Clinical symptoms, diagnosis, treatment, and outcome of COVID-19-associated encephalitis: A systematic review of case reports and case series

Maryam Koupaei1 | Negar Shadab Mehr2 | Mohamad Hosein Mohamadi2 | Arezoo Asadi3,4 | Sajjad Abbasimoghaddam2 | Amirhosein Shekaratabar2 | Mohsen Heidary5,6 | Fazlollah Shokri7

1Department of Microbiology, School of Medicine, Kashan University of Medical Sciences, Tehran, Iran
2Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
3Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
4Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
5Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
6Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
7Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Correspondence
Mohsen Heidary, Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran. Email: mohsenheidary40@gmail.com
Fazlollah Shokri, Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Email: f.shokri_sbm@yahoo.com

Abstract
Introduction: Since COVID-19 outbreak, various studies mentioned the occurrence of neurological disorders. Of these, encephalitis is known as a critical neurological complication in COVID-19 patients. Numerous case reports and case series have found encephalitis in relation to COVID-19, which have not been systematically reviewed. This study aims to evaluate the clinical symptoms, diagnosis, treatment, and outcome of COVID-19-associated encephalitis.

Methods: We used the Pubmed/Medline, Embase, and Web of Science databases to search for reports on COVID-19-associated encephalitis from January 1, 2019, to March 7, 2021. The irrelevant studies were excluded based on screening and further evaluation. Then, the information relating diagnosis, treatment, clinical manifestations, comorbidities, and outcome was extracted and evaluated.

Results: From 4455 initial studies, 45 articles met our criteria and were selected for further evaluation. Included publications reported an overall number of 53 COVID-19-related encephalitis cases. MRI showed hyperintensity of brain regions including white matter (44.68%), temporal lobe (17.02%), and thalamus (12.76%). Also, brain CT scan revealed the hypodensity of the white matter (17.14%) and cerebral hemorrhages/hemorrhagic foci (11.42%) as the most frequent findings. The IV methylprednisolone/oral prednisone (36.11%), IV immunoglobulin (27.77%), and acyclovir (16.66%) were more preferred for COVID-19 patients with encephalitis. From the 46 patients, 13 (28.26%) patients were died in the hospital.

Conclusion: In this systematic review, characteristics of COVID-19-associated encephalitis including clinical symptoms, diagnosis, treatment, and outcome were described. COVID-19-associated encephalitis can accompany with other neurological symptoms and involve different brain. Although majority of encephalitis condition are
1 | INTRODUCTION

Humans have been struggling with the COVID-19 epidemic for nearly 2 years. As of early August 2020, more than 17.5 million cases of COVID-19 were identified in 188 countries, including 680,000 deaths. The disease that often has respiratory symptoms but sometimes also has extrapulmonary manifestations such as neurological symptoms. On average, neurological symptoms appear three weeks after respiratory symptoms. Less common clinical manifestations of COVID-19 include headache, brain status alteration, chest pain, abdominal pain, diarrhea, and nausea. Nervous manifestations can range from a mild nervous agitation to severe encephalitis. The roll of central nervous system in SARS-CoV-2 epidemic has been determined. Ischemic stroke, central nervous system (CNS) inflammation, encephalopathy, and myelitis are common clinical manifestations of the CNS in COVID-19 patients. Encephalitis means inflammation of the brain, which is mainly caused by the autoimmune process and/or the viral infection. Encephalitis is one of the main and devastating complications associated with CNS. In previous epidemics, MERS-CoV and SARS-CoV viruses have caused brain complications such as polyneuropathy, ischemic stroke, encephalitis, and brain status change in patients with Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus. Several case reports and case series have reported the patients with COVID-19-associated encephalitis, which in some cases have been fatal. The pooled mortality rate from COVID-19-associated encephalitis is reported to be 13.4%. In a multicenter study by Pilotto et al. in Italy, 25 out of 45 people with encephalitis tested positive for SARS-CoV-2. They found that there is a wide range of clinical manifestations in patients and the response to treatment depends on the specific CNS manifestations. Due to the importance of encephalitis in COVID-19 patients and the risk of death for them, it is necessary to conduct a detailed systematic review on this study. Therefore, the aim of this study was to evaluate the clinical symptoms, diagnosis, treatment, and outcome of COVID-19-associated encephalitis.

2 | MATERIALS AND METHODS

This systematic review was performed according to “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) statement.

2.1 Search strategy

We used Pubmed/Medline, Embase, and Web of Science databases for this literature. The articles included were only those published in English from January 1, 2019, to March 7, 2021. The search keywords used were “encephalitis,” “brain,” “neurologic,” “COVID-19,” “severe acute respiratory syndrome coronavirus 2,” “SARS-CoV-2,” “2019-nCoV,” “nCoV disease,” “coronavirus disease-19,” “2019 novel coronavirus,” and “Wuhan pneumonia.”

2.2 Inclusion/exclusion criteria

Case reports and case series reporting encephalitis in patients with COVID-19 were included. These studies met the following inclusion criteria: (i) COVID-19 patients were confirmed and diagnosed with RT-PCR as suggested by WHO; (ii) the raw data for clinical symptoms, diagnosis, treatment, and outcome of COVID-19-associated encephalitis were addressed. Studies without enough data, review article, modelling study, commentary, correspondence, editorial, guideline, and news were excluded. All potentially relevant articles were then screened for eligibility. Two reviewers independently screened the records by title, abstract, and full texts to exclude those not related to the current study.

2.3 Data collection

The extracted data included first author name; country where the study was conducted; year of publication; type of study; number of patients investigated; distribution of age and sex in the population; diagnosis methods; data for clinical, radiological, and laboratory findings; therapy, and the patient outcome.

2.4 Quality assessment

We used the case reports/case series appraisal checklist supplied by the Joanna Briggs Institute (JBI) to evaluate the quality of the studies.

3 | RESULTS

3.1 Study selection and general characteristics

As shown in Figure 1, at the first screening, 4455 papers were retrieved. In the second phase, after removing duplicates, 2171 papers remained. These papers were screened by title and abstract, and 119 were selected for detailed full-text evaluation. Applying the criteria to the full-text documents, 45 articles were eligible for inclusion.
in the systematic review. The results of various studies including participants’ clinical manifestations, comorbidities, diagnosis, treatment, and outcome are reported in Tables 1 and 2. Moreover, a summary of the case report and case series findings are reported in Table 3.

