Association of homocysteine-metabolizing enzyme gene polymorphisms and lipid profiles: an investigation of a gene-environment interaction

Shanqun Jiang1,2,*, Scott A. Venners3,*, Yi-Hsiang Hsu4,5, Justin Weinstock6, Suwen Wu1, Yanfeng Zou7, Faming Pan7 and Xiping Xu2,8

1School of Life Sciences, Anhui University, Hefei, China
2Institute of Biomedicine, Anhui Medical University, Hefei, China
3Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
4Institute for Aging Research, HSL and Harvard Medical School, Boston, MA, USA
5Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
6Department of Statistics, University of Virginia, Charlottesville, VA, USA
7Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
8Division of Epidemiology and Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL, USA

*These authors contributed equally to this work
Correspondence to: Shanqun Jiang, email: shanqunjiang2014@163.com
Keywords: MTHFR; MTR; polymorphism; lipid; interaction
Received: September 11, 2017 Accepted: November 16, 2017 Published: January 04, 2018
Copyright: Jiang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

This cross-sectional study investigated the gene-environment interactions between the MTHFR and MTR polymorphisms and gender with regard to lipid profiles in a general Chinese population. We recruited 2,124 individuals from Anhui Province, China. The MTHFR (C677T and A1298C) and MTR (A2756G) polymorphisms were genotyped, and serum lipid levels, including TC, TG, LDL-C, and HDL-C, were determined. Our results showed that male MTR AG + GG genotype carriers had significantly lower serum TC (adjusted β ± [SE]:-0.25 ± 0.10 mmol/L; P = 0.0159), LDL-C (adjusted β ± [SE]:-0.24 ± 0.09 mmol/L; P = 0.0049), and HDL-C (adjusted β ± [SE]:-0.09 ± 0.03 mmol/L; P = 0.0055) levels than the AA carriers. Male MTHFR677TT genotype carriers had significantly higher serum TC (adjusted β±[SE]: 0.28 ± 0.13 mmol/L; P = 0.0287) and LDL-C (adjusted β ± [SE]: 0.26 ± 0.13 mmol/L; P = 0.0485) levels than CC + CT carriers. In subsequent analyses, there was a significant interaction between the MTR AG+GG genotypes and gender in association with TC, LDL-C and TG levels (P = 0.0378, 0.0054 and 0.0183 for interaction, respectively). The interaction term for the MTHFR 677TT genotype and gender was also significant for TC and LDL-C levels (P = 0.0147 and 0.0243 for interaction, respectively). Further haplotype analysis showed that there also were significant interactions between gender and hap2 (MTHFR 677C/1298A) on TC (P = 0.009) and LDL-C (P = 0.013). We suggest that the negative effects of the MTR and MTHFR genotypes on serum lipids are based on certain gene-environment interactions in the Chinese general population.

INTRODUCTION

Meta-analysis has shown that an increase of 5 μmol/L in plasma homocysteine (Hcy) levels enhances the lifetime risk of cardiovascular disease (CVD) 1.6- to 1.8-fold, similar to the elevation in risk with an increase of 20 mg/dL (0.52 mmol/L) in cholesterol concentration [1]. A growing body of evidence has found that the risk associated with HHcy and hypercholesterolemia combined is greater than the risk associated with one of these risk factors alone
In the present study, we aim to examine the cross-sectional associations between the MTHFR C677T, MTHFR A1298C, and MTR A2756G functional gene polymorphisms and blood lipid levels, as well as whether interactions between these variants exist on the multiplicative scale with gender in a Chinese general population.

RESULTS

General characteristics

In total, 2,124 individuals from two regions, Huoqiu and Yuexi, both in Anhui Province, China, with available genotypes and phenotypes were recruited and analyzed. The genotype distributions of the MTHFR C677T and MTR A2756G polymorphisms did not deviate from Hardy-Weinberg equilibrium ($\chi^2 = 0.14$, $P = 0.702$ and $\chi^2 = 1.37$, $P = 0.242$, respectively), though the equilibrium did not hold for the MTHFR A1298C polymorphism ($\chi^2 = 6.08$, $P = 0.014$). Linkage disequilibrium (LD) plots showed that the MTHFR C677T and A1298C single nucleotide polymorphisms (SNPs) were not in complete LD ($D^2 = 1$, $r^2 = 0.258$). The distributions of participants’ age, TC, HDL-C, LDL-C, alanine aminotransferase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN), total bilirubin (TBIL), creatinine (CR), and albumin (ALB) were significantly different between males and females, as shown in Table 1. There are also significant differences in the prevalence of cigarette smoking, alcohol consumption, occupation and education between males and females.

Gender-specific associations between genotypes and serum lipid levels

As shown in Table 2, the levels of TC, LDL-C and HDL-C were significantly different across the three genotypes of the MTR A2756G gene in the male sample. Multiple linear regression analysis showed that, compared with the AA genotype carriers, the AG + GG genotype carriers had lower serum TC (adjusted beta ± SE: −0.25 ± 0.1 mmol/L; $P = 0.0159$), LDL-C (adjusted beta ± SE: −0.24 ± 0.09 mmol/L; $P = 0.0049$), and HDL-C levels (adjusted beta ± SE: −0.09 ± 0.03 mmol/L; $P = 0.0055$). After applying the Bonferroni correction, the adjusted P values were still significant. In males, the levels of TC and LDL-C were also different across the three genotypes of the MTHFR C677T gene. Multiple linear regression analysis showed that the TT genotype carriers had higher serum TC (adjusted beta ± SE: 0.28 ± 0.13 mmol/L; $P = 0.0399$) and LDL-C levels (adjusted beta ± SE: 0.26 ± 0.12 mmol/L; $P = 0.0247$) than the CC + CT genotype carriers. However, after applying the Bonferroni correction, the adjusted P values were no longer significant. There were no significant differences in the levels of TG and HDL-C across the three genotypes of MTHFR C677T ($P > 0.05$ for all).
As shown in Tables 2 and 3, we found significant interactions between genetic variants (MTR A2756G and MTHFR C677T) and gender in association with serum lipid levels. Table 2 showed that there was a significant interaction between the MTR 2756 AG + GG genotypes and gender in association with serum TC (P interaction = 0.0378), LDL-C (P interaction = 0.0054), and TG levels (P interaction = 0.0183). We also identified the interactions between the MTHFR 677TT genotype and gender in association with serum levels of TC (P interaction = 0.0147) and LDL-C (P interaction = 0.0243). However,

