Stereoconvergent [1,2]- and [1,4]-Wittig Rearrangements of 2-Silyl-6-aryl-5,6-dihydropyrans. A Tale of Steric vs. Electronic Regiocontrol of Divergent Pathways.

Luis M. Mori-Quiroz and Robert E. Maleczka, Jr.*

Supporting Information

Table of Contents	Page
I. Optimization Studies	S2
II. HPLC traces of optically active compounds	S3
III. 1H NMR spectra from Deuterium trapping experiments,	S8
IV. Control experiments to discard [1,2]- / [1,4]- interconversion. Evidence for	S17
Keto-enol equilibration of cyclopropyl acylsilanes	
V. X-ray Crystallographic Data for compounds 4s and 7	S21
VI. References	S42
VII. 1H and 13C NMR Spectra	S43
I. Optimization studies
Optimization studies were conducted following the General Procedure H in the manuscript at the temperature and reaction time specified in Table S1.

Table S1. Optimization of reaction conditions for the rearrangement of 1a and 2a.

entry	substrate	solvent	Base (equiv)	Temp, °C (time)	[1,4]-dr (%)^a	dr	[1,2]-dr (%)^a	dr
1^b	1a	THF	NaHMDS	78 to 0	nr	-	nr	-
2^b	1a	THF	LiHMDS	78 to rt	nr	-	nr	-
3^c	1a	THF	KHMDS	78 to rt	nr	-	nr	-
4	1a	THF	MeLi	-15 (20 min)	53	20:1	27	>20:1
5	1a	THF	n-BuLi	-78 (5 min)	58	15:1	24	>20:1
6	1a	Hexanes	n-BuLi	-78 to 0 (3h)	49	7:1	4	>20:1
7	2a	THF	MeLi	50 (1.5h)	40	9:1	17	4:1
8	2a	THF	HexylLi	-35 (6h)	6	nd	4	nd
9	2a	THF	n-BuLi	-30 (7h)	60	20:1	30	>20:1
10	2a	THF	sec-BuLi	-78 (3h)	60	20:1	29	>20:1
11	2a	THF	sec-BuLi	-78 to 0 (1h)	49	13:1	24	>20:1

nr = no rearrangement. nd = not detected. ^a isolated yields. ^b 1a was recovered. ^c partial desilylation of 1a and isomerization to cyclic enol ether took place.
II. HPLC traces of optically active compounds

(R)-S2-a ([α]D = −6.1°, c = 1, CHCl₃, 76% ee, Figure S1). Enantiomeric excess (ee) was determined by HPLC (CHIRALPAK OJ column, hexanes, 0.6 mL/min, 10 °C).

(+)-2a ([α]D = +66.2°, c = 0.72, CHCl₃, 76% ee, Figure S2) The enantiomeric excess of (+)-2a was determined by HPLC (CHIRALPAK OJ column, hexanes, 0.4 mL/min, 10 °C, tR(minor) = 14.9 min; tR(major) = 17.6 min). The enantiomeric excess of (−)-1a could not be obtained by HPLC but was inferred to be 76% ee based on that of (+)-2a.
Figure S2. HPLC trace of compound (+)-2a.

![HPLC trace of compound (+)-2a](image)

HPLC conditions for racemic (Figure S3) / enantioenriched 3a: CHIRALPAK OJ column, hexanes, 0.7 mL/min, 20 °C, $t_R(1S,2R) = 12.7$ min; $t_R(1R,2S) = 25.8$ min.

(−)-3a (dr = 20:1) in 62% ee ($[\alpha]_D = -25.6^\circ$, c = 0.83, CHCl₃, Figure S4)

(+)-3a (dr = 20:1) in 56% ee ($[\alpha]_D = +27^\circ$, c = 0.79, CHCl₃, Figure S5)

HPLC conditions for racemic (Figure S6) / enantioenriched 4a: CHIRALPAK OJ column, 0.5% iPrOH/hexanes, 0.4 mL/min, 20 °C, $t_R(1R,5R) = 20$ min; $t_R(1S,5S) = 25$ min.

