TITLE. Rheology as a mechano-sopic method to track growth of calcium carbonate in gelatin hydrogels

AUTHORS. Abigail U. Regitsky, a Bavand Keshavarz, b Gareth H. McKinley b and Niels Holten-Andersen a,*

AUTHOR AFFILIATIONS

a Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

b Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

* holten@mit.edu

KEYWORDS. Biomineralization, calcium carbonate, gelatin, hydrogel, viscoelasticity, rheometry.
ABSTRACT. Biominerals have been widely studied due to their unique mechanical properties, afforded by their inorganic-organic composite structure and well-controlled growth in macromolecular environments. However, a lack of suitable characterization techniques for inorganic minerals in organic-rich media has prevented a full understanding of biomineralization. Here, we applied rheometry to study mineral nucleation and growth dynamics by measuring viscoelastic material properties of a hydrogel system during mineralization. Our proof-of-concept system consists of a gelatin hydrogel matrix preloaded with calcium ions and a reservoir of carbonate ions, which diffuse through the gel to initiate mineralization. We found that gels with diffused carbonate show an increase in low frequency energy dissipation, which scales with carbonate concentration and gel pH. Using this signal, and recognizing that mineralization occurs simultaneously with carbonate diffusion in our system, we have mechano-scopically tracked mineral growth in situ, showcasing the potential of rheometry for studying mineralization kinetics in real time.

INTRODUCTION

Six hundred million years ago, organisms began incorporating inorganic elements into organized mineral components, a process known as biomineralization.¹ The major types of biominerals synthesized by organisms today are calcium carbonates (CaCO₃), phosphates, and oxalates; iron oxides and hydroxides; and silica. Many of these occur in different polymorphs and have a variety of functions, such as structural support, calcium and iron storage, and sensing.²³ These biominerals are inorganic-organic composites formed in aqueous environments at physiological conditions, often with superior mechanical properties compared to their purely inorganic
counterparts. Thus, biominerals have been widely studied from biological, chemical, and materials science standpoints in order to better understand the mechanisms involved in their formation and to learn how to mimic these “green” mineralization processes in synthetic systems. Yet, despite intense studies on their structure and formation, questions on early thermodynamics and kinetics of biomineral nucleation and growth still remain. Accordingly, recent advances in high resolution electron microscopy such as cryo-TEM and liquid cell TEM have been employed to capture early mineralization events, providing sub-nanometer resolution images of mineral growth frozen in time and real-time videos of in situ mineral phase transformations, respectively. These and other recent studies have afforded insights into non-classical nucleation and growth pathways of biominerals, such as amorphous precursors, pre-nucleation clusters, dense liquid phases, and oriented aggregation by particle attachment wherein organic molecules are hypothesized to function as nucleation enhancers or inhibitors or as cluster stabilizers.

However, high-resolution electron microscopy techniques are static measurements of structure, not of material properties, and they do not allow studies of biomineralization within hydrogel-like organic matrices. One of the most well-known and studied examples of biomineralization is nacre, which has a brick and mortar composite structure of high aspect ratio tablets of aragonite (a CaCO$_3$ polymorph) within a proteinaceous organic matrix. The organic matrix functions both as a scaffold for nucleation and growth during crystallization and as a glue in the final composite structure. During mineralization, the organic matrix creates a hydrogel-like environment within which the aragonite tablets grow. In addition to nacre, other biominerals, such as coral, otoliths, chiton teeth, bone, and enamel, have been found to mineralize in hydrogel-like organic matrices. Thus, in vitro hydrogel networks have
become a common method to experimentally study and mimic natural biomineralization systems, yet it remains difficult to detect nuclei within gels, and experiments are limited to studying nucleation by extrapolation from visual observation of crystal growth instead of actual nuclei formation. Furthermore, because of the crowded macromolecular environment and solution confinement in pores, mineralization in gels varies greatly from that in solution, and aqueous mineralization studies cannot substitute for mineralization in macromolecular hydrogel media. Hence, pre-nucleation and early mineral growth remain uncharacterized in hydrogel systems using current experimental techniques.

