What Is in the Salad? *Escherichia coli* and Antibiotic Resistance in Lettuce Irrigated with Various Water Sources in Ghana

Gerard Quarcoo 1,2,* , Lady A. Boamah Adomako 1, Arpine Abrahamyan 3, Samuel Armoo 1, Augustina A. Sylverken 2,4, Matthew Glover Addo 2, Sevak Alaverdyan 3, Nasreen S. Jessani 5,6, Anthony D. Harries 7,8, Hawa Ahmed 1, Regina A. Banu 1, Selorm Borbor 1, Mark O. Akrong 1, Nana A. Amonoo 1, Emmanuel M. O. Bekoe 1, Mike Y. Osei-Atweneboana 1 and Rony Zachariah 9

Abstract: Introduction: Safety of the environment in which vegetables are grown, marketed and consumed is paramount as most are eaten raw. Irrigation sources include open drains and streams, which are often contaminated with human and animal waste due to poor sanitation infrastructure. In irrigated vegetable farms using such sources in Ghana, we assessed *Escherichia coli* counts, antibiotic resistance patterns and resistant genes on irrigated lettuce. Methods: A cross-sectional study was conducted between January–May 2022, involving five major vegetable farms in Ghana. Results: *Escherichia coli* was found in all 25 composite lettuce samples analyzed. Counts expressed in CFU/g ranged from 186 to 3000, with the highest counts found in lettuce irrigated from open drains (1670) and tap water using hose pipes (3000). Among all bacterial isolates, resistance ranged between 49% and 70% for the Watch group of antibiotics, 59% for the Reserved group and 82% were multidrug-resistant. Of 125 isolates, 60 (48%) were extended-spectrum beta-lactamase-producing, of which five (8%) had the *blaTEM* -resistant gene. Conclusions: Lettuce was contaminated with *Escherichia coli* with high levels of antibiotic resistance. We call on the Ghana Ministry of Food and Agriculture, Food and Drugs Authority and other stakeholders to support farmers to implement measures for improving vegetable safety.

Keywords: antimicrobial resistance; resistant genes; *Escherichia coli*; lettuce; extended-spectrum beta-lactamase (ESBL); one health; SORT IT; operational research; Ghana; West Africa

1. Introduction

There is increased demand for the consumption of vegetables due to dietary changes and a growing understanding of their health benefits [1]. As well, vegetable production and marketing provide significant income and employment for most smallholder farmers and traders in Ghana [2]. It is thus necessary to ensure the safety of the environment in which vegetables are grown, marketed and consumed.
In Ghana, like in many African countries, growing urbanization, climatic changes and dwindling freshwater sources have made wastewater an indispensable source for irrigation of farms [3,4]. Wastewater usage can thus contribute to increased crop production and accelerate efforts toward achieving the United Nations Sustainable Development Goal (SDG 2) which is to reach a state of zero hunger [5].

Other common irrigation sources include open drains and streams which are often contaminated with human and animal waste due to poor sanitation infrastructure [6–9]. In Ghana, open ponds and wells are also used (Figure 1).

The use of contaminated water in vegetable farming has been associated with diarrheal and helminth infections in farmers, traders and consumers [10]. Such water may also contain “antibiotic residues” which exert selective pressure, leading to the emergence and spread of antibiotic-resistant bacteria in the community [11–14]. Resistant bacteria can then spread in humans and animals via direct contact with contaminated water or through the consumption of contaminated vegetables—so-called “farm-to-fork” transmission [15,16].

The World Health Organization’s (WHO) global action plan to tackle antimicrobial resistance (AMR) emphasizes the “One Health” approach. This approach includes humans, animals, the environment, the food chain, and the interconnections between them as one entity [17]. Monitoring antibiotic resistance in food products is thus an important component of ‘One Health’. In Ghana, the focus of AMR surveillance has largely been on

![Figure 1. Lettuce farm (A), open drains used for irrigation (B,C), and water pond at a farm (D).](image-url)
humans and animals with relatively little contribution from the environment such as water sources used for vegetable farming [18–20].

As a food safety and public health measure, the Council for Scientific and Industrial Research-Water Research Institute (CSIR-WRI) of Ghana is conducting surveillance of antibiotic resistance in bacteria found in vegetables irrigated with different water sources. Lettuce (*Lactuca sativa*) is suitable for such surveillance as it grows close to the ground, has a large surface area, is mostly eaten raw and is a widely patronized leafy green vegetable. Prevailing soil and climatic conditions are conducive for its year-round growth; it is known to be cropped up to about 9 to 10 times a year. Furthermore, farmers obtain relatively higher yearly margins from lettuce production compared to other traders, making up to about 145% returns on investment compared to other leafy vegetables [21]. Farmers will therefore be more inclined to lettuce farming. Thus, assessing the presence of *Escherichia coli* (*E. coli*) and its antibiotic resistance pattern in lettuce farms irrigated with different water sources would be most informative. This bacterium is famed for causing diarrheal outbreaks and the possible spread of antibiotic resistance, as resistant strains have been isolated from wastewater in Ghana [19,20]. It is also designated as a priority bacterium for global AMR surveillance by the WHO [22].

