Rheum rhaponticum and Rheum rhabarbarum: a review of phytochemistry, biological activities and therapeutic potential

Joanna Kolodziejczyk-Czepas · Oleksandra Liudvytska

Received: 19 March 2020 / Accepted: 11 August 2020 / Published online: 14 August 2020
© The Author(s) 2020

Abstract The Rheum genus (Polygonaceae) covers about 60 species of rhubarbs, including specimens with a long ethnomedicinal history in Asia, Europe and other regions of the world. The work reviews available literature (until March, 2020) on phytochemical profile, ethnomedicinal recommendations, biological activities, pharmacological uses and future prospects for therapeutic applications of Rheum rhabarbarum L. (garden rhubarb) and Rheum rhaponticum L. (rhapontic rhubarb). Although the above species are well-known vegetables, scientific interest in these plants is a relatively new issue; most of evidence of their biological activities and therapeutic potential derives from the last 15 years. Rhubarbs contain numerous bioactive substances, belonging to diverse groups of phytochemicals, e.g. stilbenes, anthraquinones and flavonoids. The registered special extract of R. rhaponticum (ERr731®) is administered to alleviate the menopause-related complaints. Furthermore, both ethnomedicinal surveys and recent studies on bioactive substances from rhubarbs indicate that these plants may have significantly broader range of beneficial effects such as antioxidant, anti-inflammatory, antimicrobial and cardioprotective activities.

Keywords Rhubarb · Ethnomedicine · Biological activity · Bioactive substances

Introduction

The genus Rheum L. (rhubarb) covers about 60 species of perennial herbs, belonging to the Polygonaceae family. Rhubarbs have been known worldwide (in Asia, in particular) as medicinal and/or edible plants (Agarwal et al. 2001; Cao et al. 2017; He et al. 1992; Pourjabali et al. 2017; Rehman et al. 2014). Scientific interest in chemical composition and biological properties of two of the most popular rhubarb species, i.e. garden rhubarb (Rheum rhabarbarum L./syn. R. undulatum L.—according to www.theplantlist.org and http://www.worldfloraonline.org) and rhapontic rhubarb (Rheum rhaponticum L.; also called Siberian rhubarb) has significantly increased for the last 15 years. Despite the popularity of these species as foods, their phytochemical profiles, bioactive components and pharmacological relevance still remain partly elucidated. Their petioles (stalks) are commonly used for culinary purposes, and the leaves are toxic (Slaughter et al. 2012) due to a high content of oxalic...
acid. However, contrary to the roots of *Rheum officinale* Baill., which are predominantly used as a laxative, underground parts of both the garden and rhapontic rhubarb have a broader range of applicability in traditional medicine and contemporary herbal therapies.

While the chemical profile and biological properties of other rhubarb species such as *R. australe* D. Don, *R. palmatum* L., *R. ribes* L., *R. officinale* Baill., *R. tanguticum* Maxim. ex Balf. or *R. emodi* L. have been extensively described and/or reviewed in the literature (Komatsu et al. 2006; Rashid et al. 2014; Rokaya et al. 2012; Wang et al. 2013; Zhang et al. 2015a), there is a lack of a comprehensive look at *R. rhabarbarum* and *R. rhaponticum*. The present work is based on a review of available literature dealing with ethnomedicinal data, phytochemical composition, biological activities and prospects for future pharmacological use of these rhubarb species. Since the evaluation of some of biological activities or pharmacological significance of rhubarb-derived compounds and extracts partly remain at the preliminary stage or available data are inconsistent, disputable issues have been critically presented in this work. Our review covers data (until March, 2020) originating from journals indexed in international databases such as Medline/Pubmed, Scopus, Science Direct/Elsevier and Springer Link/ICM. Additionally, local scientific publications, not indexed in the mentioned databases were also taken into consideration.

Rheum rhaponticum and Rheum rhabarbarum in traditional medicine

Rhubarb is known in traditional medicine of Asian, European and other cultures (Agarwal et al. 2001; Pourjabali et al. 2017; Rehman et al. 2014), but a detailed appraisal of ethnomedicinal relevance of individual species or their biological actions is limited by the fact that in some cases, no precise botanical identification (including Latin names) of the used/described species is given. Even in recent literature, rhubarbs are frequently described generally, as "Rheum sp." or just "rhubarb(s)". Nevertheless, available data from ethnomedicinal and ethnobotanical surveys confirm the presence of *R. rhaponticum* and *R. rhabarbarum* in medicine from the Middle Ages (Nedelcheva 2009). According to data from one of the oldest Polish books devoted to medicinal plants, i.e. *Herbarz Polski*” (Marcin z Urzędowa/Marcin of Urzędów 1595) roots of both these species were used in medicine of that time to cure a wide range of disorders. The author suggested using 1–2 or more “dragma” units (1 dragma corresponded to 1/8 of one ounce). Internally, *R. rhaponticum* (in wine, beer or mead) was used in therapy of gastrointestinal pain, gastritis, liver and spleen disorders, heartache and pain in pericardium, pulmonary system dysfunctions as well as disorders related to the reproductive system, including uterine and breast pains. Drinking of the *R. rhaponticum*-based mixtures or chewing its root was believed to alleviate indigestion. Externally, a vinegar macerate from this plant was applied to cure skin disorders such as itching and scratches; a water macerate was recommended in the therapy of ulcers. *R. rhabarbarum* was mainly administered as a purgative agent. Other recommendations for its use included liver, spleen and stomach dysfunctions as well as blood purification. Some fragments of this historical source indicated that this plant was also used to stop bleeding and to alleviate fever as well as to cure injuries, trauma after falls from a height and vein disorders.

Current literature devoted to ethnomedicinal issues also confirms that the roots of *R. rhaponticum* were an ingredient of different mixtures, administered to cure fever (a sugar syrup), to improve voice (roots boiled in red wine and sweetened with honey), to alleviate heart problems or stomachache (a brandy-based balsam), and a honey-based herbal paste was used in jaundice and distress (Nedelcheva 2012). Furthermore, underground parts of this rhubarb are an ingredient of Turkish folk food and the remedy, i.e. Mesir paste, having over 500 years history of use (Oskay et al. 2010). In Brazilian folk medicine, *R. rhaponticum* is used to treat gastrointestinal disorders (Cogo et al. 2010), while in Iran, it is one of the herbs traditionally used to treat hyperpigmentation (Ghafari et al. 2017). This rhubarb species has been also mentioned in different types of studies as one of medicinal plants in European and Asian countries (Debnath et al. 2006; Lachumy et al. 2013).

Similarly to *R. rhaponticum*, also the position of *R. rhabarbarum* in ethnomedicine of different cultures has been built for centuries. Both species are known in Central Asia and Russia as a natural demulcent, helpful in wound healing and relieving skin problems...
Phytochemical profile of *R. rhabarbarum* and *R. rhaponticum*

Studies on the phytochemical composition of different species of rhubarb were undertaken as early as at the beginning of the 20th century, and provided information on the presence of a variety of inorganic and organic acids (including tartaric, oxalic, citric, malic and ascorbic acid), anthraquinones (e.g. emodin, aloe-emodin and rhein) and stilbenes (Pucher et al. 1938; Tutin and Clewer 1911; Viehoever 1933). The last two decades have provided more detailed qualitative analyses of the chemical profile of *R. rhaponticum*, covering examinations of phenolic and non-phenolic components of this plant. Results of these studies, with names of the identified compounds, are summarized in the Table 1. Some information on methodological aspects of isolation of the individual components, e.g. rhaponticin and desoxypurpurea are also available (Smolarz et al. 2013a). For the first time, the composition and content of flavonoids was investigated by German scientists who discovered rutin in leaves of *R. rhabarbarum* (0.7%) and *R. rhaponticum* (0.61%) (Hörhammer and Müller 1954). Later, glycosides of quercetin and kaempferol were found in the leaves and petioles of *R. rhabarbarum*, while in the flower petals, quercetin 3-rhamnoside and quercetin 3-rutinoside were identified (Vysochina 2012). In raw stalks of the rhapontic rhubarb, 42 components belonging to different groups of flavonoids as well as stilbenes, anthraquinones and naphthalene derivatives (for details, see the Table 1) were found. In the roots, derivatives of *trans*-piceatannol, *trans*-resveratrol, *trans*-rhapontigenin and *trans*-desoxyrhapontigenin, were identified (Fig. 1). Root samples contained pterostilbene acetylglucosides as well as hydroxanthraquinones and their glycosides (Püssa et al. 2009). The presence of numerous organic compounds, representing various classes of (phyto)chemicals and their distribution in *R. rhabarbarum* and hybrids of *R. rhabarbarum* and *R. rhaponticum* were described as well (Dregus and Engel 2003; Ha et al. 2020; Ko 2000; Krafczyk et al. 2008; Niziol et al. 2017; Will and Dietrich 2013) (data collected in Table 2).

