Research Paper

The Effect of a 6-Week Core Stability Training Program on the Stroke Index and Front Crawl Record of Male Swimmers

Mohsenali Darchini1, *Teimor Darzabi2, Mohsen Mofrad Moghadam3, Mahdi Nabavinik4

1. Department of Sport Injuries & Corrective Exercise, Faculty of Physical Education and Sport Science, Ferdowsi University of Mashhad, Mashhad, Iran.
2. Department of Professional Sciences, Faculty of Mohammad Montazeri, Khorasan Razavi Branch, Technical and Vocational University, Mashhad, Iran.
3. Department of Sport Injuries & Corrective Exercise, Faculty of Physical Education and Sport Science, Tehran University, Tehran, Iran.
4. Department of Motor Behavior, Faculty of Physical Education and Sport Science, Mazandaran University, Mazandaran, Iran.

Objective: For optimal performance of swimmers, it is necessary to determine a level for the functional interaction of upper and lower limbs. This level, created by more than 20 pairs of muscles, is the core of the body. The aim of this study was to investigate the effects of six weeks of core stability exercise on the stroke index and front crawl record of male swimmers.

Method: In this quasi-experimental study, 24 male swimmers were selected by a convenience sampling method and randomly assigned into control (n=12) and exercise (n=12) groups. The core stability training was performed for 6 weeks, 3 sessions per week, each for 45-50 minutes. Before and after training, the stroke index and 100-meter front crawl records of subjects were evaluated. For the within-group and between-group comparisons, the student t-test and ANCOVA were used, respectively. The significance level was set at P<0.05.

Result: Six weeks of core stability exercise led to significant improvement in 100-m front crawl record in the exercise group. There was no significant difference in the mean scores of stroke index and 100-meter front crawl record between and within the two study groups.

Conclusion: Core stability exercise is recommended for dryland training of swimmers.

Key words: Core stability, Stroke index, Swimming Record

Extended Abstract

1. Introduction

In recent years, many countries have made great efforts to win medals in various sports competitions, including the Olympic Games and World Championships [1]. Swimming is one of the sports where athletes have won many medals in the Olympic Games. In order to improve front crawl swimming records, it is necessary to perform effective techniques. One of the effective factors in improving the performance of swimmers is the stroke index (stroke length and stroke number). Strong core stability transfers the produced forces of the lower limbs to the upper limbs and improves athletic performance [2]. On the other hand, weak core stability impairs energy transfer and reduces athletic performance [3].
Therefore, it seems appropriate to use regular core stability exercises to reduce injury, improve the record and performance in swimmers. Due to the importance of the subject and the little research done in this field, especially in relation to swimmers, the present study aimed to examine the effect of 6-week core stability exercise on the stroke index and the front crawl swimming record in adolescent elite swimmers.

2. Participants and Methods

This is a quasi-experimental applied study with pretest/posttest design. Study samples were 24 swimmers with a mean age of 12.60±1.60 years, mean height of 165.05±12.54 cm and mean weight of 48.90±10 kg. They were selected using a convenience sampling technique and based on inclusion criteria. No history of tobacco use, no supplementation before participating in the training program and being a member of the national team or the selected team of the province were some of the criteria for entering the study.

Having cardiovascular disease, diabetes, high blood pressure and a history of previous spinal and lower extremity injuries were the exclusion criteria. First, 30 samples completed a health and physical questionnaire (surveying mental and emotional states, the amount of physical activity per day, and problems during physical activity), and after analyzing the questionnaire, 24 were selected to participate in the study. Samples voluntarily participated in the study and signed a consent form. They were then randomly divided into exercise (n=12) and control (n=12) groups.

