Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice

Alessio Cortellini, Marco Tucci, Vincenzo Adamo, Luigi Stefania Stucci, Alessandro Russo, Enrica Teresa Tanda, Francesco Spagnolo, Francesca Rastelli, Renato Bisonni, Daniele Santini, Marco Russano, Alessandro Inno, Federica Zoratto, Enzo Veltri, Barbara Di Cocco, Nicola Petragnani, Laura Pala, Sergio Bracarda, Serena Macrini, Giampiero Porzio, Corrado Ficorella, Paolo Antonio Ascierto

To cite: Cortellini A, Tucci M, Adamo V, et al. Integrated analysis of concomitant medications and oncological outcomes from PD-1/PD-L1 checkpoint inhibitors in clinical practice. Journal for Immunotherapy of Cancer 2020;8:e001361. doi:10.1136/jitc-2020-001361

Accepted 28 August 2020

ABSTRACT

Background Concomitant medications, such as steroids, proton pump inhibitors (PPIs) and antibiotics, might affect clinical outcomes with immune checkpoint inhibitors.

Methods We conducted a multicenter observational retrospective study aimed at evaluating the impact of concomitant medications on clinical outcomes, by weighing their associations with baseline clinical characteristics (including performance status, burden of disease and body mass index) and the underlying causes for their prescription. This analysis included consecutive stage IV patients with cancer, who underwent treatment with single agent anti-programmed death-ligand-1 (PD-1/PD-L1) with standard doses and schedules at the medical oncology departments of 20 Italian institutions. Each medication taken at the immunotherapy initiation was screened and collected into key categories as follows: corticosteroids, antibiotics, gastric acid suppressants (including proton pump inhibitors - PPIs), statins and other lipid-lowering agents, aspirin, anticoagulants, non-steroidal anti-inflammatory drugs (NSAIDs), ACE inhibitors/Angiotensin II receptor blockers, calcium antagonists, β-blockers, metformin and other oral antidiabetics, opioids.

Results From June 2014 to March 2020, 1012 patients were included in the analysis. Primary tumors were: non-small cell lung cancer (52.2%), melanoma (26%), renal cell carcinoma (18.3%) and others (3.6%). Baseline statins (HR 1.60 (95% CI 1.14 to 2.25), p=0.0064), aspirin (HR 1.47 (95% CI 1.04 to 2.08, p=0.0267) and β-blockers (HR 1.76 (95% CI 1.16 to 2.69), p=0.0080) were confirmed to be independently related to an increased objective response rate. Patients receiving cancer-related steroids (HR 1.72 (95% CI 1.43 to 2.07), p=0.0001), prophylactic systemic antibiotics (HR 1.85 (95% CI 1.23 to 2.78), p=0.0030), prophylactic gastric acid suppressants (HR 1.29 (95% CI 1.06 to 1.57), p=0.0091), PPIs (HR 1.26 (95% CI 1.04 to 1.52), p=0.0174), anticoagulants (HR 1.45 (95% CI 1.14 to 1.84), p=0.0024) and opioids (HR 1.53 (95% CI 1.11 to 2.11), p=0.0098) were confirmed to have a significantly higher risk of disease progression. Patients receiving cancer-related steroids (HR 2.16 (95% CI 1.76 to 2.65), p<0.0001), prophylactic systemic antibiotics (HR 1.93 (95% CI 1.25 to 2.98), p=0.0030), prophylactic gastric acid suppressants (HR 1.29 (95% CI 1.06 to 1.57), p=0.0091), PPIs (HR 1.26 (95% CI 1.04 to 1.52), p=0.0174), anticoagulants (HR 1.45 (95% CI 1.14 to 1.84), p=0.0024) and opioids (HR 1.53 (95% CI 1.11 to 2.11), p=0.0098) were confirmed to have a significantly higher risk of death.

Conclusion We confirmed the association between baseline steroids administered for cancer-related indication, systemic antibiotics, PPIs and worse clinical outcomes with PD-1/PD-L1 checkpoint inhibitors, which can be assumed to have immune-modulating detrimental effects.

INTRODUCTION

Drug–drug interactions (DDIs) have traditionally played an important role in the safe and effective delivery of systemic anticancer therapy. Concomitant medications can alter efficacy and worsen toxicity from systemic therapies through pharmacodynamic (PK) and pharmacokinetic (PD) interactions, particularly due to interference with absorption, distribution, metabolism and elimination of drugs. The advent of immune checkpoint inhibitors (ICIs) has reignited the interest toward DDIs beyond traditional PK/PD considerations.
ICls exert their action mainly relying on the restoration/activation of T-cell responses against cancer, and therefore, might be altered by those factors which particularly affect the immune balance prior to the ICI's administration, such as disruption of the homeostatic balance within the gut microbiome\(^5\) and drug-induced immune suppression.\(^4\)

Concomitant medications including steroids, proton pump inhibitors and systemic antibiotics have been postulated to exert immune-modulatory effects within the tumor microenvironment, thus affecting clinical outcomes from ICI therapy.\(^2\)

However, while some degree of biological plausibility exists to justify an immune-mediated basis to the detrimental effect observed on response and survival from ICls, the strength and reliability of the association has been largely derived from retrospective/post hoc analyzes and the dispute between causative instead of associative relationship has not been fully resolved.\(^2\) Given their immunosuppressive action, steroids were the first class of medications which was significantly related to worse clinical outcomes with cancer immunotherapy.\(^5\) Nevertheless, a significant association with worse outcome was later confirmed for baseline steroids administered for palliation of cancer-related symptoms but not for other indications including treatment of immune-related adverse events.\(^6\)\(^7\)

In the case of systemic antibiotics, the evidence for a causative effect seems stronger and more plausible in view of their capacity to perturbate the gut microbiome, a renown determinant of response to ICls.\(^8\)\(^-\)\(^10\) Nevertheless, the risk of collinearity with the underlying cause for the antibiotics prescription (eg, infections which might subter to poorer clinical condition), has yet to be fully discriminated.

Proton pump inhibitors were associated to decreased progression-free survival (PFS) and overall survival (OS) in non-small-cell-lung-cancer (NSCLC) and melanoma patients receiving programmed death-1 (PD-1)/ programmed death ligand-1 (PD-L1) checkpoint inhibitors,\(^9\)\(^11\) while some studies investigated the impact of other concomitant medication, such as non-steroidal anti-inflammatory drugs (NSAIDs), metformin, aspirin, \(\beta\)-blockers and statins, without conclusive results.\(^12\)\(^15\)

While a growing body of evidence underscores the importance of concomitant medications in affecting outcome from ICI, a key limitation affecting most of the published evidence is the lack of an integrated analysis of multiple classes of concomitant therapies. This is of particular importance to determine whether the influence on clinical outcomes might be driven by associative rather than causative links, especially given the high prevalence of polypharmacy in patients with cancer.\(^14\)

Recently, we created a large multicenter, observational study of patients receiving PD-1/PD-L1 checkpoint inhibitors in clinical practice, already subject of several analyzes,\(^15\)\(^-\)\(^20\) and we now gathered the baseline concomitant medication information for the same population, in order to evaluate their impact on clinical outcomes.

MATERIALS AND METHODS

Study design

We conducted a real-world, multicenter, retrospective observational data collection aimed at evaluating the impact of concomitant medications at immunotherapy initiation on clinical outcomes, by weighing their associations with baseline clinical characteristics (including performance status, burden of disease and body mass index (BMI)) and the underlying indication for steroids, antibiotics and gastric acid suppressants prescription. This study included consecutive patients with confirmed diagnosis of stage IV solid cancer, who underwent treatment with single agent anti-PD-1/PD-L1 as first or subsequent line, with data availability regarding baseline concomitant medication. The data collection was further implemented and updated involving patients treated at the medical oncology departments of 20 Italian institutions (online supplemental table 1), between June 2014 and March 2020. Patients were treated according to the tumor type indication with pembrolizumab, nivolumab, atezolizumab and other PD-1/PD-L1 prescribed at doses and schedules indicated in the respective product SPCs.

