A phase transition for the probability of being a maximum among random vectors with general iid coordinates

Roi Jacobovic* and Or Zuk

Dept. of Statistics and Data Science, the Hebrew University of Jerusalem

February 20, 2023

Abstract

Consider n iid real-valued random vectors of size k having iid coordinates with a general distribution function F. A vector is a maximum if and only if there is no other vector in the sample that weakly dominates it in all coordinates. Let $p_{k,n}$ be the probability that the first vector is a maximum. The main result of the present paper is that if $k \equiv k_n$ grows at a slower (faster) rate than a certain factor of $\log(n)$, then $p_{k,n} \to 0$ (resp. $p_{k,n} \to 1$) as $n \to \infty$. Furthermore, the factor is fully characterized as a functional of F. We also study the effect of F on $p_{k,n}$, showing that while $p_{k,n}$ may be highly affected by the choice of F, the phase transition is the same for all distribution functions up to a constant factor.

1 Introduction

Consider a model with a sample of n iid random vectors of size k. It is assumed that the coordinates are iid real-valued random variables having a general distribution function F. A vector is said to be a (strong) maximum if and only if (iff) there is no other vector in the sample that (weakly) dominates it in all coordinates. Let $p_{k,n}$ be the probability that the first vector is a maximum. Once k (resp. n) is fixed, then $p_{k,n} \to 0$ (resp.

*This author was supported by the GIF Grant 1489-304.6/2019.
\(p_{k,n} \to 1 \) as \(n \to \infty \) (resp. \(k \to \infty \)). The main contribution of the present work is a generalization of this straightforward observation by allowing \(k \) to be determined as a function of \(n \). Namely, we will show that if \(k \equiv k_n \) grows at a slower (resp. faster) rate than \(\gamma \log(n) \), then \(p_{k,n} \to 0 \) (resp. \(p_{k,n} \to 1 \)) as \(n \to \infty \), where \(\gamma \in (0,1] \) is a certain constant that depends on the distribution \(F \). The derivation of this result uses extreme value theory, and in particular relies on a result of Ferguson [1] about the asymptotic behaviour of a maximum of an iid sequence of geometric random variables.

The asymptotic behaviour of \(p_{k,n} \) has an important role in many applications. For example, in the analysis of linear programming [2] and of maxima-finding algorithms [3–7]. Furthermore, it is also related to game theory [8] and the analysis of random forest algorithms [9,10]. This literature focuses mainly on asymptotic results once \(F \) is a continuous function, \(k \) is fixed and \(n \) tends to infinity [8, 11–16]. Both [8] and [14] contain an approximation of the expected number of maxima. In addition, an approximation of the variance of the number of maxima is given in [11] and asymptotic normality of this number was proved in [12].

To the best of our knowledge, the only paper that includes asymptotic results as \(n \to \infty \) and \(k \) is determined as a function of \(n \) is [16]. In the last equation of Section 1.1 of [16] there is a first order approximation of \(p_{k,n} \). This approximation holds uniformly for all possible forms of variations of \(k \) as a function of \(n \), as \(n \to \infty \). In particular, it yields existence of a non-trivial phase-transition at \(k \approx \log(n) \) which is consistent with our findings. While [16] refers only to a continuous \(F \), the current results hold for a general \(F \).

The rest is organized as follows: Section 2 contains a precise description of the model with a statement of the main result. In particular, the functional \(\gamma \) of \(F \) that determines the localization of the phase transition is presented (with the proof deferred to Section 4). Section 3 is devoted to exploring the effect of the distribution \(F \) on the probability \(p_{k,n} \), with two important special cases: Section 3.1 is about the continuous case and includes a detailed discussion of the relation between the current results and the approximation that appears in [16]. Section 3.2 is about a simple example in which the coordinates have a Bernoulli distribution. This example illustrates two points:

1. While \(p_{k,n} \) is the same for every continuous \(F \), once the continuity assumption is relaxed changing the distribution \(F \) can change drastically the first-order asymptotic behaviour of \(p_{k,n} \) for fixed \(k \) as \(n \to \infty \). In contrast, when both \(k, n \to \infty \), the phase-transition for \(p_{k,n} \) is the same up to a multiplicative factor \(\gamma \) for all distribution
functions \(F \).

2. Even for a special case in which there is a simple exact combinatorial formula for \(p_{k,n} \), it is unclear how to utilize this formula in order to derive the main result directly.

2 Model description and the main result

In the sequel, for every set \(A \) and a potential element \(a \), denote the corresponding indicator function \(1_A(a) \equiv \begin{cases} 1, & a \in A, \\ 0, & a \notin A. \end{cases} \) (1)

In addition, in several places of this manuscript we denote the minimum (resp. maximum) of some real numbers \(x_1, x_2, \ldots, x_n \) by \(\wedge_i x_i \equiv \min_i x_i \) (resp. \(\vee_i x_i \equiv \max_i x_i \)). In particular, when \(n = 2 \), then we simply write \(x_1 \wedge x_2 \) (resp. \(x_1 \vee x_2 \)).