In this study, we propose rheometry as a mechanical characterization tool for observing the growth of CaCO$_3$ minerals in gelatin hydrogels. In particular, we use small amplitude oscillatory shear (SAOS) rheology to monitor the changes in linear viscoelastic mechanical properties of the hydrogel system with mineral deposits. While rheology has been used previously to characterize general viscoelastic properties of mineralized hydrogels, we specifically seek to deconstruct the unique mechanical contributions from the minerals, the hydrogel matrix, and the mineral-hydrogel interface to observe and quantify mineral growth in situ.

We investigated the mechanical differences between gels which have CaCO$_3$ particles grown directly within the gel, CaCO$_3$ particles physically mixed into the gel, and gels with no minerals, shown in Figure 1 as mineralized, mixed, and control gels, respectively. In all gel systems we observed increased viscous dissipation in direct correlation with Na$_2$CO$_3$ solution concentration. Since mineralization is controlled directly through carbonate diffusion in the supersaturated gel conditions used here, we used this specific carbonate mechanical signal to track the growth of minerals in situ and in real time. We also used scanning electron microscopy
and thermogravimetric analysis to characterize the mineral particles grown in the hydrogel composite systems.

Figure 1. Diagram of sample preparation procedures for “mineralized” and “mixed” gels, where CaCO$_3$ particles are either grown in the gel or manually mixed in, respectively, and for control gels without minerals. Gels are then characterized mechanically using small amplitude oscillatory shear rheology.

EXPERIMENTAL

Materials

Gelatin type A from porcine skin, calcium chloride (CaCl$_2$), and sodium carbonate (NaCO$_3$) were purchased from Sigma-Aldrich. CaCO$_3$ (99.5%, 5μm powder) was purchased from Alfa Aesar. All reagents were used as received. All water was deionised and filtered through a Millipore Milli-Q purification system to a resistivity of 18 MΩ·cm.
Hydrogel Preparation

As shown in Figure 1, gelatin for mineralized and Ca control samples was dissolved in H$_2$O with 0.05M CaCl$_2$ at 50°C for 1h, while stirring, to make 10wt% gelatin solutions. For CO$_3$ control samples, gelatin was dissolved in pure H$_2$O, and for mixed samples, gelatin was dissolved in H$_2$O with 0.1-10wt% CaCO$_3$, using the same procedure. H$_2$O-CaCO$_3$ mixtures were sonicated and vortexed prior to addition of gelatin to ensure proper dispersion of CaCO$_3$. For all samples, 3 mL of gelatin solutions were then transferred to 60mm petri dishes to gel at 4°C for 1h. Petri dishes were sealed with parafilm to prevent evaporation, and gels were left at room temperature overnight to equilibrate before beginning mineralization or control experiments.

Mineralization Procedures

To induce mineralization, 3 mL of H$_2$O with 0.05M-0.75M Na$_2$CO$_3$ were pipetted on top of the calcium-loaded gelatin. Mineralization was stopped after 1h by pouring off the excess Na$_2$CO$_3$ solution. Mixed and control gels were subjected to similar conditions using NaNO$_3$ or pure H$_2$O for comparison.

Characterization

Rheology. Frequency sweeps were conducted on all gels using an MCR 302 Anton Paar rheometer with a 25mm parallel plate geometry at 25°C. To allow gels to equilibrate, they were left on the rheometer for 30 minutes at 25°C prior to starting measurements. Frequency sweeps were performed within the linear viscoelastic region at 1% strain amplitude with angular frequency ranging from 0.1-100 rad/s.
In situ experiments were done on the MCR 302 Anton Paar rheometer with a 25mm parallel plate geometry and separately on a TA Instruments DHR-3 rheometer with a custom-fabricated single cylinder Couette geometry. Gelatin solutions in 0.05M CaCl₂ were placed into the rheometers at 50°C; the temperature was then ramped down to 4°C and held at 4°C for 1h to form gels. The gels were then brought back to 25°C and left to equilibrate before adding Na₂CO₃ mineralizing solution to initiate mineralization while remaining in the rheometer. During mineralization, the storage (G’) and loss (G’’) moduli were monitored at multiple frequencies to capture the evolution of viscoelastic mechanical properties with the mineralization process.

Scanning Electron Microscopy (SEM). Grown CaCO₃ crystals were separated from the gelatin by heating the gel above 50°C, washing with water and freeze-drying. Uncoated crystals were examined using a Zeiss Merlin High-resolution SEM at 1-3kV accelerating voltage and 300 pA beam current, using depth of field mode, to determine their size and morphology.

