ELEKTRONCSÖVES ÉS FÉLVEZETŐS FESZÜLTSÉGSTABILIZÁLT ERŐSÍTŐ ÁRAMKÖRÖK KIVITELEZÉSE

DESIGN OF ELECTRON TUBE AND SEMICONDUCTOR-BASED AND VOLTAGE STABILISED AMPLIFIER CIRCUITS

Hrámcov István, 1 Erdei Timotei István, 2 Décsesi Roland, 3 Husi Géza 4

Debreceni Egyetem, Műszaki Kar, Debrecen, Magyarország
1 hristvan99@gmail.com
2 timoteierdei@eng.unideb.hu
3 roland.decsei@gmail.com
4 husigeza@eng.unideb.hu

Abstract

In this project, an electron tube circuit consisting of a voltage stabiliser, pre-amplifier, and final stage amplifier circuit was designed. One of the main aims was to reuse as many components and materials as possible, thereby decreasing the project's ecological footprint. The result is a hybrid electron tube amplifier. The function of the circuits was subsequently measured and analysed using various tests.

Keywords: electron tube, transformer, voltage stabilizer, amplifier, circuit, PL82, integrated circuit.

Összefoglalás

A projekt megvalósítása során egy elektroncsöves áramkörön alapuló feszültségstabilizáló, illetve erősítő áramkör került megalkotásra. Az eszköz elkészítésénél az egyik fő kritérium az alkatrészek és a nyersanyag újrahasznosítása volt. Ezeket a még használható alkatrészeket tönkrement elektronikai eszközökben használtuk fel, ezzel is csökkentve a projekt költségeit és az ökológiai lábnyomot. A projekt megvalósításának eredményeként egy hibrid elektroncsöves erősítő került megtervezésre és megépítésre. Az áramkörök működését ezt követően vizsgáltuk mérések és tesztek elvégzésével.

Kulcsszavak: elektroncső, transzformátor, feszültségstabilizátor, erősítő, áramkör, PL82, integrált áramkör.

1. Bevezető

Az elektroncsövek használata visszaszorult a XX. század 80-as éveinek elejére, sok területen a mai napig elengedhetetlenek ezen komponensek. Elektroncsöveket olyan helyen alkalmazunk, ahol magasfeszültséget, nagy áramfelvételt vagy akár kilowattos erősítést kívánunk elérni. Ezek az igények, habár a modern félvezetős technológiákkal kivitelezhetők, azok fent tartási költségei egekbe szőkően magasak. Hőtermelésük pedig komplex és drága hűtőberendezéseket kíván. Az ipar mellett az elektroncsövek a háztartásokban is megtalálhatóak. Legismertebb talán az elektroncsöves erősítő. Mely ismét térhódítást nyert az úgynevezett „csöves hangzás” miatt [1]. Mikrohullámú sütők szintén nagy teljesítményű elektroncsővel, a magnetronnal generálják a mikrohullámokat. Az elektroncsövek rendelkeznek hátrányokkal, azok kompenzálni tudjuk félvezetőkkel, így egy hibrid áramkört létrehozva, mely mind az elektroncsöves, mind a félvezetős technológiák előnyeit kihasználja.
2. Hibrid erősítő áramkör

A hibrid erősítő elkészítése során nagyrészt új, ráhasznosított alkatrészek kerültek alkalmazásra. A váz, az elektroncsövek, a végfok részei és sok más alkatrész mind elektromos hulladékból kimentett komponensek voltak. Ennek nagy jelentősége van abban, hogy környezetünk szennyezését csökkentsük, hogy az elkészítéshez szükséges költségeket is alacsonyan tartsuk. Ezzel egyik célja, hogy ezzel kapcsolatban is támpontot szolgáltatunk.

2.1. Előerősítő

Az előerősítő (1. ábra) E83F-típusú pentódákat használ SE (single ended) A-osztályú üzemmódban. Az E83F képes 1 W RMS teljesítményre 10% torzítás mellett, ami előerősítésnél bár nem szükséges, ez is jelzi az elektroncső rugalmasságát. A maximális anódterheltségnév 2,1 W. Az előerősítők esetében triódákat alkalmaztunk, mivel a pentódák nagyobb zajszintet visznek a jelbe.

A jel egy 470–560 kΩ-os logaritmikus potméteren keresztül eljut az első fontos elágazásba. Itt két ellenállás, R7 és R6, található. Az R7 ellenállás az úgynevezett rácsszivárogtató ellenállás. Feladata, mint nevéből adódik, a jelnek a földre szivárogtatása. Ez az ellenállás állítja be az erősítő érzékenységét. Értéke pár száz kΩ-tól egészen 1 MΩ-ig terjedhet.

