Abstract. In this paper, we study \(f \)-biharmonic curves as the critical points of the \(f \)-bienergy functional \(E_2(\psi) = \int_M f \left| \tau(\psi) \right|^2 \vartheta_g \), on a Lorentzian para-Sasakian manifold \(M \). We give necessary and sufficient conditions for a curve such that has a timelike principal normal vector on lying a 4-dimensional conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold to be an \(f \)-biharmonic curve. Moreover, we introduce proper \(f \)-biharmonic curves on the Lorentzian sphere \(S^4_1 \).

Keywords: \(f \)-biharmonic curves; \(f \)-bienergy functional; para-Sasakian manifold; Lorentzian sphere.

1. Introduction

Harmonic maps \(\psi : (M,g) \rightarrow (N,h) \) between Riemannian manifolds are the critical points of the energy functional defined by

\[
(1.1) \quad E(\psi) = \frac{1}{2} \int_{\Omega} \left| d\psi \right|^2 \vartheta_g,
\]

for every compact domain \(\Omega \subset M \). The Euler-Lagrange equation of the energy functional gives the harmonic equation defined by vanishing of

\[
(1.2) \quad \tau(\psi) = \text{trace} \nabla d\psi,
\]

where \(\tau(\psi) \) is called the tension field of the map \(\psi \).

As a generalization of harmonic maps, biharmonic maps between Riemannian manifolds were introduced by J. Eells and J.H. Sampson [7]. Biharmonic maps
between Riemannian manifolds $\psi : (M, g) \to (N, h)$ are the critical points of the bienergy functional

$$E_2(\psi) = \frac{1}{2} \int_{\Omega} |\tau(\psi)|^2 \, \vartheta_g,$$

for any compact domain $\Omega \subset M$.

In [3], G.Y. Jiang derived the first and the second variation formulas for the bienergy, showing that the Euler-Lagrange equation associated to E_2 is

$$\tau_2(\psi) = -J^\psi(\tau(\psi))$$

$$\tau_2(\psi) = -\triangle^\psi(\Psi) - \text{trace} R^N(d\psi, \tau(\psi))d\psi,$$

where J^ψ is the Jacobi operator of ψ. The equation $\tau_2(\psi) = 0$ is called biharmonic equation. Clearly, any harmonic maps is always a biharmonic map. A biharmonic map that is not harmonic is called a proper biharmonic map.

For some recent geometric study of biharmonic maps see [14, 17, 18, 19, 24] and the references therein. Also for some recent progress on biharmonic submanifolds see [1, 2, 16, 20, 21] and for biharmonic conformal immersions and submersions see [15, 25, 27].

The concept of $f-$biharmonic maps were initiated by W.J. Lu [23]. A smooth map $\psi : (M, g) \to (N, h)$ between Riemannian manifolds is called an $f-$biharmonic map if it is a critical point of the $f-$bienergy functional defined by

$$E_{2,f}(\psi) = \frac{1}{2} \int_{\Omega} f |\tau(\psi)|^2 \, \vartheta_g,$$

for every compact domain $\Omega \subset M$.

The Euler-Lagrange equation gives the $f-$biharmonic map equation [23]

$$\tau_{2,f} = f \tau_2(\psi) + (\triangle f) \tau(\psi) + 2\nabla^\psi_{\text{grad} f} \tau(\psi)$$

$$\tau_{2,f} = 0,$$

where $\tau(\psi)$ and $\tau_2(\psi)$ are the tension and bitension fields of ψ, respectively. Therefore, we have the following relationship among these types of maps [26]:

$$\text{Harmonic maps} \subset \text{Biharmonic maps} \subset f-\text{Biharmonic maps}.$$

From now on we will call an $f-$biharmonic map, which is neither harmonic nor biharmonic, a proper $f-$biharmonic map (see also [28]).

The study of Lorentzian almost paracontact manifold was initiated by K. Matsumoto [9]. He also introduced the notion of Lorentzian para-Sasakian manifold. In [4], I. Mihai and R. Rosca defined the same notion independently and there after many authors [5, 11, 22] studied Lorentzian para-Sasakian manifolds.

