Introduction

Germ cell chromatin undergoes many dynamic remodeling events during gametogenesis and upon fertilization. In mammalian spermatogenesis, S phase histones are replaced by histone variants. The histone variants are then sequentially replaced by transition proteins and protamines, resulting in highly condensed and transcriptionally inert sperm DNA (reviewed in [1]). Sperm DNA is again remodeled upon fertilization, where it is rapidly decondensed, and protamines are replaced by histones to generate transcriptionally competent chromatin. During spermatogenesis, germ cell chromatin also undergoes other dynamic processes such as meiotic recombination, the formation of the XY body and establishment of genomic imprinting mediated by DNA methylation.

Histone variants, unlike S phase or replication-coupled (RC) histones, are expressed throughout the cell cycle and are incorporated into nucleosomes in a DNA replication-independent (RI) manner. In mammals, certain histone variants are expressed during different stages of gametogenesis; however, their specific functions during germ cell development have remained elusive (reviewed in [2,3]). H3.3 is a universal histone H3 variant that is incorporated at sites of active transcription [4–6]. H3.3 incorporation, which occurs in the form of H3.3/H4 dimers [7], likely accounts for the replacement of 20% to 30% of the RC histone H3. Thus, energy-dependent removal of preexisting histones and replacement by RI histones (histone turnover) is a widespread and dynamic process that can be measured by observing the presence of H3.3 in dividing cells. Dynamic incorporation of H3.3 might profoundly alter the chromatin state of the nucleosome by enriching it in post-translational modifications that are associated with active chromatin and depleting it in modifications associated with silent chromatin [8–10]. In addition, H3.3 is incorporated during decondensation of the Drosophila sperm pronucleus, indicating a direct role in chromatin remodeling upon fertilization [11].

To better understand histone turnover and chromatin remodeling during gametogenesis, we developed a system to analyze the spatial and temporal dynamics of histone H3.3 incorporation throughout development in Caenorhabditis elegans. C. elegans is transparent, making it an attractive organism for in vivo analysis of chromatin dynamics at any stage of development and in any cell type. Germ cells are particularly easy to visualize, because the gonad occupies...
Synopsis

Germ cells carry genetic information from one generation to the next. They are converted to gametes during meiosis, which are then reprogrammed for development in the fertilized egg. Gamete production and developmental reprogramming involve dramatic changes in DNA packaging, but little is understood about how these changes are involved in resetting the developmental program for the whole organism. In spermatogenesis, DNA is stripped and repackaged into highly condensed chromatin. After fertilization, sperm DNA is again repackaged as it dramatically decondenses to fuse with the egg nucleus. These repackaging processes involve the four core histone proteins, which tightly wrap DNA into nucleosome particles. A universal variant form of histone 3, H3.3, is abundant in the germ cells of all plants and animals studied and has been shown to turn over at sites of active transcription in various somatic cells. The authors show that H3.3 displays dynamic turnover throughout germ cell development of the roundworm Caenorhabditis elegans. H3.3 incorporates during the first germline stem cell division, continues through meiosis, and ends up in sperm and eggs. Strikingly, H3.3 becomes depleted from primordial germ cells, and the meiotically silenced X chromosome is deficient in H3.3, which suggests that H3.3 dynamics during meiosis and reprogramming transmit epigenetic information.

Results

The C. elegans Genome Encodes Two H3.3 and Three H3.3-Like Histone Variants

In animals, RC forms of histone H3 and the RI form (H3.3) differ at only four amino acids. At positions 31, 87, 89, and 90, RC H3 histones have amino acids ASVM, respectively, whereas H3.3 has SAIG. Residues 87, 89, and 90 of H3.3 are critical for RI nucleosome assembly [4], and phosphorylation of H3.3 S31 is specific to regions bordering centromeres in metaphase chromosomes [12]. To identify H3.3 genes within the C. elegans genome, we performed a tblastn search and found five high-scoring hits containing H3.3-specific residues (Figure 1A). These include four previously annotated histone genes: his-69 (E03A3.3), his-70 (E03A3.4), his-71 (F45E1.6), and his-72 (Y49E10.6). his-69 and his-70 are predicted to encode N- and C-terminally truncated proteins, respectively, his-70 may encode a protein lacking the C-terminal six to eight amino acids that was identified previously in total histone H3 purified from C. elegans [13]. his-69 and his-70 are tandem genes, and only one H3.3-like gene is present in the syntenic position in Caenorhabditis briggsae. The tblastn search revealed a fifth candidate H3.3 gene, which we call his-74 (W05B10.1); the predicted HIS-74 is a highly diverged histone with no apparent C. briggsae counterpart.

