Top Quark Properties at the LHC

Kelly Beernaert (DESY)
for the ATLAS & CMS collaborations

51st Rencontres de Moriond 2016, March 12th-26th 2016
Content

• Production:
 – Production cross sections, kinematics
 – Associated production $t\bar{t} + W, Z, \gamma \rightarrow$ see talk by Markus Seidel
 – Spin correlations
 – Polarization
 – Production Asymmetries

• Decay:
 – Branching ratios
 – Anomalous couplings
 – Flavour-changing neutral currents
 – W helicity

• Results in single top channel \rightarrow see talk by Martin zur Nedden
 \rightarrow only small selection of results shown with focus on most recent ones
Why study top quark properties?

- Top quark decays before it can form bound states
 - Study “bare” quark properties using the decay products
- Top quark decays before the spin decorrelates
 - \(\tau_t \approx 0.5 \times 10^{-24} \text{ s} < m_t / \Lambda_{\text{QCD}}^2 \approx 3 \times 10^{-21} \text{ s} \)
 - Study spin correlation properties
- Heaviest particle known: \(m_t \approx 173 \text{ GeV} \)
 - Large coupling to Higgs boson, plays significant role in EWSB
- Properties measurements test SM and probe new physics
 - Increasing levels of precision and COM energy at LHC → sensitivity of several BSM models coming within reach
Top quark asymmetries

- Measurement of A_{FB} at Tevatron and A_C at LHC are complementary to evaluate new physics models
 - Various models still allowed
 - $\to W', G, \omega, \phi, \Omega$

- Evaluate asymmetry based on fully reconstructed top quarks or leptons in dilepton channel

$$A_C = \frac{N(\Delta |y|>0) - N(\Delta |y|<0)}{N(\Delta |y|>0) + N(\Delta |y|<0)} \Delta |y| = |y_t| - |y_{\bar{t}}|$$

$$A_{FB}^{new} = \frac{N(\Delta y>0) - N(\Delta y<0)}{N(\Delta y>0) + N(\Delta y<0)} \Delta y = y_{\bar{t}} - y_t$$

arxiv:1207.0331
Top quark asymmetries

ATLAS, 8 TeV, 20.3 fb\(^{-1}\), lepton+jets channel

Phys. Lett. B756 (2016) 52

- Boosted regime: \(m(t\bar{t}) > 0.75\) TeV
 - Leptonic decay resolved
 - Hadronic decay reconstructed as large R jet with substructure
- Full Bayesian unfolding
- Differential in \(m(t\bar{t})\)

\[A_C = (4.2 \pm 3.2)\% \text{ (stat + syst)} \]

SM pred: \(A_C = (1.6 \pm 0.04)\% \)

for \(m(t\bar{t}) > 0.75\) TeV

Eur. Phys. J. C76 (2016) no.2, 87

- 3 signal regions: 0, 1, 2 b-tag
- Likelihood fit to reconstruct \(t\bar{t}\)
- Full Bayesian unfolding
- Differential in \(m(t\bar{t}), \beta_z(t\bar{t}), p_T(t\bar{t})\)

\[A_C = (0.9 \pm 0.5)\% \text{ (stat + syst)} \]

SM pred: \(A_C = (1.11 \pm 0.04)\% \)
Top quark asymmetries

ATLAS, 8 TeV, 20.3 fb\(^{-1}\), lepton+jets channel

CMS, 8 TeV, 19.7 fb\(^{-1}\), lepton+jets channel

Phys. Lett. B756 (2016) 52

arXiv:1507.03119, submitted to PLB

Eur.Phys.J. C76 (2016) no.2, 87

Good agreement with SM
Top quark asymmetries

CMS, 8 TeV, 19.7 fb\(^{-1}\), lepton+jets channel

- Template method:
 - Use symmetric and asymmetric version of MC template to fit
 \[\rho^\pm (X) = \frac{\rho (X) + \rho (-X)}{2} \]
 - Smaller statistical uncertainty than unfolding, larger model dependence
 - Observable needs to be bounded:
 \[Y_{t\bar{t}} = \tanh \Delta |y|_{t\bar{t}} \]

- Fit to \(Y_{t\bar{t}} \) distribution: fit parameter \(\alpha \) of relative contribution from symmetric and anti-symmetric templates

\[A_C = [0.33 \pm 0.42 \text{ (stat+syst)}] \% \]
SM pred: (1.11 \pm 0.04)\%
Top quark asymmetries

