Diversity and Utilisation of Floral Non Timber Forest Products by the Communities in Rural Meghalaya, North-East India

Marvellous B. Lynser1,* and Brajesh Kumar Tiwari2

1Department of Environmental Studies, Shillong College, Shillong, Meghalaya 793003, India
2Department of Environmental Studies, North-Eastern Hill University, Shillong, Meghalaya 793022, India

Abstract

The present study analyzes the diversity and usage of NTFPs and evaluates their importance in the day to day life of the people of rural Meghalaya. People use 172 NTFPs belonging to 139 plant species mainly for food, medicine and fuelwood and to a lesser extent for construction, handicrafts and ornamental purpose. These 139 plants belonged to 117 genera and 70 families with Rosaceae, Poaceae and Fagaceae families as the dominant NTFP yielding families. Fruits from shrubs and trees are most commonly harvested by people. Collection and availability of NTFPs for use as food are more during the summer season, which is also the period with least availability of job. NTFPs for subsistence use are greater in number than those having commercial value. The most commonly harvested plant parts are fruits and leaves. Roots, rhizomes and whole plants are extracted in lesser quantity which is a positive approach from sustainability point of view. NTFPs and other forest products also form a vital part of the rural household's income generation activities.

Key Words: NTFP diversity, food security, seasonality, sustainability, rural income

Introduction

Rural communities across the developing world extract a diverse range of non-timber forest products (NTFPs) everyday for used as food, fuel, storage and fodder, medicine, cottage and wrapping materials, raw material for handicrafts and construction, ornaments, etc. De Beer and McDermott (1989) defined NTFP as "all biological materials other than timber, which are extracted from forests for human use". They may be of plant or animal origin. The role of NTFPs in ensuring food security of rural people is immense in that they maintain the nutritional balance in peoples' diets and provides supplementary foods during the food deficit periods (Shackleton and Shackleton 2004; Volker and Waibel 2010). Sale or trade of NTFPs has also been identified as one of key income sources for rural households (Campbell Luckert 2002). Besides contribution in rural development, harvesting of NTFPs is considered to contribute substantially towards conservation of forests (Peters et al. 1989; Evans 1993; Arnold and Ruiz Perez 1999).

In India too, NTFPs are extensively extracted from forests, and their role in rural and forest economies is enormous (Shahabuddin and Prasad 2004). About 400 million people in India are dependent on NTFPs in one way or the other, and of these, about 50 millions living in forests fringes harvest substantial quantities of NTFPs for their subsistence and low-volume trade (Tewari 1992).
The people of Meghalaya have a long tradition of using and relying on forests, not only in terms of arable land for shifting cultivation but also for gathering forest products from the nearby forests. Extraction of valuable timber yielding trees like *Tectona grandis*, *Shorea robusta*, *Terminalia myriocarpa*, *Gmelina arborea*, *Pinus kesiya*, *Michelia champaca*, *Toona ciliata*, etc., was common and has earned huge revenue for the state as well as a source of livelihood for the people. However, with the 1996 order of Supreme Court of India banning extraction of timber in the region, pressure on NTFPs has increased. The present study aims to document the diversity and availability of floral NTFPs in the forests of Meghalaya and their utilization by the people of the state.

Materials and Methods

Study area

The study was conducted in the Saw Symper area, located in the central Meghalaya (1400 m to 1760 m above MSL) between 91° 30' - 91° 40' N latitude and 25° 25' - 25° 15' E longitude (Fig. 1). The area has a monsoonic climate. Average maximum and minimum temperature during summer months (July-August) was 23°C and 18°C respectively and during the winter (December-January) it often comes down as low as 1°C. More than half the land area is under forest cover (Lynser 2013). Sub tropical wet evergreen forests interspersed with pine are the dominant forest types in the area. Owing to the topography and persistent rains, most of the top soils in the area have been washed away, making a large part of arable lands unsuitable for agriculture. The area is inhabited by people belonging to Khasi tribe who practice shifting cultivation on hill slopes.

Data collection and Plant Identification

Data were collected through participatory research tools such as Participatory Rural Appraisal (PRA) and Key Informants Survey (KIS). Eight participants of the age group 18–60 years from four villages viz., Kmawanrum, Mawlynnu, Mawtangor and Wahmawpat of the area were interviewed. Care was taken to include people of both sexes. Information on types and uses of floral NTFPs in the study area were collected following ethno-botanical methods as described by Rao (1989). From these elderly and knowledgeable people, data on habit, availability, plant parts used, purpose of collection, gender involved in collection and price of the listed plant species were collected.

Plant specimens listed by the participants were collected through walks in the forest with knowledgeable local people. These were then tagged on the spot following the
Table 1. Family, genera and species of floral NTFPs of Saw Symper

Family	Genera	Species
Amaryllidaceae	1	1
Anacardiaceae	1	1
Apiaceae	2	2
Apocynaceae	2	2
Araceae	1	1
Araliaceae	2	2
Aristolochiaceae	1	1
Asteraceae	5	5
Begoniaceae	1	1
Berberidaceae	2	2
Betulaceae	1	1
Cantharellaceae	2	2
Caprifoliaceae	1	3
Celastraceae	1	1
Chloranthaceae	1	1
Clavariaceae	1	1
Clavulinaceae	1	1
Cleistanthaceae	1	1
Clusiaceae	1	2
Dioscoraceae	1	1
Elaeocarpaceae	1	1
Elegnaceae	1	1
Ericaceae	1	1
Erythroxylaceae	1	1
Euphorbiaceae	4	4
Fagaceae	3	7
Flacourtiaceae	1	1
Gleicheniaceae	1	1
Hamamelidaceae	1	1
Juglandaceae	1	1
Lardizabalaceae	1	1
Lauraceae	3	3
Liliaceae	2	2
Loganiaceae	1	1
Lycopodiaceae	1	1
Melastomaceae	2	2
Menispermaceae	2	2
Musaceae	1	2
Myricaceae	1	2
Myrsinaceae	2	3
Myrtaceae	1	1
Oleaceae	1	1
Oleandriodeae	1	1
Pinaeae	1	1
Plantaginaceae	1	1
Pluteaceae	1	1
Poaceae	11	11
Polygonaceae	2	3

