Clinical Decision Support Systems for Opioid Prescribing for Chronic Non-Cancer Pain in Primary Care: A Scoping Review

Sheryl Spithoff, Stephanie Mathieson, Frank Sullivan, Qi Guan, Abhimanyu Sud, Susan Hum and Mary Ann O'Brien

Version Post-print/Accepted Manuscript

Citation (published version) Spithoff, S., Mathieson, S., Sullivan, F., Guan, Q., Sud, A., Hum, S., & O'Brien, M. A. (2020). Clinical decision support systems for opioid prescribing for chronic non-cancer pain in primary care: a scoping review. The Journal of the American Board of Family Medicine, 33(4), 529-540. https://doi.org/10.3122/jabfm.2020.04.190199

Copyright / License © Copyright 2020 by the American Board of Family Medicine

How to cite TSpace items
Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page.

This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters.
Authors
Sheryl Spithoff MD MSc, Staff Physician, Department of Family and Community Medicine, Women’s College Hospital; Assistant Professor, Department of Family and Community Medicine, University of Toronto; Toronto, ON

Stephanie Mathieson PhD, Research Fellow, Institute for Musculoskeletal Health, Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney; Sydney, Australia

Frank Sullivan FRSE, FRCP, FRCGP, Professor of Primary Care Medicine, University of St Andrews; St Andrews, Scotland; Professor, Department of Family and Community Medicine, University of Toronto; Toronto, ON

Qi Guan MSc, Doctoral Student, Institute of Health Policy, Management and Evaluation, University of Toronto; Toronto, ON

Abhimanyu Sud, MD CCFP, Assistant Professor, Department of Family and Community Medicine; Research Fellow, Medical Psychiatry Alliance; Doctoral Student, Institute of Health Policy, Management and Evaluation, University of Toronto; Toronto, ON

Susan Hum, MSc, Research Associate, Department of Family and Community Medicine, Women’s College Hospital; Toronto, ON

Corresponding author
Sheryl Spithoff: sheryl.spithoff@wchospital.ca

Disclosure Statement
None of the authors have any competing interests to declare.

Funding
This project did not receive specific funding. Sheryl Spithoff was supported by a graduate research award from the University of Toronto Department of Family and Community Medicine; Stephanie Mathieson received fellowship support in 2018 from a National Health and Medical Research Council (NHMRC) program grant (#AP1113532) and 2019 NHMRC Early Career Fellowship (#APP1158463); Frank Sullivan was supported by NYGH as the Gordon F Cheesbrough Research Chair in Family and Community Medicine; Abhimanyu Sud was supported by a graduate research award from the University of Toronto, Department of Family and Community Medicine and a research fellowship from the Medical Psychiatry Alliance, University of Toronto; Qi Guan was supported by a graduate research award from the Institute of Health Policy, Management and Evaluation, University of Toronto.
Acknowledgements
Kaitlin Fuller, Education & Liaison Librarian for the MD Program and the Institute of Medical Science; Gerstein Science Information Centre, University of Toronto

Word count: 3,013
Abstract

Background and objectives: Clinical decision support systems (CDSSs) may help clinicians prescribe opioids for chronic non-cancer pain (CNCP) more appropriately. This scoping review determined the extent and range of the current evidence on CDSSs for opioid prescribing for CNCP in primary care, and whether investigators followed best evidence and current guidance in designing, implementing and evaluating these complex interventions.

Methods: We searched nine electronic databases and other data sources for studies from January 1st 2008 to October 11th 2019. Two reviewers independently screened the citations. One reviewer extracted data and a second verified for accuracy. Inclusion criteria: study of a CDSS for opioid prescribing for CNCP in a primary care clinical setting. We reported quantitative results in tables and qualitative results in narrative form.

Results: Our search yielded 5068 records of which 14 studies met our inclusion criteria. All studies were conducted in the United States. Six studies examined local (eg, health centre) CDSSs and eight examined prescription drug monitoring program (PDMP) CDSSs. Three CDSSs incorporated evidence-based components. Study aims were heterogeneous and study designs included both quantitative and qualitative methodologies. No studies assessed patient health outcomes. Few studies appeared to be following guidance for evaluating complex interventions.

Conclusions: Few studies have rigourously assessed the use of CDSSs for opioid prescribing for CNCP in primary care settings. Going forward, investigators should include evidence-based components into the design of CDSSs and follow guidance for the development and evaluation of complex interventions.
A Scoping Review on Clinical Decision Support Systems for Opioid Prescribing for Chronic Non-Cancer Pain in Primary Care Settings
Abstract

Background and objectives: Clinical decision support systems (CDSSs) may help clinicians prescribe opioids for chronic non-cancer pain (CNCP) more appropriately. This scoping review determined the extent and range of the current evidence on CDSSs for opioid prescribing for CNCP in primary care, and whether investigators followed best evidence and current guidance in designing, implementing and evaluating these complex interventions.

Methods: We searched nine electronic databases and other data sources for studies from January 1st 2008 to October 11th 2019. Two reviewers independently screened the citations. One reviewer extracted data and a second verified for accuracy. Inclusion criteria: study of a CDSS for opioid prescribing for CNCP in a primary care clinical setting. We reported quantitative results in tables and qualitative results in narrative form.

Results: Our search yielded 5068 records of which 14 studies met our inclusion criteria. All studies were conducted in the United States. Six studies examined local (eg, health centre) CDSSs and eight examined prescription drug monitoring program (PDMP) CDSSs. Three CDSSs incorporated evidence-based components. Study aims were heterogeneous and study designs included both quantitative and qualitative methodologies. No studies assessed patient health outcomes. Few studies appeared to be following guidance for evaluating complex interventions.

Conclusions: Few studies have rigourously assessed the use of CDSSs for opioid prescribing for CNCP in primary care settings. Going forward, investigators should include evidence-based components into the design of CDSSs and follow guidance for the development and evaluation of complex interventions.
Introduction

Two countries at the epicentre of the opioid crisis, Canada and the US, (1–4) recently released clinical practice guidelines for opioid prescribing for chronic non-cancer pain (CNCP) (5,6). These guidelines recommend against using opioid analgesics for CNCP because the harms frequently outweigh benefits (7–10). When opioids are prescribed for CNCP, the guidelines recommend risk mitigation strategies and opioid dose tapering. Both guidelines target primary care providers (PCPs), since they write about half of all opioid analgesic prescriptions in North America (11–13). However, evidence shows that PCPs may have difficulty adopting recommended clinical practices (14–21). Clinical decision support may provide assistance.

