Pinning in a system of swarmalators

Gourab Kumar Sar,† Dibakar Ghosh,† and Kevin O’Keeffe

1Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
2Senseable City Lab, Massachusetts Institute of Technology, Cambridge, MA 02139

(Received XX MONTH XXX; accepted XX MONTH XXXX; published XX MONTH XX)

We study a population of swarmalators (swarming/mobile oscillators) which run on a ring and are subject to random pinning. The pinning represents the tendency of particles to stick to defects in the underlying medium which competes with the tendency to sync / swarm. The result is rich collective behavior. A highlight is low dimensional chaos which in systems of ordinary, Kuramoto-type oscillators is uncommon. Some of the states (the phase wave and split phase wave) resemble those seen in systems of Janus matchsticks or Japanese tree frogs. The others (such as the sync and unsteady states) may be observable in systems of vinegar eels, electrorotated Quincke rollers, or other swarmalators moving in disordered environments.

DOI: XXXXXXX

I. INTRODUCTION

Synchronization (self-organization in time) and swarming (self-organization in space) are universal phenomena that co-occur in driven colloids [1–8], embryonic cells [9, 10], biological microswimmers [11–18], and robotic swarms [19–26]. Yet a theoretical understanding of the interplay between sync and swarming is lacking. Much is known about sync [27–29] and swarming [30, 31] acting independently of each other, yet little is known about their interaction – an effect which some have dubbed ‘swarmalation’ [17, 32], since it combines swarming in space with oscillation in time.

Swarmalation, as theoretical field, began about 15 years ago when Tanaka et al. introduced a model of chemotactic oscillators [33–36]. Later O’Keeffe et al. studied a generalized Kuramoto model of ‘swarmalators’ [37] which triggered a new wave of work [21–23, 38–56]. Just N = 2 swarmalators produce these dynamics. We search for such dynamics using a simple model of swarmalators which move on a 1D ring. The hope is that a bare-bones, simple model might capture phenomena with some universality. We find diverse collective behavior: a family of phase waves, “flying saucers” where the phase wave and split phase wave of swarmalators form traveling loops in (x, θ) space, quasi-periodicity, and chaos. The unsteady behaviors do not occur in systems of pinned oscillators; they are exclusive to systems of pinned swarmalators.

We hope our work inspires more studies of swarmalators with random pinning. As we show, the model is tractable and could thus be used as a testbed for general studies of swarming in disordered media.

II. MODEL

We study a pair of Kuramoto-like models

\[
\dot{x}_i = E - b \sin(x_i - \alpha_i) + \frac{K}{N} \sum_j \sin(x_j - x_i) \cos(\theta_j - \theta_i),
\]

(1)

\[
\dot{\theta}_i = E - b \sin(\theta_i - \beta_i) + \frac{K}{N} \sum_j \sin(\theta_j - \theta_i) \cos(x_j - x_i),
\]

(2)
where \((x_i, \theta_i) \in (S^1, S^1)\) are the position and phase of the \(i\)-th swarmalator. \(E\) represents external forcing, \(K\) the inter-element couplings, \(b\) the strength of the pinning, and \(\alpha_i, \beta_i\) the pinning locations. We confined the motion to a 1D ring mainly for simplicity. That said, there are real-world swarmalators which move around 1D rings; vinegar eels move along the ring-like edges of 2D disks, Japanese tree frogs on the edges of paddy fields \[66\], and coupled magnetic bilayers, above the walker regime, oscillate along on a 1D axis. We pin the swarmalators’ positions uniformly around the circle \(\alpha_i = 2\pi i/N\) and also set the phase pinning equal to the space pinning \(\beta_i = \alpha_i\). These choices simplify the analysis, and also enforce that in the pinned state \((K = 0)\) the swarmalators form a phase wave around the circle \(x_i = \theta_i\) — a natural base state which occurs commonly in Nature (see Discussion). Finally, we set \(b = 1\) without loss of generality, which leaves a two-parameter model \((K, E)\).

