Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens

Seosamh O’Lochlainn1, Helen C. Bowen2, Rupert G. Fray1, John P. Hammond1, Graham J. King3,4, Philip J. White5, Neil S. Graham1, Martin R. Broadley1*

1 Plant and Crop Sciences Division, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom, 2 Warwick HRI, University of Warwick, Wellesbourne, Warwick, United Kingdom, 3 Rothamsted Research, Harpenden, United Kingdom, 4 Southern Cross Plant Science, Southern Cross University, Lismore, Australia, 5 Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom

Abstract

Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ~20–40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AtHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.

Introduction

Transition metals, including Cu, Mn and Zn, have essential functions in plant growth and development [1]. However, when present at high concentrations, these metals, along with non-essential metals including Cd and Pb, become phytotoxic and must be prevented from interfering with cellular processes through compartmentalisation and exclusion [1-3]. Numerous transmembrane proteins catalyse metal efflux from plant cells. These include P1B-ATPases, of which one group transports Cu/Ag and another group transports Zn/Cd/Co/Pb [2]. The most widely studied P1B-ATPase in planta is the plasma membrane protein HMA4 [6], which has been shown to transport Zn and Cd in yeast [2,7] as well as confer Zn, Cd and Co tolerance in Arabidopsis thaliana [2,8]. HMA4 is thought to be involved in Zn homeostasis and Cd detoxification, via metal translocation from the root to the shoot [2,7,11]. At a subcellular level, the expression of HMA4 has been shown to localise in the plasma membranes of Arabidopsis thaliana mesophyll protoplasts [8]. At the tissue level, it has been localised to the pericycle cell layer of the root vasculature [12]. In hma4 knockout mutants, increased pericycle Zn accumulation, decreased Zn transport to the xylem parenchyma, and reduced shoot Zn accumulation have been observed [12]. In A. thaliana shoots, HMA4 expression has been localised in the phloem tissue, at the base of developing siliques, and in developing anthers, especially tapetum cells, to supply Zn to male reproductive tissue [9].

A small number of plant species have evolved that can tolerate and accumulate high concentrations of some metals in their aerial tissues under natural conditions, including Zn and Cd [13,14]. It is thought that 10-20 species of angiosperms are Zn hyperaccumulators (>~0.3% Zn DW), with two of these also able to accumulate Cd to similarly high levels. In the Brassicaceae, the accumulation of high levels of Zn in shoot tissues occurs within Noccaea and its sister clade Raphanus [13,15,16], but not in Thlaspi species which contains Zn hypertolerant species (e.g. Thlaspi caerulescens (Boiss). F.K. Mey; [17]), and not in the non-Zn-hypertolerant Microthlaspi and Neurotropis clades, which are more distantly related. Within Noccaea, Cd hyperaccumulation occurs in a subset of N. caerulescens populations. Arabidopsis halleri is the only known Brassicaceae Zn/Cd hyperaccumulator occurring outside of the Noccaea genus [13,14]. Thus, Zn/Cd hyperaccumulation may have arisen through two evolutionary events within the Brassicaceae.

In Arabidopsis halleri, QTL involved with Zn and Cd tolerance co-localize with HMA4 [18]. High expression of HMA4 in the first
back-cross (BC1) between A. halleri, and the non-hyperaccumulator, A. lyrata ssp. petraea, co-segregated with the A. halleri HMA4 allele and with Cd tolerance [18]. Using RNA interference (RNAi), it was demonstrated that Zn and Cd hyperaccumulation were associated with HMA4 expression in A. halleri [19]. These plants were sensitive to increased exogenous Zn and Cd treatments, translocated less Zn from the root to the shoot, and were phenotypically more similar to A. thaliana [19]. Conversely, expression of AbHMA4 cDNA under its endogenous promoter in A. thaliana resulted in increased Zn concentrations in xylem parenchyma cells, resembling Zn distribution in A. halleri roots [19]. Subsequent sequencing and functional analyses of AbHMA4 revealed that enhanced HMA4 expression was the result of both tandem gene triplication and altered cis regulation [19].

For N. caerulescens, expression of a NcHMA4 cDNA in yeast (Saccharomyces cerevisiae) associated with enhanced Zn tolerance and increased Zn transport out of cells which supported a role for Zn efflux across plasma membranes in planta [20]. In general, P1-type ATPases are more highly expressed in the shoots of N. caerulescens than non-hyperaccumulating Thlaspi arvense [21] and Arabidopsis thaliana [22,23]. Further studies characterising N. caerulescens HMA4 transcripts found increased expression as exogenous Zn was applied at levels which were either deficient or toxic to non-hyperaccumulating species [20,21]. Despite circumstantial evidence for similar roles in Zn hyperaccumulation, genomic sequence data has not been published for HMA4 in Noccaea caerulescens. The aim of this study was to test the hypothesis that tandem duplication and deregulation of HMA4 expression, which occurs in A. halleri [19], also occurs in N. caerulescens.

