Rickettsia Species in African Anopheles Mosquitoes

Cristina Socolovschi¹, Frédéric Pages², Mamadou O. Ndiath³, Pavel Ratmanov¹, Didier Raoult¹*

¹ Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France, ² CIRE/ARS Océan Indien, La Réunion, France, ³ IRD, Laboratoire de Paludologie, UMR 198 URMITE, Dakar, Sénégal

Abstract

Background: There is higher rate of *R. felis* infection among febrile patients than in healthy people in Sub-Saharan Africa, predominantly in the rainy season. Mosquitoes possess a high vectorial capacity and, because of their abundance and aggressiveness, likely play a role in rickettsial epidemiology.

Methodology/Principal Findings: Quantitative and traditional PCR assays specific for *Rickettsia* genes detected rickettsial DNA in 13 of 848 (1.5%) *Anopheles* mosquitoes collected from Côte d’Ivoire, Gabon, and Senegal. *R. felis* was detected in one *An. gambiae* molecular form S mosquito collected from Kahin, Côte d’Ivoire (1/77, 1.3%). Additionally, a new *Rickettsia* genotype was detected in five *An. gambiae* molecular form S mosquitoes collected from Côte d’Ivoire (5/77, 6.5%) and one mosquito from Libreville, Gabon (1/88, 1.1%), as well as six *An. melas* (6/67, 9%) mosquitoes collected from Port Gentil, Gabon. A sequence analysis of the gltA, ompB, ompA and sca4 genes indicated that this new *Rickettsia* sp. is closely related to *R. felis*. No rickettsial DNA was detected from *An. funestus*, *An. arabiensis*, or *An. gambiae* molecular form M mosquitoes. Additionally, a BLAST analysis of the gltA sequence from the new *Rickettsia* sp. resulted in a 99.71% sequence similarity to a species (JQ674485) previously detected in a Senegalese patient with a fever from the Bandafassi village, Kédougou region.

Conclusion: *R. felis* was detected for the first time in *An. gambiae* molecular form S, which represents the major African malaria vector. The discovery of *R. felis*, as well as a new *Rickettsia* species, in mosquitoes raises new issues with respect to African rickettsial epidemiology that need to be investigated, such as bacterial isolation, the degree of the vectorial capacity of mosquitoes, the animal reservoirs, and human pathogenicity.

Citation: Socolovschi C, Pages F, Ndiath MO, Ratmanov P, Raoult D (2012) Rickettsia Species in African Anopheles Mosquitoes. PLoS ONE 7(10): e48254. doi:10.1371/journal.pone.0048254

Editor: Kristin Michel, Kansas State University, United States of America

Received July 13, 2012; Accepted September 20, 2012; Published October 30, 2012

Copyright: © 2012 Socolovschi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Didier.Raoult@univmed.fr

Introduction

Mosquitoes, of the family Culicidae, are blood-sucking arthropods with a global distribution that have played a destructive role in human history. Although their bites are widely considered nuisance, they are today, as in the past, likely the most dangerous vector to the health of humans in terms of morbidity or mortality. Their infectivity is linked to their ability to transmit a wide variety of pathogens, such as filarial parasites, plasmodium, and arboviruses [1]. Due to climatic conditions in tropical and subtropical regions, the aggressiveness of anthropophagic mosquitoes may be high both in urban and rural settings, which helps to explain the burden of mosquito-borne diseases [2,3]. Most of the mosquito vectors able to cause human disease belong to three genera: *Anopheles*, *Aedes* and *Culex*. These three genera can transmit arboviruses, human filariasis and dirofilariasis, although only anopheline mosquitoes can transmit the five parasites known to cause human malaria. Despite dense research into mosquito-borne infections [4–6], no study has focused on the potential transmission of *Rickettsia* by mosquitoes in humans.

In 1924, the presence of intracellular *Rickettsia*-like microorganisms in the cells of the ovary and testes in *Culex pipiens* mosquitoes was reported [7]. Later, this bacterium was described as *Wolbachia pipiens*, a member of the family Anaplasmataceae within the order Rickettsiales. In addition, in 1975, Yen [4] using electron microscopy described a second transovarially transmitted *Rickettsia* species. Thus, we have hypothesized that additional, unidentified *Rickettsia* species likely exist in mosquitoes. Recently, *Rickettsia felis* was considered a rare emerging pathogen transmitted to date by fleas. Recently, it has been detected in 3.1% of *Aedes albopictus* mosquitoes collected from Libreville, Gabon [8]. Two teams investigating the etiology of unexplained fevers in Senegal and Kenya reported a high incidence of *R. felis* infection among the indigenous populations [9–12]. Moreover, *R. felis* DNA has also been found in blood samples of healthy people [12]. Moreover, no *R. felis* specimens were detected in fleas from Senegal, but the presence of a new *Rickettsia* species closely related to *R. felis* was detected and shown to have a high rate of infection (91.4%) [13].

