Study of sdO models: pulsation analysis

C. Rodríguez-López,1,2,3* A. Moya,3 R. Garrido,3 J. MacDonald,4 R. Oreiro5 and A. Ulla2

1Laboratoire d’Astrophysique de Toulouse-Turbes, Université de Toulouse, CNRS, Toulouse 31400, France
2Departamento de Física Aplicada, Universidad de Vigo, Vigo 36310, Spain
3Departamento de Física Estelar, Instituto de Astrofísica de Andalucía-CSIC, Granada 18008, Spain
4University of Delaware, Department of Physics and Astronomy, Newark, DE 19716, USA
5Institute of Astronomy, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium

Accepted 2009 September 18. Received 2009 September 18; in original form 2009 May 21

ABSTRACT
We have explored the possibility of driving pulsation modes in models of subluminous O-stars (sdOs), in which the effects of element diffusion, gravitational settling and radiative levitation have been neglected so that the distribution of iron-peak elements remains uniform throughout the evolution. The stability of these models was determined using a non-adiabatic oscillations code. We analysed 27 sdO models from 16 different evolutionary sequences and discovered the first ever sdO models capable of driving high-radial-order g modes. In one model, the driving is by a classical \(\kappa \) mechanism due to the opacity bump from iron-peak elements at temperature \(\sim 200 \,000 \, \text{K} \). In a second model, the driving results from the combined action of \(\kappa \) mechanisms operating in three distinct regions of the star: (i) a carbon–oxygen partial ionization zone at temperature \(\sim 2 \times 10^6 \, \text{K} \); (ii) a deeper region at temperature \(\sim 2 \times 10^7 \, \text{K} \), which we attribute to ionization of argon, and (iii) at the transition from radiative to conductive opacity in the core of the star.

Key words: stars: oscillations – stars: variables: other.

1 INTRODUCTION
Hot subluminous O-stars (sdOs) are evolved objects on the way to becoming low-mass white dwarfs. Most sdOs are thought to have an inert carbon–oxygen core, with the luminosity provided by helium-and hydrogen-burning shells. The wide ranges of surface parameters, from 40 to 100 kK for effective temperature \(T_{\text{eff}} \) and 4.0 to 6.5 for surface gravity \(\log g \), spread sdOs across a broad region in the Hertzsprung–Russell (HR) diagram, that is crossed by post asymptotic giant branch (post-AGB), post red giant branch (post-RGB) and post extended horizontal branch (post-EHB) single-star evolutionary tracks. This degeneracy in evolutionary paths plus possible binary star formation scenarios hamper reliable determination of sdO origins. This situation is not helped by the wide variety in sdO spectra: while they share a common characteristic of an He \(\Pi \) 4686 Å line, a diversity of lines with different strengths of He i, He ii and sometimes H is possible, rendering spectral classification an open issue (Jeffery et al. 1997; Ströer et al. 2007).

The spectral analysis and determination of physical parameters have the drawback of requiring the use of non-local thermodynamic equilibrium atmospheric codes due to high effective temperatures, which yielded disagreements in the largest existent studies (Dreizler et al. 1990; Thejll et al. 1994) until recently. Recent analyses of 130 sdOs by Ströer et al. (2007) and Hirsch & Heber (2008) showed that they segregate into two main groups regarding helium content: (1) helium-deficient sdOs with subsolar He abundances, no traces of carbon or nitrogen and a large spread in \(T_{\text{eff}} \) and \(\log g \), and (2) helium-enriched sdOs with supersolar He abundances and C and/or N lines present, spreading between \(\sim 40 \) and 50 kK in \(T_{\text{eff}} \), and 5.5 and 6 in \(\log g \). Group (1) sdOs are classified as post-EHB descendants of hot subdwarf B-stars (sdBs). To explain the origins of group (2) sdOs, the authors invoke different channels: (i) merger of two helium white dwarfs formed by binary evolution (Webbink 1984; Han et al. 2002), which explains the He enrichment, but does not quite reproduce the observed \(T_{\text{eff}} - \log g \) distribution; (ii) non-canonical evolution of a single star that experiences a phase of mixing from the H shell into the envelope while on the RGB (Sweigart 1997) and (iii) evolution of an RGB star whose envelope is almost completely stripped by the Roche-lobe overflow in a binary, pre-emptying the He-core flash (Driebe et al. 1999). This last scenario has problems in explaining the observed metal enrichment. (See Ströer et al. 2007 and references therein for a thorough review of sdO formation mechanisms.)

Another way to attack the problem of untangling the different evolutionary scenarios proposed for sdOs, and in which this paper focuses, is the use of asteroseismological methods (provided, of course, that sdOs are pulsating stars). Asteroseismological analysis can yield information such as the mass of the star, envelope and inner structure through the Brunt–Väisälä frequency and/or sound
speed, as long as we can identify the oscillation modes present in the star.

The first theoretical exploration of the potential of sdOs as pulsators was carried out by Charpinet et al. (1997a). The stability analysis of full stellar sdO models corresponding to seven evolutionary sequences starting on the EHB found all sdO models stable.

The previous year, Charpinet et al. (1996) had theoretically predicted the pulsator behaviour of sdBs due to a mechanism caused by iron enhancement in the envelope of the star. Since the observational confirmation of the first pulsating sdB by Kilkenny et al. (1997), we now know of about 40 of these stars (Oreiro et al. 2009) termed V361 Hya, or more commonly EC 14026 stars, which co-exist in the same area of the HR diagram with non-pulsating sdBs. They cluster in T_{eff} at $\sim 33\,000\,\text{K}$ and log $g \sim 5.8$ dex and show oscillations with typical periods in the range 80–$200\,\text{s}$, which have been identified with low-degree and low-radial-order p modes. Today, the sdB variable stars also include the long-period pulsators V1093 Her (Green et al. 2003) also excited by the same κ mechanism (Fontaine et al. 2003), a handful of hybrid pulsators (e.g. Oreiro et al. 2005) and a unique He–sdB (Ahmad & Jeffery 2005). For more details on sdBs, we refer the reader to the excellent review by Østensen (2009).

