A Polyketide Synthase in Glycopeptide Biosynthesis

THE BIOSYNTHESIS OF THE NON-PROTEINOGENIC AMINO ACID (S)-3,5-DIHYDROXYPHENYLGLYCINE*

Received for publication, July 13, 2001, and in revised form, August 2, 2001
Published, JBC Papers in Press, August 8, 2001, DOI 10.1074/jbc.M106580200

Volker Pfeifer‡, Graeme J. Nicholson§, Johannes Ries‡, Jürgen Recktenwald‡, Alexandre B. Schefer§, Riham M. Shawky‡, Joachim Schröder‡, Wolfgang Wohlleben§, and Stefan Pelzer‡

From the ‡Universität Tübingen, Institut für Mikrobiologie and Biotechnologie, Auf der Morgenstelle 28 and §Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076 Tübingen and ¶Universität Freiburg, Institut für Biologie II, Schänzlestr. 1, 79104 Freiburg, Germany

Balhimycin, a vancomycin-type antibiotic from *Amycolatopsis mediterranei*, contains the unusual amino acid (S)-3,5-dihydroxyphenylglycine (Dpg), with an acetate-derived carbon backbone. After sequence analysis of the biosynthetic gene cluster, one gene, *dpgA*, for a predicted polyketide synthase (PKS) was identified, sharing 20–30% identity with plant chalcone synthases. Inactivation of *dpgA* resulted in loss of balhimycin production, and restoration was achieved by supplementation with 3,5-dihydroxyphenylacetic acid, which is both a possible product of a PKS reaction and a likely precursor of Dpg. Enzyme assays with the protein expressed in *Streptomyces lividans* showed that this PKS uses only malonyl-CoA as substrate to synthesize 3,5-dihydroxyphenylacetic acid. The PKS gene is organized in an operon-like structure with three downstream genes that are similar to enoyl-CoA-hydratase genes and a dehydrogenase gene. The heterologous co-expression of all four genes led to accumulation of 3,5-dihydroxyphenylglyoxylic acid. Therefore, we now propose a reaction sequence. The final step in the pathway to Dpg is a transamination. A predicted transaminase gene was inactivated, resulting in abolished antibiotic production and accumulation of 3,5-dihydroxyphenylglyoxylic acid. Interestingly, restoration was only possible by simultaneous supplementation with (S)-3,5-dihydroxyphenylglycine and (S)-4-hydroxyphenylglycine, indicating that the transaminase is essential for the formation of both amino acids.

Vancomycin-group glycopeptides are important antibiotics that are frequently used as a last line of defense against meticillin-resistant *Staphylococcus aureus* (1). However, the recent emergence of vancomycin-resistant strains raises the possibility that vancomycin may soon be rendered ineffective over time and that other therapeutic agents must be developed (2). One obvious approach to obtain new antibiotics is the chemical modification of the existing structures to yield semi-synthetic glycopeptides (3). Another attractive alternative is the specific manipulation of the biosynthetic pathway of the producing organism. This, however, requires detailed knowledge of glycopeptide biosynthesis.

Recently, the gene cluster for balhimycin (4) biosynthesis has been identified in *Amycolatopsis mediterranei* DSM5908 by gene inactivation experiments (5), and the previously established genetic system (6) now permits the precise identification of gene functions and also the construction of new strains able to produce modified glycopeptides (5, 7–9).

It has been shown that the aromatic amino acids (2S,3R)-m-chloro-β-hydroxytyrosine and (R)-4-hydroxyphenylglycine in the aglycone of vancomycin group antibiotics are derived from tyrosine (10), and all enzymes in the biosynthesis of the latter amino acid were identified recently (11, 12). The backbone of a third unusual amino acid in these antibiotics, (S)-3,5-dihydroxyphenylglycine, was shown to be derived from acetate, and a polyketide synthase (PKS) reaction was proposed (10).

Therefore, it was of considerable interest that the biosynthetic gene cluster of balhimycin does not contain genes for typical bacterial PKS (type I or II) but a gene for a protein related to the plant-specific polyketide synthases of the chalcone synthase family (reviewed in Ref. 13). Putative proteins with 20–30% identity with those plant proteins have been discovered in several different bacteria (reviewed in Ref. 14), but the precise enzyme function is known in only one case (15). In this study we describe the function of the chalcone synthase-related polypeptide encoded in the balhimycin biosynthetic gene cluster and the genes involved in the post PKS modification steps, which lead to (S)-3,5-dihydroxyphenylglycine.

EXPERIMENTAL PROCEDURES

Chemicals and Radiochemicals—Chemicals were obtained from Sigma-Aldrich or from Merck and were of analytical grade. [2-14C]Malonyl-CoA (1.85 GBq/mmol) and [2-14C]Acetyl-CoA (1.85 GBq/mmol) were obtained from Amersham Pharmacia Biotech. (S)-3,5-dihydroxyphenylglycine was obtained from ICN Biomedicals GmbH, Eschwege, Germany, and 3,5-dihydroxyphenylacetic acid was obtained by enzymatic hydrolysis of 3,5-dihydroxyphenylacetic acid methyl ester with pig liver esterase (Roche Molecular Biochemicals, Mannheim, Germany). Media constituents were obtained from Life Technologies, Inc. and OXOID (Wesel, Germany). Restriction enzymes were from New England BioSystems (Frankfurt on Main, Germany) and MBI Fermentas (St. Leon-Rot, Germany).

