Toward a Historical Sociology of COVID-19: Path Dependence Method and Temporal Connections

Sung Hee Ru

Abstract
Encountering the unprecedented social crisis of COVID-19, an increasing number of sociologists are calling for historical sociology to engage empirically with the dynamics of the COVID-19 crisis. I present the "path dependence method" and the "temporal connections" to interpret social life during the COVID-19 pandemic. By using the path dependence method, I show how the personal, social, and national problems created by the COVID-19 crisis initiate a new path and furthermore how this newly created path is justified in a society. Through the temporal connections, I will show how non-Western countries responded more reasonably and quickly than most Western countries to the COVID-19 crisis. The overall aim of this research is to disclose effectiveness of historical sociology, to encourage researchers to think time variable, and to argue that linking historical-sociological knowledge to the COVID-19 crisis would be a positive step for an in-depth COVID-19 sociology.

INTRODUCTION

When global pandemics emerge in human history, the implications are likely to take years (or decades) to play out, and to spiral in unforeseeable directions. Who would have predicted that the rapid spread of the novel coronavirus that began with the illegal wildlife trade would lead to the most extensive lockdown in modern history due to a disease, clashes between the United States and China over the pandemic, the worst global decline since the financial crisis of 2007–08, rigid border security, anti-Asian racism around the globe, and panic buying?

We are living in a world that is composed of a complex web of interrelationships, so things that seem to be unrelated to each other are sometimes linked by a social event. The outbreak of coronavirus disease 2019 (COVID-19) and its global impacts make us recognize the fact that social events for which there is not enough evidence to conclude a causal link are newly linked by the coronavirus pandemic. Within a highly connected but
uncertain world, in this sense, it seems foolish to attempt to make confident predictions about what socioeconomic order will be created in the future.

To map a variety of COVID-19 social phenomena or events relating to the coronavirus, I will provide two historical sociology methods that are starkly distinguished from the historical approach, which often focuses on momentary or particular historical facts (or events) (Goldthorpe, 1991; Kiser & Hechter, 1991, pp. 10–12). I do not deny the historical approach’s contributions of momentary and ephemeral values; historicism has often encouraged scholars to ask significant questions in limited research areas and to provide intensive and detailed explanations of well-defined themes of smaller areas of research in the short term. Yet, many of these incisive insights face difficulties because, first of all, the historical approach often specializes in “a particular problem,” which prevents it from “seeing [the problem] as a combination of elements with parallels in other places” (Subrt, 2012, p. 404). The habitual mode of thinking of the historical approach, highlighting a restricted temporal and spatial approach, is not likely to escape the relatively narrow scope of the research topic. In terms of fact-centered writings on the basis of archival data, the historical approach has often adhered to the comparatively narrow range of selected topics, while discounting the connections among the inter-state or transnational approach. However, the COVID-19 crisis is a worldwide problem and a big challenge that we should take up. For instance, COVID-19 first emerged in the Chinese city of Wuhan last December, and before long, it spread to Asia, Europe, North America, Africa, and South America. By January 9, 2022, many countries (e.g., United States, India, Brazil, United Kingdom, France, Turkey, Germany, Italy, Spain, etc.) had surpassed China in the number of confirmed COVID-19 cases and the death toll, although there are controversies over China’s statistics and the origins of COVID-19. This implies that the limited space-time approach is not sufficient to analyze the coronavirus event.

Indeed, the historical approach is likely to focus on past events, recognized through the lens of relationships between cause and effect, while ignoring new and immediate socio-historical events. The so-called “history-as-lessons approach” embedded in the historical approach is only effective when the present event is closely related to past events or shows similar progress to previous historical events. However, as formulated thus far, the COVID-19 crisis itself is so new that it is difficult to find similarities to or causal relationships with past epidemics. In terms of new heuristic value, the historical approach is not effective.

This COVID-19 outbreak also partially challenges the sociological approach given that, first of all, “emerging diseases are sources of instability, uncertainty and even crises that can’t make visible features of the social order ordinarily opaque to investigation” (Dingwall et al., 2013, p. 167). To paraphrase Ulrich Beck (1999), the situation of uncertainty and unpredictability in a risk society has turned up in the wake of the COVID-19 outbreak. The greater anxiety stemming from the uncertainty of COVID-19 is that it is difficult to check whether other people have the coronavirus or not, especially in the early stages of the infection. This has brought about the “horror of ambiguity” (Beck, 2009, p. 5), and this state of affairs surrounding the COVID-19 crisis also calls attention to the relationships between risks (Risiken) and hazards (Gefahren). Just as “one person’s risk is another person’s hazard” (Luhmann, 2008, p. 360), one coronavirus patient becomes a problem for all people.

