Resting Dead Space Fraction as Related to Clinical Characteristics, Lung Function, and Gas Exchange in Male Patients with Chronic Obstructive Pulmonary Disease

Ming-Lung Chuang1,2
Benjamin Yung-Thing Hsieh3
I-Feng Lin4

1Division of Pulmonary Medicine and Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, 40201, Republic of China; 2School of Medicine, Chung Shan Medical University, Taichung, Taiwan, 40201, Republic of China; 3School of Medicine, National Yang Ming University, Taipei, Taiwan, 11221, Republic of China; 4Institute of Public Health, National Yang Ming University, Taipei, Taiwan, 11221, Republic of China

Background: Measures of forced expired volume in one second % predicted (FEV1%), residual volume to total lung capacity ratio (RV/TLC) and diffusing capacity for carbon monoxide measurements (Dl,CO) are the standard lung function test for evaluating patients with chronic obstructive pulmonary disease (COPD). The dead space fraction (Vd/Vt) has been shown to be a robust marker of gas exchange abnormality. However, the use of Vd/Vt has gradually become less common. As Vd/Vt measured at rest (Vd/VtR) has been successfully used in non-COPD conditions, it was hypothesized that in COPD the Vd/VtR was more sensitive than the standard lung function test in correlation with clinical characteristics and gas exchange. This study aimed to test the hypothesis and to identify the variables relevant to Vd/VtR.

Methods: A total of 46 male subjects with COPD were enrolled. Clinical characteristics included demographic data, oxygen-cost diagram (OCD), and image studies for pulmonary hypertension. The standard lung function was obtained. To calculate Vd/VtR, invasive arterial blood gas and pulmonary gas exchange (PGX) were measured. The variables relevant to Vd/VtR were analyzed by multiple linear regression.

Results: Compared to lung function, Vd/VtR was more frequently and significantly related to smoking, carboxyhemoglobin level, pulmonary hypertension and Pco2 (all p <0.05) whereas FEV1% was more related to lung function test, Pao2 and OCD score. Vd/VtR and FEV1% were highly related to resting gas exchange but RV/TLC and Dl,CO% were not. Cigarette consumption, the equivalent for CO2 output, arterial oxyhemoglobin saturation, and the product of tidal volume and inspiratory duty cycle were identified as the parameters relevant to Vd/VtR with a power of 0.72.

Conclusion: Compared to lung function test, Vd/VtR is more related to clinical characteristics and is a comprehensive marker of resting gas exchange. Further studies are warranted to provide a noninvasive measurement of Vd/VtR.

Registration Number: MOST 106–2314-B-040-025 and CSIR-2019-C-30.

Keywords: obstructive airway disease, residual volume and total lung capacity ratio, diffusing capacity of lung, dead space and tidal volume ratio, cigarette consumption, carboxyhemoglobin, pulmonary hypertension

Background

The severity of chronic obstructive pulmonary disease (COPD) is usually graded by forced expired volume in one second % predicted (FEV1%).1 Despite mMRC and acute exacerbation being related to the risk assessment of COPD, the power of...
correlations of FEV$_1$/% with the clinical outcomes is not robust,$^{2-4}$ and lung volume such as the residual volume to total lung capacity ratio (RV/TLC) and diffusing capacity measurements (Dl,CO) provide additional information.$^{5-8}$

The dead space to tidal volume ratio at rest or at peak exercise or change during exercise (V$_{D}$/V$_{T}$-R, -P, and -C) indicating the severity of ventilation/perfusion (V/Q) mismatch9 can serve as a marker of physiological change in patients with COPD in a variety of clinical conditions.$^{8,10-15}$ However, exercise testing is labor consuming and costly and in diseases other than COPD, the V$_{D}$/V$_{T}$ has been successfully used in non-exercise conditions.$^{16-20}$

It was hypothesized that the V$_{D}$/V$_{T}$-R was more significant than the standard lung function test in correlation with clinical characteristics and gas exchange (ie, all variables relevant to oxygen and CO$_2$ tensions and their differences in arterial blood and alveoli) in patients with COPD. This study aimed to test the hypothesis by correlation analysis and to identify variables of demographics, symptom scores, images for pulmonary hypertension, lung function, and gas exchange relevant to V$_{D}$/V$_{T}$-R by multiple regression analysis.

Methods

Study Design

In this observational cross-sectional study, we measured demographic characteristics, cigarette smoking history, functional activity and pulmonary hypertension determined by image studies, and lung function in subjects with COPD at a university teaching hospital. Resting pulmonary gas exchange (PGX) and arterial blood gas (ABG) were measured simultaneously. The local Institutional Review Board of Chung Shan Medical University Hospital (CS16174) approved this study. This study was conducted in compliance with the Declaration of Helsinki.

