MERADGEN 1.0: Monte Carlo generator for the simulation of radiative events in parity conserving doubly-polarized Møller scattering

Andrei Afanaseva Eugene Chudakova Alexander Ilyichevb Vladimir Zykunovc

aJefferson Lab, Newport News, VA 23606, USA
bNational Scientific and Educational Centre of Particle and High Energy Physics of the Belarusian State University, Minsk, 220040 Belarus
cJoint Institute for Nuclear Research, Dubna, 141980 Russia and Gomel State Technical University, Gomel, 246746 Belarus

Abstract

The Monte Carlo generator MERADGEN 1.0 for the simulation of radiative events in parity conserving doubly-polarized Møller scattering has been developed. Analytical integration wherever it is possible provides rather fast and accurate generation. Some numerical tests and histograms are presented.

PROGRAM SUMMARY

\textit{Manuscript title:} MERADGEN 1.0: Monte Carlo generator for the simulation of radiative events in parity conserving doubly-polarized Møller scattering

\textit{Authors:} A. Afanasev, E. Chudakov, A. Ilyichev, V. Zykunov

\textit{Program title:} MERADGEN 1.0

\textit{Licensing provisions:} none

\textit{Programming language:} FORTRAN 77

\textit{Computer(s) for which the program has been designed:} all

\textit{Operating system(s) for which the program has been designed:} Linux

\textit{RAM required to execute with typical data:} 1 MB

\textit{Has the code been vectorised or parallelized?:} no

\textit{Number of processors used:} 1

\textit{Email addresses:} ily@hep.by (Alexander Ilyichev), zykunov@sunse.jinr.ru (Vladimir Zykunov).

Preprint submitted to Elsevier Science
1 Introduction

The precise measurements in polarized Møller scattering play a very important role in the modern polarimetry. The coincidence detection of the final electron pairs allows to essentially reduce a background of radiative effects [1] that accompany any charge particle scattering, including investigated reaction. However due to finite detector resolution it is impossible to remove all radiative event contributions out of the data. Moreover the additional virtual particle contributions can not be removed by any experimental cuts. Therefore to reach the appropriate accuracy we need to perform the radiative correction procedure consisting in the calculation of these effects within QED and estimate them numerically.

The calculation of the lowest order QED radiative corrections (RC) to polarized Møller scattering was already performed in [2,3] (see also the references therein). In [2] these corrections were calculated exactly (without the ultrarelativistic approximation) but unfortunately also without any experimental cuts. In [3] the similar corrections were performed for longitudinally polarized Møller scattering within the ultrarelativistic approximation. The numerical analysis which is presented in [3] shows that RC to Møller scattering are very sensitive to the missing mass (inelasticity) cuts.

However, the consideration only the missing mass cuts during RC procedure
is insufficient. The realistic situation corresponds to taking into account the
detector geometry that can essentially complicate the integration over the real
photon phase space. In such situation an approach based on the Monte Carlo
simulation of radiative events is the most adequate. The Monte Carlo gener-
ators RADGEN [4] and ELRADGEN [5] for simulation of radiative events in
deep inelastic and elastic lepton-nucleon scattering can serve as an examples
of such approach.

In present paper a new Monte Carlo generator MERADGEN 1.0 [1] for the
simulation of the radiative events in parity conserving part of polarized Møller
scattering is presented that can be used for the polarimetry purpose of present
and future experiments, for example, in JLab and SLAC. Naturally, as we are
taking into consideration the parity conserving effects and the beam energy is
rather small (from 1 to 45 GeV), the weak contributions (Z-boson exchange
and so one) to this process are negligible. So, we restricted our calculation
within QED theory only.

The present paper is organized as following. In Section 2 the kinematics of the
investigated process and the generation method are presented. The different
contributions to the cross section that is responsible for real photon emission
are considered in Section 3. Then in Section 4 the brief structure of the code
is discussed, in Section 5 we described the input-output data. In Section 6 we
explain how to run tests of our code, some conclusions are given in Section 7.
Finally, in Appendices the 4-momenta reconstruction formulas, some lengthy
formulas for RC and test output are presented.

2 Kinematics and Method of Generation

The lowest order contribution to the observable cross section of Møller scat-
tering reaction

\[e(k_1, \xi_L) + e(p_1, \eta_L) \rightarrow e(k_2) + e(p_2) \]

(in parentheses the 4-momenta and polarization vectors of electrons are pre-

sented, and \(k_1^2 = k_2^2 = p_1^2 = p_2^2 = m^2 \)) can be described by the standard set of
Mandelstam variables:

\[s = (k_1 + p_1)^2, \ t = (k_1 - k_2)^2, \ u = (k_2 - p_1)^2, \]
\[s + t + u = 4m^2, \]

\[1 \text{ FORTRAN code MERADGEN 1.0 is available from } \text{http://www.hep.by/RC} \]
while the beam (ξ_L) and target (η_L) polarization vectors read:

$$\xi_L = \frac{1}{\sqrt{\lambda_s}} \left(\frac{s - 2m^2}{m} k_1 - 2mp_1 \right),$$

$$\eta_L = \frac{1}{\sqrt{\lambda_s}} \left(2mk_1 - \frac{s - 2m^2}{m} p_1 \right).$$

(3)

where $\lambda_s = s(s - 4m^2)$.

For the definition of the lowest order contribution to Møller scattering it is enough to define an initial beam energy $k_{10} = E_{b,\text{Lab}}^\text{Lab}$ (in Lab. system), a scattering angle θ_{CM} (in CM system) of the detected electron with the 4-momentum k_2 and an azimuthal angle ϕ. The cross section does not depend on ϕ up to taking into account the detector geometry. Let us notice that $E_{b,\text{Lab}}^\text{Lab}$ and $\cos \theta_{\text{CM}}$ can be expressed via the invariants in the following way:

$$\cos \theta_{\text{CM}} = 1 + 2t/s = 1 - 2y, \quad E_{b,\text{Lab}}^\text{Lab} = \frac{s - 2m^2}{2m},$$

(4)

where $y = -t/s$. Therefore instead of the scattering angle and the beam energy for the definition of the Born cross section we can use s and t variables.