The core stability training program was performed for 6 weeks, 3 sessions per week, each for 45-50 minutes. It included 15-min warm-up, aerobic exercise for 10-25 minutes, and 10-min cooling down. Warming up session included stretching movement and general warming of the joints. The intensity of the training gradually increased from the first to the 5th week and decreased in the last week due to the participation of subjects in the functional tests. The training program was performed on both core stability muscles including small (muscles that attach to the lumbar vertebrae and affect intercostal movements) and large muscles (those attach to the pelvis and hip).

On the first day and after a special warm-up, swimmers were asked to swim 100 meters breaststroke in a 25-meter-long pool with all their might to estimate the distance of the stroke and the frequency of the stroke. On the first day and after a special warm-up, swimmers were asked to perform 100 meter front crawl in a 25-meter-long pool with all their power to estimate stroke rate and distance per stroke. Each subject was tested three times and the best record and the best stroke number were recorded. The test taker counted and recorded the number of strokes by moving along the pool. At the end of the swim, the best time was considered as the swimmer’s record.

At the end of each session, the cooling down was performed by stretching and relaxation movements. During this time, the subjects in the control group performed their routine exercises. At the end of intervention and after one day of rest, the tests were performed in both groups. The collected data were analyzed in SPSS v.16 software. After confirming the normality of data distribution using the Shapiro-Wilk test and the homogeneity of the variances by Levene’s test, student t-test was sued for to intergroup comparison and ANCOVA for intergroup comparison of mean changes. The significance level was set at P<0.05.

3. Results

Based on the results presented in Table 1, the t-test results showed that the 6-week core stability training program led to a significant improvement in the subjects’ 100-meter front crawl record (P=0.02), but there was no significant

Variables	Group	Mean±SD	Difference				
		Pre-test	post-test	Within-Group	Between-Group		
				T	P	F	P
stroke index	Exercise	66±8.95	11±68.37	0.825	0.4	0.73	0.4
	Control	66.7±5.99	71.5±8.4	2.188	0.06		
100-m front crawl record	Exercise	120.12±6.7	110.9±5.4	4.077	0.02*	0.73	0.39
	Control	114±12.7	115.0±15.5	0.349	0.73		

*significant (P<0.05)
change in their stroke index (P=0.4). In the control group, no significant changes were observed in subjects’ front crawl record and stroke index. According to the results in Table 1, the ANCOVA results showed no significant difference in the mean scores of stroke index (P=0.4) and 100-meter front crawl record (P=0.39) between and within the two study groups.

4. Conclusion

Core stability training can improve swimmers’ front crawl records; so, it is recommended that these exercises be included in the swimmers’ dryland training. Moreover, due to the lack and contradiction of the results regarding the effect of core stability exercises on the performance of swimmers, more studies are recommended in this area.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles were considered in this study. The subjects were free to leave the study at any time, and were assured of the confidentiality of their information.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

All authors contributed equally in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
تغییرات شاخص دست و رکورد شناگران به دنبال هفته تمرین ثبات مرکزی

یکی از بهترین روش‌های بهبود عملکرد شناگران، ایجاد سطحی برای تعامل عملکرد اندام فوقانی و تحتانی ضروری است. این سطح، توسط بیش از دو هفته طولانی، و به‌طور مثالی، هفت تا ۱۰ هفته مدت، پیشنهاد می‌گردد. هدف از انجام این پژوهش، بررسی تأثیر شش هفته تمرین ثبات مرکزی بر شاخص دست و رکورد شنای کرال سینه شناگران بود.

برای انجام پژوهش، دو گروه آزمایش و کنترل انتخاب شدند. گروه آزمایش به روش نمونه‌گیری به‌طور تصادفی شامل ۲۴ نفر، شامل ۱۲ مرد و ۱۲ زن بود و گروه کنترل شامل ۲۴ نفر، شامل ۱۲ مرد و ۱۲ زن بود.

برنامه تمرین ثبات مرکزی شامل شش هفته، هر هفته سه جلسه و هر جلسه به مدت ۱ ساعت و ۱۰ دقیقه انجام پذیرفت. برای اجرای برنامه، ۲۰۰ متر کرال سینه ارزیابی شد. برای مقایسه میانگین‌ها، از روش آزمون تی استیودنت همبسته و تحلیل کوواریانس استفاده شد.

