Supplemental Information

Centromere interactions promote the maintenance of the multipartite genome in *Agrobacterium tumefaciens*

Zhongqing Ren, Qin Liao, Ian S. Barton, Emma Wiesler, Clay Fuqua, Xindan Wang

Inventory of Supplemental information

Six Supplemental Figures and Figure Legends

Supplemental Tables
• Table S1A: Strains used in this study.
• Table S1B: Plasmids used in this study.
• Table S1C: Oligonucleotides used in this study.
• Table S1D: Next-Generation-Sequencing samples used in this study.

Supplemental Materials and Methods: This provides a detailed description of the methods applied in this study.
Ren Figure S1

ParB1 depletion 0h 6h 12h 18h
ori1
ori2
oAt
Figure S1. ParB1 is important for genome maintenance.

Visualization of origin localization when ParB1 was depleted for the indicated durations in AtWX496 (top) and AtWX498 (bottom). The origins are labeled using *mcherry-parB^{P1}-parS^{P1}* at 50 kb away from ori1 (green, top panel), or *ygfp-parB^{pMT1}-parS^{pMT1}* at 57 kb away from ori2 (red, top panel) or 11 kb away from oAt (green, bottom panel). Pseudo-colors were assigned as indicated. Protein levels can be found in Figure 1B. Scale bar represents 2 μm. ParB1 depletion was performed by washing away the inducers (1 μM AHL and 2 mM theophylline).
Ren Figure S2

A

Cell length distribution

H

Cell width distribution

I

Strains

WT

ΔpodJ

ΔpopZ

ΔZ ΔJ

Δgpr

- number of cells

- anucleated cells

- cells with 1 ori1 and 1 ori2

- cells with 2 ori1 and 2 ori2

- total number of ori1 foci

- total number of ori2 foci

- ori1 colocalized with ori2

- ori2 colocalized with ori1
Figure S2. The polar organizers are required for polar localization of the origins.

(A) 10-fold serial dilutions of the indicated strains spotted on ATGN plate (left) or LB plate (right).

(B-F) Plots of the localization of ori1 (green) and ori2 (red) in (C) WT (AtWX263), (C) ΔpodJ (AtWX307), (D) ΔpopZ (AtWX303), (E) ΔpopZ ΔpodJ (AtWX305), (F) Δgpr (AtW309) for cells containing a single ori1 and ori2 focus (top), or two ori1 and ori2 foci (bottom). The percentage of cells in these subpopulations can be found in (H).

(G-H) Distribution of cells length (G) and cell width (H) in the indicated strains.

(I) Image analysis. Colocalization was defined as a pair of green and red foci that are with an inter-focal distance of less than 6 pixels. Images were analyzed using Oufti software, see Materials and Methods.
Figure S3. PopZ is enriched at ori1 and ori2, which requires ParB1 and RepBCh2 respectively.

(A-C) ChIP enrichment (ChIP/input) of (A) GFP-PopZ (AtWX234), (B) GFP-PodJ (AtWX263) and (C) GFP-GPR (AtWX236). Whole-genome profiles are shown on the left in 1-kb bins and high-resolution plots of ori1 and ori2 regions are shown on the right in 100-bp bins. Black asterisks indicate an enrichment peak present in all of our anti-GFP ChIP-seq experiments regardless of the fusion protein. Blue and gray dotted lines indicate the parS1 and parS2 sites, respectively.

(D) High-resolution ChIP enrichment (ChIP/input) of GFP-PopZ at ori1 (top) and ori2 (bottom) in ParB1⁺ (AtWX289 with inducers 1 μM AHL and 2 mM theophylline), ParB1⁻ (AtWX289 without inducers), and ∆repBCh2 (AtWX291). The enrichment of GFP-PopZ at the ori1 and ori2 regions depends on the presence of ParB1 and RepBCh2, respectively.
Ren Figure S4
Figure S4. Quantification of inter-replicon interactions.

(A-D) Quantifications of ori1-ori2 interactions (orange region) and Ch1-Ch2 alignment (blue regions) in different strains. Regions used for quantification are shown in (A-B). Details can be found in Materials and Methods. Interactions in $\Delta\text{repB}_{\text{Ch2}}$ is set as the background (0%, black dotted lines). After subtracting background, the percentage of interactions relative to the WT (100%) is shown.

(E-G) *A. tumefaciens* 15955 strain showed similar phenotype. Normalized Hi-C contact maps for (E) 15955 WT (11) (F) 15955 ΔpopZ (IB173), (G) 15955 ΔpodJ (IB172) grown in ATGN.
Figure S5. ChIP-seq enrichment of ParB1 and RepBCh2 at cognate sites and reciprocal sites.

(A) ParB1 enrichment in wild-type cells (11). Sequencing reads from ChIP and input samples were normalized to the total number of reads and plotted in 1-kb bins. x-axis shows genome positions.

(B) RepBCh2 enrichment in wild-type cells (11).

(C) High-resolution plots of ParB1 enrichment from (A) at 50-kb regions in encompassing ori1 (left panel) and ori2 (right panel). parS1 and parS2 sites are indicated by blue and gray dotted lines, respectively. Data are plotted in 100-bp bins.

(D) High-resolution plots of RepBCh2 enrichment from (B) at 50-kb regions in encompassing ori1 (left panel) and ori2 (right panel).
Ren Figure S6

A

B

C

D
Figure S6. ParB1-RepB_{Ch2} interactions could not be detected in BACTH or in vitro pulldown assays.

(A) BACTH interactions between ParB1 and RepB_{Ch2}. E. coli strain BTH101 (56) expressing protein fusions to different domains (T25 and T18) of an adenylate cyclase. T25 and T18 fused to the same leucine zipper domain (“zip”) from yeast GCN4 serve as both positive and negative controls (38). This experiment detected interactions between ParB1 and ParB1, and between RepB_{Ch2} and RepB_{Ch2}, but not between ParB1 and RepB_{Ch2}.

(B) An SDS-PAGE gel of an in vitro pulldown experiment. Affinity-purified ParB1 polyclonal antibodies were crosslinked to magnetic ProteinA Sepharose beads, which were then incubated with 50 μg of ParB1 protein and 50 μg of RepB_{Ch2} proteins in 1 ml 1xPBS solution, singly or doubly. Similarly, beads crosslinked with purified RepB_{Ch2} antibodies were incubated with proteins. Proteins were eluted in sample loading buffer at 65°C and separated by stain-free precast 4-20% polyacrylamide gradient gels (Bio-Rad 4561096). L is for protein ladder (BioRad 1610363). The gels were imaged using ProteinSimple Fluorchem R gel documentation system.

(C) An SDS-PAGE gel of an in vitro pulldown experiment using ParB1 beads similar to that in (B). The beads were incubated with ParB1, RepB_{Ch2}, 1 mM CTP, 3 μM parS1 and parS2 DNA fragments. ParB1-RepB_{Ch2} interactions were not detected.

