Dilation, Smoothed Distance, and Minimization Diagrams of Convex Functions

Matthew Dickerson¹, David Eppstein², and Kevin A. Wortman²

¹ Department of Computer Science, Middlebury College
² Computer Science Department, University of California, Irvine

**Abstract.** Clarkson recently introduced the $o$-smoothed distance $d_o(p,q) = 2d(p,q)/(d(o,p) + d(o,q) + d(p,q))$ (where $d$ denotes the Euclidean distance in the plane) as a geometric analogue of the Jaccard distance; its Voronoi diagrams can be used to determine for a query point $q$ the site $p$ maximizing the dilation $(d(p,o) + d(o,q))/d(p,q)$ of $p$ and $q$ in a star network centered at $o$. Although smoothed distance is neither translation-invariant nor convex, we show how to transform these diagrams into minimization diagrams of translates of a convex function that takes the form $f(x,y) = g(x) + h(y)$. For convex functions of this form, when $g$ and $h$ do not grow too quickly (as embodied in the constraints $g''g' < (g')^2$ and $h''h' < (h')^2$), the level sets of $f$ form a family of pseudocircles in the plane, the minimization diagram of translates of $f$ has linear complexity and can be constructed in $O(n\log n)$ randomized expected time, all cells in the minimization diagram are connected, and the set of bisectors separating any one cell in the diagram from each of the others forms an arrangement of pseudolines in the plane. Therefore, for sufficiently closely spaced points in the plane, the Voronoi diagram of smoothed distance has linear complexity and can be computed efficiently. We also experiment with using a variant of Lloyd’s algorithm, adapted to smoothed distance, to find uniformly spaced point samples with exponentially decreasing density around a point $o$.

1 Introduction

Any bivariate function $f$ and finite set of point sites $p_i$ in the plane give rise to a minimization diagram in which the plane is partitioned into cells corresponding to the sites; for each point $q$ within the cell for site $p_i$, the value of the translated function $f(q - p_i)$ is less than or equal to the value of any of the other translates of $f$. A familiar example is given by Euclidean Voronoi diagrams, the minimization diagrams of translates of the convex functions $f(x,y) = \sqrt{x^2 + y^2}$ or $f(x,y) = x^2 + y^2$ that measure the (squared) distance of $(x,y)$ from the origin.

Minimization diagrams have many applications, and under fairly general conditions can be shown to have quadratic combinatorial complexity [9], but in some important cases their complexity is much smaller. The low combinatorial complexity of Voronoi diagrams, for instance, is closely related to the connectivity of their cells. In a Euclidean Voronoi diagram, each cell is a (possibly unbounded) convex polygon, so the Voronoi diagram for $n$ sites can be represented as a partition of the plane into $n$ connected regions. It follows from Euler’s formula for planar maps that there are at most $2n - 4$ edges connecting pairs of regions and at most $3n - 6$ vertices where three or more regions meet. These combinatorial facts form the basis of efficient algorithms for constructing Voronoi diagrams and using them as a data structure in other geometric algorithms. It is natural, therefore, to ask: for which other functions do the minimization diagrams have the same property that the cells are connected and the number of features is linear?

A partial answer was provided by Chew and Drysdale [1], who showed that the same properties of having connected cells and linear total complexity hold for Voronoi diagrams defined by so-called convex distance functions. These are a restricted class of convex functions $f$ with the property that, for any positive scalar $\alpha$ and any point $p$, $f(\alpha p) = \alpha f(p)$. Not every convex function has, or can be transformed to have, this property: it implies that all the level sets $\{p \mid f(p) = k\}$ are scaled copies of each other, a property that need not hold for more general convex functions. A related concept is the abstract Voronoi diagram [14], which is defined by a family of bisecting curves; the curves are required to intersect each other finitely many times and the cells formed by these curves are required to be simply connected. Bregman Voronoi diagrams [20]
fall into this class: they have linear bisectors and convex-polygon cells. Efficient algorithms are known for constructing abstract Voronoi diagrams [14, 15, 19], which we will make use of. However, it is unclear how to tell whether a given convex function has minimization diagrams that form abstract Voronoi diagrams.

In this paper we study minimization diagrams for another class of convex functions, different from the convex distance functions. The functions we study take the form \( f(x, y) = g(x) + h(y) \); additionally we require that \( g \) and \( h \) be triply-differentiable and that \( g'(x)g''(x) < g''(x)^2 \) and \( h'(y)h''(y) < h''(y)^2 \) for all \( x \) and \( y \). For example, the function \( f(x, y) = |x|^c + |y|^c \), for \( c > 1 \), satisfies these requirements, and its minimization diagrams are the Voronoi diagrams for the \( L_c \) distance in the plane, known to have linear complexity by the results of Chew and Drysdale. As we show, the minimization diagrams of arbitrary functions in this class have similarly nice combinatorial properties:

- Any two distinct translated level sets \( S_r(p) = \{ q \mid f(q - p) = r \} \) are simple closed curves in the plane that intersect in at most two points; if they intersect at two points, they cross properly at these points. That is, these sets, which are analogous to the geometric circles formed by applying this definition to the Euclidean distance, form a family of pseudocircles [13, 16].
- Any bisector \( B(p, q) = \{ s \mid f(s - p) = f(s - q) \} \) forms either an axis-parallel line or a simple curve that is both \( x \)-monotone and \( y \)-monotone. The value of \( f(s - p) \) and of \( f(s - q) \) varies unimodally along the bisector \( B(p, q) \).
- Any two distinct bisectors \( B(p, q) \) and \( B(p', q') \) intersect in at most one point; if they intersect, they do so at a proper crossing. That is, if we fix \( p \) and let \( q \) vary, the bisectors \( B(p, q) \) form a weak pseudoline arrangement [3, 6, 7], and the correspondence between \( q \) and \( B(p, q) \) can be viewed as a form of duality for these pseudolines.
- The cell of any point \( p \) in the minimization diagram of \( f \) is simply connected, as it is a single cell in a pseudoline arrangement. Thus, the minimization diagram has linear complexity and, like abstract Voronoi diagrams, can be constructed in randomized expected time \( O(n \log n) \).

Our motivation for studying convex functions of this form comes from consideration of smoothed distance and dilation in the plane. Given a fixed point \( o \) in the plane (which we may assume is the origin of a Cartesian or polar coordinate system), the smoothed distance \( d_o(p, q) = 2d(p, q)/(d(p, o) + d(q, o) + d(p, q)) \) was defined by Clarkson [2] as a geometric analogue of the Jaccard similarity measure used to cluster data with binary attributes. As Clarkson described, points distributed uniformly according to this distance are exponentially distributed around \( o \). Although a greedy algorithm, in which one chooses a maximal set of points with a given minimum separation, provides reasonably well spaced points, it seems likely that (as in the Euclidean case) a more uniform spacing can be achieved by using an analogue for smoothed distance of Lloyd’s algorithm [17], a continuous variant of the \( K \)-means clustering algorithm that repeatedly moves each site to the centroid of its Voronoi cell. To perform this algorithm, we need to understand and construct Voronoi diagrams for smoothed distance.