Second, COVID-19 also produces institutionalized irresponsibility. Amid deepening conflict and the COVID-19 threat, some countries like the U.S. and China are using a crafty trick to evade their own responsibility (e.g., the blame game between the U.S. and China over the origins of the COVID-19 outbreak) and politicizing the COVID-19 crisis (e.g., political debates over social distancing, wearing face masks, and economic reopening). As the institutionalized irresponsibility surrounding the COVID-19 crisis has been recognized as a significant element of maintaining the sociopolitical system or its functioning rather than being perceived as a malfunction of the sociopolitical system, institutionalized irresponsibility, combined with political propaganda, has become a socially accepted norm without any social sanctions. Before long, it provided an incentive to give rise to institutionalized risks. Even though a large number of infected people in the U.S. have been reported, many popular tourist destinations are overcrowded, and internationally, transnational cooperation to combat COVID-19 has become increasingly difficult. Within a society where institutionalized risks are prevalent, all attempts at a solution bear in themselves the seeds of new and more difficult problems.
This research looks at the effectiveness of historical sociology as a tool for understanding COVID-19. Apparently, there is no affinity between COVID-19 and the approaches of historical sociology, in that historical sociology has a tendency to explain the relationships between historical events in the past and social agency (or agents) or to analyze the short-term or long-term social contexts of historical events. However, as Lachmann (2013, p. 140) discussed, one of the most important tasks in historical sociology is to present a (historical) description of social changes.

While there is no doubt that causal and systemic analysis of a society’s turbulent situation is one of the main purposes of historical sociology, the social changes that are dealt with in historical sociology do not refer only to the fixed or past histories that feel like fossils to us. The social changes of historical sociology cover not only the past, but also the social events we are facing and plausible predictions about the future. By using “metacognition,” historical sociologists not only analyze the past social events we have experienced but also look at the significant events we are going through and what we are going to do, in contrast to historians, who are negatively defined as a “great machine for looking backward” (Taleb, 2010, p. 12). The COVID-19 crisis requires the metacognitive abilities of historical sociology in that we need to analyze past epidemics and a comprehensive and critical awareness of the many social events that are taking place in the global village and possible social events that have not happened yet. As an approach of historical sociology that requires metacognition, I present the path dependence method. The path dependence method clarifies the relationships between social events that occurred in the past and the current COVID-19 situation, which enables us to make reasonable inferences about events that may occur in the near future.

Furthermore, I use temporal connections to observe temporal flux contained in the COVID-19 crisis. After the outbreak of the COVID-19 crisis, the responses of countries around the world to the COVID-19 crisis tended to be divided according to the reaction speed: Countries that were sensitive to and swiftly responded to the socio-economic crisis caused by the COVID-19 had relatively fewer COVID-19 confirmed cases and death tolls than countries did not. By depending temporal connections, I investigate different reaction patterns of countries.

In sum, as an exploratory and heuristic approach, I will discuss how, after the outbreak of COVID-19, each country’s coronavirus warning, response, and information-sharing have progressed; how our social routines have changed since the rise of COVID-19; and how a society regulates individuals’ social actions in the name of controlling COVID-19. To that ends, I will provide two different approaches to historical sociology (path dependence and temporal connections). Given that both approaches value the importance of time, I here highlight sociological time of COVID-19 crisis and its impact on societies.

PATH DEPENDENCE

Many historical sociologists who presume that past events affect future events have largely used the path dependence method to explicate causal relationships among historical events (Clemens, 2007, p. 538). As Stinchcombe (1987, p. 103) defined, path dependence occurs when “an effect created by causes at some previous period becomes a cause of that same effect in succeeding periods.”

Because there is an underlying proposition that the first event affects a series of subsequent events, historical sociologists using the path dependence method are prone to consider the first event to be the most important factor and assume a linear causality between the first and last events. Departing from this conventional methodological approach, recent historical sociologists like Goldstone (1998) and Mahoney (2000) have stressed “objective claims about the existence of path dependence” (Mahoney, 2000, p. 508) and employed a more sophisticated path dependence model.

Goldstone (1998) argued that the initial condition only affects the choice of subsequent events stochastically, which contrasts with the well-known assumption that the initial conditions have an absolute effect on the overall circumstances and the final outcome. Thus, early historical events may not have “decisive importance for the final
outcome of the sequence” (Mahoney, 2000, p. 511). In addition to this, according to Mahoney (2000), there are two types of path dependence in historical sociology. One is “self-reinforcing sequences,” and the other is “reactive sequences.” In the case of self-reinforcing sequences, because the benefits of a series of structuralized patterns are greater than the cost, the pattern that was initially formed is continuously reproduced without substantial structural changes. The reactive sequences are a reaction to early events and thus create new directions different from the directions that early events pursued or change the existing path. In this regard, “inertia” in the self-strengthening sequences may produce a backward reaction (or counter reaction) in the reactive sequences. For a comparative historial approach to COVID-19 to recognize regional differences in how policies and social life are affecting the spread of infection, I will take advantage of this path dependence method.

As the COVID-19 virus spread around the world, the different countermeasures of each country attracted attention. For instance, Sweden has a relatively loose control policy, unlike East Asian countries, even if physical distancing and measures to protect nursing home residents are enacted. In Sweden, elementary and secondary schools have not been closed, and shops and cafés have operated normally. This quarantine policy has had scary outcomes. On May 14, 2020, there were 28,582 cumulative COVID-19 cases, of which 3,529 COVID-19 patients had died. According to the United Nations’ statistical data (May 14, 2020), Sweden recorded 342.6 deaths per one million populations. Though this record is less than that of Spain (579.7), Italy (514.5), England (488.9), and France (414.8), it is much higher than that of neighboring countries like Norway (42.2) and Finland (51.3).

