Composites of Fe$_3$O$_4$/SiO$_2$ from Natural Material Synthesized by Co-Precipitation Method

Munasir1, A S Dewanto1, A Yulianingsih1, I K F Saadah1, Z A I Supardi1, A Mufid2 and A Taufiq3

1Department of Physics, Faculty of Mathematics and Sciences, Universitas Negeri Surabaya (UNESA), Jl. Ketintang, Surabaya 60231, Indonesia.
2Department of Physics, Faculty of Mathematics and Sciences, Institut Teknologi Sepuluh Nopember (ITS), Jl. Arif Rahman Hakim, Surabaya 60111, Indonesia.
3Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang (UM), Jl. Semarang 5, Malang 65145, Indonesia.

Email: munasir_physics@unesa.ac.id

Abstract. Synthesis of Fe$_3$O$_4$/a-SiO$_2$ nanoparticle has been conducted based on natural materials by using the co-precipitation method. The used silica was a-SiO$_2$ collected from silica sand from Bancar Tuban, Indonesia. The Fe$_3$O$_4$ collected from iron sand’s Lumajang, Indonesia. The samples was set for Fe$_3$O$_4$: a-SiO$_2$: PEG composition of 1 : 2 : 1. The process was maintained by melting the PEG 4000 and following by adding a-SiO$_2$ and Fe$_3$O$_4$. The samples were characterized by using X-Ray Diffractometry (XRD), Transmission Electron Microscopy (TEM), and Fourier Transform Infra-Red (FTIR) spectroscopy. The analysis of the XRD data showed that additional silica into Fe$_3$O$_4$ tended to change the diffraction pattern that represents the existent of both Fe$_3$O$_4$ and silica. The SEM images presented that the samples formed in nanometric size with core-shell structure. Furthermore, the FTIR spectra showed that Si-O-Fe bound appeared at 555-568 cm$^{-1}$. Thus, this work was able to produce the Fe$_3$O$_4$/a-SiO$_2$ nanocomposites by using co-precipitation method in a core-shell structure.

Keyword: Composite, nanoparticle, Fe$_3$O$_4$, SiO$_2$, coprecipitation

1. Introduction

Indonesia is a country with abundant natural resources. Some of the natural resources extracted from minerals are quartz sand and iron sand. Most of the content of quartz sand is silica (SiO$_2$) with the purity of 70%. Quartz sand has a characteristic of its yellowish white color (Bancar area, Tuban-East Java, Indonesia) [1], its density of 2.50–2.70 g/cm3, and having melting point of around 1715 °C [2].

Based on the previous research, the iron sand from Lumajang had a noticeably high level of Ferrous that could easily produce magnetic nanoparticles with high purity [3,4]. The latest reports show that Indonesia has a large number of iron minerals that consist of the main iron ore (17%), iron ore (8%) and laterite iron ore (75%) [4].

There are many applications of nanocomposites in industrial and health sectors especially the use of this material for small particles from micro to nanometric size. Thus, we need to advanced and the right technology to process it. It needs a special treatment in the process of obtaining the nanometric
materials. A lot of methods were used to get the nanocomposites with the best result including the co-precipitation method, sol-gel, etc. [2,5–8]. Nanocomposite material is a combination of two or more composing materials with a different characteristic material (matrix and filler). In this research, the magnetic particle (Fe$_3$O$_4$) was combined with silica because it has multiple advantages including the ability of its pure materials to synthesize in large scale and the large capacity of cation exchange. Silica comes from a natural or synthetic material and usually is in the form of crystalline or amorphous solid [1,6,9]. Silica is a metal oxide compound that is widely available in nature, but its existence is not in the free state. It is bounded to another compound physically and chemically. This material is used in many industries and medical field because of its unique nature and morphology such as the large surface area and pore volume, and the ability to absorb various substances like water, oil, and radioactive material. In general, Silica has hydrophobic or hydrophilic properties based on its structure and morphology [10].