Subjects

Subjects aged ≥40 years with COPD were enrolled. Anthropometric measurements, cigarette consumption, and functional activity were recorded. Male adult subjects who underwent lung function testing were enrolled if their forced expired volume in one second (FEV$_1$)/forced vital capacity (FVC) was <0.7.1 The diagnosis of COPD was made according to the Global Initiative for Chronic Lung Disease (GOLD) criteria.1 As few female subjects met the criteria of COPD in Taiwan (4%),2 for simplicity they were not included in this study. Subjects with a body mass index ≤18 kg·m$^{-2}$ or ≥32 kg·m$^{-2}$, any other chronic diseases including uncontrolled diabetes mellitus, uncontrolled hypertension, anemia (hemoglobin <13 g·dL$^{-1}$ in males), or with laboratory findings of cardiovascular, hematological, metabolic or neuromuscular diseases or acute illnesses in the recent 1 month were not enrolled. Uncontrolled hypertension means having hypertension but no or inadequate treatment so that the blood pressure remained high (ie, >140/90 mm Hg).21 Signed informed consent was obtained from each participant. Some of the participants were enrolled in other studies.22,23

Measurements

Demographic Data and Functional Activity

Age, height, weight, body mass index, triceps skinfold, mid-arm circumference, and cigarette consumption were recorded. The oxygen cost diagram (OCD) was used to evaluate the participants’ functional activity. The OCD a 100-mm long vertical line with everyday activities listed alongside the line, above which breathlessness limited the participants. The distance from zero was measured and scored.

Image Study

Chest radiography was obtained within one month of enrolling in the study. The hila thoracic ratio (HTR), cardiac thoracic ratio, and the diameter of anterior descending pulmonary artery (ADPA) on the standing posterior-anterior chest radiograph were measured as these variables were reported to represent pulmonary hypertension.24 The chest radiographs were evaluated by an experienced pulmonologist without knowing the clinical information and the average values were recorded for analysis.

Two-dimensional echocardiography was performed by an experienced cardiologist who was unaware of the clinical data and lung function. Parasternal, apical, and subcostal studies were conducted.25,26

Pulmonary Function Testing

Pre-test preparation was followed the standard guide and bronchodilators were not administered within 3 h for short-acting beta-agonists and 12 h for long-acting beta-agonists before the tests.$^{27-29}$ FEV$_1$, FVC, TLC, RV, and Dl,CO were measured using spirometry, body plethysmography, and the single-breath technique (MasterScreenTM Body, Carefusion, Wuerzburg, Germany), respectively, in accordance with the currently recommended standards by
The best of three technically satisfactory readings was used. All of the spirometry data were obtained before and after inhaling a standard dose of fenoterol HCl. Post-dose measurements were performed 15 minutes after inhalation. Static lung volume data and Dl.CO data were obtained before inhaling fenoterol.

Maximum inspiratory pressure at the mouth indicating inspiratory muscle strength and maximum expiratory pressure indicating expiratory muscle strength at the mouth were measured.

Pulmonary Gas Exchange and V/D/V

Each subject completed PGX measured at a 2-min complete rest. VO\(_2\) (mL/min), CO\(_2\) output (VC\(_{O_2}\)) (mL/min), and minute ventilation (V\(_E\)) were continuously measured and the data at the last 15 seconds were averaged and reported (MasterScreen CPXTM, Carefusion, Wuerzburg, Germany). The physiological V\(_D\)/V\(_T\) was measured (V\(_D\)/V\(_T\)) using a standard formula as follows:

\[
V_D/V_T = (P_aCO_2 - P_ECO_2)/P_aCO_2 - V_{Dm}/V_T
\]

where \(P_aCO_2\) was arterial PCO\(_2\) and \(P_ECO_2 = VCO_2/V_E\times (P_B - 47mmHg)\) and PB was barometric pressure measured daily and V\(_{Dm}\) was the dead space of mouth piece and pneumotachograph as the manufacturer reported.

Artery blood samples were drawn at the brachial artery and heparinized at rest. The sample was immediately placed on ice and then analyzed for pH, PCO\(_2\), and PO\(_2\) with body temperature correction (model 278, CIBA-Comming, Medfield, MA, USA).

Statistical Analysis

Data were summarized as mean ± standard deviation. Pearson’s or Spearman correlation coefficients were used when appropriate for quantifying the pair-wise relationships among the variables of interest. Multiple linear regression analysis was used to select important parameters of V\(_D\)/V\(_T\). All possible regression algorithms were performed using the candidate variables with p values < 0.35 in univariate analysis. The Student’s t-test was used for comparisons between two groups. The chi-square test or Fisher exact test was used to compare the proportions between the two groups. All statistical analyses were performed using SAS statistical software (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at \(p < 0.05\). Marginal significance was set at 0.05 ≤ \(p \leq 0.1\).

Results

Fifty-seven patients were enrolled, of whom 10 were excluded because two subjects did not meet the inclusion criteria and another two met the exclusion criteria and six subjects declined to participate (Figure 1). The remaining 46 male subjects with COPD were enrolled after excluding one subject whose arterial blood gas analysis was not obtained (mean age 65.2 ± 5.8 years) (Tables 1–3). In Tables 1–3, some data were missing in one to six subjects because of technical failure or no measurements. Most of the patients had GOLD stages II and III, hyperinflation of lung and static air trapping, high V\(_D\)/V\(_T\)R, and impaired diffusing capacity, inspiratory muscle strength and peak flow, and hyperventilation with normoxemia and normocapnia.

