Ethnomedicinal applications of animal species by the local communities of Punjab, Pakistan

Muhammad Altaf¹, Muhammad Umair², Abdul Rauf Abbasi³, Noor Muhammad⁴ and Arshad Mehmood Abbasi⁵*

Abstract

Background: Different species of animals are being utilized in traditional therapies by various cultures for a long time and such uses still exist in folk medicine. The present study aimed to document animal-based traditional therapies used by the local communities of Jhelum and Lahore districts of the Punjab province, Pakistan.

Methods: Field surveys were conducted in 2015–2016 in six different sites of the study areas. Data were collected through semi-structured interviews and face to face conversation with local informants.

Results: The ethnomedicinal uses of 57 species of animals including mammals, birds, fish, reptiles, amphibian, and invertebrates (30, 25, 25, 7, 3.5, and 3.5%, respectively) were documented. Meat, oil, brain, fats, milk, eggs, and skin were the most utilized body parts. Ovis orientalis punjabiensis, Francolinus francolinus, Sperata sarwari, Channa punctata, Oreochromis niloticus, Ctenopharyngodon idella, Cyprinus carpio, Labeo rohita, and Carassius auratus were reported for the first time to treat human diseases, i.e., allergy, epilepsy, fever, joint pain, and backache, to act as aphrodisiac, and to enhance memory. Streptopelia decaocto and S. tranquebarica were the most frequently utilized species with highest frequency of citation (32 for each). Columba livia depicted highest fidelity level and used value of 92.86% and 0.89, respectively.

Conclusions: Being agro-pastoralists, the inhabitants of Jhelum possess more traditional knowledge compared to Lahore. The present study could be important for conservation and sustainable use of animal biodiversity in this region. Additionally, detailed study on chemical profiling and bioactivities may lead to animal-based novel drug discovery.

Keywords: Animal species, Traditional therapies, Local communities, Pakistan

Background

Different body parts of wild and domestic animals are being utilized since ancient time in the prevention and protection of human health disorders [1] and such therapeutics are termed as zootherapy [2]. Zootherapy has profound history with wide geographical distribution. It has been reported that Chinese used earthworms to treat diseases nearly 4000 years ago [3]. Over, 1500 animal species have been documented in Traditional Chinese Medicines, which are used to treat various diseases [4]. Around 15–20% of the Ayurvedic medicines is of animals’ origin [5], and more than 500 species of invertebrates are used to cure both common and complex illnesses in India [6].

Petting, watching, stroking, and working with different animal species can be relaxing, can lower heart beat and stroke, and can be physically beneficial [7]. Chemicals from animals and plant species have been a part of human culture to improve health [8]. Certainly, animals as therapeutic agents have been contributing significantly to the prevention and treatment of health disorders across the globe [9]. It has been estimated that 8.7% of the essential chemicals used in protective drugs are animal based [10]. Because of immunological, analgesic, antibacterial, diuretic, anesthetic, and anti-rheumatic properties, insects are essential components of modern...
drugs [11]. Chitosan, derived from exoskeleton of insects, is used as an anticoagulant, to lower cholesterol levels in the blood and to repair tissues [12]. Potential anticancer drugs have been isolated from the wings and legs of Asian sulfur butterflies and Taiwanese stag beetles [13].

Pharmaceutical industries are testing many animal species for drug discovery [14]. The best-known example is of snake venom that inhibits angiotensin-converting enzyme (ACE), responsible for the conversion of angiotensin hormone from an inactive precursor, which causes narrowing the blood vessels and raises blood pressure [15]. Similarly, a number of compounds having a defensive role such as biogenic amines, steroids, alkaloids, and peptides have been reported in the secretions of amphibians [16]. These chemical substances possess diverse pharmacological effects including cardiotoxic, myotoxic, and neurotoxic activities [17].

Wildlife is an important but poorly known source to treat many infectious diseases, particularly the zoonotic disorders [18]. The trade in wildlife for food, medicine, and products and as pets, among other uses, involves hunting and the sale of animals of many species [19–22]. Ethnomedicinal information collected from aboriginal peoples contribute significantly to recognize novel biological resources for commercial utilization, mainly in pharmaceutical industries [23, 24]. In addition, expansion of modern medicines is based on traditional knowledge of indigenous communities. Consequently, documentation of the traditional knowledge of indigenous people is imperative, because in the recent era modern drug development has greatly been affected due to loss of socioeconomic and cultural characteristics of local communities around the globe [4]. Pakistan has a rich diversity of animals including 195 “species of mammals” [25], 668 “species of birds” [26], 195 “species of herptiles” [27], over 1000 “species of marine and fresh water fishes”, and 5000 “species of insects” [28]. A number of these species are being utilized in traditional health care. However, ethno-medicinal uses of animal species have rarely been recorded. Furthermore, we imagine that ethnozoological knowledge of local communities residing in settled areas is threatened due to increasing population, urbanization, and industrialization, which should be documented before depletion. Therefore, the current survey aimed to assess and document ethnomedicinal uses of animal species among the local communities of two districts Jhelum and Lahore of the Punjab province, Pakistan.

Methods
Field sites
Ethnozoological survey was conducted in 2012 and 2016 in four sub-areas of district Jhelum: Jhelum city, Bara Jungle, Rohtas fort, and Rasool barrage, and four sub-areas of district Lahore: Lahore city, Bara dari, Chung, and head Baloki (Fig. 1).

District Jhelum is located towards North of the river Jhelum and surrounded by district Rawalpindi in the North, Azad Kashmir from the East, Gujrat and Sargodha districts in the South, and district Chakwal from the West [29, 30]. Total population of the district is 1.223 million, out of which 71% live in rural areas and the rest of 29% is urban population [31]. Approximately, 98.5% of the population is Muslim, while among minorities Christians are in majority with 1%. Awan, Syed, Kashmiri, Ghakar, Gujjar, Mughal, Jat, and Janjua are the major ethnic groups in this area. Jhelum is a semi-mountainous area, receives 880 mm mean annual rain fall, and has 23.6 °C average annual temperature. The inhabitants of Jhelum are agro-pastoralists because of their origin from different parts of Azad and Jammu Kashmir (India). Inhabitants in the rural areas of Jhelum live in mud and brick houses and speak Punjabi and/or Pothohari language. Agriculture, livestock, and mining are the main sources of income. Khewra salt mine in Jhelum is the world’s second largest salt mine [30, 32]. District Jhelum is rich in animal diversity, particularly due to the Mangla dam on the Jhelum River. This wetland is an excellent habitat for bird species. Scientists [33] reported 336 species of birds including 153 breeding residents, 115 winter visitors, 15 summer visitors, 39 passage visitors, and 14 occasionally recorded species. The Mangla water reservoir also provides habitat and food for a variety of fish species. The mammalian fauna of the area is mainly of Oriental origin. The main mammalian species belong to Canis, Herpestes, Lepus, Lutra, Manus, Mus, Rattus, Suncus, Sus, Vivericula, and Vulpes genera [34].