We simplify our model by converting the trigonometric functions to complex exponentials,

\[
\dot{x}_i = E - \sin(x_i - \alpha_i) + \frac{K}{2} S_+ \sin(\Phi_+ - (x_i + \theta_i)) \\
+ \frac{K}{2} S_- \sin(\Phi_- - (x_i - \theta_i)),
\]

\[
\dot{\theta}_i = E - \sin(\theta_i - \beta_i) + \frac{K}{2} S_+ \sin(\Phi_+ - (x_i + \theta_i)) \\
- \frac{K}{2} S_- \sin(\Phi_- - (x_i - \theta_i)),
\]

where

\[
W_\pm = S_\pm e^{i\Phi_\pm} = \frac{1}{N} \sum_j e^{i(x_j \pm \theta_j)} \quad (i = \sqrt{-1})
\]

are order parameters which measure the system’s space-phase order. When positions and phases are perfectly correlated \(x_i = \pm \theta_i + C\), they are maximal \(S_\pm = 1\). When \(x_i, \theta_i\) are uncorrelated, they are minimal \(S_\pm = 0\).

Now we begin our analysis.

III. NO DRIVING \(E = 0\)

To warm up, we study the undriven system \(E = 0\) (which leaves just one active parameter \(K\)). Numerics reveals three collective steady states as we vary \(K\): the **phase wave**, **split phase wave**, and **sync state**. The first three panels of Supplementary Movies 1&2 show the evolution to these states.

Phase wave. When the pinning dominates the synchronizing \(|K| \ll 1\) (or in dimensionful units \(|K| \ll b\), the swarmalators’ positions and phases stay pinned to their preferred values \(x_i = \theta_i = \alpha_i = 2\pi i/N\). As mentioned, in the \((x, \theta)\) plane, this constitutes a phase wave \(x_i = \theta_i\) (Fig. 1(a)) which implies \((S_+, S_-) = (0, 1)\) (Fig. 2). The stability of this state in the no pinning limit \(b = 0\) was calculated previously by linearizing the \((\dot{x}_i, \dot{\theta}_i)\) equations and exploiting the block structure of the Jacobian \(J\) \[12\]. Adapting this calculation when pinning is turned on \(b = 1\) yields three distinct eigenvalues:

\[
\lambda_0 = -1, \\
\lambda_1 = -1 - K, \\
\lambda_2 = \frac{1}{2}(-2 + K),
\]

with multiplicities \(N - 1, N - 1, \) and 2, respectively. These imply the pinned state is stable for

\[
-1 \leq K \leq 2.
\]

This holds true for all finite \(N\).

Split phase wave. When \(K < -1\), the phase wave splits into two phase waves (Fig. 1(b)) separated by a distance \(\Delta(K)\) from the pinned state:

\[
x_i = \alpha_i + (-1)^i \Delta, \\
\theta_i = \alpha_i + (-1)^{i-1} \Delta.
\]

The order parameter \(S_+\) remains zero, but now \(S_-\) obeys \(0 \leq S_-(K) < 1\) (Fig. 2) and must be solved for self consistently. We insert Eqs. (10) and (11) into the \(\dot{x}_i\) equation and apply the fixed point condition \(\dot{x}_i = 0\),

\[
\dot{x}_i = \sin \left((-1)^i \Delta\right) + \frac{K}{2} S_- \sin(2\Delta(-1)^{i-1}) = 0.
\]

(The \(\dot{\theta}_i\) equation is a duplicate so we omit it). Equation (12) is in fact independent of \(i\). When \(i\) is even, the first term is positive, the second negative. When \(i\) is odd the reverse happens. Since the RHS is zero, the sign flipping doesn’t matter so we set \(i = 0\) without loss of generality and rearrange terms to obtain

\[
S_- = -\frac{2}{K} \frac{\sin \Delta}{\sin 2\Delta}.
\]
The unique real root is

$$S_+ = -1 + \frac{K^2}{\sqrt{-K^6 + 27K^4 + 3\sqrt{81K^8 - 6K^{12}}}}$$

(18)

This exists for all K, but becomes stable at $K = -1$ via a transcritical bifurcation when it intersects with the $S_- = 1$ branch (Fig. 2). As $K \to -\infty$, S_- declines from 1 to 0, and the ‘split gap’ Δ increases from 0 to $\pi/4$.

