Microalbuminuria and early renal response to lethal dose Shiga toxin type 2 in rats

Federico Ochoa1
Gisela Oltra1
Elizabeth Gerhardt1
Ricardo Hermes2
Lilian Cohen2
Alicia E Damiano3
Cristina Ibarra1
Nestor R Lago4
Elsa Zotta1

1Departamento de Fisiologia, Facultad de Medicina UBA, 2Laboratorio Analisis Clinicos, Hospital Juan A Fernandez, 3Departamento de Ciencias Biologicas, Facultad de Farmacia y Bioquimica, UBA, Buenos Aires, Argentina; 4Departamento de Patologia, Facultad de Medicina UBA, Buenos Aires, Argentina

Abstract: In Argentina, hemolytic uremic syndrome (HUS) constitutes the most frequent cause of acute renal failure in children. Approximately 2%–4% of patients die during the acute phase, and one-third of the 96% who survive are at risk of chronic renal sequelae. Little information is available about the direct effect of Shiga toxin type 2 (Stx2) on the onset of proteinuria and the evolution of toxin-mediated glomerular or tubular injury. In this work, rats were injected intraperitoneally with recombinant Escherichia coli culture supernatant containing Stx2 (sStx2; 20 µg/kg body weight) to induce HUS. Functional, immunoblotting, and immunohistochemistry studies were carried out to determine alterations in slit diaphragm proteins and the proximal tubule endocytic system at 48 hours post-inoculation. We detected a significant increase in microalbuminuria, without changes in the proteinuria values compared to the control rats. In immunoperoxidase studies, the renal tubules and glomerular mesangium showed an increased expression of transforming growth factor β1 (TGF-β1). The expression of megalin was decreased by immunoperoxidase and the cytoplasm showed a granular pattern of megalin expression by immunofluorescence techniques. Western blot analysis performed in the renal cortex from sStx2-treated and control rats using anti-nephrin and anti-podocalyxin antibodies showed a decreased expression of these proteins. We suggest that the alterations in slit diaphragm proteins and megalin expression could be related to the development of microalbuminuria in response to lethal doses of Stx2.

Keywords: microalbuminuria, nephrin, podocytes, podocalyxin, megalin, acute renal injury

Introduction

In Argentina, hemolytic uremic syndrome (HUS) constitutes the most frequent cause of acute renal failure in children. HUS is a disease associated with infection by Shiga toxin (Stx)-producing Escherichia coli (STEC), defined by thrombotic microangiopathy, hemolytic anemia, thrombocytopenia, and acute renal failure (ARF). Approximately 2%–4% of patients die during the acute phase, and one-third of the 96% who survive are at risk of chronic renal sequelae.1

Although glomerular lesions observed in HUS involve the presence of thrombotic microangiopathy, little information is available about the direct effect of Shiga toxin type 2 (Stx2) on the onset of proteinuria and the evolution of toxin-mediated glomerular injury.

Visceral glomerular epithelial cells or podocytes are currently considered to play an important role in the physiology of the glomerular filtration barrier and consequently in the pathogenesis of glomerular diseases associated with proteinuria and nephrotic syndrome.2
The foot processes of podocytes are connected by a continuous membrane-like structure called the slit diaphragm. It has been reported that nephrin, a gene product of NPHS1, might be a core protein of the slit diaphragm. Although the molecular function of nephrin is still poorly understood, recent studies have indicated that nephrin acts as a signaling molecule and has an intimate relationship with filamentous actin. The external surface of podocytes is covered with a sialic acid-rich glyocalyx known as podocalyxin (PC). PC is the target of injury in many glomerular diseases that affects the shape of foot processes and reduces the expression of components of the slit diaphragm. One of the consequences of the dysfunction of podocytes may be the development of albuminuria.

