FREE CHOOSABILITY OF THE CYCLE

YVES AUBRY, JEAN-CHRISTOPHE GODIN AND OLIVIER TOGNI

Abstract. A graph \(G \) is free \((a, b)\)-choosable if for any vertex \(v \) with \(b \) colors assigned and for any list of colors of size \(a \) associated with each vertex \(u \neq v \), the coloring can be completed by choosing for \(u \) a subset of \(b \) colors such that adjacent vertices are colored with disjoint color sets. In this note, a necessary and sufficient condition for a cycle to be free \((a, b)\)-choosable is given. As a corollary, some choosability results are derived for graphs in which cycles are connected by a tree structure.

1. Introduction

For a graph \(G \), we denote its vertex set by \(V(G) \) and edge set by \(E(G) \). A color-list \(L \) of a graph \(G \) is an assignment of lists of integers (colors) to the vertices of \(G \). For an integer \(a \), an \(a \)-color-list \(L \) of \(G \) is a color-list such that \(|L(v)| = a \) for any \(v \in V(G) \).

In 1996, Voigt considered the following problem: let \(G \) be a graph and \(L \) a color-list and assume that an arbitrary vertex \(v \in V(G) \) is precolored by a color \(f \in L(v) \). Under which hypothesis is it always possible to complete this precoloring to a proper color-list coloring? This question leads to the concept of free choosability introduced by Voigt [8].

Formally, for a graph \(G \), integers \(a, b \) and an \(a \)-color-list \(L \) of \(G \), an \((L, b)\)-coloring of \(G \) is a mapping \(c \) that associates to each vertex \(u \) a subset \(c(u) \) of \(L(u) \) such that \(|c(u)| = b \) and \(c(u) \cap c(v) = \emptyset \) for any edge \(uv \in E(G) \).

The graph \(G \) is \((a, b)\)-choosable if for any \(a \)-color-list \(L \) of \(G \), there exists an \((L, b)\)-coloring. Moreover, \(G \) is free \((a, b)\)-choosable if for any \(a \)-color-list \(L \), any vertex \(v \) and any set \(c_0 \subset L(v) \) of \(b \) colors, there exists an \((L, b)\)-coloring \(c \) such that \(c(v) = c_0 \).

As shown by Voigt [8], there are examples of graphs \(G \) that are \((a, b)\)-choosable but not free \((a, b)\)-choosable. Some related recent results concern defective free choosability of planar graphs [6]. We investigate, in the next section, the free-choosability of the first interesting case, namely the cycle. We derive a necessary and sufficient condition for a cycle to be free \((a, b)\)-choosable (Theorem 4). In order to get a concise statement, we introduce the free-choice ratio of a graph, in the same way that Alon, Tuza and Voigt [1] introduced the choice ratio (which is equal to the so-called fractional chromatic number).

For any real \(x \), let \(\text{FCH}(x) \) be the set of graphs \(G \) which are free \((a, b)\)-choosable for all \(a, b \) such that \(\frac{a}{b} \geq x \):

\begin{itemize}
 \item \textbf{Date:} March 11, 2014.
 \item \textbf{2010 Mathematics Subject Classification.} 05C15, 05C38, 05C72.
 \item \textbf{Key words and phrases.} Coloring, Choosability, Free choosability, Cycles.
\end{itemize}
\begin{align*}
\text{FCH}(x) &= \{G \mid \forall \frac{a}{b} \geq x, \ G \text{ is free } (a, b)\text{-choosable}\}. \\
\text{Moreover, we can define the free-choice ratio fchr}(G) \text{ of a graph } G \text{ by:}
\end{align*}
\begin{align*}
fchr(G) := \inf \{ \frac{a}{b} \mid G \text{ is free } (a, b)\text{-choosable}\}. \\
\text{Remark 1. \ Erdős, Rubin and Taylor have asked \cite{3} the following question: \ If } G \text{ is } (a, b)\text{-choosable, and } \frac{a}{b} > \frac{d}{e}, \text{ does it imply that } G \text{ is } (c, d)\text{-choosable? \ Gutner and Tarsi have shown \cite{5} that the answer is negative in general. \ If we consider the analogue question for the free choosability, then Theorem \cite{4} implies that it is true for the cycle.}
\end{align*}

