Reactivity of Cyanide and Thiocyanate Towards the Nitrosyl Carbonyl [Co(CO)₃(NO)]

Hans-Christian Böttcher,*[a] Marion Graf,[a] and Peter Mayer[a]

Dedicated to Professor Georg Süss-Fink on the Occasion of his 70th Birthday

Abstract. The reaction of equimolar amounts of [Co(CO)₃(NO)] and [PPN]CN, PPN⁺ = (PPh₃)₂N⁺, in THF at room temperature resulted in ligand substitution of a carbonyl towards the cyanido ligand presumably affording the complex salt PPN[Co(CO)₂(NO)(CN)] as a reactive intermediate species which could not be isolated. Applying the synthetic protocol using the nitrosyl carbonyl in excess, the title reaction afforded unexpectedly the novel complex salt PPN[Co₂(µ-CN)(CO)₂(NO)₂] (I) in high yield. Because of many diso-
der phenomena in crystals of I the corresponding NBu₄⁺ salt of I has been prepared and the molecular structure of the dinuclear metal core in NBu₄[Co₂(µ-CN)(CO)₂(NO)₂] (2) was determined by X-ray crystal diffraction in a more satisfactory manner. In contrast to the former result, the reaction of [PPN]SCN with [Co(CO)₃(NO)] yielded the mononuclear complex salt PPN[Co(CO)₂(NO)(SCN-κN)] (3) in good yield whose molecular structure in the solid was even determined and its composition additionally confirmed by spectroscopic means.

Introduction

There is an actual interest in nitrosyl complexes because they play a very important role in biochemical and photochemical processes and thus many investigations in this field are in the focus of current chemical research. The synthesis of nitrosyl complexes has been a focus of interest for many researchers, and various methods have been developed for their preparation and characterization. In this context, the reaction of cyanide with metal carbonyls has been extensively studied, and the resulting nitrosyl complexes have been found to play a significant role in numerous biological and chemical processes.

In order to investigate the reactivity of cyanide towards metal carbonyls, we have chosen the nitrosyl carbonyl [Co(CO)₃(NO)] as a model complex. In this paper, we report on the reaction of equimolar amounts of [Co(CO)₃(NO)] and [PPN]CN, PPN⁺ = (PPh₃)₂N⁺, in THF at room temperature. The resulting complex salt PPN[Co(CO)₂(NO)(CN)] was not isolated, but by using the synthetic protocol using the nitrosyl carbonyl in excess, the title reaction afforded unexpectedly the novel complex salt PPN[Co₂(µ-CN)(CO)₂(NO)₂] (I) in high yield. This compound was further characterized by X-ray crystal diffraction, and its molecular structure was determined.

In conclusion, the reaction of [Co(CO)₃(NO)] with cyanide affords a reactive intermediate species which could not be isolated. However, by using the nitrosyl carbonyl in excess, the title reaction afforded the novel complex salt PPN[Co₂(µ-CN)(CO)₂(NO)₂] (I) in high yield. The molecular structure of this compound was determined by X-ray crystal diffraction, and its composition was additionally confirmed by spectroscopic means.
nitrito ligand resulting in the synthesis of mononuclear \([\text{Co}(\text{CO})_2(\text{NO})(\text{SCN}-\kappa\text{N})]^-\). On these findings we report in this paper.

Results and Discussion

As described for the synthesis of the salt PPN[Co(CO)_2(NO)(NO_2)]2 \cite{12} we adopted that procedure to prepare the new hypothetical compound PPN[Co(CN)(CO)_2(NO)]. Thus, we reacted [PPN]CN with an excess of [Co(CO)_3(NO)] in THF at room temperature for 1 h. The progress of the reaction was accompanied by an immediate gas evolution, and the solution turned quickly from brown to dark red. During that time a clear solution resulted, whereas the [PPN]CN was completely dissolved. The solvent and the excess of [Co(CO)_3(NO)] were removed in vacuo, and the crude product was crystallized from dichloromethane/diethyl ether affording dark red crystals. The compound was characterized by IR spectroscopy to compare the data with the related salt K[Co(CN)(CO)_2(NO)], whereas for the latter the following bands were reported: 2097m (CN); 2030s, 1963vs. (CO); 2020sh, 2016s, 1941vs, 1938sh (CO); 1704vs, 1700s (NO) \textsuperscript{(cm-1)} (ATR). In light of our observed vibration band for the bridging cyanide in the fully characterized compound PPN[W(\mu-CN)(CO)_10] was reported.[9] These uncertainties prompted us to investigate the molecular structure of the new compound in the crystal. Single crystals for X-ray diffraction of the new species were grown from dichloromethane/diethyl ether at room temperature overnight. The result of the X-ray diffraction study was unexpected, because we found the structure of the novel dinuclear compound PPN[Co_2(\mu-CN)(CO)_4(NO)_2] (1). Obviously, since we worked with an excess of the nitrosyl carbonyl, a condensation of the hypothetical intermediate [Co(CN)(CO)_2(NO)]+ with the excess [Co(CO)_3(NO)] occurred, resulting in the dinuclear complex, according to Equation (1):

\[
[\text{PPN}[\text{Co}(\text{CN})(\text{CO})_2(\text{NO})]] + [\text{Co}(\text{CO})_3(\text{NO})] \rightarrow \text{PPN}[\text{Co}(\mu-CN)(\text{CO})_2(\text{NO})_2] (1) + \text{CO}
\]

