Appendix to:
EFSA (European Food Safety Authority), 2016. Conclusion on the peer review of the pesticide risk assessment of the active substance thiophanate-methyl. EFSA Journal 2018;16(1):5133, 123 pp. doi:10.2903/j.efsa.2018.5133
© European Food Safety Authority, 2018

Section 1 Identity, Physical and Chemical Properties, Details of Uses, Further Information, Methods of Analysis

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Thiophanate-methyl
Function (e.g. fungicide)	Fungicide

Rapporteur Member State
Sweden

Co-rapporteur Member State
Finland

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	dimethyl 4,4'- (o-phenylene)bis(3-thioallophanate)
Chemical name (CA)	dimethyl N,N'-[1,2-phenylenebis(iminocarbonothioyl)]bis[carbamate]

CIPAC No
262

CAS No
23564-05-8
245-740-7

EC No (EINECS or ELINCS)
262/TC/S/F (1993) published in AGP:CP/331, 1995
2.2 Thiophanate-methyl (262/TC/M/3, CIPAC D, p.163). The thiophanate-methyl content shall be declared (not less than 950 g/kg).

IMPURITIES
2,3-diaminophenazine maximum: 0.0005 g/kg of the thiophanate-methyl content found under 2.2.
2-amino-3-hydroxyphenazine maximum: 0.0005 g/kg of the thiophanate-methyl content found under 2.2.

Minimum purity of the active substance as manufactured
950 g/kg

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured
DAP: 0.50 mg/kg
HAP: 0.50 mg/kg
Carbendazim: 0.9 g/kg

Molecular formula
C$_{12}$H$_{14}$N$_{4}$O$_{4}$S$_{2}$

Molar mass
342.40 g/mol

Structural formula

![Structural formula of thiophanate-methyl]
Physical and chemical properties (Regulation (EU) No 283/2013, Annex Part A, point 2)

Property	Value				
Melting point (state purity)	165°C (99.88%)				
Boiling point (state purity)	Decomposition before boiling (99.88%)				
Temperature of decomposition (state purity)	Decomposition before melting (99.88%)				
Appearance (state purity)	Pale brown powder (technical 97%)				
Vapour pressure (state temperature, state purity)	< 9 × 10⁻⁶ Pa at °C (20°C, 99.9%)				
Henry’s law constant (state temperature)	1.67 × 10⁻³ Pa m² mol⁻¹ (20°C)				
Solubility in water (state temperature, state purity and pH)	22.4 mg/L at 20°C (pH 4, phthalate buffer) (98.23%)				
	21.1 mg/L at 20°C (pH 5, phthalate buffer) (98.23%)				
	20.7 mg/L at 20°C (pH 6, phosphate buffer) (98.23%)				
	18.5 mg/L at 20°C (pH 7, phosphate buffer) (98.23%)				
	16.8 mg/L at 20°C (pH 7.5, phosphate buffer) (98.23%)				
	unstable at pH > 8 at 20°C (98.23%)				
	24.6 mg/L at 25°C (pH 6.3 distilled, pH 6.3 saturated) (>99%)				
	21.8 mg/L at 25°C (pH 5.1 distilled, pH 5.2 saturated) (99%)				
Surface tension (state concentration and temperature, state purity)	72.2 mN/m at 20°C (16 mg/L, 86% of the saturation solubility of this technical batch, purity: 97.28%)				
Partition coefficient (state temperature, pH and purity)	log P_{OW} = 1.40 at 25°C distilled water, pH was not reported (99.88%)				
	log P_{OW} = 1.41 at pH 4 at 25°C (phthalate buffer) (98.23%)				
	log P_{OW} = 1.45 at pH 5 (phthalate buffer) (98.23%)				
	log P_{OW} = 1.47 at pH 6 (phthalate buffer) (98.23%)				
Dissociation constant (state purity)	pKₐ = 7.28 at 25°C (>99%)				
UV/VIS absorption (max.) incl. ε (state purity, pH)	State	Absorption Maxima at band width [nm]	Extinction	Extinction coefficient ε [l * mol⁻¹ * cm⁻¹]	Log ε
neutral	269.0	0.6447	20606.69	4.31	
	215.0	0.9264	29610.73	4.47	
acidic	290.0	0.4054	12957.89	4.11	
	268.0	0.5754	18391.64	4.26	
	207.0	0.9416	30096.57	4.48	
	290.0	0.3359	10736.45	4.03	
basic*	252.0	0.6836	21850.06	4.34	
	218.0	0.8200	26209.84	4.42	
	290.0	0.2962	9467.51	3.98	

* Thiophanate-methyl is unstable at basic condition. The spectrum at pH 10 might be of the decomposition products of thiophanate-methyl

Property	Value
Flammability (state purity)	Not highly flammable (98.23%)
Explosive properties (state purity)	Not explosive (97.9%)
Oxidising properties (state purity)	Not oxidising (97.9%)
Summary of representative uses evaluated, for which all risk assessments needed to be completed (Thiophanate-methyl) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country	Product name	F, G or I (b)	Pests or Group of pests controlled (c)	Formulation type (d-f)	conc. of as (g/L) (i)	Application method kind (f-h)	growth stage & season (j)	number min-max a) per use b) per crop/season (k)	interval between applications (min days)	Application rate per treatment (l)	PHI (days) (l)	Remarks: (m)	
Wine grapes	CEZ	Topsin M 500 SC	F	Botrytis	SC	500	Spraying	BBCH 57 - 81	a) 1 b) 1	Not relevant	0.22	500	a) 1.1 b) 1.1	35
Wine grapes	SEZ	Topsin M 500 SC	F	Botrytis	SC	500	Spraying	BBCH 57 - 81	a) 1 b) 1	Not relevant	0.11	1000	a) 1.1 b) 1.1	35
Tomato, aubergine	CEZ, SEZ	Topsin M 500 SC	G	Fusarium Verticilium Rhizoctonia	SC	500	Drip irrigation	First appl. 60 – 80 days before BBCH 32; 71; 85 or 15 days after transplantation	a) 3 b) 3	30 – 40	Not relevant n.r.	a) 0.70; 1.4; 2.3 b) 0.7+1.4+2.3=4.4 (in sequence)	7	Typical watering rates 30-200 hl/ha (0.0035 – 0.077 kg a.s./hl based on min and max appl. rates 0.7 and 2.3 kg a.s./ha, respectively. Greenhouse use in tomato /aubergine covers permanent glasshouses as well as open protected structures.
Tomato, aubergine	SEZ	Topsin M 500 SC	F	Fusarium Verticilium Rhizoctonia	SC	500	Drip irrigation	First appl. 60 – 80 days before BBCH	a) 3 b) 3	30 – 40	Not relevant n.r.	a) 0.70; 1.4; 2.1 b) 0.7+1.4+2.1=4.2	7	Typical watering rates 30-200
Crop and/or situation (a)	Member State or Country	Product name	F, G or I (b)	Pests or Group of pests controlled (c)	Formulation type (d-f)	conc. of as (g/L) (i)	Application method kind (f-h)	growth stage & season (j)	number min-max a) per use b) per crop/season (k)	interval between applications (min days)	Application rate per treatment kg as/hL min-max	water L/ha min-max kg as/ha a) max. rate per appl. b) max. total rate per crop/season	PHI (days) (l)	Remarks: (m)
--------------------------	------------------------	--------------	--------------	--------------------------------------	-----------------------	-----------------------	----------------------------	------------------------	---	---------------------------------	---	---	----------------------	------------------------
Leek	CEZ	Toppin M 500 SC	F	Soil fungi except oomycetes	SC	500	Drenching	Just after plantation. BBCH 12-15	a) 1 b) 1	Not relevant	0.03	13000	a) 4.15 b) 4.15	120
Fresh beans with pods	SEZ	Toppin M 500 SC	F	Colletotrichum (Anthracnosis) Rust/Oidium	SC	500	Spraying	BBCH 61-71	a) 2 b) 2	14	0.25	300	a) 0.750 b) 1.5	14
Fresh beans with pods	CEZ	Toppin M 500 SC	F	Colletotrichum (Anthracnosis) Rust/Oidium	SC	500	Spraying	BBCH 61-71	a) 2 b) 2	14	0.25	300	a) 0.750 b) 1.5	14
Winter wheat, durum wheat	CEZ, SEZ	Toppin M 500 SC	F	Fusarium	SC	500	Spraying	BBCH 59 - 70	a) 1 b) 1	Not relevant	0.21	350	a) 0.750 b) 0.750	n.r.*

*not relevant

Remarks: (a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure) (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I) (c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR) (e) GCPF Codes - GIFAP Technical Monograph No 2, 1989 (f) All abbreviations used must be explained (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench (h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants. (j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application (k) Indicate the minimum and maximum number of application possible under practical conditions of use (l) PHI – minimum pre-harvest interval
Remarks may include: Extent of use/economic importance/restrictions
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (Thiophanate-methyl)

Regulation (EC) No 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation Type (d-f)	Conc. a.s. (g)	Application method kind (f-h)	Range of growth stages & season (j)	Number min-max (k)	Interval between application (min)	Application rate per treatment kg a.s./ha. min-max (l)	Water L/ha min-max (l)	kg a.s./ha min-max (l)	PHI (days) (m)	Remarks
MRL Application (according to Article 8.1(g) of Regulation (EC) No 1107/2009)	None														

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997. Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)
The representative uses GAPs are supported by the available data.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)
No adverse effects on field crops are reported.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)
Not reported

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism	Carbendazim	CM-0237
Leaching to groundwater not expected. Compared to the parent compound carbendazim is considered to have equal or higher activity against target organisms	Leaching to groundwater not expected. No data on biological activity against target organisms available, and not required.	
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	HPLC-UV
Impurities in technical a.s. (analytical technique)	HPLC-UV, GC-FID, Karl Fischer, IC conductivity detector, LC-PDA-MS/MS and LC-MS
Plant protection product (analytical technique)	HPLC-UV

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Food of plant origin	Thiophanate-methyl and carbendazim
Food of animal origin	Could not be established: Data gap
Soil	Thiophanate-methyl and carbendazim
Sediment	Thiophanate-methyl and carbendazim
Water surface	Thiophanate-methyl and carbendazim
Drinking/ground	Thiophanate-methyl and carbendazim
Air	Thiophanate-methyl
Body fluids and tissues	Urine: 5-OH-carbendazim-S
	Blood and plasma: thiophanate-methyl, carbendazim and 5-hydroxy-carbendazim

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	HPLC-MS/MS (QuEChERS)
	0.01 mg/kg thiophanate-methyl and carbendazim (high water content, high acid content, high oil content and dry crop matrices)
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	HPLC-MS/MS (QuEChERS)
	0.01 mg/kg thiophanate-methyl and carbendazim
	0.01 mg/kg 5-hydroxy-carbendazim
	0.01 mg/kg 5-hydroxy-carbendazim-S (in milk, egg, muscle, liver and fat)
Soil (analytical technique and LOQ)	HPLC-UV and HPLC-MS
	0.04 mg/kg thiophanate-methyl
	0.02 mg/kg carbendazim
Water (analytical technique and LOQ)	HPLC-MS/MS
	0.05 µg/L thiophanate-methyl and carbendazim
Air (analytical technique and LOQ)	HPLC-MS/MS
	20 µg/m³ thiophanate-methyl, data gap for additioanal data for LOQ =12 µg/m³
	4 µg/m³ carbendazim
Body fluids and tissues (analytical technique and LOQ)	Body tissues:
	HPLC-MS/MS (QuEChERS)
	0.01 mg/kg thiophanate-methyl
	0.01 mg/kg carbendazim
	Body body fluids (blood, urine):
	HPLC-MS/MS (modified QuEChERS)
	0.05 mg/kg thiophanate-methyl
	0.05 mg/kg carbendazim
	Data gap: 5-hydroxy-carbendazim-S for urine
	5-hydroxy-carbendazim for blood and plasma

Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

| Substance | Thiophanate-methyl |
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:

	Harmonised classification according to Regulation (EC) No 1272/2008:
	No classification

Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:

| | No classification

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	Rapidly absorbed. Oral bioavailability; 88-89 % within 48 h (based on urine, bile, carcass and tissues, single administration of 14 mg/kg bw in rats). Indications of lower relative absorption at a higher dose level (170 mg/kg bw)
Toxicokinetics	Following administration of 14 mg/kg bw in rats: Plasma, males: $C_{\text{max}} = 4.7$ 5.4 μg eq/g, $T_{\text{max}} = 2$ hours, $T_{1/2} = 8.87$ hours (plasma), $AUC_{\text{inf}} = 52.0$ μg h/g. Plasma, females: $C_{\text{max}} = 5.9$ μg eq/g, $T_{\text{max}} = 2$ hours, $T_{1/2} = 8.9$ hours, $AUC_{\text{inf}} = 56$ μg h/g.
Distribution	Widely distributed. Highest residue levels found in liver, thyroid and kidney (rat) and GI-tract, liver and kidney (mice)
Potential for bioaccumulation	No evidence for accumulation.
Rate and extent of excretion	Rapid and extensive: approx. 96 % within 48 h following administration of 14 mg/kg bw in rats, mainly via urine (47 %) and bile (40 %). 7 % excreted via faeces. Indications of a shift towards faecal excretion at higher dose (170 mg/kg bw).
Metabolism in animals	Extensively metabolised (>72-88 %); main metabolite 5-hydroxy-carbendazim-S (5-OH-MBC-S)
In vitro metabolism	Comparative in vitro metabolism study in rat and human liver microsomes. Metabolites 4-hydroxy-thiophanate-methyl (4-OH-TM), Carbendazim (MBC) and 5-hydroxy-Carbendazim (5-OH-MBC) were detected in microsome preparations from both species. Metabolites unique for humans were not observed.
Toxicologically relevant compounds (animals and plants)	Thiophanate-methyl and Carbendazim (MBC)
Toxicologically relevant compounds (environment)	Thiophanate-methyl and Carbendazim (MBC)

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD$_{50}$ oral	> 5000 mg/kg bw
Rat LD$_{50}$ dermal	> 2000 mg/kg bw
Rat LC$_{50}$ inhalation	1.7 mg/L air/4h (whole body)
Skin irritation	Non-irritant
Eye irritation	Non-irritant
Skin sensitisation	Sensitising (GPMT)
Phototoxicity	Not phototoxic

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

Target organ / critical effect	Rat: liver (increased weight, hypertrophy), thyroid
STOT	
(increased weight, follicular cell hypertrophy and hyperplasia, increased T3), kidney (weight increase, tubular lesions), slight anaemia

Dog: thyroid toxicity (increased weight)

Relevant oral NOAEL

90-day rat: LOAEL = 14 mg/kg bw per day
1-year, dog: LOAEL = 8 mg/kg bw per day

Relevant dermal NOAEL

21-day, rabbit: 1000 mg/kg bw per day

Relevant inhalation NOAEL

No data - not required

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies

- Ames test (OECD 471): Negative
- Mammalian Cell Gene Mutation Test (OECD 476): Negative
- Mammalian Chromosome Aberration Test: Negative
- Unscheduled DNA Repair Synthesis (OECD 482): Negative
- Micronucleus test (Human peripheral lymphocytes): Negative (-S9), positive (+S9)
- Micronucleus test, Examination of four chromosomes: Positive (+S9)

In vivo studies

- Micronucleus test (OECD 474): Positive
- Combined comet assay, micronucleus, chromosome aberration in lizard*: Positive
- Spermatogonial chromosome aberration*: Negative
- Micronucleus test in germ cells*: Negative

Photomutagenicity

Based on the negative outcome in the phototoxicity study, thiophanate-methyl was not tested for photomutagenicity.

Potential for genotoxicity

Aneugenic and clastogenic potential

*Mutagenic potential

*Studies considered of low reliability

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)

Rat: liver, kidney and thyroid (follicular hypertrophy, hyperplasia, adenomas).
Mouse: liver hepatocellular centrilobular hypertrophy and follicular cell adenomas (males only)

Relevant long-term NOAEL

2-year, rat: 8.8 mg/kg bw per day
18-month, mouse: 28.7 mg/kg bw per day

Carcinogenicity (target organ, tumour type)

Rat: Thyroid follicular cell hyperplasia and hypertrophy. Benign liver tumours follicular cell adenomas (males only)
Mouse: hepatocellular adenomas

Relevant NOAEL for carcinogenicity

2-year, rat: 8.8 mg/kg bw per day;
18-month, mouse: 98.6 mg/kg bw per day

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect	Parental toxicity: increased thyroid and liver weights, histopathological changes in the thyroid and liver, reduced bw	Reproductive toxicity: no adverse effect observed in rat 2-generation study	Offspring’s toxicity: reduced bw
Relevant parental NOAEL	LOAEL = 14.6 mg/kg bw per day		
Relevant reproductive NOAEL	147 mg/kg bw per day (the highest dose tested)		
Relevant offspring NOAEL	14.6 mg/kg bw per day		

Developmental toxicity

Developmental target / critical effect	Rat:	Maternal toxicity: reduced adjusted bw gain	Developmental toxicity: no adverse effects
	Rabbit:	Maternal toxicity: ↓ bw and food consumption, abortions	Developmental toxicity: supernumerary thoracic ribs
Relevant maternal NOAEL	Rat: 1000 mg/kg bw per day		
	Rabbit: 2 mg/kg bw per day		
Relevant developmental NOAEL	Rat: 1000 mg/kg bw per day		
	Rabbit: 2 mg/kg bw per day		

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity

| NOAEL = 2000 mg/kg bw (for both generalised systemic toxicity and neurotoxicity) |

Repeated neurotoxicity

| NOAEL\textsubscript{neurotox} = 150 mg/kg bw per day |
| NOAEL\textsubscript{general tox} = 30.3 mg/kg bw; based on ↓ bw/bw gain and food consumption and ↑ liver and thyroid weights at 150/166 mg/kg bw per day. |

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)

| Study not required |
Other toxicological studies (Regulation (EU) No 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance	Mechanistic study:
Results indicate that the hypertrophy of the thyroid and the TSH response are counteracted by T4 supplementation supporting effects being due to a negative feedback mechanism. Data also indicate induction of cytochrome P450 and related drug metabolising enzymes including UDPGT. However, as T4 supplementation did not influence liver weight and as the pattern differed from phenobarbital, the increased UDPGT does not seem to be the sole explanation for the thyroid effects observed. The results indicated an inhibition of thyroid peroxidase in swine thyroids which seems to be the principal reason for the T4 depression.	

| Immunotoxicity: |
| No immunotoxic effects were detected in the standard toxicity testing; these investigations are not considered sufficient to predict immunotoxicity (such as suppression of immune response) (data gap). |

| Endocrine disrupting properties |
| Effects on the thyroid (hypertrophy, hyperplasia, weight increase and effects on hormones) are seen in rats and dogs (with minor effects in mouse) in several studies. These effects are probably due to TPO-inhibition in combination with hepatic clearance via UDPGT. The effects are considered to be adverse and relevant to humans. Although the interim criteria are not met, thiophanate-methyl is considered to be an endocrine disruptor. |

| A published study, considered to provide supportive information, investigated effects of in utero exposure to thiophanate-methyl on adrenal and thyroid histology and histomorphometry. The results support a possible, even though weak, effect of thiophanate-methyl on endocrine homeostasis and, in particular, the potential to elicit subtle effects on the development of endocrine tissues. Developmental landmarks were somewhat delayed and histology revealed an increase of cell alterations in both thyroid and adrenals, not associated with modifications of the microscopic structure. The effects persisted at least until weaning. |

Studies performed on metabolites or impurities	Carbendazim:
Refer to EFSA Conclusion (2010)	

| CM-0237: | Acute toxicity (OECD 401): LD$_{50}$ > 2000 mg/kg bw |
| Genotoxicity: Ames’s test (OECD 471): negative |

| DX-105: | Acute toxicity (OECD 401): LD$_{50}$ > 5000 mg/kg bw |
| Further data required |

| DX-189: | Acute toxicity (OECD 401): LD$_{50}$ > 5000 mg/kg bw |

| FH-613: | Acute toxicity (OECD 401): LD$_{50}$, M: 1776 mg/kg bw, F: 2007 |
mg/kg bw/day

FH-73:
Genotoxicity: Ames’s test (OECD 471): negative

4-OH-TM:
Genotoxicity: In vivo micronucleus: negative (low reliability)

5-OH-MBC:
Genotoxicity: In vivo micronucleus: negative (low reliability)

4-OH-TM, 5-hydroxy-carbendazim (5-OH-MBC), FH-432, FH-73, AV-1951, DX-105, 2-AB, 4-OH-2-AB, 4-OH-TM conj, 5-OH-carbendazim - S (5-OH-MBC):
Genotoxicity: QSAR analyses according to OECD QSAR Toolbox, Vega in silico platform and DEREK Nexus. Concern for all metabolites identified, however, not a higher concern than for the parent.

Carcinogenicity: A concern cannot be excluded for metabolites 5-OH-MBC, FH-73 and 5-OH-MBC-S.

2-AB and FH-432:
No sufficient data – data required

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)
Thiophanate-methyl has been commercially produced since 1969. No adverse effects associated with the production of thiophanate-methyl have been reported.

Summary3 (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)

Value (mg/kg bw (per day))	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	Not established, due to genotoxic concern (1)	
Acute Reference Dose (ARfD)	Not established, due to genotoxic concern (2)	
Acceptable Operator Exposure Level (AOEL)	Not established, due to genotoxic concern (3)	
Acute Acceptable Operator Exposure Level (AAOEL)	Not established, due to genotoxic concern	-

(1) previously set ADI 0.08 mg/kg bw per day, based on 1-y dog study supported by 2-y rat study (European Commission, 2005)
(2) previously set ARfD 0.2 mg/kg bw, based on developmental toxicity study, rabbit (European Commission, 2005)
(3) previously set AOEL 0.08 mg/kg bw per day, based on 1-year dog study (European Commission, 2005)

3 If available include also reference values for metabolites
*NOTE! For dietary risk assessment of thiophanate-methyl as well as the risk assessment of workers and residents, the reference values for carbendazim (from EFSA Conclusion, 2010) should be used:

Carbendazim:

Study	Value (mg/kg bw (per day))	Uncertainty factor
Acceptable Daily Intake (ADI)*	0.02	100
Acute Reference Dose (ARfD)*	0.02	100
Acceptable Operator Exposure Level (AOEL)*	0.02	100
Acute Acceptable Operator Exposure Level (AAOEL)	0.02	100

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (Topsin M 500 SC, a suspension concentrate (SC) formulation containing 500 g/L thiophanate-methyl)

Study	Value
Rat in vivo study	
3% for the neat formulation (500 g/L)	
8% for the spray dilution (0.3 g a.s./L)	

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators	Study	Value
No exposure calculations have been presented as no AOEL could be derived for thiophanate-methyl.		
Workers	Study	Value
No exposure calculations have been presented as no AOEL could be derived for thiophanate-methyl.		

Exposure to Carbendazim: % of AOEL

Use: Wine grapes, application rate 0.614 kg a.s./ha

- No PPE: 1240 %
- No PPE, re-entry after 30 days: 620 %

 (DT50=30 days, PHI=35 days)

Use: Fresh beans with pods, application rate 2 x 0.419 kg a.s./ha

- No PPE (with workwear): 361 %
- PPE (with workwear and gloves): 84 %

Use: Winter wheat, durum wheat, application rate 0.419 kg a.s./ha

- No PPE (with workwear): 29 %
Bystanders and residents

	% of AOEL
Exposure to Thiophanate-methyl:	
No exposure calculations have been presented as no AOEL could be derived for thiophanate-methyl.	
Exposure to Carbendazim:	
Residents:	
German bystander and resident model	
Adult	1.84%
Child	3.76%
High Crop Tractor-Mounted (vehicle-mounted drift reduction must be used):	
Adults	40%
Child	76%
High Crop Hand-held (EFSA calculator):	
Adult	56%
Child	106%

Classification with regard to toxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance:	Thiophanate-methyl
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]⁴:	Skin Sens. 1, H317 “May cause an allergic skin reaction”
Acute Tox. 4, H332 “Harmful if inhaled”	
Muta. 2, H341 “Suspected of causing genetic defects”	
Skin Sens. 1, H317 “May cause an allergic skin reaction”	
Acute Tox. 4, H332 “Harmful if inhaled”	
Muta. 1B, H340 “May cause genetic defects”	
Carc. 2, H351 “suspected of causing cancer”	
STOT RE 2, H373 “May cause damage to organs through prolonged or repeated exposure”	
Peer review proposal⁵ for harmonised classification according to Regulation (EC) No 1272/2008:	

⁴ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

⁵ It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Section 3 Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops	Crop groups	Crop(s)	Application(s)	DAT (days)
Fruit crops	Apples	Foliar, 3 (3.9 kg a.s./ha), maturation stage	1, 7	
	Grapes	Foliar, 1 (1.042 kg a.s./ha), 35 days before crop maturity	0, 14, 35	
Root crops	Sugar beet	Foliar, 3 (0.39 kg a.s./ha)	21	
Leafy crops				
Cereals/grass crops				
Pulses/Oilseeds	Soya beans	Run-off, 1 (700 mg a.s./l), 14 days before harvest	7, 14	
	Green bean	Run off (assumed), 1 (50 mg/L, 14 days before harvest	14	
	Lima beans	Foliar, 2 (1.18 kg a.s./ha), BBCH 63-65 (supportive, not acceptable as a standalone study)	28	
Miscellaneous				

Rotational crops	Crop groups	Crop(s)	PBI (days)	Comments	
Root/tuber crops	Carrots	30, 120, 365	1x1.6 kg a.s./ha on bare soil, underdosed (0.4 N with regard to PEC soil for most critical GAP)		
Leafy crops	Lettuce	30, 120, 365			
Cereal (small grain)	Wheat	30, 120, 365			
Other					

Processed commodities

Conditions

- 20 min, 90°C, pH 4 101.2%
- 60 min, 100°C, pH 5 85.4%
- 20 min, 120°C, pH 6 92.0%

Conditions	Thiophanate-methyl	Carbendazim	2-AB
	101.2%	-	-
	85.4%	14.2%	10.3%
	92.0%		

Residue pattern in processed commodities similar to residue pattern in raw commodities?

Yes, the residue definitions proposed for raw commodities are also applicable to processed commodities. A standard hydrolysis study with the major metabolite carbendazim should exclude the formation of further significant compounds (data gap).

Conversion factor (monitoring to risk assessment)

Pending final expression of the RD.

Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	2.9-3.5	10	N rate pending
Residues in succeeding crops (Regulation (EU) No 283/2013, Annex Part A, point 6.6.2)

Study Type	Details
Confined rotational crop study	The study is not representative of worst case conditions as the applied dose (0.4 N) does not cover the PEC soil for the critical GAPs for the renewal and therefore quantitative conclusions are not possible.
Field rotational crop study	Not considered as sufficiently reliable since only thiophanate-methyl and carbendazim were analysed and metabolites in the residue definition were not determined. Moreover the storage stability of residues in samples of cereal straw, spinach, carrot was not demonstrated by the storage stability data (data gap).

Time needed to reach a plateau concentration in milk and eggs (days)

Animal	Time Needed
Goat/Cow	1.15-1.19
Pig	
Fish	

Animal residue definition for monitoring (RD-Mo)

- **OECD Guidance, series on pesticides No 31**
- **No proposal due to uncertainties regarding the most suitable/relevant compound to be monitored** (data gaps).

Animal residue definition for risk assessment (RD-RA)

- **Based on study with thiophanate-methyl**:
 - **Ruminants**: thiophanate methyl; carbendazim; 4-OH-MBC, 5-OH-MBC, 5-OH-MBC-S, final expression of the RD pending (data gap)
 - **Poultry**: thiophanate methyl; carbendazim; 4-OH-TM conjugates, 5-OH-MBC, 5-OH-MBC-S; final expression of the RD pending (data gap)

For finalisation of the RD, information should be provided also with regard to carbendazim metabolism in livestock and on the potential behaviour of FH-432 and DX-105 in livestock (data gaps).

Conversion factor (monitoring to risk assessment)

Pending finalisation of residue definitions.

Metabolism in rat and ruminant similar (Yes/No)

- **Yes**

Fat soluble residues (Yes/No) (FAO, 2009)

- **No**
Stability of residues (Regulation (EU) No 283/2013, Annex Part A, point 6.1)
OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Month/Year)	
			Thiophanate-methyl	Carbendazim
High water content		-	-	
High oil content	Oilseed (OSR seed, intact)	<-18	12 months	12 months
	Oilseed (OSR seed, homogenised)	<-18	1 month	3 months
High protein content	Pulses (Dry peas, intact)	<-18	12 months	12 months
	Pulses (Dry peas, homogenised)	<-18	3 months	3 months
High starch content	Cereal grain (Wheat, intact)	<-18	12 months	12 months
	Cereal grain (Wheat, homogenised)	<-18	2 weeks	3 months
High acid content	Berries (Strawberries, intact)	<-18	9 months	12 months
	Grapes (intact)	<-18	12 months	12 months
	Grapes (homogenised)	<-18	<10 days	1 month

Homogenisation of samples lead to a drastically reduced storage stability as indicated by the information above. Acceptable studies in relevant high water content commodities, root and tuber vegetables and in cereal straw are required (data gap). Conditions of preparation and storage of the residue samples for storage stability tests should be comparable to the conditions applied to the field trial samples.

