Phylogenetic analyses, morphological studies, and muscarine detection reveal two new toxic *Pseudosperma* (*Inocybaceae, Agaricales*) species from tropical China

Li-Na Zhao¹ · Wen-Jie Yu¹ · Lun-Sha Deng¹ · Jian-Hua Hu¹ · Yu-Peng Ge² · Nian-Kai Zeng¹ · Yu-Guang Fan¹

Received: 19 April 2022 / Revised: 1 July 2022 / Accepted: 5 July 2022 / Published online: 11 August 2022
© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
As a result of molecular phylogenetic analyses and morphological studies, two new species of the genus *Pseudosperma*, namely *P. fulvidiscum* and *P. singulare*, were discovered in Wuzhishan Nature Reserve of Hainan Province of China. The two new species are distinct from other known *Pseudosperma* species in the phylogram inferred from a combined nuclear ribosomal internal transcribed spacer region (ITS), the nuclear ribosomal large subunit (nrLSU), and the nuclear second-largest subunit of RNA polymerase II (RPB2) sequence data. Muscarine contents of the two new species were detected using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach. In addition, a new combination, *P. rubrobrunneum*, was proposed based on phylogenetic evidence.

Keywords *Inocybaceae* · Molecular phylogeny · New taxa · Toxin detection · Muscarine

Introduction

Inocybaceae is a family of ectomycorrhizal mushroom-forming fungi (Matheny and Bougher 2006), and many species in this family are poisonous (Kosentka et al. 2013). Multigene molecular phylogenetic analyses have now culminated in the recognition of at least seven major clades in the family (Matheny et al. 2020). *Pseudosperma* is a newly established genus in *Inocybaceae* and is supposed to contain muscarine, a neurotoxin that would cause a series of muscarinic symptoms in humans and animals (Deng et al. 2021b). Mushroom poisoning incidents caused by *Pseudosperma* species were reported in various regions around China (Li et al. 2022). The recognition of its species diversity, distribution, and toxin type and contents will be helpful to the prevention of poisoning incidents.

Pseudosperma is characterized by the rimulose to rimose pileus, the furfuraceous to appressed furfuraceous stipe with a pruinose apex, spermatic odor, elliptic to subphaseoliform basidiospores, the absence of pleurocystidia, the presence of thin-walled cheilocystidia, and symbiosis ecology with a large number of vascular plants (Matheny et al. 2020). At present, 93 taxa of *Pseudosperma* were recorded in the IndexFungorum database (www.indexfungorum.org, retrieved 26 Mar. 2022), and 40 of those were reported or originally described from Europe (Bandini and Oertel 2020). The species diversity in other continents was poorly addressed, especially in tropical areas. After the erection of the
genus, 16 new taxa were described in the past two years (Yu et al. 2020; Cervini et al. 2020; Saba et al. 2020; Jabeen and Khalid 2020; Jabeen et al. 2021; Bandini and Oertel 2020; Bandini et al. 2021). Currently, seven species of *Pseudosperma* were reported in China (Bau and Fan 2018; Yu et al. 2020), including four recently described species, viz. *P. neoumbrinellum*, *P. yunnanense* (Bau and Fan 2018), *P. citrinostipes* (Yu et al. 2020), and *P. arenarium* (Yan et al. 2022, in press).

Hainan is the southernmost provincial administrative region of China and is located on the north edge of the Chinese tropics. Central Hainan harbors the largest contiguous area of tropical rainforest and is a hotspot area of biodiversity in China (Zong 2020). Many new fungal species have been discovered in Hainan province every year (Wang et al. 2022, in press). In this study, we aim to describe two new *Pseudosperma* species using combined analyses of molecular, morphological, and ecological data. In addition, a comprehensive method of determination of these two new species using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach has been performed to detect their muscarine contents.

Materials and methods

Field sampling and morphological studies

Fresh materials were collected in the Wuzhishan and Yinggeling substations of Hainan Tropical Rainforest National Park and Fujian Province in China. Firstly, basidiomata were photographed using a digital camera in the field. Secondly, fresh specimens were recorded and described macroscopically later. Then, the specimens were dried overnight at 45 °C with an electronic drier, and the dried specimens were packed in sealed plastic bags with silica gel (Yu et al. 2020; Deng et al. 2021a). Color codes follow Kornerup and Wanscher (1978).

Microscopical characteristics were observed using an optical microscope (Olympus CX23) in the laboratory. Mushroom tissues from the pileus, the lamellae, and the stipes were cut into thin sections by freehand with the aid of a stereoscope (AV100-240V). Dried materials were rehydrated in KOH (5%) and stained with Congo Red (1%) when necessary. Microscopic structures, including basidiospores, basidia, cheilocystidia, hymenophoral trama, pileipellis, and stipitipellis, were examined and measured. Methods of measurements follow Fan and Bau (2013) and Yu et al. (2020). At least 100 basidiospores for each species were randomly measured from different specimens. The basidiospore measurements are expressed with the \([n/m/p]\), which indicates \(n\) basidiospores measured from \(m\) basidiomata of \(p\) specimens. In addition, the basidiospore size is given with the \((a) b–e–c\) (d) formula, where \(b–c\) contains a minimum of 90% of the measured values of the spores, \(e\) represents the average values of the spores, and \(a\) and \(d\) represent the minimum and maximum values of the spores (Ge et al. 2021). \(Q\) is the ratio length/width of individual spores \((Q\) value); \(Q_m \pm SD\) is the average \(Q\) of all basidiospores ± sample standard deviation (Na et al. 2022; Jean et al. 2022). Examined specimens were deposited in the Herbarium of Changbai Mountain Natural Reserve (ANTU) with FCAS numbers and the Fungal Herbarium of Hainan Medical University (FHMU).

DNA extraction, PCR, and sequencing

In this study, the ITS, nrLSU, and *RPB2* gene fragments were analyzed. Genomic DNA was extracted using the NuClean Plant Genomic DNA kit (ComWin Biotech, Beijing), and the extracted DNA products were generally stored at −20 °C. Primers used for PCR amplification and sequencing include ITS1-F and ITS4 for ITS (White et al. 1990), LR0R and LR7 for nrLSU (Vilgalys and Hester 1990), and *RPB2*-6F and *RPB2*-7.1R for *RPB2* (Matheny 2005). The amplification reaction mixture (final volume 25 μL) contained the following: 9.5 μL ddH2O, 12.5 μL 2×Taq Plus MasterMix (Dye), 1 μL forward primer, 1 μL reverse primer, and 1 μL DNA template. Amplification reactions were performed in a TPProfessional Standard thermocycler (Biometra, Göttingen, Germany) under the following program: 5 min at 95 °C; 1 min at 95 °C; 30 s at 65 °C (add −1 °C per cycle); 1 min at 72 °C; cycle 15 times; 1 min at 95 °C; 30 s at 50 °C; 1 min at 72 °C; cycle 20 times; 10 min at 72 °C (Wang et al. 2021b). Sequencing work was commissioned to the Beijing Genomics Institute. Sequencing results were read with BioEdit version 7.0.9.0 software and assembled with SeqMan software. The newly generated sequences of new species were submitted to GenBank.

