Evaluation on Strength Concrete Containing Micro Steel Fiber: A Review

S Ramasamy¹, S Shahidan*¹, A N H Rosdi², A F A Manaf¹, S S M Zuki¹ and M A M Azmi², Shamrul-Mar Shamsuddin¹, S R Abdullah¹ and N Ali¹

¹Faculty of Civil and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, MALAYSIA
²Bina Mekar Sdn Bhd, No.5 (5-1), Jalan Jaya, Pusat Perniagaan Parit Jarum, 84800 Bukit Gambir, Tangkak, Johor, MALAYSIA
³Department of Civil Engineering, Center for Diploma Studies, Universiti Tun Hussein Onn Malaysia, 84600 Panchor, Johor, MALAYSIA

* Email: shahiron@uthm.edu.my

Abstract. Concrete has been used for a very long period in construction sites all over the globe. Concrete is very crucial in producing structural members in any building structure. It has to be strong enough to bear the loads of building so that it will not be failed. This article focused on a critical review of concrete containing micro steel fibres (MSF) in order to improve its ductility. In this study, the research is to determine whether the usage of micro steel fibre can improve the compressive and splitting tensile strength of concrete or not. In general, the strength of the concrete improves as the amount of MSF in the matrix increases. All the assessments conducted in all the paper that has been reviewed are following the standard test of British Standard. In a nutshell, the addition of micro steel fibre to concrete does have a huge impact on the tensile and compressive strength. The properties of concrete are expected to enhanced compared to normal concrete; however, the tensile strength does not show any improvement.

1. Introduction

Concrete is a very common composite that has been utilized for improving the civilization of humankind all over the globe. There is a lot of new type of concrete that has been implemented in building construction. Concrete is a composite that contain of cement, coarse aggregates, and fine aggregates which are strong in compression but weak in tensile strength [1]. So, it is essential to study more on the way to enhance the tensile strength.

Fresh concrete develops structural cracks as a result of drying shrinkage, resulting in structural failure. Concrete hardness and tensile strength can be improved by material with more durable mechanical properties. One of the methods to enhance the concrete properties efficiently is by adding the fibres [2]. Other research validates the paper's claim that steel fibres can improve both the strength and ductility of concrete. This is due to the randomly oriented interlocking mechanism and micro scratching mechanism will limit crack propagation which results in the improvement of strength and ductility [3]. Another research affirmed that by including the steel fibres in concrete can leave an effective result on flexural and compressive strength [4]. Steel fibre improves the tensile strength, flexural strength, impact strength, and toughness of concrete, in addition to increasing its compressive and ductility [3].

Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
In this study, it will mainly focus on reinforcing concrete with micro steel fibre with a specific percentage of micro steel fibre. The compressive strength test will be conducted on the concrete specimens consists of micro steel fibre, and the result obtain will be compared to the control specimens. The optimum percentage of micro steel fibre in concrete will be evaluated. Concrete is very crucial in the construction site. It is mostly used in making structure member such as slab, beam, column and foundation. It is a common knowledge that the concrete structure is very dependent on the compressive strength of each concrete elements [5].

Fibre-matrix interfacial properties provide a significant position in the global mechanical reaction of composite materials [6]. So, a higher volume fraction of fibres will improve the fibre interlocking instrument for composition of concrete. Thus, the mechanical properties of concrete are improved. Concrete struggles concerning tension criteria if the tensile stress meets the corresponding tensile pressure [7]. Besides, cement-based material has the brittle characteristic, and weak towards crack resistance, also the compressive strength is higher than flexural strength [8].

Concrete is usually exposed to weather and any extra load, which may cause failure to occur. Concrete structure needs to be strong to bear the axial load from the building to avoid any failure of the structure. One way to enhance the concrete strength is by applying additional material which is in this study by utilizing micro steel fibre. By doing so, the building stability and the service life of the building can be enhanced [9]. Moreover, the inclusion of micro steel fibre on the concrete mix design will improve the matrix bonding and mitigate cracking.