Animal	Animal commodity	T (°C)	Stability (Month/Year)			
			Thiophanate-methyl	Carbendazim	5-OH-MBC	5-OH-MBC-S
Dairy cattle	Muscle	-20 ± 10	8 months	8 months	-	-
	Liver	-20 ± 10	-	7 months	7 months	-
	Milk	-20 ± 10	-	8 months	-	8 months
Laying hens	Muscle	-25 ca.	-	8 months	8 months	-
	Liver	-25 ca.	8 months	-	8 months	-
	Egg	-25 ca.	9 months	10 months	10 months	

Data for 4-OH-MBC are still required. (data gap)
Summary of residues data from the supervised residue trials (Regulation (EU) No 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

- Note: The residue trials were not performed in accordance with the proposed residue definition for risk assessment and reflect only data relevant for MRL setting. Further data in line with the residue definition for risk assessment should be generated for all representative uses to facilitate the establishment of appropriate conversion factors for the concerned commodities (data gap)

Crop	Region/Indoor	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (h)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Thiophanate-methyl						
Wine grapes	NEU + SEU	<0.01, 2x0.01, 2x0.02, 0.03, 3x0.04, 0.05, 2x0.06, 0.08, 0.13, 0.21, 0.27, 0.53, 1.07, 1.08, 2.11	The residue results are merged (NEU 11 and SEU 9) as they refer to the same GAP and are not significantly different.	3.0	2.11	0.06
Tomatoes	SEU outdoor	#2x<0.020, 2x<0.01	# Trials in italic are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap) Calculated MRL: 0.02* mg/kg Extrapolated to aubergines	pending	pending	pending
Indoor	#5x<0.020		# Trials in italic are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap) Calculated MRL: 0.02* mg/kg Extrapolated to aubergines	pending	pending	pending
Fresh beans with pods	NEU + SEU	# 18x<0.01, 4x0.01, 0.02, 0.03, 0.05, 0.07	# Trials in italic are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap) The residue results are merged (NEU 13 and SEU 13) as they refer to the same GAP and are not significantly different. Calculated MRL: 0.08 mg/kg	pending	pending	pending
Leek	NEU	#4x<0.01, 4x<0.02	# Trials in italic are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap) Calculated MRL: 0.02* mg/kg	pending	pending	pending
Wheat grain	NEU + SEU	8x<0.01, 0.01, 0.02	The residue results are merged (NEU 6 and SEU 4) as they refer to the same GAP and are not significantly different.	pending	pending	pending
Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg) (c)	HR (mg/kg) (c)	STMR (mg/kg) (d)
-----------------------	-------------------	---	--	--------------------------	----------------	----------------
		A complete data set requires 8 trials in NEU and 8 trials in SEU (data gap)				
Wheat straw	NEU + SEU	#3x<0.01, 0.08, 0.14, 0.20, 0.24, 0.31, 1.04, 1.63	# Trials in italic are acceptable only when storage stability for cereal straw is demonstrated under the conditions and for the period the samples were stored in the trials (data gap) The residue results are merged (NEU 6 and SEU 4) as they refer to the same GAP and are not significantly different. A complete data set requires 8 trials in NEU and 8 trials in SEU (data gap)	n/a	pending	pending
Carbendazim						
Wine grapes	NEU + SEU	2x0.05, 3x0.08, 0.09, 3x0.10, 0.11, 0.13, 0.14, 0.15, 0.18, 0.25, 2x0.29, 0.15, 0.53, 0.56	The residue results are merged (NEU 11 and SEU 9) as they refer to the same GAP and are not significantly different.	0.8	0.56	0.12
Tomatoes	SEU outdoor	#2x<0.01, 2x<0.011	# Trials in italic are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap) Calculated MRL: 0.01* mg/kg Extrapolated to aubergines	pending	pending	pending
Indoor		#5x<0.011	# Trials in italic are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap) Calculated MRL: 0.01* mg/kg Extrapolated to aubergines	pending	pending	pending
Fresh beans with pods	NEU + SEU	#3x<0.01, 3x0.01, 2 x 0.02, 6x0.03, 6x0.04, 0.05, 3x0.06, 0.07, 0.10	# Trials in italic are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap) The residue results are merged (NEU 13 and SEU 13) as they refer to the same GAP and are not significantly different. Calculated MRL: 0.015 mg/kg	pending	pending	pending
Leek	NEU	# 4x<0.01, 4x<0.02	# Trials in italic are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap)	pending	pending	pending
Crop RESIDUE LEVELS OBSERVED IN THE SUPERVISED RESIDUE TRIALS RELEVANT TO THE SUPPORTED GAPs

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg)	STMR (mg/kg)
Wheat grain	NEU + SEU	8x<0.01, 2x0.03	The residue results are merged (NEU 6 and SEU 4) as they refer to the same GAP and are not significantly different. A complete data set requires 8 trials in NEU and 8 trials in SEU (data gap)	pending	pending	pending
Wheat straw	NEU + SEU	#<0.01, 0.03, 0.16, 0.27, 0.30, 0.32, 0.42, 0.50, 0.74 #Trials in italic are acceptable only when storage stability for cereal straw is demonstrated under the conditions and for the period the samples were stored in the trials (data gap)	The residue results are merged (NEU 6 and SEU 4) as they refer to the same GAP and are not significantly different. A complete data set requires 8 trials in NEU and 8 trials in SEU (data gap)	pending	pending	pending

Summary of the data on formulation equivalence OECD Guideline 509

Crop	Region	Residue data (mg/kg)	Recommendations/comments			
Tomatoes	SEU	WG	Two types of formulations were used, WG (water dispersible granules) and SC (suspension concentrate, representative formulation). The WG and SC were used in a bridging study. The residues at harvest were below the LOQs, differences due to formulations have not been observed, however these trials are acceptable only when storage stability is demonstrated under the conditions and for the period the samples were stored in the trials (data gap)	See above		
Tomatoes	Indoor	WG	See above	See above	See above	See above

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)

Product(s)	Region	Residue data (mg/kg)	Recommendations/comments			
Pollen and bee products	NEU + SEU	None available to address the representative uses	Submitted data in a crop that is not representative use indicate that the use of thiophanate-methyl during flowering could be a source for residues of thiophanate-methyl and carbendazim in honey. No information is available for pollen or other			
Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
-----------------------	-------------------	---	---	-----------------------	----------------	------------------
bee products. As to how the crops under consideration grapevines, tomatoes, aubergines, leek, fresh beans with pods and winter wheat can contribute to residues in pollen and bee products such as honey, needs further investigation (data gap).						

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.
(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.
(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HRMo).
(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMRMo).

(2) The values in italics (MRL, HR, STMR) has been replaced by a value based on merged results after a test with the EFSA model 'Mann-Whitney U-test 2015a'. Test statistics are calculated using the individual results from both residue populations and then the smaller test statistic is compared to a tabulated critical value ($\alpha=0.05$). Where the test statistic is less than or equal to the tabulated value, the two median values are considered to be similar.
Inputs for animal burden calculations

- No input data available in line with the RD for risk assessment in plants to consider the full livestock exposure potential. A livestock dietary burden calculation is required (data gap).

Feed commodity	Median dietary burden (mg/kg)	Maximum dietary burden (mg/kg)	Comment
Representative uses			
Thiophanate-methyl			
Bean vines (fodder green)	Median residue	Highest residue	
Wheat straw	Median residue	Highest residue	
Wheat grain	Median residue	Median residue	
Wheat gluten meal	Median residue	Median residue	
Wheat milled by-products	Median residue x PF	Median residue x PF	
Carbendazim			
Bean vines (fodder green)	Median residue	Highest residue	
Wheat straw	Median residue	Highest residue	
Wheat grain	Median residue	Median residue	
Wheat gluten meal	Median residue	Median residue	
Wheat milled by-products	Median residue x PF	Median residue x PF	
Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)
OECD Guideline 505 and OECD Guidance, series on pesticides No 73

- Dietary burden calculations and estimation of potential residues in animal commodities unable to be finalised (data gap)

MRL calculations	Ruminant	Pig/Swine	Poultry	Fish
Highest expected intake (mg/kg bw/d)	Beef cattle	Ram/Ewe	Breeding	Broiler
(mg/kg DM for fish)	Dairy cattle	Lamb	Finishing	Layer
Intake ≥0.004 mg/kg bw	Beef cattle	Ram/Ewe	Breeding	Broiler
Feeding study submitted	Dairy cattle	Lamb	Finishing	Layer
				Turkey
				Fish intake ≥0.1 mg/kg DM

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates	Beef: N	Dairy: N	Ewe: N	Level	N rate	Breed/Finish	Level	B or T: N	Layer: N	Level	N rate	Carp/Trout
Muscle	Estimated HR^(a) at 1N	MRL proposals										
Fat												
Meat^(b)												
Liver												
Kidney												
Milk^(c)												
Eggs												
Method of calculation^(c)												

(a): Estimated HR calculated at 1N level (estimated mean level for milk).
(b): HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
(c): The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
STMR calculations	Ruminant	Pig/Swine	Poultry	Fish					
Median expected intake (mg/kg bw/d)									
Beef cattle									
Ram/Ewe									
Dairy cattle									
Lamb									
Breeding									
Finishing									
Broiler									
Layer									
Turkey									
Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates									
Level	Beef: N	Level	Lamb : N	Level	N rate	Level	B or T: N	Level	N rate
Muscle	Estimated	Mean level	Estimated						
Fat	at 1N	in feeding level	at 1N						
Meat(a)									
Liver									
Kidney									
Milk									
Eggs									
Method of calculation(c)									
(a): STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry									
(b): When the mean level is set at the LOQ, the STMR is set at the LOQ.									
(c): The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.									
Conversion Factors (CF) for monitoring to risk assessment
No proposal due to unfinished assessment of residues in animal commodities

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)
OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

- The available processing residue trials address only the residue definition for monitoring. Further data in line with the residue definition for risk assessment should be generated to facilitate the establishment of appropriate conversion factors (data gap).
- The validity of the available processing residue trials on grapes cannot be concluded on for wine and juice, considering the storage time period of the samples (3 to 125 days) and the instability observed in homogenised grape samples. Storage stability data in grapes processed commodities (wine, juice) and covering the maximum storage time interval of the residue samples should be provided (data gap).

Crop (RAC)/Edible part or Crop (RAC)/Processed product	Number of studies (a)	Processing Factor (PF) Individual values	Median PF	Conversion Factor (CF_P) for RA (b)
Representative uses				
Thiophanate-methyl	5	0.50, 0.25, 1.00, 0.08, 0.19	0.25	Data gap
Raisins				
Carbendazim	5	3.07, 2.53, 3.64, 2.00, 3.21	3.07	Data gap
Raisins				

(a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)
(b): When the residue definition for risk assessment differs from the residue definition for monitoring
Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)

Note: Several metabolites cannot be considered of lower toxicity concern than thiophanate-methyl and therefore cannot be excluded a priori from the consumer risk assessment. In the absence of toxicological reference values for thiophanate-methyl and for its metabolites in plant and animal commodities the consumer risk assessment cannot be finalised.

Thiophanate-methyl

Parameter	Value
ADI	Not established, due to genotoxic concern
TMDI	Not applicable
IEDI (%) ADI	-
NEDI (%) ADI	-

Factors included in the calculations

ARfD

Parameter	Value
IESTI (%) ARfD	Not established, due to genotoxic concern
NESTI (%) ARfD	Not applicable

Factors included in IESTI and NESTI

Carbendazim

Parameter	Value
ADI	0.02 mg/kg bw (Commission Directive 2006/135/EC)
TMDI	Indicative: 16 % ADI
IEDI (%) ADI	Unable to calculate as the RD for RA is not finalised
NEDI (%) ADI	-

Factors included in the calculations

ARfD

Parameter	Value
IESTI (%) ARfD	0.02 mg/kg bw (Commission Directive 2006/135/EC)
NESTI (%) ARfD	Indicative: 27 % ARfD Grape juice (DE child)

Factors included in IESTI and NESTI

Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite(s) expected to be present above 0.75 µg/L

Metabolite(s)	Value
ADI (mg/kg bw per day)	Not relevant
Intake of groundwater metabolites (% ADI)	-
WHO Guideline (WHO, 2009)	-

Intake of groundwater metabolites (% ADI)	Value
Adult (60 kg bw, 2 L)	-- % ADI
Child (10 kg bw, 1 L)	-- % ADI
Infant (5 kg bw, 0.75 L)	-- % ADI
Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code\(^{(a)}\)	Commodity/Group	MRL/Import tolerance\(^{(b)}\) (mg/kg) and Comments
Plant commodities		
Thiophanate-methyl		
0151020	Wine grapes	MRLs are not proposed since a consumer safety concern was identified for the representative uses.
0231010	Tomatoes	
0231030	Aubergines	
0260010	Beans (with pods)	
0270060	Leeks	
0500090	Wheat grain	
Carbendazim		
0151020	Wine grapes	MRLs are not proposed since a consumer safety concern was identified for the representative uses.
0231010	Tomatoes	
0231030	Aubergines	
0260010	Beans (with pods)	
0270060	Leeks	
0500090	Wheat grain	
Animal commodities		
1000000	Products of animal origin - terrestrial animals	The assessment whether MRLs would be required for animal commodities is not finalised. However, MRLs were not to be proposed since a consumer safety concern was identified for the representative uses.
1040000	Honey and other apiculture products	

\(^{(a)}\): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005

\(^{(b)}\): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.
Section 4 Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Description	Value
Mineralisation after 100 days	7.3 - 25.7% after 120 d, \([{}^{14}\text{C}}\text{-phenyl}\)-label (n= 4)
Non-extractable residues after 100 days	39.7 - 73.2% after 120 d, \([{}^{14}\text{C}}\text{-phenyl}\)-label (n= 4)
Metabolites requiring further consideration	Carbendazim 48.3 - 75.8% at 3 - 7 d (n= 4) CM-0237 4.2 - 9.8% at 1 - 28 d (n= 4) 2-AB 2.2 - 6.1% at 14 d (n= 4) \([{}^{14}\text{C}}\text{-phenyl}\)-label
	Sterile conditions: no standard study; metabolites not reported

Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Description	Value
Mineralisation after 100 days	4.1% after 12 months, \([{}^{14}\text{C}}\text{-phenyl}\)-label (n= 1)
Non-extractable residues after 100 days	83.7% after 12 months, \([{}^{14}\text{C}}\text{-phenyl}\)-label (n= 1)
Metabolites that may require further consideration for risk assessment	Carbendazim 56% at 14 d (n= 1) \([{}^{14}\text{C}}\text{-phenyl}\)-label

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Description	Value
Metabolites that may require further consideration for risk assessment	Carbendazim 20.8% at 28 d natural sunlight 35°N (n= 1) Carbendazim 66.6% at 7 d continuous artificial sunlight (n=1) \([{}^{14}\text{C}}\text{-phenyl}\)-label
Mineralisation at study end	not reported
Non-extractable residues at study end	41.2 % after 28 d natural sunlight 35°N (n= 1) 33.4% after 17 d continuous artificial sunlight (n=1) \([{}^{14}\text{C}}\text{-phenyl}\)-label

a n corresponds to the number of soils.
Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Thiophanate-methyl	Dark aerobic conditions					
Soil type	pH	t. °C / % MWHC	DT_{50} / DT_{90} (d)	DT_{50} (d) 20 °C pF2/10kPa	St. (χ2)	Method of calculation
Bretagne silt loam	5.8	20°C / 46% MWHC	0.44 / 1.5	0.44/1.5	5.0	SFO
Mussig clay loam	7.5	20°C / 46% MWHC	0.70 / 2.3	0.70/2.3	5.8	SFO
Speyer 2.3 sandy loam	6.5	20°C / 46% MWHC	0.59 / 1.9	0.56/1.9	1.7	SFO
Speyer 5M sandy loam	7.9	20.9°C / pF 2	0.27 / 0.96	0.29/0.96	9.0	SFO
Geometric mean (n=4)				0.47		

pH dependence, Yes or No: No

a) Measured in CaCl$_2$.
b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7.

c) Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010).
d) Medium not stated.
e) Carbendazim dosed study therefore no formation fraction determined.
f) Geometric mean of DT$_{50}$ values (n=3) for one soil tested at three temperatures, although, for future evaluations, only the DT$_{50}$ derived from incubation closest to the FOCUS reference conditions should be selected.

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Carbendazim	Dark aerobic conditions. The precursor from which the f.f. was derived was thiophanate-methyl						
Soil type	pH	t. °C / % MWHC	DT$_{50}$ / DT$_{90}$ (d)	f. f. k_f / k_{dp}	DT$_{50}$ (d) 20 °C pF2/10kPa	St. (χ2)	Method of calculation
Bretagne silt loam	5.8 a	20°C / 46% MWHC	63.2 / 210	0.79	63.2/210	4.7	SFO-SFO
Mussig clay loam	7.5 b	20°C / 46% MWHC	22.0 / 73.2	0.72	22.0/73.2	2.1	SFO-SFO
Speyer 2.3 sandy loam	6.5 c	20°C / 46% MWHC	37.6 / 125	0.69	35.5/125	5.0	SFO-SFO
Speyer 5M sandy loam	7.9 d	20.9°C / pF 2	40.1 / 133	0.53	43.6/133	9.1	SFO-SFO
Sand 1 e	6.8 f	22°C / 40% MWHC	37 / 123	- g	37	7	SFO
Loamy sand e	5.2 h	22°C / 40% MWHC	37 / 226	- g	37	3	DFOP
	44 / 146	- g	40	9	SFO		
Sand 2 e	4.7 i	15°C / 40% MWHC	34 / 112	- g	34	4	SFO
	20°C / 40% MWHC	31 / 102	- g	27	5	SFO	
	25°C / 40% MWHC	26 / 86	- g	33	5	SFO	
Geometric mean (n=7)					36.3		
Arithmetic mean (n=4)					0.68		

pH dependence, Yes or No: No

a) Measured in CaCl$_2$.
b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7.
c) Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010).
d) Medium not stated.
e) Carbendazim dosed study therefore no formation fraction determined.
f) Geometric mean of DT$_{50}$ values (n=3) for one soil tested at three temperatures, although, for future evaluations, only the DT$_{50}$ derived from incubation closest to the FOCUS reference conditions should be selected.

7 X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
CM-0237 Dark aerobic conditions. The precursor from which the f.f. was derived was thiophanate-methyl

Soil type	X'	pH	t. °C / % MWHC	DT₅₀/ DT₉₀ (d)	f. f. kᵣ / k₃₀	DT₅₀ (d) 20 °C pF2/10kPa	St. (γ²)	Method of calculation
Mussig clay loam	7.5^a	20°C / 46% MWHC	86.5 / 287	0.064	86.5	8.5	SFO-SFO	
Speyer 2.3 sandy loam	6.5^a	20°C / 46% MWHC	46.5 / 154	0.099	43.9	7.7	SFO-SFO	
Geometric mean (n=2)								
Arithmetic mean (n=2)								
pH dependence, Yes or No							No	

^a Measured in CaCl₂.
^b Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7.

* data gap for an additional soil DT₅₀

2-AB Dark aerobic conditions. The precursor from which the f.f. was derived was carbendazim

Soil type	X'	pH	t. °C / % MWHC	DT₅₀/ DT₉₀ (d)	f. f. kᵣ / k₃₀	DT₅₀ (d) 20 °C pF2/10kPa^b	St. (γ²)	Method of calculation
Bretagne silt loam	5.8^a	20°C / 46% MWHC	13.5 / 44.8	0.36	13.5	20	SFO-SFO	
Mussig clay loam	7.5^a	20°C / 46% MWHC	11.5 / 38.2	0.33	11.5	16	SFO-SFO	
Speyer 5M sandy loam	7.9^a	20.9°C / pF 2	5.3 / 17.5	0.75	5.8	24	SFO-SFO	
Geometric mean (n=3)						9.7		
Arithmetic mean (n=3)						0.48		
pH dependence, Yes or No							No	

^a Measured in CaCl₂.
^b Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7.
Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Thiophanate-methyl

Soil type (bare soils were used)	Location (country or USA state)	X^a	pH^b	Depth (cm)	D_{IsT₅₀} (d) actual	D_{IsT₉₀} (d) actual	St. (t₂)	DT₅₀ (d) Norm^c	Method of calculation
Passo Segni Loamy fine sand	Italy	8.0	0-30	1.8	6.0	32	-	-	SFO
San Pietro di Terme Clay loam	Italy	7.7	0-30	1.0	3.3	13	-	-	SFO
Bakum Fine sandy loam	Germany	5.8	0-10	1.8	6.1	17	-	-	SFO
Bad Camberg Silt	Germany	6.2	0-10	3.3	11.1	17	-	-	SFO

Geometric mean (if not pH dependent): No

pH dependence, Yes or No: No

- a) Measured in CaCl₂
- b) Measured in KCl.
- c) Measured in CaCl₂.
- d) Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010).

Note: This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.

Carbendazim

Soil type (bare soils were used)	Location (country or USA state)	X^a	pH^b	Depth (cm)	D_{IsT₅₀} (d) actual	D_{IsT₉₀} (d) actual	St. (t₂)	DT₅₀ (d) Norm^c	f. f. k_f / k_b	Method of calculation
Passo Segni Loamy fine sand	Italy	8.0	0-30	18.9	62.6	12	-	0.41	SFO-SFO	
San Pietro di Terme Clay loam	Italy	7.7	0-30	13.6	45.1	18	-	0.31	SFO-SFO	
Bakum Fine sandy loam	Germany	5.8	0-10	24.8	82.4	26	-	0.34	SFO-SFO	
Bad Camberg Silt	Germany	6.2	0-10	22.1	73.4	19	-	0.61	SFO-SFO	
Frankfurt-Schwamheim Silty sand	Germany	5.8^{b)}	0-20	78	257	13	-	-	SFO	
Gersthofen Loam^{c)}	Germany	5.6^{b)}	0-20	11	36	20	-	-	SFO	
Bornheim Loam^{c)}	Germany	6.9^{b)}	0-20	18	59	30	-	-	SFO	
Stelle Loamy sand^{c)}	Germany	4.8^{b)}	0-20	16	54	22	-	-	SFO	

Geometric mean (if not pH dependent): No

- Arithmetic mean

pH dependence, Yes or No: No

- a) Measured in CaCl₂
- b) Measured in KCl.
- c) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, state whether values are DegT₅₀matrix
- d) Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010).

8 X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.

9 X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
Carbendazim

Aerobic conditions. Time-step normalised result; decline from peak after 10 mm cumulative rainfall. Not used in this evaluation.

Soil type (bare soils were used)	Location	X°	pH	Depth (cm)	DT₅₀ (d) actual	DT₉₀ (d) actual	St. (γ²)	DT₅₀ (d) Normᵇ	f. e. kᵢ / kₛ₀	Method of calculation
Passo Segni Loamy fine sand	Italy	8.0	0-30	-	-	6.2	29.7	-	SFO	
San Pietro di Terme Clay loam	Italy	7.7	0-30	-	-	14	29.7	-	SFO	
Bakum Fine sandy loam	Germany	5.8	0-10	-	-	19	22.5	-	SFO	
Bad Camberg Silt	Germany	6.2	0-10	-	-	5.1	13.9	-	SFO	

Geometric mean (n=4) 22.9

Arithmetic mean -

pH dependence, Yes or No No

a) Measured in CaCl₂.
b) Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7.

c) Normalised using a Q₁₀ of 2.58 and Walker equation coefficient of 0.7, values do not represent DegT₅₀ matrix.
d) Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010). For Gerstofen site, the DT₅₀ was estimated as: FOMC DT₉₀ / 3.32.

* data gap for normalised DT₅₀ with the correct Q₁₀ value of 2.58

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)

Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)

Kinetic formation fraction (f. e. kᵢ / kₛ₀) of transformation products, arithmetic mean

* Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

No study available, not requested.
Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Thiophanate-methyl	Dark anaerobic conditions						
Soil type	X¹⁰	pH¹⁰	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	DT₅₀ (d) 20 °C^b	St. (\(\chi^2\))	Method of calculation
Silt loam	6.2	21°C / -	0.37 / 1.5	-	3.3	DFOP	
(Geometric mean (if not pH dependent))							

a) Medium not stated.

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Carbendazim	Dark anaerobic conditions	The precursor from which the f.f. was derived was thiophanate-methyl.						
Soil type	X¹⁰	pH¹⁰	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	f. f. \(k_f / k_{dp}\)	DT₅₀ (d) 20°C^b	St. (\(\chi^2\))	Method of calculation
Silt loam	6.2	21°C / -	68 / 226	0.70	-	10	DFOP-SFO	
(Geometric mean (if not pH dependent))								
Arithmetic mean					-			

a) Medium not stated.

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Thiophanate-methyl	Soil photolysis					
Soil type	X¹¹	pH	t. °C / % MWHC	DT₅₀ / DT₉₀ (d) calculated at \(\theta\)N	St. (\(\chi^2\))	Method of calculation
Sandy loam	7.4¹¹	outdoor (Dec-Jan) / 27% MWHC	3.9 / - , at 35°N	-	estimated from graph	
Silt loam	6.0¹¹	19.6°C / pH₂	1.4 / 4.6 , at 30°N - 50°N	7.5	SFO	

a) Medium not stated.
b) Measured in CaCl₂.

10 X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
11 X This column is reserved for any other property that is considered to have a particular impact on the degradation rate. Column and this footnote may be removed if not used.
Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH	K_d (mL/g)	K_{dsc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	$1/n$
Speyer 6S Clay	1.64	7.1	-	-	1.42	87	0.89
Speyer 2.2 Loamy sand	1.87	5.5	-	-	1.49	79	0.99
Speyer 2.3 Sandy loam	0.99	6.7	-	-	0.88	89	0.96
Speyer 2.4 Loam	2.42	7.1	-	-	1.32	54	0.97
Geometric mean (n=4) *			1.25				
Arithmetic mean (n=4)			1.28				0.95

pH dependence, Yes or No: No

a) Measured in CaCl$_2$.

* Only relevant after implementation of the published EFSA guidance.

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH	K_d (mL/g)	K_{dsc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	$1/n$
Sand	0.8	7.0	-	-	1.6	200	0.87
Sand	2.58	6.8	-	-	6.3	246	1.12
Sandy loam	1.0	5.2	-	-	2.3	230	0.91
Geometric mean (n=3) *			2.85			224.5	
Arithmetic mean (n=3)			3.40			225.3	0.97

pH dependence, Yes or No: No

a) Medium not stated.
b) Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010).

* Only relevant after implementation of the published EFSA guidance.
DX-105

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Fresno Sandy soil	0.35	7.1	-	-	0.73	209	0.90
Burkesville Loam	0.71	6.4	-	-	0.93	131	0.88
Chico Clay loam	1.65	5.2	-	-	11.88	720	0.77
Rosa Loam	0.41	6.9	-	-	1.32	322	0.86
Phelps Loamy sand	1.24	6.5	-	-	1.42	114	0.85
Geometric mean (n=5)			1.72				
Arithmetic mean (n=5)			3.26				
pH dependence, Yes or No			No				

^a Medium not stated.
* Only relevant after implementation of the published EFSA guidance.

FH-432

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Fresno Sandy soil	0.35	7.1	-	-	0.67	191	0.94
Burkesville Loam	0.71	6.4	-	-	0.75	106	0.91
Chico Clay loam	1.65	5.2	-	-	10.11	613	0.81
Rosa Loam	0.41	6.9	-	-	1.06	258	0.90
Phelps Loamy sand	1.24	6.5	-	-	1.31	106	0.86
Geometric mean (n=5)			1.48				
Arithmetic mean (n=5)			2.78				
pH dependence, Yes or No			No				

^a Medium not stated.
* Only relevant after implementation of the published EFSA guidance.

CM-0237

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Chelmorton Silt loam	2.8	6.1	-	-	111	3970	0.75
Empingham Clay loam	4.6	7.6	-	-	71	1553	0.75
Warsop Sandy loam	0.8	4.0	-	-	15	1929	0.73
Geometric mean (n=3)			49.1				
Arithmetic mean (n=3)			65.7				
pH dependence, Yes or No			No				

^a Measured in CaCl₂.
* Only relevant after implementation of the published EFSA guidance.

2-AB

K_{oc} = 175 mL/g (estimated with PCKOCWIN Program, from EFSA Conclusion on carbendazim, 2010)
Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching	Not required.

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching	Not required.

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

| Lysimeter/ field leaching studies | Not required. |
Hydrolytic degradation (Regulation (EU) No 283/2013, Annex Part A, point 7.2.1.1)

Hydrolytic degradation of the active substance and metabolites > 10 %
Study with Thiophanate-methyl as test substance

pH	DT50 (d)	Condition
5	stable at 22°C	
7	46.8 (1st order, χ2=1.4)	pH 22°C
	Carbendazim: 28.6% AR (33 d)	
9	1.0 (1st order, χ2=3.3)	pH 22°C
	Carbendazim was stable at pH 9 and 22°C	
	Carbendazim: 58.7% AR (4 d)	
	Carbendazim was stable at pH 9 and 22°C	
	DT50 12.6 at pH 9 and 45°C	
	AV-1951: 24.9% AR (4 d)	
	DT50 5.4 days at pH 9 and 22°C (SFO-SFO, χ2=0.8)	

Study with Carbendazim as test substance

pH	DT50 (d)	Condition
7	> 350	22 - 25°C
	Met 2-AB: 3% AR (30 d)	
9	> 350	22 - 25°C
	Met 2-AB: 3% AR (30 d)	
	54 - 124	20 - 25°C
	Met 2-AB: 30% AR (30 d)	

a) Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010).