Because of the different reaction behavior of PPN(NO_2)+ with [Co(CO)_3(NO)] (in excess) we had to assume that the cyanido ligand is more suitable to function as a bridging ligand in polynuclear complexes, whereas that seems to be lesser the case for the nitrito ligand. Unfortunately, our preliminary result of the X-ray crystal-structure determination of 1 was very unsatisfactory and frustrated because of many disorder phenomena even in the region of the PPN cation. For this reason we changed to another cation and examined the reaction of \textit{N}Bu_4+CN with [Co(CO)_3(NO)]. During these investigations we observed the same reaction behavior as found for [PPN]CN resulting in the corresponding dinuclear complex salt as dark red crystals in comparable yields. Also, in that case, we obtained crystals from dichloromethane/diethyl ether suitable for an X-ray diffraction study. The compound 2 crystallized as red-brown crystals in the monoclinic space group \textit{P}2_1/\textit{c} with four molecules in the unit cell. A selected view of the compound is depicted in Figure 1.

Besides the perfect disorder of the bridging cyanide which is forced by inversion symmetry, the NO and CO ligands are disordered as well (further details are given in the Experimental Section).

To bring more insight into the correct determination of the molecular structure, a mass spectrum (ESI–) of 2 showed the molecular ion peak at \textit{m/z} = 315 (M+) corresponding to the composition of the proposed dinuclear anion. A proper elemental analysis was even obtained (see Exp. Sect.). Furthermore, the appearance of a doubling of the characteristic CO and NO stretching frequencies in the IR spectra of 1 and 2 supplied a hint that two slightly different Co(CO)_2(NO) fragments should be present in the molecules caused by the bridging cyanido ligand. Considering the formation of the dinuclear species 1 and 2 in the title reaction, it should be absolutely noted that the use of equimolar amounts of reactants also resulted in the formation of the dinuclear species however in lower yields related to the [Co(CO)_3(NO)]. Therefore, at the moment, we have no indication for the formation of the intermediate species \textit{[}Co(CN)(CO)_2(NO)]- during our examined reaction conditions. A similar spontaneous condensation behavior of related species was reported by other authors during the nitrosation attempt of \textit{[}WCN(CO)_3(NO)]+ with NO+ whereby the trinuclear complex \textit{[}W(\mu-CN)_2(\text{CO})_9(NO)]- was formed.[10] Also, in this case, at no stage of the structure analysis and refinement for the latter was it possible to distinguish between nitrosyl and carbonyl ligands in the individual W(CO)_\textit{n}(NO) fragments.

Considering the aspect that thiocyanate as an ambidentate ligand can also open the opportunity to function as the bridging
Closely related compounds bearing pseudohalide ligands, e.g., PPN[Fe(NO)2(SCN-)2] (X = O, S) were reported by Darensbourg and co-workers. The latter were prepared by the reaction of [Fe(CO)2(NO)] with cyanate and thiocyanate, respectively, in THF at room temperature and their molecular structures in the crystal were confirmed by X-ray diffraction. The bonding parameters concerning the Co–NCS unit of 3 are comparable to the ones found for PPN[Fe(NO)2(SCN-)2]. Thus for the latter the distances Fe–N–O(avg.) were found as to be 1.701(2) Å, and Fe–NCS(avg.) = 1.970(2) Å, N–O(avg.) = 1.169(2) Å as well as the angles Fe–N–O(avg.) = 161.9(2)°, Fe–N–C(avg.) = 177.2(2)° and N–C–S(avg.) = 178.9(2)°.[11] Beside the characteristic CO and NO vibration bands in the IR spectrum of 3, which are comparable to the corresponding pattern of 1 and 2, a strong band at 2097 cm–1 was found. This vibration we assigned to the C=N moiety of the thiocyanato ligand which is in good agreement with the reported data of PPN[Fe(NO)2(SCN-)2] (2076sh, 2056vs, THF).[11] In light of the simple hard/soft interaction of the ambidentate ligand SCN−, we first expected a coordination of that ligand by the sulfur to the low-valent cobalt in our case. However, our crystal-structure result of 3 afforded the bonding mode SCN−κN.