Sync state. We have sussed out the split phase wave on $K < -1$ and the phase wave on $-1 \leq K \leq 2$. Now we jump to remaining region $K > 2$, where the sync force dominates the pinning force, so to speak. Here swarmalators form synchronous clusters (Fig. 2(c)). Two clusters form when the initial conditions x_i, θ_i are drawn uniformly at random from $[-\pi, \pi]$, while one cluster forms when x_i, θ_i are drawn from $[0, \pi]$ (the single cluster state is not plotted). Figure 2 shows S_- stays at unity while S_+ bifurcates from 0 at $K = 2$.

We again solve for $S_+(K)$ self consistently. This time we move to coordinates

$$\xi := x + \theta,$$

$$\eta := x - \theta.$$

(19)

(20)

The governing ODEs in this frame are

$$\dot{\xi}_i = -2\cos \frac{\eta_i}{2} \sin \left(\frac{\xi_i}{2} - \alpha_i\right) + K S_+ \sin(\Phi_+ - \xi_i),$$

(21)

$$\dot{\eta}_i = -2\sin \frac{\eta_i}{2} \cos \left(\frac{\xi_i}{2} - \alpha_i\right) + K S_- \sin(\Phi_- - \eta_i).$$

(22)

Next we search for fixed points. First we simplify by setting $S_- = 1$ and $\eta_i = \Phi_- = 0$ (these ansatzes were suggested by numerics). The $\dot{\eta}_i$ equation reduces to $0 = 0$. The $\dot{\xi}_i$ equation reads

$$-2\sin \left(\frac{\xi}{2} - \alpha\right) + K S_+ \sin(\Phi_+ - \xi) = 0,$$

(23)

$$S_+ e^{i\Phi_+} = \frac{1}{2\pi} \int_0^{2\pi} e^{i\xi(\alpha)} d\alpha.$$
Figure 4 shows the result. Our analysis will be a walk through each of the colored regions / states, so keep this map in mind as we go.

Split phase wave. Here the analysis is essentially a repeat of the $E = 0$ case. The fixed points become

\[
x_i = \alpha_i + \sin^{-1}(E) + (-1)^i \Delta, \\
\theta_i = \beta_i + \sin^{-1}(E) + (-1)^i \Delta.
\]

the resultant cubic is

\[
K^2S^3 + K^2S^2 + 2 + 2E^2 = 0,
\]

whose unique real solution is

\[
S_- = \frac{1}{3} + \frac{K^4 + (\Gamma_1 + 3\sqrt{3}\Gamma_2)^{2/3}}{3K^2(\Gamma_1 + 3\sqrt{3}\Gamma_2)^{1/3}},
\]

where

\[
\Gamma_1 := -2\left(E^2 - 1\right) K^4 - K^6, \\
\Gamma_2 := (E^2 - 1) K^6 (27E^2 + 2K^2 - 27).
\]

We can use Eq. (28) to study the bifurcations of the split phase wave. The trick is to peel off the critical (E, K) boundaries by evaluating Eq. (28) at extremal values of S_- (these values are 0, 1 since $0 \leq S_+ \leq 1$). First we set $S_- = 1$ (which corresponds to the bifurcation to the phase wave) and solve to find

\[
E_-(K) = \sqrt{1 - K^2}.
\]

This is an existence condition; it doesn’t say anything about stability. Simulations show however that it coincides with the stability boundary as shown in Fig. 4 (the black curve between the yellow and cyan regions).

