Manuscript Details

Manuscript number MOLLIQ_2019_1403_R1
Title Photoalignment at the nematic liquid crystal - polymer interface: experimental evidence of three-dimensional reorientation
Article type Full length article

Abstract
We provide experimental evidence that photoalignment at the nematic liquid crystal (NLC) - polymer interface can not be simply considered as a two-dimensional process. Moreover, our experiments clearly indicate that the photoaligning process does not depend on the individual properties of the NLC material and those of the interfacing polymer exclusively. The polymer and the NLC layer interact, i.e., the polymer-liquid crystal interface should be regarded as a coupled system, where the two components mutually influence each other. Furthermore, we show that the temperature induced anchoring transition also has to be taken into account for the complete description of the photoalignment mechanism.

Keywords nematic liquid crystals; photoalignment; nematic–polymer interface
Manuscript category Thermotropic and lyotropic liquid crystals
Corresponding Author Tibor Toth-Katona
Corresponding Author's Institution Wigner Research Centre for Physics
Order of Authors Tibor Toth-Katona, Istvan Janossy
Suggested reviewers Irena Drevensek-Olenik, David Statman, Philip Bos

Submission Files Included in this PDF

File Name [File Type]
cover letter.docx [Cover Letter]
cover letter_resub.docx [Cover Letter]
response_to_Referees.doc [Response to Reviewers]
highlights.doc [Highlights]
Toth_Graph_Abstract.pdf [Graphical Abstract]
Toth_resubmit.pdf [Manuscript File]

Submission Files Not Included in this PDF

File Name [File Type]
Toth_LateX_source_files.zip [LaTeX Source File]
Toth_LateX_resub-source_files.zip [LaTeX Source File]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given:
Data will be made available on request
Please find enclosed our manuscript entitled „Photoalignment at the nematic liquid crystal - polymer interface: experimental evidence of three-dimensional reorientation” by T. Tóth-Katona and I. Jánossy. The manuscript is submitted for J. Mol. Liq. as regular article.

Sincerely yours,

Tibor Tóth-Katona
Hereby we resubmit our manuscript entitled „Photoalignment at the nematic liquid crystal - polymer interface: experimental evidence of three-dimensional reorientation” by T. Tóth-Katona and I. Jánossy. All changes are made according the Reviewers comments, and are indicated by red typesetting in the text of the resubmitted manuscript.

Sincerely yours,

Tibor Tóth-Katona
REMARKS TO THE REFEREES:
First of all, we are grateful to the Reviewers for carefully reviewing the manuscript (MS), as well as for their constructive and useful comments which helped us to improve the quality of the MS. For clarity, we give our response to the Referees comments by red typesetting.

-Reviewer 1
-This experimental manuscript reports an evidence that photoalignment at the liquid crystal-polymer interface can be considered as a three-dimensional process. Photoalignment is most often realized exploiting trans-cis isomerization of azo dyes. The azo dyes are either coated on the substrate as a molecular monolayer or embedded in a polymer film. In a typical experiment, the trans configuration of the given azo substance induces homeotropic orientation of the LC molecules on the photosensitive plate, while the cis isomer induces planar one. In this case, with one azo substrate, the surface being irradiated by the laser beam provides a homeotropic-to-planar transition. Often, with other azo substances, the liquid crystal molecules remain in the plane of the substrate and the azimuthal angle of the director can be controlled with polarized light, therefore creating a twisted nematic cell.

First of all, by authors there has been shown that the standard two-dimensional description of photoalignment is unsuitable in a number of cases. Second, that the polymer-liquid crystal interface should be regarded as a coupled system, where the two components mutually influence each other.

Specifically, it has been found that at temperatures far from the nematic–isotropic phase transition of the liquid crystals, the photoalignment takes place mostly in the usual way, where the azimuthal reorientation of the surface director occurs. As the temperature is raised, the azimuthal reorientation becomes more and more incomplete; at a critical temperature, it disappears completely and instead, the planar-to-homeotropic transition takes place. It has been shown that this critical temperature for different LC compounds is not the same neither on the absolute scale, nor on the scale of DT = T_{NI} - T, relative to the clearing point of the nematics. It was made an assumptions that the interactions between the polymer and LC molecules play a crucial role in description of the photoalignment mechanism.

This paper well fits to J. of Molecular Liquids and I recommend publication of this manuscript.

Response:
No addressable comments.

-Reviewer 2
-The manuscript of Tóth-Katona and Jánossy describes experimental investigation of temperature dependence of the liquid crystal (LC) photoalignment mechanism. It brings an important finding that both azimuthal and zenithal photo-reorientation angles are strongly dependent on relative temperature with respect to the nematic-isotropic phase transition. The authors propose that the entire phenomenon of the photoalignment has to be reconsidered and mutual interaction between the photosensitive polymer layer and the bulk LC medium has to be taken into account. The manuscript is well written, the experiments and the results are clearly presented and the main outcome messages of the work are clearly communicated. The paper will for sure rise the interest of the LC community, as temperature stability of the alignment mechanism is undoubtedly an important issue in any kind of technological application. I therefore recommend the manuscript for publication in Molecular Liquids.