For the radiative process with the real photon emission

$$e(k_1, \xi_L) + e(p_1, \eta_L) \rightarrow e(k_2) + e(p_2) + \gamma(k)$$

($k^2 = 0$) three new kinematic variables have to be defined. At first, following notations of ref. [3] we introduce an inelasticity $v = \Lambda^2 - m^2$, where $\Lambda = k_1 - k_2 + p_1$ and Λ^2 is so-called missing mass square. Maximum value of the inelasticity

$$v_{max} = \frac{st + \sqrt{s(s - 4m^2)t(t - 4m^2)}}{2m^2} \sim s + t$$

(6)

can be defined from the kinematical restriction (see, for example, the Chew-Low diagram in [6]). This variable can be directly reconstructed from the data. To remove the contribution of the hard photon emission the events with $v \leq v_{\text{cut}}$ are taking into account, where the value v_{cut} is far less than v_{max}. The second variable is defined by $t_1 = (p_2 - p_1)^2 = (k_1 - k_2 - k)^2$. At last, the third variable should be choose as $z = 2k_2k$. Notice that for the radiative process

$$\cos \theta_{\text{CM}} = 1 + 2t/(s - v).$$

(7)
To reconstruct the 4-momenta of all particles for radiative process in any system it is enough to determine of variables s, t, v, t_1, z and the azimuthal angle ϕ. As an example, in Appendix A the 4-momenta of electrons and real photon are expressed through these variables and presented in the center of the initial electron mass system.

The simulation of the radiative events can be performed by the following algorithm:

- For the fixed initial energy and t the non-radiative and radiative parts of the observable cross section are calculated.
- The channel of scattering is simulated for the given event in accordance with partial contributions of these two (non-radiative and radiative) positive parts into the observable cross section.
- The angle ϕ is simulated uniformly from 0 to 2π.
- For the radiative event the kinematic variables v, t_1 and z are simulated in accordance with their calculated distributions.
- The 4-momenta of all final particles in the required system are calculated.
- If the initial t has not a fixed value (i.e. simulated according to the Born probability distribution) then the cross sections have to be stored for reweighing. The t-distribution is simulated over the Born cross section, and realistic observed t-distribution is calculated as sum of weights, they are ratios of the observable and Born cross sections.

Let us consider some important steps of simulation of the radiative events in more details.

3 Non-radiative and radiative parts of the observable cross section

Here we consider the observable cross section that has a form:

$$
\sigma_{\text{obs}}(v_{\text{cut}}) = \sigma^0 + \sigma^{RV}(v_{\text{cut}}) + \sigma^R(v_{\text{cut}}),
$$

(8)

where σ^0 is the Born contribution, σ^{RV} is an infrared divergency free sum of the contributions of the additional virtual particles and the "infrared" part of the real photon emission, σ^R is the infrared divergency free part of the unobservable photon emission. The explicit expressions for each term of equation (8) can be found in [3]. Since the expressions for the two virtual photon contribution as well as δ^H_1 and δ^S_1 in [3] contain the misprints (fortunately, it is not seriously reflecting on the numerical estimations presented in [3]),

\[\text{Here and later we consider the differential cross section } \sigma \equiv d\sigma/dy\]
the additional virtual particle contributions together with δ_H^1 and δ^S_1 are also presented in Appendix B.

Now we consider σ_R^F in more detail: before integration over the inelasticity and the real photon phase space it can be presented as

$$
\sigma^R_F(v_{cut}) = \frac{\alpha^3}{4\pi} \frac{v_{cut}}{v_{min}} \int dv \int d\Gamma_k (|M_R|^2 - 4F^{IR}|M_0|^2),
$$

where M_R is a sum of matrix elements contributed to the real photon emission (see Appendix C for details), while M_0 is a Born matrix element. The real photon phase space reads

$$
d\Gamma_k = \frac{1}{\pi} \frac{d^3k}{k_0} \frac{1}{\Delta((\Lambda - k)^2 - m^2)} = \frac{1}{4\pi} \frac{dt_1 dz}{\sqrt{-\Delta(k_1, k_2, p_1, k)}},
$$

where $\Delta(k_1, k_2, p_1, k)$ is the Gram determinant. At last,

$$
-F^{IR} = \frac{m^2}{z^2} + \frac{m^2}{z_1^2} + \frac{m^2}{v_1^2} + \frac{m^2}{v_1^2} + \frac{s - 2m^2}{z_1 v_1} + \frac{s - 2m^2}{zv} + \frac{t - 2m^2}{z_1 z} + \frac{t - 2m^2}{v_1 v} + \frac{u_0 - 2m^2}{z_1 v} + \frac{u_0 - 2m^2}{v_1 z},
$$

where $z_1 = 2kk_1$, $v_1 = 2kp_1$ and $u_0 = s + t - 4m^2$.

For separation of the cross section (9) into the radiative and non-radiative parts it is necessary to introduce a new fictitious parameter v_{min} associated with missing mass square resolution. Then the equation (9) can be rewrite in the following way

$$
\sigma^R_F(v_{cut}) = \sigma^R(v_{cut}, v_{min}) + \frac{\alpha^3}{4\pi} \frac{v_{min}}{v_{cut}} \int dv \int d\Gamma_k (|M_R|^2 - 4F^{IR}|M_0|^2) - \frac{\alpha^3}{4\pi} \frac{v_{cut}}{v_{min}} \int dv \int d\Gamma_k F^{IR}|M_0|^2,
$$

where

$$
\sigma^R(v_{cut}, v_{min}) = \frac{\alpha^3}{16\pi} \frac{s}{v_{min}} \frac{t_{max}^{1max}}{t_{min}^{1min}} \int dz \int \frac{1}{\sqrt{-\Delta(k_1, k_2, p_1, k)}} |M_R|^2 =
$$
\[
\sigma_{\text{obs}}(v_{\text{cut}}) = \sigma^r(v_{\text{cut}}, v_{\text{min}}) + \sigma^\text{nr}(v_{\text{cut}}, v_{\text{min}}),
\]
(14)

we immediately find that

\[
\sigma^\text{nr}(v_{\text{cut}}, v_{\text{min}}) = \sigma^0 + \sigma^\text{RV}(v_{\text{cut}}) + \frac{\alpha^3}{4s} \int_0^{v_{\text{min}}} dv \int d\Gamma_k(|M_R|^2 - 4|F_{IR}|^2 M_0^2) - \frac{\alpha^3}{s} \int_{v_{\text{min}}}^{v_{\text{cut}}} dv \int d\Gamma_k F_{IR}^2 |M_0|^2.
\]
(15)