(+)-4a (dr > 20:1) in 73% ee ($[\alpha]_D = +73.4^\circ$, c = 0.96, CHCl₃, Figure S7).

(−)-4a (dr > 20:1) in 74% ee ($[\alpha]_D = -52.7^\circ$, c = 0.48, CHCl₃, Figure S8).
Figure S3. HPLC trace of racemic compound 3a.

Figure S4. HPLC trace of compound (−)-3a.
Figure S5. HPLC trace of compound (+)-3a.

Figure S6. HPLC trace of racemic compound 4a.
Figure S7. HPLC trace of compound (+)-4a.

Figure S8. HPLC trace of compound (−)-4a.
III. 1H NMR spectra from Deuterium trapping experiments

Competitive ortho metallation vs allylic deprotonation of $2d$ – Preparation of compounds $\delta-2d$, $\delta^{-1}1d$, $\delta-3d$, $\delta^{-2}8$ and $\delta^{-2}9$

Scheme S1. Deuterium trapping experiment with compound $2d$.

Figure S9. 1H NMR spectra overlay of $\delta-2d$ and $2d$.
Figure S10. 1H NMR spectra overlay of 2-d and 1-d.

Figure S11. 1H NMR spectra overlay of 3-d and 3-d.

Figure S12. 1H NMR spectra overlay of 8 and 8.
Figure S13. 1H NMR spectrum of δ-9.

Competitive ortho metallation vs allylic deprotonation of 2h – Preparation of compounds δ-2h, δ-1h, and δ-10

1. sec-BuLi (3 equiv) THF, -78 °C, 30 min

2. D$_2$O

δ-2h 43%

δ-1h 19%

δ-10 15%

Scheme S2. Deuterium trapping experiment with compound 2h.

Figure S14. 1H NMR spectra overlay of δ-2h and 2h.
Competitive thiophene metallation vs allylic deprotonation of 2aa – Observation of compounds δ-2aa, δ-3aa, and enolic 3aa

Scheme S3. Deuterium trapping experiment with compound 2aa.
Applying general procedure H to 2aa (16.8 mg, 0.07 mmol, 1 equiv) and sec-butyllithium (1.4 M in hexanes, 0.15 mL, 3 equiv) in THF (0.9 mL) at -78 °C for 3 hours, quenching with D₂O and following regular workup, afforded a mixture of δ-2aa (dr >20:1), δ-3aa (dr ~ 1.7:1), and enolic 3aa (dr not determined) in 0.36 : 2.7 : 2.3 ratio, as determined from the crude mixture by ¹H NMR (Figure S17 and Scheme S6).
Figure S17. 1H NMR spectra overlay of the crude reaction mixture vs. 2aa and 3aa.
Competitive ortho metellation vs allylic deprotonation of 2bb – Observation of compounds δ-2bb and δ-3bb.

Applying general procedure H to 2bb (9.8 mg, 0.044 mmol, 1 equiv) and sec-butyllithium (1.4 M in hexanes, 94 µL, 3 equiv) in THF (0.6 mL) at -78 °C for 1 hour, quenching with D₂O and following regular workup, afforded mostly δ-2bb (dr >20:1) and traces of δ-3aa (dr not determined), as determined from the crude mixture by ¹H NMR (Figure S18 and Scheme S7). Complete deuterium incorporation at the 5-position of the furyl group in δ-2bb is observed. Deuterium incorporation in δ-3aa was not determined due to overlap with other signals.

![Scheme S4. Deuterium trapping experiment with compound 2bb.](image)

Figure S18. ¹H NMR spectra overlay of the crude reaction mixture vs. 2bb and 3bb.
Trapping of intermediate allylic anion (species A in Scheme 13 in manuscript)

Applying general procedure H to 1a (73 mg, 0.314 mmol, 1 equiv) in THF (4 mL) was added n-butyllithium (1.4 M in hexanes, 0.78 mL, 3 equiv) quickly at -78 °C, and immediately (<1 second) D₂O was added quickly via syringe. After regular workup the crude reaction was analyzed by ¹H NMR (Figure S19). Compounds δ-1a, enolic 3aa, 4a and 11 were present in 1.0 : 0.33 : 0.17 : 0.11 ratio (Scheme S8).

