ON NON-VANISHING OF COHOMOLOGIES OF GENERALIZED RAYNAUD POLARIZED SURFACES

YUKIHIDE TAKAYAMA

ABSTRACT. We consider a family of slightly extended version of the Raynaud’s surfaces X over the field of positive characteristic with Mumford-Szpiro type polarizations Z, which have Kodaira non-vanishing $H^1(X, Z^{-1}) \neq 0$. The surfaces are at least normal but smooth under a special condition. We compute the cohomologies $H^i(X, Z^n)$ for $i, n \in \mathbb{Z}$ and study their (non-)vanishing. Finally, we give a fairly large family of non Mumford-Szpiro type polarizations $Z_{a,b}$ with Kodaira non-vanishing.

MSC classification: (Primary: 14J25, 14J17; secondary: 13D99)

1. Introduction

Let X be a projective variety over an algebraically closed field k and Z an ample invertible sheaf on X. It is well known that Kodaira vanishing theorem does not hold if the characteristic of the field char(k) = p is positive. The first counter-example has been found by Raynaud [14]. He constructed a smooth polarized surface (X, Z) with $H^1(X, Z^{-1}) \neq 0$ using Tango-structure [22]. Mukai [10] generalized Raynaud’s construction to obtain polarized smooth projective varieties (X, Z) of any dimension with $H^1(X, Z^{-1}) \neq 0$. He also showed that, if a smooth projective surface X is a counter-example to Kodaira vanishing, then X must be either hyperelliptic with $p = 2, 3$ or of general type. The construction similar to Mukai’s has been also studied by Takeda [18, 19, 20] and Russel [15]. Mumford [13] and Szpiro [16] gave a sufficient condition for a polarized smooth projective surface to be a counter-example to Kodaira vanishing and pointed out that Raynaud’s examples are its instances. Szpiro [17] and Lauritzen-Rao [8] also gave different counter-examples to Kodaira vanishing. Mumford [11] constructed a normal polarized surface (X, Z) with $H^1(X, Z^{-1}) \neq 0$ but it is not known whether desingularizations of X satisfy Kodaira vanishing.

The aim of this paper is to study (non-)vanishing of $H^i(X, Z^n)$, $i, n \in \mathbb{Z}$, for a family of surfaces X with Mumford-Szpiro type polarizations Z, which is an extension of Raynaud’s counter-examples. Recall that Raynaud’s examples are cyclic covers of ruled surfaces over smooth projective curves of genus $g \geq 2$. The degree ℓ of the cyclic covers is $\ell = 2$ for $p \geq 3$ and $\ell = 3$ for $p = 2$. Notice that Kodaira vanishing holds for ruled surfaces [23] [10]. The smooth curve must have a special kind of divisor called Tango-structure (Tango-Raynaud structure) and this gives a strong restriction to the genus g of the curve, i.e. p must divide $2g - 2$. If we consider a weaker condition called pre-Tango, which is satisfied by any smooth curves with $g \geq p$ ([21]), but in this case the obtained surface is singular.
As is implicitly described in [14], we can choose the degree ℓ of cyclic cover more freely. In Mukai’s construction [10], ℓ can be any integer ≥ 2 with $(p, \ell) = 1$ (and a mild condition), but then we must take normalization to construct the cyclic cover. In this paper, we consider an additional condition $\ell \mid p + 1$. This assures the normality of the cyclic cover without normalization and moreover the computation of cohomologies $H^i(X, \mathcal{Z}^n)$ is much easier. Thus, we obtain a fairly large class of surfaces over the fields of positive characteristics containing many counter-examples to Kodaira vanishing, together with formulas for cohomologies $H^i(X, \mathcal{Z}^n)$. These surfaces are normal if the base curve C has a pre-Tango structure and smooth if C has a Tango structure.

This family would be particularly interesting in the sense that this provides a class of finitely generated graded integral algebras (R, \mathfrak{m}), over the fields of positive characteristics whose graded local cohomologies $H^i_m(R)$, $i < \dim R$, do not necessarily vanish at negative degrees. For a polarized variety (X, \mathcal{L}), we consider the section ring $(R, \mathfrak{m}) := (\bigoplus_{n\geq0} H^0(X, \mathcal{L}^n), \bigoplus_{n>0} H^0(X, \mathcal{L}^n))$, which is a finitely generated graded algebra over $\bar{k} = H^0(X, \mathcal{O}_X)$ with natural \mathbb{N}-grading. We have $X \cong \text{Proj}(R)$. Then by computing Čech complexes we know that $H^0_m(R) = 0$ and we have

$$0 \rightarrow R \rightarrow \bigoplus_{n \in \mathbb{Z}} H^0(X, \mathcal{L}^n) \rightarrow H^1_m(R) \rightarrow 0$$

and $H^{i+1}_m(R) \cong \bigoplus_{n \in \mathbb{Z}} H^i(X, \mathcal{L}^n)$ for $i \geq 1$. From this, we immediately know that we always have $[H^j_m(R)]_n = 0$ for $j = 0, 1$ and for all $n < 0$ and moreover, if Kodaira type vanishing holds, then we have $[H^i_m(R)]_n = 0$ for all $n < 0$ and $i < \dim R$ (see [7]). It is known that if X has at most F-rational singularities and X is obtained by generic mod p reduction from a variety with at most rational singularities, then we have Kodaira type vanishing (see [5, 4, 7]). From our generalized Raynaud surfaces, we obtain examples of R with $\dim R = 3$ different from this type, whose local cohomologies can be studied by analyzing cohomologies of vector bundles over smooth curves of genus ≥ 2.

In section 2, we will present the construction of our generalized Raynaud surface X, which is the cyclic cover of degree ℓ of the ruled surface P over a curve C with pre-Tango structure. In section 3, we show that K_X is ample if $(p, \ell) = (3, 4)$ and $p \geq 5$ (Proposition 10) and in this case we have Kodaira type vanishing $H^1(X, K_X^{-1}) = 0$ (Proposition 12). Then we apply the Mumford-Szpiro type sufficient condition for Kodaira non-vanishing to obtain the polarization (X, \mathcal{Z}) with Kodaira non-vanishing (Proposition 16). Then we will compute cohomologies $H^i(X, \mathcal{Z}^n)$, $i, n \in \mathbb{Z}$, in section 4 (Propositions 19, 21 and 25, Theorem 22, Corollary 4) and show some (non-)vanishing results (Corollaries 20, 24 and 26, Theorem 23). Finally, we give a class of polarizations with Kodaira non-vanishing, which are not of Mumford-Szpiro type (Theorem 28).

The author thanks Kei-ichi Watanabe, Masataka Tomari and Yushifumi Takeda for stimulating discussions.
2. Fibered surfaces on pre-Tango curves

In this section, we present the construction of our polarized surface, which is a cyclic cover of a ruled surface over a smooth projective curve. This is an extension of the Raynaud’s counter-example [14] allowing more variations of the degree of the cyclic cover and a weaker condition for the base curve. See [10, 18, 19, 20, 21, 24] for similar constructions and detailed description. In the following, let k be an algebraically closed field of characteristic $\text{char}(k) > 0$.

2.1. pre-Tango and Tango structure. Let C be a smooth projective curve over k with genus $g \geq 2$. We denote by $K(C)$ the function field of C and we define $K(C)^p = \{ f^p \mid f \in K(C) \}$. Then the Tango-invariant $n(C)$ is defined by

$$n(C) := \max \left\{ \deg \left[\frac{(df)}{p} \right] \mid f \in K(C) \setminus K(C)^p \right\},$$

where $\lfloor \cdot \rfloor$ denotes round down of coefficients, see [22]. We know that $0 \leq n(C) \leq \frac{2(g - 1)}{p}$ and C is called a pre-Tango curve (or a Tango curve) if $n(C) > 0$ (or $n(C) = 2g - 2$). This means the existence of an ample divisor D on C such that $(df) \geq p(D(>0))$ (or $(df) = pD(>0)$) with some $f \in K(C) \setminus K(C)^p$. We call the invertible sheaf $L := \mathcal{O}_C(D)$ a pre-Tango structure (or a Tango structure) of C.

Pre-Tango structure can be described in other way around. Consider the relative Frobenius morphism $F: C' \rightarrow C$ and let B^1 be the image of the push forward $F_* d : F_* \mathcal{O}_{C'} \rightarrow F_* \Omega^1_{C'}$, of the Kähler differential $d : \mathcal{O}_{C'} \rightarrow \Omega^1_{C'}$. Then we have the following short exact sequence

$$0 \rightarrow \mathcal{O}_C \rightarrow F_* \mathcal{O}_{C'} \rightarrow B^1 \rightarrow 0.$$

Now any ample invertible subsheaf $L \subset B^1$ is a pre-Tango structure of C and the existence of such subsheaves is assured if $g \geq p$ (see Cor. 1.5 [21]), namely, curves with large genus are pre-Tango.

In the rest of this section, we consider a pre-Tango structure $L = \mathcal{O}_C(D)$ of a pre-Tango curve C.

2.2. dividing (pre-)Tango structure. Consider the Jacobi variety J which consists of all the divisors of degree 0 on C. It is well known that if $(e, p) = 1$, $e \in \mathbb{N}$, the map $\varphi_e : J \rightarrow J$ s.t. $\varphi_e(D_0) = eD_0$ is surjective (cf. page 42 [12]), i.e. every $D_0 \in J$ can be divided by e. Thus we know that, for every $\mathbb{N} \ni e \geq 2$ such that $(e, p) = 1$ and $e | \deg L$, there exists an ample invertible sheaf N with $L = N^e$.

