Lagrangian Dual Decision Rules for Multistage Stochastic Mixed Integer Programming

Maryam Daryalal, Merve Bodur
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada, m.daryalal@mail.utoronto.ca, bodur@mie.utoronto.ca

James R. Luedtke
Department of Industrial and Systems Engineering, University of Wisconsin, Madison, Wisconsin 53706, jim.luedtke@wisc.edu

Abstract

Multistage stochastic programs can be approximated by restricting policies to follow decision rules. Directly applying this idea to problems with integer decisions is difficult because of the need for decision rules that lead to integral decisions. In this work, we introduce Lagrangian dual decision rules (LDDRs) for multistage stochastic mixed integer programming (MSMIP) which overcome this difficulty by applying decision rules in a Lagrangian dual of the MSMIP. We propose two new bounding techniques based on stagewise (SW) and nonanticipative (NA) Lagrangian duals where the Lagrangian multiplier policies are restricted by LDDRs. We demonstrate how the solutions from these duals can be used to drive primal policies. Our proposal requires fewer assumptions than most existing MSMIP methods. We compare the theoretical strength of the restricted duals and show that the restricted NA dual can provide relaxation bounds at least as good as the ones obtained by the restricted SW dual. In our numerical study, we observe that the proposed LDDR approaches yield significant optimality gap reductions compared to existing general-purpose bounding methods for MSMIP problems.

Key words: Multistage stochastic mixed integer programming, decision rules, Lagrangian dual, two-stage approximation, sampling

1 Introduction

Multistage stochastic mixed integer programming (MSMIP) is a framework to model an optimization problem involving stochastic uncertainty, where the planning horizon is divided into multiple stages, decisions are made in each stage, and some of these decisions are constrained to be integer. The decisions in different stages cannot be made independently as they may impact subsequent stage decisions. The uncertainty is modeled as a stochastic process where the outcomes of random variables are observed over stages. In this setting, at each stage, the corresponding set of uncertain parameter
values are observed, and based on this observation, the next stage decisions are made (see Figure 1). Therefore, as functions of random variables, decision variables at each stage are random variables themselves. However, they are nonanticipative, i.e., they only depend on the history of observations, not future realizations. Thus, in a multistage stochastic programming model, the solution is a policy or decision rule that maps all the past information to the current decisions to be made.

![Figure 1: Dynamics of multistage stochastic programming](image)

MSMIP naturally arises in many applications, such as unit commitment (Takriti et al. 1996), capacity expansion (Rajagopalan et al. 1998, Ahmed et al. 2003, Singh et al. 2009), generation scheduling in hydro systems (Flatabø et al. 1998, Nowak and Römisch 2000, Mo et al. 2001, Flach et al. 2010, Helseth et al. 2015), batch sizing (Lulli and Sen 2004), airline fleet composition (Listes and Dekker 2005), transmission investment planning (Newham and Wood 2007), transportation network protection (Fan and Liu 2010) and surgery planning (Gul et al. 2015).

The majority of solution methods for MSMIP require strong assumptions, including but not limited to stagewise independence, only right-hand-side uncertainty, binary state variables, and a finite (and not too large) scenario tree representation. Models lacking these conditions sometimes can be reformulated to satisfy the required assumptions, but at the expense of introducing (a potentially large number of) new variables and constraints. The most common assumption in the existing MSMIP methodologies is that the stochastic process is represented by a scenario tree. However, in general the size of a scenario tree required to obtain good quality solutions grows exponentially with the number of stages (Shapiro and Nemirovski 2005), which makes methods that rely on scenario tree models unviable when the number of stages is beyond three or four. In this paper we propose new approximation approaches for MSMIP problems that do not require these assumptions. These approaches are based on Lagrangian dual of an MSMIP model and tractability is achieved by considering restricted forms of Lagrangian multipliers, i.e., forcing them to follow some decision rules.

1.1 Related Literature

Even without integer decision variables, solving an MSMIP problem is theoretically and computationally challenging, due to high dimensional integration and the need to consider, while making current decisions, the (optimal) future decisions that will be made in response to the uncertain future trajectory of the stochastic process. Accordingly, all existing methods solve the problem by some form of approximation. There are three common approximation approaches in the literature.

First is to model the underlying stochastic process in the form of a scenario tree (Shapiro et al. 2009), which is the most common strategy in the existing solution methods for MSMIP. Given a finite scenario tree approximation, the MSMIP is converted to a (very) large-scale, structured, deterministic problem. Techniques for solving such a scenario-tree based approximation include bounding techniques
(Norkin et al. 1998, Carøe and Schultz 1999, Ahmed et al. 2003, Alonso-Ayuso et al. 2003, Lulli and Sen 2004, Singh et al. 2009), cutting-plane based methods (Guan et al. 2009), aggregation approaches (Sandıkçı and Ozaltın 2014), nonanticipative Lagrangian dual approaches (Takriti et al. 1996, Chen et al. 2002), and progressive hedging algorithms (Løkketangen and Woodruff 1996, Listes and Dekker 2005, Fan and Liu 2010, Watson and Woodruff 2011, Gul et al. 2015, Gade et al. 2016). A limitation of the scenario tree approach is that, in order to obtain a good quality approximation of the stochastic process, the size of the tree in general needs to grow exponentially with the number of stages (Shapiro and Nemirovski 2005).

Stochastic dual dynamic programming (SDDP), proposed by Pereira and Pinto (1991), is a leading solution method for solving multistage stochastic linear programming (MSLP) problems as it is able to solve problems having an implicitly represented exponentially large scenario tree, under the assumption of stagewise independence. SDDP has been extended to MSMIP by considering various approximations of the non-convex cost-to-go functions (Newham and Wood 2007, Cen 2012, Cerisola et al. 2012, Löhndorf et al. 2013, Philpott et al. 2016). Proposing a new class of cutting planes, Zou (2017) introduced stochastic dual dynamic integer programming (SDDiP) algorithm, an extension of SDDP which further assumes binary state decision variables. SDDiP is able to overcome some of its restrictions with various forms of reformulations, but at the expense of introducing new decision variables, thus increasing the size of the model. For instance, bounded integer state variables can be handled via binarization schemes. Most recently, Ahmed et al. (2019) proposed stochastic Lipschitz dynamic programming for MSMIP problems with general integer variables and Lipschitz cost-to-go functions, which uses Lipschitz cuts in its backward pass. The need to explicitly convexify the value function of many mixed-integer programming problems may potentially limit the scalability of this approach.

The second approximation approach, commonly known as the decision rule approach, restricts the policies to follow a certain form, rather than restricting the form of the stochastic process. In the context of MSLP, Shapiro and Nemirovski (2005) presented an upper bounding technique employing primal decision rules, where the decisions at each stage are restricted to be an affine function of observed random outcomes up to that stage. This yields a static linear decision rule (LDR) policy. On the other hand, Kuhn et al. (2011) provided a lower bounding technique by applying LDRs to dual policies. Bodur and Luedtke (2018) introduced a two-stage approximation by restricting only state variables (i.e., the ones linking two consecutive stages together) to follow LDRs. By applying the so-called two-stage LDRs to primal and dual policies, the authors provided improved upper and lower bounds for MSLP problems. Decision rules in the form of polynomial (Bampou and Kuhn 2011), piecewise linear (Chen et al. 2008), bilinear and trilinear (Georghiou et al. 2015) functions have also been examined in the literature. In this line of research, lower bounding techniques rely on LP duality, and hence our limited to MSLP problems. We extend this line of research to MSMIP by proposing the use of decision rules to obtain tractable approximations of Lagrangian duals of MSMIP problems.

The final approximation approach includes work that does not assume a scenario tree but relies instead on exploiting problem structure. Brown et al. (2010) study information relaxation for stochastic
dynamic programs and, similar to our approach, penalize the violation of nonanticipativity constraints (i.e., the ones that ensure consistency among the decisions when perfect information about the future is assumed). Their penalty is based on a different dual, however, and the approach requires determining problem-specific penalty functions that balance computational tractability with the strength of the obtained bound. Barty et al. (2010) propose dual approximate dynamic programming, which provides approximations for problems that can be decomposed into smaller, tractable problems when certain linking constraints are relaxed.

1.2 Our Contributions

We introduce Lagrangian dual decision rules (LDDRs) to obtain bounds for MSMIP problems. We design two new lower (upper) bounding techniques for general MSMIP problems with minimization (maximization) objective, i.e., with mixed-integer state and recourse variables, without restricting the form of the underlying stochastic process. These bounding techniques are based on two Lagrangian relaxations of the MSMIP model: stagewise (SW) and nonanticipative (NA), where the state equations linking consecutive stages and the nonanticipativity constraints are relaxed, respectively. In order to obtain tractable approximations, we restrict the associated Lagrangian multiplier policies to follow a decision rule determined by parameters which are optimized to achieve the best possible bound given the restriction. We compare the theoretical strength of the restricted duals and show that, when appropriately constructed, the restricted NA dual provides a relaxation bound at least as good as the bound obtained by the restricted SW dual.

We also develop two LDDR driven primal policies which can be used to obtain upper (lower) bounds for problems with minimization (maximization) objective that incorporate the Lagrangian multipliers obtained from the lower (upper) bounding methods. We perform an extensive computational study on a stochastic multi-item lot-sizing problem with lag where demands follow an autoregressive process and find that our SW dual based primal method returns good quality solutions, while our NA dual driven primal method provides better solutions at the expense of extra computational effort. Putting the obtained lower and upper bounds together, we observe that the LDDR restricted NA dual approach yields significant optimality gap reductions compared to standard general purpose bounding methods for MSMIP problems.

Our approximation approach is general purpose, free of strong assumptions made in the literature such as stagewise independence or existence of a tractable-sized scenario tree representation. To the best of our knowledge, this is the first approach based on decision rules that is capable of handling mixed-integer state variables. Our approach leads to subproblems of the form of deterministic mixed-integer programs, and thus can exploit the state-of-the-art in efficiently solving deterministic mixed integer programs. Moreover, as the form of the restricted Lagrangian dual problems is a two-stage stochastic program, our approach enables application of theory and methods for solving two-stage stochastic integer programs.

The remainder of this paper is organized as follows. In Section 2 we formally state the MSMIP problem and two Lagrangian dual problems arising from it. In Section 3 we introduce new relax-
ation/bounding methods for an MSMIP model that are based on those Lagrangian relaxations. In Section 4 we provide feasible policies designed by using the information obtained from the restricted duals. In Section 5 we evaluate the proposed methodologies by studying a multi-item stochastic lot-sizing problem.

Notation. Random variables are represented with bold letters (\mathbf{x}) while their observations are regular font (x). We use $[a] := \{1, 2, \ldots , a\}$ and $[a, b] := \{a, a+1, \ldots , b\}$ for positive integers a and b (with $a \leq b$), and $(.)^\top$ for the transpose operator.

2 Problem Statement

Let T denote the number of decision stages and $\mathbf{\xi}_t$ be a random vector at stage $t \in [T]$ with outcomes $\xi_t \in \mathbb{R}^{t}$, and $\xi_1 = 1$ (i.e., the first stage is deterministic). The stochastic process is represented by $\{\xi_t\}_{t=1}^{T}$ having probability distribution \mathbb{P} and support Ξ. By $\mathbf{\xi}^t = (\xi_1, \ldots , \xi_t)$, we denote the history of the process at stage t.

An MSMIP problem can be modeled as follows

\[
\begin{align*}
\min \quad & \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t) \top x_t(\xi^t) \right] \\
\text{s.t.} \quad & A_t(\xi^t)x_t(\xi^t) + B_t(\xi^t)x_{t-1}(\xi^{t-1}) = b_t(\xi^t), \quad t \in [T], \mathbb{P}\text{-a.e. } \xi^T \in \Xi \\
& x_t(\xi^t) \in X_t(\xi^t), \quad t \in [T], \mathbb{P}\text{-a.e. } \xi^T \in \Xi
\end{align*}
\]

where $c_t : \mathbb{R}^{t} \rightarrow \mathbb{R}^{m_t}$, $A_t : \mathbb{R}^{t} \rightarrow \mathbb{R}^{m_t \times n_t}$, $B_t : \mathbb{R}^{t} \rightarrow \mathbb{R}^{m_{t-1} \times n_t}$, $b_t : \mathbb{R}^{t} \rightarrow \mathbb{R}^{m_t}$ and $\ell^t = \sum_{t'=1}^{t} \ell_{t'}$. $x_t(\xi^t) \in \mathbb{Z}^{p_t} \times \mathbb{R}^{n_t-p_t}$ are the decision variables, i.e., nonanticipative policies, for $t \in [T]$. Here and throughout the paper we adopt the convention $x_0(\xi^0) \equiv 0. \mathbb{P}\text{-a.e. } \xi^T \in \Xi$ means that the constraints are required to be almost surely satisfied with respect to \mathbb{P}. Constraints (1b) and (1c) are state and recourse constraints, respectively, where $X_t(\xi^t) := \{x \in \mathbb{Z}^{p_t} \times \mathbb{R}^{n_t-p_t} : C_t(\xi^t)x \geq d_t(\xi^t)\}$ with $C_t : \mathbb{R}^{t} \rightarrow \mathbb{R}^{m_t \times n_t}$ and $d_t : \mathbb{R}^{t} \rightarrow \mathbb{R}^{m_t}$. Throughout this work, we make three assumptions: (i) a solution to problem (1) exists, (ii) $X_t(\xi^t)$ is compact for all $t \in [T]$, \mathbb{P}-a.e. $\xi^T \in \Xi$ and the expected diameter of $X_t(\xi^t)$ is finite, and (iii) at every stage $t \in [T]$, given any feasible solution and random variable realizations of the previous stages, there always exists a feasible set of decisions at stage t (relatively complete recourse).