Moreover, in [17] some geometric result for spacelike and timelike curves in a 4-dimensional conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold to be proper biharmonic were given. Motivated by this work, we introduced $f-$biharmonic curves on Lorentzian para-Sasakian manifold and Lorentzian sphere S^4_1.
2. Preliminaries

2.1. f–Biharmonic Maps

f–Biharmonic maps are critical points of the f–bienergy functional for maps $\psi : (M, g) \to (N, h)$ between Riemannian manifolds:

$$E_{2,f}(\psi) = \frac{1}{2} \int_{\Omega} f \left| \tau(\psi) \right|^2 \vartheta_g,$$

where Ω is a compact domain of M.

The following Theorem was proved in [23]:

Theorem 2.1. A map $\psi : (M, g) \to (N, h)$ between Riemannian manifolds is an f–biharmonic map if and only if

$$\tau_{2,f} = f \tau_2(\psi) + (\triangle f) \tau(\psi) + 2 \nabla_{\text{grad} f} \tau(\psi) = 0,$$

where $\tau(\psi)$ and $\tau_2(\psi)$ are the tension and bitension fields of ψ, respectively. $\tau_{2,f}(\psi)$ is called the f–bitension field of map ψ.

A special case of f–biharmonic maps is f–biharmonic curves. We have the following.

Lemma 2.1. [26] An arclength parametrized curve $\gamma : (a, b) \to (N^m, g)$ is an f–biharmonic curve with a function $f : (a, b) \to (0, \infty)$ if and only if

$$f(\nabla^N_{\gamma'} \nabla^N_{\gamma'} \gamma' - R^N(\gamma', \nabla^N_{\gamma'} \gamma') \gamma') + 2f' \nabla^N_{\gamma'} \nabla^N_{\gamma'} \gamma' + f'' \nabla^N_{\gamma'} \gamma' = 0.$$

2.2. Lorentzian almost paracontact manifolds

Let M be an n-dimensional differentiable manifold with a Lorentzian metric g, i.e., g is a smooth symmetric tensor field of type $(0, 2)$ such that at every point $p \in M$, the tensor $g_p : T_p M \times T_p M \to \mathbb{R}$ is a non-degenerate inner product of signature $(-, +, +, ..., +)$, where $T_p M$ is the tangent space of M at the point p. Then (M, g) is called a Lorentzian manifold. A non-zero vector $X_p \in T_p M$ can be spacelike, null or timelike, if it satisfies $g_p(X_p, X_p) > 0$, $g_p(X_p, X_p) = 0$ or $g_p(X_p, X_p) < 0$, respectively.

Let M be an n-dimensional differentiable manifold equipped with a structure (φ, ξ, η), where φ is a $(1, 1)$-tensor field, ξ is a vector field, η is a 1-form on M such that [9]

$$\varphi^2 X = X + \eta(X) \xi,$$
The above equations imply that
\[\eta \circ \varphi = 0, \quad \varphi \xi = 0, \quad \text{rank}(\varphi) = n - 1. \]

Then \(M \) admits a Lorentzian metric \(g \), such that
\[g(\varphi X, \varphi Y) = g(X, Y) + \eta(X)\eta(Y), \]
and \(M \) is said to admit a Lorentzian almost paracontact structure \((\varphi, \xi, \eta, g) \). Then we get
\[g(X, \xi) = \eta(X). \]

The manifold \(M \) endowed with a Lorentzian almost paracontact structure \((\varphi, \xi, \eta, g) \) is called a Lorentzian almost paracontact manifold [9, 10]. In equations (2.4) and (2.5) if we replace \(\xi \) by \(-\xi\), we obtain an almost paracontact structure on \(M \) defined by I. Sato [6].

A Lorentzian almost paracontact manifold equipped with the structure \((\varphi, \xi, \eta, g) \) is called a Lorentzian para-Sasakian manifold [9] if
\[(\nabla_X \varphi)Y = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi. \]

The conformal curvature tensor \(C \) is given by
\[
C(X, Y)W = R(X, Y)W - \frac{1}{n-2} \left\{ \frac{S(Y, W)X - S(X, W)Y}{+g(Y, W)QX - g(X, W)QY} \right\} \\
+ \frac{r}{(n-1)(n-2)} \{g(Y, W)X - g(X, W)Y\},
\]
where \(S(X, Y) = g(QX, Y) \). The Lorentzian para-Sasakian manifold is called conformally flat if conformal curvature tensor vanishes i.e., \(C = 0 \).