Let us notice that the explicit formulae both for \(d^3\sigma^r(v_{\text{cut}}, v_{\text{min}})/dvdt_1dz\) in the equation (13) and \(\sigma^\text{nr}(v_{\text{cut}}, v_{\text{min}})\) allow us to start the generation of the radiative events. However to speed up the process of generation it is useful to perform the integration over \(z\) and \(t_1\) analytically. So, the following analytical expressions

\[
\begin{align*}
\frac{d\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dv} &= \int_{t_1^{\text{min}}}^{t_1^{\text{max}}} dt_1 \int_{z_{\text{min}}}^{z_{\text{max}}} dz \frac{d^3\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dvdt_1dz}, \\
\frac{d^2\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dvdt_1} &= \int_{z_{\text{min}}}^{z_{\text{max}}} dz \frac{d^3\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dvdt_1dz}.
\end{align*}
\]
(16)

are incorporated in our Monte Carlo program. The analytical integration can be performed in a standard way (see, for example, [2,6] and references therein).

At the end of this section it should be noted that according to the equation (14) the non-radiative and radiative contributions to the cross section depend on \(v_{\text{cut}}\) and \(v_{\text{min}}\), while the observable cross section depends on \(v_{\text{cut}}\) only.
4 The structure of the program and radiative event simulation

The structure of the Monte Carlo generator MERADGEN 1.0 is presented in fig. 1. The main blocks mean:

- **merad_init** — here we define all constants which are necessary for generation;
- **grid_init** — here we prepare the grids for generation of kinematic variables, really we approximate the theoretical curve by some sets of segments;
- **urand** — random number generator (flat);
- **sig** — the Born cross section and part of the virtual contribution (vertices and self energies);
- **xsbt** — box contribution;
- **dcanc** — the contribution with cancellation of the infrared divergency;
- **fsir** — analytical cross sections $d\sigma^r(v_{cut}, v_{min})/dv$, $d^2\sigma^r(v_{cut}, v_{min})/dvdt_1$ and $d^3\sigma^r(v_{cut}, v_{min})/dvdt_1dz$.

For the convenience sake we split our programm into 4 FORTRAN-files:

- **run.f** — main program for the event generation;
- **test.f** — main program for the tests;
- **meradgen.f** — the collection of main functions and subroutines of MERADGEN 1.0;
- **fsir.f** — function *fsir* for calculation of the analytical cross sections that are presented above.

For the events (tests) generation we need to run ”make” (”make test”) command.

Now let us consider the input-output data in more details.
5 Input-output data

As an input data MERADGEN 1.0 uses 4-momentum of the virtual photon $v_{\text{pgen}} := k_1 - k_2$ that generated in CM system externally, energy of electrons and degree of electrons polarization. There is only one variable itest in MERADGEN 1.0 that responsible for output. If $\text{itest} := 0$ the output data are gathered in two common blocks (see file output.inc):

common/variables/vgen,t1gen,zgen,weight,ich

and

common/vectors/vprad,phirad.

Here v_{gen}, $t_{1\text{gen}}$ and z_{gen} are generated photonic variables v, t_1 and z respectively, (they are necessary first of all for the test), weight is a ratio of the observable cross section to the Born one, variable ich shows the radiative ($\text{ich} := 1$) or non-radiative ($\text{ich} := 0$) scattering channel, the 4-momentum $v_{\text{prad}} := p_2 - p_1$ and photonic 4-momentum $\text{phirad} := k$ also defined in CM system.

Here we have to do some remarks: 1) for non-radiative events $v_{\text{gen}} := 0$, $t_{1\text{gen}} := t$, $z := 0$, $v_{\text{prad}} := v_{\text{pgen}}$ and $\text{phirad} := 0$, and 2) as it was mentioned above, the variable v can be reconstructed experimentally and the events with hard photons $v_{\text{cut}} < v \leq v_{\text{max}}$ usually remove from the data. In order to speed up the process generation, we generated variable v from v_{min} up to $v_{\text{cut}} = (s + t)/2 \sim v_{\text{max}}/2$.

Now let us consider one sample of generation. It is well known that for the elastic process (1) the energy of the detected electron $k_{2\text{0}}$ can be directly defined via the scattering angle θ_{CM} and the initial electron beam energy in the following way:

$$E^\text{Lab}_2 \approx \cos^2 \frac{\theta_{\text{CM}}}{2} E^\text{Lab}_b,$$

but when we deal with the real photon emission (5) the process becomes inelastic and, as a result, the "elastic" equation (17) is broken and we have the 2-dimensional distribution over E^Lab_2 and $\cos \theta_{\text{CM}}$. From fig. 2 one can see that this distribution has a sharp peak near an "elastic" line described by the equation (17).

