DESENVOLVIMENTO E VALIDAÇÃO DE UM SISTEMA EMBARCADO PARA DETERMINAÇÃO DE ÍNDICES DE CONFORTO TÉRMICO DE BAIXO-CUSTO

MARCOS VINÍCIUS DE SOUZA CHAVES¹, WELINGTON GONZAGA DO VALE¹, MARCELO MACHADO CUNHA², PATRICIA DE AZEVEDO CASTELO BRANCO DO VALE¹, BRUNO JAVIER CAROZO ARZE¹, MARIANA DIAS MENESES¹

¹ Graduando em Engenharia Agrícola, Universidade Federal de Sergipe, (79)988685368, xavesmarcosvinicius96@gmail.com
² Professor Dr., Universidade Federal de Sergipe, (79)981180573, valew@gmail.com

Apresentado no XLVIII Congresso Brasileiro de Engenharia Agrícola - CONBEA 2019 17 a 19 de setembro de 2019 - Campinas - SP, Brasil

RESUMO: A produção animal tecnificada exige ambientes mais controlados, visando maximizar o desempenho dos animais e, consequentemente, a rentabilidade da criação. Para tal, faz-se necessário instrumentar, avaliar e diagnosticar os diversos ambientes de criação. Dessa forma, a Zootecnia de Precisão insere-se neste contexto no intuito de provever, de maneira eficaz, as necessidades gerais do animal, para que este obtenha total potencial produtivo, corrigindo as divergências entre o ambiente e seu bem-estar para garantir o conforto do mesmo. Sabendo que o Brasil é um país de clima tropical, o clima pode se tornar um empecilho para o desenvolvimento do animal, então, a proposta deste projeto traz como objetivo o desenvolvimento de um protótipo para sistema embarcado de análise do conforto térmico à baixo-custo. Utilizando sensores e o microcontrolador Arduino, este trabalho logrou no seu objetivo, com um protótipo de aparelho capaz de mensurar temperatura de bulbo seco, temperatura de bulbo úmido, temperatura de globo negro, umidade relativa do ar, ITGU e ITU com custo de produção abaixo do proposto pelo mercado.

PALAVRAS-CHAVE: Zootecnia de Precisão; Ambiência Animal; Conforto Térmico Animal.

DEVELOPMENT AND ASSESSMENT OF A LOW-COST EMBEDDED SYSTEM FOR EVALUATION OF ANIMAL THERMAL COMFORT

ABSTRACT: Technified animal production requires more controlled environments, aiming to maximize the performance of animals and, consequently, the profitability of creation. To do that, it is necessary to instrument, evaluate and diagnose the various environments of creation. In this way, the Precision Animal Production is inserted in this context in order to effectively provide the general needs of the animal, so that it obtains full productive potential, correcting the divergences between the environment and its well-being to guarantee its comfort. Knowing that Brazil is a country with a tropical climate, this one is a great obstacle, so the proposal of this project aims to develop a prototype for embedded system of thermal comfort analysis at low cost. Using sensors and the microcontroller Arduino, this work fulfilled its objective, with a prototype device capable of measuring dry bulb temperature, wet bulb temperature, black globe, relative humidity, temperature, ITGU and ITU with production cost below that proposed by marketplace.

KEYWORDS: Precision Animal Production; Animal Ambience; Animal Thermal Comfort.

INTRODUÇÃO: O desafio da produção contemporânea de produtos agrícolas está ligado intrinsecamente a otimização dos processos e do valor de produção. Garantir conforto térmico na
produção animal é um investimento justificado em países de clima tropical, pois o ambiente exerce influência significante no desempenho do animal, sendo a temperatura ambiente o principal limitante da produção animal no Brasil (Neto, 2014).

Não obstante a esse conceito, a otimização de processos foi impulsionada e aprimorada pela Zootecnia de Precisão. A Zootecnia de Precisão, é a gestão da produção buscando uma melhoria nos processos de produção dos animais de interesse da zootecnia, onde são utilizados sensores e computadores na automação de estabelecimentos.