My main minor concern is, that the authors provide no information on the temperature dependence of the photoalignment layer itself. I wonder – how does the
isomerization kinetics of the film changes with the temperature. Fig. 1 demonstrates that this kinetics depends on the LC material that is put in contact with the photoalignment layer (azo-doped PMMA) and that there is a strong temperature dependence. But, one would like to see more clearly temperature dependence of photoisomerization kinetics in contact maybe just with air or with some simple liquid. It would be also interesting to see how light-induced orientational order of the photoalignment film itself depends on the temperature, as variation of this order directly affects the LC anchoring energy.

To my opinion, not only properties of the LCs, but also properties of the azo-doped photoalignment film strongly depend on the temperature and the only way to fully understand the mutual effects between them is to know their intrinsic temperature dependencies independently from each other. The orientational anisotropy and trans-cis and cis-trans kinetics can, for instance, be deduced from measurements of absorption anisotropy of the film close to or at the resonant wavelengths. This would definitely provide a more complete picture of the entire problem.

The authors probably cannot perform the above described additional measurements in short time – but I suggest that at least a comment on this is given somewhere.

Response:
We agree with the Reviewer that future measurements on the temperature dependence of the photoisomerization kinetics of pDR1 in contact with the air, or other isotropic fluid would significantly contribute to a better understanding of the problem. A comment on this is now given at the end of the 1st paragraph of Section 4 (pages 6 and 7, lines 382-389).

As regards previous research – there were some observations of mutual interaction between the LC and the (photo)alignment layer. i.e so called "gliding of the easy axis" reported already previously. Maybe the authors can add some references. Some examples are:
M. Vilfan et. al, PRE 63, 061709 (2001)
M. Vilfan and M. Copic, PRE 68, 031704 (2003)
S. Joly et al., PRE 70, 050701 (2004)
S.V. Pasechnik et al., LCs 33, 175 (2006)
P. Oswald et al., PRE 77, 061703 (2008)

Response:
We thank the Reviewer for drawing our attention to the above papers. The suggested references are now included (pages 1 and 8, lines 52-54 and 566-575).

-Reviewer 3

Before any criticism, this is a brilliant investigation that obviously deserves publication. A correlation between the azimuthal and zenithal photoalignments is investigated in several NLC compounds. It was found that much below the NI transition temperature the azimuthal photoalignment mainly takes place, while near the NI transition temperature the zenithal photoalignment mainly takes place. The authors conclude that near the NI transition temperature the zenithal anchoring weakens, while the azimuthal anchoring still remains strong, and this could be the reason of the observed phenomenon. A correlation between the bulk properties of LC and the surface effects is mentioned several times, but, frankly speaking, I could not find any details.

First of all, I recommend the authors to avoid (at least in their Abstract) using the words "according to our measurements, the polymer and the NLC sense each other" looking self-evident. Meanwhile, there exist theoretical approaches explicitly explaining a correlation between the surface and the bulk orientational
properties of LC in various geometries [PRE 84, 041701 (2011); Phase Transitions 90, 86 (2017)], and it's worth mentioning them.

Response:
The abstract has been changed according to the comment (3rd and 4th line of the abstract), and the suggested theoretical papers are now included to the list of references with a short remark in the text (pages 1 and 8, lines 54-56 and 576-579).

Minor changes:
1. At the end of Sec. 3.1 I would skip using the words "No systematic d dependence of \phi is observed". There can be some non-trivial dependence.

Response:
The sentence has been reformulated (page 2, lines 148-149).

2. Next sentence – please check the grammar.

Response:
The sentence has been corrected (page 2, lines 149-152).

3. In the name of Sec. 3.2 I would remove the words "Temperature-induced", because the content of the section is wider.

Response:
The title of the subsection has been changed (page 2, line 155).

My comments are in no way of diminishing the importance of the paper. I would recommend this paper for publication in Molecular Liquids after a minor revision.
HIGHLIGHTS:

- The phototalignment process at nematic – photosensitive polymer interfaces has been investigated experimentally.
- Both, the azimuthal and the zenithal photoalignment processes have been found incomplete.
- Experiments indicate that the liquid crystal – polymer interface is a coupled system, mutually influencing each other.
- The zenithal angle of the director at the polymer surface strongly increases near the nematic-isotropic phase transition.
- Measurements strongly suggest the need for a 3-dimensional coupled model, where the pretilt is also taken into account.
Photoalignment at the nematic liquid crystal - polymer interface: experimental evidence of three-dimensional reorientation

Tibor Tóth-Katona*, István Jánossy

Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary.

Abstract

We provide experimental evidence that photoalignment at the nematic liquid crystal (NLC) - polymer interface can not be simply considered as a two-dimensional process. Moreover, our experiments clearly indicate that the photoaligning process does not depend on the individual properties of the NLC material and those of the interfacing polymer exclusively. The polymer and the NLC layer interact, i.e., the polymer-liquid crystal interface should be regarded as a coupled system, where the two components mutually influence each other. Furthermore, we show that the temperature induced anchoring transition also has to be taken into account for the complete description of the photoalignment mechanism.

Keywords: Nematic liquid crystals, Photoalignment, Nematic–polymer interface

1. Introduction

The interaction of liquid crystals with solid substrates is a particularly significant research area. The problem is important for both the basic research and for various applications, because the proper alignment of the molecules at the boundary of a liquid crystal cell is the key factor for correct operation of devices based on LCs. Although standard methods have been developed in the last decades to ensure the required orientation of liquid crystals (like mechanical rubbing of polyimide layers spin-coated on the solid substrate), there is a continuous search for new methods of alignment. One of the most stimulating alternative method is the so-called photoalignment of nematic liquid crystals, discovered in the early 1990-s. More often, with other azo substances, the liquid crystal molecules remain in the plane of the substrate and the azimuthal angle of the director can be controlled with polarized light, therefore creating a twisted nematic cell. As a rule, after irradiation the director becomes perpendicular to the light polarization direction, and is referred to as the ‘in-plane alignment’ photocontrol [1, 3, 12, 13, 16]. The mechanisms of the photocontrol, as well as the most commonly used photosensitive materials are well summarized in a review on photoalignment of liquid crystal systems [18].