Now we target the other extreme $S_- = 0$ which has existence condition

\[
E^*(K) = 1.
\]

This time existence and stability boundaries do not coincide: the split phase wave loses stability at some $E^{**} < E^*$. One can see this in Fig. 4, where the boundary between the yellow and light red regions is clearly not $E^* = 1$. Figure 4 confirms this picture by plotting $S_-(E)$ for $K = -1.2$. For $E < E^{**} \approx 0.55$, the prediction matches simulation. For $E > E^{**}$ however, theory and numerics start to diverge. Moreover, S_+ jumps from zero which certifies the transition to a new state we call **active async**.

Active async. This state is best understood by watching Supplementary Movies 1&2. Starting in the split phase wave at $K = -1.5$ (the yellow region of Fig. 4), we move E just past E^{**}, and find swarmalators exhibit fast/slow dynamics. They move slowly about the ‘ghost’ of the split phase wave, make sudden cycles in position x and phase θ, then return to the ghost. This burstiness manifests in S_- as irregular oscillations (Fig. 4(a)). As the driving becomes more extreme
$E > E^{**}$, the slow-fast mechanism dies out and all swar- malator are pushed around x, θ at about the same speed resulting in $S_{\pm} \approx 0$ (Fig. 6(b)). The bottom row of Fig. 6 shows the transition to async from the phase wave state (i.e. starting at $K = -0.1$; the cyan region in Fig. 4). The picture is qualitatively the same: large amplitude oscillations which shrink as the driving grows.

Unfortunately, we were unable to calculate the stability of this unsteady state. Numerics however show state dies for $K > 0$, the regime we now explore.

Phase wave. We begin the $K > 0$ exploration with the phase wave. This time however, we analyse in the $N \to \infty$ limit. The governing equations become

$$
\dot{x}_\alpha = E - \sin(x_\alpha - \alpha) + \frac{K}{2} S_+ \sin(\Phi_+ - (x_\alpha + \theta_\alpha)) + \frac{K}{2} S_- \sin(\Phi_- - (x_\alpha - \theta_\alpha)),
\dot{\theta}_\alpha = E - \sin(\theta_\alpha - \alpha) + \frac{K}{2} S_+ \sin(\Phi_+ - (x_\alpha + \theta_\alpha)) - \frac{K}{2} S_- \sin(\Phi_- - (x_\alpha - \theta_\alpha)),
$$

(33)

where S_{\pm} are

$$
S_{\pm} e^{i\Phi_{\pm}} = \frac{1}{2\pi} \int_0^{2\pi} e^{i(x_\alpha \pm \theta_\alpha)} d\alpha,
$$

(35)

and $x: \alpha \mapsto x_\alpha$ and $\theta: \alpha \mapsto \theta_\alpha$ should be thought as self-maps of the unit circle. The fixed points take form

$$
x_\alpha = \theta_\alpha = \alpha + \sin^{-1}(E).
$$

(36)

Now, our goal is to compute the local stability of the phase wave. To get there, we follow the strategy in [59] which is to diagonalize the second variation of the potential function

$$
V(x_\alpha, \theta_\alpha) = -E \int_0^{2\pi} x_\alpha d\alpha - E \int_0^{2\pi} \theta_\alpha d\alpha - \int_0^{2\pi} \cos(\alpha - x_\alpha) d\alpha - \int_0^{2\pi} \cos(\alpha - \theta_\alpha) d\alpha - \frac{K}{2\pi} \int_0^{2\pi} \int_0^{2\pi} \cos(x_\beta - x_\alpha) \cos(\beta - \alpha) d\alpha d\beta.
$$

(37)

Simplification of Eq. (37) using $x_\alpha = \theta_\alpha$ yields

$$
V(x_\alpha) = -2E \int_0^{2\pi} x_\alpha d\alpha - 2 \int_0^{2\pi} \cos(\alpha - x_\alpha) d\alpha - \frac{K}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \cos^2(x_\beta - x_\alpha) d\alpha d\beta.
$$

(38)