Different cooking regimes influence the content of polyphenols in rhubarb. Compared to raw petioles, both fast and slow stewing and baking were found to enhance the total content of polyphenolic compounds and overall antioxidant capacity of the examined rhubarb samples. This increase was attributed to thermal degradation of plant material, leading to a release of bioactive substances (McDougall et al. 2010). The literature provides reports dealing with quantitative data on different groups of metabolites in *R. rhaponticum* and *R. rhabarbarum*. A comparative examination of crude ethanol (96%; v/v) extracts, derived from the rhizomes and roots of *R. rhaponticum*, *R. palmatum* L. and *R. rhabarbarum* revealed that the rhapontic rhubarb had the lowest contents of total polyphenols, total anthracene derivatives, total anthraquinones and overall tanin concentration, attaining 46.11 ± 0.81 mg/g, 19.8 ± 0.60 mg/g, 16.6 ± 0.50, mg/g and 7.07 ± 0.25 mg/g of dry material, respectively (Kosikowska et al. 2010). The total concentrations of phenolic acids in *R. rhaponticum* rhizome amounted to 195.5 μg/g, with concentrations of individual acids ranging between 2.2 μg/g (*p*-hydroxybenzoic acid) and 77.7 μg/g (ferulic acid)
Plant part/solvent	Identified substances	References
Air-dried roots/methanol (> 99.9%)	Stilbene compounds: piceatannol O-glucoside 1, piceatannol O-glucoside 2, resveratrol O-glucoside 1, resveratrol O-glucoside 2 (piceid), piceatannol O-galloylglucoside 1, piceatannol, piceatannol O-galloylglucoside 2, rhapontigenin O-glucoside (rhapontin), resveratrol O-galloylglucoside, rhapontigenin O-glucoside 2, trans-resveratrol, rhapontigenin O-galloylglucoside, rhapontigenin O-acetylglucoside 1, rhapontigenin, rhapontigenin O-acetylglucoside 2, desoxyrhapontigenin O-glucoside (desoxyrhapontin), desoxyrhapontigenin O-galloylglucoside, desoxyrhapontigenin O-acetylglucoside, pterostilbene O-acetylglucoside 1, pterostilbene O-acetylglucoside 2, desoxyrhapontigenin Hydroxyanthraquinones: emodin, aloe-emodin O-glucoside, chrysophanol O-glucoside, emodin O-glucoside, emodin O-malonylglucoside, chrysophanol O-acetylglucoside 1, rhein O-glucoside, chrysophanol O-acetylglucoside 2 Hydroxynaphthalenes: torachrysone O-glucoside, torachrysone O-acetylglucoside	Püssa et al. (2009)
Air-dried petioles/methanol (> 99.9%)	Composition similar to the phytochemical profile of roots, with a few additional flavonoids, i.e. myricetin-O-rhamnoside, rutin, quercetin-O-glucuronide, quercetin-O-glucoside, quercetin-O-rhamnoside, quercetin	Smolarz and Medyn’ska (2005)
Air-dried roots and rhizomes/80% methanol	Phenolic acids: ellagic acid, chlorogenic acid, gallic acid, protocatechuic acid, protocatechuic acid, caffeic acid, α-resorcylic acid, p-hydroxyphenylacetic acid, p-hydroxybenzoic acid, p-coumaric acid, syringic acid, vanillic acid, ferulic acid	Smolarz et al. (2005)
Air-dried petioles/80% methanol	Phenolic acids: ellagic, gallic, protocatechuic, homoprotocatechuic, caffeic, p-hydroxybenzoic, p-coumaric, syringic, vanillic, ferulic, α-resorcylic and p-hydroxyphenylacetic acid Hydroxyanthraquinones: emodin	Smolarz et al. (2005)
Fresh petioles/50% acetonitrile with 0.1% formic acid	Flavonoids: cyanidin rutinoside, cyanidin hexose, proanthocyanidins, rutin, quercetin hexose/quercetin glucuronide, quercetin-rhamnose Stilbene compounds: rhapontigenin glycoside Anthraquinones: aloe-emodin, emodin glycosides and dimers, chrysophanol and its derivatives Hydroxynaphthalenes: torachrysone and its derivatives	McDougall et al. (2010)
Fresh petioles/hexane	Alcohols: 3-methyl-3-pentanol, 3-hexanol, 2-hexanol, cyclopentanol, pentanol, 1-methylcyclopentanol and 2-methylcyclopentanol, 3-methylcyclopentanol, 1-octen-3-ol, octanol Aldehydes and ketones: acetone, butanal, pentanal, 3-methyl-2-pentanone, 3-hexanone, 2-hexanone, hexanal, 2-methylcyclopentanone, 3-methylcyclopentanone, octanal, nonanal, 3-octen-2-one, (E,E)-2,4-nonadienal Acids and esters: butyl acetate, pentanoic acid, hexanoic acid, 3-hydroxy-2,2,4-trimethylpentyl isobutanoate, 2,2,4-trimethyl-1,3-pentanediol disobutanoate, heptanoic acid, octanoic acid, nonanoic acid Aromatic compounds: benzaldehyde, acetaldehyde, benzyl alcohol, phenethyl alcohol, p-anisaldehyde: 2,5-dimethyl-tetra-hydrofuran, 5-methylfurfural, 2-acetylpyrrole, 2-(hydroxyacetyl)furan, pyrrole-2-carboxaldehyde, dihydro-3-hydroxy-4,4-dimethyl-2(3H)-furanone, 5-pentyl-2(5H)-furanone, 3-methyl-1H-pyrrole-2-carboxaldehyde, 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one Hydrocarbons: cyclohexane, methylcyclohexane, tetradecane	Wu et al. (2017)
in the air-dried plant material (Smolarz and Medyńska 2005). Phenolic acids (at the total concentration of 198.16 µg/g) and emodin (at a concentration of 5.8 µg/g of dry weight) were also found in the petioles (Smolarz et al. 2005). Recent work on phytochemical profiles of two varieties of *R. rhabarbarum* demonstrated that the content of flavan-3-ols in rhubarb stalks was ranging between 86.6 and 196.0 mg/100 g (of dry mass), the flavonol content was 49.8–73.5 mg/100 g (d.m.), anthocyanins were present at the level of 4.3–96.2 mg/100 g (d.m.), and gallotannin content was 6.3–13.6 mg/100 g (d.m.). In general, the total phenolic content (TPC) was higher in samples collected in spring, than in those from autumn; in the “Red Malinowy” variety, TPC amounted up to 1270.3 mg/100 g d.m. (Kalisz et al. 2020).

Fig. 1 Main antraquinone and stilbene compounds identified in *Rheum rhaponticum* and *Rheum rhabarbarum*

Table 3

Stilbene compounds	R1	R2	R3	R4
Desoxyrhapontigenin	OH	OH	H	OCH$_3$
Isorhapontigenin	OH	OH	OCH$_3$	OH
Piceatannol	OH	OH	OH	OH
Pterostilbene	OCH$_3$	OCH$_3$	H	OH
Rhapontigenin	OH	OH	OCH$_3$	OH
Resveratrol	OH	OH	OH	OH

Antraquinone compounds	R1	R2	R3	R4
Aloe-emodin	H	CH$_2$OH	H	H
Emodin	H	CH$_3$	OH	H
Chrysophanol	H	CH$_3$	H	H
Physcion	H	CH$_3$	OCH$_3$	H
Rhein	H	COOH	H	H

Biological activities and pharmacological actions of *R. rhaponticum* and *R. rhabarbarum*

Menopausal complaints

To date, the terms “phytoestrogens” and “phytoestrogenic activity” have been mostly associated with isoflavones from the soya bean (*Glycine max* L.). On the other hand, the last two decades have brought better understanding of the hormone-like effects of different classes of phytochemicals and identification of various sources of phytoestrogens. Although the soya bean is still considered the main source of phytoestrogens, it has been partly replaced by red clover (*Trifolium pratense* L.). Furthermore, following the discovery that not only isoflavones display estrogenic properties, the area of studies on hormonal effects of plant metabolites has been significantly extended (Dietz et al. 2016; Franco et al. 2016; Sirotkin and Harrath 2014; Schloss and Steel 2016). Scientific and medical interest in herbal preparations with estrogenic effects are additionally enhanced by data suggesting a beneficial role of phytoestrogens in prophylaxis of different women diseases, including osteoporosis and breast cancer (Obi et al. 2009).

