Proceedings of the 68th Annual Meeting of Eastern Region

Tokyo. October 22, 2016

Special Lecture

T1. The genome editing technology and its applications in mosquitoes. ... Itokawa, K. 57
T2. Recent topics from public health center. ... Yaguchi, N. 57

Symposium

“Front line of researches on vector borne infectious diseases”

S1. Cutaneous leishmaniasis: Case management and treatment developments. ... Arana, B. 57
S2. Leishmaniases and their vectors in the Old World and Turkey. ... Özbel, Y. 58
S3. Recent geographic expansion of arboviral diseases: Chikungunya and Zika. .. Failloux, A. 58

Contributed Papers

1. Why can’t Aedes aegypti transmit Japanese encephalitis virus?—Discussion of the vector competence—. .. Sasaki, T., Kuwata, R., Hoshino, K., Isawa, H., Sawabe, K. and Kobayashi, M. 58
2. Effect of the hour of the day on the abundance of Aedes albopictus (Stegomyia albopicta) by human bait collection. ... Kimura, G. and Tanikawa, T. 59
3. Blaesoxipha (Servaisia) silantjevi (Rohdendorf, 1937) new to Japan (Diptera: Sarcophagidae). Kurahashi, H. and Ohmiya, M. 59
4. Prevalence of rat lungworm in a business district in Yokohama. .. Yabe, T., Otomo, T., Harashima, T., Shigeoka, H. and Yamaguchi, K. 59
5. Survey on vector mosquitoes at Suzu-shi in Noto peninsula. ... Watanabe, M. and Sawabe, K. 59
6. The ecology and distribution in Oecia oecophila that are occurring at the food manufacturing facility. .. Tomioka, Y., Hirota, K., Tanikawa, T. and Nasu, Y. 60
7. Mark-release-recapture study of Aedes albopictus and Armigeres subalbatus in an urban area in 2016. ... Tsuda, Y., Maekawa, Y., Itokawa, K., Kimura, G. and Kasai, S. 60
8. Surveillance study of Aedes bekkui at a natural park in Saitama Prefecture. .. Sato, H., Nagahama, Y. and Sakata, O. 60
9. Identification of blood meal source in ticks collected at Atsugi city, Kanagawa Prefecture in 2014. Sato, T., Isawa, H., Fujita, R., Itokawa, K., Hayashi, T., Itoyama, K. and Sawabe, K. 60
10. Collection method for ticks using dry ice. .. Hashimoto, T. 61
11. The inquiries on masked palm civet in Tokyo and Japan pest control association. Tanikawa, T., Tamada, A. and Hirao, M. 61
12. Investigation of rickettsia in ticks collected in the area around Japanese spotted fever patient confirmed first time in Niigata Prefecture. ... Arai, R., Kato, M., Aoki, J., Ikeda, S., Tamura, T., Sato, M. O. and Sato, M. 61
13. Distribution of Aedes albopictus in Yamanashi Prefecture. .. Hirabayashi, K., Okada, S., Chie, S. and Tamaru, N. 61
14. The approach to mosquito-borne viral disease, dengue, control by using Sympetrum frequens larva. ... Jinguiji, H. and Kumagai, T. 62
第68回日本衛生動物学会東日本支部大会講演要旨

会期 2016年10月22日
会場 東京大学農学部弥生キャンパス

特別講演
T1. 蚊のゲノム編集研究の最前線

S1. Cutaneous leishmaniasis: Case management and treatment developments.
Arana, B. ... 57
S2. Leishmaniases and their vectors in the Old World and Turkey.
Özbel, Y. .. 58
S3. Recent geographic expansion of arboviral diseases: Chikungunya and Zika.
Failloux, A. ... 58

シンポジウム
「節足動物媒介性感染症研究のフロントライン」

1. なぜネッタイシマカは、日本脳炎ウイルスのベクターにならないのか—蚊体内での考察—
佐々木年則, 鍬田龍星, 星野啓太, 伊澤晴彦, 澤邉京子, 小林睦生
（感染研・昆虫医科学）.. 58

2. 人間法によるヒトスジシマカの生息密度調査における採集時間帯の影響
木村悟朗, 谷川 力（イカリ消毒（株）・技術研究所）.............................. 59

