STEADY ESTIMATION ALGORITHMS OF THE DYNAMIC SYSTEMS CONDITION ON THE BASIS OF CONCEPTS OF THE ADAPTIVE FILTRATION AND CONTROL

H.Z. Igamberdiyev¹, O.O. Zaripov² and A.N. Yusupbekov³

Department of Electronic and Automatic, Tashkent State Technical University, Tashkent, Uzbekistan
E-mail: ¹uz3121@mail.ru, ²orif_zaripov@rambler.ru and ³abek71@mail.ru

Abstract
Dynamic systems condition estimation regularization algorithms in the conditions of signals and hindrances statistical characteristics aprioristic uncertainty are offered. Regular iterative algorithms of strengthening matrix factor elements of the Kalman filter, allowing to adapt the filter to changing hindrance-alarm conditions are developed. Steady adaptive estimation algorithms of a condition vector in the aprioristic uncertainty conditions of covariance matrices of object noise and the measurements hindrances providing a certain roughness of filtration process in relation to changing statistical characteristics of signals information parameters are offered. Offered practical realization results of the dynamic systems condition estimation algorithms are given at the adaptive management systems synthesis problems solution by technological processes of granulation drying of an ammophos pulp and receiving ammonia.

Keywords:
Dynamic System, Condition, Adaptive Filtration, Regularization, Regularization Parameter

1. INTRODUCTION

In the majority of management processes or multistep procedures of decision-making in technical and technological systems take place inherent in them uncertainty. This uncertainty doesn’t allow estimating precisely influence of managing directors of influences on quality of functioning of synthesized system. The uncertainty, existing both in the system, and in supervision, in many tasks can be presented as stochastic processes. Methods of stochastic management are applicable to such tasks. Often in the theory and practice of automation of management the type of stochastic management based on the assumption of performance of property of authentic equivalence is used. Generally this management isn’t optimum. Property of divisibility is weaker in comparison with property of authentic equivalence. The principle of divisibility allows breaking a problem of optimum stochastic control into two independent subtasks: subtask of an optimum filtration or estimation and subtask of the optimum determined control. This circumstance once again indicates importance of a problem of dynamic estimation in the general theory of synthesis and creation of optimum control systems [1-4].

Optimum algorithms of estimation, identifications and control, which have received by present time considerable development, grow out of the decision of corresponding model problems in the presence of full a priori statistical information. In practice meet, as a rule, such situations in which a priori statistical information or is known approximately, or completely is absent [5-7]. In this case conditions of model problems are violated, the received algorithms of estimation become nonoptimal, and estimations formed by them can become untenable and, moreover, appear divergent. Above-mentioned causes necessity of supporting certain roughness of filter parameters to the factors noted above, i.e. Kalman filter adaptation [8-11].

Practical realization of parametric adaptive estimator meets the considerable difficulties of computing character connected with that circumstance, that at their formation it is necessary to consider the problems which decisions are unstable to small changes of initial data. Problems of similar type, in essence, are ill-conditioned. They belong to a class of ill-posed problems [12-15]. Thereupon working out of effective regular algorithms of steady estimation of dynamic systems conditions at parametric prior uncertainty and synthesis of computing circuits of their practical realization gets rather great value.

2. TASK STATEMENT

Let's consider the system described by the equations

\[x_{i+1} = A_i x_i + B_i u_i + I_i w_i, \]

\[z_i = H_i x_i + v_i, \]

where, \(x_i \) - state vector of system of dimension \(n \); \(u_i \) - command vector of dimension \(l \); \(z_i \) - a vector of observation of dimension \(m \); \(w_i \) and \(v_i \) - vectors of object noise and disturbance of observation of dimension \(q \) and \(p \) accordingly, being sequence of a kind Gaussian white noise with characteristics

\[E[w_i] = 0, \quad E[w_i w_i^T] = P_{i,i} \]

\[E[v_i] = 0, \quad E[v_i v_i^T] = Q_{i,i} \]

where, \(A_i, B_i, I_i \) and \(H_i \) - matrices of corresponding dimensions, \(\delta_{ik} \) - Kronecker symbol.

Let's use quadratic performance criterion

\[J_0 = E \left[\sum_{k=0}^{N-1} \left(x_{k+1}^T P_{k+1} x_{k+1} + u_k^T V_k u_k \right) \right], \]

where, weighting matrices \(P_k \) are positive and semi-definite. In the assumption of existence of control law weighting matrices of control \(V_k \) are accepted positive defined. A principal cause causing wide application of quadratic performance criterion, its convenience to analytical researches is.