3.2 | Study population

From a total of 45 studies, 53 patients with COVID-19-associated encephalitis were enrolled from 18 countries. Forty-one (93.18%) studies were case reports and 4 (6.82%) were case series. The most significant number of studies was conducted in the USA (n = 10), followed by Italy (n = 6) and Iran (n = 5).

3.3 | Demographic data

Demographic information of the individuals with COVID-19-associated encephalitis can be found in Tables 1 and 2. The patients were 21 female and 32 male with mean age of 52.12 years ranged between 9 months and 89 years. The highest incidence of COVID-19-associated encephalitis was observed in people over 50 years of age (54.72%).

3.4 | Diagnostic methods

COVID-19 was most often diagnosed by RT-PCR (92.45%) and chest CT (37.73%). In addition, serological tests (11.32%) and simplex assay (1.88%) were used to detect SARS-CoV-2 virus (Table 3). Brain MRI (81.48%), CSF analysis (46.29%), electroencephalography (42.59%), and head CT (37.03%) were the most frequently used methods to diagnose encephalitis (Table 3). The most common brain MRI patterns were hyperintensity in the white matter (44.68%), hyperintensity in the temporal lobe (17.02%), and hyperintensity of the thalamus (12.76%). In addition, hypodensity of the white matter (17.14%) and cerebral hemorrhages/hemorrhagic foci (11.42%) were the most common head CT scan patterns.

3.5 | Clinical manifestations

Clinical manifestations were reported in five categories including (A) neurological manifestations such as altered mental status (53.70%), decreased consciousness/unconsciousness (33.33%), and seizure (29.62%); (B) psychiatric symptoms (14.81%); (C) general symptoms such as fever (70.37%), headache (20.37%), weakness/asthenia (18.51%), and drowsiness (16.66%); (D) neuromuscular symptoms such as myalgia (7.40%), myoclonus (5.55%); and (E) other clinical
manifestation such as respiratory symptoms (68.51%), renal dysfunction (18.51%), and visual impairment (7.40%).

3.6 | Comorbidities

The most common comorbidities were hypertension (29.16%), diabetes mellitus (14.58%), obesity (12.50%), and neurologic disorders (10.41%). The less common comorbidities were anemia (2.08%), hypercholesterolemia (2.08%), hypothyroidism (2.08%), vitiligo (2.08%), and asthma (2.08%).

3.7 | Treatment options

A wide range of treatment options was used to treat COVID-19. The most common of which were hydroxychloroquine (50%), acyclovir (20%), and ritonavir/lopinavir (16.66%), respectively.

Common encephalitis treatment modalities included IV methylprednisolone/oral prednisone (36.11%), IV immunoglobulin (27.77%), acyclovir (16.66%). In Table 3, we summarize all of the drugs used.

3.8 | Outcomes

In total, 58.69% of the patients with COVID-19-associated encephalitis discharged and 13.05% of them were still hospitalized. The pooled mortality rate of these patients was 28.26%.

3.9 | Risk of bias assessment

The results of the critical appraisal (JBI checklist) of included studies are summarized in Table S1. Overall, 45 articles were identified as having a low risk of bias (quality assessment score >7).
4 | DISCUSSION

Encephalitis is one of the specific neurological manifestations of COVID-19 that can cause severe damage to the patient. In this study, we reviewed case series and case reports to evaluate the clinical symptoms, diagnosis, treatment, and outcome of COVID-19-associated encephalitis.

The patients with COVID-19-associated encephalitis can show encephalitis weeks after the onset of symptoms of COVID-19 or to have symptoms of COVID-19 and encephalitis at the same time. Our study indicated that the clinical manifestations in patients with COVID-19-associated encephalitis can be both central nervous system symptoms (i.e., headache, dizziness, and impaired consciousness) and peripheral nervous system symptoms (i.e., hypogeusia, hyposmia, etc.). The most common symptoms were related to altered mental status (53.7%), decreased consciousness/unconsciousness (33.3%), and seizure (29.6%).

These results were consistent with a systematic review performed by Siow et al. They also reported that decreased level of consciousness (77.1%), alter in mental state (72.3%), and seizures (38.2%) were the most common symptoms in patients with COVID-19-associated encephalitis.

Correia et al. conducted a systematic review on the neurological manifestations of patients with COVID-19. The rate of altered consciousness in their study was reported to be 11.2%. The difference in the results of their study with us could be due to differences in the time frame of each study and the number of patients admitted.

Furthermore, headache (20.37%) and weakness/asthenia (18.51%) were other clinical symptoms of COVID-19-associated encephalitis in the present study. Correia et al. and Siow et al. reported headache rates of 16.8% and 27.3%, respectively.