In fact, searching in the CCDC data base indicated the latter linkage isomer as the most predominant form in many deposited structures, even in many cases of soft, zerovalent metal carbonyls.[11]

Conclusions

In summary, we have investigated the reaction behavior of [Co(CO)3(NO)] towards the ligands cyanide and thiocyanate. For the thiocyanate, a simple substitution of one carbonyl group towards the incoming ligand was observed, resulting in species [Co(CO)2(NO)X]– (X = NO2 and SCN), whereas the reaction with the nitrite had been already reported in the literature.[12] In the case of cyanide, the analogous species with X = CN seemed to be only an intermediate immediately reacting with a second molecule of [Co(CO)3(NO)] in a condensation reaction affording the novel complex [Co3(μ-CN)(CO)4(NO)2]3+. The molecular structure of the latter in its corresponding tetra-n-butylammonium salt (2) and of PPN[Co(CO)2(NO)(SCN-κN)] (3), respectively, were established by X-ray single-crystal diffraction and their composition further confirmed by spectroscopic methods.

Experimental Section

General: All reactions were carried out in an atmosphere of dry nitrogen using standard Schlenk techniques. THF and diethyl ether were dried with sodium-benzophenone ketyl and freshly distilled prior to use. Reagents were purchased commercially from ABCR and used without further purification. [PPN]CN and [PPN]SCN were prepared following the known literature procedures.[13] IR spectra were recorded from solids with a JASCO FT/IR-460 plus spectrometer equipped with an ATR unit. Mass spectra were recorded using a MAT 95 spectrometer. Microanalyses (C, H, N) were performed by the Microanalytical Laboratory of the Department of Chemistry, LMU Munich, using a Heraeus Elementar Vario EL instrument.
PPN[Co(C≡N)(CO)₄(NO)] (1): To a stirred solution of [Co(NO)₃(NO)] (0.40 mL, 3.40 mmol) in THF (15 mL) [PPN]CN (226 mg, 0.40 mmol) was added at room temperature. The solution turned quickly to red-brown whereas a strong gas evolution was observed. After stirring for 1 h the solvent was evaporated in vacuo. CAUTION: During this procedure the excess of the volatile and toxic [Co(NO)₃(NO)] was distilled in the condensation trap! The remaining residue was crystallized from dichloromethane/diethyl ether affording 1 as dark red crystal plates. Yield: 237 mg (70 % related to [PPN]CN). C₃₉H₃₀CoN₃O₃P₂S (741.63): calcd. C, 57.98; H, 3.23; N, 6.83 %. found: C, 57.63; H, 3.54; N, 6.56 %.

CAUTION: During this procedure the excess of the volatile and toxic [Co(NO)₃(NO)] was distilled in the condensation trap! The remaining residue was crystallized from dichloromethane/diethyl ether affording 1 as dark red rhombus-like crystal plates. Yield: 210 mg (71 %, related to thiocyanate). C₃₉H₃₀CoN₃O₃P₂S (741.63): calcd. C, 57.63; H, 3.54; N, 6.56 %; found: C, 57.98; H, 3.23; N, 6.83 %. IR (solid, ATR): ν = 2125m (μ-CN); 2020sh, 1941vs. (CO); 1704vs, 1720sh (NO)

NnBu₄[Co(C≡N)(CO)₄(NO)] (2): To a stirred solution of [Co(NO)₃(NO)] (0.40 mL, 3.40 mmol) in THF (15 mL) [NnBu₄]CN (107 mg, 0.40 mmol) was added at room temperature. The solution resulted. After further stirring for 10 min the solvent was evaporated in vacuo. During an initial time of 20 min (some gas evolution) a red-brown solution was obtained. After stirring for 1 h the solvent was evaporated in vacuo. CAUTION: During this procedure the excess of the volatile and toxic [Co(NO)₃(NO)] was distilled in the condensation trap! The remaining residue was crystallized from dichloromethane/diethyl ether affording 2 as dark red rhombus-like crystal plates. Yield: 190 mg (85 % related to [NnBu₄]CN). C₃₉H₃₀CoN₃O₃P₂S (741.63): calcd. C, 63.16; H, 4.08; N, 5.67 %; found: C, 62.74; H, 4.29; N, 5.71 %.