A PubMed search revealed a few studies on leafy vegetables from limited locations in Ghana, showing varying levels of bacterial contamination and antibiotic resistance [23–26]. However, only one study included an assessment of resistant genes [27]. What is new in this study is that we included sites from the North and South of Ghana, tested a wider panel of antibiotics for resistance, and included molecular methods for detecting resistant genes.

2. Materials and Methods

2.1. Study Design

This was a cross-sectional study using laboratory data on lettuce samples.

2.2. General Setting

Ghana is located in West Africa and has a population of 30.8 million in the latest census [28], with a climate characterized by rainy and dry seasons. Accra, the capital city, has a population of about 5.4 million with over 90% of its population living in urban areas [28]. Tamale, in the Northern region, is the third largest city in Ghana with a population of about 374,744 [28]. It is the fastest-growing city in Ghana, with concomitant pressure on sanitation and water resources [29].

Vegetable farming is extensive in peri-urban areas in Ghana with estimated vegetable production sites of 162 hectares (ha) and 42 ha in Greater Accra and Tamale, respectively [2,30]. The absence of a quality control system on farm produce poses a contamination risk to products sent to the market.

2.3. Specific Setting and Study Sites

The study was conducted in Accra, Greater Accra region (Figure 2) and Tamale (Northern region) (Figure 3). The vegetable farming sites in the study included three urban sites in Accra and two in Tamale (names withheld to prevent potential social harm). These major sites often use open drains, stream water, swamps, ponds and tap water. Vegetables cultivated include lettuce, cabbage and spring onions.

The methods for irrigating lettuce are variable, depending on the available water source at the time. Most commonly, irrigation is carried out using watering cans, hoses and sprinklers.

Once matured, farm vegetables are collected by the farmers into sacks and sold to traders, who in turn sell them on the open market or directly to local restaurants.
2.3. Specific Setting and Study Sites

The study was conducted in Accra, Greater Accra region (Figure 2) and Tamale (Northern region) (Figure 3). The vegetable farming sites in the study included three urban sites in Accra and two in Tamale (names withheld to prevent potential social harm). These major sites often use open drains, stream water, swamps, ponds and tap water. Vegetables cultivated include lettuce, cabbage and spring onions.

The methods for irrigating lettuce are variable, depending on the available water source at the time. Most commonly, irrigation is carried out using watering cans, hoses and sprinklers.

Once matured, farm vegetables are collected by the farmers into sacks and sold to traders, who in turn sell them on the open market or directly to local restaurants.

Figure 2. Lettuce sampling sites in Greater Accra, Ghana.

2.4. Sample Collection and Bacterial Identification

Lettuce samples were collected once a month from each of the study sites. Samples were collected just before they were harvested for sale [31]. Three matured lettuce samples were randomly collected at each farm site into sterile whirl pack bags and transported to the laboratory in a cold box. At least three lettuce samples per farm site were mixed together as a composite and a total of 25 composite lettuce samples were constituted for analysis.

In the laboratory, 50 g of lettuce from each study site was weighed into a sterile bag, and 450 mL phosphate-buffered saline solution was then added and shaken vigorously. The surface of each lettuce was gently massaged through the bags before being processed and analyzed for \(E. coli \).

Following a ten-fold serial dilution, the supernatant from all samples was analyzed using membrane filtration with Tryptone Bile X-glucuronide medium (TBX) (Oxoid, United Kingdom) for \(E. coli \). Inoculated plates were incubated at 37 °C for 24 h [32]. \(E. coli \) was counted and reported as colony-forming units/gram (CFU/g). All the \(E. coli \) isolates were confirmed using Matrix-Assisted Laser Desorption/Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) (Bruker MALDI Biotyper, Billerica, MA, USA).
Figure 3. Lettuce sampling sites in Tamale, Northern Region, Ghana.

2.4. Sample Collection and Bacterial Identification

Lettuce samples were collected once a month from each of the study sites. Samples were collected just before they were harvested for sale [31]. Three matured lettuce samples were randomly collected at each farm site into sterile whirl pack bags and transported to the laboratory in a cold box. At least three lettuce samples per farm site were mixed together as a composite and a total of 25 composite lettuce samples were constituted for analysis.

In the laboratory, 50 g of lettuce from each study site was weighed into a sterile bag, and 450 mL phosphate-buffered saline solution was then added and shaken vigorously. The surface of each lettuce was gently massaged through the bags before being processed and analyzed for *E. coli*. Following a ten-fold serial dilution, the supernatant from all samples was analyzed using membrane filtration with Tryptone Bile X-glucuronide medium (TBX) (Oxoid, United Kingdom) for *E. coli*. Inoculated plates were incubated at 37 °C for 24 h [32]. *E. coli* was counted and reported as colony-forming units/gram (CFU/g). All the *E. coli* isolates were confirmed using Matrix-Assisted Laser Desorption/Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) (Bruker MALDI Biotyper, Billerica, MA, USA).