(D) The SDS-PAGE gel in (C) was immunoblotted using RepB_{Ch2} antibodies. A low amount of RepB_{Ch2} protein could be detected when incubated with ParB1 beads alone, but this level did not increase in the presence of the ParB1 protein.
Strain	Genotype	Reference	Figure
A. tumefaciens used in main figures			
AtWX063	C58, wild type	(1)	1B, 3A, S2A, S4ACD, S5ABCD
AtWX089	C58, ΔrepB_C(Atu3923/ATU_RS18280)::amp	(2)	1B, 3B, S2A, S4BCD
AtWX192	C58, ΔtraI, tetRA::gen Ptra-riboswitch-parB1(Atu2828/ATU_RS13770) traR	(2)	1B
AtWX356	C58, mcherry-parB_{PI}-parS_{PI} inserted between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1, ygfp-parB_{PMT1}-par_{PMT1} inserted between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2	This study	1CF
AtWX359	C58, ygfp-parB_{PMT1}-par_{PMT1} inserted between Atu5336/ATU_RS25500 and Atu5337/ATU_RS25505, 11 kb from oAt	(2)	1CF
AtWX402	C58, ΔrepB_C(Atu3923/ATU_RS18280)::amp, mcherry-parB_{PI}-parS_{PI} inserted between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1, ygfp-parB_{PMT1}-par_{PMT1} inserted between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2	This study	1DF
AtWX500	C58, ΔrepB_C(Atu3923/ATU_RS18280)::amp, ygfp-parB_{PMT1}-par_{PMT1} inserted between Atu5336/ATU_RS25500 and Atu5337/ATU_RS25505, 11 kb from oAt	This study	1DF
AtWX496	C58, ΔtraI, tetRA::gen Ptra-riboswitch-parB1(Atu2828/ATU_RS13770) traR, mcherry-parB_{PI}-parS_{PI} inserted between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1, ygfp-parB_{PMT1}-par_{PMT1} inserted between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2	This study	1EF, S1
AtWX498	C58, ΔtraI, tetRA::gen Ptra-riboswitch-parB1(Atu2828/ATU_RS13770) traR, ygfp-parB_{PMT1}-parS_{PMT1} inserted between Atu5336/ATU_RS25500 and Atu5337/ATU_RS25505, 11 kb from oAt	This study	1EF, S1
AtWX277	C58, ygfp-parB_{PMT1}-par_{PMT1} inserted between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1	(2)	1F
AtWX295	C58, ygfp-parB_{PMT1}-par_{PMT1} inserted between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2	(2)	1F
Strain	Description	Notes
AtWX351	C58, ygfp-parB^{PM1}-parS^{PM1} inserted between Atu0647/ATU_RS23235 and Atu0648/ATU_RS23240, 4 kb from oTi	(2) 1F
AtWX263	C58, carrying pWX970, pSRKKm Plac rfp-repB^{Ch2} (Atu3923/ATU_RS18280) terminator Plac egfp-parB1 (Atu2828/ATU_RS13770) terminators	(2) 2A, S2B
AtWX307	C58, ΔpodJ (Atu0499/ATU_RS02460), containing pWX970	This study 2B, S2C
AtWX303	C58, ΔpopZ (Atu1720/ATU_RS08420), containing pWX970	This study 2C, S2D
AtWX305	C58, ΔpopZ (Atu1720/ATU_RS08420) ΔpodJ (Atu0499/ATU_RS02460), containing pWX970	This study 2D, S2E
AtWX309	C58, Δgpr (Atu1348/ATU_RS06650), containing pWX970	This study 2E, S2F
AtWX283	C58, ΔpodJ (Atu0499/ATU_RS02460)	This study 3C, S2A, S4CD
AtWX110	C58, ΔpopZ (Atu1720/ATU_RS08420)	This study 3D, S2A, S4CD
AtWX121	C58, ΔpopZ (Atu1720/ATU_RS08420) ΔpodJ (Atu0499/ATU_RS02460)	This study 3E, S2A, S4CD
AtWX286	C58, Δgpr (Atu1348/ATU_RS06650)	This study 3F, S2A, S4CD

A. tumefaciens used for strain building and in supplemental figures

Strain	Description	Notes
AtWX234	C58, containing pWX822, pSRKKm msfgfp-popZ (Atu1720/ATU_RS08420)	This study S3A
AtWX265	C58, containing pMAT3, pSRKKm msfgfp-popJ (Atu0499/ATU_RS02460)	This study S3B
AtWX236	C58, containing pJZ253, pSRKGm gfp-gpr (Atu1348/ATU_RS06650)	This study S3C
AtWX289	C58, ΔtraI, tetRA::gen PtraI-riboswitch-parB1 (Atu2828/ATU_RS13770) traR, pSRKKm msfgfp-popZ (Atu1720/ATU_RS08420)	This study S3D
AtWX291	C58, ΔrepB^{Ch2}, pSRKKm msfgfp-popZ (Atu1720/ATU_RS08420)	This study S3D
AtWX486	C58, ΔtraI, tetRA::gen PtraI-riboswitch-parB1 (Atu2828/ATU_RS13770) traR, ygfp-parB^{p1}-parS^{p1} inserted between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1	This study
AtWX050	15955, wild type	(3) S4E
IB172	15955, ΔpodJ (ISGA_411)	This study S4F
IB173	15955, ΔpopZ (ISGA_1749)	This study S4G

B. subtilis strains used in main figures

Strain	Description	Notes
BWX5333	pelB::Psoj mcherry-parB1_{Ai} tet, parS_{2Ai} cluster at -91° kan, ΔparB_{Bs} spec	This study 4BCD
BWX5359	ycgO::Phyperspank-optRBS-mgfpmut3-repB^{Ch2}cat, parS_{2Ai} cluster at -91° kan, ΔparB_{Bs} spec	This study 4BCD
BWX5341	pelB::Psoj mCherry-parB1_{Ai} tet, ycgO::Phyperspank-optRBS-mgfpmut3-repB^{Ch2}cat, ΔparB_{Bs} spec	This study 4C
Strain Code	Genotype Description	References
------------	----------------------	------------
BWX5353	pelB::Pssoj mCherry-parB1At tet, ycgO::Phyperspank-optRBS-mgfpmut3-repBCh2Al cat, parS2Al cluster at -91° kan, parSΔ9, ΔparB Bs (ΔparS) spec	This study 4D
AG1468	Δspo0J::spec, trpC2, pheA1	(4)
BWX2423	ΔparB (ΔparS) spec	(5)
BWX3212	parSΔ9 no a.b.	(6)
BWX3379	parSΔ9 no a.b., parS at -91° ytuf kan	(7)
BWX5258	pelB::Pssoj mcherry-parB1At tet	This study
BWX5260	ycgO::Pssoj mgfpmut3-repBCh2Al cat	This study
BWX5265	parS2Al cluster at -91° kan	This study
BWX5309	parSΔ9 no a.b., ycgO::Phyperspank-optRBS-mgfpmut3-repBCh2Al cat	This study
BWX5329	ycgO::Phyperspank mgfpmut3-repBCh2Al cat, parSΔ9	This study
BWX5349	pelB::Pssoj mCherry-parB1At tet, ycgO::Phyperspank-optRBS-mgfpmut3-repBCh2Al cat, parS2Al cluster at -91° kan, ΔparB Bs spec	This study

