EFFECTIVE LOWER BOUNDS FOR $L(1, \chi)$ VIA EISENSTEIN SERIES

PETER HUMPHRIES

Abstract. We give effective lower bounds for $L(1, \chi)$ via Eisenstein series on $\Gamma_0(q) \backslash \mathbb{H}$. The proof uses the Maass–Selberg relation for truncated Eisenstein series and sieve theory in the form of the Brun–Titchmarsh inequality. The method follows closely the work of Sarnak in using Eisenstein series to find effective lower bounds for $\zeta(1 + it)$.

1. Introduction

Let q be a positive integer, let χ be a Dirichlet character modulo q, and let

$$L(s, \chi) := \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

be the associated Dirichlet L-function, which converges absolutely for $\Re(s) > 1$ and extends holomorphically to the entire complex plane except when χ is principal, in which case there is a simple pole at $s = 1$. It is well known that Dirichlet’s theorem on the infinitude of primes in arithmetic progressions is equivalent to showing that $L(1, \chi) \neq 0$ for every Dirichlet character χ modulo q. Of further interest is obtaining lower bounds for $L(1, \chi)$ in terms of q. By complex analytic means [MV07, Theorems 11.4 and 11.11], one can show that if χ is complex, then

$$|L(1, \chi)| \gg \frac{1}{\log q},$$

while

$$L(1, \chi) \gg \frac{1}{\sqrt{q}},$$

if χ is quadratic. In both cases, the implicit constants are effective. For quadratic characters, the Landau–Siegel theorem states that

$$L(1, \chi) \gg q^{-\varepsilon}$$

for all $\varepsilon > 0$ [MV07, Theorem 11.14], though this estimate is ineffective due to the possible existence of a Landau–Siegel zero of $L(s, \chi)$.

In this article, we give a novel proof of effective lower bounds for $L(1, \chi)$, albeit in slightly weaker forms.

Theorem 1.1. Let $q \geq 2$ be a positive integer, and let χ be a primitive character modulo q. If χ is complex, then

$$|L(1, \chi)| \gg \frac{1}{(\log q)^4},$$

while

$$L(1, \chi) \gg \frac{1}{\sqrt{q}(\log q)^2}$$

if χ is quadratic. In both cases, the implicit constants are effective.

2010 Mathematics Subject Classification. 11M20 (primary); 11M36 (secondary).

Key words and phrases. Dirichlet L-function, lower bounds, Eisenstein series.
Our proof of Theorem 1.1 makes use of the fact that $L(s, \chi)$ appears in the Fourier expansion of an Eisenstein series associated to χ on $\Gamma_0(q) \backslash \mathbb{H}$, together with sieve theory—specifically the Brun–Titchmarsh inequality—to find these lower bounds. As is well-known, improving the constant in the Brun–Titchmarsh inequality is essentially equivalent to the nonexistence of Landau–Siegel zeroes; it is for this same reason that the lower bounds in Theorem 1.1 are weak for quadratic characters, as we discuss in Remark 4.7.

That one can use Eisenstein series to prove nonvanishing of L-functions is well-known, first appearing in unpublished work of Selberg, but such methods were not shown to give good effective lower bounds for L-functions on the line $\Re(s) = 1$ until the work of Sarnak [Sar04]. He showed that

$$|\zeta(1 + it)| \gg \frac{1}{(\log |t|)^x}$$

for $|t| > 1$ by exploiting the inhomogeneous form of the Maaß–Selberg relation for the Eisenstein series $E(z, s)$ for the group $\text{SL}_2(\mathbb{Z})$.

More precisely, for $t > 1$, Sarnak studied the integral

$$I := \int_{1/t}^\infty \int_0^1 |\zeta(1 + 2it)|^2 \left|\Lambda^t \left(z, \frac{1}{2} + it \right) \right|^2 \frac{dx dy}{y^2}$$

involving a truncated Eisenstein series $\Lambda^T E(z, s)$ and found an upper bound up to a scalar multiple for this integral of the form

$$t (\log t)^2 |\zeta(1 + 2it)|$$

via the Maaß–Selberg relation, and a lower bound up to a scalar multiple of the form

$$\frac{1}{t} \sum_{t \leq m \leq 2t} |\sigma_{-2it}(m)|^2$$

via Parseval’s identity, where

$$\sigma_{-2it}(m) := \sum_{d|m} d^{-2it}.$$

By restricting the summation over m to primes, Sarnak was able to use sieve theory to show that

$$\sum_{2t \leq p \leq 4t} |\sigma_{-2it}(p)|^2 \gg \frac{t^2}{\log t},$$

from which the result follows. Indeed, the use of sieve theory to prove lower bounds for $\zeta(1 + it)$ (and also $L(1 + it, \chi)$) has its roots in work of Balasubramanian and Ramachandra [BR76].

The chief novelty of Sarnak’s work is to use the Maaß–Selberg relation to obtain effective lower bounds for $\zeta(1 + it)$; more precisely, it is the inhomogeneous nature of the Fourier expansion of the Eisenstein series $E(z, s)$, whose constant term involves $\zeta(2s - 1)/\zeta(2s)$ and whose nonconstant terms involve $1/\zeta(2s)$. This method has been generalised by Gelbart and Lapid [GeLa06] to determine effective lower bounds on the line $\Re(s) = 1$ for L-functions associated to automorphic representations on arbitrary reductive groups over number fields, albeit with the lower bound being in the weaker form $C|t|^{-n}$ for some constants C, n depending on the L-function, for Gelbart and Lapid make no use of sieve theory in this generalised setting. More recently, Goldfeld and Li [GoLi16] have succeeded in generalising Sarnak’s method to show that

$$|L(1 + it, \pi \times \tilde{\pi})| \gg \frac{1}{(\log |t|)^3}$$
for any cuspidal automorphic representation π of $GL_n(\mathbb{A}_F)$ that is unramified and tempered at every place, with the implicit constant in the lower bound dependent on π.

All three of these results give lower bounds for L-functions on the line $\Re(s) = 1$ in the height aspect, namely in terms of t. In this article, we give the first example of Sarnak’s method being used to give lower bounds for L-functions on the line $\Re(s) = 1$ in the level aspect, namely in terms of q.

2. Eisenstein Series

We introduce Eisenstein series for the group $\Gamma_0(q)$ associated to a primitive Dirichlet character χ modulo q. Standard references for this material are [DI82], [DFI02], and [Iwa02].

2.1. Cusps. Let H be the upper half plane, upon which $SL_2(\mathbb{R})$ acts via Möbius transformations $\gamma z = \frac{az + b}{cz + d}$ for $\gamma = (a \ b \ c \ d) \in SL_2(\mathbb{R})$ and $z \in H$. Let q be a positive integer, and let a be a cusp of $\Gamma_0(q) \backslash H$, where $\Gamma_0(q) \cdot a = \{ (a \ b \ c \ d) \in SL_2(\mathbb{Z}) : c \equiv 0 \pmod{q} \}$, and we denote the stabiliser of a by $\Gamma_a \cdot a = \{ \gamma \in \Gamma_0(q) : \gamma a = a \}$. This subgroup of $\Gamma_0(q)$ is generated by two parabolic elements $\pm \gamma_a$, where $\gamma_a \cdot a = \sigma_a \cdot a = \{ \gamma \in \Gamma_0(q) : \gamma a = a \}$, and the scaling matrix $\sigma_a \in SL_2(\mathbb{R})$ is such that $\sigma_a \cdot \infty = a$, $\sigma^{-1}_a \Gamma_\infty \sigma_a = \Gamma_\infty$, where $\Gamma_\infty = \{ \pm \begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix} \in \Gamma_0(q) : n \in \mathbb{Z} \}$ is the stabiliser of the cusp at infinity. The scaling matrix is unique up to translation on the right.