CMS, 8 TeV, 19.7 fb\(^{-1}\), dilepton channel

- Asymmetry defined with decay leptons and reconstructed tops
 \[A_C^{\text{lep}} = \frac{N(\Delta |\eta_l|>0) - N(\Delta |\eta_l|<0)}{N(\Delta |\eta_l|>0) + N(\Delta |\eta_l|<0)} \]

- Top reconstruction using matrix weighting technique

- Regularised unfolding to parton level

- Differential measurement in \(m(\bar{t}t)\), \(|y(\bar{t}t)|\), \(p_T(\bar{t}t)\)

\[A_C = [1.1 \pm 1.3 \text{ (stat+syst)}] \% \]
SM pred: (1.11 ± 0.04)\%

\[A_C^{\text{lep}} = [0.3 \pm 0.7 \text{ (stat+syst)}] \% \]
SM pred: (0.64 ± 0.03)%
Top quark asymmetries

- Good agreement between theory and experiment
- NNLO predictions are being finalized
- On experiment side: statistical and systematic uncertainties are comparable in size
- Several differential distributions available + results in high m(\(t\bar{t}\)) region where asymmetry is enhanced
Top quark spin correlations

- Top quark spins are correlated in the SM
- Dilepton channel, 7 TeV, reconstruction of tt final state
 \[\frac{1}{N} \frac{d^2 N}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} (1 + B_1 \cos \theta_1 + B_2 \cos \theta_2 - C_{helicity} \cos \theta_1 \cos \theta_2) \]
 - with \(\theta \) angle between lepton direction in top parent rest frame and top parent in \(tt \) rest frame
- Bayesian unfolding to parton level
- Dominated by:
 unfolding uncertainties, theoretical modeling, jet reconstruction
- Direct extraction of \(C = -A\alpha_1\alpha_2 \)
 \[A_{hel} = 0.315 \pm 0.061 \text{ (stat)} \pm 0.049 \text{ (syst)} \]
Top quark spin correlations

- dilepton channel, 8 TeV, reconstruction of ttbar final state
- Regularized unfolding to parton level
- Using asymmetries (also differentially) → direct measurement of spin correlation strength and polarization
- Dominated by: top p_T modeling & JES

Search for top chromomagnetic couplings using differential cross sections, limit on CMDM $\text{Re}(\mu_t)$ and CEDM $\text{Im}(d_t)$ at 95% CL

$-0.053 < \text{Re}(\mu_t) < 0.026$

$-0.068 < \text{Im}(d_t) < 0.067$

Phys. Rev. D93 (2016) 052007

First result on $\text{Im}(d_t)$
Top quark spin correlations

- Dominated by: hadronization and ISR/FSR
- $f_{\text{SM}} = 1.20 \pm 0.05 \text{ (stat)} \pm 0.13 \text{ (syst)}$
- Top squarks in MSSM with 100% $t \rightarrow t\chi^0$ with mass close to m_t

→ Excluded masses between m_t and 191 GeV at 95% CL
Top quark spin correlations

- Reconstruction in the muon+jets channel with 4, 5 jets using kinematic fitter
- LO Matrix Element Method for event likelihoods (MadWeight) under SM or uncorrelated
- Hypothesis testing + fit to likelihood ratio distribution
- Dominated by: hadronization uncertainty

\[f = 0.72 \pm 0.08 \ (stat)^{+0.15}_{-0.13} \ (syst) \]

