Three Measurable and Modifiable Enteric Microbial Biotransformations Relevant to Cancer Prevention and Treatment

Gregory A. Plotnikoff, MD, MTS, FACP, United States

ABSTRACT
Interdisciplinary scientific evaluation of the human microbiota has identified three enteric microbial biotransformations of particular relevance for human health and well-being, especially cancer. Two biotransformations are counterproductive; one is productive. First, selective bacteria can reverse beneficial hepatic hydroxylation to produce toxic secondary bile acids, especially deoxycholic acid. Second, numerous bacterial species can reverse hepatic detoxification—in a sense, retoxify hormones and xenobiotics—by deglucuronidation. Third, numerous enteric bacteria can effect a very positive biotransformation through the production of butyrate, a small chain fatty acid with anti-cancer activity. Each biotransformation is addressed in sequence for its relevance in representative gastrointestinal and extra-intestinal cancers. This is not a complete review of their connection with every type of cancer. The intent is to introduce the reader to clinically relevant microbial biochemistry plus the emerging evidence that links these to both carcinogenesis and treatment. Included is the evidence base to guide counseling for potentially helpful dietary adjustments.

INTRODUCTION
As far back as the 1890s, a connection between cancer and bacteria was noted with the successful treatment of inoperable sarcomas by injections of bacteria.1 Since then, the most widely understood link between cancer and bacteria has been the induction of gastric MALT (mucosa-associated lymphoid tissue) lymphoma by the bacterial pathogen Helicobacter pylori. This microbe has been officially recognized as a carcinogen. And, surprisingly, successfully treating the gastric lymphoma means first successfully treating the bacteria.

But the relationship between gastric cancer and H pylori is much more complex than the easily understood 1:1 causality of a given carcinoma with a given illness or a given pathogen with a given illness. For example, we now know that H pylori alone is not enough to induce stomach cancer. Promotion requires the presence of a complex microbiota. Mice with just H pylori develop fewer tumors than regular mice.2 Moreover, the presence of H pylori infection lowers the risk of esophageal cancer.3,4 These observations emphasize the need to move from a specific pathogen/infection model to an ecological model of the microbiota as a system.

The importance of an ecological approach has certainly been suggested by studies on germ-free mice that document the microbiota have tumor-promoting capacity in multiple carcinogenesis models both directly (eg, colon)5 and indirectly (eg, liver).6 And, likewise, in regular mice, treatment with antibiotics to eliminate bacteria can reduce the development of colon7 and liver cancers.8

In late 2013, the microbiota-cancer link was firmly established by several rigorous studies that addressed both prevention and treatment. First came documentation of a causal link between dysbiosis of the intestinal microbiota and colon tumorigenesis.9 Next came two reports that documented how the microbiota can alter a patient’s response to chemotherapeutic agents.10,11

For clinicians, translating these basic science insights and breakthroughs to everyday practice may seem impractical. After all, few have the technology to document the complexity of a given patient’s intestinal microbiota. However, all clinicians and researchers do have access to three accessible, measurable, and modifiable products of the microbiota.

For this reason, this review focuses on the three microbial biotransformations readily measurable in stool samples: deoxycholic acid (DCA), beta-glucuronidase, and butyrate. Each is addressed in sequence for its relevance in selected gastrointestinal and extra-intestinal cancers. This is not a complete review of their connection with every type of cancer. The intent is to introduce the reader to clinically relevant microbial biochemistry plus the emerging evidence that links these to both carcinogenesis and treatment. Included is the evidence base to guide counseling for potentially helpful dietary adjustments.

1. FIRST MICROBIAL BIOTRANSFORMATION

Microbial Enzyme: 7-α-dehydroxylase
Microbial Biotransformation: Dehydroxylation
Functional Result: Production of toxic secondary bile acids

Background
Bile acids and bile salts are best known as the highly effective detergents necessary for the fat solubiliza-
DCA have been linked to several cancers. DCA does not undergo deconjugation, whereas the secondary bile acids, lithocholic acid (LCA) and deoxycholic acid (DCA), do retain the capacity to reverse cell cycle, mitosis, proliferation, and apoptosis.

Of all these bile acid receptors, FXR is the ligand-activated transcription factor responsible for bile acid and triglyceride synthesis, bile acid uptake and export, plus bile acid conjugation and detoxification.

Additionally, FXR appears to play a significant role in many cancers. It has high affinity for the primary bile acids CA and CDCA as well as the major secondary bile acids DCA and LCA. Four isoforms exist so tissue-to-tissue variability in function may exist for primary and secondary bile acids. FXR appears to be activated by unconjugated bile acids.

Pertinent Microbial Biotransformation

Bile salts are synthesized from cholesterol in hepatocytes via cholesterol-7α-hydroxylase (CYP 7A1). The primary bile acids produced, CA and CDCA, after deconjugation are then 7α-dehydroxylated in the large intestine by enteric bacteria to form the secondary bile acids DCA and LCA. This biotransformation occurs only with intestinal bacteria. This is inhibited at low colonic pH associated with the fermentation of resistant starches.

Figure 1 The primary bile acids chenodeoxycholic acid (CDCA) and cholic acid (CA) are produced in the liver, stored in the gallbladder, and, when prompted, discharged into the small intestine. These support the digestion of fats, and 95% are reabsorbed in the distal ileum and returned to the liver via the enterohepatic circulation. These can also circulate to the entire body. Approximately 5% pass on to the large intestine, where they may be transformed into the potential toxins deoxycholic acid (DCA) and lithocholic acid (LCA). DCA is subject to uptake, systemic circulation, and return to the liver where it can be concentrated and stored in the gall bladder.
Responsible Microbiota Bacteria

Secondary bile acids are produced by large intestine anaerobic bacteria from the genus *Clostridium*, specifically clostridial cluster XIVa. These are gram-positive, spore-forming anerobes that are members of the phylum Firmicutes. Only members of this cluster with the bai operon can produce these secondary bile acids.

Laboratory Measurements

Fecal deoxycholic acid (DCA).

