1 Introduction

During the past few decades, coeliac disease has been seen to affect approximately 1% of the population worldwide. Despite the introduction of modern coeliac disease-specific serological tests, the disease remains underdiagnosed. The best-known ‘classic’ symptoms of coeliac disease, such as diarrhoea and weight loss, are directly related to the gastrointestinal tract, which is also the main site at which the disease-associated autoimmunity is considered to occur. However, it is now known that coeliac disease is a systemic disorder which may also present with a variety of extraintestinal manifestations (Figure 1).

The terminology referring to the diverse features of coeliac disease is not straightforward. While many of the symptoms and manifestations are directly associated with the disease and alleviated after commencing a gluten-free diet, others have less evident gluten dependency and treatment response. It may also be challenging to...
distinguish persistent symptoms during the diet caused by ongoing gluten intake from those unrelated to coeliac disease. Additionally, several clinical entities, such as autoimmune diseases, have been associated with coeliac disease.\(^7\) Although not actually systemic consequences and probably not preventable by a gluten-free diet,\(^8,9\) these comorbidities may nonetheless increase the overall burden of disease. It should also be noted that the dietary treatment itself may be nutritionally suboptimal and have a detrimental impact on general health.\(^10,11\)

In this review, we discuss the various systemic consequences of coeliac disease, focusing particularly to adult patients and consequences that could possibly be prevented or at least alleviated by a prompt diagnosis and strict gluten-free treatment (Table 1). Unfortunately, for many of these manifestations the scientific evidence remains limited or contradictory. Here we aimed to focus on those consequences that have been studied the most thoroughly, including disturbances of the skeletal, reproductive, cardiovascular and neurological systems, psychiatric comorbidities and malignancies.

2 | BONE HEALTH

Reduced bone mineral density (BMD) is a well-documented finding in untreated coeliac disease.\(^12-15\) According to a recent systematic review, osteoporosis can be found in 4%-20% and osteopenia in 10%-50% of men and premenopausal women with coeliac disease.\(^16\) Likewise, 7%-16% of children have been reported to present with reduced BMD at diagnosis.\(^17-19\) The pathogenetic mechanisms are likely complex, including for example, malabsorption of calcium and vitamin D, inflammatory mediators and autoimmunity,\(^20-22\) which may also partly explain the wide variation in the prevalence figures reported. For example, in some patients decreased BMD can be detected even before the development of significant small-bowel mucosal atrophy.\(^23\) Coeliac disease has also been associated with increased fracture risk compared to that of general population.\(^24-27\)

The current evidence does not support routine screening for osteoporosis of all patients.\(^28-30\) Instead, measurement of BMD could be considered in patients with long diagnostic delay and with clinically or histologically severe disease at diagnosis. Also, other osteoporosis risk factors, such as age, sex, weight and nutritional status, the presence of comorbidities, medications, physical activity and menopausal status in women, affect the risk for osteoporosis.\(^14,15,29-33\) To combine these risk factors to predict the fracture risk in coeliac disease, various clinical tools such as FRAX® score may be useful.\(^25\) The diagnostic workup and evaluation of the severity of osteoporosis follows standard clinical practice.

In most studies, reduced BMD has already improved significantly within 1 year on a gluten-free diet.\(^17,34,35\) However, particularly in adults, recovery may remain partial, while children generally achieve more complete improvement of bone health.\(^17,34-36\) In fact, the early coeliac disease diagnosis might be especially important in paediatric patients, as the peak bone mass is achieved during young adulthood,\(^37\) and thus the bone accrual may remain incomplete if the diagnosis is delayed. Whether the dietary treatment also decreases the fracture risk remains more controversial, as in some studies their frequency has decreased to the level of general population,\(^27,38,39\) whereas in others the risk has remained elevated.\(^25,26\) In a Swedish register-based study,
ongoing fracture risk was associated with slow histological recovery, suggesting that this may be attributable to either a more severe duodenal lesion at diagnosis or poor dietary adherence—or both.40 Recommendations regarding the importance of sufficient intake of calcium and vitamin D and use of specific medications follow general guidelines. Continuous bone loss during gluten-free diet should lead to the evaluation of dietary adherence and consideration of repeat biopsy.28 In newly diagnosed coeliac disease, patients with documented osteoporosis, intravenous administration of bisphosphonates may be preferable.29 To conclude, the association between coeliac disease and reduced BMD and increased fracture risk is well-established, and early coeliac disease diagnosis could be assumed to improve bone health significantly.

