Radiative corrections for pion and kaon production at e^+e^- colliders of energies below 2 GeV

A.B. Arbuzov1, V.A. Astakhov2, A.V. Fedorov3 G.V. Fedotovich2, E.A. Kuraev1 and N.P. Merenkov4

1 Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980, Russia

2 Budker Institute for Nuclear Physics, Prospect Nauki, 11, Novosibirsk, 630090, Russia

3 Laboratory of Computing Techniques and Automation, JINR, Dubna, 141980, Russia

4 Kharkov Institute of Physics and Technology, Kharkov, 310108, Ukraine

Abstract

Processes of electron–positron annihilation into charged pions and kaons are considered. Radiative corrections are taken into account exactly in the first order and within the leading logarithmic approximation in higher orders. A combined approach for accounting exact calculations and electron structure functions is used. An accuracy of the calculation can be estimated about 0.2%.

PACS 12.20.–m Quantum electrodynamics, 12.20.Ds Specific calculations

Keywords: electron–positron annihilation, pion production, large angles, intermediate energies

1 Introduction

The processes in collisions of e^+e^- beams at moderate high energies with detection of the final particles moving in centre–of–mass system (c.m.s.) at large angles are the subject of close attention at meson factories, such as VEPP–2M (Novosibirsk) [1], DAΦNE (Frascati) [2], BEPC/BES (Beijing) [3]. The processes of pure quantum electrodynamics (QED) nature provide an important background for studies of subtle mesons properties. Besides, they may be used for a calibration and monitoring. Because of large cross–sections of the lowest order processes, radiative corrections (RC) to them are to be included in the consideration.
In our previous paper \[4\] we had considered the QED processes \(e^+e^- \rightarrow e^+e^-(\gamma),\) \(\mu^+\mu^- (\gamma),\) \(\gamma\gamma (\gamma)\). We developed there an approach for precise accounting of radiative corrections to differential distributions. The part of RC, describing the emission of hard additional photons was presented in the form convenient for imposing experimental conditions of the final particle detection. The contribution of higher orders of perturbation theory was considered in the leading logarithmical approximation. That was done by means of the structure function approach, writing a cross–section in the Drell–Yan form.

In this paper we apply the same approach to processes \(e^+e^- \rightarrow \pi^+\pi^-(\gamma),\) \(K_LK_S(\gamma),\) \(K^+K^-(\gamma),\) considering the pseudoscalar mesons as point–like objects. The effects of strong interaction of hadrons in the final state are parametrized by introducing form factors which are to be measured in an experiment. We assume as usually that vacuum polarization corrections (by hadrons and leptons) are also included in the form factors.

The virtual and soft real photon emission corrections are calculated in the \(\mathcal{O}(\alpha)\) order exactly. This permits us to keep explicitly the leading (containing large logarithm \(L = \ln(s/m^2),\) \(s = 4\varepsilon^2\) is the squared total energy in c.m.s.) and next–to–leading terms. The latters are regarded further as \(K\)–factor terms in the Drell–Yan representation for a cross–section.

Considering hard photon emission we extract contributions, containing large logarithm \(L\). We distinguish the collinear kinematics of hard photon emission and the semi–collinear ones, which do not give rise to \(L\). An auxiliary parameter, a small polar angle \(\theta_0 \ll 1\) with respect to the direction of the initial beams, is introduced for this purpose. The terms containing photon softness parameter \(\Delta = \Delta\varepsilon/\varepsilon\) (\(\Delta\varepsilon\) is the maximal energy of a soft (in c.m.s.) undetected photon) and the ones containing \(\theta_0\) from the contribution of the collinear region are regarded as compensating terms. When they being summed with the contribution of the semi–collinear region (with the relevant restrictions imposed) provide their finiteness in the limit \(\Delta, \theta_0 \rightarrow 0\).

This paper is organized as follows. In the second Section we consider the process of charged pion production. The explicit formulae (we keep pion mass exactly) for the lowest order virtual and soft real photon emission are presented. The charge–even and charge–odd contributions are given separately. The latter quantity permits us to obtain the charge asymmetry which can be measured. We put also the explicit formula for the differential cross–section of hard photon emission. In Sect. 3 a similar consideration is given for the case of neutral and charged kaon production near the threshold. In Conclusions we discuss the formulae obtained and their precision. The results are illustrated numerically in Figures. In the Appendix we discuss the structure of form factors and give the explicit expressions for the vacuum polarization operator.

2 Pion Pair Production

In the Born approximation the differential cross–section of the process

\[
e^+(p_+) + e^-(p_-) \rightarrow \pi^+(q_+) + \pi^-(q_-)
\]

has the form

\[
\frac{d\sigma_0}{d\Omega}(s) = \frac{\alpha^2 \beta^3}{8s} \sin^2 \theta |F_\pi(s)|^2, \quad \beta = \sqrt{1 - m^2/\varepsilon^2},
\]

where...
The pion form factor $F_{\pi}(s)$ takes into account vertex virtual corrections due to strong interactions and vacuum polarization by leptons and hadrons (including vector–meson resonances) \cite{5} (see Appendix). We would like to underline that in our approach QED corrections are not included into $F_{\pi}(s)$. One has to take the form factor from an experiment after an extraction of QED radiative corrections.