2.1 Multivariate maximum

The following is a common definition of a maximum of a set of vectors in \(\mathbb{R}^k \). It is based on the product order \(\preceq \) on \(\mathbb{R}^k \), i.e., for every two vectors \(a, b \in \mathbb{R}^k \) such that \(a = (a_1, a_2, \ldots, a_k) \) and \(b = (b_1, b_2, \ldots, b_k) \) define

\[
a \preceq b \iff (a_i \leq b_i, \forall 1 \leq i \leq k). \tag{2}
\]

Similarly, define

\[
a \prec b \iff (a \preceq b \text{ and } \exists i \in [k] \text{ s.t. } a_i < b_i). \tag{3}
\]

Definition 1 Let \(x_1, x_2, \ldots, x_n \) be \(n \) vectors in \(\mathbb{R}^k \). In addition, let \(\preceq \) be the product order on \(\mathbb{R}^k \). Then, for each \(1 \leq i \leq n \), \(x_i \) is a maximum with respect to \(x_1, x_2, \ldots, x_n \) iff there is no \(j \neq i \) such that \(x_i \preceq x_j \). In addition, the set of maxima with respect to \(x_1, x_2, \ldots, x_n \) is called the Pareto-front generated by \(x_1, x_2, \ldots, x_n \).

Remark 1 Definition 1 refers to a strong maximum. To see this, consider the special case in which \(k = 1, n \geq 2 \) and \(x_1 = x_2 = \ldots = x_n \). In this case, \(x_1, x_2, \ldots, x_n \) are all maxima in the usual sense but none of them is a maximum in the sense of Definition 1.

Remark 2 It is possible to have multiple maxima in the sense of Definition 1. For instance, assume that \(n = k = 2 \) and consider the case in which \(x_1 = (1, 0) \) and \(x_2 = (0, 1) \).
Remark 3 It is natural to introduce another notion of multivariate maximum: x_i is a *weak* maximum with respect to x_1, x_2, \ldots, x_n iff there is no $j \neq i$ such that $x_i \prec x_j$. Correspondingly, the set of weak maxima with respect to x_1, x_2, \ldots, x_n is called the weak Pareto-front generated by x_1, x_2, \ldots, x_n. Later, in Section 3.2 we discuss this notion once the coordinates have a Bernoulli distribution.

2.2 Problem description

Let $\{X_{ij}; i, j \geq 1\}$ be an infinite array of iid real-valued random variables having a distribution function F. For every $i, k \geq 1$ denote $X_{ik}^k \equiv (X_{i1}, \ldots, X_{ik})$ and for every $k, n \geq 1$, let $\mathcal{P}_{k,n} \subset \{1, 2, \ldots, n\}$ be the random set of indices of all vectors that belong to the Pareto-front generated by the random vectors $X_{1}^k, X_{2}^k, \ldots, X_{n}^k$. Also, for every event B, denote the complement by \overline{B}. Then, observe that $1_{\mathcal{P}_{k,n}}(1)$ is equal to one iff the event

$$A_{k,n} \equiv \bigcap_{j=2}^{n} \{X_{i1}^k \preceq X_{ij}^k\}$$

occurs. Moreover, note that for every sequence $(k_n)_{n \geq 1}$ of positive integers, $1_{\mathcal{P}_{k,n}}(1) \xrightarrow{n \to \infty} 1$ (resp. $1_{\mathcal{P}_{k,n}}(1) \xrightarrow{n \to \infty} 0$) P-a.s. iff

$$P\left(\liminf_{n \to \infty} A_{k,n,n} \right) = 1$$

(resp. $P\left(\limsup_{n \to \infty} A_{k,n,n} \right) = 0$).

An initial observation is that:

1. For every fixed $k \geq 1$, $1_{\mathcal{P}_{k,n}}(1) \xrightarrow{n \to \infty} 1$, P-a.s.
2. For every fixed $n \geq 1$, $1_{\mathcal{P}_{k,n}}(1) \xrightarrow{k \to \infty} 1$, P-a.s.

The main question is how to generalize this observation by characterizing the asymptotic behaviour of $1_{\mathcal{P}_{k,n,n}}(1)$ as $n \to \infty$ for a general sequence $(k_n)_{n=1}^{\infty}$?

2.3 Main result

Let X be a random variable with a cumulative distribution function F. Define the function $S : \mathbb{R} \to [0, 1]$ as $S(x) \equiv P(X \geq x)$. When F is continuous, S is the corresponding survival function. Next, define

$$\gamma \equiv \gamma_F \equiv -E \log [S(X)].$$

The following theorem is the main result. Its proof is given in Section 4.

Theorem 1 Let k_1, k_2, \ldots be a sequence of positive integers
(a) If
\[\liminf_{n \to \infty} \frac{k_n}{\log(n)} > \gamma^{-1}, \]
then
\[I_{p_{k,n}}(1) \xrightarrow{n \to \infty} 1, \text{P-a.s.} \] (8)

(b) If
\[\limsup_{n \to \infty} \frac{k_n}{\log(n)} < \gamma^{-1}, \]
then
\[I_{p_{k,n}}(1) \xrightarrow{n \to \infty} 0, \text{P-a.s.} \] (10)

For every \(k, n \geq 1 \), denote
\[p_{k,n} \equiv P(A_{k,n}) = E[1_{p_{k,n}}(1)]. \] (11)

Then, an application of bounded convergence theorem yields the following corollary.

Corollary 1 Let \(k_1, k_2, \ldots \) be a sequence of positive integers.