As the system Eq.(1) is linear, and an initial state, noise and disturbances - Gaussian, its condition is Gaussian at any moment too. Besides, if to consider Gaussian character of noise and disturbances, and to assume linearity of Eq.(2) it is possible to make the assumption, that measurements will be Gaussian for all \(i \) too. It is possible to show [2, 5], that density \(p(x_i \mid z^i) \) and \(p(x_i \mid z^{<i}) \) are Gaussian for all \(i \). A posteriori density \(p(x_i \mid z) \) can be
expressed through average \(\hat{x}_{i|j} \) and covariance matrix \(P_{i|j} \) of error of estimation. These statistics are defined Kalman filter equations:

\[
\hat{x}_{i|j-1} = A_{i,j-1} \hat{x}_{i-1|j-1} + B_{i,j-1} u_{i-1},
\]

\[
\hat{x}_{i|j} = \hat{x}_{i|j-1} + K_i [z_i - B_{i,j-1} u_{i-1} - H_i \hat{x}_{i|j-1}],
\]

where, \(K_i = P_{i|j-1} H_i^T [H_i P_{i|j-1} H_i^T + R_i]^{-1}, \)

\[
P_{i|j-1} = A_{i,j-1} P_{i-1|j-1} A_{i,j-1}^T + Q_i,
\]

\[
P_{i|j} = P_{i|j-1} - K_i H_i P_{i|j-1},
\]

and initial conditions are

\[
\hat{x}_{0|0} = \mu_0, \quad P_{0|0} = M_0.
\]

The Eq.(4) – Eq.(6) describe an average, covariance and, hence, Gaussian a posteriori density function for the system corresponding to the Eq.(1) – Eq.(2). Then control strategy minimizing performance criterion Eq.(3) at restrictions of a kind Eq.(1) and Eq.(2), is formed on the basis of equation:

\[
u_i = -A_{i+1} \hat{x}_{i+1|j},
\]

where, \(A_{i+1} = \left[\begin{bmatrix} T_{i+1} & 0 & \cdots & 0 \end{bmatrix} / \begin{bmatrix} I_{i+1} & 0 & \cdots & 0 \end{bmatrix} \right], \)

\[
T_{i+1} = \Pi_{i+1} A_{i+1} + V_i,
\]

\[
\Pi_{i+1} = \Pi_{i+1} - \Pi_{i+1} \Gamma_{i+1} \Lambda_{i+1},
\]

\[
\Pi_{N-i|N} = P_{N}.
\]

The given strategy allows to synthesize control systems on the basis of principle of distribution. According to this principle estimation procedure of parameters or state variables is carried out separately with calculation of the decision.

3. ALGORITHMS OF THE DECISION

Let’s consider the linear dynamic system described by the Eq.(1), Eq.(2). The important property of the optimum filter consists in that [2, 6] that remainder terms defined as,

\[
y_i = z_i - H_i \hat{x}_{i|j-1},
\]

are sequence of a kind of white noise. Thus covariance of remainder term is equal

\[
C_0 = E \left[y_i y_i^T \right] = HPH^T + R.
\]

And autocovariance matrix of process \(y_i \) is equal

\[
C_j = E \left[y_{i+j} y_i^T \right] = H [A(I - KH)]^{-1} A^T [PH^T - KC_0],
\]

at \(j = 1, 2, 3, \ldots \), where \(K \) - random gain.

Defining matrix \(S \) as

\[
S = PH^T - KC_0.
\]

The Eq.(7) can be written down in a kind:

\[
C_j = H [A(I - KH)]^{-1} AS,
\]

Matrixes \(K \) and \(S \) in the Eq.(7) and Eq.(8) have identical dimension \(n \times m \). Absolute minimum of function \(f \), defined in a kind

\[
f = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} s_{ij},
\]

where, \(s_{ij} \) - (i, j) th element of matrix \(S \), is reached at \(S = 0 \).

For definition of gain factor \(K \) which results matrix \(S \) in zero, we will use a gradient projection method. At enough small errors in initial data first approximations in gradient methods usually differ from corresponding approximations at exact initial data a little. With increase in number of iterations received approximations can deviate from desired solutions far somehow. In other words, for basic applicability of any iteration method, in particular, gradient, to the decision of ill-posed problems it should generate regularizing family of operators [13-15] in which iteration number is regularization parameter.

