Somato-axodendritic release of oxytocin into the brain due to calcium amplification is essential for social memory

Haruhiro Higashida¹,²

Abstract Oxytocin (OT) is released into the brain from the cell soma, axons, and dendrites of neurosecretory cells in the hypothalamus. Locally released OT can activate OT receptors, form inositol-1,4,5-trisphosphate and elevate intracellular free calcium (Ca²⁺) concentrations [(Ca²⁺)]i in self and neighboring neurons in the hypothalamus, resulting in further OT release: i.e., autocrine or paracrine systems of OT-induced OT release. CD38-dependent cyclic ADP-ribose (cADPR) is also involved in this autoregulation by elevating [Ca²⁺], via Ca²⁺ mobilization through ryanodine receptors on intracellular Ca²⁺ pools that are sensitive to both Ca²⁺ and cADPR. In addition, it has recently been reported that heat stimulation and hyperthermia enhance [Ca²⁺], increases by Ca²⁺ influx, probably through TRPM2 cation channels, suggesting that cADPR and TRPM2 molecules act as Ca²⁺ signal amplifiers. Thus, OT release is not simply due to depolarization–secretion coupling. Both of these molecules play critical roles not only during labor and milk ejection in reproductive females, but also during social behavior in daily life in both genders. This was clearly demonstrated in CD38 knockout mice in that social behavior was impaired by reduction of [Ca²⁺], elevation and subsequent OT secretion. Evidence for the associations of CD38 with social behavior and psychiatric disorder is discussed, especially in subjects with autism spectrum disorder.

Keywords Oxytocin · Hypothalamus · Social behavior · CD38 · TRPM2

Introduction

Oxytocin (OT) and arginine vasopressin (AVP) are nonapeptides that differ in two amino acid residues [1]. OT and AVP are synthesized mostly in distinct neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) in the hypothalamus [2, 3]. OT and AVP are secreted into the blood circulation and have physiological roles in peripheral organs, such as the uterus, mammary gland, and kidney. They induce contraction of uterine and mammary duct smooth muscle or diuretic action in the kidney as hormones [4–6].

OT, AVP, and their receptors are present in the brain not only in females during specific reproductive periods but also in non-reproductive females and males [6]. Accumulating evidence has established that, in addition to classical hormonal functions, both peptides play critical roles in social recognition and social behavior in mammals, including humans [7–20]. This review focuses mainly on OT. The main point is not a general functional role of OT in a comprehensive review, but the molecular mechanisms of OT secretion into the brain that is critical in the neuronal function of OT in social recognition and behavior [4, 11, 13, 21].

Another reason to focus on the release is that the mechanism contains a very important aspect in terms of physiological science, in that the proposed idea challenges the principal rule in physiology of depolarization–secretion...
coupling [22–24]. Furthermore, this mechanism seems to have a potential relationship to autism spectrum disorder (ASD), a serious developmental disorder, which is a rapidly advancing field in neuroscience and psychiatry and is a serious disorder in our society [25–28]. There have been many reviews regarding the relationship between ASD and OT [29–35]. However, there have been few regarding the molecular mechanism of OT release into the brain [4], which is the critical step for social recognition and social behavior [26–28].

Somato-axodendritic release of oxytocin

OT is secreted from the nerve terminals of axons of oxytocinergic neurons at the perivascular site in the posterior lobe of the pituitary into the circulation [4] (Fig. 1). Oxytocinergic neurons send their axons to the amygdala and some other limited brain regions and secrete OT from the nerve terminals [4, 12, 15]. It is known that adrenaline stimulates oxytocinergic neurons in the SON, which results in local release of OT in the brain [5, 36]. This release occurs from the cell soma, axons, and dendrites, i.e., somato-axodendritic release [37–39].

Locally released OT causes excitation of OT neurons by activating OT receptors expressed in neurons of both the PVN and SON [40–43]. OT stimulates OT receptors and facilitates OT release from the stimulated neurons. Released OT can stimulate OT receptors and elicits release from the same neurons (autocrine) or nearby neurons (paracrine) [44] (Fig. 2). This OT-induced OT release determines the basal brain concentrations and elevated concentrations of OT. The concept of autoregulation, OT-induced OT release, can be an extremely efficient way to achieve massive OT recruitment during uterine contraction in labor and milk ejection in lactation [5, 6, 45–47]. Autoregulation, however, is also an essential brain mechanism for social recognition in daily life in both genders, as proposed previously [25, 27, 28].