To identify which H3.3 or H3.3-like genes are expressed, we analyzed RNA from mixed stage wild-type hermaphrodites using oligo dT primers and reverse transcription followed by PCR (RT-PCR). These experiments showed that his-70, his-71, his-72, and his-74 are expressed (Figure 1B). However, we were not able to detect his-69 mRNA from mixed stage wild-type hermaphrodites or an him-8(e1489) male--containing strain, even when his-69--specific primers were used for RT-PCR (unpublished data).

Based on sequence homology, HIS-71 and HIS-72 are the best candidates for functional H3.3 histone variants in C. elegans. Both have orthologs in C. briggsae and Caenorhabditis remanei. Both HIS-71 and HIS-72 have residues AIG at positions 87, 89, and 90 and a potentially phosphorylatable threonine at position 31. HIS-74 also contains residues AIG at positions 87, 89, and 90 but lacks a universally conserved phosphorylatable residue at position 31. HIS-71 and HIS-72 differ by only one amino acid, at position 124 (Ile and Met, respectively). his-71 and his-72 may be functionally redundant, because mutations in either his-71 (tm1940) or his-72 (tm2066) alone are homozygous viable (National BioResource Project, Tokyo, Japan).

H3.3 is Present in Chromatin throughout Development

To determine the spatial and temporal incorporation dynamics of H3.3 throughout development, we constructed transgenes encoding HIS-71 or HIS-72 fused at the C terminus to GFP (HIS-71::GFP and HIS-72::GFP) and HIS-72 fused at its N terminus to YFP (YFP::HIS-72) (Figure 1C–1E). Each transgene included 1 kb upstream and 1 kb downstream of the coding sequence.

Worm strains containing each transgene were generated, and living and fixed embryos, larvae, and adults were examined by fluorescence microscopy (Figure 2A–2G). HIS-71::GFP displayed high levels of expression in almost all adult nuclei (Figure 2A). HIS-72::GFP displayed a similar expression pattern in almost all larval and adult nuclei (Figure 2B and 2C), except that intestinal nuclei showed only low levels of expression (Figure 2B). Another apparent difference between HIS-71 and HIS-72 was seen during the onset of embryonic expression. With the his-71::GFP transgene, fluorescence was detected at the approximately 51-cell stage (embryos with four E blastomeres) (unpublished data), whereas in crosses where sperm bearing the YFP::his-72 transgene fertilized wild-type oocytes, fluorescence from embryonic expression was detected at the approximately 26-cell stage (embryos with two E blastomeres) (see below).

In embryos, HIS-72::GFP can be detected in nuclei at all stages (Figure 2F and 2G). When fixed nuclei were viewed at high magnification, the most intense HIS-72::GFP and YFP::HIS-72 fluorescence appeared coincident with DAPI-stained DNA at all stages of the cell cycle (Figure 2D and 2E). For example, mitotic chromosomes coalesce into a characteristic bar-shaped structure at metaphase that displayed high levels of fluorescence (Figure 2D and 2E). These observations suggest that the tagged H3.3 proteins are incorporated into nucleosomes. To test this possibility in the his-72::gfp strain, we used a high salt histone extraction method to separate nucleosomes (containing histone octamers) from nonnucleosomal proteins [14]. Extracts from lysed embryonic nuclei were bound to hydroxyapatite and eluted at increasing salt concentrations. Nonnucleosomal proteins are predicted to elute in 0.35 M NaCl, and core histones elute in 2.5 M NaCl. Coomassie blue staining and Western blot analysis using an
anti-histone H3 antibody confirmed that *C. elegans* histones are enriched in the 2.5 M NaCl eluate fractions (Figure 3A and 3B). The majority of HIS-72::GFP, predicted to be about 42 kDa, stained positively with an anti-GFP antibody in the 2.5 M NaCl eluate fractions, indicating that HIS-72::GFP is incorporated into nucleosomes (Figure 3C). Our combined results suggest that H3.3 is present in chromatin throughout development.