Os estabelecimentos que funcionam com base na Zootecnia de Precisão estruturam-se no monitoramento automático e contínuo dos animais e dos elementos ou variáveis relacionadas à produção podendo potencializar a eficiência na produção e no controle de qualidade nas fazendas tornando produtores mais capacitados a responderem às pressões do comércio sobre seus produtos.

Contudo, os métodos ortodoxos de medição e monitoramento das condições climáticas na pecuária ainda requerem a gravação e ativação de sistemas de controle térmico manualmente. Todavia, as práticas ainda aplicadas podem resultar em erros, principalmente quando ocorrem mudanças do clima de maneira imediata. Assim, com o crescimento da indústria de automação e tecnologia de informação, o controle da pecuária torna mais versátil e preciso os ambientes de produção, através da redução da intervenção humana (Chen & Chen, 2019).

Para garantir que o animal esteja em condições favoráveis para produzir foram desenvolvidos alguns indicadores sobre ambiente. Os índices de ITU (Índice de Temperatura e Umidade), CTR (Carga Térmica Radiante) e ITGU (Índice de Temperatura de Globo negro e Umidade) são amplamente utilizados. O termômetro de globo negro, por exemplo, indica a incidência de energia radiante no local sendo então, uma maneira prática e barata de determinar quantitativamente a componente energia radiante do ambiente (Bond & Kelly, 1955).

Já o ITU, que combina valores de Temperatura e Umidade por meio de um ajuste linear nas temperaturas de bulbo seco e bulbo úmido resulta num índice de conforto relacionando duas variáveis importantes num índice só. Então, o ITU mesmo sendo um índice que mensura o conforto do ambiente, não traz respostas tão relevantes para regiões tropicais quanto o ITGU, pois este, por captar a energia radiante, consegue dar um valor de conforto mais próximo da sensação do indivíduo.

Tendo em vista que no Brasil, a presença excessiva do calor torna-se um limitante para que animais possam expressar seu máximo potencial em produção, em galpões de produção e ambientes de trabalho torna-se mais interessante avaliar o ITGU.

Sendo assim, objetivou-se neste trabalho projetar, desenvolver e validar um equipamento de baixo custo, capaz de mensurar os índices de ITU e ITGU, com equipamentos disponíveis no mercado nacional, dentro das especificações já estabelecidas e com possibilidade de adaptação a controle de pequenos estabelecimentos.

MATERIAL E MÉTODOS
Através do método experimental, para atingir os objetivos, a pesquisa propôs inicialmente o projeto e em seguida o desenvolvimento de um protótipo para avaliação de conforto térmico através da temperatura de globo negro e umidade. O projeto dividiu-se em montar um diagrama de blocos, para entender como seriam tratados os dados, orçar os materiais necessários, para estudar viabilidade econômica, esboçar um diagrama do circuito, analisando como seriam alimentados os sensores, como seriam feitos os barramentos e como seria realizada a comunicação entre o Arduino e os sensores.

