Introduction
The studies of antibiotics started with the discovery of penicillin in 1928. With the discoveries of different antibiotics, many effective therapeutic strategies toward incurable or obstinate disease have been developed. However, accompany with the widely usage of antibiotics, the emerging of antibiotic-resistant pathogens is increasing rapidly, suggesting that, without urgent actions, we are heading for a “post-antibiotic era” (Mahlapuu et al. 2016). To solve this threat, many new and non-conventional anti-infective therapies have been developed (or identified) (Czaplewski et al. 2016). Over the past 10 years, many marine natural products were isolated and showed important effects in the aforementioned therapies. Due to the structural diversities of these natural products, researchers have paid high attention to expanding their studies from sponges, corals to microorganisms, among which, marine microorganisms are regarded as major sources of antimicrobial agents (Ng et al. 2015).
Genus *Bacillus* consists of over 300 species. Members of this genus are Gram-positive, aerobic or facultative anaerobic, rod-shaped bacteria with diverse functions. Recently, peptides produced by members of the genus *Bacillus* were shown to have a broad spectrum of antimicrobial activity against pathogenic microbes. Strains in genus *Bacillus* can produce structurally diverse secondary metabolites, which exhibit a wide spectrum of antibiotic activity, but the precise mechanism is still unclear (Li et al. 2012; Sabate and Audisio 2013; Sumi et al. 2015). The antimicrobial peptides (AMPs) produced by *Bacillus* species can be divided into two subgroups based on the synthesis pathway, one of which includes small microbial peptides that are non-ribosomally synthesized by large enzymatic complexes, whereas the second subgroup comprises ribosomally synthesized peptides (Marahiel 1992; Marx et al. 2001; Nakano and Zuber 1990). Besides, some species in *Bacillus*, like *Bacillus macerans*, also contain genes encoding bacterial β-1,3-1,4-glucanases, which belong to the glycosyl hydrolase family 16 (GH16) and can specifically cleave the β-1,4-glycosidic linkage adjacent to 3-O-substituted glucopyranose residues. Because of its specific functions in antimicrobial activity, β-1,3-1,4-Glucanases have been explored in several industrial applications.

In this study, we isolated an antimicrobial bacteria strain, *Bacillus* sp. GFP-2, from the *Chiloscyllium plagiosum* (Whitespotted bamboo shark) intestine, which showed inhibitory effects against both Gram-positive strains and Gram-negative strains and could also promote the growth of salmon. The genes encoding antimicrobial peptides and gene clusters for secondary metabolites and bacteriocins, which might, at least partially, account for the antimicrobial activities of this strain, were predicted by complete genome sequencing and analyzing. Furthermore, a novel β-1,3-1,4-glucanase gene was successfully cloned from *Bacillus* sp. GFP-2. The recombinant β-1,3,1,4-glucanase, heterogeneously expressed in *Escherichia coli*, was further purified and used to immunize rabbits to produce an antibody, which could specifically detect β-1,3-1,4-glucanase in the protein extract of GFP-2 culture supernatant, further confirming that *Bacillus* sp. GFP-2 could produce β-1,3-1,4-glucanase and might contribute to its antimicrobial activities.

Materials and methods

Culture of *Chiloscyllium plagiosum* and isolation of bacteria colony from intestine

Experimental protocols were reviewed and approved by the Animal Ethic Committee of Zhejiang Sci-Tech University. Whitespotted bamboo sharks were raised in glass container containing water with the salinity of between 1.020 and 1.023% at 25 °C. The health condition was monitored every day and healthy ones were used for this experiment. The shark was sacrificed after injection of 25% urethane as the experiment anesthetic and the intestinal contents and mucosal fluid was taken out and diluted in normal saline as the raw bacteria solution. The raw bacteria solution was further inoculated and diluted on Luria broth (LB) agar plates (5 g of yeast extract, 10 g of tryptone, 10 g of NaCl, and 15 g of agar in 1 L ddH2O) and cultured at 37 °C for 12 h. Single bacteria colonies were then picked and further cultured in liquid LB culture media (5 g of yeast extract, 10 g of tryptone, and 10 g of NaCl in 1 L ddH2O) at 37 °C for 12 h with shaking at 220 rpm and then were harvested by centrifugation at 12,000 rpm for 1 min.