Representative Consequences for Cancer

Esophageal and Gastroesophageal Cancers

Despite the widespread use of proton pump inhibitors (PPIs), and despite the rapid decline in the prevalence of *Helicobacter pylori*, the incidence of both esophageal and gastroesophageal cancers has increased at a dramatically greater rate than for any other cancer.

One under-recognized factor in these cancers is the role of unconjugated bile acids including DCA from gastroduodenal reflux. Bile acids are not expected to be found in the gastro-esophageal junction, but their presence has been clearly documented and correlates with the degree of pathology seen in the progression from Barrett’s esophagus (BE) to esophageal adenocarcinoma. In patients with both GERD and BE, refluxed fluids show high concentrations of DCA. Use of acid-suppressing medications, such as PPIs, can result in bacterial overgrowth in the stomach and small intestine with increased production of unconjugated secondary bile acids, particularly DCA. This is important because in biopsies or cells lines derived from such patients, in *vitro* and in *vivo* bile acid exposure induces expression of multiple inflammatory mediators, oxidative stress, and DNA damage. This is confirmed in *in vivo* animal models where mice fed a zinc-deficient diet supplemented with DCA demonstrate increased oxidative stress and development of BE-like pathologic changes.

The bile acid receptor FXR is over expressed in Barrett’s esophagus and esophageal adenocarcinoma. FXR mediates multiple bile acid–induced alterations in gene expression relevant to cancer cell growth. Overexpression is associated with higher tumor grade, larger tumor size, and lymph node metastasis. Inhibition of FXR (by guggulsterone) induced apoptosis in *vitro* and reduced tumor formation and growth in nude mouse xenografts. This reduced viability of esophageal and cancer cells occurred in a time-dependent and dose-dependent manner.

Breast Cancer

Although breast tissue is not considered to be a bile acid target, the intestinal microbiota and secondary bile acids were recognized as potential agents in breast cancer as far back as 1971. The reasoning is as follows. Extra-intestinal effects are possible when secondary bile acids produced in the large intestine are passively absorbed and circulate via the blood stream to other tissues. Most surprisingly, intestinal bile acids are found in breast cyst fluids in concentrations up to 50 times that of the serum. Human studies using labeled chenodeoxycholate administration prior to breast cyst aspiration demonstrated rapid uptake and concentration of intestinal bile acids into benign breast cysts. However, with an unsupplemented diet, day-to-day variation is minimal.

Additionally, the bile acid receptor FXR is also found in normal breast duct epithelial cells as well as breast cancer cell lines and tissue specimens. The FXR plays several roles in breast cancer. The primary bile acid CDCA activates FXR for beneficial purposes including growth inhibition of MCF-7, MDA-MB-468 and tamoxifen-resistant breast cancer cells (MCF-7 TR1). Specifically, CDCA in *vitro* treatment significantly reduced epidermal growth factor (EGF)-induced growth and blocked HER2/MAPK signaling. Additionally, in breast cancer cell lines MCF-7 and MDA-MB-468, the FXR CDCA-like ligand GW4064 induced SHP, the atypical nuclear receptor that down-regulates genes by interacting with other nuclear receptors including the estrogen receptor to prevent gene transcription. In this case, the FXR bile acid receptor activation results in inhibited induction of aromatase.

In contrast to CDCA, the secondary bile acids DCA and LCA activate FXR in non-beneficial ways. In this case, FXR activation results in multiple pro-cancer effects relevant to breast health including: (1) estrogen-receptor activation, (2) promotion of cancer cell survival, (3) induced migration of metastatic human breast cancer MDA-MB-231 cells and (4) expression of drug resistance proteins. This appears to be quite important. Post-menopausal women with newly diagnosed breast cancers have demonstrated mean serum levels of DCA that were 52% higher (*P* = .012) than those of controls.

Possible Therapeutic Interventions: 7-α-dehydroxylase

1. Low-animal fat, low meat, low processed food diet. Western or standard American diets are associated with elevated serum levels of bile acids and elevated fecal levels of the potentially toxic secondary bile acids DCA and LCA. Persons on a low animal fat or vegetarian diet require less primary bile acid production and demonstrate reduced concentrations of 7-α-dehydroxylating bacteria. Omnivorous diets are associated with increased, and vegetarian diets are associated with reduced, concentrations of clostridial cluster XIVa bacteria.

2. Resistant starch diet. Natural sources of resistant starches include cereal starches, legume starches, green banana and potatoes, raw, cooked and cooled, or as unmodified potato starch. Resistant starches have multiple health benefits including reduced colonic pH and decreased DCA and LCA production.

3. Discontinuation of acid suppressing medications. Use of acid suppressing medications are associated with a high prevalence of bacterial overgrowth.
and markedly increased amounts of unconjugated secondary bile acids.

4. Curcumin/Turmeric in diet or by supplementation 500 mg per day. In one randomized study of 33 patients with Barrett’s esophagitis, esophageal biopsies demonstrated in vivo increased apoptosis and reduced NF-kappa B activation. In vitro studies of tissues from these patients demonstrated that curcumin abrogated bile-driven effects.

5. Z-guggulsterone (gugulipid). This is a plant sterol from the resin of Cammiphora mukul that is an effective antagonist of FXR that lowers cholesterol and may have anti-esophageal cancer effects. and multiple anti-breast cancer effects including migration prevention and induced apoptosis. The gugu plant has been used in the Ayurvedic healing tradition for states similar to metabolic syndrome as well as cancer.

6. Ursodeoxycholic acid (UCDA) This secondary bile acid, sold as Ursodiol, may serve as an anti-dote to the toxic secondary bile acids DCA and LCA. UCDA protects mitochondria against DCA-induced oxidative stress, and attenuates chemically-induced colitis and colitis-associated adenocarcinoma and squamous cell carcinoma.

7. Probiotic supplementation: Secondary bile acid production may be reduced by administration of lactobacilli and bifidobacteria probiotics. Specifically, several species can assimilate or accumulate the primary bile acid cholic acid. Less cholic acid can mean less deoxycholic acid. Likewise, increased cholic acid substrate supports increased population of clostridial cluster XIVa species and increased DCA production.

