UNIVALENCE AND QUASICONFORMAL EXTENSION OF AN INTEGRAL OPERATOR

ERHAN DENIZ, STANISŁAWA KANAS, AND HALİT ORHAN

Abstract. In this paper we give some sufficient conditions of analyticity and univalence for functions defined by an integral operator. Next, we refine the result to a quasiconformal extension criterion with the help of the Becker’s method. Further, new univalence criteria and the significant relationships with other results are given. A number of known univalence conditions would follow upon specializing the parameters involved in our main results.

1. Introduction

Denote by $\mathcal{U}_r = \{ z \in \mathbb{C} : |z| < r \}$ ($0 < r \leq 1$) the disk of radius r and let $\mathcal{U} = \mathcal{U}_1$. Let \mathcal{A} denote the class of analytic functions in the open unit disk \mathcal{U} which satisfy the usual normalization condition $f(0) = f'(0) - 1 = 0$, and let \mathcal{S} be the subclass of \mathcal{A} consisting of the functions f which are univalent in \mathcal{U}. Also, let \mathcal{P} denote the class of functions $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ that satisfy the condition $\Re p(z) > 0$ ($z \in \mathcal{U}$), and Ω be a class of functions w which are analytic in \mathcal{U} and such that $|w(z)| < 1$ for $z \in \mathcal{U}$. These classes have been one of the important subjects of research in geometric function theory for a long time (see [29]).

We say that a sense-preserving homeomorphism f of a plane domain $G \subset \mathbb{C}$ is k-quasiconformal, if f is absolutely continuous on almost all lines parallel to coordinate axes and $|f_x| \leq k |f_z|$, almost everywhere in G, where $f_x = \partial f/\partial \overline{z}$, $f_z = \partial f/\partial z$ and k is a real constant with $0 \leq k < 1$. For the general definition of quasiconformal mappings see [1].

Univalence of complex functions is an important property but, in many cases is impossible to show directly that a certain function is univalent. For this reason, many authors found different sufficient conditions of univalence. Two of the most important are the well-known criteria of Becker [3] and Ahlfors [1]. Becker and Ahlfors’ works depend upon a ingenious use of the theory of the Loewner chains and the generalized Loewner differential equation. Extensions of these two criteria were given by Ruscheweyh [27], Singh and Chichra [28], Kanas and Lecko [13, 14] and Lewandowski [16]. The recent investigations on this subject are due to Raducanu et al. [26] and Deniz and Orhan [8, 9]. Furthermore, Pascu [21] and Pescar [22] obtained some extensions of Becker’s univalence criterion for an integral operator, while Ovesea [20] obtained a generalization of Ruscheweyh’s univalence criterion for an integral operator.

In the present paper, we formulate a new criteria for univalence of the functions defined by an integral operator G_α, considered in [20], and improve obtained there results. Also we obtain a refinement to a quasiconformal extension criterion of the main result. In the special cases, our univalence conditions contain the results obtained by some of the authors cited in references. Our considerations are based on the theory of Loewner chains.

Key words and phrases. integral operator; univalent function; quasiconformal mapping; univalence criteria; Loewner chain

2010 Mathematics Subject Classification: Primary 47A63; Secondary 30C80, 30C45, 30C62, 30C65.
2. Loewner chains and quasiconformal extension

The method of Loewner chains will prove to be crucial in our later consideration therefore we present a brief summary of that method.

Let $L(z, t) = a_1(t)z + a_2(t)z^2 + ...$, $a_1(t) ≠ 0$, be a function defined on $\mathcal{U} \times I$, where $I := [0, \infty)$ and $a_1(t)$ is a complex-valued, locally absolutely continuous function on I. Then $L(z, t)$ is said to be Loewner chain if $L(z, t)$ has the following conditions:

(i) $L(z, t)$ is analytic and univalent in \mathcal{U} for all $t ∈ I$

(ii) $L(z, t) < L(z, s)$ for all $0 ≤ t ≤ s < \infty$,

where the symbol "$<$" stands for subordination. If $a_1(t) = e^t$ then we say that $L(z, t)$ is a standard Loewner chain.

In order to prove our main results we need the following theorem due to Pommerenke [24] (see also [25]). This theorem is often used to find out univalency for an analytic function, apart from the theory of Loewner chains.

Theorem 2.1. [25] Pommerenke] Let $L(z, t) = a_1(t)z + a_2(t)z^2 + ...$ be analytic in \mathcal{U}, for all $t ∈ I$. Suppose that:

(i) $L(z, t)$ is a locally absolutely continuous function in the interval I, and locally uniformly with respect to \mathcal{U}.

