Percutaneous coronary intervention in patients with acute coronary syndrome in Chinese Military Hospitals, 2011–2014: a retrospective observational study of a national registry

Ren Zhao, Kai Xu, Yi Li, Miaohan Qiu, Yaling Han, the NRCIMH Program

ABSTRACT

Objectives Interventional treatment of patients with acute coronary syndrome (ACS) is surging dramatically in China in recent years, whereas nationwide assessments of the quality of percutaneous coronary intervention (PCI) procedural performance and outcomes are scarce. We aimed to provide an updated and real-world overview of the performance of PCI in patients with ACS since 2011 in China after the China PEACE study from 2001 to 2011.

Methods In this cross-sectional study, data were extracted from the National Registry of Cardiovascular Intervention in Military Hospitals database to create a national sample of 144 659 patients with ACS undergoing PCI at 117 military hospitals in all regions of China from calendar years 2011–2014. Patient characteristics, procedural performance, PCI outcomes and adverse events and temporal changes were analysed.

Results During 2011–2014, patients with ACS undergoing PCI increased dramatically. Small numbers of high-volume hospitals performed the majority of PCI procedures. However, only half of these patients were adequately covered and proportions for the use of assisted devices and novel medications were relatively small. Radial artery access was still increasing with time. Primary PCs were performed on 45.4% ST-segment elevation myocardial infarction patients with PCI procedures. 3.8% lesion vessels involve left main artery. Implanted stents, the overall complications and in-hospital mortality were decreasing remarkably.

Conclusions In Chinese military hospitals, interventional resources were limited with great regional disparities, there are still gaps to be filled to better serve patients with ACS. Our findings can serve as an indispensable supplement to a more comprehensive understanding of the practice of contemporary cardiac intervention in China.

INTRODUCTION

Due to an ageing population and increasing prevalence of cardiovascular risk factors, China is facing an epidemic of acute coronary syndrome (ACS). In China, military hospitals play an indispensable role in providing healthcare service largely to civilian patients in peacetime, yet their performance of care were underinvestigated. The drastic increase of acute coronary syndrome (ACS) in China has also catalysed the growth of percutaneous coronary intervention (PCI) in quantity. However, whether the rapid growth of PCI volume has translated into good quality of care for these patients with ACS treated in military hospitals remains unclear. The adoption of emerging technologies varies substantially across different areas of China. The lack of a nationwide comprehensive assessment of interventional practice hampered the improvement of healthcare provided to these patients. Understand these barriers within the healthcare system of China is imperative to implement change.

The China patient-centered evaluative assessment of cardiac event (PEACE) study was a nationally representative, retrospective study of patients undergoing coronary catheterisation and PCI at 55 urban Chinese...
non-military hospitals in calendar years 2001, 2006 and 2011. This study found that there were notable changes in practice, including use of radial PCI and medicated stents, yet persistent gaps still existed to improve care. Military hospitals are independently administered by the Joint Logistic Support Center (the former General Logistics Department) of People’s Liberation Army (PLA) in China. To facilitate the management of cardiovascular intervention in military hospitals, the Quality Control Center of Intervention for Cardiovascular Diseases was founded in 2009 by the Bureau of Healthcare of the General Logistics Department. Quality Improvement Initiatives were launched thereafter to standardise the care of acute myocardial infarction nationwide in military hospitals, including the establishment of Chest Pain Center in qualified cardiac centres. To standardise and monitor the quality of care for patients undergoing PCI procedures, we conducted the National Registry of Cardiovascular Intervention in Military Hospitals (NRCIMH) study. During calendar years 2011–2014, 117 PCI-capable military hospitals in all seven geographical regions of China and 144,659 patients with ACS undergoing PCI procedures were included in this study. Patient characteristics, quality of procedural performance, PCI outcomes, and in-hospital adverse events and their temporal changes were analysed over time.

METHODS
Study design
This study was a cross-sectional study using a registered dataset. The original data for this study were extracted from the NRCIMH (web access via http://www.xxgjr.com). This database collected social-demographic, medical and interventional data of patients who had cardiovascular disease and underwent cardiac interventions since October 2010 in all military hospitals nationwide that are qualified to perform cardiac catheterization and PCI. Patient demographics, clinical characteristics and treatment patterns during hospitalisation were collected by physicians who were in charge of the patient, and coronary catheterisation or PCI-related information were collected by the responsible operator or technical assistant. Patient data were censored and uploaded into the database by designated medical personnel in each individual hospital. The majority of patients had coronary artery disease and underwent PCI. All participating hospitals accepted the ethics committee approval.

Study population
Patients with ACS (with definite discharge diagnosis of either ST-segment elevation myocardial infarction (STEMI), non-ST-segment elevation myocardial infarction (NSTEMI) or unstable angina) undergoing interventional procedures in all 117 military hospitals (online table S1) from 1 January 2011 to 31 December 2014 were included in this study. Diagnoses were made according to the China National Guidelines for ACS, which are consistent with guidelines in the USA. Due to the large-volume information inputted into this registry, patients with missing data were excluded in specific categorical analyses, including age, gender, region of hospital, access artery, contrast type, lesion vessel and target vessel. For measured categories like artery stenosis and lesion category, their sum exceed the total number of patients enrolled in each study year is because each patient usually had more than one stenosed/lesioned vessel. For the sake of clarity, the sum for each measured variable category was listed in the column of each category unless otherwise specified. Data integrity for each measure category was not less than 91.8% in this study.