Let’s write down A. N. Tikhonov’s function for a considered problem

\[
T_r(k_{pq}) = J(k_{pq}) + \alpha_r \Omega(k_{pq}), \quad k_{pq} \in K,
\]

where, \(\alpha_r > 0 \), \(r = 1, 2, \ldots \), \(\lim_{r \to \infty} \alpha_r = 0 \), and function

\[
\Omega(k_{pq}) = \| k_{pq} \|^2 / 2 \text{ is stabilizer.}
\]

As \(\Omega(k_{pq}) = \| k_{pq} \|^2 / 2 \) - strongly convex function, then \(\Omega \) - normal solution exists and it is unique

\[
(k^*_{pq} \in K^* = \{ k_{pq} : k_{pq} \in K, J(k_{pq}) = J_* \},
\]

\[
J_* = \inf_{k_{pq}} J(k_{pq}), \quad J_* > -\infty)
\]

Thus, \(\lim_{r \to \infty} \| f_{pq} - k^*_{pq} \| = 0 \) and \(\| f_{pq} - k^*_{pq} \| \to 0 \) at \(r \to \infty \).

Then it is possible to show [13, 15], that sequence \(\{k_i^*\} \)

defined by a condition

\[
k^*_{i+1} = P_{K} \left(\gamma - \beta_r \left(f_{i+1} - k^*_{pq} \right) \right), \quad \gamma = 1, 2, \ldots ; \quad \gamma_1 \in K,
\]

It converges on norm to point \(k^*_{pq} \in K^* \) with the minimum norm. Sequences \(\{ \alpha_i \}, \{ \beta_i \} \) in Eq.(9) it is possible to choose, for example, in the form of \(\alpha_i = r^{1/3}, \beta_i = r^{1/2} \), \(r = 1, 2, \ldots \).

For the decision of adaptive estimation problem of state vector in the conditions of prior uncertainty covariance matrices of object noise and disturbances of measurements we will write down expression for update process

\[
v_{i+1|j} = z_{i+1} - H_i \hat{x}_{i+1|j},
\]

where,

\[
\hat{x}_{i+1|j} = A_{i+1} \hat{x}_{i|j} = A_i^j \hat{x}_{i|j}.
\]

Let’s consider the following expression of cross correlation matrix

\[
M \left(v_{i+1|j}, v_{i+1|j}^2 \right) = \left(\begin{bmatrix} \gamma \quad \gamma \end{bmatrix}, \quad j = 2, \ldots, l \right). \]

Following methods of optimum dynamic filtration [2, 5, 8] it is possible to show, that

\[
M \left(v_{i+1|j}, v_{i+1|j}^2 \right) = HA_{i+1} \left(P_{i+1|j} H_i^T, \quad j = 2, \ldots, l \right),
\]

797
where,

\[P_{t+1|t} = M \begin{pmatrix} x_{t+1|t}T_{t+1|t} \end{pmatrix}. \]

The Eq.(10) can be written down in the matrix form

\[Y_{c} = S Y_{c+1|t} H T^{T}, \quad (11) \]

where,

\[Y_{c} = \begin{bmatrix} M(v_{1+1}T_{1+1}) \\ M(v_{1+2}T_{1+2}) \\ \vdots \\ M(v_{1+m}T_{1+m}) \end{bmatrix}, \quad S = \begin{bmatrix} H \\ \vdots \\ HA \end{bmatrix}, \quad A_{j}. \]

Other ways of matrices \(Y_{c} \) and \(S \) formation are possible also. For synthesis of the adaptive filter in considered statement it is necessary to calculate matrix \(P_{t+1|t}H^{T} \). Accepting more realistic point of view we will suppose, that the right part of the Eq.(11) is set with some error caused by presence of noise of object model and a disturbances of measurements in Eq.(1) and Eq.(2). Thus, instead of Eq.(11) we will consider equation

\[Y_{c}^{\delta} = S P_{t+1|t} H T^{T}, \quad (12) \]

with condition of approximation \(|y_{r,v,j}^{\delta} - y_{r,v,j}| \leq \delta \) for each \(j \) (\(j = 1, 2, \ldots, m \)) - column number of matrix \(Y_{c}^{\delta} \).

For simplification of the further computations we will copy the Eq.(12) in a kind

\[Y_{c}^{\delta} = S D_{i}, \quad (13) \]

where,

\[D_{i} = P_{t+1|t} H T^{T}. \]

Let’s apply to the decision of the Eq.(13) regularization method. Then

\[d_{j}^{\alpha} = (\alpha + S^{T}S)^{-1} S^{T} y_{r,v,j}^{\delta} \quad (\alpha = r^{-1}), \]

where, \(\alpha > 0 \) - regularization parameter.

From the computing point of view \(i \) iterated variant [15] of regularization method which can be written down in a kind is more convenient:

\[d_{j}^{\alpha} = (I - S^{T}S_{g})(S^{T}S)j_{0} + g_{r}(S^{T}S)S^{T} y_{r,v,j}^{\delta}, \quad (14) \]

where, \(d_{j}^{\alpha} \) - matrix column \(D_{i} \), \(g_{r}(S^{T}S) = (S^{T}S + \alpha I)^{-1} \) or \(g_{r}(\lambda) = (\lambda I)^{-1} \), \(0 \leq \lambda < \infty \) - generating function system.