Since the phytochemical profile of *R. rhaponticum* contains substances with estrogenic activities, this plant has gained scientific attention as a source of natural medicines, useful in the therapy of menopausal complaints or other hormone-related disorders (Chang et al. 2016; Hasper et al. 2009; Heger et al. 2006; Kaszkin-Bettag et al. 2008a, b, 2009; Keiler et al. 2012; Möller et al. 2007; Papke et al. 2009; Vollmer et al. 2010; Wober et al. 2007). The most important studies on molecular mechanisms of its biological action, pharmacological relevance and safety were summarized in the Table 3. The estrogenic action of *R. rhaponticum* is primarily attributed to the presence of hydroxystilbene compounds such as rhaponticin, desoxyrhaponticin, rhapontigenin, desoxyrhapontigenin, resveratrol and piceatannol. A preparation containing the Rheum rhaponticum extract ERr731® was
Table 2 Phytochemical composition of *R. rhabarbarum* and hybrids of *R. rhabarbarum* and *R. rhaponticum*

Plant part/solvent	Identified substances	References
R. rhabarbarum rhizome/hot water extract	piceatannol-3, 4′-O-β-D-diglucopyranoside, desoxyrhaponticin Anthraquinone compounds: emodin-1-O-β-D-glucopyranoside, physcion-8-O-β-D-glucopyranoside	Ko (2000)
R. rhabarbarum stalks/volatiles	Alcohols: 1-propanol, 2-methyl-1-propanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-pentanol, 4-methyl-1-pentanol, 1-pentanol, 2-pentanol, 3-pentanol, 1-penten-3-ol, (Z)-2-penten-1-ol, 4-methyl-3-penten-1-ol, hexanol, (E)-2-hexanol, (Z)-2-hexanol, (E)-3-hexen-1-ol, (Z)-3-hexen-1-ol, cyclohexanol, 4-methyl-1-hexan, 2-ethyl-1-hexanol, hexadecanol, benzyl alcohol, 2-phenylethanol Aldehydes: (E)-2-pentenal, hexanal, (E)-2-hexenal, (Z)-2-hexenal, (Z)-3-hexenal, (E)-2,6-nonadienal, decanal Esters: ethyl formate, ethyl acetate, hexyl acetate, 2-methylbutyl 2-methylbutanoate, methyl (E)-2-hexenoate, ethyl (E)-2-hexenoate, (E)-2-hexenyl acetate, (E)-2-hexenyl butanoate, (E)-2-hexenyl hexanoate, (E)-3-hexenyl butanoate, (E)-2-hexenyl (E)-2-hexenoate, isopropyl myristate, diisobutyl phthalate, dibutyl phthalate, di(2-ethylhexyl) phthalate Ketones: 3-pentanone, 6-methyl-5-hepten-2-one, (E)-geranylacetone, 2,6,6-trimethyl-2-vinyltetrahydropyran-3-one Acids: acetic acid, 2-methylbutanoic acid, 4-methylpentanoic acid, hexanoic acid, 4-methylhexanoic acid, (E)-2-hexenoic acid, (E)-3-hexenoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, 9-hexadecenoic acid, octadecanoic acid Other compounds: limonene, linalool, sesquiterpenes, squalene, β-ionone, anethole, p-allylphenol, methyleugenol, 1,2-dimethoxybenzene, 1,4-dimethoxybenzene, indole	Dregus and Engel (2003)
R. rhabarbarum roots and rhizomes/80% methanol	Ellagic, chlorogenic, gallic, protocatechuic, protocatechuic, caffeic (3,4-dihydroxycinnamic), α-resorcyclic, p-hydroxyphenylacetid, p-hydroxybenzoic, p-coumaric, syringic, vanillic and ferulic acid	Smolarz and Medyńska (2005)
R. rhabarbarum stalks fresh juice	Catechin, cyanidin-3-glucoside, cyanidin-3-rutinoside, 5-carboxyphylpyro-cyanidin-3-rutinoside, delphinidin-3-glucoside, delphinidin-3-rutinoside, myrecitin-3-rutinoside, procyanindin B1, procyandin B2, quercetin-3-galacostide, quercetin-3-rutinoside, quercetin-3-glucuronide, quercetin-3-glucoside, kaempferol-3-rutinoside, quercetin-3-hammoside Acids: ascorbic acid, citric acid, fumaric acid, lactic acid, maile acid, oxalic acid	Will and Dietrich (2013)
R. rhabarbarum rhizome/methanol	Rheundulin A Stilbene compounds: rheundulins B-D, δ-viniferin, rhapontigenin, rhaponticin, piceid Anthraquinones: chrysophanol-1-O-β-D-glucopyranoside, chrysophanol-8-O-β-D-glucopyranoside Hydroxynaphthalenes: torachrysone-8-O-β-D-glucoside Naphthoquinone derivative: 6-methoxy-2-acetyl-3-methyl-1,4-naphthoquinone-8-O-β-D-glucopyranoside	Ha et al. (2020)
registered as medicinal product in 1993 (Phytoestrol N, Chemisch-Pharmazeutische Fabrik Göppingen, Carl Müller, Apotheker, GmbH and Co KG, Göppingen, Germany), which was dedicated to alleviate menopausal complaints as an alternative for the hormonal replacement therapy (HRT). At doses ranging from 4 to 1000 mg, different extracts of *R. rhaponticum* are also present in other plant-based herbal products and dietary supplements. Given the ample evidence that *R. rhaponticum* alleviates some menopause-related complaints, one would expect that also *R. rhabarbarum* possesses similar properties. However, so far, the estrogenic action of the latter has been confirmed only in basic studies. In human hepatoma (HepG2) cells, transiently transfected with ERα, ERβ and ERE-reporter plasmid, some stilbene-derivatives such as piceatannol 3’-O-β-D-xylopyranoside, *cis*-rhapontcin and rhapontigenin 3’-O-β-D-glucopyranoside isolated from the roots of *R. rhabarbarum* (ethnomedicinal name: *Rhei undulati Rhizoma*) displayed a binding affinity to estrogen receptors (at concentrations of 1 and 10 μM) (Park et al. 2018). The estrogenic activities of three other bioactive constituents of *R. rhabarbarum* roots (i.e. aloe-emodin, rhapontigenin and chrysophanol 1-O-β-D-glucopyranoside; 10–50 μg/ml) were also demonstrated in an experimental model of breast cancer cells (MCF-7) (Lee et al. 2018).

Antioxidant properties

Due to a significant contribution of oxidative stress to the pathogenesis of a variety of disorders, antioxidant activity is one of the most investigated properties of natural, plant-derived extracts or individual substances. However, in the case of *R. rhaponticum* and *R. rhabarbarum*, this type of biological activity remains only partly described and evaluated. So far, antioxidant effects of *R. rhaponticum*-derived extracts have been examined in preliminary radical-scavenging assays (based on the DPPH• and ABTS•+ radicals), mostly at concentrations that are significantly higher than physiologically achievable levels of natural substances and their metabolites (Joo et al. 2014; Kalisz et al. 2020; Park et al. 2008; Raudsepp et al. 2008, 2013; Won Jang et al. 2018; Wu et al. 2017; Zhang et al. 2007) (for details see the Table 5 in supplementary material). In addition to a limited number of studies, different laboratory protocols, diverse ways of data presentation (including a lack of EC$_{50}$ or IC$_{50}$ values) and modifications within the methodology significantly hinder unequivocal interpretation of the existing evidence.

What is the current knowledge of antioxidant effects of *R. rhabarbarum*? Analogously to *R. rhaponticum*, antioxidant assays of the garden rhubarb were preliminary assessed with the use of non-biological tests, but in this case, the literature offers more

Plant part/solvent	Identified substances	References
R. rhabarbarum stalks/methanol acidified with 1% acetic acid	Anthocyanins: delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside	Kalisz et al. (2020)
Flavan-3-ols: procyanidin B1, (+)-catechin, procyanidin B2, (−)-epicatechin, procyanidin B dimer		
Flavonols: myricetin-3-O-glucuronide, myricetin-3-O-rutinoside, myricetin-3-O-rhamnoside, quercetin-3-O-rutinoside, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-rhamnoside andisorhamnetin 3-O-rhamnoside		
Phenolic acids: galloyl-O-glucose, gallic acid, di-O-galloyl-glucose and derivatives of hydroxycinamic acid		
R. rhabarbarum and *R. rhaponticum* hybrids leaves and petioles/n-butanol	6,8-di-C-β-D-glucosylapigenin, 6-C-β-D-glucosyl-8-C-β-D-arabinosylapigenin, 6-C-β-D-arabinosyl-8-C-β-D-glucosylapigenin, rutin, isovitexin, quercetin-3-O-β-D-glucuronide	Krafczyk et al. (2008)
R. rhabarbarum and *R. rhaponticum* hybrids rhizome/ethyl acetate	(+)-catechin, trans-resveratrol-4’-O-β-D-glucopyranoside, trans-piceatannol-3’-O-β’-D-glucopyranoside, trans-rhaponticin, trans-desoxyrhaponticin	Krafczyk et al. (2008)

Table 2 continued

Plant part/solvent	Identified substances	References
R. rhabarbarum and *R. rhaponticum* hybrids leaves and petioles/n-butanol	6,8-di-C-β-D-glucosylapigenin, 6-C-β-D-glucosyl-8-C-β-D-arabinosylapigenin, 6-C-β-D-arabinosyl-8-C-β-D-glucosylapigenin, rutin, isovitexin, quercetin-3-O-β-D-glucuronide	Krafczyk et al. (2008)
R. rhabarbarum and *R. rhaponticum* hybrids rhizome/ethyl acetate	(+)-catechin, trans-resveratrol-4’-O-β-D-glucopyranoside, trans-piceatannol-3’-O-β’-D-glucopyranoside, trans-rhaponticin, trans-desoxyrhaponticin	Krafczyk et al. (2008)
Table 3: Studies on molecular mechanisms of biological action, pharmacological relevance and safety of the ERr731® *Rheum rhaponticum* extract

