Regulation of Thyroid Hormone-, Oestrogen- and Androgen-Related Genes by Triiodothyronine in the Brain of Silurana tropicalis

Paula Duarte-Guterman and Vance L. Trudeau
Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.

Amphibian metamorphosis is a complex developmental process, tightly controlled by thyroid hormones (THs) (1). The process is separated into three specific periods: premetamorphosis, prometamorphosis and metamorphic climax. Premetamorphosis [Nieuwkoop and Faber (NF) stages 46–54] is the period of early tadpole growth and development characterised by low levels of circulating THs. The growth of the hind limbs and toe differentiation is accelerated during prometamorphosis (NF 55–57). This period is characterised by a rapid increase in the concentrations of endogenous THs. During metamorphic climax (NF 58–65), TH levels peak and rapid morphological changes occur, such as the emergence of the forelimbs and tail resorption (1, 2). The central nervous system (CNS) in tadpoles is an important target of THs. During metamorphosis, the CNS is extensively remodelled; for example, with re-structuring (disappearance of certain larval neuronal structures and the development of adult structures), axon guidance and growth, cell proliferation and death (3, 4).

The two THs, 3,5,3'-triiodothyronine (T3) and thyroxine (T4), mediate their physiological effects by binding to nuclear thyroid hormone receptors (tr) encoded by two genes tralpha and trbeta (5). The metabolism of THs is regulated by three types of deiodinases (type I, II and III). Deiodinase type I (dio1) catalyses...
ferred to 12-litre tanks containing aerated water (pH = 7.5–8.0, dissolved oxygen = 80–85\%\), temperature = 23–24 °C, conductivity = 850–900 \mu S) and fed Sera Micron (Pondside Herb Supplies, Indian Harbor Beach, FL, USA) twice a day. Staging was determined by following the NF (17) developmental table. A 12 : 12 h light/dark cycle was maintained (lights on 07.00 h). The care and treatment of animals used in this study were in accordance with the guidelines of the Animal Care Committee of the University of Ottawa and the Canadian Council on Animal Care.

Brain collection for developmental profiles

Samples of whole brain for gene expression were taken at different NF stages of development (Fig. 1): 50 and 52 (premetamorphosis), 55 (prometamorphosis), 60 (beginning of metamorphic climax) and 66 (juvenile). Tadpoles were anaesthetised by immersion into 1% of 3-aminobenzoic acid ethyl ester (MS-222; Sigma), euthanised by decapitation, and the brain was dissected, frozen on dry ice and kept at −80 °C. For NF 50–55, brains were pooled (two to five per pool; n = 8 pools) to ensure sufficient material for RNA isolation. For NF 60 and 66, brains were analysed individually (n = 8). In addition, to compare the gene expression during development with adult gene expression, five mature males and five mature females from our colony were sacrificed using 4% MS-222 and the brain was dissected and frozen. For the cyp19 activity assay, whole brains were also collected for NF stages 52, 55, 60, 66 following the same procedure as for the gene expression samples.

T3 exposure

Premarktorphic tadpoles (NF stage 52–54) were exposed to three nominal concentrations of T3 (0.5, 5 and 50 nm; 3’,5’,3’-triiodo-L-thyronine; Sigma) or a dimethyl sulfoxide (DMSO; Sigma) solvent control for 48 h. The final DMSO concentration in the tanks was 0.005% in all treatments. The density in all the tanks was one tadpole per litre. Chemical additions were not renewed during the 48-h period. At the end of the exposure, tadpoles were anaesthetised by immersion into 1% of MS-222 and euthanised by decapitation. Brain was dissected, frozen on dry ice and kept at −80 °C.

RNA isolation and cDNA synthesis

Total RNA for the developmental profile and T3 exposure samples was obtained from whole brain using the Qiagen RNeasy Micro kit (including the DNase treatment set) in accordance with the manufacturer’s instructions (Qiagen, Valencia, CA, USA). Individual and pooled brains were homogenised and disrupted using a MM301 Mixer Mill (Retsch, Newton, PA, USA) at 20 Hz for 3 min. Isolated RNA was resuspended in RNeasy free water and stored at −80 °C. Total cDNA was prepared from 1 μg (for the developmental profile) and 2 μg (for the T3 exposure) of total RNA and 200 ng random hexamer primers (Invitrogen, Carlsbad, CA, USA) using SuperScript II reverse transcriptase (Invitrogen). For the developmental samples, the reverse transcriptase reaction was modified to be carried out at 42 °C for 90 min (instead of 50 min) to increase the cDNA yield. The cDNA products were diluted 20-fold prior to PCR amplification.