Compared to the standard lung function test, V\(_D\)/V\(_T\) R was more frequently (Table 4, \(p < 0.0001\)) and significantly related to cigarette consumption, carboxyhemoglobin level, and pulmonary hypertension (all \(p < 0.05\)) and these associated factors were not related to FEV\(_1\)%, RV/TLC, and Dl.CO% (all \(p = NS\)). In contrast, FEV\(_1\)% and RV/TLC were more related to lung function as expected and Dl.CO% was singly and mildly related to RV/TLC. V\(_D\)/V\(_T\) R and FEV\(_1\)% were correlated with the resting gas exchange whereas RV/TLC and Dl.CO% were not.

Multiple linear regression analysis revealed that cigarette consumption and HTR were positively related to V\(_D\)/V\(_T\) R whereas the height was negatively related to V\(_D\)/V\(_T\) R (Table 5). When PGX data were added in analysis, the HTR and height were replaced by VE/VC\(_{O_2}\) the product of V\(_T\) and inspiratory duty cycle (V\(_T\)IDC), and Sp\(_O_2\) where VE/VC\(_{O_2}\) was positively related to V\(_D\)/V\(_T\)R whereas V\(_T\) IDC and Sp\(_O_2\) were negatively related to V\(_D\)/V\(_T\) R. Cigarette consumption and the three PGX variables were highly related to V\(_D\)/V\(_T\)R with a power of 0.72.

Discussion

In this study, compared to FEV\(_1\)%, RV/TLC, and Dl.CO%, V\(_D\)/V\(_T\)R was a unique marker for male patients with COPD (Table 4). V\(_D\)/V\(_T\)R was related to cigarette consumption, carboxyhemoglobin, and pulmonary hypertension, whereas the standard lung function was not. Using statistical technique for evaluation of V\(_D\)/V\(_T\)R, cigarette consumption, VE/VC\(_{O_2}\), V\(_T\)IDC and Sp\(_O_2\) were the four contributors (Table 5, \(r^2 = 0.72\)).

Regarding lung function, Dl.CO%, KCO, and V\(_T\)/TLC have been related to V\(_D\)/V\(_T\)R and V\(_D\)/V\(_T\)P in the literature.
(r = -0.20–0.60, p < 0.05 - <0.01) where KCO is Dl/CO divided by alveolar volume (VA). The VA and VA/TLC were related to lung volumes and airway obstruction, respectively (all p < 0.05 - <0.01), suggesting that DL CO, KCO, and VA are related to poor communication of airways “that would be indicative of high ventilation-perfusion areas (~alveolar dead space)”. Hence, it was expected that RV/TLC was related to VD/VT and thus measuring VD/VT is redundant. However, in this study, VD/VT was not correlated with the lung function variables suggesting that VD/VT and lung hyperinflation, air trapping or diffusing capability might be different components in physiology. 22 VD/VT was correlated with cigarette consumption, carboxyhemoglobin, and pulmonary hypertension measured by chest radiography (Table 4). Thus, VD/VT may offer additional information to lung function test, whereas FEV1%, RV/TLC, and Dl/CO% were more related to lung function test (Table 4).

Tobacco smoking is the key preventable risk factor for the development of COPD and the pathogenesis of emphysema. The duration of cigarette consumption associated with the development of COPD is considered to be ≥20 pack-years. 1,37 Emphysema with a tissue-to-airway progression pattern 37 was related to an increased VD/VT. 15 Although cigarette consumption is thought to contribute to an increased VD/VT as found in this study, their relationship may not be necessary through the mechanism of emphysema. This was noted that RV/TLC was not related to VD/VT in this study. Further studies are warranted to elucidate the relationship between cigarette consumption, emphysema, and VD/VT. Furthermore, carboxyhemoglobin level is modestly related to cigarette smoking (r = 0.28, p = 0.06) and was mildly correlated with VD/VT (r = 0.35, p = 0.02) in the current study. It was consistent with a previous report that carboxyhemoglobin was positively correlated with VE/VCO2 and rapid breathing and inversely with VO2max % and expandable volume excursion. 38 Of note, carboxyhemoglobin level and VD/VT were not in a cause-effect relationship and that carboxyhemoglobin was not correlated with Dl/CO% in the current study does not exclude that carboxyhemoglobin can affect Dl/CO in normal subjects. The findings indicate that the lung pathology of COPD plays a more important role than carboxyhemoglobin in relation to Dl/CO.

Regarding chest radiography, a HTR ≥0.36 and diameter of the right ADPA ≥1.8 cm have been reported to be markers of pulmonary hypertension in COPD. 24 COPD is usually complicated with pulmonary hypertension in the later stages. Although there was discordance between radiographic and hemodynamic measures of pulmonary arterial pressure, HTR and diameter of the right ADPA were modestly correlated with increased VD/VT in this study (Table 4, r = 0.33 and 0.34, both p <0.05).

