Article
Public Awareness of Nanotechnology and Its Implications for Health in Jordan

Zeinab H. Arabeyyat 1,*, Malek M. Jamaliah 2 and Maroof A. Khalaf 1

1 Department of Marine Biology, The University of Jordan, Aqaba 77111, Jordan; m.khalaf@ju.edu.jo
2 Department of Tourism Management, The University of Jordan, Aqaba 77111, Jordan; m.jamaliah@ju.edu.jo
* Correspondence: z.arabeyyat@ju.edu.jo

Abstract: Nanotechnology is often described as an emerging technology, holding promise for a diverse range of fields. Public awareness may have a strong impact on public acceptance of nanotechnology and its various implications. In Jordan, nano-education has only been introduced recently into universities and it is offered to students of pharmacy, engineering, biomedical sciences, and agriculture. However, there is no data available on nanotechnology awareness among the public in Jordan. Therefore, we conducted this study to evaluate Jordanian public awareness and concern about nanotechnology, nanomaterials, and nanoproducts and its implications for health related applications of nanotechnology. An online survey was developed consisting of 15 questions and separated into three domains. The study findings show that more than half of the respondents have a very low awareness with regards to nanotechnology and its various implications. Additionally, respondents show interest to learn more about nanotechnology and its implications, preferring several sources of information such as media, universities and research institutions.

Keywords: nanotechnology; implications; public understanding; awareness; health; Jordan

1. Introduction

Recently, a new branch of technology based on the manipulation of materials measuring 100 nanometers or less has been developed. This new technology is called nanotechnology. This discovery was a true climax of the bioindustry activities and, as such, it brought high expectations for great potentials that emphasizes the need for social scientific explanations to understand possible future cases in nanotechnology industries [1,2] and an investigation of public understanding of nanotechnology in science [3,4].

Nanomaterials have been defined as materials with at least one dimension smaller than 100 nm [5–7]. These materials include produced nanomaterials, such as diesel exhaust materials or airborne combustion by-products, as well as nanosized materials which occur in the environment, such as viruses or volcanic ash [8]. In general, nanomaterials offer relative surface areas bigger than the parallel common forms. Furthermore, the small size often leads to increased reactivity and the change of surface properties of some consumer products such as paints, food, cosmetics, suntan lotions, medicines, and applications that directly release nanomaterials into the environment, like the remediation of polluted environments [9].

According to the European Commission in 2012, there are global uses of nanomaterials. For example, in aerospace they are used to produce lightweight materials, resistant paints and coatings for aerodynamic surfaces [10]. In the automotive industry and transport they are used in scratch-resistant paints and coatings, plastics, lubricants, fluids, and tires. In agri-food they are used in sensors to optimize food production. In construction they are used in insulation, stronger building materials and self-cleaning windows. While in energy generation they are used in photovoltaics and storage like fuel cells and batteries. Nanomaterials can be used also in the environment for soil and groundwater remediation.
In cosmetics, they are used in sunscreens, toothpaste, and face creams, as well as in health, medicine and nanobiotechnology. In information and communication technologies, electronics and photonics they are used in semiconductor chips, new storage devices and displays [11]. In security they are used in sensors to detect biological threats, and in textiles they are used in protective clothing, stronger, self-cleaning or fire resistant fibers [11]. Nanomaterials are therefore very useful to the life sciences, as well as environment and human health applications, and are used as sensors for environmental monitoring, nano-drug-delivery systems, biorobotics, nanoarrays, and nanoscale implants in medicine [12,13]. Nanomaterials are thus used in many applications and are a common element of daily life. However, the rapid expansion of nanotechnology applications increases the need to increase public understanding of the risk of nanotechnology. Increased risk perceptions could lead to negative public reactions that might have a significant impact on industry [14].

The science-society interaction which focuses on public opinion toward emerging technologies has been given an increased emphasis over the past few years [15,16]. Recently, the new term “upstream engagement in nanotechnology” has been developed to diagnose upstream public engagement effects on the governance of new science and technology [17]. Public perception could have a strong impact on the progress of nanotechnology. Therefore, it is necessary to research the public perception and implication for health-related applications of nanotechnology.