In this study, myalgia (7.4%) was the most frequent neuromuscular symptom. The prevalence of myalgia in a meta-analysis done by Li et al. was 35.8%.
First author	Country	Published time	Age (years)	Sex	Encephalitis diagnosis method	CT results	MRI results			
Kumar N	India	October 2020	35	M	Head CT	Hypodensities in both thalami and left caudate nucleus	NP			
Novi G	Italy	September 2020	64	F	Brain and spine MRI, CSF analysis	NP	Multiple enhancing lesions of the brain, bilateral optic nerve enhancement			
Ayuso LL	Spain	September 2020	72	F	Brain MRI, immunoblot analysis	NP	Hyperintensity in cerebellum, contrast enhancement on the floor of the fourth ventricle			
Khan Z	USA	November 2020	30	M	Head CT	Opacifications of paranasal sinuses, hypodensity of the white matter	Hyperintensity in the white matter of cerebral hemispheres			
Westhoff TH	Germany	July 2020	69	M	Brain MRI, CSF analysis	NP	Linear meningeal enhancement / hyperintensity in the white matter			
Kamal YM	United Arab Emirate	September 2020	31	M	CSF analysis, head CT, brain MRI	Bilateral hypodensities in the external capsules, the insular cortex and white matter of the frontal lobes	Bilateral diffusion restriction in the temporal and frontal lobes / bilateral hyperintensity in the temporal lobe cortex			
Rebeiz T	USA	September 2020	NM	M	CSF analysis, brain MRI	Subarachnoid hemorrhage within the mesial parietal region / nonspecific hypo- attenuation in the splenium of the corpus callosum	Diffusion restriction and hyperintensity of the corpus callosum, left thalamus and frontal cortex			
Zoghi A	Iran	June 2020	21	M	CSF analysis, brain and cervical MRI	NP	Hyperintensity in the internal capsule, cerebral peduncles, pons and the corpus callosum			
Moriguchi T	Japan	May 2020	24	M	Brain MRI	NP	Hyperintensity along the wall of right lateral ventricle, right temporal lobe and hippocampus, slight hippocampus atrophy			
First author Country	Published time	Age (years)	Sex	Encephalitis diagnosis	SARS-CoV-2 diagnosis method	Clinical manifestations	SARS-CoV-2 diagnosis in CSF sample	Comorbidities	Outcomes	
----------------------	----------------	-------------	-----	------------------------	----------------------------	------------------------	-------------------------------	---------------	----------	
Kumar N	India	36	M	Head CT	RT-PCR	Fever, vomiting, DC	NP	Invasive meningioma	Death	
Novel G	Italy	37	F	Brain and spine MRI, CSF analysis	RT-PCR, antibody testing	RS, anosmia, ageusia, visual impairment, behavioral changes, headache, hyperreflexia	Positive	Vitiligo, hypertension, monoclonal gammopathy	Discharged	
Ayuso LL	Spain	38	F	Brain MRI, immunoblot analysis	RT-PCR	Psychiatric symptoms, fever, AMS, dizziness, visual impairment, unsteadiness, cerebellar signs	NP	Hypertension, hyperlipidemia, smoking, depression	Discharged	
Khan Z	USA	39	M	Head CT	Acyclovir RT-PCR, chest CT	Seizure, DC, behavioral changes, myoclonus, AMS, psychiatric symptoms	NP	Obesity	Still hospitalized	
Westhoff TH	Germany	40	M	Brain MRI, CSF analysis	RT-PCR, chest CT	Fever, RS, diarrhea, pancreas and kidney allograft dysfunction, seizure, hemi-neglect, fatigue	Positive	Immunosuppression	Discharged	
Kamal YM	United Arab Emirate	41	M	CSF analysis, head CT, brain MRI	Acyclovir RT-PCR, chest CT	Behavioral changes, AMS, agitation, drowsiness	Positive	None	Discharged	
Rebeiz T	USA	21	M	CSF analysis, brain MRI	Acyclovir RT-PCR, chest CT	Behavioral changes, fever, AMS, psychiatric symptoms	NP	None	Death	
Zoghi A	Iran	42	M	CSF analysis, brain and cervical MRI	IV vancomycin, meropenem, acyclovir	Anorexia, vomiting, food intolerance, malaise, lower limbs paralysis, weakness, urinary retention, drowsiness	Negative	None	NM	
Moriguchi T	Japan	24	M	Brain MRI	Acyclovir RT-PCR, chest CT	Fatigue, fever, headache, RS, seizure, unconsciousness	Positive	NM	Still hospitalized	
First author	Country	Published time	Age (years)	Sex	Encephalitis diagnosis method	CT results	MRI results			
--------------	---------	----------------	-------------	-----	-------------------------------	------------	-------------			
Haqiqi A	United Kingdom	January 2021	56	M	Head CT, brain MRI, CSF analysis	Diffuse hypodensity of the white matter/multiple bilateral white matter hemorrhagic foci involving the corpus callosum	Hyperintensity of the white matter/diffuse hemosiderin staining throughout the white matter and the corpus callosum/some cystic hemorrhagic areas within both cerebral hemispheres			
Pizzanelli C	Italy	January 2021	74	F	Brain MRI, total body PET/TC	Unremarkable	Hyperintensity in the temporal lobes, mild hippocampal thickening			
Al Mazrouei SS	United Arab Emirates	September 2020	43	M	Head CT, brain MRI	Hypodensity of bilateral thalami	Hyperintensity in the frontal lobes, insula, thalamus and globus pallidus			
Sirous R	USA	August 2020	50	M	MRI, magnetic resonance angiography, magnetic resonance venography	Mild cerebral generalized parenchymal volume loss with sulcal enlargement	Cerebral edema with mass effect, downward cerebellar tonsillar herniation/compression and displacement of the brainstem and 4th ventricle			
Mardani M	Iran	July 2020	64	F	CSF analysis	Unremarkable	NP			
Vandervorst F	Belgium	July 2020	29	M	Brain MRI	Unremarkable	Hyperintensity of the left temporal cortex/mild gyral expansion			
Freire-Álvarez E	Spain	October 2020	39	M	Brain MRI	Unremarkable	Hyperintensity at the cortical and subcortical right frontal regions, right thalamus and mammillary body, temporal lobes and cerebral peduncles			
Parsons T	Germany	May 2020	51	F	Brain MRI, EEG	NP	Hyperintensities in the white matter			
Al-olama M	United Arab Emirates	May 2020	36	M	Brain CT, CT angiography	Hematoma in the right frontal lobe with surrounding edema/extracerebral hemorrhage/cortical swelling/bilateral supratentorial leptomeningeal increased enhancement	NP			
First author	Country	Published time	Age	Sex	Encephalitis diagnosis method	COVID-19 treatment	Clinical manifestations	Comorbidities	Outcomes	
--------------	---------	----------------	-----	-----	-------------------------------	-------------------	------------------------	---------------	----------	
Haqiqi	A	United Kingdom	January 2021	56	M	CT, brain MRI, CSF analysis	Diffuse hypodensity of the white matter/multiple bilateral white matter hemorrhagic foci involving the corpus callosum	Hypertension, chronic kidney disease, hypercholesterolemia, asthma, obesity	Discharged	
Pizzanelli	C	Italy	January 2021	74	F	Brain MRI, total body PET/TC	Unremarkable Hyperintensity in the temporal lobes, mild hippocampal thickening	None	Discharged	
Al Mazrouei	SS	United Arab Emirates	September 2020	43	M	CT, brain MRI	Hypodensity of bilateral thalami	Diabetes mellitus type2	Death	
Sirous	R	USA	August 2020	50	M	MRI, magnetic resonance angiography, magnetic resonance venography	Mild cerebral generalized parenchymal volume loss with sulcal enlargement Cerebral edema with mass effect, downward cerebellar tonsillar herniation/compression and displacement of the brainstem and 4th ventricle	None	Death	
Mardani	M	Iran	July 2020	64	F	CSF analysis	Unremarkable	None	Discharged	
Vandervorst	F	Belgium	July 2020	29	M	Brain MRI	Unremarkable Hyperintensity of the left temporal cortex/mild gyral expansion	None	Discharged	
Freire-Alvarez	E	Spain	October 2020	39	M	Brain MRI	Unremarkable Hyperintensity at the cortical and subcortical right frontal regions, right thalamus and mammillary body, temporal lobes and cerebral peduncles	None	Discharged	
Parsons	T	Germany	May 2020	51	F	Brain MRI, EEG	NP	Hyperintensities in the white matter	None	Clinical improvement, Still hospitalized
Al-tolama	M	United Arab Emirates	May 2020	36	M	Brain CT, CT angiography	Hematoma in the right frontal lobe with surrounding edema/extracerebral hemorrhage/cortical swelling/bilateral supratentorial leptomeningeal increased enhancement	None	Still hospitalized	