As we describe below, the smoothed distance is also a monotonic function of the dilation \( d(p, o) + d(0, q))/d(p, q) \) used by Eppstein and Wortman [8] to measure the quality of a star network approximation to the Euclidean distances among a set of points. As Eppstein and Wortman showed, it is possible given a set \( P \) of points and a center \( o \) to find the pair of points in \( P \) that have the maximum dilation, in \( O(n \log n) \) time, by examining \( O(n) \) pairs of points drawn from two families of pairs: pairs \( (p, q) \) where \( q \) is among the \( O(1) \) nearest neighbors to \( p \) in Euclidean distance, and pairs \( (p, q) \) where \( q \) is among the \( O(1) \) nearest neighbors to \( p \) in the sequence of points sorted by their distances from \( o \). This result forms the basis of an efficient algorithm for finding the center \( o \) that minimizes the maximum dilation. However, this result

---

3 The divergence of the double derivative of \( |x|^c \) at the origin when \( c < 2 \), and its non-differentiability there when \( 2 < c < 3 \), do not present any serious difficulties to our theory.

4 We do not show that these diagrams satisfy all requirements of an abstract Voronoi diagram, as we do not bound the number of crossings between bisectors for unrelated pairs of points.
can be simplified using the Voronoi diagram for smoothed distance. This diagram partitions the plane into cells corresponding to the points of \( P \); within the cell for a point \( p \), the dilation between \( p \) and a query point \( q \) with respect to \( o \) is larger than the dilation between \( q \) and any other point of \( P \). Thus, this diagram can be used to find the point having the worst dilation with the query point \( q \). Moreover, among all pairs of points from \( P \), the pair having the largest dilation have neighboring cells in the Voronoi diagram. Thus, we may evaluate the dilation with respect to \( o \) by constructing the Voronoi diagram for smoothed distance and testing all pairs of points with neighboring cells. The expected time for this algorithm, \( O(n \log n) \), is no better asymptotically than the previous \( k \)-nearest-neighbor based algorithm, but it is conceptually simpler and evaluates fewer pairs of points.

Neither the Voronoi diagram for smoothed distance nor the equivalent maximization diagram of dilation are problems of minimizing translates of convex functions. However, by using the complex logarithm function to transform the plane and by a suitable monotonic transformation of smoothed distance, we may represent the problem of computing Voronoi diagrams of smoothed distance as one of computing minimization diagrams for the convex function

\[
f(x, y) = \ln \left( \frac{(1+e^x)^2}{e^x} \right) - \ln(1 + \cos y).
\]

This function \( f \) has the form we desire, the sum of separate functions \( g \) and \( h \) of \( x \) and of \( y \) respectively. Additionally, the function \( g(x) \) satisfies the \( g^g < (g^g)^2 \) inequality that we require. The function \( h(y) = -\ln(1 + \cos y) \) does not satisfy this inequality for all \( y \), but it does satisfy it for \( -\pi/2 < y < \pi/2 \). Thus, we can use our theory to show that smoothed distance Voronoi diagrams are well behaved whenever each Voronoi cell spans a set of points that form an angle of at most \( \pi/2 \) with \( o \) and the cell’s site.

2 Dilation, Smoothed Distance, and Logarithmic Transformation

Two important measures of the amount of similarity between two sets \( A \) and \( B \) (or two objects with binary attributes, with the positive attributes viewed as a set) are the Hamming distance \( d_H(A, B) = |A \triangle B| \) (where \( \triangle \) denotes the symmetric difference of sets) and the Jaccard distance [12], which weights the Hamming distance by the size of the union of the sets:

\[
J(A, B) = \frac{|A \triangle B|}{|A \lor B|} = \frac{d_H(A, B)}{d_H(A, \emptyset) + d_H(B, \emptyset) - d_H(A, B)}.
\]

It will be convenient to work with a monotone transformation of this distance, normalized to lie in the interval \([0, 1]\):

\[
d_J(A, B) = \frac{2}{\pi|A \lor B| + 2} = \frac{2d_H(A, B)}{d_H(A, \emptyset) + d_H(B, \emptyset) + d_H(A, B)}.
\]

Clarkson [2] observed that the same formula defining the (modified) Jaccard distance in terms of the Hamming distance can be used to derive a new metric from any given metric space \((X, d)\) and fixed point \( o \in X \). Define the \( o \)-smoothed distance by the formula

\[
d_o(p, q) = \frac{2d(p, q)}{d(p, o) + d(q, o) + d(p, q)}.
\]

The fact that this is a metric on \( X \setminus \{o\} \) can be shown using the theory of tight spans [4, 11], the minimal \( L_\infty \)-like metric spaces containing given sets of points. Any four points \( \{o, p, q, r\} \subset (X, d) \) may be embedded isometrically into a metric space formed by an axis-aligned rectangle of the \( L_1 \) plane (possibly a degenerate rectangle), together with four line segments (possibly of length zero) connecting the corners of this rectangle.
to the four points. When the four line segments all have length zero, the four points are in cyclic order \((o, p, r, q)\) on the rectangle’s corners, and the rectangle has aspect ratio \(a\), then the triangle inequality for \(d_o\) is satisfied exactly: \(d_o(p, q) = 1 = \frac{1}{a+1} + \frac{a}{a+1} = d_o(p, r) + d_o(q, r)\). Increasing the length of the line segments connecting the four points to the rectangle or placing the points in a different cyclic order only strengthens the triangle inequality.

For the points within a \(d\)-ball of radius \(\epsilon d(o, c)\) around a point \(c\), the factor \(d(p, o) + d(q, o) + d(p, q)\) in the definition of \(d_o\) ranges from \((1 - \epsilon)2d(o, c)\) to \((1 + 2\epsilon)2d(o, c)\), varying by a factor of approximately \(1 + 3\epsilon\) within this range as \(\epsilon\) approaches zero. Thus, closely spaced sets of points in the smoothed distance have distances that are approximately similar to their unsmoothed distances. As a metric space on \(X \setminus \{o\}\), the smoothed distance \(d_o\) is topologically equivalent to the metric induced by \(d\) on the same space; both distances have the same open sets and neighborhood structures.

For the Euclidean plane, the smoothed distance \(d_o\) is invariant with respect to rotations and scaling centered at \(o\). These transformations may be most conveniently expressed by thinking of the point \((x, y)\) as representing the complex number \(x + iy\), with \(o\) placed at the complex number zero: if \(z\) is any complex number, then the product \(zp\) may be interpreted geometrically as rotating the point \(p\) by the angle \(\angle 01\) and scaling the rotated point by \(|z|\). With this interpretation, \(d_o(zp, zq) = d_o(p, q)\).

Figure 1 (left) shows a set of concentric circles \(S_r(p) = \{q \mid d_o(p, q) = r\}\) for the smoothed distance. As can be seen in the figure, the circles with smaller radius closely resemble Euclidean circles, while the larger ones are not even convex.