Material	Imagem	Descrição
Conectores 3 Vias	![Conectores 3 Vias](image)	Plug com 3 vias.
Conector 4 Vias	![Conector 4 Vias](image)	Plug com 4 vias.
Material	Imagem	Descrição
--------------------------	--------	---
Jumpers		Um conjunto de cabos jumpers para fazer a prototipagem do sistema.
MicroSD		MicroSD Sandisk com capacidade de 16GB e transferência rápida de dados.
Sensor de Umidade		Sensor de umidade HTU21d de circuito I2C e alimentação de entrada de até 3.6V. Mensura umidade e temperatura em porcentagem e graus Celsius, nas faixas de 0 à 100% e -40 à 125°C.
Cabo Ethernet.		Cabo Ethernet para comunicação entre o arduino e um PC.
Arduino Mega		Microcontrolador, contém 54 pinos digitais de entrada e saída podendo 15 serem utilizadas como PWM, 16 entradas analógicas, 4 UART’s e conexão USB. Podendo ser iniciado pelo cabo USB através do computador ou adaptador AC-DC para baterias. Podem ser instalados Shields no Arduino Mega
ProtoShield		ProtoShield é um elemento utilizado com a funcionalidade de auxiliar na prototipagem do sistema, criando barramentos de alimentação e comunicação com o microcontrolador.
Sensores de Temperatura		O sensor de temperatura DS18B20 é capaz de medir em graus Celsius, pode operar entre -55 até +125°C e com precisão de ±0,5°C se estiver operando dentro da faixa de -10 até +85°C.
Relógio		DS3231, é relógio de tempo real que mantem as informações de horário atualizadas uma vez que ajustadas. Possui sensor de temperatura e um medidor de tensão sendo que este é alimentado em 5V de tensão fazendo recarga da pilha utilizada pelo mesmo.
Material	Imagem	Descrição
----------	--------	-----------
Globo Negro	![Globo Negro](image)	Globo Negro de liga metálica com 6” de diâmetro.
Display 4x20	![Display 4x20](image)	Display LCD azul 20x4 com modulo de comunicação I2C agregado, funcionamento à tensão de 5V.
Peças em Acrílico	![Peças em Acrílico](image)	Peças em acrílico para proteção dos dispositivos eletrônicos do ambiente e para suporte dos sensores, mais itens necessários para medir as variáveis.
Ethernet-MicroSD Shield	![Ethernet-MicroSD Shield](image)	Módulo ethernet W5100 para Arduino que permite conexão através de rede ethernet e possui slot para microSD. Permite conexão de 14 pinos digitais para o microcontrolador. Alimentação de 5V.

O desenvolvimento do protótipo seguiu o sugerido no projeto. Após testar a rotina de programação com os sensores montados em protoboard, os suportes foram devidamente equipados e feita a solda na protoshield. Tendo todo aparato confeccionado a validação do sistema foi realizada comparando dados com a estação desenvolvida por Cunha (2019) e comparando 416 dados coletados pareados durante 5 dias.

A Figura 1, demonstra o diagrama de blocos. Sensores fazem a captação dos dados em campo, sendo esses dados as informações de: temperatura de bulbo seco e bulbo úmido, umidade e temperatura do globo negro. Em seguida, os dados devem ser administrados pelo microcontrolador do Arduino Mega, que receberá os dados do ambiente e calculará ITU (Thom, 1957) e ITGU (Buffington, 1981) com base as equações a baixo:

\[
\text{ITGU} = 0,72(\text{Tgn} + \text{Tbu}) + 40,6 \\
\text{ITU} = 0,8 \text{Tg} + \left[\frac{\text{UR} (\text{Tg} - 14,3)}{100} \right] + 46,3
\]

em que,
- Tgn - temperatura do globo negro colocado no mesmo local que os animais (°C);
- Tbu - temperatura de bulbo úmido (°C).

Os dados foram armazenados em arquivo no formato de bloco de notas, através do shield Ethernet W5100, que suporta um microSD, seguindo a lógica os dados serão atualizados no display a cada minuto e os dados serão gravados a cada 20 minutos. O display exibirá: horário, temperatura de bulbo seco, temperatura de bulbo úmido, temperatura de globo negro, ITU e ITGU. O descarregamento dos dados armazenados no USB pode ser feito através do cabo Ethernet, necessitando somente conectar-se e entrar no endereço do shield.
FIGURA 1. Diagrama de blocos dos dados e fluxo de programação.

A abordagem de programação para o sistema embarcado instalada Arduino Mega foi desenvolvida através da IDE do desenvolvedor, com uso de bibliotecas disponibilizadas pelos fabricantes dos sensores e a sequência lógica de dados mostrada abaixo na Figura 2.

Os materiais utilizados para o desenvolvimento deste projeto foram obtidos em mercado nacional ou reciclados, com o objetivo de se tornar acessível e ter custo baixo. No orçamento estão todos preços de aquisição dos itens, sendo que os parâmetros para os obtenção dos índices de ITU e ITGU seguiram o padrão requeridos pelas normativas, mesmo sendo materiais não convencionais.

RESULTADOS E DISCUSSÃO

Os resultados obtidos nas avaliações realizadas ao longo do período de projeto, incluindo orçamento, protótipo, dados obtidos, calibração e validação do protótipo e dados estão apresentados a seguir.

TABELA 1. Orçamento de materiais.

