Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression

Citation for published version:
McLean, GW, Komiyama, NH, Serrels, B, Asano, H, Reynolds, L, Conti, F, Hodivala-Dilke, K, Metzger, D, Chambon, P, Grant, SGN & Frame, MC 2004, 'Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression' Genes & Development, vol 18, no. 24, pp. 2998-3003. DOI: 10.1101/gad.316304

Digital Object Identifier (DOI):
10.1101/gad.316304

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Genes & Development

Publisher Rights Statement:
Copyright © 2004, Cold Spring Harbor Laboratory Press

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression

Gordon W. McLean,¹,⁸ Noboru H. Komiyama,³,⁴ Bryan Serrels,¹ Hidefumi Asano,⁴,⁷ Louise Reynolds,⁵ Francesco Conti,⁵ Kairbaan Hodivala-Dilke,⁵ Daniel Metzger,⁶ Pierre Chambon,⁶ Seth G.N. Grant,³,⁴ and Margaret C. Frame¹,²

¹The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, G61 1BD, United Kingdom; ²Institute of Biological and Life Sciences, University of Glamorgan, Glamorgan G12 8QQ, United Kingdom; ³Wellcome Trust Sanger Institute, Cambridgeshire, CB10 1SA, United Kingdom; ⁴Division of Neuroscience, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom; ⁵The London Queen Mary’s School of Medicine and Dentistry, John Vane Science Centre, London, EC1M 6BQ, United Kingdom; ⁶Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, 67404 Illkirch Cedex, Strasbourg, France

We have generated mice with a floxed fak allele under the control of keratin-14-driven Cre fused to a modified estrogen receptor (CreERT²). 4-Hydroxy-tamoxifen treatment induced fak deletion in the epidermis, and suppressed chemically induced skin tumor formation. Loss of fak induced once benign tumors had formed inhibited malignant progression. Although fak deletion was associated with reduced migration of keratinocytes in vitro, we found no effect on wound re-epithelialization in vivo. However, increased keratinocyte cell death was observed after fak deletion in vitro and in vivo. Our work provides the first experimental proof implicating FAK in tumorigenesis, and this is associated with enhanced apoptosis.

Supplemental material is available at http://www.genesdev.org.

Received July 1, 2004; revised version accepted October 14, 2004.

Cellular focal adhesions are complex structures consisting of many interacting proteins that provide both physical adhesion to extracellular matrix, usually via transmembrane integrin receptors, and that also transmit survival and/or growth signals into the cell interior. De-regulation of these adhesions may permit cancer cells to migrate and invade into surrounding tissue during the development of malignant disease, or to survive and grow under normally inappropriate conditions. One major component of integrin adhesions is focal adhesion kinase (FAK), a nonreceptor tyrosine kinase that is pivotal in many signaling pathways (Illic et al. 1997). FAK regulates integrin-mediated adhesion and cell migration, and contributes to proliferation and cell survival (Schaller 2001; Hauck et al. 2002). Despite numerous reports that FAK expression correlates with the development of cancer (Owens et al. 1995, 1996; Aoguchi et al. 1999, Jones et al. 2000, McLean et al. 2003), there is no direct evidence whether, and if so how, FAK contributes to cancer development.

Using fak heterozygous (+/−) mice, we previously demonstrated that reduced FAK expression had a negative impact on chemically induced papilloma formation (McLean et al. 2001). However, these benign tumors from fak+/− mice elevated expression of FAK to a level that was indistinguishable from papillomas from wild-type fak+/+ mice, preventing us from addressing the key question of whether FAK expression is causally involved in malignant progression. Here, we address whether FAK plays a causal role in development of the malignant phenotype in vivo, by generating mice in which we had both spatial and temporal control over fak deletion. Specifically, we used gene targeting in embryonic stem (ES) cells to generate mice that are homozygous for a floxed fak allele, and that also express a 4-hydroxy-tamoxifen (4-OHT)-regulated Cre recombinase (Cre-ERT²) expressed under control of the keratin-14 promoter (K14CreERT²/FAKflox/flox). We could delete fak from the epidermis of these mice upon addition of 4-OHT, but more importantly from benign papilloma tumors once these had developed. Our results provide the first evidence that FAK modulates the efficiency of benign tumor formation and plays a crucial role in malignant conversion.