B. subtilis strains used for strain building and in supplemental figures

1. **BWX5353**
 - pelB::Pssoj mCherry-parB1At tet, ycgO::Phyperspank-optRBS-mgfpmut3-repBCh2Al cat, parS2Al cluster at -91° kan, parSΔ9, ΔparB Bs (ΔparS) spec

2. **AG1468**
 - Δspo0J::spec, trpC2, pheA1

3. **BWX2423**
 - ΔparB (ΔparS) spec

4. **BWX3212**
 - parSΔ9 no a.b.

5. **BWX3379**
 - parSΔ9 no a.b., parS at -91° ytuf kan

6. **BWX5258**
 - pelB::Pssoj mcherry-parB1At tet

7. **BWX5260**
 - ycgO::Pssoj mgfpmut3-repBCh2Al cat

8. **BWX5265**
 - parS2Al cluster at -91° kan

9. **BWX5309**
 - parSΔ9 no a.b., ycgO::Phyperspank-optRBS-mgfpmut3-repBCh2Al cat

10. **BWX5329**
 - ycgO::Phyperspank mgfpmut3-repBCh2Al cat, parSΔ9

11. **BWX5349**
 - pelB::Pssoj mCherry-parB1At tet, ycgO::Phyperspank-optRBS-mgfpmut3-repBCh2Al cat, parS2Al cluster at -91° kan, ΔparB Bs spec
| Plasmid | Description | Reference |
|--------------|---|--------------------------------|
| pFHC2973 | The plasmid carries $\text{cfp-parB}^{\text{PT}}$ and $\text{ygfparB}^{\text{PTT}}$ | (8) |
| pGM9 | pNPTS138 ΔpodJ (Atu0499/ATU_RS02460) (kan) | Fuqua Lab, unpublished |
| pIB315 | pNPTS138 15955 ΔpopZ (ISGA_1749) (kan) | This study |
| pIB316 | pNPTS138 15955 ΔpodJ (ISGA_411) (kan) | This study |
| pJW005 | yhdG::Phyerspank-opt.rbs-sirA (phleo) | (9) |
| pJZ25 | pSRK6m Plac gfpgpr (Atu1348/ATU_RS06650) (kan) | (10) |
| pJZ298 | pBSKII+ plasmid with sacB carb carrying 2kb sequencing homologous to gpr (Atu1348/ATU_RS06650) | (10) |
| pKNT18 | BACTH plasmid contains MCS t18 (amp) | (11) |
| pKNT25 | BACTH plasmid contains MCS t25 (kan) | (11) |
| pKT18 | BACTH plasmid contains t18 MCS (amp) | (11) |
| pKT25 | BACTH plasmid contains t25 MCS (kan) | (11) |
| pKT25zip | BACTH Plasmid was used to express t25-zip (kan) | (11) |
| pUT18Czip | BACTH Plasmid was used to express t18-zip (amp) | (11) |
| pMAT3 | pSRKKm Plac msfgfp-podJ (Atu0499/ATU_RS02460) (kan) | Fuqua Lab, unpublished |
| pNPTS138 | onT sacB | (12) |
| pSRKKm | Broad host-range, Plac (kan) | (13) |
| pSRKKm msfGFP| pSRKKm Plac msfgfp (kan) | (14) |
| mini-Tn7 | pUC18-mini-Tn7T gen Plac ha | (14) |
| pWX294 | pACYC origin with MCS (amp) | This study |
| pWX563 | pelB::Psoj-mgfpmut3-spo0J (parS*) (tet) | (5) |
| pWX564 | pelB::Psoj-mcherry-spo0J (parS*) (tet) | (15) |
| pWX588 | ycgO::Pspank* (optRBS) gfsp-spo0J (parS*) cat | This study |
| pWX822 | pSRKKm Plac msfgfp-popZ (Atu1720/ATU_RS08420) (kan) | (13) |
| pWX839 | pNPTS138 ΔpopZ (Atu1720/ATU_RS08420) (kan) | This study |
| pWX845 | BACTH Plasmid was used to express t25-parB1 (kan) | This study |
| pWX846 | BACTH Plasmid was used to express t25-repB$^{\text{CH2}}$ (kan) | This study |
| pWX847 | BACTH Plasmid was used to express parB1-t25 (kan) | This study |
| pWX848 | BACTH Plasmid was used to express repB$^{\text{CH2}}$-t25 (kan) | This study |
| pWX849 | BACTH Plasmid was used to express t18-parB1 (amp) | This study |
| pWX850 | BACTH Plasmid was used to express t18-repB$^{\text{CH2}}$ (amp) | This study |
| pWX851 | BACTH Plasmid was used to express parB1-t18 (amp) | This study |
| pWX852 | BACTH Plasmid was used to express repB$^{\text{CH2}}$-t18 (amp) | This study |
| pWX854 | pNPTS138 repB$^{\text{CH2}}$ (Atu3923/ATU_RS18280)::ampR (kan) | This study |
| pWX915 | pACYC terminator Ppen (amp) | This study |
| pWX916 | pACYC terminator Ppen cfp-parB$^{\text{PT}}$-parS$^{\text{PT}}$ (amp) | This study |
| pWX930 | pNPTS138 Ppen cfp-parB$^{\text{PT}}$-parS$^{\text{PT}}$ kan at Atu3054/ATU_RS14060 | This study |
| pWX936 | pNPTS138 PT7strong cfp-parB$^{\text{PT}}$-parS$^{\text{PT}}$ at Atu3054/ATU_RS14060 | This study |
| pWX962 | pNPTS138 PT7strong cfp-parB^{P1}-parS^{P1} at Atu0048/ATU_RS00235 | This study |
| pWX967 | pNPTS138 PT7strong yGFP-parB^{MT1}-parS^{MT1} at Atu3973/ATU_RS18530 | This study |
| pWX970 | pSRKKm Plac rfp-repB^{Chz} (Atu3923/ATU_RS18280) terminator (Atu2828/ATU_RS13770) parB1-egfp Plac terminators | (2) |
| pWX995 | pNPTS138 terminators PT7strong mcherry-parB^{P1}-parS^{P1} at Atu0048/ATU_RS00235 | This study |
| pWX1005 | pNPTS138 yGFP-parB^{MT1}-parS^{MT1} Atu5337/ATU_RS25505 | (2) |
Table S1C. Oligonucleotides used in this study.