Precaution
Taurine supplementation: The amino acid taurine, after deconjugation from bile acids, is transformed in the colonic bacteria into hydrogen sulfide. This itself is a risk factor for both inflammatory bowel disease and colon cancer. Moreover, increased hydrogen sulfide production results in 7-α-dehydroxylation stimulation and increased DCA production. No human taurine supplementation trial exists that assesses hydrogen sulfide and DCA production.

2. SECOND MICROBIAL BIOTRANSFORMATION
Microbial Enzyme: β-glucuronidase
Microbial Biotransformation: Deglucuronidation
Functional Result: Reversal of liver detoxification
Background
In the liver’s phase II of detoxification, xenobiotic molecules such as drugs and pollutants as well as estrogens, androgens, bile acids, glucocorticoids, mineralocorticoids, retinoids, and fatty acid derivatives are made more hydrophilic by conjugation with glucuronic acid. This process, termed glucuronidation, allows excretion via the bile or urine (Figure 2). The class of responsible liver enzymes is termed UDP-glucuronyl transferase. The resulting molecules are termed glucuronides. Estrogens are metabolized primarily in the liver via conjugation, which includes glucuronidation. The resulting conjugated estrogens are not ligands for estrogen receptors and are excreted from the liver into the bile and later from the body in the stool. However, in the large intestine, these conjugated estrogens can be subjected to deconjugation of the added glucuronic acid, a complete reversal by intestinal bacteria of the hepatic
detoxification. These deconjugated estrogens can then be reabsorbed through the mucosa and re-enter the circulation via the portal vein.

Pertinent Microbial Biotransformation

Reversal or deconjugation of liver glucuronidation depends upon the presence of the bacterial enzyme beta-glucuronidase. This enzyme hydrolyzes \(\beta \)-D-glucurononides to glucuronic acid and an aglycone.

The intestinal microbiome can vary significantly in its capacity to deconjugate hormones such as estrogens and xenobiotics like chemotherapy drugs and heterocyclic amines. Altering the microbiome by administration of antibiotics results in significant increases in fecal progesterone and estriol metabolites.

Responsible Microbiota Bacteria

Numerous bacteria harbor genes for beta-glucuronidase activity including Firmicutes genera (Lactobacillus, Streptococcus, Clostridium, Ruminococcus, Roseburia, Faecalibacterium), the Proteobacteria genus Escherichia and in one species from the phyla Actinobacteria (Bifidobacterium dentium). Many of these bacteria are found within the Clostridium leptum group (cluster IV) and Lachnospiraceas (cluster XIVa).

Laboratory Measurements

Fecal \(\beta \)-glucuronidase.

Representative Consequences for Cancer

Colon, Pancreatic, Ovarian, and Lung Cancers

The chemotherapeutic agents topotecan and irinotecan are pro-drugs that undergo transformation into the active drug SN-38 by hepatic carboxylesterases. SN-38 is then metabolized into the inactive metabolite SN38G by the liver via glucuronidation and excreted in the bile. Reactivation of SN38 in the intestines can occur via bacteria mediated removal of the glucuronide group. SN38 does not appear to be subject to enterohepatic recirculation and remains active as a poison of human topoisomerase I. This means inhibition of both DNA replication and transcription with preferential activity in rapidly dividing cells, both malignant and normal.

With deconjugation and no enterohepatic recirculation, bacterial \(\beta \)-glucuronidase activity results in high concentrations of the activated forms of the chemotherapeutic pro-drugs irinotecan and topotecan in the intestinal tract. These drugs harm rapidly dividing intestinal epithelial cells and cause tight junction defects and mucosal barrier dysfunction. The result can be dose-limiting, or even life-threatening, diarrhea. Inhibitors of bacterial \(\beta \)-glucuronidases protect mice from diarrhea without altering the microbiome or harming mammalian cells.

Gastrointestinal Cancers

Heterocyclic aromatic amines are genotoxic and carcinogenic compounds formed in meat and fish during cooking. These are metabolized in the liver by UDP glucuronosyl transferases to harmless glucuronidated derivates that are excreted via the bile. However, the presence of \(\beta \)-glucuronidase will reverse this. For example, in the digestive lumen in one animal model, the presence of \(\beta \)-glucuronidase increased the genotoxicity of heterocyclic amines by 300%. This phenomenon may explain why prebiotics, such as inulin and non-digestible oligosaccharides, both reduce \(\beta \)-glucuronidase concentrations and protect against carcinogenesis in animal models.

Breast Cancer

With deconjugation and enterohepatic recirculation, \(\beta \)-glucuronidase bacterial activity can result in sustained elevation of sex hormone levels including estrogens. This is concerning because breast cancer risk for postmenopausal women in associated with the concentration of serum estrogens and androgens and circulating sex hormone concentrations are strongly associated with severely established risk factors for breast cancer.

In a study of 51 male and female epidemiologists at the National Institutes of Health, fecal \(\beta \)-glucuronidase correlated inversely with fecal total estrogens, both conjugated and unconjugated, as well as serum estrone. The study documented that non-ovarian systemic estrogens were strongly and directly associated with all measures of fecal microbiome richness and Clostridia taxa. The authors concluded that intestinal microbial richness as well as \(\beta \)-glucuronidase influence the levels of non-ovarian estrogens via enterohepatic circulation.

Possible Therapeutic Interventions: \(\beta \)-glucuronidase

1. Adoption of a plant-based low meat or vegetarian diet. \(\beta \)-glucuronidase activity is markedly increased in human volunteers on a high meat diet compared to a vegetarian diet. Omnivorous diets are associated with increased, and vegetarian diets are associated with reduced, concentrations of clostridial cluster XIVa bacteria.

2. Adoption of a raw vegan diet. This change from a standard diet rapidly and significantly reduces \(\beta \)-glucuronidase activity.

3. Avoidance of charred meat or fish (heterocyclic amines) plus ingestion of probiotics containing L casei or L helveticus and S thermophilus groups or either Bifidobacterium animalis or B longum to bind carcinogenic heterocyclic amines generated with grilling meats and fish. Of note, heterocyclic amines are less genotoxic and carcinogenic in individuals who consume mainly plant-derived foods.

