The assessment of critical vibration values of the construction based on the application of the bifurcation approach in automated geotechnical control systems

Nikolay Dorofeev, Anastasia Grecheneva, Roman Romanov and Ekaterina Pankina

1Vladimir State University, Vladimir, 600000, Russian Federation
E-mail: dorofeevnv@yandex.ru

Abstract. The article deals with the description of the method of building construction stability assessment based on the bifurcation approach and vibration parameters for automated geotechnical control. The use of external vibrational geotechnical noise as a source of a sounding signal in automated systems of geotechnical monitoring is proposed and justified. The interrelation of the influence of vibrational factors on the stability parameters of structures is established and their numerical characteristics are given. A nonlinear model of the stability of the structure is given taking into account the impact of vibration factors. The dynamic behavior of structural elements of the structure with one degree of freedom was modeled, taking into account the load, and a bifurcation diagram was constructed. It is established that in the presence of technogenic vibrational noise, the mass of the upper floors of the building has a significantly greater effect on the stability parameters of the structure. The effectiveness of the proposed approach is proved by comparing the values obtained in the calculation of the mechanical stiffness of the structure according to the standard method using a dynamic coefficient.

Key words: geotechnical system, automated monitoring, construction stability, vibration effect, nonlinear model, bifurcation diagram.

1 Introduction

As known, the stability of complex geotechnical systems is associated both with the reliability of their individual elements, and with the reliability of their interaction in the system. Moreover, the reliability of geotechnical systems should be laid, formed and changed in the process of their design, construction and operation.

Considering the dynamic process of transition of the initial stability parameters of a complex geotechnical system (ground base - foundation - construction) to the limiting levels in the form of a stationary process and using the methods of the correlation theory of stationary processes, the reliability (stability) forecast can be carried out by solving the linear forecasting task. However, such a forecast, based on the legality of a linear-singular stationary process, can be satisfied in accuracy only over a relatively small-time interval (for one to three years of operation of a complex geotechnical system) [1]. This is due to the fact that the linear-spectral approach does not allow to estimate the probability of deviation of the calculated reaction values from the actual values, as well as to reveal the structural strength reserves associated with the physically nonlinear properties of structural materials that manifest themselves under dynamic loading. In this regard, further research and development of methods for analysing and predicting the stability of geotechnical systems, taking into account the nonlinearity of the structural rigidity parameters over time, is relevant.
Particular prospects for solving the task of determining the stability of non-linear geotechnical systems are bifurcation analysis, which consists in assessing changes in the behaviour of the geotechnical system with a small variation of the influencing factors.

One of the most common impact factors on operated buildings is the vibrational impact, which is caused by the external technogenic load (auto transport stream, railway over ground and underground transport, etc.) [2]. Vibrational impact has a negative impact on the operational parameters of structures, leading to the development of stress-strain state, cracking and fatigue in structural elements. However, external vibrational noise can be used as a source of a sounding signal, which, acting on the building structure, leads to the appearance of additional forced vibrations in it, and their concentration in weak sections of the structure. In this case, using the methods of chaos theory and knowing the frequency model of the building’s stable state that describes the reaction to external vibrational influence, we can determine the initial stage of the building’s transition to an unstable state (bifurcation points) by the output of the sum of natural and forced frequencies beyond the model parameters.

In this regard, the aim of the work is to describe a method for assessing the stability of a building structure in automated systems of geotechnical control using bifurcation diagrams of vibration factors.

2 Materials and methods

2.1 Assessment of vibration factors in geotechnical systems

As noted earlier, the dominant part of the vibrational impact on the structural elements of the building is due to the external technogenic load (auto transport stream, railway overhead and underground transport, etc.).