The goal of the present work is to complete the observational search for sdO pulsators (Rodríguez-López et al. 2004, 2005; Rodríguez-López, Ulla & Garrido 2007) that proceeded in the period 2003–2006, and which has yielded non-conclusive results. The thrilling discovery of the first sdO pulsator, SDSS J160043.6+074802.9 (abbreviated as J1600+0748), by a team of South African astronomers (Woudt et al. 2006), gave real support to our theoretical exercise. The recent discovery of p-mode oscillations in sdO models that included radiative levitation of iron (Fontaine et al. 2008) is able to account for the very fast multiperiodic oscillations observed in the range ~ 60–$120\,\text{s}$, hence establishing the same iron opacity mechanism found in sdBs as responsible for sdO oscillations, and reinforcing the conclusion that radiative levitation and gravitational settling are two key ingredients in driving pulsations (Charpinet et al. 1997b; Charpinet, Fontaine & Brassard 2009).

Our aim is to investigate the possibility of driving pulsation modes in theoretical models of sdOs – coming from fully evolutionary sequences – with the aid of a non-adiabatic oscillations code. Thus, sdO models were specifically built using the evolutionary code IMSTAR (Lawlor & MacDonald 2006 and references therein). The code was used to further evolve these sdO models to more advanced state of evolution, providing the tracks taken in the HR diagram. The sdO models are used as input to the GRACO non-adiabatic oscillations code (Moya, Garrido & Dupret 2004; Moya & Garrido 2008), which predicts which oscillation modes of the models are excited.

This paper is structured as follows: In Section 2, we give some general remarks about the evolution code, the structural models and the non-adiabatic oscillations code. Section 3 briefly describes the non-adiabatic stability analysis carried on the sdO models. Sections 4, 5 and 6 describe the analysis for the most interesting models found. We summarize all the analysed models in Section 7, and the discussion and conclusions in Section 8.

2 THE TOOLS

2.1 The evolution code and the sdO models

To have accurate theoretical models of sdOs is of great importance in the subsequent pulsation analysis. The distribution of the thermodynamical quantities, such as pressure, temperature, density and the chemical composition in the interior of the star, will determine the theoretical spectrum of modes computed by the non-adiabatic oscillations code.

The evolution code IMSTAR was used to calculate a total of 16 initial sdO models corresponding to different evolutionary sequences (Table 1 shows some of their relevant properties). The models were built in a first step to account for the physical parameters of the pulsator sdOs candidates found in our simultaneous observational survey, and in a second step trying to map out the sdO domain in the HR diagram. All of the models were created by evolving a 1 M_\odot star, starting on the pre-main sequence. The initial metallicity is solar ($Z = 0.02$) except Models 7–9 for which $Z = 0.05$. The code follows the complete evolution of the star continuously to the sdO stage, and beyond. Fig. 1 roughly depicts the sdO domain in the HR diagram and the location of the constructed models. Their domain is located between the instability strips of the sdB variables and the GW Vir stars (low-degree g-mode pulsators excited by the C/O opacity mechanism).

To obtain sdO models, the mass-loss rate on the RGB is enhanced by a factor ranging from 1.60 to 1.85 compared to canonical Reimers’ mass-loss rates. Most of the hydrogen-rich envelope is removed just after or even before the helium core flash. At the highest RGB rates, the model stars leave the RGB and evolve to higher temperatures at constant luminosity, avoiding the AGB. They then suffer a helium-core flash just before or slightly after they enter a white dwarf cooling phase. After the core flash, the star is an EHB/sdB star burning He quiescently in the core. After core He exhaustion, the star enters the He-shell-burning sdO phase. The calculations are stopped when the model stars reach the (final) white dwarf phase. A born-again phase due to a very late thermal pulse occurs in some of the sequences. In this case, flash-driven convection carries nuclear processed material to the surface of the star, enriching the atmosphere with He, C, N and O. For particular models with sdO characteristics (see Table 1), we have performed a stability analysis.

The evolutionary tracks on which Models 1–2, 3–6, 7–9 and 10–11 lie are depicted in Figs 2, 3, 4 and 5. The complex evolution, near $T_{\text{eff}} = 30\,000\,\text{K}$ (log $T_{\text{eff}} \sim 4.5$) in Models 3–6, and in a wider range of temperatures for Models 7–9, occurs near the end of the helium-core flash when the star is settling to a quiescent helium-burning phase in the core, i.e. the sdB phase. At the high mass-loss rates used to create Models 3–6, the mass loss induced by the hot star wind is sufficient to expose internal He-rich layers. Thus, although the photospheres are not He-rich when the models reach the horizontal branch, they become He enriched due to the stellar wind as they evolve from sdBs to sdOs. Note that Fig. 2 shows only the part of the evolutionary tracks that occurs after the EHB phase.

There is an important difference between the evolutionary sequence of Model 6 and the similar sequences of Models 3–5. For Model 6, the He-core flash occurs after the star has entered the white dwarf cooling phase, and in a similar manner to the evolution of post-AGB ‘born-again’ stars (see e.g. Lawlor & MacDonald 2006 and references therein), the convection zone that develops above the off-centre He-burning region penetrates into the H-rich envelope. However, unlike the ‘born-again’ stars, this occurs when the He-burning region has become inactive and the temperature is too low for proton capture reactions to occur. The result of the mixing is to introduce C12 produced by the 3ν process into the envelope, together with O18 and Ne20 produced by $N^3\alpha$ captures. Shortly after the end of the He-core flash, this material is convected throughout the H-rich envelope, increasing the heavy element abundance to...
Z = 0.04. For Models 3–5, the convection zone above the off-centre He-burning region does not penetrate into H-rich envelope, and there is no increase in the surface heavy element abundances. The temporal evolution of the photospheric abundances for the Model 6 sequence is shown in Fig. 6.

Models 10 to 16 require special comment. They are also late core helium flashers, but after they had arrived on the zero-age horizontal branch (ZAHB) ad hoc extra-mixing was included for the purpose of bringing heavy elements to the surface to increase the envelope metallicity. Due to the extra-mixing, helium is also taken to higher temperatures, leading to helium shell flashes.

Figure 1. Diamonds mark the location of the sdO models in the log g–T_{eff} plane. Filled diamonds correspond to Models 8, 10 and 15, which will be thoroughly described in the following sections. The error bars give the T_{eff} and log g determination for J1600+0748 by Fontaine et al. (2008) (bottom) and Rodríguez-López et al. (2010) (top). A rough sketch of the sdO domain and the sdBV and GW Vir instability strips is also given.

