Initial Experience with Epicardial Ultrasound Scanning in Coronary Artery Bypass Grafting

Dae Hyeon Kim, M.D., Suk Ho Sohn, M.D., Ho Young Hwang, M.D., Ph.D.

Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea

Background: The benefits of epicardial ultrasound scanning (EUS) in coronary artery bypass grafting (CABG) have not yet been established. The aim of this study was to evaluate the usefulness of EUS in CABG, including in the assessment of the quality of distal anastomoses, the identification of epicardial target vessels, and the evaluation of any graft issues other than the distal anastomoses.

Methods: Fifty-three patients undergoing CABG were enrolled between March 2018 and February 2019. Intraoperative EUS was performed along with transit-time flow measurement (TTFM). Graft evaluations were performed early (shortly after surgery) and 1 year after surgery for 53 (100%) and 47 (88.7%) patients, respectively.

Results: EUS was applied to assess the quality of all distal anastomoses, 32 target vessels, and 2 conduit trunks. Insufficient TTFM findings were obtained for 18 grafts. However, graft revision was performed for only 3 distal anastomoses; based on the EUS findings, the remaining 15 sites were not revised. The early and 1-year overall graft patency rates were 100% (141 anastomoses) and 96.1% (122 of 127 anastomoses), respectively. All 15 of the distal anastomoses that were not revised despite insufficient TTFM results were patent at the 1-year mark.

Conclusion: The routine application of EUS in CABG could be beneficial by confirming the quality of surgery and reducing unnecessary procedures.

Keywords: Coronary artery disease, Coronary artery bypass, Ultrasonography, Vascular patency
of distal anastomoses was 141. The grafting strategies during the study period were as follows: (1) an aortic off-pump coronary artery bypass using composite grafts based on the in-situ left ITA whenever multiple distal anastomoses were required, (2) harvesting of the ITA with a skeletonization technique, and (3) no-touch SV harvesting from the lower leg. Whenever needed, the left anterior descending coronary artery (LAD) territory was revascularized first using the left ITA. Sequential anastomoses of the diagonal branch and LAD were performed using the left ITA if anatomically feasible. The left circumflex coronary artery territory was then revascularized, after which the right coronary artery territory was revascularized using the sequential technique. The median number of distal anastomoses was 3 (interquartile range, 2 to 4) (Table 2).

Intraoperative application of transit-time flow measurement

Intraoperative TTFM was used to assess graft function. All anastomoses were assessed using TTFM after each distal anastomosis was made. A low flow rate (<15 mL/min) and high pulsatility index (>3 and >5 in the left and right coronary artery territories, respectively) were considered abnormal TTFM findings [9].

Intraoperative epicardial ultrasound scanning

Intraoperative EUS was routinely performed with the VeriQ C system (Medi-Stim AS, Oslo, Norway). The application of EUS included (1) the assessment of the quality of the distal anastomosis, (2) the identification of the epicar-
dial target vessels, and (3) the evaluation of any graft issues other than the distal anastomosis. All distal anastomoses were measured with TTFM and EUS immediately after completing each anastomosis. Because the quality of the EUS image was very sensitive to cardiac motion, EUS was performed before the stabilizer was removed. The probe was applied to the bypass conduit in the longitudinal and perpendicular directions. When the body or arms of the stabilizer interfered with the application of the probe, the stabilizer was not removed; instead, it was moved next to the anastomosis site to minimize the motion of the heart.

When abnormal findings were detected via TTFM, the decision to revise the anastomosis was made based on the EUS findings. Poor quality of the distal anastomosis was indicated by (1) stenosis of the anastomotic site and (2) the presence of any abnormal tissue such as atheromatous plaque or a tissue tag in the middle of the anastomotic site. Poor EUS results included a lack of visible color flow inside the graft lumen and poor quality of the distal anastomosis.