Smoothed distance is closely related to dilation, a concept used generally to measure the quality of spanner graphs as approximations to a metric space [5], and specifically by Eppstein and Wortman [8] to measure the quality of star networks as approximations to the Euclidean plane. The dilation of a pair of vertices \(p\) and \(q\) in a graph embedded within a metric space is the ratio of their distances in the graph and in the ambient space; the dilation of the graph is the largest dilation of any pair. When applied to a star graph \(G\) with center \(o\) and all other vertices as leaves, the dilation of \(p\) and \(q\) is

\[
\frac{d(p, o) + d(o, q)}{d(p, q)} = \frac{2}{d_o(p, q)} - 1
\]

and the dilation of the whole star graph is

\[
\max_{p, q \in V(G)} \frac{d(p, o) + d(o, q)}{d(p, q)} = \max_{p, q \in V(G)} \frac{2}{d_o(p, q)} - 1.
\]

Because this is a monotonic transformation of smoothed distance, the point \(p\) that is nearest to a query point \(q\) in terms of smoothed distance is also the point that has the greatest dilation with \(q\). The Voronoi
diagram for smoothed distance partitions the plane into regions such that the region containing a query point \( q \) corresponds to the point \( p \) for which a path from \( q \) will have to make the greatest detour by passing through \( o \) instead of connecting directly. The adjacency relations between cells in this Voronoi diagram are also meaningful for dilation:

**Proposition 1.** The points \( p \) and \( q \) defining the dilation of a star graph correspond to adjacent regions in the Voronoi diagram for smoothed distance, using the graph’s vertices as Voronoi sites.

**Proof.** Consider forming the Voronoi diagram for \( V(G) \setminus \{q\} \), and then adding \( q \) to the diagram to form the Voronoi diagram of \( V(G) \). Let \( R \) be the Voronoi region of \( p \) prior to adding \( q \). Then \( R \) must contain \( q \), because otherwise some other point than \( p \) would define the greatest dilation with respect to \( q \). After adding \( q \), part of \( R \) becomes incorporated into the Voronoi region for \( q \), while the rest of \( R \) (in particular the point \( p \) itself) remains in the region of \( p \). Thus, these two regions meet. \( \square \)

Thus, we would like to understand and compute Voronoi diagrams for smoothed distance. However, they are not minimization diagrams of convex functions, because smoothed distance is neither convex nor translation-invariant. Thus, we cannot directly apply our theory of such diagrams. To remedy this, we transform the plane, by interpreting polar coordinates for the plane in which we are computing smoothed distance as Cartesian coordinates in a transformed plane. Again, this transformation may be described conveniently using complex numbers (with \( o = 0 \)): if a complex number \( z \) has polar coordinates \((r, \theta)\), then \( \ln z \) has Cartesian coordinates \((\ln r, \theta)\). In the opposite direction, we may define a distance \( \delta \) on the transformed complex number plane by the formula

\[
\delta(p, q) = d_o(e^p, e^q).
\]

This logarithmic transformation replaces the invariance of \( d_o \) under complex multiplication by invariance of \( \delta \) under complex addition (that is, translation of the plane):

\[
\delta(p + z, q + z) = \delta(p, q).
\]

Figure 1 (right) shows concentric circles for this transformed distance.

We may calculate \( \delta((x, y), (0, 0)) \) directly as a formula of \( x \) and \( y \). This is \( d_o(p, q) \), where \( o = (0, 0), p = (e^x \cos y, e^x \sin y) \), and \( q = (1, 0) \). \( d(p, o) = e^x, d(q, o) = 1 \), and

\[
d(p, q) = \sqrt{(e^x \cos y - 1)^2 + (e^x \sin y)^2} = \sqrt{(e^x)^2 - 2e^x \cos y + 1}.
\]

Therefore, the smoothed distance is

\[
d_o(p, q) = \frac{2d(p, q)}{d(p, o) + d(q, o) + d(p, q)} = \frac{2\sqrt{(e^x)^2 - 2e^x \cos y + 1}}{e^x + 1 + \sqrt{(e^x)^2 - 2e^x \cos y + 1}}.
\]
It is convenient to monotonically transform this formula:

\[
\left(\frac{2}{d_o(p,q)} - 1\right)^2 = \frac{(e^t)^2 + 2e^t + 1}{(e^t)^2 - 2e^t \cos y + 1}.
\]

\[
\frac{1}{2} \left(1 - 1/\left(\frac{2}{d_o(p,q)} - 1\right)^2\right) = \frac{(\cos y + 1)e^t}{(e^t)^2 + 2e^t + 1}.
\]

\[
f(x,y) = -\ln\left(\frac{1}{2} \left(1 - 1/\left(\frac{2}{d_o(p,q)} - 1\right)^2\right)\right) = \ln \frac{(1 + e^t)^2}{e^t} - \ln(\cos y + 1).
\]

Thus, we have represented smoothed distance as the transformed image of translates of \(f(x,y) = g(x) + h(y)\), where

\[g(x) = \ln \frac{(1 + e^t)^2}{e^t}\quad \text{and} \quad h(y) = -\ln(\cos y + 1),\]

Graphs of these two functions are depicted in Figure 2.

### 3 Minimization Diagrams of Convex Functions

The transformation described in the previous section, from a Voronoi diagram of smoothed distance to a minimization diagram of translates of a convex function \(f(x,y) = g(x) + h(y)\), motivates the more general study of minimization diagrams of this type of function.

A function \(f : \mathbb{R}^d \rightarrow \mathbb{R}\) is convex if the set

\[
\{(x_0, x_1, x_2, \ldots, x_d) \mid f(x_0, x_1, x_2, \ldots, x_{d-1}) \leq x_d\}
\]

is a convex subset of \(\mathbb{R}^{d+1}\). A convex univariate function is strictly convex if there is no interval within which it is linear. For a doubly-differentiable univariate function \(g(x)\), convexity is equivalent to the inequality \(g'' \geq 0\) and strict convexity is equivalent to the inequality \(g'' > 0\). A curve in the \((x,y)\)-plane is \(x\)-monotone if every line parallel to the \(y\) axis intersects it in at most one point; intuitively, these curves are the graphs of functions from \(x\) to \(y\). Symmetrically, a curve is \(y\)-monotone if every line parallel to the \(x\) axis intersects it in at most one point. These concepts should be distinguished from that of a function being monotonically increasing or strictly monotonically increasing: if \(x_1 > x_0\), and \(\phi(x)\) is monotonically increasing, then \(\phi(x_1) \geq \phi(x_0)\); if \(\phi(x)\) is strictly monotonically increasing, then \(\phi(x_1) > \phi(x_0)\). In a minimization diagram of translates of a function \(f(x,y)\), a bisector \(B(p,q)\) of two distinct points \(p\) and \(q\) is the locus of points with equal values of \(f_p\) and \(f_q\): \(B(p,q) = \{r \mid f_p(r) = f_q(r)\}\). The minimization diagram of the points \(\{p,q\}\) is formed by partitioning the plane into two cells along the bisector.

**Proposition 2.** Let \(f(x,y) = g(x) + h(y)\), where \(g\) and \(h\) are strictly convex. Then any bisector \(B(p,q)\) is either an axis-parallel line or an \(x\)-monotone and \(y\)-monotone curve.

