Pre-training for Video Captioning Challenge 2020 Summary
http://www.auto-video-captions.top/2020/

Yingwei Pan, Jun Xu, Yehao Li, Ting Yao, and Tao Mei
JD AI Research, Beijing, China
{panyw.ustc, junx1992, yehaoli.sysu, tingyao.ustc}@gmail.com

Table 1: The leaderboard of top-3 submissions.

Rank	Team Name	Affiliation	BLEU@4	METEOR	CIDEr-D	SPICE
1	Old Boys	Tsinghua University, Beijing University of Posts and Telecommunications, Shanghai Ocean University	21.14	17.38	24.42	5.65
2	sysu-cs	Sun Yat-sen University	20.41	17.02	23.80	5.39
3	IVIPC-King	University of Electronic Science and Technology of China	18.24	16.46	21.36	5.25

1. Challenge Introduction

The Pre-training for Video Captioning Challenge is a Multimedia Grand Challenge in conjunction with ACM Multimedia 2020. The goal of this challenge is to offer a fertile ground for designing vision-language pre-training techniques that facilitate the vision-language downstream tasks (e.g., video captioning [1, 2, 4, 5, 6, 8] this year). Meanwhile, to further motivate and challenge the multimedia community, we provide a large-scale video-language pre-training dataset [3] (namely “Auto-captions on GIF”) for contestants to solve this challenging but emerging task.

 Particularly, the contestants are asked to develop video captioning system based on Auto-captions on GIF dataset (as pre-training data) and the public MSR-VTT benchmark [7] (as training data for downstream task). For the evaluation purpose, a contesting system is asked to produce at least one sentence of the test videos. The accuracy will be evaluated against human pre-generated sentence(s).

2. Challenge Results

Table 1 details the results of top-3 submissions. We also attach to this document a copy of the technical reports submitted to the challenge.

References

[1] Jingwen Chen, Yingwei Pan, Yehao Li, Ting Yao, Hongyang Chao, and Tao Mei. Temporal deformable convolutional encoder-decoder networks for video captioning. In AAAI, 2019.
[2] Yehao Li, Ting Yao, Yingwei Pan, Hongyang Chao, and Tao Mei. Jointly localizing and describing events for dense video captioning. In CVPR, 2018.
[3] Yingwei Pan, Yehao Li, Jianjie Luo, Jun Xu, Ting Yao, and Tao Mei. Auto-captions on gif: A large-scale video-sentence dataset for vision-language pre-training. arXiv preprint arXiv:2007.02375, 2020.
[4] Yingwei Pan, Tao Mei, Ting Yao, Houqiang Li, and Yong Rui. Jointly modeling embedding and translation to bridge video and language. In CVPR, 2016.
[5] Yingwei Pan, Ting Yao, Houqiang Li, and Tao Mei. Video captioning with transferred semantic attributes. In CVPR, 2017.
[6] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko. Sequence to sequence - video to text. In ICCV, 2015.
[7] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging video and language. In CVPR, 2016.
[8] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, and Aaron Courville. Describing videos by exploiting temporal structure. In ICCV, 2015.
XlanV Model with Adaptively Multi-Modality Feature Fusing for Video Captioning

Yiqing Huang
Tsinghua University
huangyq95@163.com
Qiuyu Cai
Beijing University of Posts and Telecommunications
caiqiuyu@bupt.edu.cn
Siyu Xu
Shanghai Ocean University
1759236@st.shou.edu.cn

1 INTRODUCTION
Some recent work explores the structure of X-Linear Attention networks [1], which exploit static object feature to facilitate image captioning, but the situation of video captioning is more challenging. Unlike still images, video contains both static feature and dynamic feature as the length of video varies. Therefore, we propose to adaptively fuse these two kinds of features to make better utilization of video features in video captioning.

The main contributions of our method are as follows:
• We propose XlanV model to introduce X-Liner Attention networks into video captioning.
• Adaptively fusing multi-modality features to enhance video captioning.

2 METHOD
2.1 Feature Extraction
Our model utilizes two kinds of features. 1) We transform each video into 40 frames of images and leverage a pre-trained ResNet-152 network to extract 40x2048 static features. 2) We extract 160 frames of images from the video and exploit the action classification network I3D to map each 8 frames of images to a 1024d feature.

