Metabolic rates in hatchery-reared European lobster juveniles (*Homarus gammarus L.*)

Abstract

The existing information on the metabolism in European lobster (*Homarus gammarus*) is sparse. However, dimensioning of intensive systems for commercial production of lobster in recirculating aquaculture systems (RAS) requires adequate information in order to optimise financial calculations and profit margins. Thus, a lack of available data, especially regarding oxygen consumption and ammonia excretion, hampers development and commercialisation of lobster aquaculture. During 2010 and 2013, respiration and excretion rates in juvenile lobsters ranging from 0.06 to 208 g were recorded in a respirometer. These tests aimed to obtain data of standard metabolism in lobster at normal activity and optimum temperature (20 ± 1°C). The metabolic rate in fed juveniles < 2 g varied from 1.2 to 14.3 mg O2/kg min. In the larger juveniles and adults, the metabolic rate was less variable ranging from 1.1 to 3.1 mg O2/kg min. The respiration rate in unfed lobsters was relatively stable, varying from 0.8 to 2.4 mg O2/kg min. The excretion rate was likewise larger in the smaller juveniles with a mean of 0.51 mg TAN/kg min compared with the largest individuals of 0.07. This article briefly describes the two respirometer tests performed in order to improve the financial stipulations and reduce the economic risk in a critical stage of development.

Introduction

European lobster (*Homarus gammarus*) is a high value species where landings are low and commercial farming has yet to be established. On the other hand, European lobster is identified as one of the most promising aquaculture species, due to very high prospected profit margins (e.g. Anon. 2003; Anon. 2005; Anon. 2003) [1,2]. Moreover there is a huge gap between supply and demand, resulting in stable and high consumer demand and market price in all market segments around the globe. During the last decade, several break-throughs were made in the progress of developing lobster aquaculture. These include recirculation of seawater and development of low-cost industrial automation technology making it possible to meet the particular demands of lobster farming [3-5]. Based on the promising potential for farming lobsters, the European industry joined forces and established the network association the European Lobster Center of Excellence (ELCE – www.elce-net.org). ELCE has members from Norway, Denmark, Sweden, Italy, Spain, Iceland and UK. The main aim with the association is to develop business cases enabling multiple establishments in the EU implementing state-of-the-art land-based culture systems for European lobster. The network also facilitates R&D facilities where new aquapreneurs can do preliminary testing of new technologies for on-shore lobster farming. In order to succeed with land-based farming, major prerequisites such as feed utilisation/feed conversion ratio (FCR), oxygen consumption, excretory values on carbon dioxide (CO2) and total ammonia (TAN) must be acquired. Currently, knowledge is lacking on among others respiration and excretion rates in European lobster. This is urgently needed for dimensioning criteria for water treatment units in Recirculating Aquaculture Systems (RAS). During the last years, Norwegian Lobster Farm AS (NLF) has jointly with International Research Institute of Stavanger (IRIS) and Institute of Marine Research (IMR) conducted preliminary studies aiming to determine respiration and excretion rates in European lobster. These studies were made in order to determine the range of optimal and critical/threshold levels of key water quality parameters for European lobsters.

Material and Methods

All juveniles were hatchery-reared based on genetically tagged brood-stock. In 2010, juvenile European lobster from NLF’s commercial RAS factory on Kvitøya were tested, whereas in the 2013 the juveniles were from Institute of Marine Research, research station in Parisvatnet. The sizes ranged from recently settled stage III larvae at 0.02 gram (corresponding to 5 mm carapace length, CL) to juveniles/subadults at 208 gram (corresponding to CL of 70 mm). CL was recorded with a vernier caliper from the base of the eye socket to the posterior-medial edge of the cephalothorax. Wet body weight was recorded to nearest 0.1 g. In both years, the IRIS laboratory performed the tests according to standardised procedures which can be replicated (Figure 1). The lobsters were kept separately throughout the process. In order to reduce the stress level caused by handling and transport, the animals were acclimatised for 7 days upon experimental start. The animals were fed commercially prepared feed (tailor made for lobster by NLF), one pellet every three days according to the production protocols developed by NLF. No feeding took place throughout the respirometer stay. A group of lobster were also analysed in non-fed condition. For these individuals, feeding ended 7 days prior to experimental start.