Figure 2. Evolutionary tracks from the horizontal branch described by Models 1 and 2. A stability analysis was also done for a subsequent model in the evolutionary track of Model 1, namely Model 1.1. Diamonds mark the location of the models.
Flash-driven convection then leads to further mixing of heavy elements to the surface. These helium shell flashes are responsible for the loops in Fig. 5, near $T_{\text{eff}} \sim 60,000$ K and $\log g \sim 5$. For Models 11 (see Fig. 5), 14 and 16, mass loss was switched off in the calculations once they arrived on the ZAHB.

2.2 The oscillations code

We used the GRACO fully non-adiabatic oscillations code (Moya et al. 2004; Moya & Garrido 2008), which is based on the Unno et al. (1989) formulation to study the sdO models described above. Because the thermal and dynamical time-scales become comparable in the outer parts of the star, a non-adiabatic treatment of the oscillations is required in order to properly describe the dynamical characteristics of the oscillations, i.e. which modes will grow or decay with time. The non-adiabatic treatment does not significantly modify the eigenfrequencies with respect to the adiabatic, at least for our purposes, although it will modify the amplitudes and phases of the eigenfunctions. This proves to be very important in using multicolour photometry for mode identification of pulsating stars, although this is beyond the scope of this paper.

3 NON-ADIABATIC STABILITY ANALYSIS

We used GRACO to calculate modes from $l = 0$ to 4 with frequencies between ~ 0.3 and ~ 20 mHz (~ 50 and 3000 s), searching for excited short and/or long periods.

The stability or instability of a model is given by the growth rate as a function of the frequency. We used the Dziembowski, Moskalik & Pamyatnykh (1993) definition of the growth rate: $\eta = W / \int_0^R |dW/dr| dr$ with the convention that positive (negative) values indicate driving (damping) of a particular mode.

In discussing which regions of the model contribute to driving or damping, we made use of the derivative of the work integral as a function of the fractional mass depth $\log(1 - M_r/M_T)$, which gives a better resolution of the envelope structure, which is more relevant to pulsations than the structure of the deep interior.

1 The fractional mass depth parameter $\log q = \log(1 - M_r/M_T)$ gives a better resolution of the envelope structure, which is more relevant to pulsations than the structure of the deep interior.
the energy locally gained or lost by the displaced material during one pulsation cycle. A positive (negative) value of \(-dW/d\log q\) at a given location indicates that this region contributes locally to driving (damping) a mode. Correspondingly, the running work integral \((-W\)) is also used to illustrate the relative importance of driving and damping zones.

In the next sections, we describe the more interesting models found in the analysis.

4 MODEL 8: ETA 650T45

This model, taken from an evolutionary sequence with initial heavy element abundance \(Z = 0.05\), has \(T_{\text{eff}} = 45\,000\) K and \(\log g = 5.25\). Although it was found stable in the whole frequency range, it has a narrow intermediate frequency region, corresponding to low-radial-order \(p\) modes, with a weak tendency to instability, which seemed interesting in terms of explaining a possible selection mechanism for observed modes in the only sdO pulsator found to date (Rodríguez-López et al. 2009).

The model propagation diagram, representative of all the models used in the analyses, plus the opacity are shown in Fig. 7. There are three main bumps in the Rosseland opacity profile (scale given in the right-hand axis): the shallowest at \(\log q \simeq -12\) corresponds to the helium ionization zone, where He\(\text{II}\) turns to He\(\text{III}\) at \(\sim 40\,000\) K; the maximum at \(\log q \simeq -9.5\), which we will refer to as the Z-bump, is mainly due to iron-peak elements at \(\sim 200\,000\) K and the one at \(\log q \simeq -5\) is the deep opacity bump at \(\sim 200\,000\) K, which results from a combination of K-shell photoionization of carbon and oxygen and spin-orbit effects in L-shell bound–free transitions of iron (Rogers & Iglesias 1992). It is clear from the opacity profile that the He\(\text{II}\) partial ionization zone is too high in the envelope to have any significant weight in the driving of the modes.

The Brunt–Väisälä \((\log N^2)\) and the Lamb frequencies \((\log L_\alpha^2)\) are plotted for \(l = 2\). The Brunt–Väisälä frequency has maxima where gradients in chemical composition are steepest. Hence, the peak at \(\log q \simeq -0.84\) accounts for the transition between the C/O core and the He-burning shell, while the secondary peak at \(\log q \simeq -2.23\) is the transition between the radiative He- and H-burning shells. All the energy transport in the model is radiative except at \(-9.4 \leq \log q \leq -10.0\) where \(N^2 < 0\), indicating that this is a convection zone associated with ionization of heavy elements producing an increase in the opacity rendering convective energy transport more efficient than radiation. We note here that models of sdBs usually have a convective core and a radiative envelope with a thin convection zone produced by the partial ionization of He\(\text{II}/\text{He}\)\(\text{III}\) (Charpinet et al. 2000).

The \(g\) and \(p\)-mode propagation zones are determined, respectively, by \(\sigma^2 < N^2, L_\alpha^2\) and \(\sigma^2 > N^2, L_\alpha^2\), with \(\sigma\) being the real part of the eigenfrequency. Fig. 7 shows that \(g\) modes cannot propagate in the outer envelope and that \(p\) modes cannot propagate in the innermost part of the star, except for modes with very high radial order. The diagram also gives broad constraints on the range of frequencies in which modes can propagate. It gives an upper limit for the angular frequencies of \(g\) modes, \(\log \sigma^2 \lesssim -1\) – depending somewhat on the degree \(l\) – corresponding to cyclic frequencies \(\nu \lesssim 50\) mHz or periods \(P \gtrsim 20\) s. In the case of \(p\) modes, it gives a lower limit for eigenfrequencies, \(\log \sigma^2 \gtrsim -4.3\), which translates to cyclic frequencies \(\nu \gtrsim 1.1\) mHz or periods \(P \lesssim 890\) s. Hence, modes with oscillation eigenfrequencies in the range \(-4.3 \lesssim \log \sigma^2 \lesssim -1\) are mixed modes, i.e. they behave as \(p\) modes in the outer part of the star and as \(g\) modes in the inner zones. These limits correspond to a range in the frequency propagation of \(1.1 \lesssim \nu \lesssim 50\) mHz or a range in periods of \(20 \lesssim P \lesssim 890\) s.

