Abstract

Optoelectronic is one of the thrust areas for the recent research activity. One of the key components of the optoelectronic family is photo detector to be widely used in broadband communication, optical computing, optical transformer, optical control etc. Present paper includes the investigation carried on the basis of the Multiplication measurements on GaAs, InP, InGaAs, GaInP, p+-i-n+s with –region thicknesses, with investigation of applicability of the local ionization theory. A local ionization coefficient to be increasingly unrepresentative of the position dependent values in the device as is reduced below 1 um. The success of the local model in predicting multiplication is therefore attributed to the dead-space information already
being contained within the experimentally determined values of local coefficients. This suggested that these should therefore be thought of as effective coefficients, which, despite the presence of dead-space effects, can be, still be used with the existing local theory for efficiently quantifying multiplication and breakdown voltages.

References

- B. K. Mishra, computer Aided modeling of solid-state photodetectors Ph. D thesis, Birla Institute of Technology, Mesra, Ranchi 1995
- T. P. Pearsall, "Impact ionization rates for electrons and holes in Ga0.47In0.53As," Appl. Phys. Lett. 36, 218-220 (1980).
- S. Wang, R. Sidhu, X. G. Zheng, X. Li, X. Sun, A. L. Holmes, Jr., and J. C. Campbell, IEEE Photonics Technol. Lett. 13, 1346 (2001).
- B. K. Mishra, Lochan Jolly, S. C. Patil, "In1-xGaxAs a next generation material for photodetectors," JSAM. 2011.
- R. Poerschke, Springer–Verlag, Madelung, O. (ed.), Semiconductor: group IV elements and III-V compound. Series "Data in science and technology," Berlin, 164 (1991).
- J. R. Chelikowsky, and M. L. Cohen, Phys. Rev. B14, 556 (1976).
- R. J. McIntyre, "A New Look at Impact Ionization – Part I: A Theory of Gain, Noise, Breakdown Probability, and Frequency Response," IEEE Trans. Electron Devices, vol. 46, 1623—1631 (1999).
- R. B. Emmons, J. Appl. Phys. 38, 3705 (1967).
- H. Ando and H. Kanbe, "Ionization coefficient measurement in GaAs by using multiplication noise characteristics," Solid-State Electron., vol. 24, pp. 629–634, 1981.
- O. Konstantinov, Q. Wahab, N. Nordell, and U. Lindefelt, "Ionization rates and critical fields in 4H silicon carbide," Appl. Phys. Lett., vol. 71, July 1997.
- Y. Okuto and C. R. Crowell, "Ionization coefficients in semiconductors," Phys. Rev. B., vol. 10, pp. 4284–4296, Nov. 1973.
- G. E. Bulman, V. M. Robbins, and G. E. Stillman, "The determination of impact ionization coefficients in (100) gallium arsenide using avalanche noise and photocurrent multiplication measurements," IEEE Trans. Electron Devices, vol. ED-32, pp. 2454–2466, Nov. 1985.
- M. M. Hayat, B. E. A. Saleh, and M. C. Teich, "Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes," IEEE Trans. Electron Devices, vol. 39, pp. 546–552, Mar. 1992.
- M. M. Hayat, W. L. Sargeant, and B. E. A. Saleh, "Effect of dead space on gain and noise in Si and GaAs avalanche photodiodes," IEEE J. Quantum Electron, vol. 28, pp. 1360–1365, May 1992.
- A. Di Carlo and P. Lugli, "Dead-space effects under near breakdown conditions in AlGaAs/GaAs HBT:s," IEEE Electron Device Lett., vol. 14, pp. 103–105, Mar. 1993.
- S. P. Wilson, S. Brand, and R. A. Abram, "Avalanche multiplication properties of GaAs calculated from spatially transient ionization coefficients," Solid-State Electron., vol. 38, pp. 2095–2100, Nov. 1995.
Index Terms

Computer Science
Semiconductor

Keywords

Photo Detectors
Impact Ionization