IMPROVED LOWER BOUND FOR THE RADIUS OF ANALYTICITY OF SOLUTIONS TO THE FIFTH ORDER KDV-BBM MODEL

SILESHI MEBRA TE, TAMIRAT T. DUFERA, AND ACHENEF TESFAHUN

Abstract. We show that the uniform radius of spatial analyticity $\sigma(t)$ of solutions at time t to the fifth order KdV-BBM equation cannot decay faster than $1/\sqrt{t}$ for large t, given initial data that is analytic with fixed radius σ_0. This improves a recent result by Belayneh, Tegene and the third author [1], where they obtained a $1/t$ decay of $\sigma(t)$ for large time t.

1. Introduction

In this paper we consider the Cauchy problem for fifth order KdV-BBM equation

\[
\begin{aligned}
\partial_t \eta + \partial_x \eta - \gamma_1 \partial_t \partial_x^2 \eta + \gamma_2 \partial_x^3 \eta + \delta_1 \partial_t \partial_x^4 \eta + \delta_2 \partial_x^5 \eta \\
= -\frac{3}{4} \partial_x (\eta^2) - \gamma \partial_x^3 (\eta^2) + \frac{7}{48} \partial_x (\eta_x^2) + \frac{1}{8} \partial_x (\eta^3),
\end{aligned}
\]

(1)

where $\eta : \mathbb{R}^{1+1} \to \mathbb{R}$ is the unknown function, and $\gamma, \gamma_1, \gamma_2, \delta_1, \delta_2$ are constants satisfying certain constraints; see [3,9] for more details. The fifth order KdV-BBM equation describes the unidirectional propagation of water waves, and was recently introduced by Bona et al. [3] using the second order approximation in the two way model, the so-called abcd-system derived in [3,4]. In the case $\gamma = \frac{7}{48}$, (1) satisfies the energy conservation

\[
E(t) := \frac{1}{2} \int_{\mathbb{R}} \eta^2 + \gamma_1 \eta_x^2 + \delta \eta_{xx}^2 \, dx = E(0) \quad (t > 0).
\]

The well-posedness theory for the Cauchy problem (1) was studied by Bona et al. in [2], where they established local well-posedness for the initial data $\eta_0 \in H^s(\mathbb{R})$ with $s \geq 1$. For $\gamma_1, \sigma_1 > 0$ and $\gamma = 7/48$, the authors [2] used the conservation of energy to prove global well-posedness of (1) for $\eta_0 \in H^s(\mathbb{R})$ with $s \geq 2$. Furthermore, they used the method of high-low frequency splitting to obtain global well-posedness for $\eta_0 \in H^s(\mathbb{R})$ with $3/2 \leq s < 2$. The global well-posedness result was further improved in [9] for $\eta_0 \in H^s(\mathbb{R})$ with $s \geq 1$.

The main concern of this paper is to study the property of spatial analyticity of the solution $\eta(x, t)$ to (1), given a real analytic initial data $\eta_0(x)$ with uniform radius of analyticity σ_0, so that there is a holomorphic extension to a complex strip

$$S_{\sigma_0} = \{x + iy \in \mathbb{C} : |y| < \sigma_0\}.$$

\[\text{2010 Mathematics Subject Classification.} \quad 35A01, 35Q53.\]
\[\text{Key words and phrases.} \quad \text{KdV-BBM model; Global well-posedness, Improved Lower bound; Radius of analyticity; Modified Gevrey spaces.}\]
Information about the domain of analyticity of a solution to a PDE can be used to gain a quantitative understanding of the structure of the equation, and to obtain insight into underlying physical processes. It is classical since the work of Kato and Masuda [17] that, for solutions of nonlinear dispersive PDEs with analytic initial data, the radius of analyticity, \(\sigma(t) \), of the solution might decrease with \(t \).

Bourgain [7] used a simple argument in the context of Kadomtsev Petviashvili equation to show that \(\sigma(t) \) decays exponentially in \(t \).

Rapid progress has been made lately in obtaining an algebraic decay rate of the radius, i.e., \(\sigma(t) \sim t^{-\alpha} \) for some \(\alpha \geq 1 \), to various nonlinear dispersive PDEs, see e.g., [1, 15, 22–27]. The method used in these papers was first introduced by Selberg and Tesfahun [24] in the context of the Dirac-Klein-Gordon equations, which is based on an approximate conservation laws and Bourgain’s Fourier restriction method. For earlier studies concerning properties of spatial analyticity of solutions for a large class of nonlinear partial differential equations, see e.g., [5–7, 11–14, 16, 17, 19–21].

By the Paley–Wiener Theorem, the radius of analyticity of a function can be related to decay properties of its Fourier transform. It is therefore natural to take initial data in Gevrey space \(G^{\sigma,s}(\mathbb{R}) \) defined by the norm

\[
\|f\|_{G^{\sigma,s}(\mathbb{R})} = \left\| \exp(\sigma|\xi|) \langle \xi \rangle^s \hat{f} \right\|_{L^2_x(\mathbb{R})} \quad (\sigma \geq 0),
\]

where \(\langle \xi \rangle = \sqrt{1 + \xi^2} \). For \(\sigma = 0 \), this space coincides with the Sobolev space \(H^s(\mathbb{R}) \), with norm

\[
\|f\|_{H^s(\mathbb{R})} = \left\| \langle \xi \rangle^s \hat{f} \right\|_{L^2_x(\mathbb{R})},
\]

while for \(\sigma > 0 \), any function in \(G^{\sigma,s}(\mathbb{R}) \) has a radius of analyticity of at least \(\sigma \) at each point \(x \in \mathbb{R} \). This fact is contained in the following theorem, whose proof can be found in [18] in the case \(s = 0 \); the general case follows from a simple modification.

