Magnetic frustration effect in the multi-band vanadate NaV$_2$O$_4$

Hikaru Takeda1, Masayuki Itoh1 and Hiroya Sakurai2
1Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
2National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
E-mail: takeda.hikaru@d.mbox.nagoya-u.ac.jp

Abstract. We have performed 23Na and 51V NMR measurements to study the magnetic frustration effect on the local magnetic properties of NaV$_2$O$_4$ with the double chain structure. In the paramagnetic state, we find the presence of the ferromagnetic interaction, which competes with the antiferromagnetic interaction, coming from the multi-band effect. The spin structure in the magnetically ordered state, an incommensurate helical structure which appears due to the competition between the magnetic interactions, is proposed. Thus the magnetic frustration closely related to the multi-band effect is concluded to play an essential role for the magnetic properties of NaV$_2$O$_4$.

1. Introduction

Mixed-valence vanadium oxides with geometrically frustrated lattice show fascinating physical phenomena such as heavy fermion behavior in LiV$_2$O$_4$ with the spinel structure [1]. Recently NaV$_2$O$_4$ with the mixed valence of V$^{3+}$:V$^{4+}$=1:1 has attracted attention as a candidate of the itinerant frustrated systems [2]. This vanadate crystallizes into the CaFe$_2$O$_4$ type structure which has a V$_8$O$_{16}$ framework composed of double chains of edge sharing V(1)O$_6$ or V(2)O$_6$ octahedra. Na atoms are located in a tunnel of the framework. Then the double chain structure is expected to have a low dimensional electronic structure with the geometrical frustration.

NaV$_2$O$_4$ exhibits metallic conductivity down to 40 mK, and a transition from the paramagnetic to antiferromagnetic (AFM) states occurs at T_N=140 K [2]. Above T_N, the presence of a ferromagnetic (FM) correlation was reported from the magnetic susceptibility measurement in spite of the AFM transition. However, the origin of the FM interaction has not been clarified. Below T_N, the AFM3 phase appears at low magnetic fields in the temperature T versus magnetic field H phase diagram which includes the AFM1 and AFM2 phases [3]. The spin structures in the AF phases remain controversial in spite of several experimental studies [2, 4, 5].

In this study, we have made 23Na and 51V NMR measurements to investigate the magnetic frustration effect on the local magnetic properties of NaV$_2$O$_4$. We confirm the presence of the FM correlation in the paramagnetic phase and discuss the origin of the FM interaction on the basis of the multi-band effect. An incommensurate helical spin structure, which comes from the competition between the FM and AFM interactions, in the AFM3 phase is proposed.
2. Experiments

Single crystals of NaV$_2$O$_4$ were prepared by the hydrothermal synthesis method in a high-pressure furnace [3]. A crystal of 0.5×1.0×1.5 mm3 was used for present NMR measurements. 23Na and 51V Fourier-transformed (FT) NMR spectra were measured in a magnetic field of H_0=3.0 T and 5.8701 T by using a pulsed spectrometer. The 23Na Knight shift was determined as $K=(\nu_{\text{res}}-\nu_0)/\nu_0$ where ν_{res} and ν_0 (=66.114 MHz) are 23Na resonance frequencies in the NaV$_2$O$_4$ sample and the aqueous NaVO$_3$ solution, respectively. Frequency-swept 51V NMR spectra at 4.2 K were taken point by point in zero external field.

3. Results and discussion

Figure 1 shows the T dependence of the 23Na Knight shift ^{23}K determined from the peak position in the 23Na FT NMR spectra with H_0 (=5.8701 T) applied along the direction of the magic angle in the ab plane where the electric quadrupole splitting vanishes as shown in the inset of Fig. 1. The T dependence of ^{23}K obeys above 180 K the Curie-Weiss law $^{23}K=C/(T-\Theta)$ with $C=0.17$ K and the Weiss temperature $\Theta=96$ K. It should be noted that the positive value of Θ indicates the presence of the FM correlation. The similar behavior was also observed in the T dependence of the 51V Knight shift. The origin of the FM correlation is closely related to the multi-orbital state at the Fermi level in NaV$_2$O$_4$. The mirror symmetry at the V sites leads to the splitting of the t_{2g} orbital into the doublet, d_{yz} and d_{zx}, and the singlet d_{xy}. The doublet orbital spreads to the rung direction in the double chain, whereas the singlet spreads to the leg direction. Then 3d electrons which occupy the doublet are considered to generate the FM interaction due to the Hund coupling, which is the origin of the FM correlation observed in the paramagnetic state, whereas 3d electrons on the d_{xy} orbital lead to the AFM interaction. Thus the competition between the FM and AFM interactions is expected in the double chain.