Clinical decision support systems (CDSSs) are electronic systems that assist health care providers in clinical decision-making, by providing patient-specific data at the point-of-care (14–16). Studies show that CDSSs lead to improvements in clinician performance (a care process measure), such as ordering appropriate tests and safer prescribing (17–25). Some CDSS design components are evidence-based, including; requiring a reason for an over-ride; activating automatically (i.e., the CDSS runs without requiring provider initiation); integrating into the electronic medical record (EMR); and providing advice to patients (e.g. written materials), as well as clinicians (14,20,26–28). These components lead to improvements in care process outcomes. Studies in which the CDSS evaluators are also the developers tend to show positive impact on process outcomes (26,27).

However, the impact of CDSS on important patient health outcomes or population health outcomes is unclear (17–20), and widespread adoption is often limited by implementation issues (29–34). Additionally, CDSSs can be difficult to develop and evaluate because they are complex interventions that seek to change the functioning of a complex adaptive system such as a primary care clinic (35). Therefore, the Medical Research Council in the United Kingdom (UK) recommends that researchers design and evaluate these interventions through a carefully staged series of studies targeting key uncertainties as well as a definitive evaluation (35,36). All steps should include process evaluations and assess for unintended consequences (37).

CDSSs can have a variety of roles in improving adherence to opioid prescribing guidelines for CNCP. They can be used to reduce the number of new opioid prescriptions for acute pain (38)
and to reduce the initiation of opioid prescribing for CNCP. They can also be used to improve
prescribing and other measures like risk mitigation strategies for patients already receiving
opioids for CNCP. This is the most challenging role for a CDSS these patients are at high risk of
harms and changing prescribing is very difficult (39,40).

Several studies have evaluated CDSSs for opioid prescribing for CNCP in primary care settings
(41–44). These studies report that the use of a CDSS led to a reduction in opioid prescribing or
improved adherence to clinical practice guidelines (41–44). Several studies have also evaluated
prescription drug monitoring program (PDMP) CDSSs for opioid prescribing for CNCP in
primary care settings. PDMP CDSSs are large, centralized, government-run databases that
prescribers can provide point-of-care for information on a patient’s opioid prescriptions (45,46).
While one PDMP CDSS study found that physicians wrote fewer opioid prescription in 61% of
cases, (47); another study reported no association between PDMP implementation status and
requirement levels (from no requirements to a mandatory requirement to check the PDMP before
prescribing) and physicians’ opioid prescribing for CNCP (48). Four other PDMP CDSS studies
examined PCPs’ use of, and views on PDMPs (49–52). To date, however, the literature in this
emerging field has not been systematically summarized and analyzed so the benefits and risks of
implementing a CDSS are unclear.

This scoping review determined the extent and range of the current evidence on CDSSs for
opioid prescribing for CNCP in primary care. Our secondary aim was to determine whether
researchers followed best evidence for the design of the CDSSs and current guidance for the
evaluation of complex interventions.

Methods
We conducted a scoping review using the frameworks (53,54) described by Colquhoun et al (55),
and the methods outlined by The Joanna Briggs Institute (56). We followed the reporting
guidelines from the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) Extension for Scoping reviews (PRISMA-ScR) (57). We created an a priori protocol
and used an iterative approach. Modifications included a secondary research aim and a change to
the data extraction plan.
Study eligibility: We included peer- and non-peer reviewed studies that used quantitative, qualitative and mixed-methods methodologies. We excluded non-systematic reviews, letters, opinion articles, analysis articles, clinical practice guidelines and policy documents. We included all studies where the population was PCPs (ie, family physicians, emergency medicine physicians, nurse practitioners (NPs) and primary care internists) working in a primary care setting. Studies that reported less than 50% PCPs or did not report the percentage of PCPs were excluded unless results were reported by subgroup. We included all studies that assessed a CDSS that sought to improve opioid prescribing for CNCP patients in a primary care clinical setting. We excluded studies where primary care providers were working in a secondary and tertiary settings such as a pain clinic or addiction clinic. We excluded primary care pediatric clinics. We defined a CDSS as an electronic system that assisted health care providers in clinical decision-making, by providing patient-specific data at the point-of-care (14–16). We included studies where the CDSS was integrated into the EMR, or functioned independently (eg, web-accessed), or was embedded within a larger intervention. We excluded studies where CDSS use was not specified, where it was used for another reason, or where it was not implemented in clinical settings.

Data sources and searches

We searched electronic databases (MEDLINE (via OVID), EMBASE, CINAHL, CENTRAL, PsycINFO and International Pharmaceutical Abstracts (via OVIDSP)) from January 1st 2008 – October 11 2019. CDSSs developed prior to this period likely evolved or became obsolete (59). We built a comprehensive search strategy, including the terms “opioid,” and “clinical decision support systems.” Since studies used a large number of different keywords and medical subject headings (MeSH) for a CDSS, we had to conduct a broad search using a large variety of terms, including: computer systems, health informatics, clinical decision making (Appendix 1 Medline search strategy). The Medline strategy (Appendix 1) was adapted for the other databases. We used the Canadian Agency for Drugs and Technologies (CADTH) approach to our grey literature search (Appendix 2 Grey literature search) (60). We also searched trial registries (ClinicalTrials.gov, World Health Organization International Clinical Trials Registry Platform
(WHO ICTRP)), checked reference lists of additional eligible studies and contacted experts (ie, lead authors on included studies, registered protocols and systematic reviews of CDSSs).

Screening and selection
Two researchers independently screened abstracts to determine if they met inclusion criteria. Two researchers then independently screened the full-text of all relevant articles. For both steps, after we screened 10 to 15 titles and articles, we checked inter-reviewer agreement to ensure it was least 80% before continuing further. When there were disagreements, a third researcher (MAO) assisted in making the final decision. We contacted authors for more information when full text was not available online (58).

Data extraction
We created and pilot-tested a data extraction form to record the following items: study population and setting, description of the intervention and implementation process, type of CDSS, inclusion of evidence-based CDSS components (components that the literature has consistently found to have an impact on outcomes: requiring a reason for an over-ride; activating automatically; integrating into the electronic medical record (EMR); and providing advice to patients and clinicians \(14,20,26–28\)), study aims, methodology and design, study outcomes, funding information, conflicts of interest, and adherence to guidance for complex interventions (eg, study was part of a stepped approach to development and evaluation; assessment for unintended consequences; planned process evaluation; process and outcome measures; theoretical approach to guide implementation and/or evaluation). One reviewer extracted data and another researcher reviewed their work (SMS, MAO, QG, SM, SH). This was a modification from our protocol that specified that two researchers would independently extract the data.