H3.3 Is a Component of Mature Sperm Chromatin

Previous immunostaining experiments in *Drosophila melanogaster* failed to detect H3.3 in developing sperm beyond the spermatocyte stage, suggesting that H3.3 is not present in mature sperm [15]. However, high-performance liquid chromatography has provided evidence of H3.3 in human sperm [16]. We readily detected HIS-72::GFP and YFP::HIS-72 by fluorescence at all stages of *C. elegans* spermatogenesis (Figure 4A and 4B). HIS-72::GFP colocalizes with DAPI in pachytene stage nuclei and in the single chromatin mass characteristic of spermatocytes in both males and hermaphrodites. Surprisingly, both YFP::HIS-72 and HIS-72::GFP are retained in mature sperm in both male and hermaphrodite worms (Figure 4C–4H). HIS-72::GFP colocalizes with DAPI, showing that HIS-72::GFP is incorporated into sperm chromatin (Figure 4E–4H). We observed similar incorpora-
tion patterns during spermatogenesis in hermaphrodite worms. We were unable to detect HIS-72::GFP by immunostaining in \textit{C. elegans} spermatocytes or mature sperm. The highly compact sperm chromatin may limit antibody accessibility, making it difficult to detect H3.3 or HIS-72::GFP by immunostaining. Because H3.3 is present in the sperm of both nematodes and humans, we propose that H3.3 retention is likely to be a general feature of animal spermatogenesis.

H3.3 Is Detected throughout Oogenesis

Next, we analyzed the incorporation of HIS-72::GFP in oogenic germ cells. HIS-72::GFP was detected in germ cell nuclei throughout all stages of oogenesis (Figure 5A–5F). HIS-72::GFP expression was largely coincident with that of DAPI-stained chromatin. For example, the DNA in germ nuclei exiting mitosis and entering meiosis (transition zone nuclei) has a characteristic crescent shape that appears identical by both DAPI staining and HIS-72::GFP fluorescence (Figure 5C and 5D). During the diakinesis stage of meiosis, oocytes greatly enlarge in size and in nuclear volume. In these enlarged nuclei, HIS-72::GFP is present at high levels throughout the nucleoplasm (Figure 5A and 5B), which would obscure any chromatin-localized HIS-72::GFP. Indeed, less stringent fixation conditions that allowed some diffusion of the nucleoplasm revealed chromosome-associated HIS-72::GFP in mature oocytes (see below). In addition, we observed that HIS-72::GFP is chromatin-localized in fertilized oocytes completing meiosis I and II (Figure 5G and 5H). We hypothesize that oocytes synthesize high levels of H3.3 in preparation for embryogenesis.

Maternal H3.3 Is Incorporated into Both Pronuclei and the Paternal Chromatin upon Fertilization

We wanted to determine whether maternally provided H3.3 might remodel the paternal chromatin once oocytes are fertilized. At fertilization, the sperm chromatin decondenses and acquires a nuclear envelope (forming the paternal pronucleus). A separate nuclear envelope surrounds the maternal chromosomes (the maternal pronucleus), and the two pronuclei migrate toward the center of the egg where they fuse into a single large nucleus. These initial events of embryogenesis are believed to occur in the absence of embryonic transcription [17,18]. To assay the fate of maternally provided H3.3, we introduced the \textit{his}-72-\textit{GFP} transgene into temperature-sensitive \textit{fem-1(hc17ts)} \textit{unc-4(e120)} hermaphrodites that produce oocytes, but not sperm, when cultured at a nonpermissive temperature (23°C). Mating these worms with wild-type males yields one-cell embryos that contain only maternally synthesized HIS-72::GFP. We found that maternal HIS-72::GFP enters both the paternal and maternal pronuclei as soon as they are formed (Figure 5I and 5J). HIS-72::GFP showed both a nucleoplasmic and chromosomal localization pattern, suggesting that it had incorporated into the paternal chromatin (Figure 5K–5N). Because HIS-72::GFP was already present on oocyte chromatin during oocyte meiotic maturation, we could not determine if additional maternal HIS-72::GFP is incorporated into maternal chromatin upon fertilization. We conclude that maternally provided HIS-72 may remodel paternal chromatin before the first cell division and prior to the onset of transcription.
H3.3 within sperm chromatin might be retained in the paternal chromosomes after fertilization, thus providing an inherited epigenetic marker. To address this issue, we crossed males expressing HIS-72::GFP to feminized fem-1(hc17 ts) unc-4(e120) hermaphrodites lacking the transgene. After mating, large numbers of GFP-containing sperm were visible in the uterus and spermatheca of the hermaphrodite (Figure S1). The GFP fluorescence associated with individual sperm disappeared very soon after fertilization, and no fluorescence was visible on the paternal chromosomes as the paternal pronucleus formed. Taken together with the abundance of chromatin-bound maternal HIS-72::GFP in the paternal pronucleus, this disappearance demonstrates that most of the H3.3 in paternal chromatin is maternally derived. Whether or not a low amount of paternally derived H3.3 is retained postfertilization could not be determined, because decondensation of sperm resulted in a marked dilution of the signal.

