Research Paper
Bioinformatic Prediction of miRNAs Targeting APRIL and BAFF Genes in Chronic Lymphocytic Leukemia

Mahdieh Mondanizadeh1,2, Niloofar Moradi2, Razieh Amini2, Behzad Khansarinejad1,3, *Ghasem Mosayebi1,3

1. Molecular and Medical Research Center, Arak University of Medical Sciences, Arak University of Medical Sciences, Arak, Iran.
2. Department of Biotechnology and Molecular Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
3. Department of Microbiology and Immunology, School of Paramedicine, Arak University of Medical Sciences, Arak, Iran.

Background and Aim
Chronic Lymphocytic Leukemia (CLL) is the most commonly occurring leukemia in adults, accounting for about 30-25% of total leukemia. One of the important etiological causes of this leukemia is the disruption of the Nuclear Factor Kappa B (NF-kB) signaling pathway. The two proteins of Apoptosis-Inducing Ligand (APRIL) and B-Cell Activating Factor (BAFF) play a role in the pathogenesis of this leukemia by affecting the NF-kB signaling pathway. In this study, due to the effect of miRNAs in regulating many cellular processes, the prediction of the prominent miRNAs targeting APRIL and BAFF transcripts in B-cell CLL patients was evaluated using specific and different bioinformatics programs.

Methods & Materials
Afterwards retrieving the sequences of APRIL and BAFF proteins from the NCBI website, by using several programs including miRanda, TargetScan, miRWalk, DIANA and miRDB with different algorithms, the prediction of miRNAs targeting these genes was investigated.

Ethical Considerations
This study was approved by the Research Ethics Committee of Arak University of Medical Sciences.

Results
Based on the scoring system of bioinformatics programs, “hsa-miR-145-5p” and “hsa-miR-185-5p” were identified as miRNAs targeting APRIL gene, while “hsa-miR-424” and “hsa-miR-497” were miRNAs targeting BAFF gene. They were suggested for the practical studies in future.

Conclusion
Based on the important role of APRIL and BAFF genes in the normal process of cell death and B-cell evolution, it seems that the mi-RNAs predicted by bioinformatics programs using different algorithms can be used as a diagnostic molecular biomarker to identify B-cell CLL patients.

Key words: Bioinformatics programs, Chronic Lymphocytic Leukemia, MicroRNA, APRIL, BAFF

Extended Abstract
Introduction
Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in adults that appears to be caused by a defect in cell differentiation. CLL has various etiologic causes including genetic alterations and impaired intracellular signaling pathway. Therefore, the identification and evaluation of proteins involved in molecular signaling pathway in the CLL that changes their expression relative to the normal state can lead to the development of a new and effective therapeutic or diagnostic method. The two proteins of Apoptosis-Inducing Ligand (APRIL) and B-Cell Activating Factor (BAFF) play...
a role in the pathogenesis of this leukemia by affecting the Nuclear Factor Kappa B (NF-kB) signaling pathway.

APRIL protein is significantly increased in the serum of patients with CLL, and by stimulating the NF-κβ pathway, ultimately inhibits apoptosis in B-cells. On the other hand, BAFF protein, by helping B-cell lymphocyte proliferation, ultimately inhibits B-cell apoptosis and cell progression to tumorigenesis and become cancerous. In recent years, researchers have found that some miRNAs can cause cells to become cancerous by reducing gene expression and gene silencing. This confirms the important potential of these molecular agents as biomarkers in the diagnosis, prognosis, progression, treatment and drug resistance of cancers including CLL. In this regard, considering the effect of miRNAs in regulating many cellular processes, the prediction of the prominent miRNAs targeting APRIL and BAFF transcripts in B-cell CLL patients was evaluated in the present study using specific and different bioinformatics programs.

Materials and Methods

This study is based on the bioinformatics theory. First, the sequences of APRIL and BAFF proteins were retrieved from the NCBI website. Then, by using bioinformatics programs of miRanda, TargetScan, miRWalk, DIANA and miRDB, the prediction of miRNAs targeting these genes was investigated. These programs have different algorithms. The miRanda program presents the results of bioinformatics assessments by providing an index called “miRS-VR”, and the TargetScan program shows the results based on a factor called “Pct” (probability of conserved targeting) in humans and mammals, rats, worms, flies and frogs. Algorithm used in miRWalk software is based on prediction of miRNA binding site within complete sequences of all known genomes (even mitochondrionl genes).

