Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore–microtubule attachments

Luke A. Helgeson, Alex Zelter, Michael Riffle, Michael J. MacCoss, Charles L. Asbury, and Trisha N. Davis

*Department of Biochemistry, University of Washington, Seattle, WA 98195; Department of Genome Sciences, University of Washington, Seattle, WA 98195; and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195

Edited by Angelika Amon, Massachusetts Institute of Technology, Cambridge, MA, and approved February 2, 2018 (received for review October 26, 2017)

Accurate segregation of chromosomes relies on the force-bearing capabilities of the kinetochore to robustly attach chromosomes to dynamic microtubule tips. The human Ska complex and Ndc80 complex are outer-kinetochore components that bind microtubules and are required to fully stabilize kinetochore–microtubule attachments in vivo. While purified Ska complex tracks with dis-assembling microtubule tips, it remains unclear whether the Ska complex–microtubule interaction is sufficiently strong to make a significant contribution to kinetochore–microtubule coupling. Alternatively, Ska complex might affect kinetochore coupling indirectly, through recruitment of phosphoregulatory factors. Using optical tweezers, we show that the Ska complex itself bears load on microtubule tips, strengthens Ndc80 complex-based tip attachments, and increases the switching dynamics of the attached microtubule tips. Cross-linking mass spectrometry suggests the Ska complex directly binds Ndc80 complex through interactions between the Ska3 unstructured C-terminal region and the coiled-coil regions of each Ndc80 complex subunit. Deletion of the Ska complex microtubule-binding domain or the Ska3 C terminus prevents Ska complex from strengthening Ndc80 complex-based attachments. Together, our results indicate that the Ska complex can directly strengthen the kinetochore–microtubule interface and regulate microtubule tip dynamics by forming an additional connection between the Ndc80 complex and the microtubule.

D epolymerizing spindle microtubules generate forces required to separate duplicated chromosomes during mitosis. The kinetochore couples dynamic microtubule ends to chromosomes and harnesses the energy released by depolymerizing microtubules to pull duplicated chromosomes to opposite poles. Kinetochore–microtubule attachments must sustain piconewton-scale loads, especially during metaphase when bioriented kinetochores are subject to tension from opposing spindle microtubules. Attachments that are too strong or too weak can generate erroneous chromosome–microtubule attachments and promote chromosome missegregation during cell division (1). The incorrect segregation of chromosomes leads to aneuploidy and has been linked to chromosomal instability (2, 3). The attachment strength established and maintained between kinetochores and dynamic microtubule ends is fundamental to faithful chromosome segregation and cell division. In vivo experiments show that the heterotrimeric Ska complex (Ska1, Ska2, and Ska3; Fig. 1A) is important for the stability of kinetochore–microtubule coupling and suggest at least three models for how it might contribute to coupling strength. Purified Ska complex binds directly to microtubules in vitro (4), and loss of Ska complex in vivo delays mitotic progression and has been associated with chromosome congression failure and mitotic cell death (4–7). Based on these observations, one view is that the Ska complex contributes directly to kinetochore–microtubule coupling (4, 7, 8). However, some studies suggest instead that the Ska complex plays a more indirect, regulatory role in kinetochore–microtubule coupling by recruiting protein phosphatase 1 to the kinetochore, rather than by bearing microtubule-generated forces (9). Ska complex localizes to kinetochores in vivo through interactions with the Ndc80 complex (Hec1, Nuf2, Spc24, and Spc25; Fig. 1A), an essential component of the kinetochore–microtubule interface (10–13). This observation raises a third possibility, that the Ska complex might enhance Ndc80 complex-based coupling independently of its own microtubule binding affinity (14). Purified Ska complex alone tracks with depolymerizing microtubule tips (4) and has also been found to enhance the microtubule lattice binding and tip tracking of the Ndc80 complex (15). While these findings are consistent with a direct role for Ska complex in kinetochore tip coupling, they do not address the load-bearing capacity of Ska complex-based attachments. Thus, it remains uncertain whether the Ska complex can bear significant load on microtubule ends, either alone or in combination with the Ndc80 complex.