2.3. Construction of the ruled surface P and the divisor $E + C''$. Tensoring (1) by L^{-1} to take the global sections, we have

$$0 \rightarrow H^0(C, B^1 \otimes L^{-1}) \rightarrow H^1(C, L^{-1}) \xrightarrow{F_*} H^1(C, L^{-p}).$$

On the other hand, we have the short exact sequence

$$0 \rightarrow B^1 \rightarrow F_* \Omega^1_{C'} \rightarrow \Omega^1_C \rightarrow 0$$
where \(c \) is the Cartier operator \([2]\). By tensoring \([2]\) by \(\mathcal{L}^{-1} \) to take the global sections, we have

\[
0 \longrightarrow H^0(C, \mathcal{B}^1 \otimes \mathcal{L}^{-1}) \longrightarrow H^0(C, F_{*}(\Omega_C^{\ell}(-pD))) \xrightarrow{c_{(-D)}} H^0(C, \Omega_C^1 \otimes \mathcal{L}^{-1}).
\]

Then we know \(\text{Ker} F_{*} \cong H^0(C, \mathcal{B}^1 \otimes \mathcal{L}^{-1}) = \text{Ker} c_{(-D)} \cong \{ df \mid f \in K(C), (df) \geq pD \} \), which is non-trivial since \(C \) is pre-Tango (cf. Lemma 12 \([22]\)).

Now take any \(0 \neq df_0 \in H^0(C, \mathcal{B}^1 \otimes \mathcal{L}^{-1}) \). Then \(\xi := \eta(df_0) \) is a non-trivial element in \(H^1(C, \mathcal{L}^{-1}) \cong \text{Ext}^{1}_{\mathcal{O}_C}(\mathcal{L}, \mathcal{O}_C) \), so that we have a non-splitting extension

\[
0 \longrightarrow \mathcal{O}_C \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0
\]

where \(\mathcal{E} \) is a locally free sheaf of rank 2.

Moreover, we have \(0 = F_{*}^{\ast} \xi \in H^1(C, \mathcal{L}^{-p}) \cong \text{Ext}^{1}_{\mathcal{O}_C}(\mathcal{L}^p, \mathcal{O}_C) \) and the corresponding split extension

\[
0 \longrightarrow \mathcal{O}_C \longrightarrow F_{*}^{\ast} \mathcal{E} \longrightarrow \mathcal{L}^p \longrightarrow 0
\]

is just the Frobenius pullback of the sequence \([3]\). Using the splitting maps and tensoring by \(\mathcal{L}^{-1} \) we obtain another exact sequence

\[
0 \longrightarrow \mathcal{O}_C \longrightarrow F_{*}^{\ast} \mathcal{E} \otimes \mathcal{L}^{-p} \longrightarrow \mathcal{L}^{-p} \longrightarrow 0.
\]

Now from the sequences \([3]\) and \([4]\) we obtain two ruled surfaces and their canonical cross sections \(\sigma \) and \(\tau \). Namely,

\[
\pi : P = \mathbb{P}(\mathcal{E}) \longrightarrow C, \quad E := \sigma(C) \subset P
\]

where \(E \) is determined, as a Cartier divisor, by the global section \(s \) that is the image of 1 by the inclusion \(H^0(C, \mathcal{O}_C) \hookrightarrow H^0(C, \mathcal{E}) = H^0(P, \mathcal{O}_P(1)) \) induced from \([3]\) and

\[
\pi' : P' = \mathbb{P}(F_{*}^{\ast} \mathcal{E} \otimes \mathcal{L}^{-p}) \cong \mathbb{P}(F_{*}^{\ast} \mathcal{E}) \longrightarrow C, \quad \bar{C}' := \tau(C)
\]

where \(\bar{C}' \) is determined, as a Cartier divisor, by the global section \(t' \) that is the image of 1 by the inclusion \(H^0(C, \mathcal{O}_C) \hookrightarrow H^0(C', F_{*}^{\ast} \mathcal{E} \otimes \mathcal{L}^{-p}) \cong H^0(P', \mathcal{O}_{P'}(1)) \) induced from \([4]\). Now we define the morphism \(\varphi : P \longrightarrow P' \) over \(C \) by taking the \(p \)-th power of the coordinates of \(\pi^{-1}(x) \cong \mathbb{P}^1_k(\subset P) \) to obtain the coordinates of \((\pi')^{-1}(x) \cong \mathbb{P}^1_k(\subset P') \) for every \(x \in C \). Then we set \(C'' = \varphi^{-1}(\bar{C}') \). By construction, we have \(\mathcal{O}_{P'}(C'') \cong \mathcal{O}_P(p) \otimes \pi^{'*} \mathcal{L}^{-p} \) and \(C'' \) is a degree \(p \) curve in \(P \). We know that \(E \cap C'' = \emptyset \). \(E \) is smooth since \(E \cong C \) via \(\sigma \).

2.4. Purely inseparable cover \(\pi \mid_{C''} : C'' \longrightarrow C \). Now as a Cartier divisor we write \(D = \{(U_i, g_i)\}_i \), where \(C = \bigcup_i U_i \) is an open covering, \(g_i \in K(C) \) is the local equation of \(D \). By taking a finer covering, we can assume that \(\mathcal{E} \mid_{U_i} \) are the free \(\mathcal{O}_{U_i} \)-modules. Then we can describe \((df) \geq pD \) by \(f = \{(U_i, g^p_i c_i)\}_i \in K(C) \) with \(K(C)^p \not\ni c_i \in \mathcal{O}_{U_i} \), i.e. \((df) \mid_{U_i} = (g^p_i dc_i) \). Then,

Proposition 1. We have

\[
C'' \mid_{U_i} = \text{Proj} \mathcal{O}_{U_i}[x, y]/(c_i x^p + y^p).
\]

In particular, \(C'' \) is an purely inseparable covering of \(C \).
Proof. The sequence (3) is locally as follows:

\[0 \rightarrow \mathcal{O}_{U_i} \rightarrow \mathcal{O}_{U_i} \oplus \mathcal{O}_{U_i} g_i^{-1} \rightarrow \mathcal{O}_{U_i} g_i^{-1} \rightarrow 0 \]

so that we have \(P |_{U_i} = \text{Proj}(\mathcal{O}_{U_i} \oplus \mathcal{O}_{U_i} g_i^{-1})) = \text{Proj} \mathcal{O}_{U_i}[x, y] \), where the indeterminates \(x \) and \(y \) represent the free basis \(1 \) and \(g_i^{-1} \). On the other hand, we know that the sequence (4) is locally as follows:

\[0 \rightarrow \mathcal{O}_{U_i} \overset{i}{\rightarrow} (\mathcal{O}_{U_i} \otimes \mathcal{O}_{U_i} g_i^{-p}) \otimes \mathcal{O}_{U_i} g_i^p \overset{j}{\rightarrow} \mathcal{O}_{U_i} g_i^p \rightarrow 0 \]

where we view

\[(\mathcal{O}_{U_i} \otimes \mathcal{O}_{U_i} \cdot g_i^{-p}) \otimes \mathcal{O}_{U_i} \cdot g_i^p \cong \mathcal{O}_{U_i} \cdot g_i^p \oplus \mathcal{O}_{U_i} \cdot 1 \]

\[\cong \mathcal{O}_{U_i}(c_i g_i^p, 1) \oplus \mathcal{O}_{U_i}(g_i^p, 0) \]

and we define \(i(a) = a(c_i g_i^p, 1) \) and \(j(a(c_i g_i^p, 1) + b(g_i^p, 0)) = b g_i^p \) for \(a, b \in \mathcal{O}_{U_i} \). Thus \(P' |_{U_i} = \text{Proj}(\mathcal{O}_{U_i} g_i^p \oplus \mathcal{O}_{U_i} g_i^{-1})) \cong \text{Proj} \mathcal{O}_{U_i}[x', y'] \) where the indeterminates \(x' \) and \(y' \) represents the free basis \(g_i^p \) and \(1 \). Also \(C'' = \tau(C) \) is locally the zero locus of \(i'' |_{U_i} = c_i g_i^p + 1 \), so that we have

\[C'' |_{U_i} = \text{Proj} \mathcal{O}_{U_i}[x', y']/(c_i x' + y') \]

Since \(\varphi : P = \text{Proj} \mathcal{O}_{U_i}[x, y] \rightarrow P' = \text{Proj} \mathcal{O}_{U_i}[x', y'] \) is induced by the Frobenius \(\mathcal{O}_{U_i}[x', y'] \ni x', y' \mapsto x^p, y^p \in \mathcal{O}_{U_i}[x, y] \), we have

\[C'' |_{U_i} = \text{Proj} \mathcal{O}_{U_i}[x, y]/(c_i x^p + y^p) \].

\[\square \]

Remark 1. By a similar discussion to the proof of Proposition \(\exists \) we can show

\[E |_{U_i} = \text{Proj}(\mathcal{O}_{U_i}[x, y]/(x)) \cong \text{Spec} \mathcal{O}_{U_i}[y]. \]

Later we will construct cyclic covers of \(P \) ramified at \(E + C'' \) and the smoothness of the cyclic covers depends on the smoothness of \(E \) and \(C'' \). Since \(E \cong C \) is smooth by definition, we have to see if \(C'' \) is smooth. To this end, we must prepare the following lemma.

Lemma 2. \(\Omega_{C''/C} \cong \pi^* \mathcal{O}_C(D) \).