We next describe two Lagrangian duals for MSMIP, namely SW dual (Rosa and Ruszczyński 1996) and NA dual (Rockafellar and Wets 1991).

2.1 Stagewise Lagrangian Dual

In the SW dual, the constraints linking consecutive stages are relaxed, namely the state equations. Let $\pi_t(\xi^t) \in \mathbb{R}^{m_t^t}, t \in [T]$ be the dual variables associated with constraints (1b). For fixed dual functions
\[\pi_t : \mathbb{R}^m \to \mathbb{R}^m, t \in [T],\] the SW Lagrangian relaxation problem is defined as

\[
\mathcal{L}^{SW}(\pi_1, \ldots, \pi_T) = \min_{\xi} \mathbb{E}_{\xi} \left[\sum_{t \in [T]} c_t(\xi^t)^T x_t(\xi^t) + \pi_t(\xi^t)^T \left(A_t(\xi^t)x_t(\xi^t) + B_t(\xi^t)x_{t-1}(\xi^{t-1}) - b_t(\xi^t) \right) \right]
\]

(2a)

\[
s.t. \ x_t(\xi^t) \in X_t(\xi^t), \quad t \in [T], \mathbb{P}\text{-a.e.} \ \xi^T \in \Xi,
\]

(2b)

which decomposes by \(t \) and \(\xi \), thus yields a deterministic mixed integer program (MIP) per stage and scenario. As the Lagrangian relaxation problem provides a valid lower bound on the optimal value of the MSMIP problem, the stagewise Lagrangian dual problem aims to find the dual functions providing the best bound

\[
\nu^{SW} := \max_{\{\pi_t\}_{t \in [T]}} \mathcal{L}^{SW}(\pi_1, \ldots, \pi_T).
\]

(3)

2.2 Nonanticipative Lagrangian Dual

The NA dual is based on a reformulation of the MSMIP problem where we create a copy of every decision variable for every realization and explicitly enforce nonanticipativity. We introduce the copy variables \(y(\xi^T) = (y_1(\xi^T), \ldots, y_T(\xi^T)) \) as perfect information variables, meaning that they depend on the entire sample path \(\xi^T = (\xi_1, \ldots, \xi_T) \). For every sample path \(\xi^T \in \Xi \), we define the set

\[
Y(\xi^T) = \{ y \in \mathbb{R}^m \times \mathbb{R}^n : A_t(\xi^t)y_t + B_t(\xi^t)y_{t-1} = b_t(\xi^t), y_t \in X_t(\xi^t), t \in [T] \}.
\]

Then, the MSMIP problem (1) can be reformulated as

\[
\min_{\xi^T} \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t)^T y_t(\xi^T) \right]
\]

(4a)

\[
s.t. \ y(\xi^T) \in Y(\xi^T), \quad \mathbb{P}\text{-a.e.} \ \xi^T \in \Xi
\]

(4b)

\[
y_t(\xi^T) = \mathbb{E}_{\xi^T} \left[y_t(\xi^T) \middle| \xi^t = \xi^t \right], \quad t \in [T], \mathbb{P}\text{-a.e.} \ \xi^T \in \Xi.
\]

(4c)

Constraints (4c) are nonanticipativity constraints which make sure that for every partial realization of a sample path \(\xi^t \) at stage \(t \), the decisions made at stage \(t \) are consistent (i.e., the decisions made in all sample paths \(\xi^T \) that share the history \(\xi^t \) are the same). Associating the dual functions \(\gamma_t(\cdot) \in \Gamma_t, t \in [T], \) where \(\Gamma_t = \{ \gamma_t : \mathbb{R}^m \to \mathbb{R}^n \ | \ E[\gamma_t(\xi^T)] < \infty \} \), the nonanticipativity constraints are relaxed to obtain the NA Lagrangian dual problem

\[
\mathcal{L}^{NA}(\gamma_1, \ldots, \gamma_T) = \min_{\xi^T} \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t)^T y_t(\xi^T) + \gamma_t(\xi^T)^T \left(y_t(\xi^T) - \mathbb{E}_{\xi^T}[y_t(\xi^T) \mid \xi^t = \xi^t] \right) \right]
\]

(5a)

\[
s.t. \ y(\xi^T) \in Y(\xi^T), \quad \mathbb{P}\text{-a.e.} \ \xi^T \in \Xi.
\]

(5b)

The objective function in (5a) can be simplified using the following lemma whose proof can be found in Appendix A.
Lemma 1 Assume that the expected diameter of $X(\xi^t)$ is finite. Then, the following equality holds:

$$
\mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t)^\top y_t(\xi^T) + \gamma_t(\xi^T)^\top \left(y_t(\xi^T) - \mathbb{E}_{\xi^T} [y_t(\xi'^T)|\xi'^t = \xi^t] \right) \right] =
$$

(6)

$$
\mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} \left(c_t(\xi^t) + \gamma_t(\xi^T) - \mathbb{E}_{\xi^T} [\gamma_t(\xi'^T)|\xi'^t = \xi^t] \right)^\top y_t(\xi^T) \right].
$$

Using Lemma 1, the nonanticipative Lagrangian relaxation for fixed dual functions $\gamma_t : \mathbb{R}^{\ell_t} \to \mathbb{R}^{n_t}, t \in [T]$ can be written as

$$
\mathcal{L}^{\text{NA}}(\gamma_1, \ldots, \gamma_T) = \min_{\xi^T} \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} \left(c_t(\xi^t) + \gamma_t(\xi^T) - \mathbb{E}_{\xi^T} [\gamma_t(\xi'^T)|\xi'^t = \xi^t] \right)^\top y_t(\xi^T) \right],
$$

s.t. $y(\xi^T) \in Y(\xi^T), \ \mathbb{P}\text{-a.e. } \xi^T \in \Xi,$

which is decomposable by sample path, but not by stage. Finally the NA Lagrangian dual problem is

$$
\nu^{\text{NA}} := \max_{\{\gamma_t \in \Gamma_t\}_{t \in [T]}} \mathcal{L}^{\text{NA}}(\gamma_1, \ldots, \gamma_T). \tag{7}
$$

2.3 Primal Characterizations and Bound Comparison

Using Lagrangian duality theory, primal characterizations of the Lagrangian duals can be obtained, which in turn can be used to compare their strength (Dentcheva and Römisch 2004). For the SW Lagrangian dual problem, the primal characterization is as follows

$$
\nu^{\text{SW}} = \min_{\xi^T} \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t)^\top x_t(\xi^t) \right] \tag{8a}
$$

s.t. $A_t(\xi^t)x_t(\xi^t) + B_t(\xi^t)x_{t-1}(\xi^{t-1}) = b_t(\xi^t), \quad t \in [T], \mathbb{P}\text{-a.e. } \xi^T \in \Xi \tag{8b}$

$$
x_t(\xi^t) \in \text{conv}(X_t(\xi^t)), \quad t \in [T], \mathbb{P}\text{-a.e. } \xi^T \in \Xi. \tag{8c}
$$

That is, for each stage and sample path, the feasible set of the recourse problem on that stage is relaxed and replaced with its convex hull. The primal characterization of the NA Lagrangian dual problem is given below

$$
\nu^{\text{NA}} = \min_{\xi^T} \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t)^\top y_t(\xi^T) \right]
$$

s.t. $y_t(\xi^T) \in \text{conv}(Y(\xi^T)), \quad \mathbb{P}\text{-a.e. } \xi^T \in \Xi$

$$
y_t(\xi^T) = \mathbb{E}_{\xi^T} [y_t(\xi'^T)|\xi'^t = \xi^t], \quad t \in [T], \mathbb{P}\text{-a.e. } \xi^T \in \Xi. \tag{8d}
$$

That is, for every sample path, the feasible set of the T-stage deterministic problems is relaxed and replaced with its convex hull.

Using these characterizations, Dentcheva and Römisch (2004) show, in the case when the stochastic process is represented by a finite scenario tree, that the NA dual is not worse than the SW dual, i.e.,

$$
\nu^{\text{SW}} \leq \nu^{\text{NA}}.
$$
3 Lagrangian Decision Rules for MSMIP

The SW dual functions π_t and the NA dual functions γ_t are policies which map every possible history of observations to a dual decision vector, making direct solution of the respective Lagrangian dual problems (3) and (7) intractable in general. We propose restricting these dual multipliers to follow decision rules, referred to as LDDRs. As such, we obtain restricted problems that have finitely many decision variables. In what follows, we first explain the LDDR approach for the SW and NA duals (Sections 3.1 and 3.2), then provide their primal characterizations for a strength comparison as in the unrestricted case (Section 3.3), and lastly provide an algorithmic framework for their solutions (Section 3.4).

3.1 Restricted Stagewise Lagrangian Dual

For $t \in [T]$, we restrict the dual variables $\pi_t(\xi^t)$ to follow an LDDR by enforcing

$$\pi_t(\xi^t) = \Phi_t(\xi^t) \beta_t$$

where $\Phi_t : \mathbb{R}^T \rightarrow \mathbb{R}^{m_t \times K_t}$ are the set of basis functions and $\beta_t \in \mathbb{R}^{K_t}$ is a vector of LDDR decision variables (i.e., the weights associated with the basis functions). For the ease of presentation, we use the matrix form of basis function outputs – i.e., one can think of Φ_t as consisting of K_t basis functions, each of which maps the history ξ^t to a vector of size m_t, the number of state equations in stage t. The set of basis functions is a model choice, and so K_t depends on this choice. We define the LDDR-restricted SW Lagrangian dual problem which aims to find the optimal choice of LDDR variable values to maximize the obtained lower bound

$$\nu^\text{SW}_R := \max_{\{\beta_t\}_{t \in [T]}} \mathcal{L}^\text{SW}(\Phi_1 \beta_1, \ldots, \Phi_T \beta_T) = \max_{\{\beta_t\}_{t \in [T]}} \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} \mathcal{L}^\text{SW}_t(\beta_t, \xi^t) - \Phi_t(\xi^t) \beta_t b_t(\xi^t) \right]$$

where

$$\mathcal{L}^\text{SW}_t(\beta_t, \xi^t) := \min \left\{ \left(c_t(\xi^t) + \Phi_t(\xi^t) \beta_t A_t(\xi^t) - \mathbb{E}_{\xi^{t+1}} \left[\Phi_{t+1}(\xi^{t+1}) \beta_{t+1} B_{t+1}(\xi^{t+1}) | \xi^t \right] \right)^T x_t : x_t \in X_t(\xi^t) \right\}.$$

3.2 Restricted Nonanticipative Lagrangian Dual

Letting $\Psi_t : \mathbb{R}^T \rightarrow \mathbb{R}^{n_t \times K}$ for $t \in [T]$ to be a set of basis functions, we restrict the dual variables $\gamma_t(\xi^t)$ to follow an LDDR as

$$\gamma_t(\xi^t) = \Psi_t(\xi^T) \alpha_t$$

where $\alpha_t \in \mathbb{R}^K$, $t \in [T]$, is the vector of LDDR decision variables. Then, we obtain the LDDR-restricted NA Lagrangian dual problem as

$$\nu^\text{NA}_R := \max_{\{\alpha_t\}_{t \in [T]}} \mathcal{L}^\text{NA}(\Psi_1 \alpha_1, \ldots, \Psi_T \alpha_T) = \max_{\{\alpha_t\}_{t \in [T]}} \mathbb{E}_{\xi^T} \left[\mathcal{L}^\text{NA}(\alpha, \xi^T) \right],$$

where

$$\mathcal{L}^\text{NA}(\alpha, \xi^T) := \min \left\{ \left(c_T(\xi^T) + \Psi_T(\xi^T) \alpha_T A_T(\xi^T) - \mathbb{E}_{\xi^{T+1}} \left[\Psi_{T+1}(\xi^{T+1}) \alpha_{T+1} B_{T+1}(\xi^{T+1}) | \xi^T \right] \right)^T x_t : x_t \in X_T(\xi^T) \right\}.$$
where

\[\mathcal{L}^{NA}(\alpha, \xi^T) = \min \left\{ \sum_{t \in [T]} \left(c_t(\xi^t) + \Psi_t(\xi^T) \right) \alpha_t - \mathbb{E}_{\xi^T_t} \left[\Psi_t(\xi^T) \alpha_t | \xi^{\prime t} = \xi^t \right] \right\} y_t : y \in Y(\xi^T) \]

Observe that, for fixed \(\xi^t \), calculating the coefficient on \(\alpha_t \) requires evaluating the conditional expectation \(\mathbb{E}_{\xi^T_t} [\Psi_t(\xi^T) | \xi^{\prime t} = \xi^t] \). The tractability of this calculation depends on the form of \(\Psi_t \) and the dependence structure of the stochastic process. E.g., these can be directly calculated if \(\Psi_t \) is an affine function and the conditional distribution of \(\xi^{\prime t} \) given \(\xi^t \) is known, such as when the random variables follow an autoregressive process. In general, this coefficient may be estimated via sampling.

