A Generalization of the Bohr–Rogosinski Sum

S. Kumar1* and S. K. Sahoo2**

(Submitted by A. M. Elizarov)

1School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar, An OCC of Homi Bhabha National Institute, Jatni 752050, India
2Department of Mathematics, Indian Institute of Technology Indore, Indore 453552, India

Received March 22, 2022; revised March 31, 2022; accepted May 10, 2022

Abstract—In this paper, we investigate the classical Bohr sum for analytic functions defined on the unit disk in a general setting. In addition, we discuss a generalization of the Bohr–Rogosinski sum for a class of analytic functions subordinate to the univalent functions in the unit disk. Several well-known results are observed from the consequences of our main results.

DOI: 10.1134/S1995080222110166

Keywords and phrases: bounded analytic functions, univalent functions, Bohr radius, Rogosinski radius, Bohr–Rogosinski sum, subordination.

1. INTRODUCTION

Let \(\mathcal{H} \) be the class of all analytic functions defined on the unit disk \(\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \} \). The subclass \(\mathcal{B} = \{ f \in \mathcal{H} : |f(z)| \leq 1 \} \), of \(\mathcal{H} \), is our main consideration in this paper.

The Bohr radius first introduced by Bohr [13], who gives that if \(f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{B} \), then

\[
\sum_{n=0}^{\infty} |a_n| r^n \leq 1
\]

in \(|z| = r \leq 1/3 \). The constant \(1/3 \) is known as the Bohr radius. Bohr originally obtained the inequality (1) for \(r \leq 1/6 \) and in the same paper the constant \(1/6 \) was improved to \(1/3 \). As pointed out in [13], the proof of the sharp radius \(1/3 \) was suggested by Wiener et al. In the literature, several versions of Bohr’s theorem have been studied. One of the versions of Bohr’s theorem has been obtained by introducing the term \(|a_0|^p \), \(0 < p \leq 2 \), instead of \(|a_0| \), with the corresponding radius \(p/(2 + p) \), see [28, 35].

The notion of the Bohr radius was generalized in [1, 2, 7] to include mappings from \(\mathbb{D} \) to some other domains in \(\mathbb{C} \). Moreover, the Bohr phenomenon for shifted disks and simply connected domains are dealt in [6, 16, 17]. The Bohr phenomenon for the class of subordinations and the class of quasi-subordinations are discussed in [11] and [8], respectively. In [24], Kayumov et. al. studied the Bohr radius for locally univalent planar harmonic mappings. Various improved forms of the classical Bohr’s inequality were investigated by Kayumov and Ponhusamy in [21, 22]. In this sequence, Evdoridis et al. [15] have discussed several improved versions of the Bohr inequality for harmonic mappings. Bohr type inequalities for certain integral operators have been obtained in [18, 25]. To find certain recent results, we refer to [3, 4, 12, 23, 27, 29, 30] and the references therein. The recent survey article [5] and references therein may be good sources for this topic.

Recently, Kayumov et. al. [19] studied the general form of the Bohr sum, which is described as follows: let \(\{ \phi_k(r) \}_{k=0}^{\infty} \) be a sequence of non-negative continuous functions in \([0, 1] \) such that the series \(\phi_0(r) + \sum_{k=1}^{\infty} \phi_k(r) \) converges locally uniformly for \(r \in [0, 1) \).

*E-mail: shankeygarg93@gmail.com
**E-mail: swadesh.sahoo@iiti.ac.in

2176
Theorem A [19]. Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{B} \) and \(p \in (0, 2) \). If \(\phi_0(r) > \frac{2}{p} \sum_{k=1}^{\infty} \phi_k(r) \) for \(r \in [0, R) \), where \(R \) is the minimal positive root of the equation \(\phi_0(x) = \frac{2}{p} \sum_{k=1}^{\infty} \phi_k(x) \), then the following sharp inequality holds

\[
|a_0|^p \phi_0(r) + \sum_{k=1}^{\infty} |a_k| \phi_k(r) \leq \phi_0(r), \quad \text{for all } r \leq R.
\]

In the case when \(\phi_0(x) < \frac{2}{p} \sum_{k=1}^{\infty} \phi_k(x) \) in some interval \((R, R + \epsilon)\), the number \(R \) cannot be improved. If the functions \(\phi_k(x) \) \((k \geq 0)\) are smooth functions, then the last condition is equivalent to the inequality \(\phi_0(R) < \frac{2}{p} \sum_{k=1}^{\infty} \phi_k(R) \).

Similar to the Bohr radius, there is a concept of the Rogosinski radius. In [36], the Rogosinski radius is defined as follows: if \(f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{B} \), then \(|S_M(z)| = |\sum_{n=0}^{M-1} a_n z^n| < 1 \) for \(|z| < 1/2 \), where 1/2 is the best possible quantity (see also [26, 38]). In [20], Kayumov and Ponnusamy studied the sum

\[
R_N^f(z) := |f(z)|^p + \sum_{k=N}^{\infty} |a_k|r^k, \quad |z| = r, \quad \text{and } N \in \mathbb{N},
\]

namely, the **Bohr–Rogosinski sum** of \(f \) for \(p \in \{1, 2\} \) and later in [28] this sum has been considered for \(p \in (0, 2] \). If we choose \(N = 1 \) and \(f(0) \) instead of \(f(z) \) in the sum then it is easy to see that the Bohr–Rogosinski sum is closely related to the classical Bohr sum. Here, the Bohr–Rogosinski radius is the largest number \(r > 0 \) such that \(R_N^f(z) \leq 1 \), known as the **Bohr–Rogosinski inequality**, for \(|z| \leq r \) and for each \(f \in \mathcal{B} \).