Thermogravimetric Analysis (TGA). A TA Instruments Q500 TGA was used to measure the mass fraction of the CaCO₃ particles. Pieces of the gelatin-CaCO₃ samples were freeze-dried prior to TGA experiments. The samples were ramped from 20-800°C at a rate of 5°C/min. All water was assumed to have evaporated by 150°C, at which point the starting sample mass was taken. The CaCO₃ mass was taken to be the remaining mass after all gelatin had decomposed.
RESULTS AND DISCUSSION

Mineralized CaCO$_3$ characterization

To create mineralized gels with different mineral contents, we varied the concentration of Na$_2$CO$_3$ mineralizing solution from 0.05M to 0.75M. We calculated the volume fraction of grown particles from mass fractions measured using TGA, assuming CaCO$_3$ density of 2.711 g/cm3 and gelatin solution density similar to that of water (1 g/cm3). As shown in Figure 2a, we achieved a range of CaCO$_3$ volume fractions from 0-1.8%, with higher Na$_2$CO$_3$ concentration resulting in higher mineral volume fractions. We also characterized the particle sizes using SEM to understand how the average particle sizes and size distributions changed with varying Na$_2$CO$_3$ concentration. Particle sizes generally decreased with increasing Na$_2$CO$_3$ concentration to an average of ~10μm, as depicted in Figure 2a. Figure 2b-f illustrates representative SEM images of particles grown using each Na$_2$CO$_3$ concentration with insets of the particle size distributions. The particle size distribution obtained from the 0.05M Na$_2$CO$_3$ solution may indicate a bimodal distribution, which would account for the large standard deviation in sizes. For a detailed methodology of our particle size analysis, see the Supplementary Information.

Figure 2. Properties of mineralized CaCO$_3$ particles grown in gels. (a) CaCO$_3$ volume fraction (closed circles) and average particle size (open circles) as a function of the concentration of Na$_2$CO$_3$ solution used for mineralization. (b-f) Representative SEM images of particles grown with increasing Na$_2$CO$_3$ solution concentration (top left of each image). Overlays show particle size distributions in μm. The density of the particles in the images are a result of the sample
preparation procedure for SEM and are not a reflection of the particle density within the gel. All scale bars are 100 μm.

In addition to enabling particle size measurements, SEM images depicted rhombohedral particle morphologies for all samples, indicative of the calcite polymorph. X-ray powder diffraction (XRPD) of mineralized particles confirmed calcite as the dominant polymorph. Additional details and data from XRPD can be found in the Supplementary Information.

Rheological characterization

We conducted frequency sweeps to measure the storage moduli (G') and loss moduli (G'') of all gel samples. All gels showed solid-like behavior, with $G' > G''$ across all frequencies measured, as shown in Figure 3a. These data are taken from one sample from each of the four types of gels and are representative of the mechanical behavior of the whole group (please see the Supplemental Information for the complete set of data). In correlation with the presence of carbonate, we observed two marked differences in mechanical behavior of mineralized and CO$_3$ control gels compared to mixed and Ca control gels: higher values of G' across the frequency spectrum and an increase in G'' at low frequencies. Because of the high reactant concentrations—and thus, high levels of supersaturation—used in our experiments, mineralization correlates closely with the diffusion of carbonate ions into the calcium-loaded gel. Therefore, the mechanical differences associated with the presence of carbonate can be used as indirect signals of the growth of minerals. In particular, we chose the increase in G'' at low frequency as a signature of the presence of particles in mineralized systems.

To simplify the presentation of rheological data based on this low frequency dissipation signature, we use the loss tangent ($\tan(\delta) = G''/G'$). Figure 3b depicts the same data as in Figure
3a converted to $\tan(\delta)$. Here, the increase in $\tan(\delta)$, or energy dissipation, at low frequencies is even more clear. Because this signature is evident only at low frequencies, we are able to further simplify the differences between samples by using a single value of $\tan(\delta)$ at $\omega = 0.1$ rad/s, normalized by the minimum value of $\tan(\delta)$, which we call $\Delta \tan(\delta) = (\tan(\delta)_{\omega=0.1\text{rad/s}} - \tan(\delta)_{\text{min}})$.