3. 日本未記録のニセカスミキバエ Servaisia 亜属の1種
倉橋 弘, 大宮正也, 岩村義規, 北川浩一, 中本雅之（一財）日本環境衛生

4. 横浜市街のドブネズミに見だされた広東住血線虫
渡辺 護, 沢辺京子（感染研・昆虫医科学）.. 59

5. 能登半島珠洲市における疾病媒介蚊の発生状況調査
橋本知幸（(一財)日本環境衛生センター）... 61

6. 食品製造施設で発生したミツモンホソキバガの生態と分布に関する新知見
富岡浩生, 廣田和樹, 谷川 力（イカリ消毒（株）・技術研究所）.... 60

7. 埼玉県内の公園におけるコガタキンイロヤブカの捕集状況について
佐藤秀美, 長浜善行, 坂田 裕（埼玉県衛生研究所）.......................... 60

8. 東京都および日本ペットコントロール協会のハブシ音の相談件数
谷川 力, 玉田昭男, 平尾素一（一財）日本環境衛生センター）.......................... 61
12. 新潟県の日本紅斑熱患者発生地域におけるマダニ保有リケッチア調査

新井礼子 1), 加藤美和子 2), 青木順子 3),
池田 葵 4), 田村 助 1), Marcello Otake Sato 5), サトウ 恵 4)

(1) 新潟県保健環境科学研究所、(2) 新潟県はまくら児童療育センター、
(3) 新潟県佐渡保健所、(4) 新潟大学医学部、(5) 独協医科大学医学部) 61

13. 山梨県内におけるヒトスジシマカの分布

平林公男, 岡田峻典, 崔 翔気, 田丸直人 (信州大学・繊維学部・応用生物) 61

14. アキアカネを利用したデング熱媒介蚊の駆除手法の開発

神宮字 寛, 熊谷 祐 (宮城大学) 62
蚊のゲノム編集研究の最前線
糸川健太郎(国立感染症研究所昆虫医科学部,AMEDリサーチトレジデント)

ゲノム編集技術の単純な応用としては,遺伝子破壊によって遺伝子機能を解明する逆遺伝学的な実験が挙げられるだろう.我々は最近,TALENとCRISPR/Cas9システムを用いてネッタイイエカの解毒酵素遺伝子を破壊し,この遺伝子が殺虫剤抵抗性に関わっていることを立証した.この他にゲノム編集では相同組み替えを利用した部位特異的な核酸配列の挿入も可能であり,特定のアミノ酸置換や塩基置換の表現型への効果を確かめることもできる.

ゲノム編集技術はまた,このような研究レベルでの利用にとどまらず,それが感染症問題を解決する道具としようという試みもある.ここ数年,欧米を中心とした研究グループがゲノム編集に用いるヌクレアーゼを用いて遺伝子ドライブを起こす人工的な遺伝子を構成する研究を活発に行っている.

保健所に寄せられる衛生動物に関する相談や,その対策事業により得られた最近の話題について紹介する.

保健所と寄生動物—最近の話題
矢口 昇(東京都豊島区池袋保健所生活衛生課)

Cutaneous leishmaniasis: Case management and treatment developments
Byron Arana (Drugs for Neglected Diseases initiative, Geneva, Switzerland)
Leishmaniases, both visceral (VL) and cutaneous (CL) are still one of the world’s most neglected diseases, affecting largely the poorest of the poor, mainly in developing countries. The leishmaniases are prevalent in 98 countries and 3 territories on 5 continents. In the Old World, the diseases have wide distribution and there are several “hot spots” for VL and CL. Visceral leishmaniasis (Kala-azar) Visceral leishmaniasis is caused by parasites of the L. donovani complex, but a few cases caused by L. tropica have also been reported. VL endemic areas in The Old World can be found to three areas: Asia, Africa and Mediterranean Basin. In Asia, some areas of Bangladesh, Nepal and India are affected from VL. In many endemic areas, visceral leishmaniasis is also seen in children, and the official number is between 20 and 30 per year but most cases are underreported. The parasite’s reservoir hosts are dogs and other wild ruminants, and the official numbers of cases are seen in the southeastern region of the country. Mebendazole is calculated as 2.96% of the/year. The most prevalent species in L. tropica and isolated from VL patients located in all over Turkey. However, L. infantum strains were mainly isolated from East part of Mediterranean Region whereas both L. infantum strains from human and vector, P. ovis, was found to be genetically identical. The diagnosis is mainly clinical and parasitological. Treatment is free of charge and pentavalent antimonials are first line drugs.

In Turkey, Leishmania tropica and L. infantum are responsible agents of CL. L. infantum has been reported to be being etiological agent for CL by the studies done in Turkey over the last year. It is reported from 45 out of 81 provinces almost 50% of cases are seen in Antalya province located in southeastern region of the country. Most of these cases are seen and specimens were collected around their burrows. In many endemic countries, several species were reported.