Data synthesis
We used a flow diagram to report on study selection. We reported quantitative data in tabular format. We wrote narrative summaries using contextual and process-oriented data. We did not conduct a detailed assessment of study quality, assess for reporting bias, or risk of bias consistent with current guidance on conducting scoping reviews \(55–57\).
Results

Our literature search identified 5068 citations from which 14 were included in the scoping review (Figure 1). Six studies examined local CDSSs (e.g., specific health system, centre or clinic) (41,43,44,61–63) while eight examined state-run, web-based, central PDMP CDSSs (47,49–52,64–66) Results using these two typologies are summarized in Table 1. Study descriptions are detailed in Appendix 3.

CDSS description

Types of CDSSs included protocols (i.e., forms that guide clinical management) in the EMR, intranet dashboards, EMR alerts, data repositories and web-based clinical tools. Four local CDSSs were integrated into the EMR (43,44,62) and two automatically activated (44,62). The other two required the PCP to activate the CDSS. Studies assessing PDMP CDSSs did not report any evidence-based design components.

Study characteristics

All studies occurred in the US and practice settings were mostly primary care clinics. Three were set in the emergency department (44,47,49). All of the local CDSSs, and three of the PDMP CDSS studies (47,64,66) were designed to assess whether a CDSS alone or incorporated into a multi-faceted intervention improved prescribing or adherence to guidelines. The remaining PDMP CDSS studies determined providers’ behaviour, knowledge of, attitudes toward and use of CDSSs. Local CDSS study designs included four pre-post interventions, a cluster RCT and a mixed-methods evaluation. The eight PDMP CDSS studies included a wide variety of study designs including: three pre-post interventions, a cross-sectional survey, two qualitative, one mixed methods and one retrospective cohort. Study aims and designs are summarized in Table 2 and described in detail in Appendix 3. One study was part of a stepped approach in evaluating a complex intervention (63). About half of the studies that assessed the impact of an intervention included a process evaluation (measures assessing if program components had been implemented
as intended) (41,43,47,49,62–64). Two studies reported using a theoretical approach in implementation and evaluation processes (61,63).

Implementation processes

All of the studies on local CDSSs described their implementation process, but provided little detail. None of the PDMP CDSS studies described implementation processes.

Study Findings

Local CDSSs

Anderson et al. found that the CDSS and summary reports improved compliance with guidelines (41); Canada et al. reported that a CDSS plus monetary incentives improved adherence to guidelines (43); Downes et al. found that a CDSS and electronic reports reduced opioid prescribing and increased urine drug testing and use of pain contracts (62); Gugelmann et al. found that the CDSS reduced opioid prescribing (44); Liebschutz et al. reported that a multi-faceted intervention that included a CDSS in both study arms also reduced opioid prescribing (61); and Seal et al. found in a multi-component intervention (with CDSS in both arms) that providers “abandoned use” of the CDSS (63).

PDMP CDSSs

Baehren et al. found that physicians who used PDMP data wrote fewer opioid prescriptions in 61% of cases and more opioid prescriptions in 39% of cases (47); Binswanger et al. found that a multi-component intervention improved adherence to guidelines (64); Chaudhary et al. found that most PCPs reported always checking the PDMP before prescribing opioids to new patients (52). Click et al. found that providers have positive views about PDMPs, but reported barriers in using them (50). Coleman et al. found that in five of seven records of patient prescribed opioids, providers accessed the PDMP (51). Freeman et al. reported that PDMPs are key tools for PCPs and that barriers include a lack of integration (65); Kohlbeck et al. reported that an educational intervention increased providers’ knowledge of, behaviour and attitudes toward PDMP CDSSs (49); Patchett et al. reported that a multi-component intervention increased use of a PDMP and led to a reduction in opioid prescribing (66).
Funding and conflict of interest

All but two local CDSS studies reported on funding for CDSS evaluation (44,62); and three others were missing information on funding for CDSS development (44,63). All PDMP studies except one (66) provided information on funding for evaluation, but none provided information on funding for development. For all six local CDSS studies, the developers were also the evaluators or the relationship was unclear or not stated. No evaluators of PDMPs provided information on their relationship to the PDMP developer (Table 3).

Discussion

We identified 14 studies published between 2009 and 2019 that examined CDSSs for opioid prescribing for CNCP in primary care clinical settings. Six of the studies examined local CDSSs (that were used locally within a specific health centre, health system or clinic) and eight examined PDMP CDSSs. Studies evaluating CDSS impact found that the CDSS (alone or more commonly, part of a dual or multi-component intervention) led to more appropriate prescribing practices and/or adherence to guidelines. Several PDMP CDSS studies assessed providers’ views on, and/or their use of PDMP CDSSs. These studies reported frequent use of the PDMP CDSS and positive views towards the CDSS with some acknowledgement of the barriers and limitations. These findings are similar to a recent qualitative rapid review that asked providers about the use of PDMPs (67). No study, however, contained an assessment of patient health outcomes or assessed for unintended consequences. Additionally, in four studies the evaluators were also the CDSS developers, a potentially useful situation but one that presents a potential conflict of interest (26,27), that was not addressed by the investigators. We also found that few CDSSs included evidence-based components and that in only one study investigators reported following current guidance for development and evaluation of complex interventions (35,36).

Our finding that there were only 14 studies, and only one RCT, which met our inclusion criteria is surprising. In contrast, a 2015 systematic review found seven RCT studies of CDSSs for antibiotic prescribing by primary care providers (28). There may be several contributing factors. The prescription opioid crisis only gained widespread attention in the last decade (68), and it
takes time to develop a complex intervention like a CDSS (36). It is also possible that some CDSSs failed to show promise early on and development was subsequently stalled or halted. Accordingly, there are a number of reports on the development of a CDSS for opioid prescribing for CNCP where clinical outcomes have not been reported yet (69–72). And finally, it is possible that CDSSs are being used without an evaluation plan, as has occurred with many PDMP CDSSs (73). This may be because of a demand for immediate solutions to the opioid crisis and an evaluation of a CDSS takes significant time and money. However, since CDSSs frequently do not improve patient outcomes (17–20), and may lead to unintended consequences, a comprehensive evaluation is essential (74).

Most studies in our review that assessed the impact of the CDSS reported an improvement in prescribing or better adherence to clinical practice guidelines. This aligns with previous research in other fields: CDSSs have a modest impact on clinician performance (a care process outcome) (17–25). However, these results need careful interpretation. Most studies were pre-post, non-randomized control or observational designs. Although—consistent with guidance for scoping reviews (55,56)—we did not conduct a quality assessment; these types of study designs have greater threats to validity (75). Additionally, in most of the studies, the CDSS was part of a larger intervention, so its specific impact was unclear. Another reason for caution is that no studies assessed patient health outcomes, such as quality of life, morbidity and mortality (76–78).