Here, we tested the microtubule end, load-bearing strength of the human Ska and Ndc80 complexes, both together and independently. We found that Ska complex bears load at microtubule ends on its own and strengthens Ndc80 complex-based end attachments. Using cross-linking mass spectrometry, we found that the Ska3 unstructured C-terminal region of Ska complex interacts with the coiled-coil regions of the Ndc80 complex. Furthermore, we show that strengthening Ndc80 complex-based attachments requires the Ska complex to simultaneously bind the Ndc80 complex.

Significance

Microtubules are dynamic, tube-like structures that drive the segregation of duplicated chromosomes during cell division. The Ska complex is part of a molecular machine that forms force-bearing connections between chromosomes and microtubule ends. Depletion of the Ska complex destabilizes these connections and disrupts cell division. The Ska complex binds microtubules, but it is unknown whether it directly holds force at microtubules or indirectly stabilizes the connections. Here, we show that the Ska complex makes a direct force-bearing linkage with microtubule ends and assembles with another microtubule binding component, the Ndc80 complex, to strengthen its ability to withstand force. Our results suggest that the Ska and Ndc80 complexes work together to maintain the connections between chromosomes and microtubule ends.
particles on microtubules was 5.2 molecules binding a microtubule. (A) Example kymograph of Ska complex $S_{3\text{a}3\text{-GFP}}$ molecules binding a microtubule. (C) Histogram of tracked Ska complex $S_{3\text{a}3\text{-GFP}}$ particle intensities for three different concentrations. (D) Two example intensity versus time traces of tracked Ska complex $S_{3\text{a}3\text{-GFP}}$ particles. After loss of particle tracking, due to dissociation or bleaching, the background was sampled for several frames to calculate the background intensity. Blue dashed line indicates the mean particle intensity for all tracked molecules; red dashed line indicates the mean background intensity. Shaded regions are SD. (E) Cartoon of the optical-tweezers-based bead motility assay with Ska complex attached to the beads. A bead coated in Ska complexes is bound to the end of a dynamic microtubule. Using the optical tweezers, a force is applied that pulls on the Ska complex–microtubule connection. (F) Raw data of a Ska complex rupture force experiment (gray). Black line is data smoothed using a 50-point sliding window. Vertical dashed black line indicates start of force ramp. (G) Median rupture force versus Ska complex molecules per bead. Error bars are SD from bootstrapping analysis of the median. The median values and errors are calculated from the same data shown in Fig. S2A. (H) Rupture force survival probability plot for 700 Ska complex molecules per bead without (black) and with (magenta) 10 nM Ska complex in solution. Shaded areas are 95% confidence intervals from Kaplan–Meier analysis.

and the microtubule. Our results suggest the Ska complex and Ndc80 complex directly interact with each other and with microtubules to form a multipartite load-bearing assembly that strengthens kinetochore–microtubule attachments.

Results
SkA Complex Bears Load on Microtubule Ends. The Ska complex is reported to dimerize in solution and to cooperatively bind the microtubule lattice as a dimer or as higher-order oligomers (4, 15–17). Before measuring the strength of its attachments to microtubules, we used total internal reflection fluorescence (TIRF) microscopy to examine the oligomeric state of the Ska complex at the low nanomolar concentrations used in our microtubule binding and rupture force assays. Individual particles of GFP-tagged Ska complex (Ska complex $S_{3\text{a}3\text{-GFP}}$) bound and diffused along Taxol-stabilized microtubules, as reported previously, and similarly to the lattice diffusion of other kinetochore components (Fig. 1B) (15, 17–19). The mean residence time of Ska complex $S_{3\text{a}3\text{-GFP}}$ particles on microtubules was 5.2 ± 0.1 s, similar to previously measured residence times (Fig. S1A) (15, 17). Particle intensities fell within a unimodal, approximately Gaussian distribution that did not change across a fivefold increase in concentration, and they photobleached or dissociated in single steps (Fig. 1C and D). Moreover, individual Ska complex $S_{3\text{a}3\text{-GFP}}$ particles, when bound sparsely onto coverslip surfaces, exhibited single-step photobleaching, and their mean intensity before bleaching matched that of single GFP-tagged yeast Ndc80 complexes (Fig. S1B). Using size exclusion chromatography–multiangle light scattering (SEC-MALS), we confirmed that Ska complex $S_{3\text{a}3\text{-GFP}}$ in solution can form a dimer and exists in a monomer–dimer equi- librium at micromolar concentrations (Fig. S1C) (16). However, our TIRF data suggest that at low nanomolar concentrations, the Ska complex binds the microtubule lattice as a single complex.