Bacterial Strains, Plasmids, and Culture Conditions—The bacterial strains and plasmids used in this study are listed in Table I. Cloning experiments were performed in *Escherichia coli* XL1Blue by standard
A Polyketide Synthase in Glycopeptide Biosynthesis

TABLE I

Strains and plasmids used in this study	Relevant characteristics	
E. coli	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB lacIqZAM15Tn10Ter15]	16
A. mediterranei	DSM5908 Balhimycin-producing wild type	4
	VP1–2 Balhimycin mutant with an in-frame deletion in the dpgA gene	This study
	JR1 Balhimycin mutant with an in-frame deletion in the pgtA gene	This study
S. lividans	T7 S. lividans TK23 (22), tsr, ble, harboring the T7-RNA polymerase gene downstream of tippAp	J. Altenbuchner, Stuttgart, Germany
	VP1 S. lividans T7 transformed with VP1	This study
	VP2 S. lividans T7 transformed with pVP2	This study
	VP5 S. lividans T7 transformed with pVP5	This study

Plasmids

cosmid16.1	pOM446 (22) derivative, contains a fragment balhimycin biosynthetic gene cluster	5
psF1	pT7/T3-o19, ermE, gene replacement vector for transformation of A. mediterranei	6
pIFCS	Gene replacement vector pS1P1, harboring flanking regions of dpgA	This study
pBFat	Gene replacement vector pS1P1, harboring flanking regions of pgtA	This study
pRSETp	bla, T7-expression system	17, 18
pSLE61	pUC19, tr	19
pGM9	Streptomyces vector, aphII, ble, tsr	20
pRSETdpqA	pRSETp harboring the dpgA gene	This study
pSLEK7	pSLE61, contains a ClaI/XhoI fragment with a C-terminal fragment of dpgA and dpgBCD	This study
pRSETK7	pRSETp, including the dpgABCD genes	This study
pVP1	HindIII fusion of pRSET with pGM9	This study
pVP2	HindIII fusion of pRSETdpqA with pGM9	This study
pVP5	HindIII fusion of pRSETdk1 with pGM9	This study

Construction of In-frame Deletion Mutants of A. mediterranei DSM5908—For in-frame deletion of dpgA in A. mediterranei, the fragment IFCS1 (1091 bp) and the fragment IFCS2 (1044 bp) were amplified by PCR. The PCR mixture (100 μl) contained 200 μM each primer, 1.0 μM of template DNA (cosmid16.1), deoxyxynucleobase 5’-triphenophates at a final concentration of 200 μM each (DNA polymerization mix, Amersham Pharmacia Biotech), 10 mM reaction buffer, and 2.5 units of Herculase™ enhanced DNA polymerase (Stratagene, Amsterdam, The Netherlands). To decrease secondary structures in template DNA, dimethyl sulfoxide at a final concentration of 3% (v/v) was added to the reaction mixture. The primer pairs were: IFCS1.1, 5’-GGG GAC GAA TTT TTC CTC GTG ATC TAC-3’ and IFCS1.2, 5’-GTC GCA TGC GAT ATT GAG GAC CTC GGA CTG-3’; and IFCS2.1, 5’-GCC TCC GAT TTC GAA ATG CGG CTG ATC-3’ and IFCS2.2, 5’-CCT GGA TCT AGA TGC CTT GCT GGT CGA TGC-3’. Restriction sites introduced into the sequence are underlined in the primer sequences. After restriction, the amplified DNA fragments were fused over their common EcoRV restriction site, resulting in an in-frame transition between the two PCR products. The 5’-EcoRI and 3’-XhoI restriction sites of the fusion product were used to clone into the gene replacement vector pSP1, resulting in the recombinant plasmid pIFCS (Fig. 1). For transformation of A. mediterranei DSM5908, a modified direct transformation method was used as described previously (6). After transformation, the clones harboring the erythromycin selection marker had integrated the pIFCS plasmid over a single cross-over into the chromosome. To obtain an in-frame deletion mutant, a second cross-over event at the other site of the deleted fragment was required. To increase the probability of detecting such a second cross-over event, ultrasound treatment (Branson Sonifier 250, Danbury, CT) was performed with the transformed mycelium in liquid medium. A clone (A. mediterranei VP1–2) that had lost erythromycin resistance was selected, and the correct second cross-over event was verified by PCR and Southern hybridization.