Let χ be a primitive character modulo q. A cusp a of $\Gamma_0(q) \backslash H$ is said to be singular with respect to χ if $\chi(\gamma a) = 1$, where $\chi(\gamma) := \chi(d)$ for $\gamma = (a \ b \ c \ d) \in \Gamma_0(q)$. As χ is primitive, any singular cusp is equivalent to $1/v$ for a single unique divisor v of q satisfying $vw = q$ and $(v, w) = 1$, where w is the width of the cusp; when $v = q$, this cusp is equivalent to the cusp at infinity, while when $v = 1$, the cusp is equivalent to the cusp at zero. Note that if $q = 1$, so that χ is the trivial character, there is merely a single equivalence class of cusps, namely the cusp at infinity.

The scaling matrix $\sigma_a \in SL_2(\mathbb{R})$ for a singular cusp $a \sim 1/v$, $v \neq q$, can be chosen to be

$$\sigma_a := \begin{pmatrix} \sqrt{w} & 0 \\ v \sqrt{w} & 1 \end{pmatrix},$$

while for the cusp at infinity, we simply take σ_∞ to be the identity.

The Bruhat decomposition for $\sigma^{-1}_a \Gamma_0(q) \sigma_b$ [Iwa02, Theorem 2.7] states that

$$\sigma^{-1}_a \Gamma_0(q) \sigma_b = \delta_{ab} \Omega_\infty \sqcup \bigcup_{c > 0 \text{ (mod } c)} \Omega_{d/c},$$
where \(\delta_{ab} = 1 \) if \(a \sim b \) and 0 otherwise, and
\[
\Omega_{\infty} := \Gamma_{\infty} \omega_{\infty}, \quad \omega_{\infty} = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \in \sigma_a^{-1} \Gamma_0(q) \sigma_b, \\
\Omega_{d/c} := \Gamma_{\infty} \omega_{d/c, \infty}, \quad \omega_{d/c, \infty} = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \sigma_c^{-1} \Gamma_0(q) \sigma_d \\
\text{with } c > 0,
\]
and \(c, d \) runs over all real numbers such that \(\sigma_a^{-1} \Gamma_0(q) \sigma_b \) contains \((\ast \ast) \). In particular, for the cusp at infinity we have the Bruhat decomposition
\[
\sigma_{\infty}^{-1} \Gamma_0(q) \sigma_{\infty} = \Gamma_{\infty} \sqcup \bigcup_{c \equiv 0 \pmod{q}} \bigcup_{d \equiv 1 \pmod{c}} \bigcup_{(c, d) = 1} \Gamma_{\infty} \begin{pmatrix} * & * \\ c & d \end{pmatrix} \Gamma_{\infty}.
\]
For \(a \sim \infty \) and \(b \sim 1/v \) a nonequivalent singular cusp with \(1 \leq v < q \), \(v \) dividing \(q \), \(vw = q \), and \((v, w) = 1 \), and for any \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(q) \), we have that
\[
\sigma_{\infty}^{-1} \gamma \sigma_{\infty} = \begin{pmatrix} (a + bv) \sqrt{w} & b \sqrt{w} \\ c \sqrt{w} & d \sqrt{w} \end{pmatrix},
\]
and so
\[
\sigma_{\infty}^{-1} \Gamma_0(q) \sigma_{\infty} = \left\{ \begin{pmatrix} a \sqrt{w} & b \sqrt{w} \\ c \sqrt{w} & d \sqrt{w} \end{pmatrix} \in SL_2(\mathbb{R}) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), c \equiv 0 \pmod{v}, d \equiv \frac{c}{v} \pmod{w}, (c, d) = 1, (c, w) = 1 \right\}.
\]
So the Bruhat decomposition in this case can be explicitly written in the form
\[
\sigma_{\infty}^{-1} \Gamma_0(q) \sigma_{\infty} = \bigcup_{c \equiv 0 \pmod{v}} \bigcup_{d \equiv 1 \pmod{c}} \bigcup_{(c, d) = 1} \Gamma_{\infty} \begin{pmatrix} * & * \\ c \sqrt{w} & d \sqrt{w} \end{pmatrix} \Gamma_{\infty}.
\]

2.2. Eisenstein Series

Given a primitive Dirichlet character \(\chi \) modulo \(q \) and a singular cusp \(a \) of \(\Gamma_0(q) \setminus \mathbb{H} \), we define the Eisenstein series \(E_a(z, s, \chi) \) for \(z \in \mathbb{H} \) and \(\mathcal{R}(s) > 1 \) by
\[
E_a(z, s, \chi) := \sum_{\gamma \in \Gamma_0(q)} \overline{\chi}(\gamma) \sigma_{\infty}^{-1} \gamma(z)^{-s} \Im (\sigma_{\infty}^{-1} \gamma z)^s,
\]
where \(\kappa \in \{0, 1\} \) is such that \(\chi(-1) = (-1)^\kappa \), and for \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R}) \),
\[
j_\gamma(z) := \frac{cz + d}{|cz + d|} = e^{i \arg(cz + d)}.
\]
The Eisenstein series associated to a singular cusp \(a \) is independent of the choice of representative of \(a \) and of the scaling matrix \(\sigma_a \). For fixed \(z \in \mathbb{H} \), the Eisenstein series \(E_a(z, s, \chi) \) converges absolutely for \(\mathcal{R}(s) > 1 \) and extends meromorphically to the entire complex plane with no poles on the closed right half-plane \(\mathcal{R}(s) \geq 1/2 \) except at \(s = 1 \) when \(q = 1 \), so that \(\chi \) is the trivial character.

For any \(z \in \mathbb{H} \) and \(\gamma_1, \gamma_2 \in SL_2(\mathbb{R}) \), the \(j \)-factor satisfies the cocycle relation
\[
j_{\gamma_1 \gamma_2}(z) = j_{\gamma_2}(z)j_{\gamma_1}(\gamma_2 z),
\]
while the Eisenstein series satisfies the automorphy condition
\[(2.4) \quad E_a(\gamma z, s, \chi) = \chi(\gamma) j_\gamma(z)^s E_a(z, s, \chi) \]
for any \(\gamma \in \Gamma_0(q)\).

For any singular cusps \(a, b\) of \(\Gamma_0(q)\), one can show using the Bruhat decomposition that there exists a function \(\varphi_{ab}(s, \chi)\) such that the constant term in the Fourier expansion for the function \(j_\sigma(z)^{-s} E_a(\sigma z, s, \chi)\) is
\[
e_{ab}(z, s, \chi) := \int_0^1 j_\sigma(z)^{-s} E_a(\sigma z, s, \chi) \, dx = \delta_{ab} y^s + \varphi_{ab}(s, \chi) y^{1-s}.
\]
The functions \(\varphi_{ab}(s, \chi)\) are the entries of the scattering matrix associated to \(\chi\). We will calculate \(\varphi_{ab}(s, \chi)\) when \(a \sim \infty\) for each nonsingular cusp \(b\) of \(\Gamma_0(q)\) with respect to \(\chi\), and also find the rest of the Fourier coefficients of \(E_\infty(z, s, \chi)\).

2.3. Fourier Expansion of \(E_\infty(z, s, \chi)\).

Lemma 2.5. Let \(\chi\) be a primitive character modulo \(q\). For \(m \neq 0\) and \(c \equiv 0 \mod q\),
\[
\sum_{d \equiv 0 \mod c \atop (c,d)=1} \chi(d) e\left(\frac{md}{c}\right) = \chi(\sgn(m)) \tau(\chi) \sum_{d \mid (|m|, q)} d^{\chi}\left(\frac{|m|}{d}\right) \chi\left(\frac{c}{d^{2}}\right) \mu\left(\frac{c}{d^{2}}\right).
\]

Here, as usual, we define \(e(x) := e^{2\pi ix}\) for \(x \in \mathbb{R}\).