Although albuminuria is an important marker for the onset and progression of renal diseases, the mechanism by which albuminuria is caused still remains a topic of debate. Recent studies have investigated the tubular role in the post-glomerular processing of albumin on the onset of albuminuria showing a possible role of TGF-β. Recently, evidence has suggested that the renal tubular injury observed in HUS is also induced by the direct action of Stx2 on tubular epithelial cells. We have previously reported a model of HUS in rats inoculated with lethal doses of Stx2 with alterations similar to those described in humans with HUS. Recently, we have characterized in the same model the early tubular response to the effect of Stx2 and detected that tubular cells develop an immunophenotype change induced by TGF-β, the first step in the evolution of epithelial-to-mesenchymal transition and tubule-interstitial fibrosis. Taking into account these results, it is feasible that tubular functions are altered, such as protein reabsorption. Functional studies in rat kidney suggest that megalin is involved in albumin endocytosis in proximal tubules regulated by TGF-β, affecting the level of urinary albumin excretion.

Taking all the above into account, the aim of our study was to determine the glomerular and tubular response to lethal doses of Stx2 in rats. We focused our study on modifications of the slit diaphragm and protein tubular endocytosis.

Materials and methods

Adult male Sprague Dawley rats (150 ± 3 g body weight) were obtained from the animal facility of the School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina. The rats were housed individually under controlled conditions of light/dark, humidity, and temperature, with food and water available ad libitum.

Experimental protocols

Rats were randomly divided into two groups of six rats each. Stx2 injury was induced as previously described. Briefly, rats from the experimental group (Stx2-treated rats) were injected intraperitoneally with recombinant *Escherichia coli* culture supernatant (sStx2) containing Stx2 (LD₅₀: 20 µg/kg body weight. The animals died between 48 and 72 hours after administration). Control rats were inoculated with the same volume of culture supernatant that did not contain Stx2. sStx2 having a cytotoxicity of 2 × 10⁴ CD₅₀/mL (1 CD₅₀ = 40 pg/mL) was obtained as previously described. The LPS content in the control and experimental supernatant, determined using the HEK-Blue LPS Detection Kit (Invitrogen, San Diego, CA), was 70 ng LPS/µg Stx2 protein.

Renal functions

Rats were kept in metabolic cages for 48 hours with free access to water and food and under a controlled light/dark cycle and temperature to collect the urine volume. Blood samples were obtained from rats by cardiac puncture prior to sacrifice. Creatinine and urea plasma concentrations were assessed using a commercial kit (Wiener Lab, Rosario, Argentina). Proteinuria (pyrogallol red-molybdate colorimetric), Alcyon 300I analyzer, Abbott Laboratories, Chicago, IL) and microalbuminuria (nephelometry IMMAGE, Beckman Coulter, Brea, CA) were also measured.

Light microscopy

Rats were anesthetized (100 µg ketamine and 10 µg diazepam/g body weight, intraperitoneally) and perfused with 4% paraformaldehyde in phosphate-buffered saline (PBS). Kidneys were removed and tissues were fixed in formol buffer 10% in PBS 0.1 M (pH 7.4). The tissue sections were dehydrated and included in paraffin. Sagittal cuts (5 µm) were made with a microtome (Leica RM 2125; Leica Gmbh, Wetzlar, Germany) and mounted on 2% silane-coated slides. The slides were stained with hematoxylin-eosin and observed by light microscopy (Nikon Eclipse 200; Nikon, Tokyo, Japan).

Immunofluorescence

The slides were preincubated with no immune rabbit serum in PBS (1:50) at room temperature for 30 minutes, followed by incubation with a polyclonal anti-nephrin or polyclonal anti-PC (1:50, Alpha Diagnostic, San Antonio, TX) and polyclonal anti-megalin (1:50, Santa Cruz Biotechnology, Santa Cruz, CA) antibodies overnight in a wet chamber at 4°C. After several rinses in PBS, the slides were incubated with an...
anti-rabbit IgG antibody conjugated with fluorescein (1:200, Santa Cruz Biotechnology) for 1 hour at room temperature in a wet chamber. Finally, all the slides were mounted on a mixture containing PBS:glycerol (1:3), and observed in an epifluorescent microscope (Nikon Eclipse E200, Nikon, Tokyo, Japan). Negative controls were performed without primary antibodies.