Paley-Wiener Theorem. Let \(\sigma > 0 \) and \(s \in \mathbb{R} \), then the following are equivalent

(a) \(f \in G^{\sigma,s}(\mathbb{R}) \),

(b) \(f \) is the restriction to \(\mathbb{R} \) of a function \(F \) which is holomorphic in the strip

\[
S_{\sigma} = \{ x + iy \in \mathbb{C} : |y| < \sigma \}.
\]

Moreover, the function \(F \) satisfies the estimates

\[
\sup_{|y| < \sigma} \| F(\cdot + iy) \|_{H^s(\mathbb{R})} < \infty.
\]

Recently, Carvajal and Panthee [8] used the Gevrey space to obtain an exponential decay on the radius of spatial analyticity \(\sigma(t) \) for solution \(\eta(x,t) \) to (1), i.e., \(\sigma(t) \sim e^{-t} \) for large \(t \). This was improved, more recently, to a linear decay rate, \(\sigma(t) \sim 1/t \), by Belayneh, Teggen and the third author [1], using the method of almost conservation law. In the present paper, we improve the decay rate further to \(\sigma(t) \sim 1/\sqrt{t} \), by using a modified Gevrey space that was introduced recently in [10] and the method of almost conservation law.

The modified Gevrey space, denoted \(H^{\sigma,s}(\mathbb{R}) \), is obtained from the Gevrey space \(G^{\sigma,s}(\mathbb{R}) \) by replacing the exponential weight \(\exp(\sigma|\xi|) \) with the hyperbolic
weight $cosh(\sigma|\xi|)$, i.e.,
\[\|f\|_{H^{\sigma,s}(\mathbb{R})} = \left\| \cosh(\sigma|\xi|)\hat{f} \right\|_{L^2(\mathbb{R})} \quad (\sigma \geq 0). \]

Observe that
\[\frac{1}{2} \exp(\sigma|\xi|) \leq \cosh(\sigma|\xi|) \leq \exp(\sigma|\xi|), \]
and hence the $G^{\sigma,s}(\mathbb{R})$ and $H^{\sigma,s}(\mathbb{R})$-norms are equivalent, i.e.,
\[\|f\|_{H^{\sigma,s}(\mathbb{R})} \sim \|f\|_{G^{\sigma,s}(\mathbb{R})} = \left\| \exp(\sigma|\xi|)\hat{f} \right\|_{L^2(\mathbb{R})}. \]

Therefore, the statement of Paley-Wiener Theorem still holds for functions in $H^{\sigma,s}(\mathbb{R})$.
Observe also that for $\sigma \geq 0$ the exponential weight $\exp(\sigma|\xi|)$ satisfies the estimate
\[\frac{1 - \exp(-\sigma|\xi|)}{|\xi|} \leq \sigma \]
whereas the hyperbolic weight $\cosh(\sigma|\xi|)$ satisfies
\[\frac{1 - |\cosh(\sigma|\xi|)|^{-1}}{|\xi|^2} \leq \sigma^2. \]

Consequently, the decay rate $\sigma(t) \sim 1/t$ that was obtained in [1] stems from the σ-factor on the r.h.s of (5) whereas the improved decay rate $\sigma(t) \sim 1/\sqrt{t}$ obtained in this paper stems from the σ^2-factor on the r.h.s of (6).

We state our main result as follows.

Theorem 1 (Asymptotic lower bound for σ). Let $\gamma_1, \delta_1 > 0$, $\gamma = \frac{7}{48}$ and $\eta_0 \in H^{\sigma_0,2}(\mathbb{R})$ for $\sigma_0 > 0$. Then the global \footnote{As a consequence of the embedding $H^{\sigma_0,2}(\mathbb{R}) \hookrightarrow H^2(\mathbb{R})$ and the existing well-posedness theory in $H^2(\mathbb{R})$ (see [2]), the Cauchy problem (1) (with $\gamma_1, \delta_1 > 0$ and $\gamma = 7/48$) has a unique, smooth solution for all time, given initial data $\eta_0 \in H^{\sigma_0,2}$.} solution $\eta(t)$ of (1) satisfies
\[\eta(t) \in H^{\sigma,2}(\mathbb{R}) \quad \text{for all} \quad t > 0, \]
with the radius of analyticity σ satisfying the asymptotic lower bound
\[\sigma := \sigma(t) \geq C/\sqrt{t} \quad \text{as} \quad t \to \infty, \]
where $C > 0$ is constant depending on the initial data norm $\|\eta_0\|_{H^{\sigma_0,2}(\mathbb{R})}$.

So it follows from Theorem 1 that the solution $\eta(t)$ at any time t is analytic in the strip $S_{\sigma(t)}$ (due to (4) and the Paley-Wiener Theorem).

To prove Theorem 1 first we establish the following local well-posedness result, which states that for short time the radius of analyticity of solution remains constant.

Theorem 2. (Local well-posedness). Let $\sigma_0 > 0$ and $\eta_0 \in H^{\sigma_0,2}(\mathbb{R})$. Then there exist a unique solution
\[\eta \in C([0,T];H^{\sigma_0,2}(\mathbb{R})) \]
of the Cauchy problem (1), where the existence time is
\[T \sim \left(1 + \|\eta_0\|_{H^{\sigma_0,2}(\mathbb{R})} \right)^{-2}. \]
Moreover, the data to solution map \(\eta_0 \mapsto \eta \) is continuous from \(H^{\sigma_0,2}(\mathbb{R}) \) to \(C([0,T];H^{\sigma_0,2}(\mathbb{R})) \).

Next, we derive an approximate energy conservation law for

\[v_\sigma := \cosh(\sigma|D|)\eta, \]

where \(D = -i\partial_x \) and \(\eta \) is a solution to (1). To do this, we define a modified energy associated with \(v_\sigma \) by

\[E_\sigma(t) = \frac{1}{2} \int_{\mathbb{R}} v_\sigma^2 + \gamma_1(\partial_x v_\sigma)^2 + \delta_1(\partial_x^2 v_\sigma)^2 \, dx. \]

(8)

Note that since \(v_0 = \eta \), by (2) we have \(E_0(t) = E_0(0) \) for all \(t \).