Clinical outcomes of interest included objective response rate (ORR), PFS and OS. Patients were assessed with radiological imaging in clinical practice, with a frequency ranging from 12 to 16 weeks, according to the monitoring requirements for high-cost drugs of the respective national drug regulatory agencies (the on-line monitoring dashboard of the ‘Agenzia Italiana del Farmaco’ requires a disease assessment at least every 16 weeks; available at: https://servizioline.aisf.gov.it/). RECIST (V.1.1) criteria were used\(^21\) and a subsequent confirming imaging was recommended. However, treatment beyond disease progression was allowed when clinically indicated. ORR was defined as the portion of patients experiencing an objective response (complete or partial response) as best response to immunotherapy. PFS was defined as the time from treatment initiation to disease progression or death, whichever occurred first. OS was defined as the time from treatment initiation to death. For PFS as well as for OS, patients without events were considered as censored at the time of the last follow-up. Data cut-off period was May 2020.

Fixed multivariable regression models were used to estimate clinical outcomes according to each concomitant medication category following adjustment for preplanned adjusting covariates that might represent confounders.\(^22\)\(^-\)\(^24\) The key covariates were: primary tumor type (NSCLC, melanoma, renal cell carcinoma and others), age (<70 vs \(\geq 70\) years),\(^25\)\(^-\)\(^28\) sex (male vs female), Eastern Cooperative Oncology Group-Performance Status (ECOG-PS) (0–1 vs \(\geq 2\)), burden of disease (number of metastatic sites<2 vs \(\geq 2\)), treatment line (first vs non-first) and BMI. BMI was used given to its alleged role in affecting immunotherapy clinical outcomes\(^7\)\(^5\)\(^6\) and as a surrogate of cardiovascular/metabolic conditions which might have influenced the prescription of certain concomitant medications.
Weight and height were obtained from patients’ medical records at the time of immunotherapy initiation. BMI was calculated using the formula of weight/height² (kilograms per square meter) and categorized according to WHO categories: underweight, BMI <18.5 kg/m²; normal-weight, 18.5 kg/m² ≤ BMI ≤24.9 kg/m²; overweight, 25 kg/m² ≤ BMI ≤29.9 kg/m²; obese, BMI ≥30 kg/m². In order to properly weighing the role of baseline concomitant medication, their association with ECOG-PS, burden of disease and with BMI were evaluated.

Concomitant medications

Information on prescribing of concomitant medications was gathered from patients’ clinical records. Each medication prescribed at the time of immunotherapy initiation was screened and categorized as follows:

Table 1

Patients characteristics	N (%)
Age, (years)	68.5
Median	21–91
Range	452 (44.7)
Elderly (≥70)	647 (63.9)
Sex	365 (36.1)
Male	380 (37.6)
Female	460 (45.5)
ECOG PS	870 (86.0)
0–1	142 (14.0)
≥2	142 (14.0)
Primary tumor	528 (52.2)
NSCLC	263 (26.0)
Melanoma	185 (18.3)
Renal cell carcinoma	36 (3.6)
Others	52 (5.1)
No of metastatic sites	490 (48.4)
≤2	52 (5.1)
>2	36 (3.6)
Type of anti-PD-1/PD-L1 agent	343 (33.9)
Pembrolizumab	613 (60.6)
Nivolumab	32 (3.2)
Atezolizumab	24 (2.3)
Others	256 (25.6)
Treatment line of Immunotherapy	256 (25.6)
First	396 (39.1)
Non-first	616 (60.9)
BMI (kg/m²)	25.1 (13.5–50.8)
Median (range)	25.6
Mean	38 (3.8)
Underweight	460 (45.5)
Normal weight	377 (37.3)
Overweight	137 (13.5)
Obese	52 (5.1)
Baseline steroids	211 (20.8)
Non-cancer related	30 (3.0)
Cancer related	48 (4.7)
Systemic antibiotics	100 (9.9)
Prophylaxis	447 (44.2)
Infection	56 (5.5)

Table 1 Continued

N (%)
1012
Proton pump inhibitors
Statins
Other lipid lowerings
Aspirin
Anticoagulants
NSAIIDs
ACE inhibitors/ARBs
Calcium antagonist
Beta blockers*
Metformin
Other oral antidiabetics
Opioids†

*Available for 943 patients
†Available for 921 patients

ARBS, Angiotensin II receptor blockers; BMI, body mass index; ECOG-PS, Eastern Cooperative Oncology Group-Performance Status; GERD, gastroesophageal reflux disease; NSCLC, non-small cell lung cancer; PD-1/PD-L1, programmed death-1/programmed death ligand-1.
Variable (Comparator)	ORR	Univariate analysis	Multivariate analysis	
	OR (95% CI)	p value	aOR (95% CI)	p value
Baseline steroids				
(No)	293/715–41.0 (36.4 to 45.9)	0.96 (0.53 to 1.72); p=0.8917	1.18 (0.65 to 2.17); p=0.5836	
Non-cancer indications	20/50–40.0 (24.4 to 61.7)	0.47 (0.32 to 0.67); p<0.0001		
Cancer indications	48/195–24.6 (18.1 to 32.6)	0.47 (0.32 to 0.67); p<0.0001	0.55 (0.38 to 0.81); p=0.0020	
Systemic antibiotics				
(No)	340/883–38.5 (34.5 to 42.8)	0.79 (0.43 to 1.48); p=0.4735	0.89 (0.47 to 1.69); p=0.7314	
Prophylaxis	5/29–17.2 (5.6 to 40.2)	0.79 (0.43 to 1.48); p=0.4735	0.89 (0.47 to 1.69); p=0.7314	
Infection	16/48–33.3 (19.1 to 54.1)	0.79 (0.43 to 1.48); p=0.4735	0.89 (0.47 to 1.69); p=0.7314	
Gastric acid suppressant				
(No)	185/446–41.5 (35.7 to 47.9)	0.74 (0.56 to 0.97); p=0.0342	0.85 (0.64 to 1.14); p=0.3057	
Prophylaxis	146/422–34.6 (29.2 to 40.7)	0.74 (0.56 to 0.97); p=0.0342	0.85 (0.64 to 1.14); p=0.3057	
Gastritis/GERD	30/92–32.6 (22.0 to 46.5)	0.74 (0.56 to 0.97); p=0.0342	0.85 (0.64 to 1.14); p=0.3057	
Statins				
(No)	275/774–35.5 (31.4 to 39.9)	1.56 (1.13 to 2.15); p=0.0070	1.60 (1.14 to 2.25); p=0.0064	
Yes	86/186–46.2 (36.9 to 57.1)	1.56 (1.13 to 2.15); p=0.0070	1.60 (1.14 to 2.25); p=0.0064	
Other lipid lowerings				
(No)	345/915–37.7 (33.9 to 41.9)	1.22 (0.66–2.24); p=0.5130	1.11 (0.59 to 2.09); p=0.771	
Yes	19/45–42.2 (25.4 to 65.9)	1.22 (0.66–2.24); p=0.5130	1.11 (0.59 to 2.09); p=0.771	
Aspirin				
(No)	281/780–36.0 (31.9 to 40.5)	1.42 (1.02 to 1.97); p=0.0361	1.47 (1.04 to 2.08); p=0.0267	
Yes	80/180–44.4 (35.2 to 55.3)	1.42 (1.02 to 1.97); p=0.0361	1.47 (1.04 to 2.08); p=0.0267	
Anticoagulants				
(No)	319/826–38.6 (34.5 to 43.1)	0.72 (0.49 to 1.07); p=0.1078	0.79 (0.53 to 1.19); p=0.2774	
Yes	42/134–31.3 (22.6 to 42.3)	0.72 (0.49 to 1.07); p=0.1078	0.79 (0.53 to 1.19); p=0.2774	
NSAIDs				
(No)	346/905–38.2 (34.3 to 42.4)	0.61 (0.32 to 1.11); p=0.1064	0.64 (0.34 to 1.20); p=0.1667	
Yes	15/55–27.3 (15.2 to 44.9)	0.61 (0.32 to 1.11); p=0.1064	0.64 (0.34 to 1.20); p=0.1667	
ACE inhibitors/ARBs				
(No)	235/666–35.3 (30.9 to 40.1)	1.37 (1.04 to 1.82); p=0.0258	1.26 (0.93 to 1.71); p=0.1241	
Yes	126/294–42.9 (35.7 to 51.0)	1.37 (1.04 to 1.82); p=0.0258	1.26 (0.93 to 1.71); p=0.1241	
Calcium antagonist				
(No)	307/828–37.1 (33.0 to 41.5)	1.17 (0.81 to 1.71); p=0.3990	1.07 (0.72 to 1.59); p=0.7188	
Yes	54/132–40.9 (30.7 to 53.4)	1.17 (0.81 to 1.71); p=0.3990	1.07 (0.72 to 1.59); p=0.7188	
β-blockers				
(No)	293/794–36.9 (32.8 to 41.4)	1.71 (1.14 to 2.56); p=0.0092	1.76 (1.16 to 2.69); p=0.0080	
Yes	54/108–50.0 (37.5 to 65.2)	1.71 (1.14 to 2.56); p=0.0092	1.76 (1.16 to 2.69); p=0.0080	
Metformin				
(No)	318/849–37.5 (33.4 to 41.8)	1.06 (0.70 to 1.58); p=0.7930	1.02 (0.67 to 1.56); p=0.9081	
Yes	43/111–38.7 (28.0 to 52.2)	1.06 (0.70 to 1.58); p=0.7930	1.02 (0.67 to 1.56); p=0.9081	
Other oral antidiabetics				

