Controlled reduction for size selective synthesis of thiolate-protected gold nanoclusters $\text{Au}_n$ ($n = 20, 24, 39, 40$)

Xiangming Meng¹, Zhao Liu¹, Manzhou Zhu¹* and Rongchao Jin¹,²*

Abstract

This work presents a controlled reduction method for the selective synthesis of different sized gold nanoclusters protected by thiolate ($\text{SR} = \text{SC}_2\text{H}_4\text{Ph}$). Starting with $\text{Au}(\text{III})$ salt, all the syntheses of $\text{Au}_n(\text{SR})_m$ nanoclusters with $(n, m) = (20, 16), (24, 20), (39, 29)$, and $(40, 30)$ necessitate experimental conditions of slow stirring and slow reduction of $\text{Au}(\text{I})$ intermediate species. By controlling the reaction kinetics for the reduction of $\text{Au}(\text{I})$ into clusters by $\text{NaBH}_4$, different sized gold nanoclusters are selectively obtained. Two factors are identified to be important for the selective growth of $\text{Au}_{20}$, $\text{Au}_{24}$, and $\text{Au}_{39/40}$ nanoclusters, including the stirring speed of the $\text{Au}(\text{I})$ solution and the $\text{NaBH}_4$ addition speed during the step of $\text{Au}(\text{I})$ reduction to clusters. When comparing with the synthesis of $\text{Au}_{25}(\text{SC}_2\text{H}_4\text{Ph})_{18}$ nanoclusters, we further identified that the reduction degree of $\text{Au}(\text{I})$ by $\text{NaBH}_4$ also plays an important role in controlling cluster size. Overall, our results demonstrate the feasibility of attaining new sizes of gold nanoclusters via a controlled reduction route.

Keywords: Gold nanoclusters, Size selective synthesis, Controlled reduction

Background

Gold nanoclusters [1-6] have received extensive attention owing to their interesting optical properties [6-9], magnetism [10,11], fluorescence [12-16], chirality [17-20], redox properties [21-27], as well as potential applications in many fields such as catalysis and biological labeling [28-33]. The new physicochemical properties of gold nanoclusters are largely imparted by the discrete electronic structure of the metal core due to quantum confinement effects. The surface of the cluster may also influence some of the material properties, such as chirality [18,19].

Recently, major advances in wet chemical synthesis of nanoclusters have been achieved, and it has been possible to control nanoclusters at the atomic level. A number of well-defined nanoclusters have been reported; however, only a few can be obtained in bulk quantities and in high yields via facile synthetic methods [34]. Among the various thiolate-protected gold nanoclusters, $\text{Au}_{25}(\text{SR})_{18}$ has been extensively studied [21-27,35-41]. Other well-defined nanoclusters have also been attained, such as $\text{Au}_{36}$ [42], $\text{Au}_{38}$ [43,44], $\text{Au}_{102}$ [45], and $\text{Au}_{144}$ [46,47].

We previously reported a kinetically controlled synthetic approach for the synthesis of highly pure $\text{Au}_{25}(\text{SR})_{18}$ nanoclusters [48,49]. The method involves a size focusing mechanism, that is, the initial cluster product of mixed sizes is converged to a specific size of highest stability under appropriate conditions [34]. By controlling the size range of the initial nanoclusters, one can achieve atomic monodispersity of nanoclusters [34]. This synthetic approach constitutes a versatile strategy for gold nanocluster synthesis [49] and has been demonstrated in the synthesis of quite a number of atomically precise $\text{Au}_n(\text{SR})_m$ nanoclusters, such as $\text{Au}_{25}$, $\text{Au}_{38}$, and $\text{Au}_{144}$ [34].

Herein, we demonstrate that a controlled reduction method can lead to different sizes of gold nanoclusters. By making a modification of the synthetic method of $\text{Au}_{24}$ nanoclusters [50], we have obtained two new sizes, including $\text{Au}_{39}(\text{SC}_2\text{H}_4\text{Ph})_{29}$ and $\text{Au}_{40}(\text{SC}_2\text{H}_4\text{Ph})_{30}$. Our
results explicitly show that the initial growth stage of nanoclusters is critical and can be largely influenced by experimental conditions. This method of controlled reduction has expanded the synthetic approaches for preparing nanoclusters with size control.