Table 1: Baseline clinical and epidemiologic characteristics of sample grouped by gender

Variables	Male	Female	p-value*
N	1084	1040	
Age (years)	46.5	45.2	0.003
BMIa (kg/m2)	23.8	24.2	0.091
TC (mmol/L)	4.6	4.7	0.002
TG (mmol/L)	1.1	1.1	0.993
HDL (mmol/L)	1.3	1.3	0.002
LDL (mmol/L)	2.8	2.9	0.022
ALT(IU/L)	20.5	15.8	< 0.001
AST (IU/L)	33.6	29.6	< 0.001
BUN (mmol/L)	4.6	4.1	< 0.001
TBIL (umol/L)	10.2	9.5	< 0.001
CR (umol/L)	64.6	50.2	< 0.001
ALB (g/L)	44.6	45.0	0.033

Medication use			
No	955	899	0.918
Yes	98	91	9.2

Cigarette smoking			
No	477	984	< 0.001
Yes	609	57	5.5

Alcohol consumption			
No	596	999	< 0.001
Yes	490	42	4

Occupation			
Farmer	315	505	< 0.001
Non-farmer	771	536	51.5

Education			
High school or lower	634	863	< 0.001
College or higher	452	178	17.1

Region			
Huoqui	649	606	0.453
Yuexi	435	434	41.7

* t-tests and Pearson’s χ² tests were applied to the continuous and categorical variables, respectively. Abbreviations: BMI, body mass index; TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate transaminase; BUN, blood urea nitrogen; TBIL, total bilirubin; CR, creatinine; ALB, albumin. aBMI = weight/height². Bold values denoted significant results.

Interactions between gender and genotypes on serum lipid profiles

As shown in Tables 2 and 3, we found significant interactions between genetic variants (MTR A2756G and MTHFR C677T) and gender in association with serum lipid levels. Table 2 showed that there was a significant interaction between the MTR 2756 AG + GG genotypes and gender in association with serum TC (P interaction = 0.0378), LDL-C (P interaction = 0.0054), and TG levels (P interaction = 0.0183). We also identified the interactions between the MTHFR 677TT genotype and gender in association with serum levels of TC (P interaction = 0.0147) and LDL-C (P interaction = 0.0243). However,
Table 2: Association between the MTR A2756G polymorphism and baseline lipid levels by linear regression models

Variables	Gender	MTR A2756G	N	Mean ± SD	Crude	Adjusted*				
					Beta	se	p-value	Beta	se	p-value
TC	Male	AA	864	4.58 ± 0.91	Ref.	.	.	Ref.	.	.
		AG	214	4.45 ± 0.82	-0.13	0.07	0.0529	-0.22	0.11	0.0370
		GG	8	3.89 ± 0.64	-0.69	0.21	0.0013	-0.50	0.10	< 0.001
		AG+GG	222	4.43 ± 0.82	-0.16	0.07	0.0188	-0.25	0.10	0.0159
Female	AA	869	4.67 ± 0.97	Ref.	.	.	Ref.	.	.	
		AG	165	4.71 ± 1.03	0.04	0.08	0.6019	0.09	0.11	0.4445
		GG	7	3.89 ± 0.64	-0.69	0.21	0.0013	0.17	0.34	0.5434
		AG+GG	172	4.72 ± 1.02	0.05	0.08	0.5523	0.09	0.11	0.3867
Test of interaction	Female (AG+GG)	0.21	0.10	0.0459	0.31	0.15	0.0378			
LDL-C	Male	AA	864	2.80 ± 0.80	Ref.	.	.	Ref.	.	.
		AG	214	2.67 ± 0.71	-0.13	0.06	0.0270	-0.23	0.09	0.0114
		GG	8	2.32 ± 0.45	-0.48	0.15	0.0017	-0.47	0.17	0.0668
		AG+GG	222	2.66 ± 0.70	-0.15	0.06	0.0091	-0.24	0.09	0.0049
Female	AA	869	2.84 ± 0.83	Ref.	.	.	Ref.	.	.	
		AG	165	2.91 ± 0.82	0.07	0.07	0.3041	0.12	0.10	0.2302
		GG	7	2.88 ± 0.61	0.04	0.22	0.8597	0.24	0.23	0.3024
		AG+GG	172	2.91 ± 0.81	0.07	0.07	0.3239	0.13	0.09	0.1800
Test of interaction	Female (AG+GG)	0.21	0.09	0.0120	0.36	0.13	0.0054			
TG	Male	AA	864	1.11 ± 0.72	Ref.	.	.	Ref.	.	.
		AG	214	1.21 ± 0.89	0.09	0.07	0.1521	0.11	0.08	0.1562
		GG	8	0.98 ± 0.74	-0.14	0.25	0.5724	0.17	0.20	0.3873
		AG+GG	222	1.20 ± 0.89	0.09	0.06	0.1550	0.11	0.08	0.1506
Female	AA	869	1.15 ± 0.71	Ref.	.	.	Ref.	.	.	
		AG	165	1.04 ± 0.53	-0.10	0.05	0.0296	-0.11	0.06	0.0503
		GG	7	1.16 ± 0.77	0.01	0.29	0.9590	-0.07	0.29	0.7975
		AG+GG	172	1.05 ± 0.54	-0.10	0.05	0.0476	-0.11	0.06	0.0600
Test of interaction	Female (AG+GG)	-0.19	0.08	0.0183	-0.24	0.10	0.0183			
HDL-C	Male	AA	864	1.29 ± 0.33	Ref.	.	.	Ref.	.	.
		AG	214	1.23 ± 0.29	-0.06	0.02	0.0145	-0.08	0.03	0.0139
		GG	8	1.13 ± 0.16	-0.16	0.05	0.0023	-0.16	0.05	0.0007
		AG+GG	222	1.22 ± 0.29	-0.06	0.02	0.0068	-0.09	0.03	0.0055
Female	AA	869	1.32 ± 0.33	Ref.	.	.	Ref.	.	.	
		AG	165	1.33 ± 0.31	0.01	0.03	0.6117	0.00	0.03	0.9987
		GG	7	1.43 ± 0.34	0.12	0.15	0.4429	0.00	0.11	0.9688
		AG+GG	172	1.33 ± 0.31	0.02	0.03	0.4831	0.00	0.03	0.9923
Test of interaction	Female (AG+GG)	0.08	0.03	0.0174	0.08	0.05	0.0685			

