Identification and HPLC Purification of Aspirin (Acetylsalicylic Acid) from the Seed Coats, Leaves and Bark of *Givotia Rottleriiformis* Griff.

Samuel Kamatham (✉ samuelbioc@gmail.com)
University of Hyderabad

Research Article

Keywords: Benzoylsalicylic acid, Acetylsalicylic acid, Salicylic acid, Cyclooxygenase, ΙκΒ kinase, plant defense.

Posted Date: October 21st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-954344/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. [Read Full License](#)
Abstract

Aspirin (Acetylsalicylic acid; ASA) is an anti-inflammatory and anti-cancer molecule derived from salicylic acid (SA) and produced by different companies worldwide because of the wide range of therapeutic applications in human. Accumulated evidence suggest that ASA relieves pain, swelling, cold or flu, prevent colorectal cancer and cardiovascular diseases. ASA induces defense response against wide range of pathogens in plants. Recently, we reported benzoylsalicylic acid (BzSA) and other anti-cancer molecules such as gallic acid (GA) methyl gallate from the seed coats of *G. rottleriformis*. Here we are reporting the natural aspirin first time from the seed coats, leaves and bark of *G. rottleriformis*. HPLC chromatogram of hexane extract of seed coats, leaves and bark have shown a peak at RT 24.8min coeluted with the aspirin standard. The purified aspirin from the seed coats were subjected to 1H NMR and were confirmed as aspirin. These results suggest that aspirin biosynthesis is taking place in seed coats, leaves and bark of *G. rottleriformis* and supports the medicinal properties of *G. rottleriformis*. These results suggest that the seedcoats, leaves and bark of this plant contains the highly useful medicinal compounds to treat the rheumatism, cancer, cardiovascular, psoriasis, anti-inflammatory and other skin diseases.

Introduction

Givotia rottleriformis, is a commercially valuable tree belonging to the *Euphorbiaceous* family. It is a moderate sized tree grow in the forests of Andhra Pradesh, Karnataka, Tamil Nadu, and West Bengal. Because of the softness and light weight of the wood this plant has high value in toy industry. And the seeds and the bark have medical value and used for the treatment of rheumatism, dandruff, and psoriasis. Aspirin also known as acetylsalicylic acid (ASA) and it is a nonsteroidal anti-inflammatory drug and it is a commonly used drug worldwide to reduce pain, fever and inflammation. Aspirin is a potential drug used to prevent cardiovascular and cerebrovascular diseases (About 80 million pounds of aspirin are producing and 100 billion tablets consumed every year). Aspirin primarily works by blocking the action of cyclooxygenase1, which prevents the conversion of arachidonic acid (AA) into prostaglandins (PG), which further prevents the synthesis of thromboxane (Tx). Nonsteroidal anti-inflammatory drugs (NSAIDs) block the COX enzymes and reduce prostaglandins throughout the body and thus reduce inflammation, pain, and fever. PG are produced by the cells by the enzyme cyclooxygenase (COX) and carry out several important functions. After more than a century of human use, researchers are still discovering how aspirin affects the body and the Scientists understood that SA was the component derived from plants that relieved pain fever and cancers. However, long-term use of ASA in high doses causes stomach problems in some people. In 1897 a chemist at a company called Bayer added a chemical modification called an acetyl group (CH$_3$CO) to SA, turning it into ASA and Bayer called this new substance aspirin. Willow bark has been used as a traditional medicine for more than 3500 years and determined salicylate contents in the food items. For centuries in Europe, people grew meadowsweet to treat pain and inflammation. Willow and meadowsweet contain
high levels of aspirin-like compounds called salicin and methyl salicylate (MeSA) which would later form the basis for the discovery of aspirin. The effect of aspirin still being studied with the growing evidence of its chemo preventive effect against colorectal and other types of cancer.

Salicylic acid pathway is a well-studied defense responsive pathway against a broad range of bacterial, fungal and viral pathogens. It is widely accepted that plants possess both an isochorismate synthase (ICS) and phenylalanine ammonia-lyase (PAL) pathway to synthesize SA both starting from chorismate. SA levels increase in many plants upon infection with viruses, fungi, insects, and bacteria and exogenous SA pre-treatment boosts the defense system of the host plants. Plants overexpressing NahG, a salicylate hydroxylase converts SA to catechol, are unable to accumulate SA upon pathogen infection and are impaired in their systemic acquired resistance (SAR), a broad-spectrum systemic defense response after a primary infection.

