basis for the emerging universe. Such model gives rise, in the effective Einstein frame, to an effective potential for a dilaton field (needed to implement an interesting model with global scale invariance) which has a flat region. Following this, we look at the generalization of this model [59] by adding a curvature square or simply “R^2 term” and show that the resulting model contains now two flat regions. The existence of two flat regions for the potential is shown to be consequence of the s.s.b. of the scale symmetry. We then consider the incorporation in the model of the zero point fluctuations, parametrized by a cosmological constant in the Einstein frame. In this resulting model, there are two possible types of emerging universe solutions, for one of those, the initial Einstein Universe can be stabilized due to the non linearities of the model, provided the vacuum energy density of the ground state is positive but not very large. This is a very satisfactory results, since it means that the stability of the emerging universe prevents the vacuum energy in the present universe from being very large!. The transition from the emergent universe to the ground state
goes through an intermediate inflationary phase, therefore reproducing the basic standard cosmological model as well. We end with a discussion section and present the point of view that the creation of the universe can be considered as a “threshold event” for zero present vacuum energy density, which naturally gives a positive but small vacuum energy density.

II. INTRODUCING A NEW MEASURE

The general structure of general coordinate invariant theories is taken usually as

\[S_1 = \int L_1 \sqrt{-g} d^4x \] (1)

where \(g = \text{det} g_{\mu\nu} \). The introduction of \(\sqrt{-g} \) is required since \(d^4x \) by itself is not a scalar but the product \(\sqrt{-g} d^4x \) is a scalar. Inserting \(\sqrt{-g} \), which has the transformation properties of a density, produces a scalar action \(S_1 \), as defined by Eq.(1), provided \(L_1 \) is a scalar.

In principle nothing prevents us from considering other densities instead of \(\sqrt{-g} \). One construction of such alternative “measure of integration”, is obtained as follows: given 4-scalars \(\varphi_a \) (\(a = 1,2,3,4 \)), one can construct the density

\[\Phi = \varepsilon^{\mu\nu\alpha\beta} \varepsilon_{abcd} \partial_\mu \varphi_a \partial_\nu \varphi_b \partial_\alpha \varphi_c \partial_\beta \varphi_d \] (2)

and consider in addition to the action \(S_1 \), as defined by Eq.(1), \(S_2 \), defined as

\[S_2 = \int L_2 \Phi d^4x \] (3)

\(L_2 \) is again some scalar, which may contain the curvature (i.e. the gravitational contribution) and a matter contribution, as it can be the case for \(S_1 \), as defined by Eq.(1). For an approach that uses four-vectors instead of four-scalars see [68].

In the action \(S_2 \) defined by Eq.(3) the measure carries degrees of freedom independent of that of the metric and that of the matter fields. The most natural and successful formulation of the theory is achieved when the connection is also treated as an independent degree of freedom. This is what is usually referred to as the first order formalism.

One can consider both contributions, and allowing therefore both geometrical objects to enter the theory and take as our action

\[S = \int L_1 \sqrt{-g} d^4x + \int L_2 \Phi d^4x \] (4)
Here L_1 and L_2 are φ_a independent.

We will study now the dynamics of a scalar field ϕ interacting with gravity as given by the following action, where except for the potential terms U and V we have conformal invariance, the potential terms U and V break down this to global scale invariance.

\[
S_L = \int L_1 \sqrt{-g} d^4x + \int L_2 \Phi d^4x
\]

\[
L_1 = U(\phi)
\]

\[
L_2 = -\frac{1}{\kappa} R(\Gamma, g) + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi)
\]

\[
R(\Gamma, g) = g^{\mu\nu} R_{\mu\nu}(\Gamma), R_{\mu\nu}(\Gamma) = R^\lambda_{\mu\nu} \lambda
\]

\[
R^\lambda_{\mu\nu\sigma}(\Gamma) = \Gamma^\lambda_{\mu\nu,\sigma} - \Gamma^\lambda_{\mu\sigma,\nu} + \Gamma^\lambda_{\alpha\sigma} \Gamma^\alpha_{\mu\nu} - \Gamma^\lambda_{\alpha\nu} \Gamma^\alpha_{\mu\sigma}.
\]

The suffix L in S_L is to emphasize that here the curvature appears only linearly. Here, except for the potential terms U and V we have conformal invariance, the potential terms U and V break down this to global scale invariance. Since the breaking of local conformal invariance is only through potential terms, we call this a “soft breaking”.

In the variational principle $\Gamma^\lambda_{\mu\nu}, g_{\mu\nu}$, the measure fields scalars φ_a and the “matter” - scalar field ϕ are all to be treated as independent variables although the variational principle may result in equations that allow us to solve some of these variables in terms of others.

For the case the potential terms $U = V = 0$ we have local conformal invariance

\[
g_{\mu\nu} \rightarrow \Omega(x) g_{\mu\nu}
\]

and φ_a is transformed according to

\[
\varphi_a \rightarrow \varphi'_a = \varphi'_a(\varphi_b)
\]

\[
\Phi \rightarrow \Phi' = J(x) \Phi
\]

where $J(x)$ is the Jacobian of the transformation of the φ_a fields.

This will be a symmetry in the case $U = V = 0$ if

\[
\Omega = J
\]
Notice that J can be a local function of space time, this can be arranged by performing for the φ_a fields one of the (infinite) possible diffeomorphisms in the internal φ_a space.

We can still retain a global scale invariance in model for very special exponential form for the U and V potentials. Indeed, if we perform the global scale transformation ($\theta = \text{constant}$)

$$g_{\mu\nu} \rightarrow e^{\theta} g_{\mu\nu} \tag{14}$$

then (9) is invariant provided $V(\phi)$ and $U(\phi)$ are of the form $V(\phi) = f_1 e^{\alpha\phi}, U(\phi) = f_2 e^{2\alpha\phi} \tag{15}$

and φ_a is transformed according to

$$\varphi_a \rightarrow \lambda_{ab} \varphi_b \tag{16}$$

which means

$$\Phi \rightarrow \det(\lambda_{ab}) \Phi \equiv \lambda \Phi \tag{17}$$

such that

$$\lambda = e^{\theta} \tag{18}$$

and

$$\phi \rightarrow \phi - \frac{\theta}{\alpha}. \tag{19}$$

We will now work out the equations of motion after introducing $V(\phi)$ and $U(\phi)$ and see how the integration of the equations of motion allows the spontaneous breaking of the scale invariance.

Let us begin by considering the equations which are obtained from the variation of the fields that appear in the measure, i.e. the φ_a fields. We obtain then

$$A^\mu_a \partial_\mu L_2 = 0 \tag{20}$$

where $A^\mu_a = e^{\mu\nu\alpha\beta} \varepsilon_{abcd} \partial_\nu \varphi_b \partial_\alpha \varphi_c \partial_\beta \varphi_d$. Since it is easy to check that $A^\mu_a \partial_\mu \varphi_{a'} = \frac{\delta_{aa'}}{4} \Phi$, it follows that $\det (A^\mu_a) = \frac{4}{4!} \Phi^3 \neq 0$ if $\Phi \neq 0$. Therefore if $\Phi \neq 0$ we obtain that $\partial_\mu L_2 = 0$, or that

$$L_2 = \frac{-1}{\kappa} R(\Gamma, g) + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V = M \tag{21}$$

where M is constant. Notice that this equation breaks spontaneously the global scale invariance of the theory, since the left hand side has a non trivial transformation under the scale
transformations, while the right hand side is equal to M, a constant that after we integrate the equations is fixed, cannot be changed and therefore for any $M \neq 0$ we have obtained indeed, spontaneous breaking of scale invariance.

We will see what is the connection now. As we will see, the connection appears in the original frame as a non Riemannian object. However, we will see that by a simple conformal transformation of the metric we can recover the Riemannian structure. The interpretation of the equations in the frame gives then an interesting physical picture, as we will see.

Let us begin by studying the equations obtained from the variation of the connections $\Gamma^\lambda_{\mu\nu}$. We obtain then

$$-\Gamma^\lambda_{\mu\nu} - \Gamma^\alpha_{\beta\mu} g^{\beta\lambda} g_{\alpha\nu} + \delta^\lambda_{\nu} \Gamma^\alpha_{\mu\alpha} + \delta^\lambda_{\mu} g^{\alpha\beta} \Gamma^\gamma_{\alpha\beta\nu} - g_{\alpha\nu} \partial_\mu g^{\alpha\lambda} + \delta^\lambda_{\mu} g_{\alpha\nu} \partial_\beta g^{\alpha\beta} - \delta^\lambda_{\nu} \frac{\Phi_{,\mu}}{\Phi} + \delta^\lambda_{\mu} \frac{\Phi_{,\nu}}{\Phi} = 0$$

(22)

If we define $\Sigma^\lambda_{\mu\nu}$ as $\Sigma^\lambda_{\mu\nu} = \Gamma^\lambda_{\mu\nu} - \{^\lambda_{\mu\nu}\}$ where $\{^\lambda_{\mu\nu}\}$ is the Christoffel symbol, we obtain for $\Sigma^\lambda_{\mu\nu}$ the equation

$$-\sigma_{,\lambda} g_{\mu\nu} + \sigma_{,\mu} g_{\nu\lambda} - g_{\alpha\nu} \Sigma^\alpha_{\mu\alpha} - g_{\mu\alpha} \Sigma^\alpha_{\alpha\lambda} + g_{\mu\nu} \Sigma^\alpha_{\lambda\alpha} + g_{\nu\lambda} g_{\alpha\mu} g^{\beta\gamma} \Sigma^\alpha_{\beta\gamma} = 0$$

(23)

where $\sigma = \ln \chi, \chi = \Phi \sqrt{-g}$.

The general solution of Eq.(24) is

$$\Sigma^\alpha_{\mu\nu} = \delta^\alpha_{\mu} \lambda_{,\nu} + \frac{1}{2}(\sigma_{,\mu} \delta^\alpha_{\nu} - \sigma_{,\nu} \delta^\alpha_{\mu} - \sigma_{,\beta} g_{\mu\nu} g^{\alpha\beta})$$

(24)

where λ is an arbitrary function due to the λ - symmetry of the curvature $R^\lambda_{\mu\nu\alpha}(\Gamma)$,

$$\Gamma^\alpha_{\mu\nu} \rightarrow \Gamma'^\alpha_{\mu\nu} = \Gamma^\alpha_{\mu\nu} + \delta^\alpha_{\mu} Z_{,\nu}$$

(25)

Z being any scalar (which means $\lambda \rightarrow \lambda + Z$).