Figure 3. (a) Representative graph of the storage and loss moduli of mineralized (circle), mixed (square), and control samples (Na_2CO_3 control – star, CaCl_2 control – asterisk) from 0.1-100 rad/s angular frequency. (b) The same data from (a) replotted as $\tan(\delta)$ to simplify the data representation and highlight the enhanced low frequency dissipation signature of the mineralized and CO_3 control samples.
To better understand how the low frequency dissipation signature correlates with gel mineralization, in Figure 4 we plot $\Delta \tan(\delta)$ for gels with respect to (a) particle volume fraction and (b) Na_2CO_3 mineralizing solution concentration. Figure 4a shows that $\Delta \tan(\delta)$ increases with particle volume fraction in mineralized samples while there is no increase in $\Delta \tan(\delta)$ with mixed in particle volume fraction. However, Figure 4b shows that similar values of $\Delta \tan(\delta)$ are achieved in CO$_3$ control samples with no particles. These data confirm that the presence of mineral alone does not lead to increased dissipation and that the magnitude of $\Delta \tan(\delta)$ correlates with the amount of carbonate in the gel. To further test this correlation, we diffused 0.5M Na_2CO_3 into mixed gels and observed a corresponding increase in $\Delta \tan(\delta)$ independent of CaCO$_3$ particle content (see Figure 4a and 4b).
Figure 4. Variation in $\Delta \tan(\delta)$ ($\tan(\delta)_{\omega=0.1} - \tan(\delta)_{\text{min}}$) of all gels with respect to (a) CaCO$_3$ volume fraction in the gel and (b) Na$_2$CO$_3$ mineralizing solution concentration. Samples represented include mineralized (circle), mixed (square), Na$_2$CO$_3$ control (star), CaCl$_2$ control (asterisk), and mixed + Na$_2$CO$_3$ (triangle). Notice the collapse of data points from (a) to (b) of mixed + Na$_2$CO$_3$ samples with varying CaCO$_3$ volume fraction but identical Na$_2$CO$_3$ solution concentration.

It has been widely observed that the mechanical properties of gelatin can depend strongly on the system pH.$^{47-49}$ Specifically, studies have shown increases in storage moduli of gelatin gels at higher pH,52 which may explain the higher moduli observed for gels exposed to Na$_2$CO$_3$ (see Figure 3a) given that Na$_2$CO$_3$ is a base. However, the link between pH and viscoelastic dissipation in hydrogels has not been thoroughly explored. When plotting $\Delta \tan(\delta)$ against the pH of CO$_3$ control gels, we observe a tight linear correlation (see Figure 5), but gels exposed to basic pH using NaOH—without the presence of carbonate—do not show the same mechanically dissipative behavior. These results strongly suggest that carbonate-specific interactions with the

![Graph](image)

Figure 5. $\Delta \tan(\delta)$ with respect to gel pH for Na$_2$CO$_3$ control samples (star) and gels exposed to NaOH (plus sign) to produce a high pH environment without the presence of carbonate.
gel network, rather than gel pH, is the major source the observed dissipation. One possible explanation of this carbonate-induced dissipation is the association of divalent CO_3^{2-} ions with the gelatin matrix. Simulations by Tlatlik et al. revealed that hydrogen bonding between PO_4^{3-} and HPO_4^{2-} ions and the gelatin triple helix caused some bending of the gelatin molecule, increasing flexibility. A similar association mechanism could be occurring between CO_3^{2-} ions and gelatin triple helices in our system, leading to increased dissipation at longer timescales (corresponding to lower frequencies) due to gelatin helical bending.

In situ mineralization

Next, we wanted to utilize the low frequency mechanical dissipation signal to monitor changes in mineralization in situ in real time. Figure 6 demonstrates a clear increase in $\tan(\delta)|_{\omega=0.1}$ over time during in situ mineralization in a gel, whereas $\tan(\delta)|_{\omega=0.1}$ remains constant for the Ca control. While further analysis is required to fully understand what aspects of mineral growth are encapsulated in the time evolution of $\tan(\delta)$, our results confirm the ability of rheology to nondestructively probe mineral growth in gels in real time.

Figure 6. Evolution of $\tan(\delta)$ at $\omega = 0.1$ rad/s over time for a gelatin gel undergoing in situ mineralization (circle) and a CaCl_2 control sample (asterisk).