Identification of strain GFP-2 and phylogenetic analysis

The strain GFP-2 was cultured in liquid LB media at 37 °C for 12 h with shaking at 220 rpm and then was harvested by centrifugation at 12,000 rpm for 1 min. The Genomic DNA was extracted using the method as described (Sun et al. 2016). The 16S rRNA sequence was amplified by PCR using the following primers: (F27) 5′-AGAGTTTGA TCATGGCCTAG -3′ and (R1492) 5′-TACGGTACCTT GTTACGAC-3′, with the extracted DNA as the template. The almost complete 16S rRNA sequence (1515 bp) of strain GFP-2 was identified on EzBiocloud service (Kim et al. 2012). Phylogenetic trees were reconstructed by the neighbor-joining (NJ); Saitou and Nei 1987) methods with the MEGA 5 program package (Tamura et al. 2011). Evolutionary distances were calculated according to the algorithm of the Kimura two-parameter model (Kimura 1980). OrthoANI values and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) trees between strain GFP-2 and closely related strains were analyzed by Orthologous Average Nucleotide Identity Tool (OAT) (Lee et al. 2016).

Complete genome sequencing and gene prediction

The complete genome was obtained by using Pacbio RSII platform (Pacific Biosciences, CA, USA). After filter and quality control, all clean reads were assembled using the PacBio HGAP Analysis 2.0 and one circular chromosome with 0 gap was constructed for further analysis. Gene prediction was performed using Glimmer v. 3.02 (Delcher et al. 2007), and functions of the gene products were annotated by BLAST+ (Camacho et al. 2009) using NCBI-nr protein database (Coordinators 2017). The rRNA and tRNA genes were identified by using RNAmmer (Lagesen et al. 2007), tRNAscan-SE (Lowe and Eddy 1997) and Rfam (Griffiths-Jones et al. 2003) database. Classification of predicted genes and pathways were analyzed by using COGs (Tatusov et al. 2003) and KEGG (Ogata et al. 1999) databases. In addition,
the RAST online service (http://rast.nmpdr.org/) (Aziz et al. 2008) was used for verification of gene prediction, annotation and classification. The genome circle was draw by CGView application (Grant and Stothard 2008). The antimicrobial peptides were predicted by BLAST+ using the antimicrobial peptide database (APD3)(Wang et al. 2016). The gene cluster for secondary metabolites and bacteriocins were predicted with online servers antiSMASH 3.0 (https://antismash.secondarymetabolites.org/) and BAGEL3 (http://bagel.molgenrug.nl/) (van Heel et al. 2013a; Weber et al. 2015).

Antimicrobial activity assay
The antimicrobial ability of strain GFP-2 was identified with inhibition zone method. In brief, (1) inoculated activated Bacillus subtilis BS168 (Gram-positive, OD600nm = 1.0) and Escherichia coli TG1 (Gram-negative, OD600nm = 1.0) as target bacteria into LB agar plates with the concentration of 1:100, v/v; (2) put sterilized oxford cup on pre-coating LB agar plates; (3) added 250 μl of supernatant and related thallus precipitate of strains GFP-2 (OD600nm = 2.0), or 250 μl of ampicillin (1 mg/ml) as the positive control, and then cultured the plates at 37 °C for 12 h; (4) measured the inhibition zones.

Glucan hydrolysis assay
The crude proteins in extracellular metabolites of Bacillus sp. GFP-2 were extracted by ammonium sulfate precipitation method from the culture supernatant. Then the crude proteins or recombinant β-1,3-1,4-glucanase was inoculated into the β-1,3-1,4-glucanase identification agar plates (containing 0.2% of glucan, 0.2% of NaNO₃, 0.1% of K₂HPO₄, 0.05% of KCl, 0.05% of MgSO₄, 0.001% of FeSO₄, 0.005% of Congo red, and 2% agar) and the plates were incubated at 37 °C for 12 h.

Salmon feeding assay
The growth promoting ability of strain GFP-2 to salmon (Oncorhynchus mykiss) was evaluated by the weight increment and survival rate of salmon with the feed of strain GFP-2 (strain: fodder = 3:100, in wet weight) after 60 days.

Growth curve analysis
Overnight cultured bacteria were inoculated into 5 ml of liquid LB culture media at the ratio of 1:100, in the presence of control medium, 25 μg/ml ampicillin, or indicated amount of GFP-2 culture media, and cultured at 37 °C with shaking at 220 rpm. 0, 1, 2, 3, 4, 5, 6, 8, 10 and 12 h after the inoculation, the growth of bacteria was monitored using optical density (O.D) method at 600 nm.

