Research: Care Delivery

Health professionals’ views about who would benefit from using a closed-loop system: a qualitative study

J. Lawton1, B. Kimbell1, D. Rankin1, N. L. Ashcroft2, L. Varghese3, J. M. Allen2,4, C. K. Boughton2, F. Campbell5, T. Randell6, R. E. J. Besser7,8, N. Trevelyan9 and R. Hovorka2,4 on behalf of the CLOuD Consortium

1Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK, 2Wellcome Trust – Medical Research Institute of Metabolic Science, University of Cambridge, 3Cambridge Clinical Trials Unit, 4Department of Paediatrics, University of Cambridge, Cambridge, UK, 5Leeds’s Children’s Hospital, Leeds, UK, 6Nottingham Children’s Hospital, Nottingham, UK, 7NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, 8Department of Paediatrics, University of Oxford, Oxford, UK and 9Southampton Children’s Hospital, Southampton, UK

Accepted 23 January 2020

Abstract

Aim To explore health professionals’ views about who would benefit from using a closed-loop system and who should be prioritized for access to the technology in routine clinical care.

Methods Health professionals (n = 22) delivering the Closed Loop from Onset in type 1 Diabetes (CLOuD) trial were interviewed after they had ≥ 6 months’ experience supporting participants using a closed-loop system. Data were analysed thematically.

Results Interviewees described holding strong assumptions about the types of people who would use the technology effectively prior to the trial. Interviewees described changing their views as a result of observing individuals engaging with the closed-loop system in ways they had not anticipated. This included educated, technologically competent individuals who over-interacted with the system in ways which could compromise glycaemic control. Other individuals, who health professionals assumed would struggle to understand and use the technology, were reported to have benefitted from it because they stood back and allowed the system to operate without interference. Interviewees concluded that individual, family and psychological attributes cannot be used as pre-selection criteria and, ideally, all individuals should be given the chance to try the technology. However, it was recognized that clinical guidelines will be needed to inform difficult decisions about treatment allocation (and withdrawal), with young children and infants being considered priority groups.

Conclusions To ensure fair and equitable access to closed-loop systems, prejudicial assumptions held by health professionals may need to be addressed. To support their decision-making, clinical guidelines need to be made available in a timely manner.

Diabet. Med. 37, 1030–1037 (2020)

Introduction

A closed-loop system is a rapidly evolving technology [1] that has been hailed as a technological revolution in the treatment and care of people with type 1 diabetes [2]. It comprises a real-time continuous glucose monitor (CGM), an insulin pump and an algorithm that translates, in real time, information from the CGM and computes the amount of insulin to be delivered by the pump. These systems require varying levels of user input, with most needing users to count carbohydrates and enter this information before snacking/eating, and to also perform standard pump- and CGM-related tasks.

The first generation commercially available hybrid closed-loop system, the 670G pump (Medtronic, Northridge, CA, USA), was approved by the US Food and Drug Administration in September 2016, and with a CE mark since June 2018. This system has been shown to be safe in people with type 1 diabetes aged > 7 years [3]. Other manufacturers are developing next generation closed-loop systems including Tandem, Insulet, Tidepool and
What’s new?
- Previous studies have overwhelmingly focused on users’ perspectives and experiences of closed-loop systems.
- This study offers an early and important insight into health professionals’ views about who would benefit from using a closed-loop system, and who should be prioritized for access to the technology in routine clinical care.
- Health professionals may hold prejudicial and erroneous views about the types of individual that would most benefit from using a closed-loop system.
- Health professionals would benefit both from training to overcome these prejudicial assumptions and clinical guidelines to support decision-making about allocating and withdrawing closed-loop systems in routine clinical care.

Diabeloop [1] while people living with diabetes are also developing their own ‘do-it-yourself’ systems [4].

To support successful rollout in routine clinical care, it is vital to understand how people perceive and engage with this technology. To date, studies have overwhelmingly focused on users and/or family members [5–15]. Health professionals’ perspectives have been surprisingly neglected despite their pivotal role as gatekeepers to new diabetes technologies [16]. Indeed, studies have shown that there may be inequitable access to medical devices, such as insulin pumps and CGMs, due to health professionals selecting or filtering potential recipients based on their own preconceptions and clinical judgement [17–19]. As closed-loop systems become more widely available, it is vital that health professionals’ perspectives are explored. This includes any preconceptions they might have about who would be the best candidates for the technology [16] and their views about who should be prioritized for access when the technology comes becomes more widely available in routine clinical care.

