The variations of peroneus digiti quinti muscle and its contribution to the extension of the fifth toe

A cadaveric study

Berin T. Demir, PhD, Yakup Gümüşalan, MD, Murat Üzel, MD, Hüseyin B. Çevik, MD.

ABSTRACT

Objective: To investigate the origin, prevalence, and possible effects of peroneus digiti quinti muscle (PDQ) on the fifth toe, to find out the variations of PDQ by determining the relationship between peroneus brevis muscle (PB) and PDQ, and to reveal its importance for the applications in foot and ankle surgery.

Methods: This study was conducted at the Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey between September 2013 and June 2014. The study was a prospective dissection of cadaveric lower limbs. Twenty-five amputated lower limbs were stored in the freezer at -15°C. The legs were dissected; prevalence and variations of peroneus digiti quinti were investigated.

Results: Peroneus digiti quinti muscle was found in 8 (32%) of 25 dissected lower limbs. However, 2 different tendon extensions were found at 3 (37.5%) of 8, and 5 (62.5%) of them were determined to have a single tendon.

Conclusion: The incidence, dimensions, length, and insertions of peroneus digiti quinti are important in the evaluation and treatment of functional loss of the fifth toe, lateral foot deformities, and tendon problems behind the lateral malleolus of the ankle.

There are 2 peroneal muscles in the lateral compartment of the leg. Peroneus longus muscle (PL) is longer than the 2, passing behind the lateral malleolus (LM), and enters a groove under the cuboid bone and reaches its attachment at the base of first metatarsal bone. Peroneus brevis muscle (PB) is the shorter one, passing behind LM, and attaches to the tuberosity of the fifth metatarsal bone. However, due to developmental factors, it is claimed that the variations, or rather accessory tendons of these muscles are quite common. Variationally, there may be various accessory tendons, the incidence of which changes from one population to another, such as peroneus tertius muscle (PT), and peroneus digiti quinti muscle (PDQ), and particularly peroneus quartus muscle
The variations of PDQ... Demir et al

Methods. This study was designed as a prospective dissection of cadaveric lower limbs. The prevalence of PDQ, its sites of origin and insertion, as well as its dimensions were documented. This study was conducted at the Faculty of Medicine, Kahramanmaras Sutcuimam University, Kahramanmaras, Turkey between September 2013 and June 2014. Twenty-five adult cadaveric amputated lower limbs (age range 40-65 years) of either gender were stored in the freezer at -15°C until dissection. After removing from the freezer and 12 hours waiting period at room temperature, the legs were carefully inspected, and only the ones without any foot deformity were included in the study group. The legs with bony deformities and severe degree of necrosis were excluded. The dissection procedure was carefully performed from the lateral compartment of the leg to the distal phalanx of the fifth toe. After the skin and subcutaneous tissues were discarded, PL and PB were separated from each other with their fasciae, and the surrounding soft tissues were removed. When PDQ was encountered, its sites of origin, insertion, and dimensions were measured using a millimetrically designed measuring tape. A digital camera from the same distance photographed all specimens. Then the foot was brought to its neutral standing position and measurements of PB were obtained in a standard way. Tendon length and the distance between the insertion and end point of muscle fibers of PB were determined; for the other measurements, the tip of LM was used as the landmark. As a result of the dissections, it was seen that in some extremities PDQ muscle separated from PB as a thin tendon, in the others it splitted off into 2 separate tendons. Data were recorded into the computer and Statistical Package for Social Sciences version 15 (SPSS Inc., Chicago, IL, USA) was used for biostatistical analysis. Means were compared by Student’s t-test. Pearson’s Chi-square test calculated the percentage in presence and absence group. The level of significance was set at p<0.05.

Results. Peroneus digiti quinti muscle was found in 8 (32%) of the 25 dissected lower limbs (Figure 1), with an insertion to the dorsolateral of the fifth toe (involvement of the proximal and middle phalanges, [Figure 2]), and lateral to the extensor digitorum longus muscle-tendon, dorsolateral of the fourth metatarsal, and dorsomedial of the fifth metatarsal bone (Figure 3). However, 2 different tendon extensions were found in 3 (37.5%) of 8, and 5 (62.5%) of them were determined to have a single tendon. There was no significance between the percentage of PDQ’s presence, and the dimensions of the PB tendon (p>0.05).