Theorem 3. (Almost conservation law). Let \(\eta_0 \in H^{\sigma,2}(\mathbb{R}) \). Suppose that \(\eta \in C([0,T];H^{\sigma,2}(\mathbb{R})) \) is the local-in-time solution to the Cauchy problem (1) from Theorem 2. Then

\[\sup_{0 \leq t \leq T} E_\sigma(t) = E_\sigma(0) + \sigma^2 T \cdot \mathcal{O} \left(\left[1 + (E_\sigma(0))^\frac{1}{2} \right] (E_\sigma(0))^\frac{3}{2} \right). \]

(9)

Observe that from (9), in the limit as \(\sigma \to 0 \), we recover the conservation \(E_0(t) = E_0(0) \) for \(0 \leq t \leq T \). Applying the last two theorems repeatedly, and then by taking \(\sigma \) small enough we can cover any time interval \([0,T_\varepsilon]\) and obtain the lower bound in Theorem 1.

Notation: For any positive numbers \(p \) and \(q \), the notation \(p \lesssim q \) stands for \(p \leq cq \), where \(c \) is a positive constant that may vary from line to line. Moreover, we denote \(p \sim q \) when \(p \lesssim q \) and \(q \lesssim p \).

In the next sections we prove Theorems 2, 3 and 1.

2. Proof of Theorem 2

Taking the spatial Fourier transform of the first equation in (1) we obtain

\[
\begin{align*}
\partial_t \hat{\eta} + i\xi \hat{\eta} + \gamma_1 \xi^2 \partial_x \hat{\eta} - i\gamma_2 \xi^3 \hat{\eta} + \delta_1 \xi^4 \partial_x \hat{\eta} + i\delta_2 \xi^5 \hat{\eta} \\
= -\frac{3}{4} i\xi \hat{\eta}^2 + i\gamma \xi^3 \hat{\eta}^3 + \frac{7}{48} i\xi \hat{\eta}^2 + \frac{1}{8} i\xi \hat{\eta}^3.
\end{align*}
\]

Arranging the terms we have

\[
\left(1 + \gamma_1 \xi^2 + \delta_1 \xi^4\right) \partial_x \hat{\eta} + i\xi \left(1 - \gamma_2 \xi^2 + \delta_2 \xi^4\right) \hat{\eta} = \frac{1}{4} i\xi \left(-3 + 4\gamma \xi^2\right) \hat{\eta}^3 + \frac{7}{48} i\xi \hat{\eta}^2 + \frac{1}{8} i\xi \hat{\eta}^3.
\]

Dividing this equation by \(\varphi(\xi) := 1 + \gamma_1 \xi^2 + \delta_1 \xi^4 \) and multiplying by \(i \), we obtain

\[
i\partial_t \hat{\eta} - \varphi(\xi) \eta = \tau(\xi) \eta^2 - \frac{7}{48} \psi(\xi) \eta^2 - \frac{1}{8} \psi(\xi) \eta^3,
\]

(10)

where

\[
\begin{align*}
\varphi(\xi) &= \xi(1 - \gamma_2 \xi^2 + \delta_2 \xi^4) / \varphi(\xi), \\
\tau(\xi) &= \xi(3 - 4\gamma \xi^2) / 4\varphi(\xi), \\
\psi(\xi) &= \xi / \varphi(\xi).
\end{align*}
\]

In an operator form (10) can be rewritten as

\[
i\partial_t \eta - \varphi(D) \eta = \tau(D) \eta^2 - \frac{7}{48} \psi(D) \eta^2 - \frac{1}{8} \psi(D) \eta^3,
\]

(11)
where \(\phi(D), \psi(D) \) and \(\tau(D) \) are Fourier multiplier operators defined as

\[
\mathcal{F}[\phi(D)f](\xi) = \phi(\xi) \hat{f}(\xi), \quad \mathcal{F}[\psi(D)f](\xi) = \psi(\xi) \hat{f}(\xi), \quad \mathcal{F}[\tau(D)f](\xi) = \tau(\xi) \hat{f}(\xi).
\]

Now given initial data \(\eta(0) = \eta_0 \), the integral representation of (11) is

\[
\eta(t) = e^{-it\phi(D)} \eta_0 - i \int_0^t e^{-i(t-s)\phi(D)} F(\eta)(s) ds.
\] (12)

By combining the estimates in [8, Lemma 2.2–2.4] and (4), we obtain the following a priori estimate for the \(H^{2}(\mathbb{R}) \)-norm of \(F(\eta) \).

Lemma 1. For \(\sigma \geq 0 \), we have nonlinear estimate

\[
\| F(\eta) \|_{H^{\sigma,2}(\mathbb{R})} \lesssim \| \eta \|_{H^{\sigma,2}(\mathbb{R})} \| \eta \|_{H^{\sigma,2}(\mathbb{R})}^2
\]

for all \(\eta \in H^{\sigma,2}(\mathbb{R}) \).

Next, we use the contraction mapping techniques and Lemma 1 to prove Theorem 2. To this end, define the mapping \(\eta \mapsto \Gamma(\eta) \) by

\[
\Gamma(\eta)(t) := e^{-it\phi(D)} \eta_0 - i \int_0^t e^{-i(t-s)\phi(D)} F(\eta)(s) ds
\]

and the space \(X_T \) by

\[
X_T = C([0,T]) \cap H^{\sigma,2}(\mathbb{R}) \quad \text{with norm} \quad \| u \|_{X_T} = \sup_{0 \leq t \leq T} \| u(t) \|_{H^{\sigma,2}(\mathbb{R})}.
\]

Then we look for a solution in the set

\[
S_T = \{ \eta \in X_T : \| \eta \|_{X_T} \leq r \},
\]

where \(2r = \| \eta_0 \|_{H^{\sigma,2}(\mathbb{R})} \).