3 | REPRODUCTIVE HEALTH

Untreated coeliac disease may already affect hormonal balance in childhood, causing, for example, delayed puberty41 and higher age at menarche.42 In addition, although the evidence so far is more contradictory, later-in-life women have been suggested to be at increased risk for infertility, miscarriages and pregnancy complications, as well as for early menopause.42,43 In contrast, the few studies published on reproductive health in men with coeliac disease have reported fertility comparable to that of age-matched controls.44,45

Whether there is an association between undiagnosed coeliac disease and infertility, two recent meta-analyses reported contradictory results.46,47 Although women with a coeliac disease have demonstrated improved fertility rates after initiation of gluten-free diet,48 neither the presence of untreated coeliac disease nor initiation of the dietary treatment affected reproductive outcomes in women undergoing in vitro fertilisation.49 The risk for miscarriages has been reported to be increased in untreated coeliac disease, especially a few years before the eventual diagnosis,50–52 whereas appropriately treated patients do not seem to differ from controls.50,51 This may be explained, for instance, by the presence of nutrient deficiencies and non-specific inflammation, as well as coeliac autoantibodies interfering endometrial angiogenesis.53 However, the true causality and benefits of a gluten-free diet remain debatable as shared genetic risk factors between coeliac disease and miscarriages have also been proposed.54 Although more evidence is needed, at this point, active screening for coeliac disease seems to be justified in women with unexplained infertility or recurrent miscarriages.29,55

Other suggested adverse pregnancy outcomes include stillbirth, intrauterine growth retardation and prematurity.54,56 These complications have been reported in both untreated and treated patients, and initiation of a gluten-free diet has improved some of the results.56 Interestingly, high levels of serum coeliac autoantibodies have been associated with foetal growth restriction.57 However, in another study an association was only reported between untreated coeliac seropositivity and small-for-gestational age in boys, but not with other adverse pregnancy outcomes.58 Notwithstanding these partly controversial results, in addition to dietary counselling in general, specific focus on a strict gluten-free diet could be beneficial for women with coeliac disease who are pregnant or planning pregnancy.

4 | CARDIOVASCULAR HEALTH

Like many other autoimmune diseases,99 coeliac disease may increase the risk of cardiovascular diseases, for example by chronic inflammation leading to acceleration of atherosclerosis.60–62 However, the scientific
evidence remains sparse and inconsistent. The risk of coronary heart disease and cerebrovascular disease, for example, appears to be only modest at most, but mortality due to cardiovascular events may nevertheless be increased compared with general population. Coeliac disease may also be associated with some non-ischaemic conditions, such as idiopathic dilated cardiomyopathy, but again the results are inconsistent. As the scientific evidence remains contradictory, the screening for cardiovascular diseases due to celiac disease alone is not recommended. Of note, the risk can be affected by the presence of comorbidities such as type 1 diabetes.

The principles in the prevention and treatment of cardiovascular diseases in coeliac disease patients follow general recommendations. The effect of a gluten-free diet has been little studied, but there are some indications of a beneficial effect on carotid intima thickness and serum lipid profile, as well as on cardiac performance in patients with cardiomyopathy. Paradoxically, the diet may also increase the risk of cardiovascular events, as it often has poor fibre and mineral content and high levels of added sugar and fat. This possibly negative effect should be considered both at diagnosis and during the later follow-up, particularly in patients presenting with other cardiovascular risk factors. As a whole, however, the benefits of a gluten-free diet for the general health and cardiovascular risk of coeliac disease patients seem to outweigh the potential disadvantages.

5 | NEUROLOGICAL MANIFESTATIONS

Coeliac disease appears to be associated with certain neurological entities, varying from vague and transient symptoms such as commonly reported headache and ‘brain fog’ to permanent conditions seriously disturbing daily life. For example, a recent meta-analysis concluded neuropathy and ataxia to be more common among coeliac disease patients than among general population, although there was considerable heterogeneity and increased risk was not seen in all studies. More controversial is the association between coeliac disease and epilepsy, except for rare forms of treatment-resistant temporal lobe epilepsy and epilepsy with cerebral calcifications. There is also some evidence that untreated coeliac disease may cause cognitive impairment. It is in fact possible that these conditions at least partly belong under the wider umbrella of gluten-related neurological disorders, as there are patients who do not meet the official criteria for coeliac disease but may still benefit from a gluten restriction and express anti-gliadin antibodies or autoantibodies to transglutaminase. However, the true association between neurological manifestations of coeliac disease and other gluten-related symptoms, as well as possible shared mechanisms, remain unclear. Given the complex nature of these conditions, low-threshold referral to a specialised centre is recommended.

