Moiré-driven multiferroic order in twisted CrCl$_3$, CrBr$_3$ and CrI$_3$ bilayers

Adolfo O. Fumega1 and Jose L. Lado1

1Department of Applied Physics, Aalto University, 02150 Espoo, Finland

Layered van der Waals materials have risen as a powerful platform to engineer artificial competing states of matter. Here we show the emergence of multiferroic order in twisted chromium trihalide bilayers, an order fully driven by the moiré pattern and absent in aligned multilayers. Using a combination of spin models and ab initio calculations, we show that a spin texture is generated in the moiré supercell of the twisted system as a consequence of the competition between stacking-dependent interlayer magnetic exchange and magnetic anisotropy. An electric polarization arises associated with such a non-collinear magnetic state due to the spin-orbit coupling, leading to the emergence of a local ferroelectric order following the moiré. Among the stochiometric trihalides, our results show that twisted CrBr$_3$ bilayers give rise to the strongest multiferroic order. We further show the emergence of a strong magnetoelectric coupling, which allows the electric generation and control of magnetic skyrmions. Our results put forward twisted chromium trihalide bilayers, and in particular CrBr$_3$ bilayers, as a powerful platform to engineer artificial multiferroic materials and electrically tunable topological magnetic textures.

Multiferroic materials display more than one ferroic order at the same time [1–3], and in particular, they can simultaneously host magnetic and ferroelectric orders. The existence of multiple symmetry-breaking orders allows having a coupling between electric and magnetic degrees of freedom [4]. Over the last two decades, a variety of multiferroic bulk compounds has been demonstrated [5–8], providing alternative strategies for multifunctional devices [7, 9]. However, focusing on the realm of two-dimensional (2D) materials, purely 2D multiferroics have remained elusive until the recent demonstration of multiferroic order in NiI$_2$ [10, 11]. Beyond isolating individual multiferroic monolayers, a potential alternative strategy to realize multiferroic order in van der Waals materials relies on artificially engineering it from originally non-multiferroic monolayers [12]. The electric control of magnetism provided by van der Waals multiferroics would open radically new ways of controlling artificial van der Waals matter, including Chern insulators [13–16], unconventional and topological superconductors [17–22] and correlated quantum magnets [23–25].

The weak bonding between layers in van der Waals materials allows combining monolayer layers in twisted heterostructures. Monolayer 2D materials can display different symmetry-breaking orders [11, 26–28], constituting a family of minimal building blocks that can be used to artificially engineer other emergent orders. This strategy has been widely exploited to engineer moiré correlated and topological states using 2D materials [13, 16, 17, 29–33]. Recently, this strategy has been extended to 2D magnetic materials including chromium trihalides, leading to a variety of twist-induced magnetic orders [34–40]. However, using twist engineering to realize a multiferroic order has so far remained unexplored.

Here we demonstrate the emergence of a multiferroic state in the family of twisted chromium trihalide CrX$_3$ (X=Cl, Br and I) bilayers by combining first principles and effective spin Hamiltonians. We first show the emergence of a non-collinear spin texture due to the modulation of the interlayer exchange coupling in the moiré unit cell. Associated with the spin texture an electric polarization emerges as a consequence of spin-orbit coupling (SOC) and the local magnetic non-collinearity in the moiré domains. Using ab initio calculations we extract the value of the electric polarization driven by non-collinear magnetic texture, and demonstrate its dependence on the halide of CrX$_3$. Furthermore, we analyze the emergent magnetoelectric coupling, demonstrating how it allows to directly electrically drive transitions between different spin textures employing an interlayer bias.

We start our analysis by describing the magnetic order that emerges in twisted CrX$_3$ bilayers. The magnetic behavior of CrX$_3$ monolayers can be described by a spin Hamiltonian in a honeycomb lattice

$$\mathcal{H} = -\frac{J}{2} \sum_{<i,j>} \mathbf{S}_i \cdot \mathbf{S}_j - \frac{A_v}{2} \sum_{<i,j>} S^z_i S^z_j - A_u \sum_i (S^z_i)^2 + \mathcal{V},$$

(1)

where J is the first neighbor intralayer ferromagnetic exchange, taking a value on the order of 2-3 meV [41–43]. A_v is the anisotropic magnetic exchange. A_u is the single-ion anisotropy, which is dominated by A_v in CrI$_3$, CrBr$_3$, and competing with A_v in CrCl$_3$ [44]. Our analysis will focus on the anisotropy regime leading to out-of-plane easy axis, that corresponds to CrI$_3$, CrBr$_3$ and slightly strained CrCl$_3$ [45] [46]. The term \mathcal{V} contains additional contributions that do not qualitatively affect our analysis, including Kitaev exchange [47], biquadratic exchange [48], Dzyaloshinskii-Moriya interaction [49], and dipolar coupling [50].