Regularization parameter \(r \) in algorithm Eq.(14) is expedient for choosing on size of residual \(|Sd_{j}^{\delta} - y_{r,v,j}^{\delta}| \). At realization of approximation Eq.(14) regularization parameter we will choose proceeding from performance of an inequality of a kind

\[b_{2}\delta \leq |Sd_{j}^{\delta} - y_{r,v,j}^{\delta}| \leq b_{2}\delta, \quad b_{1} > 1, \quad b_{2} \geq b_{1}. \]

Thus, if

\[|Sd_{j}^{\delta} - y_{r,v,j}^{\delta}| \leq b_{2}\delta \]

Assuming \(r = 0 \), i.e. for approximate solution of the Eq.(13) we will accept initial approximation \(d_{j,0} \).

For an establishment of convergence of approximation Eq.(14) on the basis of rule Eq.(15) of stopping of iterative process let’s consider expressions

\[d_{j,r} - d_{j}^{*} = (I - S^{T}S)j_{0} + g_{r}(S^{T}S)S^{T} y_{r,v,j}^{\delta} - (I - S^{T}S)j_{0} - d_{j}^{*}, \]

\[Sd_{j,r} - y_{r,v,j}^{\delta} = S(I - S^{T}S)j_{0} + g_{r}(S^{T}S)S^{T} y_{r,v,j}^{\delta} - (I - S^{T}S)j_{0} - d_{j}^{*}. \]

where, \(d_{j}^{*} \) - nearest to \(d_{j,0} \) solution of Eq.(13).

Thus, if the rule of stopping Eq.(15) at as much as small \(\delta > 0 \) gives out \(r = 0 \), then

\[|Sd_{j,0} - y_{r,v,j}^{\delta}| \leq b_{2}\delta \]

and in a limit at \(\delta \to 0 \) it is received

\[Sd_{r} = y_{r,v,j}. \]

That is, \(d_{r,0} \) - solution of Eq.(13). The approach here also appears effective at the decision robust estimation problems of state vector and covariance matrices of object noise, synthesis regularized algorithms of adaptive filtration on sequence of scalar measurements, and designing of adaptive reduced algorithms of estimation conditions of dynamic systems. It is shown, that at their practical realization effective there are computing circuits simplified regularization and regularized method of quickest descent.

4. PRACTICAL REALIZATION

The regular algorithms of estimation of a condition of dynamic objects of management received above on the basis of concepts of an adaptive filtration found practical application at the solution of problems of synthesis of systems of adaptive management of technological processes of granulation drying of an ammophos pulp and receiving ammonia.

4.1 SYNTHESIS OF SYSTEM OF ADAPTIVE MANAGEMENT BY TECHNOLOGICAL PROCESS GRANULATIONS DRYINGS OF AN AMMOPHOS PULP

In production of complex mineral fertilizers the big share of release is necessary on ammophos, as most agrochemical valuable fertilizer. The sequence of a production cycle in ammophos production finishes process of granulation drying of an ammophos pulp in the device of the granulating drum-dryers (GDD). The device has three zones: drying, granulation and before drying of granules. The pulp of phosphates of ammonium is dispersed by pneumatic nozzles in a drying zone. In the same place by means of the special device the veil from the dried-up particles of a finished product is created. Drops of a pulp cooperate with product particles, increasing their size. Passing from a nozzle torch to a veil, the pulp concentrates at the expense of heat of warm gases, and further there is a final drying of a product [16].

When drying damp ammophos granules, as well as other products, two processes at the same time proceed: moisture evaporation (weight exchange) and heat transfer (heat transfer...
Let's suppose, that process of vector of parameters change $\vec{\theta} = [a^T \mid f^T \mid b^T]$ represents Markovian process of kind $\vec{\theta}_{t+1} = \vec{\theta}_t + \vec{w}_t$, where,

$$a^t = (a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}),$$

$$f^t = (f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}),$$

$$b^t = (b_{11}, b_{12}, b_{13}, b_{21}, b_{22}, b_{23}, b_{31}, b_{32}, b_{33}),$$

w_t^θ - realization of the random function.