Continued
Corticosteroids administration (dose ≥10 mg prednisone equivalent per day, with a minimum 24 hours of dosing) within the 30 days before immunotherapy initiation, classified according to their indication as: no (including those patients receiving <10 mg prednisone equivalent) versus cancer indications (administration for symptoms palliation, radiation therapy, central nervous system metastases) versus non-cancer indications (eg, other inflammation processes non related to cancer).

Systemic antibiotics within the 30 days before immunotherapy initiation, classified according to their indication as: no versus prophylaxis (eg, to prevent COPD exacerbation or diverticulitis prevention) versus infection (in case of a diagnosed infective disease).

Baseline gastric acid suppressant, classified according to their indication as: no vs gastritis/gastroesophageal reflux disease (GERD) versus prophylaxis (eg, to prevent gastritis due to other concomitant

Variable (Comparator)	ORR Responders/ratio – ORR (%) (95% CI)	Univariate analysis	Multivariate analysis
Corticosteroids			
No	342/919 – 37.2 (33.3 to 41.4)	1.45 (0.77 to 2.73); p=0.2402	1.34 (0.69 to 2.8); p=0.3808
Yes	19/41 – 46.3 (27.9 to 72.3)		
Opioids†			
No	317/822 – 38.6 (34.4 to 43.1)	0.75 (0.43 to 1.33); p=0.3325	0.90 (0.49 to 1.63); p=0.7325
Yes	19/59 – 32.2 (19.4 to 50.3)		
Primary tumor			
NSCLC	160/491 – 32.6 (27.8 to 38.1)		
Melanoma	114/254 – 44.9 (37.0 to 53.9)	1.68 (1.23 to 2.29); p=0.0010	
Kidney	74/180 – 41.1 (32.3 to 51.6)	1.44 (1.02 to 2.05); p=0.0406	
Others	13/35 – 37.1 (19.7 to 63.5)	1.22 (0.60 to 2.49); p=0.5799	
BMI			
Normal weight	12/36 – 33.3 (17.2 to 58.2)		
Underweight	167/435 – 38.4 (32.8 to 44.7)	0.83 (0.41 to 1.67); p=0.6038	
Overweight	128/352 – 36.3 (30.3 to 43.2)	0.91 (0.68 to 1.22); p=0.5226	
Obese	54/136 – 39.7 (29.8 to 51.8)	1.03 (0.69 to 1.53); p=0.8709	
Gender			
Female	128/348 – 36.8 (30.7 to 43.7)	1.06 (0.81 to 1.39); p=0.6638	
Male	233/612 – 38.1 (33.3 to 43.3)		
Age			
Non-elderly	190/535 – 35.5 (30.6 to 40.9)	1.22 (0.94 to 1.59); p=0.1338	
Elderly	171/425 – 40.2 (34.5 to 46.7)		
Treatment line			
First	181/373 – 48.5 (41.7 to 56.1)	0.46 (0.39 to 0.61); p=0.0001	
Non-first	180/587 – 30.7 (26.3 to 35.5)		
No of metastatic sites			
≤2	203/503 – 40.4 (35.0 to 46.3)	0.78 (0.60 to 1.01); p=0.0648	
>2	158/457 – 34.6 (29.4 to 40.4)		
ECOG PS			
0–1	322/828 – 38.9 (34.8 to 43.4)	0.66 (0.44 to 0.98); p=0.0406	
≥2	39/132 – 29.5 (21.0 to 40.4)		

At the multivariate analysis, each drug category was adjusted for the preplanned key covariates separately.

*Available for 902 patients.
†Available for 881 patients.

ARBS, Angiotensin II receptor blockers; BMI, body mass index; ECOG-PS, Eastern Cooperative Oncology Group-Performance Status; GERD, gastroesophageal reflux disease; NSCLC, non-small cell lung cancer; ORR, objective response rate.
Table 3 Univariate and multivariate analyzes of PFS

Variable (Comparator)	PFS	Univariate analysis	Multivariate analysis
		HR (95% CI); p value	aHR (95% CI); p value
Baseline steroids	(No)		
Non-cancer indications		1.08 (0.77 to 1.52); p=0.6370	0.96 (0.68 to 1.36); p=0.9681
Cancer indications		2.02 (1.69 to 2.40); p<0.0001	1.72 (1.43 to 2.07); p<0.0001
Systemic antibiotics	(No)		
Prophylaxis		2.27 (1.52 to 3.39); p=0.0001	1.85 (1.23 to 2.78); p=0.0030
Infection		1.12 (0.79 to 1.59); p=0.4953	0.99 (0.70 to 1.41); p=0.9772
Gastric acid suppressant	(No)		
Prophylaxis		1.51 (1.29 to 1.76); p<0.0001	1.29 (1.09 to 1.53); p=0.0021
Gastritis/GERD		1.05 (0.79 to 1.39); p=0.7432	1.01 (0.75 to 1.33); p=0.9683
Gastric acid suppressant	(No)		
H2 antagonists		1.33 (0.96 to 1.86); p=0.0843	1.05 (0.75 to 1.48); p=0.7435
Proton pump inhibitors		1.41 (1.21 to 1.65); p<0.0001	1.26 (1.07 to 1.48); p=0.0050
Statins	Yes versus no	0.88 (0.73 to 1.07); p=0.2329	0.87 (0.72 to 1.06); p=0.1944
Other lipid lowerings	Yes versus no	1.06 (0.73 to 1.52); p=0.7498	1.21 (0.83 to 1.75); p=0.3061
Aspirin	Yes versus no	0.86 (0.71 to 1.06); p=0.1630	0.79 (0.64 to 0.98); p=0.0318
Anticoagulants	Yes versus no	1.49 (1.21 to 1.83); p=0.0001	1.43 (1.16 to 1.77); p=0.0007
NSAIDs	Yes versus no	1.17 (0.86 to 1.59); p=0.3120	1.07 (0.78 to 1.47); p=0.6594
ACE inhibitors/ARBs	Yes versus no	0.90 (0.76 to 1.07); p=0.2378	0.94 (0.79 to 1.12); p=0.5113
Calcium antagonists	Yes versus no	1.03 (0.83 to 1.28); p=0.7540	1.07 (0.86 to 1.34); p=0.5261
β-blockers*	Yes versus no	1.06 (0.84 to 1.35); p=0.6151	0.95 (0.75 to 1.22); p=0.7003
Metformin	Yes versus no	1.16 (0.92 to 1.47); p=0.1868	1.13 (0.89 to 1.42); p=0.3059
Other oral anti-diabetics	Yes versus no	1.24 (0.89 to 1.75); p=0.1981	1.24 (0.88 to 1.74); p=0.2098
Opioidst†	Yes versus no	2.05 (1.56 to 2.71); p<0.0001	1.71 (1.28 to 2.28); p=0.0002
Primary tumor			
(NSCLC)			
Melanoma		0.60 (0.49 to 0.72); p<0.0001	
Kidney		0.75 (0.61 to 0.91); p=0.0050	
Others		0.92 (0.59 to 1.44); p=0.7288	
BMI	(Normal-weight)		
Underweight		1.23 (0.83 to 1.83); p=0.2966	
Overweight		0.95 (0.81 to 1.13); p=0.6090	
Obese		0.80 (0.63 to 1.02); p=0.0761	

