FIBROBLAST RECEPTOR FOR LYSOSOMAL ENZYMES
MEDIATES PINOCYTOSIS OF MULTIVALENT
PHOSPHOMANNAN FRAGMENT

H. DAVID FISCHER, MARVIN NATOWICZ, WILLIAM S. SLY, and ROGER K.
BREITHAUER

From the Edward Mallinckrodt Department of Pediatrics, Washington
University School of Medicine, Division of Medical Genetics, St. Louis
Children's Hospital, St. Louis, Missouri 63110, and the Department of
Chemistry, University of Notre Dame, South Bend, Indiana 46556

ABSTRACT
Mild acid hydrolysis of phosphomannan secreted by the yeast Hansenula holstii
(NRRL Y-2448) produces two phosphomannosyl fragments which differ strikingly
in their potency as inhibitors of pinocytosis of human β-glucuronidase by human
fibroblasts. The larger molecular weight polyphosphomonoester fragment is
100,000-fold more potent an inhibitor of enzyme uptake than the smaller penta-
mannosyl-monophosphate fragment. Binding to attached fibroblasts at 3°C was
much greater with the phosphomannosyloenzyme fragment than with the pentaman-
nosyl-monophosphate. The larger molecular weight fragment was also subject to
adsorptive pinocytosis and was taken up by fibroblasts at a rate 30-fold greater
than the rate of uptake of pentamannosyl-monophosphate. Evidence that the
polyphosphomonoester fragment is taken up by the phosphomannosyl-recognition
system that mediates uptake of lysosomal enzymes includes: (a) its pinocytosis is
inhibited by the same compounds that competitively inhibit enzyme pinocytosis
(mannose-6-phosphate and phosphomannan from Saccharomyces cerevisiae mu-
tant mnn-1); (b) alkaline phosphatase treatment greatly reduces its susceptibility
to pinocytosis; (c) its pinocytosis is competitively inhibited by high-uptake human
β-glucuronidase; and (d) this inhibition by high-uptake enzyme is dramatically
reduced by prior treatment of the enzyme with alkaline phosphatase or endogly-
cosidase-H.

Endoglycosidase-H treatment of human β-glucuronidase dramatically reduced
its susceptibility to pinocytosis by fibroblasts. The phosphomannosyl components
of high-uptake enzyme released by endoglycosidase-H treatment were much less
effective inhibitors of polyphosphomonoester pinocytosis than when present on
the phosphomannosyl-enzyme. These results suggest that high-uptake acid hydro-
lases may be polyvalent ligands analogous to the polyphosphomonoester mannan
fragment whose pinocytosis depends on interaction of more than one phospho-
mannosyl recognition marker with pinocytosis receptors on fibroblasts.
Many lysosomal acid hydrolases are subject to adsorptive pinocytosis by fibroblasts, i.e., their uptake displays the saturability and selectivity expected of a receptor-mediated process (3, 13, 20, 26). Hickman and Neufeld (10) suggested that many acid hydrolases share a common recognition marker for uptake, and suggested further (11) that the recognition marker may reside in the carbohydrate portion of the glycoprotein hydrolases. Glaser et al. (8) reported that the fraction of a given acid hydrolase which was subject to adsorptive pinocytosis by fibroblasts corresponded to a subpopulation of enzyme molecules that was relatively acidic, and showed that this "high-uptake" form of the enzyme was converted to less acidic "low-uptake" forms after pinocytosis by fibroblasts.

That phosphomannose is the acidic group in the common recognition marker for uptake by fibroblasts was first suggested by Kaplan, Achord, and Sly (13) on the basis of studies with purified human platelet β-glucuronidase. The presence of phosphate on the enzyme and its role in enzyme pinocytosis were inferred from the finding that alkaline phosphatase treatment of "high-uptake" human platelet β-glucuronidase altered its electrophoretic properties and destroyed its ability to be taken up by fibroblasts. Linkage of the phosphate to a mannose-type carbohydrate was inferred from the potent competitive inhibition of enzyme pinocytosis by 6-phosphomannose. Mannose-6-phosphate was 1,000-fold more potent an inhibitor of enzyme pinocytosis than free mannose-6-phosphate, (b) that phosphate in monoester linkage is a more potent inhibitor than phosphate in diester linkage, (c) that a large molecular weight polyphosphomonoester (PPME) fragment of the phosphomannan from the yeast Hansenula holstii (NRRL Y-2448) is a very potent inhibitor of enzyme pinocytosis, and (d) that alkaline phosphatase treatment of this phosphomonoester fragment reduces its inhibitory potency in proportion to the phosphate released.