(ii) $a_1(t)$ is a complex valued continuous function on I such that $a_1(t) ≠ 0$, $|a_1(t)| → \infty$ for $t → \infty$ and

$$\left\{ \frac{L(z, t)}{a_1(t)} \right\}_{t ∈ I}$$

forms a normal family of functions in \mathcal{U}.

(iii) There exists an analytic function $p : \mathcal{U} \times I → \mathbb{C}$ satisfying $\Re p(z, t) > 0$ for all $z ∈ \mathcal{U}$, $t ∈ I$ and

$$z \frac{∂L(z, t)}{∂z} = p(z, t) \frac{∂L(z, t)}{∂t} \quad (z ∈ \mathcal{U}, t ∈ I).$$

Then, for each $t ∈ I$, the function $L(z, t)$ has an analytic and univalent extension to the whole disk \mathcal{U} or the function $L(z, t)$ is a Loewner chain.

The equation (2.1) is called the generalized Loewner differential equation.

The following strengthening of Theorem 2.1 leads to the method of constructing quasiconformal extension, and is based on the result due to Becker (see [3], [4] and also [5]).

Theorem 2.2. [3, 4, 5] Becker] Suppose that $L(z, t)$ is a Loewner chain for which $p(z, t)$, defined in (2.1), satisfies the condition

$$p(z, t) ∈ U(k) := \left\{ w ∈ \mathbb{C} : \left| \frac{w - 1}{w + 1} \right| ≤ k \right\} = \left\{ w ∈ \mathbb{C} : \left| w - \frac{1 + k^2}{1 - k^2} \right| ≤ \frac{2k}{1 - k^2} \right\} \quad (0 ≤ k < 1)$$

for all $z ∈ \mathcal{U}$ and $t ∈ I$. Then $L(z, t)$ admits a continuous extension to $\overline{\mathcal{U}}$ for each $t ∈ I$ and the function $F(z, \bar{z})$ defined by

$$F(z, \bar{z}) = \left\{ \begin{array}{ll}
L(z, 0) & \text{for } |z| < 1, \\
L \left(\frac{1}{|z|}, \log |z| \right) & \text{for } |z| ≥ 1,
\end{array} \right.$$
Detailed information about Loewner chains and quasiconformal extension criterion can be found in [1], [2], [6], [7], [15], [23]. For a recent account of the theory we refer the reader to [10, 11, 12].

3. Univalence criteria

The first theorem is our glimpse of the role of the generalized Loewner chains in univalence results for an operator G_α, studied in [20]. The theorem formulates the conditions under which such an operator is analytic and univalent.

Theorem 3.1. Let α, c and s be complex numbers, that $c \notin [0, \infty); s = a + ib, a > 0$, $b \in \mathbb{R}; m > 0$ and $f, g \in A$. If there exists a function h, analytic in U, and such that $h(0) = h_0, h_0 \in \mathbb{C}, h_0 \notin (-\infty, 0]$, and the inequalities

\[
\left| \alpha - \frac{m}{2a} \right| < \frac{m}{2a},
\]

\[
\left| \frac{c}{h(z)} + \frac{m}{2a} \right| < \frac{m}{2|\alpha|},
\]

and

\[
\left| \frac{-c\alpha}{ah(z)} |z|^{m/a} + \left(1 - |z|^{m/a}\right) \left[(\alpha - 1) \frac{zg'(z)}{g(z)} + 1 + \frac{zf''(z)}{f'(z)} + \frac{zh'(z)}{h(z)}\right] - \frac{m}{2a} \right| \leq \frac{m}{2a}
\]

hold true for all $z \in U$, then the function

\[
G_\alpha(z) = \left[\alpha \int_0^z g^{a-1}(u)f'(u)du \right]^{1/\alpha}
\]

is analytic and univalent in U, where the principal branch is intended.

Proof. We first prove that there exists a real number $r \in (0, 1]$ such that the function $L : U_r \times I \to \mathbb{C}$, defined formally by

\[
L(z, t) = \left(\alpha \int_0^{e^{-st}z} g^{a-1}(u)f'(u)du - \frac{a}{c} \left(e^{mt} - 1\right) e^{-st}zg^{a-1}(e^{-st}z)f'(e^{-st}z)h(e^{-st}z) \right)^{1/\alpha},
\]

is analytic in U_r for all $t \in I$.

Because $g \in A$, the function

\[
\phi(z) = \frac{g(z)}{z} = 1 + ...
\]

is analytic in U and $\phi(0) = 1$. Then there exist a disc $U_{r_1}, 0 < r_1 \leq 1$, in which $\phi(z) \neq 0$ for all $z \in U_{r_1}$. We denote by ϕ_1 the uniform branch of $(\phi(z))^{a-1}$ equal to 1 at the origin.