For \(\eta \in X_T \), we have by Lemma 1,

\[
\| \Gamma(\eta) \|_{X_T} \leq \| \eta_0 \|_{H^{\sigma,2}(\mathbb{R})} + cT \left[1 + \| \eta \|_{X_T} \right] \| \eta \|_{X_T}^2 \leq r/2 + cTr(1 + r)^2.
\] (13)

Similarly, for \(\eta_1, \eta_2 \in X_T \), we obtain the difference estimate

\[
\| \Gamma(\eta_1) - \Gamma(\eta_2) \|_{X_T} \leq cT(1 + r)^2 \| \eta_1 - \eta_2 \|_{X_T}.
\] (14)

By choosing

\[
T = \frac{1}{2c(1 + r)^2}
\]

in (13) and (14) we obtain

\[
\| \Gamma(\eta) \|_{X_T} \leq r \quad \text{and} \quad \| \Gamma(\eta_1) - \Gamma(\eta_2) \|_{X_T} \leq \frac{1}{2} \| \eta_1 - \eta_2 \|_{X_T}.
\]

Therefore, \(\Gamma \) is a contraction on \(S_T \) and therefore it has a unique fixed point \(\eta \in S_T \) solving the integral equation (12) on \(\mathbb{R} \times [0,T] \). Continuous dependence on the initial data can be shown in a similar way, using the difference estimate. This concludes the proof of Theorem 2.
3. Proof of Theorem 3

Fix $\gamma_1, \delta_2 > 0$ and $\gamma = \frac{7}{8}$. Recall that $v_\sigma := \cosh(\sigma|D|)\eta$, where η is the solution to (1), and hence $\eta = \text{sech}(\sigma|D|)v_\sigma$.

Applying the operator $\cosh(\sigma|D|)$ to (1) we obtain

$$
\partial_t v_\sigma + \partial_x v_\sigma - \gamma_1 \partial_t \partial_x^2 v_\sigma + \gamma_2 \partial_x^3 v_\sigma + \delta_1 \partial_t \partial_x^4 v_\sigma + \delta_2 \partial_x^5 v_\sigma
$$

where

$$
N(v_\sigma) = \frac{3}{4} \gamma \partial_x^2 \partial_x(v_\sigma^2) + \frac{1}{8} \partial_x^3(v_\sigma^3) + N(v_\sigma),
$$

(15)

Differentiating the modified energy, E_σ, and using (15)–(17) we obtain

$$
\frac{d}{dt} E_\sigma(t) = \int_R v_\sigma \partial_t v_\sigma + \gamma_1 \partial_x v_\sigma \partial_t (\partial_x v_\sigma) + \delta_1 \partial_x v_\sigma \partial_t (\partial_x v_\sigma^3)
$$

$$
= \int_R v_\sigma [\partial_t v_\sigma - \gamma_1 \partial_t \partial_x^2 v_\sigma + \delta_1 \partial_t \partial_x^4 v_\sigma] dx
$$

$$
= - \int_R v_\sigma \left[\partial_x v_\sigma + \gamma_2 \partial_x^3 v_\sigma + \delta_2 \partial_x^5 v_\sigma + \left(\frac{3}{4} + \gamma \partial_x^2 \right) \partial_x(v_\sigma^2) - \gamma \partial_x(\partial_x v_\sigma^2) - \frac{1}{8} \partial_x(v_\sigma^3) \right] dx
$$

$$
+ \int_R v_\sigma N(v_\sigma) dx.
$$

However, the integral on the third line is zero due to integration by parts (assuming sufficiently regular solution) and the following identities:

$$
u_\sigma \partial_x u = \frac{1}{2} \left(u^2 \right)_x, \quad \nu_\sigma \partial_x^2 u = (uu_{xx})_x - \frac{1}{2} \left(u^2 \right)_x,$$

$$
\nu_\sigma \partial_x^5 u = u \partial_x^4 u - \partial_x u \partial_x^3 u + \frac{1}{2} \left(u^2 \right)_{xx},
$$

and

$$
\nu_\sigma \left(u^2 \right)_x = \frac{2}{3} \left(u^3 \right)_x, \quad \nu_\sigma \left(u^3 \right)_x = \frac{3}{4} \left(u^4 \right)_x,$$

$$
\nu_\sigma \left(u^4 \right)_x = 2 \left(u^2 u_{xx} \right)_x + u \left(u^2 \right)_x.
$$

Therefore,

$$
\frac{d}{dt} E_\sigma(t) = \int_R v_\sigma(x, t) N(v_\sigma(x, t)) dx.
$$

Consequently, integrating with respect to time we get

$$
E_\sigma(t) = E_\sigma(0) + \int_0^t \int_R v_\sigma(x, s) N(v_\sigma(x, s)) dx ds.
$$

(18)

Combining (18) with the following key lemma, which will be be proved in the last section, we obtain (9).
Lemma 2. For $N(v_\sigma)$ as in (16)–(17) we have

$$\int_0^T v_\sigma N(v_\sigma) \, dx \leq c\sigma^2 \left[1 + \|v_\sigma\|_{H^2(\mathbb{R})} \right] \|v_\sigma\|_{L^2(\mathbb{R})}^2$$

(19)

for all $v_\sigma \in H^2(\mathbb{R})$.

Indeed, applying (19) to (18) we obtain

$$\sup_{0 \leq t \leq T} E_\sigma(t) = E_\sigma(0) + \sigma^2 T \cdot \left(1 + \|v_\sigma\|_{L^2(\mathbb{R})}^3 \right)$$

(20)

where $L^2(\mathbb{R}) = L^2([0, T] \times \mathbb{R})$ with T is as in Theorem 2.

As a consequence of Theorem 2 we have the bound

$$\|v_\sigma\|_{L^2(\mathbb{R})}^2 = \|\eta\|_{L^2(\mathbb{R})}^2 \leq c \|\eta_0\|_{L^2(\mathbb{R})} = c \|v_\sigma(\cdot, 0)\|_{H^2(\mathbb{R})}.$$

(21)

On the other hand,

$$E_\sigma(0) = \frac{1}{2} \int_\mathbb{R} |v_\sigma(x, 0)|^2 + \gamma_1 (\partial_x v_\sigma(x, 0))^2 + \delta_1 \left(\partial_{xx}^2 v_\sigma(x, 0) \right)^2 \, dx$$

$$\sim \|v_\sigma(\cdot, 0)\|_{H^2(\mathbb{R})}.$$

(22)

From (21) and (22) we get

$$\|v_\sigma\|_{L^2(\mathbb{R})} \sim (E_\sigma(0))^\frac{1}{2},$$

which can combined with (20) to obtain the desired estimate (9).

