Letrozole for patients with polycystic ovary syndrome

A retrospective study

Hui-juan Guang, MBa, Feng Li, MBb, Jun Shi, MBc,*

Abstract
This retrospective study investigated the efficacy and safety of letrozole for patients with polycystic ovary syndrome (PCOS).

Totally, 136 cases of infertility women with PCOS were analyzed. Of those, 68 patients received letrozole, and were assigned to Letrozole group. The other 68 cases received clomiphene, and were assigned to clomiphene group. Patients in both groups were treated up to 5 treatment cycles. The primary endpoint included infant outcomes. The secondary endpoints consisted of the number of women in conception, pregnancy, pregnancy loss, and ovulation. In addition, any kinds of adverse events were also recorded.

Cases in the Letrozole group did not show better outcomes neither in primary endpoint (live birth, $P=.11$; birth weight, $P=.95$; infant gender, $P=.85$), nor in secondary endpoints (the number of women in conception, $P=.07$; pregnancy, $P=.12$; pregnancy loss, $P=.47$; pregnancy loss in first trimester, $P=.70$; and ovulation, $P=.09$), compared with cases in the clomiphene group. Moreover, no adverse events differ significantly between 2 groups.

This study demonstrated that the efficacy of letrozole is not superior to the clomiphene in patients with PCOS.

Abbreviation: PCOS = polycystic ovary syndrome.

Keywords: clomiphene, efficacy, letrozole, polycystic ovary syndrome

1. Introduction
Polycystic ovary syndrome (PCOS) is one of the most causes that affect the women of childbearing age,\cite{1-4} and often leads to infertility.\cite{5-7} It is diagnosed based on the hyperandrogenism, oligomenorrhea, and polycystic ovaries on ultrasonography.\cite{8-10} Its prevalence has been reported to vary from 6.8% to 18% according to the different diagnostic criteria.\cite{11,12} Its symptoms often bring psychologic disorders for patients with PCOS.\cite{13,14} These conditions often consist of depression, anxiety, irregular menstrual periods, and even the infertility.\cite{14-17}

Various management were proposed for infertile women with PCOS.\cite{18-20} However, the optimal management option has not been addressed satisfied. Although multiple treatments including weight reduction, clomiphene citrate, metformin, gonadotropins, and ovary cauterization have been reported to treat such condition, the efficacy still has insufficient evidence to support.\cite{21,22}

Letrozole is an aromatase inhibitor that was used as an ovulation inductor in anovulatory infertility women with more than 56mm endometrial thickness.\cite{23,24} It inhibits estrogen production by repressing the enzyme aromatase.\cite{25} It has been reported that letrozole can inhibit estrogen levels by at least 97% to 99%.\cite{26} The other studies also reported that letrozole is effective in clomiphene-resistant patients, and also resulted in ovulation of 62% cases, and pregnancy of 14.7%.\cite{27,28} Additionally, no adverse events have been reported on fetus.\cite{28} However, current data are still insufficient to support the idea that letrozole can be utilized effectively to treat such condition. Therefore, in this retrospective study, we investigated the efficacy and safety of letrozole for infertility women with PCOS.

2. Materials and methods

2.1. Ethics
This retrospective study was approved by the Ethical Committee of Hanzhong People’s Hospital, and The Ninth Hospital of Xi’an. It was conducted based on the Declaration of Helsinki. All patients provided the written informed consent form.

2.2. Design
A total of 136 cases of infertility women with PCOS were analyzed in this retrospective study. All cases were completed from January 2016 to December 2017 at Hanzhong People’s Hospital, and The Ninth Hospital of Xi’an. Sixty-eight cases underwent letrozole, and were assigned as a Letrozole group. The other 68 cases received clomiphene, and were assigned as a clomiphene group. No randomization and blinding were applied, except the data analyst was blinded in this study. All the cases were allocated to the different groups according to the different treatments they received. All cases in both groups received the treatment up to 5 cycles.
2.3. Patients

All cases of infertile women with PCOS from 18 to 45 years old were analyzed in this study. The PCOS was diagnosed by modified Rotterdam criteria.[25] All included cases had no major medical disorders, and their male partners were also required to participate in this study. Moreover, all subjects had ovulatory dysfunction, polycystic ovaries, or increased ovarian volume.[30,31] Furthermore, all patient cases had normal uterine cavity, and at least 1 patent fallopian tube. The sperm concentration of a male partner should have at least 14 million/mL, and both couples are committed to have regular intercourse during the study period. However, patients were excluded if they had taken confounding medications, such as primarily sex steroids, and mimic PCOS. In addition, cases were also excluded if they previously received the study medication within past 3 months.

