Landside capacitor efficacy among multi-chip-module using Si-interposer

Yuuki Araga¹, ², Ryo Kasa³, Daisuke Tanaka¹, Yoshihide Murakami², Kyoshi Mihara², Kazuo Makida³, Hiroki Sonoda², Makoto Nagata³, Naoya Watanabe¹, Haruo Shimamoto¹, and Katsuya Kikuchi¹, ²

Abstract Power delivery network (PDN) impedance reduction is strongly required for recent high-performance graphical-processing-unit, and mobile electronics that requires massive data transfer among logic and memory dice. To improve PDN characteristics, low equivalent series inductance and resistance (ESL and ESR) are required for capacitor, as well as powerline routing including placement of the capacitor. In this paper, we focus on Si-interposer as a method to enable ultra-high bit rate as well as fan-out wafer level packaging. A Si-interposer with transmission lines is manufactured, and CMOS test vehicle and low ESL Si-capacitors are mounted on the Si-interposer to evaluate chip-to-chip communication performance on multi-chip-module (MCM), through evaluating powerline noise. Experimental results of in-place waveform with physically different capacitor types and placements on Si-interposer, by on-chip waveform monitoring (OCM) technology. PDN analysis clarified the efficacy of low profile Si-capacitors and placement strategy to minimize series parasitic components, captured waveform shows stabilized drain power voltage (VDD) waveshape through 12-channels low-voltage differential signaling (LVDS) transceivers operation.

Keywords: Si-interposer, capacitor, PDN, on-chip evaluation

Classification: Integrated circuits (memory, logic, analog, RF, sensor)

1. Introduction

Recent high-performance graphical-processing-units (GPUs) and small footprint processing unit in mobile electronics requires extremely high bit rate between memory and processor, which requires stable PDN for multi-channel, high-speed, and low-power data transfer [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. For such a communication among logic and memory, MCM integration including 3D-stacked ICs, Si-interposer, and redistribution layer (RDL) based fan-out modules are required to minimize distance of transmission path [14, 15, 16, 17, 18].

Powerline design is also important for better signaling, to manage current consumption of enormous interface circuitry with minimizing simultaneous switching noise and IR drop. Improvement of the PDN characteristics demands lower parasitic inductance and resistance on the path between circuitry and capacitor, hence many studies focus on PI/SI analysis and improvement idea, including capacitance in Si-interposer and in-place voltage regulator [19, 20, 21, 22, 23, 24, 25, 26, 27].

In this study, we focus on PI in MCM employing Si-interposer with capacitors on the interposer. A couple of CMOS test chips are manufactured and mounted on the Si-interposer, to excite powerline noise by chip-to-chip data transaction and capture the noise using on-chip waveform capturer [28, 29]. Impedance between communication circuitry and capacitor is analyzed as well as total PDN and compared with measurement to discuss efficacy of capacitor performance and placement on Si-interposer.

2. Test vehicle overviews

Fig. 1 shows overview of the test vehicle in this study. Two CMOS test chips are mounted on Si-interposer to construct MCM with chip-to-chip communication functionality. The stacked module is mounted on a motherboard with solder balls after mounting landside capacitors (LSCs) on the motherboard side of the interposer.

The motherboard has a trench area for LSCs, for a case LSC height is larger than the gap between Si-interposer and motherboard. Motherboard capacitors (MBCs) are also mounted at just below the LVDS circuitry of the CMOS, on the solder side of the motherboard.

Figs. 2(a) and (b) show photos of CMOS side and motherboard side of the Si-interposer, and Fig. 2(c) shows cross-sectional structure. The Si-interposer is designed and manufactured with total 3 layer of 5 μm L/S pattern and 10 μm of diameter and 100 μm of depth TSVs. On the CMOS side, 162.5 μm pitch micro-bumps are formed to connect CMOS test chips and interposer, and on the motherboard side, Au electroplated lands are arrayed with 300 μm pitch to connect the Si-interposer and the motherboard with solder balls. As for capacitors on Si-interposer, lands compatible with 0603 size capacitor are prepared for both sides, the pads on the motherboard side is for LSCs, and another side is for die side capacitors (DSCs).

Figs. 3(a) and (b) show top-view photo and cross-sectional diagram of the assembled test vehicle, respectively. The CMOS test chip is manufactured with 0.18 μm CMOS process. 12 pairs of LVDS transmitter (Tx) and receiver (Rx) circuits are embedded in a single die, to enable chip-to-chip communication. A controller circuitry is also included to generate data for LVDS Tx and check error for LVDS Rx. An on-chip waveform capturer [29] is employed for PI/SI evaluation, which can acquire transient waveforms of

¹ National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Headquarters, 1-1-1 Umezono, Tsukuba Ibaraki 305-8560, Japan
² Murata Manufacturing Co., Ltd., 1-10-1, Higashikotari, Nagaokakyo, Kyoto 617-8555, Japan
³ Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan

a) yuuki.araga@aist.go.jp
b) k-kikuchi@aist.go.jp (corresponding author)
powerline and a signal pair voltage of LVDS.