Real-time reverse transcriptase-polymerase chain reaction (RT-PCR)

Gene specific primers for real-time RT-PCR were designed and optimised as previously described (18). Real-time PCR primers for additional reference genes were designed based on GenBank sequences: gapdh (accession no. CR760856; forward 5’-TCACTGCCACCCAGAAGAC-3’; reverse 5’-GGATGA-CTTCCCCAACAG-3’; product size: 123 bp) and 18S (accession number X04025; forward: 5’-TCAACCGGGAACCTCAC-3’; reverse: 5’-AGACAAATC-
GCTCCACCAAC-3', product size: 117 bp). Primers were designed using Primer 3 (http://fokker.wi.mit.edu/primer3/input.htm) and primer concentrations were optimised to obtain a minimum threshold cycle and a maximum change in fluorescence. The optimised primer concentration for gapdh was 200 nM and for 18S it was 150 nM. The specificity of the primer sets was confirmed by cloning and sequencing the single amplicon obtained. Expression of target genes in the brain was analysed using dual-labeled fluorescent probes [for eralpha, erbeta, cypl9 and rpl8 (ribosomal protein L8)] and SYBR Green I [for tralpha, trbeta, dio1, dio2, dio3, r, srd5alpha1, srd5alpha2, actb (β-actin), eftalpha, gapdh and 18S] real-time RT-PCR assays using a MX3000P real-time PCR system (Stratagene, La Jolla, CA, USA) as previously described (18).

Data analysis

The relative standard curve method was used to interpolate relative mRNA abundance of target and reference genes within each sample. The standard curves were generated using a cDNA mix of NF 60–66 brain samples (for the developmental profiles), and using equal parts of cDNA from each treatment (for the T3 exposure). Reaction efficiencies were 90–110% with an R² ≥ 0.990. Samples were run in duplicate along with a negative template control (RNase-free water instead of cDNA template) and a negative reverse transcriptase control (cDNA template for which water was added instead of Superscript II). Data for each target were averaged and normalised to RNA content (19). Data for the developmental profiles are presented as fold changes.
change relative to NF 50 and data for the T3 exposure are expressed relative to the control group.

Aromatase activity assay

Aromatase activity in the brain during metamorphosis and after T3 exposure was measured by a radiometric method modified from Du et al. (20) and previously optimised for frog brain in our laboratory (18). Briefly, cyp19 activity was measured in pools of four to six brains (n = 5–6 pools) for the developmental profile and six or seven brains (n = 5 pools) for the T3 exposure. Cofactor (NADPH system) and 3H-androstenedione (3H-A) were first incubated for 30 min at 37 °C. After this pre-incubation, brain homogenates were added to a mix of cofactor and 3H-A, and incubated for 80 min at 35 °C. Aromatase activity was determined by the release of tritiated water from the C-1β carbon atom of 1β-3H-androstenedione during its conversion to oestrone. Tritiated water was extracted twice with a charcoal solution and radioactivity was counted. Aromatase activity is expressed as fmol 3H2O/μg protein.

Statistical analysis

Statistical analysis was performed using S-Plus 8.0 (Insightful Corporation, Seattle, WA, USA). Data for all the genes were first tested for normality and homogeneity of variance using the Kolmogorov-Smirnov test and Levene’s test, respectively. When the assumptions were not met, the data were transformed as required (e.g. log10, square root) and retested for normality and homogeneity of variance. Data were analysed by one-way ANOVA, except for NF 66 and adult brain samples, which were analysed using a two-way ANOVA to examine sex differences. Analyses were followed by the Bonferroni multiple comparisons test. When data failed to meet assumptions even after being transformed, the nonparametric Kruskal-Wallis test on ranks was used. P < 0.05 was considered statistically significant.

