Association of Carbapenem and Colistin Resistance in Pathogenic Gram Negative Bacteria

Reham Osama¹* , Walid Bakeer¹, Sanaa Fadel² and Magdi Amin³

¹Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt. ²Clinical Practitioner and prescribing pharmacist, Rotherham Clinical Commissioning Group, United Kingdom. Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt. ³Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt.

Abstract

Diseases caused by multidrug-resistant (MDR) bacteria continue to challenge physicians and endanger their patients’ lives. Polymyxins, including colistin, are the last resort antibiotics to treat serious infections caused by carbapenem-resistant bacteria. The aim of this study is to explore the resistance of Gram negative isolates recovered from 200 clinical specimens to carbapenem and colistin antibiotics, and the prevalence of plasmid-mediated mcr-1 gene in the resistant isolates. Clinical specimens were collected from two teaching hospitals and two private clinical laboratories in Cairo, Egypt. We identified one hundred and thirty isolates as Gram negative. These isolates were screened for their susceptibility to β-lactams antibiotics, carbapenems, colistin, polymyxin B, levofloxacin and amikacin. Thirty isolates were found to be resistant to the tested carbapenems. Of these, five isolates were found to be resistant to both carbapenem and colistin. They were tested for the presence of mcr-1, pmrB and pmrA genes; known to be among the reasons for colistin resistance. One isolate showed the presence of pmrA while three isolates showed the presence of pmrA and pmrB. Only one isolate showed the presence of mcr-1, pmrA and pmrB. This was tested by real time PCR to ensure the activity of this plasmid-mediated gene. Using 16S rRNA sequencing, the isolate showed 100% similarity to Escherichia coli strain K12 (MG1655). Here, we report a carbapenem-resistant and colistin-resistant Escherichia coli strain producing mcr-1 gene that is the first to be reported in Egypt between human.

Keywords: carbapenem resistance, colistin resistance, mcr-1, pmrB, pmrA.

*Correspondence: Reham Osama; osama.reham@yahoo.com; +201005878109; +20822317950

(Received: 06 April 2019; accepted: 09 May 2019)

© The Author(s) 2019. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
INTRODUCTION
Carbapenem-resistant parts of the family *Enterobacteriaceae* have disseminated all over the world. Carbapenem-resistant *Enterobacteriaceae* are coresistant for many classes of antimicrobial agents. This means poor treatment outcomes can be a considerable threat to public health. Colistin has been recently considered clinical interest, due to being frequently successful in treating infections caused by multidrug resistant (MDR) *Pseudomonas, Escherichia* and *Klebsiella* pathogens. It should be administered intravenously and by inhalation in combination with other drugs to manage infections with *Pseudomonas aeruginosa* in children and adult patients with cystic fibrosis. Colistin is a polypeptide anti-microbial which acts through electrostatic interactions. Its cationic moieties disturb the bacterial external membrane, leading to leakage of cell contents and cellular death. Resistance for Colistin generally due to inefficient binding of polymyxins to the lipid A group of lipopolysaccharide. This can be basically due to the 4'-phosphoethanolamine (PEA) modification of the lipid A on the LPS. This type of chemical modification on the bacterial lipid A can be ascribed to either the chromosome as in *Klebsiella pneumonia* or the plasmid-transferred mobilized colistin resistance (*mcr-1*) gene in *Enterobacteriaceae* like *Escherichia coli*. In previous years, scientists have recorded infections that showed resistance to both carbapenems and colistin-resistant globally as in, Greece and Israel. Plasmid-mediated colistin resistance encoded by *mcr-1* was discovered in China. Reports followed in several nations, among which France, Denmark, Venezuela and USA. Recently, Wang and his coworkers at 2018 assembled the largest data set of *mcr-1*-positive sequenced isolates. They found that the nations having the largest numbers of *mcr-1*-positive samples were China, Vietnam and Germany. Interestingly, more *mcr* genes have been recently reported to be included in colistin resistance such as *mcr-2* and *mcr-4*. In this study, the author screened two hundred isolates, recovered from clinical specimens in Egypt, for susceptibility to selected carbapenems and colistin. Further, the mechanism of resistance was explored.