Considering now two layers of CrX$_3$ stacked together an interlayer magnetic exchange J_M will arise. A moiré pattern like the one shown in Fig. 1a emerges for twist angles lower than 3°. Depending on the stacking between
layers two different regions can be distinguished, monoclinic and rhombohedral. Associated with these different regions the sign of J_M will change, i.e., J_M is ferromagnetic (positive) in the rhombohedral stacking and antiferromagnetic (negative) in the monoclinic one\cite{51–53}. This leads to a modulation of J_M in the moiré supercell like the one shown in Fig. 1b\cite{34–37, 54}. Therefore, to model the twisted CrX$_3$ bilayer we add the interlayer interaction to the Hamiltonian of Eq. (1) as

$$\mathcal{H}_{\text{Inter}} = -\frac{1}{2} \sum_{i,j} J_M(\mathbf{r}_i, \mathbf{r}_j) \mathbf{S}_i \cdot \mathbf{S}_j, \quad (2)$$

where $J_M(\mathbf{r}_i, \mathbf{r}_j)$ is the site-dependent interlayer exchange\cite{55}. Since CrX$_3$ is composed of Cr$^{3+}$ with a spin state $S=3/2$, we can solve in a classical way the spin Hamiltonian for the twisted system. The ground state magnetic order is depicted in Fig. 2a. We can see that a non-collinear magnetic texture emerges between ferromagnetic and antiferromagnetic regions. In the presence of spin-orbit coupling, non-collinear magnetism leads to the emergence of an electric polarization \mathbf{P}_{ij} between neighboring spins separated by a distance \mathbf{r}_{ij} of the form\cite{56, 57}

$$\mathbf{P}_{ij} = \lambda_{\text{SOC}} (\mathbf{r}_{ij} \times (\mathbf{S}_i \times \mathbf{S}_j)), \quad (3)$$

where λ_{SOC} is a coefficient that controls the strength of the spin-orbit coupling. From Eq. (3) we can clearly see the requirement of non-collinearity and the presence of SOC to produce an electric polarization. For the emerging ground state spin texture of the twisted system (Fig. 2a), the associated electric polarization when SOC is introduced is shown in Fig. 2b, with P_z the dominant component. From Figs. 2ab, we can observe that an electric polarization emerges in both layers in the areas where the non-collinear spin texture occurs. The polarization emerges locally, and for the ground state spin texture the net electric polarization is zero. Therefore, to analyze the strength of the multiferroic order as a function of the parameters that appear in the spin Hamiltonian, we will consider an average of the electric polarization moduli \overline{P}. The moduli of the electric polarization in the moiré system associated with the ground state spin texture can be seen in Fig. 1c. We can observe there, that the ground state breaks the C_6 symmetry of the original system leading to a C_2 symmetry. Figure 2c shows the average polarization as a function of the maximum interlayer exchange J_M^{\max}. At low values, the twisted system behaves like two independent layers, remaining ferromagnetic, no spin texture emerges and consequently, there is no electric polarization. By increasing the interlayer coupling, non-collinearity appears and with it an associated electric polarization in virtue of Eq. (3). Our calculations are performed for values of $J_M^{\max}/J = 0.1$, typical order of magnitude for the family of CrX$_3$\cite{34, 58}. Higher values such as those obtained by applying uniaxial pressure\cite{59–61} would produce a stronger multiferroic order. Figure 2d shows the average polarization as a function of the anisotropic exchange A_v. At high values, the twisted system tends to align the magnetic moments out of the plane. Therefore, no spin texture occurs and thus there is no electric polarization. This situation happens for $A_v/J > 0.1$, so CrI$_3$ would be on the verge of displaying a multiferroic behavior due to its strong uniaxial anisotropy.