These mixed modes are typical of evolved stars, like sdOs, and hamper the identification of the modes: \(p\) and \(G\) modes’ propagation zones are not separated by an evanescent zone, but their frequency ranges overlap significantly, as derived above. We should then be cautious about the nomenclature and emphasize that whenever we refer to a \(p\) (\(g\)) mode, we refer in fact to mixed modes with nodes mainly in the \(P\) (\(G\)) mode propagation zone (see position of nodes for modes \(p1\) and \(p30\) in Fig. 7); except for those with high radial orders (see nodes for mode \(g88\) in Fig. 7), i.e. \(g\) modes with \(\nu \lesssim 1.1\) mHz, and \(p\) modes with \(\nu \lesssim 50\) mHz, far out of the frequency range considered here. In practice, for this model, modes with \(\nu \gtrsim 22\) mHz (or \(k > 33\)) do not have modes in the \(G\)-mode region.

We plot the growth rate \(\eta\) versus frequency for \(l = 2\) modes (the behaviour being analogous for any degree \(l\)) in Fig. 8, up to \(15\) mHz, as higher frequencies were found highly stable. The model is stable as the growth rate is negative in the whole frequency range. However, there are following three regions of interest with regard to stability.

(i) Between about 0.5 and 1 mHz, where modes are not completely stable.

(ii) From about 2.5 to 5 mHz, a highly stable region.

(iii) From \(\sim 5\) to 15 mHz, where the growth rate shows an oscillatory behaviour.

The differential work \((dW/d\log q)\), running work integral \((-W\)) and opacity, for six modes (marked with diamonds in Fig. 8) chosen to be representative of the growth rate profile, give some insight into the local contributions and their relative importance to the work integral.

Fig. 9 shows the \(g100\) mode (in the left-hand plot) with \(\nu = 0.57\) mHz and \(\eta = -0.78\), which is a representative of the low-frequency region where the growth rate is not so negative. We identify a driving region at the location of the deep opacity bump as

\(\text{The radial order, represented by } k, \text{ or sometimes } n, \text{ gives the number of nodes of each mode, in the radial direction.}\)
responsible for the not complete stabilization of the modes. However, due to the large number of nodes in the deepest region, radiative damping exceeds driving and the modes are stable.

The g15 mode (centre plot) with $\nu = 2.91$ mHz and $\eta = -1$ represents the high-stability region found at frequencies between 2.5 and 5 mHz. The region of maximum energy interchange for the model occurs where the ratio of the dynamical to thermal timescales is ~ 1 (corresponding to $\log q \simeq -10$). For low-radial-order g modes, maximum energy interchange takes place at $\log q \simeq -9$, where the derivative of the opacity does not favour driving, yielding a complete stabilization of the modes.

The onset of the oscillatory behaviour is represented by the g1 mode (right-hand plot) with $\nu = 5.58$ mHz and $\eta = -0.81$. The mode gains a bit in instability due to the development of a weak driving region at $-9.5 \lesssim \log q \lesssim -10$, i.e. the Z-bump location. Its oscillating nature is due to the rise and fall of a driving zone at this Z-bump location, as we show next.

We plot three modes belonging to the third region of stability in Fig. 10. In the left-hand panel, we plot p2 mode with $\nu = 6.56$ mHz and $\eta = -0.98$. We see that the reason for the low value of the growth rate is the vanishing driving region, whereas all the remaining energy contributes to damping.

The mode with maximum growth rate is p9 (centre panel) with $\nu = 9.30$ mHz and $\eta_{\text{max}} = -0.64$. The reason is the maximum developing of the driving region at the location of the Z-bump.

The decrease of the growth rate at high frequencies is due to the energy damping region becoming wider and wider, as is the case for the p11 mode (right-hand panel) with $\nu = 9.98$ mHz and $\eta = -0.79$.

Thus, the interplay between the development and extinction of a driving region at the Z-bump location is responsible for the oscillatory behaviour of the growth rate.

In an attempt to thoroughly investigate the properties of this model (and in particular the peculiar behaviour of the growth rate), we explored the behaviour of the kinetic energy of the modes. This led to the discovery of a mode trapping structure in the g- and p-mode spectra, the details of which will be presented elsewhere (Rodríguez-López et al. 2009).

5 MODEL 10: ETA 675T45MIXI

This is the first of seven models – Models 10 to 16, see Table 1 – created by introducing an artificial extra-mixing in the post-ZAHB evolution with the purpose of raising the metallicity in the envelope in an attempt to drive pulsations, as explained in Section 2.1.

Model 10 was our first model discovered to be unstable. We found that high-radial-order g modes are driven through the action of a κ mechanism due to the Z-bump at $\sim 200,000$ K, the same mechanism that drives oscillations in sdBs. Although the extra-mixing has significantly increased the abundances of C and O in the driving region, this has very little effect on the opacity there. Hence, the
presence of instability in this model shows that radiative levitation of iron is not a necessary condition for pulsations of sdOs, as long as the metallicity is sufficiently increased. More evolved models from this evolutionary sequence (Models 10.1–10.6 in Table 1) were also tested for pulsational instability. We found pulsations were driven in models with $T_{\text{eff}} \leq 54 \, 000 \, \text{K}$ and $\log g \leq 4.5$. So, the instability strip for this evolutionary sequence was found to be $45 \, 000 \leq T_{\text{eff}} \leq 54 \, 000 \, \text{K}$ and $4.2 \leq \log g \leq 4.5$, and may extend to lower temperature and surface gravity.

The evolutionary track on the $\log g$–T_{eff} diagram described by the time evolution of the model is shown in Fig. 11. The positions of the initial Model 10 and the subsequent model found unstable are marked with diamonds. Crosses indicate intermediate structural models found stable in the stability analysis. The whole evolutionary time for this model is about 300,000 years, while e-folding times for further discussion. The profiles of the differential work, running work integral and opacity for these representative modes are shown in Fig. 12.

The growth rate profile for $l = 2$ modes is shown in Fig. 12. We found following two regions with excited modes (similar growth rate profiles and instability regions were found for the other degrees):

(i) within the frequency range $0.29 \leq \nu \leq 0.32 \, \text{mHz}$ (periods 52–58 min), which correspond to modes from $g203$ to $g182$ and

(ii) within the frequency range $0.38 \leq \nu \leq 0.42 \, \text{mHz}$ (periods 40–44 min), which correspond to modes from $g152$ to $g138$.

