Water and Nitrogen Management at the Booting Stage Affects Yield, Grain Quality, Nutrient Uptake, and Use Efficiency of Fragrant Rice Under the Agro-Climatic Conditions of South China

Siying Deng 1,2, Umair Ashraf 1,3*, Mohsin Nawaz 4, Ghulam Abbas 5, Xiangru Tang 1,2 and Zhaowen Mo 1,2*

1 State key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China, 2 Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China, 3 Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan, 4 College of Agriculture, Hainan University, Haikou, China, 5 Plant Physiology Section, Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan

The present study was conducted to assess the effects of water and nitrogen applications at the booting stage on yield, grain quality, and nutrient use efficiencies in fragrant rice in the early (March–July) and late (July–November) seasons of 2013. The experiment was comprised of two fragrant rice cultivars, i.e., Nongxiang 18 and Basmati; three nitrogen levels, i.e., 0 kg N ha⁻¹ (N0), 30 kg N ha⁻¹ (N1), and 60 kg N ha⁻¹ (N2); and three water levels, i.e., 2–4 cm water layer well-watered (W0), water with a soil water potential of −15 ± 5 kPa (W1), and water with a soil water potential of −25 ± 5 kPa (W2), which were randomized in a split-split plot design. Results showed that Basmati produced a higher grain yield than Nongxiang 18 (16.20 and 9.61% in the early and late season, respectively), whereas the W1 exhibited the maximum grain yield and harvest index. The moderate application of nitrogen (N1) at the booting stage resulted in higher grain yield, nevertheless, cultivar, water, and nitrogen revealed different trends for some of the grain quality attributes, i.e., brown rice rate, milled rice rate, head milled rice rate, protein content, and amylose content as well as nutrient uptake and use efficiencies in the double rice production system. Basmati had a higher nitrogen harvest index (NHI; 18.28–20.23%) and P harvest index (PHI; 3.95–12.42%) but lower physiological P use efficiency for biomass (PPUEB; 7.66–23.66%) and physiological K use efficiency for biomass (PKUEB; 2.53–7.10%) than Nongxiang 18 in both seasons. Furthermore, the grain number per panicle, biomass yield, grain P uptake, and the whole plant P uptake were significantly related to the grain yield of fragrant rice. In both seasons, the interaction of water and nitrogen (W × N) had a significant effect on panicle number, grain quality attributes, and N, P uptake of straw, as well as the physiological N, P use efficiency for grain and the physiological N, K use efficiency for biomass. Overall, results suggest that moderate nitrogen and irrigation input at the booting stage could be feasible to improve the productivity and quality of the double rice production system with improved nutrient use efficiency under the agro-climatic conditions of South China.

Keywords: biomass, grain yield, nutrient, rice quality, water management
INTRODUCTION

China contributes about 30% of global rice production wherein fragrant rice is popular due to its pleasant aromatic character and excellent cooking qualities (Bryant and McClung, 2011; Mo et al., 2015; Ashraf and Tang, 2017; Dias et al., 2021). Fragrant rice is traded worldwide at a premium price due to its excellent cooking qualities (Sakhthivel et al., 2009), thus increasing the farmers’ interest in enhancing areas under fragrant rice cultivation in China (Li et al., 2022; Lin et al., 2022). Fragrant rice is an ancient, well-known rice type that has secured a leading position due to end-user preference for its aroma and other qualities (Fu et al., 2021; Xie et al., 2021). However, regional climate variabilities as well as management and genetic factors not only affect growth and productivity but also regulate the quality of the fragrant rice (Singh et al., 2005, 2006; Ashraf et al., 2017; Li et al., 2021a). Moreover, substantial improvements have also been made to enhance the productivity and quality of fragrant rice by integrating advanced agricultural practices with modern plant breeding approaches (Sautter et al., 2006; Zhang et al., 2021).

Furthermore, efficient nutrient management could also be important to improve the productivity and quality of fragrant rice (Li et al., 2021a,b). Nitrogen (N), which is an important plant nutrient component, ranged from 2.17 to 52.61 mg/g in leaves with 17.55 mg/g dry weight in the north–south transect of eastern China (Ren et al., 2007). Moreover, the nitrogen content of japonica and indica rice was 27 and 25 kg/kg dry weight, respectively, which can be used as a critical index of nitrogen deficiency in rice (Wang et al., 2016). Furthermore, the grain quality of rice was found to be strongly linked with nitrogen fertilization (Ishaq et al., 2020), whereas N application also exhibits a considerable role in the milling quality of rice and aggravates the lusciousness of cooked rice (Champagne et al., 2009). The increase in protein content and decrease in amylose content as a result of N application makes the cooked rice hard, scabrous, and sticky in texture and increased the gel cohesiveness (Gunaratne et al., 2011; Singh et al., 2011), and such characteristics are therefore dependent on N-fertilizer application and the characteristics of cultivars (Hussain et al., 2014). On the other hand, increased nitrogenous fertilizer application rates did not achieve high utilization efficiency in China, where this was found to be 20–30% lower than the world’s average (Yan et al., 2017). The average N application rate for rice is 180 kg N ha⁻¹ year⁻¹ in China, but in some parts, it exceeded 450 kg N ha⁻¹ (Zhang and Li, 2003; Miao et al., 2011; Zhao et al., 2012; Ju et al., 2015). During the last three decades, the average amount of nitrogen fertilizer applied in South China was 284 kg ha⁻¹ (Huang et al., 2020). However, some unreasonable applications of nitrogen fertilizer phenomena limit the optimization of nitrogen fertilizer uptake and utilization efficiency (Ju and Gu, 2014; Zhao et al., 2015), which might be attributed to farmers’ traditional ideas and lack of interest in utilizing advanced agronomic management measures (Yao et al., 2018; Li et al., 2020). Moreover, excessive use of N fertilizers in fragrant rice promotes vegetative growth and reduces the seed set and/or grain formation (Singh et al., 2017).

The low nitrogen use efficiency (NUE) in the rice production system has not only decreased the stability of the rice yield but also increased the burden on environmental sustainability (Azusa et al., 2016).

In addition to N, there is no doubt that water management is crucial in the rice production systems of South China. The area using the double-cropping rice system in South China is about 620 × 10⁴ ha² (Ai et al., 2014), whereas the demand for water irrigation is 135 mm for early rice and 265 mm for late rice in the region of South China (Luo et al., 2022). However, excessive application of water and low water use efficiencies have always been problems in rice production systems (Hamoud et al., 2019). Various water-saving technologies have recently been developed in rice-based cropping systems to improve water use efficiencies as well as to maintain and/or improve rice productivity (Li, 2006; Sagwal et al., 2022). In this regard, alternate wetting and drying (AWD) is one of the best methods to improve water use efficiency and cost-effective rice production (Bouman and Tuong, 2001; Ashraf et al., 2018). Its application largely depends on the weather conditions and/or soil water contents/potential. Based on Emergy analysis, the double-cropping rice pattern in South China produces less environmental pressure and greater potential for sustainable development (Feng et al., 2019). So, unlike genetic, the agronomical and crop management factors thus largely affect the productivity, quality, and resource use efficiencies of rice-based cropping systems.