Consider now a function

\[
\phi_2(z, t) = \alpha \int_0^{e^{-st}z} u^{a-1}\phi_1(u)f'(u)du = e^{-sta}z^\alpha + ..., \]

then we have

\[
\phi_2(z, t) = z^\alpha \phi_3(z, t)
\]

where ϕ_3 is also analytic in U_{r_1}. Hence, the function

\[
\phi_3(z, t) = \phi_3(z, t) - \frac{a}{c} \left(e^{mt} - 1\right) e^{-sta} \phi_1(e^{-st}z)f'(e^{-st}z)h(e^{-st}z)
\]
is analytic in \mathcal{U}_1 and
\[
\phi_4(0,t) = e^{-s\alpha} \left[\left(1 + \frac{a}{c} h_0 \right) - \frac{a}{c} h_0 e^{mt} \right].
\]
Now, we prove that $\phi_4(0,t) \neq 0$ for all $t \in I$. It is easy to see that $\phi_4(0,0) = 1$. Suppose that there exists $t_0 > 0$ such that $\phi_4(0,t_0) = 0$. Then the equality $e^{mt_0} = \frac{\phi_4(0,t_0)}{\phi_5(0,t_0)}$ holds. Since $h_0 \notin (-\infty,0]$, this equality implies that $c > 0$, which contradicts $c \notin [0,\infty)$. From this we conclude that $\phi_4(0,t) \neq 0$ for all $t \in I$. Therefore, there is a disk \mathcal{U}_2, $r_2 \in (0,r_1)$, in which $\phi_4(z,t) \neq 0$ for all $t \in I$. Thus, we can choose an uniform branch of $[\phi_4(z)]^{1/\alpha}$ analytic in \mathcal{U}_2, and denoted by $\phi_5(z,t)$.

It follows from (3.3) that
\[
\mathcal{L}(z,t) = z\phi_5(z,t) = a_1(t)z + a_2(t)z^2 + ...
\]
and consequently the function $\mathcal{L}(z,t)$ is analytic in \mathcal{U}_2.

We note that
\[
a_1(t) = e^{t(\frac{m}{\alpha} - s)} \left[\left(1 + \frac{a}{c} h_0 \right) - \frac{a}{c} h_0 e^{mt} \right]^{1/\alpha},
\]
for which we consider the uniform branch equal to 1 at the origin.

Since $|a\alpha - \frac{m}{\alpha}| < \frac{m}{\alpha}$ is equivalent to $\Re \left\{ \frac{m}{\alpha} \right\} > a = \Re(s)$, we have that
\[
\lim_{t \to \infty} |a_1(t)| = \infty.
\]
Moreover, $a_1(t) \neq 0$ for all $t \in I$.

From the analyticity of $\mathcal{L}(z,t)$ in \mathcal{U}_2, it follows that there exists a number r_3 such that $0 < r_3 < r_2$, and a constant $K = K(r_3)$ such that
\[
\left| \frac{\mathcal{L}(z,t)}{a_1(t)} \right| < K \quad (z \in \mathcal{U}_3, t \in I).
\]

By the Montel’s Theorem, $\left\{ \frac{\mathcal{L}(z,t)}{a_1(t)} \right\}_{t \in I}$ forms a normal family in \mathcal{U}_3. From the analyticity of $\frac{\partial \mathcal{L}(z,t)}{\partial t}$, it may be concluded that for all fixed numbers $T > 0$ and r_4, $0 < r_4 < r_3$, there exists a constant $K_1 > 0$ (that depends on T and r_4) such that
\[
\left| \frac{\partial \mathcal{L}(z,t)}{\partial t} \right| < K_1 \quad (z \in \mathcal{U}_4, t \in [0,T]).
\]

Therefore, the function $\mathcal{L}(z,t)$ is locally absolutely continuous in I, locally uniform with respect to \mathcal{U}_4.

Let $p: \mathcal{U}_r \times I \to \mathbb{C}$ denote a function
\[
p(z,t) = z \frac{\partial \mathcal{L}(z,t)}{\partial z} / \frac{\partial \mathcal{L}(z,t)}{\partial t},
\]
that is analytic in \mathcal{U}_r, $0 < r < r_4$, for all $t \in I$. If the function
\[
w(z,t) = \frac{p(z,t) - 1}{p(z,t) + 1} = \frac{z\frac{\partial \mathcal{L}(z,t)}{\partial z} - \frac{\partial \mathcal{L}(z,t)}{\partial t}}{z\frac{\partial \mathcal{L}(z,t)}{\partial z} + \frac{\partial \mathcal{L}(z,t)}{\partial t}}
\]
is analytic in $\mathcal{U} \times I$, and $|w(z,t)| < 1$, for all $z \in \mathcal{U}$ and $t \in I$, then $p(z,t)$ has an analytic extension with positive real part in \mathcal{U}, for all $t \in I$. According to (3.6) we have
\[
w(z,t) = \frac{(1 + s)A(z,t) - m}{(1 - s)A(z,t) + m}.
\]
From (3.1), (3.2) and (3.8) it follows that has an analytic and univalent extension to the whole unit disk

\[|\theta| \leq 1 \]

for \(z \in U \) and \(t \in I \). Hence, the inequality \(|w(z,t)| < 1 \) is equivalent to

\[A(z,t) - \frac{m}{2a} < \frac{m}{2a}, \quad a = \Re(s) \quad (z \in U, \ t \in I). \]