We now demonstrate and quantitatively quantify using first-principles density functional theory calculations the emergence of an electric polarization due to the non-collinear order at the domain wall. Performing first-
principles calculations in a full twisted CrX₃ bilayer with spin-orbit coupling and non-collinear magnetism is well beyond the current computational capabilities. However, since the electric polarization arises locally, the ab initio analysis can be performed in a system like the one shown in Fig. 3a by imposing a magnetic texture in the CrX₃ layer like the one shown in Fig. 3b. We set the same out-of-plane spin texture to the three compounds to systematically extract the effect of the halide atom [62]. The associated polarization of a non-collinear texture given in eq. (3) can be rewritten in terms of an spin spiral propagation vector \(\mathbf{q} \) and the spin rotation axis \(\mathbf{e} = (0, -1, 0) \), leading to an electric polarization of the spin texture\[56, 57]\)

\[
\mathbf{P} = \lambda_{SOC}(\mathbf{q} \times \mathbf{e}).
\]

To demonstrate the emergence of an electric polarization in the magnetic texture shown in Fig. 3b, we now perform calculations in two equivalent configurations (Fig. 3b) with the same spin rotation vector \(\mathbf{e} \), but with opposite spin propagation vector \(\mathbf{q} \). Therefore, an opposite electric polarization will emerge in each of the configurations. The emergence of the electric polarization in the spin texture is directly obtained by taking the difference between the two equivalent configurations. This procedure provides a direct methodology to extract electric polarization stemming from non-collinear magnetic order. \textit{Ab initio} density functional theory calculations\[63\] were carried out with the all-electron full-potential linearized augmented-plane-wave method, using a fully non-collinear formalism with spin-orbit coupling (SOC) as implemented in Elk\[64\]. We have used the local density approximation for the exchange-correlation functional\[65\]. The results presented are converged concerning all the parameters\[66\].

The emergence of an electric polarization is accompanied by a reconstruction of the electronic density \(\rho \). Therefore we can analyze the difference in the electronic density \(\delta \rho \) between both configurations. This is shown in Fig. 3c for the three chromium halides. We observe that the electronic reconstruction increases by taking a heavier halide. Thus, for the same spin texture, we can see that CrI₃ will produce the strongest ferroelectric polarization. This result is a consequence of the increase of the spin-orbit coupling when one goes down in the halide group, thus demonstrating the effective equations (3) and (4) governed by the SOC prefactor \(\lambda_{SOC} \).

The reconstruction of the electronic density will lead to the appearance of a ferroelectric force in the atoms in the spin texture in the direction of the emergent electric polarization\[10\]. Therefore, we can compute the force difference between both configurations in Fig. 3b to provide a direct quantification of the electric polarization in CrX₃. Figure 3d shows the force difference between both configurations. We can see that the forces emerge only in the Cr atoms in which the non-collinear magnetism is present. Moreover, we can see that the forces emerge on the z-direction, indicating the direction of the electric dipole, and as expected from the schematic in Fig. 3b.

We can quantify the dependence on the halide by taking the average of the force module among Cr-atoms for each of the compounds, as shown in 3d. Taking a heavier halide produces an increase in the ferroelectric force, as expected from the increase of the spin-orbit coupling. As a reference, NiI₂, a 2D multiferroic governed by this same mechanism of spin-orbit coupling and non-collinear magnetism, leads to ferroelectric forces of \(\approx 20 \text{ meV/Å} \)\[10\]. Therefore, this confirms that spin textures produced in
FIG. 3. (a) Unit cell used in the ab initio calculations, Cr atoms depicted in green, halide atoms omitted for clarity. (b) Equivalent non-collinear magnetic configurations with opposite spin propagation vector \mathbf{q} and same helicity \mathbf{e}, and hence opposite electric polarization. (c) Electronic density difference $\delta \rho$ between both equivalent configurations in panel (b) for the three trihalides in the Cr-atoms plane. (d) Force difference between the configurations of the panel (b). A net ferroelectric force emerges in the z-direction in the Cr atoms where the magnetism is non-collinear. An average of the ferroelectric force for each trihalide shows the dependence of the electric polarization with the ligand.

twisted CrX₃ bilayers lead to the emergence of an electric polarization with strong magnetoelectric coupling.

