A Tight Bound on the Projective Dimension of Four Quadrics

Jason McCullough
joint w/ C. Huneke, P. Mantero, A. Seceleanu

March 5, 2016
Special Session on Combinatorial and Computational Algebra
University of Georgia
K a field
K a field
$S = K[X_1, X_2, \ldots, X_n]$
Notation

\[K \text{ a field} \]
\[S = K[X_1, X_2, \ldots, X_n] \]
\[S = \bigoplus_{i=0}^{\infty} S_i \text{ is graded} \]
K a field
$S = K[X_1, X_2, \ldots, X_n]$
$S = \bigoplus_{i=0}^{\infty} S_i$ is graded
$S(-d)_i = S_{i-d} = \text{rank one free module with generator in degree } d$
K a field
$S = K[X_1, X_2, \ldots, X_n]$
$S = \bigoplus_{i=0}^{\infty} S_i$ is graded
$S(-d)_i = S_{i-d} =$ rank one free module with generator in degree d
$I = (f_1, \ldots, f_N) \subset S$ a homogeneous ideal
(i.e. each f_j is in some S_i)
K a field
$S = K[X_1, X_2, \ldots, X_n]$
$S = \bigoplus_{i=0}^{\infty} S_i$ is graded
$S(-d)_i = S_{i-d} = \text{rank one free module with generator in degree } d$
$I = (f_1, \ldots, f_N) \subset S$ a homogeneous ideal
(i.e. each f_j is in some S_i)
$\text{pd}(S/I) = \text{length of the minimal graded free resolution of } S/I$
Notation

Graded minimal free resolution of \(S/I \):
Graded minimal free resolution of S/I:

$$0 \leftarrow S/I \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_p \leftarrow 0,$$

where $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$.
Graded minimal free resolution of S/I:

$$0 \leftarrow S/I \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_p \leftarrow 0,$$

where $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$

$$\beta_{i,j} = \text{rank}((F_i)_j) = \dim_K(\text{Tor}_i(K, S/I)_j)$$
Graded minimal free resolution of S/I:

$$0 \leftarrow S/I \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_p \leftarrow 0,$$

where $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$

$\beta_{i,j} = \text{rank}((F_i)_j) = \dim_K(\text{Tor}_i(K, S/I)_j)$

$pd(S/I) = \max\{i \mid \beta_{i,j} \neq 0\} = p$
Graded minimal free resolution of S/I:

$$0 \leftarrow S/I \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_p \leftarrow 0,$$

where $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$

\[\beta_{i,j} = \text{rank}((F_i)_j) = \dim_K(\text{Tor}_i(K, S/I)_j) \]

\[\text{pd}(S/I) = \max\{i \mid \beta_{i,j} \neq 0\} = p \]

\[\text{reg}(S/I) = \max\{j - i \mid \beta_{i,j} \neq 0\} \]
An Example: $I = (x^2, y^2, z^2, ax + by + cz)$

Betti Table of S/I:

	0	1	2	3	4	5	6
0:	1	-	-	-	-	-	-
1:	-	4	-	-	-	-	-
2:	-	-	6	-	-	-	-
3:	-	-	4	17	15	6	1
An Example: $I = (x^2, y^2, z^2, ax + by + cz)$

Betti Table of S/I:

	0	1	2	3	4	5	6
0:	1	-	-	-	-	-	-
1:	-	4	-	-	-	-	-
2:	-	-	6	-	-	-	-
3:	-	-	4	17	15	6	1

$pd(S/I) = 6$
An Example: \(I = (x^2, y^2, z^2, ax + by + cz) \)

Betti Table of \(S/I \):

	0	1	2	3	4	5	6
0:	1	-	-	-	-	-	-
1:	-	4	-	-	-	-	-
2:	-	-	6	-	-	-	-
3:	-	-	4	17	15	6	1

\(\text{pd}(S/I) = 6 \)

\(\text{reg}(S/I) = 3 \)
Stillman’s Question

Question (Stillman (2003))

Is there a bound (independent of \(n \)) on \(\text{pd}(S/I) \) depending only on the degrees of the generators of \(I \)?
Stillman’s Question

Question (Stillman (2003))

Is there a bound (independent of n) on $\text{pd}(S/I)$ depending only on the degrees of the generators of I?

