Growth and Survival of Wild and Head-Started Blanding’s Turtles (Emydoidea Blandingii)

Callie Klatt Golba
cklatt@butler.edu

Follow this and additional works at: https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations

Part of the Ecology and Evolutionary Biology Commons, and the Natural Resources and Conservation Commons

Recommended Citation
Golba, Callie Klatt, "Growth and Survival of Wild and Head-Started Blanding’s Turtles (Emydoidea Blandingii)" (2019). Graduate Research Theses & Dissertations. 7070.
https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/7070

This Dissertation/Thesis is brought to you for free and open access by the Graduate Research & Artistry at Huskie Commons. It has been accepted for inclusion in Graduate Research Theses & Dissertations by an authorized administrator of Huskie Commons. For more information, please contact jschumacher@niu.edu.
ABSTRACT

GROWTH AND SURVIVAL OF WILD AND HEAD-STARTED BLANDING’S TURTLES (*EMYDOIDEA BLANDINGII*)

Callie Klatt Golba, M.S.
Department of Biological Sciences
Northern Illinois University, 2019
Richard B. King, Director

Blanding’s turtles (IUCN Endangered) are long-lived reptiles with delayed sexual maturity. Anthropogenic landscape changes have increased threats to juvenile turtles, resulting in unnaturally low recruitment. Head-starting has become a popular conservation strategy that aims to increase juvenile recruitment by avoiding the increased predation of the vulnerable nest and hatchling age class. However, there is still debate about whether or not it is an effective management tool. Assessments of head-starting are becoming more prevalent, but long-term studies are needed to critically evaluate the success of such interventions. In particular, information is needed on how head-starts fare compared to wild-born turtles. The Lake County Forest Preserve District (LCFPD) in northeastern Illinois initiated a long-term capture-mark-recapture (CMR) project in 2004. As of 2018, 127 wild-born juvenile turtles had been captured (59 of which had been captured in multiple years) and 148 adult turtles had been captured (116 of which had been recaptured in multiple years). Since 2010, LCFPD has released 491 head-started turtles during the year following hatching, 138 of which have been recaptured during successive years. I used van Bertalanffy growth analysis to compare growth trajectories and Cormack-Jolly-Seber (CJS) modelling techniques to compare survival rates of wild-born and head-started turtles. At release, head-started turtles were about the size of 2-year-old wild-born turtles and grew in parallel to their wild-born counterparts. The top-ranked survival models demonstrated that survival increased with age for both wild-born (71%-98%) and head-started
turtles (63-90%), with overlapping confidence intervals. These results suggest that head-started juveniles perform similarly to like-aged wild-born juveniles despite head-starts having attained greater body size. I estimated adult survival to be 95% with an environmental variance of 0.0011. Although the success of head-starting cannot be fully assessed until turtles are recruited into the adult population and successfully reproduce, patterns of head-start growth and survival provide positive intermediate measures of success. My estimation of juvenile and adult survival, along with other demographic information from this population, will provide for more accurate population projections that will aid in evaluating conservation strategies for this population and potentially for Blanding’s turtles elsewhere.
GROWTH AND SURVIVAL OF WILD AND HEAD-STARTED BLANDING’S TURTLES

(EMYDOIDEA BLANDINGII)

BY
CALLIE KLATT GOLBA
©2019 Callie Klatt Golba

A THESIS SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE
MASTER OF SCIENCE

DEPARTMENT OF BIOLOGICAL SCIENCES

Thesis Director:
Dr. Richard B. King
ACKNOWLEDGEMENTS

First, I want to thank Dr. Rich King for being my advisor and giving me the opportunity to be a part of his lab. His mentorship has helped me grow as a scientist and has inspired me to continue my pursuit of a career in conservation ecology. I also want to thank my other committee members, Dr. Daniel Ludwig and Dr. Holly Jones, for helping me look at my research from a different perspective and for guiding me along the way. Thank you to the Lake County Forest Preserve District, especially Gary Glowacki, for providing me with not only data but with wisdom. You introduced me to Blanding’s turtles and encouraged me to focus my research on conserving them. Thank you to the Illinois Department of Natural Resources, especially Brad Semel, for allowing us to expand our research and learn more about our Blanding’s turtle population.

I cannot express enough appreciation for all of the support over the past three field seasons from turtle technicians (Veronica Anadon, Courtney Klatt, Samantha Hannabass, Ed McDonald, Emma Buckardt, Tim Pignato, Anissa Loyola, Tyler Stewart, Lena Carlson, and Katherine Novak), John Vanek and his wildlife technicians (Kat Waguespack, Elizabeth Mullen, Maria Weston, Sara Cheatham, Gabby Barnas, and Raela Wataha), Dr. Matt Allender and the vet students in his lab (Lauren Mumm, John Winter, Kirsten Andersson, and Sam Bradley), and the USDA employees (Wes Smith, Joey Zigler, and Sam Lehman). You have all contributed to the extensive data set that I get to work from and I cannot say thank you enough.

Thank you to Mom and Dad for raising me to appreciate nature, supporting my journey, and for always showing your genuine interest in my work. Last, I want to thank my husband, Joe, and our dog, Gillie, for listening to every raw version of a talk and for providing me with encouragement, emotional support, and love along the way.
TABLE OF CONTENTS

INTRODUCTION .. 1

MATERIALS AND METHODS .. 5

 Field Methods .. 5
 Head-Starting .. 9
 Growth Analysis of Wild and Head-Started Turtles.. 9
 Survival Analysis .. 10
 Survival Analysis of Wild and Head-Started Turtles... 11
 Wild-Born Juveniles... 12
 Head-Started Juveniles ... 13
 Survival Analysis of Adult Turtles... 13

RESULTS .. 15
Field Results ... 15
Growth Analysis of Wild and Head-Started Turtles .. 15
Survival Analysis... 23
Survival Analysis of Wild and Head-Started Turtles.. 23
 Wild-Born Juveniles... 23
 Head-Started Juveniles .. 28
Survival Analysis of Adult Turtles... 31
DISCUSSION .. 35
LITERATURE CITED ... 39
APPENDICES .. 44
Table	Description	
1.	Yearly sampling efforts for Blanding’s turtles within the Lake Plain (Spring Bluff-Chiwaukee Prairie complex) as part of the Lake County Forest Preserve District’s Blanding’s Turtle Recovery Plan.	8
2.	The number of unique wild-born turtles at the age in which they were initially captured and the number of encounters at each age class.	16
3.	Number of head-started turtles released in the year following hatching by release year and cohort and the number of recaptures in subsequent years.	18
4.	Number of adults captured each year by sex.	19
5.	Mean population growth parameter estimates for wild-born and head-started juvenile turtles.	20
6.	Candidate model rankings for the recapture optimization of wild-born juveniles in order of ranking.	24
7.	Candidate model rankings for survival optimization of wild-born juveniles in order of ranking.	25
8.	Survival estimates generated from top-ranked models or model averaging of multiple top-ranked models for wild-born juvenile, head-started juvenile, and wild-born adult Blanding’s turtles for the Spring Bluff-Chiwaukee Prairie population.	27
9.	Candidate model rankings for the recapture optimization of head-started juveniles in order of ranking.	29
10.	Candidate model rankings for survival optimization of head-started juveniles in order of ranking.	30
11.	Candidate model rankings for survival and recapture optimization of adult turtles in order of ranking.	32
LIST OF FIGURES

Figure	Page
1. Blanding’s turtle project area within the Spring-Bluff-Chiwaukee Prairie complex	6
2. Example of a 4-year-old wild-born turtle aged using annuli counts	7
3. Growth curves for wild-born and head-started turtles with reference line	21
4. Zoomed-in growth curves for wild-born and head-started turtles with reference line	22
5. Survival estimates generated from top-ranked models or model averaging of multiple top-ranked models for head-started juvenile and wild-born juvenile and adult Blanding’s turtles for the Spring Bluff-Chiwaukee Prairie population	26
LIST OF APPENDICES

Appendix	Page
A. RECAPTURE ESTIMATES FOR WILD-BORN JUVENILES	44
B. RECAPTURE ESTIMATES FOR HEAD-STARTED JUVENILES	46
C. RECAPTURE ESTIMATES FOR ADULT TURTLES	49
INTRODUCTION

Wildlife populations are in decline and are in need of conservation interventions, but management strategies must be evaluated to ensure they are effective (Martin et al. 2018). The unique life history strategy of long-lived species with delayed sexual maturity as found in many chelonian species presents unique challenges for management. These species require unconventional strategies to conserve their populations. This is due to their long life span that presents different threats to each of their distinct different life stages (Canessa et al. 2016).