2.4. Treatment schedule

The 68 patients in the Letrozole group received letrozole, 2.5 mg per pill daily, and the other 68 subjects in the clomiphene group taken clomiphene, 50 mg per pill daily. All patients in both groups underwent letrozole or clomiphene starting on cycle day 3 for consecutive 5 days for up to 5 menstrual cycles. If there was a nonresponse or a poor ovulatory response occurred, the dose was increased in subsequent cycles in the either group. The maximum daily dose of letrozole was 7.5 mg, and clomiphene was 150 mg.

2.5. Outcome measurements

The primary endpoint was infant outcome. The secondary endpoints comprised of the number of women in conception, pregnancy, pregnancy loss, and ovulation. Additionally, adverse events were also recorded during the treatment period.

2.6. Statistical analysis

The sample size was calculated based on the previous published study with an ovulation rate of 53.3%. Thus, the desired sample size for each group was estimated to be 68 patients with 25% difference between 2 groups, and a power of 80% in this study.

All outcome and characteristic values were analyzed by using SPSS software (SPSSV.17.0, IBM Corp, Armonk, NY). Continuous non-normally value was analyzed by Mann–Whitney U test, while normally variables were performed by t-test. Categorical value was conducted by Chi-squared test. P < .05 was defined as having a statistical significance.

3. Results

A total of 136 cases of infertile women with PCOS were analyzed in this retrospective study. All the characteristic values of included cases are showed in Table 1. No significant differences regarding all values were detected between 2 groups in this study.

The results showed that patients who received letrozole did not exert better outcomes in neither primary endpoint, including live birth (P=.11, Table 2), birth weight (P=.95, Table 2), infant gender (P=.85, Table 2); nor the secondary endpoints, comprising of the number of women in conception (P=.07, Table 3), pregnancy (P=.12, Table 3), pregnancy loss (P=.47, Table 3), pregnancy loss in first trimester (P=.70, Table 3), and ovulation (P=.09, Table 3), compared with patients who received clomiphene.

The adverse events in both groups are listed in Table 4. There were not significant differences in all adverse events between 2 groups. No treatment related death in women occurred in either group, except 1 fetal death in the clomiphene group (Table 4).

4. Discussion

Letrozole plays very important role in the treatment of infertility women with PCOS. However, its efficacy is still inconsistent, especially when compared with clomiphene.

Previous systematic review and meta-analysis reported that letrozole could significantly enhance the live birth and pregnancy rates in patients with PCOS.[34] However, the other meta-analysis did not find positive efficacy of letrozole when compared with clomiphene.[35,36] The results of the present study are consistent with the previous studies.[35,36]

The results of this retrospective study showed that no significant differences of adverse events were detected between 2 groups. In addition, patients in the Letrozole group did not exert better outcomes in primary endpoint of live birth, birth weight, and infant gender; and also in secondary endpoints of the

Table 1

Variable	Letrozole group (n=68)	Clomiphene group (n=68)	P
Age, y	28.3 (6.7)	27.5 (7.1)	.50
Race (Asian China)	68 (100.0)	68 (100.0)	–
Occupation			
Employed	63 (92.6)	60 (88.2)	.39
Unemployed	5 (7.4)	8 (11.8)	–
Body mass index	28.4 (3.3)	27.8 (3.7)	.32
Duration of infertility, y	4.3 (3.2)	4.6 (3.4)	.60
Oligomenorrhea	51 (75.0)	55 (80.9)	.41
Menometrorrhagia	2 (2.9)	3 (4.4)	.65
Regular menstruation	15 (22.1)	10 (14.7)	.27
Hirsutism	20 (29.4)	18 (26.5)	.70
History of previous miscarriage	16 (23.5)	15 (21.1)	.84
Mean luteinizing hormone on day 3 of menstruation, mlU/mL	10.1 (4.0)	10.0 (4.2)	.89
Mean follicle-stimulating hormone on day 3 of menstruation, mlU/mL	5.3 (1.9)	5.2 (2.1)	.77
Mean thyroid-stimulating hormone, mlU/mL	1.8 (0.8)	1.9 (0.7)	.44
Mean estradiol on day 3 of menstruation, pg/mL	91.1 (22.4)	90.7 (21.8)	.92

Data are present as mean ± standard deviation or number.

Table 2

Primary endpoints	Letrozole group (n=68)	Clomiphene group (n=68)	P
Live birth	20 (29.4)	12 (17.6)	.11
Singleton	18/20 (90.0)	12/12 (100.0)	.44
Twin	22/20 (10.0)	0/12 (0)	–
Birth weight, g	3261.7 (533.6)	3246.0 (801.4)	.95
Infant gender			
Male	11/20 (55.0)	7/12 (58.3)	.85
Female	9/20 (45.0)	5/12 (41.7)	–

Data are present as mean ± standard deviation or number (%).
Comparison of adverse events between 2 groups.