Public perceptions of nanotechnology were investigated through surveys distributed to a representative sample of a national population worldwide. Studies of public opinions regarding nanotechnology have focused on the public’s knowledge and views of risks and benefits [16,18–32]. Some studies have shown a need for an understanding of the fundamental concepts of nanotechnology [33–35]. Here in Jordan, the concept of nano-education has been introduced recently to Jordanian universities and is offered to students of pharmacy, engineering, biomedical sciences, and agriculture. So far, limited research has been conducted on this important topic, and we lack understanding about public awareness of nanotechnology and its implications among the Jordanian population. Therefore, we conducted this study to evaluate Jordanian public awareness and concern about nanotechnology, nanomaterials, and nanoproducts and their implications for health, food, the environmental industry, and energy in Jordan.

The purpose of this study is: (1) to describe Jordanians awareness about nanotechnology and its numerous implications; (2) to examine the public need for relevant information about nanomaterial and nanoproducts contained in products in Jordan; (3) to explore public preference of the best route to gain understanding and knowledge of nanotechnology contained in products in Jordan.

2. Materials and Methods

2.1. Measures

A self-administered survey was used for data collection. The survey was developed based on the relevant literature [15,23,36] and contained approximately 15 different questions. Items assessing awareness of nanotechnology and the source of knowledge were extracted from the literature or generated by an expert group. Content validity and face validity of the newly developed survey were established through the evaluation of four expert researchers in this field.

The first domain of the survey included 11 questions that were designed to measure public awareness of nanotechnology, nanoproducts, nanomaterials, nanotechnology implications in industry and health-related applications of nanotechnology using a three-point Likert scale (1 = good, 2 = fair, 3 = poor) for the first seven questions and a five-point Likert scale (where 1 = strongly disagree and 5 = strongly agree) for the remaining seven questions. The second domain included three questions that were used to assess the public perspectives on nanotechnology knowledge using a five-point Likert scale (where 1 = strongly disagree and 5 = strongly agree). The last domain included a question about the
best possible source for gaining understanding about nanotechnology. The survey also includes some demographic variables, including gender, age, income, and education.

2.2. Data Collection

The study was conducted between April and May of 2020. Due to the sudden emergence of the COVID-19 pandemic and the widespread use of social media platforms in Jordan, the use of an online survey was the most appropriate method for data collection. An online survey entitled “Awareness of Nanotechnology among Consumers in Jordan” was created in Arabic using Google Forms and circulated via social media by sharing a direct link of the survey and posting an invitation on social media platforms including Facebook inviting the public to participate in the study. According to StatCounter data, Facebook is the most popular social media platform in Jordan. Participants were eligible to participate in this study if they were over 18 years, living in Jordan, and able to read and understand Arabic.

2.3. Data Analysis

Analyses were performed using SPSS Statistics version 20.0 (IBM Corporation, Armonk, NY, USA). Descriptive statistics, including frequencies and percentages, were used to summarize and describe the study variables regarding the awareness and understanding of nanotechnology and its implications. Given the small sample size, we used Fisher’s exact test instead of the Chi-square test to examine the influence of education, age, and gender on public awareness of nanotechnology and its implications. Furthermore, a bar chart was used to display the public preference of best route to gain understanding and knowledge on nanotechnology contained in products in Jordan.

3. Results

3.1. Demographic Characteristics of Respondents

In total, 248 surveys were collected. Six surveys were completed by participants under 18 years of age and therefore were excluded.

The final sample included 242 respondents. As shown in Table 1, more than half (60%) of the respondents were female and 43% had an income of less than 500 Jordanian Dinars ($705) per month. Regarding education, the vast majority of respondents (95%) had at least a bachelor’s degree or higher. The high percentage of highly educated respondents is attributable to two main reasons: the high levels of education in the Jordanian population, and the lack of knowledge about the research topic, especially among people who are less educated. In addition, over half (55%) of the respondents were between 18 and 39 years old. This high percentage of young respondents reflects the current Jordanian population, of which almost 80% is under the age of 39 [37].

3.2. Public Awareness

As shown in Table 2, most respondents (67%) reported poor knowledge and understanding of nanotechnology, nanomaterials, and nanoproducts, and almost 41.8% reported poor knowledge of its implications in food, medicine, environment, energy, in medicine, and generally. There were no significant differences in participants’ awareness of nanotechnology, nanomaterials, and nanoproducts or their use in food, medicine, environment, and energy based on the respondents’ gender, age, or education level. However, there was a significant difference in participants’ awareness of nanomaterials based on gender (p-value = 0.019). There was also a significant difference in participants’ knowledge about nanoproducts based on age (p-value = 0.043), and a significant difference in their familiarity with the nanotechnology application used in the health or medicine industry based on education level (p-value = 0.026). Finally, there was a significant difference in respondents’ familiarity with the implications of nanotechnology based on age (p-value: 0.043).
Table 1. Demographic characteristics of respondents.