We now elaborate on some conclusions on the multiferroic order in twisted CrX₃ bilayers considering together the results obtained from the low energy models and the ab initio calculations. On the one hand, ab initio density functional theory methods show that as the halide becomes heavier, the ferroelectric polarization becomes stronger. On the other hand, the low energy
model shows that the anisotropic exchange has a detrimental impact on the formation of the spin texture and hence on the multiferroic order. In particular, in CrI$_3$ the strong anisotropic exchange might partially quench the formation of a sizable non-collinear magnetic texture. In CrCl$_3$, the small SOC would yield a comparably weak ferroelectric polarization despite the formation of the non-collinear texture. Therefore, the optimal twisted bilayer yielding the strongest ferroelectric polarization would be CrBr$_3$, or ultimately, a bilayer of an intermediate stoichiometry between CrBr$_3$ and CrI$_3$.

Finally, we analyze the magnetoelectric coupling present in twisted CrX$_3$ bilayers. To do so, we now include in the low energy Hamiltonian a coupling to an external electric $E = (0, 0, E_z)$ field perpendicular to the twisted system in the z-direction:

$$\mathcal{H}_E = \frac{1}{2} \sum_{ij} \mathbf{E} \cdot \mathbf{P}_{ij}. \tag{5}$$

We now show how this interlayer bias allows controlling the magnetic order due to the emergent multiferroicity[67]. Figures 4a and 4b show the spin texture and the associated electric polarization at $E_z/J = 3$. We can observe that the ground state spin texture shown in Fig. 2a gets significantly modified due to the strong magnetoelectric coupling, leading to the formation of a magnetic skyrmion around the AA rhombohedral stacking in one of the layers[39, 68–74]. Interestingly, such a magnetic state features a non-zero total electric polarization in the z-direction. The evolution of the total electric polarization in the moiré supercell in the z-direction as a function of the external electric field is shown in Fig. 4c. The different bumps in P_z as a function of the electric field indicate transitions to different non-trivial spin textures which are shown as insets in Fig. 4c. Starting at $E_z/J = 0$ in the ground state spin texture, at $E_z/J = \pm 3$ the magnetic skyrmion shown in Fig. 4ab arises. At $E_z/J = \pm 5$ a second pair of magnetic skyrmions emerge in the other layer around the AB/BA stacking regions. As a reference, $J \approx 3$ meV and $\lambda_{SOC} \approx 10^{-4}e$ in twisted CrBr$_3$ bilayers, implying that such magnetic transitions can be experimentally driven via gating at voltages of $1 \sim 10$ V[67]. This brings twisted CrX$_3$ bilayers as a promising platform for the electric control of non-trivial magnetic textures, and ultimately as a platform for magnetoelectric skyrmionics.

To summarize, we have demonstrated that twisted CrX$_3$ bilayers develop a multiferroic order due to the interplay between the moiré structure, non-collinear magnetic order, and spin-orbit coupling. Furthermore, we have shown that the multiferroic order is accompanied by a strong magnetoelectric coupling that allows to electrically control of non-trivial magnetic textures using an interlayer bias. Our results put forward a strategy to design a new family of artificial multiferroics with a strong magnetoelectric coupling based on twisted magnetic van der Waals materials.

Acknowledgements: We acknowledge the computational resources provided by the Aalto Science-IT project, and the financial support from the Academy of Finland Projects No. 331342, No. 336243 and No. 349696 and the Jane and Aatos Erkko Foundation. We thank P. Liljeroth for useful discussions.