The X Chromosome Is Deficient in H3.3 during Gametogenesis

The adult male (XO) and hermaphrodite (XX) gonads contain rows of germ nuclei in sequential stages of mitosis and meiosis. Previous studies have shown that X chromosomes differ from autosomes in histone modifications during gametogenesis in *C. elegans* and mice [19–21]. Histone H3 K9 dimethyl (H3K9me2), a histone modification associated with transcriptional repression, is enriched on the meiotically silenced XY body of male mice [20]. In *C. elegans* males, H3K9me2 is similarly enriched on the X chromosome at the pachytene stage, suggesting that this chromosome is also meiotically silenced [19,21]. In the mitotic zone and in the pachytene stage of meiosis, the single X chromosome in males and the two X chromosomes in hermaphrodites are deficient in histone modifications associated with transcriptional activity, such as histone H3 K4 dimethyl (H3K4me2) [19,21]. Only in postpachytene stages of oogenesis do the X chromosomes begin to accumulate histone modifications associated with transcriptional activity [19,21], coincident with a burst of expression of X-linked genes involved in oogenesis [22].

In our analysis of H3.3 in the hermaphrodite and male germlines, we found that the mitotic zone and pachytene stage nuclei showed nonuniform localization of YFP::HIS-72 (Figure 6A–6S). In general, chromosomes showed varying levels of YFP::HIS-72 along their length. However, two entire chromosomes were consistently deficient in YFP::HIS-72 in the mitotic nuclei of hermaphrodites (Figure 6A), and one chromosome was deficient in YFP::HIS-72 in the mitotic
nuclei of males (Figure 6C). The same chromosomes were also deficient in H3K4me2 (Figure 6B and 6D, respectively). During the pachytene stage of meiosis, one set of paired chromosomes was deficient in YFP::HIS-72 (Figure 6E–6G) in hermaphrodites. In costaining experiments, we found that the same chromosomes that were deficient in YFP::HIS-72 were also deficient in H3K4me2, confirming that they are the X chromosomes (Figure 6H–6M and Video S1). Similarly, in the pachytene stage of male spermatogenesis, one chromosome was deficient in YFP::HIS-72, and this chromosome also showed reduced staining for H3K4me2 (Figure 6N–6S and Video S2). By the diakinesis stage of oogenesis, HIS-72::GFP can be detected uniformly on all chromosomes under mild fixation conditions in which nucleoplasm is allowed to diffuse away (Figure 6T–6V). We conclude that the X chromosome, when compared to the autosomes, undergoes very little histone turnover in germ cells. Because studies in other systems have shown that H3.3 is enriched in “active” modifications such as H3K4me2 [8–10], our results suggest that histone H3.3 turnover and H3K4me2 modification are coupled processes.

H3.3 Becomes Depleted from Primordial Germ Cells

The C. elegans germline originates from a series of asymmetric, stem cell–like divisions in the early embryo; this lineage of cells is called the P lineage (reviewed in [23]). After a P lineage cell divides, one daughter produces only somatic cell types and the other daughter becomes the new P lineage cell, named in succession P₁, P₂, P₃, and P₄. After the final asymmetric division, P₄ divides equally into two primordial germ cells called Z2 and Z3; these cells do not divide again during embryonic development, but proliferate in larvae to produce all of the germ cells.

We found that HIS-72::GFP can be detected in each of the P₁, P₂, P₃, and P₄ cells and their somatic precursor sister cells (Figure 7A–7T). However, the level gradually decreases in the P lineage. For example, metaphase P₃ chromatin displays less HIS-72::GFP staining when compared to chromatin of somatic blastomeres (Figure 7E–7H).
stage, very little HIS-72::GFP was visible in P4. While HIS-72::GFP was not detectable in the somatic sister of P4, called the D cell, or the D daughters (Figure 7M–7P), HIS-71::GFP was present in later D descendants (Figure 7U–7Y). Levels of both HIS-71::GFP and HIS-72::GFP remained low in Z2 and Z3 during later embryonic stages (Figure 7Q–7Y), although the larval descendants of Z2 and Z3 that proliferate to form the germ cells have detectable levels of H3.3 (unpublished data).