Disclosure. Authors have no conflict of interest, and the work was not supported or funded by any drug company.
The variations of PDQ ... Demir et al

Peroneus brevis tendon length, the size at insertion point, and the size at the level of LM were measured (Table 1). While PB tendon length was found as 223±23 mm, the distance between the beginning of the tendon and LM was found to be 149±16 mm. Thus, the distance between LM and PB insertion was determined approximately 74±16 mm. Peroneus brevis muscle was in the size of 12x4 mm at the point one cm proximal to the insertion and thicker at its site of insertion than it was at the level of LM or above. It was detected that PDQ separated from PB posterior to the LM as single or double tendinous bands, which arose from the dorsolateral side of the PB tendon. Peroneus digiti quinti muscle separated from PB at 40 mm proximal to LM. Single tendons were in the size of 3x2 mm, 2x1 mm, and 1x1 mm. The PDQ extended as 2 tendons in 3 limbs, and these tendons were somehow larger than the single tendons (Table 2). The insertion of PDQ also varies. It was observed that PDQ attached to the dorsolateral aspect of the fifth metatarsal bone, or extended to the dorsolateral aspect of the fifth toe in 3 extremities. In addition PDQ was found to extend to the fourth metatarsal bone in parallel with fourth extensor digitorum longus (EDL) tendon and terminated on the dorsal aponeurosis between the fourth and fifth metatarsal bones in one extremity (Table 3).

Table 1 - Measurements obtained from the peroneus brevis muscle (PB) in this study.

Parameters	Value (mm)
1. Tendon length	223±12.3
2. The distance between the beginning of the tendon and LM	149±16
3. The distance between the insertion and end point of muscle fibers	94±14.2
4. The distance between LM and end point of muscle fibers	20±0.02
5. Tendon dimensions at one cm proximal to the insertion	12x4
6. Tendon dimensions posterior to the LM	10x4

Means±SD, LM - lateral malleolus
Discussion. Extensor muscle of the fifth toe is EDL, and this muscle has evolved from extensor hallucis longus muscle in collaboration with PT and PB muscles.21 However, PB makes eversion of the foot and plantar flexion, while PT is participating in foot extension, since it is attached to the dorsum of the fifth metatarsus.22 Peroneus brevis muscle does not usually send extensor tendon to the fifth toe. Extra tendon extensions were detected with a rate of 32% during our dissections, which coursed distally and ended on the dorsal aponeurosis of the fifth toe, and when traction was applied to PB, partial extension of the fifth toe was observed (Table 4). Tendon pathologies constitute an important part of musculoskeletal problems in the foot and ankle. When situations like tendon ruptures, tenosynovitis, or tendinopathies occur, the muscle weakens and cannot perform its function fully.23 In such cases, if the subject has PDQ then it may partially extend the fifth toe or may have suspensory (tenodesis) effect on it. The pain behind the LM on the ankle is not a rare complaint and some of the painful conditions stem from tendon problems. Peroneus digiti quinti muscle has tendon slip(s) splitted up behind the LM. Hence, it may confuse clinicians while evaluating and treating some of the foot and ankle problems.

There are no precise data on the incidence of PDQ in the literature, and the studies are mainly based on the findings of many years ago.24 Bhargava et al25 gave the incidence of PDQ as 15.5%. Reimen14 reported the presence of PDQ as 79.5%. Based on these data, Yammine3 stated that there were differences regarding incidence of PDQ and declared that ethnicity was important in considering the incidence of PDQ in each community. We found the incidence of PDQ as 32% in our specimens. However, unlike other studies, we identified that PDQ sometimes can be found as 2 separate tendons, and that insertional sites can vary from each other. Besides, there is no clear information on the function of PDQ in mentioned studies. For example, we identified that PDQ arose from PB as 2 separate tendons, one of them attached to the dorsal aponeurosis of the fifth toe, and the other one attached to the base of the fifth metatarsal bone, and when a traction force was applied to both tendons, the fifth toe was brought into extension. Jadhav et al15 studied on 100 lower limbs and declared that the incidence of PDQ was 51% in India. In their study, the insertion location of PDQ was classified as well, but there was no information regarding its probable presence as in the form of 2 separate tendons.