Define now

\[B(z,t) = A(z,t) - \frac{m}{2a} \quad (z \in U, \ t \in I). \]

From (3.1), (3.8) and (3.13) it follows that

\[|B(z,0)| = \left| \frac{c\alpha}{ah(z)} + \frac{m}{2a} \right| < \frac{m}{2a}, \]

and

\[|B(0,t)| = \frac{1}{a} \left| \frac{c\alpha - mt}{h_0} - a\alpha(1 - e^{-mt}) + \frac{m}{2} \right| < \frac{m}{2a}. \]

Since \(|e^{st}| \leq |e^{-st}| = e^{-at} < 1 \) for all \(z \in \overline{U} = \{ z \in \mathbb{C} : |z| \leq 1 \} \) and \(t > 0 \), we conclude that for each \(t > 0 \) \(B(z,t) \) is an analytic function in \(\overline{U} \). Using the maximum modulus principle it follows that for all \(z \in U \setminus \{0\} \) and each \(t > 0 \) arbitrarily fixed there exists \(\theta = \theta(t) \in \mathbb{R} \) such that

\[|B(z,t)| < \lim_{|z|=1} |B(z,t)| = |B(e^{i\theta},t)|, \]

for all \(z \in U \) and \(t \in I \).

Denote \(u = e^{-st}e^{i\theta} \). Then \(|u| = e^{-at} \), and from (3.13) we obtain

\[|B(e^{i\theta},t)| = \left| \frac{c\alpha}{ah(u)} |u|^{m/a} + \frac{m}{2a} - (1 - |u|^{m/a}) \left(\frac{u g'(u)}{g(u)} + 1 + \frac{u f''(u)}{f'(u)} + \frac{u h'(u)}{h(u)} \right) \right|. \]

Since \(u \in U \), the inequality (3.3) implies that

\[|B(e^{i\theta},t)| \leq \frac{m}{2a}, \]

and from (3.10), (3.11) and (3.13), we conclude that

\[|B(z,t)| = |A(z,t) - \frac{m}{2a}| < \frac{m}{2a} \]

for all \(z \in U \) and \(t \in I \). Therefore \(|w(z,t)| < 1 \) for all \(z \in U \) and \(t \in I \).

Since all the conditions of Theorem 2.1 are satisfied, we obtain that the function \(\mathcal{L}(z,t) \) has an analytic and univalent extension to the whole unit disk \(\mathcal{U} \), for all \(t \in I \). For \(t = 0 \) we have \(\mathcal{L}(z,0) = G_\alpha(z) \), for \(z \in \mathcal{U} \) and therefore the function \(G_\alpha(z) \) is analytic and univalent in \(\mathcal{U} \).

Abbreviating (3.3) we can now rephrase Theorem 3.1 in a simpler form.
Theorem 3.2. Let $f, g \in A$. Let $m > 0$, the complex numbers α, c, s and the function h be as in Theorem 3.1. Moreover, suppose that the inequalities (3.1) and (3.2) are satisfied. If the inequality

\[|(\alpha - 1) \frac{zg'(z)}{g(z)} + 1 + z \frac{f''(z)}{f'(z)} + z \frac{h'(z)}{h(z)} - \frac{m}{2a}| \leq \frac{m}{2a} \]

holds true for all $z \in U$, then the function G_α defined by (3.4) is analytic and univalent in U.

Proof. Making use of (3.2) and (3.14) we obtain

\begin{align*}
&\frac{c\alpha}{h(z)} |z|^{m/a} + \frac{m}{2} - a \left(1 - |z|^{m/a}\right) \left[|\alpha - 1| \frac{zg'(z)}{g(z)} + 1 + z \frac{f''(z)}{f'(z)} + z \frac{h'(z)}{h(z)}\right] \\
&\leq |z|^{m/a} \frac{m}{2} + \left(1 - |z|^{m/a}\right) \frac{m}{2} = \frac{m}{2},
\end{align*}

so that the condition (3.3) is satisfied. This finishes the proof, since all the assumptions of Theorem 3.1 are satisfied. ☐

The special case of Theorem 3.1 i.e. for $s = \alpha = 1$, and $h(z) = -c$ leads to the following result.