Cells in the embryonic P lineage appear to lack RNA polymerase II–dependent transcription [17]; however, transcription is initiated in the somatic sisters of these cells after division. Therefore, a simple explanation for the presence of HIS-72::GFP in the early P lineage cells, and the absence in later P lineage cells, would be the depletion of maternal HIS-72::GFP combined with the absence of embryonic his-72::gfp transcription. To address when embryonic transcription of H3.3 begins in the P lineage, we crossed males expressing either the his-72::gfp or yfp::his-72 transgene into wild-type worms. While somatic cells expressed both transgenes at high levels, no expression was seen in the P lineage or in the D cell (Figure 8A–8C and unpublished data). Thus, maternally synthesized, but not embryonically expressed, H3.3 is incorporated into the early germline blastomeres; this maternal H3.3 gradually disappears from the P lineage and becomes specifically depleted from primordial germ cells during embryogenesis.
Discussion

We have introduced a system to visualize histone variant H3.3 dynamics in living C. elegans. We have identified HIS-71 and HIS-72 as histone H3.3 variants and have shown that HIS-72::GFP incorporates into nucleosomes. Strains harboring the his-72 transgene are particularly useful for visualizing chromatin dynamics in the germline. A transgene encoding H1.1::GFP was described previously in C. elegans; however, this transgene showed germline expression in only about 2% of animals [24]. In contrast, HIS-72::GFP and YFP::HIS-72 are expressed at high levels throughout gametogenesis in both males and hermaphrodites (approximately 90% and approximately 70% of animals, respectively).

Using this system, we observed H3.3 incorporation throughout embryogenesis, during larval stages and in adult worms. In early embryos, H3.3 is present in gradually decreasing amounts in the germline P lineage (P0 to P4). The P lineage is unusual in that it undergoes stem cell–like divisions, and P0 to P4 cells are largely transcriptionally quiescent. After the final P lineage cell (P4) divides to yield Z2 and Z3 primordial germ cells, H3.3 remains deficient, and this
deficiency persists during embryogenesis. We could not detect embryonic incorporation of H3.3 in the P lineage when the transgene was provided only through male sperm, consistent with previous findings that the P lineage appears to be transcriptionally quiescent, based on RNA polymerase II and transcript analysis [17,18]. Therefore, H3.3 in the early P lineage cells must be maternally derived. Because early P lineage cells contain H3.3, the observation that Z2 and Z3 lack H3.3 could mean that chromatin-associated H3.3 is selectively removed, or is simply diluted out by successive cell divisions. The deficiency of H3.3 in Z2 and Z3 cannot be attributed to a lack of transcription entirely, because some transcription

Figure 7. H3.3 Becomes Depleted from the Primordial Germ Cells

(A–T) Each row shows successively older HIS-72::GFP-expressing embryos fixed and stained as indicated in the column headings; the top row is a two-cell embryo and row (M–P) is a 80- to 90-cell stage embryo. P lineage cells are indicated in the merge column. Note the relative loss of HIS-72::GFP in the older P lineage cells and in (Q–T) Z2 and Z3. The nearest relatives of P4 (the D cell and its descendants, labeled) also show a relative lack of HIS-72::GFP. (U–Y) HIS-71::GFP expression in a live embryo; (X) and (Y) are high magnifications of the boxed area in (W), showing the Z2, Z3, and D cells. Note that HIS-71::GFP is expressed at relatively low levels in Z2 and Z3 but is expressed in D descendants at levels comparable to other somatic precursors. Scale bars, 10 µm.

DOI: 10.1371/journal.pgen.0020097.g007
Although we were unable to score individual chromosome structures and are meiotically silenced. Inactivation of the X chromosome in mature sperm remains deficient in H3.3. Our observation that the *C. elegans* male X chromosome is deficient in H3.3 raises the possibility that reduced histone turnover is involved in maintenance of this chromosome-specific epigenetic state. Epigenetic events have been documented in *C. elegans* [28–30]. For example, some transgenes are imprinted for expression in the male germ line [30], and perhaps expression level is correlated with the amount of H3.3 that accumulates on the transgene locus during spermatogenesis.