Lahore is also called as the heart of Pakistan, because it is the hub for culture in the Punjab region and Pakistan as a whole. District Lahore is located towards the North of the river Ravi and is surrounded by Kasur district in the South, district Sheikhupura in the North West, whereas in the East and North-East it is bordered by Indian Punjab [29, 35]. According to a recent survey, the total population of the district is 11.33 million. More than 40% of its inhabitants are below the age of 15 and the same percentage of the population is literate. Almost all inhabitants of this area live in an urban environment. Lahore is the second largest city in Pakistan after Karachi and 32nd largest district in the world. Around 94% of the population is Muslim comprising Sunni and Shia while 6% are minorities, i.e., Christians, Hindus, and Sikhs [36]. Majority of the people in the district speak Punjabi, however, in different dialects, which make it a diverse speaking population area. Urdu and English languages are also spoken and understand by a large
number of the population. The average annual rain fall in Lahore district is about 490 mm. The winter in Lahore is cooler than Jhelum with temperature ranging from 1.2 to 15 °C whereas in summer temperature rises up to 46 °C [30, 35]. Nevertheless, Lahore district has greater extension in its urban area. However, still ancient shrines, gardens, cemeteries, traditional buildings, canals, and roads are present, which are the home of many birds, amphibians, and reptiles. In previous records, more than 240 bird species have been documented in Lahore; however, this number is restricted to 85 species now, due to urbanization [37]. Changa Manga forest near Lahore is a wildlife hotspot including wild boar, deer, jackal, nilgai, Asiatic wild cat, and Old World vultures [38]. Increasing population, urbanization, and industrialization depicted great impact on the floral and faunal diversity of Lahore district. Virgin areas of the district supporting natural flora and fauna have been devastated and replaced by buildings, roads, and industries. A greater part of the native flora has been replaced by alien plant species, which is gradually removing the fauna. Such invasion of exotic species poses risk to the biotic uniqueness of the local ecosystems and traditional knowledge of local communities [39]. In a study conducted in Nishtar and Wagah towns of Lahore, about 49 species of birds were reported [40]. In a recent survey, 3 amphibian and 15 reptilian species were reported from Kasur near Lahore [41].

Data collection and analysis
Before the field survey, prior consent was taken from the Department of Zoology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan. In addition, we also followed the ethical guidelines of the International Society of Ethnobiology (http://www.ethnobiology.net) during the study. Questionnaires and semi-structured interviews were conducted to document ethnomedicinal uses of animal species. Data were collected from 100 informants in each district including farmers, herdsmen, hunters, teachers, and traditional health practitioners (Table 1). Informants were selected based on their knowledge on medicinal uses of animal species. Mammals, birds, herptiles, and fish species were recognized using field guides “Mammals of Pakistan” [42, 43], “Birds of Pakistan” [44, 45], “Amphibian and Reptiles of Pakistan” [46], and “Freshwater Fishes of Pakistan” [47]. Data on ethnomedicinal uses and cultural values were analyzed using various indices such as frequency of citation (FC), use value (UV), relative importance (RI), fidelity level (FL), similarity index (SI), principal component analysis (PCA), and cluster analysis (CA).

Frequency of citation (FC)

FC is the number of informants who reported medicinal uses of each species.

Relative importance (RI)

The relative importance (RI) of animal species cited by the informants is calculated as follows:

$$RI = PP + AC$$

where PP is the number of pharmacological properties (reported specific ailments) attributed to a species
divided by the maximum number of properties attributed to the most resourceful species (species with the highest number of properties). AC is the number of ailment categories treated by a given species divided by the maximum number of ailment categories treated by the most resourceful species. A value of 2 is the highest possible value for relative importance (RI) indicating the most versatile species with the greatest number of medicinal properties [19].

Fidelity level (FL)
The value of FL highlights the percentage of informants who declare the similar uses of some species [48]. It is calculated by

\[FL(\%) = \left(\frac{N_p}{N} \right) \times 100 \]

where \(N_p \) is the informants’ number, calming medicinal use of animal species contrary to a specific disease and \(N \) is the total number of informants.

Use value (UV)
The use value (UV) can be used to prove the relative importance of species. UV of a species is calculated using the equation:

\[UV = \sum U/n \]

where UV is the use value of a species, \(n \) is the number of citations per species, and \(U \) is the number of informants [49, 50].

Similarity index (SI)
Similarity index (SI) is calculated using the formula:

\[SI = \frac{M_s}{M_t} (0 \leq SI \leq 1) \]

where \(M_s \) is the similar number of medicinal applications in present and previous research records of a species and \(M_t \) is the total number of medicinal applications in present research records.

Statistical analysis
Data on traditional uses of animal species to treat various ailments were statistically analyzed using principal component analysis (PCA) and cluster analysis (CA) methods with the help of statistical software as described earlier [51].

Results and discussion

Ethnography
The data were collected from male Muslims (98%) and non-Muslims (2%) in Jhelum, with both genders male (99%) and female (1%) with religion as Muslims (99%) and non-Muslims (1%) in Lahore. The respondents have different occupations as health practitioners, farmer, teachers, herdsman, and hunters from both districts. They have the education as primary, illiterate, SSC, graduate, and post-graduate. Most of the respondents have age 41–50, while lowest age respondents belong to 20–30-year age in both districts. Most of the respondents belong to almost two thirds from rural and the other from the urban area in both districts Jhelum and Lahore (Table 1).

Ethnomedicinal application of animal species
The inhabitants of the study area possess significant traditional knowledge and use different animals to treat various health disorders. Out of 57 animal species, 55 were used in Jhelum and 54 in Lahore to treat nervous disorders, paralysis, joint pain, asthma, and fever and to heal wounds and used as aphrodisiacs (Table 2). Nutritional deficiency, lack of a hygienic environment, and social evils may attribute to the high prevalence of these diseases in both study areas. Bufo stomaticus (Indus valley toad), Heteropneustes fossilis (scorpion cat-fish), Liss- emys punctate andersoni (Indian flap-shelled turtle), and Oligochaeta spp. (earthworms) were the commonly utilized species in Lahore. Conversely, the inhabitants of Jhelum use Hoplobatrachus tigerinus, (Indian bullfrog),

Table 1 Ethnographic data of local informants
Variables

Gender
Experience
Age group
Education
Residence
Religious background
Table 2: Comparison of medicinal uses of animal species

Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports
	PU/MA Disease treatment FC UV RI	PU/MA Disease treatment FC UV RI		Diseases treated Ref. SI
		Allergy	Fat/T	
1	Bufo stomaticus Lütken, Indus Valley toad, Maidani daddo, BS	0 0 0 Skin/T	Allergy	7 0.29 0.3 Thelitis, dermatitis, decubitus wounds, ripened abscess, bronchest, pneumonia, bolanerengia
2	Hoplobatrachus tigrinus (Daudin), Indian Bullfrog, Wada daddo, HT	2 0.38 0.39 Sexual enhancement	Fat/T	2.35 Muscular pain 2
		Joint pain		
		Headache		
3	Lissemys punctata andersoni Webb, Indian Flap-shelled Turtle, Hara Kachupra, LPA	0.00 0.00 Carapace/T	Fat/T	
		Fever		
		Muscle		
4	Laudakia agrorensis (Stoliczka), Monitor lizard, Goh, Wada Kirla, LA	4 0.22 0.38 Burn	Fat/T	
5	Saara hardwickii (Gray), Indus Valley spiny-tail ground lizard, Sanda, UH	10 0.84 1.56 Sexual enhancement	Fat/T	
6	Naja naja (L.), Black cobra, Kala Naag, NNN	Skin/T	Sharpen eye side	
		Muscle		
		Joint pain		
		Head-ach		
		Oil/T	Snake bite	