The parallel plate geometry used above is not ideal for this type of experiment since it creates a radially inhomogeneous gradient of particle growth within the gel. Hence, further rheological data analysis is complicated because we cannot determine how much of the system has been mineralized (radially) at any given time. Therefore, we also conducted in situ mineralization experiments using a cylindrical Couette geometry with a transparent outer
cylindrical wall, schematically depicted in Figure 7a. This geometry has a larger surface area over which the CO$_3^{2-}$ ions can diffuse, and the transparent outer cylinder allowed us to monitor visually the axial fraction of the gel that has mineralized. The Couette geometry also enabled us to capture live images showing crystal growth over time, as shown in Figure 7b. Figure 7c

Figure 7. (a) Schematic of the in situ mineralization setup using a cylindrical Couette geometry. (b) Images of the gelatin gel during in situ mineralization at various timepoints in the cylindrical Couette geometry. The sharp, horizontal line toward the top of each image is the interface between the top of the gel and the carbonate solution. (c) Distance of the mineralization front from the interface over time, showing growth of the mineralized fraction of the gel. Dashed lines connect data points at various times to corresponding images in (b). (d) Evolution of tan(δ) at varying frequencies over time, indicating the greatest increase in dissipation at the lowest frequency of 0.1 rad/s.
depicts ΔL, the axial distance of the mineralization front from the gel/solution interface, over time, which represents the growth of the mineralized portion of the gel. Dashed lines connect the images in Figure 7b to corresponding time points in Figure 7c. Figure 7d portrays the time evolution of $\tan(\delta)$ of the gelatin-CaCO$_3$ system at nine different frequencies. Here, $\tan(\delta)$ is normalized by the initial value of $\tan(\delta)$ to more clearly show the relative changes in $\tan(\delta)$ over time at various frequencies. The largest change in $\tan(\delta)$ occurs at a frequency of 0.1 rad/s, the lowest frequency measured, confirming that probing the mineral-gel system at lower frequencies gives more sensitivity overall and especially at earlier times during mineralization. Furthermore, the essential similarity of the shapes of the mineralized $\tan(\delta)_{\omega=0.1}$ curves in Figure 6 and Figure 7d, captured using different instruments and different measurement geometries, reveals that rheological measurements are indeed robust characterization tools for quantifying the dynamics of mineral growth in hydrogels.

CONCLUSIONS

With a proof-of-concept hydrogel mineralization system consisting of gelatin and CaCO$_3$, we have successfully tracked mineral growth in real time using rheological measurements of the complex modulus, $G^*(\omega)$, as an in situ mechano-scopic characterization tool. We identified a unique low frequency dissipation signal originating from the presence of excess CO$_3^{2-}$ ions within the gelatin matrix. When combined with high reactant concentrations, the start of mineralization correlates closely with the diffusion of CO$_3^{2-}$ ions into a Ca-loaded gel. Therefore, we were able to spatio-temporally track the growth of mineral particles in the gel by monitoring the signature low frequency dissipation signal induced by carbonate diffusion. Furthermore, we
have demonstrated that we can reliably capture this mechano-spic signal in situ over time using two different stress-controlled rheometer geometries. In the future, we aim to study mineralization systems with stronger mineral-matrix interactions that will lead to more direct correlation between mineralization and the hydrogel viscoelastic mechanics. For example, Li et al. have shown drastic rheological differences between gels crosslinked with either Fe\(^{3+}\) ions or Fe\(_3\)O\(_4\) nanoparticles in otherwise identical polymer matrices. Utilizing a similar hydrogel system for rheological characterization of in situ mineralization could allow unprecedented insights into early nucleation and growth mechanisms, such as distinguishing different polymorphs in the mineralization process.

SUPPLEMENTARY INFORMATION

Supplementary information: particle size analysis, x-ray powder diffraction data, rheological data, and in situ mineralization details (pdf)

ACKNOWLEDGEMENTS

This work was supported by Interlub SA de CV. Financial support of this work by the Office of Naval Research (ONR) under the Young Investigators Program Grant ONR.N00014-15-1-2763 is gratefully acknowledged. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-1419807. We thank Ross Regitsky for help in the creation of figures.
REFERENCES

(1) Lowenstam, H. Minerals Formed by Organisms. *Science* (80-.). **1981**, *211* (4487), 1126–1131.