Methods

Materials
The following chemicals were used: tetrachloroauric(III) acid (HAuCl₄·3H₂O, ≥99.99% metals basis, Sigma-Aldrich Corporation, St. Louis, MO, USA), tetroctylammonium bromide (TOAB, ≥98%, Fluka Chemicals Limited, Gillingham, Medway, UK), phenylethanolthiol (PhC₂H₄SH, ≥99%, Acros Organics, Thermo Fisher Scientific, NJ, USA), and sodium borohydride (99.99%, metals basis, Sigma-Aldrich). The solvents include toluene (HPLC grade, ≥99.9%, Sigma-Aldrich), ethanol (absolute, 200 proof, PHARMCO-AAPER, Shelbyville, KY, USA). Pure water was from Wahaha Co. LTD (Hangzhou, China). All glassware was thoroughly cleaned with *aqua regia* (HCl: HNO₃ = 3:1 vol), rinsed with copious pure water, and then dried in an oven prior to use.

Analysis tools
All UV-visible (vis) absorption spectra of Au nanoclusters in either toluene or methylene chloride were recorded using a Hewlett-Packard (HP, Palo Alto, CA, USA) 8453 diode array spectrophotometer. Electrospray ionization mass spectra were acquired using a Waters Q-TOF (Waters Corporation, Milford, MA, USA) mass spectrometer equipped with a Z-spray source. The sample solution (approximately 1 mg/mL) dissolved in toluene was diluted in methanol (50 mM cesium acetate CsAc, 1:2 vol). The clear aqueous phase was then removed. After approximately 15 min, phase transfer was completed; the clear aqueous phase was then removed. The toluene solution was cooled down to 0 °C in an ice bath over a period of approximately 30 min under constant magnetic stirring. After that, magnetic stirring was reduced to a slow speed (approximately 100 rpm). The solution color changed slowly from deep red to faint yellow and to colorless over approximately 1 h. After that, the speed of magnetic stirring was increased from approximately 100 to 400 rpm. At the same time, 1 mL aqueous solution of NaBH₄ (0.44 mol/L, freshly made with ice-cold water) was dropwise added to the toluene solution over a 15-min period using a 1-mL syringe. The color of the solution turned black gradually. After the dropwise addition of NaBH₄, the reaction was allowed to further proceed overnight. The optical absorption spectrum of the crude reaction product (diluted with toluene) shows a distinct absorption band at approximately 800 nm.

Post-synthetic treatment of the crude product
The aqueous layer at the bottom of the flask was removed using a syringe, and the toluene solution was concentrated by rotary evaporation at room temperature. Ethanol (approximately 50 mL) was added to precipitate the Au nanoclusters. The brown, turbid solution was allowed to stand on bench for several hours. The precipitate was collected and redissolved in toluene. This precipitation/dissolution process was repeated with ethanol. The crude mixture was extracted with methylene chloride/acetonitrile (1:9 vol) to remove a small amount of Au20(SC₂H₄Ph)₁₆ (its optical absorption band at approximately 485 nm) [51]. After Au20 was removed from the product, Au2₄(SC₂H₄Ph)₂₀ nanoclusters were removed by a second extraction with methylene chloride/acetonitrile (1:2 vol) [50]. The final remaining product was collected and characterized by mass spectrometry.

Results and discussion

Identification of Au₃₉(SC₂H₄Ph)₂₉ and Au₄₀(SC₂H₄Ph)₃₀
Starting with an Au(III) salt precursor, the synthesis of gold nanoclusters involves two primary stages: (a) reduction of Au(III) to Au(I) by HSR, during which the formed Au(I) intermediate species spontaneously aggregates into polymeric Au(I) species (unknown structure), and (b) reduction of Au(I) to Auₙ(SR)ₙ nanoclusters by NaBH₄.

In this work, we have identified several important factors for the synthesis of nanoclusters Au₃₉ and Au₄₀, including the stirring speed of the reaction mixture, the addition speed, and the amount of NaBH₄ solution to reduce Au(I) into clusters. The synthetic conditions reported in this work differ from the previous syntheses of Au₃₉(SC₂H₄Ph)₁₃, Au₂₀(SC₂H₄Ph)₁₆ and Au₄₀(SC₂H₄Ph)₂₀ (see "Methods" section) [50-52]. Specifically, in the present work, our major modification lies in the *stirring speed* of the Au(I) intermediate solution when reduced by NaBH₄. In a previous work, Au₂₀(SC₂H₄Ph)₁₆ and Au₄₀(SC₂H₄Ph)₂₀ were synthesized by controlling the stirring speed for the reduction step of Au(I) by NaBH₄ for example, approximately 50 rpm for
Au$_{20}$(SC$_2$H$_4$Ph)$_{16}$ and approximately 100 rpm for Au$_{24}$(SC$_2$H$_4$Ph)$_{20}$.