In normal subjects, age and height have been positively related to VD/VT whereas weight has been negatively related to VD/VT. VD/VT has been reported to be smaller in females. 39 However, in this study, in subjects with COPD, height was negatively related to VD/VT. The
Table 1 Demographic Data, Symptom Score, Blood Tests, Chest Radiography, and Echocardiography (n = 46)

Variable	n	Mean	SD
Age, year	46	65.2	5.8
Height, cm	46	165.0	6.4
Weight, kg	46	60.4	11.2
Body mass index, kg/m²	46	22.12	3.53
Smoke, py	46	42.3	19.2
OCD, cm	46	7.0	1.4
Triceps, mm	44	6.4	2.6
Mid-arm, cm	44	27.3	3.4
Borg, A.U.	46	0.05	0.19
Hemoglobin, g/dL	46	14.8	1.5
Albumin, g/dL	40	4.2	0.4
GPT, IU/L	40	21.1	16.8
Bilirubin, direct, mg/dL	42	0.25	0.29
Creatinine, mg/dL	42	1.09	0.20
Na⁺, mmol/L	41	140.5	2.4
K⁺, mmol/L	40	4.3	0.5
Sugar, mg/dL	41	98.8	14.7
Cholesterol, mg/dL	43	182.2	36.6
Hila-thoracic ratio	44	0.36	0.04
Cardiac-thoracic ratio	41	0.44	0.06
ADPA, cm	46	1.62	0.33
Apical 4 EDVR, cm²	42	13.5	3.7
Apical 4 ERSV, cm²	42	7.8	1.8
Subcostal 4 EDVR, cm²	42	14.2	3.3
Subcostal 4 ERSV, cm²	42	7.6	2.1
Right ventricle wall, mm	42	6.0	2.0

Abbreviations: A.U., absolute unit; ADPA: anterior descending pulmonary artery of the right lung, apical four chamber view, end-diastolic right ventricle area (EDVR), end-systolic right-ventricle area (ERSV); subcostal four-chamber view; short and long axes view; the right ventricle free wall thickness at an end-diastolic phase between the tricuspid annulus and the papillary muscle.

Table 2 Lung Function

Variables	n	Mean	SD
Total lung capacity, TLC, L	46	6.5	1.0
TLCpred, %	46	135	21
Functional residual capacity, FRC, L	46	4.8	1.0
FRCpred, %	46	162	34
Inspiratory capacity, L	46	1.7	0.5
Residual volume, RV, L	46	3.8	0.9
RV/TLC, %	46	58	9
DlCO, mL/min/mmHg	45	15.8	5.6
DlCOpred, %	45	69	22
Forced vital capacity, FVC, L	46	2.5	0.7
FVCpred, %	46	81	21
FEV₁, L	46	1.2	0.5
FEV₁pred, %	46	50	19

GOLD, I, II, III, IV, n (%) | 3 | 6.5 | 18 | (39.1), 19 | (41.3), 6 | (13.0)

Abbreviations: DlCO, the diffusion capacity of the lungs for carbon monoxide; FEV₁, forced expiratory volume in one second; GOLD I-IV, global initiative for chronic obstructive lung disease stages; MEP, maximal inspiratory pressure; PEFR, peak expiratory flow rate.

reason for this discrepancy is not clear, but it is probably due to the high correlation between height and weight in this study in an analysis a posteriori (r = 0.51, p = 0.0003). A higher weight is probably beneficial against the development of emphysema and stage 4 disease of COPD and thus negatively related to V̇D/V̇T (Table 4, r = −0.27, p = 0.08), while sarcopenia or low lean body mass may predispose to the development of emphysema (multi-organ loss of tissue, MOLT phenotype). Another possible reason is that the lung pathology of COPD outweighs the contribution of height to V̇D/V̇T-R as normal subjects do.

VE/\text{VCO}_2 has been reported to be strongly related to V̇D/V̇T when the data involve healthy subjects and those with COPD at rest and during submaximal exercise. This is attributed to the Bohr-Enghoff equation in which \text{VCO}_2 and V̇D/V̇T are mathematically related at a given level of P_a\text{-CO}_2. A high VE/\text{VCO}_2 and high P_a\text{-ET-}

\text{CO}_2 explain 40–50% of high V̇D/V̇T-R in this study (Table 4, r = 0.64 and 0.67, both p < 0.0001) compatible with that Lewis et al and Liu et al reported that V̇D/V̇T and P_a\text{-ET-}\text{CO}_2 were highly correlated (r = 0.76–0.88, p < 0.001). Compared to FEV₁% in this study, V̇D/V̇T-R was more related to P_a\text{-CO}_2 at rest (r² = 0.24 versus 0.10) whereas FEV₁% was more related to P_a\text{-O}_2 and OCD.