(2) Williams, R. An Introduction to Biominerals and the Role of Organic Molecules in Their Formation. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **1984**, *304* (1121), 411–424.

(3) Lowenstam, H. A.; Weiner, S. *On Biomineralization*; Oxford University Press: New York, 1989.

(4) Mann, S. *Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry*; Oxford University Press: New York, 2001.

(5) Palmer, L. C.; Newcomb, C. J.; Kaltz, S. R.; Spoerke, E. D.; Stupp, S. I. Biomimetic Systems for Hydroxyapatite Mineralization Inspired by Bone and Enamel. *Chem. Rev.* **2008**, *108* (11), 4754–4783.

(6) Evans, J. S. “Tuning in” to Mollusk Shell Nacre- and Prismatic-Associated Protein Terminal Sequences. Implications for Biomineralization and the Construction of High Performance Inorganic - Organic Composites. *Chem. Rev.* **2008**, *108* (11), 4455–4462.

(7) Meyers, M. A.; Chen, P.-Y.; Lopez, M. I.; Seki, Y.; Lin, A. Y. M. Biological Materials: A Materials Science Approach. *J. Mech. Behav. Biomed. Mater.* **2011**, *4* (5), 626–657.

(8) Ji, B.; Gao, H. Mechanical Principles of Biological Nanocomposites. *Annu. Rev. Mater. Res.* **2010**, *40* (1), 77–100.

(9) Pouget, E.; Bomans, P.; Goos, J.; Frederik, P. M.; With, G. de; Sommerdijk, N. A. J. M.
The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM.
Science (80-). 2009, 323, 1455–1458.

(10) Beniash, E.; Dey, A.; Sommerdijk, N. A. J. M. Transmission Electron Microscopy in Biomineralization Research: Advances and Challenges. In *Biomineralization Sourcebook*; DiMasi, E., Gower, L. B., Eds.; CRC Press: Boca Raton, FL, 2014; pp 209–231.

(11) De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F.; Wallace, A. F.; Michel, F. M.; Meldrum, F. C.; Colfen, H.; Dove, P. M. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. *Science (80-).* 2015, 349 (6247), aaa6760.

(12) Nielsen, M.; Aloni, S.; Yoreo, J. De. In Situ TEM Imaging of CaCO3 Nucleation Reveals Coexistence of Direct and Indirect Pathways. *Science (80-).* 2014, 345 (6201), 1158–1162.

(13) Smeets, P. J. M.; Cho, K. R.; Kempen, R. G. E.; Sommerdijk, N. A. J. M.; De Yoreo, J. J. Calcium Carbonate Nucleation Driven by Ion Binding in a Biomimetic Matrix Revealed by in Situ Electron Microscopy. *Nat. Mater.* 2015, 14, 394–399.

(14) Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment. *Science (80-).* 2012, 336 (6084), 1014–1018.

(15) Radha, A. V.; Forbes, T. Z.; Killian, C. E.; Gilbert, P. U. P. A.; Navrotsky, A. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous
Calcium Carbonate. *Proc. Natl. Acad. Sci. U. S. A.* **2010**, *107* (38), 16438–16443.

(16) Gower, L. B. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization. *Chem. Rev.* **2008**, *108* (11), 4551–4627.

(17) Gebauer, D.; Völkel, A.; Cölfen, H. Stable Prenucleation Calcium Carbonate Clusters. *Science (80-.).* **2008**, *120* (December), 1819–1822.

(18) Gebauer, D.; Cölfen, H. Prenucleation Clusters and Non-Classical Nucleation. *Nano Today* **2011**, *6* (6), 564–584.

(19) Gebauer, D.; Kellermeier, M.; Gale, J. D.; Bergström, L.; Cölfen, H. Pre-Nucleation Clusters as Solute Precursors in Crystallisation. *Chem. Soc. Rev.* **2014**, *43* (7), 2348–2371.

(20) Vekilov, P. G. The Two-Step Mechanism of Nucleation of Crystals in Solution. *Nanoscale* **2010**, *2* (11), 2346–2357.

(21) Wallace, A. F.; Hedges, L. O.; Fernandez-martinez, A.; Raiteri, P.; Gale, J. D.; Waychunas, G. a; Whitelam, S.; Banfield, J. F.; Yoreo, J. J. De. Microscopic Evidence for Liquid-Liquid Separation in Supersaturated CaCO3 Solutions. *Science (80-.).* **2013**, *341* (August), 885–889.