Moderate water-nitrogen interaction is beneficial to reducing a series of ecological and environmental problems (He et al., 2016) as well as regulating nitrogen within the rhizosphere and root ecological environment (Wu et al., 2021). Compared with local farmers’ practice (LFP), field-specific nitrogen management and irrigation with alternate wetting and moderate drying not only improved grain yield but also nitrogen and water use efficiency (Xue et al., 2013). Meanwhile, water and nitrogen fertilizer management had altered the magnitude of nitrogen, phosphorus, and potassium uptake in rice; significant synergistic effects of nitrogen, phosphorus, and potassium under the condition of water and nitrogen interaction were even observed (Sun et al., 2011; Yu et al., 2019). Although water and nitrogen management measures are important management for fragrant rice production, there is still a lack of specific information in this regard. Therefore, the present study was conducted to determine the relationships between N levels and water regimes for possible contemporary improvements in the yield, quality, and water and nitrogen use efficiencies as well as to evaluate the relationships between grain yield and nutrient uptake and use efficiencies in the double rice production system in South China.

MATERIALS AND METHODS

Experimental Site, Description, and Design

Field experiments were conducted over two seasons—during the early (March–July) and late (July–November) seasons in 2013—at the Experimental Research Farm, College of Agriculture, South China Agricultural University (SCAU), Guangzhou, China (23°09′N,
113°22'E and 11m above the sea level). This region has a sub-tropical type of climate with an annual average temperature between 21 and 29°C with 70–80% relative humidity (RH). The experimental farm has been under paddy cultivation for many years. The soil properties of the experimental site and meteorological data are been presented in Tables 1 and 2, respectively.

Two popular fragrant rice cultivars, i.e., Nongxiang 18 and Basmati, were grown during both early and late seasons. The N, P2O5, and K2O were applied at 90, 90, and 195 kg ha−1 in the form of urea, calcium superphosphate, and potassium chloride, respectively, as basal doses. Additional doses of N were applied at the tillering at 30 kg N ha−1. The experimental treatments comprised of three N levels, i.e., 0 kg N ha−1 (N0), 30 kg N ha−1 (N1), and 60 kg N ha−1 (N2), and three levels of water treatments, i.e., 2–4 cm water layer well-watered (W0), water with a soil water potential of −15 ± 5 kPa (W1), and water with a soil water potential of −25 ± 5 kPa (W2) at the booting stage. The water treatments were in accordance with Yang et al. (2007). The treatment period for both seasons was 30 days, i.e., 12 May to 12 June for the early season and 1 September to 1 October 2013 for the late season. Apart from the treatment period, all plots were flooded 3 days after transplanting with a water depth of 2–4 cm for 7 days before maturity. The pest and weed control were implemented according to the guidelines for fragrant rice cultivation in South China (Tang et al., 2014).

The treatments were randomized in a split-split plot design with cultivars in the main plot, water levels in sub-plots, and nitrogen levels in sub-sub plots in triplicate. The plot size was 3 m × 5 m (375 hills plot−1). Seedlings from early rice (21 days old) and late rice (17 days old) from wet bed nurseries were transplanted at a rate of 2 seedlings per hill at a 20 cm × 20 cm (2.5 × 105 hills ha−1) planting distance on 31 March and 2 August and harvested on 12 July and 1 November for the early and late seasons, respectively. The nursery of the late season develops earlier and grows faster than the early season due to the natural climatic conditions of the region (Li et al., 2016).

Sampling and Data Collection

At maturity, 25 hills from each plot were harvested in triplicate, threshed manually, and three 100 g samples were oven-dried at 105°C to constant weight to calculate the water content and then converted into 14% grain moisture content. Panicles were threshed manually from five random hills to count the total and then five hills were separated into leaves, stems, and grains for dry matter determination and nutrient (N, P, and K) accumulation and distribution analyses. The plant parts were dried to a constant weight in an oven at 80°C. For nutrient measurement in plant tissues, oven-dried samples were ground into powder and digested and analyzed for N, P, and K by the method described by Lu (1999). The digestion was then used to determine the total N content by the Kjeldahl method with a 2300 Kjeltec Analyzer Unit (Foss Tecator AB, Swedish). The P and K contents were determined by using the UV-VIS Spectrophotometer UV-2550 (SHIMADZU, Japan) and the Atomic Absorption Spectrophotometer AA-6300C (SHIMADZU, Japan) method, respectively.

The harvest index was calculated as (grain yield/aboveground dry biomass) × 100%. The physiological N, P, and K use efficiency for grain (biomass) was defined as the weight of grain (biomass) divided by total N, P, and K uptake (jiang et al., 2004). The N, P, and K harvest index was defined as the total N, P, and K uptake in grain divided by total N, P, and K in the whole plant (Albrizio et al., 2010).

The grains (500 g) from the harvested seed lot (stored at room temperature in a well-aerated storage room for at least 3 months) were taken for quality analyses. The brown rice rate was tested with a rice huller (Jiangsu, China) whereas the milled rice and head milled rice rates were estimated with a Jingmi testing rice grader (Zhejiang, China) and calculated as follows:

- Brown rice rate = brown rice weight/rice sample weight × 100%
- Milled rice rate = milled rice weight/rice sample weight × 100%
- Head milled rice rate = milled rice weight/rice sample weight × 100%

The amylose and protein contents of grains were measured by using an Infratec 1241 grain analyzer (FOSS-TECATOR).

Data Analysis

The data analyses and correlation coefficients were estimated with Statistix version 8 (Analytical, and Tallahassee, Florida, United States) whilst the differences amongst treatments were separated by the least significant difference (LSD) test at a 0.05 level of significance.

RESULTS

Dry Biomass, Yield, and Yield Components

For water treatments, the W1 had the highest grain yield in the early season (748.24 g m−2), followed by the late season (621.14 g m−2). Compared with W0, the grain yield was increased by 30.57 and 21.83% under W1 and W2 treatments during the early season whilst it was decreased by 0.18 and 5.11% under the same water conditions.

TABLE 1 | Properties of the experimental field soil during both the early and late seasons of the double rice cropping system in South China.

Growing seasons	Organic matter (g kg−1)	Total N (g kg−1)	Total P (g kg−1)	Total K (g kg−1)	Available N (mg kg−1)	Available P (mg kg−1)	Available K (mg kg−1)
Early season	23.3	1.1	1.1	24.4	114.3	61.3	127.0
Late season	25.7	1.4	1.0	17.5	85.5	25.1	153.2
TABLE 2 | The meteorological data of the experimental site during the early and late seasons of the double rice cropping system in South China.

