Reciprocity of higher conserved charges in the $\mathfrak{sl}(2)$ sector of $\mathcal{N} = 4$ SYM

Guido Macorini and Matteo Beccaria
Physics Department, Salento University and INFN, 73100 Lecce, Italy
E-mail: macorini@le.infn.it, beccaria@le.infn.it

September 29, 2010

Abstract
We extend the analysis of the generalized Gribov-Lipatov reciprocity to the higher conserved charges of type IIB superstring on $AdS_5 \times S^5$. The property is shown to hold for twist $L = 2$, and 3 operators in the $\mathfrak{sl}(2)$ subsector.

1 Introduction and Discussion

In the last years, integrability emerged as a powerful tool in the investigation of the AdS/CFT correspondence. The integrable spin chain description of the dilatation operator led to the all-loop conjectured Bethe Ansatz equations for the $\mathfrak{psu}(2,2|4)$ algebra [1,2,3], completely describing (once supplemented with the dressing phase [4,5]) the anomalous dimensions (and the full tower of conserved charges) of the model, up to wrapping effects. The presence of an infinite set of conserved charges q_k, forcing the factorizability of the scattering matrix for elementary excitations, is indeed a key manifestation of the integrability of a quantum model.

On the string side of the duality, the corresponding (classical) σ-model living on the string worldsheet in $AdS_5 \times S^5$ is also integrable, and the tower of non-local conserved charges was derived in [6,7,8].

Despite the physical relevance of q_2, identified with the anomalous scaling dimension - string energy, the first charge does not play a special role from the point of view of the integrability, and all the charges are on equal footing. In [9] the weak-strong coupling correspondence of the full tower of charges in the $\mathfrak{su}(2)$ sector has been studied, but the physical meaning and properties of the higher conserved charges remains less understood.

In this work we investigate the reciprocity properties (see [10] for a review) of the first higher conserved charges in the $\mathfrak{sl}(2)$ sector. Reciprocity has its far origin in QCD in a symmetric treatment of the Deep Inelastic Scattering (DIS) and electron-positron into hadrons. The modified symmetric DGLAP kernel $P(N)$ in the evolution equation obeys the relation: $\gamma(N) = P(N + \frac{1}{2}\gamma(N))$, where $\gamma(N)$ is the lowest anomalous dimension, and the reciprocity can be recast in the form of an asymptotic, large spin condition $P(N) = \sum_{\ell \geq 0} \frac{a_{\ell} (\log J^2)}{J^{2\ell}}$, where
$J^2 = N(N + 1)$, a_ℓ are coupling-dependent polynomials and J^2 is the Casimir of the collinear subgroup $SL(2,\mathbb{R}) \subset SO(2,4)$. This condition can also be interpreted as a parity invariance $J \rightarrow -J$ in the large spin regime.

The $\mathfrak{sl}(2)$ sector, spanned by single trace operators $O \sim \text{Tr}(D^{n_1}Z \ldots D^{n_k}Z)$, is a closed subsector of the theory under perturbative renormalization; $N = \sum n_i$ is the total spin and L is the classical dimension minus the spin (twist) of the operator. The relevant dual string state is the classical folded (S,J) string solution, describing a string extended in the radial direction of AdS_5 and rotating in AdS_5, with center of mass moving on a circle of S^5 \cite{11,12}. This solution is linked via analytic continuation $E \rightarrow -J_1, S \rightarrow J_2, J \rightarrow -E$ to the string configuration (J_1, J_2) with two angular momenta on S^5, for which the higher charges at strong coupling have been constructed in \cite{9} by using the Bäcklund transformations of the integrable classical string σ-model.

Analysing the first two charges at weak coupling $q_{4,6}$ (respectively at 3-loop plus 4-loop dressing part and 2-loop level) and the first charges at strong coupling at classical level, we find that the reciprocity condition can be consistently generalized for all the tested higher charges.