Alignment assembly and phylogenetic analyses

Sequences obtained from previous studies (Pradeep et al. 2016; Bau and Fan 2018; Yu et al. 2020; Cervini et al. 2020; Saba et al. 2020; Jabeen and Khalid 2020; Jabeen et al. 2021; Bandini and Oertel 2020; Bandini et al. 2021) and the Blastn results of close matches from GenBank were selected for phylogenetic analyses. *Nothocybe distincta* and *Mallowcybe terrigena* were used as outgroups. The dataset for each locus was aligned by MAFFT online service (https://mafft.cbrc.jp/alignment/server/) (Katoh et al. 2019) and manually adjusted by BioEdit version 7.0.9.0 (Hall 1999). The three datasets were concatenated by MEGA 6.0 (Tamura et al. 2013). Maximum likelihood (ML) analyses were conducted in W-IQ-TREE Web Service (http://iqtree.cibiv.univie.ac.at/) with 1000 replicates (Trifinopoulos et al. 2016). The best evolutionary model of each gene partition
was selected using MrModeltest v2.3 with the Akaike information criterion for Bayesian analyses (Nylander 2004). Bayesian inference (BI) analyses were performed using MrBayes v3.2.7a (Ronquist et al. 2012). Four Markov Chain Monte Carlo (MCMC) chains were sampled over 5,000,000 generations, sampling every 1000 generations, the standard deviation below 0.01, and BI posterior probabilities (BI-PP) were determined after removing the first 25% of trees. The results were edited by using the FigTree v1.4.3 software. The ML bootstrap proportions (ML-BP ≥ 70) and BI-PP (≥ 95%) were shown on each branch.

Toxin detection

Dried mushroom samples from holotypes of the two new species (FYG6311 and FYG6363) were ground into a fine powder; 0.02 g was accurately weighed and put into a 5-mL centrifugation tube with 2 mL of methanol-water (5:95, v/v), respectively. The mixture was vortexed for 30 min at first and then was extracted ultrasonically for another 30 min. After centrifugation at 1000 rpm for 5 min, the total supernatant was collected using a 0.22-μm organic filter membrane to filtrate before UPLC-MS/MS analysis and diluted with acetonitrile-water (7:3, v/v) when necessary. *Lentinula edodes* was used as the blank sample. The optimal UPLC and MS parameters and other settings followed Xu et al. (2020). The muscarine content was estimated in the mushroom extraction by using standard muscarine (Sigma-Aldrich, Chemical purity ≥ 98%). The analytical results are reported as mean ± SD g/kg, where the mean is the average content of muscarine, and SD represents the standard deviation.

Results

Phylogenetic analyses

We newly generated 16 ITS, 7 nrLSU, and 7 *RPB2* sequences and submitted them to GenBank. The best-fit models selected by MrModeltest for each gene are GTR+I+G equally. The concatenated dataset (Supplementary information) comprises 144 taxa (Table 1) and 3180 nucleotide sites with 958 bp ITS, 1445 bp nrLSU, and 777 bp *RPB2*, of which 1814 are constant and 884 are parsimony informative. The phylograms resulted from Bayesian inference (BI) and maximum likelihood (ML) analyses are similar with a few statistical differences, and thus, only the ML tree is shown in Fig. 1. All the *Pseudosperma* taxa were clustered in a full support clade (BP = 100%, PP = 1). Two major subclades were retrieved in *Pseudosperma*, and one of them was only supported by ML analysis. Thirteen specimens form an independent lineage with full support (BP = 100%, PP = 1), representing *P. fulvidiscum*, and three specimens cluster together and form an independent lineage representing *P. singulare*. The two new species are grouped into a full support subclade (BP = 100%, PP = 1) that is sister to all the remainders of the genus. The subclade unifying *P. araneosum* (Matheny and Bougher) Matheny and Esteve-Rav., *P. aff. araneosum* (PL58410), *P. brunneosquamulosum* K.P.D. Latha and Manim., *P. rubrobrunneum* (K.P.D. Latha and Manim) Y.G. Fan, and *P. sp.* (MCA562) as well as the two new species. In this subclade, *P. aff. araneosum* (PL58410) is sister to *P. fulvidiscum*, and *P. araneosum* is sister to *P. singulare*. *Pseudosperma brunneosquamulosum* and *P. sp.* (MCA562) clustered in a full support lineage that is sister to the lineage unifying *P. fulvidiscum* and *P. aff. araneosum* (PL58410); *P. rubrobrunneum* is sister to the lineage unifying *P. singulare* and *P. araneosum*.

Taxonomy

Pseudosperma fulvidiscum Y.G. Fan, L.N. Zhao, and W.J. Yu, sp. nov., Figs. 2 and 3

MycoBank: MB843662

Etymology: “fulvidiscum” refers to its brown to smoky brown pileus.

Diagnosis: *Pseudosperma fulvidiscum* differs from *P. brunneosquamulosum* by its relatively larger habit, pallid stipes with brownish tiers of squamules in the lower part, broader lamellae, longer and usually subcapitate cheilocystidia, and its association with *Carpinus* trees.

Holotype: China. Hainan Province: Wuzhishan Nature Reserve, 109°40′E, 18°51′53″N, 688 m asl., 29 July 2021, leg. Y.-G. Fan, L.-N. Zhao, L.-S. Deng, and J.-H. Hu, FYG6311 (FCAS3513).