To address this important gap, we report findings from an interview study with health professionals involved in the Closed Loop from Onset in type 1 Diabetes (CLOuD) trial. This UK-based multicentre randomized control trial is exploring the benefits of a day-and-night hybrid closed-loop system compared with a multiple daily injection regimen in individuals (aged 10–16 years) newly diagnosed with type 1 diabetes. For details of the closed-loop system used in the first phase of the trial (FlorenceM), see Box 1.

Half the trial recruits were randomized to the closed-loop system with the other half using multiple daily injection, with each treatment lasting 24 months during the trial’s first phase. For further details regarding the CLOuD trial, see Box 2. Key aims of the health professional interview study were to understand and explore their views about what types of individual would gain clinical benefit from using a closed-loop system, and who should be prioritized when closed-loop systems become more widely available within the National Health Service (NHS) and other healthcare settings.

Box 1. The closed-loop system used during the trial
FlorenceM comprised:
- A modified next generation sensor-augmented Medtronic insulin pump 640G (Medtronic Minimed, Northridge, CA, USA) with pump suspend feature.
- A Medtronic CGM Transmitter with Guardian 3 sensor.
- An Android smartphone containing the Cambridge model predictive algorithm with a propriety translator to allow wireless communication with the insulin pump.

Users are required to use a standard bolus calculator to deliver meal boluses, change their pump infusion set every 2–3 days, replace the CGM sensor at least every 6 days and calibrate the sensor as required (typically 2–4 times over a 24-hour period), respond to alarms alerting them to high/low blood glucose, ensure that study devices are charged, and ensure the smartphone is kept in close proximity (5–10 m) to avoid signal loss with the pump/CGM.

Box 2. Details about the CLOuD trial
The CLOuD trial was designed to assess whether closed-loop technology can preserve the function of beta cells in young people who have recently been diagnosed with type 1 diabetes better than standard treatment (multiple daily injection) (see: https://clinicaltrials.gov/ct2/show/NCT02871089).

To be eligible for the trial, individuals had to have received a diagnosis of type 1 diabetes within the previous 21 days, be aged at 10–16.9 years, be willing to perform capillary blood glucose monitoring and take at least four blood glucose measurements each day, wear study equipment (glucose sensor and closed-loop system), and upload pump and CGM data at regular intervals.

Following randomization, participants in the closed-loop group received training sessions to cover key aspects of insulin pump use and CGM, prior to starting closed-loop insulin delivery. Once competent in the use of the study pump and CGM system, participants received training required for safe and effective use of the closed-loop system. During a 2–4 hour session, participants operated the system under the supervision of the clinical team. Competency on their use of the closed-loop system was evaluated. Thereafter, participants were expected to use the closed-loop system for 24 months without supervision or remote monitoring. During the 2 years of the intervention, participants were seen in the clinic at 3-month intervals. All participants continued to be seen by their clinical team at frequencies as appropriate in line with usual clinical practice. All study visits were scheduled in addition to routine visits. All participants were provided with a 24-hour helpline to contact the study team in the event of study-related issues.

The trial was conducted in seven UK-based NHS sites with Diabetes Paediatric Clinics: Addenbrooke’s Hospital, Cambridge; Leeds Children’s Hospital, Leeds; Alder Hey Children’s Hospital, Liverpool; Nottingham Children’s Hospital, Nottingham; Oxford Children’s Hospital, Oxford; Southampton Children’s Hospital, Southampton; and, Royal Hospital for Children and Young People, Edinburgh. All sites were experienced in the use of insulin pumps and CGM devices but their broader experience with closed-loop systems was limited at the time the research was conducted. All site staff delivering the trial were trained on the closed-loop system and its components and completed competency checklists. Most health professionals (except research nurses) who delivered the trial also provided participants with routine clinical care.
Methods

Qualitative methods are recommended when little is known about the area under investigation, as they allow findings to emerge from the data, rather than testing pre-determined hypotheses [20,21]. The study was guided by the general principles of grounded theory research, which advocates a flexible, open-ended approach [22]. One-to-one interviews were undertaken with health professionals using a topic guide, which contained a list of topics to be covered, rather than a set of pre-determined, structured questions. This approach helped to ensure that the discussion remained relevant to addressing the study’s aims while also affording flexibility for interviewees to raise issues they perceived as salient, including those unforeseen at the study outset. The study was guided by an epistemological position, informed by previous work and the literature on the evaluation of complex (health) interventions [23], which recognizes that there may be unanticipated consequences to introducing new diabetes technologies [14,15]. This position partly informed our decision to use topic guides rather than structured interview schedules, to allow (unanticipated) findings to emerge from the data.