(a') \[\liminf_{n \to \infty} \frac{k_n}{\log(n)} > \gamma^{-1} \Rightarrow \lim_{n \to \infty} p_{k,n} = 1. \] (12)

(b') \[\limsup_{n \to \infty} \frac{k_n}{\log(n)} < \gamma^{-1} \Rightarrow \lim_{n \to \infty} p_{k,n} = 0. \] (13)

2.4 The factor \(\gamma \)

Define
\[S^{-1}(y) \equiv \inf \{ x \in \mathbb{R}; S(x) \leq y \} , \ y \in (0,1). \] (14)

Since \(S \) is a nonincreasing leftcontinuous function, \(S[S^{-1}(y)] \leq y \) for every \(y \in (0,1) \). By definition, \(-\log[S(X)] \geq 0 \) and hence is well-defined and nonnegative. Furthermore, the usual formula for an expectation of a nonnegative random variable yields that
\[\gamma = \int_0^\infty P[-\log[S(X)] > t] \, dt \] (15)
\[= \int_0^\infty P[S(X) < e^{-t}] \, dt \]
\[= \int_0^\infty P[X > S^{-1}(e^{-t})] \, dt \]
\[= \int_0^\infty S[S^{-1}(e^{-t})] \, dt \]
\[\leq \int_0^\infty e^{-t} \, dt = 1. \]
When \(F \) is continuous, the last inequality above holds with equality and \(\gamma = 1 \). Moreover, \(\gamma = 0 \) if and only if \(S \equiv 1 \), which means that \(X \) is infinite. Thus, the assumption that \(X \) is real-valued implies that \(\gamma \in (0, 1] \).

For example, when the coordinates have a Bernoulli(\(p \)) distribution for some \(p \in (0, 1) \),

\[
S(x) = \begin{cases}
1, & x \leq 0, \\
p, & 0 < x \leq 1, \\
0, & 1 < x.
\end{cases}
\]

Therefore,

\[
\gamma = -p \log(S(1)) - (1 - p) \log(S(0)) = -p \log(p)
\]

and hence \(\gamma = e^{-1} \approx 0.368 \) is the maximal value of \(\gamma \) for the Bernoulli case, obtained at \(p = e^{-1} \).

3 The effect of the distribution \(F \)

In this section we study the effect of the distribution \(F \) of the individual variables \(X_{ij} \), on the distribution of the number of maxima. We specify the dependence on \(F \) explicitly, denoting \(P^{(F)}_{k,n} \) the (random) maximal set and \(p^{(F)}_{k,n} \) the probability of being a maxima when \(X_{ij} \sim F \). Similarly, we denote by \(Q^{(F)}_{k,n} \) the weak Pareto-front generated by \(X^k_1, \ldots, X^k_n \) (see Remark 3), and define

\[
q^{(F)}_{k,n} = P\left(1 \in Q^{(F)}_{k,n}\right) = E_{Q^{(F)}_{k,n}}(1).
\]

By definition \(X^k_j > X^k_i \Rightarrow X^k_j \succ X^k_i \), hence \(P^{(F)}_{k,n} \subseteq Q^{(F)}_{k,n} \) and \(p^{(F)}_{k,n} \leq q^{(F)}_{k,n} \).

In particular, when \(F \) is continuous, \(P^{(F)}_{k,n} = Q^{(F)}_{k,n} \), \(P \)-a.s., hence \(p^{(F)}_{k,n} = q^{(F)}_{k,n} \). Moreover, let \(U(\cdot) \) be the uniform distribution function on \([0, 1] \) and observe that every continuous \(F \) satisfies the relation

\[
p^{(U)}_{k,n} = p^{(F)}_{k,n} = q^{(F)}_{k,n} = q^{(U)}_{k,n}.
\]

Proposition 1 below shows that the continuous and the Bernoulli distributions are extreme cases, in the sense that for every distribution \(F \), the probability of being a (strong) maxima lies between them. To shorten notation, for every \(p \in (0, 1) \), let \(p^{(p)}_{k,n} \) be the probability of being a maximum once the coordinates have a Bernoulli(\(p \)) distribution.

Proposition 1 Let \(F \) be a general distribution function. Then,

1. \(p^{(F)}_{k,n} \leq p^{(U)}_{k,n} \).
2. \(p^{(p)}_{k,n} \leq p^{(F)}_{k,n} \) for every \(p \in \{1 - F(x); x \in \mathbb{R}\} \).

Proof:
1. The random variables $X_{ij} \sim F$ can be realized by taking uniform random variables $U_{ij} \sim U$, and then taking the transformation $X_{ij} = F^{-1}(U_{ij})$, where F^{-1} is the pseudo-inverse of F. Thus, since F^{-1} is nondecreasing we have $U_{ij} \geq U_{ik} \Rightarrow X_{ij} \geq X_{ik}$ and hence $X_{ik} \in \mathcal{P}_{k,n} \Rightarrow U_{ik} \in \mathcal{P}_{k,n}$. Therefore, $\mathcal{P}_{k,n} \subseteq \mathcal{P}_{k,n}$ and hence $p_{k,n} \leq p_{k,n}$.

2. Take x with $p = 1 - F(x)$ and define $B_{ij} = 1 \{X_{ij} > x\}$. Since B_{ij} is a nondecreasing transformation of X_{ij}, then $B_{ij} \in \mathcal{P}_{k,n} \Rightarrow X_{ij} \in \mathcal{P}_{k,n}$. As a result, $\mathcal{P}_{k,n} \subseteq \mathcal{P}_{k,n}$ and hence $p_{k,n} \leq p_{k,n}$.

Remark 4 While $p_{k,n} \leq p_{k,n}$ for any F (i.e. discretization may only reduce the probability of being a strong maximum), there is no general ordering that always holds between $q_{k,n}^{(F)}$ and $q_{k,n}^{(U)}$. This is demonstrated numerically for the Bernoulli distribution in Section 3.3.