Month	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
Temperature (°C)	19.6	20.9	25.6	28	27.9	27.9	27	23.6	19.5
Humidity (%)	80	86	86	81	82	83	79	66	71
Rainfall (mm)	177.1	268.4	302.7	229.1	273.3	396.6	203.7	5.9	40.3
Sunshine hours (h)	86.8	38.8	73.9	167.3	177.3	162.3	176.1	224.4	150.1

TABLE 3 | Grain yield and yield components as affected by water, nitrogen, and cultivars in the early and late seasons of double rice cropping system in South China.

Treatment	Grain yield (g m⁻²)	Panicle number per m²	Grain number per panicle	Seed setting rate (%)	1,000 grain weight (g)	
Early season						
Cultivar	Nongxiang 18	622.54 b	199.44 a	148.22 b	77.474 a	27.587 a
Basmati 385	723.75 a	195.19 b	185.50 a	77.228 a	26.914 b	
Water	W0	573.06 b	190.83 c	157.64 b	70.086 b	27.342 a
W1	748.24 a	195.68 b	180.42 a	79.565 a	27.131 b	
W2	696.15 a	205.56 a	162.53 b	79.403 a	27.214 ab	
Nitrogen	N0	666.07 a	181.77 a	78.834 a	27.014 b	
N1	668.37 a	201.39 b	166.74 b	76.318 a	27.343 a	
N2	685.01 a	206.39 a	162.12 c	76.901 a	27.394 a	
ANOVA	Water (W)	45.01**	39.95**	34.06**	11.92*	4.29 ns
Nitrogen (N)	0.49 ns	69.99***	3.52 ns	2.40 ns	21.61***	
W X N	2.00 ns	7.84**	10.34***	5.79**	37.19**	
Cultivar (C)	31.54***	11.02**	120.48***	0.99 ns	253.17***	
W X C	8.53**	56.02***	2.57 ns	17.30***	6.67**	
N X C	1.22 ns	11.08***	3.10 ns	1.49 ns	54.88***	
W X N X C	1.07 ns	0.96 ns	1.05 ns	2.37 ns	22.92***	
Late season						
Cultivar	Nongxiang 18	583.24 b	237.15 a	124.28 b	79.172 b	27.121 b
Basmati 385	639.30 a	225.67 b	139.22 a	85.869 a	28.138 a	
Water	W0	622.24 a	233.17 a	139.15 a	80.288 b	27.542 a
W1	621.14 a	232.33 a	132.17 b	85.541 a	27.748 a	
W2	590.43 b	228.72 a	123.94 c	81.732 b	27.596 a	
Nitrogen	N0	584.00 b	214.83 c	134.33 a	83.312 a	27.502 a
N1	629.11 a	232.61 b	131.09 a	82.928 a	28.034 a	
N2	620.70 a	246.78 a	129.84 a	81.321 a	27.353 a	
ANOVA	Water (W)	7.00*	1.10 ns	41.48**	9.46*	2.16 ns
Nitrogen (N)	15.54***	79.97***	2.36 ns	2.00 ns	12.46**	
W X N	2.55 ns	9.09**	0.85 ns	2.23 ns	3.18 ns	
Cultivar (C)	94.85***	29.57***	59.98***	62.24***	258.61***	
W X C	26.37***	7.67**	1.46	4.26*	4.33*	
N X C	28.45***	19.25***	5.96*	1.67 ns	1.49 ns	
W X N X C	8.96***	1.23 ns	3.46*	1.33 ns	24.40***	

Different low case letters indicate the significant difference among treatments at 0.05 level. N0: 0 kg N ha⁻¹, N1: 30 kg N ha⁻¹, N2: 60 kg N ha⁻¹, W0: well-watered, W1: soil water potential was −15 ± 5 kPa, W2: soil water potential was −25 ± 5 kPa. *Significant at p < 0.05, **Significant at p < 0.01, ***Significant at p < 0.001, and ns: non-significant.

treatments during the late season, respectively. However, the reduction in grain yield was found non-significant for W1 in the late season rice. Compared to N0, N1, and N2 significantly increased grain yield by 7.72 and 6.28%, respectively, in the late season rice. The improvement of grain yield was also observed for N1 and N2 in the early season but remained non-significant. Moreover, Basmati showed a significantly higher grain yield than Nongxiang 18 (16.20 and 9.61% in the early and late seasons, respectively). However, Basmati had a lower panicle number (2.13 and 4.84%) and low harvest index (2.13 and 4.84%) than Nongxiang 18 but had a higher grain number per panicle (25.15 and 12.03%), higher straw weight (20.37 and 9.05%), and a higher biomass yield (18.18 and 15.89%) in the early and late season, respectively.

Moreover, Basmati showed a significantly higher grain yield than Nongxiang 18 (16.20 and 9.61% in the early and late seasons, respectively). According to Tables 3 and 4, the addition of water and nitrogen increased the yield and yield components in both seasons. The highest grain yield was observed in the N1 treatment, followed by N2 and N0, respectively. The seed setting rate was found to be highest in the N1 treatment, followed by N2 and N0, respectively. The 1,000 grain weight was found to be highest in the N1 treatment, followed by N2 and N0, respectively. The straw weight and biomass yield were found to be highest in the N1 treatment, followed by N2 and N0, respectively.
Grain number per panicle and biomass yield in the early season and only for panicle numbers in the late season.

Correlation Between Yield and Yield Components and Biomass
Grain number per panicle and biomass yield were significantly and positively correlated with grain yield in both the early and late season (Figures 1A,E), however, the grain yield was significantly related to seed setting rate and harvest index only for the early season (Figures 1B,F). Further, significant and positive associations of grain yield with 1,000 grain weight and straw weight were also recorded for the late season (Figures 1C,D).

Grain Quality Attributes
Basmati was found to be superior to Nongxiang 18 in the late season regarding the brown rice rate, whereas reduced irrigations increased the brown rice rate for the early season while results were found otherwise for the late season. The N2 had the highest brown rice rate, i.e., 80.22 and 83.14% in the early and the late season, respectively. The Nongxiang 18 had a substantially higher milled rice rate than Basmati for the early season, while it was lower for the late season. The milled rice rate significantly increased with the decrease in water for the early season, while an opposite trend was found for the late season. Likewise, the milled rice rate significantly decreased with the increase in nitrogen for the early season, while an opposite trend was found for the late season. Furthermore, W1 and W2 had significantly higher milled rice rates than W0 in the early season whereas the N0 and N1 resulted in higher head milled rice rates than N2. However, a substantial increase in head milled rice rate was recorded with the increase in nitrogen for the late season. The Nongxiang 18 had a significantly lower protein content than Basmati in the early season. The protein content significantly increased under W1 and W2 water treatments than W0 for the early season, while W2 showed significantly higher protein than W1 for the late season. The highest protein content was recorded in N1, i.e., 7.08 and 9.01% in the early and the seasons, respectively, compared to N0. The trend of amylose contents under different N treatments was recorded as N0 > N2 > N1 (Table 5). In addition, water and nitrogen interaction (W×N) was found statistically significant (p < 0.05) regarding brown rice rate (%), milled rice rate (%), head milled rice rate (%), the protein content (%) and amylose content (%) in the early season. However, water and nitrogen interaction (W×N) was found statistically significant (p < 0.05) regarding all quality traits except for brown rice rate in late season rice (Table 5).