Study type	Study design/experimental system	Main findings	References
In vitro	Study in ERα-expressing yeast cells, ERα-responsive Ishikawa cells and human endometrial HEC-1B cells transiently transfected with the ERα or ERβ	Activation of ERβ; lack of ERα activation in all used cell lines; no anti-estrogenic effects	Wober et al. (2007)
In vitro	Study in bone-derived U2OS cells, stably or transiently expressing the ERβ	Estrogenic effects based on ERβ-dependent activity; activation of the ERα in bone cells	Möller et al. (2007)
Animal	Examination of the safety in male and female beagle dogs, treated with 100, 300 and 1000 mg/kg body weight/day	No toxicity or pathological changes in organs; a slight decrease in glucose levels after a daily dose of 1000 mg/kg b.w.	Kaszkin-Bettag et al. (2008a, b)
Animal	90-day study on the safety in terms of endometrial hyperplasia, in a murine experimental model	A stimulatory activity on proliferation in the uterus was excluded; no effects on the bone mineral density	Keiler et al. (2012)
Animal	Evaluation of dose-dependent effects of ERr731®, alone or in combination with estradiol on growth and proliferation in the uterus of ovariectomized rats	No stimulatory effects on uterine proliferation by ERr731® alone; ERr731® reduced uterine growth induced by estradiol	Papke et al. (2009)
Randomized, double-blind, placebo-controlled prospective study	Clinical trial involving 109 women with menopausal complaints; participants were treated with a daily dose of either one enteric-coated tablet of ERr731® (n = 54) or placebo (n = 55) for 12 weeks	No adverse effects; after 4 weeks; the number and intensity of hot flushes were reduced in the ERr731® group; after 12 weeks both the Menopause Rating Scale II (MRS II) total score and each individual MRS II symptoms were alleviated in the ERr731® group, compared to the placebo group	Heger et al. (2006)
Multicenter, prospective, 48-week observational study (OS) (OS I), followed by a 48-week OS II	Continuation of trial Heger et al. 2006. OS I involved 80 women of the earlier group of 109 participants; 39 were treated with ERr731® and 41 women received placebo. OS II (51 women): 23 received ERr731® and 28 received the placebo. The MRS II score was evaluated after 48 and 96 weeks	OS I: in women receiving the ERr 731 during previous RCT, a further reduction of climacteric symptoms was observed; in women from the placebo group of previous RCT who started the ERr731® therapy, an alleviation of menopausal symptoms was found. OS II: in all women receiving the ERr731®, a further decrease of menopausal symptom scores was found. The long-term use of ERr 731® did not induce adverse effects	Hasper et al. (2009)
Multicenter, placebo-controlled, randomized clinical study	112 perimenopausal women with menopausal symptoms, treated for 12 weeks with ERr 731 (n = 56) or placebo (n = 56). The MRS total score, measured on days 0, 28, 56 and 84	In the study group, the MRS total score was significantly reduced (from 27.0 ± 4.7 points to 12.4 ± 5.3 points), when compared to the placebo group; the alleviation of menopausal symptoms included a reduction in individual MRS scores and hot flushes	Kaszkin-Bettag et al. (2009)
information derived from different bioassays (Table 5 in supplementary material). *R. rhubarbarum* contains natural antioxidants, capable of combating oxidative stress at different levels of the cellular antioxidant defense. Its bioactive constituents may act both as scavengers of reactive oxygen species (ROS, e.g. nitric oxide, superoxide anion and hydroxyl radical (Kalpana et al. 2012) and as modulators of cell signalling pathways and gene expression. Molecular mechanisms of these effects include the ability of stilbenes to up-regulate functions of the transcription factor Nrf2 (the nuclear factor (erythroid-derived 2)-like 2) and the Nrf2-mediated pathways. Six stilbenes (i.e. rhaponticin, rhapontigenin, isorhaponticin, deoxyrhaponticin, desoxyrhapontigenin and resveratrol), isolated from the rhizome of *R. rhabarbarum*, significantly reduced the intracellular generation of ROS in RAW 264.7 macrophages (Joo Choi et al. 2014). Furthermore, seven compounds from this plant (i.e. piceatannol, resveratrol, rhapontigenin, desoxyrhapontigenin, pterostilbene, (E)-3,5,4'-trimethoxystilbene and trans-stilbene) protected hepatocytes against the arachidonic acid- and iron ions-induced oxidative stress in vitro. Molecular mechanisms of this beneficial action involved the AMP-activated protein kinase (AMPK) pathway, an important regulator of cellular metabolism and energy homeostasis (Dong et al. 2015).

Anti-inflammatory properties

Molecular mechanisms of the anti-inflammatory action of rhubarb-derived substances involve the inhibition of the nuclear factor kappa B (NFκB)-dependent pro-inflammatory pathways. In human umbilical vein endothelial cells (HUVECs), an aqueous extract from *R. rhabarbarum* suppressed the tumor necrosis factor α-induced activation of NF-κB-p65 as well as the expression of adhesion molecules (ICAM-1 and VCAM-1) and the monocyte chemoattractant protein-1 (MCP-1) (Moon et al. 2006). The rhizome-derived stilbenes (rhapontigenin, piceatannol and resveratrol), their derivatives (rhaponticin 2''-O-gallate, rhaponticin 6''-O-gallate) and a naphthalene glucoside (torachrysone 8'-O-β-D-glucopyranoside) were found to reduce NO production in macrophages (Matsuda et al. 2000). Other studies on macrophages demonstrated that also aloes-edomin was able to suppress the pro-inflammatory response (Hu et al. 2014). According to available reports, stilbenes isolated from rhizomes of this plant may impair an allergy-induced inflammatory response (Matsuda et al. 2015).
et al. 2004). Rhapontigenin was described as an inhibitor of hyaluronidase (HYAL) activity, histamine release from mast cells and passive cutaneous anaphylaxis reaction (Kim et al. 2000). Desoxyrhapontigenin displayed anti-inflammatory properties in vitro and in vivo. It may be also a natural regulator/stimulator of activity of the hemeoxygenase-1 enzyme (HO-1), an important anti-inflammatory, antioxidant and cytoprotective enzyme (Joo Choi et al. 2014). It is believed that the anti-inflammatory and anti-osteoporosis effects of desoxyrhapontigenin are through its inhibitory action on the receptor activator of NF-κB ligand (RANKL) (Tran et al. 2018).

Outcomes of in vitro examinations of anti-inflammatory properties of the isolated compounds (mainly stilbenes and their derivatives) and extracts from the R. rhabarbarum plant have been summarized in the Table 4. Besides aforementioned works, anti-inflammatory properties of extracts derived from R. rhabarbarum have been also found in animal and clinical studies. The suppression of toll-like receptor 4 pathway by rhein (100 mg/kg b.w.) was demonstrated in an animal model of the lipopolysaccharide (LPS)-induced intestinal injury during sepsis (Zhang et al. 2015b). In a randomized clinical trial involving 120 patients with appendectomy, the therapy (twice a day) with an ointment containing 1 mg/g of R. rhabarbarum rhizome extract (methanol/water; 1:1, v/v) significantly reduced inflammation and improved the sutures healing process. Complementary experiments in this study indicated on HUVECs indicated on pro-angiogenic activity of the examined rhubarb extract (at concentrations of 5 and 10 mg/ml) (Li et al. 2016).

Table 4 In vitro evidence of anti-inflammatory activities of R. rhabarbarum-derived substances

The examined substances	Experimental model of inflammatory response	Main findings	References
R. rhabarbarum-derived stilbenes	Antigen-stimulated RBL-2H3 cells	Inhibition of RBL-2H3 cell degranulation and secretion of TNF-α and IL-4; 3,5,4'-trimethylpiceatannol (IC₅₀ = 2.1 μM) and trimethylresveratrol (IC₅₀ = 5.1 μM) most effective. Piceatannol, 3,5,4'-trimethylpiceatannol, resveratrol, and trimethylresveratrol suppressed TNF-α and IL-4 release.	Matsuda et al. (2004)
Rhapontigenin, piceatannol, resveratrol, rhapsotinic 2'-O-gallate, rhapsotinic 6'-O-gallate, and torachrysone 8-O-β-D-glucopyranoside	Lipopolysaccharide-activated macrophages	Reduction of the NO generation	Matsuda et al. (2000)
Desoxyrhapontigenin	RAW 264.7 macrophages	Stimulation of the DNA binding of Nrf2; increased expression of antioxidant proteins and enzymes (regulated by Nrf2)	Joo Choi et al. (2014)
Rhapsotigenin	HYAL inhibitory assay	Inhibition of HYAL activity: IC₅₀ = 0.14 mM; IC₅₀ for sodium cromoglycate was 15.2 mM	Kim et al. (2000)
Aloe-emodin	RAW 264.7 macrophages	Reduction of NO generation as well as interleukin-6 and -1β (IL-6 and IL-1β) synthesis and secretion	Hu et al. (2014)
Cardioprotective properties