Results

Brain developmental profiles during metamorphosis and adulthood

We established developmental profiles of TH- and sex steroid-related genes by sampling at five NF stages of development (for main morphological characteristics, see Fig. 1): 50 and 52 (premetamorphosis; foot paddle stages), 55 (prometamorphosis; hind limb development), 60 (beginning of metamorphic climax; forelimb emergence) and 66 (juvenile frog; tail completely resorbed). For all of the genes assessed, transcripts were detected throughout metamorphosis and in the adult brain (Figs 1 and 2). All the reference genes tested (rpl8, eftalpha, actb and gapdh) changed during development; therefore, we decided to present the gene expression data normalised to RNA content only (19). Fig. 1(i) presents the brain developmental profile of rpl8 (i.e. the reference gene that varied the least during metamorphosis). The expression profiles of the receptors and enzymes show very distinct patterns and magnitude of change. Two genes that remain relatively constant throughout larval development are tralpha and dio1 (Fig. 1A, c). For tralpha, the only difference detected was at NF 55, which showed a higher expression relative to NF 52. For dio1, expression in the female brain decreases significantly after metamorphosis is complete (NF 66 versus adult brain); however, these changes are relatively minor (1.5-fold). The genes that show increases during development are trbeta, dio3, eralpha, erbeta, ar and cyp19 (Figs 1 and 2). Transcription levels of trbeta and dio3 are low and steady during premetamorphosis (NF 50–52) and early prometamorphosis (NF 55) and levels only increase significantly (by 30- and 20-fold respectively) at the beginning of metamorphic climax (NF 60; Fig. 1a,i). In the case of eralpha, erbeta, ar and cyp19, mRNA levels gradually increase during development (Fig. 2). We also found that cyp19 activity increases during metamorphosis, very closely following the mRNA profile (Fig. 2a). Finally, the expression of three genes (dio2, srd5alpha1 and srd5alpha2) decreases during development and remains low during adulthood (Figs 1o and 2o,i). Sex differences in the brain of the expression of target genes are only detected at the adult stages for erbeta (males had a 1.7-fold higher expression than females) and ar (females had a 1.7-fold higher expression than males).

Effects of T3 on brain transcript levels of thyroid hormone- and sex steroid-related genes

To investigate whether T3 regulates the expression of TH- and sex steroid-related genes in the brain of S. tropicalis, premetamorphic tadpoles (NF 52–54) competent to respond to THs were exposed to exogenous T3 for 48 h. Treatment with T3 had no effect on mortality and 100% survivorship post-exposure was observed in all treatment groups. Exposure to T3 resulted in concentration-dependent increases in trbeta (5.0–15-fold; ANOVA; P < 0.001), dio2 (2.0–3.0-fold; ANOVA; P < 0.001) and dio3 (2.5–120-fold; ANOVA; P < 0.01) mRNA relative to control (Fig. 3). Levels of tralpha remained unchanged for the 0.5 and 5 nM groups but decreased significantly (2.0-fold; ANOVA; P < 0.05) at the 50 nM T3 concentration (Fig. 3a). Transcript levels for dio1 did not change with T3 treatment (Fig. 3b). The reference genes rpl8, gapdh and 18S changed with T3 (Fig. 3c; ANOVA; P < 0.01); therefore, the gene expression data is normalised to RNA content, as suggested by Huggett et al. (19), and as we have previously reported (16, 18).

The effects of T3 on sex steroid-related gene expression and cyp19 activity are shown in Fig. 4. Exposure to T3 resulted in concentration-dependent increases in eralpha (1.8–2.0-fold; ANOVA; P < 0.001) and erbeta (2.4–2.8-fold; ANOVA; P < 0.001) mRNA (Fig. 4a). Expression of cyp19 was not affected by T3; however, we observed a significant increase (21% relative to control; ANOVA; P < 0.05) in cyp19 activity at the 50 nM concentration (Fig. 4b). Gene expression levels of srd5alpha2 increased significantly (between six- and 7.5-fold; ANOVA; P < 0.01) at all concentrations of T3, whereas levels of srd5alpha1 increased significantly at 0.5 nM T3 relative to the control group (1.5-fold; ANOVA; P < 0.05; Fig. 4c). Transcript levels of ar did not change after exposure to T3 (Fig. 4a).