Cloning of β-1,3-1,4-glucanase gene and heterogeneously expression in Escherichia coli (E. coli)
DNA sequence encoding β-1,3-1,4-glucanase was cloned from GFP-2 genome into the expression construct pET-28a(+) by PCR, which was transformed into E. coli BL21 (DE3) to express the recombinant β-1,3-1,4-glucanase. The recombinant protein was further purified through Ni-chelating affinity chromatography and stored at −80 °C for further use.

Antibody production by immunizing rabbit with the recombinant β-1,3-1,4-glucanase
2.5 kg weight New Zealand rabbits were immunized with 1 mg of recombinant β-1,3-1,4-glucanase, together with 1 ml of Complete Freund’s Adjuvant (CFA), followed by a second immunization with 0.5 mg of recombinant protein and 0.5 ml of Incomplete Freund’s Adjuvant (IFA) after 15 days. 45 days after the first immunization, rabbit serum containing antibody against β-1,3-1,4-glucanase was collected by centrifugation of the blood at 5000 rpm for 15 min.

Detection of β-1,3-1,4-glucanase in the GFP-2 culture supernatant
The supernatant of strain GFP-2 culture was collected and analyzed by SDS-PAGE and western blot using the aforementioned rabbit serum containing antibody against β-1,3-1,4-glucanase.

Nucleotide sequence accession number
The complete genome sequence of Bacillus sp. GFP-2 was deposited in DDBJ/EMBJ/GenBank under the Accession Number CP021011. The sequence of β-1,3-1,4-glucanase was deposited in GenBank under the Accession Number BankIt2108772 BSeq#1 MH260376.

Results
Isolation of a bacteria strain GFP-2 from shark intestine that could inhibit both Gram-positive and Gram-negative bacteria
To investigate the potential antimicrobial products from marine, we screened the bacteria from intestine contents from Whitespotted bamboo sharks, by performing the antimicrobial activity assay. And one of the isolated strains, which was named as GFP-2, showed great inhibition effects against Bacillus subtilis BS168, a Gram-positive bacterium, and Escherichia coli TG1, a Gram-negative bacterium. As shown in Fig. 1A, both the precipitated bacteria (c) and the culture supernatant (d), especially the latter, formed obvious inhibition zones in the BS168 culture plate, 1.34 cm and 1.70 cm in diameter, respectively, reaching 49.6 and 63.0% of that
in the positive control (b, ampicillin). Similarly, both the precipitated bacteria (c) and the culture supernatant (d) of GFP-2 culture inhibited TG1 growth, with 1.28 cm and 1.56 cm inhibition zones in diameter, respectively, 56.4 and 68.7% of that in the positive control (b, ampicillin), as shown in Fig. 1B. Further growth curve analysis showed that, with the presence of GFP-2 culture supernatant, the growth of both BS168 and TG1 were greatly inhibited, similar to that with the presence of 25 µg/ml of ampicillin (Fig. 1C, D). These results indicated that strain GFP-2 can effectively inhibit the growth of Gram-positive and Gram-negative strains, possibly through its secondary metabolites secreted into the supernatant.

Strain GFP-2 could facilitate the growth of salmon (*Oncorhynchus mykiss*)

Bacterial infection and the following low survival rate and low specific growth rate greatly impaired the pisciculture. To test if the anti-bacteria activities of GFP-2 could benefit the growth of fishes, we fed salmon (*Oncorhynchus mykiss*) with the Diet 1 (Negative control with normal diet) or Diet 2 (normal diet add with 3% inactivated GFP-2 strain) and estimated the growth performance, such as Gained weight, Specific growth rate (%), Feed conversion ratio and Survival rate (%). As shown in Table 1, after 30 days of feeding with diet 2 containing strain GFP-2, the salmon showed greatly higher gained weight and specific growth rate.
weight (3.8 fold vs. 1.1 fold) and higher survival rate (79.0% vs. 29.8%) than those with the control diet. These results indicated that the antimicrobial activities of the strain GFP-2 could greatly benefit the growth of fishes and could be used as a new potential antimicrobial agent in the pisciculture.