To synthesize larger-sized nanoclusters, we rationalize that the kinetics of the reduction reaction of Au(I) intermediate species by NaBH$_4$ may be important for potential size control. Motivated by that, we systematically varied the synthetic conditions and also compared with the typical method for Au$_{25}$(SC$_2$H$_4$Ph)$_{18}$ synthesis. Interestingly, we found that with the stirring speed being increased to approximately 400 rpm, the crude product (Figure 1A) shows an optical spectrum different from that of Au$_{24}$(SC$_2$H$_4$Ph)$_{20}$ or Au$_{20}$(SC$_2$H$_4$Ph)$_{16}$ (Figure 1B,C). A new absorption peak centered at approximately 800 nm was observed (Figure 1A), indicating that some new species have been formed in this controlled reduction process. Of note, the small peak at approximately 700 nm (Figure 1A) is due to the concurrent formation of a small amount of Au$_{24}$(SC$_2$H$_4$Ph)$_{20}$ clusters as impurities in the synthesis of the new clusters. To remove Au$_{24}$ and possible Au$_{20}$ impurities from the product, the clusters in the crude product were precipitated by adding ethanol, and the crude product was then extracted with CH$_2$Cl$_2$/CH$_3$CN (1:9 vol) to selectively dissolve Au$_{20}$(SC$_2$H$_4$Ph)$_{16}$ from the product. The remained undissolved product was followed by a second extraction with CH$_2$Cl$_2$/CH$_3$CN (1:2 vol) to remove Au$_{24}$(SC$_2$H$_4$Ph)$_{20}$. The final remaining product is largely free of Au$_{23}$ and Au$_{20}$ impurities, as evidenced in the disappearance of the 700-nm band in the optical spectrum (Figure 1A, red profile). The relatively pure product is subject to further characterization for cluster formula determination.

We employ electrospray ionization mass spectrometry (ESI-MS) to determine the composition of the new gold cluster product. A solution of cesium acetate (CsAc, 50 mM, in dry methanol) was added to a toluene solution of gold clusters at 1:1 or 1:2 (vol). ESI-MS detects the cluster-Cs adducts that are positively charged due to Cs$^+$ addition to the cluster surface.

The low-mass portion of the spectrum consists of all [CsAc]$_x$Cs$^+$ signals (Figure S1 in Additional file 1), and residual Au$_{24}$(SC$_2$H$_4$Ph)$_{20}$Cs was also observed at m/z 7,603 (calculated FW = 7604 for mono-Cs adduct). The high-mass portion (Figure 2) shows two peaks at m/z 11,793 and 12,127 (Figure 2A, unsmoothed spectrum; Figure 2B, smoothed). These two signals are corresponding to the new clusters formed in the controlled reduction process. Both peaks indicate +1 ions, evidenced by the unity spacing of the isotope-resolved peaks (see Figure 2A inset, for m/z 11,793). After subtracting one Cs$^+$ ion (FW = 133), the masses of the two new clusters are determined to be 11,660 and 11,994 Da. Unfortunately, isolation of these two mixed clusters into pure ones has not been successful so far.

To deduce the formulas of the two new Au$_n$(SC$_2$H$_4$Ph)$_m$ clusters based upon the ESI-MS data, we first determine the minimum value of the gold atom number (n), which corresponds to the limiting case of Au(I):SR complexes, i.e., when n = m. This gives rise to 11,660/337 approximately 35 for the peak of m/z 11,660. We then construct candidate formulas by systematically increasing n starting from 35. For example, for n = 36, we list two closest matches to the ESI-determined mass of 11,660 Da, one with the smallest negative deviation, i.e., (n, m) = (36, 33), and the other with the smallest positive deviation, i.e., (n, m) = (36, 34), see Table 1; note that other m values for n = 36 are not pursued since they deviate more from the ESI mass of 11,660 Da. Following this method, one can list all the possible formulas until the limiting case of 11,660 Da consisting of all gold atoms, which is the upper limiting case since a certain number of thiolate ligands must be present to

![Figure 1 UV-vis absorption spectra.](image)

(A) The new cluster product (black profile, crude product without any extraction; red, after two extractions). (B) pure Au$_{24}$(SC$_2$H$_4$Ph)$_{20}$, and (C) pure Au$_{20}$(SC$_2$H$_4$Ph)$_{16}$. 