For in-frame deletion of pgtA in A. mediterranei, the fragment IFBat1 (1070 bp) and the fragment IFBat2 (1029 bp) were amplified by PCR (same reaction mixture as described above). The following primer pairs were used: IFBat1.1, 5’-TCT AGA TCC GCG GGT AGG CTC-3’ and IFBat1.2, 5’-AAT TCT CCG GGA CTA ACA AGA CGG TG-3’ and IFBat2.1, 5’-AAT TCT CCG GGA GCT GGG TGC CTT C-3’ and IFBat2.2, 5’-GCA TGC GCC GCG TGC TGG CCT-3’.

As described for construction of pIFCS, the two fragments IFBat1 and IFBat2 were fused over their common restriction site EcoRI and cloned into the gene replacement vector pBFat over the 5’-XhoI and the 3’-SpI site of the fusion product of IFBat1 and IFBat2, resulting in the plasmid pBFat (Fig. 1). After transformation of A. mediterranei, the same selection procedure was used to obtain a double cross-over event in the A. mediterranei chromosome with the plasmid pBFat, resulting in the strain A. mediterranei JR1.

Construction of S. lividans T7 Expression Strains—To obtain plasmids replicating in E. coli as well as in S. lividans, all expression plasmids were generally constructed by HindIII fusion of pRSETp derivatives (replicative in E. coli) with the streptomycetes vector pGM9. To prevent plasmid instability, all the genes in the resulting fusion plasmids were oriented in the same direction. The control plasmid pVP1 was constructed by fusing just the pRSETB vector with pGM9. For construction of the expression plasmid pVP2, PCR was performed with the primer pair DPGA1 (5’-CATATG GGG GTT GAT GTA TCG-3’) and DPGA2 (5’-AAGCTT TCA TGA TGG GAT CAG GCG-3’) and with cosmid16.1 as template (Fig. 1). The deduced start and stop codons of dpgA are bold face in the primer sequences. The amplified 1288 bp fragment, coding for dpgA, was cloned into the pRSETb vector over the primer-derived NdeI-HindIII restriction sites. The fusion of the resulting plasmid pRSETdpqA with pGM9 yielded pVP2.

The co-expression plasmid pVP5 was constructed by cloning a 7-kilobase pair ClaI-XhoI fragment containing dpgBCD and a C-terminal dpgA fragment from cosmid16.1 into pSLE61 (ClaI-XhoI), resulting in pSLEK7. The 7-kilobase pair ClaI-HindIII fragment from pSLEK7 was then cloned into pRSETdpqA (ClaI-HindIII), replacing 1102 bp of the dpgA PCR insert and creating a full dpgABCD fragment. S. lividans T7 was transformed with the resulting plasmids pVP1, pVP2, and pVP5 by protoplast transformation as described (22).

HPLC Analysis of Culture Filtrates—Culture filtrates of induced E. coli cultures were collected and concentrated by vacuum centrifugation. The concentrated extracts (20 μl) were separated via HPLC (Thermo Request System, Egelsbach, Germany) using a Nucleosil C18 column at a flow rate of 2 ml/min. The solvents used were solvent A (double distilled H2O, 0.1% phosphoric acid) and solvent B...
and resuspended in assay buffer (50 mM Tris-HCl, 100 mM NaCl, 10 mM dithioerythritol, final pH 7.5) on ice. Resuspended cells (4 ml of assay buffer/1 g wet weight of cells) were broken by passage through a French pressure cell and then diluted to 1.0 liter of concentrated HCl. The mixtures were then extracted 2 times with liquid medium were placed on balhimycin test medium (3.0 g of KH2PO4, 7.0 g of KH2PO4, 0.5 g of sodium citrate 2-hydrate, 0.1 g of MgSO4·7H2O, 1.0 g of (NH4)2SO4, 2.0 g of glucose, and 17.0 g of agar in 1.0 liters of distilled water, inoculated with a spore suspension of B. subtilis ATCC6633 as the test organism. Filter disks of 5-mm diameter soaked with liquid medium were placed on balhimycin test medium (3.0 g of KH2PO4, 7.0 g of KH2PO4, 0.5 g of sodium citrate 2-hydrate, 0.1 g of MgSO4·7H2O, 1.0 g of (NH4)2SO4, 2.0 g of glucose, and 17.0 g of agar in 1.0 liters of distilled water, inoculated with a spore suspension of B. subtilis after sterilization and cooling).

Bioassay for Detection of Antibiotically Active Balhimycin—Balhimycin production was determined by bioassays with Bacillus subtilis ATCC6633 as the test organism. Filter disks of 5-mm diameter soaked with liquid medium were placed on balhimycin test medium (3.0 g of KH2PO4, 7.0 g of KH2PO4, 0.5 g of sodium citrate 2-hydrate, 0.1 g of MgSO4·7H2O, 1.0 g of (NH4)2SO4, 2.0 g of glucose, and 17.0 g of agar in 1.0 liters of distilled water, inoculated with a spore suspension of B. subtilis after sterilization and cooling).

Protein Analysis—Protein concentrations were determined by the Bradford method (23) using bovine serum albumin as a standard. SDS-polyacrylamide gel electrophoresis was carried out according to the method of Laemmli (24), and protein bands were stained with Coomassie Brilliant Blue G-250.