The basis for prediction assessments in the DIANA program is an index called “miTG score” or precision score. In the miRDB database, the prediction score ranges from 50-100, and higher score shows the higher likelihood of miRNA binding to the target. Outputs from each program representing each miRNA score were then saved as an Excel file. Among the obtained data, miRNAs that the highest complementary to BAFF and APRIL genes were selected for the study.

Results

The results of the miRWalk program indicated that “miR-15a-5p”, “miR-500b-5p” and “miR-4803” were predicted and “miR-215” and “miR-192” were confirmed as BAFF gene targeters. The results of the DIANA program showed that the “miR-424” and “miR-497” targeted BAFF gene whose scores were 0.952 and 0.916, respectively. The results of the miRDB program reported that “miR-15a-5p”, “miR-497” and “miR-424” targeted BAFF gene with the highest scores. The results of the miRanda program showed that “hsa-miR-544” targets the BAFF gene.

The results of the TargetScan program indicated that the APRIL gene is targeted by “miR-145-5p” and “miR-5195” with the highest score and the best binding conditions. The results of the miRanda program showed that “miR-185” with the highest score and more efficient binding can target the APRIL gene. Based on the results of the DIANA program, APRIL gene is targeted by “miR-6132” and “miR-185-5p” with the highest scores. According to the results of miRWalk program, numerous miRNAs both predicted and confirmed that were the targeters of APRIL gene. The results of miRDB database indicated that APRIL gene is targeted by hsa-miR-6716-5p and hsa-miR-4306 with the highest scores. Finally, “hsa-miR-145-5p” and “hsa-miR-185-5p” were identified as miRNAs targeting APRIL gene, and “hsa-miR-424” and “hsa-miR-497” were miRNAs targeting BAFF gene. They were suggested for the practical studies in future.

Conclusion

Bioinformatics is an important technique for managing large-scale biological data. Previous studies have indicated that miRNAs are involved in almost all physiological and pathological mechanisms. Similarly, despite demonstrating the aberrant expression of miRNAs in many diseases including cancers, these molecular agents can be used as potential biomarkers for both diagnosis and treatment. Therefore, it seems that the prediction of the miRNAs that target BAFF and APRIL gene can be an effective step in the diagnosis and treatment of B-cell CLL.

To our knowledge, this is the first time that bioinformatics programs of miRanda, TargetScan, miRWalk, DIANA and miRDB are used for the target prediction of miRNAs. Based on the results, we found out that “hsa-miR-145-5p” and “hsa-miR-185-5p” were the miRNAs targeting APRIL gene, and “hsa-miR-424” and “hsa-miR-497” were targeting BAFF gene. Since there is no specific study on the role of these miRNAs in the progression of B-cell CLL, the present study, as the first study, allows the introduction and assessment of miRNAs and new genes to help diagnose patients with this cancer.
Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval from the Research Ethics Committee of Arak University of Medical Sciences (Code: IR.ARAKMU.REC.1395.418).

Funding

This study extracted from a research proposal approved by the Arak University of Medical Sciences. We received financial support from the Deputy for Research and Technology of this University.

Authors’ contributions

Conceptualization: Mahdieh Mondanizadeh and Ghasem Mosayebi; Investigation: Mahdieh Mondanizadeh, Niloofar Moradi and Razieh Amini; Review & editing: Mahdieh Mondanizadeh and Niloofar Moradi; Validation: Behzad Khansarinejad; Supervision: Ghasem Mosayebi.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the Deputy for Research and Technology and the staff of the Laboratory of Molecular Microbiology and Virology at Arak University of Medical Sciences and Pastor Institute for their support and cooperation.
پیشینه و بیانفروماتیکی miRNA‌های هدف گیرنه‌اندیشی APRIL و BAFF لوسمی لنفوسیتی مزمن

مهدیه موتینی‌زاده ۱، نیازفر مرادی ۲، راشیه امینی ۳، بهزاد خوانساری‌پزشک ۴، قاسم مسیبی ۵