TABLE 2 (Continued)

- **IV methyl-prednisolone, oral prednisolone**
- **NM**
- **IV hydroxychloroquine**
- **NM**
- **IV acyclovir, hydroxychloroquine**
- **IV immunoglobulin, tocilizumab**
- **Methylprednisolone, IV Immunoglobulin**
- **NM**
- **PCR**

(Continues)
First author	Country	Published time	Age (years)	Sex	Encephalitis diagnosis method	CT results	MRI results
Goodloe TB	Alabama	January, 2021	52	M	Bead CT, EEG	Unremarkable	Unremarkable
Sattar SBA	USA	September 2020	44	M	Brain MRI, head CT, CSF	Few scattered foci of white matter hypo-attenuation	Abnormal medial cortical signals in the bilateral frontal lobes
Haider A	USA	March 2020	66	M	EEG, brain MRI	Unremarkable	Small lacunar infarcts and a patchy area of bright signals in the cortical and lateral periventricular regions
Cariddi LP	Italy	June, 2020	64	F	Head CT, brain MRI	Bilateral hypodensity of the white matter/a small left occipital parenchymal hemorrhage	Bilateral edema with bilateral occipital foci of subacute hemorrhage
Sofijanova A	Republic of Macedonia	November 2020	9 month	NM	Head CT, biochemical blood test	Enlargement of the lateral ventricles, with intraventricular masses, internal hydrocephalus	NP
Ghosh R	India	August 2020	44	F	Brain MRI, CSF analysis	NP	T2-weighted hyperintensity in the parietal lobes with peri-lesional edema
Pilotto A	Italy	August, 2020	60	M	EEG, brain MRI, CSF analysis	Unremarkable	Unremarkable
Azab MA	Egypt	February, 2021	89	M	MRI, post-mortem biopsy	NP	Hyperintensity near the basal ganglia and thalami
Abdi S	Iran	June, 2020	58	M	Brain MRI, CSF analysis	NP	Hyperintensity of the white matter/ involvement of cortical and deep gray matter and midbrain
Dharsandiya M	India	August, 2020	68	M	Head CT, blood test, CSF	Age-related cortical atrophy (unremarkable)	NP
Babar A	USA	October, 2020	20	F	Brain MRI, CSF analysis, EEG	Unremarkable	Unremarkable
Special encephalitis treatment	SARS-CoV-2 diagnosis method	COVID-19 treatment	Clinical manifestations	SARS-CoV-2 diagnosis in CSF sample	Comorbidities	Outcomes	
-------------------------------	-----------------------------	--------------------	------------------------	-----------------------------------	---------------	----------	
Vancomycin, ceftriaxone, azithromycin, acyclovir	RT-PCR	NM	AMS, agitation, fever	NP	Hypertension, diabetes mellitus type2, end-stage renal disease, coronary artery disease	Discharged	
Tocilizumab, IV immunoglobulin, rituximab	RT-PCR, chest CT	Hydroxychloroquine, azithromycin	Fever, RS, seizure, AMS, unresponsiveness	Positive	None	Discharged	
NM	RT-PCR	Hydroxychloroquine, darunavir/cobicistat	Fever, RS, visual impairment, AMS, drowsiness, reduced tendon reflexes	Negative	Hypertension, gastrointestinal reflux disease, hyperuricemia, dyslipidemia, obstructive sleep apnea, atrial fibrillation	Partial recovery	
Anti-edematous therapy	NM	Cephalosporin, aminoglycoside, antiviral drug	RS, convulsive status, fever, DC, vomiting, seizure	NP	NM	Transferred to another hospital	
IV methylprednisolone	RT-PCR	Ceftriaxone, vancomycin, azithromycin	Myalgia, RS, hypogeusia, hyposmia, AMS, seizure, unconsciousness, reduced tendon reflexes, loss of sphincter control	NP	None	Death	
Methylprednisolone	RT-PCR, chest CT	Ritonavir/lopinavir, hydroxychloroquine	Fever, RS, cognitive fluctuations, DC, AMS, behavioral changes, asthenia	Negative	None	Discharged	
NM	Serological test	Acyclovir, acetaminophen	Rash, seizure, tremors, RS, cerebellar signs, fever, headache, dizziness, myalgia	NP	NM	Death	
IV dexamethasone	RT-PCR, chest CT	NM	Drowsiness, gait disturbance, DC	Negative	NM	Death	
Methylprednisolone, tocilizumab	RT-PCR, chest CT	Azithromycin, hydroxychloroquine, gamma globulin	Fever, RS, renal failure, viral sepsis, autonomic disturbance, AMS, seizure	NP	Diabetes, hypertension	Death	
Methylprednisolone	RT-PCR	Levofoxacin, acyclovir	RS, ageusia, insomnia, Fever, AMS, psychiatric symptoms	Negative	Obesity, anxiety	Discharged	
TABLE 2 (Continued)