*Adjusted for age, BMI, medication use, alcohol consumption, cigarette smoking, occupation, education and region.

Abbreviations: TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol
Table 3: Association between the MTHFR C677T polymorphism and baseline lipid levels by linear regression models

Variables	Gender	MTHFR C677T	N	Mean ± SD	Crude beta	se	p-value	Adjusted beta	se	p-value
TC	Male	CC	350	4.49 ± 0.86	Ref.	.	.	Ref.	.	.
		CT	520	4.54 ± 0.90	0.05	0.06	0.4536	0.05	0.10	0.6032
		TT	216	4.66 ± 0.93	0.17	0.08	0.0345	0.28	0.13	0.0287
		CC+CT	870	4.52 ± 0.87	Ref.	.	.	Ref.	.	.
	Female	CC	306	4.77 ± 1.05	Ref.	.	.	Ref.	.	.
		CT	523	4.65 ± 0.92	-0.11	0.07	0.1312	-0.09	0.09	0.3535
		TT	212	4.61 ± 1.02	-0.15	0.10	0.1204	-0.18	0.12	0.1195
	Female	CC	306	4.77 ± 1.05	Ref.	.	.	Ref.	.	.
		CT	523	4.65 ± 0.92	-0.11	0.07	0.1312	-0.09	0.09	0.3535
		TT	212	4.61 ± 1.02	-0.15	0.10	0.1204	-0.18	0.12	0.1195
LDL-C	Male	CC	350	2.73 ± 0.77	Ref.	.	.	Ref.	.	.
		CT	520	2.76 ± 0.74	0.03	0.05	0.5247	-0.01	0.10	0.9348
		TT	216	2.88 ± 0.89	0.15	0.07	0.0373	0.26	0.13	0.0485
	Female	CC	306	2.93 ± 0.86	Ref.	.	.	Ref.	.	.
		CT	523	2.82 ± 0.76	-0.10	0.06	0.0904	-0.08	0.08	0.2915
		TT	212	2.83 ± 0.93	-0.10	0.09	0.2374	-0.14	0.12	0.2208
	Female	CC	306	2.93 ± 0.86	Ref.	.	.	Ref.	.	.
		CT	523	2.82 ± 0.76	-0.10	0.06	0.0904	-0.08	0.08	0.2915
		TT	212	2.83 ± 0.93	-0.10	0.09	0.2374	-0.14	0.12	0.2208
TG	Male	CC	350	1.13 ± 0.81	Ref.	.	.	Ref.	.	.
		CT	520	1.10 ± 0.59	-0.04	0.05	0.4536	-0.09	0.08	0.2763
		TT	216	1.21 ± 0.99	0.07	0.08	0.3451	0.08	0.11	0.4373
	Female	CC	306	1.12 ± 0.60	Ref.	.	.	Ref.	.	.
		CT	523	1.14 ± 0.71	0.01	0.05	0.7656	-0.07	0.06	0.2642
		TT	212	1.13 ± 0.73	0.01	0.06	0.8837	0.05	0.10	0.5853
	Female	CC	306	1.12 ± 0.60	Ref.	.	.	Ref.	.	.
		CT	523	1.14 ± 0.71	0.01	0.05	0.7656	-0.07	0.06	0.2642
		TT	212	1.13 ± 0.73	0.01	0.06	0.8837	0.05	0.10	0.5853
HDL-C	Male	CC	350	1.27 ± 0.32	Ref.	.	.	Ref.	.	.
		CT	520	1.28 ± 0.32	0.01	0.02	0.6089	0.04	0.03	0.2039
		TT	216	1.26 ± 0.31	-0.01	0.03	0.7801	0.01	0.04	0.8854
	Female	CC	306	1.27 ± 0.32	Ref.	.	.	Ref.	.	.
		CT	523	1.28 ± 0.32	0.01	0.02	0.6089	0.04	0.03	0.2039
		TT	212	1.26 ± 0.31	-0.02	0.02	0.4584	-0.02	0.04	0.5326
Female	CC	1.33 ± 0.31	Ref.	.	Ref.	.				
--------	-----	-------------	------	----	------	----				
CT	523	1.32 ± 0.34	−0.01	0.02	0.6067	0.03	0.03	0.3198		
TT	212	1.30 ± 0.32	−0.03	0.03	0.2743	0.00	0.04	0.9588		
CC+CT	829	1.32 ± 0.33	Ref.	.	Ref.	.				
TT	212	1.30 ± 0.32	−0.02	0.03	0.3605	−0.02	0.03	0.6200		

Test of interaction

| Female'TT | −0.01| 0.03| 0.8743| 0.00| 0.05| 0.9896|

*Adjusted for age, BMI, medication use, alcohol consumption, cigarette smoking, occupation, education and region.