Another possible impact of H3.3 incorporation on the maintenance of an epigenetic state comes from our observation that it is retained in mature sperm of both males and hermaphrodites. This retention is reminiscent of the observation that the centromere-specific histone 3 variant, CENP-A, is quantitatively retained in bull sperm [31]. CENP-A-containing nucleosomes are thought to provide a foundation for maintaining centromeres epigenetically through mitosis and meiosis, so that CENP-A retention in bull sperm implies a role in epigenetic transmission. Likewise, our discovery that the other universal RI histone 3 variant, H3.3, is also retained in mature sperm, suggests an analogous role in epigenetic transmission that might in the future be explored using the powerful tools available for *C. elegans*.

Upon fertilization, maternal H3.3 incorporates rapidly into both maternal and paternal pronuclei of *C. elegans*. This is consistent with the previous observation that H3K4me2 is detected in both pronuclei [28], and suggests that H3.3 incorporation may be responsible for the appearance of H3K4me2. Our observation that H3.3 is incorporated into paternal chromatin is consistent with the detection of both H3.3 and its chaperone, HIRA, in the male pronucleus of *Drosophila melanogaster* [11]. Similarly, mouse HIRA is preferentially incorporated into the paternal pronucleus upon fertilization [32]. The difference between worms, in which both pronuclei incorporate H3.3, and flies and mice in which only the paternal genome is remodeled, might stem from a need to distinguish maternal from paternal genomes in flies and mice, but not in worms. In support of this interpretation, we note that mouse maternal and paternal genomes differ in global DNA methylation and histone modifications in the zygote, which are thought to result in parental imprinting (reviewed in [33]).

The *C. elegans* genome appears to be transcriptionally quiescent in one-cell embryos, because the elongation form of RNA polymerase II and newly transcribed mRNAs are first detected in somatic blastomeres at the four-cell stage [17,18,34]. Thus, our observation that H3.3 is incorporated into paternal chromatin upon fertilization in one-cell embryos provides additional evidence that H3.3 can be
deposited independent of transcription [11]. Because H3.3 is the predominant form of histone 3 available throughout cell cycle, it most likely serves as a chromatin repair protein that is incorporated during chromatin-related events outside of S phase, such as chromatin remodeling upon fertilization and DNA repair.

In conclusion, our description of histone H3.3 dynamics during multiple stages of germ cell development implicates chromatin remodeling in germ line maintenance and transmission. *C. elegans* entirely lacks DNA methylation and so provides an ideal model for studying purely histone-based epigenetic processes. This system, in conjunction with the powerful genetics of *C. elegans*, provides a unique opportunity to dissect chromatin dynamics during fertilization and other rapidly unfolding events in real time.

Materials and Methods

Nematode strains and maintenance. Nematodes were cultured and manipulated genetically as described [35]. All strains were grown at 20 to 25 °C. The wild-type strain was the N2 (Bristol) strain. The following mutant alleles and strains were used: LGI: unc-1(e120); LGIII: unc-119(ed3); his-72 (tm6066, a gift from National Bioresource Project, Tokyo, Japan); and LGIV: unc-119(ed3). The following genomic strains were created for this study: zusE182 [his-71(k007):HIS-71::GFP; unc-119(ed3)], zusE178 [his-72(k104):HIS-72::GFP; unc-119(ed3)] and zusE181 [his-72(k104):YFP::HIS-72; unc-119(ed3)].