First author	Country	Published time	Age (years)	Sex	Encephalitis diagnosis method	CT results	MRI results
Virhammar J	Sweden	June, 2020	55	F	Head CT, CSF analysis, EEG, brain MRI	Hypodensities in the thalami and midbrain	Hyperintensity in subinsular regions, thalami, and brainstem/involvement of temporal lobes, hippocampi, and cerebral peduncles
Farhadian S	USA	June, 2020	78	F	Brain MRI, EEG, CSF analysis	NP	Generalized atrophy/hyperintensity in white matter
de Miranda Henriches-Souza AM	Brazil October, 2020	12	F	Brain and spine MRI, CSF analysis	NP	Bilateral restricted diffusion in the white matter/hyperintensity of the corpus callosum	
Afshar H	Iran	August, 2020	39	F	Brain MRI	NP	Hyperintensities in bilateral thalami, temporal lobes and pons
Crosta F	Italy	December, 2020	79	M	EEG, brain MRI	Unremarkable	Hyperintensity of the left temporal cortex, with mild gyril expansion
Sangare A	France	November, 2020	56	M	EEG, brain MRI	NP	Hemorrhagic lesions in the pontine tegmentum and subinsular regions, including corpus callosum
El-Zein RS	USA	September, 2020	40	M	EEG, blood tests, CSF analysis	Unremarkable	Unremarkable
Etemadifar M	Iran	September, 2020	51	M	Head CT, brain MRI	Generalized brain edema/signs of brain herniation	Generalized brain edema, downward herniation of cerebellar tonsils and brainstem, hyperintensities in bilateral cerebral cortices and corpus striatum
Peng LV	China	February, 2021	90	F	CSF analysis, physical and neurological examination	Unremarkable	NP
Hayashi M	Japan	August, 2020	75	M	Neurological examination, brain MRI	NP	Hyperintensity in the splenium of corpus callosum
Kumar A	USA	November, 2020	35	F	Brain MRI, EEG, CSF analysis	Unremarkable	Hyperintensity in the white matter involving bilateral cerebral peduncles
Muccioli L	Italy	September, 2020	47	F	EEG, brain MRI	NP	Hyperintensity in the white matter
Special encephalitis treatment	SARS-CoV-2 diagnosis method	COVID-19 treatment	Clinical manifestations	SARS-CoV-2 diagnosis in CSF sample	Comorbidities	Outcomes	
-------------------------------	-------------------------------	-------------------	------------------------	-----------------------------------	---------------	----------	
IV immunoglobulin	RT-PCR, chest CT	Acyclovir, plasma exchange	Fever, myalgia, impaired brain stem reflexes, myoclonus, lethargy, DC	Positive	None	Discharged to rehabilitation	
NM	RT-PCR, chest CT	Hydroxychloroquine	Seizure like activity, RS, fever, AMS	Negative	Immunosuppression due to kidney transplantation	Discharged	
Methylprednisolone	RT-PCR	NM	Tetraplegia, fever, deep areflexia, skin rash, headache, RS, acute motor weakness, numbness	Negative	None	Discharged	
IV immunoglobulin, IV methyl-	Chest CT	Meropen, levofloxacin, linezolide, hydroxychloroquine, atazanavir, IV immunoglobulin	Fever, myalgia, anorexia, drowsiness, RS, DC, headache, seizure	Negative	None	Discharged	
NM	RT-PCR	Clarithromycin, dexamethasone	Fever, AMS, anosmia, RS, ageusia, DC, short-term memory deficits, psychiatric symptoms	NP	Hypertension, diabetes, chronic heart failure	Discharged	
IV methylprednisolone, plasma exchange with albumin	RT-PCR, chest CT	Cephalosporin linezolide, trimethoprim-sulfamethoxazole, meropenem aminosid	Fever, RS, reversible acute kidney failure, visual impairment, unresponsiveness	Negative	Hypertension	Discharged	
IV immunoglobulin	Simplex SARS-CoV-2 assay	Hydroxychloroquine	Fever, fatigue, AMS, RS, psychiatric symptoms, increased agitation	Negative	None	Discharged	
NM	RT-PCR	Hydroxychloroquine, lopinavir/ritonavir, IV acyclovir, IV dexamethasone	Headache, drowsiness, nausea, vomiting, RS, seizure, cardiac arrest, impaired brain stem reflexes	NP	Hypothyroidism migraine	Death	
Mannitol and anti-viral therapy (Ganciclovir)	RT-PCR, Chest CT	NM	Fever, RS, fatigue, unconsciousness, unresponsiveness, increased muscle tension	Negative	Cerebral lacunar infarction with no neurological deficits- live in a healthcare unit	Death (irrelevant cause)	
Corticosteroid pulse, meropenem	RT-PCR	Favipiravir, corticosteroid pulse	Urinary incontinence, diarrhea, DC, cerebellar signs, fever, AMS, tremor, gait disturbance	NP	Mild Alzheimer's disease	Death	
Methylprednisolone, IV immunoglobulin, plasma exchange	RT-PCR, serological tests	NM	Anosmia, ageusia, gait disturbance, neuropathy, weakness, drowsiness, lethargy	Negative	Gastric bypass surgery, anemia	Discharged to a long-term care facility	
Tocilizumab	Chest CT, RT-PCR	NM	Asthenia, RS, ageusia, hyposmia, language disturbance, pain in the extremities, fever, AMS, headache, agitation	Negative	None	Discharged	
TABLE 3 Summary of the case reports and case series findings