MATERIALS AND METHODS
Isolation and biochemical identification of bacteria
Two hundred clinical specimens were collected from teaching hospitals (Sayed Jalal and Al Hussein hospitals) and two private clinical laboratories in Cairo, Egypt. These were isolated from urine samples, sputum, pleural fluid, endotracheal secretion and swaps. The samples were collected at November 2016-October 2017. Isolates were collected from patients admitted in ICU, PICU as well as outpatients. Their ages ranged from 6–50 years. They suffered from respiratory infection, UTI or Meningitis. Gram negative isolates were identified using standard microbiological tests; Gram stain, motility test, catalase test, triple sugar iron, citrate agar test, oxidase test and witek test.

Antimicrobial susceptibility testing
The antibiotic susceptibility testing was performed by Kirby Bauer disk diffusion method. Gram negative isolates were screened for susceptibility to six β-lactam antibiotics; meropenem, imipenem, amoxicillin-clavulanic, cefotaxime, amoxicillin and ceftazidime. Resistant isolates were screened for susceptibility to polymyxin B, colistin, amikacin and levofloxacin.

DNA extraction and manipulation
DNA extraction for double resistant (Colistin/Carbapenem) isolates consisted of boiling lysates prepared from the strains; a loopful of culture was suspended in 1 mL of sterile PBS buffer, centrifuged 5 min at 20000 g and the supernatant rejected. Then, the pellet was re-suspended in 100 µL TE buffer (10:1) and boiled for 10 min at 100°C. For use as template in the polymerase chain reaction, this DNA was further diluted at 1:10 in TE buffer. The DNA extract was checked by running on 0.8 % agarose gel, stained with ethidium bromide (Thermo Fischer Scientific, USA) using gel electrophoresis (Labnet, USA). The gel was illuminated under Whitman U.V Trans-illuminator (Biometra, Germany) according to Sambrook *et al.*

PCR amplification of specific sequences of some genes encoding for colistin and polymyxin resistance
Three genes contributing to colistin and polymyxin resistance were selected in this study and amplified by PCR: *mcr-1* primers...
CLR/CLRf (5'CGGTCAGTCCGTGGTTC'3) CLR/r
(5'CTTGGTCGGTCTGTAGGG'3) 94°C for 3 min+ 72°C for 10 min,
pmrA primers LT, PMRA/REV, (5'CAT TTC CGC GCA CTG TCT GAAG'3) 95°C for 10 s, 52°C for 5 s, 72°C for 5 s and pmrB primers 15 19/15 2 0,
(5'GAT GAT AGC GCC CAT GC'3) 95°C for 30 s, 62°C for 30 s, 72°C for 180 s)
Amplification was performed using a thermocycler in a total volume of
25 µL containing 1 µL DNA extract, 1 µL of forward primer (10 µM),
1 µL reverse primer (10 µM), 12.5 µL Taq master mix (Qiagen, Germany)
and 9.5 µL of nuclease-free water.
Amplification using Gene-AMP-PCR system-9700 thermocycler (Applied bio system).
After amplification, 10 µL of the PCR mixture was analyzed by gel electrophoresis (1.5%
agarose in tris-EDTA stained with ethidium bromide). As mcr-1 mostly carried on plasmid
and pmr-A, pmr-B are chromosomal genes so mcr-1 dissemination is highly predicted that
lead to an increased occurrence of colistin resistance globally, so SYBR Green-based real-time PCR assay
was designed for specific detection of the mcr-1 gene. Cell lysates (3 µL), prepared as described
above, were used as DNA template, MCR-F: 5'-ACGGCGTATTCTGTGCCGTGTA-3'
and MCR-R 5'-GCTGTTCTTTTGGTGCAAGGCATTT-3' were used as primers for PCR analysis of mcr-1.
PCR was performed using QuantiNova SYBR Green mixture and Qiagen Rotor Gene system (Qiagen,
Hilden, Germany). A typical 20 µL of PCR reaction includes 0.7 µM of each primer, 3 µL of lystate
and SYBR Green mixture (1x). The PCR conditions used were: 95°C, 10 minute; 30 cycles including
95°C, 15 seconds, 60°C, 1 min; and 72°C, 30 seconds.
Confirmation of the identity of isolate harboring mcr-1 by 16S rRNA gene sequence analysis
Identification was confirmed by sequencing of partially amplified 16S rRNA gene of the bacterial isolate that harbored mcr-1 gene. Molecular characterization of the selected strain was carried out according to modified Sambrook et al. 20. The 16S rRNA gene was amplified using universal primers pair: the forward primer sequence was 5-AGAGTTTGATCCTGAGGCAAG-3 and the reverse primer sequence was 5-ACGGACGTGAGGACAGCCATG-3 (IDT, USA).
PCR screening of selected genes associated with colistin resistance

The five double-resistant isolates (Carbapenem/Colistin) showed variable patterns upon analysis using specific primers of \textit{mcr-1}, \textit{pmrA} and \textit{pmrB} genes. One isolate showed the presence of \textit{pmrA}, while three isolates showed the presence of \textit{pmrA} and \textit{pmrB}. Only one isolate (isolate 35) showed the presence of \textit{mcr-1}(300bp), \textit{pmrA}(170bp) and \textit{pmrB}(400bp). Fig. 3.

