Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury

Hao Chen1,2*, Xiao-Hui Min1*, Qi-Yi Wang2*, Felix W. Leung3, Liu Shi4, Yu Zhou5, Tao Yu1, Chuan-Ming Wang6, Geng An7, Wei-Hong Sha2 & Qi-Kui Chen1

1Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China, 2Department of Gastroenterology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China, 3Division of Gastroenterology, David Geffen School of Medicine at University of California, Los Angeles, USA, 4Department of Gastroenterology, Ganzhou People’s Hospital, Ganzhou, People’s Republic of China, 5Department of Gastroenterology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People’s Republic of China, 6Department of Neurology, Shenzhen Sixth People’s Hospital, Shenzhen, People’s Republic of China, 7Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China.

Conditioned medium from mesenchymal stem cells (MSC-CM) may represent a promising alternative to MSCs transplantation, however, the low concentrations of growth factors in non-activated MSC-CM hamper its clinical application. Recent data indicated that the paracrine potential of MSCs could be enhanced by inflammatory factors. Herein, we pre-activated bone-marrow-derived MSCs under radiation-induced inflammatory condition (MSCIEC-6(IR)) and investigated the evidence and mechanism for the differential effects of MSC-CMIEC-6(IR) and non-activated MSC-CM on radiation-induced intestinal injury (RIII). Systemic infusion of MSC-CMIEC-6(IR), but not non-activated MSC-CM, dramatically improved intestinal damage and survival of irradiated rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of the pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of MSCIEC-6(IR) is related to a higher secretion of regenerative, immunomodulatory and trafficking molecules, including the pivotal factor IGF-1, induced by TNF-α, IL-1β and nitric oxide partially via a heme oxygenase-1 dependent mechanism. Together, our findings suggest that pre-activation of MSCs with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on RIII via a heme oxygenase-1 dependent mechanism, which may help us to maximize the paracrine potential of MSCs.

Radiation injury induced by radiotherapy can affect the quality of life and may be life threatening. Exposure of the small intestine to ionizing radiation (IR) may result in direct cytotoxic and growth inhibitory effects on villous epithelial cells and crypt stem cells, which may cause epithelial damage and inflammation, loss of intestinal barrier function and even lethal gut-derived sepsis. Though intestinal toxicity is the primary limiting factor in abdominal radiotherapy, currently there are no approved medical countermeasures.

Stem cell-based technologies using mesenchymal stem cells (MSCs) represent one of the most promising avenues in the treatment of tissue injury. MSCs have been used to treat a wide range of diseases and exert beneficial effects for a variety of injured tissues. However, some limitations of MSCs transplantation hamper its clinical application and raise safety concerns over the stem cells therapy, such as the poor engraftment and potential tumorigenesis of transplanted MSCs. In addition, MSCs transplantation requires a culture period for autologous cell expansion, which is a major limitation for its application in acute injury.

One potential approach to resolve such issues could be the use of MSCs-derived conditioned medium (MSC-CM). MSCs secrete a variety of trophic molecules with paracrine and autocrine activities into the culture-conditioned medium and can be concentrated and use therapeutically without the aforementioned limitations in cell-based therapies. MSC-CM serves several protective functions including the inhibition of apoptosis/inflammatory and the enhancement of angiogenesis/proliferation/migration and represents a viable alternative...
to MSCs transplantation. Although MSC-CM therapy appears to be a highly promising treatment, several issues must be addressed before its clinical application. A major issue is that the concentrations of growth factors in CM are too low for therapeutic use. For example, in a previous study, the concentration of VEGF in MSC-CM were only 217 ± 97 pg/ml, whereas the reported effective concentration of VEGF in vivo and in vitro angiogenesis is at least 5000 pg/ml. Similar observation was also found in other two reports showing that low concentration of VEGF and no bFGF, PDGF-BB, SDF-1 were detected in MSC-CM.

One potential solution to this problem was found in previous studies showing that the secretions and therapeutic effects of MSCs could be enhanced by inflammatory stimuli and/or cross-talk with injured cells, whereas non-activated MSCs may not have the protective effect. For example, preconditioning MSCs with TNF-α could induce a significant increase in concentration of VEGF in MSC-CM. In contrast, when MSCs injected before DSS colitis induction, MSCs-induced protection was absent due to insufficient activation of MSCs by the negligible levels of proinflammatory cytokines. Similar observation was also found in another report showing that only IFN-γ activated MSCs, but non-activated MSCs, is efficacious in the prevention of DSS-induced colitis.

Given the beneficial role of inflammatory activation on the secretions and therapeutic potentials of MSCs, we attempted BM-MSCs under radiation-induced inflammatory condition (MSC\textsubscript{IR}) and non-activated MSCs on RII. 2) and the specific inflammatory cytokines and mechanism involved in the enhanced paracrine potential of MSC\textsubscript{IR}.

Methods

The methods were carried out in "accordance with the approved guidelines.

Animals. Adult Sprague–Dawley rats, weighing 280—350 g, were provided by the Laboratory Animal Center of Sun Yat-Sen University (China). Animals were used according to good animal practices, and animal experiments were approved by our local animal care and use committee.

Cells. BM-MSCs were obtained from the femurs of adult Sprague–Dawley rats and cultured in DMEM-F12 supplemented with 10% heat inactivated FBS, 1% Glutamine, and 1% Penicillin/Streptomycin. MSCs were characterized by flow cytometry at passage 2 and used for a maximum of 5 passages. Cell lines, including nontransformed rat intestinal epithelial IEC-6 cells (CRL-1592, passage 13) and primary rat fibroblast (FB) cells (CRL-1213), were obtained from the American Type Culture Collection. IEC-6 cells used in all experiments were at or before the 20th passage.

Radiation-induced intestinal injury (RII) model. Whole abdominal irradiation was performed on anesthetized rats using a linear accelerator (Siemens PRIMUS) at a dose rate of 300 cGy/min. Rats were first irradiated at 10, 12, 14 and 16 Gy, and 14 Gy was selected as the optimal irradiation dose for examining the therapeutic action of MSC-CM. Rats in all groups were either sacrificed and collected tissue samples at 1, 3, 5, 7, 14 days for structural and functional examination or were monitored for survival status throughout the 14 day course of the experiment. For in vivo studies, the proliferation and apoptosis of 10 Gy-irradiated IEC-6 in all groups were evaluated at 1, 3, 5, 7 days after radiation.