Altaf et al. Journal of Ethnobiology and Ethnomedicine (2018) 14:55
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports	Ref. SI				
7	*Echis carinatus sochureki* Stemmler, Sind Valley saw snake viper, Daba sap, ECH	Oil/ T	Snake bite	Disease treatment FC UV RI PU/MA	0.29 0.38	0.00 0.00	Snake bite [88]	0.50 0	
			Sexual enhancement						
	Mammals								
8	*Lepus nigricollis dayanus* Blanford, Desert hare, Jungli saya/Jungli khargush, LND	Meat/ O	Paralysis	Disease treatment FC UV RI PU/MA	2 0.87 1.18	0.78 0.92	Tonic, chicken pox, wheezing, stomach and joint pain, high blood pressure, Asthma, burning sensation, paralysis.	0.67 0.50	
			Hair/ T						
			Weakness		4	4	Meat/ O		
			Asthma		4	4	Asthma		
9	*Hystrix indica* Kerr., Indian crested porcupine, Kanday wali say, HCR	Fat/ T	Skin infection	Disease treatment FC UV RI PU/MA	3 0.36 0.77	0.50 0.60	Skin infection, rheumatic pain, colic, boiled, stomach-ache, foot mouth disease, easy delivery of a child, premenstrual pain, weakness and muscle fatigue, asthma	0.08 0.14	
			Joint pain		10	10	Joint pain		
10	*Pteropus giganteus* (Brün.), Indian flying fox bat, Chamgadar, PGI	Fat/ T	Enhance sexual male power	Disease treatment FC UV RI PU/MA	7 0.29 0.38	0.33 0.30	Asthma, bronchitis, enhance sexual power	0 0.20	
			Fat/ T						
11	*Rattus rattus* (L.), House rat, Wada Choha, RR	Fat/ T	Joint pain	Disease treatment FC UV RI PU/MA	8 0.13 0.38	0.29 0.30	Convulsions, semen enhancement, wounds healing, joint pain	0.20 0.20	
			Fat/ T						
12	*Ovis orientalis punjabiensis* Lydekker, Urial, Heeran, OO	Meat/ O	Enhance power	Disease treatment FC UV RI PU/MA	18 0.83 0.40	0.30 0.60	Rheumatic pain, body ache	0.50 0.50	
			Fat/ T						
13	*Hemiechinus collaris* (Gray), Long eared desert hedgehog, Chotay kandiy ali say/Kandiyari Choha, HCO	Fat/ T	Joint pain	Disease treatment FC UV RI PU/MA	9 0.33 0.77	0.25 0.30	Rheumatic pain, body ache	1.0 1.0	
			Fat/ T						
14	*Canis aureus* L., Golden jackal, Gidar, CAA	Fat/ T	Skin infection	Disease treatment FC UV RI PU/MA	7 0.29 0.38	0.27 0.30	Skin infection, rheumatic pain, body ache	0.50 0.50	
			Fat/ T						
15	*Herpestes javanicus* (E.)	Fat/ T	Sexual power	Disease treatment FC UV RI PU/MA	8 0.27 0.77	0.22 0.30	Sexual power,	1.0 1.0	
			Fat/ T						

