Dal Poggetto Molinari, Giovani José; Marques de Oliveira Dalbem, Andreia; Hüsemann Menezes, Fabio; Guillaumon, Ana Terezinha

Proposta de correção virtual geométrica da projeção ostial da artéria renal no estudo operatório de aneurismas infrarrenais: resultados iniciais de um estudo piloto

Revista Brasileira de Cirurgia Cardiovascular/Brazilian Journal of Cardiovascular Surgery, vol. 29, núm. 1, enero-marzo, 2014, pp. 78-82

Sociedade Brasileira de Cirurgia Cardiovascular
São José do Rio Preto, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=398941892014
Proposal of renal artery's ostial projection under virtual geometric correction in infrarenal aneurysms: initial results of a pilot study

Giovani José Dal Poggetto Molinari¹; Andreia Marques de Oliveira Dalbem¹; Fabio Hüseemann Menezes¹, MD; Ana Terezinha Guillaumon¹, PhD

Abstract

Introduction: Endovascular aneurysm repair requires the precise deployment of the graft. In order to achieve accurate positioning, the anatomical and morphological characteristics of the aorta and its branches is mandatory. Software that perform three dimensional reformatting of multislice tomographic images, allow for the study of the whole aorto-iliac axis and the perpendicular visualization of the origin of the renal arteries. The correct length of the proximal neck can be evaluated and adequate graft fixation and sealing may be foreseen. A technique is presented, using an software, for the orthogonal correction of the position of the renal arteries in relation to the proximal neck, which may guide the radioscopic orientation intraoperatively.

Methods: Within a multiplanar tomographic image reconstruction, virtual triangulation allows for the three dimensional orthogonal correction of the renal arteries' ostia position. The predetermined best angulations for visualization are annotated and used for the positioning of the surgical C-arm.

Results/Discussion: Some authors discuss that the anatomic position of the renal vessels seen on the tomographic scan can change during the surgical procedure. It is known that the renal arteries' angular positioning does not alter, even after insertion of stiff guidewires, introducers, and the endograft itself. Therefore, it is possible, using concepts of spacial geometry and orthogonal correction, to predict the ideal bidimensional intraoperative positioning of the radioscopy device in order to reproduce the optimized renal artery ostial projection, ensuring the best accuracy during endograft deployment.

Conclusion: As closer to the tomographic reproduction was the radioscopic correction, more careful is the visualization of the ostium of the renal artery, better is the exploitation of the lap for fixing and sealing and the endoprosthesis deployment is more accurate.

Descriptors: Endovascular Procedures. Aortic Aneurysm, Abdominal. Multidetector Computed Tomography. Renal Artery. User-Computer Interface. Pilot Projects.

Veja o vídeo acessando o link abaixo:

http://rbccv.org.br/video/2221/Proposta_de_correcao_virtual_geometrica_da_projecao_ostial_da_arteria_renal_no_estudo_operatorio_de_aneurismas_infrarrenais_resultados_iniciais_de_um_estudo_piloto

¹. Universidade Estadual de Campinas (HC-Unicamp), Campinas, SP, Brasil.

Endereço para correspondência:
Giovani José Dal Poggetto Molinari
Universidade Estadual de Campinas – Unicamp/ Cidade Universitária Zeferino Vaz
Rua Vital Brasil, 251 - Barão Geraldo – Campinas, – SP, Brasil – CEP: 13083-888 Caixa Postal: 6142
E-mail: drgiovani.molinari@uol.com.br

Trabalho realizado no Hospital das Clínicas da Universidade Estadual de Campinas (HC-Unicamp), Campinas, SP, Brasil.

Não houve suporte financeiro.

Artigo recebido em 30 de agosto de 2013
Artigo aprovado em 20 de janeiro de 2014
Resumo

Introdução: Para o preparo pré-operatório endovascular dos aneurismas infrarrenais é necessária a mensuração acurada de suas características anatômicas e morfológicas, alcançada com o uso de softwares avançados em manipulação de imagens de tomografias multicanais. Este processo permite também o estudo acurado das relações anatômicas das demais artérias do eixo aorto-ilíaco. Uma visualização perpendicular à origem da artéria renal mais baixa possibilita o uso de toda a extensão do colo para fixação da endoprótese e selamento proximal, o que pode ser previsto durante o estudo da tomografia, impedindo um posicionamento subóptimo e a sobreposição das estruturas vasculares no intraoperatório. Expõem-se aqui os resultados iniciais de um projeto piloto, envolvendo manipulação de imagens tomográficas, na correção ortogonal da artéria renal aplicada à orientação radioscópica no intraoperatório.