Since the values $p_{k,n}^{(F)}$ for every distribution F of the X_{ij}'s can be bounded by the values for the continuous and Bernoulli case, we compare these two cases to study the effect of quantization on the probability of a random vector being a maximum.

3.1 Continuous distribution

For every $k, n \geq 1$, there are well-known exact formulas for $p_{k,n}^{(U)}$ (see e.g. [12]):

1.
 $$p_{k,n}^{(U)} = \sum_{u=1}^{n} \left(\frac{n-1}{u-1} \right) \frac{(-1)^{u-1}}{u^k}. \tag{20}$$

2.
 $$p_{k,n}^{(U)} = \begin{cases} \frac{1}{n} \sum_{u=1}^{n} p_{k-1,u}^{(U)}, & k > 1, \\ \frac{1}{n}, & k = 1, \end{cases} \tag{21}$$

and hence, for every $k > 1$ one has

$$p_{k,n}^{(U)} = \frac{1}{n} \sum_{u \in \mathcal{U}_{k,n}} \frac{1}{u_1 u_2 \ldots u_{k-1}} \tag{22}$$

where

$$\mathcal{U}_{k,n} = \left\{ u = (u_1, \ldots, u_{k-1}) \in \mathbb{Z}^{k-1}, \ 1 \leq u_1 \leq u_2 \leq \ldots \leq u_{k-1} \leq n \right\}. \tag{23}$$

Furthermore, it is well known (see, e.g., [14]) that for every fixed k,

$$p_{k,n}^{(U)} \sim \frac{\log^{k-1}(n)}{n(k-1)!} \text{ as } n \to \infty. \tag{24}$$
For a fixed k, other asymptotic results regarding the size of the Pareto-front as $n \to \infty$ include asymptotic formulas for the variance \cite{11} and a corresponding central limit theorem \cite{12}.

Hwang \cite{16} applied analytic techniques (see, \cite{17}, \cite{18}) to these identities in order to derive an approximation of $p^{(U)}_{k,n}$ as $n \to \infty$ and k is determined as a function of n. Specifically, let $\Phi(\cdot)$ be the cumulative distribution function of a standard normal random variable, and let $\Gamma(\cdot)$ be the Gamma function. Then, the first order approximation which appears in \cite{16} is

$$p^{(U)}_{k,n} \sim \begin{cases} \log \frac{k-1}{n(k-1)!} \Gamma \left(1 - \frac{k}{\log(n)} \right), & \log(n) - k \gg \sqrt{\log(n)}, \\ \Phi \left(\frac{k - \log(n)}{\sqrt{\log(n)}} \right), & |k - \log(n)| = o \left(\frac{k^2}{n} \right), \\ 1, & \sqrt{\log(n)} \ll k - \log(n), \end{cases}$$

(25)

and it holds uniformly for all variations of k as $n \to \infty$. Since $\gamma = 1$ for every continuous F, it may be verified that \cite{25} implies Corollary \cite{1} However, since convergence in P does not imply convergence P-a.s., it is not straightforward to deduce Theorem \cite{1} from \cite{25}, even for the continuous case. In fact, Hwang \cite{16} put forth the question of whether exists a probabilistic explanation for the phase-transition at $k \approx \log(n)$? Theorem \cite{1} yields some probabilistic explanation for this phenomenon, although it does not supply a probabilistic proof of \cite{25}.

3.2 Bernoulli distribution

In this part, we present an example of a distribution function F for which it is possible to derive an explicit combinatorial expression of $p_{k,n}$. As to be shown, even when such an expression is available, still it is unclear how Theorem \cite{1} may be deduced from it (for this special case). Furthermore, this example demonstrates the possible differences between the model with a continuous F versus discontinuous F.

Let $X_{ij} \sim \text{Bernoulli}(p)$ for some $p \in (0, 1)$. Let $B_1 = \sum_{j=1}^k X_{1j} \sim \text{Binom}(k, p)$ and without loss of generality assume that $X_{1j} = 1$ for every $1 \leq j \leq B_1$ and $X_{1j} = 0$ for every $B_1 + 1 \leq j \leq k$. By the law of total
probability applied to B_1,

$$p_{k,n}^{(p)} = \sum_{i=0}^{k} \binom{k}{i} p^i (1-p)^{k-i} \left[P(X_1^k \not\subseteq X_2^k | B_1 = i) \right]^{n-1}$$
$$= \sum_{i=0}^{k} \binom{k}{i} p^i (1-p)^{k-i} \left[1 - P \left(\bigwedge_{j=1}^{k} X_{2j} = 1 \right) \right]^{n-1}$$
$$= \sum_{i=0}^{k} \binom{k}{i} p^i (1-p)^{k-i} \left(1 - p \right)^{n-1}. \quad (26)$$

where in the last equation above, when $i = 0, n = 1$ the last term $(1-p)^{n-1} = 0^0$ is defined to be 1. The asymptotic behaviour of $p_{k,n}^{(p)}$ for fixed k and $n \to \infty$ follows directly from (26). Since $(1-p)^{n-1} = o \left[(1-p^k)^{n-1} \right]$ for all $i < k$ as $n \to \infty$, all terms in the above sum are negligible for large n except for the last, giving the result

$$p_{k,n}^{(p)} \sim p^k (1-p^k)^{n-1} \quad \text{as} \quad n \to \infty. \quad (27)$$

Remark 5 While (26) is an exact combinatorial formula for $p_{k,n}^{(p)}$, it is not straightforward to analyze the behaviour of this combinatorial formula as $n \to \infty$ when k is determined as a general function of n. Theorem 1 gives us the asymptotic result for $p_{k,n}$ as $k, n \to \infty$ without relying on the exact expression.