Discussion

In the present study, we used S. tropicalis tadpoles to investigate the effects of THs on brain gene expression. There is evidence that the thyroid and reproductive axes interact during tadpole development (11, 16, 18, 21). Therefore, the target genes that we chose to
analyse are those related to TH, oestrogen and androgen receptors and synthesis enzymes. In the second part of the study, tadpoles were exposed to three concentrations of T3 (0.5, 5.0 and 50 nM) for 48 h. We followed the same protocol (e.g. T3 concentrations, stages of tadpoles, duration of the exposure) as in our previous study using *L. pipiens* (11) to allow valid comparisons between the two species. In the present study, we report that developmental expression and T3-regulation of TH-related genes are similar in *S. tropicalis* as in other frogs. Moreover, T3 can regulate expression of androgen synthesis enzymes in the brain.

Expression of thyroid hormone receptors and deiodinases during metamorphosis

Developmental profiles of *tr* and *dio* in the brain during natural metamorphosis have been previously established in *S. tropicalis* and other frog species. In the case of *trbeta*, the developmental profile and response to T3 obtained in the present study are very similar to data from *Xenopus laevis* (22), *L. pipiens* (11), and to those previously published for *S. tropicalis* (23). In *X. laevis*, *trbeta* mRNA increases in parallel with TH levels during metamorphosis and after T3 treatment (24).

This is the first time that expression profiles have been established for all three *dio* in the brain of *S. tropicalis*. To the best of our knowledge, we also present for the first time the developmental profile of *dio1* in a frog brain. In the case of *dio2* and *dio3*, the present results are similar to the profiles in *L. pipiens* (11). Interestingly, *dio1* remained fairly constant during metamorphosis and after T3 exposure, suggesting that this enzyme does not play a major role in brain remodelling during metamorphosis. The results for *dio1* are in marked contrast to *dio2* and *dio3*, which show a very dynamic pattern of expression and T3 regulation. The positive regulation of *dio2* by T3 is surprising because we would expect...
Mean/C6 scales of the listed to RNA content (note the broken line). Data are presented as the fold changes relative to control and are normalized to the promoter region of the X. laevis and Rana catesbeiana dio3 genes (26, 27). Low levels of dio2 and high levels of dio3 during metamorphic climax indicate that the brain has reduced T3 synthesis but has started inactivating THs to protect itself from high levels of circulating THs because developmental remodelling of the brain has been completed (9).

Expression of oestrogen- and androgen-related genes during metamorphosis

Our treatments were effective and the T3 responses in TH-related genes in S. tropicalis brain were highly comparable to several other species. The second question that we addressed in the present study was whether T3 could affect the expression of sex steroid-related genes in the brain during metamorphosis. We measured for the first time oestrogen- and androgen-related genes in the brain of S. tropicalis during metamorphosis. Although both eralpha and erbeta increase during development in the brain, the magnitude of change of their mRNA levels is very different. Of all the genes analysed in the present study, erbeta showed the highest increase (150-fold) at NF 60, whereas eralpha showed a more moderate increase (six-fold). Comparing the developmental profiles to the T3 exposure results helps elucidate whether endogenous THs are important regulators of gene expression. Interestingly, we found that both er mRNAs increased at the beginning of metamorphic climax and they were also positively regulated by T3. However, the relative increases were not as dramatic in the short T3 exposure compared to the metamorphic peak. The expression of er mRNAs has been shown to be regulated by oestrogen and oestrogenic compounds in frog and fish brain (28–30). We suggest that part of the increase in er mRNAs during development could be a result of rising levels of THs during metamorphosis and the other part could be a result of rising levels of oestrogen in the brain via increasing cyp19 activity during development (present study). This study with S. tropicalis confirms the previous findings in the brain of L. piperis where eralpha also increased during metamorphosis and after T3 exposure (11). In the adult brain, we found that erbeta mRNA was higher in males than females, implying that there may be sex differences in the T3 regulation of er mRNA in the tadpole brain. However, this idea and the molecular mechanism by which T3 induces er expression need to be investigated further.