Scheme S5. Deuterium trapping experiment with compound 1a.
Figure S19. 1H NMR spectra overlay of the reaction mixture vs 1a, 2a, 3a, 4a, and 11.
IV. Control experiments to discard [1,2]- / [1,4]- interconversion. Evidence for Keto-enol Equilibration of cyclopropyl Acylsilanes

In the early stage of this study, involving the rearrangement of diastereomers 1a and 2a, we were unable to obtain reproducible isolated yields of both [1,4]- (3a) and [1,2]- (4a) products. The ratios of 3a and 4a in the crude 1H NMR were varying in each experiment and the determination of diastereomeric ratio of 3a was complicated by the presence of additional signals in the cyclopropyl region (1.8–0.6 ppm). In addition, the integration of these signals correlated well with a doublet around 4.52 ppm (J = 7.5 Hz) and a singlet around 4.35 ppm. We later found that subjecting the reaction mixture to column chromatography immediately after workup (avoiding additional manipulation of the crude for 1H NMR analysis) provided compounds 3a and 4a reproducibly, however, we could not isolate the additional cyclopropyl compound. Additional spectral data (13C NMR, DEPT, COSY and IR) from the crude reaction mixture strongly suggests that this species is actually the enolic form of 3a.

Scheme S6. 1H NMR analysis of crude reaction mixture after rearrangement of 1a.

Following General Procedure H, to 1a (65 mg, 0.28 mmol, 1 equiv) in THF (3 mL) at -78 °C was added n-butyllithium (0.27 mL, 0.42 mmol, 1.5 equiv) dropwise. After 20 minutes the reaction was quenched with NH4Cl (sat) and worked up as previously described in section II. An aliquot of the crude reaction mixture was dissolved in CDCl3 and immediately analyzed by 1H NMR and IR. The IR spectra showed a large broad band at 3435 cm⁻¹ (OH from enolic 3a and 4a) and a small band at 1635 cm⁻¹ (C=O from keto 3a). The 1H NMR spectra (Figure S20) shows a mixture of keto 3a / enolic 3a / 4a present in 0.29 : 1.0 : 0.64 ratio (Scheme S9). Addition of D₂O led to disappearance of the singlet at 4.35 ppm, which has been assigned tentatively to the enol O-H proton of enolic 3a. The 13C NMR of the crude reaction mixture (Figure S21, different run, same conditions) shows peaks at 158 ppm and 104 ppm, attributable to the polarized enol C–C double bond. This assignment is consistent with the results of a DEPT experiment (Figure S22) and also with the COSY 2D spectra showing coupling of the enolic C–H bond with the cyclopropyl C–H methine (Figure S23).
Figure S20. 1H NMR spectra overlay of the crude reaction mixture after rearrangement of 1a showing both tautomeric forms of 3a and product 4a.

Figure S21. 13C NMR spectra overlay of the crude reaction mixture after rearrangement of 1a showing both tautomeric forms (keto/enol) of 3a and product 4a.
Figure S22. 13C NMR vs DEPT experiment of the crude reaction mixture after rearrangement of 1a showing both tautomeric forms (keto/enol) of 3a and product 4a.

Figure S23. COSY experiment of the crude reaction mixture after rearrangement of 1a showing both tautomeric forms (keto/enol) of 3a and product 4a.
Interestingly, after column chromatography the cyclopropyl acylsilanes were isolated as a single tautomer (keto form). In the case of 3a, the tautomeric mixture could be regenerated by enolization of keto 3a with LDA, followed by regular workup (Scheme S10 and Figure S24). Notice that in the 1H NMR of the crude reaction mixture there is not evidence of cyclopentenol 4a, ruling out isomerization of the lithium enolate ([1,4]-product) to the corresponding alkoxide ([1,2]-product). Similar results were obtained from 3i.