In the present paper, we report studies examining products of acid hydrolysis of H. holstii phosphomannans for their potency as inhibitors of enzyme pinocytosis, and for their susceptibility to pinocytosis by fibroblasts. These studies show (a) that the multivalent, large molecular weight PPME fragment from H. holstii phosphomannan is a much more potent inhibitor of enzyme pinocytosis than a monovalent pentamannosyl-monophosphate fragment from the same yeast phosphomannan, (b) that the multivalent, large molecular weight PPME fragment is subject to adsorptive pinocytosis by fibroblasts while the smaller fragment is not, (c) that the uptake of the large PPME fragment is competitively inhibited by purified high-uptake β-glucuronidase, and (d) that the inhibition of phosphomannan pinocytosis by β-glucuronidase is destroyed by prior treatment of the enzyme with either alkaline phosphatase or endoglycosidase-H. These results suggest that the large molecular weight phosphomannan fragment is pinocytosed by the previously reported system for receptor-mediated uptake of acid hydrolases and illustrate how phosphomannan fragments may be useful as ligands for studies of the fibroblast pinocytosis receptor for lysosomal hydrolases.¹

¹ Preliminary portions of the present work were presented as an abstract at the meeting of the Federation of American Societies For Experimental Biology in Dallas, Texas, April 1-5, 1979.
MATERIALS AND METHODS

Most reagents were purchased from Sigma Chemical Co., St. Louis, Mo. H. holstii mannans and phosphomannans were gifts of Dr. M. Slodki. Uniformly labeled H. holstii [3H]phosphomannan (3.0 x 10^13 cpm/mol organic phosphate) was obtained as previously described (5). Saccharomyces cerevisiae phosphomannan, (2.0 x 10^5 cpm/mol organic phosphate) was obtained as a gift of Dr. M. Slodki. Uniformly labeled H. holstii [3H]phosphomannan (X2108-mm1) was the gift of Dr. C. E. Ballou. Homogeneous Escherichia coli alkaline phosphatase was a gift of Dr. M. Schlesinger. Cultured fibroblasts were established from skin biopsies obtained from patient J. E. with a-glucuronidase deficient Escherichia coli alkaline phosphatase was a gift of Dr. M. Schlesinger. Cultured fibroblasts were established from skin biopsies obtained from patient J. E. with β-glucuronidase deficiency mucopolysaccharidosis (available as cell strain GM-151 from the Human Mutant Cell Repository, Camden, N. J.) and patient T. M. with I-cell disease (Division of Medical Genetics, University of Texas Health Science Center, Dallas, Tex.).

Hydrolysis of Phosphomannan

A solution of native H. holstii phosphomannan was hydrolyzed in 0.1 N HCl for 20 min at 100°C. A pentamannosyl monophosphate fragment and a large molecular weight PPME fragment were subsequently separated by column chromatography on Bio-Gel-P2 (Bio-Rad Laboratories, Richmond, Calif.). 1H-labeled phosphomannan fragments were separated as previously described (5).

Purification of Human Spleen β-Glucuronidase

High-uptake human spleen β-glucuronidase was isolated from homogenates of human spleen by sequential applications of a heat step, ammonium sulfate precipitation, concanavalin A (Con-A) column chromatography, gel filtration, and two successive CM-Sephadex columns. The details of this procedure are published elsewhere (18). The β-glucuronidase obtained appeared pure on sodium dodecyl sulfate (SDS) slab gels. The properties of the high-uptake enzyme purified from this source were not different than those reported for high-uptake enzyme purified from platelets (13).