۱. مرکز تحقیقات یوسفی و مکانیسم‌های پیوستگی‌های مولکولی لارک‌دانشگاه علوم پزشکی اراک، ایران
۲. گروه میکرو‌شناسی و ایمنی‌شناسی، مرکز تحقیقات نانو فناوری مولکولاری لارک‌دانشگاه علوم پزشکی اراک، ایران
۳. گروه میکرو‌شناسی و ایمنی‌شناسی، مرکز تحقیقات پژوهش‌های مولکولی لارک‌دانشگاه علوم پزشکی اراک، ایران

پیشینه

لوسمی خون یکی از شایع‌ترین سرطان‌های بیماری است که به نظر می‌رسد به واسطه نقص در توانایی سلول‌های ایجاد می‌شود. لوسمی لنفوسیتی مزمن یکی از لوسمی‌های شایع‌ترین لوسمی است که حدود ۲۵ تا ۳۰ درصد از کل لوسمی‌ها را در ایران تشکیل می‌دهد. [۱] لوسمی لنفوسیتی مزمن یک بیماری کلونال سلول‌های جهش‌زا است که در بیش از ۷۰ درصد از لوسمی‌های لنفوسیتی مزمن دیده می‌شود. [۲]

در بیماران مبتلا به APRIL و BAFF لوسمی لنفوسیتی مزمن نرخ آماری از ۱۰ تا ۲۰ درصد از کل لوسمی‌ها را در افراد بالای ۷۰ سال، بین دو نوزادی و بین نوزادان نیز مشاهده شده است. [۳، ۴]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]

در سال ۲۰۰۵، کلینیک‌های این بیماری به دست آمده که این بیماری دارای سرعت بالا و همچنین دارای نرخ مرگ بالا است. [۵]
در انسان و پستانداران، موش، کِرم، مگس و قورباغه ارائه می‌دهند. این سیگنال‌ها، با احتمال، از عواملی مانند پاتوژنها و احتمالاً از عوامل فیزیولوژیکی زیادی در این مدل بر پایه توالی و خصوصیات زمینه ای دابلکس نشان می‌دهد. اساس رتبه‌بندی مذکور داشتند، به منظور بررسی‌های عملی و آزمایشگاهی در این مدل. البته بالاترین امتیاز و بیشترین احتمال در هدف‌گیری ژن‌ها، با استفاده از نهاده می‌باشد. تحقیقات به عنوان یک روش تشخیصی و احتمالاً در کنترل بهبود ایجاد شده است.