* Ae. albopictus* was first described in Gabon in 2006 and has not yet been described in Senegal or Kenya; therefore, other alternative mosquito species need to be considered. Anopheline mosquitoes are present throughout Africa and exist primarily in rural settings but can also be found in urbanized areas. Due to their abundance and anthropophily, the potential role of malaria vectors in the epidemiology of rickettsial diseases in Africa should not be underestimated. In this work, different species of
Anopheles mosquitoes from West and Central Africa were screened for the presence of *Rickettsia* species, particularly *R. felis*.

Materials and Methods

Mosquito Collection and Identification

The mosquitoes were sampled using human landing catches both indoors and outdoors during malaria transmission surveys conducted by French forces in rural or urban areas of Côte d’Ivoire, Gabon and Senegal [2,14–16]. Additional details concerning the sampling methodology are available in the reference papers [2,14–16]. The mosquitoes were sorted by genus, and the anopheles mosquitoes were identified morphologically according to the Gillies and Coetzee keys [17]. From these African countries, 772 unfed mosquitoes stored individually in numbered vials containing a desiccant (silica gel 13767 Sigma-Aldrich) preserved at -20°C were chosen until processing at the Medical Entomology Unit of the Institute for Tropical Medicine (IMTSSA) in Dakar, Senegal. The choice of using non-engorged mosquitoes was done to ensure that the prevalence of *rickettsia* in mosquitoes was not due to the presence of blood from a bactereemic host. Females of the *An. gambiae* complex and the M and S molecular forms of *An. gambiae* were identified by PCR-RFLP [18].

Ethics Statement

The collectors gave prior informed written consent and received anti-malarial prophylaxis and yellow fever immunizations. The study protocol was approved by the Marseille II Ethics Committee (Advice N. 02/31, 12/13/2002). In addition, an authorization of medical research was obtained also for a period of two years with the Ministry of Health and Public Hygiene in charge of Family and Women Promotion, Gabon (Decision No. 001085 of September 2008).

Rickettsia Detection by Real-time PCR

Each mosquito was directly dissected in the tube. A new needle was used for each mosquito. The DNA was extracted in the incoming year after the capture and conserved at -20°C. Total mosquito DNA was extracted using the Qiagen BioRobot 8000 (QIAGEN group) and the QIAamp Media MDX kit at the IMTSSA (772 specimens) and the WHO Collaborative Center for Rickettsial Diseases and Arthropod-Borne Bacterial Disease (URMITE) in Marseille (76 specimens), according to the manufacturer’s instructions. The dried DNA pellets from one mosquito were resuspended in 120 μl elution buffer. For each PCR reaction, 5 μl mosquito DNA was added in 15 μl mix. A negative control, which consisted of DNA extracted from an unfed laboratory tick free of *Rickettsia*, *Ehrlichia*, *Anaplasmata*, *Bartonella* and *Coxiella burnetii*, was included in each test. In 2010–2011, all of the DNA samples were tested for the presence of the *Rickettsia* spp. citrate synthase (*glxA*) gene and the *R. felis* biotin synthase (*bioB*) gene at URMITE, as described previously [10]. All real-time PCR reactions for the rickettsial screening were performed according to the manufacturer’s protocol using a 7900HT Fast Real-Time PCR system (Applied Biosystems, Foster City, USA). All rickettsial- and *R. felis*-positive samples were confirmed with the detection of the RC0338 and orfB genes, respectively, using the CFX96™ Real-Time PCR System (Bio-Rad) [8,10]. Specificity of the qPCR for 4 genes (*glxA*, RC0338, *bioB* and orfB genes) was checked in silico and on the 31 *Rickettsia* spp. from our laboratory. The analytical sensitivities of the real-time PCR targeted these genes were determined in triplicate reactions with ten-fold serial dilutions of a known titration of *R. felis* cell culture. Based on these results we extrapolated the mean copies of each gene by mosquito sample. The quality of DNA extraction was verified using standard PCR targeting the mitochondrial cytochrome oxidase subunit II (COII) gene with the COII-2a and COII-9b primers from several randomly selected samples [19] and of DNA handling using same standart methods conducted in *Rickettsia* spp. detection studies [13,20–23] and in mosquitoes [15,24].