In this paper, the method of improving the mechanical strength of concrete by using micro steel fibre will be discussed. In order to achieve the purpose of this study, several previous studies on “the effect of micro steel fibre in concrete strength” and “the behaviour of concrete containing micro steel fibre in terms of splitting tensile and compressive strengths” have been studied and analyse to prove that the addition of MSF to concrete matrix would improve its properties in term of compressive and tensile strength.

2. Literature Review
Nowadays, there are a lot of research has been studied to make sure the increment of the strength of concrete in term of tensile and compressive strength by using additional material. This section will go through the material that may have the potential to improvise the compressive and tensile strength of concrete, which can benefit the industry in upgrading the quality of work.

Cement, in general, is an adhesive compound, also known as binder, that is commonly included in building projects. The cement of this kind is powders that will harden when contact with water. Hydration, which is also the chemical reaction of cement substances with water to obtain sub-microscopic minerals or a gel-like substance with a large surface area, causes setting and hardening. Cement is also referred as the hydraulic cement because of its hydrating properties, which allow it to set and harden even when submerged. Concrete is widely utilized in construction because of its durability and strength characteristic [10].

Many efforts have been made in order to enhance the strength of concrete by incorporating various types of additional materials. Table 1 below shows a list of previous research on concrete with different type of material which was conducted all of it in the year 2020.

No	Author	Material	Outcomes
1	[11]	Micro-Silica	There is an improvement of 16%-25% in the average laboratory of compressive strength test compared to design
2	[12]	Steel Fiber	All concrete specimen has declined in compressive strength.
3	[13]	Steel Fiber	There is an increase on post-peak response, compressive strength, strain value, and energy absorption. The brittleness is reduced.

Table 1: Previous research on concrete
2.1 Fibres
Primarily, fibres are discontinuous, short and also unarranged, spread throughout the mixture of concrete and lastly produce a composite construction material which also recognizes as fibre reinforced concrete (FRC). Usually, fibre is made of steel, glass, and polymer or derives chemical materials will be used in cement-based composite [14]. Based on Hong [6] the research stated that because of fibre have the tendencies to be more closely spaced than a conventional reinforcing bar, it can control cracking more effectively [15]. Tate [16] also states that fibres can never substitute a conventional steel bar because the steel bar has its own roles in advance concrete technology. With that being said, fibre and steel reinforcement should be utilized as much as possible.

Gholampour [17] claims that their research has demonstrated a huge potential of using ultra-high-strength MSF in the implementation of alternative on reinforced concrete elements, particularly in the design of seismic-resistant columns.

Table 2: Previous research on MSF

No	Author	Percent of steel fiber	Type of concrete	Outcomes
1	[18]	0%, 1%, 2% and 3%	Geopolymer Concrete	With increasing fibre content and size, compressive and ultimate flexural strength increases.
2	[19]	0%, 0.5%, 1.0%, 1.5%, and 2.0%	Ultra-High-Performance Concrete	Pull-out behaviour and tensile performance did not have a negligible connection.
3	[20]	0.5%, 1%, 1.5% and 2%	Ternary Concrete	The tensile strength increases by 15.29%, 25.95 and 35.78% compared to the ordinary concrete mix

3. Result and Discussion
The purpose of this article is always to discuss regarding efficiency of MSF in concrete composition. Several paper using concrete with micro steel fibre as additional material was reviewed. The splitting tensile and compressive strength of normal concrete was evaluated in order to compare with the strength of which contains MSF as additional material. Moreover, the percentage of micro steel fibre also needed to be evaluated so that conclusion on the relationship between concrete and micro steel fibre can be determined. Table 3 shows the various studies conducted on compressive strength.