Oxytocin receptors and cellular signaling

OT receptors are seven-transmembrane proteins that couple with the Gq/11-type GTP-binding protein [48]. Stimulation of OT receptors leads to the production of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) through the activation of phospholipase C (PLC) [48]. This results in activation of Ca2+ mobilization from IP3-sensitive Ca2+ pools [49].

On the other hand, another Ca2+ signal pathway of cyclic ADP-ribose (cADPR) [50, 51] was identified downstream of OT receptors [11]. cADPR mobilizes Ca2+ through cADPR-sensitive Ca2+ pools, in a mechanism referred to as Ca2+-induced Ca2+ release. In this process, cADPR plays an essential role in mobilizing Ca2+ through Ca2+ channels of ryanodine receptors [52–56] (Fig. 3). The recent review by Leng et al. did not mention this cADPR/CD38 hypothesis [4], probably because they described by their data based on their finding with thapsigargin [36].

It is known that intracellular cADPR concentrations are regulated in many different ways, including activation of ADP-ribosyl cyclase or CD38, via heterotrimeric GTP-binding proteins, or phosphorylation downstream of the G
A-kinase

Fig. 2 Scheme showing autocrine and paracrine release of oxytocin. OT is released from dendrites (dendritic release), from the cell soma (soma release), and from axons (axonal release) in the hypothalamus. Hypothalamic oxytocinergic neurons express OT receptors (OTR). Released OT binds to OTR. More OT (yellow circle) is released by CD38-mediated intracellular calcium amplification (not shown). The positive feedback of OT release occurs by OT released from self or nearby cells via autocrine and paracrine mechanisms, respectively.

Effects of oxytocin on ADP-ribosyl cyclase and intracellular \(\text{Ca}^{2+} \) concentrations

Application of OT stimulates ADP-ribosyl cyclase activity or CD38 in crude membrane fractions, when measured by cADPR formation from \(\beta\text{-NAD}^+ \) or by cyclic GDP-ribose (cGDPR) production from NGD\(^+\) [50, 68]. cADPR or cGDPR production increases in a concentration-dependent manner upon exposure to sub-nanomolar concentrations of OT [49].

Subsequently, in isolated hypothalamic neurons, application of 100 pM OT results in \([\text{Ca}^{2+}]_i\) increases: a rapid initial increase and a sustained elevation lasting for 5 min [69]. OT elicits an initial elevation of the maximum \([\text{Ca}^{2+}]_i\), and this phase is IP\(_3\)-dependent. Pretreatment with 8-bromo-cADPR, an antagonist of the cADPR-binding site of \(\text{Ca}^{2+} \) release channels of ryanodine, inhibits OT-mediated sustained \([\text{Ca}^{2+}]_i\) increases. ADPR and \(\beta\text{-NAD}^+ \) also induce elevation of \([\text{Ca}^{2+}]_i\); and replicate the second phase of sustained \([\text{Ca}^{2+}]_i\) increases [49, 69]. Under \(\text{Ca}^{2+}\)-free conditions, the OT-mediated increase of \([\text{Ca}^{2+}]_i\) shows little change in either phase, suggesting that the two phases of \([\text{Ca}^{2+}]_i\) elevation in hypothalamic neurons are due to \(\text{Ca}^{2+} \) mobilization from the intracellular \(\text{Ca}^{2+} \) pools [49].

Oxytocin release by extracellular application of cyclic ADP-ribose

High potassium-induced depolarization produces an increase of up to eightfold in OT secretion from isolated mouse hypothalamic neurons or their axon terminals in the posterior pituitary gland, respectively [21]. OT release is
enhanced by about fourfold by application of extracellular β-NAD⁺, a precursor of cADPR (refer to Fig. 4 in [21]). The increase is blocked completely by 8-bromo-cADPR. To further confirm the involvement of cADPR, we examined the effects of extracellular application of several β-NAD⁺ metabolites [49, 69]. Only cADPR showed a potentiation effect, indicating that OT release utilizes the cADPR/ryanodine calcium amplification system (Fig. 5).

Involvement of TRPM2 channels

Melastatin-related transient receptor potential channel 2 (TRPM2, previously named TRPC7 or LTRPC2) possesses ADPR hydrolase activity and is a Ca²⁺-permeable cation channel. β-NAD⁺, ADPR, and cADPR can activate TRPM2 channels [70]. TRPM2 activation by cADPR is promoted at body temperature (>35 °C) and is involved in insulin secretion in pancreatic β cells [71]. In addition, TRPM2 channels are related to receptor functions through cADPR formation [72].