Anthropogenic landscape changes have increased threats, especially to juvenile turtles (exposure, lack of suitable habitat, subsidized predators), resulting in unnaturally low juvenile recruitment (Gibbon et al. 2000). This has led many managers to focus on mitigating threats to this age class (Seigel and Dodd 2000).

Head-starting has become a popular conservation strategy used for turtle management (Burke 2015). The goal is to increase juvenile recruitment by incubating eggs and rearing hatchling turtles in captivity, which avoids predation of the vulnerable nest and hatchling age class. It is hoped that this will boost the number of young turtles entering the population and halt population decline. However, there is still debate about whether head-starting is an effective management tool (Bennett et al. 2017). Critics point to the lack of follow-up monitoring (to assess the actual recruitment into the population and fitness of head-started turtles as compared to wild-born turtles) and the failure to address more important causes of population decline (adult mortality, habitat degradation and fragmentation; Buhlmann et al. 2015; Green 2015; Thompson et al. 2019).
The Blanding’s turtle (*Emydoidea blandingii*) is a long-lived species of freshwater turtles for which head-starting has been used frequently (Buhlmann et al. 2015; Thompson et al. 2019). Populations of Blanding’s turtles are facing imminent threats including habitat loss and degradation, reduced adult survival, and reduced recruitment of young turtles. To properly evaluate the efficacy of head-starting as a management strategy, long-term data are required. Although assessments of head-starting are becoming more prevalent (Thompson et al. 2019), long-term studies are needed to critically evaluate the success of such interventions. To evaluate head-starting in the shorter term, analyses of growth and survival can be used as intermediate measures of the success of head-starting.

Growth and survival over the ca. 14-year juvenile stage is less established than other demographic parameters for both wild-born and head-started Blanding’s turtles. Even in longer term studies, these younger age classes are infrequently encountered, able to be aged, and then recaptured. This makes it difficult to obtain a large enough sample size to accurately estimate their growth and survival.

The relationship between size and age of Blanding’s turtles has been estimated in several populations, demonstrating a steady increase in size of juvenile turtles until reaching sexual maturity (Congdon et al. 2001; Germano et al. 2000; Lefebvre et al. 2011; Reid et al. 2016). A few studies have looked at shorter term growth of wild-born juveniles (Arsenault 2011; D’Entremont 2014), but rarely has growth of wild-born and head-started juveniles been compared in the same population.

Juvenile survival of wild-born and head-started Blanding’s turtles has been estimated in several ways. In a widely cited study, Congdon et al. (1993) inferred juvenile survival to be 78.3% from information on hatching success and adult survival coupled with the assumption of a
stable population size. Cormack-Jolly-Seber (CJS) analyses have been used to estimate survival of wild-caught juveniles, but because of small sample size, only two age classes (“younger” and “older”) could be recognized (Kuhns 2010). Known-fate analyses of using radio telemetry data has produced widely varying results (66-93%), perhaps because of small sample size (n=13-83) (Arsenault 2011; D’Entremont 2014; Kuhns 2010; Ross and Dreslik 2018; Starking-Szymanski et al. 2018; Windmiller et al. 2016). Furthermore, these studies have generally failed to relate survival of head-starts to that of wild turtles of similar size. Adult survival is known with high precision from a number of studies (Congdon et al. 1993; Congdon et al. 2001; Kuhns and Phillips 2010; Reid et al. 2016; Ross and Dreslik 2018; Ruane et al. 2008; Rubin et al. 2004; Windmiller et al. 2016), but the environmental (process) variance has rarely been explored.

This creates a need for quantitative analyses of the success of head-starting conservation strategies. This can be achieved by using long-term data of Blanding’s turtle populations that allow comparison of wild-born and head-started juveniles. Although the success of head-starting cannot be fully assessed until turtles are recruited into the adult population and successfully reproduce, patterns of head-start growth and survival can provide intermediate measures of success. By obtaining a more accurate estimate of year-to-year variation in adult survival (via process variance), we can apply these numbers for a more accurate population projection into the future, further assessing the value of head-starting.

The Lake County Forest Preserve District (LCFPD) in northeastern Illinois initiated a long-term capture-mark-recapture (CMR) project of Blanding’s turtles in 2004. An initial population viability analysis, completed in 2010, reported a low number of juveniles in the population and an unsustainably high rate of nest predation as well as the need for habitat restoration and lower than ideal rates of adult survival (Kuhns 2010). Habitat management and
predator removal management strategies were not predicted to be enough to create a viable population. Consequently, in 2012, LCFPD initiated a head-starting program to increase juvenile recruitment in tandem with other management strategies aimed at addressing threats to the population. An analysis of the effects of head-starting on turtle body size distributions suggests head-starting has had a positive effect (Thompson et al. 2019).

These 14 years of intensive monitoring provide a unique data set from which I can compare growth and survival of wild-born juveniles to head-started juveniles. I also estimate adult survival and its environmental (process) variance. In order to consider head-starting an effective tool, I expect to see head-started turtles to have larger sizes at release than that of their wild-born counterparts of equivalent age, for head-starts to grow in a species-typical manner following release, and that survival of head-starts equals or exceeds that of their wild-born counterparts of equivalent age.
MATERIALS AND METHODS

Field Methods

Blanding’s turtle monitoring was initiated in 2004 within the Spring Bluff-Chiwaukee Prairie (SBCP, Figure 1) complex in Lake County, Illinois and Wisconsin. SBCP is a protected natural area consisting of 215 ha. of high-quality coastal wetland habitat. It is located along the coast of Lake Michigan in Illinois and Wisconsin. This land is managed by Lake County Forest Preserve District (LCFPD) and Wisconsin Department of Natural Resources. From 2004 to 2018, mark-recapture data were collected using baited collapsible minnow traps (Promar, 30 X 30 X 60 cm, 0.6-cm mesh) and incidental captures during the active season (April-August). Little or no trapping occurred during 2011 and 2012 (Table 1). Captured turtles were marked for future identification with PIT tags and notching of marginal scutes, and a plastron photo was taken (Buhlmann and Tuberville 1998; Cagle 1939). Turtles weighing less than 750g were classified as juveniles and were assigned ages by counting annuli from photos (Figure 2) or from known hatch dates from turtles that were nest-caged (Castanet 1988; Wilson et al. 2003). Photos that could not be scored consistently by two independent observers were excluded (n=40 older juveniles with indistinct annuli). Sex of adults was determined by observing the concavity of the plastron (Graham and Doyle 1979).
Figure 1. Blanding’s turtle project area within the Spring-Bluff-Chiwaukee Prairie complex.
Figure 2. Example of a 4-year-old wild-born turtle aged using annuli counts. “0” represents the natal scute.
Table 1. Yearly sampling efforts for Blanding’s turtles within the Lake Plain (Spring Bluff-Chiwaukee Prairie complex) as part of the Lake County Forest Preserve District’s Blanding’s Turtle Recovery Plan. Occasions refer to sample periods used for survival analyses of wild-born juveniles and adults (2004-2018). The numbers in parentheses in the occasion column refer to the sample periods used for survival analyses of head-started juveniles (2012-2018). Sampling effort refers to the number of trap nights (number of traps placed*number of nights deployed).