If we choose the gauge $\lambda = \frac{\sigma}{2}$, we obtain

$$\Sigma^\alpha_{\mu\nu}(\sigma) = \frac{1}{2}(\delta^\alpha_{\mu} \sigma_{,\nu} + \delta^\alpha_{\nu} \sigma_{,\mu} - \sigma_{,\beta} g_{\mu\nu} g^{\alpha\beta})$$

(26)

Considering now the variation with respect to $g^{\mu\nu}$, we obtain

$$\Phi(-\frac{1}{\kappa} R_{\mu\nu}(\Gamma) + \frac{1}{2}\phi_{,\mu} \phi_{,\nu}) - \frac{1}{2} \sqrt{-g} U(\phi) g_{\mu\nu} = 0$$

(27)

solving for $R = g^{\mu\nu} R_{\mu\nu}(\Gamma)$ from Eq.(27) and introducing in Eq.(21) we obtain

$$M + V(\phi) - \frac{2U(\phi)}{\chi} = 0$$

(28)
a constraint that allows us to solve for χ,

$$\chi = \frac{2U(\phi)}{M + V(\phi)}.$$ \hfill (29)

To get the physical content of the theory, it is best consider variables that have well defined dynamical interpretation. The original metric does not has a non zero canonical momenta. The fundamental variable of the theory in the first order formalism is the connection and its canonical momenta is a function of $\bar{g}_{\mu\nu}$, given by,

$$\bar{g}_{\mu\nu} = \chi g_{\mu\nu}$$ \hfill (30)

and χ given by Eq.(29). Interestingly enough, working with $\bar{g}_{\mu\nu}$ is the same as going to the “Einstein Conformal Frame”. In terms of $\bar{g}_{\mu\nu}$ the non Riemannian contribution $\Sigma^\alpha_{\mu\nu}$ dissappears from the equations. This is because the connection can be written as the Christoffel symbol of the metric $\bar{g}_{\mu\nu}$. In terms of $\bar{g}_{\mu\nu}$, the equations of motion for the metric can be written then in the Einstein form (we define $\bar{R}_{\mu\nu}(\bar{g}_{\alpha\beta}) = \text{usual Ricci tensor in terms of the bar metric} = \bar{R}$ and

$$\bar{R}_{\mu\nu}(\bar{g}_{\alpha\beta}) = \frac{\kappa}{2} T_{\mu\nu}^{\text{eff}}(\phi)$$ \hfill (31)

where

$$T_{\mu\nu}^{\text{eff}}(\phi) = \phi_{,\mu} \phi_{,\nu} - \frac{1}{2} \bar{g}_{\mu\nu} \phi_{,\alpha} \phi_{,\beta} \bar{g}^{\alpha\beta} + \bar{g}_{\mu\nu} V_{\text{eff}}(\phi)$$ \hfill (32)

and

$$V_{\text{eff}}(\phi) = \frac{1}{4U(\phi)} (V + M)^2.$$ \hfill (33)

In terms of the metric $\bar{g}^{\alpha\beta}$, the equation of motion of the Scalar field ϕ takes the standard General - Relativity form

$$\frac{1}{\sqrt{-\bar{g}}} \partial_\mu (\bar{g}^{\nu\mu} \sqrt{-\bar{g}} \partial_\nu \phi) + V_{\text{eff}}'(\phi) = 0.$$ \hfill (34)

Notice that if $V + M = 0, V_{\text{eff}} = 0$ and $V'_{\text{eff}} = 0$ also, provided V' is finite and $U \neq 0$ there. This means the zero cosmological constant state is achieved without any sort of fine tuning. That is, independently of whether we add to V a constant piece, or whether we change the value of M, as long as there is still a point where $V + M = 0$, then still $V_{\text{eff}} = 0$ and $V'_{\text{eff}} = 0$ (still provided V' is finite and $U \neq 0$ there). This is the basic feature that
characterizes the TMT and allows it to solve the “old” cosmological constant problem, at least at the classical level.

In what follows we will study the effective potential (33) for the special case of global scale invariance, which as we will see displays additional very special features which makes it attractive in the context of cosmology.

Notice that in terms of the variables $\phi, g_{\mu\nu}$, the “scale” transformation becomes only a shift in the scalar field ϕ, since $g_{\mu\nu}$ is invariant (since $\chi \rightarrow \lambda^{-1}\chi$ and $g_{\mu\nu} \rightarrow \lambda g_{\mu\nu}$)

$$g_{\mu\nu} \rightarrow \lambda g_{\mu\nu}, \phi \rightarrow \phi - \frac{\theta}{\alpha}.$$ (35)

If $V(\phi) = f_1 e^{\alpha \phi}$ and $U(\phi) = f_2 e^{2\alpha \phi}$ as required by scale invariance Eqs. (14, 16, 17, 18, 19), we obtain from the expression (33)

$$V_{\text{eff}} = \frac{1}{4} f_1^2 (f_1 + M e^{-\alpha \phi})^2$$ (36)

Since we can always perform the transformation $\phi \rightarrow -\phi$ we can choose by convention $\alpha > 0$. We then see that as $\phi \rightarrow \infty, V_{\text{eff}} \rightarrow \frac{f_1^2}{4 f_2} = \text{const.}$ providing an infinite flat region as depicted in Fig. 1. Also a minimum is achieved at zero cosmological constant for the case $\int_1^M < 0$ at the point

$$\phi_{\text{min}} = -\frac{1}{\alpha} \ln \left| \frac{f_1}{M} \right|.$$ (37)

In conclusion, the scale invariance of the original theory is responsible for the non appearance (in the physics) of a certain scale, that associated to M. However, masses do appear, since the coupling to two different measures of L_1 and L_2 allow us to introduce two independent couplings f_1 and f_2, a situation which is unlike the standard formulation of globally scale invariant theories, where usually no stable vacuum state exists.

The constant of integration M plays a very important role indeed: any non vanishing value for this constant implements, already at the classical level S.S.B. of scale invariance.

III. GENERATION OF TWO FLAT REGIONS AFTER THE INTRODUCTION OF A R^2 TERM

As we have seen, it is possible to obtain a model that through a spontaneous breaking of scale invariance can give us a flat region. We want to obtain now two flat regions in our effective potential. A simple generalization of the action S_L will fix this. The basic new
feature we add is the presence is higher curvature terms in the action \[78]-[86], which have been shown to be very relevant in cosmology. In particular he first inflationary model from a model with higher terms in the curvature was proposed in [86].

What one needs to do is simply consider the addition of a scale invariant term of the form

\[S_{R^2} = \epsilon \int (g^{\mu\nu} R_{\mu\nu}(\Gamma))^2 \sqrt{-g} d^4x \] \hspace{1cm} (38)

The total action being then \(S = S_L + S_{R^2} \). In the first order formalism \(S_{R^2} \) is not only globally scale invariant but also locally scale invariant, that is conformally invariant (recall that in the first order formalism the connection is an independent degree of freedom and it does not transform under a conformal transformation of the metric).

Let us see what the equations of motion tell us, now with the addition of \(S_{R^2} \) to the action. First of all, since the addition has been only to the part of the action that couples to \(\sqrt{-g} \), the equations of motion derived from the variation of the measure fields remains unchanged. That is Eq.(21) remains valid.

The variation of the action with respect to \(g^{\mu\nu} \) gives now

\[R_{\mu\nu}(\Gamma)(-\frac{\Phi}{\kappa} + 2\epsilon R\sqrt{-g}) + \Phi \frac{1}{2}\phi_{,\mu} \phi_{,\nu} - \frac{1}{2}(\epsilon R^2 + U(\phi))\sqrt{-g}g_{\mu\nu} = 0 \] \hspace{1cm} (39)

It is interesting to notice that if we contract this equation with \(g^{\mu\nu} \), the \(\epsilon \) terms do not contribute. This means that the same value for the scalar curvature \(R \) is obtained as in section 2, if we express our result in terms of \(\phi \), its derivatives and \(g^{\mu\nu} \). Solving the scalar curvature from this and inserting in the other \(\epsilon \) - independent equation \(L_2 = M \) we get still the same solution for the ratio of the measures which was found in the case where the \(\epsilon \) terms were absent, i.e. \(\chi = \frac{\Phi}{\sqrt{-g}} = \frac{2U(\phi)}{M+V(\phi)} \).

In the presence of the \(\epsilon R^2 \) term in the action, Eq. (22) gets modified so that instead of \(\Phi, \Omega = \Phi - 2\epsilon R\sqrt{-g} \) appears. This in turn implies that Eq.(23) keeps its form but where \(\sigma \) is replaced by \(\omega = ln(\frac{\Omega}{\sqrt{-g}}) = ln(\chi - 2\kappa \epsilon R) \), where once again, \(\chi = \frac{\Phi}{\sqrt{-g}} = \frac{2U(\phi)}{M+V(\phi)} \).

Following then the same steps as in the model without the curvature square terms, we can then verify that the connection is the Christoffel symbol of the metric \(\tilde{g}_{\mu\nu} \) given by

\[\tilde{g}_{\mu\nu} = (\frac{\Omega}{\sqrt{-g}})g_{\mu\nu} = (\chi - 2\kappa \epsilon R)g_{\mu\nu} \] \hspace{1cm} (40)
defines now the "Einstein frame". Equations (39) can now be expressed in the "Einstein form"

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{\kappa}{2} T_{\mu\nu}^{\text{eff}} \] (41)

where

\[T_{\mu\nu}^{\text{eff}} = \frac{\chi}{\chi - 2\kappa\epsilon R} (\phi_{,\mu}\phi_{,\nu} - \frac{1}{2} g_{\mu\nu} \phi_{,\alpha}\phi_{,\beta} g^{\alpha\beta}) + g_{\mu\nu} V_{\text{eff}} \] (42)

where

\[V_{\text{eff}} = \frac{\epsilon R^2 + U}{(\chi - 2\kappa\epsilon R)^2} \] (43)

Here it is satisfied that \(\frac{1}{\kappa} R(\Gamma, g) + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V = M \), equation that expressed in terms of \(\bar{g}^{\mu\nu} \) becomes

\[\frac{1}{\kappa} R(\Gamma, g) + (\chi - 2\kappa\epsilon R) \frac{1}{2} \bar{g}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V = M. \] This allows us to solve for \(R \) and we get,

\[R = \frac{-\kappa (V + M) + \frac{\epsilon}{2} \bar{g}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \chi}{1 + \kappa^2 \bar{g}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi} \] (44)

Notice that if we express \(R \) in terms of \(\phi \), its derivatives and \(g^{\mu\nu} \), the result is the same as in the model without the curvature squared term, this is not true anymore once we express \(R \) in terms of \(\phi \), its derivatives and \(\bar{g}^{\mu\nu} \).

In any case, once we insert (44) into (43), we see that the effective potential (43) will depend on the derivatives of the scalar field now. It acts as a normal scalar field potential under the conditions of slow rolling or low gradients and in the case the scalar field is near the region \(M + V(\phi) = 0 \).

Notice that since \(\chi = \frac{2U(\phi)}{M + V(\phi)} \), then if \(M + V(\phi) = 0 \), then, as in the simpler model without the curvature squared terms, we obtain that \(V_{\text{eff}} = V'_{\text{eff}} = 0 \) at that point without fine tuning (here by \(V'_{\text{eff}} \) we mean the derivative of \(V_{\text{eff}} \) with respect to the scalar field \(\phi \), as usual).

In the case of the scale invariant case, where \(V \) and \(U \) are given by equation (15), it is interesting to study the shape of \(V_{\text{eff}} \) as a function of \(\phi \) in the case of a constant \(\phi \), in which case \(V_{\text{eff}} \) can be regarded as a real scalar field potential. Then from (44) we get
\(R = -\kappa(V + M) \), which inserted in (43) gives,

\[
V_{\text{eff}} = \frac{(f_1 e^{\alpha \phi} + M)^2}{4(\epsilon \kappa^2 (f_1 e^{\alpha \phi} + M)^2 + f_2 e^{2\alpha \phi})}
\] (45)

The limiting values of \(V_{\text{eff}} \) are:

First, for asymptotically large positive values, i.e. as \(\alpha \phi \to \infty \), we have \(V_{\text{eff}} \to \frac{f_1^2}{4(\epsilon \kappa^2 f_1^2 + f_2)} \).