Plants have the ability to withstand environmental stress including seasonal changes. Previous reports have suggested that SA and its analogues can confer stress tolerance in plants. Literature suggested that the plant seeds imbibed in SA/ASA solution shown resistance to temperature, cold and drought stresses and the seedlings also shown resistance to stress upon SA or ASA treatments. SA and ASA plays defense signal role in plants. SA and its derivatives are useful treat various tress in agriculture, horticulture and forestry. Previous reports have shown that SA/ASA regulate the expression of stress responsive genes in plants. Treatment of seeds of different plants SA/ASA overcome various stress. In our previous study we have shown that pretreatment of SA, ASA, and BzSA (benzoylsalicylic acid) to tobacco induced SAR and offered better protection against tobacco mosaic virus.

In the present study we have identified and purified natural aspirin from the seed coats, leaves and bark of G. rottleriformis using HPLC using preparative column (figure 1). The purified aspirin coeluted with the standard aspirin at RT 24.8 min and the purified aspirin was confirmed by 1H NMR. Pre-treatment of tobacco plants with purified natural aspirin shown the similar effect in reducing TMV lesions as compared to standard ASA.

Material And Methods

General details

1H NMR (400 MHz) spectra were recorded on Bruker-AC-200 and Bruker-Avance-400 spectrometer with chloroform-d as solvent and TMS as reference (d = 0 ppm). The chemical shifts were expressed in d downfield from the signal of internal TMS. Thin layer chromatography (TLC) was carried out using silica gel plates (Merck 60F254) and the compounds were visualized by irradiation with UV light and/or by iodine vapor. Column chromatography was carried out using (acme’s) silica gel (100—200 mesh).

Plant Materials
Mature, dry seeds, bark and leaves of *G. rotteriformis* (A voucher specimen No. PARC/2011/2140) were collected from trees available at Regional Forest Research Centre (RFRC), Rajahmundry, Andhra Pradesh, India. Tobacco seeds (VT-1158, NN gene type, resistant to TMV) were obtained from the Central Tobacco Research Institute, Rajahmundry, Andhra Pradesh, India.

Statement of plant material identification

The plant material used in this study were collected from the trees available at the Regional Forest Research Centre, Rajahmundry, Andhra Pradesh, India. I thank to Dr. Vara Prasad for helping the identification of plant material and allowing to use the plant material the study.

Compound extraction from seed coats, leaves and bark

Mature seeds leave and bark of *G. rotteriformis* were dried at room temperature for 3 days, the seed coat consisting of epicarp and mesocarp were removed manually using cutter. Dried seed coats, leaves and bark was ground into a fine powder separately using a grinder. The powder was soaked in methanol repeatedly for 3 times for 2 days and the total compounds were extracted. The extract was vacuum dried with the help of rotary evaporator with vacuum under the heating condition.

Open silica column chromatography

Slurry of seed coats, leaves and bark was prepared separately from semi solid extracts by adding silica and applied to open silica column (200). The separation of compounds was carried out by changing the polarity from low to high by using the mobile phase as hexane and ethyl acetate (EtOAc). Each fraction eluted from the open silica column and subjected to tin layer chromatography to check the purity of the fractions. A fraction number 3 eluted from open silica column with 10% EtOAc (10ml EtOAc and 90ml hexane) was concentrated and subjected to reverse phase HPLC using C18 silica column.

HPLC Purification of Aspirin from the seed coats of *G. rotteriformis*

The concentrated open silica column fractions were dissolved in HPLC grade methanol (Merck, India) and subjected to reverse phase HPLC employing C18 silica column (Shim pack Column 250 x 4.6 mm and particle size 5 µm) with flow rate of 6 ml/min, UV detection at 280 nm and mobile phase of solvent A (water: acetic acid 1000:1 and solvent-B methanol : acetic acid 1000:1 and applied in a gradient program (0-5 min, 55% B linear; 5-20 min, 95% B linear; 20-25 min, 95-5% A, 25-30 min, 5-5% A stop). The eluted peaks were collected and concentrated by lyophilization.

