Methods for the construction of generators of algebraic curvature tensors

Bernd Fiedler
Eichelbaumstr. 13, D-04249 Leipzig, Germany. E-mail: bfiedler@fiemath.de

Dedicated to the memory of Professor Brian G. Wybourne.

Abstract. We demonstrate the use of several tools from Algebraic Combinatorics such as Young tableaux, symmetry operators, the Littlewood-Richardson rule and discrete Fourier transforms of symmetric groups in investigations of algebraic curvature tensors.

In [10, 12, 13] we constructed and investigated generators of algebraic curvature tensors and algebraic covariant derivative curvature tensors. These investigations followed the example of the paper [14] by S.A. Fulling, R.C. King, B.G.Wybourne and C.J. Cummins and applied tools from Algebraic Combinatorics such as Young tableaux, symmetry operators (in particular Young symmetrizers), the Littlewood-Richardson rule, but also discrete Fourier transforms of symmetric groups. The present paper is a short summary of [10, 12, 13] in which we want to demonstrate the use of these methods.

1. The problem

Let \(V \) be a finite dimensional \(\mathbb{K} \)-vector space, \(\mathbb{K} = \mathbb{R}, \mathbb{C} \), and let \(T_r V \) denote the \(\mathbb{K} \)-vector space of covariant tensors of order \(r \) over \(V \).

DEFINITION 1. Algebraic curvature tensors \(\mathfrak{R} \in T_4 V \) and algebraic covariant derivative curvature tensors \(\mathfrak{R}' \in T_5 V \) are tensors of order 4 or 5 whose coordinates satisfy

\[
\begin{align*}
\mathfrak{R}_{ijkl} &= -\mathfrak{R}_{jikl} = \mathfrak{R}_{klij} \\
\mathfrak{R}_{ijkl} + \mathfrak{R}_{iklj} + \mathfrak{R}_{iljk} &= 0 \\
\mathfrak{R}'_{ijklm} &= -\mathfrak{R}'_{jiklm} = \mathfrak{R}'_{klijm} \\
\mathfrak{R}'_{ijklm} + \mathfrak{R}'_{ikljm} + \mathfrak{R}'_{iljkm} &= 0 \\
\mathfrak{R}'_{ijklm} + \mathfrak{R}'_{ijlkm} + \mathfrak{R}'_{ijmkl} &= 0.
\end{align*}
\]

They are tensors which possess the same symmetry properties as the Riemannian curvature tensor \(R_{ijkl} \) and its covariant derivative \(R_{ijkl;m} \) of a Levi-Civita connection \(\nabla \).

* 1991 Mathematics Subject Classification: 53B20, 15A72, 05E10, 16D60, 05-04.
The vector space of algebraic curvature tensors $\mathcal{R} \in \mathcal{T}_4 V$ is spanned by each of the following sets of tensors (P. Gilkey [14] pp.41-44, B. Fiedler [9])

$$\gamma(S)_{ijkl} := S_{il}S_{jk} - S_{ik}S_{jl} ; \quad S \text{ symmetric}$$

$$\alpha(A)_{ijkl} := 2A_{ij}A_{kl} + A_{ik}A_{jl} - A_{il}A_{jk} ; \quad A \text{ skew-symmetric}.$$

The vector space of algebraic covariant derivative curvature tensors $\mathcal{R}' \in \mathcal{T}_5 V$ is spanned by the following set of tensors (P. Gilkey [16] p.236, B. Fiedler [10])

$$\hat{\gamma}(S, \hat{S})_{ijkl} := S_{il}\hat{S}_{jk} - S_{jl}\hat{S}_{ik} + S_{jk}\hat{S}_{ils} - S_{ik}\hat{S}_{jls} ; \quad S, \hat{S} \text{ symmetric}.$$

PROBLEM 2. In the present paper we search for generators of algebraic curvature tensors \mathcal{R} or algebraic covariant derivative curvature tensors \mathcal{R}' which can be formed by a suitable symmetry operator from the following types of tensors

$$\mathcal{R} : \quad U \otimes w , \quad U \in \mathcal{T}_3 V , w \in \mathcal{T}_1 V ,$$

$$\mathcal{R}' : \quad U \otimes W , \quad U \in \mathcal{T}_3 V , W \in \mathcal{T}_2 V ,$$

where W and U belong to symmetry classes of $\mathcal{T}_2 V$ and $\mathcal{T}_3 V$ which are defined by minimal right ideals $\mathcal{r} \subset \mathbb{K}[S_2]$ and $\mathcal{t} \subset \mathbb{K}[S_3]$, respectively.