Results and Discussion

To test for tandem duplications of the HMA4 locus in N. caerulescens required de novo sequence. To achieve this goal, the creation of a single copy genomic fosmid library coupled with high-throughput pyrosequencing were selected as appropriate strategies. Fosmid libraries yield large insert sizes, have high stability and reduced susceptibility to aberrant recombinination, thereby ensuring maximum genomic sequence representation [24,25]. By randomly shearing DNA fragments, these libraries also retain a wider selection of sequences than those based on traditional restriction digestion [26]. Sequences were generated via Next Generation Genome Sequencer (NextGen GS) FLX 454 technology as it offered the greatest read length (350–450 bp) of current pyrosequencing technologies, and is routinely employed for de novo sequencing [27–29].

Construction and characterisation of a Noccaea caerulescens fosmid library

The genomic fosmid library was constructed for the self-compatible Zn and Cd hyperaccumulator Noccaea caerulescens (J.&C. Presl) F.K. Mey., from a first generation accession from a geographically isolated population in Saint Laurent Le Minier, southern France (supplied by Guy Delmot, Saint Laurent le Minier, France, 43°55′48″ N, 3°40′12″ E) [30]. Such populations are self-compatible and highly inbred [31–34], and demonstrate low levels of heterozygosity and high inbreeding coefficients [34–37]. The creation of a laboratory inbred line was not pursued, since this could result in an accumulation of mutations [38] leading to increased genetic load [39] and reduced fitness, as well as gene copy number variation [40–42] and perturbed sequencing results.

To further prevent potential allelic perturbations in sequencing results, the library was constructed using leaf genomic DNA from a single plant (250 Mb), and cloned into 36,864 Escherichia coli EPI300™-T1R host cells containing highly stable, randomly sheered, ~40 kb genomic inserts, representing ~5.9 fold genomic coverage, while 454 sequencing reads returned >20 fold coverage. Such sequencing strategies compare favourably with those adopted by [19] to robustly identify tandem triplication of HMA4 in the self-incompatible Arabidopsis halleri.

To elucidate the genomic sequence of HMA4 in N. caerulescens, the library was probed with a radiolabelled NcHMA4 specific sequence. Seven clones, N18P80, P6P46, N12P82, H2P47, B3P40, B22P20 and J12P81, were identified as containing NcHMA4 sequences following PCR amplification using primers specific for the NcHMA4 probe. Six of these fosmids demonstrated unique evidence of multiple copies of the NcHMA4 locus following restriction digest fingerprinting (Figure 1). Initial pyrosequencing [27] of a pool containing all seven fosmids returned 3 Mbp of sequence at 5-fold coverage per fosmid. Sequences were assembled into contigs and aligned to syntenic regions in the A. thaliana genome to confirm the presence of multiple NcHMA4 copies. Individual copies were assigned to unique clones through PCR analyses using locus specific primers (Figure 2). Fosmids were then sequenced individually to improve the specificity and efficiency of prior pooled sequence assemblies, and returned 2.4 Mbp at >20 fold coverage per fosmid. Two independent HMA4 copies were identified in fosmids B3P40 (27,978 bp; NcHMA4-1 and NcHMA4-2) and P6P46 (31,521 bp; NcHMA4-3 and NcHMA4-4) (Figures S1 & S2, Data S1 & S2). Fosmid J12P81 (31,218 bp) contained NcHMA4-2 as well as two genes downstream to its 3′ end, whose sequences were homologous to the A. thaliana genes At2g19160 and At2g19170, and so demonstrated synteny with Arabidopsis thaliana (Figure S3, Data S3). Fosmid N18P80 (20,090 bp) contained 941 bp of the 5′ region of NcHMA4 in addition to four orthologues to At2g19060, At2g19070, At2g19080 and At2g19090, which were syntenic to this region in A. thaliana (Figure S4, Data S4). As indicated through locus specific PCR analysis (Figure 2), sequence data from fosmid H2P47 (20,258 bp) showed homology to NcHMA4-4 and its 5′ intergenic region, as well as the 5′ intergenic region of NcHMA4-1 (Figure S5, Data S5). Fosmid inserts, containing homologous sequences which demonstrated >99% sequence identity along 5′ and 3′ ends of between 425 and 14,866 bp, were assembled into unique contiguous sequences. Consequently, fosmid H2P47 assembled both fosmids P6P46 (containing HMA4-3 and HMA4-4) and B3P40 (containing HMA4-1 and HMA4-2) into a unique locus (Data S7, S8), flanked to its 5′ by N18P80, and to its 3′ by J12P81 (Figure 3). In support of this HMA4 quadruplication, a genomic Southern illustrated hybridisation intensities for HomIII fragments, which were indicative of a 3:1 (1040–1050 bp fragment (representing HMA4-1, HMA4-3 and HMA4-4): 1.9 kb fragment (representing HMA4-2)) genomic ratio (Figure 1).