Az R6 ellenállás a rácsmegállító ellenállás. Erre azért van szükség, mivel magas frekvenciák kerülhetnek az elektroncsöbe. Ennek elkerülése végett az alul áteresztő szűrő elváglja a 20 kHz feletti frekvenciákat. Az elektroncső munkapontbeállítását az R4 ellenállás végzi 180 ohmos értéken. Ez az ellenállás határozza meg az elektroncső üresjáratú üzemét, mivel „A” osztályban működik. A C1-kondenzátorral növelhető a cső érzékenysége (gain). Értéke 33 μF-tól akár 1000 μF-ig terjedhet.

3. Tervezési szempontok

Annak érdekében, hogy az elektroncsöves áramkörök vizsgálatát el tudjuk végezni, egy olyan áramkört kellett terveznünk, mely kielégíti a mérési feltételeket. Az áramkörök optimalizált alapáramkörökkel letek megtervezve annak érdekében, hogy optimálisan működjön.

4. A feszültségszabályozott erősítő felépítése

Az eszköz dobozaként egy tönkrement méroműszer dobozát választottuk. Mivel a műszer elektroncsöves volt, ezért a benne lévő transzformátort ideális volt számunkra. Ezenkívül elég helyet tudott biztosítani az áramkörök, illetve audios-transzformátorok számára.

Az erősítő (2. ábra) alkalmaz félvezető diódákat, melyek kis helyfoglalásuk és nagyobb hatásfokuk miatt lettek alkalmazva. BY238-típusú diódából 4 darab a nagyfeszültség egyenirányítását végez, illetve egy helyet kapott a feszültségszabályozást a 220 V üzem esetében a KBL06-típusú egyenirányító hid a végfokot látja el egyenárammal. 1N4003-típusú diódák látják el a feszültségvisszafolyásmegállódiókról. A KBL06-típusú egyenirányító hid a végfokot látja el egyenárammal. 1N4003-típusú diódák látják el a feszültségvisszafolyásmegállódiókról. A KBL06-típusú egyenirányító hid a végfokot látja el egyenárammal. 1N4003-típusú diódák látják el a feszültségvisszafolyásmegállódiókról. A KBL06-típusú egyenirányító hid a végfokot látja el egyenárammal. 1N4003-típusú diódák látják el a feszültségvisszafolyásmegállódiókról. A KBL06-típusú egyenirányító hid a végfokot látja el egyenárammal. Az eszköz 3 fő részből épül fel: tápegység, előerősítő, végfok. A tápegység (3. ábra) transzformátor használ, melynek több kimenete van, illetve változtatható a bemeneti feszültség 110–127 és 220 V üzemre. A tápegység magában foglal egy feszültségszabályozást, mely az előerősítő érzékenységi áramkörét látja el terheléstől és bemeneti feszültségtől függetlenül 188 V-os feszültséggel. Ez a feszültség bizonyult optimálisnak az előerősítő és fázisfordító csövek számára, ezek ugyanis

1. ábra. Az előerősítő kapcsolásirajza (részlet)

2. ábra. Az erősítő kapcsolásirajza (részlet)
150–200 V [5, 6] üzemi feszültségen működhetnek károsodás nélkül a stabil tápegység mellett. A végfok egy egyszerű kapcsolást alkalmaz. A transzformátor 10V-os szekunder kimenetre szűrve kimenetet kötöttük, az így kapott feszültség a második transzformátor primer tekercselésén 180 V AC lett. Egyenirányítás után és terhelés alatt a tápellátás 120 V DC lett, ez tőkéletesen megfelel a PL82 típusú elektroncsöveknek. (A gyártó által ajánlott érték 170V [7].) Ez az áramkör nem igényel stabilt bemenetet kapcsolásából adódóan.

4.1. Feszültségstabilizátor működése

A feszültségstabilizátor-áramkör stabil feszültséget szolgáltat függetlenül a terheléstől és a hálozati feszültség ingadozásától. Ez az áramkör 3 elektroncsövet használ: egy sugárpentódát és két feszültségreferencia-csövet. A 85AT2 típusú referencia-csövek egyenként 85 V feszültséget adnak referenciaként [8], sorosan kötve 170V. A 170V mindaddig jelen lesz, amíg a feszültség nem esik a referencia-csövek nyitófeszültsége alá. Ha a terhelés hatására vagy a hálozati ingadozás hatására a feszültség eltér a referencia-tól, a sugárpentóda jobban kinyit, ezzel visszahozza a kívánt feszültség értékét a kimeneten [9]. Az áramkör a projekt esetében 188 V DC feszültséget ad ki.