Preparation and treatment of conditioned medium with or without neutralizing antibodies. IEC-6 (3 × 10^5 cells/compartment) were seeded into the upper compartment of a six-well transwell system (pore size of 0.4 μm; Costar, Cambridge, MA) and cultured in DMEM medium high glucose with 25 mM HEPES buffer; Invitrogen Corp.) containing 5% fetal bovine serum (FBS) (2.5 ml/well) for 2–3 days so that cells will be 70%–80% confluent at the time of radiation. BM-MSCs (5 × 10^5 cells/well) were placed into the lower compartment of a six-well transwell system and cultured in DMEM-F12 (1:1; Invitrogen Corp.) medium containing 10% FBS (2 ml/well) for 2–3 days so that cells will be 70%–80% confluent at the time of radiation. Since the transwell system is demountable, IEC-6 seeded in upper compartment and MSCs seeded in lower compartment were cultured separated before IEC-6 radiation and co-cultured after radiation. After 10 Gy irradiation of IEC-6, non-irradiated IEC-6 and irradiated IEC-6 was replaced with serum-free DMEM-F12 medium (2.5 ml/well) and subsequent conditioned for 24 h, the conditioned medium was then collected as IEC-6\textsubscript{IR} and IEC-6\textsubscript{IR}, respectively. To prepare conditioned medium from MSCs, MSCs were co-cultured with non-irradiated IEC-6 or irradiated IEC-6 in a transwell system and cultured medium was replaced with IEC-6\textsubscript{IR} or IEC-6\textsubscript{IR}, respectively (2.5 ml/well). After 24 h co-culture, IEC-6 in upper compartment of transwell were removed and cultured medium were collected for ELISA assay to detect the concentration of proinflammatory cytokines, MSCs in lower compartment of transwell was subsequent conditioning in new fresh serum-free DMEM-F12 (2 ml/well) for 48 h. The number of postconditioned MSCs used to prepare was approximately 4 × 10^5 cells/well and 1 ml of unconcentrated conditioned medium is approximately equivalent to a 2.5 ml BM-MSCs. The conditioned medium was then collected and concentrated as MSC-CM(10^6–10^8) and MSC-CM(10^5–10^7), respectively. Condition medium from the fibroblast cell line CRL1213 (FB-CM(10^6–10^8)) was also obtained by the same method and used as a specificity control. Conditioned medium was concentrated 50-fold by ultrafiltration with a 5 kDa cut-off (Millipore, Billerica, MA) and stored at −20 °C for further use.

For neutralizing experiments, the conditioned medium was collected and incubated for 30 min with control IgG or individual neutralizing antibodies for IGF-1 (1 μg/ml; Upstate Biotechnology), bFGF (0.5 μg/ml; R&D systems, Minneapolis, MN), VEGF (0.5 μg/ml; R&D systems, Minneapolis, MN) or combinations. To reduce non-endothelialous nitric oxidase production, TNF-α, IL-1β secreted from irradiated IEC-6 cells, MSCs and irradiated IEC-6-co-cultured system were supplemented with individual neutralizing antibodies for TNF-α (2 μg/ml; ebioscience, CA), IL-1β (2 μg/ml; ebioscience, CA), NO scavenger (PTIO; 2-phenyl-4-4,5,5-tetramethylimidazolo-1-oxyl-3-oxide; 400 μmol/l; Sigma, PRG) or combinations.

To determine if IGF-1 substitutes for MSC-CM in the irradiation damage model, rats were injected 1.5 μg recombinant rat IGF-1 (Abcam, Cambridge, UK) which is approximately equivalent to a 1-IGF-1 content of 2280 μg MSC-CM(10^6–10^8) in 7 doses delivered once a day for 7 days.

For in vivo experiments, continuous intraperitoneal delivery was obtained by using Alzet microosmotic pumps (model 2ML1; DURECT Corp) with a flow rate of 10 μl/hr. Alzet pumps were loaded with 2 ml DMEM-F12 or concentrated conditioned medium with or without neutralizing antibodies and implanted in the peritoneal cavity after radiation. Briefly, after a midline incision was done, the peritoneal cavity was exposed and an Alzet osmotic pump was implanted in the peritoneal cavity. After implantation of the pump, the abdominal wall was closed with silk suture in the muscle layer and clips on the skin. Antibiotics (strepptomycin and penicillin) were injected into the peritoneal cavity to prevent surgical infection. Besides continuous peritoneal infusion via Alzet pumps, intravenous concentrated conditioned medium or DMEM-F12 (200 μl/animal/day) was given for 3 days.

Immunohistochemistry. Rats were euthanized and sacrificed at 1, 3, 5, 7 days after radiation and four 2.5 cm sequential segments of proximal jejum from the ligament of Treitz were obtained. Tissue samples were fixed in 10% neutral-buffered formalin for >12 h, and then dehydrated and embedded with paraffin. Sections of 4 μm were used for H&E and other staining.

Paraffin-embedded sections were dewaxed, rehydrated and treated with 3% hydrogen peroxide. Following antigen retrieval, sections were incubated with serum from the host for 30 min at 37°C to block nonspecific antigen-binding sites. Sections were washed in PBS, incubated with mouse-anti-PCNA (Abcam, Cambridge, MA, USA), Lgr5 or Bmi1 antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted as recommended by the manufacturer overnight at 4°C. Signals were detected with the Envision kit (DAKO, Carpenteria, CA). Sections were counter-stained with hematoxylin. The number of positive cells in 5 crypts was scored in 100 crypts per section and reported as mean ± SD. Three rats were used in each group.

Flow cytometry. Rabbit anti-rat CD29-FITC, CD34-FITC, CD44-FITC, and CD45-FITC were used to identify the BM-MSCs phenotypes. All antibodies were purchased from BD Bioscences (Franklin Lakes, NJ, USA).

For cell cycle detection, IEC-6 cells were washed twice with PBS and fixed in cold ethanol for 30 min, and then incubated with propidium iodide (PI) (Sigma; Aldrich) for 50min at 37°C while stirring. Supernatants containing cells were collected and the cells were washed and resuspended in complete RPMI 1640. Cells were incubated with propidium myristate acid (50 ng/ml) and ionomycin (750 ng/
Cytokine array. Analysis of unconditioned conditioned medium cytokines was performed using the RayBio® Biotin Label-based Rat Antibody Array 1 (RayBiotech, Norcross, GA, USA) according to the manufacturer’s instructions. To verify the results, the same unconditioned conditioned medium was assayed by ELISA for bFGF, VEGF, TGF-β1, IGF-1, HGF and IL-10. The blood samples were assayed by ELISA for IL-1β, IL-6, TNF-α and IL-10 whereas intestinal tissue samples were assayed by ELISA for IL-1β, IL-6, TNF-α, TGF-β1, Activin A and IL-10.

siRNA preparation and transfection. The sense and antisense strands of rat HO-1 siRNA were: 5′-AAG CCA CAC AGC ACU AUG UAA UAA dTdT-3′ (sense) and 5′-UUA CAU AGU GUG UCU dTdT-3′ (antisense); Nonspecific siRNA (sense, 5′-UUC GAA CCU GUC AGC UdTdT-3′; antisense, 5′-AAG UGA CAC GGU CGG AGA AdTdT-3′) was synthesized by Qiangen (Germaneton, MD). BM-MSCs were trypsinized and used to seed 6-well gelatin-coated plates (5 × 104 cells/well). 2 ml of growth medium without antibiotics was added so that cells will be 70%–80% confluent at the time of transfection. Oligofectamine reagent (Invitrogen) was used as the transfection agent, and cells were then incubated for 6 h. Next, fetal bovine serum/DMEM-F12 was added to reach a final concentration of 10% fetal bovine serum in the wells. After transfection, MSCs were stimulated by TNF-α, IL-1β and NO donor in a transwell system.

Supporting Information. See supporting information for Supplemental Materials and Methods including information on: using chamber experiments, measurement of intestinal absorption and permeability, electron microscopy, TUNEL staining, quantitative real-time PCR assay, western blot, electrophoretic mobility shift assay (EMSA) and statistical analysis.