Despite A-a\text{-DO}_2 and S_pO_2 being marginally correlated with V̇D/V̇T (Table 4, r = −0.28 to −0.29, both p = 0.06), S_pO_2 was selected in multiple regression analysis. However, in COPD even in subjects with mild severity A-a\text{-DO}_2 was positively related to V̇D/V̇T. The discrepancy between these two studies in the V̇D/V̇T-R versus A-a\text{-DO}_2 relationship might be due to poor correlation of V̇D/V̇T-R with P_a\text{-O}_2 where A-a\text{-DO}_2 was highly negatively related to P_a\text{-O}_2 in this study (r = −0.66, p < 0.0001).

V̇T-IDC probably represents expandable tidal volume excursion in a timely manner. When both V̇T and IDC are large, the mean inspiratory flow (V̇T/inspiratory time) can be favorably generated by the force of the inspiratory muscles. On the other hand, when V̇T is large and IDC is small, the mean inspiratory flow is extremely high and
Table 3 Cardiopulmonary Physiological Data, Arterial Blood Gases, Carboxyhemoglobin and Plasma Lactate Concentrations at Rest

Variables	n	Mean	SD
VO₂p/predicted maximum, %	46	16	3
VO₂kg, L/min/kg	46	4.1	0.8
VCO₂, L/min	46	0.20	0.04
Respiratory exchange ratio	46	0.83	0.05
O₂ Pulse, mL/beat	46	3.1	0.7
VE/VO₂	46	53.5	10.0
VO₂/VT	46	44.5	7.4
PₐETCO₂, mmHg	45	4.0	4.4
A-aDO₂, mmHg	45	18.9	1.0
S₀₂, %	45	95.3	2.6
VE, L/min	46	10.7	2.1
MVV, L/min	46	36.3	16.9
VE/MVV	46	0.35	0.16
Systolic blood pressure, mmHg	46	145.0	18.6
Diastolic blood pressure, mmHg	45	79.3	9.0
Heart rate, beat/min	46	80.6	13.2
pH	45	7.4	0.03
PₐCO₂, mmHg	45	40.6	6.4
P₀₂, mmHg	45	79.2	10.1
HCO⁻³, mEq/L	45	24.7	1.9
Carboxyhemoglobin, %	45	1.3	0.9
Methemoglobin, %	43	0.25	0.08
Lactate, mmol/L	43	1.2	0.3

Abbreviations: VO₂, oxygen uptake; VCO₂, CO₂ output; Respiratory exchange ratio, CO₂ output and oxygen uptake ratio; O₂ Pulse, oxygen uptake divided by heart rate; Vₚ/VT, dead space and tidal volume ratio; PₐETCO₂, arterial end-tidal CO₂ pressure gradient; A-aDO₂, alveolar arterial oxygen pressure gradient; VE, minute ventilation; MVV, maximal voluntary ventilation; S₀₂, hemoglobin saturation measured by pulse oximetry.

would be not biologically plausible. Vₚ/VT is a variable firstly reported in the literature and its importance needs to be confirmed.

Study Limitations

The number of cases in this study was small; however, it may be inevitable for an invasive study. The small number of cases may have caused insufficient power when performing correlation coefficient analysis on Vₚ/VT R. However, the sample size of 46 achieved a power of 80% to detect a difference between a correlation of 0.4 and the null (no correlation) using a two-sided test with a significance level of 0.05. 23 As the power is related to type II error, nonsignificant test results should be interpreted more conservatively. All of the participants in this study were male, so using the results applied to females should be cautious. To investigate the relationship between two or more variables, it is usually to adjust known factors that influence the dependent variables. We used % predicted of lung function variables instead of using the absolute measured values because lung function variables are obviously influenced by anthropometrics. In this context, the unwanted influences by anthropometrics were avoided and highlight the important

Table 4 Comparison of Correlation Coefficient (r) Between Resting Dead Space Fraction (Vₚ/VT R) and Lung Function with Variables of Interest

Variables	n	r	r	r	r
Clinical parameters					
Age	45	0.30**	0.04	0.04	0.02
Height	45	-0.40**	-0.04	-0.01	-0.17
Weight	45	-0.27†	0.16	-0.15	0.37**
Body mass index	45	-0.12	-0.16	-0.16	0.52†
Smoke, p-y	45	0.32**	-0.11	0.21	-0.01
OCD	45	0.08	0.34**	-0.14	0.03
Hemoglobin	45	0.29**	-0.16	-0.18	0.31*
Carboxyhemoglobin	45	0.42**	0.01	0.08	-0.16
Hila-thoracic ratio	44	0.33**	0.25†	-0.22	0.00
ADPA diameter	45	0.34**	-0.06	-0.11	0.13
Number of significant correlation, n	10**	2	1	3	

Lung function parameters	n	r	r	r	r
FRC%	45	0.02	-0.23	0.48†	-0.24
RV/TLC	45	-0.04	-0.66†	1	-0.31*
DICO₂	45	0.05	0.25†	-0.31*	1
Slow vital capacity%	45	0.10	0.69†	-0.72†	0.12
Forced vital capacity%	45	0.02	0.75†	-0.64†	0.05
FEV₁%	45	0.01	1	-0.66†	0.25†
MIP	43	-0.19	0.13	-0.14	0.19
Post MIP	43	-0.28†	-0.07	-0.02	0.30†
Number of significant correlation, n	1†	4	5	3	