Identification of \textit{mcr-1} carrying isolate by 16S rRNA

The PCR product of 16S rRNA of the isolate which has showed \textit{mcr-1} was confirmed by sequencing. Using BLAST program of National Center for Biotechnology Information (NCBI) database the sequence showed 100% similarity to \textit{Escherichia coli} strain K-12 substr. MG1655.

Confirmation of \textit{mcr-1} gene expression

A SYBR Green-based real-time PCR assay was designed for detection of the \textit{mcr-1} gene expression in the isolate. The experiment showed positive \textit{mcr-1} gene expression and show CT point after 36 cycles as illustrated at Fig. 4.

DISCUSSION

The intense overuse and misuse of antibiotics has led to emergence of multi-drug resistant strains which is difficult to treat. In this study, approximately a quarter of the tested isolates were found to be carbapenems resistant, while five isolates were resistant to both carbapenems and colistin. Only one of them was confirmed to harbor \textit{mcr-1} and was identified to be \textit{Escherichia coli} strain k12 substr MG1655. The results obtained from the real-time PCR showed obvious presence of \textit{mcr-1} which was
Osama et al. J Pure Appl Microbiol, 13(2), 733–739 | June 2019 | DOI 10.22207/JPAM.13.2.09

Fig. 3. Using 1000 pb ladder, isolate no 35 shows the presence of mcr-1(300bp), pmrA(170bp) and pmrB(400bp). In figure 3(a), primer 1519/1520 was used to detect the presence of pmr-B gene. In figure 3(b), primers LT2PMRA/REV and CLRr/CLRF were used to detect the presence of pmrA and mcr-1, respectively.

Fig. 4. Real time PCR show mcr-1 gene expression, presented ct at 36 cycles.

also confirmed by conventional PCR, suggesting a probability that mcr genes may be currently prevalent in EGYPT. This study is the first to detect a multi-resistant *Escherichia coli* strain which is resistant to both carbapenem and colistin in Egypt. A previous work has reported an mcr-1 mediated *Escherichia coli* isolate detected in Egypt.\(^2\) This had phenotypic resistance to colistin, but was susceptible to carbapenems.\(^2\) Worthy to note, the SENTRY antimicrobial surveillance program carried out a worldwide survey in 2009 and reported that rates of resistance to polymyxins among Gram-negative pathogens ranged between 0.1% to 1.5%\(^3\). However, a trend of rise of resistance followed worldwide in later years to reach 3.2%in 2016.\(^4\)

This study showed that the carbapenem-colistin double resistant *Escherichia coli* was sensitive to levofloxacin. Therefore, colistin might be combined with levofloxacin in treatment regimen, as it seems to produce a synergistic or additive effect. The use of colistin in combination with other antibiotics that are typically active against Gram-positive bacteria has been also explored by others and confirmed to be effective
for highly drug-resistant Gram-negative pathogens expressing \textit{mcr-1}. Most commonly rifampicin25 and carbapenems26 but also macrolides27, minocyclin28, tigecyclin29, and glycopeptides30. The coexistence of \textit{mcr-1} resistance in the carbapenem-resistant strains might be explained by the fact that \textit{mcr-1} has been observed on plasmids containing other antimicrobial resistance genes such as carbapenemases31,32 and extended-spectrum \textit{\beta}-lactamases13,33. This suggests a significant clinical concern that world is approaching a pan drug-resistant era for which the use of colistin and other antimicrobials might become ineffective.

CONCLUSION
The spread of carbapenem-resistant Enterobacteriaceae has become a serious problem worldwide that represents a marked threat to public health. To the best of our knowledge, this study constitutes the first report in Egypt of \textit{mcr-1} positive \textit{Escherichia coli} that is carbapenem-resistant and colistin-resistant. That gives an alarming sign for the dissemination of resistance in the area, which can considerably limits treatment options. Our finding from this study stresses how important to monitor the use of colistin in treatment of both human and animal infections and emphasizes the need for tightened infection control practices to restrict further dissemination of multi-resistant isolates.