Alkaline Phosphatase Treatment

Most alkaline phosphatase treatments were carried out as previously described (13) with E. coli alkaline phosphatase. Treatments of the PPME were done for 24 h at 37°C with 40 μg of alkaline phosphatase/100 μg of PPME. This treatment removed >90% of the total organic phosphate on the PPME fragment.

Endoglycosidase-H Treatment

Endoglycosidase-H treatments were carried out for 48 h at 37°C in 50 mM Na-acetate, 0.2 M citrate-PO4 buffer, pH 5.5, with a total of 20 nM of endoglycosidase-H (Miles Laboratories, Inc., Elkhart, Ind.). The protein was subsequently precipitated with 80% ice-cold ethanol, and the released oligosaccharides were recovered from the supernate.

Pinocytosis Measurements

Fibroblasts were grown in Eagle's minimum essential medium with Earle's salts (KC Biological) supplemented with 15% heat-inactivated fetal bovine serum and 3 mM glutamine. Pinocytosis rates for β-glucuronidase and [14C]phosphomannan were determined in duplicate 35-mm petri dishes (Falcon Labware, Div. Becton, Dickinson Co., Oxnard, Calif.) containing ~2.5 x 10^6 cells at confluence (~0.2 mg protein/dish). The cells were exposed to the indicated concentrations of enzyme or phosphomannan (± inhibitors) in 1.0 ml of this medium and incubated at 37°C for 2.0 h (enzyme) or 24 h (phosphomannan). The cells were then washed six times with 3-ml portions of ice-cold, PBS and lysed with 0.5% of 2% sodium deoxycholate.

Assays

Phosphate was determined by the Ames method (1). β-Glucuronidase was assayed as previously described using 10 mM 4-methylumbelliferyl-glucuronide (9). 1 U of enzyme activity is defined as the activity which releases 1 nmol of 4-methylumbelliferone/h. Radioactivity was counted in 10 ml of Biofluor (New England Nuclear, Boston, Mass.). Protein was determined by the method of Lowry et al. (17).

RESULTS

"Mild acid-hydrolysis conditions" (0.01-0.1 N HCl at 100°C for 15-20 min) selectively cleave phosphodiester bonds in yeast cell-wall phosphomannans (4). The 6-phosphomonoester groups exposed by this treatment are far more resistant to acid hydrolysis. In fact, the t1/2 for 6-phosphomannose monoester bonds is 1,034 min in 1.0 N HCl at 100°C (16). Thus, the 6-phosphomannose monoester phosphate largely resists acid hydrolysis conditions strong enough to hydrolyze mannans completely to monosaccharides.

Mild acid hydrolysis of native extracellular H. holstii phosphomannan produces two predominant phosphomannosyl species. One is a highly branched, large molecular weight PPME fragment composed solely of mannose and phosphate in a molar ratio of ~5.7:1 (23). The other is a smaller molecular weight pentamannosyl monophosphate, (Manα(1→3)Manα(1→3)Manα(1→2)Man(5), having the structure P-6-Manα(1→3)Manα(1→3)Manα(1→3)Manα(1→2)Man(5), and which can be viewed as a monovalent ligand with a single 6-phosphomonoester of mannose at the nonreducing end of the molecule. Comparison of the number of reducing groups per mole of phosphomannan and (Man)β-P (Fischer and Sly, unpublished observations). This suggests a molecular weight of ~1 x 10^6 for the PPME fragment which can thus be viewed as a multivalent ligand containing nearly 1,000 phosphate groups/molecule.