The quasi-conformal curvature tensor \(\hat{C} \) is defined by
\[
\hat{C}(X, Y)W = aR(X, Y)W - b \left\{ \frac{S(Y, W)X - S(X, W)Y}{+g(Y, W)QX - g(X, W)QY} \right\} \\
- \frac{r}{n} \left(\frac{a}{n-1} + 2b \right) \{g(Y, W)X - g(X, W)Y\},
\]
where \(a, b \) constants such that \(ab \neq 0 \). Similarly the Lorentzian para-Sasakian manifold is called quasi-conformally flat if \(\hat{C} = 0 \).

We know that a conformally flat and quasi-conformally flat Lorentzian para-Sasakian manifold \(M^n \) \((n > 3) \) is of constant curvature 1 and also a Lorentzian para-Sasakian manifold is locally isometric to a Lorentzian unit sphere if the relation \(R(X, Y) \cdot C = 0 \) holds on \(M \) [12]. For a conformally symmetric Riemannian manifold [13], we get \(\nabla C = 0 \). Thus for a conformally symmetric space the relation \(R(X, Y) \cdot C = 0 \)
\(C = 0 \) satisfies. Hence a conformally symmetric Lorentzian para-Sasakian manifold is locally isometric to a Lorentzian unit sphere [12].

Therefore, for a conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold \(M \), we have [12]

\[
R(X, Y)W = g(Y, W)X - g(X, W)Y,
\]
for any vector fields \(X, Y, W \in TM \).

3. \(f \)-Biharmonic Curves in Lorentzian Para-Sasakian Manifolds

For a Lorentzian para-Sasakian manifold \(M \), an arbitrary curve \(\gamma : I \to M \), \(\gamma = \gamma(s) \) is called spacelike, timelike or lightlike (null), if all of its velocity vectors \(\gamma'(s) \) are spacelike, timelike or lightlike (null), respectively. In this section, we give some conditions for a curve having timelike normal vector on a 4-dimensional conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold \(M \) to be an \(f \)-biharmonic curve.

Theorem 3.1. Let \(\gamma : I \to M \) be a curve parametrized by arclength and \(M \) be a 4-dimensional conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold. Assume that \(\{T, N, B_1, B_2\} \) be an orthonormal Frenet frame field along \(\gamma \) such that principal normal vector \(N \) is timelike. Then \(\gamma \) is a proper \(f \)-biharmonic curve if and only if one of the following cases happens:

i) The first curvature \(\kappa_1 \) of the \(\gamma \) solves the following ordinary differential equation,

\[
3(\kappa'_1)^2 - 2\kappa_1\kappa''_1 = 4\kappa_1^4 - 4\kappa_1^2,
\]
with \(f = t_1\kappa_1^2, \kappa_2 = 0 \).

ii) The first curvature \(\kappa_1 \) of the \(\gamma \) solves the following ordinary differential equation,

\[
3(\kappa'_1)^2 - 2\kappa_1\kappa''_1 = 4\kappa_1^4 + 4\kappa_1^4t_3^2 - 4\kappa_1^2,
\]
with \(f = t_1\kappa_1^2, \kappa_2 \neq 0, \kappa_3 = 0, \kappa\kappa_3 = t_3 \).

Proof. Let \(\gamma \) be a curve parametrized by arclength on lying a 4-dimensional conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold \(M \) and let \(\{T, N, B_1, B_2\} \) be an orthonormal Frenet frame field along \(\gamma \) such that principal normal vector \(N \) is timelike.

In this case for this curve, the Frenet frame equations are given by [8]

\[
\begin{bmatrix}
\nabla_T T \\
\nabla_T N \\
\nabla_T B_1 \\
\nabla_T B_2
\end{bmatrix}
= \begin{bmatrix}
0 & \kappa_1 & 0 & 0 \\
\kappa_1 & 0 & \kappa_2 & 0 \\
0 & \kappa_2 & 0 & \kappa_3 \\
0 & 0 & -\kappa_3 & 0
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B_1 \\
B_2
\end{bmatrix}
\]
where T, N, B_1, B_2 are mutually orthogonal vectors and κ_1, κ_2 and κ_3 are respectively the first, the second and the third curvature of the γ.