Then the process and supervision equations will register in a kind:

$$x_{i+1} = A_i x_i + F_i x_{i-1} + w_i,$$

$$\vec{\theta}_{t+1} = \vec{\theta}_t + \vec{w}_t^\theta,$$

$$y_i = H_i x_i + v_i,$$

where, $w_i, w_i^\theta, v_i, i = 0, 1, \ldots$ - not dependent from each other white Gaussian sequences:

$$E[|w_i w_i^\theta|] = Q^\delta, \quad E[|w_i^\theta w_i^\theta|] = Q^{\theta\delta},$$

$$E[|v_i v_i|] = R_i \delta.$$

In difference Eq.(24), Eq.(26) management u_i in explicit form is not considered. However management always is considered known (precisely measured) time function. Therefore it can be considered through dependence on discrete time i, as it is meant in expressions Eq.(24), Eq.(26).

For reception and practical use of identifiable models as means for forecasting and object output coordinates control, has been made industrial experiment in the conditions of normal functioning of technological process of granulation-drying of ammophos pulps. In the course of experiment the control was carried out both is continuous, and discretely method of spot test depending on observability of this or that technological parameter.

For working out of mathematical model of considered process the algorithms of identification based on dynamic estimation theory have been used. As the expanded state vector, vector $x^{\theta T} = [x^T \mid \theta^T]$ has been accepted. The mathematical model establishing quantitative relationship between the basic variable processes, looks like:

$$x_{i+1} = \begin{bmatrix} x_{i+1} \\ y_{i+1} \\ z_{i+1} \end{bmatrix} = \begin{bmatrix} 0.921 & -0.234 & 0.301 \\ 0.379 & 0.618 & -0.322 \\ 0.753 & 0.214 & -0.178 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} + \begin{bmatrix} w_{i+1} \\ v_{i+1} \\ 0 \end{bmatrix},$$

$$y_i = \begin{bmatrix} 0.254 & -0.321 & 0.911 \\ 0.937 & 0.396 & 0.712 \\ 0.255 & 0.342 & 0.659 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix},$$

$$w_i = \begin{bmatrix} -0.455 & 0.391 & 0.153 \\ 0.322 & 0.086 & 0.174 \\ 0.183 & -0.482 & 0.358 \end{bmatrix} \begin{bmatrix} w_i \\ v_i \\ z_i \end{bmatrix}.$$
Check of models verification on the basis of the criterion connected with check of assumptions concerning model and based on analysis of leavings properties, has shown, that model Eq. (27)-Eq. (28) sufficiently describes considered process in area of experimentation and can be used at control system engineering. The developed mathematical model of process of granulation-drying ammonophos pulps allow to establish proportion between the cores input and output variables, to forecast a process condition at available or chosen managements and to synthesize optimum adaptive control laws of considered process.

Management of considered process of granulation-drying appears rather difficult because of its nonminimum-phase properties with time delay some minutes, long setting time, the big range of moisture content crude pulp fluctuations and immeasurable changes of pulp properties. The problem consists in improvement of control quality at the expense of application of the control computer. We will connect to object (21), (22) regulator

$$u_t = K_T^T z_t,$$ \hspace{1cm} (29)

where, $K = nx2lT$-matrix of regulator parameters, $z_t = y_T x_T^{l-h}$

We will assume, that matrices A, F, B, H depend on a vector of unknown parameters $\xi \in M$, where M - the set defining a class of adaptability of synthesized system. For the decision of a considered problem we will take Lyapunov-Krasovsky functional [1] in a kind

$$V(x_t, k_t) = x_T^T L_0 x_T + \sum_{i=1}^m (k_t - k_0^T)^T L_i (k_t - k_0)$$

$$- y_T \left[\frac{1}{2} (x_T^{l-h} x_T^{l-h} - x_T x_T) + \frac{1}{2} \sum_{i=1}^m x_T^{l-i} x_T^{l-i} \right],$$

where, L_0, L_i - real symmetric positive definite matrix; $k_0 - i^{th}$ column of some matrix K_0, $y > 0$.

Then it is possible to show [18, 19], that system Eq. (21), Eq. (22) will be adaptive in set class M and algorithm of adjustment of parameters of a regulator here in below,

$$k_{t+1} = k_t - d_T^T y_T P_t z_t, \quad i = 1,2,...,m,$$ \hspace{1cm} (30)

where, P_t - arbitrary positive definite matrix; d_T - i^{th} column of matrix D defined by conditions of frequency theorem of stability.