Proof. By Proposition \(\exists \) we have \(\mathcal{O}_{C''} |_{U_i} = \mathcal{O}_{U_i}[x_i, y_i]/(c_i x_i^p + y_i^p) \) and \((df) \geq pD \) with \(f = \{(U_i, g_i^p c_i)\} \ni K(C) \). Thus on \(U_i \cap U_j \) we have \(g_i^p c_i = g_j^p c_j \) so that

\[(g_i^p c_i)(g_i^{-1} x_i)^p + y_i^p = c_i x_i^p + y_i^p = c_j x_j^p + y_j^p = (g_j^p c_j)(g_j^{-1} x_j)^p + y_j^p \]

Thus we have \(g_i^{-1} x_i = g_j^{-1} x_j \) and \(y_i = y_j \), and then

\[g_i^{-1} dx_i = d(g_i^{-1} x_i) = d(g_j^{-1} x_i) = g_j^{-1} dx_j \]

for \(d := d_{C''/C} \). Now on \(\bar{U_i} = U_i \cap \{ y_i \neq 0 \} \), we have \(\mathcal{O}_{C''} |_{\bar{U_i}} = \mathcal{O}_{\bar{U}_i}[X_i]/(c_i X_i^p + 1) \) with \(X_i := x_i/y_i \) and then

\[\Omega_{C''/C} |_{\bar{U}_i} = \mathcal{O}_{C''} |_{\bar{U}_i} \cdot g_i^{-1} dX_i = \pi^* \mathcal{O}_C(D) |_{\bar{U}_i} \]

Notice that we have \(g_i^{-1} dX_i = g_j^{-1} dX_j \) on \(\bar{U}_i \cap \bar{U}_j \).
On the other hand, on \(\hat{U}_i = U_i \cap \{ x_i \neq 0 \} \) we can write
\[
\mathcal{O}_{C''} |_{\hat{U}_i} = \mathcal{O}_C[Y_i]/(c_i + Y_i^p) \quad \text{with } Y_i = x_i^{-1}
\]
and then
\[
\Omega_{C''/C} |_{\hat{U}_i} = \Omega_{C''} |_{\hat{U}_i} \cdot dY_i = \Omega_{C''} |_{\hat{U}_i} \cdot x_i^{-2} dx_i.
\]
By setting \(t = g_i^{-1}x_i = g_j^{-1}x_j \) on \(U_i \cap U_j \), we have
\[
x_i^{-2} dx_i = x_i^{-2} g_i dt = g_i^{-1} t^{-2} dt
\]
and so that we have \(\Omega_{C''/C} |_{\hat{U}_i} \cong \pi^* \mathcal{O}_C(D) |_{\hat{U}_i} \). Consequently, we have \(\Omega_{C''/C} \cong \pi^* \mathcal{O}_C(D) \), locally free of rank 1, as required.

The following result first appeared in Mukai’s paper in Japanese \([10]\) Prop. 5) with a brief outline of the proof and his result is for varieties of arbitrary dimensions. We give here a detailed proof in the case of curves for the readers convenience.

Theorem 3. Let \(C \) be a pre-Tango curve. Then \(C'' \) is smooth if and only if \(C \) is Tango.

Proof. In the following we will denote the restriction of \(\pi : P \rightarrow C \) to \(C'' \subset P \) also by \(\pi \). Now we consider the sequence
\[
0 \rightarrow \pi^* \mathcal{O}_C(pD) \xrightarrow{df} \pi^* \Omega_C \xrightarrow{\psi} \Omega_{C''} \xrightarrow{\rho} \Omega_{C''/C} \rightarrow 0
\]
where \(df \) is the multiplication by \(df = \{(g_i^p dc_i)\}_i \). The exactness of \(\pi^* \Omega_C \rightarrow \Omega_{C''} \rightarrow \Omega_{C''/C} \rightarrow 0 \) is well known. The multiplication by \(df \) is injective since \(dc_i \neq 0 \) and \(C \) is smooth. Moreover we have \(\ker \psi \supset \text{Im } df \). To see this we have only to show that \(\psi(dc_i) \), which is by definition the Kähler differential of the image of \(c_i \) by \(\pi^* : \mathcal{O}_C \rightarrow \mathcal{O}_{C''} \), is trivial. But this is immediate since, by Proposition \([1]\) \(\pi^* : \mathcal{O}_C \rightarrow \mathcal{O}_{C''} \) is locally the canonical inclusion \(\mathcal{O}_C \hookrightarrow \mathcal{O}_C[x,y]/(c_i x^p + y^p) \). Thus \([5] \) is exact if and only if Ker \(\psi \subset \text{Im } df \).

Now \(\Omega_C \) is locally free of rank 1 since \(C \) is smooth. Then we know by NAK that \(C \) being Tango, i.e. \((dc_i) = 0 \) is equivalent with \(\ker \rho = 0 \). This implies that \([5] \) is exact, and then we have \(\Omega_{C''} \cong \Omega_{C''/C} \), which is locally free of rank 1 by Lemma \([2] \) and \(C'' \) is smooth. Conversely, assume that \(C'' \) is smooth. Then since \(\Omega_{C''/C} \) and \(\Omega_{C''} \) are locally free module of rank 1, we must have \(\ker \rho = \text{Im } \psi = 0 \) so that we have \(\ker \rho = 0 \), i.e., \(C \) is Tango.

2.5. Construction of cyclic cover of \(P \) ramified at \(E + C'' \). In this section, we will construct a cyclic cover \(X \) of \(P \) of suitable degree ramified at \(E + C'' \). We choose \(\ell \geq 2 \) such that \(\ell \mid p + 1 \) and \(\ell \mid e \), and set
\[
\mathcal{M} := \mathcal{O}_P \left(-\frac{p+1}{\ell} \right) \otimes \pi^* \mathcal{N}^{\ell/2}.
\]
Then we have \(\mathcal{M}^{-\ell} = \mathcal{O}_P(E + C'') \). Now we define an \(\mathcal{O}_P \)-algebra structure in \(\bigoplus_{i=0}^{\ell-1} \mathcal{M}^i \) with the multiplication defined by
\[
\mathcal{M}^i \times \mathcal{M}^j \rightarrow \mathcal{M}^{i+j} \quad (a, b) \mapsto a \otimes b
\]
if \(i + j \leq \ell - 1 \) and
\[
\mathcal{M}^i \times \mathcal{M}^j \longrightarrow \mathcal{M}^{i+j-\ell} \\
(a, b) \mapsto a \otimes b \otimes \zeta
\]
if \(i + j > \ell \), with \(\zeta = s \otimes t'' \) where \(s \) and \(t'' \) are the global sections defining \(E \) and \(C'' \). Then we obtain
\[
\psi : X := \text{Spec} \left(\bigoplus_{i=0}^{\ell-1} \mathcal{M}^i \right) \longrightarrow P,
\]
which is the cyclic cover of the ruled surface \(P \) ramified at \(E + C'' \) of degree \(\ell \), where \(\text{Spec} \) denotes the affine morphism. Now we will define \(\phi = \pi \circ \psi : X \to C \).

Remark 2. \(\phi : X \to C \) is an extension of Raynaud’s original counter-example to Kodaira vanishing. Namely, let \(C \) be a Tango curve and let \(e = \ell = 3 \) if \(p = 2 \) and \(e = \ell = 2 \) if \(p \geq 3 \), then we obtain the example as given in [14].

We define \(\tilde{E} = \psi^{-1}(E) \) and \(\tilde{C}'' = \psi^{-1}(C'') \), then we have
\[
(6) \quad \ell \tilde{E} = \psi^* E \quad \text{and} \quad \ell \tilde{C}'' = \psi^* C''
\]
and
\[
(7) \quad \psi_* \mathcal{O}_X = \bigoplus_{i=0}^{\ell-1} \mathcal{M}^i.
\]
Moreover, we have the following, which will be used later.

Lemma 4. For \(k \geq 1 \), we have \(\psi_* \mathcal{O}_X(-k \tilde{E}) \cong \mathcal{O}_P(-kE) \oplus \bigoplus_{i=1}^{\ell-1} \mathcal{M}^i \).

Proof. From the exact sequence
\[
0 \longrightarrow \mathcal{O}_X(-k \tilde{E}) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_{k \tilde{E}} \longrightarrow 0,
\]
we obtain by (7)
\[
0 \longrightarrow \psi_* \mathcal{O}_X(-k \tilde{E}) \longrightarrow \bigoplus_{i=0}^{\ell-1} \mathcal{M}^i \longrightarrow \psi_* \mathcal{O}_{k \tilde{E}} \longrightarrow R^1 \psi_* \mathcal{O}_X(-k \tilde{E}),
\]
where \(R^1 \psi_* \mathcal{O}_X(-\tilde{E}) = 0 \) since \(\psi : X \to P \) is an affine morphism. Also since \(\psi : \tilde{E} \cong E \), we have \(\psi_* \mathcal{O}_{k \tilde{E}} \cong \mathcal{O}_{kE} = \mathcal{O}_P/\mathcal{O}_P(-kE) \). Then we obtain the following diagram:
\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \psi_* \mathcal{O}_X(-k \tilde{E}) & \longrightarrow & \mathcal{O}_P \oplus \bigoplus_{i=1}^{\ell-1} \mathcal{M}^i & \longrightarrow & \psi_* \mathcal{O}_{k \tilde{E}} & \longrightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \longrightarrow & \mathcal{O}_P(-kE) \oplus \bigoplus_{i=1}^{\ell-1} \mathcal{M}^i & \longrightarrow & \mathcal{O}_P \oplus \bigoplus_{i=1}^{\ell-1} \mathcal{M}^i & \longrightarrow & \mathcal{O}_P/\mathcal{O}_P(-kE) & \longrightarrow & 0
\end{array}
\]
from which we have \(\psi_* \mathcal{O}_X(-k \tilde{E}) \cong \mathcal{O}_P(-kE) \oplus \bigoplus_{i=1}^{\ell-1} \mathcal{M}^i \) by 5-lemma.

Lemma 5. For \(k \geq 0 \) and \(1 \leq r \leq \ell - 1 \), we have
\[(i) \quad \psi_* \mathcal{O}_X(k \ell \tilde{E}) = \bigoplus_{i=0}^{\ell-1} \mathcal{M}^i(kE),
\]
We define H \textup{(}cf. Claim 3.12 of \cite{3}\textup{)}

Proposition 6

Proof. Using \eqref{eq:6} and \eqref{eq:7}, we have

Lemma 4

Thus S finite and

Corollary 7.