Table 1 Growth performances and feed utilization of the *Oncorhynchus mykiss* fed with different diets: Diet 1 (Negative control with normal diet), Diet 2 (normal diet add with 3% *Bacillus* sp. GFP-2)

	Diet 1	Diet 2
Initial weight (g)	300	300
Final weight (g)	631	1442
Gained weight (g)	331	1142
Specific growth rate (%)	11.03	38.07
Feed conversion ratio	1.27	0.37
Survival rate (%)	29.80	79.00

Final weight and Initial weight were calculated in average; Gained weight = Final weight (g) – Initial weight (g); Specific growth rate = 100* (ln Final weight – ln Initial weight)/Duration of experiment (60 days); Feed conversion ratio = feed given (dried weight)/Gained weight (wet weight); Survival rate (%) = (final fish number/initial fish number) *100

Strain GFP-2 was identified as a novel strain of *Bacillus*

To identify the species of strain GFP-2, 16S rRNA Gene Sequencing was performed and MEGA program was used to establish the phylogenetic tree. As shown in Fig. 2a, strain GFP-2 shared 99.9% of 16S rRNA genetic similarities with *B. siamensis* KCTC 13613T and *B. velezensis* CR-502T, 99.7% with *B. nakamurai* NRRL B-41091T, *B. amyloliquefaciens* DSM 7T and *B. subtilis* subsp. *subtilis* NCIB 3610T, but less than 99.5% with the other *Bacillus* species. And according to this 16S rRNA gene based neighbour-joining tree, strain GFP-2 is located in a separate clade with *B. velezensis* CR-502T, *B. amyloliquefaciens* DSM 7T and *B. siamensis* KCTC 13613T, indicating their closely phylogenetic relationships (Fig. 2a). To further clarify the phylogenetic relationship of strain GFP-2 with these three species, genome-based ANI values were calculated and UPGMA tree were reconstructed (Fig. 2b). The ANI values of strain GFP-2 with *B. siamensis* KCTC 13613T and *B. amyloliquefaciens* DSM 7T are 94.1 and 94.4, respectively, lower than the species threshold (95–96%) (Goris et al. 2007), and its ANI values with *B. velezensis* CR-502T and CBMB205 are 97.8 and 97.7, respectively, showing that strain GFP-2 is a novel strain of *B. velezensis*. This strain has been uploaded and stored in the China General Microbiological Culture Collection Center (CGMCC No. 13337).

Fig. 2 The phylogenetic relationship of *Bacillus* sp. GFP-2 and related strains. The 16S rRNA sequence of *Bacillus* sp. GFP-2 was amplified by PCR and was identified using EzBiocloud service. a Phylogenetic trees were reconstructed by the neighbor-joining methods with the MEGA 5 program package. Evolutionary distances were calculated according to the algorithm of the Kimura two-parameter model. b OrthoANI values and Unweighted Pair Group Method with Arithmetric Mean (UPGMA) trees between strain GFP-2 and closely related strains were analyzed by Orthologous Average Nucleotide Identity Tool (OAT)
Genes encoding antimicrobial peptides and gene clusters for secondary metabolites and bacteriocins were predicted in the genome of Bacillus sp. GFP-2

As Bacillus sp. GFP-2, especially its culture supernatant, showed inhibitory effects on both Gram-positive and Gram-negative strains and could benefit the growth of salmon, we proposed that this strain might produce some metabolites which may play important roles in its antimicrobial activities. So complete gene sequencing was performed to analyze the genome of Bacillus sp. GFP-2. The results showed that the genome of strain Bacillus sp. GFP-2 (CGMCC 13337) is one 3975,220 bp circular DNA, with the G + C content of 46.4%, in which, a total of 3711 coding sequences (CDS) were predicted, including 19 rRNA and 86 tRNA (Fig. 3a). The summary of general features and statistics of the genome is listed in Tables 2, 3. Among the CDSs, 2893 were classified into clusters of orthologous groups (COGs) categories, the major of which were related to amino acid transport and metabolism (E), transcription (K), carbohydrate transport and metabolism (G), inorganic ion transport and metabolism (P) and signal transduction mechanisms (T) (Fig. 3b). 2881 CDS were classified into KEGG categories, the major of which were related to pathways of global map (33.1%), including biosynthesis of secondary metabolites and metabolic pathways, amino acid metabolism (16.3%) and carbohydrate metabolism (15.6%) (Fig. 3c).