The path \(P_{n+1} \) of length \(n \) is the graph with vertex set \(V = \{v_0, v_1, \ldots, v_n\} \) and edge set \(E = \bigcup_{i=0}^{n-1} \{v_iv_{i+1}\} \). The cycle \(C_n \) of length \(n \) is the graph with vertex set \(V = \{v_0, \ldots, v_{n-1}\} \) and edge set \(E = \bigcup_{i=0}^{n-1} \{v_iv_{i+1(\text{mod} \ n)}\} \). To simplify the notation, for a color-list \(L \) of \(P_n \) or \(C_n \), we let \(L(i) = L(v_i) \) and \(c(i) = c(v_i) \).

The notion of waterfall color-list was introduced in \cite{2} to obtain choosability results on the weighted path and then used to prove the \((5m, 2m)\)-choosability of triangle-free induced subgraphs of the triangular lattice. We recall one of the results from \cite{2} that will be used in this note, with the function \(\text{Even} \) being defined for any real \(x \) by: \(\text{Even}(x) \) is the smallest even integer \(p \) such that \(p \geq x \).

Proposition 2 (\cite{2}). Let \(L \) be a color-list of \(P_{n+1} \) such that \(|L(0)| = |L(n)| = b, \) and \(|L(i)| = a = 2b + e \) for all \(i \in \{1, \ldots, n-1\} \) (with \(e > 0 \)).

If \(n \geq \text{Even}\left(\frac{2b}{e}\right) \) then \(P_{n+1} \) is \((L, b)\)-colorable.

For example, let \(P_{n+1} \) be the path of length \(n \) with a color-list \(L \) such that \(|L(0)| = |L(n)| = 4, \) and \(|L(i)| = 9 \) for all \(i \in \{1, \ldots, n-1\} \). Then the previous proposition tells us that we can find an \((L, 4)\)-coloring of \(P_{n+1} \) whenever \(n \geq 8 \). In other words, if \(n \geq 8 \), we can choose 4 colors on each vertex such that adjacent vertices receive disjoint colors sets. If \(|L(i)| = 11 \) for all \(i \in \{1, \ldots, n-1\} \), then \(P_{n+1} \) is \((L, 4)\)-colorable whenever \(n \geq 4 \). On the other side, there are color-lists \(L \) for which \(P_{n+1} \) is not \((L, b)\)-colorable.

\section{Free choosability of the cycle}

We begin with a negative result for the even-length cycle:

Lemma 3. For any integers \(a, b, p \) such that \(p \geq 2, \) and \(\frac{a}{b} < 2 + \frac{1}{p} \), the cycle \(C_{2p} \) is not free \((a, b)\)-choosable.

\textbf{Proof.} We construct a counterexample for the free-choosability of \(C_{2p} \): let \(L \) be the \(a \)-color-list of \(C_{2p} \) such that

\begin{align*}
L(i) &= \begin{cases}
\{1, \ldots, a\}, & \text{if } i \in \{0, 1\}; \\
\{\frac{i-1}{2}a + 1, \ldots, \frac{i-1}{2}a + a\}, & \text{if } i \neq 2p - 1 \text{ is odd}; \\
\{b + \frac{i-2}{2}a + 1, \ldots, b + \frac{i-2}{2}a + (\frac{i-2}{2} + 1)a\}, & \text{if } i \text{ is even and } i \neq 0; \\
\{1, \ldots, b, 1 + (p - 1)a, \ldots, 1 + pa - b - 1\}, & \text{if } i = 2p - 1.
\end{cases}
\end{align*}
The cycle C_6, along with a 9-color-list L for which there is no $(L,4)$-coloring c such that $c(v_0) = \{1, 2, 3, 4\}$.