Aqueous photochemical degradation (Regulation (EU) No 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %

DT50	Condition
2.3	Natural light, 35°CN, mid-Dec
	From the quantum yield DT50 at 40°CN was calculated to
	1.0 d (summer), 2.0 d (spring) and 5.0 d (winter)
	Carbendazim: 49.7% AR (5.5 d)
	DX-105: 14.3% AR (5.5 d)

Quantum yield of direct phototransformation in water at Σ > 290 nm

3.84 x 10\(^{-7}\) mol · Einstein\(^{-1}\)

‘Ready biodegradability’ (Regulation (EU) No 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

No
Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Thiophanate-methyl	pH	pH	t	DT$_{50}$/DT$_{90}$	St.	DT$_{50}$/DT$_{90}$	St.	Method of calculation		
System identifier				whole sys.		whole sys.				
(indicate fresh,				(suspended sediment		(suspended sediment				
estuarine or				test)		test)				
marine)				At study temp		At study temp				
Fresh lake water	7.6-9	-	20°C	-	-	-	0.64	1.4	2.1	DFOP
low dose										
Fresh lake water	7.6-9	-	20°C	-	-	-	2.2	4.7	2.5	SFO
high dose										

a) Measured in [medium to be stated, usually calcium chloride solution or water]
b) Temperature of incubation.
c) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

Carbendazim	Max in total system 82.8% after 14 days									
System identifier	pH	pH	t	DT$_{50}$/DT$_{90}$	St.	DT$_{50}$/DT$_{90}$	St.	Method of calculation		
(indicate fresh,				whole sys.		whole sys.				
estuarine or				(suspended sediment		(suspended sediment				
marine)				test)		test)				
Fresh lake water	7.6-9	-	20°C	-	-	-	64.8	138	6.4	DFOP-SFO
low dose										

a) Measured in [medium to be stated, usually calcium chloride solution or water]
b) Temperature of incubation.
c) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

FH-432	Max in total system 11.3% after 4 days									
System identifier	pH	pH	t	DT$_{50}$/DT$_{90}$	St.	DT$_{50}$/DT$_{90}$	St.	Method of calculation		
(indicate fresh,				whole sys.		whole sys.				
estuarine or				(suspended sediment		(suspended sediment				
marine)				test)		test)				
Fresh lake water	7.6-9	-	20°C	-	-	-	5.2	11	7.1	SFO-SFO
high dose										

a) Measured in [medium to be stated, usually calcium chloride solution or water]
b) Temperature of incubation.
c) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).

UM 1	Max in total system 11.4% after 30 days								
System identifier	pH	pH	t	DT$_{50}$/DT$_{90}$	St.	DT$_{50}$/DT$_{90}$	St.	Method of calculation	
(indicate fresh,				whole sys.		whole sys.			
estuarine or				(suspended sediment		(suspended sediment			
marine)				test)		test)			
Fresh lake water	7.6-9	-	20°C	-	-	-	not reliable	-	-

a) Measured in [medium to be stated, usually calcium chloride solution or water]
b) Temperature of incubation.
c) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).
Mineralisation and non-extractable residues (for thiophanate-methyl dosed experiment)

System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation x % after n d. (end of the study)	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)
Fresh lake water	7.6-9	-	0.5% AR in traps (30 d)	-	-

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Thiophanate-methyl	Distribution: Max in water 98.4% day 0. Max. in sed 8.1 % after 8 d.									
Water / sediment system	pH water phase	pH sed	t. °C	DT_{50}/DT_{90} whole sys.	St. (χ²)	DT_{50}/DT_{90} water	St. (χ²)	DT_{50}/DT_{90} sed	St. (χ²)	Method of calculation
Pond system	7.7-8.4	7.6	20°C	3.5 / 11.6	6.7	2.8 / 9.2	5.0	-	-	SFO
River system	7.9-8.4	7.8	20°C	1.6 / 5.4	3.3	1.6 / 5.4	3.2	-	-	SFO
Geometric mean at 20°C (n=2)	2.4									

a) Measured in CaCl_2.

Carbendazim	Distribution: Max in total system (river system) 81.6% after 8 d. Max in water 39.0% after 8 d. Max in sediment 50.4% after 58 d. Kinetic formation fraction (k_f/k_dp): 0.81 (pond total system) and 0.76 (river total system). Arithmetic mean formation fraction: 0.78. Precursor: Thiophanate-methyl.									
Water / sediment system	pH water phase	pH sed	t. °C	DT_{50}/DT_{90} whole sys.	St. (χ²)	DT_{50}/DT_{90} water	St. (χ²)	DT_{50}/DT_{90} sed	St. (χ²)	Method of calculation
Pond system	7.7-8.4	7.6	20°C	76.2 / 253.2	8.5	-	-	-	-	SFO
River system	7.9-8.4	7.8	20°C	91.6 / 304.2	6.4	-	-	-	-	SFO
Bickenbach	8.5	8.0	20°C	15.1 / 50	11	10.8 / 36	0.995	-	-	SFO
Unter Widderheim	8.1	7.5	20°C	75.2 / 249.7	12	5.8 / 19.2	0.965	-	-	SFO
Geometric mean at 20°C (n=4)	53.1									

a) Measured in CaCl_2.
b) Medium not stated.
c) Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010).

4-OH-TM	Distribution: Max in total system (river system) 9.5% after 8 d. Max in water 4.4% after 8 d. Max in sediment 5.7% after 30 d. Results obtained by considering only on data from maximum observed onwards.									
Water / sediment system	pH water phase	pH sed	t. °C	DT_{50}/DT_{90} whole sys.	St. (χ²)	DT_{50}/DT_{90} water	St. (χ²)	DT_{50}/DT_{90} sed	St. (χ²)	Method of calculation
Pond system	7.7-8.4	7.6	20°C	32.4 / 108	12	-	-	-	-	SFO
River system	7.9-8.4	7.8	20°C	26.2 / 87.2	13	-	-	-	-	SFO
Geometric mean at 20°C	29.2									

a) Measured in CaCl_2.
2-AB

Distribution: Max in total system (pond system) 7.5% after 58 d. Max in water 0.7% after 16 d. Max in sediment 7.0% after 58 d. Results obtained by considering only data from maximum observed onwards.

Water / sediment system	pH water phase	pH sed	t. °C	DT50 / DT90 whole sys.	St. (χ2)	DT50 / DT90 water	St. (r²)	DT50 / DT90 sed	St. (χ2)	Method of calculation
Pond system	7.7-8.4	7.6 a)	20°C	189 / 629	6.3	-	-	-	-	SFO
River system	7.9-8.4	7.8 a)	20°C	-	-	-	-	-	-	-
Geometric mean at 20°C	-									

a) Measured in CaCl₂.

M10

Distribution: Max in total system (pond system) 9.3% after 140 d. Max in water 2.2% after 100 d. Max in sediment 7.7% after 140-202 d.

Water / sediment system	pH water phase	pH sed	t. °C	DT50 / DT90 whole sys.	St. (χ2)	DT50 / DT90 water	St. (r²)	DT50 / DT90 sed	St. (χ2)	Method of calculation
Pond system	7.7-8.4	7.6 a)	20°C	-	-	-	-	-	-	-
River system	7.9-8.4	7.8 a)	20°C	-	-	-	-	-	-	-
Geometric mean at 20°C	-									

a) Measured at 20°C.

Mineralisation and non-extractable residues (from thiophanate-methyl dosed experiments)

Water / sediment system	pH water phase	pH sed	t. °C	Mineralisation x % after n d. (end of the study)	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)
Pond system	7.7-8.4	7.6 a)	5.2 % after 301 d	70% after 301 d	70% after 301 d	
River system	7.9-8.4	7.8 a)	1.3% after 100 d	48.1 % after 100 d	48.1 % after 100 d	

a) Measured in CaCl₂.
Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Process	Description
Direct photolysis in air	Not studied - no data requested
Photochemical oxidative degradation in air	DT$_{50}$ of 1.8 hours derived by the Atkinson model (Aop Win version 1.92).
Volatilisation	OH (12 h) concentration assumed = 1.5×10^6 OH/cm3

Metabolites	
Residues requiring further assessment	
Environmental occurring residues requiring	Soil: Thiophanate-methyl, Carbendazim, CM-0237, 2-AB
further assessment by other disciplines	Surface water: Thiophanate-methyl, Carbendazim, CM-0237, 2-AB, DX-105
(toxicology and ecotoxicology) and or	Sediment: Thiophanate-methyl, Carbendazim, CM-0237,
requiring consideration for groundwater	2-AB, 4-OH-TM, M10 (=UM2)
exposure	Groundwater: Thiophanate-methyl, Carbendazim, CM-0237, 2-AB
	Air: Thiophanate-methyl

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Soil (indicate location and type of study)	No data, not required
Surface water (indicate location and type of study)	The RMS identified data from the Swedish monitoring programme at the national level for the years 2011-2013. There was no reported use of thiophanate-methyl in the four catchments (type areas) in 2011-2013, and there was no observation of the substance in these areas. Carbendazim was detected in concentrations above LOQ (0.002 µg/l for most samples) in 12% of the samples. The maximum weekly average concentration was 0.012 µg/L. The maximum duration of levels of carbendazim >LOQ was 18 weeks during which the weekly average concentrations ranged from 0.02 µg/L to 0.012 µg/L. The main source for these residues was believed to be cultivation of (imported) potato tubers or seeds treated with thiophanate-methyl or carbendazim. Additionally, in momentary samples taken from two stream thiophanate-methyl was found in 1/54 samples (0.002 µg/L). Carbendazim was found > LOQ in 46% of these samples (0.002 - 0.24 µg/L).
Ground water (indicate location and type of study)	The RMS identified limited data from Swedish monitoring; no findings of thiophanate-methyl or the main metabolite carbendazim.
Rainwater (indicate location and type of study)	The RMS identified data from the Swedish monitoring programme at the national level for the years 2011-2013. Two locations (Southern Sweden and close to Stockholm, respectively) and 89 samples in total. Carbendazim was detected (>LOD) in 34% of the samples (0.001-0.009 µg/L). Thiophanate-methyl was not detected in any of the samples.
Air (indicate location and type of study)	No data, not required.

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)
Thiophanate-methyl

Method of calculation

Crop	Plant interception	Number of applications	Application rate (kg a.s./ha)
Grapes, early application	60%	1	1.1
Grapes, late application	75%	1	1.1
Tomato/aubergine	0% (drip irrigation)	3	0.7; 1.4; 2.3
Leek	0% (drenching)	1	4.15
Fresh beans	70%	1 or 2	0.75
Winter cereals, early application	90%	1	0.75
Winter cereals, late application	80%	1	0.75

Application data

Crop	Plant interception	Number of applications	Application rates (kg a.s./ha)	Interval (d)	Depth of soil layer (cm)	Soil bulk density (g/cm³)
Grapes, early application	60%	1	1.1		5	1.5
Grapes, late application	75%	1	1.1		5	1.5
Tomato/aubergine	0% (drip irrigation)	3	0.7; 1.4; 2.3	30	5	1.5
Leek	0% (drenching)	1	4.15		5	1.5
Fresh beans	70%	1 or 2	0.75; 1.4; 2.3		5	1.5
Winter cereals, early application	90%	1	0.75		5	1.5
Winter cereals, late application	80%	1	0.75		5	1.5

PEC(s) (mg/kg)

Crop	Initial	Plateau concentration
Grapes, early application	0.587	Not required
Grapes, late application	0.367	
Tomato/aubergine	0.933	
Leek	1 appl: 0.933 2 appl: 1.868 3 appl: 3.070	5.533

PEC(s) (mg/kg)

Crop	Initial	Plateau concentration
Fresh beans	0.300	Not required
Winter cereals, early application	0.100	
Winter cereals, late application	0.200	

Carbendazim

Method of calculation

Crop	Molecular weight relative to thiophanate-methyl: 0.558	DT₅₀ (d): 78 days	Kinetics: SFO	Field or Lab: longest non-normalised field dissipation DT₅₀

In refinement for tomato/aubergine and leek, degradation of parent (thiophanate-methyl) and formation of carbendazim was taken into account using model Escape 2.0. The shortest non-normalised field dissipation DT$_{50}$ 0.99 days was used for the parent and the corresponding formation fraction 0.61 (parent → carbendazim) was used in these calculations.

Application data							
PEC(s) (mg/kg)							
Grapes, early application Actual	**Grapes, late application** Actual	**Tomato/aubergine** Actual	**Leek** Actual				
Initial	0.248	0.155	1 appl: 0.395	2 appl: 1.093	3 appl: 2.135	Refinement: 3rd appl: 1.642	Refinement: 1.790
Plateau concentration							

Application rate assumed in standard calculations: assumed that carbendazim is formed at a maximum of 75.8% of the applied dose

Application data				
PEC(s) (mg/kg)				
Fresh beans Single application Actual	**Fresh beans** Two application Actual	**Winter cereals, early application** Actual	**Winter cereals, late application** Actual	
Initial	0.127	0.239	0.042	0.085
Plateau concentration	Not required			

Application rate assumed: assumed that CM-0237 is formed at a maximum of 9.8% of the applied dose

CM-0237						
Method of calculation						
Application data						
PEC(s) (mg/kg)						
Grapes, early application Actual	**Grapes, late application** Actual	**Tomato/aubergine** Actual	**Leek** Actual			
Initial	0.055	0.034	1 appl: 0.087	2 appl: 0.241	3 appl: 0.475	0.514
Plateau concentration	0.057	0.036	3 appl: 0.501	0.521		

Molecular weight relative to thiophanate-methyl: 0.947
DT$_{50}$ (d): 86.5 days
Kinetics: SFO
Field or Lab: longest non-normalised laboratory DT$_{50}$

Application data				
PEC(s) (mg/kg)				
Fresh beans Single application Actual	**Fresh beans** Two application Actual	**Winter cereals, early application** Actual	**Winter cereals, late application** Actual	
Initial	0.028	0.053	0.009	0.019
Plateau concentration	--	0.053	0.009	0.019

Molecular weight relative to thiophanate-methyl: 0.389
DT$_{50}$ (d): 13.5 days
Kinetics: SFO
Field or Lab: longest non-normalised laboratory DT$_{50}$

Application data				
PEC(s) (mg/kg)				
Fresh beans Single application Actual	**Fresh beans** Two application Actual	**Winter cereals, early application** Actual	**Winter cereals, late application** Actual	
Initial	0.057	0.036	3 appl: 0.501	0.521
Plateau concentration				

Application data				
PEC(s) (mg/kg)				
Fresh beans Single application Actual	**Fresh beans** Two application Actual	**Winter cereals, early application** Actual	**Winter cereals, late application** Actual	
Initial	0.0028	0.053	0.009	0.019
Plateau concentration	--	0.053	0.009	0.019

Molecular weight relative to thiophanate-methyl: 0.389
DT$_{50}$ (d): 13.5 days
Kinetics: SFO
Field or Lab: longest non-normalised laboratory DT$_{50}$

Application rate assumed: assumed that 2-AB is formed at a maximum of 6.1% of the applied dose
PEC(s) (mg/kg)	Grapes, early application Actual	Grapes, late application Actual	Tomato/aubergine Actual	Leek Actual
Initial	0.014	0.009	1 appl: 0.022	0.131
			2 appl: 0.049	
			3 appl: 0.083	
Plateau concentration	Not required			

PEC(s) (mg/kg)	Fresh beans Single application Actual	Fresh beans Two application Actual	Winter cereals, early application Actual	Winter cereals, late application Actual
Initial	0.007	0.011	0.002	0.005
Plateau concentration	Not required			
PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

Substance	Method of calculation and type of study	Crop uptake factor	For normalisation of data to 20°C and pF2: Q10 of 2.58 and Walker eq. coefficient 0.7
Thiophanate-methyl	Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance. Model(s) used: FOCUS PEARL 4.4.4, FOCUS PELMO 5.5.3, MACRO 5.5.4 (only for grapes, tomatoes, leek and winter cereals where the pre-defined scenario Chateaudun is available)	0 (thiophanate-methyl and metabolites)	
Carbendazim	For FOCUS gw modelling, values used – Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance. Model(s) used: FOCUS PEARL 4.4.4, FOCUS PELMO 5.0.2911, based on normalised field data. Note that data from all sampling points were used to derive endpoints from field study.		
CM-0237	Kinetic formation fraction (thiophanate-methyl → CM-0237): data gap		
2-AB	Kinetic formation fraction (carbendazim → 2-AB): 0.48 (PEARL), 0.2016 (MACRO), 0.01664 (PELMO)		

Application rate

Crop	Crop uptake factor	For normalisation of data to 20°C and pF2: Q10 of 2.58 and Walker eq. coefficient 0.7
Grapes	0 (thiophanate-methyl and metabolites)	

Thiophanate-methyl:
Water solubility (mg/L): 18.5 at pH 7 and 20°C
Vapour pressure: 8.8 x 10^-6 Pa at 20°C
Geometric mean DT50: 1.0 d (overall mean based on normalised lab and normalised field data). Note that data from all sampling points were used to derive endpoints from field study.
KOC/KOM: geometric mean: 75.8 / 43.97 mL/g (n=4)
arithmetic mean 1/n: 0.95 (n=4)

Crop uptake factor: 0 (thiophanate-methyl and metabolites)

For normalisation of data to 20°C and pF2: Q10 of 2.58 and Walker eq. coefficient 0.7

Carbendazim:
Water solubility (mg/L): 8 (24°C, pH 7)
Vapour pressure: 9 x 10^-3 Pa at 20°C
Geometric mean DT50: 20.0 d* (overall mean based on normalised field data). Note that data from all sampling points were used to derive endpoints from field study.
Kinetic formation fraction (thiophanate-methyl → carbendazim) (PEARL/MACRO): 0.42 (in PELMO 0.2911), based on normalised field data. Note that data from all sampling points were used to derive endpoints from field study.
KOC/KOM: geometric mean: 224.5 / 130.2 mL/g (n=3)
arithmetic mean 1/n: 0.967 (n=3)

* Inadequate value calculated based on incorrect normalised field DT50 values from carbendazim EFSA Conclusion (2010). It is considered that it is unlikely that this deficiency will change the conclusion on groundwater exposure assessment for the representative uses on wine grapes, tomatoes/aubergine, beans and winter cereals.

CM-0237:
Water solubility (mg/L): 1000
Vapour pressure: 0 Pa at 20°C
Geometric mean DT50: data gap
Kinetic formation fraction (thiophanate-methyl → CM-0237): data gap
KOC/KOM: geometric mean: 2283 / 1324 mL/g.
arithmetic mean 1/n= 0.743

2-AB:
Water solubility (mg/L): 1000
Vapour pressure: 0 Pa at 20°C
Geometric mean DT50: 9.7 d (n=3, parent-dosed studies)
Kinetic formation fraction (carbendazim → 2-AB): 0.48 (PEARL), 0.2016 (MACRO), 0.01664 (PELMO)
KOC/KOM: geometric mean: 175 / 101.5 mL/g (estimated with PCKOCWIN Program, from EFSA Conclusion on carbendazim, 2010), default 1/n= 1.0

Application rate

Crop	Crop uptake factor	For normalisation of data to 20°C and pF2: Q10 of 2.58 and Walker eq. coefficient 0.7
Grapes	0 (thiophanate-methyl and metabolites)	

For normalisation of data to 20°C and pF2: Q10 of 2.58 and Walker eq. coefficient 0.7

Crop uptake factor: 0 (thiophanate-methyl and metabolites)

Application rate

Crop	Crop uptake factor	For normalisation of data to 20°C and pF2: Q10 of 2.58 and Walker eq. coefficient 0.7
Grapes	0 (thiophanate-methyl and metabolites)	

For normalisation of data to 20°C and pF2: Q10 of 2.58 and Walker eq. coefficient 0.7

Crop uptake factor: 0 (thiophanate-methyl and metabolites)
Canopy interception: 60% (early), 75% (late)
Application rate net of interception: 0.44 kg a.s./ha (early), 0.275 kg a.s./ha (late)
No. of applications: 1
Time of application (relative application dates): Early appl. set to 9 weeks after emergence. Late appl. set to 35 days before harvest

Crop: Tomato/aubergine
Gross application rate: 0.7; 1.4; 2.3 kg a.s./ha
Crop growth stage: 60-80 days before BBCH 32; BBCH 71; BBCH 85
Canopy interception: 0% (drip irrigation)
Application rate net of interception: 0.7; 1.4; 2.3 kg a.s./ha
No. of applications: 3
Interval (d): 30
Time of application (relative application dates): 1st appl. 15 days after transplantation harvest - 3rd appl. 7 d before harvest.

Crop: Leek
Gross application rate: 4.15 kg a.s./ha
Crop growth stage: BBCH 12-15
Canopy interception: 0% (drenching)
Application rate net of interception: 4.15 kg a.s./ha
No. of applications: 1
Time of application (relative application dates): planting date.

Crop: Fresh beans
Gross application rate: 0.75 kg a.s./ha
Crop growth stage: BBCH 61-71
Canopy interception: 70%
Application rate net of interception: 0.225 kg a.s./ha
No. of applications: 2
Interval (d): 14
Time of application (relative application dates): 1st appl. set to 3 months after emergence.

Crop: Winter cereals, early or late application
Gross application rate: 0.75 kg a.s./ha
Crop growth stage: BBCH 59-70
Canopy interception: 90% (early), 80% (late)
Application rate net of interception: 0.075 kg a.s./ha (early), 0.15 kg a.s./ha (late)
No. of applications: 1
Time of application (relative application dates): Early appl. set to 3 months before harvest. Late appl. set to 1 month before harvest.

* Only relevant after implementation of the published EFSA guidance.

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

PELMO:	Thiophanate-methyl µg/L	Carbendazim µg/L	CM-0237 µg/L data gap	2-AB µg/L			
	early	late	early	late	early	late	
Grapes	Châteaudun	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Hamburg	<0.001	<0.001	0.001	0.001	0.001	0.001
	Kremsmünster	<0.001	<0.001	0.001	<0.001	0.001	0.001
	Piacenza	<0.001	<0.001	0.001	0.001	0.001	0.001
	Porto	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
	Sevilla	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
	Thiva	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
Tomatoes	Châteaudun	<0.001	<0.001	<0.001	<0.001	<0.001	0.001
	Piacenza	<0.001	<0.001	0.004	0.007	0.005	0.011
	Porto	<0.001	<0.001	0.001	0.005	0.003	0.001
Crop	Scenario	Thiophanate-methyl µg/L	Carbendazim µg/L	CM-0237 µg/L data gap	2-AB µg/L		
------------	---------------------------	--------------------------	------------------	-----------------------	-----------		
	early	late	early	late	early	late	
Seville	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Thiva	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Leek	Châteaudun	<0.001	-	<0.001*	-	<0.001*	-
	Hamburg	<0.001	-	0.002*	-	0.001*	0.003
	Jokioinen	<0.001	-	<0.001*	-	<0.001*	-
	Kremsmünster	<0.001	-	0.001*	-	0.002*	-
	Porto	<0.001	-	0.002*	-	0.003*	-
	Thiva	<0.001	-	<0.001*	-	<0.001*	-
Beans, field	All 3 scenarios	-	<0.001	-	<0.001	-	
Beans, vegetables	All 3 scenarios	-	<0.001	-	<0.001	-	
Winter cereals	All 9 scenarios	<0.001	<0.001	<0.001	<0.001	<0.001	

* indicative PECgw values based on incorrect normalised field DT50 value of carbendazim (data gap for new GW modelling)

PEARL:

Crop	Scenario	Thiophanate-methyl µg/L	Carbendazim µg/L	CM-0237 µg/L data gap	2-AB µg/L		
	early	late	early	late	early	late	
Grapes	Châteaudun	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Hamburg	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Kremmünster	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Piacenza	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Porto	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Seville	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Thiva	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Tomatoes	Châteaudun	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Piacenza	<0.001	<0.001	0.002	0.006	0.002	0.005
	Porto	<0.001	<0.001	<0.001	0.003	0.002	0.005
	Seville	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	Thiva	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Leek	Châteaudun	<0.001	-	0.006*	-	0.007*	-
	Hamburg	<0.001	-	0.113*	-	0.079*	-
	Jokioinen	<0.001	-	0.036*	-	0.043*	-
	Kremsmünster	<0.001	-	0.118*	-	0.071*	-
	Porto	<0.001	-	0.010*	-	0.013*	-
	Thiva	<0.001	-	<0.001*	-	<0.001*	-
Beans, field	All 3 scenarios	-	<0.001	-	<0.001	-	
Beans, vegetables	All 3 scenarios	-	<0.001	-	<0.001	-	
Winter cereals	All 9 scenarios	<0.001	<0.001	<0.001	<0.001	<0.001	

* indicative PECgw values based on incorrect normalised field DT50 value of carbendazim (data gap for new GW modelling)

MACRO:

Crop	Scenario	Thiophanate-methyl µg/L	Carbendazim µg/L	CM-0237 µg/L data gap	2-AB µg/L		
	early	late	early	late	early	late	
Grapes	Châteaudun	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Tomatoes *	Châteaudun	<0.001	<0.001	0.001	0.002	0.001	<0.001
Leek	Châteaudun	<0.001	-	<0.001*	-	<0.001*	-
Winter cereals	Châteaudun	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
* indicative PECgw values based on incorrect normalised field DT50 value of carbendazim (data gap for new GW modelling)

PEC(gw) From lysimeter / field studies

	1st year	2nd year	3rd year
Thiophanate-methyl			
Annual average (µg/L)	Not required	Not required	Not required
Metabolites			
Annual average (µg/L)	Not required	Not required	Not required
PEC surface water and PEC sediment (Regulation (EU) No 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Thiophanate-methyl

Parameters used in FOCUSsw step 1 and 2

Property	Value
Version control no. of FOCUS calculator	ver 3.2
Molecular weight (g/mol)	342.4
K_{OC} (mL/g)	110.1
RMS: The agreed geomean K_{OC} is 75.8	
DT_{50} soil (d): 1.0 days (lab + field, SFO)	
DT_{50} water/sediment system (d): 2.4 d (geomean, water/sed)	
DT_{50} water (d): 2.4	
DT_{50} sediment (d): 2.4	
Crop interception:	
Full canopy (Grapes 60%, Beans, winter cereals 70%)	
Tomato/aubergine, leek no interception (soil incorporation)	

Parameters used in FOCUSsw step 3 and 4

Property	Value
Version control no.’s of FOCUS software: FOCUS SWASH 5.3, PRZM 3.3.1, FOCUS MACRO 5.5.4, FOCUS TOXSWA 3.3.4, SWAN 4.0.1	
Water solubility (mg/L):	18.5
Vapour pressure:	8.8×10^{-6} Pa at 20°C
K_{OC}/K_{OM} (mL/g):	75.8 / 43.97
$1/n$:	0.95
DT_{50} water (d):	2.4
DT_{50} sediment (d):	1000
Q10=2.58, Walker equation coefficient 0.7	

Application rate

Crop	Application method	No. of applications	Application rate	Application window
Grapes, early application BBCH 57	CAM 1, 4 cm incorporation depth	1	1.1 kg/ha	start set to 9 weeks after emergence, early spray drift selected
Grapes, late application BBCH 81	CAM 1, 4 cm incorporation depth	1	1.1 kg/ha	end set to 35 days before harvest, late spray drift selected
Fresh beans BBCH 61-71	CAM 1, 4 cm incorporation depth	1 or 2	0.75 kg/ha	end set to 14 days before harvest
Winter cereals, early application BBCH 59	CAM 1, 4 cm incorporation depth	1	0.75 kg a.s./ha	start set to 3 months before harvest
Winter cereals, late application BBCH 70	CAM 1, 4 cm incorporation depth	1	0.75 kg a.s./ha	end set to 1 months before harvest
Tomato/aubergine	CAM 1, 4 cm incorporation depth	3	0.7 – 1.4 – 2.3 kg/ha	
Leek	CAM 1, 4 cm incorporation depth	1	4.15 kg a.s./ha	just after plantation BBCH 12-15

Application rate

Crop	Application method	No. of applications	Application rate	Application window
Grapes, early application BBCH 57	CAM 1, 4 cm incorporation depth	1	0.7 – 1.4 – 2.3 kg/ha	
Grapes, late application BBCH 81	CAM 1, 4 cm incorporation depth	1	0.75 kg a.s./ha	start set to 3 months before harvest
Fresh beans BBCH 61-71	CAM 1, 4 cm incorporation depth	1 or 2	0.75 kg/ha	end set to 14 days before harvest
Winter cereals, early application BBCH 59	CAM 1, 4 cm incorporation depth	1	0.75 kg a.s./ha	start set to 3 months before harvest
Winter cereals, late application BBCH 70	CAM 1, 4 cm incorporation depth	1	0.75 kg a.s./ha	end set to 1 months before harvest
Tomato/aubergine	CAM 1, 4 cm incorporation depth	3	0.7 – 1.4 – 2.3 kg/ha	
Leek	CAM 1, 4 cm incorporation depth	1	4.15 kg a.s./ha	just after plantation BBCH 12-15
FOCUS STEP 1