Still open in full generality.
Stillman’s Question

Question (Stillman (2003))

Is there a bound (independent of n) on \(\text{pd}(S/I) \) depending only on the degrees of the generators of \(I \)?

Still open in full generality.

Motivation:

- Equivalent to bounding \(\text{reg}(S/I) \) in terms of \(d_1, \ldots, d_N \) (Caviglia)
Stillman’s Question

Known affirmative answers:
Stillman’s Question

Known affirmative answers:

- $\text{pd}(S/(3 \text{ quadrics })) \leq 4$ (Eisenbud-Huneke)
Stillman’s Question

Known affirmative answers:

- \(pd(S/(3 \text{ quadrics})) \leq 4 \) (Eisenbud-Huneke)
- \(pd(S/(3 \text{ cubics})) \leq 36 \) (Engheta)
Stillman’s Question

Known affirmative answers:

- \(\text{pd}(S/(3 \text{ quadrics })) \leq 4 \) (Eisenbud-Huneke)
- \(\text{pd}(S/(3 \text{ cubics })) \leq 36 \) (Engheta)
- \(\text{pd}(S/(N \text{ quadrics })) \leq O(2N^{2N}) \) (Ananyan-Hochster)
Stillman’s Question

Known affirmative answers:

- \(\text{pd}(S/(3 \text{ quadrics })) \leq 4 \) (Eisenbud-Huneke)
- \(\text{pd}(S/(3 \text{ cubics })) \leq 36 \) (Engheta)
- \(\text{pd}(S/(N \text{ quadrics })) \leq O(2N^{2N}) \) (Ananyan-Hochster)
- \(\text{pd}(S/(N \text{ quadrics of height 2})) \leq 2N - 2 \) (HMMS)
Known affirmative answers:

- $\text{pd}(S/(3 \text{ quadrics })) \leq 4$ (Eisenbud-Huneke)
- $\text{pd}(S/(3 \text{ cubics })) \leq 36$ (Engheta)
- $\text{pd}(S/(N \text{ quadrics })) \leq O(2N^{2N})$ (Ananyan-Hochster)
- $\text{pd}(S/(N \text{ quadrics of height 2})) \leq 2N - 2$ (HMMS)
- $\text{pd}(S/(4 \text{ quadrics })) \leq 8$ (HMMS)
Known affirmative answers:

- $\text{pd}(S/(3 \text{ quadrics})) \leq 4$ (Eisenbud-Huneke)
- $\text{pd}(S/(3 \text{ cubics})) \leq 36$ (Engheta)
- $\text{pd}(S/(N \text{ quadrics})) \leq O(2N^{2N})$ (Ananyan-Hochster)
- $\text{pd}(S/(N \text{ quadrics of height 2})) \leq 2N - 2$ (HMMS)
- $\text{pd}(S/(4 \text{ quadrics})) \leq 6$ (HMMS)
- $\text{pd}(S/(3 \text{ cubics})) \leq 8(5)$ (MM)
Engheta’s Method

If $\text{ht}(I) = 1$ or 4, then $\text{pd}(S/I) \leq 4$.
Engheta’s Method

If $\text{ht}(I) = 1$ or 4, then $\text{pd}(S/I) \leq 4$.
If $\text{ht}(I) = 2$ then $\text{pd}(S/I) \leq 6$ by previous paper.
Engheta’s Method

If $\text{ht}(I) = 1$ or 4, then $\text{pd}(S/I) \leq 4$.
If $\text{ht}(I) = 2$ then $\text{pd}(S/I) \leq 6$ by previous paper.
If $\text{ht}(I) = 3$, reduce the problem to bounding $\text{pd}(S/J)$ for J unmixed over $K = \overline{K}$:
Engheta’s Method

If $\text{ht}(I) = 1$ or 4, then $\text{pd}(S/I) \leq 4$.
If $\text{ht}(I) = 2$ then $\text{pd}(S/I) \leq 6$ by previous paper.
If $\text{ht}(I) = 3$, reduce the problem to bounding $\text{pd}(S/J)$ for J unmixed over $K = \overline{K}$:
Let $I = (q_1, q_2, q_3, q_4)$.
Engheta’s Method