Variables and definitions
We collected data from a unified registry form abstracted from the original database systems, including baseline characteristics (diagnosis, patient category, age, gender, ethnicity, region of admission hospital, medical history), perioperative characteristics (primary PCI composition, access artery, contrast type, antiplatelet and anticoagulation medications, assisted devices), PCI outcomes (stenosis pre-PCI, lesion category, lesion vessel, target vessel) and adverse outcomes including complication and death both during PCI and post-PCI. Medical histories including histories of myocardial infarction, cerebrovascular disease, peripheral vascular disease, cardiac valve surgery, coronary artery bypass graft (CABG) and PCI were collected by physicians in charge of that patient (mainly via patient’s own statement and further verified, if any, by documentation in previous admission notes, discharge diagnoses or corroborating laboratory test results) and were uploaded into the registry database. For the convenience of calculation, anomalous artery, intermediate artery and vessel graft lesion as well as interventions done in these vessels were all merged into the individual categories. In addition, due to a systematic revision of the registry form since 2013, partial data were analysed and summarised in the supplement, including location and Killip classification of myocardial infarction history, assisted device used during 2011–2013, information regarding medical coverage, thrombolysis of STEMI patient, PCI outcomes and stent manufacturer during 2013–2014.

Patients with corrected TIMI frame count values exceeding the thresholds by >2 SD for the particular vessel were recognised as having coronary slow flow. Major bleeding was defined as any intracranial bleeding, absolute haemoglobin decrease of at least 50 g/L, bleeding resulting in hypovolemic shock or fatal bleeding (bleeding that resulted directly in death within 7 days). Acute/subacute stent thrombosis was defined according to the Academic Research Consortium criteria. Postoperative myocardial infarction was diagnosed in accordance with the universal definition of type 4 myocardial infarction. The cause of death was adjudicated as cardiogenic death, PCI-related death or uncertain.
analyses were performed using GraphPad Prism V.6.01 and SAS software V.9.3.

Patient and public involvement
Patients and public were not involved in this study.

RESULTS
A total of 144,659 patients with ACS undergoing PCI in 117 military hospitals were recruited into this study from 2011 to 2014, located in all seven geographic regions of mainland China, including North China (n=25), Northwest (n=14), Northeast (n=10), East China (n=29), Southwest (n=14), Central China (n=12) and South China (n=13). Of these, 82 hospitals provided 140,374 cases (97.0%) across all the study years (online table S1). In brief, only 20 (17.1%) hospitals performed more than 400 PCIs on ACS patients annually (figure 1A), and these hospitals performed 71.9% PCIs (104,026 cases) during 2011–2014 (figure 1B). Geographically, although the total number of hospitals in Northern China (North China, Northwest, Northeast regions) was less than that in Southern China (South China, East China, Central China and Southwest regions), there were more military hospitals in Northern China performed PCI procedures>400 cases per year than those in Southern China (figure 1C), and northern military hospitals performed the majority of PCIs during the study years (66.5%) (figure 1D).

Generally, the number of patients with ACS undergoing PCI has increased by 27.8%, while the proportions of most comorbidities of these patients had concordant decrease over time. Hospitals in northern China (North China, Northwest and Northeast) performed the majority of PCIs, with most patients being civilian and with Han ethnicity. There were significant increases in the proportions of patients diagnosed as unstable angina pectoris, of civilian identity, male gender, treated in hospitals classified as military, and with prior PCI within the last 2 years. There were slight decreases in the proportions of patients diagnosed as STEMI, treated in hospitals in North China, Northwest and Northeast, and significant decreases in the proportions of patients classified as NSTEMI treated in hospitals in North China, Northwest and Central China (table 1). During 2013–2014, only half of these patients were covered by urban resident medical service (53.4%–53.6%) (online table S2).

The proportion of primary PCI dropped significantly in patients with ACS in all categories. In STEMI patients, the fraction of primary PCI in all PCI performed did not change dramatically (44.0%–47.9%, table 2). There is remarkable increase in the proportion of anterior myocardial infarction and significant decrease in the proportion of cardiac function defined as Killip III/IV (online table S3). There was more time delay on first medical contact to balloon dilation in 2014 than in 2013 (median 50 vs 40, p<0.01) (online table S4). PCI procedures done through the radial artery had increased markedly from 72% in 2011 to 90.4% in 2014. The use of clopidogrel and GP IIb/IIIa inhibitor dropped significantly. Proportions of novel drugs like ticagrelor and bivalirudin, and of assisted devices such as intra-aortic
	2011	%	2012	%	2013	%	2014	%	P values for trend
ACS	30800		34974		39524		39361		
UAP	22038	71.6	24847	71.0	28727	72.7	28508	72.4	<0.0001
STEMI	6514	21.1	7302	20.9	7889	20.0	7856	20.0	<0.0001
NSTEMI	2248	7.3	2825	8.1	2908	7.4	2997	7.6	0.87
Age, years									
18–24	12	0.0	8	0.0	16	0.0	15	0.0	0.70
25–34	177	0.6	223	0.6	246	0.6	243	0.6	0.62
35–44	1597	5.2	1930	5.5	2149	5.4	2187	5.6	0.09
45–54	5849	19.1	6663	19.1	7283	18.5	7507	19.1	0.52
55–64	10291	33.6	11990	34.4	13888	35.2	13381	34.0	0.11
65–74	8615	28.1	9510	27.3	10650	27.0	10832	27.5	0.09
75–84	3850	12.6	4227	12.1	4884	12.4	4800	12.2	0.33
>84	260	0.8	321	0.9	350	0.9	386	1.0	0.11
Gender									
Male	22017	73.0	25423	74.4	29104	74.3	29193	74.2	<0.01
Female	8138	27.0	8768	25.6	10085	25.7	10143	25.8	
Ethnicity									
Han	30589	99.3	34691	99.2	38974	98.6	38620	98.1	<0.0001
Others	211	0.7	283	0.8	550	1.4	741	1.9	
Region of hospital									
North China	9156	29.7	9631	27.5	9914	25.1	11086	28.2	<0.0001
Northwest	7632	24.8	7939	22.7	9728	24.6	7821	19.9	<0.0001
Northeast	3924	12.7	5347	15.3	6691	16.9	7284	18.5	<0.0001
East China	3742	12.2	4630	13.2	5053	12.8	5241	13.3	<0.001
Southwest	3515	11.4	4346	12.4	4877	12.3	4549	11.6	0.96
Central China	1977	6.4	1928	5.5	1910	4.8	1944	4.9	<0.0001
South China	837	2.7	1149	3.3	1351	3.4	1436	3.6	<0.0001
Comorbidities									
Hypertension	17600	57.1	19942	57.0	21260	53.8	21701	55.1	<0.0001
Hyperlipidaemia	6844	22.2	7774	22.2	7420	18.8	7330	18.6	<0.0001
Diabetes mellitus	6829	22.2	7817	22.4	8394	21.2	8819	22.4	0.75

