Case Report

Management of distraction injury of the lumbosacral junction with unilateral perched facet

Clemens M. Schirmer¹, Erica F. Bisson¹,²

¹Division of Neurosurgery, Baystate Medical Center and Tufts University School of Medicine, Springfield, Massachusetts, ²Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA

E-mail: Clemens M. Schirmer - clemens.schirmer@baystatehealth.org; *Erica F. Bisson - erica.bisson@hsc.utah.edu

*Corresponding author

Received: 4 January 11 Accepted: 27 January 11 Published: 3 March 11

Surg Neurol Int 2011; 2:26
This article is available from: http://www.surgicalneurologyint.com/content/1/2/26
Copyright: © 2011 Schirmer CM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

This article may be cited as:
Schirmer CM, Bisson EF. Management of distraction injury of the lumbosacral junction with unilateral perched facet. Surg Neurol Int 2011;2:26
Available FREE in open access from: http://www.surgicalneurologyint.com/text.asp?2011/1/2/77278

Abstract

Background: Traumatic unilateral facet dislocation without fracture is an uncommon injury of the lumbosacral junction. We describe a case of a unilateral perched L5–S1 facet causing axial back pain and radiculopathy provoked by motion.

Case Description: The patient underwent reduction with complete facetectomy followed by internal fixation at L5–S1, facilitating decompression of the S1 nerve root. Postoperatively, the patient reported improvement in her pain.

Conclusions: This injury can be recognized using subtle clues, such as transverse process fractures and/or widened posterior elements. Despite its rarity, when identified, this injury can be characterized using the new TLICS system for thoracolumbar fractures and should be managed accordingly.

Key Words: Facet dislocation, operative management, trauma

INTRODUCTION

Traumatic unilateral or bilateral facet dislocations without fracture of the cervical spine are common injuries, indicative of injury of the stabilizing ligaments, and are routinely managed with reduction and operative fixation. In contrast, facet dislocations without fracture of the lumbar spine are rare. The superior articular process may be partially or completely dislocated, and the dislocations may involve either one or both articular processes. Most reported cases of this injury pattern localize to the lumbosacral junction and have been managed both conservatively and, more recently, with open reduction and fusion. The Thoracolumbar Injury Classification and Severity (TLICS) score for thoracolumbar fractures can provide guidance. We describe a case of a unilateral perched L5–S1 facet causing axial back pain and radiculopathy provoked by motion, discuss the literature, and explain the rationale for treatment based on the TLICS classification.

CASE DESCRIPTION

A 46-year-old woman presented in transfer from a community hospital after sustaining injuries from a motor-vehicle accident in which she was a restrained driver. During evaluation at the community hospital, no gross signs of internal or external injuries and no neurologic deficit were noted; however, the patient complained of significant pain and spasms in the
lower back, worsened by an upright position. She also complained of right leg pain with a sharp quality when she would change position. Lumbar radiographs showed a potential widening of one of the L5–S1 neuroforamina [Figure 1]. Evaluation with thin-slice computed tomography (CT) with coronal and sagittal plane reconstructions demonstrated a unilateral dislocation of the right L5–S1 facet joint with a perched facet [Figure 2]. Fractures with significant diastasis of the fragments of the right L4 and L5 transverse processes were noted (not shown). Magnetic resonance (MR) imaging of the lumbar spine did not show significant disruption of the intervertebral disc; however, unilateral distraction of the disc space is visible on the CT and MR images [Figures 3 and 4]. We calculated the patient's TLICS score to be 8, 3 points for translational/rotational injury morphology, 3 points for injured posterior ligamentous complex, and 2 points for radiculopathy.

Surgical intervention was undertaken because of the presence of clinical instability and her TLICS score. We found obvious disruption of the posterior tension band, including the interspinous ligaments between L4, L5, and S1 with associated soft tissue hematoma. After subperiosteal dissection, the naked superior articular process of S1 was visible, with the most caudal aspect of the inferior articular process of L5 lying cephalad and ventral to it, causing a clockwise rotation of L5. Reduction was accomplished with a complete facetectomy on the right followed by internal fixation with interbody graft and pedicle screw instrumentation at the L5–S1 level, facilitating complete decompression of the S1 nerve root [Figure 5]. Postoperatively, the patient reported immediate and sustained improvement in her back and leg pain. Dynamic X-rays obtained at 6 months showed no significant motion at the operated level [Figure 6].