ACKNOWLEDGMENTS
Thanks to departments of Microbiology and Immunology, Faculty of Pharmacy, Cairo University and Beni-Suef University for their rich educational experience, cooperation and continuous support.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORS’ CONTRIBUTION
All authors have made substantial, direct and intellectual contribution to the work and approved it for publication.

DATA AVAILABILITY
All datasets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT
This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES
1. Antoniadou, A., F. Kontopidou, G. Poulakou, E. Koratzanis, I. Galani, E. Papadomichelakis, H. Giamarellou. Colistin-resistant isolates of \textit{Klebsiella pneumoniae} emerging in intensive care unit patients: first report of a multiclonal cluster. \textit{J Antimicrob Chemother}, 2007; \textit{59}(4):786-790.
2. Kitchel, B., J.K. Rasheed, J.B. Patel, A. Srinivasan, S. Navon-Venezia, Y. Carmeli, C.G. Giske. Molecular epidemiology of KPC-producing \textit{Klebsiella pneumoniae} isolates in the United States: clonal expansion of multilocus sequence type 258. \textit{Am J Clin Pathol}, 2009; \textit{53}(8):3365-3370.
3. Schwaber, M.J., S. Klarfeld-Lidji, S. Navon-Venezia, D. Schwartz, A. Leavitt, and Y. Carmeli. Predictors of carbapenem-resistant \textit{Klebsiella pneumoniae} acquisition among hospitalized adults and effect of acquisition on mortality. \textit{Antimicrob Agents Chemother}, 2008; \textit{52}(3):1028-1033.
4. Tangden, T. and C. Giske. Global dissemination of extensively drug resistant carbapenemase producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. \textit{J Intern Med}, 2015; \textit{277}(5):501-512.
5. Herrmann, G., L. Yang, H. Wu, Z. Song, H. Wang, N. Hoiby, G. Doring. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm \textit{Pseudomonas aeruginosa}. \textit{J Infect Dis}, 2010; \textit{202}(10):1585-1592.
6. Davis, S.D., A. Iannetta, and R.J. Wedgwood. Activity of colistin against \textit{Pseudomonas aeruginosa}: inhibition by calcium. \textit{J Infect Dis}, 1971; \textit{124}(6):610-612.
7. Bauer, A., W. Kirby, J.C. Sherris, and M. Turck. Antibiotic susceptibility testing by a standardized single disk method. \textit{Am J Clin Pathol}, 1966; \textit{45}(4):493.
8. Schwarz, S. and A.P. Johnson. Transferable resistance to colistin: a new but old threat. \textit{Antimicrob Agents Chemother}, 2016; \textit{71}(8):2066-2070.
9. Cannatelli, A., M.M. D’Andrea, T. Giani, V. Di Pilato, F. Arena, S. Ambretti, G.M. Rosolini. In vivo emergence of colistin resistance in \textit{Klebsiella pneumoniae} producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. \textit{Antimicrob Agents Chemother}, 2013; \textit{57}(11):5521-5526.
10. Liu, YX, Y. Wang, T.R. Walsh, L.X. Yi, R. Zhang, J. Spencer, X. Huang. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. \textit{Lancet Infect Dis}, 2016; \textit{16}(2):161-168.
11. Zarkotou, O., S. Pournaras, E. Voulgaris, G. Chrysos,
A. Prekates, D. Voutsinas, A. Tsakris. Risk factors and outcomes associated with acquisition of colistin-resistant KPC-producing Klebsiella pneumoniae: a matched case-control study. J Clin Microbiol, 2010; 48(6):2271-2274.

12. Samara, Z., O. Ofir, Y. Lishitzinsky, L. Madar-Shapiro, and J. Bishara. Outbreak of carbapenem-resistant Klebsiella pneumoniae producing KPC-3 in a tertiary medical centre in Israel. Int J Antimicrob Agents, 2007; 30(6):525-529.

13. Haenni, M., L. Poirel, N. Kieffer, P. Chatre, E. Saras, V. Metayer, J.Y. Madec. Co-occurrence of extended spectrum β-lactamase and MCR-1 encoding genes on plasmids. Lancet Infect Dis, 2016; 16(3):281-282.