Let $\eta : \alpha \mapsto \eta_\alpha$ denote a perturbation about the phase wave state so that

$$
x_\alpha(\epsilon) = \alpha + \sin^{-1}(E) + \epsilon \eta_\alpha,
$$

(39)

where ϵ is small. Plugging Eq. (39) into Eq. (38) yields

$$
V(x_\alpha(\epsilon)) = -2E \int_0^{2\pi} (\alpha + \sin^{-1}(E) + \epsilon \eta_\alpha) d\alpha - 2 \int_0^{2\pi} \cos(\sin^{-1}(E) + \epsilon \eta_\alpha) d\alpha - \frac{K}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \cos^2(\beta - \alpha + \epsilon \eta_{\beta} - \epsilon \eta_\alpha) d\alpha d\beta.
$$

(40)

The second variation of V is a quadratic form

$$
\Gamma(\eta) = \left. \frac{d^2}{\epsilon^2} V(x_\alpha(\epsilon)) \right|_{\epsilon = 0}.
$$

(41)
Differentiation yields
\[
\Gamma(\eta) = 2\sqrt{1 - E^2} \int_0^{2\pi} \eta_\alpha^2 d\alpha \\
+ \frac{K}{2\pi} \int_0^{2\pi} \int_0^{2\pi} (\eta_\beta - \eta_\alpha)^2 \cos(2\beta - 2\alpha) d\alpha d\beta. \tag{42}
\]
We can simplify the second term on the RHS of Eq. (42) by expanding the term \((\eta_\beta - \eta_\alpha)^2\). Which gives
\[
\int_0^{2\pi} \int_0^{2\pi} (\eta_\beta - \eta_\alpha)^2 \cos(2\beta - 2\alpha) d\alpha d\beta = -2 \int_0^{2\pi} \int_0^{2\pi} \eta_\beta \eta_\alpha \cos(2\beta - 2\alpha) d\alpha d\beta. \tag{43}
\]
\(\alpha\) and \(\beta\) integrals further separate when we expand the term \(\cos(2\beta - 2\alpha)\):
\[
\int_0^{2\pi} \int_0^{2\pi} \eta_\beta \eta_\alpha \cos(2\beta - 2\alpha) d\alpha d\beta = \int_0^{2\pi} \int_0^{2\pi} \eta_\beta \eta_\alpha (\cos 2\alpha \cos 2\beta + \sin 2\alpha \sin 2\beta) d\alpha d\beta
\]
\[
= \left[\int_0^{2\pi} \eta_\alpha \cos 2\alpha d\alpha \right]^2 + \left[\int_0^{2\pi} \eta_\alpha \sin 2\alpha d\alpha \right]^2
\]
\[
= \left[\int_0^{2\pi} \eta_\alpha e^{i2\alpha} d\alpha \right]^2 = 4\pi^2 |\hat{\eta}_\alpha(-2)|^2, \tag{44}
\]
where \(\hat{\eta}_\alpha\) is the Fourier transform of \(\eta_\alpha\), defined by
\[
\hat{\eta}_\alpha(m) = \frac{1}{2\pi} \int_0^{2\pi} \eta_\alpha e^{-im\alpha} d\alpha. \tag{45}
\]
We study this in the Hilbert space \(L^2(S^1)\) with the inner product,
\[
\mu_\alpha \cdot \nu_\alpha = \frac{1}{2\pi} \int_0^{2\pi} \mu_\alpha \nu_\alpha d\alpha. \tag{46}
\]
Let \(\mu_\alpha = \cos 2\alpha, \nu_\alpha = \sin 2\alpha\). Then we have \(||\mu_\alpha||^2 = ||\nu_\alpha||^2 = 1/2\) and \(\mu_\alpha \cdot \nu_\alpha = 0\). We express \(\eta_\alpha\) as a linear combination of \(\mu_\alpha, \nu_\alpha\), and a function \(\eta_\alpha^\perp\) (orthogonal to both \(\mu_\alpha\) and \(\nu_\alpha\)) as:
\[
\eta_\alpha = p \frac{\mu_\alpha}{||\mu_\alpha||} + q \frac{\nu_\alpha}{||\nu_\alpha||} + \eta_\alpha^\perp, \tag{47}
\]
where \(\mu_\alpha \cdot \eta_\alpha^\perp = \nu_\alpha \cdot \eta_\alpha^\perp = 0\). Moreover, we get
\[
||\eta_\alpha||^2 = p^2 + q^2 + ||\eta_\alpha^\perp||^2. \tag{48}
\]
Now it is easy to see that
\[
|\hat{\eta}_\alpha(-2)|^2 = \left[\frac{1}{2\pi} \int_0^{2\pi} \eta_\alpha e^{i2\alpha} d\alpha \right]^2
\]
\[
= \left[\int_0^{2\pi} \eta_\alpha \cos 2\alpha d\alpha \right]^2 + \left[\int_0^{2\pi} \eta_\alpha \sin 2\alpha d\alpha \right]^2
\]
\[
= (\eta_\alpha \cdot \mu_\alpha)^2 + (\eta_\alpha \cdot \nu_\alpha)^2
\]
\[
= (p||\mu_\alpha||)^2 + (q||\nu_\alpha||)^2 = \frac{p^2 + q^2}{2}. \tag{49}
\]