Results and Discussion

To investigate the role of FAK during the formation and development of skin tumors, we used Cre/loxP technology to target the introduction of conditional mutations into the fak gene in mice. As the fak coding exons are spread over >225 kb, it was not practical to flox the entire fak gene; instead, loxP sites were introduced into the fak gene at positions flanking the exon encoding part of the kinase domain, that is, FAK amino acids 413–444. [The gene-targeting strategy and generation of FAK floxed mice are described in detail in the Supplemental Material.] The targeting vector was designed so that Cre-mediated recombination also introduced a frameshift mutation in the adjacent exon, precluding production of a functional FAK protein. Screening of Cre-expressing ES cells by immunoblotting confirmed that no FAK protein was detectable (Fig. 1A). Using N-terminal antibodies to FAK, no truncated products were visualized [data not shown]. To obtain epidermal-specific fak excision, we crossed homozygous FAKflox/flox mice with mice expressing a modified estrogen receptor–Cre fusion protein (CreERT²) [Indra et al. 1999], under the control of the keratin-14 (K14) promoter. This directs 4-OHT-induced excision of floxed fak to epidermal keratinocytes of mouse skin [Indra et al. 1999; Li et al. 2000]. The resulting K14CreERT²/FAKflox/flox mice were viable and dis-
played skin-specific suppression of FAK expression following administration of 4-OHT, while other tissues, such as kidney and spleen, remained unaffected [Fig. 1B]. Although some FAK was also detected in immunoblots of epidermal extracts from 4-OHT-treated animals [Fig. 1B, lane 6], this is most likely due to FAK expression in the underlying dermis that contaminates the epidermal preparations, or to the presence of a small number of keratinocytes that had not undergone FAK deletion due to loss of K14 expression through differentiation [Stoler et al. 1988]. Immunohistochemistry revealed reduced FAK expression in both the epidermis and hair follicles of K14CreERT2/FAKflox/flox mice, when compared with underlying dermis [Fig. 1C]. This temporally controlled deletion of fak allowed separation of effects on benign tumor formation from those on malignant conversion.

Skin tumors were induced in 4-OHT-treated and untreated K14CreERT2/FAKflox/flox mice by a two-stage chemical carcinogenesis protocol [Quintanilla et al. 1986; Kemp et al. 1993; Yuspa et al. 1995], as well as in K14CreERT2 and 4-OHT-treated FAKflox/flox mice to rule out possible effects of Cre expression or 4-OHT treatment, respectively. Treatment with the carcinogen 7,12-dimethylbenzanthracene (DMBA) gives rise to activating mutation of the c-Ha-Ras gene [Quintanilla et al. 1986; Pelling et al. 1987], and subsequent treatment for 20 wk with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate [TPA] leads to formation of benign papillomas, a proportion of which progress to form invasive squamous cell carcinomas [SCC] [Burns et al. 1978]. We observed a marked difference in papilloma formation between 4-OHT-treated and untreated K14CreERT2/FAKflox/flox mice. Only 50% of 4-OHT-treated mice formed papillomas after 12 wk, as compared to 100% of untreated mice [Fig. 1D]. More significantly, there was also a substantial reduction in the average number of papillomas formed per 4-OHT-treated K14CreERT2/FAKflox/flox mouse at 22 wk when compared to the untreated control group [Fig. 1E]. Additionally, no difference in benign tumor acquisition was observed in either the K14CreERT2- or the 4-OHT-treated FAKflox/flox mouse ruling out any possible effects of Cre expression or 4-OHT treatment, respectively [data not shown]. This indicates that FAK plays a modulatory role in chemically induced, Ras-dependent papilloma formation, with half of the 4-OHT-treated K14CreERT2/FAKflox/flox mice being resistant to DMBA/TPA-induced benign tumor formation.

We have reported previously that keratinocytes derived from fak+/− heterozygous mice display impaired signaling to Ras effector pathways [McLean et al. 2001], such as ERK/MAP kinase. Taken with our current findings, the data indicate that FAK is necessary not only for the biochemical effects of Ras in cells in culture, but also for optimal tumor initiating/promoting biological effects of onco-genic Ras in vivo.

Experiments using immortalized fak−/− mouse embryo fibroblasts have implicated FAK in migration and invasion [Ilic et al. 1995], while FAK expression in tumors correlates with invasive potential [Owens et al. 1995]. However, owing to the embryonic lethality of constitutive fak deletion [Ilic et al. 1995], no experiments have been done to test whether FAK has a causal role in the development of malignancy per se. We therefore deleted fak directly from preformed benign papillomas and examined subsequent progression to invasive SCC tumors. K14CreERT2/FAKflox/flox mice were subjected to DMBA and TPA, and subsequently treated with 4-OHT after the majority of papillomas had formed [at 15 wk as indicated in Fig. 2A]. Immunohistochemistry confirmed fak gene excision after 4-OHT treatment, as judged by loss of specific FAK staining in hyperproliferative epidermal regions of papilloma sections [Fig. 2B, right panel]. As judged by visual identification and subsequent histological confirmation of SCC, 4.1% of papillomas