A similar calculation to the one in (26) gives the probability of a weak maximum,

$$q_{k,n}^{(p)} = \sum_{i=0}^{k} \binom{k}{i} p^i (1-p)^{k-i} \left[P(X_1^k \not\subseteq X_2^k | B_1 = i) \right]^{n-1}$$
$$= \sum_{i=0}^{k} \binom{k}{i} p^i (1-p)^{k-i} \left[1 - P \left(\bigwedge_{j=1}^{k} X_{2j} = 1 \right) P \left(\bigvee_{j=i+1}^{k} X_{2j} = 1 \right) \right]^{n-1}$$
$$= \sum_{i=0}^{k} \binom{k}{i} p^i (1-p)^{k-i} \left(1 - p^i + p'(1-p)^{k-i} \right)^{n-1}. \quad (28)$$

and the asymptotic result $q_{k,n}^{(p)} \to p^k$ for fixed k as $n \to \infty$.

Remark 6 For any fixed k the decay of $p_{k,n}^{(U)} = q_{k,n}^{(U)}$ is sub-linear in n as $n \to \infty$ (see (24)). In contrast, $p_{k,n}^{(p)}$ decays to zero exponentially fast, whereas $q_{k,n}^{(p)}$ converges to a positive constant. The result is intuitive because for any fixed k the number of possible vectors in the Bernoulli case is finite, and the vector $(1, \ldots, 1)$ (with k coordinates) appears at least once P-a.s. as $n \to \infty$. A strong maximum may exist only if this vector appears at most once, an event with an exponentially small probability in n. Any occurrence of this vector is a weak maximum, yielding a limit positive probability not depending on n, $P(X_1^k = (1, \ldots, 1)) = p^k$. 9
For a complete treatment of the case in which the coordinates have Bernoulli(p) distribution, we derive a combinatorial formula for the variance. For every $i, j \in \{0, 1\}$ define
\[B_{ij} \equiv |\{1 \leq r \leq k; X_{1r} = i, X_{2r} = j\}|. \] (29)
and observe that vector $(B_{00}, B_{01}, B_{10}, B_{11})$ has a multinomial distribution, i.e.,
\[(B_{00}, B_{01}, B_{10}, B_{11}) \sim \text{Multinomial}\left(k, \left((1-p)^2, p(1-p), p(1-p), p^2\right)\right). \] (30)
By conditioning on this random vector deduce that
\[
E\{1_{\{1, 2 \in P(p)_{k,n}^n\}}\} = \sum_{a, d \geq 0; b, c \geq 1; a+b+c+d=k} \left(\begin{array}{c} k \\ a, b, c, d \end{array}\right) \left[1 - P\left(\left\{\{ a+b \atop j=a+1 \} \cup \{ k-d \atop j=a+b+1 \} X_{3j} = 1 \right\} \bigcap \left\{ k \atop j=k-d+1 \} X_{3j} = 1 \right\}\right]^{n-2},
\] (31)
and the variance is given by:
\[
V_{k,n}^{(p)} \equiv \text{Var}(|P(p)_{k,n}|) = np_{k,n}^{(p)}(1-p_{k,n}^{(p)}) + n(n-1)E\{1_{\{1, 2 \in P(p)_{k,n}^n\}}\} - p_{k,n}^{(p)} \big|_{p_{k,n}^{(p)}}. \] (32)

Remark 7 When k is fixed and $n \to \infty$, both the expectation $np_{k,n}^{(p)}$ and variance $V_{k,n}^{(p)}$ approach to zero as $n \to \infty$, hence the limiting distribution of the Pareto-front size is degenerate. An interesting question for future work is whether there exists a sequence $k = k_n$ such that the limiting distribution of the Pareto-front size $|P(p)_{k,n}|$ is non-degenerate.

Remark 8 In this part we have analyzed the relatively simple case when the underlying distribution is Bernoulli. Naturally, a follow-up question is about studying other distributions with the goal of comparing between the results.

3.3 Numerical Results

A numerical comparison between the Bernoulli and continuous cases is shown in Figure 1. The difference in the asymptotic behaviour between
$p_{k,n}^{(p)}$, $q_{k,n}^{(p)}$ and $p_{k,n}^{(U)} = q_{k,n}^{(U)}$ for fixed k as $n \to \infty$ is shown in Figure 1.a. A numerical demonstration for the different behaviour of $p_{k,n}^{(U)}$ for $k_n = c \log(n)$ when $c < 1$ and $c > 1$ is shown in Figure 1.b. Similarly, the phase transition for Bernoulli(0.5) is presented in Figure 1.c, illustrating the localization at $\gamma = \frac{1}{2} \log(2)$, compared to $\gamma = 1$ for the continuous case.

Furthermore, as we have already shown, for fixed k the asymptotic behaviours of $p_{k,n}^{(p)}$ and $q_{k,n}^{(p)}$ as $n \to \infty$ are very different. However, when both $k, n \to \infty$, Figure 1.c suggests that the phase transition established by Theorem 1 for $p_{k,n}^{(p)}$ also holds for $q_{k,n}^{(p)}$. Comparing the two cases more rigorously is left for future research.