In our study, we tried to determine the dimensions and length of PDQ and PB. The width and thickness of PB at the level of LM and the distance between

Number	First tendon length (mm)	First tendon dimensions	Second tendon length (mm)	Second tendon dimensions
1	45	3x2	45	3x2
2	40	3x2		
3	60	1x1	40	3x2
4	40	2x1		
5	40	2x1		
6	40	2x1		
7	40	3x8	40	3x13
8	40	2x2		

Types	Insertion	%
1	Dorsolateral at base of fifth metatarsal bone	27.2
2	Dorsolateral ridge of fifth metatarsal bone	18.1
3	Dorsolateral of fifth toe (involvement of the proximal and middle phalanges)	36.3
4	Lateral of EDL tendon (tendon extending to the fifth toe)	9.2
5	Lateral of EDL tendon, dorsolateral of fourth metatarsal bone and dorsomedial of fifth metatarsal bone	9.2

EDL - extensor digitorum longus

Authors	Population	Sample size	Male	Female	%
Bhargava et al25	Indian	100	-	-	15.5
Reimann14	German	200	-	-	79.5
Jadhav et al15	Indian	100	-	-	51
Our study	Turkish	25	14	11	32
LM and its insertion were measured. The distance between tendon starting point and insertion of PB was 233 mm; the distance between tendon starting point and LM was 149 mm. Since PB expands and attaches to the base of the fifth metatarsal bone, its width was 12x4 mm at a point one cm proximal to its insertion and 10x4 mm behind LM. While we measured the width x thickness of PDQ as 3x2 mm, 2x1 mm, and 1x1 mm, JadHAV et al.6 measured corresponding sizes between 0.7 and 3 mm. According to Bergman et al.,16 insertions of PDQ were dorsal aponeurosis of extensor digitorum brevis muscle or head of the fifth metatarsal bone and moved together with dorsal aponeurosis of the fifth toe or PT.16 However, we observed that PDQ attached to dorsolateral of the fifth toe in 36%, to the base of the fifth metatarsal bone in 27% and moved together with EDL tendon in 18% of cases. Since 25 cases were dissected in an East Mediterranean city of Turkey, the results may represent only the population in that region, but not the whole Turkish population. Further dissections in other regions of Turkey will contribute to the collection of nation-wide data.

In conclusion, variational tendon anomalies may exist in lateral compartment of the leg, as well as on the dorsum of the foot. Primarily PDQ can contribute to the extension of the fifth toe and interfere with the functions of EDL. Furthermore, these extra tendons may exert tenodesis effect that prevents flexion posture of the toe in EDL tendon injuries. These anatomic variations, which are the causes or consequences of developmental abnormalities, must also be taken into account in the evaluation and treatment of functional loss of the fifth toe, lateral foot deformities and also tendon problems behind the LM on the ankle.