Continued
	2011 n	2011 %	2012 n	2012 %	2013 n	2013 %	2014 n	2014 %	P values for trend
COPD	541	1.8	448	1.3	478	1.2	447	1.1	<0.0001
Current smoking	9093	29.5	10838	31.0	11467	29.0	10568	26.8	<0.0001
Heart failure*	1378	4.5	1373	3.9	1331	3.4	1122	2.9	<0.0001
Renal failure*	277	0.9	297	0.8	259	0.7	276	0.7	<0.001
Under dialysis*	34	0.1	52	0.1	45	0.1	45	0.1	0.71
Prior MI	7560	24.5	7828	22.4	7928	20.1	5648	14.3	<0.0001
Prior CVD	2014	6.5	1912	5.5	1990	5.0	2018	5.1	<0.0001
Prior PVD	457	1.5	430	1.2	489	1.2	515	1.3	0.09
Prior PCI	5702	18.5	6125	17.5	6467	16.4	5973	15.2	<0.0001
Prior CVS	1077	3.5	1192	3.4	563	1.4	14	0.0	<0.0001
Prior CABG	936	3.0	952	2.7	580	1.5	204	0.5	<0.0001
Familial CAD	805	2.6	867	2.5	681	1.7	615	1.6	<0.0001

*Assessed and recorded at admission.

CABG, coronary artery bypass graft; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; CVD, cerebrovascular disease; CVS, cardiac valve surgery; MI, myocardial infarction; NSTEMI, non-ST elevation myocardial infarction; PVD, peripheral vascular disease; STEMI, ST elevation myocardial infarction; UAP, unstable angina pectoris.
Table 2 Perioperative characteristics of patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) during 2011–2014

	2011	2012	2013	2014	P values for trend					
n	30800	34974	39524	39361						
pPCI	Yes	3689	12.0	4359	12.5	4263	10.8	4211	10.7	<0.0001
On STEMI	2866	9.3	3499	10.0	3505	8.9	3544	9.0	0.78	<0.01
pPCI/PCI	2866/6514	44.0	3499/7302	47.9	3505/7889	44.4	3544/7856	45.1	0.78	<0.01
On NSTEMI	334	1.1	372	1.1	349	0.9	365	0.9	<0.0001	
On UAP	489	1.6	488	1.4	409	1.0	302	0.8	<0.0001	
No	27111	88.0	30615	87.5	35261	92.9	35150	92.9		
Access artery	30800	34974	39524	39361						
Radial	22171	72.0	28266	81.2	34520	87.3	35582	90.4	<0.0001	
Femoral	8453	27.4	6527	18.7	4803	12.2	3545	9.0	<0.0001	
Brachial	165	0.5	170	0.5	187	0.5	209	0.5	0.94	
Others	11	0.0	11	0.0	14	0.0	25	0.1	0.06	
Contrast type	30800	34974	39524	39361						
Non-ionic	30027	99.8	34119	99.9	38493	99.8	39198	99.6	<0.0001	
Iso-osmolar	10055	33.4	12988	38.0	16540	42.9	20034	50.9	<0.0001	
Low-osmolar	19972	66.4	21131	61.9	21953	56.9	19164	48.7	<0.0001	
Ionic	53	0.2	35	0.1	92	0.2	163	0.4	<0.0001	
Antiplatelet	30800	34974	39524	39361						
Aspirin	29459	95.6	34189	97.8	38267	96.8	38547	97.9	<0.0001	
Clopidogrel	29486	95.7	34231	97.9	37165	94.0	36122	91.8	<0.0001	
Ticagrelor	30	0.1	13	0.0	222	0.6	1299	3.3	<0.0001	
Ticlopidine	54	0.2	50	0.1	520	1.3	1202	3.1	<0.0001	
Cilostazol	22	0.1	17	0.0	23	0.1	15	0.0	0.11	
GP IIb/IIIa inhibitor	4670	15.2	6232	17.8	6135	15.5	5099	13.0	<0.0001	
Anticoagulation	30800	34974	39524	39361						
UFH	18788	61.0	21343	61.0	22885	57.9	24547	62.4	0.19	
LMWH	9248	30.0	10398	29.7	12622	31.9	12012	30.5	<0.01	
Fondaparinux	373	1.2	939	2.7	886	2.2	0	0.0	<0.0001	
Bivalirudin	0	0.0	0	0.0	93	0.2	395	1.0	<0.0001	
IABP	30800	34974	39524	39361						
Yes	450	1.5	579	1.7	584	1.5	432	1.1	<0.0001	
No	30350	98.5	34395	98.3	38940	98.5	38929	98.9		
IVUS	30800	34974	39524	39361						
Yes	439	1.4	399	1.1	383	1.0	439	1.1	<0.0001	
No	30361	98.6	34575	98.9	39141	99.0	38922	98.9		

GP IIb/IIIa, glycoprotein IIb/IIIa; IABP, intra-aortic balloon pump; IVUS, intravascular ultrasound; LMWH, low molecular weight heparin; NSTEMI, non-ST elevation myocardial infarction; pPCI, primary percutaneous coronary intervention; STEMI, ST elevation myocardial infarction; UAP, unstable angina pectoris; UFH, unfractionated heparin.