Hereby we present observations that have far-reaching consequences regarding the photoalignment process, and can change the concept of its mechanism profoundly. First, we will show that the standard two-dimensional description of photoalignment is unsuitable in a number of cases. Second, we will provide evidence that the nematic liquid crystal does not play a purely passive part in the photoalignment process, in contrast to what is assumed in most papers. Instead, the polymer-liquid crystal interface should be regarded as a coupled system, where the two components mutually influence each other [15]. Such interactions have been considered previously via the so called "gliding of the easy axis" [19, 20, 21, 22, 23], or via the correlation between the surface and the bulk orientational properties of LCs in various geometries [24, 25].

2. Experimental details

2.1. Sample preparation

To obtain the photosensitive substrate, the following procedure has been employed. The polymer polymethyl-methacrylate functionalized with the azo-dye Disperse Red 1 (pDR1, for the
chemical structure see Fig. 1b of [26]) has been dissolved in toluene (concentration of pDR1: 2 wt%) and spin-coated on glass plates (some of them having SnO₂ conducting layer serving as an electrode). Spinc-coating has been performed with a Polos SPIN 150i at 800 rpm for 5 sec, and then at 3000 rpm for 30 sec (both with spin acceleration of ±1000 rpm/sec). The spin-coated substrates has been baked in an oven for about 2 hours at 140°C.

Rubbed polyimide coated slides from E.H.C. Co. (Japan) have been used as reference plates. The thickness of the assem-bled LC cells has been measured by interferometric method, and were found in the range of 7 – 50 μm. The LC cells have been filled either with 4-cyano-4’-pentylbiphenyl (5CB), with LC mixture E7, or with mixture E63 (both from Merck). Be-fore filling in the material, the cell was illuminated with white light, polarized perpendicularly to the rubbing direction on the reference plate. This procedure ensured a good quality planar initial alignment of the nematic liquid crystal. The nematic-to-isotropic phase transition temperature TNI has been determined for all LC cells, and typical values of 34°C, 60°C and 83°C have been found for 5CB, E7 and E63, respectively.

2.2. Experimental setup

Measurements on the photoalignment and photo-reorientation have been performed on an improved version of the pump-probe optical setup developed in our laboratory recently, and described in details in Ref. [26]. The polarized pump beam from a DPSS laser (25 mW, λ = 457 nm) entered the cell from the photosensitive side, defocused to a spot size of few mm (much larger than the diameter of the probe beam). The polarized probe beam from a He-Ne laser (5 mW, λ = 633 nm) was sent through the cell, entering it at the reference plate. Behind the sample the probe beam was sent through a rotating polarizer and its intensity was detected by a photodiod; the signal was connected to a lock-in amplifier. The setup provides the phase and the amplitude of the probe beam transmitted through the sample. In order to determine the induced twist angle, the probe beam was polarized parallel to the rubbing direction; the twist angle is given by the phase of the signal. To detect the zenithal reorientation, the probe beam was polarized at 45° from the rubbing direction and the amplitude of the signal was measured. For the determination of the initial pretilt angle at the photosensitive substrate an additional electric-field has been subjected to the sample and a standard measurement setup for the electric-field-induced Fréedericksz transition, in which the sample is placed between crossed polarizers (polarization direction of both enclosing 45° with the initial director n), and the transmitted light intensity from a He-Ne laser is measured during the transition.

3. Results

3.1. Azimuthal (in-plane) photoalignment

We start with the results on the in-plane (azimuthal) photoalignment. In these measurements the polarization of both the pump and the probe beam has been set parallel with the initial n, and the phase of the probe beam has been measured. The temperature of the samples has been varied from room temperature up to TNI. Under these conditions the so called ‘in-plane alignment’ photocontrol is expected, so that the pump beam induces a twist deformation at the photosensitive substrate resulting in a twisted LC cell from the initially planar one. In the case of a perfect azimuthal reorientation the twist angle should be 90°.

Figure 1 shows the temporal evolution of the photoinduced twist angle ϕ for LC cells filled with E7 (a), E63 (b), and 5CB (c), measured at different temperatures TNI – T. The pump-beam has been switched on at t = 100s in all measurements, and switched off somewhere in the range t = 200 – 1200 s, depending on the dynamics of the photoalignment. As one sees, for E7 and E63 at low (room) temperature the azimuthal twist deformation saturates at ϕ ≤ 80° [see Fig. 1(a) and (b)], which is close to the complete reorientation ϕ ≈ 90°. With the increase of the temperature, however, the twist angle gradually decreases, and vanishes far below TNI. Moreover, for 5CB no significant twist deformation has been detected – ϕ < 4° has been measured even at the room temperature (Fig. 1(c)). Besides the decrease of the twist angle with the increase of the temperature, from Fig. 1 – especially from subfigure (b) – one can also see that the photoalignment process slows down, while (after switching off the pump beam) the back relaxation speeds up with the increase of the temperature.