Thiophanate-methyl	Day after overall maximum	PEC$_{SW}$ (µg/L)	PEC$_{SED}$ (µg/kg)		
	Actual	TWA	Actual	TWA	
Grapes, 1 x 1.1 kg a.s./ha	0 h	352.9		323.8	
Field beans 1/2 x 0.75 kg a.s./ha	0 h	227.5		220.8	
Winter cereals 1 x 0.75 kg a.s./ha	0 h	227.5		220.8	
Tomato (greenhouse) 3 x 2.3 kg a.s./ha	0 h	676.4		677.1	
Tomato (field) 3 x 2.1 kg a.s./ha	0 h	617.6		618.2	
Leek 1 x 4.15 kg a.s./ha	0 h	1220		1220	

FOCUS STEP 2

Thiophanate-methyl	Day after overall maximum	PEC$_{SW}$ (µg/L)	PEC$_{SED}$ (µg/kg)		
	Northern EU	Southern EU	Northern EU	Southern EU	
Grapes, Oct-Feb 1 x 1.1 kg a.s./ha	0 h	29.44	29.44	12.98	12.98
Field beans, Oct-Feb 1/2 x 0.75 kg a.s./ha	0 h	6.898	6.898	3.401	3.042
Winter cereals, Oct-Feb 1 x 0.75 kg a.s./ha	0 h	6.898	6.898	3.401	3.042
Tomato (greenhouse), Oct-Feb 3 x 2.3 kg a.s./ha	0 h	21.14	16.91	21.16	16.93
Tomato (field), Oct-Feb 3 x 2.1 kg a.s./ha	0 h	19.30	15.44	19.32	15.46
Leek, Oct-Feb 1 x 4.15 kg a.s./ha	0 h	38.14	30.51	38.18	30.54
FOCUS STEP 3

Thiophanate-methyl

Water body	Day after overall maximum	PECsw, µg/l, Actual	PECsed, µg/kg, Actual

Grapes, early application, 1 x 1.1 kg a.s./ha

D6	ditch	0 h	6.231	1.206
R1	pond	0 h	0.228	0.111
R1	stream	0 h	4.561	0.694
R2	stream	0 h	6.110	0.300
R3	stream	0 h	6.423	1.303
R4	stream	0 h	4.487	0.267

Grapes, late application, 1 x 1.1 kg a.s./ha

D6	ditch	0 h	18.880	4.730
R1	pond	0 h	0.672	0.223
R1	stream	0 h	13.850	1.097
R2	stream	0 h	18.560	0.928
R3	stream	0 h	19.520	3.034
R4	stream	0 h	13.850	1.068

Beans, single application, 1 x 0.75 kg a.s./ha

D2	ditch	0 h	3.983	1.126
D2	stream	0 h	3.717	1.052
D3	ditch	0 h	3.944	0.693
D4	pond	0 h	0.159	0.048
D4	stream	0 h	3.538	0.289
D6, 1st crop	ditch	0 h	3.883	0.412
D6, 2nd crop	ditch	0 h	3.886	0.398
R1	pond	0 h	0.492	0.244
R1	stream	0 h	13.240	2.040
R2	stream	0 h	3.658	0.187
R3	stream	0 h	3.840	0.400
R4	stream	0 h	11.440	2.194

Beans, multiple application, 2 x 0.75 kg a.s./ha

D2	ditch	0 h	23.400	3.755
D2	stream	0 h	14.980	2.144
D3	ditch	0 h	3.427	0.751
D4	pond	0 h	0.136	0.062
D4	stream	0 h	3.071	0.313
D6, 1st crop	ditch	0 h	3.439	0.838
D6, 2nd crop	ditch	0 h	3.417	0.546
R1	pond	0 h	0.677	0.376
R1	stream	0 h	13.240	2.380
R2	stream	0 h	3.149	0.173
R3	stream	0 h	14.260	2.207
R4	stream	0 h	20.910	4.258

Leek, 1 x 4.15 kg a.s./ha, CAM5, 10 cm depth

D3	ditch	0 h	< 0.001	< 0.001
D4	pond	0 h	< 0.001	< 0.001
D4	stream	0 h	< 0.001	< 0.001
D6, 1st crop	ditch	0 h	< 0.001	< 0.001
D6, 2nd crop	ditch	0 h	< 0.001	< 0.001
R1	pond	0 h	0.001	< 0.001
R1	stream	0 h	0.130	0.019
R2	stream	0 h	0.084	0.013
R3	stream	0 h	0.793	0.113
R4	stream	0 h	0.638	0.126

Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, early

D6	ditch	0 h	< 0.001	< 0.001
R2	stream	0 h	0.156	0.031
R3	stream	0 h	10.180	2.253
R4	stream	0 h	9.778	1.856

Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, late

D6	ditch	0 h	< 0.001	< 0.001			
R2	stream	0 h	0.104	0.024			
R3	stream	0 h	10.180	2.253			
R4	stream	0 h	28.460	4.763			
FOCUS STEP 3	Water body	Day after overall maximum	PECsw, µg/l, Actual	PECsed, µg/kg, Actual			
--------------	------------	----------------------------	---------------------	----------------------			
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, early	D6 ditch	0 h	< 0.001	< 0.001			
	R2 stream	0 h	0.156	0.028			
	R3 stream	0 h	10.180	2.253			
	R4 stream	0 h	9.778	1.856			
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, late	D6 ditch	0 h	< 0.001	< 0.001			
	R2 stream	0 h	0.095	0.022			
	R3 stream	0 h	10.180	2.253			
	R4 stream	0 h	28.460	4.763			
Winter cereals, early application, 1 x 0.75 kg a.s./ha	D1 ditch	0 h	4.812	1.718			
	D1 stream	0 h	4.207	0.759			
	D2 ditch	0 h	28.900	6.718			
	D2 stream	0 h	20.890	3.677			
	D3 ditch	0 h	4.757	0.780			
	D4 pond	0 h	0.164	0.060			
	D4 stream	0 h	3.965	0.225			
	D5 pond	0 h	0.164	0.072			
	D5 stream	0 h	4.190	0.200			
	D6 ditch	0 h	4.776	1.078			
	R1 pond	0 h	0.164	0.066			
	R1 stream	0 h	3.389	0.490			
	R3 stream	0 h	4.424	0.823			
	R4 stream	0 h	12.260	2.113			
Winter cereals, late application, 1 x 0.75 kg a.s./ha	D1 ditch	0 h	4.812	1.539			
	D1 stream	0 h	4.207	0.829			
	D2 ditch	0 h	4.815	1.433			
	D2 stream	0 h	4.284	1.278			
	D3 ditch	0 h	4.762	0.806			
	D4 pond	0 h	0.164	0.050			
	D4 stream	0 h	4.111	0.386			
	D5 pond	0 h	0.164	0.057			
	D5 stream	0 h	4.435	0.482			
	D6 ditch	0 h	4.795	1.189			
	R1 pond	0 h	0.411	0.168			
	R1 stream	0 h	3.281	0.816			
	R3 stream	0 h	15.040	2.267			
	R4 stream	0 h	3.144	0.255			
FOCUS STEP 4	Thiophanate-methyl	Water body	Day after overall maximum	10 m vegetated buffer zone	20 m vegetated buffer zone		
--------------	---------------------	------------	---------------------------	----------------------------	----------------------------		
				PECsw, µg/l, Actual	PECsed, µg/kg, Actual	PECsw, µg/l, Actual	PECsed, µg/kg, Actual
Grapes, early application, 1 x 1.1 kg a.s./ha							
D6	ditch	0 h	1.308	0.263	0.446	0.092	
R1	pond	0 h	0.134	0.056	0.066	0.028	
R1	stream	0 h	1.438	0.302	0.751	0.157	
R2	stream	0 h	1.554	0.078	0.529	0.035	
R3	stream	0 h	2.506	0.575	1.312	0.300	
R4	stream	0 h	1.141	0.069	0.389	0.024	
Grapes, late application, 1 x 1.1 kg a.s./ha							
D6	ditch	0 h	4.135	1.070	1.450	0.384	
R1	pond	0 h	0.430	0.144	0.216	0.074	
R1	stream	0 h	3.654	0.296	1.282	0.106	
R2	stream	0 h	4.898	0.250	1.718	0.089	
R3	stream	0 h	6.496	1.311	3.395	0.676	
R4	stream	0 h	3.654	0.289	1.281	0.103	
Beans, single application, 1 x 0.75 kg a.s./ha							
D2	ditch	0 h	1.833	0.284	1.833	0.247	
D2	stream	0 h	1.211	0.243	1.211	0.165	
D3	ditch	0 h	0.686	0.125	0.356	0.066	
D4	pond	0 h	0.102	0.031	0.068	0.021	
D4	stream	0 h	0.790	0.066	0.411	0.035	
D6, 1st crop	ditch	0 h	0.675	0.074	0.351	0.039	
D6, 2nd crop	ditch	0 h	0.676	0.073	0.352	0.039	
R1	pond	0 h	0.204	0.108	0.105	0.058	
R1	stream	0 h	5.983	0.903	3.126	0.475	
R2	stream	0 h	0.817	0.043	0.425	0.022	
R3	stream	0 h	0.857	0.092	0.446	0.048	
R4	stream	0 h	5.200	0.996	2.725	0.528	
Beans, multiple application, 2 x 0.75 kg a.s./ha							
D2	ditch	0 h	23.400	2.994	23.400	2.919	
D2	stream	0 h	14.980	1.678	14.980	1.615	
D3	ditch	0 h	0.562	0.128	0.286	0.066	
D4	pond	0 h	0.086	0.040	0.056	0.026	
D4	stream	0 h	0.652	0.068	0.332	0.035	
D6, 1st crop	ditch	0 h	0.564	0.143	0.287	0.074	
D6, 2nd crop	ditch	0 h	0.566	0.111	0.291	0.068	
R1	pond	0 h	0.283	0.165	0.146	0.089	
R1	stream	0 h	5.983	1.013	3.126	0.531	
R2	stream	0 h	0.669	0.038	0.340	0.019	
R3	stream	0 h	6.480	0.990	3.393	0.525	
R4	stream	0 h	9.467	1.923	4.952	1.017	
Leek, 1 x 4.15 kg a.s./ha, CAM5, 10 cm depth							
D3	ditch	0 h	< 0.001	< 0.001	< 0.001	< 0.001	
D4	pond	0 h	< 0.001	< 0.001	< 0.001	< 0.001	
D4	stream	0 h	< 0.001	< 0.001	< 0.001	< 0.001	
D6, 1st crop	ditch	0 h	< 0.001	< 0.001	< 0.001	< 0.001	
D6, 2nd crop	ditch	0 h	< 0.001	< 0.001	< 0.001	< 0.001	
R1	pond	0 h	< 0.001	< 0.001	< 0.001	< 0.001	
R1	stream	0 h	0.054	0.008	0.028	0.004	
R2	stream	0 h	0.037	0.006	0.019	0.003	
R3	stream	0 h	0.355	0.051	0.185	0.027	
R4	stream	0 h	0.289	0.058	0.151	0.031	
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, early							
D6	ditch	0 h	< 0.001	< 0.001	< 0.001	< 0.001	
R2	stream	0 h	0.070	0.013	0.036	0.007	
R3	stream	0 h	4.643	0.934	2.435	0.486	
R4	stream	0 h	4.423	0.841	2.312	0.445	
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, late							
D6	ditch	0 h	< 0.001	< 0.001	< 0.001	< 0.001	
R2	stream	0 h	0.047	0.010	0.024	0.005	
R3	stream	0 h	4.643	0.934	2.435	0.486	
FOCUS STEP 4
Thiophanate-methyl

Water body	Day after overall maximum	10 m vegetated buffer zone	20 m vegetated buffer zone		
	PECsw, µg/l, Actual	PECsed, µg/kg, Actual	PECsw, µg/l, Actual	PECsed, µg/kg, Actual	
R4	0 h	12.780	2.138	6.660	1.126
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, early					
D6	ditch 0 h	< 0.001	< 0.001	< 0.001	< 0.001
R2	stream 0 h	0.070	0.012	0.036	0.006
R3	stream 0 h	4.643	0.934	2.435	0.486
R4	stream 0 h	4.423	0.841	2.312	0.445
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, late					
D6	ditch 0 h	< 0.001	< 0.001	< 0.001	< 0.001
R2	stream 0 h	0.043	0.009	0.022	0.005
R3	stream 0 h	4.643	0.934	2.435	0.486
R4	stream 0 h	12.780	2.138	6.660	1.126
Winter cereals, early application, 1 x 0.75 kg a.s./ha					
D1	ditch 0 h	0.694	0.339	0.361	0.225
D1	stream 0 h	0.815	0.204	0.424	0.144
D2	ditch 0 h	28.900	6.151	28.900	6.105
D2	stream 0 h	20.890	3.199	20.890	3.144
D3	ditch 0 h	0.684	0.117	0.356	0.062
D4	pond 0 h	0.102	0.037	0.068	0.025
D4	stream 0 h	0.768	0.045	0.399	0.023
D5	pond 0 h	0.102	0.045	0.068	0.031
D5	stream 0 h	0.812	0.040	0.422	0.021
D6	ditch 0 h	0.687	0.162	0.357	0.085
R1	pond 0 h	0.102	0.041	0.068	0.027
R1	stream 0 h	1.395	0.198	0.704	0.101
R3	stream 0 h	1.552	0.350	0.814	0.184
R4	stream 0 h	5.533	0.960	2.888	0.508
Winter cereals, late application, 1 x 0.75 kg a.s./ha					
D1	ditch 0 h	0.693	0.601	0.361	0.596
D1	stream 0 h	0.815	0.399	0.424	0.398
D2	ditch 0 h	0.692	0.215	0.360	0.113
D2	stream 0 h	0.830	0.257	0.431	0.135
D3	ditch 0 h	0.685	0.121	0.356	0.064
D4	pond 0 h	0.102	0.031	0.068	0.021
D4	stream 0 h	0.797	0.077	0.414	0.041
D5	pond 0 h	0.102	0.036	0.068	0.024
D5	stream 0 h	0.860	0.096	0.447	0.051
D6	ditch 0 h	0.690	0.178	0.358	0.094
R1	pond 0 h	0.168	0.075	0.085	0.041
R1	stream 0 h	1.494	0.326	0.784	0.169
R3	stream 0 h	6.837	1.016	3.580	0.539
R4	stream 0 h	0.609	0.051	0.317	0.027
Metabolite Carbendazim

Parameters used in FOCUSsw step 1 and 2

- Molecular weight (g/mol): 191.21
- \(K_{OC} (\text{mL/g}) \): 394.0
- RMS: The agreed \(K_{OC} \) is 224.5
- \(DT_{50} \) soil (d): 20.0 days (field, SFO)
- \(DT_{50} \) water/sediment system (d): 53.1 (geomean, water/sed)
- \(DT_{50} \) water (d): 53.1
- \(DT_{50} \) sediment (d): 53.1
- Crop interception:
 - Full canopy (Grapes 60%, Beans, winter cereals 70%)
 - Tomato/aubergine, leek no interception (soil incorporation)
- Maximum occurrence observed (% molar basis with respect to the parent)
 - Total Water and Sediment: 82.8% (in water without sediment)
 - Soil: 75.8%

*It should be noted that the available PECsw/PECsed for carbendazim need to be confirmed when the correct normalised field DT50 will be available.

Parameters used in FOCUSsw step 3 and 4

- Water solubility (mg/L): 8
- Vapour pressure: \(9 \times 10^{-5} \text{ Pa at } 20^\circ \text{C} \)
- \(K_{OC}/K_{OM} (\text{mL/g}) \): 224.5 / 130.2
- 1/n: 0.9675
- Q10=2.58, Walker equation coefficient 0.7
- Crop uptake factor: 0
- Metabolite kinetically generated in simulation: yes
- Formation fraction in soil (kf/kdp): 0.42 (field)
- (thiophanate-methyl \(\rightarrow \) carbendazim)
- Formation fraction in sediment water (kf/kdp): 0.78
- (thiophanate-methyl \(\rightarrow \) carbendazim)

Application rate

See thiophanate-methyl module

FOCUS STEP 1 Carbendazim	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
	Actual	TWA	Actual	TWA	
Grapes, 1 x 1.1 kg a.s./ha	0 h	226.5	839.0		
Field beans, 1/2 x 0.75 kg a.s./ha	0 h	296.7	1140		
Winter cereals, 1 x 0.75 kg a.s./ha	0 h	148.3	572.0		
Tomato (greenhouse), 3 x 2.3 kg a.s./ha	0 h	1340	5260		
Tomato (field), 3 x 2.1 kg a.s./ha	0 h	1220	4810		
Leek, 1 x 4.15 kg a.s./ha	0 h	803.2	3170		
FOCUS STEP 2	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
--------------	---------------------------	-----------------	-------------------		
		Northern EU	Southern EU		
		Northern EU	Southern EU		
Grapes, Oct-Feb 1 x 1.1 kg a.s./ha	0 h	28.67	24.85	107.3	92.39
Field beans, Oct-Feb 1/2 x 0.75 kg a.s./ha	0 h	18.98	15.91	72.20	60.26
Winter cereals, Oct-Feb 1x 0.75 kg a.s./ha	0 h	12.01	10.06	45.72	38.12
Tomato (greenhouse), Oct-Feb 3 x 2.3 kg a.s./ha	0 h	144.2	115.3	568.2	454.6
Tomato (field), Oct-Feb 3 x 2.1 kg a.s./ha	0 h	131.6	105.3	518.8	415.0
Leek, Oct-Feb 1 x 4.15 kg a.s./ha	0 h	180.2	144.2	710.1	568.1
FOCUS STEP 3 Carbazim	Water body	Day after overall maximum	PECsw, µg/l, Actual	PECsed, µg/kg, Actual	
-----------------------	------------	--------------------------	---------------------	----------------------	
Grapes, early application, 1 x 1.1 kg a.s./ha					
D6	ditch	0 h	0.369	0.174	
R1	pond	0 h	0.210	0.410	
R1	stream	0 h	1.834	0.541	
R2	stream	0 h	1.270	0.503	
R3	stream	0 h	1.624	1.755	
R4	stream	0 h	0.188	0.030	
Grapes, late application, 1 x 1.1 kg a.s./ha					
D6	ditch	0 h	4.268	3.432	
R1	pond	0 h	0.212	0.507	
R1	stream	0 h	1.502	0.039	
R2	stream	0 h	0.656	0.046	
R3	stream	0 h	7.092	2.094	
R4	stream	0 h	0.855	0.287	
Beans, single application, 1 x 0.75 kg a.s./ha					
D2	ditch	0 h	5.687	5.385	
D2	stream	0 h	3.770	1.960	
D3	ditch	0 h	0.295	0.123	
D4	pond	0 h	0.069	0.240	
D4	stream	0 h	0.147	0.075	
D6, 1st crop	ditch	0 h	0.062	0.025	
D6, 2nd crop	ditch	0 h	0.165	0.072	
R1	pond	0 h	0.522	1.003	
R1	stream	0 h	4.134	0.934	
R2	stream	0 h	0.131	0.059	
R3	stream	0 h	1.816	0.391	
R4	stream	0 h	5.310	1.541	
Beans, multiple application, 2 x 0.75 kg a.s./ha					
D2	ditch	0 h	15.920	13.980	
D2	stream	0 h	11.800	5.202	
D3	ditch	0 h	0.299	0.158	
D4	pond	0 h	0.174	0.554	
D4	stream	0 h	0.197	0.196	
D6, 1st crop	ditch	0 h	0.555	0.332	
D6, 2nd crop	ditch	0 h	0.371	0.314	
R1	pond	0 h	0.771	1.573	
R1	stream	0 h	4.288	1.272	
R2	stream	0 h	0.310	0.180	
R3	stream	0 h	6.847	1.642	
R4	stream	0 h	6.992	2.199	
Leek, 1 x 4.15 kg a.s./ha, CAM5, 10 cm depth					
D3	ditch	0 h	< 0.001	< 0.001	
D4	pond	0 h	0.009	0.028	
D4	stream	0 h	0.015	0.012	
D6, 1st crop	ditch	0 h	0.001	0.002	
D6, 2nd crop	ditch	0 h	0.303	0.185	
R1	pond	0 h	0.010	0.020	
R1	stream	0 h	0.318	0.064	
R2	stream	0 h	0.276	0.057	
R3	stream	0 h	0.738	0.152	
R4	stream	0 h	0.855	0.244	
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, early					
D6	ditch	0 h	0.004	0.002	
R2	stream	0 h	6.078	2.701	
R3	stream	0 h	12.350	5.392	
R4	stream	0 h	7.308	2.305	
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, late					
D6	ditch	0 h	0.005	0.002	
R2	stream	0 h	5.950	2.102	
R3	stream	0 h	12.350	5.392	
R4	stream	0 h	15.670	5.493	
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, early					
D6	ditch	0 h	0.003	0.002	
FOCUS STEP 3 Carbendazim	Water body	Day after overall maximum	PEC\(_{sw}\), µg/l, Actual	PEC\(_{sed}\), µg/kg, Actual	
--------------------------	-----------	--------------------------	-----------------------------	-----------------------------	
R2	stream	0 h	5.608	2.516	
R3	stream	0 h	11.510	5.001	
R4	stream	0 h	7.308	2.305	

Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, late

Day after overall maximum	PEC\(_{sw}\), µg/l, Actual	PEC\(_{sed}\), µg/kg, Actual	
D6	0 h	0.004	0.002
R2	stream	0 h	0.002
R3	stream	0 h	0.002
R4	stream	0 h	0.002

Winter cereals, early application, 1 x 0.75 kg a.s./ha

Day after overall maximum	PEC\(_{sw}\), µg/l, Actual	PEC\(_{sed}\), µg/kg, Actual		
D1	ditch	0 h	1.429	2.938
D2	stream	0 h	0.365	0.667
D2	ditch	0 h	4.367	4.524
D2	stream	0 h	9.168	2.705
D3	ditch	0 h	0.212	0.076
D4	pond	0 h	0.055	0.158
D4	stream	0 h	0.144	0.035
D5	pond	0 h	0.066	0.183
D5	stream	0 h	0.213	0.043
D6	ditch	0 h	0.415	0.254
R1	pond	0 h	0.129	0.274
R3	stream	0 h	1.271	0.347
R4	stream	0 h	2.823	0.911

Winter cereals, late application, 1 x 0.75 kg a.s./ha

Day after overall maximum	PEC\(_{sw}\), µg/l, Actual	PEC\(_{sed}\), µg/kg, Actual		
D1	ditch	0 h	1.534	3.145
D2	stream	0 h	0.393	0.810
D2	ditch	0 h	1.593	3.272
D3	stream	0 h	1.502	2.538
D4	ditch	0 h	0.268	0.102
D4	pond	0 h	0.060	0.213
D4	stream	0 h	0.183	0.056
D5	pond	0 h	0.075	0.235
D5	stream	0 h	0.258	0.092
D6	ditch	0 h	1.131	0.917
R1	pond	0 h	0.320	0.638
R1	stream	0 h	1.838	0.570
R3	stream	0 h	6.355	1.410
R4	stream	0 h	0.140	0.016
FOCUS STEP 4 Carbendazim

Water body	Day after overall maximum	10 m vegetated buffer zone	20 m vegetated buffer zone	
	PECsw, µg/l, Actual	PECsed, µg/kg, Actual	PECsw, µg/l, Actual	PECsed, µg/kg, Actual
Grapes, early application, 1 x 1.1 kg a.s./ha				
D6 ditch	0 h	0.787	0.040	0.028
R1 pond	0 h	0.999	0.197	0.049
R1 stream	0 h	0.829	0.244	0.433
R2 stream	0 h	0.572	0.215	0.299
R3 stream	0 h	2.346	0.787	1.229
R4 stream	0 h	0.048	0.014	0.019
Grapes, late application, 1 x 1.1 kg a.s./ha				
D6 ditch	0 h	0.933	0.772	0.443
R1 pond	0 h	0.135	0.326	0.068
R1 stream	0 h	0.132	0.016	0.046
R2 stream	0 h	0.173	0.019	0.061
R3 stream	0 h	3.213	0.942	1.680
R4 stream	0 h	0.383	0.128	0.199
Beans, single application, 1 x 0.75 kg a.s./ha				
D2 ditch	0 h	5.684	4.763	5.683
D2 stream	0 h	3.770	1.734	3.770
D3 ditch	0 h	0.051	0.022	0.027
D4 pond	0 h	0.066	0.212	0.065
D4 stream	0 h	0.076	0.074	0.076
D6, 1st crop ditch	0 h	0.035	0.024	0.035
D6, 2nd crop	0 h	0.090	0.070	0.090
R1 pond	0 h	0.226	0.439	0.119
R1 stream	0 h	1.869	0.414	0.977
R2 stream	0 h	0.043	0.020	0.023
R3 stream	0 h	0.811	0.174	0.422
R4 stream	0 h	2.415	0.697	1.265
Beans, multiple application, 2 x 0.75 kg a.s./ha				
D2 ditch	0 h	15.920	13.150	15.920
D2 stream	0 h	11.800	4.965	11.800
D3 ditch	0 h	0.049	0.026	0.025
D4 pond	0 h	0.169	0.508	0.166
D4 stream	0 h	0.197	0.195	0.197
D6, 1st crop ditch	0 h	0.118	0.086	0.118
D6, 2nd crop	0 h	0.371	0.306	0.371
R1 pond	0 h	0.332	0.683	0.174
R1 stream	0 h	1.947	0.562	1.020
R2 stream	0 h	0.141	0.063	0.074
R3 stream	0 h	3.114	0.749	1.631
R4 stream	0 h	3.167	0.995	1.657
Leek, 1 x 4.15 kg a.s./ha, CAM5, 10 cm depth				
D3 ditch	0 h	< 0.001	< 0.001	< 0.001
D4 pond	0 h	0.009	0.028	0.009
D4 stream	0 h	0.015	0.012	0.015
D6, 1st crop ditch	0 h	0.001	0.002	0.001
D6, 2nd crop	0 h	0.303	0.185	0.303
R1 pond	0 h	0.004	0.008	0.002
R1 stream	0 h	0.134	0.027	0.068
R2 stream	0 h	0.123	0.026	0.064
R3 stream	0 h	0.331	0.068	0.172
R4 stream	0 h	0.388	0.111	0.203
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, early				
D6 ditch	0 h	0.004	0.002	0.004
R2 stream	0 h	2.746	1.016	1.436
R3 stream	0 h	5.632	2.035	2.954
R4 stream	0 h	3.323	1.043	1.742
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, late				
D6 ditch	0 h	0.005	0.002	0.005
R2 stream	0 h	2.676	0.826	1.395
R3 stream	0 h	5.632	2.035	2.954
R4 stream	0 h	7.127	2.337	3.735
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, early				
FOCUS STEP 4 Carbazendazim	Water body	Day after overall maximum	10 m vegetated buffer zone	20 m vegetated buffer zone
---	---	---	---	---
			PEC_{sw}, µg/l, Actual	PEC_{sed}, µg/kg, Actual
D6	ditch	0 h	0.003	0.002
R2	stream	0 h	2.534	0.945
R3	stream	0 h	5.251	1.884
R4	stream	0 h	3.323	1.043
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, late				
D6	ditch	0 h	0.004	0.002
R2	stream	0 h	2.468	0.768
R3	stream	0 h	5.251	1.884
R4	stream	0 h	6.503	2.162
Winter cereals, early application, 1 x 0.75 kg a.s./ha				
D1	ditch	0 h	0.556	1.123
D1	stream	0 h	0.365	0.665
D2	ditch	0 h	4.367	4.477
D2	stream	0 h	9.168	2.662
D3	ditch	0 h	0.031	0.011
D4	stream	0 h	0.035	0.127
D5	pond	0 h	0.039	0.035
D5	stream	0 h	0.045	0.135
D6	stream	0 h	0.046	0.033
D6	ditch	0 h	0.060	0.039
R1	pond	0 h	0.063	0.137
R1	stream	0 h	0.577	0.156
R3	stream	0 h	1.288	0.407
R4	stream	0 h	1.722	0.450
Winter cereals, late application, 1 x 0.75 kg a.s./ha				
D1	ditch	0 h	0.440	1.201
D1	stream	0 h	0.345	0.808
D2	ditch	0 h	1.591	1.625
D2	stream	0 h	1.022	0.723
D3	ditch	0 h	0.038	0.015
D4	pond	0 h	0.056	0.180
D4	stream	0 h	0.063	0.055
D5	pond	0 h	0.054	0.190
D5	stream	0 h	0.050	0.071
D6	ditch	0 h	0.162	0.135
R1	pond	0 h	0.140	0.288
R1	stream	0 h	0.837	0.252
R3	stream	0 h	2.891	0.643
R4	stream	0 h	0.027	0.005
Parameters used in FOCUSw step 1 and 2

| Metabolites | **CM-0237:** | | **DX-105:** | | **4-OH-TM:** | | **M 10** |
|-------------|---------------|---------------|---------------|---------------|---------------|---------------|
| **2-AB:** | Data gap | | Molecular weight: 133.15 | | Molecular weight: 326.33 | | Molecular weight: 202.17 |
| Soil or water metabolite: | Soil and water (without sediment) | Soil or water metabolite: Water |
| K_{OC} (mL/g): | 0 | 146.1 | 146.1 | 235.6 | 235.6 | 235.6 |
| **RMS:** | The agreed soil DT$_{50}$ is 9.7 days | | The agreed soil DT$_{50}$ is 0.175 (EFSA conclusion on carbendazim, 2010) | | The agreed soil DT$_{50}$ is 2.356 | | The agreed soil DT$_{50}$ is 0.175 (EFSA conclusion on carbendazim, 2010) |
| DT$_{50}$ soil (d): | 6.4 d (lab, SFO) | 1000 d |
| DT$_{50}$ water/sediment system (d): | 189.3 | 1000 | 29.2 | 1000 | 29.2 | 1000 |
| DT$_{50}$ water (d): | 189.3 | 1000 | 29.2 | 1000 | 29.2 | 1000 |
| DT$_{50}$ sediment (d): | 189.3 | 1000 | 29.2 | 1000 | 29.2 | 1000 |
| Crop interception: | | | | | | |
| Full canopy (Grapes 60%, Beans, winter cereals 70 %) | | | | | | |
| Tomato/aubergine, leek no interception (soil incorporation) | | | | | | |
| Max occurrence obs (% molar basis with respect to the parent) | | | | | | |
| Total Water and Sediment: 9.5% (without sediment) | | | | | | |
| Soil: 6.1% | | | | | | |
| **4-OH-TM:** | | | | | | |
| Molecular weight: 358.40 | | | | | | |
| Soil or water metabolite: Water | | | | | | |
| K_{OC} (mL/g): | 0 | | | | | |
| DT$_{50}$ soil (d): | 1000 d | | | | | |
| DT$_{50}$ water/sediment system (d): | 29.2 | | | | | |
| DT$_{50}$ water (d): | 29.2 | | | | | |
| DT$_{50}$ sediment (d): | 29.2 | | | | | |
| Crop interception: | | | | | | |
| Full canopy (Grapes 60%, Beans, winter cereals 70 %) | | | | | | |
| Tomato/aubergine, leek no interception (soil incorporation) | | | | | | |
| Max occurrence obs (% molar basis with respect to the parent) | | | | | | |
| Total Water and Sediment: 14.3% (photolysis) | | | | | | |
| Soil: 5.5% | | | | | | |
| **M 10:** | | | | | | |
| Molecular weight: 202.17 | | | | | | |
| Soil or water metabolite: Water | | | | | | |
| K_{OC} (mL/g): | 0 | | | | | |
| DT$_{50}$ soil (d): | 1000 | | | | | |
| DT$_{50}$ water/sediment system (d): | 1000 | | | | | |
| DT$_{50}$ water (d): | 1000 | | | | | |
| DT$_{50}$ sediment (d): | 1000 | | | | | |
| Crop interception: | | | | | | |
| Full canopy (Grapes 60%, Beans, winter cereals 70 %) | | | | | | |
| Tomato/aubergine, leek no interception (soil incorporation) | | | | | | |
| Max occurrence obs (% molar basis with respect to the parent) | | | | | | |
| Total Water and Sediment: 9.3% (total water/sediment) | | | | | | |
| Soil: 0.001% | | | | | | |