Using an optical-tweezers bead motility assay, we next measured the microtubule end-binding strength of the Ska complex. We coated beads with the Ska complex at various concentrations, to control the surface density of the molecules on the bead (Fig. 1E). Depending on the surface density and molecular structure, one or more molecules can simultaneously interact with the microtubule tip, an arrangement that mimics the multivalency at kinetochore–microtubule interfaces in vivo (20, 21). Individual Ska complex-coated beads were first attached to the growing tips of single microtubules anchored to a coverslip. After an initial low force was applied and the bead was verified to track with tip growth, the force was increased gradually until the attachment ruptured (Fig. 1F). Median rupture strengths for populations of Ska complex-coated beads were 3–5 pN, depending on the surface density (Fig. 1G, Fig. S2A, and Table S1). These observations show that tip couplers based on purified Ska complex alone can bear significant loads.

Previous work shows that Ndc80 complex microtubule attachments are strengthened through avidity. Increasing the surface...
density on the beads increases the number of Ndc80 complexes that can simultaneously reach the microtubule end (see below and ref. 18). To test whether the Ska complex behaves similarly, we measured the strength of Ska complex-based attachments as a function of its surface density on beads. We observed only a small, 1.5-fold increase in Ska complex attachment strength over a 100-fold range in surface density; whereas the strength of human Ndc80 complex-based attachments increased more substantially, by 4.2-fold over a 24-fold density range (Fig. 1G, and see Fig. 3D).

Furthermore, addition of 10 nM free Ska complex in solution did not increase attachment strength of bead-bound Ska complex, consistent with the lack of Ska complex oligomerization at nanomolar concentrations (Fig. 1H). Taken together, our data show the Ska complex is load-bearing and suggest that its load-bearing capacity is largely established at low molecular surface densities and not strongly enhanced by additional Ska complexes.

Ska Complex Ska3 C Terminus Is Not Required for Load Bearing. To identify interacting regions between the Ska complex and microtubules, we performed cross-linking mass spectrometry of Ska complex incubated with Taxol-stabilized microtubules. In agreement with previous reports, we observed cross-links between microtubules and the Ska1 C-terminal microtubule binding domain (MTBD) as well as between microtubules and the Ska3 unstructured C terminus (residues 102–402) (Fig. 2A and Fig. S3) (22, 23). To test the importance of these regions for load-bearing interactions between the Ska complex and microtubules, we measured the attachment strength of mutant Ska complexes missing either the Ska1 MTBD (Ska1 ΔMTBD) or the Ska3 C terminus (Ska3 ΔC) (Fig. 2B). Beads coated with mutant Ska complex failed to bind to microtubules, indicating that the MTBD is required for formation of a load-bearing attachment. In contrast, the fraction of beads coated with Ska complexΔmutant C-terminal microtubules was similar to wild type (Fig. 2C), and their end attachment strength was only slightly reduced (by 1.3-fold; Fig. 2D and Table S1). These observations confirm that, within the Ska complex, both Ska1 and Ska3 interact with microtubules. The Ska1 MTBD is necessary for load-bearing interactions with microtubules, whereas the Ska3 C terminus makes only a minor contribution.