References

1. Elhan A, Arinci K. Anatomy. 4th ed. Ankara (TR): Güneş Yayınevi; 2012.
2. Sarsilmaz M. Anatomy of the Human. Istanbul. Academy Press; 2014.
3. Yammine K. The accessory peroneal (fibular) muscles: peroneus quadratus and peroneus digiti quinti. A systematic review and meta-analysis. Surg Radiol Anat 2015; 37: 617-627.
4. Prakash, Narayanswamy C, Singh DK, Rajini T, Venkatatiah J, Singh G. Anatomical variations of peroneal muscles: a cadaver study in an Indian population and a review of the literature. J Am Podiatr Med Assoc 2011; 101: 505-508.
5. Silver RL, de la Garza J, Rang M. The myth of muscle balance. A study of relative strengths and excursions of normal muscles about the foot and ankle. J Bone Joint Surg Br 1985; 67: 432-437.
6. Sookur PA, Naraghi AM, Bleakney RR, Jalan R, Chan O, White LM. Accessory muscles: anatomy, symptoms, and radiologic evaluation. Radiographics 2008; 28: 481-499.
7. Taşer F, Sfaqi Q, Toker S. Coexistence of anomalous m. peroneus tertius and longitudinal tear in the m. peroneus brevis tendon. Eklem Hastalik Cerrahisi 2009; 20: 165-168.
8. Uğurlu M, Bozkurt M, Demirkale I, Cômert A, Acar HI, Tekdemir I. Anatomy of the lateral complex of the ankle joint in relation to peroneal tendons, distal fibula and talus: a cadaveric study. Eklem Hastalik Cerrahisi 2010; 21: 153-158.
9. Park HJ, Cha SD, Kim HS, Chung ST, Park NH, Yoo JH, et al. Reliability of MRI findings of peroneal tendinopathy in patients with lateral chronic ankle instability. Clin Orthop Surg 2010; 2: 237-243.
10. Witvrouw E, Borre KV, Willems TM, Huysmans J, Broos E, De Clercq D. The significance of peroneus tertius muscle in ankle injuries: a prospective study. Am J Sports Med 2006; 34: 1159-1163.
11. Athavale SA, Gupta V, Kotgirwar S, Singh V. The peroneus quartus muscle: clinical correlation with evolutionary importance. Anat Sci Int 2012; 87: 106-110.
12. Bilgili MG, Kaynak G, Botanilogo H, Basaran SH, Ercin E, Baca E, at al. Peroneus quartus: prevalence and clinical importance. Arch Orthop Trauma Surg 2014; 134: 481-487.
13. Hur MS, Won HS, Chung IH. A new morphological classification for the fibularis quadratus muscle. Surg Radiol Anat 2015; 37: 27-32.
14. Reimann R. Der variable streckapparat der kleinzehen. Gegenbaur’s Morphol Jahrb 1981; 127: 188-209.
15. JadHAV SD, Gosavi SN, Zamble BR. Study of peroneus digitii minimi quinti in Indian population: a cadaveric study. Rev Arg de Anat Clin 2013; 5: 67-72.
16. Bergman RA, Afifi AK, Miyauchi R. Peroneus brevis and longus. 1996. [Accessed 12 April 2015, Updated 24 March 2015]. Available from: http://www.anatomyatlases.org/AnatomicVariants/MuscularSystem/Leg/17Peroneus.shtml
17. Mehta V, Suri RK, Arora J, Dave V, Rath G. Supernumerary peronei in the leg musculature- utility for reconstruction. Chang Gung Med J 2011; 34(6 Suppl): 62-65.
18. Bakkum BW, Russell K, Adamczyck T, Keyes M. Gross anatomic evidence of partitioning in the human fibularis longus and brevis muscles. Clin Anat 1996; 9: 381-385.
19. Kudoh H, Sakai T, Horiguchi M. The consistent presence of the human accessory deep peroneal nerve. J Anat 1999; 194: 101-108.
20. Bhargava KN, Sanyal PK, Bhargava SN. Lateral musculature of the leg as seen in a hundred Indian cadavers. Indian J Med Sci 1961; 15: 181-185.
21. Kaneff A. [Upright posture of man and morphologic evolution of the musculi extensores digitorum pedis with reference to evolutionary myology. III]. Gegenbaur’s Morphol Jahrb 1986; 132: 681-722. German
22. Yildiz S, Yalcın B. An unique variation of the peroneus tertius muscle. Surg Radiol Anat 2012; 34: 661-663.
23. Doral MN, Donmez O, Atay OA, Turhan E, Kaya D. The problems of the tendons at the ankle. Tashkid 2013; 12: 105-116.
24. Sönmez M, Koşar I, Çimen M. The supernumerary peroneus tertius muscle: case report and review of the literature. Foot and Ankle Surgery 2000; 6: 125-129.
25. Macalister A. Additional observations on muscular anomalies in human anatomy (third series), with a catalogue of the principal muscular variations hitherto published. Trans Roy Irish Acad 1875; 25: 1-134.