Orthogonal Polynomials with Recursion Coefficients of Generalized Bounded Variation

MILIVOJE LUKIC
Caltech

Abstract. We consider probability measures on the real line or unit circle with Jacobi or Verblunsky coefficients satisfying an ℓ^p condition and a generalized bounded variation condition. This latter condition requires that a sequence can be expressed as a sum of sequences $\beta^{(l)}$, each of which has rotated bounded variation, i.e.,

$$\sum_{n=0}^{\infty} |e^{i\phi_l} \beta^{(l)}_{n+1} - \beta^{(l)}_n| < \infty$$

for some ϕ_l (note that for $\phi_l = 0$ this becomes the usual bounded variation). For the real line, we impose this condition on sequences $\{a_n - 1\}$ and $\{b_n\}$, where b_n are the diagonal and a_n the off-diagonal Jacobi coefficients, and for the unit circle, we impose it on Verblunsky coefficients.

For the real line, our results state that in the Lebesgue decomposition $d\mu = f dm + d\mu_s$ of such measures, supp$(d\mu_s) \cap (-2, 2)$ is contained in a finite set S (thus, there is no singular continuous part), and f is continuous and non-vanishing on $(-2, 2) \setminus S$. By a theorem of Levin–Lubinsky, this also implies uniform clock behavior of zeros on closed intervals in $(-2, 2) \setminus S$. The results for the unit circle are analogous, with $(-2, 2)$ replaced by the unit circle.