Ska Complex Strengthens Ndc80 Complex-Based Microtubule Attachments. Ska complex increases the affinity of Ndc80 complex for the microtubule lattice and can promote Ndc80 complex tip tracking in the absence of force (15). To determine whether the Ska complex can increase the load-bearing capacity of the Ndc80 complex, we measured the rupture force of Ndc80 complex-based attachments with and without the Ska complex added free in solution (Fig. 2D). Adding the Ska complex strengthened Ndc80 complex-based microtubule end attachments when the Ndc80 complex was at a low surface density on the beads, but not when it was at a high density (Fig. 2D and D, Fig. S2B, and Table S1). The increase in strength afforded by the Ska complex at the low Ndc80 complex surface density was greater than the rupture strength of the Ska complex alone, suggesting a synergistic effect. These results show that the Ska complex strengthens Ndc80 complex-based coupling, particularly when the latter is weak due to low avidity.

Next, we tested whether the Ska complex could strengthen Ndc80 complex-based attachments that were weakened due to a decreased affinity between the Ndc80 complex and the microtubule. We introduced Aurora B phosphomimetic mutations (serine/threonine to aspartate) in all nine phosphorylation sites in the Hecl N-terminal tail to generate the mutant, 9D Ndc80 complex. These mutations dramatically decrease the affinity of the Ndc80 complex for microtubules (19, 24, 25). As expected, we found the mutant 9D Ndc80 complex formed attachments that were significantly weaker than those formed by wild-type Ndc80 complex (Fig. 3C). Adding free Ska complex increased the attachment strength of the mutant 9D Ndc80 complex by more than fivefold (Fig. 3C and D). We raised the surface density of the mutant 9D Ndc80 complex on the beads by threefold and found that the Ska complex could also moderately strengthen the attachments formed at this higher density (Fig. 3D and Fig. S2C). Furthermore, we tested a mutant Ndc80 complex lacking the entire unstructured N-terminal 80-aa tail of Hecl (ΔN Ndc80 complex). As expected, this mutant ΔN Ndc80 complex formed weak attachments on its own that, just like the 9D mutant, could be strengthened by the addition of free Ska complex (Fig. 3E). Together, these results show that the Ska complex strengthening is independent of the Hecl N-terminal tail.

Purified yeast Ndc80 complex and native yeast kinetochore particles detach more frequently from disassembling tips than from assembling tips (18, 26). We verified that this difference also occurs for human Ndc80 complex by applying a force clamp. Beads coated with human Ndc80 complex were attached to growing tips and then subjected to a constant tension of ~2 pN. Under this condition, the Ndc80 complex-based couplers tracked continuously with end growth and shortening, remaining persistently attached as the tips switched spontaneously between assembling and disassembling states (Fig. 4A and B). The mean detachment rate for Ndc80 complex-based couplers from disassembling tips was 14-fold higher than from assembling tips, confirming that the coupling was less stable during tip disassembly (Fig. 4C and D and Tables S2–S6). Interestingly, adding Ska complex in solution specifically stabilized the coupling during tip disassembly, reducing the detachment rate twofold, with no apparent effect during assembly. Altogether, these results
Upon alignment at the metaphase plate, no. 11 Fig. S2 and Ska complex strengthens Ndc80 complex microtubule attachments. and C | PNAS and – B Ska complex affects the dynamics of Ndc80 complex and bound E C | Fig. S4 Multiple studies suggest that the Ska complex and vol. 115 A B | The Ska Complex and Ndc80 Complex Must Bind Each Other and microtubules (27, 28). Altering the microtubule B | Ska complex changes how the Ndc80 complex governs microtu- C terminus that preferentially binds to coiled-coil regions throughout- out the Ndc80 complex. for attached tips by 2.7-fold (Fig. 4F). These results show that the Ska complex changes how the Ndc80 complex governs microtu- bule behavior and suggests that together they may increase the switching frequency of kinetochore-bound microtubules.