Then, we have

M

and set

C

that

X

result by Esnault-Viehweg. Let

L

Let

Remark 3.

The cyclic cover constructed by Mukai \cite{10} is more general than ours.

from Theorem 3. □

Proof. We apply Prop. 6 in the case of $(X, \mathcal{H}, \ell, E) := (P, \mathcal{M}^{-1}, \ell, E + C'')$. Since C'' and E are reduced curves, we have $\mathcal{O}_P([\frac{1}{\ell}(E + C'')]) = \mathcal{O}_P$ for $0 \leq i \leq \ell - 1$. Thus $\text{Spec}(A)$ is nothing but our surface X and normal. Since $\dim X = 2$, we know that X is Cohen-Macaulay by Serre’s (S_2) condition. The final statement follows from Theorem 3. □

Remark 3. The cyclic cover constructed by Mukai \cite{10} is more general than ours. Let L, D, N, e be as in \cite{2.5}. Choose $\ell \geq 2$ such that $\ell \mid e$ and $(\ell, p) = 1$. Notice that the last condition is weaker than our condition $\ell \mid (p + 1)$. Mukai’s construction is as follows. For any $\alpha \in \mathbb{N}$ such that $\ell \mid (p + \alpha)$ we write

\[0 \sim C'' - pE + p\pi^*(D) = C'' + \alpha E + \ell K \text{ with } K := -\frac{p + \alpha}{\ell}E + \frac{p}{\ell}\pi^*D \]

and set

\[\mathcal{M}_\alpha := \mathcal{O}_P(K) = \mathcal{O}_P \left(-\frac{p + \alpha}{\ell}E \right) \otimes \pi^*N^{p/\ell}. \]

Then, we have $\mathcal{M}_{\alpha}^{-\ell} = \mathcal{O}_P(C'' + \alpha E)$. Now we consider

\[\psi' : X' := \text{Spec} \bigoplus_{i=0}^{\ell-1} \mathcal{M}_\alpha^i \longrightarrow P, \]
which is normal if and only if \(\alpha = 1 \). Thus we take the normalization \(X \) of \(X' \) to obtain the cyclic cover \(\phi : X \to P \). Corollary \[\text{[7]}\] also holds for this construction. But the normalization \(\tilde{f} : X \to X' \) makes it difficult to compute the cohomologies \(H^i(X, \mathcal{Z}^n) = H^i(X', f_*\mathcal{Z}^n) \) for a polarization \((X, \mathcal{Z})\).

3. Basic properties of the surfaces

We will show some basic properties of our surface \(X \). Also we will define the Mumford-Szpiro type polarization \((X, \mathcal{Z})\) in the end of this section.

The cross section \(\tilde{E} \subset X \) has a positive self-intersection number.

Proposition 8. The self-intersection number of \(\tilde{E} \) is \(\tilde{E}^2 = \frac{1}{\ell} \cdot \deg D (> 0) \).

Proof. We compute \(\tilde{E}^2 = \left(\frac{\psi^*(E)}{\ell}, \frac{\psi^*(E)}{\ell} \right) = \frac{\deg \psi}{\ell^2} \cdot E^2 = \frac{1}{\ell} \cdot E^2 = \frac{1}{\ell} \cdot \deg D \). \(\square \)

Now we consider the canonical divisor \(K_X \).

Proposition 9. \(K_X \sim \phi^*(K_C - \frac{p\ell - p - \ell}{\ell} \cdot D) + (p\ell - p - \ell - 1)\tilde{E} \).

Proof. We have \(K_X \sim \psi^*K_P + (\ell - 1)\tilde{E} + (\ell - 1)\tilde{C}'' \) by the branch formula. Applying \(\psi^* \) to \(C'' \sim pE - p\pi^*D \) to obtain \(\tilde{C}'' \sim p\tilde{E} - \frac{p}{\ell} \cdot \phi^*(D) \). Then a direct computation, together with the well known formula \(K_P = -2E + \pi^*K_C + \pi^*(D) \), shows the required result. \(\square \)

Proposition 10. \(K_X \) is ample if \((p, \ell) = (3, 4) \) or \(p \geq 5 \).

Proof. We have \(K_X = \phi^*A + B \), where \(A = K_C - (p\ell - p - \ell)D/\ell, B = (p\ell - p - \ell - 1)\tilde{E} \) by Proposition \[\text{[9]}\]. Since \(0 < \deg D \leq \frac{2(g-1)}{p} \) and \(g \geq 2 \), we see \(\deg A > 0 \). Also we see that \(\deg B \leq 0 \) if and only if \((p, \ell) = (2, 2), (2, 3), (3, 2) \). Thus, since \(\ell \mid (p + 1) \), we have \(\deg B > 0 \) if and only if \((p, \ell) = (3, 4) \) and \(p \geq 5 \). In these cases, we have \(K_X^2 > 0 \) and \(K_X.H > 0 \) for every irreducible curve \(H \in \text{Pic}(P) \) in \(P \) by Proposition \[\text{[8]}\] (cf. Prop. V.2.3 \[\text{[3]}\]). Thus \(K_X \) is ample by Nakai-Moishezon criterion. \(\square \)

Now we are interested in whether \(H^1(X, K_X^{-1}) = 0 \) holds if \(K_X \) is ample.

Lemma 11. We have

\[
H^1(X, K_X^{-1}) = \bigoplus_{i=0}^{\ell-1} H^1(P, K_P^{-1} - \frac{(p + 1)(\ell - 1 + i)}{\ell}E + \frac{p(\ell - 1 + i)}{\ell} \pi^*D)
\]

Proof. Since \(\psi : X \to P \) is an affine morphism, we have \(H^1(X, K_X^{-1}) = H^1(P, \psi_*(K_X^{-1})) \). By branch formula and \(C'' \sim pE - p\pi^*D \), we have

\[
K_X^{-1} = \psi^*(K_P^{-1} - \frac{(p + 1)(\ell - 1)}{\ell}E + \frac{p(\ell - 1)}{\ell} \pi^*D)
\]

so that

\[
\psi_*(\mathcal{O}_X(K_X^{-1})) = \psi_*\mathcal{O}_X \otimes \mathcal{O}_P \left(K_P^{-1} - \frac{(p + 1)(\ell - 1)}{\ell}E + \frac{p(\ell - 1)}{\ell} \pi^*D \right)
\]
where \(\psi_* \mathcal{O}_X = \bigoplus_{i=0}^{\ell-1} \mathcal{M}^i \). Then we obtain the above stated result. \(\square \)

Since Kodaira vanishing holds for \(P \) (see [10, 23]), to show that \(H^1(X, K_X^{-1}) = 0 \) we have only to show that

\[
L_i := K_P + \frac{(p+1)(\ell - 1 + i)}{\ell} E - \frac{p(\ell - 1 + i)}{\ell} \pi^* D
\]

are ample for \(i = 0, \ldots, \ell - 1 \).

Proposition 12. \(H^1(X, K_X^{-1}) = 0 \) holds for \(p \geq 5 \) or \(p = 3 \) and \(\ell = e = 4 \).

Proof. Let \(f \) be any fiber of \(\pi : P \to C \). Then we have \(\pi^* D = \deg D \cdot f \) and the numerical equivalence \(K_P = -2E + 2(g - 1) \cdot f + \deg D \cdot f \). Thus we have \(L_i = u_i \cdot E + v_i \cdot f \) where

\[
u_i := \frac{(p+1)(\ell - 1 + i)}{\ell} - 2, \quad v_i := 2g - 2 - \frac{p\ell - p - \ell + pi}{\ell} \cdot \deg D.
\]

Then, using the condition \(\ell \mid (p + 1) \), we can show that \(L_i, E > 0 \) and \(L_i, f > 0 \) if \(p \geq 5 \) or \(p = 3 \) and \(\ell = e = 4 \). Also a straightforward computation shows that \(L_i^2 > 0 \). Then by Nakai-Moishezon’s criteria, \(L_i, i = 0, \ldots, \ell - 1 \), are ample. \(\square \)

Next we consider the fibers \(X_y := \phi^{-1}(y) (\subset X) \) for \(y \in C \).

Proposition 13. Every \(X_y \) has a singularity at the intersection with the curve \(\tilde{C}'' \), which is the cusp of the form \(Z^\ell = W^p \).

Proof. The fiber \(X_y \) may have singularities at the intersection with \(\tilde{E} + \tilde{C}'' \), which are the inverse image of \(\mathbb{P}^1 \cap (E + C'') (\subset P) \) by \(\psi \). By Proposition [1] \(\tilde{C}'' \subset P \) is locally defined by the equations \(c_iX^p + Y^p \in \mathcal{O}_{U_i}[X,Y] \) with \(y \in U_i \). Thus \(Z = (c_iX^p + Y^p)^{1/\ell} \) is a local coordinate of \(\phi^{-1}(U_i) \subset X \). Setting the new coordinate \(W = c_i^{1/p}X + Y \) we have \(Z^\ell = W^p \) as required. Moreover, a similar argument shows that \(\phi^{-1} \cap E \) is not singular (cf. Remark [1]). \(\square \)

Although \(X_y \) is birational with \(\mathbb{P}^1 \), it has a positive geometric genus.

Proposition 14. The geometric genus of \(X_y \) is \(\frac{(\ell - 1)(p - 1)}{2} (> 0) \).

Proof. By normalization, we can assume that \(X_y \) is smooth and \(\psi_y = \psi \mid_{X_y} : \phi^{-1}(y) \to \mathbb{P}^1 \cong \pi^{-1}(y), y \in C \), is a finite separated morphism. By taking the normalization, we can assume from the beginning that \(X_y := \phi^{-1}(y) \) is a smooth curve and the degree \(\deg \psi_y (= \ell) \) is preserved. Also the ramification divisor for \(\psi_y \) is \((\ell - 1)(\tilde{E} \cap X_y) + (\ell - 1)(\tilde{C}'' \cap X_y) \), whose degree is \((\ell - 1)(p + 1) \). Thus by Hurwitz formula we obtain the required result. \(\square \)

Mumford and Szpiro generalized Raynaud’s examples and obtained the following result.