Corollary 3.3. Let $f \in A$ and $m > 1$. If

\[(3.15) \quad \left| \frac{m - 2}{2} - (1 - |z|^m) \frac{zf''(z)}{f'(z)} \right| \leq \frac{m}{2} \]

holds for $z \in U$, then the function f univalent in U.

Corollary 3.3 in turn implies the well-known Becker’s univalence criterion [3].

Remark 3.4. Important examples of univalence criteria may be obtained by a suitable choices of f and g, below.

(1) Choose $g_1(z) = z$. Then Theorem 3.1 gives analyticity and univalence of the operator

\[F(z) = \left[\alpha \int_0^z u^{\alpha-1}f'(u)du \right]^{1/\alpha}, \]

which was studied by Pascu [21].

(2) Setting $f(z) = z$ in Theorem 3.1 we obtain that the operator

\[G(z) = \left[\alpha \int_0^z g^{\alpha-1}(u)du \right]^{1/\alpha} \]

is analytic and univalent in U. The operator G was introduced by Moldoveanu and Pascu [18].

(3) Taking $f'(z) = \frac{g(z)}{z}$ in Theorem 3.1 we find that

\[H(z) = \left[\alpha \int_0^z \frac{g^{\alpha}(u)}{u}du \right]^{1/\alpha}. \]
Theorem 3.5. Let α, c and s be complex numbers, that $c \notin [0, \infty)$; $s = a + ib$, $a \geq 1$, $b \in \mathbb{R}$; $m > 0$ and $f, g \in \mathcal{A}$. Let the function h be as in Theorem 3.1. Moreover, suppose that the inequalities (3.1) and (3.2) are satisfied. If the inequality
\begin{equation}
(3.16) \quad \left| -\frac{\alpha}{ah(z)} |z|^m + (1 - |z|^m) \left[(\alpha - 1) \frac{zg'(z)}{g(z)} + 1 + \frac{zf''(z)}{f'(z)} + \frac{zh'(z)}{h(z)} \right] - \frac{m}{2\alpha} \right| \leq \frac{m}{2a}
\end{equation}
holds true for all $z \in \mathcal{U}$, then the function $G_{\alpha}(z)$ defined by (3.4) is analytic and univalent in \mathcal{U}.

Proof. For $\lambda \in [0, 1]$ define the linear function
\[\phi(z, \lambda) = \lambda k(z) + (1 - \lambda) l(z), \quad (z \in \mathcal{U}, t \in I) \]
where
\[k(z) = \frac{c\alpha}{h(z)} + \frac{m}{2} \]
and
\[l(z) = -a \left[(\alpha - 1) \frac{zg'(z)}{g(z)} + 1 + \frac{zf''(z)}{f'(z)} + \frac{zh'(z)}{h(z)} \right] + \frac{m}{2}. \]
For fixed $z \in \mathcal{U}$ and $t \in I$, $\phi(z, \lambda)$ is a point of a segment with endpoints at $k(z)$ and $l(z)$. The function $\phi(z, \lambda)$ is analytic in \mathcal{U} for all $\lambda \in [0, 1]$ and $z \in \mathcal{U}$, satisfies
\begin{equation}
(3.17) \quad |\phi(z, 1)| = |k(z)| < \frac{m}{2}
\end{equation}
and
\begin{equation}
(3.18) \quad |\phi(z, |z|^m)| \leq \frac{m}{2},
\end{equation}
which follows from (3.2) and (3.16). If λ increases from $\lambda_1 = |z|^m$ to $\lambda_2 = 1$, then the point $\phi(z, \lambda)$ moves on the segment whose endpoints are $\phi(z, |z|^m)$ and $\phi(z, 1)$. Because $a \geq 1$, from (3.17) and (3.18) it follows that
\begin{equation}
(3.19) \quad \left| \phi(z, |z|^m^{\alpha}) \right| \leq \frac{m}{2}, \quad z \in \mathcal{U}.
\end{equation}
We can observe that the inequality (3.19) is just the condition (3.3), and then Theorem 3.1 now yields that the function $G_{\alpha}(z)$, defined by (3.4), is analytic and univalent in \mathcal{U}. \qed

Remark 3.6. Applying Theorem 3.2 to $m = 2$ and the function $h(z) \equiv 1$, and $g(z) = f(z), \alpha = 1/s$ (or $g(z) = z, \alpha = 1, c = \frac{1}{2}$, respectively) we obtain the results by Ruscheweyh [27] (or Moldoveanu and Pascu [19], respectively).

Remark 3.7. Substituting $1/h$ instead of h with $h(0) = 1$ and setting $g(z) = f(z), \alpha = 1/s, m = 2$ in Theorem 3.2, we obtain the result due to Singh and Chichra [28].