In contrast, Taiwan and South Korea, which previously experienced the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) epidemics, respectively, had faster responses to the threat of COVID-19 and implemented strong centralized disease control policies (An & Tang, 2020). In fact, Taiwan, which experienced 346 confirmed cases and 37 deaths during the 2003 outbreak of SARS, was keen on COVID-19 as it emerged in China (Lin et al., 2020). Having suffered severely from SARS, the Taiwanese government took strong actions. Similarly, in South Korea, the number of MERS patients increased nationwide within a short period of time after the first MERS patients were officially reported on May 20, 2015. This epidemic resulted in 186 infected patients and 36 dead by late July. At the time of the MERS crisis, South Korea experienced how fatal a viral epidemic characterized by interpersonal transmission was in the highly populated Korean society. Deeply frightened by the MERS case fatality rate and its rapid propagation, South Korea radically reformed its laws and institutional systems, which enabled it to have faster and better organized countermeasures at the time of the COVID-19 outbreak.

More interestingly, Korea effectively created successful strategies for testing, quarantine, and public communication without taking radical measures such as closed borders or a full lockdown. In this regard, Korea’s coronavirus quarantine has recently attracted the attention of many researchers (Kim et al., 2020; Oh et al., 2020; Yang, 2021). Among these, Korea’s institutional structure and social culture was often considered as an effective means to control and manage the COVID-19 crisis (You, 2020). After the MERS crisis, the Korean government’s quarantine system was newly rebuilt around the Korea Centers for Disease Control and Prevention (KCDC). The head of the KCDC was promoted to the vice-minister level and set up an emergency office. The increased number of epidemiologists enabled the KCDC to respond quickly to infectious diseases. In addition to this, the fundamental principle of the disclosure of information about the epidemic has been changed from selective disclosure to full disclosure, which allows the public to get as much epidemic-related information as possible. The Korean government offered guidance and advice to the Korean people on the use of masks, social distancing, and an appropriate way of self-quarantining for suspected cases of COVID-19 when the first confirmed COVID-19 cases appeared in Korea.

Not long after the discovery of the first COVID-19 patient, the number of confirmed COVID-19 cases in Korea increased rapidly due to the Shincheonji Church incident. On February 16 (2020), a 61-year-old woman carried the COVID-19 virus into the Shincheonji Church in Daegu. The women identified as a Shincheonji Church believer had symptoms, but refused the medical staff’s request for examination, and joined a worship. The next day saw 20 additional confirmed cases, and mass confirmed cases began to occur, centering on members of Shincheonji Church.
in Daegu and Gyeongbuk province. Also, due mainly to another mass COVID-19 infection caused by participation in a large-scale antigovernment protest by Sarang Jeil Church members and large-scale communities (e.g., long-term care facilities, religious facilities, and an e-commerce warehouse) that are vulnerable to COVID-19 infection, Korea faced second and third waves of COVID-19 infections (Cha et al., 2020). On February 14, 2021, Korea had recorded 83,525 infections and 1,522 deaths.

Although this unexpected event rattled government officials and the public, and the number of COVID-19 cases and deaths increased sharply, the number of confirmed COVID-19 cases per 100,000 people in Korea was 111.26, which "placed the country 36th out of the 37 Organization for Economic Cooperation and Development countries" (Ock, 2021). Indeed, the Korean government reacted quickly to the second and third waves of the COVID-19 threat. The KCDC updated the COVID-19 situation every day, encompassing the number of confirmed cases and deaths, the confirmed COVID-19 cases’ movements, the government’s countermeasures, prevention rules, action plans for suspected COVID-19 cases, and reports of the status of overseas entrants, including confirmed overseas entrants. Furthermore, by introducing convenient testing techniques like drive-through COVID-19 testing, the government actively encouraged locals as well as foreigners to get COVID-19 diagnostic testing, which led to a stunning number of daily testing results (approximately 20,000 tests per day) (Cheung, 2020). Local governments also publicly announced the number of COVID-19 diagnoses and deaths, and information about the movements of the confirmed cases on a daily basis.4

Individuals wear cloth face coverings in public spaces (Feng et al., 2020). If a person is suspected to have COVID-19, he (or she) tries to follow the self-quarantine guidelines provided by the Korean government. In the case of those who broke the rules of self-quarantine, the local or central government inflicted legal punishments on them. The media have harshly scolded the selfishness of those who violated self-quarantine and became superspreaders. This led South Korea to record lower numbers of confirmed cases of and deaths due to COVID-19 than many European countries, North American countries, and neighboring countries like Russia and Japan.

Due to its previous painful experience of a rapidly spreading epidemic (the MERS crisis), South Korea prepared for an all-out response to the spread of the epidemic. Along with quarantine measures by the central and local governments and hospitals, this past crisis brought about changes in individuals’ perceptions of infectious diseases. This is in accordance with the “re-active sequence” and “self-reinforcing sequence” of path dependence methods. On a personal level, the contingencies of the earlier event (MERS crisis) presented three options to the Korean public: (A) You must wear a face mask. (B) You don’t need to have a face mask. (C) Wearing a face mask is a personal choice. Most Korean individuals chose option B or C; this made people vulnerable to human-to-human transmission of MERS, and it quickly spread around hospitals and local communities. After experiencing the deadly MERS crisis, the Korean people could see how deadly a human-to-human transmission virus could be. In 2020, when COVID-19, another type of human-to-human transmission virus, appeared, many Korean individuals chose option A. The social consensus that a face mask should be used in public spaces has been widely formed in Korean society. Indeed, social campaigns for wearing face masks and social distancing took place nationwide (Figure 1).