N, P, and K Uptake
Basmati showed higher grain N uptake (14.06–60.76%), grain P uptake (32.83–72.85%), straw P uptake (25.83–38.89%), whole plant P uptake (28.61–53.10%), grain K uptake (5.60–25.79%), straw K uptake (20.03–31.18%), and whole plant K uptake (25.58–28.40%) than Nongxiang 18 in both seasons. However, a lower straw N uptake and whole plant N uptake were detected for Basmati compared to Nongxiang 18 in the late season (Table 6).

The grain N uptake, straw N uptake, whole plant N uptake, straw P uptake, whole plant P uptake, and grain K uptake increased with the decrease in water during the early season, while an opposite trend was seen during the late season. The grain P uptake increased with the decrease in water during the early season, but the straw K uptake and the whole plant K uptake decreased with the decrease in water during the late season. In addition, the highest grain P uptake (2.10 g m⁻²) was observed in W1 during the late season, while the highest straw K uptake (27.71 g m⁻²) and the whole plant K uptake (30.798 g m⁻²) were recorded in W2 during the early season (Table 6).
The straw and whole plant P and K uptake increased with the increase in nitrogen application for both seasons. The highest grain K uptake was observed in N2, i.e., 3.00 and 2.32 g m$^{-2}$ for the early and late seasons, respectively. In addition, water and nitrogen interaction (W×N) was found to be statistically significant ($p < 0.05$) regarding SNU, WPNU,
Grain quality attributes as affected by water, nitrogen, and cultivar in early and late seasons of double rice cropping system in South China.

Treatment	Brown rice rate (%)	Milled rice rate (%)	Head milled rice rate (%)	Protein content (%)	Amylose content (%)
Early season					
Cultivar					
Nongxiang 18	80.00 a	67.90 a	49.77 a	6.79 b	23.77 a
Basmati 385	80.06 a	66.97 b	43.90 a	6.68 b	23.67 a
Water					
W0	79.39 b	66.16 c	46.89 a	6.78 b	24.22 a
W1	80.37 a	67.83 b	45.90 a	6.68 b	23.61 a
W2	80.32 a	68.31 a	46.41 a	7.31 a	23.74 a
Nitrogen					
N0	79.99 b	67.61 a	46.89 a	6.78 b	24.22 a
N1	79.87 b	67.56 a	47.19 a	7.07 a	24.25 b
N2	80.22 a	67.13 b	40.11 b	6.73 b	24.28 a
ANOVA					
Water (W)	226.21***	399.51***	361.00***	497.70***	0.64 ns
Nitrogen (N)	15.65***	11.55**	518.15***	56.36***	62.20***
W × N	5.93*	10.10***	64.62***	223.97***	48.16***
Cultivar (C)	0.70 ns	110.66***	1626.78***	42.11***	0.88 ns
W × C	6.83**	0.53 ns	9.36**	1168.92***	2.24 ns
N × C	5.80*	2.57 ns	11.86**	169.29***	98.69***
W × N × C	15.15***	32.83***	22.00***	611.51***	254.14***
Late season					
Cultivar					
Nongxiang 18	82.22 b	68.04 b	61.11 b	9.02 a	18.87 a
Basmati 385	83.05 a	69.85 a	64.37 a	8.67 b	18.89 a
Water					
W0	82.79 a	69.21 a	62.73 a	8.83 ab	18.75 a
W1	82.71 a	68.94 b	62.99 a	8.78 b	18.81 a
W2	82.41 b	66.80 c	62.50 a	8.93 a	19.07 a
Nitrogen					
N0	82.14 c	68.62 b	61.83 c	8.91 b	19.94 a
N1	82.63 b	68.78 b	62.68 b	9.01 A	18.71 a
N2	83.13 a	69.43 a	63.71 a	8.63 c	18.93 a
ANOVA					
Water (W)	8.75***	18.96**	0.70 ns	7.00*	0.79 ns
Nitrogen (N)	18.06***	28.94***	18.71***	212.80***	0.38 ns
W × N	3.23 ns	10.27***	5.78**	109.43***	17.56***
Cultivar (C)	50.44***	365.15***	119.28***	307.20***	0.01 ns
W × C	0.41 ns	0.56 ns	4.70*	140.40***	10.12**
N × C	3.71*	9.20**	2.23 ns	20.80***	17.68***
W × N × C	3.10*	1.81 ns	4.11*	147.70***	21.96***

Different low case letters indicate the significant difference among treatment at 0.05 level. N0: 0 kg N ha⁻¹; N1: 30 kg N ha⁻¹; N2: 60 kg N ha⁻¹; W0: well-watered; W1: soil water potential was −15 ± 5 kPa; W2: soil water potential was −25 ± 5 kPa. *Significant at p < 0.05, **Significant at p < 0.01, ***Significant at p < 0.001, and ns: non-significant.

Correlation Analyses Between Yield NPK Uptake and Use Efficiency

Significant relationships were observed between grain yield and grain P uptake and the whole plant P uptake for both seasons. For the early season, the grain yield was significantly related to grain N uptake, straw N uptake, whole plant N uptake, and P harvest index, and P harvest index, and NHI and PPUEG increased with the decrease in irrigations for both seasons, whilst the PNUEB decreased with decreased water application rate for the early season while the opposite was seen for the late season. The PPUEG and PHI were decreased with the increase in nitrogen application (Table 7).

N, P, and K Use Efficiency

Basmati had a higher NHI (18.28–20.23%) and P harvest index (PHI; 3.95–12.42%) but lower PNUEB (7.66–23.66%) and physiological K use efficiency for biomass (PKUEB; 2.53–7.10%) than Nongxiang 18 in both seasons. Opposite trends were observed regarding PNUEG, PNUEB, PPUEG, and PKUEG, and the K harvest index (KHI) was recorded for both rice cultivars. The NHI and PPUEG increased with the decrease in irrigations for both seasons, whilst the PNUEB decreased with decreased water application rate for the early season while the opposite was seen for the late season. The PPUEG and PHI were decreased with the increase in nitrogen application (Table 7). In addition, water interaction with nitrogen (W × N) was found to be statistically significant (p < 0.05) regarding PNUEG, PNUEB, NHI, PPUEG, PPUEB, and PKUEB in early season rice. However, water interaction with nitrogen (W × N) was found to be statistically significant (p < 0.05) regarding PNUEG, PNUEB, NHI, PPUEG, PHI, and PKUEB in late season rice.