2 Higher Charges and Reciprocity at Weak Coupling

In the weak coupling regime the closed formulae for multi-loops higher charges can be efficiently computed following the Baxter approach \cite{13,14,15} together with the maximum transcendentality Ansatz (and then completed by the dressing factor starting from the four-loop order), resulting in a combination of harmonic sums of definite transcendentality \cite{16}. The reciprocity condition for the full tower of conserved charges can be generalized from the condition for q_2 defining the kernel $P_r(N)$ as

$$q_r(N) = P_r \left(N + \frac{1}{2} q_2(N) \right).$$

(1)

This equation emphasizes the role of the renormalized conformal spin, as also suggested by light cone quantization. Reciprocity implies a constraint on the form of the expansion of P_r at large N, which should involve only integer inverse powers of $N(N+1)$. The check of this property is easier after a rewriting of the charges in terms of the Ω basis \cite{17}, where the reciprocity simply means that the Ω must have odd positive or even negative indices. We report here only the first, parity respecting results for the higher charge q_4:

$L = 2$, three-loops reciprocity of q_4

$$P_{4}^{(1)} = 16 (\Omega_3 + 6\Omega_{-2,1}),$$

$$P_{4}^{(2)} = \frac{-16}{5} (\pi^4 \Omega_1 + 120\Omega_{-4,1} + 20\pi^2 \Omega_{-2,1} + 60\Omega_{-2,3} + 60\Omega_{1,-4} + 20\pi^2 \Omega_{1,-2} + 120\Omega_{-2,1,-2} + 120\Omega_{1,-2,-2} - 480\Omega_{1,-2,1,1}),$$

$$P_{4}^{(3)} = \frac{32}{15} (180\zeta(3)\Omega_{-4} + 2\pi^6 \Omega_1 + 3\pi^4 \Omega_3 - 30\pi^2 \Omega_5 - 720\Omega_7 + 900\Omega_{-6,1} + 240\pi^2 \Omega_{-4,1} + 540\Omega_{-4,3} + 30\pi^4 \Omega_{-2,1} + 60\pi^2 \Omega_{-2,3} + 720\Omega_{1,-6} + 240\pi^2 \Omega_{1,-4} + 36\pi^4 \Omega_{1,-2} + 180\Omega_{3,-4} + 60\pi^2 \Omega_{3,-2} - 180\Omega_{5,-2} + 2520\Omega_{-4,-2,1} + 2160\Omega_{-4,1,-2})$$

(3)
Introducing the function fptoniously, reciprocity is translated in the absence of inverse odd powers of η.

For the comparison with the gauge theory results we are interested in the slow string limit; as:

$$\sigma = 2L - 2 + 1440\Omega_{1,1,5} + 2160\Omega_{3,-2,-2} + 720\Omega_{5,1,1}$$

$$-1440\Omega_{2,1,1,1} + 2160\Omega_{2,-2,-2,1}$$

$$+1440\Omega_{2,-2,1,-2} + 720\Omega_{2,1,-2,-2} - 2880\Omega_{1,-4,1}$$

$$+1440\Omega_{1,-2,-2} - 960\pi^2\Omega_{1,-2,1,1} - 1440\Omega_{1,-2,1,3} - 1440\Omega_{1,-2,3,1} - 1440\Omega_{1,1,-4,1}$$

$$-960\pi^2\Omega_{1,1,-2,1} - 1440\Omega_{1,1,-2,3} - 1440\Omega_{3,-2,1,1} - 2880\Omega_{2,-2,1,1}$$

$$-2880\Omega_{2,-1,1,-2,1} - 5760\Omega_{1,1,-2,1,1} - 2880\Omega_{2,-1,1,1,1} - 11520\Omega_{1,1,-2,2,1}$$

$$-5760\Omega_{1,1,-2,1,2} + 11520\Omega_{1,1,-2,1,1} + 360\Omega_{1,1}\zeta(5) - 240\pi^2\Omega_{1,1}\zeta(3)$$

$$-720\Omega_{2,-1,1,\zeta(3)} - 720\Omega_{1,1,\zeta(3)} - 720\Omega_{1,1,-2,3}$$

$$= 3072\Omega_{6} + 3072\Omega_{2,-4} + 3072\Omega_{5,1} - 18432\Omega_{4,1,1}$$

$$-12288\Omega_{2,-1,3} - 12288\Omega_{2,-3,1} - 6144\Omega_{1,-4,1} - 6144\Omega_{1,-2,3}$$

$$-24576\Omega_{2,-2,1,1} - 12288\Omega_{2,-1,1,1} - 12288\Omega_{1,-2,2,1} + 98304\Omega_{1,1,1,1} + 24576\Omega_{1,-2,1,1}.$$