Continued
medication); no versus H2 Antagonists (such as ranitidine) vs proton pump inhibitors.

- Baseline statins (yes vs no).
- Other baseline lipid-lowering agents (fibrates, ezetimibe and similar) (yes vs no).
- Baseline aspirin (considered as low-dose daily assumption of aspirin for cardiovascular prevention) (yes vs no).
- Baseline anticoagulants (including new oral anticoagulant drugs) (yes vs no).
- NSAIDs within the 30 days before treatment initiation, including COX-2 inhibitors (both chronic and PRN administration) (yes vs no).
- Baseline ACE inhibitors/angiotensin II receptor blockers (ARBs) (yes vs no), calcium antagonists (yes vs no), β-blockers (yes vs no).
- Baseline metformin (yes vs no) and other oral antidiabetics (yes vs no).
- Baseline opioids (yes vs no).

Statistical analysis

Baseline patient characteristics were reported with descriptive statistics. χ² test was used for the univariate analysis of ORR. Logistic regression was used for the multivariate analysis of ORR and to compute the ORs with 95% CIs. Median PFS and median OS were evaluated using the Kaplan-Meier method. Median period of follow-up was calculated according to the reverse Kaplan-Meier method. Cox proportional hazards regression was used for the univariate analysis, for the fixed multivariate analysis of PFS and OS and to compute the HRs for disease progression and death with 95% CIs. The alpha level for all analyzes was set to p<0.05. χ² test was also used to evaluate the associations between baseline concomitant medication and ECOG-PS (0–1 vs ≥2), burden of disease (number of metastatic sites≤2 vs>2) and BMI (underweight, normal-weight, overweight and obese).

In order to properly evaluate the role of some baseline medications, a further analysis using the BMI as a continuous covariate was performed, through the one-way analysis of variance (ANOVA). All statistical analyzes were performed using MedCalc Statistical Software V.19.3.1 (MedCalc Software, Ostend, Belgium; https://www.medcalc.org; 2020).

RESULTS

Patients’ characteristics

In total, 1012 consecutive advanced cancer patients were evaluated. Patients characteristics are and baseline medication are summarized in table 1. The median age was 68.5 years (range: 21–92), male/female ratio was 647/365. Primary tumors were: NSCLC (52.2%), melanoma (26%), renal cell carcinoma (18.3%) and others (3.6%).

Efficacy analysis

The median follow-up was 24.2 months (95% CI 23.3 to 67.2); in the study population ORR was 37.6% (95% CI 33.8% to 41.7) (361 responses out of 960 evaluable patients), while median PFS and median OS were 10.2 months (95% CI 9.2 to 11.4; 681 progression events) and 19.7 months (95% CI 17.5 to 24.6; 520 censored patients), respectively. Table 2 reports the univariate and multivariate analyzes of ORR. Compared with patients who did not received baseline steroids, patients receiving them for cancer-related symptoms were confirmed to have a significantly lower ORR compared with patients who did not receive baseline steroids (HR 0.55 (95% CI 0.38 to 0.81), p=0.0020), while not patients who received steroids for non-cancer indications. Also baseline statins (HR 1.60 (95% CI 1.14 to 2.25), p=0.0064), aspirin (HR 1.47 (95% CI 1.04 to 2.08), p=0.0267) and β-blockers (HR...
Table 4 Univariate and multivariate analyzes of OS

Variable (Comparator)	Overall survival	Univariate analysis	Multivariate analysis
		HR (95% CI); p value	aHR (95% CI); p value
Baseline steroids			
(No)			
Non-cancer indications	0.95 (0.62 to 1.47); p=0.8477	0.85 (0.54 to 1.31); p=0.4691	
Cancer indications	2.76 (2.27 to 3.36); p<0.0001	2.16 (1.76 to 2.65); p<0.0001	
Systemic antibiotics			
(No)			
Prophylaxis	2.68 (1.74 to 4.13); p<0.0001	1.93 (1.25 to 2.98); p=0.0030	
Infection	1.51 (1.04 to 2.18); p=0.0301	1.20 (0.82 to 1.75); p=0.3288	
Gastric acid suppressant			
(No)			
Prophylaxis	1.57 (1.31 to 1.89); p<0.0001	1.29 (1.06 to 1.57); p=0.0091	
Gastritis/GERD	1.07 (0.76 to 1.49); p=0.7066	0.98 (0.69 to 1.38); p=0.9309	
Gastric acid suppressant			
(No)			
H2 antagonists	1.30 (0.87 to 1.93); p=0.1919	1.04 (0.69 to 1.56); p=0.8444	
Proton pump inhibitors	1.49 (1.23 to 1.79); p<0.0001	1.26 (1.04 to 1.52); p=0.0172	
Statins	0.81 (0.64 to 1.02); p=0.0810	0.79 (0.62 to 1.01); p=0.0622	
Other lipid lowerings	1.01 (0.65 to 1.57); p=0.9534	1.31 (0.84 to 2.05); p=0.2275	
Aspirin	0.94 (0.75 to 1.19); p=0.6548	0.85 (0.67 to 1.07); p=0.1713	
Anticoagulants	1.61 (1.27 to 2.03); p=0.0001	1.45 (1.14 to 1.84); p=0.0024	
NSAIDs	1.51 (1.07 to 2.11); p=0.0167	1.30 (0.92 to 1.83); p=0.1337	
ACE inhibitors/ARBs	0.88 (0.72 to 1.07); p=0.2204	0.91 (0.74 to 1.11); p=0.3798	
Calcium antagonists	1.12 (0.87 to 1.44); p=0.3648	1.19 (0.92 to 1.54); p=0.1728	
β-blockers*	1.03 (0.77 to 1.36); p=0.8554	0.90 (0.68 to 1.20); p=0.4938	
Metformin	1.31 (1.02 to 1.70); p=0.0413	1.24 (0.95 to 1.61); p=0.1040	
Other oral antidiabetics	1.34 (0.91 to 1.97); p=0.1304	1.26 (0.85 to 1.85); p=0.2475	
Opioids†	2.14 (1.58 to 2.91); p<0.0001	1.53 (1.11 to 2.11); p=0.0098	
Primary tumor			
(NSCLC)			
Melanoma	0.45 (0.36 to 0.57); p<0.0001		
Kidney	0.49 (0.38 to 0.63); p<0.0001		
Others	0.60 (0.33 to 1.10); p=0.0992		
BMI			
1.76 (95% CI 1.16 to 2.69), p = 0.0080) were confirmed to be independently related to an increased ORR. Table 3 summarizes the univariate and multivariate analyzes of PFS. Patients receiving cancer-related steroids (HR 1.72 (95% CI 1.43 to 2.07), p < 0.0001), prophylactic systemic antibiotics (HR 1.85 (95% CI 1.23 to 2.78), p = 0.0030), prophylactic gastric acid suppressants (HR 1.29 (95% CI 1.09 to 1.53), p = 0.0021), proton pump inhibitors (HR 1.26 (95% CI 1.07 to 1.48), p = 0.0050), anticoagulants (HR 1.43 (95% CI 1.15 to 1.76), p = 0.0009) and opioids (HR 1.54 (95% CI 1.11 to 2.12), p = 0.0083), were confirmed to have a significantly higher risk of disease progression. On the contrary, patients who assumed aspirin were confirmed to have a significantly lower risk of disease progression (HR 0.79 (95% CI 0.64 to 0.98), p = 0.0318). Table 4 summarizes the univariate and multivariate analyzes of OS. Patients receiving cancer-related steroids (HR 2.16 (95% CI 1.76 to 2.65), p < 0.0001), prophylactic systemic antibiotics (HR 1.93 (95% CI 1.25 to 2.98), p = 0.0030), prophylactic gastric acid suppressants (HR 1.29 (95% CI 1.06 to 1.57), p = 0.0091), proton pump inhibitors (HR 1.26 (95% CI 1.04 to 1.52), p = 0.0172), anticoagulants (HR 1.45 (95% CI 1.14 to 1.84), p = 0.0024) and opioids (HR 1.53 (95% CI 1.11 to 2.11), p = 0.0098) were confirmed to have a significantly higher risk of death. Figures 1 and 2 report the Kaplan-Meier survival curves for PFS and OS according to baseline steroids, systemic antibiotics, gastric acid suppressants, anticoagulants and opioids.