We use Boerner’s definition [11] p.127 of symmetry classes of tensors. An element $a = \sum_{p \in S_r} a(p)p \in \mathbb{K}[S_r]$ of the group ring of the symmetric group S_r can be considered a symmetry operator for covariant tensors $T \in \mathcal{T}_r V$. The action of a on T is defined by:

$$(aT)(v_1, \ldots, v_r) := \sum_{p \in S_r} a(p) T(v_{p(1)}, \ldots, v_{p(r)}) , \quad v_i \in V .$$

DEFINITION 3. Let $\mathcal{r} \subset \mathbb{K}[S_r]$ be a right ideal of $\mathbb{K}[S_r]$ for which an $a \in \mathcal{r}$ and a $T \in \mathcal{T}_r V$ exist such that $aT \neq 0$. Then the tensor set

$$\mathcal{T}_r := \{ aT \mid a \in \mathcal{r} , T \in \mathcal{T}_r V \}$$

is called the symmetry class of tensors defined by \mathcal{r}.

Boerner [11] p.127 showed: If $e \in \mathbb{K}[S_r]$ is a generating idempotent of \mathcal{r}, i.e. $\mathcal{r} = e \cdot \mathbb{K}[S_r]$, then it holds

$$T \in \mathcal{T}_r V \text{ belongs to } \mathcal{T}_r \Leftrightarrow eT = T .$$

[11] uses also tools of Algebraic Combinatorics, in particular plethysms.
2. Young symmetrizers

Young symmetrizers are important symmetry operators. In particular the symmetries of the Riemann tensor R and its covariant derivatives are characterized by a Young symmetrizer. First we define Young tableaux.

A *Young tableau* t of $r \in \mathbb{N}$ is an arrangement of r boxes such that

1. the numbers λ_i of boxes in the rows $i = 1,\ldots,l$ form a decreasing sequence $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_l > 0$ with $\lambda_1 + \ldots + \lambda_l = r$,
2. the boxes are fulfilled by the numbers $1, 2,\ldots,r$ in any order.

For instance, the following graphics shows a Young tableau of $r = 16$.

\[
\begin{align*}
\lambda_1 &= 5 & 11 & 2 & 5 & 4 & 12 \\
\lambda_2 &= 4 & 9 & 6 & 16 & 15 \\
\lambda_3 &= 4 & 8 & 14 & 1 & 7 \\
\lambda_4 &= 2 & 13 & 3 \\
\lambda_5 &= 1 & 10 \\
\end{align*}
\]

Obviously, the unfilled arrangement of boxes, the *Young frame*, is characterized by a partition $\lambda = (\lambda_1,\ldots,\lambda_l) \vdash r$ of r.

If a Young tableau t of a partition $\lambda \vdash r$ is given, then the *Young symmetrizer* y_t of t is defined by

\[
y_t := \sum_{p \in \mathcal{H}_t} \sum_{q \in \mathcal{V}_t} \text{sign}(q) \ p \circ q
\]

(8)

where $\mathcal{H}_t, \mathcal{V}_t$ are the groups of the horizontal or vertical permutations of t which only permute numbers within rows or columns of t, respectively. The Young symmetrizers of $\mathbb{K}[S_r]$ are essentially idempotent and define decompositions

\[
\mathbb{K}[S_r] = \bigoplus_{\lambda \vdash r} \bigoplus_{t \in ST_\lambda} \mathbb{K}[S_r] \cdot y_t , \quad \mathbb{K}[S_r] = \bigoplus_{\lambda \vdash r} \bigoplus_{t \in ST_\lambda} y_t \cdot \mathbb{K}[S_r]
\]

(9)

of $\mathbb{K}[S_r]$ into minimal left or right ideals $\mathbb{K}[S_r] \cdot y_t, y_t \cdot \mathbb{K}[S_r]$. In (9), the symbol ST_λ denotes the set of all standard tableaux of the partition λ. Standard tableaux are Young tableaux in which the entries of every row and every column form an increasing number sequence.\(^1\)

The inner sums of (9) are minimal two-sided ideals

\[
\mathfrak{a}_\lambda := \bigoplus_{t \in ST_\lambda} \mathbb{K}[S_r] \cdot y_t = \bigoplus_{t \in ST_\lambda} y_t \cdot \mathbb{K}[S_r]
\]

(10)

of $\mathbb{K}[S_r]$. The set of all Young symmetrizers y_t which lie in \mathfrak{a}_λ is equal to the set of all y_t whose tableau t has the frame $\lambda \vdash r$. Furthermore two minimal left ideals

\[^1\]About Young symmetrizers and Young tableaux see for instance [1, 14, 15, 17, 18, 20, 21].
$l_1, l_2 \subseteq \mathbb{K}[S_r]$ or two minimal right ideals $r_1, r_2 \subseteq \mathbb{K}[S_r]$ are equivalent iff they lie in the same ideal a_λ. Now we say that a symmetry class T_r belongs to $\lambda \vdash r$ iff $r \subseteq a_\lambda$.