Variables	No. of studies	n/N	%
Gender			
Male	29	32/53	60.38
Female	19	21/53	39.62
Age			
<30 (years old)	6	6/53	11.32
31–50 (years old)	16	18/53	33.96
>51 (years old)	25	29/53	54.72
Age/sex			
<30 (years old)	4	4/6	66.67
Male	2	2/6	33.33
Female	2	2/6	33.33
31–50 (years old)	11	12/18	66.67
Male	6	6/18	33.33
Female	5	5/18	27.78
>51 (years old)	15	16/29	55.17
Male	12	13/29	44.83
Clinical manifestation			
Neurological manifestations			
Decreased consciousness/unconsciousness	17	18/54	33.33
Behavioral changes	6	6/54	11.11
Altered mental status	24	29/54	53.70
Cerebellar signs	4	5/54	9.25
Seizure	15	16/54	29.62
Agitation	5	6/54	11.11
Headache	11	11/54	20.37
Memory deficits	2	2/54	3.70
Unresponsiveness	4	4/54	7.40
Convulsive status	2	2/54	3.70
Cognitive impairment	2	5/54	9.26
Language disturbance	2	2/54	3.70
Paraphasia	1	1/54	1.85
Tremors	2	2/54	3.70
Lower limbs paralysis	2	2/54	3.70
Gait disturbance	3	3/54	5.55
Unsteadiness	1	1/54	1.85
Hemi-neglect	1	1/54	1.85
Impaired brain stem reflexes	2	2/54	3.70
Pain	3	3/54	5.55
Coma	1	1/54	1.85
Apraxia	1	1/54	1.85
Dysexecutive syndrome	1	1/54	1.85
Psychomotor slowing	1	1/54	1.85
Ideo-motor slowing	1	1/54	1.85
Psychiatric symptoms			
Oral automatism	1	1/54	1.85
Neuropathy	1	1/54	1.85
Reduced tendon reflexes	2	2/54	3.70
Loss of sphincter control	1	1/54	1.85
Deep areflexia	1	1/54	1.85
Psychometric symptoms			
Fever	32	38/54	70.37
Nausea	3	3/54	5.55
Diarrhea	4	4/54	7.40
Anosmia/hyposmia	7	8/54	14.81
Ageusia/dysgeusia	8	8/54	14.81
Dizziness	2	2/54	3.70
Malaise	3	3/54	5.55
Fatigue	8	9/54	16.66
Drowsiness	9	9/54	16.66
Weakness/asthenia	10	10/54	18.51
Lethargy	3	3/54	5.55
Chills	2	3/54	5.55
Anorexia	3	3/54	5.55
Food intolerance	1	1/54	1.85
Insomnia	1	1/54	1.85
Numbness	1	1/54	1.85
Neuromuscular symptoms			
Myalgia	4	4/54	7.40
Hyperreflexia	1	1/54	1.85
Myoclonus	3	3/54	5.55
Neck stiffness	1	1/54	1.85
Flaccid muscles	1	1/54	1.85
Tetraplegia	1	1/54	1.85
Increased muscle tension	1	1/54	1.85
Other			
Respiratory symptoms	30	37/54	68.51
Visual impairment	4	4/54	7.40
Renal dysfunction	8	10/54	18.51
Cardiac dysfunction	2	4/54	7.40
Rash	2	2/54	3.70
Viral sepsis	1	1/54	1.85
Delayed awakening after sedation	1	2/54	3.70
Autonomic disturbances	1	1/54	1.85
Comorbidities			
Hypertension	13	14/48	29.16
Diabetes mellitus	7	7/48	14.58
Variables	No. of studies	n/N	%
---------------------------------	---------------	-----	-------
Obesity	6	6/48	12.50
Neurologic disorders	5	5/48	10.41
Cardiologic disorder	4	4/48	8.33
Dyslipidemia	2	2/48	4.16
Anemia	1	1/48	2.08
Psychiatric disorders	2	2/48	4.16
Renal dysfunction	3	3/48	6.25
Immunosuppressive state	2	2/48	4.16
Smoking	2	2/48	4.16
Hypercholesterolemia	1	1/48	2.08
Hypothyroidism	1	1/48	2.08
Vitiligo	1	1/48	2.08
Monoclonal gammopathy	1	1/48	2.08
Asthma	1	1/48	2.08
Colorectal cancer	1	1/48	2.08
Fatty liver disease	1	1/48	2.08
Gastroesophageal reflux disease	1	1/48	2.08
Hyperuricemia	1	1/48	2.08
Obstructive sleep apnea	1	1/48	2.08
Benign prostatic hypertrophy	1	1/28	3.57
Gestation	1	1/20	5.00
No comorbidities	15	15/48	31.25

Presence of SARS-CoV-2 RNA in the CSF sample

Presence	No. of studies	n/N	%
Positive	7	7/34	20.58
Negative	21	27/34	79.41

SARS-CoV-2 diagnosis method

Method	No. of studies	n/N	%
RT-PCR	40	49/53	92.45
Chest CT	20	20/53	37.73
Serological testing (anti-SARS-CoV-2 antibody)	5	6/53	11.32
Simplexa SARS-CoV-2 assay	1	1/53	1.88

Encephalitis diagnosis method

Method	No. of studies	n/N	%
Brain MRI	36	44/54	81.48
Head CT scan	15	20/54	37.03
CSF analysis	21	25/54	46.29
Electroencephalogram	15	23/54	42.59
Total body PET/TC	1	1/54	1.85
FDG-PET/CT imaging	1	4/54	7.40
CT angiogram	1	1/54	1.85
Magnetic resonance angiography and venography	1	1/54	1.85
Biochemical blood tests	3	3/54	5.55
Post-mortem biopsy	1	1/54	1.85
Physical and neurological examination	2	2/54	3.70

Immunoblot analysis

No. of studies	n/N	%
1	1/54	1.85

Brain tomography

No. of studies	n/N	%
1	1/54	1.85

Special encephalitis treatment

Method	No. of studies	n/N	%
Dexamethasone	2	3/36	8.33
Plasma exchange	3	3/36	8.33
IV methylprednisolone/oral prednisone	13	13/36	36.11
IV immunoglobulin	8	10/36	27.77
Corticosteroids	2	4/36	11.11
Steroids	1	1/36	2.77
Propofol infusion	1	1/36	2.77
Mannitol	2	2/36	5.55
Acyclovir	6	6/36	16.66
Ceftriaxone	3	3/36	8.33
Vancomycin	4	4/36	11.11
Meropenem	2	2/36	5.55
Tocilizumab	4	4/36	11.11
Azithromycin	1	1/36	2.77
Rituximab	1	1/36	2.77
Anti-edematous therapy	1	1/36	2.77