Second, for asymptotically large but negative values of the scalar field, that is as \(\alpha \phi \to -\infty \), we have: \(V_{\text{eff}} \to \frac{1}{4\epsilon \kappa^2} \).

In these two asymptotic regions \((\alpha \phi \to \infty \) and \(\alpha \phi \to -\infty \) \) an examination of the scalar field equation reveals that a constant scalar field configuration is a solution of the equations, as is of course expected from the flatness of the effective potential in these regions.

Notice that in all the above discussion it is fundamental that \(M \neq 0 \). If \(M = 0 \) the potential becomes just a flat one, \(V_{\text{eff}} = \frac{f_1^2}{4(\epsilon \kappa^2 f_1^2 + f_2)} \) everywhere (not only at high values of \(\alpha \phi \)). All the non trivial features necessary for a graceful exit, the other flat region associated to the Planck scale and the minimum at zero if \(M < 0 \) are all lost. As we discussed in the model without a curvature squared term, \(M \neq 0 \) implies the we are considering a situation with S.S.B. of scale invariance.

These kind of models with potentials giving rise to two flat potentials have been applied to produce models for bags and confinement in a very natural way [60].

IV. A NOTE ON THE "EINSTEIN" METRIC AS A CANONICAL VARIABLE OF THE THEORY

One could question the use of the Einstein frame metric \(\overline{g}_{\mu \nu} \) in contrast to the original metric \(g_{\mu \nu} \). In this respect, it is interesting to see the role of both the original metric and that of the Einstein frame metric in a canonical approach to the first order formalism. Here we see that the original metric does not have a canonically conjugated momentum (this turns out to be zero), in contrast, the canonically conjugated momentum to the connection turns out to be a function exclusively of \(\overline{g}_{\mu \nu} \), this Einstein metric is therefore a genuine dynamical canonical variable, as opposed to the original metric. There is also a lagrangian formulation of the theory which uses \(\overline{g}_{\mu \nu} \), as we will see in the next section, what we can call the action in the Einstein frame. In this frame we can quantize the theory for example and consider contributions without reference to the original frame, thus possibly considering breaking
the TMT structure of the theory through quantum effects, but such breaking will be done “softly” through the introduction of a cosmological term only. Surprisingly, the remaining structure of the theory, reminiscent from the original TMT structure will be enough to control the strength of this additional cosmological term once we demand that the universe originated from a non-singular and stable emergent state.

V. GENERALIZING THE MODEL TO INCLUDE EFFECTS OF ZERO POINT FLUCTUATIONS

The effective energy-momentum tensor can be represented in a form like that of a perfect fluid

\[T_{\mu \nu}^{\text{eff}} = (\rho + p)u_\mu u_\nu - p \tilde{g}_{\mu \nu}, \quad \text{where} \quad u_\mu = \frac{\phi, \mu}{(2X)^{1/2}} \]

(46)

here \(X \equiv \frac{1}{2} \tilde{g}^{\alpha \beta} \phi, \alpha \phi, \beta \). This defines a pressure functional and an energy density functional. The system of equations obtained after solving for \(\chi \), working in the Einstein frame with the metric \(\tilde{g}_{\mu \nu} \) can be obtained from a “k-essence” type effective action, as it is standard in treatments of theories with non linear kinetic terms or k-essence models [87]-[90]. The action from which the classical equations follow is,

\[S_{\text{eff}} = \int \sqrt{-\tilde{g}} d^4x \left[-\frac{1}{\kappa} R(\tilde{g}) + p(\phi, R) \right] \]

(47)

\[p = \frac{\chi}{\chi - 2\kappa \epsilon R} X - V_{\text{eff}} \]

(48)

\[V_{\text{eff}} = \frac{\epsilon R^2 + U}{(\chi - 2\kappa \epsilon R)^2} \]

(49)

where it is understood that,

\[\chi = \frac{2U(\phi)}{M + V(\phi)}. \]

(50)

We have two possible formulations concerning \(R \): Notice first that \(\overline{R} \) and \(R \) are different objects, the \(\overline{R} \) is the Riemannian curvature scalar in the Einstein frame, while \(R \) is a different object. This \(R \) will be treated in two different ways:

1. First order formalism for \(R \). Here \(R \) is a lagrangian variable, determined as follows, \(R \) that appear in the expression above for \(p \) can be obtained from the variation of the pressure
FIG. 1: The form of effective potential $V_{\text{eff}}(\phi)$ versus the scalar field ϕ. We consider unit where $\kappa = 1$, $\alpha = 1$, $\Lambda = 0.35$ and $\epsilon = -1$. Left panel: $M = -1$, $f_1 = 1/2$, $f_2 = 1$. Right panel: $M = 1$, $f_1 = 1/2$, $f_2 = 1$.

functional action above with respect to R, this gives exactly the expression for R that has been solved already in terms of X, ϕ, etc, see Eq. (44).

2. Second order formalism for R. R that appear in the action above is exactly the expression for R that has been solved already in terms of X, ϕ, etc. The second order formalism can be obtained from the first order formalism by solving algebraically R from the Eq. (44) obtained by variation of R, and inserting back into the action.

One may also use the method outlined in [91] to find the effective action in the Einstein frame, in [91] the problem of a curvature squared theory with standard measure was studied. The methods outlined there can be also applied in the modified measure case [92], thus providing another derivation of the effective action explained above.

The problem that we have to solve to find the effective lagrangian is basically finding that lagrangian tat will produce the effective energy momentum tensor in the Einstein frame by the variation of the $\bar{g}_{\mu\nu}$ metric

$$T_{\text{eff} \mu\nu} = \bar{g}_{\mu\nu} L_{\text{eff}}(h) - 2 \frac{\partial L_{\text{eff}}}{\partial \bar{g}^{\mu\nu}}$$ \hspace{1cm} (51)

In contrast to the simplified models studied in literature [87–90], it is impossible here to represent $p(\phi, X; M)$ in a factorizable form like $\tilde{K}(\phi)\tilde{p}(X)$. The scalar field effective Lagrangian can be taken as a starting point for many considerations.

In particular, the quantization of the model can proceed from (47) and additional terms could be generated by radiative corrections. We will focus only on a possible cosmological term in the Einstein frame added (due to zero point fluctuations) to (47), which leads then
FIG. 2: The effective potential $V_{\text{eff}}(\phi)$ versus the scalar field ϕ. We consider unit where $\kappa = 1$, $\alpha = 1$, $\Lambda = 0.35$ and $\epsilon = 1$. Left panel: $M = 1$, $f_1 = 1/2$, $f_2 = 1$. Right panel: $M = -1$, $f_1 = 1$, $f_2 = 1$.

to the new action

$$S_{\text{eff},\Lambda} = \int \sqrt{-\bar{g}}d^4x \left[-\frac{1}{\kappa} \bar{R}(-\bar{g}) + p(\phi, R) - \Lambda \right]$$

(52)

This addition to the effective action leaves the equations of motion of the scalar field unaffected, but the gravitational equations acquire a cosmological constant. Adding the Λ term can be regarded as a redefinition of $V_{\text{eff}}(\phi, X; M)$

$$V_{\text{eff}}(\phi, R) \rightarrow V_{\text{eff}}(\phi, R) + \Lambda$$

(53)

As we will see the stability of the emerging Universe imposes interesting constraints on Λ.

After introducing the Λ term, we get from the variation of R the same value of R, unaffected by the new Λ term, but as one can easily see then R does not have the interpretation of a curvature scalar in the original frame since it is unaffected by the new source of energy density (the Λ term), this is why the Λ term theory does not have a formulation in the original frame, but is a perfectly legitimate generalization of the theory, probably obtained by considering zero point fluctuations, notice that quantum theory is possible only in the Einstein frame. Notice that even in the original frame the bar metric (not the original metric) appears automatically in the canonically conjugate momenta to the connection, so we can expect from this that the bar metric and not the original metric be the relevant one for the quantum theory.

In Figure 1 and 2 we have plotted the effective potential as a function of the scalar field, for $\epsilon = -1$ and $\epsilon = 1$ respectively. We consider unit where $\kappa = 1$, $\alpha = 1$, $\Lambda = 0.35$ and different values for M, f_1, f_2.

18
We now want to consider the detailed analysis of The Emerging Universe solutions and in the next section their stability in the TMT scale invariant theory. We start considering the cosmological solutions of the form
\[ds^2 = dt^2 - a(t)^2 \left(\frac{dr^2}{1 - r^2} + r^2(d\theta^2 + \sin^2\theta d\phi^2) \right), \phi = \phi(t) \] (54)

in this case, we obtain for the energy density and the pressure, the following expressions. We will consider a scenario where the scalar field \(\phi \) is moving in the extreme right region \(\phi \to \infty \), in this case the expressions for the energy density \(\rho \) and pressure \(p \) are given by,
\[\rho = \frac{A}{2} \dot{\phi}^2 + 3B\dot{\phi}^4 + C \] (55)

and
\[p = \frac{A}{2} \dot{\phi}^2 + B\dot{\phi}^4 - C \] (56)

It is interesting to notice that all terms proportional to \(\dot{\phi}^4 \) behave like “radiation”, since \(p_{\dot{\phi}^4} = \frac{\rho_{\dot{\phi}^4}}{3} \) is satisfied. here the constants \(A, B \) and \(C \) are given by,
\[A = \frac{f_2}{f_2 + \kappa^2 \epsilon f_1^2} \] (57)
\[B = \frac{\epsilon \kappa^2}{4(1 + \kappa^2 \epsilon f_1^2/f_2)} = \frac{\epsilon \kappa^2}{4} A, \] (58)
\[C = \frac{f_1^2}{4 f_2 (1 + \kappa^2 \epsilon f_1^2/f_2)} + \Lambda = \frac{f_1^2}{4 f_2} A + \Lambda. \] (59)

It will be convenient to “decompose” the constant \(\Lambda \) into two pieces,
\[\Lambda = -\frac{1}{4\kappa^2 \epsilon} + \Delta \lambda \] (60)

since as \(\phi \to -\infty \), \(V_{eff} \to \Delta \lambda \). Therefore \(\Delta \lambda \) has the interesting interpretation of the vacuum energy density in the \(\phi \to -\infty \) vacuum. As we will see, it is remarkable that the stability and existence of non-singular emergent universe implies that \(\Delta \lambda > 0 \), and it is bounded from above as well.

The equation that determines such static universe \(a(t) = a_0 = constant, \dot{a} = 0, \ddot{a} = 0 \) gives rise to a restriction for \(\dot{\phi}_0 \) that have to satisfy the following equation in order to
guarantee that the universe be static, because \(\ddot{a} = 0 \) is proportional to \(\rho + 3p \), we must require that \(\rho + 3p = 0 \), which leads to

\[
3B\dot{\phi}_0^4 + A\dot{\phi}_0^2 - C = 0, \tag{61}
\]

This equation leads to two roots, the first being

\[
\dot{\phi}_1^2 = \frac{\sqrt{A^2 + 12BC} - A}{6B}. \tag{62}
\]

The second root is:

\[
\dot{\phi}_2^2 = -\frac{\sqrt{A^2 + 12BC} - A}{6B}. \tag{63}
\]

It is also interesting to see that if the discriminant is positive, the first solution has automatically positive energy density, if we only consider cases where \(C > 0 \), which is required if we want the emerging solution to be able to turn into an inflationary solution eventually. One can see that the condition \(\rho > 0 \) for the first solution reduces to the inequality \(w > (1 - \sqrt{1 - w})/2 \), where \(w = -12BC/A^2 > 0 \), since we must have \(A > 0 \), otherwise we get a negative kinetic term during the inflationary period, and as we will see in the next section, we must have that \(B < 0 \) from the stability of the solution, and as long as \(w < 1 \), it is always true that this inequality is satisfied.