Material	Qt.	Preço Unit	Preço Total
Conector 3 vias.	3	R$9,00	R$27,00
Conector 4 vias.	1	R$12,00	R$12,00
Pacote de fios jumpers.	2	R$8,00	R$16,00
Cabo Ethernet.	1	Reciclado	Reciclado
Arduino Mega 2560 com cabo USB	1	R$65,00	R$65,00
ProtoShield.	1	R$15,00	R$15,00
Sensores de Temperatura DS18B20.	3	R$15,00	R$45,00
Sensor de Umidade HTU21d.	1	R$40,00	R$40,00
Globo Negro de metal.	1	Reciclado	Reciclado
Display 4x20 com placa i2c soldada.	1	R$50,00	R$50,00
Peças em Acrílico – Caixa e Suporte.	1	R$120,00	R$120,00
Ethernet-MicroSD Shield W5100.	1	R$55,00	R$55,00
MicroSD	1	R$30,00	R$30,00
Real Time Clock DS3231	1	R$15,00	R$15,00
Total		**R$490,00**	**R$490,00**

*Cotação do dólar: US$ 1,00 equivale R$3,9310.

Em primeira análise, avaliando financeiramente a aquisição dos materiais desse sistema, a vantagem obtida em relação ao preço estabelecido pelo mercado, que está na faixa de R$ 2.490,00 à R$ 5.990,00, percebe-se que esta abordagem possui custo menor para realizar o
cálculo dos índices, sendo que equipamentos com menor preço no mercado não possuem sistema de gravação de dados, dando somente o valor das variáveis diferente do proposto neste trabalho.

Tendo utilizado o material citado acima foi possível desenvolver o protótipo ilustrado na Figura 2. A acurácia do sistema foi comparada com a estação desenvolvida por Cunha (2019), a correlação entre os dados fica nítida com os resultados ilustrados na Figura 3.

FIGURA 2. Protótipo construído.

FIGURA 3. Análise de dados do sistema cruzada com dados da estação meteorológica.

Para tratamento dos dados, os sensores foram denominados de T1, T2 e T3 que, como pode ser observado na Figura 2, foram respectivamente o de bulbo seco, bulbo úmido e globo negro. No entanto, todos sensores para a avaliação dos dados, mediram a temperatura do ar para serem correlacionadas com os dados coletados pelas informações da estação de Cunha (2019). Os dados de umidade foram caracterizados pelo símbolo “Umi”.

Os dados da estação de Cunha (2019) e o WGV-1c, desenvolvido neste trabalho, apresentaram alta correlação entre si. A menor adequação dada pelo R²= 0,948 do T3, que, mesmo tendo sido a menor, não foi considerada significativa. A melhor adequação deu-se com o sensor de umidade, que apresentou comportamento muito semelhante, comprovado pelo R²=0,9892.

Em seu trabalho buscando uma aplicação móvel para um sistema coletor de temperatura de globo negro, Oliveira (2016), no cruzamento de dados do seu aparato com o equipamento Hobo, obteve diferença estatística significativa, que se deu principalmente devido ao período que sensores utilizados pelo autor para se estabilizar.
Já Santos (2013), que utilizou metodologia semelhante, porém com sensores diferentes, o resultado foi próximo ao deste trabalho, tendo uma boa aproximação dos dados e uma boa adequação na curva de regressão.

FIGURA 4. Comparação dos dados de Temperatura Sensor T1.

FIGURA 5. Comparação dos dados de Temperatura Sensor T2.

FIGURA 6. Comparação dos dados de Temperatura Sensor T3.
Analisando os dados coletados simultaneamente e tendo pareado os mesmos, observou-se que os dados adquiridos foram muito próximos entre si. O dado de umidade relativa apresenta um descolamento quando relacionado com a base de Cunha (2019), como apresentado na Figura 7. Porém, avaliando os trabalhos de Oliveira Jr. (2016), Santos (2013) e Neto et al. (2015) percebemos que este deslocamento é comum e a diferença nos dados se dá devido à precisão dos sensores utilizados (±2% nesta pesquisa).