Application rate

See thiophanate-methyl module
Main routes of entry

FOCUS STEP 1	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
2-AB Grapes, 1 x 1.1 kg a.s./ha	0 h	19.12	31.56
Field beans 1/2 x 0.75 kg a.s./ha	0 h	25.10	43.04
Winter cereals 1x 0.75 kg a.s./ha	0 h	12.55	21.52
Tomato (greenhouse) 3 x 2.3 kg a.s./ha	0 h	113.1	198.0
Tomato (field) 3 x 2.1 kg a.s./ha	0 h	103.3	180.8
Leek 1 x 4.15 kg a.s./ha	0 h	68.04	119.1

FOCUS STEP 2	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
2-AB Grapes, Oct-Feb 1 x 1.1 kg a.s./ha	0 h	1.979	1.769
Field beans, Oct-Feb 1/2 x 0.75 kg a.s./ha	0 h	1.015	0.887
Winter cereals, Oct-Feb 1x 0.75 kg a.s./ha	0 h	0.755	0.648
Tomato (greenhouse), Oct-Feb 3 x 2.3 kg a.s./ha	0 h	5.691	4.553
Tomato (field), Oct-Feb 3 x 2.1 kg a.s./ha	0 h	5.196	4.157
Leek, Oct-Feb 1 x 4.15 kg a.s./ha	0 h	9.921	7.937

FOCUS STEP 1	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
DX-105 Grapes, 1 x 1.1 kg a.s./ha	0 h	61.92	84.61
Field beans 1/2 x 0.75 kg a.s./ha	0 h	80.85	115.4
Winter cereals 1x 0.75 kg a.s./ha	0 h	40.43	57.69
Tomato (greenhouse) 3 x 2.3 kg a.s./ha	0 h	363.3	530.7
Tomato (field) 3 x 2.1 kg a.s./ha	0 h	331.7	484.6
Leek 1 x 4.15 kg a.s./ha	0 h	218.5	319.2

FOCUS STEP 2	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
DX-105 Grapes, Oct-Feb 1 x 1.1 kg a.s./ha	0 h	7.272	6.526
Field beans, Oct-Feb 1/2 x 0.75 kg a.s./ha	0 h	4.992	4.286
Winter cereals, Oct-Feb 1x 0.75 kg a.s./ha	0 h	2.738	2.356
Tomato (greenhouse), Oct-Feb 3 x 2.3 kg a.s./ha	0 h	52.02	41.61
Tomato (field), Oct-Feb 3 x 2.1 kg a.s./ha	0 h	47.50	58.00
Leek, Oct-Feb 1 x 4.15 kg a.s./ha	0 h	35.19	28.15
FOCUS STEP 1

Crop Type	Pesticide Application	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
		Actual	TWA	Actual	TWA
Grapes, 1 x 1.1 kg a.s./ha	0 h	39.39	<0.001		
Field beans, 1/2 x 0.75 kg a.s./ha	0 h	51.10	<0.001		
Winter cereals, 1x 0.75 kg a.s./ha	0 h	25.55	<0.001		
Tomato (greenhouse), 3 x 2.3 kg a.s./ha	0 h	228.7	<0.001		
Tomato (field), 3 x 2.1 kg a.s./ha	0 h	208.8	<0.001		
Leek, 1 x 4.15 kg a.s./ha	0 h	137.6	<0.001		

FOCUS STEP 2

Crop Type	Pesticide Application	Day after overall maximum	PEC_{SW} (µg/L) Northern EU	PEC_{SW} (µg/L) Southern EU	PEC_{SED} (µg/kg) Northern EU	PEC_{SED} (µg/kg) Southern EU
Grapes, Oct-Feb, 1 x 1.1 kg a.s./ha	0 h	3.118	3.027	<0.001	<0.001	
Field beans, Oct-Feb, 1/2 x 0.75 kg a.s./ha	0 h	1.180	1.134	<0.001	<0.001	
Winter cereals, Oct-Feb, 1x 0.75 kg a.s./ha	0 h	0.857	0.811	<0.001	<0.001	
Tomato (greenhouse), Oct-Feb, 3 x 2.3 kg a.s./ha	0 h	2.394	1.915	<0.001	<0.001	
Tomato (field), Oct-Feb, 3 x 2.1 kg a.s./ha	0 h	2.186	1.749	<0.001	<0.001	
Leek, Oct-Feb, 1 x 4.15 kg a.s./ha	0 h	4.306	3.445	<0.001	<0.001	

FOCUS STEP 1

Crop Type	Pesticide Application	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
		Actual	TWA	Actual	TWA
Grapes, 1 x 1.1 kg a.s./ha	0 h	21.75	<0.001		
Field beans, 1/2 x 0.75 kg a.s./ha	0 h	28.22	<0.001		
Winter cereals, 1x 0.75 kg a.s./ha	0 h	14.11	<0.001		
Tomato (greenhouse), 3 x 2.3 kg a.s./ha	0 h	126.3	<0.001		
Tomato (field), 3 x 2.1 kg a.s./ha	0 h	115.3	<0.001		
Leek, 1 x 4.15 kg a.s./ha	0 h	75.97	<0.001		

FOCUS STEP 2

Crop Type	Pesticide Application	Day after overall maximum	PEC_{SW} (µg/L) Northern EU	PEC_{SW} (µg/L) Southern EU	PEC_{SED} (µg/kg) Northern EU	PEC_{SED} (µg/kg) Southern EU
Grapes, Oct-Feb, 1 x 1.1 kg a.s./ha	0 h	1.864	1.814	<0.001	<0.001	
Field beans, Oct-Feb, 1/2 x 0.75 kg a.s./ha	0 h	0.793	0.768	<0.001	<0.001	
Winter cereals, Oct-Feb, 1x 0.75 kg a.s./ha	0 h	0.507	0.481	<0.001	<0.001	
Tomato (greenhouse), Oct-Feb, 3 x 2.3 kg a.s./ha	0 h	1.322	1.058	<0.001	<0.001	
Tomato (field), Oct-Feb, 3 x 2.1 kg a.s./ha	0 h	1.207	0.966	<0.001	<0.001	
Leek, Oct-Feb, 1 x 4.15 kg a.s./ha	0 h	2.378	1.902	<0.001	<0.001	
Metabolites
CM-0237
2-AB
DX-105

Parameters used in FOCUSsw step 3 and 4

Metabolite	Data gap	Water solubility (mg/L)	Vapour pressure	KOC/KOM (mL/g)	1/n	Q10	Walker equation coefficient	Crop uptake factor	Metabolite kinetically generated in simulation	Formation fraction in soil (kf/kdp):	Formation fraction in sediment water (kf/kdp):
CM-0237	Data gap	1000	0	175 / 101.5	1.0	2.58	0.7	0	yes	0.2016	0.195
2-AB		1000	0					0			
DX-105		1000	0	235.6 / 136.7	0.85	2.58	0.7	0	yes	0.1	0.25

RMS: ff in water/sed 0.25 (used also to calculate 0.195) was not considered reliable.

Application rate
Main routes of entry

See thiophanate-methyl module
FOCUS STEP 3

2-AB

Water body	Day after overall maximum	PEC\(_{sw}\), µg/l, Actual	PEC\(_{sed}\), µg/kg, Actual	
Grapes, early application, 1 x 1.1 kg a.s./ha				
D6	ditch	0 h	0.065	0.025
Grapes, late application, 1 x 1.1 kg a.s./ha (R-scenarios covering early application)				
D6	ditch	0 h	0.769	0.514
R1	pond	0 h	0.007	0.022
R2	stream	0 h	< 0.001	< 0.001
R3	stream	0 h	0.035	0.010
R4	stream	0 h	0.080	0.020
Beans, multiple application, 2 x 0.75 kg a.s./ha (covering single application)				
D2	ditch	0 h	5.953	4.345
D3	stream	0 h	4.784	1.348
D4	ditch	0 h	0.053	0.022
D4	pond	0 h	0.018	0.054
D4	stream	0 h	0.024	0.011
D6, 1\(^{st}\) crop	ditch	0 h	0.099	0.048
D6, 2\(^{nd}\) crop	ditch	0 h	0.059	0.036
R1	pond	0 h	0.049	0.147
R2	stream	0 h	0.082	0.020
R3	stream	0 h	0.105	0.036
R4	stream	0 h	0.179	0.032
Leek, 1 x 4.15 kg a.s./ha, CAM5, 10 cm depth				
D3	ditch	0 h	< 0.001	< 0.001
D4	pond	0 h	< 0.001	0.001
D4	stream	0 h	< 0.001	< 0.001
D6, 1\(^{st}\) crop	ditch	0 h	0.058	0.026
D6, 2\(^{nd}\) crop	ditch	0 h	0.014	0.003
R1	pond	0 h	0.001	0.003
R2	stream	0 h	0.013	0.002
R3	stream	0 h	0.012	0.003
R4	stream	0 h	0.017	0.004
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, late (covering early applications)				
D6	ditch	0 h	< 0.001	< 0.001
R2	stream	0 h	0.720	0.195
R3	stream	0 h	1.124	0.368
R4	stream	0 h	0.829	0.221
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, late (covering early application)				
D6	ditch	0 h	< 0.001	< 0.001
R2	stream	0 h	0.677	0.184
R3	stream	0 h	1.028	0.340
R4	stream	0 h	0.758	0.204
Winter cereals, early application, 1 x 0.75 kg a.s./ha				
D1	ditch	0 h	0.270	0.446
D1	stream	0 h	0.061	0.090
D2	ditch	0 h	2.761	1.282
D2	stream	0 h	2.792	0.692
D3	ditch	0 h	0.037	0.011
D4	pond	0 h	0.010	0.024
D4	stream	0 h	0.025	0.002
D5	pond	0 h	0.011	0.027
D5	stream	0 h	0.037	0.003
D6	ditch	0 h	0.073	0.036
R1	pond	0 h	0.009	0.028
R1	stream	0 h	0.064	0.013
R3	stream	0 h	0.123	0.034
R4	stream	0 h	0.037	0.008
Winter cereals, late application, 1 x 0.75 kg a.s./ha				
D1	ditch	0 h	0.290	0.479
D1	stream	0 h	0.071	0.116
D2	ditch	0 h	0.285	0.588
FOCUS STEP 3 2-AB

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$
D2 stream	0 h	0.286	0.410
D3 ditch	0 h	0.047	0.014
D4 pond	0 h	0.011	0.026
D4 stream	0 h	0.032	0.005
D5 pond	0 h	0.013	0.036
D5 stream	0 h	0.046	0.010
D6 ditch	0 h	0.204	0.136
R1 pond	0 h	0.024	0.073
R1 stream	0 h	0.096	0.024
R3 stream	0 h	0.080	0.015
R4 stream	0 h	0.007	0.002

FOCUS STEP 4 2-AB

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$
20 m vegetated buffer zone			
D6 ditch	0 h	0.005	0.002

FOCUS STEP 4 2-AB: Grapes, early application, 1 x 1.1 kg a.s./ha

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$
D6 ditch	0 h	4.188	1.303

FOCUS STEP 4 2-AB: Grapes, late application, 1 x 1.1 kg a.s./ha (R-scenarios covering early application)

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$
D6 ditch	0 h	0.024	0.073

FOCUS STEP 4 2-AB: Beans, multiple application, 2 x 0.75 kg a.s./ha (covering single application)

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$
D2 ditch	0 h	5.953	4.188
D2 stream	0 h	4.784	1.303
D3 ditch	0 h	0.004	0.002
D4 pond	0 h	0.011	0.037
D4 stream	0 h	0.010	0.011
D6, 1st crop ditch	0 h	0.008	0.004
D6, 2nd crop ditch	0 h	0.011	0.024

FOCUS STEP 4 2-AB: Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, late (covering early applications)

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$
D6 ditch	0 h	< 0.001	< 0.001

FOCUS STEP 4 2-AB: Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, late (covering early application)

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$
D6 ditch	0 h	< 0.001	< 0.001

FOCUS STEP 4 2-AB: Winter cereals, early application, 1 x 0.75 kg a.s./ha

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$
D1 ditch	0 h	0.149	0.089
D1 stream	0 h	2.761	1.272
D2 ditch	0 h	2.792	0.680
D3 ditch	0 h	0.003	0.001
D4 pond	0 h	0.004	0.010
D4 stream	0 h	0.003	0.001
D5 pond	0 h	0.006	0.013
D5 stream	0 h	0.004	0.001
D6 ditch	0 h	0.006	0.003

FOCUS STEP 4 2-AB: Winter cereals, late application, 1 x 0.75 kg a.s./ha

Water body	Day after overall maximum	$\text{PEC}_{\text{sw}}, \mu\text{g/l, Actual}$	$\text{PEC}_{\text{sed}}, \mu\text{g/kg, Actual}$	
D1 ditch	0 h	0.168	0.116	
D1 stream	0 h	0.264	0.185	
D2 ditch	0 h	0.169	0.099	
D3 ditch	0 h	0.004	0.001	
D4 pond	0 h	0.005	0.013	
D4 stream	0 h	0.003	0.002	
D5 pond	0 h	0.007	0.021	
D5 stream	0 h	0.005	0.005	
D6 ditch	0 h	0.015	0.010	
FOCUS STEP 3	Water body	Day after overall maximum	PECsw, µg/l, Actual	PECsed, µg/kg, Actual
-------------	------------	--------------------------	---------------------	----------------------
DX-105				
Grapes, late application, 1 x 1.1 kg a.s./ha (covering early application)				
D6	ditch	0 h	1.944	2.677
R1	pond	0 h	0.100	0.517
R1	stream	0 h	0.233	0.035
R2	stream	0 h	0.304	0.128
R3	stream	0 h	2.985	1.275
R4	stream	0 h	0.723	0.363
Beans, multiple application, 2 x 0.75 kg a.s./ha (covering single application)				
D2	ditch	0 h	10.130	22.400
D2	stream	0 h	6.350	12.710
D3	ditch	0 h	0.136	0.133
D4	stream	0 h	1.662	8.084
D6, 1st crop	ditch	0 h	1.944	2.677
D6, 2nd crop	ditch	0 h	2.957	4.844
R1	pond	0 h	0.372	1.742
R1	stream	0 h	1.864	0.858
R2	stream	0 h	0.587	1.169
R3	stream	0 h	3.186	1.099
R4	stream	0 h	3.232	1.443
Leek, 1 x 4.15 kg a.s./ha, CAM5, 10 cm depth				
D3	ditch	0 h	0.567	3.969
D4	pond	0 h	4.459	26.46
D4	stream	0 h	3.564	9.403
D6, 1st crop	ditch	0 h	0.136	0.133
D6, 2nd crop	ditch	0 h	0.587	1.169
R1	pond	0 h	0.008	0.048
R1	stream	0 h	0.110	0.045
R2	stream	0 h	0.071	0.029
R3	stream	0 h	0.270	0.081
R4	stream	0 h	0.318	0.136
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, late (covering early applications)				
D6	ditch	0 h	0.690	1.119
R2	stream	0 h	3.255	2.738
R3	stream	0 h	5.841	4.018
R4	stream	0 h	6.483	3.524
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, late (covering early application)				
D6	ditch	0 h	0.690	1.119
R2	stream	0 h	3.255	2.738
R3	stream	0 h	5.841	4.018
R4	stream	0 h	6.483	3.524
Winter cereals, early application, 1 x 0.75 kg a.s./ha				
D1	ditch	0 h	2.429	11.22
D1	stream	0 h	1.515	6.231
D2	ditch	0 h	5.382	16.55
D2	stream	0 h	5.097	9.437
D3	ditch	0 h	0.097	0.061
D4	pond	0 h	0.782	3.991
D4	stream	0 h	0.765	1.389
D5	pond	0 h	0.813	5.854
D5	stream	0 h	0.589	1.345
D6	ditch	0 h	0.574	0.838
R1	pond	0 h	0.068	0.376
R1	stream	0 h	0.575	0.238
R3	stream	0 h	1.221	0.600
R4	stream	0 h	1.638	0.602
Winter cereals, late application, 1 x 0.75 kg a.s./ha				
D1	ditch	0 h	1.408	8.538
D1	stream	0 h	0.942	4.694
D2	ditch	0 h	2.547	9.384
D2	stream	0 h	1.594	5.749
Table: FOCUS STEP 3

DX-105

Water body	Day after overall maximum	PECsw, µg/l, Actual	PECsed, µg/kg, Actual
D3 ditch	0 h	0.122	0.082
D4 pond	0 h	0.554	2.849
D4 stream	0 h	0.549	0.999
D5 pond	0 h	0.435	3.503
D5 stream	0 h	0.328	0.784
D6 ditch	0 h	0.513	0.863
R1 pond	0 h	0.161	0.803
R1 stream	0 h	0.809	0.421
R3 stream	0 h	2.722	0.842
R4 stream	0 h	0.288	0.187

Table: FOCUS STEP 4

DX-105

Water body	Day after overall maximum	20 m vegetated buffer zone	PECsw, µg/l, Actual	PECsed, µg/kg, Actual
Grapes, late application, 1 x 1.1 kg a.s./ha (covering early application)				
D6 ditch	0 h	1.109	1.440	
R1 pond	0 h	0.032	0.179	
R1 stream	0 h	0.022	0.003	
R2 stream	0 h	0.051	0.029	
R3 stream	0 h	0.707	0.315	
R4 stream	0 h	0.169	0.089	
Beans, multiple application, 2 x 0.75 kg a.s./ha (covering single application)				
D2 ditch	0 h	10.13	21.84	
D2 stream	0 h	6.350	12.54	
D3 ditch	0 h	0.011	0.013	
D4 pond	0 h	1.655	7.997	
D4 stream	0 h	1.683	2.843	
D6, 1st crop ditch	0 h	2.003	3.486	
D6, 2nd crop ditch	0 h	2.957	4.840	
R1 pond	0 h	0.084	0.436	
R1 stream	0 h	0.443	0.198	
R2 stream	0 h	0.140	0.143	
R3 stream	0 h	0.759	0.277	
R4 stream	0 h	0.766	0.360	
Leek, 1 x 4.15 kg a.s./ha, CAM5, 10 cm depth				
D3 ditch	0 h	0.567	3.969	
D4 pond	0 h	4.459	26.46	
D4 stream	0 h	3.564	9.403	
D6, 1st crop ditch	0 h	0.715	1.687	
D6, 2nd crop ditch	0 h	0.829	1.921	
R1 pond	0 h	0.002	0.011	
R1 stream	0 h	0.026	0.011	
R2 stream	0 h	0.016	0.007	
R3 stream	0 h	0.063	0.020	
R4 stream	0 h	0.075	0.034	
Tomato, greenhouse, 0.7 + 1.4 + 2.3 kg a.s./ha, late (covering early applications)				
D6 ditch	0 h	0.731	1.187	
R2 stream	0 h	0.813	0.465	
R3 stream	0 h	1.531	0.873	
R4 stream	0 h	1.701	0.849	
Tomato, field, 0.7 + 1.4 + 2.1 kg a.s./ha, late (covering early application)				
D6 ditch	0 h	0.690	1.119	
R2 stream	0 h	0.763	0.440	
R3 stream	0 h	1.397	0.816	
R4 stream	0 h	1.546	0.788	
Winter cereals, early application, 1 x 0.75 kg a.s./ha				
D1 ditch	0 h	2.429	10.750	
D1 stream	0 h	1.515	6.228	
D2 ditch	0 h	5.382	16.52	
D2 stream	0 h	5.097	9.407	
D3 ditch	0 h	0.007	0.005	
D4 pond	0 h	0.778	3.929	
FOCUS STEP 4

Water body	Day after overall maximum	20 m vegetated buffer zone	
		PECsw, µg/l, Actual	PECsed, µg/kg, Actual

DX-105

		0 h	0.765	1.389
D4	stream			
D5	pond			
D5	stream		0.589	1.345
D6	ditch		0.589	1.345
R1	pond		0.574	0.816
R1	stream		0.019	0.113
R3	stream		0.137	0.057
R4	stream		0.292	0.146

Winter cereals, late application

		0 h	1.408	8.027

Application rate 1 x 0.75 kg a.s./ha

		0 h	0.942	4.691
D1	stream			
D2	ditch		2.547	8.719
D2	stream		1.594	5.264
D3	ditch		0.009	0.007
D4	pond		0.549	2.786
D4	stream		0.549	0.998
D5	pond		0.431	3.433
D5	stream		0.328	0.783
D6	ditch		0.399	0.595
R1	pond		0.038	0.212
R1	stream		0.193	0.093
R3	stream		0.649	0.210
R4	stream		0.069	0.043
Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation	
PEC	
Maximum concentration	Not required
Section 5 Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg /kg bw per day)
Birds				
Bobwhite quail	Thiophanate-methyl	Acute	LD₅₀	>4640
Mallard duck	Thiophanate-methyl	Acute	LD₅₀	>4640
	Topsin M 500 SC	Acute	LD₅₀	No data
Bobwhite quail	Carbazalazim	Acute	LD₅₀	>2250
Birds	FH-432	Acute	-	No data
Birds	2-AB	Acute	-	No data
Mallard duck	Carbazalazim	Short term	dietary LD₅₀	615
Bobwhite quail	Thiophanate-methyl	Long-term	NOAEL	9.1
Mallard duck	Thiophanate-methyl	Long-term	NOAEL	9.7
Mallard duck	Carbazalazim	Long-term	NOAEL	26.4

Mammals

Species	Test substance	Time scale	End point	Toxicity (mg /kg bw per day)
Rat	Thiophanate-methyl	Acute	LD₅₀	>5000
Rat	Thiophanate-methyl	Acute	LD₅₀	7500 in males, 6640 in females
Mouse	Thiophanate-methyl	Acute	LD₅₀	3514 in males, 3400 in females
Guinea pig	Thiophanate-methyl	Acute	LD₅₀	3640 in males, 6700 females
Rabbit	Thiophanate-methyl	Acute	LD₅₀	2270 in males, 2500 in females
Rat	Carbazalazim	Acute	LD₅₀	408 (a.s.)
Mouse	FH-432	Acute	LD₅₀	4300
Rat	2-AB	Acute	LD₅₀	3400
Rabbit	Thiophanate-methyl	Long-term	NOAEL	2.0
Rabbit	Carbazalazim	Long-term	NOAEL	22.5

Endocrine disrupting properties (Annex Part A, points 8.1.5):
Although none of the presented studies provides a conclusive picture, taken together the presented data indicate that Thiophanate-methyl and/or its metabolite Carbendazim might
- disrupt thyroid function (effects on thyroidea and thyroid hormones were also observed in mammalian studies).
- interfere with adrenal steroid synthesis, although results are contradicting and observation might be rather a general stress response.
- interfere with estrogen and androgen receptor
- and/or generally interfere with steroid synthesis
The mode(s) of action and possible adverse impact need further elucidation in order to conclude whether or not Thiophanate-methyl (and/or Carbendazim) is an endocrine disrupter.

Additional higher tier studies (Annex Part A, points 10.1.1.2):
Available data on residue decline in plants (Scherer, 2015)

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):
Data were available on the genotoxicity and testicular toxicity to the lizard Podarcis sicula (Capriglione et al., 2011; Cardone, 2012), and on morphological and functional changes in the thyroid gland (Sciarrillo et al., 2008). However, these data were not used for risk assessment.
Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Grapes at 1100 g a.s./ha [single application, BBCH 57-81]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute (a.s.)	105	>44.3	10
All	Small omnivorous bird	Acute (Carbendazim)	58.5	10.5	10
All	Small omnivorous bird	Acute (FH-432)	95.0	>48.8	10
All	Small omnivorous bird	Acute (2-AB)	40.8	>113.7	10
All	Small omnivorous bird	Long-term (a.s.)	22.5	**0.40**	5
All	Small omnivorous bird	Long-term (Carbendazim)	12.6	**2.10**	5
Tier 1 (Birds)					
BBCH >20	Small insectivorous bird	Acute*	14.98	164	10
BBCH >40	Small granivorous bird	Acute*	4.31	570	10
Ripening	Frugivorous bird	Acute*	16.85	146	10
BBCH >40	Small omnivorous bird	Acute*	4.20	586	10
BBCH >20	Small insectivorous bird	Long-term (a.s.)	5.74	**1.59**	5
BBCH >40	Small granivorous bird	Long-term (a.s.)	1.97	**4.61**	5
Ripening	Frugivorous bird	Long-term (a.s.)	8.34	**1.09**	5
BBCH >40	Small omnivorous bird	Long-term (a.s.)	1.91	**4.76**	5
BBCH >20	Small insectivorous bird	Long-term (Carbendazim)	3.20	8.25	5
BBCH >40	Small granivorous bird	Long-term (Carbendazim)	1.10	24.0	5
Ripening	Frugivorous bird	Long-term (Carbendazim)	4.66	5.67	5
BBCH >40	Small omnivorous bird	Long-term (Carbendazim)	1.07	24.7	5

*Note that based on mammalian data, the representative formulation is ca 10 times more toxic than the active ingredient, and no formulation data is available for birds.

Higher tier (birds):
The long term risk assessment was refined by PT/PD values derived from generic field studies on the focal species, including analysis of faeces content and radio-tracking. Proposed refinements of residue decline was not considered acceptable by RMS. See RMS evaluation in Volume 3CP, section 9. No acceptable refinement for small insectivors, small granivors, frugivors and small omnivors.

Overall, the RMS considers that the available residue data and radio-tracking data are not sufficiently robust for the refinement.