Remark 3.8. Setting $g(z) = f(z), s = \alpha = 1, c = -1, m = 2$ and $h(z) = \frac{k(z)+1}{2}$, where k is an analytic function with positive real part in \mathcal{U} with $k(0) = 1$ in Theorem 3.2, we obtain the result by Lewandowski [10].

Remark 3.9. For the case when $m = 2$ and $h(0) = h_0 = 1$ Theorem 3.4 and 3.5 reduce to the results by Ovesea [20].
4. Quasiconformal extension criterion

In this section we will refine the univalence condition given in Theorem 3.1 to a quasiconformal extension criterion.

Theorem 4.1. Let \(\alpha, c \) and \(s \) be complex numbers, that \(c \notin [0, \infty) \); \(s = a + ib, a > 0 \), \(b \in \mathbb{R} : m > 0; k \in [0, 1) \) and let \(f, g \in \mathcal{A} \). If there exists a function \(h \), analytic in \(\mathcal{U} \), such that \(h(0) = h_0, h_0 \in \mathbb{C}, h_0 \notin (-\infty, 0] \) and the inequalities

\[
|\alpha - \frac{m}{2a}| < \frac{m}{2a} \quad (4.1)
\]

and

\[
|\frac{ca}{h(z)} + \frac{m}{2}| < k \frac{m}{2} \quad (4.2)
\]

hold true for all \(z \in \mathcal{U} \), then the function \(G_\alpha(z) \) given by (3.4) has an \(K \)-quasiconformal extension to \(\mathbb{C} \), where

\[
K = \begin{cases}
 k & \text{for } s = 1, \\
 \frac{|s - 1|^2 + k|s^2 - 1|}{|s^2 - 1| + k|s - 1|^2} & \text{for } s \neq 1.
\end{cases} \quad (4.3)
\]

Proof. In the proof of Theorem 3.1 it has been shown that the function \(\mathcal{L}(z), t \), given by (3.5), is a subordination chain in \(\mathcal{U} \). Applying Theorem 2.2 to the function \(w(z, t) \) given by (3.8), we obtain that the condition

\[
\left| \frac{(1 + s)A(z, t) - m}{(1 - s)A(z, t) + m} \right| < l \quad (z \in \mathcal{U}, t \in I, 0 \leq l < 1) \quad (4.4)
\]

with \(A(z, t) \) defined by (3.8), implies \(l \)-quasiconformal extensibility of \(G_\alpha(z) \). Lengthy, but elementary calculations, show that the inequality (4.4) is equivalent to

\[
\left| A(z, t) - \frac{m ((1 + l^2) + a(1 - l^2) - ib(1 - l^2))}{2a(1 + l^2) + (1 - l^2)(1 + |s|^2)} \right| \leq \frac{2lm}{2a(1 + l^2) + (1 - l^2)(1 + |s|^2)}. \quad (4.5)
\]

Taking into account (4.1) and (4.2), we clearly see that

\[
\left| A(z, t) - \frac{m}{2a} \right| \leq k \frac{m}{2a}. \quad (4.6)
\]

Consider the two disks \(\Delta_1(s_1, r_1) \) and \(\Delta_2(s_2, r_2) \) defined by (3.9) and (4.6), respectively, where \(A(z, t) \) is replaced by a complex variable \(w \). The proof is completed by showing that there exists \(l \in [0, 1) \) for which \(\Delta_2 \) is contained in \(\Delta_1 \). Equivalently \(\Delta_2 \subset \Delta_1 \) holds, if \(|s_1 - s_2| + r_2 \leq r_1 \), that is

\[
\left| \frac{m ((1 + l^2) + a(1 - l^2) - ib(1 - l^2))}{2a(1 + l^2) + (1 - l^2)(1 + |s|^2)} - \frac{m}{2a} \right| + k \frac{m}{2a} \leq \frac{2lm}{2a(1 + l^2) + (1 - l^2)(1 + |s|^2)} \quad (4.7)
\]

or

\[
\frac{1 - l^2}{2a} \frac{|s^2 - 1|}{|2a(1 + l^2) + (1 - l^2)(1 + |s|^2)|} \leq \frac{2l}{2a(1 + l^2) + (1 - l^2)(1 + |s|^2)} - k \frac{2a}{2a} \quad (4.8)
\]

with the condition

\[
\frac{2l}{2a(1 + l^2) + (1 - l^2)(1 + |s|^2)} - k \frac{2a}{2a} \geq 0.
\]
For the case, when $k = 0$, the condition \((4.8)\) holds for every l, while \((4.7)\) is satisfied for $l_1 \leq l < 1$, where

\[
(4.9) \quad l_1 = \frac{|s - 1|^2}{|s^2 - 1|}.
\]