Métodos: Por meio de reconstrução multiplanar de imagens tomográficas em software obtém-se um corte axial em ângulo reto. Conceitos geométricos de triangulação virtual promovem a correção ortogonal em três dimensões da visualização ostial da artéria renal, que pode ser reproduzida intraoperacionalmente, através do reposicionamento do arco cirúrgico.

Resultados/Discussão: Embora alguns autores argumentem que a anatomia do vaso observada na tomografia possa mudar durante o intraoperatório, sabe-se que o posicionamento angular das artérias renais não se modifica, mesmo após a inserção dos fios guia rígidos, introdutores e da própria endoprótese. Assim, acreditamos ser possível, por meio de conceitos de geometria espacial e correção ortogonal (por meio da manipulação das imagens em software), predizer o posicionamento ideal do aparelho de radioscopia de maneira a reproduzir o mesmo ângulo de projeção ostial da artéria renal em imagem bidimensional intraoperatória (angiografia), assegurando maior precisão na liberação da endoprótese.

Conclusão: Quanto mais próxima da reprodução tomográfica for essa correção radioscópica, mais cuidadosa é a visualização do óstio da artéria renal, melhor é o aproveitamento do colo para a fixação e selamento e mais precisa é a liberação da endoprótese.

Descritores: Procedimentos Endovasculares. Aneurisma da Aorta Abdominal. Tomografia Computadorizada Multidetectores, Artéria Renal. Interface Usuário-Computador. Projetos Piloto.

INTRODUÇÃO

Sabe-se que para o preparo pré-operatório endovascular dos aneurismas de aorta abdominal (AAA) infrarrenais é necessária a mensuração acurada das características morfológicas e anatômicas do aneurisma, como diâmetros, comprimentos e angulações, estratégia essencial para a sua exclusão, resultado final do procedimento endovascular [1].

Com o aprimoramento da tecnologia de informação, o estudo de tomografias bipeleosspesiai ellecidos associado à aortografias complementares com cateteres centimetrados foi substituído pelo uso de tomografias computadorizadas (TC) multicanais (multislice), cortes em espessuras menores e com maior riqueza de detalhes que, quando associadas a softwares de reconstrução em três dimensões (3D), permitem a reprodução virtual digitalizada do doente e de sua anatomia [2].

A TC e a angiotomografia (angioTC) têm um papel essencial no planejamento pré-intervencionista e no controle do procedimento, sendo considerada o exame de escolha na avaliação do paciente candidato ao tratamento endovascular e para o seu acompanhamento, na pesquisa de complicações [3].

Estas reconstruções permitem a avaliação rápida da extensão do aneurisma, acometimento visceral, presença de angulações, tortuosidade e dificuldade de acesso. Uma análise acurada dos cortes axiais, coronais e sagitais possibilita o planejamento do tipo de endoprótese a ser utilizada. Isto é alcançado com o uso de métodos de reconstrução disponíveis nos softwares, como a reconstrução multiplanar (MPR e MPR-Curved), projeção de intensidade máxima (MIP) e reconstrução 3D da imagem de volume.

Nesta etapa, realizada no período pré-operatório, obtém-se as informações necessárias para o planejamento cirúrgico. Desta forma, é possível a aquisição de imagens finais que oferecem não só melhor acurácia das medidas e das características morfológicas do aneurisma como também o estudo da sua relação anatômica com demais artérias do eixo aorto-ilíaco [1].

Um aspecto importante do planejamento é a determinação do melhor posicionamento intraoperatório da radioscopia, com uma visualização perfeitamente perpendicular à origem da artéria renal mais baixa. Um posicionamento subóptimo pode causar sobreposição das estruturas vasculares, impedindo o uso de toda a extensão do colo para fixação da endoprótese e selamento proximal [4].

Expõem-se aqui os resultados iniciais de um projeto piloto, feito por análise da viabilidade da manipulação de imagens tomográficas em software, na visualização e determinação da angulação radioscópica do colo do aneurisma, através do emprego de uma técnica inédita. Acredita-se que esta técnica é bastante simples, de alcance prático imediato e que pode ser facilmente incorporada na rotina de planejamento...
de tratamentos endovasculares com endopróteses. Até o momento, reunimos uma série de casos de cerca de 14 estudos com resultados animadores. Para fins de ilustração da técnica empregada, descrevem-se a seguir os passos desenvolvidos em um dos casos de nossa série.

MÉTODOS

Foram analisadas tomografias multicanais de doentes submetidos a correção endovascular de AAA infra-renal no Centro de Alta Complexidade em Cirurgia Endovascular da Universidade Estadual de Campinas, de Agosto a Dezembro de 2013.

Utilizou-se de reconstrução tridimensional multiplana por meio de software (OsiriX MD) de manipulação de imagens DICOM - Digital Imaging and Communications in Medicine - em análise de aneurismas em série de imagens com cortes tomográficos finos de 1 a 3mm, meio de contraste iodado intravenoso em fase arterial.