Plasmids. Genomic sequences containing his-71 and his-72 were identified using the Wormbase Web site (http://wwwwormbaseorg). Plasmids were constructed using the HIS-71::GFP, HIS-72::GFP and YFP::HIS-72 sequences flanked by 1 kb of the gene’s own 5’ and 3’ UTRs. A two-step PCR fusion method was used to construct pSO179 [his-71(k104):HIS-71::GFP; his-71(k104)], pSO159 [his-72(k104):HIS-72::GFP; his-72(k104)] and pSO186 [his-72(k104):HIS-72::GFP; his-72(k104)]. In the first step, his-71 and his-72 sequences were amplified using N2 genomic DNA as template. GFP sequence was amplified from pJH4.52 [36] and sequence GSRPVAT (GGATCCAGACCGGTAGCTACT) was used to fuse HIS-72 to GFP. In pSO179 and pSO186, the linker middle PCR product contains about 21 to 25 bp overlapping UTR sequences (for pSO186) or UTR sequences (for pSO159) were fused together by PCR where the 5’ UTR sequences were amplified using N2 genomic DNA as template, GFP sequence was amplified from pJH4.52 and YFP sequence was amplified from peYFP (Clontech, Palo Alto, California, United States). In the second step, the three PCR products encoding the his-71 5’ UTR, his-72 ORF and his-73 3’ UTR sequences (for pSO179), his-72 5’ UTR, his-72 ORF and his-73 3’ UTR sequences (for pSO159) or his-72 5’ UTR, YFP and his-72 ORF: his-73 3’ UTR sequences (for pSO186) were fused together by PCR where the middle PCR product contains about 21 to 25 bp overlapping sequences with the first and the third PCR products. Primer sequences are available upon request. The PCR reaction was performed using the following primers: TAAATTTTTTTTTGGGATATTGG and CAAAAGCTGggtacctgAACGGGTCGggtaccgAACCTTATTATTGG and CAAAAGCTGggtacc.
specific PCR primers were tested for specificity using plasmids encoding the individual H3.3 or H3.3-like genes. The following primers were used: his-69 (AACGCAATGCGTCCGGAGCC and TTAGTGGGCGTGAATGGAAT), his-70 (GGTTTCCCCCGTGAGCCA GCA and CACCAATCTCCCTCAAGCC), his-71 (AGCCCTCG CAAGCACGT and GAAACGTCAAGCTT), his-72 (CTTCCAGTGACGCTGCAGTGAGGAGG), and w05B10.1 (AGCTCCAGAAAAGCTCCT and TAAACAGG GATCTAGCTG).

Supporting Information

Figure S1. Upon Fertilization, Paternal HIS-72::GFP Appears to Be Lost
Temperature-sensitive fem-1(hev17ts) unc-4(e120) hermaphrodites grown at nonpermissive temperature (23 °C) were crossed to males heterozygous for HIS-72::GFP to determine the fate of paternal HIS-72::GFP. Mating was detected based on the appearance of GFP-containing sperm in the uterus of fem-1(hev17ts) unc-4(e120) hermaphrodites. However, upon fertilization, paternal HIS-72::GFP appears to be lost. (A) GFP Fluorescence and (B, D) DIC images of in utero embryos. Scale bars, 10 μm.

Video S1. The X Chromosome Is Deficient in H3.3 during the Pachytene Stage of Oogenesis
In adult hermaphrodite pachytene stage nuclei, the X chromosome, which is deficient in H3K4me2, is also deficient in YFP::HIS-72. (A) Anti-GFP (green) and DAPI (red) merged and (B) anti-H3K4me2 (green) and DAPI (red) merged sequential images of pachytene stage nuclei from a dissected and formaldehyde-fixed gonad of an adult male. Bar, 5 μm.

Video S2. The X Chromosome Is Deficient in H3.3 during the Pachytene Stage of Spermatogenesis
In male pachytene stage nuclei, the X chromosome, which is deficient in H3K4me2, is also deficient in YFP::HIS-72. (A) Anti-GFP (green) and DAPI (red) merged and (B) anti-H3K4me2 (green) and DAPI (red) merged sequential images of pachytene stage nuclei from a dissected and formaldehyde-fixed gonad of a hi-72(tm2066) male worm. The sequential images were collected at 0.2-μm increments. Scale bars, 5 μm.

Found at DOI: 10.1371/journal.pgen.0020097.sv001 (3.1 MB MOV).

Accession Numbers

The Entrez (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed) accession numbers for the proteins shown in Figure 1A are HIS-69 (NP_497811), HIS-70 (NP_497812), HIS-71 (NP_509344), HIS-72 (NP_499680), and w05B10.1/HIS-74 (NP_506164).

Acknowledgments

We thank the National BioResource Project for C. elegans (Japan) for isolating his-72(tm2066) and his-71(m1940); Diana Chu, Bill Kelly, Hamnit Malik, Sam Ward, and Henikoff and Priess lab members for advice and discussions; and Y. Dalal, T. Furuyama, G. Seydoux and D. Zilberman for critical reading of the manuscript. HIS-72::GFP was generated by SLO in the laboratory of Geraldine Seydoux. SLO thanks G. Seydoux and the Seydoux lab members for advice and discussions.

Author contributions. SLO, JRP, and SH conceived and designed the experiments. SLO performed the experiments. SLO, JRP, and SH analyzed the data. SLO, JRP, and SH wrote the paper.