9
For our test runs we use the fact that if the events are simulated correctly their distributions over variables v, t_1 and z must obey to the corresponding probability distributions:

$$
\begin{align*}
\rho(v) &= \frac{1}{N_v} \frac{d\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dv}, & N_v &= \sigma^r(v_{\text{cut}}, v_{\text{min}}), \\
\rho(t_1) &= \frac{1}{N_{t_1}} \frac{d^2\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dvdt_1}, & N_{t_1} &= \frac{d\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dv}, \\
\rho(z) &= \frac{1}{N_z} \frac{d^3\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dvdt_1dz}, & N_z &= \frac{d^2\sigma^r(v_{\text{cut}}, v_{\text{min}})}{dvdt_1}. \quad (18)
\end{align*}
$$

Then for generation of $\rho(v)$, $\rho(t_1)$ or $\rho(z)$ distributions one has to put in the file `test.f` the value of variable `itest` such as: `itest := 1`, `itest := 2` or `itest := 3`, respectively, next to type ”make test” and, at last, ”./test.exe”. The value `rgen/rcalc`, i.e. ratio of generated ρ-distribution to corresponding calculated cross section should be near unit. In Appendix D the test outputs for v, t_1, z generation with $P = 1$ (see formula (B.2)), $E_{\text{Lab}}^{\text{lab}}=45$ GeV, $\theta_{CM} = 90^0$, 20 bins for the histogramming and 10^8 radiative events are presented.

The simulated distributions of the photonic variables for the SLAC E158 experiment kinematic conditions and for the different degrees of polarization are presented in fig. 3 (all of parameters are noted there). We suppose v_{min} rather small: $v_{\text{min}} = 2 \times 10^{-2} E_{\text{Lab}}^{\text{lab}} m$. In the fig. 3 we can see clearly the divergent behavior of the distributions at $v \to 0$, $z \to z_{\text{min},\text{max}}$, $t_1 \to t_{1\text{min}}$ corresponding to the infrared singularity at the $v_{\text{min}} \to 0$. Also it can be seen the physical,
Fig. 3. v, t_1, z-histograms (points) and corresponding probability densities (curves) for E158 (SLAC) kinematic conditions ($E_{\text{Lab}}^b = 45$ GeV)
so-called z- and z_1-peaks of distribution $\rho(t_1)$.

The other test with $itest := 4$ consists in the cross-check of the accuracy of vector reconstruction. So, using all 4-momenta we reproduce the value of generated invariant and compare them with the generated value. In this test we also calculate the photonic mass square as $m2gamma := phirad(4)^2 - phirad(1)^2 - phirad(2)^2 - phirad(3)^2$, which should be near zero. In last part of Appendix D we can see good coincidence reconstructed and generated invariants in different (random) kinematical points and very small values of photonic mass square.

7 Conclusion

In this paper the Monte Carlo generator MERADGEN 1.0 serving for the simulation of radiative events in parity conserving longitudinally doubly-polarized Møller scattering is presented. Following for the absolute necessity of both accuracy and quickness for our program we have developed the fast and high precise code using analytical integration wherever it was possible. MERADGEN 1.0 can be employed for the radiative corrections procedure in experiments with the complex detector geometry, such as SLAC E158 experiment and experiments of modern polarimetry (JLAB, SLAC).

Acknowledgments

The authors would like to thank Igor Akushevich, Yury Kolomensky, Nikolai Shumeiko and Juan Suarez for stimulating discussions. V.Z. (A.I.) would like to thank SLAC (JLab) staff for their generous hospitality during their visits.

Appendix A 4-momenta reconstruction

The 4-momentum definition in the center of mass system of the initial electrons for Møller process with real photon emission is shown in fig. 4 and can be presented in the form:

$$k_1 = (k_{10}, 0, 0, |\vec{k}_1|), \quad p_1 = (p_{10}, 0, 0, -|\vec{p}_1|),$$

$$k_2 = (k_{20}, k_{21}, k_{22}, k_{23}), \quad p_2 = (p_{20}, p_{21}, p_{22}, p_{23}),$$

$$k = (k_0, k_1, k_2, k_3),$$

(A.1)
while their components can be expressed via the invariants and azimuthal angle ϕ (that is usually generated uniformly) in the following way:

$$k_{10} = p_{10} = \frac{1}{2} \sqrt{s}, \quad |\vec{k}_1| = |\vec{p}_1| = \frac{\sqrt{\lambda_s}}{2 \sqrt{s}}$$

$$k_{20} = \frac{s - v}{2 \sqrt{s}}, \quad k_{21} = \sqrt{\lambda_3} \cos \phi, \quad k_{22} = \sqrt{\lambda_3} \sin \phi, \quad k_{23} = \frac{s \lambda_2}{2 \sqrt{s \lambda_s}},$$

$$p_{20} = \frac{s - z}{2 \sqrt{s}},$$

$$p_{21} = -\frac{\sqrt{\lambda_s \lambda_1 \lambda_8} \sin \phi + (4 \lambda_3 \lambda_4 + s \lambda_2 \lambda_7) \cos \phi}{4 \lambda_1 \sqrt{\lambda_s \lambda_3}},$$

$$p_{22} = \frac{\sqrt{\lambda_s \lambda_1 \lambda_8} \cos \phi - (4 \lambda_3 \lambda_4 + s \lambda_2 \lambda_7) \sin \phi}{4 \lambda_1 \sqrt{\lambda_s \lambda_3}},$$

$$p_{23} = \frac{\sqrt{s} (\lambda_7 - \lambda_2 \lambda_4)}{2 \lambda_1 \sqrt{\lambda_s}},$$

$$k_0 = \frac{v + z}{2 \sqrt{s}},$$

$$k_1 = \frac{\sqrt{\lambda_s \lambda_1 \lambda_8} \sin \phi + (4 \lambda_3 \lambda_6 - s \lambda_2 \lambda_7) \cos \phi}{4 \lambda_1 \sqrt{\lambda_s \lambda_3}},$$

$$k_2 = \frac{-\sqrt{\lambda_s \lambda_1 \lambda_8} \cos \phi + (4 \lambda_3 \lambda_6 - s \lambda_2 \lambda_7) \sin \phi}{4 \lambda_1 \sqrt{\lambda_s \lambda_3}},$$
$$k_3 = \frac{\sqrt{s}(\lambda_7 + \lambda_2\lambda_6)}{2\lambda_1\sqrt{\lambda_s}}.$$ \hspace{1cm} (A.2)