2.5. Antibiotic Susceptibility Testing

Five presumptive colonies were randomly selected from each plate and sub-cultured on nutrient agar for antibiotic susceptibility testing using the Kirby Bauer Disc Diffusion method according to the Clinical Laboratory Standards Institute guidelines (CLSI) [33]. Zones of inhibition were measured in millimeters and recorded for the selected antibiotics. Antibiotics tested included those in the CLSI guidelines and those recommended for treatment of infections caused by *E. coli*. These included Ciprofloxacin 5 µg (Fluoroquinolones); Gentamicin 10 µg (Aminoglycosides); Cefuroxime 30 µg (Second-generation cephalosporins); Trimethoprim–sulfamethoxazole 1.25/23.75 µg (Sulfonamide–trimethoprim combinations); Amoxicillin/clavulanate 20/10 µg (β-lactam combination); Aztreonam 15 µg (Monobactam); Ceftiraxone 30µg (third-generation cephalosporins), Ertapenem 10µg (Carbapenem) and Chloramphenicol 30 µg (Amphenicols) (Becton Dickenson™).

For phenotypic detection of Extended-Spectrum Beta-Lactamase (ESBL)-producing *E. coli* (ESBL-Ec), the five colonies from each plate were also cultured on TBX supplemented with 4 µg/mL ceftaxime (TBX/CTX) [34]. Presumptive ESBL-Ec which grew on TBX/CTX plates were confirmed using the double-disc diffusion method; Ceftoxime 30 µg/Clavulanic Acid 10 µg, Cefotaxime 30 µg, Ceftazidime 30 µg, and Ceftazidime 30 µg/Clavulanic Acid 10 µg (Becton Dickenson™) and these were done in accordance with CLSI guidelines [33]. Cultured plates were incubated at 37 °C for 18–24 h [32]. Zones of inhibition were measured in millimeters and recorded. Positive ESBL-Ec isolates with ≥ 5 mm increase in the inhibition zone for Ceftazidime (30 µg) ± clavulanic acid (10 µg)
and Cefotaxime (30 μg) ± clavulanic acid (10 μg) were subsequently plated on Nutrient Agar for the detection of ESBL genes.

2.6. Identification of Resistant Genes by Molecular Methods

DNA extraction was carried out on the presumptive ESBL isolates using Quick Zymo DNA extraction kits in accordance with the manufacturer’s instructions [35].

ESBL resistance genes (\(\text{bla}_{\text{TEM}} \), \(\text{bla}_{\text{SHV}} \), and \(\text{bla}_{\text{CTX-M}} \)) were then detected using a modified polymerase chain reaction (PCR) assay from previous studies [36,37] with the Eppendorf Master Cycler (Hamberg, Germany). Each PCR reaction mix had a total volume of 12 μL, containing 5 μL of master mix (Sybr Green), 4.6 μL of nuclease-free water, 0.4 μL of optimized specific primer and 2 μL of DNA template. The primer sequence for the detection of ESBL genes in \(\text{Escherichia coli} \) isolates was obtained as per previous studies [36,37]. The cycling conditions were: 95 °C for 3 min, 45 cycles of 95 °C for 1 min, 56.1 °C (\(\text{bla}_{\text{TEM}} \))/70 °C (\(\text{bla}_{\text{SHV}} \), and \(\text{bla}_{\text{CTX-M}} \)) for 1 min, 72 °C for 1 min and final extension at 72 °C for 10 min.

Aliquots of the PCR products were loaded on a 2% agarose gel and separated by electrophoresis. The DNA bands were then visualized by ethidium bromide staining using a UV illuminator (Benchtop Variable Transilluminator, Cambridge, UK) for the gel documentation and DNA fragment characterization.

2.7. Quality Control Procedures

Negative controls were included using sterile distilled water for all analyses. The reference organism \(\text{E. coli} \) ATCC 25922, was used as a positive control following CLSI guidelines. Phocine herpes virus (PhHV) was used as internal process control for DNA extraction [38]. PCR products with sizes 516, 560 and 383 base pairs were deemed positive for \(-\text{TEM}, -\text{CTX-M} \) and \(-\text{SHV} \), respectively [36,37] when compared with a 50 base pair molecular gene marker.

2.8. Study Inclusion and Period

Mature lettuce samples were randomly collected and analyzed between January and May 2022.

2.9. Data Collection and Analysis

Data variables included: study region (North/South), study site, sample ID; sample collection date; water source at the time of sample collection; bacterial counts; antibiotic types; antibiotic sensitivity; and resistant genes.

Information on sample collection points, sample sources, bacterial loads and resistant profiles were entered into a laboratory register and then transferred to a Microsoft (MS) Excel database kept in the laboratory computer. The principal investigator and a trained data assistant entered the data. To ensure data validation, all data in the MS Excel file were cross-checked with the raw data from the laboratory register.

Bacterial counts were expressed using medians and ranges. The Kruskal–Wallis test was used to assess differences between bacterial counts per water source used for irrigation. Resistance profiles were reported using descriptive statistics. Resistance to antibiotics was categorized using the WHO Access, Watch, Reserve (AWaRe) classification [39]. All data analysis was performed using the Statistical Package for Social Science (SPSS) software (IBM version 21.0: IBM Corp, Armonk, NY, USA).