In East Africa VL caused by L. donovani occurs mainly seen in children, and the official number is between 20 and 30 per year but most cases are underreported. The parasite’s reservoir hosts are dogs and other wild ruminants, the official number is over 10,000/year. The transmission is mainly parasitological using bone marrow aspiration samples, and it is supported by serology. It is reported from 45 out of 81 provinces almost 50% of cases are seen in Antalya province located in southeastern region of the country. Most of these cases are seen and specimens were collected around their burrows. Treatment is free of charge and pentavalent antimonials are first line drugs.

In Turkey, L. infantum is mainly seen in children, and the official number is between 20 and 30 per year but most cases are underreported. There are 988 species known to be anthroponotic, and 30 species are known to be zoonotic (reservoir hosts).

In East Africa, L. donovani is the major vector, and in the south where P. t. donovani is predominant. In North Africa and West Asian countries, L. major is mainly seen and transmitted by L. phagocytophilus. The prevalence ratios were found between 1.45 and 27.5% (overall 11.3%).

Cutaneous leishmaniasis (Oriental sore) Cutaneous leishmaniasis is caused by five species of Leishmania: L. infantum, L. tropica, L. major, L. aethiopica and L. donovani. In many endemic areas, several Leishmania species are known to be etiological agents. L. infantum is the most frequent cause of CL in southern Europe. L. donovani transmitted by L. phagocytophilus is the etiological agent in southern African countries. L. tropica transmitted by P. sergenti occurs in predominately warm and temperate areas of the world. Middle East, Northern Africa and West Asian countries. L. major transmitted by P. papatasi and L. phagocytophilus transmitted by P. phagocytophilus cause zoonotic cutaneous leishmaniasis. L. donovani caused by L. phagocytophilus mainly occurs in the highlands of Ethiopia and other places in East Africa where the natural habitat of hyraxes (reservoir hosts).

In Turkey, Leishmania tropica and L. infantum are responsible agents of CL. L. major and L. donovani have also been proven to be being etiological agent for CL by the studies done in Turkey over the last year. It is reported from 45 out of 81 provinces in Turkey, so far. Total number of cases in 2014 was 1,678 (98.4% in last 5 years) and almost 50% of cases are seen in Sanliurfa province located in southeastern region of the country. Mebendazole is calculated as 2.96% of the/year. The most prevalent species in L. tropica and isolated from CL patients located in all over Turkey. However, L. infantum strains were mainly isolated from East part of Mediterranean Region whereas both L. infantum strains from human and vector, P. ovis, was found to be genetically identical. The diagnosis is mainly clinical and parasitological. Treatment is free of charge and pentavalent antimonials are first line drugs.

Sand flies as the vectors of leishmaniases Sand flies are tiny, weak and silent but dangerous flies because of their capability of transmitting the pathogenic organisms. They can transmit not only Leishmania parasites but also Phleboviruses (68 serotypes) and a bacterium (Burkholderia bacilliformis). The sand flies complete their life cycle in the humid soils with organic material and it takes ≥ 50 days depending on temperature. There are 988 species in the world and around 70 of them are incriminating as vectors for various pathogens. Vector species are taxonomically placed in Phlebotomus (Old World), Sergentomyia (Old World) and Lutzomyia (New World) genera.

In Turkey, among 23 species of Phlebotomus genus recorded in Turkey, 7 are proven or suspected vectors of human leishmaniases as well as phlebovirus infections. Two examples from Asian countries Sri Lanka It is an endemic country for CL caused by L. donovani. This parasite strain is suggested to be genetically distinct from the parasite strain that is causing visceral leishmaniasis in other part of the world. The vector sand fly species also Phlebotomus argenteus in Sri Lanka and it is dominant species (≥ 50%) throughout the country. First CL case was reported in 1992 in Sri Lanka and it increased to 1,365 in 2014. In 2007 three autogenous kala-azar cases were also recorded and same strain suggested to cause.

Mongolia No human case was recorded in Mongolia so far, but in central Eurasia including Mongolia, the presence of L. major, L. gerbilli and L. turanica were reported. Ramburomyia optims (great gerbils) has wide distribution in southern Mongolia (Gobi desert) and they are colonized by bactrian camel. Our sand fly study carried out in the areas where R. optims is seen and specimens were collected around their burrows. P. andrei (92.9%), P. mongolensis (4.4%) and P. alcunardi (2.5%) were found. The findings clearly indicated that the life cycle of sand flies in Gobi desert is happening in rodent burrows.