Figure 1. Deletion of FAK from mouse skin blocks papilloma formation. [A] fak excision in ES cells following introduction of Cre recombinase. Cre was introduced by electroporation of a pMC1-Cre plasmid, and protein extracts were harvested and subjected to Western blotting with an FAK mAb. (Lanes 1–3) No Cre recombinase. (Lanes 4–6) Cre recombinase. [B] Proteins were harvested from spleen, kidney, and skin of K14CreERT2/FAKflox/flox mice either treated with 4-OHT or with vehicle alone. Extracts were blotted onto nitrocellulose and probed with an anti-FAK mAb (top panel) or an anti-tubulin mAb (lower panel). [C] Immunohistochemical staining of paraffin-embedded skin sections from K14CreERT2/FAKflox/flox mice treated with either 4-OHT (right panel) or vehicle alone (left panel). [D] Epidermis. (HF) hair follicles. Deletion of fak in epidermal keratinocytes in vivo inhibits papilloma formation during chemical carcinogenesis. Mice were either treated with 4-OHT [●] or vehicle alone [□] and subjected to DMBA and TPA treatment as described. Graphs indicate percent of mice acquiring papillomas over time [D] and average numbers of papillomas per mouse over treatment time [E]. Graphs represent K14CreERT2/FAKflox/flox mice.

[Image 72x185 to 372x501]
underwent conversion to carcinoma in untreated mice, whereas malignant conversion of papillomas in 4-OHT-treated K14CreERT2/FAKfox/fox mice was reduced to 0.6% [Fig. 2C]. An observed conversion frequency of 3.9% in 4-OHT-treated FAKfox/fox mice excluded the possibility of this observation being linked to administration of 4-OHT [Fig. 2C]. The 0.6% conversion frequency represented two SCCs that developed in 4-OHT-treated K14CreERT2/FAKfox/fox mice [3]. Conversion frequency is determined by calculating the number of carcinomas recorded per total number of papillomas for each study group. [D] Anti-FAK immunoblot of proteins extracted from SCCs derived from untreated [lanes 1–6] or 4-OHT-treated [lanes 7,8] K14CreERT2/FAKfox/fox mice.

Figure 2. Deletion of fak from papillomas blocks malignant progression to SCC. [A] Mice either K14CreERT2/FAKfox/fox [left panel] or FAKfox/fox [right panel] were treated with vehicle alone or with 4-OHT (+4-OHT) at 15 wk after the majorit yo f Cre-embedded sections of papillomas from K14

mice. Crucially, FAK-deficient SCCs never arose during the hyperproliferative epidermal region of papillomas in which the fak gene had not been excised by 4-OHT treatment. Crucially, FAK-deficient SCCs never arose during the hyperproliferative epidermal region of papillomas in which the fak gene had not been excised by 4-OHT treatment. Furthermore, this is associated with a requirement for FAK to maintain a normal rate of cell migration, and survival signaling in keratinocytes in vitro. To determine which, if either, of these effects is likely to be responsible for the observed suppression of tumorigenesis upon FAK deletion, we carried out punch biopsy wound repair assays and analyzed caspase-3 activation in 4-OHT-treated K14CreERT2/FAKfox/fox skin to monitor vivo migration and apoptosis, respectively. K14CreERT2/FAKfox/fox mice [either treated or untreated with 4-OHT] were wounded with 3-mm punch biopsies [Fig. 4A, day 0, upper panels], and subsequent wound closure was monitored. No visible difference in vivo wound repair was observed—as judged at 7 d after wounding—when re-epithelization was essentially complete in both cases [Fig. 4A, day 7, lower panels]. Earlier time points at days 1 and 3 did not indicate any lag in re-epithelization of the wounded skin [data not shown]. In contrast, we observed a difference in staining of activated caspase-3 both in the skin and in papillomas...
from treated, but not untreated, mice [Fig. 4B]. Activated caspase-3 is accepted as a key marker of apoptotic cells and is now widely considered to be a more reliable indicator of apoptosis in tissue sections than TUNEL staining (Marshman et al. 2001; Duan et al. 2003). In particular, we observed the strongest staining in cells of the hair follicles of 4-OHT-treated mice, where the majority of target cells for DMBA-induced tumorigenesis are thought to reside (Fig. 4B, middle panels; Argyris 1980). Moreover, FAK deletion from preformed benign papillomas caused stronger staining of active caspase-3 [Fig. 4B, lower panels]. Thus, it is FAK’s role in promoting cell survival that is tightly linked to tumor formation and progression in this mouse.