Here

$$\lambda_1 = (s - v)^2 - 4sm^2, \quad \lambda_2 = 2t + s - v - 4m^2, \quad \lambda_3 = -st(s + t - v - 4m^2) - m^2v^2, \quad \lambda_4 = s(s - v - 4m^2) - (s + v)z, \quad \lambda_5 = vz(s - v - z) - m^2(v + z)^2, \quad \lambda_6 = s(v - z) - v(v + z), \quad \lambda_7 = (s + 2t_1 - z - 4m^2)\lambda_1 - \lambda_2\lambda_4, \quad \lambda_8 = 16\lambda_3\lambda_5 - \lambda_7^2.$$ \hspace{1cm} (A.3)

As a result, the angles in fig. 4 can be expressed via the invariants in the following way:

$$\cos \theta = \frac{s\lambda_2}{\sqrt{\lambda_s\lambda_1}}, \quad \cos \theta_k = \frac{s(\lambda_7 + \lambda_2\lambda_6)}{(v + z)\lambda_1\sqrt{\lambda_s}}, \quad \tan \phi_k = \frac{\sqrt{\lambda_s\lambda_1\lambda_8}}{s\lambda_2\lambda_7 - 4\lambda_3\lambda_6}. \hspace{1cm} (A.4)$$

Appendix B: Additional virtual particle, \(\delta^H_1\) and \(\delta^S_1\) contributions

The virtual contributions to Møller scattering can be separated into three parts:

$$\sigma^V = \sigma^S + \sigma^\text{Ver} + \sigma^\text{Box}, \hspace{1cm} (B.1)$$

where 1) \(\sigma^S\) is a virtual photon self-energy contribution, 2) \(\sigma^\text{Ver}\) is a vertex function contribution, 3) \(\sigma^\text{Box}\) is a box contribution. Now we consider each of them.

(1) The contribution of the virtual photon self energies (including the photon vacuum polarization by hadrons) to the cross section looks like

$$\sigma^S = \frac{4\pi\alpha^2}{t^2}\text{Re}\left(-\frac{1}{t}\tilde{\Sigma}_T^\gamma(t) + \Pi_h(-t)\right)\left[(1 + P)\frac{u^2}{s} - (1 - P)\frac{s^2}{u}\right] + (t \leftrightarrow u). \hspace{1cm} (B.2)$$

Here \(P = P_B P_T\), where \(P_B (P_T)\) is the beam (target) polarization, \(\tilde{\Sigma}_T^\gamma(-t)\) is the renormalized transverse part of the \(\gamma\)-self-energy [7] (this part includes vacuum polarization by \(e, \mu\), and \(\tau\) charged leptons: in corresponding formula of [7] we should take a summing index \(f = e, \mu, \tau\)). The hadronic part of the photonic vacuum polarization associated with light
quarks can be directly obtained from the data on process $e^+e^- \rightarrow \text{hadrons}$ via dispersion relations. Here we use parameterization of \[8\]

$$\text{Re} \Pi_h(-t) \approx A + B \ln(1 + C|t|),$$

(B.3)

with updated parameters A,B,C in different energy regions.

(2) For the contribution of the electron vertices we used the results of the paper \[7\] (see also references therein). We can obtain the vertex part as

$$\sigma_{\text{Ver}} = \frac{2\alpha^3}{t^2} \left[(1 + P) \frac{u^2}{s} - (1 - P) \frac{s^2}{u} \right] \Lambda_1(t, m^2) + (t \leftrightarrow u),$$

(B.4)

where

$$\Lambda_1(t, m^2) = -2 \ln \frac{|t|}{\lambda^2} \left(\ln \frac{|t|}{m^2} - 1 \right) + \ln \frac{|t|}{m^2} + \ln \frac{t}{m^2} + \frac{\pi^2}{3} - 4.$$

(B.5)

(3) Recalculated here expressions for the box cross section are slightly different from presented in \[3\] (we correct the misprints in the expression (16) of \[3\])

$$\sigma_{\text{Box}} = \frac{2\alpha^3}{t} \left[\frac{1 + P}{s} \left(\frac{2u^2}{t} \ln \frac{s}{|u|} \ln \frac{s|u|}{\lambda^2} - \delta^1_{(\gamma\gamma)} \right) - \frac{1 - P}{u} \left(\frac{2s^2}{t} \ln \frac{s}{|u|} \ln \frac{s|u|}{\lambda^2} - \delta^2_{(\gamma\gamma)} \right) \right] + (t \leftrightarrow u),$$

(B.6)

The expressions $\delta^1_{(\gamma\gamma)}$, $\delta^2_{(\gamma\gamma)}$ have the form:

$$\delta^1_{(\gamma\gamma)} = l_s \frac{s^2 + u^2}{2t} - l_s u - (l_x^2 + \pi^2) \frac{u^2}{t},$$

$$\delta^2_{(\gamma\gamma)} = l_s^2 \frac{s^2}{t} + l_x s - (l_x^2 + \pi^2) \frac{s^2 + u^2}{2t},$$

(B.7)

and logarithms look like

$$l_s = \ln \frac{s}{|t|}, \quad l_x = \ln \frac{u}{t}.$$

(B.8)

It should be noted that vertex and box parts contain the infrared divergence through the appearance of the fictitious photon mass λ. The infrared part from virtual cross section can be extracted in a simple way:

$$\sigma_{1IR} = \sigma^V - \sigma^V (\lambda^2 \rightarrow s) = -\frac{2\alpha}{\pi} \ln \frac{s}{\lambda^2} \left(\ln \frac{tu}{m^2 s} - 1 \right) \sigma^0.$$

(B.9)