All five overlapping N. caerulescens fosmids spanned a single 101,480 bp locus in N. caerulescens and contained four HMA4 tandem repeats (corresponding to At2g19110 in A. thaliana), compared to syntenic regions in A. thaliana and A. halleri, containing one and three copies respectively (Figure 3, Data S6). Sequences flanking NcHMA4 tandem repeats remained essentially syntenic with A. thaliana.

Analysis of NcHMA4 sequences

Within the deduced coding sequences, all four NcHMA4 gene copies share between 87 and 99% nucleotide sequence identity, whilst introns demonstrated between 81 and 100% identity to consensus NcHMA4 sequences (Figures 4 & S6). The deduced coding sequences showed lower sequence identities with those of AbHMA4 (between 76–78%) and of all three AbHMA4 copies (between 62–66%), which may indicate that quadruplication was a
relatively recent evolutionary event within *N. caerulescens* (Figure S6). *NcHMA4*-4 contained a truncation in exon 9 after amino acid (aa) 684 of the deduced protein sequence (Figure 4) and could indicate a functional but less efficient *in planta* Zn transporter, as recently reported for an *AtHMA4* which contained a comparable truncation after aa 713 [43]. At the deduced amino acid level, *NcHMA4* share between 92 and 98% identity, but only between 72 and 93% identity with *AtHMA4* and between 74 and 94% identity with the three *AhHMA4* (Figure S7).

Within the first 2000 bp upstream of the translational start codon, *NcHMA4* sequences shared 59 and 98% identity, but between 44–49% and 41–51% identity with *A. thaliana* and *A. halleri* promoter sequences respectively (Figure S8). *AhHMA4* regions shared greater identity, 53–88% with *AtHMA4*, as previously reported [19]. Significant sequence divergence from *A. thaliana* and *A. halleri* in the 5'-flanking regions of *NcHMA4* genes indicates cis gene regulation may differ between species. In *A. halleri*, high *HMA4* expression was regulated in cis and amplified by a triplication in gene copy number [19]. Increased expression of *AhHMA4* correlated with enhanced Zn flux from the root symplasm into the xylem parenchyma as well as up-regulation of Zn deficiency response genes in roots supporting its role in Zn hyperaccumulation.

Expression profile of NcHMA4

To investigate the expression profile of *NiHMA4*, *T*₂ *A. thaliana* plants (n = 30), transformed with *HMA4* promoters from *A. thaliana* (*AtHMA4p::GUS*, negative control), *A. halleri* (*AhHMA4-3p::GUS*, positive control) and *N. caerulescens* (*NcHMA4-2p::GUS*) fused to the β-glucuronidase (*GUS*) reporter gene, were analysed for *GUS* activity under identical nutrient replete conditions *in vivo*, 21 days after sowing (DAS).

Figure 1. Montage of two gel blot autoradiographs of *NcHMA4* tandem repeats from *N. caerulescens* genomic DNA and genomic library fosmid insert DNA. All DNA was digested with EcoRI, HindIII or BamHI corresponding to lanes 1, 2 or 3 respectively, resolved on two 0.9% (w/v) agarose gels, blotted, and hybridized with the radiolabeled *NcHMA4* library probe (represented by darkened regions). Fosmids labelled with ‘+’ contain tandem repeats of a *NcHMA4* insert. The DNA marker was a 1 kb DNA ladder (Hyperladder I, Bioline). Montage was prepared using CorelDraw Graphics Suite X3.

doi:10.1371/journal.pone.0017814.g001

Figure 2. Agarose gel electrophoresis of PCR products from fosmid clones containing *N. caerulescens HMA4* sequences and *Noccaea caerulescens* genomic DNA. Primers were specific for *NcHMA4-1*, *NcHMA4-1* and 4-2, *NcHMA4-3* and *NcHMA4-4*. Lanes were labelled according to fosmid clones or ‘Genomic’ *Noccaea caerulescens* DNA. The molecular ladder was a 1 kb DNA ladder (Hyperladder I, Bioline). Gel contained 1% (w/v) agarose.

doi:10.1371/journal.pone.0017814.g002
Lines bearing the AbHMA4p::GUS construct showed expression in root and stem tissue, although no staining was observed in leaf tissues (Figure 5). For both NcHMA4-2p::GUS and AbHMA4-3p::GUS constructs, transformed lines showed expression in most plant tissue including roots, shoots and stems (Figure 5). The GUS gene appeared to be similarly and more intensely expressed...
throughout plants when driven by either the NcHMA4-2 or the AhHMA4-3 promoters (Figure 5).