Baseline associations

All the baseline associations are summarized in online supplemental table 5; the administration of baseline steroids (p < 0.0001), systemic antibiotics (p = 0.0001), gastric acid suppressant (both according to their indication (p = 0.0001) and drug class (p = 0.0002)), anticoagulants (p = 0.0011), antidepressants (p = 0.0002) and opioids (p = 0.0123) was significantly associated to a poorer ECOG-PS. Similarly, the administration of baseline steroids (p = 0.0014), gastric acid suppressant (both according to their indication (p < 0.0001) and drug class (p < 0.0001)), β-blockers (p = 0.0166), and opioids (p = 0.0014) was significantly associated to a higher burden of disease.

The administration of statins (p = 0.005), anticoagulants (p = 0.001), ACE inhibitors/ARBs (p = 0.002), calcium antagonists (p = 0.008), β-blockers (p = 0.008), and other oral antidiabetics (p = 0.036) was significantly associated to a higher BMI, while the administration of NSAIDs (p = 0.003), and opioids (p = 0.004) to a lower BMI at the ANOVA analysis. Using WHO categories for BMI, we confirmed the association with anticoagulants (p = 0.0438), NSAIDs (0.0069) and opioids (p = 0.0153).

DISCUSSION

Identification of factors that prelude to immune-refractoriness is an area of high unmet need in cancer immunotherapy. A number of non-oncological medical therapies have been postulated to render the tumor
Open access

Cortellini A, et al. J Immunother Cancer 2020;8:e001361. doi:10.1136/jitc-2020-001361

microenvironment more tolerogenic, therefore exerting detrimental effects on depth, duration of response and survival of patients treated with ICI.2 Our purpose was to provide a more comprehensive analysis with a large population of patients with different malignancies receiving PD-1/PD-L1 inhibitors, in order to gain reliable results about the putative immune-modulating effects of concomitant medication most usually taken by patients with cancer.

We produce important confirmatory evidence regarding the association between exposure to steroids, systemic antibiotics and proton pump inhibitors and worse outcomes from ICI. In addition, we provide novel evidence for a shorter survival in patients on anticoagulants and opioids at ICIs initiation, a finding that was not previously reported in large populations. Similarly, a significant association between improved ORR/PFSs and baseline aspirin, and between improved ORR and statins and β-blockers, had never been reported in the context of cancer patients receiving PD-1/PD-L1 inhibitors.

Intriguingly, among the baseline medication which resulted to be significantly related to clinical outcomes in our study population, the common thread might be somehow considered the immune modulating effects, particularly exerted through the modifying pressure on the gut-microbiome.

Steroids were the only baseline medication concurrently related to ORR, PFS and OS in our study population. Glucocorticoids can affect the gut microbiome, the intestinal mucosa and synthesis/secretion of mucins.29–31 Nevertheless, we have to consider the possible associative (and not causative) effect played by the significant relation between steroids assumption and poorer PS/higher burden of disease. In fact, patients receiving baseline steroids for symptoms palliation were confirmed to have significantly worse ORR, PFS and OS, compared with patients who did not received steroids, while not patients who received steroids for non-cancer indications, similarly to what reported by Ricciuti et al.6

It is also well known that antibiotics might affect immunity by inducing gut microbiome alterations.32 In our study, only systemic antibiotics administered for prophylaxis were confirmed to be significantly related to shortened PFS and OS at the multivariate analysis, while not antibiotics administered to treat active infections. Interestingly, it was further revealed that antibiotics administered prior of the immunotherapy initiation was confirmed to be related to worse outcomes, while not those
administered concurrently,\(^\text{10}\) supporting the hypothesis that the underlying modulating effects on the gut microbiome can affect the immunotherapy clinical outcomes only when the modifying pressure is exerted on the prior immune-balance, and not during the treatment. From this perspective, antibiotics administered for prophylactic indications might exert the same negative effect of those administered to treat active infections. However, we have to consider that patients receiving antibiotics have poorer clinical conditions overall and looking at the table 5 we can noticed that those on prophylactic antibiotics had the highest percentage of ECOG-PS \(\geq 2\) patients. Previous studies investigated the role of proton pump inhibitors exclusively,\(^{9,11}\) while this is the first analysis which evaluated the role of gastric acid suppressants overall. Proton pump inhibitors could negatively affect the gut microbiome due to both the changes of the gastric pH and to bacterial species selections,\(^{33,34}\) but also H2 antagonists are known to have modifying gut microbiome functions and to induce intestinal barrier dysfunctions.\(^{35,36}\) Curiously, proton pump inhibitors administration was confirmed to be associated to shortened PFS and OS, but not H2 antagonists and patients receiving gastric acid suppressants for prophylactic purpose experienced significantly shorter PFS and OS, while patients who received these agents to treat gastritis/GERD achieved similar outcomes to patients who did not receive them. In this case, the highest percentage of patients with ECOG-PS \(\geq 2\) is among the patients with gastritis/GERD and among the patients on H2 antagonists, but to properly weigh our results, we must take into account the significant association between baseline gastric acid suppressants and burden of disease (online supplemental table 3). Therefore, we are not able to recommend H2 antagonists prescription instead of proton pump inhibitors for patients with cancer who are in need of a gastric acid suppressant treatment and are going to receive a PD-1/PD-L1 checkpoint inhibitor, even more considering the recent alerts from drug regulatory agencies regarding the possible contamination with N-nitrosodimethylamine of some of these agents.\(^{37,38}\)