3. Results

3.1. \(\text{E. coli} \) Counts in Lettuce Irrigated from Different Water Sources

\(\text{E. coli} \) was found in all lettuce samples, irrespective of the water source used for irrigation. Table 1 shows counts of \(\text{E. coli} \), ranging between 186 and 3000 CFU/g with the highest counts found in lettuce irrigated with water from open drains (1670 CFU/g) and lettuce sprayed with tap water using hosepipes (3000 CFU/g). Absolute counts varied
between 37 and 600,000 CFU/g. There were no statistically significant differences in bacterial counts between lettuce samples irrigated from different irrigating water sources (p-value = 0.25).

Table 1. Bacterial counts (CFU/g) of *Escherichia coli* in lettuce collected from vegetable farms in Ghana (January–May 2022).

Sample Sites	Irrigation Water Source	*Escherichia coli* Counts	
		Median (CFU/g)	Range
Site 1, Site 2	Open drain	1670	56–600,000
Site 3	Multiple sources (drain, pond, well)	280	37–144,000
Site 4	Tap water flowing to open ponds	186	72–1180
Site 5	Tap water using hose pipes	3000	220–14,880
Total		5136	385–760,060

CFU/g—Colony-Forming Unit per gram.

3.2. Antibiotic Resistance Patterns and Resistant Genes

Table 2 shows antibiotic resistance patterns of *E. coli* in lettuce in relation to the water sources used for irrigation. Resistance levels were between 49% and 70% for the Watch group of antibiotics and 59% for aztreonam (Reserve antibiotic group). The level of multidrug resistance involving at least one antibiotic from ≥3 antibiotic classes was 82%. Of the 125 isolates, 60 (48%) tested positive for ESBL, of which 5 (8%) had the *bla*_{TEM}-resistant gene, and all were in lettuce irrigated with water from open drains.

Table 2. Antibiotic resistance of *Escherichia coli* in lettuce collected from vegetable farms in Ghana, (January–May 2022).

AWaRe Categories	Site 1, 2	Multiple Open Sources (Drain, Pond, Well)	Tap Water Flowing to Open Ponds	Tap Water Using Hose Pipes	Total
	n (%)	n (%)	n (%)	n (%)	n (%)
Access antibiotics	50	25	25	25	125
Gentamicin 10 µg	13 (26)	7 (28)	1 (4)	6 (24)	27 (22)
Chloramphenicol 30 µg	31 (62)	23 (92)	12 (48)	17 (68)	83 (66)
Trimethoprim–sulfamethoxazole 1.25/23.75 µg	46 (92)	24 (96)	9 (36)	18 (72)	95 (76)
Amoxicillin/Clavulanate 20/10 µg	44 (88)	22 (88)	21 (84)	22 (88)	96 (77)
Watch antibiotics					
Ceftriaxone 30 µg	35 (70)	19 (76)	13 (52)	19 (76)	86 (69)
Ciprofloxacin 5 µg	20 (40)	19 (76)	6 (24)	16 (54)	61 (49)
Cefuroxime 30 µg	34 (68)	17 (68)	14 (56)	20 (80)	85 (68)
Ertapenem 10µg	27 (54)	25 (100)	17 (68)	18 (72)	87 (70)
Reserve antibiotics					
Aztreonam 15 µg	28 (56)	14 (56)	18 (72)	14 (56)	74 (59)
Multidrug resistance (≥3 antibiotic classes)	38 (76)	25 (100)	18 (72)	21 (84)	102 (82)

4. Discussion

The findings of this study are important since they highlight the risk of acquiring and transmitting diarrheal infection within the community with a potential risk of outbreaks. Irrespective of the source of water used for irrigation, this study shows high *E. coli* counts in lettuce which could result from the irrigating water source and the surrounding soils [31,40]. This poses a risk for human consumption. The majority of these bacteria exhibited multidrug resistance to antibiotics, including those in the Watch and Reserve
categories. This agrees with the high E. coli counts reported in a similar study carried out on lettuce in Accra, although antibiotic resistance patterns were not assessed at that time [31]. Similarly, multidrug-resistant E. coli in lettuce was reported in two other studies from Kumasi and Tamale [24,25]. Moreover, the presence of ESBL-Ec isolates on the lettuce vegetables concurs with similar studies conducted in South Africa [41], Germany [42], the Netherlands [43] and Manilla [44]. This supports the assertion that leafy green vegetables such as lettuce serve as reservoir for multidrug-resistant E. coli [41]. Although, the proportion of the blaTEM gene was lower, its detection in the E. coli isolated from lettuce is a public health concern. This gives an indication that the gene is spreading into other areas of the food value chain, as it has been detected in raw meat sold in Ghana [36].

Conversely, the high proportion of multidrug-resistant E. coli implies that those who contract diarrheal disease may not respond to routine antibiotic treatment, and intestinal bacterial flora may acquire antibiotic resistance through plasmid-mediated transmission. Such resistance may spread further within the population with its public health implications [8,9,45,46]. The findings thus serve as a call for increased monitoring and surveillance of antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) in vegetables as well as irrigation water.