Reductions in opioid prescribing and better adherence to guidelines may have unintended consequences (36). For example, studies report that patients often turn to illicit sources of opioids when they have reduced access to prescribed opioids, increasing their risk of overdose (79–84). Several studies in a systematic review found that heroin overdoses increased after a PDMP CDSS was implemented (74). A more recent systematic review, however, found no consistent association between population-level opioid-related harms (including heroin use and overdoses) and PDMP CDSSs (85). We also noted a conflict of interest in some studies where the developers were also the evaluators. Systematic reviews in other fields have demonstrated that when the CDSS evaluator is also the developer, outcomes are better (26,27). It is possible that developers achieve better outcomes because they design effective implementation plans (26), but it is possible that the conflict of interest leads to conscious or unconscious bias (26,86–92). Interestingly, none of the studies reported funding from or involvement of for-profit entities.
It is possible that CDSSs developed by for-profit entities are not undergoing a publicly-reported evaluation. This is problematic, and as a recent criminal case demonstrated, can lead to potential harm to patients (93).

We found that few of the CDSSs incorporated evidence-based design components. In only one study did researchers follow guidance for designing and evaluating complex interventions. Developers may not have incorporated evidence-based components because of the lag time between development and evaluation: when the CDSS was created the developers may not have had access to systematic reviews on the various components. The developer may also feel that the evidence does not apply to this particular subspecialty or setting (94). Another reason may be a general excitement and overconfidence in e-health technologies (95). Funders and developers may be too eager to solve the problem of unsafe opioid prescribing using e-health technologies and are not ensuring that developers are building on information from the medical literature (95). Changes are occurring. Between 2012 and 2016, the Substance Abuse and Mental Health Services Administration (SAMHSA) funded nine projects to integrate PDMP data into EMRs (96). Investigators might not follow guidance for complex evaluations because it is a lengthy and expensive iterative process prior to a definitive evaluation (35–37,97). This is a widespread issue—few complex interventions appear to undergo modelling, pilot and feasibility testing (98), and many lack process evaluations (99,100). This is problematic. If researchers conduct a trial without testing components, possible causal pathways, uncertainties, contextual factors, and implementation approaches, they risk wasting resources on an expensive trial and perhaps causing harm (35,37,101). Conversely, if the evaluation takes too long, the technology could become obsolete before it gains widespread uptake (59). Adopting rapid, concurrent and iterative pilot and feasibility studies may be the best approach (102–104).

Limitations

There are two main limitations in our review. In the grey literature search we may have missed non-English language studies, as we conducted the searches only in English. Second, several of the studies included both PCPs and other provider types (we excluded those with less than 50% PCPs), and, as these studies only reported aggregate outcomes, they may not accurately reflect the PCP population.
Conclusion and next steps

Our review reveals that few studies have rigourously assessed the use of CDSSs in the context of opioid prescribing for CNPP in the primary care setting. More high quality studies are needed. Going forward, investigators should include evidence-based components into the design of CDSSs and follow guidance for the development and evaluation of complex interventions, including pilot studies, process evaluations and an assessment for unintended consequences.
References

1. Fischer B, Keates A, Bühringer G, Reimer J, Rehm J. Non-medical use of prescription opioids and prescription opioid-related harms: why so markedly higher in North America compared to the rest of the world? Addict Abingdon Engl. 2014 Feb;109(2):177–81.

2. Report of the International Narcotics Control Board for 2017 [Internet]. International Narcotics Control Board; 2017. Available from: https://www.incb.org/incb/en/publications/annual-reports/annual-report-2017.html

3. Seth P. Overdose Deaths Involving Opioids, Cocaine, and Psychostimulants — United States, 2015–2016. MMWR Morb Mortal Wkly Rep [Internet]. 2018 [cited 2018 Apr 23];67. Available from: https://www.cdc.gov/mmwr/volumes/67/wr/mm6712a1.htm

4. Government of Canada. National Report: Apparent opioid-related deaths in Canada [Internet]. 2018 [cited 2018 Apr 23]. Available from: www.canada.ca/en/public-health/services/publications/healthy-living/national-report-apparent-opioid-related-deaths-released-march-2018.html

5. Dowell D, Haegerich TM, Chou R. CDC Guideline for Prescribing Opioids for Chronic Pain--United States, 2016. JAMA. 2016 Apr 19;315(15):1624–45.

6. Busse J. The 2017 Canadian Guideline for Opioids for Chronic Non-Cancer Pain [Internet]. National pain center; 2017. Available from: http://www.cmaj.ca/content/suppl/2017/05/03/189.18.E659.DC1/170363-guide-1-at-updated.pdf

7. Dunn KM, Saunders KW, Rutter CM, Banta-Green CJ, Merrill JO, Sullivan MD, et al. Overdose and prescribed opioids: Associations among chronic non-cancer pain patients. Ann Intern Med. 2010 Jan 19;152(2):85–92.

8. Bohnert AB, Valenstein M, Bair MJ, et al. Association between opioid prescribing patterns and opioid overdose-related deaths. JAMA. 2011 Apr 6;305(13):1315–21.

9. Gomes T, Mamdani MM, Dhalla IA, Paterson JM, Juurlink DN. Opioid dose and drug-related mortality in patients with nonmalignant pain. Arch Intern Med. 2011 Apr 11;171(7):686–91.

10. Chou R, Turner JA, Devine EB, Hansen RN, Sullivan SD, Blazina I, et al. The effectiveness and risks of long-term opioid therapy for chronic pain: a systematic review for a National Institutes of Health Pathways to Prevention Workshop. Ann Intern Med. 2015 Feb 17;162(4):276–86.

11. Volkow ND, McLellan TA, Cotto JH, Karithanom M, Weiss SRB. Characteristics of Opioid Prescriptions in 2009. JAMA. 2011 Apr 6;305(13):1299–301.

12. Levy B, Paulozzi L, Mack KA, Jones CM. Trends in Opioid Analgesic-Prescribing Rates by Specialty, U.S., 2007-2012. Am J Prev Med. 2015 Sep;49(3):409–13.
13. Health Quality Ontario. Starting on Opioids in Ontario [Internet]. 2017 [cited 2018 Jul 12]. Available from: http://startingonopioids.hqontario.ca/

14. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ. 2005 Apr 2;330(7494):765.

15. Sim I, Gorman P, Greenes RA, Haynes RB, Kaplan B, Lehmann H, et al. Clinical Decision Support Systems for the Practice of Evidence-based Medicine. J Am Med Inform Assoc JAMIA. 2001;8(6):527–34.