Ska Complex Binds the Ndc80 Complex Coiled-Coil Through the Ska3 C terminus. Multiple studies suggest that the Ska complex and Ndc80 complex interact directly, but the interaction interface between the complexes has not been defined (12, 13). To identify the specific regions involved in their interaction, we performed cross-linking mass spectrometry with Ska complex, Ndc80 complex, and Taxol-stabilized microtubules. The Ska3 unstructured C terminus (residues 102–412) cross-linked robustly with the Ndc80 complex and microtubules (Fig. 5A and Fig. S4). A total of 328 unique cross-links was found between the Ndc80 and Ska complexes. Of these, 97% (318 of 328) were between Ska3 and the Ndc80 complex, distributed across the Ska3 C terminus and among all four Ndc80 complex subunits. Ska3 primarily cross-linked to regions of the Ndc80 complex that are predicted to form coiled-coils. Few Ska3 cross-links were observed with the CH domains of Hec1 and Nuf2 or the RWD domains of Spc24 and Spe25. These results suggest that the Ndc80 complex and Ska complex directly interact through the Ska3 unstructured C terminus that preferentially binds to coiled-coil regions throughout the Ndc80 complex.

The Ska Complex and Ndc80 Complex Must Bind Each Other and Microtubules to Strengthen Ndc80 Complex-Based Attachments. The Ska complex is capable of binding directly to both the Ndc80 complex and to microtubules (4, 12, 13). We have shown that the Ska complex enhances Ndc80 complex-based coupling. Together, these observations suggest that Ska complex might form an extra show that Ska complex enhances Ndc80 complex-based attachment in several situations where the coupling would otherwise be relatively poor: when avidity is reduced by lowering the number of participating Ndc80 complexes, when affinity is reduced by adding phosphomimetic mutations in the Hec1 tail or removing the tail, or when attachments are intrinsically destabilized by disassembly of the microtubule tip.

Ska Complex Changes How the Ndc80 Complex Governs Microtubule Switching Behavior. Upon alignment at the metaphase plate, chromosomes oscillate between poleward and anti-poleward motions, which are partially driven by the switching kinetics of the kinetochore microtubules (27, 28). Altering the microtubule binding affinity of the Ska or Ndc80 complexes independently dampens these metaphase oscillations in vivo (15, 29). To test whether couplers based on the Ndc80 and Ska complexes can affect microtubule tip switching in vitro, we measured the dynamics of tips coupled to Ndc80 complex-decorated beads under a constant force, with or without Ska complex added in solution (Fig. 4 A and B and Tables S2–S6). Indeed, the rescue rate for tips attached to Ndc80 complex-based couplers increased 4.5-fold upon addition of free Ska complex (Fig. 4E). This observation is similar to previous findings showing that microtubule rescue rates increase as Ndc80 complex attachments are strengthened (19). Moreover, addition of Ska complex increased the catastrophe rate
helgeson et al. and found that this enhancement for all cross-links identified and C for all data. Red shaded regions indicated predicted coiled-coil (Paircoils2) with probability scores from 0.8 to 1.0. (mutant (blue) or Ska complex must bind Ndc80 complex and microtubules to strengthen attachments. (was unable to strengthen to wild type, suggesting that the mutant Ska complex abundant cross-links between Ska3 and the Ndc80 complex, similar Ndc80 complex attachments (Fig. 5). Together, these results support a model where Ska complex strengthens kinetochore–microtubule attachments by forming a load-bearing bridge between the Ndc80 complex and the microtubule (Fig. 5E).