Escolheu-se a artéria renal mais baixa como referência para o tratamento das imagens, por constituí-se o colo proximal o seu segmento até o início do AAA [5]. O objetivo foi alcançar uma imagem perfeitamente perpendicular à sua origem – ou seja, sua projeção ostial – de forma a corrigir angulações ântero-posteriores próprias de sua morfologia e quaisquer efeitos rotacionais provocados pela tortuosidade do AAA. Para isto, um corte linear ao eixo da aorta (no nível da emergência da artéria renal mais baixa) foi conseguido em imagem axial, fornecido pela correção em ângulo reto das projeções sagital e coronal em MPR (Figura 1).

Mediante análise da imagem axial, procedeu-se então à construção de um triângulo equilátero circunscrito. Traçou-se uma linha central ao eixo da aorta e paralela à tangente da parede arterial no ostio renal, onde se realizou uma primeira marca na parede anterior da aorta (Figuras 2A e 2B). Este é o vértice assumido como o ápice da pirâmide no início da construção do triângulo.

Assim, reproduziram-se duas marcas adicionais, orientadas pela altura do triângulo, colocadas posteriormente, de forma a construir um triângulo equilátero (Figura 2C). Para cálculo da marcação, utilizou-se de conceitos de construção geométrica, onde a altura (h) de um triângulo equilátero em um círculo corresponde ¾ do diâmetro, ou a 1 e ½ vez o raio da circunferência [6] (Figura 2D).

Partindo-se do conceito geométrico de que três pontos estão sempre no mesmo plano, procedeu-se à reconstrução tridimensional da tomografia. Por meio da manipulação rotacional da imagem, alinharam-se os 3 pontos em um único eixo, equidistantes (Figura 3). Os ângulos de projeção da visualização da imagem foram fornecidos automaticamente pelo software (destaque).

As imagens e angulações alcançadas durante a reconstrução 3D no software foram reproduzidas no intraoperatório – com correção do posicionamento angular do aparelho de radioscopia – revelando-se serem equivalentes (Figuras 4A, B e C).

Acrescenta-se ainda que – para próteses que possuem acima de duas marcações radiofônicas no mesmo nível em sua porção proximal – pôde-se observar, após a liberação da endoprótese, um posicionamento em linha reta destas marcações [4] o que reforça a ideia de visualização perpendicular do colo (Figura 4D).

DISCUSSÃO

No início da última década, o estudo de TC biplanares helícoidais associado a aortografias complementares com cateteres centimetrados era recomendado a todos os candidatos à correção endovascular dos AAA, por apresentarem-se como exames de valores complementares: enquanto a primeira fornecia informações bastante acuradas sobre os diâmetros, a última permitia uma avaliação precisa do comprimento [7].
Devido ao acentuado desenvolvimento tecnológico da TC – desde a introdução da aquisição helicoidal aos equipamentos de múltiplos canais de detectores com sistemas eficientes de transmissão, processamento e armazenamento de dados – foi possível a redução do tempo de aquisição das imagens assim como o desenvolvimento de algoritmos de reconstrução mais sensíveis e precisos, com melhor performance e resolução espacial [2].

Atualmente, por meio da angioTC é realizada a morfometria, baseando-se na avaliação da configuração, comprimentos e diâmetros da aorta e das artérias ilíacas e relacionados com a lesão de interesse quanto à técnica de realização do procedimento endovascular. Permite, inclusive, avaliar variações anatômicas relevantes à escolha da endoprótese e da técnica cirúrgica relacionada [2].

Entretanto, a avaliação intraoperatoria da liberação da endoprótese é geralmente guida pela angiografia, a qual fornece imagem bidimensional. Por isso, sabe-se que colo pro-
ximal dos AAA e/ou artérias ilíacas muito angulados podem dificultar a visualização exata do óstio da artéria renal.

O posicionamento ideal do aparelho de radioscopia durante o procedimento cirúrgico pode ser diferente do esperado durante o estudo pré-operatório, na medida em que o colo do aneurisma possivelmente se encurte ou alongue acima do esperado [4]. Diante disto, alguns autores argumentam que a anatomia do vaso pode mudar devido à inserção dos fios guia rígidos, introdutores e do próprio sistema de entrega. Assim, acreditam que a imagem da TC pré-operatória pode ser diferente da angiografia intraoperatória [6].