Evaluation of clinical outcomes

Early mortality was defined as any death within 30 days after surgery or during hospitalization for surgery. Postoperative atrial fibrillation was defined as any short runs of atrial fibrillation on 24-hour continuous electrocardiographic telemonitoring prior to discharge. Respiratory complications included postoperative pneumonia or more than 48 hours of prolonged ventilator support. Postoperative acute kidney injury was defined as an increase in the serum creatinine level of greater than 50% of the preoperative value or the need for renal replacement therapy. Perioperative myocardial infarction was diagnosed based on 2 or more of the following abnormalities: an elevated peak serum creatine kinase isoenzyme level, the appearance of new Q waves on the electrocardiogram, and newly-developed regional wall motion abnormalities on the postoperative echocardiogram. Low cardiac output syndrome was defined as the need for mechanical or inotropic support to maintain a systolic blood pressure >90 mm Hg even after the correction of reversible factors.

Evaluation of graft patency

Early postoperative graft angiograms were performed for all patients at 1.4±1.0 days after surgery. Additionally, graft patency was evaluated at 1 year postoperatively according to a routine postoperative evaluation protocol at our institution. A total of 47 patients (88.7%) underwent 1-year graft evaluation at 12.4±2.2 months after surgery using coronary angiography (n=14) or multidetector computed tomography angiography (n=33). A total of 127 distal anastomoses were evaluated at 1 year after CABG. The coronary angiograms were reviewed by 2 specialists, and the multidetector computed tomography angiograms were also reviewed by 2 specialists. Each pair of specialists reached a consensus regarding the graft patency.

Results

Applications of epicardial ultrasound scanning

The applications of EUS in this study were as follows: (1) The quality of all 141 distal anastomoses was evaluated. A total of 123 distal anastomoses with normal TTFM results also exhibited good EUS findings. Abnormal TTFM findings (low flow or high pulsatility index) were found in 18 distal anastomoses [9]. Poor EUS results were found in 3 of these 18 distal anastomoses; no color flow was detected in 2 anastomoses, and an abnormal flow leak to the free space outside the native coronary artery was found in the other anastomosis, in which the epicardium was severely fibrotic. TTFM showed acceptable flow patterns after revision of these 3 anastomotic sites, and patency was confirmed using EUS (Fig. 1). Based on the EUS findings, revision of the distal anastomosis was not performed for the other 15 cases (Fig. 2). The abnormal TTFM results were false positives for 15 of 18 cases; therefore, the false-positive detection rate was 83.3%. (2) EUS was used to evaluate 32 target epicardial arteries in 30 patients to identify the appropriate anastomosis sites. The target vessels for revascularization were changed to adjacent vessels in 5 patients based on the EUS findings of a small-caliber atherosclerotic lumen (<1 mm, n=2) and an intramyocardial course across the entire vessel length (n=3). (3) Two patients exhibited gross hematoma in the left ITA trunk. These conduits were evaluated using EUS to verify the possibility of graft trunk dissection. Subsequently, these conduits were used without manipulation because no evidence of graft dissection was found.

Early clinical outcomes

The early mortality rate was 1.9% (1 of 53 patients). This patient underwent minimally invasive direct CABG because stenosis of the proximal LAD was detected during the preoperative evaluation for peripheral vascular surgery. The patient developed postoperative ischemic colitis and
died on the ninth postoperative day. Overall, postoperative complications included new-onset atrial fibrillation (n=13, 24.5%), respiratory complications (n=3, 5.7%), acute kidney injury (n=2, 3.8%), and low cardiac output syndrome (n=2, 3.8%) (Table 3).

Early and 1-year graft patency

All grafts except 1 were identified as patent on early postoperative angiograms (Table 4). One left ITA graft, which was used to revascularize the LAD, was marked as occluded on the postoperative angiogram on the first operative day. A redo sternotomy procedure was performed to explore the graft on the same day. However, the procedure was finished only after confirming the patency of the flow of the left ITA to the LAD based on the EUS findings. The patency of the graft was confirmed again on the 1-year graft angiogram (Fig. 3). The overall 1-year patency rate was 96.1% (122 of 127 distal anastomoses) (Table 4). The 1-year graft evaluation revealed patient grafts in all 15 distal anastomoses that, based on the EUS findings, were not revised despite poor TTFM data. Additionally, 2 of the 3 grafts that were revised based on the EUS findings were evaluated at the 1-year mark and confirmed to be patent (Table 5).