2.2 XlanV Model for Video Captioning
The overall paradigm of our model, which leverages the X-Linear Attention network [1] as the backbone framework, is shown in Fig. 1. Two encoders are implemented to encode the static feature and the dynamic features respectively. In the LSTM decoder, our model adaptively fuse these two kinds of features.

2.3 Adaptive Multi-modality Fusion
Denoting the attended static feature and dynamic feature as \(\hat{v}_s \) and \(\hat{v}_d \) respectively, the formulation of adaptive multi-modality fusion can be formulated as follows, where \(W \) are trainable parameters and \(\cdot \) denotes concatenation.

\[
\hat{v}_s^{\text{fuse}} = \alpha \ast \hat{v}_s + (1 - \alpha) \ast \hat{v}_d \tag{1}
\]
\[
\alpha = \text{sigmoid}(W[\hat{v}_s; \hat{v}_d]) \tag{2}
\]

Thus, our model is capable of adaptively weighting these two features and makes better utilization of one kind of feature when the other one is not so useful at the current time step.

3 RESULT
Due to the large difference between the test data and the GIF dataset, the GIF dataset was not used in the training process. We only use the MSR-VTT dataset, which is more similar to the test video, as training and validation dataset.

Table 1 shows the test performance of the XlanV model. The comparison baseline uses the results of a Bi-LSTM with attention mechanism network. We train our model with both cross-entropy loss and the reinforcement learning based SCST [2]. In addition, ensembling multi-model can obtain better results.

4 CONCLUSION
In this paper, we introduce a structure of X-linear Attention network for video captioning, which fully integrates video features by adaptively fusing multi-modality video features.

REFERENCES
[1] Yingwei Pan, Ting Yue, Yehao Li, and Tao Mei. 2020. X-Linear Attention Networks for Image Captioning. In CVPR. 10971–10980.
[2] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava Goel. 2017. Self-critical sequence training for image captioning. In CVPR. 7008–7024.
1 APPROACH

Model. Our VideoTRM includes a visual encoder and a textual encoder for encoding video and sentence respectively, a cross-modal encoder for modeling the interactions between two modalities (i.e., visual and textual), and a decoder with cross-attention on visual inputs for caption generation of the input video. All the four modules are built upon Transformer (TRM) layers [10].

Pre-training. We pre-train our VideoTRM with four proxy tasks: (1) masked language modeling [3]; (2) masked frame-feature regression [9]; (3) video-sentence alignment [7]; (4) masked video captioning. In particular, conditional masking mechanism [1] is adopted during pre-training, where either masked language modeling task or masked frame-feature regression task is randomly performed within the same mini-batch.

Fine-tuning. When the pre-training finished, we fine-tune VideoTRM with video captioning task by additionally integrating mesh-like connections [2] and gate fusion [4] into the decoder.

2 EXPERIMENTS

Preprocessing. For MSR-VTT, we sample videos at 3 fps and set the maximum number of sampled frames as 50. For Auto-captions on GIF, we sample all the frames and similarly use 50 frames as inputs at most. The ResNet-152 pre-trained on ImageNet [6] is exploited to extract 2048-way pool5 visual features.

Model Details. Each encoder or decoder module in our VideoTRM consists of 6 layers except that the textual encoder is of 3 layers. The model dimension of all the four modules is set as 768, and the hidden size of feed-forward layer is 2048. We apply 12 heads in multi-head attention.

Training Details. Our VideoTRM is pre-trained on Auto-captions on GIF with a learning rate of 0.0001 for 20 epochs, and fine-tuned on MSR-VTT with a learning rate of 0.0001 for 20 epochs. Adam with warmup is utilized to optimize our model. Beam search size is set as 1 at decoding stage.

Results. Table 1 shows the performances of our proposed VideoTRM on MSR-VTT. By pre-training with four proxy tasks, CIDEr-D is boosted from 42.8% to 44.7% on the official test split.