We found that both cyp19 mRNA and activity increase in the brain during S. tropicalis metamorphosis and this is similar to gene expression profiles in X. laevis (31) and L. piperis (11). T3 did not affect cyp19 mRNA, which is in marked contrast with results in L. piperis where cyp19 mRNA decreased with T3 concentration (11). This difference between the two studies suggests there might be species differences in T3 regulation of cyp19; however, additional studies using other frog species will help further elucidate cyp19 regulation in the frog brain. Furthermore, we found that T3
Figure 4. Effects of triiodothyronine (T3) exposure on the expression of sex steroid-related genes in *Silurana tropicalis* premetamorphic tadpoles. *Silurana tropicalis* (NF 52–54) were exposed to T3 (0, 0.5, 5, 50 nM) for 48 h. Effects of T3 on *eralpha* and *erbeta* (a), *cyp19* mRNA and activity (b), *srdsalpha1* and *srdsalpha2* (c) and *ar* (d) are presented. Gene expression data (y-axis on the left) are presented as fold changes relative to control and are normalised to RNA content. Enzyme activity (y-axis on the right; a) is expressed in fmol/h normalised to protein content. Bars represent the mean ± SEM. Asterisks represent significant differences in gene expression levels from the control group (n = 8 pools; *P < 0.05; **P < 0.01; ***P < 0.001). Significant differences in enzyme activity levels are indicated by delta (Δ; n = 5; P < 0.01) relative to the control group. Note that the scales of the y-axis vary between genes.

Increases *cyp19* activity in the brain of *S. tropicalis*. To our knowledge, this is the first time that an increase in *cyp19* activity has been reported after T3 treatment in the frog brain. In mammals, most of the research has focused on the effects of TH on gonadal development and function. Exposure to TH decreases gonadal CYP19 activity *in vitro* in pigs (32) rats (33, 34) and mice (35). Therefore, the molecular mechanism and physiological consequences of T3 regulation of *cyp19* activity in the brain are unknown at this point. One way that T3 could affect *cyp19* activity without affecting mRNA level is by regulating the enzyme at the post-translational level (e.g. phosphorylation of the enzyme) (36) or by another indirect mechanism.

The profiles of *srdsalpha1* and *srdsalpha2* differ significantly with respect to the profiles of the other sex steroid-related genes. The expression of the two enzymes involved in the processing of testosterone for 5α-dihydrotestosterone (5α-DHT) synthesis decreases during development and remains low during adulthood in the brain. Urbatzka et al. (31) measured *srdsalpha1* and *srdsalpha2* mRNAs by semi-quantitative RT-PCR in the brain of *X. laevis* and, in general, their profiles are very similar to the ones reported in the present study for *S. tropicalis*. Immunohistochemical analyses have also shown that *srdsalpha1* is present in the brain of *Rana esculenta* tadpoles during metamorphosis (37). Exposure to all three concentrations of T3 resulted in a large increase (six- to 7.5-fold) in *srdsalpha2* but only a small increase (1.5-fold) in *srdsalpha1*. Previous studies have found that T3 induces *srdsalpha1* mRNA in whole larvae of *S. tropicalis* (16) and, in rats, hypothryoidism causes decreases in hepatic *srdsalpha* expression and activity, an effect that was restored with T4 treatment (38). *Srdsalpha2* is also involved in the conversion of progesterone into 5α-reduced metabolites such as allopregnanolone. Allopregnanolone has been shown to be involved in neurogenesis, regulating cell death and proliferation *in vitro* in rat and human neuronal stem cells (39) as well as in the developing sheep brain (40). TH promotes neurogenesis in the spinal cord of *X. laevis* (41), and is involved in neuronal proliferation and migration during vertebrate development (42). Taken together, the induction of *srdsalpha1* and *srdsalpha2* by T3 could be related to the roles of TH and neurosteroids in brain development. The comparison of developmental expression profiles and the results obtained after T3 exposure of *srdsalpha1* and *srdsalpha2* reveal marked differences. During metamorphosis, *srdsalpha1* and *srdsalpha2* decrease in the brain, whereas they increase following T3 exposure. These results indicate that rising endogenous THs are not directly responsible for developmental decreases in *srdsalpha* expression in the tadpole brain. Whole body measurement of testosterone and 5α-DHT indicates that androgens decrease during *X. laevis* development (43). In *S. tropicalis* larvae exposed to finasteride (a 5α- and 5β-DHT synthesis inhibitor), we have observed a decrease in *srdsalpha2* (18, 21). In rats, 5α-DHT can induce *srdsalpha* in the prostate (44) and *Srdsalpha2* in the adult brain (45). These studies suggest that expression of *srdsalpha* can be regulated by its own enzymatic reaction product (i.e. feedforward control of 5α-DHT on *srdsalpha*). Therefore, the decrease in *srdsalpha* mRNA during development observed in the present study could be linked to the decrease in 5α-DHT levels. On the other hand, rising TH levels likely counteract this to maintain or control the rate at which...
srdSalpa mRNA levels decrease as metamorphosis progresses. Another explanation involves the action of oestrogens. Oestradiol has been shown to inhibit SrdSalpha activity in rat skin (46) and adrenal tissue (47). In addition, in S. tropicalis, exposure to the aromatase inhibitor fadrozole increases hepatic srdSalpha1 and srdSalpha2 mRNA levels (21) and, in fish, fadrozole increases circulating androgen levels (48). These studies suggest that oestrogen can inhibit androgen synthesis in the tadpole as in adult frogs (49). In the present study, we found that brain cyp19 activity increases during S. tropicalis metamorphosis; therefore, this putative increase in oestrogen could inhibit srdSalpha activity in the brain, leading to a decrease in 5α-DHT and srdSalpha mRNA as a result of feedforward control. Future experiments are needed to test these hypotheses of the complex interplay between THs, androgens and oestrogens, as well as the physiological consequences of the regulation of srdSalpha by T3.