4.2. Az erősítő működése

Az erősítő három főbb részből épül fel: előerősítő, fázisfordító áramkör, push-pull konfigurációjú végfok. A jel az előerősítőbe fut be, ahol EF86 típusú pentódát alkalmaztunk trióda módban. Ha trióda módban üzemeltetjük az elektroncsövet, a zájszint jelentősen lecsökkent, így megfelelővé válva alacsony jelszinteknél [5]. A jel ezek után a következő fokozat felé megy, a fázisfordító áramkörhöz. Mivel az elektroncsövek fordított polaritában nem tudnak működni, egy fázisfordító áramkörre van szükségünk, hogy a push-pull konfigurációba elrendezett végoksövek negatív amplitúdóért felelős ága működhessen. Ezt a funkciót egy PCC88 típusú elektroncső látja el. Ez egy dupla trióda [6]. A trióda anódja a push-pull pozitív ágának a vezérlőrácsát vezérel, míg a trióda katódja a negatív ág vezérlőrácsát. Ezzel a meoldással a végfok képes negatív amplitúdójú hullámot létrehozni. Mivel az elektroncsövek nagy feszültségen és alacsony áramerősségen üzemelnek, a hangszórót, mely magas árame rősségigényű alacsony feszültségen, nem lehet direktben vezérelni. Ennek megoldására audio-transzformátorot kell alkalmazni.
tort gyárilag soros fűtésfüzérre terveztek, ezért a magas feszültséget soros kapcsolással elosztva megkaphatjuk a kívánt feszültséget.

A sugárpentóda, mivel 25 V fűtőfeszültséget igényel, ezért azt direktben lehet vezérelni a transzformátort fűtésre kivezetett tekercséről. A 4 darab PL82-tipusú pentóda a következőképpen beköve: 2 elektroncső sorosan, majd ezzel a kapcsolással párhuzamosan a másik két elektroncső. Ezek az egyenirányítás utáni 30V-ról így megfelelően képesek üzemelni. Az előerősítő áramkörben található kettő darab EF86-, illetve PCC88-tipusú csövek fűtése 6,3 [5] és 7 [6] voltot igényelnek, azonban a 30 V-os feszültség miatt az áramkör hozzal adott sorosan egy 6.3 V izzót, mely a megfelelő feszültségre hozza a fűtőszálakra eső feszültséget.

Az elektroncsövek erősítőknél nem igényelnek komplex áramköröket, ugyanis a transzisztorokkal ellentétben lineárisan üzemelnek.

6. Mérési eredmények

6.1. Az erősítő működése

Az elkészült erősítő áramkör 3 W teljesítményre képes, csatornánként 4 Ω-os terhelés mellett. Az erősítő áramkörök frekvencia-visszaadását speciális mérőfunkcióval rendelkező, Rhode & Schwarz RTB2004-tipusú digitális oszcilloszkóppal végeztem. A mérési tartomány 20 Hz-től 20 kHz-i terjedt 2 Vp-p (peak to peak) jelfeszültség mellett. A beépített függvénygenerátort használtam ezen frekvenciák generálására.

A mérés előkészítéséhez egy 1 kHz frekvenciájú 2 Vp-p szinusz jelet tápláltam az előerősítő-bemenetre. Ekkor a végfok kimenetét figyelve, addig emeltem a hangerőt, míg 1 W teljesítményt kaptam. A teszt 20 Hz-ről logaritmikusan emelkedő frekvenciákkal halad 20 kHz-ig. Ideális esetben egy lineáris Bode-diagramot kapunk, azonban az erősítőben több olyan komponens is megtalálható, amely befolyásolja a görbe formáját. Többek között a jel irányába lévő kondenzátorok.

A diagramon (5. ábra) narancssárga színnel látható a gain, míg narancssárga kékkel a fázis. Megfigyelhetjük, hogy a frekvencia-visszaadás relatív egyenes. Letörést tapasztalhatunk 40Hz környékén, ami teljes mértékben elfogadható és normálisnak tekinthető. 10 kHz felett szintén letörést tapasztalunk. Ennek okára az integrált áramkör korlátossága. Magas frekvenciákon nem képes megfelelő teljesítményt nyújtani. Ezért az IC kiegészítő áramköreivel korlátozott a frekvencia-tartomány felső szegmensét 10 kHz felett. Ez a lépés szükséges ennek az IC-családnál.

A jobb csatorna diagramja nagyon kis eltérést mutat a balhoz képest. Egy kisebb lefelé görbülés figyelhető meg 1 kHz és 6 kHz között. Ennek oka lehet a kondenzátorok és ellenállások tűrési értékével bevezetett értékülönbség. Ennek ellenére ez a görből emberi fül számára nem észrevehető a hangképen, és mivel nagyon hasonlóak a Bode-diagramok, ezért a sztereóhangkép kialakul a hallgató számára.