S.A. Fulling, R.C. King, B.G. Wybourne and C.J. Cummins showed in [14] that the symmetry classes of the Riemann tensor R and its symmetrized covariant derivatives

$$\left(\nabla^{(u)} R\right)_{ijkl\ldots s_u} := \nabla_{(s_1, s_2, \ldots, s_u)} R_{ijkl} = R_{ijkl; (s_1\ldots s_u)}$$

(11)

are generated by special Young symmetrizers\(^2\).

PROPOSITION 4. (Fulling, King, Wybourne, Cummins)

Let ∇ be the Levi-Civita connection of a pseudo-Riemannian metric g. For $u \geq 0$ the symmetrized covariant derivatives $\nabla^{(u)} R$ fulfil

$$e_t^* \nabla^{(u)} R = \nabla^{(u)} R$$

(12)

where $e_t := y_t(u+1)/(2 \cdot (u+3)!)$ is an idempotent which is formed from the Young symmetrizer y_t of the standard tableau

$$t = \begin{array}{cccccc}
1 & 3 & 5 & \ldots & \ldots & (u+4) \\
2 & 4
\end{array}$$

(13)

The $'*$' in (12) is the mapping $*: a = \sum_{p \in S_r} a(p) p \mapsto a^* := \sum_{p \in S_r} a(p) p^{-1}$.

We see from Proposition 4 that the tensor fields $\nabla^{(u)} R$ belong to the symmetry class which is defined by the symmetrizer y_t^* of (13), more precisely, by the right ideal $r = y_t^* \cdot \mathbb{K}[S_{u+4}]$. In the special case of algebraic tensors \mathcal{R}, \mathcal{R}' we have the following corollary (see [10]):

COROLLARY 5. Let us denote by t and t' the standard tableaux

$$t = \begin{array}{ccc}
1 & 3 & 5 \\
2 & 4
\end{array}, \quad t' = \begin{array}{ccc}
1 & 3 & 5 \\
2 & 4
\end{array}$$

(14)

Then a tensor $T \in \mathcal{T}_4 V$ or $\tilde{T} \in \mathcal{T}_5 V$ is an algebraic curvature tensor or an algebraic covariant derivative curvature tensor iff these tensors satisfy

$$y_t^* T = 12 T , \quad y_{t'}^* \tilde{T} = 24 \tilde{T} ,$$

(15)

respectively. Thus the symmetry classes of the algebraic tensors \mathcal{R}, \mathcal{R}' are defined by the minimal right ideals $y_t^* \cdot \mathbb{K}[S_4]$, $y_{t'}^* \cdot \mathbb{K}[S_5]$ which belong to the partitions $(2 2) \vdash 4$, $(3 2) \vdash 5$.

\(^2\)(\ldots) denotes the symmetrization with respect to the indices s_1, \ldots, s_u.

\(^3\)A proof of this result of [14] can be found in [5, Sec.6], too. See also [10] for more details.
3. Symmetry classes of T_3V belonging to $\lambda = (2 1)$

The group ring $\mathbb{K}[S_3]$ contains the minimal 2-sided ideals $a_{(3)}, a_{(2 1)}, a_{(1 3)}$. The 2-sided ideals $a_{(3)}, a_{(1 3)} \subset \mathbb{K}[S_3]$ have dimension 1 and define consequently unique symmetry classes of T_3V. The 2-sided ideal $a_{(2 1)} \subset \mathbb{K}[S_3]$, however, has dimension 4 and contains an infinite set of minimal right ideals \hat{r} (of dimension 2) which lead to an infinite set of possible symmetry classes for the tensor $U \in T_3V$.

We use discrete Fourier transforms to determine a generating idempotent for every such \hat{r}.