از جمله سیگنال‌های سیلکینگ سالورا که در این پژوهش اکثریتی از ژن‌های شاخص هدف گیرنده ترانسکریپت های مربوط به APRIL و BAFF است. این پژوهش یک بررسی تئوری بیوانفورماتیک است که برای جستجوی ترکیبی APRIL و BAFF استفاده شد. APRIL و BAFF به عنوان مولکول‌های کلیدی در کنترل طیف گسترده از درون‌لیگند، BAFF-R، به عنوان مولکول منجر به ایجاد اعمال سایتوکاینی گلیکوپروتئین و متعلق به خانواده لیگاندهای TNF است. کاهش نسبی APRIL و BAFF توانسته باشد تا آنها را به عنوان کاهش‌گر کلکتوپوئسم در بیماری‌های آبسسیونی و خیسی و تولید انواع مختلف پروتئین‌های مرتبط با BAFF و APRIL و BAFF را فعال کند. در این مطالعه با توجه به نقش کلیدی پروتئین‌های APRIL و BAFF به عنوان مولکول‌های کلیدی در مسیر سیگنال‌های سیلکینگ سالورا، اثر ناشی از ژن‌های هدف گیرنده ترانسکریپت و BAFF و APRIL بر درون‌لیگند، BAFF-R اکثریتی از ژن‌های سالورا که در این پژوهش اکثریتی از ژن‌های شاخص هدف گیرنده ترانسکریپت های مربوط به APRIL و BAFF است. این پژوهش یک بررسی تئوری بیوانفورماتیک است که برای جستجوی ترکیبی APRIL و BAFF استفاده شد. APRIL و BAFF به عنوان مولکول‌های کلیدی در کنترل طیف گسترده از درون‌لیگند، BAFF-R، به عنوان مولکول منجر به ایجاد اعمال سایتوکاینی گلیکوپروتئین و متعلق به خانواده لیگاندهای TNF است. کاهش نسبی APRIL و BAFF توانسته باشد تا آنها را به عنوان کاهش‌گر کلکتوپوئسم در بیماری‌های آبسسیونی و خیسی و تولید انواع مختلف پروتئین‌های مرتبط با BAFF و APRIL را فعال کند. در این مطالعه با توجه به نقش کلیدی پروتئین‌های APRIL و BAFF به عنوان مولکول‌های کلیدی در مسیر سیگنال‌های سیلکینگ سالورا، اثر ناشی از ژن‌های هدف گیرنده TAN 1-10 یک روش تشخیصی ویا درمانی جدید و مؤثر شود. این سایتوکاین مسیر کلاسیک به عنوان پیشگوی پیشرفت وابسته به تکنیک است. این سایتوکاین مسیر کلاسیک به عنوان پیشگوی پیشرفت وابسته به تکنیک معرفی شده است. در حقیقت، این پژوهش یک بررسی تئوری بیوانفورماتیک است که برای جستجوی ترکیبی APRIL و BAFF استفاده شد. APRIL و BAFF به عنوان مولکول‌های کلیدی در کنترل طیف گسترده از درون‌لیگند، BAFF-R، به عنوان مولکول منجر به ایجاد اعمال سایتوکاینی گلیکوپروتئین و متعلق به خانواده لیگاندهای TNF است. کاهش نسبی APRIL و BAFF توانسته باشد تا آنها را به عنوان کاهش‌گر کلکتوپوئسم در بیماری‌های آبسسیونی و خیسی و تولید انواع مختلف پروتئین‌های مرتبط با BAFF و APRIL را فعال کند. این سایتوکاین مسیر کلاسیک به عنوان پیشگوی پیشرفت وابسته به تکنیک است. این پژوهش یک بررسی تئوری بیوانفورماتیک است که برای جستجوی ترکیبی APRIL و BAFF استفاده شد. APRIL و BAFF به عنوان مولکول‌های کلیدی در کنترل طیف گسترده از درون‌لیگند، BAFF-R، به عنوان مولکول منجر به ایجاد اعمال سایتوکاینی گلیکوپروتئین و متعلق به خانواده لیگاندهای TNF است. کاهش نسبی APRIL و BAFF توانسته باشد تا آنها را به عنوان کاهش‌گر کلکتوپوئسم در بیماری‌های آبسسیونی و خیسی و تولید انواع مختلف پروتئین‌های مرتبط با BAFF و APRIL را فعال کند. این سایتوکاین مسیر کلاسیک به عنوان پیشگوی پیشرفت وابسته به تکنیک است. این پژوهش یک بررسی تئوری بیوانفورماتیک است که برای جستجوی ترکیبی APRIL و BAFF استفاده شد. APRIL و BAFF به عنوان مولکول‌های کلیدی در کنترل طیف گسترده از درون‌لیگند، BAFF-R، به عنوان مولکول منجر به ایجاد اعمال سایتوکاینی گلیکوپروتئین و متعلق به خانواده لیگاندهای TNF است. کاهش نسبی APRIL و BAFF TAN 1-10 یک روش تشخیصی ویا درمانی جدید و مؤثر شود. این سایتوکاین مسیر کلاسیک به عنوان پیشگوی پیشرفت وابسته به تکنیک است. این پژوهش یک بررسی تئوری بیوانفورماتیک است که برای جستجوی TAN 1-10 یک روش تشخیصی ویا درمانی جدید و مؤثر شود.
در فایل سپس از میان داده‌ها بالاتر بودن امتیاز هر DIANA در پایگاه‌های اطلاعاتی آذر و دی را مورد حاکی از هدف‌گیری ژن می‌داند. این نتایج در نظر می‌گیرند که BAFF با بالاترین امتیاز نشان‌دهنده تأیید شده. در این پایگاه نیز جستجوی پیوست کننده ژن‌های هدف‌گیرنده ژن‌های برتر نیز در پایگاه-NA و BAFF APRIL و BAFF در نظر می‌گیرند.

