Outcome of ureteroscopy for stone disease in patients with horseshoe kidney: Review of world literature

Hiro Ishii, Bhavan Rai, Olivier Traxer, Slawomir G. Kata, Bhaskar K. Somani

Department of Urology, University Hospital Southampton NHS Trust, Southampton, United Kingdom, Department of Urology, Ninewells Hospital, Dundee, Scotland, Department of Urology, University Pierre et Marie Curie Paris 6, Paris, France

Abstract

Introduction and Objectives: The management of urolithiasis in patients with horseshoe kidney (HSK) is difficult. Stone formation occurred in 1:5 patients with HSK due to impaired urinary drainage and infections. Percutaneous nephrolithotomy and shock wave lithotripsy can be technically challenging due to altered anatomy.

Materials and Methods: We conducted a systematic review of the literature to look at the role of ureteroscopy for stone management in these patients. We searched MEDLINE, PubMed and the Cochrane Library from January 1990 to April 2013 for results of ureteroscopy and stone treatment in HSK patients. Inclusion criteria were all English language articles reporting on ureteroscopy in patients with HSK. Data were extracted on the outcomes and complications.

Results: A total of 3 studies was identified during this period. Forty-one patients with HSK underwent flexible ureteroscopy and stone treatment. The mean age was 42 with a male:female ratio nearly 3:1. The mean stone size was 16 mm (range: 3-35 mm). The mean operating time was 86 min with multiple stones seen in 15 patients. All 41 patients had a ureteral access sheath used and flexible ureteroscopy and holmium laser fragmentation done. Thirty-two (78%) patients were stone-free with a mean hospital stay of 1-day. Minor complications (Clavien I or II) were seen in 13 (32%) of which 6 had stent discomfort, 3 needed intravenous antibiotics for <24 h, 3 had hematuria of which 2 needed blood transfusion and one had pyelonephritis needing re-admission and antibiotics. There were no major complications found in the review.

Conclusions: Retrograde stone treatment using ureteroscopy and lasertripsy in HSK patients can be performed with good stone clearance rate, but with a slightly higher complication rate. This procedure should, therefore, be done in high volume stone center with an experienced stone surgeon/team.

Key Words: Laser fragmentation, outcomes, stones, horseshoe kidney, ureterorenoscopy

INTRODUCTION

Horseshoe kidneys (HSK) are the most common congenital genitourinary anomaly, with an incidence of 1 every 400 births.[1-3] This malformation is characterized by renal malrotation, a variable blood supply, high ureteric insertion and an increased incidence of ureteropelvic junction (UPJ) obstruction in a third of cases.[4] Due to the altered anatomy, the urinary drainage is affected and thereby increasing the risk of urinary tract infections and renal stone formation; in up to 20% of cases.[5-7]

Stone management in these cases is made challenging due to the abnormal anatomy. The technical feasibility and the medical condition of the patients often dictate the nature of treatment offered and might preclude some procedures,[8] but
when possible, the stone-free rate (SFR) is reported to be lower than when compared with patients with normal renal anatomy undergoing a similar procedure.\[9\]

The advances in flexible ureteroscopy and lasertherpy (FURSL) had allowed alternative method of treatment in anatomically normal kidneys with minimal morbidity and very high SFR. However, the success rate and associated complications of FURSL in HSK have not been widely documented in the literature.

To look at these points, we conducted a systematic review to assess the safety and efficacy of FURSL in patients with HSKs.

MATERIALS AND METHODS

Search strategy and study selection

A systematic review was performed according to the Cochrane reviews guidelines and the preferred reporting items for systematic reviews and meta-analyses guidelines.\[10\] The search strategy was aimed at finding the relevant studies from MEDLINE, PubMed and the Cochrane Library from January 1990 to April 2013 for results of ureteroscopy and stone treatment in HSK patients.

The terms used in the search included the following: “Ureteroscopy”, “HSK”, “stones”, “calculi”, “laser” and “laser therapy”. Boolean operators (AND, OR) were used to refine the search.

Criteria for inclusion

The inclusion criteria for this systematic review were all English language articles reporting on ureteroscopic treatment in HSK patients. Patients who had failed previous procedures were included as well as patients with HSK with calculi who underwent ureterorenoscopy (URS) as a first-line surgical intervention. If relevant, the references were evaluated for potential inclusion.

Evidence level of included studies

The levels of evidence and recommendation were based on the center for evidence based medicine.\[11\]

Data extraction

The following variables were extracted from each study: Population demographics, period of the study, country of origin of the study, prior procedures, stone size and location, anesthesia used, type of ureteroscope used, method of stone extraction, stone-free rates, follow-up period and complications. For complications the Clavien classification for surgical complications was used.\[12\]

RESULTS

The literature search yielded 54 studies, of which 51 were excluded owing to nonrelevance, based on the title, abstract and full manuscript [Figure 1]. A total of three studies\[13-15\] [Table 1] was identified during January 1990 and April 2013 that fit the inclusion criteria.