3.3 Primal Characterizations and Bound Comparison

In this section we assume that the stochastic process is represented by a finite scenario tree, implying that for every stage \(t \in [T] \), the random vector \(\xi_t \) is has a discrete distribution with finite support, and also that the set of possible sample paths, \(\Xi \), is finite. We make this assumption in this section only for the sake of simplicity in deriving primal characterizations for the proposed restricted Lagrangian duals, and note that we do not require the size of the scenario tree representation to be tractable as this assumption is used only for theoretical analysis, not for computational purposes. We emphasize that our overall methodological framework does not restrict the stochastic process to a finite scenario tree model, and rather relies on sampling to approximately solve the restricted approximations. The finite scenario tree assumption of this section is in line with the comparison of the bounds from unrestricted duals by Dentcheva and Römisch (2004).

We next derive a general primal characterization of the Lagrangian dual of a MIP when dual multipliers are restricted to a linear form. Since an MSMIP is a large-scale (structured) MIP under the finite scenario tree assumption, this analysis is sufficient to obtain the primal characterizations of our restricted duals of the MSMIP problem.

Consider a MIP \(\min \{ c^\top x : Dx = d, \ x \in X \} \) where \(X \subseteq \mathbb{R}^n \) is a set defined by linear constraints and integer constraints on some of the decision variables, \(D \in \mathbb{R}^{m \times n}, \ c \in \mathbb{R}^n, \) and \(d \in \mathbb{R}^m \). For \(\lambda \in \mathbb{R}^m \) define

\[z(\lambda) = \min \{ c^\top x + \lambda^\top (d - Dx) : x \in X \}. \] (11)

The standard Lagrangian dual is the problem \(z^{LD} = \max_\lambda z(\lambda) \), and its primal characterization is

\[z^{LD} = \min \{ c^\top x : x \in \text{conv}(X), Dx = d \}. \] (12)

For a given matrix \(G \in \mathbb{R}^{m \times K} \), define the the restricted Lagrangian dual

\[z^{RLD} = \max_{\lambda, \alpha} \{ z(\lambda) : \lambda = G \alpha \}. \] (13)

The following Lemma provides a primal characterization of this restricted dual problem.
Lemma 2 The restricted Lagrangian dual satisfies

\[z^{RLD} = \min_x c^\top x \]

s.t. \(x \in \text{conv}(X) \)
\[G^\top (Dx - d) = 0. \]

In other words, in comparison to the unrestricted Lagrangian dual (12), the restricted Lagrangian dual still replaces the set \(X \) with its convex hull, but the constraints \(Dx = d \) are relaxed to \(G^\top (Dx - d) = 0 \). The proof of Lemma 2 can be found in Appendix B. Using this lemma, we derive the primal characterizations of the restricted Lagrangian duals of the MSMIP.

As the stochastic process is assumed to be represented by a finite scenario tree, the probability of each sample path can be assumed to be positive. In order to apply Lemma 2, we scale the state equations in the MSMIP formulation (1) by the corresponding probabilities of these scenarios denoted by \(p(\xi^T) \)

\[
\begin{align*}
\min \ & \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t)^\top x_t(\xi^t) \right] \\
\text{s.t.} \ & p(\xi^T)(A_t(\xi^t)x_t(\xi^t) + B_t(\xi^t)x_{t-1}(\xi^{t-1})) = p(\xi^T)b_t(\xi^t), \quad t \in [T], \mathbb{P}\text{-a.e.} \ \xi^T \in \Xi \\
& x_t(\xi^t) \in X_t(\xi^t), \quad t \in [T], \mathbb{P}\text{-a.e.} \ \xi^T \in \Xi.
\end{align*}
\]

Recall the LDDR restrictions for the duals
\[\pi_t(\xi^t) - \Phi_t(\xi^t)\beta_t = 0, \quad t \in [T], \mathbb{P}\text{-a.e.} \ \xi^T \in \Xi. \]

These are the new set of constraints added to the SW Lagrangian dual problem (3). Consequently, using Lemma 2, the primal characterization of the restricted SW Lagrangian dual problem is obtained as

\[
\nu^{SW}_R = \min \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi^t)^\top x_t(\xi^t) \right] \\
\text{s.t.} \ & x_t(\xi^t) \in \text{conv}(X_t(\xi^t)), \quad t \in [T], \mathbb{P}\text{-a.e.} \ \xi^T \in \Xi \\
& \mathbb{E}_{\xi^T} \left[\Phi_t(\xi^t)^\top (A_t(\xi^t)x_t(\xi^t) + B_t(\xi^t)x_{t-1}(\xi^{t-1}) - b_t(\xi^t)) \right] = 0, t \in [T].
\]

Note that, for each \(t \in [T] \), there are exactly \(K_t \) expected value constraints, one for each basis function vector in the matrix \(\Phi_t \). Compared to the primal characterization of the unrestricted SW dual (8), while the recourse problem feasible sets are still convexified (as in (15b)), the state equations are not almost surely satisfied, rather for every basis function, their expectation is enforced to be equal to zero. Therefore, unlike the unrestricted version (8), even if the original problem is convex (such as an MSLP), a duality gap might exist.
Using the same approach, we obtain the following primal characterization for the restricted NA Lagrangian dual problem

\[\nu^{\text{NA}}_R = \min \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi_t^T) y_t(\xi_T^T) \right] \] (16a)

s.t. \(y_t(\xi_T^T) \in \text{conv}(Y(\xi_T^T)) \), \(\mathbb{P}\text{-a.e. } \xi^T \in \Xi \) \(\mathbb{E}_{\xi^T} \left[\Psi_t(\xi_T^T)^\top (y_t(\xi_T^T) - \mathbb{E}_{\xi^T} [y_t(\xi_T^T) | \xi^T_t = \xi^T]) \right] = 0, \quad t \in [T]. \) \hspace{1cm} (16b)

Here, constraint sets \(Y \) and \(\{\xi^T_t \} \) are replaced with their convex hull, but the NA constraints are enforced in expectation rather than for almost every \(\xi_T^T \).

As mentioned in Section 2.3, for the unrestricted duals, it is proven that \(\nu^{\text{SW}} \leq \nu^{\text{NA}} \). The same result does not immediately hold for the restricted duals due to the relaxed constraints. However, we prove that when the basis functions for the restricted NA dual are carefully selected a similar inequality holds for the restricted duals. Let \(\Phi_t = (\Phi_{t1}, \ldots, \Phi_{tK_t}) \) and \(\Psi_t = (\Psi_{t1}, \ldots, \Psi_{tK_t}) \) be the basis functions used in the restricted SW and NA duals, respectively. Note that \(\Phi_t : \mathbb{R}^{\ell t} \rightarrow \mathbb{R}^{m_{it} \times K_t} \) and \(\Psi_t : \mathbb{R}^{\ell t} \rightarrow \mathbb{R}^{m_{it} \times K_t} \) are functions mapping a set of random variables to a column vector for each basis function indexed by \(k \).

Theorem 1 Assume that for each \(t \in [T] \) and \(k \in [K_t] \) the following conditions hold:

1. there exists \(k' \in [K] \) such that \(\Psi_{tk}(\xi_T^T)^\top = \Phi_{tk}(\xi_t^T)^\top A_t(\xi_t^T) \) for every \(\xi_T^T \in \Xi \) and
2. if \(t > 1 \), there exists \(k'' \in [K] \) such that \(\Psi_{t-1k''}(\xi_T^T)^\top = \Phi_{tk}(\xi_t^T)^\top B_t(\xi_t^T) \) for every \(\xi_T^T \in \Xi \).

Then,

\[\nu^{\text{SW}}_R \leq \nu^{\text{NA}}_R. \] (16c)

Proof Let \(y^*(\xi_T^T) \) be an optimal solution of the restricted NA dual (16) with the optimal value of \(\nu^{\text{NA}}_R \). The existence of \(y^*(\xi_T^T) \) is guaranteed due to our initial assumption that the stochastic process is modeled as a finite scenario tree, as well as the boundedness of the feasible region. We construct a feasible solution to the restricted SW dual (15) with the same objective value \(\nu^{\text{NA}}_R \), which demonstrates the desired inequality. We claim that \(\hat{x}_t(\xi_t^T) = \mathbb{E}_{\xi^T} [y_t^*(\xi_T^T)|\xi_T^T = \xi_t^T] \) satisfies these conditions.

We first show that at \(\hat{x}_t(\xi_t^T) \) the objective function value of the restricted SW dual (15) is equal to \(\nu^{\text{NA}}_R \). Indeed, the objective evaluates to

\[\mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi_t^T)^\top \hat{x}_t(\xi_t^T) \right] = \mathbb{E}_{\xi^T} \left[\sum_{t \in [T]} c_t(\xi_t^T)^\top \mathbb{E}_{\xi^T} [y_t^*(\xi_T^T)|\xi_T^T = \xi_t^T] \right] \]

\[= \sum_{t \in [T]} \mathbb{E}_{\xi^T} \left[\mathbb{E}_{\xi^T} [c_t(\xi_t^T)^\top y_t^*(\xi_T^T)|\xi_T^T = \xi_t^T] \right] \]

\[= \sum_{t \in [T]} \mathbb{E}_{\xi^T} [c_t(\xi_t^T)^\top y_t^*(\xi_T^T)] = \nu^{\text{NA}}_R \] (17b)
where (17a) follows because for a fixed ξ^T, $c_t(\xi^t)$ is a constant that can be brought into the inside conditional expectation, and by swapping the order of expectation, the first equality in (17b) follows from the identity, for random variables Z and Y, that $\mathbb{E}_Y[\mathbb{E}_Z[Z|Y]] = \mathbb{E}[Z]$, and the second equality in (17b) follows because ξ^T and ξ^t have the same distribution.

We next verify that $\hat{x}_t(\xi^t)$ satisfies constraint (15b). By (16b) and the definition of $y_t^\prime(\xi^T)$, $y_t^\prime(\xi^T) \in X_t(\xi^t)$ for each $t \in T$ and $\xi^t \in \Xi$ such that $\xi^t = \xi^t$. Since $\hat{x}_t(\xi^t) = \mathbb{E}_{\xi^T}[y_t^\prime(\xi^T)|\xi^t = \xi^t]$ is a convex combination of such $y_t^\prime(\xi^T)$ variables, it follows that $\hat{x}(\xi^t) \in \text{conv}(X_t(\xi^t))$.