16. Haynes RB, Wilczynski NL. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: Methods of a decision-maker-researcher partnership systematic review. Implement Sci IS. 2010 Feb 5;5:12.

17. Jia P, Zhang L, Chen J, Zhao P, Zhang M. The Effects of Clinical Decision Support Systems on Medication Safety: An Overview. PLOS ONE. 2016 Dec 15;11(12):e0167683.

18. Sahota N, Lloyd R, Ramakrishna A, Mackay JA, Prorok JC, Weise-Kelly L, et al. Computerized clinical decision support systems for acute care management: A decision-maker-researcher partnership systematic review of effects on process of care and patient outcomes. Implement Sci IS. 2011 Aug 3;6:91.

19. Roshanov PS, Misra S, Gerstein HC, Garg AX, Sebaldt RJ, Mackay JA, et al. Computerized clinical decision support systems for chronic disease management: A decision-maker-researcher partnership systematic review. Implement Sci IS. 2011 Aug 3;6:92.

20. Moja L, Kwag KH, Lytras T, Bertizzolo L, Brandt L, Pecoraro V, et al. Effectiveness of Computerized Decision Support Systems Linked to Electronic Health Records: A Systematic Review and Meta-Analysis. Am J Public Health. 2014 Dec;104(12):e12–22.

21. Jaspers MWM, Smeulers M, Vermeulen H, Peute LW. Effects of clinical decision-support systems on practitioner performance and patient outcomes: a synthesis of high-quality systematic review findings. J Am Med Inform Assoc JAMIA. 2011;18(3):327–34.

22. Nieuwlaat R, Connolly SJ, Mackay JA, Weise-Kelly L, Navarro T, Wilczynski NL, et al. Computerized clinical decision support systems for therapeutic drug monitoring and dosing: A decision-maker-researcher partnership systematic review. Implement Sci IS. 2011 Aug 3;6:90.

23. Souza NM, Sebaldt RJ, Mackay JA, Prorok JC, Weise-Kelly L, Navarro T, et al. Computerized clinical decision support systems for primary preventive care: A decision-maker-researcher partnership systematic review of effects on process of care and patient outcomes. Implement Sci IS. 2011 Aug 3;6:87.

24. Hemens BJ, Holbrook A, Tonkin M, Mackay JA, Weise-Kelly L, Navarro T, et al. Computerized clinical decision support systems for drug prescribing and management: a decision-maker-researcher partnership systematic review. Implement Sci IS. 2011;6:89.
25. Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al. Effect of clinical decision-support systems: a systematic review. Ann Intern Med. 2012 Jul 3;157(1):29–43.

26. Roshanov PS, Fernandes N, Wilczynski JM, Hemens BJ, You JI, Handler SM, et al. Features of effective computerised clinical decision support systems: meta-regression of 162 randomised trials. BMJ. 2013 Feb 14;346:f657.

27. Garg AX, Adhikari NKJ, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005 Mar 9;293(10):1223–38.

28. Holstiege J, Mathes T, Pieper D. Effects of computer-aided clinical decision support systems in improving antibiotic prescribing by primary care providers: a systematic review. J Am Med Inform Assoc JAMIA. 2015 Jan;22(1):236–42.

29. Stultz JS, Nahata MC. Computerized clinical decision support for medication prescribing and utilization in pediatrics. J Am Med Inform Assoc JAMIA. 2012;19(6):942–53.

30. Moxey A, Robertson J, Newby D, Hains I, Williamson M, Pearson S-A. Computerized clinical decision support for prescribing: provision does not guarantee uptake. J Am Med Inform Assoc JAMIA. 2010;17(1):25–33.

31. Patterson ES, Doebbeling BN, Fung CH, Militello L, Anders S, Asch SM. Identifying barriers to the effective use of clinical reminders: bootstrapping multiple methods. J Biomed Inform. 2005 Jun;38(3):189–99.

32. Arts DL, Medlock SK, van Weert HCPM, Wyatt JC, Abu-Hanna A. Acceptance and barriers pertaining to a general practice decision support system for multiple clinical conditions: A mixed methods evaluation. PLoS ONE [Internet]. 2018 Apr 19 [cited 2018 Jul 19];13(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908177/

33. Dalleur O, Seger DL, Slight SP, Amato M, Eguale T, Nanji KC, et al. Inappropriate overrides of age-related alerts in prescriber order entry. J Gen Intern Med. 2015 Apr;2):S189–90.

34. Slight SP, Beeler PE, Seger DL, Dalleur O, Amato M, Eguale T, et al. An evaluation of drug-allergy interaction alert overrides in inpatients. J Gen Intern Med. 2015 Apr;2):S81.

35. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. The BMJ [Internet]. 2008 Sep 29 [cited 2018 Jul 26];337. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769032/

36. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: The new Medical Research Council guidance. Int J Nurs Stud. 2013 May 1;50(5):587–92.
37. Catwell L, Sheikh A. Evaluating eHealth Interventions: The Need for Continuous Systemic Evaluation. PLoS Med [Internet]. 2009 Aug 18 [cited 2018 Sep 24];6(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719100/

38. Shah A. Characteristics of Initial Prescription Episodes and Likelihood of Long-Term Opioid Use — United States, 2006—2015. MMWR Morb Mortal Wkly Rep [Internet]. 2017 [cited 2020 Feb 14];66. Available from: https://www.facebook.com/CDCMMWR

39. Dasgupta N, Beletsky L, Ciccarone D. Opioid Crisis: No Easy Fix to Its Social and Economic Determinants. Am J Public Health. 2018 Feb;108(2):182–6.

40. Brooks EA, Unruh A, Lynch ME. Exploring the lived experience of adults using prescription opioids to manage chronic noncancer pain. Pain Res Manag J Can Pain Soc. 2015;20(1):15–22.

41. Anderson D, Zlateva I, Khatri K, Ciaburri N. Using health information technology to improve adherence to opioid prescribing guidelines in primary care. Clin J Pain. 2015;31(6):573–9.

42. Patel S, Carmichael JM, Taylor JM, Boungthavong M, Higgins DT. Evaluating the Impact of a Clinical Decision Support Tool to Reduce Chronic Opioid Dose and Decrease Risk Classification in a Veteran Population. Ann Pharmacother. 2017 Oct 1;1060028017739388.

43. Canada RE, DiRocco D, Day S. A better approach to opioid prescribing in primary care. J Fam Pract. 2014;63(6):E1-8.

44. Gugelmann H, Shofer FS, Meisel ZF, Perrone J. Multidisciplinary intervention decreases the use of opioid medication discharge packs from 2 urban EDs. Am J Emerg Med. 2013 Sep 1;31(9):1343–8.

