School environment and school injuries

Simo Salminen1*, Marja Kurenniemi2, Mirka Råback3, Jaana Markkula3 and Anne Lounamaa3

1 Finnish Institute of Occupational Health, Helsinki, Finland
2 National Research and Development Centre for Welfare and Health (STAKES), Helsinki, Finland
3 National Institute for Health and Welfare, Helsinki, Finland

Edited by:
Sanjay P. Zodpey, Public Health Foundation of India, India

Reviewed by:
William Augustine Toscano, University of Minnesota School of Public Health, USA
Himanshu Negandhi, Public Health Foundation of India, India
Laili Raghunath Sanikhe, Grant Government Medical College and Sir J J Group of Hospitals, India

*Correspondence:
Simo Salminen, Finnish Institute of Occupational Health, Topeliusenkatu 41 A, Helsinki FI-00250, Finland
E-mail: simo.salminen@ttl.fi

INTRODUCTION

From the perspective of sociology, schools are one of the basic institutions in the society or perhaps as sub-systems of a society as Parsons (1) wrote. The fact is that schools are working in every society in the world. Thus the safety in schools is essential for the whole society.

In Finland, there are a total of 3026 primary schools, of which 3.1% were private schools and others are public schools. The average number of pupils was 175 (2). Finnish children between 10 and 14 years of age spent an average of 2 h and 22 min in schools every work day (3), whereas in Germany as much as 25–50% of their waking hours (4). Safety at schools is thus an important factor for public health.

Injuries at school are more common among boys than girls (5–9). However, girls are nearly twice as likely to be injured as boys at the school playground in Tucson, AZ, USA (10). In French schools, girls were injured during sports and physical training more often than boys (11), whereas in Swedish schools boys injured more often during sports and breaks (12).

Playgrounds exceeded all other sites of school injury for all age groups concluded a review of literature (6). However, another review showed that playground injuries were more frequent in elementary schools or kindergartens than in secondary schools (13). For instance, injury-risk situations occurred every 3 min among schoolchildren playing in a New England school playground. Boys were involved in these situations more often than girls, and were more likely to perform aggressive actions. Climbing and swinging equipments, in particular the slide, were identified as contributors to injury-risk situations (14). The injury rate at playgrounds was more than twice that of sports areas among, for example, Vancouver elementary school students (15). Fractures also occurred most often at playgrounds among elementary school children in Seattle (16), as did almost one fourth (23%) of school injuries in Alexandria, Egypt (17).

In Greek schools, playgrounds were dry during the occurrence of 74% of injuries, and the playground was covered by asphalt in 29% of cases (18). Head injuries were more frequent at the playground, whereas injuries to the lower and upper extremities were most frequent during sports in Swedish schools (19). There was a difference of up to 40 times in rates of equipment injury between schools in Tucson, AZ, USA (20). Playground equipment caused 38% of all playground injuries in Boulder Valley School District in Colorado (21) and the injury rate in Utah school playgrounds covered by asphalt was six times higher than that of those covered by sand (22). Hard surface on playground increased only boys’ activity (23). Playground injuries differed in their nature and body site affected from injuries sustained on the athletic field or in the gym (21).

Breaks and physical education lessons are school time which is spent on school grounds including playgrounds. A review showed...
As a part of a larger project on school injuries in Finland (36), nine comprehensive schools from four Finnish cities registered injuries. The total number of pupils was 2900 and their age ranged from 7 to 15. The schools participated in this study on a voluntary basis and could be estimated to be the main reason for the injury occurrence: for example, pupil stepped on a door holder and fell. A suspected environmental factor concerned injuries in which the environmental factor was seen as a contributing factor but not an immediate cause; for example, the narrowness of a corridor contributing to the collision of pupils, causing injury. If the school environment was different kind, the school children should behave in safe way in the situations where the injuries happened. Other injuries were classified as: no definite evidence that the environmental played a major role.

Results

Over half of the injuries recorded in the registry occurred during breaks, and one out of four injuries during sports lessons. Boys were injured more often during breaks, whereas girls sustained injuries more often during sport lessons (36).