1HNMR analysis of purified Aspirin

1HNMR (400MHz, CDCl$_3$) spectra were recorded on Bruker-Avance-400 spectrometer with chloroform-d as solvent and TMS as reference (d = 0 ppm). The chemical shifts were expressed delta in downfield from the signal of internal TMS.
Results And Discussion

We have initiated our study to re-establish *G. rotteriformis* plant populations, and developed an efficient micropropagation method \(^4\). While cutting the seeds we observed a bulk amount of compound in the seed coats. Based on the medicinal properties of this plant, we have directed to characterize the medicinally important compounds from the seed coats, leaves and the bark of this plant. And we isolated important bioactive molecules \(^1\text{–}^3\). In our previous studies, we reported benzyloxy salicylic acid (BzSA) for the first time from the seed coats of *G. rotteriformis* and proved as a potential defense inducer against Tobacco mosaic virus (TMV) as a compared to salicylic acid a well-known plant hormone induces disease response against a wide range of pathogens \(^2\). BzSA, salicylic acid (SA) and its precursors such as cinnamic acid (CA), benzaldehyde (BD) and benzoic acid (BA) are purified from the seed coats of *G. rotteriformis* using preparative HPLC \(^2\). The biosynthesis of SA was reported in different plants are takes place via cinnamic acid \(^32, 50\). In our previous study we report that SA is further converted to BzSA using benzoyl-CoA \(^2\). In addition we also reported the purified gallic acid (GA) and methyl gallate (MG) from the seed coats of *G. rotteriformis* \(^1\). The presence of GA, MG, SA, SA-analogues and BzSA in the seed coats are suggest that the existence of phenylpropanoid pathway in the seed coats of this plant \(^1\text{–}^3\). A peak eluted at RT 24.8 min from the 10% fraction of seed coats co-eluted with standard aspirin (Figure 2). In order to determine the presence of aspirin in the leaves and bark of this plant, A 10% fraction of leaf/bark from the open silica column were resolved on preparative HPLC using the same HPLC program and the HPLC chromatogram showed the elution of peak at RT 24.8min correlates with the standard aspirin (Figure 3&4). The peak eluted at RT 24.8 min was purified and subjected to \(^1\)HNMR and confirmed as aspirin (Figure 5). Tobacco plants that were pre-treated with purified natural ASA showed similar effect in decrease in lesion size as compared with standard ASA (Figure S1). The amount of aspirin detection was significantly high in the leaves as compared with the seed coats and the bark (Figure 2-4). SA and related compounds are produced by plants as part of their defense systems against pathogen attack and environmental stress \(^20\). So far, no reports on the biosynthesis of aspirin in the plants are published. First time we are reporting the aspirin in the seed coats, leaves and the bark of *G. rotteriformis*. HPLC analysis of fruits and vegetables provide unknown amounts of aspirin and no aspirin detected in foods by HPLC \(^21\). It was reported that ASA concentrations were too low in volunteers eating a variety of diets \(^15, 21, 51, 52\). Our results strongly suggest that the biosynthesis of aspirin is taking place in the seed coats, leaves, and the bark of this plant. The biosynthesis of aspirin in plants require SA as a precursor was detected in the seed coats \(^2\). BzSA purified from the seed coats of this plant also required SA as a key precursor \(^2, 3\). The chemical synthesis of BzSA was achieved using SA and benzoyl chloride \(^3\). Previous reports suggest that pre-treatment of aspirin induces systemic acquired resistance (SAR) in plants against a broad spectrum of pathogens \(^2, 3, 53\text{–}^55\). Aspirin has been used for >100 years for pain relief and to treat inflammatory conditions and fevers \(^56, 57\). Aspirin is effective in the prevention of cardiovascular disease and several cancers \(^58\text{–}^66\). Cyclooxygenase-1 (COX-1) produce prostaglandins (PGs) and thromboxane (TxA2) and regulate the gastrointestinal, renal, vascular and other physiological functions whereas Cyclooxygenase-2 (COX-2) produce PGs and involved in inflammation, pain and fever \(^57, 67\text{–}^70\). The development of selective
COX-2 inhibitors are therapeutic advantage whereas COX-1 inhibitors causes adverse side effects. It was reported that a small daily dose of aspirin (100mg) helps to reduce the risk of myocardial infarction and stroke. COX-1 supports the beneficial homeostatic functions, whereas COX-2 induced by inflammatory mediators and involved in the inflammatory diseases such as rheumatoid and osteoarthritis. The purified BzSA from the seed coats of *G. rottleriformis* inhibits higher COX-2 than COX-1 (data not shown) and the existence of aspirin in this plants support the anti-rheumatism medicinal properties of *G. rottleriformis*. The seeds and bark of this plant used for the treatment of psoriasis. A Randomized trial of low-dose Aspirin to reduce vascular endothelial Inflammation in Psoriasis. The plant *G. rottleriformis* grown particularly in hill forests and exposed to high temperatures may be because of high temperature stress and other abiotic and biotic stresses this plant synthesizes a lot of stress and other compounds to overcome biotic/abiotic stresses. Several studies reported that SA and ASA protect plants from biotic/abiotic stresses both in plants and animals. Aspirin is metabolized to SA and salicylic acid (SU) in humans. Aspirin rapidly hydrolyzed to SA with an half-life of 5 to 16 min and the hydrolysis of aspirin takes place in liver and stomach. Both aspirin and SA are bound to serum albumin and the serum half-life of aspirin is more or less 20 min. Acetylation of COX-1 and COX-2 IKK-complex inhibit the enzyme activity and are important to treat pain, fever, inflammation, cardiovascular and various cancers and the excess of aspirin deacetylate into SA and excreted. The fall in aspirin concentration is associated with a rapid rise in SA concentration. SA is renally excreted in part unchanged and the rate of elimination is influenced by urinary pH, the presence of organic acids, and the urinary flow rate. Our results summarizing that identification of natural aspirin in *G. rottleriformis* suggest that both plants and animals utilizing aspirin and the use of salicylates in rheumatic diseases supports the medicinal properties of *G. rottleriformis*. And identification of SA, ASA, BzSA, BA, BD, GA and MG in this plants indicating that phenylpropanoid biosynthesis pathway is highly active in this plant and based on our results we suggesting that seed coats, leaves and the bark of *G. rottleriformis* contains aspirin and are useful to treat cancer, cardiovascular anti-inflammatory, psoriasis and rheumatic diseases.