Proof. For \(m\) positive, this is [Miy06, Lemma 3.1.3]. The result for \(m\) negative follows by replacing \(m\) with \(|m|\) and \(\chi\) with \(\overline{\chi}\), then taking complex conjugates of both sides and using the fact that \(\overline{\tau(\chi)} = \chi(-1)\tau(\chi)\). \(\square\)

Proposition 2.6 (cf. [Iwa02, Theorem 3.4]). The Eisenstein series \(E_\infty(z, s, \chi)\) has the Fourier expansion
\[
E_\infty(z, s, \chi) = y^s + \varphi_\infty(s, \chi) y^{1-s} + \sum_{m=-\infty \atop m \neq 0} \rho_\infty(m, s, \chi) W_{\sgn(m)}(\frac{z}{2}, s-\frac{1}{2})(4\pi|m|y) e(mx),
\]
where \(W_{\alpha,\nu}(y)\) is the Whittaker function,
\[
\varphi_\infty(s, \chi) = \begin{cases} \sqrt{\pi} \frac{\Gamma(s-\frac{1}{2})}{\Gamma(s)} \frac{\zeta(2s-1)}{\zeta(2s)} & \text{if } q = 1, \\ 0 & \text{if } q \geq 2, \end{cases}
\]
and for \(m \neq 0\),
\[
\rho_\infty(m, s, \chi) = \frac{\chi(\sgn(m)) i^{-s} \tau(\chi) \pi^s |m|^{s-1}}{q^{2s} \Gamma(s + \sgn(m) \frac{1}{2}) L(2s, \chi)} \sigma_{s-1}(|m|, \chi),
\]
where \(\tau(\chi)\) is the Gauss sum of \(\chi\) and
\[
\sigma_s(m, \chi) := \sum_{d \mid m} d^{s} \chi\left(\frac{m}{d}\right).
\]

Note in particular that if \(\kappa = 0\), so that \(\chi\) is even, the Whittaker function is simply
\[
W_{0,s-\frac{1}{2}}(4\pi|m|y) = \sqrt{4|m|y} K_{s-\frac{1}{2}}(2\pi|m|y),
\]
where $K_\nu(y)$ is the K-Bessel function. On the other hand, if $\kappa = 1$, so that χ is odd, and we set $s = 1/2$, then

$$W_{sgn(m)\frac{\pi}{2}}(4\pi|m|y) = \begin{cases} \sqrt{4\pi|m|ye^{-2\pi|m|y}} & \text{if } m > 0, \\ \sqrt{4\pi|m|ye^{2\pi|m|y}} \int_{4\pi|m|y}^\infty \frac{e^{-u}}{u} \, du & \text{if } m < 0. \end{cases}$$

\textbf{Proof.} Via the Bruhat decomposition (2.2), $E_\infty(z, s, \chi)$ is equal to

$$y^s + \sum_{c \equiv 0 \ (\text{mod } q)} \sum_{d \ (\text{mod } c) \ (c,d)=1} \chi(d) \sum_{n=-\infty}^{\infty} \left(\frac{c(z+n)+d}{|c(z+n)+d|} \right)^{-\kappa} \frac{y^s}{|c(z+n)+d|^{2s}}.$$

So if $m = 0$, the zeroth Fourier coefficient of $E_\infty(z, s, \chi)$ is

$$y^s + \sum_{c \equiv 0 \ (\text{mod } q)} \sum_{d \ (\text{mod } c) \ (c,d)=1} \chi(d) \int_{-\infty}^{\infty} \left(\frac{c(z+d)}{|c(z+d)|} \right)^{-\kappa} \frac{y^s}{|c(z+d)|^{2s}} \, dx$$

$$= y^s + y^{1-s} \int_{-\infty}^{\infty} \left(\frac{t+i}{|t+i|} \right)^{-\kappa} \frac{1}{|t+i|^{2s}} \, dt \sum_{c \equiv 0 \ (\text{mod } q)} \sum_{d \ (\text{mod } c) \ (c,d)=1} \chi(d)$$

by the change of variables $x \mapsto yt - \frac{d}{c}$. From [GR07, (8.381.1)], we have that

$$\int_{-\infty}^{\infty} \left(\frac{t+i}{|t+i|} \right)^{-\kappa} \frac{1}{|t+i|^{2s}} \, dt = i^{-\kappa} \sqrt{\pi} \frac{\Gamma \left(\frac{s(2s-1)+\kappa}{2} \right)}{\Gamma \left(\frac{s(2s+\kappa)}{2} \right)},$$

while for $c \equiv 0 \ (\text{mod } q)$, the fact that χ is primitive implies that

$$\sum_{c \equiv 0 \ (\text{mod } q)} \frac{1}{c^{2s}} \sum_{d \ (\text{mod } c) \ (c,d)=1} \chi(d) = \begin{cases} \sum_{c=1}^{\infty} \varphi(c) c^{-2s} = \zeta(2s-1) / \zeta(2s) & \text{if } q = 1, \\ 0 & \text{if } q \geq 2. \end{cases}$$

If $m \neq 0$, on the other hand, then the m-th Fourier coefficient is

$$\sum_{c \equiv 0 \ (\text{mod } q)} \sum_{d \ (\text{mod } c) \ (c,d)=1} \chi(d) \int_{-\infty}^{\infty} \left(\frac{c(z+d)}{|c(z+d)|} \right)^{-\kappa} \frac{y^s}{|c(z+d)|^{2s}} e(-mx) \, dx$$

$$= y^{1-s} \int_{-\infty}^{\infty} \left(\frac{t+i}{|t+i|} \right)^{-\kappa} \frac{e(-myt)}{|t+i|^{2s}} \, dt \sum_{c \equiv 0 \ (\text{mod } q)} \sum_{d \ (\text{mod } c) \ (c,d)=1} \chi(d) e \left(\frac{md}{c} \right)$$

again by the change of variables $x \mapsto yt - \frac{d}{c}$. Moreover, [GR07, (3.384.9)] implies that

$$\int_{-\infty}^{\infty} \left(\frac{t+i}{|t+i|} \right)^{-\kappa} \frac{e(-myt)}{|t+i|^{2s}} \, dt = i^{-\kappa} x^s |m|^{1-y^s-1} \frac{\Gamma(s+\text{sgn}(m)\frac{\pi}{2})}{\Gamma(s+\text{sgn}(m)\frac{\pi}{2})} W_{sgn(m)\frac{\pi}{2}}(4\pi|m|y),$$

where $x = \frac{\sqrt{4\pi|m|ym}}{\sqrt{4\pi|m|y}}$.\]
and via Lemma 2.5,
\[
\sum_{c=1}^{\infty} \frac{1}{c^{2s}} \sum_{d \equiv 0 \pmod{c}} \frac{\chi(d) c \left(\frac{m}{c} \right)}{d (\mod c) (c,d)=1} = \chi(\text{sgn}(m)) \tau(\chi) \sum_{d \mid |m|} \chi\left(\frac{d}{|m|} \right) \sum_{c=1}^{\infty} \frac{\chi\left(\frac{c}{dq} \right) \mu\left(\frac{c}{dq} \right)}{c^{2s}} \chi\left(\frac{c}{dq} \right) \mu\left(\frac{c}{dq} \right)
\]

where we have let \(c = dq \). We thereby obtain the desired identity.

\[\square\]

Proposition 2.7. Suppose that \(q \geq 2 \). Then \(\varphi_{\infty \mathfrak{b}}(s, \chi) \) vanishes unless \(\mathfrak{b} \sim 1 \), in which case
\[
(2.8) \quad \varphi_{\infty 1}(s, \chi) = \frac{\tau(\chi) \Lambda(2-2s, \chi)}{q^s \Lambda(2s, \chi)},
\]

where
\[
(2.9) \quad \Lambda(s, \chi) := \left(\frac{\pi}{q} \right)^{-\frac{s}{2}} q^{-s} \Gamma\left(\frac{s + \kappa}{2} \right) L(s, \chi),
\]
is the completed Dirichlet \(L \)-function. In particular,
\[
(2.10) \quad \left| \varphi_{\infty 1} \left(\frac{1}{2} + it, \chi \right) \right| = 1.
\]