If, on the other hand, $s = 1$ and $k \in (0,1)$, then \((4.8)\) and \((4.7)\) hold for $k \leq l < 1$. Assume now $s \neq 1$, and $k \in (0,1)$. The condition \((4.8)\) reduces to the quadratic inequality

\[
l^2 \left[k(1 + |s|^2) - 2ak \right] + 4al - k[2a + 1 + |s|^2] \geq 0,
\]

or

\[
(4.10) \quad kl^2|s - 1|^2 + 4al - k|s + 1|^2 \geq 0.
\]

Therefore, we find that \((4.8)\) (or \((4.10)\)) holds for $l_2 \leq l < 1$, where

\[
(4.11) \quad l_2 = \frac{\sqrt{4a^2 + k^2|s^2 - 1|^2} - 2a}{k|s - 1|^2}.
\]

Similarly, \((4.8)\) may be rewritten as

\[
(1 - l^2)|s^2 - 1| \leq 4al - 2ak(1 + l^2) - k(1 - l^2)(1 + |s|^2),
\]

or

\[
(4.12) \quad l^2 \left[k|s - 1|^2 + |s^2 - 1| \right] + 4al - k|s + 1|^2 - |s^2 - 1| \geq 0,
\]

that is satisfied for $l_3 \leq l < 1$, where

\[
(4.13) \quad l_3 = \frac{|s - 1|^2 + k|s^2 - 1|}{|s^2 - 1| + k|s - 1|^2}.
\]

We note that $l_2 \leq l_3$. Indeed, it is trivial that

\[
\left[|s^2 - 1| + k|s - 1|^2 \right] \sqrt{4a^2 + k^2|s^2 - 1|^2} \leq \left[|s^2 - 1| + k|s - 1|^2 \right] \left[2a + k|s^2 - 1| \right].
\]

Moreover, we see at once that

\[
\left[|s^2 - 1| + k|s - 1|^2 \right] \left[2a + k|s^2 - 1| \right] \leq \left[|s^2 - 1| + k|s - 1|^2 \right] \left[2a + k|s^2 - 1| + 4ak|s - 1|^2 \right].
\]

Combining the last two inequalities we obtain

\[
\left[|s^2 - 1| + k|s - 1|^2 \right] \sqrt{4a^2 + k^2|s^2 - 1|^2} \leq \left[|s^2 - 1| + k|s - 1|^2 \right] \left[2a + k|s^2 - 1| \right] + 4ak|s - 1|^2,
\]

which is equivalent to the desired inequality $l_2 \leq l_3$. Likewise, it is a simple matter to show that $l_3 < 1$, and the proof is complete, by setting $K := l_3$. We note also, that the case $k = 0$ may be included to the last case (i.e. $s \neq 1$). \hfill \Box

Several similar sufficient conditions for quasiconformal extensions as in the Theorem 4.1 can be derived. Here we select a few example out of a large variety of possibilities. The following is based on the Theorem 2.2.

Theorem 4.2. Let $\alpha > 0$, and $f, g \in A$. If

\[
z^{1-\alpha}g(z)^{\alpha - 1}f'(z) \in U(k)
\]

for all $z \in U$, then the function $G_\alpha(z)$ can be extended to a k–quasiconformal automorphism of C.
Proof. Set
\[
L(z, t) = \left(\alpha \int_0^z \frac{g^{\alpha-1}(u)f'(u)du + (e^{\alpha t} - 1)z^\alpha}{e^{\alpha t}} \right)^{1/\alpha}.
\]
An easy computation shows
\[
p(z, t) = \frac{1}{e^{\alpha t}} \left(z^{1-\alpha}g(z)^{\alpha-1}f'(z) \right) + \left(1 - \frac{1}{e^{\alpha t}} \right),
\]
and the assertion follows by the same methods as in Theorem 4.1, applying Theorems 2.1 and 2.2.

In the same manner, by definition of the suitable Loewner chain, several univalence criterion may be found. For example, the condition
\[
\frac{zG'_\alpha(z)}{G_\alpha(z)} \in U(k) \quad (\alpha \in \mathbb{C}),
\]
which is based on the integral operator \(G_\alpha(z) \), is given by the Loewner chain
\[
L(z, t) = e^t G_\alpha(z).
\]

This work was partially supported by the Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge, Faculty of Mathematics and Natural Sciences, University of Rzeszow.