Meng et al. Nanoscale Research Letters 2012, 7:277 http://www.nanoscalereslett.com/content/7/1/277 Page 3 of 7
protect the metal core. By comparing the candidate formulas with the ESI-MS-determined precise mass of 11,660 Da, we readily obtain the Au$_{39}$(SC$_2$H$_4$Ph)$_{29}$ formula (calculated FW = 11661; deviation, 1 Da), as reflected in Table 1. Similarly, the cluster of 11,993 Da is determined to be Au$_{40}$(SC$_2$H$_4$Ph)$_{30}$ (calculated FW = 11995; deviation, 2 Da). A deviation of 0.5 to 2 Da is reasonable at this high mass range.

Insight into the size-controlled synthesis of Au$_{39/40}$ nanoclusters

The attainment of two new nanoclusters, Au$_{39}$(SC$_2$H$_4$Ph)$_{29}$ and Au$_{40}$(SC$_2$H$_4$Ph)$_{30}$, demonstrates the feasibility of controlling cluster size via controlled reduction. Herein, we discuss some insights obtained regarding the synthetic processes of Au$_{20}$, Au$_{24}$, and Au$_{39/40}$. These four cluster species belong to a new series, as Au$_{20}$ and Au$_{24}$ are formed concurrently, albeit in small amounts, in the synthesis of Au$_{39/40}$ nanoclusters. However, by controlling the reaction process, one may selectively produce Au$_{20}$, Au$_{24}$, or Au$_{39/40}$. When using Au(III) as the starting material for nanocluster synthesis, two primary stages include (a) the reduction of Au(III) to Au(I) by HSR and (b) the conversion of Au(I) to Au$_n$(SR)$_m$ clusters by reduction with NaBH$_4$. Factors that are important for Au$_n$ size control with $n = 20$, 24, 39 and 40 include (a) the stirring speed of the reaction mixture, (b) the addition speed of NaBH$_4$, and (c) the amount of NaBH$_4$ added (vide infra).

Stirring speed and effect on cluster size

We found the stirring speed is quite important for controlling the size and monodispersity of gold clusters. As listed in Table 2, during stage I, the stationary condition favors the formation of Au$_{20}$(SR)$_{16}$ nanoclusters, while slow stirring (50 to 100 rpm) favors the formation of Au$_{24}$(SR)$_{20}$, Au$_{39}$(SR)$_{29}$, and Au$_{40}$(SR)$_{30}$. During stage II (the reduction of Au(I) by NaBH$_4$), the stirring speed is even critical for the selective formation of Au$_{20}$, Au$_{24}$, or Au$_{39/40}$. A slow stirring (approximately 50 rpm) during stage II favors the formation of Au$_{39}$(SC$_2$H$_4$Ph)$_{16}$, while a slightly higher speed of stirring (approximately 100 rpm) favored the formation of Au$_{24}$(SC$_2$H$_4$Ph)$_{20}$, and with further increased speed to approximately 400 rpm, we
obtained new clusters of Au_{30}(SC_{2}H_{4}Ph)_{29} and Au_{40} (SC_{2}H_{4}Ph)_{30}. This controlled reaction process for tuning cluster size is quite interesting. We believe that the aggregated Au(I)SR species are broken into small fragments upon reduction or partial reduction by NaBH_{4}. Different stirring speed for stage II would influence the kinetics of the reduction reaction of Au(I)SR, and the different stirring speeds also give rise to different sheering forces that would break polymeric Au(I)SR into different sized fragments; such different sized fragments seem to subsequently grow into different sized clusters based upon our results.