در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

ناهایی‌گیری و انتخاب NA mirRNA های هدف گیرندگی در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های هدف گیرندگی در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های هدف گیرندگی در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های هدف گیرندگی در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های هدف گیرندگی در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های هدف گیرندگی در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های هدف گیرندگی در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های نمونه‌گیری در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های نمونه‌گیری در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های نمونه‌گیری در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های نمونه‌گیری در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.

پایگاه‌های نمونه‌گیری در نظر می‌گیرند. در این پایگاه اطلاع‌های آماری، ژن‌های هدف، ژن‌های نمونه‌گیری، نتایج پیش‌گویی و تأیید شده و در نهایت و احتمال رابطه مکمل با ژن‌های NA BAFF APRIL و BAFF در نظر می‌گیرند.
در پایگاه BAFF یونه‌های می‌رونا تأیید و نتایج پیش‌گویی در پایگاه miRWalk به نمایش می‌گردند.

جدول 1. نتایج پیش‌گویی می‌رونا های miRNA

miRNA	Score
has-miR-497	952
has-miR-424	916
has-miR-15b-5p	998
has-miR-195-5p	892
has-miR-4739	995

جدول 2. نتایج پیش‌گویی miRDB

miRNA	Score
has-miR-497	926
has-miR-424	916
has-miR-497	998
has-miR-195-5p	882
has-miR-16-5p	876

جدول 3. نتایج پیش‌گویی DIANA

miRNA	Score
has-miR-497	926
has-miR-424	916
has-miR-497	998
has-miR-195-5p	882
has-miR-16-5p	876

جدول 4. نتایج پیش‌گویی miRNAGEN

miRNA	Score
has-miR-497	926
has-miR-424	916
has-miR-497	998
has-miR-195-5p	882
has-miR-16-5p	876
جهت پیش‌بینی بیوانفورماتیکی، از می‌رنا در BAFF و BAFF‌های هدف‌گیرنده آن استفاده کردند. نتایج جدول ۵ نشان‌دهنده کارایی بی‌پرهیزی می‌رنا hsa-miR-544، hsa-miR-145-5p، hsa-miR-185، hsa-miR-383، hsa-miR-222 و hsa-miR-221 را نشان می‌دهند.

miRNA	Score	PhastCons Score	mirSVR Score
hsa-miR-544	0/506	0/506	
hsa-miR-145-5p	0/322	0/322	
hsa-miR-185	0/506	0/506	
hsa-miR-383	0/322	0/322	
hsa-miR-222	0/506	0/506	
hsa-miR-221	0/506	0/506	

جدول ۶ نتایج بی‌پرهیزی می‌رنا hsa-miR-185-5p، hsa-miR-383، hsa-miR-222 و hsa-miR-221 را نشان می‌دهد.

miRNA	Score	PhastCons Score	mirSVR Score
hsa-miR-185-5p	0/6007	0/6007	
hsa-miR-383	0/6185	0/6185	
hsa-miR-222	0/5931	0/5931	
hsa-miR-221	0/6981	0/6981	

جهت پیش‌بینی بیوانفورماتیکی، از می‌رنا در APRIL و APRIL‌های هدف‌گیرنده آن استفاده کردند. نتایج جدول ۷ نشان‌دهنده کارایی بی‌پرهیزی می‌رنا hsa-miR-6132، hsa-miR-185-5p، hsa-miR-4644 و hsa-miR-4503 را نشان می‌دهند.

miRNA	Score	PhastCons Score	mirSVR Score
hsa-miR-6132	0/953	0/953	
hsa-miR-185-5p	0/918	0/918	
hsa-miR-4644	0/880	0/880	
hsa-miR-4503	0/878	0/878	

جهت پیش‌بینی بیوانفورماتیکی، از می‌رنا در DIANA و DIANA‌های هدف‌گیرنده آن استفاده کردند. نتایج جدول ۸ نشان‌دهنده کارایی بی‌پرهیزی می‌رنا hsa-miR-1270 را نشان می‌دهد.