Gluten-free diet may have at least some beneficial effects on the neurological symptoms, possibly depending on dietary adherence and histological response. However, full recovery, for example, from gluten ataxia is infrequent. Similarly, impaired cognitive functions have been reported also to be overrepresented in treated coeliac disease. Of note, Croall and colleagues found coeliac disease patients with neurological findings to present with white matter abnormalities, supporting the permanent nature of these comorbidities. Studies with larger patient cohorts and control groups would be needed to confirm the effect of gluten-free diet on cognitive function. Altogether, while awaiting more evidence, the often incomplete recovery from gluten-dependent neurological complications emphasises the importance of prompt diagnosis of coeliac disease.

6 | MENTAL HEALTH

Establishing the causal associations between coeliac disease and mental health is challenging, as ongoing symptoms may obviously have a negative effect on mood. In any case, many psychiatric illnesses, such as depression, anxiety and eating disorders, seem to be overrepresented at least in untreated patients. The biological mechanisms behind this association remains to be ascertained although disturbances in the gut–brain axis and white matter tract changes have been hypothesised. However, psychiatric comorbidities have been reported to be increased also among treated coeliac disease patients. The underlying pathogenesis and role of gluten-free diet on psychological symptoms and quality of life are currently unclear due to the paucity of the long-term follow-up studies. Altogether, patients’ mental health and the presence of psychiatric symptoms require attention when coeliac disease is diagnosed. Low-threshold psychiatric consultation should be provided at the latest when the symptoms persist despite successful treatment or there is a suspicion of concomitant psychiatric disease.

An additional issue to be considered is that a gluten-free diet may be difficult to maintain and socially restrictive and therefore give rise, for example, to increased anxiety and emotional distress. In fact, Shah et al. reported coeliac disease patients to have as high a treatment burden as those dependent on dialysis due to end-stage renal disease. Patients with a psychiatric comorbidity may find the strict dietary restriction particularly burdensome and the often-observed incomplete clinical response may further impair motivation for treatment. Conversely, even well-responding patients may be at risk for increased anxiety if their approach towards the diet is hypervigilant.

7 | MALIGNANCIES

A well-known although exceptionally rare complication of non-responsive (refractory) coeliac disease is enteropathy-associated T-cell lymphoma (EATL), a subtype of non-Hodgkin lymphoma which is estimated to affect 0.1%-3.2% of all coeliac disease patients. An increased risk for other subtypes of non-Hodgkin lymphoma as well as intestinal adenocarcinoma has also
been recognised.107,109,110 In contrast, the association between coeliac disease and overall cancer risk remains debatable and the prevalence figures for any cancer in coeliac disease have varied between 2.3\% and 15.9\%.107-109,111 In fact, the risk for breast cancer may even be reduced.109,112–114 In some studies, the risk for malignancies has been increased mainly during the first few years after coeliac disease diagnosis.111,113,115 This may be at least partly because newly diagnosed patients are often also evaluated with lower threshold for malignancies—especially in case of unsatisfactory treatment response. Conversely, symptoms of cancer may lead to extensive investigations, including gastrointestinal endoscopies or serological testing for coeliac disease.

Another factor possibly affecting the reported risk for malignancies in coeliac disease is that the clinically recognised forms of the disease with higher risk for malignant complications have been overrepresented, especially in earlier studies.1,116 In recent decades, advances in non-invasive diagnostics and active screening have resulted in earlier diagnosis and mitigated clinical features.117,118 Simultaneously, adherence to a strict dietary treatment has become easier due to better availability of gluten-free products.119 These timely changes could explain some of the discrepancies in the overall cancer risk between studies.