Conclusion

The aim of this study was to test the hypothesis that tandem duplication and deregulation of HMA4 expression, which occurs in A. halleri, occurs in N. caerulescens. A fosmid library comprising 36,864–40 kb inserts was developed, representing a potentially valuable resource for future map-based cloning and genome sequencing in N. caerulescens. Following de novo sequencing, there was compelling evidence of tandem quadruplication for HMA4 in N. caerulescens. Whilst it is hypothetically feasible that allelic artefacts can occur, even in highly inbred populations, here, the sequencing of multiple fosmids (including long-reads of intergenic regions/non-coding repeats which are overlapping between fosmids) provides very strong support for tandem repeats (Figure 5).

Materials and Methods

Library Construction

DNA from a Noccaea caerulescens (J.&C. Presl) F.K.Mey (~250 Mb genome, 2n = 2x = 14) from a population originating from Saint Laurent Le Minier, southern France [30] was used to construct a genomic fosmid library by Warwick Plant Genomic Libraries Ltd. (Warwick HRI, Warwick, UK).

Preparation of Noccaea DNA and bacterial cells for filter arraying

DNA (2.5 μg), extracted from leaf tissue of a single N. caerulescens plant in the phenol - chloroform procedure [49], was randomly sheared to 40 kb fragments and end repaired to blunt, 5’-phosphorylated ends. Fragments were size resolved and purified from a low melting point (LMP) agarose gel (without exposure to UV irradiation), before ligating to 8 kb Cloning-Ready CopyControl pCC1FOS vectors and phage packaging (Epicentre Biotechnologies, Madison, W.I., USA). EPI300™-T1R plating strains were streaked on solid Luria-Bertani (LB) plates and grown for 12 h at 37 °C. A starter culture (5 ml LB broth) was inoculated with a single colony and incubated on a shaker at 225 rpm. for a further 12 h at 30 °C. 50 ml of LB broth +10 mM MgSO4+20% (w/v) maltose (20% filter sterilised stock) was inoculated with 1 ml of starter culture and shaken at 37 °C for 2–3 h until an optical density at 600 nm (OD600) of 0.8–1.0 was reached. Bacteria was pelleted (500 × g for 10 mins.), gently resuspended in 25 ml of 10 mM MgSO4, before being diluted to an OD600 of 0.5 with sterile 10 mM MgSO4. A 25 μl aliquot of this solution was mixed in a 2 ml microcentrifuge tube with 25 μl of the fosmid packaging reaction (diluted in phage dilution buffer according to library titre), and incubated for 30 mins at room temperature (RT). LB (200 μl) was added to each sample and incubated for 1 h at 37 °C, shaking the tube gently once every 15 minutes. CopyControl fosmid clones were selected by pelleting samples (1 min. at 10,000 rpm), and resuspending in fresh LB medium before spreading on LB agar plates supplemented with 12.5 μg ml⁻¹ chloramphenicol and incubating at 37 °C for 12 h. Colonies were then picked into 384 well plates using a Q-Pix II benchtop colony picker (Genetix Ltd., New Milton, Hampshire, UK). The filters were constructed using a MicroGrid II high-throughput automated microarrayer, (Bio-Robotics Ltd., Cambridge, UK).

Probing the N. caerulescens genomic library

Noccaea caerulescens library DNA fragments were cloned into 36,864 E.coli EP300™-T1R™ host cells and stored in 96×384-well microtiter plates which were arrayed evenly onto two nitrocellulose filters (48 plates per filter). Each well contained duplicated DNA fragments, whose arrangement indicated the plate of origin for DNA that hybridised to the HMA4 probe. Filters contained approximately 5% ribosomal and 15% chloroplast contamination.

In contrast to the relatively high, shared HMA4 sequence identities between all three genomes, N. caerulescens HMA4 promoters (NcHMA4p) exhibited lower identities with those from both A. thaliana and A. halleri. We conclude that novel cis regulatory elements in N. caerulescens contribute to increased HMA4 gene expression. Further elucidating these cis regulatory regions in hyperaccumulators could enable the manipulation of HMA4 expression that may be exploited for use within crop systems to enhance Zn leaf accumulation for biofortification or phytoremediation strategies.