Abbreviations

BzSA, benzoylsalicylic acid; SA, salicylic acid; ASA, acetylsalicylic acid; COX, cyclo-oxygenase; NSAIDs, non-steroidal anti-inflammatory drugs; PG, prostaglandin.

Declarations

Acknowledgements

Dr. KS gratefully acknowledges the Science and Engineering Research Board (SERB), India for the grant received under Fast Track Young Scientists Scheme. I thank to Dr. Vara Prasad, Regional Forest Research Centre, Rajahmundry, Andhra Pradesh, India for permitting us to collect the plant material for the study. I thank to Prof. G. Padmaja for providing me the necessary facilities and to establish *G. rottleriformis*.
plants in the University of Hyderabad campus. I thank the Director, Central Tobacco Research Institute, Rajahmundry for their help in TMV studies. I gratefully acknowledge Prof. Pallu Reddanna, Department of Animal Sciences, School of Life Sciences, University of Hyderabad for allowing me to use needful lab facilities. Finally, I acknowledge the facilities at the School of Life Sciences, University of Hyderabad established with the support of UGC-SAP-CAS, DST-FIST and DBT-CREBB.

References

[1] Kamatham, S., Kumar, N., and Gudipalli, P. (2015) Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells, *Toxicol Rep*2, 520-529.

[2] Kamatham, S., Neela, K. B., Pasupulati, A. K., Pallu, R., Singh, S. S., and Gudipalli, P. (2016) Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis, *Phytochemistry*126, 11-22.

[3] Kamatham, S., Pallu, R., Pasupulati, A. K., Singh, S. S., and Gudipalli, P. (2017) Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis, *Phytochemistry*143, 160-169.

[4] K. Samuel, D. D., B. Madhumita, Siva Ram Prasad, V. Bhaskara Ramana Murthy, P.S. Rao, G. Padmaja,. (2009) In vitro germination and micropropagation of Givotia rottleriformis Griff., *In Vitro Cell.Dev.Biol.- Plant* 45, 466–473.

[5] Thammanna; Narayana Rao, K. (1990) Medicinal plants of Tirumala (first edition). Tirumala Tirupati Devasthanams (TTD), Tirupati, Andhra Pradesh.

[6] Handin, R. I. (2016) The History of Antithrombotic Therapy: The Discovery of Heparin, the Vitamin K Antagonists, and the Utility of Aspirin, *Hematol Oncol Clin North Am*30, 987-993.

[7] Vane, J. R., and Botting, R. M. (2003) The mechanism of action of aspirin, *Thromb Res*110, 255-258.

[8] Hybiak, J., Broniarek, I., Kiryczynski, G., Los, L. D., Rosik, J., Machaj, F., Slawinski, H., Jankowska, K., and Urasinska, E. (2020) Aspirin and its pleiotropic application, *Eur J Pharmacol*866, 172762.