The equation of Kalman filter for a considered problem will become:

$$\dot{x}_{t+1} = A_k \dot{x}_t + F_t \tilde{x}_{t-h} + B_t \tilde{u}_t + K_T^T (y_t - K_T \dot{x}_t - K_T B_t \tilde{u}_t) -$$

$$\frac{h}{n} \left[\frac{1}{2} \sum_{i=1}^m L_i (y_i - K_i \dot{x}_i) \right] +$$

$$\frac{1}{n} \left[\frac{1}{2} (K_T^T K_T x_T^{l-h} x_T^{l-h} - K_T x_T x_T) + K_T^T \sum_{i=1}^m L_i (y_i - K_i \dot{x}_i) \right].$$ \hspace{1cm} (31)

Gain factors K_T^1 and K_T^2 are defined by the equations

$$K_T^1 = [P_t - P_t^0] K_T R_T^{-1}, \quad K_T^2 = P_t R_T^{-1} K_T^T R_T^{-1}.$$ \hspace{1cm} (32)

The equations for covariance matrix of error of estimation will become:

$$P_{t+1} = A_k P_t A_k^T - P_t N_t P_t + F_t + P_t d_t N_t P_t d_t$$

$$- \frac{h}{n} \left[\frac{1}{2} (P_t m_t N_t^{-1} P_t m_t + P_t l_t N_t^{-1} P_t l_t) + \sum_{i=1}^m P_t l_t N_t l_t P_t l_t \right] +$$

$$A_k P_t A_k^T - P_t N_t P_t + A_k^T R_t^{-1} K_T R_T^{-1} k_t = P_t l_t N_t l_t P_t l_t.$$

On the basis of correlations Eq. (30) - Eq. (33) and developed above synthesis algorithms of adaptive estimation system of state vector it is possible to offer the following variant of an adaptive control system of granulation-drying process evaporated ammonophos pulps (Fig. 1).

Processes of coordinate and parametrical estimation here are connected very closely. Universality of the presented complex of algorithms is defined by their adaptive properties. Really, all aprioristic information put in a complex at a design stage, is consolidated to structure of mathematical model of operated process, criterion of optimization, structure of sensors and intensity of their noise. All other information turns out in the course of functioning of the complex. It is high level of adaptability and universality. He allows applying the same complex of algorithms to management of the most various processes. Let's notice that the block of adaptive estimation presented on Fig.1 can be allocated in the COMPUTER program or represent separate sub blocks.

Fig.1. Structure of an adaptive control system Granulation-drying process evaporated ammonophos pulps
At management of big system some levels (multidimensional contours) managements can be applied, each of which can be organized as a type complex Fig.1. Let’s note that creation of universal algorithms of optimum control opens ample opportunities of automation of management of continuous technological processes by means of application of the standard unified means of creation of industrial control systems.

Practical realization of the offered adaptive control system will allow to stabilize operating practices of process and to raise efficiency of GDD functioning in phosphorous-containing combined fertilizer manufacture.

4.2 SYNTHESIS IT IS ADAPTIVE AN INVARIANT CONTROL SYSTEM OF A COLUMN OF SYNTHESIS OF AMMONIA

Basis of the industry of nitric and difficult fertilizers, and also many other major products of the chemical industry is ammonia. In production of ammonia by one of the most important technological transitions defining both quality of the let-out product, and technological indicators of all production, the column of synthesis of ammonia is [20]. Synthesis of ammonia is, on the one hand, difficult process at the same time warm and mass of an exchange, and with another – technological physical and chemical process at which carrying out initial properties of materials should be not only are kept, but in some cases even are improved.

The following fragment of the technological scheme of production of ammonia is subject to management and control. The fresh nitrogen-hydrogen mix (NHM) in number of 954 m³/h arrives in a heater where heats up to 480 °C at the expense of condensation of water vapor. Then the part of NHM goes to the internal heat exchanger of a column of synthesis of ammonia for a recuperation of heat of reaction of synthesis and heats up at the expense of heat of the synthesized gas. The quantity of NHM sent to the internal heat exchanger, is regulated by a contour which is maintaining temperature over the first shelf within 510-520 °C. As process of synthesis of ammonia proceeds with heat allocation, for temperature regulation in a column is provided bypass cold gas on the third shelf. The most part of the received gaseous ammonia is condensed in a column of condensation of ammonia, and remained again comes back to a synthesis column. As object of management at automation of process of synthesis of ammonia we will accept a column of synthesis of ammonia together with the internal heat exchanger and a heater of fresh NHM. Efficiency of process of synthesis of ammonia depends on several parameters. As formation of NH3 occurs to considerable reduction of volume, it is necessary to support in a column optimum pressure – 32 MPas. The temperature of process is supported bypass on the third shelf and quantity of NHM sent to the internal heat exchanger. Directly to influence concentration of ammonia in the synthesized gas it is not obviously possible, since it depends on structure of initial NHM and from amount of ammonia in circulating gas [20,21].

The main objective of automatic control of process of synthesis of ammonia is creation of the stable and optimum mode providing the maximum exit of production and trouble-free operation. The process occurring in a column, is connected with allocation of a significant amount of heat, and the slightest changes of regulating influences strongly are reflected in a temperature mode to a column. Specifications of management of a temperature mode of the reactor the very rigid; big static accuracy, fast alignment of temperature, i.e. big speed and considerable dynamic accuracy are required.