Recent geographic expansion of arboviral diseases: Chikungunya and Zika

Recent geographic expansion of arboviral diseases: Chikungunya and Zika

Vector-borne diseases represent a significant proportion of emerging and re-emerging infectious diseases. The most medically important vectors of diseases are mosquitoes and among the most important pathogens they transmit are arthropod-borne viruses (arboviruses). Disregarding the enzootic cycle where the viruses circulate naturally between wild mosquitoes and non-human primes, the establishment of an epidemic is undoubtedly related to the introduction of a viremic host acting as a vehicle for importation in environments conducive to viral amplification. The widespread dispersal of Aedes albopictus through commerce may have set the stage for the emergence of Chikungunya (CHIKV). Invasion typically has been followed by rapid emergence of arboviruses they transmit. CHIKV has spread over most tropical regions facilitated by an A. albopictus-adaptive mutation in the viral genome selected in 2004–2005 on La Réunion Island. It has led to more efficient inter-human transmission, even in temperate regions. In less than 10 years, CHIKV became the cause of epidemics in the five continents. Similarly, Zika virus (ZIKV) was first described outside its historic geographic range within Africa and Asia during a string of outbreaks in several South Pacific islands with a starting point in Yap islands. Since May 2015, ZIKV has been reported in Brazil, other Latin American countries and the Caribbean highlighting its potential to spread globally. Together with CHIKV and DENV, ZIKV is transmitted by Aedes mosquitoes, and countries where these mosquitoes are present could be suitable for future Zika outbreaks. Vector-borne diseases such as Chikungunya and Zika will continue to increase in incidence causing devastating public health consequences until effective vaccines are available or vector control improved. The factors leading to these arboviral emergences will be discussed.
ヒトスジシマカ成虫の生息密度調査として、CO₂誘導トラップよりも人囮法が望ましいとされている。しかしながら、人囮の採集時間帯が生息密度調査に及ぼす影響については十分に検討されていない。我々は定点（千葉県千葉市）において、雨天と土日祝日を除いた毎日9:00, 13:00から、ヒトスジシマカ成虫を人囮法で採集する場合、季節、または採集高頻度(占)であった。

捕獲された各時間帯の合計日数はすべての時間帯で受けられ、5月12日以降、すべての時間帯で調査できた5月における調査は合計11日であり、そのうちヒトスジシマカが捕獲された各時間帯の合計日数は9:00で2日、13:00で17:00では7日であった。6月以降、9:00に捕獲される頻度は高まった。このことから、ヒトスジシマカ成虫の出現初期（5月）は、午後の気温が急激に上昇するための飛来が活発ではないと考えられる。また、5月12日から8月31日までにすべての時間帯で調査できた合計日数は56日であり、17:00がもっとも高頻度（48日、85%）に採集され、さらに、17:00は各時間帯における総捕獲数と各時間帯の数値ともに最も多くなった。本試験の結果から、ヒトスジシマカ成虫を人囮法で採集する場合、季節、または採集時期によって適度な標的となる可能性がある。人囮法によるヒトスジシマカ成虫の生息密度調査は、夕方の実施が効果的と考えられる。

横浜市街のドレナージに見だされた広東住血線虫

○矢部裕男12, 大友忠男12, 原島光2, 重岡弘3, 仁川健次3

(1) ライトコントロールシステム, (2) 朝日消毒, (3) ブラザーブランド, (4) 富士消毒, (5) 横浜サンセルフ

Prevalence of rat lungworm in a business district in Yokohama. Yabe, T., Otomo, T., Harashima, T., Shigeoka, H. and Yamaguchi, K.

神奈川県北のコントロール協会では2015年と2016年の2月に、横浜市内の市街地（21 ha）でマネスの調査および駆除事業を実施した。調査地の一部には約100棟の簡易宿泊施設が立ち並び、飲食店も多いため、監視および駆除機を用いて設置したところ、ドレナージが主に簡易宿泊施設とその周辺で得られた。得られたドレナージについて、広東住血線虫の検出を試みたところ、2015年には54箇所の2箇所に、2016年には31箇所の5箇所に見つかった。

日本未記録のニセカスミバエServatius重属の1種

○倉橋弘12, 大宮正也12

(1) 感染症・昆虫医科学, (2) 朝日消毒

Survey on vector mosquitoes at Suzu-shi in Noto peninsula. Watanabe, M. and Sawabe, K.