Proof. The fact that \(\varphi_{\infty \mathfrak{b}}(s, \chi) = 0 \) when \(\mathfrak{b} \) is the cusp at infinity follows from Proposition 2.6. For the entries of the scattering matrix at other cusps, we use (2.3) to write
\[
E_{\mathfrak{b}}(\sigma_{\mathfrak{b}} z, s, \chi) = j_{\sigma_{\mathfrak{b}}}(z)^s \sum_{\gamma \in \Gamma_{\infty} \setminus \Gamma_{\infty}(q) \sigma_{\mathfrak{b}}} \chi(\sigma_{\mathfrak{b}} \gamma \sigma_{\mathfrak{b}}^{-1}) j_{\gamma}(z)^{-\kappa} \Theta(\gamma z)^s.
\]
The singular cusp \(\mathfrak{b} \) is equivalent to \(1/v \) for some divisor \(v \) of \(q \) with \(v < q, vw = q \), and \((v,w) = 1 \). Given a matrix
\[
\gamma = \begin{pmatrix} a \sqrt{w} & b \sqrt{w} \\ c \sqrt{w} & d \sqrt{w} \end{pmatrix}
\]
in \(\sigma_{\infty}^{-1} \Gamma_0(q) \sigma_{\mathfrak{b}} \) as in (2.1), we have that
\[
\sigma_{\infty} \gamma \sigma_{\mathfrak{b}}^{-1} = \begin{pmatrix} a - bv & b \\ c - dv & d \end{pmatrix},
\]
and so as \(d \equiv \frac{c}{v} \pmod{w} \),
\[
\chi(\sigma_{\infty} \gamma \sigma_{\mathfrak{b}}^{-1}) = \chi_{w}(d) \chi_{w}\left(\frac{c}{v} \right),
\]
where we have decomposed the primitive character \(\chi \) modulo \(q \) into the product of primitive characters \(\chi_{w} \) modulo \(v \) and \(\chi_{w} \) modulo \(w \). From this and (2.2), we see
that \(j_{\sigma} (z)^{-\kappa} E_{\infty} (\sigma \tau, s, \chi) \) is equal to

\[
\sum_{\substack{c=1 \\ (c,w)=1 \\ c \equiv 0 \pmod{v}}}^{\infty} \overline{\chi}(\frac{c}{v}) \sum_{\substack{d (\modcw) \\ (cw,d)=1}} \overline{\chi}(d) \times \sum_{n=-\infty}^{\infty} \left(\frac{c(z+n)\sqrt{w} + \frac{d}{\sqrt{w}}}{c(z+n)\sqrt{w} + \frac{d}{\sqrt{w}}} \right)^{-\kappa} y^s \]

and so integrating from 0 to 1 with respect to \(x \), making the change of variables \(x \mapsto yt - \frac{d}{cw} \), and dividing by \(y^{1-s} \), yields

\[
\varphi_{\infty b}(s, \chi) = \frac{1}{w^s} \int_{-\infty}^{\infty} \left(\frac{t+i}{|t+i|} \right)^{-\kappa} \frac{1}{|t+i|^s} \, dt \sum_{\substack{c=1 \\ (c,w)=1 \\ c \equiv 0 \pmod{v}}}^{\infty} \frac{\overline{\chi}(\frac{c}{w})}{c^{2s}} \sum_{\substack{d (\modcw) \\ (cw,d)=1}} \overline{\chi}(d).
\]

From [GR07, (8.381.1)], the integral is equal to

\[
\frac{i^{-\kappa} \sqrt{\pi} \Gamma \left(\frac{1}{2} (2s-1 + \kappa) \right)}{\Gamma \left(\frac{1}{2} (2s + \kappa) \right)}.
\]

To evaluate the sum over \(d \), we write \(d = \tau c + wd' \), where \(\tau c \equiv 1 \pmod{w} \) and \((d',c) = 1 \). This allows us to replace the sum over \(d \) with a sum over \(d' \) modulo \(c \) with \((d',c) = 1 \), so that

\[
\sum_{\substack{d (\modcw) \\ (cw,d)=1}} \overline{\chi}(d) = \overline{\chi}(w) \sum_{\substack{d' (\mod c) \\ (c,d')=1}} \overline{\chi}(d')
\]

by the fact that \(c \equiv 0 \pmod{v} \).

If \(\overline{\chi} \) is nonprincipal, this sum vanishes, and as \(\chi \) is a primitive character, \(\overline{\chi} \) can only be the principal character if \(v = 1 \); consequently, \(\varphi_{\infty b}(s, \chi) \) vanishes if \(b \) is inequivalent to the cusp at 1.

If \(b \sim 1 \), so that \(v = 1 \) and \(w = q \), then this sum over \(d' \) is merely \(\varphi(c) \), and so

\[
\sum_{\substack{c=1 \\ (c,w)=1 \\ c \equiv 0 \pmod{v}}}^{\infty} \frac{\overline{\chi}(\frac{c}{w})}{c^{2s}} \sum_{\substack{d (\modcw) \\ (cw,d)=1}} \overline{\chi}(d) = \sum_{\substack{c=1}}^{\infty} \varphi(c) \overline{\chi}(c) c^{2s} = \frac{L(2s-1, \chi)}{L(2s, \chi)}.
\]

Using the definition of the completed Dirichlet \(L \)-function together with the fact that it satisfies the functional equation

\[
\Lambda(s, \chi) = \frac{\tau(\chi)}{i^{\kappa} \sqrt{q}} \Lambda(1 - s, \chi),
\]

we see that we may write

\[
\varphi_{\infty 1}(s, \chi) = \frac{i^{-\kappa}}{q^{1-\frac{\kappa}{2}}} \frac{\Lambda(2s-1, \chi)}{\Lambda(2s, \chi)} \frac{\tau(\chi) \Lambda(2s-2\kappa, \chi)}{q^s \Lambda(2s, \chi)}.
\]

As \(\Lambda(s, \chi) = \Lambda(s, \overline{\chi}) \) and \(|\tau(\chi)| = \sqrt{q} \), the result follows. \(\Box \)
3. Maass–Selberg Relation

For \(z \in \mathbb{H} \) and \(T \geq 1 \), we define the truncated Eisenstein series

\[
\Lambda^T E_a(z, s, \chi) := E_a(z, s, \chi) - \sum_{c \sim \infty} \sum_{\substack{\gamma \in \Gamma_0(q) \backslash \Gamma_0(q) \backslash \mathbb{H} \atop \mathfrak{d}(\sigma^{-1}_c \gamma z) > T}} \chi(\gamma) j_{\mathfrak{d}}(z)^s c_{\mathfrak{d}}(\sigma^{-1}_c \gamma z, s, \chi),
\]

where the summation over \(c \) is over all singular cusps of \(\Gamma_0(q) \backslash \mathbb{H} \). It is not difficult to see that \(\Lambda^T E_a(z, s, \chi) \) satisfies the automorphy condition

\[
\Lambda^T E_a(\gamma z, s, \chi) = \chi(\gamma) j_{\gamma}(z)^s \Lambda^T E_a(z, s, \chi)
\]

for any \(\gamma \in \Gamma_0(q) \). We will show that, unlike \(E_a(z, s, \chi) \), the function \(\Lambda^T E_a(z, s, \chi) \) is square-integrable on \(\Gamma_0(q) \backslash \mathbb{H} \), and give an explicit expression for the resulting integral.