Recruitment

Health professionals (physicians, diabetes specialist nurses and research nurses) were recruited from all seven participating trial centres (see Box 2) after they had gained ≥ 6 months’ experience of delivering the trial and supporting individuals using the closed-loop system at their site. Staff were sent written invitations and invited to opt-in, with recruitment materials making it clear that the interviews were being conducted by an independent research team. Recruitment continued until data saturation was reached (i.e. until no new findings were identified in new data collected) and there was good representation of different staff from across all sites.

Data collection and analysis

Interviews were undertaken by B. K., an experienced, non-clinical qualitative researcher, between August 2018 and June 2019. The interview topic guide was informed by literature reviews, inputs from clinical co-investigators and revised in light of emerging findings (based on an initial review of the first five interviews, see Box 3). Key areas explored relevant to the reporting in this article are described in Box 3. Interviews averaged 70 minutes, were digitally audio-recorded and transcribed in full.

To promote rigour, two experienced, non-clinical qualitative researchers (B. K. and J. L.) undertook data analysis. Once all of the interviews had been completed, data were analysed thematically using the method of constant comparison [22]. Individual interviews were read through repeatedly (data immersion) before being cross-compared to identify issues which cut across different accounts (themes). J. L. and B. K. undertook separate analyses and wrote separate reports before meeting (on three occasions) to discuss their interpretations and reach agreement on key themes. As there was striking consistency in staff accounts, there was strong agreement about what the main themes were. A coding frame was developed that captured these five themes: 1) the closed-loop system: less work, but still work, 2) preconceptions about candidacy, 3) revisiting candidacy in light of trial experiences, 4) use of the closed-loop system in routine clinical care, and 5) who should be given priority and clinical guidelines. An additional theme identified during data analysis—unanticipated issues—cut across the other themes; hence it is not presented separately in the data reporting below. The qualitative analysis software package NVivo10 (QSR International, Doncaster, Australia) was used to facilitate data coding and retrieval. Coded datasets were subjected to further analysis to allow more fine-grained interpretations of the data and to identify illustrative quotations.

Ethical approval was granted by the Usher Research Ethics Group, University of Edinburgh (approval date: 8 February 2019). Ethical approval was also granted by the Usher Research Ethics Group, University of Edinburgh (approval date: 8 February 2019).
To safeguard anonymity, unique identifiers are used below (e.g., D refers to a doctor, N refers to a diabetes specialist nurse, and RN refers to a research nurse).

Results

The sample comprised 22 health professionals (seven doctors, nine diabetes specialist nurses and six research nurses). See Table 1 for further details.

We begin by describing interviewees’ perceptions and understandings of the closed-loop system to set the context for understanding their (pre-trial) preconceptions about who would be the best candidates for this technology. We then consider how, and why, their opinions changed as a result of observing individuals using the system in ways they had not expected during the trial. We then explore their opinions about who should be prioritized in routine clinical care and what sorts of guidelines will be needed. As all the main themes cut across the dataset, our reporting has not been separated according to health professionals’ individual characteristics.

Perceptions and understanding of the closed-loop system: less work, but still work

While interviewees perceived the closed-loop system as requiring ‘less brain power moment-to-moment than having to think about it all for yourself’ (N4), they also emphasized that ‘they’re definitely not fit and forget systems. You can’t just say to someone, okay, here’s your pump, here’s your sensor, go away, it does everything for you’ (N5). Indeed, in order to benefit from the system, interviewees noted how essential tasks, which required time and effort, needed to be undertaken:

‘You still need to be doing what the technology needs you to do. You need to be doing the calibrations at the right time and you need to be changing your cannulas frequently.’ (RN3)