In most cases, cardioprotective effects of plant-derived substances are primarily attributed to their antioxidant and/or anti-inflammatory actions, even though, the biological activity of many natural substances evidently goes beyond these mechanisms. Due to a complex and multifactorial character of etiology and pathophysiology of cardiovascular disorders, research on modern prophylactic and therapeutic strategies encompasses a wide range of aspects related to these diseases. In addition to antioxidant and anti-inflammatory effects, the cardioprotective properties of natural substances include antiplatelet and anticoagulant effects, vasorelaxation and improvement of the blood lipid profile. A hypolipidemic activity of R. rhaponticum fibre was evidenced in animals maintained on the high-cholesterol diet (Basu et al. 1993) and in hypercholesterolemic human subjects in studies involving 10 hypercholesterolemic men, consuming a daily dose of 27 g of rhubarb stalk fibre, for 4 weeks. The fibre had also an ability to bind bile acids (Goel et al. 1997) and displayed stimulatory effects on the expression of the cholesterol 7α-hydroxylase gene and excretion of bile acids in mice (Goel et al. 1999). Although the hypolipidemic action of rhubarb was originally attributed to the presence of pectins based on their well-known cholesterol-lowering properties (Fernandez 1995; Fernandez et al. 1992), later works demonstrated that also stilbene compounds, i.e. rhapontin and rhapontigenin might improve the lipid profile. In rats fed a high-cholesterol diet, an intake of these compounds (1–5 mg/kg/day) resulted in a dose-dependent decline of the serum lipid level and a considerable increase of the high-density lipoprotein (HDL) cholesterol level. Additionally, pathological changes in the degenerating fatty liver were significantly reduced by a treatment with either rhaponticin or rhapontigenin (Jo et al. 2014). However, no such promising effects of the rhubarb-fibre diet were found in an experimental model of diabetic rats (treated with 50 g of the rhapontic rhubarb stalk fibre/kg b.w.) (Cheema et al. 2003).

Similarly to lipid-lowering properties of rhapontic rhubarb, also R. rhabarbarum showed a cardioprotective potential. The current state of art in this field includes results from in vitro and animal studies, and most of the available data complement each other. It has been found that this plant contains natural inhibitors of the soluble epoxide hydrolase (sEH) enzyme, which is one of the important molecular targets for the therapy of cardiovascular diseases. Preliminary analyses employing a recombinant human sEH demonstrated the following degrees of its inhibition: 49.8%, 107%, 30% and 39%, by the methanol extract, n-hexane, chloroform, and butanol fractions from R. rhabarbarum (at 25 μg/ml), respectively. Further experiments revealed that the individual rhubarb-derived compounds modulated the sEH activity by diverse mechanisms. While piceatannol 3’-O-β-D-glucopyranoside was a competitive inhibitor of the enzyme, resveratrol, desoxyrhapontigenin, desoxyrhaponticin, rhaponticin, isorhapontin, astringin, chrysophanol-8-O-β-D-glucopyranoside and aloe-emodin acted as mixed-type inhibitors. Rhapontigenin and emodin were noncompetitive inhibitors of sEH. The strongest inhibitory effect was found for astringin (IC50 = 2.5 ± 0.5 μM), and the weakest one of the inhibitors was desoxyrhaponticin (IC50 = 53.2 ± 4.4 μM) (Jo et al. 2016). The anti-obesity and hypolipidemic effects of R. rhabarbarum-derived substances were found in vitro and in vivo. A hot water extract from this plant was found to inhibit protein tyrosine phosphatase 1B (PTP1B), an important regulator of the insulin signalling (Lee et al. 2010). Studies in high-fat diet-fed mice revealed the metabolism-regulatory activity of rhubarb extracts and its anthraquinone components, i.e. chrysophanol and physcion. The extract, at one daily dose of 100 mg/kg of b.w., administered for 8 weeks modulated the lipid metabolism in animals (including a stimulation of adiponectin synthesis) and significantly reduced the increase of body weight. In additional experiments, the isolated anthraquinones (30 μM) inhibited PTP1B activity and enhanced the insulin sensitivity in serum-starved 3T3L1 cells (Lee et al. 2012b).

Some basic information on anti-thrombotic activity of R. rhabarbarum stilbenes is available as well. Desoxyrhapontigenin and rhapontigenin (100–200 μM) inhibited the arachidonic acid- or collagen-induced aggregation of blood platelets in vitro, but no antiplatelet action was recorded for piceatannol (Ko et al. 1999). Besides the aforementioned effects, anti-diabetic and vasorelaxant activities of R. rhabarbarum are postulated. An in vitro screening of the α-glucosidase inhibitory activity of extracts from twenty four plants, suggests that aerial parts of R. rhabarbarum contain moderate inhibitors of this
enzyme. The methanol extracts from peel and the peeled stalks inhibited the enzyme with IC$_{50}$ values of 0.013 and 4.94 mg/ml, whereas for the ethyl acetate extracts, the IC$_{50}$ amounted 0.24 and 0.21 mg/ml, respectively. For a comparison, the strongest inhibitor in this study (i.e. the methanol extract from Cinnamomum zeylanicum) was characterized by the IC$_{50}$ = 0.009 mg/ml (Kongstad et al. 2015). However, the latest study on α-glucosidase inhibitory activity of phytochemicals isolated from _R. rhabarbarum_ has provided diverse results. The IC$_{50}$ values for the most of the isolates exceeded 100 μM; however, the inhibitory actions of δ-viniferin (IC$_{50}$ = 0.5 μM, i.e. 0.23 μg/ml) and raphontigenin (IC$_{50}$ = 15.4 μM, i.e. 3.97 μg/ml) exceeded the efficiency of acarbose (IC$_{50}$ = 126.8 μM, i.e. 81.8 μg/ml), a well-known inhibitor of this enzyme (Ha et al. 2020).

Desoxyrhapontigenin, emodin and chrysophanol isolated from rhizomes of _R. rhabarbarum_ influenced the glucose metabolism in vivo. At oral doses of 0.21 (desoxyrhapontigenin), 0.45 (emodin) and 0.18 (chrysophanol) mg/kg b.w., these compounds reduced the postprandial hyperglycemia in animals by 35.8, 29.5, and 42.3%, respectively (Choi et al. 2005). Among seven stilbene-type compounds from the rhubarb rhizome (i.e. desoxyrhapontigenin, piceid, piceatannol, resveratrol, raphontigenin, raphonticin and ε-viniferin), the strongest vasorelaxation of the isolated rat aorta was observed after the treatment with piceatannol (EC$_{50}$ = 2.4 μM) (Yoo et al. 2007). It is suggested that molecular mechanisms of the piceatannol-induced vascular relaxation involve the endothelium-dependent nitric oxide signalling pathway, including the activation of the large conductance, Ca$^{2+}$-activated K$^+$ channels (BKCa) (Oh et al. 2007). In vitro vasodilatory properties (also mediated by the endothelium-dependent NO/cGMP pathway) in rat aorta preparations were observed for an aqueous extract of _R. rhabarbarum_ rhizomes (Moon et al. 2006). Moreover, both the vasorelaxant and anti-inflammatory effects of this extract were confirmed in vivo, in atherogenic diet-fed rats. The treatment with rhubarb extracts resulted in significant antatherogenic effects, including a reduction of low-density lipoprotein-cholesterol and an increase of the HDL-cholesterol in blood plasma. The extracts suppressed the atherogenic diet-induced expression of the vascular NF-κB-p65, adhesion molecules (ICAM-1 and VCAM-1) and E-selectin in the examined animals (Moon et al. 2008). Inhibitory effects of _R. rhaponticum_ stilbenes and their derivatives on functions of the cell adhesion molecules (CAMs) were also described in other papers, which hypothesized that the biological activity of rhubarb-derived substances may be a base for development for new therapeutic strategies (Lee et al. 2012a; Spelman et al. 2011).

Anticancer activity

Both the stilbene (Sirerol et al. 2016) and anthraquione (Özenver et al. 2018) components of plant extracts display chemopreventive and antitumor properties; however, the anticancer action of the rhubarb-derived extracts has been evaluated hitherto only in vitro. A methanol extract from _R. rhabarbarum_ (at concentrations of 70–350 μg/ml) mediated cancer cell death through the activation of the intrinsic (mitochondria-dependent) apoptotic pathway in human adenocarcinoma gastric (AGS) cells (Hong et al. 2015). The exposure of these cells to aloe-emodin or chrysophanol 1-O-β-D-glucopyranoside increased the poly(ADP-ribose)polymerase (PARP) cleavage and induced downregulation of the anti-apoptotic protein, Bcl-2. Additionally, chrysophanol 1-O-β-D-glucopyranoside slightly stimulated the expression of pro-apoptotic proteins such as Bid and Bax (Trinh et al. 2019). In the MCF-7 human breast cell line, aloe-emodin and raphontigenin induced the mitochondria-independent apoptosis (mediated by the caspase-8 pathway), while chrysophanol 1-O-β-D-glucopyranoside, acted by the mitochondria-dependent apoptotic pathway (Lee et al. 2018). In the same experimental model, the induction of cancer cell apoptosis was also found for desoxyrhapontigenin. Its anticancer effect was through a dilation of endoplasmic reticulum (ER) and up-regulation of the expression of ER stress markers such as a chaperone protein GRP78, inositol-requiring kinase 1α (IRE1α), eukaryotic translation initiation factor 2 (eIF2α), C/EBP homologous protein (CHOP) as well as JNK and p38 kinases (Venkatesan et al. 2016). Furthermore, a hexane extract from _R. rhabarbarum_ (20–60 μg/ml) significantly decreased the growth and viability of cancer cells and induced apoptosis in the HN22 and SCC15 oral cancer cell lines (Choi et al. 2011).