If \(\text{ht}(I) = 1 \) or \(4 \), then \(\text{pd}(S/I) \leq 4 \).
If \(\text{ht}(I) = 2 \) then \(\text{pd}(S/I) \leq 6 \) by previous paper.
If \(\text{ht}(I) = 3 \), reduce the problem to bounding \(\text{pd}(S/J) \) for \(J \) unmixed over \(K = \overline{K} \):
Let \(I = (q_1, q_2, q_3, q_4) \).
May assume \(q_1, q_2, q_3 \) form a regular sequence.
Engheta’s Method

If $\text{ht}(I) = 1$ or 4, then $\text{pd}(S/I) \leq 4$.
If $\text{ht}(I) = 2$ then $\text{pd}(S/I) \leq 6$ by previous paper.
If $\text{ht}(I) = 3$, reduce the problem to bounding $\text{pd}(S/J)$ for J unmixed over $K = \overline{K}$:
Let $I = (q_1, q_2, q_3, q_4)$.
May assume q_1, q_2, q_3 form a regular sequence.
Consider the short exact sequence:

$$0 \rightarrow \frac{S}{(q_1, q_2, q_3) : (q_4)} \xrightarrow{q_4} \frac{S}{(q_1, q_2, q_3)} \rightarrow \frac{S}{I} \rightarrow 0$$
Engheta’s Method

If $\text{ht}(I) = 1$ or 4, then $\text{pd}(S/I) \leq 4$.
If $\text{ht}(I) = 2$ then $\text{pd}(S/I) \leq 6$ by previous paper.
If $\text{ht}(I) = 3$, reduce the problem to bounding $\text{pd}(S/J)$ for J unmixed over $K = \overline{K}$:
Let $I = (q_1, q_2, q_3, q_4)$.
May assume q_1, q_2, q_3 form a regular sequence.
Consider the short exact sequence:

$$
0 \rightarrow \frac{S}{(q_1, q_2, q_3) : (q_4)} \xrightarrow{q_4} \frac{S}{(q_1, q_2, q_3)} \rightarrow \frac{S}{I} \rightarrow 0
$$

$$
\text{pd}(S/I) \leq \max\{3, \text{pd}(S/((q_1, q_2, q_3) : q_4)) + 1\}.
$$
Engheta’s Method

- If J is unmixed and $ht(J) = 1$, then $J = (f)$ and $pd(S/J) = 1$.

$(S \xleftarrow{f} S$ is a free resolution.)
Engheta’s Method

• If J is unmixed and $\text{ht}(J) = 1$, then $J = (f)$ and $\text{pd}(S/J) = 1$. ($S \xleftarrow{f} S$ is a free resolution.)
• If J is unmixed and has $e(S/J) = 1$, then $J = (x_1, \ldots, x_h)$ and $\text{pd}(S/J) = h$.
Engheta’s Method

• If J is unmixed and $ht(J) = 1$, then $J = (f)$ and $pd(S/J) = 1$. ($S \xleftarrow{f} S$ is a free resolution.)

• If J is unmixed and has $e(S/J) = 1$, then $J = (x_1, \ldots, x_h)$ and $pd(S/J) = h$.

• If J is unmixed and $e(S/J) = ht(J) = 2$, then....
Proposition (Engheta)

If J is unmixed and $K = \bar{K}$, $\text{ht}(J) = e(S/J) = 2$, then $\text{pd}(S/J) \leq 3$ and J is one of the following:
Engheta’s method

Proposition (Engheta)

If J *is unmixed and* $K = \overline{K}$, $\text{ht}(J) = e(S/J) = 2$, *then* $\text{pd}(S/J) \leq 3$ *and* J *is one of the following:*

- *(prime)* $J = (x, q)$
Engheta’s method

Proposition (Engheta)

If J is unmixed and $K = \overline{K}$, $\text{ht}(J) = e(S/J) = 2$, then $\text{pd}(S/J) \leq 3$ and J is one of the following:

- (prime) $J = (x, q)$
- (intersection of linear primes)
 - $(w, x) \cap (y, z) = (wy, wz, xy, xz)$
 - $(x, y) \cap (x, z) = (x, yz)$
Engheta’s method

Proposition (Engheta)

If J is unmixed and $K = \overline{K}$, $\text{ht}(J) = e(S/J) = 2$, then $\text{pd}(S/J) \leq 3$ and J is one of the following:

