The Randomized Kaczmarz Method with Mismatched Adjoint

Dirk A. Lorenz∗ Sean Rose† Frank Schöpfer‡

March 9, 2018

Abstract

This paper investigates the randomized version of the Kaczmarz method to solve linear systems in the case where the adjoint of the system matrix is not exact—a situation we refer to as “mismatched adjoint”. We show that the method may still converge both in the over- and underdetermined consistent case under appropriate conditions, and we calculate the expected asymptotic rate of linear convergence. Moreover, we analyze the inconsistent case and obtain results for the method with mismatched adjoint as for the standard method. Finally, we derive a method to compute optimized probabilities for the choice of the rows and illustrate our findings with numerical example.

Keywords: randomized algorithms, Kaczmarz method, linear convergence

AMS classification: 65F10, 68W20, 15A24

1 Introduction

In this paper we consider the solution of linear systems

\[Ax = b \] \hspace{1cm} (1)

with row-action methods, i.e methods that only use single rows of the system in each step. This is beneficial, for example, in situations where the full system is too large to store or keep in memory. Probably the first method of this type is the Kaczmarz method where each step consists of a projection onto a hyperplane given by the solution space of a single row. If \(a^T \) is a row vector of the system and the corresponding entry on the right hand side is (with slight
abuse of notation) \(b \), then the orthogonal projection of a given vector \(x \) onto the solution space of \(\langle a, x \rangle = b \) is

\[
x - \frac{\langle a, x \rangle - b}{\|a\|^2} \cdot a.
\]

Thus, one updates the current vector \(x \) in the direction of \(a \) which is the corresponding column of \(A^T \). A question that has been motivated by the use of the Kaczmarz method in tomographic reconstruction (where it is known under the name algebraic reconstruction technique (ART), see also [6]) is: Will the method still converge, if we do not use \(A^T \) as the adjoint but a different matrix \(V^T \)?

In tomographic reconstruction, the linear operator \(A \) models the “forward projection” operation, which maps an object’s density to a set of measured line integrals. The adjoint map \(A^T \), however, also has a physical interpretation: This map is called “backprojection” and, roughly speaking, “distributes the values along lines through the measurement volume”. Since both \(A \) and \(A^T \) have their own physical significance, their corresponding maps are often implemented by different means. For example, [2] proposes and discusses several method for the implementation of the backprojection method and shows that special methods compare favorably with respect to reconstruction quality. In [12], the authors discuss the use of mismatched projection pairs, for the purposes of improved computational efficiency when using the Landweber algorithm for reconstruction. Hence, one does not always use the actual adjoint, but a different map and we refer to this situation as using a “mismatched adjoint”.

The goal of this paper is to analyze the convergence behavior of the randomized Kaczmarz method with mismatched adjoint.

2 The overdetermined consistent case

The Kaczmarz method is known to converge for any consistent linear system, but the speed of convergence is hard to quantify since it depends on the ordering of the rows. This is notably different for the randomized Kaczmarz method as shown in [10]: If the rows are chosen independently at random the method converges linearly. To fix notation, let \(A = (a_i^T)_{i=1,\ldots,m} \in \mathbb{R}^{m \times n} \) with \(m \geq n \) and row vectors \(a_i \in \mathbb{R}^n \) and \(V = (v_i^T)_{i=1,\ldots,m} \), with row vectors \(v_i \in \mathbb{R}^n \). Moreover let \(p_i > 0, \ i \in \{1,\ldots,m\} \) denote a probability distribution on the set of indices of the rows, i.e., \(p_i \) is the probability to choose the \(i \)-th row for the next step.

The algorithm we consider in this work is the randomized Kaczmarz method with mismatched adjoint, abbreviated RKMA, and is given in Algorithm 1. The difference to the standard randomized Kaczmarz method is that the usual projection step \(x_{k+1} = x_k - \frac{\langle a_{i_k}, x_k \rangle - b_{i_k}}{\|a_{i_k}\|^2} \cdot a_{i_k} \) is replaced by \(x_{k+1} = x_k - \frac{\langle a_{i_k}, x_k \rangle - b_{i_k}}{\langle a_{i_k}, v_{i_k} \rangle} \cdot v_{i_k} \). This results in \(\langle x_{k+1}, a_{i_k} \rangle = b_{i_k} \), i.e., the next iterate \(x_{k+1} \) is on the hyperplane defined by the \(i_k \)-th equation of the system, but since \(v_{i_k} \) is not orthogonal to this hyperplane, this is an oblique projection, instead of
Algorithm 1 Randomized Kaczmarz with Mismatched Adjoint

Input: starting point $x_0 \in \mathbb{R}^n$ and probabilities $p_i > 0$, $i \in \{1, \ldots, m\}$

Output: solution of (1)

1: initialize $k = 0$

2: repeat

3: choose an index $i_k = i \in \{1, \ldots, m\}$ at random with probability p_i

4: update $x_{k+1} = x_k - \frac{(a_{i_k}, x_k) - b_{i_k}}{(a_{i_k}, v_{i_k})} \cdot v_{i_k}$

5: increment $k = k + 1$

6: until a stopping criterion is satisfied

an orthogonal projection as it would be in the original Kaczmarz method (see Figure 1).

![Figure 1: Oblique projection x_{k+1} of x_k onto the hyperplane $\{x \mid \langle a_i, x \rangle = b_i\}$. The orthogonal projection is \tilde{x}_{k+1}.]()

To formulate the convergence theorem for RKMA we denote by $\lambda_{\min}(M)$ the smallest eigenvalue of a symmetric real matrix M. For general (non-symmetric) real square matrices M we denote by $\rho(M)$ its spectral radius, i.e. the largest absolute value of its eigenvalues.