Van Keulen et al. [4] discorrem sobre a necessidade da determinação da disposição intraoperatória do arco cirúrgico, alegando que um posicionamento subótimo levaria o cirurgião a subestimar o comprimento total do colo do aneurisma e a não utilização em sua totalidade para liberação e fixação da endoprótese. Esta interpretação poderia ser causada por uma aparente sobreposição de estruturas vasculares na imagem angiográfica bidimensional. Recomenda que a angulação ideal e o posicionamento sejam determinados levando-se em consideração a angulação ântero-posterior do colo e a orientação horária das artérias renais. Descreve, ainda, que, embora a angulação do colo do aneurisma possa ser modificada, o posicionamento angular das artérias renais não se modifica sob a influência dos fios guia inseridos ou da própria endoprótese [4,8].

Nossa proposta foi simplificar este cálculo, com obtenção simultânea dos ângulos oblíquos e craniocaudais utilizando-se conceitos de geometria tridimensional e de triangulação espacial, com o auxílio do software. Isto posto, embora sejam resultados de um projeto piloto em andamento, estes se mostraram bastante encorajadores.

Com isso, acreditamos que é possível por meio de conceitos de correção geométrica e por meio da manipulação das imagens DICOM em software, traçar o mesmo ângulo de projeção ostial da artéria renal em imagem bidimensional para a determinação da manipulação das imagens.

A reprodução tomograficamente um corte transversal em ângulo reto (ou seja, perpendicular ao eixo da aorta), com rotação e exposição ortogonal da artéria renal, consegue-se prever a necessidade de correção intraoperatoria da projeção da radioscopia na obtenção de imagem angiográfica bidimensional.

Utilizando-se da aplicação de conceitos de geometria espacial para alcançar o melhor ângulo de exposição ostial da artéria renal de forma sistemática, reduzem-se as variações entre os observadores do estudo e possibilita-se a reprodutibilidade da técnica, reduzindo-se os erros de interpretação interpessoais.

Quanto mais próxima da reprodução tomográfica for essa correção radioscópica, mais cuidadosa é a visualização do óstio da artéria renal, melhor o aproveitamento do colo para a fixação e selamento e mais precisa é a liberação da endoprótese.

Papéis & responsabilidades dos autores

Autor	Função
GJDP	Autor principal, idealizador da técnica descrita. Pesquisador principal da manipulação das imagens utilizadas, da redação do Projeto Piloto e do Projeto de Pesquisa e do levantamento bibliográfico.
AMOD	Coautora. Colaboradora do desenvolvimento e da aplicação da técnica descrita, pesquisadora auxiliar durante o desenvolvimento do Projeto de Pesquisa
FHM	Coautora. Revisor da redação da Nota Técnica, correção e elaboração do Abstract. Revisor da bibliografia.
ATG	Coautora. Orientadora. Revisor Final da Nota Técnica, do Projeto Piloto e do Projeto de Pesquisa

REFERÊNCIAS

1. Oderich GS, Malgor RD. Aneurisma da Aorta toracoabdominal. In: Lobato AC (org). Cirurgia Endovascular. 2ª ed. São Paulo: Instituto de Cirurgia Vascular e Endovascular de São Paulo; 2010. p.695-742.

2. Pitoulias GA, Donas KP, Schulte S, Aslanidou EA, Papadimitriou DK. Two-dimensional versus three-dimensional CT angiography in analysis of anatomical suitability for stentgraft repair of abdominal aortic aneurysms. Acta Radiol. 2011;52(3):317-23.

3. Kuroki IR, Magalhães FV, Rizzi P, Coreixas IMH. Angiotomografia. In: Brito CJ. Cirurgia Vascular: cirurgia endovascular, angiologia. 3ª ed. Rio de Janeiro: Revinter; 2014. p.437-96.

4. van Keulen JW, Moll FL, van Herwaarden JA. Tips and techniques for optimal stent graft placement in angulated aneurysm necks. J Vasc Surg. 2010;52(4):1081-6.

5. Lobato AC. Aneurisma da Aorta Infrarrenal. In: Lobato AC (org). Cirurgia Endovascular. 2ª ed. São Paulo: Instituto de Cirurgia Vascular e Endovascular de São Paulo; 2010. p.743-96.

6. Rigonatto M. Triângulo equilátero inscrito numa circunferência. In: Brito CJ. Cirurgia Vascular: cirurgia endovascular, angiologia. 3ª ed. Rio de Janeiro: Revinter; 2014. p.437-96.

7. Espinosa G, Marchiori E, Araújo AP, Caramalho MF, Barzola P. Abdominal aorta orphometric study for endovascular treatment of aortic aneurysms: comparison between spiral CT and angiography. Rev Bras Cir Cardiovasc. 2002;17(4):323-30.

8. van Keulen JW, Moll FL, Tolenaar JL, Verhagen HJM, van Herwaarden JA. Validation of a new standardized method to measure proximal aneurysm neck angulation. J Vasc Surg. 2010;51(4):821-8.