DEFINITION 6. A discrete Fourier transform D for S_r is an isomorphism

$$D : \mathbb{K}[S_r] \rightarrow \bigotimes_{\lambda: r} \mathbb{K}^{d_{\lambda} \times d_{\lambda}}$$

where $\sum_{p \in S_r} a(p) \mapsto \left(\begin{array}{ccc} A_{\lambda_1} & 0 \\ 0 & A_{\lambda_2} \\ \vdots & \vdots \\ 0 & A_{\lambda_k} \end{array} \right)$

according to Wedderburn’s theorem which maps the group ring $\mathbb{K}[S_r]$ onto an outer direct product $\bigotimes_{\lambda: r} \mathbb{K}^{d_{\lambda} \times d_{\lambda}}$ of full matrix rings $\mathbb{K}^{d_{\lambda} \times d_{\lambda}}$.

In (16) the matrix ring $\mathbb{K}^{d_{\lambda} \times d_{\lambda}}$ corresponds to the minimal two-sided ideal a_{λ} of $\mathbb{K}[S_r]$. For S_3 we have a mapping

$$D : a = \sum_{p \in S_r} a(p) \mapsto \left(\begin{array}{cc} A_{(3)} & 0 \\ 0 & A_{(2 1)} \\ \end{array} \right),$$

where $A_{(3)}$ and $A_{(1 3)}$ are 1×1-matrices and $A_{(2 1)}$ is a 2×2-matrix. It holds $a \in a_{(2 1)}$ iff $A_{(3)} = A_{(1 3)} = 0$. In [10] we proved

PROPOSITION 7. Every minimal right ideal $r \subset \mathbb{K}^{2 \times 2}$ is generated by exactly one of the following (primitive) idempotents

$$X_\infty := \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \quad X_\nu := \left(\begin{array}{cc} 1 & 0 \\ \nu & 0 \end{array} \right), \quad \nu \in \mathbb{K}.$$ \(18\)

From (18) we obtain the generating idempotents for the right ideals $\hat{r} \subset a_{(2 1)} \subset \mathbb{K}[S_3]$ by

$$\xi_\nu = D^{-1} \left(\begin{array}{c} 0 \\ X_\nu \\ 0 \end{array} \right) = \begin{cases} \frac{1}{3} \{[1, 2, 3] - [2, 1, 3] - [2, 3, 1] + [3, 2, 1]\}, & \nu = \infty \\ \frac{1}{3} \{[1, 2, 3] + \nu[1, 3, 2] + (1 - \nu)[2, 1, 3] - \nu[2, 3, 1] + (-1 + \nu)[3, 1, 2] - [3, 2, 1]\}, & \text{else}. \end{cases}$$ \(19\)

1. The dimension of a minimal left or right ideal can be calculated from the Young frame belonging to it by the hook length formula (see e.g. [1], [14], [17], [18].)

2. Three discrete Fourier transforms are known for symmetric groups S_r: Young’s natural representation [1] pp.102-108, Young’s seminormal representation [2], [3] p.130, [18] p.76 and Young’s orthogonal representation [2, 3, 18] of S_r.

Note that the above connection between \(\nu \) and \(\xi_\nu \) depends on the concrete discrete Fourier transform \(D \) which is used in (19). The above formula (19) was determined by means of the Mathematica package PERMS \(^7 \) whose discrete Fourier transform \(D \) is based on Young’s natural representation of \(S_r \).

Examples of tensor fields with a \((21)\)-symmetry can be constructed from covariant derivatives of symmetric or alternating 2-fields.

PROPOSITION 8. Let \(\nabla \) be a torsion-free covariant derivative on a \(C^\infty \)-manifold \(M \), \(\dim M \geq 2 \). Further let \(\psi, \omega \in T^2_M \) be differentiable tensor fields of order 2 which are symmetric or skew-symmetric, respectively. Then for every point \(p \in M \) the tensors

\[
(\nabla \psi - \text{sym}(\nabla \psi))|_p \Rightarrow \nu = 0 , \quad (\nabla \omega - \text{alt}(\nabla \omega))|_p \Rightarrow \nu = 2
\]

lie in \((21)\)-symmetry classes whose generating idempotents \(\xi_\nu \) belong to the above \(\nu \)-values 0 or 2. (’sym’ = symmetrization, ’alt’ = anti-symmetrization.)

In a future paper we will show that tensor fields with a \((21)\)-symmetry also occur in curvature formulas connected with stationary and static space-times.

4. Our main results

Now we formulate our main results which were proved in \([10, 13]\). The next section will give some ideas of the proofs.