Immunoperoxidase

Samples were blocked with endogenous peroxidase with H2O, 0.3% for 10 minutes. Later, the slides were preincubated with no immune rabbit serum, diluted in PBS (1:50) at room temperature for 30 minutes and incubated with the primary antibodies: anti-megalin (1:50, Santa Cruz Biotechnology) or anti-TGF-β1 (1:100, Santa Cruz Biotechnology) in a humidity chamber at 4°C overnight. The immunoperoxidase technique was then performed following the protocol from the RTU Vectastain Kit (Vector, Peterborough, UK). The antigen was revealed by diaminobenzidine (DAB, Vector). Finally, the sections were counterstained and mounted for observation. Negative controls were performed without primary antibodies.

Measurement of nephrin, PC, and megalin expressions

Ten separate fields of each section stained by immunofluorescence using nephrin and PC antibodies and immunohistochemistry using anti-megalin antibody were scanned at 200× magnification, put into digital form and analyzed using imaging software (Image Pro Plus 5.1 Media Cybernetics, Silver Spring, MD).

Western Blot

The renal cortex was micro-dissected and homogenized in buffer (10 mM triethanolamine, 250 mM sucrose, pH 7.6) with proteinase inhibitors. The protein concentration was determined with the BCA Protein Assay Kit (Pierce Biotechnology Inc, Rockford, IL). Samples of 100 µg were electrophoresed using 12.5% gels and electroblotted. Blots were incubated with rabbit polyclonal anti-nephrin or anti-PC antibodies (1:1000) and horseradish peroxidase-conjugated goat anti-rabbit IgG antibody (1:3000, Bio-Rad, Hercules, CA).

To determine the uniformity of loading, protein blots were probed with monoclonal anti-β-actin antibody (1:1000, Sigma-Aldrich, St Louis, MO). Band intensities were measured using Quantity One densitometry software package (Bio-Rad). Protein bands were normalized to their respective β-actin bands. The immunoblot analysis was carried out on three different tissue preparations from three independent experiments.

Statistical analysis

Data shown are mean ± SEM. The statistical significance between two mean values obtained for two different experimental conditions was calculated using Student’s t-test. A value of $P < 0.05$ was considered significant. Statistical analysis was performed using GraphPad InStat (v 3.6; GraphPad Software, Inc, La Jolla, CA).

Results

A significant increase in creatinine (1.8 ± 0.3 vs 0.35 ± 0.2 mg/dL, $P < 0.01$, $n = 12$) and urea (263 ± 8.1 vs 7.9 ± 6.8 mg/dL, $P < 0.01$, $n = 12$) plasma concentrations was observed in experimental rats at 48 hours post-sStx2 treatment as compared with control rats. No changes were detected in the urine volume of the two groups of rats (16.7 ± 3 vs 21.3 ± 2 mL/d, $n = 12$). Detection of proteinuria and microalbuminuria 48 hours after Stx2 treatment in the urine collected for 24 hours in metabolic cages showed a significant increase in microalbuminuria (1.40 ± 0.32 vs 0.60 ± 0.10, $P < 0.01$, $n = 12$) without changes in the proteinuria values with respect to the control rats (Table 1).

The hematoxylin-eosin stain showed tubular necrosis and mesangiolysis (Figure 1B).

Using immunoperoxidase studies, renal tubules showed increased expression of TGF-β1 in the basolateral membrane and cytoplasm as well as in the podocytes and glomerular mesangium from sStx2-treated rats at 48 hours (Figure 2A and C).