Regarding the aggregated Au(I)SC_{2}H_{4}Ph species in the solution, structural characterization (e.g., by NMR or X-ray diffraction) is still difficult to carry out as the Au(I) intermediate species is poorly soluble in common solvents. Thermal gravimetric analysis determined the composition of Au(I):SR to be 1:1, but the aggregation degree (e.g., how many repeat units in [Au(I)SC_{2}H_{4}Ph]_{x}) and what structures [Au(I)SC_{2}H_{4}Ph]_{x} may adopt are all unknown yet. Possible structures of [Au(I)SC_{2}H_{4}Ph]_{x} include linear chains, ring [53-57], or lamellar structures. The characterization of Au(I)SR still need major efforts in future work.

Dropwise addition speed of NaBH_{4} and effect on cluster size

In addition to the stirring speed during stage II, the addition speed of NaBH_{4} (aqueous solution) to reduce Au(I) into clusters also plays an important role in controlling the final cluster size. We have tested that, in the synthesis of Au_{20}(SC_{2}H_{4}Ph)_{16} if the initial drops of NaBH_{4} solution (0.44 mol/L, 1 mL) were added rapidly, the light yellow solution of Au(I) aggregates would rapidly become brown or deep black, and the product would contain more Au_{24} and Au_{39/40} clusters, instead of the predominant Au_{20} as the case of very slow addition of NaBH_{4} (over a period of approximately 30 min) (entry 1, Table 2). After optimization, we found that adding NaBH_{4} (0.44 mol/L, 1 mL, same concentration and amount as the Au_{20} synthesis) over a period of approximately 15 min gave rise to predominant Au_{24} (under approximately 100 rpm stirring condition) or Au_{39/40} (under approximately 400 rpm stirring condition); see entries 2 and 3 of Table 2. Thus, controlled reduction of Au(I) is very important for size selective formation of Au_{20}, Au_{24}, or Au_{39/40}. The selective formation of Au_{39/40} over Au_{24} which differ only in the stirring speed during stage II (i.e., 400 vs 100 rpm, Table 2) - should be due to the different reaction kinetics in the reduction process of Au(I) species into clusters. In a recent synthetic work on gold/phosphine nanocluster synthesis, Pettibone and Hudgens identified a growth-etching cyclic process that occurs around the most stable cluster species to form monodisperse product [4,58,59]. This size selective growth mechanism provides important information on the gold/phosphine system. The reaction kinetics of the gold/thiol system, however, still needs significant input in order to unravel the details of the kinetic process. Mass spectrometric monitoring of the reaction intermediates would provide valuable information and should be pursued in future work.

Degree of reduction of Au(I) and effect on cluster size

With respect to the growth of Au_{20}, Au_{24}, and Au_{39/40} nanoclusters, an interesting question arises naturally: why the ubiquitous Au_{25} nanocluster is not formed under these conditions (entries 1 to 3, Table 2). The synthesis of Au_{25}(SC_{2}H_{4}Ph)_{18} is typically done under experimental conditions of fast stirring and rapid reduction of Au(I) with large excess of NaBH_{4} (approximately 10 equivalents (eq) of NaBH_{4} per mole of gold). An important difference lies in that the syntheses of Au_{20}, Au_{24}, and Au_{39/40} clusters all involve 1 eq of NaBH_{4} per gold, i.e., 1 mL of NaBH_{4} solution (0.44 mol/L), Table 2. This implies that the degree of reduction of Au(I) might affect the cluster size, and the formation of Au_{25} clusters might necessitate over reduction of Au(I) with a large excess of NaBH_{4}.

To find out whether the reduction degree of Au(I) species affect the final cluster size, we adopt the same

| Cluster size | Stage I | Stage II | Amount of NaBH_{4} | Aging time |
|--------------|---------|---------|-------------------|-----------|
| Staging speed at the stage of Au(III) reduction to Au(I) by 3X HSC_{2}H_{4}Ph | Approximately 50 rpm | 1 mL (1x), dropwise added over a 30-min period | Approximately 6 hrs |
| 1 Au_{20} | Stationary | Approximately 100 rpm | 1 mL (1x), dropwise added over a 15-min period | Overnight |
| 2 Au_{24} | 50 to 100 rpm | Approximately 400 rpm | 1 mL (1x), dropwise added over a 15-min period | Overnight |
| 3 Au_{39/40} | 50 to 100 rpm | 50 to 400 rpm | 5 mL (5x), Dropwise added over a 50-min period | Overnight |
| 4 Au_{25} | 50 to 100 rpm | 50 to 400 rpm | 5 mL (5x), Dropwise added over a 50-min period | Overnight |