The correct expressions for δ^H_1 and δ^S_1 read
\[\delta^H = -\frac{1}{2} \frac{l^2}{m} + \left(\ln \frac{t^2(s + t)^2(s - v_{\text{max}})}{s(s + t - v_{\text{max}})^2v_{\text{max}}(v_{\text{max}} - t)} + 1 \right) l_m - \frac{1}{2} \ln^2 \frac{v_{\text{max}}}{|t|} - \]
\[- \ln^2 \left(1 - \frac{v_{\text{max}}}{t} \right) + \ln \frac{s + t}{s + t - v_{\text{max}}} \ln \frac{(s + t)(s + t - v_{\text{max}})}{t^2} + \]
\[+ \ln \frac{s - v_{\text{max}}}{|t|} \left\{ \ln \frac{s - v_{\text{max}}}{s} + \ln \frac{v_{\text{max}}}{|t|} + 2 \left[\text{Li}_2 \left(\frac{v_{\text{max}}}{s} \right) - \text{Li}_2 \left(\frac{v_{\text{max}}}{t} \right) - \frac{\pi^2}{6} \right] \right\} - \]
\[\left\{ \text{Li}_2 \left(\frac{v_{\text{max}}}{s + t} \right) + \text{Li}_2 \left(\frac{s - v_{\text{max}}}{s} \right) - \text{Li}_2 \left(\frac{t - v_{\text{max}}}{t} \right) - \frac{\pi^2}{6} \right\}, \]
\[\delta^S = -\frac{5}{2} \frac{l^2}{m} + (3 - 2 l_r) l_m - (l_m - 1) \ln \frac{s(s + t)}{t^2} - \frac{1}{2} l_r^2 - \frac{\pi^2}{3} + 1. \quad (B.10) \]

Appendix C Matrix element of the real photon emission

The sum of the matrix elements contributed to the real photon emission in Møller process reads:

\[M^\alpha_R = \frac{1}{t_1} \bar{u}(k_2) \Gamma_{\mu \alpha}(k_2, k_1) u(k_1) \bar{u}(p_2) \gamma_\mu u(p_1) + \]
\[+ \frac{1}{t} \bar{u}(k_2) \gamma_\mu u(k_1) \bar{u}(p_2) \Gamma_{\mu \alpha}(p_2, p_1) u(p_1) - \]
\[- \frac{1}{u} \bar{u}(p_2) \Gamma_{\mu \alpha}(p_2, k_1) u(k_1) \bar{u}(k_2) \gamma_\mu u(p_1) - \]
\[- \frac{1}{z_2} \bar{u}(p_2) \gamma_\mu u(k_1) \bar{u}(k_2) \Gamma_{\mu \alpha}(k_2, p_1) u(p_1). \quad (C.1) \]

The conjugate matrix element can be found in a simple way:

\[M^{\alpha}_R = \frac{1}{t_1} \bar{u}(k_1) \bar{\Gamma}_{\nu \alpha}(k_1, k_2) u(k_2) \bar{u}(p_2) \gamma_\nu u(p_1) + \]
\[+ \frac{1}{t} \bar{u}(k_1) \gamma_\nu u(k_2) \bar{u}(p_2) \bar{\Gamma}_{\nu \alpha}(p_1, p_2) u(p_2) - \]
\[- \frac{1}{u} \bar{u}(k_1) \bar{\Gamma}_{\nu \alpha}(k_1, p_2) u(p_2) \bar{u}(p_1) \gamma_\nu u(k_2) - \]
\[- \frac{1}{z_2} \bar{u}(k_1) \gamma_\nu u(p_2) \bar{u}(p_1) \bar{\Gamma}_{\nu \alpha}(p_1, k_2) u(k_2). \quad (C.2) \]

Here \(z_2 = z - s - t_1 + 4 m^2 \) and

\[\Gamma_{\mu \alpha}(a, b) = \left(b_\alpha \frac{a_\alpha}{k^a} - \frac{a_\alpha}{k^a} \right) \gamma_\mu - \frac{\gamma_\mu \bar{k} \gamma_\alpha}{2bk} - \frac{\gamma_\alpha \bar{k} \gamma_\mu}{2ak}, \]
\[\Gamma_{\nu\alpha}(a, b) = -\left(\frac{b_\alpha}{k_b} - \frac{a_\alpha}{k_a} \right) \gamma_\nu - \frac{\gamma_\nu \hat{k}_\alpha}{2bk} - \frac{\gamma_\alpha \hat{k}_\gamma}{2ak}. \]

(C.3)

By introducing

\[S(a_1, a_2, a_3, a_4) = \text{Tr}[a_1 \rho(a_2) a_3 \Lambda(a_4)] \]
\[S(a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8) = \text{Tr}[a_1 \rho(a_2) a_3 \Lambda(a_4) a_5 \rho(a_6) a_7 \Lambda(a_8)], \]

(C.4)

where

\[u(k_1) \bar{u}(k_1) = \rho(k_1) = \frac{1}{2} (\hat{k}_1 + m)(1 - P_B \gamma_5 \hat{\xi}_L), \]
\[u(p_1) \bar{u}(p_1) = \rho(p_1) = \frac{1}{2} (\hat{p}_1 + m)(1 - P_T \gamma_5 \hat{n}_L), \]
\[u(k_2) \bar{u}(k_2) = \Lambda(k_2) = \hat{k}_2 + m, \quad u(p_2) \bar{u}(p_2) = \Lambda(p_2), \]

(C.5)

the square of matrix elements reads:

\[|M_R|^2 = -M_R^\alpha \bar{M}_R^\alpha = \]