Figure 5. The spatial expression of β-glucuronidase (GUS) fused to HMA4 promoter regions in Arabidopsis thaliana. The activity of GUS in whole leaves A–C and roots D–F from 21 day old in vitro cultured A. thaliana T2 transformants bearing pGWB3 constructs containing the GUS marker gene under the control of promoter sequences from A, D; AthHMA4, B, E; NcHMA4-2 and C, F; AhHMA4-3. Red bars represent 2 mm.

doi:10.1371/journal.pone.0017814.g005
Synthesis and radiolabelling of DNA probes

Oligonucleotide sequences were designed to amplify 421 bp fragment in the 3' portion of the publicly available *N. caerulescens* ecotype Prayon *HMA4* cDNA sequence, GenBank accession ID AY486001.1, (http://ncbi.nlm.nih.gov/) using forward: 5'-GGTAGG-GAATGCTTGTAGT-3', and reverse: 5'-CTTTCTTGCGA-GAAGCAACA-3', primer sequences (MWG Biotech, Ebersberg, Germany).

DNA probes (50 ng) for hybridisations were labelled by denaturing with dCTP (0.4 MBq µl⁻¹), by random priming using Ready-To-Go DNA Labelling Beads (dCTP) kit (GE Healthcare, Buckinghamshire, UK) as described by the manufacturer. The labelled probe, dissolved in 50 µl of TE buffer, was separated from unincorporated nucleotides by passing through an Illustra Nick translation column (GE Healthcare, Buckinghamshire, UK) and heat denatured as described by the manufacturer.

Radiolabelling and hybridisation of the HMA4 library probe

Each pair of library filters were submerged for 4 h at 55°C in a 250 ml prehybridisation solution, then incubated (55°C) overnight with the radiolabelled probe, before reducing radioactivity to 15–30 counts per minute through repeated washing in solutions of 2 X SSC +0.1% SDS [49]. Hybridised filters were scaled in plastic and exposed to autoradiography film (Kodak X-Omat AR Film XAR-5, Sigma-Aldrich GmbH, Steinheim, Germany) at −80°C for 4–5 d. Positive hybridisations were localised and corresponding fosmids, grown and their plasmid extracted.

Identification and ‘fingerprinting’ of fosmids of interest

Fosmids containing genes of interest were confirmed initially by colony PCR using probe specific primers. Selected fosmids were then ‘fingerprinted’ through individual restriction digestion with EcoRI, HindIII and BandHI (4 h at 37°C) (Promega, Southampton, UK) before running 10 µl of each digest in a 1% (w/v) agarose/TAE electrophoresis gel for 12 hrs at 0.5 V cm⁻¹. Gels were blotted onto a pre-cut nylon membrane (12 h) and hybridised with the HMA4 library probe [49]. Genomic DNA extracted from *N. caerulescens* Saint Laurent Le Minier was used as a positive control to compare all observed hybridisation patterns.

Sequencing *N. caerulescens* fosmid clones of interest

Pooled fosmid pyrosequencing and shotgun library preparation using a 454 Genome Sequencer FLX (454 GS-FLX) Next Generation (NextGen) platform with standard sequencing chemistry (~250 bp read lengths; Roche Diagnostics GmbH) was carried out by Cogenics Genome Express (Cambridge, UK) while individual fosmid shotgun libraries and GS-FLX Titanium sequencing chemistry (350–450 bp read lengths, 20-fold coverage) with gap filling by Sanger dyeoxy sequencing was performed by Eurofins Genetic Services Limited (2152 Martinsried, Germany). For all, sequencing and assembly of the shotgun data was performed using a standard whole genome sequencing assembly with the 454/Roche Newbler assembler V 1.1.02.15, [28,29]. Fosmids were extracted from bacterial suspension following the Maxiprep plasmid isolation protocol [49].

Contig alignments of *N. caerulescens* fosmid sequences

Fosmid pCC1FOS™ vector sequences were isolated from *Noccaea caerulescens* inserts in silico, via the NCBI database Basic Local Alignment Search Tool (BLASTn) algorithm, against all available nucleotide sequences at default parameters (http://blast.ncbi.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome). Inserts were aligned to *A. thaliana* orthologous regions and assembled into one large contiguous sequence via AlignX and ContigExpress software using default gap settings (Vector NTI 11; Invitrogen, Paisley, UK). Overlapping insert regions were identified between fosmid end-sequences which aligned to identical *A. thaliana* regions and shared >99% sequence identity. Consensus sequences were assigned to assemblies of repetitive regions and poly-A and poly-T stretches that showed variation between homologous fosmid sections. All protein and nucleotide sequence comparisons and percentage identities were calculated using Dot Matrix at a stringency of 30% and window of 5 (Vector NTI 11).