Abbreviations: TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol

after adjusting for conducting multiple tests using the Bonferroni correction, most of these interactions were no longer significant. However, basically there were no significant results observed in Table 4.

Haplotype analyses

Three haplotypes with frequency > 0.01 (T-A, C-A, and C-C) were observed for SNP rs1801133-rs1801131 (Table 5). T-A was the most common haplotype observed in 44% of our study population. Haplotype-specific association tests with additive haplotype effects found that, in males, compared to the most common haplotype T-A, patients carrying the haplotype C-C had significantly lower levels in TC (P = 0.027). However, in females, patients carrying the haplotype C-C had significantly higher levels in TC (P = 0.029). The interaction term of gender*hap2 (haplotype C-A) was significant for TC (P = 0.009) and LDL-C (P = 0.013), and gender*hap3 (haplotype C-C) was marginally significant for TC and LDL-C.

DISCUSSION

Our previous studies [16, 17] examined the effects of Hcy metabolic gene polymorphisms and their interactions with environmental factors on serum lipid levels, leading us to conclude that both the MTHFR and MTRR gene polymorphisms could be important genetic determinants of serum lipid levels dependent on environmental factors, including Hcy, gender, alcohol consumption, and smoking status, in patients with hypertension. In order to confirm and better generalize these findings, we further investigated the effects of the Hcy metabolic gene polymorphisms and their interactions with gender on serum lipid levels in this study’s relatively larger general population from distinct geographic regions. Our results show that the MTR and MTHFR genotypes constitute risk factors for elevated lipid levels conditional on gender. The MTHFR C677T polymorphism, a common variant, is located in the catalytic domain of the enzyme. It can cause an alanine to valine substitution at position 222 of the enzyme, creating a thermolabile enzyme [6], and has been related to elevated plasma Hcy concentration [9]. Our previous [16, 17] and present studies consistently demonstrated that individuals with the 677TT genotype had significantly higher TC and LDL-C levels than those with the 677CC + CT genotypes in a Chinese hypertensive or general population. Yilmaz et al. [10] and Zhang et al. [18] have reported that carriers of the 677T allele have significantly higher TC and LDL-C than 677T allele non-carriers. Several other studies also confirmed that MTHFR C677T is a key genetic determinant of lipid profiles. For example, evidence that the MTHFR gene polymorphism is an important independent contributor to TC and HDL-C was found by Kawamoto et al. [19], and Pitsavos et al. reported that TC and TG are statistically different across MTHFR genotypes [20]. Another functional polymorphism in the MTR gene is A2756G, located at position 919 of the protein and resulting in a substitution of glycine for aspartic acid [21]. Our present study showed that, compared with AA genotype carriers, the male individuals carrying the AG+GG genotype had significantly lower serum TC (P = 0.0159), LDL-C (P=0.0049), and HDL-C levels (P = 0.0055) in the general population. On the contrary, in a relatively small sample size of hyperlipidemic patients, MTR 2756AG+GG carriers had higher TC and LDL-C levels than 2756AA carriers [12].

Elevated Hcy level has a direct toxic effect on atherosclerosis. The underlying mechanisms by which HHcy promotes atherosclerosis may be stimulation of vascular smooth muscle cell proliferation [22], inhibition of endothelial cell growth and post-injury reendothelialization, impairment of endothelial relaxation, and accelerated neointimal formation [23–25]. Additionally, in an animal model, HHcy inhibited reverse cholesterol transport by reducing circulating HDL-C levels, via inhibition of apoA-I protein synthesis, and enhanced HDL-C clearance [26]. Therefore, it seems that the liver may be a major organ involved in regulating Hcy and cholesterol homeostasis [27].

Several studies have shown that the male gender is a significant predictor of carotid atherosclerosis. The influence of inflammation on survival was reported to be more pronounced in males than females [28]. Interestingly, estrogen has significant antioxidant properties [29] and limits the inflammatory response to injury by modulating the expression of cellular adhesion molecules from the...
endothelium. This suggests that gender may affect the impact of Hcy metabolic gene polymorphisms on blood lipids.

Indeed, in our present study, there was a significant interaction on the multiplicative scale between the MTR AG + GG genotypes and gender in association with TC, LDL-C and TG levels ($P = 0.0378$, 0.0054 and 0.0183 for interaction, respectively). The interaction term for the MTHFR 677TT genotype and gender was also significant for TC and LDL-C levels ($P = 0.0147$ and 0.0243 for interaction, respectively). Similar to our findings, a previous study [30] found interactions on the multiplicative scale between gender and Hcy/lipid-related SNPs on log-transformed plasma Hcy levels. Specifically, the significant interactions included gender and MTHFR, gender and CRBP2, and gender and SCARB1 on Hcy levels. It has been established that the MTHFR CT or TT genotypes lead to reduced enzyme activity of MTHFR [7], and are associated with high plasma Hcy when folate intake or nutritional status is low [31]. Unlike the MTHFR 677 TT genotype, the MTHFR 1298 CC genotype alone has not been associated with changes in plasma Hcy or plasma folate [32]. Our results also proved that the MTHFR 1298 CC genotype alone does not contribute to serum lipid levels.