\[= -\frac{1}{t_1 t_2} S(\Gamma_{\mu\alpha}(k_2, k_1), k_1, \bar{\Gamma}_{\nu\alpha}(k_1, k_2), k_2) S(\gamma_\mu, p_1, \gamma_\nu, p_2) - \]
\[-\frac{1}{t_1 t_2} S(\Gamma_{\mu\alpha}(k_2, k_1), k_1, \gamma_\nu, k_2) S(\gamma_\mu, p_1, \bar{\Gamma}_{\nu\alpha}(p_1, p_2), p_2) - \]
\[-\frac{1}{t_1 t_2} S(\gamma_\mu, k_1, \bar{\Gamma}_{\nu\alpha}(k_1, k_2), k_2) S(\Gamma_{\mu\alpha}(p_2, p_1), p_1, \gamma_\nu, p_2) - \]
\[-\frac{1}{t_1 t_2} S(\gamma_\mu, k_1, \gamma_\nu, k_2) S(\Gamma_{\mu\alpha}(p_2, p_1), p_1, \bar{\Gamma}_{\nu\alpha}(p_1, p_2), p_2) + \]
\[+ \frac{1}{t_1 u} S(\Gamma_{\mu\alpha}(k_2, k_1), k_1, \bar{\Gamma}_{\nu\alpha}(k_1, k_2), k_2, \gamma_\mu, p_1, \gamma_\nu, p_2) + \]
\[+ \frac{1}{t_1 u} S(\Gamma_{\mu\alpha}(p_2, k_1), k_1, \bar{\Gamma}_{\nu\alpha}(k_1, k_2), k_2, \gamma_\mu, p_1, \gamma_\nu, p_2) + \]
\[+ \frac{1}{t_1 z_2} S(\Gamma_{\mu\alpha}(k_2, k_1), k_1, \gamma_\nu, p_2, \gamma_\mu, p_1, \bar{\Gamma}_{\nu\alpha}(p_1, k_2), k_2) + \]
\[+ \frac{1}{t_1 z_2} S(\gamma_\mu, k_1, \bar{\Gamma}_{\nu\alpha}(k_1, k_2), k_2, \Gamma_{\mu\alpha}(k_2, p_1), p_1, \gamma_\nu, p_2) + \]
\[+ \frac{1}{t_1 u} S(\gamma_\mu, k_1, \bar{\Gamma}_{\nu\alpha}(k_1, p_2), p_2, \Gamma_{\mu\alpha}(p_2, p_1), p_1, \gamma_\nu, k_2) + \]
\[+ \frac{1}{t_1 z_2} S(\gamma_\mu, k_1, \gamma_\nu, p_2, \Gamma_{\mu\alpha}(p_2, p_1), p_1, \bar{\Gamma}_{\nu\alpha}(p_1, k_2), k_2) + \]
\[+ \frac{1}{t_1 z_2} S(\gamma_\mu, k_1, \gamma_\nu, k_2, \Gamma_{\mu\alpha}(k_2, p_1), p_1, \bar{\Gamma}_{\nu\alpha}(p_1, p_2), p_2) - \]
\[-\frac{1}{u_2} S(\Gamma_{\mu 0}(p_2, k_1), k_1, \bar{\Gamma}_{\nu 0}(k_1, p_2)) S(\gamma_{\mu}, p_1, \gamma_{\nu}, k_2) - \]
\[-\frac{1}{u_2} S(\Gamma_{\mu 0}(p_2, k_1), k_1, \gamma_{\nu}, p_2) S(\gamma_{\mu}, p_1, \bar{\Gamma}_{\nu 0}(p_1, k_2), k_2) - \]
\[-\frac{1}{u_2} S(\gamma_{\mu}, k_1, \bar{\Gamma}_{\nu 0}(k_1, p_2)) S(\Gamma_{\mu 0}(k_2, p_1), p_1, \gamma_{\nu}, k_2) - \]
\[-\frac{1}{u_2} S(\gamma_{\mu}, k_1, \gamma_{\nu}, p_2) S(\Gamma_{\mu 0}(k_2, p_1), p_1, \bar{\Gamma}_{\nu 0}(p_1, k_2), k_2). \quad (C.6)\]

Appendix D Test output

Here we present the results of the test as test.dat output file corresponding to:
1) \(itest := 1 \) – the generation of \(\rho(v) \) distribution and comparison it with the analytical cross section corresponding to the first formula in (18) (here and below all of invariants \(v, t_1, z \) are in GeV^2)

\(itest=1 \)

\(v \) generation
\(rgen \) is generated probability
\(rcalc \) is calculated probability
\(Ebeam=45.0 \quad GeV \)
\(\theta=90.0 \quad degrees \ in \ CM \ system \)
\(P=pb*pt=1.00 \quad beam \ polarization \ times \ target \ polarization \)
number of bins 20
number of radiative events 100000000
initial random number 12

bin	\(v \)	\(rgen \)	\(rcalc \)	\(rgen/rcalc \)
1	0.6998E-03	376.4	375.0	1.004
2	0.1268E-02	205.8	205.4	1.002
3	0.1826E-02	143.4	143.2	1.001
4	0.2382E-02	111.3	111.2	1.002
5	0.2936E-02	92.07	91.91	1.002
6	0.3490E-02	79.40	79.29	1.001
7	0.4043E-02	70.70	70.59	1.002
8	0.4596E-02	64.45	64.41	1.001
9	0.5148E-02	60.02	59.96	1.001
10	0.5701E-02	56.81	56.78	1.001
11	0.6254E-02	54.52	54.57	0.9991
12	0.6806E-02	53.26	53.15	1.002
13	0.7358E-02	52.40	52.38	1.000
14	0.7910E-02	52.27	52.19	1.001
15	0.8463E-02	52.69	52.54	1.003
2) \(i_{test} := 2 \) – the generation of \(\rho(t_1) \) distribution and comparison it with the analytical cross section corresponding to the second formula in (18)

\[
\begin{array}{cccc}
16 & 0.9015E-02 & 53.38 & 53.40 & 0.9996 \\
17 & 0.9567E-02 & 54.94 & 54.78 & 1.003 \\
18 & 0.1012E-01 & 56.53 & 56.69 & 0.9973 \\
19 & 0.1067E-01 & 59.35 & 59.17 & 1.003 \\
20 & 0.1122E-01 & 62.15 & 62.29 & 0.9978 \\
\end{array}
\]

\(i_{test} = 2 \)

t1 generation
r_{gen} is generated probability
r_{calc} is calculated probability
E_{beam} = 45.0 GeV
theta = 90.0 degrees in CM system
P = p_b \times p_t = 1.00 beam polarization times target polarization
number of bins 20
number of radiative events 100000000
initial random number 12
v = 0.5749E-02

bin	t1	r_{gen}	r_{calc}	r_{gen}/r_{calc}
1	-0.2852E-01	235.5	201.1	1.171
2	-0.2638E-01	183.0	313.5	0.5836
3	-0.2533E-01	30.60	28.38	1.078
4	-0.2377E-01	11.23	10.86	1.034
5	-0.2228E-01	8.905	8.711	1.022
6	-0.2081E-01	9.842	9.674	1.017
7	-0.1933E-01	14.89	14.58	1.021
8	-0.1763E-01	76.89	73.02	1.053
9	-0.1689E-01	73.09	74.37	0.9827
10	-0.1518E-01	11.62	11.45	1.015
11	-0.1369E-01	6.749	6.655	1.014
12	-0.1212E-01	7.542	6.696	1.126
13	-0.1095E-01	5.605	5.257	1.066
14	-0.9398E-02	2.392	2.340	1.022
15	-0.7939E-02	1.711	1.700	1.007
16	-0.6487E-02	1.385	1.381	1.003
17	-0.5041E-02	1.206	1.205	1.001
18	-0.3594E-02	1.142	1.132	1.009
19	-0.2129E-02	1.250	1.213	1.030
20	-0.1505E-03	11.30	7.410	1.525