- (prime) $J = (x, q)$
- (intersection of linear primes)
 - $(w, x) \cap (y, z) = (wy, wz, xy, xz)$
 - $(x, y) \cap (x, z) = (x, yz)$
- (primary to (x, y))
 - $J = (x, y^2)$
 - $J = (x, y)^2 + (ax + by)$ where x, y, a, b form a regular sequence
Proposition (Engheta)

If J is unmixed and $K = \overline{K}$, $\text{ht}(J) = e(S/J) = 2$, then $\text{pd}(S/J) \leq 3$ and J is one of the following:

- (prime) $J = (x, q)$
- (intersection of linear primes)
 - $(w, x) \cap (y, z) = (wy, wz, xy, xz)$
 - $(x, y) \cap (x, z) = (x, yz)$
- (primary to (x, y))
 - $J = (x, y^2)$
 - $J = (x, y)^2 + (ax + by)$ where x, y, a, b form a regular sequence

Similar statement for height 3 multiplicity 2?
Primary Ideals with Large Projective Dimension

Theorem (Huneke-Mantero-M-Seceleanu)

Let $K = \overline{K}$. For any integers $h, e \geq 2$ with $(h, e) \neq (2, 2)$ and for any integer p, there exists a primary ideal $I = I$ with

- $ht(I) = h$
- $e(S/I) = e$
- $\sqrt{I} = (x_1, x_2, \ldots, x_h)$
- $pd(S/I) \geq p$.
Primary Ideals with Large Projective Dimension

Theorem (Huneke-Mantero-M-Seceleanu)

Let $K = \overline{K}$. For any integers $h, e \geq 2$ with $(h, e) \neq (2, 2)$ and for any integer p, there exists a primary ideal $I = I$ with

- $ht(I) = h$
- $e(S/I) = e$
- $\sqrt{I} = (x_1, x_2, \ldots, x_h)$
- $pd(S/I) \geq p$.

No finite classification of primary ideals, even for height 3 multiplicity 2.
Classification of \((x, y, z)\)-primary ideals

However, we do get a finite list if we bound the generating degree!
Classification of \((x, y, z)\)-primary ideals

However, we do get a finite list if we bound the generating degree!

Proposition (HMMS)

\[
\text{Let } J \text{ be } (x, y, z)\text{-primary with } e(S/J) = 2. \text{ Then one of the following holds:}
\]
Classification of \((x, y, z)\)-primary ideals

However, we do get a finite list if we bound the generating degree!

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 2\). Then one of the following holds:

- \(J = (x, y, z^2)\)
Classification of \((x, y, z)\)-primary ideals

However, we do get a finite list if we bound the generating degree!

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 2\). Then one of the following holds:

- \(J = (x, y, z^2)\)
- \(J = (x, y^2, yz, z^2, ay + bz)\), where \(ht(x, y, z, a, b) = 5\)
Classification of \((x, y, z)\)-primary ideals

However, we do get a finite list if we bound the generating degree!

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 2\). Then one of the following holds:

- \(J = (x, y, z^2)\)
- \(J = (x, y^2, yz, z^2, ay + bz)\), where \(ht(x, y, z, a, b) = 5\)
- \(J = (x, y, z)^2 + (ax + by + cz, dx + ey + fz)\), where \(ht(x, y, z, I_2) \geq 5\)
Classification of \((x, y, z)\)-primary ideals

However, we do get a finite list if we bound the generating degree!

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 2\). Then one of the following holds:

- \(J = (x, y, z^2)\)
- \(J = (x, y^2, yz, z^2, ay + bz), \text{ where } \text{ht}(x, y, z, a, b) = 5\)
- \(J = (x, y, z)^2 + (ax + by + cz, dx + ey + fz), \text{ where } \text{ht}(x, y, z, l_2) \geq 5\)
- All quadrics in \(J\) can be written in terms of at most 6 variables.
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 3\). Then one of the following holds:
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 3\). Then one of the following holds:

- \(J = (x, y^2, yz, z^2)\)
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 3\). Then one of the following holds:

- \(J = (x, y^2, yz, z^2)\)
- \(J = (x, y^2, yz, z^3, ay + z^2)\)
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

\[\text{Let } J \text{ be } (x, y, z)\text{-primary with } e(S/J) = 3. \text{ Then one of the following holds:}\]