14. Hasman, H., A.M. Hammerum, F. Hansen, R.S. Hendriksen, B. Olesen, Y. Agersø, R.S. Kaas. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill, 2015; 20(49).

15. Delgado-Blas, J.F., C.M. Ovejero, L. Abadia-Patiño, and B. Gonzalez-Zorn. Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela. Antimicrobial Agents Chemother, 2016; 60(10):6356-6358.

16. Medivialia, J.R., A. Patrawalla, L. Chen, K.D. Chavda, B. Mathema, C. Vinnard, B.N. Kreiswirth. Colistin-and carbapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States. MBio, 2016; 7(4):e01191-16.

17. Wang, R., L. Dorp, L.P. Shaw, P. Bradley, O. Wang, X. Wang, A. Rieux. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat Commun, 2018; 9(1):1179.

18. Carattoli, A., L. Villa, C. Feudi, L. Curcio, S. Orsini, A. Luppi, C.F. Magistrali. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill, 2017; 22(31).

19. Zhang, J., L. Chen, J. Wang, A.K. Yassin, P. Butaye, P. Kelly, M. Li. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/rectal swabs from pigs and poultry. Scientific reports, 2018; 8(1):3705.

20. Maniatis, T., E.F. Fritsch, and J. Sambrook. Molecular cloning: a laboratory manual. Vol. 545. 1982: Cold Spring Harbor laboratory Cold Spring Harbor, NY.

21. Jayol, A., L. Poirel, A. Brink, M.-V. Villegas, M. Yilmaz, and P. Nordmann. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrobial Agents Chemother, 2014; 58(8):4762-4766.

22. Elnahriry, S.S., H.O. Khalifa, A.M. Soliman, A.M. Ahmed, A.M. Hussein, T. Shimamoto, and T. Shimamoto. Emergence of plasmid-mediated colistin resistance gene mcr-1 in a clinical Escherichia coli isolate from Egypt. Antimicrob Agents Chemother, 2016; 60(5):3249-3250.

23. Gales, A.C., R.N. Jones, and H.S. Sader. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006–09). J Antimicrob Chemother, 2011; 66(9):2070-2074.

24. Wise, M.G., M.A. Estabrook, D.F. Sahm, G.G. Stone, and K.M. Kazmierczak. Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae collected in 2014-2016 as part of the INFORM global surveillance program. PloS one, 2018; 13(4):e0195281.

25. Hogg, G., J. Barr, and C. Webb. In-vitro activity of the combination of colistin and rifampicin against multidrug-resistant strains of Acinetobacter baumannii. J Antimicrob Chemother, 1998; 41(4):494-495.

26. Zusman, O., T. Avni, L. Leibovici, A. Adler, L. Friberg, T. Stergiopoulou, M. Paul. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrobial Agents Chemother, 2013; 57(10):5104-5111.

27. Timurkaynak, F., F. Can, OK. Azap, M. Demirbilek, H. Arslan, and S. Karaman. In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int J Antimicrobial Agents, 2006; 27(3):224-228.

28. Chopra, I. and K. Hacker. Uptake of minocycline by Escherichia coli. J Antimicrobial Chemother, 1992; 29(1):19-25.

29. Pournaras, S., G. Vrioni, E. Neou, J. Dendrinos, E. Dimitroulla, A. Poulou, and A. Tsakris. Activity of tigecycline alone and in combination with colistin and meropenem against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains by time-kill assay. Int J Antimicrobial Agents, 2011; 37(3):244-247.

30. Gordon, N., K. Png, and D. Wareham. Potent synergy and sustained bactericidal activity of a vancomycin-colistin combination versus multidrug-resistant strains of Acinetobacter baumannii. Antimicrobial Agents Chemother, 2010; 54(12):5316-5322.

31. Poirel, L., N. Kieffer, N. Liassine, D. Thanh, and P. Nordmann. Plasmid-mediated carbapenem and colistin resistance in a clinical isolate of Escherichia coli. Lancet Infect Dis, 2016; 16(281):00006-2.

32. Yao, X., Y. Doi, L. Zeng, L. Lv, and J.-H. Liu. Carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-9 and MCR-1. Lancet Infect Dis, 2016; 16(3):288-289.

33. Zhang, H., C.H. Seward, Z. Wu, H. Ye, and Y. Feng. Genomic insights into the ESBL and MCR-1-producing ST648 Escherichia coli with multi-drug resistance. Sci Bull, 2016; 61(11):875-878.