4. Proof of Theorem 1

Suppose that $\eta(\cdot, 0) = \eta_0 \in H^{\sigma_0}(\mathbb{R})$ for some $\sigma_0 > 0$. This implies $v_\sigma(\cdot, 0) = \cosh(\sigma_0 |D|) \eta_0 \in H^2$, and hence

$$E_{\sigma_0}(0) \sim \|v_\sigma(\cdot, 0)\|_{H^2(\mathbb{R})}^2 < \infty.$$

Now following the argument in [24] (see also [22]) we can construct a solution on $[0, T_\ast]$ for arbitrarily large time T_\ast. This is achieved by applying the approximate conservation (9), so as to repeat the local result in Theorem 3 on successive short time intervals of size T to reach T_\ast, by adjusting the strip width parameter $\sigma \in (0, \sigma_0]$ of the solution according to the size of T_\ast.

In what follows we prove that

$$\sup_{0 \leq t \leq T_\ast} E_\sigma(t) \leq 2E_{\sigma_0}(0) \quad \text{for} \quad \sigma \geq C/\sqrt{T_\ast}$$

(23)

for arbitrarily large T_\ast and $C > 0$ depending on $E_{\sigma_0}(0)$. This would in turn imply

$$\sup_{0 \leq t \leq T_\ast} \|\eta(t)\|_{H^{\sigma_2}(\mathbb{R})} < \infty \quad \text{for} \quad \sigma \geq C/\sqrt{T_\ast}$$

which proves Theorem 1.

It remains to prove (23). To do this, first observe that for $\sigma \in (0, \sigma_0]$ and $\tau \in (0, T)$, we have by Theorems 2 and 3,

$$\sup_{0 \leq t \leq \tau} E_\sigma(t) \leq E_\sigma(0) + c\sigma^2 \tau \left[1 + (E_\sigma(0))^{1/2} \right] (E_\sigma(0))^{3/2}$$

$$\leq E_{\sigma_0}(0) + c\sigma^2 \tau \left[1 + (E_{\sigma_0}(0))^{1/2} \right] (E_{\sigma_0}(0))^{3/2}.$$
To get the second line we used the fact the \(\mathcal{E}_{\sigma}(0) \leq \mathcal{E}_{\sigma_0}(0) \) which holds for \(\sigma \leq \sigma_0 \) as \(\cosh r \) is increasing for \(r \geq 0 \). Thus,

\[
\sup_{0 \leq t \leq \tau} E_{\sigma}(t) \leq 2E_{\sigma_0}(0) \tag{24}
\]

provided that

\[
c\cosh \left[1 + (E_{\sigma_0}(0))^{1/2} \right] (E_{\sigma_0}(0))^{3/2} \leq E_{\sigma_0}(0). \tag{25}
\]

Next, we apply Theorem 2 with initial time \(t = \tau \) and time-step size \(T \) as in (7) to extend the solution from \([0, \tau] \) to \([\tau, \tau + T] \). By Theorem 3 and (24) we obtain

\[
\sup_{\tau \leq t \leq \tau + T} E_{\sigma}(t) \leq E_{\sigma}(\tau) + c \cosh \left[1 + (2E_{\sigma_0}(0))^{1/2} \right] (2E_{\sigma_0}(0))^{3/2} \tag{26}
\]

In this way we cover all time intervals \([0, T], [T, 2T], \ldots\), and obtain

\[
E_{\sigma}(T) \leq E_{\sigma}(0) + c \cosh \left[1 + (2E_{\sigma_0}(0))^{1/2} \right] (2E_{\sigma_0}(0))^{3/2}
\]

\[
E_{\sigma}(2T) \leq E_{\sigma}(T) + c \cosh \left[1 + (2E_{\sigma_0}(0))^{1/2} \right] (2E_{\sigma_0}(0))^{3/2}
\]

\[
\vdots
\]

\[
E_{\sigma}(nT) \leq E_{\sigma}(0) + n \cosh \left[1 + (2E_{\sigma_0}(0))^{1/2} \right] (2E_{\sigma_0}(0))^{3/2}.
\]

This argument can be continued as long as

\[
n \cosh \left[1 + (2E_{\sigma_0}(0))^{1/2} \right] (2E_{\sigma_0}(0))^{3/2} \leq E_{\sigma_0}(0) \tag{27}
\]

as this would imply \(E_{\sigma}(nT) \leq 2E_{\sigma_0}(0) \).

Thus, the induction stops at the first integer \(n \) for which

\[
n \cosh \left[1 + (2E_{\sigma_0}(0))^{1/2} \right] (2E_{\sigma_0}(0))^{3/2} > E_{\sigma_0}(0)
\]

and then we have reached the finite time \(T_\sigma = nT \) when

\[
c \cosh \left[1 + (2E_{\sigma_0}(0))^{1/2} \right] (2E_{\sigma_0}(0))^{1/2} > 1.
\]

This proves \(\sigma \geq C/\sqrt{T_\sigma} \) for some \(C > 0 \) depending on \(E_{\sigma_0}(0) \).

5. Proof of Lemma 2

To prove (19) we need the following estimate from [10, Lemma 3] in the special cases of \(p = 2 \) and \(p = 3 \).