Adverse events	Letrozole group (n=68)	Clomiphene group (n=68)	P
Hot flushes	15 (22.1)	23 (33.8)	.13
Fatigue	15 (22.1)	9 (13.2)	.18
Dizziness	8 (11.8)	5 (7.4)	.39
Ectopic pregnancy	1 (1.5)	0 (0)	.50
Heterotrophic pregnancy	0 (0)	1 (1.5)	.50
Hospitalization	1 (1.5)	2 (2.9)	.57
Congenital anomaly	1 (1.5)	0 (0)	.50
Fetal death	0 (0)	1 (1.5)	.50

Data are present as mean (range).

Comparison of secondary endpoints between 2 groups.

Secondary endpoints	Letrozole group (n=68)	Clomiphene group (n=68)	P
No. of women with conception	27 (39.7)	17 (25.9)	.07
No. of women with pregnancy	22 (32.4)	14 (20.6)	.12
No. of women with pregnancy loss in first trimester	5 (7.4)	3 (4.4)	.47
No. of women with ovulation	4 (5.9)	3 (4.4)	.70
No. of women with ovulation	59 (86.8)	51 (75.0)	.09

Data are present as number (%).

number of women with conception, pregnancy, pregnancy loss, pregnancy loss in first trimester, and ovulation, compared with subjects in the clomiphene group. Additionally, no significant differences in adverse events were found between 2 groups. It indicated that letrozole and clomiphene have similar efficacy and safety in treating infertility women with PCOS.

This retrospective study had several following limitations. First of all, the sample size was still relative small, which may affect the results of this study. Then, this retrospective study had its own intrinsic limitation, which may impact its results. Thirdly, this study did not include comprehensive endpoints, such as quality of life in infertility women with PCOS, because it just analyzed the outcomes data based on the completed cases only. Fourth, this study did not utilize randomization and blinding, which may increase the risk of case selection. Therefore, the future studies should avoid all these limitations.

5. Conclusion

The results of this retrospective study did not find that the efficacy of letrozole is superior to clomiphene for the treatment of infertility women with PCOS.

Author contributions

Conceptualization: Jun Shi, Hui-juan Guang, Feng Li.
Data curation: Jun Shi, Hui-juan Guang, Feng Li.
Formal analysis: Hui-juan Guang.
Investigation: Jun Shi, Feng Li.
Methodology: Hui-juan Guang.
Project administration: Feng Li.
Resources: Jun Shi, Feng Li.

Software: Hui-juan Guang.
Supervision: Jun Shi, Feng Li.
Validation: Jun Shi, Hui-juan Guang.
Visualization: Jun Shi.
Writing – original draft: Jun Shi, Hui-juan Guang, Feng Li.
Writing – review & editing: Jun Shi, Hui-juan Guang, Feng Li.