Taken together, the present results indicate that TH-related genes display very similar developmental profiles and T3 responses in the brain of different frog species. We found that the brain is an important site of TH regulation of not only TH-responsive genes, but also sex steroid receptor and enzyme genes. In the case of sex steroid-related genes, T3 regulation of eralpha appears to be common to both S. tropicalis and L. pipiens; however, this is not the case for cyp19 and additional research is needed for the androgen-related genes. Finally, we present supporting evidence of a crosstalk between TH and sex steroids in the developing brain of S. tropicalis. The present study provides an important baseline to determine the physiological consequences of this interaction during the remodeling of the frog brain.

Acknowledgements

The authors would like to thank Bill Fletcher for animal care and Valérie Langlois for providing helpful comments on the manuscript and for help with the aromatase activity assay. This research was supported by the NSERC-DG program (to V.L.T.), the University of Ottawa International Scholarship and NSERC-PGSD program (to P.D.-G.).

Received: 13 April 2010, revised 23 June 2010, accepted 27 June 2010

References

1 Shi Y-B. Amphibian Metamorphosis: From Morphology to Molecular Biology. New York, NY: John Wiley, 2000.
2 Denver RJ. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Am Zool 1997; 37: 172–184.
3 Denver RJ. The molecular basis of thyroid hormone-dependent central nervous system remodeling during amphibian metamorphosis. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1998; 119: 219–228.
4 Tata JR. Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Mol Cell Endocrinol 2006; 246: 1–20.
5 Tsai MJ, O'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994; 63: 451–486.
6 Galton VA. The roles of the iodothyronine deiodinases in mammalian development. Thyroid 2005; 15: 823–834.
7 Brown DD. The role of deiodinases in amphibian metamorphosis. Thyroid 2005; 15: 815–821.
8 Kawahara A, Baker BS, Tata JR. Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development 1991; 112: 933–943.
9 Cai L, Brown DD. Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis. Dev Biol 2004; 266: 87–95.
10 Morvan-Dubois Q, Sebiliot A, Kuiper GG, Verhoest CH, Darras VM, Visser TJ, Demeneix BA. Deiodinase activity is present in Xenopus laevis during early embryo genesis. Endocrinology 2006; 147: 4941–4949.
11 Hogan NS, Crump KL, Duarte P, Lean DR, Trudeau VL. Hormone cross-regulation in the tadpole brain: developmental expression profiles and effect of T3 exposure on thyroid hormone- and estrogen-responsive genes in Rana pipiens. Gen Comp Endocrinol 2007; 154: 5–15.
12 Tindall AJ, Morris JD, Pownall ME, Isaacs HV. Expression of enzymes involved in thyroid hormone metabolism during the early development of Xenopus tropicalis. Biol Cell 2007; 99: 151–163.
13 Pellegrini E, Menuet A, Lethimonier C, Adrio F, Gueguen MM, Tasson C, Anglade I, Pakdel F, Kah O. Relationships between aromatase and estrogen receptors in the brain of teleost fish. Gen Comp Endocrinol 2005; 142: 60–66.
14 Roselli CE, Liu M, Hurd PD. Brain aromatization: classic roles and new perspectives. Semin Reprod Med 2009; 27: 207–217.
15 Matsuda K, Sakamoto H, Kawata M. Androgen action in the brain and spinal cord for the regulation of male sexual behaviors. Curr Opin Pharmacol 2008; 8: 747–751.