By the same token, the Korean government’s actions also can be understood with the same path-dependence logics. When the MERS outbreak reached epidemic proportions, the Korean government chose option B among three options: (A) Public health and full information disclosure are more valuable than personal privacy and limited information disclosure. (B) Protecting privacy rights is important, and limited disclosure of information is much more effective to take countermeasures and to prevent social unrest. (C) Both A and B are equally important. The government set much value upon personal privacy and shared a minimal amount of MERS-related information with the Korean people. However, as government measures did not stop transmission of MERS in local communities, local governments became unable to trust the central government’s actions. Despite the increased number of confirmed MERS cases and the death toll, the Korean government’s restricted disclosure of personal information of patients with MERS infections, their movements, and hospitals where those patients were had created groundless rumors, which caused people’s deep mistrust of the government.
FIGURE 1 Individual level [Colour figure can be viewed at wileyonlinelibrary.com]
To avoid repeating the past failure of the MERS countermeasures, the government changed its policy direction to make public safety more important than privacy protection and decided to share information of human-to-human transmission diseases and patients with these diseases with the public. The government also reformed the public health system to have consistent quarantine guidelines. As a result, when confirmed COVID-19 cases appeared in Korea, the KCDC provided COVID-19 medical countermeasures and safety guidelines to the Korean people and announced COVID-19 details such as personal information of confirmed COVID-19 cases and their movements, and which hospitals contained COVID-19 patients, on a daily basis. Whenever individuals went against or refused the government’s quarantine policy or countermeasures, they were punished accordingly (Figure 2).

At the social level, until the outbreak of the massive human-to-human transmission disease MERS, social concern about public health tended to focus on measures that were created after the event. Imposing social measures related to public health guidelines on individuals is done very cautiously, for these could be interpreted as strong controls of individual behaviors. Moreover, even if preemptive actions were taken by the government, unless these actions were enforceable, there was a clear tendency for individuals to ignore the government’s guidelines. However, during the MERS crisis, Korean society realized how a belated response to a deadly disease created blame games between the central government, local governments, and individuals, which consequently undermined social trust. In reaction to the way the Korean society had experienced the past MERS crisis, as COVID-19 emerged in Korea, Korean society showed strong enthusiasm for the preemptive actions of the public health guidelines (Figure 3).

In sum, the “re-active sequence” and “self-reinforcing sequence” of the path dependence method allow us to see how the new manuals that were created after fatal human-to-human transmission diseases (e.g., SARS and MERS) appeared have created a newly generalized response pattern during the COVID-19 crisis.

TEMPORAL CONNECTIONS

As mentioned in previous chapter, path dependence method can be an effective way in identifying a series of sequences related to the COVID-19 outbreak and in analyzing Taiwan and Korea’s responses to it. The path dependence method used to interpret COVID-19 management in Korea and Taiwan tells us one important fact: the importance of time variable. The development path of Taiwanese or Korean government’ responses to the COVID-19 crisis depends on past events (SARS or MERS) and is time-dependent. Put it differently, the trajectory of a path-dependence of Taiwanese and Korean governments depends on the path that each of the two governments has followed to that moment even though the past incident did not affect the next incident entirely and linearly.

The concept of time variable is not only important in the path dependence method, but is also a significant key concept in temporal connections. As Aminzade (1992, p: 458) pointed out, various types of time (e.g., duration, pace, trajectory, and cycles) are significant in providing substantive content to our understanding of socio-historical events. I here use two types of time (duration and trajectory) to delve into the different reaction patterns (or directions) of the West and the non-West after the outbreak of COVID-19.

According to Aminzade (1992, p: 459), duration refers to “the amount of time elapsed for a given event or sequence of events.” The persistence of time in the interpretation of COVID-19 is significant because the outcome of the COVID-19 outbreak varies from country to country, heavily depending on how long a certain number of confirmed COVID-19 cases lasts. For instance, it is noticeable that the initial response to the COVID-19 crisis played an important role in shortening, or conversely extending the amount of time before the number of confirmed COVID-19 cases declined or the amount of time before the curve of confirmed COVID-19 cases flattened.

Since the first confirmed COVID-19 case emerged, the stricter and more systemic the measures that countries have taken, the fewer confirmed COVID-19 cases and the smaller the death toll from COVID-19, and the sooner they could get back to normal. Taiwan is a country that took countermeasures actively and rapidly after the first
- State level -

A: Public health and full information disclosure are more valuable than personal privacy and limited information disclosure

B: Protecting the privacy rights is important, and limited disclosure of information is much more effective to take countermeasures and to prevent social unrest

C: Both A and B are equally important

B1: Transmission of MERS infections in the community

B2: Frictions between local and central government in taking anti-MERS measures

B3: Increases in the number of MERS cases and deaths
 - Spread of groundless rumors and distrust of government

Reactive sequence

Outbreak of MERS (2015)

Outbreak of COVID-19 (2020)

A1: Public health is more important than individuals' freedom
 - Revision of public health laws
 - Full information disclosure

A2: Establish unified preventive measures centered on KCDC
 - Punishments for those who harm public health

Self-reinforcing sequence
FIGURE 3 Social level [Colour figure can be viewed at wileyonlinelibrary.com]
confirmed COVID-19 case was reported. When the appearance of COVID-19 patients was announced in China in December 2019, the Taiwanese government had to be more nervous than any other country. This is because the number of Taiwanese citizens in China was about 850,000, and among them, about 400,000 were currently working in China. Moreover, because many Chinese visitors would be expected to enter Taiwan during the Lunar New Year period, Taiwanese authorities showed considerable concern about the spread of COVID-19. Despite these adverse conditions, Taiwan took proactive and prompt actions against COVID-19 in order to prevent the emergence of a large-scale COVID-19 outbreak in Taiwanese territory (Steinbrook, 2020).