Year	Occasion	Sampling Effort (trap nights)
2004	1	473
2005	2	2488
2006	3	3438
2007	4	2711
2008	5	1638
2009	6	3696
2010	7	1636
2011	-	0*
2012	NA (1)	32**
2013	8 (2)	490
2014	9 (3)	741
2015	10 (4)	855
2016	11 (5)	1081
2017	12 (6)	1305
2018	13 (7)	1086
Totals	-	21,576
Head-Starting

LCFPD began a head-starting program at SBCP in 2011. The goal of this program was to increase juvenile recruitment by mitigating threats to the vulnerable nest and hatchling life stage by rearing them in captivity. Generally, head-starting involves collecting eggs from wild telemetered adult females, incubating the eggs in captivity, and then rearing the young turtles in captivity (Thompson et al. 2019). In 2012, LCFPD began releasing individually marked young turtles. They were individually identified by notching marginal scutes when the young turtles were released and either PIT tagging prior to release or upon subsequent recapture of head-started turtles into the SBCP population (detailed in Thompson et al. 2019). Releases have continued annually, releasing from 52-118 turtles one year post-hatching per year and 0-46 older turtles per year. Some of the releases were delayed due to slow growth during captivity. I include only head-started turtles released approximately one year post-hatching in my analyses because this is a homogeneous group that have a normal distribution of size at release.

Growth Analysis of Wild and Head-Started Turtles

Turtles are typically measured by carapace length (CL), which is the longitudinal distance between the front and back of the carapace (Bjorndal and Bolten 1989). Using methodology common for reptile growth studies (Arsenault 2011; Germano et al. 2000), I used non-linear regression methods in SPSS to model growth data (measured in carapace length) collected from known-aged animals. I measured age by using the date of capture in fractional years, computed from January 1st of the hatch year (Andrews 1982). I then explored the age-size relationship using the three-parameter von Bertalanffy growth equation: $CL_t = CL_A - (CL_A - CL_0)e^{-kt}$. In this growth equation, the carapace length at known ages (CL_t) is used to obtain
three mean population growth parameters: the population mean asymptotic carapace length (CL_A), the carapace length at time 0 (CL_0), and the growth rate constant (k; Anthony et al. 2015; Arsenault 2011; King et al. 2016).

I analyzed wild-born and head-started juveniles separately because age span differs dramatically between these two groups (1-26 years of age for wild-born turtles, 1-7 years post-release for head-started turtles).

Survival Analysis

Capture-mark-recapture modelling techniques based on individual capture histories were used to estimate survival rates for wild-born juveniles, head-started juveniles, and adult turtles in three separate analyses (Cooch and White 2000; Lebreton et al. 1992; McCallum 2000). Survival (ϕ) and recapture (p) rates were estimated using live recapture Cormack-Jolly-Seber (CJS) models using the log link function (Cooch and White 2019; Cormack 1964; Jolly 1965; Seber 1965) in Program MARK (White & Burnham 1999; White 2001) and in R (R Core Team 2017) through the *RMARK* package (Laake 2013). The CJS model assumes that each animal has the same probability of being encountered during each occasion, the same probability of surviving until the next occasion, and any emigration is permanent. It also assumes that sampling occasions are short, animals are released immediately after capture, and individual marks are not lost or interpreted incorrectly. Last, it assumes that the fate of individual animals is independent of that of other animals (Cooch and White 2019; Cormack 1964; Jolly 1965; Seber 1965).

In all analyses I created encounter histories for each individual animal by assigning a “1” if the animal was encountered that year and a “0” if they were not encountered. Multiple captures within a single year were treated as a single capture. I performed goodness-of-fit (GOF) tests on global models to assess if overdispersion was present in the data. If any lack of fit was detected, I
adjusted for overdispersion with the largest estimate (furthest from 1) of the variance inflation factor (\hat{c}) following the recommendations of Cooch and White 2019. Candidate models were ranked by comparing Akaike’s information criterion values adjusted for small sample size (AIC_c) or corrected quasi-Akaike information criterion (QAICc) if overdispersion was detected. I examined all top-ranked models within 2 ΔAIC_c or 2 ΔQAIC_c to determine if model averaging should be employed to account for model uncertainty (Akaike 1973; Burnham and Anderson 1998).

Survival Analysis of Wild and Head-Started Turtles

Analysis of age-specific juvenile survival had the potential for numerous candidate models and a risk that more fully parameterized models would result in inestimable parameters (Cooch and White 2019). To avoid overparameterization and data dredging, knowledge of the study organism and study design was considered to formulate an appropriate set of biologically justified candidate models (Brown et al. 2007; Burnham and Anderson 1998). Therefore, I selected a reduced set of candidate models based on *a priori* knowledge of Blanding’s turtle life history, sample sizes and recapture heterogeneity as detailed below.

Age-specific survival rates were estimated separately for two groups of juvenile turtles (<750g): wild-born juvenile turtles of known ages and head-started turtles that were released approximately one year post-hatching. I did not combine these groups into a single analysis because of differences in time spans (13 vs. 7 sampling occasions) and number of age groups (1-26 yr of age vs. 0-6 yr post-release). For both groups, I employed a step-wise model selection process to first optimize recapture (p) while keeping survival (ϕ) at the most inclusive parameterization identified by the candidate model selection process. Then I held recapture
constant at the most parsimonious age-by-time structure identified in the first step to explore age-specific effects on survival. This step-wise methodology provides me with more power to detect age effects and obtain meaningful estimates of survival (Arskovski et al. 2018; Briggs-Gonzalez et al. 2017; Brown et al. 2007; Lebreton et al. 1992).

Wild-Born Juveniles

I created encounter histories for wild-born juveniles during each sampling occasion from 2004-2018. The sampling interval between occasions 7 (2010) and 8 (2013) was set to three because little or no trapping occurred in 2011 and 2012; other intervals were set to one, resulting in 13 sampling occasions and 12 intervals. Wild-born juveniles were grouped by age at initial capture and only wild-born turtles that were initially captured as juveniles (≤ 13 yr) were included.

The global model for wild-born juveniles included the discrete effect of age class and the additive effect of time on recapture probability. I only included the additive effect of time because recaptures spanned 14 years, with only a few recaptures of any given age classes during each year. To avoid overparameterization, I considered a maximum of six age classes (1, 2-3, 4-6, 7-10, 11-14, 15+ yr), selected to provide similar size increments and sample sizes. The global model included age as a linear covariate of survival. In evaluating candidate models nested within this global model, I first optimized recapture by considering models with fewer than six age classes with and without the additive effect of time. Using the top-ranked model for recapture, I then evaluated models in which survival reached a plateau at successively younger ages (following Arsovski et al. 2018). Finally, I compared the top-ranked model that included age as linear covariate of survival with models that included age as a logarithmic or quadratic covariate or that included age as a discrete grouping variable (Arsovski et al. 2018).
Head-Started Juveniles

For the analysis of head-started juveniles, I created encounter histories for each sampling occasion from 2012-2018 (releases of head-starts began in 2012), resulting in seven sampling occasions and six intervals. Year of release was treated as the first capture for head-started turtles.

The global model for head-started juveniles included the discrete effect of age class and the interactive effect of age class and time on recapture probability. I included the interactive effect of time to account for observed complexity in year- and age-specific recapture numbers that suggested possible cohort (=year*age) effects. I considered a maximum of four age classes (1, 2, 3, 4+ yr post-release), selected to provide similar sample sizes, as the number released each year varied. The global model included age as a linear covariate of survival (ages 1-6). In evaluating candidate models nested within this global model, I first optimized recapture by considering models with fewer than four age classes with the additive or interactive effect of time. Using the top-ranked model for recapture, I then evaluated models in which survival reached a plateau at successively younger ages (following Arsovski et al. 2018). Finally, I compared the top-ranked model that included age as linear covariate of survival with models that included age as a logarithmic or quadratic covariate or that included age as a discrete grouping variation (Arsovski et al. 2018).

Survival Analysis of Adult Turtles

I created encounter histories for adult turtles during each sampling occasion from 2004-2018. The sampling interval between occasions 7 (2010) and 8 (2013) was set to three because little or no trapping occurred in 2011 and 2012; other intervals were set to one, resulting in 13 sampling occasions and 12 intervals. Although some turtles were affixed with radio transmitters,
only trap and hand captures were utilized in the survival analysis. Adult turtles were grouped by sex, and individuals that were initially captured as subadults were included only after they reached adulthood.