Since nearly all (90-95%) of the phosphate present in the PPME is released by prolonged treatment with alkaline phosphatase, and since mannose-6-phosphate is the only phosphorylated sugar produced by strong acid hydrolysis of the PPME
all of the phosphate present in the PPME fragment is thought to be present as the 6-phosphophomonoester of mannose. Slodki et al. (23) have shown by periodate oxidation analysis that α(1→2) and α(1→6)-linked mannose residues are present in the PPME. The same group has more recently shown by methylation analysis that α(1→3)-linked residues are also present and that a significant number of nonreducing end groups results from 1,2,6-tri-O-substituted points of branching (Slodki, personal communication). As acetolysis, which selectively cleaves (1→6) linkages, of dephosphorylated PPME produced only short oligosaccharides of mannose (Monaghan and Bretthauer, unpublished observations), the structure of the PPME could consist of a linear α(1→6)-linked polymannose backbone with short oligosaccharide side chains linked α(1→2) to the main chain which contain α(1→2) and α(1→3)-linked mannose residues, some of which are phosphorylated at the 6-position. Further experimentation is required to more precisely define the structure of the PPME.

Fig. 1 shows the relative potency of (Man)5-P and the PPME fragment as inhibitors of β-glucuronidase pinocytosis by fibroblasts. While the monovalent (Man)5-P displays nearly the same inhibitory potency previously described for mannos-6-phosphate (14), the large molecular weight, multivalent PPME is in excess of 100-fold more potent per mole of organic phosphate (or 100,000-fold more potent per molecule) as an inhibitor of enzyme pinocytosis than is (Man)5-P.

Strong acid hydrolysis reduces yeast mannans to monosaccharides. In the case of H. holstii phosphomannan, the products of strong acid hydrolysis are mannose and mannose-6-phosphate (22). Fig. 2 displays the effect of strong acid hydrolysis of the PPME on its ability to inhibit β-glucuronidase pinocytosis. Fig. 2A shows the time and concentration dependence of loss of inhibitory potency on acid hydrolysis. Nearly all of the inhibitory capacity is destroyed by hydrolysis in 1.0 N HCl at 100°C for 1.0 h. Fig. 2B indicates that with acid hydrolysis conditions under which the glycosidic bonds are hydrolyzed but the phosphate monoster bond is relatively stable (16), the inhibitory capacity of the PPME is rapidly reduced to the level of potency for free mannose-6-phosphate. Further hydrolysis is very slow and comparable to the rate of hydrolysis of mannose 6-phosphate. These results suggest that the large initial loss in potency is not due to hydrolysis of the phosphate bond but rather to destruction of some secondary feature of the PPME molecule.

Data comparing the relative abilities of the PPME and (Man)5-P fragments from 14C-labeled H. holstii phosphomannan to bind to and be taken up by human I-cell disease fibroblasts are presented in Fig. 3. Fig. 3A demonstrates that the binding, per mole of phosphate, of the large, multivalent PPME at 3°C is much more efficient than that of the small, monovalent (Man)5-P. A Scatchard analysis of these data (not shown) indicates that the affinity constants for these two ligands are nearly equal to their inhibitory constants for enzyme uptake and suggest that there are ~6,000 PPME binding sites on fibroblasts. Fig. 3B shows that the multivalent PPME is also taken up much more efficiently than monovalent (Man)5-P after incubation with fibroblasts for 24 h at 37°C. Even at a concentration 100-fold greater than the highest shown in Fig. 3B (i.e., concentrations where (Man)5-P is an effective inhibitor of enzyme pinocytosis), uptake of (Man)5-P was no greater than that explainable by nonspecific, fluid endocytosis (0.3 µl/mg/h). Trypsinization of fibroblasts for 5 min at 37°C with 0.05% trypsin after binding of PPME for 2 h at 3°C released ~90% of the cell-associated radioactivity, while nearly all of the radioactivity associated with cells incubated with...
the PPME for 24 h at 37°C was insensitive to release by trypsin and assumed to be internalized (data not shown).

I-Cell disease fibroblasts, which are deficient for multiple acid hydrolases, were chosen for these studies to minimize degradation of the ligands after pinocytosis. The data in Fig. 4 indicate that under our assay conditions for PPME pinocytosis by human fibroblasts, uptake over 24 h approximates linearity, and little of the material internalized over the first 24 h by I-cell disease fibroblasts was lost to the medium over the next 24 h. Although (Man)$_5$P was internalized at a much slower rate than PPME, its stability, once taken up by I-cell fibroblasts, was similar to that of PPME. Less than 5% of the 14C-(Man)$_5$P accumulated by I-cell fibroblasts during a 24-h incubation was lost to the medium over the next 24 h (data not shown).