Scheme S10. Generation of keto/enol tautomers of 3a by LDA deprotonation/workup.

Figure S24. 1H NMR spectra of crude reaction mixture following enolization of 3a with LDA/workup procedure. The tautomeric forms (keto/enol) of 3a are present.

Analogously, deprotonation of the [1,2]-Wittig products 4a and 4i with n-butyllithium (1.1-1.5 equiv) at –78 °C for 3 hours followed by regular workup gave only 4a and 4i, without a trace of the corresponding cyclopropyl products.
V. X-ray Crystallographic Data

Compound 4s

Figure S25. ORTEP representation of compound 4s.

Experimental Section:

Single crystals of C21H28OSi (4s) were slowly crystallized from hexanes at -20 °C. A suitable crystal was selected and mounted on a nylon loop using Paratone Oil. The crystal was kept at 173.01 K during data collection. Data were collected using a Bruker APEX-II CCD (charge coupled device) based diffractometer equipped with an Oxford Cryostream low-temperature apparatus operating at 173 K. Data were measured using omega and phi scans of 0.5° per frame for 30 s. The total number of images was based on results from the program COSMO,1 where redundancy was expected to be 4.0 and completeness to 0.83 Å to 100%. Cell parameters were retrieved using APEX II software2 and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software3 which corrects for Lp. Scaling and absorption corrections were applied using SADABS4 multi-scan technique, supplied by George Sheldrick. Using Olex2,5 the structure was solved with the XS6 structure solution program using Direct Methods and refined with the XL6 refinement package using Least Squares minimisation.

S21
The structure was solved in the space group P2₁/c (no. 14). All non-hydrogen atoms are refined anisotropically. Hydrogens were calculated by geometrical methods and refined as a riding model. All drawings are done at 50% ellipsoids.

Table S2. Crystal data and structure refinement for compound 4s.

Parameter	Value
Identification code	Compound 4s
Empirical formula	C₁₁₂₇H₂₂₃O₅Si
Formula weight	324.52
Temperature/K	173.01
Crystal system	monoclinic
Space group	P2₁/c
a/Å	9.95030 (10)
b/Å	8.14580 (10)
c/Å	22.6084 (3)
α/°	90.00
β/°	92.0430 (10)
γ/°	90.00
Volume/Å³	1831.32 (4)
Z	4
\(\rho_{\text{calc}}\) mg/mm³	1.177
m/mm⁻¹	1.131
F(000)	704.0
Crystal size/mm³	0.428 × 0.316 × 0.191
2Θ range for data collection	7.82 to 136.62°
Index ranges	-11 ≤ h ≤ 11, -9 ≤ k ≤ 9, -27 ≤ l ≤ 27
Reflections collected	31801
exptl absorpt T max, min	0.7531, 0.6739
Independent reflections	3328[R(int) = 0.0372]
Data/restraints/parameters	3328/0/212
2Θ 68.31 fraction collected	0.996
Goodness-of-fit on \(F^2\)	1.051
Final R indexes \([I>=2\sigma(I)]\)	\(R_1 = 0.0329, wR_2 = 0.0867\)
Final R indexes [all data]	\(R_1 = 0.0354, wR_2 = 0.0887\)
Largest diff. peak/hole / e Å⁻³	0.38/-0.21
Table S3. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\AA^2 \times 10^3$) for compound 4s. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	x	y	z	U_{eq}
Si1	2474.5(3)	8408.7(4)	863.63(14)	18.09(11)
O1	1957.2(10)	6733.2(12)	1850.2(4)	28.3(2)
C1	2622.9(13)	8269.2(16)	1715.2(6)	21.4(3)
C2	2076.4(13)	9714.3(17)	2093.0(6)	22.7(3)
C3	3295.0(14)	10855.7(18)	2199.2(6)	28.8(3)
C4	4448.3(14)	9665(2)	2177.5(6)	31.1(3)
C5	4087.1(14)	8279.0(18)	1916.0(6)	27.7(3)
C6	753.3(13)	10490.1(17)	1895.7(5)	21.2(3)
C7	618.5(13)	12106.7(17)	1740.7(6)	21.9(3)
C8	-642.7(13)	12805.9(17)	1570.0(5)	22.2(3)
C9	-772.0(14)	14483.0(18)	1417.3(6)	28.6(3)
C10	-1993.5(15)	15127(2)	1246.8(7)	33.9(3)
C11	-3150.0(15)	14122(2)	1226.7(7)	35.0(4)
C12	-3060.9(14)	12503.7(19)	1378.4(6)	29.9(3)
C13	-1809.7(13)	11793.1(17)	1553.5(6)	23.4(3)
C14	-1659.2(13)	10123.0(17)	1721.5(6)	25.2(3)
C15	-431.4(13)	9499.4(17)	1891.9(6)	24.3(3)
C16	683.2(13)	8129.0(17)	594.8(6)	24.4(3)
C17	486.4(15)	7425(2)	-28.7(8)	34.4(3)
C18	3572.7(14)	6761.7(17)	555.1(7)	27.4(3)
C19	3235.2(16)	4980.1(19)	712.2(8)	39.7(4)
C20	3126.6(14)	10454.7(16)	621.7(6)	24.2(3)
C21	3133.0(15)	10684.7(19)	-52.0(6)	30.7(3)