Lemma 3. Let \(\xi = \sum_{j=1}^{p} \xi_j \) for \(\xi_j \in \mathbb{R} \), where \(p \geq 1 \) is an integer. Then

\[
\left| 1 - \cosh |\xi| \prod_{j=1}^{p} \text{sech} |\xi_j| \right| \leq 2^p \sum_{j \neq k=1}^{p} |\xi_j||\xi_k|.
\]

Proof. For the readers convenience we include the proof in the case \(p = 2 \). Note that

\[
\cosh |\xi_1| \cosh |\xi_2| = \frac{1}{2} [\cosh(|\xi_1| - |\xi_2|) + \cosh(|\xi_1| + |\xi_2|)].
\]

(29)
On the other hand, we have (see [10, Lemma 2]),

$$|\cosh b - \cosh a| \leq \frac{1}{2} |b^2 - a^2| (\cosh b + \cosh a).$$ \hspace{1cm} (30)

for $a, b \in \mathbb{R}$.

Then by (29) and (30),

$$|\cosh |\xi_1| \cosh |\xi_2| - \cosh |\xi|| = \left| \frac{1}{2} \left(\sum_{\pm} \cosh (|\xi_1| \pm |\xi_2|) - \cosh |\xi| \right) \right|$$

$$\leq \frac{1}{2} \left| \left(|\xi_1| \pm |\xi_2| \right)^2 - |\xi|^2 \right| (\cosh (|\xi_1| \pm |\xi_2|) + \cosh |\xi|)$$

$$\leq \frac{1}{2} \cdot 4|\xi_1| |\xi_2| \cdot 4 \cosh(|\xi_1|) \cosh(|\xi_2|)$$

$$= 8|\xi_1| |\xi_2| \cosh(|\xi_1|) \cosh(|\xi_2|).$$

Dividing by $\cosh(|\xi_1|) \cosh(|\xi_2|)$ yields the desired estimate (28) in the case $p = 2$. \hspace{1cm} \Box

Next we prove (19). For $N(v_\sigma)$ as in (16)–(17), we use Plancherel theorem to write

$$\int_\mathbb{R} v_\sigma N(v_\sigma) dx = \int_\mathbb{R} v_\sigma \left(\frac{3}{4} + \gamma \partial_x^2 \right) \partial_x N_1(v_\sigma) - \gamma v_\sigma \partial_x N_2(v_\sigma) - \frac{1}{8} \gamma v_\sigma \partial_x N_3(v_\sigma) dx$$

$$= \int_\mathbb{R} \left(\frac{3}{4} + \gamma \partial_x^2 \right) v_\sigma \partial_x N_1(v_\sigma) dx + \gamma \int_\mathbb{R} \partial_x v_\sigma \cdot N_2(v_\sigma) dx + \frac{1}{8} \gamma \int_\mathbb{R} \partial_x v_\sigma \cdot N_3(v_\sigma) dx.$$

So (19) follows from

$$|I_1| \lesssim \sigma^2 \|v_\sigma\|^3_{H^2(\mathbb{R})}, \quad (j = 1, 2)$$ \hspace{1cm} (31)

$$|I_3| \lesssim \sigma^2 \|v_\sigma\|^4_{H^2(\mathbb{R})}. \quad \hspace{1cm} (32)

5.1. Proof of (31) when $j = 1$. By Cauchy-Schwarz inequality,

$$|I_1| \leq \left\| \left(\frac{3}{4} + \gamma \partial_x^2 \right) v_\sigma \right\|_{L^2_x(\mathbb{R})} \|\partial_x N_1(v_\sigma)\|_{L^2_x(\mathbb{R})}$$

$$\lesssim \|v_\sigma\|_{H^2(\mathbb{R})} \|\partial_x N_1(v_\sigma)\|_{L^2_x(\mathbb{R})}.$$

So the proof reduces to

$$\|\partial_x N_1(v_\sigma)\|_{L^2_x(\mathbb{R})} \lesssim \sigma^2 \|v_\sigma\|^2_{H^2(\mathbb{R})},$$ \hspace{1cm} (33)

where

$$N_1(v_\sigma) = v_\sigma^2 - \cosh(\sigma|D|) [\text{sech}(\sigma|D|) v_\sigma]^2.$$
Now taking the Fourier Transform of $\partial_x N_1(v_\sigma)$ and applying (28) with $p = 2$, we obtain
\[
\mathcal{F} [\partial_x N_1(v_\sigma)](\xi) = \left| \int_{\xi = \xi_1 + \xi_2} i\xi \left(1 - \cosh(\sigma|\xi|) \prod_{j=1}^{2} \text{sech}(\sigma|\xi_j|) \right) \hat{\nu}_\sigma(\xi_1)\hat{\nu}_\sigma(\xi_2) d\xi_1 d\xi_2 \right|
\leq 4\sigma^2 \int_{\xi = \xi_1 + \xi_2} |\xi| \left(\sum_{j \neq k=1}^{2} |\xi_j||\xi_k| \right) |\hat{\nu}_\sigma(\xi_1)||\hat{\nu}_\sigma(\xi_2)| d\xi_1 d\xi_2.
\]
By symmetry, we may assume $|\xi_1| \leq |\xi_2|$. Then
\[
\mathcal{F} [\partial_x N_1(v_\sigma)](\xi) \leq 16\sigma^2 \int_{\xi = \xi_1 + \xi_2} |\xi_1||\hat{\nu}_\sigma(\xi_1)||\hat{\nu}_\sigma(\xi_2)| d\xi_1 d\xi_2
= 16\sigma^2 \mathcal{F}_\chi^{-1}(\|D|w_\sigma|D^2 w_\sigma\|)(\xi),
\]
where $w_\sigma = \mathcal{F}_\chi^{-1}(\|\hat{\nu}_\sigma\|)$. Finally, by Plancherel, Hölder inequality and Sobolev embedding,
\[
\|\partial_x N_1(v_\sigma)\|_{L^2_x(R)} \leq 16\sigma^2 \left\| |D|w_\sigma|D^2 w_\sigma\| \right\|_{L^2_x(R)}
\leq \sigma^2 \left\| |D|w_\sigma\|_{L^\infty_x(R)} \right\| \left\| |D^2 w_\sigma\| \right\|_{L^2_x(R)}
\leq \sigma^2 \left\| w_\sigma\|_{H^2_x(R)} \right\| \leq \sigma^2 \left\| v_\sigma\|_{H^2_x(R)} \right\|^2.
\]
which proves (33).