Classification	Frequency (Percent %)
Gender	
Male	96 (39.7)
Female	146 (60.3)
Total	242 (100.0)
Age	
18–35 years old	131 (54.2)
36–55 years old	102 (41.1)
Above 55 years old	9 (3.7)
Total	242 (100.0)
Education level	
High school and less	9 (3.7)
Bachelor’s degree	136 (56.2)
Master’s degree or diploma	50 (20.7)
Doctorate	47 (19.4)
Total	242 (100.0)
Average monthly household income	
Less than 500 JD *	105 (43.4)
500–1500 JD	98 (40.5)
More than 1500 JD	39 (16.1)
Total	242 (100.0)

* JD: Jordanian Dinar.
Table 2. The public awareness of nanotechnology according to gender, age, and education level.

	General awareness of nanotechnology	How would you describe your knowledge about nanomaterial?	How would you describe your knowledge about nanoproducts?	Awareness of general nanotechnology Implications	How familiar you are you with the nanotechnology application used in food industry?	How familiar you are you with the nanotechnology application used in health or medicine industry?	How familiar you are you with the nanotechnology application used in the environment industry?																																									
	Male	Female	p-Value	18–35	35–55	>55	p-Value	>High School	Bachelor	Master	PhD	p-Value	Male	Female	p-Value	18–35	35–55	>55	p-Value	>High School	Bachelor	Master	PhD	p-Value	Male	Female	p-Value	18–35	35–55	>55	p-Value	>High School	Bachelor	Master	PhD	p-Value	Male	Female	p-Value	18–35	35–55	>55	p-Value	>High School	Bachelor	Master	PhD	p-Value
How would you describe your knowledge about nanotechnology?	Good	33 (13.6)	13	20	0.072	20	10	3	0.253	1	14	11	7	0.81																																		
	Fair	108 (44.6)	51	57	2	57	49	2	2	59	27	20	20																																			
	Poor	101 (41.7)	32	69	4	54	43	4	3	63	20	20	20																																			
How would you describe your knowledge about nanomaterial?	Good	28 (11.6)	8	20	0.019	18	8	2	0.412	1	12	8	7	0.328																																		
	Fair	88 (36.4)	45	43	3	44	41	3	1	47	21	19	19																																			
	Poor	126 (52.1)	43	83	4	69	53	4	7	74	21	21	21																																			
How would you describe your knowledge about nanoproducts?	Good	16 (6.6)	7	9	0.253	10	3	3	0.043	0	8	5	3	0.905																																		
	Fair	82 (33.9)	38	44	2	45	35	2	2	44	18	18	18																																			
	Poor	144 (59.5)	51	93	4	75	64	4	7	84	27	26	26																																			

Sustainability 2022, 14, 5786
Table 2. Cont.

How familiar you are with the nanotechnology application related to future energy needs?	All	Gender	p-Value	Age (Year)	p-Value	Education	p-Value											
		Male	Female		18–35	35–55	>55	>High School	Bachelor	Master	PhD	18–35	35–55	>55	>High School	Bachelor	Master	PhD
Good	29 (12)	15	14	0.084	20	7	2	0.228	1	18	5	5	0.986					
Fair	79 (32.6)	36	43		42	25	2	2	42	19	16							
Poor	134 (55.4)	45	89		69	60	5	6	76	26	26							

Awareness of nanotechnology implications in health
Nanotechnology is safe for human body
Strongly disagree
Disagree
Neutral
Agree
Strongly agree

Nanotechnology is safe in treating cancer patients
Strongly disagree
Disagree
Neutral
Agree
Strongly agree

Nanotechnology is safe in diagnosing some of human diseases
Strongly disagree
Disagree
Neutral
Agree
Strongly agree

Nanotechnology is safe to treat addicts
Strongly disagree
Disagree
Neutral
Agree
Strongly agree
3.3. Public Outreach

As shown in Table 3, at least 83.8% revealed the need for continued outreach of information. Almost 76.9% reported a need for better communication about the risks of nanoproducts and 77.1% reported that promotion and education with regard to nanoproducts are necessary.