In this study, the total effect of vibrations from passing vehicles in time is take as a source of vibrational effects in urban infrastructure. Such an effect manifests itself in the form of propagation of longitudinal, transverse, and surface Rayleigh waves over the soil base, the sum of which is a complex time function [3]. Based on the analysis of spectrograms of the vibrational background of the road, the presence of frequencies from 0 to 4000 Hz in the spectrum of the signal of a passing car was noted, but most of the energy is concentrated in the frequency band from 750 Hz to 1850 Hz [4]. It is also known that as a result of traffic flow reaching high speeds (more than 100 km/h), actual accelerations in the soil, which go into the structural elements of the foundation of the structure, can approach critical values, and for vehicles developing moderate speeds (60-70 km/h) at a speed of up to 1500 in 1 min, oscillations with acceleration up to 0.2 g are characteristic [5]. Moreover, in buildings located near the highway, vibrations with accelerations up to 0.1 g can occur [6].

Under the influence of industrial vibration, the frequency of forced vibrations of buildings and structures in a stable state can vary from units to tens of hertz, depending on a number of characteristics [7]:

- Type of construction frame;
- The numbers of degrees of freedom of construction;
- Properties of materials included in the structure;
- Type of foundation;
- Parameters of elasticity of the soil base, etc.

At the same time, there is a relationship between the frequencies of natural vibrations, the limiting values of the acceleration of the vibrational movements of buildings from altitude, defined in the regulatory documents of the Russian Federation and European countries (table 1) [8, 9]. Therefore, the acceleration spectrum is also an informative parameter for controlling the stability of a structure.

The vibrational effect that occurs at one point in the local area of the geotechnical system has a different effect on other points of the analysed local area. The degree of impact depends on the distance of the vibration source, the hydrogeological parameters of the soil base, the presence of heterogeneities in it, the parameters of the structure, etc. Taking into account the physical nonlinearity of the stiffness parameters of structural materials, using the methods of chaos theory and knowing the frequency model of the steady state of buildings that describes the reaction to external vibration
exposure, the initial stage of transition to an unstable state (bifurcation points) can be determined by estimation of parameter output beyond the permissible model parameters of the sum of natural and forced frequencies oscillations, as well as movement parameters. In this case, according to the use of the modular principle of organizing the information-analytical system of geotechnical monitoring, it is possible to localize not only the sites with the least stability, but also places of development of adverse processes (for example, the initial stages of the development of geodynamic processes) [10, 11].

Height, meters	Spectrum	f1=1,0 Hz a, cm/s2	f2=2,3 Hz a, cm/s2	f3=3,8 Hz a, cm/s2	f4=4,2 Hz a, cm/s2
44,8	a_1	160,6	93,3	96,4	138,8
	a_2	180,6	76,5	44,0	46,2
33,6	a_1	114,4	20,7	35,2	35,5
	a_2	129,6	16,9	16,0	11,7
16,8	a_1	64,2	-20,7	-26,6	-65,0
	a_2	72,6	-16,9	-12,2	-21,6
0,0	a_1	30,1	-34,5	-36,5	-51,9
	a_2	34,1	-28,4	-16,7	-17,3

2.2 Non-linear model of the construction stability taking into account the impact of vibration factors

Under the influence of a vibrating external load, in addition to natural vibrations, forced vibrations arise in the structural elements of the building. In this case, the equation of motion of the system can be written as [12]:

$$m \ddot{v} + c \dot{v} + k v = p(t),$$

where m is the mass matrix; c is the attenuation matrix; k is the stiffness matrix; v is the displacement vector; $p(t)$ is the vector of vibrational impact.

When modeling the buildings is represented by objects with a finite number of degrees of freedom, for example, horizontal displacement y; vertical movement z; angle of rotation α. For such a system, the displacement vector will have the following form:

$$v(t) = [y_1, z_1, \alpha_1, ..., y_n, z_n, \alpha_n],$$

where $n = 1, 2, ...$ is the number of floors of the building.

As part of the solution to the task of detecting negative changes at a local point in the geotechnical system using bifurcation diagrams of vibration factors, the displacement vector will contain only horizontal displacement parameters that are indirectly manifested in the change in the acceleration of structural elements:

$$v(t) = \| a(t) = [y_1, ..., y_n],$$

where $a(t) = [a_1, ..., a_n]$ is the acceleration vector of the structural elements of the building.