I considered two global candidate models and selected the higher ranked of these two global models for GOF testing. The first global model included a sex-by-time interaction for survival and a sex-by-time interaction for recapture. I chose to test for an effect of time on recapture probability because of the extent of year-to-year variation in effort (see Table 1). The second global model included a sex-by-time interaction for survival and a sex-by-effort interaction for recapture to determine if sampling effort could be used as an environmental covariate to replace time and reduce the total number of parameters. Candidate models included all possible combinations of models nested within both global models. I estimated variance components for adult turtles in Program MARK using the highest ranked model that included time-dependence for survival to determine temporal (process) variance in annual survival (Cooch and White 2019).
RESULTS

Field Results

Over 13 mark-recapture sampling occasions from 2004 to 2018, 127 unique wild-born Blanding’s turtles, initially encountered as juveniles, were captured a total of 265 times (Table 2). Over seven mark-recapture sampling occasions from 2012-2018, 491 head-started turtles were released approximately 1 year post-hatching, with 174 subsequent recaptures (665 total captures, Table 3). Over 13 mark-recapture sampling occasions from 2004 to 2018, 148 unique adult Blanding’s turtles (80 M, 68 F) were captured a total of 540 times (Table 4).

Growth Analysis of Wild and Head-Started Turtles

I analyzed growth from 265 encounters of 127 unique wild-born turtles that ranged from age 1 to 26 years old and 665 encounters (including the size at release) of 491 unique head-started turtles that ranged from 0 to 7 years post-release. The growth equation for both groups fit the data well (wild-born $r^2 = 0.891$; head-start $r^2 = 0.714$, Table 5). Growth trajectories of wild-born and head-started turtles were similar in shape (Figure 3), but head-started turtles had a larger body size at release in comparison to like-aged wild-born turtles, shifting the head-started turtle growth curve upwards. This is reflected in the difference in the estimated carapace length at time 0 (CL_0) for head-starts (55.1 mm) versus wild-born turtles (23.3 mm; Figure 4). The mean asymptotic carapace length (CL_A) differed between groups; however, this asymptote for head-started turtles may not be accurate because of the short duration of the study, with no turtles yet attaining this adult size (Frazer et al. 1990).
Table 2. The number of unique wild-born turtles at the age in which they were initially captured (age at initial encounter) and the number of encounters at each age class.

Age Class (Years)	Age at Initial Encounter (Years)	Total # of Encounters
1	9	9
2	9	10
3	9	12
4	22	24
5	12	17
6	13	17
7	11	15
8	11	16
9	12	23
10	6	14
11	8	17
12	2	14
13	3	10
14		12
15		9
16		4
17		3
18		6

(Continued on the following page)
Age Class (Years)	Age at Initial Encounter (Years)	Total # of Encounters
20		7
21		4
22		5
23		5
24		4
25		2
26		1
Total	**127**	**265**
Table 3. Number of head-started turtles released in the year following hatching by release year and cohort (birth year; bold along the diagonal) and the number of recaptures in subsequent years. For example, 83 head-started turtles born in 2011 were released in 2012, 12 of which were recaptured in one or more subsequent times for a total of 19 recaptures.

Recapture Year

Release Year	2012	2013	2014	2015	2016	2017	2018	Recaptures	Recaptured
2011								19	12
2012								51	33
2013								35	28
2014								5	4
2015								32	25
2016								36	36
2017								74*	

Total: 1 4 20 31 43 75
Table 4. Number of adults captured each year by sex. Little or no sampling occurred in 2011 and 2012.

Year	Total Number of Individuals Captured (female, male)
2004	9 (2,7)
2005	61 (18,43)
2006	69 (27,42)
2007	56 (21,35)
2008	37 (13,24)
2009	38 (17,21)
2010	24 (11,13)
2011	-
2012	-
2013	34 (15,19)
2014	26 (13,13)
2015	45 (22,23)
2016	42 (24,18)
2017	45 (24,21)
2018	53 (23,30)
Totals	540 (230,310)
Table 5. Mean population growth parameter estimates for wild-born and head-started juvenile turtles.

Origin	N	CL\(_A\)	CL\(_0\)	k	r\(^2\)
Wild-caught Juveniles	265	234.0 (8.06)	23.3 (4.53)	0.082 (0.007)	0.891
Head-started Juveniles	665	211.1 (41.00)	37.0 (2.69)	0.109 (0.037)	0.714
Figure 3. Growth curves for wild-born (green) and head-started (blue) turtles with reference line. Wild-born: carapace length = 234.1-(234.1-31.7)*e^{(-0.082*age)}; head-starts: carapace length = 211-(211-37.0)*e^{(-0.109*age)}.
Figure 4. Zoomed-in growth curves for wild-born (green) and head-started (blue) turtles with reference line. Wild-born: carapace length = 234.1-(234.1-31.7)*e^{(-0.082*age)}, head-starts: carapace length = 211-(211-37.0)*e^{(-0.109*age)}.
Survival Analysis of Wild and Head-Started Turtles

Wild-Born Juveniles

To optimize recapture, I compared 16 candidate models in which survival was a linear function of age (Table 6). Models differed in how age classes were grouped and in whether time was included. The top-ranked model (weight=0.512) specified two discrete groups, age classes 1-6 and age classes 7 and greater. The next three top-ranked models had increased numbers of age groups but no reduction in model deviance, suggesting that the inclusion of additional age classes was uninformative. Models that contained the additive effect of time on recapture were consistently ranked lower than models that lacked a time effect (ΔAICc > 10, Table 6).

Maintaining this best parameterization of recapture, I compared 12 candidate models for which survival was a linear function of age but varied in the age at which survival reached a plateau (Table 7). I considered three additional candidate models for which survival was a logarithmic or quadratic function of age or included age as a discrete variable. The highest ranked model with age as a linear covariate for survival specified a plateau in survival at age 4. Logarithmic and quadratic covariate models were within 2 ΔAICc but had similar deviances to the top-ranked model, suggesting little improvement. The discrete model was ranked the lowest with a ΔAICc of 5.97 (Table 7). Based on the model-averaged results, survival increased from ages 1-6 (71% - 98%; Figure 5, Table 8A). Recapture estimates varied by age from 0.26-0.37 (Appendix A).
Table 6. Candidate model rankings for the recapture optimization of wild-born juveniles in order of ranking. Recapture refers to the structure of the recapture parameter (p) in the model, k refers to the number of parameters, AICc refers to Akaike information criteria, ΔAICc refers to the difference in AICc from the top-ranked model, weight refers to the relative weight of the model, and deviance refers to the residual deviance. In all models, survival was modeled with age as a linear covariate. Models are distinguished by the number and delineation of distinct age groups, with ages specified numerically (#g) and whether the additive effect of time or was included (+ time). For example, 2g;1-6, 7+ refers to a two-group model with age classes 1 through 6 grouped together and age classes 7 and above grouped together. Global model is denoted by an asterisk.

Recapture, p	k	AICc	ΔAICc	Weight	Deviance
[2g; 1-6, 7+]	3	705.70	0.00	0.51	586.40
[3g; 1, 2-6, 7+]	4	707.77	2.07	0.18	586.40
[4g; 1, 2-3, 4-6, 7+]	5	709.58	3.88	0.07	586.13
[4g; 1-2, 3-5, 6-9, 10+]	5	709.74	4.04	0.07	586.29
[2g; 1, 2+]	3	709.99	4.30	0.06	590.70
[3g; 1, 2-3, 4+]	4	710.03	4.33	0.06	588.66
[5g; 1, 2-3, 4-6, 7-10, 11+]	6	711.53	5.83	0.03	585.97
[6g; 1, 2-3, 4-6, 7-10, 11-14, 15+]	7	713.64	7.94	0.01	585.96
[2g; 1-6, 7+] + time	14	715.80	10.10	0.00	572.69
[2g; 1, 2+] + time	14	717.25	11.55	0.00	574.14
[3g; 1, 2-3, 4+] + time	15	718.07	12.37	0.00	572.68
[3g; 1, 2-6, 7+] + time	15	718.08	12.39	0.00	572.69
[4g; 1, 2-3, 4-6, 7+] + time	16	719.86	14.16	0.00	572.16
[4g; 1-2, 3-5, 6-9, 10+] + time	16	720.06	14.37	0.00	572.37
[5g; 1, 2-3, 4-6, 7-10, 11+] + time	17	722.06	16.37	0.00	572.04
Table 7. Candidate model rankings for survival optimization of wild-born juveniles in order of ranking. Survival refers to the structure of the survival parameter (ϕ) in the model, k refers to the number of parameters, AICc refers to Akaike information criteria, ΔAICc refers to the difference in AICc from the top-ranked model, weight refers to the relative weight of the model, and deviance refers to the residual deviance. In all models, recapture was modeled as a two-group model with age classes 1 through 6 grouped together and age classes 7 and above grouped together (2g; 1-6, 7+). Models are distinguished by modeling survival as a linear covariate varying the age at which survival reaches a plateau (Lin_#), a logarithmic (Log), quadratic (Quad) function of age, or included age as a discrete variable (DiscreteAge), all with survival reaching a plateau at age 4. For example, Lin_4 refers to a model with age as a linear covariate of age where survival reaches a plateau at age 4. The global model is denoted by an asterisk.