Table 1. Continued

Family	Genera	Species
Proteaceae	1	1
Pteridaceae	1	1
Ranunculaceae	1	1
Rosaceae	7	13
Rubiaceae	4	4
Russulaceae	1	1
Rutaceae	3	3
Saxifragaceae	1	1
Schisandraceae	1	1
Smilacaceae	1	1
Symlocaceae	1	1
Theaceae	3	5
Tricholomataceae	2	2
Urticaceae	1	1
Usneaceae	1	1
Vacciniaceae	2	4
Valerianaceae	1	1
Verbanaecae	1	1
Violaceae	1	1
Vitaceae	1	2
Zingiberaceae	2	2

standard technique (Jain and Rao 1977; Martin 1995) and later identified with the help of standard books viz., Forest Flora of Meghalaya (Haridasan and Rao 1985-1987) and Flora of Assam (Kanjilal et al. 1934-1940). The identifications were confirmed at the Botanical Survey of India, Eastern Regional Centre, Shillong and Department of Botany, North-Eastern Hill University, Shillong. Digital photography was also used for collecting data. To cross verify the data gathered from local people during the field work, important published literature related to these parameters were consulted. Standard references viz., Indian Medicinal Plants: An Illustrated Dictionary (Khare 2007), Ethnobotanical Wisdom of Khasis (Hynniew T rep's) of Meghalaya (Ahmed and Borthakur 2005), Useful Plants of India (Ambasta 1986), Flora of Assam (Kanjilal et al. 1934-1940) and Cross-Cultural Ethnobotany of North-East India (Saklani and Jain 1994) were consulted. The contribution of NTFP and other forest products to total household cash-kind income was calculated following a ‘total household income’ concept given by Cavendish (2002). A total of 120 households were randomly surveyed for a pe-
period of one year for collecting data on the quantity and producer’s price of selected forest products. Data on important income sources in the area were also collected and tabulated.

Results and Discussion

Diversity of Floral Non Timber Forest Products

A total of 172 NTFPs emanating from 139 plant species were utilized by the people in the study area. These 139 plant species belonged to 117 genera and 70 families. The dominant NTFP yielding families are: Rosaceae, Poaceae, Fagaceae, Asteraceae and Theaceae (Table 1). Thirty six plant species were found to have multiple uses while the rest 103 have single use. The fact that some plant species have multiple usage, is the reason for number of plant products being more than the number of plant species.

The NTFPs utilized by people in this study is less than 450 reported by Foppes and Ketphanh (2004) in Lao PDR but higher than 89 reported by Sahoo et al. (2010) used by the hill tribes around Dampa Tiger Reserve in Mizoram, India; 138 reported by Emery (2001) in Michigan’s Upper Peninsula, United States and 160 by Mbuvi and Boon (2009) in Mbooni Division in Makueni District, Kenya. The NTFP diversity shows the cognitive ability of the people, which indirectly reveals high dependency of people on forests.

Distribution across habit/plant category

Trees are the dominant plant category that is used by the people, followed by shrubs, herbs and climbers (Fig. 2). A variety of mushroom and bamboo species are also used by the people of the area. This finding is similar to that of Rijal et al. (2011) who also reported trees as the dominant life form in trade followed by shrubs, climbers and herbs.

Uses

Majority of the NTFPs collected by the people are used as food (40%), followed by medicine (18%) and fuelwood (18%) which is similar to the findings by Andersen et al. (2001) in Kuyongon, Sabah, Malaysia. Other types of uses are in small percentage only (Fig. 3). Mainly leaves, fruits, flowers, stem and fruiting body (mushrooms) are the plant parts utilized as food by the people in the study area. Important wild fruits in the area include: *Myrica esculenta*, *Castanopsis purpurella*, *Rubus* spp., *Viburnum* spp. and *Docynia*
Table 2. Dominant plant families yielding food, medicine and fuelwood

Family	Food No. of Genera	Food No. of Species	Medicine No. of Genera	Medicine No. of Species	Fuelwood No. of Genera	Fuelwood No. of Species
Rosaceae	5	9	3	3	4	6
Vaccinaceae	2	4	2	2	4	5
Rutaceae	3	3	2	2	3	3
Polygonaceae	2	3	1	2	2	3
Myrsinaceae	2	3	1	2	2	2
Total	14	22	9	11	15	19

The present study showed higher number of plants species utilized as food than those reported by Dutta and Dutta (2005) revealing that the people possessed a good knowledge on the utilization of local plants as food material by the people. Though use of wild plant as medicine in the area is common, plant species for medicinal use recorded in the present study is much lower than other studies in the state due to availability of smaller number of professional herbal practitioners and particularly because only plant species found in the forests were recorded in this study. In the area, other means of energy use (e.g. LPG, electric heaters) are not yet popular; therefore, firewood is the only energy source for cooking and for space heating especially during the severe winter months.

The dominant family yielding food is Rosaceae which is in conformity with study by Pfize et al. (2011) who reported that many edible plants belonged to the Rosaceae family. Fagaceae is the dominant family yielding fuelwood. Trees of Fagaceae family are considered as good fuelwood species (Ul Haq et al. 2010; Jan et al. 2011). Since Fagaceae family is dominant among tree species and easily available in the area, therefore trees belonging to this family are widely used for fuelwood.