Finally, we verify that $\hat{x}_t(\xi^t)$ satisfies constraint (15c). We evaluate the left-hand side of (15c) for a fixed $t \in [T]$ at the defined solution \hat{x}. First break the expectation into three terms

$$
\mathbb{E}_{\xi^t} \left[\Phi_t(\xi^t)^\top (A_t(\xi^t)\hat{x}_t(\xi^t) + B_t(\xi^t)\hat{x}_{t-1}(\xi^{t-1}) - b_t(\xi^t)) \right] = \mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top A_t(\xi^t)\hat{x}_t(\xi^t) \right] + \mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top B_t(\xi^t)\hat{x}_{t-1}(\xi^{t-1}) \right] - \mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top b_t(\xi^t) \right].
$$

Substituting $\hat{x}_t(\xi^t) = \mathbb{E}_{\xi^t} [y_t^\star(\xi^T)|\xi^t = \xi^t]$ in the first term of (19), yields

$$
\mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top A_t(\xi^t)\mathbb{E}_{\xi^t} [y_t^\star(\xi^T)|\xi^t = \xi^t] \right] = \mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top A_t(\xi^t) y_t^\star(\xi^T) \right].
$$

If there exists some $k^\prime \in [K]$ with $\Psi_{tk^\prime}(\xi^T)^\top = \Phi_{tk}(\xi^t)^\top A_t(\xi^t)$, constraint (16c) leads to the following equality

$$
\mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top A_t(\xi^t)\mathbb{E}_{\xi^t} [y_t^\star(\xi^T)|\xi^t = \xi^t] \right] = \mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top A_t(\xi^t) y_t^\star(\xi^T) \right].
$$

This follows by substituting the vector $\Phi_{tk}(\xi^t)^\top A_t(\xi^t)$ on the left-hand-side expression with its equivalent vector $\Psi_{tk^\prime}(\xi^T)^\top$ and using (16c) to show the equality of $\mathbb{E}_{\xi^t} \left[\Psi_{tk^\prime}(\xi^T)^\top \mathbb{E}_{\xi^t} [y_t^\star(\xi^T)|\xi^t = \xi^t] \right] = \mathbb{E}_{\xi^t} \left[\Psi_{tk^\prime}(\xi^T)^\top (y_t^\star(\xi^T))_j \right]$. By applying the same argument to the second term of (19) while employing constraint (16c) with $t - 1$ (when $t = 1$ there is no second term), we can replace $\mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top B_t(\xi^t) \right]$ with $\mathbb{E} \left[\Phi_{tk}(\xi^t)^\top B_t(\xi^t) y_{t-1}(\xi^T) \right]$ if there exists some $k^\prime \in [K]$ with $\Psi_{t-1k^\prime}(\xi^T)^\top = \Phi_{tk}(\xi^t)^\top B_t(\xi^t)$. Putting all three terms of (19) back together, we obtain that the expression (18) is equal to

$$
\mathbb{E}_{\xi^t} \left[\Phi_{tk}(\xi^t)^\top (A_t(\xi^t) y_t^\star(\xi^T) + B_t(\xi^t) y_{t-1}^\star(\xi^T) - b_t(\xi^t)) \right].
$$

Since $y_t(\xi^T) \in Y_t(\xi^T)$, this expectation is equal to zero and the constraint (15c) is satisfied. \qed

Thus, we conclude that if the basis functions are selected carefully, then the restricted NA dual is not worse than the restricted SW dual. Our numerical experiments in Section 5 illustrate that it can indeed provide strictly better bounds.

3.4 Solving the Restricted Dual Problems

The restricted dual problems (9) and (10) have the form of maximizing an expected value of a nonsmooth concave function of the decision variables (the coefficients of the LDR policies). A wide variety of algorithms for (approximately) solving such problems exist, including stochastic approximation based methods (e.g., Robbins and Monro (1951), Nemirovski et al. (2009)), stochastic decomposition
concreteness, we describe an SAA approach. Let \(\{T^T_\omega\}_{\omega \in \Omega} \) be a given sample of sample-path scenarios and \(p_\omega \) denote the probability of scenario \(\omega \in \Omega \). For example, if the scenarios are generated via Monte Carlo sampling, then \(p_\omega = 1/|\Omega| \) for all \(\omega \in \Omega \). SAA replaces the expectations in (9) and (10) with sample averages, which respectively give the following SAA models for approximating the restricted SW and NA duals

\[
\max_{\{\beta_t\}_{t \in [T]}} \sum_{\omega \in \Omega} p_\omega \theta_\omega \quad \text{(20a)}
\]

s.t. \(\theta_\omega \leq \sum_{t \in [T]} L^{SW}_t (\beta_t, \xi^t_\omega), \quad \omega \in \Omega \) \quad \text{(20b)}

and

\[
\max_{\{\alpha_t\}_{t \in [T]}} \sum_{\omega \in \Omega} p_\omega \eta_\omega \quad \text{(21a)}
\]

s.t. \(\eta_\omega \leq L^{NA}(\alpha, \xi^T_\omega), \quad \omega \in \Omega \) \quad \text{(21b)}

In order to solve (20) and (21), we use a regularized Benders method (Ruszczyński 1986). It is proven that under certain conditions (e.g., the feasible sets in (9) and (10) being nonempty and bounded, and the expectations being finite), as the sample size increases, the solutions to the SAA models converge to the ones of the respective original problems (Shapiro et al. 2009). To assure convergence of the SAA problems, it may be required to put bounds on the LDDR decision variables.

We refer the reader to (Kiwiel 1995, Ruszczyński 1986) for details and implementation strategies for the regularized Benders method. This algorithm uses a master problem that approximates the constraints (20b) and (21b), respectively, with a finite set of Benders cuts. The part of the algorithm that requires specialization for its application to problems (20) and (21) is the specification of the Benders cuts that are added to the master problem given a current master problem solution \(\hat{\beta} \) or \(\hat{\alpha} \), for problems (20) and (21), respectively.

For problem (20) subproblems evaluating \(L^{SW}_t (\beta_t, \xi^t_\omega) \) are solved for \(\omega \in \Omega \) and \(t \in [T] \). Letting \(\hat{x}^\omega_t \) denote the optimal solution of subproblem for \(t \) and scenario \(\omega \), the Benders cut is given below

\[
\theta_\omega \leq \sum_{t \in [T]} L^{SW}_t (\beta_t, \xi^t_\omega) + \sum_{t \in [T]} \sum_{k \in [K]} (\beta_{tk} - \hat{\beta}_{tk}) g_{tk}(\hat{\beta}, \xi^t_\omega)
\]

where \(g_{tk}(\hat{\beta}, \xi^t_\omega) = -\Phi_{tk}(\xi^t_\omega)b_t(\xi^t_\omega) + \left(\Phi_{tk}(\xi^t_\omega)A_t(\xi^t_\omega) - B_t(\xi^t_\omega)E_{\xi^T} \left[\Phi_{tk}(\xi^t_\omega) \middle| \xi^{t-1} \right] \right)^T \hat{x}_\omega^t \) is the \(k \)th component of the subgradient of \(L^{SW}_t (\beta_t, \xi^t_\omega) \) with respect to \(\beta \), at point \(\hat{\beta} \) evaluated at \(\xi^t_\omega \).

For problem (21) subproblems evaluating \(L^{NA}(\alpha, \xi^T_\omega) \) for each \(\omega \in \Omega \) are solved. Denoting the subproblem optimal solutions by \(\hat{y}^\omega_\omega \) for each \(\omega \in \Omega \), the Benders optimality cut for the restricted NA Lagrangian dual is the inequality

\[
\eta_\omega \leq L^{NA}(\hat{\alpha}, \xi^T_\omega) + \sum_{t \in [T]} \sum_{k \in [K]} \left(\Psi_{tk}(\xi^T_\omega) - E_{\xi^T} [\Psi_{tk}(\xi^T_\omega)] \xi^t_\omega \right) \left[(\alpha_{tk} - \hat{\alpha}_{tk}) \hat{y}^\omega_\omega \right].
\]
Stagewise dual (SW)	Nonanticipative dual (NA)
Relaxation	State equations
Dual variables	πₜ
LDDR decision	βₜ
Basis Functions	Φₜ
Subproblem per	t and ξᵣ
Optimal value	νₛ⁻⁺ ≤ νₛ⁻⁻

Table 1: Summary of the characteristics of the SW and NA duals

Note that in the presence of stagewise independence or a recursive form such as an autoregressive process, \(E[\xi^T \mid \Psiₜ(\xi^T) \vert \xi₀] \) can be computed directly. Otherwise conditional expectations need to be approximated, e.g., by sampling.

Solving (20) and (21) yields candidate LDDR solutions, say \(\beta^*_{Ω} \) and \(\alpha^*_{Ω} \), respectively. Let \(\{\xi^T_{\omega}\}_{\omega \in Ω'} \) be an independent evaluation sample with \(|Ω'| >> |Ω| \). In order to get statistically valid lower bounds on the optimal value of the original MSMIP problem, subproblems \(L^SW(\cdot) \) and \(L^{NA}(\cdot) \) respectively given in (20) and (21), are solved with fixed \(\beta^*_{Ω} \) and \(\alpha^*_{Ω} \) for every scenario in the evaluation sample, i.e., solving \(L^SW(\beta^*_{Ω}, t, \xi^T_{\omega}) \) and \(L^{NA}(\alpha^*_{Ω}, \xi^T_{\omega}) \) for all \(\omega \in Ω' \). The lower end of a confidence interval based on the obtained values is a statistically valid lower bound, regardless of how \(\beta^*_{Ω} \) and \(\alpha^*_{Ω} \) were obtained (e.g., these need not be optimal solutions).

A summary of the notation used in the two proposed restricted Lagrangian duals is given in Table 1.

4 Primal Policies

We next describe how restricted dual solutions can be used to obtain primal policies.

We first review a classical approach which obtains a policy by replacing the uncertain future parameter values with their conditional expected value. Such an approach works in a rolling horizon manner where a new problem is solved at each stage \(t \in [T] \) based on the observed history up to stage \(t \). Given a partial sample path \(\xi^t \), denote by \(\bar{\xi}^s \vert \xi^t, s \geq t \) the conditional expected value of \(\xi^s \) given \(\xi^t \), for \(s \geq t \).

Let \(\{\xi^T_{\omega}\}_{\omega \in Ω'} \) be an evaluation sample. For each scenario \(\xi^T_{\omega} \), a value \(U_{\omega} = \sum_{t \in [T]} c_t(\xi^T_{\omega})^T \hat{x}_t(\xi^T_{\omega}) \) is computed, where the solutions \(\hat{x}_t(\xi^T_{\omega}) \) are obtained by solving in sequence for \(t = 1, \ldots, T \) the following deterministic problems (initialized at \(t = 1 \) with \(\hat{x}_1 \equiv 0 \))

\[
\min_{x_t \in [t+1,T]} c_t(\xi^T_{\omega})^T x_t + \sum_{s \in [t+1,T]} c_s(\xi^s_{\omega})^T x_s \\
\text{s.t.} \ A_t(\xi^T_{\omega}) x_t = b_t(\xi^T_{\omega}) - B_t(\xi^T_{\omega}) \hat{x}_{t-1}(\xi^T_{\omega})^{-1},
\]

\[
A_s(\xi^s_{\omega}) x_s + B_s(\xi^s_{\omega}) x_{s-1} = b_s(\xi^s_{\omega}), \quad s \in [t+1,T]
\]

\[
x_s \in X_s(\xi^s_{\omega}), \quad s \in [t,T].
\]
and setting $\hat{x}_t(\xi^t)$ to the x_t component of the optimal solution. Then a confidence interval is built over $U_\omega, \omega \in \Omega'$ values, the upper end of which provides a statistical upper bound on the optimal value. The relatively complete recourse assumption ensures that at every stage, there exists a feasible solution given the previous stage feasible decisions. We refer to the policy obtained from this upper-bounding procedure as the conditional expected value policy.

4.1 Restricted Stagewise Lagrangian Dual Driven Policy

To improve the conditional expected value policy, an idea is to add a penalty obtained from the SW Lagrangian dual, in order to increase the cost of violating the state equations at the next immediate stage. Given a restricted SW dual solution $\hat{\pi}_t(\xi^t) = \Phi_t(\xi^t) \hat{\beta}_t, t \in [T]$, we obtain the SW dual driven policy by following the same rolling horizon procedure above where we modify the objective function (22a) as

$$
\min \left(c_t(\xi^t_0) + \lambda \left(\mathbb{E}_{\xi^t} \left[\Phi_{t+1}(\xi^{t+1}) \hat{\beta}_{t+1} B_{t+1}(\xi^{t+1}) \mid \xi^t_0 \right] \right) \right)^T x_t + (1 - \lambda) \sum_{s \in [t+1, T]} c_s(\xi^s_s)^T x_s
$$

(23)

where $\lambda \in [0, 1]$ is a parameter of the policy.