In the case of _R. rhaponticum_, the available literature comprises a small number of reports strictly related to anticancer action of the extracts, including a
few mechanistic studies on this issue. The vast majority of data derives from studies on estrogenic properties of this plant; the hormone-like action is believed to be a molecular basis of cancer-preventive or anticancer effects of *R. rhaponticum*. A *R. rhaponticum* extract and its components were found to bind to ERβ in various highly specific cancer cells such as human bone osteosarcoma (U2OS) and human endometrial adenocarcinoma (HEC-1B) cell lines (Kaszkine-Bettag et al. 2008a, b; Möller et al. 2007). In contrast, neither the extract nor its compounds and their metabolites (resveratrol and piceatannol) were able to activate the ERα receptor (Kaszkine-Bettag et al. 2008a, b; Möller et al. 2007). Additional source of data may be works on anticancer action of individual compounds (not isolated from *R. rhabarbarum*), but occurring also in these plants. Among others, such studies were described for piceatannol (Banik et al. 2020).

Antimicrobial and antiviral activities

It is assumed that *R. rhaponticum* and *R. rhabarbarum* contain antimicrobial substances that are active, at least, towards some pathogens (for details, see the Table 6 in supplementary material). The antiviral properties of rhubarbs have been described to a much lesser extent (Nurbaulina et al. 2009). However, despite some encouraging results, the pharmacological significance of antimicrobial action of rhubarbs is difficult to estimate, and main concerns are related to the lack of in vivo examinations. Furthermore, in many cases, beneficial effects were observed only at high, physiologically unachievable concentrations. On the other hand, it is known that various plant preparations are used externally, e.g. onto wounds, burns or ulcers. In these cases, also higher doses of bioactive substances may be clinically useful, if only, the necessary in vivo tests are done.

A comparative assessment of antibacterial actions of the rhizome and roots extracts, prepared from *R. rhaponticum*, *R. palmatum* and *R. rhabarbarum* demonstrated that all of the examined crude extracts (96% ethanol; v/v), were more efficient against the Gram-positive bacteria than those Gram-negative. The most effective one was the preparation from *R. rhabarbarum* (the minimum inhibitory concentration (MIC) = 125-250 μg/ml), but its activity was significantly weaker, compared to gentamicin and cefuroxime. In the case of these antibiotics, the MIC values for reference strains of *Staphylococcus* spp. ranged from 0.12 to 0.49 μg/ml and from 0.49 to 0.98 μg/ml, for gentamicin and cefuroxime, respectively (Kosikowska et al. 2010). Even an infusion from *R. rhaponticum* was found to display antimicrobial effects, though, its activity was weaker than chloramphenicol, a reference bacteriostatic agent (Raudsepp et al. 2013). A screening of antimycobacterial activities of *R. rhaponticum* root extract and its bioactive components such as rhaponticin, desoxyrhaponticin, resveratrol, barbaloin, aloe-emodin and chrysophanol revealed that the anthracene compounds were the most efficient (the MICs ranged between 32 and 64 μg/ml). However, no antimicrobial effects were found for the petiole extract (Smolarz et al. 2013b). Another study evidenced antibacterial properties of the crude, ethyl acetate and aqueous extracts originating from rhabontic rhubarb (Ziad et al. 2011).

Tests employing seventeen bacterial and one fungal strain (Table 6 in supplementary material) revealed antimicrobial activity of the ethanol extract from the underground organs of *R. rhabarbarum* (Canli et al. 2016). An extract from the petioles was found to possess bacteriostatic, but not bactericidal properties against ATCC strains of *S. aureus*, *S. epidermidis*, *K. pneumoniae*, *P. aeruginosa* and *E. coli* (the MICs ranged from 700 to 900 μg/ml) (Pájaro et al. 2018). Surprisingly, in other comparative studies, based on antimicrobial actions of various extracts and freshly pressed plant juice from different species, the *R. rhabarbarum* preparations had moderate or weak antibacterial properties, except the water extract, which was an efficient inhibitor of growth of two Gram-positive bacteria, i.e. *Bacillus subtilis* and *Bacillus cereus* (Krisch et al. 2008).

Since the therapy of gastrointestinal disorders is one of the ethnomedical recommendations for use *R. rhaponticum*, extracts from this plant were tested in terms of anti-*Helicobacter pylori* activity. Nevertheless, literature dealing with antimicrobial properties of this plant has not confirmed its pharmacological efficiency in combating *H. pylori* (Cogo et al. 2010). It seems to that the use of rhubarb-derived substances for disease-preventive purposes, e.g. for maintaining oral hygiene and dental health, can be more promising. Traditionally, the *R. rhabarbarum* root-based preparations have been used for the treatment of dental diseases, and current studies on its inhibitory action on
the dental plaque formation or glycolytic acids production by *Streptococcus mutans* and *Streptococcus sobrinus* confirmed a protective effect of this plant in dental hygiene (Kim et al. 2011). Rhein, one of the anthraquinone components of *R. rhabarbarum* and *R. rhaponticum* roots, displays an ability to combat *Porphyromonas gingivali*, a Gram-negative periodontopathogen, and thus, it is considered potentially useful in maintaining of oral health (Chinsembu 2016). Moreover, it has been demonstrated that rhein may act synergistically with a nitroimidazole antibiotic, metronidazole (Azelmat et al. 2015).

Other biological activities

Hydroxystilbenes isolated from the roots of *R. rhaponticum* displayed hepatoprotective effects in mice exposed to ethanol inhalation. Animals were treated with trans-resveratrol (20 mg/kg b.w.) or received a hydroxystilbene-containing *R. rhaponticum* extract (air-dried root in ethanol, 1:10 w/v), administered to an equivalent of the trans-resveratrol dose of 20 mg/kg b.w. (Raal et al. 2009).

A methanolic extract from *R. rhaponticum* rhizome inhibited the tyrosinase activity in UV radiation-stimulated human epidermal melanocytes at very low concentrations. According to the authors, inhibitory effects of the examined rhubarb were comparable to the efficiency of kojic acid (IC$_{50}$ = 0.06 µg/ml and 0.02 µg/ml, for the extract and kojic acid, respectively). Additionally, a significant reduction of both the UV-induced secretion of cytokines (IL-1α and TNF-α) and the alpha-melanocyte stimulating hormone (α-MSH) synthesis was found (Silveira et al. 2013).

Advances in studies on *R. rhaponticum* and *R. rhabarbarum*: current state of art

The described rhubarb species contain bioactive phytochemicals with some health-promoting or therapeutic potential. However, only the estrogenic activity of *R. rhaponticum* has been well established in preclinical studies and clinical trials (data summarized in the Table 3), while other activities of this plant have been mainly evidenced by basic studies. Thus, most of the other curative uses of rhapontic rhubarb is still based on ethnomedicinal recommendations. Similar concerns are related to *R. rhabarbarum*—also in this case, results from in vitro works prevail and are supported only by few animal studies. A cross-search in scientific sources and medical databases such as NIH U.S. National Library of Medicine (i.e. ClinicalTrials.gov and PubMed) and SpringerLink indicated that at least several clinical trials including a word “rhubarb” have been registered, but no records containing “rhabarbarum” or “undulatum” were found. In other scientific resources, only one clinical study on wound-healing and anti-inflammatory properties of *R. rhabarbarum* was found (Li et al. 2016).

One of recent trends in research on rhubarb extracts is their use as pharmacophores. Modern strategies are particularly focused on ecofriendly nanosize materials, produced during the greener synthesis/the green chemistry processes (Kharissova et al. 2019). Such attempts have been successfully undertaken with other substances of plant origin (Park et al. 2016; Saw et al. 2019). The *R. rhabarbarum*-based silver nanoparticles were found to possess significant antibacterial activity both against *E. coli* (CCM 4517) and *Staphylococcus aureus* (CCM 4516). Additionally, these particles displayed a dose-dependent anti-cancer effect in human epithelial carcinoma (HeLa) cell line (Palem et al. 2016, 2018).

Conclusions

Rheum rhaponticum and *Rheum rhabarbarum* are popular edible plants, commonly cultivated in different regions of the world. A wide range of biological activities of these species has been evidenced by numerous in vitro and several in vivo studies. Both of these species constitute interesting sources of biologically active compounds with health-promoting or therapeutic potential. However, the current knowledge of physiological effects and pharmacological efficacy of these rhubarbs remains incomplete. Therefore, further, more advanced studies (including clinical trials) on pharmacological activity of these rhubarb species are needed.