5.2. **Proof of (31) when $j = 2$.** By Plancherel and Cauchy-Schwarz inequality,
\[
|I_2| = \left| \int_R \partial_x v_\sigma. N_2(v_\sigma) dx \right| = \left| \int_R \langle D\partial_x v_\sigma, (D)^{-1} N_2(v_\sigma) \rangle dx \right|
\leq \| \langle D\partial_x v_\sigma \|_{L^2_x(R)} \| (D)^{-1} N_2(v_\sigma) \|_{L^2_x(R)}
\leq \| v_\sigma\|_{H^2_x(R)} \| N_2(v_\sigma)\|_{H^{-1}_x(R)}.
\]
So the proof reduces to
\[
\| N_2(v_\sigma)\|_{H^{-1}_x(R)} \lesssim \sigma^2 \left\| v_\sigma\|_{H^2_x(R)} \right\|^2,
\]
which
\[
N_2(v_\sigma) = (\partial_x v_\sigma)^2 - \cosh(\sigma|D|) \text{sech}(\sigma|D|) \partial_x v_\sigma)^2.
\]
Taking the spatial Fourier Transform of \(N_2(v_\sigma) \) and using (28) with \(p = 2 \), we obtain
\[
\mathcal{F}[N_2(v_\sigma)](\xi) = \left| \int_{\xi_1 + \xi_2} \left(1 - \cosh(\sigma|\xi|) \prod_{j=1}^{2} \text{sech}(\sigma|\xi_j|) \right) i\xi_1 \hat{v}_\sigma(\xi_1) i\xi_2 \hat{v}_\sigma(\xi_2) d\xi_1 d\xi_2 \right|
\]
\[
\leq 8\sigma^2 \int_{\xi_1 + \xi_2} |\xi_1|^2 |\xi_2|^2 |\hat{v}_\sigma(\xi_1)||\hat{v}_\sigma(\xi_2)| d\xi_1 d\xi_2
\]
\[
\leq 8\sigma^2 \mathcal{F}_x \left[|D^2 v_\sigma| |D^2 v_\sigma| \right](\xi),
\]
where \(w_\sigma = \mathcal{F}_x^{-1}(\hat{v}_\sigma) \).

Then by Plancherel, the Sobolev embedding
\[
H^1_x(\mathbb{R}) \hookrightarrow L^\infty_x(\mathbb{R}) \quad \leftrightarrow \quad L^1_x(\mathbb{R}) \hookrightarrow H^{-1}_x(\mathbb{R})
\]
and Cauchy-Schwarz, we obtain
\[
\|N_2(v_\sigma)\|_{H^1_x(\mathbb{R})} \leq 8\sigma^2 \left\| |D^2 v_\sigma| |D^2 v_\sigma| \right\|_{H^{-1}_x(\mathbb{R})}
\]
\[
\leq \sigma^2 \left\| |D^2 v_\sigma| |D^2 v_\sigma| \right\|_{L^1_x(\mathbb{R})}
\]
\[
\leq \sigma^2 \left\| |D^2 v_\sigma| \right\|_{L^2_x(\mathbb{R})} \left\| |D^2 v_\sigma| \right\|_{L^2_x(\mathbb{R})}
\]
\[
\leq \sigma^2 \|v_\sigma\|^2_{H^1_x(\mathbb{R})},
\]
which proves (34).

5.3. **Proof of (32).** By Cauchy-Schwarz inequality,
\[
|I_3| = \frac{1}{8} \left| \int_{\mathbb{R}} \partial_x v_\sigma N_3(v_\sigma) dx \right| \leq \| \partial_x v_\sigma \|_{L^2_x(\mathbb{R})} \| N_3(v_\sigma) \|_{L^2_x(\mathbb{R})}
\]
\[
\leq \| v_\sigma \|_{H^1(\mathbb{R})} \| N_3(v_\sigma) \|_{L^2_x(\mathbb{R})}.
\]
So it remains to prove
\[
\| N_3(v_\sigma) \|_{L^2_x(\mathbb{R})} \lesssim \sigma^2 \| v_\sigma \|^3_{H^1(\mathbb{R})},
\]

(35)

where
\[
N_3(v_\sigma) = v_\sigma^3 - \cosh(\sigma|D|) |\text{sech}(\sigma|D|)|v_\sigma|^3.
\]

Taking the Fourier Transform of \(N_3(v_\sigma) \) and applying (28) with \(p = 3 \), we obtain
\[
\mathcal{F}_x [N_3(v_\sigma)](\xi)
\]
\[
= \left| \int_{\xi_1 + \xi_2 + \xi_3} \left(1 - \cosh(\sigma|\xi|) \prod_{j=1}^{3} \text{sech}(\sigma|\xi_j|) \right) \hat{v}_\sigma(\xi_1) \hat{v}_\sigma(\xi_2) \hat{v}_\sigma(\xi_3) d\xi_1 d\xi_2 d\xi_3 \right|
\]
\[
\leq 8\sigma^2 \int_{\xi_1 + \xi_2 + \xi_3} \left(\sum_{j \neq k=1}^{3} |\xi_j||\xi_k| \right) |\hat{v}_\sigma(\xi_1)||\hat{v}_\sigma(\xi_2)||\hat{v}_\sigma(\xi_3)| d\xi_1 d\xi_2 d\xi_3
\]
By symmetry, we may assume $|\xi_1| \leq |\xi_2| \leq |\xi_3|$, which implies
\[
|\mathcal{F}_\chi [N_3(\cdot \sigma)](\xi)| \leq 48c^2 \int_{\xi = \xi_1 + \xi_2 + \xi_3} |\tilde{\nu}(\xi_1)| |\nu(\xi_2)| |\xi_3|^2 |\tilde{\nu}(\xi_3)| d\xi_1 d\xi_2 d\xi_3
\]
\[
= 48c^2 |\mathcal{F}_\chi (w_\sigma, \cdot |D|^2 w_\sigma)(\xi)|,
\]
where $w_\sigma = \mathcal{F}_\chi^{-1}(|\nu|_\sigma)$.