[9] Mirabito Colafella, K. M., Neuman, R. I., Visser, W., Danser, A. H. J., and Versmissen, J. (2020) Aspirin for the prevention and treatment of pre-eclampsia: A matter of COX-1 and/or COX-2 inhibition?, *Basic Clin Pharmacol Toxicol*127, 132-141.

[10] Fitzpatrick, F. A. (2004) Cyclooxygenase enzymes: regulation and function, *Curr Pharm Des*10, 577-588.

[11] Bertolini, A., Ottani, A., and Sandrini, M. (2001) Dual acting anti-inflammatory drugs: a reappraisal, *Pharmacol Res*44, 437-450.
[12] Arif, T. (2015) Salicylic acid as a peeling agent: a comprehensive review, Clin Cosmet Investig Dermatol8, 455-461.

[13] Paterson, J. R., and Lawrence, J. R. (2001) Salicylic acid: a link between aspirin, diet and the prevention of colorectal cancer, QJM94, 445-448.

[14] Blacklock, C. J., Lawrence, J. R., Wiles, D., Malcolm, E. A., Gibson, I. H., Kelly, C. J., and Paterson, J. R. (2001) Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin, J Clin Pathol54, 553-555.

[15] Lawrence, J. R., Peter, R., Baxter, G. J., Robson, J., Graham, A. B., and Paterson, J. R. (2003) Urinary excretion of salicyluric and salicylic acids by non-vegetarians, vegetarians, and patients taking low dose aspirin, J Clin Pathol56, 651-653.

[16] Sandler, R. S. (1996) Aspirin and other nonsteroidal anti-inflammatory agents in the prevention of colorectal cancer, Important Adv Oncol, 123-137.

[17] Lanas, A., Dumonceau, J. M., Hunt, R. H., Fujishiro, M., Scheiman, J. M., Gralnek, I. M., Campbell, H. E., Rostom, A., Villanueva, C., and Sung, J. J. Y. (2018) Non-variceal upper gastrointestinal bleeding, Nat Rev Dis Primers4, 18020.

[18] Montinari, M. R., Minelli, S., and De Caterina, R. (2019) The first 3500 years of aspirin history from its roots - A concise summary, Vascul Pharmacol113, 1-8.

[19] Paterson, J., Baxter, G., Lawrence, J., and Duthie, G. (2006) Is there a role for dietary salicylates in health?, Proc Nutr Soc65, 93-96.

[20] Duthie, G. G., and Wood, A. D. (2011) Natural salicylates: foods, functions and disease prevention, Food Funct2, 515-520.

[21] Janssen, P. L., Katan, M. B., van Staveren, W. A., Hollman, P. C., and Venema, D. P. (1997) Acetylsalicylate and salicylates in foods, Cancer Lett114, 163-164.

[22] Wood, A., Baxter, G., Thies, F., Kyle, J., and Duthie, G. (2011) A systematic review of salicylates in foods: estimated daily intake of a Scottish population, Mol Nutr Food Res55 Suppl 1, S7-S14.

[23] Carlsen, M. H., Halvorsen, B. L., Holte, K., Bohn, S. K., Dragland, S., Sampson, L., Willey, C., Senoo, H., Umezono, Y., Sanada, C., Barikmo, I., Berhe, N., Willett, W. C., Phillips, K. M., Jacobs, D. R., Jr., and Blomhoff, R. (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide, Nutr J9, 3.

[24] Drew, D. A., Cao, Y., and Chan, A. T. (2016) Aspirin and colorectal cancer: the promise of precision chemoprevention, Nat Rev Cancer16, 173-186.
[25] Gala, M. K., and Chan, A. T. (2015) Molecular pathways: aspirin and Wnt signaling-a molecularly targeted approach to cancer prevention and treatment, Clin Cancer Res 21, 1543-1548.

[26] Chan, A. T. (2003) Aspirin, non-steroidal anti-inflammatory drugs and colorectal neoplasia: future challenges in chemoprevention, Cancer Causes Control 14, 413-418.

[27] Santilli, F., Boccatonda, A., and Davi, G. (2016) Aspirin, platelets, and cancer: The point of view of the internist, Eur J Intern Med 34, 11-20.

[28] Guillem-Llobat, P., Dovizio, M., Alberti, S., Bruno, A., and Patrignani, P. (2014) Platelets, cyclooxygenases, and colon cancer, Semin Oncol 41, 385-396.

[29] Ding, P., and Ding, Y. (2020) Stories of Salicylic Acid: A Plant Defense Hormone, Trends Plant Sci 25, 549-565.