Discussion

Previous studies have established that depletion of the Ska complex in vivo generally weakens kinetochore–microtubule attachments, thereby (i) diminishing the numbers of attachments that are resistant to cold treatment (4, 7, 8), (ii) causing more frequent kinetochore detachments during congress (30), and (iii) relieving the hyperstabilization of kinetochore–microtubule attachments caused by phospho-blocking mutations in the Ndc80 complex (31). Importantly, many of these weakened microtubule attachment phenotypes were also observed upon specific impairment of the microtubule-binding activity of the Ska complex. These in vivo observations are consistent with the idea that Ska complex makes a direct contribution to load bearing at the kinetochore–microtubule interface. However, the load-bearing capacity of the Ska complex has been unclear, leaving open the possibility that its role is primarily indirect, via recruitment of protein phosphatase 1 (9). We show here that the Ska complex alone can bear load on microtubule ends, that it can enhance Ndc80 complex-based coupling, and that this enhancement requires the Ska complex to bind both microtubules and Ndc80 complex. These observations strongly support the model that the Ska complex strengthens kinetochore–microtubule attachments by forming a load-bearing bridge between the Ndc80 complex and the microtubule (Fig. 5E).

Cell biological (7, 32), biochemical (15, 33), and evolutionary analyses (34) have suggested that the Ska complex might be a functional analog of the yeast Dam1 complex. However, while the Dam1 complex oligomerizes into microtubule-encircling rings that enhance its tip-coupling performance (35–37), the Ska complex does not appear to form such rings (4). Nevertheless, we find that the Ska complex, like the Dam1 complex, can form load-bearing tip attachments on its own and increase the strength and stability of Ndc80 complex-based couplers. Thus, our results lend further support to the hypothesis that the human Ska and yeast Dam1 complexes are functional analogs.

Our cross-linking mass spectrometry shows that the Ska complex interacts with the coiled-coil regions of the Nde80 complex through the Ska3 C terminus, but the overall architecture of their
assembly at the kinetochore is unknown. Recently, the yeast Ndc80 complex was reported to bind two Dam1 complex rings and perturbations to this two-ring binding created mitotic attachment defects (38). Further structural studies will be needed to determine the assembly stoichiometry and how the Ska complex binds coiled-coil regions along the entire 55-nm-long Ndc80 complex (39). Revealing how this load-bearing unit, composed of the Ndc80 and Ska complex tracks with and captures the forces generated by a depolymerizing microtubule tip is crucial to understanding how kinetochores translate microtubule depolymerization into chromosome segregation.

Interestingly, the enhancement of Ndc80 complex-based tip attachments upon addition of Ska complex occurred selectively, only when the Ndc80 complex-based attachments were relatively weak. We speculate that this effect might arise because Ska complex preferentially strengthens Ndc80 complex binding to a particular region on the microtubule tip, such as the most terminal tubulin subunits, and that Ndc80 complex-based couplers under weakened conditions rely primarily on bonds in this region. Alternatively, the Ska complex-dependent enhancement might be sterically blocked when Ndc80 complexes bind microtubules with high cooperativity (19, 24). While further studies will be required to understand the molecular basis for this selectivity, the effect could explain how Ska complex specifically prevents kinetochore detachments during episodes of poleward movement in prometaphase (30).

Both the Ska and Ndc80 complexes are important targets of phosphorylation by mitotic kinases. Aurora B phosphorylates Ndc80 complex extensively during early mitosis, thereby reducing its affinity for microtubules and promoting the release of erroneous kinetochore–microtubule connections (29). During this same period, starting in prometaphase, the Ska complex colocalizes with the Ndc80 complex (5, 13). Our finding that the Ska complex can strengthen Ndc80 complex-based microtubule attachments even when all nine Aurora B phosphorylation sites on the Ndc80 complex are mutated to phosphomimetic residues suggests that the Ska complex may partially antagonize the weakening of attachments by Aurora B during early mitosis. The Ska complex itself is also a target of the Aurora B (40), Mps1 (17), and Cdk1 (12) kinases, which are thought to regulate its interactions with microtubules and the Ndc80 complex as well to promote its oligomerization. The ability of the Ska complex to directly strengthen kinetochore-microtubule coupling implies that selective release of erroneous attachments and stabilization of proper bioriented attachments, may require coordinated phosphorylation of both the Ska and Ndc80 complexes.