For \(p \in \{1, 2\} \), Liu et al. [31] have considered the Bohr–Rogosinski type sum in the form

\[
|f(z)|^p + \sum_{k=N}^{\infty} \left| \frac{f^k(z)}{k!} \right| r^k, \quad |z| = r, \quad \text{and } N \in \mathbb{N},
\]

which is obtained by replacing \(f^k(0) \) in (2) with the \(k \)-th derivative of \(f \). Moreover, the sum (3) has been further generalized in [9] by replacing \(z \) with \(z^m \) for a positive integer \(m \)

The main focus of this paper is to consider generalized sums for each of the sums (2) and (3) with an aim to further generalize Theorem A. Concerning Theorem A and the sum (3), we present a main result in Section 2 followed by their consequences. Moreover, Section 3 contains a generalization of the Bohr–Rogosinski sum for a class of analytic functions subordinate to univalent functions in the unit disk.

2. GENERALIZED BOHR SUM FOR ANALYTIC FUNCTIONS

The following lemma is due to Ruscheweyh [37, Theorem 2] (see also [10, Theorem 4.5, p 53]).

Lemma 1. Let \(f \in \mathcal{B} \). Then, for all \(k = 1, 2, \ldots, \) we have

\[
\left| \frac{f^k(z)}{k!} \right| \leq \frac{(1 + |z|)^{k-1}}{(1 - |z|^2)^k} \left(1 - |f(z)|^2 \right), \quad |z| < 1.
\]

Our first main result is presented below.

Theorem 1. Let \(\{\psi_k(r)\}_{k=0}^{\infty} \) be a sequence of non-negative continuous functions in \([0, 1]\) such that the series

\[
\psi_0(r) + \sum_{k=1}^{\infty} \frac{(1 + r)^{k-1}}{(1 - r^2)^k} \psi_k(r)
\]

converges locally uniformly with respect to \(r \in [0, 1] \). Let \(f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathcal{B} \) and \(p \in (0, 2] \). If

\[
\psi_0(r) > \frac{2}{p} \sum_{k=1}^{\infty} \frac{(1 + r)^{k-1}}{(1 - r^{2m})^k} \psi_k(r),
\]

then
then the following sharp inequality holds

\[B_f(\psi, p, r, m) := |f(z^m)|^p \psi_0(r) + \sum_{k=1}^{\infty} \left| \frac{f^k(z^m)}{k!} \right| \psi_k(r) \leq \psi_0(r), \quad \text{for all} \quad |z| = r \leq R_1, \]

where \(R_1 \) is the minimal positive root of the equation

\[\psi_0(x) = \frac{2}{p} \sum_{k=1}^{\infty} \frac{(1 + x^m)^{k-1}}{(1 - x^m)^k} \psi_k(x). \]

In the case when

\[\psi_0(x) \leq \frac{2}{p} \sum_{k=1}^{\infty} \frac{(1 + x^m)^{k-1}}{(1 - x^m)^k} \psi_k(x) \]

in some interval \((R_1, R_1 + \epsilon)\), the number \(R_1 \) cannot be improved.

Proof. Given that \(f \in B \). Then by using Lemma 1 we obtain

\[B_f(\psi, p, r, m) \leq |f(z^m)|^p \psi_0(r) + (1 - |f(z^m)|^2) \sum_{k=1}^{\infty} \frac{(1 + |z|^m)^{k-1}}{(1 - |z|^m)^k} \psi_k(r) \]

\[= \psi_0(r) + (1 - |f(z^m)|^2) \left[\sum_{k=1}^{\infty} \frac{(1 + |z|^m)^{k-1}}{(1 - |z|^m)^k} \psi_k(r) - \frac{(1 - |f(z^m)|^p}{(1 - |f(z^m)|^2) \psi_0(r)} \right]. \]

To proceed further in the proof, we use the following inequality proved in [19] \(\frac{1}{1 - x^p} \geq \frac{1}{x} \), for all \(x \in [0, 1) \) and \(p \in (0, 2] \). Then we obtain

\[B_f(\psi, p, r, m) \leq \psi_0(r) + (1 - |f(z^m)|^2) \left[\sum_{k=1}^{\infty} \frac{(1 + |z|^m)^{k-1}}{(1 - |z|^m)^k} \psi_k(r) - \frac{p}{2} \psi_0(r) \right]. \]

The equation (4) gives \(B_f(\psi, p, r, m) \leq \psi_0(r) \), for all \(r \leq R_1 \). This completes the first part of the theorem.