There were several strengths to this study. First, it involved multiple sites from the North and the South of Ghana. In addition, microbiological analysis was conducted in the laboratory of the Water Research Institute where there is considerable expertise in laboratory control measures, data entry and validation systems. Finally, STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for ensuring the quality of reporting of observational studies in epidemiology were adhered to [47].

The main study limitation was that we could not apply comparative analysis of seasonal patterns due to our inability to capture data throughout the entire rainy and dry seasons. Furthermore, we did not test for E. coli in the irrigation water sources. Thus, we were unable to identify the exact source of contamination of lettuce, which might have been from water, soil and/or manure. Both of these aspects merit further research.

This study has a number of important policy and practice implications. We describe these as “Inform, Educate, Protect, and Act”. Farmer and consumer communities should be informed about the presence of resistant bacteria in lettuce and the potential risks associated with handling or consuming such produce without proper washing and disinfection. The community at large should also be educated on the importance of properly washing vegetables with clean water and further disinfection with vinegar or mild chlorinated water whenever possible to destroy bacteria [48].

In terms of protection, farmers should avoid direct contact with potentially contaminated water, soil and lettuce through the use of protective wear (e.g., gloves and gumboots). Where possible, the Ministry of Agriculture should provide these items in the interest of public health safety, and where this is not feasible, farmers should be empowered to invest in these simple measures for personal safety.

In terms of Act, there are three areas for potential action. The first is to encourage farmers to improve or adhere to good agricultural practices; for instance, they should consider the feasibility of using the drip or furrow methods for irrigation which reduces or eliminates contact of lettuce with contaminated, soil or manure [49].

The second is for regulatory bodies such as the Public Utility and Regulatory Commission (PURC) and the Food and Drugs Authority (FDA) to conduct an urgent assessment of the quality of the public water supply system since the highest bacterial counts were found in lettuce irrigated with tap water using hosepipes. While it is understandable that lettuce watered from open drains would have high loads of E. coli, it is surprising that high bacterial counts were found in lettuce irrigated with tap water from hosepipes. We do not know whether this is a reflection of contamination of the public water supply system, whether the water spray from the hosepipe resulted in contaminated soil being scattered on lettuce through the splash effect, or whether it is due to the direct application of manures [31,45,50].
Finally, while the standard limit of *E. coli* is <20 CFU/g for fresh vegetables in other jurisdictions such as England, Canada and New Zealand [2,51], there exists no such national microbiological reference for monitoring the safety of fresh leafy vegetables in Ghana, except for ready-to-eat foods which include salads [52]. Having such standards would help to better monitor and implement product safety measures for leafy vegetables to safeguard the health of consumers. This is an area to be considered by the Ghana Standards Authority (GSA), the Environmental Protection Agency (EPA) and the FDA.

5. Conclusions

This study shows that lettuce irrigated with different water sources from both the North and South of Ghana is contaminated with *E. coli*. Bacteria isolates were predominantly multidrug-resistant and the *bla*TEM*-resistant gene was also detected. These findings highlight the need to increase AMR surveillance in this area and serves as a wake-up call to the Ministry of Food and Agriculture, the FDA and other relevant stakeholders to support farmers to produce safe vegetables in improved and hygienic environmental conditions.

Author Contributions: Conceptualization: G.Q., S.A. (Samuel Armoo), A.A.S., M.G.A., L.A.B.A., A.A. and R.Z.; Methodology: G.Q., S.A. (Samuel Armoo), A.A.S., N.A.A., L.A.B.A., M.O.A., S.B. and R.A.B.; Software: G.Q., L.A.B.A., H.A. and S.A. (Sevak Alaverdyan); Validation: S.A. (Samuel Armoo), S.A. (Sevak Alaverdyan) and L.A.B.A.; Formal analysis: G.Q., L.A.B.A., H.A. and S.A. (Sevak Alaverdyan); Investigation: G.Q., S.B., N.A.A., E.M.O.B. and H.A.; Resources: S.A. (Samuel Armoo), M.Y.O.-A., R.Z., M.O.A. and R.A.B.; Data curation: G.Q., L.A.B.A. and H.A.; Writing—original draft preparation: G.Q., R.Z., A.A., L.A.B.A., N.S.J. and A.D.H.; Writing—review and editing: all authors; Visualization: G.Q.; Supervision: S.A. (Samuel Armoo), L.A.B.A., M.O.A. and R.A.B.; Project administration: G.Q., R.A.B. and S.A. (Samuel Armoo); Funding Acquisition: M.Y.O.-A., S.A. (Samuel Armoo) and R.Z. All authors have read and agreed to the published version of the manuscript.

Funding: There was no specific funding for the operational research in this study. However, the UK Department of Health & Social Care has contributed designated funding for this SORT IT-AMR initiative, which is branded as the NIHR-TDR partnership. TDR is able to conduct its work thanks to the commitment and support from a variety of funders. A full list of TDR donors is available at: https://tdr.who.int/about-us/our-donors (accessed on 10 August 2022).