Table 2 Comparison of medicinal uses of animal species (Continued)
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports											
	Disease treatment	FC UV RI	Disease treatment	FC UV RI	Diseases treated	Ref.	SI								
16	Geoffroy Saint-Hilarie, Small Indian mongoose, Neola, HJ	Backbone pain	3	Milk/ O	Hepatitis B and C	10	0.75	0.78	Milk/ O	Joint pain	2	0.67	1.50	Acidity, hepatitis B and C, malaria, cold, coughs, stannic pain, migraine headache, lumbago (for buffalo)	
17	Camelus dromedarius L., Dromedary, Ount, CD	Milk/ O Hepatitis B and C Cancer	10	Milk/ O	Enhance energy sexual power	20	0.86	0.80	Milk/ O	Joint pain	2	0.78	1.58	Fever, eye tonic, tonsillitis, asthma, tuberculosis, menstrual disorder, toothache, anemia, cough, dysentery, bronchitis, jaundice, diabetes, blindness, joint pain, sexual enhancement, rhinitis, skin blisters	
18	Capra aegagrus hircus (L.), Goat, Bakri, CAH	Milk/ O Enhance sexual power	10	Milk/ O	Enhance sperm production	10	0.90	0.33	Milk/ O	Fever, eye tonic, tonsillitis, asthma, tuberculosis, menstrual disorder, toothache, anemia, cough, dysentery, bronchitis, jaundice, diabetes, blindness, joint pain, sexual enhancement, rhinitis, skin blisters					
19	Bubalus bubalis (L.), Buffalo, Mujh, BB	Milk and almond/O Enhance physical and mental health	1	Milk and almond/O	Enhance physical and mental health	2	0.82	1.21	Milk and almond/O	Fever, bone fever, memory loss, paralyis, asthma, stomach ache, gastritis, diarrhea, eye infection, sore throats, tuberculosis, pesticide, measles, wound, cough, body pain, poison effect, acne and facial pimples, blood cancer, appetite stimulant, malaria, hysteria					
	Colostrum/ O Enhance immunity	2	Colostrum/ O	Enhance immunity	2	0.72	2.39	Colostrum/ O	Pain, wound, jaundice, ascites, rheumatic pain, weakness, osteoporosis, thrombosis, improves heart strength, pre-menstrual pain, injury						
	Milk, Diabetes	1	Milk, Fenugreek seed,	Diabetes	2	0.11	0.09	Milk							
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports											
-------	---	---------------------	---------------------	------------------											
		PU/MA Disease treatment	FC UV RI	PU/MA Disease treatment	FC UV RI	Diseases treated	Ref.	SI							
	Fenugreek seed, turmeric, white piper grind and mixed all/ O	2 Milk mixed with grind water caltrop/ O	Enhance sexual power	2 Milk mixed with grind water caltrop/ O	Enhance sexual power	2 Joint pain	0.30								
	Milk mixed with grind water caltrop/ O	2 Enhance sexual power	Milk mixed with grind seeds of dates/ O	Joint pain	3 Heart diseases	0.75									
20	Manis crassicaudata, E. Geoffroy, Indian pangolin, Sipa/ Sipple, MC	9 Scale/ T enhance sexual Power	0.33 0.39	Scale/ T enhance sexual Power	9 0.22 0.30	Feet swelling, piles, blood pressure, head ach, asthma, anti-haemorrhoidal, warts, ear pain, angina, back pain, heals bone inflammation, anti-poison, heals torn veins and arteries, infertility, gastro-intestinal disorders, safe parturition, stomach ulcers, rheumatism and fibroid, sexual power	[73, 74, 82, 84, 89, 91, 93, 110–112]	1.0 0.05							
	Homo sapiens L., Human, Insan, HS	4 Saliva/ T Herpes	0.33 0.77	Saliva/ T Herpes	4 0.25 0.59	Eye infections, wound, hiccup, herpes, ear pain, conjunctivitis, eye pain, antiseptic in	[67–69, 77, 80, 85, 91, 97, 101, 113]	1.0 1.0							
	Ovis aries L, Sheep, Bairh, OA	2 Milk/ T Skin burn and cracks	0.69 1.17	Milk/ T Skin burn and cracks	2 0.77 1.21	Edema, fractures, joint pain, sterility, flu, skin	[19, 59, 64, 66, 70, 73, 74]	0.75 0.75							
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports											
-------	--	---------------------	---------------------	------------------											
		PU/MA Disease	FC UV RI PU/MA	Diseases treated											
		treatment	FC UV RI	Ref. SI											
23	*Felis chaus* Schreber, Jungle cat, Jungli billi, FC	Fat/T Joint pain	8 0.50 039 Fat/T	Joint pain											
				Leucoderma, joint pain											
				[74, 77] 1.0 1.0											
24	*Felis domesticus* Erxleben, Domestic cat, Billi, FD	Fat/T Joint pain	9 0.33 039 Fat/T	Joint pain											
				Fever, arthritis, Rheumatic pain, skin infections, Goiter											
				[77, 81, 100, 101] 1.0 1.0											
25	*Oryctolagus cuniculus* (L.), Domestic rabbit, Khargush/Saya, OC	Meat/O Paralysis	10 0.72 078 Meat/O	Paralysis											
				Bronchial diseases, stomachache, burn, weakness											
				[77, 88, 100, 102, 104] 0.30 0.30											
Birds															
26	*Passer domesticus* (L.), House Sparrow, Chiri, PD	Meat/O Weakness	5 0.75 078 Meat/O	Sexual power											
				Increase sexual desire, aphrodisiac, allergy, paralysis, impotency, gas trouble, constipation, Chickenpox, weakness, fever, delay dentition (child)											
				[64, 74, 77, 83, 88, 93, 94] 0.50 0.50											
27	*Gallus gallus* (L.), Domestic chicken, Murghi, Kukri, GG	Egg mixed with milk/O	Weakness 10 0.86 157 Egg/ O	Breast cancer											
			Low blood pressure 5	Sprains, strains, nourishing food, eye, each, BP, bronchitis, hemorrhoids, diabetes, burst furuncles, asthma, indigestion, jaundice, diabetes, sinusitis, to ease birth, shortness of breath, bronchitis, nervous problems, rheumatism, stumpy nose, weak bones, flu, weakness, sore throat, furuncle, burns, night blindness, optic infection, evil eye											
				[19, 64, 66–68, 77, 82, 83, 85, 90, 93, 95, 101–103, 107, 115–117] 0.30 0.10											
28	*Columba livia* Gmelin, Blue rock pigeon,	Meat/ O Paralysis	20 0.89 042 Meat/ O	Paralysis											
				Menorrhagia, Bronchitis, puberty in young girls,											
				[73, 74, 77, 81, 82, 86, 88] 0.33 0.33											
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports											
-------	---	---------------------	---------------------	------------------											
	Pu/ma, Disease treatment	FC UV RI	Pu/ma, Disease treatment	FC UV RI	Diseases treated	Ref.	SI								
								J	L						
29	Coturnix coturnix (L.), Common quail, Batera, CCO	Brain/O	Enhance memory	22 0.81 0.81 Brain/O	Enhance memory	10 0.83 0.94	Skin diseases, anemia, body weakness, enhance memory, sexual power, fever	64, 73, 74	0.40 0.40						
		Meat/O	Enhance energy	1	Meat/O	Sexual power	5								
30	Francolinus francolinus (L.), Black francolin, Kala tittar, FFR	Meat/O	Enhance energy	10 0.77 0.80 Meat/O	Sexual power	10									
					Paralysis	6									
					Against cold	4									
31	Anas platyrhynchos f. domesticus, Domestic duck, Batakh, APD	Meat/O	Enhance energy	10 0.84 1.18 Meat/O	Fever	5 0.88 1.81	Weak eye-side, weakness, low blood pressure	77	0.30 0.10						
		Egg/O	Fever	8	Egg/O	Sexual power	1								
					Increase protein	1									
					CNS	1									
					Strengthened bones and teeth	2									
32	Streptopelia tranquebarica (Hermann), Red turtle dove, Surakh totru, STR	Meat/O	Early maturity in young female	18 0.44 0.39 Meat/O	Early maturity in young female	30 0.50 0.31	Maturity in girls	77	1.00 0						
33	Streptopelia decaocto (Frieda), Indian ring dove, Kogi/Ghogi, SDE	Meat/O	Early maturity in young female	16 0.44 0.39 Meat/O	Early maturity in young female	32 0.50 0.31	Maturity in girls, sexual tonic	77, 94	1.00 0						
34	Streptopelia orientalis (Latham), Oriental turtle dove, Totru	Meat/O	Early maturity in young female	14 0.43 0.39 Meat/O	Early maturity in young female	14 0.50 0.31	Maturity in girls	77	1.00 0						
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports											
-------	--	---------------------	---------------------	------------------											
	Disease treatment	FC	UV	RI	Disease treatment	FC	UV	RI	Diseases treated	Ref.	SI				
	PU/MA				PU/MA				Ref.		J	L			
SOR	Meat/ O	Early maturity in young female	15	0.38	0.39	Meat/ O	Early maturity in young female	13	0.46	0.30	Maturity in girls	[77]	1.00	0	
35	*Spelopelia senegalensis* (L.), Little brown dove, Chhoti tutru/Chhoti kogi, SSE	Meat/ O	Enhance male power and treat sexual weakness	21	0.79	0.41	Blood/ T	Enhance male power and treat sexual weakness	24	0.75	0.32	Rickets, cough, sexual weakness	[73, 77]	0.50	0.50
36	*Athene brama* (Temminck), Spotted owllet, Ulla, ABR	Blood/ T	Whooping cough	15	0.47	0.39	Meat/ O	Whooping cough	15	0.40	0.30	0	0		
37	*Acridotheres ginnianus* (Latham), Bank myna, Lali, AGI	Meat/ O	Paralysis	7	0.53	0.77	Meat/ O	Paralysis	5	0.47	0.60	Erectile dysfunction, scarlet fever, body strength, weakness, paralysis	[66, 73, 74, 77, 96]	0.5	0.25
38	*Anas platyrhynchos* L., Mallard, Nilsir, APL	Meat/ O	Kidney problems	9	0.44	0.39	Meat/ O	Kidney problems	9	0.56	0.30	Gall bladder stone, kidney problems	[77, 93]	1.00	1.00
39	*Aquila nipalensis* Hodgson, Tawny eagle, Biaiz, ARN	Fat/ T	Breast swelling and pain	17	0.53	0.39	Fat/ T	Breast swelling and pain	17	0.47	0.31	Chest pain, breast swelling	[59, 77]	0.50	0.50
40	*Upupa epops* L., Common hoopoe, Hud-hud, UEP	Meat/ O	Enhance energy	8											
41	*Rita rita* (Hamilton), Rita, Khaga, RRI	Brain/ O	Enhance memory	4	0.81	1.17	Brain/ O	Enhance memory	4	0.86	1.21	Joint pain	[88]	0.21	0
42	*Sperata seenghala* (Sykes), Giant river	Brain/ O	Enhance memory	5	0.72	1.16	Brain/ O	Enhance memory	4	0.67	1.20	0	0		
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports	Ref. SI										
-------	--	---------------------	---------------------	------------------	--------										
	Meat/ O	FC UV RI	Meat/ O	FC UV RI											
	Enhance energy			Enhance energy											
	Sexual power 5			Sexual power 2											
	OI/ O			OI/ O											
	Energy			Energy 5											
	Against cold 5			Against cold 5											
43	Channa punctata (Bloch), Spotted snakehead, Dola, CPU														
	Brain/ O	1 0.84 1.18	Brain/ O	5 0.81 1.22											
	Meat/ O	6	Meat/ O	5 0.86 1.21											
	Enhance memory			Enhance memory											
	Enhance energy			Enhance energy											
	Sexual power 3			Sexual power 10											
	OI/ O			OI/ O											
	Energy			Energy 5											
	Against cold 5			Against cold 1											
44	Channa marulius (Hamilton), Bullseye snakehead, Sap machili, CMA														
	Brain/ O	3 0.81 1.17	Brain/ O	3 0.86 1.21											
	Meat/ O	2	Meat/ O	3 0.86 1.21											
	Enhance memory			Enhance memory											
	Enhance energy			Enhance energy											
	Sexual power 5			Sexual power 5											
	OI/ O			OI/ O											
	Energy			Energy 3											
	Against cold 2			Against cold 6											
	Joint pain 6														
45	Oreochromis niloticus (L), Baringo tilapia, Chira machili, OAU														
	Brain/ O	3 0.50 1.54	Brain/ O	3 0.56 1.49											
	Meat/ O	2	Meat/ O	3 0.56 1.49											
	Enhance memory			Enhance memory											
	Enhance energy			Enhance energy											
	Sexual power 3			Sexual power 5											
	Scorpion bite 1			Scorpion bite 1											
	OI/ O			OI/ O											
	Energy	1		Energy 2											
	Sharpens eye sight			Sharpens eye sight 2											
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports	Ref.	SI									
-------	--	---------------------	---------------------	-------------------	------	----									
46	*Labeo calbasu* (Hamilton), Black rohu, Kalbans, LCA	PU/MA	Disease treatment	FC	UV	RI	PU/MA	Disease treatment	FC	UV	RI	Diseases treated	Ref.	SI	
		Against cold	6				Brain/ O	Enhance memory	3	0.57	1.49	Increase energy and memory, galactagogue	[121]	0.33	0.33
		Joint pain	1				Meat/ O	Enhance energy	2			Enhance energy	2		
		Sexual power	3				Oil/ O	Energy	1			Sexual power	5		
46		Against cold	1				Oil/ O	Energy	1			Reduce overweight	2		
		Joint pain	1				Oil/ O	Against cold	1			Increase lactation in mother	1		
47	*Ctenopharyngodon idella* (Steindachner), Garid carp, Grass carp, CID	Brain/ O	Enhance memory	2	0.73	1.16	Brain/ O	Enhance memory	3	0.67	1.20	Against cold	[124]	0	0
		Meat/ O	Enhance energy	2			Meat/ O	Enhance energy	2			Enhance energy	2		
		Sexual power	1				Oil/ O	Energy	1			Sexual power	5		
		Against cold	1				Oil/ O	Against cold	1			Reduce overweight	2		
		Joint pain	8				Oil/ O	Energy	1			Energy	2		
48	*Cyprinus carpio* L., Aischgrund carp, Gulfam, CCA	Brain/ O	Enhance memory	0.68	1.16	Brain/ O	Enhance memory	3	0.74	1.20	Erysipelas, lumbago, CNS	[123]	0	0	
		Meat/ O	Enhance energy	2			Meat/ O	Enhance energy	2			Enhance energy	2		
		Sexual power	1				Oil/ O	Sexual power	1			Reduce overweight	3		
		Energy	1				Oil/ O	Energy	1			Energy	2		
		Against cold	3				Oil/ O	Against cold	3			Against cold	4		
49	*Cirrhinus mrigala* (Hamilton), Mrigal carp, Marakhi, CMR	Brain/ O	Enhance memory	1	0.73	1.17	Brain/ O	Enhance memory	3	0.77	1.21	Joint pain, reduce weight	[88]	0.17	0.17
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports											
-------	---	---------------------	---------------------	------------------											
	PLU/MA Disease, FC UV RI	PLU/MA Disease, FC UV RI	Diseases treated, Ref.	SI											
				J	L										
50	*Labeo rohita* (Hamilton), Roho labeo, Raho, LRO	Brain/ O Enhance memory 1 0.88 1.19 Brain/ O	Brain/ O Enhance memory 3 0.85 1.22 Urine Problem, stomach ache, weakness, rheumatic pain, Gastric	0 0											
		Meat/ O Enhance energy 12													
		Sexual power 1													
		Energy 3													
		Against cold 3													
		Joint pain 12													
51	*Carassius auratus* (L.), Goldfish, Sanhari, CAU	Brain/ O Enhance memory 1 0.63 1.16 Brain/ O	Brain/ O Enhance memory 3 0.68 1.20	0 0											
		Meat/ O Enhance energy 6													
		Sexual power 3													
		Energy 1													
		Against cold 1													
		Joint pain 7													
52	*Gibelion catla* (Hamilton), Catla, Thaila, CACA	Brain/ O Enhance memory 1 0.70 1.17 Brain/ O	Brain/ O Enhance memory 3 0.6 1.2 Increase energy and memory, galactagogue, rheumatic pain	0.33 0.33											
		Meat/ O Enhance energy 12													
		Sexual power 2													
		Energy 1													
		Against cold 1													
		Joint pain 7													
53	*Wallago attu* (Bloch), Brain/ O	Enhance 1 0.74 1.17 Brain/ O	Enhance 3 0.7 1.21 Joint pain, liver tonic,	0.17 0.17											
Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	Previous reports											
-------	---	--------------------	--------------------	-----------------											
	Sr. #	Scientific name, Common name, Vernacular name, Code	Disease treatment	Disease treatment	Diseases treated	Ref. SI									
	Meat/ O	Enhance energy	1	Meat/ O	Enhance energy	2	Previous reports								
54	Bagarius bagarius (Hamilton), Bagarid catfish, Foji Khaga, BBA	Brain/ O	Enhance memory	1	Brain/ O	Enhance memory	3	0.85 1.51 Body burns, stomach pain, body pain [86, 118]							
55	Heteropneustes fossilis (Bloch), Scorpion catfish, Singhi, HF	Brain/ O	Enhance memory	1	Brain/ O	Enhance memory	3	0.79 1.20 Sting, joint pain, increase hemoglobin level and fever, pain, wound healing [80, 83, 98, 114]							
	Honey mixed with grind cinnamon/ O	Cold	10	0.89	5.39	Honey mixed with grind cinnamon/ O	Cold	1	0.83	5.95	Dark spots, bronchitis, skin lightening, cough, fever, cataract, burn, sexual impotence, cold, flu, aging, sore throat, shortness of breath, arthritis, tuberculosis, constipation [19, 59, 66, 67, 94, 96, 100–103, 115]				
	Cough	1	1												
	Acidity	3	1												
	Obesity	1	1												
Table 2 Comparison of medicinal uses of animal species (Continued)