Survival	k	AICc	ΔAICc	Weight	Deviance
Lin_4	3	700.47	0.00	0.21	581.18
Lin_5	3	700.93	0.45	0.17	581.63
Lin_3	3	701.25	0.77	0.14	581.95
Lin_6	3	701.88	1.40	0.10	582.58
Quad_4	4	702.37	1.89	0.08	581.00
Log_4	4	702.54	2.06	0.08	581.17
Lin_7	3	702.88	2.40	0.06	583.58
Lin_8	3	703.73	3.25	0.04	584.44
Lin_9	3	704.82	4.34	0.02	585.53
Lin_10	3	705.57	5.10	0.02	586.28
Lin_12	3	705.69	5.21	0.02	586.40
Lin_14	3	705.70	5.22	0.02	586.40
Lin_16	3	705.70	5.22	0.02	586.40
*Lin_Age	3	705.70	5.22	0.02	586.40
DiscreteAge_4	6	706.45	5.97	0.01	580.89
Figure 5. Survival estimates generated from top-ranked models or model averaging of multiple top-ranked models for head-started juvenile (blue) and wild-born juvenile and adult (green) Blanding’s turtles for the Spring Bluff-Chiwaukee Prairie population.
Table 8. Survival estimates generated from top-ranked models or model averaging of multiple top-ranked models for wild-born juvenile, head-started juvenile, and wild-born adult (age 15+) Blanding’s turtles for the Spring Bluff-Chiwaukee Prairie population.

Age	Estimate	lcl	ucl
	A. Wild-caught		
1	0.7114	0.6159	0.7912
2	0.8543	0.7215	0.9300
3	0.9308	0.8056	0.9776
4	0.9637	0.8870	0.9890
5	0.9750	0.9344	0.9907
6-14	0.9778	0.9432	0.9915
	B. Head-starts		
1	0.6310	0.5690	0.6891
2	0.7452	0.6354	0.8308
3	0.8333	0.6969	0.9158
4	0.8774	0.7229	0.9515
5	0.8970	0.7100	0.9687
6	0.9033	0.6946	0.9746
	C. Adults		
	0.9473	0.9266	0.9624
Head-Started Juveniles

To optimize recapture, I compared eight candidate models in which survival was a linear function of age. Models differed in how age classes were grouped and in whether there was an additive or interactive effect of time. After comparing the eight candidate models for recapture optimization, the top-ranked model (weight=0.71) specified three discrete age groups (1, 2, 3+) with an interactive effect of time. The other candidate models had ∆AICc > 2 (Table 9).

Maintaining this best parameterization of recapture, I compared four candidate models for which survival was a linear function of age but varied in the age at which survival reaches a plateau. I considered three additional candidate models for which survival was a logarithmic or function of age or included age as a discrete variable. The highest ranked model with age as a linear covariate for survival specified a plateau in survival at age 3. Logarithmic and quadratic covariate models were within 2 ∆AICc but had similar deviances to the top-ranked model, suggesting little improvement. The discrete model was ranked the lowest, with a ∆AICc of 3.60. The remaining four linear models have a combined weight of 0.78 and are within 2 ∆QAICc, so I employed model averaging to obtain model-averaged estimates of age-specific survival and recapture (Table 10). Based on the model-averaged results, survival increased from ages 1-6 (63% - 90%) (see Figure 5, Table 8B). Recapture estimates varied by age and year ranging from 0.02-0.72 (Appendix B).
Table 9. Candidate model rankings for the recapture optimization of head-started juveniles in order of ranking. The overall goodness-of-fit test of the global model revealed slight overdispersion of the data, so the most conservative estimated variance inflation term from bootstrapping (c-hat=1.48) was used to correct for overdispersion and QAICc was used to rank the candidate models. Recapture refers to the structure of the recapture parameter (p) in the model, k refers to the number of parameters, AICc refers to quasi-Akaike information criteria, ΔQAICc refers to the difference in QAICc from the top-ranked model, weight refers to the relative weight of the model, and deviance refers to the residual deviance. In all models, survival was modeled with age as a linear covariate. Models are distinguished by the number and delineation of distinct age groups, with ages specified numerically (#g) and whether the additive or interactive effect of time was included. For example, 3g; 1, 2, 3+ refers to a three-group model with age class 1 grouped together, age class 2 grouped together, and age classes 3 and above grouped together. The global model is denoted by an asterisk.

Recapture	k	QAICc	ΔQAICc	Weight	Qdeviance
[3g; 1, 2, 3+] * time	18	704.44	0.00	0.71	50.04
[4g; 1, 2, 3, 4+] * time	22	706.45	2.01	0.26	43.46
[4g; 1, 2, 3, 4+] + time	10	712.11	7.66	0.02	74.52
[2g; 1, 2+] * time	13	713.59	9.15	0.01	69.75
[2g; 1, 2+] + time	8	716.07	11.63	0.00	82.62
[3g; 1, 2, 3+] + time	9	717.90	13.46	0.00	82.39
[3g; 1, 2-3, 4+] + time	9	719.10	14.66	0.00	83.58
[3g; 1, 2-3, 4+] * time	18	722.47	18.03	0.00	68.07
Table 10. Candidate model rankings for survival optimization of head-started juveniles in order of ranking. Goodness-of-fit testing of the top-ranked model for recapture revealed slight overdispersion of the data, so the most conservative estimated variance inflation term from bootstrapping (c-hat=1.45) was used to correct for overdispersion and QAICc was used to rank the candidate models. Survival refers to the structure of the survival parameter (φ) in the model, k refers to the number of parameters, QAICc refers to quasi-Akaike information criteria, ΔQAICc refers to the difference in QAICc from the top-ranked model, weight refers to the relative weight of the model, and deviance refers to the residual deviance. In all models, recapture was modeled as a three-group model with age class 1 grouped together, age class 2 grouped together, and age classes 3 and above grouped together with the interactive effect of time (3g; 1, 2, 3+) * time. Models are distinguished by modelling survival as a linear covariate varying the age at which survival reaches a plateau (Lin_#), a logarithmic (Log), quadratic (Quad) function of age, or included age as a discrete variable (DiscreteAge), all with survival reaching a plateau at age 3. For example, Lin_4 refers to a model with age as a linear covariate of age where survival reaches a plateau at age 4. The global model is denoted by an asterisk.

Survival	k	QAICc	ΔQAICc	Weight	Qdeviance
Lin_3	18	706.53	0.00	0.23	49.79
Lin_4	18	706.96	0.43	0.19	50.22
*Lin_6	18	706.97	0.44	0.18	50.23
Lin_5	18	706.99	0.46	0.18	50.25
Quad_3	19	708.32	1.78	0.09	49.44
Log_3	19	708.53	2.00	0.08	49.65
DiscreteAge_3	20	710.13	3.60	0.04	49.11
Survival Analysis of Adult Turtles

I examined 40 candidate models based on the two global models. The first global model included survival depending on the interactive effect of sex and time and recapture depending on the interactive effect of sex and time. The second global model included survival depending on the interactive effect of sex and time and recapture depending on the interactive effect of sex and effort (Table 11). The most parsimonious model (weight= 0.49) was a 13-parameter model that held survival constant over time and between sexes and recapture rate dependent on time. The next three top-ranked models (combined weight= 0.51) added an additional parameter of a sex effect on survival or recapture. Model deviance was similar among these top four models, suggesting that sex is a “pretending variable” and should be treated as an uninformative parameter (Arnold 2010). Models that included an effect of effort on recapture were consistently low ranking.