Table I Renal functions at 48 hours post-treatment

	Control rats	sStx2-treated rats
N = 6 per group, 48 hours		
Proteinuria (mg/dL)	26 ± 10	40 ± 14
Microalbuminuria (mg/dL)	0.64 ± 0.33	1.32 ± 0.37*
Plasma creatinine (mg/dL)	0.34 ± 0.3	1.5 ± 0.2*
Plasma urea (mg/dL)	7.5 ± 6.1	252 ± 7.3*
Urine volume (mL/d)	16.8 ± 4	20.3 ± 3

*Notes: $P < 0.01$ control versus experimental group. sStx2-treated rats developed an increase in plasma creatinine and urea concentrations. Urine microalbumin concentration also showed an increase without changes in the proteinuria values. Urine volume showed no differences when compared with controls. sStx2-treated rats showed a decrease in their body weight. Abbreviation: sStx2, supernatant Shiga toxin type 2.\
The expression of megalin in sStx2-treated rats was decreased by immunoperoxidase (Figure 3A and B). The cytoplasm showed a granular pattern of megalin expression (Figure 3C) by immunofluorescence techniques. The number of tubules positive for megalin was counted and the percentage measured using a grid superimposed on the image. Expression of megalin (21.8% ± 4.7% vs 94.2% ± 2.9%; \(P < 0.01, n = 4 \)) was significantly decreased with respect to the controls (Figure 3I).

The immunofluorescence studies of glomeruli from sStx2-treated rats at 48 hours showed a decreased expression of nephrin (Figure 4B) and PC in podocytes (Figure 4D). Morphometric quantification detected a significant decrease in the expression of nephrin (32.16 ± 10.6 vs 176.33 ± 16.6; \(P < 0.01, n = 6 \)) and PC (19.16 ± 7.9 vs 122.16 ± 10.6; \(P < 0.01, n = 6 \)) with respect to the controls (Figure 4E and F).

Western blot analysis performed on the renal cortex from sStx2-treated and control rats using anti-nephrin and anti-PC antibodies confirmed the results observed by immunofluorescence showing decreased expression in the 185 kDa band corresponding to nephrin (Figure 5A and B) and 140 kDa band corresponding to PC (Figure 5C and D).

Discussion

The current study demonstrates for the first time that the early response of podocytes to the effect of Stx2 is related to the decreased expression of nephrin and PC proteins as observed by Western blot and immunohistochemistry studies. These results are associated with the decrease and alteration observed in the pattern of megalin expression in the proximal tubule. The decrease in megalin expression could be involved in a development of microalbuminuria.
Functional studies carried out in the present work are in agreement with our previous findings. 13 We showed that Stx2-treated rats developed increases in creatinine and urea plasma concentrations, which are markers of renal dysfunction. Urine volume showed similar results.

The present study demonstrates that Stx2-treated rats develop microalbuminuria at 48 hours post-treatment, without changes in the proteinuria values. It is known that approximately 2%–4% of patients with HUS die during the acute phase, and that one-third of the 96% who survive are at risk of chronic sequelae such as...
proteinuria.1,18 Microalbuminuria has been identified as a predictor of progressive renal disease in various clinical settings.19–21 It has been described that, during HUS, renal endothelial and podocyte cells are very sensitive to the action of Stx222 and that lipopolysaccharide from Escherichia coli often triggers albuminuria and glomerular nephritis. It has been found that in inflammatory diseases there is an increase in plasma interleukin-1β (IL-1β) and TNF-α concentrations related to a transient downregulation of nephrin.23 We thus suggest that this mechanism could be involved in the development of microalbuminuria since we have previously observed that the cytotoxic effect of Stx2 holotoxin is enhanced by IL-1β, TNF-α, and LPS.24

It has been described that, during HUS, renal endothelial and podocyte cells are very sensitive to the action of Stx222 and that lipopolysaccharide from Escherichia coli often triggers albuminuria and glomerular nephritis. It has been found that in inflammatory diseases there is an increase in plasma interleukin-1β (IL-1β) and TNF-α concentrations related to a transient downregulation of nephrin.23

We thus suggest that this mechanism could be involved in the development of microalbuminuria since we have previously observed that the cytotoxic effect of Stx2 holotoxin is enhanced by IL-1β, TNF-α, and LPS.24

It is known that under physiological conditions the slit diaphragm may maintain this stability in response to changes in filtration pressure. This would require constant reorganization of the podocyte foot process and the slit diaphragm components, but the mechanisms underlying the turnover of slit diaphragm proteins are largely unknown. Recent studies have provided evidence that podocytes have a key function in the development of albuminuria.25,26