If we choose $c_0 = \{1, \ldots, b\} \subset L(0)$, we can check that there does not exist an (L, b)-coloring of C_{2p} such that $c(0) = c_0$, so C_{2p} is not free (a, b)-choosable. See Figure 1 for an illustration when $p = 3$, $a = 9$ and $b = 4$. □

Now, if $\lfloor x \rfloor$ denotes the greatest integer less than or equal to the real x, we can state:

Theorem 4. For the cycle C_n of length n,

$C_n \in \text{FCH} \left(2 + \left\lfloor \frac{n}{2} \right\rfloor^{-1} \right)$.

Moreover, we have:

$f\text{chr}(C_n) = 2 + \left\lfloor \frac{n}{2} \right\rfloor^{-1}$.

Proof. Let a, b be two integers such that $a/b \geq 2 + \left\lfloor \frac{n}{2} \right\rfloor^{-1}$. Let L be a a-color-list of C_n. Without loss of generality, we can suppose that v_0 is the vertex chosen for the free-choosability and $c_0 \subset L(v_0)$ has b elements. It remains to construct an (L, b)-coloring c of C_n such that $c(v_0) = c_0$. Hence we have to construct an (L', b)-coloring c of P_{n+1} such that $L'(0) = L'(n) = L_0$ and for all $i \in \{1, \ldots, n-1\}$, $L'(i) = L(v_i)$. We have $|L'(0)| = |L'(n)| = b$ and for all $i \in \{1, \ldots, n-1\}$, $|L'(i)| = a$. Since $a/b \geq 2 + \left\lfloor \frac{n}{2} \right\rfloor^{-1}$ and $e = a - 2b$, we get $e/b \geq \left\lfloor \frac{n}{2} \right\rfloor^{-1}$ hence $n \geq \text{Even}(2b/e)$. Using Proposition 2 we get:

$C_n \in \text{FCH}(2 + \left\lfloor \frac{n}{2} \right\rfloor^{-1})$.

Hence, we have that $f\text{chr}(C_n) \leq 2 + \left\lfloor \frac{n}{2} \right\rfloor^{-1}$. Moreover, let us prove that $M = 2 + \left\lfloor \frac{n}{2} \right\rfloor^{-1}$ is reached. For n odd, Voigt has proved [9] that the choice ratio $\text{chr}(C_n)$ of a cycle of odd length n is exactly M. Hence $f\text{chr}(C_n) \geq \text{chr}(C_n) = M$, and the result is proved. For n even, Lemma 3 asserts that C_n is not free (a, b)-choosable for $\frac{a}{b} < 2 + \left\lfloor \frac{n}{2} \right\rfloor^{-1}$. □

Remark 5. In particular, the previous theorem implies that if b, e, n are integers such that $n \geq \text{Even}(\frac{2b}{e})$, then the cycle C_n of length n is free $(2b + e, b)$-choosable.
In order to extend the result to other graphs than cycles, the following
simple proposition will be useful:

Proposition 6. Let \(a, b \) be integers with \(a \geq 2b \). Let \(G \) be a graph and \(G_v \) be the graph obtained by adding a leave \(v \) to any vertex of \(G \). Then \(G \) is free \((a,b)\)-choosable if and only if \(G_v \) is free \((a,b)\)-choosable.

Proof. Since the "only if" part holds trivially, let us prove the "if" part. Assume \(G \) is free \((a,b)\)-choosable and let \(L \) be a \(a \)-color-list of \(G \). Let \(v \) be a new vertex and let \(G_v \) be the graph obtained from \(G \) by adding the edge \(uv \), for some \(u \in V(G) \). Then any \((L,b)\)-coloring \(c \) of \(G \) can be extended to an \((L,b)\)-coloring of \(G_v \) by giving to \(v \) \(b \) colors from \(L(v) \setminus c(u) \) (\(|L(v) \setminus c(u)| \geq b \) since \(a \geq 2b \)). If \(v \) is colored with \(b \) colors from its list, then, since \(G \) is free \((a,b)\)-choosable, the coloring can be extended to an \((L,b)\)-coloring of \(G_v \) by first choosing for \(u \) a set of \(b \) colors from \(L(u) \setminus c(v) \).