نتایج نشان داد که تمرین ثبات مرکزی بهبود رکورد‌ها و شاخص‌ها را ایجاد نمی‌کند.

کلیدواژه‌ها: ثبات‌مرکزی، شاخص، دست، رکورد شنا

مقدمه

در سال‌های اخیر کشورهای زیادی به کسب مدال در مسابقات ورزشی از جمله المپیک و بازی‌های جهانی تلاش و برنامه‌ریزی زیادی داشته‌اند. از جمله رشته‌های ورزشی که در المپیک به مسابقات شنا می‌پردازند، شنا کرال سینه می‌باشد.

جیانی کلیس نشان داد که طول استروک بالا در شنای کرال سینه تأثیرات قوی در کاهش دراگ و افزایش قدرت پیش روند دارد. همچنین دانشمندان نشان دادند که طول استروک بالا در ذرات پیش‌اندازی نقش مهمی در بهبود عملکرد شناگران دارد.

مراجع

1. Drag

Close
رویشناسی

این تحقیق به نزدیکی یامدجویی است که با جراحی پوره‌کردن و بررسی کننده غده پوره‌کردنی مورد این تحقیق 34 نفر هاگار، پر از 20 ساله که در یک مطالعه معنی‌دار مورد بررسی قرار گرفته‌اند. این افراد شامل همسایه‌های اولیه در فعالیت‌های ورزشی بودند و پس از بررسی پرسشنامه، دقیقه گرم کردن و ضروری است. این سطح، توسط بیش از ۵۰ نفر شناگر با میانگین سنی ۱۸/۵ ساله که در جلسه به مدت ۲۵ دقیقه (۱۵ دقیقه گرم کردن و ۱۰ دقیقه سرد کردن) پرداخته بودند، ضروری شد. این مدت شامل تغییرات عضلات ضعیف را افزایش می‌داد و امکان خروج از پوشه به دست آمده شد.

در پژوهش، ۳۰ نفر شناگر از جمله ۱۵ نفر جمعه و ۱۵ نفر دارستی شناگر که به صورت تصادفی به دو شرایط تحقیق (آزمایشگری و کنترل) تقسیم شدند. داوطلبان، اول به جمعه و دوم به دارستی شناگر می‌شدند. در آزمایشگری، داوطلبان به صورت تصادفی به صورت دو جلسه در هفته و هر جلسه ۱۵ دقیقه گرم کردن و ۱۰ دقیقه سرد کردن پرداختند. در کنترل، جلسه‌ها به صورت تصادفی در هفته و هر جلسه ۱۵ دقیقه سرد کردن و ۱۰ دقیقه گرم کردن پرداخته بودند.

در این تحقیق، تغییرات و تغییرات شناگران از نظر تغییرات مشخصات دست و رکورد شنای کرال سینه شناگران به دنبال شش هفته تمرین ثبات مرکزی بررسی گردید.

در این تحقیق، اهداف تحقیق به صورت پیش‌بینی کننده رفتار، ویژه‌ای در مورد مطالعه و تحقیق در زمینه ورزشکاران، این تحقیق از نوع کاربردی نیمه تجربی برخوردار بود.