Sr. #	Scientific name, Common name, Vernacular name, Code	District Jhelum (J)	District Lahore (L)	District Lahore (L)	Previous reports									
		Disease treatment	FC	UV	RI	RI	Disease treatment	FC	UV	RI	Diseases treated	Ref.	SI	
		PU/MA					PU/MA						J	L
		Control blood pressure	1				Muscle pain	2						
		Muscle pain	5				Belly pain	1						
		Belly pain	1				Antimicrobial	3						
		Fennel mixed with honey/O	1				Anti-inflammatory	2						
		Indigestion	1				Hair loss	3						
		Honey/T	1				Pimple	1						
		Body pain	3				Insect bite	1						
		Ulcer	1				Indigestion	1						
		Allergy	1											
		Tumor	1											
		Enhance immunity	1											
		Green tea, fennel, black cardamom, cinnamon mixed with honey/O	1											
		Indigestion	1											
57	Oligochaeta spp. Earth worm, Gundoya, LTE	0 0.00 000					Dry and clean earthworm body take in dry mud pot and pot close with mud and warm it with cow/buffalo dung, now get a ash/O	6 0.17 0.30	Wound, impotence	0 [59, 96]	0			
Naja naja naja, (black cobra), Pteropus giganteus (Indian flying fox bat), and Bagarius bagarius (bag arid catfish) to treat various diseases.

The medicinal uses of Ovis orientalis punjabiensis (urial), Francolinus francolinus (black francolin), Sperata sarwari (giant river catfish), Channa punctate (snake head), Oreochromis niloticus (baringo tilapia), Ctenopharyngodon idella (gradd carp), Cyprinus carpio (aischgrund carp), Labeo rohita (roho labeo), and Carassius auratus (goldfish) were reported for the first time from the study areas. These species are used to treat allergy, epilepsy, fever, joint pain, and backache and to enhance memory and as aphrodisiac. Additionally, they have a zero similarity index with previous reports. However, some species such as Canis aureus (golden jackal), Herpestes javanicus (small Indian mongoose), Homo sapiens, (human), Felis chaus (jungle cat), Felis domesticus (domestic cat), Upupa epops (common hoopoe), Manis crassicaudata (Indian pangolin), Streptopelia tranquebarica (red turtle dove), Streptopelia decaocto (Indian ring dove), Streptopelia orientalis (oriental turtle dove), and Spelopelia senegalensis (little brown dove) exhibited the highest similarity index (SI = 1) with previous studies.