DISCUSSION

This study investigated the effects of different levels of water and nitrogen application at the booting stage on yield, grain quality, and nutrient use efficiencies in fragrant rice during the early and late seasons of the double rice cropping system in South China. Nutrient management is an important aspect of aromatic rice production whereas the application of organic/inorganic manure/fertilizers at an appropriate dose is necessary to get higher yields with improved grain quality characters (Paul et al., 2021). In this study, the grain yield for late season rice was remarkably affected...
by changing the nitrogen (N) and water levels at the booting stage, and Basmati showed a significantly higher grain yield than Nongxiang 18, while the water and nitrogen interaction (W × N) had no significant effect on grain yield during both seasons (Table 3). However, Zhou et al. (2006) reported the positive coupling effect of water and fertilizer on rice yield as well as improved heading rate and biomass yield of rice (Wu et al., 2020). Moreover, both rice cultivars remained substantially different regarding panicles number, grain number per panicle, grain weight, straw weight, and biomass yield in both seasons (Tables 3 and 4), whereas Basmati produced more grain per panicle (25.15% in the early season and 12.03% in late season), higher straw weight, and biomass yield but decreased grain number per panicle and seed setting rates. Li et al. (2016) reported a 0–12.9% increase in rice yield with different nitrogen application rates. Additionally, Nakano and Morita (2008) also reported that the increased amount of nitrogen enhanced the dry matter yield by up to 10%. The difference in dry matter production depends on the effect of nitrogen on leaf production and individual leaf dry weight (Cechin and Fumis, 2004). More grain and biomass yield might be explained by the higher capability of the rice cultivar to utilize more nitrogen through a better growth pattern and more dry matter. It is confirmed that an

TABLE 6 | The N, P, and K uptake in grain, straw, and the whole plant as affected by water, nitrogen, and cultivar in the early and late seasons double rice cropping systems in South China.

Treatment	GNU (g m⁻²)	SNU (g m⁻²)	WPNU (g m⁻²)	GPU (g m⁻²)	SPU (g m⁻²)	WPPU (g m⁻²)	GKD (g m⁻²)	SKD (g m⁻²)	WPKD (g m⁻²)	
Early season	Nongxiang	3.63 b	6.39 b	10.02 b	1.66 b	2.34 b	4.01 b	2.73 a	22.42 b	25.16 b
Water	Basmati 385	5.83 a	8.00 a	13.84 a	2.21 a	2.94 a	5.16 a	2.89 a	29.41 a	32.30 a
Nitrogen	W0	3.83 c	6.62 b	10.45 c	1.73 b	2.44 c	4.18 c	2.61 b	25.59 ab	28.20 b
N0	4.64 b	7.01 b	11.66 b	1.99 a	2.67 b	4.67 b	2.74 b	24.44 b	27.19 b	
W0	5.72 a	7.96 a	13.68 a	2.09 a	2.82 a	4.92 a	3.08 a	27.11 a	30.79 a	
Early season	Nongxiang	3.63 b	6.39 b	10.02 b	1.66 b	2.34 b	4.01 b	2.73 a	22.42 b	25.16 b
Water	Basmati 385	5.83 a	8.00 a	13.84 a	2.21 a	2.94 a	5.16 a	2.89 a	29.41 a	32.30 a
Nitrogen	W0	3.83 c	6.62 b	10.45 c	1.73 b	2.44 c	4.18 c	2.61 b	25.59 ab	28.20 b
N0	4.64 b	7.01 b	11.66 b	1.99 a	2.67 b	4.67 b	2.74 b	24.44 b	27.19 b	
W0	5.72 a	7.96 a	13.68 a	2.09 a	2.82 a	4.92 a	3.08 a	27.11 a	30.79 a	

*GND, SNU, WPNU, GPU, SPU, GKD, SKD, and WPKD represent Grain N uptake, Straw N uptake, Whole plant N uptake, Grain P uptake, Straw P uptake, Whole plant P uptake, Grain K uptake, Straw K uptake, and Whole plant K uptake, respectively. Different lowercase letters indicate the significant difference among treatments at 0.05 level. N0: 0 kg N ha⁻¹, N1: 30 kg N ha⁻¹, N2: 60 kg N ha⁻¹. W0: well-watered, W1: soil water potential was −15 ± 5 kPa, W2: soil water potential was −25 ± 5 kPa. Significant at p < 0.05, ***Significant at p < 0.01, ****Significant at p < 0.001, "Significant at p < 0.001, and ns: non-significant.

For grain yield, Mo et al. (2017), Ali et al. (2012), and Ning et al. (2009) reported that urea application increased rice grain yield by 5–18% in the upland rice paddy soils. In the present study, nitrogen has affected the panicles number, grain weight, straw weight, and biomass yield with obvious effects during both seasons (Tables 3 and 4). Additional application of nitrogen increased panicle number, straw weight, and biomass yield but decreased grain number per panicle and seed setting rates. Li et al. (2016) reported a 0–12.9% increase in rice yield with different nitrogen application rates. Additionally, Nakano and Morita (2008) also reported that the increased amount of nitrogen enhanced the dry matter yield by up to 10%. The difference in dry matter production depends on the effect of nitrogen on leaf production and individual leaf dry weight (Cechin and Fumis, 2004). More grain and biomass yield might be explained by the higher capability of the rice cultivar to utilize more nitrogen through a better growth pattern and more dry matter. It is confirmed that an
increase in aboveground-biomass production through the nitrogen application during the reproductive stage is the primary factor in increasing grain number in flooded rice (Chen et al., 2012). The integrative crop management with judicious use of the N fertilizer not only increased grain yield, NUE, but also enhanced agronomic performance with an improved tillering ability (Zhang et al., 2005). Undoubtedly, a large number of rice varieties is reported to produce non-productive tillers, which limit the rice grain yield (Peng et al., 1999). Fageria (2007) reported that improved crop production through an increase in plant density generally results in a dense crop stand, which is more susceptible to lodging and damage from insects and diseases. On the contrary, low plant densities could lead to low grain yield, which is a common problem under the local farmer’s practice in current rice production in China (Chen et al., 2014; Ju et al., 2015). In our study, the plant density is the same for both cultivars but the difference in the performance owing to efficient utilization of the resources. Furthermore, a positive correlation between grain yield, 1,000 grain weight, and straw weight was observed (Figures 1C,D). However, there was a negative correlation between grain yield and 1,000 grain weight of early rice with a smaller R^2 value (Figure 1C). The difference in growth and yield formation of rice might be due to the variations in external temperature and/or weather conditions. For instance, higher temperature at night decreased yield (90%) by affecting the spikelet sterility (61%), grain length (2%), width (2%), and decreased yield due to increased spike sterility (Prasad et al., 2006; Mohammed and Tarpley, 2010). Xiong et al. (2016) reported that the rice area of South China is high and rainy, which might make early rice precocious in the late grouting stage. Lower dry matter yield is associated with a higher temperature at the heading stage in the early season than in the late season (Kong et al., 2017). Furthermore, a higher brown rice rate was found in Basmati than Nongxiang 18 (Table 5). Laenoi et al. (2017) studied four different rice cultivars and reported that the “Pathum Thani 1” rice cultivar produced a substantially higher rice yield than all other cultivars and found a negative correlation between the number of grains, tillers, and panicles. Increased sink capacity in the rice plant, i.e., panicles and spikelet per unit area, is the presumption of higher crop yield (Xu et al., 2005; Zhang et al., 2013).