Oligo	Sequence	Use
oML83	CCTCATCCTCTTCATCCTC	sequencing
oML85	AATAGCGTCCTTGGCTCCTCGT	sequencing
IBE140	GGATCCAGAGCTCGATCATGTGCCGGG	IB172
IBE141	CATCCGTTGCAAACGTTGATCATCTTTCGCTGCTTCG	IB172
IBE142	GCGAAGCGAGCGAAAGGTAGTACCCGTTGGCAGAGTGATA	IB172
IBE143	GCTAGCAGCCAGCTTTCCGCGCCGGAAA	IB172
IBE144	TTAGCGGGGAAAAGGGCCTCC	IB172
IBE145	CGTACGGCCCGAGAGGCGCC	IB172
IBE146	GGATCCACTGCGTGTGGCGTGGTGCGATA	IB173
IBE147	ATGCGAGCAGCAGAGCTCATATCATCAATCCCCGCTTTCC	IB173
IBE148	GGGAAAGGCGGGATGGATATGGATGGTACCCGTTGGCAGAGTGATA	IB173
IBE149	GCTAGCAGCTGTGTTCCACTCACGCTTCGTG	IB173
IBE150	CAGACCTTGTCACGGAGGC	IB173
IBE151	TCGAAGATTGGCCGGGCGCA	IB173
oWX439	TCCTTCTGCTCCCTCCTGCTCAG	BWX5265
oWX776	ATGGGCTGGAAGCCAGCGGAGG	sequencing
oWX998	AAACCCCGGACATAAGGAGGAACCTACTATGAGTAAAGG	pWX588
oWX999	TTTGCTAGCCAGAGTGGAAGAACAGCGCCTTAAACC	pWX588
oWX1279	CTAATCCGACAGCTACCTCGAGCC	BWX5265
oWX1282	CGATAAAGCGGACGGAGGATGCGGAGTC	BWX5265
oWX1283	TCCTATTTGCACTCGGCCTCC	sequencing
oWX1782	TGAGTTCAGCTCCTACCGGAT	sequencing
oWX1783	ACCAGCGGAGACTCAATGCTG	sequencing
oWX1789	CATCTTGCCAACCTCGCCGAG	sequencing
oWX1790	CCTCTTCTGCTATAGCGCCAGC	sequencing
oWX1835	GCCAGGGTTTCACCGGCA	sequencing
oWX1854	CGCCAGGGTTTTGCCGACGAGGC	sequencing
oWX1855	TCACACGAGAAACAGGTAGCC	sequencing
oWX2044	CAATTTCACACAGGGAAACAGCATATGAGTAAAGGTCAGCCACTGCTGTTCC	pWX822
oWX2046	GACGTCTCGACATCCTGTTAGTATGCTATCGGCCGT	pWX822
oWX2051	TATAAAAGGCTGGAAGACCTCCAGCAGGCGTGCCAGGAGTCAGTGTAGTGGCCGTGAAAGGC	pWX822
oWX2052	CTCGAGGTGTAAGTGGGAGGACCTCGGTAGGATGAAAGGTCAGGCGGAGGTGGCCGTGAAAGGC	pWX822
oWX2060	GGAAGCGGCGAGCGGTGAGGC	sequencing
oWX2061	GAGGTTATGATGAGGAGGAGAGC	sequencing
oWX2076	TGCGCGCAGGGCTATTCTGAGGATAGCAGCAGAGTGGCAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG	sequencing
oWX2077	GCTAGCGAATCTGCTGGATCCAGATCTAACCAGGCGCAGACCAGACCAGACCAGACCAGACCAGAC	sequencing
oWX2160	CTGGCGCAAGCTTCTCTGCAGGATTGCCAAGGCAACTGTCTATCG	pWX839, sequencing
oWX2161	GGCAGCGATTGAGCCCTGCGGAATATCAATCCCGGTTTCTACTC	pWX839
oWX2162	GAGTAGAAAAACGGGGATTGTGATATCCCGCAGCTACAATCGCTGCC	pWX839, sequencing
oWX2163	AGCTAGCGAATTCGTTGCCAGATAGCTGGTGGTTTCATCAGGTTGC	pWX839, sequencing
oWX2190	CGCTCTAGAGTAACACACAGGAAGACGTATGAGTGATCTTTCG	pWX847, pWX851
oWX2191	ATGCCCGGGCCGCAACCGGCTACCTTCTGTCCAGCAGCC	pWX847, pWX851
oWX2193	ATGCCCGGGTTTATTTTCTGCTCCAGCAGCC	pWX845, pWX849
oWX2194	CGCTCTAGAGTAACACACAGGAAGACGTATGAGCGGAAACAGATAATTCG	pWX848, pWX852
oWX2195	ATGCCCGGGCCGCAACCGGCTACCTTCTGCTCCAGGCTTTCG	pWX848, pWX852
oWX2197	ATGCCCGGGTTTACTCGTTGAGCCGTTTATTCG	pWX846, pWX850
oWX2202	CGCTCTAGAGGGCAGCGGCTACCTTCTGCTCCAGGCTTTCG	pWX845, pWX849
oWX2203	CGCTCTAGAGGGCAGCGGCTACCTTCTGCTCCAGGCTTTCG	pWX846, pWX850
oWX2291	GGCTGATTTGCGCATGACAATATTGCAGTGTCG	sequencing
oWX2292	GTTCTCGGATCGGACAGTAGAAGTCAGGG	sequencing
oWX2377	GGCTTCTTTGTTATCAAGGCGCCAG	sequencing
oWX2385	GCTGAATTCCCGCGGAAGCGGGGTTTTTTTTTCGCTTGGGAAACGAGGTCATCATTTC	pWX915
oWX2386	TTTAAGCTTGAATTTTGATTGATGCGTACAGGATGAAG	pWX915
oWX2387	TCAATAATTTAAGCTTGAAGGAGGAGGTGGAACATGAGTAAAGGGAAGAAGAATTTTC	pWX916
oWX2388	TCTTAAATGACTCGCGAGAACTCGAGTTAATAGGAAATTTGATGGCGAAG	pWX916
oWX2389	CTGCCGATTTCAAATTCTACTTGAATCGTCTCAGGATGTTTACTCGAGTGCCGACTTTT	pWX916
oWX2390	GCCGATACTGAGTCGACATGGGCAGACGATCTCCGTGAATCAATCGTGCCGAATT	pWX916
oWX2395	TCTTTCGATTACGGCAGACATCC	sequencing
oWX2396	CCGTCAATTGTGTCATTTACGTCGGAATT	sequencing
oWX2397	GATGACGGTAAACTCAAAACCC	sequencing
oWX2407	CTCTAGATAGCAGCATGCTGATTC	pWX930, pWX962
oWX2408	GGTATGCTAGTTATGGCTGAGC	pWX930, pWX962
oWX2420	GGCAGCGAAGTCTCTGCAGGATCCAGATACGATCC	sequencing

