Stem cells as a therapeutic tool for the blind: biology and future prospects

Mandeep S. Singh1,2 and Robert E. MacLaren1,2,3,4,*

1Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
2Merton College, University of Oxford, Oxford OX1 4JD, UK
3Moorfields Eye Hospital, London EC1V 2PD, UK
4Oxford Eye Hospital, Oxford OX3 9DU, UK

Retinal degeneration due to genetic, diabetic and age-related disease is the most common cause of blindness in the developed world. Blindness occurs through the loss of the light-sensing photoreceptors; to restore vision, it would be necessary to introduce alternative photosensitive components into the eye. The recent development of an electronic prosthesis placed beneath the severely diseased retina has shown that subretinal stimulation may restore some visual function in blind patients. This proves that residual retinal circuits can be reawakened after photoreceptor loss and defines a goal for stem-cell-based therapy to replace photoreceptors. Advances in reprogramming adult cells have shown how it may be possible to generate autologous stem cells for transplantation without the need for an embryo donor. The recent success in culturing a whole optic cup in vitro has shown how large numbers of photoreceptors might be generated from embryonic stem cells. Taken together, these threads of discovery provide the basis for optimism for the development of a stem-cell-based strategy for the treatment of retinal blindness.

Keywords: age-related macular degeneration; retinitis pigmentosa; retinal degeneration; embryonic stem cell; induced pluripotent stem cell; transplantation

1. INTRODUCTION

A recent publication in this journal described how an electronic device implanted under the human retina could restore vision to a blind eye [1]. One patient was able to read large print despite years of visual impairment prior to implantation. This finding and others confirm that a retina that has lost all light-sensitive cells—the photoreceptors—might regain function if residual neurons are stimulated by new light-sensing components, despite neuronal and glial reorganization [2–4]. The discovery that a device implanted under the retina can achieve vision restoration is significant because the stimulus is placed where the original light-sensitive cells would have been located, taking advantage of downstream processing that occurs in other retinal neurons before signals reach the visual cortex. This finding supports the development of stem cell treatments to replace photoreceptors as such treatments would be delivered to this same anatomical location.

In cell replacement therapy for most central nervous system (CNS) diseases, replacement neurons would need to develop afferent and efferent connections with the host. In some cases, the replacement neurons would need to navigate across long distances, and it is unlikely that the necessary axon guidance cues would persist in the adult brain [5]. Blindness in retinal degenerations is caused by death of the first neuron in its pathway: the photoreceptor. Photoreceptors, stimulated by photons, are not dependent on afferent synapses. Replacement cells (figure 1a) would need to make only one efferent connection with an adjacent second-order neuron in the host inner retina with no need for navigation, to re-establish the visual circuit. It is therefore arguable that the photoreceptor is among the most readily transplantable neurons in the CNS, and is an excellent candidate for clinical trials exploring regenerative neural stem cell therapies.

2. THE CLINICAL NEED

Age-related, diabetic and genetic retinal degenerations account for over 50 per cent of blind patients in the developed world [7]. Retinitis pigmentosa (RP) is the leading cause of inherited retinal blindness in younger patients, with a prevalence of approximately 1 in 4000 [8]. Retinitis pigmentosa is a term encompassing a group of disorders, caused by mutations in over 150 genes discovered to date [9], that cause photoreceptor loss which typically progresses to involve the central retina at which point all sight is lost (figure 1b).

Age-related macular degeneration (AMD) is a common disease with genetic and environmental risk factors [10,11]. AMD affects 14 million elderly people in the developed world [11,12]. Ninety per cent of patients suffer from the form termed dry AMD, which is characterized by primary degeneration of retinal pigment epithelium (RPE) cells leading to secondary photoreceptor loss [13] and is currently untreatable (figure 1c).

One other retinopathy has attracted attention for stem cell therapy. Stargardt disease is the most common inherited juvenile macular degeneration [14]. Symptoms begin typically between the ages of 6 and 12, with a variably...
progressive course. In November 2010, Advanced Cell Technology (ACT), a US-based company, announced that they had gained regulatory approval to use embryonic stem (ES) cells to replace RPE in a phase I/II clinical trial involving patients with Stargardt disease (http://www.advancedcell.com/news-and-media/press-releases/advanced-cell-technology-receives-fda-clearance-for-the-first-clinical-trial-using-embryonic-stem-cell/, accessed 5 April 2011). In this proposed therapy, treatment will target RPE replacement to restore function and/or prevent loss of photoreceptors. However, once photoreceptors are lost in advanced degeneration, treatment must involve reintroduction of light-sensitive cells. The challenge for retinal stem cell therapy lies in the generation of numerous photoreceptor cells, at the ideal developmental stage to integrate, free of malignant potential and immunogenicity. Although close, this has not yet been achieved to a level sufficient to consider clinical trial approval; the on-going work with RPE will provide valuable safety data to support future trials using stem cell approaches to replace photoreceptors.