After blasting the genome sequence with the antimicrobial peptide database (APD3), three hypothetical AMPs were predicted. These three predicted AMPs (peg.781, peg.1300 and peg.2297) were closely related to LCI, YFGAP and hGAPDH, respectively (Table 4). In addition, the prediction of gene clusters for secondary metabolites and bacteriocins were performed and 12 clusters for secondary metabolites (Fig. 3d) and two clusters for bacteriocins, including Lanthipeptides (cluster 1) and LCI (cluster 2), (Fig. 3e) were found and identified. Eight clusters of secondary metabolite have specific functions, including the biosynthesis of difficidin (cluster 1),

![Fig. 3](image-url)

Fig. 3 Complete genome sequencing and gene prediction of Bacillus sp. GFP-2. The complete genome was obtained by using Pacbio RSII platform (Pacific Biosciences, CA, USA). After filter and quality control, all clean reads were assembled using the PacBio HGAP Analysis 2.0 and one circular chromosome with 0 gap was constructed for further analysis. The genome of Bacillus sp. GFP-2 was shown as a circular map: from the outer circle inward, each circle displays information about the genome of forward COG-assigned CDS, reverse COG-assigned CDS, forward CDS, G + C ratio and GC Skew (a). Gene prediction was performed using Glimmer v. 3.02, and functions of the gene products were annotated by BLAST+ using NCBI-nr protein database. The rRNA and tRNA genes were identified by using RNAmmer, tRNAscan-SE and Rfam database. Classification of predicted genes and pathways were analyzed by using COGs (b) and KEGG (c) databases. In addition, the RAST online service (http://rast.nmpdr.org/) was used for verification of gene prediction, annotation and classification. The genome circle was draw by CGView application. The antimicrobial peptides were predicted by BLAST+ using the antimicrobial peptide database (APD3). The gene cluster for secondary metabolites (d) and bacteriocins (e) were predicted with online servers antiSMASH 3.0 (https://antsmash.secondarymetabolites.org/) and BAGEL3 (http://bagel.molgenrug.nl/) (d).
bacillibactin (cluster 3), bacilysin (cluster 5), surfactin (cluster 6), butirosin (cluster 8), macrolactin (cluster 10), bacillaene (cluster 11) and fengycin (cluster 12) (Fig. 3d). The above-mentioned AMPs, secondary metabolites and bacteriocins have been reported having antimicrobial activities against the bacteria and fungi pathogens, indicating that Bacillus sp. GFP-2 may function as antimicrobial agent through producing these molecules.

Table 2 General features of Bacillus sp. GFP-2 and MIGS mandatory information

Items	Descriptions
General features	
Classification	Domain Bacteria
	Phylum Firmicutes
	Class Firmibacteria
	Order Bacillales
	Family Bacillaceae
	Genus Bacillus
Gram strain	Positive
Cell shape	Rod
Color of colonies	White
Temperature	10–40 °C
Optimal NaCl concentration	1%
Optimal pH	7.0
Observed biotic relationship	Free-living
MIGS data	
Investigation type	Bacteria_archaea
Project name	Genome sequence of Bacillus sp. GFP-2
Latitude and longitude	Not reported
Depth	Not reported
Geographical location	Not reported
Collection date	Not reported
Environment (biome)	Shark intestine
Number of replicons	1
Estimated size	3,975,220 bp
Source material identifiers	GFP-2 = CGMCC 13337
Trophic level	Chemoorganotroph
Relationship to oxygen	Aerobic
Library reads sequenced	The large smrtbell gdna protocol (Pacific Biosciences, USA)
Sequencing method	A pacbio RS II platform
Assembly data	De novo assembled using the PacBio hierarchical genome assembly process (HGAP)/Quiver software
Estimated error rate	99.99% (average reference consensus)
Method of calculation	Estimation from HGAP Assembly quality scores
Assembly name	HGAP Assembly version 2 (Pacific Biosciences, USA)

Table 3 General features of the genome of Bacillus sp. GFP-2

Attribute	Value
Size (bp)	3,975,220
DNA G+C content (%)	46.4
CDSs	3711
CDSs assigned to COGs (percentages)	2893 (78.0%)
CDSs assigned to KEGG (percentages)	2881 (77.6%)
rRNA operon (16S-5S-23S rRNA)	1
tRNAs	86