Discussion

In the present study, we demonstrated that the routine application of EUS along with TTFM may be safe and efficient in CABG. The favorable long-term results of CABG are attributable to graft patency, and various methods of intraoperative assessment of graft patency have been used to prevent early graft failure [2]. Among these methods, TTFM has been widely used for the functional assessment of grafts because of its non-invasive nature. However, TTFM has several limitations, such as its low sensitivity (resulting in a high false-negative detection rate) and its...
EUS is another tool that can be used during CABG. One of its advantages is that it can provide visual imaging in addition to color flow result. Intraoperative imaging of the anastomosis site provides objective data, resulting in a more accurate assessment of graft quality. However, although intraoperative EUS was introduced in the 1980s, it has not been widely used due to its large probe size. Recently, the increased availability of smaller probes and other functional information has allowed for the EUS-based evaluations of small vessels, such as the coronary artery and bypass conduit [10,11]. Additionally, EUS enables scanning of the entire area of the heart, including the posterior aspect, where space is limited. However, the benefits of the routine use of EUS in CABG have not been well-established, and the adoption of EUS in Korean institutions remains limited.

In this present study, intraoperative EUS with TTFM was routinely performed to evaluate all distal anastomoses. Abnormal TTFM findings were observed in 18 of 141 distal anastomoses. Of these sites, only 3 anastomoses were considered abnormal according to the EUS findings, and they were subsequently revised. The abnormal TTFM results for the remaining 15 of the 18 cases were false positives; therefore, the false-positive detection rate of TTFM in this study was 83.3%, which was quite high. Another study showed a similarly high false-positive detection rate of TTFM (94.8%; 37 of 39 cases) [10]. The difference in the false-positive detection rates of TTFM and EUS originates from the mechanism of each method. TTFM is based on the transmission of 2 ultrasound beams. Even in a patent graft, TTFM can yield poor results due to the presence of backward flow, the impact of competitive flow, or the inappropriate positioning of the probe [10]. In addition, factors such as the measurement of graft flow when the heart

Table 3. Early clinical outcomes (N=53)

Variable	No. (%)
Mortality	1 (1.9)
Complications	
Postoperative atrial fibrillation	13 (24.5)
Respiratory complication	3 (5.7)
Acute kidney injury	2 (3.8)
Stroke	0
Postoperative myocardial infarction	0
Low cardiac output syndrome	2 (3.8)
Reoperation for bleeding	2 (3.8)
Superficial wound complication	1 (1.9)

Table 4. Early and 1-year angiographic patency rates of bypass grafts

Graft	Patency rate
Early results (n=53)	
Overall	100 (141/141)
Left ITA	100 (59/59)
Right ITA	100 (68/68)
Saphenous vein	100 (14/14)
One-year results (n=47)	
Overall	96.1 (122/127)
Left ITA	96.3 (52/54)
Right ITA	96.6 (57/59)
Saphenous vein	92.9 (13/14)

Values are presented as % (number/total number).
ITA, internal thoracic artery.
is lifted to complete the lateral and inferior wall vessel anastomoses, a size mismatch between the probe and the SV diameter, and the perivascular tissue of the no-touch SV can interfere with the accuracy of TTFM readings. In contrast, EUS is based on the Doppler effect and provides a visualization that can be useful for evaluating the patency of distal anastomoses regardless of the position of the heart, the diameters of the conduits, and the presence of perivascular tissue.

The overall 1-year patency rate of 96.1% in the present study is consistent with previously-published results [12-14]. The 1-year angiography results demonstrated that all of the grafts with suboptimal patterns on intraoperative TTFM but satisfactory EUS findings were patent. This suggests that the use of EUS in addition to other graft evaluation tools may help to avoid the unnecessary revision of anastomotic sites during CABG.

Because EUS provides visual imaging of the vessel lumen and flow inside the vessels using color Doppler ultrasound, it can be applied to the native coronary arteries and graft body to identify atherosclerotic changes or vessel dissection [7,8,15]. When epicardial target vessels run an intramyocardial course or have severe calcification, it is difficult for surgeons to choose a safe and efficient distal anastomosis site based on preoperative angiography or intraoperative palpation. In such cases, appropriate anastomosis sites could be determined with EUS, and unnecessary coronary artery dissection could be avoided. In the present study, 30 epicardial target vessels were evaluated to identify optimal target anastomosis sites. In addition, the presence of dissection in the left ITA trunk that could not be clearly evaluated with other tools was assessed in 2 patients.