Results

MSC-CMIEC-6(IR) improves survival of rats exposed to 14-Gy abdominal irradiation. To evaluate the therapeutic mechanisms of MSC-CM in radiation-induced intestinal injury (RII), we established in vivo and in vitro experimental systems (Figure 1A). We first verified surface phenotype expression of four proteins in BM-MSCs used to prepare the MSC-CM (Figure 1B–C). After 14 Gy abdominal irradiation, three kinds of conditioned medium (CM) were immediately infused. Treatment with CM from MSCs under radiation-induced inflammatory condition (MSC-CMIEC-6(IR)) dramatically improved survival of irradiated rats as compared to DMEM-F12 or medium from fibroblasts under radiation-induced inflammatory condition (FB-CMIEC-6(IR)) or MSCs without stimulation (MSC-CMIEC-6(NOR)) (Figure 1D). The protective effects of MSC-CMIEC-6(IR) prevented mortality throughout the 14d experimental period, suggesting that MSC-CMIEC-6(IR) confers a significant survival benefit in rats.

MSC-CMIEC-6(IR) decreases structural and functional damage of the intestine. We further examined the effect of MSC-CM on intestinal integrity of the intestinal epithelium by assessing its secretory, absorptive and permeability function. Rats were sacrificed and collected tissue samples 1, 3, 5, 7, 14 days after radiation, intestinal segments were mounted in Ussing chambers and exposed to electrical field stimulation (EFS) which induces a slow increase in intestinal electrolyte transport. While the I sc response to EFS was very sporadic, with only 1 Lgr5-positive cells localized to the crypts in the control intestine. Three days after radiation, Lgr5-expressing ISC were barely detected in irradiated rats at 1, 3, 7 days after radiation (Figure 4A and B). Consistent with the in vivo observations, co-culturing with MSC-CMIEC-6(IR) but not with MSC-CMIEC-6(NOR) protected irradiated IEC-6 cells against apoptosis as assessed by TUNEL staining (Figure 3C and D). Consistent with these results, Annexin V and PI double staining also revealed that co-culture with MSC-CMIEC-6(IR) markedly reduced the apoptosis of irradiated IEC-6 cells relative to those cultured with DMEM-F12 (IR + DMEM-F12) and MSC-CMIEC-6(NOR) (IR + MSC-CMIEC-6(NOR)) at day 3 and day 5. However, by day 7, no significant difference in apoptosis was observed (Figure 3E–G).

MSC-CMIEC-6(IR) reduces apoptosis of intestinal epithelial cells after radiation in vivo and in vitro. Biochemical changes related to cell fate in irradiated enterocytes after MSC-CM treatment were further investigated. The number of TUNEL-reactive enterocyte nuclei in intestinal sections was determined as a measure of apoptotic cell death. In comparison with control rats, exposure to radiation after 3d caused a approximately ten-fold increase in TUNEL-positive cells preferentially located in crypts, likely corresponding to radiation-injury of crypt stem cells. Concomitant treatment with MSC-CMIEC-6(IR) significantly decreased this effect at 1, 3, 7 days after radiation, however, the decrease was not prominent for MSC-CMIEC-6(NOR) (Figure 3A and B).

To rule out the possibility that the inhibition of apoptosis by MSC-CMIEC-6(IR) is explained by indirect effects on the immune system, we determined the effect of MSC-CMIEC-6(IR) in vitro on irradiated IEC-6 cells. Co-culturing with MSC-CMIEC-6(IR) but not with MSC-CMIEC-6(NOR) protected irradiated IEC-6 cells against apoptosis as assessed by TUNEL staining (Figure 2C and D). Consistent with these results, Annexin V and PI double staining also revealed that co-culture with MSC-CMIEC-6(IR) markedly reduced the apoptosis of irradiated IEC-6 cells relative to those cultured with DMEM-F12 (IR + DMEM-F12) and MSC-CMIEC-6(NOR) (IR + MSC-CMIEC-6(NOR)) at day 3 and day 5. However, by day 7, no significant difference in apoptosis was observed (Figure 2F). In contrast, open tight junctions were still observed in rats treated with MSC-CMIEC-6(IR) had more obvious tight junctions (Figure 2F). While, open tight junctions in irradiated intestinal epithelium, intestine from rats treated with MSC-CMIEC-6(NOR) were still observed in rats treated with MSC-CMIEC-6(NOR).

MSC-CMIEC-6(IR) reduces apoptosis of intestinal epithelial cells after radiation in vivo and in vitro. Biochemical changes related to cell fate in irradiated enterocytes after MSC-CM treatment were further investigated. The number of TUNEL-reactive enterocyte nuclei in intestinal sections was determined as a measure of apoptotic cell death. In comparison with control rats, exposure to radiation after 3d caused a approximately ten-fold increase in TUNEL-positive cells preferentially located in crypts, likely corresponding to radiation-injury of crypt stem cells. Concomitant treatment with MSC-CMIEC-6(IR) significantly decreased this effect at 1, 3, 7 days after radiation, however, the decrease was not prominent for MSC-CMIEC-6(NOR) (Figure 3A and B).

To rule out the possibility that the inhibition of apoptosis by MSC-CMIEC-6(IR) is explained by indirect effects on the immune system, we determined the effect of MSC-CMIEC-6(IR) in vitro on irradiated IEC-6 cells. Co-culturing with MSC-CMIEC-6(IR) but not with MSC-CMIEC-6(NOR) protected irradiated IEC-6 cells against apoptosis as assessed by TUNEL staining (Figure 2C and D). Consistent with these results, Annexin V and PI double staining also revealed that co-culture with MSC-CMIEC-6(IR) markedly reduced the apoptosis of irradiated IEC-6 cells relative to those cultured with DMEM-F12 (IR + DMEM-F12) and MSC-CMIEC-6(NOR) (IR + MSC-CMIEC-6(NOR)) at day 3 and day 5. However, by day 7, no significant difference in apoptosis was observed (Figure 2F).

MSC-CMIEC-6(IR) increases proliferation of intestinal epithelial cells after radiation in vivo and in vitro. Proliferating cells was assessed on histological slides of small intestine stained with proliferating chain nuclear antigen (PCNA) antibody. Treatment with MSC-CMIEC-6(IR) induced an increased number of proliferating crypt cells to levels greater than MSC-CMIEC-6(NOR) treated rats and irradiated rats at 1, 3, 7 days after radiation (Figure 4A and B). Consistent with the in vivo observations, co-culturing with MSC-CMIEC-6(IR) also markedly increased the number of PCNA-positive cells in irradiated IEC-6 cells (Figure 4C and D). Furthermore, exposure to radiation resulted in cell cycle arrest at the G0/G1 phase and a low percentage of cells in S phase, whereas co-culture with MSC-CMIEC-6(IR) but not MSC-CMIEC-6(NOR) dramatically reversed this effect at day 3 (Figure 4E and F). At days 5, MSC-CMIEC-6(IR) co-culture further increased the proportion of IEC-6 in the S phase, whereas the effect was not detectable at day 7 (Figure 4G).

MSC-CMIEC-6(IR) promotes regeneration of intestinal stem cells (ISCs) after radiation injury. Lgr5-expressing cells are actively proliferating ISCs responsible for the maintenance of the intestinal epithelium. Three days after radiation, Lgr5-expressing ISCs were very sporadic, with only 1 Lgr5-positive cells localized to the crypts in the control intestine. Three days after radiation, Lgr5-expressing ISC were barely detected in irradiated rats at 1, 3, 7 days after radiation (Figure 4A and B). Consistent with the in vivo observations, co-culturing with MSC-CMIEC-6(IR) also markedly increased the number of PCNA-positive cells in irradiated IEC-6 cells (Figure 4C and D). Furthermore, exposure to radiation resulted in cell cycle arrest at the G0/G1 phase and a low percentage of cells in S phase, whereas co-culture with MSC-CMIEC-6(IR) but not MSC-CMIEC-6(NOR) dramatically reversed this effect at day 3 (Figure 4E and F). At days 5, MSC-CMIEC-6(IR) co-culture further increased the proportion of IEC-6 in the S phase, whereas the effect was not detectable at day 7 (Figure 4G).