Description: Basidiomata small. Pileus 5–20 mm diam., spherical to hemispherical when young, becoming convex to applanate with an umbo upon expansion; margin initially incurved, then decurved for a long time, straight or uplifted when overmatured; surface dry, wooly fibrillose when young, then radially fibrillose-rimulose to appressed scaly, rimose to strongly split in age; yellowish brown (5C8) to brownish (6E6) or dark brown (6F5) around the center, gradually shallowing to yellowish (5B6) to pale yellowish-brown (5B4) outwards, uniformly brown (6D5) to dark brown (6E5) when overmatured; background creamy yellowish (5B2). Lamellae adnexed to emarginate, moderately crowded to subdistant, 1.3–3.5 mm wide, unequal in length, alternately distributed with 3–4 tiers of lamellulae, white (1A1) to creamy white (1A2) when young, then turns pale yellow (5A2) to yellowish-brown (5B3), and reddish ochraceous-brown (6C5) when overmatured, edge pallid, fimbriate. Stipe 7–41 mm in length, 1.3–3 mm in width, terete, solid and becoming fistulose upon maturity, slightly swollen at the apex, somewhat tapered at the base, pruinose at the apex, fibrillose with sparse protruding whitish (1A1) fibrils downwards to the
Taxa	Collection number (Herbarium)	Locality	GenBank accession number	ITS	LSU	RPB2
Mallocybe terrigena	JV16431	Finland		AM88264 AM380401	AM833309	
Nothocybe distincta	CAL-1310 (holotype)	India		KG171343 EU604546	KG171345	
’Pseudosperma bruneicohurnata	PBM1889 (TENN)	USA		JQ408787 JQ319707	JQ846493	
P. aestivum	BK18089706 (UTC, holotype)	USA		EU600847 EU600846	EU555465	
P. aff. araneosum	PL58410	Australia		KJ729880 KJ729906	KJ729937	
P. aff. reisiporum	PBM12195 (PERTH-E7042)	Western Australia		JQ408771 EU555466	EU555465	
P. aff. rimosum	TR183-05	PNG		JQ408773 JN975005	JQ815425	
P. aff. rimosum	TR75-05 (M)	PNG		JQ408774 JQ815425	JQ815425	
P. aff. sororium	ADW0057/TENN063512	USA		JQ408778 JN975004	JQ421076	
P. aff. sororium	REH8245 (NY)	Costa Rica		JQ408783 JN975004	JQ421076	
P. albobrunneum	LAH135047 (holotype)	Pakistan		MG495392		
P. alboflavellum	TGB11280 (isotype)	India		KP636859 KP171058	KM656097	
P. amabile	BAN3100	Austria		MW010036		
P. amabile	BAN3100	Germany		MW010031		
P. amoris	BAN2931 (holotype)	Germany		MW010038		
P. amoris	BAN2913	Germany		MW010037		
P. araneosum	PBM3755 (isotype)	Australia		KJ729878 KJ729904	KJ729937	
P. arenarium	NXYC20201005-01 (holotype)	China		OM304278 OM304287	OM304287	
P. arenarium	NX20210922-57	China		OM304279 OM304287	OM304287	
P. arenicolans	SX20210930-65	France		FJ904134 FJ904134	FJ904134	
P. arenicola var. mediterrineum	JV14920F (WTU)	Italy		JQ408748 JQ408748	JQ408748	
P. aureocitrinum	BAN2903	Spain		MW010047		
P. aurora	AU10245 (WTU)	Canada		HQ201337 HQ201338	HQ201338	
P. aurora var. inodoratum	Sz5573	USA		MH024847		
P. breviterincarnatum	BK28080407	USA		EU555451 EU555451	EU555451	
P. breviterincarnatum	PB1914	USA		JQ408750 JQ319677	JQ846465	
P. bruneosquamulosum	CAL 1308 (holotype)	India		KX073582 KX073586	KX073586	
P. brunneoumbonatum	MSM0053 (holotype)	Pakistan		MG742419 MG742420	MG742422	
P. brunneoumbonatum	MSM00545	Pakistan		MG742421 MG742422	MG742422	
P. bulbissimum	EL6605	Norway		AM882765 AM882765	AM882765	
P. bulbissimum	EL75-07	Sweden		FJ904160 FJ904160	FJ904160	
P. cercocarpell	BK20069806 (UTC)	USA		EU600889 EU600889	EU600889	
P. cf. flavellum	EL2010a/PAM05062502	France		FJ904128 FJ904128	FJ904128	
P. cf. microfastigiatum	EL113-06	Sweden		FJ904156 FJ904156	FJ904156	
P. cf. rimosum	PBM2958	USA		JQ408777 JQ42071	JQ42071	
P. cf. rimosum	PC080925	UK		FJ904153 FJ904153	FJ904153	
P. cf. rimosum	PAM05061101	France		FJ904155 FJ904155	FJ904155	
P. cf. rimosum	PBM2574 (TENN)	USA		JQ408776 EF561633	EU307858	
P. cf. rimosum	JV8125	Finland		FJ904152 FJ904152	FJ904152	
P. cf. rimosum	JV22619	Estonia		FJ904157 FJ904157	FJ904157	
P. cf. rimosum	EL-2010d/JV26578	Estonia		FJ904154 FJ904154	FJ904154	
P. citrinostipes	FGY2903	China		MT072897 MT071202	MT071202	
P. citrinostipes	FGY2909 (holotype)	China		MT072898 MT071203	MT071203	
P. conviviale	AMB18243 (holotype)	Italy		MT095091 MT095115	MT095115	
P. dulcamaroides	EL29-08	USA		FJ904127		
Table 1 (continued)