Similarly, many of the studies that have investigated SCARB1 SNPs have shown different effects in males and females, suggesting that sex hormones or other factors related to gender may play a mediating role [33]. Recently, in Caucasian women, the SCARB1 SNP rs838893 and estradiol interaction was strongest in association with HDL-C, TG, and the TG/HDL-C ratio. Therefore, the specific physiological characteristics of females may explain the gender-related differences in SNP genotypes that were observed to be associated with lipid profiles, although the underlying mechanism has yet to be elucidated. To the

Table 4: Association between the MTHFR A1298C polymorphism and baseline lipid levels by linear regression models

Variables	Gender	MTHFR A1298C	N	Mean ± SD	Crude beta	se	p-value	Adjusted* beta	se	p-value
TC	Male	AA	739	4.59 ± 0.88	Ref.			Ref.		
		AC	324	4.46 ± 0.92	-0.13	0.07	0.0439	-0.25	0.10	0.0122
		CC	23	4.45 ± 0.88	-0.13	0.18	0.4557	0.19	0.24	0.4227
	Female	AA	740	4.68 ± 0.98	Ref.			Ref.		
		AC	284	4.68 ± 0.99	0.00	0.07	0.9885	-0.03	0.08	0.7042
		CC	17	4.43 ± 0.75	-0.25	0.18	0.1674	-0.45	0.22	0.0450
LDL-C	Male	AA	739	2.81 ± 0.78	Ref.			Ref.		
		AC	324	2.70 ± 0.80	-0.11	0.06	0.0584	-0.19	0.10	0.0552
		CC	23	2.71 ± 0.65	-0.09	0.13	0.4892	0.11	0.14	0.4150
	Female	AA	740	2.86 ± 0.83	Ref.			Ref.		
		AC	284	2.86 ± 0.84	0.00	0.06	0.9720	0.00	0.07	0.9843
		CC	17	2.71 ± 0.52	-0.15	0.13	0.2356	-0.17	0.19	0.3589
TG	Male	AA	739	1.15 ± 0.81	Ref.			Ref.		
		AC	324	1.09 ± 0.64	-0.06	0.05	0.2195	0.00	0.07	0.9843
		CC	23	0.97 ± 0.32	-0.18	0.07	0.0134	0.01	0.16	0.9608
	Female	AA	740	1.13 ± 0.64	Ref.			Ref.		
		AC	284	1.14 ± 0.80	0.01	0.06	0.8260	-0.05	0.06	0.3795
		CC	17	0.90 ± 0.34	-0.23	0.08	0.0066	-0.28	0.07	< 0.001
HDL-C	Male	AA	739	1.27 ± 0.31	Ref.			Ref.		
		AC	324	1.28 ± 0.34	0.01	0.02	0.6523	-0.03	0.03	0.2717
		CC	23	1.30 ± 0.34	0.03	0.07	0.6335	0.06	0.13	0.6323
	Female	AA	740	1.32 ± 0.33	Ref.			Ref.		
		AC	284	1.31 ± 0.32	-0.01	0.02	0.7522	-0.02	0.03	0.5904
		CC	17	1.32 ± 0.27	0.00	0.06	0.9680	-0.16	0.05	0.0033

*Adjusted for age, BMI, medication use, alcohol consumption, cigarette smoking, occupation, education and region.

Abbreviations: TG, triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol
best of our knowledge, our study is the first to show that the disadvantageous effects of the \(\text{MTR}\) and \(\text{MTHFR}\) genotypes on serum lipids are generalized to the general population based on certain gene-gender interactions.

As for Hcy levels, according to the third National Health and Nutrition Examination Survey (NHANES III), males have higher serum Hcy concentrations than females at the age of 10 years, during adolescence [13], and throughout adulthood [14]. Among a cohort of young adults, individuals at the highest risk for HHcy were smokers across all female subgroups and those with the \(\text{MTHFR} 677\text{TT}\) genotype across all male subgroups, thus suggesting different determinants of Hcy levels between males and females [34]. Furthermore, plasma Hcy levels were associated with arterial stiffness only in males [35]. Circulating Hcy levels were also significantly higher in males with CHD than in males without CHD, whereas no difference was observed in Hcy levels in females with regard to CHD [36]. As for lipid profiles, TG and HDL-C seem to be better predictors of CHD risk than TC or LDL-C in females [15]. Males and postmenopausal females had higher levels of serum TC and TG subclasses compared with premenopausal females [37]. Males seem to have higher levels of postprandial TG than females [38]. All of this aforementioned evidence supports our finding that there exists an interactive effect between gender and certain Hcy metabolic gene polymorphisms on blood lipid levels.

In the last few years, the hypothesis that Hcy metabolism can affect blood lipid levels has gained further attention. Therefore, one might speculate that lowering Hcy by means of B-vitamins can affect blood lipids or lowering lipids by statins can influence Hcy levels. Olthof et al. discovered that folic acid supplementation for short-term treatment lowered Hcy by approximately 21%, but changes in TC, HDL-C, LDL-C and TG were not significant at the end of the treatment [39]. Another study found that supplementation of folic acid for four weeks improved endothelial function without significant changes to plasma lipids [40]. In a relatively long-term (three month) placebo-controlled study on peritoneal dialysis patients, folic acid supplementation led to a 33% reduction in Hcy and significantly decreased levels of TC, LDL-C, and TG [41].