DpgA Activity Determination in Vitro—Induced cells were washed and resuspended in assay buffer (50 mM Tris-HCl, 100 mM NaCl, 10 mM dithioerythritol, final pH 7.5) on ice. Resuspended cells (4 ml of assay buffer/1 g wet weight of cells) were broken by passage through a French press cell, and the cell debris was removed by centrifugation (20 min at 25,000 × g). A 100-μl reaction mixture contained 20 μl (150 μg of protein) and additions as detailed in the figure legends. Reactions mixtures were incubated at 30 °C for 1 h and stopped by the addition of 5 μl of concentrated HCl. The mixtures were then extracted 2 times with 200 μl of ethyl acetate. After evaporation of the solvent, the resultant material was dissolved in 10 μl of methanol and analyzed by thin layer chromatography (Merck TLC aluminum sheets Silica gel 60 F254, solvent, ethyl acetate-petrol ether:acetic acid, 9:9:1, v/v/v). The dried plates were developed by 1-h exposure with a phosphorimaging plate reader (Fujifilm Bio-imaging Analyzer System BAS-1800 II, Raytest GmbH, Straubenhardt, Germany).

Structure Analysis of the Enzyme Products—Gas chromatography-mass spectrometry (GC-MS) analysis was carried out with a GC-MS system of Hewlett-Packard (Waldborn, Germany; HP6890 (GC) coupled with HP5973 (MS); column, H4–5MS (30 m × 250 μm, 0.25-μm film thickness)). The substances to be analyzed were derivatized by trimethylsilylation with N,O-bis(trimethylsilyl) trifluoroacetic amide in pyridine (30 min, 60 °C). 1H NMR of the purified component with the plant enzymes. DpgA also was very similar (95% ID/97% SM) to the functionally not-characterized gene product of orf27 from the biosynthetic gene cluster of the glycopeptide chloroeremomycin (30), which has the same backbone as balhimycin. High similarities (45–49%) were also obtained to functionally uncharacterized sequences from Mycobacterium tuberculosis (Pks11 and Pks18) (31) and Streptomyces coelicolor (32); these proteins are also considered as chalcone synthase-related PKSs (14).

Analysis of Genes Located Downstream of dpgA—Downstream of dpgA the biosynthetic gene cluster of balhimycin contains three open reading frames named dpgB (654 bp), dpgC (1299 bp), and dpgD (804 bp). The start (GTG) and stop (TGA) codons of the four genes overlap with the sequence GTGA. The translational coupling suggests that these genes are arranged in an operon structure (Fig. 1). The alignment of the DpgB sequence with protein sequence data bases showed similarity (24% ID/43% SM) to an enoyl-CoA hydratase with

FIG. 1. Genetic organization of the genes described in this study and construction of gene replacement plasmids. The start codon of pgat is located 11,769 bp upstream of the start codon of dpgA. The gene replacement plasmids plFBat and plFCS were constructed by cloning two flanking PCR fragments into the gene disruption vector kb, kilobase.

RESULTS

Identification of a Polyketide Synthase Gene—To identify the genes responsible for the biosynthesis of the 3,5-dihydroxyphenylglycine residue in balhimycin, we focused our search in the balhimycin biosynthetic gene cluster on polyketide synthase-like genes. Typical PKSs of either type I or II were absent: BLASTP searches with the used parameters resulted in no significant similarities over the first 1000 hits of every detected ORF. But we detected a gene predicting a protein of significant similarity with the plant polyketide synthases of the chalcone synthase type. This gene was called dpgA because it is the first gene in an operon-like structure that plays the key role in dihydroxyphenylglycine biosynthesis (dpg). The highest identity score with functionally characterized proteins was obtained with the plant PKS GHCHS2 from Gerbera hybrida (26% identity (ID)/44% similarity (SM)), which uses acetyl-CoA and two malonyl-CoA to synthesize the backbone of the plant secondary metabolite gerberin, a 2-hydroxy-pyrene derivative (28). In addition to the significant overall similarity, DpgA contained in the expected positions the key amino acids necessary for activity of these plant-specific type PKSs (29), suggesting that bacterial protein shared basic similarities in the function with the plant enzymes. DpgA also was very similar (95% ID/97% SM) to the functionally not-characterized gene product of orf27 from the biosynthetic gene cluster of the glycopeptide chloroeremomycin (30), which has the same backbone as balhimycin. High similarities (45–49%) were also obtained to functionally uncharacterized sequences from Mycobacterium tuberculosis (Pks11 and Pks18) (31) and Streptomyces coelicolor (32); these proteins are also considered as chalcone synthase-related PKSs (14).
3-hydroxybutyl-CoA dehydratase activity from *Clostridium acetobutylicum* (33).

The N-terminal 160 amino acid residues of DpgC revealed no similarity to described protein sequences. Its C terminus (from amino acid residue 161), however, displayed a high degree of similarity (46% ID/62% SM) to Orf6, a 3- and 4-hydroxybutyrylate dehydrogenase from an uncultured bacterium (34), using NAD⁺ to yield 3- or 4-oxobutyrate. Lower scores of similarity (≤49% SM) were obtained to enoyl-CoA hydratases (highest score obtained for a crotonase from *Thermoanaerobacterium thermosaccharolyticum*, accession number P97087).