These modes fall within a wider range favoured for instability between $0.2 \lesssim \nu \lesssim 1 \, \text{mHz}$. Meanwhile, modes with frequencies $\nu \gtrsim 2 \, \text{mHz}$ were found highly stable with $\eta = -1.0$. We have selected a few representative modes, marked with diamonds in Fig. 12, for further discussion. The profiles of the differential work, running work integral and opacity for these representative modes are shown in Fig. 13.

We chose the g190 mode with $\nu = 0.31 \, \text{mHz}$ and $\eta = 0.17$ (Fig. 13, left-hand plot) as representative of the two ‘islands’ of instability. There is a wide driving zone centred at $\log T_{\text{Z}} \simeq -8$, the location of the Z-bump responsible for the instability.

To represent the stability zone between the two ‘islands’ of instability and, moreover, the stability zone up to 2 mHz, we chose the g177 mode (Fig. 13, centre plot) with $\nu = 0.33 \, \text{mHz}$ and $\eta = -0.95$. The stability is due to the near extinction of the previous driving region and most of the significant energy contributing to damp the modes. The development and extinction of the region contributing to driving (with its maximum taking place at the location of the Z-bump) at the expense of a damping region are produced in the frequency range between ~ 0.2 and $1.5 \, \text{mHz}$ and are responsible for the oscillatory profile of the growth rate.

Finally, mode p89 (Fig. 13, right-hand plot) with $\nu = 10.03 \, \text{mHz}$ and $\eta = -1.0$ is representative of the high stability of low- and high-radial-order p modes. The stability is due to a wide damping region at the location of the Z-bump.

Model 10.1 of this same evolutionary sequence was found unstable in the frequency range (for $l = 2$, and similarly for other degrees):

(i) 0.71 to $0.75 \, \text{mHz}$ (periods 22–23 min), which corresponds to modes from g81 to g76.

6 MODEL 15: ETA 67590MIXI

This is the second model found unstable in our study. We found that it drives two overstable modes. This driving is achieved through the action of three different driving regions: (i) the opacity bump at $\sim 2000 \, 000 \, \text{K}$, which for this model is due to a combination of opacity from iron-peak elements and because of their increased abundances due the extra-mixing, opacity from C and O; (ii) a driving region at $\sim 2 \times 10^{7} \, \text{K}$, located immediately above the hydrogen-burning shell, and most likely due to the K-edge of highly ionized argon (Rogers & Iglesias 1992), and (iii) an opacity bump that occurs at the transition from radiative to conductive energy transport. At the high temperatures and densities in the core, the radiative opacity is dominated by free–free absorption. Because the core temperature gradient is relatively small, the radiative opacity increases with the density. On the other hand, the electrons become more degenerate with increasing density and the conductive opacity decreases. The combination of these two opacity variations gives a maximum in the opacity, corresponding to the opacity bump in
driving region (iii) (see Fig. 14). Tests cancelling out the contribution of the nuclear energy generation show that the ϵ mechanism is not responsible for this deepest driving region, nor for region (ii). The instability was obtained for $l = 2$ modes (similar for other modes with other degrees):

(i) g_{27} with $v = 2.08$ mHz and $\eta = 0.07$ and
(ii) g_{24} with $v = 2.32$ mHz and $\eta = 0.05$.

This corresponds to periods in the range 7–8 min. Model 15 has one of the lowest H mass fractions, and one of the largest He, C and O mass fractions (see Table 1), which extend with constant values from the surface of the star down in the envelope until about $\log q \simeq -4$. It also has the largest metallicity, $Z = 0.19$, of the whole series of models.

The propagation diagram and opacity of Model 15 (Fig. 15) show that the region of mixed modes is reduced compared to that of Model 8, which is representative of most of the models used in this study. We also note that the Z-bump has shifted to shallower regions, with its maximum at $\log q \simeq -11$ compared to $\log q \simeq -10$ for the models with $T_{\text{eff}} = 70,000$ K or $\log q \simeq -8$ for models with $T_{\text{eff}} = 45,000$ K.

A plot of the Rosseland mean opacity and its opacity derivatives, $\kappa_T = \partial \ln \kappa / \partial \ln T |_\rho$ and $\kappa_\rho = \partial \ln \kappa / \partial \ln \rho |_T$, is shown in Fig. 16. Opacity derivatives play an important role in the κ mechanism as the necessary condition for driving is given by the expression (Unno et al. 1989):

$$\frac{d}{dr} \left(\frac{\kappa_T + \kappa_\rho}{\Gamma_3 - 1} \right) > 0.$$

(1)

Regions in the star fulfilling this criterion are drawn with a solid line in Fig. 16. All the regions involved in the effective driving of
The two excited modes are potential driving regions, together with the region of the Z-bump, also involved in the p-mode excitation (see below) and the very surface of the star, which, on the contrary, has no significant weight in the driving.

The age of this model from when it first became an sdO is about 10 000 years, which is less than the linear growth rate e-folding times found: 7×10^4 and 10^5 years for g24 and g27, respectively. However, the effective temperature remains near 90 000 K for more than 10^5 years after this particular model. Therefore, from the rate of change of the effective temperature, the evolutionary time-scale for this model is about 10^5 years, and modes may be able to develop observable amplitudes.

The normalized growth rate of the model is given in Fig. 17. It has a low-frequency region with $0.5 \lesssim \nu \lesssim 3.0$ mHz where the two overstable modes are driven, and in which high and low values of the growth rate alternate for consecutive modes. There is a highly stable region at intermediate frequencies $5.0 \lesssim \nu \lesssim 13.0$ mHz, and finally a tendency to driving is found in the high-frequency range with $14.0 \lesssim \nu \lesssim 20$ mHz where low-radial-order p modes are found.

An example of a quasi-unstable mode in the very low-frequency region, below 1 mHz, is given in Fig. 18 (left-hand plot) by the g63 mode with $\nu = 0.93$ mHz and $\eta = -0.15$. The high values of the growth rate are due to driving from region (i). At the high effective temperatures of this model, this opacity bump occurs high in the envelope, at $\log q \simeq -6$, which favours pulsations, as heat interchange is more effective.