The temperature dependence of the saturated twist angle for 5CB, E7 and E63 is plotted in Fig. 2. For all NLCs a sudden decrease of ϕ has been observed far below TNI: for E63 in the temperature range TNI – T = 30 – 35°C, for E7 in the range of TNI – T = 20 – 25°C, and for 5CB the range of TNI – T > 10°C can be deduced from the measurements (the present experimental setup does not allow for measurements below the ambient temperature). In Fig. 2 results for E7 measured in LC cells having different thickness d are also shown. No straightforward dependence of ϕ was observed. It is worth to note, however, that the higher is the TNI of the NLC, the larger is the value of the relative temperature ΔT = TNI – T at which the sudden decrease of ϕ occurs. In summary, in all samples a broad temperature range of the nematic phase is detected in which practically no azimuthal photo-reorientation is observed, i.e., ϕ ≈ 0.

3.2. Temperature dependence of the pretilt angle

In this section we investigate the temperature dependence of the pretilt angle θ at the photosensitive substrate. We note that the pretilt angle at the reference plate (rubbed polyimide) has been found temperature independent over a wide temperature range for various nematic liquid crystals [27]. In particular, for the type of the polyimide substrate used in our experiments (manufactured by E.H.C. Co., Japan) the pretilt is estimated in the range 0 < θ < 1° [28]. We have used the electric field induced Fréedericksz transition [29] in order to estimate the pretilt angle θ at the photosensitive substrate. Namely, NLCs with positive dielectric anisotropy Δε = ε∥ − ε⊥ (ε∥ and ε⊥ are the dielectric permittivities parallel with-, and perpendicular to n, respectively) and with planar initial alignment, undergo an orientational (Fréedericksz) transition upon application of an electric field at a threshold voltage UF = π √K∥/(ε∥Δε), where
to 1200s, depending on the photo-reorientation dynamics. The pump beam was switched on at temperatures in cells filled with NLCs: (a) E7, (b) E63, and (c) 5CB.

Figure 1: Azimuthal photo-reorientation angle \(\phi \) measured in cells of thickness \(d \) as indicated in the legend, and filled with various NLCs (E7, E63 and 5CB).

Figure 2: Temperature dependence of the azimuthal photo-reorientation angle \(\phi \) measured with voltage steps of 0.02V in the range from 0.04V to 7V, in an increasing and decreasing voltage cycle, with waiting time of 1s between each step.

As already mentioned, measurements on the Fréedericksz transition have been performed in a standard setup with crossed polarizers for 5CB and E7, for which the temperature dependence of all relevant material parameters is available in the literature. At each temperature the transmitted light intensity is measured with voltage steps of 0.02V in the range from 0.04V to 7V, in an increasing and decreasing voltage cycle, with waiting time of 1s between each step.

Numerical calculations are based on equations given in [30], to which we have included the influence of the pretilt angle at both bounding substrates of the LC cell. The sample thickness \(d \) and the phase transition temperature \(T_{NI} \) have been measured for each LC cell \((d = 17.6 \mu m \text{ and } 20.2 \mu m, T_{NI} = 34^\circ C \text{ and } 59^\circ C, \text{ for } 5CB \text{ and } E7, \text{ respectively}) \), while the wavelength of the probe beam \((\lambda = 633nm) \) is known. The temperature dependence of the relevant material parameters has been taken from the literature as follows: splay and bend elastic constants \([K_{11}(T) \text{ and } K_{33}(T), \text{ respectively}] \) for E7 from [31], while for

\(K_{11} \) is the splay elastic constant. We note that \(U_F \) is a material parameter, which does not depend on geometrical factors. However, the threshold character of the electric-field induced reorientation is connected with the strictly planar alignment. If the director configuration deviates from the perfect planar alignment, i.e., there is a pretilt, the threshold-like behaviour of the reorientation is smoothed out. The birefringence vs. applied voltage curves around the Fréedericksz threshold voltage exhibit an inflexion point. The curves are extremely sensitive to the pretilt angle, especially below and around \(U_F \) [28]. Taking this fact into account, we have measured the birefringence change as a function of the applied voltage, and compared the results with numerical calculations in which only the pretilt \(\theta \) at the photosensitive substrate entered as a free parameter. The measurements were performed from the room temperature to \(T_{NI} \).
5CB from [32] which is in excellent agreement with another independent measurement [33]; the ordinary and extraordinary refractive indices \(n_o(T)\) and \(n_e(T)\), respectively, from [34] for E7, and from [35] for 5CB; the dielectric permittivities parallel with- and perpendicular to \(n\) [\(\varepsilon_f\) and \(\varepsilon_m\), respectively] from [31] for E7 and from [32] for 5CB. In the calculations, in agreement with [28], a temperature independent pretilt angle of 0.3° and 1° has been chosen at the reference plate for E7 and 5CB, respectively. We will see in the followings that such a somewhat arbitrary choice of the pretilt at the interface with the rubbed polyimide layer (in the range of 0 < \(\theta_0\) ≤ 1°) is not influencing the main results on the pretilt angle \(\theta\) at the photosensitive substrate.

After the choice of parameters as described above, only the pretilt angle \(\theta\) at the interface with pDR1 remains the free fit parameter in numerical calculations to compare with the experimental results. In the calculations, the measured sample thickness has also been slightly adjusted (within about ±5%) compared to the measured one, in order to bring together the measured and calculated normalized light intensities together at low voltages, far below \(U_F\). In this sense \(d\) can be regarded as a quasi-fit parameter, however, such a small variation of \(d\) may also originate from the error of the interferometric method, or from spatial thickness variations within the LC cell.