In view of the Frenet formulas given in (3.3) and equation (2.8), we obtain

$$\nabla_T T = \kappa_1 N,$$

$$\nabla_T \nabla_T T = \kappa_1^2 T + \kappa_1' N + \kappa_1 \kappa_2 B_1,$$

$$\nabla_T \nabla_T \nabla_T T = (3\kappa_1 \kappa_1') T + (\kappa_1'' + \kappa_1^3 + \kappa_1 \kappa_2^2) N + (2\kappa_1' \kappa_2 + \kappa_1 \kappa_2') B_1 + (\kappa_1 \kappa_2 \kappa_3) B_2,$$

and

$$R(T, \nabla_T T) T = -\kappa_1 N,$$

where κ_1, κ_2 and κ_3 are the first, the second and the third curvature of the γ, respectively.

Considering Theorem 2.1 and equation (2.3), we get

$$\tau_{2,f} = f \left[\frac{(3\kappa_1 \kappa_1') T + (\kappa_1' + \kappa_1^3 + \kappa_1 \kappa_2^2 + \kappa_1 N) \kappa_1 \kappa_2 B_1 + (\kappa_1 \kappa_2 \kappa_3) B_2}{\kappa_1^2 T + \kappa_1' N + \kappa_1 \kappa_2 B_1} \right] + 2f' \left[\kappa_1^2 T + \kappa_1' N + \kappa_1 \kappa_2 B_1 \right] + f'' \left[\kappa_1 N \right] = 0.$$

Comparing the coefficients of above equation, we obtain that γ is an f–biharmonic curve if and only if

(3.4) \hspace{1cm} 3\kappa_1 \kappa_1' + 2\kappa_1^2 \frac{f'}{f} = 0,

(3.5) \hspace{1cm} \kappa_1'' + \kappa_1^3 + \kappa_1 \kappa_2^2 + \kappa_1 + 2\kappa_1' \frac{f'}{f} + \kappa_1 \frac{f''}{f} = 0,

(3.6) \hspace{1cm} 2\kappa_1' \kappa_2 + \kappa_1 \kappa_2' + 2\kappa_1 \kappa_2 \frac{f'}{f} = 0,

(3.7) \hspace{1cm} \kappa_1 \kappa_2 \kappa_3 = 0.$$

Let κ_1 be a non zero constant. Then from (3.4) we get f is constant. So γ is biharmonic. Let κ_2 be a non zero constant. From (3.4) and (3.6) one can easily see that f is constant and γ is biharmonic.
By using (3.4) - (3.7), if \(\kappa_2 = 0 \), then \(f \)-biharmonic curve equation reduces to

\[
3\kappa_1 \kappa_1' + 2\kappa_1^3 \frac{f'}{f} = 0,
\]

(3.8)

\[
\kappa_1'' + \kappa_1^3 + \kappa_1 + 2\kappa_1' \frac{f'}{f} + \kappa_1 \frac{f''}{f} = 0.
\]

(3.9)

Integrating the equation (3.8) we get \(f = t_1 \kappa_1^{-\frac{3}{2}} \) and using this result in (3.9), we arrive at \((i)\).

Otherwise, by use of (3.4) - (3.7), if \(\kappa_1 \neq \text{constant} \) and \(\kappa_2 \neq \text{constant} \) \(f \)-biharmonic curve the equation is equivalent to

\[
f^2 \kappa_1^3 = t_1^2,
\]

(3.10)

\[
(f \kappa_1)'' = -f \kappa_1 (\kappa_1^3 + \kappa_2^2 + 1),
\]

(3.11)

\[
f^2 \kappa_1^2 \kappa_2 = t_2,
\]

(3.12)

\[
\kappa_3 = 0.
\]

(3.13)

In view of (3.10), we find \(f = t_1 \kappa_1^{-\frac{3}{2}} \) and using this result in (3.11), we get \(\frac{\kappa_2}{\kappa_1} = t_3 \). Finally substituting these equation in (3.11), we arrive at \((ii)\).

Proposition 3.1. Let \(M \) be a 4-dimensional conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold and \(\gamma : I \to M \) be an \(f \)-biharmonic spacelike curve parametrized by arclength such that principal normal vector is timelike. If \(\gamma \) has constant geodesic curvature then \(\gamma \) is biharmonic.