Finally using Eqs. (43), (44), (48), and (49), from Eq. (42) we get
\[
\Gamma(\eta) = 4\pi \left[\sqrt{1 - E^2(p^2 + q^2 + ||\eta_\alpha^\perp||^2)} - K \left(\frac{p^2 + q^2}{2} \right) \right]
\]
\[
= 4\pi \left[(p^2 + q^2) \left(\sqrt{1 - E^2} - \frac{K}{2} \right) + \sqrt{1 - E^2} ||\eta_\alpha^\perp||^2 \right]. \tag{50}
\]
So, \(\Gamma\) is positive definite when \(\sqrt{1 - E^2} - K/2 > 0\). This implies the stability boundary is
\[
E_T(K) = \sqrt{1 - \frac{K^2}{4}}. \tag{51}
\]
When \(E = 0\) we recover the critical coupling \(K_c = 2\). Figure 4 shows this agrees with simulation; the thick black curve on RHS of the lopsided bell correctly demarcates the phase wave stability region (cyan). To the north is the unsteady region, while to the east lies the sync state; we go east first.

Sync state. The analysis carries through as before. In presence of driving, Eqs. (23) and (24) become
\[
2E + 2 \sin \left(\frac{\xi}{2} - \alpha \right) + KS \sin \xi = 0, \tag{52}
\]
\[
S_+ = \frac{1}{2\pi} \int_0^{2\pi} e^{i\xi(\alpha)} d\alpha. \tag{53}
\]
Figure 7 shows the numerical solution to these matches simulation for different values of \(E\). Now we present the last piece of our analysis: the \(K > 0, E \gg 0\) regime where collective behavior is unstable.

Chaos & quasi-periodicity. Starting in the phase wave and moving in the +\(E\) direction, we encounter low dimensional chaos (where the order parameters \(W_\pm\) move chaotically in the complex plane). Figure 5 explores the
FIG. 8: Transition to chaos. Time series of S_+, phase space trajectory in the $S_+ - S_-$ plane, and the normalized power spectrum for different E values when $K = 0.5$. In the top row, $E = 1.0$ which is the quasi-periodic state. In the middle row, $E = 1.2$ which is the chaotic state. In the bottom row, $E = 1.3$ which is the periodic orbit.

transition for $K = 0.5$ (for which the critical driving is $E_T = \sqrt{15}/4 \approx 0.968$). For $E = 1.0$, just past the threshold, S_+ is quasi-periodic. The time series is irregular, plots of (S_+, S_-) form space-filling curves, and its power spectrum has a few dominant peaks with multiple smaller peaks (Fig. 8 top row). As E is increased to $E = 1.2$, the motion becomes chaotic. The time series and (S_-, S_+) plots are irregular while the power spectrum has a wide band of frequencies (Fig. 8 middle row). As E increases to 1.3 the chaos dies and simple periodic behavior is observed as indicated by the 1D manifold in (S_-, S_+) plane and a single peak in the Fourier spectrum (Fig. 8 bottom row). Here the swarmalators form traveling loops in (x, θ) space like “flying saucers” (Supplementary Movie 1&2). As E increases, the width of these loops shrinks and finally become delta point masses at $E \to \infty$.