3. THE RETINA: AN IDEAL TESTING GROUND FOR NEURAL REGENERATION

The human retina contains rod photoreceptors for vision in low light and cone photoreceptors for colour and high-acuity vision in bright light. Photoreceptors depend on RPE for metabolic activity (figure 2). Also, cones are dependent for survival on the rods through a number of putative mechanisms, including paracrine support [15]; the loss of one class of cell therefore leads to the secondary loss of others. Hence, cell replacement strategies in RP might aim to reintroduce rods in order to rescue cones from degeneration, or alternatively to restore night vision directly.

Retinal cell therapy is likely to be delivered using small-gauge vitrectomy, a procedure now routinely performed on an outpatient basis with low morbidity. The range of assessments for retinal structure and function can provide the safety and efficacy data required in clinical trials. Confocal scanning laser ophthalmoscopy reveals retinal structure to are solution[m 16] and may be employed to visualize cell grafts. Whereas grafts in other organs may be difficult to visualize, they may easily be monitored in the retina through the clear cornea and lens. As uncontrolled proliferation is a concern for any stem cell treatment, graft site visualization is a distinct advantage in terms of safety. Also, cells would be transplanted into the subretinal space, a discrete compartment that would limit the systemic spread of immature cells. Laser photocoagulation—used routinely in advanced diabetic retinopathy—could be used if necessary to destroy transplanted cells non-invasively. A range of tests including visual electrophysiology, microperimetry, contrast sensitivity and mobility testing (among others) are available to assess visual function and treatment efficacy even when only a minimal degree of function remains, as will be the case in patients requiring therapy. Furthermore, the fellow eye provides a control as retinal degenerations are frequently bilateral and symmetrical.

4. CHALLENGES IN RETINAL REPLACEMENT

The first report of mammalian retinal transplantation by Katharine Tansley [17] initiated decades of interest in the use of immature tissue for retinal replacement.
must develop an inner process specialized for synaptic integration efficiency.

erate sufficient numbers of cells and in parallel to improve challenge for the cell suspension approach will be to gen-

0.1 per cent) [37]. Given that millions of photoreceptors

to integrate and make connections is low (approximately

connections [36]. Currently, the percentage of cells able

been widely investigated [32,34,35], with evidence that

will probably be needed to restore meaningful vision, the

photosensors have a light-sensitive outer end that is apposed to retinal pigment epithelium (RPE), and an inner end special-

The relative ease of surgical delivery, however, has made

immature cells.

Proc. R. Soc. B (2011)

[18–22]. Photoreceptor-related functions are known to

occur in embryonic and foetal retinal cells upon matu-

ration [23,24], and provide the basis to be hopeful for the development of functional photoreceptors from immature cells.

For successful integration, the grafted photoreceptors

should assume the correct orientation, with an inner

synapse and an outer photoreceptive segment positioned

against host inner retina and RPE, respectively. To this

different methods of donor cell preparation have been

proposed. Whole retinal sheets derived from

embryonic or neonatal rodents can survive and differen-

tiate after subretinal transplantation [25–27]. A recent

study employed attenuated pseudorabies virus to label

graft neurons and showed that full-thickness retinal

sheets, while not integrating directly, could connect with

host neurons [28]. Similar observations have been made

with partial-thickness sheets [29,30]. A lack of integration

is likely to be more of a problem when using a single-cell

suspension as orientation will be significantly disrupted,

and, furthermore, there is a tendency for rosette for-

sion [55]. However, another report presented angiographic

transmission to second-order neurons. Evidence of neural integration following transplantation has been

presented [30,38–43]; however, as typified by these

studies, accurate discrimination of donor and host is a

challenge because graft–host synapses are difficult to

distinguish from intra-graft synapses (figure 3c,d).

Notably, synapses may not be necessary as residual reti-

nal cells may, in theory, be stimulated by a proximate

potential change, as exemplified by the retinal implant

device.

Transplantation into the retina may be hampered by
gliosis (figure 3e,f), although this may be less marked
than other CNS sites [44–46]. Disruption of glial barriers

may result in better integration [37,47,48]. Clinically, it is

recognized that intra-retinal RPE migration is a feature of

RP, which may imply that gliosis could still allow for cell

integration to some extent.

A critical translational question is whether trans-

planted stem or precursor cells will improve function in a
degenerate host. Hosts that still have at least some

degree of outer retinal architecture have shown functional

improvement following photoreceptor replacement

[36,49–53]. However, it is not known whether vision
can be restored in a severely degenerate retina with pro-

longed photoreceptor loss. It will be critical to address

this in order to apply these treatments in patients with

severe blindness.