Lemma 3.3. Let \(b \) and \(c \) be singular cusps of \(\Gamma_0(q) \backslash \mathbb{H} \), and let \(\gamma \in \sigma_c^{-1} \Gamma_0(q) \sigma_b \). Then for any \(z = x + iy \in \mathbb{H} \), we have that \(\Im(z) \Im(\gamma z) \leq 1 \) if \(b \) and \(c \) are inequivalent or if \(b \) and \(c \) are equivalent but \(\gamma \not\in \Gamma_\infty \omega_\infty \). If \(b \) and \(c \) are equivalent and \(\gamma \in \Gamma_\infty \omega_\infty \), then \(\Im(\gamma z) = \Im(z) \).

Proof. We deal with the cases where neither \(b \) nor \(c \) are equivalent to the cusp at infinity; when \(b \sim \infty \) or \(c \sim \infty \), the proof is similar but simpler. Let \(b \sim 1/v \) and \(c \sim 1/v' \), \(1 \leq v, v' < q \), with \(w, w' \) such that \(vw = v'w' = q \). For \((a \ b \ c \ d) \in \Gamma_0(q) \), we have that

\[
\sigma^{-1}_c \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \sigma_b = \left(\begin{array}{cc} (a + bv) \sqrt{w'} & b \sqrt{w'} \\ (c - av' + DV - bw'v) \sqrt{w'w} & (d - bv') \sqrt{w} \end{array} \right).
\]

So for

\[
\gamma = \left(\begin{array}{cc} * & * \\ C \sqrt{w'} & D \sqrt{w} \end{array} \right) \in \sigma^{-1}_c \Gamma_0(q) \sigma_b,
\]

where \(C = c - av' + DV - bw'v \) and \(D = d - bv' \) are integers, we have that

\[
\Im(\gamma z) = \frac{1}{w'w} \frac{y}{(Cx + DVw^{-1})^2 + C^2y^2}.
\]

By the Bruhat decomposition, if \(b \) and \(c \) are inequivalent, then \(C \sqrt{w'} \) must be nonzero, and so \(C^2 \geq 1 \). In particular, if \(b \) and \(c \) are inequivalent, then

\[
\Im(z) \Im(\gamma z) \leq \frac{1}{w'w} \leq 1.
\]

If \(b \) and \(c \) are equivalent and \(\gamma \not\in \Gamma_\infty \omega_\infty \), then again \(C \sqrt{w'} \neq 0 \), and the same result holds. Finally, if \(b \) and \(c \) are equivalent and \(\gamma \in \Gamma_\infty \omega_\infty \), then it is clear that \(\Im(\gamma z) = \Im(z) \).

Corollary 3.4. If \(\Im(z) > T \geq 1 \), then for any singular cusp \(b \), we have that

\[
\Lambda^T E_a(\sigma_b z, s, \chi) = E_a(\sigma_b z, s, \chi) - j_{\sigma_b}(z)^s c_{\sigma_b}(z, s, \chi).
\]

Proof. From the definition of \(\Lambda^T E_a(z, s, \chi) \) and (2.3), we must show that for any singular cusp \(c \) and \(\gamma \in \Gamma \backslash \Gamma_0(q) \) that the inequalities \(\Im(z) > T \) and \(\Im(\gamma z) > T \) are simultaneously satisfied only when \(c \sim b \) and \(\gamma = \omega_\infty \). This is equivalent to showing that if \(\gamma \in \Gamma_\infty \sigma^{-1}_c \Gamma_0(q) \sigma_b \) is such that \(\Im(z) > T \) and \(\Im(\gamma z) > T \), then \(c \sim b \) and \(\gamma = \omega_\infty \), which follows immediately from Lemma 3.3.

With these results in hand, we can prove the following Maass–Selberg relation.
Proposition 3.5. For any two singular cusps \(a, b, T \geq 1 \), and \(s \neq r, s + r \neq 1 \),

\[
\int_{\Gamma_0(q) \backslash \mathbb{H}} \Lambda^T E_a(z, s, \chi) \Lambda^T E_b(z, r, \chi) \, d\mu(z)
\]

\[
= \varphi_{ba}(r, \chi) \frac{T^s - s}{s - r} + \varphi_{ab}(s, \chi) \frac{T^{s-r}}{r - s} + \delta_{ab} \frac{T^{s+r-1}}{s + r - 1}
\]

\[
\quad + \sum_c \varphi_{ac}(s, \chi) \varphi_{bc}(r, \chi) \frac{T^{1-s-r}}{1 - s - r}
\]

where the sum is over singular cusps \(c \). Here \(d\mu(z) = \frac{dx \, dy}{y^2} \) is the \(\text{SL}_2(\mathbb{R}) \)-invariant measure on \(\mathbb{H} \).

Proof. We initially assume that \(\Re(s), \Re(r) > 1 \) with \(\Re(s) - \Re(r) > 1 \); the identity then extends to all \(s, r \in \mathbb{C} \) with \(s \neq r \) and \(s + r \neq 1 \) by analytic continuation.

We first show that

\[
\int_{\Gamma_0(q) \backslash \mathbb{H}} \Lambda^T E_a(z, s, \chi) \Lambda^T E_b(z, r, \chi) - E_b(z, r, \chi) \, d\mu(z) = 0.
\]

Indeed, the left-hand side is equal to

\[
\sum_c \int_{\Gamma_0(q) \backslash \mathbb{H}} \Lambda^T E_a(z, s, \chi) \sum_{\gamma \in \Gamma_1 \backslash \Gamma_0(q) \atop \Im(\sigma_c^{-1} \gamma z) > T} \chi(\gamma) j_{\sigma_c^{-1} \gamma}(z)^{-\kappa} c_{bc}(\sigma_c^{-1} \gamma z, r, \chi) \, d\mu(z),
\]

which, by (2.3) and (3.2), is equal to

\[
- \sum_c \int_{\Gamma_0(q) \backslash \mathbb{H}} \sum_{\gamma \in \Gamma_1 \backslash \Gamma_0(q) \atop \Im(\sigma_c^{-1} \gamma z) > T} c_{bc}(\sigma_c^{-1} \gamma z, r, \chi) j_{\sigma_c}(\sigma_c^{-1} \gamma z)^{-\kappa} \Lambda^T E_a(\gamma z, s, \chi) \, d\mu(z),
\]

and this integral can be unfolded to yield

\[
- \sum_c \int_{\mathbb{H}} \int_0^\infty c_{bc}(z, r, \chi) j_{\sigma_c}(z)^{-\kappa} \Lambda^T E_a(\sigma_c z, s, \chi) \frac{dx \, dy}{y^2}.
\]

But \(c_{bc}(z, r, \chi) \) is independent of \(x \), while for \(\Im(z) > T \geq 1 \), the zeroth Fourier coefficient of the function \(j_{\sigma_c}(z)^{-\kappa} \Lambda^T E_a(\sigma_c z, s, \chi) \) vanishes via Corollary 3.4, and so this vanishes. Consequently,