Figure 9 further explores the route to chaotic region. Panel (a) shows the bifurcation structure of $\min S_+(K)$. Starting from $E \approx 1.3$ and decreasing E, the classic period doubling route to chaos is observed (panel (b) zooms in the period doubling region). Panel (c) shows the maximum Lyapunov exponents are consistent with this picture: at the onset of chaos $E \approx 1.24$, they switch from negative to positive. Lastly, panels (d)-(g) illustrate the period doubling in the (S_-, S_+) plane. Starting from the right at $E = 1.248$, where 1-periodic orbit exists (Fig. 9 (d)), one can observe period doubling cascade with de-

FIG. 9: Route to chaos. (a) Bifurcations structure of $S_+(E)$. (b) Zoom in of period doubling route to chaos. (c) Lyapunov exponents. (d)-(g) Period doubling illustrated in the (S_+, S_-) plane. $E = 1.248, 1.243, 1.241, 1.23$ for the panels (d), (e), (f), and (g), respectively. In all panels, $K = 0.5$ and $(dt, T, N) = (0.01, 10000, 200)$. Last 20% data were taken to calculate peaks of the time series of S_+.
increasing E. At $E = 1.243$, a 2-periodic orbit (Fig. 9 (e)) and at $E = 1.241$, a 4-periodic orbit (Fig. 9 (f)) are found before the motion becomes chaotic (Fig. 9 (g) for $E = 1.23$). Supplementary Movie 3 shows the (S_+, S_-) plots along with accompanying scatter plots in the (x, θ). Finally, Fig. 10 shows the transition to unsteady behavior is hysteretic. For $K = 1$, the phase wave loses stability at $E_T = \sqrt{3}/2 \approx 0.87$. A quasi-periodic orbit is born beyond this value of E. However, the backward transition shows that quasi-periodicity is sustained till $E \approx 0.79 < E_T$.

V. ROBUSTNESS TO NON-SYMMETRIC PINNING

Here we briefly demonstrate that our results are robust to small perturbation around the symmetric pinning idealization $\alpha_i = \beta_i$. We explore two choices: symmetric pinning with an offset (i) $\alpha_i = \beta_{i+1} = 2\pi i/N$ and (ii) randomly drawn (but sorted) pinning $\alpha_i, \beta_i \sim U(0, 2\pi)$. We find each collective state persists for both (i) and (ii). Figure 11 shows the phase wave as an example. We also computed the numerical bifurcation diagram (K, E) and found it was qualitatively similar. We leave further explorations for future work.

VI. DISCUSSION

Our hope is that the 1D swarmalator model be used as toy model for general studies of swarmalation in disordered media. It seems to have the right ingredients: it is tractable yet also mimics real world behavior. The phase wave state is observed in many 1D swarmalators, such as circularly confined spermatazoa [67] and bordertaxic vinegar eels [13,15]. The split phase wave mimics the ‘wavy-antisynchronization’ seen in models of Japanese tree frogs (see Fig. 3 in [66]) and the chain states of Janus matchsticks (Fig 5(c) of [8]). As for the dynamic states, chaos has been observed in the dynamics of single magnetic domains walls [65], but to our knowledge has not yet been observed in the $N > 1$ regime. On the other hand, so-called biological turbulence is often observed in aggregations of microswimmers [69]. Could the material defects in the host medium be the source of this unsteady behavior? If so, our model could provide a tractable setting to examine this form of chaos (indeed, to our knowledge, this is the only oscillator model with pinning that produces chaos).

To sum up, the model’s partial matches to reality are encouraging, but it’s still not clear if the model is general enough for broad use. The radical idealizations we made (mean field coupling, symmetric pinning $\alpha_i = \beta_i$) likely cut out some essential physics. Nevertheless, we hope the model at least finds use as an early stepping stone in the study of pinning in systems which both sync and swarm – systems for which theories are currently lacking.