The load $p(t)$ acting on the structure is a combination of inertial forces f_u (for example, accelerations obtained from the vibrational effects of vehicles), stiffness forces f_c and damping forces f_s. Then, the vector of vibrational effects can be represented in the form [13]:

$$p(t) = f_u(t) + f_c(t) + f_s(t),$$

Performing the increment of equation (4):

$$\Delta p(t) = \Delta f_u(t) + \Delta f_c(t) + \Delta f_s(t),$$

where $\Delta f_u(t) = m\Delta v(t)$, $\Delta f_c(t) = c\Delta v(t)$, $\Delta f_s(t) = k(t)\Delta v(t)$, $\Delta p(t) = p(t+\Delta t) - p(t)$.

There is a large class of problems in the dynamics of structures in which systems cannot be considered as linearly deformable objects. For example, as a result of exposure to vibrational factors, the presence of defects of various configurations (micropores, microcavities) in the structure of concrete, which is part of the construction foundation of the building, leads to a redistribution of the
stress field to the primary, propagating in the thickness of the material, and the secondary, concentrated in areas of localization of microinhomogeneities [14, 15]. The secondary stress field is characterized by variability in each of the loading cycles, since microcracks are the most vulnerable areas of stress concentration from the point of view of load distribution. Each cyclic impact below the fatigue limit leads to the accumulation of plastic deformations and the slow growth of microcracks. This process is accompanied by the convergence of the peaks of growing microcracks to a certain threshold (a certain critical distance), beyond which microcracks merge with a further growth of a single crack. Thus, vibrational loading creates favourable conditions for stress concentration at the weakest points of not only the soil base, but also the elements of the reinforced concrete structure of the building’s foundation, which leads to its destruction at significantly lower cyclic loads than under the static conditions adopted in construction calculation models. As a result, the stiffness coefficients are able to change due to the appearance of fluidity in structural elements. In this case, Eq. (1), taking into account Eq. (5) and nonlinearity properties, will take the following form:

\[m \Delta \nu(t) + c(t) \Delta \nu(t) + k(t) \Delta \nu(t) = \Delta p(t), \]

(6)

In this case, the damping \(c(t) \) and stiffness \(k(t) \) functions change according to certain laws and can be set at the end of the iteration stage, expressing the nonlinear nature of the materials of the structure:

\[c(t) = \frac{df}{d\nu}; \quad k(t) = \frac{df}{d\nu}. \]

(7)

In the process of solving the task, the nonlinear nature of the construction materials was determined by a change in stiffness in accordance with the accepted elastoplastic dependence Eq. (7). In the numerical integration of Eq. (6), it was assumed that, within each time interval, the acceleration varies linearly, while the attenuation and stiffness remain unchanged. When considering motion, the change in acceleration was assumed to be linear, and the change in speed and displacement was assumed to be quadratic and cubic. As a result, Eq. (6) can be written as:

\[\tilde{k}(t) \Delta \nu(t) = \Delta p(t), \]

(8)

wherein:

\[\tilde{k}(t) = k(t) + \frac{a}{\Delta t} m + \frac{3}{t} c(t); \]

\[\Delta p(t) = p(t) + m \left(\frac{a}{\Delta t} m + 3 c(t) \right) + c(t) \left(3 \nu(t) + \frac{\Delta t}{2} v(t) \right). \]

(9)

where \(a \) is the acceleration of structural elements.

During the vibrational impact on the foundations of structures, the main type of deformations is roll deformations, which are manifested in the loss of stability when the limit value of the angle of inclination of the structure is reached. In this case, the limiting stable value of the angle of inclination is determined by the elastic properties of the material and changes according to the exponential law until the elastic limit of the materials of the structure is reached [16].

3 Results

As a result of the studies, the dynamic behaviour of structural elements of the structure with one degree of freedom was modelled (figure 1). Model parameters \(m=200 \text{ tons}, k = 30000 \text{ kN/m}, h = 1.5 \text{ m}. \) This model, as a first approximation, is the simplest link in the structure.

Moreover, in the case of modelling bifurcations of structures having a more complex design scheme, it is possible to use the modularity method, in which the one shown in figure 1 replaces each of the basic structural elements, and the interconnection of structural elements is ensured by the introduction of additional differentials of the type (7).