Bmi1-expressing cells, which are quiescent ISCs under normal conditions, can be activated after radiation as compensation for loss of Lgr5-positive ISCs. Bmi1 immunostaining was preferentially detected at position 4+ of crypts in the control intestine. Three days after irradiation, Bmi-1 expressing ISCs were barely detected in irradiated rats and MSC-CMIEC-6(NOR) treated rats. However, MSC-CMIEC-6(IR) treatment increased the number of these cells and led to Bmi1 staining at the basement of the crypt as well as 4+ position of
crypt (Figure 5E and F), which is consistent with previous observations and suggestive of accelerated epithelial regeneration.

MSC-CMIEC-6(IR) down-regulates radiation-induced inflammatory responses at systemic and mucosal levels. To investigate the effect of MSC-CM on immunomodulatory profile, intestinal and serum levels of inflammatory cytokines were first analyzed. While irradiation led to increased intestinal levels of pro-inflammatory IL-1β, IL-6 and TNF-α, this increase was reversed by MSC-CM IEC-6(IR). Conversely, levels of anti-inflammatory IL-10 were increased by MSC-CM IEC-6(IR), suggesting a shift to a more anti-inflammatory state (Figure 6A). Similar to the observation in intestinal mucosa, treatment with MSC-CMIEC-6(IR), but not MSC-CM IEC-6(NOR), also promoted a significant decrease in serum pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and increase in anti-inflammatory cytokines (IL-10). In addition, Activin A, a serum indicator of systemic inflammation severity, was significantly reduced after MSC-CMIEC-6(IR) treatment (Figure 6B). The observed downregulation of the pro-inflammatory response and the elevated IL-10 levels prompted us to investigate the capacity of MSC-CM to increase the Treg repertory. As shown in Figure 6C, MSC-CMIEC-6(IR)-treated rats displayed significantly increased numbers of CD4⁺Foxp3⁺Treg cells in mesenteric lymph nodes (MLNs) compared with those in irradiated rats and MSC-CM IEC-6(NOR)-treated rats.

Activation of MSCs under radiation-induced inflammatory condition induces alteration in the MSCs secretome. To...
investigate the possible reasons for these differential effects, secretion profiles of MSCs with and without stimulation were first analyzed, we examined the cytokines contained within MSC-CM IEC-6(IR) and MSC-CM IEC-6(NOR) using antibody-based protein array analysis of 90 rat cytokines. FB-CM IEC-6(IR) and DMEM-F12 were tested as additional controls. The specific chemical composition of MSC-CM was found to be dependent on stimulation. After stimulation by radiation-induced inflammatory cytokines, the fraction of growth factors and chemokines were significantly increased (Figure 7A). Fifteen cytokines were significantly increased in MSC-CM IEC-6(IR) compared to MSC-CM IEC-6(NOR), FB-CM IEC-6(IR) and DMEM-F12 control (>2.0X) (Figure 7B). These cytokines could be further pooled into 3 functional groups. The first group comprises growth factors that promote regeneration and includes bFGF, VEGF, bNGF, Hepassocin and CNTF. The second group (ex. CXCL-3, CCL-2/20, TIMP-2 and MMP-2/13) contains chemokines and...
matrix metalloproteinase (MMPs) that enhance MSCs or immune cells trafficking into a certain location. Finally, the third group contains immunomodulatory factors, such as TGF-β1. Based on the previous findings that IGF-1, HGF (IGF-1 and HGF were not included in the 90 targeted cytokines of cytokines array) promote regeneration of intestinal epithelial/stem cells and the key immunomodulatory function of IL-10, we subsequently quantify levels of IL-10, IGF-1, and HGF in MSC-CM IEC-6(IR) by ELISA from a single sample pooled from 5 different MSC donors. The concentrations of VEGF, bFGF, IGF-1, and TGF-β1 in MSC-CM IEC-6(IR) were 1.25 ± 0.13, 2.03 ± 0.28, 1.43 ± 0.21, and 13.3 ± 2.5 ng/ml, respectively, which were 4–10 times higher than those in MSC-CM IEC-6(NOR). The ELISAs also confirmed the presence of HGF, IL-10 in MSC-CM IEC-6(IR), levels were not significantly higher than in MSC-CM IEC-6(NOR) (Figure 7C). Quantitative real-time PCR assay was also performed to measure mRNA, and the results correlated with those of ELISAs (Figure 7D). In addition, the protein levels of cyclooxygenase-2 (COX-2) were significantly increased in cells used to prepare MSC-CM IEC-6(IR) (data not shown).

IGF-1 play a critical role in MSC-CM IEC-6(IR) mediated RIII recovery. Based on the significantly higher levels in MSC-CM IEC-6(IR) and previous findings that IGF-1, bFGF, VEGF promote regeneration of intestinal epithelial/stem cells, we tested whether the superior therapeutic effects of MSC-CM IEC-6(IR) in intestinal recovery could be explained by these molecules. When addition of individual neutralizing antibodies for each of these molecules, the effect of MSC-CM IEC-6(IR) on apoptosis and proliferation of IEC-6 was partially inhibited by antibodies against IGF-1 and not influenced by antibodies against VEGF and bFGF (Figure 7E, upper panel). Moreover, The induction of Treg cell in MLNs and the regulation of the pro-/anti-inflammatory cytokine balance in small intestine...
was partially reversed by antibodies against IGF-1. (Figure 7E, lower panel). Similarly, the survival effect of MSC-CM IR was partially abolished by antibodies against IGF-1 from 93.3% to 66.7%, however, a significant survival benefit was still apparent compared to irradiated rats (Figure 7F). In addition, though infusion of IGF-1 show protective effect on intestinal proliferation/apoptosis and survival rates, significant difference in therapeutic benefits was still observed between MSC-CM IR and IGF-1 alone (Figure 7G and H), which suggests a combined effects of other up-regulated molecules besides pivotal role of IGF-1 in MSC-CM IR mediated RIII recovery.

Figure 4 | MSC-CM IR increases the proliferation of intestinal epithelial cells after radiation in vivo and in vitro. (A) The proliferation of intestinal epithelial cells was examined by immunohistochemical staining with proliferating cell nuclear antigen (PCNA). Intestinal tissue samples were collected and analyzed 3 days after radiation. Scale bars 50 μm. (B) Quantification of PCNA-positive cells. n = 3 in each group. The number of positive cells in 5 crypts was scored in 100 crypts per section and reported as mean ± SD. *, P < 0.05 versus IR + DMEM-F12, #, P < 0.05 versus IR + MSC-CM IR. (C) Immunohistochemical staining of IEC-6 cells with PCNA 3 days after radiation. Scale bars 50 μm. (D) Quantification of PCNA-positive cells for the treatment groups in panel C. Data are reported as mean ± SD for 10 random fields per well from four replicate wells per group. **, P < 0.05 versus IR + DMEM-F12, ###, P < 0.05 versus IR + MSC-CM IR. FOV, field of view. (E) The cell cycle status of IEC-6 cells following IR and/or co-culture with MSC-CM IR or MSC-CM NOR were detected by flow cytometry based on DNA content. (F) The percentage of S phase cells and G1 phase cells for each culture condition was determined. The proportions of cells in S phase were as follows: Control: 29.76%; IR + DMEM-F12: 9.86%; IR + MSC-CM NOR: 10.91%; IR + MSC-CM IR: 32.89%. (G) The ratio of S phase cells was examined 1, 3, 5, 7 days after radiation. Data represent mean ± SD of three independent experiments. **, P < 0.05 versus IR + DMEM-F12.