Body part(s)

Meat was the most utilized body part and used in 36 recipes in Jhelum and 34 recipes in Lahore (Fig. 2), followed by oil and brain used in 20 and 16 recipes, respectively, in both districts, and fat used in 15 and 16 recipes in Jhelum and Lahore respectively. Milk, skin, bones, eggs, scale, saliva, blood, urine, testis, and carapace were used in less than five recipes. Local inhabitants of Lahore and Jhelum use chopped brains of different species such as common quail, rita, giant river catfish, spotted snakehead, bulls eye snakehead, baringo tilapia, black rohu, gradd carp, aischgrund carp, mrigal carp, Roho labeo, goldfish, catla, boal, bagarid catfish, and scorpion catfish to enhance the efficiency of the brain and nervous system. Likewise, testis of Capra aegagrus hircus (goat), Bos taurus (cattle), and Ovis aries, (sheep) are used to enhance the sperm production. However, these uses were more common in Lahore compared to Jhelum. Eggs of Gallus gallus (domestic chicken), Anas platyrhynchos domesticus (domestic duck), and Anas platyrhynchos (mallard) are used to treat fever, cold, weakness, low blood pressure, and weak eye side in Jhelum, while in Lahore they are used to treat breast cancer, weight loss, and cold and to enhance the performance of the CNS and strength of bones and teeth.

It has been reported that omega-3 fatty acid in animal fat ore oil reduces inflammation [52]. The present study revealed that inhabitants of the study areas use fat and oil to treat backache, breast swelling, cold, headache, burn, rheumatic pains, snake bite, and skin infections and as a sex stimulant (Figs. 2, 3 and 4). These uses are comparable to previous reports that animal fats or oil are useful in atherosclerosis, neurological disorder, and thrombotic and aging effects [53, 54].

![Fig. 2 Body parts of animal species used in different recipes](image)
Fig. 3 Number of animal species used to treat various diseases in Jhelum and Lahore.

Fig. 4 Pictorial views of traditional uses of animal species in the study areas.
Milk of *Bubalus bubalis* (buffalo), *Bos taurus* (cattle), *Capra aegagrus hircus* (goat), *Camelus dromedarius* (dromedary), *Equus africanus asinus* (donkey), and *Ovis aries* (sheep) is used as a sexual stimulant and antidote; to treat fever, diabetes, blood pressure, backache, and joint pain; for fertility; and to expel kidney stones. It is well known that milk contains high levels of proteins, vitamins, lipids, and minerals, which reduce joint pain, strengthen the body, and increase sexual potency [55–59].

The inhabitant of Lahore use bone soup of *Capra aegagrus hircus* (goat) to heal internal wounds and fractures (Figs. 4 and 5). This confirms that matrix contains up to 95% collagen fibers, elastic protein, and inorganic minerals like calcium phosphate, which improves fracture resistance [60]. Local communities use scales of Indian pangolin (*Manis crassicaudata*) as a sexual stimulant (in both districts) and to remove hook worms (in Lahore only). The health benefits of Pangolin scales might be due to the presence of different chemical constituents such as cholesterol, stearic acid, volatile oil, minerals, proteins, glycine, isoleucine, leucine, proline, serine, tyrosine, and valine amino acids among several others [61]. However, due to illegal hunting and extensive use in traditional medicines, Indian pangolin is at the verge of extinction and has been included in “Red Listed” species by the International Union for Conservation of Nature (IUCN) [62].

Human’s urine is used against herpes and to treat ear pain in both districts. It has been known that the urine of cattle, dromedary, sheep, goat, hyrax, rhinoceros, and ass is also useful in the treatment of acne, asthma, anemia, antifungal, burn, back pain, chronic ailment, disinfection, foot diseases, fever, skin infections, TB, mouth infection, syphilis, rashes, CNS, memory loss, throat, and ear and eye infection [20, 63–74]. In addition, urine of dromedary inhibits enhancement of apoptosis, cell
proliferation, and control of cyclin-dependent kinase inhibitor p21 [65] and has high resistance against heat and fungal diseases [72].

Frequency of citation (FC)
Animal species, reported by the maximum number of informants as frequently used to treat various diseases, have high frequency of citation (FC) which ranged from 1 to 32 (Table 2). In different areas of district Lahore, Streptopelia decaocto (Indian ring dove) and S. tranquebarica (red turtle dove) were reported as the most frequently utilized species for maturity in young girls with FC = 32 each. Athene brama (spotted owlet) and Columba livia (blue rock pigeon) were also among the commonly used species with FC value of 24 and 22, respectively. In different localities of Jhelum district, Coturnix coturnix (common quail) with FC = 22 was the most commonly used species for the enhancement of memory followed Athene brama (spotted owlet), Columba livia (blue rock pigeon), and Capra aegagrus (goat) which have FC values of 21, 20, and 20, respectively, whereas the lowest FC = 1 was calculated for Homo sapiens (human) from Jhelum and earthworms from Lahore.

Fidelity level (FL)
Fidelity level (FL) is used to identify species that are most preferred by the inhabitants to treatment of certain ailments. Animal species with topmost medicinal uses in a particular area have maximum fidelity level [75, 76]. The fidelity levels of animal species used by the inhabitants of Lahore and Jhelum districts are given in Table 3. Among the species reported from Lahore: Columba livia (blue rock pigeon) depicted highest FL (92.86%), followed by Capra aegagrus (goat) and Anas platyrhynchos domesticus

S #	Scientific name	Jhelum (FL)	Lahore (FL)
1	Bufo Stomaticus	0.000	28.57
2	Hoplobatrachus Tigerinus	37.50	0.000
3	Lissamys punctata andersoni	0.00	25.00
4	Laudakia agroensis	22.22	0.000
5	Uramastyx hardwickii	72.00	72.73
6	Naja naja naja	50.00	40.00
7	Echis carinatus sochureki	28.57	0.000
8	Lepus nigricollis dayanus	76.67	68.75
9	Hystrix indica	18.18	30.00
10	Pteropus giganteus	28.57	33.33
11	Rattus rattus	12.50	28.57
12	Ovis orientalis punjabiensis	83.33	63.64
13	Hemiechinus collaris	22.22	20.00
14	Canis aureus	28.57	25.00
15	Herpestes javanicus	18.18	22.22
16	Camelus dromedarius	60.00	55.56
17	Capra aegagrus hircus	75.00	89.66
18	Bos taurus	59.09	68.18
19	Bubalus bubalis	60.87	60.00
20	Manis crassicaudata	33.33	22.22
21	Homo sapiens	16.67	25.00
22	Ovis aries	57.69	65.38
23	Felis chaus	50.00	62.50
24	Felis domesticus	33.33	44.44
25	Oryctolagus cuniculus	61.11	66.67
26	Passer domesticus	60.00	65.00
27	Gallus gallus	74.29	77.14
28	Columba livia	89.29	92.86
29	Coturnix coturnix	73.81	73.81
30	Francolinus francolinus	66.67	70.00
31	Anas platyrhynchos f. domesticus	75.00	78.13
32	Streptopelia decaocto	44.44	47.37
33	Streptopelia tranquebarica	43.75	44.44
34	Streptopelia orientalis	42.86	43.75
35	Speletopasenegaleensis	38.46	46.15
36	Athene brama	79.17	75.00
37	Acridothere ginginianus	46.67	40.00
38	Anas platyrhynchos	40.00	33.33
39	Aquila nipalensis	52.94	47.06
40	Upupa epops	44.44	55.56
41	Rita rita	66.67	71.43
42	Sperata seenghala	66.67	55.56
43	Channa punctata	74.19	70.97
44	Channa marulius	71.43	71.43

Table 3: Comparison of fidelity level in the both study areas (Continued)
(domestic duck) with percentage FL = 89.66 and 78.13, respectively, whereas earthworm had the lowest FL 16.67%.