FISCHER ET AL. Pinocytosis of Phosphomannan by Human Fibroblasts 81
If the greater efficiency of the larger molecular weight ligand is a consequence of its ability to interact as a multivalent ligand, one might expect to see inhibition of its pinocytosis at high ligand concentrations analogous to the inhibition of antibody precipitin reactions in the region of high antibody excess. Fig. 5 demonstrates such an inhibition of PPME pinocytosis at high ligand concentrations. We interpret this as specific "substrate inhibition" of pinocytosis since greater than tenfold higher concentrations of other polyanions (chondroitin sulfate, heparin sulfate, polyglutamic acid, and sodium phosphate glasses) had no effect on PPME pinocytosis (data not shown).

It was previously reported (15) that alkaline phosphatase treatment of the PPME diminished its potency as an inhibitor of β-glucuronidase pinocytosis. Table I shows that alkaline phosphatase treatment of the PPME also reduces its ability to be pinocytosed by fibroblasts. The effect of the alkaline phosphatase is sensitive to inhibition by inorganic phosphate and was completely inhibitable by 1 mM Pi. Table I also presents data showing that two potent inhibitors (13) of lysosomal enzyme pinocytosis, mannose 6-phosphate and mild acid hydrolyzed S. cerevisiae X2180-mnn-1 mannan (4), also inhibit PPME pinocytosis. A nonphosphorylated mannan produced by H. holstii grown in phosphate-free media (22) is non-inhibitory for PPME uptake, however. Fig. 6 presents data showing inhibition of PPME pinocytosis by two compounds which were previously demonstrated to be competitive inhibitors of β-glucuronidase pinocytosis (13). These data suggest a common binding site for these inhibitors and the PPME fragment and a common mechanism for pinocytosis of lysosomal hydrolases and the PPME.

The possibility that PPME and β-glucuronidase are pinocytosed by a common fibroblast receptor was examined in an experiment in which PPME uptake was inhibited by the addition of purified human spleen β-glucuronidase to the uptake medium. Fig. 7A shows the effect of increasing concentration of added β-glucuronidase on the inhibition of PPME uptake by fibroblasts. The data presented in Fig. 7B show that the inhibition of PPME pinocytosis by the added enzyme is competitive, as would be expected if pinocytosis of both ligands required binding to the same receptor.

Alkaline phosphatase treatment of spleen β-glucuronidase destroys its ability to be pinocytosed by fibroblasts (14). The data in Table II demonstrate this previously reported effect of alkaline phosphatase treatment on the uptake properties of human spleen enzyme, and show, in addition, that this treatment also reduces the ability of the enzyme to inhibit the pinocytosis of PPME. These
results are in accord with the previously suggested role of a 6-phosphomannose group in the recognition marker for lysosomal hydrolase uptake by fibroblasts, and suggest a similar role for 6-phosphomannose in the recognition and pinocytosis of PPME by fibroblasts.

Finally, Natowicz et al. have shown that endoglycosidase-H treatment of spleen β-glucuronidase quantitatively released oligosaccharide chains containing 6-phosphomannose (18). High-uptake enzyme contained up to 4.4 mol of Man-6-P/mol of enzyme, and release of the Man-6-P by endoglycosidase-H destroyed the susceptibility of the enzyme to pinocytosis by fibroblasts (18). We reasoned that if high-uptake enzyme containing multiple 6-phosphomannose groups/enzyme molecule interacts as a multivalent ligand with fibroblast pinocytosis receptors, its effectiveness as an inhibitor of PPME pinocytosis should depend on the presence of the 6-phosphomannose in a multivalent form (i.e., on the enzyme). 6-Phosphomannose containing oligosaccharides released by endoglycosidase-H would be expected to be much less effective inhibitors of PPME uptake, analogous to the 100-fold loss of inhibitory potency for enzyme pinocytosis found in conversion of PPME to mannose-6-phosphate. The data in Table III demonstrate the effect of endoglycosidase-H treatment on the uptake properties of human spleen β-glucuronidase, and show in addition that this treatment also reduces the ability of the enzyme to inhibit pinocytosis of PPME. Moreover, the 6-phosphomannose containing oligosaccharides of spleen β-glucuronidase are much less inhibitory for PPME uptake when released by endoglycosidase-H than when present on the enzyme.