- \(J = (x, y^2, yz, z^2)\)
- \(J = (x, y^2, yz, z^3, ay + z^2)\)
- \(J = (x^2, xy, xz, y^2, yz, ax + by + z^2, cx + dy)\)
Classification of (x, y, z)-primary ideals

Proposition (HMMS)

Let J be (x, y, z)-primary with $e(S/J) = 3$. Then one of the following holds:

- $J = (x, y^2, yz, z^2)$
- $J = (x, y^2, yz, z^3, ay + z^2)$
- $J = (x^2, xy, xz, y^2, yz, ax + by + z^2, cx + dy)$
- $J = (x^2, xy, xz, yz^2, z^3, ax + by + cz, dx + y^2)$
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 3\). Then one of the following holds:

- \(J = (x, y^2, yz, z^2)\)
- \(J = (x, y^2, yz, z^3, ay + z^2)\)
- \(J = (x^2, xy, xz, y^2, yz, ax + by + z^2, cx + dy)\)
- \(J = (x^2, xy, xz, yz^2, z^3, ax + by + cz, dx + y^2)\)
- \(J = (x^2, xy, xz, y^3, z^3, ax + by + cz, dx + yz)\)
Proposition (HMMS)

Let J be (x, y, z)-primary with $e(S/J) = 3$. Then one of the following holds:

- $J = (x, y^2, yz, z^2)$
- $J = (x, y^2, yz, z^3, ay + z^2)$
- $J = (x^2, xy, xz, y^2, yz, ax + by + z^2, cx + dy)$
- $J = (x^2, xy, xz, yz^2, z^3, ax + by + cz, dx + y^2)$
- $J = (x^2, xy, xz, y^3, z^3, ax + by + cz, dx + yz)$

All quadrics in J can be written in terms of at most 6 variables.
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 3\). Then one of the following holds:

- \(J = (x, y^2, yz, z^2)\)
- \(J = (x, y^2, yz, z^3, ay + z^2)\)
- \(J = (x^2, xy, xz, y^2, yz, ax + by + z^2, cx + dy)\)
- \(J = (x^2, xy, xz, yz^2, z^3, ax + by + cz, dx + y^2)\)
- \(J = (x^2, xy, xz, y^3, z^3, ax + by + cz, dx + yz)\)

All quadrics in \(J\) can be written in terms of at most 6 variables.

All quadrics in \(J\) generate an ideal of height at most 2.
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 4\). Then one of the following holds:
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 4\). Then one of the following holds:

- All quadrics in \(J\) can be written in terms of at most 6 variables.
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 4\). Then one of the following holds:

- All quadrics in \(J\) can be written in terms of at most 6 variables.
- All quadrics in \(J\) generate an ideal of height at most 2.
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 4\). Then one of the following holds:

- All quadrics in \(J\) can be written in terms of at most 6 variables.
- All quadrics in \(J\) generate an ideal of height at most 2.
- \(J\) contains a linear form.
Classification of \((x, y, z)\)-primary ideals

Proposition (HMMS)

Let \(J\) be \((x, y, z)\)-primary with \(e(S/J) = 4\). Then one of the following holds:

- All quadrics in \(J\) can be written in terms of at most 6 variables.
- All quadrics in \(J\) generate an ideal of height at most 2.
- \(J\) contains a linear form.
- \(\text{pd}(S/J) \leq 5\).
Classification of \((x, y, q)\)-primary ideals

Proposition

Let \(q = (x, y, q)\) be a height 3 multiplicity 2 prime and let \(J\) be a \(q\)-primary ideal with \(e(S/J) = 4\). Then \(J\) has one of the following forms:
Proposition

Let \(q = (x, y, q) \) be a height 3 multiplicity 2 prime and let \(J \) be a \(q \)-primary ideal with \(e(S/J) = 4 \). Then \(J \) has one of the following forms:

- \(J = (x, y^2, q) \),
Classification of \((x, y, q)\)-primary ideals

Proposition

Let \(q = (x, y, q)\) be a height 3 multiplicity 2 prime and let \(J\) be a \(q\)-primary ideal with \(e(S/J) = 4\). Then \(J\) has one of the following forms:

- \(J = (x, y^2, q)\),
- \(J = (x^2, xy, y^2, q) + (\geq \text{deg} \ 3)\),
Classification of \((x, y, q)\)-primary ideals