Ambitious follow up work could try to derive the evolution equations for the order parameters S_{\pm}. Crawford did this for the Kuramoto model via a center manifold calculation [70]. If we could adapt his analysis for S_{\pm} we could crack the bifurcations of the unsteady states. For instance, we could study the tricritical point joining the phase wave, sync, and unsteady phases (the point at which the red, cyan and magenta region meet in Figure 4). Future work could also relax our model’s symmetry. Instead of a common (E, b, K) appearing in both the $\dot{z}, \dot{\theta}$, one could split them up $E \to (E_x, E_\theta), b \to (b_x, b_\theta), K \to (K_x, K_\theta)$. Local coupling, non-symmetric pinning $\alpha_i \neq \beta_i$, and spatial motion in 2D would also be interesting to explore.

Reproducibility. Code used for simulations and analytic calculations available on Github [72].
[53] N. Blum, A. Li, K. O’Keeffe, and O. Kogan, arXiv preprint arXiv:2210.11417 (2022).
[54] J. D. Monaco, G. M. Hwang, K. M. Schultz, and K. Zhang, in Micro- and Nanotechnology Sensors, Systems, and Applications XI (International Society for Optics and Photonics, 2019), vol. 10982, p. 109822D.
[55] K. Schultz, M. Villafane-Delgado, E. P. Reilly, G. M. Hwang, and A. Saksena, arXiv preprint arXiv:2103.08583 (2021).
[56] S. Ceron, K. O’Keeffe, and K. Petersen, arXiv preprint arXiv:2211.06439 (2022).
[57] L. P. Gor’kov and G. Grüner, Charge density waves in solids (Elsevier, 2012).
[58] G. Grüner and A. Zettl, Physics Reports 119, 117 (1985).
[59] S. H. Strogatz, C. M. Marcus, R. M. Westervelt, and R. E. Mirollo, Physica D: Nonlinear Phenomena 36, 23 (1989).
[60] S. Strogatz, C. Marcus, R. Westervelt, and R. Mirollo, Physical Review Letters 61, 2380 (1988).
[61] A. Hrabec, V. Krížáková, S. Pizzini, J. Sampaio, A. Thiville, S. Rohart, and J. Vogel, Physical Review Letters 120, 227204 (2018).
[62] E. Haltz, S. Krishna, L. Berges, A. Mougin, and J. Sampaio, Physical Review B 103, 014444 (2021).
[63] M. Foerster, O. Boule, S. Esefelder, R. Mattheis, and M. Kläui, Domain Wall Memory Device (Springer Netherlands, Dordrecht, 2016), pp. 1387–1441, ISBN 978-94-007-6892-5, URL https://doi.org/10.1007/978-94-007-6892-5_48.
[64] S. Wolf, D. Awschalom, R. Buhrman, J. Daughton, v. S. von Molnár, M. Roukes, A. Y. Chtchelkanova, and D. Treger, Science 294, 1488 (2001).
[65] H. Ohno, Nature Materials 9, 952 (2010).
[66] I. Aihara, T. Mizumoto, T. Otsuka, H. Awano, K. Nagira, H. G. Okuno, and K. Aihara, Scientific Reports 4, 1 (2014).
[67] A. Creppy, F. Plouraboué, O. Praud, X. Druart, S. Cazin, H. Yu, and P. Degond, Journal of The Royal Society Interface 13, 20160575 (2016).
[68] A. Sukhiennicki and R. Kosiński, Journal of Magnetism and Magnetic Materials 129, 213 (1994), ISSN 0304-8853, URL https://www.sciencedirect.com/science/article/pii/0304885394901139.
[69] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär, and R. E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013), URL https://link.aps.org/doi/10.1103/PhysRevLett.110.228102.
[70] J. D. Crawford, Journal of Statistical Physics 74, 1047 (1994).
[71] Note1, https://github.com/Khev/swarmalators/tree/master/1D/on-ring/random-pinning.
[72] https://github.com/Khev/swarmalators/tree/master/1D/on-ring/random-pinning.