First we state a result on the expected outcome of one step of RKMA. A similar result has been observed earlier in the case with no mismatch, see e.g. [10, Lemma 2.2] or [13, Lemma 3.6]). In the following, we generally assume that the rows of A and V fulfill $\langle a_i, v_i \rangle \neq 0$ and, without loss of generality, that $\langle a_i, v_i \rangle > 0$.

Lemma 2.1. Let \hat{x} fulfill $A\hat{x} = b$, x be arbitrary and $x^+ = x - \frac{(a_i, x) - b_i}{\langle a_i, v_i \rangle} \cdot v_i$ be the oblique projection onto the hyperplane $\{x \mid \langle a_i, x \rangle = b_i\}$. Further we let $p_i > 0$, $i = 1, \ldots, m$, be probabilities and denote $D := \text{Diag} \left(\frac{p_i}{\langle a_i, v_i \rangle} \right)$ and $S := \text{Diag} \left(\frac{\|v_i\|^2}{\langle a_i, v_i \rangle} \right)$. If i is randomly chosen with probability p_i (i.e. x^+ is a random variable) then it holds that

\[E(x^+ - \hat{x}) = (I - V^T DA)(x - \hat{x}) \] (2)

and if

\[\lambda := \lambda_{\min}(V^T DA + A^T DV - A^T S DA) > 0 \] (3)
is fulfilled, it holds that

$$
\mathbb{E}(\|x^+ - \hat{x}\|^2) \leq (1 - \lambda) \cdot \|x - \hat{x}\|^2
$$

(where both expectations are with respect to the probabilities \(p_i\)).

Proof. Since \(b_i = \langle a_i, \hat{x} \rangle\), the expectation \(\mathbb{E}(x^+ - \hat{x})\) is

$$
\mathbb{E}(x^+ - \hat{x}) = \sum_{i=1}^{m} p_i \cdot (x - \frac{\langle a_i, x \rangle - b_i}{\langle a_i, v_i \rangle} \cdot v_i) - \hat{x}
$$

$$
= x - \sum_{i=1}^{m} p_i \cdot \frac{\langle a_i, x - \hat{x} \rangle}{\langle a_i, v_i \rangle} \cdot v_i - \hat{x}
$$

$$
= x - \hat{x} - \sum_{i=1}^{m} p_i \cdot \frac{p_i}{\langle a_i, v_i \rangle} \cdot v_i a_i^T (x - \hat{x}),
$$

from which (2) follows. To calculate the expectation of the squared norm we calculate

$$
\|x^+ - \hat{x}\|^2 = \|x - \hat{x}\|^2 - 2 \cdot \frac{\langle a_i, x - \hat{x} \rangle \cdot \langle v_i, x - \hat{x} \rangle}{\langle a_i, v_i \rangle} + \frac{(\langle a_i, x - \hat{x} \rangle)^2}{(\langle a_i, v_i \rangle)^2} \cdot \|v_i\|^2.
$$

(4)

Taking the expectation gives

$$
\mathbb{E}(\|x^+ - \hat{x}\|^2) = \|x - \hat{x}\|^2
$$

$$
- \sum_{i=1}^{m} p_i \cdot 2 \cdot \frac{\langle a_i, x - \hat{x} \rangle \cdot \langle v_i, x - \hat{x} \rangle}{\langle a_i, v_i \rangle}
$$

$$
+ \sum_{i=1}^{m} p_i \cdot \frac{(\langle a_i, x - \hat{x} \rangle)^2}{(\langle a_i, v_i \rangle)^2} \cdot \|v_i\|^2.
$$

By the definition of \(D\) and \(S\) the right hand side can be written as

$$
\|x - \hat{x}\|^2 - \langle x - \hat{x}, (2V^T DA - A^T S DA)(x - \hat{x}) \rangle
$$

$$
= \|x - \hat{x}\|^2 - \langle x - \hat{x}, (2V^T - A^T S) DA(x - \hat{x}) \rangle
$$

(5)

and hence, we aim to bound \(\langle x - \hat{x}, (2V^T - A^T S) DA(x - \hat{x}) \rangle\) from below. More precisely, we want

$$
\langle x - \hat{x}, (2V^T - A^T S) DA(x - \hat{x}) \rangle \geq \lambda \cdot \|x - \hat{x}\|^2
$$

and this is the case if and only if

$$
\langle x - \hat{x}, ((2V^T - A^T S) DA - \lambda I)(x - \hat{x}) \rangle \geq 0.
$$
Since we have \(2\langle z, V^TDAz \rangle = \langle z, (V^TDA + A^T DV)z \rangle\) for all \(z\), this is equivalent to
\[
\langle x - \hat{x}, (V^TDA + A^T DV - A^T SDA - \lambda I)(x - \hat{x}) \rangle \geq 0
\]
and this is ensured if
\[
\lambda_{\min}(V^TDA + A^T DV - A^T SDA) \geq \lambda.
\]
Hence, if \((3)\) is fulfilled, we obtain the estimate
\[
\mathbb{E}(\|x_{k+1} - \hat{x}\|^2) \leq (1 - \lambda) \cdot \|x - \hat{x}\|^2.
\]

Equation \((2)\) shows that \(\|\mathbb{E}(x^+ - \hat{x})\|^2 \leq \|I - V^T DA\|^2 \|x - \hat{x}\|^2\). Recall that \(\rho(M) \leq \|M\|\) for asymmetric matrices \(M\), and note that the above inequality is not true, if we replace the norm by the spectral radius. Due to Jensen’s inequality we generally have \(\|\mathbb{E}(x^+ - \hat{x})\|^2 \leq \mathbb{E}(\|x^+ - \hat{x}\|^2)\) and Lemma \(2.1\) provides different estimates for both quantities.

Iterating the previous lemma, we obtain the convergence result:

Theorem 2.2. Assume that the assumptions of Lemma \(2.1\) are fulfilled and denote by \(x_k\) the iterates of Algorithm 1.