Proposition

Let \(q = (x, y, q)\) be a height 3 multiplicity 2 prime and let \(J\) be a \(q\)-primary ideal with \(e(S/J) = 4\). Then \(J\) has one of the following forms:

- \(J = (x, y^2, q)\),
- \(J = (x^2, xy, y^2, q) + (\geq \text{deg 3})\),
- \(J = (x^2, xy, y^2, ax + by, q) + (\geq \text{deg 3}), \text{ where } ht(x, y, a, b, q) = 5\),
Proposition

Let \(q = (x, y, q) \) be a height 3 multiplicity 2 prime and let \(J \) be a \(q \)-primary ideal with \(e(S/J) = 4 \). Then \(J \) has one of the following forms:

- \(J = (x, y^2, q) \),
- \(J = (x^2, xy, y^2, q) + (\geq \deg 3) \),
- \(J = (x^2, xy, y^2, ax + by, q) + (\geq \deg 3) \), where \(\text{ht}(x, y, a, b, q) = 5 \),
- \(J = (x^2, xy, y^2, ax + by, cx + dy, ad - bc + ex + fy = q) \), where \(\text{ht}(x, y, a, b) = \text{ht}(x, y, c, d) = 4 \) and \(\text{ht}(x, y, ad - bc) = 3 \).
Classification of \((x, y, q)\)-primary ideals

Proposition

Let \(q = (x, y, q)\) be a height 3 multiplicity 2 prime and let \(J\) be a \(q\)-primary ideal with \(e(S/J) = 4\). Then \(J\) has one of the following forms:

- \(J = (x, y^2, q)\),
- \(J = (x^2, xy, y^2, q) + (\geq \text{deg 3})\),
- \(J = (x^2, xy, y^2, ax + by, q) + (\geq \text{deg 3})\), where \(\text{ht}(x, y, a, b, q) = 5\),
- \(J = (x^2, xy, y^2, ax + by, cx + dy, ad - bc + ex + fy = q)\), where \(\text{ht}(x, y, a, b) = \text{ht}(x, y, c, d) = 4\) and \(\text{ht}(x, y, ad - bc) = 3\).

All quadrics in \(J\) generate an ideal of height at most 2.
Problem case:
\[I = (ax + y^2, bx + yz, cx + z^2, dx) \text{ in } S = k[a, b, c, d, x, y, z] \]
Problem case:
\[I = (ax + y^2, bx + yz, cx + z^2, dx) \text{ in } S = k[a, b, c, d, x, y, z] \]

\((q_1, q_2, q_3) : I \text{ generated by quadrics in 6 variables}\)
Problem case:
\[I = (ax + y^2, bx + yz, cx + z^2, dx) \text{ in } S = k[a, b, c, d, x, y, z] \]

\((q_1, q_2, q_3) : I \text{ generated by quadrics in 6 variables}

Cannot express generators of \(I \) in 6 variables.
Still not done

Problem case:

\[I = (ax + y^2, bx + yz, cx + z^2, dx) \text{ in } S = k[a, b, c, d, x, y, z] \]

\((q_1, q_2, q_3) : I \) generated by quadrics in 6 variables

Cannot express generators of \(I \) in 6 variables.

Still need to prove \(\text{pd}(S/I) \leq 6 \) if \((q_1, q_2, q_3) : I \) extended from 6 variable polynomial ring.
Lemma

Suppose $q_1, q_2, q_3 \in K[z_1, \ldots, z_6]$. If $I = (q_1, q_2, q_3, xy)$, then $\text{pd}(S/I) \leq 6$.
Lemma

Suppose $q_1, q_2, q_3 \in K[z_1, \ldots, z_6]$. If $I = (q_1, q_2, q_3, xy)$, then $\text{pd}(S/I) \leq 6$.

Proof: May assume $I = (xy, q_1, q_2, q_3)$ with $\text{ht}(q_1, q_2, q_3) = 3$.
Still not done

Lemma

Suppose $q_1, q_2, q_3 \in K[z_1, \ldots, z_6]$. If $I = (q_1, q_2, q_3, xy)$, then $\text{pd}(S/I) \leq 6$.

