Metabolome heterogeneity in the isolates of entomopathogenic fungus, *Beauveria bassiana* (Balsamo) Vuillemin

P. R. NITHYA1, S. MANIMEGALAI1, S. NAKKEERAN2, S. MOHANKUMAR3 and S. JAYARAJAN NELSON4

1Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu, India
2Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu, India
3Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu, India
Corresponding author E-mail: menitz91@gmail.com, manimegalaiento@gmail.com

ABSTRACT: Entomopathogenic fungi are known to produce a multitude of low molecular weight secondary metabolites involved in different biological processes including fungal development, intercellular communication and interaction with other organisms in complex niches. In the present investigation, heterogeneity in metabolome profile of three isolates of *Beauveria bassiana* viz., MH590235 (TM), MK918495 (BR) and KX263275 (BbI8) were analyzed through GC-MS. Distinct differences in metabolite profile of the isolates were observed. A total of 63 metabolites were detected from all the isolates combined. Metabolites, 5-Oxotetrahydrofuran-2-carboxylic acid and undecane were found to be specific to BR isolate. Macrocyclic gamma lactones were detected in culture filtrates of BR and BbI8, oleic acid and hexadecanoic acid in TM and BR. An insecticidal compound, levoglucosan was detected in all the fungal isolates. Among the isolates, TM revealed higher variability in the metabolite production through PCA analysis. The metabolome of TM isolate contained compounds having several biological functions, viz., insecticidal and antimicrobial activity, lipid and fatty acid metabolisms and virulence enhancing factors.

(Article chronicle: Received: 16-07-2019; Revised: 14-11-2019; Accepted: 25-11-2019)

INTRODUCTION

Entomopathogens are considered as a promising component of Integrated Pest Management Programmes (Butt, 2001) among which fungal Biocontrol Agents (BCAs) are widely exploited in view of their broad spectrum activity and amenability for mass production. All BCAs are known for the production of enzymes and secondary metabolites responsible for pathogenicity. The cuticle degrading enzymes, viz., lipases, proteases and chitinases were targets of study from the time of discovery of mode of action of these fungal BCAs but descriptive studies on the secondary metabolite production by these agents are meagre.

Most often, the fungal BCAs secrete metabolites in extremely small quantities even under optimal conditions (Vey et al., 2001). Destruxins produced by *Metarhizium* spp. (Wahlman and Davidson, 1993), beauvericin and bassianolide by *Beauveria bassiana* (Xu et al., 2008; Xu et al., 2009), hirsutellin by *Hirsutella thompsonii* (Mazet and Vey, 1995) are the few metabolites widely studied. Little is known about the complete range of metabolites produced by most of the EPF. Though these fungi produce a wide array of bioactive compounds, the knowledge on specific role of a particular compound is lacking. Production of these metabolites may vary between genus, species and growth conditions (Kershaw et al., 1999; Amiri-Besheli et al., 2000; Wang et al., 2004).

Many studies have been conducted on virulence of several strains of *Beauveria* spp. on insect hosts, in particular, *B. bassiana* (Talaei-Hassanloui et al., 2006; Valero-Jiménez et al., 2014). Few studies demonstrated variation in host range of fungus within species and between species of *Beauveria* (Rohrlich et al., 2018). However, limited studies were carried out on the variation in metabolite profile among isolates of a particular species of fungal BCAs and hence the present study was undertaken to characterize variation in metabolite production among three isolates of *B. bassiana* grown under similar conditions.

MATERIALS AND METHODS

Cultures and growth conditions

Beauveria bassiana isolates bearing NCBI accessions MH590235, MK918495 and KX263275 were obtained from Department of Agricultural Entomology and Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India. Pure cultures of the isolates were
maintained at 28±5°C on Potato Dextrose Agar (PDA) medium for carrying out the study. Mycelial discs were cut from heavily sporulated culture plates using cork borer and inoculated into Potato Dextrose Broth (PDB) for extraction of metabolites.

Extraction of secondary metabolites

Isolates of *B. bassiana* were cultured in PDB for seven days after which culture filtrates were collected and adjusted to pH 2.0 with 37% (wt/vol) HCl. Metabolites were thrice extracted with an equal volume of ethyl acetate and the pooled ethyl acetate extracts of three biological replicates were dried using a rotary evaporator and re-suspended in HPLC grade methanol (1 ml). The extracts were then dried over Na₂SO₄ and evaporated under vacuum at 60º C to concentrate the metabolites. The metabolites were finally dissolved in HPLC grade methanol and utilized for GC-MS analysis (Strasser et al., 2000).