Institutional Review Board Statement: Permission for conducting the study was sought from the Director of the CSIR-Water Research Institute and the authorities at the study sites. Local ethics approval was received from the Committee on Human Research, Publication and Ethics, Kumasi, Ghana (CHRPE/AP/118/22). International ethics approval was obtained from the Union Ethics Advisory Group of the Center for Operational Research at the International Union against Tuberculosis and Lung Disease, Paris, France (EAG 44/21). The issue of informed consent does not apply.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available as it is a part of an on-going study.

Acknowledgments: This research was conducted through the Structured Operational Research and Training Initiative (SORT IT), a global partnership coordinated by TDR, the Special Programme for Research and Training in Tropical Diseases at the World Health Organization. The specific SORT IT program that led to this publication included a partnership of TDR with the WHO Country office in Ghana and was implemented along with The Tuberculosis Research and Prevention Center Non-Governmental Organization, Armenia; The International Union Against Tuberculosis and Lung Diseases, Paris and South East Asia offices; Medecins Sans Frontieres—Luxembourg, Luxembourg; ICMR—National Institute of Epidemiology, Chennai, India; Institute of Tropical Medicine, Antwerp, Belgium; the University of Washington, USA; Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER); CSIR—Water Research Institute, Accra, Ghana; Kintampo Health Research Center, Accra, Ghana; Environmental Protection Agency, Accra Ghana, Medwise solutions consultancy, Nairobi, Kenya; Institute of Statistics, Social and Economics Research, Accra, Ghana.
Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Varadaraju, R. Health Benefits of Vegetables. Int. J. Chem. Stud. 2019, 7, 82–87.
2. Drechsel, P.; Keraita, B. Irrigated Urban Vegetable Production in Ghana: Characteristics, Benefits and Risk Mitigation; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2014, ISBN 9789290907985.
3. Khalid, S.; Shahid, M.; Natashia; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J. Environ. Res. Public Health 2018, 15, 895. [CrossRef]
4. Poulsen, M.N.; McNab, P.R.; Clayton, M.L.; Neff, R.A. A Systematic Review of Urban Agriculture and Food Security Impacts in Low-Income Countries. Food Policy 2015, 55, 131–146. [CrossRef]
5. United Nations. Agenda for Sustainable Development; United Nations: San Francisco, CA, USA, 2016, ISBN 9781138029415.
6. Keraita, B.; Abaidoo, R.; Beernaerts, I.; Koo-Oshima, S.; Amoah, P.; Drechsel, P.; Konradsen, F. Safe Re-Use Practices in Wastewater-Irrigated Urban Vegetable Farming in Ghana. J. Agric. Food Syst. Community Dev. 2012, 2, 147–158. [CrossRef]
7. Antwi-agyei, P.; Ensink, J. Wastewater Use for Vegetable Farming and Post-Harvest Health Risk Management in Ghana—A Policy Brief; London School of Hygiene & Tropical Medicine: London, UK, 2016; pp. 1–11.
8. Bougnom, B.P.; Thiele-Bruhn, S.; Ricci, V.; Zongo, C.; Piddock, L.J.V. Raw Wastewater Irrigation for Urban Agriculture in Three African Cities Increases the Abundance of Transferable Antibiotic Resistance Genes in Soil, Including Those Encoding Extended Spectrum β-Lactamases (ESBLs). Sci. Total Environ. 2020, 698, 134201. [CrossRef] [PubMed]
9. Bougnom, B.P.; Zongo, C.; Mcnally, A.; Ricci, V.; Etoa, F.X. Wastewater Used for Urban Agriculture in West Africa as a Reservoir for Antibacterial Resistance Dissemination. Environ. Res. 2019, 168, 14–24. [CrossRef]
10. WHO; UNEP. Guidelines for the Safe Use Wastewater, Excreta and Greywater. Policy and Regulatory Aspects Vol I; World Health Organization: Geneva, Switzerland, 2006, ISBN 92 4 154682 4.
11. Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [CrossRef]
12. Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial Use in Aquaculture Re-Examined: Its Relevance to Antimicrobial Resistance and to Animal and Human Health. Environ. Microbiol. 2013, 15, 1917–1942. [CrossRef]
13. Bouki, C.; Venieri, D.; Dinadopoulos, E. Detection and Fate of Antibiotic Resistant Bacteria in Wastewater Treatment Plants: A Review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [CrossRef]
14. Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sánchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of Antibiotics and Antibiotic Resistance Genes in Hospital and Urban Wastewaters and Their Impact on the Receiving River. Water Res. 2015, 69, 234–242. [CrossRef]
15. Da Costa, P.M.; Loureiro, L.; Matos, A.F. Transfer of Multidrug-Resistant Bacteria between Intermingled Ecological Niches: The Interface between Humans, Animals and the Environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [CrossRef] [PubMed]
16. Lundborg, C.; Tamhankar, A. Antimicrobial Residues in the Environment of South East Asia. BMJ 2017, 358, j2440. [CrossRef]
17. World Health Organization. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; pp. 1–28, ISBN 978 92 4 150976 3.
18. García-Vello, P.; González-Zorn, B.; Saba, C.K.S. Antibiotic Resistance Patterns in Human, Animal, Food and Environmental Isolates in a Ghana: A Review. Pan Afr. Med. J. 2015, 35, 1–15. [CrossRef] [PubMed]
19. Banu, R.A.; Alvarez, J.M.; Reid, A.J.; Enbiale, W.; Labi, A.-K.; Ansa, E.D.O.; Annan, E.A.; Akrong, M.O.; Borbor, S.; Adomako, L.A.B.; et al. Extended Spectrum Beta-Lactamase Escherichia coli in River Waters Collected from Two Cities in Ghana, 2018–2020. Trop. Med. Infect. Dis. 2021, 6, 105. [CrossRef] [PubMed]
20. Adomako, L.A.B.; Yirenaya-Tawiah, D.; Nkpezeah, D.; Abrahamya, A.; Labi, A.K.; Grigoryan, R.; Ahmed, H.; Owusu-Danquah, J.; Annang, T.Y.; Banu, R.A.; et al. Reduced Bacterial Counts from a Sewage Treatment Plant but Increased Counts and Antibiotic Resistance in the Recipient Stream in Accra, Ghana—A Cross-Sectional Study. Trop. Med. Infect. Dis. 2021, 6, 79. [CrossRef]
21. Tabit Shaban, N.; Tzetkovova, N.; Cherkez, R.; Parvanova, P. Evaluation of Response of Lettuce (Lactuca sativa L.) to Temperature and Light Stress. Acta Agrobot. 2016, 69, 166. [CrossRef]
22. WHO. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization, Licence, C., Eds.; World Health Organization: Geneva, Switzerland, 2017, ISBN 9789240026438.
23. Amoah, P.; Drechsel, P.; Abaidoo, R.C.; Henseler, M. Irrigated Urban Vegetable Production in Ghana: Microbiological Contamination in Farms and Markets and Associated Consumer Risk Groups. J. Water Health 2007, 5, 455–466. [CrossRef]
24. Adzithey, F. Antibiotic Resistance of Escherichia coli and Salmonella enterica Isolated from Cabbage and Lettuce Samples in Tamale Metropolis of Ghana. Int. J. Food Contam. 2018, 5, 7. [CrossRef]
25. Kwaku, G.M. Resistance of Bacteria Isolates from Cabbage (Brassica oleracea), Carrots (Daucus carota) and Lettuce (Lactuca sativa) in the Kumasi Metropolis of Ghana. *Int. J. Nutr. Food Sci.* 2016, 5, 297. [CrossRef]