Plant parts used

Different plant parts are harvested as NTFPs. Fruits are the most common plant part utilized by the people of Saw Symper followed by stem and branches and leaves. Apart from stem and branches which are used for fuelwood, a detailed analysis of plant parts harvested across life forms revealed that the fruits of shrubs and trees are the most commonly collected NTFPs of the area (Table 3). The plant parts used for food, medicines, and fuelwood are as follows:

- **Fruits**: The most common NTFPs are fruits. A variety of tree, bamboo, and grass species are used as construction material. Straight bole hard wood tree species like *Eubucklandia populnea*, *Glochidion thomsonii*, *Wendlandia wallichii*, and *Castanopsis armata* are used as poles for support, bamboo species like *Drepastachyum khasianum* and *Cephalostachyum capitatum* for walling and grass species like *Imperata cylindrica* and *Panicum sp.* for roofing. Further, tree species with straight bole viz., *Quercus glauca*, *Helicia nelagirica*, *Castanopsis armata*, and *Castanopsis purpurella* are used for making tools and implements like handle for coal digger which is very popular in the study area. The dominant families of plants utilised for food, medicines and fuelwood is given in Table 2.
Table 3. Distribution of NTFPs plant parts across habit/category in Saw Symper

Plant Parts	Tree	Shrub	Herb	Climber & Liana	Grass	Fern	Bamboo	Mushroom	Total	
Bark	3	5	1						9	
Flowers	1	4							5	
Fruits	14	16	10		2				40	
Leaves	3	6	15	4	2				30	
Seeds	1	1							2	
Stem	9	3	4	8					24	
Stem & Branches	31		8	2	5				44	
Underground parts	1	2	5	2	1				11	
Whole plant	1	4		3	8				16	
Young leaves & shoots	1	1	1	1	2	5	1	8	8	172

Fig. 4. Monthly varitions in availability of floral NTFPs.

parts harvested by people in the present study matches with those harvested from tropical forests as reported by Conelly (1985), Peters (1990), Cunningham (1996) and Dovie et al. (2002) except for plant exudates such as latex, resin and floral nectar which is not collected by the people of Saw Symper. Interestingly, the present study recorded fruits as the most harvested plant parts followed by leaves whereas Mbuvi and Boon (2009) in Mbooni Division in Makueni District, Keyna, and Das (2005) in areas around Buxa Tiger Reserve, West Bengal, India found that leaves are the most harvested plant parts followed by fruits.

Availability, time of collection and gender involved in NTFP collection

Availability and collection of different NTFPs varies with time of the year (Fig. 4) The highest number of NTFPs available was recorded during the month of May (133) and least during the month of March (106). Altogether 94 NTFPs are available all the year round. It was observed that majority of the fruits and leafy vegetables are available and collected during the wet months (April to November). Firewood and poles for construction, though available throughout the year, are mainly collected during the dry season (November to March). More NTFPs are available during the rainy-summer months than during the dry-winter season.

Collection of NTFPs like fruits and leafy vegetables is common during the rainy season due to the fact that these are available during the period and convenient to collect because of low volume and the distance to be travelled to collect them is less. Another reason is because during the rainy season, people have less work in their farms and other types of employment are not available, and in a way is good opportunity for people to sustain themselves during the financially lean months. This was also observed by Sunderland and Obama (1999) and Ngane et al. (2012). Firewood and construction materials although available throughout the year, are particularly collected during winter months because they are available in distant forests and since the volume is large and the terrain is difficult, transportation during rainy seasons is not convenient. Moreover, NTFP like firewood is needed year round so huge quantity is required to be collected and thus required involvement of almost all members of household. Winter months (November-February) are the best time for collection as young family members (children) are free from their school schedule during this period of the year.
Gender and age of NTFP collector varies with the type and uses of the NTFPs. NTFPs such as Bamboo and *Thysanoleana maxima* are often collected by men, whereas NTFPs that are used as food such as wild fruits, leafy vegetables, wild mushrooms, etc. are mostly collected by women folk and children. Overall, women are mostly involved in NTFP collection in the study area.

Purpose of utilization

Majority of the products collected by people are meant for subsistence use (Table 4). Studies by Mbuvi and Boon (2009) and Pandit et al. (2004) support this finding. Thirty five NTFPs are collected for commercial purpose while one hundred and thirty seven are used for subsistence. Majority of commercial NTFPs harvested (88%) are sold in the local market. Only 12% are traded at the regional and national levels. On the basis of the percentage of households involved in collection of NTFP for sale, the quantity of NTFP collected and financial value obtained from selling of the NTFP, *Thysanoleana maxima*, *Myrica* spp., *Houttuynia cordata*, *Castanopsis purpurella*, *Panax pseudoginseng* and *Mahonia pycnophylla* emerged as the most important commercial NTFPs in the study area.

Table 4. Purpose of collection of NTFPs and level of trade of various commercial NTFPs

Purpose	No. of NTFP	%	Level of Trade	No. of products	%
Commercial	35	20	Local	31	88
			Regional	2	6
			National	2	6
Subsistence	137	80	-	-	-

Table 5. Plant parts harvested

Type of plant parts harvested	No. of NTFPs	No. of plant species
Fruit, Leaf, Seed, Flower,	89	84
Young leaf and shoot		
Stem, Bark, Exudates	58	55
Whole plant, Root, Rhizome	19	19

Sustainability of harvest

Sustainability of the NTFPs to a large extent depends on the plant parts harvested. Fruit, leaf, seed, flower and young leaf and shoot are collected in case of most NTFPs while whole plant, root and rhizome are collected in less number of cases (Table 5). Harvest of different plant parts may produce impacts that can be either beneficial or detrimental to the growth and regeneration of the species. In the present study, the plant parts with highest utilization are fruits, followed by leaves, seeds and flowers and to a lesser extent young leaves and shoots. Harvesting of these products, especially fruits and seeds have less impact on the species at individual and population level, provided correct harvesting method is employed and other parts of the plant are not damaged during fruit harvest (Vasquez and Gentry 1989; Ticktin 2004). Kahn (1988) noted that harvesting of leaves may have a negligible effect on the plant population being exploited provided individual plants are not killed in the process, the reproductive structures and apical buds are not damaged, a sufficient number of healthy leaves are left on each plant for photosynthesis and sufficient time is allowed between successive harvests for the plant to produce new leaves. The harvesting of roots, bulbs and bark usually kills or fatally weakens the exploited plant and adversely affects

Table 6. Contribution of forest products and different income categories to the annual total household income (in INR) in Saw Symper, Meghalaya (N=120)

Income source	Household engaged	Sum	Mean per household	Contribution to total income (%)
Forest Products	120 (100%)	1405080	11709±8730	13.8
Livestock	112 (93%)	901735	7515±7717	8.8
Agriculture	115 (96%)	889738	7415±8990	8.7
Daily wage	115 (96%)	2145710	17881±14259	21.0
Salaried job & businesses	76 (63%)	4851640	40430±57626	47.6
Total		10193943	84949±58409	
its regeneration (2002). Harvest of underground plant parts like roots and rhizome in the study area is not so common which is good from the sustainability point of view. But again, tolerance to harvest also varies with life forms/life history (Ticktin 2004). For example, slower growing and long lived life forms like trees can withstand lower rate of harvest than populations of perennial herbs having tubers/rhizomes.