The strength of our study is a relatively large sample size with a high statistical power to increase the precision of our estimates of the association between \(\text{MTR}\) and \(\text{MTHFR}\) genotypes and lipid profiles. Additionally, our findings have also been replicated in the Chinese general population. However, the major limitations of our study are its cross-sectional design and the lack of measurements for plasma Hcy levels and \(\text{MTRR}\) genotyping. Although we cannot conclude a causal relationship between plasma Hcy levels and \(\text{MTR}\) genotyping, our single loci, haplotype and interaction analyses consistently supported that the negative effects of the \(\text{MTR}\) and \(\text{MTHFR}\) genotypes on serum lipids are based on certain gene-environment interactions in the Chinese general population. Furthermore, we only assessed Chinese participants in the present study, and further studies in other ethnic groups are needed to demonstrate whether our findings can be generalized to other populations. Therefore, large, prospective trials involving populations from multiple ethnic groups are needed to better assess the effects of the \(\text{MTR}\) and \(\text{MTHFR}\) polymorphisms on cholesterol homeostasis.

MATERIALS AND METHODS

study population

In the present study, a total of 2,124 participants were enrolled from Huoqiu and Yuexi, two communities
in Anhui Province, China. There were 1,084 males (51%) and 1,040 females (49%). The study participants were enrolled after responding to study announcements in their specific geographic areas when attending health check-up examinations that were commissioned by their local governments. Enrollment criteria included: (1) age 23 to 79 years, and (2) not taking medications known to affect serum lipid levels (lipid-lowering drugs such as statins or fibrates, beta-blockers, diuretics, or hormones) for four weeks before the study. Participants with a history of any of the following conditions were excluded: secondary hypertension, pregnancy, hypercalcemia, chronic CVD, chronic cerebrovascular disease, all kinds of cancers, chronic liver or renal diseases, or body mass index (BMI) above 33 kg/m². The study protocol was approved by the ethics committee of the Institute of Biomedicine at Anhui Medical University. The purpose and procedures of the study were carefully explained to all the participants, and written informed consent was obtained.

Laboratory Determinations

Venous blood samples were drawn and collected in ethylenediaminetetraacetic acid tubes between 8:00 AM to 10:00 AM after a fourteen-hour fast. In our analytical center, serum lipid parameters were measured by reflective photometry using an automatic biochemistry analyzer, but LDL-C was calculated by Friedewald’s equation. The automatic biochemistry analyzer based on spectrophotometric principle is one of the necessary instruments for clinical diagnostics in hospital. TC and TG were determined enzymatically with the cholesteroloxidase/p-aminophenazone method (CHOD-PAP) and the glycerophosphate oxidase/p-aminophenazone method (GPO-PAP), respectively. HDL-C determination was by phosphotungstic acid and magnesium chloride precipitation. Blood samples were drawn and collected in EDTA tubes and then centrifuged at 3000 rpm for 10 minutes to obtain the serum. In order to ensure optimum operation, the automatic biochemistry analyzer was warmed up 10 minutes after turning on. Serum samples were placed in a rack of test tubes, which was rotated through a stepper motor for positioning of blood samples through the measurement chamber of the analyzer. For example, serum cholesterol was estimated by mixing a 0.03 ml serum sample with 3 ml of matching working reagent, and the absorbance of the assay mixture was measured by a spectrophotometer at 546 nm, against distilled water as a blank. Similarly, different working reagents for all biochemical indexes were used for their estimation. The intra- and inter-assay coefficients of variation were less than 5% for all assays performed.

Genotyping of the MTHFR and MTR Polymorphisms

TaqMan allelic discrimination technique was used for detecting MTHFR C677T (A/a222Val), MTHFR A1298C (Glu429Ala), and MTR A2756G (Asp919Gly) genotypes in our central laboratory. Universal reaction conditions for genotyping were as follows: 4 ng dried DNA, 0.08 mL 40 assay locus-specific probe, and 2.0 mL TaqMan universal polymerase chain reaction (PCR) master mix made to a final volume of 4 mL with 1.92 mL of sterile water. The PCR cycle conditions consisted of an initial denaturation at 95°C for ten minutes, followed by fifty cycles of 92°C for fifteen seconds and 60°C for one minute. All sample sets genotyped for each SNP in our present study had overall call rates of 95%, after excluding samples that consistently failed. Concordance of 100% was repeated for all samples’ quality control.

Statistical analysis

The Chinese version of Epidata 3.1 was used for database design, data entry, and data check. Mean ± standard deviation were calculated for continuous variables. One-way analysis of variance and t-tests were used to compare the mean differences for continuous variables. The chi-square test was used for categorical variables. Allele frequency was determined via direct counting, and the standard goodness-of-fit test was used to test Hardy-Weinberg equilibrium. TC, TG, HDL-C and LDL-C approximately followed the normal distribution. A multivariate linear regression model was used to evaluate the effect of MTHFR and MTR polymorphisms on the baseline TC, TG, HDL-C, and LDL-C levels before and after adjusting for possible confounding factors, including age, BMI, medication use, alcohol consumption, cigarette smoking, occupation, education and region. The interactions on the multiplicative scale of the MTHFR and MTR genetic variants with gender in association with serum lipid levels were tested by adding a product term to the linear models. Haplotypes of SNPs rs1801133 (C677T), and rs1801131 (A1298C) in the MTHFR gene were constructed by expectation-maximization algorithm and implemented in R Haplo.stats package. Bonferroni correction was applied for multiple tests. Differences were considered to be significant at P values less than 0.05 divided by the number of tests. All statistical analyses were carried out using the SAS software (Release 8.0; SAS Institute, Cary, NC).

CONCLUSIONS

In conclusions, the MTR and MTHFR genotypes constitute risk factors for lipids conditional on gender. We suggest that the disadvantageous effects of the MTR and MTHFR genotypes on serum lipids are based on certain gene-environment interactions in the Chinese general population.