Before going into the subject of the small perturbations and stability of these solutions, we would like to notice the “entropy like” conservation laws that may be useful in a non-perturbative analysis of the theory.

In fact in the \(\phi \to \infty \) region, we have the exact symmetry \(\phi \to \phi + \text{constant} \). and considering that the effective matter action here is \(a^3p \), we have the conserved quantity

\[
\pi_\phi = a^3(A\dot{\phi} + 4B\dot{\phi}^3) \tag{64}
\]

It is very interesting to notice that

\[
\pi_\phi = S = a^3s \tag{65}
\]

where \(s \) assumes the “entropy density” form

\[
s = (\rho + p)/T \tag{66}
\]

provided we identify the “Temperature” \(T \) with \(\dot{\phi} \).
VII. STABILITY OF THE STATIC SOLUTION

We will now consider the perturbation equations. Considering small deviations of $\dot{\phi}$ from the static emerging solution value $\dot{\phi}_0$ and also considering the perturbations of the scale factor a, we obtain, from Eq. (55)

$$\delta \rho = A \dot{\phi}_0 \delta \phi + 12B \dot{\phi}_0^3 \delta \dot{\phi}$$

(67)

at the same time $\delta \rho$ can be obtained from the perturbation of the Friedmann equation

$$3\left(\frac{1}{a^2} + H^2\right) = \kappa \rho$$

(68)

and since we are perturbing a solution which is static, i.e., has $H = 0$, we obtain then

$$-\frac{6}{a_0^3} \delta a = \kappa \delta \rho$$

(69)

we also have the second order Friedmann equation

$$\frac{1 + \dot{a}^2 + 2a \ddot{a}}{a^2} = -\kappa p$$

(70)

For the static emerging solution, we have $p_0 = -\rho_0/3$, $a = a_0$, so

$$\frac{2}{a_0^2} = -2\kappa p_0 = \frac{2}{3} \kappa \rho_0 = \Omega_0 \kappa \rho_0$$

(71)

where we have chosen to express our result in terms of Ω_0, defined by $p_0 = (\Omega_0 - 1)\rho_0$, which for the emerging solution has the value $\Omega_0 = \frac{2}{3}$. Using this in (69) we obtain

$$\delta \rho = -\frac{3\Omega_0 \rho_0}{a_0} \delta a$$

(72)

and equating the values of $\delta \rho$ as given by (67) and (72) we obtain a linear relation between $\delta \dot{\phi}$ and δa, which is,

$$\delta \dot{\phi} = D_0 \delta a$$

(73)

where

$$D_0 = -\frac{3\Omega_0 \rho_0}{a_0 \dot{\phi}_0 (A + 12B \dot{\phi}_0^2)}$$

(74)
we now consider the perturbation of the eq. (70). In the right hand side of this equation we consider that \(p = (\Omega - 1)\rho \), with

\[
\Omega = 2\left(1 - \frac{U_{\text{eff}}}{\rho}\right),
\]

where,

\[
U_{\text{eff}} = C + B \dot{\phi}^4
\]

and therefore, the perturbation of the Eq. (70) leads to,

\[
-2\frac{\delta a}{a_0^3} + 2\frac{\delta \ddot{a}}{a_0} = -\kappa \delta p = -\kappa \delta((\Omega - 1)\rho)
\]

(77)

to evaluate this, we use (75), (76) and the expressions that relate the variations in \(a \) and \(\dot{\phi} \) (73). Defining the “small” variable \(\beta \) as

\[
a(t) = a_0(1 + \beta)
\]

we obtain,

\[
2\ddot{\beta}(t) + W_0^2 \beta(t) = 0,
\]

(79)

where,

\[
W_0^2 = \Omega_0 \rho_0 \left[\frac{24 B \dot{\phi}_0^2}{A + 12 \dot{\phi}_0^2 B} - 6\frac{(C + B \dot{\phi}_0^4)}{\rho_0} - 3\kappa \Omega_0 + 2\kappa \right],
\]

(80)

notice that the sum of the last two terms in the expression for \(W_0^2 \), that is \(-3\kappa \Omega_0 + 2\kappa\) vanish since \(\Omega_0 = \frac{2}{3} \), for the same reason, we have that \(6\frac{(C + B \dot{\phi}_0^4)}{\rho_0} = 4 \), which brings us to the simplified expression

\[
W_0^2 = \Omega_0 \rho_0 \left[\frac{24 B \dot{\phi}_0^2}{A + 12 \dot{\phi}_0^2 B} - 4 \right],
\]

For the stability of the static solution, we need that \(W_0^2 > 0 \), where \(\dot{\phi}_0^2 \) is defined either by E. (62) (\(\dot{\phi}_0^2 = \dot{\phi}_1^2 \)) or by E. (63) (\(\dot{\phi}_0^2 = \dot{\phi}_2^2 \)). If we take E. (63) (\(\dot{\phi}_0^2 = \dot{\phi}_2^2 \)) and use this in the above expression for \(W_0^2 \), we obtain,

\[
W_0^2 = \Omega_0 \rho_0 \left[\frac{4\sqrt{A^2 + 12BC}}{-2\sqrt{A^2 + 12BC} - A} \right],
\]

(82)

to avoid negative kinetic terms during the slow roll phase that takes place following the emergent phase, we must consider \(A > 0 \), so, we see that the second solution is unstable and will not be considered further.
Now in the case of the first solution, E. (62) \((\dot{\phi}_0^2 = \dot{\phi}_1^2)\), then \(W_0^2\) becomes
\[
W_0^2 = \Omega_0\rho_0 \left[\frac{-4\sqrt{A^2 + 12BC}}{2\sqrt{A^2 + 12BC - A}} \right],
\] (83)
so the condition of stability becomes \(2\sqrt{A^2 + 12BC} - A < 0\), or \(2\sqrt{A^2 + 12BC} < A\), squaring both sides and since \(A > 0\), we get \(12BC/A^2 < -3/4\), which means \(B < 0\), and therefore \(\epsilon < 0\), multiplying by \(-1\), we obtain, \(12(-B)C/A^2 > 3/4\), replacing the values of \(A, B, C\), given by 57, we obtain the condition
\[
\Delta \lambda > 0,
\] (84)
Now there is the condition that the discriminant be positive \(A^2 + 12BC > 0\)
\[
\Delta \lambda < \frac{1}{12(-\epsilon)\kappa^2} \left[\frac{f_2}{f_2 + \kappa^2\epsilon f_1^2} \right],
\] (85)
since \(A = \left[\frac{f_2}{f_2 + \kappa^2\epsilon f_1^2} \right] > 0\), \(B < 0\), meaning that \(\epsilon < 0\), we see that we obtain a positive upper bound for the energy density of the vacuum as \(\phi \to -\infty\), which must be positive, but not very big.

VIII. INFLATION AND ITS GRACEFUL EXIT

The emerging phase owes its existence to a strictly constant vacuum energy (which here is represented by the value of \(A\)) at very large values of the field \(\phi\). In fact, while for \(M = 0\) the effective potential of the scalar field is perfectly flat, for any \(M \neq 0\) the effective potential acquires a non trivial shape. This causes the transition from the emergent phase to a slow roll inflationary phase which will be the subject of this section.

Following [28], we consider now then the relevant equations for the model in the slow roll regime, i.e. for \(\dot{\phi}\) small and when the scalar field \(\phi\) is large, but finite and we consider the first corrections to the flatness to the effective potential. Dropping higher powers of \(\phi\) in the contributions for the kinetic energy and in the scalar curvature \(R\), we obtain
\[
\rho = \frac{1}{2}\gamma \dot{\phi}^2 + V_{eff},
\] (86)
\[
\gamma = \frac{\chi}{\chi - 2\kappa\epsilon R},
\] (87)
\[
R = -\kappa(V + M).
\] (88)
Here, as usual $\chi = \frac{2U(\phi)}{M + V(\phi)}$. In the slow roll approximation, we can drop the second derivative term of ϕ and the second power of $\dot{\phi}$ in the equation for H^2 and we get

$$3H\gamma\dot{\phi} = -V'_{\text{eff}},$$ \hspace{1cm} (89)

$$3H^2 = \kappa V_{\text{eff}},$$ \hspace{1cm} (90)

where $V'_{\text{eff}} = \frac{dV_{\text{eff}}}{d\phi}$. The relevant expression for V_{eff} will be that given by (45), i.e., where all higher derivatives are ignored in the potential, consistent with the slow roll approximation.

We now display the relevant expressions for the region of very large, but not infinite ϕ, these are:

$$V_{\text{eff}} = C + C_1 \exp(-\alpha \phi),$$ \hspace{1cm} (91)

$$\chi = 2\frac{f_2}{f_1} \exp(\alpha \phi) - 2M\frac{f_2}{f_1^2},$$ \hspace{1cm} (92)

and

$$\gamma = \gamma_0 + \gamma_1 \exp(-\alpha \phi).$$ \hspace{1cm} (93)

The relevant constants that will affect our results are, C, as given by (59) and C_1 and γ_0 given by

$$C_1 = -\frac{8\epsilon \kappa^2 f_1^3 M}{(4f_2 + 4\kappa^2 \epsilon f_1^2)^2} + \frac{2f_1 M}{4f_2 + 4\kappa^2 \epsilon f_1^2},$$ \hspace{1cm} (94)

and

$$\gamma_0 = \frac{f_2}{f_2 + \kappa^2 \epsilon f_1^2},$$ \hspace{1cm} (95)

respectively.

Using Eq. (91) we can calculates the key landmarks of the inflationary history: first, the value of the scalar field where inflation ends, ϕ_{end} and a value for the scalar field ϕ_* bigger than this ($\phi_* > \phi_{\text{end}}$) and which happens earlier, which represents the “horizon crossing point”. We must demand then that a typical number of e-foldings, like $N = 60$, takes place between ϕ_*, until the end of inflation at $\phi = \phi_{\text{end}}$.