The difference in the secretome and the therapeutic effects of MSC-CM is induced by pro-inflammatory molecules via a heme oxygenase-1 dependent mechanism. To further explore the mechanism that mediates the difference in the paracrine profiles and paracrine effects of MSCs, we first investigated the content of pro-inflammatory cytokines in intestinal radiation-induced inflammatory condition. In cultured medium of MSCs irradiated IEC-6 co-cultured system, several pro-inflammatory molecules including TNF-α, IL-1β and nitric oxide (NO) were significantly increased (Figure 8A). While the ELISAs also confirmed the presence of IL-1α, IL-6, IFN-γ levels were not significantly higher than those in MSCs non-irradiated IEC-6 co-cultured system (data not shown). The effect of TNF-α/IL-1β/NO was then tested directly by adding individual recombinant TNF-α, IL-1β or NO donors, namely, sodium nitroprusside (SNP) or their combinations to MSCs. Only with the combined addition of TNF-α/
Figure 5 | MSC-CM^{EC-6(IR)} promotes regeneration of intestinal stem cells (ISCs) after radiation. (A) Immunohistochemical staining with Lgr5. Intestinal tissue samples were collected and analyzed 3 days after radiation. Scale bars 25 μm. (B) Quantification of Lgr5-positive cells. n = 3 in each group. The number of positive cells in 5 crypts was scored in 100 crypts per section and reported as mean ± SD, **, P < 0.05 versus IR + DMEM-F12, ##, P < 0.05 versus IR + MSC-CM^{EC-6(NOR)}. (C) The protein levels of Lgr5 in the jejunal mucosa of rats were detected by Western blot assays at 1, 3, 5, 7 days after radiation with β-actin as the internal control. The full-length blots are presented in Supplementary Figure 1A. (D) Lgr5 mRNA expression in the jejunal mucosa of rats after radiation was evaluated by quantitative real-time RT-PCR. β-actin was used as a loading control. Values represent means ± SD; n = 3 in each group, *, P < 0.05 versus IR + DMEM-F12, #, P < 0.05 versus IR + MSC-CM^{EC-6(NOR)}. (E) Immunohistochemical staining with Bmi1. Intestinal tissue samples were collected and analyzed 3 days after radiation. Scale bars 25 μm. (F) Quantification of Bmi1-positive cells. n = 3 in each group. The number of positive cells in 5 crypts was scored in 100 crypts per section and reported as mean ± SD, **, P < 0.05 versus IR + DMEM-F12, ##, P < 0.05 versus IR + MSC-CM^{EC-6(NOR)}.
IL-1β/SNP, the expression of IGF-1, bFGF, VEGF were up-regulated to a similar level of MSC-CM IEC-6(IR) (Figure 8B, 8E, 8F and data not shown). In fact, simultaneous neutralization of TNF-α/IL-1β/NO in cocultures of MSCs and irradiated IEC-6 completely reversed the up-regulation of IGF-1, bFGF, VEGF (Figure 8C and data not shown). Therefore, though individual or any two of three stimulants cytokines is beneficial to paracrine potential of MSCs, it is not sufficient; all of the three cytokines is required. Moreover, MSC-CM activated by TNF-α, IL-1β and NO donor (MSC-CM[TNF-α + IL-1β + NO]) achieved a similar therapeutic effects to MSC-CM[EC-6(IR)] on RIII (Figure 8G, 8H and 8J). These results suggest that the superior paracrine effects of MSC-CM[EC-6(IR)] is induced by TNF-α, IL-1β and NO secreted by irradiated IEC-6.

Hence, pro-inflammatory molecules (TNF-α, IL-1β and NO) may modulate the secretion profile of MSCs to diminish apoptosis and inflammation of irradiated intestine. Intriguingly, inducible heme oxygenase-1 (HO-1), normally at low levels in MSCs, is significantly induced by a variety of stress mediators including TNF-α, IL-1β or NO in several cell lines. Moreover, over-expression of transfected HO-1 in MSCs also enhances secretion of several important pararine factors and the anti-apoptotic and anti-inflammatory properties of MSCs. We therefore questioned whether the difference in the secretome and the therapeutic effects of MSCs acted via a HO-1 related mechanism.