The increased risk, especially for non-Hodgkin lymphoma and intestinal adenocarcinoma, nevertheless persists and should be kept in mind particularly in elderly patients.66,111 as well as in those presenting with a long diagnostic delay or severe malabsorption.120 Naturally, factors affecting cancer risk in general, such as obesity, smoking, alcohol consumption and other lifestyle factors also apply to coeliac disease patients. Of note, the patients seem to be less often smokers,121 and may present more often with favourable BMI than their non-coeliac counterparts.75,122,123 It is also good to remember that coeliac disease is associated with autoimmune comorbidities and chromosomal abnormalities, which may increase the risk for certain malignancies.124–126 The overrepresentation of malignancies is likely a major reason for the increased mortality rate in coeliac disease patients.64,127–129

8 | CONCLUSIONS

Coeliac disease has traditionally been considered primarily a gastrointestinal disorder, which may result in underestimation of its effects on various extraintestinal organs and malignancy risk. Unfortunately, the current scientific evidence remains scarce and heterogeneous, making it difficult to estimate the effects of coeliac disease screening in preventing these systemic manifestations. These consequences also play a significant role in the overall health and mortality of coeliac disease patients, together with lifestyle factors, the presence of comorbidities and successful adherence to a gluten-free diet.54,127–129 Early diagnosis and dietary treatment may protect against coeliac-related impaired bone health, neurological symptoms and malignancies, and also at least some of the hormonal complications seem to be reversible on a strict gluten-free diet. The possible negative effects of a strict dietary restriction on cardiovascular health and psychological well-being should also receive special consideration during long-term follow-up.

ACKNOWLEDGEMENT

Figure created with Biorender.com

AUTHOR CONTRIBUTIONS

Pilvi Laurikka: Conceptualization (equal); writing – original draft (equal). Laura Kivelä: Conceptualization (equal); writing – original draft (equal). Kalle Kurppa: Conceptualization (equal); writing – review and editing (equal). Katri Kaukinen: Conceptualization (equal); project administration (lead); writing – review and editing (equal).

CONFLICT OF INTEREST

None.

AUTHORSHIP

Author contributions: Pilvi Laurikka and Laura Kivelä drafted the manuscript and performed the literature review with equal contribution. Kalle Kurppa and Katri Kaukinen edited and reviewed the manuscript and contributed with additional references. All authors conceptualised the review and approved the final version.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

ORCID

Laura Kivelä \url{https://orcid.org/0000-0001-7959-7628}
Kalle Kurppa \url{https://orcid.org/0000-0003-4757-2164}
Katri Kaukinen \url{https://orcid.org/0000-0002-5046-8133}

REFERENCES

1. Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, et al. Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2018;16:823–836.e2. \url{https://doi.org/10.1016/J.CGH.2017.06.037}
2. Catassi C, Gatti S, Lionetti E. World perspective and celiac disease epidemiology. Dig Dis. 2015;33:141–16. \url{https://doi.org/10.1159/000369518}
3. Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. 2018;391:70–81. \url{https://doi.org/10.1016/S0140-6736(17)31796-8}
4. Therrien A, Kelly CP, Silvester JA. Celiac disease: extraintestinal manifestations and associated conditions. J Clin Gastroenterol. 2020;54:8–21. \url{https://doi.org/10.1097/MCG.0000000000001267}
5. Sansotta N, Amirkian K, Guandalini S, Jericho H. Celiac disease symptom resolution: effectiveness of the gluten-free diet. J Pediatr Gastroenterol Nutr. 2018;66:48–52. \url{https://doi.org/10.1097/MPG.0000000000001634}
6. Murray JA, Watson T, Clearman B, Mitros F. Effect of a gluten-free diet on gastrointestinal symptoms in celiac disease. Am J Clin Nutr. 2004;79:669–73. \url{https://doi.org/10.1093/AMJCN/79.4.669}
7. Lundin KEA, Wijmenga C. Coeliac disease and autoimmune disease-genetic overlap and screening. Nat Rev Gastroenterol
Hepatol. 2015;12:507-15. https://doi.org/10.1038/NRGASTRO.2015.136

8. Sategna Guidetti C, Soroli E, Scaglione N, Aimo G, Mengozzi G. Duration of gluten exposure in adult coeliac disease does not correlate with the risk for autoimmune disorders. Gut. 2001;49:502–5. https://doi.org/10.1136/GUT.49.4.502

9. Viljamaa M, Kaukinen K, Huhtala H, Kyönnopalu S, Rasmussen M, Collin P. Coeliac disease, autoimmune diseases and gluten exposure. Scand J Gastroenterol. 2005;40:437–43. https://doi.org/10.1080/03655020510121181

10. Wild D, Robins GB, Burlery VJ, Howdle PD. Evidence of high sugar intake, and low fibre and mineral intake, in the gluten-free diet. Aliment Pharmacol Ther. 2010;32:573–81. https://doi.org/10.1111/j.1365-2036.2010.04386.X