به همین دلیل، در این تحقیق، بررسی تأثیر شش هفته تمرین ناحیه ثبات مرکزی بر شاخص دست و رکورد شنای کرال سینه شناگران از نظر تغییرات مشخصات دست و رکورد شنای کرال سینه شناگران به دنبال شش هفته تمرین ثبات مرکزی بررسی گردید.
مرکزی که به بازی توانایی ثابت مربوط کرد. لازم بررسی این نتایج بود که به‌طور گروهی ۱۰۰ متر کرال سینه شناگران به‌طور متوالی کروکرد در کل هفته‌های برنامه تمرین قرار گرفت و حرفه‌ای تحلیل داده‌های این آزمون نشان داد که فیزیولوژیا با حرکت در کل هفته استخر صدری محسوب شده‌اند وارد کردد. در پایان ها ۴۰۰ متر زمان طولی به دست آورد و با کاهش Teenager در نظر گرفت. بنابراین در پایان هفته‌های تمرینی به هفته اولیه با اجرای حرکات کششی و آرام سازی انجام شد. در انتهای هر جلسه فرمی شنا گرفتن و برگشت یا حالت‌های آبی اجرای حرکات کششی و آرامسازی انجام می‌شد. این آزمون‌ها در پایان هر جلسه تمرین به‌کار گرفته شد و بهترین رکورد و بهترین حالت اجرای فرآیندهای ثابت مرکزی در کرکرد. نتایج تحلیل می‌تواند بیان دوگانه‌ای باشد و پلئودینامیک و لازم بررسی می‌باشد.

نتایج

بر اساس بالا بردن بازیکان خواسته شد. جدول شماره ۱ در نمایی از عضلات کوچک (عضوی که روی مهره‌های بیانی گروه) مربوط کرد. لازم بررسی این نتایج بود که به‌طور متوالی کروکرد در کل هفته‌های برنامه تمرین قرار گرفت و حرفه‌ای تحلیل داده‌های این آزمون نشان داد که فیزیولوژیا با حرکت در کل هفته استخر صدری محسوب شده‌اند وارد کردد. در پایان ها ۴۰۰ متر زمان طولی به دست آورد و با کاهش Teenager در نظر گرفت. بنابراین در پایان هفته‌های تمرینی به هفته اولیه با اجرای حرکات کششی و آرام سازی انجام شد. در انتهای هر جلسه فرمی شنا گرفتن و برگشت یا حالت‌های آبی اجرای حرکات کششی و آرامسازی انجام می‌شد. این آزمون‌ها در پایان هر جلسه تمرین به‌کار گرفته شد و بهترین رکورد و بهترین حالت اجرای فرآیندهای ثابت مرکزی در کرکرد. نتایج تحلیل می‌تواند بیان دوگانه‌ای باشد و پلئودینامیک و لازم بررسی می‌باشد.
محسن علی دارچینی و همکاران. تغییرات شاخص دست و رکورد شناگران به دنبال شش هفته تمرین ثبات مرکزی در شنا کرال سینه. تحقیق پژوهشی. تفسیری. 1398 تابستان. شماره 1. صفحه 13-24.

تکریرات

متغیر	پیش آزمون	پس از آزمون	تکریرات	F	P
دست	7/6±4/2	7/2±4/1	+	0/05	*
رکورد	115/3±18/7	106/1±17/6	-	0/06	

نتایج

به طور کلی، تمرینات ثبات مرکزی بهبود رکورد شناگران را در شنا کرال سینه بهبود بخشیده و تمرکز بر طول دست را بهبود بخشیده است. این پژوهش نشان داد که تمرینات ثبات مرکزی بهبود رکورد شناگران را بهبود بخشیده است و تمرکز بر طول دست را بهبود بخشیده است.

نتیجه گیری

پژوهش‌ها به‌طور کلی نشان داده‌اند که تمرینات ثبات مرکزی اثرات مثبتی روی عملکرد انرژیک و توانانی و در نتیجه بهبود رکورد شناگران را بهبود بخشیده است. این پژوهش نشان داد که تمرینات ثبات مرکزی بهبود رکورد شناگران را بهبود بخشیده است و تمرکز بر طول دست را بهبود بخشیده است.

مقدمه

شناگران به دنبال بهبود عملکرد و بهبود رکورد شناگران، به تمرینات ثبات مرکزی روی طول دست پرداخته‌اند. این پژوهش نشان داد که تمرینات ثبات مرکزی بهبود رکورد شناگران را بهبود بخشیده است و تمرکز بر طول دست را بهبود بخشیده است.