Balloon pump (IABP), intravascular ultrasound (IVUS), optical coherence tomography (OCT) and fractional flow reserve (FFR) measurement, were low in all time periods (table 2, online table S5). In addition, from 2013 to 2014, thrombolysis in patients with STEMI was not altered in terms of performance rate, thrombolytics and time delay from angina to thrombolysis increased remarkably and the success rate dropped significantly as well (online table S6).

Under catheterisation, artery stenosis >75% increased significantly in proportions during the study years. Long lesion constitutes approximately one-third of the overall
lesions, there were increased trends in the proportion of general lesion, total occluded lesion and thrombus lesion, and decreased trends in long lesion, calcified lesion and bifurcation lesion. The proportion of triple-vessel lesion significantly decreased, while that of solitary vessel lesion increased dramatically. Under PCI, target vessels were primarily solitary with increased trends in proportions of all arteries, followed by double vessels with decreased proportions. Target vessels involving LM consist 3.4% to 4.2% of all PCI procedures. PCI procedures targeting triple vessels had also decreased both in amount and in proportion (table 3). From 2013 to 2014, the mean implanted stent per patient decreased from 1.5 to 1.4 (p=0.01) (online table S7), the majorities implanted stents were made by domestic companies with a decreased proportion over time (online table S8).

In general, more complications were recorded during PCI than post PCI, and the overall complications were significantly decreased both in amount and in proportion, either during PCI or post-PCI. During PCI procedures, slow flow, serious dissection, acute thrombosis, perforation and cardiac tamponade had markedly decreased. As for complications after PCI, acute/subacute stent thrombosis, organ failure, major bleeding/haematoma, contrast reaction and thromboembolism had decreased trends in proportion during the study years. There were also significantly decreased trends of death both in amount and in proportion, during/after PCI, with the majority of death found after PCI procedures due to cardiogenic triggers (table 4). After adjustment for patient demographic and clinical characteristics in the multilevel logistic regression, the risk of in-hospital mortality also significantly decreased over time (figure 2).

DISCUSSION

To the best of our knowledge, this is the first large, nationwide study of patients with ACS undergoing PCI in Chinese military hospitals. Compared with contemporary developed country such as the USA, the proportion of hospitals capable of performing PCIs >400 cases was substantially low (17.1% vs 41.5% in USA).19 Accordingly, the application rates of assisted devices were also low, such as IABP (1.1%–1.7%), temporary pacemaker (1.9%–2.4%), IVUS (1.0%–1.4%), OCT (0.1%) and FFR measurement (0.1%–0.5%) as the support is available with experienced interventional cardiologists and skilled support staff in high-volume well-equipped facilities. Out data also suggest great regional disparities of PCI procedures performed on patients with ACS, with patients in the north region of China (North China, Northwest and Northeast) consumed the majority of interventional resources (65.5%–67.2% of all PCI cases for patients with ACS, table 1). This also reflects pandemic state of unstable coronary artery disease in these regions.20–22 In this regard, medical resources shall be prioritised to better serve disparate needs in different regions, especially the north region of China. Furthermore, the healthcare coverage system in contemporary China is also concerning, as during 2013–2014 only 53.4%–53.6% patients with ACS were covered under urban resident medical service with high reimbursement rate, while 20.1%–22.1% patients were covered under new rural cooperative medical service with low reimbursement rate, and 16.3%–17.2% patients were uncovered.23–25 Given the great economic burdens patients with ACS bear on PCI procedures and medications during hospitalisation and thereafter,26–28 the current medical coverage patterns shall be optimised to improve the quality of life for these patients as well as their families. Nevertheless, the overall decreased trends in proportions of comorbidities suggest the effectiveness of cardiovascular-related disease control during 2011–2014 in China.

Primary PCI was performed with high prevalence in hospitals of developed countries. For example, in a recent nationwide Belgian STEMI registry during 2009–2013, 89.6% of patients with STEMI underwent primary PCI.29 In the US National Cardiovascular Data Registry (NCDR) 2010–2011 report, the primary PCI consisted 84.8% of all PCI performed for patients with STEMI.30 However, the proportion of primary PCI performed on STEMI patients was still very low in this study, and this proportion did not change significantly over time (44.0% in 2011 to 45.1% in 2014). This could be explained by the low proportion of high-volume PCI-capable hospitals in China as these hospitals are well-equipped with experienced interventional cardiologists and skilled support staff, which are all required for the successful implementation of primary PCI. Nevertheless, median time delay of first medical contract (FMC) to balloon dilation for primary PCIs done with patients with STEMI during 2013–2014 were 50 min, which were far below the guideline-recommended threshold of 90 min.31 This important quality improvement might be catalysed by the awareness of the performance metric for participating hospitals as the study demonstrated that patients treated in hospitals that had been enrolled in the D2B Alliance for >3 months were significantly more likely to have D2B times of <90 min than patients treated in non-enrolled hospitals.32 In this regard, the scenario of D2B time in real-world practice might be less satisfying as performance metrics were largely unmonitored. Furthermore, given that time delay of angina onset to FMC was still huge (median 270 min), great efforts are still needed to promote broader initiatives at a systems level to reduce total ischaemic time, which was shown as the principal determinant of outcome.33 34 These efforts might include patient education, improvements in emergent medical service and emergent department care, establishment of networks of non-PCI-capable and PCI-capable hospitals, and work with policymakers to implement healthcare system reform.35–41