Rickettsia Characterization: Traditional PCR and Sequencing

All mosquito *Rickettsia*-positive samples were subjected to a traditional PCR analysis targeting the outer membrane protein (*ompA*) gene with the primer set 190–70 and 190–701 (Eurogentec, Seraing, Belgium), which amplifies a 629–652-bp fragment, as previously described [25]. The complete *glA* gene was amplified from one *An. gambiae* molecular form S mosquito from Côte d’Ivoire (N.10731) and one *An. melas* from Gabon (N.10244) using a battery of primers that amplify a 1234-bp sequence, as previously described [26]. In addition, for *An. gambiae* N.101731 free of *R. felis* DNA, three additional PCR reactions were performed: (i) a PCR using a battery of primers to amplify a 4346-bp fragment of the *rickettsial* *ompB* gene [27]; (ii) a PCR using a battery of primers to amplify a 2705-bp fragment of the *sca4* gene [28]; and (iii) a PCR using a battery of primers to amplify a 1500-bp fragment of the 16S rRNA gene [29]. These amplicons are commonly used to characterize *Rickettsiae* at both the genus and species levels [30]. A positive control, which consisted of *R. montanensis* DNA, was included in each test. The *glA* fragment from the RKND03 system (*Rickettsia*-specific real-time PCR), the *bioB* and orfB fragments from the *R. felis*-specific real-time PCRs, and the *ompA*, *glA*, *ompB*, *sca4*, and 16S rDNA PCR products from the traditional PCRs were purified and sequenced as previously described [25,30]. All of the sequences were analyzed using ChromasPro Version 2.31 and compared to those of the *Rickettsiae* sequences present in GenBank using the BLAST search tool. Multiple sequence alignments have been done with *glA* sequences obtained from this study and of the nearest *Rickettsia* spp. sequences from GenBank using the ClustalX program (ftp://ftp.ebi.ac.uk/pub/software/clustalw2). Phylogenetic tree was constructed using the test minimum-evolution tree algorithm, MEGA program. The support for the tree nodes was calculated with 100 bootstrap replicates.

Results

Entomological Investigation

In Côte d’Ivoire. The catches were conducted in 2004 at the Kahin site. This area was selected because it was known to contain the three main malarial vectors for this country: *An. gambiae* s.s., *An. funestus* and *An. nili*. A total of 94 *An. funestus*, 96 *An. melas* and 96 *An. gambiae* s.s. mosquitoes were screened for the presence of *Rickettsia* spp. (Table 1). In this rural area, the aggressiveness of *Ae. aegypti* was low, and only a small number of specimens were caught at dusk or dawn.

In Gabon. The catches were conducted in 2007 at the two main towns within the country, Libreville and Port Gentil. In Port Gentil, the study site was situated in a peri-urban area, which was surrounded on its west and south sides by forested or deforested areas that were liable to flooding during the rainy season and on the other sides by a few modern and traditional habitations. *An. gambiae* molecular form S and *An. melas* were the only two members with...
Table 1. Rickettsial detection in different mosquito species collected in Côte d’Ivoire, Gabon, and Senegal.

Country	Mosquito species	DNA samples	Rickettsial detection			
			Positive samples, SFG	Positive samples, R. felis-specific		
			gltA gene	RC0338 gene	bioB gene	orF gene
Kahin, Côte d’Ivoire (06°01’N, 07°63’W)	Anopheles funestus	84	0/84	0/84	-	-
	An. nili	96	0/96	0/96	-	-
	An. gambiae molecular form S	77	6/77 (7.8%)	6/6\(^{\text{G}}\)	1*\(^{/}1\) (1.3%)	1/6
	An. gambiae molecular form M	19	0/19	0/19	-	-
Libreville, Gabon (0°23’24’N, 9°26’59’E)	An. gambiae molecular form S	88	1/88 (1.1%)	1/1\(^{\text{G}}\)	0/88	0/1
Port Gentil, Gabon (0°43’11’N, 8°46’47’E)	An. gambiae molecular form S	21	0/21	0/21	-	-
	An. melas	67	6/67 (9%)	6/6\(^{\text{G}}\)	0/67	0/6
Dielmo, Senegal (13°43’N, 16°24’W)	An. gambiae	76	0/76	0/76	-	-
	An. arabiensis	120	0/120	0/120	-	-
Dakar, Senegal (14°40’20’N, 17°25’22’W)	An. arabiensis	200	0/200	0/200	-	-
Total	One genus, five mosquito species	848	13/848 (1.5%)	13	1/848 (0.1%)	1

*One sample (N.101761) was positive for a Rickettsia-specific real-time PCR that targeted two different genes and for an R. felis-specific real-time PCR that targeted two species-specific genes.