Acknowledgements This work was supported by the National Science Centre (NCN; UMO-2018/31/B/NZ9/01238). The authors would like to thank Piotr Chabrzyk, M.A., for consultation of historical sources.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agarwal SK, Singh SS, Lakshmi V, Kumar S (2001) Chemistry and pharmacology of rhubarb (Rheum species)—a review. J Sci Ind Res 60(1):1–9

Azelmat J, Larente JF, Grenier D (2015) The anthraquinone rhein exhibits synergistic antibacterial activity in association with metronidazole or natural compounds and attenuates virulence gene expression in Porphyromonas gingivalis. Arch Oral Biol 60(2):342–346

Babulka P (1993) Evaluation of medicinal plants used in Hungarian ethnomedicine, with special reference to the medicinally used food plants. Médicaments et aliments. L’approche ethnomédiicale 1:129–139

Banik K, Ranaware AM, Choudhary H, Thakur N, Girisa S, Deshpande V, Fan L, Nalawade SP, Sethi G, Kunnumakkara AB (2020) Piceatannol: a natural stilbene for the prevention and treatment of cancer. Pharm Res. https://doi.org/10.1007/s11095-020-02435-9

Basu TK, Ooraikul B, Garg M (1993) The lipid lowering effects of rhubarb stalk fibre: a new source of dietary fibre. Nutr Res 13:1017–1024

Canli K, Yetgin A, Akata I, Murat Altun器 E (2016) In vitro antimicrobial activity screening of Rheum rhabarbarum roots. Int J Pharm Sci Lett 5:1–4

Cao YJ, Pu ZJ, Tang YP, Shen J, Chen YY, Kang A, Zhou GS, Duan JA (2017) Advances in bioactive constituents, pharmacology and clinical applications of rhubarb. Chinese Med. https://doi.org/10.1186/s13020-017-0158-5

Chang J-L, Montalto MB, Heger PW, Thiemann E, Rettenberger R, Wacker R (2016) Rheum rhaponticum extract (ERr 731): postmarketing data on safety surveillance and consumer complaints. Integr Med (Encinitas) 15(3):34–39

Cheema SK, Goel V, Basu TK, Agellon LB (2003) Dietary rhubarb (Rheum rhabarbarum) stalk fibre does not lower plasma cholesterol levels in diabetic rats. Br J Nutr 89(2):201–216

Chinsensub KC (2016) Plants and other natural products used in the management of oral infections and improvement of oral health. Acta Trop 154:6–18

Choi SZ, Lee SO, Jang KU, Chung SH, Park SH, Kang HC, Yang EY, Cho HJ, Lee KR (2005) Antidiabetic stilbene and anthraquinone derivatives from Rheum undulatum. Arch Pharm Res 28:1027–1030

Choi ES, Cho SD, Jeon JG, Cho NP (2011) The apoptotic effect of the hexane extract of Rheum undulatum L. in oral cancer cells through the down-regulation of specificity protein 1 and survivin. Lab Anim Res 27(1):19–24

Cogo LL, Bastos Monteiro CL, Dallarmi Miguel M, Gomes Miguel O, Machado Cunico M, Lima Ribeiro M, Ramalho de Camargo E, Botao Kussen GM, da Silva Nogueira K, Dalla Costa LM (2010) Anti-Helicobacter pylori activity of plant extracts traditionally used for the treatments of gastrointestinal disorders. Braz J Microbiol 41:304–309

Dandekar M, Deshpande K (2016) Breast cancer and use of alternative medicine: a mini review. Res J Pharm Pharm Sci 5:115–119

Debnath M, Malik CP, Bison PS (2006) Micropropagation: a tool for the production of high quality plant-based medicines. Curr Pharm Biotechnol 7(1):33–49

Dietz BM, Hajirahimkhani A, Dunlap TL, Bolton J (2016) Botanicals and their bioactive phytochemicals for women’s health. Pharmacol Rev 68(4):1026–1073

Dong GZ, Lee YI, Jeong JH, Zhao HY, Jeon R, Lee HJ, Ryu JH (2015) Stilbenoids from Rheum undulatum protect hepatocytes against oxidative stress through AMPK activation. Phytother Res 29:1605–1609

Dregus M, Engel KH (2003) Volatile constituents of uncooked rhubarb (Rheum rhabarbarum L.) stalks. J Agric Food Chem 51:6530–6536

Fernandez ML (1995) Distinct mechanisms of plasma LDL lowering by dietary fibre in the guinea pig: specific effects of pectin, guar gum and psyllium. J Lipid Res 36:2394–2404

Fernandez ML, Lin EC, Trejo A, McNamara DJ (1992) Prickly pear (Opuntia sp.) pectin reverses low density lipoprotein receptor suppression induced by a hypercholesterolemic diet in guinea pigs. J Nutr 122:2330–2340

Franco HO, Chowdhury R, Troop J, Voortman T, Kunutsor S, Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563

Ghafari S, Fahimi Sh, Sahranavard Sh (2017) Plants used to treat uncooked rhubarb (Rheum rhabarbarum L.) stalks. J Agric Food Chem 51:6530–6536

Ghemadi K, Barzegar M, Khandan Shekari M, Baluch V, Mirzaee S, Mirdamadi A (2015) Stilbenoids from Rheum undulatum. Biol Pharm Bull 38(3):544–548

Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563

Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563

Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563

Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563

Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563

Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563

Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563

Kavousi M, Oliver-Williams C, Muka T (2016) Use of plant-based therapies and menopausal symptoms: a systematic review and meta-analysis. JAMA 315(23):2554–2563
rhaponticum in perimenopausal women with menopausal symptoms. Menopause 16(1):117–131

He J, Xi S, Ji M, Huang J, Zheng W, Wang J, Wang J, Zhu L (1992) Effect of rhubarb on extravascular lung water in patients with acute respiratory distress syndrome. Rev Assoc Med Bras 36(5):435–440

Heger M, Ventskovskiy BM, Borzenko I, Kneis KC, Rettenberger R, Kaszkin-Bettag M, Heger PW (2006) Efficacy and safety of a special extract of Rheum rhaponticum (ERr 731) in perimenopausal women with climacteric complaints: a 12-week randomized, double-blind, placebo-controlled trial. Menopause 13(5):744–759

Hong NR, Park HS, Ahn TS, Jung MH, Kim BJ (2015) Association of a methanol extract of Rheum undulatum L. mediated cell death in AGS cells with an intrinsic apoptotic pathway. J Pharmacop 18(2):26–32

Hörhammer L, Müller K (1954) Über das Vorkommen von

Kaszkin-Bettag M, Richardson A, Rettenberger R, Heger PW (2006) Efficacy and safety of a special extract of Rheum rhaponticum (ERr 731) in perimenopausal women with climacteric complaints: a 12-week randomized, double-blind, placebo-controlled trial. Menopause 13(5):744–759

Hong NR, Park HS, Ahn TS, Jung MH, Kim BJ (2015) Association of a methanol extract of Rheum undulatum L. mediated cell death in AGS cells with an intrinsic apoptotic pathway. J Pharmacop 18(2):26–32

Hörhammer L, Müller K (1954) Über das Vorkommen von Rutin in Rheum-Arten. Arch Pharm 287:126–128

Hu B, Zhang H, Meng X, Wang F, Wang P (2014) Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. J Ethnopharmacol 153(3):846–853

Jaric´S, Mitrovic´M, Karadzˇic´B, Kostic´O, Djurjevic´L, Pavlovic´P (2014) Plant resources used in Serbian medieval medicine. Ethnobotany and ethnomedicine. Gen Resour Crop Ev 61:1359–1379

Jo SP, Kim JK, Lim YH (2014) Antihyperlipidemic effects of rhampotin and raphontigenin from Rheum undulatum in rats fed a high-cholesterol diet. Planta Med 80:1067–1071

Jo AR, Kim JH, Yan XT, Yang SY, Kim YH (2016) Soluble epoxide hydrolase inhibitory components from Rheum undulatum and in silico approach. J Enzyme Inhib Med Chem 31:70–78

Joo Choi R, Cheng MS, Shik Kim Y (2014) Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury. Redox Biol 2:504–512

Kalisz S, Oszmiński J, Koliñak-Ostek J, Grobelna A, Kieliszek M, Cendrowski A (2020) Effect of a variety of polyphenols compounds and antioxidiant properties of rhubarb (Rheum rhabarbarum). LWT-Food Sci Technol 118:108775. https://doi.org/10.1016/j.lwt.2019.108775

Kalpana D, Velmurugan N, Wahab R, Cho JY, Hwang IH, Lee YS (2012) GC-MS analysis and evaluation of antimicrobial, free radical scavenging and in vitro cytotoxic activities of the methanolic extract of Rheum undulatum. Sci Adv Mater 4:1238–1246

Kaszkin-Bettag M, Beck S, Richardson A, Heger PW, Beer AM (2006) Efficacy and safety of a special extract of Rheum rhaponticum (ERr 731) in perimenopausal women with menopausal symptoms. Altern Ther Health Med 15(1):24–34

Keiler AM, Papke A, Kretzschmar G, Zierau O, Vollmer G (2012) Long-term effects of the rhapontic rhubarb extract ERr 731® on estrogen-regulated targets in the uterus and on the bone in ovariectomized rats. J Steroid Biochem Mol Biol 128(1–2):62–68

Kharissova OV, Kharisov BI, OlivaGonzález CM, Méndez YP, López I (2019) Greener synthesis of chemical compounds and materials. R Soc Open Sci 6(11):191378. https://doi.org/10.1098/rsos.191378

Kim DH, Park EK, Bae EA, Han MJ (2000) Metabolism of rhaponticin and chrysophanol 8-O-beta-D-glucopyranoside from the rhizome of Rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biol Pharm Bull 23(7):830–833