Moreover, reduced amylose contents (the early season 22.46% and the late season 18.76%) was observed in N1, and the interaction of water-nitrogen (W × N) also significantly affected protein content and amylose content in both seasons (Table 6). In general, the hardness of the grain is associated with the higher amylose contents in grains and more glutinous (Singh et al., 2003; Koutroubas et al., 2004). Rice quality attributes such as the protein content in a head rice increased considerably with the decrease in irrigation water. Guo et al. (2020) reported that the ground cover rice production system (GCRPS) reduces irrigation water but increases yield with a slight reduction in grain quality. Simultaneously, head rice percentage and grain protein content were significantly enhanced by N application (Ning et al., 2009). Furthermore,
The improvement in grain yield and yield components with an additional application of N fertilizer at the booting stage might be associated with efficient nutrient uptake. The nitrogen application effect on straw N uptake, the whole plant N uptake, straw P uptake, and the whole plant P uptake was observed notably in both seasons (Table 6).

Wopereis-Pura et al. (2002) revealed that different timings of N application also affected the head rice percentage whereas N application at booting and heading stages led to an increase in head rice percentage and grain amylose content.

The improvement in yield and yield components with an additional application of N fertilizer at the booting stage might be associated with efficient nutrient uptake. The nitrogen application effect on straw N uptake, the whole plant N uptake, straw P uptake, and the whole plant P uptake was observed notably in both seasons (Table 6).

Wopereis-Pura et al. (2002) and Fan et al. (2005) reported the higher application rates resulted in an increase in the N-uptake and whole plant N content. In addition, the N, P, and K use efficiency were remained variable in both experimental seasons under additional N application whilst the significant effects of nitrogen were observed on PNUEB, PPUEG, PPUEB, PKUEG, and PKUEB for the early season of double rice cropping system in South China.
CONCLUSION

Overall, W1 and N2 treatments resulted in a higher rice grain yield. Regarding cultivars, Basmati showed higher grain N uptake, grain P uptake, straw P uptake, whole plant P uptake, grain K uptake, straw K uptake, and whole plant K uptake than Nongxiang 18. However, lower straw N uptake and the whole plant N uptake were detected for Basmati than Nongxiang 18. Meanwhile, Basmati had the higher NH1 and PH1 but lower PPUEB and PKUEB than Nongxiang 18 in both seasons. In summary, intermittent irrigation with an additional N dose at the booting stage improved the yield and quality attributes as well as NPK uptake and use efficiencies in fragrant rice. This study contains basic information regarding the water and nitrogen regulations at the booting stage and their effect on yield, quality, and nutrient use efficiencies; however, further studies are still needed before any recommendations are made to the farmers.

REFERENCES

Ai, Z., Guo, X., Liu, W., Ma, G., and Qing, X. (2014). Analysis of the possible influence of agricultural climate resources on cropping rice production. J. Nat. Resour. 29, 2089–2102. doi: 10.11849/azrjxb.2014.12.010 (in Chinese). Albrizio, R., Todorovic, M., Matic, T., and Stellacci, A. M. (2010). Comparing the interactive effects of water and nitrogen on durum wheat and barley grown in a Mediterranean environment. Field Crop Res. 113, 179–190. doi: 10.1016/j.fcr.2009.11.003

Ali, M., Faroque, M., Haque, M., and ul Kabir, A. (2012). Influence of soil amendments on mitigating methane emissions and sustaining rice productivity in paddy soil ecosystems of Bangladesh. J. Environ. Sci. Nat. Resour. 5, 179–185. doi: 10.3329/jesnr.v5i1.11574

Ashraf, U., Hussain, S., Akbar, N., Anjum, S. A., Hassan, W., and Tang, X. (2018). Water management regimes alter Pb uptake and translocation in fragrant rice. Ecotoxicol. Environ. Saf. 149, 128–134. doi: 10.1016/j.ecoenv.2017.11.033

Ashraf, U., Kanu, A. S., Deng, Q., Ma, Z., Pan, S., Tian, H., et al. (2017). Lead (Pb) toxicity: physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front. Plant Sci. 8:259. doi: 10.3389/fpls.2017.00259

Ashraf, U., and Tang, X. (2017). Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere 176, 141–153. doi: 10.1016/j.chemosphere.2017.02.103

Azusa, O., Arunima, K., Keischiro, K., Arne, G., Shota, N., and Manfred, L. (2016). Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115. doi: 10.1038/ngeo2635

Bouman, B. A. M., and Tuong, T. P. (2001). Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 49, 11–30. doi: 10.1016/S0378-3774(00)00128-1

Bryant, R. J., and McClung, A. M. (2011). Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS. Food Chem. 124, 501–513. doi: 10.1016/j.foodchem.2010.06.061

Cechin, L., and Fumis, T. (2004). Effect of nitrogen supply on growth and photosynthesis of sunflower plants grown in the greenhouse. Plant Sci. 166, 1379–1385. doi: 10.1016/j.plantsci.2004.01.020

Champagne, E. T., Bett-Garber, K. L., Thomson, J. L., and Fitzgerald, M. A. (2009). Unraveling the impact of nitrogen nutrition on cooked rice flavor and texture. Cereal Chem. 86, 274–280. doi: 10.1094/CCHEM-86-3-0274

Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., et al. (2014). Producing more grain with lower environmental costs. Nature 514, 486–489. doi: 10.1038/nature13609

Chen, X., Li, Y., Liu, L., Fang, S., Fang, P., and Lin, X. (2012). Effect of irrigation patterns and nitrogen supply levels on nitrogen utilization efficiency in rice. Plant Nutr. Fert. Sci. 18, 283–290. (in Chinese with English Abstract).

Dias, L. G., Hacke, A., Bergara, S. F., Villela, O. V., Mariotti, L. R. B., and Bragagnolo, N. (2021). Identification of volatiles and odor-active compounds of aromatic rice by OSME analysis and SPME/GC-MS. Food Res. Int. 142,110206. doi: 10.1016/j.foodres.2021.110206

Fageria, N. K. (2007). Yield physiology of rice. J. Plant Nutr. 30, 843–879. doi: 10.1080/15226510701374831

Fageria, N. K., Baligar, V. C., and Jones, C. A. (2010). Growth and Mineral Nutrition of Field Crops. Boca Raton, FL: CRC Press.