Pre-trial notions of candidacy

For the above reasons, interviewees noted how, prior to the trial, they had assumed that some individuals and families would be better placed than others to use the closed-loop system effectively. Specifically, interviewees suggested that young people belonging to close-knit families, where the parents lived together and where they had close and supportive relationships with the young person, would be the best candidates for the technology:

‘Because some parents, because they’re busy, they’ve got other lives, they don’t see it as their problem...[whereas] children and young people who get lots of support and help from families do very well.’ (D1)

Interviewees also emphasized the importance of users having a good understanding of the system and how it worked to ensure it was used safely and effectively:

‘If you don’t really fundamentally understand what the closed-loop [system] does, rather than being just sort of, “yeah it does it all anyway, you don’t need to do very much” then it’s actually quite dangerous to put somebody on a closed-loop [system].’ (D3)

For this reason, interviewees also noted how, prior to the trial, they had assumed that ‘somebody who is well educated, involved in technology and keen to understand would be the best person’ (D3) and, conversely, that individuals would be less likely to be good candidates for the technology if they did not possess these attributes: ‘I know that sounds really harsh, but you have to have a certain academic understanding in order to be able to cope’ (RN5).

Revisiting candidacy in light of trial experiences

Interviewees also emphasized the importance of family involvement to help ensure each young person kept the system on and in range of other devices, was regularly bolusing for meals, and to offer encouragement and practical support if necessary:

‘We really say to the parents, “It is important that you’re there for them, even if they’re at the older end of you know, the 16, 17 [year olds], they’re still not gonna want to have the diabetes, it’s not gonna be at the top of their list of priorities... So it’s important that you’re there to kind of supervise and make sure that they are doing what they need to be doing to stay safe and well.”’ (N8)

Table 1 Participant characteristics

Characteristics	N	%
CLOuD sites (n = 7)		
Total number of interviewees	22	
Interviewees per site – range (mode)	1–5	(4)
Role		
Diabetes consultants	7	32
Diabetes nurses	9	41
Research nurses	6	27
Number of staff with previous closed-loop experience	5	23
Years of diabetes experience		
<5	6	27.3
5–10	5	22.7
>10	11	50.0
judgement and prior (albeit limited) knowledge of the young person and their family. As a consequence, they had been exposed to individuals using the technology who might not have been encouraged to use the system had it been available in routine clinical care.

When they reflected on how their preconceptions had been challenged, interviewees from across the sites highlighted examples where well-educated individuals, including some who had technical or medical knowledge, had over-interacted with the system with a resultant detrimental impact on blood glucose control:

‘We have one patient whose mother comes from a slightly medical background and from the moment the child went on to the closed-loop system, micromanaged. So was constantly looking at it [the closed-loop system] and putting [basal] rates up and pushing rates down and bolusing…When people do go in and fiddle a lot, it takes longer for [the closed-loop system] to learn what the basics need to be, and that causes more problems.’ (D6)

Conversely, some interviewees, including N6, noted how ‘Your ordinary families that you might not consider quite as intelligent, that are just happy to sort of follow the basic rules, are the ones that will actually do better on it…Because they let it [the closed-loop system] get on and do its thing.’ A similar observation was made by RN3, who pointed out that:

‘Often some of the families that people don’t think would understand it so well maybe are the ones that follow [it] better, because if you say, “These are the steps that you need to do for the system to work”, they generally will follow the steps. Whereas I’ve found in general – very, very broadly speaking, those that are a little bit more academically minded, maybe want to fiddle more, which doesn’t necessarily help.’

Others highlighted the difficulties of gauging family dynamics and, hence, determining whether the young person would receive the support needed to use the technology effectively:

‘Sometimes—it sounds terrible—but you expect a certain family to not be able to take to things and maybe might struggle with the technology. And you’re quite shocked that they do really well…I think because you only see a snapshot of a family when they come in…So obviously that’s not the whole picture to what’s going on at home…there’s a lot more love and support…than you can actually see.’ (RN1)

Even when interviewees felt they had gauged the family dynamics and/or individual motivation correctly, some observed how using the technology could act as a tipping point and lead to increased engagement with diabetes self-management: ‘Sometimes you can have ones that are non-compliant, and you give them something like this and they could revert beautifully.’ (RN2)

As a consequence, interviewees concluded that ‘You can’t really judge based on any of the usual factors how well a person is going to do, like sort of social factors, intelligence and all of those things.’ (N6)

Views about the use of closed-loop systems in routine clinical care

Given the difficulties of predicting who would make effective use of the closed-loop system, interviewees conveyed a very strong and consistent view that, in routine clinical care, potential recipients should not be selected or filtered out on the basis of their own clinical judgement: ‘Everybody would deserve it. You know, give them a chance with it.’ (N2).