Rigorous and meticulous measures against suspected and confirmed COVID-19 cases like identifying the movements of confirmed COVID-19 cases and testing those who had contact with confirmed COVID-19 cases, government-led quarantine measures for confirmed cases, immigration checks on Taiwanese who returned from abroad, disclosure of the travel history of the confirmed cases in the past 14 days, imposing on suspected cases a self-quarantine at home for 14 days, quarantining workers in places where confirmed cases visited, transparent information-sharing (e.g., medical officials hold daily briefings on the coronavirus matter), continuous hygiene promotion (e.g., handwashing, wearing mask) by using broadcast and the internet, and strict border controls led to a successful initial response to the COVID-19 crisis (Wang et al., 2020).

Interestingly, similar to Taiwan, the United States of America has also taken large-scale anti–COVID-19 measures like social distancing, extreme restrictions on international and domestic travel, border control, and shutting down public spaces, including schools and restaurants; nonetheless, the cumulative number confirmed and deaths of COVID-19 cases in the U.S. exceeded 32 million and 576,000 respectively by May 7, 2021. On the other hand, the number of Taiwan's COVID-19 cases was 1,173 and the number of deaths was 7 (In the case of South Korea, the number of COVID-19 cases was 126,044 and the number of death was 1,860). In the U.S., the numbers of deaths per 100,000 populations were 176.72, whereas that of Taiwan were 0.05 (In the case of South Korea, the numbers of deaths per 100,000 populations was 3.60) (Johns Hopkins University Coronavirus Resource Center, May 7, 2021).

Then why does COVID-19 appear deadlier in the U.S. than in Taiwan? This is seen in the two countries' different responses to COVID-19. Since the worldwide spread of the COVID-19 occurred in a short time, the different initial responses made a big difference in the results. For instance, the first patient was officially reported on January 21, 2020, in both Taiwan and the United States. The Taiwanese government barred entry to Chinese people on January 26, 5 days after confirming that the first COVID-19 patients had been to Wuhan, China. On January 24, the Taiwanese government temporarily prohibited foreign exports of face masks in order to meet the supply of face masks for its own people. On February 6, the Taiwanese government also instituted a mask rationing system, which gave local residents easier access to masks with little social disorder, which served to maintain the supply–demand balance of face masks. From the beginning of February, Taiwan's Central Epidemic Command Center even dispatched Taiwanese troops to the face mask production facilities to accelerate the mass production of face masks (Huang, 2020). As a result, Taiwan was able to produce 9.2 million surgical face masks per day, and by the end of March, its output had increased to 13 million (Wu & Chiang, 2020). The Taiwanese government's fast and bold countermeasures against the COVID-19 crisis continued to reduce the number of new confirmed COVID-19 cases. In fact, although the cumulative number of confirmed COVID-19 cases reached 100 on March 18, and 300 on March 30, after March 27, the number of new confirmed cases gradually decreased.

Meanwhile, it was not until 10 days after the first confirmed COVID-19 case was reported that the Trump administration began to control those who came from or visited China. However, during the first 15 days (from mid-January to the end of January), the number of people entering major U.S. cities like Los Angeles, San Francisco, and New York from Wuhan reached 4,000. And “in January, more than 1,300 flights from China arrived at 17 U.S. airports. That month, about 381,000 passengers arrived from China, according to U.S. Department of Commerce data” (Eder et al., 2020). Indeed, although coronavirus infections spiked in Europe at the end of February, President Trump began to ban visitors from Europe in early March.
On January 22, President Trump made his first comments regarding the COVID-19 outbreak in the U.S. When Consumer News and Business Channel's Joe Kerenen asked President Trump about the threat of COVID-19, he replied that it was “totally under control” and would be fine soon. During a speech at a Michigan manufacturing plant (January 30, 2020), President Trump also said that “we have it very well under control. We have very little problem in this country at this moment.” Despite the continued presence of dozens of new confirmed COVID-19 cases, the Trump administration claimed that the COVID-19 crisis was under control, and shortly afterward, the confirmed cases would be down close to zero. However, in reality, widespread testing was not even available until February 2020, which hampered “the ability to identify people who were COVID-19 positive” (Peckham, 2020).

The Trump administration did not declare a national emergency even though the number of daily confirmed cases exceeded 1,000 on March 10 (Watson, 2020). Later, when the number of new confirmed cases reached 2,200 on March 12, Trump declared a state of emergency on March 13. It was not until March 15 that American people were warned to beware of large (social) gatherings of more than 50 people by the Centers for Disease Control and Prevention (CDC) (Schumaker, 2020). On March 17, confirmed COVID-19 cases appeared in all states in the U.S., and on March 20, more than 15,000 confirmed cases were officially reported in New York state. On March 26, the United States had more confirmed COVID-19 cases than any other country.