All	Cirl bunting	Long term (a.s.)	3.74	**2.43**	5
All	Great tit	Long term (a.s.)	0.724	12.6	5
All	Linnet	Long term (a.s.)	6.41	**1.42**	5
All	Wood lark	Long term (a.s.)	2.19	**4.16**	5

Screening Step (Mammals)

All	Small herbivorous mammal	Acute (a.s.)	150	**2.7**	10
All	Small herbivorous mammal	Acute (Carbendazim)	83.7	59.7	10
All	Small herbivorous mammal	Acute (FH-432)	136	31.6	10
All	Small herbivorous mammal	Acute (2-AB)	58.4	58.2	10
All	Long-term (a.s.)	Not calculated			5

Tier 1 (Mammals)

BBCH>40	Large herbivorous mammal	Acute (a.s.)	8.9	46	10
BBCH>20	Small insectivorous mammal	Acute (a.s.)	5.9	69	10
BBCH>40	Small herbivorous mammal	Acute (a.s.)	45.0	**9.1**	10
BBCH>40	Small omnivorous mammal	Acute (a.s.)	5.7	72	10
BBCH>40	Large herbivorous mammal	Long-term (a.s.)	1.91	**1.04**	5
Growth stage Indicator or focal species Time scale DDD (mg/kg bw per day) TER Trigger

Growth stage	Indicator or focal species	Time scale	DDD	TER	Trigger
BBCH > 20	Small insectivorous	Long-term (a.s.)	1.10	1.81	5
BBCH > 40	Small herbivorous	Long-term (a.s.)	12.6	0.16	5
BBCH > 40	Small omnivorous	Long-term (a.s.)	1.33	1.50	5
BBCH > 40	Large herbivorous	Long-term (Carbendazim)	1.07	21.1	5
BBCH > 20	Small insectivorous	Long-term (Carbendazim)	0.615	36.6	5
BBCH > 40	Small herbivorous	Long-term (Carbendazim)	7.02	3.21	5
	Small omnivorous	Long-term (Carbendazim)	0.744	30.3	5

Higher tier (mammals):

The risk assessment was refined by PT/PD values derived from generic field studies on the focal species, including analysis of faeces content and radio-tracking. Proposed refinements of residue decline was not considered acceptable by RMS. See RMS evaluation in Volume 3CP, section 9.

Indicator or focal species	Time scale	DDD	TER	Trigger
All Wood mouse	Long-term (a.s.)	3.98	0.53	5
All Algerian mouse	Long-term (a.s.)	4.18	0.48	5

Risk from bioaccumulation and food chain behaviour

Not relevant

Risk from consumption of contaminated water

Scenarios

Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Birds	acute	Not relevant		

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <50 (k_{oc}<500 L/kg), TER calculation not needed for Thiophanate-methyl
2) Application rate (g a.s./ha)/relevant endpoint <3000 (k_{oc}>500 L/kg), TER calculation not needed for Carbendazim

Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Birds	Acute	Not needed	10	
Mammals	Acute	Not needed	10	
Birds	Long-term, a.s.	0.29	31.4	5
Birds	Long-term, Carbendazim	Not needed		
Mammals	Long-term, a.s.	0.15	335	5
Mammals	Long-term, Carbendazim	Not needed		

Beans at 750 g a.s./ha [two applications, BBCH 61-71]

Growth stage Indicator or focal species Time scale DDD (mg/kg bw per day) TER Trigger

Growth stage	Indicator or focal species	Time scale	DDD	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute (a.s.)	143	>32.5	10
All	Small omnivorous bird	Acute (Carbendazim)	79.8	7.70	10
All	Small omnivorous bird	Acute (FH-432)	130	>35.7	10
All	Small omnivorous bird	Acute (2-AB)	169	>27.5	10
All	Small omnivorous bird	Long-term (a.s.)	35.3	0.26	5
All	Small omnivorous bird	Long-term (Carbendazim)	19.7	1.34	5
Tier 1 (Birds)					
BBCH >50	Small granivorous bird	Acute	3.53	697	10
BBCH >50	Small omnivorous bird	Acute	3.43	716	10
BBCH >20	Small insectivorous bird	Acute	12.02	204	10
BBCH >50	Small granivorous bird	Long-term (a.s.)	1.85	4.92	5
BBCH >50	Small omnivorous bird	Long-term (a.s.)	1.80	5.05	5
BBCH >20	Small insectivorous bird	Long-term (a.s.)	5.28	1.72	5
BBCH >50	Small granivorous bird	Long-term (Carbendazim)	1.03	25.5	5
Growth stage | Indicator or focal species | Time scale | DDD (mg/kg bw per day) | TER | Trigger |
--- | --- | --- | --- | --- | --- |
BBCH >50 | Small omnivorous bird | Long-term (Carbendazim) | 1.00 | 26.3 | 5 |
BBCH >20 | Small insectivorous bird | Long-term (Carbendazim) | 2.95 | 8.94 | 5 |

*Note that based on mammalian data, the representative formulation is ca 10 times more toxic than the active ingredient, and no formulation data is available for birds.

Higher tier (birds):
The risk assessment was refined by PT/PD values derived from generic field studies on the focal species, including analysis of faeces content and radio-tracking. Proposed refinements of residue decline was not considered acceptable by RMS. See RMS evaluation in Volume 3CP, section 9.

Screening Step (Mammals)

All	Serin	Long term (a.s.)	3.00	3.03	5
All	Yellow wagtail	Long term (a.s.)	1.16	1.72	5
All	Crested lark	Long term (a.s.)	2.04	0.96	5
All	Skylark	Long term (a.s.)	2.45	3.71	5
All	Corn bunting	Long term (a.s.)	3.81	2.39	5
All	Wood pigeon	Long term (a.s.)	1.76	5.17	5

Tier 1 (Mammals)

BBCH >20	Small insectivorous mammal	Acute (a.s.)	4.9	83	10
BBCH >50	Small herbivorous mammal	Acute (a.s.)	36.8	11	10
BBCH >50	Large herbivorous mammal	Acute (a.s.)	9.5	43	10
BBCH >50	Small omnivorous mammal	Acute (a.s.)	4.7	87	10
BBCH >20	Small insectivorous mammal	Long-term (a.s.)	1.04	1.92	5
BBCH >50	Small herbivorous mammal	Long-term (a.s.)	11.8	0.17	5
BBCH >50	Large herbivorous mammal	Long-term (a.s.)	2.34	0.85	5
BBCH >50	Small omnivorous mammal	Long-term (a.s.)	1.25	1.60	5
BBCH >20	Small insectivorous mammal	Long-term (Carbendazim)	0.578	39.9	5
BBCH >50	Small herbivorous mammal	Long-term (Carbendazim)	6.60	3.4	5
BBCH >50	Large herbivorous mammal	Long-term (Carbendazim)	1.31	17.2	5
BBCH >50	Small omnivorous mammal	Long-term (Carbendazim)	0.700	32.1	5

Higher tier (mammals):
Refinement by providing justification for lack of relevance for the vole scenario in leafy vegetables since this is not a primary habitat and potential for re-colonisation. No refinement option was presented for large herbivorous mammals. No acceptable refinement for small insectivores, large herbivores and small omnivores.

Risk from bioaccumulation and food chain behaviour
Not relevant

Risk from consumption of contaminated water
Scenarios

Scenarios	Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger
Leaf scenario	Birds	acute			
Puddle scenario, Screening step					
1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed for Thiophanate-methyl	Birds	acute	Not needed	10	
1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc>500 L/kg), TER calculation not needed for Carbendazim	Birds	Long-term, relevant endpoint	0.20	45.5	5
Puddle scenario	Mammals	Acute			
Puddle scenario	Mammals	Long-term, relevant endpoint	Not needed		
Puddle scenario	Mammals	Long-term, relevant endpoint	Not needed		

Wheat at 750 g a.s./ha [single application, BBCH 59-70]

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute (a.s.)	119	> 39.0	10
All	Small omnivorous bird	Acute (Carbendazim)	66.5	9.24	
All	Small omnivorous bird	Acute (FH-432)	108	>43.0	10
All	Small omnivorous bird	Acute (2-AB)	256	>18.1	10
All	Small omnivorous bird	Long-term (a.s.)	25.6	0.36	5
All	Small omnivorous bird	Long-term (Carbendazim)	14.3	1.85	5
Tier 1 (Birds)					
BBCH >40	Small omnivorous bird	Acute	2.86	859	10
Late season	Graniv/insectiv. bird	Acute*	10.73	229	10
BBCH >40	Small omnivorous bird	Long-term (a.s.)	1.30	7.00	5
Late season	Graniv/insectivorous bird	Long-term (a.s.)	4.97	1.83	5
BBCH >40	Small omnivorous bird	Long-term (Carbendazim)	0.728	36.3	5
Late season	Graniv/insectivorous bird	Long-term (Carbendazim)	2.76	9.57	5
Note that based on mammalian data, the representative formulation is ca 10 times more toxic than the active ingredient, and no formulation data is available for birds.					

Higher tier (birds)

The risk assessment was refined by PT/ PD values derived from generic field studies on the focal species, including analysis of faeces content and radio-tracking. Proposed refinements of residue decline was not considered acceptable by RMS. See RMS evaluation in Volume 3CP, section 9.

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
All	Yellowhammer	Long-term (a.s.)	4.03	2.26	5
All	Tree sparrow	Long-term (a.s.)	2.69	3.38	5
All	Quail	Long-term (a.s.)	1.16	7.84	5
All	Yellow wagtail	Long-term (a.s.)	0.485	18.8	5

*Screening Step (Mammals) |
All	Small herbivorous mammal	Acute (a.s.)	88.8	4.6	10
All	Small herbivorous mammal	Acute (Carbendazim)	49.6	> 101	10
All	Small herbivorous mammal	Acute (FH-432)	80.5	53.4	10
All	Small herbivorous mammal	Acute (2-AB)	34.6	98.3	10
All	Long-term (a.s.)	Not calculated	-	-	5

*Tier 1 (Mammals) |
| BBCH >20 | Small insectivorous mammal | Acute (a.s.) | 4.1 | 100 | 10 |
| BBCH >40 | Small herbivorous mammal | Acute (a.s.) | 30.7 | 13 | 10 |
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Growth stage

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
BBCH >40 Small omnivorous mammal	Acute (a.s.)	3.9	105	10
BBCH >20 Small insectivorous mammal	Long-term (a.s.)	0.751	2.66	5
BBCH >40 Small herbivorous mammal	Long-term (a.s.)	8.57	0.23	5
BBCH >40 Small omnivorous mammal	Long-term (a.s.)	0.909	2.20	5
BBCH >20 Small insectivorous mammal	Long-term (Carbendazim)	0.419	53.7	5
BBCH >40 Small herbivorous mammal	Long-term (Carbendazim)	4.79	4.70	5
BBCH >40 Small omnivorous mammal	Long-term (Carbendazim)	0.508	44.3	5

Higher tier (mammals):

No accepted refinement options available for this use.

Risk from bioaccumulation and food chain behaviour

Not relevant

Risk from consumption of contaminated water

Scenarios

Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger	
Leaf scenario	Birds	Acute	Not calculated	-	5

Puddle scenario, Screening step

1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed for Thiophanate-methyl

1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc>500 L/kg), TER calculation not needed for Carbendazim

Puddle scenario

Indicator or focal species	Time scale	PEC_{dw}xDWR	TER	Trigger	
Puddle scenario	Birds	Acute	Not needed	10	
Puddle scenario	Mammals	Acute	Not needed	10	
Puddle scenario	Birds	Long-term, a.s.	0.20	45.5	5
Puddle scenario	Birds	Long-term, Carbendazim	Not needed		
Puddle scenario	Mammals	Long-term, a.s.	0.10	500	5
Puddle scenario	Mammals	Long-term, Carbendazim	Not needed		

Leek at 4150 g a.s./ha [drenching]

Screening Step (Birds) Not reported

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
All Lark	Acute*	659	>7.0	10
All Sparrow	Acute*	83.0	>55.9	10
All Thrush	Acute*	54.6	>85	10
All Lark	Acute (Carbendazim)	369	1.67	10
All Sparrow	Acute (Carbendazim)	46.4	13.2	10
All Thrush	Acute (Carbendazim)	30.7	20.0	10
All Lark	Acute (FH-432)	597	>7.77	10
All Sparrow	Acute (FH-432)	75.2	>61.7	10
All Thrush	Acute (FH-432)	49.8	>93.2	10
All Lark	Acute (2-AB)	256	>18.1	10
All Sparrow	Acute (2-AB)	32.2	>144	10
All Thrush	Acute (2-AB)	21.3	>218	10
All Lark	Long-term (a.s.)	71.3	0.12	5
All Sparrow	Long-term (a.s.)	10.2	0.89	5
All Thrush	Long-term (a.s.)	7.92	1.15	5
All Lark	Long-term (Carbendazim)	39.9	0.66	5
All Sparrow	Long-term (Carbendazim)	5.68	4.64	5
All Thrush	Long-term (Carbendazim)	4.43	5.96	5
Growth stage | Indicator or focal species | Time scale | DDD (mg/kg bw per day) | TER | Trigger
---|---|---|---|---|---
Note that based on mammalian data, the representative formulation is ca 10 times more toxic than the active ingredient, and no formulation data is available for birds.

Higher tier (birds):
Thiophanate: Proposed weight of evidence for herbivorous birds based on residue data indicating low uptake in tomato plants (extrapolated to leek), not considered sufficient for refinement. Further refinement needed for acute and long term risk assessment.

Carbendazim: Proposed weight of evidence for herbivorous birds based on residue data indicating low uptake in tomato plants (extrapolated to leek), considered sufficient for the acute risk assessment but further refinement needed for long term risk assessment.

Screening Step (Mammals) Not reported

Tier 1 (Mammals)				
All Herbivorous mouse	Acute (a.s.)	490	0.832	10
All Granivorous mouse	Acute (a.s.)	61.4	6.65	10
All Shrew	Acute (a.s.)	76.7	5.32	10

Higher tier (mammals):
Thiophanate: Proposed weight of evidence for herbivorous birds based on residue data indicating low uptake in tomato plants (extrapolated to leek), not considered sufficient for refinement. Further refinement needed for acute and long term risk assessment.

Carbendazim: Proposed weight of evidence for herbivorous birds based on residue data indicating low uptake in tomato plants (extrapolated to leek), considered sufficient for the acute risk assessment but further refinement needed for long term risk assessment.

Risk from bioaccumulation and food chain behaviour
Not relevant

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PEC_{a.s}xDWR	TER	Trigger
Leaf scenario	Birds	acute	Not relevant	5	

Puddle scenario, Screening step
1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed for Thiophanate-methyl
1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc>500 L/kg), TER calculation not needed for Carbendazim

Puddle scenario	Indicator or focal species	Time scale	PEC_{a.s}xDWR	TER	Trigger
Puddle scenario Birds	Acute	Not needed	10		
Puddle scenario Mammals	Acute	Not needed	10		
Puddle scenario Birds	Long-term, a.s.	1.12	8.13	5	
Puddle scenario Mammals	Long-term, a.s.	0.174	151		
Puddle scenario Birds	Long-term, Carbendazim	0.58	83	5	
Puddle scenario Mammals	Long-term, Carbendazim	0.091	247		

Tomato/aubergine at 2100 g a.s./ha [drip irrigation]
Risk from bioaccumulation and food chain behaviour

Screening Step (Birds) Not reported

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Tier 1 (Birds)	All Lark	Acute (formulation)*	434	>10.7	10
	All Sparrow	Acute (formulation)*	54.6	>85	10
	All Thrush	Acute (formulation)*	36.2	>128	10
	All Lark	Acute (Carbendazim)	369	1.67	
	All Sparrow	Acute (Carbendazim)	46.4	13.2	
	All Thrush	Acute (Carbendazim)	30.7	20.0	
	All Lark	Acute (FH-432)	392	>11.8	10
	All Sparrow	Acute (FH-432)	49.4	>93.9	10
	All Thrush	Acute (FH-432)	32.7	>141.9	10
	All Lark	Acute (2-AB)	169	>27.5	10
	All Sparrow	Acute (2-AB)	21.3	>218	10
	All Thrush	Acute (2-AB)	14.1	>329	10
	All Lark	Long-term (a.s.)	41.1	0.22	5
	All Sparrow	Long-term (a.s.)	5.87	1.55	5
	All Thrush	Long-term (a.s.)	4.37	1	5
	All Lark	Long-term (Carbendazim)	22.9	1.15	5
	All Sparrow	Long-term (Carbendazim)	3.27	8.08	5
	All Thrush	Long-term (Carbendazim)	2.54	10.4	5

*Note that based on mammalian data, the representative formulation is ca 10 times more toxic than the active ingredient, and no formulation data is available for birds.

Higher tier (birds):

Thiophanate: Proposed weight of evidence for herbivorous birds based on residue data indicating low uptake in tomato plants, not considered sufficient for refinement. Further refinement needed for acute and long term risk assessment.

Carbendazim: Proposed weight of evidence for herbivorous birds based on residue data indicating low uptake in tomato plants, considered sufficient for the acute risk assessment but further refinement needed for long term risk assessment.

Screening Step (Mammals) Not reported

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Tier 1 (Mammals)	All Herbivorous mouse	Acute (a.s.)	283	1.44	10
	All Granivorous mouse	Acute (a.s.)	35.4	11.5	10
	All Shrew	Acute (a.s.)	44.3	9.22	10
	All Herbivorous mouse	Acute (Carbendazim)	180	>27.8	10
	All Granivorous mouse	Acute (Carbendazim)	22.5	>222	10
	All Shrew	Acute (Carbendazim)	28.1	>178	10
	All Herbivorous mouse	Acute (FH-432)	292	14.7	10
	All Granivorous mouse	Acute (FH-432)	36.5	118	10
	All Shrew	Acute (FH-432)	45.7	94.1	10
	All Herbivorous mouse	Acute (2-AB)	125	27.1	10
	All Granivorous mouse	Acute (2-AB)	15.7	216	10
	All Shrew	Acute (2-AB)	19.6	173	10
	All Herbivorous mouse	Long-term (a.s.)	61.2	0.03	5
	All Granivorous mouse	Long-term (a.s.)	8.67	0.23	5
	All Shrew	Long-term (a.s.)	12.8	0.16	5
	All Herbivorous mouse	Long-term (Carbendazim)	34.1	0.660	5
	All Granivorous mouse	Long-term (Carbendazim)	4.83	4.66	5
	All Shrew	Long-term (Carbendazim)	7.10	3.17	5

Higher tier (mammals):

Thiophanate: Proposed weight of evidence for herbivorous birds based on residue data indicating low uptake in tomato plants, not considered sufficient for refinement. Further refinement needed for acute and long term risk assessment.

Carbendazim: Proposed weight of evidence for herbivorous birds based on residue data indicating low uptake in tomato plants, considered sufficient for the acute risk assessment but further refinement needed for long term risk assessment.
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Not relevant

Risk from consumption of contaminated water

Scenarios	Indicator or focal species	Time scale	PECₐ₈xDWR	TER	Trigger
Leaf scenario	Birds	acute	Not relevant	5	

Puddle scenario, Screening step
1) Application rate (g a.s./ha)/relevant endpoint <50 (koc<500 L/kg), TER calculation not needed for Thiophanate-methyl

1) Application rate (g a.s./ha)/relevant endpoint <3000 (koc>500 L/kg), TER calculation not needed for Carbendazim

Puddle scenario	Birds	Acute	Not needed	10
Puddle scenario	Mammals	Acute	Not needed	10

This section does not yet reflect the new EFSA Guidance Document on aquatic organisms which has been noted in the meeting of the Standing Committee on Plants, Animals, Food and Feed on 11 July 2014.

Group	Test substance	Time-scale (Test type)	End point	Toxicity (mg/L)
Laboratory tests	Thiophanate-methyl	Acute 96 hr (flow-through)	Mortality, LC₅₀	11.0 (mm)
Fish	BAS 325 10 F	Acute 96 hr	Mortality, LC₅₀	No reliable data
Ictalurus punctatus	Carbendazim*	96 hr	Mortality, LC₅₀	0.019 (nom)
Oncorhynchus mykiss	Carbendazim*	96 hr	Mortality, LC₅₀	0.54 (nom)**
Cyprinodon variegatus	Carbendazim	96 hr	Mortality, LC₅₀	>1.158
Lepomis macrochirus	Carbendazim	96 hr	Mortality, LC₅₀	>3.2
Cyprinus carpio	Carbendazim	96 hr	Mortality, LC₅₀	0.44
Oncorhynchus mykiss	4-OH-TM	96 h, static	Mortality, LC₅₀	>10 (mm, filtrated)
Oncorhynchus mykiss	CM-0237	96 h, static	Mortality, LC₅₀	>0.14 (mm, filtrated)
Fish	CM-0237	Acute	LC₅₀	1.1 (as Thiophanate-methyl/10)
Fish	UM 2(M10)	Acute	LC₅₀	1.1 (as Thiophanate-methyl/10)
Danio rerio	Thiophanate-methyl	35 days, ELS, flow-through	NOEC, EC₀, EC₁₀	<0.12*** (mm), 0.39 (mm)
Oncorhynchus mykiss	Carbendazim*	21 days, flow-through	NOEC	0.0032 (nom)
Fish	4-OH-TM	Chronic	NOEC	0.039 (as Thiophanate-methyl/10)
Fish	CM-0237	Chronic	NOEC	0.0032 (as Carbendazim)
Fish	2-AB	Chronic	NOEC	0.0032 (as Carbendazim)
Fish	DX-105	Chronic	NOEC	0.039 (as Thiophanate-methyl/10)
Fish	UM 2(M10)	Chronic	NOEC	0.039 (as Thiophanate-methyl/10)
Group	Test substance	Time-scale (Test type)	End point	Toxicity (mg/L)
-------	----------------	------------------------	-----------	----------------
Aquatic invertebrates				
Daphnia magna	Thiophanate-methyl	48 h, flow-through	EC$_{50}$ NOEC	5.4 (mm) <4.2 (mm)
Daphnia magna	BAS 325 10 F	48 h, static	EC$_{50}$ NOEC	4.4 (mm; a.s.) 3.1 (nom; a.s.)
Daphnia magna	Carbendazim*	48 h	EC$_{50}$ NOEC	0.15 (nom)
Daphnia magna	4-OH-TM	48 h, static	EC$_{50}$	>17.6 (mm, filtrated)
Daphnia magna	CM-0237	48 h, static	EC$_{50}$	>0.256 (mm, filtrated)
Chironomus riparius	4-OH-TM	48 h, static	EC$_{50}$ NOEC	>14.0 (mm, filtrated)
Aquatic invertebrates	2-AB	Acute	EC$_{50}$ NOEC	0.15 (as Carbendazim)
Aquatic invertebrates	DX-105	Acute	EC$_{50}$	0.44 (as Thiophanate-methyl/10)
Aquatic invertebrates	UM 2(M10)	Acute	EC$_{50}$	0.44 (as Thiophanate-methyl/10)
Daphnia magna	Thiophanate-methyl	21 d, semi-static	NOEC EC$_{10}$ EC$_{20}$	0.16 (mm) Not reported
Daphnia magna	TOPSIN M WDG (Thiophanate-methyl)	21 d, aged test item*	NOEC EC$_{10}$	0.0373 (mm; a.s.) 0.0285 (mm; a.s.)
Daphnia magna	TOPSIN M WDG (Carbendazim)	21 d, aged test item*	NOEC EC$_{10}$	0.0177 (mm; a.s.) 0.0149 (mm; a.s.)
Daphnia magna	Carbendazim*	21 d, semi-static	NOEC EC$_{10}$ EC$_{20}$	0.0015 (mm) Not reported
Aquatic invertebrates	4-OH-TM	Chronic	NOEC	0.016 (as Thiophanate-methyl/10)
Aquatic invertebrates	CM-0237	Chronic	NOEC	0.015 (as Carbendazim)
Aquatic invertebrates	2-AB	Chronic	NOEC	0.015 (as Carbendazim)
Aquatic invertebrates	DX-105	Chronic	NOEC	0.016 (as Thiophanate-methyl/10)
Aquatic invertebrates	UM 2(M10)	Chronic	NOEC	0.016 (as Thiophanate-methyl/10)
Sediment-dwelling organisms				
Chironomus riparius	Thiophanate-methyl	28 d, water spiked	NOEC EC$_{10}$ EC$_{20}$	0.44 (init. meas.) Not reported
Chironomus riparius	Carbendazim*	28 d, water spiked	NOEC EC$_{10}$ EC$_{20}$	0.0133 (nom) Not reported
Algae				
P. subcapitata	Thiophanate-methyl	72 h, static	E$_{1}$E$_{10}$ E$_{1}$E$_{20}$	11.8 4.38 3.13
			E$_{1}$C$_{50}$ E$_{1}$C$_{50}$	4.93 37.2 n.d. 6.74
			E$_{1}$C$_{20}$ E$_{1}$C$_{20}$	12.1 (mm)
S. subspicatus	Topsin 500 SC	72 h, static	E$_{1}$E$_{10}$	11.2 ≤ 0.33 2.7
			E$_{1}$C$_{50}$ E$_{1}$C$_{50}$	4.4 27.3 3.3
			E$_{1}$C$_{20}$ E$_{1}$C$_{20}$	10.5 14.6 (mm; a.s.)
P. subcapitata	Carbendazim*	72 h, static	E$_{1}$E$_{10}$	7.7 mg/L (mm) > 11 mg/L (mm)
			E$_{1}$C$_{50}$ EC$_{10}$ EC$_{20}$ NOEC	Not reported Not reported Not reported

www.efsa.europa.eu/efsajournal 82 EFSA Journal 2018;16(1):5133
Group	Test substance	Time-scale (Test type)	End point	Toxicity (mg/L)
P. subcapitata | 4-OH-TM | 72 h, static | Ec50, Er10, Er20, NOEC | > 15 Not reported Not reported (15 mm, dissolved)
P. subcapitata | CM-0237 | 72 h, static | Ec50, Er10, Er20, NOEC | > 0.182 Not reported Not reported (0.182 mm, dissolved)
Algae | M10 | 96 h, static | Ec50 | 0.523 (ECOSAR)
Algae | 2-AB | 96 h, static | Ec50 | 0.349 (ECOSAR)
Algae | DX-105 | 96 h, static | Ec50 | 0.024 (ECOSAR)

Further testing on aquatic organisms
Proposed SSD for acute toxicity to fish not considered reliable since more than one unbound value was included in the calculation. Exclusion of those values resulted in insufficient number of data for an SSD-calculation.

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)
As reported in section 2, thiophanate-methyl is considered an endocrine disrupter for mammals. In addition, published literature data are available showing that the potential for endocrine disruption of thiophanate-methyl and carbendazim cannot be excluded.

* Refer to the EFSA conclusion on the peer review of the active substance Carbendazim, EFSA (2010)
**Geomean value from five tests on O. mykiss. The LC50 values ranged from 1.19 – 0.98 mg/L for this species.
***NOEC for fish based on increased body length and dry weight at all treatment levels. Not considered as an adverse effect.

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

log P_O/W	Thiophanate-methyl	Carbendazim	Other metabolites
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	1.45	1.5	<3
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	-	-	-
Annex VI Trigger for the bioconcentration factor	-	-	-
Clearance time (days) (CT50)	-	-	-
Level and nature of residues (%) in organisms after the 14 day depuration phase	-	-	-
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2).

PEC/RAC ratios for Thiophanate-methyl for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Topsin M 500 SC in grapes (late)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
Test species	O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	C. riparius	
Endpoint	LC50	EC10	EC50	NOEC	ErC50	NOEC	
[µg a.s./L]	11000	390	4400	161	27300	440	
AF	100	10	100	10	10	10	
RAC [µg a.s./L]	110	39	44	16.1	2730	44	
FOCUS Scenario							
Step 1	n.c. *	-	-	-	-	-	
Step 2	n.c. *	-	-	-	-	-	
Step 3	D6/ditch	0.172	0.484	0.429	1.173	0.007	0.429
	R1/pond	0.006	0.017	0.015	0.042	0.000	0.015
	R1/stream	0.126	0.355	0.315	0.860	0.005	0.315
	R2/stream	0.169	0.476	0.422	1.153	0.007	0.422
	R3/stream	0.177	0.501	0.444	1.212	0.007	0.444
	R4/stream	0.126	0.355	0.315	0.860	0.005	0.315

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* not calculated

Refined chronic PEC/RAC ratios for daphnids based on initial FOCUS Step 4 PECsw values for Thiophanate-methyl for the use in grapes considering risk mitigation measures

Test substance	Crop	RAC [µg/L]	FOCUS scenario	Vegetated buffer zone [m] *	Initial FOCUS Step 4 PECsw [µg/L]	PEC/RAC ratio **
Thiophanate-methyl	Grapes, late	16.1	D6 ditch	10	4.14	0.257
			R2 stream	10	4.90	0.304
			R3 stream	10	6.50	0.403

* including vegetated filter strip
** ratios calculated with unrounded PECsw values as presented in Annex B.8 for the formulated product.