However, given the insights gained from working on the trial, interviewees also recommended that there should be a probationary period with clear rules in place for taking the system away from those who neglect key tasks and, hence, do not gain better (and possibly have poorer) glycaemic control than they would from using less costly (e.g. multiple daily injection) regimens.

‘But obviously if they’re not using it effectively then it’s not a cost-effective way of delivering the insulin…So then you’d have to have those conversations then with them, and say, you know, give them a chance to turn it round. And if they don’t, then pull it.’ (N2)

In light of their experiences of observing participants using a closed-loop system for durations of ≥ 2 years, some interviewees also highlighted the need for a longer term review to ensure that individuals continued to use the technology safely and effectively: ‘It should be offered on a trial basis and it should be reviewed and, I don’t know, yearly for 4 years or whatever’ (D3). This, as some noted, was because an unanticipated consequence of using the closed-loop system was that it could lead to self-management tasks, such as bolusing for meals, being relaxed over time:

‘It’s kind of a two-edged sword really, because in one way that does keep them safer, but if they realize that actually, you know, it’s fine even if I don’t give a bolus after I’ve eaten something or I can get away with snacking and my blood sugar will still usually be alright in the end…then, you know, they can get quite blasé.’ (D1)

Staff views about who should be given priority and the need for clinical guidelines

Interviewees described recognizing that within a financially constrained setting such as the NHS, difficult decisions would need to be made about who should be prioritized for a closed-loop system and that clinical guidelines would be essential: ‘It’s just so limiting giving priority, because everyone should have it. But then when you go and speak to the money people you have to give priority’ (D4); ‘We are
juggling with budgets, and it’s not the NHS’s fault that they can’t provide all these things for people’ (N6).

However, when asked what types of individuals should be prioritized, many were reluctant to be drawn on this issue: ‘Oh that’s a horrible question’ (N3); ‘I don’t want to be involved in decisions about it’ (D5). For some, teenagers were considered a priority group. This was not only because ‘You’ve got hormones kicking in and the insulin requirements change all the time’ (N9), but also because of the social factors that make diabetes particularly burdensome:

‘I do think that age group that we’ve targeted for the study is a good age group to have it, because they often struggle the most with kind of coming to terms with it [diabetes] and having to do the injections and all the testing.’ (N9)

Indeed, it was noted that, even if diabetes was neglected in this age group, individuals could still gain greater glycaemic benefit from using a closed-loop system than another regimen because ‘It does probably keep them safer...If they’ve missed a bolus even, if they haven’t done what they’re supposed to do, the closed-loop [system] does react and corrects and gives more insulin.’ (N9).

Most, however, emphasized that young children and infants should be prioritized because of the unpredictability of eating in this age group, the tiny and variable amounts of insulin required and, crucially, because these individuals would have diabetes for the longest and, hence, would benefit most from the glycaemic control offered by the closed-loop system:

‘Everything about being a toddler: the blood glucose control, the erratic nature of it, the fact that you can’t, you know, issue instructions to a 2-year-old to eat their dinner after you’ve injected insulin, and so on and so forth.’ (N6)

Some, however, also noted that, to be a viable option in this age group, an adapted system would be needed, with the algorithm integrated into the pump or another easy to transport device, such as a smart watch.

Among adults, interviewees generally saw the priority groups as being those already meeting clinical (e.g. National Institute of Clinical Excellence) criteria for insulin pump therapy. As well as pregnant women these included:

‘People whose hypos are a problem, they’ve got some quite good set criteria around that, so I think that’ll be the first group that gets it. And then I think if I had to give another group on top of that, it would be those that have more erratic control, really difficult to manage diabetes.’ (N4)

However, some conveyed very ambivalent views about current pump criteria being extended to closed-loop systems, given the life-changing potential of the technology and its ability to offer better glycaemic control in all groups: ‘If [someone] is looking after their diabetes very well, why should they be penalized because they’re doing a good job?’ (D2)