To prove the final part we consider a function

\[h(z) = \frac{a - z}{1 - az} = a - (1 - a^2) \sum_{k=1}^{\infty} a^{k-1} z^k, \]

where \(z \in \mathbb{D} \) and \(a \in [0, 1) \). Now, we choose \(a \) very close to 1 and set \(r = \sqrt[4]{a} \). Then we obtain

\[B_f(\psi, p, r, m) = \left(\frac{a - r^m}{1 - ar^m} \right)^p \psi_0(r) + (1 - a^2) \sum_{k=1}^{\infty} \frac{a^{k-1}}{(1 - ar^m)^{k+1}} \psi_k(r) \]

\[= \psi_0(r) + (1 - a) \left[\sum_{k=1}^{\infty} \frac{2}{(1 - r^m)^{k+1}} \psi_k(r) - \frac{1}{1 - r^m} \psi_0(r) \right] \]

\[+ (1 - a) \left[\sum_{k=1}^{\infty} \frac{a^{k-1}(1 + a)}{(1 - ar^m)^{k+1}} \psi_k(r) - \sum_{k=1}^{\infty} \frac{2}{(1 - r^m)^{k+1}} \psi_k(r) \right] \]

\[+ \left[p(1 - a) \frac{1 + r^m}{1 - r^m} + \left(\frac{a - r^m}{1 - ar^m} \right)^p - 1 \right] \psi_0(r) \]

\[= \psi_0(r) + (1 - a) \left[\sum_{k=1}^{\infty} \frac{2}{(1 - r^m)^{k+1}} \psi_k(r) - \frac{1 + r^m}{1 - r^m} \psi_0(r) \right] + O((1 - a)^2) \]
as \(a \) tends to \(1^- \). Also, if \(a \) is close to 1, then

\[
\sum_{k=1}^{\infty} \frac{2}{(1 - r^m)^{k+1}} \psi_k(r) > p \frac{1 + r^m}{1 - r^m} \psi_0(r)
\]

for \(r \in (R_1, R_1 + \epsilon) \). This completes the proof.

We can obtain several known results as consequences of the above theorem. They are presented below.

Example 1. For \(\psi_0 = 1, \psi_n = r^n, n \geq N \in \mathbb{N} \) and \(\psi_n = 0, 1 \leq n < N \), Theorem 1 gives

\[
|f(z^m)|^p + \sum_{k=N}^{\infty} \left| \frac{f^k(z^m)}{k!} \right| r^k \leq 1, \quad \text{for all } |z| = r \leq R_2^{m,N}(p),
\]

where \(R_2^{m,N}(p) \) is the minimal positive root of the equation

\[2x^N - p(1 + x^m)(1 - x^m)^N - (1 - x - x^m) = 0. \]

The radius \(R_2^{m,N}(p) \) is best possible. Recently, the cases \(p = 1 \) and \(N = 2 \) were considered in [9]. Also, the situations \(m = 1 \) and \(p = 1 \) or 2 were investigated in [31]. For \(p = 1, 2 \) and \(N = 5, 10, 15 \), the values \(R_2^{m,N}(p) \) are computed in Table 1.

Example 2. After letting \(\psi_0 = 1, \psi_{2n} = 0 (1 \leq n < N), \psi_{2n} = r^{2n} (n \geq N) \) and \(\psi_{2n-1} = 0 (n \geq 1) \) in Theorem 1 we obtain

\[
|f(z^m)|^p + \sum_{k=N}^{\infty} \left| \frac{r^{2k}(z^m)}{(2k)!} \right| r^{2k} \leq 1, \quad \text{for all } |z| = r \leq R_3^{m,N}(p),
\]

where \(R_3^{m,N}(p) \) is the minimal positive root of the equation

\[2x^{2N} - p(1 + x^m)(1 - x^m)^{2(N-1)}[(1 - x^m)^2 - x^2] = 0. \]

The radius \(R_3^{m,N}(p) \) is best possible. For \(p = 1, 2 \) and \(N = 5, 10, 15 \), the roots \(R_3^{m,N}(p) \) are presented in Table 2.

Table 1. Computation of \(R_2^{m,N}(p) \) for \(p = 1, 2, N = 5, 10, 15 \), and \(m = 1, 2, 3, 4 \)

\(m \)	\(R_2^{m,5}(1) \)	\(R_2^{m,10}(1) \)	\(R_2^{m,15}(1) \)	\(R_2^{m,5}(2) \)	\(R_2^{m,10}(2) \)	\(R_2^{m,15}(2) \)
1	0.419461	0.449661	0.462166	0.440867	0.461147	0.470098
2	0.519679	0.5584	0.573788	0.546429	0.572154	0.583112
3	0.579208	0.617632	0.634833	0.603403	0.632771	0.644937
4	0.606417	0.66235	0.674862	0.640127	0.672463	0.685539

Table 2. The values \(R_3^{m,N}(p) \) for \(p = 1, 2, N = 5, 10, 15 \), and \(m = 1, 2, 3, 4 \)