Contribution of NTFP and other forest products to total household income

Five categories of income sources viz., income from forest products, agriculture, livestock, daily wage and salaried jobs & businesses are available in the area, through which most of the households’ needs such as food and cash income are met. It was found that NTFP and other forest products contributed nearly 14% (13.8%) of the total household cash kind income (Table 6). This finding is in close conformity with studies by Ambrose-Oji (2003), McSweeney (2002), McElwee (2008), Kamanga et al. (2009) in Africa and Illukpitiya and Yanagida (2008) and Khanal (2001) in Indian sub-continent. Though the dominant source of income was from salaried jobs & businesses and daily wages, nonetheless, contribution from forest products income forms a vital part of the households’ income generation activities in Saw Symper. Also, all the surveyed households are engaged in collection of forest products showing that collection of forest products is an important activity in the area.

Conclusions

In conclusion, this study revealed the diversified use of floral NTFPs by the rural people of Meghalaya as a source of food, fuel, medicines, construction materials and cash income generation. Collection and availability of these products varies with seasons. Women folks are mostly involved in collection of NTFPs that are used as food. NTFPs used as food are collected more frequently during the summer season and this help meet the food need of the people when income from other sources are least available and thus purchasing power are low. At present, commercial exploitation of NTFPs is done on a small scale and for a few products only. This should be encouraged so as to enhance the benefit accrued from these resources to the people of the state.

As regards to sustainability of plants yielding NTFPs, plant parts most commonly harvested are fruits and leaves rather than roots, rhizomes and whole plants, which is a positive approach from sustainability point of view. NTFP and other forest products contributed nearly 14% (13.8%) of the total household cash kind income and forms a vital part of the households’ income generation activities. Overall it can be said that NTFPs are playing a vital role in the subsistence economy and food security of the state.

Acknowledgements

The authors are grateful to the people of Saw Symper area for sharing their time and knowledge. We also thank Mr S. Nongsiej and his family for their generosity in providing accommodation during the field work. Thanks to the anonymous reviewers for their constructive suggestions and comments towards improving the manuscript.

References

Ahmed AA, Borthakur SK. 2005. Ethnobotanical Wisdom of Khasis (Hynniew Trepis) of Meghalaya. Bishan Singh Mahendra Pal Singh, Dehra Dun.
Ambasta SP. 1986. The Useful Plants of India. Publications & Information Directorate, Council of Scientific & Industrial Research, New Delhi.
Ambrose-Oji B. 2003. The contribution of NTFPs to the livelihoods of the ‘forest poor’: evidence from the tropical forest zone of south-west Cameroon. Int For Rev 5: 106-117.
Andersen J, Nilsson C, de Richelieu T, Fridriksdottir H, Gobilick J, Mertz O, Gaussent Q. 2001. Local use of forest products in Kuyongon, Sabah, Malaysia. In: A Scientific Journey Through Borneo Crocker Range National Park Sabah (Ismail G, Ali L, eds), Vol 2. Socio-Cultural and Human Dimension. ASEAN Academic Press, London, pp 15-38.
Arnold JEM, Ruiz Perez M. 1999. The role of Non-Timber Forest Products in Conservation and Development. In: Incomes from Forest: Methods for the development and conservation of forest products for local communities (Wollenberg E, Ingles A, eds). Center for International Forestry Research, Bogor, Indonesia, pp 17-41.
Campbell BM, Luckert MK. 2002. Towards understanding the role of forests in rural livelihood. In: Uncovering the hidden harvest: valuation methods for woodland and forest resources (Campbell BM, Luckert MK, eds). Earth Scan Publication Ltd., London, pp 1-3.
Cavendish W. 2002. Quantitative methods for estimating the eco-
nomic value of resource use to rural households. In: Uncovering the hidden harvest: valuation methods for woodland and forest resources (Campbell BM, Luckert MK, eds). Earth Scan Publication Ltd., London, pp 17-63.

Conelly WT. 1985. Copal and rattan collecting in the Philippines. Econ Bot 39: 9-46.

Cunningham AB. 1996. People, park and plant use. Recommendations for multiple-use zones and development alternatives around Bwindi Impenetrable National Park, Uganda. People and Plants Working Paper 4. UNESCO, Paris.

Das BK. 2005. Role of NTFPs among forest villagers in a Protected Area of West Bengal. J Hum Ecol 18: 129-136.

Davenport TRB, Ndangalasi HJ. 2002. An escalating trade in orchid tubers across Tanzania’s Southern highlands-assessment, dynamics and conservation implications. Oryx 37: 55-61.

de Beer JH, McDermott MJ. 1989. The economic value of Non-timber forest products in South East Asia with emphasis on Indonesia, Malaysia and Thailand. Committee for the International Union of the Conservation of Nature, Amsterdam, the Netherlands.

Dovie DBK, Shackleton CM, Witkowski ETF. 2002. Direct-use values of woodland resources consumed and traded in a South African village. Int J Sus Dev World 9: 269-283.

Dutta BK, Dutta PK. 2005. Potential of ethnobotanical studies in North East India: An overview. Indian J Trad Knowl 4: 7-14.