Taxa	Collection number (Herbarium)	Locality	GenBank accession number		
			ITS	LSU	RPB2
P. emberizanum	STU:SMNS-STU-F-0901461	Germany	MW647630		
P. fissuratum	PBM2206 PERTH (E7054) (holotype)	Western Australia	JQ408770	AY732213	JQ421069
P. flavellum	EL13705	Sweden	AM882776		
P. flavorinumosum	LAH35042 (holotype)	Pakistan	MG495391		
P. friabile	PBM3914/TEEN068384 (holotype)	USA	MH216095	NG_067823	
P. fulvidiscum	FYG6331	China	OM1135589		
P. fulvidiscum	FYG6288	China	OM1135590		
P. fulvidiscum	FYG6310	China	OM1135591		
P. fulvidiscum	FYG6311 (holotype)	China	OM1135592	OM349998	OM747849
P. fulvidiscum	FYG6058	China	OM1135593	OM349999	OM780121
P. fulvidiscum	FYG6067	China	OM1135594	OM350000	OM780119
P. fulvidiscum	FYG6096	China	OM1135595		
P. fulvidiscum	FYG6099	China	OM1135596		
P. fulvidiscum	FYG6321	China	OM1135597	OM350001	OM780120
P. fulvidiscum	FYG6327	China	OM1135598		
P. fulvidiscum	FYG6328	China	OM1135599		
P. fulvidiscum	FYG6308	China	OM1135600		
P. fulvidiscum	FYG6379	China	OM1135601		
P. godfrinioides	371	Italy	JF908099		
P. gracilissimum	PBM3735	Australia	KJ729919	JF904137	
P. gracilissimum	NLB937	Australia	KP171122	KJ801178	KJ729946
P. griseorubidum	CAL1253	India	KT180326	KT180327	KT180328
P. himalayensis	K7 (holotype)	Pakistan	MH745138		
P. holoxantha	ACAD:11683	Canada	MH024853	MH024884	
P. huginii	STU:SMNS-STU-F-0901564 (holotype)	Austria	NR_173974	MW647628	
P. hygrophorus	EL97-06	Sweden	FJ904137	FJ904137	
P. illudens	II06 (TENN:065726)	Australia	JQ408769	JQ319699	JQ421068
P. keralense	K(M):191712 (holotype)	India	KM924523	KM924518	KY53234
P. lepidotellum	MCA1881 (BRG, holotype)	Guyana	JN642233	JN642235	
P. luteobrunneum	CAL1260 (holotype)	India	KX073580	KX073584	KX073588
P. melleum	MCVE30145 (holotype)	Italy	MT095090	MT095114	
P. melliolens	EL224-06	France	FJ904149	FJ904149	
P. melliolens	PAM05052303	France	FJ904148	FJ904148	
P. melliolens	G00110921 (holotype)	France	MN901255	MN901255	
P. melliolens	MCVE30344	Italy	MT095095		
P. mimicum	EB961997	Sweden	FJ904124	FJ904124	
P. napaeanum	BAN2947 (holotype)	Germany	MW1001040		
P. napaeanum	BAN2948	Germany	MW1001044		
P. neglectum	ZT13022/DED8063 (SFSU)	Thailand	EU600829	EU600829	
P. neoambrinellum	HMJAU25742 (holotype)	China	MH047249	MG844977	
P. niveivelatum	PB2337 (WTU)	USA	JQ313566	JQ313566	AY333776
P. niveivelatum	BK21089714	USA	JQ319695	JQ319695	
P. notodryinum	CO4463	USA	MH578028	MK421970	MH577509
P. obsoletum	PB2332 (WTU)	USA	JQ408766	JQ408766	
P. occidentalis	BK27089703 (UTC, holotype)	USA	EU600893	EU600893	EU600892
P. occidentalis	PB2552	USA	AY038321	AY038321	AY333775
Taxa	Collection number (Herbarium)	Locality	GenBank accession number		
-----------------	-------------------------------	------------	--------------------------		
			ITS	**LSU**	**RPB2**
P. pakistanense	LAH35283	Pakistan	MF575849		
P. perlatum	EL7404 (holotype)	Sweden	AM882771	AM882771	
P. pinophilum	JV10247 (WTU)	Finland	JQ408767	JQ319698	
P. pinophilum	MSM0046 (holotype)	Pakistan	MG742414	MG742418	
P. pluviorum	PL23408	Australia	KP170980		
P. ponderosum	MCVE: 30144 (holotype)	Italy	MT095092	MT095116	
P. pinophilum	MSM0047 (holotype)	Pakistan	MG742417	MG742415	
P. ponderosum					
P. pinophilum					
P. ponderosum					
P. rimosum	AO2008-0250	UK	FJ904147	FJ904147	
P. rimosum	EL118-08	Sweden	FJ904146	FJ904146	
P. rimosum	EL211-06	France	FJ904145	FJ904145	
P. rimosum	PAM06112703	France	FJ904143	FJ904143	
P. rimosum	EL75-05	Sweden	AM882762	AM882762	
P. rimosum	PAM03110904	France	FJ904144	FJ904144	
P. rimosum	DJL-SJ14 (TENN)	USA (Virgin Islands)	JQ408784	EU600851	
P. rimosum	BK28080513 (UTC)	USA	EU600850	EU600848	EU600849
P. rimosum	PBM2601 (TENN)	USA	EU600852	EU600852	
P. rubrobrunneum	CAL1307 (holotype)	India	KX073583	KX073587	KX073590
P. salentinum	MCVE 30342	Italy	MT095093	MT095117	
P. singulare	FYG6339	China	OM135605	OM149380	OM780122
P. singulare	FYG6363 (holotype)	China	OM135606	OM149381	OM780123
P. singulare	FYG6365	China	OM135607	OM149382	OM780124
P. solare	BAN3078 (holotype)	Germany	MW647627	MW647627	
P. sororium	MCA859/PBM3901 (TENN) (holotype)	USA	JQ408772	JQ319700	MH249810
P. sororium	PBM2654 (TENN)	USA	EU600853	EU600853	
P. sororium	PBM3055/TENN063504	USA	JQ408781		
P. sororium	J152000	Sweden	FJ904151	FJ904151	
Pseudosperma sp.	MCA562	Japan	JQ408785	JQ421077	JN975016
Pseudosperma sp.	TR194-02	PNG	JQ408793	JN975032	JQ421080
Pseudosperma sp.	TR194-02	PNG	JQ408793	JN975032	JQ421080
Pseudosperma sp.	DVO4132011	USA	KP636835	KP170140	
Pseudosperma sp.	PBM3766	Australia	KP636852	KP170154	KM555146
Pseudosperma sp.	TR104-05	PNG	JN975011	JN975011	
Pseudosperma sp.	TR133-05 (M)	PNG	JQ408791	JQ319709	
Pseudosperma sp.	TR138-05 (M)	PNG	JQ408792	JN975009	
Pseudosperma sp.	TR49-05	PNG	JQ408790	JN975014	JQ421079
Pseudosperma sp.	MTS2494A (UC)	USA	JQ408786	JN975008	
Pseudosperma sp.	MCA704 (TENN)	Japan	JQ408765	JN975007	
Pseudosperma sp.	TM02-130	Canada	EU22733		
P. spurium	SJ92017 (holotype)	Sweden	AM882784		
P. squamatum	PAM05052301	France	FJ904132	FJ904132	
P. squamatum	SJ08003	Sweden	FJ904136	FJ904136	
P. triaciculare	MSM0039 (holotype)	Pakistan	MG742423	MG742424	
P. triaciculare	MSM0041	Pakistan	MG742429	MG742430	
P. umbrinellum	JV13699	Finland	FJ904165	FJ904165	
middle, lower part with appressed to protruding tiers of brownish (5B4) fibrils. Context fleshy in pileus, white (1A1), yellowish white (1A2) near the cuticle, with a slightly darker tinge under the umbo, becoming brownish (5C4) with age, 1–3 mm thick under the umbo, 0.5–1.2 mm thick at mid-radius; fibrillose and shiny in the stipe, whitish (1A1) to beige (1A1–1A2). Odor fungoid or mild.

Basidiospores [327/16/16] (7)8–9.3–11(13) × (4.2)5–5.6–6.5(8) μm, Q = (1.23)1.37–2.00(2.18), Qm ± SD = 1.67 ± 0.177, ellipsoid, broadly ellipsoid or ovoid, sometimes slightly oblong, less often subphaseoliform, smooth, thick-walled, golden yellow (2A6) to yellowish brown (4B5), with one large nearly rounded oily droplet and numerous yellowish (2B6) granular inclusions. Basidia 16–41 × 9.5–12.5 μm, clavate to broadly clavate, thin-walled, rounded or obtuse at apex, and tapering toward the base, occasionally with a wider constriction, with 4 sterigmata 3–6 μm in length, colorless to yellowish (1B7), with one or more colorless to bright yellow (2A7) oily inclusions when mature. Lamellae edge sterile. Cheilocystidia absent. Pleurocystidia absent. Cheilocystidia 20–58 × 9–20 μm, in clusters, clavate, broadly clavate to utriform, apices obtuse or rounded, tending to subcapitate or capitate, sometimes septate, thin-walled, colorless, occasionally with golden yellow (2A7) inclusions. Hymenophoral trama 50–187 μm thick, regular to sub-regular, transparently colorless or pale yellowish (1B7), composed of smooth, thin-walled, cylindrical to inflated hyphae 20–30 μm thick. Pileipellis a cutis, 137–250 μm thick, compact, regular to subregularly arranged, golden brown (4B6) to dark brown (4F5) in mass, composed of cylindrical to inflated, thin-walled and encrusted hyphae 3–14 μm wide. Stipitipellis a cutis frequently disrupted by loose hyphal projections, hyphae 3–17 μm wide, thin-walled, and colorless. Caulocystidia 22–39 × 7–15 μm, present at stipe apex, vesiculose, clavate, utriform or subcapitate, obtuse at the apex, thin-walled, smooth, colorless and hyaline. Stipe trama regularly and densely arranged, yellowish in mass, hyphae thin-walled, colorless, 4–23 μm wide. Oleiferous hyphae abundant, 2–14 μm wide, present in pileal, stipe, and hymenophoral trama, bright yellow (4B7), less often colorless, smooth, often bent, occasionally branched. Clamp connections present, common in all tissues.