THEOREM 9. A solution of Problem 2 can be constructed at most from such products \(^4 \) or \(^5 \) whose factors belong to the following symmetry classes:

product	partitions of the symm. classes
\(\mathcal{R} : U \otimes w \)	\((a) \quad U \to (21) \)
\(\mathcal{R}' : U \otimes W \)	\((a') \quad U \to (3) , W \to (2) \)
	\((b') \quad U \to (21) , W \to (2) \)
	\((c') \quad U \to (21) , W \to (1^2) \)

The case \((a') \) of Theorem 9 is realized in formula \(^3 \). The cases \((a) \), \((b') \) and \((c') \) of Theorem 9 lead to

THEOREM 10. The products \((a) \), \((b') \), \((c') \) lead to generators

\[
y^*_t(U \otimes w) , \quad y^t(U \otimes S) , \quad y^*_t(U \otimes A)
\]

of the spaces of algebraic tensors \(\mathcal{R} \), \(\mathcal{R}' \) if and only if the generating idempotent \(\xi_\nu \) of the symmetry class of \(U \) fulfills

\[
\nu \neq \frac{1}{2} .
\]

Here \(t \) and \(t' \) are the Young tableaux \(^{14} \).
5. Ideas of the proofs

5.1. Use of the Littlewood-Richardson rule (Proof of Theorem 10)

When we consider a right ideal \(r \) that defines the symmetry class of a product \(T_1 \otimes T_2 \) of tensors of order \(r_1, r_2 \), then we can determine information about the decomposition of \(r \) into minimal right ideals by means of Littlewood-Richardson products (see [20, 14, 6, 8]). Let \(r_1, r_2 \) be the right ideals defining the symmetry classes of \(T_1, T_2 \). We consider the left ideals \(l_i := \tau_i^* \) representation spaces of subrepresentations \(\alpha_i \) of the natural representation of \(S_{r_i} \). Then we have \(r = l^* \) where the left ideal \(l \) is the representation space of the Littlewood-Richardson product \(\alpha_1 \alpha_2 := (\alpha_1 \neq \alpha_2) \uparrow S_{r_1 + r_2} \). (\(\neq \) denotes the outer tensor product and \(\uparrow \) the forming of the induced representation.)

For the tensor products \([4], [5]\) we have to calculate the following Littlewood-Richardson products by means of the Littlewood-Richardson rule\(^1\):

\[
\mathcal{R} : \quad [3][1] \sim [4] + [3][1] \\
[2][1][1] \sim [3][1] + [2][2] + [2][1^2] \\
[1^3][1] \sim [2][1^2] + [1^4]
\]

\[
\mathcal{R}': \quad [3][2] \sim [5] + [3][2] + [4][1] \\
[3][1^2] \sim [4][1] + [3][1^2] \\
[2][1][2] \sim [3][2] + [4][1] + [2^2][1] + [3][1^2] \\
[2][1][1^2] \sim [3][2] + [2^2][1] + [3][1^2] + [2][1^3] \\
[1^3][2] \sim [3][1^2] + [2][1^3] \\
[1^3][1^2] \sim [2^2][1] + [2][1^3] + [1^5]
\]

Only the products \([2][1][1]\) for \(\mathcal{R} \) and \([3][2], [2][1][2], [2][1][1^2]\) for \(\mathcal{R}' \) contain minimal right ideals that belong to the partitions \((22)\) for \(\mathcal{R} \) and \((32)\) for \(\mathcal{R}' \). We will definitely obtain \(y^*_r(U \otimes w) = 0 = y^*_{r'}(U \otimes W) \) if the ideal \(r \) or \(r' \) of \(W \otimes w \) or \(U \otimes W \) does not possess a subideal belonging to \((22)\) or \((32)\), since then \(y^*_r \in a_{(22)}, y^*_{r'} \in a'_{(32)} \) but \(r \cap a_{(22)} = 0, r' \cap a'_{(32)} = 0 \).

5.2. A step of the proof of Theorem 10

Let us consider the example of expressions \(y^*_r(U \otimes S) \) and \(y^*_{r'}(U \otimes A) \). To treat such expressions we form the following group ring elements of \(\mathbb{K}[S_5] \):

\[
\sigma_{\nu, \epsilon} := y^*_r \cdot \xi'_\nu \cdot \zeta''_\epsilon \quad (21)
\]

\[
\zeta''_\epsilon := \text{id} + \epsilon (45), \quad \epsilon \in \{1, -1\} \quad (22)
\]

\[
\xi'_\nu \mapsto \xi'_\nu \in \mathbb{K}[S_5] \quad (23)
\]

Formula \((28)\) denotes the embedding of the group ring elements \(\xi'_\nu \in \mathbb{K}[S_3] \) into \(\mathbb{K}[S_5] \) which is induced by the mapping \(S_3 \rightarrow S_5, [i_1, i_2, i_3] \mapsto [i_1, i_2, i_3, 4, 5] \). The symmetry operator \(\xi'_\nu \cdot \zeta''_\epsilon \) maps arbitrary product tensors \(T'' \otimes T'' \) to products \(U \otimes S \) or \(U \otimes A \). Using our Mathematica package PERMS \([7]\) we verified \(\sigma_{\nu, \epsilon} \neq 0 \Leftrightarrow \nu \neq \frac{1}{2} \). The value \(\nu = \frac{1}{2} \) has to be excluded since \(\sigma_{\nu, \epsilon} = 0 \) and \(\mathcal{R}' = 0 \) in this case.