Bacillus sp. GFP-2 could express β-1,3-1,4-glucanase

According to the complete genome sequencing (Fig. 3a), the gene encoding β-1,3-1,4-glucanase was also found in the genome of Bacillus sp. GFP-2. To further confirm if Bacillus sp. GFP-2 could encode and express β-1,3-1,4-glucanase, the crude proteins in extracellular metabolites of Bacillus sp. GFP-2 were extracted by ammonium sulfate precipitation method and the glucan hydrolysis assay was performed. As shown in Fig. 4A, an obvious hydrolysis zone was observed in the plate inoculated with crude proteins (b), indicating that β-1,3-1,4-glucanase might exist in extracellular metabolites of Bacillus sp. GFP-2. Furthermore, the gene sequence encoding β-1,3-1,4-glucanase was successfully cloned from the genome of Bacillus sp. GFP-2 into an expressing construct and heterogeneously expressed in E. coli (Fig. 4B, line 2). And the purified recombinant β-1,3-1,4-glucanase also had the activity of glucan hydrolysis, as shown in Fig. 4C with obvious hydrolysis zones (c and d). Further study suggested that the purified recombinant β-1,3-1,4-glucanase also had inhibitory effects on the growth of Bacillus subtilis WB800N and Escherichia coli BL21 (Fig. 4D), confirming its antimicrobial activities. We further immunized rabbits with the recombinant β-1,3-1,4-glucanase to produce an antibody against β-1,3-1,4-glucanase. And β-1,3-1,4-glucanase was specifically detected by this antibody when the crude proteins from Bacillus sp. GFP-2 culture supernatant were analyzed by SDS-PAGE and western blot (Fig. 4E, lane 1), further confirming that Bacillus sp. GFP-2 indeed could express β-1,3-1,4-glucanase, which may, at least partially, contribute to its antimicrobial activities.

Discussion

In this study, a new strain Bacillus sp. GFP-2 was isolated from the intestine of Whitespotted bamboo shark and could effectively inhibit the growth of Gram-positive and Gram-negative strains, showing around 50–70% inhibition ability of ampicillin. In addition, when fed additionally with strain GFP-2, as the inhibition agents of pathogenic bacteria, the growth of salmon
(Oncorhynchus mykiss) can be greatly promoted, indicating that strain GFP-2 can effectively inhibit the growth of pathogenic bacteria in the intestine of other fishes besides shark.

After complete genome sequencing, genes encoding AMPs including LCI, YFGAP and hGAPDH-like AMPs and gene clusters for secondary metabolites including difficidin, bacillibactin, bacillysin, bacilysin, surfactin, butirosin, macrolactin, bacillaene and fengycin, and bacteriocins including Lanthipeptides and LCI, were predicted in the genome of strain GFP-2. LCI, an antimicrobial peptide isolated from *Bacillus subtilis*, shows very strong antagonistic activity against the Gram-negative pathogen *Xanthomonas campestris* pv Oryzea of rice leaf-blight disease and Gram-negative bacterium *Pseudomonas solanacearum* PE1 (Gong et al. 2011). YFGAP, a GAPDH-related antimicrobial peptide isolated from the skin of yellowfin tuna, have antibacterial activity against Gram-positive bacteria, such as *Bacillus subtilis*, *Micrococcus luteus*, and *Streptococcus iniae*. And hGAPDH is a human GAPDH fragment peptide from human placental tissue exhibiting antifungal activity. The existence of LCI, YFGAP, hGAPDH-like AMPs in strain GFP-2 may partially explain its inhibitory effects on Gram negative/positive bacterium. Additionally, YFGAP, hGAPDH-like AMPs are also first predicted in strains of genus *Bacillus*.

Of the predicted secondary metabolites, difficidin and bacilysin have antibacterial activity against *Xanthomonas oryzae* rice pathogens (Wu et al. 2015). Surfactins and fengycins are considered as crucial components in control of plant diseases as they act as antifungal and antibacterial metabolites and have been shown to stimulate plant defense system by inducing systemic resistance (Aleti et al. 2016). Butirosin, an aminoglycoside antimicrobial peptide, is known as the important class of agents, especially against *Mycobacterium tuberculosis* (Kudo and Eguchi 2009). Macrolactin are polyene macrolides containing a 24-membered lactone ring and shows antibiotic effects against vancomycin-resistant *Enterococci* and methicillin-resistant *Staphylococcus aureus* (Kim et al. 2011). Bacilysin was first found to inhibit bacterial protein synthesis, such as, can selectively inhibit antagonistic fungi of *Termiteonypsis* and has recently been implicated in interspecies interactions (Mueller et al. 2014; Um et al. 2013). Among the two predicted bacteriocins, lanthipeptides are peptides that contain several post-translationally modified amino acid residues and commonly show considerable antimicrobial activity (van Heel et al. 2013b).