To determine the end of inflation, we consider the quantity $\delta = -\frac{\dot{H}}{H^2}$ and consider the point in the evolution of the Universe where $\delta = 1$, only when $\delta < 1$, we have an accelerating Universe, so the point $\delta = 1$ represents indeed the end of inflation. Calculating the derivative
with respect to cosmic time of the Hubble expansion using (90) and (89), we obtain that the condition \(\delta = 1 \) gives

\[
\delta = \frac{1}{2\gamma} \left(\frac{V'_\text{eff}}{V_{\text{eff}}} \right)^2 = 1, \tag{96}
\]

working to leading order, setting \(\gamma = \gamma_0 \), \(V_{\text{eff}} = C \) and \(V'_\text{eff} = -\alpha C_1 \exp(-\alpha \phi_{\text{end}}) \), this gives as a solution,

\[
\exp(\alpha \phi_{\text{end}}) = -\frac{\alpha C_1}{C \sqrt{2\kappa \gamma_0}}. \tag{97}
\]

notice that if \(M \) and \(f_1 \) have different signs and if \(\epsilon < 0 \), \(C_1 < 0 \) for the allowed range of parameters the stable emerging solution, so \(-C_1\) represents the absolute value of \(C_1 \). We now consider \(\phi_\ast \) and the requirement that this precedes \(\phi_{\text{end}} \) by \(N \) e-foldings,

\[
N = \int H dt = \int \frac{H}{\dot{\phi}} d\phi = -\int \frac{3H^2\gamma}{V'_\text{eff}} d\phi, \tag{98}
\]

where in the last step we have used the slow roll equation of motion for the scalar field (89) to solve for \(\dot{\phi} \). Solving \(H^2 \) in terms of \(V_{\text{eff}} \) using (90), working to leading order, setting \(\gamma = \gamma_0 \) and integrating, we obtain the relation between \(\phi_\ast \) and \(\phi_{\text{end}} \),

\[
\exp(\alpha \phi_\ast) = \exp(\alpha \phi_{\text{end}}) - \frac{N\alpha^2 C_1}{C \kappa \gamma_0}, \tag{99}
\]

as we mentioned before \(C_1 < 0 \) for the allowed range of parameters the stable emerging solution, so that \(\phi_\ast > \phi_{\text{end}} \) as it should be for everything to make sense. Introducing Eq. (97) into Eq. (99), we obtain,

\[
\exp(\alpha \phi_\ast) = -\frac{C_1}{C \sqrt{\kappa}} \frac{\alpha \sqrt{2\gamma_0}}{\sqrt{2\kappa \gamma_0}} + \frac{N\alpha^2 \sqrt{2\gamma_0}}{\sqrt{2\kappa \gamma_0}}. \tag{100}
\]

We finally calculate the power of the primordial scalar perturbations. If the scalar field \(\phi \) had a canonically normalized kinetic term, the spectrum of the primordial perturbations will be given by the equation

\[
\frac{\delta \rho}{\rho} \propto \frac{H^2}{\dot{\phi}}, \tag{101}
\]

however, as we can see from (86), the kinetic term is not canonically normalized because of the factor \(\gamma \) in that equation.

In this point we will study the scalar and tensor perturbations for our model where the kinetic term is not canonically normalized. The general expression for the perturbed metric about the Friedmann-Robertson-Walker is

\[
ds^2 = -(1 + 2F)dt^2 + 2a(t)D_{ij}dx^i dt + a^2(t) \left[(1 - 2\psi)\delta_{ij} + 2E_{ij} + 2h_{ij} \right] dx^i dx^j,
\]
where F, D, ψ and E are the scalar type metric perturbations and h_{ij} characterizes the transverse-traceless tensor perturbation. The power spectrum of the curvature perturbation in the slow-roll approximation for a not-canonically kinetic term becomes Ref. [93] (see also Refs. [94])

$$P_S = k_1 \left(\frac{\delta \rho}{\rho} \right)^2 = k_1 \frac{H^2}{c_s^2 \delta},$$

(102)

where it was defined “speed of sound”, c_s, as

$$c_s^2 = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}},$$

with $P(X, \phi)$ an function of the scalar field and of the kinetic term $X = -(1/2) g^\mu\nu \partial_\mu \phi \partial_\nu \phi$. Here $P_{,X}$ denote the derivative with respect X. In our case $P(X, \phi) = \gamma(\phi) X - V_{eff}$, with $X = \dot{\phi}^2/2$. Thus, from Eq. (102) we get

$$P_S = k_1 \frac{H^4}{\gamma(\phi) \dot{\phi}^2}. \quad (103)$$

The scalar spectral index n_s is defined by

$$n_s - 1 = \frac{d \ln P_S}{d \ln k} = -2 \delta - s - \eta,$$

(104)

where $\eta = \frac{\dot{\delta}}{\dot{H}}$ and $s = \frac{\dot{c_s}}{\dot{H}}$, respectively.

On the other hand, the generation of tensor perturbations during inflation would produce gravitational wave. The amplitude of tensor perturbations was evaluated in Ref. [93], where

$$P_T = \frac{2}{3\pi^2} \left(\frac{2XP_{,X} - P}{M_{Planck}^4} \right),$$

and the tensor spectral index n_T, becomes

$$n_T = \frac{d \ln P_T}{d \ln k} = -2 \delta,$$

and they satisfy a generalized consistency relation

$$r = \frac{P_T}{P_S} = -8 c_s n_T. \quad (105)$$

Therefore, the scalar field (to leading order) that should appear in Eq. (101) should be $\sqrt{\gamma_0} \dot{\phi}$ and instead of Eq. (103), we must use

$$\frac{\dot{\delta \rho}}{\rho} = \frac{H^2}{\sqrt{\gamma_0} \dot{\phi}}. \quad (106)$$
FIG. 3: The plot shows r versus n_s for three values of α. For $\alpha = 1$ solid line, $\alpha = 0.1$ dash line and $\alpha = 0.01$ dots line, respectively. Here, we have fixed the values $M = -1$, $\epsilon = -1$, $f_1 = 1/2$, $f_2 = 1$, $\lambda = 1/10$ and $\kappa = 1$, respectively. The seven-year WMAP data places stronger limits on the tensor-scalar ratio (shown in red) than five-year data (blue) [95].

The power spectrum of the perturbations goes, up to a factor of order one, which we will denote k_1 as $(\delta \rho/\rho)^2$, so we have,

$$P_S = k_1 \left(\frac{\delta \rho}{\rho} \right)^2 = k_1 \frac{H^4}{\gamma_0 \dot{\phi}^2},$$ \hspace{1cm} (107)$$

this quantity should be evaluated at $\phi = \phi_*$ given by (100). Solving for $\dot{\phi}$ from the slow roll equation (89), evaluating the derivative of the effective potential using (91) and solving for H from (90), we obtain, to leading order,

$$P_S = k_1 \frac{\kappa^3 \gamma_0 C^3}{3\alpha^2 C_1} \exp(2\alpha \phi_*),$$ \hspace{1cm} (108)$$
using then (100) for exp($\alpha \phi$), we obtain our final result,

$$P_S = k_1 \frac{k^2 C}{3} \left(\frac{1}{\sqrt{2}} + \frac{N\alpha}{\sqrt{\gamma_0 \kappa}} \right)^2,$$

(109)

it is very interesting first of all that C_1 dependence has dropped out and with it all dependence on M. In fact this can be regarded as a non trivial consistency check of our estimates, since apart from its sign, the value M should not affect the results. This is due to the fact that from a different value of M (although with the same sign), we can recover the original potential by performing a shift of the scalar field ϕ.

In Fig.3 we show the dependence of the tensor-scalar ratio r on the spectral index n_s. From left to right $\alpha = 1$ (solid line), $\alpha = 0.1$ (dash line) and $\alpha = 0.01$ (dots line), respectively. From Ref.95, two-dimensional marginalized constraints (68% and 95% confidence levels) on inflationary parameters r and n_s, the spectral index of fluctuations, defined at $k_0 = 0.002$ Mpc$^{-1}$. The seven-year WMAP data places stronger limits on r (shown in red) than five-year data (blue)96, 97. In order to write down values that relate n_s and r, we used Eqs.(104) and (105). Also we have used the values $M = -1$, $\epsilon = -1$, $f_1 = 1/2$, $f_2 = 1$, $\lambda = 1/10$ and $\kappa = 1$, respectively.

From Eqs.(98), (104) and (105), we observed numerically that for $\alpha = 1$, the curve $r = r(n_s)$ (see Fig.3) for WMAP 7-years enters the 95% confidence region where the ratio $r \simeq 0.011$, which corresponds to the number of e-folds, $N \simeq 32$. For $\alpha = 0.1$, $r \simeq 0.103$ corresponds to $N \simeq 227$ and for $\alpha = 0.01$, $r \simeq 0.136$ corresponds to $N \simeq 14137$. From 68% confidence region for $\alpha = 1$, $r \simeq 0.010$, which corresponds to $N \simeq 34$. For $\alpha = 0.1$, $r \simeq 0.08$ corresponds to $N \simeq 240$ and for $\alpha = 0.01$, $r \simeq 0.109$ corresponds to $N \simeq 14279$. We noted that the parameter α, which lies in the range $1 > \alpha > 0$, the model is well supported by the data as could be seen from Fig.3.

IX. THE VACUUM STRUCTURE OF THE THEORY, INCLUDING THE “KINETIC VACUUM STATE”

For the discussion of the vacuum structure of the theory, we start studying V_{eff} for the case of a constant field ϕ, given by,

$$V_{eff} = \frac{(f_1 e^{\alpha \phi} + M)^2}{4(\epsilon \kappa^2 (f_1 e^{\alpha \phi} + M)^2 + f_2 e^{2\alpha \phi})} + \Lambda$$

(110)
This is necessary, but not enough, since as we will see, the consideration of constant fields \(\phi \) alone can lead to misleading conclusions, in some cases, the dependence of \(V_{\text{eff}} \) on the kinetic term can be crucial to see if and how we can achieve the crossing of an apparent barrier.

For a constant field \(\phi \) the limiting values of \(V_{\text{eff}} \) are (now that we added the constant \(\Lambda \)):

First, for asymptotically large positive values, i.e. as \(\alpha \phi \to \infty \), we have \(V_{\text{eff}} \to \frac{f_1^2}{4(\kappa^2 f_1^2 + f_2^2)} + \Lambda \).

Second, for asymptotically large but negative values of the scalar field, that is as \(\alpha \phi \to -\infty \), we have: \(V_{\text{eff}} \to \frac{1}{4\kappa^2} + \Lambda = \Delta \lambda \).

In these two asymptotic regions (\(\alpha \phi \to \infty \) and \(\alpha \phi \to -\infty \)) an examination of the scalar field equation reveals that a constant scalar field configuration is a solution of the equations, as is of course expected from the flatness of the effective potential in these regions.

Notice that in all the above discussion it is fundamental that \(M \neq 0 \). If \(M = 0 \) the potential becomes just a flat one, \(V_{\text{eff}} = \frac{f_1^2}{4(\kappa^2 f_1^2 + f_2^2)} + \Lambda \) everywhere (not only at high values of \(\alpha \phi \)).

Finally, there is a minimum at \(V_{\text{eff}} = \Lambda \) if \(M < 0 \). In summary, and if \(f_2 > 0 \), \(A > 0 \), we have that there is a hierarchy of vacua,

\[
V_{\text{eff}}(\alpha \phi \to -\infty) = \Delta \lambda < V_{\text{eff}}(\text{min}, M < 0) = \Lambda < V_{\text{eff}}(\alpha \phi \to \infty) = C \tag{111}
\]

where \(C = \frac{f_1^2}{4f_2(1+\kappa^2 f_1^2/f_2^2)} + \Lambda = \frac{f_1^2}{4f_2} A + \Lambda \). notice that we assume above that \(f_1 > 0 \) and \(M < 0 \), but \(f_1 < 0 \) and \(M > 0 \) would be indistinguishable from that situation, that is, the important requirement is \(f_1/M < 0 \). We could have a scenario where we start the non-singular emergent universe at \(\phi \to \infty \) where \(V_{\text{eff}}(\alpha \phi \to \infty) = \frac{f_1^2}{4(\kappa^2 f_1^2 + f_2^2)} + \Lambda \), which then slow rolls, then inflates [28] and finally gets trapped in the local minimum with energy density \(V_{\text{eff}}(\text{min}, M < 0) = \Lambda \), that was the picture favored in [28], while here we want to argue that the most attractive and relevant description for the final state of our Universe is realized after inflation in the flat region \(\phi \to -\infty \), since in this region the vacuum energy density is positive and bounded from above, so its a good candidate for our present state of the Universe. It remains to be seen however whether a smooth transition all the way from \(\phi \to \infty \) to \(\phi \to -\infty \) is possible.

