Prevalence of serologic reactivity against four strains of mouse mammary tumour virus among US women with breast cancer

J J Goedert*,1, CS Rabkin1 and SR Ross2
1Viral Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA; 2Department of Microbiology/Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA

Mouse mammary tumour virus (MMTV) causes breast cancer in mice, and MMTV-specific antibodies develop to high titers among mice infected as adults. Whether MMTV or a related virus infects humans is uncertain, because MMTV DNA sequences have been detected inconsistently and because serologic methods have varied widely. The current study used immunoblot and immunoprecipitation with four strains of MMTV (RIII, FM, C3H, and LA) to detect specific antibodies in 92 sera from US women with breast cancer and in masked dilutions of monoclonal hybridoma and hyperimmunised goat positive-control reagents. In these positive controls, MMTV antibodies of the expected molecular weights were detected at high titer (1 : 100 in the monoclonal reagent, 1 : 10000 in the hyperimmunised goat serum). Nearly 30% of the sera from women with breast cancer had at least one faint band on an immunoblot, but none of these matched the molecular weight of bands revealed by probing the same blot strips with the goat serum. The goat serum readily immunoprecipitated MMTV antigens from all four strains of MMTV, but MMTV antigens were not immunoprecipitated by any of the six breast cancer sera that had four or more nonspecific immunoblot bands. Thus, among women with breast cancer, we found no MMTV-specific antibodies. The upper 95% confidence limit implies that MMTV seroprevalence among breast cancer patients does not exceed 3%.

Keywords: breast cancer; mouse mammary tumour virus (MMTV); seroprevalence; Western immunoblot; immunoprecipitation

The mouse mammary tumour virus (MMTV), a betaretrovirus, causes breast cancer in mice. During the past 10 years, molecular evidence of MMTV in human breast cancer tissue has been reported by a few laboratories using polymerase chain reaction (PCR) techniques (summarised in Holland and Pogo (2004)). These findings are controversial, because other laboratories have been unable to replicate detection of MMTV and because the DNA amplified by PCR in some laboratories has had homology with nonviral sequences in the human genome (summarised in Mant et al (2004)). Serologic studies to identify MMTV antibodies complement these PCR-based molecular studies of breast cancer tissue. During the late 1970s and early 1980s, detection of serum antibodies against MMTV-infected cells or proteins from these cells among women with breast cancer provided support for the possibility of a human homologue of MMTV. There was, however, substantial heterogeneity in methods, in antigens recognised by the sera, and in seroprevalence associations. The results and limitations, particularly with respect to specificity, of these early studies were reviewed by Dion et al (1987). By Western immunoblot with disrupted, purified milk-borne MMTV of the RIII strain, Dion and co-workers found no antibodies against MMTV viral antigens in 1 : 5 dilutions of sera from 30 breast cancer patients or 30 control patients (Dion et al, 1987). In 1 : 8 dilutions of sera in enzyme immunoassays, Dion et al. found modestly higher reactivity against column-purified p18 from MMTV but not against four other MMTV column-purified proteins or glycoproteins in breast cancer patients compared to controls (Dion et al, 1987). Among 300 Czech subjects (90 healthy controls, 60 with breast cancer, and 150 with other malignancies or serious diseases) whose sera, diluted 1 : 100, were tested by immunoblot heavily loaded with proteins and glycoproteins from the GR/N strain of MMTV, Kovarik et al. found frequent reactivity against a 42 kDa cellular contaminant of the virus, but few with reactivity against viral antigens and no differences between cases and controls (Kovarik et al., 1989). All of the previously published studies used only a single strain of MMTV. We, therefore, sought to estimate the MMTV seroprevalence among US women with breast cancer by using a wider variety of MMTV strains. We used both immunoblotting and immunoprecipitation to maximise specificity of the anti-MMTV reactivity.