The alignment of DpgD resulted in a significant similarity (40% ID/54% SM) to an enoyl-CoA hydratase, as well namely, to a carnitine racemase from *E. coli* (35). Furthermore, DpgB and DpgD resemble each other (32% SM). Again, very high similarities (>91% SM) were found between DpgBCD and the corresponding deduced proteins Orf28, Orf29, and Orf30 of the biosynthetic gene cluster of the glycopeptide chloroeremomycin (30).

Analysis of a dpgA In-frame Deletion Mutant—A dpgA deletion mutant of *A. mediterranei* was used to test whether the gene was necessary for balhimycin formation. We constructed an in-frame deletion because the analysis of the operon suggested a transcriptional and translational coupling (see “Discussion”). The genotype of the mutant was verified by PCR and Southern hybridization (data not shown). The mutant strain *A. mediterranei* VP1–2 has a 954-bp chromosomal deletion in the 1119-bp-coding region, resulting in the deletion of amino acid residues 48–365 of the DpgA protein. The balhimycin phenotype of the VP1–2 mutant strain was analyzed in a bioassay, with the glycopeptide-sensitive *B. subtilis* as the indicator strain. In contrast to the wild-type strain, the mutant was unable to produce a biologically active substance, demonstrating that DpgA is involved in balhimycin biosynthesis. Supplementation of the VP1–2 mutant strain with 3,5-dihydroxyphenylacetic acid restored antibiotic formation (Fig. 2), indicating that this compound is either a direct intermediate of balhimycin biosynthesis or a derivative of an intermediate.

Heterologous Expression of dpgA in *S. lividans*—Several attempts to express DpgA in *E. coli* yielded insoluble protein. We therefore decided to express DpgA in *S. lividans* T7, which contains a chromosomal copy of a thioestrepton-inducible T7-

RNA polymerase gene. The bacteria were transformed with the DpgA expression plasmid pVP2, which carries the PCR-amplified coding region of *dpgA* downstream of the T7-promoter (details under “Experimental Procedures”). By SDS-polyacrylamide gel electrophoresis analysis of *S. lividans* VP2, a band was detected at 39.5 kDa that corresponded to the calculated molecular mass of DpgA. This protein was absent in the control strain *S. lividans* VP1 (not shown). Ethyl acetate extracts of the culture filtrates were prepared and analyzed by HPLC to investigate whether the DpgA expression resulted in a changed pattern of excreted compounds. Comparison of the chromatograms revealed a new peak in the culture extract of *S. lividans* VP2 (Fig. 3C, retention time 4.5 min) at the same position as authentic 3,5-dihydroxyphenylacetic acid (Fig. 3A). The identity was confirmed by UV-visible spectroscopy and GC-MS analysis in comparison with the authentic substance.

DpgA Activity Determination in Vitro—3,5-Dihydroxyphenylacetic acid biosynthesis can be explained by a PKS reaction that involves acetyl-CoA or malonyl-CoA as starter substrates and three condensation reactions with malonyl-CoA (Fig. 4).

We used extracts from *S. lividans* VP2 (DpgA expression) and VP1 (control) to test whether the protein synthesized 3,5-dihydroxyphenylacetic acid and whether acetyl-CoA or malonyl-CoA or both were used in its biosynthesis. Representative results are summarized in Fig. 5. Incubations with radioactive malonyl-CoA led to 3,5-dihydroxyphenylacetic acid formation with VP2 but not with VP1, indicating that DpgA was responsible for the activity. More importantly, the result showed that the addition of other CoA esters was not necessary. This did not exclude the possibility that residual acetyl-CoA in the extracts participated in the reaction, and therefore, a series of additional experiments were carried out to investigate that possibility. Experiments with radioactive acetyl-CoA and unlabeled malonyl-CoA led to barely detectable product formation (Fig. 5, experiment 2), indicating that acetyl-CoA was not used to any extent.
esters were 10
from S. lividans
modification of the radioactive substrates supplied 1235 Bq to the incubations.
products of the position of 3,5-dihydroxyphenylacetic acid in TLC plates, analyzing the CoA.
may catalyze different isomerization reactions by first adding and then eliminating water and that DpgC may possess a dehydrogenase activity. Therefore, a biosynthetic pathway was postulated as depicted in Fig. 6 from 3,5-dihydroxyphenylacetic acid to 3,5-dihydroxyphenylglyoxylic acid, the corresponding 2-oxo acid of 3,5-dihydroxyphenylglycine. To examine the hypothesized role of DpgBCD, the co-expression plasmid pVP5 was used. pVP5 contains dpgABCD under control of the T7 promoter and was constructed as described under “Experimental Procedures.” S. lividans T7 was transformed with pVP5, resulting in expression strain S. lividans VP5. This strain was cultivated and induced as described above. HPLC analysis of the ethyl acetate extracts prepared from induced cultures demonstrated the presence of 3,5-dihydroxyphenylacetic acid and a new compound at a retention time of 2.6 min (Fig. 3D). To elucidate the chemical structure of the corresponding compound, the substance was purified by preparative HPLC and analyzed by GC-MS and 1H NMR. GC-MS of the HPLC fraction revealed two substances, identified as dihydroxyphenylglyoxylic acid and dihydroxybenzoic acid (probably a shunt product, see “Discussion”) by the MS fragmentation pattern. 1H NMR analysis of the purified substances confirmed the predicted structures and revealed a 3,5 substitution pattern for the aromatic hydroxyl groups of both compounds (data not shown).