5. ábra. A bal csatorna Bode-diagramja
6.2. Elektroncsöves erősítő

Az elektroncsövek erősítési mértékét az (1) képlet segítségével tudjuk kiszámolni:

\[\text{Erősítés} = \frac{\mu \times R(L)}{R(L) + r(p)} \]

ahol \(\mu \) az elektroncső erősítési tényezője, \(R(L) \) a terhelési ellenállás ohmban megadva, \(r(p) \) anó- dellenállás Ω-ban megadva \[12\].

Az erősítő áramkör frekvencia-visszaadó képes-ségét függvénygenerátorral (Metex MXG-9802A), digitális oszcilloszkóppal (Hantek MSO5102D) és multiméterrel (AXIO AX-588B) határoztam meg. A mérési tartományt 20 Hz-től 20 kHz-ig végeztem.

A kapott eredményeket a VituxCAD \[13\] nevű szoftver segítségével grafikon formájában tüntettem fel csatornánként. (6. ábra)

Mivel ez az erősítő nem audio-transzformátort, hanem hálózati transzformátort használ a kimeneten, ezért észrevehető a frekvencia-visszaadás nonlineáritása. Ez egyszerűen abból adódik, hogy a hálózati transzformátor nem hangfrekvenciákrá van meredezve.

A jobb csatorna hasonlóan teljesített, mint a bal csatorna. A sztereókép kialakul a hallgató számára, mivel a két csatorna azonos hangerővel és frekvencia-visszaadással rendelkezik.

7. Összegzés, fejlesztési lehetőségek

Az elektroncsöves és hibrid feszültségszabályozó és erősítő áramkör megépítésére került. Ezen az áramkörön méréseket végeztünk, az stabil működésre nézve. Továbbá ezen áramkörök modern felhasználási lehetőségére világítottak rá a félvezetős eszközök mellett. A projekt jövőbeli továbbfejlesztési potenciált tartalmaz magában. A transzformátortos fűtőáramkör lecserélhető hatékonyabb kapcsolóüzemű tápegységre. Az audio-transzformátorok cseréjével javítható a frekvencia-visszaadás lineáritása.

Köszönetnyilvánítás

Szeretném megköszönni Husi Géza tanárnak úrnak, hogy elvállalta a konzulensi szerepet, szakmai tudásával segített. A projekt a Debreceni Egyetem Műszaki Karán a Cyber-Physical & Intelligent Robot Systems laborjában készült. A kutatást a Debreceni Egyetem, Informatikai Tudományok Doktori Iskola támogatta.

Szakirodalmi hivatkozások

[1] History of the Audio Amplifier, [Online].
https://sciencing.com/varactor-diode-5124911.html [Hozzáférés dátuma: 2019-11-26].

[2] ER3F Datasheet, [Online].
https://frank.pocnet.net/sheets/009/e/ER3F.pdf [Hozzáférés dátuma: 2019-11-26].

[3] М. Рашковский, Б. Пилипенко, В. Цирулников, Ф. Хмельницкий, Электричество в быту, Odessa, 1973

[4] TBA 790 Datasheet, [Online].
https://www.radiomuseum.org/tubes/tube_tba790.html [Hozzáférés Dátuma: 2019-11-26].

[5] EF86 Datasheet, [Online].
https://frank.pocnet.net/sheets/010/e/EF86.pdf [Hozzáférés fátuma: 2019-11-26].

[6] PCC88 Datasheet, [Online].
https://frank.pocnet.net/sheets/010/p/PCC88.pdf [Hozzáférés dátuma: 2019-11-26].

[7] PL82 Datasheet, [Online].
https://frank.pocnet.net/sheets/030/p/PL82.pdf [Hozzáférés dátuma: 2019-11-26].

[8] 85A2T Datasheet, [Online].
https://frank.pocnet.net/sheets/190/8/85A2.pdf [Hozzáférés dátuma: 2019-11-26].

[9] Steve Bench: Tube Based Voltage Regulators. USA, 2000.

[10] T. I. Erdei, Zs. Molnár, N. C. Obinna, G. Husi: Cyber physical systems in mechatronic research centre. MATEC Web Conf. Volume 126, 2017.

[11] PL36 Datasheet, [Online].
https://frank.pocnet.net/sheets/010/p/PL36.pdf [Hozzáférés dátuma: 2019-11-26].

[12] EZ80 Datasheet, [Online].
https://frank.pocnet.net/sheets/010/e/EZ80.pdf [Hozzáférés dátuma: 2019-11-26].

[13] VituxCAD, [Online].
https://kimosusaunisto.net/Software/Software.html [Hozzáférés dátuma: 2019-11-26].

6. ábra. Bal csatorna frekvencia visszaadása hibás transzformátorral