The total phase shift \(\Delta \Phi\) can be calculated from the light intensity variations observed while the sample undergoes the Fréedericksz transition [32]. In Fig. 3 we give a representative example of the voltage dependence of \(\Delta \Phi\) measured in a 5CB sample in increasing (\(U\) up) and decreasing (\(U\) down) voltage steps, together with the calculated \(\Delta \Phi(U)\) curve for a pretilt of \(\theta = 1.5°\). Fig. 3 is representative in the sense that reflects in general the characteristics observed both for 5CB and E7 LCs in the whole temperature range of the nematic phase. The measured \(\Delta \Phi(U)\) deviates from the calculated one at higher voltages: in the experiments the Fréedericksz transition ends at a somewhat lower voltage than it is predicted by the calculations. This systematic deviation (presumably originating from the values of material parameter(s) taken from the literature) occurs at all temperatures, both for 5CB and for E7, and could not be eliminated by adjusting the fit parameter \(\theta\). Below \(U_F\) (where the influence of \(\theta\) is the most significant), however, an excellent agreement between the experiments and the calculations could be reached just by fitting the value of \(\theta\) — see the inset in Fig. 3.

The sensitivity of the onset of the Fréedericksz transition to the variation of the fit parameter \(\theta\) is illustrated in Fig. 4, where the voltage dependence of the normalized light intensity \(I\) is shown below \(U_F\) for the measurement with increasing voltage steps and for calculations with slightly different pretilt angles (1.4°, 1.6° and 1.8°) in 5CB at \(T = 5°C\). As one sees, even such a small variation of \(\theta\) causes a considerable change: \(\theta = 1.4°\) seems to give an overestimate of the experimental curve, while \(\theta = 1.8°\) underestimates it. The best fit to experimental data is obtained for \(\theta = 1.6°\). In general, for both 5CB and E7 far enough below \(T_{NI}\), the pretilt \(\theta\) has been estimated with a precision better than 1°.

In Fig. 5 the voltage dependence of the normalized light intensity \(I\) is given below \(U_F\), measured in 5CB together with

![Figure 3](image-url)
Figure 3: Comparison of the calculated total phase shift with the measured one in an increasing/decreasing voltage cycle (\(U\) up/\(U\) down cycle) for a 5CB sample at \(\Delta T = T_{NI} - T = 9°C\). Inset: the blowup of the voltage range below \(U_F = 0.72V\).

![Figure 4](image-url)
Figure 4: Voltage dependence of the normalized light intensity \(I\) below \(U_F = 0.68V\), measured in 5CB at \(\Delta T = 5°C\) and calculated for three slightly different pretilt angles \(\theta\).
the calculated best fits to the experimental data at two different temperatures (a) $\Delta T = 9^\circ$C and (b) $\Delta T = 1^\circ$C. The figure well illustrates the differences at low (far below T_{NI}) and high temperatures (close to T_{NI}).

At low temperatures [Fig. 5(a)] experimental data with increasing and decreasing voltage steps (U up and U down, respectively) agree with each other, and they can be fitted with a single calculated curve with a well defined $\theta = 1.5^\circ$. At high temperatures, close to T_{NI}, however, several differences occur as demonstrated in Fig. 5(b). First, the electric-field induced reorientation becomes completely thresholdless. Second, the experimental data with increasing and decreasing voltage steps differ substantially – cf. U up and U down curves in Fig. 5(b), and they cannot be fitted with a single calculated curve with a given value of θ. Third, in this temperature range only few oscillations have occurred as the result of the director reorientation, however, with considerably different amplitude. Consequently, the normalization of the experimental data is not straightforward [not all of the extremal values reach 0 or 1 after normalization – see Fig. 5(b)]. These conditions have occurred in the temperature range of $0 < \Delta T \leq 2^\circ$C for 5CB, and $0 < \Delta T < 5^\circ$C for E7. In this temperature range the pretilt θ could not be determined with such a high precision as in the lower temperature range. Taking into account the total phase shift $\Delta \Phi$, fitting the calculated $I(U)$ to the first experimental extremum, and doing this separately for the increasing and decreasing voltage steps has led, however, to the determination of θ with acceptable precision – see e.g., Fig. 5(b).

The temperature dependence of the pretilt angle θ at the pDR1 substrate, determined as described above is presented in Fig. 6. As one sees, at low temperatures θ remains small (below $\theta \sim 2^\circ$) providing a planar initial alignment of the LC cells. At higher temperatures ($\Delta T < 3^\circ$C for 5CB, and $\Delta T < 6^\circ$C for E7), however, θ starts to increase rapidly, and for E7 almost a complete temperature induced orientational transition from planar to homeotropic is observed just below T_{NI}. One has also to note that the relative temperatures at which θ starts to grow differ substantially for E7 and 5CB, indicating a subtle interaction between pDR1 and the interfacing LC.