Analysis of a pgat In-frame Deletion Mutant of A. mediterranei—For the synthesis of the amino acid (S)-3,5-dihydroxyphenylglycine, the product of DpgA, DpgB, DpgC, and DpgD, 3,5-dihydroxyphenylglyoxylic acid, has to be transaminated. Therefore, the presence of a corresponding transaminase gene within the balhimycin biosynthetic gene cluster has to be postulated. Indeed, two genes similar to aminotransferases are localized in the cluster. One aminotransferase gene is probably involved in the amination of dehydrovancosamine (36), the second one, pgat (phenylglycine aminotransferase), corresponds to the 4-hydroxyphenylglycine aminotransferase gene hpgT (12) of the chloroeremomycin biosynthetic gene cluster. We, therefore, assumed that Pgat may function as the dihydroxyphenylglycine aminotransferase. Pgat was inactivated by an in-frame deletion in A. mediterranei, as described under “Experimental Procedures.” PCR and Southern hybridization verified the correct mutation (data not shown). The resulting mutant strain A. mediterranei JR1 lacks a chromosomal DNA fragment of 657 bp coding for the amino acid residues 94–312 of Pgat. The remaining open reading frame encodes an internally truncated protein of 209 amino acid residues. In the bioassay, the mutant strain A. mediterranei JR1 was not able to produce an antibiologically active compound, confirming the participation of Pgat in balhimycin biosynthesis (Fig. 7, filter 1 and 2).

To elucidate the specific function of Pgat, the biosynthetic intermediates accumulated in the mutant were analyzed by HPLC of the A. mediterranei JR1 culture filtrate (Fig. 8). In the wild type strain a peak at 4.5 min could not be verified as 3,5-dihydroxyphenylacetic acid by UV-visible spectrum. In contrast, 3,5-dihydroxyphenylacetic acid was detected only in strains expressing DpgA. The concentrations of the CoA esters were 10 μM for acetyl-CoA and 20 μM for malonyl-CoA. The radioactive substrates supplied 1235 Bq to the incubations.

Assay no.	1	2	3	4	5
Protein	VP1	VP2	VP2	VP2	VP2
Acetyl-CoA	-	-	-	-	-
[2-13C]Acetyl-CoA	+	+	+	+	+
Malonyl-CoA	-	-	-	-	-
[2-13C]Malonyl-CoA	-	-	-	-	-

appreciable extent, even considering that only one molecule (compared with three malonyl-CoA) would be incorporated into the product. Moreover, supplementation of incubation mixtures containing radioactive malonyl-CoA with additional acetyl-CoA (either unlabeled, experiment 3, or labeled, experiment 4) did not lead to increased formation of radioactive product, but even to a more or less pronounced reduction. The sum of these results demonstrated that DpgA is a PKS synthesizing 3,5-dihydroxyphenylacetic acid solely from malonyl-CoA.

Co-expression of dpgABCD in S. lividans T7—3,5-Dihydroxyphenylacetic acid was shown to be the product of the enzymatic conversion of four molecules of malonyl-CoA with DpgA. To yield the α-amino acid 3,5-dihydroxyphenylglycine, a further modification of the α-position of 3,5-dihydroxyphenylacetic acid is necessary. From our alignment studies we deduce that DpgB and DpgD may catalyze different isomerization reactions by first adding and then eliminating water and that DpgC may possess a dehydrogenase activity. Therefore, a biosynthetic pathway was postulated as depicted in Fig. 6 from 3,5-dihydroxyphenylacetic acid to 3,5-dihydroxyphenylglyoxylic acid, the corresponding 2-oxo acid of 3,5-dihydroxyphenylglycine.
tant strain (verified by GC-MS). Furthermore, the pgat mutant strain accumulated approximately a 10-fold excess of the dihydroxyphenylglycine precursor 3,5-dihydroxyphenylglyoxylic acid compared with the wild type strain, indicating a block in the subsequent conversion of this intermediate. This clearly proves the participation of Pgat in dihydroxyphenylglycine biosynthesis. On the other hand, overexpressed HpgT was shown to catalyze the conversion of 4-hydroxyphenylglyoxylic acid as well as phenylglyoxylic acid into their corresponding amino acids 4-hydroxyphenylglycine and phenylglycine, respectively (12). Because of this lack of specificity, we assumed that both HpgT and Pgat are capable of transaminating hydroxyphenylglycine and dihydroxyphenylglycine. Therefore, an accumulation of the described precursors of 4-hydroxyphenylglycine, 4-hydroxymandelic acid and 4-hydroxyphenylglyoxylic acid (12), can be supposed for a Pgat mutant. However, by HPLC analysis of the culture filtrate of the mutant JR1, none of the precursors were detectable. Only in the wild-type strain were very small amounts of 4-hydroxymandelic acid detected by HPLC (peak not visible in Fig. 8).