Starting from a single edge and applying inductively Proposition 6 allows to obtain the following corollary:

Corollary 7. Let \(T \) be a tree of order \(n \geq 2 \). Then
\[
T \in \text{FCH}(2).
\]

Now, we can state the following:

Proposition 8. If \(G \) is a unicyclic graph with girth \(g \), then
\[
G \in \text{FCH}\left(2 + \left\lfloor \frac{g}{2} \right\rfloor^{-1}\right).
\]

Proof. Let \(a, b \) be two integers such that \(a/b \geq 2 + \left\lfloor \frac{a}{2} \right\rfloor^{-1} \), \(L \) be a \(a \)-color-list of \(G \), \(C = v_1, \ldots, v_g \) be the unique cycle (of length \(g \)) of \(G \) and \(T_i, i \in \{1, \ldots, g\} \), be the subtree of \(G \) rooted at vertex \(v_i \) of \(C \).

Let \(v \) be the vertex chosen for the free choosability and let \(c_0 \subset L(v) \) be a set of cardinality \(b \). If \(v \in C \), then by virtue of Theorem 3 there exists an \((L,b)\)-coloring \(c \) of \(C \) such that \(c(v) = c_0 \). This coloring can be easily extended to the whole graph by coloring the vertices of each tree \(T_i \) thanks to Corollary 7. If \(v \in T_i \) for some \(i \), \(1 \leq i \leq g \), then Corollary 7 asserts that the coloring can be extended to \(T_i \). Then color \(C \) starting at vertex \(v_i \) by using Theorem 3. Finally, complete it by coloring each tree \(T_j \), \(1 \leq j \neq i \leq g \).

\[\square \]

3. Applications

As an example to the possible use of the results from Section 2, we begin with determining the free choosability of a binocular graph, i.e. two cycles linked by a path.

For integers \(m, n \) and \(p \) such that \(m, n \geq 3 \) and \(p \geq 0 \), the **binocular graph** \(\text{BG}(m, n, p) \) is the disjoint union of an \(m \)-cycle \(u_0, u_1, \ldots, u_{m-1} \) and of an \(n \)-cycle \(v_0, \ldots, v_{n-1} \) with vertices \(u_0 \) and \(v_0 \) linked by a path of length \(p \) given by \(u_0, x_1, \ldots, x_{p-1}, v_0 \). Note that if \(p = 0 \), then \(u_0 \) and \(v_0 \) are the same vertex.

Proposition 9. For any \(m \geq 3, n \geq 3 \) and \(p \geq 0 \),
\[
\text{BG}(m, n, p) \in \text{FCH} \left(2 + \left\lfloor \frac{\min(m, n)}{2} \right\rfloor^{-1} \right).
\]
Proof. Assume without loss of generality that \(m \geq n \) and let \(a, b \) be integers such that \(\frac{a}{b} \geq 2 + \left\lfloor \frac{n}{2} \right\rfloor - 1 \). Let \(L \) be a \(a \)-color-list of \(BG(m, n, p) \). Let \(y \) be the vertex chosen for the free choosability and let \(c_0 \subset L(y) \) be a set of cardinality \(b \). If \(y \) lies on the \(m \)-cycle, then by virtue of Theorem 4, there exists an \((L, b)\)-coloring \(c \) of the \(m \)-cycle such that \(c(y) = c_0 \). By Corollary 7, this coloring can be extended to the vertices of the path. Now, it remains to color the vertices of the \(n \)-cycle, with \(v_0 \) being already colored. This can be done thanks to Theorem 4. If \(y \) lies on the \(n \)-cycle, the argument is similar. If \(y \in \{x_1, \ldots, x_{p-1}\} \), then the coloring can be extended to the whole path and the coloring of the \(m \)-cycle and \(n \)-cycle can be completed thanks to Theorem 4.

