ANTIPYRETIC ACTIVITY OF THE NEW 2-(((3-MERCAPTO-5-METHYL-1,2,4-TRIAZOL-4-YL)IMINO)METHYL)-5-R-BENZOATES

© T. Kravchenko, O. Panasenko, Ye. Knysh

Introduction
Thermoregulation of the body relies on the balance of physiological processes of thermogenesis and thermolysis, which are controlled by neural and hormonal mechanisms. Antipyretic activity, which involves the increase of thermolysis through angiectasis and hormonal mechanisms. Antipyretic activity, which involves the increase of thermolysis through angiectasis.
of skin vessels and heightened sweat production, is largely connected with a relaxing effect on the diencephalon’s thermoregulation centers’ irritation that may be altered due to disease [1].

Antipyretic drugs represent the type of medicines capable of decreasing body temperature during fever and belong to the group of non-steroidal anti-inflammatory drugs (NSAIDs) [2, 3]. Despite analgesics’ high effectiveness, their use is not entirely safe. The use of aspirin impairs blood coagulation and increases the risk of inflammatory processes in gastroenteric tract [4].

As for the drug paracetamol, it is worth noting that its side effects are very rare. However, once manifested, they are of a rather high severity. Paracetamol administration increases the risk of myocardial infarction, premature death, gastrorrhagia, and acute liver or kidney diseases [5].

Literary sources indicate that both ibuprofen and analgin (dipyrene) are well-tolerated and safe during short-term administration to kids affected by fever.

However, the review of antipyretic activity showed that ibuprofen causes higher antipyretic effect than analgin during oral administration of one dose. This effect is more noticeable in kids with high temperature [6].

2. Formulation of the problem in a general way, the relevance of the theme and its connection with important scientific and practical issues

The search and study of the new highly effective antipyretic medicines is of a great significance nowadays. The sources [7, 8] report that the derivatives of 1,2,4-triazol-3-thione possess a wide range of biological activity.

3. Analysis of recent studies and publications in which a solution of the problem and which draws on the author

Several articles describe the results of the study of antipyretic activity of 1,2,4-triazole derivatives. That said, the study [9] provides information on the antipyretic activity of new 2-((3-adamantan-1-yl)-4-R,1,2,4-triazol-3-ylthio)acetate hydrazides. Another scholarly source [10] also describes new S-derivatives of 1,2,4-triazole that contain morpholinomethylene substituent in their structures, which makes them promising as antipyretic drugs.

4. Allocation of unsolved parts of the general problem, which is dedicated to the article

The heterocyclic nature of 1,2,4-triazole makes it a promising fragment for synthesis of new biologically active compounds, and antipyretics in particular. The search for the new highly effective antipyretic medicines is of a great relevance nowadays.

5. Formulation of goals (tasks) of the article

The aim of this work is to conduct a pharmacological screening over the new antipyretic drugs, specifically the derivatives of 2-((3-mercpto-5-methyl-4H-1,2,4-triazol-4-yl)imino)methyl)-5-R-benzoate that were obtained for the first time.

6. Statement of the basic material of the study (methods and objects) with the justification of the results

Materials and methods.

The objects of the research were the new 2-((3-mercpto-5-methyl-4H-1,2,4-triazol-4-yl)imino)methyl)-5-R-benzoate derivatives obtained in the Laboratory of organic synthesis at the Department of toxicological and inorganic chemistry of Zaporizhzhia State Medical University under the supervision of professor Panasenko O. I. and professor Knysh Ye. H.

In our opinion, the model of hyperthermia caused by 2,4-dinitrophenyl is the most convenient for screening.

The experimental fever was caused in white nonlinear rats by administrating 2,4-dinitrophenol (2,4-DNP), a dividing agent in oxidative phosphorylation, at the dose of 20 mg/kg [11].

The substances of research were administrated abdominally at the dose of 1/10 LD50, substances were stabilized with Twin-80. The doses were determined by Prozorovskyi method prior the preparation [12].