Number of positive samples: 101761*, 101731; 101728; 101722; 101720; 101728.
Number of positive sample: 12942.
Number of positive samples: 10244; 10109; 10251; 10111; 10296; 10110.

doi:10.1371/journal.pone.0048254.t001

This sample (N.101761) was an An. gambiae mosquito that had been collected from Kahin, Côte d’Ivoire (1/177, 1.3%). The Ct value for R. felis DNA in this sample for the bioB fragment was identified in the two areas of Dakar, as well as in Dielmo, a rural area in the south of Senegal. An. arabiensis was identified in the two areas of Dakar over this three-year period. In Dielmo, the molecular forms M and S of An. gambiae and An. arabiensis were identified (Table 1).

Rickettsia Detection in Mosquito Samples

A total of 13 mosquito species (13/848, 1.5%) were tested positive for the gltA and RC0338 genes, according to the Rickettsia-specific real-time PCR analysis. The mean cycle thresholds (Ct) value and standard deviation [±SD] of rickettsial DNA for the gltA and RC0338 fragments in these samples were 33.28±6.694 (mean copies/mosquito 7×10³), max: 13×10³, min: 3×10² and 33.45±6.9 (mean copies/mosquito 28×10², max: 12×10⁴, min: 2×10³), respectively. The positive samples included the following mosquito species: six An. gambiae molecular form S mosquitoes (6/77, 7.8%) from Kahin, Côte d’Ivoire (N.101761; 101713; 101729; 101733; 101722; 101728; six An. melas (6/67, 9%) mosquitoes from Port Gentil, Gabon (N.10244; 10109; 10251; 10111; 10296; 10110) and one An. gambiae molecular form S mosquito (1/88, 1.1%) from Libreville, Gabon (N.12942) (Table 1). We considered the mosquito samples as positive only if the real-time PCR results for both rickettsial genes were positive and the subsequent traditional PCR and sequencing analyses produced the rickettsial fragment. When we analyzed our data with the previously published data [2,14–16], all Rickettsia positive mosquitoes were negative for Plasmodium falciparum detection. The traditional PCR fragment of the mitochondrial COH gene was positive in five of the randomly selected Rickettsia-negative samples; their sequences displayed 97% similarity to the An. gambiae voucher JA37 sequence in GenBank (DQ792578) [31]. Therefore, we concluded that these DNA samples are free of Rickettsia DNA (Table 1).

The amplified fragments of the gltA gene (RKNDF03 system) from 11 mosquito samples (five An. gambiae: N.101751; 101729; 101733; 101722; 101728 and six An. melas: N.10244; 10109; 10251; 10111; 10296; 10110) were successfully sequenced. A 164-bp portion of the gltA gene from each of these samples was aligned using the BioEdit program, which indicated identical sequences. A BLAST search against all known bacterial genomes revealed that the closest match to a validated bacterium was with R. felis (CP000053) at 99.39% (164/165) similarity [32]. In addition to this bacterium, the sequence that was amplified from these mosquito samples demonstrated the same level of similarity to five uncultured Rickettsia spp. detected in Ctenocephalides felis (cat fleas) from Kenya (JN315974) [33], Glossina morsitans submorsitans (tsetse flies) from Senegal (GQ255905) [21], Pediculus humanus from Iran (FJ666771) [34], Aulogynus balani/skianeuros (gall wasps) from Hungary (FJ666770) [34], and C. canis (dog fleas) from Thailand (AF516339) [35].