14
oWX2590	GGTGGAATGGACGAATTATACAAAGAATTTCGAGCTCATGGTCGAGCAG	pWX995
oWX2597	CGCCAAGCTTCTCTGAGGATATCCCAGGGATGGCATTAAGGTCC	sequencing
oWX2600	AGCGAATTCGATCCAGATATCCTTCCGACAACGTCGTGGATGCC	sequencing
oWX2649	AAGCTTACATAAGGAGGAACTACTATGAGTAAAGGAGAAGAACTTTTCAC	BWX5309
oWX2650	CAGCTATGACAAACAAATGAAACAGC	BWX5309, BWX5329
oWX2651	GGATGCCGATACGGCTGAAGCG	BWX5309, BWX2651
oWX2655	ATAGTAGTTCCTCCTTTATGAAGCTTAATTGTTATCCGCTCAC	BWX5309
oWX2668	TGCCCTCAAGCTAGAGTGCGATGTTCCAGACGTCCATTGCAGAG	BWX5309
oWX2669	GAAGCTGAGCGTCTGAACATCGACTTCTCTAGCTTGAGGCATC	BWX5309
oWX2674	CCGAATTAGCTTGCATGCAGTCAGCTTGGAGGACGTTCCATTCCGAG	BWX5329
oWX2675	AATACCGGTCAAAGCCATGTGCAATGCAAGCTATTGCGCTGG	BWX5329
Table S1D. Next generation sequencing samples used in this study.

Sample name	Figure	Reference	Identifier
401_Wang_HiC_AtWX063_ATGN	3A, S4ACD	(2)	GSM5542437
408_Wang_HiC_AtWX089_ATGN	3B, S4BCD	(2)	GSM5542444
443_Wang_HiC_AtWX283_ATGN	3C, S4CD	This study	GSM5870438
444_Wang_HiC_AtWX110_ATGN	3D, S4CD	This study	GSM5870439
445_Wang_HiC_AtWX121_ATGN	3E, S4CD	This study	GSM5870440
446_Wang_HiC_AtWX286_ATGN	3F, S4CD	This study	GSM5870441
447_Wang_ChIP_anti_mCherry_BWX5333_CH	4CD	This study	GSM5870442
448_Wang_input_BWX5333_CH	4CD	This study	GSM5870443
449_Wang_ChIP_anti_GFP_BWX5359_CH_20uMIPTG1h	4CD	This study	GSM5870444
450_Wang_input_BWX5359_CH_20uMIPTG1h	4CD	This study	GSM5870445
451_Wang_ChIP_anti_GFP_BWX5341_CH_20uMIPTG1h	4C	This study	GSM5870446
452_Wang_input_BWX5341_CH_20uMIPTG1h	4C	This study	GSM5870447
453_Wang_ChIP_anti_mCherry_BWX5353_CH_20uMIPTG1h	4D	This study	GSM5870448
454_Wang_input_BWX5353_CH_20uMIPTG1h	4D	This study	GSM5870449
458_Wang_ChIP_anti_GFP_AtWX234_ATGN_halfmMIPTG4h	S3A	This study	GSM5870453
459_Wang_input_AtWX234_ATGN_halfmMIPTG4h	S3A	This study	GSM5870454
460_Wang_ChIP_anti_GFP_AtWX236_ATGN_halfmMIPTG4h	S3C	This study	GSM5870455
461_Wang_input_AtWX236_ATGN_halfmMIPTG4h	S3C	This study	GSM5870456
462_Wang_ChIP_anti_GFP_AtWX265_ATGN_halfmMIPTG4h	S3B	This study	GSM5870457
463_Wang_input_AtWX265_ATGN_halfmMIPTG4h	S3B	This study	GSM5870458
464_Wang_ChIP_anti_GFP_AtWX289_LB_2mMTheo_1uMAHL_halfmMIPTG4h	S3D	This study	GSM5870459
465_Wang_input_AtWX289_LB_2mMTheo_1uMAHL_halfmMIPTG4h	S3D	This study	GSM5870460
466_Wang_ChIP_anti_GFP_AtWX289_LB_halfmMIPTG4h_4h	S3D	This study	GSM5870461
467_Wang_input_AtWX289_LB_halfmMIPTG4h_4h	S3D	This study	GSM5870462
468_Wang_ChIP_anti_GFP_AtWX291_ATGN_halfmMIPTG4h	S3D	This study	GSM5870463
469_Wang_input_AtWX291_ATGN_halfmMIPTG4h	S3D	This study	GSM5870464
415_Wang_HiC_AtWX050_LB	S4E	(2)	GSM5542451
470_Wang_HiC_IB173_ATGN	S4F	This study	GSM5870465
471_Wang_HiC_IB172_ATGN	S4G	This study	GSM5870466
403_Wang_input_AtWX063_ATGN_rep2	S5A-D	(2)	GSM5542439
404_Wang_ChIP_anti_AtParB_AtWX063_ATGN	S5AC	(2)	GSM5542440
405_Wang_ChIP_anti_AtRepBCh2_AtWX063_ATGN	S5BD	(2)	GSM5542441
References

1. Watson B, Currier TC, Gordon MP, Chilton MD, Nester EW. 1975. Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123:255-64.

2. Ren Z, Liao Q, Karaboja X, Barton IS, Schantz EG, Mejia-Santana A, Fuqua C, Wang X. 2022. Conformation and dynamic interactions of the multipartite genome in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 119.

3. Dessaux Y, Tempe J, Farrand SK. 1987. Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mol Gen Genet 208:301-8.

4. Ireton K, Gunther NWt, Grossman AD. 1994. spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol 176:5320-9.

5. Graham TG, Wang X, Song D, Etson CM, van Oijen AM, Rudner DZ, Loparo JJ. 2014. ParB spreading requires DNA bridging. Genes Dev 28:1228-38.

6. Wang X, Le TB, Lajoie BR, Dekker J, Laub MT, Rudner DZ. 2015. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 29:1661-75.

7. Brandao HB, Ren Z, Karaboja X, Mimy LA, Wang X. 2021. DNA-loop-extruding SMC complexes can traverse one another in vivo. Nat Struct Mol Biol 28:642-651.

8. Nielsen HJ, Ottesen JR, Youngren B, Austin SJ, Hansen FG. 2006. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol Microbiol 62:331-8.

9. Wagner JK, Marquis KA, Rudner DZ. 2009. SirA enforces diploidy by inhibiting the replication initiator DnaA during sporulation in Bacillus subtilis. Mol Microbiol 73:963-74.

10. Zupan JR, Grangeon R, Robalino-Espinosa JS, Garnica N, Zambryski P. 2019. GROWTH POLE RING protein forms a 200-nm-diameter ring structure essential for polar growth and rod shape in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 116:10962-10967.