16 Duarte-Guterman P, Langlois VS, Pauli BD, Trudeau VL. Expression and T3 regulation of thyroid hormone- and sex steroid-related genes during Silurana [Xenopus] tropicalis early development. Gen Comp Endocrinol 2010; 166: 428–435.
17 Nieuwkoop PD, Faber J. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis. New York, NY: Garland Publishing, Inc., 1994.
18 Langlois VS, Duarte-Guterman P, Ing S, Pauli BD, Cooke GM, Trudeau VL. Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana [Xenopus] tropicalis early larval development. Gen Comp Endocrinol 2010; 166: 427–427.
19 Huggett J, Dheda K, Bustin S, Zouma A. Real-time RT-PCR normalisation: strategies and considerations. Genes Immun 2005; 6: 279–284.
20 Du JL, Lee CY, Tacson P, Lee YH, Yen FP, Tanaka H, Dufour S, Chang CF. Estradiol-17beta stimulates gonadotropin II expression and release in the protandrous male black porgy Acanthopagrus schlegeli Bleeker: a possible role in sex change. Gen Comp Endocrinol 2001; 121: 135–145.
21 Duarte-Guterman P, Langlois VS, Hodgkinson K, Pauli BD, Cooke GM, Wade MG, Trudeau VL. The aromatase inhibitor fadrozole and the 5-reductase inhibitor finasteride affect gonadal differentiation and gene expression in the frog Silurana tropicalis. Sex Dev 2009; 3: 333–341.
22 Krain LP, Denver RJ. Developmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in Xenopus laevis. J Endocrinol 2004; 181: 91–104.
23 Wang X, Matsuda H, Shi YB. Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology 2008; 149: 5610–5618.
24 Yaoita Y, Brown DD. A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Genes Dev 1990; 4: 1917–1924.
25 Bonett RM, Hoooper ED, Denver RJ. Molecular mechanisms of corticosterone synergy with thyroid hormone during tadpole metamorphosis. Gen Comp Endocrinol 2010; doi: 10.1016/j.ygcen.2010.03.014.
26 Becker KB, Schneider MJ, Davey JC, Galton VA. The type III 5-deiodinase in Rana catesbeiana tadpoles is encoded by a thyroid hormone-responsive gene. Endocrinology 1991; 136: 4424–4431.

27 St Germain DL, Schwartzman RA, Croteau W, Kanamori A, Wang Z, Brown DD, Galton VA. A thyroid hormone-regulated gene in Xenopus laevis encodes a type III iodothyronine 5-deiodinase. Proc Natl Acad Sci USA 1994; 91: 11282.

28 Duarte P, Hogan NS, Lean DRS, Trudeau VL. Regulation and endocrine disruption of aromatase in the brain of developing Rana pipiens. 27th Annual Meeting of the Society of Environmental Toxicology and Chemistry of North America, Montreal, PQ, Canada, 2006.

29 Marlatt VL, Martyniuk CJ, Zhang D, Watt J, Xia X, Moon T, Trudeau VL. Auto-regulation of estrogen receptor subtypes and gene expression profiling of 17beta-estradiol action in the neuroendocrine axis of male goldfish. Mol Cell Endocrinol 2008; 283: 38–48.

30 Chandrasekar G, Archer A, Gustafsson JA, Andersson Lendahl M. Levels of 17beta-estradiol receptors expressed in embryonic and adult zebrafish following in vivo treatment of natural or synthetic ligands. PLoS ONE 2010; 5: e9678.

31 Urbatizka R, Lutz I, Kloas W. Aromatase, steroid-5-alpha-reductase type 1 and type 2 mRNA expression in gonads and in brain of Xenopus laevis during ontogeny. Gen Comp Endocrinol 2007; 153: 280–288.

32 Gregoraszczuk EL, Slomczynska M, Wilk R. Thyroid hormone inhibits aromatase activity in porcine thecal cells cultured alone and in coculture with granulosa cells. Thyroid 1998; 8: 1157–1163.

33 Ulisse S, Jannini EA, Carosa E, Piersanti D, Graziano FM, D’Armiento M. Inhibition of aromatase activity in rat Sertoli cells by thyroid hormone. J Endocrinol 1994; 140: 431–436.