Os sensores de temperatura, ilustrados nas Figuras 4, 5 e 6, aproximaram-se mais dos dados base, uma vez que, analisada a precisão requerida os dados tiveram comportamento desejado, estando moldados a curva de dados base. Assim, não houve necessidade de calibração dos sensores devido a proximidade dos dados encontrados.

Para validação do aparato, o mesmo permaneceu dos dias 17 a 24 de maio de 2019 em funcionamento no galpão de Cotornicultura da Universidade Federal de Sergipe (Figura 8), pertencente ao Departamento de Zootecnia no campus São Cristóvão. A Figura 9 mostra o comportamento coerente dos índices durante o período de validação, com a variação esperada para os horários do dia, como exibido na Figura 10, o ITGU elevou-se até seu pico registrado ao meio dia e valores mais baixos durante a noite e madrugada. Em relação aos valores muito semelhantes entre os índices ITGU e ITU, pode-se relacionar ao fato do galpão ser coberto (telhado) e receber baixa incidência de radiação solar direta.
FIGURA 9. Dados do funcionamento do aparato em aviário.

FIGURA 10. Variação de ITGU para o dia 18 de maio de 2019.

O aparelho funcionou normalmente sem necessidade de manuseio e coube ao final do período somente ser feito o download dos dados para avaliar do ambiente através do tratamento dos dados.

CONCLUSÕES

Utilizando os materiais que obedecessem aos parâmetros estabelecidos por norma, com um orçamento de R$490,00 obteve-se um produto capaz de avaliar ITGU, temperatura ambiente e umidade, que seguiu as especificações do seu projeto neste trabalho.

O fator custo benefício avaliado torna mais atrativo o uso desta proposta alternativa, deixando aos trabalhos futuros estudos sobre outros materiais para globo negro, adição de sensores, otimização do programa e ajustes para melhoria de ambiência animal, uma vez que a escolha do microcontrolador Arduino possibilita essa opção de automação para pequenos estabelecimentos.

Do ponto de vista do funcionamento, acurácia, eficácia, versatilidade, rapidez na operação do aparato e na aquisição (download) dos dados do sistema, esta abordagem para o tema se torna vantajosa e cumpriu seu objetivo, podendo ainda contribuir tanto para o meio acadêmico, através de mais pesquisas, quanto para fins comerciais, com a possibilidade de fabricação deste protótipo para comercialização.

REFERÊNCIAS

BOND, T.E.; KELLY, C.F.; The globe thermometer in agricultural research. Agricultural Engineering, California, v. 36, n. 5, p. 251-255, 1955.
BUFFINGTON, D.E.; COLLASSO-AROCCHO, A.; CANTON, G.H.; PITTY, D. Black globe-humidity index (BGHI) as comfort equation for dairy cows. Transaction of the ASAE, American Society of Agricultural and Biological Engineers, St. Joseph, v.24, n.3, 1981.

CHEN, C.; CHEN W. Research and Development of Automatic Monitoring System for Livestock Farms. Applied Science, v.9, n.6, p.1132, 2019.

CUNHA, M. M.; Desenvolvimento de um sistema embarcado para realização de manejo de irrigação. Dissertação de Doutorado (Desenvolvimento e Meio Ambiente), Universidade Federal de Sergipe, 2019;

NETO, M.M., GABRIEL, C.P.C., SANTOS, V.J., ZANETT, W.A.L. Avaliação de sensores eletrônicos para uso em instrumentos agrometeorológicos alternativos em galpões avícolas. Enciclopédia Biosfera, Goiânia, v.11 n.21, 2015. DOI: https://doi.org/10.18677/EnciBio_2017A21

NETO, H.N.C.; Conforto térmico aplicado ao bem-estar animal. Trabalho de conclusão de curso, Goiânia, 2014, p. 10-15.

OLIVEIRA JÚNIOR, A. J; Dispositivo móvel para análise de conforto térmico e ambiência. Tese de Mestrado em Agronomia (Energia na Agricultura). Botucatu, 2016, p. 23-38.

SANTOS, A. B. Sistema embarcado para determinação remota de índices de conforto térmico. 2013. 79 p. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal de Lavras, Lavras, 2013.

THOM, E.C.; The discomfort index. Weatherwise, v.12, Boston, 1959, p.57-60.