Table S4. Anisotropic Displacement Parameters ($\AA^2 \times 10^3$) for compound 4s. The Anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^2U_{11} + ... + 2hka^bU_{12}]$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Si1	17.67(19)	17.49(19)	19.08(19)	1.11(13)	0.05(13)	0.05(13)	-0.40(12)	-3.40(4)	-3.7(4)	-0.6(5)	-2.1(5)	-3.0(6)
O1	34.8(6)	24.5(5)	25.4(5)	7.8(4)	-0.4(4)	-0.4(4)	-3.40(4)	-3.7(4)	-0.6(5)	-2.1(5)	-3.0(6)	
C1	21.3(6)	21.9(6)	20.9(6)	4.3(5)	-0.7(5)	-0.7(5)	-0.6(5)	-2.1(5)	-3.0(6)			
C2	21.9(6)	28.1(7)	18.1(6)	4.3(5)	-0.7(5)	-0.7(5)	-2.1(5)	-3.0(6)				
C3	23.0(7)	33.9(8)	29.1(7)	-5.7(6)	-4.2(5)	-4.2(5)	-3.0(6)					
C4	20.1(7)	44.1(9)	28.7(7)	0.6(6)	-5.6(5)	-5.6(5)	-1.0(6)					
C5	22.9(7)	35.7(8)	24.1(7)	5.0(6)	-3.9(5)	-3.9(5)	5.3(6)					
C6	20.4(6)	27.6(7)	15.7(6)	-2.8(5)	2.4(5)	2.4(5)	-0.5(5)					
C7	19.6(6)	27.1(7)	19.2(6)	-3.0(5)	2.7(5)	2.7(5)	-3.9(5)					
C8	22.3(6)	27.3(7)	17.1(6)	-3.6(5)	3.1(5)	-1.3(5)						
C9	28.3(7)	28.2(7)	29.3(7)	-0.3(6)	2.6(6)	-1.3(6)						
C10	35.8(8)	30.3(8)	35.6(8)	2.6(6)	0.4(6)	5.1(6)						
C11	26.1(7)	43.3(9)	35.2(8)	-1.4(7)	-3.4(6)	9.9(6)						
C12	20.3(7)	39.7(8)	29.6(7)	-5.7(6)	0.4(5)	-1.2(6)						
C13	22.3(7)	30.5(7)	17.5(6)	-5.6(5)	2.8(5)	-0.8(5)						
C14	20.8(6)	29.8(7)	25.3(7)	-5.2(6)	4.8(5)	-6.8(5)						
C15	24.9(7)	24.8(7)	23.6(7)	-1.4(5)	4.6(5)	-2.7(5)						
C16	20.7(6)	29.4(7)	22.9(7)	-3.5(5)	-1.8(5)	-1.9(5)						
C17	30.9(8)	39.7(9)	31.9(8)	-6.8(7)	-8.1(6)	-0.2(6)						
C18	24.7(7)	25.3(7)	32.3(7)	-4.5(6)	2.0(6)	2.6(5)						
C19	33.0(8)	23.1(7)	62.8(11)	-6.3(7)	-0.7(7)	3.4(6)						
C20	26.3(7)	21.4(7)	25.1(7)	1.0(5)	3.1(5)	-4.3(5)						
C21	34.2(8)	31.3(8)	26.9(7)	5.4(6)	5.0(6)	-5.1(6)						