Gas Chromatography- Mass Spectrometry (GC-MS)

The samples were analyzed using a model Clarus SQ 8C (Perkin Elmer) equipped with a MSD detector (Perkin Elmer). The GC injector port temperature was set to 220°C, interface temperature at 250°C and source temperature was set at 220°C. The MS range was set to scan from 50 to 550 Da. The oven temperature was programmed to 75°C (hold 2 min), then to 150°C (10°C/min), then to 250°C (10°C/min). The injection volume of 1.0 μl and split ratio of 1:12 and the injector used was split less mode. Helium was used as the carrier gas in constant-flow mode of 1.0 ml/min. The DB-5 MS capillary standard non-polar column (Agilent Co., USA) with dimensions were 0.25mm OD x 0.25μm ID x 30 m length was used for analysis. The MS source was maintained at 220°C, 4.5e4 motor vacuum pressure and ionization energy was set to -70eV. The MS have inbuilt pre-filter which reduced the neutral particles. Interpretation of mass spectrum of GC-MS was done using the database of National Institute Standard and Technology (NIST14). The spectrum of the unknown component was compared with the spectrum of the known components stored in the inbuilt library.

Identification of the metabolites were performed using spectra of individual components transferred to the NIST mass spectral search programs MS Search 2.2v where they were matched against the NIST MS library. Biological function of these compounds was identified by mapping all the metabolites in the KEGG database and Metaboanalyst 2.0.

Statistical analysis

Principal Component Analysis (PCA) and heatmap construction combined with hierarchical clustering were performed using JMP software (version 14) using the data from GC-MS. Percentage area values were used as independent variables in this multivariate analysis. Metabolites were clustered using R software for heat map generation.

RESULTS AND DISCUSSION

Culture filtrates of three isolates of *B. bassiana* were extracted using ethyl acetate and the variability in metabolite profile of different isolates of *Beauveria bassiana* were assessed using GC-MS (Fig. 1, 2, 3). In the present investigation, inraspecific variation was observed in the metabolites extracted from culture filtrates of the three isolates of *B. bassiana*. 29 metabolites including alkanes, carboxylic acid derivatives, gluco pyranose and galactofuranose derivatives, unsaturated fatty acids, hexadecanoic acid derivatives were identified in TM isolate (Table 1, Fig. 1). 29 and 26 metabolites were detected in BR and BbI8 isolates mass spectrum respectively (Table 2, 3). Hyun et al. (2013) reported the presence of alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides in 70 % methanol and 100 % hexane extracts of fruiting bodies of *Cordyceps bassiana*.

PCA is a powerful tool to selectively identify the major controlling factors contributing to differences between samples. It is hence applied in the present study for the comparative visualization and interpretations of the changes in the metabolites profiles of three *B. bassiana* isolates (Ramadan et al., 2006).

PCA biplot for ethyl acetate extracts of three isolates of *B. bassiana* are presented in Figure 4. In the biplot, PCA 1 explained 52% of the variation and PCA 2 explained 33.2% of the variation. Results showed clear distinction of TM from other isolates. TM was separated alone in PC 1 while BR and BbI8 were separated from TM along PC 2. Higher levels of palmitic acid and oleic acid were obtained in TM compared to BR.

The present investigation showed distinct differences in metabolite profile of *B. bassiana* isolates (Fig. 5, 6). BR and BbI8 isolates showed similarities in the level of metabolite production (Fig. 4). An anhydrase, 1,6-anhydro-α-D-Glucopyranose (levoglucosan) was detected in all the three isolates. A gamma lactone, 5-Oxotetrahydrofuran-2-carboxylic acid was found to be present in the isolates, TM and BbI8. Syed et al. (2018) reported the insecticidal activity of levoglucosan obtained through pyrolysis of bio-oils against cutworm larvae.
Metabolome heterogeneity in the isolates of *Beauveria bassiana*

The furan metabolite, 5-Oxotetrahydrofuran-2-carboxylic acid is a derivative of bassialone, an antimicrobial secondary metabolite produced by *B. bassiana* was detected in TM isolate in the present study. However, this was absent in BR isolate which showed clear variation in metabolite profile and this may indicate reduced virulence. 2-Deoxy-2-fluoro-1,6-anhydro-α-d-glucopyranose, 3-Hydroxy-2,3-dihydromaltol, 5-Hydroxymethylfurfural, Trioxsalen, Sucrose, Octadecanoic acid and 9,12-Octadecadienoic acid (Z,Z)- were detected in all the three isolates (Table 4) but the level of production varied among the isolates in terms of per cent area. This was confirmed through correlation analysis where positive significant correlation was detected between BR and Bb18 isolates of *B. bassiana* (Table 5, Fig. 7).

