THE LOW ENERGY EFFECTIVE THEORY AND NUCLEON STABILITY

ILIA GOGOLADZE
Department of Physics
University of Notre Dame,
Notre Dame, IN 46556 USA

We show that the Standard Model Lagrangian, including small neutrino masses, has an anomaly-free discrete Z_6 symmetry. Anomaly cancellation requires the number of family to be $3 \ mod \ 6$. This symmetry can ensure the stability of the nucleon even when the threshold of new physics Λ is low as 10^2 GeV. All $\Delta B = 1$ and $\Delta B = 2$ (B is the baryon number) effective operators are forbidden by the Z_6 symmetry. $\Delta B = 3$ operators are allowed, but they arise only at dimension 15. We suggest a simple mechanism for realizing reasonable neutrino masses and mixings even with such a low scale for Λ.

The Standard Model (SM) has been highly successful in explaining all experimental observations in the energy regime up to a few hundred GeV. However, it is believed to be an effective field theory valid only up to a cutoff scale Λ. Non-renormalizable operators which are gauge invariant but suppressed by appropriate inverse powers of Λ should then be considered in the low energy effective theory. The dimension 5 operator $\ell \ell HH/\Lambda_L$ (ℓ is the lepton doublet) which violates lepton number (L) by two units is the lowest dimensional of such operators. Experimental evidence for neutrino masses suggests the effective scale of L-violation is around $\Lambda_L \sim 10^{14} - 10^{15}$ GeV. The $d = 6$ operator $QQQ\ell/\Lambda_B^2$ violates both baryon number (B) and lepton number and leads to the decay of the nucleon. The current limits on proton lifetime are $\tau_p > 5 \times 10^{33}$ yrs for $p \rightarrow e^+ \pi^0$ 1. These limits imply that $\Lambda_B > 10^{15}$ GeV. Grand Unified Theories with or without supersymmetry generate such B-violating operator with $\Lambda_B \sim 10^{15} - 10^{16}$ GeV. These theories are currently being tested through nucleon decay. Any new physics with a threshold Λ less than the GUT scale will thus be constrained by both proton lifetime and neutrino masses.

As we know the SM effective lagrangian does not have a continuous anomaly-free symmetry that can suppress baryon number and lepton number violating processes. This is our reason for focusing on discrete sym-
metries. It is preferable that such symmetries have a gauge origin\(^2\) since all global symmetries are expected to be violated by the quantum gravitational effects. Discrete gauge symmetries have been utilized in suppressing nucleon decay\(^3\) as well as in addressing other aspects of physics such as solving the \(\mu\) problem\(^4\) of supersymmetry, fermion mass hierarchy problem\(^5\) and the stability of the axion\(^4,6\). A \(Z_3\) baryon parity was found in Ref. \([3]\) that suppresses nucleon decay. In order for it to have a gauge origin, complicated particle content were introduced.

We pointed out the SM lagrangian has a discrete \(Z_6\) gauge symmetry which forbids all \(\Delta B = 1\) and \(\Delta B = 2\) baryon violating effective operators. This can be seen as follows. The SM Yukawa couplings incorporating the seesaw mechanism to generate small neutrino masses is

\[
L_Y = Qu^c H + Qd^c H^* + \ell e^c H^* + \ell \nu^c H + M_R \nu^c \nu^c .
\]

Here we have used the standard (lefthanded) notation for the fermion fields and have not displayed the Yukawa couplings or the generation indices. This lagrangian respects a \(Z_6\) discrete symmetry with the charge assignment as shown in Table 1. From Table 1 it is easy to calculate the \(Z_6\) crossed anomaly coefficients with the SM gauge groups. We find the \(SU(3)_C\) and \(SU(2)_L\) anomalies to be:
\[A_{[SU(3)_C]_2 \times Z_6} = 3N_g\] and
\[A_{[SU(2)_L]_2 \times Z_6} = N_g\]
where \(N_g\) is the number of generations. The condition for a \(Z_N\) discrete group to be anomaly-free is:
\[A_i = \frac{N}{2} \mod N\]
where \(i\) stands for \(SU(3)_C\) and \(SU(2)_L\). For \(Z_6\), this condition reduces to \(A_i = 3 \mod 6\), so when \(N_g = 3\), \(Z_6\) is anomaly-free. The significance of this result is that unknown quantum gravitational effects will respect this \(Z_6\). It is this feature that we utilize to stabilize the nucleon. Absence of anomalies also suggests that the \(Z_6\) may have a simple gauge origin.

We have found\(^7\) a simple and economic embedding of \(Z_6\) into a \(U(1)\) gauge symmetry associated with \(I^3_R + L_i + L_j - 2L_k\). Here \(L_i\) is the \(i\)th family lepton number and \(i \neq j \neq k\). No new particles are needed to cancel gauge anomalies. With the inclusion of righthanded neutrinos \(I^3_R = Y - (B - L)/2\)
is an anomaly-free symmetry. \(L_i + L_j - 2L_k \), which corresponds to the \(\lambda_8 \) generator acting in the leptonic \(SU(3) \) family space, is also anomaly-free. The charges of the SM particles under this \(U(1) \) are: \(Q_i = (0,0,0) \), \(u_i^c = (-1, -1, -1) \), \(d_i^c = (1, 1, 1) \), \(l_i = (-4,2,2) \), \(e_i^c = (5,-1,-1) \), \(\nu_i^c = (3,-3,-3) \), \(H = 1 \). This charge assignment allows all quark masses and mixings as well as charged lepton masses. When the \(U(1) \) symmetry breaks spontaneously down to \(Z_6 \) by the vacuum expectation value of a SM singlet scalar field \(\phi \) with a charge of 6, realistic neutrino masses and mixings are also induced\(^7\).