Table 3: Previous research on compressive strength

No	Author	Curing 7 Days	Curing 28 Days	Percent of MSF	Type of Concrete
1	[4]	24.33MPa	39.8MPa	1%	Normal Concrete
2	[20]	-	43.94MPa	0.5%	Ternary Concrete
3	[21]	-	43.0MPa	0.5%	Self-Compacting Concrete
4	[22]	32.1MPa	51.7MPa	1%	High-Strength Concrete
5	[23]	41.2MPa	43.7MPa	0.5%	Normal Concrete
Figure 1. Comparison of compressive strength for normal concrete (NC) and concrete with MSF.

The compressive strength of normal concrete (NC) and concrete with MSF for specimens aged 7 and 28 days was portrayed in Figure 1. Based on the figure above, every researcher found out that there is a remarkable improvement for every type of concrete after incorporating micro steel fibre into the concrete. For Vijaya [20] and Abid [21], the compressive strength for 7 days is not tested; therefore, only 28 days' compressive strength is available. However, there is only a little improvement for Gholampour [22]. In his study, Gholampour et. al is using high strength concrete in his research about micro steel fibre. That is why the results for the normal concrete have a very high compressive strength compared to another researcher. From these five types of research, Eisa [4] and Abid [21] show a negative effect which shows the declining in numbers of compressive strength. For Eisa [4], there is diminishing of concrete strength from 44.2MPa to 39.8MPa, which after calculated to be 11% of reduction. Same goes to Abid [21], the result show 44.5MPa, which reduces to 43MPa and from that there is 3.5% of reduction. The three other researchers only show a positive impact. From all these five types of research, the best percent for micro steel fibre so that the concrete achieves the highest strength is 0.5% as stated by Kenneth [23]. Table 4 below shows the various studies which were conducted on splitting tensile strength test.

No	Author	Curing Percent of MSF	Type of Concrete
1	[4]	2.55MPa 5%	Normal Concrete
2	[20]	4.12MPa 0.5%	Ternary Concrete
3	[21]	4.5 MPa 0.5%	Self-Compacting Concrete
4	[23]	7.07MPa 7.23MPa 0.5%	Normal Concrete
5	[24]	16.6MPa 2%	High Strength Concrete
The comparison of splitting tensile strength between normal concrete (NC) and concrete with MSF for specimens aged 7 and 28 days is shown in Figure 2. Based on the Figure 2, there are a few studies that conduct splitting tensile strength test for 7 days curing duration. Most of the paper only conduct laboratory testing for only 28 days. There can be found out that most of the researcher does not agree that by using micro steel fiber as additional material in concrete can improve the splitting tensile strength of concrete. However, from those five papers that have been reviewed found out that there has been declining in the tensile strength such as Eisa [4] with reduction of 25%, Kenneth [23] with reduction of 3.7% and Yoo [24] with the reduction of 0.6%. However, for Gholampour [22] and Vijaya [20] show an improvement on the tensile strength of concrete. From figure 4.2 above, Abid [21] shows a very high value of splitting tensile strength because the research was about high-strength concrete. That is why the value is very different compared to another researcher.

4. Conclusion
In conclusion, based on the review on previous studies, there are few things that can be highlighted; i) It has been proven that MSF can increase the strength of the concrete. ii) The optimum percentage for micro steel fibre to be added into concrete by volume fraction is 0.5%. iii) The greatest improvement in compressive strength is 24% which is from 35.2Mpa to 43.7Mpa.