Extracellularly applied cADPR can activate [Ca²⁺]ᵢ signaling via CD38 or TRPM2 channels downstream of OT receptors. [Ca²⁺]ᵢ increases in the model neuron, NG108-15 mouse neuroblastoma × rat glioma hybrid cells that possess CD38 [58, 73] but not OT receptors [74], as in the isolated whole hypothalamus after stimulation with extracellularly applied cADPR [69, 75]. Interestingly, the same tissues show significantly greater increases upon extracellular challenge with cADPR together by heating to 40 °C from 35 °C in the incubation medium (Fig. 6). Little or no cADPR-mediated [Ca²⁺]ᵢ elevation was observed at 40 °C in the absence of extracellular Ca²⁺ influx is expected, probably through non-selective cation TRPM2 channels, because elevation of [Ca²⁺]ᵢ is inhibited by the TRPM2 channel inhibitor, 2-aminoethoxydiphenyl borate (2-APB). Similarly, 8-bromo-cADPR inhibits responses to β-NAD⁺ and heat. These results suggest that cADPR contributes to both Ca²⁺ mobilization from internal Ca²⁺ pools and Ca²⁺ influx through TRPM2 Ca²⁺-permeable channels from the extracellular space. Such [Ca²⁺]ᵢ increases may result in OT release. However, there have been no previous reports regarding heat-induced OT release in the hypothalamus.

Contribution of CD38

In the central nervous system, ADP-ribosyl cyclase activity corresponding to CD38 is detected as early as embryonic day 15 in mouse development [76]. In the brain, expression levels of CD38 and ADP-ribosyl cyclase activity increase with further development [77]. The role of CD38 in
regulation of OT secretion through cADPR-mediated intracellular calcium signaling has been clearly demonstrated using CD38 knockout mice [11, 21, 78, 79]. The plasma and cerebrospinal fluid OT levels are reduced in CD38 knockout mice. Electron microscopic examination exhibited little to no release from the nerve endings of oxytocinergic neurons in the pituitary of CD38 knockout mice (Fig. 1). These phenotypes were rescued by simple subcutaneous injection of OT as well as brain local re-expression of human CD38, but not mutant CD38, by the lentivirus infection method in CD38 knockout mice [21].

Human social behavior and psychiatric disorders

As CD38 is recognized as being closely related to OT release and social memory in mice, we examined the association of single nucleotide polymorphisms (SNPs) in the human CD38 gene on ASD [80]. In a series of elegant studies in 323 mothers, fathers, and non-parents, Epstein and colleagues reported that risk alleles on CD38...
participants in the USA but not in Japan. These findings were shown to be linked with high-functioning ASD in

\[CD38 \] examined, and the ASD \[84–87 \]. Ten SNPs and mutations of \[CD38 \] genes are associated with less par-

Fig. 7 Scheme indicating \(\text{Ca}^{2+} \) influx through \(\text{Ca}^{2+} \) channels is not sufficient to trigger OT release. The \(\text{Ca}^{2+} \) signal must be amplified by \(\text{Ca}^{2+} \)-induced \(\text{Ca}^{2+} \) release through \(\text{Ca}^{2+} \) channels of ryanodine receptors type II or III by cADPR and some NAD metabolites in the hypothalamus (Fig. 7). In addition, \(\text{Ca}^{2+} \) influx through TRPM2 channels contribute more to increases in \([\text{Ca}^{2+}]_i \). This hypothesis of depolarization-independent but heat-sensitive \(\text{Ca}^{2+} \) signaling for OT release is consistent with the previous suggestion of dendritic release of OT without depolarization \[4, 21, 39 \].

OT exerts an anxiolytic effect during stress, and stress sometimes induces hyperthermia. It is therefore interesting to examine how stress induces hyperthermia, which results in subsequent OT release. OT release seems to be important in damping the stress-induced disadvantage.