3.3. Zenithal (out-of-plane) photoalignment

Next, we turn to the question how the photo-induced reorientation takes place in the high temperature range of the nematic phase, where no azimuthal photo-reorientation is observed (see Fig. 2). In accordance with the general rule, stating that after the irradiation the director becomes perpendicular to the light polarization direction, one naturally expects that an out-of-plane photoalignment takes place in that case, instead of the in-plane photoalignment. To test this expectation, the experimental setup for measuring the zenithal reorientation was used. With this setup, if a significant out-of-plane photoalignment occurs, oscillations in the transmitted light intensity of the probe beam should appear, similarly to the measurements on the electric-, or magnetic-field induced Fréedericksz transition – see e.g., Ref. [36]. Measurements have been performed both with the polarization of the pump beam parallel with-, and perpendicular to the initial n. In the latter case no azimuthal

![Figure 5: Voltage dependence of the normalized light intensity I below U_F measured in 5CB and the calculated best fits to the experimental data at two different temperatures $\Delta T = 9^\circ$C ($U_F = 0.72$V) (a) and $\Delta T = 1^\circ$C ($U_F = 0.61$V) (b).](image)
photoalignment should occur. In the high temperature range of
the nematic phase, where $\varphi \approx 0$, we have obtained identical
 temporal response of the transmitted light intensity for both po-
larization settings of the pump beam. In the low temperature
 range, where $\varphi >> 0$, the contribution of the azimuthal (twist)\(^{265}\)
deformation has slightly modified the detected response for the
 light polarization parallel with \(n\). Considering the temperature dependence
 of the pretilt angle \(\theta\), the reason for this can be understood by con-
 sidering the temperature dependence of the azimuthal (twist)\(^{265}\)
photoalignment and relaxation processes [the best illustrated in
Fig. 1(b)] can be explained with the temperature dependence
of trans-cis (E\(^{\infty}\)/Z) isomerization. At lower temperatures, the
equilibrium concentration of the trans-conformers is much higher
than that of the cis-conformers, and the trans-to-cis iso-
merization (upon excitation) is much faster than the cis-to-trans
relaxation process (when the excitation is off). With the in-
crease of the temperature, the equilibrium ratio of the two con-
formers slightly change in favor of the cis isomer, the trans-to-
cis isomerization somewhat slows down, while the cis-to-trans
relaxation speeds up. These processes result in the observed
slower photoalignment and faster relaxation at higher tempera-
tures. Besides the temperature dependence of the isomerization
kinetics, Fig. 1 also demonstrates that this kinetics depends on
the LC material that is in contact with pDR1 (E7 or E63).

Figure 6: Temperature dependence of the pretilt angle θ at the pDR1 substrate for 5CB and E7.

Figure 7: Temporal variation of the transmitted light intensity of the probe beam measured in an E7 cell at different temperatures in the setup for detection of zenithal photo-reorientation (pump beam polarization perpendicular to \(n\), probe beam polarization encloses 45° with \(n\)).
zenithal photoalignment in an E7 sample at $T_{NI} - T = 4^\circ C$, with a pump beam of polarization $\mathbf{P} \perp \mathbf{n}$ and $\mathbf{P} \parallel \mathbf{n}$ switched on at $t = 0$.

Therefore, it is desirable in a future work to measure the temperature dependence of the photoisomerization kinetics for the pDR1 layer itself (e.g., in contact with air). Namely, the variation in the photoinduced orientational order of the pDR1 film directly affects the LC anchoring energy.

It is much more difficult to understand, however, the observed decrease of the saturation value of the azimuthal reorientation angle presented in Figs. 1 and 2. First, even in samples with E7 and E63, in which a significant azimuthal photoalignment is detected at low temperatures, the photoinduced twist angle φ has remained slightly below the expected value of 90°. In principle, this result can be interpreted by a small misalignment in the experimental setup (that of the \mathbf{n} at the two bounding surfaces, and/or that between the pump beam polarization and \mathbf{n}). However, it is very unlikely that all investigated samples were misaligned in a similar way, which always resulted in $\varphi < 90^\circ$. A more probable cause of the incomplete azimuthal photoalignment could be the finite zenithal anchoring strength at the pDR1 nematic LC interface as it was proposed in our recent work [26], allowing a slight zenithal tilt that prevents the complete azimuthal photo-reorientation.

Second, the drastic decrease of the azimuthal photoalignment occurring at quite different temperatures (both on the absolute scale and on the one relative to T_{NI}) for different nematic LCs can not be explained by the temperature dependence of individual properties of pDR1 and LCs separately. Namely, most of the decrease in φ occurs in the temperature range of 48 – 53°C, 35 – 40°C, and ≤ 24°C for E63, E7, and 5CB, respectively, while the glass transition temperature T_g for pDR1 has been found by DSC measurements in the much higher temperature range of 110 – 130°C. On the other hand, LCs investigated in this work are all cyano-biphenyl based compounds/mixtures differing only in the length of their alkyl-chain, thus their physical properties are not expected to differ significantly on the temperature scale relative to T_{NI}. This expectation can be easily confirmed, for example, by comparing the temperature dependencies of the refraction indices, the elastic constants, and the dielectric permittivities on the scale relative to T_{NI} for 5CB and E7 from the literature data that we have used in our numerical calculations [31, 32, 33, 34, 35]. In contrast to these similarities, the decrease of φ occurs at quite different values of $\Delta T = T_{NI} - T$ as shown in Fig. 2.