Clinical trials have shown that the human foetal retina
can be transplanted into the subretinal space without
significant surgical adverse reactions [54] or immune rejec-
tion [55]. However, another report presented angiographic
evidence of inflammation after a similar transplant [56],
with no effect on vision. Nevertheless, these pioneering
studies show that transplantation of immature tissue into
the severely degenerated retina in humans is a safe pro-
cedure, so the question of whether such transplants can
restore sight may soon be answered.

Figure 2. (a) Normal retina. Photoreceptor cells are the light sensors in the visual system. In the laminations of the normal
human retina shown here, photoreceptors lie in the outer retina, optimally oriented to detect the incidence of photons. The
photoreceptors have a light-sensitive outer end that is apposed to retinal pigment epithelium (RPE), and an inner end special-
ized for synaptic transmission that is connected to second-order neurons in the inner retina. When stimulated, photoreceptors
generate impulses that are processed by inner retinal cells and then conveyed to the brain via the optic nerve. Visual sensation is
produced when impulses reach the visual cortex in the occipital lobe. (b) Severe retinal degeneration. In the diagram above, all
photosensors have been lost and the retina is unable to sense incident light. There are no signals conveyed to the inner retina
and brain, and the patient is therefore blind. Retinal sensitivity may, in principle, be restored by placing new light-sensing compo-

onents, such as stem/precursor cells or an electronic prosthetic device, between host inner retina and host RPE (location marked by asterisks), where photoreceptors would normally be located. In this way, inner retinal processing is used to optimize
the signals generated from the new light sensors before these are transmitted to the cortex. (Reproduced with kind permission
from MacLaren & Pearson [6], © Nature Publishing.)
5. SOURCES OF CELLS FOR TRANSPLANTATION

ES cells, derived from the inner cell mass of blastocyst-stage embryos [57–59], are able to maintain an undifferentiated state or can be directed to mature along lineages deriving from all three germ layers—ectoderm, endoderm and mesoderm. Photoreceptor features were found in subretinal human ES cell grafts, but not in locations elsewhere in the eye, indicating that the subretinal niche may be critical to support differentiation of ES cells towards a photoreceptor fate [60]. Retinal fate has also been induced in mouse, monkey and human ES cells by using growth factors, retinal co-culture and genetic modification [61,62]. When directed to become retinal precursors similar to the human foetal stage, human ES cells were found to integrate into an explant model of Leber congenital amaurosis [63] and restore some function in vivo [64]. These data strongly support the use of precursor cells for photoreceptor replacement. It may be that for effective integration, stem cells need to be differentiated some way along the photoreceptor lineage before transplantation; recent evidence has suggested that even mature neurons may integrate [65].

Very recently, it was shown that three-dimensional culture of mouse ES cell aggregates led to autonomous optic cup formation in vitro with features of retinal stratification [66]. A similar system might be applicable to expand and differentiate a single ES cell into potentially thousands of photoreceptor precursors (or some other photoreceptor developmental stage) for optimal integration.

Despite the relative ocular immune privilege, ES cells are immunogenic as they originate from another human foetus, which also raises ethical questions about how to source these cells. The discovery that reprogramming DNA-binding proteins may induce stem cells from adult cells represents a milestone in the search for a renewable source of cells [67–69]. These ‘induced pluripotent’ stem (iPS) cells, being autologous, may obviate the need for chronic immune suppression.

iPS clones could be derived from patients and be used for treatment—a process that may involve ex vivo correction of the gene defect before reintroduction into the host. Recent progress has been made as iPS cells derived from amyotrophic lateral sclerosis patients have been differentiated into motor neurons—the cell type that requires replacement in this condition [70]. In a similar vein, human iPS cells have been cloned from Parkinson’s disease patients [71] and iPS cell-derived dopamine neurons have improved function in a Parkinson’s disease model [72]. However, iPS clones vary in pluripotency and differentiate less efficiently than ES cells, which show robust neuronal differentiation [73]. Interestingly,
this variability is independent of the type of vector used in iPS cell production. Integrating vectors such as lentiviruses (whereby genes are inserted into the target cell genome), in addition to affecting pluripotency, confer a greater potential risk of teratogenicity than non-integrating vectors (whereby the gene is expressed while remaining separate from the host genome). By avoiding the use of genes and vectors associated with uncontrolled proliferation [74,75], the risk of tumour formation is reduced. Ideally, iPS cells derived from every patient will need to be screened for potentially cancerous cells, as even a 0.01 per cent risk of malignancy induced by therapy may be unacceptable for patients and doctors. The situation is somewhat different with ES cells, which are not derived from individual patients—potentially, a few well-characterized, purified and approved cell lines may be used widely. Overall, the regulatory environment will be complex, given the range of pluripotency, differentiation capacity, teratogenicity and immunogenicity of different iPS cell clones and ES cell lines. It is likely that a range of pre-treatment protocols, potentially subject to differing regulatory requirements, will be developed in future, tailored to specific clinical situations.