Anticoagulants have been assumed to modulate the immune balance, affecting the antibacterial innate immune response,\(^{39}\) while chronic opioid dosing has been already associated to shift of the gut microbiome and intestinal barrier dysfunction.\(^{40-43}\) Nevertheless, it should be considered that patients requiring anticoagulation therapy and opioids are often frailer than patients who do not: a point that should be emphasized when evaluating PFS and OS where poorer PS and higher disease burden may confound the analyses. The relationship between aspirin and cancer prevention/progression have been historically known,\(^{44,45}\) but in the setting of immunotherapy of cancer, few studies have been published. Wang et al.\(^{12}\) evaluated a cohort of 330 melanoma patients receiving PD-1 inhibitors, without...
Table 5	Summary of the associations between each drug category and ECOG-PS, burden of disease and BMI												
	ECOG-PS (%)	No of metastatic sites (%)	BMI (continuous)	One-way ANOVA									
	0–1	≥2	P value	≤2	>2	P value	≤18.5	18.5–25	25–30	≥30	P value	Mean (SD)	F-ratio; P value
Baseline steroids													
(No)	671 (89.6)	78 (10.4)	p<0.0001	410 (54.7)	339 (45.3)	p=0.0014	27 (3.6)	330 (44.1)	288 (38.5)	104 (13.9)	p=0.3548	25.8(4.5)	F(21 005)=3.16; p=0.043
Non-cancer indications	43 (82.7)	9 (17.3)		18 (34.6)	34 (65.4)		1 (1.9)	22 (42.3)	19 (36.5)	10 (19.2)		26.9(4.3)	F(21 005)=0.94; p=0.388
Cancer indications	156 (73.9)	55 (26.1)		94 (44.5)	117 (55.5)		10 (4.7)	108 (51.2)	70 (33.2)	23 (10.9)		24.9(4.4)	
Systemic antibiotics													
(No)	815 (87.3)	78 (10.4)	p=0.0001	482 (51.6)	452 (48.4)	p=0.9825	37 (4.0)	416 (44.5)	352 (37.7)	129 (13.8)	p=0.3921	25.7(4.5)	F(21 005)=2.66; p=0.070
Prophylaxis	19 (83.3)	9 (17.3)		15 (50.0)	15 (50.0)		1 (3.3)	16 (53.3)	11 (36.7)	2 (6.7)		24.5(3.5)	F(21 005)=0.77; p=0.462
Infection	36 (75.0)	55 (26.1)		25 (52.1)	23 (47.9)		–	28 (58.3)	14 (29.2)	6 (12.5)		25.5(3.4)	
Gastric acid suppressant													
(No)	422 (90.8)	43 (9.2)	p=0.0001	275 (59.1)	190 (40.9)	p=0.0001	21 (4.5)	211 (45.4)	174 (37.4)	59 (12.7)	p=0.7860	25.5(4.5)	F(11 006)=7.87; p=0.005
Prophylaxis	93 (93.0)	7 (7.0)		189 (42.3)	258 (57.7)		12 (2.9)	201 (45.0)	166 (37.1)	67 (15.0)		24.9(4.3)	F(11 006)=0.81; p=0.651
Gastritis/GERD	355 (79.4)	92 (20.6)		58 (58.0)	42 (42.0)		4 (4.0)	48 (48.0)	37 (37.0)	11 (11.0)		25.9(4.5)	
Statins													
(No)	697 (85.4)	119 (14.6)	p=0.3027	415 (50.9)	401 (49.1)	p=0.3478	36 (4.4)	377 (46.2)	296 (36.3)	107 (13.1)	p=0.0718	25.4(4.4)	F(11 006)=7.87; p=0.005
Yes	173 (88.3)	23 (11.7)		107 (54.6)	89 (45.4)		2 (1.0)	83 (42.3)	81 (41.3)	30 (15.3)		26.4(4.7)	
Other lipid lowerings													
(No)	830 (86.1)	134 (13.9)	p=0.5904	491 (50.9)	401 (49.1)	p=0.0649	36 (3.7)	447 (46.4)	353 (36.6)	128 (13.3)	p=0.0727	25.5(4.5)	F(11 006)=3.81; p=0.051
Yes	40 (83.3)	8 (16.7)		31 (64.6)	17 (35.4)		2 (4.2)	13 (27.1)	24 (50.0)	9 (18.8)		26.9(4.2)	F(11 006)=0.47; p=0.683
Aspirin													
(No)	710 (86.3)	113 (13.7)	p=0.5648	421 (51.2)	402 (48.8)	p=0.5710	35 (4.3)	371 (45.1)	305 (37.1)	112 (13.6)	p=0.3756	25.8(4.1)	F(11 006)=11.44; p=0.001
Yes	160 (84.7)	29 (15.3)		101 (53.4)	88 (46.6)		3 (1.6)	89 (47.1)	72 (38.1)	25 (13.2)		25.8(4.6)	
Anticoagulants													
(No)	758 (87.4)	109 (12.6)	p=0.0011	444 (51.2)	423 (48.8)	p=0.5649	36 (4.2)	405 (46.7)	314 (36.2)	112 (12.9)	p=0.0438	25.4(4.5)	F(11 006)=9.03; p=0.003
Yes	112 (77.2)	33 (22.8)		78 (53.8)	67 (46.2)		2 (1.4)	55 (37.9)	63 (43.4)	25 (17.2)		26.8(4.6)	F(11 006)=9.42; p=0.002
NSAIDs													
(No)	819 (85.9)	134 (14.1)	p=0.9143	490 (51.4)	463 (48.6)	p=0.6741	33 (3.5)	424 (44.5)	384 (38.2)	132 (13.9)	p=0.0069	25.7(4.4)	
Yes	51 (86.4)	8 (13.6)		32 (54.2)	27 (45.8)		5 (8.5)	36 (61.0)	13 (22.0)	5 (8.5)		23.9(4.8)	
ACE inhibitors/ARBs													
(No)	604 (45.9)	95 (13.6)	p=0.5465	352 (50.4)	347 (49.6)	p=0.2448	30 (4.3)	333 (47.6)	247 (35.3)	89 (12.7)		25.3(4.3)	F(11 006)=9.42; p=0.002
Yes	266 (54.1)	47 (15.0)		170 (54.3)	143 (45.7)		8 (2.6)	127 (40.6)	130 (41.5)	48 (15.3)		26.3(4.7)	
Table 5 Continued

	ECOG-PS (%)	\(x^2\)	No of metastatic sites (%)	\(x^2\)	BMI	\(x^2\)	BMI (continuous)	One-way ANOVA					
							Mean (SD)	F-ratio; P value					
	0–1	≥2		≤18.5	18.5–25	25–30	≥30	P value					
Calcium antagonist													
(No)	755 (86.6)	117 (13.4)	p=0.1605	446 (51.5)	426 (48.9)	p=0.4905	36 (4.1)	401 (46.0)	322 (36.9)	113 (13.0)	p=0.2146	25.5(4.4)	F(11 006)=7.01; p=0.008
Yes	115 (82.1)	25 (17.9)	76 (54.3)	64 (45.7)	2 (1.4)	59 (42.1)	55 (39.3)	24 (17.1)	26.6(4.9)				
\(\beta\)-blockers*													
(No)	713 (86.0)	116 (14.0)	p=0.3118	441 (53.2)	388 (46.8)	p=0.0166	35 (4.2)	388 (46.8)	303 (36.6)	103 (12.4)	p=0.1493	25.4(4.5)	F(1937)=9.96; p=0.008
Yes	94 (82.5)	20 (17.5)	47 (41.2)	67 (58.8)	1 (0.9)	47 (41.2)	48 (42.2)	18 (15.8)	26.6(4.1)				
Metformin													
(No)	777 (86.5)	121 (13.5)	p=0.1522	456 (50.8)	442 (49.2)	p=0.1524	36 (4.0)	407 (45.3)	331 (36.9)	124 (13.8)	p=0.5383	25.6(4.5)	F(11 006)=0.37; p=0.542
Yes	93 (81.6)	21 (18.4)	66 (57.9)	48 (42.1)	2 (1.8)	53 (46.5)	46 (40.4)	13 (11.4)	25.9(4.6)				
Other oral antidiabetics													
(No)	831 (86.0)	135 (14.0)	p=0.8127	496 (51.2)	471 (48.8)	p=0.3230	38 (3.9)	443 (45.9)	356 (36.9)	129 (13.4)	p=0.2997	25.6(4.5)	F(11 006)=4.42; p=0.036
Yes	39 (84.8)	7 (15.2)	27 (58.7)	19 (41.3)	–	17 (37.0)	21 (45.7)	8 (17.4)	26.9(4.8)				
Opioids†													
(No)	735 (86.2)	118 (13.8)	p=0.0123	448 (52.5)	405 (47.9)	p=0.0014	29 (3.4)	389 (45.6)	320 (37.5)	115 (13.5)	p=0.0153	25.6(4.4)	F(1915)=8.26; p=0.004
Yes	51 (75.0)	17 (25.0)	22 (32.4)	46 (67.6)	6 (8.8)	37 (54.4)	22 (32.4)	3 (4.4)	24.0(4.1)				