The current study depicted several notable changes as compared with the former China PEACE study. In their study, Xin Zheng and colleagues reported dramatic increase of the adoption of radial artery access from 3.5%
	2011	2012	2013	2014	P values for trend
Artery stenosis (%)					
75–99	39090	42260	46915	46938	<0.0001
100	27879	31048	34976	35971	76.6
50–75	3557	2326	2003	1540	3.3
<50	426	244	232	42	0.1
Lesion category					
Long lesion*	13571	14939	16375	15736	34.2
General lesion	12686	13036	14874	15878	34.5
Total occluded lesion	4597	5532	6058	5930	12.9
Calcified lesion	3184	3006	3473	2781	6.0
Bifurcation lesion	2545	2463	2479	2891	6.3
Thrombus lesion	1782	2469	2711	2549	5.5
Small vessel†	217	246	277	272	0.6
Bypass graft lesion	24	22	45	36	0.1
Lesion vessel‡					
Triple	12298	12803	13253	12301	31.3
Solitary	8580	11567	14395	14912	37.9
LAD	5397	7090	8544	8599	21.9
RCA	2147	3111	3866	4222	10.7
LCX	1036	1366	1985	2038	5.2
Double	7308	8104	9180	9374	23.9
LAD+RCA	3694	3936	4270	4285	10.9
LAD+LCX	2558	2968	3475	3554	9.0
LCX+RCA	1056	1200	1435	1535	3.9
Triple+LM	1540	1481	1638	1644	4.2
Double+LM	489	502	574	593	1.5
LAD+LCX + LM	230	247	339	315	0.8
LAD+RCA + LM	195	212	198	215	0.5
LCX+RCA + LM	64	43	37	63	0.2
Solitary+LM	178	253	300	367	0.9
LAD+LM	139	197	220	281	0.7
RCA+LM	26	37	51	49	0.1
LCX+LM	13	19	29	37	0.1
LM	64	90	107	128	0.3
Target vessel‡					
Solitary	28278	32836	38176	39224	<0.0001
LAD	20801	25513	30592	31456	80.2
LCX	10735	13277	15749	15960	40.7
RCA	3017	3563	4665	4867	12.4
Double	7049	8673	10178	10629	27.1
LAD+LCX	5713	5685	5906	5886	15.0
LAD+RCA	2723	2683	2865	2815	7.2
LCX+RCA	1978	1937	1904	1932	4.9
LCX+RCA	1012	1065	1137	1139	2.9

Continued
Open access to 79.0% in the practice of interventional cardiology in China during 2001–2011. In this study of patients with ACS, the trend is still rising, with 72.0% PCI procedures accessed via radial artery in 2011 to 90.4% in 2014, compared with 10.9% cases/procedures performed by means of a radial approach in 2011 to 25.2% in 2014 in the USA (NCDR). Also, the China PEACE-Retrospective CathPCI Study group reported that the proportions of patients who received a glycoprotein IIb/IIIa inhibitor and clopidogrel both increased from 2001 to 2011 in non-military hospitals in China. Unlike their findings, in our study, the proportions of clopidogrel and glycoprotein IIb/IIIa inhibitor both decreased significantly (95.7% to 91.8% and 15.2% to 13.0%, respectively), it might suggest different patterns of medications between non-military and military hospitals in the field of interventional cardiology, or just be a result of rapidly evolved medical practice in all hospitals in contemporary China, possibly due to the emergence of novel P2Y12 inhibitor ticagrelor and novel anticoagulant bivalirudin in China. Meanwhile, operators implanted less stents per patient in 2014 than in 2013 (mean 1.4 vs 1.5), which was also remarkably less than those implanted during 2001–2011 in China PEACE study (mean 1.4 in 2001, 1.7 in 2006 and 1.8 in 2011). This may be as a result of the enforcement of quality improvement initiatives during 2011–2014 by the Quality Control Center of Intervention for Cardiovascular Diseases. Finally, although domestic-made stents consist the majority of stents used during PCI procedures, their proportion dropped significantly (65.1% in 2013 to 61.8% in 2014), which was quite different from the scenario of dramatic increase of domestic stents used in non-military hospitals in China PEACE study during 2001–2011 (1.6% in 2001 to 74.8% in 2011).

In a recent meta-analysis of large, high-quality, contemporary randomised studies comparing radial and femoral access in invasively managed patients with ACS, radial access was found to reduce mortality, major adverse cardiovascular events and major bleeding. Similarly, with the rising adoption of radial access from 2011 to 2014 in this study, the proportion of major bleeding or haematoma after PCI and in-hospital mortality were both significantly decreased over time. In this regard, transradial access shall be advocated in countries that use it less frequently.

Compared with data reported from the NCDR in the USA during 2010–2011, uses of ticagrelor and bivalirudin were extremely low for patients with ACS undergoing PCI during 2011–2014 (<3.3% and 1.0%, respectively), although their proportions were rising. This might be explained by the delayed introduction of these drugs into Chinese pharmaceutical market, as well as uncovered status under the drug list of Medical Service in China. Given the great superiorities of these novel antiplatelet and anticoagulation drugs, coordinated advocacy efforts are needed to work with policymakers to include these drugs into the list for coverage, to improve the quality of care for patients with ACS and the outcomes of PCI procedures. Nevertheless, our data demonstrated great improvement in the quality metrics of PCI procedures during the study years. The proportion of non-obstructive CAD (stenosis <50%) was 1.1% in 2011. Although the proportion is much higher than that reported in NCDR during 2010–2011 (0.2%), it has dropped substantially to 0.1% in 2014. Out study also revealed dramatic changes in the pattern of the extent of CAD, with the dominance of three-vessel disease in 2011 (40.4%) shifted to the dominance of one-vessel disease

Table 3

	2011	%	2012	%	2013	%	2014	%	P values for trend
Solitary+LM	566	2.0	603	1.8	690	1.8	923	2.4	<0.001
LAD+LM	482	1.7	531	1.6	600	1.6	782	2.0	<0.01
LCX+LM	68	0.2	58	0.2	71	0.2	123	0.3	<0.05
RCA+LM	16	0.1	14	0.0	19	0.0	18	0.0	0.68
Double+LM	483	1.7	455	1.4	462	1.2	464	1.2	<0.0001
LAD+LCX+LM	405	1.4	375	1.1	387	1.0	382	1.0	<0.0001
LAD+RCA+LM	73	0.3	69	0.2	69	0.2	72	0.2	<0.05
LCX+RCA+LM	5	0.0	11	0.0	6	0.0	10	0.0	0.92
Triple	568	2.0	433	1.3	354	0.9	298	0.8	<0.0001
LM	97	0.3	113	0.3	153	0.4	173	0.4	<0.05
Triple+LM	50	0.2	34	0.1	19	0.0	24	0.1	<0.0001