According to the mentioned model, body temperature rises during 15–20 minutes after the injection of 2,4-DNP, while the temperature maximum is reached during 1 hour. Therefore, it was reasonable to inject the substances of research in 30 minutes (T0,5) after the administration of 2,4-DNP and to record rectal temperature during 1 hour (T1).

The initial rectal temperature (T0) was recorded prior the abdominal injection of 2,4-DNP. Acetylsalicylic acid was used as a reference substance at the dose of 100 mg/kg.

The results were processed with modern methods of statistical analysis, including Microsoft Office 2010 (Microsoft Excel) and STATISTICA® for Windows 6.0. Mean values (M) and standard errors of the average (±m) were calculated. Data validity of intergroup variances as per experimental data were evaluated using Student’s t-test. Three levels of statistical significance were applied in the processing, specifically p<0.05; p<0.01; and p<0.001 [13, 14].

Results and discussion

The obtained data (Table 1) demonstrates that the study substance and the reference substance affected rats’ body temperatures in a different manner.

2-((3-mercpto-5-methyl-4I-1,2,4-triazol-4-yl)imino)methyl)-5-R-benzoates

where R = morpholinium (I), piperidinium (II), diethylammonium (III), ethylammonium (IV), ammonium (V), K+ (VI), Na+ (VII), tert-butylammonium (VIII), monoethanolammonium (IX), methylammonium (X).
The results of the experiment established that in 30 minutes after the abdominal injection of 2,4-DNP body temperature in the population of rats \(n=133 \) was in range from \(37.36 \) °C to \(38.37 \) °C on average \(\Delta T = 0.88 \) °C.

As for the reference substance acetylsalicylic acid, it caused a 3 % decrease of body temperature in rats by more than \(\Delta T = 0.91 \) °C, \(p \leq 0.05 \).

Therefore, substances IV and V deserve the most of attention; they decreased body temperature in rats by \(4.66 \pm 0.56 \) %, or by \(1.19 \pm 0.20 \) °C, with relation to the reference group.

The connection between the structure and activities was established. That said, the most significant temperature decrease was observed during the administration of ammonium 2-(((3-mercaptop-5-methyl-4H-1,2,4-triazol-4-yl)imino)methyl)-5-R-benzoate (V); replacement of ethylammonium ion (IV) slightly decreases body temperature in rats, more specifically by \(\Delta T = 0.91 \) °C \((\Delta \% = 0.29 \%) \). Introduction of inorganic cations leads to the loss of activity. If piperidinium forms the salt (II), the activity increases slightly, but the compound demonstrates weaker effect than the reference substance.

7. Findings from the research and prospects of further development of this area

1. Ammonium 2-(((3-mercaptop-5-methyl-4H-1,2,4-triazol-4-yl)imino)methyl)-5-R-benzoate (V) is the most active substance among the studied entities; its properties for hyperthermia slowing exceed the activity of acetylsalicylic acid and decreases body temperature in rats by \(1.19 \) °C \((\Delta \% \leq 0.05) \).

2. Introduction of inorganic cations leads to the loss of activity.

3. If piperidinium forms the salt (II), the activity increases slightly, but the compound demonstrates weaker effect than the reference substance.

4. The possible mechanism of antipyretic activity of the new compounds is the inhibition of cyclooxygenase \([15, 16]\).

5. The problem of finding new highly effective antipyretics is of a great importance nowadays. That is why 1,2,4-triazole derivatives merit further pharmacological research.

Having conducted a literature review and the study, we found that the newly synthesized compounds merit further research of their antipyretic activity with aim to find the new highly effective drugs with biological activity that have a potential to appear as active pharmaceutical ingredients of commercial antipyretic medicines.

References

1. Bielousov Yu. B., Gurevich K. G., Chaussova S. V. OTS analgetiki-antipiretiki dlia priyomn vnutr’. Mekhanizm deystviya i profil bezopasnosti // Academic Journal of Medical Research. 2015. Vol. 1. P. 79–82.