Theorem 15 (Mumford and Szpiro [13, 16]). Let \(\phi : X \to C \) be a fibration from a smooth projective surface to a smooth projective curve and assume that each fiber is reduced and irreducible with positive geometric genus. Then if there exists a
cross section $Γ ⊂ X$ of $φ$ with positive self intersection number, we have (i) $Z = \mathcal{O}_X(Γ) \otimes φ^*(\phi_0\mathcal{O}_X(Γ)|_Γ)$ is ample, and (ii) $H^1(X, Z^{-1}) ≠ 0$.

By Proposition 8 and Proposition 14, we know that our surface X is an instance of this theorem when $Γ = \tilde{E}$. Moreover,

Proposition 16. In this case, we have $Z = \mathcal{O}_X(\tilde{E}) \otimes φ^*\mathcal{N}^e/ℓ = \mathcal{O}_X(\tilde{D})$ where $\tilde{D} = ψ^{-1}(E) + φ^{-1}D'$ with $D' = 1/\ell D$.

Proof. We have $φ_0\mathcal{O}_X(\tilde{E}) |_E = φ_0(\mathcal{O}_X(\tilde{E}) \otimes \mathcal{O}_E) = (π_0 \circ ψ_0)(ψ_0^*\mathcal{O}_P(1/\ell E) \otimes \mathcal{O}_E) = ψ_0(ψ_0^*\mathcal{O}_E \otimes \mathcal{O}_P(1/\ell E))$. Now from the short exact sequence

$$0 \rightarrow \mathcal{O}_X(-\tilde{E}) \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_E \rightarrow 0$$

we obtain,

$$0 \rightarrow ψ_0\mathcal{O}_X(-\tilde{E}) \rightarrow ψ_0\mathcal{O}_X \rightarrow ψ_0\mathcal{O}_E \rightarrow R^1ψ_0\mathcal{O}_X(-\tilde{E})$$

and $R^1ψ_0\mathcal{O}_X(-\tilde{E}) = 0$ since $ψ$ is an affine morphism. Thus by Lemma 4 we have

$$ψ_0\mathcal{O}_E \cong ψ_0\mathcal{O}_X/ψ_0\mathcal{O}_X(-\tilde{E}) \cong \bigoplus_{i=0}^{ℓ-1} \mathcal{M}_i \mathcal{O}_P(-E) \oplus \bigoplus_{i=-1}^{ℓ-1} \mathcal{M}_i \mathcal{O}_E \cong \mathcal{O}_E,$$

and then

$$φ_0\mathcal{O}_X(\tilde{E}) |_E = π_0(\mathcal{O}_E \otimes \mathcal{O}_P(1/\ell E)) = \mathcal{O}_C(1/\ell D)(= \mathcal{N}^e/ℓ).$$

since E is the canonical section of $π : P \rightarrow C$. □

Notice that if $e = ℓ = 2$ when $\text{char } k ≥ 3$ and $e = ℓ = 3$ when $\text{char } k = 2$ then Z in Proposition 16 is the same as the ample invertible sheaf of Raynaud’s counter-example to Kodaira vanishing.

4. Cohomologies for Mumford-Szpiro type polarization

In this section, we will compute the cohomologies $H^i(X, Z^n)$ for the Mumford-Szpiro type polarization (X, Z) given in Proposition 16 namely $Z = \mathcal{O}_X(\tilde{E}) \otimes φ^*\mathcal{N}_ℓ$ where we set $\mathcal{N}_ℓ = N^\dagger$.

First of all, we summarize the well-known facts about ruled surfaces, which are necessary in our computation of cohomologies.

Lemma 17. For the ruled surface $π : P = \mathbb{P}(\mathcal{E}) \rightarrow C$, we have

(i) $π_0\mathcal{O}_P(k) = S^k(\mathcal{E})$, which is the kth component of the symmetric algebra $S(\mathcal{E})$.

We will understand $S^k(\mathcal{E}) = 0$ for $k < 0$.

(ii) for a locally free sheaf \mathcal{F} on P, $H^i(P, \mathcal{O}_P(n) \otimes π^*\mathcal{F}) \cong H^i(C, S^n(\mathcal{E}) \otimes \mathcal{F})$ for $n ≥ 0$ and $i \in \mathbb{Z}$.

(iii)

$$R^1π_0\mathcal{O}_P(n) = \begin{cases} 0 & \text{if } n ≥ -1 \\ S^{-n-2}(\mathcal{E}) \otimes \mathcal{L}^\dagger & \text{if } n ≤ -2 \end{cases}$$

For an extension of (ii) with \mathcal{F} any coherent sheaf, see Proposition 7.10.13 [1].
Proof. (i) is Proposition II.7.11(a) [6]. Now we have $R^1\pi_*\mathcal{O}_P(n) = \pi_*\mathcal{O}_P(-(n + 2))\wedge L^v$ by Exer. III.8.4(c) [9]. Then applying (i) we obtain (iii), cf. Appendix A [9]. Finally, we have $S^n(\mathcal{E}) \otimes F \cong \pi_*\mathcal{O}_P(n) \otimes \pi^*F$ by (i) and $R^i\pi_*\mathcal{O}_P(n) \otimes \pi^*F = R^i\pi_*\mathcal{O}_P(n) \otimes F = 0$ for $n \geq 0$ and $i \geq 0$ by (iii). Thus we obtain (ii) by Leray spectral sequence.

The following vanishing result will also be used.

Proposition 18. For any $1 \leq m$ and $k < e$, we have $H^0(C, S^m(\mathcal{E})^v \otimes \mathcal{N}^k) = 0$.

Proof. Since rank $\mathcal{E} = 2$ and \mathcal{L} is the surjective image of \mathcal{E}, we have rank $S^m(\mathcal{E}) = m + 1$ and there exists a filtration

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_m \subset \mathcal{F}_{m+1} = S^m(\mathcal{E})$$

such that \mathcal{F}_j is a locally free sheaf of rank $\mathcal{F}_j = j$ and

$$0 \to \mathcal{F}_{j-1} \to \mathcal{F}_j \to \mathcal{L}^j \to 0$$

for $j = 1, \ldots, m + 1$. Now taking the dual, tensoring by \mathcal{N}^k and taking the global sections, we have for $j = 2, \ldots, m + 1$

$$0 \to H^0(C, \mathcal{L}^{-j} \otimes \mathcal{N}^k) \to H^0(C, \mathcal{F}_j^v \otimes \mathcal{N}^k) \overset{\psi_j}{\to} H^0(C, \mathcal{F}_{j-1}^v \otimes \mathcal{N}^k).$$

If $\deg \mathcal{L}^j \otimes \mathcal{N}^{-k} = (ej - k) \cdot \deg \mathcal{N} > 0$, i.e. $ej > k$, we have $H^0(C, \mathcal{L}^{-j} \otimes \mathcal{N}^k) = 0$ so that ψ_j is an inclusion. Thus we have

$$\psi_2 \circ \cdots \circ \psi_{m+1} : H^0(C, S^m(\mathcal{E})^v \otimes \mathcal{N}^k) \subset H^0(C, \mathcal{F}_1^v \otimes \mathcal{N}^k) = H^0(C, \mathcal{L}^{-1} \otimes \mathcal{N}^k)$$

if $ej > k$ for all $j = 2, \ldots, m + 1$, i.e. if $2e > k$. Now $H^0(C, \mathcal{L}^{-1} \otimes \mathcal{N}^k) = 0$ and thus $H^0(C, S^m(\mathcal{E})^v \otimes \mathcal{N}^k) = 0$, if $\deg \mathcal{L}^{-1} \otimes \mathcal{N}^k = (k - e) \cdot \deg \mathcal{N} < 0$, i.e. if $e > k$. □

4.1. **Computation of $H^2(X, \mathbb{Z}^n)$**. Now we compute $H^2(X, \mathbb{Z}^n)$.

Proposition 19. For $k \geq 0$ and $1 \leq r \leq \ell - 1$,

$$H^2(X, \mathbb{Z}^n) = \begin{cases} \bigoplus_{i=\lceil \frac{2}{\ell} + 1 \rceil}^{\ell-1} H^2(P, \mathcal{O}_P) \left(-\frac{i(p+1)}{\ell} + k \right) \otimes \pi^*\mathcal{N}_\ell^{ip+n} & \text{if } n = k\ell \geq 0 \\ H^2(P, \mathcal{O}_P(r+1+k-\ell)) \otimes \pi^*\mathcal{N}_\ell^n & \text{if } n = k\ell + r > 0 \\ H^2(P, \mathcal{O}_P(n) \otimes f^*\mathcal{N}_\ell^n) & \text{if } n < 0. \end{cases}$$
Proof. Since $\psi : X \to P$ is an affine morphism, the Leray spectral sequence degenerates so that we have $H^2(X, \mathcal{Z}^n) = H^2(P, \psi_* (\mathcal{O}_X(n\mathcal{E})) \otimes (\psi^* \circ \pi^*) \mathcal{N}_\ell^n)) = H^2(P, \psi_* \mathcal{O}_X(n\mathcal{E}) \otimes \pi^* \mathcal{N}_\ell^n)$. Then by Lemma 17 and Lemma 18 we compute

$$H^2(X, \mathcal{Z}^n) = \begin{cases}
H^2(P, \mathcal{O}_P(k) \otimes \pi^* \mathcal{N}_\ell^n)
\oplus \bigoplus_{i=1}^{\ell-1} H^2(P, \mathcal{O}_P\left(-\frac{i(p+1)}{\ell} + k\right) \otimes \pi^* \mathcal{N}_\ell^{ip+n}) & \text{if } n = k\ell \geq 0 \\
H^2(P, \mathcal{O}_P(r + 1 + k - \ell) \otimes \pi^* \mathcal{N}_\ell^n)
\oplus \bigoplus_{i=1}^{\ell-1} H^2(P, \mathcal{O}_P\left(-\frac{i(p+1)}{\ell} + k + 1\right) \otimes \pi^* \mathcal{N}_\ell^{ip+n}) & \text{if } n = k\ell + r > 0 \\
H^2(P, \mathcal{O}_P(n) \otimes \pi^* \mathcal{N}_\ell^n)
\oplus \bigoplus_{i=1}^{\ell-1} H^2(P, \mathcal{O}_P\left(-\frac{i(p+1)}{\ell}\right) \otimes \pi^* \mathcal{N}_\ell^{ip+n}) & \text{if } n < 0.
\end{cases}$$