*Denotes length of lesion >20 mm.
†Denotes vessel diameter <2.5 mm.
‡Include anomalous artery, intermediate artery and vessel graft.
LAD, left anterior descending artery; LCX, left circumflex artery; LM, left main artery; RCA, right coronary artery.
in 2014 (37.9%) and no obvious change in two-vessel disease (23.3%–24.0%). This trend was quite different with distributions found in patients undergoing PCI in the USA during 2010–2011 (38.1%, 32.6% and 39.1% for one-vessel, two-vessel and three-vessel disease, respectively).60 In treated lesion vessels, although there were

| Table 4: In-hospital adverse events of patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) during 2011–2014 |
|---|---------------|---------------|---------------|---------------|--------------|
| | 2011 (n=30 800) | 2012 (n=34 974) | 2013 (n=39 361) | 2014 (n=39 361) | P values trend |
| Complication | 496 16.1 | 539 15.4 | 429 10.9 | 256 6.5 | <0.0001 |
| During procedure* | 342 11.1 | 334 9.5 | 269 6.8 | 151 3.8 | <0.0001 |
| Slow flow | 201 6.5 | 168 4.8 | 159 4.0 | 87 2.2 | <0.0001 |
| Serious dissection | 71 2.3 | 75 2.1 | 64 1.6 | 32 0.8 | <0.0001 |
| Acute thrombosis | 54 1.8 | 48 1.4 | 36 0.9 | 23 0.6 | <0.0001 |
| Perfusion | 22 0.7 | 32 0.9 | 17 0.4 | 17 0.4 | <0.05 |
| Cardiac tamponade | 11 0.4 | 17 0.5 | 9 0.2 | 7 0.2 | <0.05 |
| Acute occlusion | 11 0.4 | 24 0.7 | 19 0.5 | 12 0.3 | 0.38 |
| Post-procedure | 154 5.0 | 205 5.9 | 160 4.0 | 105 2.7 | <0.0001 |
| Acute/subacute ST | 46 1.5 | 49 1.4 | 37 0.9 | 30 0.8 | <0.001 |
| Organ failure | 37 1.2 | 31 0.9 | 29 0.7 | 19 0.5 | <0.001 |
| Organ support | 8 0.3 | 2 0.0 | 7 0.2 | 3 0.0 | 0.15 |
| Major bleeding/haematoma | 19 0.6 | 19 0.5 | 23 0.6 | 6 0.2 | <0.01 |
| Organ bleeding | 14 0.5 | 21 0.6 | 11 0.3 | 11 0.3 | 0.06 |
| Postoperative MI | 10 0.3 | 20 0.6 | 14 0.4 | 7 0.2 | 0.10 |
| Contrast reaction | 7 0.2 | 10 0.3 | 3 0.0 | 2 0.0 | <0.01 |
| Postoperative infection | 5 0.2 | 6 0.2 | 8 0.2 | 3 0.0 | 0.40 |
| Thromboembolism | 4 0.1 | 11 0.3 | 2 0.0 | 2 0.0 | <0.05 |
| Emergent surgery | 4 0.1 | 2 0.0 | 1 0.0 | 2 0.0 | 0.18 |
| Others | 28 0.9 | 56 1.6 | 43 1.1 | 26 0.7 | 0.06 |
| Death | 166 5.4 | 179 5.1 | 150 3.8 | 113 2.9 | <0.0001 |
| During PCI | 41 1.3 | 30 0.9 | 22 0.6 | 16 0.4 | <0.0001 |
| Cardiogenic | 34 1.1 | 25 0.7 | 16 0.4 | 16 0.4 | <0.0001 |
| No | 1 0.0 | 1 0.0 | 2 0.0 | 0 0.0 | 0.52 |
| Uncertain | 6 0.2 | 4 0.1 | 4 0.1 | 0 0.0 | <0.05 |
| PCI related | 4 0.1 | 1 0.0 | 1 0.0 | 4 0.1 | 0.76 |
| No | 23 0.7 | 15 0.4 | 11 0.3 | 11 0.3 | <0.01 |
| Uncertain | 14 0.5 | 14 0.4 | 10 0.3 | 1 0.0 | <0.001 |
| Post-PCI | 125 4.1 | 149 4.3 | 128 3.2 | 97 2.5 | <0.0001 |
| Cardiogenic | 102 3.3 | 108 3.1 | 108 2.7 | 82 2.1 | <0.01 |
| No | 10 0.3 | 22 0.6 | 8 0.2 | 9 0.2 | 0.08 |
| Uncertain | 13 0.4 | 19 0.5 | 12 0.3 | 6 0.2 | <0.05 |
| PCI related | 4 0.1 | 5 0.1 | 7 0.2 | 8 0.2 | 0.40 |
| No | 88 2.9 | 120 3.4 | 100 2.5 | 80 2.0 | <0.01 |
| Uncertain | 33 1.1 | 24 0.7 | 21 0.6 | 9 0.2 | <0.0001 |

MI, myocardial infarction; ST, stent thrombosis.
remarkable increase of one-vessel disease and significant decreases of two-vessel and three-vessel diseases in proportions, interventional operators in Chinese military hospitals still treated lower proportion of one-vessel disease and higher proportion of two-vessel disease in 2014 than peers in the USA during 2010–2011 (80.2% vs 86.2% and 15.0% vs 12.8%, respectively). Of note, the proportion of treated vessels involving left main artery (3.4%–4.2%) was significantly higher than proportions reported in the USA during 2010–2011 (1.8%) as well as in Chinese non-military hospitals during 2001–2011 (0.4%–2.1%) in China PEACE study. The facts that considerable amount of grade 0–2 TIMI flow before PCI almost disappeared after PCI suggest high quality of performance of PCI procedures. Especially, compared with data in 2013, higher proportions of grade 0 and 1 TIMI flow before PCI turned to higher proportion of grade 3 TIMI flow after PCI in 2014, suggesting the quality of performance was still improving. The relatively low and decreasing rate of overall complications (1.6% in 2011 to 0.7% in 2014) and death (0.5% in 2011 to 0.3% in 2014) for PCI procedures might be attributable to the decrease of worse cardiac function over time (patients with Killip III–IV grades decreased significantly from 2011 to 2013, online table S3). On the other hand, the consistent low rates are also suggestive of good performance of cardiac intervention on these patients.