11. Shepherd SJ, Gibson PR. Nutritional inadequacies of the gluten-free diet in both recently-diagnosed and long-term patients with coeliac disease. J Hum Nutr Diet. 2013;26:349–58. https://doi.org/10.1111/JHN.12018

12. Zanchetta MB, Costa F, Longobardi V, Longarini G, Mazure RM, Moreno ML, et al. Significant bone microarchitecture impairment in premenopausal women with active celiac disease. Bone. 2015;76:149–57. https://doi.org/10.1016/J.BONE.2015.03.005

13. Mustalathi K, Collin P, Sievänen H, Salmi J, Mäki M. Osteopenia in patients with clinically silent coeliac disease warrants screening. Lancet. 1999;354(9180):744–5. https://doi.org/10.1016/S0140-6736(99)01990-X

14. Corazza G, di Silvano A, Cecchetti L, Jorizzo RA, Ganji R, Moghbeli M, Sadeghi R, Bayat G, Ganji A. Prevalence of celiac disease with celiac disease. Am J Gastroenterol. 1994;91:726–30. https://doi.org/10.1111/J.1572-0241.1994.72630.X

15. Tsuruda JS, Stump CE, McCallum J, Blum AL, McGehee A, Mowen J, et al. Bone mineral affection in asymptomatic adult patients with celiac disease. Am J Gastroenterol. 1996;18(6):525–30. https://doi.org/10.1111/J.1572-0241.1996.52530.X

16. Turner J, Pellerin G, Mager D. Prevalence of metabolic bone disease in patients with celiac disease. Clin Gastroenterol Hepatol. 2019;17:1509–14. https://doi.org/10.1016/J.CGH.2019.02.070

17. Zanchetta MB, Longobardi V, Longarini G, Mazure RM, Moreno ML, et al. Significant bone microarchitecture impairment in adult coeliac disease. Bone. 1996;18(6):525–30. http://www.sciencedirect.com/science/article/pii/S0752935796907343

18. Webster J, Vajravelu M, Choi C, Zemel B, Verma R. Prevalence of osteoporosis and osteopenia in men and premenopausal women with celiac disease: a systematic review. Nutr J. 2019;18:9. https://doi.org/10.1186/S12937-019-0434-6

19. Tao C, Mautalen C, de Rosa S, Roca A, Valenzuela X. Bone mineral density in mild enteropathic coeliac disease: a prospective guideline for coeliac disease and other gluten-related disorders. United European Gastroenterol J. 2019;7:583–613. https://doi.org/10.1177/2050640619844125

20. Fouda MA, Khan AA, Sultan M, Rios LP, McAssey K, Armstrong DJ. Evaluation and management of skeletal health in celiac disease: position statement. Can J Gastroenterol. 2012;26:819–29. https://doi.org/10.1155/2012/823648

21. Dantas IA, Yiannakopoulos CK. Risk factors and prevention of osteoporosis-related fractures. J Musculoskelet Neuronal Interact. 2007;7:268–72.

22. Galli G, Lahner E, Conti L, Esposito G, Sacchi MC, Annibale B. Risk factors associated with osteoporosis in a cohort of prospectively diagnosed adult coeliac patients. United European Gastroenterol J. 2018;6:1161–8. https://doi.org/10.1177/2050640618784430

23. Walker M, Williams J, Lewis S, Bai J, Lebwohl B, Green P. Measurement of forearm bone density by dual energy X-ray absorptiometry increases the prevalence of osteoporosis in men with celiac disease. Clin Gastroenterol Hepatol. 2020;18:99–106. https://doi.org/10.1016/J.CGH.2019.03.049

24. McFarlane X, Bhalla A, Robertson D. Effect of a gluten free diet on osteopenia in adults with newly diagnosed coeliac disease. Gut. 1996;39:180–4. https://doi.org/10.1136/GUT.39.2.180

25. Zanchetta MB, Longobardi V, Costa F, Longarini G, Mazure RM, Moreno ML, et al. Impaired bone microarchitecture improves after one year on gluten-free diet: a prospective longitudinal HRpQCT study in women with celiac disease. J Bone Miner Res. 2017;32:135–42. https://doi.org/10.1002/JBMR.2922