The metabolome of isolate TM was completely different from the other two isolates thus revealing least similarity with the other isolates (Fig. 5). Many studies were conducted in relation to the heterogeneity of secretome of entomopathogenic fungi under different growth conditions as well as extraction methods (Smedsgaard, 1997; Hyun et al., 2013; Oh et al., 2014). de Bekker et al. (2013) studied variation in metabolite production of *Metarhizium* and *Beauveria* during infectious and saprophytic growth.

Toxicity of secondary metabolites of *B. brongniartii* against pine caterpillar, *Dendrolimus tabulaeformis* was reported by Fan et al. (2008). Secondary metabolites of *B. brongniartii* was found to disable the immune mechanisms of *D. tabulaeformis*, and kill its host (Fan et al., 2013). In the present study, the metabolome of isolate TM was completely different from the other two isolates thus revealing least similarity with the other isolates (Fig. 5). In a previous study, isolate TM registered lowest values of LC50 (2.4 x 107 conidia ml-1) and LT50 (3.62 days) compared to the BR
Table 1. GC-MS based metabolite profile of *Beauveria bassiana* TM

Sl. No	Compound Description	RT	Area (%)	Molecular weight (g/mol)	Molecular formula	Biological action	Reference
1	Cyclohexanamine, N-3-butenyl-N-methyl-	5.449	1.857	221.388	C_{15}H_{27}N	Insecticidal, repellent, antimicrobial	Ibrahim *et al.*, 2001
2	Undecane	5.674	0.348	156.31	C_{11}H_{24}	Mild sex attractant of moths, alert signal for insects	Hölldobler and Wilson, 1990
3	2-Deoxy-2-fluoro-1,6-anhydro-á-d-glucopyranose	6.275	0.761	182.15	C_{6}H_{11}FO_{3}	Cell wall synthesis	Douglas, 2001
4	3-Hydroxy-2,3-dihydromaltol	6.395	2.744	128.13	C_{6}H_{8}O_{3}	-	-
5	5-Oxotetrahydrofuran-2-carboxylic acid	7.395	1.255	130.099	C_{5}H_{6}O_{4}	Bassianolone derivative	Oller-Lopez *et al.*, 2005
6	5-Hydroxymethylfurfural	7.500	3.083	126.11	C_{6}H_{6}O_{3}	Fermentation inhibitor	Kadowaki *et al.*, 2018
7	1,3-Oxathiolane, 2-methyl-2-isopropyl-	7.795	0.686	146.250	C_{7}H_{14}OS	-	-
8	Cyclohexanone, 2-(2-butenyl)-	8.766	0.364	150.221	C_{10}H_{14}O	Antibacterial activity	Liu *et al.*, 2009
9	Sulfurous acid, cyclohexylmethyl undecyl ester	9.461	1.088	332.543	C_{18}H_{36}O_{3}S	Insecticidal	Domon *et al.*, 2018
10	1,3-Propanediol, 2-methyl-2-propyl-	9.646	0.827	132.203	C_{7}H_{16}O_{2}	Lipid metabolism	Liu *et al.*, 2015
11	Trioxsalen	9.991	0.836	228.24	C_{14}H_{12}O_{3}	Antimicrobial	Gowri *et al.*, 2011
12	Sucrose	10.832	8.207	342.297	C_{12}H_{22}O_{11}	Source for growth and spore production	Samsinakova, 1966
13	á-D-Glucopyranose, 1,6-anhydro-	11.542	0.838	162.141	C_{6}H_{10}O_{5}	Insecticidal	Syed *et al.*, 2018
14	1,6-Anhydro-á-d-galactofuranose	13.663	4.054	162.141	C_{6}H_{10}O_{5}	Cell wall component	Bernabe *et al.*, 2011
15	2-Imidazolidinethione	13.908	4.060	102.158	C_{3}H_{6}N_{2}S	-	-
16	á-D-Glucopyranose, 4-O-á-D-galactopyranosyl-	14.548	2.726	342.297	C_{12}H_{22}O_{11}	Cell wall component	Bernabe *et al.*, 2011
17	Palmitic acid	21.271	16.273	256.43	C_{16}H_{32}O_{2}	Pesticidal activity, Lipid peroxidation	Vivekanadan *et al.*, 2018
18	9,12-Octadecadienoic acid (Z,Z)-	24.447, 26.078	5.522	280.4	C_{18}H_{32}O_{2}	Fatty acid metabolism	Zhang *et al.*, 2012
19	9-Octadecenoic acid, (E)-	24.562	15.968	282.4614	C_{18}H_{34}O_{2}	Fatty acid metabolism	Brennan *et al.*, 1975
20	Octadecanoic acid	24.977	3.766	284.48	C_{18}H_{36}O_{2}	Fatty acid metabolism	Zhang *et al.*, 2012
21	Ethyl linoleate	25.332	0.379	308.4986	C_{20}H_{36}O_{2}	Fatty acid metabolism	Zhang *et al.*, 2012
22	Glycidyl palmitate	27.413	2.950	312.494	C_{19}H_{36}O_{3}	Fatty acid metabolism	Zhang *et al.*, 2012
23	Eicosanoic acid, ethyl ester	28.909	0.363	340.592	C_{22}H_{44}O_{2}	Antimicrobial activity	Suresh *et al.*, 2014
24	Butyl linoleate	29.774	1.760	336.56	C_{22}H_{40}O_{2}	Fatty acid metabolism	Zhang *et al.*, 2012
25	Glycidyl oleate	29.854	2.540	338.532	C_{21}H_{38}O_{3}	Fatty acid metabolism	Zhang *et al.*, 2012
26	1,3-Distearoylglycerol	30.204	0.436	568.924	C_{33}H_{68}O_{5}	Enhancement of virulence	Ortiz-Urquiza *et al.*, 2016
Table 2. GC-MS based metabolite profile of *Beauveria bassiana* BR