To address this problem, we sought to knockdown HO-1 induction using HO-1 siRNA. As shown in Figure 8D, HO-1 protein,
Figure 7 | Activation of MSCs under radiation-induced inflammatory condition induces an alteration in the MSCs secretome. (A) The specific chemical composition of MSC-CM with or without inflammatory stimulation. (B) Identification of fifteen cytokines of MSC-CMIR that are potentially beneficial to intestinal recovery. Fresh medium without cell culture (DMEM-F12) was used as a background control. (upper panel) Representative images of the cytokine antibody array are shown. The rectangles highlight cytokines higher in MSC-CMIR than FB-CMIR and MSC-CMIR (fold change > 2.0). Each sample consisted of a pool of unconcentrated conditioned medium from five different donor cells. Each measurement was duplicated reproducibly. (lower panel) The graphs show the relative intensity of the 15 cytokines. The expression in the control medium was arbitrarily set as 1.0. (C) The same unconcentrated conditioned medium was assayed by ELISA for six selected cytokines (bFGF, VEGF, IL-10, IGF-1, HGF and TGF-B1). (D) The same selected cytokines were further confirmed by Real-time RT-PCR. 6-actin was used as a loading control. The results represent 3 independent experiments (mean ± SD), **, P < 0.05 versus MSCIEC-6(NOR). (E) Neutralization of IGF-1 in MSC-CMIR partially suppressed the beneficial effects of MSC-CMIR on apoptosis (upper left panel) and proliferation (upper right panel) of irradiated IEC-6. The apoptosis and proliferation were evaluated by quantification of TUNEL-positive and PCNA-positive IEC-6 cells 3 days after radiation, respectively. Moreover, in vivo, the induction of CD4+ Foxp3+ Treg cells in MLNs (lower left panel) and the regulation of the pro-/anti-inflammatory cytokine balance in small intestine (lower right panel) were partially reversed by antibodies against IGF-1 3 days after radiation. n = 3 in each group. **, P < 0.05 versus IR + MSC-CMIR. (F) Cumulative survival analyzed using the Kaplan-Meier method. P-values were determined by log-rank testing. (G) The effects of of IGF-1 on the apoptosis (left panel) and proliferation (right panel) of irradiated intestinal epithelial cells evaluated by quantification of TUNEL-positive and PCNA-positive cells in histological sections, respectively. *, P < 0.05 versus IR + DMEM-F12, #, P < 0.05 versus IR + MSC-CMIR. (H) Cumulative survival analyzed using the Kaplan-Meier method. P-values were determined by log-rank testing.
Figure 8 | Heme oxygenase-1 mediates the difference in the secretome and the therapeutic effects of MSC-CM with and without pro-inflammatory cytokine stimulation. (A) TNF-α and IL-1β levels were assayed in the cultured medium of MSCs + non-irradiated/irradiated IEC-6 co-cultured system by ELISA. Nitric oxide (NO) in culture medium was assayed by a colorimetric assay for nitrite, a stable byproduct of NO. **, P < 0.05 versus control. (B) MSCs were supplemented with individual recombinant TNF-α (6 ng/ml), IL-1β (3 ng/ml), NO donor (SNP, sodium nitroprusside; 200 μmol/l) or combinations, and the concentration of IGF-1 in conditioned medium was then assessed. **, P > 0.05 versus MSC-CMIR. (C) MSCs + irradiated IEC-6 co-cultured system were supplemented with individual neutralizing antibodies for TNF-α (2 mg/ml), IL-1β (2 mg/ml), NO scavenger (PTIO; 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; 400 μmol/l) or combinations, and the concentration of IGF-1 in conditioned medium was then assessed. **, P < 0.05 versus IR+MSC-CM. MSCs were transfected with varying doses of HO-1 siRNA and nonspecific siRNA prior to TNF-α, IL-1β and NO donor stimulation, the protein levels of HO-1 (D), the secretion (E) and the mRNA expression (F) of IGF-1, bFGF, VEGF and TGF-β1 from MSCs were then detected. **, P < 0.05 versus MSC-CMIR. NS-KD-MSC-CM was partially abolished the ability of MSC-CM to ameliorated the apoptosis (G) and proliferation (H) of irradiated intestinal epithelial cells which were evaluated by quantification of TUNEL-positive and PCNA-positive cells in histological sections, respectively. **, P < 0.05 versus MSC-CMIR. The DNA-binding activities of NF-κB in nuclear extracts of intestinal tissue (I) were estimated by electrophoretic mobility shift assay (EMSA). The specificity of the DNA/protein was determined by competition reactions in which a 100-fold molar excess of unlabeled NF-κB oligonucleotide (specific competitor). (J) Improved survival of irradiated rats receiving MSC-CMIR+NO (n = 28) was partially reversed in rats (n = 30) receiving HO1-KD-MSC-CMIR+NO (IR + MSC-CMIR+NO versus IR + HO1-KD-MSC-CMIR+NO). **, P < 0.05.
expressed at low levels in non-activated MSCs, was markedly up-regulated in MSCs activated by irradiated IEC-6 (MSCIEC-6(IR)) or MSCs activated by TNF-\(\alpha\), IL-1\(\beta\), IL-1\(\beta\) and NO donor (MSCTNF-\(\alpha\) + IL-1\(\beta\) + NO) and dose-dependently attenuated by HO-1 siRNA. To further examine the role of HO-1 in secretion of MSCTNF-\(\alpha\) + IL-1\(\beta\) + NO, four important growth factors up-regulated in MSC-CM (MSCIEC-6(IR)) and MSC-CM (MSCTNF-\(\alpha\) + IL-1\(\beta\) + NO) were tested using ELISA. The knockdown (KD) of the HO-1 expression by 600 nmol/L HO-1 siRNA nearly completely abolished the up-regulation of VEGF and TGF-\(\beta\) and substantially reduced the expression of IGF-1, bFGF in MSCTNF-\(\alpha\) + IL-1\(\beta\) + NO in both secretion and mRNA levels (Figure 8E and F). We then asked whether our in vitro findings could be implemented in vivo. While MSC-CM (MSCTNF-\(\alpha\) + IL-1\(\beta\) + NO) ameliorated the apoptosis and proliferation of irradiated intestinal epithelial cells, CM from transiently HO-1-knockdown MSCs activated by TNF-\(\alpha\), IL-1\(\beta\) and NO donor (HO1-KD-MSC-CM (MSCTNF-\(\alpha\) + IL-1\(\beta\) + NO) partially abolished these effects (Figure 8G and H) and showed increase in NF-kB binding activity (Figure 8I) which is a mark for the acute gut mucosa damage36. Similarly, the survival benefit of MSC-CM (MSCTNF-\(\alpha\) + IL-1\(\beta\) + NO) was partially reversed by the interference of the HO-1 transcripts (Figure 8J). These results indicate that the paracrine effect of MSC-CM (MSCTNF-\(\alpha\) + IL-1\(\beta\) + NO) in RIII is at least partially mediated by HO-1.

Discussion

Though MSCs transplantation has the capability to home in the site of injury and ensure sustained release of trophic factors, the application of MSCs transplantation is hindered by many hurdles, including low engraftment efficiency, immune compatibility, tumorigenicity, embolism formation and time-consuming procedures for autologous cell preparations3,4. In contrast, MSC-CM could be produced by an established cell line that provides a readily available, rapid source of paracrine factors that functions across species barriers without the aforementioned problems. Use of MSC-CM would provide an "off-the-shelf" alternative to allogeneic stem cell therapy at the time of acute tissue injury5. In our study, we show that pre-activation of MSCs by TNF-\(\alpha\), IL-1\(\beta\) and NO significantly increased the concentrations of trophic factors, whereas the concentrations of trophic factors in non-activated MSC-CM are too low for therapeutic use in RIII, suggesting the importance of pre-activation of MSCs under inflammatory condition before CM collection.

There are some important observations of our work. The first was that we demonstrate the mechanisms of MSC-CM on RIII. Thus far, only two reports consider the delivery of MSC-CM (not MSCs) in RIII8,9, and limited mechanisms was investigated. In the present study, we report that MSC-CM (MSCIEC-6(IR)) can restore RIII by regulating cellular homeostasis via effects on the apoptosis and proliferation of intestinal epithelial cells and stem cells. In addition, the administration of MSC-CM (MSCIEC-6(IR)) strongly skew the inflammatory environment towards an anti-inflammatory profile partially due to their immune modulation of Treg cells. These mechanism are similar to those of MSCs transplantation obtained in previous studies10,11, suggesting inflammatory cytokines-activated MSC-CM has the comparable capability to MSCs.

A second important observation of our study was that we demonstrate the evidence and mechanism for differential effects of MSC-CM (MSCIEC-6(IR)) and non-activated MSC-CM in RIII. Using cytokine array, we identified some molecules significantly up-regulated in MSC-CM (MSCIEC-6(IR)) which can be further grouped as 3 independent functional units associated with tissue regeneration, immunomodulation and cell trafficking. By using neutralizing antibodies, IGF-1 were identified as the pivotal mediator in MSC-CM (MSCIEC-6(IR)), mediated recovery. The observations that IGF-1 is required for MSC-CM (MSCIEC-6(IR)), mediated recovery in RIII is consistent with the observations that MSCs release a variety of growth factors including IGF-1 and that this can be enhanced by hypoxia or inflammatory stimuli pretreatment12. In multiple different conditions the biological effects of MSCs and IGF-1 are similar. For example, while MSCs appear to show promise for the treatment of myocardial infarcts13, local delivery of IGF-1 by biotinylated nanofibers improved systolic function after experimental myocardial infarction14. Similarly, in experimental sepsis, intravenous injection of MSCs reduce inflammation, enhance bacterial clearance and improving survival15, while IGF-1 treatment was also found to improves survival in sepsis via decreased bacterial translocation16. Finally, recent study demonstrated that IGF-1 promotes growth of small intestinal epithelium and may preferentially promotes ISCs expansion and crypt regeneration after radiation17, consistent with previous and our present studies using MSCs treatments in RIII18,19. In addition, MSCs and IGF-1 influence similar cellular targets in immune system and small intestine. Both MSCs and IGF-1 are reported to increase the proportion of Treg cells20,21. In intestinal epithelium cells, MSCs protect against necrotising enterocolitis via modulation of crypt cells expressing COX-222, while IGF-1 is also able to induce COX-2 directly in intestine to improve intestinal barrier function in cirrhotic rats23. However, after addition of individual neutralizing antibodies (NAs) against IGF-1 or combined treatment with NAs against IGF-1, bFGF and IGF-1, a significant survival benefit was still apparent compared to irradiated rats. In addition, significant difference in therapeutic benefits was also observed between MSC-CM (MSCIEC-6(IR)) and IGF-1 alone. These observation suggests that the protection afforded by MSC-CM (MSCIEC-6(IR)) might involve combined effects of up-regulated molecules in MSC-CM (MSCIEC-6(IR)) besides pivotal role of IGF-1.