Proof: May assume $I = (xy, q_1, q_2, q_3)$ with $\text{ht}(q_1, q_2, q_3) = 3$.

\[0 \rightarrow S/(I : x) \rightarrow S/I \rightarrow S/(I + (x)) \rightarrow 0\]
Suppose $q_1, q_2, q_3 \in K[z_1, \ldots, z_6]$. If $I = (q_1, q_2, q_3, xy)$, then $\text{pd}(S/I) \leq 6$.

Proof: May assume $I = (xy, q_1, q_2, q_3)$ with $\text{ht}(q_1, q_2, q_3) = 3$.

$$0 \longrightarrow S/(I : x) \longrightarrow S/I \longrightarrow S/(I + (x)) \longrightarrow 0$$

If x regular on $S/(q_1, q_2, q_3)$, then $I + (x)$ and $I : x$ have form (q_1, q_2, q_3, ℓ).
Still not done

Lemma

Suppose $q_1, q_2, q_3 \in K[z_1, \ldots, z_6]$. If $I = (q_1, q_2, q_3, xy)$, then $\text{pd}(S/I) \leq 6$.

Proof: May assume $I = (xy, q_1, q_2, q_3)$ with $\text{ht}(q_1, q_2, q_3) = 3$.

$$0 \rightarrow S/(I : x) \rightarrow S/I \rightarrow S/(I + (x)) \rightarrow 0$$

If x regular on $S/(q_1, q_2, q_3)$, then $I + (x)$ and $I : x$ have form (q_1, q_2, q_3, ℓ).

$\text{pd}(S/(3\text{ quadrics} + 1\text{ linear form})) \leq 5 \implies \text{pd}(S/I) \leq 5$
Lemma

Suppose $q_1, q_2, q_3 \in K[z_1, \ldots, z_6]$. If $I = (q_1, q_2, q_3, xy)$, then $\text{pd}(S/I) \leq 6$.

Proof: May assume $I = (xy, q_1, q_2, q_3)$ with $\text{ht}(q_1, q_2, q_3) = 3$.

$$0 \longrightarrow S/(I : x) \longrightarrow S/I \longrightarrow S/(I + (x)) \longrightarrow 0$$

If x regular on $S/(q_1, q_2, q_3)$, then $I + (x)$ and $I : x$ have form (q_1, q_2, q_3, ℓ)

$\text{pd}(S/(3 \text{quadrics} + 1 \text{linear form})) \leq 5 \implies \text{pd}(S/I) \leq 5$

Else x, y both zerodivisors on $S/(q_1, q_2, q_3)$
Lemma

Suppose $q_1, q_2, q_3 \in K[z_1, \ldots, z_6]$. If $I = (q_1, q_2, q_3, xy)$, then $\text{pd}(S/I) \leq 6$.

Proof: May assume $I = (xy, q_1, q_2, q_3)$ with $\text{ht}(q_1, q_2, q_3) = 3$.

$$0 \rightarrow S/(I : x) \rightarrow S/I \rightarrow S/(I + (x)) \rightarrow 0$$

If x regular on $S/(q_1, q_2, q_3)$, then $I + (x)$ and $I : x$ have form (q_1, q_2, q_3, ℓ)

$\text{pd}(S/(3 \text{quadrics } + 1 \text{linear form})) \leq 5 \implies \text{pd}(S/I) \leq 5$

Else x, y both zerodivisors on $S/(q_1, q_2, q_3)$

$\implies x, y \in K[z_1, \ldots, z_6]$ Done
Main Result

4 more Lemmas gives...
Main Result

4 more Lemmas gives...

Theorem (HMMS)

Let S be a polynomial ring over a field K, and let $I = (q_1, q_2, q_3, q_4)$ be an ideal of S minimally generated by 4 homogeneous polynomials of degree 2. Then $\text{pd}(S/I) \leq 6$. Moreover, this bound is tight.
Additivity Formula

Proposition

If J is an ideal of S, then

$$e(S/J) = \sum_{\text{primes } p \supseteq J} e(S/p) \lambda(S_p/J_p).$$

*ht$(p) = \text{ht}(J)$
Additivity Formula

Proposition

If J is an ideal of S, then

$$e(S/J) = \sum_{\text{primes } p \supseteq J} e(S/p) \lambda(S_p/J_p).$$

if J is an unmixed ideal, we say it is of type

$$\langle e_1, \ldots, e_m; \lambda_1, \ldots, \lambda_m \rangle$$

if J has m associated prime ideals p_1, \ldots, p_m with $e_i = e(S/p_i)$ and $\lambda_i = \lambda(S_{p_i}/J_{p_i})$ for all i.
Additivity Formula