昨年、本支部大会で、能登半島市におけるあたり媒介蚊の発生状況調査

○浦辺 潤, 沢辺京子 (感染症・昆虫医科学)

Vol. 68 No. 2 2017
ミツモンホソキバガは近年国内で50年ぶりに再見された種であるが、2014-15年に、東京都市圏内の食品製造施設で発生が確認され、異物混入や衛生問題が懸念された。捕集箇所は依然として発生が疑われているが、新たな発生が確認された。3箇所の発生箇所は異なるが、いずれもドネズミの餌であった。生態的に不明なものが多い種を卵から卵化まで飼育し、生態を明らかにして、エオシスでも卵化が可能である。捕集箇所は、蚊では卵から卵化し、生態を明らかにした。

我々は2014年から埼玉県内の公園を対象に感染症媒介の生態を調査している。今期、卵を含めたコガタキンイロヤブカAedes aegypti（以下A.e.）散布調査を確認したので報告する。調査期間は、県下で確認された発生地を対象に、散布箇所を調査することとした。散布箇所は、市内に0.5kmの範囲で散布が確認された。散布箇所の生態を明らかにするために、石垣市の同じ市街地を対象として、マーキング法による推定をしました。そこで、散布箇所の生態を明らかにするために、石垣市の同じ市街地を対象として、マーキング法による放流と再捕獲をしました。再捕獲率は30~66%と高い再捕獲率や分散範囲の縮小の形で現れたと推測された。そこで、散布箇所の生態を明らかにするために、石垣市の同じ市街地を対象として、マーキング法による放流と再捕獲をしました。再捕獲率は30~66%と高い再捕獲率や分散範囲の縮小の形で現れたと推測された。
ドライアイスを用いたマダニ類の生息調査
橋本知幸(一財) 日本環境衛生センター

Collection method for ticks using dry ice. Hashimoto, T.

マダニ生息調査では旗ずり法が採用されることが多いが、引きずり方などによって捕集数がばらつく懸念がある。海外では本法以外に、ドライアイスによる誘引法が殺虫剤の野外評価などでしばしば採用されている。このため、この方法に従って、マダニの捕集効果を実地で評価した。100cm×100cmのポリエステル布上にドライアイス400〜500gを置き、白布を挟んだ下部に受け皿を配置し、草地に所定時間（1〜4時間）固定し、マダニ捕集数を評価した。白布表裏に付着しているダニ数をカウントした結果、兵庫、神奈川、山梨の5地点、計31回の反復調査で、幼虫を含めて平均26.1±55.2匹/回、若虫・成虫のみで平均12.0±19.7匹/回のマダニが捕集された。調査範囲の異なる旗ずり法との比較は難しいが、一部の調査で実施した30分間旗ずり法との比較では、旗ずりよりも捕集数は少ない傾向にあったが、誘引された種類は、旗ずりで採集される種類に概ね一致した。ただし、旗ずりでは脱落しやすいタカサゴキララマダニ成虫や、捕獲数の少なかったマダニ属が比較的高率で誘引されることがあった。さらに、旗ずりに比べて、幼虫よりも若虫や成虫の比率が高くなる傾向があった。このことから、宿主探索の行動活性の高い種類や発育期の個体が捕集されやすいことが示唆された。なお、ドライアイスの代わりに熱源(ハクキンカイロ)を配置した場合との比較では、ドライアイスのほうが、はるかに誘引効果が高かった。

山梨県内のヒトスジシマカの分布
平林公男,岡田峻典,崔 翔気,田丸直人(信州大学・繊維学部・応用生物)

Distribution of Aedes albopictus in Yamanashi Prefecture. Hirabayashi, K., Okada, S., Chie, S. and Tamaru, N.