DISCUSSION

Strong acid hydrolysis reduces *H. holstii* phosphomannan to mannose and 6-phosphomannose (22). The potency of the strong acid hydrolysate as an inhibitor of enzyme pinocytosis was comparable to that expected from its 6-phosphomannose content. Hydrolysates produced by mild acid treatment, however, had far greater inhibitory potency than that expected from their 6-phosphomannose content. The two principal products in mild acid hydrolysates, the monovalent pentamannosylmonophosphate, (Man)₅-P and the large molecular

Table I

Pinocytosis of PPME*	Pinocytosis of PPME*
Prior Treatment	% Inhibition
None	6,145
Alkaline phosphatase	1,997 67.5
Alkaline phosphatase + 1 mM Pi	6,149 0.0

Added Inhibitor	Pinocytosis of PPME*
None	6,145
1 mM Man-6-P	2,382 61.2
0.5 mg/ml Phosphomannan ‡	2,975 51.6
0.5 mg/ml Mannan §	6,133 0.2

* Pinocytosis measured as in Materials and Methods. PPME concentration = 1.0 × 10⁻⁶ M organic phosphate.

‡ Phosphomannan from *S. cerevisiae* mutant X2180-mnn-1 hydrolyzed for 15 min at 100°C in 0.1 N HCl.

§ Nonphosphorylated mannans from *H. holstii* grown in phosphate deficient media.
weight, multivalent PPME, were separated by gel chromatography and shown to be quite different from each other in their potency as pinocytosis inhibitors. The large molecular weight PPME fragment, which contained many exposed 6-phosphomannose groups, was nearly 100-fold more potent as an inhibitor per mole of organic phosphate (100,000-fold more potent per molecule).

Although (Man)$_5$P and PPME both showed saturable binding to fibroblasts at 3°C, the binding per mole of phosphate of the large, multivalent PPME was much more efficient than that of the small, monovalent pentamannosyl-monophos-
confer higher affinity of binding leading to a clustering of bound cell surface receptors which are then cross-linked more than one receptor. Ash and Singer (2) have shown that multivalent ligands might actually stimulate adsorptive pinocytosis by human cells, however, the clustering and capping of bound receptors fails to occur. In this case, capping can subsequently be induced if the cells that have been reacted with succinylated-Con A are further reacted with antibodies to the lectin. Similarly, the effective capping of Fab fragments specific for the T25 antigen and the H2 antigen on lymphocytes requires a second cross-linking antibody (24).

The evidence that uptake of the multivalent PPME ligand depends on the same receptors that mediate internalization of acid hydrolases is considerable. The uptake of both the PPME and acid hydrolases is diminished by prior treatment of these ligands with alkaline phosphatase. Similarly, the uptake of both the PPME and acid hydrolases is competitively inhibited by mannose-6-phosphate and mild acid-hydrolyzed phosphomannan from *S. cerevisiae* mutant X2180 mnn-1, but is not inhibited by a nonphosphorylated *H. holstii* mannan. Moreover, just as the PPME competitively inhibits the pinocytosis of purified high-uptake human β-glucuronidase by fibroblasts, so also is the pinocytosis of the PPME fragment competitively inhibited by the high-uptake enzyme.