DISCUSSION

The balhimycin biosynthetic gene cluster contains the dpgA gene, which is similar to plant polyketide synthase genes and is a member of the new type of bacterial polyketide synthases (14). The genetic organization of dpgA with dpgB, dpgC, and dpgD and the translational coupling suggested a functional connection of the four genes. This suggestion was supported by the similarity of all four deduced proteins to enzymes that utilize coenzyme A derivatives as substrates.

Since we are able to genetically manipulate the balhimycin biosynthesis in the producing A. mediterranei strain, the function of DpgA could be shown by two independent experiments;
i) an in-frame deletion mutant of dpgA, which was not able to produce any antibiologically active compound, was complemented with 3,5-dihydroxyphenylacetic acid, and ii) heterologous expression of dpgA in S. lividans resulted in the synthesis of 3,5-dihydroxyphenylacetic acid in vivo and in vitro.

The in vitro assays with heterologously expressed DpgA and with 14C-labeled acetyl- and malonyl-CoA demonstrated that only malonyl-CoA was incorporated into 3,5-dihydroxyphenylacetic acid. To obtain 3,5-dihydroxyphenylacetic acid, two different ring closure reactions (C8 → C3 or C2 → C7 of the tetraketidyl-CoA in Fig. 4) are possible, but only the C8 → C3 way leads to the CoA-activated 3,5-dihydroxyphenylacetic acid, which is likely to be the substrate of the subsequent reactions (see below). DpgA is the second enzyme of this new type of prokaryotic polyketide synthases (14) that has now been biochemically characterized. DpgA as well as the previously described RppA of Streptomyces griseus (15) use the same substrate, malonyl-CoA, to synthesize the completely different reaction products 3,5-dihydroxyphenylacetic acid and 1,3,6,8-tetrahydroxynaphthalene. In contrast to RppA, DpgA uses only four instead of five malonyl-CoA molecules to synthesize its product. In addition, the ring closure mechanism is completely different; RppA builds up a naphthalene ring system via one aldol condensation and one decarboxylating Claisen ester condensation, whereas DpgA performs only one ring closure reaction via a decarboxylating aldol condensation. Thus, the low similarity (22%) of DpgA to RppA on amino acid level is not surprising.

Heterologous expression of the gene cassette dpgABCD in S. lividans led to the production of 3,5-dihydroxyphenylglyoxylic acid, indicating that the three gene products DpgB-D are required to convert the reaction product of DpgA into the 2-oxo acid, the direct precursor of the amino acid 3,5-dihydroxyphenylglycine. Since all four enzymes DpgA-D show similarity to enzymes using CoA derivatives as substrates, a biosynthetic pathway with CoA-activated intermediates is more likely than a pathway with unactivated carboxylic acids. The free carboxylic acid intermediates detected in our experiments are probably derived from hydrolysis of accumulated CoA intermediates (enzymatically or spontaneously).

The presence of 3,5-dihydroxybenzoic acid in addition to 3,5-dihydroxyphenylglyoxylic acid in the culture filtrate of S. lividans VP2 was probably the result of 3,5-dihydroxyphenylglycine degradation, either by an oxidative decarboxylation or hydrolysis reaction. As postulated in Fig. 6, the additionally produced 3,5-dihydroxyphenylacetic acid in S. lividans VP5 supports the assumption of equilibrium reactions from (Fig. 6a) to 3,5-dihydroxyphenylglyoxylic acid, and it is tempting to speculate on a pathway channeled in a multienzyme complex.

The final step of the 3,5-dihydroxyphenylglycine biosynthetic pathway is a transamination. The biosynthesis of the non-proteinogenic amino acids of the vancomycin-type backbone requires two different transaminations, one to the amino acid discussed here and the second to 4-hydroxyphenylglycine. However, the biosynthetic gene cluster contains only one gene for a predicted aminotransferase (pgat), and other experiments with a closely related gene cluster indicated that this gene is involved in 4-hydroxyphenylglycine biosynthesis (12). Our experiments now show that Pgat is essential for 3,5-dihydroxyphenylglycine formation, based on the results that the precursor 3,5-dihydroxyphenylglyoxylic acid accumulated after pgat deletion, and that supplementation with the amino acid was necessary to restore antibiotic formation. Restoration also required the addition of 4-hydroxyphenylglycine, indicating that Pgat serves in the biosynthesis of both amino acids. Remarkably, no accumulation of 4-hydroxyphenylglyoxylic acid, the precursor expected for 4-hydroxyphenylglycine was observed. This can be explained by the reaction sequence proposed for the biosynthesis of that amino acid; the transaminase reaction with 4-hydroxyphenylglyoxylic acid uses tyrosine as the amino group donor, and the deaminated product 4-hydroxyphenylpyruvic acid is the precursor source for the formation of 4-hydroxyphenylglycine acid. The Pgat inactivation therefore would be expected to block the entire pathway and, thus, also the accumulation of the direct precursor.