**Proof.** If \(p_x = q_x\), \(f_p(r) = f_q(r)\) whenever \(h(r_y - p_y) = h(r_y - q_y)\); since this condition is independent of \(x\), the bisector must be the union of one or more lines parallel to the \(y\) axis. Otherwise, any line \(x = C\) parallel to the \(y\) axis intersects the bisector \(B(p,q)\) in the points \(r\) such that \(h(r_y - p_y) - h(r_y - q_y) = g(C - q_x) - g(C - p_x)\). By strict convexity, the function \(H(y) = h(r_y - p_y) - h(r_y - q_y)\) is strictly monotonically increasing, so there is at most one such point and the bisector is \(x\)-monotone. Symmetrically, if \(p_y = q_y\), the bisector must be the union of one or more lines parallel to the \(x\) axis, and otherwise it is \(y\)-monotone.

When \(p_x = q_x\), \(p_y \neq q_y\), it is not possible to have multiple lines parallel to the \(y\) axis without violating \(y\)-monotonicity, so in this case the bisector must be a single \(y\)-parallel line. Symmetrically, when \(p_y = x_y\), the bisector must be a single \(x\)-parallel line. Otherwise, \(p_x \neq q_x\) and \(p_y \neq q_y\); in these remaining cases, the bisector is both \(x\)-monotone and \(y\)-monotone. \(\square\)
In particular, each bisector must be a pseudoline (the image of a line under a homeomorphism of the plane\(^5\)), because it is either itself a line or a monotonic curve that partitions the plane into two cells. In the next sequence of lemmas, we show that the level sets of the translates of \( f \) are pseudocircles (simple closed curves that cross each other at most twice) by comparing their curvatures at tangent points of the same slope. For convenience, when the argument of the functions \( g(x) \) and \( h(y) \) is specified in the context, the notations \( g, h, g', h' \), etc., refer to the values \( g(x), h(y), \frac{d}{dx}g(x), \frac{d}{dy}h(y) \), etc.

**Lemma 1.** Let \( f(x, y) = g(x) + h(y) \) where \( g \) and \( h \) are convex and differentiable. Let \( p = (x, y) \) be any point other than the global minimum of \( f \), let \( f(p) = r \), and let \( S_r \) be the level set \( \{ q \mid f(q) = r \} \). Then the slope of the tangent to \( S_r \) at \( p \) is \(-h'/g'\).

**Proof.** Since \( p \) is not the minimum, \( S_r \) is a simple closed curve. Therefore there is a unique tangent line which is characterized by the fact that, at points \( q \) on the line at a small distance \( \varepsilon \) from \( p \), the difference between \( f(p) \) and \( f(q) \) vanishes to first order. A point \( q \) at a distance proportional to \( \varepsilon \) on the line of slope \(-h'/g'\) can be found by adding \((-h', g')\varepsilon\) to \( p \); at this point, \( f(q) = f(p) + (-h')/(g' + O(\varepsilon)) \), so the difference vanishes to first order as desired. \( \Box \)

Next, suppose we move \( \varepsilon \) units along the curve \( S_r \) from \( p \); to within first order, the point we move to is found by adding \((\varepsilon - h')/(g' + O(\varepsilon^2))\) to \( p \). When we do so, \( g' \) changes by a factor of \( 1 - \varepsilon \frac{-h'}{g'} + O(\varepsilon^2) \), and \( h' \) changes by a factor of \( 1 + \varepsilon \frac{g''}{g' + O(\varepsilon^2)} \), so the slope \( h'/g' \) changes by a factor of \( 1 + \varepsilon \frac{g''}{g' + O(\varepsilon^2)} \). We may view the term \( \sqrt{g'^2 + h'^2} / g' \) appearing in this expression as a local measure of the curvature of \( S_r \); it is not rotation-invariant but can be used to compare the curvatures of two curves at points of equal tangent slope. Larger values of this term mean a smaller radius of curvature and lower values mean a greater radius. To show that the radius of curvature at a given slope increases as \( r \) increases, we will examine the behavior of this function as we increase \( r \) by a small quantity \( \varepsilon \) while moving \( p \) along a curve that keeps the slope of the tangent to \( S_r \) fixed.

**Lemma 2.** Let \( f(x, y) = g(x) + h(y) \) where \( g \) and \( h \) are convex and twice-differentiable. At any point \( p \) for which \( g', h' \neq 0 \), define the curve \( T_p \) through \( p \) to consist of points with the same value of \(-h'/g'\) as at \( p \). Then the tangent line to \( T_p \) at \( p \) has slope \( \frac{h'}{g'} \).

**Proof.** Consider moving from \( p \) by a distance proportional to some small \( \varepsilon \) along this line, by adding the vector \((\varepsilon h', \varepsilon g')\) to \( p \). As we do so, \( g' \) and \( h' \) both change by factors of \( 1 + \varepsilon \frac{g''}{g' + O(\varepsilon^2)} \). As both factors are equal to within first order, the slope \(-h'/g'\) does not change to first order and we have identified the correct tangent line to \( T_p \). \( \Box \)

**Lemma 3.** Let \( f(x, y) = g(x) + h(y) \) where \( g \) and \( h \) are convex and triply-differentiable, and where \( g'''g' < (g'')^2 \) and \( g'''h' < (h'')^2 \) for all \( x \) and \( y \). Then, along any curve \( T_p \), the radius of curvature of the curves \( S_r \) at the points where these curves are crossed by \( T_p \) is a monotonically increasing function of \( f(p) \).

**Proof.** We assume without loss of generality that \( g, h, g', h' \) are all positive at \( p \), for otherwise we may achieve these assumptions by translating the plane, reflecting it across one or both of the coordinate axes, or adding a constant to \( f \), without changing the truth of the lemma. As in the previous lemma, we move at a distance proportional to \( \varepsilon \) along \( T_p \), to within first order, by adding \((\varepsilon h', \varepsilon g')\) to \( p \). As and in the previous lemma, this motion causes \( g' \) and \( h' \) to both change by a factor of \( 1 + \varepsilon \frac{g''h'}{g' + O(\varepsilon^2)} \); this same factor also describes the change in \( \sqrt{g'^2 + h'^2} \). Thus, to find the direction of change to the value \( \sqrt{g'^2 + h'^2} \)

---

\(^5\) This definition is from [21]; see [7] for a comparison with other common definitions of pseudolines.
that we are using to compare curvatures for a given tangent slope, it only remains to evaluate the change
to $g''$ and $h''$. The double derivative $g''$, and therefore the term $h'g''/g'$ appearing in the numerator of our
differentiation function, changes by a factor of $1 + \varepsilon \frac{e^h}{g'_B} + O(\varepsilon^2)$; if $g'' < (g''')^2$, this is smaller than
the factor of $1 + \varepsilon \frac{e^h}{g'_B} + O(\varepsilon^2)$ describing the change to the denominator of our local curvature function. The double derivative $h''$, and therefore the term $g' h''/h'$ appearing in the numerator of our local curvature function, changes by a factor of $1 + \varepsilon \frac{e^h}{g'_B} + O(\varepsilon^2)$; again, if $h'' h' < (h''')^2$, this is smaller than the factor of $1 + \varepsilon \frac{e^h}{g'_B} + O(\varepsilon^2)$ describing the change to the denominator of our local curvature function. Thus, if the assumptions of the lemma are met, $\frac{g' h'' / h' + h g'' / g'}{\sqrt{g'^2 + h'^2}}$ decreases and the radius of curvature increases as $f(p)$ increases along $T_p$.  