The second temporal conception is trajectory. Trajectory refers to the temporal sequence of events, which is effective in explaining the development process of specific historical events. I use this trajectory concept to analyze the consequences of the political decisions that determine the process of returning to normal life after the COVID-19 crisis.

From the moment that the COVID-19 crisis reached its peak (based on statistical data of daily or weekly confirmed cases and the number of deaths), each country considered the time to return to normal life and took step-by-step procedures, although there was no representative path (or standards) to do so. For instance, in the United States, many of the states that implemented a reopening plan have also surpassed the number of daily confirmed cases recorded before reopening (see Table 1).5

In contrast with the United States, in New Zealand, the successful phased mitigation measures led by the government (Level 4 on March 25, Level 3 on April 28, and Level 2 on May 13) quickly reduced the number of confirmed COVID-19 cases. Originally, the move to Level 1, which means a transition back to normal life, was scheduled for June 22; however, due to the rapid decline in confirmed COVID-19 cases, the date was moved up to June 8 (Cave, 2020).6 To recapitulate, where the turning point is set for the transition back to normal life has a great influence on national or regional anti–COVID-19 measures, which has led to an increase or decrease in the number of confirmed COVID-19 cases. In this regard, to interpret historical events of the COVID-19 crisis, the concept of trajectory could provide important implications.

SYNTHESIS AND DISCUSSION

Research surrounding the COVID-19 crisis is certainly a new challenge for sociologists. In this paper, I have suggested two methods employed in historical sociology and revealed how these methods are useful in analyzing the social events of COVID-19. To provide valuable insights into real-time analysis of the tough and urgent social crisis of COVID-19, I have focused on the socio-historical narratives of new agenda-setting. As I have shown so far, these two methods of historical sociology help us to analyze the origins and emergence of novel and unprecedented pathogens and their socioeconomic impacts.

Yet, as Go (2020, p. 91) aptly noted, all social theories or methods are not universal. Given that “all social knowledge is provincial”, I do not deny the fact that other methods or theories in historical sociology may be privileged to understand convoluted COVID-19-related social phenomena. In fact, social events caused by the COVID-19 pandemic can suddenly appear or disappear in a short time, be atypical, and transform private or public relationships between individuals and states. This strongly implies that these social events cannot be explained fully
TABLE 1 Comparison of daily maximum number of confirmed cases between before reopening and after reopening, July 26, 2020

State	Reopening date	Daily maximum number of confirmed cases before reopening	Daily maximum number of confirmed cases after reopening
Alabama	April 30	483 (April 12)	2,399 (July 23)
Alaska	April 24	22 (April 7)	186 (July 26)
Arizona	May 1	446 (April 30)	4,877 (July 1)
Arkansas	May 18	402 (April 22)	1,061 (July 11)
California	May 1	2,603 (May 6)	12,807 (July 22)
Florida	May 4	1,413 (April 17)	15,300 (July 12)
Georgia	April 24	1,598 (April 7)	4,813 (July 24)
Hawaii	May 7	34 (April 1)	71 (July 25)
Idaho	May 1	218 (April 2)	727 (July 15)
Illinois	May 1	2,724 (April 24)	4,014 (May 12)
Indiana	May 4	949 (April 27)	996 (July 24)
Iowa	May 28	725 (May 2)	889 (July 10)
Kansas	May 4	574 (April 30)	676 (July 20)
Kentucky	May 11	577 (May 5)	977 (July 19)
Louisiana	May 1	2,726 (April 2)	3,840 (July 26)
Maine	May 1	65 (April 13)	78 (May 20)
Maryland	May 7	1,730 (May 1)	1,784 (May 19)
Minnesota	April 27	261 (April 25)	903 (July 20)
Mississippi	April 27	300 (April 19)	1,635 (July 21)
Missouri	May 4	355 (April 6)	1,653 (July 24)
Montana	April 27	50 (March 27)	221 (July 25)
Nevada	May 1	299 (March 29)	1,447 (July 16)
New Mexico	May 1	239 (April 29)	335 (July 23)
North Carolina	May 8	639 (May 8)	2,051 (July 17)
North Dakota	May 9	89 (April 18)	160 (July 22)
Ohio	May 1	1,380 (April 19)	1,679 (July 17)
Oklahoma	June 1	171 (April 4)	1,714 (July 21)
Oregon	May 15	100 (April 4)	430 (July 19)
Puerto Rico	April 30	145 (April 17)	669 (July 6)
South Carolina	April 20	275 (April 16)	2,734 (July 19)
Tennessee	April 27	478 (April 26)	3,314 (July 13)
Texas	May 1	1,441 (April 10)	14,916 (July 17)
U.S. Virgin Islands	June 1	30 (March 31)	37 (July 15)
Utah	May 1	182 (April 4)	954 (July 16)
by only two methods of historical sociology. My study in this regard is closer to a heuristic and problem-posing approach than a problem-solving approach.