26. Canova C, Pitter G, Zanier L, Simonato L, Michaelsson K, Ludvigsson JF. Risk of fractures in youths with celiac disease—a population-based study. J Pediatr. 2018;198:117–20. https://doi.org/10.1016/J.JPEdiATR.2018.02.070

27. Weaver CM, Gordon CM, Janz SF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27:1281–386. https://doi.org/10.1007/S00198-015-3440-3

28. Paszternak C, Koskinen I, Hervonen K, Kaukinen K, Järvelin M, Reunala T, et al. Risk of fractures in dermatitis herpetiformis and celiac disease: a register-based study. Scand J Gastroenterol. 2019;54(7):843–8. https://doi.org/10.1080/00365521.2019.1636132
70. Pitocco D, Giubilato S, Martini F, Zaccardi F, Pazzano V, Manto A, et al. Combined atherogenic effects of celiac disease and type 1 diabetes mellitus. Atherosclerosis. 2011;217:531–5. https://doi.org/10.1016/J.ATHEROSCLEROSIS.2011.04.042
71. Knutti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77. https://doi.org/10.1093/EURHEARTJ/EHZ245
72. Demir AM, Kuloğlu Z, Yaman A, Fitöz S, Nergizoglu G, Kansu A. Carotid intima-media thickness and arterial stiffness as early markers of atherosclerosis in pediatric celiac disease. Turk J Pediatr. 2016;58:172–9. https://doi.org/10.24953/TURKJPED.2016.02.008
73. Brar P, Kwon GY, Hollaran S, Bai D, Tall AR, Ramakrishnan R, et al. Change in lipid profile in celiac disease: beneficial effect of gluten-free diet. Am J Med. 2006;119:786–90. https://doi.org/10.1016/J.AMJMED.2005.12.025
74. Curione M, Barbato M, Viola F, Francia P, de Biase L, Cucchiara S. Idiopathic dilated cardiomyopathy associated with celiac disease: the effect of a gluten-free diet on cardiac performance. Dig Liver Dis. 2002;34:866–9. https://doi.org/10.1016/S1590-8658(02)80258-4
75. Kabbani TA, Goldberg A, Kelly CP, Pallav K, Tariq S, Peer A, et al. Body mass index and the risk of obesity in celiac disease treated with the gluten-free diet. Aliment Pharmacol Ther. 2012;35:723–9. https://doi.org/10.1111/j.1365-2036.2012.05001.X
76. Tortora R, Capone P, de Stefano G, Imperatore N, Gerbino N, Donetto S, et al. Metabolic syndrome in patients with celiac disease on a gluten-free diet. Aliment Pharmacol Ther. 2015;41:352–9. https://doi.org/10.1111/AAP.13062
77. Trovato CM, Raucci U, Valitutti F, Montuori M, Villa MP, Cucchiara S, et al. Neuropsychiatric manifestations in celiac disease. Epilepsy Behav. 2019;99:106393. https://doi.org/10.1016/J.YEBEH.2019.06.036
78. Mears E, Taylor A, Thomas Craig K, Puglielli S, Leffler D, Sanders D, et al. Neurological manifestations of neuropathy and ataxia in celiac disease: a systematic review. Nutrients. 2019;11:380. https://doi.org/10.3390/NUTR11020380
79. Bashiri H, Afshari D, Babaee N, Ghadami M. Celiac disease and epilepsy: the effect of gluten-free diet on seizure control. Adv Clin Exp Med. 2016;25:751–4. https://doi.org/10.17219/ACEM/43585
80. Canova C, Ludwigsson J, Barbiellini Amidei C, Zanier L, Zingone F. The risk of epilepsy in children with celiac disease: a population-based cohort study. Eur J Neurol. 2020;27:1089–95. https://doi.org/10.1177/1355207620937663
81. Gobbi G. Coeliac disease, epilepsy and cerebral calcifications. Brain and Development. 2005;27:189–200. https://doi.org/10.1016/j.braindev.2004.05.003
82. Peltola M, Kaukinen K, Haimila K, Partanen J, Dastidar P, Peltola M, et al. Cognitive impairment in celiac disease: the results from a polish population survey and comparison with the results from the United Kingdom. BMC Gastroenterol. 2021;21:99. https://doi.org/10.1186/S12876-021-01673-0
83. Canova C, Rosato I, Marsilio I, Valiante F, Zorzet V, Cattaudella G, et al. Quality of life and psychological disorders in coeliac disease: a prospective multicentre study. Nutrients. 2021;13(9):3233. https://doi.org/10.3390/NUTRI13093233