Previous reports24–27,29–31 indicated that several pro-inflammatory molecules (TNF-\(\alpha\), IL-1\(\beta\), NO, IFN-\(\gamma\), IL-1\(\alpha\), VCAM-1, IL-8 etc.) are capable of modulating the immunosuppressive, trafficking or paracrine potential of MSCs. In our study, our finding suggested that the enhanced paracrine potential of MSCIEC-6(IR) is induced by TNF-\(\alpha\), IL-1\(\beta\) and NO secreted from irradiated IEC-6, as MSCs activated by TNF-\(\alpha\), IL-1\(\beta\) and NO donor present a similar paracrine effects to MSCIEC-6(IR) on RIII, and enhanced paracrine potential of MSCIEC-6(IR) were abolished after treatment with NAs or inhibitor against TNF-\(\alpha\), IL-1\(\beta\) and NO. Hence, TNF-\(\alpha\), IL-1\(\beta\) and NO activation of MSCs increases their secretions of regenerative, immunomodulatory and trafficking molecules, including the pivotal factor IGF-1, therefore diminish apoptosis and inflammation, and promote enterocyte proliferation. Intriguingly, HO-1, normally expressed at very low levels in MSCs, has been reported to have similar effects32–35, it was up-regulated by a variety of stress mediators including TNF-\(\alpha\), IL-1\(\alpha\) or NO in vascular endothelial cells or lung epithelial cells, and over-expression of transfected HO-1 in MSCs has superior anti-apoptotic, anti-inflammatory, and proangiogenic properties than lower HO-1 expressing MSCs due to its enhancement of the survival and the secrete of MSCs. In our study, the expression of HO-1 in MSCs was significantly enhanced after stimulation with inflammatory cytokines (TNF-\(\alpha\), IL-1\(\beta\)) and NO, and beneficial effects were partially abolished by HO-1 siRNA. As such, the mechanism for the superior protection by MSC-CM (MSCIEC-6(IR) in our study is most likely related to an inflammatory/stress-mediated up-regulation of HO-1 expression which dramatically enhances secretion of trophic molecules such as IGF-1 or/bd bFGF, VEGF. However, even under HO-1-silenced condition, apparent therapeutic benefits and enhanced secretions of IGF-1/bFGF were still observed, suggesting that additional mechanisms may be active.

In addition to the low concentration of trophic factors in MSC-CM, some problems harnessing MSC-CM therapy in clinical settings need to be posed. A first relevant issue is the mixture of therapeutic molecules and harmful components in MSC-CM. One of these, TNF-\(\alpha\), upregulated in MSC-CM (MSCIEC-6(IR), has marked effect in promoting apoptosis and inflammation36, TGF-\(\beta\), a cytokine of dual role, also have a significant inhibitory effects on the proliferation of intestinal crypt cells besides its immunomodulatory potential37. Since the co-existence of therapeutic and harmful factors, our works
to identify the pivotal factors and the harmful factors will also be essential for development of a balanced cocktail of trophic factors or genetically modified MSC-CM with an optimized therapeutic effect in intestinal damage. Second, the tissue transport, pharmacokinetics and protein stability of MSC-CM is another limitation in MSC-CM therapy, which need to develop controlled release and delivery strategies for MSC-CM. Recent studies indicates that the coupling of MSC-CM with bioengineered materials may increase the effect of these cytokines and chemokines and possibly extend the duration of their therapeutic effects35. For example, Bakota EL et al developed nanofibre hydrogels that act as sponges, soaking up the secretome released by the stem cells, with sufficient rigidity to remain localized and release stem cell secretome over time36. Similar result was also obtained in another study showing that peptide nanofibers preconditioned with stem cell secretome are renoprotective36.

Some limitations our study must be acknowledged. First, a comparison between the effect of MSC and MSC-CM on RII was not conducted because the differential effects of MSC-CM with and without inflammatory-activation was the main focus of our study. However, such comparison was found in a previous study37 showing that hypoxia-activated MSC-CM provided superior beneficial effects on intestinal integrity and survival in a same model of RII. Second, conditioned medium in the present study contains components that are inappropriate for human use, such as phenol red and 4-(2-hydroxyethyl)-1-piperazineneethanesulfonic acid (HEPES), which must be addressed before its clinical application. A recent publication38 developed a CM consisted of amino acid solution, vitamin solution, glucose solution, and human serum to replace the conventional cultured medium, and no difference in its ability to support MSCs growth was observed, suggesting a potential solution to overcome this problem.

Taken together, the present study confirmed our hypothesis of great difference in the therapeutic efficacy of MSC-CM with and without inflammatory activation on RII, and demonstrated that MSC-CM with cytokines and chemokines and possibly extend the duration of their therapeutic effects35. For example, Bakota EL et al developed nanofibre hydrogels that act as sponges, soaking up the secretome released by the stem cells, with sufficient rigidity to remain localized and release stem cell secretome over time36. Similar result was also obtained in another study showing that peptide nanofibers preconditioned with stem cell secretome are renoprotective36.