Gas exchange parameters	n	r	r	r	r
PₐETCO₂	45	0.67†	-0.02	0.06	0.08
Vₚ/VT R	45	0.64†	0.34**	-0.19	-0.05
P₀₂	45	0.49†	-0.32*	0.10	0.18
PₐCO₂	45	-0.18	0.44**	-0.06	-0.08
A-aDO₂	45	-0.29†	-0.25†	0.02	0.06
S₀₂	45	-0.29†	0.12	0.08	-0.17
Number of significant correlation, n	5	4	0	0	

Notes: PₐETCO₂, Vₚ/VT R, AsADO₂, S₀₂. Fisher exact test was used for comparison of Vₚ/VT R versus 3 lung function tests, † and ‡ indicating p = 0.0001 and 0.1, respectively; † indicating modest correlation with 0.05 < p < 0.1, whereas ‡, ‡ indicating significant correlation with p < 0.05, <0.01, <0.001, and <0.0001, respectively; bolded numerals highlighting a significant correlation.

Abbreviations: FEV₁, forced expired volume in one second %predicted; RV/TLC, residual volume to total lung capacity ratio; DICO₂, diffusing capacity for carbon monoxide % predicted; p-y, packyear; OCD, oxygen cost diagram; ADPA, anterior descending pulmonary artery; FRC, functional residual capacity; SVC, slow vital capacity; MIP, maximal inspiratory capacity.
factors. This issue has been strongly recommended in a previous report that TLC, FRC, IC, IRV, ERV, RV, FVC, SVC, and FEV1 in liters and DLCO in mL/min/mmHg were omitted from correlation analysis.27 As transcutaneous PCO2 (PtCO2) is a noninvasive measurement, it warrants further study to compare the study with that using PtCO2.7,44 Although using radioisotopes or applying the multiple inert gas elimination technique (MIGET) is the standard of measuring V/Q mismatch, these techniques are costly and the latter is not common in clinical practice whereas VD/VT measurement is practical and high VD/VT is consistent with high V/Q mismatch.9

Clinical Implication
Compared to lung function test, VD/VT is more related to cigarette consumption and pulmonary hypertension and was a comprehensive variable of resting PGX. Whether or not it can serve as a prognosticator or can be applied in smoking cessation strategy warrants further studies.

Conclusion
Compared to FEV1%, RV/TLC, and D1C%O2, VD/VT is more related to smoking, carboxyhemoglobin, pulmonary hypertension, and PtCO2 whereas FEV1% is more related to P02O2 and oxygen-cost diagram score and thus should be considered when evaluating patients with COPD. Further studies are warranted to provide a noninvasive measurement of VD/VT.

Author Contributions
MLC: initiated and designed the study, analyzed and interpreted the data, wrote and revised the manuscript, and approved the version to be published in Inter J Gen Med. and take responsibility and is accountable for the contents of the article. BYTH: analyzed and interpreted the data, critically reviewed the manuscript and approved the version to be published in Inter J Gen Med. and take

Table 5 Risk Factors of Dead Space Fraction at Rest (VD/VT)

Variable	Equation	r²	p
\(VD/VT_{rest} \)	\(1.046 \times (0.279) - 0.0042 \times X \text{height} (\pm 0.0015) + 0.0014 \times X \text{smoke} (\pm 0.0006) - 0.491 \times X \text{HTR} (\pm 0.276) \)	0.33	0.001
\(0.942 \times (0.251) + 0.0012 \times X \text{smoke} (\pm 0.0004) + 0.0048 \times X \text{VE/VCO2} (\pm 0.0007) - 0.472 \times X \text{VTIDC} (\pm 0.118) - 0.006 \times X \text{P}O2 (\pm 0.0027) \)	0.72	< 0.0001	

Notes: \(VD/VT_{rest} \) is the VD/VT obtained using multiple linear regression, smoke refers to cigarette consumption in pack-years, HTR is the hilar-ratio ratio in decimals measured from chest radiography, with the height in centimeters, and the numbers in parenthesis are standard errors.VE/VCO2 is the ventilatory equivalents for CO2 output, VTVT is the product of tidal volume in liters, inspiratory duty cycle (IDC) in decimals, and P02O2 is the oxyhemoglobin saturation measured with pulse oximetry. IDC is the ratio of inspiratory time of an entire respiratory cycle.