An example of a contributing factor is: "A pupil rode his/her bicycle to the end of the asphalt and fell" (injury number 720). Another injury where the environment was a contributing factor was: "A pupil fell down the stairs outside" (injury number 197), and "A pupil slipped and fell on his/her right hand" (injury number 431).

An example of a contributing factor is: "A pupil rode his/her bicycle to the end of the asphalt and fell" (injury number 720). Another injury where the environment was a contributing factor is: "A pupil’s left shoulder rubbed against the railing in the swimming pool causing a bruise" (injury number 643). Ice was the most frequently mentioned environmental factor (in 5.8% of injuries) associated with school injuries in the school yard. For example: "A pupil fell on the icy school ground, breaking one front tooth and splitting a lip" (injury number 42). An example for icy school playground is shown in Figure 1.
Table 1 | Environmental factors related to school injuries.

Factor	Frequency	%	Typical injury
Door	7	2.5	Pinched fingers in the door
Chair	9	3.3	Coming down with a chair
Window	6	2.2	Sway and window get broken
Floor	4	1.4	Tumbled down on the roughness floor
Steps, handrails	6	2.2	Falling on steps with bad condition
Playgrounds	8	2.9	Get a piece of glass from playground
Equipments, slides	7	2.5	Jump over bicycle stand and injured his knee
Traffic arrangements	24	8.7	Crash with bicycle to a car
School yard arrangements	59	21.3	Fall by sand on the asphalt
Space arrangements	12	4.3	Fall on the bench of the corridor
Slipping	12	4.3	Slipping and falling during the play
Slippery	90	32.5	Slipping on icy school ground
Others	33	11.9	Football hit to student's forehead

Total 277 100.0

DISCUSSION
One of the main conclusions of this study is that in Finland, the architecture of school yards and playgrounds are designed for the summertime, and are not suitable during wintertime, when there is snow and ice on the ground. This explains why there are so many falls in Finnish schools.

Finnish children have long summer vacations, from June to mid-August, and attend school during the winter months. The snow and icy season varies depending on the location of the school: in southern Finland, the season is on average from November to March, whereas in the north it lasts from October to April.

Maintaining school yards during the winter months, recognizing ice as a significant risk factor, following the weather forecast for icy days, and passing on this information to maintenance personnel, could reduce school injuries in countries such as Finland. The results of this study led to a mandatory wintertime master plans for school yards in Finland including first elimination of ice and snow from the school yard and then sanding the yard. The high compensation of school injuries [even $50,000 Ref. (39)] increased the meaning of the injury prevention.

Another method to prevent injuries at school yards is the safety round method (40). The head master and a group of teachers and pupils walk around the school area and especially school yard observed the risk places of injuries. The important point is the participation of pupils, because they see risks from different perspectives than adults. This safety check should be done annually (41). Importance of this perspective is emphasized by the Lithuanian study with schoolchildren showing that feeling unsafe at school increased the risk of injury (42). Pupils’ perception of low justice increased the risk of being dissatisfied with school and absence due to truancy (43).

Rigorous, effective injury prevention efforts at school should address several factors: the environment, individual behavior, social norms, legislation, and policy. Improvements to the physical environment of the school through regular safety assessments, good quality maintenance, and repairing hazards immediately after they are identified, can contribute to school safety. To tackle these challenges, attention should be paid to both organizational and everyday routine practices in schools. In this way, we can guarantee children’s rights to a safe environment – a safe school environment.

Environmental modification and increased supervision can reduce school injuries (44). However, increased teacher supervision not necessarily help to prevent injuries, as 88% of injuries at Missouri schools, for instance, occurred while pupils were allegedly supervised by adults. Supervisor of school children is especially difficult during lunch break (45). High supervision increased both boys’ and girls’ physical activity at school yards in San Diego (46). On the other hand, a playground injury prevention plan (47) based on the S.A.F.E. model (48) could modify the school yard safer. Schools need also after-school program to prevent injuries in their playgrounds after the school hours (49).