Fan, M., Jiang, R., Liu, X., Zhang, F., Lu, S., Zeng, X., et al. (2005). Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice–wheat rotations. Field Crop Res. 91, 307–318. doi: 10.1016/j.fcr.2004.08.006

Feng, H., Chen, X., Tan, K., and Wang, X. (2019). Evaluation of sustainability of double-cropping rice in South China based on energy value analysis. Guangdong Agric. Sci. 46, 9–14, (in Chinese with English Abstract).

Fu, X., Ma, L., Gui, R., Ashraf, U., Li, Y., Yang, X., et al. (2021). Differential response of fragrant rice cultivars to salinity and hydrogen rich water in relation to growth and antioxidative defense mechanisms. Int. J. Phytoremediation 23, 1203–1211. doi: 10.1080/15226514.2021.1889963

Gunaratne, A., Sirisena, N., Ratnayaka, U. K., Ratnayaka, J., Kong, X., Arachchi, V., et al. (2011). Effect of fertiliser on functional properties of flour from four rice varieties grown in Sri Lanka. J. Sci. Food Agric. 91, 1271–1276. doi: 10.1002/jsfa.4310

Guo, L., Liu, M., Tao, Y., Zhang, Y., Li, G., Lin, S., et al. (2020). Innovative water-saving ground cover rice production system increases yield with slight reduction in grain quality. Agric. Syst. 180:102795. doi: 10.1016/j.agsy.2020.102795

Hamoud, Y. A., Guo, X., Wang, Z., Shaghahel, H., Chen, S., Hassan, A., et al. (2019). Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China. Agric. Water Manag. 213, 934–946. doi: 10.1016/j.agwat.2018.12.017

He, H., Yang, R., Liao, J., Wu, L., Kong, L., and Huang, Y. (2016). Research progress on high quality and high yield and high efficiency in irrigated rice. Chin. Agric. Sci. 49, 305–318. (in Chinese with English Abstract).

Huang, J., Liu, L., Ma, C., Xue, Y., Han, T., Liu, X., et al. (2020). Space and temporal changes of nitrogen balance and nitrogen fertilizer partial productivity in Chinese rice area in the past 30 years. Plant Nutr. Fert. Sci. 26, 987–998, (in Chinese with English Abstract).

Hussain, S., Fujii, T., McGoey, S., Yamada, M., Ramzan, M., and Akmal, M. (2014). Evaluation of different rice varieties for growth and yield characteristics. J. Anim. Plant Sci. 24, 1504–1510.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

ZM designed the experiments. SD and ZM performed the traits investigation. SD, UA, and ZM analyzed the data and wrote the manuscript. ZM, UA, MN, GA, and XT revised and edited the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This study was financially supported by the National Natural Science Foundation of China (31271646 and 31601244).
Miao, Y., Stewart, B. A., and Zhang, F. (2011). Long-term experiments for sustainable nutrient management in China. A review. *Agron. Sustain. Dev.* 31, 397–414. doi:10.1051/agsustdev/2010034

Mo, Z., Lei, S., Ashraf, U., Khan, I., Liu, D., Pan, S., et al. (2017). Silicon fertilizer modulates 2-acetyl-1-pyrroline content, yield formation and grain quality of aromatic rice. *J. Cereal Sci.* 75, 17–24. doi:10.1016/j.jcs.2017.03.014

Mo, Z., Li, W., Pan, S., Fitzgerald, T. L., Xiao, F., Tang, Y., et al. (2015). Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. *rice.* 8, 1–10. doi:10.1016/s12284-015-0040-y

Mohammed, A. R., and Tarpley, L. (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (*Oryza sativa L.*) plants. *Eur. J. Agron.* 33, 117–123. doi:10.1016/j.eja.2009.11.006

Nakano, H., and Morita, S. (2008). Effects of time of first harvest, total amount of nitrogen, and nitrogen application method on total dry matter yield in twice harvesting of rice. *Field Crop Res.* 105, 40–47. doi:10.1016/j.fcr.2007.07.002

Ning, H., Liu, Z., Wang, Q., Lin, Z., Chen, S., Li, G., et al. (2009). Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. *Cereal Sci.* 50, 49–55. doi:10.1016/j.cscirev.2009.02.005

Pan, S., Cao, C., Cai, M., Wang, J., Wang, R., Yuan, B., et al. (2009). Effects of nitrogen application on nitrogen use efficiency, grain yield and quality of rice under different water regimes. *Plant Nutr. Fert. Sci.* 15, 283–289.

Paul, N. C., Tasmim, M. T., Imran, S., Mahamud, M. A., Chakraborty, J., Rabbi, M. M., et al. (2021). Nutrient management in fragrant rice: a review. *Agric. Sci.* 12, 1538–1554. doi:10.4236/as.2021.1212098

Peng, S., Cassman, K. G., Virmanni, S. S., Sheehy, J., and Khush, G. S. (1999). Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. *Crop Sci.* 39, 1522–1559. doi:10.2136/cropsci1999.3961552x

Prasad, P. V. V., Boote, K. J., Allen, L. H. Jr., Sheehy, J. E., and Thomas, J. M. G. (2006). Species, ecotype and cultivar differences in spikelet sterility and harvest index of rice in response to high temperature stress. *Field Crop Res.* 95, 398–411. doi:10.1016/j.fcr.2005.04.008

Ren, S., Yu, G., Tao, B., and Wang, S. (2007). The stoichiometric characteristics of leaf nitrogen and phosphorus of 654 species in the north-south transect of eastern China. *Environ. Sci.* 12, 2665–2673. (in Chinese with English Abstract).

Sagwal, P., Khandai, S., Bhowmick, M. K., Singh, K., Srivastava, A. K., Dhillon, B. S., et al. (2022). "Scale-appropriate mechanization for improving productivity, profitability, and sustainability of rice-based cropping systems in India" in *Innovation in Small-Farm Agriculture* (Boca Raton, FL: CRC Press), 195–206.

Sahithivel, K., Sundaram, R. M., Shobha Rani, N., Balachandran, S. M., and Sivakumar, K. (2011). Rice grain and starch properties: effects of nitrogen fertilizer application. *J. Plant Physiol.* 168, 333–341. doi:10.1016/j.jplph.2010.12.001

Sauer, C., Poletti, S., Zhang, P., and Gruissem, W. (2006). Biofortification of essential nutritional compounds and trace elements in rice and cassava. *Proc. Nutr. Soc.* 65, 153–159. doi:10.1079/PNS20060688

Singh, D. K., Akhtar, Z., Gupta, S., Srivastava, A., and Chakraborty, M. (2017). Production strategies of organic basmati rice in Tarai region of Uttarakhand. *India. Org. Agric.* 7, 21–30. doi:10.1007/s13165-017-0143-1

Singh, N., Kaur, L., Sandhu, K. S., Kaur, J., and Nishinari, K. (2006). Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. *Food Hydrocoll.* 20, 532–542. doi:10.1016/j.foodhyd.2005.05.003