ACKNOWLEDGMENTS

This study was supported by the National Key Research and Development Program (Grant No. 2016YFC0903100 and 2016YFC0903102), the National
Natural Science Foundation of China (No. 81373484, 81141116 and 30700454), the Academic Top Talents Funding of University (No. gxbjZD2016008), and the Academic Leader and Reserve Candidate of Anhui Province (No. 05010543). We gratefully acknowledge the assistance and cooperation of the faculty and staff of Anhui Medical University and thank all of the participants in our study. This study was conducted in accordance with the current regulations of the People’s Republic of China. None of the authors claim any conflict of interest.

Author contributions

Shanqun Jiang and Scott A. Venners wrote the article; Shanqun Jiang, Scott A. Venners, Yi-Hsiang Hsu, Faming Pan and Xiping Xu designed the research; Shanqun Jiang, Scott A. Venners, Yi-Hsiang Hsu, Justin Weinstock, Suwen Wu, Yanfeng Zou, Faming Pan, and Xiping Xu performed the research; Shanqun Jiang and Scott A. Venners analyzed the data.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest interests.

REFERENCES

1. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. Jama. 1995; 274:1049–1057.
2. Herrmann W, Obeid R, Hubner U, Jouma M, Geisel J. Homocysteine in relation to C-reactive protein and low-density lipoprotein cholesterol in assessment of cardiovascular risk. Cell Mol Biol (Noisy-le-grand). 2004; 50:895–901.
3. Qin X, Li J, Spence JD, Zhang Y, Li Y, Wang X, Wang B, Sun N, Chen F, Guo J, Yin D, Sun L, Tang G, et al. Folic Acid Therapy Reduces the First Stroke Risk Associated With Hypercholesterolemia Among Hypertensive Patients. Stroke. 2016; 47:2805–2812.
4. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesâniemi YA, Sullivan D, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005; 366:1849–1861.
5. Jiang S, Chen Q, Venners SA, Zhong G, Hsu YH, Xing H, Wang X, Xu X. Effect of simvastatin on plasma homocysteine levels and its modification by MTHFR C677T polymorphism in Chinese patients with primary hyperlipidemia. Cardiovasc Ther. 2013; 31:e27–33.
6. Fross T, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluitjmans LA, van den Heuvel LP, Rozen R. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995; 10:111–113.
7. Chen J, Stampfer MJ, Ma J, Sellhub J, Malinow MR, Hennekens CH, Hunter DJ. Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis. 2001; 154:667–672.
8. Martinez-Frias ML, Perez B, Desviat LR, Castro M, Leal F, Rodriguez L, Mansilla E, Martinez-Fernández ML, Bermejo E, Rodriguez-Pinilla E, Prieto D, Ugarte M; ECEMC Working Group. Maternal polymorphisms 677CT and 1298A-C of MTHFR, and 66A-G MTRR genes: is there any relationship between polymorphisms of the folate pathway, maternal homocysteine levels, and the risk for having a child with Down syndrome? Am J Med Genet A. 2006; 140:987–997.
9. Brattstrom L, Wilcken DE, Ohvriik J, Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation. 1998; 98:2520–2526.
10. Yilmaz H, Agachan B, Isbir T, Akoglu E. Is there additional effect of MTHFR C677T mutation on lipid abnormalities in renal allograft recipients? Transplant Proc. 2003; 35:1390–1392.
11. Friedman G, Goldschmidt N, Friedlander Y, Ben-Yehuda A, Sellhub J, Babaes D, Mendel M, Kidron M, Bar-On H. A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations. J Nutr. 1999; 129:1656–1661.
12. Huang L, Song XM, Zhu WL, Li Y. Plasma homocysteine and gene polymorphisms associated with the risk of hyperlipidemia in northern Chinese subjects. Biomed Environ Sci. 2008; 21:514–520.
13. Must A, Jacques PF, Rogers G, Rosenberg IH, Sellhub J. Serum total homocysteine concentrations in children and adolescents: results from the third National Health and Nutrition Examination Survey (NHANES III). J Nutr. 2003; 133:2643–2649.
14. Sassi S, Cosmi B, Palareti G, Legnani C, Grossi G, Musolesi S, Coccheri S. Influence of age, sex and vitamin status on fasting and post-methionine load plasma homocysteine levels. Haematologica. 2002; 87:957–964.
15. Meagher EA. Addressing cardiovascular disease in women: focus on dyslipidemia. J Am Board Fam Pract. 2004; 17:424–437.
16. Liu Y, Li K, Venners SA, Hsu YH, Jiang S, Weinstock J, Wang B, Tang G, Xu X. Individual and Joint Associations of Methylenetetrahydrofolate Reductase C677T Genotype and Plasma Homocysteine With Dyslipidemia in a Chinese Population With Hypertension. Clin Appl Thromb Hemost. 2017; 23:287–293.
17. Jiang S, Zhao R, Pan M, Venners SA, Zhong G, Hsu YH. Associations of MTHFR and MTRR polymorphisms with...
serum lipid levels in Chinese hypertensive patients. Clin Appl Thromb Hemost. 2014; 20:400–410.
18. Zhang L, Yin RX, Liu WY, Miao L, Wu DF, Aung LH, Hu XJ, Cao XL, Wu JZ, Pan SL. Association of methylenetetrahydrofolate reductase C677T polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis. 2010; 9:123.