Abnormal uptake of plasma proteins by podocytes has been described as a mechanism developed after TGF-β1 upregulation.27 In agreement with this we detected TGF-β1 expression in podocytes and mesangium.

sStx2-treated rats showed a significantly decreased expression of nephrin and PC slit diaphragm proteins at 48 hours post-sStx2 inoculation. In agreement with our results, Wiggins et al demonstrated that reduced expression of components of the slit diaphragm, such as nephrin and PC, and podocyte loss are associated with proteinuria and glomerulosclerosis.28 Moreover, in experimental models of nephrosis with proteinuria, it has been shown that the connection of PC to the actin cytoskeleton is disrupted.29,30

In studying the transport mechanism involved in protein reabsorption in proximal tubules, we detected a modified pattern expression of megalin and TGF-β1. Megalin expression was decreased whereas TGF-β1 was detected in the basolateral membranes and cytoplasm of proximal tubules from sStx2-treated rats by immunohistochemistry. Albumin endocytosis in a cell culture model (proximal-tubule-derived opossum kidney [OK] cells) is mediated by megalin/cubulin and regulated by TGF-β1 by a downregulation of the system affecting the binding, internalization, and intracellular trafficking of the ligand albumin.31 Previously,
we reported the immunophenotype changes in tubular cells damaged by Stx2 by TGF-β1 in rats. We suggest that megalin deficiency is associated with the increased expression of TGF-β, that produces the immunophenotype change of tubular cells, and the presence of microalbuminuria at 48 hours post-sStx2 inoculation. We thus suggest that the inflammatory state developed during response to Stx2 could be related to the modifications in the slit diaphragm structure and in the albumin endocytosis system associated with an increase in the active form of TGF-β1. Early identification of patients at risk of progressive nephropathy would enable health providers to intervene and thereby slow or halt the development of progressive renal insufficiency.

Further studies are necessary to detect the intrinsic mechanism involved in the molecular regulation of renal protein management during the evolution of HUS.