COVID-19 treatment

Method	No. of studies	n/N	%
Hydroxychloroquine	15	15/30	50.00
Chloroquine	1	1/30	3.33
Azithromycin	4	4/30	13.33
IV amoxicillin-clavulanic acid	1	1/30	3.33
IV immunoglobulin	2	2/30	6.66
Ceftriaxone	3	3/30	10.00
Dexamethasone	3	3/30	10.00
Favipiravir	2	2/30	6.66
Ritonavir/lopinavir	5	5/30	16.66
Plasma exchange	2	2/30	6.66
Remdesivir	1	1/30	3.33
Clarithromycin	1	1/30	3.33
Corticosteroid pulse	1	1/30	3.33
Clindamycin	1	1/30	3.33
Interferon beta-1b	1	1/30	3.33
Darunavir/cobicistat	1	1/30	3.33
Cefalosporin	2	2/30	6.66
Aminoglycoside	1	1/30	3.33
Vancomycin	1	1/30	3.33
Linezolide	2	2/30	6.66
Acyclovir	6	6/30	20.00
Acetaminophen	1	1/30	3.33
Gamma globulin	1	1/30	3.33
Levofloxacin	2	2/30	6.66
Meropenone	1	1/30	3.33

(Continues)
Fever (70.37%) and respiratory failure (68.51%) were the most common symptoms of COVID-19 in our evaluation. Heidary et al.19 achieved the same results in their study. They reported that clinical symptoms of COVID-19 included coughing (81.3%), fever (62.8%), and dyspnea (60%). Also, Koupaei et al.20 demonstrated that the COVID-19 patients mostly suffered from fever (78.8%), cough (63.7%), and respiratory distress (22.6%).

So far, several cases of COVID-19-associated encephalitis have been reported in people who did not have symptoms of COVID-19. The presence of asymptomatic people with encephalitis recommends that performing the diagnostic tests is necessary to prevent the spread of the disease.21,22

On the contrary, CNS involvement is similar in the SARS-CoV-2, SARS-CoV, and MERS-CoV viruses.

\begin{table}[h]
\centering
\caption{Variables}
\begin{tabular}{|l|l|l|l|}
\hline
Variables & No. of studies & n/N & \% \\
\hline
Atazanavir & 1 & 1/30 & 3.33 \\
Trimethoprim-sulfamethoxazole & 1 & 1/30 & 3.33 \\
Meropenem aminosid & 1 & 1/30 & 3.33 \\
\hline
Outcome & & & \\
Death & 13 & 13/46 & 28.26 \\
Discharged & 20 & 23/46 & 50.00 \\
Discharged to rehabilitation/partial recovery & 4 & 4/46 & 8.69 \\
Still hospitalized & 4 & 4/46 & 8.69 \\
Transferred to another hospital & 2 & 2/46 & 4.34 \\
\hline
Brain MRI pattern & & & \\
Unremarkable & 6 & 6/47 & 12.76 \\
Hyperintensity in the white matter & 15 & 21/47 & 44.68 \\
Hyperintensity in the corpus callosum & 5 & 6/47 & 12.76 \\
Hyperintensity in the cerebellum & 3 & 3/47 & 6.38 \\
Hyperintensity of the thalamus & 6 & 6/47 & 12.76 \\
Hyperintensity in the temporal lobe & 8 & 8/47 & 17.02 \\
Hyperintensity in the frontal lobe & 5 & 5/47 & 10.63 \\
Hyperintensity in the brainstem & 3 & 3/47 & 6.38 \\
Hyperintensity in the parietal lobe & 2 & 2/47 & 4.25 \\
Hyperintensity along the wall of lateral ventricle & 1 & 1/47 & 2.12 \\
Hemorrhagic/microhemorrhagic areas & 4 & 5/47 & 10.63 \\
Signs of brain edema & 4 & 4/47 & 8.51 \\
Confluent diffusion restriction in the white matter & 2 & 4/47 & 8.51 \\
Compression and displacement of the brainstem and fourth ventricle & 1 & 1/47 & 2.12 \\
Downward cerebellar tonsillar herniation & 2 & 2/47 & 4.25 \\
Mild gyral expansion & 2 & 2/47 & 4.25 \\
Involvement of cortical and deep gray matter and midbrain & 1 & 1/47 & 2.12 \\
Diffuse hemosiderin staining throughout the white matter and corpus callosum & 1 & 1/47 & 2.12 \\
\end{tabular}
\end{table}
Thus, it is recommended that more sensitive and specific tests be performed.23

In this study, the most common methods used to diagnoseencephalitis were MRI (81.48%), CSF analysis (46.29%), electroencephalogram (42.59%), and head CT scan (37.03%). Among the analysis performed on CSF, only 79.41% were positive and showed the presence of viral RNA. This may be due to the mechanism of encephalitis that the virus has not entered CSF and cannot be detected. Moreover, in the early stages of the disease, CSF may have a normal level and cause a false-negative result.5

The most common MRI findings included hyperintensity in the white matter, hyperintensity in the temporal lobe, and hyperintensity in the corpus callosum, respectively. Although the CT findings of patients with COVID-19-associated encephalitis usually are not remarkable,24 our study showed that the most findings are hypodensity of the white matter (17.14%) and cerebral hemorrhages/hemorrhagic foci (11.42%).

Probably, some of the signs in the imaging are related to the subcortical white matter hyperintensities and microbleeds in the deep gray nuclei caused by underlying diseases.12

The association between underlying diseases such as hypertension, diabetes, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and cerebrovascular disease has been identified with COVID-19. People with the above underlying diseases are more likely than others to develop COVID-19 and the severity of the disease.25 In the present study, patients with COVID-19-associated encephalitis had a higher percentage of hypertension (29.16%) and diabetes mellitus (14.58%).

Angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, is abundant in various organs.3 Diabetes can increase the serum ACE2. Thus, it is not surprising that diabetes is a common comorbidity in patients with COVID-19-associated encephalitis.26

In this study, COVID-19-associated encephalitis was more common in people over 50 years of age (54.72%). It seems that elderly people with several underlying diseases are less able to physiological rearrangement, which makes them more prone to encephalitis.27

Although various treatments have been used to treat COVID-19-associated encephalitis, none of them can be used with certainty. At the time of the COVID-19 epidemic, physicians should suspect SARS-CoV-2 as a differentiating factor when certain diseases and neurological symptoms occur.21 Our survey showed that IV methylprednisolone/oral prednisone (36.11%), IV immunoglobulin (27.77%), and acyclovir (16.66%) were the common treatment options to treat encephalitis. The healing role of IV immunoglobulin in severe cases of COVID-19 has been confirmed in several studies.28–31

There are some limitations in this study. First, only case reports and case series were enrolled in this systematic review. Thus, the existence of publication bias should be considered. Second, since our search was limited to articles published in English, some relevant articles in other languages have missed. Third, some studies lacked sufficient data.