Calculating QED radiative corrections we will consider pion as a point–like particle. We distinguish form–factor–type one–loop Feynman diagrams and the box–type ones. QED form factors are taken as $F_{e,\pi}^{QED}(s) = 1 + F_{e,\pi}^{(1)} + \mathcal{O}(\alpha^2)$. Using the known first order contributions to the electron and pion QED form factors

\begin{equation}
Re F_{e}^{(1)}(s) = \frac{\alpha}{\pi} \left[\left(\ln \frac{m_e}{\lambda} - 1 \right) (1 - L) - \frac{1}{4} L^2 + \frac{\pi^2}{3} - \frac{1}{4} L \right], \quad L = \ln \frac{s}{m_e^2},
\end{equation}

\begin{equation}
Re F_{\pi}^{(1)}(s) = \frac{\alpha}{4\pi} \left\{ 4 \left(\ln \frac{m_{\pi}}{\lambda} - 1 \right) \left(1 - \frac{1 + \beta^2}{2\beta} b_\beta \right) + \frac{1 + \beta^2}{2\beta} \left[-2 \ln \left(\frac{4}{1 - \beta^2} \right) b_\beta + \ln^2 \frac{1 - \beta}{2} - \ln^2 \frac{1 + \beta}{2} \right] - 2 b_\beta \ln \beta - 2 \text{Li}_2 \left(-\frac{1 - \beta}{2\beta} \right) + 2 \frac{\text{Li}_2 \left(-\frac{1 + \beta}{2\beta} \right)}{2} \right\},
\end{equation}

and the contribution due to soft photon emission \cite{6, 7}, we obtain for the charge–even part of the differential cross–section the following formula:

\begin{equation}
\frac{d\sigma_{even}^{B+S+V}}{d\Omega} = \frac{d\sigma_0}{d\Omega} \left\{ 1 + \frac{2\alpha}{\pi} [A + B] \right\},
\end{equation}

\begin{equation}
A = (L - 1) \ln \frac{\Delta \varepsilon}{\varepsilon} + \frac{3}{4} (L - 1) + a, \quad a = \frac{\pi^2}{6} - \frac{1}{4},
\end{equation}

\begin{equation}
B = \left(\frac{1 + \beta^2}{2\beta} \right) \ln \frac{1 + \beta}{1 - \beta} - 1 \right) \ln \frac{\Delta \varepsilon}{\varepsilon} + b(s),
\end{equation}

\begin{equation}
b(s) = -1 + \frac{1 - \beta}{2\beta} L + \frac{1}{\beta} \ln \frac{1 + \beta}{2} + \frac{1 + \beta^2}{2\beta} \left[-\text{Li}_2 \left(-\frac{1 - \beta}{1 + \beta} \right) + \text{Li}_2 \left(\frac{1 - \beta}{1 + \beta} \right) - \frac{\pi^2}{12} + L \ln \frac{1 + \beta}{2} - 2 L \ln \beta + \frac{3}{2} \ln^2 \frac{1 + \beta}{2} - \frac{1}{2} \ln^2 \beta - 3 \ln \beta \ln \frac{1 + \beta}{2} + L + 2 \ln \frac{1 + \beta}{2} \right].
\end{equation}

Box–type diagrams and the interference of soft photon emission from electrons and pions give rise for the charge–odd contribution

\begin{equation}
\frac{d\sigma_{\text{odd}}^{S+V}}{d\Omega} = \frac{d\sigma_0}{d\Omega} \frac{2\alpha}{\pi} \left\{ 2 \ln \frac{\Delta \varepsilon}{\varepsilon} \ln \frac{1 - \beta c}{1 + \beta c} + k(c, s) \right\},
\end{equation}

\begin{equation}
k(c, s) = \frac{1}{2} L^2 - \text{Li}_2 \left(\frac{1 - 2\beta c + \beta^2}{2(1 - \beta c)} \right) + \text{Li}_2 \left(\frac{\beta^2 (1 - c^2) - 2\beta c + \beta^2}{1 - 2\beta c + \beta^2} \right).
\end{equation}
This expression coincides with the result of Brown and Mikaelian [8].

The charge asymmetry in a quasi–elastic case has the form

\[\beta \]

Tensor \(T \) can be presented in the following form:

\[
\frac{1}{\beta} \left(L \ln \frac{2}{1 + \beta} - \text{Li}_2 \left(\frac{1 - \beta}{1 + \beta} \right) + 2 \text{Li}_2 \left(\frac{1 - \beta}{2} \right) \right) - (c \to -c),
\]

\[f(x) = \left(\frac{1}{\sqrt{1 - x}} - 1 \right) \ln \frac{\sqrt{x}}{2} - \frac{1}{\sqrt{1 - x}} \ln \frac{1 + \sqrt{1 - x}}{2}, \]

\[l_- = \ln \frac{1 - \beta c}{2}, \quad L_- = \ln \left(1 - \frac{1 - \beta^2}{2(1 - \beta c)} \right). \]

The charge asymmetry in a quasi–elastic case has the form

\[
\eta = \frac{d\sigma(c) - d\sigma(-c)}{d\sigma(c) + d\sigma(-c)} = \frac{d\sigma^{S+V}}{d\sigma_0}. \tag{7}
\]

In the ultra–relativistic case \((\beta \to 1)\) we obtain

\[
(\eta)_{\text{asympt}} = \frac{2\alpha}{\pi} \left[4 \ln(\tan \frac{\theta}{2}) \ln \frac{\Delta \varepsilon}{\varepsilon} + \left(2 - \frac{1}{\cos^2 \frac{\theta}{2}} \right) \ln^2(\sin \frac{\theta}{2}) - \ln^2(\cos \frac{\theta}{2}) \right] - \left(2 - \frac{1}{\sin^2 \frac{\theta}{2}} \right) \ln^2(\sin \frac{\theta}{2}) + \text{Li}_2(\cos^2 \frac{\theta}{2}) - \text{Li}_2(\sin^2 \frac{\theta}{2}) \right], \quad \varepsilon \gg m. \tag{8}
\]

This expression coincides with the result of Brown and Mikaelian [8].