26. Karikari, A.B.; Kpordze, S.W.; Yamik, D.Y.; Saba, C.K.S. Ready-to-Eat Food as Sources of Extended-Spectrum β-Lactamase-Producing Salmonella and E. coli in Tamale, Ghana. *Front. Trop. Dis.* 2022, 3, 1–7. [CrossRef]

27. Quansah, J.; Chen, H.-J. Antibiotic Resistance Profile of Salmonella enterica Isolated from Exotic and Indigenous Leafy Green Vegetables in Accra, Ghana. *J. Food Prot.* 2021, 84, 1040–1046. [CrossRef]

28. Ghana Statistical Service. *Ghana 2021 Population and Housing Census General Report*; Ghana Statistical Service: Accra, Ghana, 2021; Volume 3B.

29. UN-Habitat. *Ghana: Tamale City Profile*; UN-Habitat: Nairobi, Kenya, 2010, ISBN 9789211321821.

30. Amoah, P. Wastewater Irrigated Vegetable Production: Contamination Pathway for Health Risk Reduction in Accra, Kumasi and Tamale–Ghana. Ph.D. Thesis, Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2008.

31. Akrong, M.; Ampofo, J.; Banu, R.; Danso, S. Assessment of Bacteria and Heavy Metals Contamination in Lettuce at Farm Gate and Market in the Accra Metropolis. *Br. Microbiol. Res. J.* 2015, 7, 226–234. [CrossRef]

32. Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L. *Standard Methods for the Examination of Water and Wastewater*, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federation, Eds.; American Water Works Association (AWWA) and Water Environment Federation: Washington, DC, USA, 2012.

33. CLSI. *Performance Standards for Antimicrobial Susceptibility Testing*; CLSI: Wayne, PA, USA, 2020; Volume 60.

34. WHO. WHO Integrated Global Surveillance on ESBL-Producing E. coli Using a “One Health” Approach. Available online: https://www.who.int/publications/i/item/who-integrated-global-surveillance-on-esbl-producing-e.-coli-using-a-one-health-approach (accessed on 28 July 2022).

35. Zymo Research Quick-DNA Kits. Available online: https://www.zymoresearch.com/collections/quick-dna-kits (accessed on 5 November 2021).