34 Hatsuta M, Tamura K, Shimizu Y, Toda K, Kogo H. Effect of thyroid hormone on CYP19 expression in ovarian granulosa cells from gonadotropin-treated immature rats. J Pharmacol Sci 2004; 94: 420–425.

35 Cecconi S, Rucci N, Scaldaverri ML, Masciulli MP, Rossi G, Moretti C, D’Armiento M, Ulisse S. Thyroid hormone effects on mouse oocyte maturation and granulosa cell aromatase activity. Endocrinology 1999; 140: 1783–1788.

36 Baltazar J, Baillen M, Ball GF. Phosphorylation processes mediate rapid changes of brain aromatase activity. J Steroid Biochem Mol Biol 2001; 79: 261–277.

37 Bruzzzone F, Do Rego JL, Luu-The V, Pelletier G, Vallarino M, Vaudry H. Immunohistochemical localization and biological activity of 3beta-hydroxysteroid dehydrogenase and AldBReductase in the brain of the frog, Rana esculenta, during development. J Chem Neuroanat 2010; 39: 35–50.

38 Ram PA, Waxman DJ. Pretranslational control by thyroid hormone of rat liver steroid 5-alpha-reductase and comparison to the thyroid dependence of two growth hormone-regulated CYP2C mRNAs. J Biol Chem 1990; 265: 19223–19229.

39 Brinton RD, Wang JM. Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: allopregnanolone as a proof of concept neurogenic agent. Curr Alzheimer Res 2006; 3: 185–190.

40 Yawno T, Hirst JJ, Castillo-Melendez M, Walker DW. Role of neurosteroids in regulating cell death and proliferation in the late gestation fetal brain. Neuroscience 2009; 163: 838–847.

41 Schlosser G, Koyano-Nakagawa N, Kintner C. Thyroid hormone promotes neurogenesis in the Xenopus spinal cord. Dev Dyn 2002; 225: 485–498.

42 Torres JM, Ortega E. Differential regulation of steroid Salph-reductase isozymes expression by androgens in the adult rat brain. FASEB J 2003; 17: 1428–1433.

43 Maynard PV, Cameron EH. Adrenal microsomal C19-steroid Salph-reductase activity in the Snell transplanted rat adrenocortical tumour 494 and the effect of oestradiol, testosterone propionate and adrenocorticotropic in intact and gonadectomized rats. Biochem J 1973; 132: 293–300.

44 Ankleh GT, Kahl MD, Jensen KM, Hornung MW, Korte JJ, Makynen EA, Leino RL. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicol Sci 2002; 67: 121–130.

45 Brinton RD, Wang JM. Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: allopregnanolone as a proof of concept neurogenic agent. Curr Alzheimer Res 2006; 3: 185–190.

46 Ram PA, Waxman DJ. Pretranslational control by thyroid hormone of rat liver steroid 5-alpha-reductase and comparison to the thyroid dependence of two growth hormone-regulated CYP2C mRNAs. J Biol Chem 1990; 265: 19223–19229.

47 Brinton RD, Wang JM. Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: allopregnanolone as a proof of concept neurogenic agent. Curr Alzheimer Res 2006; 3: 185–190.

48 Schlosser G, Koyano-Nakagawa N, Kintner C. Thyroid hormone promotes neurogenesis in the Xenopus spinal cord. Dev Dyn 2002; 225: 485–498.

49 Torres JM, Ortega E. Differential regulation of steroid Salph-reductase isozymes expression by androgens in the adult rat brain. FASEB J 2003; 17: 1428–1433.

50 Duke JY, Ngo-Thi NH, Tremblay RR. In vivo effects of steroid hormones on the testosterone Salph-reductase in skin. Endocrinology 1975; 97: 211–214.

51 Maynard PV, Cameron EH. Adrenal microsomal C19-steroid Salph-reductase activity in the Snell transplanted rat adrenocortical tumour 494 and the effect of oestradiol, testosterone propionate and adrenocorticotropic in intact and gonadectomized rats. Biochem J 1973; 132: 293–300.

52 Ankleh GT, Kahl MD, Jensen KM, Hornung MW, Korte JJ, Makynen EA, Leino RL. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicol Sci 2002; 67: 121–130.