19. Kawamoto R, Kohara K, Tabara Y, Miki T, Doi T, Tokunaga K, Konishi I. An association of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and common carotid atherosclerosis. J Hum Genet. 2001; 46:506–510.
20. Pitsavos C, Panagiotakos D, Trichopoulou A, Chrysohoou C, Dedoussis G, Chlioptsis Y, Choumerianou D, Stefanadis C. Interaction between Mediterranean diet and methylenetetrahydrofolate reductase C677T mutation on oxidized low density lipoprotein concentrations: the ATTICA study. Nutr Metab Cardiovasc Dis. 2006; 16:91–99.
21. Olteanu H, Munson T, Banerjee R. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002; 41:13378–13385.
22. Tsai JC, Wang H, Perrella MA, Yoshizumi M, Sibinga NE, Tan LC, Haber E, Chang TH, Schlegel R, Lee ME. Induction of cyclin A gene expression by homocysteine in vascular smooth muscle cells. J Clin Invest. 1996; 97:146–153.
23. Wang H, Jiang X, Yang F, Chapman GB, Durante W, Sibinga NE, Schafer AI. Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood. 2002; 99:939–945.
24. Tan H, Jiang X, Yang F, Li Z, Liao D, Trial J, Magera MJ, Durante W, Yang X, Wang H. Hyperhomocysteinemia inhibits post-injury reendothelialization in mice. Cardiovasc Res. 2006; 69:253–262.
25. Jiang X, Yang F, Brailoiu E, Jakubowski H, Dun NJ, Schafer AI, Yang X, Durante W, Wang H. Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells. Arterioscler Thromb Vasc Biol. 2007; 27:1976–1983.
26. Liao D, Tan H, Hui R, Li Z, Jiang X, Gaubatz J, Yang F, Durante W, Chan L, Schafer AI, Pownall HJ, Yang X, Wang H. Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ Res. 2006; 99:598–606.
27. Obeid R, Herrmann W. Homocysteine and lipids: S-adenosyl homocysteine as a key intermediate. FEBS Lett. 2009; 583:1215–1225.
28. Stenvinkel P, Wanner C, Metzger T, Heimbürgar O, Mallamae F, Tripepi G, Malatino L, Zoccali C. Inflammation and outcome in end-stage renal failure: does female gender constitute a survival advantage? Kidney Int. 2002; 62:1791–1798.
29. Persky AM, Green PS, Stubley L, Howell CO, Zaulyanov L, Brazeau GA, Simpkins JW. Protective effect of estrogen against oxidative damage to heart and skeletal muscle in vivo and in vitro. Proc Soc Exp Biol Med. 2000; 223:59–66.
30. Clifford AJ, Chen K, McDade L, Rincon G, Kim SH, Holste DM, Owens JE, Liu B, Müller HG, Medrano JR, Fadel JG, Moshfegh AJ, Baer DJ, et al. Gender and single nucleotide polymorphisms in MTHFR, BHMT, SPTLC1, CRBP2, CETP, and SCARB1 are significant predictors of plasma homocysteine normalized by RBC folate in healthy adults. J Nutr. 2012; 142:1764–1771.
31. Jacques PF, Bostom AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH, Selhub J, Rozen R. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996; 93:7–9.
32. D’Angelo A, Mazzola G, Ferro I. Gene-gene and gene-environment interactions in mild hyperhomocysteinemia. Pathophysiol Haemost Thromb. 2003; 33:337–341.
33. Chiba-Falek O, Nichols M, Suchindran S, Guyton J, Ginsburg GS, Barrett-Connor E, McCarthy JJ. Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study. BMC Med Genet. 2010; 11:9.
34. Stanislawska-Sachady A, Woodside JV, Brown KS, Young IS, Murray L, McNulty H, Strain JJ, Boreham CA, Scott JM, Whitehead AS, Mitchell LE. Evidence for sex differences in the determinants of homocysteine concentrations. Mol Genet Metab. 2008; 93:355–362.
35. Sheng L, Wu C, Bai YY, Xiao WK, Feng D, Ye P. Plasma homocysteine levels are independently associated with alterations of large artery stiffness in men but not in women. J Geriatr Cardiol. 2015; 12:251–256.
36. Sadeghian S, Fallahi F, Salarifar M, Davoodi G, Mahmoodian M, Fallah N, Darvish S, Karimi A. Tehran Heart Center. Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc Disord. 2006; 6:38.
37. Furusyo N, Ai M, Okazaki M, Ikezaki H, Ihara T, Hayashi T, Hiramine S, Ura K, Kohzuma T, Schafer EJ, Hayashi J. Serum cholesterol and triglyceride reference ranges of twenty lipoprotein subclasses for healthy Japanese men and women. Atherosclerosis. 2013; 231:238–245.
38. Anagnostopoulou KK, Kolovou GD, Kostakou PM, Mihas C, Hatziigeorgiou G, Marvaki C, Deginis M, Mikhailidis DP, Cokkinos DV. Sex-associated effect of CETP and LPL polymorphisms on postprandial lipids in familial hypercholesterolaemia. Lipids Health Dis. 2009; 8:24.
39. Olthof MR, van Vliet T, Verhoef P, Zock PL, Katan MB. Effect of homocysteine-lowering nutrients on blood lipids: results from four randomised, placebo-controlled studies in healthy humans. PLoS Med. 2005; 2:e135.
40. Verhaar MC, Wever RM, Kastelein JJ, van Loon D, Milstien S, Koomans HA, Rabelink TJ. Effects of oral folic
acid supplementation on endothelial function in familial hypercholesterolemia. A randomized placebo-controlled trial. Circulation. 1999; 100:335–338.

41. McGregor D, Shand B, Lynn K. A controlled trial of the effect of folate supplements on homocysteine, lipids and hemorheology in end-stage renal disease. Nephron. 2000; 85:215–220, 564–571.