Before we discuss the transition to the \(\phi \to -\infty \), it is necessary to discuss another
vacuum state, which we may call the “kinetic vacuum state” which is in fact degenerate with this one. The “kinetic vacuum state” that, with time dependence and say for no space dependence and $\dot{\phi}^2$ given by

$$\dot{\phi}^2 = -\frac{1}{\epsilon k^2}$$

which can be solved for $\dot{\phi}$ in the real domain for $\epsilon < 0$. For this case R (which is not a Riemannian curvature), as given by [14] diverges, the Riemannian scalar derived from the Einstein frame metric is perfectly regular. In this case then

$$V_{\text{eff}} = \frac{\epsilon R^2 + U}{(\chi - 2\kappa R)^2} + \Lambda \rightarrow \frac{1}{4\epsilon k^2} + \Lambda = \Delta \lambda$$

that is, for this value of $\dot{\phi}^2$, regardless of the value of the scalar field, the value of V_{eff} becomes degenerate with its value for constant and arbitrarily negative ϕ, which is our candidate vacuum for the present state of the Universe.

Notice that this value for $\dot{\phi}^2$ is also the one obtained by extremizing the pressure functional in the region of very large scalar field values, so in this limit it is obvious that such configuration satisfy the Euler Lagrange equations, but indeed it is a general feature, the equations of motion for the kinetic vacuum are satisfied, regardless of what value we take for the scalar field.

X. EVOLUTION OF THE UNIVERSE TO ITS PRESENT SLOWLY ACCELERATING STATE AT, CROSSING “BARRIERS” AND DYNAMICAL SYSTEM ANALYSIS.

In order to discuss the possibility of transition to $\phi \rightarrow -\infty$. In our case, since we are interested in a local minimum between $\phi \rightarrow \infty$ or $\phi \rightarrow -\infty$, we can take M of either sign.

Taking for definitness $f_1 > 0, f_2 > 0, A > 0, \epsilon < 0$, we see that there will be a point, given by [10] defined by $\epsilon \kappa^2 (f_1 e^{\alpha \phi} + M)^2 + f_2 e^{2\alpha \phi} = 0$ where V_{eff} as will spike to ∞, go then down to $-\infty$ and then asymptotically its positive asymptotic value at $\phi \rightarrow -\infty$. This has the appearance of a potential barrier. However, this is deceptive, such barrier exists for constant ϕ, but can be avoided by considering a transition from any ϕ, but with the appropriate value of $\dot{\phi}^2$ that defines the kinetic vacuum. A detailed dynamical analysis will
be presented now concerning these issues, The field equations become in the cosmological case:

\[\dot{H} = -\frac{k}{2} (\rho + p) - H^2 + \frac{k}{3} \rho, \quad (114) \]
\[\dot{\rho} = -3H (\rho + p). \quad (115) \]

By using the definitions of \(V(\phi) \) and \(U(\phi) \) we can express \(\rho \) and \(p \) as follow:

\[\rho = \frac{(1 + \kappa^2 \epsilon \dot{\phi}^2) U}{[U + \kappa^2 \epsilon (V + M)^2]^2} \frac{\dot{\phi}^2}{2} + V_{eff}, \quad (116) \]
\[p = \frac{(1 + \kappa^2 \epsilon \dot{\phi}^2) U}{[U + \kappa^2 \epsilon (V + M)^2]^2} \frac{\dot{\phi}^2}{2} - V_{eff}, \quad (117) \]
\[V_{eff} = \frac{(1 + \kappa^2 \epsilon \dot{\phi}^2)^2 (V + M)^2}{4[U + \kappa^2 \epsilon (V + M)^2]^2} \left[U + \epsilon \left(\frac{-\kappa(V + M) + \kappa^2 \dot{\phi}^2 \chi}{1 + \kappa^2 \epsilon \dot{\phi}^2} \right)^2 \right] + \Lambda \quad (118) \]

We can note that independent of \(\dot{\phi} \) there are a singularity in the potential (also in \(\rho \) and \(p \)) when \(\phi = \phi^* \), where \(U(\phi^*) + \kappa^2 \epsilon (V(\phi^*) + M) = 0 \).

The only way to avoid this situation is consider \(\dot{\phi}^2 = -\frac{1}{\kappa^2 \epsilon} \) before \(\phi \) arrive to \(\phi^* \). We can note that, in this case, the effective potential becomes flat (i.e. independent of \(\phi \)) and everything is finite.

It is interesting to note that for the case where this model admit an static and stable universe solution in the region \(\phi \to \infty \) the kinetic vacuum state solution is an attractor in the region \(\phi > 0 \), see discussion below.

This situation was already found in the limit \(\phi \to \infty \) in [28] where the stability of the static solution was studied.

In particular in the limit \(\phi \to \infty \) the set of equations (114, 115) could be written as an autonomous system of two dimensions respect to \(H \) and \(y = \dot{\phi}^2 \) as follow, see [28]:

\[\dot{H} = \frac{\kappa}{3} \left[C + B y^2 - A(1 + \kappa^2 \epsilon y) y \right] - H^2, \quad (119) \]
\[\dot{y} = -\frac{3A (1 + \kappa^2 \epsilon y) y}{A^2 + A \kappa^2 \epsilon y + 2B y} H, \quad (120) \]
As was mentioned in [28], this system has five critical points where one of these points correspond to the ES universe discussed previously, but there are also the critical point

\[
H = \sqrt{\frac{1}{4\kappa^2\epsilon}} + \Lambda \equiv H_0 \tag{121}
\]

\[
y = -\frac{1}{\kappa^2\epsilon} \equiv y_0. \tag{122}
\]

This critical point is, precisely, the kinetic vacuum state which avoid the singularity problem of \(V_{eff}\) discussed above. After we linearize the equations (119, 120) near this critical point we obtain that the eigenvalues of the linearized equations are negative \(\lambda_1 = -2H_0\) and \(\lambda_2 = -3H_0\), then, this critical point is an attractor. The Fig. (4) top left panel show part of the Direction Field of the system and four numerical solutions where we can note that the kinetic vacuum state is an attractor solution.

It is interesting to note that this solution is in fact an attractor not only in the limit \(\phi \to \infty\), but also in others regions.

In order to study this point in more details let us write the set of equations (114, 115) as an autonomous system of three dimensions as follow:

\[
\dot{H} = -H^2 + \frac{\Lambda}{3} + \frac{\kappa}{12} \frac{(M + V)^2 - U y (4 + 3\kappa^2\epsilon y)}{U + \kappa^2\epsilon (M + V)^2}, \tag{123}
\]

\[
\dot{y} = \frac{1 + \kappa^2\epsilon y}{1 + 3\kappa^2\epsilon y} \left(-6H y + \frac{\alpha M(M + V)(-1 + 3\kappa^2\epsilon y)\sqrt{y}}{U + \kappa^2\epsilon(M + V)^2} \right), \tag{124}
\]

\[
\dot{\phi} = -\sqrt{y} \tag{125}
\]

Where we have defined \(y = \dot{\phi}^2\). We are consider \(\dot{\phi} < 0\) because we are interested in the cases where the field moves from \(-\infty\) to positive values, following the Emergent Universe scheme. We can can note that, in general, the solutions \(H = H_0, y = y_0\) is stable. This solution correspond to a flat effective potential and \(\phi\) rolling with constant \(\dot{\phi}\). In this case, we can past over the point \(\phi = \phi^*\), see numerical solutions Fig.(5). Also, we can observed that solutions near the kinetic vacuum solution can pass over this point, because this solution is an attractor. The general behaviour could be see in the Fig. (4) where it is plot the Direction Field for the effective two dimensional autonomous system in variables \(H\) and \(y\).
which we obtain when evaluate the system of Eqs. (123, 124, 125) at different values of ϕ. The first plot correspond to the limit $\phi \to \infty$ the second is for $\phi \gtrsim \phi^*$, and the third correspond to $\phi \ll \phi^*$.

In order to study in a more systematic way the nature of the kinetic vacuum state we linearize the Eqs. (123, 124, 125) near the critical point H_0, y_0 leaving ϕ arbitrary. We obtain the following two dimensional effective autonomous system with variables δH and δy:

$$
\delta \dot{H} = -2H_0 \delta H + \frac{\chi \delta y}{12 \epsilon \left[\kappa (V + M) + \frac{\chi}{2 \kappa \epsilon} \right]}, \quad (126)
$$

$$
\delta \dot{y} = \left(-3H_0 + \frac{2\alpha M \epsilon \kappa^2 (M + V) \sqrt{y_0}}{U + \kappa \epsilon (M + V)^2} \right) \delta y. \quad (127)
$$

The eigenvalues of equations (126), (127) are:

$$
\lambda_1 = -2H_0, \quad (128)
$$

$$
\lambda_2 = -3H_0 + \frac{2\alpha M \epsilon \kappa^2 (M + V) \sqrt{y_0}}{U + \kappa \epsilon (M + V)^2}. \quad (129)
$$

The equilibrium point is stable (attractor) if the eigenvalues are negative. Then, depending on the values of the parameters of the models, this is the case for a large set of values of ϕ, not only for the case $\phi \to +\infty$ discussed previously in [28]. In particular for the numerical values used in [28], which are consistent with the stability of the ES universe, the critical point is stable for $\phi > \phi^*$, see Fig. 4.

It is interesting to note that when $\phi \to -\infty$, then

$$
\lambda_2 \to -3H_0 + 2\alpha \sqrt{y_0}. \quad (130)
$$

For example, if we consider the numerical values used in [28] this is a positive number. This means that at some value of $\phi < \phi^*$, when the scalar field moves to $-\infty$ the stable (attractor) equilibrium point becomes unstable (Focus), see Fig. 4.

In order to study numerical solutions we chose the following values for the free parameters of the model, in units where $\kappa = 1$; $f_1 = 1$, $f_2 = 1/2$, $\epsilon = -1$, $\alpha = 1$, $\Lambda = 0.35$ and $M = -1$. These values satisfy the requirements of stability of the ES solution in the limit $\phi \gg 0$, see Ref. [28]. Under this assumptions we obtain that:
\[\phi^* = -0.40 \]
\[H_0 = 0.18 \]
\[y_0 = 1 \]

Numerical solution to the Eqs. (123, 124, 125) are show in Fig. (5), where we can note that the point \(\phi = \phi^* \) is passed on during the evolution of the scalar field. This situation is achieved by the kinetic vacuum solution, but also by others solutions which decays to the kinetic vacuum solution before arrive to the point \(\phi = \phi^* \), see Fig. (5).

The figure (5) left panel shown a projection of the axis \(H \) and \(\phi \) and the evolution of six numerical solutions. The right panel shown a projection of the axis \(y \) and \(\phi \) and the evolution of six numerical solutions.

XI. DISCUSSION, THE CREATION OF THE UNIVERSE AS A “THRESHOLD EVENT” FOR ZERO PRESENT VACUUM ENERGY DENSITY, WHEN DOES THE BOUND RESTRICT US TO A SMALL VACUUM ENERGY DENSITY FOR THE LATE UNIVERSE?