The matrix element of the process accompanied by hard photon emission

\[e^-(p_-) + e^+(p_+) \longrightarrow \pi^-(q_-) + \pi^+(q_+) + \gamma(k) \tag{9} \]

can be presented in the following form:

\[
M^{e^+e^-\to\pi^+\pi^-\gamma} = -i(4\pi\alpha)^{\frac{3}{2}} \left\{ v \left[\gamma_\mu \left(\frac{p_+e}{\chi_+} - \frac{p_-e}{\chi_-} \right) + \gamma_\mu \tilde{k} \hat{e} \frac{\gamma_\nu}{2\chi_-} - \frac{\gamma_\mu \tilde{k} \hat{e}}{2\chi_+} \right] \right\}.
\tag{10}
\]

\[
\times u(q_- - q_+) v_F(s_1) \frac{F_F(s_1)}{s_1} + \bar{v} \gamma_\mu u F_F(s) \frac{F_F(s)}{s} T^\pi_{\rho\sigma} e^\sigma(k),
\]

\[p_- + p_+ = q_- + q_+ + k, \quad s = (p_- + p_+)^2, \quad s_1 = (q_- + q_+)^2, \quad \chi_\pm = p_\pm k. \]

Tensor \(T^\pi_{\rho\sigma} \) describes the transition of a heavy photon into the system of two real pions and a real photon:

\[
\gamma^*(q) \to \pi^+(q_+) + \pi^-(q_-) + \gamma(k), \quad q^2_+ = q_-^2 = m_\pi^2, \quad q^2 = s, \quad k^2 = 0. \tag{11}
\]

Regarding CPT and gauge invariance the tensor can be written in the general form

\[
T^\pi_{\rho\sigma} = a_1 L^{(1)}_{\rho\sigma} + a_2 L^{(1)}_{\rho\sigma} + a_3 L^{(1)}_{\rho\sigma} + k_\sigma O_\rho, \quad q^\rho T^\pi_{\rho\sigma} = 0, \quad k^\sigma T^\pi_{\rho\sigma} = 0. \tag{12}
\]
The last term ($\sim k_\sigma$) is irrelevant here. Tensors $L^{(i)}$ read

$$L_{\rho\sigma}^{(1)} = qk g_{\rho\sigma} - k_\rho k_\sigma, \quad L_{\rho\sigma}^{(2)} = qk Q_\rho Q_\sigma - kQ (q_\rho Q_\sigma + Q_\sigma k_\rho) + (kQ)^2 g_{\rho\sigma},$$

$$L_{\rho\sigma}^{(3)} = kQ (q^2 g_{\rho\sigma} - q_\rho q_\sigma) + Q_\sigma (qk q_\rho - q^2 k_\rho), \quad Q = \frac{1}{2}(q_1 - q_2). \tag{13}$$

For the case of charge pion production, which is considered below, we used the approximation of point–like pions, where

$$T^\pi_{\rho\sigma} \rightarrow T^{(0)}_{\rho\sigma} = \frac{1}{2\chi^\prime_+} (q_\rho - q_\sigma - k)(-2q_+ - k)_\rho$$

$$+ \frac{1}{2\chi^-_+} (q_\rho - q_\sigma + k)(2q_+ + k)_\rho - 2g_{\rho\sigma}, \quad \chi^\prime_\pm = q_\pm k, \tag{14}$$

$$a_{1}^{(0)} = -\frac{2}{\chi^\prime_+ + \chi^-_+} \left(\frac{\chi^-_+}{\chi^+_+} + \frac{\chi^-_+}{\chi^-_+} \right), \quad a_{2}^{(0)} = \frac{16}{\chi^\prime_+ - \chi^-_+}, \quad a_{3}^{(0)} = 0.$$

In reality some vector–meson resonance intermediate states give rise of contributions to the tensor.

The differential cross–section of the process with hard photon emission reads

$$d\sigma^{e^+e^-\rightarrow \pi^+\pi^-\gamma} = \frac{\alpha^3}{2\pi^2 s^2} (R_1 + R_2 + R_3) d\Gamma, \tag{15}$$

$$R_1 = \frac{s}{s_1^2} |F_\pi(s_1)|^2 (p_+ Q p_+ Q) \left[\frac{p_+ p_-}{\chi_+ \chi_-} - \frac{2}{\chi_-} - \frac{m^2_\pi}{\chi_-^2} \right],$$

$$+ \frac{\chi_+}{p_+ p_-} \left(\frac{1}{\chi_-} + \frac{m^2_\pi}{\chi_-^2} \right) + (p_+ \leftrightarrow p_-),$$

$$R_2 = \left\{ \frac{1}{s} |F_\pi(s)|^2 \left[\frac{q_+ q_-}{\chi_+ \chi_-} - \frac{m^2_\pi}{\chi_+} \right] + (q_+ \leftrightarrow q_-) \right\}$$

$$+ \frac{2}{s_1} \text{Re} \left(F_\pi(s) F^*_\pi(s_1) \right) \left(\frac{p_+ p_-}{\chi_+} - \frac{p_-}{\chi_-} \left(\frac{q_+}{\chi_+} - \frac{q_-}{\chi_-} \right) \right) (p_+ Q p_- Q),$$

$$R_3 = \frac{s}{s_1^2} |F_\pi(s)|^2 \left[\frac{(p_+ Q k_- Q)}{\chi_-} + \frac{(p_- Q k_+ Q)}{\chi_+} \right] + \frac{2Qk}{\chi_+ \chi_-} (p_+ Q p_- k)$$

$$+ \frac{1}{s} |F_\pi(s)|^2 \left[- \frac{\chi_+ \chi_-}{2\chi_+ \chi_-} q_+ q_- - \frac{m^2_\pi}{4(\chi_+^2)} \right] \left((p_+ k p_-) + 2(p_+ Q p_- k) \right)$$

$$+ 2(p_+ k p_- Q) \left[\frac{1}{\chi_+} \left(\chi_+ p_- q_+ + \chi_- p_+ q_- + 2(p_- Q p_+ q_+) \right) + (q_+ \leftrightarrow q_-) \right]$$