The suggestion that the same pinocytosis receptors are involved in pinocytosis of lysosomal enzymes and the multivalent PPME phosphomannan fragment of *H. holstii* raises an interesting question concerning the pinocytosis of lysosomal hydrolases, i.e., are acid hydrolases multivalent ligands which induce their own pinocytosis by binding to multiple cell surface receptors? One can easily visualize how an acid hydrolase such as human β-glucuronidase could be a multivalent ligand. The enzyme is a glycoprotein and appears to be a tetramer of identical 75,000-mol wt subunits (6). As such, a multivalent interaction with several cell surface receptors could result from any of several possibilities: (a) through an interaction of single 6-phosphomannose groups on different protein subunits; (b) through each subunit having more than one oligosaccharide chain, each of which could bear a 6-phosphomannose moiety; (c) multiple 6-phosphomannose moieties could be present on a single oligosaccharide chain. We have demonstrated up to 4.4 mol of 6-phosphomannose/mol high-uptake enzyme, and a direct correlation between the 6-phosphomannose content...
and the susceptibility to pinocytosis of different fractions of β-glucuronidase isolated from spleen (18).

While it is clear that acid hydrolases could be multivalent ligands and that their pinocytosis could depend on an interaction with multiple pinocytosis receptors, an alternate possibility is that high-uptake acid hydrolases are monovalent ligands which bind to pinocytosis receptors with much higher affinity than 6-phosphomannose due to some other structural feature of the recognition marker. In this case, pinocytosis of the multivalent PPME phosphomannan fragment could simply result from its binding to and across-linking multiple acid hydrolase receptors. However, the observations that the potency of high-uptake enzyme as an inhibitor of PPME pinocytosis is dramatically reduced by an endoglycosidase-H treatment that releases the phosphomannosyl-containing oligosaccharides from the enzyme is certainly compatible with the idea that high-uptake enzyme acts as a multivalent ligand.

Since multivalent H. holstii PPME fragments are pinocytosed by the same receptors that mediate uptake of acid hydrolases by fibroblasts, they may prove useful ligands in the analysis of the fibroblast pinocytosis receptor for lysosomal hydrolases. Moreover, they can probably be covalently attached to enzymes and other agents to target these compounds for uptake by cell types which express the phosphomannosyl-enzyme pinocytosis receptors.

The authors gratefully acknowledge Dr. Arnold Kaplan for initially recognizing the potential importance of yeast phosphomannans as enzyme pinocytosis inhibitors and for his encouragement and suggestions in the initial phase of these experiments; Dr. Milton Schlesinger for providing yeast phosphomannans; and Jeffrey Grubb and Mark Lichtenfeld for able technical assistance.

This research was supported by U. S. Public Health Service grant GM 20196 and the Ranken-Jordan Trust Fund for the Crippling Diseases of Children to W. S. Sly, and National Science Foundation grant PCM 73-06961 to R. K. Brethauer.

Received for publication 11 May 1979, and in revised form 16 August 1979.