Emery MR. 2001. Non-Timber Forest Products and Livelihoods in Michigan's Upper Peninsula: In: Forest Communities in the Third Millennium: Linking Research, Business, and Policy toward a Sustainable Non-Timber Forest Product Sector (Davidson-Hunt I, Duchesne LC, Zasada JC, eds). St. Paul, MN: USDA Forest Service, North Central Research Station. GTR-NC-217, pp 23-30.

Evans MI. 1993. Conservation by commercialization. In: Tropical Forests, People and Food: Biocultural Interactions and Applications to Development (Ladik CM, Hladik A, Linares OF, Pagey H, Semple A, Hadley M, eds). MAB Series, 13, UNESCO, Paris and Parthenon Publishing Group, Carmforth, UK, pp 815-822.

Foppen J, Ketphanh K. 2004. NTFP use and household food security in Lao PDR. Draft paper prepared for the NAFRI/FAO EM-1093 symposium on "Biodiversity for Food Security", 14 October, 2004. Vientiane, Lao PDF.

Haridasan K, Rao RR. 1985-1987. Forest Flora of Meghalaya. 2 Vols. Bishen Singh and Mahendra pal Singh, Dehradun, India. Illukpitiya P, Yanagida JF. 2008. Role of income diversification in protecting natural forests: evidence from rural households in forest margins of Sri Lanka. Agrofor Syst 74: 51-62.

Jain SK, Rao RR. 1977. A Handbook of Field and Herbarium Methods. Today & Tomorrow's Printers and Publishers, New Delhi.

Jan G, Khan MA, Khan A, Jan FG, Khan R, Ahmad M, Rehman A, Danish M, Asif M, Khan S, Zafar M, Jan M. 2011. An Ethnobotanical Survey on Fuel Wood and Timber plant Species of Kaghan Valley, Khyber pakhtoonkhwa Province, Pakistan. Afr J Biotechnol 10: 19075-19083.

Kahn F. 1988. Ecology of economically important palms in Peruvian Amazonia. Adv Econ Bot 6:42-49.

Kamanga P, Vedeld P, Sjastad E. 2009. Forest incomes and rural livelihoods in Chiradzulu District, Malawi. Ecol Econ 68: 613-624.

Kanjial UN, Kanjialal PC, Das A, De RN. 1934-1940. Flora of Assam. 4 Vols. Govt. Press, Shillong.

Khanal KP. 2001. Economic Evaluation of Community Forestry in Nepal and its Equity Distribution Effect. M.Sc. thesis. The Royal Veterinary and Agricultural University, Copenhagen. 134 pp.

Khare CP. 2007. Indian Medicinal Plants: An Illustrated Dictionary. Springer Science, BusinessMedia, LLC., New York, USA.

Lynser MB. 2013. Forest Products of Raid Saw Symp, Meghalaya and their Contribution to the Livelihood of the People. Ph. D. Thesis. North-Eastern Hill University, Shillong, India.

Martin GJ. 1995. Ethnobotany: a methods manual. A People and Plants Conservation Manual, World Wide Fund for Nature. Chapman & Hall, London.

Mbuvi D, Boon E. 2009. The livelihood potential of non-wood forest products: The case of Mboom Division in Makuene District, Kenya. Environ Dev Sustain 11: 989-1004.

McElwee PD. 2008. Forest environmental income in Vietnam: household socio-economic factors influencing forest use. Environ Conserv 35: 147-159.

McSweeny K. 2002. Who is "forest-Dependent"? Capturing local variation in forest-product sale, Eastern Honduras. Prof Geogr 54: 158-174.

Ngane BK, Ngane EB, Sumbele SA, Njukeng JN, Ngone MA, Ebane EE. 2012. Seasonality of non-timber forest products in the Kupe mountain region of South Cameroon. Sci Res Essays 7: 1786-1797.

Pandit PK, Ghost C, Das AP. 2004. Non-Timber Forest Products of Jaldapara Wildlife Sanctuary: An Assessment. Indian For 130: 1169-1185.

Peters CM, Geatry AH, Mendelson RO. 1989. Valuation of an Amazonian Rainforest. Nature 339: 655-656.

Peters CM. 1990. Plenty of fruit but no free lunch. Garden 14: 8-13.

Pfurse NL, Kumar Y, Myrboh B. 2011. Survey and assessment of floral diversity on wild edible plants from Senapati district of Manipur, Northeast India. J Biodivers Environ Sci 1: 50-62.

Rao RR. 1989. Methods and techniques in ethnobotanical study and research: some basic consideration. In: Methods and approaches in Ethnobotany (Jain SK, ed). Society of Ethno-botanists, Lucknow, pp 13-23.

Rijal A, Smith-Hall C, Helles F. 2011. Non-timber forest product dependency in the Central Himalayan foot hills. Environ Dev Sustain 13: 121-140.
Sahoo UK, Jeecelee L, Lalremruati JH, Lalremruata J, Lalimkhuma C, Lalrammghinglova H. 2010. Role of NTFPs in the livelihood of communities in and around Dampa Tiger Reserve in North-East India. The Bioscan 3: 21-729.
Saklani A, Jain SK. 1994. Cross-Cultural Ethnobotany of North-East India. Deep Publication, Delhi.
Shackleton C, Shackleton S. 2004. The importance of non-timber forest products in rural livelihood security and as safety nets: a review of evidence from South Africa. S Afr J Sci 100: 658-664.
Shahabuddin G, Prasad S. 2004. Assessing Ecological Sustainability of Non-Timber Forest Produce Extraction: The Indian Scenario. Conserv Soc 2: 233-250.
Sunderland TCH, Obama C. 1999. A Preliminary Market Survey of the Non-Wood Forest Products of Equatorial Guinea. In: The Non-Wood Forest Products of Central Africa: Current Research Issues and Prospects for Conservation and Development (Sunderland TCH, Clark L, Vantomme P, eds). Food and Agriculture Organisation (FAO), Rome, pp 211-220.
Tewari DN. 1992. Tropical forestry in India. vol. 387, International Book Distributors, Mumbai, India.
Ticktin T. 2004. The ecological implications of harvesting non-timber forest products. J Appl Ecol 41: 11-21
Ul Haq F, Ahmad H, Alam M, Ahmad I, Rahatullah. 2010. Species Diversity of Vascular Plants of Nandiar Valley Western Himalaya, Pakistan. Pakistan J Bot 42: 213-229.
Vasquez R, Gentry AH. 1989. Use and Misuse of Forest-harvested Fruits in the Iquitos Area. Conserv Biol 3: 350-361.
Volker M, Waibel H. 2010. Do rural households extract more forest products in times of crisis? Evidences from the mountainous uplands of Vietnam. Forest Policy Econ 12: 407-414.
Annexure 1. NTFP species collected and used by the people in the study area