45. Sproule BA. Prescription Monitoring Programs in Canada: Best Practice and Program Review [Internet]. Canadian Centre on Substance Abuse, Ottawa, ON; 2015 [cited 2018 Jun 14]. Available from: http://www.ccsa.ca/Resource%20Library/CCSA-Prescription-Monitoring-Programs-in-Canada-Report-2015-en.pdf

46. Rutkow L, Smith KC, Lai AY, Vernick JS, Davis CS, Alexander GC. Prescription drug monitoring program design and function: A qualitative analysis. Drug Alcohol Depend. 2017;180:395–400.

47. Baehren DF, Marco CA, Droz DE, Sinha S, Callan EM, Akpunonu P. A statewide prescription monitoring program affects emergency department prescribing behaviors. Ann Emerg Med. 2010 Jul;56(1):19-23.e1-3.

48. Lin HC, Wang Z, Boyd C, Simoni-Wastila L, Buu A. Associations between statewide prescription drug monitoring program (PDMP) requirement and physician patterns of prescribing opioid analgesics for patients with non-cancer chronic pain. Addict Behav. 2018;76:348–54.
49. Kohlbeck S, Akert B, Pace C, Zosel A. A multistep approach to address clinician knowledge, attitudes, and behavior around opioid prescribing. Wis Med J. 2018;117:38–41.

50. Click IA, Basden JA, Bohannon JM, Anderson H, Tudiver F. Opioid Prescribing in Rural Family Practices: A Qualitative Study. Subst Use Misuse. 2018 Mar 21;53(4):533–40.

51. Coleman CD. Evidence-Based Strategies To Minimize Risk For Opioid Pain Medication Misuse Among Patients With Chronic Pain In A Primary Care Setting. Diss Abstr Int Sect B Sci Eng. 2016;64.

52. Chaudhary S, Compton P. Use of risk mitigation practices by family nurse practitioners prescribing opioids for the management of chronic nonmalignant pain. Subst Abuse. 2017 Mar;38(1):95–104.

53. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005 Feb 1;8(1):19–32.

54. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010 Sep 20;5:69.

55. Colquhoun HL, Levac D, O’Brien KK, Straus S, Tricco AC, Perrier L, et al. Scoping reviews: time for clarity in definition, methods, and reporting. J Clin Epidemiol. 2014 Dec;67(12):1291–4.

56. Peters M, Godfrey C, McInerney P, Soares C, Khalil H, Parker D. The Joanna Briggs Institute Reviewers’ Manual 2015: Methodology for JBI Scoping Reviews. 2015 Jan 1 [cited 2018 Feb 7]; Available from: https://espace.library.uq.edu.au/view/UQ:371443

57. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med [Internet]. 2018 Sep 4 [cited 2018 Sep 21]; Available from: http://annals.org/article.aspx?doi=10.7326/M18-0850

58. Li G, Abbade LPF, Nwosu I, Jin Y, Leenus A, Maaz M, et al. A scoping review of comparisons between abstracts and full reports in primary biomedical research. BMC Med Res Methodol. 2017 Dec 29;17(1):181.

59. Main C, Moxham T, Wyatt JC, Kay J, Anderson R, Stein K. Computerised decision support systems in order communication for diagnostic, screening or monitoring test ordering: systematic reviews of the effects and cost-effectiveness of systems [Internet]. NIHR Journals Library; 2010 [cited 2018 Jan 7]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK56829/

60. Grey Matters: a practical tool for searching health-related grey literature | CADTH.ca [Internet]. [cited 2018 Sep 24]. Available from: https://www.cadth.ca/resources/finding-evidence/grey-matters
61. Liebschutz JM, Xuan Z, Shanahan CW, LaRochelle M, Keosaian J, Beers D, et al. Improving Adherence to Long-term Opioid Therapy Guidelines to Reduce Opioid Misuse in Primary Care: A Cluster-Randomized Clinical Trial. JAMA Intern Med. 2017;177:1265–72.

62. Downes JM, Klepser DG, Foster J, Nelson M. Development of a standardized approach for managing opioids in adults with chronic noncancer pain. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2018;75(5):321–6.

63. Seal K.H., Borsari B., Tighe J., Cohen B.E., Delucchi K., Morasco B.J., et al. Optimizing pain treatment interventions (OPTI): A pilot randomized controlled trial of collaborative care to improve chronic pain management and opioid safety-Rationale, methods, and lessons learned. Contemp Clin Trials. 2019;77((Trafton) Program Evaluation and Resource Center (PERC), VA Office of Mental Health Operations, United States):76–85.

64. Binswanger IA, Joseph N, Hanratty R, Gardner EM, Durfee J, Narwaney KJ, et al. Novel Opioid Safety Clinic Initiative to Deliver Guideline-Concordant Chronic Opioid Therapy in Primary Care. Mayo Clin Proc Innov Qual Outcomes. 2018;2(4):309–16.

65. Freeman PR, Curran GM, Drummond KL, Martin BC, Teeter BS, Bradley K, et al. Utilization of prescription drug monitoring programs for prescribing and dispensing decisions: Results from a multi-site qualitative study. Res Soc Adm Pharm RSAP. 2019;15(6):754–60.

66. Patchett D., Grover M., Kresin M., Bryan M., Nordrum J., Buras M., et al. The benefits of a standardized approach to opioid prescribing. J Fam Pract. 2019;68(6):E1–7.

67. Prescribing and Dispensing Policies to Address Harms Associated With Prescription Drug Abuse | CADTH.ca [Internet]. [cited 2018 Aug 20]. Available from: https://www.cadth.ca/prescribing-and-dispensing-policies-address-harms-associated-prescription-drug-abuse

68. McCarthy M. Containing the opioid overdose epidemic. BMJ. 2012 Dec 14;345(dec14 2):e8340–e8340.

69. Trafton J, Martins S, Michel M, Lewis E, Wang D, Combs A, et al. Evaluation of the acceptability and usability of a decision support system to encourage safe and effective use of opioid therapy for chronic, noncancer pain by primary care providers. Pain Med. 2010;11:575–85.

70. Furlan AD, Reardon R, Salach L. The opioid manager: a point-of-care tool to facilitate the use of the Canadian Opioid Guideline. J Opioid Manag. 2012;8(1):57–61.