1. Potten, C. S. Radiation, the ideal cytokotoxic agent for studying the cell biology of tissues such as the small intestine. Radiat. Res. 161, 123–136 (2004).
2. Umar, S. Intestinal stem cells. Curr. Gastroenterol. Rep. 12, 340–348 (2010).
3. Shadad, A. K. Intestinal stem cells: cytokines and factors. Radiat. Res. 25, 165–176 (2013).
4. Keating, A. Mesenchymal stromal cells: new directions. Sci. Rep. 4. 2014.
5. Menasché, P. Stem cells for clinical use in cardiovascular medicine: current limitations and future perspectives. Thromb. Haemost. 94, 697–701 (2005).
6. Marx, J. Cancer research. Mutant stem cells may seed cancer. Science 301, 1308–1310 (2003).
7. Sell, S. On the stem cell origin of cancer. Am. J. Pathol. 176, 2584–2490 (2010).
8. Hung, S. C. et al. Angiogenic Effects of Human Mutipotent Stromal Cell Conditioned Medium Activate the PI3K-Akt Pathway in Hypoxic Endothelial Cells to Inhibit Apoptosis, Increase Survival, and Stimulate Angiogenesis. Stem Cells 25, 2363–2370 (2007).
9. van Poll, D. et al. Mesenchymal Stem Cell-Derived Molecules Directly Modulate Hepatocellular Death and Regeneration In Vitro and In Vivo. Hepatolgy. 47, 1634–1643 (2008).
10. Cagney, Z. et al. Mesenchymal stromal cell-conditioned medium prevents radiation-induced small intestine injury in mice. Cytotetherapy 14, 267–273 (2011).
11. Chang, Y. H. et al. Bone marrow transplantation rescues intestinal mucosa after whole body radiation via paracrine mechanisms. Raditherapeut Oncol. 105, 371–377 (2012).
12. Angoulvant, D. et al. Mesenchymal stem cell conditioned media attenuates in vivo mouse myocardial reperfusion injury. J. Heart Lung Transplant 30, 95–102 (2011).
13. Yuen, W. W. et al. Mimicking nature by codelivery of stimulant and inhibitor to create temporarily stable and spatially restricted angiogenic zones. Proc. Natl. Acad. Sci. USA. 107, 17893–17898 (2010).
14. Oguni, M. et al. Conditioned Media from Mesenchymal Stem Cells Enhanced Bone Regeneration in Rat Calvarial Bone Defects. Tissue Eng. Part A. 18, 1479–89 (2012).
15. Chang, C. P. et al. Hypoxia preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clio. Sci. 124, 165–176 (2013).
16. Dujivestein, M. et al. Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells 29, 1549–1558 (2011).
17. Herrmann, J. L. et al. Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock. 33, 24–30 (2010).
18. Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2, 141–150 (2008).
19. Oguni, M. et al. A crosstalk between myeloid cells and narrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24, 986–991 (2006).
20. Gonzalez-Rey, E. et al. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut. 58, 929–939 (2009).
21. Tian, H. et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255–259 (2011).
22. Yan, K. S. et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl. Acad. Sci. USA. 109, 466–471 (2012).
23. Chang, P. et al. Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis. 4, e685 (2013).
24. Hedger, M. P. & de Kretser, D. M. The actins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev. 24, 285–295 (2013).
25. Ries, C. et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109, 4055–4063 (2007).
26. Tondureau, T. et al. In vitro study of matrix metalloproteinase/tissue inhibitor of metalloproteinase production by mesenchymal stromal cells in response to inflammatory cytokines: the role of their migration in injured tissues. Cytotherapy 14, 559–569 (2012).
27. Qiu, W. et al. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA via the PI3K/AKT/P53 axis. Oncogene 29, 1622–1632 (2010).
28. Kanayama, M. et al. Hepatocyte growth factor promotes colonic epithelial regeneration via Akt signaling. Am J Pathol Gastrointest Liver Physiol. 293, G230–239 (2007).
29. SoleymaniJedan, E. et al. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol. 67, 1–8 (2012).
30. Terry, C. M. et al. TNF-α and IL-1β induce heme oxygenase-1 via protein kinase Cβ2, and phosphorylate ApoE in endothelial cells. Am. J. Physiol. 276, H1493–H1501 (1999).
31. Liu, X. M. et al. Nitric Oxide Stimulates Heme Oxygenase-1 Gene Transcription via the Nrf2/ARE Complex to Promote Vascular Smooth Muscle Cell Survival. Cardiovasc. Res. 75, 381–389 (2007).
32. Tsubokawa, T. et al. Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol. 298, H1320–H1329 (2010).
33. Zarjou, A. et al. Paracrine effects of mesenchymal stem cells in cisplatin-induced renal injury require heme oxygenase-1: Am. J. Physiol. Renal. Physiol. 300, F254–F262 (2011).
34. Liang, O. D. et al. Mesenchymal Stromal Cells Expressing Heme Oxygenase-1 Reverse Pulmonary Hypertension. Stem Cells 29, 99–107 (2011).
35. Hou, C. et al. The effect of heme oxygenase-1 complexed with collagen on MSC performance in the treatment of diabetic ischemic ulcer. Biomaterials 34, 112–120 (2013).
36. Hang, C. H. et al. Expressions of Intestinal NF-kB, TNF-α, and IL-6 Following Traumatic Brain Injury in Rats. J. Surg. Res. 123, 188–193 (2005).
37. Hare, J. M. Translational development of mesenchymal stem cell therapy for traumatic vascular diseases. Tex. Heart Inst. J. 36, 145–153 (2009).
38. Sémont, A. et al. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 17, 952–961 (2010).
39. Crisostomo, P. R. et al. Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by paracrine but not INK-dependent mechanism. Am. J. Physiol. Cell Physiol. 294, C675–C682 (2008).
40. Nagaya, N. et al. Transplantation of Mesenchymal Stem Cells Improves Cardiac Function in a Rat Model of Dilated Cardiomyopathy. Circulation 112, 1128–1135 (2005).
41. Davis, M. E. et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl. Acad. Sci. USA. 103, 8155–8160 (2006).
42. Hunninghake, G. W. et al. Insulin-like Growth Factor-1 Levels Contribute to the Development of Bacterial Translocation in Sepsis. Am. J. Respir. Crit. Care Med. 182, 517–525 (2010).
43. Bortvedt, S. F. & Lund, P. K. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors. Curr. Opin. Gastroenterol 28, 89–98 (2012).
44. Anguela, X. M. et al. Nonviral-Mediated Hepatic Expression of IGF-I Increases Treg Levels and Suppresses Autoimmune Diabetes in Mice. Diabetes 62, 551–560 (2013).
45. Zani, A. et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut. 63, 300–309 (2014).
46. Lorenzo-Zúñiga, V. et al. Insulin-like growth factor I improves intestinal barrier function in cirrhotic rats. Gut. 55, 1306–1312 (2006).
47. Ko, I. K. et al. Targeting improves MSC treatment of inflammatory bowel disease. Mol. Ther. 18, 1365–1372 (2010).
48. Xu, C. et al. Nitric Oxide Donor Upregulation of Stromal Cell-Derived Factor-1/Chemokine (CXC Motif) Receptor 4 Enhances Bone Marrow Stromal Cell Migration into Ischemic Brain After Stroke. Stem Cells 25, 2777–2785 (2007).
49. Hou, Y. et al. IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell Biol Int. 38, 1050–1059 (2014).
50. Ulloa, L. & Tracey, K. J. The "cytokine profile": a code for sepsis. Trends Mol. Med. 11, 56–63 (2005).
51. Ko, T. C. et al. Transforming growth factor-beta inhibits rat intestinal cell growth by regulating cell cycle specific gene expression. Am. J. Surg. 167, 14–19 (1994).
52. Koutsopoulos, S. et al. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc. Natl. Acad. Sci. U. S. A. 106, 4623–4628 (2009).
53. Bakota, E. L. et al. Injectable multidomain peptide nanofiber hydrogel as a delivery agent for stem cell secretome. Biomacromolecules 12, 1651–1657 (2011).
54. Wang, Y. et al. Peptide nanofibers preconditioned with stem cell secretome are renoprotective. J. Am. Soc. Nephrol. 22, 704–717 (2011).
55. Bhang, S. H. et al. Efficacious and Clinically Relevant Conditioned Medium of Human Adipose-derived Stem Cells for Therapeutic Angiogenesis. Mol. Ther. 22, 862–872 (2014).

Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant No.81300279 and 81270442), Guangdong Province Natural Science Foundation (Grant No.S2013040013549) and China Postdoctoral Science Foundation (Grant No.2012M521579).

Author contributions
H.C.: conception and design, collection and assembly of data, manuscript writing, final approval of the manuscript; financial support; X.-H.M.: collection and assembly of data; Q.-Y.W.: collection and assembly of data; F.W.L.: manuscript writing; L.S.: collection and assembly of data; Y.Z.: collection and assembly of data; T.Y.: manuscript writing; C.-M.W.: conception and design, final approval of the manuscript, financial support; Q.-K.C.: conception and design, final approval of the manuscript, financial support.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chen, H. et al. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci. Rep. 5, 8718; DOI:10.1038/srep08718 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/