The most important limitation of this study is that the schools participated in this study on a voluntary base. We cannot be sure that they reported all the injuries in their school. For example, Scottish schools under-reported injuries, even those requiring hospital treatment (50). In Canada, schools routinely reported only one out of five injuries and one out of two serious injuries (51). In Wales, a third of primary schools did not report their injuries to the authorities (52). We assume that the schools in this study also under-reported their injuries, but we cannot estimate the extent of this suspected under-reporting.
The other limitation of this study is that all participating schools situated in the cities. However, majority of 4300 Finnish primary schools worked at the country side, but they have at minimum one teacher and 5–10 pupils. Thus the unknown number of school injuries is a problem only in big schools and in the cities.

REFERENCES

1. Parsons T. Societies: Evolutionary and Comparative Perspectives. Englewood Cliffs, NJ: Prentice-Hall (1966).
2. Kumpulainen T, editor. Koulutuksen tilastollinen vuosikirja 2011 [Statistical Yearbook of Education, 2011]. Helsinki: Opetushallitus. Available from: www.oph.fi/julkaisut/2012/koulutuksen_tilastollinen_vuosikirja_2011
3. Statistics Finland. Ajankäyttötutkimus 1999–2000 [A time use survey in Finland 1999–2000]. Helsinki: Tilastokeskuksen PX-Web-tietokannat (2008).
4. Kraus R, Heiss C, Alt V, Schnettler R. Schulunfälle – eine Analyse von Verletzungs muster und Behandlungsaufwand [School accidents – an epidemiological assessment of injury types and treatment effort]. Zentralbl Chir (2006) 131:411–6. doi:10.1055-s-2006-949534
5. Di Scala C, Gallagher SS, Schnep E. Causes and outcomes of pediatric injuries occurring at school. J Sch Health (1997) 67:38–4. doi:10.1111/j.1746-1561.1997.tb07182.x
6. Haq SM, Haq MM. Injuries at school: a review. Tex Med (1999) 95:62–5.
7. Li P, Wang, S, Huang G, Luo J-Y. A survey on injury incidence in school children in Shantou City, China. Biomed Environ Sci (2003) 16:180–6.
8. Sun YH, Yu IT, Wang TW, Zhang Y, Fan YP, Guo SQ. Unintentional injuries at school in China – patterns and risk factors. Accid Anal Prev (2006) 38:208–14. doi:10.1016/j.aap.2005.09.010
9. Sun YH, Yu IT, Zhang Y, Fan YP, Guo SQ, Wong TW. Unintentional injuries among primary and middle school students in Maashann City, eastern China. Acta Paediatr (2009) 98:268–75. doi:10.1111/j.1651-2227.2009.012171.1
10. Boyle WT, Sprunger LW, Sobolewski S, Schafer C. Epidemiology of injuries in a large, urban school district. Pediatrics (1994) 74:342–3.299
11. Chau N, Pridine R, Aptel E, d’Houtaud A, Choquet M. School injury and gender differences: a prospective cohort study. Eur J Epidemiol (2007) 22:327–34. doi:10.1007/s10654-007-9118-1
12. Jacobsson B, Bek-Jensen H, Jansson B. One year’s incidence of school accidents and their severity in a Swedish municipality. Scand J Prim Health Care (1986) 4:213–7. doi:10.3109/02813438609014834
13. Lallamme L, Menkel E, Aldenberg E. School-injury determinants and characteristics: developing an investigation instrument from a literature review. Accid Anal Prev (1998) 30:481–95. doi:10.1016/S0001-4575(97)00101-2
14. Coppens NM, Gentry LK. Video analysis of playground injury-risk situations. Res Nurs Health (1991) 14:129–36.
15. Sheps SB, Evans GD. Epidemiology of school injuries: a 2-year experience in a municipal health department. Pediatrics (1987) 79:69–75.