Rickettsia Felis Detection in Mosquito Samples

Only one mosquito sample (1/848, 0.1%) was tested positive for both the bioB and orF genes, according to the Rickettsia-specific real-time PCR and the R. felis-specific real-time PCR (Table 1). This sample (N.101761) was an An. gambiae molecular form S mosquito that had been collected from Kahin, Côte d’Ivoire (1/77, 1.3%). The Ct value for R. felis DNA in this sample for the bioB
and orfB real-time PCR systems was 34.27 (4×10^3 copies/mosquito) and 31.61 (2×10^3 copies/mosquito), respectively. For this sample, the orfB real-time PCR product exhibited 100% (150/150) sequence similarity with the orfB gene of R. felis URRWX-Cal2 (GenBank, CP000053) [32].

Molecular Characterization of the New Rickettsia Species Identified in the Mosquito Samples

Five samples (4 An. gambiae from Côte d’Ivoire: N.101731; 101729; 101733; 101722 and 1 An. melas 10244) were previously amplified and sequenced with the gltA primer set [26], and the resulting two sequences were identical. A sequence analysis of the Rickettsia sp. gltA gene fragment (1022 bp) indicated a 99.05% (1009/1029) similarity to Rickettsia felis URWX-Cal2 (CP000053) [32] and a 98.25% (1014/1032) similarity to R. hongdouchi (JF757737) detected in Haemaphysalis suletta and Carnos capensis ticks [38], respectively.

In addition, a BLAST search indicated that the Rickettsia sp. detected in the mosquito samples shared high levels of sequence similarity with the following Rickettsia isolates: 99.12% similarity to Rickettsia sp. R31 (AF516331), which was previously detected in a C. canis flea from Thailand [35]; 98.74% similarity to Rickettsia sp. SGL01 (GQ255903), which was detected in tsetse flies from Senegal [21]; and 98.25% similarity to Rickettsia sp. F82 (JN315974), which was detected in fleas from Asemo, Kenya [33]. In a neighbor-joining analysis based on the alignment of 1022 bp of the gltA gene, the Rickettsia species detected in the Côte d’Ivoire and Gabon mosquitoes clustered with R. felis-like organisms and demonstrated large bootstrap values (Figure 1).

Seven molecular systems were used to PCR amplify and sequence the complete rickettsial ompB gene in one Côte d’Ivoire mosquito DNA sample: N.101731 [27]. Only the 6th fragment of the ompB gene was successfully amplified with the primer pair 120–3462 and 120–4346. The closest sequence match in the GenBank database was for Rickettsia felis URRWXCal2, which demonstrated a 95.74% (809/845) similarity (CP000053) [32]. A fragment of scarB, the intracytoplasmic protein-encoding gene, located between bases 21 and 3050 was amplified and sequenced using five molecular systems [28]. Using the D1219F and D1876R primers, the 3rd fragment was successfully aligned and analyzed using ChromasPro. A sequence analysis of this fragment (N.101731) indicated 97.12% (608/626) similarity to R. felis URRWXCal2 (CP000053) [32] and R. felis (GQ298978), which were detected in the common household insect pest Liposcelis bostrychophila [37]. Attempts to amplify one fragment of the 16S rRNA gene [29] with the primer pair Rick_16S.F and Rick_16S.R were unsuccessful.

Finally, because this novel Rickettsia species possesses the ompA gene, we were able to conclude that it is a member of the spotted fever group [30]. Furthermore, in accordance with the guidelines for the identification of new Rickettsia species [30], our molecular analysis of the nearly complete gltA gene and the partial sequences of the ompA, ompB, and scarB genes strongly supports the claim that this Rickettsia sp. detected in these mosquito samples constitutes a putative novel species (Table 2). To better characterize this Rickettsia species, it will be necessary to isolate this organism in cell culture from the mosquito samples and amplify and sequence the complete genes, as described previously.

New Nucleotide Sequence Accession Numbers in GenBank

The gltA, ompA, ompB, and scar gene fragment sequences of the novel Rickettsia species detected in the An. gambiae molecular form S mosquito from Côte d’Ivoire (N.101731) were deposited in GenBank under the accession numbers JN620082, JN620079, JN620080, and JN620081, respectively. The gltA and ompA gene fragments of the Rickettsia species detected in the An. melas sample from Gabon (N.10244) were deposited under the accession numbers JQ354961 and JQ354962, respectively.