$$+ \frac{1}{s} \text{Re} \left(F_\pi(s) F^*_\pi(s_1) \right) \left\{ (p_+ Q p_- k) \frac{q_+}{\chi_+} \left(\frac{p_+}{\chi_+} - \frac{p_-}{\chi_-} \right) \right\}$$

$$+ 2(p_+ Q - p_- Q) - \frac{1}{\chi_+} \left((p_+ Q p_+ k) - (p_- Q p_- k) \right)$$

$$+ \frac{2Qk}{\chi_-} \frac{Q p_+ q_+}{\chi_+ \chi_-} - \frac{2Q p_- Q k p_+ q_-}{\chi_+ \chi_-} - \frac{Q^2 \chi_+ q_+ q_-}{\chi_+^2 \chi_-}$$

$$+ \frac{Q^2 p_+ q_-}{\chi_+} + \frac{Q^2 q_+ p_-}{\chi_-} \frac{Q^2 p_- q_-}{\chi_+} - \frac{Q^2 p_- q_-}{\chi_+} \right\}.$$
\(k_\pm = k - p_\pm \frac{\chi_+}{p_+ p_-} \), \(Q = \frac{1}{2}(q_+ - q_-) \), \(t = -2p_- q_- \), \(t_1 = -2p_+ q_+ \), \(u = -2p_- q_+ \), \(u_1 = -2p_+ q_- \),
\[
d\Gamma = \frac{d^4 q_+ d^3 q_- d^3 k}{q_+ q_- k^0} \delta(4)(p_- + p_+ - q_- - q_+ - k),
\]
where we use the notation:

\[
(abcd) = \frac{1}{4} Sp \, \hat{a} \hat{b} \hat{c} \hat{d} = (ab) (cd) + (ad) (bc) - (ac) (bd).
\] (16)

After algebraic transformations one can get a more compact expression:

\[
d\sigma^{\text{Born}} = \frac{\alpha^3}{32\pi^2 s} (R_{s_1 s_1} + R_{ss} + R_{s_1 s_2}) \, d\Gamma,
\] (17)

\[
R_{s_1 s_1} = |F_\pi(s_1)|^2 \left\{ A \frac{4s}{s_1} \frac{m_\pi^2}{\chi_+ - \chi_-} \left(\frac{t_1 u_1}{\chi_-^2} + \frac{tu}{\chi_+^2} \right) + m_\pi^2 \Delta_{s_1 s_1} \right\},
\]

\[
R_{ss} = |F_\pi(s)|^2 \left\{ A \frac{4s}{s_1} \frac{m_\pi^2}{\chi_+ - \chi_-} \left(\frac{t_1 u_1}{\chi_-^2} + \frac{tu}{\chi_+^2} \right) + m_\pi^2 \Delta_{ss} \right\},
\]

\[
R_{s_1 s_2} = \text{Re} \left(F_\pi(s) F_\pi^\ast(s_1) \right) \left\{ 4A \left(\frac{u}{\chi_+ - \chi_-} + \frac{u}{\chi_+ - \chi_-} - \frac{t}{\chi_+ - \chi_-} - \frac{t_1}{\chi_+ - \chi_-} \right) + m_\pi^2 \Delta_{s_1 s_2} \right\},
\]

\[
A = \frac{tu + t_1 u_1}{s_1}, \quad \Delta_{s_1 s_1} = -\frac{4}{s_1^2} \left(\frac{(t + u)^2 + (t_1 + u_1)^2}{s_1^2} \right) \left(\frac{t + u}{\chi_+ - \chi_-} \right),
\]

\[
\Delta_{ss} = \frac{2m_\pi^2(s - s_1)^2}{s(\chi_- \chi_-')^2} + \frac{8}{s_1^2} (tt_1 + uu_1 - s^2 - ss_1),
\]

\[
\Delta_{s_1 s_2} = \frac{8}{s_1} \left(\frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \right) \left(\frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \frac{t}{s_1} \right)
\]

In the ultra-relativistic limit \(s \gg m_\pi^2 \) one has to drop in the above formula the terms \(\Delta_{ss}, \Delta_{s_1 s_1}, \Delta_{s_1 s_2} \).

For numerical estimations it is useful to separate the most singular part of the differential cross-section and to integrate it analytically. We mean the contribution due to hard collinear photon emission by electrons. We suggest the following procedure. Let us define narrow cones surrounding the momenta of the initial particles. Their opening angle is defined by an auxiliary parameter \(\theta_0 \). The vertex is taken in the interaction point. A photon emitted by the electron or the positron inside the cones \((k^0 \leq \theta_0 \text{ or } k^0 \geq \theta_0) \) will be called as a collinear one. On the parameter \(\theta_0 \) one has to impose the restrictions

\[
1 \gg \theta_0 \gg \frac{m_\pi}{\varepsilon}.
\] (18)

Integrating inside the cones we drop all terms proportional to \(\theta_0^2 \). After simple calculations one comes to a formula, where a factorization of a shifted Born cross-section can
be found. So, the process of collinear photon emission is factorized with respect to the
hard process of the annihilation into pions. This is the manifestation of the known factori-
zation theorem [10]. Indeed, we obtain the factorization of large logarithm $L = \ln(s/m_\pi^2)$
with an accompaniment of several non–leading terms. The dependence on the auxiliary
parameter θ_0 should cancel in the sum with the contribution of the integration outside
the cones. We will keep $\ln(\theta_0^2/4)$ terms and use them below as a compensator.