In accordance with the theory of dynamical systems [17, 18], the bifurcation of co dimension 1 is valid for this case – merging. The bifurcation diagram of the change in the overall stability of the structure during displacement \(\Delta \nu \) obtained during an increase in load \(P \), taking into account the vibration effect \(p(t) \), is shown in figure 2.
According to the analysis of the bifurcation diagram, the bifurcation point is the displacement value Δv for a structure with a static load of $P=7500 \text{ kgF}$. At this point, the displacement of the structural unit Δv is 3.89 cm. The displacement of the assembly after the bifurcation point $\Delta v = 4.53 \text{ cm}$ corresponds to the unstable state of the geotechnical system, which leads to the formation of a roll of the structure. As can be seen from the diagram, the bifurcation process occurs at a load $P<P_{cr}$. This suggests that under vibration exposure, the static load P, which is the mass of the floors of the building, has a greater effect on reducing the stability of structures than in the absence of vibration noise.

4 Discussion

To evaluate the effectiveness of the proposed method, the roll of the structure was calculated according to the standard methodology using the dynamic coefficient K_d [19]. As a result of the design calculations for the action of the static load, taking into account the applied forces, the elastoplastic properties of materials and changes in their strength characteristics, the maximum strain ν_{max} was obtained at which the maximum displacement of the structure while maintaining its stability was 5.76 cm.

Figure 1. Design model of a frame building model with one degree of freedom.

Figure 2. Bifurcation diagram of the displacement of the building structure when the load changes.
The difference between the obtained limit values is \(\Delta \nu = 5.76 - 3.89 = 1.87 \text{ cm} \), which is significant in the theory of the stability of structures.

As a result of the simulation, the effectiveness of applying the bifurcation analysis method was confirmed in comparison with the traditional methodology for determining the permissible movement of structural elements of a structure. It was established that under vibration exposure, the static load, which is the mass of the floors of the building, has a greater effect on reducing the stability of structures than in the absence of vibration factors. The results obtained in this article correlate well with the results of similar studies presented in [20, 21], which indicates their adequacy.

5 Conclusion

As a result of the studies, an approach to assessment of the construction stability and identify negative changes in local points of the geotechnical system using bifurcation diagrams of vibration factors was developed and described. Using the described model of the stability of structures and methods of chaos theory when analysing data on the displacements and vibration frequencies of local points (buildings), it is possible to determine the initial stage of the transition of the geo-technical system to an unstable state (bifurcation points). In this case, according to the use of the modular principle of organizing the information-analytical system of geotechnical monitoring, it is possible to localize not only the sites with the least stability, but also the sources of instability development (the initial stages of the development of geodynamic processes).

The result of the studies indicates the effectiveness of the application of the described method in the automated systems of geotechnical control, which makes it possible to identify negative changes at the local point of the geotechnical system and determine the critical values of the vibration effect, which manifests itself in a change in the accelerations of the structural elements of the structure.

Acknowledgments

This paper is an output of the science project executed with the support of a grant of the President of the Russian Federation № MD-1800.2020.8.

References

[1] Yang B, Xiong K, Chen Y, Chen J, Dong J 2015 Deformation monitoring information of geo mechanical model test and its application in engineering ichuan Daxue Xuebao (Gongcheng Kexue Ban) Journal of Sichuan University (Engineering Science Edition) 47(4), pp 14-21. doi: 10.15961/j.jsuese.2015.04.003

[2] Zuo S, Li F, Zhang C 2016 Numerical and experimental investigations on the vibration band gap properties of periodic rigid frame structures Acta Mechanica 227(6), pp 1653-1669. doi: 10.1007/s00707-016-1587-4

[3] An X, Fan H, Zhang C 2020 Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures Journal of Sound and Vibration 475, 115292. doi: 10.1016/j.jsv.2020.115292

[4] Ivaschuk O, Grecheneva A, Kuzichkin O, Aparin I, Dorofeev N 2018 Application of the accelerometric control method of transport stream in the system of geotechnical monitoring. In: International multidisciplinary scientific geconference surveying geology and mining ecology management, vol. 18 (1.2) pp 91-98: SGEM, Albena.