Sl. No.	Scientific name	Family	Habit/ Category	Part used	Uses	Months available	Purpose of Trade	Level of Trade
1	Agapetes obovata (Wt.) Hk. f.	Vacciniaceae	S	Fruits	Food	Mar-Jul	S	-
2	Agapetes variegata (Roxb.) G. Don	Vacciniaceae	S	Fruits	Food	Nov-Apr	S	-
3	Annona squamosa	Annonaceae	H	Rhizome	Medicinal	Jan-Dec	S	-
4	Annona squamosa	Annonaceae	H	Leaves	Medicinal	Jan-Dec	S	-
5	Aristolochia tagala Cham.	Aristolochiaceae	T	Fruits	Food	Oct-Dec	S	-
6	Aristolochia tagala Cham.	Aristolochiaceae	T	Fruits	Food	Oct-Dec	S	-
7	Arundinaria griffithiana Munro	Poaceae	B	Stem	Fencing, Construction (Walling)	Jan-Dec	C L	-
8	Bambusa pallida Munro	Poaceae	B	Stem	Handicraft, Construction (Walling)	Jan-Dec	S	-
9	Begonia rubra	Begoniaceae	H	Leaves	Food	Jan-Dec	S	-
10	Berberis aristata DC.	Berberidaceae	S	Fruits	Food	Sep-Oct	S	-
11	Bergenia ciliata (Haw) Sternb.	Saxifragaceae	H	Leaves	Medicinal	Apr-Oct	S	-
12	Betula alnoides Ham.	Betulaceae	T	Stem & branches	Firewood	Jan-Dec	S	-
13	Camellia caduca Cl. Ex Brandis	Theaceae	T	Stem & branches	Firewood	Jan-Dec	S	-
14	Cantharellus cibarius Fr.	Cantharellaceae	M	Fruiting body	Food	May-Jul	S	-
15	Cattleya schaueri	Orchidaceae	T	Stem & branches	Charcoal	Jan-Dec	S	-
16	Cattleya purpurella (Miq.) Balak.	Orchidaceae	T	Nuts	Food	Nov-Jan	C L	-
17	Centella asiatica (L.) Urban	Apiaceae	H	Leaves	Food	Apr-Oct	C L	-
18	Cephalotaxus cephalotaxus Munro	Cephalotaxaceae	S	Leaves	Medicinal	Apr-Oct	S	-
19	Cleistostachys albochiloptera Cl.	Cleistostachyaceae	F	Whole plant	Medicinal	Jan-Dec	S	-
20	Chlorophyllum sp.	Liliaceae	H	Leaves	Food	Apr-Aug	C L	-
21	Cocculus sp.	Menispermaceae	T	Fruits	Food	Nov-Jan	S	-
22	Clerodendrum quadrangulare (Fr.) Schrott	Clusiaceae	M	Fruiting body	Food	May-Jul	S	-
23	Citrus x aurantium	Rutaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	S	-
24	Dendrocalamus sinicus	Poaceae	B	Stem	Handicraft, use as ropes	Jan-Dec	S	-
25	Dioscorea alata Linn.	Dioscoreaceae	Cl	Fruits	Food	Jan-Feb	S	-
26	Dioscorea komo var. komo	Dioscoreaceae	Cl	Tuber	Food	Jan-Dec	S	-
Annexure 1. Continued