The identification of the gene encoding β-1,3-1,4-glucanase in the genome of strain GFP-2 and the detection of β-1,3-1,4-glucanase in the crude proteins from *Bacillus* sp. GFP-2 culture supernatant confirmed that *Bacillus* sp. GFP-2 indeed could express β-1,3-1,4-glucanase, which may contribute to its antimicrobial activities.

Table 4 Sequences of predicted AMPs by Bacillus sp. GFP-2

Predicted AMPs	Sequences	Related AMPs
peg.781	MKFKVVLTSALSLALLMSAAPAASPTASAVNENPSTKADVGINAIKLVQSPDGFAAFVSLNGKKSWSKYYYYDDSKGY-WVGGYSEVSDK	LCI (AP01154)
peg.1300	MKVKAINGFGRGVRMKFAMDEQQTAINASVetylHQKLQIDYQETADSTLVNKGHIMLMLNRED-PRELTPWCCQGDVEATGKNKSEKAMSHIEAGAKVLLTAPKGKNEVDTVMGVNEQOFNPDEHVISNASCTTACLP-VKLQDFGESGLMLMTTVHAYTNQDNINPNHKDLRRARACGSESIIPTSTGAALSVLPLHLKGKHLGLARVP/VPNVS-LVDVLCDLDDQSEAEVNAFAQRRAAKTMSMYGLDSDPLEVSSYNTNHSIAAIDGTTTMMEDRKVWLAYDNEWGY-SCRVDPDRHVAAMRKHPAV	YFGAP (AP02012)
peg.2297	MAVKVGINGFGRGRVRAALNNENPVEVAVNLDNDANMLAHLLQYDSVHGKLDAYEVKVDGSNLWNGKTEVEAERD-PAKLSWNGKQVEVVESTGGFTTKAADAHGAKVLLAPANEDDITMVGNEDXYDAANHIVNASCTTNCPL-FARKVLNDKFGKRGAMMATTVHSDTNQQLDLPHSKDYHRRAAEONFFFTSGAAAKYSVLPEKIKLNGAMMPITPNS-LVDVLAEIKNQYTAEDVNAALKEAAEIDLKGLIGYSEELVSGGDNANSSSTINIDSTMVMEGSMVYKSWYDEGESY-SNRWDLAAAY1AKQGL	hGAPDH (AP02017)

Our study indicated that the newly isolated strain *Bacillus* sp. GFP-2 could act as effective antimicrobial agent by producing AMPs, secondary metabolites and bacteriocins. The study of detailed mechanism is still undergoing. These results can enhance a better understanding of the mechanism of inhibition abilities in genus *Bacillus* and provide a useful tool for biotechnology study in antimicrobial compounds, which may
replace abused antibiotics in prevention and clearance of pathogenic bacteria.

Abbreviations
AMPs: antimicrobial peptides; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; YFGAP: yellowfin tuna glyceraldehyde-3-phosphate dehydrogenase-related antimicrobial peptide; GH16: glycosyl hydrolase family 16; UPGMA: unweighted pair group method with arithmetic mean; OAT: Orthologous Average Nucleotide Identity Tool; O.D: optical density; CFA: complete Freund’s adjuvant; IFA: incomplete Freund’s adjuvant; CDS: coding sequences; COGs: clusters of orthologous groups.

Authors’ contributions
KL, ZL, JW and GX conceived and designed the experiments; JW and GX did most of the experiments; YJ confirmed the expression and activity of the recombinant β-1,3-1,4-glucanase; CS, LZ and GL did the gene prediction; RX, LW and HF helped with the antimicrobial activity assay; DW and JC helped with the glucan hydrolysis assay and antibody preparation; KL, CS, JW and GX analyzed the data and wrote this manuscript. All authors read and approved the final manuscript.

Author details
1 College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China. 2 School Hospital, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China. 3 Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, People’s Republic of China.
We thank Huize Dianze Aquaculture Co. LTD for their assistance in the feeding of Salmon.

The authors declare that they have no competing interests.