\[
\int_{\Gamma_0(q) \backslash \mathbb{H}} \Lambda^T E_a(z, s, \chi) \Lambda^T E_b(z, r, \chi) \, d\mu(z) = \int_{\Gamma_0(q) \backslash \mathbb{H}} \Lambda^T E_a(z, s, \chi) E_b(z, r, \chi) \, d\mu(z).
\]
The right-hand side can be written as
\[
\int_{\Gamma_0(q)\backslash \mathbb{H}} \left(\sum_{\gamma \in \Gamma_0(q)} \overline{\chi(\gamma)} j_{\sigma_\gamma^{-1}, \gamma}(z)^{-\kappa} \Im(\sigma_\gamma^{-1} \gamma z)^E \bar{E}_b(z, r, \chi) \right)
\]
\[- \sum_{c \neq a} \left(\sum_{\gamma \in \Gamma_0(q) \setminus \Gamma_0(q)} \chi(\gamma) j_{\sigma_\gamma^{-1}, \gamma}(z)^{-\kappa} c_{ac}(\sigma_\gamma^{-1} \gamma z, s, \chi) \overline{E}_b(z, r, \chi) \right) d\mu(z)
\]
\[
= \int_{\Gamma_0(q)\backslash \mathbb{H}} \left(\sum_{\gamma \in \Gamma_0(q) \setminus \Gamma_0(q)} \overline{\chi(\gamma)} j_{\sigma_\gamma^{-1}, \gamma}(z)^{-\kappa} \Im(\sigma_\gamma^{-1} \gamma z)^E \bar{E}_b(z, r, \chi) d\mu(z) \right)
\]
\[+ \int_{\Gamma_0(q)\backslash \mathbb{H}} \left(\sum_{\gamma \in \Gamma_0(q) \setminus \Gamma_0(q) \setminus \Gamma_0(q)} \chi(\gamma) j_{\sigma_\gamma^{-1}, \gamma}(z)^{-\kappa} \varphi_{aa}(s, \chi) \Im(\sigma_\gamma^{-1} \gamma z)^{1-s} \bar{E}_b(z, r, \chi) d\mu(z) \right)
\]
\[- \sum_{c \neq a} \int_{\Gamma_0(q)\backslash \mathbb{H}} \left(\sum_{\gamma \in \Gamma_0(q) \setminus \Gamma_0(q) \setminus \Gamma_0(q)} \chi(\gamma) j_{\sigma_\gamma^{-1}, \gamma}(z)^{-\kappa} c_{ac}(\sigma_\gamma^{-1} \gamma z, s, \chi) \overline{E}_b(z, r, \chi) d\mu(z) \right).
\]

By (2.3) and (2.4), the first term is
\[
\int_{\Gamma_0(q)\backslash \mathbb{H}} \left(\sum_{\gamma \in \Gamma_0(q) \setminus \Gamma_0(q)} \Im(\sigma_\gamma^{-1} \gamma z)^E j_{\sigma_\gamma^{-1}, \gamma}(z)^{-\kappa} \bar{E}_b(z, r, \chi) d\mu(z),
\]
and upon unfolding the integral, this becomes
\[
\int_{0}^{T} \int_{0}^{1} y^s j_{\sigma_a^{-1}, z}(z)^{-\kappa} \bar{E}_b(\sigma_a z, r, \chi) \frac{dy}{y} \frac{dz}{y} = \int_{0}^{T} y^s \bar{E}_{ba}(z, r, \chi) \frac{dy}{y} \frac{dz}{y} = \delta_{ab} \frac{T^{s+\tau-1}}{s+\tau-1} + \bar{E}_{ba}(r, \chi) \frac{T^{s-\tau}}{s-\tau}.
\]

Similarly, the second term is
\[
\int_{-T}^{T} \varphi_{aa}(s, \chi) y^{1-s} c_{ba}(z, s, \chi) \frac{dy}{y} = \delta_{ab} \varphi_{ab}(s, \chi) \frac{T^{s+\tau-1}}{s+\tau} + \varphi_{aa}(s, \chi) \varphi_{ba}(r, \chi) \frac{T^{1-s-\tau}}{1-s-\tau},
\]
and the third term is
\[
- \sum_{c \neq a} \int_{-T}^{T} \varphi_{aa}(s, \chi) c_{bc}(z, s, \chi) \frac{dy}{y} = \frac{T^{s+\tau-1}}{s+\tau} - \sum_{c \neq a} \varphi_{ac}(s, \chi) \varphi_{bc}(r, \chi) \frac{T^{1-s-\tau}}{1-s-\tau}.
\]

Combining these identities yields the result. \(\square\)

Corollary 3.6. For \(T \geq 1\) and \(t \in \mathbb{R}\), we have that
\[
\int_{\Gamma_0(q)\backslash \mathbb{H}} \left| \Lambda^T E_\infty \left(z, \frac{1}{2} + it, \chi \right) \right|^2 d\mu(z) = 2 \log T - \Re \left(\frac{\varphi_{\infty 1}}{\varphi_{\infty 1}} \left(\frac{1}{2} + it, \chi \right) \right).
\]

Proof. We take \(a \sim b \sim \infty\) and \(s = r = 1/2 + it + \varepsilon\) with \(\varepsilon > 0\) in the Maaß–Selberg relation to obtain
\[
\int_{\Gamma_0(q)\backslash \mathbb{H}} \left| \Lambda^T E_\infty \left(z, \frac{1}{2} + it + \varepsilon, \chi \right) \right|^2 d\mu(z) = \frac{T^{2\varepsilon}}{2\varepsilon} - \left| \varphi_{\infty 1} \left(\frac{1}{2} + it + \varepsilon, \chi \right) \right|^2 \frac{T^{-2\varepsilon}}{2\varepsilon}.
\]
The result then follows by taking the limit as \(\varepsilon \) tends to zero and using the Taylor expansions
\[
T^{2\varepsilon} = 1 + 2\varepsilon \log T + O(\varepsilon^2),
\]
\[
\varphi_{\infty 1} \left(\frac{1}{2} + it + \varepsilon, \chi \right) = \varphi_{\infty 1} \left(\frac{1}{2} + it, \chi \right) + \varepsilon \varphi'_{\infty 1} \left(\frac{1}{2} + it, \chi \right) + O(\varepsilon^2),
\]

together with (2.10).

\[\square\]

Remark 3.7. This proof of the Maaß–Selberg relation is via unfolding as in [Art80, Section 4], and makes use of the Arthur truncation \(\Lambda^T E_a(z, s, \chi) \) of the Eisenstein series \(E_a(z, s, \chi) \) given by (3.1); cf. [Art80, Section 1]. One can instead prove the Maaß–Selberg relation without recourse to the automorphy of the truncated Eisenstein series by only defining \(\Lambda^T E_a(z, s, \chi) \) within a fundamental domain of \(\Gamma_0(q) \setminus \mathbb{H} \). Let
\[
\mathcal{F} \supset \{ z \in \mathbb{H} : 0 < \Re(z) < 1, \ \Im(z) \geq 1 \}
\]
be the usual fundamental domain of \(\Gamma_0(q) \setminus \mathbb{H} \), and for each singular cusp \(a \), we define the cuspidal zone
\[
\mathcal{F}_a(T) := \{ z \in \mathcal{F} : 0 < \Re(\sigma_a^{-1}z) < 1, \ \Im(\sigma_a^{-1}z) \geq T \}
\]
for \(T \geq 1 \); note that any two cuspidal zones will be disjoint provided that \(T \) is sufficiently large. Then from Lemma 3.3, we have that for \(T \geq 1 \),
\[
\Lambda^T E_a(z, s, \chi) = \begin{cases}
E_a(z, s, \chi) & \text{if } z \in \mathcal{F} \setminus \bigcup_{c} \mathcal{F}_c(T), \\
E_a(z, s, \chi) - \sum_{c \in A} \delta_{ac} \Im(\sigma_a^{-1}z)^s + \varphi_{ac}(s, \chi) \Im(\sigma_a^{-1}z)^{1-s} & \text{if } z \in \bigcap_{c \in A} \mathcal{F}_c(T),
\end{cases}
\]
where \(A \) is any subset of the set of singular cusps. The Maaß–Selberg relation may then be proved using Green’s theorem along the same lines as the proof of [Iwa02, Proposition 6.8].

4. Upper Bounds and Lower Bounds for the Integral \(\mathcal{I} \)

For \(\eta \leq 1 \), we consider the integral
\[
\mathcal{I} = \mathcal{I}(\chi, \eta, T) := \int_{0}^{1} \int_{0}^{\infty} \left| \Lambda^T E_\infty \left(z, \frac{1}{2}, \chi \right) \right|^2 \frac{dx \, dy}{y^2}.
\]

Our goal is to find upper and lower bounds for this integral: upper bounds via the Maaß–Selberg relation and lower bounds via Parseval’s identity and the Brun–Titchmarsh inequality. Combining these bounds will yield lower bounds for \(L(1, \chi) \).