4. Ingestion of cultured or fermented dairy products along with cruciferous vegetables and other prebiotics.

5. Ingestion of a multispecies probiotic (that includes Lactobacillus GG) or Lactobacillus strain GG by itself.

6. The Kampo (traditional Japanese herbal medicine)
formula termed *Hangeshashinto* may alter intestinal ecology and reduce irinotecan and topotecan diarrhea. This formula contains root of the herb *Scutellaria baicalensis* (Skullcap) that contains the beta-glucuronidase inhibitor baikal.

7. Ingestion of Kanjika, a rice-based Ayurvedic fermented food or the probiotic *L. plantarum* along with prebiotic fructooligosaccharides (FOS).

8. Ingestion of blackcurrant. Consumption of blackcurrant products (First Leaf, composed of blackcurrant extract powder, lactoferrin, and lutein, or Cassis Anthomix, blackcurrant extract powder) by healthy volunteers resulted in significant reduction in activity, significant reduction in pH, significant increases in lactobacilli and bifidobacteria, with significant reductions in Clostridium and Bacteroides species.

3. THIRD MICROBIAL BIOTRANSFORMATION

Microbial Enzymes: Butyrogenic Pathway (6 enzymes)

Microbial Biotransformation: Dietary Fiber to Acetyl-CoA to Butyrate

Functional Result: Colonocyte energy production

Background

Butyrate is a four-carbon short-chain fatty acid (SCFA) produced in the colon by bacterial fermentation (anaerobic respiration) of dietary fiber, complex carbohydrates that are unable to be either digested or absorbed in the small intestine. We depend upon saccharolytic anaerobic bacteria in our intestines for providing the enzymes necessary to break down such dietary fiber. Unlike the human genome, the intestinal microbiome is highly enriched with genes for digestion of dietary fiber. Moreover, by comparative analysis of microbial genes via the COG (clusters of orthologous groups) database, the colon’s microbiome is enriched with genes for the production of small chain fatty acids especially butyrate kinase, the last of six enzymes in the production of butyrate from acetyl-CoA (Figure 3).

Butyrate is the preferred substrate and the major source of energy for human colonocytes. We do not provide our colonocytes with this nourishment: our bacteria do. Butyrate is actively transported by two means (CMT1 and MCT1) into colonocytes whose expression is reduced in colonic epithelial tumor cells. Within colonocyte mitochondria, butyrate undergoes beta-oxidation into acetyl CoA and then enters the Kreb’s cycle with subsequent oxidative phosphorylation for ATP production. Unless energy production from butyrate is maximized, very little accumulates in either the cytoplasm or the nucleus. Butyrate produced in the gut can also be found in the systemic circulation.

Interest in butyrate follows from its capacity to effect histone acetylation, an epigenetic modification that is regulated by two classes of enzymes: histone deacetylases (HDACs) and acetylases (HATs). Control of acetylation
Acetylation is important for regulation of chromatin, the tight complex of DNA and associated proteins that enable DNA to fit inside the nucleus. The fundamental units of chromatin are nucleosomes, 147 bp of DNA wrapped 1.65 times around an octamer of core histone proteins. Acetylation of these histones decreases chromatin’s electrostatic interaction. This relaxes the tight structure of chromatin and allows transcription factors access to DNA to target gene promoters.14 In brief, acetylation induces transcription, and deacetylation represses transcription.

Butyrate effects acetylation by inhibiting HDAC deacetylation as well as supporting HAT acetylation. The latter is effected via butyrate undergoing beta-oxidation to acetyl CoA in the mitochondria and then combining with oxaloacetic acid in the first step of the Kreb’s cycle to yield citrate. The citrate shuttle transports citrate out of the mitochondria where it is converted by ATP citrate lyase (ACL) back to acetyl CoA and oxaloacetate. ACL is found in the nucleus, produces acetyl CoA, and regulates histone acetylation.15 ACL is in turn upregulated by glucose-induced signal transduction, an important finding for cancerous cells.16

Butyrate paradoxically has different effects in normal and cancerous cells. In normal colonocytes, butyrate metabolism results in oxidative phosphorylation to produce ATP. In tumor cells, however, glucose rather than butyrate is the primary source of energy. This means that the active transport of butyrate results in levels that exceed metabolic capacity for utilization. This results in elevated butyrate levels in the nucleus where key genes are regulated via butyrate-mediated HDAC inhibition. Additionally, in cancer cells, upregulation of ACL by glucose means that butyrate functions as an acetyl-CoA donor and also stimulates HAT-mediated histone acetylation. The result is upregulated expression of downstream target genes including genes for cell cycle arrest/cellular proliferation, differentiation, and apoptosis.17

Specifically, butyrate’s anti-cancer activities include cell cycle arrest via upregulation of p2118 and downregulation of cyclin D1 plus numerous pro-apoptotic mechanisms including WAF1, downregulation of apoptotic regulator Neurupin-1 (NRP-1),19 upregulation of BAK,20 downregulation of Bcl-xL and cyclin D1,21 activation of the JNK MAP kinase pathway,22 upregulation of membrane death receptors (DR4/5), higher-level and activation of Smad3 protein in TGF-beta-dependent apoptotic pathway, and activation of proapoptotic tBid protein, as well as lower levels of antiapoptotic proteins (cFLIP, XIAP).23

Independently of histone acetylation, butyrate is also an agonist for G protein-coupled receptors including GPR109A. This receptor is silenced in colorectal, breast, and other cancers but in the presence of butyrate is re-expressed. Butyrate binding results in induction of apoptosis via downregulation of Bcl-2, Bcl-xL, and cyclin D1 and upregulation of the death receptor pathway as well as suppression of nuclear factor-kappaB activation.24

Butyrate’s anti-cancer effects include suppression of NF-kappaB activation and thus gene expression for pro-inflammatory cytokines, inflammation-inducing enzymes, adhesion molecules, growth factors, heat shock proteins, and immune receptors.25,26 Butyrate also induces the expression of adhesion molecules including ICAM-1, V-CAM, and E-selectin.27,28

Moreover, butyrate may potentiate radiation therapy and chemotherapy with cisplatin,29,30,31 ARA-C, vincristine and etoposide32 as well as celecoxib.33

Pertinent Microbial Biotransformation

Complex carbohydrates are subjected in the colon to unique bacterial digestive enzymes not available from the human genome. Digestion results in glucose that can undergo anaerobic glycolysis to acetyl-CoA, the terminal oxidation product of glycolysis.