山梨県は南に富士山、北に八ヶ岳山嶺があり、中央には甲府盆地がある。年降水量は盆地では1000mm程度であるが、富士五湖周辺地域や富士川流域はその2倍近い降雨量がある。本研究では2015年から二年間にわたって、山梨県内全域(調査地点標高は164〜974mの範囲、合計26地点)におけるヒトスジシマカの分布調査を行った。調査は2015年8/30〜9/1に、北杜市、甲府市、韮崎市、笛吹市、山梨市、富士吉田市、河口湖町、身延町、南部町の各地域に点在する寺院、神社において合計16地点、2016年9/5〜7には、北杜市の標高の異なる10地点において、CDCトラップ（誘引源はドライアイス1kg）を24時間設置し、ヒトスジシマカ Aedes albopictusの生息を調査した。この時併せて、捕虫網によるスウィーピング（合計16地点）と、ピペットによる幼虫調査（合計23地点64箇所）も行った。その結果、CDCトラップでは26地点で合計538個体の幼虫成虫が捕獲された。ヒトスジシマカは15地点から91個体が捕獲された。この調査では捕獲数の多い地点は、標高が164m（妙久寺）〜299m（鳴沢寺）の範囲であった。標高が800m以上の地点では成虫は捕獲されなかった。しかし、標高が750〜800mの範囲では、捕獲された地点と、捕獲されなかった地点があり、分布の境界領域である可能性が示唆された。以上のことから、山梨県内では、標高が800m以上の地点ではヒトスシマカの生息が確認されず、一昨年、長野県内で得られた調査結果と同一となった。

東京都および日本ペットコントロール協会のハクビシンの相談件数
谷川 力1,2,玉田昭男1,平尾素一2(東京都ペットコントロール協会, 日本ペットコントロール協会)

The inquiries on masked palm civet in Tokyo and Japan pest control association. Tanikawa, T., Tamada, A. and Hirao, M.

ハクビシンは一般家屋の天井などに侵入し、糞尿における悪臭や汚染、足音や鳴き声による騒音で住民からの相談件数が東京都ペストコントロール協会および日本ペストコントロール協会で増加している。特に東京都ペットコントロール協会の苦情件数は集計を取り始めた2008年から昨年の2015年には4.5倍に急増した。なお、同期間のネズミの相談件数は1.3倍であった。同じく日本ペストコントロール協会の集計は3年前から1.5倍である(ネズミは1.1倍)。これらの相談件数は、興味あることに10月をピークとした山型を呈していた。さらに日本ペストコントロール協会の都道府県別の件数の1位は東京が3年連続であり、他にも埼玉、千葉、神奈川の都心に近い県が上位であった。

新潟県の日本紅斑熱患者発生地域におけるマダニ保有リケッチア調査
新井礼子1,2,加藤美和子3,青木順子3,池田 嶽1,田村務1,Marcello Otake Sato5,サトウ恵4(1)新潟県保健環境科学研究, 2)新潟県はまぐみ小児療育センター, 3)新潟県佐渡保健所, 4)新潟大学医学部, 5)獨協医科大学医学部)
Investigation of rickettsia in ticks collected in the area around Japanese spotted fever patient confirmed first time in Niigata Prefecture. Arai, R., Kato, M., Aoki, J., Ikeda, S., Tamura, T., Sato, M. O. and Sato, M.
アキアカネを利用したデング熱媒介蚊の駆除手法の開発

神宮字 寛, 熊谷 祐（宮城大学）

The approach to mosquito-borne viral disease, dengu, control by using *Sympetrum frequens* larva. Jinguji, H. and Kumagai, T.

本研究では、アキアカネ幼虫を用いたヒトスジシマカの生物的防除手法について検討した。アキアカネ幼虫を用いた防除手法により、ヒトスジシマカ幼虫の発生を約40日間にわたり抑制できることを明らかにした。この手法は平常時の感染症媒介蚊幼虫の個体数を抑制する手法として有効と考えられる。

調査対象地は、宮城大学学園キャンパス内（仙台市太白区倉立）である。実験にはアキアカネとノシメトンボの9齢幼虫を用いた。キャッパス内に産卵板を入れたオビトラップ（12個×5か所）を設置した。オビトラップには、①アキアカネ9齢幼虫1個体投入、②ノシメトンボ9齢幼虫1個体投入、③脱皮阻害剤溶液、④コントロールの4条件×3反復とした。実験は7月から開始し1週間ごとに産卵板の卵数、オビトラップ内のボウフラおよび蛹の数を数えた。

オビトラップ内に産卵した蚊は、個体数の多い順にヤマトヤブカ、ヒトスジシマカ、キナラガバハシカの3種であった。アキアカネとノシメトンボのヤゴを投入したオビトラップでは、ヤゴが発育するまでの間、ボウフラの発生が認められなかった。トラップ内の幼虫の平均生存日数は、アキアカネでは41.3日±12.6（N=15）、ノシメトンボでは35.3日±12.9（N=15）を示した。一方、コントロールと脱皮阻害剤を用いたオビトラップでは、平均28個体のボウフラが確認された。アキアカネとノシメトンボ幼虫が発育するまでにトラップ内に産み付けられた蚊の卵数は、それぞれ平均値で556個と456個となった。