REFERENCES

[1] Yun-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. 2019. UNITER: Learning Universal Image-Text Representations. CoRR abs/1909.11740 (2019). arXiv:1909.11740 http://arxiv.org/abs/1909.11740

[2] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. 2019. M²: Meshed-Memory Transformer for Image Captioning. CoRR abs/1912.08226 (2019). arXiv:1912.08226

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers). Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1421

[4] Lian Lu, Wenmin Wang, Jie Chen, and Xiaoyong Wei. 2019. Attention on Attention for Image Captioning. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, 4633–4642. https://doi.org/10.1109/ICCV.2019.00475

[5] friedk P. Kingma and Jonata Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/1412.6980

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey H. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3–6, 2012, Lake Tahoe, Nevada, United States. [Editors: Yoshua Bengio, Uwe von Luxburg, Samy Bengio, Hanna Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.).] 1097–1105. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

[7] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. VLBERT: Pre-training Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, Vancouver, BC, Canada. Hannah M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 13–23. http://papers.nips.cc/paper/9235-vidbert-pretraining-task-agnostic-visiolinguistic-representations-for-vision-and-language-tasks

[8] Yingwei Pan, Yehao Li, Junjie Lao, Jun Xu, Ting Yao, and Tao Mei. 2020. Auto-captions on GIF: A Large-scale Video-sentence Dataset for Vision-language Pre-training. arXiv preprint arXiv:2007.02375 (2020).

[9] Hao Tan and Mohit Bansal. 2019. LXMERT: Learning Universal Image-Language Model for Cross-modality Understanding. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019, Las Vegas, NV, USA, June 17-21, 2019. IEEE Computer Society, 8188–8197. https://doi.org/10.1109/CVPR.2019.00880

[10] Jun Xu, Tao Mei, Ting Yao, and Yang Rui. 2016. MSR-VTT: A Large Video Description Dataset for Bridging Video and Language. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 5288–5297. https://doi.org/10.1109/CVPR.2016.571

Table 1: The performances of our VideoTRM on MSR-VTT.

Model	B@4	M	C	S
VideoTRM	38.1	26.6	42.8	5.6
VideoTRM + Pre-training	38.8	27.0	44.7	5.9

| VideoTRM + Pre-training (test server) | 20.41 | 17.02 | 23.50 | 5.37 |

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You Need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Bengio, Y., Wallach, H., Fergus, R., Brockschmidt, M., and Gilmer, J. (Eds.). Curran Associates, Inc., 6998–7008. http://papers.nips.cc/paper/7181-attention-is-all-you-need

[11] Jun Xu, Tao Mei, Ting Yao, and Yang Rui. 2016. MSR-VTT: A Large Video Description Dataset for Bridging Video and Language. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer Society, 5288–5297. https://doi.org/10.1109/CVPR.2016.571
The Description of the Algorithm Evaluated in the Pre-training for Video Captioning Challenge

Lanxiao Wang
lanxiao.wang@std.uestc.edu.cn
Chao Shang
shangc@std.uestc.edu.cn
Heqian Qiu
hqqiu@std.uestc.edu.cn
Taijin Zhao
zhtjww@std.uestc.edu.cn
Benliu Qiu
qbenliu@std.uestc.edu.cn
Hongliang Li
hlli@uestc.edu.cn
University of Electronic Science and Technology of China
Chengdu, China

1 Full name and abbreviated name of the algorithm
Multi-stage Tag Guidance Network (MTGNet).

2 Description of the algorithm
Our method MTGNet is designed as illustrated in Figure 1. Specifically, we adopt a variety of feature extraction models to process the video (e.g., I3D, Inception-V2, ResNeXt101 and Faster-RCNN). To make features more robust for complex scenes, we follow the idea of Delving Deeper into the Decoder Model\[1\] and apply the Tag network into the backbone and optimize it further.

Taking into account the prevention of overfitting and time and efficiency issues, the entire training process is divided into two stages of training. The first stage trains all data, and the second stage introduces a random dropout. Note that only the first stage training is performed during the GIF pre-training process. Furthermore, we used CNN-based network to pick out the best candidate results.

3 Experimental environments
This algorithm was evaluated according to the metrics as specified in the Pre-training For Video Captioning Challenge 2020.

- Information about the training set (e.g., Auto-captions on GIF, MSRVTT, MSVD dataset. No additional training datasets were used).
- Information about pre-trained models: we use the I3D model pre-trained on Kinetics, the Inception-V2 model and the ResNeXt101 model pre-trained on ImageNet, the Faster-RCNN model pre-trained on Visual Genome and the ECO model pre-trained on Kinetics. (But not every result uses all the above features to generate)
- In our experiments, we train MTGNet in Figure 1 using multi-stage training and use GIF, MSVD and MSRVTT to train Tag-Net as Guidance. Overall, we adopt GIF to pretrain MTGNet and then fine-tune it with MSR-VTT.

Referring

[1] Chen, Haoran , J. Li , and X. Hu . "Delving Deeper into the Decoder for Video Captioning." (2020).