For numerical calculation of $p_{k,n}^{(U)}$ we have used the recurrence relation (21), because the alternating sum in the combinatorial formula (20) causes numerical instabilities. As a result, computing $p_{k,n}^{(U)}$ for fixed k requires $O(n)$ operations, and $p_{k,n}^{(U)}$ was calculated for values up to $n = 10^7$ in Figure 1.b. In contrast, the discrete combinatorial formula (26) for $p_{k,n}^{(p)}$ can be applied directly, enabling us to compute this probability for much larger values of n (up to $n \approx 10^{130}$) in Figure 1.c. The code for all numeric calculations is freely available at https://github.com/orzuk/Pareto.
Figure 1: a. Value of \(p_{k,n}^{(U)} = q_{k,n}^{(U)} \) (solid lines), \(q_{k,n}^{(0.5)} \) (dashed lines) and \(p_{k,n}^{(0.5)} \) (dotted lines) as a function of \(n \), shown on a log-scale, for \(k = 1, 2, 3, 4, 5 \). While \(p_{k,n}^{(0.5)} < p_{k,n} \) for all \(k \) and \(n \), when \(n \) is large \(q_{k,n}^{(0.5)} \) can exceed \(p_{k,n}^{(U)} \). b. Value of \(\log(p_{k,n}^{(U)}) \) using the exact combinatorial formula (line-connected circles) for \(k_n = \lfloor c \log(n) \rfloor \) for \(n \) from 1 to 10^7 and \(k_n \) up to \(\lfloor c \log(10^7) \rfloor \) for each \(c \). We were able to compute \(p_{k,n}^{(U)} \) accurately only for small values of \(k \), due to the recurrence relation in (21) and the alternating sum in (20). For \(c \leq 0.8 \) the curves decrease with \(n \), consistent with the result that \(p_{k,n}^{(U)} \rightarrow 0 \) for this case. For \(c \geq 1.2 \) the curves increase towards zero with \(n \), consistent with the result that \(p_{k,n}^{(U)} \rightarrow 1 \) for this case. For \(c = 1 \) there seems to be a slight increase in \(p_{k,n}^{(U)} \) too, but results are inconclusive. c. Value of \(\log(q_{k,n}^{(0.5)}) \) (’x’ symbols) and \(\log(q_{k,n}^{(0.5)}) \) (’o’ symbols) for the Bernoulli(0.5) case, for \(k_n = c \log(n) \) for different values of \(c \). For \(c < \gamma = \frac{\log(2)}{2} = 0.34657 \) the log-probabilities approach 0, whereas for \(c > \gamma \) the log-probabilities decreases to \(-\infty\). For all values of \(c \), the ratio \(\frac{q_{k,n}^{(0.5)}}{p_{k,n}} \) approaches 1 as \(n \rightarrow \infty \).

4 Proof of Theorem 1

For every \(i \geq 2 \), let

\[
G_i^1 \equiv \min \{ k \geq 1; X_{ik} < X_{1k} \} - 1. \tag{33}
\]

Then \(X_{1k} \leq X_{ik} \) for every \(1 \leq k \leq G_i^1 \) and \(X_{1k} \neq X_{ik} \) for every \(k > G_i^1 \). In particular, this implies that for every \(n, k \geq 1 \),

\[
1 \in P_{k,n} \iff M_i^1 \equiv \max_{2 \leq i \leq n} G_i^1 \leq k - 1 \tag{34}
\]

with the convention that a maximum over an empty-set of numbers equals zero. Thus, the asymptotic behaviour of \(\mathbf{1}_{P_{k,n}}(1) \) as \(n, k \rightarrow \infty \) is strongly related to the asymptotic behaviour of \(M_i^1 \) as \(n \rightarrow \infty \). Observe that \(M_i^1 \) is a maximum of \(n - 1 \) identically distributed dependent geometric random variables \(G_1^1, G_2^1, \ldots, G_n^1 \) having a success probability \(P(X_{11} > X_{21}) \). The following lemma couples \(M_i^1 \) with a maximum of \(n - 1 \) independent geometric random variables.
Lemma 1 Let \(\{X_{ij}; i, j \geq 1\} \) be iid random variables with a distribution function \(F \) for which \(\gamma \equiv \gamma_F \) as defined in (6). In addition, let \(G_2, G_3, \ldots \) be an iid sequence of geometric random variables with success probability \(\alpha \in (0, 1) \). For every \(n \geq 1 \), denote \(M_n \equiv M_n^{(\alpha)} \equiv \max_{2 \leq i \leq n} G_i \), and assume that \(\{G_i; i \geq 2\} \) and \(\{X_{ij}; i, j \geq 1\} \) are independent.

Then, for every \(\alpha \in (0, 1) \setminus \{1 - e^{-\gamma}\} \), the random variable

\[
N_\alpha \equiv 1 + \begin{cases}
\sup \{n \geq 1; M_n > M_n^1\} \lor 0 & 1 - \alpha < e^{-\gamma} \\
\sup \{n \geq 1; M_n < M_n^1\} \lor 0 & 1 - \alpha > e^{-\gamma}
\end{cases}
\]

is \(P \)-a.s. finite.

Remark 9 By definition, whenever \(1 - \alpha < e^{-\gamma} \) (resp. \(1 - \alpha < e^{-\gamma} \)), then \(M_n \leq M_n^1 \) (resp. \(M_n \geq M_n^1 \)) for every \(n \geq N_\alpha \).