\(^1\)See [20, 14, 6].
6. Shortest formulas for generators of R and R'

In this section we want to construct generators (4), (5) whose coordinate representation has a minimal number of summands. To this end we determine systems of linear identities which are satisfied by the coordinates of all tensors from the symmetry class of U. In [6, Sec.III.4.1] we proved

PROPOSITION 11. Let $\tau \subset \mathbb{K}[S_\tau]$ be a d-dimensional right ideal that defines a symmetry class T_τ of tensors $T \in T_\tau V$. If a basis $\{h_1, \ldots, h_d\}$ of the left ideal $l = \tau^*$ is known, then every solution x_p of the linear $(d \times r!)$-equation system

$$\sum_{p \in S_\tau} h_i(p) x_p = 0 \quad (i = 1, \ldots, d). \tag{24}$$

yields the coefficients for a linear identity

$$\sum_{p \in S_\tau} x_p T_{\bar{i}(1)i_p(2)i_p(3)} = 0 \tag{25}$$

fulfilled by the coordinates of all $T \in T_\tau$.

For our tensors U the rank of the equation system (24) is equal to $\dim \tau = 2$. The columns of (24) are numbered by the permutations $p \in S_3$.

Now we determine identities (25) for U by the following procedure. We form the system (24) from the idempotent ξ_ν by the determination of a basis $\{p \cdot \xi_\nu \mid p \in S_3\}$ of $l = \tau^*$. Then for every subset $\mathcal{P} = \{p_1, p_2\} \subset S_3$ we check the determinant $\Delta_{\mathcal{P}}$ of the corresponding (2×2)-submatrix of (24). If $\Delta_{\mathcal{P}} \neq 0$, then we determine identities (25) of the special form

$$0 = \sum_{\bar{p} \in S_3 \setminus \mathcal{P}} x_{\bar{p}}(p) U_{i_{\bar{p}(1)}i_{\bar{p}(2)}i_{\bar{p}(3)}} + U_{i_{\bar{p}(1)}i_{\bar{p}(2)}i_{\bar{p}(3)}} \quad (\bar{p} \in S_3 \setminus \mathcal{P}). \tag{26}$$

For instance, the set $\mathcal{P} = \{[1, 2, 3], [1, 3, 2]\}$ leads to the determinant $\Delta_{\mathcal{P}}(\nu) = \frac{1}{\nu^2} (1 - \nu)(1 + \nu)$ which has the roots $\nu_1 = 1$ and $\nu_2 = -1$. For $\nu \notin \{1, -1\}$ we obtain the identities

$$-\frac{\nu^2 - \nu + 1}{\nu^3 - 1} U_{ijk} + \frac{2\nu - 1}{\nu^2 - 1} U_{ikj} + U_{kji} = 0 \quad U_{kji} = 0 \tag{27}$$

There exist 15 subsets $\mathcal{P} = \{p_1, p_2\} \subset S_3$ and consequently 15 systems (27) for U.

\footnote{Faster algorithms which determine a basis also for a large S_τ by means of discrete Fourier transforms were developed in [1].}
THEOREM 12. Let \(\frac{1}{24}(y^*_\nu(U \otimes S))_{ijklr} \) of generators for \(\mathfrak{H} \). If we use \([27]\) to express all coordinates of \(U \) by \(U_{ijk} \) and \(U_{ikj} \) we obtain the following sum of 16 terms.