The shifted cross–section $d\tilde{\sigma}(z_1, z_2)$ reads

$$d\tilde{\sigma}(z_1, z_2) = \frac{\alpha^2 (Y^2_1 - m_\pi^2/\varepsilon^2)^{3/2}}{4s \, z_1^2 z_2^2} \frac{(1 - c^2)d\Omega|E_\pi(s z_1 z_2)|^2}{z_1 + z_2 + (z_2 - z_1)(1 - m_\pi^2/(\varepsilon^2 Y_1^2))^{-1/2} c}, \quad (19)$$

where z_1 and z_2 are energy fractions of the *almost real* electron and positron after the emission of collinear photons. The energy fractions $Y_{1,2}$ of the final pions can be found from
the following kinematical relations:

$$y_{1,2}^2 = Y_{1,2}^2 - \frac{4m_\pi^2}{s}, \quad z_1 + z_2 = Y_1 + Y_2, \quad z_1 - z_2 = y_1 c_- + y_2 c_+,$$

$$y_1 \sqrt{1 - c_-^2} = y_2 \sqrt{1 - c_+^2}, \quad c_- \equiv c, \quad Y_{1,2} = \frac{q_0}{\varepsilon}, \quad c_+ = \cos p^- q_+,$$

$$Y_1 = \frac{-4m_\pi^2}{s} \frac{(z_1 - z_2)c}{2z_1 z_2 + [4z_1^2 z_2^2 - 4(m_\pi^2/s)((z_1 + z_2)^2 - (z_1 - z_2)^2 c^2)]^{1/2}} + \frac{1}{z_1 + z_2 - c(z_1 - z_2)}.\quad (20)$$

The leading contributions to cross–section, containing large logarithm L, as may be recognized, combine into the kernel of Altarelli–Parisi–Lipatov evolution equation:

$$d\sigma = \int d\bar{z}_1 d\bar{z}_2 D^\gamma(\bar{z}_1) D^\gamma(\bar{z}_2) d\tilde{\sigma}_0(\bar{z}_1, \bar{z}_2),$$

$$D^\gamma(z) = \delta(1 - z) + \frac{\alpha}{2\pi} (L - 1) P^{(1)}(z) + \left(\frac{\alpha}{2\pi}\right)^2 \frac{(L - 1)^2}{2!} P^{(2)}(z) + \ldots, \quad (20)$$

$$P^{(1)}(z) = \lim_{\Delta \to 0} \left(\delta(1 - z)(2 \ln \Delta + \frac{3}{2}) + \Theta(1 - z - \Delta) \frac{1 + z^2}{1 - z}\right),$$

$$P^{(2)}(z) = \int \frac{dt}{t} P^{(1)}(t) P^{(1)}\left(\frac{z}{t}\right).$$

This formula is valid in the leading logarithmical approximation. We will modify it by
including nonleading contributions and using the smoothed exponentiated representation
for structure functions [11]:

$$D(z, s) = D^\gamma(z, s) + D^e^+ e^-(z, s), \quad (21)$$

$$D^\gamma(z, s) = \frac{1}{2} b(1 - z)^{\frac{3}{2} - 1} \left[1 + \frac{3}{8} b + \frac{b^2}{16} \left(\frac{9}{8} - \frac{\pi^2}{3}\right)\right]$$

$$- \frac{1}{4} b(1 + z) + \frac{1}{32} b^2 \left(4(1 + z) \ln \frac{1}{1 - z} + \frac{1 + 3z^2}{1 - z} \ln \frac{1}{z} - 5 - z\right).$$
\[\mathcal{D}^{e^+e^-}(z, s) = \frac{1}{2} b (1 - z) \frac{b^2}{288 (2L - 15)} \]

\[\times \left(\frac{\alpha}{\pi} \right)^2 \left(\frac{1}{12(1 - z)} \right) \left(1 - z - \frac{2m_e}{\varepsilon} \right) \left(\frac{\ln s (1 - z)^2 - 5}{3} \right) \left(\frac{L}{3} \right) \left(\frac{1 - z^3}{z} \right) + \frac{1}{2} (1 - z) \]

\[+ \left(1 + z \right) \ln z \] \[\Theta \left(1 - z - \frac{2m_e}{\varepsilon} \right), \quad b = \frac{2\alpha}{\pi} (L - 1). \]

In comparison with the corresponding formula in Ref. [11] we shifted the terms, arising due to virtual \(e^+e^- \) pair production corrections, form \(\mathcal{D} \) into \(\mathcal{D}^{e^+e^-} \).

The final expression for the corrected cross-section reads as follows:

\[d\sigma = \int_{z_{\text{min}}}^1 dz_1 \int_{z_{\text{min}}}^1 dz_2 \mathcal{D}(z_1, s) \mathcal{D}(z_2, s) d\bar{\sigma}(z_1, z_2) \left(1 + \frac{2\alpha}{\pi} (k(c, s z_1 z_2) \right) \]

\[+ b(s z_1 z_2 + a) \Theta \left(z_1, z_2 \right) \]

\[\left[\frac{\alpha^3}{\pi^2 s^2 k^0_{\Delta \varepsilon}} \int_{\Delta \varepsilon > \Delta \varepsilon} d\Gamma \Theta_{\text{cut}}^{(5)} \right. \]

\[+ \frac{\alpha}{\pi} \int_{\Delta \varepsilon / \varepsilon}^1 \frac{dx}{x} \left(1 - x + \frac{x^2}{2} \right) \ln \frac{\theta_0^2}{4} \left(d\bar{\sigma}(1 - x, 1) \Theta \text{cut} \left(1 - x, 1 \right) \right) \]

\[+ \frac{\alpha}{\pi} \int_{\Delta \varepsilon / \varepsilon}^1 \frac{dx}{x} \left(1 - x + \frac{x^2}{2} \right) \ln \frac{\theta_0^2}{4} \left(d\bar{\sigma}(1 - x, 1) \Theta \text{cut} \left(1 - x, 1 \right) \right) \]

\[+ \frac{\alpha}{\pi} 2 \ln \frac{\Delta \varepsilon}{\varepsilon} d\bar{\sigma}(1, 1) \left(2 \ln \frac{1 - \beta c}{1 + \beta c} + \frac{1 + \beta^2}{2\beta} \ln \frac{1 + \beta}{1 - \beta} - 1 \right) \]

\[+ \frac{\alpha^3}{\pi^2 s^2} \int_{\Delta \varepsilon / \varepsilon}^1 d\Gamma \Theta_{\text{cut}}^{(5)}, \quad \left. \left. z_{\text{min}} = \frac{2m_{\pi}}{2\varepsilon - m_{\pi}}. \right) \right) \]