An example of a mode in the low-frequency region which has lost its tendency to driving is given in Fig. 18 (centre plot) by the g35 mode with $\nu = 1.63$ mHz and $\eta = -0.72$. In addition to driving region (i), a driving region at $-1 \lesssim \log q \lesssim -0.5$ (corresponding to $\sim 8 \times 10^7$ K in temperature) has developed near the location of the deep opacity bump due to the transition from radiative to conductive energy transport in the semidegenerate material. However, radiative damping right above this region exceeds the driving effect of both regions, damping the modes.

One of the two unstable modes found, g24, with $\nu = 2.32$ mHz and $\eta = 0.05$ is shown in Fig. 18 (right-hand plot). A new driving region, which we attribute to Ar ionization, has developed at $\log q \sim -3$, where $T \sim 2 \times 10^7$ K. The model is able to achieve instability due to the combined driving of two of the three regions: the first and second, or the first and third regions, but modes are stable if only the first, or the joint second and third regions, contributes to the differential work. It is the first time, to our knowledge, that driving of modes due to such a combined action of driving regions has been reported. This may give us a useful tool to explore physical processes, in particular energy transport, in dense hot regions.

A mode representative of the intermediate frequency region with the lowest values of the growth rate is the g6 mode with $\nu = 6.51$ mHz and $\eta = -1.0$ (Fig. 19, left-hand plot). Modes at intermediate frequencies have maximum energy interchange at $\log q \simeq -8.5$, where the derivative of the opacity does not favour driving, which results in maximum stabilization of the modes.
Fig. 19 (right-hand plot) shows mode p7 with $\nu = 18.05$ mHz and $\eta = -0.45$, as an example of a quasi-unstable mode in the high-frequency region where the low-radial-order p modes are found. This mode falls within the region of observed modes for J1600+0748. Surprisingly, due to the high T_{eff} of the model, the high values of the growth rate are due to a wide driving region caused by Z-bump. However, driving is not achieved as it is counterbalanced by a damping region located at the base of the Z-bump.

Further evolved models in the evolutionary sequence were analysed and found unstable.

7 SUMMARY OF THE RESULTS

We present a summary of the stability analysis carried out for all the analysed models and submodels in Table 2. We give T_{eff}, $\log g$, metallicity and if a tendency to instability – or actual instability – was found in the g- and/or p-mode spectrum, and the driving region relevant to this instability. In addition, we give the frequency and period range most favoured for driving.

If we draw our attention first to the first batch of models built for this study (Models 1 to 9), all of them, except Models 7 and 8, have a certain tendency to instability of the g modes due to the gathering of driving energy at the location of the deep opacity bump at $T \sim 2 \times 10^6$ K. This opacity bump is mainly due to iron-peak elements in models which have not experienced mixing of the products of core helium burning into the envelope. Opacity from C and O plays a role for models in which mixing has occurred. Whether or not opacity from C and O is important for driving, we label this driving region C/O in Table 2. Modes more favoured for driving are high-radial-order g modes, i.e. long-period modes, with typical frequencies of oscillation between ~ 0.5 and 2 mHz, i.e. periods ~ 500 to 2000 s. We emphasise the unique behaviour of Model 7 in which the tendency to instability of the g modes is caused by the Z-bump.

We would expect that an increase in the C/O mass fraction, at least in the driving region, would lead to the eventual driving of the modes, as it is known that high metallicities help to increase the potential instability of the models.

Models 1 and 8 have the Z-bump playing a role in the destabilization of the p modes. Model 8 presented an oscillatory profile of the growth rate with frequency, which lead us to analyse it in more detail, revealing mode trapping of g and p modes (Rodríguez-López et al. 2009). While doing this study we were aware that standard sdB evolutionary models with solar and uniform metallicities were not able to drive modes, and crude increases in the metallicity first

Table 2. Effective temperature, logarithm of surface gravity, current metallicity and region responsible for the tendency to driving – or actual driving – of the g- and/or p-mode spectrum.

Model number & name	T_{eff} (K)	$\log g$	Z	g modes	p modes	Frequency range (mHz)	Period range (s)
1 p675_8057	79000	5.70	0.07	C/O	Z	0.5–1, 10–14	700–2000, 70–100
1.1 p675_9065	90000	6.50	0.07	C/O	–	0.5–5	200–2000
2 p650_7960	79000	5.95	0.02	C/O	–	0.5–1	1000–2000
3 etap 665	55000	5.89	0.02	C/O	–	0.5–2.5	400–2000
4 etap 690	55000	5.95	0.02	C/O	–	0.5–2.5	400–2000
5 etap 695	55200	5.90	0.02	C/O	–	0.5–3	300–2000
6 etap 700	55000	6.02	0.04	C/O	–	0.5–2.5	300–2000
7 eta 690d45	45000	4.95	0.05	z	–	2–5	200–500
7.1 eta 690d70	70000	5.95	0.05	C/O	–	0.5–1.5	700–2000
8 eta 690d45	45000	5.26	0.05	–	z	7–9.5	100–150
8.1 eta 690d70	70000	6.22	0.05	C/O	–	0.5–3.5	300–2000
9 eta 700d45	45000	6.13	0.07	C/O	–	1–7	150–1000
9.1 eta 700d70	70000	6.34	0.07	C/O	–	0.5–4	250–2000
10 eta 675d45mixed	45000	4.18	0.14	Z	–	0.2–0.9	1100–5000
10.1 15773d54g45	54500	4.54	0.15	Z	–	0.3–2	500–3300
10.2 15873d58g47	58300	4.68	0.14	Z	–	0.3–2.5	400–3000
10.3 16973d69g51	69000	5.14	0.16	C/O+Z	–	0.2–3.5	300–5000
10.4 17773d77g54	77000	5.39	0.17	C/O+Z	–	0.2–1.5, 4–6.5	700–5000, 150–250
10.5 18273d84g56	84500	5.63	0.18	C/O	Z	0.2–1, 8–11	1000–5000, 90–125
10.6 18573d91g59	90700	5.93	0.19	C/O	Z	0.2–3, 17–21	300–5000, 50–60
11 eta 675d45mixi	45000	4.36	0.07	Z	–	0.4–0.7	1400–2500
12 eta 675d70mixi1	70000	5.16	0.16	C/O+Z	–	0.2–1, 2.5–4	1000–5000, 250–400
13 eta 675d70mixi2	70000	5.20	0.18	C/O+Z	–	0.2–0.5, 3–4	2000–5000, 250–300
14 eta 675d70mixi4	70000	5.43	0.07	C/O+Z	–	0.4–0.8, 5–7	1250–2500
15 eta 675d90mixi	90000	5.86	0.19	C/O	Z	0.3–3.5, 15–20	300–3300, 50–65
15.1 18742d90g63	97600	6.28	0.20	C/O	–	1–5	500–700
16 eta 675d90mixi	90000	6.58	0.07	C/O	–	2–4, 5.5–7	250–500, 150–180

Note. The last two columns give the frequency or period range of most favoured for driving (taking into account modes from $l = 1$ to 4). The lowercase z for Models 7 and 8 indicates the modes are under the limit of the tendency to driving. Models between horizontal lines have been calculated with small changes in the evolution code. Models in bold were found unstable.