Moreover, in the case of $n = k\ell \geq 0$, we have $-\frac{i(p+1)}{\ell} + k \geq 0$ if $i \leq \frac{n}{p+1}$. Also in the case of $n = k\ell + r > 0$, we have $-\frac{i(p+1)}{\ell} + k + 1 \geq 0$ if $i \leq \frac{n+\ell-r}{p+1}$. Now by Lemma 17(ii), we have $H^2(P, \mathcal{O}_P(j) \otimes \pi^* \mathcal{N}^n) = H^2(C, S^j(\mathcal{E}) \otimes \mathcal{N}^n) = 0$ for $j \geq 0$. Thus we do not have to consider the direct summands with the indices i in the above specified ranges. \(\square\)

As an immediate consequence, we have the following vanishing result.

Corollary 20. We have $H^2(X, \mathcal{Z}^n) = 0$ (i) if $\ell \mid n$ and $n \geq (\ell - 1)(p+1)$, in particular $n \geq p(p+1)$, or (ii) if $\ell \not\mid n$ and $n \geq p(p+1) - 1$. In particular, $H^2(X, \mathcal{Z}^n) = 0$ for all $n \geq p(p+1)$.

Proof. By Proposition 19 and Lemma 17(ii), we know that, for $n \geq 0$, $H^2(X, \mathcal{Z}^n) = 0$ if (i) $n = k\ell \geq 0$ and $\ell - 1 < \left\lfloor \frac{n}{p+1} + 1 \right\rfloor$, or (ii) $n = k\ell + r > 0$, $\ell - 1 < \left\lfloor \frac{n+\ell-r}{p+1} + 1 \right\rfloor$ and $r+1+k-\ell \geq 0$. The second condition of (i) is equivalent to $\frac{n}{p+1} + 1 - (\ell - 1) \geq 1$, i.e., $n \geq (p+1)(\ell - 1)$. Since $\ell \mid (p+1)$, we have $\ell - 1 \leq p$ so that $n \geq p(p+1)$ implies in particular $n \geq (p+1)(\ell - 1)$. Similarly, the second condition of (ii) is equivalent to $n \geq (p+1)(\ell - 1) - (\ell - r)$. Since $\ell \mid (p+1)$ and $1 \leq r \leq \ell - 1$, we have $(p+1)(\ell - 1) - (\ell - r) \leq p(p+1) - 1$. Thus in particular the second condition of (ii) is satisfied for $n \geq p(p+1) - 1$. Moreover, by the first and the third condition of (ii), we have $n \geq (\ell - r)(\ell - 1)$. Since $1 \leq r$ and $\ell \mid (p+1)$, we have $(\ell - r)(\ell - 1) \leq (\ell - 1)^2 \leq p^2 < p(p+1) - 1$. Thus, in this case, $n \geq p(p+1) - 1$ suffices for the vanishing. \(\square\)

4.2. **Computation of $H^1(X, \mathcal{Z}^n)$**. The case of $n \geq 0$ can be computed by the same method as in Proposition 19 except the difference in the dimension of cohomologies.

13
Proposition 21. Let $n \geq 0$. For $k \geq 0$, $1 \leq r \leq \ell - 1$, we have

$$H^1(X, \mathcal{Z}^n) = \left\{ \begin{array}{ll}
H^1(C, S^k(\mathcal{E}) \otimes \mathcal{N}_\ell^n) \\
\oplus \bigoplus_{i=1}^{\ell-1} H^1(C, S^{-\frac{(p+1)k}{\ell}} \otimes \mathcal{N}_\ell^{i^p+n}) \\
\oplus \bigoplus_{i=1}^{\ell-1} H^1(P, \mathcal{O}_P \left(\frac{-i(p+1)}{\ell} + k\right) \otimes \pi^* \mathcal{N}_\ell^{i^p+n}) & \text{if } n = k\ell \geq 0
\end{array} \right.
$$

Moreover, by Lemma [17(ii)], the first term in the case of $n = k\ell + r > 0$ is

$$H^1(P, \mathcal{O}_P(r + 1 + k - \ell)) \otimes \pi^* \mathcal{N}_\ell^n \cong H^1(C, S^{r+1-k-\ell}(\mathcal{E}) \otimes \mathcal{N}_\ell^n)$$

if $r + k \geq \ell - 1$.

Now we consider the case of $n < 0$.

Theorem 22. For $n < 0$, we have

$$H^1(X, \mathcal{Z}^n) = \bigoplus_{i=1}^{\ell-1} H^0(C, S^{\frac{(p+1)k}{\ell}} - 2(\mathcal{E}) \otimes \mathcal{N}_\ell^{i^p-\ell+n}).$$

Proof. Consider a part of the five-term exact sequence

$$0 \rightarrow H^1(C, \phi_* \mathcal{Z}^n) \rightarrow H^1(X, \mathcal{Z}^n) \rightarrow H^0(C, R^1 \phi_* \mathcal{Z}^n) \rightarrow H^2(C, \phi_* \mathcal{Z}^n)$$

for the Leray spectral sequence $E_2^{pq} = H^p(C, R^q \phi_* \mathcal{Z}^n) \Rightarrow H^{p+q}(X, \mathcal{Z}^n)$. We have $H^2(C, \phi_* \mathcal{Z}^n) = 0$ since $\dim C = 1$, and moreover an easy calculation using Lemma [4] shows

$$H^1(C, \phi_* \mathcal{Z}^n) = H^1(C, \pi_* \mathcal{O}_P(n) \otimes \mathcal{N}_\ell^n) \oplus \bigoplus_{i=1}^{\ell-1} H^1(C, \pi_* \mathcal{O}_P\left(-\frac{i(p+1)}{\ell}\right) \otimes \mathcal{N}_\ell^{i^p+n})$$

and this is $= 0$ by Lemma [17(i)]. Thus, we have

$$H^1(X, \mathcal{Z}^n) = H^0(C, R^1 \phi_* \mathcal{Z}^n) \quad (n < 0).$$

On the other hand, in a part of the five-term exact sequence

$$0 \rightarrow R^1 \pi_* (\psi_* \mathcal{Z}^n) \rightarrow R^1 \phi_* \mathcal{Z}^n \rightarrow \pi_* (R^1 \psi_* \mathcal{Z}^n)$$

for $\psi : X \rightarrow P$ and $\pi : P \rightarrow C$, we have $R^1 \psi_* \mathcal{Z}^n = 0$ since ψ is an affine morphism. Thus we have

$$R^1 \phi_* \mathcal{Z}^n = R^1 \pi_* (\psi_* \mathcal{Z}^n) \quad (n \in \mathbb{Z}).$$

Now an easy calculation using Lemma [4] and Lemma [17(iii)] shows

$$R^1 \pi_* (\psi_* \mathcal{Z}^n) = \left\{ \begin{array}{ll}
\bigoplus_{i=1}^{\ell-1} R^1 \pi_* \mathcal{M}^i \otimes \mathcal{N}_\ell^{-1} \\
S^{-n-2}(\mathcal{E}) \otimes \mathcal{N}_\ell^{n-\ell} \oplus \bigoplus_{i=1}^{\ell-1} R^1 \pi_* \mathcal{M}^i \otimes \mathcal{N}_\ell^n & \text{if } n = -1
\end{array} \right. \quad \text{if } n \leq -2$$

But by Proposition [18] and $\deg \mathcal{N}_\ell > 0$, we have

$$H^0(C, S^{-n-2}(\mathcal{E}) \otimes \mathcal{N}_\ell^{n-\ell}) = 0 \quad \text{for } n \leq -2.$$
Thus by (8) and (9) we have

\[H^1(X, \mathcal{Z}^n) = \bigoplus_{i=1}^{\ell-1} H^0(C, R^1\pi_*\mathcal{M}^i \otimes \mathcal{N}^n_{\ell}). \]

By relative Serre duality, the well-known formula \(\omega_{P/C} = \mathcal{O}_P(-2) \otimes \pi^*\mathcal{L} \) and Lemma 17(i), we compute

\[R^1\pi_*\mathcal{M}^i \cong \pi_*((\mathcal{M}^i \otimes \omega_{P/C})^\vee) = S^{(i(p+1)/\ell - 2)}(\mathcal{E})^\vee \otimes \mathcal{N}_{\ell}^{ip-\ell}. \]

and we obtain the above stated result. \(\square \)

We give here some specific instances of Theorem 22.

Example 4. Let \(n < 0 \). Then,

- if \(\ell = p + 1 \):

 \[H^1(X, \mathcal{Z}^n) = H^0(C, \mathcal{N}_{\ell}^{p-1+n}) \oplus \bigoplus_{i=3}^{p} H^0(C, S^{i-2}(\mathcal{E})^\vee \otimes \mathcal{N}_{\ell}^{ip-1-n}) \]

 where the first term vanishes for \(n < -(p - 1) \). In particular, if \(p = 2 \) (and then \(\ell = 3 \)), we have \(H^1(X, \mathcal{Z}^n) = 0 \) for \(n \leq -2 \) and moreover \(H^1(X, \mathcal{Z}^{-1}) \neq 0 \) since this is exactly the Raynaud’s counter-example.