Singh, N., Kaur, L., Sudhi, N. S., and Sekhon, K. S. (2005). Physicochemical, cooking and textural properties of milled rice from different Indian rice cultivars. *Food Chem.* 89, 253–259. doi:10.1016/j.foodchem.2004.02.032

Singh, N., Pal, N., Mahajan, G., Singh, S., and Shevkani, K. (2011). Rice grain and starch properties: effects of nitrogen fertilizer application. *Carbohydr. Polym.* 86, 219–225. doi:10.1016/j.carbpol.2011.04.039

Singh, N., Sudhi, N. S., Kaur, M., and Saxena, S. K. (2003). Physicochemical, morphological, thermal, cooking and textural properties of chalky and translucent rice kernels. *Food Chem.* 82, 433–439. doi:10.1016/s0308-8146(03)00007-4

Sun, Y., Sun, Y., Liu, S., Wang, Z., Cheng, H., Ia, X., et al. (2011). Effect of water management and nitrogen fertilizer transport research on nutrient uptake, transport and distribution in rice. *Crop J.* 37, 2221–2232. (in Chinese with English Abstract). doi:10.3724/SJEP.2011.02221
Tang, X., Pan, S., Duan, M., Tian, H., Zhong, K., and Xiao, L. (2014). Technique rule of aromatic rice cultivation. "Guangdong Agric. Sci." 41, 5–7. (in Chinese with English Abstract).

Wang, Z., Zhang, W., Beebout, S. S., Zhang, H., Liu, L., Yang, J., et al. (2016). Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. "Field Crop Res." 193, 54–69. doi: 10.1016/j.fcr.2016.03.006

Wopereis-Pura, M. M., Watanabe, H., Moreira, J., and Wopereis, M. C. S. (2002). Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley. "Eur. J. Agron." 17, 191–198. doi: 10.1016/S1161-0301(02)00009-6

Wu, Y., Guo, C. S. Y., Liu, F., Zhang, Q., Xiang, K., Sun, Y., et al. (2020). Population quality and nitrogen fertilizer utilization characteristics of direct seeding rice under water-nitrogen interaction. "Chin. J. Appl. Ecol." 31, 899–908. (in Chinese with English Abstract).

Wu, L., Tian, C., Zhang, L., Huang, J., Zhu, L., Zhang, J., et al. (2021). Research on regulating growth and development, photosynthesis and nitrogen utilization in rice field. "J. Appl. Ecol." 32, 1498–1508. (in Chinese with English Abstract).

Xie, W., Li, Y., Li, Y., Ma, L., Ashraf, U., Tang, X., et al. (2021). Application of γ-aminobutyric acid under low light conditions: effects on yield, aroma, element status, and physiological attributes of fragrant rice. "Ecotoxicol. Environ. Saf." 213:111941. doi: 10.1016/j.ecoenv.2021.111941

Xie, X., Shan, S., Wang, Y., Cao, F., Chen, J., Huang, M., et al. (2019). Dense planting with reducing nitrogen rate increased grain yield and nitrogen use efficiency in two hybrid rice varieties across two light conditions. "Field Crop Res." 236, 24–32. doi: 10.1016/j.fcr.2019.03.010

Xiong, W., Feng, L., Ju, H., and Yang, D. (2016). Analysis of the possible effects of high temperature on rice yield in China in the context of future climate change. "Adv. Earth Sci." 31, 515–528. (in Chinese).

Xu, Z., Chen, W., Zhang, L., and Yang, S. (2005). Design principles and parameters of rice ideal panicle type. "Chin. Sci. Bull." 50, 2253–2256. doi: 10.1007/BF03182678

Xue, Y., Duan, H., Liu, L., Wang, Z., Yang, J., and Zhang, J. (2013). An improved crop management increases grain yield and nitrogen and water use efficiency in rice. "Crop Sci." 53, 271–284. doi: 10.2135/cropsci2012.06.0360

Yan, X., Jin, J., and Liang, M. (2017). Fertilizer yield increase effect and fertilizer utilization efficiency of major grain crops in China. "Soil" 49, 1067–1077.

Yan, J., Wu, Q., Qi, D., and Zhu, J. (2022). Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplemental irrigation for rain-fed rice cultivation. "Agric. Water Manag." 263:107486. doi: 10.1016/j.agwat.2022.107486

Yang, J., Zhang, J., Liu, K., Wang, Z., and Liu, L. (2007). Involvement of polyamines in the drought resistance of rice. "J. Exp. Bot." 58, 1545–1555. doi: 10.1093/jxb/erm032

Yao, Y., Zhang, M., Tian, Y., Zhao, M., Zhang, B., Zeng, K., et al. (2018). Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. "Field Crop Res." 218, 141–149. doi: 10.1016/j.fcr.2018.01.015

Yu, H., Ding, F., Yin, Y., Yang, Z., Sun, Y., and Ma, J. (2019). Absorption and transport of nitrogen, phosphorus and potassium in hybrid rice under different water and nitrogen management. "J. Hunan Agric. Univ." 45, 337–343. (in Chinese with English Abstract).

Zhang, H., Chen, T., Liu, L., Wang, Z., Yang, J., and Zhang, J. (2013). Performance in grain yield and physiological traits of rice in the Yangtze river basin of China during the last 60 yr. "J. Integr. Agric." 12, 57–66. doi: 10.1016/S2095-3119(13)60205-1

Zhang, F., and Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. "Plant Soil" 248, 305–312. doi: 10.1023/A:1022352298863

Zhang, G., Tu, N., Yuan, J., Liu, P., and Zhang, S. (2005). Effects of sowing stage on the sprouting of axillary bud and yield of ratooning rice. "J. Hunan Agric. Univ." 31, 229–232. (in Chinese with English abstract).

Zhang, Z., Wang, Y., Chen, Y., Ashraf, U., Li, L., Zhang, M., et al. (2021). Effects of different fertilization methods on grain yield, photosynthetic characteristics and nitrogen synthetase enzymatic activities of direct-seeded rice in South China. "J. Plant Growth Regul." 41, 1642–1653. doi: 10.1007/s00344-021-10404-4

Zhang, M., Tian, Y., Ma, Y., Zhang, M., Yao, Y., Xiong, Z., et al. (2015). Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap. "Agric. Ecosyst. Environ." 203, 36–45. doi: 10.1016/j.agee.2015.01.014

Zhao, X., Zhao, Y., Min, J., Wang, S., Shi, W., and Xing, G. (2012). Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. "Agric. Ecosyst. Environ." 156, 1–11. doi: 10.1016/j.agee.2012.04.024

Zhou, M., Zhao, R., Gu, Y., Zhang, F., and Xu, H. (2006). Effect of water and fertilizer coupling on partial growth and physiological traits of rice. "J. Agric. Eng." 22, 38–43. (in Chinese with English Abstract).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Deng, Ashraf, Nawaz, Abbas, Tang and Mo. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.