If \(\rho(I - V^T DA) < 1\) then \(x_k\) converges in expectation to \(\hat{x}\),
\[
\mathbb{E}(x_k - \hat{x}) \to 0 \quad \text{for} \quad k \to \infty,
\]
moreover, it holds that
\[
\|\mathbb{E}(x_k - \hat{x})\| \leq \|I - V^T DA\|^k \|x_0 - \hat{x}\|.
\]

If condition \((3)\) is fulfilled then it holds that
\[
\mathbb{E}(\|x_{k+1} - \hat{x}\|^2) \leq (1 - \lambda) \cdot \mathbb{E}(\|x_k - \hat{x}\|^2).
\]

Proof. The first claim follows from Lemma \(2.1\) and the well known fact that \((I - V^T DA)^k \to 0\) if the spectral radius of \(I - V^T DA\) is smaller than one (see, e.g., [3, Theorem 11.2.1]). The second claim is also immediate from the previous lemma.

Finally, we get for expectation with respect to \(i_k\) (conditional on \(i_0, \ldots, i_{k-1}\))
\[
\mathbb{E}(\|x_{k+1} - \hat{x}\|^2 \mid i_0, \ldots, i_{k-1}) \leq (1 - \lambda) \|x_k - \hat{x}\|^2
\]
Now we consider all indices \(i_0, \ldots, i_k\) as random variables with values in \(\{1, \ldots, m\}\), and take the full expectation on both sides to get the assertion.

Here are some remarks on the result:

Remark 2.3. Since eigenvalues depend continuously on perturbations, both condition \((3)\) and \(\rho(I - V^T DA) < 1\) are fulfilled for \(V \approx A\). Note that \(\|I - V^T DA\| = \rho(I - V^T DA)\) does hold for \(V = A\) and is generally not true otherwise. It may even be the case that \(\|I - V^T DA\| > 1\) while \(\rho(I - V^T DA) < 1\).
Remark 2.4 (Relation to the result of Strohmer and Vershynin). Note that Theorem 2.2 contains the result of Strohmer and Vershynin [10] as a special case: Take $V = A$ and the probabilities p_i proportional to the squared row-norms, i.e. $p_i = \frac{\|a_i\|^2}{\|A\|_F^2}$. Then we have

$$D = \text{Diag} \left(\frac{p_i}{\langle a_i, v_i \rangle} \right) = \frac{1}{\|A\|_F^2} : I \quad \text{and} \quad S = \text{Diag} \left(\frac{\|v_i\|^2}{\langle a_i, v_i \rangle} \right) = I$$

and hence we get

$$\lambda = \frac{\lambda_{\min}(A^T A)}{\|A\|_F^2} = \frac{\sigma_{\min}(A)}{\|A\|_F^2}$$

(where $\sigma_{\min}(A)$ denotes the smallest singular value of A) as in [10].

To get a similarly simple expression for the convergence of the method with mismatch we set

$$p_i = \frac{\langle a_i, v_i \rangle}{\|A\|_V^2}, \quad \text{with} \quad \|A\|_V^2 = \sum_i \langle a_i, v_i \rangle.$$

This leads to

$$D = \frac{1}{\|A\|_V^2} : I$$

and thus, from [2],

$$\|E(x_{k+1} - \hat{x})\| \leq \|I - \frac{V^T A}{\|A\|_V^2} \| \|x_k - \hat{x}\| = \sigma_{\max}(I - \frac{V^T A}{\|A\|_V^2}) \|x_k - \hat{x}\|.$$

However, in general the contraction factor does not simplify to $1 - \frac{\sigma_{\min}(V^T A)}{\|A\|_V^2}$ as it would in the case with no mismatch.

We also get

$$E(\|x_{k+1} - \hat{x}\|) \leq \left(1 - \frac{\lambda_{\min}(V^T DA + A^T V - A^T SDA)}{\|A\|_V^2} \right)^{1/2} \|x_k - \hat{x}\|$$

for the expectation of the error.

Remark 2.5 (Asymptotic convergence rate and expected improvement in norm). The above theorem states that the RKMA method has the asymptotic convergence rate of

$$\rho(I - V^T DA)$$

(in expectation), however, the expected improvement of the squared error, i.e. $E(\|x_{k} - \hat{x}\|^2)$ in every iteration is

$$\rho(I - V^T DA + A^T DV - A^T SDA)) = \rho(I - V^T DA - A^T DV + A^T SDA)$$

$$= \|I - V^T DA - A^T DV + A^T SDA\|.$$

(7)

Using the spectral norm we can also estimate

$$\|E(x_{k+1} - \hat{x})\| = \|(I - V^T DA)(x_k - \hat{x})\| \leq \|I - V^T DA\| \cdot \|x_k - \hat{x}\|.$$
We can express this norm by the spectral radius as
\[\| I - V^T DA \| = \rho(I - V^T DA - A^T DV + A^T DVV^T DA). \] (8)
Note that all three expressions in (6), (7), (8) are equal in the case of \(V = A \), but for the mismatched case, they are in general different. Numerically it seems like \((6) \leq (8) \leq (7) \), but we do not have a proof for this.

Remark 2.6 (Different possibilities for stepsizes). We could consider the slightly more general iteration
\[x_{k+1} = x_k - \omega_{ik} \cdot (\langle a_{ik}, x_k \rangle - b_{ik}) \cdot v_{ik} \]
with a steplength \(\omega_{ik} \). The iteration in Algorithm 1 uses \(\omega = \langle a_i, v_i \rangle^{-1} \), but there are other meaningful choices:

- As for the case with no mismatch, one could take \(\omega_{ik} = \|a_{ik}\|^{-2} \), but this would not imply \(\langle x_{k+1}, a_{ik} \rangle = b_{ik} \). Similarly, \(\omega_i = \|v_i\|^{-2} \) does not imply \(\langle x_{k+1}, v_i \rangle = b_{ik} \).
- The choice \(\omega_{ik} = \frac{(x_k, v_i) - b_{ik}}{(x_k, a_{ik}) - b_{ik} \|v_i\|^2} \) implies that \(\langle x_{k+1}, v_i \rangle = b_{ik} \).