4.2 Restricted Nonanticipative Lagrangian Dual Driven Policy

Given a restricted NA dual policy $\hat{\gamma}_t(\xi^t) = \Psi_t(\xi^t)\hat{\alpha}_t$, for all $t \in [T]$, we define the NA dual-driven policy as follows. At stage t, with observed history ξ^t_0 and previous stage decisions $\hat{x}_{t-1}(\xi^{t-1}_0)$, choose $x_t(\xi^t_t)$ as an approximate solution of the following two-stage stochastic program

$$
\min_{x_t} \quad c_t(\xi^t_t)^T x_t + \mathbb{E}_{\xi^t} \left[g_t(x_t, \xi^T_t) \mid \xi^t_0 \right] \\
\text{s.t.} \quad A_t(\xi^t_t)x_t = b_t(\xi^t_t) - B_t(\xi^t_t)\hat{x}_{t-1} \\
x_t \in X_t(\xi^t_t)
$$

(24a)

where

$$
g_t(x_t, \xi^T_t) = \min_{\{x_s\}_{s \in [t+1, T]}} \left(c_s(\xi^s) + \hat{\gamma}_s(\xi^T) - \mathbb{E}_{\xi^t} \left[\hat{\gamma}_s(\xi^T_s) \mid \xi^t_0 \right] \right)^T x_s
$$

(25a)

s.t. $A_s(\xi^s_s)x_s + B_s(\xi^{s-1})x_{s-1} = b_s(\xi^s), \quad s \in [t + 1, T]$ \\
x_s \in X_s(\xi^s), \quad s \in [t + 1, T].

(25b)

In order to solve the problem (24), for each realization ξ^t_0, a sample $\{\xi|t, \omega\}_{\omega \in \Omega_t}$ is generated, where $\xi|t$ is a random variable representing the (conditional) scenarios after the history up to stage t has been observed. Then we solve it by replacing the expectation in (24a) with a sample average using this sample. This scheme is used in a rolling horizon fashion. So, in order to estimate the expected cost of this policy, multiple sample paths ξ^T are generated, and for each one a cost is recorded by the scheme outlined above. Finally, a confidence interval on upper bound value is obtained over these costs.
As the second stage problem (25) is a MIP, given a set of conditional scenarios for the future, we can solve the extensive form of this two-stage problem, by creating a copy of the second-stage variables in problem (25) for each conditional scenario and embedding them in (24) for all scenarios. Although two-stage stochastic MIP problems are still challenging to solve in general, when implementing this policy it needs only be solved once per time stage. On the other hand, estimating the expected value of this policy is computationally challenging since it is necessary to simulate many sample paths to construct a confidence interval. Thus, it may be necessary to heuristically limit the effort in solving the two-stage stochastic MIP, e.g., by using a small number of scenarios, or by terminating the solution process after the solver processes just a limited number of branch-and-bound nodes. Another approach is to generate a larger number of scenarios and then representing them by a smaller size sample, e.g., using a scenario reduction technique like clustering.

The overall framework for providing bounds on MSMIP is illustrated in Figure 2. Using LDDRs, one can obtain a Lagrangian dual policy. The parameters of this policy are then passed to an evaluator to provide confidence intervals (CIs) on the out of sample scenarios. When comparing upper bounds obtained from different methods, the same set of scenarios is used in their evaluation.

Figure 2: Solution framework

5 Computational Experiments

We illustrate our proposed approach on a multi-item lot-sizing problem with backlogging and production lag (MSLot). We present our analysis on the choice of basis functions, as well as comparison between the bounds of various proposed methods.
5.1 Multi-item Stochastic Lot-sizing Problem

The MSMIP formulation for the MSLot problem is as follows

\[\min \mathbb{E} \left[\sum_{t \in [T]} \left(\sum_{j \in [J]} \left(C_{tj}^+(\xi^t)i_{tj}^+(\xi^t) + C_{tj}^-(\xi^t)i_{tj}^-(\xi^t) + C_{tj}^y(\xi^t)y_{tj}(\xi^t) + C_{tj}^o(\xi^t)o_t(\xi^t) \right) \right) \right] \] (26a)

s.t. \[i_{tj}^+(\xi^t) - i_{tj}^-(\xi^t) + i_{t-1,j}^-(\xi^{t-1}) - i_{t-1,j}^-(\xi^{t-1}) + x_{t-1,j}(\xi^t) = D_{tj}(\xi^t), \]
\[\sum_{j \in [J]} (TS_j y_{tj}(\xi^t) + TB_j x_{tj}(\xi^t)) - o_t(\xi^t) \leq C_t, \] \[t \in [T], j \in [J], \text{P-a.e. } \xi^T \in \Xi \] (26b)
\[M_{tj} y_{tj}(\xi^t) - x_{tj}(\xi^t) \geq 0, \] \[t \in [T], j \in [J], \text{P-a.e. } \xi^T \in \Xi \] (26c)
\[i_{tj}^+(\xi^t) \leq I_{tj}, \] \[t \in [T], j \in [J], \text{P-a.e. } \xi^T \in \Xi \] (26d)
\[i_{tj}^-(\xi^t) + x_{tj}(\xi^t) \leq I_{t+1,j}, \] \[t \in [T], j \in [J], \text{P-a.e. } \xi^T \in \Xi \] (26e)
\[0 \leq o_t(\xi^t) \leq O_t, \] \[t \in [T], \text{P-a.e. } \xi^T \in \Xi \] (26f)
\[x_{tj}(\xi^t), i_{tj}^+(\xi^t), i_{tj}^-(\xi^t) \geq 0, \] \[t \in [T], j \in [J], \text{P-a.e. } \xi^T \in \Xi \] (26g)
\[y_{tj}(\xi^t) \in \{0, 1\}, \] \[t \in [T], j \in [J], \text{P-a.e. } \xi^T \in \Xi \] (26i)

where \(x_{tj}(\xi^t), i_{tj}^+(\xi^t), i_{tj}^-(\xi^t) \) are decision variables representing production level, inventory and backlog of product type \(j \) at stage \(t \), respectively. Binary decision variable \(y_{tj}(\xi^t) \) is equal to 1 if production of item \(j \) is setup at stage \(t \), 0 otherwise. Decision variable \(o_t(\xi^t) \) measures the overtime at stage \(t \). \(C_t, I_{tj}, O_t \) are the production capacity, inventory capacity of product \(j \), and the overtime bound at stage \(t \), respectively. \(D_{tj}(\xi^t) \) is the demand of product \(j \) at stage \(t \). \(C_{tj}^+(\xi^t), C_{tj}^-(\xi^t), C_{tj}^y(\xi^t) \) are respectively the costs of holding, backlog and fixed setup for product \(j \), and \(C_{tj}^o(\xi^t) \) is the overtime cost at stage \(t \). For product \(j \), \(TS_j \) is the setup time, while \(TB_j \) is the production time per unit. Constraints (26b) are the state equations, linking the inventory, backlog and production of consecutive stages. Note that there is a production lag of 1, meaning that the amount that is produced at stage \(t \) is not available until stage \(t + 1 \). Overtime is measured by constraints (26c), while the same set of constraints ensure the production capacity is respected. Constraints (26d) link the production and setup decisions, using sufficiently large big-M values in the absence of a given limit on the production quantity. The rest of the constraints determine the bounds and integrality constraints on the decision variables. The objective function (26a) is the total expected cost, including the costs of holding, backlog, setup and overtime.

5.2 Implementation Details

To solve the SAA problems (20) and (21) for the MSLot, we have used the Regularized Benders Method, with all the parameters of the algorithm being exactly as provided by Lubin et al. (2013). The convergence tolerance of the algorithm is set to 0.001. For the SW dual driven policy, in the objective function (23), we use \(\lambda = 0.25 \) as the weight given to the penalty of violating the state.
equations. The algorithms are implemented in C++ using IBM ILOG CPLEX 12.8 for solving MIPs, and the experiments are conducted on a MacOS X with 2.3 GHz Intel Core i5 and 16 GB RAM.

For solving the SW and NA dual problems, \(\lceil \frac{50T}{\beta} \rceil \#\) and \(\lceil \frac{100T}{\alpha} \rceil \#\) number of scenarios are generated respectively, and the solutions are evaluated using \(\lceil \frac{250T}{\alpha} \rceil \#\) scenarios, where \(\lceil \cdot \rceil \#\) operator denotes the total number of variables of a given type (this depends on the choice of basis functions, discussed in Section 5.5).

For the NA dual-driven primal policy, the two-stage stochastic MIP problem (24) is approximately solved using a sample with \(|\Omega_t| = 25\). This sample is generated by randomly sampling 100 scenarios, then clustering these into 24 groups and using the mean of each group as a scenario in the sample, and adding the conditional expectation \(\bar{\xi}_t\) as the last scenario in the sample.

5.3 Base Data

The dataset of our experiments is loosely based on the work of Helber et al. (2013). We consider the following autoregressive process model for representing the correlation between demands of different stages

\[Y_{t+1,j} = \rho Y_{t,j} + (1 - \rho) \epsilon_{t+1,j}, \]

where \(\epsilon_{t,j}\) is a lognormal random variable with mean 1 and standard deviation 0.5. Demands are modeled as

\[D_{t,j} = \rho^Y Y_{t,j} \mu_{t,j} + (1 - \rho^Y) \delta_{t,j} \]

where \(\mu_{t,j}\) is the mean of the demands of product type \(j\) at stage \(t\), and \(\delta_{t,j}\) is a random variable having a mean of \(\mu_{t,j}\). Thus, in this model there is an underlying autoregressive process \((Y_{t,j})\) and the demand in each period is partially driven by this and also by an external random variable. This assures that demands are nonnegative. We consider a lognormal distribution for \(\delta_{t,j}\) whose standard deviation is \(0.2t \mu_{t,j}\), reflecting higher demand uncertainty further in the future. For \(\mu_{t,j}\) values, we use the means of the demands provided by Helber et al. (2013). Using consecutive substitutions, we can deduce that the following holds for the conditional expectation

\[\mathbb{E}[D_{t+h,j}|\epsilon_{t,j}, \delta_{t,j}] = \mu_{t+h,j} \left(\rho^Y \rho^h \left(\frac{D_{t,j} - (1 - \rho^Y) \delta_{t,j}}{\rho^Y \mu_{t,j}} - 1 \right) + 1 \right). \]

We have generated instances with \(T = 2, \ldots, 10\) stages, and \(J = 3, 6\) product types. There are two sets of data instances for \(J = 3\) with \(\rho = 0.2, \rho^Y = 0.6\) and \(\rho = 0.6, \rho^Y = 0.2\) leading to different levels of correlation and variation among demands. The combination \(\rho = 0.6, \rho^Y = 0.2\) is additionally used in the generation of instances with \(J = 6\). The rest of the configurations can be found in Appendix C.3.

5.4 Benchmarks

The same set of scenarios are used for estimating lower bounds and evaluating primal policies. As the benchmark lower bound, perfect information (PI) is used, which is obtained similar to the restricted
NA lower bound, with the LDDR variables, \(\alpha \), fixed to 0. This is the bound that is obtained by solving a problem in which it is assumed that we have complete information about the future. The conditional expected value policy is used as the benchmark upper-bounding policy.

5.5 Basis Function Selection

As mentioned in Section 3.1, the choice of basis functions is not restricted by any predetermined form. Therefore, in choosing the basis functions for the MSlot problem we have options. Assuming a linear form, an exhaustive choice is to use all the uncertain information we have, i.e., all demand observations. At stage \(\hat{t} \), for the SW dual this means using \(D_{tj} \) for all \(j \) and \(t \leq \hat{t} \), while in the NA dual it involves the complete set of demands for all stages in the planning horizon and all products. Other reasonable options consist of various subsets of these full sets of basis functions. Table 2 summarizes some of the alternatives considered in our experiments. Note that, option 1 in the NA dual does not span over the entire planning horizon and it ignores the observed history. However, it is easy to show that the two are equivalent.

Option	SW Dual	NA dual
1	\(1 ; D_{tj}, \forall j, \forall t \leq \hat{t} \)	\(1 ; D_{tj}, \forall j, \forall t \leq T : \hat{t} < t \)
2	\(1 ; D_{tj}, \forall j, t = \hat{t} \)	\(1 ; D_{tj}, \forall j, t = \hat{t} + 1 \)
3	\(1 ; D_{tj}, j = \hat{j}, \forall t \leq \hat{t} \)	\(1 ; D_{tj}, j = \hat{j}, \forall t \leq T : \hat{t} < t \)
4	\(1 ; D_{tj}, j = \hat{j}, t = \hat{t} \)	\(1 ; D_{tj}, j = \hat{j}, t = \hat{t} + 1 \)

Table 2: Various options to be used in basis functions, at stage \(\hat{t} \) for product \(\hat{j} \)

In Table 2, options 2 and 4 in the SW dual only use the stage \(\hat{t} \) demands as basis functions for stage \(\hat{t} \) constraints, and in the case of the NA dual, they only use the stage \(\hat{t} + 1 \) demands for basis functions used to relax stage \(\hat{t} \) constraints. Options 3 and 4 only use product \(\hat{j} \) demands as basis functions for constraints associated with product \(\hat{j} \). Thus, option 1 has the most basis functions, and hence should have the best bound, whereas option 4 uses the fewest basis functions. We compare these four options to determine which one gives the best trade-off between the quality of the bound and the computational effort.