[5] Dyniak O, Lavrova N 2015 Effect of vibration loads from subway to geological environment. In: 14th age international conference on geoinformatics – Theoretical and applied aspects, geoinformatics, 115981.

[6] Kuzichkin O R, Grecheneva A V, Dorofeev N V, Mishunin V V 2018 Geotechnical monitoring of the objects based on the method of inclinometric control of own frequencies Journal of Advanced Research in Dynamical and Control Systems 10(13), pp 616-619.

[7] Grecheneva A V, Kuzichkin O R, Dorofeev N V, Mikhaleva E S 2018 Geotechnical monitoring
of the buildings on the basis of analysis of transfer functions and cyclic vibrational technogenic loads Journal of Advanced Research in Dynamical and Control Systems 10(2), pp 1995-2003.

[8] 2016 GOST R ISO 10137-2016: Fundamentals of calculation of building structures. Operational reliability of buildings under vibration.

[9] 2017 ISO/TS 14837-31:2017 Mechanical vibration – Ground-borne noise and vibration arising from rail systems Part 31: Guideline on field measurements for the evaluation of human exposure in buildings ISO: Geneva, Switzerland.

[10] Grecheneva A, Eremenko V, Kuzichkin O, Dorofeev N 2017 The method of selection of the key geodynamic objects CEUR Workshop Proceedings 1839, pp 74-83.

[11] Bykov A, Kuzichkin O, Dorofeev N, Koskin A 2017 Information-hardware Support of Systems of the Automated Electromagnetic Monitoring of Geodynamic Objects Procedia Computer Science 103, pp 253-259. doi: 10.1016/j.procs.2017.01.098

[12] Mkrtychev O 2019 Degradation of Dynamic Parameters of Reinforced Concrete Buildings during an Earthquake. In: 28th annual russian-polish-slovak seminar on theoretical foundation of civil engineering; Zilina; Slovakia; IOP Conference Series: Materials Science and Engineering 661(1) 012013. doi: 10.1088/1757-899X/661/1/012013

[13] Zhang Y, Jiang N, Zhou C, Wu T, Luo X, Xia Y 2019 Dynamic response of building structures with high-rise frames caused by blasting vibration at adjacent subway foundation pit Meitan Xuebao Journal of the China Coal Society 44, pp 118-125. doi: 10.4028/www.scientific.net/AMR.250-253.2382

[14] Andreikiv O E, Shtayura N S 2019 Computational Models of Fatigue Cracks Growth in Metallic Materials Under the Action of Force and Physicochemical Factors Materials Science 54(4), pp 465-476. doi: 10.1007/s11003-019-00206-1

[15] Eppes M C, Hancock G S, Chen X, Arey J, Dewers T, Huettenmoser J, Kiessling S, Moser F, Tannu N, Weiserbs B, Whitten J 2018 Rates of subcritical cracking and long-term rock erosion Geology 46(11), pp 951-954. doi: 10.1130/G45256.1

[16] Priezjev N V 2019 Accelerated relaxation in disordered solids under cyclic loading with alternating shear orientation Journal of Non-Crystalline Solids 525, 119683. doi: 10.1016/j.jnoncrysol.2019.119683

[17] Monteiro L H A 2019 A discrete-time dynamical system with four types of codimension-one bifurcations Applied Mathematics and Computation 354, pp 189-191. doi: 10.1016/j.amc.2019.02.034

[18] Devaney R L 1992 A First Course in Chaotic Dynamical Systems: Theory and Experiment. CRC Press, Boca Raton. doi: 10.1201/9780429280665

[19] Barkan D D 1962 Dynamics of bases and foundations. New York: McGraw-Hill.

[20] Zhou Z, Su B, Wang Z, Shu X, Zhao L 2016 Impact response of aluminium alloy foams under complex stress states Latin American Journal of Solids and Structures 13 (4), pp 665-689. doi: 10.1590/1679-78252244

[21] Zhang P, Li X, Wang Z, Zhao L, Yan X 2018 Dynamic blast loading response of sandwich beam with origami-inspired core Results in Physics 10, pp 946-955. doi: 10.1016/j.rinp.2018.07.043