OT is an essential molecule for social memory and social behavior \[21, 29 \]. Deficiency in social behavior is the core symptom of ASD. Recently, Yamasue and his group reported that repetitive intranasal OT administration for 6 weeks improved symptoms of the social behavior domain \[88 \]. This result could be due to the delivery of OT to the brain by intranasal administration, but there is still little direct evidence regarding whether OT is recruited into the brain from the peripheral tissues or organs crossing the blood–brain barrier from the blood circulation. Several important questions regarding OT secretion into the brain and OT-induced \(\text{Ca}^{2+} \) signaling and OT transport from the blood to the brain remain to be resolved.

Acknowledgments This work was supported by a grant-in-aid from Integrated Research on Neuropsychiatric Disorders carried out under the Strategic Research Program for Brain Sciences.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Fig. 7 Scheme indicating \(\text{Ca}^{2+} \) amplification with different ryanodine receptor subtypes. Skeletal muscle contraction and heart muscle contraction utilize type I and II ryanodine receptors, respectively. Oxytocin release uses type II or III ryanodine receptors

References
1. Hoyle CH (1998) Neuropeptide families: evolutionary perspectives. Regul Pept 73(1):1–33
2. Gainer H (2012) Cell-type specific expression of oxytocin and vasopressin genes: an experimental odyssey. J Neuroendocrinol 24(4):528–538
3. Katoh A et al (2011) Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology 152(7):2768–2774
4. Leng G et al (2015) 60 years of neuroendocrinology: the posterior pituitary, from Geoffrey Harris to our present understanding. J Endocrinol 226(2):T173–T185
5. Douglas AJ, Leng G, Russell JA (2002) The importance of oxytocin mechanisms in the control of mouse parturition. Reproduction 123(4):543–552
6. Brunton PJ, Russell JA (2010) Endocrine induced changes in brain function during pregnancy. Brain Res 1364:198–215
7. Carter CS (2003) Developmental consequences of oxytocin. Physiol Behav 79(3):383–397
8. Kosfeld M et al (2005) Oxytocin increases trust in humans. Nature 435(7042):673–676
9. Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322(5903):900–904
10. Ebstein RP, Israel S, Lerer E (2009) Arginine vasopressin and oxytocin modulate human social behavior. Ann N Y Acad Sci 1167:87–102
11. Higashida H et al (2010) Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockouts in mice. J Neuroendocrinol 22(5):373–379
12. Neumann I et al (1996) Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-related events. J Neuroendocrinol 8(3):227–233
13. Neumann ID (2008) Brain oxytocin: a key regulator of emotional and social behaviours in both females and males. J Neuroendocrinol 20(6):858–863
14. Onaka T, Takayanagi Y, Yoshida M (2012) Roles of oxytocin neurons in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 24(4):587–598
15. Insel TR (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65(6):768–779
16. Yoshimura M, Uezono Y, Ueta Y (2015) Anorexia in human and experimental animal models: physiological aspects related to neuropeptides. J Physiol Sci 65(5):385–395
17. Nagasawa M et al (2015) Social evolution. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 348(6232):333–336
18. Choleris E et al (2009) Neuroendocrinology of social information processing in rats and mice. Front Neuroendocrinol 30(4):4424–4459
19. Meyer-Lindenberg A et al (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12(9):524–538
20. Takayanagi Y et al (2005) Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc Natl Acad Sci USA 102(44):16096–16101
21. Jin D et al (2007) CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446(7131):41–45
22. Bourque CW (1991) Activity-dependent modulation of nerve terminal excitation in a mammalian peptidergic system. Trends Neurosci 14(1):28–30
23. Katz B (1969) The release of neural substances, Sherrington Lecture. Liverpool University, Liverpool, p 47
24. Augustine GJ, Neher E (1992) Calcium requirements for secretion in bovine chromaffin cells. J Physiol 450:247–271