Tables 3 and 4 present the solution time in seconds and the lower bounds returned by the SW and NA duals, respectively. For this comparison, three instances with \(T = 4, 6, 8 \) are solved using the four basis function options. The bounds are the means of the confidence intervals over the objective values for all the scenarios in the evaluation sample. They are scaled such that 100 is the best known bound obtained for that instance.

In Table 3, option 1 has the largest number of basis functions and LDDR variables, and the highest lower bound among all the four options. We also carried out a pairwise comparison between option 1 and the others by performing a \(t \)-test. The test confirmed that the difference in the means is statistically significant (at 95% confidence). The higher quality of the bound using option 1 comes at
the price of a larger solution time. If the computation becomes cumbersome, the next candidates are options 2 and 3 which do not have a significant difference in their means.

The results for the NA dual are presented in Table 4. In this case we find that options 1 and 3, which use all future time periods rather than just the next time period, have clearly better quality of the bound. We conducted a pairwise *t*-test to determine if the differences are statistically significant. In particular, we compared all the options against option 3, which seems to return a very high quality solution in a reasonable amount of time. The test revealed that there is no statistically distinguishable difference between the bounds obtained by option 1 and option 3, and option 3 is statistically significantly better than options 2 and 4. This shows that having information about the whole planning horizon is beneficial, rather than just considering the next stage ahead, but for the NA dual there was no observed benefit to using demands for products different from the one being relaxed in the NA constraint in the basis functions. In the light of the above discussions, in the rest of the experiments, options 1 and 3 are used for the SW and NA duals, respectively.

5.6 NA Variable Selection

In NA problem reformulation, another possibility to reduce the restricted dual problem size is to ignore altogether the NA constraints (4c) on some sets of variables (i.e., by fixing the dual variables associated with these constraints to zero). For example, in order to obtain a valid formulation it is sufficient to enforce (4c) only on *state variables*, i.e., variables that appear in more than one time stage, and thus one may choose to only penalize the NA constraints associated with those variables. On the other
hand, in the MSLot problem, once the the recourse variables \(x_t(\xi_t) \) are determined, the optimal values of the state variables \(i^- (\xi_t) \) and \(i^+ (\xi_t) \) are immediate from the equations (26b), suggesting it may be beneficial to penalize violation of the NA constraints on these variables. (A similar approach is used by Lulli and Sen (2004).) A natural question for our LDDR approach is, can enforcing nonanticipativity additionally on the other variables (which is redundant before the relaxation) improve the bound?

Table 5 examines this question by considering three options: having either \(x \) or state variables \(i^+ \), \(i^- \) as the NA variables, or considering a combination of them. Results of Table 5 show that the combination of \(x, i^+, i^- \) obtains the best bounds in a longer running time. The difference between the means of the options was tested using a \(t \)-test. We find that the bounds obtained by penalizing the NA constraints on only the \(x \) variables are not significantly worse than those obtained by penalizing the NA constraints on all variables. In addition, including a penalty of the NA constraints \(x \) variables leads to an improvement over just including a penalty of the NA constraints on the state variables \(i^+ \) and \(i^- \). Since penalizing only the NA constraints on the \(x \) variables yields lower bounds that are indistinguishable from the best, in less time, we use this option in the remaining experiments.

5.7 Bound Comparison

We now compare the quality of the bounds returned by the two Lagrangian duals, and their respective upper bounds, over a variety of test instances. Figures 3 and 4 illustrate the performance of the lower and upper bounding algorithms for instances with different stages, product types, and levels of stochasticity in demands. The reported numbers are normalized as follows. The lower bounds obtained for each instance are divided by the PI lower bound for that instance, so that the reported value is the lower bound relative to the PI lower bound and values over 1.0 indicate an improvement in the lower bound. The upper bounds are divided by the bound returned by the conditional expected value policy, so that a value below 1.0 indicates an improvement in the upper bound. For both cases the actual numbers are available in Appendix C.4.

As shown by Figure 3b, the NA dual has been able to improve upon the PI lower bound in all instances. This improvement generally becomes more evident as the number of stages grows. From Figure 3b, it can be seen that the NA dual is performing better with a higher level of stochasticity (less correlation in the autoregressive process and a higher weight for variation). This could be due to a stronger PI bound when the system is less volatile. On the other hand, as seen in Figure 3a,
Figure 3: Performance of lower bounding algorithms with respect to each other and the PI. Solid bars represent instances with $J = 3, \rho = 0.2, \rho^Y = 0.6$, dotted bars are instances with $J = 3, \rho = 0.6, \rho^Y = 0.2$, and in dashed bars we have $J = 6, \rho = 0.6, \rho^Y = 0.2$.

SW dual provides significantly lower bounds (as expected from Theorem 1) than those from the NA dual, and even is significantly worse than the PI bound on these test instances.

Figure 4 presents the results comparing the upper bounds obtained from the dual-driven policies to that from the conditional expected value policy. We see from Figure 4a that the SW dual-driven policy provides modest but consistent improvement over the conditional expected value policy. For the NA dual-driven policy we report results only for stages $T \leq 6$, since estimating the value of the policy was too time-consuming for larger instances. We find that for instances with $J = 3$ and $3 \leq T \leq 5$ the NA dual-driven policy was able to significantly improve upon the conditional expected value policy. We suspect that for instances with larger T or J, the lack of improvement is due to a
poor approximation of the two-stage SMIP \((24)\) that is solved in this method, as we approximated this problem with just 25 scenarios due to computational limitations. Although we do not explore this here, the NA dual-driven policy may be more practical if a decomposition algorithm is used to solve the problem \((24)\), enabling the use of many more scenarios to approximate it.

![Figure 5a: Gap between PI lower bound and conditional expected value upper bound for all instances](image)

(a) Gap between PI lower bound and conditional expected value upper bound for all instances

![Figure 5b: Gap reduction obtained from combining the improvements of lower and upper bounding techniques](image)

(b) Gap reduction obtained from combining the improvements of lower and upper bounding techniques

Figure 5: Gap reduction percentage with respect to the gap between the PI and the conditional expected value policy. Solid bars represent instances with \(J = 3, \rho = 0.2, \rho^Y = 0.6\), dotted bars are instances with \(J = 3, \rho = 0.6, \rho^Y = 0.2\), and in dashed bars we have \(J = 6, \rho = 0.6, \rho^Y = 0.2\).

Figure 5a presents the gap between the PI lower bound and the conditional expected value upper bound across various instances, which ranges from 3.91\% to 50.67\%. In Figure 5b we present the fraction of this gap that is closed using the combined improvements from the NA dual lower bound and the SW dual upper bound. We find that the gap is reduced over all instances, and is more pronounced on instances with \(J = 3\) and instances with \(\rho = 0.6, \rho^Y = 0.2\) (the instances in which the demands have higher variability).

6 Conclusion

In this work, we introduced the idea of Lagrangian dual decision rules where decision rules are used in the Lagrangian dual of an MSMIP. The result is an approximation problem that can be solved by stochastic approximation or sample average approximation. The approximate problem does not have a multi-stage structure, and hence does not require a scenario tree for its approximate solution. Two lower-bounding policies based on two Lagrangian duals are proposed: stagewise and nonanticipative, where the former is an easier problem consisting of single period subproblems, while the latter can potentially lead to better bounds if the basis functions are selected properly. The solutions to both of these duals can be incorporated in constructing primal policies. The lower and upper bounding methods were evaluated by solving instances of a multi-item stochastic lot-sizing problem. The results show that our methods can substantially reduce the optimality gap relative to the use of two general-
purpose bounding policies, for instances with up to ten stages. Future work includes design of more scalable dual-driven policies and investigation of other Lagrangian dual decision rule structures, such as piecewise linear form.

Acknowledgments

This work was supported by Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2018-04984], NSF award CMMI-1634597 and by the Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Contract Number DE-AC02-06CH113.

References

Ahmed S, Cabral FG, da Costa BFP (2019) Stochastic Lipschitz dynamic programming. arXiv preprint arXiv:1905.02290.

Ahmed S, King AJ, Parija G (2003) A multi-stage stochastic integer programming approach for capacity expansion under uncertainty. Journal of Global Optimization 26(1):3–24.

Alonso-Ayuso A, Escudero LF, Ortuno MT (2003) BFC, a branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0–1 programs. European Journal of Operational Research 151(3):503–519.

Bampou D, Kuhn D (2011) Scenario-free stochastic programming with polynomial decision rules. 2011 50th IEEE Conference on Decision and Control and European Control Conference, 7806–7812.

Barty K, Carpentier P, Girardeau P (2010) Decomposition of large-scale stochastic optimal control problems. RAIRO-Operations Research 44(3):167–183.

Bodur M, Luedtke JR (2018) Two-stage linear decision rules for multi-stage stochastic programming. Mathematical Programming 1–34.

Brown DB, Smith JE, Sun P (2010) Information relaxations and duality in stochastic dynamic programs. Operations Research 58(4-part-1):785–801.

CarøE CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Operations Research Letters 24(1-2):37–45.

Cen Z (2012) Solving multi-stage stochastic mixed integer linear programs by the dual dynamic programming approach. Research Report RR-7868, INRIA.

Cerisola S, Latorre JM, Ramos A (2012) Stochastic dual dynamic programming applied to nonconvex hydrothermal models. European Journal of Operational Research 218(3):687–697.

Chen X, Sim M, Sun P, Zhang J (2008) A linear decision-based approximation approach to stochastic programming. Operations Research 56(2):344–357.

Chen ZL, Li S, Tirupati D (2002) A scenario-based stochastic programming approach for technology and capacity planning. Computers & Operations Research 29(7):781–806.

Dentcheva D, Römisch W (2004) Duality gaps in nonconvex stochastic optimization. Mathematical Programming 101(3):515–535.

Fan Y, Liu C (2010) Solving stochastic transportation network protection problems using the progressive hedging-based method. Networks and Spatial Economics 10(2):193–208.
Flach B, Barroso L, Pereira M (2010) Long-term optimal allocation of hydro generation for a price-maker company in a competitive market: latest developments and a stochastic dual dynamic programming approach. *IET Generation, Transmission & Distribution* 4(2):299–314.

Flatabø N, Haugstad A, Mo B, Fosso OB (1998) Short-term and medium-term generation scheduling in the norwegian hydro system under a competitive power market structure. *EPSOM98 (International Conference on Electrical Power System Operation and Management), Switzerland.*

Gade D, Hackebeil G, Ryan SM, Watson JP, Wets RJB, Woodruff DL (2016) Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs. *Mathematical Programming* 157(1):47–67.

Georghiou A, Wiesemann W, Kuhn D (2015) Generalized decision rule approximations for stochastic programming via liftings. *Mathematical Programming* 152(1-2):301–338.

Guan Y, Ahmed S, Nemhauser GL (2009) Cutting planes for multistage stochastic integer programs. *Operations Research* 57(2):287–298.

Gul S, Denton BT, Fowler JW (2015) A progressive hedging approach for surgery planning under uncertainty. *INFORMS Journal on Computing* 27(4):755–772.

Helber S, Sahling F, Schimmelpfeng K (2013) Dynamic capacitated lot sizing with random demand and dynamic safety stocks. *OR Spectrum* 35(1):75–105.

Helseth A, Mo B, Fodstad M, Hjelmeland MN (2015) Co-optimizing sales of energy and capacity in a hydropower scheduling model. 2015 IEEE Eindhoven PowerTech, 1–6.

Higle J, Sen S (1996) *Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming* (Boston: Springer-Verlag).

Kiwi KC (1995) Approximations in proximal bundle methods and decomposition of convex programs. *Journal of Optimization Theory and Applications* 84(3):529–548.

Knapp AW (2005) *Basic Real Analysis* (Springer Science & Business Media).

Kuhn D, Wiesemann W, Georghiou A (2011) Primal and dual linear decision rules in stochastic and robust optimization. *Mathematical Programming* 130(1):177–209.

Listes O, Dekker R (2005) A scenario aggregation–based approach for determining a robust airline fleet composition for dynamic capacity allocation. *Transportation Science* 39(3):367–382.

Löhndorf N, Wozabal D, Minner S (2013) Optimizing trading decisions for hydro storage systems using approximate dual dynamic programming. *Operations Research* 61(4):810–823.

Løkketangen A, Woodruff DL (1996) Progressive hedging and tabu search applied to mixed integer (0, 1) multistage stochastic programming. *Journal of Heuristics* 2(2):111–128.