iPS cells have differentiated in vitro into retinal cell phenotypes, recapitulating events in normal development [76,77]. Functional human photoreceptor-like cells have been observed following differentiation of human iPS cells [78,79]. In the case of retinal degenerations, iPS cells from patients might be used for replacement, with correction of the RP gene defect and the cells then directed to assume a retinal precursor fate before transcorrection of the RP gene defect and the cells then may mature, differentiate and function in the host. Moreover, large numbers of cells may potentially be generated from a single patient [80].

6. RETINAL PIGMENT EPITHELIUM CELL TRANSPLANTATION

In AMD, the primary cell to be lost is the RPE cell, leading to a secondary loss of photoreceptors. Hence, it has been asked if RPE replacement may delay or prevent blindness in AMD. Photoreceptor rescue has been reported after transplantation of foetal RPE cells in animals, even in advanced disease [81]. This approach has not yet, however, shown convincing effect in AMD patients [82,83]. This is in contrast to autologous grafts, which included Bruch’s membrane, an underlying platform that maintains RPE polarity and homeostasis [84,85]. Hence, the challenge in using stem cells for RPE replacement will probably be to find a means of integrating differentiated RPE cells with a basement membrane—recreating cell adhesion junctions to Bruch’s membrane or an alternative substrate, rather than creating synapses with host neurons.

In searching for renewable RPE cells, RPE-like cells have been derived from non-human primate and human ES cells [86–88]. Human ES-cell-derived RPE has been shown to improve retinal function in a rat model of AMD [89–91], and iPS-cell-derived RPE was found to have protective effects in dystrophic rats [92]. Human ES-cell-derived RPE cells have been studied for prolonged periods and found to sustain function without evidence of teratoma formation [93], paving the way to clinical application. The potential commencement of the recently announced phase I/II trial using ES cells for RPE replacement, discussed earlier, will encourage the development of the ideal cell for translation into AMD patients.

7. CONCLUSION

The clinical need for therapies for retinal degeneration has energized the search for renewable cells to replace photoreceptors in patients. It is known that the diseased human retina may recover function if appropriately stimulated by an electrical current, and separately it has been demonstrated that rod photoreceptor precursor cells may mature, differentiate and function in the host environment after transplantation. Moreover, large numbers of cells may potentially be generated from a single stem cell in an optic cup culture model. The convergence of these discoveries sets the foundation in the near future for a clinically applicable stem cell strategy to restore vision in patients with retinal degenerations.

This research was supported by the NIHR Biomedical Research Centres at the Oxford Radcliffe Trust and Moorfields Eye Hospital, the Medical Research Council, the Wellcome Trust, the Health Foundation, the Royal College of Surgeons of Edinburgh and the Oxford Stem Cell Institute. M.S. was supported by the Singapore National Medical
REFERENCES

1. Zrenner, E. et al. 2010 Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. R. Soc. B 278, 1489–1497. (doi:10.1098/rspb.2010.1747)

2. Jones, B. W. & Marc, R. E. 2005 Retinal remodeling during retinal degeneration. Exp. Eye Res. 81, 123–137. (doi:10.1016/j.exer.2005.03.006)

3. Humayun, M. S. et al. 2003 Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vis. Res. 43, 2573–2581. (doi:10.1016/s0042-6989(03)00457-7)

4. Rizzo, J. F., Wyatt, J., Loewenstein, J., Kelly, S. & Shire, D. 2003 Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest. Ophthalmol. Vis. Sci. 44, 5362–5369. (doi:10.1167/iovs.02-0817)

5. MacLaren, R. E. 1999 Re-establissement of visual circuitry after optic nerve regeneration. Eye 13, 277–284. (doi:10.1038/eye.1999.77)

6. MacLaren, R. E. & Pearson, R. A. 2007 Stem cell therapy and the retina. Eye (Lond) 21, 1352–1359. (doi:10.1038/sj.eye.6702842)

7. The Eye Diseases Prevalence Research Group. 2004 Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 122, 477–485. (doi:10.1001/archophthalm.122.4.477)

8. Berson, E. L. 1993 Retinitis pigmentosa: the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 34, 1659–1676.

9. Hartong, D. T., Berson, E. L. & Dryja, T. P. 2006 Retinitis pigmentosa. Lancet 368, 1795–1809. (doi:10.1016/S0140-6736(06)69740-7)

10. Edwards, A. O., Ritter, R., Abel, K. J., Manning, A., Panhuysen, C. & Farrer, L. A. 2005 Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424. (doi:10.1126/science.1110189)

11. Klein, R., Klein, B. E. K. & Linton, K. L. P. 1992 Prevalence of age-related maculopathy: the Beaver Dam eye study. Ophthalmology 99, 933–943.