Among the animal species reported from different parts of Jhelum, *Columba livia* (blue rock pigeon), *Ovis orientalis punjabiensis* (urial), and *Athene brama* (spotted owl) were dominant with maximum percentage fidelity levels of 89.29, 83.33, and 79.71, respectively. However, *Hystrix indica* (Indian crested porcupine) had the lowest FL of 18.18% in Jhelum. The animal species with the highest FL could be used for in-depth chemical profiling and pharmaceutical properties. This will authenticate not only the medicinal worth of these species but could also be useful for novel animal-based drug discovery. Altaf et al. [77] document that the species *B. taurus*, *Oryctolagus cuniculus*, *Ovis aries*, *A. platyrhynchos domesticus*, *G. gallus*, and *P. domesticus* show 100% FL.

Relative importance (RI)

The relative importance of animal species used by the inhabitant of Lahore and Jhelum districts is mentioned in Table 2. Most of the animal species were found to be highly versatile in their uses such as *Apis mellifera* (honey bee) with RI of 5.95 and 5.39 in Lahore and Jhelum, respectively, followed by *Columba livia* (blue rock pigeon) having RI of 2.4 (Lahore) and 1.6 (Jhelum) and *Uromastyx hardwickii* (spiny-tail ground lizard) and *Heteropneustes fossilis* (singhi) with RI of 1.56 (Jhelum) and 1.5 (Lahore). The maximum RI values might be a sign of high affordability and accessibility of these species in the study areas.

Use value (UV)

Results of use value (UV) authenticate the relative importance of species or family for a population. This index was anticipated to craft a connotation between each species and the uses allocated to it by analyzing the index in relation to the use groups. Comparative assessment of UV of different animal species among the local communities residing in different parts of Lahore and Jhelum is given in Table 2. Among the reported animal species, the highest UVs of 0.89 and 0.88 were calculated for *Columba livia* (blue rock pigeon) from Jhelum and *Gallus gallus* (domestic chicken) from Lahore, whereas the lowest UVs of 1.6 and 0.12 were attained by
earthworm and *Rattus rattus* (house rat) in Lahore and Jhelum in respective order. The high UVs of these species certify their consistent use in the treatment of different diseases. In addition, citation by the maximum number of informants and use reports viewing that these species are well known and commonly utilized for medicinal purpose in the study areas.

Principal component analysis (PCA) and cluster analysis (CA)

Results of PCA are given in Fig. 6a, b. For district Jhelum, variables loaded onto component 1 include the following: FC ($r = 0.004$), UV ($r = 0.01$), RI ($r = 0.015$), and FL ($r = 0.999$), while on component 2 they included the following: FC ($r = 0.02$), UV ($r = -0.038$), RI ($r = 0.998$), and FL ($r = -0.015$). For Lahore district, variables loading onto component 1 were FC ($r = 0.0067$), UV ($r = 0.011$), RI ($r = 0.016$), and FL ($r = 0.999$) and component 2 were FC ($r = 0.02$), UV ($r = -0.021$), RI ($r = 0.999$), and FL ($r = -0.017$). The first two axes of the PCA showed 99.9% variation in samples (component 1: 99.9%; component 2: 0.1%) from Jhelum (Fig. 6a) and 99.87% variation in samples (component 1: 99.87%; component 2: 0.119%) from Lahore (Fig. 6b). Each principal component is not correlated with other principal components recorded from Jhelum and Lahore, respectively. Findings are resembled with reported study [78].

The statistical analysis shows that different groups are present in the cluster analysis, which are differentiated on the basis of values. The statistical analysis shows that two groups are present in the cluster analysis in Jhelum, i.e., group 1 (G1) and group 2 (G2). G1 and G2 have distance/variability of 45 points; G1 has species as LA, HCO, HCR, HJ, HS, RP, LPA, BS, and LTE (code are present in Table 2). G2 has two subgroups, i.e., subgroup 1 (SG1) and subgroup 2 (SG2) have 30 variability points. SG1 was further divided into two groups as SG1A and SG1B (variability = 14 points); SG2 was further divided into two groups as SG2A and SG2B (variability = 15 points) (Fig. 7a, b). The statistical analysis shows that two groups are present in the cluster analysis in Lahore, i.e., group 1 (G1) and group 2 (G2). G1 and G2 have distance/variability of 54 points; G1 has species as ECS, HT, and LA (code are present in Table 2). G2 has two sub groups, i.e., subgroup 1 (SG1) and subgroup 2 (SG2) have 33 variability points. SG1 was further divided into two groups as SG1A and SG1B (variability = 14 points); SG2 was further divided into two groups as SG2A and SG2B (variability = 24 points) (Fig. 7a, b). Findings are resembled with the reported study [78].

Conclusion

Traditional knowledge of local communities, particularly on the medicinal application of animal species to treat health disorders, indicates their strong association with the surrounding environment. Medicinal uses of herptiles and ichthyofauna of Pakistan were studied for the first time. Furthermore, application of *O. orientalis punjabensis*, *F. francolinus*, *S. sarwari*, *C. punctate*, *O. auratus*, *C. idella*, *C. carpio*, *L. rohita*, and *C. auratus* to cure various diseases in humans has rarely been reported before. Our findings provide baseline data that could be valuable in conservation and sustainable use of animal biodiversity in this region. Screening of pharmacological active substances and in vitro or in vivo assessment of biological activities of animal species with maximum FL, UV, RI, and RFM could be important for animal-based novel drugs.

Acknowledgements

Local informants and the employees of Wildlife and Park, Fisheries and Aquaculture Departments of the Punjab Government are thankfully acknowledged.

Funding

We do not have any funding to conduct this survey. Therefore, waiver request was sent to the Editorial office, which agreed to grant a full waiver to this manuscript.

Availability of data and materials

All data have already been included in the manuscript.

Declaration

Ethnomedicinal applications of animal species by the local communities of Punjab, Pakistan.

Authors’ contributions

MA designed the study, conducted the field work, and prepared the first draft; MU, ARA, and NM were involved in the field survey and data collection; AA was involved in the data analysis; AMA contributed to the data analysis, interpolation, and final write up. All the authors critically read this article and approved as the final manuscript.

Ethics approval and consent to participate

The present study is purely based on the field survey instead of human or animal trials. Therefore, ethical approval and consent to participate is not applicable. However, formal consent was taken from informants regarding data collection and publication. In addition, ethical guidelines of the International Society of Ethnobiology (http://www.ethnobiology.net/) were strictly followed.