4.1. Upper Bounds for \(\mathcal{I} \).

Proposition 4.1. For \(\eta \ll 1/q \) and \(T \geq 1 \), we have that
\[
\mathcal{I} \ll \frac{\log q \log qT}{\eta |L(1, \chi)|}.
\]

Proof. By folding the integral, one can write
\[
\mathcal{I} = \int_{\Gamma_0(q) \setminus \mathbb{H}} N_q(z, \eta) \left| \Lambda^T E_\infty \left(z, \frac{1}{2}, \chi \right) \right|^2 \, d\mu(z),
\]
where for \(\eta \leq 1 \),
\[
N_q(z, \eta) := \# \{ \gamma \in \Gamma_\infty \setminus \Gamma_0(q) : \Im(\gamma z) > \eta \}.
\]
The Maass–Selberg relation then implies the upper bound
\[\mathcal{I} \leq \sup_{z \in \Gamma_0(q)\mathbb{H}} \frac{N_q(z, \eta) \left(2 \log T - \Re \left(\frac{\varphi_{\infty}}{\varphi_{\infty}^2} \left(\frac{1}{2}, \chi \right) \right) \right)}{q\eta}. \]
From [Iwa02, Lemma 2.10], we have the bound
\[N_q(z, \eta) < 1 + \frac{10}{q\eta}. \]
By taking logarithmic derivatives of (2.8),
\[\frac{\varphi'_{\infty}}{\varphi_{\infty}}(s, \chi) = - \log q - \frac{\Lambda'}{\Lambda}(2 - 2s, \chi) - 2\frac{\Lambda'}{\Lambda}(2s, \chi). \]
Taking logarithmic derivatives of (2.9) and letting \(s = 1/2 \) then shows that
\[\frac{\varphi'_{\infty}}{\varphi_{\infty}^2} \left(\frac{1}{2}, \chi \right) = -4\Re \left(\frac{L'}{L}(1, \chi) \right) - 2\log q + \log 8\pi + \gamma_0 + (-1)^{\kappa} \frac{\pi}{2}, \]
where \(\gamma_0 \) denotes the Euler–Mascheroni constant, and we have used the fact that
\[\frac{\Gamma'}{\Gamma} \left(\frac{1 + \kappa}{2} \right) = - \log 8 - \gamma_0 - (-1)^{\kappa} \frac{\pi}{2}. \]
So if \(\eta \ll 1/q \),
\[\mathcal{I} \ll \frac{|L(1, \chi)| \log qT + |L'(1, \chi)|}{q\eta |L(1, \chi)|}. \]
The desired upper bound then follows from the bounds
\[|L(1, \chi)| \ll \log q, \quad |L'(1, \chi)| \ll (\log q)^2, \]
which are both easily shown via partial summation. See, for example, [MV07, Lemma 10.15] for the former estimate; the latter follows by a similar argument. \(\square \)

4.2. Lower Bounds for \(\mathcal{I} \).

Proposition 4.2. If \(T \geq 1 \) and \(\eta = 1/T \), we have the lower bound
\[\mathcal{I} \gg \frac{1}{q|L(1, \chi)|^2} \sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2. \]

Proof. If \(\eta = 1/T \), then Lemma 3.3 implies that
\[\Lambda^T E_{\infty}(z, s, \chi) = \begin{cases} E_{\infty}(z, s, \chi) & \text{if } 1/T < \Im(z) \leq T, \\ E_{\infty}(z, s, \chi) - c_{\infty}(z, s, \chi) & \text{if } \Im(z) > T. \end{cases} \]

It follows that the nonzero Fourier coefficients of \(\Lambda^T E_{\infty}(z, s, \chi) \) coincide with those of \(E_{\infty}(z, s, \chi) \) for \(\Im(z) > 1/T \). So by Parseval’s identity, using the fact that \(|\tau(\chi)| = \sqrt{q} \), and making the change of variables \(y \mapsto y/m \) in the integral, we have that
\[\mathcal{I} \gg \begin{cases} \frac{1}{q|L(1, \chi)|^2} \sum_{m=1}^{\infty} |\sigma_0(m, \chi)|^2 \int_{m/T}^{\infty} |K_0(2\pi y)|^2 \frac{dy}{y} & \text{if } \kappa = 0, \\ \frac{1}{q|L(1, \chi)|^2} \sum_{m=1}^{\infty} |\sigma_0(m, \chi)|^2 \int_{m/T}^{\infty} e^{-4\pi y} \frac{dy}{y} & \text{if } \kappa = 1. \end{cases} \]
If we simply consider the contribution of the positive integers \(m \) for which \(m/T \asymp 1 \) — say \(T \leq m \leq 2T \) — then we find that
\[\mathcal{I} \gg \frac{1}{q|L(1, \chi)|^2} \sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2, \]
as desired. \(\square \)
Combining the upper and lower bounds for \(I \), we derive the following inequality for \(L(1, \chi) \).

Corollary 4.3. For all \(T \geq q \), we have that
\[
|L(1, \chi)| \gg \frac{1}{T(\log T)^2} \sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2.
\]

So to obtain lower bounds for \(|L(1, \chi)| \), we must find lower bounds for
\[
\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2.
\]

4.3. Sieve Methods

For quadratic characters, lower bounds for (4.4) follow by restricting the sum to perfect squares.

Lemma 4.5. If \(\chi \) is a quadratic character, then
\[
\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \geq (\sqrt{2} - 1)\sqrt{T}.
\]

Proof. We restrict the sum over \(m \) to perfect squares and use the fact that \(\sigma_0(m, \chi) \geq 1 \) whenever \(m \) is a perfect square in order to find that
\[
\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \geq \sum_{T \leq m^2 \leq 2T} |\sigma_0(m^2, \chi)|^2 \geq (\sqrt{2} - 1)\sqrt{T}. \quad \Box
\]

For complex characters, we instead restrict the sum in (4.4) to primes and use the Brun–Titchmarsh inequality to show that there are sufficiently many primes for which \(\chi(p) \) is not close to \(-1\), so that \(|\sigma_0(p, \chi)|^2 \) is not small. This is a result of Balasubramanian and Ramachandra [BR76, Lemma 4], who combine it with an identity of Ramanujan together with a complex analytic argument to obtain lower bounds for \(L(1 + it, \chi) \), and consequently derive zero-free regions for \(L(s, \chi) \). We reproduce a proof of this result here for the sake of completeness.

Lemma 4.6 (Balasubramanian–Ramachandra [BR76, Lemma 4]). There exists a large constant \(K \geq 2 \) such that for all complex characters \(\chi \) modulo \(q \) with \(q \geq 2 \) and for \(T = q^K \),
\[
\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \gg T \log T.
\]

Proof. We restrict the sum over \(m \) to primes \(p \) in order to find that
\[
\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \geq \sum_{T \leq p \leq 2T} |1 + \chi(p)|^2
\]
\[
= 2 \sum_{a \in (\mathbb{Z}/q\mathbb{Z})^\times} (1 + \Re(\chi(a)))(\pi(2T; q, a) - \pi(T; q, a)),
\]
where
\[
\pi(x; q, a) := \# \{ p \leq x : p \equiv a \pmod{q} \}.
\]
Let \(Q \) be the order of the Dirichlet character \(\chi \); this divides \(\varphi(q) \), and as \(\chi \) is complex, \(Q \geq 3 \). For any integer \(M \) between 0 and \([Q/2] \), we have that
\[
\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \geq 2 \left(1 + \cos \frac{2\pi M}{Q} \right) (\pi(2T) - \pi(T))
\]
\[
- 2 \left(1 + \cos \frac{2\pi M}{Q} \right) \sum_{a \in (\mathbb{Z}/q\mathbb{Z})^\times, \Re(\chi(a)) < \cos \frac{2\pi M}{Q}} (\pi(2T; q, a) - \pi(T; q, a)).
\]
For the former sum, we have that for fixed $\delta > 0$ to be chosen,
\[
\pi(2T) - \pi(T) \geq (1 - \delta) \frac{T}{\log T}
\]
for all sufficiently large T dependent on δ. See, for example, [DE80]; in particular, this does not require the full strength of the prime number theorem.