[30] Peng, Y., Yang, J., Li, X., and Zhang, Y. (2021) Salicylic Acid: Biosynthesis and Signaling, Annu Rev Plant Biol 72, 761-791.

[31] Gu, X. Y., Liu, Y., and Liu, L. J. (2020) Progress on the biosynthesis and signal transduction of phytohormone salicylic acid, Yi Chuan 42, 858-869.

[32] Chen, Z., Zheng, Z., Huang, J., Lai, Z., and Fan, B. (2009) Biosynthesis of salicylic acid in plants, Plant Signal Behav 4, 493-496.

[33] Kim, D. S., and Hwang, B. K. (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens, J Exp Bot 65, 2295-2306.

[34] Hao, Q., Wang, W., Han, X., Wu, J., Lyu, B., Chen, F., Caplan, A., Li, C., Wu, J., Wang, W., Xu, Q., and Fu, D. (2018) Isochorismate-based salicylic acid biosynthesis confers basal resistance to Fusarium graminearum in barley, Mol Plant Pathol.

[35] Zhao, X., Chen, S., Wang, S., Shan, W., Wang, X., Lin, Y., Su, F., Yang, Z., and Yu, X. (2019) Defensive Responses of Tea Plants (Camellia sinensis) Against Tea Green Leafhopper Attack: A Multi-Omics Study, Front Plant Sci 10, 1705.

[36] Nahar, K., Kyndt, T., De Vleeschauwer, D., Hofte, M., and Gheysen, G. (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice, Plant Physiol 157, 305-316.

[37] Wang, Y., and Liu, J. H. (2012) Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck), J Plant Physiol 169, 1143-1149.
[38] Zhang, Y., and Li, X. (2019) Salicylic acid: biosynthesis, perception, and contributions to plant immunity, *Curr Opin Plant Biol*50, 29-36.

[39] Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., and Ryals, J. (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene, *Mol Plant Microbe Interact*8, 863-870.

[40] Klessig, D. F., Choi, H. W., and Dempsey, D. A. (2018) Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future, *Mol Plant Microbe Interact*31, 871-888.

[41] Dempsey, D. A., and Klessig, D. F. (2017) How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans?, *BMC Biol*15, 23.

[42] Durango, D., Pulgarin, N., Echeverri, F., Escobar, G., and Quinones, W. (2013) Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars, *Molecules*18, 10609-10628.

[43] Khan, M. I., Fatma, M., Per, T. S., Anjum, N. A., and Khan, N. A. (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants, *Front Plant Sci*6, 462.

[44] Verma, V., Ravindran, P., and Kumar, P. P. (2016) Plant hormone-mediated regulation of stress responses, *BMC Plant Biol*16, 86.

[45] Ahmet Korkmaz, M. U., and Ali Riza Demirkiran. (2007) Acetyl salicylic acid alleviates chilling-induced damage in muskmelon seedlings., *Can. J. Plant Sci.*87, 581–585.

[46] Perlman, S. L. (1985) Perforation of Adson-type forceps, *Plast Reconstr Surg*76, 970-971.

[47] Tissa Senaratna, D. T., Eric Bunn & Kingsley Dixon. (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants, *Plant Growth Regulation*30, 157–161.

[48] Ma, L. Y., Chen, N. L., Han, G. J., and Li, L. (2017) [Effects of exogenous salicylic acid on seed germination and physiological characteristics of Coronilla varia under drought stress.], *Ying Yong Sheng Tai Xue Bao*28, 3274-3280.

[49] Yao, H. M., Li, Y. S., Zhang, T. Z., Zhao, J., Wang, C., Wang, H. N., and Fang, Y. F. (2016) [Effects of combined drought and salinity stress on germination and physiological characteristics of maize (Zea mays).], *Ying Yong Sheng Tai Xue Bao*27, 2301-2307.

[50] Lefevere, H., Bauters, L., and Gheysen, G. (2020) Salicylic Acid Biosynthesis in Plants, *Front Plant Sci*11, 338.
[51] Janssen, P. L., Hollman, P. C., Reichman, E., Venema, D. P., van Staveren, W. A., and Katan, M. B. (1996) Urinary salicylate excretion in subjects eating a variety of diets shows that amounts of bioavailable salicylates in foods are low, *Am J Clin Nutr* 64, 743-747.