Table 2 The respective conditions for the syntheses of Au_{20}, Au_{24}, and mixed Au_{39/40}
stirring conditions as the synthesis of \( \text{Au}_{24} \) and \( \text{Au}_{39/40} \) (see entry 4, Table 2), but we add more \( \text{NaBH}_4 \) (e.g., 5 eq. rather than 1 eq for the synthesis of \( \text{Au}_{24} \) and \( \text{Au}_{39/40} \)). The addition speed of \( \text{NaBH}_4 \) solution is kept comparable to the syntheses of \( \text{Au}_{24} \) and \( \text{Au}_{39/40} \) clusters. Interestingly, dropwise addition of 5 eq of \( \text{NaBH}_4 \) does result in selective formation of \( \text{Au}_{25} \) instead of \( \text{Au}_{24} \) or \( \text{Au}_{39/40} \) evidenced by its characteristic spectroscopic features (see Figure S2 in Additional file 1). Thus, the growth of \( \text{Au}_{25} \) nanoclusters does require a rich reductant (\( \text{NaBH}_4 \)), as opposed to lean \( \text{NaBH}_4 \) for \( \text{Au}_{25}, \text{Au}_{24}, \) and \( \text{Au}_{39/40} \) synthesis. The fast stirring and rapid addition of \( \text{NaBH}_4 \) seem not the key to the synthesis of \( \text{Au}_{25} \) nanoclusters.

**Conclusions**

This work has demonstrated the effectiveness of controlled reduction for synthesizing different sized gold nanoclusters. Specifically, slow stirring and slow addition of 1 eq \( \text{NaBH}_4 \)/mol of gold are critical to effect the preferential growth of the series of \( \text{Au}_{20}, \text{Au}_{24}, \) and \( \text{Au}_{39/40} \) nanoclusters. In addition to the reaction kinetics, controlling the degree of reduction also leads to different sized nanoclusters, as demonstrated in the selective formation of \( \text{Au}_{25} \) over \( \text{Au}_n \) \((n = 20, 24, 39/40)\). Future work is hoped to offer deeper mechanistic understanding of the \( \text{Au}(I) \) formation and the \( \text{Au}(I) \) reduction process by \( \text{NaBH}_4 \). Mechanistic understanding of the cluster growth process will eventually permit high yielding synthesis of a full series of monodisperse gold nanoclusters.

**Additional file**

**Additional file 1:** Mass spectrum in the range of \( m/z \) 2,000 to 8,000 and comparison of the UV-vis spectrum. Figure S1 shows the EI mass spectrum in the range of \( m/z \) 2000 to 8000. Residual \( \text{Au}_{25}(\text{SC}_2\text{H}_4\text{Ph})_{18} \) clusters (in mono-Cs adducts) were observed at \( m/z \) 7603. The low mass portion contains all \((\text{Cs}n\text{C})_{n}\) signals with equal spacing of 191.9 \((n=\text{CsAc})\), for example, the \( m/z \) 2051.99 is assigned to \((\text{Cs}2\text{C})_{3}\text{C}n\). Figure S2 shows the comparison of the UV-vis spectrum of the crude products (profile a) and of the purified \( \text{Au}_{25}(\text{SC}_2\text{H}_4\text{Ph})_{18} \) nanoclusters (profile b).

**Abbreviations**

\( \text{NaBH}_4 \): sodium borohydride; TOAB: tetraoctylammonium bromide.

**Competing interests**

The authors declare that they have no competing interests.

**Authors’ contributions**

XM and ZL participated in all the studies and in writing this paper. MZ and RJ supervised in the concept of the study and participated in its design and in the revision of the manuscript. All authors read and approved the final manuscript.

**Authors’ information**

XM is presently working at Anhui University (China). He received his PhD in Chemistry from the University of Science and Technology of China in 2007. His research interest focuses on chemo-sensors. ZL is a graduate student in the Zhu group at Anhui University (China). He obtained his BS in Chemistry (2010) from Anhui University. His research interest is noble metal nanoparticles. MZ presently works at Anhui University (China). He received his PhD in Chemistry from the University of Science and Technology of China in 2000. Before joining the Jin group as a postdoctoral researcher in February 2007, he worked at the University of Science and Technology of China. His research interests focus on photoinduced electron transfer, sensors, and nanomaterials. RJ received his BS in Chemical Physics from the University of Science and Technology of China (Heifei, China) in 1995, MS in Physical Chemistry/Catalysis from Dalian Institute of Chemical Physics (Dalian, China) in 1998, and PhD in Chemistry from Northwestern University (Evanston, Illinois) in 2003. After 3 years of postdoctoral research at the University of Chicago (Illinois), he joined the Chemistry faculty of Carnegie Mellon University in September 2006. His current research interests focus on atomically precise noble metal nanoparticles, evolution of their structure, electronic and optical properties, and utilizing these well-defined nanoparticles in catalysis, optics, sensing, and so forth.