Consent for publication

Present paper does not contain any individual person’s data; therefore, this section is not applicable to our study.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1Department of Zoology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan. 2School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China. 3Statistical Wing, Department of Mathematics, Women University of Azad Jammu and Kashmir, Bagh, Pakistan. 4Department of Fisheries and Aquaculture, Punjab, Pakistan. 5Department of Environment Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
60. Hall J. Textbook of medical physiology Elsevier. 2011.
61. Jia CS. Pangolin. Chinese Herb Med. 2013; http://chineseherbinfo.com
62. Zhou Z-M, Zhou Y, Newman C, Macdonald DW. Scaling up pangolin protection in China. Front Ecol Environ. 2014;12:97–8.
63. Lohani U. Eroding ethnozoological knowledge among Magars in Central Nepal. Ind J Trad Knowledge. 2011;10:66–73.
64. Lohani U. Traditional uses of animals among Jirels of Central Nepal. Ethno Med. 2011;5:115–24.
65. Al-Yousef N, Gaafar A, Al-Otaibi B, Al-Jammaz I, Al-Hussein K, Aboussekhra A. Camel urine components display anti-cancer properties in vitro. J Ethnopharmacol. 2012;143:819–25.
66. Alves RNR, Neta ROS, Trovão D, Barbosa J, Barros AT, Dias TLP. Traditional uses of medicinal animals in the semi-arid region of northeastern Brazil. J Ethnobiol Ethnomed. 2012;8:469–8.
67. Barros FB, Varela SA, Pereira HM, Vicente L. Medicinal use of fauna by a traditional community in the Brazilian Amazonia. J Ethnobiol Ethnomed. 2012;8:37.
68. Kim H, Song M-J. Ethnozoological study of medicinal animals on Jeju Island, Korea. J Ethnopharmacol. 2013;146:75–82.
69. Kim H, Song M-J. Analysis of ethnomedicinal practices for treating skin diseases in communities on Jeju Island (Korea). Ind J Trad Knowledge. 2014;13:673–80.
70. Melo R, Silva O, Souto A, Alves RRN, Schiel N. The role of mammals in local communities living in conservation areas in the northeast of Brazil: an ethnozoological approach. Trop Conserv Sci. 2014;7:23–39.
71. Mohanty I, Senapati MR, Jena D, Palai S. Diversified uses of cow urine. Int J Pharm Pharm Sci. 2014;6:20–2.
72. Al-Awadi A, Al-Judaibi A. Effects of heating and storage on the antifungal activity of camel urine. Clin Microbiol. 2015;3:1–6.
73. Vijayakumar S, Prabhu S, Yabesh JM, Prakashraj R. A quantitative ethnozoological study of traditionally used animals in Pachamala hills of Tamil Nadu, India. J Ethnopharmacol. 2015;171:51.
74. Vijayakumar S, Yabesh JM, Prabhu S, Aiyar M, Damodaran R. Ethnozoological study of animals used by traditional healers in Silent Valley of Kerala, India. J Ethnopharmacol. 2015;162:296–305.
75. Srithe K, Balitev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. Camel urine components display anti-cancer properties in vitro. J Ethnopharmacol. 2011;5:115–24.
76. Mohanty I, Senapati MR, Jena D, Palai S. Diversified uses of cow urine. Int J Pharm Pharm Sci. 2014;6:20–2.
77. Al-Awadi A, Al-Judaibi A. Effects of heating and storage on the antifungal activity of camel urine. Clin Microbiol. 2015;3:1–6.
78. Kim H, Song M-J. Ethnozoological study of medicinal animals on Jeju Island, Korea. J Ethnopharmacol. 2013;146:75–82.
79. Kim H, Song M-J. Analysis of ethnomedicinal practices for treating skin diseases in communities on Jeju Island (Korea). Ind J Trad Knowledge. 2014;13:673–80.
80. Melo R, Silva O, Souto A, Alves RRN, Schiel N. The role of mammals in local communities living in conservation areas in the northeast of Brazil: an ethnozoological approach. Trop Conserv Sci. 2014;7:23–39.
81. Mohanty I, Senapati MR, Jena D, Palai S. Diversified uses of cow urine. Int J Pharm Pharm Sci. 2014;6:20–2.
82. Al-Awadi A, Al-Judaibi A. Effects of heating and storage on the antifungal activity of camel urine. Clin Microbiol. 2015;3:1–6.
83. Kim H, Song M-J. Ethnozoological study of medicinal animals on Jeju Island, Korea. J Ethnopharmacol. 2013;146:75–82.
84. Kim H, Song M-J. Analysis of ethnomedicinal practices for treating skin diseases in communities on Jeju Island (Korea). Ind J Trad Knowledge. 2014;13:673–80.
85. Melo R, Silva O, Souto A, Alves RRN, Schiel N. The role of mammals in local communities living in conservation areas in the northeast of Brazil: an ethnozoological approach. Trop Conserv Sci. 2014;7:23–39.
86. Mohanty I, Senapati MR, Jena D, Palai S. Diversified uses of cow urine. Int J Pharm Pharm Sci. 2014;6:20–2.
87. Al-Awadi A, Al-Judaibi A. Effects of heating and storage on the antifungal activity of camel urine. Clin Microbiol. 2015;3:1–6.
88. Kim H, Song M-J. Ethnozoological study of medicinal animals on Jeju Island, Korea. J Ethnopharmacol. 2013;146:75–82.
89. Kim H, Song M-J. Analysis of ethnomedicinal practices for treating skin diseases in communities on Jeju Island (Korea). Ind J Trad Knowledge. 2014;13:673–80.
90. Melo R, Silva O, Souto A, Alves RRN, Schiel N. The role of mammals in local communities living in conservation areas in the northeast of Brazil: an ethnozoological approach. Trop Conserv Sci. 2014;7:23–39.
91. Mohanty I, Senapati MR, Jena D, Palai S. Diversified uses of cow urine. Int J Pharm Pharm Sci. 2014;6:20–2.
113. Benítez G. Animals used for medicinal and magico-religious purposes in western Granada Province, Andalusia (Spain). J Ethnopharmacol. 2011;137:1113–23.
114. Alves RR, Neto NAL, Brooks SE, Albuquerque UP. Commercialization of animal-derived remedies as complementary medicine in the semi-arid region of Northeastern Brazil. J Ethnopharmacol. 2009;124:600–8.
115. Alves RRN, Oliveira MGG, Barboza RRD, Lopez LCS, Oliveira MGG. An ethnozoological survey of medicinal animals commercialized in the markets of Campina Grande, NE Brazil. Human Ecol Rev. 2010;17:11–7.
116. Souto WMS, Barboza RRD, da Silva MJ, Alves RRN. Traditional knowledge of sertanejos about zootherapeutic practices used in ethnoveterinary medicine of NE Brazil. Ind J Trad Knowledge. 2012;11:259–65.
117. Jacobo-Salcedo MR, Alonso-Castro AJ, Zarate-Martínez A. Folk medicinal use of fauna in Mapimi, Durango, México. J Ethnopharmacol. 2011;133:902–6.
118. Selikin A, Ahmed R. Wetland fish biodiversity of Majuli river island (India) and their medicinal values. The Clarion. 2012;2:81–86.
119. Teronpi V, Singh H, Tamuli A, Teron R. Ethnozoology of the Karbis of Assam, India: Use of ichthyofauna in traditional health-care practices. Anc Sci Life. 2012;32:99.
120. Mahawar MM, Jaroli D. Traditional zootherapeutic studies in India: a review. J Ethnobiol Ethnomed. 2008;4:17.
121. Deb AK, Emdad HC. ‘Every mother is a mini-doctor’: Ethnomedicinal uses of fish, shellfish and some other aquatic animals in Bangladesh. J Ethnopharmacol. 2011;134:259–67.
122. Muhammad N, Khan AM, Umair M, Qazi A, Yaqoob M, Ashraf S, Khan Q, Farooq M. Assessment of distribution and ethnocultural uses of the sol (Channa marulius) in Punjab, Pakistan. J Wildl Ecol. 2017;1:35–41.
123. Vallejo JR, González JA. Fish-based remedies in Spanish ethnomedicine: a review from a historical perspective. J Ethnobiol Ethnomed. 2014;10:37.
124. Muhammad N, Umair M, Khan AM, Abbasi AR, Khan Q, Khan A, Awan MZ. Assessment of the diversity and ethno-medicinal uses of the carps in Punjab, Pakistan. J Wildl Ecol. 2017;1:52–60.
125. Mawla F, Khatoon S, Rehana F, Jahan S, Shelly M, Hossain S, Haq WM, Rahman S, Debnath K, Rahmatullah M. Ethnomedicinal plants of folk medicinal practitioners in four villages of Natore and Rajshahi districts, Bangladesh. Am Eur J Sustain Agric. 2012;6:406–16.