As a result of the carried-out industrial experiments it is established that change of extent of opening of a valve on a bypass stream influences temperature both in corresponding, and in underlaying layers, besides, on temperature considerable influence is rendered by concentration of ammonia, inert impurity and a ratio of NHM reagents. In this regard it is possible to consider as the main variables of process the following: operating parameters \(u = (u_1, u_2, u_3, u_4) \), where: \(u_1 \div u_4 \) – extents of opening a valve on bypass streams; target parameters \(y = (y_1, y_2, y_3, y_4) \), where, \(y_1; y_2; y_3 \) – temperatures in catalyst layers; controllable indignations of \(\mu = (\mu_1, \mu_2, \mu_3, \mu_4) \), \(\mu_1 \) – an expense of initial NHM, \(\mu_2 \) – a ratio of nitrogen and hydrogen, \(\mu_3 \) – a consumption of circulating gas; uncontrollable indignations of \(w = (w_1, w_2) \) where \(w_1 \) – concentration of ammonia, \(w_2 \) – concentration of inert gases.

For definition of dynamic characteristics of considered object on the main channels of signaling methods of active experiment were used. On the received experimental dynamic characteristics of the four-half-internal reactor of synthesis of ammonia parametrical identification of transfer functions of the main and cross channels of object by a method of the smallest squares (a step of quantization of \(T_S = 10 \) second) and the difference equations of the first order is carried out.

On channels of action of controllable indignations of \(\mu = (\mu_1, \mu_2, \mu_3, \mu_4) \), \(\mu_1 \) – an expense of initial NHM, \(\mu_2 \) – a ratio of nitrogen and hydrogen, \(\mu_3 \) – a consumption of circulating gas, \(y_1; y_2; y_3 \) – temperatures in the corresponding layers of the catalyst dynamic characteristics were defined on the basis of a correlation method. Researches showed that the received dynamic characteristics on the main channels of signaling and action of controllable indignations can be approximated by aperiodic links in a joint with links of pure delay.

In the synthesized it is adaptive to an invariant control system of a column of synthesis of ammonia as the main digital regulators the digital regulators of the second order realizing digital PID - the regulation law are used. On the basis of known algorithms parameters of the main digital regulators are calculated. Optimization is carried out by criterion of a minimum of an integrated and square-law mistake (ISM) in one-planimetric systems on models of equivalent objects.

For the purpose of the accounting of mutual influence between adjustable parameters of process synthesis of an independent digital control system is carried out. Parameters of discrete transfer functions of jacks of cross communications are calculated.

During computer modeling comparative researches of transients in untied and independent digital control systems are carried out. Modeling is carried out in the presence of external indignations. The results of researches presented by values of ISM and a static mistake (SM) show improvement of criteria of quality (on the first channel indicators remained invariable as there are no cross communications, on the second channel improvement of ISM makes 3, 3%, on the third and fourth channels improvement of ISM makes 0, 15% and 1, 3% respectively).
Minor improvement of quality of management speaks existence of external uncontrollable indignations (concentration of ammonia and inert gases), making negative impact on temperature in catalyst layers.

Development of the system of the management is necessary for improvement of indicators of quality of management, considering influence of indignations. One of options thus is it is adaptive an invariant control system.

For the received structures of transfer functions of jacks of indignations with use of return z-transformation the interrelation of parameters of jacks of indignations from parameters of the main channels and channels of indignations is received.

On Fig. 2 the function chart developed is presented is adaptive an invariant control system of a column of synthesis of the ammonia, consisting of the reactor 1, temperature sensors in layers of the catalyst 2-5, an adaptive multichannel regulator (AMR) 6, blocks of identification (BI) 8, estimation of uncontrollable indignations (BEUI) 9, change-over and optimization (BCHO) 10, control of a regulator (BCR) 11, optimization temperatures (BOT) 12.

![Fig. 2. A function chart it is adaptive invariant system managements of a column of synthesis of ammonia](image)

It is adaptive invariant system functions as follows. The current values from sensors of temperature 2-5 arrive in BI 8 and BEUI 9. In these blocks identification of parameters of the main and cross channels and estimation of uncontrollable indignations is carried out. Values of parameters are transferred in BEUI 9. Estimates of object parameters and uncontrollable indignations are transferred in BCHO 10. At the same time with it signals from sensors of concentration ratio of nitrogen and hydrogen 14 and a consumption of circulating gas 15 arrive on the jack of indignations 7, and then in BCHO 10.