This, together with the increased expression of FAK during acquisition of malignancy (Owens et al. 1995; McLean et al. 2003), is in keeping with recent observations that FAK can promote invasion in vitro by regulating production of matrix metalloproteinases (Shibata et al. 1998; Hauck et al. 2002). We have now causally implicated FAK as a determinant of malignant behavior in vivo, identifying FAK as an excellent candidate for further study as a potential target to suppress spread of the disease.

Materials and methods

Animals and gene targeting

Design, construction, and generation of mice containing targeted loxP sites in the FAK gene are described in detail in the Supplemental Material. Transgenic mice expressing the modified Cre recombinase–estrogen receptor fusion under control of the keratin-14 promoter [K14CreER^{T2}], which targets Cre expression to epidermal keratinocytes, have been described [Li et al. 2000]. To facilitate cell-type-specific FAK ablation, FAK^{lox/lox} mice were then mated to K14CreER^{T2} transgenic mice. The resulting offspring carrying K14CreER^{T2} that were either homozygous for the floxed FAK gene [K14CreER^{T2}/FAK^{lox/lox}], carried K14CreER^{T2} and two copies of the wild-type FAK allele [K14CreER^{T2}/FAK^{+/+}] or the
FAK flox/+/ allele alone (FAK flox/flox), were identified by PCR analysis and used for subsequent experiments. All animals were used across and maintained on an FVB genetic background.

PCR genotyping
Mice that were homozygous for the floxed fak gene were routinely identified by PCR analysis. Tail DNA was prepared by standard protocols and subjected to PCR analysis using the following primers: FAK30, 5'-AGAAAGCTATGGAGAATGAC-3' and FAK54, 5'-GTCTGTGTTCTCTAGAATAAAGTTGG-3'; and the following FAK-specific amplification protocol: 95°C/30 sec [1 cycle]; 94°C/10 sec + 57°C/30 sec + 68°C/3 min [10 cycles]; 94°C/10 sec + 57°C/30 sec + 68°C/3 min + 20 sec/cycle [20 cycles]; 68°C/7 min [1 cycle]. Following amplification, PCR DNA products were digested overnight with HindIII and analyzed by agarose gel electrophoresis. Mice that were homozygous for the floxed fak mutation (FAK flox/flox) exhibited a single major band of 1.9 kb, mice that were heterozygous for floxed FAK (FAK wt/flox) contained two major bands at 1.9 and 1.4 kb, and wild-type [wt] mice [FAK wt/wt] contained a single band at 1.4 kb [see Supplemental Material]. Mice that additionally contained the K14CreERT2+ transgene were again identified by PCR analysis using the following primers: 5'-ATTTCCTCATTACCGGTCC-3' and 5'-ATCAACGTTTCTTTCTCGG-3', and standard amplification protocols. Cre-positive mice exhibited a single PCR product of 350 bp.

Preparation and administration of 4-OHT
Preparation and administration of 4-OHT was as described [Indra et al. 1999] except that a reduced dose of 200 µg in 100 µL of sunflower oil was administered. The dose was adjusted to 8-wk-old female FVB mice as described [Indra et al. 1999], with animals being left for 8–10 d before the initiation of any further experimental procedures. 4-OHT for in vitro experiments was dissolved in ethanol, stored at -20°C, and diluted before use to a final working concentration of 10 nM.

Chemical carcinogenesis
Chemical carcinogenesis using DMBA and TPA was performed on individual study groups of 20 female 8-wk-old animals as previously described [McLean et al. 2001]. The number of benign and malignant tumours was recorded at 0 and 48 h after wounding. Wound closure was recorded at 0 and 48 h after 4-OHT removal.

Wound healing assay
For in vitro wound healing experiments, K14CreERT2+/FAK flox/flox keratinocytes were grown to confluence in 60-mm collagen-I-coated tissue culture dishes [Becton Dickinson] in KGM. Monolayers were wounded using a micropipette tip, and the cells were rinsed with KGM before visualization using a phase-contrast microscope. Cells were treated with either 10 nM 4-OHT or vehicle alone for 48 h before wounding. Wound closure was recorded at 0 and 48 h after 4-OHT removal.

Time-lapse microscopy
K14CreERT2+/FAK flox/flox keratinocytes were harvested as described and plated onto collagen-I-coated six-well tissue culture dishes (Becton Dickinson). Following 4-OHT or vehicle alone treatment, cells were monitored using time-lapse video microscopy with images captured from each well every 20 min over a 10-h period. Quantification of cell motility was achieved by analysis of captured images using cell tracking software (Keletic Imaging Ltd).