References
1. GOLD Committees. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. disclosore forms for GOLD Committees are posted on the GOLD Website. www.goldcopd.org. 2020
2. Huang TH, Hsieh TR, Lin SH, Liao XM, Su PL, Chen CZ. Comparison of different staging methods for COPD in predicting outcomes. Eur Respir J. 2018;51(3):pii:1700577. doi:10.1183/13993003.00577-2017
3. Jones PW. Health status measurement in chronic obstructive pulmonary disease. Thorax. 2001;56(11):880–887. doi:10.1136/thorax.56.11.880
4. Oga T, Nishimura K, Tsukino M, Sato S, Hajiro T. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: role of exercise capacity and health status. Am J Respir Crit Care Med. 2003;167(4):544–549. doi:10.1164/rccm.200206-583OC
5. Casanova C, Cote C, de Torres JP, et al. Inspiratory-to-total lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;1716(6):591–597. doi:10.1164/rccm.200407-867OC
6. Martinez FJ, Foster G, Curtis JL, et al. Predictors of mortality in patients with emphysema and severe airflow obstruction. Am J Respir Crit Care Med. 2006;173(12):1326–1334. doi:10.1164/rccm.200510-1677OC
7. Mahut B, Chevalier-Bidaud B, Plantier L, et al. Diffusing capacity for carbon monoxide is linked to ventilatory demand in patients with chronic obstructive pulmonary disease. COPD. 2012;9(1):16–21. doi:10.3109/15412555.2011.630700
8. Sue DY, Oren A, Hansen JE, Wasserman K. Diffusing capacity for carbon monoxide as a predictor of gas exchange during exercise. N Engl J Med. 1987;316(21):1301–1306. doi:10.1056/NEJM198705213162103
9. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Physiology of exercise. In: Wasserman K, editor. Principles of Exercise Testing and Interpretation. Philadelphia: Lippicott Williams & Wilkins; 2005:10–65.
10. Elbehairy AF, Ciavaglia CE, Webb KA, et al. Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. implications for dyspnea and exercise intolerance. *Am J Respir Crit Care Med.* 2015;191(12):1384–1394. doi:10.1164/rcrm.201501-0570OC

11. Benditt JO, Lewis S, Wood DE, Klima L, Albert RK. Lung volume reduction surgery improves maximal O2 consumption, maximal minute ventilation, O2 pulse, and dead space-to-tidal volume ratio during leg cycle ergometry. *Am J Respir Crit Care Med.* 1997;156(2 Pt 1):561–566. doi:10.1164/ajrccm.156.2.9611032

12. Elbehairy AF, Webb KA, Laveneziana P, et al. Acute bronchodilator therapy does not reduce wasted ventilation during exercise in COPD. *Respir Physiol Neurobiol.* 2018;252–253:64–71. doi:10.1016/j.resp.2018.03.012

13. Rocha A, Arbex FF, Sperandio PA, et al. Excess ventilation in chronic obstructive pulmonary disease-heart rate failure overlap. implications for dyspnea and exercise intolerance. *Am J Respir Crit Care Med.* 2018;196(10):1264–1274. doi:10.1164/rccm.201710-2078OC

14. Wasserman K, Hansen JE, Sue DY, Casaburi R, Whipp BJ. Measurements during integrative cardiopulmonary exercise testing. In: Wasserman K, editor. *Principles of Exercise Testing and Interpretation.* Philadelphia: Lea & Febiger; 1994:53–78.

15. Yamasawa W, Tasaka S, Betsuyaku T, Yamaguchi K. Correlation of a decline in aerobic capacity with development of dyspnea in patients with chronic obstructive pulmonary disease: a prospective observational study. *PLoS One.* 2015;10(4):e0125053. doi:10.1371/journal.pone.0125053

16. Beittler JR, Thompson BT, Matthey MA, et al. Estimating dead-space fraction for secondary analyses of acute respiratory distress syndrome clinical trials. *Crit Care Med.* 2015;43(5):1026–1035. doi:10.1097/CCM.0000000000000921

17. González-Castro A, Suárez-López V, Gómez-Marcos V, et al. Utility of the dead space fraction (Vd/Vt) as a predictor of extubation success. *Med Intensiva.* 2011;35(9):529–538. doi:10.1016/j.medin.2011.05.016

18. Meyer K, Görnandt L, Schwaibold M, et al. Predictors of response to exercise training in severe chronic congestive heart failure. *Am J Cardiol.* 1997;80(1):56–60. doi:10.1016/S0002-9149(97)00283-X

19. Rodger MA, Bredeson CN, Jones G, et al. The bedside investigation of pulmonary embolism diagnosis study: a double-blind randomized controlled trial comparing combinations of 3 bedside tests vs ventilation-perfusion scan for the initial investigation of suspected pulmonary embolism. *Arch Intern Med.* 2006;166(2):181–187. doi:10.1001/archinte.166.2.181

20. Sinha P, Calfee CS, Beittler JR, et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. *Am J Respir Crit Care Med.* 2019;199(3):333–341. doi:10.1164/ajrccm.201804-0692OC

21. Gebremichael GB, Berhe KK, Zemichael TM. Uncontrolled hypertension and associated factors among adult hypertensive patients in Ayder comprehensive specialized hospital, Tigray, Ethiopia, 2018. *BMC Cardiovasc Disord.* 2019;19(1):121. doi:10.1186/s12872-019-1091-6

22. Chuang ML. Combining dynamic hyperinflation with dead space volume during maximal exercise in patients with chronic obstructive pulmonary disease. *J Clin Med.* 2020;9(10):1127. doi:10.3390/jcm9041127

23. Chuang ML. Mechanisms affecting exercise ventilatory inefficiency-airflow obstruction relationship in male patients with chronic obstructive pulmonary disease. *Respir Res.* 2020;21(1):206. doi:10.1186/s12931-020-01463-4

24. Chetty KG, Brown SE, Light RW. Identification of pulmonary hypertension in chronic obstructive pulmonary disease from routine chest radiographs. *Am Rev Respir Dis.* 1982;126(2):338–341. doi:10.1164/arrd.1982.126.2.338

25. Bertoli L, Mantero A, Cicero SL, Alpago R, Rizzato G, Belli C. Usefulness of two-dimensional echocardiography in the assessment of right heart in chronic obstructive lung disease. *Progress Respirology Res Basel: Karger.* 1985:91–100.