11. Karimova G, Pidoux J, Ullmann A, Ladant D. 1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752-6.

12. Hinz AJ, Larson DE, Smith CS, Brun YV. 2003. The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator. Mol Microbiol 47:929-41.

13. Khan SR, Gaines J, Roop RM, 2nd, Farrand SK. 2008. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 74:5053-62.

14. Figueroa-Cuilan W, Daniel JJ, Howell M, Sulaiman A, Brown PJ. 2016. Mini-Tn7 Insertion in an Artificial attTn7 Site Enables Depletion of the Essential Master Regulator CtrA in the Phytopathogen Agrobacterium tumefaciens. Appl Environ Microbiol 82:5015-25.

15. Wang X, Montero Llopis P, Rudner DZ. 2014. Bacillus subtilis chromosome organization oscillates between two distinct patterns. Proc Natl Acad Sci U S A 111:12877-82.
SUPPLEMENTAL MATERIALS AND METHODS

Plasmid construction

pWX588 [ycgO::Pspank* (optRBS) gfp-spo0J (parS*) (cat)] was constructed by a ligation reaction containing two DNA fragments: 1) pAM12 (1) was digested by Xmal and NheI to give ycgO::Pspank* cat; 2) (optRBS) gfp-spo0J (parS*) was amplified using oWX998 and oWX999 from pKM256 (2).

pWX822 [pSRKKm msfgfp-popZ (Atu1720/ATU_RS08420) (kan)] was constructed by an isothermal assembly reaction containing three DNA fragments: 1) pSRKKm digested by Ndel and HindIII; 2) msfgfp amplified using oWX2044 and oWX2046 from pSRKKm msfgfp; 3) At popZ amplified using oWX2051 and oWX2052 from C58 genomic DNA. The construct was sequenced using oWX1835, oWX2060 and oWX2061.

pWX839 [pNPTS138 ΔpopZ (Atu1720/ATU_RS08420) (kan)] was constructed by an isothermal assembly reaction containing three gel-purified fragments: 1) pNPTS138 digested by EcoRV; 2) At popZ upstream region amplified using oWX2160 and oWX2161 from C58 genomic DNA; 3) At popZ downstream region amplified using oWX2162 and oWX2163 from C58 genomic DNA. The construct was sequenced using oWX1854 and oWX1855.

pWX845 [pKT25 t25-parB1 (Atu2828/ATU_RS13770) (kan)] was constructed by ligating two DNA fragments: 1) pKT25 digested by Xbal and Xmal; 2) At parB1 amplified using oWX2202 and oWX2193 from C58 gDNA and then digested by Xbal and Xmal. The construct was sequenced using oWX1789 and oWX1790.

pWX846 [pKT25 t25-repBCh2 (Atu3923/ATU_RS18280) (kan)] was constructed by ligating two DNA fragments: 1) pKT25 digested by Xbal and Xmal; 2) At repBCh2 amplified using oWX2203 and oWX2197 from C58 gDNA and then digested by Xbal and Xmal. The construct was sequenced using oWX1789 and oWX1790.
pWX847 [pKNT25 parB1-t25 (Atu2828/ATU_RS13770) (kan)] was constructed by ligating two DNA fragments: 1) pKNT25 digested by XbaI and XmaI; 2) At parB1 amplified using oWX2190 and oWX2191 from C58 gDNA and then digested by XbaI and XmaI. The construct was sequenced using oWX1782 and oWX1783.

pWX848 [pKNT25 repBCh2-t25 (Atu3923/ATU_RS18280) (kan)] was constructed by ligating two DNA fragments: 1) pKNT25 digested by XbaI and XmaI; 2) At repBCh2 amplified using oWX2194 and oWX2195 from C58 gDNA and then digested by XbaI and XmaI. The construct was sequenced using oWX1782 and oWX1783.

pWX849 [pKT18 t18-parB1 (Atu2828/ATU_RS13770) (amp)] was constructed by ligating two DNA fragments: 1) pKT18 digested by XbaI and XmaI; 2) At parB1 amplified using oWX2202 and oWX2193 from C58 gDNA and then digested by XbaI and XmaI. The construct was sequenced using oWX1789 and oWX1790.

pWX850 [pKT18 t18-repBCh2 (Atu3923/ATU_RS18280) (amp)] was constructed by ligating two DNA fragments: 1) pKT18 digested by XbaI and XmaI; 2) At repBCh2 amplified using oWX2203 and oWX2197 from C58 gDNA and then digested by XbaI and XmaI. The construct was sequenced using oWX1789 and oWX1790.

pWX851 [pKNT18 parB1-t18 (Atu2828/ATU_RS13770) (amp)] was constructed by ligating two DNA fragments: 1) pKNT18 digested by XbaI and XmaI; 2) At parB1 amplified using oWX2190 and oWX2191 from C58 gDNA and then digested by XbaI and XmaI. The construct was sequenced using oWX1782 and oWX1783.

pWX852 [pKNT18 repBCh2-t18 (Atu3923/ATU_RS18280) (amp)] was constructed by ligating two DNA fragments: 1) pKNT18 digested by XbaI and XmaI; 2) At repBCh2 amplified using oWX2194 and oWX2195 from C58 gDNA and then digested by XbaI and XmaI. The construct was sequenced using oWX1782 and oWX1783.
pWX915 [pACYC terminator Ppen] was constructed by ligating two DNA fragments: 1) pWX294 digested by EcoRI and HindIII; 2) Ppen amplified using oWX2385 and oWX2386 from gWX46. pWX294 is an empty cloning vector with pACYC origin. Ppen is a constitutive promoter the penicillinase gene from B. licheniformis. The construct was sequenced using oWX2395.

pWX916 [pACYC terminator Ppen cfp-parB^P1-parS^P1] was constructed by an isothermal assembly reaction containing three gel-purified fragments: 1) pWX915 digested by HindIII and BamHI; 2) rbs-cfp-parB^P1 amplified using oWX2387 and oWX2388 from pFHC2973 (3); 3) parS^P1 amplified using oWX2389 and oWX2390 from gDNA of TND1379 (4). The construct was sequenced using oWX2395, oWX2396, oWX2397 and 2377.

pWX930 [pNPTS138 Ppen cfp-parB^P1-parS^P1 kan at Atu3054/ATU_RS14060] was constructed by an isothermal assembly reaction containing four gel-purified fragments: 1) pNPTS138 digested by EcoRV; 2) a part of Atu3054/ATU_RS14060 amplified using oWX2420 and oWX2421 from C58 gDNA; 3) cfp-parB^P1-parS^P1 amplified using oWX2407 and oWX2408 from pWX916 4) a part of Atu3055/ATU_RS14065 amplified using oWX2422 and oWX2423 from C58 gDNA. The construct was sequenced using oWX2424, oWX2426, oWX2377 and oWX2425.