Although none of these cases guarantees that the iterates solve one of the equations of the linear system \(Ax = b \), one can still deduce that iterates converge to the solution of this system of equalities. The result of Theorem 2.2 can also be derived for this slightly more general iteration and the respective condition for linear convergence with contraction factor \((1 - \lambda) \) is that
\[\lambda := \lambda_{\min}(V^T DA + A^T DV - A^T SDA) > 0 \]
with
\[D = \text{Diag}(p_i \omega_i), \quad S = \text{Diag}(\omega_i \|v_i\|^2). \]

Experiments show that other probabilities than \(p_i = \|a_i\|^2/\|A\|_F^2 \) in the case \(V = A \) or \(p_i = \langle a_i, v_i \rangle/\|A\|_F^2 \) in the mismatched case frequently lead to faster convergence. This should not be surprising as one could scale the rows of system \(Ax = b \) arbitrarily by multiplying with a diagonal matrix which leaves the solution unchanged, but leads to arbitrary row-norms of the scaled system. In this sense, the row-norms do not reflect the geometry of the arrangements of hyperplanes. We will come back to the problem of selecting probabilities in Section 5.

3 Inconsistent overdetermined systems

Now we consider the inconsistent case, i.e. we do not assume that the overdetermined system has a solution. This case has been treated in [8] for the case \(V = A \). We model an additive error and assume that the right hand side is \(b + r \) with \(b \in \text{rg} \ A \).
Theorem 3.1. Denote by \(\hat{x} \) the unique solution of \(Ax = b \) and let \(x_k \) denote the iterates of Algorithm 3.1 where the right hand side is \(b + r \). With \(M = (I - VTDA) \) it holds that

\[
E(x_k - \hat{x}) = M^k(x_0 - \hat{x}) + \sum_{l=0}^{k-1} M^lVTDr.
\]

Moreover, with \(\lambda \) defined in (3), we have

\[
E(\|x_k - \hat{x}\|^2) \leq (1 - \frac{\lambda}{2})^k \cdot \|x_0 - \hat{x}\|^2 + \frac{\beta}{2} \cdot \gamma^2
\]

with \(\gamma := \max_i \frac{|r_i| \cdot \|v_i\|}{\|a_i\| \cdot v_i} \).

Proof. For the iterate \(x_k \) we denote by \(\tilde{x}_{k+1} \) the oblique projection onto the “true hyperplane” \(H = \{ x \mid \langle a_i, x \rangle = b_i \} \), i.e. \(\tilde{x}_{k+1} = x_k - \frac{\langle a_i, x_k \rangle - b_i}{\langle a_i, a_i \rangle} \cdot v_i \).

Then it holds that

\[
x_{k+1} - \hat{x} = \tilde{x}_{k+1} - \hat{x} + \frac{r_i}{\langle a_i, v_i \rangle} \cdot v_i.
\]

For one step of the method we get (taking the expectation with respect to the random variable \(i_{k+1} \))

\[
E(x_{k+1} - \hat{x}) = E(\tilde{x}_{k+1} - \hat{x}) + E(\frac{r_i}{\langle a_i, v_i \rangle} v_i) = (I - VTDA)(x_k - \hat{x}) + VTDr.
\]

The formula for \(E(x_k - \hat{x}) \) (with the expectation with respect to all indices \(i_0, \ldots, i_k \)) follows by induction.

Moreover, we get

\[
\|x_{k+1} - \hat{x}\|^2 = \|\tilde{x}_{k+1} - \hat{x}\|^2 + 2 \frac{r_i}{\langle a_i, v_i \rangle} \cdot \langle \tilde{x}_{k+1} - \hat{x}, v_i \rangle + \frac{r_i^2}{\langle a_i, v_i \rangle^2} \cdot \|v_i\|^2
\]

\[
\leq \|\tilde{x}_{k+1} - \hat{x}\|^2 + 2 \frac{r_i}{\langle a_i, v_i \rangle} \cdot \langle \tilde{x}_{k+1} - \hat{x}, v_i \rangle + \gamma^2.
\]

Now we use Cauchy-Schwarz and Young with \(\epsilon > 0 \) (i.e. \(2ab \leq \epsilon a^2 + b^2/\epsilon \)) to get

\[
\|x_{k+1} - \hat{x}\|^2 \leq \|\tilde{x}_{k+1} - \hat{x}\|^2 + 2 \|\tilde{x}_{k+1} - \hat{x}\| \cdot \frac{r_i}{\langle a_i, v_i \rangle} \cdot \|v_i\| + \gamma^2
\]

\[
\leq (1 + \epsilon) \cdot \|\tilde{x}_{k+1} - \hat{x}\|^2 + (1 + \frac{1}{\epsilon}) \cdot \gamma^2.
\]

Applying Lemma 2.1 we get

\[
E(\|x_{k+1} - \hat{x}\|^2) \leq (1 + \epsilon) \cdot (1 - \lambda) \cdot \|x_k - \hat{x}\|^2 + (1 + \frac{1}{\epsilon}) \cdot \gamma^2.
\]

Recursively we obtain

\[
E(\|x_k - \hat{x}\|^2) \leq \left((1 + \epsilon) \cdot (1 - \lambda) \right)^k \cdot \|x_0 - \hat{x}\|^2 + \sum_{j=0}^{k-1} \left((1 + \epsilon) \cdot (1 - \lambda) \right)^j \cdot \left(1 + \frac{1}{\epsilon} \right) \cdot \gamma^2.
\]

Now we choose \(\epsilon = \frac{\lambda}{2(1-\lambda)} \), observe that

\[
(1 - \lambda) \cdot (1 + \epsilon) = 1 - \frac{\lambda}{2} \quad \text{and} \quad (1 + \frac{1}{\epsilon}) = 1 - \frac{\lambda}{2}
\]

8
and get
\[
\mathbb{E}(\|x_k - \hat{x}\|^2) \leq (1 - \frac{1}{2})^k \cdot \|x_0 - \hat{x}\|^2 + \sum_{j=0}^{k-1} (1 - \frac{1}{2})^j \cdot \gamma^2
\]
\[
\leq (1 - \frac{1}{2})^k \cdot \|x_0 - \hat{x}\|^2 + \frac{2^k}{2} \cdot \gamma^2
\]
which proves the claim.