3. Measurement and analysis

Fig. 4 shows measured transient waveforms of LVDS Rx VDD during 3 cycles of 16-bit transmission, and each frequency components are also plotted. The waveforms in Fig. 4(a) and (b) are captured with the test vehicles with 2 and 12 multi-layer ceramic capacitors (MLCCs) as LSC, respectively. In a case of Fig. 4(c), 12 low profile and low ESL Si-capacitors [30] are used. From measured waveforms and frequency components, we can see larger capacitance and lower ESL of 157 pH of Si-capacitors improve PI of the LVDS, in comparison with ESL of 275 pH of standard MLCCs.

PDN impedance of each case is analyzed and shown in Fig. 5. From the impedance plot, not only large capacitance but also low ESL affects to the impedance curve, especially
Fig. 4 Measured transient waveform and frequency component plot with (a) 2 MLCCs, (b) 12 MLCCs, and (c) 12 Si-capacitors.

Fig. 5 Simulated PDN impedance of the test vehicle.

Fig. 6 (a) Considerable placement of capacitor, (b) impedance of the path between capacitance and LVDS VDD and (c) 10 nF Si-capacitance with (b).

in high-frequency area which covering 750 MHz to 1.5 GHz.

From the frequency component difference between Fig. 4(b) to (c) and PDN impedance curve in Fig. 5, we can say low ESL Si-capacitors as LSC effectively improve the PI/SI of chip-to-chip communication system in MCM.

Fig. 6 analyzes the impedance among the capacitors dif-
ferently positioned on the Si-interposer with respect to the VDD terminal of LVDS transceiver circuits. From the analytical result, LSC efficacy by comparison of MBC and LSC, and dependency of horizontal distance by comparison among two LSC cases and DSC. Although MBC placement shows inductance of 446 pH that almost 3 times large as Si-capacitor’s ESL of 157 pH, the best case of LSC placement shows inductance of 44.9 pH that can utilize lower ESL characteristic of Si-capacitor and show clear improvement from standard MLCC. On the other hand, large dependency of the horizontal distance is considered to be from fine but thin metal layer of Si-interposer, because of the process restriction, including limitation of plane size for damascene process. These results suggest that Si-interposer requires more strategical design to keep impedance low in comparison to fan-out interposer [27] with thick metal. On the other hand, Si-interposer has relatively fine L/S, hence a greater number of channels are enabled to raise bitrate or improve energy efficiency by slowing frequency.

As for capacitor types, Si-capacitor is suitable for dense integration like MCMs, due to its 85 μm of height enough lower than 121 μm of the gap between Si-interposer and motherboard. This easiness of assembly will allow cost reduction and motherboard wiring resource flexibility.

4. Conclusion

PI and SI will affect performance of logic-memory transaction among densely integrated ICs in MCM. Smaller component size and advanced packaging technologies enable various methodologies to improve PDN characteristics by flex and dense placement of capacitors.

In this study, we presented in-place measured waveforms on power delivery with physically different capacitor types and placements within multi-chip integration on Si-interposer. Measured powerline noise of LVDS transaction is well suppressed by employing low ESL capacitor as LSC on the Si-interposer. Analytical consideration shows LSC has far lower parasitic inductance in comparison with MBC and suggests that nearby LSC on Si-interposer can utilize low ESL characteristics of Si-capacitor. The dependency of the capacitor placement of Si-interposer is also shown, due to relatively higher resistive metal for fine L/S. From these results, low profile Si-capacitors are suitable for densely integrated modules, by system requirement of higher capacity and placement flexibility.

References

[1] P. Wijetunga: “A 10.0Gbps all-active LVDS receiver in 0.18μm CMOS technology,” IEICE Electron. Express 3 (2006) 216 (DOI: 10.1587/exel.3.216).

[2] Y. Lu et al.: “CCS: a low-power capacitively charge-sharing transmitter for NoC links,” IEICE Electron. Express 11 (2014) 20140038 (DOI: 10.1587/exel.11.20140038).

[3] S-Y Xie et al.: “FPGA-based ultra-fast and wideband instantaneous frequency measurement receiver,” IEICE Electron. Express 11 (2014) 20140263 (DOI: 10.1587/exel.11.20140263).

[4] K. Lee et al.: “A 1.1 mW/Gb/s 10 Gbps half-rate clock-embedded transceiver for high-speed links in 65 nm CMOS,” IEICE Electron. Express 11 (2014) 20140671 (DOI: 10.1587/exel.11.20140671).

[5] T. Yoshikawa and M. Nagata: “Timing margin enhancement technique for current mode interface,” IEICE Electron. Express 11 (2014) 20140766 (DOI: 10.1587/exel.11.20140766).

[6] Y. Su et al.: “A high power-efficient LVDS output driver with adjustable-feed-forward capacitor compensation,” IEICE Electron. Express 12 (2015) 20150308 (DOI: 10.1587/exel.12.20150308).

[7] C. Lee et al.: “An overview of the development of a GPU with integrated HBM on silicon interposer,” 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) (2016) 1439 (DOI: 10.1109/ECTC.2016.348).