\(m \)	\(R_3^{m,5}(1) \)	\(R_3^{m,10}(1) \)	\(R_3^{m,15}(1) \)	\(R_3^{m,5}(2) \)	\(R_3^{m,10}(2) \)	\(R_3^{m,15}(2) \)
1	0.459924	0.470621	0.481132	0.470621	0.480648	0.485091
2	0.570642	0.58913	0.596301	0.58335	0.595553	0.600837
3	0.631077	0.651295	0.659307	0.644949	0.658391	0.664114
4	0.670628	0.692296	0.700735	0.68537	0.699696	0.705709
Table 3. Computation of $R_{4,m,N}^m$ for $p = 1, 2, N = 5, 10, 15$, and $m = 1, 2, 3, 4$

m	$R_{4,5}^m(1)$	$R_{4,10}^m(1)$	$R_{4,15}^m(1)$	$R_{4,5}^m(2)$	$R_{4,10}^m(2)$	$R_{4,15}^m(2)$
1	0.457053	0.474009	0.406871	0.468802	0.480015	0.484755
2	0.567068	0.587828	0.595758	0.581095	0.594794	0.600441
3	0.627057	0.65011	0.658721	0.642428	0.657565	0.663687
4	0.666256	0.691041	0.7001205	0.682652	0.698824	0.705261

Example 3. The choices $\psi_0 = 1$, $\psi_{2n-1} = 0$ ($1 \leq n < N$), $\psi_{2n-1} = r^{2n-1}$ ($n \geq N$) and $\psi_{2n} = 0$ ($n \geq 1$) in Theorem 1 provide

$$|f(z^m)|^p + \sum_{k=N}^{\infty} \frac{|f^{2k-1}(z^m)|}{(2k-1)!} r^{2k-1} \leq 1,$$

for all $|z| = r \leq R_{4,m,N}^m(p)$,

where $R_{4,m,N}^m(p)$ is the minimal positive root of the equation

$$2x^{2N-1} - p(1 + x^m)(1 - x^m)^{2N-3}(1 - x^m)^2 - x^2 = 0.$$

The radius $R_{4,m,N}^m(p)$ is best possible. Table 3 describes a few initial roots $R_{4,m,N}^m(p)$ for $p = 1, 2$ and $N = 5, 10, 15$.

3. GENERALIZED BOHR–ROGOSINSKI SUM FOR A CLASS OF SUBORDINATIONS

Suppose $h \in B$ of the form $h(z) = \sum_{k=0}^{\infty} c_k z^k$. Then the Bohr–Rogosinski inequality for the function h is

$$|h(z)| + \sum_{k=1}^{\infty} c_k r^k \leq 1, \quad |z| = r.
$$

We can rewrite the above inequality as

$$\sum_{k=1}^{\infty} c_k r^k \leq 1 - |h(z)| = \text{dist}(h(z), \partial \Omega), \quad |z| = r.
$$

The above inequality can be studied for the generalized class of functions f which is analytic in \mathbb{D} and $f(\bar{\Omega}) = \Omega$, for a given domain Ω. To go further, we recall the definition of subordination here.

Suppose f and g are analytic functions in \mathbb{D}. We say that g is subordinate to f, or $g \prec f$, if there is an analytic function $w : \mathbb{D} \to \mathbb{D}$ with $w(0) = 0$ such that $g = f \circ w$. Note that if f is univalent then the condition $g \prec f$ is equivalent to the conditions $f(0) = g(0)$ and $\{g(z) : |z| < r\} \subset \{f(z) : |z| < r\}$, $r \leq 1$. To know more about subordination, reader can refer to [14, 32, 33].

In [1], Abu–Muhammad studied the Bohr sum for the class $S(f) := \{g : g \prec f\}$, where f is a univalent function and $f(\mathbb{D}) = \Omega$. Recently, Kayumov et al. [20] find a radius R for which a generalization of the Bohr–Rogosinski inequality, for the function $g(z) = \sum_{k=0}^{\infty} b_k z^k \in S(f)$,

$$|g(z^m)| + \sum_{k=N}^{\infty} b_k r^k \leq |f(0)| + \text{dist}(f(0), \partial \Omega), \quad |z| = r \leq R \quad \text{and} \quad m, N \in \mathbb{N}$$

holds. More about this result will be discussed in the list of consequences of the following result.

Theorem 2. Let $\{\varphi_k(r)\}_{k=1}^{\infty}$ be a sequence of non-negative continuous functions in $[0, 1)$ such that the series $\sum_{k=1}^{\infty} k \varphi_k(r)$ converges locally uniformly with respect to $r \in [0, 1)$. Assume that f and g are analytic in \mathbb{D} such that f is univalent in \mathbb{D}, $f(\bar{\Omega}) = \Omega$, and $g(z) = \sum_{k=0}^{\infty} b_k z^k \in S(f)$. If

$$\sum_{k=1}^{\infty} k \varphi_k(r) + \frac{r^m}{(1 - r^m)^2} < \frac{1}{4}, \quad m \in \mathbb{N},$$

then

$$\sum_{k=1}^{\infty} k \varphi_k(r) \leq \frac{1}{4}.$$
then the following sharp inequality holds

\[C_f(\varphi, r, m) := |g(z^m)| + \sum_{k=1}^{\infty} |b_k| \varphi_k(r) \leq |f(0)| + \text{dist} (f(0), \partial \Omega), \quad \text{for all} \quad |z| = r \leq R_2, \]

where \(R_2 \) is the minimal positive root of the equation

\[\sum_{k=1}^{\infty} k\varphi_k(x) + \frac{x^m}{(1-x^m)^2} = \frac{1}{4}. \]

In the case when

\[\sum_{k=1}^{\infty} k\varphi_k(x) + \frac{x^m}{(1-x^m)^2} > \frac{1}{4} \]

in some interval \((R_2, R_2 + \epsilon)\), the number \(R_2 \) cannot be improved.