3 Higher Charges and Reciprocity at Strong Coupling

The string state dual of the gauge operators is the semiclassical sl(2) folded string. As anticipated, it is related to the (J_1, J_2) string by an analytic continuation, mapping one into another the σ-models describing the strings on $AdS_3 \times S^3$ and $R \times S^3$, as well as the relative equations of motion, their solutions and the conserved charges. Energy $E = E/\sqrt{\lambda}$, spin $S = S/\sqrt{\lambda}$, and angular momentum $J = J/\sqrt{\lambda}$ for the folded string are related by

$$\sqrt{\kappa^2 - J^2} = \frac{1}{\sqrt{\eta}} F_1 \left(\frac{1}{2}, \frac{1}{2}, 1, -\frac{1}{\eta} \right), \quad \omega^2 - J^2 = (1 + \eta)(\kappa^2 - J^2),$$

$$S = \frac{\omega}{\sqrt{\kappa^2 - J^2}} \frac{1}{2\eta \sqrt{\eta}} F_1 \left(\frac{1}{2}, \frac{3}{2}, 2, -\frac{1}{\eta} \right), \quad \mathcal{E} = \frac{\kappa}{\sqrt{\kappa^2 - J^2}} \frac{1}{\sqrt{\eta}} F_1 \left(-\frac{1}{2}, -\frac{1}{2}, 1, -\frac{1}{\eta} \right)$$

and for the comparison with the gauge theory results we are interested in the slow string limit; using J as an expansion parameter, the quantum contribution to the energy can be computed as:

$$\eta(S, J) = \eta^{(0)}(S) + \eta^{(2)}(S) J^2 + \eta^{(4)}(S) J^4 + \cdots,$$

$$\Delta = \mathcal{E} - S = \Delta^{(0)}(S) + \Delta^{(2)}(S) J^2 + \Delta^{(4)}(S) J^4 + \cdots.$$

Introducing the function f defined as $\Delta(S) = \mathcal{E}(S) - S = f \left(S + \frac{1}{2} \mathcal{E}(S) \right)$ and expanding perturbatively, reciprocity is translated in the absence of inverse odd powers of S in the expansions.
Higher charges $\mathcal{E}_{4,6,...}$ can be constructed in the $\mathfrak{su}(2)$ sector by using the Bäcklund transformation method [9], and then analytically continued ($t \to -1/\eta$, $\mathcal{E}_2 \to J$). As an example, for the first non-vanishing charge \mathcal{E}_4 we get:

$$
\mathcal{E}_4 = -\frac{16}{\pi^2 \eta^2} Z_1(t) + \frac{32}{\pi^2 \eta^2} Z_2(t),
$$

$$
Z_1(t) = \mathbb{K}(t)[\mathbb{E}(t) + (t - 1)\mathbb{K}(t)], \quad Z_2(t) = t(t - 1)\mathbb{K}(t)^4 \quad (10)
$$

where t is a modular parameter. In analogy with the case of the energy, we propose to test reciprocity on the functions f_k defined by

$$
Z_k(S) = f_k \left(S + \frac{1}{2} \mathcal{E}(S) \right), \quad Z_k(S) \equiv Z_k(-1/\eta(S)). \quad (11)
$$