Table 3. The respondents’ perspectives toward nanotechnology knowledge.

Classification	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
More relevant information regarding nanotechnology is needed.	103 (41.5)	105 (42.3)	36 (14.5)	3 (1.2)	1 (0.4)
Public need for developing appropriate communication about the risks of nanoproducts.	98 (39.5)	92 (37.1)	53 (21.4)	2 (0.8)	3 (1.2)
Promotion and education on nanotechnology and nanoproducts are necessary.	91 (36.7)	106 (42.7)	47 (19.0)	2 (0.8)	2 (0.8)

3.4. Routes to Gain Information about Nanotechnology and Its Implications

As shown on Figure 1, research institutions, media and universities are the most preferable methods by respondents to gain new information about nanotechnology and its various implications.

![Figure 1. Public preference of best route to gain understanding and knowledge on nanotechnology contained in products.](image-url)
4. Discussion

This study aimed to evaluate Jordanian public awareness and concern about nanotechnology, nanomaterials, and nanoproducts, and their implications. It also aimed to verify the public need for education and relevant information about nanomaterials and nanoproducts contained in products in Jordan, and to understand public concerns with regard to potential problems that may be caused by nanotechnology. Our findings showed that the public as represented by the sample in this survey is generally poorly informed about nanotechnology and its implications. This could be the main reason for the non-significant difference among respondents regarding the variables included. In this study, we surveyed public awareness of nanotechnology and the need for education about nanotechnologies. Our findings are consistent with earlier studies that have also found that the public had very little knowledge or awareness of nanotechnology [1,5,6,29,38–42]. Overall, 67% of participants in this study reported poor knowledge of nanotechnology, compared to 79.8% in Iran [43], 49% in America [44] and 23% in Germany [45]. Our findings also revealed that variables such as gender, education and age were all significantly relevant to perspectives on nanotechnology knowledge. Our finding is similar to the results of several valuable studies done in Iran [43]. Approximately 81% of participants in our study reported that “research institutions” are the suitable routes of information on nanotechnology, nanomaterials, or nanoproducts contained in products in Jordan. In addition, the increasing awareness of nanotechnology can be led by courses and workshops offered at educational institutions such as schools and universities. Experimental designs can also be used to provide participants with more information about nanotechnology [46].

The majority of respondents in our study were slightly or moderately afraid of potential problems that nanotechnology may cause, and no significant differences were found regarding to how afraid the public are of the potential problems that may be caused by nanotechnology. This could be due to the public’s modest knowledge about nanotechnology. Therefore, government agencies may be motivated to perceive and implement knowledge about nanotechnology and its implications for health in particular.

5. Implications

Considering the large percentage of participants with poor knowledge about nanotechnology but mild fears about it, it can be concluded that there are many informative actions to be taken to inform the general public of Jordan on the nature and potential risks and benefits of nanotechnology. Our findings can be used to develop strategies that help Jordanians to understand nanotechnology and to enable them to differentiate between the different fields of its application. An educational system should be established to address public expectations and concerns. Moreover, a safety assessment system must be established, and its results should be handled by a professional team of experts so that they can be disseminated to the public. Therefore, governmental agencies and experts in the field of nanotechnology from universities, research institutes, industry, and non-governmental organizations (NGOs) must provide accurate information on nanotechnologies and their applications to the public [46].

6. Limitations

First, related to the small sample size, we suggest that this study should be regarded more as a feasibility study of a general community population in Jordan. Related to the limited number of participants, this study does not represent the true population, and therefore further research is needed to clearly identify how the public perceives nanotechnology, as well as the risks and benefits of the technology by utilizing a larger representative sample.

Second, the survey used in this study was not previously validated; additionally, because of the relatively small number of responses, there might have been a selection bias among our participants. For example, some participants who refused to participate added a note that because they were not knowledgeable enough about nanotechnology they have
declined the study’s invitation and eventually the survey was mainly completed by highly educated people. Finally, this is more of an initial study, and further research with a more rigorous methodology is needed to support our findings. This is important since some of the answers from respondents can be perceived as individual and may reflect feelings rather than actual knowledge or level of information.