71. Midboe AM, Lewis ET, Cronkite RC, Chambers D, Goldstein MK, Kerns RD, et al. Behavioral medicine perspectives on the design of health information technology to improve decision-making, guideline adherence, and care coordination in chronic pain management. Transl Behav Med. 2011;1:35–44.
72. Harle CA, Bauer SE, Hoang HQ, Cook RL, Hurley RW, Fillingim RB. Decision support for chronic pain care: how do primary care physicians decide when to prescribe opioids? a qualitative study. BMC Fam Pract. 2015;16:48.

73. Finley EP, Garcia A, Rosen K, McGeary D, Pugh MJ, Potter JS. Evaluating the impact of prescription drug monitoring program implementation: a scoping review. BMC Health Serv Res. 2017;17(1):420.

74. Fink DS, Schleimer JP, Sarvet A, Grover KK, Delcher C, Castillo-Carniglia A, et al. Association Between Prescription Drug Monitoring Programs and Nonfatal and Fatal Drug Overdoses: A Systematic Review. Ann Intern Med. 2018 Jun 5;168(11):783.

75. Grading quality of evidence and strength of recommendations. BMJ. 2004 Jun 19;328(7454):1490.

76. Health Quality Ontario. Recommendations for Adoption: Opioid Prescribing for Chronic Pain [Internet]. 2018 [cited 2018 Jul 20]. Available from: http://www.hqontario.ca/Portals/0/documents/evidence/quality-standards/qs-opioid-chronic-pain-recommendations-for-adoption-en.pdf

77. Ciani O, Buyse M, Drummond M, Rasi G, Saad ED, Taylor RS. Time to Review the Role of Surrogate End Points in Health Policy: State of the Art and the Way Forward. Value Health. 2017 Mar 1;20(3):487–95.

78. Wittes J, Lakatos E, Probstfield J. Surrogate endpoints in clinical trials: Cardiovascular diseases. Stat Med. 1989 Apr 1;8(4):415–25.

79. Gomes T, Khuu W, Martins D, Tadrous M, Mamdani MM, Paterson JM, et al. Contributions of prescribed and non-prescribed opioids to opioid related deaths: population based cohort study in Ontario, Canada. BMJ. 2018 Aug 29;362:k3207.

80. Mars SG, Bourgeois P, Karandinos G, Montero F, Ciccarone D. “Every ‘never’ I ever said came true”: transitions from opioid pills to heroin injecting. Int J Drug Policy. 2014 Mar;25(2):257–66.

81. Compton WM, Jones CM, Baldwin GT. Relationship between Nonmedical Prescription-Opioid Use and Heroin Use. N Engl J Med. 2016 Jan 14;374(2):154–63.

82. Baldwin N, Gray R, Goel A, Wood E, Buxton JA, Rieb LM. Fentanyl and heroin contained in seized illicit drugs and overdose-related deaths in British Columbia, Canada: An observational analysis. Drug Alcohol Depend. 2018 Apr 1;185:322–7.

83. Rubin R. Illicit Fentanyl Driving Opioid Overdose Deaths. JAMA. 2017 Dec 12;318(22):2174–2174.

84. O’Donnell J, Gladden RM, Seth P. Trends in Deaths Involving Heroin and Synthetic Opioids Excluding Methadone, and Law Enforcement Drug Product Reports, by Census Region — United States, 2006–2015 [Internet]. 2017 [cited 2018 Oct 1]. Available from: https://www-
Rhodes E, Wilson M, Robinson A, Hayden JA, Asbridge M. The effectiveness of prescription drug monitoring programs at reducing opioid-related harms and consequences: a systematic review. BMC Health Serv Res. 2019 Nov 1;19(1):784.

Heres S, Davis J, Maino K, Jetzinger E, Kissling W, Leucht S. Why Olanzapine Beats Risperidone, Risperidone Beats Quetiapine, and Quetiapine Beats Olanzapine: An Exploratory Analysis of Head-to-Head Comparison Studies of Second-Generation Antipsychotics. Am J Psychiatry. 2006 Feb 1;163(2):185–94.

Lexchin J, Bero LA, Djulbegovic B, Clark O. Pharmaceutical industry sponsorship and research outcome and quality: systematic review. BMJ. 2003 May 31;326(7400):1167.

Lesser LI, Ebbeling CB, Goozner M, Wypij D, Ludwig DS. Relationship between funding source and conclusion among nutrition-related scientific articles. PLoS Med. 2007 Jan;4(1):e5.

Procyzhyn RM, Chau A, Fortin P, Jenkins W. Prevalence and outcomes of pharmaceutical industry-sponsored clinical trials involving clozapine, risperidone, or olanzapine. Can J Psychiatry Rev Can Psychiatr. 2004 Sep;49(9):601–6.

Turner EH, Matthews AM, Linardatos E, Tell RA, Rosenthal R. Selective Publication of Antidepressant Trials and Its Influence on Apparent Efficacy. N Engl J Med. 2008 Jan 17;358(3):252–60.

Doshi P, Dickersin K, Healy D, Vedula SS, Jefferson T. Restoring invisible and abandoned trials: a call for people to publish the findings. BMJ. 2013 Jun 13;346(jun13 2):f2865–f2865.

Chan A-W, Hróbjartsson A, Haahr MT, Götzsche PC, Altman DG. Empirical Evidence for Selective Reporting of Outcomes in Randomized Trials: Comparison of Protocols to Published Articles. JAMA. 2004 May 26;291(20):2457–65.

Electronic Health Records Vendor to Pay $145 Million to Resolve Criminal and Civil Investigations [Internet]. 2020 [cited 2020 Feb 14]. Available from: https://www.justice.gov/opa/pr/electronic-health-records-vendor-pay-145-million-resolve-criminal-and-civil-investigations-0

Mair FS, May C, O’Donnell C, Finch T, Sullivan F, Murray E. Factors that promote or inhibit the implementation of e-health systems: an explanatory systematic review. Bull World Health Organ. 2012 May 1;90(5):357–64.

Black AD, Car J, Pagliari C, Anandan C, Cresswell K, Bokun T, et al. The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview. PLoS Med [Internet]. 2011 Jan 18 [cited 2018 Jul 18];8(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022523/
96. National Center for Injury Prevention and Control. Integrating & Expanding Prescription Drug Monitoring Program Data: Lessons from Nine States. Centre for Disease Control and Prevention; 2017.

97. Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, et al. Process evaluations of complex interventions: UK Medical Research Council (MRC) guidance [Internet]. MRC Population Health Science Research Network; 2014 [cited 2018 Jul 23]. Available from: https://mrc.ukri.org/documents/pdf/mrc-phsm-process-evaluation-guidance-final/

98. Chan CL, Leyrat C, Eldredge SM. Quality of reporting of pilot and feasibility cluster randomised trials: a systematic review. BMJ Open. 2017 Nov 8;7(11):e016970.