Habitat: Single or scattered on clay soils under *Carpinus londioniana* var. *lanceolata* (Hand.-Mazz.) P.C.Li.

Geographical distribution: Known from Hainan and Fujian provinces, China.

Additional specimens examined: China. Hainan Province, Wuzhishan Nature Reserve, 109°40′43″E, 18°51′53″N, 688 m asl., 1 May 2022, leg. Y.-G. Fan, L.-N. Zhao, L.-S. Deng, and J.-H. Hu, FYG7044 (FCAS3574), FYG7045 (FCAS3575); same location, 27 July 2021, leg. Y.-G. Fan, L.-N. Zhao, L.-S. Deng, and J.-H. Hu, FYG6942 (FCAS3510), FYG6530 (FCAS3521), FYG6289 (FCAS3523); same location, 29 July 2021, leg. Y.-G. Fan, L.-N. Zhao, L.-S. Deng, and J.-H. Hu, FYG6331 (FCAS3510), FYG6321 (FCAS3518), FYG6327 (FCAS3519), FYG6328 (FCAS3520), FYG6379 (FCAS3522), FYG6568 (FCAS3524); 26 June 2020, leg. Y.-G. Fan and W.-J. Yu, FYG5029 (FCAS3525); same location, 12 Aug 2020, leg. N.-K. Zeng, Zeng4615 (FCAS3548); Ledong Li Autonomous County, Yinggeling substation of Hainan Tropical Rainforest National Park, 109°23′33″E, 19°1′20″N, 550 m asl., 2 April 2021, leg. Y.-G. Fan and L.-S. Deng., FYG6058 (FCAS3514), FYG6067 (FCAS3515), FYG6096 (FCAS3516), FYG6099 (FCAS3517); Fujian Province, Shunchang Country, Yangkou forestry farm, 24 Jun 2021, leg. Y.-P. Ge, Q. Na, B.-R. Ke, and L.-L. Qi, GN0942 (FCAS3547).

Remarks: *Pseudosperma fulvissicum* is a common species under *Carpinus* forests; it fruits from late April to late August. In the field, it is a typical little brown mushroom with a slender habit and brownish pileus. The pileus status could be fibriullose to rimose with appressed scales or fibrils in different specimens. The stipe surface is usually finely felt or appressed-fibrillose with brownish tomentose hyphae toward the lower part, however usually hard to observe after handling. Unlike most species in the genus, the new species has moderately crowded to subdistal lamellae in certain specimens. The differences between individuals or collections were mostly due
to the weather conditions or microclimates. In terms of microscopic intraspecific variation in *P. fulvidiscum*, the basidios- spores of FYG6311 are smaller and more spherical ($Q_m = 1.54$, $n = 20$); however, FYG6327 has larger and narrower basidiospores ($Q_m = 1.74$, $n = 20$). Phylogenetically, an undescribed Australian specimen (PLS8410) labeled *P. aff. araneosum*, is the closest taxa with moderate support. *Pseudosperma brunneosquamulosum*, originally described in tropical India, shares similarities in its small and slender habit, brownish pileus color and status, and the size and the shape of the basidiospores; however, it differs by brownish orange stipes, broader basidiospores ($Q_m = 1.5$), shorter and non-capitate cheilocystidia, and an association with trees of Dipterocarpaceae (Tibpromma et al. 2017).

Pseudosperma singulare Y.G. Fan, L.N. Zhao, and W.J. Yu, sp. nov., Figs. 4 and 5

MycoBank: MB843663

Etymology: “singulare” refers to its solitary habit.

Diagnosis: *Pseudosperma singulare* differs from *P. araneosum* by its small basidiomata, squamulose pileus with a brown tinge, shorter basidiospores, broader and longer cheilocystidia usually constrained at the middle, and association with different plants.

Holotype: China. Hainan Province, Wuzhishan Nature Reserve, 109°40′43″E, 18°51′53″N, 662 m asl., 29 July 2021, leg. Y.-G. Fan, L.-S. Deng, L.-N. Zhao and J.-H. Hu, FYG6363 (FCAS3526).

Description: Basidiomata small, slender. Pileus 6–10 mm diam., spherical to subshpherical at first, then campanulate to convex, margin incurved when young, then decurved for a long time; surface dry, woolly tomentose to subtomentose with finely squamules toward the disc, radially fibrillose to rimulose outwards, usually split at margin; brown (6B4) to dark brown (6B5) toward the center, brownish (6A3) to lightly brown (6A4) outwards, uniformly brown (6D5) to dark brown (6E5) when overmatured. Lamellae adnexed, moderately crowded to subdistant, 0.6–1.5 mm wide, unequal in length, alternately distributed with 2–3 tiers of lamellae, whitish to yellowish brown (5B6) at first, then brownish (5D6), ochraceous-brown (5D7) with age, completely brown upon drying; edge fimbricate, pallid. Stipe 18–22 mm in length, 1–1.5 mm in width, terete, equal, solid, somewhat enlarged at both the apex and the base, furfuraceous or scurfy at apex, with appressed or hairy yellowish (5A3) to brownish (6B5) fibrils downward, background white (1A1) to cream white (1A3), brownish (5C5) toward the base. Context fleshy in pileus, white (1A1) to creamy white (1A2), 0.8–2.5 mm thick under the umbo, 0.3–1.2 mm thick at mid-radius; fibrillose in stipe, whitish, pale yellowish near the cuticle. Odor grassy or mild.

Basidiospores [107/2/2] 8–9.1–10 (10.5) × 5–6.1–7.8 (9) μm, $Q = (1.25) 1.31–1.73 (1.8)$, $Q_m = ± SD = 1.51 ± 0.13$, ellipsoid to broadly ellipsoid, sometimes ovoid, occasionally irregular or subglobose, smooth, thick-walled, golden yellow (4A6) or yellowish brown (5B6), with one large nearly round- ed oily droplet and numerous yellow (2A6) granular inclusions. Basidia 19–27 × 9–12 μm, clavate to broadly clavate, thin-walled, obtuse at the apex, and gradually tapering toward the base, colorless to yellowish (1B1), with one or more bubble-like, bright yellow (1B6) oily inclusions, with 4- or 2- sterigma, 2–6 μm in length. Lamellae edge sterile. Pleurocystidia absent. Cheilocystidia 26–70 × 8–25 μm, in clusters, versiform and usually median-constrained, clavate to broadly clavate, broadly fusiform, occasionally utriform, rounded or obtuse at apex, tending to capitate or subcapitate, base often tapered, colorless and hyaline, thin-walled, occasionally with amorphous inclusions. Hymenophoral trama 112–200 μm thick; regular to sub-regular, hyphae 16–32 μm wide, smooth, thin-walled, colorless, ellipsoid or fusiform. Pileipellis a cutis often with erected elements, 50–163 μm thick, bright yellow (4B5) to dark brown (4F4), hyphae of cuticular layer 6–15 μm wide, septate, cylindrical, slightly thick-walled, brownish (4B5), walls bright yellow, encrusted or smooth; Pileal trama colorless or yellowish, subregularly arranged, composed of compact, thin-walled, colorless, inflated or fusiform hyaline 2–12 μm wide. Stipitipellis a cutis, colorless to pale yellow (1A2) in mass, regularly and densely arranged, smooth, thin-walled hyphae 3–7 μm wide, often disrupted with protruding elements. Caulocystidia not observed. Stipe trama regular, yellowish in mass, hyphae 5–10 μm wide, smooth, thin-walled, colorless. Oleiferous hyphae present in pileus and stipe trama, not abundant, 2–8 μm wide, yellowish (2B5), smooth, bent, and occasionally branched. Clamp connections present and common in all tissues.