7. Conclusions

While nanotechnology has shown promising applications in several bio-industrial and medical fields, further studies are needed to obtain an accurate overview of the public’s awareness, understanding and attitudes toward nanotechnology. Our findings show that more than half of the respondents have a very low awareness with regards to nanotechnology and its various implications. Additionally, respondents showed interest in learning more about nanotechnology and its implications, preferring several sources of information such as media, universities and research institutions. This suggests the need for more efforts to increase public awareness of this field so as to avoid unwanted counterattack. Both researchers and governmental bodies need better engagement with their industrial partners, the media and consumers to increase their understanding of this new field of technology.

Author Contributions: Conceptualization, Z.H.A. and M.M.J.; methodology, Z.H.A. and M.M.J.; software, M.M.J.; validation, Z.H.A., M.M.J. and M.A.K.; formal analysis, M.M.J.; investigation, Z.H.A.; resources, Z.H.A. and M.M.J.; data curation, M.M.J.; writing—original draft preparation, Z.H.A.; writing—review and editing, Z.H.A., M.M.J. and M.A.K.; visualization, Z.H.A.; supervision, Z.H.A.; project administration, Z.H.A. and M.M.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study due to the lack of ethics committee in our faculty. However, all participants in our study were informed of the anonymity assurance why the research was being conducted, and how their data will be used prior to enrolment in the study. All participants were assured their responses are confidential and finishing this survey will be considered as a consent to participate.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Gehrke, P.J. Public Understanding of Nanotechnology: How Publics Know. In Nano-Publics; Palgrave Pivot: Cham, Switzerland, 2018; pp. 21–37.
2. Schummer, J. Societal and ethical implications of nanotechnology: Meanings, interest groups and social dynamics. Nanotechnol. Chall. 2006, 2006, 413–449. [CrossRef]
3. Joubert, I.A.; Geppert, M.; Ess, S.; Nestelbacher, R.; Gadermaier, G.; Duschl, A.; Bathke, A.C.; Himly, M. Public perception and knowledge on nanotechnology: A study based on a citizen science approach. NanolImpact 2019, 17, 100201. [CrossRef]
4. Retzbach, A.; Marschall, J.; Rahnke, M.; Otto, L.; Maier, M. Public understanding of science and the perception of nanotechnology: The roles of interest in science, methodological knowledge, epistemological beliefs, and beliefs about science. J. Nanopart. Res. 2011, 13, 6231–6244. [CrossRef]
5. Liu, X.; Sun, J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kB pathways. Biomaterials 2010, 31, 8198–8209. [CrossRef]
6. Aschberger, K.; Micheletti, C.; Sokull-Klüttgen, B.; Christensen, F.M. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—Lessons learned from four case studies. Environ. Int. 2011, 37, 1143–1156. [CrossRef]
7. Hartl, M.G.J.; Gubbins, E.; Gutierrez, J.; Fernandes, T.F. Review of Existing Knowledge—Emerging Contaminant: Focus on Nanomaterials and Microplastics in the Aquatic Environment’ CREW—Centre of Expertise for Waters. 2015. Available online: https://www.crew.ac.uk/sites/www.crew.ac.uk/files/sites/default/files/publication/CREW_Emerging%20Contaminants.pdf (accessed on 9 December 2021).
8. US Environmental Protection Agency. Nanotechnology White Paper’ EPA 100/B-07/001. 2007. Available online: https://www.epa.gov/sites/default/files/2015-01/documents/nanotechnology_whitepaper.pdf (accessed on 9 December 2021).
9. Aitken, R.J.; Chaudhry, M.Q.; Boxall, A.B.A.; Hull, M. Manufacture and use of nanomaterials: Current status in the UK and global trends. *Occup. Med.* 2006, 56, 300–306. [CrossRef]

10. Klaine, S.J.; Alvarez, P.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. *Environ. Toxicol. Chem.* 2008, 27, 1825–1851. [CrossRef]

11. European Commission. EU Approach to Resilience: Learning from Food Security Crises 2012, 586 Final. 2012. Available online: http://ec.europa.eu/echo/files/policies/resilience/com_2012_586_resilience_en.pdf (accessed on 5 February 2022).

12. Roco, M.C. Nanotechnology: Convergence with modern biology and medicine. *Curr. Opin. Biotechnol.* 2003, 14, 337–346. [CrossRef]

13. Freitas, R.A. What is nanomedicine? *Nanomedicine* 2005, 1, 2–9. [CrossRef]

14. Peters, E.M.; Burraston, B.; Mertz, C.K. An Emotion-Based Model of Risk Perception and Stigma Susceptibility: Cognitive Appraisals of Emotion, Affective Reactivity, Worldviews, and Risk Perceptions in the Generation of Technological Stigma. *Risk Anal.* 2004, 24, 1349–1367.