(22) Gal, A.; Kahil, K.; Vidavsky, N.; DeVol, R. T.; Gilbert, P. U. P. A.; Fratzl, P.; Weiner, S.; Addadi, L. Particle Accretion Mechanism Underlies Biological Crystal Growth from an Amorphous Precursor Phase. *Adv. Funct. Mater.* **2014**, *24* (34), 5420–5426.

(23) Meldrum, F. C.; Colfen, H. Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems. *Chem. Rev.* **2008**, *108* (11), 4332–4432.
(24) Gebauer, D.; Cölfen, H.; Verch, A.; Antonietti, M. The Multiple Roles of Additives in CaCO3 Crystallization: A Quantitative Case Study. *Adv. Mater.* **2009**, *21* (4), 435–439.

(25) Zaremba, C. M.; Belcher, A. M.; Fritz, M.; Li, Y.; Mann, S.; Hansma, P. K.; Morse, D. E.; Speck, J. S.; Stucky, G. D. Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls. *Chem. Mater.* **1996**, *8* (3), 679–690.

(26) Belcher, A.; Wu, X.; Christensen, R.; Hansma, P.; Stucky, G.; Morse, D. Control of Crystal Phase Switching and Orientation by Soluble Mollusc-Shell Proteins. *Science (80-.).* **1996**, *381*, 56–58.

(27) Addadi, L.; Joester, D.; Nudelman, F.; Weiner, S. Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes. *Chemistry* **2006**, *12* (4), 980–987.

(28) Sethmann, I.; Helbig, U.; Wörheide, G. Octocoral Sclerite Ultrastructures and Experimental Approach to Underlying Biomineralisation Principles. *CrystEngComm* **2007**, *9* (12), 1262.

(29) Sondi, I.; Salopek-Sondi, B.; Skapin, S. D.; Segota, S.; Jurina, I.; Vukelic, B. Colloid-Chemical Processes in the Growth and Design of the Bio-Inorganic Aragonite Structure in the Scleractinian Coral Cladocora Caespitosa. *J. Colloid Interface Sci.* **2011**, *354* (1), 181–189.

(30) Davis, J. G.; Oberholtzer, J. C.; Burns, F. R.; Greene, M. I. Molecular Cloning and Characterization of an Inner Ear-Specific Structural Protein. *Science (80-.).* **1995**, *267* (5200), 1031–1034.
(31) Falini, G.; Fermani, S.; Vanzo, S.; Miletic, M.; Zaffino, G. Influence on the Formation of Aragonite or Vaterite by Otolith Macromolecules. *Eur. J. Inorg. Chem.* **2005**, *1* (1), 162–167.

(32) Gordon, L. M.; Joester, D. Nanoscale Chemical Tomography of Buried Organic-Inorganic Interfaces in the Chiton Tooth. *Nature* **2011**, *469* (7329), 194–197.

(33) Sone, E. D.; Weiner, S.; Addadi, L. Biomineralization of Limpet Teeth: A Cryo-TEM Study of the Organic Matrix and the Onset of Mineral Deposition. *J. Struct. Biol.* **2007**, *158* (3), 428–444.

(34) Weiner, S.; Wagner, D. H. The Material Bone: Structure-Mechanical Function Relations. *Annu. Rev. Mater. Sci.* **1998**, *28*, 271–298.

(35) Olszta, M. J.; Cheng, X.; Jee, S. S.; Kumar, R.; Kim, Y. Y.; Kaufman, M. J.; Douglas, E. P.; Gower, L. B. Bone Structure and Formation: A New Perspective. *Mater. Sci. Eng. R Reports* **2007**, *58* (3–5), 77–116.

(36) Moradian-Oldak, J. Amelogenins: Assembly, Processing and Control of Crystal Morphology. *Matrix Biol.* **2001**, *20* (5–6), 293–305.

(37) Fang, P.-A.; Conway, J. F.; Margolis, H. C.; Simmer, J. P.; Beniash, E. Hierarchical Self-Assembly of Amelogenin and the Regulation of Biomineralization at the Nanoscale. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108* (34), 14097–14102.