\[
\begin{align*}
-\frac{1}{24}(-1+\nu)(1+\nu) & \quad U_{jlr}S_{ik} + \quad \nu \frac{1}{24}(-1+\nu)(1+\nu) \quad U_{jl}S_{ik} + \\
-\frac{1}{24}(-1+\nu)(1+\nu) & \quad U_{jkl}S_{ir} - \quad \nu \frac{1}{24}(-1+\nu)(1+\nu) \quad U_{jkl}S_{ir} + \\
-\frac{1}{24}(-1+\nu)(1+\nu) & \quad U_{il}S_{jr} - \quad \nu \frac{1}{24}(-1+\nu)(1+\nu) \quad U_{il}S_{jr} + \\
-\frac{1}{24}(-1+\nu)(1+\nu) & \quad U_{ik}S_{jr} + \quad \nu \frac{1}{24}(-1+\nu)(1+\nu) \quad U_{ik}S_{jr} + \\
-\frac{1}{24}(-1+\nu)(1+\nu) & \quad U_{ijkl}{S_{kr}} + \quad \nu \frac{1}{24}(-1+\nu)(1+\nu) \quad U_{ijkl}{S_{kr}} + \\
-\frac{1}{24}(-1+\nu)(1+\nu) & \quad U_{ij}{S_{klr}} + \quad \nu \frac{1}{24}(-1+\nu)(1+\nu) \quad U_{ij}{S_{klr}} + \\
\end{align*}
\]

This sum has the structure

\[
\mathfrak{p}_{\text{red}}^{t_1...t_5} = \sum_{q \in S_5} \frac{P_q^P(\nu)}{Q_q^P(\nu)} U_{i_{q(1)}i_{q(2)}i_{q(3)}}S_{i_{q(4)}i_{q(5)}} .
\] (28)

where \(P_q^P(\nu) \) and \(Q_q^P(\nu) \) are polynomials. If we determine the set \(N_\mathcal{P} \) of all roots \(\nu \neq \frac{1}{2} \) of the \(P_q^P(\nu) \), for which \(\Delta_\mathcal{P}(\nu) \neq 0 \), and set the \(\nu \in N_\mathcal{P} \) into (28), the length of (28) will decrease.

We determine the minimal length of (28) by this procedure for \(y^*_\nu(U \otimes w) \), \(y^*_\nu(U \otimes S) \), \(y^*_\nu(U \otimes A) \) and for every of the 15 identity systems of type \([27] \) in the case \(\nu \neq \infty \). Table 1 shows the results for \(y^*_\nu(U \otimes S) \), \(y^*_\nu(U \otimes A) \). (In the column for \(\mathcal{P} = \{p_1, p_2\} \) the \(p_i \) are denoted by their numbers in the lexicographically ordered \(S_3 \).) Furthermore we calculate the lengths of (28) for the 15 systems \([27]\) in the case \(\nu = \infty \). Altogether, the number of calculations comes to (3 generator types) \(\times \) (2 \(\nu \)-cases) \(\times \) (15 systems \([27]\)) = 75.

We obtain (see \([12, 13]\))

THEOREM 12. Let \(\dim V \geq 3 \). Then the coordinates of \(y^*_\nu(U \otimes w) \), \(y^*_\nu(U \otimes S) \), \(y^*_\nu(U \otimes A) \) are sums of the following lengths

\(\nu \)	\(y^*_\nu(U \otimes w) \)	\(y^*_\nu(U \otimes S) \)	\(y^*_\nu(U \otimes A) \)
(a)-generic case for \(\nu \)	8	16	20
(b)- \(\nu \) producing minimal length	4	12	10

The computer calculations were carried out by means of the Mathematica packages Ricci \([19]\) and PERMS \([7]\). Notebooks of the calculations are available on the web page \([4]\).

It is very remarkable that \(U \) admits an index commutation symmetry if the coordinates of \(y^*_\nu(U \otimes w) \), \(y^*_\nu(U \otimes S) \), \(y^*_\nu(U \otimes A) \) have the minimal lengths of case (b) in Theorem \([12]\) (see \([12, 13]\)).
| \mathcal{P} | $y_t^\ast(U \otimes S)$ roots of $P_\mathcal{T}(\nu)$ with $\Delta_{\mathcal{T}}(\nu) \neq 0, \nu \neq 1/2$ | length of $|\mathscr{P}_{11,15}^{\text{red}}|$ | $y_t^\ast(U \otimes A)$ roots of $P_\mathcal{T}(\nu)$ with $\Delta_{\mathcal{T}}(\nu) \neq 0, \nu \neq 1/2$ | length of $|\mathscr{P}_{11,15}^{\text{red}}|$ |
|---|---|---|---|---|
| 12 | 0 | 12 | \(-1\) | 12 |
| 13 | -1 | 14 | -1 | 18 |
| 14 | -1 | 14 | -1 | 18 |
| 15 | -1 | 12 | -1 | 10 |
| 16 | -1 | 12 | -1 | 10 |
| 23 | -1 | 14 | -1 | 18 |
| 24 | -1 | 14 | -1 | 18 |
| 25 | -1 | 12 | -1 | 10 |
| 26 | -1 | 12 | -1 | 10 |
| 34 | 0 | 12 | 2 | 12 |
| 35 | -1 | 14 | -1 | 12 |
| 36 | -1 | 14 | -1 | 12 |
| 45 | -1 | 14 | -1 | 12 |
| 46 | -1 | 14 | -1 | 12 |
| 56 | 2 | 14 | 2 | 18 |

TABLE 1. The lengths of $|\mathscr{P}_{11,15}^{\text{red}}|$ for $y_t^\ast(U \otimes S), y_t^\ast(U \otimes A)$ and $\nu \neq \infty$.