84. Lichtwark I, Newham E, Robinson S, Shepherd SJ, Hosking P, Gibson PR, et al. Cognitive impairment in coeliac disease improves on a gluten-free diet and correlates with histological and serological indices of disease severity. Aliment Pharmacol Ther. 2014;40:160–70. https://doi.org/10.1111/AAP.12809
85. Zis P, Sarriigannis PG, Rao DG, Hadjivassiliou M. Gluten neuropathy: prevalence of neuropathic pain and the role of gluten-free diet. J Neurol. 2018;265:2231–6. https://doi.org/10.1007/S0041 5-018-8978-5
86. Zis P, Hadjivassiliou M. Treatment of neurological manifestations of gluten sensitivity and coeliac disease. Curr Treat Options Neurol. 2019;21:10. https://doi.org/10.1007/S11940-019-0552-7
87. Croall I, Sanders D, Hadjivassiliou M, Hoggard N. Cognitive deficit and white matter changes in persons with celiac disease: a population-based study. Gastroenterology. 2020;158(8):2112–22. https://doi.org/10.1053/J.GASTRO.2020.02.028
88. Makhlof S, Messelmann M, Zaouali J, Mrissa L. Cognitive impairment in celiac disease and non-celiac gluten sensitivity: review of literature on the main cognitive impairments, the imaging and the effect of gluten free diet. Acta Neurol Belg. 2018;118:21–7. https://doi.org/10.1016/j.yncebe.2018.05.018
89. Sharma N, Singh K, Senapati S. Celiac disease poses significant risk in developing depression, anxiety, headache, epilepsy, panic disorder, dysphoria: a meta-analysis. Indian J Gastroenterol. 2021;40:453–62. https://doi.org/10.1053/J.IJGE.2021.01.012-5
90. Clappison E, Hadjivassiliou M, Zis P. Psychiatric manifestations of coeliac disease, a systematic review and meta-analysis. Nutrients. 2020;12:142. https://doi.org/10.3390/NUTR12010142
91. Parisi P. The relationship between mucosal damage in celiac disease and the risk of neurological and psychiatric conditions is much more complex than previously thought. Eur J Neurol. 2018;25:797–8. https://doi.org/10.1111/EJNN.13614
92. Fiorentino M, Sapone A, Senger S, Camhi SS, Kadielski SM, Buie TM, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016;7:49. https://doi.org/10.1186/S13229-016-0110-Z
93. Lebwohl B, Haggård L, Söderling J, Roelstraete B, Butwicka A, et al. Psychiatric disorders in patients with a diagnosis of celiac disease during childhood from 1973 to 2016. Clin Gastroenterol Hepatol. 2021;19:2093–101.e13. https://doi.org/10.1016/J.CGHE.2020.08.018
94. Alkhayyat M, Qajaa T, Aggarwal M, Almoman A, Abureesh M, al-oottom O, et al. Epidemiology and risk of psychiatric disorders among patients with celiac disease: a population-based national study. J Gastroenterol Hepatol. 2021;36:2165–70. https://doi.org/10.1111/JGHE.15437
95. Majsak I, Choina M, Golicki D, Gray AM, Cukrowska B. The impact of symptoms on quality of life before and after diagnosis of coeliac disease: the results from a polish population survey and comparison with the results from the United Kingdom. BMC Gastroenterol. 2021;21:99. https://doi.org/10.1186/S12876-021-01673-0
96. Canova C, Rosato I, Marsilio I, Valiante F, Zorzet V, Cattaudella G, et al. Quality of life and psychological disorders in coeliac disease: a prospective multicentre study. Nutrients. 2021;13(9):3233. https://doi.org/10.3390/NUTRI13093233
97. Sainsbury K, Marques MM. The relationship between gluten free diet adherence and depressive symptoms in adults with coeliac disease: a systematic review with meta-analysis. Appetite. 2017;125:38–45. https://doi.org/10.1016/J.APPET.2017.01.017
98. Shah S, Akbari M, Vanga R, Kelly CP, Hansen J, Theethira T, et al. Patient perception of treatment burden is high in celiac disease compared with other common conditions. Am J Gastroenterol. 2014;109:1304–11. https://doi.org/10.1038/AJG.2014.29
99. Möller SP, Apputhurai P, Tye-Din JA, Knowles SR. Quality of life in coeliac disease: relationship between psychosocial processes and...