Sl. No	Compound	RT (min)	Area (%)	Molecular weight (g/mol)	Molecular formula	Biological action	Reference
1	2-Deoxy-2-fluoro-1,6-anhydro-α-d-glucopyranose	3.013	8.110	182.15	C₆H₁₁FO₅	Cell wall synthesis	Douglas, 2001
2	Dihydrothiophenone	3.574	0.729	102.151	C₄H₆OS	Insecticidal, nematicidal	Champagne *et al.*, 1986; Hudson and Toers, 1991
3	2-t-Butyl-5-propyl-[1,3]dioxolan-4-one	4.174	0.458	186.251	C₁₀H₁₈O₃	Fungitoxic	Horsefall and Lukens, 1965
4	Thymine	5.414	5.303	126.11	C₅H₆N₂O₂	Pyridine metabolism	Liu *et al.*, 2015
5	Nonane, 2-methyl-5-propyl-	5.664	0.559	184.367	C₁₃H₂₈	Insect growth regulator	Mian and Mulla, 1982
6	3-Hydroxy-2,3-dihydromaltol	6.425	9.919	128.13	C₆H₈O₃	-	-
7	Cyclohexane, 1,1'-dodecylidenebis [4-methyl-	7.040	0.431	362.6752	C₂₆H₅₀	Insecticidal, repellent, antimicrobial	Ibrahim *et al.*, 2001
8	(S)-(−)-1-Amino-2-(methoxymethyl)-pyrrolidine	7.365	2.820	130.19	C₆H₁₄N₂O	Antimicrobial	Dumoulin *et al.*, 2010
9	5-Hydroxymethylfurfural	7.500	3.083	126.11	C₆H₆O₃	Fermentation inhibitor	Kadowaki *et al.*, 2018
10	Coumarin-6-carboxaldehyde	7.770	1.326	174.155	C₁₀H₆O₃	Antimicrobial	Al-Majedy *et al.*, 2017
11	1-Decanamine	7.980	0.673	269.517	C₁₀H₂₀N	-	-
12	1-(Methylthio)-3-pentanone	8.331	1.330	132.23	C₅H₁₀OS	-	-
13	N-Nitroso-2,4,4-trimethylazolidine	8.766	0.831	144.172	C₁₂H₁₂N₂O₂	Antimicrobial, Anti-inflammatory	Kim *et al.*, 2001
14	2-Hydroxy-3-methylsucinic acid	9.086	0.632	148.114	C₅H₈O₄	TCA cycle derivative	Hyun *et al.*, 2013
15	2,2-Dimethylcyclopropanecarboxylic acid	9.466	2.422	114.14	C₈H₁₀O₂	-	-
16	Hydroxydocosahexaenoic acid	9.666	1.114	344.5	C₂₂H₃₃O₃	Antibacterial	Mil-Homens *et al.*, 2012
17	Trioxsalen	9.986	2.949	228.24	C₁₄H₂₀O₃	Antimicrobial	Gowri *et al.*, 2011
18	1,2-Heptanediol	10.161	0.851	132.2	C₇H₁₅O₂	-	-
19	Sucrose	10.821	14.363	342.297	C₁₂H₂₂O₁₁	Source for growth and spore production	Samsinakova, 1966
Table 3. GC-MS based metabolite profile of *Beauveria bassiana* Bb18