MATERIALS AND METHODS

Patients and controls

Between 1979 and 1988, the Immunodiagnosis Serum Bank collected, separated, and stored frozen sera from patients at the Mayo Clinic who had common malignancies (Dimagno et al,
Disrupted in lysis buffer containing 25 mM Tris-HCl (pH 8.0), mammary tumour cell line Mm5MT (MMTV (C3H)). Virions were purified from mammary tumours of C3H/HeN mice infected with MMTV (FM) or MMTV (LA), milk from RIII mice (MMTV (RIII); a gift from Akhil Vaidya), or supernatants from the cultured mammary tumour cell line MmSMT (MMTV (C3H)). Virions were disrupted in lysis buffer containing 25 mM Tris-HCl (pH 8.0), 2 mM EDTA, 0.5% NP40, 0.5% deoxycholate, 0.1% sodium dodecyl sulphate, 1 mM PMSF, 5 μM leupeptin, 5 μM aprotonin, 2 μg/ml pepstatin A) were added to 1 ml of human serum, or to 1 μl of a 1:10 dilution of the polyclonal goat anti-MMTV serum followed by 50 μl of Protein G sepharose (Invitrogen Inc., Carlsbad, CA) and incubated overnight at 4°C. After extensive washing, the proteins were eluted in 50 μl of SDS–PAGE sample buffer and 10 μl were electrophoresed on SDS–polyacrylamide gels. The proteins were then transferred to nitrocellulose. For the human sera, Western blot analysis using polyclonal goat anti-MMTV and rabbit anti-goat antibodies was carried out as described in the preceding paragraph. For the control immunoprecipitation performed with the goat anti-MMTV antiserum, the Goat TrueBlot Western Blot Kit (Biocsciences Inc., San Diego, CA) was used for detection of the viral proteins to prevent obscuring of MMTV bands by the goat heavy and light chain immunoglobulin used in the immunoprecipitation.

RESULTS

In 65 (71%) of the 92 sera from women with breast cancer, no band was seen in any of the four MMTV immunoblots. One serum demonstrated a smear pattern in three of the four MMTV immunoblots and could not be evaluated. Of the other 26 sera, across all four MMTV immunoblots, 14 (15%) had one band; two (2%) had two bands; four (4%) had three bands; three (3%) had four bands; two (#36 and 60) had six bands; and one (#16) had eight bands (Table 1). Age, breast cancer histology, breast cancer stage, history of cancer treatment, and smoking status did not differ between women whose sera had multiple bands or one band and those who sera had no band (data not presented).

There was heterogeneity in the frequencies of serologic reactivity across the four MMTV strains. Considering all reactivity of all sera (except the one with a smear pattern), there were 19 bands against MMTV strain RIII; 20 bands against strain FM; 18 bands against strain LA; and only five bands against strain C3H. Serum #60 had two distinct bands of approximate molecular weight 56 and 60 kDa against each strain except C3H, and these differed from the bands that were detected with the z-MMTV positive control serum (Figure 1A). Serum #16 had one or more bands against all four strains, all of which were very faint compared with the z-MMTV positive control serum (Figure 1A). None of the bands, including those in sera #60 and #16, had the

Detection of MMTV-specific antibodies

Immunoblot analysis was performed as described previously (Selmi et al., 2004). Briefly, total protein was extracted from virions purified by pelleting through sucrose cushions, as previously described (Le Bon et al., 1999). The virions were purified from mammary tumours of C3H/HeN mice infected with MMTV (FM) or MMTV (LA), milk from RIII mice (MMTV (RIII); a gift from Akhil Vaidya), or supernatants from the cultured mammary tumour cell line MmSMT (MMTV (C3H)). Virions were disrupted in lysis buffer containing 25 mM Tris-HCl (pH 8.0), 150 mM NaCl, 2 mM EDTA, 0.1% sodium dodecyl sulfate, 0.5% Nonidet P-40, and 0.5% deoxycholate. The proteins were separated by sodium dodecyl sulfate–10% polyacrylamide gel electrophoresis (SDS–PAGE) and transferred to nitrocellulose. As the virus preparations varied in purity, we normalised the amounts of virus electrophoresed in each lane by initially running different dilutions of the virus preparations and probing the filters with goat anti-MMTV serum, as described below.