[8] J. Lee et al.: “Micro bump system for 2nd generation silicon interposer with GPU and high bandwidth memory (HBM) concurrent integration,” 2018 IEEE 66th Electronic Components and Technology Conference (ECTC) (2018) 1295 (DOI: 10.1109/ECTC.2018.00199).

[9] T. Ebuchi et al.: “An ultra-wide range (0.01–240 Gbps) transmitter with latched AC-coupled driver and dummy data transient generator,” IEICE Electron. Express 15 (2018) 20171151 (DOI: 10.1587/exel.15.20171151).

[10] H. Xu et al.: “Design of a power efficient self-adaptive LVDS driver,” IEICE Electron. Express 15 (2018) 20171276 (DOI: 10.1587/exel.15.20171276).

[11] S-Y You et al.: “Advanced fan-out package SLP/IPL/thermal performance analysis of novel RDL packages,” 2018 IEEE 68th Electronic Components and Technology Conference (ECTC) (2018) 1295 (DOI: 10.1109/ECTC.2018.00199).

[12] S-M. Chen et al.: “High performance heterogeneous integration on fan-out RDL interposer,” 2019 Symposium on VLSI Technology (2019) TS2 (DOI: 10.23919/VLSIT.2019.8776543).

[13] T. Yoshikawa et al.: “A charge recycling stacked I/O in standard CMOS technology for wide TSV data bus,” IEICE Electron. Express 17 (2020) 20200012 (DOI: 10.1587/exel.17.20200012).

[14] J. Wang et al.: “Cluster mesh: a topology for three-dimensional network-on-chip,” IEICE Electron. Express 9 (2012) 1254 (DOI: 10.1587/exel.9.1254).

[15] S. Takaya et al.: “A 100GbE wide I/O with 4096b TSVs through an active silicon interposer with in-place waveform capturing,” ISSCC Dig. Tech. Papers (2013) 434 (DOI: 10.1109/ISSCC.2013.6487803).

[16] H. Sun et al.: “H-cluster: a hybrid architecture for three-dimensional many-core chips,” IEICE Electron. Express 11 (2014) 20140876 (DOI: 10.1587/exel.11.20140876).

[17] M. Koyanagi: “Recent progress in 3D integration technology,” IEICE Electron. Express 12 (2015) 20152001 (DOI: 10.1587/exel.12.20152001).

[18] M-S. Lin et al.: “A 7nm 4GHz arm®-core-based CoWoS® chiplet design for high performance computing,” 2019 Symposium on VLSI Circuits (2019) C28 (DOI: 10.23919/VLSIC.2019.8778161).

[19] Y. Zhao et al.: “Modeling and optimization of noise coupling in TSV-based 3D ICs,” IEICE Electron. Express 11 (2014) 20140797 (DOI: 10.1587/exel.11.20140797).

[20] Y. Araga et al.: “Superior decoupling capacitor for three-dimensional LSI with ultrawide communication bus,” Japanese Journal of Applied Physics 56 (2017) 434 (DOI: 10.7567/JJAP.56.04CC05).

[21] S. Kim and Y. Kim: “Analysis and reduction of the voltage noise of multi-layer 3D IC with multi-paired power delivery network,” IEICE Electron. Express 14 (2017) 20170792 (DOI: 10.1587/exel.14.20170792).

[22] F. Wang et al.: “A novel guard method of through-silicon-via (TSV),” IEICE Electron. Express 15 (2018) 20180421 (DOI: 10.1587/exel.15.20180421).

[23] Y. Araga et al.: “A study on substrate noise coupling among TSVs in 3D chip stack,” IEICE Electron. Express 15 (2018) 20180460 (DOI: 10.1587/exel.15.20180460).

[24] F. Wang et al.: “Investigation on impact of substrate on low-pass filter based on coaxial TSV,” IEICE Electron. Express 16 (2019) 20180992 (DOI: 10.1587/exel.16.20180992).

[25] S-Y. Hou et al.: “Integrated deep trench capacitor in Si interposer for CoWoS heterogeneous integration,” 2019 IEEE International Electron Devices Meeting (IEDM) (2019) 19.5.1 (DOI: 10.1109/IEDM.2019.8993498).

[26] K. Son et al.: “Eye-open monitor using two-dimensional counter value profile,” IEICE Electron. Express 16 (2019) 20190601 (DOI: 10.1587/exel.16.20190601).
[27] H. Sonoda, et al.: “Power noise suppression by land-side capacitors within fan-out multiple IC chip packaging.” EMC+SIPI (virtual conference) (2020).

[28] M. Nagata, et al.: “In-place signal and power noise waveform capturing within 3-D chip stacking,” IEEE Des. Test 32 (2015) 87 (DOI: 10.1109/MDAT.2015.2448537).

[29] H. Sonoda, et al.: “In-place power noise and signal waveform measurements on LVDS channels in fan-out multiple IC chip packaging.” 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo) (2019) 216 (DOI: 10.1109/EMCCombo.2019.8919926).

[30] C. Bunel, et al.: “Low profile integrated passive devices with 3D high density capacitors ideal for embedded and die stacking solutions,” 2012 4th Electronic System-Integration Technology Conference (2012) 1 (DOI: 10.1109/ESTC.2012.6542168).