Figure 1: Plain lateral radiograph of the lumbar spine, demonstrating subtle widening of one of the L5–S1 neuroforamina

Figure 2: Computed tomography of the lumbar spine. Sagittal reconstruction through the perched right L5–S1 facet joint

Figure 3: Anterior (a) and right lateral (b) views of the three-dimensional reconstruction of the computed tomography scan of the lumbar spine, demonstrating the unilateral perched facet joint and asymmetric widening of the L5–S1 disc space

Figure 4: Coronal inversion recovery (STIR) weighted image showing edema and asymmetric widening of the L5–S1 disc space
DISCUSSION

Trauma to the lumbar spine typically results in injuries at the thoracolumbar junction. In a large series more than half of all fractures involved T12 or L1. Approximately 60% were classified as compression or burst fractures resulting most often from a flexion–compression-type injury.

The diagnosis of lumbosacral dislocation may be missed because radiographs taken as part of a trauma evaluation may be inadequate to visualize an abnormal relationship of the lumbosacral facets. The presence of transverse process fractures, as seen in our case, should alert the medical team to the possibility of a more serious injury.

Thin-sliced CT images with sagittal and coronal reconstructions demonstrate the injury with clarity. Additionally, we found three-dimensional reconstructions particularly helpful to discern the relationship of the L5 and S1 articular processes.

For subacute dislocation, surgical treatment is complex. The reported cases treated conservatively had excellent clinical outcomes. In contrast, the conservative treatment of acute fracture–dislocation of L5–S1 is likely ineffective because of significant instability, necessitating open reduction and internal fixation.

Although our patient was neurologically intact without canal compromise, with a score of 8 on the TLICS system, optimal management of this lesion is operative reduction and fixation. Additionally, we considered this lesion unstable according to the comprehensive definition by White and Panjabi.

Lumbosacral dislocations are usually associated with high-energy trauma, and patients often suffer from associated visceral lesions, extraspinal fractures, and secondary spine fractures, including transverse process fractures in the majority. Our patient suffered 2 transverse process fractures without evidence of visceral injury.

In a review of the literature on lumbosacral dislocations, we found 93 cases that were previously reported. Purely ligamentous injury akin to the findings in our case were less prevalent and have been reported in only a few cases. Although a few cases were managed conservatively, most patients underwent open reduction and fusion, by variable approaches and fusion techniques. Primary facet dislocations involving the lumbosacral spine are rare and have been reported to occur mainly at the lumbosacral junction in association with anterior subluxation. A case of lateral subluxation associated with a unilateral locked facet in the lumbar spine has also been reported.

In young children, this injury has been managed successfully by cast immobilization; however, conservative treatment of fracture–dislocation of L5 in adolescents is generally ineffective because the lesion is considered fundamentally unstable as a result of the incurred severe bone and ligamentous damage.

Unlike the lumbar facets with a relative sagittal orientation, the L5–S1 facet has a more coronal alignment. Thus, the lumbosacral junction behaves similar to the cervical spine, and a unilateral perched facet implies a rotatory component.