Third, our measurements on the estimation of the pretilt angle θ at the interface between pDR1 and the nematic LCs E7 and 5CB have clearly indicated a temperature induced anchoring transition from planar towards the homeotropic alignment at the interface just below T_{NI} which has further implications. Taking into account the temperature dependence of the pretilt angle shown in Fig. 6, it becomes clear why no sign of a significant zenithal photoalignment has been observed for E7 at $\Delta T = 2^\circ C$ in Fig. 7: at that temperature the initial orientation \mathbf{n} is already almost homeotropic at the interface with pDR1, thus no significant zenithal photoalignment can occur. Next, if comparing the temperatures ΔT, where the azimuthal photoalignment angle φ starts to decrease (Fig. 2), and where the pretilt angle θ, i.e., the initial zenithal tilt starts to increase (Fig. 6), a significant mismatch is found. Namely, the temperature induced anchoring transition starts to occur at much higher temperatures ($\Delta T \leq 3^\circ C$ for 5CB, and $\Delta T \leq 6^\circ C$ for E7) from the temperatures where the azimuthal photoalignment efficiency decreases by about 90% ($\Delta T > 10^\circ C$ for 5CB, and $\Delta T \geq 20^\circ C$ for E7). Consequently, the temperature dependence of the pretilt angle (the temperature induced anchoring transition) can not be related directly to the disappearance of azimuthal photoalignment at high temperatures.

However, according to our interpretation, the two phenomena (the anchoring transition, and the disappearance of the azimuthal photoalignment) are closely related, and have common origin. Namely, we interpret our observations with the temperature dependence of the zenithal anchoring strength at the interface of pDR1 with the nematic LCs. We propose that the zenithal anchoring strength weakens with the increase of the temperature much faster than the azimuthal anchoring strength. Therefore, at certain temperature the zenithal anchoring strength becomes weaker than the azimuthal one, and the out-of-plane photoalignment gets energetically favorable upon irradiation. With further increase of the temperature, just below T_{NI} the zenithal anchoring strength becomes so weak that thermal fluctuations trigger an anchoring transition from initially planar alignment towards the homeotropic one, even in the absence of the irradiation. Most remarkably, the temperatures where these phenomena occur do not depend alone on the individual properties of pDR1, nor on those of the interfacing LCs exclusively. According to the presented results, the pDR1 layer senses the interfacing LC, and vice versa, i.e., the interactions between the two media have to be taken into account for the full description of the photoalignment process.
5. Conclusions and outlook

We found that at temperatures far from the nematic–isotropic phase transition of the liquid crystals, the photoalignment takes place mostly in the usual way (i.e., azimuthal reorientation of the surface director occurs). As the temperature is raised, the behaviour of photoalignment becomes anomalous, i.e., at elevated temperatures, the azimuthal reorientation becomes more and more incomplete; at a critical temperature, it disappears completely and instead, the planar-to-homeotropic transition takes place. Experiments have shown that this critical temperature for different LCs is not the same neither on the absolute scale, nor on the scale of the nematic director orientation point of the nematics. It seems to be determined rather by the interactions between the polymer and LC, i.e., by the temperature dependence of the azimuthal and zenithal anchoring strengths, the determination of which is one of the future tasks.

Other, for pDR1 – LC system relevant future works could include, e.g., (i) to replace the interfacing cyano-biphenyl based LC with other type of nematic(s); (ii) to systematically vary the thickness of the pDR1 layer, (iii) to change the surface density of the azo-moieties in the pDR1 layer.

Nonetheless, the experiments presented here have evidently shown that photoalignment at the photosensitive pDR1 interface is not restricted to the pDR1 – LC interface only. For the full description of the mechanism a more complex, three-dimensional model is needed that includes both the azimuthal and the zenithal photoalignment, takes into the account the coupling between the polymer layer and the LC (an anchoring strength), as well as the role of the pretilt angle which can also be temperature dependent as in our case.

To our opinion, the observed photoalignment effects are more general, they are not restricted to the pDR1 – LC interface only. In principle, these effects can take place at numerous other photosensitive polymer – LC interfaces. The photoalignment process in such systems needs to be revisited, and its description needs to be extended to three-dimensions.

Moreover, the role of the coupling between the polymer and the interfacing LC (determining the azimuthal and zenithal anchoring strengths) is not restricted to photosensitive polymers. There are numerous polymer – LC interfaces at which the anchoring transition is triggered by other means. A representative example of such systems is the perfluoropolymer CYTOP (Asahi Glass Co. Ltd.) interfacing with the LC 4’-butyl-4-heptyl-bicyclohexyl-4-carbonitrile (CCN-47, Merck), which exhibits thermally induced homeotropic-to-planar anchoring transition around the temperature 50°C [37, 38]. According to recent investigations, when CYTOP interfaces other type of nematic LC, the temperature of the anchoring transition is substantially different [39]. This observation also supports our idea about the importance of the coupling between the polymer and the LC layer.

Acknowledgements

The polymer pDR1 was kindly provided by T. Kösá and L. Sukhomlinova (Alphamicon Inc., Kent, OH, USA). Financial support from the National Research, Development and Innovation Office (NKFIH) Grant No. FK 125134 is gratefully acknowledged.