12. Klein, R., Peto, T., Bird, A. & Vannewkirk, M. R. 2004 The epigenetic anatomy of age-related macular degeneration. Am. J. Ophthalmol. 137, 486–495. (doi:10.1016/j.ajo.2003.11.069)

13. Curcio, C. A., Medeiros, N. E. & Millican, C. L. 1996 Photoreceptor loss in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 37, 1236–1249.

14. Allikmets, R. et al. 1997 A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 15, 236–246. (doi:10.1038/ng0397-236)

15. Yang, Y., Mohand-Said, S., Danan, A., Simonutti, M., Fontaine, V., Clerin, E., Picaud, S., Leveillard, T. & Sahel, J. A. 2009 Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol. Ther. 17, 787–795. (doi:10.1038/mt.2009.28)

16. Puliafito, C. A., Hee, M. R., Lin, C. P., Reichel, E., Schuman, J. S., Duker, J. S., Izatt, J. A., Swanson, E. A. & Fujimoto, J. G. 1995 Imaging of macular diseases with optical coherence tomography. Ophthalmology 102, 217–229.

17. Tansley, K. 1946 The development of the rat eye in graft. J. Exp. Biol. 22, 221–223.

18. Royo, P. E. & Quay, W. B. 1959 Retinal transplantation from fetal to maternal mammalian eye. Growth 23, 313–336.

19. Del Cerro, M., Gash, D. M. & Rao, G. N. 1985 Intracocular retinal transplants. Invest. Ophthalmol. Vis. Sci. 26, 1182–1185.

20. Turner, J. E., Blair, J. R. & Chappell, T. E. 1986 Retinal transplantation: successful grafting of embryonic rat retinal tissue into the lesion site of an adult host retina. Fernowrn Found. Series 9, 301–309.

21. Reh, T. A. & Levine, E. M. 1998 Multipotential stem cells and progenitors in the vertebrate retina. J. Neurobiol. 36, 206–220. (doi:10.1002/(SICI)1097-4695(199806)36:2<206::AID-NERU>3.0.CO;2-5)

22. Chacko, D. M., Rogers, J. A., Turner, J. E. & Ahmad, I. 2000 Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochem. Biophys. Res. Commun. 268, 842–846. (doi:10.1006/bbrc.2000.2153)

23. Adolph, A. R., Zucker, C. L., Ehinger, B. & Bergstrom, A. 1994 Function and structure in retinal transplants. J. Neural Transplant Plast 5, 147–161. (doi:10.1155/NP.1994.147)

24. Seiler, M. J., Aramant, R. B. & Ball, S. L. 1999 Photoceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin. Vis. Res. 39, 2589–2596. (doi:10.1016/S0042-6989(98)00326-5)

25. Seiler, M. J. & Aramant, R. B. 1998 Intact sheets of fetal retina transplanted to restore damaged rat retinas. Invest. Ophthalmol. Vis. Sci. 39, 2121–2131.

26. Zhang, Y., Arner, K., Ehinger, B. & Perez, M. T. 2003 Limitation of anatomical integration between subretinal transplants and the host retina. Invest. Ophthalmol. Vis. Sci. 44, 324–331. (doi:10.1167/iovs.02-0132)

27. Ghosh, F., Johansson, K. & Ehinger, B. 1999 Long-term full-thickness embryonic rabbit retinal transplants. Invest. Ophthalmol. Vis. Sci. 40, 133–142.

28. Seiler, M. J., Thomas, B. B., Chen, Z., Wu, R., Sadda, S. R. & Aramant, R. B. 2008 Retinal transplants restore visual responses: trans-synaptic tracing from visually responsive sites labels transplant neurons. Eur. J. Neurosci. 28, 208–220. (doi:10.1111/j.1460-9586.2008.06279.x)

29. Huang, J. C., Ishida, M., Hersh, P., Sugino, I. K. & Zarbin, M. A. 1998 Preparation and transplantation of photoreceptor sheets. Curr. Eye Res. 17, 573–585. (doi:10.1016/S0271-5908(97)00253-5)

30. Silverman, M. S., Hughes, S. E., Valentino, T. L. & Liu, Y. 1992 Photoreceptor transplantation: anatomic, electrophysiologic, and behavioral evidence for the functional reconstruction of retinas lacking photoreceptors. Exp. Neurol. 115, 87–94. (doi:10.1016/0014-4886(92)90227-H)

31. Gouras, P., Du, J., Kjeldbye, H., Yamamoto, S. & Zack, D. J. 1994 Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest. Ophthalmol. Vis. Sci. 35, 3145–3153.