Serum were kept frozen at or below −70°C until testing. Each masked serum specimen was diluted 1:100 in phosphate-buffered saline (PBS) containing 0.1% Tween-20 (PBS-Tween) and 5% nonfat dried milk, incubated for 5 h with the blots and then washed extensively with PBS-Tween. As the primary sera were masked, we used a mixture of horseradish peroxidase (HRP)-conjugated donkey anti-human (1:8000; Jackson Immunoresearch Inc., West Grove, PA), rabbit anti-goat (1:5000; Sigma Inc., St. Louis, MO) and sheep anti-mouse (1:5000; Amersham Inc., Piscataway, NJ) secondary antibodies to detect bound primary antibodies. This mixture was added to each blot in PBS-Tween-milk, incubated for 30 min and again washed extensively with PBS-Tween. To ensure that the mixture of secondary antibodies was species-specific, we also blindly tested 22 of the samples with the anti-human secondary antibody alone and found that the same pattern of bands seen with the mixture, except for two samples that were masked. The dilute goat serum. These latter two samples showed no bands on the virus blots probed with the human secondary antibody alone but showed the typical MMTV pattern when the mixture of secondary antibodies was used (not shown). The blots were developed with ECL Enhanced Western Blotting Detection Reagent, according to the manufacturer’s instructions (Amersham Inc.) To characterise whether antibodies revealed in the immunoblots had similar molecular weight to those in caprine sera, blot strips that demonstrated antibody bands were reprobed with polyclonal goat anti-MMTV antisera (z-MMTV, 1:3000) followed by the HRP-conjugated rabbit anti-goat secondary antibody. Photographs of the blots with human and z-MMTV sera were aligned and overlaid for visual comparison. Side-by-side comparison...
same molecular weight as the α-MMTV positive control serum on the same blot strips (Figure 1A).

In contrast, the masked dilutions of the three positive control reagents performed as expected. The caprine α-MMTV and polyclonal α-gp52 reagents were detected at the final dilution, 1:10000; further dilutions were not tested. The monoclonal hybridoma supernatant containing α-gp52 antibodies was detected at 1:100 but not at 1:1000 or 1:10000. No antibody bands were seen in an unmasked human negative control serum. Rubella antibodies were detected in 85 (92%) of the 92 human sera. Rubella antibodies were not detected in the three neat caprine and monoclonal reagents, but they were detected in the reagents that had been diluted with human plasma-derived Basematrix.

Immunoprecipitation assays were performed with the sera that had four or more bands on immunoblots to determine whether the reactivity was directed against MMTV proteins. As shown in Figure 1B, these six sera (#4, 6, 16, 36, 60, and 84) had faint background staining with prolonged exposure (20 min), most likely due to proteins present in the human sera, since they occurred with virus partially purified from different sources (milk (RIII), tumour tissue (FM and LA), and cultured cells (C3H)). Importantly, the human sera did not immunoprecipitate MMTV-specific antigens from any of the four strains. In contrast, MMTV antigens were readily precipitated with the diluted goat α-MMTV positive control serum (5 s exposure). These data indicate that the bands detected by the human serum samples were not MMTV viral proteins.

DISCUSSION

We found that nearly 30% of sera from US women with breast cancer had some serologic reactivity against protein in one or more of four different MMTV strains. However, none of this reactivity was specifically directed against MMTV antigens. This reactivity could be due to contaminating cellular or milk proteins present in the partially purified virion preparations. Alternatively, the MMTV envelope, like all retroviruses, incorporates many nonviral, cellular proteins as it is released from the cell. These nonviral proteins can be immunogenic, as illustrated by the protection of macaques against simian immunodeficiency virus (SIV) by vaccination with cells that did not contain SIV (Stott, 1991). Given the similarities across mammalian species, it is not surprising that some women would have developed antibodies against one or more nonviral proteins in the preparations of MMTV that we used. While it is possible that some of the women with reactive sera were exposed to mice, it is more likely that the antibodies we detected were cross-reactive with other cellular antigens, possibly including auto-antibodies (Tax and Manson, 1987; Kovarik et al, 1989). Development of antibodies against nonspecific autoantigens occurs frequently among women with breast cancer (Coronella-Wood and Hersh, 2003).