Due to the convexity of $f$, and the strict convexity of $g$ and $h$, the level sets $S_i(p) = \{q \mid f_p(q) = r\}$ are themselves convex; in particular, they are simple closed curves in the plane and, as the following proposition shows, they form a family of pseudocircles in the plane.

**Proposition 3.** Let $f(x,y) = g(x) + h(y)$ be a convex function such that $g$ and $h$ are triply-differentiable, $g''' g' < (g''')^2$, and $h''' h' < (h''')^2$, and let $r_1$ and $r_2$ be numbers and $p_1$ and $p_2$ be points such that $(r_1, p_1) \neq (r_2, p_2)$. Then the level sets $S_i(p_1)$ intersect in at most two points; if they intersect at two points, they cross properly at these points.

**Proof.** We suppose that a pair that forms more than two points of intersection or that has two non-crossing intersections exists, and proceed to derive a contradiction. If there are exactly two points of intersection, one of which is not a crossing, then (because both are simple closed curves) both must be points of tangency; we may increase the radius of the inner level set slightly and form two level sets that cross four times, so we may assume without loss of generality that there are three or more points of intersection. If $r_1 = r_2$, then again we may change one of the radii slightly while preserving the property of having more than two points of intersection, for this change of radii cannot remove any crossings and can be chosen to turn at least half of the points of tangency into pairs of crossings. And if some of the points of intersection are tangencies, we may increase or decrease $r_1$ by a small amount and replace at least half of the tangencies by crossings without changing the property that there are more than two intersection points. Thus, we may assume that the two level sets intersect more than two times at proper crossings.

Now, let $T$ be the set of real numbers $x > 1$ such that $S_{r_1}(p_1)$ and $S_{r_2}(xp_2 + (1-x)p_1)$ have more
than two proper crossings; that is, we consider translating $p_2$ directly away from $p_1$ for as far as we can
while preserving the overly large number of crossings between the two curves. Because both level sets are
bounded, $I$ is itself bounded; let $t = \sup T$ and let $p_3 = tp_2 + (1-t)p_1$. In order for the translated level sets
to have more than two crossings for $x < t$ but only to have two crossings for $x > t$, the sets $S_{r_1}(p_1)$ and
$S_{r_2}(p_3)$ must be tangent. However, this point of tangency cannot be one at which the two level sets cross,
because our assumptions imply that both curves have curvature that varies continuously along the curves. It cannot be a tangency in which the curve with the smaller value of $r_1$ lies inside the curve with the larger value of $r_1$, because then for $x > t$ the tangency would become two crossings and $t$ would not be equal to $\sup T$. It cannot be a tangency in which the two curves meet externally, because then by convexity for $x < t$ the curves would have only two crossing points near the tangency and again $t$ would not be equal to $\sup T$. And it cannot be a tangency in which the curve with the smaller value of $r_1$ lies outside the curve with the larger value of $r_1$, because that would violate Lemma 3. However, these exhaust the possible ways the two curves can be tangent. This contradiction completes the proof of the proposition.  

The next proposition states that (with the same assumptions as Lemma 3 and Proposition 3) the bisectors
$B(p, q)$ and $B(p, s)$ act like pseudolines: they meet in at most one point, and if they meet they cross properly.
Proposition 4. Let \( f(x,y) = g(x) + h(y) \) be a convex function such that \( g \) and \( h \) are triply-differentiable, \( g''''g' < (g'')^2 \), and \( h'''h' < (h'')^2 \). Then any two bisectors \( B(p,q) \) and \( B(p,s) \) defined from \( f \) have at most one point of intersection. If they intersect, they cross properly.

\[ \text{Proof.} \] We show that \( B(p,q) \) and \( B(p,s) \) meet in at most one point by showing that any two points \( t \) and \( u \) in the plane are intersected by at most one bisector \( B(p,\cdot) \). If there is a bisector \( B(p,q) \) that contains both of these points, then \( p \) and \( q \) are equidistant from \( t \) and from \( s \); that is, \( p \) and \( q \) both belong to the level sets \( S_t = \{ s \mid f(t-s) = f(t-p) \} \) and \( S_u = \{ s \mid f(u-s) = f(u-p) \} \). These level sets are rotated by \( \pi \) from the level sets of Proposition 3 but that rotation does not affect the conclusion of the proposition: they have at most two points of intersection. One of these intersection points is \( p \) and the other is \( q \); there can be no third intersection to form another bisector with \( p \) through \( t \) and \( u \). If \( B(p,q) \) and \( B(p,s) \) met in two points, it would violate the uniqueness of bisectors through pairs of points, so such a double intersection cannot happen.

To complete the proof of the proposition, we must show that if two bisectors intersect, they meet in a proper crossing. But if two bisectors \( B(p,q) \) and \( B(p,s) \) meet at a point of tangency without crossing, then a small translation of \( s \) either towards or away from \( p \) would transform this tangency into a pair of crossings, violating the first part of the proposition. \( \square \)

In other words, if we fix \( p \) and let \( q \) vary, the family of bisectors \( B(p,q) \) forms a weak pseudoline arrangement. However, the proposition applies only to pairs of bisectors that share one of their defining points. These results are not quite enough to show that minimization diagrams for \( f \) are abstract Voronoi diagrams in the sense of Klein [14], because abstract Voronoi diagrams require all bisectors to have a constant number of intersection points. However, the same general results as for abstract Voronoi diagrams follow in this case.

Theorem 1. Let \( f(x,y) = g(x) + h(y) \) be a convex function such that \( g \) and \( h \) are triply-differentiable, \( g''''g' < (g'')^2 \), and \( h'''h' < (h'')^2 \). Then any minimization diagram for \( f \), defined by a finite set \( P \) of point sites, forms a subdivision of the plane into \( |P| \) simply-connected regions, one per site. The diagram can be constructed in time \( O(n \log n) \) using a primitive that finds minimization diagrams for three sites.

\[ \text{Proof.} \] We may assume without loss of generality that the minima of \( g \) and \( h \) occur at \( x = y = 0 \), for otherwise we may add an appropriate constant to \( x \) and \( y \) without changing the combinatorial description of the minimization diagram. Thus, the cell for any point \( p \) contains \( p \) itself. In any weak arrangement of pseudolines, any nonempty intersection of halfspaces defined by the pseudolines forms a single cell of the arrangement (e.g. see Theorem 11.4.11 of [7]). It follows by Proposition 4 that the cell of \( p \) in the minimization diagram is a single cell in a weak arrangement of pseudolines and is therefore simply connected. Thus, the minimization diagram for \( f \) and \( P \) consists of \( |P| \) simply connected cells.