Author and title
Bibliography

1. H. Boerner, *Darstellungen von Gruppen*, Springer, Berlin, Göttingen, Heidelberg, 1955.
2. H. Boerner, *Representations of Groups*, 2. revised ed., North-Holland, Amsterdam, 1970.
3. M. Clausen and U. Baum, *Fast Fourier Transforms*, BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1993.
4. B. Fiedler, *Examples of calculations by means of PERMS*, Mathematica notebooks, Internet http://www.fiemath.de/pnbs.htm.
5. B. Fiedler, Z. Anal. Anw. 17(1), 135 (1998).
6. B. Fiedler, *An Algorithm for the Decomposition of Ideals of Semi-Simple Rings and its Application to Symbolic Tensor Calculations by Computer*, Habilitationsschrift, Fakultät für Mathematik und Informatik, Univ. Leipzig, Germany, November 1999.
7. B. Fiedler, *PERMS 2.1 (15.1.1999)*. Mathematisches Institut, Univ. Leipzig, Germany, 1999. Will be sent in to MathSource, Wolfram Research Inc.
8. B. Fiedler, Séminaire Lotharingien de Combinatoire, B45g, 16 pp. (2001). El. published: http://www.mat.univie.ac.at/~slc, Archive: http://arXiv.org/abs/math.CO/0211156.
9. B. Fiedler, Séminaire Lotharingien de Combinatoire, B48d, 20 pp. (2002). El. published: http://www.mat.univie.ac.at/~slc, Preprint: http://arXiv.org/abs/math.CO/0212278.
10. B. Fiedler, *Generators of algebraic covariant derivative curvature tensors and Young symmetrizers*, Preprint: http://arXiv.org/abs/math.CO/0310020, 18pp. 2003. Chapter for a book "Progress in Computer Science Research", in prep. by Nova Science Publishers, Inc.
11. B. Fiedler, Séminaire Lotharingien de Combinatoire, B49f, 22 pp. (2003). El. published: http://www.mat.univie.ac.at/~slc, Preprint: http://arXiv.org/abs/math.CO/0301042.
12. B. Fiedler, *Short formulas for algebraic covariant derivative curvature tensors via algebraic combinatorics*, Preprint: http://arXiv.org/abs/math.CO/0312171, 38pp. 2003. Paper for Proc. of Conf. "PDEs, Submanifolds and Affine Differential Geometry", TU Berlin and Banach Center, Bedlewo 2003. Submitted.
13. B. Fiedler, *Generators of algebraic curvature tensors based on a (2 1)-symmetry*, Preprint: http://arxiv.org/abs/math.DG/0411056, 16 pp. 2004.
14. S. A. Fulling, R. C. King, B. G. Wybourne and C. J. Cummins, Class. Quantum Grav. 9, 1151 (1992).
15. W. Fulton, *Young Tableaux*, Cambridge University Press, Cambridge, New York, Melbourne, 1997.
16. P. B. Gilkey, *Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor*, World Scientific Publishing Co., Singapore, New Jersey, London, Hong Kong, 2001.
17. G. D. James and A. Kerber, *The Representation Theory of the Symmetric Group*, Addison-Wesley, Reading, Mass., London, Amsterdam, Don Mills, Ont., Sidney, Tokyo, 1981.
18. A. Kerber, *Representations of Permutation Groups*, Lecture Notes in Mathematics vol. 240, 495, Springer-Verlag, Berlin, Heidelberg, New York, 1971, 1975.
19. J. M. Lee, D. Lear, J. Roth, J. Coskey and L. Nave, *Ricci. A Mathematica package for doing tensor calculations in differential geometry. User’s Manual. Version 1.32*, Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195-4350, 1992 - 1998. Ricci’s home page: http://www.math.washington.edu/~lee/Ricci/.
20. D. E. Littlewood, *The Theory of Group Characters and Matrix Representations of Groups*, 2. ed., Clarendon Press, Oxford, 1950.
21. I. G. Macdonald, *Symmetric Functions and Hall Polynomials*, Clarendon Press, Oxford, 1979.