REFERENCES
1. Ames, B. N., and P. T. Duron. 1960. The role of polyamines in the neutralization of bacteriophage DNA-unsaturated Acid. J. Biol. Chem. 235:769-775.
2. Ash, J. F., and S. J. Singer. 1976. Concanavalin-A induced transmembrane linkage of concanavalin-A surface receptors to intracellular myosin-containing filaments. Proc. Natl. Acad. Sci. U. S. A. 72:4734-4737.
3. Barlow, R. W., and E. F. Neufeld. 1971. The Hurter corrective factor: purification and some properties. J. Biol. Chem. 246:7773-7779.
4. Ballou, C. E. 1974. Some aspects of the structure, immunocchemistry and genetic control of yeast mannan. Adv. Enzymol. 40:239-265.
5. Brethauer, R. K., G. J. Kazmierczok, and M. J. Were. 1973. Characterization of a phosphorylated pentasaccharide isolated from Hansenula holstii NRR. 2Y440 phosphomannan. Biochemistry. 12:2251-2256.
6. Brot, E. C., C. E. Bell, Jr., and W. S. Sly. 1978. Purification and properties of β-glucuronidase from human placenta. Biochemistry. 17:385-391.
7. Conrod, H. E., E. Varkoncruer, and M. E. James. 1975. Qualitative and quantitative analysis of reducing carbohydrates by radiochromatography on ion-exchange paper. Anal. Biochem. 1:460-470.
8. Glaser, J. H., J. K. Rodzel, F. E. Brot, and W. S. Sly. 1975. Multiple isoenzyme and recognition forms of human β-glucuronidase activity. Arch. Biochem. Biophys. 166:536-542.
9. Glaser, J. H., and W. S. Sly. 1973. β-Glucuronidase deficiency mucopoly saccharidosis: methods for enzymatic diagnosis. J. Lab. Clin. Med. 82:966-977.
10. Hickman, S., and E. F. Neufeld. 1972. A hypothesis for f-cell disease: defective hydrolase that do not enter lysosomes. Biochem. Biophys. Res. Commun. 49:92-99.
11. Hickman, S., J. R. Shapiro, and E. F. Neufeld. 1974. A recognition marker for uptake of a lysosomal enzyme by cultured fibroblasts. Biochem. Biophys. Res. Commun. 57:55-61.
12. Hiebert, V. R., J. Distler, R. Myrowitz, R. A. Schimmel, and G. W. Jacobson. 1975. The role of glycosidically bound mannose in the assimilation of β-glucosidase by generalized gangliosidosis fibroblasts. Biochem. Biophys. Res. Commun. 78:70-717.
13. Kaplan, A., D. T. Achord, and W. S. Sly. 1973. Phosphomannosylic components of a lysosomal enzyme are recognized by pinocytosis receptors on fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 74:2082-2086.
14. Kaplan, A., D. Fischer, D. Achord, and W. S. Sly. 1977. Phosphomannose recognition is a general characteristic of pinocytosis of lysosomal glycoproteins by human fibroblasts. J. Clin. Invest. 58:1088-1093.
15. Kaplan, A., D. Fischer, and W. S. Sly. 1978. Correlation of structural features of phosphomannans and their ability to inhibit pinocytosis of human β-glucuronidase by human fibroblasts. J. Biol. Chem. 253:647-650.
16. Lesher, L. F., and C. E. Cartoni. 1957. Characterization of phosphorus compounds by acid hydrolysis. Methods Enzymol. 8:480-485.
17. Lowry, O. H., N. J. Rosebroich, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275.
18. Natowicz, M. R., W. S. Sly, M. Y. Che, and O. H. Lowry. 1979. Enzymatic identification of mannose-6-phosphate on the recognition marker for receptor-mediated pinocytosis of β-glucuronidase by human fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 76:633-638.
19. Neufeld, E. F. and M. J. Cantz. 1978. Corrective factors for inborn errors of mucopolysaccharide metabolism. Ann. N. Y. Acad. Sci. 279:580-587.
20. Neufeld, E. F., T. W. Lim, and L. J. Shapiro. 1975. Inherited diseases of lysosomal metabolism. Annu. Rev. Biochem. 44:357-375.
21. Sands, G. N., and E. F. Neufeld. 1977. Recognition and receptor-mediated uptake of a lysosomal enzyme, α-1,4-mannosidase by cultured human fibroblasts. Cell. 12:619-627.
22. Sjolund, M. E., R. M. Ward, J. A. Boudnt, and M. C. Andin. 1972. Extracellular mannans and phosphomannans: structural and biosynthetic relationships. Formen. Technol. Today. 597-601.
23. Sjolund, M. E., R. M. Ward, and J. A. Boudnt. 1973. Concanavalin A as a probe of phosphomannan molecular structure. Biochem. Biophys. Acta. 304:349-356.
24. Taylor, R. B., P. M. Dukkops, M. C. Rapy, and S. Derfuss. 1971. Redistribution and pinocytosis of lysozyme and other immuno-globulin molecules. Induced by anti-immuno-globulin antibody. Natl. New Biol. 233:225-229.
25. Ullrich, K., G. Mersmann, E. Weber, and K. von Figura. 1978. Evidence for lysosomal recognition by human fibroblasts via a phosphorylated carbohydrate moiety. Biochem. J. 170:643-650.
26. von Figura, K., and H. Krebs. 1974. Quantitative aspects of pinocytosis and the intracellular fate of N-acetyl-d-glucosaminidase in Sanfilippo B fibroblasts. J. Clin. Invest. 53:838-90.