- if \(2\ell = p + 1 \):

 \[H^1(X, \mathcal{Z}^n) = H^0(C, \mathcal{N}_{\ell}^{\ell-1+n}) \oplus \bigoplus_{i=2}^{\frac{p-1}{2}} H^0(C, S^{2i-2}(\mathcal{E})^\vee \otimes \mathcal{N}_{\ell}^{ip-\frac{p+1}{2}+n}) \]

 where the first term vanishes for \(n < -\frac{p-1}{2} \). In particular, if \(p = 3 \) (and then \(\ell = 2 \)), we have \(H^1(X, \mathcal{Z}^n) = 0 \) for \(n \leq -2 \) and moreover \(H^1(X, \mathcal{Z}^{-1}) \neq 0 \) since this is exactly the Raynaud’s counter-example.

Now we show some non-vanishing results.

Theorem 23. \(H^1(X, \mathcal{Z}^n) \neq 0 \) for every \(n \) such that \(-(\ell - \lceil \frac{2\ell}{p+1} \rceil) \leq n \leq -1 \), where \(\lceil \cdots \rceil \) denotes the round up.

Proof. Since \(\mathcal{L} = \mathcal{N}^{e} = \mathcal{N}_{\ell}^{e} \) is the surjective image of \(\mathcal{E} \) (cf. (3)), we have the short exact sequence

\[S^k_\ell(\mathcal{E}) \rightarrow \mathcal{N}_{\ell}^k \rightarrow 0 \]

for any \(k \in \mathbb{N} \) such that \(\ell \mid k \). Taking the dual and tensoring by \(\mathcal{N}_{\ell}^k \), we obtain

\[0 \rightarrow \mathcal{O}_C \rightarrow S^k_\ell(\mathcal{E})^\vee \otimes \mathcal{N}_{\ell}^k. \]

Then we have

\[k = H^0(C, \mathcal{O}_C) \subset H^0(C, S^k_\ell(\mathcal{E})^\vee \otimes \mathcal{N}_{\ell}^k). \]

Applying this result, we know that the term \(H^0(C, S^{(i\ell + 1)/\ell - 2}(\mathcal{E})^\vee \otimes \mathcal{N}_{\ell}^{ip-\ell+n}), 1 \leq i \leq \ell - 1 \), in Theorem 22 is non-trivial if

\[\frac{i(p + 1)}{\ell} - 2 \geq 0 \quad \text{and} \quad \ell \left(\frac{i(p + 1)}{\ell} - 2 \right) = ip - \ell + n, \]
namely $n = -(\ell - i)$, with $\left\lceil \frac{2\ell}{p+1} \right\rceil \leq i \leq \ell - 1$. \hfill \Box$

For small characteristics, the evaluation of the non-vanishing degrees in Theorem 22 is best possible.

Corollary 24. If $p = 2$ or 3, we have $H^1(X, \mathcal{Z}^n) = 0$ for every $n < -(\ell - \left\lceil \frac{2\ell}{p+1} \right\rceil)$.

Proof. Since $\ell | p + 1$, we have only to consider the cases $(p, \ell) = (2, 3), (3, 2), (3, 4)$ and

$$- \left(\ell - \left\lceil \frac{2\ell}{p+1} \right\rceil \right) = \begin{cases} -1 & \text{if } (p, \ell) = (2, 3) \\ -1 & \text{if } (p, \ell) = (3, 2) \\ -2 & \text{if } (p, \ell) = (3, 4). \end{cases}$$

The first two cases are already shown in Example 4. Then we assume $(p, \ell) = (3, 4)$ in the following. We have

$$H^1(X, \mathcal{Z}^n) = \bigoplus_{i=0}^{3} H^0(C, S^{i-2}(\mathcal{E})^\vee \otimes \mathcal{N}_t^{3i-4+n})$$

by Theorem 22. Since $\deg \mathcal{N}_t > 0$, we have $H^0(X, \mathcal{N}_t^{2+n}) = 0$ for $n < -2$. Moreover, since $\mathcal{N}_t^{5+n} = \mathcal{N}^{(5+n)}_{\psi}$ by definition and since $\frac{e}{4} < e$ for $n < -2$, we have $H^0(C, S^1(\mathcal{E})^\vee \otimes \mathcal{N}_t^{5+n}) = 0$ for $n < -2$ by Proposition 18. Thus, in this case we have $H^1(X, \mathcal{Z}^n) = 0$ for $n < -2$. \hfill \Box

4.3. Computation of $H^0(X, \mathcal{Z}^n)$. Since \mathcal{Z} is ample, we have $H^0(X, \mathcal{Z}^n) = 0$ for $n < 0$. For $n \geq 0$, we have

Proposition 25. For $n, k \geq 0$ and $1 \leq r \leq \ell - 1$, we have

$$H^0(X, \mathcal{Z}^n) = \begin{cases} \bigoplus_{i=0}^{\ell-1} H^0(C, S^{-(\ell+1)+i}(\mathcal{E}) \otimes \mathcal{N}_t^{ip+n}) & \text{if } n = k\ell \geq 0 \\ H^0(C, S^{r+1-k-\ell}(\mathcal{E}) \otimes \mathcal{N}_t^{n}) \\ \bigoplus_{i=1}^{\ell-1} H^0(C, S^{-i(p+1)+k+1}(\mathcal{E}) \otimes \mathcal{N}_t^{ip+n}) & \text{if } n = k\ell + r > 0. \end{cases}$$

Proof. By Lemma 5 we compute

$$H^0(X, \mathcal{Z}^n) = H^0(P, \psi_* \mathcal{O}_X(nE) \otimes \mathcal{N}_t^n)$$

$$= \begin{cases} \bigoplus_{i=0}^{\ell-1} H^0(C, \pi_* \mathcal{M}(kE) \otimes \mathcal{N}_t^n) & \text{if } n = k\ell \geq 0 \\ H^0(C, \pi_* \mathcal{O}_X(r + 1 + k - \ell) \otimes \mathcal{N}_t^n) \\ \bigoplus_{i=1}^{\ell-1} H^0(C, \pi_* \mathcal{M}(k+1)E) \otimes \mathcal{N}_t^n) & \text{if } n = k\ell + r > 0. \end{cases}$$

Then apply Lemma 17(i). \hfill \Box

Remark 5. According to Proposition 25, we know that the lower bound B such that $H^0(X, \mathcal{Z}^n) = 0$ for $n \geq B$, depends on the vanishing of cohomologies of type $H^0(C, S^m(\mathcal{E}) \otimes \mathcal{N}_t^n)$ for $m, n > 0$. Hence it seems to be difficult to give a general estimation of B. 16
By the similar argument as in the proofs of Proposition 19 and 21, we know that we have only to consider fewer direct summands than Proposition 25 in some cases. Namely,

- if \(n = k\ell \) and \(0 \leq n < (p + 1)(\ell - 1) \), we have
 \[
 H^0(X, Z^n) = \bigoplus_{i=0}^{\lfloor \frac{n}{p+1} \rfloor} H^0(C, S^{-\frac{i(p+1)}{\ell}+k}\mathcal{E}) \otimes \mathcal{N}_t^{ip+n} \]

- if \(n = k\ell + r \), \(0 < r \leq \ell - 1 \), and \(0 < n < p(\ell - 1) + r - 1 \), we have
 \[
 H^0(X, Z^n) = H^0(C, S^{r+\ell-k}\mathcal{E}) \otimes \mathcal{N}_t^{n} \bigoplus_{i=1}^{\lfloor \frac{n+\ell-r}{p+1} \rfloor} H^0(C, S^{-\frac{i(p+1)}{\ell}+k+1}\mathcal{E}) \otimes \mathcal{N}_t^{ip+n} \]

Then we have

Corollary 26. \(H^0(X, Z^n) = 0 \) if \(n = k\ell + r > 0 \) with \(0 < r \leq \ell - 1 \) and \(0 \leq k \leq \min\{\ell - r - 2, \frac{p+1}{\ell} - 2\} \).

Proof. By the above formula for \(n = k\ell + r \), \(0 < r \leq \ell - 1 \), we know that \(H^0(X, Z^n) = 0 \) if \(r + 1 + k - \ell < 0 \) and \(n + \ell - r < p + 1 \). From the latter inequality, we have

\[
 n = k\ell + r < \min\{p + 1 - \ell + r, p(\ell - 1) + r - 1\}
\]

and then together with the former inequality we have

\[
k < \min\left\{\ell - r - 1, \frac{p+1}{\ell} - 1, p - \frac{p+1}{\ell}\right\} = \min\{\ell - r - 1, \frac{p+1}{\ell} - 1\}
\]

where the last equation is by \(\ell \geq 2 \).

\[\square\]

5. **Families of non-vanishing polarizations**

We have considered the Mumford-Szpiro type polarization given in Proposition 16. Raynaud’s example is also of this kind. We show that much more varieties of polarizations can serve as counter-examples to Kodaira vanishing. We first consider

\[
 Z_{a,b} := \mathcal{O}_X(a\tilde{E}) \otimes \phi^*\mathcal{N}^b \quad (a, b \geq 1).
\]

Proposition 27. \(Z_{a,b} \) is ample.