Then by Plancherel and Hölder inequality we get
\[
\|\mathcal{F}_\chi [N_3(\cdot \sigma)](\xi)\|_{L^2(\mathbb{R})} \lesssim \sigma^2 \|\nu\|_{L^2(\mathbb{R})} \|D^2 w_\sigma\|_{L^2(\mathbb{R})}
\]
\[
\lesssim \sigma^2 \|w_\sigma\|^2_{H^2(\mathbb{R})} \|\nu\|_{H^2(\mathbb{R})}
\]
\[
\lesssim \sigma^2 \|w_\sigma\|^3_{H^2(\mathbb{R})}
\]
\[
\lesssim \sigma^2 \|\nu\|^3_{H^2(\mathbb{R})}
\]
which proves (35).

Acknowledgments A. Tesfahun acknowledges support from the Social Policy Research Grant (SPG), Nazarbayev University.

References

[1] B. Belayneh, E. Tegegn and A. Tesfahun, Lower bound on the radius of analyticity of solution for fifth order KdV-BBM Equation. Nonlinear Differ. Equ. Appl. NoDEA, 29 (6) (2022).
[2] J. L. Bona, X. Carvajal, M. Panthee, M. Scialom. Higher-Order Hamiltonian Model for Unidirectional Water Waves. J. Nonlinear Sci. 28 (2018) 543–577.
[3] J. L. Bona, M. Chen and J.-C. Saut. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I. Derivation and linear theory, J. Nonlinear Sci. 12 (2002) 283–318.
[4] J. L. Bona, M. Chen and J.-C. Saut; Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II. The nonlinear theory, Nonlinearity 17 (2004) 925–952.
[5] J. L. Bona, Z. Grujić, and H. Kalisch, Algebraic lower-bound for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 6, 783–797.
[6] J. L. Bona, Z. Grujić, and H. Kalisch, Global solutions of the derivative Schrödinger equation in a class of functions analytic in a strip, J. Differential Equations 229 (2006) 186–203.
[7] J. Bourgain, On the Cauchy problem for the Kadomtsev Petviashvili equation, Geom. Funct. Anal. 3 (4) (1993) 315-341.
[8] X. Carvajal, M. Panthee. On propagation of regularities and evolution of radius of analyticity in the solution of the fifth-order KdV–BBM model. Zeitschrift für ang. Math. und Physik, (73), 68 (2022).
[9] X. Carvajal, M. Panthee. On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation, J. Math. Anal. Appl. 479 (2019) 688–702.
[10] T.T. Dufera, S. Mebrate, and A. Tesfahun, On the persistence of spatial analyticity for the Beam equation, J. Math. Anal. and Appl., 126001 (2022).
[11] A. B. Ferrari and E. S. Titi, Gevrey regularity for nonlinear analytic parabolic equations, Comm. Partial Differential Equations 23 (1998), no. 1-2, 1–16.
[12] C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (1989) 359–369.
[13] P. Gérard, Y. Guo, and E. S. Titi, On the radius of analyticity of solutions to the cubic Szegő equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), no. 1, 97–108.
[14] H. Hannah, A. A. Himonas, and G. Petronilho, Gevrey regularity of the periodic gKdV equation, J. Differential Equations 250 (2011), no. 5, 2581–2600.
[15] A. A. Himonas, K. Henrik, and Selberg S., On persistence of spatial analyticity for the dispersion-generalized periodic kde equation, Nonlinear Analysis: Real World Applications 38 (2017), 35–48.
[16] A. A. Himonas and G. Petronilho, *Analytic well-posedness of periodic gKdV*, J. Differential Equations **253** (2012), no. 11, 3101–3112.

[17] T. Kato T., K. Masuda, *Nonlinear evolution equations and analyticity I*, Ann. Inst. H. Poincare Anal. Non Lineaire, 3 (1986) 455–467.

[18] Y. Katznelson, *An introduction to harmonic analysis*, corrected ed., Dover Publications, Inc., New York, 1976.

[19] C. D. Levermore and M. Oliver, *Analyticity of solutions for a generalized Euler equation*, J. Differential Equations **133** (1997), no. 2, 321–339.

[20] M. Oliver and E. S. Titi, *On the domain of analyticity of solutions of second order analytic nonlinear differential equations*, J. Differential Equations **174** (2001), no. 1, 55–74.

[21] S. Panizzi, *On the domain of analyticity of solutions to semilinear Klein-Gordon equations*, Nonlinear Anal. **75** (2012), no. 5, 2841–2850.

[22] S. Selberg and D. O. da Silva, *Lower bounds on the radius of spatial analyticity for the KdV equation*, Ann. Henri Poincaré (2016). doi:10.1007/s00023-016-0498-1.

[23] S. Selberg and A. Tesfahun, *On the radius of spatial analyticity for the quartic generalized KdV equation*, Annales Henri Poincaré 18, 3553–3564 (2017)

[24] ____, *On the radius of spatial analyticity for the 1d Dirac-Klein-Gordon equations*, Journal of Differential Equations **259** (2015), 4732–4744.

[25] A. Tesfahun, *On the radius of spatial analyticity for cubic nonlinear Schrödinger equation*, J. Differential Equations **263** (2017) 7496–7512.

[26] ____, *Remark on the persistence of spatial analyticity for cubic nonlinear Schrödinger equation on the circle*, Nonlinear Differ. Equ. Appl. NoDEA, (2019) 26:12

[27] ____, *Asymptotic lower bound for the radius of spatial analyticity to solutions of KdV equation*, Comm. Contemp. Math. 21, 08, 1850061 (2019).

Department of Mathematics, Nazarbayev University, Qabanbai Batyr Avenue 53, 010000 Nur-Sultan, Republic of Kazakhstan

Email address: achene@gmail.com

Department of Mathematics, Adama Science and Technology University, Ethiopia

Email address: tamirat.temesgen@astu.edu.et, silenaty2005@gmail.com