[1] Nicola A. Hill, “Why are there so few magnetic ferroelectrics?” The Journal of Physical Chemistry B **104**, 6694–6709 (2000).
[2] N. A. Spaldin and R. Ramesh, “Advances in magnetoelectric multiferroics,” Nature Materials **18**, 203–212 (2019).
[3] Manfred Fiebig, Thomas Lottermoser, Dennis Meier, and Morgan Trassin, “The evolution of multiferroics,” Nature Reviews Materials **1** (2016), 10.1038/natrevmats.2016.46.
[4] Manfred Fiebig, “Revival of the magnetoelectric effect,” Journal of Physics D: Applied Physics **38**, R123–R152 (2005).
[5] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization,” Nature **426**, 55–58 (2003).
[6] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature **429**, 392–395 (2004).
[7] Martin Gajek, Manuel Bibes, Stéphane Fusil, Karim Bouzehouane, Josep Fontcuberta, Agnès Barthélémy, and Albert Fert, “Tunnel junctions with multiferroic barriers,” Nature Materials **6**, 296–302 (2007).
[8] Ce-Wen Nan, M. I. Bichurin, Shuxiang Dong, D. Viehland, and G. Sinivasan, “Multiferroic magnetoelectric composites: Historical perspective, status, and future directions,” Journal of Applied Physics **103**, 031101 (2008).
[9] D. Pantel, S. Goetz, D. Hesse, and M. Alexe, “Reversible electrical switching of spin polarization in multiferroic tunnel junctions,” Nature Materials **11**, 289–293 (2012).
[10] Adolfo O Fumega and J L Lado, “Microscopic origin of multiferroic order in monolayer NiI$_2$,” 2D Materials **9**, 025010 (2022).
[11] Qian Song, Connor A. Occhialini, Emre Ergeçen, Batyr Ilyas, Danila Amoroso, Paolo Barone, Jesse Kapeghian, Kenji Watanabe, Takashi Taniguchi, Antia S. Botana, Silvia Picozzi, Nuh Gedik, and Riccardo Comin, “Evidence for a single-layer van der waals multiferroic,” Nature **602**, 601–605 (2022).
[12] Yurong Su, Xinli Li, Meng Zhu, Jia Zhang, Long You, and Evgeny Y. Tsymbal, “Van der waals multiferroic tunnel junctions,” Nano Letters **21**, 175–181 (2020).
[13] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, “Intrinsic quantized anomalous hall effect in a moiré heterostructure,” Science **367**, 900–903 (2020).
[14] Fabian R. Geisenhof, Felix Winterer, Anna M. Seiler,
Jakob Lenz, Tianyi Xu, Fan Zhang, and R. Thomas Weitz, “Quantum anomalous hall octet driven by orbital magnetism in bilayer graphene,” *Nature* 598, 53–58 (2021).

Tingxin Li, Shengwei Jiang, Bowen Shen, Yang Zhang, Lzhong Li, Zui Tao, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Liang Fu, Jie Shan, and Kin Fai Mak, “Quantum anomalous hall effect from intertwined moiré bands,” *Nature* 600, 641–646 (2021).

Kevin P. Nuckolls, Myungchul Oh, Dillon Wong, Biao Wei Ruan, Yi Chen, Shujie Tang, Jinwoong Hwang, Tingxin Li, Shengwei Jiang, Bowen Shen, Yang Zhang, Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Shawulienu Kezilebieke, Viliam Vano, Md N. Huda, Hyunjin Kim, Youngjoon Choi, Cyprian Lewandowski, Jeong Min Park, Yuan Cao, Kenji Watanabe, Takashi Taniguchi, Mohammad Amini, Somesh C. Ganguli, Viliam Vano, and Ali Yazdani, “Strongly correlated chern insulators in magic-angle twisted bilayer graphene,” *Nature* 588, 610–615 (2020).

Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” *Nature* 556, 43–50 (2018).

Myungchul Oh, Kevin P. Nuckolls, Dillon Wong, Ryan L. Lee, Xiaomeng Liu, Kenji Watanabe, Takashi Taniguchi, and Ali Yazdani, “Evidence for unconventional superconductivity in twisted bilayer graphene,” *Nature* 600, 240–245 (2021).

Shawulienu Kezilebieke, Md Nurul Huda, Viliam Vaño, Markus Aapro, Somesh C. Ganguli, Orlando J. Silvaere, Szczepan Glodzik, Adam S. Foster, Teemu Ojansen, and Peter Liljeroth, “Topological superconductivity in a van der waals heterostructure,” *Nature* 588, 424–428 (2020).

Shawulienu Kezilebieke, Viliam Vaño, Md N. Huda, Markus Aapro, Somesh C. Ganguli, Peter Liljeroth, and Jose L. Lado, “Moiré-enabled topological superconductivity,” *Nano Letters* 22, 328–333 (2022).

Jeong Min Park, Yuan Cao, Kenji Watanabe, Takashi Taniguchi, and Pablo Jarillo-Herrero, “Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene,” *Nature* 590, 249–255 (2021).

Hyunjin Kim, Youngjoon Choi, Cyprian Lewandowski, Alex Thomson, Yiran Zhang, Robert Polski, Kenji Watanabe, Takashi Taniguchi, Jason Alicea, and Stevan Nadj-Perge, “Evidence for unconventional superconductivity in twisted trilayer graphene,” *Nature* 606, 494–500 (2022).

Viliam Vaño, Mohammad Amini, Somesh C. Ganguli, Guangze Chen, Jose L. Lado, Shawulienu Kezilebieke, and Peter Liljeroth, “Artificial heavy fermions in a van der waals heterostructure,” *Nature* 599, 582–586 (2021).