(38) Falini, G.; Fermani, S.; Gazzano, M.; Ripamonti, A. Biomimetic Crystallization of Calcium Carbonate Polymorphs by Means of Collagenous Matrices. *Chem. - A Eur. J.* **1997**, *3* (11), 1807–1814.
(39) Kosanović, C.; Falini, G.; Kralj, D. Mineralization of Calcium Carbonates in Gelling Media. *Cryst. Growth Des.* **2011**, *11*(1), 269–277.

(40) Ma, Y.; Feng, Q. Alginate Hydrogel-Mediated Crystallization of Calcium Carbonate. *J. Solid State Chem.* **2011**, *184*(5), 1008–1015.

(41) Asenath-Smith, E.; Li, H.; Keene, E. C.; Seh, Z. W.; Estroff, L. A. Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization. *Adv. Funct. Mater.* **2012**, *22*(14), 2891–2914.

(42) Nindiyasari, F.; Fernandez-Diaz, L.; Griesshaber, E.; Astilleros, J. M.; Sanchez-Pastor, N.; Schmahl, W. W. Influence of Gelatin Hydrogel Porosity on the Crystallization of CaCO3. *Cryst. Growth Des.* **2014**, *14*, 1531–1542.

(43) Bjørnøy, S. H.; Bassett, D. C.; Ucar, S.; Andreassen, J.-P.; Sikorski, P. Controlled Mineralisation and Recrystallisation of Brushite within Alginate Hydrogels. *Biomed. Mater.* **2016**, *11*(1), 15013.

(44) Shah, R.; Saha, N.; Kitano, T.; Saha, P. Preparation of CaCO 3-Based Biomineralized Polyvinylpyrrolidone-Carboxymethylcellulose Hydrogels and Their Viscoelastic Behavior. *J. Appl. Polym. Sci.* **2014**, *131*(10), 40237.

(45) Shah, R.; Saha, N.; Kitano, T.; Saha, P. Influence of Strain on Dynamic Viscoelastic Properties of Swelled (H2O) and Biomineralized (CaCO3) PVP-CMC Hydrogels. *Appl. Rheol.* **2015**, *25*(3), 23–32.

(46) Anthony, J. W. Calcite. In *Handbook of Mineralogy*; US-Mineralogical Society of America: Chantilly, VA, 2003.
(47) Veis, A. The Molecular Characterization of Gelatin. In The Macromolecular Chemistry of Gelatin; Horecker, B., Kaplan, N. O., Scheraga, H. A., Eds.; New York, 1964; pp 49–125.

(48) Koli, J. M.; Basu, S.; Kannuchamy, N.; Gudipati, V. Effect of pH and Ionic Strength on Functional Properties of Fish Gelatin in Comparison to Mammalian Gelatin. Fish. Technol. 2013, 50 (August), 126–132.

(49) Kadam, Y.; Pochat-Bohatier, C.; Sanchez, J.; El Ghzaoui, A. Modulating Viscoelastic Properties of Physically Crosslinked Self-Assembled Gelatin Hydrogels through Optimized Solvent Conditions. J. Dispers. Sci. Technol. 2015, 36 (9), 1349–1356.

(50) Chatterjee, S.; Bohidar, H. B. Effect of Salt and Temperature on Viscoelasticity of Gelatin Hydrogels. J. Surf. Sci. Technol. 2006, 22 (1), 1–13.

(51) Abed, M. A.; Bohidar, H. B. Surfactant Induced Softening in Gelatin Hydrogels. Eur. Polym. J. 2005, 41 (10), 2395–2405.

(52) Haug, I. J.; Draget, K. I.; Smidsrød, O. Physical and Rheological Properties of Fish Gelatin Compared to Mammalian Gelatin. Food Hydrocoll. 2004, 18 (2), 203–213.

(53) Tlatlik, H.; Simon, P.; Kawska, A.; Zahn, D.; Kniep, R. Biomimetic Fluorapatite-Gelatine Nanocomposites: Pre-Structuring of Gelatine Matrices by Ion Impregnation and Its Effect on Form Development. Angew. Chemie - Int. Ed. 2006, 45 (12), 1905–1910.

(54) Li, Q.; Barrett, D. G.; Messersmith, P. B.; Holten-Andersen, N. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics. ACS Nano 2016, 10 (1), 1317–1324.
TABLE OF CONTENTS GRAPHIC