5. References

[1] Prathipati S T and Rao C B K 2020 A study on the uniaxial behavior of hybrid graded fiber reinforced concrete with glass and steel fibers, *Materials Today Proc.* 32(4) 764-770
[2] Sanjeev J and Nitesh K S 2020 Study on the effect of steel and glass fibers on fresh and hardened properties of vibrated concrete and self-compacting concrete, *Materials Today Proc.* 27(2) 1559-1568
[3] Atea R S 2019 A Case Study On Concrete Column Strength Improvement with Different steel fibers and polypropylene fibers, *Journal of Materials Research and Technology* 8(6) 6106-6114
[4] Eisa A S, Elshazli M T and Nawar M T 2020 Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams, *Construction and Building Materials* 252 119078
[5] Yang S, Xu Z, and Bian Z 2020 Prediction on compressive strength concrete using modified pull-off testing method (MPTM), *Construction and Building Materials* 250 118834
[6] Hong L, Chen Y D, Li T D, Gao P and Sun L Z 2020 Microstructure and bonding behavior of fiber-mortar interface in fiber-reinforced concrete, *Construction and Building Materials* 232 117235
Zhu H, Hu Y, Li Q, and Ma R 2020 Restrained cracking failure behavior of concrete due to temperature and shrinkage, *Construction and Building Materials* **244** 118318

Jaber H A, Mahdi R S, and Hassan A K 2020 Influence of eggshell powder on the Portland cement mortar properties. *Materials Today: Proceedings*. **20** 391-396

Xie C, Yuan L, Zhao M and Jia Y 2020 Study on failure mechanism of porous concrete based on acoustic emission and discrete element method, *Construction and Building Materials* **235** 117409

Pallapu V S, Satish B J N and Reddy K H K 2020 Mechanical and micro structural properties of concrete subjected to elevated temperature, *Materials Today* **33**(1) 626-631

Oskouei A V, Nazari R and Khaneghahi M H 2020 Laboratory and in situ investigation of the compressive strength of CFRD concrete, *Construction and Building Materials*. **242** 118166

Nematzadeh M, Shahmansouri A A and Fakoor M 2020 Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP, *Construction and Building Materials* **252** 119057

Usman M, Farooq S H, Umair M and Hanif A 2020 Axial compressive behavior of confined steel fiber reinforced high strength concrete, *Construction and Building Materials* **230** 117043

Masuelli M A 2013 *Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes* (London: Intech Open) pp 2-5

Behbahani H P Nematollahi B and Farasatpour M 2011 Steel fiber reinforced concrete: a review, *Procs. Int. Conf. on Structural Engineering Construction and Management* (Malaysia)

Tate S M, Hamid H F, Durham S A and Chorzepe M G. 2020 Investigation into Recycled Rubber Aggregates and Steel Wire Fiber for Use in Concrete Subjected to Impact Loading. *Infrastructures*. **5**(10) 82

Gholampour A, Hassanli R, Mills J E, Vincent T and Kunieda M 2019 Experimental investigation of the performance of concrete columns strengthened with fiber reinforced concrete jacket, *Constr. Build. Mater.* **194** 51–61

Liu Y, Zhang Z, Shi C, Zhu D, Li N and Deng Y 2020 Development of ultra - high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties, *Cem. Concr. Compos.* **112** 103670

Chun B and Yoo DY 2019 Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete, *Compos. Part B Eng.* **162** 344-360

Reddy S V and Rao P S 2020 Experimental studies on mechanical properties and impact characteristics of ternary concrete with steel fiber, *Mater. Today Proc.* **27**(2) 788–797

Abid S R, Abdul-Hussein M L, Ayoob N S, Ali SH and Kadhum A L 2020 Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber, *Heliyon* **6** e03198

Gholampour A and Ozbakkaloglu T 2018 Fiber-reinforced concrete containing ultra-high strength micro steel fibers under active confinement, *Constr. Build. Mater.* **187** 299–306

Celestine A K, Prakash M, Satyanarayanan K S, Surya T R and Parthasarathi N 2020 The interpretation of mechanical study of concrete using crimped steel fibres, *Mater. Today. Proc.* **40** 88-92

Yoo D Y, Shin W and Chun B 2020 Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers, *Cem. Concr. Compos.* **109** 103566

Acknowledgments

This study was supported by Universiti Tun Hussein Onn Malaysia and Ministry of Higher Education Malaysia under grant Malaysian Technical University (MTUN) Fund number K122, Industry Grant PLUS (M007) and Postgraduate Research Grant (GPPS) H657.