32. Juliusson, B., Bergstrom, A., Van Veen, T. & Ehinger, B. 1993 Cellular organization in retinal transplants using cell suspensions or fragments of embryonic retinal tissue. Cell Transplant 2, 411–418.

33. Akimoto, M. et al. 2006 Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc. Natl Acad. Sci. USA 103, 3890–3895. (doi:10.1073/pnas.0508214103)

34. del Cerro, M., Ison, J. R., Bowen, G. P., Lazar, E. & del Cerro, C. 1991 Intraretinal grafting restores visual function in light-blinded rats. Neuroreport 2, 529–532. (doi:10.1097/00001756-199109000-00008)

35. Qiu, G., Seiler, M. J., Mui, C., Arai, S., Aramant, R. B., de Juan Jr, E. & Sadda, S. 2005 Photoreceptor differentiation and integration of retinal progenitor cells...
transplanted into transgenic rats. Exp. Eye Res. 80, 515–525. (doi:10.1016/j.exer.2004.11.001)
36 MacLaren, R. E., Pearson, R. A., MacNeil, A., Douglas, R. H., Salt, T. E., Akimoto, M., Swaroop, A., Sowden, J. C. & Ali, R. R. 2006 Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207. (doi:10.1038/nature05161)
37 Pearson, R. A., Barber, A. C., West, E. L., MacLaren, R. E., Duran, Y., Bainbridge, J. W., Sowden, J. C. & Ali, R. R. 2010 Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transplant 19, 487–503. (doi:10.3727/096369009X486057)
38 del Cerro, M., Notter, M. F., Grover, D. A., Olichowa, J., Jiang, L. Q., Wiegand, S. J., Lazar, E. & del Cerro, C. 1989 Retinal transplants for cell replacement in phototoxic retinal degeneration. Prog. Clin. Biol. Res. 314, 673–686.
39 Zucker, C. L., Ehinger, B., Seiler, M., Aramant, R. B. & Adolph, A. R. 1994 Ultrastructural circuitry in retinal cell transplants to rat retina. J. Neuro Transplant Plast 5, 17–29. (doi:10.1155/NP.1994.17)
40 Gouras, P., Du, J., Gelanze, M., Lopez, R., Kwun, R., Kjeldbye, H. & Krebs, W. 1991 Survival and synapse formation of transplanted rat rods. J. Neuro Transplant Plast 2, 91–100. (doi:10.1155/NP.1991.91)
41 Ghosh, F., Bruun, A. & Ehinger, B. 1999 Graft-host connections in long-term full-thickness embryonic rabbit retinal transplants. Invest. Ophthalmol. Vis. Sci. 40, 126–132.
42 Aramant, R. B. & Seiler, M. J. 1995 Fiber and synaptic connections between embryonic retinal transplants and host retina. Exp. Neurol. 133, 244–255. (doi:10.1016/EXNR.1995.1027)
43 Seiler, M. J., Aramant, R. B., Thomas, B. B., Peng, Q., Sadda, S. R. & Keirstead, H. S. 2010 Visual restoration and transplant connectivity in degenerating rats implanted with retinal progenitor sheets. Eur. J. Neurosci. 31, 508–520. (doi:10.1111/j.1460-9582.2010.07085.x)
44 MacLaren, R. E. 1996 Development and role of retinal glia in regeneration of ganglion cells following retinal injury. Br. J. Ophthalmol. 80, 458–464. (doi:10.1136/bjo.80.5.458)
45 Marc, R. E., Jones, B. W., Watt, C. B. & Strettoi, E. 2003 Neuronal remodeling in retinal degeneration. Prog. Retin. Eye Res. 22, 607–655. (doi:10.1016/S1350-9462(03)00039-9)
46 Zhang, Y., Kardaszewska, A. K., Van Veen, T., Rauch, U. & Perez, M. T. R. 2004 Integration between abutting retinas: role of glial structures and associated molecules at the interface. Invest. Ophthalmol. Vis. Sci. 45, 4440–4449. (doi:10.1177/0019224004014509)
47 Kinouchi, R., Takeda, M., Yang, L., Wilhelmsson, U., Lundkvist, A., Pelny, M. & Chen, D. F. 2003 Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat. Neurosci. 6, 863–868. (doi:10.1038/nn1088)
48 Suzuki, T., Mandai, M., Akimoto, M., Yoshimura, N. & Takahashi, M. 2006 The simultaneous treatment of MMP-2 stimulants in retinal transplantation enhances grafted cell migration into the host retina. Stem Cells 24, 2406–2411. (doi:10.1634/stemcells.2005-0587)
49 Kwan, A. S. L., Wang, S. & Lund, R. D. 1999 Photoreceptor layer reconstruction in a rodent model of retinal degeneration. Exp. Neurol. 159, 21–33. (doi:10.1006/exnr.1999.7157)