[52] Baxter, G. J., Lawrence, J. R., Graham, A. B., Wiles, D., and Paterson, J. R. (2002) Identification and determination of salicylic acid and salicyluric acid in urine of people not taking salicylate drugs, *Ann Clin Biochem* 39, 50-55.

[53] Zhu, F., Xi, D. H., Yuan, S., Xu, F., Zhang, D. W., and Lin, H. H. (2014) Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana, *Mol Plant Microbe Interact* 27, 567-577.

[54] Adam, A. L., Nagy, Z. A., Katay, G., Mergenthaler, E., and Viczian, O. (2018) Signals of Systemic Immunity in Plants: Progress and Open Questions, *Int J Mol Sci* 19.

[55] Klessig, D. F., Durner, J., Noad, R., Navarre, D. A., Wendehenne, D., Kumar, D., Zhou, J. M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., and Silva, H. (2000) Nitric oxide and salicylic acid signaling in plant defense, *Proc Natl Acad Sci U S A* 97, 8849-8855.

[56] Johannesson, T. (2000) [Aspirin. Acetylsalicylic acid and aspirinlike drugs. A review.], *Laeknabladid* 86, 755-768.

[57] Botting, J. H. (1999) Nonsteroidal antiinflammatory agents, *Drugs Today (Barc)* 35, 225-235.

[58] de Lange, D. W., Fiets, W. E., and Banga, J. D. (2004) [Acetylsalicylic acid for the primary prevention of cardiovascular disease in diabetic patients], *Ned Tijdschr Geneeskd* 148, 1481-1485.

[59] Hovens, M. M., and Cannegieter, S. C. (2004) [Acetylsalicylic acid in patients with diabetes for the primary prevention of cardiovascular disease], *Ned Tijdschr Geneeskd* 148, 2097; author reply 2097-2098.

[60] Paiva, S. (2002) [Acetylsalicylic acid and diabetes mellitus], *Acta Med Port* 15, 199-202.

[61] Waltering, A., Hemkens, L., and Florack, C. (2005) [Primary prevention of cardiovascular diseases with acetylsalicylic acid], *Dtsch Med Wochenschr* 130, 2847-2852.

[62] Nam, G. S., Kim, S., Kwon, Y. S., Kim, M. K., and Nam, K. S. (2021) A new function for MAP4K4 inhibitors during platelet aggregation and platelet-mediated clot retraction, *Biochem Pharmacol* 188, 114519.

[63] Amin, S., Boffetta, P., and Lucas, A. L. (2016) The Role of Common Pharmaceutical Agents on the Prevention and Treatment of Pancreatic Cancer, *Gut Liver* 10, 665-671.

[64] Yue, W., Yang, C. S., DiPaola, R. S., and Tan, X. L. (2014) Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment, *Cancer Prev*
[65] Jiang, M. J., Dai, J. J., Gu, D. N., Huang, Q., and Tian, L. (2016) Aspirin in pancreatic cancer: chemopreventive effects and therapeutic potentials, *Biochim Biophys Acta* 1866, 163-176.

[66] Shen, X., Han, L., Ma, Z., Chen, C., Duan, W., Yu, S., Li, P., Zhang, L., Li, W., Xu, Q., and Ma, Q. (2013) Aspirin: a potential therapeutic approach in pancreatic cancer, *Curr Med Chem* 20, 4153-4162.

[67] Vane, J. R., and Botting, R. M. (1998) Mechanism of action of antiinflammatory drugs, *Int J Tissue React* 20, 3-15.

[68] Dammann, H. G. (1999) [Preferential COX-2 inhibition: its clinical relevance for gastrointestinal non-steroidal anti-inflammatory rheumatic drug toxicity], *Z Gastroenterol* 37, 45-58.

[69] Riendeau, D., Charleston, S., Cromlish, W., Mancini, J. A., Wong, E., and Guay, J. (1997) Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, using sensitive microsomal and platelet assays, *Can J Physiol Pharmacol* 75, 1088-1095.

[70] Dzielska-Olczak, M., and Olczak, S. (2001) [Clinical application of cyclooxygenase-2 inhibitors], *Pol Merkur Lekarski* 10, 480-482.

[71] Laine, L. (2002) The gastrointestinal effects of nonselective NSAIDs and COX-2-selective inhibitors, *Semin Arthritis Rheum* 32, 25-32.

[72] Elwood, P. C. (2001) Reducing the risk: heart disease, stroke and aspirin, *J Med Assoc Thai* 84, 1164-1174.

[73] Botting, R. (2003) COX-1 and COX-3 inhibitors, *Thromb Res* 110, 269-272.