We have considered a non-singular origin for the Universe starting from an Einstein static Universe, the so called “emergent universe” scenario, in the framework of a theory which uses two volume elements \(\sqrt{-g} d^4 x \) and \(\Phi d^4 x \), where \(\Phi \) is a metric independent density, used as an additional measure of integration. Also curvature, curvature square terms and for scale invariance a dilaton field \(\phi \) are considered in the action. The first order formalism was applied. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of scale invariance (S.I.). After S.S.B. of S.I., using the the Einstein frame metric, it is found that a non trivial potential for the dilaton is generated. One could question the use of the Einstein frame metric \(\overline{g}_{\mu \nu} \) in contrast to the original metric \(g_{\mu \nu} \). In this respect, it is interesting to see the role of both the original metric and that of the Einstein frame metric in a canonical approach to the first order formalism. Here we see that the original metric does not have a canonically conjugated momentum (this turns out to be zero), in contrast, the canonically conjugated momentum to the connection turns out to be a function exclusively of \(\overline{g}_{\mu \nu} \), this Einstein metric is therefore
a genuine dynamical canonical variable, as opposed to the original metric.

There is also a lagrangian formulation of the theory which uses $\mathcal{J}_{\mu\nu}$, what we can call the action in the Einstein frame. In this frame we can quantize the theory for example and consider contributions without reference to the original frame, thus possibly considering breaking the TMT structure of the theory, but such breaking will be done “softly” through the introduction of a cosmological term only. Surprisingly, the remaining structure of the theory, reminiscent from the original TMT structure will be enough to control the strength of this additional cosmological term once we demand that the universe originated from a non-singular and stable emergent state.

FIG. 4: Plots showing part of the Direction Field of the system for different values of ϕ and some numerical solutions.
In the Einstein frame we argue that the cosmological term parametrizes the zero point fluctuations.

The resulting effective potential for the dilaton contains two flat regions, for \(\phi \to \infty \) relevant for the non-singular origin of the Universe, followed by an inflationary phase and then transition to \(\phi \to -\infty \), which in this paper we take as describing our present Universe. An intermediate local minimum is obtained if \(f_1/M < 0 \), the region as \(\phi \to \infty \) has a higher energy density than this local minimum and of course of the region \(\phi \to -\infty \), if \(A > 0 \) and \(f_2 > 0 \). \(A > 0 \) is also required for satisfactory slow roll in the inflationary region \(\phi \to \infty \) (after the emergent phase). The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emergent universe solutions, which exists for a parameter range of values of the vacuum energy in \(\phi \to -\infty \), which must be positive but not very big, avoiding the extreme fine tuning required to keep the vacuum energy density of the present universe small. A sort of solution of the Cosmological Constant Problem, where an a priori arbitrary cosmological term is restricted by the consideration of the non-singular and stable emergent origin for the universe.

Notice then that the creation of the universe can be considered as a “threshold event” for zero present vacuum energy density, that is a threshold event for \(\Delta \lambda = 0 \) and we can learn what we can expect in this case by comparing with well known threshold events. For example in particle physics, the process \(e^+ + e^- \to \mu^+ + \mu^- \), has a cross section of the form.
(ignoring the mass of the electron and considering the center of mass frame, \(E \) being the center of mass energy of each of the colliding \(e^+ \) or \(e^- \)),

\[
\sigma_{e^+e^-\rightarrow\mu^+\mu^-} = \frac{\pi \alpha^2}{6E^2} \left(2 + \frac{m_{\mu}^2}{E^2} \right) \sqrt{\frac{E^2 - m_{\mu}^2}{E^2}} \tag{134}
\]

for \(E > m_{\mu} \) and exactly zero for \(E < m_{\mu} \). We see that exactly at threshold this cross section is zero, but at this exact point it has a cusp, the derivative is infinite and the function jumps as we slightly increase \(E \). By analogy, assuming that the vacuum energy can be tuned somehow (like the center of mass energy \(E \) of each of the colliding particles in the case of the annihilation process above), we can expect zero probability for exactly zero vacuum energy density \(\Delta \lambda = 0 \), but that soon after we build up any positive \(\Delta \lambda \) we will then able to create the universe, naturally then, there will be a creation process resulting in a universe with a small but positive \(\Delta \lambda \) which represents the total energy density for the region describing the present universe, \(\phi \rightarrow -\infty \) or by the kinetic vacuum (which is degenerate with that state).

One may ask the question: how is it possible to discuss the “creation of the universe” in the context of the “emergent universe”? After all, the Emergent Universe basic philosophy is that the universe had a past of infinite duration. However, that most simple notion of an emergent universe with a past of infinite duration has been recently challenged by Mithani and Vilenkin [98], [99] at least in the context of a special model. They have shown that an emergent universe, although completely stable classically, could be unstable under a tunnelling process to collapse. On the other hand, an emergent universe can indeed be created from nothing by a tunnelling process as well.

An emerging universe could last for a long time provided it is classically stable, that is where the constraints on the cosmological constant for the late universe discussed here come in. If it is not stable, the emergent universe will not provide us with an appropriate “intermediate state” connecting the creation of the universe with the present universe. The existence of this stable intermediate state provides in our picture the reason for the universe to prefer a very small vacuum energy density at late times, since universes that are created, but do not make use of the intermediate classically stable emergent universe will almost immediately recollapse, so they will not be “selected”. Finally, it could be that we arrive to the emergent solution not by quantum creation from nothing, by the evolution from something else, for example by the production of a bubble in a pre-existing state [100], from
here we go on to inflation.

Notice that the bound gives a small vacuum energy density, without reference to the threshold mechanism mentioned before. For this notice that upper the bound on the present vacuum energy density of the universe contains a $1/\epsilon$ suppression. If we think of the R^2 term as generated through radiative corrections, ϵ is indeed formally infinite, in dimensional regularization goes as $\epsilon = K/(D - 4)$, \[101]-\[103]\ so it can have either sign (depending on how we approach $D - 4 = 0$). In any case, a very large ϵ means a very strict bound on the present vacuum energy density of the universe.

XII. ACKNOWLEDGEMENTS

We would like to thank Sergio del Campo and Ramon Herrera, our coauthors in ref. \[28\] which is central for our review, for our crucial collaboration with them and for discussions on all the subjects in this review, in particular we have benefited from our discussions concerning the aspects related to inflation, slow roll, etc. in the context of the model studied here. We also want to thank Zvi Bern, Alexander Kaganovich and Alexander Vilenkin for very important additional discussions. UCLA, Tufts University and the University of Barcelona are thanked for their wonderful hospitality. P. L. has been partially supported by FONDECYT grant N° 11090410, Mecesup UBB0704 and Universidad del Bío-Bío through grant DIUBB 121407 GI/VC.
[1] S. Weinberg, *Rev. Mod. Phys.* **61**, 1 (1989).

[2] S. Weinberg, astro-ph/0005265.

[3] Y. Jack Ng, *Int. J. Mod. Phys.* **D1**, 145 (1992).

[4] T. Padmanabhan, Res. Astron. Astrophys. **12**, 891 (2012).

[5] T. Padmanabhan and H. Padmanabhan, arXiv:1302.3226 [astro-ph.CO].

[6] M.S. Turner in the third Stromlo Symposium: “The Galactic Halo”, ASP Conference Series, Vol 666, 1999, (eds) B.K. Gibson, T.S. Axelrod.

[7] M.E. Putman and N. Bahcall, J.P. Ostriker, S.J. Perlmutter and P.J. Steinhardt, Science **284**, 1481 (1999).

[8] S. Weinberg, The Cosmological constant problems. Talk given at Conference: C00-02-23, p.18-26 Proceedings e-Print: astro-ph/0005265

[9] S. Weinberg, *Phys. Rev. Lett.* **59**, 2607 (1987).

[10] A.H. Guth, *Phys. Rev.* **D23**, 347 (1981).

[11] A.D. Linde, *Phys. Lett.* **108B**, 389 (1982).

[12] D. Kazanas, *Astrophys.J.* **241**, 1980 (L59).

[13] A. Albrecht and P.J. Steinhardt, *Phys. Rev. Lett.* **48**, 1220 (1982).

[14] A. Borde and A. Vilenkin, *Phys. Rev. Lett.* **72**, 3305 (1994).

[15] A. Borde and A. Vilenkin, *Phys. Rev.* **D56**, 717 (1997).

[16] A.H. Guth, arXiv:astro-ph/0101507

[17] A. Borde, A.H. Guth and A. Vilenkin, *Phys. Rev. Lett.* **90**, 151301 (2003).

[18] A. Vilenkin, arXiv:gr-qc/0204061

[19] G.F.R. Ellis and R. Maartens, *Class. Quantum Grav.* **21**, 223 (2004)

[20] G.F.R. Ellis, R. Maartens and C.G. Tsagas, *Class. Quantum Grav.* **21**, 233 (2004)

[21] D.J. Mulryne, R. Tavakol, J.E. Lidsey and G.F.R. Ellis, *Phys. Rev.* **D71**, 123512 (2005)

[22] A. Banerjee, T. Bandyopadhyay and S. Chaakra, arXiv:07.3933(gr-qc).

[23] J.E. Lidsey and D.J. Mulryne *Phys. Rev.* **D73**, 083508 (2006).

[24] S. Mukherjee, B.C. Paul, S.D. Maharaj, A. Beesham, arXiv:qr-qc/0505103.