Lubin M, Martin K, Petra CG, Sandıkçı B (2013) On parallelizing dual decomposition in stochastic integer programming. *Operations Research Letters* 41(3):252–258.

Lulli G, Sen S (2004) A branch-and-price algorithm for multistage stochastic integer programming with application to stochastic batch-sizing problems. *Management Science* 50(6):786–796.

Mo B, Gjelsvik A, Grundt A, Karesen K (2001) Optimisation of hydropower operation in a liberalised market with focus on price modelling. *2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), volume 1, 6–pp.*

Nemirovski A, Juditsky A, Lan G, Shapiro A (2009) Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization* 19(4):1574–1609.
Newham N, Wood A (2007) Transmission investment planning using SDDP. 2007 Australasian Universities Power Engineering Conference, 1–5.

Norkin VI, Pflug GC, Ruszczyński A (1998) A branch and bound method for stochastic global optimization. Mathematical Programming 83(1-3):425–450.

Nowak MP, Römisch W (2000) Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty. Annals of Operations Research 100(1-4):251–272.

Pereira MV, Pinto LM (1991) Multi-stage stochastic optimization applied to energy planning. Mathematical Programming 52(1-3):359–375.

Philpott A, Wahid F, Bonmans J (2016) Midas: A mixed integer dynamic approximation scheme. Mathematical Programming 1–32.

Rajagopalan S, Singh MR, Morton TE (1998) Capacity expansion and replacement in growing markets with uncertain technological breakthroughs. Management Science 44(1):12–30.

Robbins H, Monro S (1951) A stochastic approximation method. The Annals of Mathematical Statistics 22(3):400–407.

Rockafellar RT, Wets RJB (1991) Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research 16(1):119–147.

Rosa CH, Ruszczyński A (1996) On augmented Lagrangian decomposition methods for multistage stochastic programs. Annals of Operations Research 64(1):289–309.

Ruszczyński A (1986) A regularized decomposition method for minimizing a sum of polyhedral functions. Mathematical Programming 35(3):309–333.

Sandıkçı B, Ozaltın OY (2014) A scalable bounding method for multi-stage stochastic integer programs. Chicago Booth Research Paper 14-21.

Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on Stochastic Programming: Modeling and Theory (SIAM).

Shapiro A, Nemirovski A (2005) On complexity of stochastic programming problems. Continuous Optimization, 111–146 (Springer).

Singh KJ, Philpott AB, Wood RK (2009) Dantzig-Wolfe decomposition for solving multistage stochastic capacity-planning problems. Operations Research 57(5):1271–1286.

Takriti S, Birge JR, Long E (1996) A stochastic model for the unit commitment problem. IEEE Transactions on Power Systems 11(3):1497–1508.

Watson JP, Woodruff DL (2011) Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems. Computational Management Science 8(4):355–370.

Zou J (2017) Large scale multistage stochastic integer programming with applications in electric power systems. Ph.D. thesis, Georgia Institute of Technology.
Appendix

In the following, we have provided further details on the proofs and results given in the paper.

A Proof of Lemma 1

Expanding the objective function in (5a) and rearranging the terms yields

\[
\sum_{t \in [T]} \left(\mathbb{E}_{\xi^T} \left[c_t (\xi^t)^\top y_t (\xi^T) \right] + \mathbb{E}_{\xi^T} \left[\gamma_t (\xi^T)^\top y_t (\xi^T) \right] - \mathbb{E}_{\xi^T} \left[\gamma_t (\xi^T)^\top \mathbb{E}_{\xi^T} \left[y_t (\xi^T) | \xi^t = \xi^t \right] \right] \right).
\]

(27)

For the last term in (27), the following equalities hold

\[
\mathbb{E}_{\xi^T} \left[\gamma_t (\xi^T)^\top \mathbb{E}_{\xi^T} \left[y_t (\xi^T) | \xi^t = \xi^t \right] \right] = \mathbb{E}_{\xi^T} \left[\mathbb{E}_{\xi^T} \left[\gamma_t (\xi^T)^\top y_t (\xi^T) | \xi^t = \xi^t \right] \right] = \mathbb{E}_{\xi^T} \left[\mathbb{E}_{\xi^T} \left[\gamma_t (\xi^T)^\top y_t (\xi^T) | \xi^t = \xi^t \right] \right] = \mathbb{E}_{\xi^T} \left[\mathbb{E}_{\xi^T} \left[\gamma_t (\xi^T)^\top | \xi^t = \xi^t \right] y_t (\xi^T) \right] = \mathbb{E}_{\xi^T} \left[\mathbb{E}_{\xi^T} \left[\gamma_t (\xi^T)^\top | \xi^t = \xi^t \right] y_t (\xi^T) \right].
\]

(28a)

(28b)

(28c)

(28d)

First note that, in \(\mathbb{E}_{\xi^T} \left[\gamma_t (\xi^T)^\top \mathbb{E}_{\xi^T} \left[y_t (\xi^T) | \xi^t = \xi^t \right] \right] \), since the dual function \(\gamma_t (\xi^T) \) is fixed, \(\gamma_t (\xi^T) \) is a vector of numbers inside the first expectation, hence it can be pushed inside the second expectation (Equation (28a)). As we have assumed that \(\gamma_t (\xi^T) \) is a member of the set \(\Gamma_t \) with its expectation being bounded, and the expected diameter of the set \(Y_t (\xi^t) \) to which \(y_t (\xi^t) \) belongs is finite, using Fubini-Tonelli Theorem (Knapp 2005) the order of the two expectations can be exchanged (Equation (28b)). Then we can take \(y_t (\xi^T) \) out from the inside expectation, as it is just a vector of numbers inside (Equation (28c)). Since \(\xi^T \) and \(\xi^t \) have the same support and distribution, the last equality (Equation (28d)) is satisfied. Equality (6) can then be proven by substitution.

B Proof of Lemma 2

First observe that since the objective in (11) is linear, the restricted Lagrangian dual problem (13) can be written as

\[
z^{\text{RLD}} = \max_{\lambda, \alpha} \min_x \{ c^\top x + \lambda^\top (d - Dx) : x \in \text{conv}(X) \}
\]

s.t. \(\lambda - G\alpha = 0 \)

Let \(\{x^i\}_{i \in [M]} \) and \(\{r^k\}_{k \in [K]} \) be the complete set of extreme points and extreme rays of \(\text{conv}(X) \), respectively. Then, for any fixed \(\lambda \), we have

\[
z(\lambda) = \begin{cases} -\infty, & \exists r^k : (c^\top - \lambda^\top D)r^k < 0 \\ \min_{i \in [M]} \{ c^\top x^i + \lambda^\top (d - Dx^i) \}, & \text{otherwise.} \end{cases}
\]

27
Therefore we can reformulate the Lagrangian dual problem as

\[
z_{LD} = \max_{\lambda, \alpha} \min_{i \in [M]} \{ c^T x^i + \lambda^T (d - Dx^i) \}
\]
\[
\text{s.t. } \lambda - G\alpha = 0
\]
\[
(c^T - \lambda^T D)r^k \geq 0, \quad k \in [K]
\]

which is equivalent to

\[
z_{LD} = \max_{\lambda, \alpha, \eta} \eta
\]
\[
\text{s.t. } \lambda - G\alpha = 0 \quad (\theta) \quad (29b)
\]
\[
\lambda^T Dr^k \leq c^T r^k \quad k \in [K] \quad (\beta_k) \quad (29c)
\]
\[
\eta + \lambda^T (Dx^i - d) \leq c^T x^i \quad i \in [M] \quad (\gamma_i) \quad (29d)
\]

where \(\theta, \beta_k\) and \(\gamma_i\) are the dual variables associated with constraints (29b), (29c) and (29d) respectively. Now take the dual of the above problem

\[
\min_{\theta, \beta, \gamma} c^T \left(\sum_{i \in [M]} \gamma_i x^i + \sum_{k \in [K]} \beta_k r^k \right)
\]
\[
\text{s.t. } \sum_{i \in [M]} \gamma_i = 1
\]
\[
D \left(\sum_{i \in [M]} \gamma_i x^i + \sum_{k \in [K]} \beta_k r^k \right) + \theta = d
\]
\[
-G^T \theta = 0
\]
\[
\gamma_i, \beta_k \geq 0
\]

As we know that \(\text{conv}(X) = \left\{ \sum_{i \in [M]} \gamma_i x^i + \sum_{k \in [K]} \beta_k r^k : \sum_{i \in [M]} \gamma_i = 1, \gamma_i, \beta_k \geq 0, \ i \in [M], k \in [K] \right\}\), we have

\[
\min_{\theta, \beta, \gamma} c^T x
\]
\[
\text{s.t. } x \in \text{conv}(X)
\]
\[
Dx + \theta = d \quad (30)
\]
\[
-G^T \theta = 0.
\]

Eliminating the \(\theta\) variables using (30) yields the result.

Note that if \(\theta = 0\), then the original MIP solution, say \(x^*\), is feasible. So, this gives a relaxation of the original MIP.
C The Lot-sizing Problem

C.1 Stagewise Lagrangian Dual

Relax state equations (26b), except for \(t = 1 \). Then, we have

\[
\begin{align*}
\min \ E [L(\lambda)] & \quad (31a) \\
\text{s.t.} \quad i_{1j}(\xi^t) - i_{1j}^+(\xi^t) = d_{1j}(\xi^1), \quad j \in [J], \text{P-a.e.} \ \xi^T \in \Xi & \quad (31b) \\
(26c) - (26i) & \quad (31c)
\end{align*}
\]

where

\[
L(\lambda) := \sum_{t \in [T]} \left(\sum_{j \in [J]} \left(C_{ij}^+(\xi^t)i_{ij}^+(\xi^t) + C_{ij}^-(\xi^t)i_{ij}^-(\xi^t) + C_{ijy}^t(\xi^t)\gamma_{ij}(\xi^t) \right) + C_{io}^t(\xi^t)\alpha_t(\xi^t) \right)
\]

\[
+ \sum_{t \in [T]} \sum_{j \in [J]} \lambda_{tj}(\xi^t) \left(i_{tj}(\xi^t) - i_{tj}^+(\xi^t) + i_{t-1,j}^+(\xi^{t-1}) - i_{t-1,j}^-(\xi^{t-1}) + x_{t-1,j}(\xi^t) - D_{tj}(\xi^t) \right).
\]

Restrict \(\lambda_t(\xi^t) \) to follow LDDR

\[
\lambda_{tj}(\xi^t) = \sum_{k \in [K_t]} \Phi_{tjk}(\xi^t)\alpha_{tjk}.
\]

Then, for fixed \(\hat{\alpha} \), the objective function (31a) is equivalent to

\[
\sum_{t \in [T]} E [L_t(\hat{\alpha})] \quad (32)
\]

where

\[
L_t(\hat{\alpha}, \xi^t) := \\
\sum_{j \in [J]} \left[\left(\sum_{k \in [K_t]} \Phi_{tjk}(\xi^t)\alpha_{tjk} \right) \left(- D_{tj}(\xi^t) \right) \right. \\
+ \left(\mathbb{E} \left[\sum_{k \in [K_{t+1}]} \Phi_{t+1,j,k}(\xi^{t+1})\alpha_{t+1,jk} \mid \xi^t \right] \right) x_{tj} \\
+ \left(C_{ij}^+(\xi^t) - \sum_{k \in [K_t]} \Phi_{tjk}(\xi^t)\alpha_{tjk} + \mathbb{E} \left[\sum_{k \in [K_{t+1}]} \Phi_{t+1,j,k}(\xi^{t+1})\alpha_{t+1,jk} \mid \xi^t \right] \right) i_{tj}^+ \\
+ \left(C_{ij}^-(\xi^t) + \sum_{k \in [K_t]} \Phi_{tjk}(\xi^t)\alpha_{tjk} - \mathbb{E} \left[\sum_{k \in [K_{t+1}]} \Phi_{t+1,j,k}(\xi^{t+1})\alpha_{t+1,jk} \mid \xi^t \right] \right) i_{tj}^- \\
+ C_{ijy}^t(\xi^t)\gamma_{ij} - C_{io}^t(\xi^t)\alpha_t.
\]

For fixed \(\hat{\alpha}, \xi^t \) and \(t \geq 1 \), define \(\mathcal{L}_t(\hat{\alpha}, \xi^t) \) as follows

\[
\mathcal{L}_t(\hat{\alpha}, \xi^t) := \min \ L_t(\hat{\alpha}, \xi^t)
\]
Reformulate the MSLot problem as follows:

\[\sum_{j \in [J]} (TS_j y_{tj} + TB_j x_{tj}) - o_t \leq C_t \]

\[M_{tj} y_{tj} - x_{tj} \geq 0, \quad j \in [J] \]

\[i_{tj}^+ \leq I_{tj}, \quad j \in [J] \]

\[i_{tj}^+ + x_{tj} \leq I_{t+1,j}, \quad j \in [J] \]

\[0 \leq o_t \leq O_t \]

\[x_{tj}, i_{tj}^+, i_{tj}^- \geq 0, \quad j \in [J] \]

\[y_{tj} \in \{0, 1\}, \quad j \in [J]. \]