Creating promoter::GUS fusion constructs

Primers specific for the promoter regions of *Arabidopsis thaliana* (L.) Heynh. Colombia (Col-0) (*AtHMA4*), *A. halleri* (L.) O’Kane & Al-Shelhbaz *ssp. hallieri* (*AhHMA4-3*), and *N. caerulescens* ([J.& C. Presl] F.K. Mey. Saint Laurent Le Minier (*NcHMA4-2*) were designed using Primer 3 Version 0.4.0 (http://frodo.wi.mit.edu/primer3). Promoter fragments were PCR amplified from plant DNA with Phusion® proofreading polymerase (Finnzymes, Finland) and ligated into the pCR®8®-GW/TOPO® entry vector using the TA cloning system (Invitrogen, Paisley, UK). Cloned promoter sequences were fused with β-glucuronidase (GUS) in pGWB3 Gateway-compatible destination vectors [50] via LR-mediated Gateway cloning technology as described by the manufacturer (Gateway® LR Clonase®, Invitrogen, Paisley, UK).

Bacterial transformations

Presence and orientation of promoters were confirmed in all constructs through Sanger sequencing. Plasmid extractions, antibiotic selection and transformations for chemical- (*E. coli* DH5α) and electro- (Agrobacterium tumefaciens GV3101 [51]) competent bacterial cells were performed as described [49].

Analysis of GUS expression in *T2* transgenic *Arabidopsis thaliana*

Histochemical detection of GUS activity [52] was performed on *T2* segregating transformed *Arabidopsis thaliana* Col-0 plants [53], selected on agar-based medium (10 g l⁻¹ sucrose, 8 g l⁻¹ agar and 2.1 g l⁻¹ Murashige and Skoog (MS) basal medium (M5524, Sigma-Aldrich, Poole, UK), supplemented with 50 µg ml⁻¹ kanamycin sulphate. Seven DAS healthy, green, actively growing plants were transferred under axenic conditions to transplacent poly carbonate growth boxes containing 75 ml of un-supplemented agar-based media and cultured for a further 14 days (21 DAS) at 20±2°C, under 16 h photoperiod, at 50–80 µmol photons m⁻² s⁻¹ light intensity from 58 W white halophosphate fluorescent tubes (Cooper Lighting and Security, Doncaster, UK). A randomised block design comprising three replicates was employed, with three independent transformed lines for each of the three promoter constructs and one wild type (WT) line allocated at random within each replicate (n = 30). For each replicate, all samples from each line, including WT control, were placed into individual sterile glass universal (3 plants per bottle) containing 10 ml of GUS assay solution [52] (5 mg of X-Gluc (5-bromo-4-chloro-3-indolyl-β-D-glucuronide acid; Melford Laboratories Ltd, Ipswich, UK) dissolved in 100 µl of dimethyl formamide (DMF), phosphate buffer (0.2 M NaH₂PO₄ plus 0.2 M Na₂HPO₄, pH 7.0), 0.5 M Na₂EDTA, 10 mM K₃Fe(CN)₆, 10 mM K₄Fe(CN)₆.3H₂O and 0.1% (w/v) Triton-X-100 (Sigma-Aldrich Co., Steinheim, Germany), and incubated in the dark at 37°C for 16 h.
Chlorophyll was removed from each sample to aid later imaging of GUS staining from the histochemical treatment. Samples were suspended in acidified methanol (2 ml conc. HCl +10 ml methanol +38 ml H₂O) for 15 min at 50°C with intermittent gentle shaking, before decanting and re-suspending in a neutralisation solution (7% NaOH in 60% ethanol) for 15 min at RT. Solutions were discarded and retained samples were rehydrated using a series of decreasing concentrations of ethanol (from 40, 20 and 10% v/v). Once fully rehydrated in milli-Q H₂O, samples were mounted in 50% glycerol (v/v) and viewed under a stereo microscope for traces of indigo staining to indicate GUS activity.

Primers employed

Sequences of primers employed to isolate HMA4 promoter sequences from A. thaliana, A. halleri and N. caerulescens were from 5' to 3':

\[\text{AhHMA4-2} \text{ promoter}_Fwd \quad \text{CTCTTTCTGTAACGCC-CATTGTGTGTA} \]

\[\text{AhHMA4-2} \text{ promoter}_Rev \quad \text{CTCTTTCTGTAACGCC-CATTGTGTGTA} \]

\[\text{AtHMA4} \text{ promoter}_Fwd \quad \text{ACTTACCGATCGGGGATGCG- CATG} \]

\[\text{AtHMA4} \text{ promoter}_Rev \quad \text{TTTCTCTTCTTCTTTGTTTGTT- TGTAAACGCC} \]

\[\text{AhHMA4-3} \text{ promoter}_Fwd \quad \text{GGTTTGGTGGTGCTATCGTGC- TGTACTGTA} \]

\[\text{AhHMA4-3} \text{ promoter}_Rev \quad \text{TTTCTCTTCTTCTTTGTTTGTT- TGTGACGCC} \]

Supporting Information

Figure S1 Consensus of the genomic illustration of the fosmid B3P40. Yellow bar represents the entire 27978 bp genomic insert. Green arrow illustrates both tandem repeats of \(\text{AhHMA4-1} \) and \(\text{AhHMA4-2} \) and their transcriptional direction. Blue script and lines highlight sites in the fosmid which were 100% specific for that primer. Image created through Vector NTI 11 (Invitrogen, Paisley, UK).