Proof. The univalent condition on function \(f \) provides us the well-known inequality

\[\frac{1}{4} |f'(z)|(1 - |z|^2) \leq \text{dist} (f(z), \partial \Omega) \leq |f'(z)|(1 - |z|^2), \quad \text{for all} \quad z \in \mathbb{D}, \quad (6) \]

see, for instance [1, 14, 34]. Also, the assumption \(g(z) = \sum_{k=0}^{\infty} b_k z^k \prec f(z) \) gives \(|b_k| \leq k|f'(0)| \), for all \(k \in \mathbb{N} \). Then, by using the inequality (6), we have \(|b_k| \leq 4k \text{dist} (f(0), \partial \Omega) \). It follows that

\[C_f(\varphi, r, m) \leq |g(z^m)| + 4 \text{dist} (f(0), \partial \Omega) \sum_{k=1}^{\infty} k\varphi_k(r). \]

The condition \(g \prec f \) and the growth theorem [14, Theorem 2.6] lead to the fact that

\[|g(z) - g(0)| \leq |f'(0)| \frac{r}{(1-r)^2}, \quad |z| = r. \]

Moreover, the inequality (6) gives

\[|g(z)| \leq |f(0)| + \text{dist} (f(0), \partial \Omega) \frac{4r}{(1-r)^2}, \quad |z| = r. \]

Then we obtain

\[C_f(\varphi, r, m) \leq |f(0)| + \text{dist} (f(0), \partial \Omega) \frac{4r^m}{(1-r^m)^2} + 4 \text{dist} (f(0), \partial \Omega) \sum_{k=1}^{\infty} k\varphi_k(r) \]

\[= |f(0)| + \text{dist} (f(0), \partial \Omega) + 4 \text{dist} (f(0), \partial \Omega) \left[\frac{r^m}{(1-r^m)^2} + \sum_{k=1}^{\infty} k\varphi_k(r) - \frac{1}{4} \right]. \]

By using the inequality (5) we have

\[C_f(\varphi, r, m) \leq |f(0)| + \text{dist} (f(0), \partial \Omega), \quad \text{for all} \quad r \leq R_2. \]

The choice of the function \(f(z) = \frac{z}{(1-z)^2}, z \in \mathbb{D} \) gives \(\text{dist} (f(0), \partial \Omega) = 1/4 \). Also, we have

\[f(r^m) + \sum_{k=1}^{\infty} k\varphi_k(r) = \frac{r^m}{(1-r^m)^2} + \sum_{k=1}^{\infty} k\varphi_k(r) > \frac{1}{4} = |f(0)| + \text{dist} (f(0), \partial \Omega), \]

for \(r \in (R_2, R_2 + \epsilon) \). This gives that we can not improve \(R_2 \).

Remark 1. For \(m \rightarrow \infty \), Theorem 2 gives that: if \(\sum_{k=1}^{\infty} k\varphi_k(r) < \frac{1}{4} \), then the following sharp inequality holds

\[\sum_{k=1}^{\infty} |b_k| \varphi_k(r) \leq \text{dist} (f(0), \partial \Omega), \quad \text{for all} \quad |z| = r \leq R_3, \]

\[\text{for} \quad m \rightarrow \infty. \]
Table 4. Computation of $R_{5}^{m,N}$ for $N = 5, 10, 15$ and $m = 1, 2, 3, 4$

m	$R_{5}^{m,5}$	$R_{5}^{m,10}$	$R_{5}^{m,15}$
1	0.171125	0.171573	0.171573
2	0.372068	0.412677	0.414185
3	0.432697	0.531244	0.553009
4	0.453269	0.576975	0.624641

Table 5. Values of R_{6}^{m} for $m = 1, 2, 3, 4$

m	R_{6}^{m}
1	0.14813
2	0.26795
3	0.30200
4	0.31270

Table 6. The values of R_{7}^{m} for $m = 1, 2, 3, 4$

m	R_{7}^{m}
1	0.10890
2	0.18959
3	0.21038
4	0.21538

where R_3 is the minimal positive root of the equation $\sum_{k=1}^{\infty} k\varphi_k(x) = \frac{1}{4}$. In the case when $\sum_{k=1}^{\infty} k\varphi_k(x) > \frac{1}{4}$ in some interval $(R_3, R_3 + \epsilon)$, the number R_3 cannot be improved. Now, the particular choices of the functions $\varphi_k(r) = r^k$ give a result of [1].