15. An, S.S.A.; Kim, Y.-R.; Lee, E.J.; Park, S.H.; Kwon, H.J.; Son, S.W.; Seo, Y.R.; Pie, J.-E.; Yoon, M.; Kim, J.-H.; et al. Comparative analysis of nanotechnology awareness in consumers and experts in South Korea. *Int. J. Nanomed.* 2014, 9, 21–27. [CrossRef] [PubMed]

16. Cobb, M.D.; Macoubrie, J. Public perceptions about nanotechnology: Risks, benefits and trust. *J. Nanopart. Res.* 2004, 6, 395–405. [CrossRef]

17. Krabbenborg, L.; Mulder, H.A.J. Upstream Public Engagement in Nanotechnology: Constraints and Opportunities. *Sci. Commun.* 2015, 37, 452–484. [CrossRef]

18. Altarawneh, M. Knowledge and Perception of Nanotechnology Among Students of Agricultural Faculties’ in Jordan. *J. Agric. Sci.* 2020, 12, 265. [CrossRef]

19. Besley, J.C. Current research on public perceptions of nanotechnology. *Emerg. Health Threat. J.* 2010, 3, 7098. [CrossRef]

20. Corley, E.A.; Kim, Y.; Scheufele, D.A. Public challenges of nanotechnology regulation. *Jurimetrics* 2012, 52, 371–381.

21. European Commission. Eurobarometer: Europeans, Science and Technology. Brussels: European Commission. 2001. Available online: http://ec.europa.eu/research/press/2001/pr0612en-report.pdf (accessed on 15 July 2014).

22. Gaskell, G.; Eyck, T.T.; Jackson, J.; Veltri, G.A. Imagining technological innovation: Cultural support for technological innovation in Europe and the United States. *Public Underst. Sci.* 2005, 14, 81–90. [CrossRef]

23. An, S.S.A.; Kim, Y.-R.; Lee, E.J.; Park, S.H.; Kwon, H.J.; Son, S.W.; Seo, Y.R.; Pie, J.-E.; Yoon, M.; Kim, J.-H.; et al. Interactive survey of consumer awareness of nanotechnologies and nanoparticles in consumer products in South Korea. *Int. J. Nanomed.* 2014, 9, 11–20. [CrossRef]

24. Kim, J.; Yeo, S.K.; Brossard, D.; Scheufele, D.A.; Xenos, M.A. Disentangling the Influence of Value Predispositions and Risk/Benefit Perceptions on Support for Nanotechnology Among the American Public. *Risk Anal.* 2013, 34, 965–980. [CrossRef]

25. Larsson, S.; Boholm, Å. Den svenska allmänhetens inställning till nanoteknik. In *Sprickor Fasaden*; Andersson, U., Carlander, A., Lindgren, E., Oskarson, M., Eds.; Göteborgs Universitet, SOM-Institutet: Gothenburg, Sweden, 2018; pp. 293–303.

26. Lee, C.J.; Scheufele, D.A.; Lewenstein, B.V. Public attitudes toward emerging technologies: Examining the interactive effects of cognition and affect on public attitudes toward nanotechnology. *Sci. Commun.* 2005, 27, 240–267. [CrossRef]

27. Macnaghten, P. Researching Technoscientific Concerns in the Making: Narrative Structures, Public Responses, and Emerging Nanotechnologies. *Environ. Plan. A Econ. Space* 2010, 42, 23–37. [CrossRef]

28. Scheufele, D.A.; Lewenstein, B. The Public and Nanotechnology: How Citizens Make Sense of Emerging Technologies. *J. Nanopart. Res.* 2005, 7, 659–667. [CrossRef]

29. Pidgeon, N.; Harthorn, B.H.; Bryant, K.; Rogers-Hayden, T. Deliberating the risks of nanotechnologies for energy and health applications in the United States and United Kingdom. *Nat. Nanotechnol.* 2008, 4, 95–98. [CrossRef] [PubMed]

30. Priest, S.; Lane, T.; Greenhalgh, T.; Hand, L.J.; Kramer, V. Envisioning Emerging Nanotechnologies: A Three-Year Panel Study of South Carolina Citizens. *Risk Anal.* 2011, 31, 1718–1733. [CrossRef] [PubMed]