miRNA	Score	PhastCons Score	mirSVR Score
hsa-miR-1270	0/146	0/146	

جهت پیش‌بینی بیوانفورماتیکی، از می‌رنا در APRIL و APRIL‌های هدف‌گیرنده آن استفاده کردند. نتایج جدول ۹ نشان‌دهنده کارایی بی‌پرهیزی می‌رنا hsa-miR-424 را نشان می‌دهد.

miRNA	Score	PhastCons Score	mirSVR Score
hsa-miR-424	0/497	0/497	

جهت پیش‌بینی بیوانفورماتیکی، از می‌رنا در APRIL و APRIL‌های هدف‌گیرنده آن استفاده کردند. نتایج جدول ۱۰ نشان‌دهنده کارایی بی‌پرهیزی می‌رنا hsa-miR-97 را نشان می‌دهد.

miRNA	Score	PhastCons Score	mirSVR Score
hsa-miR-97	0/424	0/424	
جدول ۹. نتایج پیش‌گویی توسط پایگاه‌های هدف‌گیرنده‌ژن miRNA

miRNA Validated	miRNA Predicted
has-miR-548w	has-miR-1
has-miR-1293	has-miR-330-3p
has-miR-199b-3p	has-miR-3170
has-miR-320a	has-miR-206
has-miR-145-5p	has-miR-582-3p

جدول ۱۰. نتایج پیش‌گویی توسط پایگاه‌های هدف‌گیرنده‌ژن miRNA

miRNA	Target Score
has-miR-6716-5p	93
has-miR-4306	90
has-miR-383-5p	38
has-miR-4446-5p	38
has-miR-4644	78
has-miR-185-5p	78

جدول ۱۱. نتایج پیش‌گویی توسط پایگاه‌های هدف‌گیرنده‌ژن miRNA

miRNA	DIAHA	miRDB	Targetscan	miRWalk	miRanda	miRNA	Score
has-miR-497	1	1	1	0	0	has-miR-497	7
has-miR-434	3	1	1	0	0	has-miR-434	8
has-miR-15b-5p	3	0	0	1	0	has-miR-15b-5p	7
has-miR-215	1	1	1	0	0	has-miR-215	7
has-miR-195-5p	3	0	0	1	0	has-miR-195-5p	7
has-miR-16-5p	2	0	0	1	0	has-miR-16-5p	7
has-miR-500b-5p	2	0	0	1	0	has-miR-500b-5p	7
has-miR-4809	1	0	0	1	0	has-miR-4809	7
has-miR-4739	2	0	0	1	0	has-miR-4739	7
جدول ۱۲. نحوه گزینش هدف گیری دهنده miRNA

شماره‌ی شناسایی	نام ژن	miRNA	mIRanda	DIANA	Targetscan	miRWalk	miRDB
MI0001446		has-miR-424	0	0	0	0	0
MI0003138		has-miR-497	0	0	0	0	0
MI0000481		has-miR-145-5p	0	0	0	0	0
MI0000482		has-miR-185-5p	0	0	0	0	0

جدول ۱۳. نمایه‌یندی کننده‌ی نمونه‌های انفعال‌شده‌ی جهت پیش‌بینی میزان‌بیان miRNA

شماره‌ی شناسایی	miRNA	نام ژن
MI0001446	has-miR-424	BAFF
MI0003138	has-miR-497	BAFF
MI0000481	has-miR-145-5p	APRIL
MI0000482	has-miR-185-5p	APRIL
می‌توانند سلول‌های BAFF و APRIL را در آزمایشگاه میکروبیولوژی مولکولی و ویروس شناسی دانشگاه نویسندگان همچنی نویسندگان کمال قدردانی و امتنان را از این معاونت دارند.

نیلوفر مرادی، مرضیه امینی، دکتر موندنی زاده، علوم پزشکی اراک. در روند طبیعی مرگ سلولی و تکامل سلول نظر به امتیازدهی در نرم‌افزارهای بیوانفورماتیک انتخاب و معرفی BAFF و APRIL، APRIL با بالاترین امتیاز تأیید شد. نیلوفر مرادی، دکتر موندنی زاده، APRIL و می‌خواهد BAFF و APRIL را در روند طبیعی مرگ سلولی و تکامل سلولی ببیند. نیلوفر مرادی، دکتر موندنی زاده، APRIL.