4. \(f \)-Biharmonic Curves on Lorentzian Sphere \(S_1^4 \)

Suppose that \(M \) is a 4-dimensional conformally flat, quasi-conformally flat and conformally symmetric Lorentzian para-Sasakian manifold. Since \(M \) is locally isometric to a Lorentzian unit sphere \(S_1^4 \), we give some characterizations for \(f \)-biharmonic curves in \(S_1^4 \). The Lorentzian unit sphere of radius 1 can be seen as the hyperquadric

\[
S_1^4 = \{ p \in \mathbb{R}_1^5 : < p, p > = 1 \},
\]

in a Minkowski space \(\mathbb{R}_1^5 \) with the metric

\[
< , >: -dx_1^2 + dx_2^2 + dx_3^2 + dx_4^2 + dx_5^2.
\]
Let \(\gamma : I \to S^4_1 \) be a curve parametrized by arclength. For an arbitrary vector field \(X \) along \(\gamma \), we have

\[
\nabla_T X = X' + \langle T, X \rangle \gamma,
\]

where \(\nabla \) is covariant derivative along \(\gamma \) in \(S^4_1 \).

Since \(S^4_1 \) is a Lorentzian space form of the scalar curvature 1, we have

\[
R(X,Y)W = \langle Y,W \rangle X - \langle X,W \rangle Y,
\]

for all vector fields \(X,Y,W \) in the tangent bundle of \(S^4_1 \), where \(R \) is the curvature tensor of \(S^4_1 \).

Now, we give the following:

Proposition 4.1. Let \(\gamma : I \to S^4_1 \) be a non-geodesic \(f \)-biharmonic curve parametrized by arclength and \(\{T, N, B_1, B_2\} \) be a Frenet frame along \(\gamma \) such that

\[
g(T, T) = g(B_1, B_1) = g(B_2, B_2) = 1, \quad g(N, N) = -1.
\]

Then, we have

\[
\gamma^{(4)} - \left(\frac{\kappa_1''}{\kappa_1} + 2\frac{\kappa_1' f'}{\kappa_1 f} + \frac{f''}{f} \right) \gamma'' - \left(\frac{\kappa_1''}{\kappa_1} + 2\frac{\kappa_1' f'}{\kappa_1 f} + \frac{f''}{f} + 1 \right) \gamma = 0.
\]

Proof. Using (3.5) and taking the covariant derivative of the second equation in (3.3), we get

\[
\nabla_T^2 N = \nabla_T (\kappa_1 T + \kappa_2 B_1)
= \kappa_1 \nabla_T T + \kappa_2 \nabla_T B_1
= (\kappa_1^2 + \kappa_2^2) N + \kappa_2 \kappa_3 B_2.
\]

Using (3.5) in (4.3), we have

\[
\nabla_T^2 N = - \left(\frac{\kappa_1''}{\kappa_1} + 2\frac{\kappa_1' f'}{\kappa_1 f} + \frac{f''}{f} + 1 \right) N.
\]

On the other hand from (4.1), we arrive at

\[
\nabla_T^2 N = \nabla_T (N' + \langle T, N \rangle \gamma)
= N'' + \langle T, N' \rangle \gamma
= N'' + \langle T, \nabla_T N - \kappa_1 T + \kappa_2 B_1 \rangle \gamma
= N'' + \kappa_1 T + \kappa_2 B_1 \gamma
= N'' + \kappa_1 \gamma.
\]

From (4.3) and (4.4), we obtain

\[
\left(\frac{\kappa_1''}{\kappa_1} + 2\frac{\kappa_1' f'}{\kappa_1 f} + \frac{f''}{f} + 1 \right) N = N'' + \kappa_1 \gamma.
\]
Also in view of (4.1), we have
\[\nabla_T^T T = T' + <T, T> \gamma = \gamma'' + \gamma, \]
which yields
\[(4.5) \quad N = \frac{1}{\kappa_1} (\gamma'' + \gamma). \]
By use of (4.5) and (4.4), we obtain (4.2). \(\square \)