Proof: For every \(k \geq 1 \) denote

\[
\tau_k^1 \equiv \min \{i \geq 2; M_i^1 \geq k\}, \quad \tau_k \equiv \min \{i \geq 2; M_i \geq k\}.
\]

Conditioned on \(X_1 \equiv (X_{1j})_{j=1}^{\infty} \), the events

\[
\{X_i^1 \preceq X_i^k\}, \quad i \geq 2
\]

are independent. Therefore, the random variables \(\tau_k^1 \) and \(\tau_k \) are conditionally independent given \(X_1 \), such that (notice that the index \(i \) in (36) is not less than 2)

\[
\tau_k^1|X_1 \sim \text{Geo}\left(\prod_{j=1}^{k} S(X_{1j})\right)
\]

and

\[
\tau_k \sim \text{Geo}\left((1 - \alpha)^k\right).
\]

In addition, as explained in Section 2.4, \(S(X_{11}), S(X_{12}), \ldots \) are iid random variables and \(-E \log S(X_{11}) = \gamma \in (0, 1] \). Therefore, by the strong law of large numbers

\[
L_k \equiv \frac{1}{k} \sum_{j=1}^{k} \left[-\log S(X_{1j})\right] \xrightarrow{k \to \infty} \gamma, \quad P \text{-a.s.}
\]

and it follows that \(e^{L_k} \xrightarrow{k \to \infty} e^\gamma, \ P \text{-a.s.} \) and \(e^{-kL_k} \xrightarrow{k \to \infty} 0, \ P \text{-a.s.} \).

Consider the case where \(1 - \alpha < e^{-\gamma} \). Then, (40) implies that there exists a \(P \)-a.s. finite random variable \(K_\alpha \) which is uniquely determined by \(X_1 \) such that for every \(k > K_\alpha \)

\[
(1 - \alpha)e^{L_k} \leq \frac{1 + (1 - \alpha)e^\gamma}{2} \equiv \zeta_\alpha
\]
such that $\zeta_\alpha < 1$. In addition, $e^{-kL_k} \leq 1$ for every $k \geq 1$. Therefore, by a well-known result about a minimum of two independent geometric random variables, deduce that

$$\sum_{k=K_\alpha}^{\infty} P(\tau_k \leq \tau_1^1 | X_1) = \sum_{k=K_\alpha}^{\infty} P(\tau_k - 1 \leq \tau_1^1 - 1 | X_1)$$

$$= \sum_{k=K_\alpha}^{\infty} \frac{(1-\alpha)^k}{(1-\alpha)^k + e^{-kL_k} - (1-\alpha)^k e^{-kL_k}}$$

$$\leq \sum_{k=K_\alpha}^{\infty} \left[(1-\alpha)e^{L_k}\right]^k$$

$$\leq \sum_{k=K_\alpha}^{\infty} \zeta_\alpha^k < \infty.$$

Thus, the Lemma of Borel-Cantelli implies that

$$P\left(\tau_k \leq \tau_1^1, i.o \mid X_1\right) = 0, \quad P\text{-a.s.}$$

and hence

$$P\left(\tau_k \leq \tau_1^1, i.o \right) = E\left[P\left(\tau_k \leq \tau_1^1, i.o \mid X_1\right)\right] = 0.$$ (43)

Therefore, $P(M_n > M_1^1 \text{ i.o}) = 0$, which yields the required result when $1 - \alpha < e^{-\gamma}$.

Assume that $1 - \alpha > e^{-\gamma}$. Then, applying similar arguments to those that appear above yields the existence of a P.a.s. finite random variable K_α such that for any $k > K_\alpha$:

$$(1 - \alpha)e^{L_k} \geq \frac{1 + (1-\alpha)e^{\gamma}}{2} \equiv \zeta_\alpha$$

such that $\zeta_\alpha > 1$. In addition, for every $k \geq 1$, $(1-\alpha)^k \leq 1$ and hence

$$\sum_{k=K_\alpha}^{\infty} P(\tau_k \geq \tau_1^1 | X_1) = \sum_{k=K_\alpha}^{\infty} P(\tau_k - 1 \geq \tau_1^1 - 1 | X_1)$$

$$= \sum_{k=K_\alpha}^{\infty} \frac{e^{-kL_k}}{(1-\alpha)^k + e^{-kL_k} - (1-\alpha)^k e^{-kL_k}}$$

$$\leq \sum_{k=K_\alpha}^{\infty} \left[(1-\alpha)e^{L_k}\right]^{-k}$$

$$\leq \sum_{k=K_\alpha}^{\infty} \zeta_\alpha^{-k} < \infty.$$

Thus, the claim follows from the Lemma of Borel-Cantelli using a similar argument as in the previous case. ■
Proof of Theorem 1 (continuation)

It is possible to use Lemma 1 in order to show that

\[
\frac{M_1^n}{\log(n)} \overset{n \to \infty}{\to} \gamma^{-1}, \quad P\text{-a.s.}
\]

(47)

To this end, fix \(\epsilon > 0 \) and let \(0 < \alpha_1, \alpha_2 < 1 \) be such that

\[
(1 - \alpha_1)e^\gamma < 1 < (1 - \alpha_2)e^\gamma
\]

and

\[
|\gamma^{-1} - [\log(1 - \alpha_l)]^{-1}| < \frac{\epsilon}{2}, \quad \forall l = 1, 2.
\]

(48)

Consider two independent iid sequences \(G^{(\alpha_1)}_2, G^{(\alpha_1)}_3, \ldots \) and \(G^{(\alpha_2)}_2, G^{(\alpha_2)}_3, \ldots \) such that \(G^{(\alpha_l)}_1 \sim \text{Geo}(\alpha_l) \) for \(l = 1, 2 \). Respectively, define the corresponding sequences of partial maxima

\[
M^{(\alpha_l)}_n \equiv \max_{2 \leq i \leq n} G^{(\alpha_l)}_i, \quad n \geq 2,
\]