References

[1] L. V. Ahlfors, *Sufficient conditions for quasiconformal extension*, Ann. Math. Stud. 79 (1974), 23-29.
[2] J. M. Anderson and A. Hinkkanen, *Univalence criteria and quasiconformal extensions*, Trans. Amer. Math. Soc. 324 (1991), 823-842.
[3] J. Becker, *Löwner differential equation and quasiconformal extendible schlichte functions*, J. Reine Angew. Math. 255 (1972), 23-43. [In German].
[4] J. Becker, *Über die Lösungsstruktur einer Differentialgleichung in der Konformen Abbildung*, J. Reine Angew. Math. 285 (1976), 66-74.
[5] J. Becker, *Conformal mappings with quasiconformal extensions*, Aspects of Contemporary Complex Analysis, Ed. by D. A. Brannan and J. G. Clunie, Acad. Press, (1980), 37-77.
[6] Th. Betker, *Löwnern chains and quasiconformal extensions*, Complex Variables Theory Appl. 20(1-4) (1992), 107-111.
[7] M. Çağlar and H. Orhan, *Sufficient conditions for univalence and quasiconformal extensions*, Indian J. Pure Appl. Math. 46(1), (2015), 41-50.
[8] E. Deniz and H. Orhan, *Some notes on extensions of basic univalence criteria*, J. Korean Math. Soc. 48(1) (2011), 179-189.
[9] E. Deniz and H. Orhan, *Loewner chains and univalence criteria related with Ruscheweyh and Sălăgean derivatives*, J. Appl. Anal. Comput. 5(3) (2015), 465-478.
[10] I. Hotta, *Loewner chains with complex leading coefficient*, Monats. Math. 163(3) (2011), 315-325.
[11] I. Hotta, *Explicit quasiconformal extensions and Loewner chains*, Proc. Japan Acad. Ser. A. Math. Sci. 85 (2009), 108-111.
[12] I. Hotta, 'Loewner chains and quasiconformal extension of univalent functions', Dissertation, Tohoku Univ., 2010. 50. S.
[13] S. Kanas and A. Lecko, *Univalence criteria connected with arithmetic and geometric means, I*, Folia Sci. Univ.Tech. Resov. 20(1996), 49 - 59.
[14] S. Kanas and A. Lecko, *Univalence criteria connected with arithmetic and geometric means, II*, Proceedings of the Second Int. Workshop of Transform Methods and Special Functions, Varna '96, Bulgar. Acad. Sci. (Sofia)(1996), 201 - 209.
[15] J. G. Krzyż, *Convolution and quasiconformal extension*, Comment. Math. Helv. 51 (1976), 99-104.
[16] Z. Lewandowski, *On a univalence criterion*, Bull. Acad. Polon. Sci. Ser. Sci. Math. 29 (1981), 123-126.
UNIVALENCE AND QUASICONFORMAL EXTENSIONS OF AN OPERATOR

[17] P. T. Mocanu, Une propriété de convexité généralisées dans la théorie de la représentation conforme, Studia Universitatis Babeş-Bolyai Mathematica (Cluj) 11(34) (1969), 127–133. [In French]

[18] S. Moldoveanu and N. N. Pascu, A new generalization of Becker’s univalence criterion (I), Studia Universitatis Babeş-Bolyai Mathematica (Cluj) 31(54) 2 (1989), 153-157.

[19] S. Moldoveanu and N.N. Pascu, Integral operators which preserve the univalence, Studia Universitatis Babeş-Bolyai Mathematica (Cluj) 32 (55), no:2, (1990), 159-166.

[20] H. Ovesen, A generalization of Ruscheweyh’s univalence criterion, J. Math. Anal. Appl. 258 (2001), 102-109.

[21] N. N. Pascu, On a univalence criterion, II, Itinerant seminar on functional equations approximation and convexity, Cluj-Napoca, Preprint nr. 6 (1985), 153-154.V.

[22] V. Pescar, A new generalization of Ahlfors and Becker’s criterion of univalence, Bull. Malays. Math. Soc. 19 (1996), 53–54.

[23] J. A. Pfaltzgraff, K–quasiconformal extension criteria in the disk, Complex Variables Theory Appl. 21 (1993), 293-301.

[24] Ch. Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159-173.

[25] Ch. Pommerenke, ‘Univalent Functions’, Vandenhoeck Ruprecht in Göttingen, 1975.

[26] D. Raducanu, H. Orhan and E. Deniz, On some sufficient conditions for univalence, An. Stiint Univ. Ovidius Constanta Ser. Mat. 18(2) (2010), 217-222.

[27] S. Ruscheweyh, An extension of Becker’s univalence condition, Math. Ann. 220 (1976), 285-290.

[28] V. Singh and P. N. Chichra, An extension of Becker’s criterion for univalence, J. Indian Math. Soc. 41 (1977), 353-361.

[29] H. M. Srivastava and S. Owa (Editors), ‘Current Topics in Analytic Function Theory’, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

(E. DENIZ) Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey
E-mail address: edeniz36@gmail.com

(S. KANAS) Institute of Mathematics, University of Rzeszów, Rzeszów, Poland
E-mail address: skanas@ur.edu.pl

(H. ORHAN) Department of Mathematics, Faculty of Science Atatürk University, TR-25240 Erzurum, Turkey
E-mail address: horhan@atauni.edu.tr