Summary
FAK flox/+, Fak−/− and Fak+/+ keratinocytes were grown on glass coverslips, fixed at room temperature for 10 min with 3.7% formaldehyde/PBS, and permeabilized with 0.5% Triton X-100 in PBS and incubated with anti-FAK mAb (Transduction Laboratories). Antibody detection was via fluorescein isothiocyanate-conjugated goat anti-mouse IgG [Jackson], for 45 min at room temperature. Fluorescence was visualized using a Bio-Rad MRC 600 confocal microscope.

FACS analysis
K14CreERT2+/FAK flox/flox keratinocytes were either treated with 4-OHT or vehicle alone, washed 1× in PBS, and fixed in 70% ethanol for 3 h at 4°C. Fixed cells were pelleted at 1000 rpm for 5 min, washed 1× in PBS, and resuspended in propidium iodide solution (1 mg/mL). Labeled cell populations were analyzed by fluorescence activated cell sorting (FACS) analysis using a Becton Dickinson CellQuest FACScan.

Acknowledgments
We thank Rebecca Porter for advice and John Wyke and Malcolm Hodgens for critical reading and comments. We also thank Colin Nixon for immunohistochemical analysis. This work was supported by Cancer Research UK at the Beatson Institute [G.W.M., B.S., M.C.F.] and by Collège de France, Association pour la Recherche sur le Cancer, and Foundation pour le Recherche Médicale (D.M. and P.C.).

References
Agochiya, M., Brunton, V.-G., Owens, D.-W., Parkinson, E.K., Paraskeva, C., Keith, W.-N., and Frame, M.C. 1999. Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 18: 5646–5653.
Focal adhesion kinase and malignant progression

Argyris, T.S. 1980. Tumour promotion by abrasion induced epidermal hyperplasia in the skin of mice. *J. Invest. Dermatol.* 75: 360-366.

Burns, F.J., Vanderlaan, M., Snyder, E., and Albert, R.E. 1978. Induction and progression kinetics of mouse skin papillomas. In *Carcinogenesis, mechanisms of tumour promotion and co-carcinogenesis* [eds. T.J. Slaga and R.K. Boutwell], pp. 91–96. Raven Press, New York.

Duan, W.R., Garner, D.S., Williams, S.D., Funckes, C.L., Spath, I.S., and Hauck, C.R., Hsia, D.A., and Schlaepfer, D.D. 2002. The focal adhesion kinase as a regulator of cell migration and invasion. *IUBMB Life* 53: 115–119.

Hauter, M.D. 2001. Biochemical signals and biological responses elicited by the focal adhesion kinase. *A regulator of cell migration and invasion.* *IUBMB Life* 53: 115–119.

Ilic, D., Damsky, C.H., and Yamamoto, T. 1997. Focal adhesion kinase: At the crossroads of signal transduction. *J. Cell Sci.* 110: 401–407.

Marshman, E., Ottewell, P.D., Potten, C.S., and Watson, A.J. 2001. Caspase activation during spontaneous and radiation-induced apoptosis in the murine intestine. *J. Pathol.* 195: 285–292.

McLean, G.W., Avizienyte, E., and Frame, M.C. 2003. Focal adhesion kinase as a potential target in oncology. *Expert Opin. Pharmacother.* 4: 227–234.

Owens, L.V., Xu, L., Craven, R.J., Dent, G.A., Weiner, T.M., Kornberg, L., Liu, E.T., and Cance, W.G. 1995. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. *Cancer Res.* 55: 2752–2755.

Owens, L.V., Xu, L., Dent, G.A., Yang, X., Sturge, G.C., Craven, R.J., and Cance, W.G. 1996. Focal adhesion kinase as a marker of invasive potential in differentiated human thyroid cancer. *Ann. Surg. Oncol.* 3: 100–105.

Pelling, J.C., Fischer, S.M., Neades, R., Strawhecker, J., and Schweickert, L. 1987. Elevated expression and point mutation of the Ha-ras proto-oncogene in mouse skin tumors promoted by benzoyl peroxide and other promoting agents. *Carcinogenesis* 8: 1481–1484.

Quintanilla, M., Brown, K., Ramsden, M., and Balmain, A. 1986. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. *Nature* 322: 78–80.

Schaller, M.D. 2001. Biochemical signals and biological responses elicited by the focal adhesion kinase. *Biochim. Biophys. Acta* 1540: 1–21.

Stoler, A., Kopan, R., Duvic, M., and Fuchs, E. 1988. Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. *J. Cell Biol.* 107: 427–446.