16. Johnson CJ, Carter AP, Harlin VK, Zoller G. Injuries resulting in fractures at the school and community levels. Scand J Soc Med (2011) 39:62–3. doi:10.1007/s10654-009-00203-x
17. Kumpulainen T, editor. Societies: Evolutionary and Comparative Perspectives. Acta Paediatr Hung (2004) 42:534–7. doi:10.1111/j.1746-1561.1984.tb08820.x
18. Kamel MI, Younus RM, Teale NA, Atta HY. Epidemiology of school injuries in Alexandria, J Egypt Public Health Assoc (1998) 73:667–90.
19. Christofforidis C, Kambas A. Childhood injuries in Greek school environment. Int J Inj Contr Saf Promot (2007) 14:62–3. doi:10.1080/1557350670119195
20. Lallamme L, Menkel E, Aldenberg E. School injury determinants and characteristics: developing an investigation instrument from a literature review. Accid Anal Prev (1998) 30:773–6. doi:10.1016/S0001-4575(99)00085-7
21. Salminen S, Louamanuk, M. Gender and injury in Finnish comprehensive schools. Accid Anal Prev (2008) 40:1267–72. doi:10.1016/j.aap.2008.03.014
22. Litwin MS, How to Measure Survey Reliability and Validity, Thousand Oaks, CA: Sage (1995).
23. Revelle W, Procedures for Personality and Psychological Research, Evanston: Northwestern University (1990). Available from: http://personality-project.org/psych/manual.pdf, 1.0-90 edition
24. Barrios LC, Jones SE, Gallagher SS. Legal liability: the consequences of school injury. J Sch Health (2007) 77:273–9. doi:10.1111/j.1746-1561.2007.00203.x
25. Björk L, Danielsson K, Schep L, Sjöberg D, Skjönberg G. Safety rounds in preschool playgrounds: A comparison of daily and number of accidental injuries among elementary school children and school size factors in elementary schools. Nihon Eiseigaku Zasshi (2007) 62:647–57. doi:10.1265/jjh.62.47
26. Sillanpaa M, Terho P, Westerhö, H. Accidents in schoolchildren: epidemiologic, aetologic and prognostic considerations. Acta Paediatr Hung (1983) 24:118–35.
27. Lallamme L, Eilert-Petersson E. School-injury patterns: a tool for safety planning at the school and community levels. Accid Anal Prev (1998) 30:277–83. doi:10.1016/S0001-4575(97)00085-7
28. Salminen S, Louamanuk, M. Gender and injury in Finnish comprehensive schools. Accid Anal Prev (2008) 40:1267–72. doi:10.1016/j.aap.2008.03.014
29. Elovainio M, Pietikäinen M, Luopa P, Kivimäki M, Ferrie JE, Jokela J, et al. School health guidelines to prevent unintentional injuries and violence. MMWR (2001) 50(RR-22):1–73.
30. Stankuviénė S, Zaborskis A. Links between accidents and lifestyle factors among Lithuanian schoolchildren. Medicina (Kaunas) (2005) 41(1): 73–80.
31. Elavainio M, Pietikainen M, Luopa P, Kivimaki M, Ferrie JE, Jokela J, et al. Organizational justice at school and its associations with pupils’ psychosocial school environment, health, and wellbeing. Soc Sci Med (2011) 73:1675–82. doi:10.1016/j.socscimed.2011.09.025
32. Josse JM, MacKay M, Osmond MH, MacPherson AK. School injury among Ottawa-area children: a population-based study. J Sch Health (1997) 77:45–50. doi:10.1111/j.1746-1561.2008.00375.x
33. Dale M, Smith ME, Weil J, Farrish HM. Are schools safe? Analysis of 409 student accidents in elementary schools. Clin Pediatr (1969) 8:294–6. doi:10.1117/00092286900080516
34. Sallis JF, Conway TL, Prochaska JL, McKenzie TL, Marshall SJ, Brown M. The association of school environments with youth physical activity. Am J Public Health (2001) 91:618–20. doi:10.2105/AJPH.91.4.618
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.