Quantities \(a, b \), and \(k \) are defined in Eqs.\([3,4]\). Schematically this expression can be written as

\[d\sigma = d\sigma^{(1)} + [d\sigma^{(2)} + C^{(2)}] + [d\sigma^{(3)} + C^{(3)}] + d\sigma^{(4)}, \quad \text{Eqs.}\([22]\) \]

where quantities \(C^{(2,3)} \) denote compensators; and terms \(d\sigma^{(2,3,4)} \) denote integrals of \(R_{1,2,3} \), respectively. Starting with Eq.(17) we can replace in the above expression quantities \(R_i \) in the following way:

\[R_1 \bigg|_{m_{1}^2 = 0} \rightarrow \frac{s}{8} R_{s1s1} \bigg|_{m_{2}^2 = 0}, \quad R_2 \rightarrow \frac{s}{8} (R_{ss} + R_{as1}), \quad R_3 \rightarrow 0. \]

Experimental conditions of the final particle detection are encoded by the \(\Theta \)-functions \(\Theta_{\text{cut}}(z_1, z_2) \) (for the two–particle final state kinematics) and \(\Theta_{\text{cut}}^{(5)} \) (for the three–particle one). They can be imposed explicitly by introducing the restriction of the following kind:

\[\Theta_{\text{cut}} = \Theta(Y_1 - y_{th}) \Theta(Y_2 - y_{th}) \Theta(\sin \theta_+ - \sin \Psi_0) \Theta(\sin \theta_- - \sin \Psi_0), \quad \text{Eqs.}\([25]\) \]
where $y_{th} = \varepsilon_{th}$ is the threshold of the detectors, angle Ψ_0 determines the dead cones around beam axes unattainable for detection. Angles θ_{\pm} define the polar angles of the pions. More detailed cuts can be implemented in a Monte Carlo program \[12\], using the formulae given above.

There is a peculiar feature in the spectrum of hard photons. Namely in the end of the spectrum the differential cross-section is proportional to the factor

$$I(s_1) = \frac{1}{s_1} \left(1 - \frac{4m^2_\mu}{s_1} \right)^{3/2},$$

which defines a certain peak. It comes from the Feynman diagrams describing the emission by the initial particles \[13]\.

3 Kaon Pair Production Near Threshold

In the case of K_LK_S meson pair production the differential cross-section in the Born approximation reads

$$\frac{d\sigma_0(s)}{d\Omega_L} = \frac{\alpha^2 \beta^3_K}{4s} \sin^2 \theta |F_{LS}(s)|^2.$$

Here, as well as in the case of pions production, we suggest that the form factor F_{LS} includes also the vacuum polarization operator of the virtual photon. Quantity $\beta_K = \sqrt{1 - 4m^2_K/s}$ is the K–meson velocity in the centre–of–mass frame, and θ is the angle between the directions of motion of the long living kaon and the initial electron.

The corrected cross–sections has the form:

$$\frac{d\sigma^{e+e-\rightarrow K_LK_S(s)}(s)}{d\Omega_L} = \int_0^\Delta dx \frac{d\sigma^{e+e-\rightarrow K_LK_S(s(1-x))}}{d\Omega_L} F(x, s),$$

where (see Ref. \[11\])

$$F(x, s) = bx^{-1}[1 + \frac{3}{4}b + \frac{\alpha}{\pi} \left(\frac{\pi^2}{3} - \frac{1}{2} \right) - \frac{b^2}{24} \left(\frac{1}{3}L - 2\pi^2 - \frac{37}{4} \right)]$$

$$- b \left(1 - \frac{x}{2} \right) + \frac{1}{8} b^2 \left[4(2 - x) \ln \frac{1}{x} + \frac{1}{x}(1 + 3(1 - x)^2) \ln \frac{1}{1-x} - 6 + x \right]$$

$$+ \left(\frac{\alpha}{\pi} \right)^2 \left\{ \frac{1}{6x} \left(x - \frac{2m_e}{\varepsilon} \right) \left[(2 - 2x + x^2) \left(\ln \frac{s x^2}{m_e^2} - \frac{5}{3} \right) + b \left(\ln \frac{s x^2}{m_e^2} - \frac{5}{3} \right)^3 \right] \right. \right.$$

$$+ \frac{1}{2} L^2 \left[\frac{2}{3} \frac{1 - (1 - x)^3}{1 - x} + (2 - x) \ln(1 - x) + \frac{x}{2} \right] \right\} \Theta \left(x - \frac{2m_e}{\varepsilon} \right).$$

We omitted a small contribution (proportional to $\alpha(m_\phi - 2m_K)/m_\phi$) from photon emission by the final particles. Note that at higher energies this effect is extremely interesting: it may shed light on the neutral kaons polarizability problem.
In the case of K^+K^- mesons production the Coulomb final state interaction is to be taken into account:

$$\frac{d\sigma_0(s)}{d\Omega} = \frac{\alpha^2\beta_K^3}{4s} \sin^2 \theta |F_K(s)|^2 \frac{Z}{1 - \exp(-Z)}.$$ \hfill (30)

$$Z = \frac{2\pi\alpha}{v}, \quad v = 2\sqrt{\frac{s - 4m_K^2}{s}} \left(1 + \frac{s - 4m_K^2}{s}\right)^{-1}, \quad \text{where } v \text{ is the relative velocity of kaons [14]. When } s = m_{\phi}^2 \text{ we have } v \approx 0.5. \text{ Because we consider the energy range close to } \phi \text{ mass one may choose the maximal energy of the soft photon as}$$

$$\omega \leq \Delta E = m_{\phi} - 2m_K \ll m_K, \quad \Delta \equiv \frac{\Delta E}{m_K} \approx \frac{1}{25}. \quad \hfill (31)$$

If required, more precise formulae for charge–even and charge–odd parts of cross–section may be obtained from the ones for charged pions production process with the replacement $\beta \rightarrow \beta_K$.