ANOVA, analysis of variance; ARBs, Angiotensin II receptor blockers; BMI, body mass index; ECOG-PS, Eastern Cooperative Oncology Group-Performance Status; GERD, gastroesophageal reflux disease.
reporting any association between ORR, PFS, OS and NSAIDs use (including aspirin). Even if (cylooxygenase) COX-2 expression was known to be positively associated with PD-L1 tumor expression, we did not find associations between baseline NSAIDs (excluding aspirin) and immunotherapy clinical outcomes, but the significant association between improved ORR and baseline aspirin, allows to speculate about the possible synergistic effects of COX inhibition in antitumor immunity. To our knowledge, the association between statins administration and improved clinical outcomes of patients with cancer receiving ICIs have never been described, however, it is well known that cholesterol metabolism plays a role in CD8+ T-cell function and might be modulated in order to enhance antitumor immunity. Blockers have already been known to improve recurrence-free survival in patients with radically resected melanoma and to have synergistic effects with immunotherapy in mice models. In our cohort baseline blockers are significantly associated to improved ORR, while in the study of Wang et al no significant associations were found. Intriguingly, the inhibition of β-adrenoceptors in the intestinal mucosa and gut lymphatic tissue has been linked with changes in type and virulence of the intestinal microbiome and to reduced bacterial translocation trough the intestinal barrier. Finally, to properly weighing the ORR analysis results, we have to consider the significant association between blockers and low burden of disease and between blockers, aspirin, lipoid-lowering agents and higher baseline BMI. However, contrary to what we previously reported, BMI was not significantly associated to improved outcomes in this population, even though a trend toward better ORR, PFS and OS for increased BMI levels was found. Considering that the most robust evidence of an association between improved outcomes and obesity came from NSCLC, this finding might be related to the internal distribution of the study population, which after the update and the addition of data from some new institutions passed form 65.1% and 18.7% of NSCLC and melanoma patients to 52.2% and 26%, respectively.

Despite the suggestion that metformin administration might exert a synergistic antitumor role with ICIs, we did not find any significant association between ORR, PFS, OS and baseline metformin, in keeping with previously published evidence.

Beyond the dispute between association and causation, we have to consider that there are some other potential mechanisms by which concomitant medications could affect clinical outcomes during immunotherapy, in addition to gut microbiome alteration. It is well known that corticosteroids can exert immune-suppressive effects through several mechanisms, such as activation of glucocorticoid response elements with the inhibition of interleukin 1 (IL-1) and IL-6 transcription, induction of T-cell suppression and diminishing naïve T cell proliferation. Gastric acid suppressants can cause immune-suppressive effects through the inhibition of adhesion molecules of inflammatory cells and affecting cytokines secretion. Aspirin can exert several effects on both innate and adaptive immune responses. It can modulate proliferation/maturation of immune cells, regulate the cytokine production, and induce the lipoxin-driven immune counter-regulation. Nevertheless, aspirin can also have the immune suppressive ability of inducing tolerogenic dendritic cells, therefore expanding Treg cells.

Our study acknowledges a number of limitations, including the retrospective design and the lack of central radiology review. The heterogeneity of tumor types evaluated might had affected the analysis even if we included the primary tumor in the preplanned fixed multivariate model. We have to also consider the small sample size of some subgroups as patients receiving steroids for non-cancer indication, gastric acid suppressants to treat gastritis/GERD and receiving H2 antagonists. Moreover, we are planning to investigate the possible detrimental effect on immunotherapy clinical outcomes of specific polypharmacy patterns. To confirm our results, interactions between concomitant baseline medications and immunotherapy clinical outcomes should be assessed prospectively.

CONCLUSION
This is the largest study to provide a broad, integrated analysis of multiple concomitant medications as determinants of response and survival to immunotherapy in patients with solid tumors. While unable to discriminate between a mechanistic and an associative effect, our study strengthens the knowledge around the association between baseline steroids administered for cancer-related indications, systemic antibiotics, proton pump inhibitors and worse clinical outcomes with PD-1/PD-L1 checkpoint inhibitors, which can be assumed to have immune-modulating detrimental effects. To correctly weight the association between anticoagulants/opioids and worse PFS/OS we must consider their statistical association with poorer PS/higher burden of disease, while the significant association between the administration of aspirin, blockers, statins and improved ORR deserves further investigations.

Author affiliations
1Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
2Medical Oncology, St. Salvatore Hospital, L'Aquila, Italy
3Medical Oncology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
4National Cancer Research Center, Tumori Institute IRCCS Giovanni Paolo II, Bari, Italy
5Medical Oncology, Department of Human Pathology, A.O. Papardo, University of Messina, Messina, Italy
6IRCCS Ospedale Policlinico San Martino, Genova, Italy
7Medical Oncology, ASLIR District Area 4 Ferro, Ferraro, Italy
8Medical Oncology, Campus Bio-Medico University, Rome, Italy
9Medical Oncology Unit, Sant'Andrea Hospital of Rome, Rome, Italy
not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Alessio Cortellini http://orcid.org/0000-0002-1209-5735
David James Pinato http://orcid.org/0000-0002-3529-0103
Paolo Antonio Ascierto http://orcid.org/0000-0002-8322-475X

REFERENCES
1. Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer 2006;6:546–58; 10.1038/nrc1887 [published correction appears in Nat Rev Cancer. 2006 Sep;6(9):741]
2. Hussain N, Naem M, Pinato DJ. Concomitant medications and immune checkpoint inhibitor therapy for cancer: causation or association? Hum Vaccin Immunother 2020;1
3. Gopakrishnan V, Helmink BA, Spencer GN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018;33:570–80.
4. Malmberg K-J. Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 2004;53:879–92.
5. Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed Death-Ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol 2018;36:2872–8.
6. Ricciuti B, Dahlberg SE, Adeni A, et al. Immune checkpoint inhibitor outcomes for patients with non-small-cell lung cancer receiving baseline corticosteroids for palliative versus Nonpalliative indications. J Clin Oncol 2019;37:1927–34.
7. Petrelli F, Signorelli D, Ghidini M, et al. Association of steroids use with survival in patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Cancers 2020;12:546.
8. Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol 2018;29:1437–44.
9. Chalabi M, Cardona A, Nagarkar DR, et al. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: pooled post hoc analyses of the oak and popcorn trials. Ann Oncol 2020;31:525–31.
10. Pinato DJ, Howlett S, Ottaviani D, et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol 2019;5:1774–8.
11. Hornick J, Righi G, Tuchmann F, et al. Proton pump inhibitors negatively impact survival of PD-1 inhibitor based therapies in metastatic melanoma patients. Ann Oncol 2018;29:x40.
12. Wang DY, McCaule JD, Ra R, et al. The impact of nonsteroidal anti-inflammatory drugs, beta blockers, and metformin on the efficacy of anti-PD-1 therapy in advanced melanoma. Oncologist 2020;25:e602–5.
13. Gandhi S, Pandey M, Aammanagari N, et al. Impact of concomitant medication use and immune-related adverse events on response to immune checkpoint inhibitors. Immunotherapy 2020;12:141–9.
14. Hoshizaki T, Hosomi Y, Shirizumi K, et al. Polypharmacy as a prognostic factor in older patients with advanced non-small-cell lung cancer treated with anti-PD-1/PD-L1 antibody-based immunotherapy. J Cancer Res Clin Oncol 2020;146:2659–68.
15. Cortellini A, Bersanelli M, Bull S, et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J Immunother Cancer 2019;7:57.
16. Cortellini A, Bersanelli M, Santini D, et al. Another side of the association between body mass index (BMI) and clinical outcomes of cancer patients receiving programmed cell death protein-1 (PD-1) Programmed cell death-ligand 1 (PD-L1) checkpoint inhibitors: a
multicenter analysis of immune-related adverse events. *Eur J Cancer* 2020;128:17–26.