From Table 1 it is easy to see that the \(Z_6 \) discrete symmetry allowed only \(\Delta B = 3 \) effective operators with lowest-dimension \(d = 15 \) and forbids all \(\Delta B = 1 \) and \(\Delta B = 2 \) operators. \(\Delta B = 3 \) and \(d = 15 \) operator will lead to “triple nucleon decay” processes where three nucleons in a heavy nucleus undergo collective decays. We choose a specific operator \(Q^5 \bar{d}^4 \bar{\ell}/\Lambda^11 \) as an example to study the process \(pnn \rightarrow e^+ + \pi^0 \) triple nucleon decay process. In this case the triple nucleon decay lifetime can then be estimated to be

\[
\tau \sim \frac{16\pi f_\pi^2 \Lambda^{22} R^6}{P^2 \beta^6 M^3 H},
\]

where \(\beta \simeq 0.014 \text{ GeV}^3 \) is the matrix element to convert three quarks into a nucleon \(^8\), \(f_\pi = 139 \text{ MeV} \) is the pion decay constant, \(P \) is the probability for three nucleons in Oxygen nucleus to overlap in a range the size of Tritium nucleus, \(R \) is the ratio between the radii of Tritium nucleus and Oxygen nucleus. By putting the current limit on proton lifetime of \(3 \times 10^{33} \) yrs, we obtain: \(\Lambda \sim 10^2 \text{ GeV} \). Thus we see the \(Z_6 \) symmetry ensures the stability of the nucleon.

If the threshold of new physics is low as a few TeV, neutrino mass induced through the effective operator \(\ell\ell HH/\Lambda \) will be too large. We found a mechanism by which such operators can be suppressed by making use of a discrete \(Z_N \) symmetry (with \(N \) odd) surviving to low scale.

Consider the following effective operators in the low energy lagrangian:

\[
L \supset \ell\ell HH S^6/\Lambda^7 + \frac{S^{2N}}{\Lambda^{2N-4}}.
\]

Here \(S \) is a singlet field which has charge \((1,3)\) under \(Z_N \times Z_6 \) while \(\ell \) has charge \((-3,2)\). (The \(Z_6 \) charges of SM particles are as listed in Table 1.) In this case, if \(\Lambda = 10 \text{ TeV} \) and \(S = 10^2 \text{ GeV} \), the neutrino mass is of order \(O(0.1) \text{ eV} \), which is consistent with the mass scale suggested by the atmospheric neutrino oscillation data.
Two explicit examples of the Z_N symmetry with $N = 5$ and 7 are shown in Table 2. These Z_N symmetries are free from gauge anomalies. In the Z_5 example, the crossed anomaly coefficients for $SU(3)_C$ and $SU(2)_L$ are $5N_g$ and $5N_g/2$ respectively showing that Z_5 is indeed anomaly-free. For Z_7, these coefficients are $7N_g$ and $7N_g/2$, so it is also anomaly-free.

Field	Q	u^c	d^c	ℓ	e^c	H	S
Z_5	1	4	4	2	3	0	1
Z_7	1	6	6	4	3	0	1

Table 2. Z_N charge assignment for $N = 5$ and 7.

It is interesting to ask if the Z_N can be embedded into a gauged $U(1)$ symmetry. A simple possibility we have found is to embed this Z_N into the anomalous $U(1)_A$ symmetry of string origin with the anomalies cancelled by the Green-Schwarz mechanism \(^9\). Consider $U(1)_{B-L}$ without the right handed neutrinos but with the inclusion of vector-like fermions which have the quantum numbers of $5(3)$ and $\bar{5}(2)$ under $SU(5) \times U(1)_A$. This $U(1)_A$ is anomaly-free by virtue of the Green-Schwarz mechanism. When this $U(1)_A$ breaks down to Z_5, the extra particles get heavy mass and are removed from the low energy theory which is the $Z_6 \times Z_5$ model.

This work was supported in part by the National Science Foundation under grant PHY00-98791.

References
1. K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002).
2. L.M. Krauss and F. Wilczek, Phys. Rev. Lett. 62, 1221 (1989). T. Banks and M. Dine, Phys. Rev. D 45, 1424 (1992).
3. L.E. Ibanez and G.G. Ross, Nucl. Phys. B 368, 3 (1992).
4. K.S. Babu, I. Gogoladze and K. Wang, Phys. Lett. B 560, 214 (2003).
5. K.S. Babu, I. Gogoladze and K. Wang, Nucl. Phys. B 660, 322 (2003).
6. A.G. Dias, V. Pleitez and M.D. Tonasse, Phys. Rev. D 67, 095008 (2003).
7. K.S. Babu, I. Gogoladze and K. Wang, Phys. Lett. B 570, 32 (2003) [arXiv:hep-ph/0306003].
8. S. Aoki et al. [JLQCD Collaboration], Phys. Rev. D 62, 014506 (2000).
9. M.B. Green and J.H. Schwarz, Phys. Lett. B 149, 117 (1984).