Example 4. For $N \in \mathbb{N}$, the choices $\varphi_k(r) = 0$, for $1 \leq k < N$, and $\varphi_k(r) = r^k$, for $k \geq N$, in Theorem 2 give

$$|g(z^m)| + \sum_{k=N}^{\infty} |b_k|r^k \leq |f(0)| + \text{dist} (f(0), \partial \Omega), \quad \text{for all } |z| = r \leq R_{5}^{m,N},$$

where $g \in S(f)$ and $R_{5}^{m,N}$ is the positive root of the equation

$$4x^m - (1 - x^m)^2 + 4x^N[N(1-x) + x]\left(\frac{1-x^m}{1-x}\right)^2 = 0.$$

The radius $R_{5}^{m,N}$ is best possible. This result is proved in [20]. For $m = 1, 2, 3, 4$ and $N = 5, 10, 15$, the roots $R_{5}^{m,N}$ are presented in Table 4.

Example 5. For $k \in \mathbb{N}$, the settings $\varphi_{2k-1}(r) = 0$ and $\varphi_{2k}(r) = r^{2k}$ in Theorem 2 give

$$|g(z^m)| + \sum_{k=1}^{\infty} |b_{2k}|r^{2k} \leq |f(0)| + \text{dist} (f(0), \partial \Omega), \quad \text{for all } |z| = r \leq R_{6}^{m},$$

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 8 2022
Table 7. Values of R^m_N for $N = 5, 10, 15,$ and $m = 1, 2, 3, 4$

m	R^m_5	R^m_{10}	R^m_{15}
1	0.330697	0.333322	0.333333
2	0.536482	0.573823	0.577111
3	0.607547	0.673834	0.689549
4	0.640031	0.719763	0.746595

Table 8. Computation of R^m_9 for $m = 1, 2, 3, 4$

m	R^m_9
1	0.28990
2	0.44721
3	0.50845
4	0.53842

Table 9. The roots R^m_{10} for $m = 1, 2, 3, 4$

m	R^m_{10}
1	0.21525
2	0.33333
3	0.37893
4	0.39871

where $g \in S(f)$ and R^m_6 is the minimal positive root of the equation

$$\frac{2x^2}{(1-x^2)^2} + \frac{x^m}{(1-x^m)^2} = \frac{1}{4}.$$

The radius R^m_6 is best possible. Table 5 listed the values of R^m_6 for certain choices of m.

Example 6. Let $\varphi_{2k}(r) = 0$ and $\varphi_{2k-1}(r) = r^{2k-1}$, $k \in \mathbb{N}$. Then Theorem 2 gives

$$|g(z^m)| + \sum_{k=1}^{\infty} |b_{2k-1}| r^{2k-1} \leq |f(0)| + \text{dist} (f(0), \partial \Omega),$$

for all $|z| = r \leq R^m_6$,

where $g \in S(f)$ and R^m_6 is the minimal positive root of the equation

$$\frac{x(1+x^2)}{(1-x^2)^2} + \frac{x^m}{(1-x^m)^2} = \frac{1}{4}.$$

The radius R^m_6 is best possible. For $m = 1, 2, 3, 4$, the values of R^m_6 are presented in Table 6.

In Theorem 2, if we add convexity condition on the function f, then we have the following.

Theorem 3. Let $\{\lambda_k(r)\}_{k=1}^{\infty}$ be a sequence of non-negative continuous functions in $[0, 1)$ such that the series $\sum_{k=1}^{\infty} \lambda_k(r)$ converges locally uniformly with respect to $r \in [0, 1)$. Assume that f and g are analytic in \mathbb{D} such that f is convex univalent in \mathbb{D}, $f(\mathbb{D}) = \Omega$, and $g \in S(f)$. If $\sum_{k=1}^{\infty} \lambda_k(r) + \frac{r^m}{1-r^m} < \frac{1}{2}$, then the following sharp inequality holds

$$D_f(\lambda, r, m) := |g(z^m)| + \sum_{k=1}^{\infty} |b_k| \lambda_k(r) \leq |f(0)| + \text{dist} (f(0), \partial \Omega),$$

for all $|z| = r \leq R_4$, where $g \in S(f)$ and R_4 is the minimal positive root of the equation

$$x(1+x^2) + \frac{x^m}{(1-x^m)^2} = \frac{1}{4}.$$
where R_4 is the minimal positive root of the equation $\sum_{k=1}^{\infty} \lambda_k(x) + \frac{x^m}{1-x^m} = \frac{1}{2}$.

In the case when $\sum_{k=1}^{\infty} \lambda_k(x) + \frac{x^m}{1-x^m} > \frac{1}{2}$ in some interval $(R_4, R_4 + \epsilon)$, the number R_4 cannot be improved.