Proof. We have \(E^2 = \deg D > 0 \) and also \(E, C > 0 \) for every irreducible curve \(C \in P \) (see Prop. V.2.3 [6]). Thus \(\mathcal{O}_P(nE), n > 0 \), is ample by Nakai-Moishezon criteria and, since \(\psi : X \to P \) is a finite morphism, \(\psi^*\mathcal{O}_P(nE) = \mathcal{O}_X(n\tilde{E}), n > 0 \), is also ample. In particular, \(\mathcal{O}_X(a\tilde{E}), a \geq 1, \) is ample. On the other hand, \(\mathcal{N}^b \) is ample so that in particular \(\pi^*\mathcal{N}^b \) is semi-ample (i.e., its sufficiently large powers are generated by global sections). Consequently, \(\mathcal{O}_X(a\tilde{E}) \otimes \phi^*\mathcal{N}^b \) is ample. \[\square\]
Then, by carrying out a similar argument as the proofs of Theorem 22 and Theorem 23, we have

Theorem 28. $H^1(X, Z_{a,b}^{-1}) \neq 0$ for all $a \geq 1$ and $1 \leq b \leq \ell - 1$.

Proof. Let Q be an invertible sheaf on C and set $Z = \mathcal{O}_X(-a\tilde{E}) \otimes \phi^*Q$. Now consider the following Leray spectral sequence of $\phi : X \rightarrow C$

$$E_2^{p,q} = H^p(C, R^q\phi_*\mathcal{Z}^{-1}) \Rightarrow H^{p+q}(X, \mathcal{Z}^{-1}) \quad (p \geq 0).$$

We have $E_2^{0,0} = 0$ since dim $C = 1$. Then by the 5-term exact sequence we have

$$H^1(X, \mathcal{Z}^{-1}) \rightarrow H^0(C, R^1\phi_*\mathcal{Z}^{-1}) \rightarrow 0.$$

Thus we have only to show $H^0(C, R^1\phi_*\mathcal{Z}^{-1}) = H^0(C, R^1\phi_*\mathcal{O}_X(-a\tilde{E}) \otimes \mathcal{Q}^{-1}) \neq 0$.

Considering the 5-term exact sequence

$$0 \rightarrow R^1\pi_*(\psi_*\mathcal{O}_X(-a\tilde{E})) \rightarrow R^1(\pi \circ \psi)_*\mathcal{O}_X(-a\tilde{E}) \rightarrow \pi^*(R^1\psi_*\mathcal{O}_X(-a\tilde{E})),$$

where $R^1\psi_*\mathcal{O}_X(-a\tilde{E}) = 0$ since $\psi : X \rightarrow P$ is an affine morphism, we have

$$R^1\phi_*\mathcal{O}_X(-a\tilde{E}) = R^1(\pi \circ \psi)_*\mathcal{O}_X(-a\tilde{E}) \cong R^1\pi_*(\psi_*\mathcal{O}_X(-a\tilde{E})).$$

Thus by Lemma 4 we obtain

$$R^1\phi_*\mathcal{O}_X(-a\tilde{E}) = R^1\pi_*\mathcal{O}_P(-aE) \oplus \bigoplus_{i=1}^{\ell-1} (R^1\pi_*\mathcal{M}^i)$$

$$= R^1\pi_*\mathcal{O}_P(-aE) \oplus \bigoplus_{i=1}^{\ell-1} (S^{(ip+i-2\ell)/\ell}(\mathcal{E}) \otimes \mathcal{N}^{(\ell-ip)e/\ell})^\vee.$$

We note that the last equation is shown in the end of the proof of Theorem 22. Thus we have

$$H^0(C, R^1\phi_*\mathcal{O}_X(-a\tilde{E}) \otimes \mathcal{Q}^{-1}) \supset \bigoplus_{i=1}^{\ell-1} H^0(C, S^{(ip+i-2\ell)/\ell}(\mathcal{E}) \otimes \mathcal{N}^{(\ell-ip)e/\ell})^\vee \otimes \mathcal{Q}^{-1}.$$

(Actually we can show that this inclusion is really an equation.)

On the other hand, from $E \rightarrow L \rightarrow 0$ we have

$$S^{(ip+i-2\ell)/\ell}(\mathcal{E}) \otimes \mathcal{N}^{(\ell-ip)e/\ell} \rightarrow L^{(ip+i-2\ell)/\ell} \otimes \mathcal{N}^{(\ell-ip)e/\ell} \rightarrow 0.$$

Taking the dual and tensoring by \mathcal{Q}^{-1}, we have

$$0 \rightarrow (L^{(ip+i-2\ell)/\ell} \otimes \mathcal{N}^{(\ell-ip)e/\ell})^\vee \otimes \mathcal{Q}^{-1} \rightarrow (S^{(ip+i-2\ell)/\ell}(\mathcal{E}) \otimes \mathcal{N}^{(\ell-ip)e/\ell})^\vee \otimes \mathcal{Q}^{-1}$$

and

$$(L^{(ip+i-2\ell)/\ell} \otimes \mathcal{N}^{(\ell-ip)e/\ell})^\vee = (\mathcal{N}^{(ip+i-2\ell)e/\ell} \otimes \mathcal{N}^{(\ell-ip)e/\ell})^\vee = \mathcal{N}^{(\ell-i)e/\ell}.$$

Thus we have for $i = 1, \ldots, \ell - 1$

$$H^0(C, \mathcal{N}^{(\ell-i)e/\ell} \otimes \mathcal{Q}^{-1}) \subset H^0(C, R^1\phi_*\mathcal{O}_X(-a\tilde{E}) \otimes \mathcal{Q}^{-1}).$$

In particular, taking $Q = \mathcal{N}^{(\ell-i)e/\ell} = \mathcal{N}^{(\ell-i)e/\ell}$ with $i = 1, \ldots, \ell - 1$, we have $k \subset H^0(C, R^1\phi_*\mathcal{O}_X(-a\tilde{E}) \otimes \mathcal{Q}^{-1})$ as required and in this case \mathcal{Z} is exactly what we defined. □
The cohomologies $H^i(X, \mathcal{Z}_{a,b}^n)$, $i, n \in \mathbb{Z}$, can also be computed by a similar method to what we have described.

REFERENCES

[1] T. Ando, *Introduction to algebraic curves and algebraic surfaces, the origin of complex algebraic geometry*, (in Japanese), Shugaku-Shobo, 2007.
[2] P. Cartier, Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. Math. France. 86, 1958, 177–251.
[3] H. Esnault and E. Viehweg, *Lectures on vanishing theorems*. DMV Seminar, 20. Birkhauser Verlag, Basel, 1992.
[4] H. Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998) 981–996.
[5] H. Hara and K-i, Watanabe, The injectivity of Frobenius acting on cohomology and local cohomology modules. Manuscripta Math. 90 (1996), no. 3, 301–315.
[6] R. Hartshorne, *Algebraic Geometry*, GTM 52, Springer-Verlag, 1977.
[7] C. Huneke and K. E. Smith, Tight closure and the Kodaira vanishing theorem. J. Reine Angew. Math. 484 (1997), 127–152.
[8] N. Lauritzen and A. P. Rao, Elementary counterexamples to Kodaira vanishing in prime characteristic. Proc. Indian Acad. Sci. Math. Sci. 107 (1997), no. 1, 21–25.
[9] R. Lazarsfeld, *Positivity in Algebraic Geometry I, Classical Setting: Line Bundles and Linear Series*, Springer, 2004.
[10] S. Mukai, On counterexamples for the Kodaira vanishing theorem and the Yau inequality in positive characteristics (in Japanese), in Symposium on Algebraic Geometry, Kinosaki, 1979, pp.9–23.
[11] D. Mumford, Pathologies III, Amer. J. Math. 89, 1967.
[12] D. Mumford, *Abelian varieties*, Tata Institute of Fundamental Research Studies in Mathematics, No. 5 Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London 1970 viii+242 pp.
[13] D. Mumford, Some footsteps to the work of C. P. Ramanujam, in “C. P. Ramanujan – A tribute”, pp247–262, Tata Inst. Fund. Res. Studies in Math. 8, Springer, 1978.
[14] M. Raynaud, Contre-exemple au "vanishing theorem" en caracteristique $p > 0$. C. P. Ramanujam—a tribute, pp. 273–278, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin-New York, 1978.
[15] P. Russell, Factoring the Frobenius morphism of an algebraic surface. Algebraic geometry, Bucharest 1982 (Bucharest, 1982), 366–380, Lecture Notes in Math., 1056, Springer, Berlin, 1984.
[16] L. Szpiro, Le theoreme de la regularite de l’ajointe de Gorenstein a Kodaira, Proceedings of the International Symposium on Algebraic Geometry, Kyoto 1978, pp.93–102.
[17] L. Szpiro, Sur le théoreme de rigidité de Parsin et Arakelov. Journées de Geometrie Algebrique de Rennes (Rennes, 1978), Vol. II, pp. 169–202. Asterisque, 64, Soc. Math. France, Paris, 1979.
[18] Y. Takeda, Fibrations with moving cuspidal singularities, Nagoya Math. J. Vol. 122 (1991) 161–179.
[19] Y. Takeda, Vector fields and differential forms on generalized Raynaud surfaces, Tohoku Math. J. 44 (1992), 359–364.
[20] Y. Takeda, Pre-Tango structures and uniruled varieties. Colloq. Math. 108 (2007), no. 2, 193–216.
[21] Y. Takeda and K. Yokogawa, Pre-Tango structures on curves. Tohoku Math. J. (2) 54 (2002), no. 2, 227–237.
[22] H. Tango, On the behavior of extensions of vector bundles under the Frobenius map, Nagoya Math. J., 48, 73–89, 1972.
[23] H. Tango, On the behavior of cohomology classes of vector bundles under the Frobenius map, RIMS Kokyuroku 144, 1972, 93–102. (in Japanese)
[24] Q. Xie, Effective non-vanishing for algebraic surfaces in positive characteristic, J. Algebra 305 (2006) 1111–1127.

YUKIHIDE TAKAYAMA, DEPARTMENT OF MATHEMATICAL SCIENCES, RITSUMEIKAN UNIVERSITY, 1-1-1 NOJIHIGASHI, KUSATSU, SHIGA 525-8577, JAPAN
E-mail address: takayama@se.ritsumei.ac.jp