50 Radner, W., Sadda, S. R., Humayun, M. S., Suzuki, S. & De Juan Jr, E. 2002 Increased spontaneous retinal ganglion cell activity in rd mice after neural retinal transplantation. Invest. Ophthalmol. Vis. Sci. 43, 3053–3058.
51 Klassen, H. J., Ng, T. F., Kurimoto, Y., Kirov, I., Shatos, M., Coffey, P. & Young, M. J. 2004 Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest. Ophthalmol. Vis. Sci. 45, 4167–4173. (doi:10.1167/iovs.04-0411)
52 Hartig, U., Oriyakhel, W., Kenna, P. F., Linke, S., Richard, G., Petrowitz, B., Humphries, P., Farrar, G. J. & Ader, M. 2008 Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp. Eye Res. 86, 691–700. (doi:10.1016/j.exer.2008.01.018)
53 Yao, J., Feathers, K., Khanna, H., Thompson, D., Tsilfidis, C., Hauswirth, W. W., Heckenlively, J. R., Swaroop, A. & Zacks, D. N. 2010 XIAP therapy increases survival of transplanted rod precursors in a degenerating host retina. Invest. Ophthalmol. Vis. Sci. 52, 1567–1572. (doi:10.1167/iovs.10-5998)
54 Humayun, M. S., De Juan Jr, E., Del Cerro, M., Dagnelle, G., Radner, W., Sadda, S. R. & Del Cerro, C. 2000 Human neural retinal transplantation. Invest. Ophthalmol. Vis. Sci. 41, 3100–3106.
55 Del Cerro, M., Humayun, M. S., Sadda, S. R., Cao, J., Hayashi, N., Green, W. R., Del Cerro, C. & De Juan Jr, E. 2000 Histologic correlation of human neural retinal transplantation. Invest. Ophthalmol. Vis. Sci. 41, 3142–3148.
56 Weisz, J. M., Humayun, M. S., De Juan Jr, E. C., Del Cerro, M., Sunness, J. S., Dagnelle, G., Soyu, M., Rizzo, L. & Nussenblatt, R. B. 1999 Allogenic fetal retinal pigment epithelial cell transplant in a patient with geographic atrophy. Retina 19, 540–545. (doi:10.1000/006982-199911000-00011)
57 Thomson, J. A. 1998 Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147. (doi:10.1126/science.282.5391.1145)
58 Reubinoff, B. E., Pera, M. F., Fong, C. Y., Tronson, A. & Bongso, A. 2000 Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404. (doi:10.1038/74447)
59 Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J. & Lanza, R. 2006 Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485. (doi:10.1038/nature05142)
60 Banin, E., Obolensky, A.,Idelson, M., Hemo, I., Reinhardtz, E., Pikarsky, E., Ben-Hur, T. & Reubinoff, B. 2006 Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells 24, 246–257. (doi:10.1634/stemcells.2005-0009)
61 Ikeda, H. et al. 2005 Generation of Rsþ/Pathþ neural retinal precursors from embryonic stem cells. Proc. Natl Acad. Sci. USA 102, 11 331–11 336. (doi:10.1073/pnas.050010102)
62 Osakada, F., Ikeda, H., Mandai, M., Wataya, T., Watanabe, K., Yoshimura, N., Akaiko, A., Sasai, Y. & Takahashi, M. 2008 Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol. 26, 215–224. (doi:10.1038/nbt1384)
63 Lamba, D. A., Karl, M. O., Ware, C. B. & Reh, T. A. 2006 Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 12 769–12 774. (doi:10.1073/pnas.0601990103)
64 Lamba, D. A., Gust, J. & Reh, T. A. 2009 Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Cx3-deficient mice. Cell Stem Cell 4, 73–79. (doi:10.1016/j.stem.2008.10.015)
65 Gust, J. & Reh, T. A. 2011 Adult donor rod photoreceptors integrate into the mature mouse retina. Invest. Ophthalmol. Vis. Sci. 52, 5266–5272. (doi:10.1167/iovs.10-6329)

66 Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T. & Sasai, Y. 2011 Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 31–56. (doi:10.1038/nature09941)

67 Takahashi, K. & Yamanaka, S. 2006 Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676. (doi:10.1016/j.cell.2006.07.024)

68 Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. & Yamanaka, S. 2007 Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872. (doi:10.1016/j.cell.2007.11.019)