Proof. Given that f is convex univalent function which gives us the well-known inequality
\[
\frac{1}{2} |f'(z)|(1 - |z|^2) \leq \text{dist}(f(z), \partial \Omega) \leq |f'(z)|(1 - |z|^2), \quad \text{for all} \quad z \in \mathbb{D},
\]
see, for instance [1, 14]. Further, the assumption $g(z) = \sum_{k=0}^{\infty} b_k z^k < f(z)$ gives $|b_k| \leq |f'(0)|$, for all $k \in \mathbb{N}$, and $|g(z) - g(0)| \leq |f'(0)||z|^2$. Rest of the proof follows similar to Theorem 2. The convex function $f(z) = z/(1 - z)$ have dist $(f(z), \partial \Omega) = 1/2$, $z \in \mathbb{D}$. Moreover, this function gives sharpness of the result. \qed

Remark 2. Let m tend to ∞ in Theorem 3. Then one can easily observe that if $\sum_{k=1}^{\infty} \lambda_k(r) < \frac{1}{2}$, then the following sharp inequality holds
\[
\sum_{k=1}^{\infty} |b_k| \lambda_k(r) \leq \text{dist}(f(0), \partial \Omega), \quad \text{for all} \quad |z| = r \leq R_5,
\]
where R_5 is the minimal positive root of the equation $\sum_{k=1}^{\infty} \lambda_k(x) = \frac{1}{2}$. In the case when $\sum_{k=1}^{\infty} \lambda_k(x) > \frac{1}{2}$ in some interval $(R_5, R_5 + \epsilon)$, the number R_5 cannot be improved. Further, the choice of the functions $\lambda_k(r) = r^k$ gives a known result, which is proved in [1].

Example 7. Let us choose $\lambda_k(r) = 0$, for $1 \leq k < N$, and $\lambda_k(r) = r^k$, for $k \geq N$, in Theorem 3. Then we have
\[
|g(z^m)| + \sum_{k=1}^{\infty} |b_k| r^k \leq |f(0)| + \text{dist}(f(0), \partial \Omega), \quad \text{for all} \quad |z| = r \leq R_8^{m,N},
\]
where $g \in S(f)$ and $R_8^{m,N}$ is the positive root of the equation $3x^m - 1 + 2x^N \left(\frac{1-x^m}{1-x}\right) = 0$. The radius $R_8^{m,N}$ is best possible. This result is studied in [20]. The roots $R_8^{m,N}$, for $m = 1, 2, 3, 4$ and $N = 5, 10, 15$, are given in Table 7.

Example 8. Let $\lambda_{2k-1}(r) = 0$ and $\lambda_{2k}(r) = r^{2k}$, $k \in \mathbb{N}$ in Theorem 3. Then we obtain
\[
|g(z^m)| + \sum_{k=1}^{\infty} |b_{2k}| r^{2k} \leq |f(0)| + \text{dist}(f(0), \partial \Omega), \quad \text{for all} \quad |z| = r \leq R_9^{m},
\]
where $g \in S(f)$ and R_9^{m} is the positive root of the equation $\frac{x^2}{1-x^2} + \frac{x^m}{1-x^m} = \frac{1}{2}$. The radius R_9^{m} is best possible. Table 8 computes the values R_9^{m} for $m = 1, 2, 3, 4$.

Example 9. For $k \in \mathbb{N}$, the settings $\lambda_{2k}(r) = 0$ and $\lambda_{2k-1}(r) = r^{2k-1}$ in Theorem 3 give
\[
|g(z^m)| + \sum_{k=1}^{\infty} |b_{2k-1}| r^{2k-1} \leq |f(0)| + \text{dist}(f(0), \partial \Omega), \quad \text{for all} \quad |z| = r \leq R_{10}^{m},
\]
where $g \in S(f)$ and R_{10}^{m} is the positive root of the equation
\[
\frac{x}{1-x^2} + \frac{x^m}{1-x^m} = \frac{1}{2}.
\]
The radius R_{10}^{m} is best possible. Computation of R_{10}^{m}, for $m = 1, 2, 3, 4$, is given in Table 9.

ACKNOWLEDGMENTS

The authors acknowledge the careful reading of the manuscript and suggestions made by the referee. The authors would like to thank Professor S. Ponnusamy for many fruitful discussions on this topic.
FUNDING

The work of the first author is supported by CSIR, New Delhi (grant no: 09/1022(0034)/2017-EMR-I).