In composite materials, the component did not undergo a chemical change. Fe$_3$O$_4$/SiO$_2$ nanocomposite is a composite material because its constituent materials have nanometric size and exist without any new compound formed. Another work reported that the Fe$_3$O$_4$/SiO$_2$ nanocomposites were successfully prepared by using the co-precipitation method with FeCl$_3$ and silica solution as the basic material [11]. In this work, we were interested to develop synthesis method of Fe$_3$O$_4$/SiO$_2$ nanocomposites by exploring the abundant natural material via a co-precipitation method. This method can be utilized to prepare an inorganic compound based on the precipitation process of substances. The advantage of this method is having a relatively low temperature in a short process [12,13]. Interestingly, the method can prepare the Fe$_3$O$_4$/SiO$_2$ nanoparticle that was illustrated to form a composite formation, where the Fe$_3$O$_4$ ferromagnetic particle is covered inside the hollow of SiO$_2$ particle [11,14].

2. Experimental Method

2.1. Materials

The equipment used in this research were a beaker glass, measuring glass/graduated cylinder, magnetic stirrer, filter paper, digital scales, spatula, pH meter, pipette, spatula, funnel, crucible, mortal and pestle permanent magnet, cardboard and a 60-watt lamp. The material used in this study were Bancar-Tuban sand, Lumajang iron sand, NaOH, HCl 2M, NH$_4$OH, PEG 4000, and distilled water (DI). The manipulation variables were the a-SiO$_2$ mass and the PEG mass. The Control Variable was the mass of Fe$_3$O$_4$. The response variable was the phase of Fe$_3$O$_4$/a-SiO$_2$ nanocomposites.

2.2. Experiment

The step taken to synthesize the nanocomposites of Fe$_3$O$_4$/a-SiO$_2$ was melting the PEG via the stirrer at a temperature of 60 °C. It was then added with a-SiO$_2$ powder while it was being stirred continuously until evenly combined, after that it was added with Fe$_3$O$_4$ powder and it was stirred for another 3 minutes, so that it formed precipitate. Those steps were repeated for 3 times with different compositions. The precipitate was then dried and thus formed Fe$_3$O$_4$/a-SiO$_2$ powder. This product was then characterized by using XRD to determine the occurrence of the composite on both Fe$_3$O$_4$ and a-SiO$_2$. Furthermore, it was also characterized by using FTIR to determine the functional group possessed by the sample of Fe$_3$O$_4$/a-SiO$_2$. The size and distribution of the particles were characterized by using SEM/TEM.

3. Results and Discussion

3.1. XRD Characterization of Composite of Fe$_3$O$_4$/a-SiO$_2$

XRD Diffractogram result showed the diffraction pattern of amorphous silica and Fe$_3$O$_4$ shown in Figure 1. The curve indicates that the peaks in sample #1, and the base materials which were Fe$_3$O$_4$ and SiO$_2$. The XRD results proved the existence of peak particle combination of Fe$_3$O$_4$ and a-SiO$_2$.
particles. The diffraction peak occurred at $2\theta = 30.07^\circ$, 35.47°, 43.17°, 53.33°, 56.90° which showed the cubic structure of the Fe$_3$O$_4$ particle, with each of crystal planes (220), (311), (400), (422), and (511). Therefore, undergoing a composite process did not change the structure of Fe$_3$O$_4$ particle. In sample #1, the wide peak on $2\theta \approx 24^\circ$ showed the existence of amorphous peak silica form. This peak intensity will increase along with the addition of silica, where the position of polymer form is very influential in the composite [15]. The higher the variation of silicate addition into Fe$_3$O$_4$ the more declined the diffraction peak pattern of Fe$_3$O$_4$ [11,16,17].

![XRD patterns of Fe$_3$O$_4$/SiO$_2$](image)

Figure 1. XRD patterns of Fe$_3$O$_4$/SiO$_2$

3.2. *Data of FTIR Characterization of Fe$_3$O$_4$/SiO$_2$ Composites*

After a test by using XRD, the Fe$_3$O$_4$/SiO$_2$ nanoparticles was characterized by using FTIR to determine the functional groups of the Fe$_3$O$_4$/SiO$_2$ sample. The functional groups corresponding to Fe$_3$O$_4$@SiO$_2$ (Sample #1) therein are depicted in Table 1.