pWX936 [pNPTS138 PT7strong cfp-parB^P1-parS^P1 at Atu3054/ATU_RS14060] was constructed by an isothermal assembly reaction containing one gel-purified fragments: pWX930 backbone amplified using oWX2431 and oWX2432. The construct was sequenced using oWX2424, oWX2426, oWX2377 and oWX2425.

pWX962 [pNPTS138 PT7strong cfp-parB^P1-parS^P1 at Atu0048/ATU_RS00235] was constructed by an isothermal assembly reaction containing four gel-purified fragments: 1) pNPTS138 digested by EcoRV; 2) PT7strong cfp-parB^P1-parS^P1 amplified using oWX2407 and oWX2408 from pWX936; 3) a part of Atu0047/ATU_RS00230 amplified using oWX2502 and oWX2503 from C58 gDNA; 4) a part of Atu0048/ATU_RS00235
amplified using oWX2504 and oWX2505 from C58 gDNA. The construct was sequenced using oWX2506, oWX2377, oWX2426, oWX2507.

pWX995 [pNPTS138 terminators PT7strong mcherry-parB\(^{P1}\)-par\(^{S1}\) at Atu0048/ATU_RS00235] was constructed by an isothermal assembly reaction containing two gel-purified fragments: 1) pWX962 backbone amplified using oWX2589 and oWX2590 on pWX962; 2) mcherry amplified using oWX2584 and oWX2585 from gDNA of BWX2208 (5). The construct was sequenced using oWX2506, oWX2377, oWX2426 and oWX2507.

pIB315 [pNPTS138 15955 ∆popZ (ISGA_1749) (kan)] was constructed in two steps. First, At 15955 popZ upstream amplified using IPB140 and IBP141 and At 15955 popZ downstream amplified using IPB142 and IBP143 from 15955 gDNA were stitched together by PCR and then ligated into pGEM T-easy (Promega), confirmed by sequencing (6). Next the stitched fragment digested using BamH1 and Nhe1 and pNPTS138 digested with the same enzymes were ligated together.

pIB316 [pNPTS138 15955 ∆podJ (ISGA_411) (kan)] was constructed in two steps. First, At 15955 podJ upstream amplified using IPB146 and IBP147 and At 15955 podJ downstream amplified using IPB148 and IBP149 from 15955 gDNA were stitched together by PCR and then ligated into pGEM T-easy (Promega), confirmed by sequencing (6). Next the stitched fragment digested using BamH1 and Nhe1 and pNPTS138 digested with the same enzymes were ligated together.

A. tumefaciens Strain construction
In general, in-frame deletions of C58 A. tumefaciens strains were constructed using a previously described allelic replacement method (6). Briefly, regions flanking the gene to be deleted were PCR amplified using Phusion (NEB M0530) or Q5 polymerase (NEB M0491) and cloned into pNPTS138 (7), a ColE1 suicide plasmid that confers kanamycin resistance and sucrose sensitivity, by isothermal assembly reactions. See Plasmid construction for details. pNPTS138 deletion constructs were then introduced into A.
tumefaciens C58 via mating with E. coli S17-1/λpir (8) carrying the appropriate construct. Screening for plasmid integration and target gene deletion was performed as previously described (6, 9). Colony PCR was used to amplify the region to confirm the deletion mutants. Specifically,

C58, mcherry-parB^{P1}-parS^{P1} inserted between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1, ygfp-parB^{MT1}-parS^{MT1} inserted between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2 (AtWX356) was generated in two steps. First, pWX967 was used to insert ygfp-parB^{MT1}-parS^{MT1} between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2, generating AtWX295. This strain was confirmed using oWX2508 and oWX2511. Next, pWX995 was used to insert mcherry-parB^{P1}-parS^{P1} between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1, generating AtWX356. This strain was confirmed using oWX2502 and oWX2505.

C58, ∆repB^{Ch2}, mcherry-parB^{P1}-parS^{P1} inserted between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1, ygfp-parB^{MT1}-parS^{MT1} inserted between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2 (AtWX402) was generating using pWX854 on AtWX356 (see above), and conformed using oWX2076 and oWX2077.

C58, ∆traI, tetRA::gen PtraI-riboswitch-parB1(Atu2828/ATU_RS13770) traR, mcherry-parB^{P1}-parS^{P1} inserted between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1, ygfp-parB^{MT1}-parS^{MT1} inserted between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2 (AtWX496) was generated in two steps. First, pWX967 was used to insert ygfp-parB^{MT1}-parS^{MT1} between Atu3973/ATU_RS18530 and Atu3974/ATU_RS18535, 57 kb from ori2 on AtWX192 (10), generating AtWX486. This strain was confirmed using oWX2508 and oWX2511. Next, pWX995 was used to insert mcherry-parB^{P1}-parS^{P1} between Atu0047/ATU_RS00230 and Atu0048/ATU_RS00235, 50 kb from ori1 on AtWX486, generating AtWX496. This strain was confirmed using oWX2502 and oWX2505.
AtWX192 contains ΔtraI, tetRA::gen Ptra-riboswitch-parB1(Atu2828/ATU_RS13770) traR (10).

C58, ΔtraI, tetRA::gen Ptra-riboswitch-parB1(Atu2828/ATU_RS13770) traR, ygfp-parB_{pMT1}-parS_{pMT1} inserted between Atu5336/ATU_RS25500 and Atu5337/ATU_RS25505, 11 kb from oAt (AtWX498) was generated using pWX1005 on AtWX192 (10), and confirmed using oWX2597 and oWX2600.

C58, ΔrepB^{Ch2}, ygfp-parB_{pMT1}-parS_{pMT1} inserted between Atu5336/ATU_RS25500 and Atu5337/ATU_RS25505, 11 kb from oAt (AtWX500) was generated using pWX1005 on AtWX089 (10), and confirmed using oWX2597 and oWX2600. AtWX089 contains ΔrepB^{Ch2} (10).

C58, ΔpodJ (Atu0499/ATU_RS02460) (AtWX283) was generated using pGM9, and confirmed using oWX2291 and oWX2292.

C58, ΔpopZ (Atu1720/ATU_RS08420) (AtWX110) was generated using pWX839, and confirmed using oWX2160 and oWX2163.

C58, ΔpopZ (Atu1720/ATU_RS08420) ΔpodJ (Atu0499/ATU_RS02460) (AtWX121) was generated using pGM9 on AtWX110, and confirmed using oWX2291 and oWX2292.

C58, Δgpr (Atu1348/ATU_RS06650) (AtWX286) was generated using pJZ298 (11), and confirmed using oWX2530 and oWX2531.

15955, ΔpodJ (ISGA_411) (IB172) was generated using plB316, and confirmed using IBP144 and IBP145.