Sl. No.	Scientific name	Family	Habit/Category	Part used	Uses	Months available	Purpose	Level of Trade
29	Docynia indica (Wall.) Decne.	Rosaceae	T	Fruits	Food	Oct-Dec	C	L
30	Drepanostachyum rhizanum (Munro) Majumdar	Poaceae	B	Stem	Construction (Walling), use as rope	Jan-Dec	S	-
31	Elaeocarpus lanceolatus Roxb.	Elaeocarpaceae	T	Fruits	Food	Nov-Dec	S	-
32	Elegia pyrifera Hk. f.	Elaeagnaceae	S	Fruits	Food	Apr-May	S	-
33	Embelia sp.	Myrsinaceae	Li	Seeds	Food	Jan-Feb	S	-
34	Embelia ribes Burm.	Myrsinaceae	S	Fruits	Food	Jan-Apr	S	-
35	Emilia sonchifolia (Linn.) DC.	Asteraceae	H	Leaves	Food	Apr-Aug	C	L
36	Engelhardia spreta Leschen.ex Bl.	Juglandaceae	T	Flowers	Ornamental	Jan-Mar	S	-
37	Eriobotrya sp.	Rosaceae	T	Stem & branches	Firewood	Jan-Dec	S	-
38	Erythroxylum kunthamum Wall. ex Kurz.	Erythroxylaceae	S	Bark	use as betel nut	Jan-Dec	S	-
39	Euonymus theacifliau Wall.	Celastraceae	S	Stem	Rope	Jan-Dec	S	-
40	Exuropium adenophorum Spreng.	Asteraceae	H	Leaves	Medicinal	May-Nov	S	-
41	Exuropium acuminata DC.	Theaceae	T	Bark	Dye	Jan-Dec	C	R
42	Eurya japonica Thumb.	Theaceae	S	Whole plant	Fencing	Jan-Dec	S	-
43	Eschscholzia populosa Griff	Hamamelidaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	S	-
44	Fallopium cymosum (Trev) Meissn.	Polygonaceae	H	Leaves	Food	Apr-Aug	S	-
45	Garinia sp.	Clusiaceae	T	Fruits	Food	May-Jun	S	-
46	Garinia polyantha G. Don.	Clusiaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	C	L
47	Gaultheria fragrantissima Wall.	Ericaceae	S	Leaves	Medicinal	Jan-Dec	S	-
48	Gleichenia sp.	Gleicheniaceae	F	Whole plant	Fencing	Jan-Dec	S	-
49	Globba clarkii Baker	Zingiberaceae	H	Rhizome	Medicinal	Jan-Dec	S	-
50	Glochidion zhusoni Hk. f.	Euphobiaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	S	-
51	Gomphus floccosus (Schw.) Singer	Cantharellaceae	M	Fruiting body	Food, Medicines	May-Jul	S	-
52	Gymnacanthus odorata R. Br.	Flicourtiaceae	T	Seeds	Food	Jan-Feb	C	L
53	Hedyotis scandens D. Don	Rubiaceae	Cl	stem	Fish poison	Aug-Apr	S	-
54	Helicia minitigera Bedd.	Proteaceae	T	Stem	Tools & Implements	Jan-Dec	C	L
55	Holbellia latifolia Wall.	Proteaceae	Li	Fruits	Food	Sep	S	-
56	Houptia cordata Thumb.	Saurreaceae	H	whole plant	Food	Feb-Dec	C	L
57	Imperata cylindrica Linn.	Poaceae	G	Leaves	Construction (roofing)	Jan-Dec	S	-
Sl. No.	Scientific name	Family	Habit/Category	Part used	Uses	Months available	Purpose	Level of Trade
--------	--------------------------	-------------	----------------	---------------	----------------	------------------	---------	----------------
58	Inula cappa DC.	Asteraceae	H	Young leaves	Medicinal	Mar-Dec	S	
59	Itea chinensis Hk. f.	Rutaceae	T	Fruits	Food	Oct-Nov	S	
60	Jasminum dispermum Wall.	Oleaceae	C1	Stem	Rope	Jan-Dec	S	
61	Lactarius deliciosus (L.) Gray	Russulaceae	M	Fruiting body	Food	May-Jul	S	
62	Lactuca laxisepa (BL.) DC	Asteraceae	H	Leaves	Firewood, Charcoal	Jan-Dec	S	
63	Ramaria sp.	Clavariaceae	M	Fruiting body	Food	Jun-Sept	S	
64	Lentiskula odoloid (Berk.) Pegler	Trichotoma	M	Fruiting body	Food	Apr-May	C	L
65	Lindera causata Benth.	Lauraceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	S	
66	Lithocarpus dal右手 (Hk. et. Th. ex Miq.) Rehder	Fagaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	C	L
67	Lithocarpus elegans (Bl.)	Fagaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	S	
68	Lithocarpus femonstratus (Roxb.) Rehder	Fagaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	C	L
69	Lycocysus piceum Hk.	Rubiaceae	T	Stem & branches	Firewood	Jan-Dec	S	
70	Lycocysus eurmum Linn.	Lycopodiaceae	C1	Leaves	Ornamental	Jan-Dec	S	
71	Macaranga dentiflata Muell. Arg.	Eurybehaceae	T	Leaves	Packing	Jan-Dec	S	
72	Mahonia pynphylla (Fedde) Takeda	Berberidaceae	S	Fruits	Food	Nov-Feb	S	
73	Mallotus sp.	Euphorbiaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	S	
74	Melastoma nepalensis Lodd.	Melastomaceae	S	Leaves	Medicinal	Apr-Nov	S	
75	Melochiun bacefera (Roxb.) Kurz	Poaceae	B	Stem	Handicraft	Jan-Dec	S	
76	Melodinus monognus Roxb.	Aporcianaceae	Li	Fruits	Food	Jan-Feb	S	
77	Microcalamus prainii Gamble	Poaceae	B	Stem	Rope	Jan-Dec	S	
78	Lantana camara Linn.	Verbenaceae	S	Fruits	Food	Jan-Dec	S	
79	Mikania micrantha Kunth	Asteraceae	H	Leaves	Medicinal	Jan-Dec	S	
80	Molineria capitulata (Lour.) Herb	Myricaceae	H	Roots	Medicinal	Jan-Dec	S	
81	Musa acuminata Colla	Musaceae	S	Flowers	Food	Jan-Dec	C	L
82	Musa paradisiaca Linn.	Musaceae	S	Leaves	Packing	Jan-Dec	S	
83	Myrica esculenta Buch.-Ham. ex D. Don	Myricaceae	T	Fruits	Food, Medicinal	May-Jul	C	L
Sl. No.	Scientific name	Family	Habit/ Category	Part used	Uses	Months available	Purpose of Trade	
--------	----------------------------	----------------	-----------------	---------------	------------------	------------------	------------------	