5 | CONCLUSION

In this systematic review, various aspects of COVID-19-associated encephalitis including clinical symptoms, diagnosis, treatment, and outcome were studied. COVID-19-associated encephalitis is one of the complications of SARS-CoV-2, which may accompany with other neurological symptoms and make the patient’s condition worse. It usually occur in severe cases and can increase the mortality rate. Thus, it is recommended to pay special attention to neurological symptoms during the COVID-19 epidemic. Lack of proper attention causes problems such as delay in COVID-19 diagnosis, virus transmission, and increased mortality. Therefore, further studies on COVID-19-associated encephalitis are suggested.

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

AUTHORS’ CONTRIBUTION

Maryam Koupaei, Negar Shadabmehr, Mohamad Hosein Mohamadi, Arezoo Asadi, Sajjad Abasi Moghadam, Amirhossein Shekartabar, Mohsen Heidary, and Fazlollah Shokri contributed in revising and final approval of the version to be published. All the authors agreed and confirmed the study for publication.

DATA AVAILABILITY STATEMENT

All the data in this review are included in the study.

ORCID

Mohsen Heidary https://orcid.org/0000-0002-9839-5017

REFERENCES

1. Al Mazrouei SS, Saeed GA, Al Helali AA, Ahmed M. COVID-19-associated encephalopathy: neurological manifestation of COVID-19. Radiol Case Rep. 2020;15(9):1646-1649.
2. Sirous R, Taghvaei R, Hellinger JC, Krauthamer AV, Mirfendereski S. COVID-19-associated encephalopathy with fulminant cerebral vasocostriction: CT and MRI findings. Radiol Case Rep. 2020;15(11):2208-2212.
3. Azab MA, Azzam AY. SARS-CoV-2 associated viral encephalitis with mortality outcome. Interdiscip Neurosurg. 2021;25:101132.
4. Etemadifar M, Salari M, Murgai AA, Hajiahmadi S. Fulminant encephalitis as a sole manifestation of COVID-19. Neurol Sci. 2020;41(11):3027-3029.
5. Bhagat R, Kwiecinska B, Smith N, et al. New-onset seizure with possible limbic encephalitis in a patient with COVID-19 infection: a case report and review. J Investig Med High Impact Case Rep. 2021;9:2324709620986302.
6. Ellul M, Solomon T. Acute encephalitis–diagnosis and management. Clin Med. 2018;18(2):155.
7. Garg RK, Paliwal VK, Gupta A. Encephalopathy in patients with COVID-19: a review. J Med Virol. 2021;93(1):206-222.
8. Gu J, Gong E, Zhang BO, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415-424.
9. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55-58.
51. Sofijanova A, Bojadzieva S, Duma F, Superlishka E, Murtezani A, Jordanova O. Severe encephalitis in infant with COVID-19: a case report. Open Access Maced J Med Sci. 2020;8(T1):514-517.

52. Pilotto A, Odolini S, Masciocchi S, et al. Steroid-responsive encephalitis in coronavirus disease 2019. Ann Neurol. 2020;88(2):423-427.

53. Abdi S, Ghorbani A, Fatehi F. The association of SARS-CoV-2 infection and acute disseminated encephalomyelitis without prominent clinical pulmonary symptoms. J Neurol Sci. 2020;416:117001.

54. Dharsandiya M, Shah K, Patel K, Patel T, Patel A, Patel A. SARS-CoV-2 viral sepsis with meningoencephalitis. Indian J Med Microbiol. 2020;38(2):219-221.

55. Babar A, Lewandowski U, Capin I, et al. SARS-CoV-2 encephalitis in a 20-year old healthy female. Pediatr Infect Dis J. 2020;39(10):e320-e321.

56. Virhammar J, Kumlien E, Fällmar D, et al. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology. 2020;95(10):445-449.

57. Farhadian S, Glick LR, Vogels CBF, et al. Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19. Res Sq. 2020.

58. de Miranda Henriques-Souza AM, de Melo ACMG, de Aguiar Coelho Silva Madeiro B, Freitas LF, Sampaio Rocha-Filho PA, Gonçalves FG. Acute disseminated encephalomyelitis in a COVID-19 pediatric patient. Neuroradiology. 2021;63(1):141-145.

59. Afshar H, Yassin Z, Kalantari S, et al. Evolution and resolution of brain involvement associated with SARS-CoV2 infection: a close clinical – paraclinical follow up study of a case. Mult Scler Relat Disord. 2020;43:102216.

60. Crosta F, Simeone PG, Sanocco C, et al. Neurological features of COVID-19 infection: a case series of geriatric patients. J Gerontol Geriatr. 2020;68:235-239.

61. Sangare A, Dong A, Valente M, et al. Neuroprognostication of consciousness recovery in a patient with COVID-19 related encephalitis: preliminary findings from a multimodal approach. Brain Sci. 2020;10(11):845.

62. El-Zein RS, Cardinale S, Murphy C, Keeling T. COVID-19-associated meningoencephalitis treated with intravenous immunoglobulin. BMJ Case Rep. 2020;13(9):e237364.

63. Lv PU, Peng F, Zhang Y, et al. COVID-19-associated meningoencephalitis: a case report and literature review. Exp Ther Med. 2021;21(4):362.

64. Kumar A, Olivera A, Mueller N, Howard J, Lewis A. Delayed SARS-CoV-2 leukoencephalopathy without severe hypoxia. J Neurol Sci. 2020;418:117146.

65. Muccioli L, Pensato U, Cani I, et al. COVID-19-related encephalopathy presenting with aphasia resolving following tocilizumab treatment. J Neuroimmunol. 2020;349:577400.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Koupaei M, Shadab Mehr N, Mohamadi MH, et al. Clinical symptoms, diagnosis, treatment, and outcome of COVID-19-associated encephalitis: A systematic review of case reports and case series. J Clin Lab Anal. 2022;36:e24426. doi:10.1002/jcla.24426