For the larger lobsters, two identical respirometers of 3.9 L were used with online dissolved oxygen/temperature sensors...
Citation: Drengstig A, Bergheim A, Westerlund S, Agnalt A-L (2017) Metabolic rates in hatchery-reared European lobster juveniles (Homarus gammarus L.). J Aquac Mar Biol 5(5): 00134. DOI: 10.15406/jamb.2017.05.00134

Results

Total oxygen consumption in the individuals from 2010 and 2013 showed very similar results (Figure 2), with higher variation in the smaller individuals compared with the larger ones. In the experiment where the juveniles were fed, the oxygen consumption in lobster < 2 g varied from 1.2 to 14.3 mg O\textsubscript{2}/kg x min. In the larger juveniles and subadults the consumption rate was less variable, from 1.1 to 3.1 mg O\textsubscript{2}/kg x min. In un-fed lobster, the metabolic rate was relatively stable, varying from 0.8 to 2.4 mg O\textsubscript{2}/kg x min. Carbon dioxide can be a limiting parameter, especially when pure oxygen is added in order to sustain intensive production (> 40 kg/m3). The measured CO\textsubscript{2}-production was on average 1.5 – 2 times the corresponding O\textsubscript{2}-consumption.

Excretion rates were measured, and the ammonia analyses indicate, as expected, a higher specific excretion rate in terms of mg TAN/kg x min in juveniles compared to the larger-by-size individuals (Table 1). However, replicate sampling of the same size groups demonstrated considerable fluctuation from one test situation to another. Increased excretion rate in the largest animals (120 - 210 g) was positively correlated with increased oxygen consumption in the same individuals (Figure 3).

Discussion

The large individual variability in oxygen consumption at various sizes demonstrates rapid adaptability to new conditions. Typical stress influenced respiration rate seems to be approximately twice the standard rate. The standard rate of European lobster within the size interval 230-600 g was found to be 0.73 mg O\textsubscript{2}/kg x min at 20°C [6] i.e. about half of the lowest rate found in this study for lobster of 208 g. The oxygen consumption ranges were large, 1:8 to 1:3 within the same size groups, and the
fluctuations may be due to diurnal rhythm and peak at feeding. The measured CO₂-production was on average 15-2 times the corresponding O₂-consumption. As in other aquatic animals with similar activity levels, the oxygen uptake is closely linked with the oxygen demand and will vary according to physiological state, behavioural status, activity level and changes in environmental factors as e.g. temperature [7]. One obvious physiological state in lobster is molting. Two individuals molten just before or during the respiration experiment in 2013 (nr 2; 31.2 gr and nr 19; 59.2 gr), and in fact the oxygen consumption was slightly in the upper range.

Some of the lobsters during the 2010 experiment were probably temporarily stressed, despite the acclimatization period of 7 days, as peak rates higher than 14.3 mg/kg x min were recorded. However, such peak rates were always recorded during the first phase of experiment, and could therefore be due to the introduction to the respiration chamber. In addition, several of the adults, i.e. lobsters > 94 gram also seemed to suffer from stress in the respirometer, probably due to the small size of the chamber.

The studies indicated strongly fluctuating oxygen consumption in lobster of different size at 20 ±1°C. The large variability in oxygen consumption at various sizes also demonstrated rapid adaptability to new conditions. Stress influenced respiration rates to increase to approximately twice the standard rates. Ammonia analyses indicated, as expected, a higher specific excretion rate in terms of mg TAN/kg x min in juveniles compared with sub adults. However, replicate sampling of the same size groups demonstrated considerable fluctuation from one test situation to another. Increased excretion rate in the larger animals was positively correlated with increased oxygen consumption [8-28].

Conclusion

Based on the economic importance of metabolism data, priority is given to detect critical water quality values for dimensioning of technical equipment in order to sustain a healthy environment for lobsters farmed in RAS. Moreover, such data is important to improve growth performance, survival and feed conversion ratio (FCR) in RAS in order to increase the turn-over and successful commercialization for the industry.