The first equation in Theorem 3.1 shows that the iteration of RKMA will reach a final error of the order of \(\sum_{i=0}^{\infty} M^i VTDr\) = \(||(I - M)^{-1} VTDr|| = \||V^TDA\|^{-1} VTDr\|\) if \(\rho(M) < 1\).

4 Underdetermined systems

Now we consider the underdetermined case, i.e. the case where \(m < n\), but we will still assume full row rank of \(A\) and \(V\). In the case of no mismatch, linear convergence has been proven for the probabilities \(p_i = \|a_i\|^2/\|A\|_F^2\) in [7]. In this case, Theorem 2.2 does never ensure convergence: On the one hand, the matrix \(V^TDA + ATDVA\) is never positive definite, so \(\lambda\) from (4) is always zero. On the other hand, \(V^TDA\) always has a non-trivial kernel, and thus, \(I - V^TDA\) always has a spectral radius equal to one. However, the iteration often converges in practice and this is due to the following simple observation: All the iterates \(x_k\) of Algorithm 1 are in \(rg\, V^T\) if the starting point \(x_0\) is there. So, if the equation \(Ax = b\) has a solution \(\hat{x}\) in \(rg\, V^T\), then all vectors \(x_k - \hat{x}\) are also in the range.

Inspecting the proof of Lemma 2.1, we note that the constant \(\lambda\) that needs to be positive to guarantee improvement in each step, is in fact not the smallest eigenvalue of \(V^TDA + V^TDA - ATDVA\) but the smallest eigenvalue of this matrix when restricted to the range of \(V^T\). More explicitly, let \(Z \in \mathbb{R}^{n \times m}\) be a matrix whose columns form on orthonormal basis of \(rg\, V^T\). So, the term in (5) can also be written as

\[
\|x_k - \hat{x}\|^2 - \langle ZZ^T(x_k - \hat{x}), (2V^TDA - ATDVA)ZZ^T(x_k - \hat{x}) \rangle
\]
\[
= \|x_k - \hat{x}\|^2 - \langle Z^T(x_k - \hat{x}), Z^T(2V^TDA - ATDVA)ZZ^T(x_k - \hat{x}) \rangle.
\]

Consequently, we need an estimate of the form
\[
\langle Z^T(x_k - \hat{x}), Z^T(2V^TDA - ATDVA)ZZ^T(x_k - \hat{x}) \rangle \geq \lambda \cdot \|x_k - \hat{x}\|^2
\]
and, since \(\|Z^T(x_k - \hat{x})\|^2 = \|x_k - \hat{x}\|^2\), this is fulfilled for
\[
\lambda = \lambda_{\text{min}}(Z^T(V^TDA + ATDVA)Z).
\]

Similarly, the convergence of \(\mathbb{E}(x_k - \hat{x})\) is equivalent to the convergence of \(\mathbb{E}(Z^T(x_k - \hat{x}))\), and it holds that
\[
\mathbb{E}(Z^T(x_{k+1} - \hat{x})) = Z^T(I - V^TDA)(x_k - \hat{x})
\]
\[
= Z^T(I - V^TDA)ZZ^T(x_k - \hat{x})
\]
\[
= (I - Z^TV^TDAZ)Z^T(x_k - \hat{x}).
\]
Finally, note that the system $Ax = b$ has only one solution that lies in $\text{rg} \, V^T$ if AV^T is non-singular.

Thus, we have proved the following theorem:

Theorem 4.1. Consider the consistent system (1) with $A, V \in \mathbb{R}^{m \times n}$ for $m \leq n$ both with full row rank such that AV^T is non-singular. Furthermore let the columns of Z be an orthonormal basis for $\text{rg} \, V^T$ and let $p \in \mathbb{R}^m$ with $p_i \geq 0$ and $\sum_i p_i = 1$ and set $D := \text{Diag} \left(\frac{p_i}{\langle a_i, v_i \rangle} \right)$ and $S := \text{Diag} \left(\frac{\|v_i\|^2}{\langle a_i, v_i \rangle} \right)$. Then it holds:

1. The system $Ax = b$ has exactly one solution \hat{x} that lies in $\text{rg} \, V^T$.
2. If $x_0 \in \text{rg} \, V^T$ and $\rho(I - Z^T V^T D A Z) < 1$, then the iterates of Algorithm 1 fulfill $E(x_k - \hat{x}) \to 0 \text{ for } k \to \infty$.
3. If $x_0 \in \text{rg} \, V^T$ and $\lambda := \lambda_{\text{min}}(Z^T(V^T D A + A^T D V - A^T S D A)Z) > 0$ (9) is fulfilled, then it holds that

 $$E \left[\|x_{k+1} - \hat{x}\|^2 \right] \leq (1 - \lambda) \cdot E \left[\|x_k - \hat{x}\|^2 \right].$$

This result has the following practical implication: If one can measure the quantity x by linear measurements, encoded by the vectors a_i, but only has less measurements available than degrees of freedom in x, it is beneficial to use a mismatched adjoint V with rows v_i^T such that the v_i are close to the vectors a_i (such that the convergence condition is fulfilled), but which also ensure that x is in the range of the vectors v_i. Mismatched forward/back-projection models in CT provide a useful example to illustrate this result. Forward-projection in CT is often implemented using a ray-tracing algorithm known as Siddon’s method [9]. This algorithm models line integration and has the benefit of being computationally efficient and amenable to parallelization; however, it does not model the finite width of the detector bin. This can lead to Moire pattern artifacts when using a matched forward/back-projection pair if the image pixel size is smaller than the detector bin size [2]. Mismatched projector pairs — in which the backprojection operator models the finite detector bin width — are often used to avoid these artifacts. We illustrate how RKMA can be used in this manner in Section 6.