Some limitations of this study should be noted. First, the partial revision of the registry form in 2013 has made comparisons of some critical measures impossible during 2011–2014 consecutively. However, the purpose of the necessary revision was to reflect contemporary changes in the practice of cardiac intervention during the study years. And we analysed all critical measures provided they were available. Second, due to the gigantic number of nationwide enrolled patients and limit of sufficient funding and other resources, we only compared the in-hospital outcomes for the patients. However, it is possible to follow-up the long-term outcomes for these patients, given that contact information of most patients were collected. Third, in this study comparisons of data with other studies were not matched exactly both temporally and categorically, as to the best of our knowledge, the same large-scale, nationwide registries of acute coronary syndromes during the same study period were not available. Nevertheless, we believe this study has given an updated and comprehensive overview of contemporary practice of interventional cardiology in military hospitals in China.

CONCLUSION
This study outlined the general profiles of cardiac intervention practice in contemporary military hospital in China. Our data revealed the overall interventional resources were still limited in military hospitals, with great disparities of resources and consumptions in different geographical regions across China, and major gaps still exist in optimal medical coverage for patients with ACS. Other than data from non-military hospitals, our findings can serve as an indispensable addition to a comprehensive overview of the practice of cardiac intervention in China.
General Hospital of PLA General Hospital of Shanxi PAP Corps The 451 Hospital The 3 Hospital The 474 Hospital The 323 Hospital The 273 Hospital The 18 Hospital General Hospital of Ningxia PAP Corps General Hospital of Xinjiang PAP Corps The 1 Hospital Kunming General Hospital of PLA Xingiao Hospital of TMU Southwest Hospital of TMU Daping Hospital of TMU The General Hospital of Chengdu Military Region The 452 Hospital The 59 Hospital Tibet General Hospital of PLA The 324 Hospital The 37 Hospital Chengdu Hospital of Sichuan PAP Corps General Hospital of Sichuan PAP Corps Leshan Hospital of Sichuan PAP Corps

Contributors RZ participated in the data collection and drafted the manuscript. KX participated in the data collection and design of the study. YL, QM and YH participated in the design of the study and undertook statistical analyses. All authors were involved in writing the paper and had final approval of the submitted and published versions.

Funding The NRCIMH program was supported by the Ministry of Health of the General Logistics Department of PLA. This study was supported by National Key Research and Development program of China (grant number: 2016YFC1301300). RZ is funded by a project grant from the Liaoning Office of Science and Technology of China (Shenyang, China, No. 20170540928).

Competing interests None declared.

Patient consent Not required.