[25] S. Mukherjee, B.C. Paul, N.K. Dadhich, S.D. Maharaj and A. Beesham, *Class. Quantum Grav.* **23**, 6927 (2006).
[26] S. del Campo, R. Herrera and P. Labraña, JCAP \textbf{0907}, 006 (2009).
[27] S. del Campo, R. Herrera and P. Labraña, JCAP \textbf{0711}, 030 (2007).
[28] S. del Campo, E.I. Guendelman, R. Herrera and P. Labraña, JCAP \textbf{1006}, 026 (2010).
[29] E.I. Guendelman, Non Singular Origin of the Universe and its Present Vacuum Energy Density, \textit{Int. J. Mod. Phys.} \textbf{A26}, 2951 (2011), \href{http://arxiv.org/abs/1103.1427}{arXiv:1103.1427} [gr-qc]
[30] E.I. Guendelman and A.B. Kaganovich, Phys. Rev. \textbf{D60}, 065004 (1999).
[31] F. Gronwald, U. Muench, A. Macias, F. W. Hehl, Phys. Rev. \textbf{D58}, 084021 (1998), e-Print: \href{http://arxiv.org/abs/gr-qc/9712063}{gr-qc/9712063}.
[32] E.I. Guendelman, A.B. Kaganovich, Class. Quantum Grav. \textbf{25}, 235015 (2008), e-Print: \href{http://arxiv.org/abs/0804.1278}{arXiv:0804.1278} [gr-qc].
[33] H. Nishino, S. Rajpoot, Mod. Phys. Lett. \textbf{A21}, 127 (2006), e-Print: \href{http://arxiv.org/abs/hep-th/0404088}{hep-th/0404088}.
[34] D. Comelli, Int. J. Mod. Phys. \textbf{A23}, 4133 (2008), e-Print: \href{http://arxiv.org/abs/arXiv:0704.1802}{arXiv:0704.1802} [gr-qc].
[35] For a recent review and further references see E.I. Guendelman, A.B. Kaganovich, Plenary talk given at the Workshop on Geometry, Topology, QFT and Cosmology, Paris, France, 28-30 May 2008. e-Print: \href{http://arxiv.org/abs/arXiv:0811.0793}{arXiv:0811.0793} [gr-qc].
[36] E.I. Guendelman and A.B. Kaganovich, Phys. Rev. \textbf{D53}, 7020 (1996).
[37] E.I. Guendelman and A.B. Kaganovich, Proceedings of the third Alexander Friedmann International Seminar on Gravitation and Cosmology, ed. by Yu. N. Gneding, A.A. Grib and V.M. Mostepanenko (Friedmann laboratory Publishing, st. Petersburg, 1995).
[38] E.I. Guendelman and A.B. Kaganovich, Phys. Rev. \textbf{D55}, 5970 (1997).
[39] E.I. Guendelman and A.B. Kaganovich, Mod. Phys. Lett. \textbf{A12}, 2421 (1997).
[40] E.I. Guendelman and A.B. Kaganovich, Phys. Rev. \textbf{D56}, 3548 (1997).
[41] E.I. Guendelman and A.B. Kaganovich, Hadron.Journ. \textbf{21}, 1998 (19).
[42] E.I. Guendelman and A.B. Kaganovich, Mod. Phys. Lett. \textbf{A13}, 1583 (1998).
[43] F. Gronwald, U. Muench and F.W. Hehl, Hadron.Journ. \textbf{21}, 1998 (3).
[44] E.I. Guendelman and A.B. Kaganovich, Phys. Rev. \textbf{D57}, 7200 (1998).
[45] E.I. Guendelman and A.B. Kaganovich, “Gravity Cosmology and Particle Field Dynamics without the Cosmological Constant Problem”, in the Proceedings of the sixth International Symposium on Particle, Strings and Cosmology, PASCOS-98, World Scientific, Singapore, 1999.
[46] E.I. Guendelman and A.B. Kaganovich, “Field Theory Models without the Cosmological
Constant problem”, Plenary talk (given by E.I. Guendelman) on the fourth Alexander Friedmann International Seminar on Gravitation and Cosmology, gr-qc/9809052.

[47] E.I. Guendelman, *Int. J. Mod. Phys.* A14, 3497 (1999).

[48] E.I. Guendelman, *Mod. Phys. Lett.* A14, 1043 (1999), e-Print: gr-qc/9901017.

[49] E.I. Guendelman, *Mod. Phys. Lett.* A14, 1397 (1999).

[50] E.I. Guendelman, *Class. Quantum Grav.* 17, 361 (2000).

[51] E.I. Guendelman, “Scale invariance, mass and cosmology” gr-qc/9901067.

[52] E.I. Guendelman, “Scale invariance and the present vacuum energy of the universe”, contribution to the 35-th Rencontres de Moriond, gr-qc/0004011.

[53] E.I. Guendelman, “Measure fields, the cosmological constant and scale invariance” contribution to the 30-th ICHEP conference, hep-th/0008122.

[54] E.I. Guendelman, A.B. Kaganovich, *Int. J. Mod. Phys.* A17, 417 (2002), e-Print: hep-th/0110040.

[55] E.I. Guendelman and A.B. Kaganovich, *Mod. Phys. Lett.* A17, 1227 (2002).

[56] E.I. Guendelman, A.B. Kaganovich, *Ann. of Phys.* 323, 866 (2008), e-Print: arXiv:0704.1998 [gr-qc].

[57] E.I. Guendelman, A.B. Kaganovich, *Phys. Rev.* D75, 083505 (2007), e-Print: gr-qc/0607111.

[58] E.I. Guendelman, A.B. Kaganovich, *Int. J. Mod. Phys.* A21, 4373 (2006).

[59] E.I. Guendelman and O. Katz, *Class. Quantum Grav.* 20, 1715 (2003), e-Print: gr-qc/0211095.

[60] E.I. Guendelman *Int. J. Mod. Phys.* A25, 4195 (2010), arXiv:1005.1421 [hep-th].

[61] E.I. Guendelman, *Int. J. Mod. Phys.* A25, 4081 (2010), e-Print: arXiv:0911.0178 [gr-qc].

[62] E.I. Guendelman, Strings and branes with a modified measure, Class.Quant.Grav. 17, 3673 (2000).

[63] E.I. Guendelman, Superextendons with a modified measure Phys. Rev. D63, 046006 (2002).

[64] E.I. Guendelman, A.B. Kaganovich, E. Nissimov and S. Pacheva, String and Brane Models with Spontaneously / Dynamically Induced Tension, Phys.Rev. D66:046003,2002; hep-th/0203024.

[65] E.I. Guendelman, A.B. Kaganovich, E. Nissimov and S. Pacheva, Strings, P-Branes and DP-Branes with Dynamical Tension, In the proceedings of 2nd Summer School in Modern Mathematical Physics, Kopaonik, Serbia, Yugoslavia, 1-12 Sep 2002; hep-th/0304269.
[66] E.I. Guendelman, A.B. Kaganovich, E. Nissimov and S. Pacheva, Weyl-Invariant Light-Like Branes and Black Hole Physics, Based on talks given at Workshop on Gravity, Astrophysics and Strings at the Black Sea, Kiten, Bulgaria, 11-16 Jun 2004, and at 3rd Summer School in Modern Mathematical Physics, Zlatibor, Serbia, and Montenegro, 20-31 Aug 2004, and at International Workshop on Integrable Models and Applications: 2nd Annual Meeting of the EU Network EUCLID, Sozopol, Bulgaria, 31 Aug - 4 Sep 2004; hep-th/0409078

[67] E.I. Guendelman, A.B. Kaganovich, E. Nissimov and S. Pacheva, Novel Aspects in p-Brane Theories: Weyl-Invariant Light-Like Branes, in the proceedings of 2nd International Workshop on Gravity, Astrophysics and Strings (GAS BS 2004), Kiten, Bourgas, Bulgaria, 10-16 Jun 2004; hep-th/0409208 Phys.Rev. D87 (2013) 027702

[68] E. Guendelman, H. Nishino, S. Rajpoot, Lorentz-covariant four-vector formalism for two-measure theory Phys.Rev. D87 (2013) 027702.

[69] E. Lim, I. Sawicki and A. Vikman, JCAP 1005, 012 (2010).

[70] A. Cid and P. Labraña, Observational constraints on a cosmological model with Lagrange multipliers, Phys.Lett. B717 (2012) 10, arXiv:1209.2339 [astro-ph.CO].

[71] E.I. Guendelman, A.B. Kaganovich Neutrino generated dynamical dark energy with no dark energy field, Phys. Rev. D 87, 044021 e-Print: arXiv:1208.2132 [gr-qc].

[72] S. Capozziello, J. Matsumoto, S. Nojiri and S. D. Odintsov, Phys. Lett. B 693, 198 (2010), arXiv:1004.369 [hep-th].

[73] E. I. Guendelman, D. Singleton, N. Yongram, A two measure model of dark energy and dark matter, JCAP 1211 (2012) 044 DOI: 10.1088/1475-7516/2012/11/044 e-Print: arXiv:1205.1056 [gr-qc]

[74] S. Ansoldi, E. I. Guendelman, Unified Dark Energy-Dark Matter model with Inverse Quintessence e-Print: arXiv:1209.4758 [gr-qc].

[75] E.I. Guendelman, A.B. Kaganovich Absence of the Fifth Force Problem in a Model with Spontaneously Broken Dilatation Symmetry, Annals Phys. 323 (2008) 866, e-Print: arXiv:0704.1998 [gr-qc].

[76] S. del Campo, E. I. Guendelman, A. B. Kaganovich, R. Herrera, P. Labraña, Emergent Universe from Scale Invariant Two Measures Theory, Phys.Lett. B699 (2011) 211, arXiv:1105.0651 [astro-ph.CO]

[77] A. Einstein, “The Meaning of Relativity”, MJF books, NY (1956), see appendix II.
[78] J.D.Barrow and S. Cotsakis, Phys. Lett. **214B**, 515 (1988).
[79] J.D.Barrow and A.C.Otterwill, J. Physics **A16**, 2757 (1983).
[80] P.W.Higgs, Nuovo Cimento 11 (1959) 816.
[81] B.Witt, Phys. Lett. **145B**, 176 (1984).
[82] G.Mangano, M.Ferraris and M.Francaviglia, Gen. Rel. Grav. **19**, 1987 (465).
[83] M.Ferraris, M. Francaviglia and G. Mangano Class. Quantum Grav. **5**, L95 (1988).
[84] M.B.Mijic, M.M.Morris and W-M Suen, Phys. Rev. **D34**, 2934 (1986).
[85] C.Contreras, R.Herrera and S. del Campo, Class. Quantum Grav. **12**, 1937 (1995).
[86] A.A. Starobinsky, Phys. Lett. **91B**, 99 (1980).
[87] T. Chiba, T.Okabe and M Yamaguchi, Phys.Rev.D**62** 023511 (2000).
[88] C. Armendariz-Picon, V. Mukhanov and P.J. Steinhardt, Phys.Rev.Lett. **85** 4438, 2000.
[89] C. Armendariz-Picon, V. Mukhanov and P.J. Steinhardt, Phys.Rev.D**63** 103510 (2001).
[90] T. Chiba, Phys.Rev.D**66** 063514 (2002).
[91] E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva , Dynamical Couplings, Dynamical Vacuum Energy and Confinement Deconfinement from R Squared Gravity, Phys.Lett. B718 (2013) 1099, [arXiv:1207.6775] [hep-th].
[92] E. Guendelman and M. Vasihoun, in preparation.
[93] Garriga, Jaume et al., Perturbations in k-inflation, Phys.Lett. B458 (1999) 219-225 [hep-th/9904176] UAB-FT-466
[94] Chen, Xingang et al., Observational signatures and non-Gaussianities of general single field inflation - JCAP 0701 (2007) 002 [hep-th/0605045] SLAC-PUB-11840, MAD-TH-06-3, UFIFT-HEP-06-9, SU-ITP-06-12, CU-TP-1147
[95] D. Larson et al., [arXiv:1001.4635] [astro-ph.CO]
[96] WMAP Collaboration (Dunkley, J. et al.) Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data - Astrophys.J.Suppl. 180 (2009) 306-329 [arXiv:0803.0586] [astro-ph].
[97] WMAP Collaboration (Hinshaw, G. et al.)Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results - Astrophys.J.Suppl. 180 (2009) 225-245 [arXiv:0803.0732] [astro-ph]
[98] A. Mithani and A. Vilenkin, Did the universe have a beginning?, [arXiv:1204.4658] [hep-th].
[99] A. Mithani and A. Vilenkin, Collapse of simple harmonic universe, JCAP 1201 (2012) 028,
[100] P. Labraña, Emergent Universe by Tunneling, Phys. Rev. D86 (2012) 083524, Phys. RevD.86.083524, arXiv:1111.5360 [gr-qc].

[101] G. t Hooft, Probing the small distance structure of canonical quantum gravity using the conformal group, arXiv:1009.0669 [gr-qc].

[102] G. t Hooft, The conformal constraint in canonical quantum gravity, arXiv:1011.0061 [gr-qc].

[103] G. t Hooft, A class of elementary particle models without any adjustable real parameters, arXiv:1104.4543 [gr-qc].