5 Optimizing the probabilities

In the case of exact adjoint, a common choice for the probabilities p_i is to use $p_i = \|a_i\|^2/\|A\|^2_F$ which leads to the simple expression $\lambda = \lambda_{\text{min}}(A^T A)/\|A\|^2_F$. However, numerical experiments show that this vector p of probabilities does not lead to the best performance in practice. This is of no surprise: For any diagonal matrix $W = \text{Diag}(w_i)$ one can consider the problem $W A x = W b$ which
has different row norms, while the each Kaczmarz iteration stays exactly the same. This shows that the choice of probabilities by norms of the rows is in some sense arbitrary. In [1] the authors proposed a method to find the smallest contraction factor of the method by minimizing the largest eigenvalue of an auxiliary matrix of size $\mathbb{R}^{n^2 \times n^2}$. Here we present a different method that also works for the case of mismatched adjoint.

Theorem 2.2 states that the asymptotic convergence rate is given by $\rho(I - V^TDA)$, while the expected improvement in each step is either expressed by $1 - \lambda_{\text{min}}(V^TDA + A^T DV - A^TSDA)$ or $\|I - V^TDA\|$ (recall that $D = \text{Diag}(p_i/\langle a_i, v_i \rangle)$ and $S = \text{Diag}(s)$ with $s = \|v_i\|^2/\langle a_i, v_i \rangle$). One would like to choose p (i.e. D) in such a way that these quantities are as small as possible. Numerically, we observe that the asymptotic rate is indeed quite tight, while the expected improvement is only a loose estimate in the case of mismatched adjoint. However, the numerical radius of a non-symmetric matrix is not easily characterized and is neither a convex, nor concave function of the entries of the matrix. The minimal eigenvalue of a symmetric matrix, on the other hand, is characterized by a minimization problem and it will turn out, that λ_{min} is indeed a concave function in p. Also, the spectral norm is convex and thus, the function $\|I - V^TDA\|$ is also convex in p. We therefore aim to choose p such that λ_{min} is maximized or $\|I - V^TDA\|$ is minimized, i.e. we aim to solve

$$\max_p \lambda_{\text{min}}(V^TDA + A^T DV - A^T SD A), \quad \text{s.t.} \quad \sum_{i=1}^m p_i = 1, \quad p \geq 0.$$ \hspace{1cm} (10)

or

$$\min_p \|I - V^TDA\|, \quad \text{s.t.} \quad \sum_{i=1}^m p_i = 1, \quad p \geq 0.$$ \hspace{1cm} (11)

5.1 Maximizing λ_{min}

The super-gradient of the objective functional in (10) is given by the next lemma:

Lemma 5.1. The function $f(p) = \lambda_{\text{min}}(V^TDA + A^T DV - A^TSDA)$ is concave. A super-gradient at p is given by

$$\frac{\partial \lambda_{\text{min}}}{\partial p} = \left(\frac{\langle 2v_i - s_i a_i, x \rangle \langle a_i, x \rangle}{\langle a_i, v_i \rangle} \right)_{i=1,\ldots,m}$$

where x is an eigenvector of $V^TDA + A^T DV - A^T SD A$ corresponding to the smallest eigenvalue.

Proof. By the min-max principle for eigenvalues of symmetric matrices, we have

$$\lambda_{\text{min}}(V^TDA + A^T DV - A^TSDA) = \min_{\|x\|=1} \langle (V^TDA + A^T DV - A^TSDA)x, x \rangle$$

$$= \min_{\|x\|=1} \langle DAx, (2V - SA)x \rangle$$

$$= \min_{\|x\|=1} \sum_{i=1}^m p_i \frac{\langle 2v_i - s_i a_i, x \rangle \langle a_i, x \rangle}{\langle a_i, v_i \rangle}.$$

11
This shows that \(f \) is a minimum over linear functions in \(p \), and hence, concave.

To compute a super-gradient, let \(x \) be a minimizer, i.e. an eigenvector of \(V^TDA + A^TDA - A^TSDA \) corresponding to the smallest eigenvalue. Since this is a point where the minimum is assumed, a super-gradient is given by

\[
\frac{\partial \lambda_{\min}}{\partial p} = \left(\frac{\langle 2v_i - s_i a_i, x \rangle \langle a_i, x \rangle}{\langle a_i, v_i \rangle} \right)_{i=1, \ldots, m}.
\]

The previous lemma allows one to solve (10) by projected super-gradient ascent as follows: Choose a stepsize sequence \(t_k \) and iterate:

1. Initialize with \(p_0 = \frac{1}{m} \), \(k = 0 \)
2. Form \(V^TDA + A^TDA - A^TSDA \) and compute an eigenvector \(x \) corresponding to the minimal eigenvalue.
3. Compute the super-gradient \(g_k = \frac{\partial \lambda_{\min}}{\partial p}(p_k) \) according to Lemma 5.1.
4. Update \(p_{k+1} = \text{proj}_{\Delta_m}(p_k + t_k g_k) \) where \(\text{proj}_{\Delta_m} \) is the projection onto the \(m \)-dimensional simplex.