For estimated survival of adult turtles, \(\phi = 0.95 \) (95% CI= 0.93 – 0.96; see Figure 5, Table 8C). The 7th-ranked model \(\phi(t) p(t) \) was used to calculate process variance of survival rate because this was the highest ranked model that incorporated time dependence for survival. The process variance for all adults was 0.0011 with 95% CI (0.0003 to 0.0059) and was just 3% of the total variance. Recapture estimates varied by year ranging from 0.30-0.89 (Appendix C).
Table 11. Candidate model rankings for survival and recapture optimization of adult turtles in order of ranking. The models are described by ϕ referring to the survival parameter in the model and p refers to the recapture parameter in the model, k refers to the number of parameters, AICc refers to Akaike information criteria, ΔAICc refers to the difference in AICc from the top-ranked model, weight refers to the relative weight of the model, and deviance refers to the residual deviance. The global model is denoted by an asterisk. Models 25 and 38 are the alternative global models. Model 7 was used to estimate process variance.

Rank	Model	k	AICc	ΔAICc	Weight	Deviance
1	$\phi(.) \ p(t)$	13	1298.79	0.00	0.49	688.92
2	$\phi(.) \ p(sex + t)$	14	1300.49	1.71	0.21	688.51
3	$\phi(sex) \ p(t)$	14	1300.60	1.81	0.20	688.61
4	$\phi(sex) \ p(sex + t)$	15	1302.03	3.24	0.10	687.91
5	$\phi(.) \ p(sex * t)$	25	1309.12	10.34	0.00	673.19
6	$\phi(sex) \ p(sex * t)$	26	1311.21	12.42	0.00	673.04
7*	$\phi(t) \ p(t)$	23	1312.56	13.78	0.00	681.07
8	$\phi(t) \ p(sex + t)$	24	1314.45	15.66	0.00	680.74
9	$\phi(sex + t) \ p(t)$	24	1314.47	15.68	0.00	680.76
10	$\phi(sex + t) \ p(sex + t)$	25	1316.10	17.32	0.00	680.17
11	$\phi(sex + t) \ p(sex * t)$	36	1326.11	27.33	0.00	665.04
12	$\phi(t) \ p(sex * t)$	36	1326.16	27.38	0.00	665.09
13	$\phi(sex * t) \ p(t)$	34	1333.55	34.76	0.00	677.14
14	$\phi(sex * t) \ p(\neg sex + t)$	35	1335.62	36.83	0.00	676.88
15	$\phi(.) \ p(Effort)$	3	1341.26	42.47	0.00	752.13

(Continued on the following page)
Model Rank	Model	k	AICc	ΔAICc	Weight	Deviance
16	φ(.) p(sex + Effort)	4	1341.57	42.78	0.00	750.40
17	φ(sex) p(sex + Effort)	5	1342.86	44.08	0.00	749.65
18	φ(sex) p(Effort)	4	1343.01	44.22	0.00	751.84
19	φ(.) p(sex * Effort)	5	1343.61	44.82	0.00	750.39
20	φ(.) p(.)	2	1343.96	45.17	0.00	756.85
21	φ(.) p(sex)	3	1344.12	45.33	0.00	754.98
22	φ(sex)p(sex * Effort)	6	1344.89	46.11	0.00	749.63
23	φ(sex) p(sex)	4	1345.45	46.66	0.00	754.28
24	φ(sex) p(.)	3	1345.73	46.95	0.00	756.60
*25	φ(sex * t) p(sex * t)	48	1348.81	50.02	0.00	658.86
26	φ(t) p(Effort)	14	1353.88	55.09	0.00	741.90
27	φ(t) p(sex + Effort)	15	1354.44	55.65	0.00	740.32
28	φ(sex + t) p(sex + Effort)	16	1355.44	56.66	0.00	739.19
29	φ(sex + t) p(Effort)	15	1355.47	56.68	0.00	741.35
30	φ(t) p(sex * Effort)	16	1356.49	57.70	0.00	740.23
31	φ(t) p(.)	13	1356.92	58.14	0.00	747.06
32	φ(t) p(sex)	14	1357.18	58.39	0.00	745.20
33	φ(sex + t) p(sex * Effort)	17	1357.57	58.79	0.00	739.17
34	φ(sex + t) p(sex)	15	1358.27	59.48	0.00	744.15

(Continued on the following page)
Model Rank	Model	k	AICc	ΔAICc	Weight	Deviance
35	φ(sex + t) p(.)	14	1358.53	59.74	0.00	746.54
36	φ(sex * t) p(Effort)	26	1375.59	76.80	0.00	737.42
37	φ(sex * t) p(sex + Effort)	27	1376.33	77.55	0.00	735.92
*38	φ(sex * t) p(sex * Effort)	28	1378.50	79.71	0.00	735.83
39	φ(sex * t) p(.)	25	1378.56	79.77	0.00	742.62
40	φ(sex * t) p(sex)	26	1379.01	80.22	0.00	740.84
DISCUSSION

Head-starting is a conservation strategy that is widely used in turtle species (Burke 2015) but is less often evaluated for its effectiveness (Bennett et al. 2017). My comparison of the growth and survival of wild-born and head-started juveniles within the same population provides us with a quantitative perspective to evaluate head-starting as a population management tool for Blanding’s turtles.

The results of my growth analysis support the idea that head-starting increases the size of turtles as compared to equivalent-aged wild-born turtles. Head-starts released approximately one-year post-hatching were about the same size as 2-year-old wild-born turtles. Importantly, growth of head-starts parallels that of wild-born turtles such that this difference in size persists for at least six years post-release with head-started turtles consistently achieving the size their wild-born counterparts that are one year older. In other turtle species, such as Redbelly turtles, it has been long established that the process of head-starting increases the size of turtles at release (Haskell et al 1996). My results are similar to findings in other studies of Blanding’s turtle head-starting (Arsenault 2011; D’Entremont 2014). In Nova Scotia, head-started turtles of equivalent ages were larger than their wild-born counterparts (Arsenault 2011). Data on post-release growth of head-starts of Blanding’s turtles are more sparse, especially in comparison to like-aged wild-born turtles. Arsenault (2011) found that growth rates were significantly different between wild-born and head-started turtles, with wild-born turtles growing at a faster rate. In other reptiles, such as the Plains garter snake, growth rates of head-started snakes were found to be similar to that of their wild-born counterparts (King and Stanford 2006).
The results of my survival analysis demonstrate that head-started Blanding’s turtles have moderately high annual survival (63%) during the first year post-release and that survival increases in subsequent years, approaching 90% in their sixth year post-release. In telemetry studies of head-started Blanding’s turtles, survival was estimated within the same range as my findings: 63-96% (Szymanski 2016), 70% (Arsenault 2011; D’Entremont 2014), 89-98% (Carstairs et al. 2019). These studies were short term (based on 1-2 years of telemetry data) and used small sample sizes. In other mark-recapture studies of head-started Blanding’s turtles, survival was estimated at 72% for the first year post-release using three years of data (Green 2015) and between 77-87% with few recaptures over four years of data (Ross and Dreslik 2018). This short-term monitoring post-release of head-started turtles is similar to what was found in other species, such as the Gopher tortoise (Tuberville et al. 2015), where survival is lowest immediately post-release but then continues to increase.

Overall, my results support head-starting as an effective tool for turtle conservation. I found that the survival of head-starts was similar to like-aged wild-born Blanding’s turtles despite head-starts having attained greater body size. Prior analyses have demonstrated that head-starting has been successful in shifting Blanding’s turtle population body size distributions to include a broader array of juvenile and adult-sized turtles and promoting juvenile and adult recruitment (Carstairs et al. 2019; Thompson et al. 2019) and that spatial ecology of head-starts is similar to that of wild-born turtles (Starking-Symanski et al. 2018). My results build on these studies by demonstrating that head-start growth and survival are comparable to that of wild-born turtles. This has implications for efforts to use head-starting to establish new Blanding’s turtle populations (Buhlmann et al. 2015). For example, the survival rates of head-started turtles can be used for population viability analyses to plan start-from-scratch experimental population
establishment. In future studies, it would be useful to compare growth and survival of directly released, first-year head-starts like those analyzed here and second-year head-starts to refine head-starting methodology. Also needed are analyses of the reproductive competence of head-started turtles once they reach reproductive maturity. At another northeastern Illinois site, head-started females that attained reproductive maturity were captured and induced to oviposit in captivity (Thompson et al. 2019). Demonstrating successful nesting in the wild will be an important next step in evaluating Blanding’s turtle head-starting.