In a magnetically ordered state, spontaneous magnetic moments generally generate an internal field H_n at a nuclear site. Then the NMR frequency ν_{res} is written as

$$\nu_{\text{res}} = 2\pi \gamma_n |H_0 + H_n|,$$

where γ_n is the nuclear gyromagnetic ratio. The inset in Fig. 2 (a) shows 23Na NMR spectrum with H_0 (=5.8701 T) $\parallel b$ at several temperatures. One central and two satellite lines split by the electric quadrupole interaction are observed above T_N, whereas the characteristic spectra with six peaks appear below T_N. The spectrum below T_N is composed of three broad spectra due to one central and two satellite transitions. Each broad spectrum has two peaks denoted by the
arrows in Fig. 2 (a) and clearly shows a broad distribution of H_0 at the Na site. The difference between the NMR frequencies denoted by the red arrows in the spectrum of the central transition $\Delta \nu_{\text{res}}$ shows the T dependence, as presented in Fig. 2 (a), which obeys the T dependence of the ordered magnetic moment.

Figure 2. (Color online) (a) Temperature dependence of the difference between resonance frequencies of the peak positions denoted by the red arrows in the 23Na central spectra, $\Delta \nu_{\text{res}}$, with H_0 (=5.8701 T) applied along the b axis in NaV$_2$O$_4$. The inset shows the temperature dependence of the 23Na NMR spectrum with $H_0 \parallel b$. (b) The angular dependence of $\Delta \nu_{\text{res}}$ with H_0 (=3.0 T) rotated in the ab and bc planes at 20 K in NaV$_2$O$_4$.

Figure 3. 51V NMR spectrum under zero external field at 4.2K in NaV$_2$O$_4$.
At H_0=3.0 T and T=20 K in the AFM3 phase of NaV$_2$O$_4$, the 23Na NMR spectra similar to the inset of Fig. 2 (a) were observed with H_0 applied along any direction. Figure 2 (b) shows the angular dependence of $\Delta \nu_{\text{res}}$ with H_0 rotated in the ab and bc planes. This angular dependence is governed by the spin structure via the classical dipole interaction from the magnetic moments at the V sites. The fact that $\Delta \nu_{\text{res}}$ for $H_0 \perp a$ is larger than that for $H_0 \parallel a$ indicates that the direction of the magnetic moments may be parallel to the bc plane, if an inter-chain ferromagnetic spin configuration is assumed. The broad spectra observed in the present NMR experiments clearly reject the collinear AF spin structures proposed in the magnetic susceptibility [2] and μSR measurements [4]. Thus we discuss in the following two models which can reproduce the broad 23Na NMR spectra and the angular dependence of $\Delta \nu_{\text{res}}$. One is an incommensurate helical structure and the other is an incommensurate spin density wave (SDW) structure proposed by the neutron scattering measurement [5]. However, the SDW model cannot explain the 51V NMR spectrum under zero external field at 4.2 K as shown in Fig. 3, because a spectrum spread down to zero frequency expected for the SDW model is inconsistent with the spectrum observed in the frequency range 85-140 MHz. This 51V spectrum indicates an incommensurate spin structure in the AFM3 phase and supports the helical model. Thus we propose the incommensurate helical spin structure which is reasonably expected to appear by the competition between the FM and AFM interactions in the double chain.

4. Conclusion
We have performed 23Na and 51V NMR measurements to investigate the frustration effect on the local magnetic properties of NaV$_2$O$_4$. We confirmed that the ferromagnetic correlation exists in the paramagnetic state from the temperature dependence of the 23Na Knight shift. We also discussed the origin of the ferromagnetic interaction on the basis of the 3d orbital shift. In the magnetically ordered state, we proposed the incommensurate helical spin structure which appears due to the competition between the ferromagnetic and antiferromagnetic interactions in the double chain.

Acknowledgement
This study was supported by the JSPS Institutional Program for Young Researcher Overseas Visits and by the Grant-in-Aid for Scientific Research on Priority Areas □ Novel State of Matter Induced by Frustration □ (No. 22014006) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References
[1] Kondo S, Johnston D-C, Swenson C-A, Borsa F, Mahajan A-V, Miller L-L, Gu T, Goldman A-I, Maple M-B, Gajewski D-A, Freeman E-J, Dilley N-R, Dickey R-P, Merrin J, Kojima K, Luke G-M, Uemura Y-J, Chmaissem O and Jorgensen J-D 1997 Phys. Rev. Lett. 78 3729.
[2] Yamaura K, Arai M, Sato A, Karki A-B, Young D-P, Movshovich R, Okamoto S, Mandrus D and Takayama-Muromachi E 2007 Phys. Rev. Lett. 99 196601.
[3] Sakurai H 2008 Phys. Rev. B 78 094410.
[4] Sugiyama J, Ikedo Y, Goko T, Ansaldo E-J, Brewer J-H, Russo P-L, Chow K-H and Sakurai H 2008 Phys. Rev. B 78 224406.
[5] Nozaki H, Sugiyama J, Masson M, Harada M, Pomjakushin V, Sikolenko V, Cervellino A, Roessli B and Sakurai H 2010 Phys. Rev. B 81 100410.