Table 1. Functional group of the synthesized Fe$_3$O$_4$/SiO$_2$

Peak	Wavenumber (cm$^{-1}$)	Functional Group	Reference
Fe$_3$O$_4$@SiO$_2$ (Sample #1)			
1	468	Si-O-Si / O-Si-O	[1,7]
2	555	Si-O-Fe	[12]
3	796	Si-O-Si	[1,7,14]
4	950	Si-O	[12]
5	1093	Si-O-Si	[1,14]
6	1647	H-O-H	[12]
7	2914	H-O-H	[12]
8	3443	H-O-H	[1,14]
Based on the data, compared to the previous research, our FTIR result of Fe$_3$O$_4$/a-SiO$_2$ synthesis had compatibility with the previous and appropriate range of wavenumbers. In the FTIR spectra, the wavenumber of 1641-3464 cm$^{-1}$ was a stretching vibration and bending of H-O-H bond. In 1097, the wavenumber was an antisymmetric vibration of the Si-O-Si bond which was hooked by oxygen movement. There was a bending vibration of Si-O-Si or O-Si-O on the 468 cm$^{-1}$ wavenumber. On the 796 cm$^{-1}$ wavenumber, there was a symmetric stretch vibration of Si-O-Si in the SiO$_2$ [1,6,7]. In 950 cm$^{-1}$ wavenumber, there was a symmetric functional group of Si-O and lastly, the 555-568 cm$^{-1}$ wavenumber showed the existence of Si-O-Fe bond. Thus, the existence of Fe$_3$O$_4$ nanoparticles has been identified.

3.3. Photo SEM of Fe$_3$O$_4$/a-SiO$_2$ Composites

![Figure 2](image_url)

Figure 2. (a) SEM images of Fe$_3$O$_4$@a-SiO$_2$ and (b) SEM of Fe$_3$O$_4$@c-SiO$_2$, and (c) TEM test result of Fe$_3$O$_4$@SiO$_2$ (Sample #1)
TEM characterization aimed for knowing the morphological structure of Fe$_3$O$_4$/a-SiO$_2$ nanocomposites that formed as a Fe$_3$O$_4$@a-SiO$_2$ core shell. Here is the result of TEM test of the Fe$_3$O$_4$@a-SiO$_2$ core shell (Figure 2c). It appears that the Fe$_3$O$_4$ particles are black-colored and coated with SiO$_2$ particle shown by a lighter cloud around it. Fe$_3$O$_4$@a-SiO$_2$ particle has a round-shaped property and agglomerated with other particles. The size of the Fe$_3$O$_4$@a-SiO$_2$ particle was about ~25 nm and the thickness is ~9 nm. Thus, the Fe$_3$O$_4$/a-SiO$_2$ nanocomposites have successfully formed a Fe$_3$O$_4$@a-SiO$_2$ core shell [14,18]. There were significant different shape and size of the composite particles of Fe$_3$O$_4$@ a-SiO$_2$ amorphous (#sample 1) and Fe$_3$O$_4$@ c-SiO$_2$ (crystal), as shown in Figure 2 (a) and Figure 2 (b); composite particle size of Fe3O4/a-SiO 2 was greater than the particle size of the Fe$_3$O$_4$@c-SiO$_2$ composite.

4. Conclusion
Based on the data analysis, we can conclude that Fe$_3$O$_4$/a-SiO$_2$ nanocompositeS can be fabricated by using PEG as the binder of Fe3O4 and a-SiO2 particleS, where Fe$_3$O$_4$, a-SiO$_2$ can be easily synthesized by using the co-precipitation method. The Characteristic of Fe$_3$O$_4$/a-SiO$_2$ based on XRD crystal structure and functional group of FTIR analysis shows that the Fe$_3$O$_4$/a-SiO$_2$ nanocomposites have formed a sharp peak of diffraction pattern and a distinct of functional group of Si-O-Fe on wavenumbers of 555-568 cm$^{-1}$.