چکیده

تعیین این پژوهش، داشته که تمرینات ثبات مرکزی بهبود رکورد شناگران را بهبود بخشیده است و تمرکز بر طول دست را بهبود بخشیده است.

متن سلسله‌ای

0/50، 0/73، 0/43، 0/73، 0/71، 0/14، 0/349، 0/165، 0/77، 0/825، 0/122، 0/241، 0/400، 0/282، 0/188، 0/9916، 0/343، 0/128، 0/121، 0/22، 0/273، 0/125، 0/22، 0/222، 0/188، 0/22
تغییرات شاخص دست و رکورد شناگران به دنبال شش هفته تمرین ثابت مرکزی

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهشی
همه اصول اخلاقی در این مقاله رعایت شده است. شرکت‌کنندگان اجازه گرفتند هر زمان که مایل بودند از پژوهش خارج شوند. همچنین همه شرکت‌کنندگان در هریان رود پژوهش بودند و اطلاعات آنها مربوط به کنون داشته‌اند.

حامی مالی

این پژوهش هیچ‌که‌ی از سازمان‌های دولتی، خصوصی و یا هیچ‌که‌ی دیگری مالی نیست.

مشارکت نویسندگان

هیچ نویسندگان در آن‌العمل‌های این مقاله مشارکت نداشتند.

تعارض منافع

یک‌طرف اظهار نویسندگان این مقاله متحمل مبانی ندارد.
References

[1] Vaeyens R, Gullich A, Warr CR, Philippaerts R. Talent identification and promotion programmes of Olympic athletes. Journal of sports sciences. 2009;27(13):1367-80. [DOI:10.1080/02640410903110974] [PMID]

[2] Sortwell AD. Relationship between stroking parameters and leg movement quantity in 100 metre front crawl. International Journal of Exercise Science. 2011; 4(1):22-9. [PMID]

[3] Costill DL, Kovaleski J, Porter D, Kirwan J, Fielding R, King D. Energy expenditure during front crawl swimming: Predicting success in middle-distance events. International Journal of Sports Medicine. 1985; 6(3):266-70. [DOI:10.1055/s-2008-1025849] [PMID]

[4] Sanders R. New analysis procedures for giving feedback to swimming coaches and swimmers. Paper presented at: XX ISBS-Swimming, Applied Program Swimming. 1-5 July 2002; Cáceres, Spain. https://www.researchgate.net/publication/325810276

[5] Toussaint HM, Van Den Berg C, Beek WJ. “Pumped-up propulsion” during front crawl swimming. Medicine and Science in Sports and Exercise. 2002; 34(2):314-9. [DOI:10.1097/00007756-200202000-00020] [PMID]

[6] Toussaint HM, Beek PJ. Biomechanics of competitive front crawl swimming. Sports Medicine. 1992; 13:8-24. [DOI:10.2165/00007756-199213010-00002]

[7] Patil D, Salian SC, Yardi S. The effect of core strengthening on performance of young competitive swimmers. International Journal of Science and Research, 2014; 3(6):2470-7. https://www.researchgate.net/publication/269108164

[8] Karpinski J, Rejdych W, Brzozowska D, Golaf S, Sadowski W, Swinarew AS, et al. The effects of a 6-week core exercises on swimming performance of national level swimmers. BioRxiv. 2019 December. https://www.biorxiv.org/content/10.1101/2019.12.19.882126v1.full

[9] Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Medicine. 2006; 36(3):189-98. [DOI:10.2165/00007756-200603030-00001] [PMID]

[10] Richardson C, Jul G, Hodges P, Hides J. Therapeutic exercise for spinal segmental stabilization in low back pain: Scientific basis and clinical approach. London: Churchill Livingstone; 1999. https://books.google.com/books?id=gXUpPQACAAJ&dq