Habitat: Single on clay soils under Carpinus lanceolata under the umbo, 0.3–1.2 mm thick at mid-radius; fibrillose in stipe, whitish, pale yellowish near the cuticle. Odor grassy or mild.

Geographical distribution: currently known only from the type locality in Hainan Province, China.

Additional specimens examined: China, Hainan Province: Wuzhishan Nature Reserve, 109°40′43″E, 18°51′53″N, 688 m asl., 29 July 2021, leg. Y.-G. Fan, L.-N. Zhao, L.-S. Deng, and J.-H. Hu, FYG6339 (FCAS3652), FYG6365 (FCAS3528).

Remarks: *Pseudosperma singulare* is encountered under Carpinus forests; it fruits solitarily in late July in Hainan.
Province, China. Comparing to *P. fulvidiscum*, its pileus is uniformly brown without discoloring toward the margin, the squamules toward the pileus center are smaller and irregularly erected, the Q value of basidiospores is smaller, and the pileipellis is composed of smooth and encrusted hyphae. Phylogenetically, *P. araneosum*, originally described from

Fig. 2 Basidiomata of *Pseudosperma fulvidiscum*. (a–e) Basidiomata. (d–e) Rimose to rimulose pileus. (f–g) Stipe. (h–i) Lamellae. (a, e) FYG6327 (holotype); (b, i) FYG6311; (c) FYG6880; (d) FYG6321; (f) FYG6308; (g) FYG6096; (h) FYG6310. Scale bars: a–c, e–f, h–i = 5 mm; d, g = 2 mm. Photos by Y.-G. Fan, L.-S. Deng, and L.-N. Zhao
Queensland, is a sister to the new species; however, it has medium-sized basidiomata, non-squamulose and yellowish tinged pileus, longer basidiospores measured (8.0–) 8.5–11.5 × 5.0–7.0 μm ($Q_m = 1.68$), slender cheilocystidia measured 27–53 × 10–17 μm, and is associated with different plants (Matheny and Bougher 2017). Pseudosperma

Fig. 3 Microscopic features of Pseudosperma fulvidiscum (FYG6327, holotype). (a, b) Basidiospores. (c, d) Basidia. (e–h) Cheilocystidia. (i) Lamella edge: shows cheilocystidia in clusters. (j) Hymenophoral trama. (k) Pileipellis. (l) Oleiferous hyphae. (m) Pileipellis hyphae. (n) Caulocystidia. (o) Stipitipellis. Scale bars: a–h, l, m = 20 μm; n = 10 μm; i–k, o = 50 μm. Photos by L.-N. Zhao.
rubrobrunneum, described in India, is similar in outwards appearance and outline and size to basidiospores; it differs by brownish orange stipe, non-constrained and shorter cheilocystidia measured $17–39 \times 11–18 \mu m$, and ecology with Dipterocarpaceae trees (Tibpromma et al. 2017).
Fig. 5 Microscopic features of *Pseudosperma singulare* (FYG6327, holotype). (a, b) Basidiospores. (c–f) Basidia. (g–k) Cheilocystidia. (l) Hymenophoral trama. (m–o) Pileipellis. (p) Oleiferous hyphae. Scale bars: a–k, n–p = 10 μm; l = 50 μm; m = 100 μm. Photos by L.-N. Zhao
New combination

Pseudosperma rubrobrunneum (K.P.D. Latha and Manim)

Y.G. Fan, comb. nov.

≡*Inocybe rubrobrunnea* K.P.D. Latha and Manim,
Tibpromma et al., Fungal Diversity 83: 174 (2017)

Mycobank: MB843881

Notes: This new combination is made based on phylogeny (nrLSU and RPB2) of *Inocybe sensu lato*. *P. rubrobrunneum* was nested in the Pseudosperma clade (Latha and Manimohan 2017), which is now treated as *Pseudosperma* genus (Matheny et al. 2020). In our three-gene phylogeny of the genus (ITS, nrLSU, and RPB2, Fig. 1), *P. rubrobrunneum* is sister to the lineage unifying *P. singulare* and *P. araneosum*.

Toxin detection

The weights of the tested samples for the two new species were 0.0115 g for FYG6311 and 0.0020 g for FYG6363, respectively. The representative chromatograms of muscarine are shown in Fig. 6. After comparing the retention time (0.95 min) and relative deviation (0.32%) with standard muscarine in the allowance of ±25% relative range, the toxin muscarine was identified. The calibration curve for muscarine generated during the validation was $y = 20223.15025x + 18054.61816 (r = 0.99837)$ for muscarine concentration in the range of 2–100 ng/mL (y means the peak area, and x is the muscarine concentration, r represents correlation coefficient). The muscarine contents are 3.1340 ± 0.4078 g/kg and 0.5505 ± 0.0026 g/kg in *P. fulvidiscum* and *P. singulare*, respectively. Precision was performed, injecting six times the standard mixture, and the relative standard deviation (RSD) were 13.01% and 0.48%, respectively. Percentages of recovery was 98.47–100.18%, and the average recovery was 98.78%.

Discussion

In recent years, an increasing number of *Pseudosperma* species have been discovered, especially after *Inocybaceae* was re-divided into seven genera by Matheny et al. (2020) and the establishment of the genus. These include *P. albobrunneum*,...
P. brunneombonatum, P. flavorimosum, P. pinophilum, and P. triacicularis from Pakistan (Saba et al. 2020; Jabeen and Khalid 2020; Jabeen et al. 2021), P. amabile, P. amoris, P. napaeanum, P. emerizanum, P. huginii, and P. solare from Germany or Austria (Bandini and Oertel 2020; Bandini et al. 2021), P. conviviale, P. melleum, and P. ponderosum from Italy (Cervini et al. 2020), and P. citrinostipes from southwestern China (Yu et al. 2020). These works have greatly facilitated the species diversity of the genus. In the present study, P. fulvidiscum and P. singulare were identified as new species through morphological studies and phylogenetic analyses. They share high similarities in appearance. It would be very difficult to distinguish them by morphomorphology or even by most of the microfeatures. However, the appressed scaly pileus and brownish tiers of fibrils in the lower part of the stipe in P. fulvidiscum and the presence of non-encrusted pileipellis hyphae in P. singulare could help discriminate them. Detailed comparisons between the two new species were listed in Table 2.