(49)

for each \(l = 1, 2 \) as described in the statement of Lemma 1. Then, Lemma 1 implies that there exists \(P\text{-a.s.} \) finite random variables \(N_{\alpha_1} \) and \(N_{\alpha_2} \) such that

\[
M^{(\alpha_1)}_n \leq M^n_1 \leq M^{(\alpha_2)}_n, \quad \forall n \geq \max(N_{\alpha_1}, N_{\alpha_2}) \equiv N.
\]

(50)

Furthermore, Theorem 2 of [1] yields that for each \(l = 1, 2 \)

\[
\frac{M^{(\alpha_l)}_n}{\log(n)} \overset{n \to \infty}{\to} -[\log(1 - \alpha_l)]^{-1}, \quad P\text{-a.s.}
\]

(51)

As a result, there exists a \(P\text{-a.s.} \) finite random variable \(N^* \geq N \) such that for every \(n \geq N^* \) one has

\[
\gamma^{-1} - \frac{\epsilon}{2} \leq \frac{M^{(\alpha_1)}_n}{\log(n)} \leq \frac{M^n_1}{\log(n)} \leq \frac{M^{(\alpha_2)}_n}{\log(n)} \leq \gamma^{-1} + \frac{\epsilon}{2}
\]

(52)

and hence (47) follows. Therefore, (7) implies that

\[
\liminf_{n \to \infty} \frac{k_n - 1}{M^n_1} = \liminf_{n \to \infty} \frac{k_n}{\log(n)} \cdot \frac{k_n - 1}{M^n_1} > 1, \quad P\text{-a.s.}
\]

(53)

and hence (34) yields that \(1_{p_{k_n,n}}(1) \overset{n \to \infty}{\to} 0, \quad P\text{-a.s.} \). Similarly, (9) implies that

\[
\limsup_{n \to \infty} \frac{k_n}{M^n_1} = \limsup_{n \to \infty} \frac{k_n}{\log(n)} \cdot \frac{\log(n)}{M^n_1} < 1, \quad P\text{-a.s.}
\]

(54)

and hence (34) yields that \(1_{p_{k_n,n}}(1) \overset{n \to \infty}{\to} 0, \quad P\text{-a.s.} \).}

Acknowledgement: The authors thank the reviewer for detecting a mistake in the original proof of Theorem 1.
References

[1] Thomas S. Ferguson. On the asymptotic distribution of max and m~ex. *Statistical Papers*, 34(1):97–111, 1993.

[2] Charles Blair. Random inequality constraint systems with few variables. *Mathematical Programming*, 35(2):135–139, 1986.

[3] Wei-Mei Chen, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Maxima-finding algorithms for multidimensional samples: A two-phase approach. *Computational Geometry*, 45(1-2):33–53, 2012.

[4] Luc Devroye. A note on the expected time for finding maxima by list algorithms. *Algorithmica*, 23(2):97–108, 1999.

[5] Martin E Dyer and John Walker. Dominance in multi-dimensional multiple-choice knapsack problems. *Asia-Pacific Journal of Operational Research*, 15(2):159, 1998.

[6] Mordecai J Golin. A provably fast linear-expected-time maxima-finding algorithm. *Algorithmica*, 11(6):501–524, 1994.

[7] Tsung-Hsi Tsai, Hsien-Kuei Hwang, and Wei-Mei Chen. Efficient maxima-finding algorithms for random planar samples. *Discrete Mathematics & Theoretical Computer Science*, 6, 2003.

[8] Barry O’Neill. The number of outcomes in the pareto-optimal set of discrete bargaining games. *Mathematics of Operations Research*, 6(4):571–578, 1981.

[9] Gérard Biau and Erwan Scornet. A random forest guided tour. *Test*, 25(2):197–227, 2016.

[10] Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. *The Annals of Statistics*, 43(4):1716–1741, 2015.

[11] Zhi-Dong Bai, Chern-Ching Chao, Hsien-Kuei Hwang, and Wen-Qi Liang. On the variance of the number of maxima in random vectors and its applications. *The Annals of Applied Probability*, 8(3):886–895, 1998.

[12] Zhi-Dong Bai, Luc Devroye, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Maxima in hypercubes. *Random Structures & Algorithms*, 27(3):290–309, 2005.

[13] Andrew D Barbour and A Xia. The number of two-dimensional maxima. *Advances in Applied Probability*, 33(4):727–750, 2001.

[14] Ole Barndorff-Nielsen and Milton Sobel. On the distribution of the number of admissible points in a vector random sample. *Theory of Probability & Its Applications*, 11(2):249–269, 1966.
[15] Yuliy Baryshnikov. Supporting-points processes and some of their applications. *Probability Theory and Related Fields*, 117(2):163–182, 2000.

[16] Hsien-Kuei Hwang. Phase changes in random recursive structures and algorithms. In *Probability, Finance and Insurance*, pages 82–97. World Scientific, 2004.

[17] Hsien-Kuei Hwang. Sur la répartition des valeurs des fonctions arithmétiques. le nombre de facteurs premiers d’un entier. *Journal of Number Theory*, 69(2):135–152, 1998.

[18] Hsien-Kuei Hwang. A poisson* geometric convolution law for the number of components in unlabelled combinatorial structures. *Combinatorics, Probability and Computing*, 7(1):89–110, 1998.