Mice infected as adults that develop MMTV-induced mammary cancers have life-long, high-titer antibodies against both MMTV and heterophile antigens, (Bowen et al, 1976) whereas mice infected as neonates generally have only a transient antibody response (Luther et al, 1997; Purdy et al, 2003). Seronegative MMTV infection of newborn humans resulting in breast cancer is unlikely, because breast cancer risk is not increased among women who were themselves breast-fed (Titus Ernstoff et al, 1998). Thus, if MMTV infects humans, antibodies should be detected. Unlike sera from mice infected as adults, none of 91 sera from our women with breast cancer had specific, much less high titer, antibodies we detected were cross-reactive with other cellular antigens, possibly including auto-antibodies (Tax and Manson, 1987; Kovarik et al, 1989). Development of antibodies against nonspecific autoantigens occurs frequently among women with breast cancer (Coronella-Wood and Hersh, 2003).
MMTV-like RNA in serum (Mason et al, 2004). Moreover, they found anti-MMTV antibodies in seven of nine patients with primary biliary cirrhosis (Mason et al, 2004). In that study, MMTV antibodies were detected by immunoblot analysis of extracts made from the Mm5MT cell line, the same cells from which we purified the MMTV (C3H) virions, and they used the same polyclonal goat ζ-MMTV antisera for a positive control. However, in a much larger series of primary biliary cirrhosis patients, a different laboratory was unable to detect MMTV-like DNA in either liver biopsies or peripheral blood mononuclear cells by PCR or antibodies against three different strains of MMTV, including the C3H strain (Selmi et al, 2004). The human endogenous retrovirus (HERV) K10 has substantial homology with MMTV, and specific antibodies can be detected when HERV K10 envelope or core (gag) is expressed, as occurs in some cases of testis cancer (Goedert et al, 1999). Mant et al (2004) have suggested that the MMTV-like DNA sequences detected in humans are not MMTV or HERV K10 but rather are another homologous region of the human genome.

Our study has several weaknesses and strengths. The sera that we evaluated were collected 15–20 years earlier, during which time they might have deteriorated. However, storage of this collection at or below –70°C for up to 10 years was shown to have negligible effect on serum chemistry values other than bilirubin and creatinine (Dimagno et al, 1989). Moreover, some 15 years after they were collected, sera from this collection were proven to contain antibodies against human papilloma virus type 16 and adeno-associated virus (Strickler et al, 1998; Strickler et al, 1999). More directly, in the current study, we found that 92% of the sera that we tested had rubella antibodies, as expected for women born before 1960. The sera were collected from one large center in the US, were accompanied by limited clinical data, and are not necessarily representative of all US women with breast cancer. To strengthen our study, among the 92 sera from women with breast cancer, we interspersed dilutions of masked positive control sera. These controls demonstrated that our methods could detect MMTV antibodies in masked goat sera and ζ-gp52 monoclonal hybridoma supernatant. To maximise sensitivity for detecting anti-MMTV in human sera, we used four purified MMTV immunoblot preparations, as well as prolonged exposure times. To maximise specificity of the anti-MMTV reactivity, we used immunoprecipitation, as well as overlaying immunoblots probed with caprine ζ-MMTV to directly compare the number, strength, and molecular weights of immunoblot bands found with human sera. In contrast to the ζ-MMTV positive control serum, the human sera were negative or had only weak, nonspecific reactivity.

In summary, we found no evidence of antibodies against MMTV among US women with breast cancer.

ACKNOWLEDGEMENTS

This work was supported by PHS R01 CA73746 to SRR. Thanks to Ming Shen, Carla Thorley, Janis Koci, and Violet Daviaukam for technical assistance, to the Immunology and Histocompatibility Laboratories of the University of Pennsylvania Department of Pathology and Laboratory Medicine for performing the rubella serology, and to Dr Robert Biggar for review of the manuscript.