In obligate anaerobic bacterial cells, acetyl-CoA can then proceed through the butyrogenic pathway of six enzymes, resulting in butyrate production and ATP. For maintaining redox balance with ATP production, butyrate is the terminal electron acceptor.

In aerobic colonocytes, bacterially produced butyrate is subjected to beta-oxidation and returned to acetyl-CoA, which can then undergo oxidative phosphorylation with production of significant ATP.

Responsible Microbiota Bacteria

Gene-encoding enzymes for this pathway are widespread in genome-sequenced clostridia and related species.34

Laboratory Measurement

Fecal N-butyrate.

Representative Consequences for Cancer Colorectal

Increased butyrate stool concentration may optimize cancerous colonocyte apoptosis. Numerous studies in multiple colorectal cell lines have demonstrated that butyrate inhibits cell proliferation and stimulates apoptosis.35,36 In addition to the means noted above, sodium butyrate upregulates expression of annexin A1 (ANXA1) in human colon adenocarcinoma cells. Annexins are proteins that are important as factors in the invasiveness and proliferation of cancer cells.38 ANXA1 specifically is involved in both proliferation and apoptosis. Expression of ANXA1 appears relevant to outcomes in gastrointestinal cancers39-40 but not in other cancers, including breast cancer.41 At this time, the butyrate hypothesis has not been subject to any human trials.

Esophageal

Butyrate may augment the efficacy of fractionated ionizing radiation (IR) therapy. In KYSE-150R radio-resistant cells, butyrate increased radio-sensitivity, IR-induced ROS generation, and IR induced G2/M arrest
and apoptosis. Butyrate also increased p21 and inhibited Bmi-1 expression. Bmi-1 plays a key role in the functioning of endogenous stem cells and cancer stem cells.

Breast

The colonic SCFA butyrate appears to inhibit breast tumorigenesis. Multiple mechanisms appear relevant. In MCF-7 cells, butyrate induced P33-independent, Fas-mediated apoptosis. The G Protein–coupled receptor GPR109A activation inhibits genes relevant to cell survival and pro-apoptotic signaling. Specifically, activation potentiates anti-inflammatory pathways, decreases cyclic AMP production, induces apoptosis, and blocks colony formation and breast tumor growth. This receptor is expressed in normal mammary tissue irrespective of hormone receptor status and silenced in multiple breast cancer cell lines. Evidence supports GPR109A as a tumor suppressor in breast tissue. As with colon cancer, its re-expression and butyrate binding may induce apoptosis. In the MMTV/neu mouse model of spontaneous breast cancer, deletion of GPR109A increased tumor incidence, triggered early onset of tumorigenesis, and increased lung metastasis. In ER-positive breast cancer cell lines, butyrate was more potent than the steroidal anti-oestrogen ICI in regulating expression of cell cycle proteins and cell growth. Specifically, butyrate-mediated transcriptional and post-transcriptional regulation and ERα phosphorylation resulted in marked depletion of ERα expression. Butyrate appears to antagonize E2-dependent responses. In HER2/neu over-expressing cell lines, butyrate functioned synergistically with trastuzumab. In both differentiation-induced (HT-29) and cell death–induced (HeLa) cell lines, pretreatment of cells with butyrate followed by butyrate + paclitaxel resulted in increased therapeutic results in the HT-29 cells but proved detrimental in HeLa cells.

Possibly Therapeutic Interventions: Butyrate

1. Prebiotic diet
 a. High plant-based diet for fiber from difficult-to-digest plant polysaccharides (cellulose, hemicellulose, and lignins).
 b. Resistant starch (green bananas, raw potato, cooked then cooled potato).
 c. Inulin-containing foods (wheat, onion, bananas, garlic, asparagus, and chicory).
 d. Pectin-containing foods (dried citrus peels and apples, carrots, guavas, gooseberries, oranges, pears, plums, quince).
 e. Oligosaccharides: Fructooligosaccharides (FOS) include asparagus, bananas, barley, chicory, Jerusalem artichoke, jicama, leeks, wheat, and yacon. Galactooligosaccharides (GOS) include soybeans and bovine lactose derivatives.

2. Citrus pectin as a supplement.

3. Italian pecorino, Greek feta and other sheep cheeses made from lamb rennet paste as well as butter are rich in butyrate or its prodrug form tributyrin. Of note, the term butyrate comes from the word butter, its best-known dietary source.

4. Butyrate supplementation as an enteric coated tablet such as ButyrEn (Allergy Research Group, Alameda, California). Oral butyrate has both a short half life and is subject to first-pass hepatic clearance. Multigram doses are needed to achieve therapeutic concentrations in vivo. Side effects with oral use include headache, nausea, and anorexia.

5. Green tea ingestion. EGCG, an active ingredient of green tea, appears to work synergistically with butyrate in promoting apoptosis including cell cycle arrest and DNA damage in colorectal cancer cells.

6. DHA supplementation. DHA, one of the two long-chain fatty acids found in fish and krill oils, appears to work synergistically with butyrate to induce apoptosis.

Precaution

Glutamine supplementation: This is widely marketed for N-butyrate production support. However, many cancers actually depend upon glutamine for mitochondrial function, carbon and nitrogen donation, and NADH production for redox control and macromolecule synthesis. Cancer cell lines can consume 10 times greater rates of glutamine than any other amino acid. Many types of cancer cells are sensitive to glutamine deprivation. Pancreatic, lung, and glioma cancer cells, for example, cannot maintain viability, much less proliferate, in the absence of glutamine. Likewise, lymphoma cells can use glutamine for ATP production even in the absence of either oxygen or glucose.