26. Danchin N, Cornette A, Henriquez A, et al. Two-dimensional echocardiographic assessment of the right ventricle in patients with chronic obstructive lung disease. *Chest.* 1987;92(2):229–233. doi:10.1378/chest.92.2.229

27. Chuang ML, Lin IF. Investigating the relationships among lung function variables in chronic obstructive pulmonary disease in men. *Peer J.* 2019;7:e7829. doi:10.7717/peerj.7829

28. Chuang ML, Lin IF, Hsieh MJ. More impaired dynamic ventilatory muscle oxygenation in congestive heart failure than in chronic obstructive pulmonary disease. *J Clin Med.* 2019;8(10):E1641. doi:10.3390/jcm8101641

29. Chuang ML, Lin IF, Wasserman K. The body weight-walking distance product as related to lung function, anaerobic threshold and peak VO2 in COPD patients. *Respir Med.* 2001;95(7):618–626. doi:10.1053/remd.2001.1115

30. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. *Eur Respir J.* 2005;26(2):319–338. doi:10.1183/09031936.05.0003480

31. Wagner J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. *Eur Respir J.* 2005;26(3):511–522.

32. ATS/ERS S. ATS/ERS Statement on respiratory muscle testing. *Am J Respir Crit Care Med.* 2002;166(4):518–624.

33. Miller MR, Crapo R, Hankinson J, et al. General considerations for lung function testing. *Eur Respir J.* 2005;26(1):153–161. doi:10.1183/09031936.05.00034505

34. Chuang ML, Lin IF. Clinical characteristics and lung function in chronic obstructive pulmonary disease complicated with impaired peripheral oxygenation. *Intern Emerg Med.* 2014;9(6):633–640. doi:10.1007/s11739-013-0989-8

35. Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Calculations, formulas, and examples. In: Wasserman K, editor. *Principles of Exercise Testing and Interpretation.* Philadelphia: Lippincott Williams & Wilkins; 2005:556–565.

36. Sun XG, Hansen JE, Garatachea N, Storer WW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. *Am J Respir Crit Care Med.* 2002;166(11):1443–1448. doi:10.1164/ircr.2202033

37. Young AL, Bragman FJS, Rangelov B, et al. Disease progression modelling in chronic obstructive pulmonary disease (COPD). *Am J Respir Crit Care Med.* 2020;201(3):294–302. doi:10.1164/ircr.201908-1600OC

38. Kitahara Y, Hattori N, Yokoyama A, et al. Cigarette smoking decreases dynamic inspiratory capacity during maximal exercise in patients with type 2 diabetes. *Hiroshima J Med Sci.* 2012;61(2):29–36.

39. Gläser S, Ittermann T, Koch B, et al. Influence of smoking and obesity on alveolar-arterial gas pressure differences and dead space ventilation at rest and peak exercise in healthy men and women. *Respir Med.* 2013;107(6):919–926. doi:10.1016/j.rmed.2013.02.013

40. Pinto-Plata VM, Celli-Cruz RA, Vassaux C, et al. Differences in cardiopulmonary exercise test results by american thoracic society/european respiratory society-global initiative for chronic obstructive lung disease stage categories and gender. *Chest.* 2007;132(4):1204–1211. doi:10.1378/chest.07-0593

41. Celli BR, Locantore N, Tal-Singer R, et al. Physiema and extrapulmonary tissue loss in COPD: a multi-organ loss of tissue phenotype. *Eur Respir J.* 2018;51(2):pii:1702146. doi:10.1183/13993003.01246-2017

42. Lewis DA, Sietsma KE, Casaburi R, Sue DY. Inaccuracy of non-invasive estimates of VD/VT in clinical exercise testing. *Chest.* 1994;106(5):1476–1480. doi:10.1378/chest.106.5.1476
43. Liu Z, Vargas F, Stansbury D, Sasse SA, Light RW. Comparison of the end-tidal arterial PCO2 gradient during exercise in normal subjects and in patients with severe COPD. Chest. 1995;107(5):1218–1224. doi:10.1378/chest.107.5.1218

44. Sridhar MK, Carter R, Moran F, Banham SW. Use of a combined oxygen and carbon dioxide transcutaneous electrode in the estimation of gas exchange during exercise. Thorax. 1993;48(6):643–647. doi:10.1136/thx.48.6.643