15955, ΔpopZ (ISGA_1749) (IB173) was generated using plB315, and confirmed using IBP150 and IBP151.
Replicative plasmids were introduced to *A. tumefaciens* by electroporation as previously described (6). pWX822, pJZ253, pMAT3 were electroporated into C58 WT, generating AtWX234, AtWX236, AtWX265. pWX970 was electroporated into AtWX110, AtWX121, AtWX283 and AtWX286 to generate AtWX303, AtWX305, AtWX307 and AtWX309. pWX822 was electroporated into AtWX089 (10) and AtWX192 (10), generating AtWX291 and AtWX289, respectively.

B. subtilis Strain construction

pelB::Psoj mCherry-parB1At tet (BWX5258) A ligation reaction containing the following two DNA fragments was directly transformed to PY79: 1) pWX564 [*pelB::Psoj-mcherry-spo0J (parS*) (tet)*] (12) cut with BamHI and Xhol to remove *spo0J (parS*)*; 2) *parB1At* (amplified from C58 genomic DNA using oWX2563 and oWX2564, and then cut with BamHI and Xhol). The transformants were amplified using oWX776 and oML85 and sequenced using oWX776 and oML85.

ycgO::Psoj mgfpmut3-RepB^{Ch2}_At cat (BWX5260) A ligation reaction containing the following three DNA fragments was directly transformed to PY79: 1) an empty cloning vector pKM077 [*ycgO::cat*] cut with EcoRI and BamHI; 2) *repB^{Ch2}_At* (amplified from C58 genomic DNA using oWX2566 and oWX2567, and then cut with BamHI and Xhol); 3) *Psoj mgfpmut3* liborated from pWX563 using EcoRI and Xhol. The transformants were amplified and sequenced using oWX2497 and oWX2568. pWX563 (13) contains *pelB::Psoj-mgfpmut3-spo0J (parS*) tet*.

parS2At cluster at -91° kan (BWX5265) An isothermal assembly reaction containing the following three PCR products was directly transformed to PY79: 1) the region containing *ytuf* upstream region (amplified from PY79 genomic DNA using oWX1279 and oWX2569); 2) the *parS2At* region (amplified from C58 genomic DNA using oWX2570 and oWX2571); 3) the region containing *kan*, *ytuf* and *ytuf* downstream (amplified from BWX3379 genomic DNA (14) using primers oWX439 and oWX1282).
The transformants were amplified using oWX1283 and oML83 and sequenced using oWX1283 and oML83.

parS\(\Delta9\) no a.b., ycgO::Phyperspank-optRBS-mgfpmut3-repB\(Ch_2\)\(_{At}\) cat (BWX5309)

An isothermal assembly reaction containing the following three PCR products was directly transformed to BWX3212 (15): 1) the region containing ycgO downstream (amplified from PY79 genomic DNA using oWX2668 and oWX2650); 2) the *Phyperspank* promotor amplified from pJW005 (16) using oWX2655 and oWX2669); 3) the region containing *mgfpmut3-repB*\(Ch_2\)\(_{At}\), cat, ycgO downstream (amplified from genomic DNA of BWX5260 using primers oWX2649 and oWX2651). The transformants were amplified using oWX2568 and oWX2560 and sequenced using oWX2568 and oWX2497.

ycgO::Phyperspank mgfpmut3-repB\(Ch_2\)\(_{At}\) cat, parS\(\Delta9\) (BWX5329)

An isothermal assembly reaction containing the following three PCR products was directly transformed to BWX3212 (15): 1) the region containing ycgO downstream and *Phyperspank mgfpmut3-repB*\(Ch_2\)\(_{At}\) (amplified from genomic DNA of BWX5309 (see above) using oWX2674 and oWX2650); 2) the *lacl-cat* and ycgO upstream (amplified from pWX588 using oWX2675 and oWX2651). pWX588 contains ycgO::Pspank\(^*\) (optRBS) gfp-spo0J (parS\(^*\)) cat. The transformants were amplified using oWX2568 and oWX2560 and sequenced using oWX2568 and oWX2497.

After individual *B. subtilis* constructs were built as above, their genomic DNA was extracted and used in successive transformations to build BWX5333, BWX5341, BWX5349, BWX5353, BWX5359.
References
1. Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, Kahne D, Walker S, Kruse AC, Bernhardt TG, Rudner DZ. 2016. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537:634-638.
2. Sullivan NL, Marquis KA, Rudner DZ. 2009. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137:697-707.
3. Nielsen HJ, Ottesen JR, Youngren B, Austin SJ, Hansen FG. 2006. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol Microbiol 62:331-8.
4. Dalia AB, Dalia TN. 2019. Spatiotemporal Analysis of DNA Integration during Natural Transformation Reveals a Mode of Nongenetic Inheritance in Bacteria. Cell 179:1499-1511 e10.
5. Wang X, Tang OW, Riley EP, Rudner DZ. 2014. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr Biol 24:287-92.
6. Morton ER, Fuqua C. 2012. Laboratory maintenance of Agrobacterium. Curr Protoc Microbiol Chapter 1:Unit3D 1.
7. Hinz AJ, Larson DE, Smith CS, Brun YV. 2003. The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator. Mol Microbiol 47:929-41.
8. Simon RP, U; Pühler, Alfred. 1983. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nature Biotechnology 1:pages 784–791.
9. Barton IS, Platt TG, Rusch DB, Fuqua C. 2019. Destabilization of the Tumor-Inducing Plasmid from an Octopine-Type Agrobacterium tumefaciens Lineage Drives a Large Deletion in the Co-resident At Megaplasmid. G3 (Bethesda) 9:3489-3500.
10. Ren Z, Liao Q, Karaboja X, Barton IS, Schantz EG, Mejia-Santana A, Fuqua C, Wang X. 2022. Conformation and dynamic interactions of the multipartite genome in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 119.
11. Zupan JR, Grangeon R, Robalino-Espinosa JS, Garnica N, Zambryski P. 2019. GROWTH POLE RING protein forms a 200-nm-diameter ring structure essential for polar growth and rod shape in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 116:10962-10967.
12. Wang X, Montero Llopis P, Rudner DZ. 2014. Bacillus subtilis chromosome organization oscillates between two distinct patterns. Proc Natl Acad Sci U S A 111:12877-82.
13. Graham TG, Wang X, Song D, Elston CM, van Oijen AM, Rudner DZ, Loparo JJ. 2014. ParB spreading requires DNA bridging. Genes Dev 28:1228-38.
14. Brandao HB, Ren Z, Karaboja X, Mirny LA, Wang X. 2021. DNA-loop-extruding SMC complexes can traverse one another in vivo. Nat Struct Mol Biol 28:642-651.
15. Wang X, Le TB, Lajoie BR, Dekker J, Laub MT, Rudner DZ. 2015. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 29:1661-75.
16. Wagner JK, Marquis KA, Rudner DZ. 2009. SirA enforces diploidy by inhibiting the replication initiator DnaA during spore formation in Bacillus subtilis. Mol Microbiol 73:963-74.