We construct the diagram by a standard randomized incremental algorithm in which we add points to \( P \) one at a time according to a uniformly random permutation, and maintain a history DAG describing the cells of the diagram in past states of the construction. We also maintain the sequence of bisectors surrounding each cell of the diagram, in a balanced binary tree data structure. To add a point \( p \), we use the history DAG to locate the cell of the diagram that contains \( p \). We then form a list \( L \) of cells known to overlap with the cell of \( p \); initially this list includes only the cell containing \( p \). To build the cell for \( p \), we repeatedly remove the cell for a site \( q \) from \( L \), and split this cell along the bisector \( B(p,q) \). The points where this bisector crosses the boundary of the cell for \( q \) may be found by a binary search of the boundary, in which each step consists of finding the vertex of the minimization for \( p, q \), and a third site determining one of the boundary segments, and comparing the \( x \) and \( y \) coordinates of this vertex to those of the other vertices on the segment. After the part to be removed from the cell of \( q \) is determined, the boundary segments in the binary search tree for \( q \) are removed and the associated cells are added to \( L \) if necessary.
Fig. 3. The level sets for $f(x, y) = e^{x^2} + e^{y^2}$ do not form pseudocircles.

The time to locate $p$ is $O(\log n)$ in expectation by a standard analysis of history DAGs. Each new feature of the minimization diagram takes $O(\log n)$ time to construct, using the binary search trees, and there are in expectation $O(1)$ new features for the $i$th added site. Thus, the total expected time for the construction is $O(n \log n)$.

4 Two Bad Examples

The assumptions that we make on the form of $f(x, y) = g(x) + h(y)$ as a sum of two univariate convex functions, and on the triple derivatives of these functions, may seem technical and unnecessary. However, in this section we provide examples showing that without the assumption on the form of $f$ beyond convexity, its minimization diagrams may have quadratic complexity, and without assumption on the triple derivatives of $g$ and $h$, the level sets for $f$ may not be pseudocircles.

In Figure 3 we show the level sets for the function $f(x, y) = e^{x^2} + e^{y^2}$, for function values $2, 5, 10, 20, 40, 80, \text{ and } 160$. The functions $g(x)$ and $h(y)$ have been chosen to be so quickly growing that $g'''g' > (g'')^2$ and $h'''h' > (h'')^2$ for sufficiently large $x$. Specifically, $g'''g' = (16x^4 + 34x^2)e^{2x^2}$, while $(g'')^2 = (16x^4 + 16x^2 + 14)e^{2x^2}$; it follows that $g'''g' > (g'')^2$ for $x > 1/\sqrt{2}$. One of the inner level sets has been translated so that it crosses the outer level set four times, demonstrating that these level sets do not form pseudocircles.

The same technique used in the proof of Proposition 3 can be used to prove that, whenever $g'''g' > (g'')^2$ over some interval of values of $x$, the level sets of $f(x, y) = g(x) + g(y)$ do not form pseudocircles: the radius of curvature at one of the tangents with slope $-1$ shrinks rather than growing for increasing values of $f$.

Figures 4 and 5 provide a sketch of a construction for a convex function that has minimization diagrams with quadratically growing complexity. The function grows most slowly on a horizontal line through the origin, and more quickly along any other horizontal line, so that for any sites $p$ and $q$ that are not on a horizontal line, the Voronoi cell for $p$ dominates that for $q$ for points far enough away from both sites on a horizontal line through $p$. In particular the vertical line of cells to the right of the figure generates a sequence of cells with horizontal boundaries that extends, despite interruptions, through the whole figure. A more widely spaced sequence of sites at the bottom of the figure interrupts these cells, splitting them into linearly many pieces.

5 Voronoi Diagrams for Smoothed Distance

So, now that we’ve transformed the smoothed distance Voronoi diagram into the form of a minimization diagram for a function $f(x, y) = g(x) + h(y)$, and now that we know conditions on $g$ and $h$ that ensure that
the minimization diagram to have linear complexity and be constructable efficiently, do the specific \( g \) and \( h \) arising in this application meet these conditions? The answer is: it depends.

First, consider the function \( g(x) = \ln(e^x + 2 + e^{-x}) \), with derivatives \( g'(x) = (e^x - 1)/(e^x + 1) \), \( g''(x) = 2e^x/(1 + e^x)^2 \), and \( g'''(x) = -2e^x(e^x - 1)/(e^x + 1)^3 \). For positive \( x \), \( g''' \) and therefore \( g'''g' \) are negative while \( (g'')^2 \) is positive, so \( g'''g' < (g'')^2 \). Because the function is symmetric \((g(-x) = g(x))\) the same holds for negative \( x \). And at zero, \( g'''g' = 0 \) while \( (g'')^2 \) is nonzero. Therefore, \( g \) meets the conditions of Theorem 1.

Next, consider the function \( h(y) = -\ln(1 + \cos y) \). Its derivatives are \( h'(y) = \tan(y/2) = \sin y/(1 + \cos y) \), \( h''(y) = 1/(1 + \cos y) \), and \( h'''(y) = \sin y/(1 + \cos y)^2 \). Then \( h'''h' = \sin^2 y/(1 + \cos y)^3 \), while \( (h''')^2 = 1/(1 + \cos y)^2 \). The ratio of these two values, \( \sin^2 y/(1 + \cos y)^2 = \tan^2(y/2) \), is less than one when \(|y| < \pi/2 \) and greater than one when \(|y| > \pi/2 \). Thus, \( h \) satisfies the requirement that \( h'''h' < (h''')^2 \) only for \( y \) in the interval \((-\pi/2, \pi/2)\). This implies that we may only apply Theorem 1 to smoothed distance when each Voronoi cell consists of points spanning at most a right angle with \( o \) and the cell’s site.

**Theorem 2.** Let \( P \) be a point set such that, in the Voronoi diagram for \( o \)-smoothed distance, every point \( q \) within the Voronoi cell for a site \( p \) forms an angle \( \angle pqo \) that is at most \( \pi/2 \). Then each cell in the Voronoi diagram is connected, and the diagram may be constructed in randomized expected time \( O(n \log n) \).

**Proof.** To prove this, in outline, we replace the point set \( P \) by its logarithmically transformed image \( \{ p \mid e^p \in P \} \); each point in \( P \) corresponds to infinitely many transformed points, all with the same \( x \) coordinate and with \( y \) coordinates that differ by integer multiples of \( 2\pi \). Under this transformation, each point in the transformed plane is associated with a Voronoi region that the exponential function maps back to the correct Voronoi region for the associated input point in the original plane. Then, instead of using the functions \( g(x) \) and \( h(y) \) in the transformed plane, as defined above, we replace the function \( h(y) \) by a modified function that has the same values within the interval \((-\pi/2, \pi/2)\) but that obeys the inequality \( h'''h' < (h''')^2 \) for larger values as well. This replacement allows us to apply Theorem 1 to the transformed input, and we show that, with the assumptions stated in the theorem, it produces the same cell decomposition as the one we wish to compute. We use an efficient randomized incremental algorithm to compute the smoothed Voronoi diagram, similar to the algorithm used in Theorem 1.