25. Salmina AB et al (2013) Integrative neurochemistry and neurobiology of social recognition and behavior analyzed with respect to CD38-dependent brain oxytocin secretion. Curr Top Med Chem 13(23):2965–2977
26. Lopatina O et al (2013) The roles of oxytocin and CD38 in social or parental behaviors. Front Neurosci 6:182
27. Higashida H et al (2012) CD38 and its role in oxytocin secretion and social behavior. Horm Behav 61(3):351–358
28. Higashida H et al (2012) Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38. Neurochem Int 61(6):828–838
29. Feldman R et al (2015) Oxytocin pathway genes: evolutionary ancient system impacting on human affiliation, sociality, and psychopathology. Biol Psychiatry pii: S0006-3223(15)00656-3
30. Feldman R et al (2012) Sensitive parenting is associated with plasma oxytocin and polymorphisms in the OXTR and CD38 genes. Biol Psychiatry 72(3):175–181
31. Riebold M et al (2011) All-trans retinoic acid upregulates reduced CD38 transcription in lymphoblastoid cell lines from autism spectrum disorder. Mol Med 17(7–8):799–806
32. Lerer E et al (2010) Low CD38 expression in lymphoblastoid cells and haplotypes are both associated with autism in a family-based study. Autism Res 3(6):293–302
33. Guastella AJ, Hickie IB (2015) Oxytocin treatment, circuitry and autism: a critical review of the literature placing oxytocin into the autism context. Biol Psychiatry pii: S0006-3223(15)00543-0
34. Yamasue H et al (2012) Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction. J Neurosci 32(41):14109–14117
35. Ebstein RP (2012) The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm Behav 61(3):359–379
36. Tobin VA et al (2008) The effects of apelin on the electrical activity of hypothalamic magnocellular vasopressin and oxytocin neurons and somatodendritic peptide release. Endocrinology 149(12):6136–6145
37. Bealer SL, Armstrong WE, Crowley WR (2010) Oxytocin release in magnocellular nuclei: neurochemical mediators and functional significance during gestation. Am J Physiol Regul Integr Comp Physiol 299(2):R452–R458
38. Grinevich V (2015) Assembling the puzzle: pathways of oxytocin signaling in the brain. Biol Psychiatry pii: S0006-3223(15)00351-0
39. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136
40. Neumann ID (2007) Stimuli and consequences of dendritic release of oxytocin within the brain. Biochem Soc Trans 35(Pt 5):1252–1257
41. Adan RAH et al (1995) Rat oxytocin receptor in brain, pituitary, mammary gland, and uterus: partial sequence and immunocytochemical localization. Endocrinology 136(9):4022–4028
42. Freund-Mercier MJ, Stoeckel ME, Klein MJ (1994) Oxytocin receptors on oxytocin neurons: histoautoradiographic detection in the lactating rat. J Physiol (Lond) 480:155–161
43. Young LJ et al (1997) Changes in oxytocin receptor mRNA in rat brain during pregnancy and the effects of estrogen and interleukin-6. J Neuroendocrinol 9(11):859–865
44. Ludwig M, Stern J. (2015) Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci 370(1672) pii: 20140182
45. Richard P, Moos F, Freund-Mercier MJ (1991) Central effects of oxytocin. Physiol Rev 71(2):331–370
46. Moos F et al (1984) Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release. J Endocrinol 102(1):63–72
47. Neumann I et al (1994) An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinol 134:141–148
48. Gimpl G, Fahrenholz F (2001) The Oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683
49. Lopatina O et al (2010) Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca2+ concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice. Neuropharmacology 58(1):50–55
50. Lee HC (2012) The cyclic ADP-ribose/NAADP/CD38-signaling pathway: past and present. Messenger 1(1):16–33
51. Okamoto H, Takasawa S, Akira Sugawara A (2014) The CD38–cyclic ADP-ribose system in mammals: historical background, pathophysiology and perspective. Messenger 3(1–2):27–34
52. Higashida H et al (2011) CD38 gene knockout juvenile mice: a model of oxytocin signal defects in autism. Biol Pharm Bull 34(9):1369–1372
53. Lambert RC et al (1994) A rise in the intracellular Ca\(^{2+}\) concentration of isolated rat supraoptic cells in response to oxytocin. J Physiol (Lond) 478:275–287

54. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82(4):893–922

55. Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 9(4):1153–1176

56. Numa S et al (1990) Molecular insights into excitation–contraction coupling. Cold Spring Harb Symp Quant Biol 55:1–7

57. Boittin FX et al (2003) Vasodilation by the calcium-mobilizing messenger cyclic ADP-ribose. J Biol Chem 278(11):9602–9608

58. Higashida H et al (2007) Overexpression of human CD38/ADP-ribose cyclase enhances acetylcholine-induced Ca\(^{2+}\) signalling in rodent NG108-15 neuroblastoma cells. Neurosci Lett 57(3):339–346

59. Sternfeld L et al (2003) Hormonal control of ADP-ribose cyclase activity in pancreatic acinar cells from rats. J Biol Chem 278(36):33629–33636

60. Graef RM et al (1998) Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem 273(1):118–125

61. Kim SY, Cho B, Kim UH (2010) CD38-mediated Ca\(^{2+}\) signaling contributes to angiotensin II-induced activation of hepatic stellate cells: attenuation of hepatic fibrosis by CD38 ablation. J Biol Chem 285(1):576–582

62. Rah SY et al (2005) Activation of CD38 by interleukin-8 signaling regulates intracellular Ca\(^{2+}\) level and motility of lymphokine-activated killer cells. J Biol Chem 280(4):2888–2895

63. Kim UH (2014) Multiple enzymatic activities of CD38 for Ca\(^{2+}\) signaling messengers. Messenger 3(1–2):6–14

64. De Flora A et al (2004) Autocrine and paracrine calcium signaling by the CD38/NAD\(^{+}\)/cyclic ADP-ribose system. Ann N Y Acad Sci 1028:176–191

65. Franco L (2001) Paracrine roles of NAD\(^+\) and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J Biol Chem 276(24):21642–21648

66. Zhao YJ, Lam CM, Lee HC (2012) The membrane-bound enzyme CD38 exists in two opposing orientations. Sci Signal 5(241):ra67

67. Zhao YJ et al (2015) Determinations of the membrane orientation of a calcium signaling enzyme CD38. Biochim Biophys Acta 1853(9):2095–2103

68. Higashida H et al (1999) Sympathetic potentiation of cyclic ADP-ribose formation in rat cardiac myocytes. J Biol Chem 274(47):33348–33353

69. Liu HX et al (2012) Intracellular calcium concentrations regulated by cyclic ADP-ribose and heat in the mouse hypothalamus. Messenger 1(2):150–159

70. Faouzi M, Penner R (2014) TRPM2. Handb Exp Pharmacol 222:403–426

71. Uchida K, Tominaga M (2014) The role of TRPM2 in pancreatic β-cells and the development of diabetes. Cell Calcium 56(5):332–339

72. Beck A et al (2006) Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J 20(7):962–964

73. Higashida H et al (2007) Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochem Int 51(2–4):192–199

74. Nireberg M et al (1983) Modulation of synapse formation by cyclic adenosine monophosphate. Science 222(4625):794–799

75. Amina S et al (2010) Intracellular calcium elevation induced by extracellular application of cyclic-ADP-ribose or oxytocin is temperature-sensitive in rodent NG108-15 neuronal cells with or without exogenous expression of human oxytocin receptors. J Neuroendocrinol 22(5):460–466

76. Ceni C et al (2006) The CD38-independent ADP-riboseyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain. Biochem J 395(2):417–426

77. Higashida C et al (2013) Dopamine-induced regulation and deregulation of the catabolism of cyclic ADP-ribose, an intrinsic mTOR signal inhibitor, during development in the rodent striatum. Messenger 2(1–2):33–43

78. Salmina AB et al (2010) CD38/cyclic ADP-ribose system: a new player for oxytocin secretion and regulation of social behavior. J Neuroendocrinol 22(5):380–392

79. Modi ME, Young LJ (2012) The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav 61(3):340–350

80. Muneseu T et al (2010) Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci Res 67(2):181–191

81. Feldman R (2015) Sensitive periods in human social development: new insights from research on oxytocin, synchrony, and high-risk parenting. Dev Psychopathol 27(2):369–395

82. Krol KM et al (2015) Genetic variation in CD38 and breast cancer risk: evidence for a role of the oxytocin system, indexed by genetic variation in CD38, in the social cognitive processes. J Neuroendocrinol 27(2):138–148

83. Chang SC et al (2014) Are genetic variations in OXTR, AVPR1A, and CD38 genes important to social integration? Results from two large USA cohorts. Psychoneuroendocrinology 39:257–368

84. Hovey D et al (2014) Associations between oxytocin-related genes and autistic-like traits. Soc Neurosci 9(4):378–386

85. Ebstein RP et al (2011) Are retinoids potential therapeutic agents in disorders of social cognition including autism? FEBS Lett 585(11):1529–1536

86. Sauer C et al (2012) Effects of a common variant in the CD38 gene on social processing in an oxytocin challenge study: possible links to autism. Neuropsychopharmacology 37(6):1474–1482

87. Algoe SB, Way BM (2014) Evidence for a role of the oxytocin system, indexed by genetic variation in CD38, in the social bonding effects of expressed gratitude. Soc Cogn Affect Neurosci 9(12):1855–1861

88. Watanabe T et al (2015) Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain 138(11):3400–3412