CONCLUSION

This article’s explicit intention was to describe three biotransformations by intestinal microbiota relevant to both gastrointestinal and non-gastrointestinal cancers. Unintentionally, this review strengthens the biological importance of a diet low in animal fat and high in vegetables. In all three microbial transformations discussed here, a low–animal fat/high-vegetable diet is associated with beneficial ecological profiles including decreased production of toxic bile acids, decreased de-glucuronidation, and increased butyrate production.

Laboratory technologies now allow both clinicians and researchers to measure bacterial factors very relevant to cancer prevention and treatment. Specifically, quantification of deoxycholic acid, β-glucuronidase, and butyrate provides clinically relevant data that can guide dietary interventions and monitor clinical progress toward goals. Increased testing of these bacterial factors could lead to improved dietary adherence and enhanced supplementation strategies that reduce costs and improve outcomes for many conditions, including cancer.

The benefits for researchers appear to be quite promising as well. First, quantification of these three factors may help researchers define “super donors” for fecal microbial transplant. Second, use of these measures will help define the functional consequences to
the intestinal ecology of antibiotics, surgery, and chemotherapy. Third, these functional measures may provide greater insight into the potential confounders of clinical trials including chemotherapy trials.

The rapid emergence of a robust basic science literature on the intestinal microbiota in cancer means that many exciting hypotheses are being generated that need to be tested. The existing evidence suggests that the microbiota might be managed via diet, probiotics, prebiotics, and targeted antibiotics to minimize risk or optimize therapies. Most importantly, these three biotransformations represent microbial factors that are easily accessible, measurable, and modifiable. As such, focal testing to quantify these will likely play significant roles in future cancer prevention and treatment.

REFERENCES

1. Starnes CO. Coley’s toxins in perspective. Nature. 1992; 357: 11-12.
2. Lofgren JL, Whary MT, Gr Z, et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology. 2011; 140:1511-20.
3. Perk RM, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinoma. Nature Rev Cancer. 2002; 2: 28-37.
4. Islam F, Kamangar F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev Res (Phila). 2010; 3: 129-38.
5. Vannucci L, Stepankova R, Koskova H, Fierrova A, Rossmann P, Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol. 2008; 32(6): 1609-17.
6. Dapito DH, Mencin A, Gawk GY, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLCA. Cancer Cell. 2012; 21(5): 704-16.
7. Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and the frontier. Nutr Rev. 2008; 66; S88-S97.
8. Baeuerle PA, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Annu Rev Immunol. 2002; 20: 621-54.
9. Zackular JP, Baxter NT, Iverson KD, et al. The gut microbiome modulates colon cancer. Gastroenterology. 2011; 140(1): 210-20.
10. Zeng H, Botnen J, Hoge A, Huy H, Calleja M, Steinhoff M. Effect of bile acids and estradiol on thymidine incorporation from bone induce the migration of human breast cancer cells. J Lipid Res. 1981; 41: 737-45.
11. Hirano S, Nakama R, Tamiki M, Masuda N, Oda H. Isolation and characterization of a novel deoxyxylating bile acid 7-dehydroxylating fecal bacteria from cholesterol gall stone patients. J Hepatol. 2000; 32: 40-8.
12. Nehra D, Howell P, Williams CP, Beynon J. Toxic bile acids in gastroesophageal reflux disease: influence of gastric acidity. Gut. 1999; 44: 598-602.
13. Jurgens S, Meyer F, Spechler SJ, Souza R. The role of bile acids in the neoplastic progression of Barrett’s esophagus—a short representative overview. Z Gastroenterol. 2012; 50(1): 158-34.
14. Saito RR, Kusters JG, DeRooji FW, Kuipers JJ, Siersema PA. Bile acids and Barrett’s oesophagus: a sine qua non or coincidence? Scand J Gastroenterol Suppl. 2006; 243: 11-17.
15. Theisen J, Nehra D, Citron D, et al. Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in gastric bacterial overgrowth and deconjugation of bile acids. J Gastrointest Surg. 2000; 4(1): 50-4.
16. McQuaid KR, Lane L, Fennerty MB, Souza R, Spechler SJ. Systematic review: the role of bile acids in the pathogenesis of gastro-esophageal reflux disease and related neoplasia. Aliment Pharmacol Ther. 2011; 34: 148-65.
17. Guy NC, Gartrel, Holubec H, et al. A novel dietary-related model of esphagitis and barrett’s esophagus, a premaligent lesion. Nutr Cancer. 2007; 59: 217-227.
18. De Gottardi A, Dumonceau J, Martin F, et al. Expression of the bile acid receptor FXR in Barrett’s esophagus and enhancement of apoptosis by guggulsterone in vivo. Mol Med. 2006; 5: 48.
19. Guan B, Li H, Yang Z, Hoge A, Xu X. Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts. Cancer. 2011; 119(7): 1302-19.
20. Hill MJ, Goddard P, Williams RE. Gut bacteria and aetiology of cancer of the breast. Lancet. 2011; 377(9777): 737-45.
21. Russell DW. The enzymes, regulation and genetics of bile acid synthesis. Annu Rev Biochem. 2003; 72: 177-94.
22. Fioretti S, Cipitani A, Mencina A, Renga B, Di Tristriu R, Baldellia F. Counter-regulatory role of bile acid activated receptors in immunity and inflammation. Curr Mol Med. 2010; 10: 579-95.
23. Hirano S, Nakama R, Tamiki M, Masuda N, Oda H. Isolation and characterization of thirteen intestinal microorganisms capable of 7a-dehydroxylating bile acids. Appl Environ Microbiol. 1981; 41: 737-45.
24. Ridlon JM, Kang DJ, Hylemon PB. Bile salt transformations by human intestinal bacteria. J Lipid Res. 1986; 27:614-29.
25. Reddy BS, Narasara T, Weiberger BJ, Wynder EL. Promoting effect of bile acids and estradiol on thymidine incorporation in cancer cells. Cancer Res. 1971; 31(7): 1377-88.
26. Raju U, Katz J, Levitz M. Effect of bile acids and estradiol on thymidine incorporation into DNA in MCF-7 and MCF-10A breast cell lines. Steroids. 1997; 62(10): 643-6.
27. Javidi NB, Badui K, Miller DG, Cahan AC, Raju U, Levitz M. Breast-gut connection: origin of chenoheoxyacidic in breast cyst fluid. Lancet. 1994; 343(8898): 635-9.
28. Costarelli V, Sanders TA. Acute effects of dietary fat composition on postprandial plasma bile acid and cholesterol concentrations in healthy premenopausal women. Br J Nutr. 2001; 86(4): 471-87.
29. Swales KE, Korbonits M, Carpenter R, Walsh DT, Bishop-Bailey D. The farnesoid x receptor is expressed in breast cancer and regulates apoptosis and aromatase expression. Cancer Res. 2006; 66(20): 10210-6.
30. Giordana C, Catalano S, Panza S et al. Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene. 2011; 30(39): 4129-40.
31. Journe F, Debuec V, Chabotseus C, et al. Association between farnesoid X receptor expression and cell proliferation in estrogen receptor positive luminal-like breast cancer from postmenopausal patients. Breast Cancer Res Trel. 2009. 115(3): 532-35.
32. Journe F, Laurent G, Chabotseus C et al. Farnesol, a mevalonate pathway intermediate, stimulates MCF-7 breast cancer cell growth through farne-
soid-X receptor mediated estrogen receptor activation. Breast Cancer Res Treat. 2008; 107(1): 49-61.
33. Krishnamurthy K, Wang G, Rochefield D, Bieberich E. Deshydroxylate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res Treat. 2008; 106(1): 81-96.
34. Silva J, Dasgupta S, Wang G, Krishnamurthy K, Ritter E, Bieberich E. Lipids isolated from bone induce the migration of human breast cancer cells. J Lipid Res. 2006; 47: 743-53.
35. Spassieva S, Bieberich E. The gut to breast connection—Independence of ste-
role and sphingolipids in multi-drug resistance and breast cancer therapy. Anti-
Cancer Agents Med Chem. 2011; 11: 882-90.
36. Costarelli V, Sanders TA. Plasma deshydroxylate acid concentration is elevated in postmenopausal women with newly diagnosed breast cancer. Eur J Clin Nutr. 2002; 56(9): 925-7.
37. McGarr SR, Ridlon JM, Hylemon PB. Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. Clin Gastroenterol. 2005; 39(1): 8-19.
38. Bajor A, Gillberg PG, Abrahamson H. Bile acids: short and long term effects in the intestine. Scand J Gastroenterol. 2010; 45(6): 645-64.
39. O’Keefe SJ, Chung D, Mahmoud N, et al. Why do African Americans get more colon cancer than Native Americans? Nutr. 2007; 117(4Suppl): 1755S-1825.
40. Matijasić BB, Obermajer T, Lipoglavšek L, Grabar I, Avguštin G, Rogelj I.
Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr. 2013 Oct;52(7):1909-17.