In more detail, as we have seen, smoothed distance may be replaced by the translates of a convex function by logarithmically mapping the sites and monotonically transforming the distance values. Thus, Voronoi diagrams for smoothed distance are closely related to minimization diagrams for this convex function. The specific relation is this: if we view the points in the plane as complex numbers, with \( o = 0 \), and map the finite set \( P \) of sites to the infinite vertically-periodic set \( L = \{ q \mid e^q \in P \} \), then the exponential function forms a covering map from the minimization diagram of \( f \) with respect to \( L \) to the Voronoi diagram for
smoothed distance of \( P \). The cells in the minimization diagram are mapped many-to-one to cells in the Voronoi diagram, and edges and features in the minimization diagram are mapped to edges and features in the Voronoi diagram, etc. Although it is problematic to perform geometric algorithms on infinite point sets such as \( L \), we may use our analysis to show that cells in the minimization diagram for \( L \) are simply connected, while performing the randomized incremental algorithm described in the proof of Theorem 1 directly on the finite point set \( P \).

There is a difficulty with this approach, however: our proof that the cells are simply connected does not apply, because the convex function into which we have transformed smoothed distance does not meet the requirement of Theorem 1 that the function \( h \) satisfies the inequality \( h'''h' < (h'')^2 \), at least for large values of \( y \). And although the assumptions of Theorem 2 imply that only small values of \( y \) need be considered in the final Voronoi diagram, larger values may be needed at early stages of our randomized incremental construction.

Therefore, rather than computing the Voronoi diagram for smoothed distance \( d_o(p,q) \) itself, we compute the Voronoi diagram for a (non-metric) distance function \( D(p,q) = g(\ln(d(p,o)/d(q,o))) + h(\angle poq) \). Here \( g(x) = \ln(e^x + 2 + e^{-x}) \), matching the monotonically-transformed formula for smoothed distance. However, we set \( h(y) \) to be a function that equals \( -\ln(1 + \cos y) \) for \( |y| \leq \pi/2 \) but that is a quadratic polynomial for values of \( y \) outside this range; the two quadratic polynomials (for positive and negative \( y \)) are chosen to have a value, first derivative, and second derivative that matches \( -\ln(1 + \cos y) \) at \(-\pi/2 \) and \( \pi/2 \). However, being quadratic polynomials, they have third derivative equal to zero, and therefore satisfy the requirement that \( h'''h' < (h'')^2 \) for the range of values of \( y \) in which they define the value of \( h \). The fact that the overall \( h \) function has a discontinuous third derivative at \(-\pi/2 \) and \( \pi/2 \) does not cause any problems for our analysis.

With this modified distance function, Theorem 1 can be used to show that the cells of the minimization diagram for \( g(x) + h(y) \) with respect to the points of \( L \) are simply connected, and therefore that their images, the cells of the Voronoi diagram for \( D \) with respect to the points of \( P \), are also connected. We may then apply a randomized incremental algorithm of the type described in Theorem 1 to construct the Voronoi diagram for \( D \) with respect to the points of \( P \). At intermediate stages of this construction, the cells of the diagram may have self-adjacencies (corresponding to boundaries between two different images in \( L \) of a point in \( P \)) but these need not be treated any differently than any other of the bisectors in the diagram, and must vanish before the algorithm finishes.

It remains to show that each cell in the diagram for the modified distance function is equal to the corresponding cell in the diagram for the true smoothed distance \( d_o \). Observe that, for any site \( p \), the cell for \( p \) for distance \( D \) is contained within the boundaries of the cell for \( p \) for distance \( d_o \): by assumption, these boundaries are all within the region of the plane in which \( D(p,q) \) and (the corresponding monotonic transformation of) \( d_o(p,q) \) coincide, so on those boundary points \( d_o(p,q) \) is accurately represented by \( D(p,q) \) while the distances from \( q \) to other points as measured by \( D \) may be underestimates of the true value as measured by \( d_o \). Thus, the cells for the Voronoi diagram for \( D \) are subsets of the corresponding cells for the Voronoi diagram of \( d_o \). However, since the cells for the Voronoi diagram for \( D \) nevertheless cover the plane, both sets of cells coincide and the computed Voronoi diagram is correct.

\[ \square \]

6 Lloyd’s Algorithm

Generation of uniformly spaced points in Euclidean and related metric spaces has applications ranging from coding theory [17] and color quantization [10] to dithering (spatial halftoning) and stippling for image rendering [18, 22]. Points generated uniformly at random have significant variation in their interpoint spacing, and metric \( \varepsilon \)-nets (maximal point sets such that no two points are closer than \( \varepsilon \) to each other), while more uniformly spaced, may still have varying density. A commonly used method for improving the spacing of
point sets in Euclidean metrics is Lloyd’s algorithm, a continuous variant of the K-means clustering algorithm that repeatedly computes a Voronoi diagram of the points and replaces each point by the centroid of its Voronoi cell.

Clarkson [2] has suggested using a metric $\varepsilon$-net for $\rho$-smoothed distance as a method of generating well-spaced point sets with a distribution centered at $\rho$ that decreases exponentially with distance from $\rho$. For this application, one must restrict the placement of the points to an annulus centered on $\rho$, for otherwise an $\varepsilon$-net would not have a finite number of points. As an alternative means of generating exponentially-distributed and well-spaced points in this annulus, we experimented with using a variant of Lloyd’s algorithm modified to use smoothed distance in place of Euclidean distance in its calculations.

Specifically, rather than computing a Euclidean Voronoi diagram of the given points, we computed a Voronoi diagram for the smoothed distance. And rather than moving each point to the centroid of its cell $C$ (the point $p$ minimizing $\int_{q \in C} d(p, q)^2 dC$), we move each point to the point minimizing $\int_{q \in C} d_\rho(p, q)^2 dC$. Finally, in order to make the measure $dC$ of area used in the definition of the area integral transform scale-invariantly to match the symmetries of the smoothed distance, we chose a measure that is uniform not in the Euclidean plane in which the smoothed distance is defined, but rather the uniform measure in the transformed plane that has the Euclidean polar coordinates $(\log r, \theta)$ as its Cartesian coordinates.

For simplicity, our implementation performs its calculations in the Euclidean plane, rasterized as a bitmap image. We compute the Voronoi diagram by finding the nearest site to each pixel of the rasterized annulus, and approximate $\int_{q \in C} d_\rho(p, q)^2 dC$ by $\sum_{q \in C} d_\rho(p, q)^2 / d(q, \rho)^2$, where the sum is over the pixels in the Voronoi region $C$ and the $1/d(q, \rho)^2$ term weights each pixel by its measure in the transformed plane. The results of one run of our implementation are depicted in Figure 6. We found that the iteration quickly
(within two iterations) smoothed out any gross variation in the spacing of the given points, and then more slowly converged to a more ideal shape for each Voronoi cell. It was necessary to choose an initial set of points that was exponentially distributed around \( o \); we placed each point by choosing \( L \) uniformly within the interval \( [\ln r, \ln R] \) (where \( r \) and \( R \) are the inner and outer radius of the annulus) and \( \theta \) uniformly in \([0, 2\pi]\), and then selecting the point \((e^\theta \cos \theta, e^\theta \sin \theta)\) in the Euclidean plane. We found that if instead we selected points with uniform Euclidean measure in the annulus, too many points were placed far from \( o \) and too few were placed close to \( o \); Lloyd’s algorithm was slow in correcting this imbalance.