[74] Simmons, D. L. (2003) Variants of cyclooxygenase-1 and their roles in medicine, *Thromb Res* 110, 265-268.

[75] Simmons, D. L., Wagner, D., and Westover, K. (2000) Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever, *Clin Infect Dis* 31 Suppl 5, S211-218.

[76] Garshick, M. S., Tawil, M., Barrett, T. J., Salud-Gnilo, C. M., Eppler, M., Lee, A., Scher, J. U., Neimann, A. L., Jelic, S., Mehta, N. N., Fisher, E. A., Krueger, J. G., and Berger, J. S. (2020) Activated Platelets Induce Endothelial Cell Inflammatory Response in Psoriasis via COX-1, *Arterioscler Thromb Vasc Biol* 40, 1340-1351.

[77] Schror, K. (1997) Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis, *Semin Thromb Hemost* 23, 349-356.

[78] Bens, G., Maccari, F., and Esteve, E. (2012) [Psoriasis: a systemic disease], *Presse Med* 41, 338-348.
[79] Ausina, P., Branco, J. R., Demaria, T. M., Esteves, A. M., Leandro, J. G. B., Ochioni, A. C., Mendonca, A. P. M., Palhano, F. L., Oliveira, M. F., Abou-Kheir, W., Sola-Penna, M., and Zancan, P. (2020) Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis, Sci Rep10, 19617.

[80] Gil-Villa, A. M., Alvarez, A. M., Velasquez-Berrio, M., Rojas-Lopez, M., and Cadavid, J. A. (2020) Role of aspirin-triggered lipoxin A4, aspirin, and salicylic acid in the modulation of the oxidative and inflammatory responses induced by plasma from women with pre-eclampsia, Am J Reprod Immunol83, e13207.

[81] Drew, J. E., Arthur, J. R., Farquharson, A. J., Russell, W. R., Morrice, P. C., and Duthie, G. G. (2005) Salicylic acid modulates oxidative stress and glutathione peroxidase activity in the rat colon, Biochem Pharmacol70, 888-893.

[82] Shuldiner, A. R. (1997) Obesity and diabetes: research points to genetic connection. Interview by Mark E. Weksler, Geriatrics52, 57-60, 63-54.

[83] Paterson, J. R., Baxter, G., Dreyer, J. S., Halket, J. M., Flynn, R., and Lawrence, J. R. (2008) Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid, J Agric Food Chem56, 11648-11652.

[84] Needs, C. J., and Brooks, P. M. (1985) Clinical pharmacokinetics of the salicylates, Clin Pharmacokinet10, 164-177.

[85] Duthie, G. G., Kyle, J. A., Jenkinson, A. M., Duthie, S. J., Baxter, G. J., and Paterson, J. R. (2005) Increased salicylate concentrations in urine of human volunteers after consumption of cranberry juice, J Agric Food Chem53, 2897-2900.

[86] Vogt, T. (2010) Phenylpropanoid biosynthesis, Mol Plant3, 2-20.

[87] Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., and Zheng, B. (2019) Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress, Molecules24.

Figures
Figure 1

Salicylic acid
(2-hydroxy benzoic acid)

Acetyl salicylic acid
(2-acetoxy benzoic acid)

Figure 1

Structure of Salicylic acid (2-hydroxy benzoic acid) and Acetyl salicylic acid (2-acetoxy-benzoic acid).
Figure 2

Purification of Acetylsalicylic acid. A. showing the preparative HPLC chromatogram showing a peak eluted at RT 24.8 min coeluted with aspirin standard. B. HPLC chromatogram showing aspirin standard eluted at RT 24.8 min.
Figure 3

HPLC chromatogram of hexane leaf extract of *G. rottleriformis* showing the aspirin peak eluted at RT 24.8 min correlates with aspirin standard RT 24.8 min.
Figure 4

HPLC chromatogram of hexane bark extract of *G. rottleriformis* showing the aspirin peak eluted at RT 24.8 min correlates with aspirin standard RT 24.8 min.
Figure 5

The NMR spectrum of acetylsalicylic acid in CDCl₃, shows an ASA methyl peak at 2.2 ppm. The ASA aromatic ring group proton peaks appear at 7.1 ppm, 7.4 ppm, 7.7 ppm, and 8.2 ppm. The CDCl₃ displays a residual solvent proton peak at 7.3 ppm. And all other unlabeled peaks are impurities.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMethods.docx
- supplementaryFigures.docx