78. Malve R, Deshpande SD, Mary RB, Ramalakshmi BS. Fecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Br J Nutr. 2012;108(3):593-7.

79. Rawat N, Alhamadani A, McAdam E, et al. Curcumin abrogates bile induced NF-kappaB activity and DNA damage in vitro and suppresses NF-kappaB activity and apoptosis in vitro, suggesting chemopreventive potential in Barrett's oesophagus. Clin Transl Oncol. 2012;14(4):302-11.

80. Urizar NL, Liverman AB, Dodds DT, et al. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science. 2002;296(5573):1709-6.

81. Jiang G, Xiao X, Zeng Y, Nagababushanam K, Majed M, Xiao D. Targeting beta-catenin signaling to induce apoptosis in human breast cancer cells by a gug-gulsterone and Gugulipid extract of Ayurvedic medicine plant Commiphora mukul. BMC Complement Altern Med. 2013;13:203.

82. Silva D, Dangupta S, Wang G, Krishnamurthy K, Ritter E, Bieberich E. Lipids isolated from bone induce the migration of human breast cancer cells. J Lipid Res. 2006;47(5):743-54.

83. Xiao M, Xiao D, Gugulipid, an Extract of Ayurveda Medicine Plant Commiphora Mukul as a potent agent for cancer chemoprevention and cancer chemotherapy. Med Chem. 2012;8(6):1000105.

84. Bernardes-Silva CF, Damia0 AO, Sipahi AM, et al. Urodeoxyacetic acid ameliorates experimental ileitis by counteracting intestinal barrier dysfunction and oxidative stress. Dig Dis Sci. 2004;49(6):1169-75.

85. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. Urodeoxyacetic acid may inhibit deoxycholic acid induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med. 1998;4(3):165-78.

86. Loddenkemper C, Keller S, Hanski ML, et al. Prevention of colitis associated carcinogenesis in a mouse model by diet supplementation with urodeoxyacetic acid. Int J Cancer. 2006;118(11):2750-7.

87. Kundi P, Van Veen HW, Tanaka H, et al. Cholic acid is accumulated spontaneously, driven by membrane pH, in many lactobacilli. J Bacteriol. 2002;184:6525-6628.

88. Kundi P, Tanaka H, Van Veen HW, Asano K, Tomita F, Yokota A. Cholic acid accumulation and its diminution by short chain fatty acids in bifidobacteria. Microbiology. 2004;150:201-7.

89. Islam KB, Fukiya S, Hagio M, et al. Butyrate kinase from Clostridium acetobutylicum. J Biol Chem. 2000;275:20590-6.

90. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiota associated with obesity. Nature. 2006;444(7122):1022-3.

91. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbiome shares characteristics with other complex ecosystems. Proc Natl Acad Sci. 2006;103:1421-6.

92. Possemiers S, Caenepeel P, Decaestecker E, et al. The dietary fiber fraction of the soybean meal inhibits the growth and hepatic and colonic toxicity of C. difficile. Carcinogenesis. 2006;27:1019-24.

93. Turnbaugh PJ, Ley RE, Mahowald L, et al. Obese humans are characterized by increased levels of fecal Prevotella and Porphyromonas. Nature. 2006;444(7122):1027-31.

94. Turnbaugh PJ, Ley RE, Mahowald L, et al. Diet-induced changes to the gut microbiome correlate with weight gain in men. Proc Natl Acad Sci. 2008;105(3):6676-81.