ν denotes the frequency and η the period of observed modes. The last two columns give the frequency or period range of most favoured for driving (taking into account modes from $l = 1$ to 4). The lowercase z for Models 7 and 8 indicates the modes are under the limit of the tendency to driving.
(Charpinet et al. 1996) and the so-called second generation models next (Charpinet et al. 1997b) were needed to excite pulsations and theoretically reproduce the observed instability strip. The latter take diffusion (radiative levitation and gravitational settling) into account to produce a non-uniform profile of iron with depth, which is confirmed to be a key ingredient in driving pulsations (Charpinet et al. 2009).

Due to our negative results in exciting modes in this first batch of models, we aimed at building models as rich in metals as possible to test if it was possible to excite modes at some point via a κ mechanism associated with a C/O partial ionization zone. Therefore, a last batch of models (Models 10 to 16) was built in which an ad hoc extra-mixing was added to increase the metallicity in the envelope.

All these mixed models have a tendency to driving of the high-radial-order g modes (see Table 2), caused by the Z-bump (this was only found previously for Model 7), the C/O partial ionization zone, or a combination of both, the C/O being responsible for the tendency to driving of modes with lowest frequencies.

We finally achieved the instability of several models in the evolutionary sequence of Model 10 that define a narrow instability band in the range $45,000 \leq T_{\mathrm{eff}} \leq 54,000$ K, $4.2 \leq \log g \leq 4.5$, metallicity $0.14 \leq Z \leq 0.15$ and periods around 20 min, 45 min and 1 h. The instability is caused by a classical κ mechanism due to the opacity bump of the iron-peak elements that excite high-radial-order g modes in the star. Further time-evolved models in the same sequence were found stable.

Model 15, with $T_{\mathrm{eff}} = 90,000$ K, $\log g = 5.86$ and metallicity $Z=0.19$, was found to have unstable high-radial-order g modes due to driving from a combination of a classical κ mechanism in the C/O partial ionization zone at $T \sim 2 \times 10^4$ K, a κ mechanism operating at $T \sim 2 \times 10^5$ K probably caused by argon ionization and a κ mechanism associated with an opacity bump that results from the transition from radiative to conductive opacities. This model has one of the largest total metallicity, helium, carbon and oxygen mass fractions within the whole set of models. We found that it drives two overstable modes in the period range 7–8 min.

Models 10.5, 10.6 and 15, with temperatures between 84,500 and 91,000 K, show a tendency to instability of the low-radial-order p modes caused by the Z-bump. This behaviour is similar to that found in Model 1, also a high-temperature model ($T_{\mathrm{eff}} = 79,000$ K). This is a somewhat unexpected result, as for such high T_{eff} the location of the Z-bump is quite high in the envelope of the star, where the driving efficiency is lower due to the lower density. Fortunately, this result is confirmed by actual driving of p modes through a κ mechanism associated with the Z-bump is achieved by Fontaine et al. (2008) for two hot sdO models with $T_{\mathrm{eff}} = 71,000$ and 81,000 K, which include radiative levitation of iron. Those models have high temperatures fitting the first determination of physical parameters of J1600+0748, $T_{\mathrm{eff}} = 71,000 \pm 2725$ K and $\log g = 5.93 \pm 0.11$, also derived by Fontaine et al. (2008).

8 DISCUSSION AND CONCLUSIONS

We carried out a non-adiabatic analysis of sdO equilibrium models to explore their feasibility as pulsators. We analysed 27 sdO models out of 16 different evolutionary sequences and found the first two sdO evolutionary models ever to drive high-radial-order g modes. In one model, with $T_{\mathrm{eff}} = 45,000$ K, instability of g modes is due to a classical κ mechanism in the partial ionization zone of the iron-peak elements at $T \sim 2 \times 10^4$ K. This shows that radiative levitation is not an absolute pre-requisite for pulsations of a model sdO as long as the metallicity is increased to what are probably unrealistic values. Inclusion of radiative levitation of iron remains necessary for complete asteroseismological analysis of hot subdwarfs. In the second model, with $T_{\mathrm{eff}} = 90,000$ K, g modes are found to be unstable due to the combination of driving from three distinct regions in the star. The outermost driving region is located at $T \sim 2 \times 10^5$ K, where the iron-peak opacity bump is strongly augmented by contributions from ionization of carbon and oxygen, which we have enhanced in abundance by ad-hoc extra-mixing during the evolution after the ZAHB. The second driving region is located at $T \sim 2 \times 10^7$ K where a subtle opacity bump develops due to the ionization of argon. The innermost driving region is located at the transition between radiative and conductive energy transport, and may be of interest as a tool to explore energy transport processes in dense hot regions.

All of our sdO models, except one, present a certain tendency to instability for high-radial-order g modes, with typical oscillation frequencies between ~0.5 and 2 mHz (i.e. periods \sim500–2000 s). For most of the models this tendency to driving in usually due to the occurrence of a driving zone at the location of the C/O partial ionization zone. However, quasi-excitation due to the heavy elements partial ionization zone or a combination of both also occurred.

The fact that we found actual driving due to a κ mechanism associated with C/O opacity in only one model may be due to the deep location of the C/O partial ionization zone within the star, where the high ratio of the thermal to dynamical time-scales impedes efficient heat interchange. Hence, only hotter models with shallower partial ionization zones, such as Model 15 for which we achieved actual driving, may be able to overcome this problem.