Materials and Methods

The human Ska and Ndc80 complexes were expressed from *Escherichia coli* cells and purified using affinity chromatography and SEC. TIRF and optical tweezers microscopy as well as cross-linking mass spectrometry were performed as previously described (18, 38). Please see SI Materials and Methods for detailed descriptions of the protein purifications, TIRF microscopy, optical-tweezer microscopy, cross-linking mass spectrometry, and SEC-MALS performed in this study.

ACKNOWLEDGMENTS. We thank the members of the T.N.D. and C.L.A. laboratories for their helpful discussions. We thank Dr. Prasad Jallepalli for the gift of the Ska complex plasmids. This work was supported by National Institute of Health Grants F32 GM120912 (to L.A.H.), R01 GM040506 (to T.N.D.), P41 GM103533 (to M.J.A.), and R01 GM079737 (to C.L.A.), and The David and Lucile Packard Foundation 2006-30521 (to C.L.A.).

1. Cheesman IM (2014) The kinetochore. Cold Spring Harb Perspect Biol 6:a015826.
2. Gordon DJ, Resio B, Pellman D (2012) Causes and consequences of aneuploidy in cancer. Nat Rev Genet 13:189–203.
3. Potapova T, Gorbisky GJ (2017) The consequences of chromosome segregation errors in mitosis and meiosis. Biology (Basel) 6:612.
4. Welburn JP, et al. (2009) The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev Cell 16:374–385.
5. Hanisch A, Sillje HHW, Nigg EA (2006) Timely anaphase onset requires a novel spindle and kinetochore complex comprising Skal and Ska2. EMBO J 25:5504–5515.
6. Daum JR, et al. (2009) Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr Biol 19:1467–1472.
7. Gaitanos TN, et al. (2009) Stable kinetochore-microtubule interactions depend on the Ska and Ndc80 complex component SkalC310YFV. EMBO J 28:1442–1453.
8. Raaijmakers JA, Tanenbaum ME, Maia AF, Medema RH (2009) RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. J Cell Sci 122:2436–2445.
9. Swakumar S, et al. (2016) The human Ska complex drives the metaphase-anaphase transition in human cells via its microtubule binding activity. eLife 5:1–20.
10. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997.
11. DeLuca JG, et al. (2005) Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 16:519–531.
12. Zhang Q, et al. (2017) Ska2 phosphorylated by Cdk1 binds Ndb80 and recruits Ska to kinetochores to promote mitotic progression. Curr Biol 27:1477–1484.e4.
13. Janczyk PL, et al. (2017) Mechanism of Ska recruitment by Ndb80 complexes to kinetochores. Dev Cell 41:428–440.e4.
14. Kudalkar EM, et al. (2015) Regulation of outer kinetochore Ndb80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex. Proc Natl Acad Sci USA 112:E5583–E5589.
15. Schmid JC, et al. (2016) A novel kinetochore-bound Ska3 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev Cell 23:968–980.
16. Jeyaprakash AA, et al. (2012) Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol Cell 46:274–286.
17. Maciewiak J, et al. (2017) Mps1 regulates kinetochore-microtubule attachment stability via the Ska complex to ensure error-free chromosome segregation. Dev Cell 41:143–156.e6.
18. Powers AF, et al. (2009) The Ndb80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136:865–875.
19. Umbreit NT, et al. (2012) The Ndb80 kinetochore complex directly modulates microtubule dynamics. Proc Natl Acad Sci USA 109:16113–16118.
20. Dong Y, Vanden Beldt KJ, Meng X, Khodjakov A, McEwen BF (2007) The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat Cell Biol 9:516–522.
21. Zaytsev AV, Sundin LJ, DeLuca KF, Grishchuk EL, DeLuca JG (2014) Accurate phosphoregulation of kinetochore-microtubule affinity requires unconstrained molecular interactions. J Cell Biol 206:65–69.