References

[1] W.M. Gibbons, P.J. Shannon, S.T. Sun, and B.J. Swetlin, Nature 351 (1991) 49.
[2] A.G. Dyadyusha, T. Marusić, V. Reznikov, A. Khiznyak, and V. Reshetyuk, JETP Lett. 56 (1992) 17.
[3] W.M. Gibbons, T. Kösá, P. Palffy-Muhoray, P.J. Shannon, and S.T. Sun, Nature 377 (1995) 43.
[4] T. Ube and T. Ikeda, in: T.J. White (Ed.), Photomechanical Materials, Composites, and Systems: Wireless Transduction of Light into Work, John Wiley and Sons Inc., Hoboken, NJ 07030, 2017 (Chap. 1).
[5] H. Rau, in: F.J. Rabedeau (Ed.), Photochemistry and Photophysics, CRC Press, Boca Raton, 1990 (Chap. 4).
[6] K. Aoki, T. Seki, Y. Suzuki, T. Tamaki, A. Hosoki, and K. Ichimura, Langmuir 8 (1992) 1007.
[7] Y. Yi, M.J. Farrow, E. Korhová, D.M. Walba, and E. Furtak, Langmuir 25 (2009) 997.
[8] I. Jánossy, K. Fodor-Csorba, A. Vajda, and L. Palamores, Appl. Phys. Lett. 99 (2011) 111103.
[9] I. Jánossy, K. Fodor-Csorba, A. Vajda, and T. Tóth-Katona, Phys. Rev. E 89 (2014) 012504.
[10] I. Jánossy, K. Fodor-Csorba, A. Vajda, L. Palamores, and T. Tóth-Katona, Mol. Cryst. Liq. Cryst. 594 (2014) 92.
[11] K. Ichimura, Y. Suzuki, T. Seki, Y. Kawamishi, T. Tamaki, and K. Aoki, Makromol. Chem. Rapid Commun. 10 (1989) 5.
[12] K. Ichimura, H. Akiyama, N. Ishizuki, and Y. Kawanishi, Makromol. Chem. Rapid Commun. 14 (1993) 813.
[13] H. Akiyama, K. Kudo, and K. Ichimura, Makromol. Chem. Rapid Commun. 16 (1995) 35.
[14] I. Jánossy, A. Jakli, G.G. Nair, K.K. Raina, and T. Kösá, Mol. Cryst. Liq. Cryst. 329 (1999) 1119.
[15] I. Jánossy, A. Vajda, T. Paksi, and T. Kösá, Mol. Cryst. Liq. Cryst. 359 (2000) 399.
[16] P. Palffy-Muhoray, T. Kösá, and E. Weinan, Appl. Phys. A Mater. Sci. Process. 75 (2002) 293.
[17] Y. Kawanishi, T. Seki, T. Tamaki, K. Ichimura, and M. Ikeda, Polym. Adv. Technol. 1 (1991) 311.
[18] K. Ichimura, Chem. Rev. 100 (2000) 1847.
[19] M. Vilfan, I. Drevencnik Olenik, A. Mertelj, and M. Čopić, Phys. Rev. E 63 (2001) 061709.
[20] M. Vilfan and M. Čopić, Phys. Rev. E 68 (2003) 031704.
[21] S. Joly, K. Antonova, P. Martinot-Lagarde, and I. Dozov, Phys. Rev. E 70 (2004) 050701(R).
[22] S.V. Pasechnik, V.G. Chigrinov, D.V. Shmeliova, V.A. Tsvetkov, V.N. Kremenetsky, L. Zhujian, and A.V. Dubtsov, Liq. Cryst. 33 (2006) 175.
[23] P. Osvald, A. Dequidt, and A. Zywocikski, Phys. Rev. E 77 (2008) 061703.
[24] A.V. Emelyanenko, S. Aya, Y. Sasaki, F. Araoka, K. Ema, K. Ishikawa, and H. Takezoe, Phys. Rev. E 84 (2011) 041701.
[25] N.V. Kalinin, A.V. Emelyanenko, and J.-H. Liu, Phase Transitions 90 (2017) 86.
[26] I. Jánossy, T. Tóth-Katona, T. Kösá, and L. Sukhomlinova, J. Mol. Liq. 267 (2018) 177.
[27] B.O. Myrvold, M. Isogai, and K. Kondo, Mol. Cryst. Liq. Cryst. 259 (1995) 115.
[28] M. Urbanski, J. Mirezaei, T. Segdis, and H.-S. Kitzerow, ChemPhysChem 15 (2014) 1395.
[29] V. Frédericksz and A. Repiewa, Z. Phys. 42 (1927) 532.
[30] H.J. Deuling, Mol. Cryst. Liq. Cryst. 19 (1972) 123; ibid. 27 (1974) 81.
[31] E.P. Raynes, R.J.A. Tough, and K.A. Davies, Mol. Cryst. Liq. Cryst. 56 (1979) 63.
[32] A. Bogi and S. Faetti, Liq. Cryst. 28 (2001) 729.
[33] M.J. Bradshaw, E.P. Raynes, J.D. Bunning, and T.E. Faber, J. Physique 46 (1985) 1513.
[34] J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, IEEE J. Display Technol. 1 (2005) 51.

[35] P.P. Karat and N.V. Madhusudana, Mol. Cryst. Liq. Cryst. 36 (1976) 51.

[36] A.M. Parshin, V.A. Gunyakov, V.Y. Zyryanov, and V.F. Shabanov, Int. J. Mol. Sci. 15 (2014) 17838.

[37] M. Uehara, S. Aya, F. Araoka, K. Ishikawa, H. Takezoe, and J. Morikawa, ChemPhysChem 15 (2014) 1452.

[38] M.V. Rasna, K.P. Zuhail, R. Manda, P. Paik, W. Haase, and S. Dhara, Phys. Rev. E 89 (2014) 052503.

[39] P. Salamon (private communication).