7 Conclusions

We have shown a general condition on convex functions that causes their translates to have convex minimization diagrams, applied this condition to Voronoi diagrams of smoothed distance and to finding the minimum dilation pair of leaves in a star network, and experimented with using a smoothing algorithm based on these Voronoi diagrams to generate evenly-spaced points exponentially distributed around a given center point.

Several directions for further research remain open:

- If we translate the convex function \( f(x, y) \) in three dimensions rather than two, by adding independent constants to the values for each of the given point sites, under what conditions does the resulting minimization diagram still have linear complexity? For instance, additively weighting \( f(x, y) = x^2 + y^2 \) in this way results in a power diagram. For any convex \( f(x, y) = g(x) + h(y) \), the bisectors of an additively weighted minimization diagram are still monotone curves, but we can no longer guarantee that they form pseudoline arrangements. Nevertheless it might be possible that they form minimization diagrams with connected cells.

- Is it possible to characterize the functions that can be monotonically transformed into the form \( f(x, y) = g(x) + h(y) \) with \( g \) and \( h \) both convex? The functions that have this form already are exactly the convex functions for which every axis-parallel rectangle has equal sums on its two pairs of opposite corners. However, if a function does not already have this form it may not be clear how to transform it into this form, as we did for smoothed distance.

- Does our condition \( g''' g' < (g'')^2 \) and \( h'' h' < (h'')^2 \) characterize the convex functions \( g \) and \( h \) such that the translated level sets of \( f(x, y) = g(x) + h(y) \) form pseudocircles? It does when \( g = h \): If \( g'''' g' > (g'')^2 \), then level sets of \( f(x, y) = g(x) + g(y) \) have a curvature at slope 1 that grows tighter for larger circles. However the situation is less clear when \( g \) and \( h \) may differ.

- In particular, does the convex function \( f(x, y) = g(x) + h(y) \) coming from smoothed distance and dilation have level sets that are pseudocircles when \( y > \pi /2 \)?

- If not, is there some other natural distance function \( d \) on the nonzero complex numbers, satisfying scale invariance \( d(zp, zq) = d(p, q) \), that has simply connected Voronoi regions for all sets of two or more points in general position? Note that the most obvious choice, the Euclidean distance between \( \ln p \) and \( \ln q \), does not work: in general there will be a single Voronoi region containing the origin, which will not be simply connected. The replacement function used in the proof of Theorem 2 does not seem very natural.

- If we define a maximization diagram in which the sites are point pairs \((p, q)\) and the function to be maximized is the dilation \( d(p, q) / (d(p, o) + d(q, o)) \) of \( p \) and \( q \) with respect to a query point \( o \), our previous results [8] imply that this diagram has \( O(n) \) cells. Are these cells simply connected?

- Can we characterize more generally the convex functions having level sets that are pseudocircles when the function does not have the form \( g(x) + h(y) \)? For instance, this is also true of convex distance functions.

- If a convex function has level sets that are pseudocircles, do its minimization diagrams automatically have simply connected cells, or is an additional condition required for this to be true?

- To what extent can this theory be generalized to minimization diagrams in higher dimensions?
Acknowledgements

This work was supported in part by NSF grant 0830403 and by the Office of Naval Research under grant N00014-08-1-1015. We thank Elena Mumford for helpful comments on a draft of this paper.

References

1. L. P. Chew and R. L. Drysdale, III. Voronoi diagrams based on convex distance functions. In Proc. 1st ACM Symp. Computational Geometry, pages 235–244, 1985.
2. K. L. Clarkson. Metric Spaces, Nets, and Applications. Computer Science Seminar, UC Irvine, October 2008.
3. H. de Fraysseix and P. Ossona de Mendez. Stretching of Jordan arc contact systems. In Proc. 11th Int. Symp. Graph Drawing (GD 2003), Lecture Notes in Computer Science, pages 71–85. Springer-Verlag, 2003.
4. A. W. M. Dress. Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups. Advances in Mathematics, 53:321–402, 1984.
5. D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 425–461. Elsevier, 9 edition, 2000.
6. D. Eppstein. Algorithms for drawing media. In J. Pach, editor, Proc. 12th Int. Symp. Graph Drawing (GD 2004), volume 3383 of Lecture Notes in Computer Science, pages 173–183. Springer-Verlag, 2004.
7. D. Eppstein, J.-C. Falmagne, and S. Ovchinnikov. Media Theory. Springer-Verlag, 2007.
8. D. Eppstein and K. A. Wortman. Minimum dilation stars. Computational Geometry: Theory and Applications, 37(1):27–37, 2007.
9. D. Halperin and M. Sharir. New bounds for lower envelopes in three dimensions, with applications to visibility in terrains. Discrete & Computational Geometry, 12(1):313–326, 1994.
10. P. Heckbert. Color image quantization for frame buffer display. In ACM SIGGRAPH, pages 297–307, 1982.
11. J. R. Isbell. Six theorems about injective metric spaces. Comment. Math. Helv., 39:65–76, 1964.
12. P. Jaccard. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.
13. K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete & Computational Geometry, 1(1):59–71, 1986.
14. R. Klein. Concrete and Abstract Voronoi diagrams, volume 400 of Lecture Notes in Computer Science. Springer-Verlag, 1989.
15. R. Klein, K. Mehlhorn, and S. Meiser. Randomized incremental construction of abstract Voronoi diagrams. Computational Geometry: Theory and Applications, 3:157–184, 1993.
16. J. Linhart and R. Ortner. An arrangement of pseudocircles not realizable with circles. Beiträge zur Algebra und Geometrie, 46(2):351–356, 2005.
17. S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–137, 1982.
18. R. Maciejewski, T. Isenberg, W. M. Andrews, D. S. Ebert, M. Costa Sousa, and W. Chen. Measuring stipple aesthetics in hand-drawn and computer-generated images. IEEE Computer Graphics, 28(2):62–74, 2008.
19. K. Mehlhorn, S. Meiser, and C. O’Dúnlaing. On the construction of abstract Voronoi diagrams. Discrete & Computational Geometry, 6:211–224, 1991.
20. F. Nielsen, J.-D. Boissonnat, and R. Nock. On Bregman Voronoi diagrams. In Proc. 18th ACM-SIAM Symp. Discrete Algorithms, pages 746–755, 2007.
21. P. Shor. Stretchability of pseudolines is NP-hard. In P. Gritzmann and B. Sturmfels, editors, Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift, volume 4 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 531–554. American Mathematical Society, Providence, R.I., 1991.
22. R. Ulichney. Digital Halftoning. MIT Press, 1987.