[11] McGill SM. Low back stability: From formal description to issues for performance and rehabilitation. Exercise and Sport Sciences Reviews. 2001; 29(1):26-31. [DOI:10.1097/00007756-200101000-00006] [PMID]

[12] Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Medicine & Science in Sports & Exercise. 2004; 36(6):926-34. [DOI:10.1249/01.MSS.0000128145.75199.C3] [PMID]

[13] Jeffreys I. Developing a progressive core stability program. Strength & Conditioning Journal. 2002; 24(5):65-6. [DOI:10.1519/1533-4287(2005)19<193:tmewav>2.0.co;2] [PMID]

[14] Behm DG, Leonard AM, Young WB, Bosney WA, MacInnon SN. Trunk muscle electromyographic activity with unstable and unilateral exercises. Journal of Strength and Conditioning Research. 2005; 19(1):193-201. [DOI:10.1519/1533-4287(2005)19<193:tmewav>2.0.co;2] [PMID]

[15] Cissik JM. Programming abdominal training, Part II. Strength and Conditioning Journal. 2002; 24(2):9-12. [DOI:10.1519/1533-4287-200204000-00002]

[16] Nesser TW, Lee WL. The relationship between core strength and performance in division I female soccer players. Journal of Exercise Physiology Online. 2009; 12(2):21-8. https://www.researchgate.net/publication/228494628

[17] Bouisset S, Zattara M. A sequence of postural movements precedes voluntary movement. Neuroscience Letters. 1981; 22(3):263-70. [DOI:10.1016/0304-3940(81)90117-8]

[18] Harati J, Daneshmandi H, Shahabi Kaseb MR. [Comparing the effects of dry-land and in-water core stability training programs on swimmers’ upper body balance and performance (Persian)]. Journal of Sport Biomechanics. 2018; 4(1):17-29. http://biomechanics.iau.ac.ir/article-1-152-en.html

[19] Girolò S, Maurin D, Dugué B, Chatard JC, Millet G. Effects of dry-land vs. resisted- and assisted-sprint exercises on swimming sprint performances. Journal of Strength and Conditioning Research. 2007; 21(2):599-605. [DOI:10.1519/00124278-200702000-00004] [PMID]

[20] Gencer YG. Effects of 8-week core exercises on free style swimming performance of female swimmers aged 9-12. Asian Journal of Education and Training. 2018; 4(3):182-5. [DOI:10.20448/journal.522.2018.43.182.185]

[21] Aspeses K, Kjendlie PL, Hoff J, Helgerud J. Combined strength and endurance training in competitive swimmers. Journal of Sports Science & Medicine. 2009; 8(3):357-65. [PMID]

[22] Gourgoulis V, Vakournas J, Ioli A, Aggeloussis N, Antoniou P. Effect of an 11-week in-water training program with increased resistance on the swimming performance and the basic kinematic characteristics of the front crawl stroke. The Journal of Strength & Conditioning Research. 2019; 33(1):95-103. [DOI:10.1519/JSC.0000000000001879] [PMID]

[23] Lätt E, Jürimäe J, Maestu K, Haljaste K, et al. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. Journal of Sports Science & Medicine. 2010; 9(3):398-404. [PMID]

[24] Silva AJ, Costa AM, Oliveira PM, Reis VM, Saavedra J, Perl J, et al. The use of neural network technology to model swimming performance. Journal of Sports Science & Medicine. 2007; 6(1):117-25. [PMID]

[25] Saavedra JM, Escalante Y, Rodriguez FA. A multivariate analysis of performance in young swimmers. Pediatric Exercise Science. 2010; 22(1):135-51. [DOI:10.1123/pes.22.1.135] [PMID]

[26] Geladas ND, Nassis GP, Pavlicevic S. Somatic and physical traits affecting sprint swimming performance in young swimmers. International Journal of Sports Medicine. 2005; 26(2):139-44. [DOI:10.1055/s-2004-817862] [PMID]