For the latter sum, we first observe that there are $\varphi(q)/Q$ reduced residue classes a modulo Q for which $\chi(a) = e^{2\pi im/Q}$ for each integer m between 0 and $Q - 1$, and so the number of reduced residue classes modulo q for which $\Re(\chi(a)) < \cos \frac{2\pi M}{Q}$ is
\[
\frac{\varphi(q)}{Q} \# \{M < m < Q - M\} = \varphi(q) \frac{Q - 2M - 1}{Q}.
\]
To find an upper bound for $\pi(2T; q, a) - \pi(T; q, a)$, we use the Brun–Titchmarsh inequality, which states that for $(q, a) = 1$, $x \geq 2$, and $y \geq 2q$,
\[
\pi(x + y; q, a) - \pi(x; q, a) \leq \frac{2y}{\varphi(q) \log y/q} \left(1 + \frac{8}{\log y/q} \right).
\]
We take $x = y = T$, assuming that $T \geq 2q$, in order to obtain
\[
\sum_{a \in (\mathbb{Z}/q\mathbb{Z})^\times \atop \Re(\chi(a)) < \cos \frac{2\pi M}{Q}} (\pi(2T; q, a) - \pi(T; q, a)) \leq \frac{2(Q - 2M - 1)}{Q} \frac{T}{\log T/q} \left(1 + \frac{8}{\log T/q} \right).
\]
We take $T = q^K$ with $K \geq 2$ sufficiently large and dependent on δ but not on q, such that
\[
\frac{1}{\log T/q} \left(1 + \frac{8}{\log T/q} \right) \leq (1 + \delta) \frac{1}{\log T}.
\]
Combined, these estimates imply that for $T = q^K$ with $K \geq 2$ a sufficiently large constant,
\[
\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \geq 2(1 - \cos \pi X) \left(1 - \delta - 2(1 + \delta)X + \frac{2(1 + \delta)}{Q} \right) \frac{T}{\log T}
\]
for
\[
X = \frac{Q - 2M}{Q}.
\]
For $Q \geq 3$, we may choose
\[
\delta = \frac{1}{10}, \quad M = \left\lfloor \frac{1 + 4\delta}{2(1 + \delta)} \frac{Q}{2} + \frac{1}{2} \right\rfloor,
\]
so that
\[
X = \frac{1 - 2\delta}{2(1 + \delta)} - \frac{1}{Q} + \frac{2}{Q} \left(\frac{1 + 4\delta}{2(1 + \delta)} \frac{Q}{2} + \frac{1}{2} \right),
\]
and hence
\[
1 - \delta - 2(1 + \delta)X + \frac{2(1 + \delta)}{Q} = \delta + \frac{4(1 + \delta)}{Q} \left(1 - \left(\frac{1 + 4\delta}{2(1 + \delta)} \frac{Q}{2} + \frac{1}{2} \right) \right) \geq \delta.
\]
Moreover, the fact that $\delta = 1/10$ and $Q \geq 3$ implies that $1 \leq M \leq \lfloor Q/2 \rfloor$ and $1/33 \leq X \leq 23/33$. So
\[
\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \gg_K \frac{T}{\log T},
\]
\[
\square
\]
Remark 4.7. If χ is quadratic, so that the order of χ is $Q = 2$, then

$$\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \geq 2(\pi(2T) - \pi(T)) - 2 \sum_{a \in (\mathbb{Z}/q\mathbb{Z})^\times \atop \chi(a) = -1} (\pi(2T; q, a) - \pi(T; q, a)).$$

The Brun–Titchmarsh inequality is insufficient to show that the first term on the right-hand side dominates the second term; in its place, we would require a strengthening of the Brun–Titchmarsh inequality of the form

$$(4.8) \quad \pi(x + y; q, a) - \pi(x; q, a) \leq \left(2 - \delta\right)y\varphi(q)\log y/q \quad (1 + o(1))$$

for some $\delta > 0$. With this in hand, we would then be able to show that

$$\sum_{T \leq m \leq 2T} |\sigma_0(m, \chi)|^2 \gg \frac{T}{\log T},$$

so that

$$L(1, \chi) \gg \frac{1}{(\log q)^3},$$

which would imply the nonexistence of a Landau–Siegel zero for $L(1, \chi)$. Of course, the fact that the strengthened Brun–Titchmarsh inequality (4.8) implies (and is in fact equivalent to) the nonexistence of Landau–Siegel zeroes is well-known.

5. Proof of Theorem 1.1

With these upper and lower bounds established, we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. If χ is quadratic, we have via Corollary 4.3 and Lemma 4.5 that for $T \geq q$,

$$L(1, \chi) \gg \frac{1}{\sqrt{T(\log T)^2}},$$

and so taking $T = q$ yields the desired lower bound.

If χ is complex, we have via Corollary 4.3 and Lemma 4.6 that for $T = q^K$,

$$|L(1, \chi)| \gg K \frac{1}{(\log T)^3} \gg K \frac{1}{(\log q)^3},$$

as desired. \square

References

[Art80] James Arthur, “A Trace Formula for Reductive Groups II: Applications of a Truncation Operator”, Compositio Mathematica 40:1 (1980), 87–121. http://www.numdam.org/item?id=CM_1980__40_1_87_0

[BR76] R. Balasubramanian and K. Ramachandra, “The Place of an Identity of Ramanujan in Prime Number Theory”, Proceedings of the Indian Academy of Sciences, Section A 83:4 (1976), 156–165. doi:10.1007/BF03051376

[DI82] J.-M. Deshouillers and H. Iwaniec, “Kloosterman Sums and Fourier Coefficients of Cusp Forms”, Inventiones Mathematicae 70:2 (1982), 219–288. doi:10.1007/BF01390728

[DE80] Harold G. Diamond and Paul Erdős, “On Sharp Elementary Prime Number Estimates”, L’Enseignement Mathématique 26:2 (1980), 313–321. doi:10.5169/seals-51076

[DFI02] W. Duke, J. B. Friedlander, and H. Iwaniec, “The Subconvexity Problem for Artin L-Functions”, Inventiones Mathematicae 149:3 (2002), 489–577. doi:10.1007/s002220000223

[GeLa06] Stephen S. Gelbart and Erez M. Lapid, “Lower Bounds for L-Functions at the Edge of the Critical Strip”, American Journal of Mathematics 128:3 (2006), 619–638. doi:10.1353/ajm.2006.0024

[GoLi16] Dorian Goldfeld and Xiaqing Li, “A Standard Zero Free Region for Rankin Selberg L-Functions”, preprint (2016), 67 pages. arXiv:math.NT/1606.00330
[GR07] I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products, Seventh Edition*, editors Alan Jeffrey and Daniel Zwillinger, Academic Press, Burlington, 2007.

[Iwa02] Henryk Iwaniec, *Spectral Methods of Automorphic Forms, Second Edition*, Graduate Studies in Mathematics 53, American Mathematical Society, Providence, 2002.

[Miy06] Toshitsune Miyake, *Modular Forms*, Springer Monographs in Mathematics, Springer, Berlin, 2006. doi:10.1007/3-540-29993-3

[MV07] Hugh L. Montgomery and Robert C. Vaughan, *Multiplicative Number Theory I. Classical Theory*, Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge, 2007.

[Sar04] Peter Sarnak, “Nonvanishing of L-Functions on ℛ(ś) = 1”, in *Contributions to Automorphic Forms, Geometry & Number Theory*, editors Haruzo Hida, Dinakar Ramakrishnan, and Freydoon Shahidi, The John Hopkins University Press, Baltimore, 2004, 719–732.

Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA

E-mail address: peterch@math.princeton.edu