REFERENCES

1. A. Balmus, S. Montaldo and C. Oniciuc: Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168 (2008), 201–220.
2. B. Y. Chen and M. Varga: Biharmonic ideal hypersurfaces in Euclidean spaces. Diff. Geom. Appl. 31 (2013), 1–16.
3. G. Y. Jiang: 2-harmonic isometric immersions between Riemannian manifolds. Chinese Ann. Math. Ser. A. 7 (1986), 130–144.
4. I. Mihai and R. Rosca: Lorentzian P-Sasakian manifold in Classical Analysis. World Sci. Publ. River Edge, NJ, 1991, pp.155-169.
5. I. Mihai, A. A. Shaikh and U. C. De: On Lorentzian para-Sasakian manifold. Rendicontidel Seminario Matematico di Messina, Serie II., 1999.
6. I. Sato: On a structure similar to the almost contact structure. Tensor N.S. 30 (1976), 219–224.
7. J. Eells and J. H. Sampson: Harmonic mapping of the Riemannian manifold. American J. Math. 86 (1964), 199–160.
8. J. Walrave: Curves and surfaces in Minkowski spaces. Doctoral Thesis, K. U. Leuven, Fac. of Science, 1995.
9. K. Matsumoto: On Lorentzian paracontact manifolds. Bull. Yamagota Univ. Natur. Sci. 12 (1989), 151–156.
10. K. Matsumoto, I. Mihai and R. Rosca: \(\xi \)-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold. J. Korean Math. Soc. 32 (1995), 17–31.
11. M. M. Tripathi and U. C. De: Lorentzian almost paracontact manifolds and their submanifolds. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 8 (2001), 101–125.
12. M. Tarafdar and A. Bhattacharyya: On Lorentzian para-Sasakian manifolds. In Steps in Differential Geometry (Debrecen). Inst. Math. Infor. (2000), 343–348.
13. M. C. Chaki and B. Gupta: On conformally symmetric spaces. Indian J. Math. 5 (1963), 113–122.
14. P. Baird and D. Kamissoko: On constructing biharmonic maps and metrics. Ann. Glob. Anal. Geom. 23 (2003), 65–75.
15. P. Baird, A. Fardoun and S. Ouakkas: Conformal and semi-conformal biharmonic maps. Ann. Glob. Anal. Geom. 34 (2008), 403–414.
16. R. CADDEO, S. MONTALDO and C. ONICIUC: Biharmonic submanifolds of \(S^3 \). Int. J. Math. 12 (2001), 867–876.
17. S. KELEŞ, S. YÜKSEL PERKTAŞ and E. KILIÇ: Biharmonic Curves in LP-Sasakian Manifolds. Bull. Malays. Math. Sci. Soc. 33 (2010), 325–344.
18. S. MONTALDO and C. ONICIUC: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argent. 47 (2006), 1–22.
19. S. YÜKSEL PERKTAŞ and E. KILIÇ: Biharmonic maps between doubly warped product manifolds. Balkan Journal of Geometry and Its Appl. 15 (2010), 159–170.
20. S. YÜKSEL PERKTAŞ, E. KILIÇ and S. KELEŞ: Biharmonic hypersurfaces of Lorentzian para-Sasakian manifolds. An. Stiint. Univ. Al. I. Cuza Iasi, Tomul LVII, f.2 DOI: 10.2478/v10157-011-0034-z (2011).
21. J. I. INOGUCHI and T. SASAHARA: Biharmonic hypersurfaces in Riemannian symmetric spaces I. Hiroshima Math. J. 46 (2016), 97–121.
22. S. YÜKSEL PERKTAŞ, E. KILIÇ and S. KELEŞ: Hypersurfaces of Lorentzian para-Sasakian manifolds. Math. Scand. 108 (2011), 5–21.
23. W. J. LU and R. S. VARGA: On \(f \)-Biharmonic maps between Riemannian manifolds. arXiv:1305.5478, preprint, (2013).
24. Y. L. OU: Biharmonic hypersurfaces in Riemannian manifolds. Pacific J. Math. 248 (2010), 217–232.
25. Y. L. OU: On conformal biharmonic immersions. Ann. Glob. Anal. Geom. 36 (2009), 133–142.
26. Y. L. OU: On \(f \)-biharmonic maps and \(f \)-biharmonic submanifolds. Pacific J. Math. 271 (2014), 461–477.
27. Z. P. WANG and Y. L. OU: Biharmonic Riemannian submersions from 3-manifolds. Math Z. 269 (2011), 917–925.
28. B. E. ACET, S. YÜKSEL PERKTAŞ and F. E. ERDOGAN: A study on \(f \)-biharmonic curves in \(S(1, 4) \). AIP Conference Proceed. 1991 (2018).

Bilal Eftal Acet
Faculty of Arts and Science
Department of Mathematics
P. O. Box 02040
Adiyaman, Turkey
eacet@adiyaman.edu.tr