It is worth noting, how this algorithm looks in the special case of \(V = A \). There we only want to maximize \(\lambda_{\min}(A^TDA) \) and the super-gradient of this at some \(p_k \) is just

\[
g_k = \left(\frac{(a_i \cdot x)_i^2}{\|a_i\|^2} \right)_{i=1, \ldots, m}.
\]

As this is always positive, we can project onto the simplex by a simple rescaling as

\[
p_{k+1} = \frac{p_k + t_k g_k}{\|p_k + t_k g_k\|_1}.
\]

5.2 Minimizing \(\|I - V^TDA\| \)

The subgradient of the objective functional in (11) is given by the next lemma:

Lemma 5.2. Let \(s_i = \langle a_i, v_i \rangle \). The function \(f(p) = \|I - V^TDA\| \) with \(D = \text{Diag}(p/s) \) is convex. A subgradient is given by

\[
\frac{(Aq_1) \odot (Vr_1)}{s} \in \partial f(p)
\]

where \(q_1 \) and \(r_1 \) are left and right singular values of \(I - V^TDA \) corresponding to the largest singular value, \(\odot \) denotes the componentwise product and the division is also to be understood componentwise.

Proof. The convexity of \(f \) follows from the convexity of the norm and the fact that the map \(M : \mathbb{R}^m \to \mathbb{R}^{n \times n}, p \mapsto -V^TDA \) is linear in \(p \).
Example 1 in [11] shows that the subgradient of the spectral norm is given as follows: If B has a singular value decomposition $B = QR^T$ and the maximal singular value has multiplicity j, then

$$\partial_A \|A\| = \text{conv}\{q_i r_i^T \mid i = 1, \ldots, j\}$$

where q_i and r_i are the i columns of Q and R, respectively.

By the chain rule for subgradients, we get that

$$\partial_p f(p) = M^T \partial \|I - Mp\|.$$

The transpose of M is calculated by

$$\langle p, M^T B \rangle = \langle Mp, B \rangle = \text{trace}((Mp)^T B) = -\text{trace}(V^T \text{Diag}(p/s) AB) = -\text{trace}(\text{Diag}(p/s) AB V^T) = \langle p, -\text{Diag}(\text{Diag}(1/s) AB V^T) \rangle,$$

i.e.

$$M^T B = -\text{Diag} \left(\text{Diag}(1/s) AB V^T \right).$$

Plugging in the previous formula we obtain that

$$-\text{Diag}(\text{Diag}(1/s) A q_1 r_1^T V^T) = -\text{Diag}((V r_1)^T \text{Diag}(1/s) (A q_1)) = \frac{(A q_1) \odot (V r_1)}{s}$$

is a subgradient of f, which shows the assertion.

Similar to the previous subsection we can solve as follows: Choose a stepsize sequence t_k and iterate:

1. Initialize with $p_0^i = 1/m$, $k = 0$
2. Compute a pair q, r of left and right singular vectors of $I - V^T DA$.
3. Compute a subgradient g^k according to Lemma [5.2]
4. Update $p^{k+1} = \text{proj}_{\Delta_m}(p^k + t_k g^k)$ where proj_{Δ_m} is the projection onto the m-dimensional simplex.

6 Numerical experiments

In this section we report a few numerical experiments that illustrate the results. The code to produce the figures in this article is available at https://github.com/dirloren/rkma.
overdetermined case. We used a Gaussian matrix $A \in \mathbb{R}^{500 \times 200}$ (i.e. the entries and independently and normally distributed) and defined the mismatched adjoint V by setting all entries of A with magnitude smaller that 0.5 to zero. The unique solution \hat{x} was also generated as a Gaussian vector and as probabilities we used $p_i = \|a_i\|^2/\|A\|^2_F$. The convergence condition (3) is fulfilled and $1 - \lambda \approx 1 - 5.5 \cdot 10^{-4}$ and we also have $\rho(I - V^TDA) \approx 1 - 7.5 \cdot 10^{-4}$. Figure 2 shows the error and the residuals for the randomized Kaczmarz method with and without mismatched adjoint.

As expected, both methods converge, but in this example the method with mismatch converges slightly faster. We note that this is not universal: other random instances constructed in the same way show different behaviour, although both methods are always quite close to each other. Another observation is that the upper bound derived from the convergence factor $1 - \lambda$ is quite far from the actual behavior.

Our second numerical example treats the inconsistent and overdetermined case. The matrix A and solution \hat{x} and the probabilities are similar to the previous example, but now the right hand side is $b = A\hat{x} + r$ (with Gaussian r). Figure 3 shows the result of the RKMA method on this example and also the error bound from Theorem 3.1. As predicted, the error does not go to zero, but levels out at a non-zero level (the same is true for the residual). As in the previous example one sees that the upper bound from Theorem 3.1 is quite loose.

Now we illustrate the behavior of RKMA in the underdetermined case. We used $A, V \in \mathbb{R}^{100 \times 500}$, again A with Gaussian entries and we obtained V from A by setting the entries of A to zero that have magnitude smaller than 0.3. The solution \hat{x} was constructed as $\hat{x} = V^Tc$ for some random vector c and the right hand side was obtained through $b = A\hat{x}$. Hence, generically \hat{x} is not in the range of A^T and the standard randomized Kaczmarz method can not converge to \hat{x}. Figure 4 shows that the error decays quickly to zero for RKMA but not for
Figure 3: The RKMA method in the inconsistent. The plot shows the decay of the error and the theoretical upper bound and the expected final error from Theorem 3.1.