Discussion

This study offers early and important insight into health professionals’ perceptions of, and views regarding, the types of individual who would be likely to gain greatest clinical benefit from using a closed-loop system. For the benefits of the closed-loop system to be fully realized, interviewees noted that essential tasks, which required time and effort, needed to be undertaken and, hence, not every individual would use the technology optimally. For this reason, interviewees also described how, in advance of the trial, they held strong assumptions about the types of individuals (and families) who would have the motivation and ability to use the technology effectively. Such views, as interviewees further noted, were challenged by observing individuals using the technology in ways they had not anticipated. Interviewees thus concluded that individual, family and psychological attributes (e.g. motivation) cannot be used to predict how people will engage with the technology. Hence, they suggested that, ideally, all individuals should be given a chance to try a closed-loop system. However, it was also recognized that clinical guidelines would be needed to inform potentially difficult decisions about who should be prioritized in settings such as the NHS, where budgetary constraints may limit access to new diabetes technologies [24,25].

In keeping with others’ concerns [16], our findings suggest there is a danger that, in routine clinical situations, health professionals’ attitudes and biases could result in some individuals who might benefit from closed-loop technology not being given the opportunity to use it. Informal rationing of diabetes technologies has already been reported by others [17,18]. In an interview study with health professionals involved in insulin pump referrals, it was found that these individuals exercised personal judgments about whether potential users possessed the psychological and technological attributes needed to use pump technology effectively. It was only after these health professionals were involved in a clinical trial (comparing pumps with multiple daily injection regimens [26]) that they were forced out of this state of clinical inertia [17], by virtue of observing individuals benefiting from an insulin pump who would not have been moved onto this technology in routine clinical care [17]. Like the health professionals involved in the insulin pump trial, health professionals in the current study also appeared to change their perceptions of candidacy as a result of being exposed to individuals who might not have been encouraged to use the technology had it been available in routine clinical care. Hence, to ensure fair and equitable access to closed-loop systems, it is vital that health professionals are encouraged...
to explore any prejudicial assumptions they may have, and given support to overcome them. To this end, case studies of individuals benefitting from the technology who do not conform to health professionals’ preconceptions could be used as a part of their training.

While health professionals supported mainstreaming the technology, they recognized that difficult decisions would need to be made about who should actually have access to it. To this end, most emphasized the need for clear guidelines to be made available in a timely manner. Most also indicated being broadly supportive of current eligibility criteria for insulin pump referrals [27] being extended to closed-loop technology. In addition, interviewees emphasized the need for clear guidance to be put in place for removing closed-loop systems from those who do not use them in clinically and cost-effective ways. This, as interviewees noted, potentially included individuals who initially use the technology effectively, but whose engagement and behaviour might change over time. Indeed, in keeping with users’ accounts [14], interviewees noted how the system’s ability to partly compensate for behaviour lapses, such as missed boluses, might lead to increased neglect of self-management tasks over time. These findings suggest that regular, ongoing reviews of individuals using closed-loop systems will be essential, in line with recommendations for those using other diabetes technologies [25]. Even if clear guidance is put in place for when to remove a closed-loop system, this may still be a very challenging task [28], and effective team working may be vital [29].

In taking our findings and recommendations forward, it needs to be considered that the health professionals were involved in a clinical trial and, hence, may already have been technology enthusiasm. In addition, most specialized in paediatric diabetes care; this might partly explain why they were keen for younger age groups to be prioritized for access to the technology. It should also be noted that the young people involved in the trial were newly diagnosed and this might affect the study’s generalizability. However, this did also mean that health professionals did not have extensive knowledge of those individuals and their family dynamics prior to the trial, which might have deterred them from recruiting individuals who did not meet their (pre-trial) assumptions about candidacy. Future research could consider the perspectives of health professionals working in adult diabetes care and in settings where healthcare is privatized, and hence, potentially different barriers to accessing the technology may exist [18,30]. Health professionals’ views about providing access to different and newer iterations of closed-loop technology could also be considered.

The closed-loop system used during the trial was a prototype. Hence, it is likely that some of the barriers to its use highlighted by interviewees and reported by users [7,8,13] will be ameliorated by future developments in the technology. This includes the introduction of calibration-free CGM sensors, the use of patch pumps with integrated algorithms, the integration of the algorithm onto a smartphone or smartwatch, and improvements in user experience to minimize unnecessary alerts and device burden [1,2]. Hence, in the future, it is likely that increasing numbers of individuals will want and benefit from this technology, resulting in even more difficult decisions having to be made about who should have access to it.