Proposition

If J is an ideal of S, then

$$e(S/J) = \sum_{\text{primes } p \supseteq J \atop \text{ht}(p) = \text{ht}(J)} e(S/p)\lambda(S_p/J_p).$$

if J is an unmixed ideal, we say it is of type

$$\langle e_1, \ldots, e_m; \lambda_1, \ldots, \lambda_m \rangle$$

*if J has m associated prime ideals p_1, \ldots, p_m with $e_i = e(S/p_i)$ and $\lambda_i = \lambda(S_{p_i}/J_{p_i})$ for all i. Note: $e(S/J) = \sum_{i=1}^m e_i\lambda_i$.***
Bounds on $\text{pd}(S/I)$ when $\text{ht}(I) = 2$

$e(S/I)$	$\langle e; \lambda \rangle$ for I^{un}	Bound for $\text{pd}(S/I)$
1	$\langle 1; 1 \rangle$	6
2	$\langle 2; 1 \rangle$	4
	$\langle 1; 2 \rangle$	6
	$\langle 1, 1; 1, 1 \rangle$	5
3	$\langle 3; 1 \rangle$	2
	$\langle 1; 3 \rangle$	6
	$\langle 1, 2; 1, 1 \rangle$	4
	$\langle 1, 1; 1, 2 \rangle$	5
	$\langle 1, 1, 1; 1, 1, 1 \rangle$	5
Bounds on $\text{pd}(S/I)$ when $\text{ht}(I) = 3$

Table 1: Bounds on $\text{pd}(S/I)$ for I unbound

$\text{e}(S/I)$	$\langle \text{e}; \lambda \rangle$ for $I \text{ unmixed}$	Bound for $\text{pd}(S/I)$
1	$\langle 1; 1 \rangle$	4
2	$\langle 2; 1 \rangle$	4
	$\langle 1; 2 \rangle$	5
	$\langle 1, 1; 1, 1 \rangle$	5
3	$\langle 3; 1 \rangle$	5
	$\langle 1, 3 \rangle$	6
	$\langle 1, 1; 1, 2 \rangle$	6
	$\langle 1, 1, 1; 1, 1 \rangle$	6
6	any	3

Table 2: Bounds on $\text{pd}(S/L)$ for $L = (q_1, q_2, q_3) : I$

$\text{e}(S/L)$	$\langle \text{e}; \lambda \rangle$ for $L = (q_1, q_2, q_3) : I$	Bound for $\text{pd}(S/I)$
4	$\langle 4; 1 \rangle$	4
	$\langle 2; 2 \rangle$	5
	$\langle 1; 4 \rangle$	6
	$\langle 1, 3; 1, 1 \rangle$	5
	$\langle 1, 1; 1, 3 \rangle$	6
	$\langle 2, 2; 1, 1 \rangle$	6
	$\langle 1, 2; 2, 1 \rangle$	6
	$\langle 1, 1, 2, 2 \rangle$	6
	$\langle 1, 1, 2; 1, 1, 1 \rangle$	6
	$\langle 1, 1, 1; 1, 1, 1 \rangle$	6
3	$\langle 3; 1 \rangle$	5
	$\langle 1; 3 \rangle$	6
	$\langle 1, 2; 1, 1 \rangle$	5
	$\langle 1, 1; 1, 2 \rangle$	6
	$\langle 1, 1, 1; 1, 1, 1 \rangle$	6
Thank you!

References:

- Huneke-Mantero-McCullough-Seceleanu, ”Projective Dimension of Algebras Presented by Quadrics of Codimension Two.” J of Alg 393 (2013) 170–186

- ”Multiple Structures on Linear Subspaces with Arbitrarily Large Projective Dimension.” J of Alg 447 (2016) 183–205

- ”A multiplicity bound for graded rings and a criterion for the Cohen-Macaulay property.” Proc. of the AMS 143 (2015), no. 6, 2365–2377

- ”Tight Bound on the Projective Dimension of Four Quadrics” preprint: arXiv:1403.6334