In addition, coping with the COVID-19 crisis and its impacts on societies in historical sociology does not mean that "one is 'best' to the exclusion of others" (Goldstone, 1998, p. 843). To analyze the complex social realities of the COVID-19 world, what we really need is an integrated and open-minded approach in historical sociology.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Palat for his valuable and productive comments during the drafting process. The paper also benefited from comments from anonymous reviewers and editors of Journal of Historical Sociology. They are not responsible for any mistakes herein. This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2020S1A6A3A02065553).

ORCID

Sung Hee Ru
https://orcid.org/0000-0002-6734-1593

ENDNOTES

1 Of course, there are some common features (e.g., the extraordinary speed of the disease's spread, its heavy toll on mental and physical health, and the practices of social distancing and quarantine initiatives as countermeasures of each state) between the COVID-19 pandemic and the Spanish flu pandemic of 1918–19; nonetheless, the differences between the two are more pronounced than the similarities. For instance, although we do not take into account the biological differences between the flu and the new coronavirus, the Spanish flu had a shorter incubation period than COVID-19. The longer incubation period of the COVID-19 has resulted in a higher hospitalization rate and greater socioeconomic influence. While soldier mobilization was deemed to have spread the Spanish flu during World War I, large population movements and mass gatherings became a major contributor to the spread of COVID-19. Plus, in the social and political context, "COVID-19 reminds us how different in their social dynamics and political reverberations one is from the other" (Arnold, 2020, p. 570).

2 For instance, strong nationalist sentiment and facilitation of 'politics of blame' emerged as a result of the prolonged COVID-19 crisis (Woods, Schertzer, Greenfeld, Hughes, and Miller-Idriss, 2020).

3 As Metcalfe and Shimanura (1994, p. 16) noted, metacognition encompasses not only "retrospective monitoring (e.g., a confidence judgment about a previous recall response)" but also "prospective monitoring (e.g., a judgment about future responding)." A keen insight of Max Weber – the emergence of an iron cage in an advanced modern society as an increased formal-instrumental rationality inherent in social life and structure – could be a prime example of using metacognition.

4 Although Korea has recently suffered from the increasing number of confirmed cases since the beginning of 'living with COVID-19 policy' (November 1, 2021), its public health system has been combating outbreaks effective. To be specific, after implementing 'living with COVID-19 policy,' Korea's daily number of confirmed cases recorded the highest number (7,850) on December 15, 2021, but after the government’s strict COVID-19 rules reintroduced (December 16, 2021), the number of confirmed cases has been continuously decreasing (as of January 8, 2022, the daily number of COVID-19 confirmed cases in Korea was 3,376).
Worse, the number of daily COVID19 confirmed cases in United States has been recently soaring again driven by the highly contagious Omicron variant (as of January 8, 2022, the daily number of COVID-19 confirmed cases in U.S. was 443,684).

Of course, New Zealand recorded more than 200 confirmed cases on November 22 and 23, 2021, but since then, the number of confirmed cases has been rapidly decreasing due mainly to the fast, effective, strict COVID-19 rules of New Zealand authorities (As of January 8, 2022, the daily number of COVID-19 confirmed cases in New Zealand was 148).