Acknowledgements

The authors would like to thank the staff who kindly took part in this study. The views expressed in this publication are those of the authors and not those of the MRC, NIHR, the Department of Health and Social Care or other funding bodies.

Funding sources

The work was funded by the Efficiency and Mechanism Evaluation Programme National Institute for Health Research (14/23/09), National Institute for Health Research Cambridge Biomedical Research Centre, JDRF, The Leona M. and Harry B. Helmsley Charitable Trust (#2016PG-T1D046), and Wellcome Trust Strategic Award (100574/Z/12/Z).

Competing interests

R. H. reports having received speaker honoraria from Eli Lilly and Novo Nordisk, serving on advisory panels for Eli Lilly and Novo Nordisk, receiving licence fees from BBraun and Medtronic, and reports patent patents and patent applications. T. R. reports having received speaker honoraria from Novo Nordisk and consultancy fees from Abbott Diabetes Care. F. C. reports having received travel expenses and honorarium to attend the Advisory Boards of Medtronic, Dexcom, Ypsomed and Eli Lilly. R. E. J. B. reports having received speaker honoraria from Eli Lilly and Springer Healthcare. J. L., B. K., D. R., J. M. A., N. L. A., L. V., N. T. and C. K. B. have no conflicts to report.

References

1 Lal RA, Ekhlaspour J, Hood K, Buckingham B. Realizing a closed-loop (artificial pancreas) system for the treatment of type 1 diabetes. Endocr Rev 2019; 40: 1521–1546.
2 Kowalski A. Pathway to artificial pancreas systems revisited: moving downstream. Diabetes Care 2015; 38: 1036–1043.
3 Saunders A, Messer LH, Forlenza GP. MiniMed 670G hybrid closed loop artificial pancreas system for the treatment of type 1 diabetes mellitus: overview of its safety and efficacy. Expert Rev Med Devic 2019; 16: 845–853.
4 Lewis D. History and perspective on DIY closed looping. J Diabetes Sci Technol 2015; 13: 790–793.
5 Krooff J, De Jong J, Del Favero S, Place J, Messori M, Coestier B et al. Psychological outcomes of evening and night closed-loop
insulin delivery under free living conditions in people with Type 1 diabetes: a 2-month randomized crossover trial. *Diabet Med* 2017; 34: 262–271.

6 Hendrieckx C, Poole LA, Sharifi A, Jayawardene D, Loh MM, Horsburgh JC *et al.* “It is definitely a game changer”: a qualitative study of experiences with in-home overnight closed-loop technology among adults with type 1 diabetes. *Diabetes Technol Ther* 2017; 19: 410–416.

7 Barnard KD, Wysocki T, Allen JM, Elleri D, Thabit H, Leelarathna L *et al.* Closing the loop overnight at home setting: psychosocial impact for adolescents with type 1 diabetes and their parents. *BMJ Open Diabetes Res Care* 2014; 2: e000025.

8 Barnard K, Wysocki T, Thabit H, Evans ML, Amiel S, Heller S *et al.* Psychosocial aspects of closed-and open-loop insulin delivery: closing the loop in adults with Type 1 diabetes in the home setting. *Diabet Med* 2015; 32: 601–608.

9 Young AJ, Thabit H, Heller SR, Evans ML, Amiel SA, Hovorka R *et al.* Holistic impact of closed-loop technology on people with type 1 diabetes. *J Diabetes Sci Technol* 2015; 9: 932–933.

10 Farrington C, Stewart Z, Barnard K, Hovorka R, Murphy HR. Experiences of closed-loop insulin delivery among pregnant women with type 1 diabetes. *Diabet Med* 2017; 34: 1461–1469.

11 Iturralde E, Tanenbaum ML, Hanes SJ, Suttiratana SC, Ambrosino JM, Ly TT *et al.* Expectations and attitudes of individuals with type 1 diabetes after using a hybrid closed-loop system. *Diabetes Educ* 2017; 43: 223–231.

12 Tanenbaum ML, Iturralde E, Hanes SJ, Suttiratana SC, Ambrosino JM, Ly TT *et al.* Trust in hybrid closed-loop among people with diabetes: perspectives of experienced system users. *J Health Psychol* 2017; 1359105317781615.