17 Cortellini A, Buti S, Bersanelli M, et al. Evaluating the role of family history of cancer and diagnosis of multiple neoplasms in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: the multicenter FAMI-L1 study. *Oncoimmunology* 2020;9:1710389.

18 Cortellini A, Vitale MG, De Gallitis F, et al. Early fatigue in cancer patients receiving PD-1/PD-L1 checkpoint inhibitors: an insight from clinical practice. *J Transl Med* 2019;17:376.

19 Cortellini A, Buti S, Santini D, et al. Clinical outcomes of patients with advanced cancer and pre-existing autoimmune diseases treated with Anti-Programmed death-1 immunotherapy: a real-world traverse study. *Oncology* 2019;24:e327–37.

20 Cortellini A, Chiarri P, Ricciuti B, et al. Correlations between the immune–related adverse events spectrum and efficacy of anti-PD1 immunotherapy in NSCLC patients. *Clin Lung Cancer* 2019;20:237–47.

21 Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). *Eur J Cancer* 2009;45:228–47.

22 Woolley KK. How variables uncorrelated with the dependent variable can actually make excellent predictors: the important suppressor variable case. Southwest educational research association annual meeting proceeding. 1997. Available: https://eric.ed.gov/?id=ED407420 [Accessed 10 Jun 2020].

23 Thompson FT, Levine DU. Examples of easily Explainable suppressor variables in multiple regression research. *Multi Linear Regres Viewpoints* 1997;24:11–13.

24 “Stopping stepwise: Why stepwise selection is bad and what you should use instead”. On towardsdatascience.com. Available: https://towardsdatascience.com/stopping-stepwise-why-stepwise-selection-is-bad-and-what-you-should-use-instead-90818b3f52df [Accessed 10 Jun 2020].

25 Mifiana B, Cazor JA, Pelou J, et al. Bladder cancer in Spain 2011: population based study. *J Urol* 2014;191:323–8.

26 Ciocan D, Barbe C, Aubin F, et al. Distinctive features of melanoma and its management in elderly patients: a population-based study in France. *JAMA Dermatol* 2013;149:1570–7.

27 Gridelli C, Bartolozzi C. Treatment of elderly patients with non-small-cell lung cancer: results of an international expert panel meeting of the Italian association of thoracic oncology. *Clin Lung Cancer* 2015;16:325–33.

28 Azawi NH, Joergensen SM, Jensen NV, et al. Trends in kidney cancer among the elderly in Denmark, 1980–2012. *Acta Oncol* 2016;55(Suppl 1):79–84.

29 Wu T, Yang L, Jiang J, et al. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations. *Cell Metab* 2018;192:173–82.

30 He Z, Kong X, Shao T, et al. Alterations of the gut microbiota associated with promoting efficacy of prednisone by Bromofuranone. *Sci Rep* 2020;10:14597.

31 Luo Y, Zheng SG, Hall of fame among pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. *Front Immunol* 2016;7:604.

32 Gao C, Majer A, Rendon D, et al. Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. *mBio* 2015;6:e01358–15.

33 Diebel LN, Liberati DM, Hall-Zimmerman L. H2 blockers decrease gut mucosa production and lead to barrier dysfunction in vitro. *Surgery* 2011;150:736–43.

34 U.S. Food and Drug Administration. Questions and answers: NDMA impurities in ranitidine (commonly known as Zantac). Available: https://www.fda.gov/drugs/safety-and-availability/questions-and-answers-ndma-impurities-in-ranitidine-commonly-known-zantac [Accessed 14 Jun 2020].

35 European Medicines Agency. EMA to review ranitidine medicines following detection of NDMA. Available: https://www.ema.europa.eu/en/news/ema-review-ranitidine-medicines-following-detection-ndma [Accessed 14 Jun 2020].

36 Strobel L, Johswich KG. Anticoagulants impact on innate immune responses and bacterial survival in whole blood models of Neisseria meningitidis infection. *Sci Rep* 2018;8:10225.

37 Taylor A. Revealing a brain-gut microbiome connection following chronic opioid treatment. *J Pain* 2018;19:51.

38 Acharya C, Betrapally NS, Gillevet PM, et al. Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis. *Aliment Pharmacol Ther* 2017;45:319–31.

39 Banerjee S, Sindberg G, Wang F, et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. *Mucosal Immunol* 2016;9:1418–28.

40 Ren M, Lotfipour S. The role of the gut microbiome in opioid use. *Behav Pharmacol* 2020;31:113–21.

41 Dai X, Yan J, Fu X, et al. Aspirin inhibits cancer metastasis and angiogenesis via targeting heparanase. *Cancer Res* 2017;23:6267–78.

42 Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. *Lancet Oncol* 2012;13:518–27.

43 Botti G, Fratangelo F, Cerrone M, et al. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells. *J Transl Med* 2017;15:46.

44 Zelenay S, van der Veen AG, Böttcher JP, et al. Cyclooxygenase-Dependent tumor growth through evasion of immunity. *Cell* 2015;162:1257–70.

45 Xi M, Bi E, Lu Y, et al. Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment. *Cell Metab* 2019;30:143–56. e5.

46 Yang W, Bai Y, Kong Y, et al. Potentiating the antitumour response of CD8+ T cells by regulating cholesterol metabolism. *Nature* 2016;531:651–5.

47 Mok EHK, Lee TKW. The pivotal role of the dysregulation of cholesterol homeostasis in cancer: implications for therapeutic targets. *Cancer* 2020;12:E1410.

48 Perrone F, Minari R, Bersanelli M, et al. The prognostic role of high blood cholesterol in advanced cancer patients treated with immune checkpoint inhibitors. *J Immunother Cancer* 2020;4:196–203.

49 De Giorgi V, Grazzini M, Benemeli S, et al. Propanolol for off-label treatment of patients with melanoma: results from a cohort study. *JAMA Oncol* 2018;4:e172908.

50 Kokolus KM, Zhang Y, Sivik JM, et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. *Oncoimmunology* 2018;7:e1405205.

51 Thielle M, Wiest R, Gluud LL, et al. Can non-selective beta-blockers prevent hepatocellular carcinoma in patients with cirrhosis? *Med Hypotheses* 2013;81:871–4.

52 Kichanadasse G, Miners JO, Mangoni AA, et al. Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung cancer. *JAMA Oncol* 2020;6:e192541:512.

53 Atzal MZ, Mercado RR, Shirai K. Efficacy of metformin in combination with immune checkpoint inhibitors (anti-PD-1/anti-CTLA-4) in metastatic malignant melanoma. *J Immunother Cancer* 2018;6:64.

54 Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. *Mol Cell Endocrinol* 2011;335:2–13.

55 Luo Y, Zheng SG. Hall of fame among pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. *Front Immunol* 2016;7:604.

56 Giles AJ, Hutchinson M-KND, Sonnenmann HM, et al. Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy. *J Immunother Cancer* 2018;6:51.

57 Biswas S, Benedict SH, Lynch SG, et al. Potential immunological consequences of pharmacological suppression of gastric acid production in patients with multiple sclerosis. *BMC Med* 2012;10:57.

58 Hussain M, Javeed A, Ashraf M, et al. Antibiotics and autoimmune disease: an old relationship revisited. *Int Immunopharmacol* 2012;12:10–20.