PEC/RAC ratios for Thiophanate-methyl for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Topsin M 500 SC in beans (multiple applications)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
Test species				
Endpoint				
LC50	Acute	Chronic	Acute	P. subcapitata
	O. mykiss	O. mykiss	D. magna	C. riparius
EC10			EC50	
			NOEC	
[µg a.s./L]	11000	390	4400	27300
AF	100	10	100	10
RAC [µg a.s./L]	110	39	44	2730
FOCUS Scenario				
Step 1	PECSW [µg a.s./L]	-	-	-
Step 2	n.c. *	-	-	-
Step 3				
D2/ditch	23.4	0.213	0.600	0.532
D2/stream	15.0	0.136	0.385	0.532
D3/ditch	3.43	0.031	0.088	0.213
D4/pond	0.136	0.001	0.003	0.001
D4/stream	3.07	0.079	0.070	0.001
D6/ditch, 1st	3.44	0.031	0.088	0.001
R1/pond	0.67	0.006	0.017	0.000
R1/stream	13.2	0.120	0.338	0.001
R2/stream	3.15	0.029	0.081	0.001
R3/stream	14.3	0.130	0.367	0.001
R4/stream	20.9	0.190	0.536	0.001
D6/ditch, 2nd	3.42	0.031	0.088	0.001

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
Refined chronic PEC/RAC ratios for daphnids based on initial FOCUS Step 4 PECsw values for Thiophanate-methyl for the use in beans considering risk mitigation measures

Test substance	Crop	RAC [µg/L]	FOCUS scenario	Vegetated buffer zone [m] *	Initial FOCUS Step 4 PECsw [µg/L]	PEC/RAC ratio **
Thiophanate-methyl	Beans, multiple	16.1	D2 ditch	10	23.4	1.45
			R4 stream		9.47	0.588

* including vegetated filter strip
** ratios calculated with unrounded PECsw values as presented in Annex B.8 for the formulated product.
Values in bold are above the trigger of 1

PEC/RAC ratios for Thiophanate-methyl for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Topsin M 500 SC in cereals (early)

Group	Fish	Chronic	Invertebrates	Algae	Sed. dwell. prolonged			
	Acute	O. mykiss	D. magna	P. subcapitata	C. riparius			
			Acute	Prolonged				
Test species								
Endpoint	LC50	EC10	EC50	NOEC	ErC50	NOEC		
[µg a.s./L]	11000	390	4400	161	27300	440		
AF	100	10	100	10	10	10		
RAC [µg a.s./L]	110	39	44	16.1	2730	44		
FOCUS Scenario	PECSW [µg a.s./L]	n.c. *	-	-	-	-		
Step 1	n.c. *	-	-	-	-	-		
Step 2	n.c. *	-	-	-	-	-		
Step 3	D1/ditch	4.812	0.044	0.123	0.109	0.299	0.002	0.109
	D1/stream	4.207	0.038	0.108	0.096	0.261	0.002	0.096
	D2/ditch	28.9	0.263	0.741	0.657	1.795	0.011	0.657
	D2/stream	20.89	0.190	0.536	0.475	1.298	0.008	0.475
	D3/ditch	4.757	0.043	0.122	0.108	0.295	0.002	0.108
	D4/pond	0.164	0.001	0.004	0.004	0.010	0.000	0.004
Table 1: Pesticide Risk Assessment of Thiophanate-Methyl

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
	Acute	Chronic		
D4/stream	3.965	0.102	0.090	0.246
D5/pond	0.164	0.004	0.004	0.010
D5/stream	4.19	0.107	0.095	0.260
D6/ditch	4.776	0.122	0.109	0.297
R1/pond	0.164	0.004	0.004	0.010
R1/stream	3.389	0.087	0.077	0.210
R3/stream	4.424	0.113	0.101	0.275
R4/stream	12.26	0.314	0.279	0.761

Group
- D4/stream: Direct stream
- D5/pond: Direct pond
- D5/stream: Direct stream
- D6/ditch: Direct ditch
- R1/pond: Residual pond
- R1/stream: Residual stream
- R3/stream: Residual stream
- R4/stream: Residual stream

The table shows acute and chronic PEC/RAC ratios for different organism groups and environmental compartments. The ratios are calculated using the Assessment Factor (AF) and the Predicted Environmental Concentration (PEC) in relation to the Regulatory Acceptable Concentration (RAC).

Table 2: Refined Chronic PEC/RAC Ratios for Daphnids

Test substance	Crop	RAC [µg/L]	FOCUS scenario	Vegetated buffer zone [m] *	Initial FOCUS Step 4 PECsw [µg/L]	PEC/RAC ratio **
Thiophanate-methyl	Cereals, early	16.1	D2 ditch	20	28.9	1.80

* including vegetated filter strip

** ratios calculated with unrounded PECsw values as presented in CP 9.2.5

Values in bold are above the trigger of 1

Table 3: PEC/RAC Ratios for Thiophanate-Methyl

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
	Acute	Chronic		
Test species				
Endpoint				
[µg a.s./L]				
O. mykiss LC50	11000	390	4400	161
AF	100	10	100	10
RAC [µg a.s./L]	110	39	44	16.1

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* not calculated
PEC/RAC ratios for Thiophanate-methyl for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Topsin M 500 SC in tomato / aubergine (multiple applications)

Group	Test species	Fish	Chronic	Invertebrates	Algae	Sed. dwell. prolonged					
		Acute	Chronic	Acute	Prolonged	ErC50	NOEC	ErC50	NOEC	ErC50	NOEC
		O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	C. riparius				
		LC50	EC10	EC50	NOEC	ErC50	NOEC				
	[µg a.s./L]	11000	390	4400	161	27300	440				
	AF	100	10	100	10	10	10				

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

* not calculated
RAC \([\mu g\text{ a.s./L}] \) PECSW \([\mu g\text{ a.s./L}] \)

Test substance	Crop	RAC [µg/L]	FOCUS scenario	Vegetated buffer zone [m] *	Initial FOCUS Step 4 PECsw [µg/L]	PEC/RAC ratio **
Thiophanate-methyl	Tomato, late	16.1	R4 stream	10	12.8	0.794

* including vegetated filter strip

** ratios calculated with unrounded PECsw values as presented in CP 9.2.5

Values in bold are above the trigger of 1

** Carbendazim

PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Topsin M 500 SC in grapes (late)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
Test species				
Endpoint				
LC50				
I. punctatus				
O. mykiss				
NOEC				
D. magna				
D. magna				
P. subcapitata				
C. riparius				
EC50				
NOEC				
ErC50				

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* not calculated

** not calculated for greenhouse, covering field applications

Refined chronic PEC/RAC ratios for daphnids based on initial FOCUS Step 4 PECsw values for Thiophanate-methyl for the use in tomato/aubergine considering risk mitigation measures

### Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
FOCUS Scenario				
Step 1				
Step 2				
Step 3 (late applications) **				
D6/ditch	0.000	0.000	0.000	0.000
R2/stream	0.104	0.001	0.003	0.002
R3/stream	10.18	0.093	0.261	0.231
R4/stream	28.46	0.259	0.730	0.647
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Group

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged		
	Acute	Chronic	Acute	Prolonged		
[µg a.s./L]	19	3.2	150	1.5	>11000	13.3
AF	100	10	100	10	10	10
RAC [µg a.s./L]	0.19	0.32	1.5	0.15	1100	1.33

FOCUS Scenario

PEC SW [µg a.s./L]

Step	AF	RAC
Step 1	100	10
Step 2	100	10

FOCUS Scenario

FOCUS Scenario

Step	AF	RAC
Step 3	100	10

Test species

Endpoint

[µg a.s./L]	AF
19	100

EC50

LC50	NOEC
19	3.2

NOEC

EC50	NOEC
150	1.5

Sed. dwell. prolonged

[µg a.s./L]	AF
13.3	10

Refined PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Step 4 calculations considering risk mitigation measures for the use of Topsin M 500 SC in grapes

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged	
	Acute	Chronic	Acute	Prolonged	
Test species	I. punctatus	O. mykiss	D. magna	D. magna	C. riparius
Endpoint	LC50	NOEC	EC50	NOEC	NOEC
[µg a.s./L]	19	3.2	150	1.5	13.3
AF	100	10	100	10	10

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* not calculated
Higher tier risk assessment for fish and daphnids based on initial FOCUS Step 4 PECsw values for Carbendazim for the use in grapes considering risk mitigation measures

Group	Fish	Invertebrates	Sed. dwell. prolonged			
	Acute	Chronic	Acute	Prolonged		
RAC [µg a.s./L]	0.19	0.32	1.5	0.15	1.33	
FOCUS Scenario	PECSW [µg a.s./L]					
Step 4 (late)	20 m buffer zone with vegetated filter strip					
D6/ditch	0.443	2.33	1.384	0.295	2.95	0.333
R1/pond	0.068	0.358	0.213	0.045	0.453	0.051
R1/stream	0.046	0.242	0.144	0.031	0.307	0.035
R2/stream	0.061	0.321	0.191	0.041	0.407	0.046
R3/stream	1.68	8.84	5.250	1.12	11.2	1.26
R4/stream	0.199	1.05	0.622	0.133	1.33	0.150

AF: Assessment factor; **PEC**: Predicted environmental concentration; **RAC**: Regulatory acceptable concentration; **PEC/RAC** ratios above the relevant trigger of 1 are shown in bold

Higher tier risk assessment for fish and daphnids based on initial FOCUS Step 4 PECsw values for Carbendazim for the use in grapes considering risk mitigation measures

Group	Fish	Invertebrates	
	Acute	Prolonged	
Test species	5 species	D. magna	
Endpoint	Geomean LC50	Higher tier EC10	
[µg a.s./L]	441	14.9	
AF	100	10	
RAC [µg a.s./L]	4.41	1.49	
FOCUS Scenario	PECSW [µg a.s./L]		
Step 4 (late)	20 m buffer zone with vegetated filter strip		
D6/ditch	0.443	0.100	0.297
R1/pond	0.068	0.015	0.046
R1/stream	0.046	0.010	0.031
R2/stream	0.061	0.014	0.041
PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Topsin M 500 SC in beans (multiple applications)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged				
	Acute	Chronic	Acute	Prolonged				
Test species								
	I. punctatus	O. mykiss	D. magna	D. magna	P. subcapitata	C. riparius		
Endpoint [µg a.s./L]	LC50	NOEC	EC50	NOEC	ErC50	NOEC		
	19	3.2	150	1.5	> 11000	13.3		
AF	100	10	100	10	100	100		
RAC [µg a.s./L]	0.19	0.32	1.5	0.15	1100	1.33		
FOCUS Scenario	PECSW [µg a.s./L]							
Step 1	n.c. *	-	-	-	-	-		
Step 2	n.c. *	-	-	-	-	-		
Step 3	D2/ditch	15.92	83.8	49.750	10.6	106	0.014	12.0
	D2/stream	11.8	62.1	36.875	7.87	78.7	0.011	8.87
	D3/ditch	0.299	1.57	0.934	0.199	1.99	0.000	0.225
	D4/pond	0.174	0.916	0.544	0.116	1.16	0.000	0.131
	D4/stream	0.197	1.04	0.616	0.131	1.31	0.000	0.148
	D6/ditch, 1st	0.555	2.92	1.734	0.370	3.70	0.001	0.417
	R1/pond	0.771	4.06	2.409	0.514	5.14	0.001	0.580
	R1/stream	4.288	22.6	13.400	2.86	28.6	0.004	3.22
Refined PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Step 4 calculations for the use of Topsin M 500 SC in beans (multiple applications)

Group	Test species	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
		Acute	Chronic	Acute	Prolonged			
R2/stream	I. punctatus	0.31	1.63	0.969	0.207	2.07	0.000	0.233
R3/stream	O. mykiss	6.847	36.0	21.397	4.56	45.6	0.006	5.15
R4/stream	D. magna	6.992	36.8	21.850	4.66	46.6	0.006	5.26
D6/ditch, 2nd	D. magna	0.371	1.95	1.159	0.247	2.47	0.000	0.279

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* not calculated
Higher tier risk assessment for fish and daphnids based on initial FOCUS Step 4 PECsw values for Carbendazim for the use in beans considering risk mitigation measures

Group	Fish	Invertebrates				
	Acute	Chronic	Acute	Prolonged	Sed. dwell. prolonged	
R2/stream	0.074	0.389	0.231	0.049	0.493	0.056
R3/stream	1.631	8.58	5.097	1.09	10.9	1.23
R4/stream	1.657	8.72	5.178	1.10	11.0	1.25
D6/ditch, 2nd	0.371	1.95	1.159	0.247	2.47	0.279

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Topsin M 500 SC in cereals (early)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
	Acute	Chronic	Acute	Prolonged
Test species				
Endpoint				
[µg a.s./L]				
AF				
RAC [µg a.s./L]				
FOCUS Scenario				
Step 1				
Step 2				
Step 3				

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
	Acute	Chronic	Prolonged	
R3/stream	1.631	0.370	1.095	
R4/stream	1.657	0.376	1.112	
D6/ditch, 2nd	0.371	0.084	0.249	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.
Refined PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Step 4 calculations for the use of Topsin M 500 SC in cereals (early)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
		Acute	Chronic	Acute	Prolonged		
Test species		Acute	Chronic	Acute	Prolonged		
Endpoint							
[µg a.s./L]		I. punctatus	O. mykiss	D. magna	D. magna	C. riparius	
		LC50	NOEC	EC50	NOEC	NOEC	
		19	3.2	150	1.5	13.3	
AF	100	10	100	10	10	10	
RAC [µg a.s./L]	0.19	0.32	1.5	0.15	1.33		
FOCUS Scenario		PECSW					
		[µg a.s./L]					
Step 4							
D1/ditch	0.556	2.93	1.738	0.371	3.71	0.418	
D1/stream	0.365	1.92	1.141	0.243	2.43	0.274	
D2/ditch	4.367	23.0	13.647	2.91	29.1	3.28	
D2/stream	9.168	48.3	28.650	6.11	61.1	6.89	
D3/ditch	0.016	0.084	0.050	0.011	0.107	0.012	
D4/pond	0.034	0.179	0.106	0.023	0.227	0.026	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* not calculated

Refined PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Step 4 calculations for the use of Topsin M 500 SC in cereals (early)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
		Acute	Chronic	Acute	Prolonged		
Test species		Acute	Chronic	Acute	Prolonged		
Endpoint							
[µg a.s./L]		I. punctatus	O. mykiss	D. magna	D. magna	C. riparius	
		LC50	NOEC	EC50	NOEC	NOEC	
		19	3.2	150	1.5	13.3	
AF	100	10	100	10	10	10	
RAC [µg a.s./L]	0.19	0.32	1.5	0.15	1.33		
FOCUS Scenario		PECSW					
		[µg a.s./L]					
Step 4							
D1/ditch	0.556	2.93	1.738	0.371	3.71	0.418	
D1/stream	0.365	1.92	1.141	0.243	2.43	0.274	
D2/ditch	4.367	23.0	13.647	2.91	29.1	3.28	
D2/stream	9.168	48.3	28.650	6.11	61.1	6.89	
D3/ditch	0.016	0.084	0.050	0.011	0.107	0.012	
D4/pond	0.034	0.179	0.106	0.023	0.227	0.026	
Higher tier risk assessment for fish and daphnids based on initial FOCUS Step 4 PECsw values for Carbendazim for the use in cereals considering risk mitigation measures

Group	Fish	Invertebrates				
	Acute	Chronic	Acute	Prolonged		
D4/stream	0.039	0.205	0.122	0.026	0.260	0.029
D5/pond	0.034	0.179	0.106	0.023	0.227	0.026
D5/stream	0.026	0.137	0.081	0.017	0.173	0.020
D6/ditch	0.031	0.163	0.097	0.021	0.207	0.023
R1/pond	0.036	0.189	0.113	0.024	0.240	0.027
R1/stream	0.302	1.59	0.944	0.201	2.01	0.227
R3/stream	0.676	3.56	2.113	0.451	4.51	0.508
R4/stream	0.9	4.74	2.813	0.600	6.00	0.677

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

Higher tier risk assessment for fish and daphnids based on initial FOCUS Step 4 PECsw values for Carbendazim for the use in cereals considering risk mitigation measures

Group	Fish	Invertebrates	
	Acute	Prolonged	
Test species	5 species	D. magna	
Endpoint	Geomean LC50	Higher tier NOEC	
[µg a.s./L]	441	14.9	
AF	100	10	
RAC [µg a.s./L]	4.41	1.49	
FOCUS Scenario	PECSW [µg a.s./L]		
Step 4 (early)	20 m buffer zone with vegetated filter strip		
D1/ditch	0.556	0.126	0.373
D1/stream	0.365	0.083	0.245
D2/ditch	4.367	0.990	2.931
D2/stream	9.168	2.08	6.153
D3/ditch	0.016	0.004	0.011
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Group	Fish	Invertebrates	
	Acute	Prolonged	
D4/pond	0.034	0.008	0.023
D4/stream	0.039	0.009	0.026
D5/pond	0.034	0.008	0.023
D5/stream	0.026	0.006	0.017
D6/ditch	0.031	0.007	0.021
R1/pond	0.036	0.008	0.024
R1/stream	0.302	0.068	0.203
R3/stream	0.676	0.153	0.454
R4/stream	0.900	0.204	0.604

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Tonsin M 500 SC in leek (10 cm soil incorporation)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
	Test species		Endpoint	
			LC50	NOEC
			EC50	NOEC
			ErC50	NOEC
	[µg a.s./L]			
	19	3.2	150	1.5
	100	10	100	10
	0.19	0.32	1.5	0.15
	1100	1.33		
Step 1	n.c. *	-	-	-
Step 2	n.c. *	-	-	-
Step 3	n.c. *	-	-	-
D3/ditch	0.000	0.000	0.000	0.000

Group	Fish	Invertebrates	
	Acute	Prolonged	
D4/pond	0.034	0.008	0.023
D4/stream	0.039	0.009	0.026
D5/pond	0.034	0.008	0.023
D5/stream	0.026	0.006	0.017
D6/ditch	0.031	0.007	0.021
R1/pond	0.036	0.008	0.024
R1/stream	0.302	0.068	0.203
R3/stream	0.676	0.153	0.454
R4/stream	0.900	0.204	0.604

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
	Acute	Chronic		
D4/pond	0.009	0.028	0.006	0.000
D4/stream	0.015	0.047	0.010	0.000
D6/ditch, 1st	0.001	0.003	0.001	0.000
D6/ditch, 2nd	0.303	1.59	0.202	0.000
R1/pond	0.01	0.031	0.007	0.000
R1/stream	0.318	0.994	0.212	0.000
R2/stream	0.276	0.863	0.184	0.000
R3/stream	0.738	2.306	0.492	0.001
R4/stream	0.855	4.50	0.570	0.001

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* not calculated

Refined PEC/RAC ratios for fish and daphnids based on initial FOCUS Step 4 PECsw values for Carbendazim for the use in leek (10 cm soil incorporation) considering risk mitigation measures

Group	Fish	Invertebrates
	Acute	Prolonged
Test species	*I. punctatus*	*D. magna*
Endpoint	LC50	NOEC
[µg a.s./L]	19	1.5
AF	100	10
RAC [µg a.s./L]	0.91	0.15
FOCUS Scenario	PECSW [µg a.s./L]	
Step 4	20 m buffer zone with vegetated filter strip	
D3/ditch	0.000	0.000
D4/pond	0.009	0.047
D4/stream	0.015	0.079
Group	Fish Acute	Invertebrates Prolonged
---------------	------------	------------------------
D6/ditch, 1st	0.001	0.005
D6/ditch, 2nd	0.303	1.59
R1/pond	0.002	0.011
R1/stream	0.068	0.358
R2/stream	0.064	0.337
R3/stream	0.172	0.905
R4/stream	0.203	1.07

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold.

Higher tier risk assessment for fish and daphnids based on initial FOCUS Step 4 PECsw values for Carbendazim for the use in leek (10 cm soil incorporation) considering risk mitigation measures:

Test substance	Species	RAC [µg/L]	FOCUS scenario	vegetated buffer zone [m]	Initial FOCUS Step 4 PECsw [µg/L]	PEC/RAC ratio **
Carbendazim	Fish, acute	4.41	D6 ditch, 2nd	20	0.303	0.069
			R4 stream		0.388	0.088
	Daphnids, chronic	1.49	D6 ditch, 2nd	20	0.303	0.203
			R3 stream		0.331	0.222
			R4 stream		0.388	0.260

* including vegetated filter strip
** ratios calculated with unrounded PECsw values as presented in CP 9.2.5

Values in bold are above the trigger of 1

PEC/RAC ratios for Carbendazim for each organism group based on FOCUS Steps 1, 2 and 3 calculations for the use of Topsin M 500 SC in tomato / aubergine (multiple applications):

Group	Fish Acute	Invertebrates	Algae	Sed. dwell. prolonged
Test species	I. punctatus	O. mykiss	D. magna	P. subcapitata
Endpoint	LC50	NOEC	EC50	ErC50
[µg a.s./L]	19	3.2	150	> 11000
AF	100	10	100	10

www.efsa.europa.eu/efsajournal 100

EFSA Journal 2018;16(1):5133
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
	Acute	Chronic	Acute	Prolonged			
RAC [µg a.s./L]	0.19	0.32	1.5	0.15			
FOCUS Scenario	PECSW [µg a.s./L]	n.c.*	-	-			
Step 1	n.c.*	-	-	-			
Step 2	n.c.*	-	-	-			
Step 3	Late applications **						
D6/ditch	0.005	0.026	0.016	0.003	0.033	0.000	0.004
R2/stream	5.95	31.3	18.594	3.97	39.7	0.005	4.47
R3/stream	12.35	65.0	38.594	8.23	82.3	0.011	9.29
R4/stream	15.67	82.5	48.969	10.4	104	0.014	11.8

AF: Assessment factor; **PEC:** Predicted environmental concentration; **RAC:** Regulatory acceptable concentration; **PEC/RAC** ratios above the relevant trigger of 1 are shown in bold

* not calculated

** calculated for greenhouse use, covering field use

Higher tier risk assessment for fish and daphnids based on initial FOCUS Step 4 PECsw values for Carbendazim for the use in tomato/aubergine (late) considering risk mitigation measures

Group	Fish	Invertebrates	
	Acute	Prolonged	
Test species	5 species	D. magna	
Endpoint	Geomean LC50	Higher tier NOEC	
[µg a.s./L]	441	14.9	
AF	100	10	
RAC [µg a.s./L]	4.41	1.49	
FOCUS Scenario	PECSW [µg a.s./L]		
Step 4 (late)	20 m buffer zone with vegetated filter strip		
D6/ditch	0.005	0.001	0.003
R2/stream	1.395	0.316	0.936
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Group	Fish (Acute)	Invertebrates (Prolonged)
R3/stream	2.954	1.983
R4/stream	3.735	2.507

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* greenhouse application, covering field application
** field application, covering greenhouse application

4-OH-TM

PEC/RAC ratios for 4-OH-TM for each organism group based on FOCUS Steps 1 and 2 calculations for the uses of Topsin M 500 SC

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
Test species				
Endpoint				
	Acute	Chronic	Acute	Chronic
	O. mykiss	O. mykiss	D. magna	D. magna
	LC50	EC10 *	EC50	NOEC
	> 10000	39*	>17600	16*
	100	10	100	10
	>100	3.9	176	1.6
	1500			
	146			
	4.4			
FOCUS Scenario	PECSW [µg a.s./L]			
Step 1				
Beans	51.097	0.511	13.10	0.290
Grapes	39.392	0.394	10.10	0.224
Leek	137.572	1.376	35.27	0.782
Tomato / aubergine	228.734 **	2.287	58.65	1.300
Cereals	25.548	0.255	6.55	0.145
Step 2				
Beans	1.180 ***	0.012	0.30	0.007
Grapes	3.118 ***	0.031	0.80	0.018
Cereals	0.857 ***	0.009	0.22	0.005
DX-105

PEC/RAC ratios for DX-105 for each organism group based on FOCUS Steps 1 and 2 calculations for the uses of Topsin M 500 SC

Group	Fish Acute	Fish Chronic	Invertebrates Acute	Invertebrates Chronic	Algae Acute	Algae Chronic	Sed. dwell. prolonged Acute	Sed. dwell. prolonged Chronic
Leek	4.306 ***	0.043 1.10	0.024 2.69	0.003	0.029	0.98		
Tomato / aubergine	2.394 ***	0.024 0.61	0.014 1.50	0.002	0.016	0.54		

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* as for Thiophanate-methyl divided by 10
** worst-case for greenhouse use
*** Worst-case for N-Europe, October – February
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Group	**Fish**	**Invertebrates**	**Algae**	**Sed. dwell. prolonged**
Leek | 35.192 | 9.02 | 8.00 | 21.86 | 14.663 | 8.00
Tomato / aubergine | 52.018 | 13.34 | 11.82 | 32.31 | 21.674 | 1.182

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* endpoints as for Thiophanate-methyl divided by 10
** worst-case for greenhouse use
*** Worst-case for N-Europe, October – February

PEC/RAC ratios for DX-105 for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in grapes (late applications)

Group	**Fish**	**Invertebrates**	**Algae**	**Sed. dwell. prolonged**
Test species | O. mykiss | O. mykiss | D. magna | D. magna | P. subcapitata | C. riparius
Endpoint | LC50 | EC10 * | EC50 | NOEC | ErC50 | NOEC
[μg a.s./L] | 1100* | 39* | 440 * | 16 * | 24 | 44*
AF | 100 | 10 | 100 | 10 | 10 | 10
RAC [μg a.s./L] | 11 | 3.9 | 4.4 | 1.61 | 2.40 | 4.4
FOCUS Scenario | PECSW [μg a.s./L] | | | | |
Step 3 | | | | | |
D6/ditch | 1.944 | 0.177 | 0.498 | 0.442 | 1.215 | 0.810 | 0.442
R1/pond | 0.1 | 0.009 | 0.026 | 0.023 | 0.063 | 0.042 | 0.023
R1/stream | 0.233 | 0.021 | 0.060 | 0.053 | 0.146 | 0.097 | 0.053
R2/stream | 0.304 | 0.028 | 0.078 | 0.069 | 0.190 | 0.127 | 0.069
R3/stream | 2.985 | 0.271 | 0.765 | 0.678 | **1.866** | 1.244 | 0.678
R4/stream | 0.723 | 0.066 | 0.185 | 0.164 | 0.452 | 0.301 | 0.164

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* endpoints as for Thiophanate-methyl divided by 10
PEC/RAC ratios for DX-105 for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in beans (multiple applications)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
	Acute	Chronic	Acute	Chronic			
Test species	O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	C. riparius	
Endpoint	LC50	EC10 *	EC50	NOEC	ErC50	NOEC	
[µg a.s./L]	1100 *	39 *	440 *	16 *	24	44*	
AF	100	10	100	10	10	10	
RAC [µg a.s./L]	11	3.9	4.4	1.6	2.40	4.4	
FOCUS Scenario	PECSW [µg a.s./L]						
Step 3							
D2/ditch	10.13	0.921	2.597	2.302	6.331	4.221	2.302
D2/stream	6.35	0.577	1.628	1.443	3.969	2.646	1.443
D3/ditch	0.136	0.012	0.035	0.031	0.085	0.057	0.031
D4/pond	1.662	0.151	0.426	0.378	1.039	0.693	0.378
D4/stream	1.683	0.153	0.432	0.383	1.052	0.701	0.383
D6/ditch, 1st	2.003	0.182	0.514	0.455	1.252	0.835	0.455
D6/ditch, 2nd	2.957	0.269	0.758	0.672	1.848	1.232	0.672
R1/pond	0.372	0.034	0.095	0.085	0.233	0.155	0.085
R1/stream	1.864	0.169	0.478	0.424	1.165	0.777	0.424
R2/stream	0.587	0.053	0.151	0.133	0.367	0.245	0.133
R3/stream	3.186	0.290	0.817	0.724	1.991	1.328	0.724
R4/stream	3.232	0.294	0.829	0.735	2.020	1.347	0.735
Step 4, 20 m buffer							
D2/ditch	10.13	0.921	2.597	2.302	6.331	4.221	2.302
D2/stream	6.350	0.577	1.628	1.443	3.969	2.646	1.443
D3/ditch	0.011	0.001	0.003	0.003	0.007	0.005	0.003
D4/pond	1.655	0.150	0.424	0.376	1.034	0.690	0.376
PEC/RAC ratios for DX-105 for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in cereals (early applications)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged	
		Acute	Chronic		
		Acute	Chronic		
		Acute	Chronic		
Test species		O. mykiss	O. mykiss	D. magna	P. subcapitata
Endpoint		LC50	EC10 *	EC50	ErC50
				NOEC	
[µg a.s./L]		1100 *	39 *	440 *	16 *
AF	100	10	100	10	24
RAC [µg a.s./L]	11	3.9	4.4	1.6	2.40
FOCUS Scenario	PECSW [µg a.s./L]				
Step 3					
D1/ditch	2.429	0.221	0.623	0.552	1.518
					1.012
D1/stream	1.515	0.138	0.388	0.344	0.947
D2/ditch	5.382	0.489	1.380	1.223	3.364
D2/stream	5.097	0.463	1.307	1.158	3.186