REFERENCES

1. Y. Abu-Muhanna, “Bohr’s phenomenon in subordination and bounded harmonic classes,” Complex Var. Ellipt. Equat. 55, 1071–1078 (2010).
2. Y. Abu-Muhanna and R. M. Ali, “Bohr’s phenomenon for analytic functions into the exterior of a compact convex body,” J. Math. Anal. Appl. 379, 512–517 (2011).
3. Y. Abu-Muhanna and R. M. Ali, “Bohr’s phenomenon for analytic functions and the hyperbolic metric,” Math. Nachr. 286, 1059–1065 (2013).
4. Y. Abu-Muhanna, R. M. Ali, and S. K. Lee, “The Bohr operator on analytic functions and sections,” J. Math. Anal. Appl. 496, 124837 (2021).
5. Y. Abu-Muhanna, R. M. Ali, and S. Ponnusamy, “On the Bohr inequality,” in Progress in Approximation Theory and Applicable Complex Analysis, Ed. by N. K. Govil et al., Springer Optim. Appl. 117, 265–295 (2016).
6. M. B. Ahmed, V. Allu, and H. Halder, “Bohr phenomenon for analytic functions on simply connected domains,” Ann. Acad. Sci. Fenn., Ser. A I 147, 103–120 (2022).
7. L. Aizenberg, “Generalization of results about the Bohr radius for power series,” Stud. Math. 180, 161–168 (2007).
8. S. A. Alkhaleefah, I. R. Kayumov, and S. Ponnusamy, “On the Bohr inequality with a fixed zero coefficient,” Proc. Am. Math. Soc. 147, 5263–5274 (2019).
9. S. A. Alkhaleefah, I. R. Kayumov, and S. Ponnusamy, “Bohr–Rogosinski inequalities for bounded analytic functions,” Lobachevskii J. Math. 41, 2110–2119 (2020).
10. F. G. Avkhadiev and K-J. Wirths, Schwarz–Pick Type Inequalities, Frontiers in Mathematics (Birkhäuser, Basel, 2009).
11. B. Bhowmik and N. Das, “Bohr phenomenon for subordinating families of certain univalent functions,” J. Math. Anal. Appl. 462, 1087–1098 (2018).
12. B. Bhowmik and N. Das, “Bohr phenomenon for locally univalent functions and logarithmic power series,” Comput. Methods Funct. Theory 19, 729–745 (2019).
13. H. Bohr, “A theorem concerning power series,” Proc. London Math. Soc. 13 (2), 1–5 (1914).
14. P. L. Duren, Univalent Functions (Springer, New York, 1983).
15. S. Evdoridis, S. Ponnusamy, and A. Rasila, “Improved Bohr’s inequality for locally univalent harmonic mappings,” Indag. Math. (N.S.) 30, 201–213 (2019).
16. S. Evdoridis, S. Ponnusamy, and A. Rasila, “Improved Bohr’s inequality for shifted disks,” Results Math. 76 (14) (2021).
17. R. Fournier and St. Ruscheweyh, “On the Bohr radius for simply connected plane domains,” CRM Proc. Lect. Notes 51, 165–171 (2010).
18. I. R. Kayumov, D. M. Khammatova, and S. Ponnusamy, “On the Bohr inequality for the Cesáro operator,” C. R. Math. Acad. Sci. Paris 358, 615–620 (2020).
19. I. R. Kayumov, D. M. Khammatova, and S. Ponnusamy, “The Bohr inequality for the generalized Cesáro averaging operators,” Mediterr. J. Math. 19, 1–16 (2022).
20. I. R. Kayumov, D. M. Khammatova, and S. Ponnusamy, “Bohr–Rogosinski phenomenon for analytic functions and Cesáro operators,” J. Math. Anal. Appl. 496, 124824 (2021).
21. I. R. Kayumov and S. Ponnusamy, “Improved version of Bohr’s inequality,” C. R. Math. 356, 272–277 (2018).
22. I. R. Kayumov and S. Ponnusamy, “Bohr’s inequalities for analytic functions with lacunary series and harmonic functions,” J. Math. Anal. Appl. 465, 857–871 (2018).
23. I. R. Kayumov and S. Ponnusamy, “On a powered Bohr inequality,” Ann. Acad. Sci. Fenn., Ser. A I 44, 301–310 (2019).
24. I. R. Kayumov, S. Ponnusamy, and N. Shakirov, “Bohr radius for locally univalent harmonic mappings,” Math. Nachr. 291, 1757–1768 (2017).
25. S. Kumar and S. K. Sahoo, “Bohr inequalities for certain integral operators,” Mediterr. J. Math. 18, 268 (2021).
26. E. Landau and D. Gaier, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie (Springer, Berlin, 1986).
27. G. Liu, Z. H. Liu, and S. Ponnusamy, “Refined Bohr inequality for bounded analytic functions,” Bull. Sci. Math. 173, 103054 (2021).
28. M. S. Liu and S. Ponnusamy, “Multidimensional analogues of refined Bohr’s inequality,” Proc. Am. Math. Soc. 149, 2133–2146 (2021).
29. M. S. Liu, S. Ponnusamy, and J. Wang, “Bohr’s phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings,” RACSAM 114, 115 (2020).
30. Z. H. Liu and S. Ponnusamy, “Bohr radius for subordination and K-quasiconformal harmonic mappings,” Bull. Malays. Math. Sci. Soc. 42, 2151–2168 (2019).
31. M. S. Liu, Y. M. Shang, and J. F. Xu, “Bohr-type inequalities of analytic functions,” J. Inequal. Appl., 345 (2018).
32. S. S. Miller and P. T. Mocanu, Differential Subordinations—Theory and Applications (Marcel Dekker, New York, 2000).
33. Ch. Pommerenke, Univalent Functions (Vandenhoeck und Ruprecht, Michigan, 1975).
34. Ch. Pommerenke, Boundary Behaviour of Conformal Maps (Springer, New York, 1992).
35. S. Ponnusamy, R. Vijayakumar, and K.-J. Wirths, “Improved Bohr’s phenomenon in quasi-subordination classes,” J. Math. Anal. Appl. 506, 125645 (2022).
36. W. Rogosinski, “Über Bildschranken bei Potenzreihen und ihren Abschnitten,” Math. Z. 17, 260–276 (1923).
37. St. Ruscheweyh, “Two remarks on bounded analytic functions,” Serdica 11, 200–202 (1985).
38. I. Schur and G. Szegö, “Über die Abschnitte einer im Einheitskreise beschränkten Potenzreihe,” Sitz.-Ber. Preuss. Acad. Wiss. Berlin Phys.-Math. Kl., 545–560 (1925).