Tropical Asian elements of Pseudosperma or Inocybaceae spp. are usually encountered in Fagaceae or Dipterocarpaceae forests (Horak 1980; Fan and Bau 2014; Latha and Manimohan 2017). However, the present two new species are both collected under the Carpinus forests. Carpinus is a genus of Betulaceae distributed mainly in temperate and extending to subtropical to northern tropics (Liu et al. 2021). Based on our field observations, the only putative host of the two new species, Carpinus londinianana var. lanceolata, was described from Wuzhishan of Hainan, where there is a tropical mountain climate. One specimen (GN0942) of P. fulvidiscum was collected from Fujian province, where there is a subtropical monsoon climate, but this collection lacks detailed host information.

In our multi-gene phylogeny, the two new species grouped into a full support clade that is sister to all the remainders of the genus. The subclade unifying P. brunneosquamulosum and P. rubrobrunneum from tropical India, P. arraneosum and P. aff. araneosum (PL58410) from tropical Australia, and Pseudosperma sp. (MCAS62) from subtropical Japan. Interestingly, the two Australian taxa, P. aff. araneosum (PL58410) and P. araneosum, are sisters to P. fulvidiscum and P. singulare, respectively. Pseudosperma brunneosquamulosum and P. sp. (MCAS62) clustered in a full support lineage that is sister to the lineage unifying P. fulvidiscum and P. aff. araneosum (PL58410); P. rubrobrunneum is sister to the lineage unifying P. singulare and P. araneosum. Matheny et al. (2009) suggested that northern and southern South America, Australia, and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. The present multi-gene phylogeny confirms close relationships between these Pseudosperma taxa from tropical Asia and tropical Australia. Similarly, Inocybe hainanensis T. Bau and Y.G. Fan, a formerly described species from tropical China, has the closest affinities to an Australian species I. violaceucaulis Matheny and Bougher based on nLSU phylogeny (Fan and Bau 2014). With more tropical taxa being discovered and described in the genus, we will reach a better understanding of their distribution pattern and evolutionary history.

The alkaloid muscarine, an ammonium quaternary compound that stimulates the parasympathetic nervous system of animals, is found in Inocybaceae and several mushroom genera (Lurie et al. 2009; White et al. 2019). Among the seven major clades of Inocybaceae, the presence of muscarine was suggested to be a derived trait for an inclusive clade containing Nothocybe, Pseudosperma, and Inocybe s. str. Pseudosperma is supposed to contain many muscarine-positive species, but only five species have been assayed in this genus (Kosenstka et al. 2013). Of these, P. rimosum, P. niveivelatum, P. sororium, and P. spurium contain muscarine, and only P. perlatum was reported to lack muscarine (Kosenstka et al. 2013). There are still numerous taxa in Pseudosperma waiting for toxin detection. In recent years, cases of poisoning caused by Pseudosperma mushrooms were
constantly reported in China (Li et al. 2020, 2021, 2022; Xu et al. 2020). The present two new species are both toxic mushrooms due to the fact that they contain high concentrations of muscarine. Even though these two new species are just “little brown mushrooms” and may be ignored in the field, the absence of aposematic coloration makes them more easily collected or consumed by mushroom hunters. Accordingly, publicity of the two new toxic mushrooms is undoubtedly needed, especially for the more frequently encountered species *P. fulviduscum*. Our present work provides scientific details for the identification and publicity of these two toxic species.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11557-022-01822-z.

Acknowledgements The authors thank Dr. Shuai Jiang and Mr. Yong-Qing Fu (Yinggeling Substation, Hainan Tropical Rainforest National Park) for their kind help in field works, to Dr. Fei Xu (Ningxia Hui Autonomous Region Center for Disease Control and Prevention) for his kind guidance in toxin detection, and Mr. Chuang-Teng Huang (Hainan Academy of Forestry and Hainan Academy of Mangrove) for his kind help in the identification of host plant.

Author contribution Conceptualization: Y-G.F. and W-J.Y. Methodology: L-N.Z. Performing the experiment: L-N.Z. Formal analysis: L-N.Z., W-J.Y., and L-S.D. Resources: Y-G.F., L-S.D., J-H.H., and Latha KPD. Data curation: L-N.Z., W-J.Y., and L-S.D. Writing—original draft preparation: L-N.Z. Writing—review and editing: Y-G.F. and W-J.Y. Supervision: Y-G.F. Project administration: Y-G.F. Funding acquisition: Y-G.F. and L-S.D. All authors have read and agreed to the published version of the manuscript.

Funding This study was supported by the Hainan Basic and applied research project for cultivating high-level talents (No. 2019RC230), the National Natural Science Foundation of China (Nos. 31860009, 31400024, and 3190012), the Natural Science Foundation of Shandong Province (ZR2019PC028), and the Innovative Research Projects for Graduate Students in Hainan Province, China (No. HYYS2020-42).

Data availability The sequence data generated in this study are deposited in NCBI GenBank.

Declarations

Ethics approval and consent to participate Not applicable.

Conflict of interest The authors declare no competing interests.

References

Bandini D, Oertel B (2020) Three new species of the genus *Pseudosperma (Inocybaceae)*. Czech Mycol 72(2):221–250

Bandini D, Oertel B, Eberhardt U (2021) Thirteen new species of the family *Inocybe. Mycologia* Bavarica 21:27–98

Bau T, Fan YG (2018) Three new species of *Inocybe* sect. *Rimosae* from China. Mycosystema 37(6):693–702. https://doi.org/10.13346/j.mycosystema.180033

Cervini M, Bizio E, Alvarado P (2020) Quattro nuove specie italiane del Genere *Pseudosperma (Inocybaceae)* con odore di miele. RdM 63(1):3–36

Deng LS, Kang R, Zeng NK, Yu WJ, Chang C, Xu F, Deng WQ, Qi LL, Zhou YL, Fan YG (2021b) Two new *Inosperma (Inocybaceae)* species with unexpected muscarine contents from tropical China. MycoKeys 85:87–108. https://doi.org/10.3897/mycokeys.85.71957

Deng LS, Yu WJ, Zeng NK, Liu LJ, Liu LY, Fan YG (2021a) *Inosperma subsphaerosporum* (Inocybaceae), a new species from Hainan, tropical China. Phytotaxa 502(2):169–178. https://doi.org/10.11646/phytotaxa.502.2.5

Fan YG, Bau T (2013) Two striking *Inocybe* species from Yunnan Province, China. Mycotaxon 123:169–181. https://doi.org/10.5248/123.169

Fan YG, Bau T (2014) *Inocybe hainanensis*, a new lilac-stiped species from Hainan, tropical China. Mycosystema 33(5):954–960

Ge YP, Liu Z, Zeng H, Cheng X, Na Q (2021) Updated description of *Atheniella* (Mycenaceae, Agaricales), including three new species with brightly coloured pilei from Yunnan Province, Southwest China. MycoKeys 81:139–164. https://doi.org/10.3897/mycokeys.139.67773