Shiwei Shen, Chenhaoping Wen, Pengfei Kong, Jingjing Gao, Jianguo Si, Xuan Luo, Wenjian Lu, Yuping Sun, Gang Chen, and Shichao Yan, “Inducing and tuning kondo screening in a narrow-electronic-band system,” *Nature Communications* 13 (2022), 10.1038/s41467-022-29891-4.

Wei Ruan, Yi Chen, Shujie Tang, Jinwoong Hawng, Hsin-Zon Tsai, Ryan L. Lee, Meng Wu, Hyejin Ryu, Salman Kahn, Franklin Lioiu, Caihong Jia, Andrew Aikawa, Choongyu Hwang, Feng Wang, Yongseong Choi, Steven G. Louie, Patrick A. Lee, Zhi-Xun Shen, Sung-Kwan Mo, and Michael F. Crommie, “Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy,” *Nature Physics* 17, 1154–1161 (2021).

Miguel M. Ugeda, Aaron J. Bradley, Yi Zhang, Seita Onishi, Yi Chen, Wei Ruan, Claudia Ojeda-Aristizabal, Hyejin Ryu, Mark T. Edmonds, Hsin-Zon Tsai, and et al., “Characterization of collective ground states in single-layer nbse2,” *Nature Physics* 12, 92–97 (2015).

Bevin Huang, Genevieve Clark, Efrén Navarro-Moratalla, Dahlia R. Klein, Ran Cheng, Kyle L. Seyler, Ding Zhong, Emma Schmidgall, Michael A. McGuire, David H. Cobden, Wang Yao, Di Xiao, Pablo Jarillo-Herrero, and Xiaodong Xu, “Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit,” *Nature* 546, 270–273 (2017).

Shuoguo Yuan, Xin Luo, Hung Lit Chan, Chengcheng Xiao, Yawei Dai, Maohai Xie, and Jianhua Hao, “Room-temperature ferroelectricity in mater2d down to the atomic monolayer limit,” *Nature Communications* 10, 1775 (2019).

Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L. Tomarken, Jason Y. Luo, Javier D. Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, Ray C. Ashoori, and Pablo Jarillo-Herrero, “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” *Nature* 556, 80–84 (2018).

Xiaobo Lu, Petr Stepanov, Wei Yang, Ming Xie, Mohammad Ali Aamir, Ipsita Das, Carles Urgell, Kenji Watanabe, Takashi Taniguchi, Guangyu Zhang, Adrian Bachtold, Allan H. MacDonald, and Dmitri K. Efetov, “Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene,” *Nature* 574, 653–657 (2019).

H. Polshyn, J. Zhu, M. A. Kumar, Y. Zhang, F. Yang, C. L. Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi, A. H. MacDonald, and A. F. Young, “Electrical switching of magnetic order in an orbital chern insulator,” *Nature* 588, 66–70 (2020).

Fengcheng Wu, Timothy Lovorn, Emanuel Tutuc, Ivar Martin, and A. H. MacDonald, “Topological insulators in twisted transition metal dichalcogenide homobilayers,” *Phys. Rev. Lett.* 122, 086402 (2019).

Mikael Haavisto, J. L. Lado, and Adolfo O. Fumea, “Topological multiferroic order in twisted transition metal dichalcogenide bilayers,” *arXiv* e-prints , arXiv:2204.03360 (2022), arXiv:2204.03360 [cond-mat.str-el].

Tiancheng Song, Qi-Chao Sun, Eric Anderson, Chong Wang, Jimin Qian, Takashi Taniguchi, Kenji Watanabe, Michael A. McGuire, Rainer Stöhr, Di Xiao, Ting Cao, Jörg Wrachtrup, and Xiaodong Xu, “Direct visualization of magnetic domains and moiré magnetism in twisted 2d magnets,” *Science* 374, 1140–1144 (2021).

Chong Wang, Yuan Gao, Hongyan Lv, Xiaoqiong Xu, and Di Xiao, “Stacking domain wall magnons in twisted van der waals magnets,” *Phys. Rev. Lett.* 125, 247201 (2020).

Hongchao Xie, Xiangpeng Luo, Gaihua Ye, Zhipeng Ye, Haiven Ge, Suk Hyun Sung, Emily Remnich, Shaohua Yan, Yang Fu, Shangjie Tian, Hechang Lei, Robert Hovden, Kai Sun, Rui He, and Liuyan Zhao, “Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostuctures,” *Nature Physics* 18, 30–36 (2021).