The management of these rare injuries is still controversial. Boldin and coworkers argued that open reduction and internal fixation are indicated for the management of acute lumbosacral dislocation in all...
Report	Number of cases	Treatment	Dislocation type	Cause
Dewey et al, 1968[16]	2			Trauma
Samberg, 1975[23]	1			Trauma
Fardon, 1976[19]	1	Surgery		Trauma
Newell, 1977[21]	1	Conservative		Trauma
Jackson et al, 1979[25]	3	Surgery		Trauma
Zoltan et al, 1979[44]	1	Unilateral		
Griffin et al, 1980[27]	1	Conservative		
Das De, 1981[14]	4	Surgery		
Morris, 1981[30]	1		Unilateral	
Boger et al, 1983[35]	1		Unilateral	
Nicholson, 1983[32]	1	Surgery	Unilateral	
Herron et al, 1984[22]	1	Surgery		
Boyd et al, 1985[27]	1	Conservative		
Resnik et al, 1985[34]	1			
Wilchinsky, 1987[34]	1			
Grabe, 1988[20]	1		Unilateral	Tonic–clonic seizure
Miz et al, 1988[28]	1		Unilateral	
Cohn et al, 1989[18]	1		Bilateral	Trauma
Kramer et al, 1989[26]	1		Unilateral	
Carl et al, 1991[8]	1		Unilateral	
Connolly et al, 1992[13]	4	Surgery	Unilateral	
Pellise et al, 1992[23]	1	Surgery	Unilateral	Trauma
Van Savage et al, 1992[46]	1	Surgery	Unilateral	
Barquet et al, 1993[33]	1	Surgery	Unilateral	Trauma
Davis et al, 1993[14]	1	Surgery	Bilateral	Trauma
Beguiristain et al, 1995[5]	1	Conservative	Bilateral	Trauma
Hilibrand et al, 1995[53]	4	Surgery	Bilateral	Trauma
Fabris et al, 1996[48]	12	Surgery	Bilateral	Pediatric, degenerative
Steinitz et al, 1997[42]	1	Surgery	Bilateral	Trauma, delayed
Aihara et al, 1998[11]	7	Surgery	Both	Trauma
Roche et al, 1998[37]	1	Surgery	Bilateral	Trauma
Carlson et al, 1999[9]	2	Surgery		Trauma
Fabris et al, 1999[17]	3	Surgery		Trauma
Hodges et al, 1999[24]	1	Surgery	Bilateral	Trauma
Verlaan et al, 2001[48]	1	Surgery	Bilateral	Trauma
Cruz-Conde et al, 2003[12]	1	Surgery	Bilateral	Trauma
Arnold et al, 2004[27]	1	Surgery	Bilateral	Trauma
Boldin et al, 2004[48]	1		Unilateral	Trauma
Stuart et al, 2004[41]	1		Unilateral	Trauma
Tsirikos et al, 2004[42]	2	Surgery	Bilateral	Trauma, delayed
Vialle et al, 2004[51]	4	Surgery		Trauma
Vialle et al, 2005[30]	1	Surgery	Unilateral	Trauma
Reinhold et al, 2006[35]	1	Surgery	Bilateral	Trauma
Saiki et al, 2006[39]	1	Surgery	Bilateral	Trauma
Vialle et al, 2007[49]	11	Surgery	Both	Trauma
Reddy et al, 2008[44]	2	Surgery	Unilateral	Trauma
Szentirmai et al, 2008[42]	1		Unilateral	Trauma
Daniels et al, 2009[13]	1	Surgery	Bilateral	Trauma
but children. For open reduction, the fifth lumbar and first sacral articular processes are distracted by temporarily increasing the flexion deformity. Occasionally, disimpaction and reduction can be achieved only after partial excision of the tip of the superior facet of S1.\cite{1,11,28} In cases of intervertebral disc derangement, anterior interbody fusion has been advocated.\cite{1} We chose operative reduction and fixation for our patient based on the clinical instability demonstrated by severe back and radicular pain associated with motion, which resulted in improvement of her symptoms.

CONCLUSIONS

A unilateral lumbosacral facet dislocation is a rare injury that has been managed both conservatively and surgically. Transverse process fractures may point to the diagnosis of this injury, which otherwise may be missed on routine evaluation. Despite its rarity, this injury pattern fits into the categories of the Thoracolumbar Injury Classification and Severity Score (TLICS) system for thoracolumbar fractures and can be managed accordingly. Open reduction and fixation is safe and efficacious.