3) \(i_{test} := 3 \) – the generation of \(\rho(z) \) distribution and comparison it with the analytical cross section corresponding to the third formula in (18)
itest=3

z generation
rgen is generated probability
rcalc is calculated probability
E_{beam}=45.0 \text{ GeV}
theta=90.0 \text{ degrees in CM system}
P=p_b*p_t=1.00 \text{ beam polarization times target polarization}
number of bins 20
number of radiative events 100000000
initial random number 12

\begin{verbatim}
v = 0.5749E-02
t1 = -0.1437E-01
\end{verbatim}

\begin{verbatim}
bin	z	rgen	rcalc	rgen/rcalc
1	0.9087E-02	640.0	755.7	0.8469
2	0.1043E-01	55.53	56.31	0.9862
3	0.1159E-01	20.80	20.85	0.9977
4	0.1274E-01	10.47	10.36	1.011
5	0.1388E-01	5.989	6.002	0.9977
6	0.1501E-01	3.898	3.872	1.007
7	0.1615E-01	2.727	2.717	1.004
8	0.1729E-01	2.074	2.062	1.006
9	0.1841E-01	1.695	1.692	1.002
10	0.1955E-01	1.508	1.493	1.010
11	0.2068E-01	1.430	1.416	1.010
12	0.2181E-01	1.447	1.434	1.009
13	0.2295E-01	1.559	1.545	1.009
14	0.2408E-01	1.771	1.764	1.004
15	0.2521E-01	2.151	2.135	1.008
16	0.2634E-01	2.765	2.760	1.002
17	0.2748E-01	3.917	3.891	1.007
18	0.2862E-01	6.302	6.267	1.005
19	0.2979E-01	13.29	13.26	1.002
20	0.3112E-01	108.4	120.0	0.9027
\end{verbatim}

4) \textit{itest} := 4 – the cross-check of the accuracy of the vector reconstruction for 5 random radiative events

itest=4

variable reconstruction
E_{beam}=45.0 \text{ GeV}
theta=90.0 \text{ degrees in CM system}
P=p_b*p_t=1.00 \text{ beam polarization times target polarization}
number of radiative events 5
initial random number 12

event= 1

test v reconstruction
v=0.612136E-02 reconstructed v from 4-vectors
v=0.612136E-02 generated v

test t1 reconstruction
t1=-0.170339E-01 reconstructed t1 from 4-vectors
t1=-0.170339E-01 generated t1

test z reconstruction
z=0.155138E-01 reconstructed z from 4-vectors
z=0.155138E-01 generated z

m2gamma=-0.150213E-09 real photon mass square

event= 2

test v reconstruction
v=0.861313E-03 reconstructed v from 4-vectors
v=0.861312E-03 generated v

test t1 reconstruction
t1=-0.221464E-01 reconstructed t1 from 4-vectors
t1=-0.221464E-01 generated t1

test z reconstruction
z=0.877074E-03 reconstructed z from 4-vectors
z=0.877074E-03 generated z

m2gamma=-0.231178E-11 real photon mass square

event= 3

test v reconstruction
v=0.659541E-02 reconstructed v from 4-vectors
v=0.659541E-02 generated v

test t1 reconstruction
t1=-0.162121E-01 reconstructed t1 from 4-vectors
t1=-0.162121E-01 generated t1

test z reconstruction
z=0.689029E-02 reconstructed z from 4-vectors
z=0.689029E-02 generated z
m2γ = -0.710911E-10, real photon mass square

--
event = 4
test v reconstruction
v = 0.850422E-03, reconstructed v from 4-vectors
v = 0.850423E-03, generated v

test t1 reconstruction
t1 = -0.229561E-01, reconstructed t1 from 4-vectors
t1 = -0.229561E-01, generated t1

test z reconstruction
z = 0.196149E-03, reconstructed z from 4-vectors
z = 0.196149E-03, generated z

m2γ = 0.105991E-12, real photon mass square

--
event = 5
test v reconstruction
v = 0.267845E-02, reconstructed v from 4-vectors
v = 0.267845E-02, generated v

test t1 reconstruction
t1 = -0.255805E-01, reconstructed t1 from 4-vectors
t1 = -0.255805E-01, generated t1

test z reconstruction
z = 0.154160E-02, reconstructed z from 4-vectors
z = 0.154160E-02, generated z

m2γ = -0.316828E-11, real photon mass square

References

[1] M. Hauger et al., Nucl. Instrum. Meth. A 462 (2001) 382
[2] N.M. Shumeiko and J.G. Suarez J. Phys. G 26 (2000) 113
[3] A. Ilyichev and V. Zy kunov, Phys. Rev. D 72 (2005) 033018
[4] Akushevich I., Boettcher H., Ryckbosch D., Proceedings Workshop ”Monte Carlo Generators for HERA Physics” (1998/99). – Hamburg: DESY (1999) 554
[5] Afanasev A., Akushevich I., Ilyichev A., Niczyporuk B., *Czech. J. Phys.* **53** (2003) 449

[6] V.A. Zykunov, *Yad. Fiz.* **67** (2004) 1366

[7] M.Böhm *et al.*, *Fortschr. Phys.* **34** (1986) 687

[8] H. Burkhard and B. Pietrzyk, *Phys. Lett.* **B356** (1995) 398