4 Conclusions

Thus, we presented differential cross–sections to be integrated in concrete experimental conditions. The formulae are good as for semi–analytical integration, as well as for the creation of a Monte Carlo generator [12]. The idea of our approach was to separate the contributions due to $2 \rightarrow 2$ like processes and $2 \rightarrow 3$ like ones. The compensating terms allow us to eliminate the dependence on auxiliary parameters in both contributions separately. In the same approach we had considered in paper [4] the processes of large–angle Bhabha scattering and electron–positron annihilation into muons and photons.

Note that all presented formulae are valid only for large angle processes. Indeed, in the region of very small angles $\theta \approx m_e/\varepsilon$ of final particles with respect to the beam directions there are contributions of double logarithmic approximation [1]. These small angle regions give the main part of the total cross–section. We suppose that this kinematics is rejected by experimental cuts.

Numerical computations were done for the case of pion production. In Fig.1 we give the differential cross–section in the Born approximation, in the leading logarithmic approximation (with the K–factor) according to the first term of Eq.(22), and as the total corrected cross–section. We used the following set of parameters: the energy threshold for pion registration $\Delta_1 = y_{th} = 0.5$, the detector angular acceptance $10^\circ < \theta_{\pm} < 170^\circ$, the beam c.m.s. energy $\varepsilon = 0.51$ GeV. The second Figure shows the compensation of auxiliary parameters. Value of $\sigma^{(2)}$ is shown by the solid line. It has to be summed with $C^{(2)}$ which is drawn by circles. Value of $\sigma^{(3)}$ is shown by the dashed line. It has to be summed with $C^{(3)}$ drawn by crosses. The parameters for Fig.2 are: $\Delta_1 = 0.5, \Delta = 0.01, \theta_0 = 0.01$, other parameters as in Fig.1. The corrected differential cross–section for charged pion production is shown in Fig.3. The beam energy and angular acceptance are the same as in Fig.1. For these numerical illustrations we did not take into account the pion form factor.

10
The precision of our results is defined by the omitted contributions. As concerns pure QED terms, the corresponding uncertainty is defined by unknown coefficients before the following terms:

\[
\left(\frac{\alpha}{\pi} \right)^2 L \approx 10^{-4}, \quad \left(\frac{\alpha}{\pi} \right)^2 \approx 10^{-5}, \quad \frac{\alpha}{\pi} \frac{m^2}{s} L^2 \approx 10^{-7},
\]

\[\frac{\alpha}{\pi} \theta_0^2 \ln \left(\frac{4}{\theta_0^2} \right) \approx 10^{-5}, \quad \frac{\alpha}{\pi} \left(\frac{m_e}{\varepsilon \theta_0} \right)^2.\]

We estimate the unknown coefficient and derive the theoretical uncertainty of our calculations for these three processes to be 0.2%. Some additional uncertainty is due to precision of the form factor determination in an experiment. There are also some model-dependent contributions due to different hadronic intermediate states, which are far beyond the scope of this publication.

Acknowledgement

The authors are grateful to A. Sher, S. Panov for their close interest in the initial stage, to V.S. Fadin and L.N. Lipatov for critical comments and to O.O. Voskresenskaya for help. This work was partially supported by INTAS grant 1867–93 and by RFBR grant N° 96–02–17512. One of us (A.B.A.) is thankful to the INTAS foundation for the financial support via the International Centre for Fundamental Physics in Moscow.

Appendix

Pion and kaon form factors are supposed to have the form \(F_i(s) = (1-\Pi(s))^{-1} F_i(s) \), where the factors \(F_{\pi,LS,K}(s) \) (unknown theoretically) take into account the strong interactions between hadrons in the final state. We put here the expressions for leptonic and hadronic contributions into vacuum polarization operator \(\Pi(s) \):

\[
\Pi(s) = \Pi_l(s) + \Pi_h(s),
\]

\[
\Pi_l(s) = \frac{\alpha}{\pi} \Pi_1(s) + \left(\frac{\alpha}{\pi} \right)^2 \Pi_2(s) + \left(\frac{\alpha}{\pi} \right)^3 \Pi_3(s) + \ldots
\]

\[
\Pi_h(s) = \frac{s}{4\pi\alpha} \left[PV \int_{4m^2}^{\infty} \frac{\sigma^{e^+e^-\rightarrow\text{hadrons}}(s') ds'}{s'-s} - i\pi \sigma^{e^+e^-\rightarrow\text{hadrons}}(s) \right].
\]