(TIF)

Figure S2 Consensus of the genomic illustration of the fosmid P6P46. Yellow bar represents the entire 31521 bp genomic insert. Green arrow illustrates both tandem repeats of \(\text{AhHMA4-3} \) and \(\text{AhHMA4-4} \) and their transcriptional direction. Blue script and lines highlight sites in the fosmid which were 100% specific for that primer. Image created through Vector NTI 11 (Invitrogen, Paisley, UK).

(TIF)

Figure S3 Consensus of the genomic illustration of the fosmid J12P81. Yellow bar represents the entire 31218 bp genomic insert. Green arrow illustrates a single copy of \(\text{AhHMA4-2} \) its transcriptional direction. Brown arrows illustrate flanking genes At2g19160 and At2g19170 and their transcriptional directions. Flanking genes are labelled according to their A. thaliana orthologues. Blue script and lines highlight sites in the fosmid which were 100% specific for that primer. Image created through Vector NTI 11 (Invitrogen, Paisley, UK).

(TIF)

Figure S4 Consensus of the genomic illustration of the fosmid N18P80. Yellow bar represents the entire 20090 bp genomic insert. Green box illustrates a single copy of the 5' end of \(\text{AhHMA4-3} \). Brown arrows illustrate flanking genes At2g19060, At2g19070, At2g19080 and At2g19090 and their transcriptional directions. Flanking genes are labelled according to their A. thaliana orthologues. Blue script and lines highlight sites in the fosmid which were 100% specific for that primer. Image created through Vector NTI 11 (Invitrogen, Paisley, UK).

(TIF)
Data S7 Sequence alignment of overlapping regions of fosmids P6P46 and H2P47. (DOC)

Data S8 Sequence alignment of overlapping regions of fosmids H2P47 and B3P40. (DOC)

Acknowledgments

We gratefully acknowledge all assistance from staff at the University of Nottingham, specifically, from the Plant and Crop Sciences Division, Drs. Zsuzsanna Bodí, Sílín Zhang and Katalin Kovács for their guidance with molecular genetic techniques, Karmeswaree Naiken and Dr. Ranjan Swarup for assisting with histochemical analyses, and Mike Beard and Laura Holt (Photograph Unit) for image preparation.

Author Contributions

Conceived and designed the experiments: SOL HCB RGF JPH GJK PJW NSG MRB. Performed the experiments: SOL HCB. Analyzed the data: SOL. Contributed reagents/materials/analysis tools: HCB RGF JPH PJW NSG MRB. Wrote the paper: SOL HCB RGF JPH PJW NSG MRB.