Using the Lagrange-Bürmann formula [18]

$$
f(S) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{d}{dS} \right)^{k-1} \left(-\frac{\Delta(S)}{2} \right)^k Z'(S) = Z(S) - \frac{1}{2} \Delta(S) Z'(S) + \cdots \quad (12)
$$

from $\eta = \eta(S,J)$ we obtain an expansion for $f_k(S) = f_k^{(0)}(S) + f_k^{(2)}(S) J^2 + f_k^{(4)}(S) J^4 + \cdots$ and computing 0-th order correction for Z_1 and Z_2 we find the result

$$
f_1^{(0)} = -\frac{1}{4} \left(\log \bar{S} - 2 \right) \log \bar{S} + \left[\log \bar{S} \right] + \left(2 - 3 \log \bar{S} \right) \log \bar{S} - \frac{1}{\bar{S}^2} + \left[\log \bar{S} \right] \left[\frac{1}{\bar{S}^3} \right] + \cdots \quad (13)
$$

$$
f_2^{(0)} = \frac{1}{16} \left(\log \bar{S} \right)^4 + \left[\log \bar{S} \right] + \left[\log \bar{S} \right] \left[\frac{1}{\bar{S}^2} \right] + \left[\log \bar{S} \right] \left[\frac{1}{\bar{S}^3} \right] \frac{1}{\bar{S}^4} + \left[\log \bar{S} \right] \left[\frac{1}{\bar{S}^5} \right], \quad (14)
$$

where the absence of inverse odd powers of S, highlighted by the boxes, clearly supports parity invariance. The procedure can be straightforwardly extended to the next conserved charges, showing parity invariance in all the tested cases.

References

[1] N. Beisert, Nucl. Phys. B 676 (2004) 3 [arXiv:hep-th/0307015].

[2] N. Beisert and M. Staudacher, Nucl. Phys. B 670 (2003) 439 [arXiv:hep-th/0307042].

[3] N. Beisert and M. Staudacher, Nucl. Phys. B 727 (2005) 1 [arXiv:hep-th/0504190].

[4] N. Beisert, B. Eden and M. Staudacher, J. Stat. Mech. 0701, P021 (2007) [arXiv:hep-th/0610251].

[5] N. Beisert and T. Klose, J. Stat. Mech. 0607 (2006) P006 [arXiv:hep-th/0510124].

[6] I. Bena, J. Polchinski and R. Roiban, Phys. Rev. D 69 (2004) 046002 [arXiv:hep-th/0305116].
[7] G. Mandal, N. V. Suryanarayana and S. R. Wadia, Phys. Lett. B 543 (2002) 81 arXiv:hep-th/0206103.

[8] J. Engquist, JHEP 0404 (2004) 002 arXiv:hep-th/0402092.

[9] G. Arutyunov and M. Staudacher, JHEP 0403 (2004) 004 arXiv:hep-th/0310182.

[10] M. Beccaria, V. Forini, G. Macorini, Adv. High Energy Phys. 2010 (2010) 753248. arXiv:1002.2363 [hep-th].

[11] S. Frolov and A. A. Tseytlin, JHEP 0206 (2002) 007 arXiv:hep-th/0204226.

[12] H. J. de Vega and I. L. Egusquiza, Phys. Rev. D 54, 7513 (1996) arXiv:hep-th/9607056. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Nucl. Phys. B 636, 99 (2002) arXiv:hep-th/0204051.

[13] R.J. Baxter, Annals Phys. 70 (1972) 193; Academic Press (London, 1982).

[14] S. E. Derkachov, G. P. Korchemsky and A. N. Manashov, JHEP 0307, 047 (2003) arXiv:hep-th/0210216.

[15] S. E. Derkachov, G. P. Korchemsky and A. N. Manashov, Nucl. Phys. B 566, 203 (2000) arXiv:hep-ph/9909539.

[16] M. Beccaria, G. Macorini, JHEP 1001 (2010) 031. arXiv:0910.4630 [hep-th].

[17] M. Beccaria and V. Forini, JHEP 0903 (2009) 111 arXiv:0901.1256 [hep-th].

[18] B. Basso and G. P. Korchemsky, Nucl. Phys. B 775, 1 (2007) arXiv:hep-th/0612247.