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41(41):95–98

Horak E (1980) *Inocybe* (Agaricales) in Indomalaya and Australasia. Persoonia 11:1–37

Jabeen S, Khalid AN (2020) *Pseudosperma flavorimosum* sp. nov. from Pakistan. Mycotaxon 135(1):183–193. https://doi.org/10.5248/135.183

Jabeen S, Zainab BH, Khalid AN (2021) *Pseudosperma albobrunneum* sp. nov. from coniferous forests of Pakistan. Mycotaxon 136(2):361–372. https://doi.org/10.5248/136.361

Jean EC, Wang PM, Martin R, Nourou SY, Yang ZL (2022) *Amanita* sect. *Phalloideae*: two interesting non-lethal species from West Africa. Mycol Prog 21:39. https://doi.org/10.1007/s11557-022-01778-0

Katoh K, Rozewicki J, Yamada KD (2019) Mafft online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinformatics 20(4):1160–1166. https://doi.org/10.1093/bioinformatics/btz201

Komerup A, Wanscher JH (1978) The Methuen handbook of colour, 3rd edn. Eyre Methuen, London

Kosentka P, Sprague SL, Ryberg M, Gartz J, May AL, Campagna SR, Matheny PB (2013) Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming fungi. PLoS One 8:e64646. https://doi.org/10.1371/journal.pone.0064646

Latha KPD, Manimohan P (2017) *Inocybes* of Kerala. SporePrint Books, Calicut

Li HJ, Zhang HS, Zhang YZ, Zhang KP, Zhou J, Yin Y, Jiang SF, Ma P, He Q, Zhang YT, Wen K, Yuan Y, Lang N, Lu JJ, Sun CY (2020) Mushroom poisoning outbreaks — China, 2019. China CDC Weekly 2(0):19–24. https://doi.org/10.46234/ccdw2020.005

Li HJ, Zhang HS, Zhang YZ, Zhou J, Yin Y, He Q, Jiang SF, Ma PB, Zhang YT, Wen K, Yuan Y, Lang N, Cheng BW, Lu JJ, Sun CY (2021) Mushroom poisoning outbreaks — China, 2020. China CDC Weekly 3(3):41–45. https://doi.org/10.46234/ccdw2021.014

Li HJ, Zhang HS, Zhang YZ, Zhou J, Yin Y, He Q, Jiang SF, Ma PB, Zhang YT, Yuan Y, Lang N, Cheng BW, Wang M, Sun CY (2022) Mushroom poisoning outbreaks — China, 2021. 4(CdcChina CDC Weekly, 3):35–40. https://doi.org/10.46234/ccdw2022.010

Liu YY, Sheng QQ, He WY, Ye SY, Li JW, Zhou SC (2021) Advances in physiology and ecology of *Carpinus* L. Chinese Wild Plant Resources 40(4):65–69

Lurie Y, Wasser SP, Taha M, Shehade H, Nijim J, Hoffmann Y, Bassi F, Vardi M, Lavon O, Suaed S, Bisharat B, Bentur Y (2009) Mushroom poisoning from species of genus *Inocybe* (fiber head
mushroom): a case series with exact species identification. Clin Toxicol 47:562–565
Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPBI and RPB2 nucleotide sequences (Inocybe, Agaricales). Mol Phylogenet Evol 35:1–20. https://doi.org/10.1016/j.ympev.2004.11.014
Matheny PB, Aime MC, Bougher NL, Buyck B, Desjardin DE, Horak E, Kropp BR, Lodge DJ, Sotyong K, Trappe JM, Hibbett DS (2009) Out of the palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. J Biogeogr 36(4):577–592. https://doi.org/10.1111/j.1365-2699.2008.02055.x
Matheny PB, Bougher NL (2006) The new genus Auritella from Africa and Australia (Inocybaceae, Agaricales): molecular systematics, taxonomy and historical biogeography. Mycol Prog 5:2–17. https://doi.org/10.1007/s11557-005-0001-8
Matheny PB, Bougher NL (2017) Fungi of Australia: Inocybaceae. CSIRO Publishing, Clayton
Matheny PB, Hobbs AM, Esteve-Raventós F (2020) Genera of Inocybaceae: new skin for the old ceremony. Mycologia 112(1): 83–120. https://doi.org/10.1080/00275514.2019.1668906
Na Q, Liu Z, Zeng H, Heng X, Ge Y (2022) Crepidotus yuanchui sp. nov. and C. caspari found in subalpine areas of China. Mycoscience 63: 1–11. https://doi.org/10.47371/mycosci.2021.10.004
Nylander J (2004) MrModeltest V2. Program distributed by the author. Bioinformatics 24:581–583. https://doi.org/10.1093/bioinformatics/btm388
Pradeep CK, Vrinda KB, Varghese SP, Korotkin HB, Matheny PB (2016) New and noteworthy species of Inocybe (Agaricales) from tropical India. Mycol Prog 15(3):1–25. https://doi.org/10.1007/s11557-016-1174-z
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Nylander J (2004) MrModeltest V2. Program distributed by the author.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/ms3197
Tihpromma S, Hyde KD, Jeevon R, Maharachchikumbura SS, Liu JK, Bhat DJ, Karunarathna SC (2017) Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diver 83(1):1–292. https://doi.org/10.1007/s13225-017-0378-0
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1):1–4. https://doi.org/10.1093/nar/gkw256
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8):4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
Wang K, Cai L, Yao YJ (2021a) Annual review on nomenclature novelties of fungi in China and the world (2020). Biodiversity Sci 29:1064–1072. https://doi.org/10.17520/biods.2021202
Wang SN, Hu YP, Chen JL, Qi LL, Zeng H, Ding H, Huang GH, Zhang LP, Chen FS, Yan JQ (2021b) First record of the rare genus Typhrasa (Psathyrellaceae, Agaricales) from China with description of two new species. MycoKeys 79:119–128. https://doi.org/10.3897/mycokeys.79.63700
White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
White J, Weinstein S, Haro L, Bedry R, Schaper A, Rumack B, Zilker T (2019) Mushroom poisoning: a proposed new clinical classification. Toxicon 157:53–65
Xu F, Zhang YZ, Zhang YH, Guan YZ, Zhang KP, Li HJ, Wang JJ (2020) Mushroom poisoning from Inocybe serotina: a case report from Ningxia, Northwest China with exact species identification and muscarine detection. Toxicon 179:72–75. https://doi.org/10.1016/j.toxicon.2020.03.003
Yu WJ, Chang C, Qin LW, Zeng NK, Wang SX, Fan YG (2020) Pseudosperma citrinostipes (Inocybaceae), a new species associated with Keteleeria from southwestern China. Phytotaxa 450(1):008–016. https://doi.org/10.11646/phytotaxa.450.1.2
Zong LP (2020) The path to effective national park conservation and management: Hainan tropical rainforest National Park System Pilot Area. Int J Geoheritage Parks 8(4):225–229. https://doi.org/10.1016/j.ijgeop.2020.11.009

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.