References

1. White PJ, Brrown PH (2010) Plant nutrition for sustainable development and global health. Annals of Botany 105: 1073–1080.
2. Mills RF, Francini A, Ferreira da Rocha PSC, Baccarini PJ, Aylett M, et al. (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters 579: 783–791.
3. Colangelo EP, Guerinot ML (2006) Put the metal to the metal: uptake and transport throughout plants. Current Opinion in Plant Biology 9: 322–330.
4. Kramer U, Tallec DN, Hanke Mummek (2007) Transition metal transport. FEBS Letters 581: 2263–2272.
5. Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytologist 174: 499–506.
6. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182: 49–64.
7. Mills RF, Krügger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of the Arabidopsis HMA4, a P1B-type ATPase of the Zn/Cd/Cu/Pb subclass. Plant Journal 35: 164–176.
8. Verret F, Gravot A, Auroy P, Leonard N, David P, et al. (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters 576: 306–312.
9. Hussain D, Haydon MJ, Wang Y, Chen Y, Zhai T, et al. (2009) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. The Plant Cell 16: 1327–1339.
10. Verret F, Gravot A, Auroy P, Perveal S, Forestier G, et al. (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His2-stretch. FEBS Letters 579: 1515–1522.
11. Wong CK, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot translocation in Arabidopsis thaliana. New Phytologist 181: 71–87.
12. Sinclair SA, Sherson SM, Jarvis R, Camakaris J, Cobbett CS (2007) The use of the zinc-fluorophore, Zinpyr-1, in the study of zinc homeostasis in Arabidopsis roots. New Phytologist 174: 39–45.
13. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytologist 173: 677–702.
14. Verret F, Gravot A, Auroy P, Perveal S, Forestier G, et al. (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His2-stretch. FEBS Letters 579: 1515–1522.
15. Taylor SI (2004) Zinc production in the heavy metal tolerant plant Thlaspi caerulescens: growing in a network of contaminated and noncontaminated sites in southern France: role of growth form, selection and phenotypic plasticity. New Phytologist 173: 199–215.
16. Yuan Z, Horak F, Yeh C, Kishimoto S, Mishina M, et al. (2008) Pervasive gene content variation and copy number variation in maize and its related metal hyperaccumulator Thlaspi caerulescens. Plant Physiology 142: 1127–1147.
17. Kim UJ, Shizuya H, de Jong PJ, Birren B, Simon MI (1992) Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Research 20: 1083–1085.
18. Wang X, Zhang Q, Sun X, Chen Y, Zhai T, et al. (2009) Fosmid library construction and initial analysis of end sequences in female balsam poplar (Populus trichocarpa). Genome Biology 10: 306–312.
19. Wild J, Hradeka Z, Szybalski W (2002) Conditionally amplifiable BACs: Switching from single-copy to high-copy vectors and genomic cloning. Genome Research 12: 1434–1444.
20. Nývör P (2007) The History of Pyrosequencing. Methods in Molecular Biology 362: 1–13.
21. Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nature Protocols 3: 267–278.
22. Petersson E, Lundberg J, Ahmadia A (2009) Generation of sequencing technologies. Genomics 93: 105–111.
23. O. Lochnan S, Fray RG, Hammond JP, King GJ, White PJ, et al. (2011) Generation of nonomental-obligate, faster-growing Noccaea caerulescens lines through fast neutron mutagenesis. New Phytologist 189: 409–414.
24. Riley R (1956) The influence of the breeding system on the genealogy of Thaliphi ajelloi L. New Phytologist 55: 319–330.
25. Pollard AJ, Baker AJM (1996) Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens. New Phytologist 132: 113–118.
26. Lombi E, Zhao PJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi wentii. New Phytologist 145: 11–20.
27. Jiménez-Amat G, Petit C, Bourrie I, Dubois S, Olivieri I, et al. (2007) Life history variation in the heavy metal tolerant plant Thlaspi caerulescens going in a network of contaminated and noncontaminated sites in southern France: role of growth form, selection and phenotypic plasticity. New Phytologist 173: 199–215.
28. Munamahlu K, Koch M (1994) Chloroplast DNA restriction site variation and phylogenetic relationships in the genus Thaliphi sinu latu (Brassicaceae). Systematic Botany 19: 73–81.
29. Koch M, Munamahlu K, Haukka H (1998) Systematics and evolutionary history of metal tolerant Thaliphi caerulescens in Western Europe: Evidence from genetic studies based on isozyme analysis. Biochemical Systematic and Ecology 26: 823–838.
30. Dubois S, Cheptou PO, Petit C, Meerts P, Ponsotel M, et al. (2003) Genetic structure and mating system of metallocoecious and nonmetalliccoecious populations of Thlaspi caerulescens. New Phytologist 157: 633–641.
31. Higgins K, Lynch M (2001) Metapopulation extinction caused by mutation accumulation. Proceedings of the National Academy of Sciences of the United States of America 98: 2929–2933.
32. Rose D, Roux F (2004) Joint effects of self-fertilization and population structure on mutation load, inbreeding depression and heterosis. Genetics 167: 1001–1015.
33. Bilkad D, Patel D, Le Mette C, Giorgi V, Camilleri C, et al. (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323: 623–626.
34. Santuari L, Pradorvend S, Amiguet-Vercher AM, Thomas J, Dorcey E, et al. (2010) Substantial deletion overlap among divergent Arabidopsis genomes revealed by intersection of Thaliphi reads and tilting arrays. Genome Biology 11: R4.
35. Svensson-Wagner RA, Eichten SR, Karaman S, Tajin P, Stein JC, et al. (2010) Pervasive gene content variation and copy number variation in maize and its domesticated progenitor. Genome Research 20: 1689–1699.
36. Mills RF, Voles M, Peaston KA, Lahner B, et al. (2010) Functional significance of Arabidopsis C-Terminal domain in plants. PLoS ONE 5: e13388. doi:10.1371/journal.pone.0013388.
37. Roze D, Rousset F (2004) Joint effects of self-fertilization and population structure on mutation load, inbreeding depression and heterosis. Genetics 167: 1001–1015.
38. Bilkad D, Patel D, Le Mette C, Giorgi V, Camilleri C, et al. (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323: 623–626.
genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiology 142: 148–167.

46. Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220: 731–736.

47. Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant, Cell and Environment 23: 675–687.

48. Ku¨pper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212: 75–84.

49. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual (third edition). Cold Spring HarborNew York: Cold Spring Harbor Laboratory Press.

50. Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, et al. (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering 104: 34–41.

51. Koncz C, Schell J (1986) The promoter of the T-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Molecular and General Genetics 204: 385–396.

52. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6: 3901–3907.

53. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735–743.