2. Nesteroidnye protivovospalitel’nye preparaty kak prichina obostreniya astmy i drugikh respiratornykh zbolevani: diagnostika i lecheniye / Astafeeva N. G. et. al. // Attending doctor. 2016. Vol. 5. P. 7–11.

3. Brenner G. M., Stevens C. W. Pharmacology. Philadelphia: Elsevier/Saunders, 2012. 528 p.

4. Aspirin for the Prevention of Cardiovascular Events in Patients With Peripheral Artery Disease / Berger J. S. et. al. // JAMA. 2009. Vol. 301, Issue 18. P. 1909–1919. doi: http://doi.org/10.1001/jama.2009.623

5. Klekot O. O., Yakovleva O. O. Bezpeka zastosuvannia parametamol v klinichni praktytsi // Pain Medicine. 2016. Issue 3 (3). P. 41–48.
6. Magni A. M., Scheffer D. K., Bruniera P. Antipyretic effect of ibuprofen and dipyrone in febrile children // Jornal de Pediatria. 2011. Vol. 87, Issue 1. P. 36–41. doi: http://doi.org/10.2223/jped.2060

7. Jacob J. H., Irshaid F. I., Al-Soud Y. A. Antibacterial activity of some selected 1,2,4-triazole derivatives against standard, environmental, and medical bacterial strains // Advanced Studies in Biology. 2013. Vol. 5, Issue 6. P. 291–301. doi: http://doi.org/10.12988/ash.2013.3418

8. Rud A. M., Kaplauzenko A. H., Kucheravii Yu. M. Vstanovlennia pokaznykiv diuretychnoi aktyvnosti riadu (4-amino-5-(alkitio)-1,2,4-triazol-3-il)[fenil]metanoliv: Proceedings // Modern Perspectives in Medicine and Pharmacy 2015. Zaporizhzhia: Zaporizhzhia State Medical University, 2015. P. 16.

9. Pruglo Ye. S., Odintsova V. M., Safonov A. A. Zharozyzuvalna diya novyh hidrazydiv 2-(5-(adamantan-1-il)-4-R-1,2,4-tryazol-3-ilil)atsetativ // Pharmaceutical review. 2013. Vol. 3. P. 45–49.

10. Scherbyna R. O. Vstanovlennia zharozyzuvalna diya novyh S-pokhidnyh 1,2,4-tryazolul. Schio mstia morfinometylvenovyi zamisnyk // Pharmaceutical Journal. 2016. Vol. 3, Issue 4. P. 100–104.

11. Gatsura V. V. Metody perfichnykh issledovanii farmacologicheskikh isследованii biologicheskikh aktivnykh veschestv. Moscow: Meditsyna, 1974. 142 p.

12. Prozorovskiy V. B., Prozorovskaya M. P., Demchenko V. M. Ekspress-metod opredeleniya srednei effektivnoi dozy i ee oshibki // Pharmacology and Toxicology. 1978. Vol. 4. P. 497–502.

13. Rebrova O. V. Statisticheskii analiz meditsynskikh dannyykh. Primeneniyie paketa prikladnykh program STATISTICA. Moscow: Media Sfera, 2002. 312 p.

14. Lapach S. N., Chubachenko A. V., Babich P. N. Statisticheskiye metody v mediko-biologicheskikh issledovaniyah s ispolzovaniyem Excel. Kyiv: Morion, 2001. 408 p.

15. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy / Cai H. et. al. // European Journal of Medicinal Chemistry. 2016. Vol. 108. P. 89–103. doi: http://doi.org/10.1016/j.ejmech.2015.11.013

16. Akhter W., Amir M. Synthesis of some new 1,2,4-triazoles and 1,3,4-oxadiazoles as a safer anti-inflammatory and analgesic agents // Journal of Pharmacy Research. 2014. Vol. 8, Issue 9. P. 1239–1247.