Funding. SLO thanks J. Boeke for support (NIH GM62835). SLO is supported by the Damon Runyon Cancer Research Foundation (DRG-1818-04).

Competing interests. The authors have declared that no competing interests exist.

References

1. Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, et al. (2005) Establishment of male-specific epigenetic information. Gene 345: 139–153.
2. Churikov D, Zalenskaya IA, Zalensky AO (2004) Male germline-specific histones in mouse and man. Cytogenet Genome Res 105: 203–214.
3. Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434: 583–589.
4. Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9: 1191–1200.
5. Chow CM, Georgiou A, Szutorisz H, Maia e Silva A, Pombo A, et al. (2005) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 280: 20662–20666.
6. Seydoux G, Dunn MA (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124: 2191–2201.
7. Seydoux G, Fire A (1994) Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120: 2823–2834.
8. Kelly WG, Schaner CE, Dernburg AF, Lee MH, Kim SK, et al. (2002) X-chromosome silencing in the germline of C. elegans. Development 129: 479–492.
9. Khalil AM, Boyar FZ, Driscoll DJ (2004) Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci U S A 101: 16583–16587.
10. Reuben M, Lin R (2002) Germline X chromosomes exhibit contrasting patterns of histone H3 methylation in Caenorhabditis elegans. Dev Biol 245: 71–82.
11. Reinke V, Smith HE, Nance J, Wang J, Van Doren C, et al. (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6: 605–616.
12. Seydoux G, Strome S (1999) Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 126: 9275–9285.
13. Jedrusik M, Schulze E (2001) A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development 128: 1089–1091.
14. Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, et al. (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94: 635–645.
15. Subramaniam K, Seydoux G (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126: 4861–4871.
16. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256: 640–642.
17. Stein A, Mitchell M (1988) Generation of different nucleosome spacing periodicities in vitro. Possible origin of cell type specificity. J Mol Biol 203: 1029–1043.
18. Akhmanova A, Miedema K, Wang Y, van Bruggen M, Berden JH, et al. (1997) The localization of histone H3.3 in germ line chromatin of Drosophila males as established with a histone H3.3-specific antisense. Chromosoma 106: 335–347.
19. Kelly WG, Schaner CE, Dernburg AF, Lee MH, Kim SK, et al. (2002) X-chromosome silencing in the germline of C. elegans. Development 129: 479–492.
20. Khalil AM, Boyar FZ, Driscoll DJ (2004) Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci U S A 101: 16583–16587.
21. Reuben M, Lin R (2002) Germline X chromosomes exhibit contrasting patterns of histone H3 methylation in Caenorhabditis elegans. Dev Biol 245: 71–82.
22. Reinke V, Smith HE, Nance J, Wang J, Van Doren C, et al. (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6: 605–616.
23. Seydoux G, Strome S (1999) Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 126: 9275–9285.
24. Jedrusik MA, Schulze E (2001) A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in Caenorhabditis elegans. Development 128: 1089–1091.
25. Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, et al. (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94: 635–645.
26. Subramaniam K, Seydoux G (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126: 4861–4871.
27. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256: 640–642.
28. Bean CJ, Schaner CE, Kelly WG (2004) Meiotic pairing and imprinted X chromosome inactivation in the extraembryonic membranes of the mouse. Nature 256: 640–642.
29. Prahlad V, Pilgrim D, Goodwin EB (2003) Roles for mating and environment in C. elegans sex determination. Science 302: 1046–1049.
30. Sha K, Fire A (2005) Imprinting capacity of gamete lineages in Caenorhabditis elegans. Genetics 170: 1633–1632.
31. Palmer DK, O’Day K, Margolis RL (1990) The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100: 32–36.
32. van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, et al. (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122: 1008–1022.
33. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1: R47–R58.
34. Baugh LR, Hill AA, Slonim DK, Brown EL, Hunter CP (2003) Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130: 889–900.
35. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
36. Strome S, Powers J, Dunn M, Reese K, Malone CJ, et al. (2001) Spindle dynamics and the role of gamma-tubulin in early Caenorhabditis elegans embryos. Mol Biol Cell 12: 1751–1764.
37. Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157: 1217–1226.
38. Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, et al. (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94: 387–398.
39. Mains PN, McGhee JD (1999) Biochemistry of C. elegans. In: Hope IA, editor. C. elegans, A practical approach. Oxford: Oxford University Press. pp. 227–244.