Along with it the size of an expense of initial NHM 13 arrives in the BOT 12 where the optimum temperature of reaction of synthesis which provides the maximum exit of ammonia for this value of an expense of ABC is defined. Values of optimum temperatures through BCR 11 arrive as operating impacts on AMR 6. In BCHO 10 taking into account nonlinear dependence of temperature in the first layer of the catalyst from extent of opening of a valve on the basis of piecewise and linear approximation connection of this or that piecewise and band model of direct channels of transfer of influences is made. Thus, BCHO taking into account arrived information calculates AMR 6 settings which in turn regulates valve of bypass streams 16-19.

Thus, application is adaptive invariant system allows to stabilize a technological mode of considered process, to compensate influence of change of parameters of object and uncertain indignations on dynamics of system and to raise quality indicators of management processes.

5. CONCLUSION

In the work regularization algorithms of estimation of condition of dynamic systems in the conditions of aprioristic uncertainty of statistical characteristics of signals and hindrances are offered. Regular iterative algorithms of adaptive estimation of matrix coefficient elements of strengthening of Kalman filter, allowing to adaptive filter for changing hindrance-alarm conditions are developed. Algorithms of steady adaptive estimation algorithms of a condition vector in the aprioristic uncertainty conditions of covariance matrices of object noise and the measurements hindrances providing a certain roughness of filtration process in relation to changing statistical characteristics of signals information parameters are offered. On the basis of the offered regular algorithms of steady estimation of a state synthesis of system of adaptive management by technological process granulations dryings of an ammonophos pulp in production of the granulated fertilizers is carried out and is adaptive an invariant control system of a column of synthesis of the ammonia, allowing to stabilize a technological mode of course of considered processes and to increase efficiency of their functioning.

REFERENCES

[1] A. A. Krasovskiy, “The directory under the theory of automatic control”, M.: Science, pp. 712, 1987.
[2] K. T. Leondes, “Filtration and stochastic management in dynamic systems”, M.: World, pp. 407, 1980.
[3] N. D. Egupov and K. A. Pupkov, “Methods of the classical and modern theory of automatic control”, MSTU N. E. Bauman publishing house, 2004.
[4] H. Z. Igamberdiyev, A. N. Yusupbekov and O. O. Zaripov, “Regular methods of estimation and control of dynamic
objects in the conditions of uncertainty”, *T. TSTU*, pp. 320, 2012.

[5] M. A. Ogarkov, “Methods of statistical estimation of random process quality”, *M.: Energoatomizdat*, pp. 208, 1990.

[6] S. V. Pervachev and A. I. Perov, “Adaptive filtration of messages”, *M: Radio and communication*, pp. 160, 1991.

[7] S. B. Peltsverger, “Algorithmic ensuring processes of estimation in dynamic systems in the conditions of uncertainty”, *M: Science*, pp. 116, 2004.

[8] I. N. Sinitsyn, “Filter of Kalman and Pugachev”, Lagos Publishing house, pp. 640, 2006.

[9] Simon Haykin, “Adaptive Filter Theory”, United States Edition: Pearson Education, pp. 936, 2001.

[10] S. R. Diniz Paulo, “Adaptive Filtering. Algorithms and Practical Implementation”, Springer, pp. 656, 2008.

[11] Ali H. Sayed, “Adaptive Filters”, Wiley, pp. 786, 2008.

[12] A. N. Tihonov and Arsenin V. J.A., “Methods of ill-conditioned problems solution”, *M: Science*, pp. 285, 1979.

[13] F. P. Vasilev, “Method of extremal problems solving”, *M: Science*, pp. 400, 1981.

[14] A. B. Bakushinskij and A. V. Goncharsky, “Iterative approach of ill-conditioned problems solution”, *M: Science*, pp. 128, 1989.

[15] G. M. Vajnikko and Veretennikov A. Ju, “Iterative procedures in ill-conditioned problems”, *M: Science*, pp. 178, 1986.

[16] A. N. Dokholova, L. V. Karmyshov and M. Sidorina, “Production and application of phosphates of ammonium”, *M: Chemistry*, pp. 256, 1986.

[17] Mayzel Yu. A., V. B. Zemelman and A. B. Barkan, “Automation of productions of phosphorus and phosphorus of containing products”, *M: Chemistry*, pp. 400, 1983.

[18] Medvedev A. B., “Adaptation and training in control systems and decision-making”, *Novosibirsk: Science*, pp. 200, 1982.

[19] B. N. Petrov and M. V. Meerov, “Researches on the theory of multicoherent systems”, *M: Nauka*, pp. 152, 1982.

[20] S. N. Ganz, “Ammonia synthesis”, *Kiev: Higher school*, pp. 280, 1983.

[21] V. M. Olevsky, “Technology of ammoniac saltpeter”, *M: Chemistry*, pp. 312, 1988.