Acknowledgments

The University of Buenos Aires (ME95, M827, M470), the National Council of Research (CONICET, PIP 344), and the ANPCYT (PICT -642, 118) supported this work.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Repetto HA: Epidemic hemolytic-uremic syndrome in children. *Kidney Int*. 1997;52(6):1708–1719.
2. Barisoni L, Schnaper HW, Kopp JB. Advances in the biology and genetics of the podocopathies. Implications for diagnosis and therapy. *Arch Pathol Lab Med*. 2009;133(2):201–216.
3. Rodewald R, Karnovsky MJ. Porous substructure of the glomerular slit diaphragm in the rat and mouse. *J Cell Biol*. 1974;60(2):423–433.
4. Kestila M, Lenkkeri U, Mannikko M, et al. Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. *Mol Cell*. 1998;1(4):575–582.
5. Benzing T. Signaling at the slit diaphragm. *J Am Soc Nephrol*. 2004;15(6):1382–1391.
6. Yuan H, Takeuchi E, Salant DJ. Podocyte slit-diaphragm protein nephrin is linked to the actin cytoskeleton. *Am J Physiol Renal Physiol*. 2002;282(4):F585–F591.
7. Michael AF, Blau E, Vernier RL. Glomerular polyanion alteration in early renal response to the effect of a Shiga toxin type 2. *Pediatr Nephrol*. 2008;23(4):559–567.
8. Ochoa E, Lago NR, Gerhardt E, Ibarra C. Characterization of Stx2 tubular response in a rat experimental model of hemolytic uremic syndrome. *Am J Nephrol*. 2010;32(4):340–346.
9. Christensen EI, Nielsen S, Moestrup SK, et al. Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. *Eur J Cell Biol*. 1995;66(4):349–364.
10. Cui S, Verroutz PJ, Moestrup SK, Christensen EI. Megalin/gp330 mediates uptake of albumin in renal proximal tubule. *Am J Physiol*. 1996;271(4 Pt 2):F900–F907.
11. Russo LM, Osicka TM, Brammar GC, Candido R, Jerums G, Comper WD. Renal processing of albumin in diabetes and hypertension in rats: possible role of TGF-beta1. *Am J Nephrol*. 2003;23(2):61–70.
12. Pestone Creydt V, Silberstein C, Zotta E, Ibarra C. Cytotoxic effect of Shiga toxin-2 holotoxin and its B subunit on human renal tubular epithelial cells. *Microbes Infect*. 2006;8(2):410–419.
13. Zotta E, Lago N, Ochoa F, Repetto HA, Ibarra C. Development of an experimental hemolytic uremic syndrome in rats. *Pediatr Nephrol*. 2008;23(4):559–567.
14. Ochoa E, Lago NR, Gerhardt E, Ibarra C. Characterization of Stx2 tubular response in a rat experimental model of hemolytic uremic syndrome. *Am J Nephrol*. 2010;32(4):340–346.
15. Christensen EI, Nielsen S, Moestrup SK, et al. Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. *Eur J Cell Biol*. 1995;66(4):349–364.
16. Cui S, Verroutz PJ, Moestrup SK, Christensen EI. Megalin/gp330 mediates uptake of albumin in renal proximal tubule. *Am J Physiol*. 1996;271(4 Pt 2):F900–F907.
17. Pestone Creydt V, Fernandez Miyakawa M, Martin F, Zotta E, Silberstein C, Ibarra C. Shiga toxin 2B subunit inhibits net fluid absorption in human colon and elicits fluid accumulation in rat colon loops. *Braz J Med Biol Res*. 2004;37(6):799–808.
18. Piotka MA, Obata F, Kolling GL, et al. Shiga toxin 2 targets the murine renal collecting duct epithelium. *Infect Immun*. 2009;77:959–969.
19. Takano Y, Yamachi K, Hayakawa K, et al. Transcriptional suppression of nephrin in podocytes by macrophages: role of inflammatory cytokines and involvement of the PI3K/Akt pathway. *FEBS Lett*. 2007;581(3):421–426.
20. Creydt VP, Silberstein C, Zotta E, Ibarra C. Cytotoxic effect of Shiga toxin-2 holotoxin and its B subunit on human renal tubular epithelial cells. *Microbes Infect*. 2006;8(2):410–419.
21. Asanuma K, Yanagida-Asanuma E, Takagi M, Kodama F, Tomino Y. The role of podocytes in proteinuria. *Nephrology (Carlton)*. 2007;12(Suppl 3):S15–S20.
22. Rinaldi S, Adembri C, Grechi S, Gaudio AR. Low-dose hydrocortisone during severe sepsis: effects on microalbuminuria. *Crit Care Med*. 2006;34(9):2334–2339.
23. Abbate M, Zoja C, Morighi M, et al. Transforming growth factor-beta1 is regulated by podocytes in response to excess intraglomerular passage of proteins. *Am J Pathol*. 2002;161(2):191–219.
24. Wiggins RC. The spectrum of podocopathies: a unifying view of glomerular disorders. *Kidney Int*. 2007;71:1205–1214.
25. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. *Am J Physiol Renal Physiol*. 2003;381(1):251–307.
26. Schmieder S, Nagai M, Orlando RA, Takeda T, Farquhar MG. Podocynxin activates RhoA and induces actin reorganization through NHERF1 and Ezrin in MDCK cells. *J Am Soc Nephrol*. 2004;15(9):2289–2298.
27. Gekle M, Knaus P, Nielsen R, et al. Transforming growth factor-beta1 reduces megalin- and cubilin-mediated endocytosis of albumin in proximal-tubule-derived opossum kidney cells. *J Physiol*. 2003;552(Pt 2):471–481.
28. Hilgers KF, Dotsch J, Rascher W, Mann JF. Treatment strategies in patients with chronic renal disease: ACE inhibitors, angiotensin receptor antagonists, or both? *Pediatr Nephrol*. 2004;19(9):956–961.