Sl. No	Compound	RT	Area (%)	Molecular weight (g/mol)	Molecular formula	Biological action	Reference
1	Undecane	4.249	1.086	184.37	C₁₃H₂₈	Mild sex attractant of moths, alert signal for insects	Hölldobler and Wilson, 1990
2	2-Nonadecanone, 2,4-dinitrophenylhydrazine	4.334	0.552	462.635	C₂₅H₄₂N₄O₄	-	-
3	Clindamycin	5.389	2.804	424.98	C₁₈H₃₃ClN₂O₅S	Antibiotic	Woappi et al., 2016
4	2-Deoxy-2-fluoro-1,6-anhydro-á-d-glucopyranose	6.315	1.322	182.15	C₆H₁₀FO₅	Cell wall synthesis	Douglas, 2001
5	3-Hydroxy-2,3-dihydromaltol	6.435	4.010	128.13	C₆H₁₂O₃	-	-
6	5-Oxotetrahydrofuran-2-carboxylic acid	7.400	1.985	130.099	C₅H₆O₄	Bassianolone derivative	Oller-Lopez et al., 2005
7	5-Hydroxymethylfurfural	7.555	1.544	126.11	C₆H₁₀O₃	Fermentation inhibitor	Kadowaki et al., 2018
8	1,2,3-Butanetriol	8.391	0.951	106.121	C₆H₁₂O₃	-	-
9	2-Methoxy-4-vinylphenol	8.821	0.776	150.177	C₄H₈O₃	-	-
10	3-Propylglutaric acid	9.441	3.237	174.196	C₮₈H₱₄O₄	-	-
11	1,3-Dioxane-5-methanol, 4,5-dimethyl-	9.676	1.094	146.186	C₅H₈O₃	-	-
12	Trioxsalen	10.021	1.679	228.24	C₈H₂₆O₃	Antimicrobial	Gowri et al., 2011
13	Sucrose	10.556	9.462	342.297	C₁₂H₂₂O₁₁	Source for growth and spore production	Samsinakova, 1966
14	á-D-Glucopyranose, 1,6-anhydro-	11.532	0.568	162.141	C₈H₁₈O₃	Insecticidal	Syed et al., 2018
15	Benzocycloheptano[2,3,4-]jisoquinoline, 4,5,6,6 tetrahydro-1,9-dihydroxy-2,10-dimethoxy-5-methyl-	12.482	0.584	341.407	C₂₀H₂₃NO₄	-	-
Metabolome heterogeneity in the isolates of *Beauveria bassiana*

Sl. NO.	Compound	Isolates of Beauveria bassiana	TM	BR	B10
			+	-	+
1	5-Oxotetrahydrofuran-2-carboxylic acid				
2	a-D-Glucopyranose, 1,6-anhydro-		+	+	+
3	Undecane		+	-	+
4	2-Deoxy-2-fluoro-1,6-anhydro-a-D-glucopyranose		+	+	+
5	3-Hydroxy-2,3-dihydromaltol		+	+	+
6	5-Hydroxymethylfurfural		+	+	+
7	Trioxsalen		+	+	+
8	Sucrose		+	+	+
9	3-Deoxy-d-mannoic lactone		-	+	+
10	3-Deoxy-d-mannonic acid		-	+	+
11	n-Hexadecanoic acid		+	+	-
12	Octadecanoic acid		+	+	+
13	9,12-Octadecadienoic acid (Z,Z)-		+	+	+
14	Oleic Acid		+	+	-

+ Detected
- Not detected
The enhanced virulence of TM may be attributed to the distinctive metabolites involved in lipid and fatty acid metabolisms. These metabolites might have enabled the fungus to overcome the action of detoxifying enzymes inside insects such as esterases and glutathione-S-transferases which take part in defense responses against the fungus.