In conclusion, the results of this study support the above postulated biosynthetic pathway for the non-proteinogenic amino acid 3,5-dihydroxyphenylglycine. The first step is the DpgA-catalyzed condensation of four molecules of malonyl-CoA via a hypothetical tetraketide intermediate to 3,5-dihydroxyphenylacetyl-CoA (Fig. 4). By the following hydratase reaction (catalyzed by DpgB or DpgD), a hydroxy group is inserted at the α position of the molecule (Fig. 6b) by simultaneous loss of the aromatic status of the ring structure, resulting in c. The oxidation of the hydroxy group, probably catalyzed by the dehydrogenase activity of the C-terminal part of DpgC, possibly with NAD(P)⁺ as cofactor, leads to d. The aromatic status can now be restored with an isomerization of d via a hydratase/dehydratase activity (DpgB or DpgD), leading to the CoA thioester of 3,5-dihydroxymandelic acid (e), which is structurally very similar to c and, therefore, could also serve as the substrate of DpgC. The resulting CoA-activated 3,5-dihydroxyphenylglyoxylic acid (f) can be hydrolyzed to the free acid (g), perhaps by the N-terminal part of DpgC. Finally, transamination by Pgat leads to (S)-3,5-dihydroxyphenylglycine.

The biosynthetic pathway unraveled in this study is the first example for the participation of a polyketide synthase mechanism in the biosynthesis of an α-amino acid. The described participation of four co-translated enzymes may suggest an organization of the four proteins as a multienzyme complex as previously shown for prokaryotic type II polyketide synthases (37).

Acknowledgments—Riham Shawky acknowledges a scholarship from the Egyptian Ministry of Higher Education. We thank J. Altenbuchner for providing the expression strain S. lividans T7. We also thank R. Süssmuth and co-workers for valuable discussions and D. Fink for critical reading of the manuscript.

REFERENCES

1. Folds, M., Monro, R., Sorrell, T. C., Shankar, S., and Tookey, M. (1983) J. Antimicrob. Chemother. 11, 21–26
2. Tenover, F. C. (1999) J. Hosp. Infect. 43, 3–7
3. Cooper, R. D. G., Snyder, N. J., Zweidel, M. J., Staszak, M. A., Wilkie, S. C., Nicas, T. I., Mullen, D. L., Butler, T. F., Rodriguez, M. J., Huff, R. C., and Thompson, R. C. (1996) J. Antimicrob. Chemother. 49, 575–581
4. Nadkarni, S. R., Patel, M. V., Chatterjee, S., Vijayakumar, K. E. S., Desikan, K. R., Blumhagen, J., and Ganguli, B. N. (1994) J. Antibiot. (Tokyo) 47, 334–341
5. Pelzer, S., Süssmuth, R. D., Heckmann, D., Recktenwald, J., Huber, P., Jung, G., and Wohlebien, W. (1999) Antimicrob. Agents Chemother. 43, 1565–1573
6. Pelzer, M. Huppert, W., Schertel, D., Heckmann and W. Wohlebien. (1997) J. Biotecnol. 56, 115–128
7. Süssmuth, R. D., Pelzer, S., Nicholson, G. J., Walt, T., Wohlebien, W., and Jung, G. (1999) Angew. Chem. Int. Ed. Engl. 111, 2096–2099
8. Bischoff, D., Pelzer, S., Hötzel, A., Nicholson, G. J., Stockert, S., Wohlebien, W., Jung, G., and Süssmuth, R. D. (2001) Angew. Chem. Int. Ed. Engl. 40, 1693–1696
9. Pelzer, S., Huber, P., Süssmuth, R. D., Recktenwald, J., Heckmann, D., and Wohlebien, W. (December 14, 2000) International Patent WO0077182 A1
10. Hammond, S. J., Williamson, M. P., Williams, D. H., Boeck, L. D., and Marconi, G. G. (1982) J. Chem. Soc. Chem. Commun. 344–346
11. Choroba, O., Williams, D. H., and Spencer, J. B. (2000) J. Am. Chem. Soc. 122, 5389–5390
12. Hubbard, B. R., Thomas, M. G., and Walsh, C. T. (2000) Chem. Biol. (Lond.) 42–1, 1–2
13. Schröder, J. (1997) Trends Plant Sci. 2, 373–378
14. Moore, B. S. and Hopke, J. N. (2001) Chem. Biochem. 2, 35–38
15. Funa, N., Ohnishi, Y., Faji, I., Shibusawa, M., Ebizuka, Y., and Horinouchi, S. (1999) Nature 400, 897–899
16. Bullock, W. O., Fernandez, J. M., and Short, J. M. (1987) Focus (Idaho) 3, 376–378