31. Siegrist, M.; Cousin, M.E.; Kastenholz, H.; Wieck, A. Public acceptance of nanotechnology foods and food pack-aging: The influence of affect and trust. *Appetite* 2007, 49, 459–466. [CrossRef]

32. Su, L.Y.-F.; Cacciatore, M.A.; Brossard, D.; Corley, E.A.; Scheufele, D.A.; Xenos, M.A. Attitudinal gaps: How experts and lay audiences form policy attitudes toward controversial science. *Sci. Public Policy* 2015, 43, 196–206. [CrossRef]

33. Batt, C.A.; Waldron, A.M.; Broadwater, N. Numbers, scale and symbols: The public understanding of nanotechnology. *J. Nanopart. Res.* 2008, 10, 1141–1143. [CrossRef]

34. Castellini, O.M.; Walejko, G.K.; Holladay, C.E.; Theim, T.J.; Zenner, G.M.; Crone, W.C. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts. *J. Nanopart. Res.* 2006, 9, 183–189. [CrossRef]

35. Waldron, A.M.; Spencer, D.; Batt, C.A. The current state of public understanding of nanotechnology. *J. Nanopart. Res.* 2006, 8, 569–575. [CrossRef]

36. Rahimpour, M.; Rahimpour, M.; Gomari, H.; Shirvani, E.; Niroumanesh, A.; Kamelia, S.; Soroush, S. Public Perceptions of Nanotechnology: A Survey in the Mega Cities of Iran. *Nanoethics* 2012, 6, 119–126. [CrossRef]

37. Higher Population Council (Jordan). The Demographic Opportunity in Jordan: A Policy Document. 2009. Available online: https://www.hpc.org.jo/sites/default/files/PDFs//temp_pdf_44.pdf (accessed on 9 December 2021).
38. Crow, M.M.; Sarewitz, D. Nanotechnology and societal transformation. In *AAAS Science and Technology Policy Yearbook 2001*; Teich, A.H., Ed.; American Association for the Advancement of Science: Washington, DC, USA, 2001; pp. 89–101.

39. Priest, S. The North American opinion climate for nanotechnology and its products: Opportunities and challenges. *J. Nanopart. Res.* **2006**, *8*, 563–568. [CrossRef]

40. Ronteltap, A.; Fischer, A.R.H.; Tobi, H. Societal response to nanotechnology: Converging technologies–converging societal response research? *J. Nanopart. Res.* **2011**, *13*, 4399–4410. [CrossRef]

41. Satterfield, T.; Kandlikar, M.; Beaudrie, C.E.; Conti, J.; Harthorn, B.H. Anticipating the perceived risk of nano-technologies. *Nat. Nanotechnol.* **2009**, *4*, 752–758. [CrossRef] [PubMed]

42. Siegrist, M. Predicting the Future: Review of Public Perception Studies of Nanotechnology. *Hum. Ecol. Risk Assess. Int. J.* **2010**, *16*, 837–846. [CrossRef]

43. Farshchi, P.; Sadrnazhaad, S.K.; Nejad, N.M.; Mahmoodi, M.; Ghavamabadi, L.I. Nanotechnology in the public eye: The case of Iran, as a developing country. *J. Nanopart. Res.* **2011**, *13*, 3511–3519. [CrossRef]

44. Peter, D. Hart Research Associates. Awareness of and Attitudes toward Nanotechnology and Synthetic Biology: A Report of Findings. Hart Research Associates, 2008. Available online: https://www.pewtrusts.org/-/media/legacy/uploadedfiles/wwwpewtrustsorg/reports/nanotechnologies/finalsynbioreportpdf.pdf (accessed on 5 February 2022).

45. Vierboom, C.; Harlen, I.; Simons, J. *Public Perceptions about Nanotechnology. Representative Survey and Basic Morphological-Psychological Study*; Zimmer, R., Hertel, R., Bol, G.F., Eds.; Wissenschaft: Berlin, Germany, 2008. Available online: http://bfr.bund.de/cm/290/public_perceptions_about_nanotechnology.pdf (accessed on 5 February 2022).

46. Gupta, N.; Fischer, A.R.H.; Van Der Lans, L.A.; Frewer, L.J. Factors influencing societal response of nanotechnology: An expert stakeholder analysis. *J. Nanopart. Res.* **2012**, *14*, 1–15. [CrossRef]