In this study, non-targeted profiling approach was performed using GC-MS for metabolite profiling of three isolates of \textit{B. bassiana}. The metabolite profile varied within the species and distinct profiles were recorded in the three study isolates, TM, BR and BbI8. So far, there are no reports on the correlation of metabolites between different isolates of \textit{B. bassiana} and hence the results of the study can be used to interpret the pathogenicity of different isolates of entomopathogenic fungus against any host insect paving way for its management.

ACKNOWLEDGMENTS

The first author thanks the Department of Science and Technology, Government of India for providing an INSPIRE fellowship (IF160933). The authors express their sincere thanks to the Department of Microbiology of Tamil Nadu Agricultural University for technical assistance for GC-MS.

REFERENCES

Amiri-Besheli B, Khambay B, Cameron S, Deadman ML, Butt T.M. 2000. Inter- and intra-specific variation in destruxin production by insect pathogenic \textit{Metarhizium spp.}, and its significance to pathogenesis. \textit{Mycol Res}. \textbf{104}: 447-452. https://doi.org/10.1017/S095375629900146X

Bernabé M, Salvachúa D, Jiménez-Barbero J, Leal JA, Prieto A. 2011. Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. \textit{Fungal Biol}. \textbf{115}(9): 862-870. https://doi.org/10.1016/j.funbio.2011.06.015

Brakhage AA. 2013 Regulation of fungal secondary metabolism. \textit{Nat Rev Microbiol}. \textbf{11}(1):21-32. https://doi.org/10.1038/nrmicro2916

Brennan PJ, Griffin PF, Lõsel DM, Tyrrell D. 1975. The lipids of fungi. \textit{Prog Chem Fats Lipids} \textbf{14}: 49-89. doi:10.1016/0079-6832(75)90002-6

Butt TM, Jackson CW, Magan N. 2001. \textit{Fungi as Biocontrol Agents: Potential, Progress and Problems}. CAB International, Wallingford. doi:10.1079/9780851993560.0000

deBekker C, Smith PB, Patterson AD, Hughes DP. 2013. Metabolomics reveals the heterogeneous secretome of two entomopathogenic fungi to ex vivo cultured insect tissues. \textit{PLoS ONE} \textbf{8}(8): e70609. https://doi.org/10.1371/journal.pone.0070609

Domon K, Keiji T, Yutaka O, Junichiro B, Kei K, Akira W, Masaaki K, Takeshi M, Seisuke I. 2018. “Alkyl phenyl sulfide derivative and pest control agent.” U.S. Patent Application 10/023,532, filed July 17, 2018.
Metabolome heterogeneity in the isolates of Beauveria bassiana

Douglas CM. 2001. Fungal β (1, 3)-D-glucan synthesis. *Sabouraudia* **39**(1): 55-66. https://doi.org/10.1080/mmy.39.1.55.66 https://doi.org/10.1080/mmy.39.1.55.66 PMid:1180269

Gowri PM, Haribabu K, Kishore H, Manjusha O, Biswas S, Murty USN. 2011. Microbial transformation of (+)-heracalenin by Aspergillus niger and evaluation of its antiplasmodial and antimicrobial activities. *Current Sci*. **100**(11):1706-1711.

Hölldobler B, Wilson EO. 1990. The Ants. Harvard University Press, US. https://doi.org/10.1007/978-3-662-10306-7 PMid:24263721

Hyun SH, Lee SY, Sung GH, Kim SH, Choi HK. 2013. Metabolic Profiles and Free Radical Scavenging Activity of Cordyceps bassiana Fruiting Bodies According to Developmental Stage. *PLoS ONE*. **8**(9): e73065. https://doi.org/10.1371/journal.pone.0073065 https://doi.org/10.1371/journal.pone.0073065 PMid:24058459 PMCID:PMC3772819

Retrieved from: https://pubchem.ncbi.nlm.nih.gov/compound/Digitoxin

Kadokawa M, Godoy M, Kumagai P, Costa-Filho A, Mort A, Prade R, Polikarpov I. 2018. Characterization of a new glyoxal oxidase from the thermophilic fungus *Myceliophthora thermophila* M77: hydrogen peroxide production retained in 5-hydroxymethylfurfural oxidation. *Catalysts* **8**(10): 476. https://doi.org/10.3390/catal8100476. https://doi.org/10.3390/catal8100476