**Acknowledgements**

Manzhou Zhu acknowledges financial support by NSFC (20871112, 21072001), 211 Project of Anhui University. Rongchao Jin acknowledges the support by the Air Force Office of Scientific Research under AFSOR award no. FA9550-11-1-0099 (FA9550-11-1-0147).

Received: 5 February 2012 Accepted: 30 May 2012
Published: 30 May 2012

**References**

1. Jin R, Zhu Y, Qian H: Quantum-sized gold nanoclusters: bridging the gap between organometallics and nanocrystals. Chem Eur J 2011, 17:5589–5593.
2. Negishi Y, Takasuji Y, Sato S, Yoo H, Kimura K, Tsukuda T: Magic-numbered \( \text{Au}_n \) clusters protected by glutathione monolayers \((n = 18, 21, 25, 28, 32, 39)\); isolation and spectroscopic characterization. J Am Chem Soc 2004, 126:6518–6519.
3. Wynars RB, Alvarez MM, Khoury JT, Price RC, Schaff TG, Whetten RL: The colours of nanometric gold-optical response functions of selected gold-cluster thiolates. Eur Phys J D 2001, 43:89–97.
4. Hudgens JW, Pettibone JM, Senftle TP, Bratton RN: Reaction mechanism governing formation of 1,3-Bis(diphenylphosphino)propane-protected gold nanoclusters. Inorg Chem 2011, 50:10178–10189.
5. Parker JR, Kaczprzak KA, Lopez-Acevedo O, Håkkinen H, Murray RW: Experimental and density functional theory analysis of serial introductions of electron-withdrawing ligands into the ligand shell of a thiolate-protected \( \text{Au}_n \) nanoparticle. J Phys Chem C 2010, 114:8287–8288.
6. Mrty P, Tsunoyama H, Yamauchi M, Xie S, Tsukuda T: Organogold clusters protected by phenylacetylene. J Am Chem Soc 2011, 133:20123–20125.
7. Zhu M, Aikens CJ, Hollandor FJ, Schatz GC, Jin R: Correlating the crystal structure of a thiol-protected \( \text{Au}_{25} \) cluster and optical properties. J Am Chem Soc 2008, 130:5983–5989.
8. Ramakrishna G, Varnavski O, Kim J, Lee D, Goodson T: Quantum-sized gold clusters as efficient two-photon absorbers. J Am Chem Soc 2008, 130:5032–5033.
9. Liao B, Chen JA, Huang HW, Li XF, He BQ: Gold nanocluster-based light-controlled fluorescence molecular switch. J Mater Chem 2011, 21: 5887–5889.
10. Negishi Y, Tsunoyama H, Suzuki M, Kawamura H, Tsuchida T: X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. J Am Chem Soc 2006, 128:12034–12035.
11. Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R: Reversible switching of magnetism in thiolate-protected \( \text{Au}_{25} \) superatoms. J Am Chem Soc 2009, 131:2490–2492.
12. Bogni TP, Whetten RL: Near-infrared luminescence from small gold nanoclusters. J Phys Chem B 2000, 104:6983–6986.
13. Wang G, Huang T, Murray RW, Menard L, Nuzzo RG: Near-IR luminescence of monolayer-protected metal clusters. J Am Chem Soc 2005, 127:8120–8123.
14. Chaudhuri K, Xavier PL, Pradeep T: Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 2011, 5:3886–3892.
15. Devadas MS, Kim J, Sinn E, Lee D, Goodson T, Ramakrishna G: Unique ultrafast visible luminescence in monolayer-protected \( \text{Au}_{25} \) clusters. J Phys Chem C 2010, 114:22417–22423.
16. Wu Z, Jin R: On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 2010, 10:2568–2573.