Kim JE, Kim HJ, Pandit S, Chang KW, Jeon JG (2011) Inhibitory effect of a bioactivity-guided fraction from Rheum undulatum on the acid production of Streptococcus mutans biofilms at sub-MIC levels. Fitoterapia 82(3):352–356

Kim H, Song M-J, Heldenbrand B, Kyoungho C (2014) A comparative analysis of ethnomedicinal practices for treating gastrointestinal disorders used by communities living in three national parks (Korea). Evid-Based Complement Altern Med 2014:108037. https://doi.org/10.1155/2014/108037

Kim SK (2000) A new stilbene diglycoside from Rheum undulatum. Arch Pharm Res 23(2):159–162

Ko SK, Lee SM, Whang WK (1999) Anti-platelet aggregation activity of stilbene derivatives from Rheum undulatum. Arch Pharm Res 22(4):401–403

Komatsu K, Nagayama Y, Tanaka K, Ling Y, Cai SQ, Omote T, Meselhy MR (2006) Comparative study of chemical constituents of rhubarb from different origins. Chem Pharm Bull (Tokyo) 54(11):1491–1499

Kongstad KT, Özdemic C, Barzak A, Wubshet SG, Staerk D (2014) Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of anti diabetic principles in crude plant extracts. J Agric and Food Chem 63(8):2257–2263

Kosikowska U, Smolarz HD, Malm A (2010) Antimicrobial activity and total content of polyphenols of Rheum L. species growing in Poland. Cent Eur J Biol 5(10):5553–5565

Krafczyk N, Köte M, Lehnert N, Glomb MA (2008) Phenolic composition of rhubarb. Eur Food Res Technol 228:187–196

Krisch J, Galgóczi L, Tölgyesi M, Papp T, Vágvolgyi C (2008) Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta Biol Szeged 52(2):267–270

Lachumy SJ, Oon CE, Deivanai S, Saravanan D, Vijayarathna S, Choong YS, Yeng C, Latha LY, Sasidharan S (2013) Herbal remedies for combating irradiation: a green antiirradiation approach. Asian Pac J Cancer Prev 14(10):5553–5565

Lee W, Kim SN, Yoon G (2010) Screening and medicinal herbs for inhibitory activity against protein tyrosine phosphatase 1B. Korean J Pharmacoogn 41:227–231
Lee SW, Hwang BS, Kim MH, Park CS, Lee WS, Oh HM, Rho MC (2012a) Inhibition of LFA-1/ICAM-1-mediated cell adhesion by stilbene derivatives from *Rheum undulatum*. Arch Pharm Res 35(10):1763–1770

Lee W, Yoon G, Hwang YR, Kim YK, Kim SN (2012b) Anti-obesity and hypolipidemic effects of *Rheum undulatum* in high-fat diet-fed C57BL/6 mice through protein tyrosine phosphatase 1B inhibition. BMB Rep 45(3):141–146

Lee D, Park S, Choi S, Kim SH, Kang KS (2018) In vitro estrogenic and breast cancer inhibitory activities of chemical constituents isolated from *Rheum undulatum* L. Molecules. https://doi.org/10.3390/molecules23051215

Li Y, Sun Y, Ma H, Chen X, Liu J (2016) *Rheum rhubarbarum* extract promotes healing of the incision through relieving inflammation and stimulating angiogenesis. Pak J Pharm Sci 29:1437–1441

Li JY, Cao H-Y, Sun L, Sun RF, Wu C, Bian Y-Q, Dong S, Liu M (2005) Herbarz polski, to iest o przyrodzeniv zioł y drzew rozmaitych, y innych rzeczy do lekarztw naleza˛cych. Drukarnia Łazarzowa, Krako´w

Mamedov N, Gardner Z, Craker LE (2008) Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plants 11:191–222

Marcin z Urzędowa (1595) Herbarz polski, to iest o przyrodzeniv zioł y drzew rozmaitych, y innych rzeczy do lekarztw naleza˛cych. Drukarnia Łazarzowa, Krako´w

Matsuda H, Kageura T, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2000) Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorg Med Chem Lett 10:323–327

Matsuda H, Tewtrakul S, Morikawa T, Yoshikawa M (2004) Anti-allergic activity of stilbenes from *Rheum rhaponticum* (Rheum undulatum L.): structure requirements for inhibition of antigen-induced degranulation and their effects on the release of TNF-alpha and IL-4 in RBL-2H3 cells. Bioorg Med Chem 12(18):4871–4876

McDougall GJ, Dobson P, Jordan-Mahy N (2010) Effect of different cooking regimes on rhubarb polyphenols. Food Chem 119:758–764

Möller F, Zierau O, Jandausch A, Rettenberger R, Kaszkin-Bettag M, Vollmer G (2009) Subtype-specific activation of estrogen receptors by a special extract of *Rheum rhabarbarum* (ER731®), its aglycones and structurally related compounds in U2OS human osteosarcoma cells. Phytomedicine 14:716–726

Moon MK, Kang DG, Lee JK, Kim JS, Lee HS (2006) Vasodilatory and anti-inflammatory effects of the aqueous extract of rhubarb via a NO-cGMP pathway. Life Sci 78(14):1550–1557

Moon MK, Kang DG, Lee AS, Yeom KB, Kim JS, Lee HS (2008) Anti-allergic effects of the aqueous extract of rhubarb in rats fed an atherogenic diet. Am J Chin Med 36(3):555–568

Nedelcheva A (2009) Plants related to the life and medicinal practice of St. Ivan Rilski. Plants and culture: seeds of the cultural heritage of Europe. Edipuglia, Santo Spirito (Bari)

Nurbaulina EB, Malvlydova NM, Saltan Yakhina SK (2009) *Rheum rhaponticum* pharmacology. Med J Western Kazakhstan 4(24):12–17

Oh KS, Ryu SY, Kim YS, Lee BH (2007) Large conductance Ca2+/-activated K+ (BKCa) channels are involved in the vascular relaxations elicited by piceatannol isolated from *Rheum undulatum* rhizome. Planta Med 73(14):1441–1446

Oskay M, Karayildirim T, Ay E, Ay K (2010) Determination of some chemical parameters and antimicrobial activity of traditional food: mesir paste. J Med Food 13(5):1195–1202

Özenver N, Saeed M, Demirezer LO, Effert T (2018) Aloe-emodin as drug candidate for cancer therapy. Oncotarget 9(25):17770–17796

Pajaro NP, Granados Conde C, Torrenegra Alarcon ME (2018) Actividad antibacteriana del extracto etanólico del peciolo de *Rheum rhubarbarum*. Rev. Colombo Cienc Químico-Farmacéuticas 47(1):26–36

Palem RR, Ganesh SD, Saha N, Zandraa O, Saha P (2016) Ecofriendly synthesis of silver nanoparticles from garden rhubarb (Rheum rhubarbarum). J Nanotechnol. https://doi.org/10.1155/2016/4964752

Palem RR, Ganesh SD, Kronekova Z, Sláviková M, Saha N, Saha P (2018) Green synthesis of silver nanoparticles and biopolymer nanocomposites: a comparative study on physico-chemical, antimicrobial and anticancer activity. Bull Mater Sci 41:55. https://doi.org/10.1007/s12034-018-1567-5

Papke A, Kretzschmar G, Zierau O, Kaszkin-Bettag M, Vollmer G (2009) Effects of the special extract EEr 731 from *Rheum rhabarbarum* on estrogen-regulated targets in the uterotrophy model of ovariecctomized rats. J Steroid Biochem Mol Biol 117(4–5):176–184

Park SM, Lee GW, Cho YH (2008) Effect of *Rheum undulatum* extract on antioxidant activity and activity of matrix metalloproteinase-1 in human skin fibroblasts. J Life Sci 18:1700–1704

Park S, Cha SH, Cho I, Park S, Park Y, Cho S, Park Y (2016) Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater Sci Eng C 58:1160–1169

Park S, Kim YN, Kwak HJ, Jeong EL, Kim SH (2018) Estrogenic activity of constituents from the rhizomes of *Rheum undulatum* Linné. Bioorg Med Chem Lett 28:552–557

Pieroni A, Gray C (2008) Herbal and food folk medicines of the Russlanddeutschen living in Künzelsau/Tälacker, South-Western Germany. Phytother Res 22:889–901
Zhang K, Jiao XF, Li JX, Wang XW (2015a) Rhein inhibits lipopolysaccharide-induced intestinal injury during sepsis by blocking the toll-like receptor 4 nuclear factor-kB pathway. Mol Med Rep 12(3):4415–4421

Zhang L, Liu H, Qin L, Zhang Z, Wang Q, Zhang Q, Lu Z, Wei S, Gao X, Tu P (2015b) Global chemical profiling based quality evaluation approach of rhubarb using ultra performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry. J Sep Sci 38(3):511–522

Ziad D, Elias A, Roula A-M (2011) Antibacterial activity of Rheum rhaponticum, Olea europea, and Viola odorata on ESBL-producing clinical isolates of Escherichia coli and Klebsiella pneumonia. Int J Pharm Sci Res 2(7):1669–1678

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.