Discussion

In this work, we used molecular tools to detect the presence of Rickettsia spp. in mosquitoes of the An. gambiae complex, including the molecular form S of An. gambiae and An. melas. We believe that our results are reliable. The validity of the data reported herein is based on strict experimental procedures and controls, including rigorous positive and negative controls to validate the test. In addition, each positive PCR result was confirmed by the successful amplification of an additional DNA sequence. We exclude the possibility of cross-contamination between Wolbachia spp. and Rickettsia spp. after the analysis of primers and probes of qPCR specific for Rickettsia spp. (gltA and RCO338) and R. felis-specific qPCR (orfB and bioB) in silico and in vitro, experimental assays, on several Wolbachia spp. positive samples. Unhappiness, Rickettsia culture could not be realized in this study because all mosquito specimens were initially extracted for malaria studies.

R. felis was detected in 1.3% (1/77) of An. gambiae molecular form S samples from Kahin, Côte d’Ivoire. R. felis belongs to the spotted fever group Rickettsia (SFGR) and has been detected at high prevalence in several species of fleas, ticks, and mites [39]. Recently, R. felis was isolated from the non-hematophagous arthropod Liposcelis bostrychophila (common booklice) [37]. R. felis is the only Rickettsia species associated with such a diverse range of invertebrate hosts, and it possesses a mosaic structure genome (size 1.48 Mb) with a high coding capacity (83%) that is indicative of symbiotic bacteria [40]. In Côte d’Ivoire, R. felis was previously detected in one specimen of C. canis collected from a dog [41]. In Africa, R. felis has been detected in fleas from Ethiopia [20], Algeria [42], Congo [43], Côte d’Ivoire [41], and Morocco [23]. Additionally, human cases have been described only in Tunisia, Kenya, Algeria, Lybia, Mali, Gabon and Senegal [9,12,44,45]. The reservoir of R. felis has not yet been elucidated [46,47]. Bacteria in the genus Rickettsia, have been detected usually in blood-feeding arthropods, but can also be detected in phytophagous insects [48]. R. felis PCR-positive blood samples have been reported in opossoms (Didelphis virginiana) from the USA and dogs from Spain and Australia [49–51]. Recently, the plant-mediated transmission route of endosymbiotic Rickettsia had been reported [32]. Further epidemiological studies are warranted to determine the reservoir of Rickettsia species in Africa.

We described the presence of a putative novel Rickettsia species in 6.5% (5/77) and 1.1% (1/88) of An. gambiae molecular form S mosquitoes from Côte d’Ivoire and Gabon, respectively, and in 9% (6/67) of An. melas mosquitoes from Gabon. This putative novel Rickettsia sp. was shown to be closely related to R. felis and R. felis-like organisms detected in several arthropods (fleas, tsetse flies, soft ticks and hard ticks) with a global distribution. Both of the R. felis-specific real-time PCRs used in our study demonstrated negative results for these samples. In Africa, an R. felis-like
organism was detected in *Archaeopsylla erinacei* fleas in Algeria \[42\], *C. canis* in Gabon \[53\], in *Echidnophaga gallinacea* fleas in Egypt \[54\], *Synosternus pallidus* fleas in Senegal \[13\], *C. felis* and *C. canis* fleas in Kenya \[33\], *Ornithodoros moubata* soft ticks in Tanzania \[55\], and *Glossina morsitans* tsetse flies in Senegal \[21\]. In 2005, Rolain et al. \[53\] suggested that nonhuman primates may represent a reservoir
of *R. felis*-like organism, as they detected this bacterium in fleas collected from monkey in Gabon. This hypothesis needs to be further investigated.

Previous quantitative analyses of *R. felis* load in naturally infected cat fleas demonstrated large variability in numbers of rickettsiae present in individual cat fleas, ranging from 1.3×10^3 to 1.6×10^7 [56] and around 12×10^2 to 5×10^7 copies (*bioB* gene) in hedgehogs fleas [22]. Greater *R. felis* burden had been reported in booklice compared to cat fleas [37]. Thus, we found a high load of *Rickettsia* in mosquitoes comparable with those obtained in naturally infected cat fleas. The prevalence of *Rickettsia* spp. in mosquito hosts is comparable to that determined in the soft ticks from Tanzania [55]. However, the prevalence is lower than in other arthropods, as *R. felis* was detected in 10.72% to 100% fleas collected in African countries [20,41–43] and *Rickettsia felis*-like in 91.4% to 100% in fleas and tsetse flies [13,21].