The first order leptonic contribution is well known [1]:

\[
\Pi_1(s) = \frac{1}{3} L - \frac{5}{9} + f(x_\mu) + f(x_\tau) - i\pi \left[\frac{1}{3} + \phi(x_\mu) \Theta(1-x_\mu) + \phi(x_\tau) \Theta(1-x_\tau) \right].
\]

\[\text{[For small–angle Bhabha scattering we had performed the complete calculations of next–to–leading logarithmic terms [16]. The corresponding coefficients were found to be about unity.]}\]
where
\[
f(x) = \begin{cases} \frac{-\frac{5}{9} - \frac{x}{3} + \frac{1}{6}(2 + x)\sqrt{1-x}}{\ln \left(\frac{1+\sqrt{1-x}}{1-\sqrt{1-x}}\right)} & \text{for } x \leq 1, \\ \frac{-\frac{5}{9} - \frac{x}{3} + \frac{1}{6}(2 + x)\sqrt{1-x}}{\tan \left(\frac{1}{\sqrt{1-x}}\right)} & \text{for } x > 1, \end{cases}
\]

\[
\phi(x) = \frac{1}{6}(2 + x)\sqrt{1-x}, \quad x_{\mu,\tau} = \frac{4m_{\mu,\tau}^2}{s}.
\]

In the second order it is enough to take only the logarithmic term from the electron contribution

\[
\Pi_2(s) = \frac{1}{4}(L - i\pi) + \zeta(3) - \frac{5}{24}.
\]

Here we present also a theoretical estimate for the contribution to the vacuum polarization operator due to \(\phi\) meson in the energy region close to the resonance \(\sqrt{s} \approx m_\phi \approx 1020\) GeV (see also \cite{5,17}). In this region one can write the cross–section of \(e^+e^-\) annihilation into hadrons as follows:

\[
\sigma_h(s) = \frac{12\pi B_{ee}\Gamma_{\phi}^2}{(s - m_\phi^2)^2 + m_\phi^2\Gamma_{\phi}^2},
\]

where \(B_{ee}\) is the branching ratio of the decay \(\phi \to e^+e^-\), quantity \(\Gamma_{\phi}\) is the total width of the meson. For the hadronic part of vacuum polarization connected with \(\phi\) meson we obtain:

\[
\Pi_h(s) = \Pi_{\phi}(s) + \Pi_{h'}(s),
\]

where \(\Pi_{h'}(s)\) includes other hadronic contributions \cite{15}. The contribution \(\Pi_{\phi}(s)\) is essential only in the region \(m_\phi - n\Gamma_{\phi} < \sqrt{s} < m_\phi + n\Gamma_{\phi}, n \sim 1\). It has the following form:

\[
\Pi_{\phi}(s) = \frac{3B_{ee}}{\alpha} \frac{\Gamma_{\phi}}{m_\phi} \left(\frac{s}{m_\phi^2} - 1\right) \frac{\left(\frac{\Gamma_{\phi}}{m_\phi}\right)^2 + \left(\frac{s}{m_\phi^2} - 1\right)^2}{\left(\frac{\Gamma_{\phi}}{m_\phi}\right)^2 + \left(\frac{s}{m_\phi^2} - 1\right)^2}, \quad B_{ee} \approx 3.09 \cdot 10^{-4}.
\]

References

[1] S.I. Dolinsky et al., Phys. Rep. 202 (1991) 99–170; R.R. Akhmetshin et al., Phys. Lett. B 364 (1995) 199.

[2] A. Aloisio et al., preprint LNF-92/019 (IR); also in The DA\Phi NE Physics Handbook Vol.2, 1993; P. Franzini, in The Second DA\Phi NE Physics Handbook, L. Maiani, G. Pancheri, N. Paver (eds.), Vol.2, p.471, 1995.

[3] Hui–Ling Ni et al., Nucl. Instr. and Meth. A 336 (1993) 542.

[4] A.B. Arbuzov, G.V. Fedotovich, E.A. Kuraev et al., \texttt{hep-ph/9702262}.
[5] A. Bramon, M. Greco, in The Second DAΦNE Physics Handbook, L. Maiani, G. Pancheri, N. Paver (eds.), Vol.2, p.451, 1995.

[6] E.A. Kuraev, S.N. Panov, Preprint Budker INP 91–26, 1991.

[7] E.A. Kuraev, preprint INP 80-155, Novosibirsk.

[8] R.W. Brown and K.O. Mikaelian, Lett. Nouvo Cim. 10 (1974) 305.

[9] V.N. Baier, V.S. Fadin, V.A. Khoze, Nucl. Phys. B 65 (1973) 381.

[10] G. Sterman et al., Rev. Modern Phys. 67 (1995) 157.

[11] E.A. Kuraev and V.S. Fadin, Sov. J. Nucl. Phys. 41 (1985) 466.

[12] V.A. Astakhov, G.V. Fedotovich et al., Monte Carlo generator for VEPP–2M, in progress.

[13] V.N. Baier, V.M. Katkov, V.S. Fadin, Emission of the relativistic electrons, Moscow, Atomizdat, 1973.

[14] A.B. Arbuzov, Nuovo Cimento A 107 (1994) 1263.

[15] S. Eidelman, F. Jegerlehner, Z. Phys. C 67 (1995) 585.

[16] A.B. Arbuzov, V.S. Fadin, E.A. Kuraev, L.N. Lipatov, N.P. Merenkov, L. Trentadue, preprint CERN–TH/95–313, to appear in Nucl. Phys. B.

[17] E. Drago, G. Venanzoni, KLOE MEMO N°59/96.
Figure 1: The differential cross-section $d\sigma^{e^+e^-\rightarrow\pi^+\pi^-}/dc$ [nbarn] as a function of c. The Born cross-section is given by crosses. The cross-section in the leading logarithmic approximation (with the K–factor) is shown by circles. The solid line is the resulting corrected cross-section.
Figure 2: An illustration of the cancellation of the dependence on Δ and θ_0. The solid line is $\sigma^{(2)}$, the dashed one is $\sigma^{(3)}$, compensator $C^{(2)}$ is represented by circles and compensator $C^{(3)}$ is drawn by crosses.
Figure 3: The value of the corrected cross-section $d\sigma^{e^+e^-\rightarrow\pi^+\pi^-}/dc$ [nbarn] as a function of c and Δ_1.