All data and material are fully available without restriction. And the dataset supporting the conclusions of this article is included within the article.

Not applicable.

This work was funded by National High Technology Research and Development Program (No. 2012ZX0910301-009), Graduate Innovation Research Project of Zhejiang Sci-Tech University (YCY16035), Science Foundation of Zhejiang Sci-Tech University (15042169-Y and 16042186-Y).

Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184. https://doi.org/10.1093/nar/gkn179

Griffiths-Jones S, Bateman A, Marshall M, Khausn A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31(1):439–441

Kim DH, Kim HK, Kim KM, Kim CK, Jeong MH, Ko CY, Moon HK, Kang JS (2011) Antibacterial activities of macrolactin A and 7-O-succinyl macrolactin A from Bacillus polymyxa. Mol Biol Rep 38(1):147–152. https://doi.org/10.1007/s11033-011-0117-0

Kim DS, Cho YI, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylogenotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https://doi.org/10.1099/ijsem.0.03807-5

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581

Kudo F, Eguchi T (2009) Biosynthetic genes for aminoglycoside antibiotics. J Antimicrob Chemother 62(9):471–481. https://doi.org/10.1093/jac/dkp239

Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Usery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3010–3018. https://doi.org/10.1093/nar/gkm160

Lee JO, Kim WH, Park SC, Chun J (2016) OrthoANI an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(11):1100–1103. https://doi.org/10.1099/ijsem.0.007760

Li GG, Liu BS, Shang YJ, Yu ZQ, Zhang RJ (2012) Novel activity evaluation and subsequent partial purification of antimicrobial peptides produced by Bacillus subtilis LB112. Ann Microbiol 62(2):667–674. https://doi.org/10.1007/s13213-011-0309-3

Lowe TM, Eddy SR (1997) T-RNAScan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

Mahlapuu M, Hakansson J, Ringstad L, Bjorn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. https://doi.org/10.3389/fcimb.2016.00194

Margel MA (1992) Molecular biology and regulatory mechanisms of antibi-otic production in Bacillus. Die Naturwissenschaften 79(5):202–212

Man R, Stein T, Entand KD, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20(4):501–506

Muller S, Strack SN, Hoeffer BC, Straight PD, Kearns DB, Kirby JR (2014) Bacillalaen and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microbiol 80(18):5603–5610. https://doi.org/10.1128/AEM.01621-14

Nakano MW, Zubler P (1990) Molecular biology of antibiotic production in Bacillus. Crit Rev Biotechnol 10(3):223–240. https://doi.org/10.3109/07383609009382019

Ng TB, Cheung RC, Wong JH, Bekhit AA, Bekhit Ael D (2015) Antibacterial products of marine organisms. Appl Microbiol Biotechnol 99(10):4145–4173. https://doi.org/10.1007/s00253-015-6553-x

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

Sabate DC, Audicso MC (2013) Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbes Res 168(3):125–129. https://doi.org/10.1016/j.micres.2012.11.004

Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

Saitou N, Nei M (1987) MEGA: molecular evolutionary genetics analysis using maximum likelihood, Reference
evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kryazhimskiy BA, Koonin EV, Krylov DM, Mazumder R, Melnikov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41. https://doi.org/10.1186/1471-2105-4-41
Um S, Fraimout A, Sapountzis P, Oh DC, Poulsen M (2013) The fungus-growing termite Macrotermes natalensis harbors bacilliaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep 3:3250. https://doi.org/10.1038/srep03250
van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP (2013a) BAGEL3: Automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. Nucleic Acids Res 41(Web Server issue):W448–W453. https://doi.org/10.1093/nar/gkt391
van Heel AJ, Mu D, Montalban-Lopez M, Hendriks D, Kuipers OP (2013b) Designing and producing modified, new-to-nature peptides with antimicrobial activity by use of a combination of various lantibiotic modification enzymes. ACS Synth Biol 2(7):397–404. https://doi.org/10.1021/sb3001084
Wang GS, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093. https://doi.org/10.1093/nar/gkv1278
Weber T, Blin K, Duddela S, Krug D, Kim HU, Brucoleri R, Lee SY, Fischbach MA, Muller R, Wohlfleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243. https://doi.org/10.1093/nar/gkv437
Wu LM, Wu HJ, Chen L, Yu XF, Borriss R, Gao XW (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep-Uk 5:12975. https://doi.org/10.1038/Srep12975