References

[1] Meier RK. Polycystic ovary syndrome. Nurs Clin North Am 2018;33:407–20.
[2] Marciniak A, Lejman-Larzys K, Nawrocka-Rutkowska J, et al. Polycystic ovary syndrome - current state of knowledge. Pol Merkur Lekarski 2018;44:296–301.
[3] Smyka M, Grzechocińska B, Wielgos M. The role of lifestyle changes in the treatment of polycystic ovary syndrome. Neuro Endocrinol Lett 2018;39:521–7.
[4] Escolar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 2018;14:270–84.
[5] Tanbo T, Mellembakken J, Bjørke S, et al. Ovulation induction in polycystic ovary syndrome. Acta Obstet Gynecol Scand 2018;97:1162–7.
[6] Legro RS. Ovulation induction in polycystic ovary syndrome: current options. Best Pract Res Clin Obstet Gynaecol 2016;37:152–9.
[7] Johan AE, Palomba S, Hart R. Polycystic ovary syndrome, obesity, and pregnancy. Semin Reprod Med 2016;34:93–101.
[8] Kamboj MK, Bonny AE. Polycystic ovary syndrome in adolescence: diagnostic and therapeutic strategies. Transl Pediatr 2017;6:248–53.
[9] The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop GroupRevised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004;81:19–25.
[10] The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop GroupRevised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004;19:41–7.
[11] Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med 2010;8:41.
[12] Saad AK. Polycystic ovary syndrome: diagnosis and management of related infertility. Obstet Gynecol Reprod Med 2009;19:263–70.
[13] Cipkala-Gaffin J, Talbott EO, Song MK, et al. Associations between psychologic symptoms and life satisfaction in women with polycystic ovary syndrome. J Womens Health (Larchmt) 2012;21:179–87.
[14] Cooney LG, Dokras A. Depression and anxiety in polycystic ovary syndrome: etiology and treatment. Curr Psychiatry Rep 2017;19:83.
[15] Butterworth J, Deguara J, Bong CM. Bariatric surgery, polycystic ovary syndrome, and infertility. J Obes 2016;2016:1871594.
[16] Bergh CM, Moore M, Gundell C. Evidence-based management of infertility in women with polycystic ovary syndrome. J Obset Gynecol Neonatal Nurs 2016;45:111–22.
[17] Aubuchon M, Legro RS. Polycystic ovary syndrome: current infertility management. Clin Obset Gynecol 2011;54:675–84.
[18] Zhou J, Yang L, Yu J, et al. Efficacy of acupuncture on menstrual frequency in women with polycystic ovary syndrome: Protocol for a randomized, controlled trial. Randomized controlled trial. Medicine (Baltimore) 2017;96:e8828.
[19] Zeng XL, Zhang YF, Tian Q, et al. Effects of metformin on pregnancy outcomes in women with polycystic ovary syndrome: A meta-analysis. Medicine (Baltimore) 2016;95:e4526.
[20] Wang J, Zhu L, Hu K, et al. Effects of metformin treatment on serum levels of C-reactive protein and interleukin-6 in women with polycystic ovary syndrome; a meta-analysis: a PRISMA-compliant article. Medicine (Baltimore) 2017;96:e8183.
[21] Jirege PR, Patill RS. Comparison of endocrine and ultrasound profiles during ovulation induction with clomiphene citrate and letrozole in ovarioly volunteer women. Fertil Steril 2010;93:174–83.
[22] Rouzi AA, Ardawi MS. A randomized controlled trial of the efficacy of rosiglitazone and clomiphene citrate versus metformin and clomiphene citrate in women with clomiphene citrate-resistant polycystic ovary syndrome. Fertil Steril 2006;85:428–35.
[23] Franik S, Eltrop SM, Kremer JA, et al. Aromatase inhibitors (letrozole) for subfertile women with polycystic ovary syndrome. Cochrane Database Syst Rev 2018;5:CD010287.
[24] Hu S, Yu Q, Wang Y, et al. Letrozole versus clomiphene citrate in polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Arch Gynecol Obstet 2018;297:1081–8.

[25] Rajan RK, M SS, Balaji B. Soy isoflavones exert beneficial effects on letrozole-induced rat polycystic ovary syndrome (PCOS) model through anti-androgenic mechanism. Pharm Biol 2017;55:242–51.

[26] Pavone ME, Bulun SE. Clinical review: the use of aromatase inhibitors for ovulation induction and superovulation. J Clin Endocrinol Metab 2013;98:1838–44.

[27] Mitwally MF, Casper RF. Use of an aromatase inhibitor for induction of ovulation in patients with an inadequate response to clomiphene citrate. Fertil Steril 2001;75:305–9.

[28] Abu Hashim H, Shokeir T, Badawy A. Letrozole versus combined metformin and clomiphene citrate for ovulation induction in clomiphene-resistant women with polycystic ovary syndrome: a randomized controlled trial. Fertil Steril 2009;91:1405–9.

[29] Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004;81:19–25.

[30] Legro RS, Brzyski RG, Diamond MP, et al. The Pregnancy in Polycystic Ovary Syndrome II study: baseline characteristics and effects of obesity from a multicenter randomized clinical trial. Fertil Steril 2014;101:258–69.

[31] Legro RS, Schlaff WD, Diamond MP, et al. Total testosterone assays in women with polycystic ovary syndrome: precision and correlation with hirsutism. J Clin Endocrinol Metab 2010;95:5303–13.

[32] Palomba S, Otto F J Jr, Nardo L G, et al. Metformin administration versus laparoscopic ovarian diathermy in clomiphene citrate-resistant women with polycystic ovary syndrome: a prospective parallel randomized double-blind placebo-controlled trial. J Clin Endocrin Metab 2004;89:4801–9.

[33] Roy PB, Ray A, Chakrabarti PS. Comparison of efficacy of letrozole and clomiphene citrate in ovulation induction in Indian women with polycystic ovarian syndrome. Arch Gynecol Obstet 2012;285:873–7.

[34] Roy KK, Barua J, Singla S, et al. A prospective randomized trial comparing the efficacy of letrozole and clomiphene citrate in induction of ovulation in polycystic ovarian syndrome. J Hum Reprod Sci 2012;5:20–5.

[35] He D, Jiang F. Meta-analysis of letrozole versus clomiphene citrate in polycystic ovary syndrome. Reprod Biomed Online 2011;23:91–6.

[36] Requena A, Herrero J, Landeras J, et al. Reproductive Endocrinology Interest Group of Spanish Society of Fertility. Use of letrozole in assisted reproduction: a systematic review and metaanalysis. Hum Reprod Update 2008;14:371–82.