The present study had several limitations. First, it was a retrospective observational study conducted by a single surgeon. Second, the number of enrolled patients was relatively small. Third, a comparative study could not be performed because EUS was routinely used during the study period whenever it was available.

In summary, EUS allows for the visual evaluation of the quality of target vessels, conduits, and anastomosis sites. Because the application of EUS along with TTFM ensures a better-quality assessment and reduces unnecessary intraoperative procedures, it could improve the surgical outcomes of CABG. As such, the routine application of EUS could be beneficial in CABG, but further study is needed.
Conflict of interest

No potential conflict of interest relevant to this article was reported.

ORCID

Dae Hyeon Kim: https://orcid.org/0000-0003-0137-7523
Suk Ho Sohn: https://orcid.org/0000-0001-7391-3415
Ho Young Hwang: https://orcid.org/0000-0002-8935-8118

References

1. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019;40:87-165.
2. Brown EN, Burris NS, Gu J, et al. Thinking inside the graft: applications of optical coherence tomography in coronary artery bypass grafting. J Biomed Opt 2007;12:051704.
3. Balacumarswami L, Taggart DP. Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann Thorac Surg 2007;83:2251-7.
4. Takami Y, Takagi Y. Roles of transit-time flow measurement for coronary artery bypass surgery. Thorac Cardiovasc Surg 2018;66:426-33.
5. Niclauss L. Techniques and standards in intraoperative graft verification by transit time flow measurement after coronary artery bypass graft surgery: a critical review. Eur J Cardiothorac Surg 2017;51:26-33.
6. Jokinen JJ, Werkkala K, Vainikka T, Perakyla T, Simpanen J, Ilhberg L. Clinical value of intra-operative transit-time flow measurement for coronary artery bypass grafting: a prospective angiography-controlled study. Eur J Cardiothorac Surg 2011;39:918-23.
7. Haaverstad R, Vitale N, Williams RI, Fraser AG. Epicardial colour-Doppler scanning of coronary artery stenoses and graft anastomoses. Scand Cardiovasc J 2002;36:95-9.
8. Budde RP, Bakker PF, Grondeman PF, Borst C. High-frequency epicardial ultrasound: review of a multipurpose intraoperative tool for coronary surgery. Surg Endosc 2009;23:467-76.
9. Kim KB, Kang CH, Lim C. Prediction of graft flow impairment by intraoperative transit time flow measurement in off-pump coronary artery bypass using arterial grafts. Ann Thorac Surg 2005;80:594-8.
10. Di Giammarco G, Canosa C, Foschi M, et al. Intraoperative graft verification in coronary surgery: increased diagnostic accuracy adding high-resolution epicardial ultrasonography to transit-time flow measurement. Eur J Cardiothorac Surg 2014;45:e41-5.
11. Wolf RK, Falk V. Intraoperative assessment of coronary artery bypass grafts. J Thorac Cardiovasc Surg 2003;126:634-7.
12. Kulik A, Le May MR, Voisine P, et al. Aspirin plus clopidogrel versus aspirin alone after coronary artery bypass grafting: the clopidogrel after surgery for coronary artery disease (CASCADE) Trial. Circulation 2010;122:2680-7.
13. Kim KB, Hwang HY, Hahn S, Kim JS, Oh SJ. A randomized comparison of the Saphenous Vein Versus Right Internal Thoracic Artery as a Y-Composite Graft (SAVE RITA) trial: one-year angiographic results and mid-term clinical outcomes. J Thorac Cardiovasc Surg 2014;148:901-8.
14. Hwang HY, Kim JS, Choi ES, Lee JH, Kim KB. Saphenous vein graft as a composite graft in patients who are undergoing off-pump coronary artery bypass: the early results. Korean J Thorac Cardiovasc Surg 2009;42:324-30.
15. Kieser TM, Taggart DP. The use of intraoperative graft assessment in guiding graft revision. Ann Cardiothorac Surg 2018;7:652-62.