For another illustration of the underdetermined case, we generated a toy problem from computerized tomography with the AIRtools package \[5\] as follows: For a 50×50 pixel image we generated a CT projection matrix for a parallel beam geometry with 36 equi-spaced angels and 150 rays per angle, leading to a projection matrix of size $5,400 \times 2,500$ (the MATLAB command is $A_{\text{full}} = \text{paralleltomo}(50,0:5:180,150,70)$). For the matrix A for the forward projection we used every third row of the matrix while for V (the backprojection) we used the averaged of three consecutive rows, thereby employing a simple model for detector bin width in the backprojection operation. Then we eliminated the rows of A and V which correspond to zero-rows in A which leaves us with two matrices of size $1,636 \times 2,500$. Then we generated a smooth image by

\[
\text{im} = \text{phantomgallery('ppower',N,0.3,1.3,155432)};
\text{im} = \text{imfilter(im,fspecial('gaussian',16,4))};
\text{im} = \text{im}/\text{max(max(im))};
\text{x} = \text{im}(:);
\]

and generated the data by $b = A\ast x$. We reconstructed x by RKMA and RK (with the probabilities from Remark 2.4). Figure 5 shows the reconstructions after a quite small number of sweeps (one sweep corresponds to m step of the methods, where m is the number of rows). One sees that using a mismatched
adjoint is beneficial in this setting: First, the iteration converges to a limit which is closer to the original image (which is due to the fact that this is closer to the range of V^T than that of A^T). Moreover, the initial iterates are better. As expected, the reconstruction with A^T and A suffers from Moiré patterns. Using V^T as adjoint avoids these artifact as the range of V^T contains smoother functions, in some sense. Finally, we note that applying RK using V for both the forward and back-projection does also converge, but leads to an even worse reconstruction than using RK with A.

Finally, we illustrate that the optimization of the probabilities according to Section 5 does indeed improve the practical performance. We used $A, V \in \mathbb{R}^{300 \times 100}$ where A is a random matrix with Gaussian entries where the ith row has been scaled with the factor $2/(\sqrt{i} + 2)$ and V has been obtained from A by setting 5% randomly chosen entries of A to zero. We calculated optimized probabilities by the methods from Sections 5.1 and 5.2 respectively (initialized with uniform probabilities). We applied RKMA with these optimized probabilities, uniform probabilities, and $p_i \propto \langle a_i, v_i \rangle$. Figure 6 shows that the optimized probabilities indeed outperform the uniform choice and the choice proportional to $\langle a_i, v_i \rangle$. Table 1 shows the respective quantities for the different probabilities. Although both approaches optimize different quantities and neither optimizes the asymptotic convergence rate, both probabilities are rather similar in practice, and, as shown in Figure 6 on the right, the probabilities for the different optimization problems are quite similar.
Figure 5: Reconstruction for a toy CT example.

7 Conclusion

We derived several results on the convergence of the randomized Kaczmarz method with mismatched adjoint and could show that the method converges linearly when the mismatch is not too large. The results are a little bit more complicated compared to the case of no mismatch due to the asymmetry of the matrix $I - V^TDA$. In particular, estimates for the norm of the expected error and the expectation of the norm of the error are different in this case. We were also able to characterize the asymptotic convergence rate of RKMA and numerical experiments indicate that this estimate of the rate is indeed quite sharp. In the underdetermined case one may even take advantage of the use of a mismatched adjoint to drive the randomized Kaczmarz method to a solution in the subspace $\text{rg} V^T$. This last point may be important for algebraic reconstruction techniques in computerized tomography where mismatched projector pairs are often employed. Using the conditions derived here, a thorough study
Table 1: Quantities describing the convergence of RKMA for different probabilities.

	unif	row	max λ	min $\|I - V^TDA\|$
$1 - \lambda$	0.998588	0.999079	0.997820	0.998311
$\rho(I - V^TDA)$	0.997908	0.998352	0.997540	0.997327
$\|I - V^TDA\|$	0.998029	0.998485	0.997752	0.997439

Acknowledgements

The authors thank Emil Sidky for valuable discussions. This material was based upon work partially supported by the National Science Foundation under Grant DMS-1127914 to the Statistical and Applied Mathematical Sciences Institute. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

[1] Ameya Agaskar, Chuang Wang, and Yue M Lu. Randomized Kaczmarz algorithms: Exact MSE analysis and optimal sampling probabilities. In
[2] Bruno De Man and Samit Basu. Distance-driven projection and backprojection in three dimensions. *Physics in Medicine & Biology*, 49(11):2463, 2004.

[3] Gene H. Golub and Charles F. Van Loan. *Matrix computations*. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.

[4] Richard Gordon, Robert Bender, and Gabor T Herman. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. *Journal of theoretical Biology*, 29(3):471–481, 1970.

[5] Per Christian Hansen and Maria Saxild-Hansen. AIR tools—a MATLAB package of algebraic iterative reconstruction methods. *Journal of Computational and Applied Mathematics*, 236(8):2167–2178, 2012.

[6] Avinash C Kak, Malcolm Slaney, and Ge Wang. Principles of computerized tomographic imaging. *Medical Physics*, 29(1):107–107, 2002.

[7] Ji Liu, Stephen J Wright, and Srikrishna Sridhar. An asynchronous parallel randomized Kaczmarz algorithm. *arXiv preprint arXiv:1401.4780*, 2014.

[8] Deanna Needell. Randomized Kaczmarz solver for noisy linear systems. *BIT Numerical Mathematics*, 50(2):395–403, Jun 2010.

[9] Robert L Siddon. Fast calculation of the exact radiological path for a three-dimensional CT array. *Medical physics*, 12(2):252–255, 1985.

[10] Thomas Strohmer and Roman Vershynin. A randomized Kaczmarz algorithm with exponential convergence. *Journal of Fourier Analysis and Applications*, 15(2):262–278, 2009.

[11] G Alistair Watson. Characterization of the subdifferential of some matrix norms. *Linear algebra and its applications*, 170:33–45, 1992.

[12] Gengsheng L Zeng and Grant T Gullberg. Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. *IEEE transactions on medical imaging*, 19(5):548–555, 2000.

[13] Anastasios Zouzias and Nikolaos M Freris. Randomized extended Kaczmarz for solving least squares. *SIAM Journal on Matrix Analysis and Applications*, 34(2):773–793, 2013.