95. Satsangi J, Padyukov L, Condie K, et al. Genetic susceptibility to inflammatory bowel disease: a genome scan of patients with Crohn's disease. Nat Genet. 2001;29(3):270-4.

96. Turnbaugh PJ, Ley RE, Mahowald L, et al. Diet-induced changes to the gut microbiome correlate with weight gain in men. Proc Natl Acad Sci. 2008;105(3):6676-81.

97. Kodama K, Honda K, Ogura Y, et al. Commensal Clostridia maintain intestinal homeostasis in mice through retinoic acid-dependent repression of inflammasome activation. Nat Med. 2013;19(8):1175-83.

98. Tanaka H, Asano K, Tomita F. Enterohepatic circulation of bile acids. J Clin Chem Clin Biochem. 1982;20(Suppl 1):281-6.

99. Raftogianis R, Creveling C, Weinsshilboum R, Weisz J. Estrogen metabolism by the human small intestine. J Clin Endocrinol Metab. 1995;80(2):486-90.

100. Xiao M, Xiao D, Gugulipid, an Extract of Ayurvedic medicine plant Commiphora Mukul as a potent agent for cancer chemoprevention and cancer chemotherapy. Med Chem. 2012;8(6):1000105.
Entero Microbial Biotransformations Relevant to Cancer Prevention and Treatment

Chem. 1987; 262(2): 617-21.

107. Roodenberg WE. Role of anaerobic bacteria in the metabolic well-being of the colonic mucosa in Gt. 1980; 27: 739-8.

108. Gonçalves P, Martel F. Butyrate and colon cancer: the role of butyrate transport. Curr Drug Metab. 2013; 14(4): 994-1008.

109. Gonçalves, P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013; 14(4): 994-1008.

110. Macfarlane S, Macfarlane G. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of probiotics. J Clin Gastroenterol. 2011; 45(Suppl): S220-17.

111. Donohue DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunker MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011; 13: 157-167.

112. Pham TX, Lee J. Dietary regulation of histone deacetylases and deacetylases for the prevention of metabolic diseases. Nutrients. 2012; 4: 1886-888.

113. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003; 133 Suppl 7: 2489-93.

114. Doo C, Tyler JK. Histone exchange and histone modifications during transcription and aging. Biochim Biophys Acta. 2013 Mar;1831(3):323-42.

115. Wellen KE, Hatzivassiliou G, Saavedra UM, Bui TV, Cross JR, Thompson CB. ATP citrate lyase links cellular metabolism to histone acetylation. 2009;324(5930):1076-80.

116. Berwick DC, Hers C, Heesom KL, Moule SK, Tavare M. Identification of the ATP citrate lyase 2 as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem. 2002 Sep 15;277(37):35899-900.

117. Donohue DR, Collins LB, Wali A, Bigger K, Sun W, Bulstein SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;46(4):612-26.

118. Crispo C, Sanand D, Hong MY, Hong JM. Upregulation of p21/Waf1/Cip1 expression in vitro by butyrate administration can be chemoprotective or chemopreventive depending on the lipid component of the diet. Carcogenesis. 2008;29(7):1455-60.

119. Yu DC, Waby JS, Chizhakal H, et al. Butyrate suppresses expression of neutrophil 1 in colorectal cell lines through inhibition of Sp transcription. Mol Carcinog. 2010; 50: 276-8.

120. Chirakallal H, Leech SH, Brooks KE, Pras AL, Waby JS, Corbe BM. Upregulation of BAK by butyrate in the colon is associated with increased Spb binding. Oncogene. 2006;25(47): 5732-40.

121. Maier S, Daugas MC, Scherer S. Butyrate and Vitamin D3 induce transcriptional attenuation at the cyclin D1 locus in colon cancer cells. J Physiol. 2003 Mar 21;548(3):638-42.

122. Zhang Y, Zhou I, Bao YL, et al. Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer KCO cells. Chem Biol Interact. 2010;185(1):174-81.

123. Pajak B, Orzechowski A, Gajkowska B. Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells. Adv Med Sci. 2007;52(3):83.

124. Thangazagu M, Cresci GA, Lui K, et al. GPR109A is a G-protein-coupled receptor for the bactericidal product fermentation butyrate and functions as a tumor suppressor in colon Cancer. Cancer Res. 2009;69(17):5276-82.

125. Vinolo MA, Rodrigues HG, Hatanaka E, Sato FT, Sampiao SC, Curi R. Suppressing effect of short chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem. 2011 Sep;22(9):849-55.

126. Quivy V, Van Lint C. Regulation at multiple levels of NF-kappaB-mediated inflammation and aging. Biochim Biophys Acta. 2013 Mar-Apr;1819(3-4):332-42.

127. Macfarlane S, Macfarlane G. Fermentation in the human large intestine: its role in gastrointestinal disease. J Gastroenterol Hepatol. 2012;27(Suppl 7): 2485-93.

128. Goncalves P, Macfarlane G. Annexin A10 in human oral cancer: Biomarker for tumoral growth via Gli2 transition by targeting MAPK signalling pathways. PLOS ONE. 2012; 7: e45510.

129. Wang KL, Wu TT, Reesekova E, et al. Expression of annexin A1 in esophageal and esophagogastroduodenal ulceration in normal and malignant tissue. J Cancer Res Clin Oncol. 2006;132:487-97.

130. Salmela GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of probiotics. J Clin Gastroenterol. 2011; 45(Suppl): S220-17.

131. Shimizu T, Kasamatsu A, Yamamoto A, et al. Annexin A10 in human oral cancer: Biomarker for tumoral growth via Gli2 transition by targeting MAPK signalling pathways. PLOS ONE. 2012; 7: e45510.

132. Salmela GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of probiotics. J Clin Gastroenterol. 2011; 45(Suppl): S220-17.

133. Koren AI, Alvarez-Leite J. Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care. 2012;15(3):3247-9.

134. Comalada M, Bailón R, de Haro O, et al. The effects of short chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. J Cancer Res Clin Oncol. 2006;132(3):487-97.

135. Leonel AJ, Alvarez-Leite J. Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care. 2012;15(3):3247-9.