In total, there were 41 patients with 45 renal units treated with a mean age of 42 years (range: 35-69 years). There was a definite preponderance toward the male sex; there were 30 males to 11 females.

Preoperative imaging was done with the use of abdominal X-ray (AXR), renal ultrasound scans (USS), intravenous

Figure 1: Outcomes of literature search
Urology Annals | Oct - Dec 2015 | Vol 7 | Issue 4

Ishii, et al.: Ureteroscopy for stone disease in horseshoe kidney

Table 1: Characteristics of the studies included in the review

Author	Journal	Year	Review period	Country	Evidence level	Number of cases (n)	Mean age (range)	Prior procedures (%)	Mean operative time (min)	Stone number	SFR (%)
Weizer(1)	J Urol	2005	1998-2003	USA	4	8, 4 of whom were HSK and 4 were pelvic kidney	50.6 (35-69)	75	126	11	75*
Molimard(2)	J Urol	2010	2004-2009	France	4	20, 4 of whom were HSK and 4 were pelvic kidney	40.9 (16-52)	100	92	33	88.2
Atis(3)	Urothiassis	2013	2008-2012	Turkey	4	45, 4 of whom were HSK and 4 were pelvic kidney	NA	NA	NA	NA	NA

SFR: Stone-free rate, HSK: Horseshoe kidney, NA: Not available

Table 2: Breakdown of stone location according to studies

Location	Weizer et al.	Molimard et al.	Atis et al.
Renal pelvis, UPJ	5	4	3
Proximal ureter	2	7	4
Lower pole	4	9	5
Mixed caliceal	7	3	7
Mixed pelvic and caliceal	8	3	5

UPJ: Uretropelvic junction

Ureteroscopy (URS) and intracorporeal shock wave lithotripsy (FURSL) were the procedures chosen for the treatment of stone disease in horseshoe kidney (HSK). The mean age of the patients was 50.6 years (range: 35-69 years). The stone size was 16 mm (range: 3-35 mm). The stone location was documented in all three studies. The mean operative time was 86.2 min (range: 40.5-126 min).

Postoperative follow-up varied with regards to imaging modality and time span, but all studies reported a formal follow-up with a form of imaging (AXR/renal USS/noncontrast CT) to assess the SFRs.

DISCUSSION

This review does indeed give an insight into the practical application of ureteroscopy in stone disease affecting HSK patients. Due to the anatomical abnormalities presented by the HSK, the technical difficulty of ureteroscopy is increased significantly compared with performing ureteroscopy a normal urinary system. All the studies utilized a UAS during the procedure to facilitate the ease of access to the renal pelvis and allow continuous irrigation of the renal pelvis and the removal of stone fragments from the kidney.[16,17] The orientation of the calyces is altered compared to normal and combined with the increased likelihood of UPJ obstruction, due to the high insertion of the ureter into the renal pelvis, explains the technical difficulties faced in FURSL in the patients. This is also reflected in a higher than normal mean operative time of 86 min and ranged from 40.5 min to 126 min. The SFR was acceptable at 78%, though this is lower than reported SFRs in a normal kidney.

There were no major complications and 13 minor complications. Most complications were minor Clavien grade I.
or II with nearly half of them being the stent discomfort that is quite common even in patients with normal renal anatomy. A short hospital stay is an indicator of the relative safety of the procedure.

Compared to other methods of stone treatment with SWL and percutaneous nephrolithotomy (PCNL), a relatively high SFR without the risk of major complications makes it very attractive as an endourologist [Table I].[18] A recent study by Ray et al.[19] reported on their experience with SWL and HSK stones in 41 patients (61 renal units). Their single treatment success at 3 months was reported at 25%, with an SFR of 9.1%. They also looked at overall (more than one session of SWL) SFR at 3 months, which was reported at 39.1%. Their paper also compared the results from 15 other studies utilizing SWL in HSK stones and found that an average of 2.03 (1-3.8) sessions of SWL only gave a mean SFR of 54%.

Shokeir et al.[20] in their paper from mansoura present their experience of 34 patients with HSK. They had a major complication in 6 (13%) patients including blood transfusion (n = 3) and septicemia, ureteric injury and colonic injury in one patient each. There was also a high rate of auxiliary procedures 12 (35%) patients with an SFR of 82% on discharge. Another paper by Etemadian et al.[21] looked at previous studies utilizing PCNL in the HSK stones and across 7 studies, an average of 19.86% had a minor complication, and 1.57% had a major complication. An average SFR was calculated at 76.4% (range: 66.7‑87.5%) across these studies.

The results from our systematic review show that FURSL is a viable and competitive technique when compared to SWL and PCNL. The SFR is similar to PCNL and much better than SWL. Although the complication rates were higher than SWL, it was significantly better than PCNL.