References

1. Drengstig A, Bergheim A (2009) Utvikling av metoder for stabil produksjon av hummeryngel med gode vekstegnester. PhD thesis, NTNU.
2. Drengstig A, Bergheim A (2010). Single cage technology for on-growing of lobster in RAS. Abstract and oral presentation, Progress in Marine Recirculating Aquaculture Systems. World Aquaculture Society, San Diego, USA, 1-5.
3. Nicosia F, Lavalli K (1999) Homarid lobster hatcheries: Their history and role in research, management, and aquaculture. Marine Fisheries Review 61(2): 1-57.
4. Kristiansen TS, Drengstig A, Bergheim A, Drengstig T, Svensen R, et al. (2004) Development of intensive farming methods for the European lobster (Homarus gammarus L.) in recirculated seawater. Results from experiments conducted at Risø Høstby Lobster Hatchery from 2000 to 2004. Institute of Marine Research, pp. 52.
5. Drengstig A, Bergheim A (2010b) A pilot RAS for commercial production of European lobster. Aquacultural Engineering Society Proceedings VII, pp. 178-186. AES Fifth Issues Forum, Roanoke, Virginia, USA, 16-20.
6. Whiteley NL, Al-Wassia AH, Taulor EW (1990) The effect of temperature, aerial exposure and disturbance on oxygen consumption in the lobster, Homarus gammarus L. Mar Behav Physiol 17: 213-222.
7. McMahon BR (1995) The physiology of gas exchange, circulation, ion regulation, and nitrogenous excretion: An integrative approach, pp. 497-517. In: Factor JR (Eds.), Biology of the lobster Homarus americanus, Academic Press, USA, PP 528.
8. Agnalt AL (2008) Stock enhancement of European lobster (Homarus gammarus) in Norway; Comparisons of reproduction, growth and movement between wild and cultured lobster. Dr. scient. thesis, Department of Biology, University of Bergen, Norway.
9. Alabaster JS, Lloyd R (1982) Water Quality Criteria for Freshwater Fish. (2nd edn.). FAO, Butterwords, London, pp. 361.
10. Aiken DE, Waddy SL (1995) Aquaculture. In: Factor JR (Ed.), Biology of the lobster Homarus americanus. Academic Press, Inc, USA, pp. 153-175.
11. Beard TW, McGregor D (2004) Storage and care of live lobster: Laboratory leaflet number 66 (revised). Cefas, UK.
12. Beard TW, Richards PR, Wicksin JF (1985) The techniques and practicability of year-round production of lobsters, Homarus gammarus (L), in laboratory recirculation systems. Fisheries Research Technical Report, No. 79, Lowestoft, UK pp. 22.
13. Crear BJ, Forteath GN (2002) Feeding rate has the largest effect on the ammonia excretion rate of the southern rock lobster, Jasus edwardsii, and the western rock lobster, Panulirus cygnus. Aquacultural Engineering 26: 239-250.
14. Coffelt RJ, Wikman-Coffelt J (1985) Lobsters: One million One Pounds per Year. Aquacultural Engineering 4: 51-58.
15. D’Abramo LR, Conklin DE (1985) Lobster aquaculture. In: Huner, J., Brown, E.E. (Eds.), Crustacean and mollusc aquaculture in the USA. AVI Publ. Co., Westport, USA, pp. 159-201.
16. Drengstig ATS, Kristiansen A, Bergheim T, Drengstig L, Aardal AV (2004) Genetically modified shrimp. Advances in Recirculating Aquaculture Systems. Proceedings of Recirculating Aquaculture Systems. Proceedings of the 9th International Conference and Workshop on Recirculating Aquaculture Systems, Bergen, Norway, pp. 159-201.
17. Estrella BT (2002) Techniques for live storage and shipping of American lobster. Technical Report TR-8, 18. Division of Marine Fisheries, Massachusetts.
18. Factor JR (1995) Biology of the lobster Homarus americanus, Academic Press, New York, USA, pp. 528.
19. Grimsen S, Jaques RN, Erenst V, Balchen JG (1987) Aspects of automation in a lobster farming plant. Modelling, identification and control 8(1): 61-68.
21. Hamelo JS (2006) Investigation of respiration rates of European lobster (*Homarus gammarus*) in land-based, lobster farming system. Master thesis, Univ. of Stavanger, Norway, pp. 86.

22. Jacklin M, Combes J (2007) The good Practice Guide to Handling and Storing Live Crustacea.

23. Richards PR (1981) Some aspects of growth and behaviour in the juvenile lobster *Homarus gammarus* (Linnaeus). PhD Thesis University of Wales, Bangor, Great Britain, pp. 209.

24. Timmons MB, Losordo JG (1994) Aquaculture water reuse systems: engineering design and management. Elsevier, USA.

25. Van Olst JC, Carlberg JM, Hughes JT (1980) The biology and management of lobsters, pp. 333-384. In Cobbs JS & Phillips, BF (Eds.), Aquaculture, Vol. II Academic Press, USA, pp. 468.

26. Waddy SL (1988) Farming the Homarid Lobsters: State of the Art. World Aquaculture 19(4): 63-71.

27. Wickins JF, Beard TW (1991) Variability in size at moult among individual broods of cultured juvenile lobsters. Aquaculture and Fisheries Management 22(4): 481-489.

28. Wickins JF, Lee DO (2002) Crustacean Farming - Ranching and Culture. Blackwell Science, USA, pp. 446.