REFERENCES

1. Aihara T, Takahashi K, Yamagata M, Moriya H. Fracture-dislocation of the fifth lumbar vertebra. A new classification. J Bone Joint Surg Br 1998;80:840-5.
2. Arnold PM, Malone DG, Han PP. Bilateral locked facets of the lumbosacral spine: Treatment with open reduction and transpedicular fixation. J Spinal Cord Med 2004;27:269-72.
3. Barquet A, Menendez J, Dubra A, Masliah R, Pereyra D. Unilateral facet dislocation of the lumbosacral junction. Can Assoc Radiol J 1993;44:129-32.
4. Beguiristain J, Schweitzer D, Mora G, Pombo V. Traumatic lumbosacral dislocation in a 5-year-old boy with eight years follow-up. Spine 1995;20:362-6.
5. Boger DC, Chandler RW, Pearce JG, Balianus A. Unilateral facet dislocation at the lumbosacral junction. Case report and literature review. J Bone Joint Surg Am 1983;65:1174-8.
6. Boldin C, Grechenig W, Fankhauser F, Sorantin E. Traumatic unilateral facet dislocation of the lumbosacral junction. Injury 2004;35:950-2.
7. Boyd MC, Yu WY. Closed reduction of lumbosacral facet dislocations. Surg Neurol 1985;23:295-8.
8. Carl A, Blair B. Unilateral lumbosacral facet fracture-dislocation. Spine 1991;16:218-21.
9. Carlson JR, Heller JG, Mansfield FL, Pedlow FX Jr. Traumatic open anterior lumbosacral fracture dislocation. A report of two cases. Spine 1999;24:184-8.
10. Cohn SL, Keppeler L, Akbarnia BA. Traumatic retrolisthesis of the lumbosacral junction. A case report. Spine 1989;14:132-4.
11. Connolly PJ, Essel SI, Heggeness MH, Cook SS. Unilateral facet dislocation of the lumbosacral junction. Spine 1992;17:1244-8.
12. Cruz-Conde R, Rayo A, Rodriguez de Oya R, Berjano P, Garate E. Acute traumatic lumbosacral dislocation treated by open reduction internal fixation and fusion. Spine 2003;28:ES1-3.
13. Daniels AH, Deodhar AA, Hart RA. Traumatic spondyloptosis resulting from high-energy trauma concurrent with a tonic-clonic seizure. Spine J 2009;9:1-4.
14. Das De S, McCreath SW. Lumbosacral fracture-dislocations. A report of four cases. J Bone Joint Surg Br 1981;63:8-58-60.
15. Davis AA, Carragee EJ. Bilateral facet dislocation at the lumbosacral joint. A report of a case and review of literature. Spine 1993;18:2540-4.
16. Dewey P, Browne PS. Fracture-dislocation of the lumbosacral spine with cauda equina lesion. Report of two cases. J Bone Joint Surg Br 1968;50:635-8.
17. Fabris DA, Costantini S, Nena U, Lo Scalzo V. Traumatic LS-S1 spondylolisthesis: Report of three cases and a review of the literature. Eur Spine J 1999;8:290-5.
18. Fabris DA, Costantini S, Nena U. Surgical treatment of severe LS-S1 spondylolisthesis in children and adolescents. Results of intraoperative reduction, posterior interbody fusion, and segmental pedicle fixation. Spine 1996;21:728-33.
19. Fardon DF. Displaced fracture of the lumbosacral spine with delayed cauda equina deficit: Report of a case and review of literature. Clin Orthop Relat Res 1976;120:155-8.
20. Grabe RP. Fracture-dislocation of the lumbosacral spine during a grand mal epileptic seizure. A case report. S Afr Med J 1988;74:129-31.
21. Griffin JB, Sutherland GH. Traumatic posterior facet dislocation of the lumbosacral joint. J Trauma 1980;20:426-8.
22. Herron JD, Williams RC. Fracture-dislocation of the lumbosacral spine. Report of a case and review of the literature. Clin Orthop Relat Res 1984;186:205-11.
23. Hillbrand AS, Urquhart AG, Graziano GP, Hensinger RN. Acute spondylolytic spondylolisthesis. Risk of progression and neurological complications. J Bone Joint Surg Am 1995;77:190-6.
24. Hodges SD, Shuster MA, McClary SJ. Traumatic LS-S1 spondylolisthesis. South Med J 1999;92:316-20.
25. Jackson RH, Quising RG, Day AL. Fracture and complete dislocation of the thoracic or lumbosacral spine: report of three cases. Neurosurgery 1979;5:250-3.
26. Kramer KM, Levine AM. Unilateral facet dislocation of the lumbosacral junction. A case report and review of the literature. J Bone Joint Surg Am 1989;71:1258-61.
27. McAfee PC, Yuan HA, Fredrickson BE, Lubicky JP. The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification. J Bone Joint Surg Am 1983;65:461-73.
28. Miz GS, Engler GL. Unilateral dislocation of a lumbosacral facet. Spine 1988;13:956-7.
29. Moris K, Hukuda S, Katsura A, Sarruhashi Y, Asajima S. Traumatic bilateral locked facet at L-4-S-5: Report of a case associated with incorrect use of a three-point seatbelt. Eur Spine J 2002;11:602-5.
30. Morris BD. Unilateral dislocation of a lumbosacral facet. A case report. J Bone Joint Surg Am 1981;63:164-5.
31. Newell RL. Lumbosacral fracture-dislocation: A case managed conservatively, with return to heavy work. Injury 1977;9:131-4.
32. Nicholson RA. Lateral lumbosacral fracture dislocation: A case report. Injury 1983;15:41-3.
33. Pellise F, Bago J, Villanueva C. Double-level spinal injury resulting in “en bloc” dislocation of the lumbar spine: A case report. Acta Orthop Belg 1992;58:349-52.
34. Reddy SJ, Al-Holou WN, Leveque JC, La Marca F, Park P. Traumatic lateral spondylolisthesis of the lumbar spine with a unilateral locked facet: Description of an unusual injury, probable mechanism, and management. J Neurosurg Spine 2008;9:576-80.
35. Reinhold M, Knop C, Blauth M. Acute traumatic LS-S1 spondylolisthesis: A case report. Arch Orthop Trauma Surg 2006;126:624-30.
36. Resnik CS, Scheer CE, Adelaar RS. Lumbosacral dislocation. J Can Assoc Radiol 1985;36:259-61.
37. Roche PH, Dufour H, Graziani N, Jolivet J, Grisolli F. Anterior lumbosacral dislocation: Case report and review of the literature. Surg Neurol 1996;50:11-6.
38. Saiki K, Hirabayashi S, Sakai H, Inokuchi K. Traumatic anterior lumbosacral dislocation caused by hyperextension mechanism in preexisting L5 spondylolisthesis. J Bone Joint Surg Am 1979;61:1024-7.
39. Stuart RM, Song SJ. Unilateral lumbosacral facet joint dislocation without associated fracture. Australas Radiol 2004;48:224-9.
40. Szentirmai O, Seinfeld J. Beauchamp K, Patel V. Traumatic unilateral lumbosacral jumped facet without fracture in a child - presentation of a safe treatment strategy for a rare injury. Paediatr Surg Int 2008;22:29.
Commentary