داکتر مونденی زاده، APRIL.

داکتر موندنی زاده، APRIL.

داکتر موندی زاده، APRIL.

داکتر موندنی زاده، APRIL.
References

[1] Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stilgenbauer S, Steven-son F, et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia. 2007; 21(1):1-3. [DOI:10.1038/sj.leu.2404457] [PMID]

[2] Gribben JG, O’Brien S. Update on therapy of chronic lymphocytic leukemia. J Clin Oncol. 2011; 29(5):544-50. [DOI:10.1200/JCO.2010.32.3865] [PMID] [PMCID]

[3] Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. Cancer J Clin. 2010; 60(5):277-300. [DOI:10.3322/caac.20073] [PMID]

[4] Landgren O, Albitar M, Ma W, Abbasi F, Hayes RB, Ghia P, et al. B-cell clones as early markers for chronic lymphocytic leukemia. N Engl J Med. 2009; 360(7):659-67. [DOI:10.1056/NEJMoa0806122] [PMID]

[5] Alsgagby SA, Brennan P, Pepper C. Key molecular drivers of chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2016; 16(11):593-606. [DOI:10.1016/j.clml.2016.08.008] [PMID]

[6] Döhner H, Stilgenbauer S, Benner A, Leupold F, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000; 343(26):1910-6. [DOI:10.1056/NEJM200012283432602] [PMID]

[7] Boyd RS, Dyer MJ, Cain K. Proteomic analysis of B-cell malignancies. J Proteomics. 2010; 73(10):1804-22. [DOI:10.1016/j.jprot.2010.03.010] [PMID]

[8] Zanesi N, Balatti V, Bottoni A, M Croce C, Pekarsky Y. Novel insights in molecular mechanisms of CLL. Curr Pharm Des. 2012; 18(23):3363-72. [DOI:10.2174/138161212801227104] [PMID]

[9] Planelles L, Carvalho-Pinto CE, Hardenberg G, Smaniotto S, Savino W, Gómez-Caro R, et al. APRIL promotes B-1 cell-associated neoplasm. Cancer Cell. 2004; 6(4):399-408. [DOI:10.1002/jlb.65.5.680] [PMID]

[10] Shu HB, Hu WH, Johnson H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leukoc Biol. 1999; 65(5):680-3. [DOI:10.1002/jlb.65.5.680] [PMID]

[11] Hernández-Caballero I, Schmid K, Meier A, Ampem D, van der Horst J, et al. miR-155 represses apoptosis in B-CLL through activation of the canonical NF-kappaB pathway. Blood. 2007; 110(6):945-52. [DOI:10.1182/blood-2006-12-011121] [PMID]

[12] Akhtar MM, Miculicchi L, Islam MS, Oliveri F, Procopio AD. Bioinformati-cal tools for microRNA dissection. Nucleic Acids Res. 2016; 44(1):24-44. [DOI:10.1093/nar/gkv1221] [PMID] [PMCID]

[13] Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012; 6(6):590-610. [DOI:10.1016/j.molonc.2012.09.006] [PMID]

[14] Mondanizadeh M, Mosayebi M, Arefian E, Saidijam M, Khansarinejad B. Bioinformatic evaluation of the miR-124 effect on transcription factors involved in neorogenesis process. Arak Med Univ J. 2014; 17(2):73-81. [DOI:10.4264/juma.73.81]

[15] Lu YC, Chen YJ, Wang HM, Tsai CY, Chen WH, Huang YC, et al. Onco-genic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer Prev Res (Phila). 2012; 5(4):665-74. [DOI:10.1158/1940-6207.CAPR-11-0358] [PMID]

[16] Moradi N, Parayan M, Khansarinejad B, Raffii M, Mondanizadeh M. Bioinformatic prediction of miRNAs targeting Notch1 and HBx genes in chronic hepatitis B-induced hepatocellular carcinoma. Arak Med Univ J. 2017; 19(117):89-101.