Ethics approval This study was approved by the ethics committee of the General Hospital of Shenyang Military Region. The requirement of informed consent was waived due to the nature of the retrospective study. All participating hospitals accepted the ethics committee approval.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. Han Y, Guo J, Zheng Y, et al. Bivalirudin vs heparin with or without tiotiban during primary percutaneous coronary intervention in acute myocardial infarction: the BRIGHT randomized clinical trial. JAMA 2015;313:1336–46.
2. Li Y, Gu J, Zhou J, et al. The epidemiology of traumatic brain injury in civilian inpatients of Chinese Military Hospitals, 2001-2007. Brain Inj 2015;29(7-8):981–8.
3. Xu JH, Qiu J, Zhou JH, et al. Pediatric burns in military hospitals of China from 2001 to 2007: a retrospective study. Burns 2014;40:1780–5.
4. Zhu XY, Zhang DZ. Investigation Team of Military Structural Heart Disease Intervention. [Interventional therapy for structural heart diseases in People’s Liberation Army hospitals between 2005 and 2006]. Zhonghua Xin Xue Guan Bing Za Zhi 2008;36:608–12.
5. Yann, Rankings of Top Hospitals and Top Specialties in China: Reports from the Institute of Hospital Administration of Fudan University [in Chinese] 2009-2015. http://www.fudanmed.com/institute/news222.aspx#/ (accessed 22 Mar 2018).
6. Zheng X, Curtis JP, Hu S, et al. Coronary catheterization and percutaneous coronary intervention in China: 10-year results from the China PEACE-Retrospective CathPCI Study. JAMA Intern Med 2016;176:512–21.
7. Yao TM, Chen SL, Bai SY, et al. Establishment of quality control system for Angiocardioapthy Interventional Therapy in Military Hospitals [in Chinese]. Chin J Cardiol 2012;39:493–7.
8. The initiation of facilitated authentication of China Chest Pain Centers [in Chinese]. http://www.chinacpc.org/home/aview22 (accessed 30 Jun 2018).
9. Sun Y, Xu K, Jiang TM, et al. Relationship between the degree of target vessel occlusion and the in-hospital mortality in patients with acute ST-elevated myocardial infarction [in Chinese]. Med J Chin PLA 2016;46:546–60.
10. Bao D, Xu K, Qiu J, et al. Effect of gender on in-hospital mortality in patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention [in Chinese]. Med J Chin PLA 2016;41:446–51.
11. Zhao R, Xu K, Sun Y, et al. Characteristics of STEMI patients undergoing primary PCI with different medical insurance coverage from the database of cardiovascular intervention diagnosis and treatment of PLA [in Chinese]. Chin J Health Care Med 2016;18.
12. China Society of Cardiology of Chinese Medical Association. Editorial Board of Chinese Journal of Cardiology. Guideline for diagnosis and treatment of patients with unstable angina and non-ST-elevation myocardial infarction [in Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 2007;35:295–304.
13. China Society of Cardiology of Chinese Medical Association, Editorial Board of Chinese Journal of Cardiology, Guideline for diagnosis and treatment of patients with ST-elevation myocardial infarction [in Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 2010;38:675–90.
14. Wright RS, Anderson JL, Adams CD, et al. 2011 ACCF/AHA Focused Update of the Guidelines for the Management of Patients With Unstable Angina/Non-ST-Elevation Myocardial Infarction (Updating the 2007 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011;123:2022–60.
15. Antman EM, Hand M, Armstrong PW, et al. 2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: developed in collaboration With the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 Writing Group to Review New Evidence and Update the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction, Writing on Behalf of the 2004 Writing Committee. Circulation 2008;117:296–329.
16. Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 1996;93:879–88.
17. Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: a case for standardized definitions. Circulation 2007;115:2344–51.
18. Thygesen K, Alpert JS, White HD. Joint ESC/ACCF/AHAFHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur Heart J 2007;28:2525–38.
19. Masoudi FA, Ponirakis A, de Lemos JA, et al. Trends in U.S. Cardiovascular care: 2016 report from J ACC National cardiovascular data registries. J Am Coll Cardiol 2017;69:1427–50.
20. Guo Y, Barnett AG, Pan X, et al. The impact of temperature on mortality in Tianjin, China: a case-crossover design with a distributed lag nonlinear model. Environ Health Perspect 2011;119:1719–25.
21. Tian Z, Li S, Zhang J, et al. Ambient temperature and coronary heart disease mortality in Beijing, China: a time series study. Environ Health 2012;11:1–56.
22. Yang L, Li L, Lewington S, et al. Outdoor temperature, blood pressure, and cardiovascular disease mortality among 23 000 individuals with diagnosed cardiovascular diseases from China. Eur Heart J 2015;36:1178–85.
23. Jin Y, Hou Z, Zhang D. Determinants of health insurance coverage among people aged 45 and over in China: who buys public, private and multiple insurance. PLoS One 2011;6:e1016774.
24. Martin R, McIntyre D, Travassos C, et al. An assessment of progress towards universal health coverage in Brazil, Russia, India, China, and South Africa (BRICS). The Lancet 2014;384:2164–71.
25. Shi L, Zhang D. China’s new rural cooperative medical scheme and underutilization of medical care among adults over 45: evidence from CHARLS pilot data. J Rural Health 2013;29(s1):51–61.
26. Ben-Yehuda O, Kazi DS, Bonafede M, et al. Angina and associated healthcare costs following percutaneous coronary intervention: A real-world analysis from a multi-payer database. Catheter Cardiovasc Interv 2016;88:1017–24.
27. Hyun KK, Essue BM, Woodward M, et al. The household economic burden for acute coronary syndrome survivors in Australia. BMC Health Serv Res 2016;16:636.
28. Kim J, Lee E, Lee T, et al. Economic burden of acute coronary syndrome in South Korea: a national survey. BMC Cardiovasc Disord 2013;13:55.
29. Argacha JF, Collart P, Wauters A, et al. Air pollution and ST-elevation myocardial infarction: a case-crossover study of the Belgian STEMl registry 2009-2013. Int J Cardiol 2016;223:300–5.
30. Dehmer GJ, Weaver D, Roe MT, et al. A contemporary view of diagnostic cardiac catheterization and percutaneous coronary intervention in the United States: a report from the CathPCI Registry of the National Cardiovascular Data Registry, 2010 through June 2011. J Am Coll Cardiol 2012;60:2017–31.
31. Ciaraldi PT, Kushner FG, McCauley DI, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American...
Heart Association Task Force on Practice Guidelines. Circulation 2013;127:529–55.

32. Bradley EH, Nallamothu BK, Stern AF, et al. The door-to-balloon alliance for quality: who joins national collaborative efforts and why? Jt Comm J Qual Patient Saf 2009;35:93–9.

33. Armstrong PW, Boden WE. Reperfusion paradox in ST-segment elevation myocardial infarction. Ann Intern Med 2011;155:389–91.

34. Bates ER, Nallamothu BK, Commentary: the role of percutaneous coronary intervention in ST-segment-elevation myocardial infarction. Circulation 2008;118:567–73.

35. Henry TD, Sharkey SW, Burke MN, et al. A regional system to provide timely access to percutaneous coronary intervention for ST-elevation myocardial infarction. Circulation 2007;116:721–8.

36. Jollis JG, Roettig ML, Aluko AO, et al. Implementation of a statewide system for coronary reperfusion for ST-segment elevation myocardial infarction. JAMA 2007;298:2371–80.

37. Jacobs AK. Primary percutaneous coronary intervention without cardiac surgery on-site: coming to a hospital near you? Am Heart J 2008;155:585–8.

38. Jollis JG, Mehta RH, Roettig ML, et al. Reperfusion of acute myocardial infarction in North Carolina emergency departments (RACE): study design. Am Heart J 2006;152:851.e1–851.e11.

39. Kalla K, Christ G, Karnik R, et al. Implementation of guidelines improves the standard of care: the Viennese registry on reperfusion strategies in ST-elevation myocardial infarction (Vienna STEMI registry). Circulation 2006;113:2398–405.

40. Rokos IC, Larson DM, Henry TD, et al. Rationale for establishing regional ST-elevation myocardial infarction receiving center (SRC) networks. Am Heart J 2006;152:661–7.

41. Ting HH, Rihal CS, Gersh BJ, et al. Regional systems of care to optimize timing of reperfusion therapy for ST-elevation myocardial infarction: the Mayo Clinic STEMI Protocol. Circulation 2007;116:729–36.

42. Andò G, Capodanno D. Radial versus femoral access in invasively managed patients with acute coronary syndrome. Ann Intern Med 2015;163:932–40.

43. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009;361:1045–57.