13 Barnard KD, Wysocki T, Ully V, Mader JK, Pieber TR, Thabit H *et al.* Closing the loop in adults, children and adolescents with suboptimally controlled type 1 diabetes under free living conditions: a psychosocial substudy. *J Diabetes Sci Technol* 2017; 11: 1080–1088.

14 Lawton J, Blackburn M, Allen J, Campbell F, Elleri D, Leelarathna L *et al.* The impact of using a closed-loop system on food choices and eating practices amongst people with type 1 diabetes: a qualitative study involving adults, teenagers and parents. *Diabet Med* 2019; 36: 753–760.

15 Lawton J, Blackburn M, Allen J, Campbell F, Elleri D, Leelarathna L *et al.* Participants’ experiences of, and views about, daytime use of a hybrid closed-loop system in real life settings: longitudinal qualitative study. *Diabetes Technol Ther* 2019; 21: 119–127.

16 Farrington C. Access to diabetes technology: the role of clinician attitudes. *Lancet Diabetes Endo* 2018; 6: 15.

17 Lawton J, Kirkham J, Rankin D, White DA, Elliott J, Jaap A *et al.* Who gains clinical benefit from using insulin pump therapy? A qualitative study of the perceptions and views of health professionals involved in the REPOSE (Relative Effectiveness of Pumps over MDI and Structured Education) Trial. *Diabet Med* 2016; 33: 243–251.

18 James S, Perry L, Gallagher R, Lowe J. Diabetes educators: perceived experiences, supports and barriers to use of common diabetes-related technologies. *J Diabetes Sci Technol* 2016; 10: 1115–1121.

19 Tanenbaum ML, Adams RN, Hanes SJ, Bailey RC, Miller KM, Mulvaney SA *et al.* Optimal use of diabetes devices: clinician perspectives on barriers and adherence to device use. *J Diabetes Sci Technol* 2017; 11: 484–492.

20 Britten N, Jones R, Murphy E, Stacy R. Qualitative research methods in general practice and primary care. *Fam Pract* 1995; 12: 104–114.

21 Pope C, Mays N. Reaching the parts other methods cannot reach: an introduction to qualitative methods in health and health services research. *Brit Med J* 1995; 311: 42.

22 Strauss A, Corbin JM. *Basics of qualitative research: Grounded theory procedures and techniques*. London, UK: Sage Publications, 1990.

23 Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W *et al.* Process evaluation of complex interventions: Medical Research Council guidance. *Brit Med J* 2015; 350: h1258.

24 Raj S, Chakera A. Sensor-augmented pump therapy; review of new NICE diagnostic guidance. *Pract Diabetes* 2016; 33: 47–48a.

25 Choudhary P, Campbell F, Joule N, Kar P, Diabetes UK. A type 1 diabetes technology pathway: consensus statement for the use of technology in type 1 diabetes. *Diabet Med* 2019; 36: 531–538.

26 White D, Waugh N, Elliott J, Lawton J, Barnard K, Campbell MJ *et al.* The Relative Effectiveness of Pumps Over MDI and Structured Education (REPOSE): study protocol for a cluster randomised controlled trial. *BMJ Open* 2014; 4: e006204.

27 National Institute for Health and Care Excellence. Continuous subcutaneous insulin infusion for the treatment of diabetes mellitus. NICE technology appraisal guidance 151. July 2008, updated December 2014.

28 Lawton J, Blackburn M, Rankin D, Werner C, Farrington C, Hovorka R *et al.* Broadening the debate about post-trial access to medical interventions: a qualitative study of participant experiences at the end of a trial investigating a medical device to support type 1 diabetes self-management. *AJOB Empir Bioseth* 2010; 10: 100–112.

29 Lawton J, White D, Rankin D, Elliott J, Taylor C, Cooper C *et al.* Staff experiences of closing out a clinical trial involving withdrawal of treatment: qualitative study. *Trials* 2017; 18: 61.

30 Perry L, James S, Gallagher R, Dunabin J, Steinbeck K, Lowe J. Supporting patients with type 1 diabetes using continuous subcutaneous insulin infusion therapy: Difficulties, disconnections, and disarray. *J Eval Clin Pract* 2017; 23: 719–724.