For \(t = 1 \) we have

\[\mathcal{L}_1(\alpha, \xi^1) := \min \ L_1(\alpha, \xi^1) \]

\[\text{s.t.} \quad i_{tj}^- - i_{tj}^+ = d_{1j}, \quad j \in [J] \]

\[\sum_{j \in [J]} (TS_j y_{t1j} + TB_j x_{t1j}) - o_1 \leq C_1 \]

\[M_{1j} y_{1j} - x_{1j} \geq 0, \quad j \in [J] \]

\[i_{1j}^+ \leq I_{1j}, \quad j \in [J] \]

\[i_{1j}^+ + x_{1j} \leq I_{2,j}, \quad j \in [J] \]

\[0 \leq o_1 \leq O_1 \]

\[x_{1j}, i_{1j}^+, i_{1j}^- \geq 0, \quad j \in [J] \]

\[y_{1j} \in \{0, 1\}, \quad j \in [J]. \]

Finally, the LDDR-restricted stagewise Lagrangian dual problem is defined as

\[\max \sum_{t \in [T]} \mathbb{E} \left[\mathcal{L}_t(\alpha, \xi^t) \right] \]

\[\text{s.t.} \quad \alpha_{tk} \in \mathbb{R}^I, \quad t \in [T], k \in [K_t]. \]

C.2 Nonanticipative Lagrangian Dual

Reformulate the MSLot problem as follows:

\[\min \mathbb{E} \left[\sum_{t \in [T]} \left[\sum_{j \in [J]} \left[C_{tj}^+ (\xi^t) i_{tj}^+ y_{tj} (\xi^t) + C_{tj}^- (\xi^t) i_{tj}^- y_{tj} (\xi^t) + C_{tj}^y (\xi^t) y_{tj}^y (\xi^t) + C_{tj}^o (\xi^t) o_{tj}^o (\xi^t) \right] \right] \right] \]

\[\text{s.t.} \quad i_{tj}^- y_{tj} (\xi^t) - i_{tj}^+ y_{tj} (\xi^t) + i_{t-1,j}^+ y_{t-1,j} (\xi^t) - i_{t-1,j}^- y_{t-1,j} (\xi^t) + x_{t-1,j}^o y_{t-1,j} (\xi^t) = D_{tj} (\xi^t), \quad t \in [T], j \in [J], \mathbb{P}\text{-a.e.} \xi^T \in \Xi \]

\[\sum_{j \in [J]} (TS_j y_{tj}^o (\xi^t) + TB_j x_{tj}^o (\xi^t)) - o_{tj}^o (\xi^t) \leq C_t, \quad t \in [T], \mathbb{P}\text{-a.e.} \xi^T \in \Xi \]

\[M_{tj} y_{tj}^o (\xi^t) - x_{tj}^o (\xi^t) \geq 0, \quad t \in [T], j \in [J], \mathbb{P}\text{-a.e.} \xi^T \in \Xi \]
\[i_{tj}^{+,na}(\xi^T) \leq I_{tj}, \quad t \in [T], j \in [J], \mathbb{P}\text{-a.e. } \xi^T \in \Xi\]
\[i_{tj}^{+,na}(\xi^T) + i_{tj}^{-,na}(\xi^T) \leq I_{t+1,j}, \quad t \in [T], j \in [J], \mathbb{P}\text{-a.e. } \xi^T \in \Xi\]
\[0 \leq o_t^{na}(\xi^T) \leq O_t, \quad t \in [T], \mathbb{P}\text{-a.e. } \xi^T \in \Xi\]
\[x_{tj}^{na}(\xi^T) = \mathbb{E}^{\xi^T}[x_{tj}^{na}(\xi^T) | \xi^T], \quad t \in [T], j \in [J], \mathbb{P}\text{-a.e. } \xi^T \in \Xi\]
\[x_{tj}^{na}(\xi^T), i_{tj}^{+,na}(\xi^T), i_{tj}^{-,na}(\xi^T) \geq 0, \quad t \in [T], j \in [J], \mathbb{P}\text{-a.e. } \xi^T \in \Xi\]
\[y_{tj}^{na}(\xi^T) \in \{0, 1\}, \quad t \in [T], j \in [J], \mathbb{P}\text{-a.e. } \xi^T \in \Xi\]

where for any variable \(a^{na}(\xi^T)\) the superscript \(na\) indicates the anticipative copy variable corresponding to original variable \(a(\xi^T)\). Relaxing the nonanticipativity constraints using dual variables \(\gamma_t(\xi^T)\) and enforcing LDDR on these duals as

\[\gamma_{tj}(\xi^T) = \sum_{k \in [K]} \Psi_{tjk}(\xi^T) \alpha_{tjk},\]

the LDDR-restricted nonanticipative Lagrangian dual problem is obtained as follows

\[
\begin{align*}
\max \mathbb{E} \left[\mathcal{L}(\alpha, \xi^T) \right] \\
\text{s.t. } \alpha_{tk} \in \mathbb{R}^J, \quad t \in [T], k \in [K]
\end{align*}
\]

where for fixed \(\hat{\alpha}\)

\[
\begin{align*}
\mathcal{L}(\hat{\alpha}, \xi^T) = \min & \sum_{t \in [T]} \left[\sum_{j \in [J]} \left[\sum_{k \in [K]} \left[C_{tj}^{i^+,na}(\xi^T) i_{tj}^{+,na} + C_{tj}^{i^-,na}(\xi^T) i_{tj}^{-,na} + C_{tj}^y(\xi^T) y_{tj}^{na} \right] + C_t(\xi^T) o_t^{na} \right] \right] \\
+ & \sum_{t \in [T]} \sum_{j \in [J]} \sum_{k \in [K]} \left(\Psi_{tjk}(\xi^T) - \mathbb{E}^{\xi^T}[\Psi_{tjk}(\xi^T) | \xi^T] \right) \alpha_{tjk} x_{tj}^{na} \\
\text{s.t. } i_{tj}^{-,na} - i_{tj}^{+,na} + i_{t-1,j}^{+,na} - i_{t-1,j}^{-,na} + x_{t-1,j}^{na} = D_{tj}(\xi^T), \quad t \in [T], j \in [J] \\
\sum_{j \in [J]} (TS_j y_{tj}^{na} + TB_j x_{tj}^{na}) - o_{t}^{na} \leq C_t, \quad t \in [T] \\
M_{tj} y_{tj}^{na} - x_{tj}^{na} \geq 0, \quad t \in [T], j \in [J] \\
i_{tj}^{+,na} \leq I_{tj}, \quad t \in [T], j \in [J] \\
i_{tj}^{+,na} + x_{tj}^{+,na} \leq I_{t+1,j}, \quad t \in [T], j \in [J] \\
0 \leq o_{t}^{na} \leq O_t, \quad t \in [T] \\
x_{tj}^{na}, i_{tj}^{+,na}, i_{tj}^{-,na} \geq 0, \quad t \in [T], j \in [J] \\
y_{tj}^{na} \in \{0, 1\}, \quad t \in [T], j \in [J].
\end{align*}
\]

\[\text{C.3 Parameters of MSLot Instances}\]

Our instances are generated using parameters that are loosely based on the work of Helber et al. (2013). Section 5.3 explains the demand generation procedure. In this section, we specify the rest of the parameters. We do not consider a production cost. The overtime cost is 100 per unit of overtime. Holding cost is 15 per unit, while the backlog cost is \((\delta_{i-})(c_{tj}^{i+})\), where \(\delta_{i-} = 2\). For the last stage
though, we have an end of horizon effect and $c^+_{Tj} = 150$. TB_j is set to 1, and $TS_j = ts^{rel} \overline{E[D_j]} TB_j$, where $\overline{E[D_j]} = \sum_{t \in \mathcal{T}} E[D_{tj}^{(t)}]$ is the average expected demand of product j, and ts^{rel} is 0.25. The setup cost is $c^y_{ij} = \delta_y \frac{E[D_j]}{TB_j}$, where TB_j is set to 1, and $TS_j = ts^{rel} \overline{E[D_j]} TB_j$, and δ_y is 1.2. Production capacity is $C_t = 0.9 \sum_{j \in \mathcal{J}} \overline{E[D_{tj}]}$, where $Util$ is 0.6. Inventory capacity is $I_t = \delta_I \overline{E[D_j]}$, with $\delta_I = 10$. The bound on overtime is $O_t = \delta_OC_t$, where $\delta_O = 0.25$. For big-M values in the MSLot formulation, we have $M_j = 6 \overline{E[D_j]}$.

C.4 Numerical Section - Detailed Results

In the next pages, the actual numbers used in Section 5 are provided, without any scaling and normalization. Also, the confidence intervals are given for the bounds, in the form of (mean ± width).

Option	# Basis functions	Time (s)	Bound						
	$T = 4$	$T = 6$	$T = 8$	$T = 4$	$T = 6$	$T = 8$	$T = 4$	$T = 6$	$T = 8$
1	315	750	1365	353.8	1412.5	6273.9	3247.4	41291.3	69849.2
2	180	300	420	191.7	243.7	632.5	30947.9	39835.2	66388.5
3	135	300	525	109	288.7	795.9	31053.7	40195.4	66727.2
4	90	150	210	157.2	795.9	323.6	29245.5	39858.3	56882.1

Table 6: Basis function selection analysis for the SW dual

Option	# Basis functions	Time (s)	Bound						
	$T = 4$	$T = 6$	$T = 8$	$T = 4$	$T = 6$	$T = 8$	$T = 4$	$T = 6$	$T = 8$
1	756	1800	3276	76.9	403.2	1800.8	53352.5	71767.2	123173.0
2	432	720	1008	44.9	232.3	770.5	49940.7	67696.9	114913.0
3	324	720	1260	61.1	250	776.8	53328.5	71352.1	122755.0
4	216	360	504	34.2	219.5	735.3	49902.7	67247.6	114829.0

Table 7: Basis function selection analysis for the NA dual

Option	Time (s)	Bound							
	$T = 4$	$T = 6$	$T = 8$	$T = 4$	$T = 6$	$T = 8$			
x	61.1	68.1	175.4	53328.5	1186.6	71352.1	1539.8	122755.0	3085.8
i^+, i^-	250.0	188.0	849.9	49456.0	403.9	65348.7	392.2	111605.0	1778.4
x, i^+, i^-	776.8	653.1	1887.3	53459.1	1012.2	71844.8	939.4	123403.0	2400.2

Table 8: NA variable selection analysis
Instance	T	$\rho = 0.2, \rho^y = 0.6, J = 3$	$\rho = 0.2, \rho^y = 0.6, J = 3$	$\rho = 0.6, \rho^y = 0.2, J = 6$	$\rho = 0.6, \rho^y = 0.2, J = 6$	
2	46584.6	33327.5	47189.4	49406.4	49406.4	49001.1
3	45478.7	29389.6	46735.3	51076.7	50660.4	50953.9
4	48868.7	29962.1	50537.6	56731.2	54878.6	53614.3
5	55920.5	31638.4	67956.3	64759.2	61002.4	61419.5
6	64844.7	38036.7	77777.5	75596.2	75515.2	75384.4
7	72980.9	42580.4	75263.3	82430.4	83838.4	$>6h$
8	104296.0	67443.0	112093.0	129166.0	127026.0	$>6h$
9	102604.0	60101.1	104760.0	121131.0	117865.0	$>6h$
10	114903.0	70844.6	122374.0	135756.0	134728.0	$>6h$
11	97422.8	72505.3	98890.1	103233.0	103233.0	$>6h$
12	90470.1	56340.1	92717.4	104545.0	104218.0	$>6h$
13	94000.1	32474.3	53328.5	58292.3	56624.5	54892.8
14	55927.6	35362.3	59328.5	67925.2	66928.6	63767.0
15	65167.3	41291.3	71352.1	81073.9	80815.3	82093.8
16	73532.0	46230.9	80838.4	91553.6	90969.8	$>6h$
17	110344.0	69849.2	122755.0	145747.0	143503.0	$>6h$
18	105611.0	63981.7	115548.0	135670.0	130932.0	$>6h$
19	120331.0	67950.0	134594.0	155783.0	154407.0	$>6h$

Table 9: Bound comparison for various instances