84	Myrica nagi Thunb.	Myricaceae	F	Fruits	Food	May-Jul	C L	
85	Nephrolepis cordifolia (Linn.) Presl.	Osmundaceae	T	Tuber	Medicinal	Jan-Dec	S -	
86	Oenanthe javanica (Bl.)DC	Apiaceae	H	Leaves	Food	Apr-Aug	C L	
87	Osbekia stellata Buch. -Ham. ex D. Don	Melastomaceae	S	Leaves	Medicinal	Apr-Nov	S -	
88	Panax pseudoginseng Wall.	Araliaceae	H	Tuber	Medicinal	Jan-Dec	C N	
89	Panicum sp Poaceae	Poaceae	G	Leaves	Fodder, roofing	Feb-Dec	S -	
90	Pericampylus glaucus (Lamk.) Merr	Menispermaceae	Cl	Leaves	Medicinal	Jan-Dec	S -	
91	Persea parviflora (Meissn.) Haridasan et R.R. Rao	Lauraceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	C L	
92	Photinia cuspidata (Bertol) Balak	Rosaceae	T	Stem & branches	Firewood	Jan-Dec	S -	
93	Phyllostachys mannii Gamble	Poaceae	B	Stem	Fencing	Jan-Dec	S -	
94	Pinus kesiya Roxb.	Pinaceae	T	Leaves	Manure, Mattresses	Nov-Mar	S -	
95	Plantago major Linn.	Plantaginaceae	H	Leaves	Tool & Implements	Jan-Dec	C L	
96	Plateaum major (B.K. & Br.) Sacc.	Plantaginaceae	M	Fruiting body	Food	Jan-Dec	S -	
97	Polygonum chinense Linn.	Polygonaceae	S	Young shoots	Food	Jan-Dec	S -	
98	Polygonum molle D. Don	Polygonaceae	H	Tuber	Food	Jan-Dec	S -	
99	Prunus sp.1 Rosaceae	Rosaceae	T	Stem	Food	Jan-Dec	S -	
100	Prunus cerasoides D. Don	Rosaceae	H	Tuber	Food	Jan-Dec	S -	
101	Quercus glauca Thunb.	Fagaceae	T	Stem & branches	Food	Jan-Dec	S -	
102	Quercus sp.	Fagaceae	T	Stem & branches	Food	Jan-Dec	S -	
103	Repandulaeum multiflorum Koch.	Fagaceae	T	Fruits	Food	Jan-Dec	S -	
104	Rhus javanica Linn.	Anacardiaceae	T	Fruits	Food	Nov-Mar	S -	
105	Rubus fruticosus Schott.	Rosaceae	T	Fruits	Food	Jan-Dec	S -	
106	Rubus fruticosus Schott.	Rosaceae	T	Fruits	Food	Jan-Dec	S -	
Sl. No.	Scientific name	Family	Habit/Category	Part used	Uses	Months available	Purpose	Level of Trade
---------	--------------------------	-----------------	----------------	-----------	---------------	-----------------	---------	----------------
109	*Rosa longicuspis* Bertol.	Rosaceae	S	Fruits	Food	Nov	S	
110	*Rubia cordifolia* Linn.	Rubiaceae	Cl	Roots	Medicinal	Jan-Dec	S	
111	*Rubus ellipticus* Smith	Rosaceae	S	Fruits	Food	May-Jun	S	
112	*Rubus laioscapus* Smith	Rosaceae	S	Fruits	Food	May-Jul	S	
113	*Rubus niveus* Thunb.	Rosaceae	S	Fruits	Food	May	S	
114	*Rubus rugosus* Smith	Rosaceae	Cl	Fruits	Food	May-Oct	S	
115	*Sarcandra glabra* Nakai	Chloranthaceae	H	Whole plant	Ornamental	Nov-Dec	S	
116	*Schefflera hypoleuca* (Kurz.) Harms	Araliaceae	T	Leaves	Fodder	Mar-Nov	S	
117	*Schima khasiana* Dyer	Theaceae	T	Stem & branches	Firewood	Jan-Dec	S	
118	*Schima wallichii* DC.	Theaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	S	
119	*Schisandra sp.*	Schisandraceae	Li	Bark	Medicinal	Jan-Dec	S	
120	*Smilax glauca* Klotz.	Smilacaceae	Cl	Fruits	Food	Jan	S	
121	*Strophantus wallichii* A.DC.	Apocynaceae	Cl	Fruits	Food	Jan-Dec	S	
122	*Styrchys spinosa*	Loganiaceae	Li	Fruits	Food	Nov	S	
123	*Symplaca laurina* (Retz.) Wall	Symplocaceae	T	Stem & branches	Firewood, Charcoal	Jan-Dec	S	
124	*Syzygium tetragonum* (Wt.) Kurz	Myrtaceae	T	Fruits	Food	Apr-May	C	L
125	*Termitomyces sp* Heim.	Tricholomataceae	M	Fruiting body	Food	Jan-Mar	C	L
126	*Tetragastrina leucophlaema* (Demstn.) Balak.	Vitaceae	Li	Stem	Rope	Jan-May	S	
127	*Thysanolaena maxima* (Roxb.) O. Ktze.	Poaceae	S	Inflorescence	Sweeping	Jan-Mar	C	L
128	*Tetragastrina serrulatum* (Roxb.) Planch	Vitaceae	Cl	Fruits	Food	Sep-Oct	S	
129	*Tuddalisa asiatica* (Linn.) Lamk	Rutaceae	S	Inflorescence	Sweeping	Oct-Nov	S	
130	*Triericytis sp.*	Liliaceae	H	Leaves	Food	May-Oct	S	
131	*Usnea sp.*	Usnaceae	F	Whole plant	Medicinal	Jan-Dec	S	
132	*Vaccinium griffithianum* Wt.	Vaccinaceae	S	Fruits	Food	Jul-Oct	S	
133	*Vaccinium vacciniaceum* (Roxb.) Skurn	Vaccinaceae	S	Fruits	Food	Jul-Aug	S	
134	*Valeria jatamansi* Jones	Valerianaceae	H	Leaves	Medicinal	Apr-Aug	S	
135	*Viburnum corylifolium* Hk. f. & Th.	Caprifoliaceae	S	Fruits	Fishing Baits, Food	Sep-Oct	C	L
136	*Viburnum coxifolium* D. Don	Caprifoliaceae	S	Fruits	Food	Sep-Oct	S	
Annexure 1. Continued

Sl. No.	Scientific name	Family	Habit/Category	Part used	Uses	Months available	Purpose	Level of Trade
137	*Viburnum foetidum* Wall.	Caprifoliaceae	S	Bark	Medicinal	Jan-Dec	S	-
				Roots	Medicinal	Jan-Dec	S	-
138	*Viola sikkimensis* W. Becker	Violaceae	H	Whole plant	Medicinal	Apr-Nov	S	-
139	*Wendlandia wallichii* W. & A.	Rubiaceae	T	Stem	Construction (Poles)	Jan-Dec	S	-

Habit/Category: T=Tree, S=Shrub, H=Herb, Cl=Climber, Li=Liana, B=Bamboo, G=Grass, Fe=Fem, M=Mushroom.

Purpose: C=Commercial; S=Subsistence.

Level of trade: L=Local, R=Regional, N=National.