Keller NP. 2015. Translating biosynthetic gene clusters into fungal armor and weaponry. *Nat Chem Biol*. **11**(9):671-677. https://doi.org/10.1038/nchembio.1897 PMid:26284674 PMCID:PMC4682562

Kershaw MJ, Moorhouse ER, Bateman RP, Reynolds SE, Charnley AK. 1999. The role of destruxins in the pathogenicity of *Metarhizium anisopliae* of insect. *J Invertebr Pathol*. **74**: 213-223. https://doi.org/10.1006/jipa.1999.4884 PMid:10534408

Liu H, Zhao X, Guo M, Liu H, Zheng Z. 2015. Growth and metabolism of *Beauveria bassiana* spores and mycelia. *BMC Microbiology* **15**(1): 267. https://doi.org/10.1186/s12866-015-0592-4 PMid:26581712 PMCID:PMC4652391

Liu L, Liu S, Chen X, Guo, L, Che Y. 2009. Pestalofonones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus *Pestalotiopsis fici*. *Bioorg Med Chem*. **17**: 606-613. https://doi.org/10.1016/j.bmc.2008.11.066 PMid:19101157

Mazet I, Vey A. 1995. Hirsutellin A, a toxic protein produced in vitro by *Hirsutella thompsonii*. *Microbiology* **141**(6): 1343-1348. https://doi.org/10.1099/13500872-141-6-1343 PMid:7670635

Mil-Homens D, Bernardes N, Fialho AM. 2012. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen *Burkholderia cenocepacia*. *FEMS Microbiol Lett*. **328**(1): 61-69. https://doi.org/10.1111/j.1574-6968.2011.02476.x PMid:22150831

Oh TJ, Hyun SH, Lee SG, Chun YJ, Sung GH. 2014. NMR and GC-MS based metabolic profiling and free-radical scavenging activities of *Cordyceps pruniosa* mycelia cultivated under different media and light conditions. *PLoS ONE* **9**(3): e90823. https://doi.org/10.1371/journal.pone.0090823 PMid:24608751 PMCID:PMC3946585

Oller-López JL, Iranzo M, Morneneo S, Oliver E, Cuerva JM, Oltra JE. 2005. Bassianolone: an antimicrobial precursor of cephalosporolides E and F from the entomoparasitic fungus *Beauveria bassiana*. *Org Biomol Chem*. **3**(7): 1172-1173. https://doi.org/10.1039/B417534D PMid:15785802

Ortiz-Urquiza A, Fan Y, Garrett T, Keyhani NO. 2016. Growth substrates and calcofluor-mediated functions affect conidial virulence in the insect pathogenic fungus *Beauveria bassiana*. *Microbiology* **162**(11): 1913-1921. https://doi.org/10.1099/mic.0.000375 https://doi.org/10.1099/mic.0.000375 PMid:27655425

Paulraj MG, Reegan AD, Ignacimuthu S. 2011. Toxicity of Benzaldehyde and Propionic Acid against Immature and Adult Stages of *Aedes aegypti* (Linn.) and *Culex quinquefasciatus* (Say) (Diptera: Culicidae). *FEMS Microbiol Lett.* **328**(1): 539-547. https://doi.org/10.3923/je.2011.539.547 https://doi.org/10.3923/je.2011.539.547

Ragavendran C, Dubey NK, Natarajan D. 2017. *Beauveria bassiana* (Clavicipitaceae): a potent fungal agent for controlling mosquito vectors of *Anopheles stephensi*, *Culex quinquefasciatus* (Diptera: Culicidae). *RSC Advances*. **7**(7): 3838-3851. https://doi.org/10.1039/C6RA25859J

Ramadan Z, Jacobs D, Grigorov M, Kochhar S. 2006. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. *Talanta* **68**: 1683-1691. https://doi.org/10.1016/j.talanta.2005.08.042 PMid:18970515

Rohrlrich C, Merle I, MzeHassani I, Verger M, Zuin M, Besse S. 2018. Variation in physiological host range in
three strains of two species of the entomopathogenic fungus Beauveria. *PLoS ONE* 13(7): e0199199. https://doi.org/10.1371/journal.pone.0199199 PMid:29975710 PMCid:PMC6033404