69 Yu, J. et al. 2007 Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920. (doi:10.1126/science.1151526)

70 Dimos, J. T. et al. 2008 Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221. (doi:10.1126/science.1158799)

71 Park, I. H. et al. 2008 Disease-specific induced pluripotent stem cells. Cell 134, 877–886. (doi:10.1016/j.cell.2008.07.041)

72 Wernig, M. et al. 2008 Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl Acad. Sci. USA 105, 5856–5861. (doi:10.1073/pnas.0801677105)

73 Hu, B.-Y., Weick, J. P., Yu, J., Ma, L.-X., Zhang, X.-Q., Thomson, J. A. & Zhang, C. 2010 Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl Acad. Sci. USA 107, 4335–4340. (doi:10.1073/pnas.090012107)

74 Nakagawa, M. et al. 2008 Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106. (doi:10.1038/nbt1374)

75 Junying, Y., Kejin, H., Kim, S. O., Shulan, T., Stewart, R., Shulvin, I. I. & Thomson, J. A. 2009 Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801. (doi:10.1126/science.1174282)

76 Meyer, J. S., Shearer, R. L., Capowski, E. E., Wright, L. S., Wallace, K. A., McMillan, E. L., Zhang, S. C. & Gamm, D. M. 2009 Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 106, 16698–16703. (doi:10.1073/pnas.0905245106)

77 Osakada, F., Ikeda, H., Sasai, Y. & Takahashi, M. 2009 Stepwise differentiation of pluripotent stem cells into retinal cells. Nat. Protoc. 4, 811–824. (doi:10.1038/nprot.2009.51)

78 Parameswaran, S., Balasubramanian, S., Babai, N., Qiu, F., Eudy, J. D., Thoreson, W. B. & Ahmad, I. 2010 Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration. Stem Cells 28, 695–703. (doi:10.1002/stem.320)

79 Hirami, Y., Osakada, F., Takahashi, K., Okita, K., Yamanaka, S., Ikeda, H., Yoshimura, N. & Takahashi, M. 2009 Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett. 458, 126–131. (doi:10.1016/j.neulet.2009.04.035)

80 Osakada, F., Jin, Z.-B., Hiramy, Y., Ikeda, H., Danjyo, T., Watanabe, K., Sasai, Y. & Takahashi, M. 2009 In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci. 122, 3169–3179. (doi:10.1242/jcs.050393)

81 Wang, S., Lu, B., Girman, S., Holmes, T., Bischoff, N. & Lund, R. D. 2008 Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration. Invest. Ophthalmol. Vis. Sci. 49, 416–421. (doi:10.1167/iovs.07-0992)

82 Algvere, P. V., Berglin, L., Gouras, P. & Sheng, Y. 1994 Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefe’s Arch. Clin. Exp. Ophthalmol. 232, 707–716. (doi:10.1007/BF00184273)

83 Algvere, P. V., Berglin, L., Gouras, P., Sheng, Y. & Kopp, E. D. 1997 Transplantation of RPE in age-related macular degeneration: observations in disciform lesions and dry RPE atrophy. Graefe’s Arch. Clin. Exp. Ophthalmol. 235, 149–158. (doi:10.1007/BF00941722)

84 Van Meurs, J. C. & Van Den Biesen, P. R. 2003 Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am. J. Ophthalmol. 136, 688–695. (doi:10.1016/S0002-9394(03)00384-2)

85 MacLaren, R. E. et al. 2007 Autologous transplantation of the retinal pigment epithelium and choroid in the treatment of neovascular age-related macular degeneration. Ophthalmology 114, 561–570. (doi:10.1016/j.ophtha.2006.04.049)

86 Klimanskaya, I., Hipp, J., Rezai, K. A., West, M., Atala, A. & Lanza, R. 2004 Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6, 217–245.

87 Kawasaki, H. et al. 2002 Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc. Natl Acad. Sci. USA 99, 1580–1585. (doi:10.1073/pnas.032662199)

88 Haruta, M. et al. 2004 In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest. Ophthalmol. Vis. Sci. 45, 1020–1025. (doi:10.1167/iovs.03-1034)

89 Idelson, M. et al. 2009 Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5, 396–408. (doi:10.1016/j.stem.2009.07.002)

90 Lund, R. D. et al. 2006 Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8, 189–199. (doi:10.1089/clo.2006.8.189)

91 Vugler, A. et al. 2008 Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp. Neurol. 214, 347–361. (doi:10.1016/j.expneurol.2008.09.007)

92 Carr, A. J. et al. 2009 Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4, e8152. (doi:10.1371/journal.pone.0008152)

93 Lu, B., Malcuti, C., Wang, S., Girman, S., Francis, P., Lemieux, L., Lanza, R. & Lund, R. 2009 Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27, 2126–2135. (doi:10.1002/stem.149)