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* endpoints as for Thiophanate-methyl divided by 10
PEC/RAC ratios for DX-105 for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in leek (10 cm)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged				
	Acute	Chronic	Acute	Chronic	Acute	Chronic	Algae	Sed. dwell. prolonged
D3/ditch	0.097	0.009	0.025	0.022	0.061	0.040	0.022	
D4/pond	0.782	0.071	0.201	0.178	0.489	0.326	0.178	
D4/stream	0.765	0.070	0.196	0.174	0.478	0.319	0.174	
D5/pond	0.813	0.074	0.208	0.185	0.508	0.339	0.185	
D5/stream	0.589	0.054	0.151	0.134	0.368	0.245	0.134	
D6/ditch	0.574	0.052	0.147	0.130	0.359	0.239	0.130	
R1/pond	0.068	0.006	0.017	0.015	0.043	0.028	0.015	
R1/stream	0.575	0.052	0.147	0.131	0.359	0.240	0.131	
R3/stream	1.221	0.111	0.313	0.278	0.763	0.509	0.278	
R4/stream	1.638	0.149	0.420	0.372	1.024	0.683	0.372	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* same endpoints as for Thiophanate-methyl
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
	Acute	Chronic		
D6/ditch 1st	0.715	0.183	0.163	0.298
	0.166	0.447	0.163	
D6/ditch 2nd	0.829	0.213	0.188	0.345
	0.188	0.518	0.188	
R1/pond	0.008	0.002	0.002	0.003
	0.002	0.005	0.002	
R1/stream	0.11	0.028	0.025	0.046
	0.025	0.069	0.046	
R2/stream	0.071	0.018	0.016	0.030
	0.016	0.044	0.030	
R3/stream	0.27	0.069	0.061	0.113
	0.061	0.169	0.113	
R4/stream	0.318	0.082	0.072	0.133
	0.072	0.199	0.133	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* same endpoints as for Thiophanate-methyl

PEC/RAC ratios for DX-105 for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in tomato / aubergine (late; greenhouse use covering field use)

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged
	Acute	Chronic		
Test species Endpoint				
FOCUS Scenario				
Step 3				
D6/ditch	0.731	0.187	0.166	0.305
	0.166	0.457	0.305	
R2/stream	3.466	0.889	0.788	1.444
	0.788	2.166	1.444	
R3/stream	6.402	1.642	1.455	2.668
	1.455	4.001	2.668	
R4/stream	7.135	1.829	1.622	2.973
	1.829	4.459	2.973	

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* same endpoints as for Thiophanate-methyl
UM-2 (M10)

PEC/RAC ratios for UM-2 (M10) for each organism group based on FOCUS Steps 1 and 2 calculations for the uses of Topsin M 500 SC:

Group	Test species	Endpoint	Invertebrates	Algae	Sed. dwell. prolonged
		LC50	Acute	EC50	NOEC
			Chronic		
		EC10 *			
			Acute	EC50	ErC50
			Chronic		NOEC
Fish	O. mykiss	1100 *	440 *	16 *	523
Invertebrates	O. mykiss	39 *	100	10	10
	D. magna	440 *	100	10	10
	D. magna	16 *	10	10	10
	P. subcapitata	523	10	10	10
	C. riparius	44 *	10	10	10
AF		100	10	10	10
RAC [µg a.s./L]		11	4.4	52.3	4.4
FOCUS Scenario		PECSW [µg a.s./L]			
Step 1					
Beans	28.216	2.57	7.23	6.41	5.40
Grapes	21.753	1.98	5.58	4.94	4.16
Leek	75.970	6.91	19.48	17.53	14.53
Tomato / aubergine	126.311 **	11.48	32.39	28.71	24.15
Cereals	14.108	1.28	3.62	3.21	2.70
Step 2 ***					
Beans	0.793	0.07	0.20	0.18	0.15
Grapes	1.864	0.17	0.48	0.42	0.36
Cereals	0.507	0.05	0.13	0.12	0.10
Leek	2.378	0.22	0.61	0.54	0.45
Tomato / aubergine	1.322	0.12	0.34	0.30	0.25

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* as for Thiophanate-methyl divided by 10

** worst-case for greenhouse use

*** Worst-case for N-Europe, October – February
2-AB

PEC/RAC ratios for 2-AB for each organism group based on FOCUS Steps 1 and 2 calculations for the uses of Topsin M 500 SC

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
	Acute	Chronic	Acute	Chronic			
Test species							
O. mykiss	LC50	NOEC	EC50	NOEC			
	19 *	3.2 *	150 *	1.5 *			
	100	10	100	10			
Endpoints							
Endpoint							
[µg a.s./L]							
AF	0.19	0.32	1.50	0.15			
RAC [µg a.s./L]							
FOCUS Scenario	PECSW [µg a.s./L]						
Step 1							
Beans	25.103	132.121	78.447	16.735	167.353	0.719	18.874
Grapes	19.123	100.647	59.759	12.749	127.487	0.548	14.378
Leek	68.042	358.116	212.631	45.361	453.613	1.950	51.159
Tomato / aubergine	113.130**	595.421	353.531	75.420	754.200	3.242	85.060
Cereals	12.552	66.063	39.225	8.368	83.680	0.360	9.438
Step 2							
Beans	1.015	5.342	3.172	0.677	6.767	0.029	0.763
Grapes	1.979	10.416	6.184	1.319	13.193	0.057	1.488
Cereals	0.755	3.974	2.359	0.503	5.033	0.022	0.568
Leek	9.921	52.216	31.003	6.614	66.140	0.284	7.459
Tomato / aubergine	5.691	29.953	17.784	3.794	37.940	0.163	4.279

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* same endpoints as Carbendazim
** worst-case for greenhouse use
*** Worst-case for N-Europe, October – February

PEC/RAC ratios for 2-AB for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in grapes

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
Test species	Endpoint	[µg a.s./L]	AF	RAC [µg a.s./L]	FOCUS Scenario	PECSW [µg a.s./L]	
--------------	----------	-------------	----	---------------	---------------	-----------------	
Fish	Acute	Chronic	Invertebrates	Acute	Chronic	Algae	Sed. dwell. prolonged
	O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	C. riparius	
	LC50	NOEC	EC50	NOEC	ErC50	NOEC	
	19 *	3.2 *	150 *	1.5 *	349	13.3 *	
	100	10	100	10	10	10	
	0.19	0.32	1.50	0.15	34.9	1.33	

PEC/RAC ratios for 2-AB for each organism group based on FOCUS Step 3 calculations for the use of Tospin M 500 SC in beans

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
Test species	O. mykiss	D. magna	P. subcapitata	C. riparius			
Endpoint	LC50	EC50	ErC50	NOEC			
[µg a.s./L]	19 *	150 *	349	13.3 *			
AF	100	100	10	10			
RAC [µg a.s./L]	0.19	1.5	34.9	1.33			
FOCUS Scenario	PECSW [µg a.s./L]						
Step 3							
Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
------------------	---------------	-------------------	----------------	----------------------			
	Acute	Chronic	Acute	Chronic			
D2/ditch	5.953	31.332	18.603	3.969	39.687	0.171	4.476
D2/stream	4.784	25.179	14.950	3.189	31.893	0.137	3.597
D3/ditch	0.053	0.279	0.166	0.035	0.353	0.002	0.040
D4/pond	0.018	0.095	0.056	0.012	0.120	0.001	0.014
D4/stream	0.024	0.126	0.075	0.016	0.160	0.001	0.018
D6/ditch 1st	0.099	0.521	0.309	0.066	0.660	0.003	0.074
D6/ditch 2nd	0.059	0.311	0.184	0.039	0.393	0.002	0.044
R1/pond	0.049	0.258	0.153	0.033	0.327	0.001	0.037
R1/stream	0.082	0.432	0.256	0.055	0.547	0.002	0.062
R2/stream	0.105	0.553	0.328	0.070	0.700	0.003	0.079
R3/stream	0.179	0.942	0.559	0.119	1.193	0.005	0.135
R4/stream	0.094	0.495	0.294	0.063	0.627	0.003	0.071
Step 4, 20 m vegetated buffer zone							
D2/ditch	5.953	31.332	18.603	3.969	39.687	0.171	4.476
D2/stream	4.784	25.179	14.950	3.189	31.893	0.137	3.597
D3/ditch	0.004	0.021	0.013	0.003	0.027	0.000	0.003
D4/pond	0.011	0.058	0.034	0.007	0.073	0.000	0.008
D4/stream	0.01	0.053	0.031	0.007	0.067	0.000	0.008
D6/ditch 1st	0.008	0.042	0.025	0.005	0.053	0.000	0.006
D6/ditch 2nd	0.011	0.058	0.034	0.007	0.073	0.000	0.008

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* same endpoints as Carbendazim

PEC/RAC ratios for 2-AB for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in cereals

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* same endpoints as Carbendazim

PEC/RAC ratios for 2-AB for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in cereals

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged	
	Acute	Chronic	Acute	Chronic	

www.efsa.europa.eu/efsajournal 112 EFSA Journal 2018;16(1):5133
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged			
Test species							
Endpoint							
[µg a.s./L]							
Acute	O. mykiss	D. magna	P. subcapitata	C. riparius			
Chronic	O. mykiss	D. magna	ErC50				
LC50	NOEC	EC50	NOEC	NOEC			
AF	100	100	10	10			
RAC [µg a.s./L]	0.19	0.32	1.50	13.3 *			
FOCUS Scenario	PECSW						
[µg a.s./L]							
Step 3							
D1/ditch	0.29	1.526	0.906	1.933	0.008	0.218	
D1/stream	0.071	0.374	0.222	0.047	0.473	0.002	0.053
D2/ditch	0.285	1.500	0.891	0.190	1.900	0.008	0.214
D2/stream	0.286	1.505	0.894	0.191	1.907	0.008	0.215
D3/ditch	0.047	0.247	0.147	0.031	0.313	0.001	0.035
D3/stream	0.058	0.034	0.073	0.000	0.008		
D4/pond	0.011	0.168	0.100	0.021	0.213	0.001	0.024
D4/stream	0.032	0.068	0.041	0.049	0.087	0.000	0.010
D5/pond	0.032	0.242	0.144	0.031	0.307	0.001	0.035
D5/stream	0.046	0.204	1.074	0.638	1.360	0.006	0.153
R1/pond	0.024	0.126	0.075	0.016	0.160	0.001	0.018
R1/stream	0.096	0.505	0.300	0.064	0.640	0.003	0.072
R3/stream	0.08	0.421	0.250	0.053	0.533	0.002	0.060
R4/stream	0.007	0.037	0.042	0.005	0.047	0.000	0.005

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* same endpoints as Carbendazim

PEC/RAC ratios for 2-AB for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in leek

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* same endpoints as Carbendazim

PEC/RAC ratios for 2-AB for each organism group based on FOCUS Step 3 calculations for the use of Topsin M 500 SC in leek

Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* same endpoints as Carbendazim
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Table 1: Acute and Chronic LC50/EC50/NOEC/ErC50 (µg a.s./L) for different test species

Test species	Endpoint	LC50	NOEC	EC50	NOEC	ErC50	NOEC
O. mykiss	Acute	19 *	3.2 *	150 *	1.5 *	349	13.3 *
D. magna	Chronic						
P. subcapitata							
C. riparius							

Table 2: FOCUS Scenario PEC/RAC for 2-AB for each organism group based on FOCUS Step 3 calculations for the use of Tospin M 500 SC in tomato / aubergine (late, greenhouse covering field use)

Step 3	D3/ditch	D4/pond	D4/stream	D6/ditch, 1st	D6/ditch, 2nd	R1/pond	R1/stream	R2/stream	R3/stream	R4/stream
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* same endpoints as Carbendazim

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold
* same endpoints as Carbendazim

PEC/RAC ratios for 2-AB for each organism group based on FOCUS Step 3 calculations for the use of Tospin M 500 SC in tomato / aubergine (late, greenhouse covering field use)

Group	Fish	Acute	Chronic	Invertebrates	Acute	Chronic	Algae	Sed. dwell. prolonged
Test species	O. mykiss	LC50	NOEC	D. magna	EC50	NOEC		C. riparius
Endpoint	19 *	3.2 *	150 *	1.5 *	349			13.3 *
[µg a.s./L]								
Group	Fish	Invertebrates	Algae	Sed. dwell. prolonged				
---------------	--------------	---------------	-------	----------------------				
	Acute	Chronic	Acute	Chronic				
AF	100	10	100	10				
RAC [µg a.s./L]	0.19	0.32	1.50	0.15				
FOCUS Scenario	PECSW [µg a.s./L]							
Step 3								
D6/ditch	0.001	0.005	0.003	0.001				
R2/stream	0.72	3.789	2.250	0.480				
R3/stream	1.124	5.916	3.513	0.749				
R4/stream	0.829	4.363	2.591	0.553				

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in bold

* same endpoints as Carbendazim
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1) *

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	Toxicity
Apis mellifera a.s., Thiophanate-methyl	Acute	Oral toxicity (LD$_{50}$)	No data	
Apis mellifera Topsis M 500 SC	Acute	Oral toxicity (LD$_{50}$)	114.7 μg a.s./bee	
Apis mellifera a.s., Thiophanate-methyl	Acute	Contact toxicity (LD$_{50}$)	>100 μg a.s./bee	
Apis mellifera Topsis M 500 SC	Acute	Contact toxicity (LD$_{50}$)	>100 μg a.s./bee	
Apis mellifera a.s., Thiophanate-methyl	Chronic	10 d-LC$_{50}$	>48.3 μg/bee/day	
Apis mellifera Topsis M 500 SC	Chronic	10 d-LC$_{50}$	No data	
Apis mellifera a.s., Thiophanate-methyl	Bee brood development	NOEClarvae	No data	
Apis mellifera a.s., Thiophanate-methyl	Sub-lethal effects (behavioural and reproductive)	NOEC hypopharyngeal glands	No data	

Potential for accumulative toxicity: no data

Semi-field test (Cage and tunnel test)
Study on the effect of Thiophanate-methyl 500 SC on honey bee brood (*Apis mellifera* L.) under semi-field conditions - tunnel test (Sekine and Eichler 2013). Possible effect on colony strength development at 1500 g a.s./ha, resulting in a NOEC of 750 g a.s./ha.

Field tests
No data

Risk assessment for – Grapes at 1100 g a.s./ha [single application]

Screening step	Test substance	Risk quotient	HQ/ETR	Trigger
Tier I	a.s., Thiophanate-methyl Topsis M 500 SC	ETRchronic adult oral	Treated crop <0.134	0.03

*ETRlarvae could not be calculated since the available results were expressed as g a.s./ha instead of the μg a.s./larva per developmental period as needed for the calculation proposed in the EFSA GD 2013. Risk assessment based on brood study by Sekine and Eichler 2013, where no effects were observed at doses up to 750 g a.s./ha. At 1100 g a.s./ha, risk for bees cannot be excluded based on available data.

Risk assessment for – Beans at 750 g a.s./ha [two applications]
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Test substance Risk quotient HQ/ETR Trigger

Screening step

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Apis mellifera	a.s., Thiophanate-methyl Topsin M 500 SC	HQcontact	0.21	42
Apis mellifera	a.s., Thiophanate-methyl Topsin M 500 SC	ETRacute adult oral	>0.050	0.2
Apis mellifera	a.s., Thiophanate-methyl Topsin M 500 SC	ETRchronic adult oral	<0.118	0.03
Apis mellifera	a.s., Thiophanate-methyl Topsin M 500 SC	ETRlarvae	Not relevant*	-
Apis mellifera	a.s., Thiophanate-methyl Topsin M 500 SC	ETRhpg	No data	-

Tier I

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Apis mellifera	a.s., Thiophanate-methyl Topsin M 500 SC	ETRchronic adult oral	Treated crop <0.156 Weeds <0.017 Field margin <0.0005 Adjacent crop <0.0004 Next crop <0.010	0.03

*ETRlarvae could not be calculated since the available results were expressed as g a.s./ha instead of the μg a.s./larva per developmental period as needed for the calculation proposed in the EFSA GD 2013. Risk assessment based on brood study by Sekine and Eichler 2013, where no effects were observed at doses up to 750 g a.s./ha. Hence, at the representative use in beans, the risk to bees can be considered as low.

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri, Tier I	Topsin M 500 SC	Mortality, LRso	>1575 g a.s./ha
		Reproduction, ERso	>1575 g a.s./ha
Aphidius rhopalosiphi, Tier I	Topsin M 500 SC	Mortality, LR50	>1500 g a.s./ha
		Reproduction, ER50	175-525 g a.s./ha

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

- *Typhlodromus pyri*, Tier I: The test substance was found to be toxic to this species, with mortality and reproduction effects observed at doses of 1575 g a.s./ha. Additional species...
Peer review of the pesticide risk assessment of the active substance thiophanate-methyl

Species	Test Substance	End point	Toxicity
Poecilus cupreus, Tier I	Topsin M 500 SC	Mortality, LR50 Reproduction, ER50	>525 g a.s./ha >525 g a.s./ha

First tier risk assessment for – Grapes at 1100 g a.s./ha [single application]

Test substance	Species	Effect (LR50 g a.s./ha)	HQ in-field	HQ off-field	Trigger
Topsin M 500 SC	Typhlodromus pyri	>1575	<0.698	<0.056	2
Topsin M 500 SC	Aphidius rhopalosiphi	>1500	<0.733	<0.059	2

Note: a) 3 meter spray distance

First tier risk assessment for – Beans at 750 g a.s./ha [two applications]

Test substance	Species	Effect (LR50 g a.s./ha)	HQ in-field	HQ off-field	Trigger
Topsin M 500 SC	Typhlodromus pyri	>1575	<0.810	<0.019	2
Topsin M 500 SC	Aphidius rhopalosiphi	>1500	<0.851	<0.020	2

Note: a) 1 meter spray distance

First tier risk assessment for – Cereals at 750 g a.s./ha [single application]

Test substance	Species	Effect (LR50 g a.s./ha)	HQ in-field	HQ off-field	Trigger
Topsin M 500 SC	Typhlodromus pyri	>1575	<0.476	<0.013	2
Topsin M 500 SC	Aphidius rhopalosiphi	>1500	<0.500	<0.014	2

Note: a) 1 meter spray distance

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (g a.s./ha)	End point	% effect	ER50
Aphidius rhopalosiphi	Adult females	Topsin M 500 SC, barley seedlings	48 hours	100	Mortality	5	>1500
			500		Parasitation rate	2.2	
			1500		Mortality	0	14.5
					Parasitation rate	0	44.9

Risk assessment based on extended lab test or aged residue tests

- Not required

Semi-field tests

- Not available

Field studies

- A field study in apple orchards in Germany was available with the SC formulation, where no adverse effect on populations of the predatory mite *T. pyri* was observed after three applications at 525 g a.s./ha. Questionable relevance for the representative uses of Thiophanate-methyl.

- Additional specific test

- Not available
Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) No 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) No 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./ OM a)	Time scale	End point	Toxicity (mg a.s./kg d.w.soil)
Earthworms					
Eisenia fetida	Thiophanate-methyl	Mixed into soil, 10% peat	Chronic, 56 days	Growth, reproduction, behaviour NOEC EC₁₀	1.60 1.36
Eisenia fetida	Carbendazim	Mixed into soil, OM content not reported	Chronic, 56 days	Growth, reproduction, behaviour NOEC	1.0^{b)}
Eisenia andrei	Carbendazim	Mixed into soil, 10% OM	Chronic, 56 days	Growth, reproduction, behaviour NOEC	0.58*

Other soil macroorganisms					
Folsomia candida	Tropsin M 500 SC	Mixed into soil, 5% peat	Chronic, 28 days	NOEC	100 (a.s.)
Hypoaspis aculeifer	Tropsin M 500 SC	Mixed into soil, 5% peat	Chronic, 14 days	NOEC	100 (a.s.)

a) To indicate whether the test substance was over-sprayed/to indicate the organic content of the test soil (e.g. 5% or 10%).
b) From EFSA conclusion for Carbendazim (2010)
*endpoint derived from the peer-review literature paper from Chelinho et al. (2014).

Higher tier testing (e.g. modelling or field studies)

Earthworms:
Ehlers, H.A. (2001): Field study to evaluate the effects of Cercobin FL on earthworms (Germany).
As a surrogate to a NOEC value (that could not be determined from the data), we would support the conclusion from the previous evaluation that the EC₁₀ from 11 months after application (0.17 kg a.s./ha, corresponding to 0.23 mg a.s./kg dw soil) should be used for the risk assessment. This is to assure that sufficient recovery can be anticipated before a possible treatment in the next season and is consistent with the previously agreed endpoint.

Moser, T., Scheffczyk, A. et al. (2009): Thiophanate-methyl 500 SC: Effects on Abundance, Biomass and Species Composition of Earthworm Populations under Field Conditions (Germany)
Based on biologically significant effects no NOEC (<170 g a.s./ha) could be determined from this study for the most sensitive group of earthworms.

Strömel, C., Brockmann, A., Teresiak, H. (2006): The effects of TOPSIN M 500 SC (Thiophanate-methyl) after use as a dipping solution for flower bulbs on survival, reproduction and biomass of earthworms under field conditions (Germany)
Low reliability and questionable relevance for the representative uses of Thiophanate-methyl.

The experts’ meeting 165 agreed that the available higher tier field data on earthworms did not change the outcome of the Tier I risk assessment. Hence, these data are not useful for refinement.

Nitrogen transformation

Medium loamy sand (org. C 1.34%)	Thiophanate-methyl	28 days	+24% effect at day at 35 mg a.s./kg d.w.soil (mg a.s/ha)
Two soils; Loamy sand (org. C 0.8%); Sandy loam (org. C 1.6%)	Tropsin M 500 SC	28 days	-4% effect at day at 7.0 mg a.s./kg d.w.soil (mg a.s/ha)
Low org. C silty sand soil	Carbendazim	42 days	+5 effect at day at 4.8 mg a.s./kg d.w.soil (mg a.s/ha)
Toxicity/exposure ratios for soil organisms

Wine Grapes at 1100 g a.s./ha [single application]

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Earthworms					
Thiofanate-methyl	Chronic	0.587	**2.31**	5	
Carbendazim	Chronic	0.248	**2.34**	5	
CM-0237(9)	Chronic	0.055	2.47	5	
2-AB(9)	Chronic	0.014	9.71	5	
Other soil macroorganisms					
Folsomia candida	Thiofanate-methyl	Chronic	0.587	-	5
Topsin M 500 SC	Chronic	0.587	170	5	
Carbendazim(9)	Chronic	0.248	40.3	5	
CM-0237(9)	Chronic	0.055	182	5	
2-AB(9)	Chronic	0.014	714	5	
Hypoaspis auleifer	Thiofanate-methyl	Chronic	0.587	-	5
Topsin M 500 SC	Chronic	0.587	170	5	
Carbendazim(9)	Chronic	0.248	40.3	5	
CM-0237(9)	Chronic	0.055	182	5	
2-AB(9)	Chronic	0.014	714	5	

a) maximum initial PEC soil was used
b) TER values based on the conservative assumption that the metabolites are 10 times more toxic than the active ingredient.

Fresh Beans at 750 g a.s./ha [two applications]

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Earthworms					
Thiofanate-methyl	Chronic	0.300	**4.53**	5	
Carbendazim	Chronic	0.235	**2.47**	5	
CM-0237(9)	Chronic	0.053	**2.56**	5	
2-AB(9)	Chronic	0.007	19.4	5	
Other soil macroorganisms					
Folsomia candida	Thiofanate-methyl	Chronic	0.300	-	5
Topsin M 500 SC	Chronic	0.300	333	5	
Carbendazim(9)	Chronic	0.235	42.6	5	
CM-0237(9)	Chronic	0.053	189	5	
2-AB(9)	Chronic	0.007	1428	5	
Hypoaspis auleifer	Thiofanate-methyl	Chronic	0.300	-	5
Topsin M 500 SC	Chronic	0.300	333	5	
Carbendazim(9)	Chronic	0.235	42.6	5	
CM-0237(9)	Chronic	0.053	189	5	
2-AB(9)	Chronic	0.007	1428	5	

a) maximum initial PEC soil was used
b) TER values based on the conservative assumption that the metabolites are 10 times more toxic than the active ingredient.

Cereals at 750 g a.s./ha [single late application]

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Earthworms					
Thiofanate-methyl	Chronic	0.200	6.80	5	
Carbendazim	Chronic	0.085	6.82	5	
CM-0237(9)	No data, not needed	0.019	7.16	5	
2-AB(9)	Chronic	0.005	27.2	5	
Other soil macroorganisms					
Folsomia candida	Thiofanate-methyl	Chronic	0.200	-	5
Topsin M 500 SC	Chronic	0.200	500	5	
Carbendazim(9)	Chronic	0.085	118	5	
CM-0237(9)	Chronic	0.019	526	5	
2-AB(9)	Chronic	0.005	2000	5	
Hypoaspis auleifer	Thiofanate-methyl	Chronic	0.200	-	5
Topsin M 500 SC	Chronic	0.200	500	5	
Carbendazim(9)	Chronic	0.085	118	5	
CM-0237(9)	Chronic	0.019	526	5	
2-AB(9)	Chronic	0.005	2000	5	

a) maximum initial PEC soil was used
b) TER values based on the conservative assumption that the metabolites are 10 times more toxic than the active ingredient.
Leek at 4150 g a.s./ha [drenching]

Test organism	Test substance	Time scale	Soil PEC a)	TER	Trigger
Earthworms					
	Thiophanate-methyl	Chronic	5.53	0.24	5
	Carbendazim	Chronic	2.34	0.25	5
	CM-0237 b)	No data, not needed	0.514	0.26	5
	2-AB b)	Chronic	0.131	1.04	5
Other soil macroorganisms					
Folsomia candida	Thiophanate-methyl	Chronic	5.53	-	5
	Topsin M 500 SC	Chronic	5.53	18.1	5
	Carbendazim	Chronic	2.34	4.27	5
	CM-0237 b)	Chronic	0.514	19.5	5
	2-AB b)	Chronic	0.131	76.3	5
Hypoaspis aculeifer	Thiophanate-methyl	Chronic	5.53	-	5
	Topsin M 500 SC	Chronic	5.53	18.1	5
	Carbendazim	Chronic	2.34	4.27	5
	CM-0237 b)	Chronic	0.514	19.5	5
	2-AB b)	Chronic	0.131	76.3	5

a) maximum initial PEC soil was used
b) TER values based on the conservative assumption that the metabolites are 10 times more toxic than the active ingredient.

Tomato/aubergine 2100 g a.s./ha [drip irrigation]

Test organism	Test substance	Time scale	Soil PEC a)	TER	Trigger
Earthworms					
	Thiophanate-methyl	Chronic	3.07	0.44	5
	Carbendazim	Chronic	2.06	0.28	5
	CM-0237 b)	No data, not needed	0.475	0.29	5
	2-AB b)	Chronic	0.083	1.64	5
Other soil macroorganisms					
Folsomia candida	Thiophanate-methyl	Chronic	3.07	-	5
	Topsin M 500 SC	Chronic	3.07	32.6	5
	Carbendazim	Chronic	2.06	4.85	5
	CM-0237 b)	Chronic	0.475	21.1	5
	2-AB b)	Chronic	0.083	120.5	5
Hypoaspis aculeifer	Thiophanate-methyl	Chronic	3.07	-	5
	Topsin M 500 SC	Chronic	3.07	32.6	5
	Carbendazim	Chronic	2.06	4.85	5
	CM-0237 b)	Chronic	0.475	21.1	5
	2-AB b)	Chronic	0.083	120.5	5

a) maximum initial PEC soil was used
b) TER values based on the conservative assumption that the metabolites are 10 times more toxic than the active ingredient.

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data
Not available. Covered by the available laboratory data.

Laboratory dose response tests

Species	Test substance	ER50 (g a.s./ha) vegetative vigour	ER50 (g a.s./ha) emergence	Exposure (g a.s./ha)	TER	Trigger
Cabbage, corn, cucumber, lettuce, oat, onion, radish, ryegrass, tomato, soybean	Thiophanate-methyl	>1570	>1680	88 Grapes, 8.02% drift, 3 m	>15.2	5
Cabbage, corn, cucumber, lettuce, oat, onion, radish, ryegrass, tomato, soybean	Thiophanate-methyl	>1570	>1680	30 Beans, 2.38% drift, 1 m	>46.7	5
Cabbage, corn, cucumber, lettuce	Thiophanate-methyl	>1570	>1680	21 Cereals,	>63.8	5
Species | Test substance | ER_{50} (g a.s./ha) vegetative vigour | ER_{50} (g a.s./ha) emergence | Exposure (g a.s./ha) | TER | Trigger
--- | --- | --- | --- | --- | --- | ---
oat, onion, radish, ryegrass, tomato, soybean | | | | 2.77% drift, 1 m | | Extended laboratory studies: Not available, not needed
Semi-field and field test: Not available, not needed.

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	NOEC 1000 mg a.s./L
Pseudomonas sp	No data, not required

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

No monitoring data on effects in the environment is available.

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

Ecotoxicologically relevant compounds a)

Compartment	Thiophanate-methyl, Carbendazim (MBC)
soil	Thiophanate-methyl, Carbendazim (MBC)
water	Thiophanate-methyl, Carbendazim (MBC)
sediment	Thiophanate-methyl, Carbendazim (MBC)
groundwater	Thiophanate-methyl, Carbendazim (MBC)

a) metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent. In this case, comparison was made against Carbendazim, a major environmental metabolite that is formed rapidly from the parent and is more toxic than the active ingredient.
Classification and labelling with regard to ecotoxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance	Thiophanate-methyl	
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]	H400	H410
Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008	-	

12 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

13 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.