My estimation of juvenile survival fills a data gap in Blanding’s turtle demography. The rates I estimated for wild-born juvenile survival are surprisingly high. The most utilized estimate for juvenile survival comes from Congdon et al. (1993), who inferred necessary juvenile (1 – 13 yr) survival to maintain a stable population to be 79%, a value less than all but the youngest age class of juveniles in my analysis. Other Blanding’s turtle studies have wide ranges of estimated juvenile survival (from 33-100%) with wide confidence intervals but are often based on very small sample sizes (Arsenault 2011; D’Entremont 2014; Kuhns and Phillips 2010). My survival estimates for adult Blanding’s turtles are comparable with other long-term studies, showing high (approaching or exceeding 90%) survival of this adult age class (Congdon et al. 1993; Congdon et al. 2001; Reid et al. 2016; Ross and Dreslik 2018; Rubin et al. 2004). The exception is found in a population in Nebraska where adult survival is estimated at 69% (Ruane et al. 2008). Although survival of adults is well studied, establishing site-specific estimates of survival and its environmental (process) variance will be useful in planned population viability analysis.

Accurate and site-specific demographic parameter estimates are essential for reliable projection of effects of management on populations (Congdon et al. 1993; Heppell et al. 1996).
Using the demographic rates that I estimated, I can create site-specific population viability analyses and the survival of head-started turtles can be used to model start-from-scratch populations. Population viability analyses are useful tools for such species because they allow the comparison of conservation strategies over time frames that would not be possible experimentally. Together with other demographic information from this population (adult survival, fecundity), I anticipate generating more accurate population projections that will aid in evaluating conservation strategies for this population and potentially for Blanding’s turtles elsewhere.
Akaike, H. 1973. Maximum likelihood identification of gaussian autoregressive moving average models. Biometrika 60:255–265.

Andrews, R. M. 1982. Patterns of growth in reptiles. In: C. Gans and F.H. Pough, eds. Biology of Reptilia. Academic Press, New York, pp. 273–320.

Anthony, T., J. D. Riedle, M. B. East, B. Fillmore, and D. B. Ligon. 2015. Monitoring of a reintroduced population of juvenile alligator snapping turtles. Chelonian Conservation and Biology 14:43–48.

Arnold, T. W. 2010. Uninformative parameters and model selection using akaike’s information criterion. Journal of Wildlife Management 74:1175–1178.

Arsenault, L. M. 2011. Headstarting Blanding’s turtles (Emydoidea blandingii) in Nova Scotia: an investigation of artificial incubation, captive-rearing, and release to natural habitats. Masters Thesis. Acadia University, Wolfville, Nova Scotia, Canada.

Arsovski, D., A. Olivier, X. Bonnet, S. Drilholle, L. Tomović, A. Béchet, A. Golubović, and A. Besnard. 2018. Covariates streamline age-specific early life survival estimates of two chelonian species. Journal of Zoology 306:223-234.

Bennett, A. M., J. Steiner, S. Carstairs, A. Gielens, and C. M. Davy. 2017. A question of scale: replication and the effective evaluation of conservation interventions. FACETS 2: 892-909.

Bjorndal, K. A., and A. B. Bolten. 1989. Comparison of straight-line and over-the-curve measurements for growth rates of green turtles, Chelonia mydas. Bulletin of Marine Science 45:189–192.

Briggs-Gonzalez, V., C. Bonenfant, M. Basille, M. Cherkiss, J. Beauchamp, and F. Mazzotti. 2017. Life histories and conservation of long-lived reptiles, an illustration with the American Crocodile. Journal of Animal Ecology 86:1102–1113.

Brown, W. S., M. Kery, and J. E. Hines. 2007. Survival of timber rattlesnakes (Crotalus Horridus) estimated by capture–recapture models in relation to age, sex, color morph, ime, and birthplace. Copeia 2007:656–671.
Buhlmann, K. A., S. L. Koch, B. O. Butler, T. D. Tuberville, V. J. Palermo, B. A. Bastarache, and Z. A. Cava. 2015. Reintroduction and head-starting: tools for Blanding’s turtle (Emydoidea blandingii) conservation. Herpetological Conservation and Biology 10:436–454.

Buhlmann, K. A., and T. D. Tuberville. 1998. Use of passive integrated transponder (PIT) tags for marking small freshwater turtles. Chelonian Conservation and Biology 3:102–104.

Burke, R. 2015. Head-starting turtles: learning from experience. Herpetological Conservation and Biology 10:299–308.

Burnham, K. P., and D. R. Anderson. 1998. Model selection and inference. In.: Springer New York, New York, NY.

Cagle, F. R. 1939. A system for marking turtles for future identification. Copeia 1939.

Canessa, S., P. Genta, R. Jesu, L. Lamagni, F. Oneto, S. Salvidio, and D. Ottonello. 2016. Challenges of monitoring reintroduction outcomes: insights from the conservation breeding program of an endangered turtle in Italy. Biological Conservation 204:128–133.

Carstairs, S., J. E. Paterson, K. L. Jager, D. Gasbarrini, A. B. Mui, and C. M. Davy. 2019. Population reinforcement accelerates subadult recruitment rates in an endangered freshwater turtle. Animal Conservation.

Castanet, J. 1988. Les méthodes d’estimation de l’âge chez les chéloniens. Mesogee 48.

Congdon, J. D., A. E. Dunham, and R. C. Van Loben Sels. 1993. Delayed sexual maturity and demographics of Blanding’s turtles: implications for conservation and management of long-lived organisms. Conservation Biology 7:826–833.

Congdon, J. D., R. D. Nagle, O. M. Kinney, and R. C. van Loben Sels. 2001. Hypotheses of aging in a long-lived vertebrate, Blanding’s turtle (Emydoidea blandingii). Experimental Gerontology 36:813–827.

Cooch, E., and G. White. 2019. Program MARK: A Gentle Introduction. http://www.phidot.org/software/mark/docs/book/.

Cormack, R. M. 1964. Estimates of survival from the sighting of marked animals. Biometrika 51:429–438.
D’Entremont, N. 2014. Comparative growth and movement analysis of headstarted Blanding’s turtles (Emydoidea blandingii) at Kejimkujik National Park and National Historic Site of Canada. PhD Dissertation. Acadia University, Wolfville, Nova Scotia, Canada.

Frazer, N., J. Gibbons, and J. Greene. 1990. Exploring Fabens’ growth interval model with data on a long-lived vertebrate, Trachemys scripta (Reptilia: Testudinata). Copeia 1990:112–118.

Germano, D. J., R. B. Bury, and M. Jennings. 2000. Growth and population structure of Emydoidea blandingii from Western Nebraska. Chelonian Conservation and Biology 3:618–625.

Gibbons, D. J., R. B. Bury, and M. Jennings. 2000. Growth and population structure of Emydoidea blandingii from Western Nebraska. Chelonian Conservation and Biology 3:618–625.

Gibbon, J. W., D. E. Scott, T. J. Ryan, K. A. Buhlmann, T. D. Tuberville, B. S. Metts, J. L. Greene, T. Mills, Y. Leiden, S. Poppy, and C. T. Winne. 2000. The global decline of reptiles, déjà vu amphibians. BioScience 50:653.

Graham, T., and T. Doyle. 1979. Dimorphism, courtship, eggs, and hatchlings of the Blanding’s Turtle, Emydoidea blandingii (Reptilia, Testudines, Emydidae) in Massachusetts. Journal of Herpetology 13:125–127.

Green, J. M. 2015. Effectiveness of head-starting as a management tool for establishing a viable population of Blanding’s turtles. Masters Thesis. University of Georgia, Athens, Georgia, USA.