Crystal Structure Determination and Refinement: Crystals suitable for X-ray crystallography of 2 and 3, respectively, were obtained as described above. Crystals were selected by means of a polarization microscope, mounted on a MiTeGen MicroLoop, and investigated with a Bruker D8 Venture TTX diffractometer using Mo-Kα radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined employing SHELXT.[12] Anisotropic displacement parameters were refined for all non-hydrogen atoms with the exception of the C, N and O atoms of the anion in 3, which had to be refined isotropically. All hydrogen atoms were calculated in ideal geometry riding on their parent atoms. Split model refinements revealed that the C and N coordination sites of the CO and NO ligands are occupied by N and C. According to the refinement of the site occupation factors, the anion in Figure 1 is the most abundant one (67 %). Less abundant are the moieties with N located at the site of C2 (3 %) and C3 (30 %). For the other symmetrically independent cobaltate, the split model refinement led to corresponding values of 46 %, 34 % and 20 %. This kind of disorder, as well as that of the bridging cyanide, was also present in the various attempts to refine the structure of 2 in lower-symmetry space groups. In 3, there are two kinds of disorder in the cobaltate anion: Firstly, the whole anion is slightly disordered (see the SI for a Figure visualizing the disorder). The refinement of the ratio of site occupation factors of the two moieties led to 0.506/0.494. The SIMU restraint had to be applied in order to improve the (an)isotropic displacement parameters of atoms located within a distance of 0.7 Å or closer that. The second type of disorder in this anion is formed by CO and NO. Each C- or N-site of CO/NO has been occupied with 1/3 N and 2/3 C which represents a perfect disorder over all three CO and NO sites within one anion. Finally, the solvent had to be squeezed out. There are two voids with a volume of 172 Å³ each bearing 27 electrons according to PLATONS SQUEEZE routine.[13] This corresponds to about 0.6 di-ether each in one of the voids. ORTEP has been used to create Figure 1 and Figure 2.[14] Details of the crystal data, data collection and structure refinement parameters of compounds 2 and 3 are summarized in Table 1.

Table 1. Details of the X-ray crystal data collection and structure refinement for compounds 2 and 3.

2	3	
Empirical formula	C₃₉H₃₀CoN₃O₃P₂S	C₃₉H₃₀CoN₃O₃P₂S
Space group	monoclinic	monoclinic
a [Å]	15.432(1)	15.432(1)
b [Å]	11.698(8)	11.698(8)
c [Å]	15.7650(12)	15.7650(12)
V [Å³]	2781.7(3)	2781.7(3)
Z	4	4
T/K	102(2)	102(2)
µ [mm⁻¹]	1.231	1.231
ρcalc [g/cm³]	1.333	1.333
θ range for data collection (°)	2.701 to 30.508	2.701 to 30.508
Reflections collected	52018	52018
Independent reflections	8482	8482
Rint	0.0768	0.0768
R1 [I > 2σ(I)]	0.0642	0.0642
wR2 (all data)	0.1550	0.1550
Parameters	308	308
Goodness of fit on F²	1.058	1.058
Largest diff. peak/hole /e Å⁻³	1.161 / –1.498	0.593 / –0.448

Crystalllographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies of the data can be obtained free of charge on quoting the depository numbers CCDC-1993133 (2) and CCDC-1993134 (3) (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk)

Supporting Information (see footnote on the first page of this article): Crystalllographic data of compounds 2 and 3 (packing of 2 and 3 in the crystal as well as the illustration of the disorder in the anion of 3).

Acknowledgements

The authors are grateful to the Department of Chemistry of the Ludwig-Maximilians Universität Munich for financial support of these investigations. Open access funding enabled and organized by Projekt DEAL.

Keywords: Nitrosyl ligand; Cobalt; Cyanido ligand; Thiocyanato ligand; Crystal structure
References

[1] L. Li, L. Li, Coord. Chem. Rev. 2016, 306, 678 and references cited therein.
[2] R. S. Stevens, W. L. Gladfelter, Inorg. Chem. 1983, 22, 2034.
[3] R. D. W. Kemmitt, D. R. Russell, Comprehensive Organometallic Chemistry (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon Press, New York 1982, chap. 34 p. 27.
[4] A. Martinsen, J. Songstad, Acta Chem. Scand. A 1977, 31, 645.
[5] R. Nast, M. Rohmer, Z. Anorg. Allg. Chem. 1956, 285, 271.
[6] H. Behrens, E. Lindner, H. Schindler, Chem. Ber. 1966, 99, 2399.
[7] M. Foà, L. Cassar, J. Organomet. Chem. 1971, 30, 123.
[8] R. C. Job, M. D. Curtis, Inorg. Chem. 1973, 12, 2510.
[9] J. K. Ruff, Inorg. Chem. 1969, 8, 86.
[10] H. M. Dawes, M. B. Hursthouse, A. A. Del Paggio, E. L. Muetterties, A. W. Parkins, Polyhedron 1985, 4, 379.
[11] C.-H. Hsieh, S. M. Brothers, J. H. Reibenspies, M. B. Hall, C. V. Popescu, M. Y. Darenbourg, Inorg. Chem. 2013, 52, 2119 and references cited therein.
[12] G. M. Sheldrick, Acta Crystallogr., Sect. A 2015, 71, 3.
[13] A. L. Spek, Acta Crystallogr., Sect. C 2015, 71, 9.
[14] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.

Received: April 23, 2020
Published Online: June 30, 2020