The molecular S form of *An. gambiae* is dispersed across West and East Africa [57] (Figure 2). In a Kenyan and Senegalese study on fevers of unknown origin, most *R. felis*-infected patients were detected in the rainy season [9,11], and a significant rate of co-infection with malaria and *R. felis* was detected (79.2% in patients with *R. felis*-positive PCR results in Kenya and 10.3% in Senegal) [9,12]. We suspect that only mosquitoes, the malaria vector, are the prime suspect on *R. felis* transmission. Considering the biting rates of each mosquito species, their rates of infection by *R. felis*, and this new strain of *Rickettsia* in Kahin (Côte d’Ivoire), Libreville and Port Gentil (Gabon), the level of transmission could be high if *Anopheles* mosquitoes can competently transmit *Rickettsia*. In Kahin, individuals without mosquito protection can be bitten by as many as three *R. felis*-infected mosquitoes and 18 *Rickettsia* sp.-infected *An. gambiae* molecular form S mosquitoes in two weeks [2]. In Port Gentil, an individual without mosquito protection can be bitten by a *Rickettsia* sp.-infected *An. melas* mosquito every three days [14]. According to these statistics, the vectorial competence of *An. gambiae* molecular form S and *An. melas* mosquitoes is likely low, although the extent of rickettsial infections is likely underestimated.

Table 2. Sequence similarity between the sequenced *Rickettsia* species detected in mosquitoes and *R. felis* URRWXCal2 (CP000053) [32].

Matching nucleotides	Similarity	
Citrate synthase gene (*gltA*) [26]	1009/1029	98.05%
Outer-membrane protein A gene (*ompA*) [25]	562/586	95.9%
Outer-membrane protein B gene (*ompB*) [27]	809/845	95.74%
PS120-protein- (sca 4, gene D) [28,30]	608/626	97.12%

Figure 2. The spatial distribution of *Plasmodium falciparum* entomological inoculation rate (PfEIR) and *Rickettsia felis* infection incidence. 2010 Malaria Atlas Project, available under the Creative Commons Attribution 3.0 Unported License [57].

doi:10.1371/journal.pone.0048254.g002
in Africa. Unfed mosquitoes were tested in our study, but knowing that the time between two bloodmeals for An.gambiae s.l. is in average of 2-3 days, the probability that rickettsial DNA from a previous blood meal could not be excluded.

The glA sequence of the new Rickettsia sp. detected in Anopheles mosquitoes in the current study exhibited a 99.7% (706/708) sequence similarity to that detected in a blood sample of a patient from the Kedougou region of the Bandafassi village in Senegal who had a fever of unexplained origin (GenBank[JQ674485]). Two differences had been detected between these glA sequences: 35G-A and 69T-C that led to two amino acids change G12E and L23P, respectively (JQ674485) to Rickettsia species and molecular forms of the An.gambiae species in cell culture from clinical blood or tissue samples and mosquito tissue specimens should be performed. Given the basic attributes of mosquito population abundance and their tendency for multiple human blood meals, we have hypothesized that mosquitoes could play a significant role in rickettsial epidemiology. The detection of Rickettsia DNA in mosquitoes is the first step on the vectorial capacity study [8] and other researchers are ongoing in our laboratory to confirm this hypothesis.

Acknowledgments

We would like to thank the technicians from URMITE, Marseille, namely Annick Bernard, Veronique Brice and Stephanie Junoy, for their technical support.

Author Contributions

Conceived and designed the experiments: DR. Performed the experiments: CS FP MON. Analyzed the data: CS FP. Contributed reagents/materials/analysis tools: DR FP. Wrote the paper: CS FP DR. Design of Figure 2: PR.

References

1. Service MW (1993) Mosquitoes (Culicidae). In: Lane RP, Crosskey RW, editors. Medical Insects and Arachnids. London: Chapman & Hall. 120-230.
2. Orlandi-Pradines E, Rogier C, Koffi B, Jarjaval F, Bell M, et al. (2009) Major variations in malaria exposure of travellers in rural areas: an entomological cohort study in western Cote d'Ivoire. Malar J 8: 171. 1475-2875-6-171 [pii].[10.1186/1475-2875-6-171] [doi].
3. Girod R, Orlandi-Pradines E, Rogier C, Pages F (2006) Malaria transmission and insecticide resistance of Anopheles gambiae (Diptera: Culicidae) in the French military camp of Port-Bouet, Abidjan (Cote d'Ivoire): implications for vector control. J Med Entomol 43: 1082-1087.
4. Yen JH (1975) Transovarial transmission of Rickettsia-like microorganisms in mosquitoes. Ann N Y Acad Sci 266: 152-161.
5. Walker T, Johnson PH, Mosteira LA, Iurbe-Ormaetxe I, Frenot FD, et al. (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450-453. nature10355 [pii].10.1038/nature10355 [doi].
6. Almeida FD, Moura AS, Cardoso AF, Winter CE, Bijovsky AT, et al. (2011) Wolbachia on fitness of Anopheles gambiae s.l. is in Africa. Unfed mosquitoes were tested in our study, but knowing that the time between two bloodmeals for An.gambiae s.l. is in average of 2-3 days, the probability that rickettsial DNA from a previous blood meal could not be excluded.