Haskell, A., T. Graham, C. Griffin, and J. Hestbeck. 1996. Size related survival of headstarted Redbelly turtles (Pseudemys rubriventris) in Massachusetts. Journal of Herpetology 30:524–527.

Heppell, S. S., L. B. Crowder, and D. T. Crouse. 1996. Models to evaluate headstarting as a management tool for long-lived turtles. Ecological Applications 6:556–565.

Jolly, G. M. 1965. Explicit Estimates from Capture-Recapture Data with Both Death and Immigration-Stochastic Model. Biometrika 52:225–247.

King, R. B., and K. M. Stanford. 2006. Headstarting as a management tool: A case study of the plains gartersnake. Herpetologica 62:282–292.

King, R. B., K. M. Stanford, P. C. Jones, and K. Bekker. 2016. Size matters: individual variation in ectotherm growth and asymptotic size. PLOS ONE 11:1-16.

Kuhns, A. R. 2010. Recovery of the Blanding’s turtle at Spring Bluff Nature Preserve, Lake County Forest Preserves. Final Report. Federal Aid Project T-39-D-1.
Kuhns, A. R., and C. A. Phillips. 2010. Status of Blanding’s turtles in Lake County Forest Preserve District and feasibility of initiating a head-starting program at Rollins Savanna. Final Report. Grant Agreement # 509787.

Laake, J. L. 2013. RMark: An R interface for analysis of capture-recapture data with MARK. AFSC Processed Rep. 2013-01, 25 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.

Lebreton, J.-D., K. P. Burnham, J. Clobert, and D. R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62:67–118.

Lefebvre, J., T. S. Avery, and T. B. Herman. 2011. Size dimorphism and growth rates in distinct populations of Blanding’s turtles (Emydoidea blandingii) in Nova Scotia in relation to environment. Herpetological Conservation and Biology 6(3):465–472.

Martin, T. G., L. Kehoe, C. Mantyka-Pringle, I. Chades, S. Wilson, R. G. Bloom, S. K. Davis, R. Fisher, J. Keith, K. Mehl, B. P. Diaz, et al. 2018. Prioritizing recovery funding to maximize conservation of endangered species. Conservation Letters 11:e12604.

McCallum, H. A. 2000. Population Parameters: Estimation for Ecological Models. Blackwell Science, Paris, France.

R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Reid, B. N., R. P. Thiel, and M. Z. Peery. 2016. Population dynamics of endangered Blanding’s turtles in a restored area: turtle responses to habitat restoration. The Journal of Wildlife Management 80:553–562.

Ross, J. P., and M. J. Dreslik. 2018. Demographic monitoring of Blanding’s turtles (Emydoidea blandingii) at Pratt’s Wayne Woods Forest Preserve in 2017.

Ruane, S., S. A. Dinkelacker, and J. B. Iverson. 2008. Demographic and reproductive traits of Blanding’s turtles, Emydoidea blandingii, at the western edge of the species’ range. Copeia 2008:771–779.

Rubin, C. S., R. E. Warner, D. R. Ludwig, and R. P. Thiel. 2004. Survival and population structure of Blanding’s turtles (Emydoidea blandingii) in two suburban Chicago forest preserves. Natural Areas Journal 24:44–48.

Seber, G. A. F. 1965. A note on the multiple-recapture census. Biometrika 52:249–259.
Seigel, R., and C. Jr. Dodd. 2000. Manipulation of turtle populations for conservation: halfway technologies or viable options? Turtle Conservation. Smithsonian Institution Press, Washington DC 2000:218–238.

Starking-Szymanski, M., T. Yoder-Nowak, G. Rybarczyk, and H. A. Dawson. 2018. Movement and habitat use of headstarted Blanding’s turtles in Michigan. Journal of Wildlife Management 82:1516–1527.

Szymanski, M. 2016. Investigation of headstarted Blanding’s turtles (Emydoidea blandingii) in Shiawassee National Wildlife Refuge, Saginaw, MI. Masters Thesis. University of Michigan-Flint, Flint, Michigan.

Thompson, D., G. Glowacki, D. Ludwig, R. Reklau, C. Golba, and R. B. King. 2019. Benefits of head-starting for Blanding’s turtle size distributions and recruitment. Wildlife Society Bulletin. In press.

Tuberville, T., T. M. Norton, K. A. Buhlmann, and V. Greco. 2015. Head-starting as a management component for Gopher Tortoises (Gopherus polyphemus). Herpetological Conservation and Biology 10:455–471.

White, G. C., and K. P. Burnham. 1999. Program MARK: survival estimation from populations of marked animals. Bird study 46:120–138.

White, G. C., K. P. Burnham, and D. R. Anderson. 2001. Advanced features of program MARK. In: Wildlife, land, and people: priorities for the 21st century. Proceedings of the second international wildlife management congress. The Wildlife Society, Bethesda, Maryland, USA. pp. 368–377.

Wilson, D. S., C. R. Tracy, and C. R. Tracy. 2003. Estimating age of turtles from growth rings: A critical evaluation of the technique. Herpetologica 59:178–194.

Windmiller, B., J. Berk Holtz, and E. Schuler. 2016. Restoring a regionally significant Blanding’s turtle population in eastern Massachusetts. American Turtle Observatory Abstracts from the 2016 Blanding’s & Wood Turtle Conservation Symposium, Westborough, Massachusetts, USA:22–23.
APPENDIX A

RECAPTURE ESTIMATES FOR WILD-BORN JUVENILES
Appendix A. Recapture estimates for wild-born juveniles from model averaging of the top four linear models.

Age	Estimate	se	lcl	ucl
1->7	0.3748	0.0752	0.2422	0.5292
7+	0.2622	0.0241	0.2178	0.3121
APPENDIX B

RECAPTURE ESTIMATES FOR HEAD-STARTED JUVENILES
Appendix B. Recapture estimates for head-started juveniles from model averaging of the top four linear models. Cohort refers to year of hatching, age refers to chronological age (years), year refers to the recapture estimate for each cohort, estimate refers to the recapture estimate, SE refers to the standard error, and LCL and UCL are the upper and lower confidence intervals.

Cohort	Age	Year	Estimate	SE	LCL	UCL
2011	2	2013	0.02	0.02	0.00	0.19
2011	3	2014	0.03	0.04	0.00	0.26
2011	4	2015	0.23	0.12	0.08	0.52
2011	5	2016	0.29	0.09	0.15	0.48
2011	6	2017	0.31	0.08	0.17	0.49
2011	7	2018	0.20	0.07	0.10	0.37
2012	2	2014	0.05	0.03	0.01	0.16
2012	3	2015	0.22	0.07	0.10	0.39
2012	4	2016	0.29	0.09	0.15	0.48
2012	5	2017	0.31	0.08	0.17	0.49
2012	6	2018	0.20	0.07	0.10	0.37
2013	2	2015	0.06	0.04	0.02	0.21
2013	3	2016	0.25	0.09	0.12	0.46
2013	4	2017	0.31	0.08	0.17	0.49
2013	5	2018	0.20	0.07	0.10	0.37
2014	2	2016	0.05	0.04	0.01	0.23
Year1	Year2	Year3	Value1	Value2	Value3	Value4
-------	-------	-------	--------	--------	--------	--------
2014	3	2017	0.03	0.04	0.00	0.29
2014	4	2018	0.20	0.07	0.10	0.37
2015	2	2017	0.42	0.11	0.22	0.64
2015	3	2018	0.72	0.17	0.32	0.93
2016	2	2018	0.48	0.08	0.33	0.64
APPENDIX C

RECAPTURE ESTIMATES FOR ADULT TURTLES
Appendix C. Estimated yearly capture probabilities for adults.

Year	Capture Probability	SE	Lower	Upper
2005	0.89	0.10	0.50	0.98
2006	0.81	0.05	0.69	0.90
2007	0.65	0.06	0.53	0.75
2008	0.47	0.06	0.38	0.58
2009	0.48	0.06	0.37	0.60
2010	0.31	0.06	0.22	0.43
2013	0.31	0.06	0.21	0.44
2014	0.30	0.05	0.20	0.42
2015	0.38	0.06	0.28	0.50
2016	0.40	0.06	0.30	0.51
2017	0.44	0.06	0.33	0.55
2018	0.47	0.06	0.36	0.59