99. Liu H, Muhunthan J, Hayek A, Hackett M, Laba T-L, Peiris D, et al. Examining the use of process evaluations of randomised controlled trials of complex interventions addressing chronic disease in primary health care—a systematic review protocol. Syst Rev [Internet]. 2016 Aug 15 [cited 2018 Sep 24];5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4986376/

100. Oakley A, Strange V, Bonell C, Allen E, Stephenson J. Process evaluation in randomised controlled trials of complex interventions. BMJ. 2006 Feb 16;332(7538):413–6.

101. Greenhalgh T, Russell J. Why Do Evaluations of eHealth Programs Fail? An Alternative Set of Guiding Principles. PLoS Med [Internet]. 2010 Nov 2 [cited 2018 Sep 24];7(11). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2970573/

102. Basit MA, Baldwin KL, Kannan V, Flahaven EL, Parks CJ, Ott JM, et al. Agile Acceptance Test–Driven Development of Clinical Decision Support Advisories: Feasibility of Using Open Source Software. JMIR Med Inform [Internet]. 2018 Apr 3 [cited 2019 May 3];6(2). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924365/

103. Kannry J, McCullagh L, Kushniruk A, Mann D, Edonyabo D, McGinn T. A Framework for Usable and Effective Clinical Decision Support: Experience from the iCPR Randomized Clinical Trial. EGEMS Wash DC. 2015;3(2):1150.

104. Kannan V, Fish J, Mutz J, Carrington A, Lai K, Davis L, et al. Rapid Development of Specialty Population Registries and Quality Measures from Electronic Health Record Data: An Agile Framework. Methods Inf Med. 2017 Jun 14;56(99):e74–83.
Table 1. Study setting, participants, clinical decision support system (CDSS) type and inclusion of evidence-based components

Characteristic	Local	PDMP
Country		
United States	6/6 (100%)	8/8 (100%)
Practice settings		
Primary care clinic	5/6 (83%)	6/8 (75%)
Emergency department	1/6 (17%)	2/8 (25%)
Types of PCPs		
Physicians	6/6 (100%)	7/8 (88%)
NPs	6/6 (100%)	4/8 (50%)
CDSS type		
Dashboard	2/6 (33%)	0/8 (0%)
Protocol	2/6 (33%)	0/8 (0%)
Alert	1/6 (17%)	0/8 (0%)
Clinical tool	1/6 (17%)	0/8 (0%)
Data repository	0/6 (0%)	8/8 (100%)
Evidence-based		
Integrated into EMR	3/6 (50%)	0/5 (0%) ***
CDSS components*		
Automatically activates	2/6 (33%)	0/5 (0%) ***
Requires a reason for over-ride	0/6 (0%)	0/5 (0%) ***
Provides advice to patients and providers	0/6 (0%)	0/5 (0%) ***
Abbreviations: CDSS = Clinical Decision Support System; EMR = electronic medical record; N/A = Not Applicable; NP = nurse practitioners; PDMP = Prescription Drug Monitoring Program; PCPs = primary care providers;

*Local CDSSs are used locally within a specific health centre, health system or clinic

**PDMP CDSSs are large, centralized, government-run databases

***We excluded 3 studies because they included multiple PDMP CDSSs, and did not provide information on a specific CDSS (45,47,49)

* Unless a study stated a component was included (e.g. automatic activation), we assumed it was not
Table 2. Aims and designs of included studies

Aims	Design	Local CDSS* N (%)	PDMP CDSS** N (%)
To determine if a multi-faceted intervention improved prescribing/guideline adherence	• Cluster RCT***	1/6 (17%)	0/8 (0%)
	• Pre-post	4/6 (33%)	0/8 (0%)
To determine if a CDSS improved prescribing/guideline adherence	• Pre-post	0/6 (0%)	1/8 (13%)
To determine if PCPs used a CDSS	• Retrospective cohort	0/6 (0%)	1/8 (13%)
	• Cross-sectional survey	0/6 (0%)	1/8 (13%)
To determine if an intervention affected provider knowledge, behaviour, attitudes and/or use related to CDSS	• Mixed-methods	0/6 (0%)	1/8 (13%)
	• Pre-post	0/6 (0%)	2/8 (25%)
To learn about factors affecting opioid prescribing for CNCP, including use of CDSS	• Qualitative	0/6 (0%)	2/8 (25%)
To pilot a multi-component intervention, including a CDSS	• Mixed-methods	1/6 (17%)	0/8 (0%)
Abbreviations: CDSS = Clinical Decision Support System; CNCP = chronic non-cancer pain; N/A = Not Applicable; PDMP = Prescription Drug Monitoring Program; RCT = Randomized controlled trial

*Local CDSSs are used locally within a specific health centre, health system or clinic

**PDMP CDSSs are large, centralized, government-run databases

***CDSS included in both study arms
Table 3. Funding and relationship between developers and evaluators

	Local CDSS*	Local CDSS**
Funding for CDSS		
development		
Public/Non-profit	3/6 (50%)	0/8 (0%)
Industry	0/6 (0%)	0/8 (0%)
Not sponsored	0/6 (0%)	0/8 (0%)
Unclear or not reported	3/6 (50%)	8/8 (100%)
Funding for evaluation		
Public/non-profit	4/6 (67%)	5/8 (63%)
Industry	0/6 (0%)	0/8 (0%)
Not sponsored	0/6 (0%)	2/8 (25%)
Unclear or not reported	2/6 (33%)	1/8 (13%)
Relationship between developers and evaluators		
Same person, group or organization	4/6 (67%)	0/8 (0%)
Different person, group or organization	0/6 (0%)	0/8 (0%)
Unclear or not reported	2/6 (33%)	8/8 (100%)

Abbreviations: CDSS = Clinical Decision Support System; PDMP = Prescription Drug Monitoring Program

*Local CDSSs are used locally within a specific health centre, health system or clinic

**PDMP CDSSs are large, centralized, government-run databases
PRISMA 2009 Flow Diagram

Records identified through database searching
(n = 10487)

Additional records identified through other sources
(n = 88)

Records
(n = 10575)

Duplicates removed
(n = 5507)

Records screened
(n = 5068)

Records irrelevant
(n = 4693)

Full-text articles assessed for eligibility
(n = 375)

Full-text articles excluded, with reasons
(n = 361)
- 74 not a study
- 184 CDSS not used for opioid prescribing for chronic non-cancer pain (CNCP) in a clinical setting
- 74 not a primary care population
- 10 duplicates
- 16 could not locate full-text

Studies included in scoping review
(n = 14)

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit www.prisma-statement.org.