REFERENCES
Aminzade, R. (1992) Historical sociology and time. Sociological Methods & Research, 20(4), 456–480.
An, B.Y. & Tang, S.Y. (2020) Lessons from COVID-19 responses in east Asia: institutional infrastructure and enduring policy instruments. The American Review of Public Administration, 50(6–7), 790–800.
Arnold, D. (2020) Pandemic India: coronavirus and the uses of history. Journal of Asian Studies, 79(3), 569–577.
Beck, U. (1999) World risk society. Cambridge: Polity Press.
Beck, U. (2009) World at risk. Cambridge: Polity Press.
Cave, D. (2020) Vanquish the virus? Australia and New Zealand aim to show the way. The New York Times, 24 April, viewed 21 March 2021. https://www.nytimes.com/2020/04/24/world/australia/new-zealand-coronavirus.html
Cha, S.M., Yi, H.Y. & Smith, J. (2020) Church at centre of South Korea coronavirus outbreak says government fabricating test. Reuters, 21 August, viewed 23 December 2020. https://www.reuters.com/article/us-health-coronavirus-southkorea-church/church-at-centre-of-south-korea-coronavirus-outbreak-says-government-fabricating-tests-idUSKBN25H16W
Cheung, H. (2020) Coronavirus: what could the West learn from Asia. BBC, 21 March, viewed 21 December 2020. https://www.bbc.com/news/world-asia-51970379
Clemens, E.S. (2007) Toward a historicized sociology: theorizing events, processes, and emergence. Annual Review of Sociology, 33, 527–549.
Dingwall, R., Hoffman, L.M. & Staniland, K. (2013) Introduction: why a Sociology of Pandemic? Sociology of Health & Illness, 35(2), 167–173.
Eder, S., Fountain, H., Keller, M.H., Xiao, M.Y. & Stevenson, A. (2020) 430,000 people have traveled from China to U.S. Since coronavirus surfaced. The New York Times, 4 April, 11 November 2020. https://www.nytimes.com/2020/04/04/us/coronavirus-china-travel-restrictions.html
Feng, S., Shen, C., Xia, N., Son, W., Fan, M.Z. & Cowling, B.J. (2020) Rational use of face masks in the COVID-19 pandemic. Respiratory Medicine, 8(5), 434–436.
Goldstone, J.A. (1998) Initial conditions, general laws, path dependence, and explanation in historical sociology. American Journal of Sociology, 104(3), 829–845.
Goldthorpe, J.H. (1991) The uses of history in sociology: reflection on some recent tendencies. British Journal of Sociology, 42(2), 211–230.
Go, J. (2020) Race, empire, and epistemic exclusion: or the structures of sociological thought. Sociological Theory, 38(2), 79–100.
Johns Hopkins University Coronavirus Resource Center. (2021) New covid-19 cases worldwide. Available from: https://coronavirus.jhu.edu/ [Accessed 7th May 2021].
Huang, T.T. (2020) Taiwan pledges military aid to boost mask supply. Taiwan News, 2 February, viewed 11 November 2020. https://www.taiwannews.com.tw/en/news/3869320
Kim, M.H., Cho, W.H., Choi, H.M. & Hur, J.Y. (2020) Assessing the South Korean model of emergency management during the COVID-19 pandemic. Asian Studies Review, 44(4), 567–578.
Kiser, E. & Hechter, M. (1991) The role of general theory in comparative-historical sociology. American Journal of Sociology, 97(1), 1–30
Lachmann, R. (2013) What is historical sociology? Cambridge: Polity Press.
Lin, C., Braund, W.E., Auerbach, J., Chou, J.-H., Teng, J.-H., Tu, P., et al. (2020) Policy decisions and use of information technology to fight coronavirus disease, Taiwan. Emerging Infectious Diseases, 26, 1506–1512. https://doi.org/10.3201/eid2607.200574
Luhmann, L. (2008) Verständigung über risiken und gefahren. In: Die moral der gesellschaft. Frankfurt: Suhrkamp, pp. 348–361.
Mahoney, J. (2000) Path dependence in historical sociology. Theory and Society, 29(4), 507–548.
Metcalfe, J. & Shimanura, A.P. (1994) Metacognition: knowing about knowing. Cambridge: MIT Press.
Ock, H.-J. (2021) S. Korea’s has second-lowest number of COVID-19 cases per person in OECD. The Korea Herald, 1 January, viewed 3 March 2021. http://www.koreaherald.com/view.php?ud=20201231000645
Oh, J.H., Lee, J.-K., Schwartx, D., Ratcliffe, H.C., Markuns, J.F. & Hirschhorn, L.R. (2020) National response to COVID-19 in the Republic of Korea and lessons learned for other countries. *Health System & Reform*, 6(1), e1753464. https://doi.org/10.1080/23288604.2020.1753464

Peckham, R. (2020) Covid-19 and the anti-lessons of history. *Lancet*, 395, 850–852.

Schumaker, E. (2020) *Timeline: how coronavirus got started*. ABC News, 23 September, viewed 11 November 2020. https://abcnews.go.com/Health/timeline-coronavirus-started/story?id=69435165

Steinbrook, R. (2020) Contact tracing, testing, and control of COVID-19—Learning from Taiwan. *JAMA Internal Medicine*, 180(9), 1163–1164.

Stinchcombe, A.L. (1987) *Constructing social theories*. Chicago: The University of Chicago Press.

Subrt, J.R. (2012) History and sociology: what is historical sociology? In: Erasga, D. (Ed.) *Sociological landscape: theories, realities, and trends*. InTech, pp. 403–416.

Taleb, N.N. (2010) *The black swan: the impact of the highly improbable*. New York: Random House Trade Paperback.

The Washington Post. (2020) Tracking U.S. covid-19 cases, deaths and other metrics by state, 28 July, viewed 28 July 2020. https://www.washingtonpost.com/graphics/2020/national/coronavirus-us-cases-deaths/

Wang, J. C., Chun, Y. N. & Brook, R. H. (2020) Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. *JAMA*, 323(14), 1341–1342. https://doi.org/10.1001/jama.2020.3151

Watson, K. (2020) A timeline of what Trump has said on coronavirus. CBS News, 3 April, viewed 5 April 2020. https://www.cbsnews.com/news/timeline-president-donald-trump-changing-statements-on-coronavirus

Wood, E.T., Schertzer, R., Greenfeld, L., Hughes, C. & Miller-Idriss, C. (2020) COVID-19, nationalism, and the politics of crisis: a scholarly exchange. *Nations and Nationalism*, 26, 807–825.

Wu, P.-W. & Chiang, Y.-C. (2020) Taiwan’s surgical mask output hits 13 million per day. Focus Taiwan, 31 March, viewed 3 April 2020. https://focustaiwan.tw/society/202003310020

Yang, M.J. (2021) Behind South Korea’s success in containing Covid-19: surveillance technology infrastructure. Available from: https://items.ssrc.org/covid-19-and-the-social-sciences/covid-19-in-east-asia/behind-south-koreas-success-in-containing-covid-19-surveillance-technology-infrastructures/ [Accessed 3rd January 2022].

You, J.E. (2020) Lessons from South Korea’s Covid-19 policy response. *The American Review of Public Administration*, 50(6-7), 801–808.

How to cite this article: Ru, S.H. (2022) Toward a historical sociology of COVID-19: path dependence method and temporal connections. *Journal of Historical Sociology*, 35(2), 283–297. Available from: https://doi.org/10.1111/johs.12367