This method can be extended to prove similar results on graphs with more than two cycles, connected by a tree structure.

Define a tree of cycles to be a graph \(G \) such that all its cycles are disjoint and collapsing all vertices of each cycle of \(G \) produces a tree.

Corollary 10. Any tree of cycles of girth \(g \) is in \(\text{FCH}(2 + \left\lfloor \frac{g}{2} \right\rfloor - 1) \).

4. Algorithmic Considerations

Let \(n \geq 3 \) be an integer and let \(a, b \) be two integers such that \(\frac{a}{b} \geq 2 + \left\lfloor \frac{n}{2} \right\rfloor - 1 \). Let \(L \) be a \(a \)-color-list of \(C_n \).

As defined in \cite{2}, a waterfall list \(L \) of a path \(P_{n+1} \) of length \(n \) is a list \(L \) such that for all \(i, j \in \{0, \ldots, n\} \) with \(|i - j| \geq 2 \), we have \(L(i) \cap L(j) = \emptyset \). Let \(m = | \bigcup_{i=0}^{n} L(i) | \) be the total number of colors of the color-list \(L \).

The algorithm behind the proof of Proposition 2 consists in three steps: first, the transformation of the list \(L \) into a waterfall list \(L' \) by renaming some colors; second, the construction of the \((L', b)\)-coloring by coloring vertices from 0 to \(n - 1 \), giving to vertex \(i \) the first \(b \)-colors that are not used by the previous vertex; third, the backward transformation to obtain an \((L, b)\)-coloring from the \((L', b)\)-coloring by coming back to original colors and resolving color conflicts if any. It can be seen that the time complexity of the first step is \(O(mn) \); that of the second one is \(O(a^2 n) \) and that of the third one is \(O(\max(a, b^3)n) \). Therefore, the total running time for computing a free \((L, b)\)-coloring of the cycle \(C_n \) is \(O(\max(m, a^2, b^3)n) \).

References

[1] N. Alon, Zs. Tuza, M. Voigt, Choosability and fractional chromatic number, Discrete Math. 165/166, (1997), 31-38.
[2] Y. Aubry, J.-C. Godin and O. Togni, Every triangle-free induced subgraph of the triangular lattice is \((5m,2m)\)-choosable, Discrete Applied Math. 166, (2014), 51-58.
[3] P. Erdős, A.L Rubin and H. Taylor, Choosability in graphs, Proc. West-Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI, (1979), 125-157.
[4] J.-C. Godin, Coloration et choisissabilité des graphes et applications, PhD thesis (in french), Université du Sud Toulon-Var, France (2009).
[5] S. Gutner and M. Tarsi, Some results on \((a:b)\)-choosability, Discrete Math. 309, (2009), 2260-2270.
[6] N. Li, X. Meng and H. Liu, Free Choosability of Outerplanar Graphs, Green Communications and Networks, Lecture Notes in Electrical Engineering, 113, (2012), 253-256.
[7] Zs. Tuza and M. Voigt, Every 2-choosable graph is \((2m,m)\)-choosable, J. Graph Theory 22, (1996), 245-252.
[8] M. Voigt, Choosability of planar graphs, Discrete Math., 150, (1996), 457-460.
[9] M. Voigt, On list Colourings and Choosability of Graphs, Abilitationsschrift, TU Ilmenau (1998).

Institut de Mathématiques de Toulon, Université de Toulon, France, Institut de Mathématiques de Marseille, France
E-mail address: yves.aubry@univ-tln.fr, godinjeanchri@yahoo.fr

Laboratoire LE2I UMR CNRS 6306, Université de Bourgogne, France
E-mail address: olivier.togni@u-bourgogne.fr