The tendency to instability of p modes was not so common, and was achieved for only 5 out of 27 models. We did not achieve actual driving of p modes, those observed in the only sdO pulsator known to date, in any of our models. In some of the hotter models, we found a tendency to driving of low-radial-order p modes, always triggered by the κ mechanism associated with the Z-bump. We partially attribute the inability to get actual p-mode driving to the shallow location of the heavy elements partial ionization zone, where the density is low, making its contribution to the work integral not sufficient to drive the modes. However, this difficulty has been now overcome by the results of Fontaine et al. (2008) who have achieved the actual driving of p modes for hot models which include radiative levitation and gravitational settling of iron.

Finally, we would like to remark that, as shown by Fontaine et al. (2008) and Charpinet et al. (2009), inclusion of radiative levitation of iron in the models has revealed essential in achieving the actual excitation of p modes. The determination of physical parameters (Fontaine et al. 2008; Rodríguez-López et al. 2010) for the unique pulsating sdO to date provides us with an excellent clue to pursue observational searches for new sdO pulsators, with the aim of characterising their instability strip. Envisaged problems are the lack of catalogued sdOs with high effective temperatures, as historically, atmosphere grids reached only up to about 55,000 K. The role of recent sky surveys such as the Sloan Digitally Sky Survey\(^4\) and new tools as those offered by the Virtual Observatory\(^5\) is crucial for spectroscopic and photometric searches of new sdO candidates. The road ahead is challenging, as candidates will be mostly faint (magnitudes at least over 16 or 17) which will pose difficulties in achieving high signal-to-noise ratio light curves that allow us to detect the lowest amplitude modes. Strategies to observe

\(^4\)http://www.sdss.org/
\(^5\)http://www.ivoa.net
sdO candidates with asteroseismologic satellites such as CoRoT or KEPLER have to be considered.

ACKNOWLEDGMENTS

CRL acknowledges an Ángeles Alvariño contract of the regional government Xunta de Galicia. This research was also supported by the Spanish Ministry of Science and Technology under project ESP2004–03855-C03-01 and by the Junta de Andalucía and the Dirección General de Investigación (DGI) under project AYA2000-1559. AM acknowledges financial support from a Juan de la Cierva contract of the Spanish Ministry of Education and Science. RO is supported by the Research Council of Leuven University through grant GOA/2003/04.

REFERENCES

Ahmad A., Jeffery C. S., 2005, A&A, 437, L51
Charpinet S., Fontaine G., Brassard P., Dorman B., 1996, ApJ, 471, L103
Charpinet S., Fontaine G., Brassard P., Dorman B., 1997a, ApJ, 489, L149
Charpinet S., Fontaine G., Brassard P., Chayer P., Rogers F. J., Iglesias C. A., Dorman B., 1997b, ApJ, 483, L123
Charpinet S., Fontaine G., Brassard P., Dorman B., 2000, ApJS, 131, 223
Charpinet S., Fontaine G., Brassard P., 2009, A&A, 493, 595
Dreizler S., Heber U., Werner K., Moehler S., de Boer K. S., 1990, A&A, 235, 234
Driebe T., Blöcker T., Schönbömer D., Herwig F., 1999, A&A, 350, 289
Dziembowski W. A., Moskalik P., Pamyatnykh A. A., 1993, MNRAS, 265, 588
Fontaine G., Brassard P., Charpinet S., Green E. M., Chayer P., Billères M., Randall S. K., 2003, ApJ, 597, 518
Fontaine G., Brassard P., Green E. M., Chayer P., Charpinet S., Andersen M., Portouw J., 2008, A&A, 486, L39
Green E. M. et al., 2003, ApJ, 583, L31
Han Z., Podsiajdowski Ph., Maxted P. F. L., Marsh T. R., Ivanova N., 2002, MNRAS, 336, 449
Hirsch H. A., Heber U., 2008, in Heber U., Jeffery C. S., Napiwotzki R., eds, ASP Conf. Ser. Vol. 392, Proceedings of the Hot Subdwarf Stars and Related Objects. Astron. Soc. Pac., San Francisco, p. 131
Jeffery C. S., Drilling J. S., Harrison P. M., Heber U., Moehler S., 1997, A&AS, 125, 501
Kilkenny D., Koen C., O’Donoghue D., Stobie R. S., 1997, MNRAS, 285, 640
Lawlor T. M., MacDonald J., 2006, MNRAS, 371, 263
Moya A., Garrido R., 2008, Ap&SS, 316, 129
Moya A., Garrido R., Dupret M.-A., 2004, A&A, 414, 1081
Oreiro R., Pérez-Hernández F., Ulla A., Garrido R., Østensen R., MacDonald J., 2005, A&A, 438, 257
Oreiro R., Østensen R. H., Green E. M., Geier S., 2009, A&A, 496, 827
Østensen R. H., 2009, in Schuh S., Handler G., eds, CoAst Vol. 159. Proc. JENAM 2008 Symp. 4: Asteroseismology and Stellar Evolution. AASP, Vienna, p. 75
Rodríguez-López C., Ulla A., Garrido R., Manteiga M., Thejll P., 2004, Ap&SS, 291, 431
Rodríguez-López C., Ulla A., Garrido R., Manteiga M., Casanova V., Sota A., Østensen R., Oreiro R., 2005, in Koester D., Moehler, S., eds., ASP Conf. Ser. Vol. 334, 14th European Workshop on White Dwarfs. Astron. Soc. Pac., San Francisco, p. 627
Rodríguez-López C., Ulla A., Garrido R., 2007, MNRAS, 379, 1123
Rodríguez-López C., Moya A., Garrido R., MacDonald J., Oreiro R., Ulla A., 2009, MNRAS, accepted (arXiv:0909.3778)
Rodríguez-López C. et al., 2010, MNRAS, 401, 23
Rogers F. J., Iglesias C., 1992, ApJS, 79, 50
Ströer A., Heber U., Lisker T., Napiwotzki R., Dreizler S., Christlieb N., Reimers D., 2007, A&A, 462, 269
Sweigart A., 1997, ApJ, 474, L23
Thejll P., Bauer F., Saffer R., Liebert J., Kunze D., Shipman H. L., 1994, ApJ, 433, 819
Unno W., Osaki Y., Ando H., Saio H., Shibahashi H., 1989, Nonradial Oscillations of Stars, 2nd edn. University of Tokyo Press, Tokyo
Webbink R. F., 1984, ApJ, 277, 355
Woudt P. A. et al., 2006, MNRAS, 371, 1497

This paper has been typeset from a T\LaTeX file prepared by the author.