This report alerts neurosurgeons to the need for careful analysis of diagnostic radiographs when a patient has been involved in a potentially high-impact injury to the spine. The authors point out that transverse process fractures, in part, directed them to the unilateral dislocation at the lumbosacral junction. However, such dislocations may occur without other fractures[1,2] and thus fail to give a clue to such an injury at that location, further underlining the need for a careful radiographic analysis in lumbar spine trauma cases. The first report cited above also documents forced lateral flexion-extension as the major factor in the traumatic mechanism.

The authors of this report made use of the Thoracolumbar Injury Classification and Severity Scale – TLICS, originally proposed by The Spine Trauma Study Group as reported by Vaccaro et al. in 2005, in helping to make the decision to surgically treat this dislocation. Spine surgeons should familiarize themselves with this classification, which has been verified in a number of reports[3-5] and which can be found readily online using the Google search engine.

REFERENCES

1. Krbec M, Hrabeta P. Unilateral isolated dislocation at the lumbosacral junction: Lateral flexion-distraction as a major vector in the mechanism of injury: Case report and trauma mechanism analysis. Eur Spine J 2010.
2. Blecher R, Gefter A, Anekstein Y, Mirovsky Y. Isolated unilateral facet dislocation of the lumbosacral junction. J Bone Joint Surg Br 2010;92:1456-9.
3. Koh YD, Kim DJ, Koh YW. Reliability and Validity of Thoracolumbar Injury Classification and Severity Score (TLICS). Asian Spine J 2010;4:109-17.
4. Patel AA, Vaccaro AR. Thoracolumbar spine trauma classification. J Am Acad Orthop Surg 2010;18:63-71.
5. Lenart CJ, Place HM. Evaluation of a new spine classification system, does it accurately predict treatment? J Spinal Disord Tech 2010;23:192-6.

Ron Pawl
Department of Neurosurgery, University of Illinois, Chicago 900 Westmoreland, Suite LL50, Lake Forest, Chicago, IL, USA
E-mail: ron@pawl.com