The main limitation of this review is the limited number of included studies; however this is due to the scarcity of HSK cases. This makes it difficult for a large study to be conducted, which may be able to deliver more sound results than those that are only able to report on a few patients. The lack of case numbers also prevents the design and execution of randomized trials or comparative prospective studies, assessing the role of URS in HSK against more traditional techniques. This leads to the reliance on case series for development of evidence. With all the factors taken into account, this review does provide insight into URS use for HSK giving us an idea of the complication and success rate from FURSL.

CONCLUSIONS

The use of URS and laser lithotripsy in patients with HSK and stone disease is shown to be a relatively safe and effective procedure. However, due to the anatomical abnormality, a second look is usually required to render the patient completely stone-free. The efficacy and safety of the procedure can be improved by performing these procedures in high volume centers with experienced endourologists.

REFERENCES

1. Raj GV, Auge BK, Weizer AZ, Denstedt JD, Watterson JD, Beiko DT, et al. Percutaneous management of calculi within horseshoe kidneys. J Urol 2003;170:48‑51.
2. Kirkali Z, Eisen AA, Mungan MU. Effectiveness of extracorporeal shockwave lithotripsy in the management of stone-bearing horseshoe kidneys. J Endourol 1996;10:13‑5.
3. Weizer AZ, Silverstein AD, Auge BK, Delvecchio FC, Raj G, Albala DM, et al. Determining the incidence of horseshoe kidney from radiographic data at a single institution. J Urol 2003;170:1722‑6.
4. Faddegon S, Granberg C, Yan YK, Gargollo PC, Cadeddu JA. Minimally invasive pyeloplasty in horseshoe kidneys with ureteropelvic junction obstruction: A case series. Int Braz J Urol 2013;39:195‑202.
5. Bauer S. Anomalies of the upper urinary tract. In: Walsh PC, Retic AB, Vaughan ED, Wein AJ. Campbell’s Urology. 8th ed. Philadelphia: Elsevier Saunders; 2002.
6. Gross AJ, Fisher M. Management of stones in patients with anomalously sited kidneys. Curr Opin Urol 2006;16:100‑5.
7. Raj GV, Auge BK, Assimos D, Preminger GM. Metabolic abnormalities associated with renal calculi in patients with horseshoe kidneys. J Endourol 2004;18:57‑61.
8. Grasso M, Loisides P, Beaglier M, Bagley D. The case for primary endoscopic management of upper urinary tract calculi: I. A critical review of 121 extracorporeal shock-wave lithotripsy failures. Urology 1995;45:363‑71.
9. Liatsikos EN, Kalilidonis P, Stolzenburg JU, Ost M, Keesley F, Traxer O, et al. Percutaneous management of staghorn calculi in horseshoe kidneys: A multi-institutional experience. J Endourol 2010;24:531‑6.
10. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gertschke PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009;339:b2700.
11. OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 1. Oxford Centre for Evidence-Based Medicine. Available from: http://www.cebm.net/index.aspx?o=1025. [Last accessed on 2014 May 10].
12. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240:205‑13.
13. Weizer AZ, Springhart WP, Ekerucu AO, Matliaga BR, Tan YH, Assimos DG, et al. Ureteroscopic management of renal calculi in anomalous kidneys. Urology 2005;65:265‑9.
14. Molimard B, Al-Qahtani S, Lakmichi A, Sejiny M, Gil-Diez de Medina S, Carpenter X, et al. Flexible ureterorenoscopy with holmium laser in horseshoe kidneys. Urology 2010;76:1334‑7.
15. Atis G, Resolju B, Gurbuz C, Arikun O, Ozyuveli E, Unsal A, et al. Retrograde intrarenal surgery in patients with horseshoe kidneys. Urolithiasis 2013;41:79‑83.
16. Kourombas J, Byrne RR, Preminger GM. Does a ureteral access sheath facilitate ureteroscopy? J Urol 2001;165:789‑93.
17. Auge BK, Pietrow PK, Lallas CD, Raj GV, Santa‑Cruz RW, Preminger GM. Ureteral access sheath provides protection against elevated renal pressures during routine flexible ureteroscopic stone manipulation. J Endourol 2004;18:33‑6.
18. Yohannes P, Smith AD. The endourological management of complications associated with horseshoe kidney. J Urol 2002;168:5-8.
19. Ray AA, Ghiculete D, D’A Honey RJ, Pace KT. Shockwave lithotripsy in patients with horseshoe kidney: Determinants of success. J Endourology 2011;25:487-93.
20. Shokeir AA, El-Nahas AR, Shoma AM, Eraky I, El-Kenawy M, Mokhtar A, et al. Percutaneous nephrolithotomy in treatment of large stones within horseshoe kidneys. Urology 2004;64:426-9.
21. Etemadian M, Maghsoudi R, Abdollahpour V, Amjadi M. Percutaneous nephrolithotomy in horseshoe kidney: Our 5-year experience. Urol J 2013;10:856-60.

How to cite this article: Ishii H, Rai B, Traxer O, Kata SG, Somani BK. Outcome of ureteroscopy for stone disease in patients with horseshoe kidney: Review of world literature. Urol Ann 2015;7:470-4.

Source of Support: Nil, Conflict of Interest: None.