arXiv:1511.06170, submitted to PLB
Top quark spin correlations

tt Spin Correlation Measurements Summary

Experiment	Source	f_{SM} ± (stat) ± (syst)
D0, dilepton + e/\mu+jets	PRL 108 (2012) 032004, \(\sqrt{s}=1.96\text{ TeV}, L_{\text{int}}=5.4\text{ fb}^{-1}\)	0.85 ± 0.29
CMS, dilepton	PRL 112 (2014) 112001, \(\sqrt{s}=7\text{ TeV}, L_{\text{int}}=5.0\text{ fb}^{-1}\)	1.02 ± 0.10 ± 0.22
ATLAS, e/\mu+jets	PRL 90 (2014) 112016, \(\sqrt{s}=7\text{ TeV}, L_{\text{int}}=4.6\text{ fb}^{-1}\)	1.12 ± 0.11 ± 0.22
ATLAS, dilepton	PRL 90 (2014) 112016, \(\sqrt{s}=7\text{ TeV}, L_{\text{int}}=4.6\text{ fb}^{-1}\)	1.19 ± 0.09 ± 0.18
ATLAS, dilepton	PRL 114 (2015) 142001, \(\sqrt{s}=8\text{ TeV}, L_{\text{int}}=20.3\text{ fb}^{-1}\)	1.20 ± 0.05 ± 0.13
CMS, \mu+jets	arXiv:1511.06170, \(\sqrt{s}=8\text{ TeV}, L_{\text{int}}=19.8\text{ fb}^{-1}\)	0.72 ± 0.08 ± 0.15
CMS, dilepton	arXiv:1601.01107, \(\sqrt{s}=8\text{ TeV}, L_{\text{int}}=19.5\text{ fb}^{-1}\)	1.12 ± 0.06 ± 0.11
Flavour-changing neutral current

- SM: no FCNC at tree level (GIM suppression),
 \[\text{BR} \sim O(10^{-12} - 10^{-17}) \]
- \(t \rightarrow u/c + X, X = g, \gamma, Z \) and \(H \)
- BSM: 2HDM, MSSM, … → enhanced couplings
 → BR as high as \(10^{-5} \)

\[\begin{align*}
B(t \rightarrow H_c) &< 1.16 \% \text{ (obs) at 95\% CL} \\
B(t \rightarrow H_u) &< 1.92 \% \text{ (obs) at 95\% CL}
\end{align*} \]

- \(t \rightarrow Hq \rightarrow b\bar{b}q \) and \(t \rightarrow Wb \rightarrow l\nu b \)

\[\begin{align*}
B(t \rightarrow H_c) &< 0.47 \% \text{ (obs) at 95\% CL} \\
B(t \rightarrow H_u) &< 0.42 \% \text{ (obs) at 95\% CL}
\end{align*} \]

- \(t \rightarrow Hq \rightarrow \gamma\gamma q \) and \(t \rightarrow Wb \rightarrow l\nu b \) or \(q\bar{q} b \)

\[B(t \rightarrow H_c) < 0.93 \% \text{ (obs) at 95\% CL} \]

- \(t \rightarrow Hq \rightarrow ZZq \) or \(WWq \) and \(t \rightarrow Wb \rightarrow l\nu b \)
Flavour-changing neutral current

- tt production with
 - $t \to Hq \rightarrow b\bar{b}q$ and $t \to Wb \rightarrow lvb$
- Categories based on jet, b-tag multiplicity
 - $(4j, 3b)$ and $(4j, 4b)$ most sensitive
- Signal/background discriminant:

 $$D(x) = \frac{P^{\text{sig}}(x)}{P^{\text{sig}}(x) + P^{\text{bkg}}(x)}$$

with $P^{\text{sig}}, P^{\text{bkg}}$ PDFs using the resonances and jet flavour content of final state

limit at 95% CL: $B(t \to Hc) < 0.56 \%$ (obs)
$B(t \to Hu) < 0.61 \%$ (obs)
- All analyses presented assume all anomalous couplings are zero, but one
- Still far above SM prediction, but sensitivity to certain BSM models getting closer or even already reached
Conclusions and outlook

• High precision measurements, dominated by systematic uncertainties → focus on improving **signal modeling, generator and theory uncertainties**

• Top charge asymmetry:
 – no deviations from SM observed
 – Measurements becoming dominated by systematic uncertainty

• FCNC: sensitivity to certain BSM models (almost) within reach

• No observation of New Physics or deviations from the SM from LHC Run I

Only a small selection of results is shown, for more information:

[ATLAS Top Web pages](#) [CMS Top Web pages](#)

Thank you!
Back up
Charge Asymmetry

Phys. Lett. B756 (2016) 52

Eur.Phys.J. C76 (2016) no.2, 87
• All analyses presented assume all anomalous couplings are zero, but one
• Many channels are covered → consider pursuing global approach, considering mixing of various anomalous couplings at NLO →

Phys.Rev. D91 (2015) no.7, 074017
Phys.Rev. D91 (2015) 034024