Sayed AM, Behle RW, Tilikkala K, Vaughn SF. 2018. Insecticidal activity of bio-oils and biochar as pyrolysis products and their combination with microbial agents against *Agrotis ipsilon* (Lepidoptera: Noctuidae). *Pestic Phytochem.* 33(1): 39-52. https://doi.org/10.102298/PIF1801039S

Smedsgaard J. 1997. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. *J Chromatogr A* 760(2): 264-270. https://doi.org/10.1016/s0021-9673(96)00803-5

Strasser H, Abendstein D, Stuppner H, Butt TM. 2000. Monitoring the distribution of secondary metabolites produced by the entomogenous fungus *Beauveria bronniartii* with particular reference to oosporein. *Mycol Res.* 104: 1227-1233. https://doi.org/10.1017/S0953755200002963

Strasser H, Vey A, Butt TM. 2000. Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of *Metarhizium, Tolypocladium* and *Beauveria* species? *Biocontrol Sci Technol.* 10: 717-735. https://doi.org/10.1080/09583150020011690

Talaei-Hassanloui R, Kharazi-Pakdel A, Goettel M, Moazaffari J. 2006. Variation in virulence of *Beauveria bassiana* isolates and its relatedness to some morphological characteristics. *Biocontrol Sci Technol.* 16(5): 525-534. https://doi.org/10.1080/09583150500532758

Valero-Jiménez CA, Debets AJ, van Kan JA, Schoustra SE, Takken W, Zwaan BJ. 2014. Natural variation in virulence of the entomopathogenic fungus *Beauveria bassiana* against malaria mosquitoes. *Malar J.* 13(1):1-8. https://doi.org/10.1186/1475-2875-13-479 PMid:25480526 PMCid:PMC4364330

Vey A, Hoagland R, Butt TM. 2001. Toxic metabolites of fungal biocontrol agents, pp. 311-345. In: Butt TM, Jackson CW. and Magan N. (Eds.). Fungi as Biocontrol Agents: Potential, Progress and Problems. CAB International, Wallingford, UK. https://doi.org/10.1079/9780851993560.0311

Vivekanandhan P, Kavitha T, Karthi S, Senthil-Nathan S, Shiva Kumar M. 2018. Toxicity of *Beauveria bassiana*-28 mycelial extracts on larvae of *Culex quinquefasciatus* mosquito (Diptera: Culicidae). *Int J Environ Res Public Health* 15(3): 440. https://doi.org/10.3390/ijerph15030440 PMid:29510502 PMCid:PMC5876985

Wakil W, Yasin M, Shapiro-Ilan D. 2017. Effects of single and combined applications of entomopathogenic fungi and nematodes against *Rhynchophorus ferrugineus* (Olivier). *Sci Rep.* 7(1): 5971. https://doi.org/10.1038/s41586-017-05615-3 PMid:28729649 PMCid:PMC5519636

Wahlman M, Davidson BS. 1993. New destruxins from the entomopathogenic fungus *Metarhizium anisopliae*. *J Nat Prod.* 56(4): 643-647. https://doi.org/10.1021/np9601216

Wang CS, Skrobek A, Butt TM. 2004. Investigations on the destruxin production of the entomopathogenic fungus *Metarhizium anisopliae* in liquid and solid media. *J Invertebr Pathol.* 85: 168-174. https://doi.org/10.1016/j.jip.2004.02.008 PMid:15109899

Woappi Y, Gabani P, Singh A, Singh O.V. 2016. Antibiotrophs: the complexity of antibiotic-subsisting and antibiotic-resistant microorganisms. *Crit Rev Microbial.* 42(1): 17-30. https://doi.org/10.3109/1040841X.2013.875982 PMid:24495094

Xu Y, Orozco R, Wijeratne EK, Espinosa-Artiles P, Gunatilaka AL, Stock SP, Molnár I. 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of *Beauveria bassiana*. *Fungal Genet Biol.* 46(5): 353-364. https://doi.org/10.1016/j.fgb.2009.03.001 PMid:19285149

Xu Y, Orozco R, Wijeratne EMK, Gunatilaka AAL, Stock SP, Molnár I. 2008. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus *Beauveria bassiana*. *Chem Biol.* 15: 898-907. https://doi.org/10.1016/j.chembiol.2008.07.011 PMid:18804207

Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO. 2012. CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus *Beauveria bassiana*. *J Biol Chem.* 287(16): 13477-13486. https://doi.org/10.1074/jbc.M111.338947 PMid:22393051 PMCid:PMC3339963