Yang Xu, Ariana Ray, Yu-Tsun Shao, Shengwei Jiang, Kihong Lee, Daniel Weber, Joshua E. Goldberger, Kenji Watanabe, Takashi Taniguchi, David A. Muller, Kin Fai Mak, and Jie Shan, “Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3,”
Nature Nanotechnology **17**, 143–147 (2021).

Feiping Xiao, Keqiu Chen, and Qingjun Tong, “Magnetization textures in twisted bilayer CrX$_3$ (x=br, i),” Phys. Rev. Research **3**, 013027 (2021).

Muhammad Akram, Harrison LaBollita, Dibyendu Dey, Jesse Kapeghian, Onur Ertén, and Antia S. Botana, “Moiré skyrmions and chiral magnetic phases in twisted CrX$_3$ (x = i, br, and cl) bilayers,” Nano Letters **21**, 6633–6639 (2021).

Yang Xu, Ariana Ray, Yu-Tsun Shao, Shengwei Jiang, Daniel Weber, Joshua E. Goldberg, Kenji Watanabe, Takashi Taniguchi, David A. Muller, Kin Fai Mak, and Jie Shan, “Emergence of a noncollinear magnetic state in twisted bilayer CrI$_3$,” arXiv e-prints , arXiv:2103.09850 (2021), arXiv:2103.09850 [cond-mat.mtrl-sci].

J L Lado and J Fernández-Rossier, “On the origin of magnetic anisotropy in two dimensional CrI$_3$,” 2D Materials **4**, 035002 (2017).

Wei-Bing Zhang, Qian Qu, Peng Zhu, and Chih-Hang Lam, “Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides,” Journal of Materials Chemistry C **3**, 12457–12468 (2015).

Kok Wee Song and Vladimir I Fal’ko, “Superexchange and Spin-Orbit Coupling in Mono and Bilayer Chromium Trihalides,” arXiv e-prints , arXiv:2207.00365 (2022), arXiv:2207.00365 [cond-mat.str-el].

Thomas A. Tartaglia, Joseph N. Tang, Jose L. Lado, Furankah Bahrami, Mykola Abramchuk, Gregory T. McGuire, David Graf, Ting Cao, Jiun-Haw Chu, David H. Cobden, Cory R. Dean, Di Xiao, and Xiaodong Xu, “Switching 2d magnetic states via pressure tuning of layer stacking,” Nature Materials **18**, 1298–1302 (2019).

Tiancheng Song, Zaiyao Fei, Matthew Yankowitz, Zhong Lin, Qianmi Jiang, Kyle Hwangbo, Qiang Zhang, Bosong Sun, Takashi Taniguchi, Kenji Watanabe, Michael A. McGuire, David Graf, Ting Cao, Jiun-Haw Chu, David H. Cobden, Cory R. Dean, Di Xiao, and Xiaodong Xu, “Emergence of a noncollinear magnetic state in twisted bilayer CrI$_3$,”Nature Materials **18**, 1303–1308 (2019).

Matthew Yankowitz, Shaowen Chen, Hryhoriy Polshyn, Yuxuan Zhang, K. Watanabe, T. Taniguchi, David Graf, Andrea F. Young, and Cory R. Dean, “Tuning superconductivity in twisted bilayer graphene,” Science **363**, 1059–1064 (2019).

An in-plane spin texture provides results on the same order of magnitude for CrCl$_3$.

P. Hohenberg and W. Kohn, “Inhomogeneous electron systems,” Phys. Rev. B **98**, 144411 (2018).

In the absence of strain, CrCl$_3$ shows in-plane anisotropy.

Changsong Xu, Junsheng Feng, Hongjun Xiang, and Laurent Bellaiche, “Interplay between kitaev interaction and single ion anisotropy in ferromagnetic CrI$_3$ and CrGeTe$_3$ monolayers,” npj Computational Materials **4** (2018), 10.1038/s41524-018-0115-6.

Alexey Kartsev, Mathias Augustin, Richard F. L. Evans, Kostya S. Novoselov, and Elton J. G. Santos, “Biquadratic exchange interactions in two-dimensional magnets,” npj Computational Materials **6** (2020), 10.1038/s41524-020-00416-1.