The glA sequence of the new Rickettsia sp. detected in Anopheles mosquitoes in the current study exhibited a 99.7% (706/708) sequence similarity to that detected in a blood sample of a patient from the Kedougou region of the Bandafassi village in Senegal who had a fever of unexplained origin (GenBank[JQ674485]). Two differences had been detected between these glA sequences: 35G-A and 69T-C that led to two amino acids change G12E and L23P, respectively (JQ674485) to Rickettsia species and molecular forms of the An.gambiae species in cell culture from clinical blood or tissue samples and mosquito tissue specimens should be performed. Given the basic attributes of mosquito population abundance and their tendency for multiple human blood meals, we have hypothesized that mosquitoes could play a significant role in rickettsial epidemiology. The detection of Rickettsia DNA in mosquitoes is the first step on the vectorial capacity study [8] and other researchers are ongoing in our laboratory to confirm this hypothesis.

Acknowledgments

We would like to thank the technicians from URMITE, Marseille, namely Annick Bernard, Veronique Brice and Stephanie Junoy, for their technical support.

Author Contributions

Conceived and designed the experiments: DR. Performed the experiments: CS FP MON. Analyzed the data: CS FP. Contributed reagents/materials/analysis tools: DR FP. Wrote the paper: CS FP DR. Design of Figure 2: PR.
37. Thepparit C, Sunyakumthorn P, Guillotte ML, Popov VL, Foil LD, et al. (2011) Isolation of a rickettsial pathogen from a non-hematophagous arthropod. PLoS ONE 6: e16396. 10.1371/journal.pone.0016396 [doi].

38. Duh D, Punda-polic V, Avsic-Zupanc T, Bouyer D, Walker DH, et al. (2010) Rickettsia hoogstraalii sp. nov., isolated from hard- and soft-bodied ticks. Int J Syst Evol Microbiol 60: 977–84. ijse.0.011049–0 [pii];10.1099/ijse.0.011049–0 [doi].

39. Parola P (2011) Rickettsia felis: from a rare disease in the USA to a common cause of fever in sub-Saharan Africa. Clin Microbiol Infect 17: 996–1000. 10.1111/j.1469-0691.2011.03516.x [doi].

40. Merhej V, Raoult D (2011) Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 86: 251–252.

41. Berrelha J, Briolant S, Muller F, Rolain JM, Marie JL, et al. (2009) Rickettsia felis and Rickettsia massiliae in Ivory Coast, Africa. Clin Microbiol Infect 15 Suppl 2: 251–252.

42. Bitam I, Parola P, De La Cruz KD, Matsumoto K, Baziz B, et al. (2006) First molecular detection of Rickettsia felis in fleas from Algeria. Am J Trop Med Hyg 74: 532–535.

43. Sackal C, Laudisoit A, Kosoy M, Massung R, Eremeeva ME, et al. (2008) Bartonella spp. and Rickettsia felis in fleas, Democratic Republic of Congo. Emerg Infect Dis 14: 1972–1974.

44. Znazen A, Rolain JM, Hammami A, Jemaa MB, Raoult D (2006) Rickettsia felis infection, Tunisia. Emerg Infect Dis 12: 138–140.

45. Loftis AD, Reeves WK, Szumlas DE, Abbassy MM, Helmy IM, et al. (2006) Surveillance of Egyptian fleas for agents of public health significance: Anaplasma, Bartonella, Coxiella, Ehrlichia, Rickettsia, and Yersinia pestis. Am J Trop Med Hyg 75: 41–48. 75/1/41 [pii];10.4269/ajtmh.2006.75.41 [doi].

46. Gething PW, Pillai AP, Smith DL, Guerra CA, Eylar IR, et al. (2011) A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10: 378. 1475-2875-10-378 [pii];10.1186/1475-2875-10-378 [doi].