36. Dsani, E.; Afari, E.A.; Danso-Appiah, A.; Kenu, E.; Kaburi, B.B.; Egyir, B. Antimicrobial Resistance and Molecular Detection of Extended Spectrum β-Lactamase Producing Escherichia coli Isolates from Raw Meat in Greater Accra Region, Ghana. *BMCMicrobiol.* 2020, 20, 253. [CrossRef] [PubMed]

37. Lyimo, B.; Buza, J.; Subbiah, M.; Smith, W.; Call, D.R. Comparison of Antibiotic Resistant Escherichia coli Obtained from Drinking Water Sources in Northern Tanzania: A Cross-Sectional Study. *BMCMicrobiol.* 2016, 16, 254. [CrossRef]

38. Basuni, M.; Muhi, J.; Othman, N.; Verweij, J.J.; Ahmad, M.; Miswan, N.; Rahumatullah, A.; Aziz, F.A.; Zainudin, N.S.; Noordin, R. A Pentaplex Real-Time Polymerase Chain Reaction Assay for Detection of Four Species of Soil-Transmitted Helminths. *Am. J. Trop. Med. Hyg.* 2011, 84, 338–343. [CrossRef] [PubMed]

39. WHO. *WHO AWaRe Classification of Antibiotics*; WHO: Geneva, Switzerland, 2021.

40. Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial Contamination, an Increasing Threat to the Consumption of Fresh Fruits and Vegetables in Today’s World. *Int. J. Microbiol.* 2020, 2020, 3029295. [CrossRef] [PubMed]

41. Njage, P.M.K.; Buys, E.M. Quantitative Assessment of Human Exposure to Extended Spectrum and AmpC β-Lactamases Bearing E. coli in Lettuce Attributable to Irrigation Water and Subsequent Horizontal Gene Transfer. *Int. J. Food Microbiol.* 2017, 240, 141–151. [CrossRef]

42. Freitag, C.; Michael, G.B.; Li, J.; Kadlec, K.; Wang, Y.; Hassel, M.; Schwarz, S. Occurrence and Characterisation of ESBL-Encoding Plasmids among Escherichia coli Isolates from Fresh Vegetables. *Vet. Microbiol.* 2018, 219, 63–69. [CrossRef] [PubMed]

43. Blaak, H.; van Hoek, A.H.A.M.; Veenman, C.; Docters van Leeuwen, A.E.; Lynch, G.; van Overbeek, W.M.; de Roda Husman, A.M. Extended Spectrum β-Lactamase- and Constitutively AmpC-Producing Enterobacteriaceae on Fresh Produce and in the Agricultural Environment. *Int. J. Food Microbiol.* 2014, 168–169, 8–16. [CrossRef] [PubMed]

44. Vital, P.G.; Zara, E.S.; Paraoan, C.E.M.; Dimasupil, M.A.Z.; Abello, J.J.M.; Santos, I.T.G.; Rivera, W.L. Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation waters in Selected Urban Farms in Metro Manila, Philippines. *Water* 2018, 10, 548. [CrossRef]

45. Brunn, A.; Kadri-Alabi, Z.; Moodley, A.; Guardabassi, L.; Taylor, P.; Mateus, A.; Waage, J. Characteristics and Global Occurrence of Human Pathogens Harboring Antimicrobial Resistance in Food Crops: A Scoping Review. *Front. Sustain. Food Syst.* 2022, 6, 1–19. [CrossRef]

46. Njage, P.M.K.; Buys, E.M. Pathogenic and Commensal Escherichia coli from Irrigation Water Show Potential in Transmission of Extended Spectrum and AmpC β-Lactamases Determinnants to Isolates from Lettuce. *Microb. Biotechnol.* 2015, 8, 462–473. [CrossRef] [PubMed]

47. Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J. *The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies*; WHO: Geneva, Switzerland, 2007; pp. 867–872.

48. Amoah, P.; Drechsel, P.; Abaidoo, R.C.; Klutse, A. Effectiveness of Common and Improved Sanitary Washing Methods in Selected Cities of West Africa for the Reduction of Coliform Bacteria and Helminth Eggs on Vegetables. *Trop. Med. Int. Health* 2007, 12, 40–50. [CrossRef] [PubMed]

49. Ebo Yahans Amuah, E.; Amanan-Ennin, P.; Antwi, K. Irrigation Water Quality in Ghana and Associated Implications on Vegetables and Public Health. A Systematic Review. *J. Hydrol.* 2022, 604, 127211. [CrossRef]
50. Adegoke, A.A.; Amoah, I.D.; Stenström, T.A.; Verbyla, M.E.; Mihelcic, J.R. Epidemiological Evidence and Health Risks Associated with Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. *Front. Public Health* **2018**, *6*, 337. [CrossRef]

51. Gilbert, R.; Louvois, J.; Donovan, T.; Little, C.; Nye, K.; Ribeiro, C.; Richards, J.; Roberts, D.; Bolton, F. Guidelines for the Microbiological Quality of Some Ready-to-Eat Foods Sampled at the Point of Sale. *Commun. Dis. Public Health* **2000**, *3*, 163–167.

52. Antwi-Agyei, P.; Cairncross, S.; Peasey, A.; Price, V.; Bruce, J.; Baker, K.; Moe, C.; Ampofo, J.; Armah, G.; Ensink, J. A Farm to Fork Risk Assessment for the Use of Wastewater in Agriculture in Accra, Ghana. *PLoS ONE* **2015**, *10*, e0142346. [CrossRef]