5. References
[1] Munasir, Triwikantoro, Zainuri M and Darminto 2015 Synthesis of SiO$_2$ nanopowders containing quartz and cristobalite phases from silica sands Mater. Sci.-Pol. 33 47–55
[2] Munasir, Sulton A, Triwikantoro, Zainuri M and Darminto 2013 Synthesis of silica nanopowder produced from Indonesian natural sand via alkalifussion route AIP Conference Proceedings International Conference On Theoretical And Applied Physics (LCTAP 2012) vol 1555(AIP Publishing)pp 28–31
[3] Taufiq A, Sunaryono, Rachman Putra E G, Pratapa S and Darminto 2015 Nano-Structural Studies on FeO@O@O Particle Dispersing in a Magnetic Fluid Using X-Ray Diffractometry and Small-Angle Neutron Scattering Mater. Sci. Forum 827 213–8
[4] Rochani S, Pramusanto, Sariman and Anugrah R 2008 The Current Status of Iron Minerals in Indonesia Indones. Minning J. 11 1–17
[5] Trabelsi W, Benzina M and Bouaziz S 2009 Physico-chemical characterization of the Douirat sand (Southern Tunisia): Valorisation for the production of Silica Gel Phys. Procedia 2 1461–7
[6] Kalapathy U, Proctor A and Shultz J 2000 A simple method for production of pure silica from rice hull ash Bioresour. Technol. 73 257–62
[7] Jal P K, Sudarshan M, Saha A, Patel S and Mishra B K 2004 Synthesis and characterization of nanosilica prepared by precipitation method Colloids Surf. Physicochem. Eng. Asp. 240 173–8
[8] Affandi S, Setyawan H, Winardi S, Purwanto A and Balgis R 2009 A facile method for production of high-purity silica xerogels from bagasse ash Adv. Powder Technol. 20 468–72
[9] Mori H 2003 Extraction of silicon dioxide from waste colored glasses by alkali fusion using potassium hydroxide J. Mater. Sci. 38 3461–8
[10] Koch K and Barthlott W 2009 Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 367 1487–509
[11] Suryani T and Suhrayadi E 2015 Synthesis of Magnetite Nanoparticle (Fe$_3$O$_4$) with Silica (SiO2) Template and Characterization of Magnetic Properties Indones. J. Appl. Phys. 5 23–30
Ahangaran F, Hassanzadeh A and Nouri S 2013 Surface modification of Fe$_3$O$_4$@SiO$_2$ microsphere by silane coupling agent Int. Nano Lett. 3 23

Alizadeh A, Khodaei M M, Beygzadeh M, Kordestani D and Feyzi M 2012 Biguanide-Functionalized Fe$_3$O$_4$ /SiO$_2$ Magnetic Nanoparticles: An Efficient Heterogeneous Organosuperbase Catalyst for Various Organic Transformations in Aqueous Media Bull. Korean Chem. Soc. 33 2546–52

Chae H S, Kim S D, Piao S H and Choi H J 2016 Core-shell structured Fe$_3$O$_4$@SiO$_2$ nanoparticles fabricated by sol–gel method and their magnetorheology Colloid Polym. Sci. 294 647–55

Zamani F and Izadi E 2014 Polyvinyl amine coated Fe$_3$O$_4$@SiO$_2$ magnetic microspheres for Knoevenagel condensation Chin. J. Catal. 35 21–7

Music’ S, N. F-V and L S 2011 Precipitation of Amorphous SiO$_2$ Particles and Their Properties Braz. J. Chem. Eng. 28 89–94

Zawrah F H, A.A. E-K and Abd-Elaal H M 2009 Facile and Economic Synthesis Of Silica Nanoparticles J. Ovonic Res. 5 129–33

Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X and Gao H-J 2011 Core-shell Fe$_3$O$_4$ @SiO$_2$ nanoparticles synthesized with well-dispersed hydrophilic Fe$_3$O$_4$ seeds Nanoscale 3 701–5