Lebing Chen, Jae-Ho Chung, Bin Gao, Tong Chen, Matthew B. Stone, Alexander I. Kolesnikov, Qingzhen Huang, and Pengcheng Dai, “Topological spin excitations in honeycomb ferromagnet cr$_3$I,” Phys. Rev. X **8**, 041028 (2018).

Xiaobo Lu, Ruixiang Fei, Linghan Zhu, and Li Yang, “Meron-like topological spin defects in monolayer CrBr$_3$,” Nature Communications **11** (2020), 10.1038/s41467-020-18573-8.

Nikhil Sivadas, Satoshi Okamoto, Xiaodong Xu, Craig. J. Fennie, and Di Xiao, “Stacking-dependent magnetism in bilayer CrI$_3$,” Nano Letters **18**, 7658–7664 (2018).

D. Soriano, C. Cardoso, and J. Fernández-Rossier, “Interplay between interlayer exchange and stacking in CrI$_3$ bilayers,” Solid State Communications **299**, 113662 (2019).

Weijong Chen, Zeyuan Sun, Zhongjie Wang, Lehua Gu, Xiaodong Xu, Shiwei Wu, and Chunlei Gao, “Direct observation of van der waals stacking-dependent interlayer magnetism,” Science **366**, 983–987 (2019).

D. Soriano, “Domain wall formation and magnon localization in twisted chromium trihalides,” arXiv e-prints , arXiv:2204.03244 (2022), arXiv:2204.03244 [cond-mat.mes-hall].

The interlayer magnetic exchange spatial dependence $J_M(r_i, r_j)$ was modeled considering an interpolation between the antiferromagnetic and ferromagnetic regions [38, 39]. In our calculations, we have fixed the twist angle to 2.64°, which corresponds to an 11×11 commensurate supercell. No qualitative change is observed in the results of our analyses for small variations of the twist angle.

Hosho Katsura, Naoto Nagaosa, and Alexander V. Balatsky, “Spin current and magnetoelectric effect in non-collinear magnets,” Phys. Rev. Lett. **95**, 057205 (2005).

Maxim Mostovoy, “Ferroelectricity in spiral magnets,” Phys. Rev. Lett. **96**, 067601 (2006).

D. R. Klein, D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, P. Canfield, J. Fernández-Rossier, and P. Jarillo-Herrero, “Probing magnetism in 2d van der waals crystalline insulators via electron tunneling,” Science **360**, 1218–1222 (2018).

Trihalides,” arXiv e-prints , arXiv:2204.03837 (2022), arXiv:2204.03837.
[cond-mat.mtrl-sci].

[68] Qingjun Tong, Fei Liu, Jiang Xiao, and Wang Yao, “Skyrmions in the moiré of van der waals 2d magnets,” Nano Letters 18, 7194–7199 (2018).

[69] Sujay Ray and Tanmoy Das, “Hierarchy of multi-order skyrmion phases in twisted magnetic bilayers,” Phys. Rev. B 104, 014410 (2021).

[70] Kasra Hejazi, Zhu-Xi Luo, and Leon Balents, “Heterobilayer moiré magnets: Moiré skyrmions and commensurate-incommensurate transitions,” Phys. Rev. B 104, L100406 (2021).

[71] Kasra Hejazi, Zhu-Xi Luo, and Leon Balents, “Non-collinear phases in moiré magnets,” Proceedings of the National Academy of Sciences 117, 10721–10726 (2020).

[72] Yingying Wu, Brian Francisco, Zhijie Chen, Wei Wang, Yu Zhang, Caihua Wan, Xiufeng Han, Hang Chi, Yasen Hou, Alessandro Lodesani, Gen Yin, Kai Liu, Yong tao Cui, Kang L. Wang, and Jagadeesh S. Moodera, “A van der waals interface hosting two groups of magnetic skyrmions,” Advanced Materials 34, 2110583 (2022).

[73] Fawei Zheng, “Prediction of Magnetic Skyrmions in A New Kind of Twisted Bilayer CrI3,” arXiv e-prints, arXiv:2205.06438 (2022), arXiv:2205.06438 [cond-mat.mtrl-sci].

[74] Kyoung-Min Kim, Do Hoon Kiem, Grigory Bednik, Myung Joon Han, and Moon Jip Park, “Theory of Moire Magnets and Topological Magnons: Applications to Twisted Bilayer CrI3,” arXiv e-prints, arXiv:2206.05264 (2022), arXiv:2206.05264 [cond-mat.str-el].