Table S5. Bond Lengths for compound 4s.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Si1	C1	1.9290(13)	C7	C8	1.4191(19)
Si1	C16	1.8765(13)	C8	C9	1.414(2)
Si1	C18	1.8802(14)	C8	C13	1.4238(18)
Si1	C20	1.8770(13)	C9	C10	1.367(2)
O1	C1	1.4532(15)	C10	C11	1.412(2)
O1	C2	1.5634(18)	C11	C12	1.364(2)
C1	C5	1.5105(18)	C12	C13	1.4165(19)
C2	C3	1.5400(18)	C13	C14	1.419(2)
C2	C6	1.5132(18)	C14	C15	1.3653(19)
C3	C4	1.505(2)	C16	C17	1.5281(19)
C4	C5	1.319(2)	C18	C19	1.534(2)
C6	C7	1.3680(19)	C20	C21	1.5348(19)
C6	C15	1.4283(18)			

Table S6. Bond Angles for compounds 4s.

Atom	Atom	Atom	Angle/°	Atom	Atom	Angle/°	
C16	Si1	C1	110.74(6)	C7	C6	C15	117.95(12)
C16	Si1	C18	110.55(6)	C15	C6	C2	118.38(12)
C16	Si1	C20	110.34(6)	C6	C7	C8	122.26(12)
C18	Si1	C1	107.66(6)	C7	C8	C13	119.15(12)
C20	Si1	C1	109.16(6)	C9	C8	C7	121.74(12)
\[
\begin{array}{cccccccc}
C20 & Si1 & C18 & 108.30(6) & C9 & C8 & C13 & 119.11(12) \\
O1 & C1 & Si1 & 103.96(8) & C10 & C9 & C8 & 120.79(13) \\
O1 & C1 & C2 & 111.31(10) & C9 & C10 & C11 & 120.16(14) \\
O1 & C1 & C5 & 112.55(11) & C12 & C11 & C10 & 120.44(14) \\
C2 & C1 & Si1 & 119.02(9) & C11 & C12 & C13 & 120.92(14) \\
C5 & C1 & Si1 & 109.78(9) & C12 & C13 & C8 & 118.58(13) \\
C5 & C1 & C2 & 100.50(10) & C12 & C13 & C14 & 123.36(13) \\
C3 & C2 & C1 & 104.62(10) & C14 & C13 & C8 & 118.05(12) \\
C6 & C2 & C1 & 117.99(10) & C15 & C14 & C13 & 121.11(12) \\
C6 & C2 & C3 & 117.76(12) & C14 & C15 & C6 & 121.45(13) \\
C4 & C3 & C2 & 101.72(12) & C17 & C16 & Si1 & 115.68(10) \\
C5 & C4 & C3 & 111.75(12) & C19 & C18 & Si1 & 117.01(10) \\
C4 & C5 & C1 & 112.58(12) & C21 & C20 & Si1 & 114.29(9) \\
C7 & C6 & C2 & 123.63(12) \\
\end{array}
\]

Table S7. Torsion Angles for compound 4s.

A	B	C	D	Angle/°	A	B	C	D	Angle/°
Si1	C1	C2	C3	-91.98(11)	C8	C9	C10	C11	0.6(2)
Si1	C1	C2	C6	41.15(15)	C8	C13	C14	C15	-0.36(19)
Si1	C1	C5	C4	108.59(12)	C9	C8	C13	C12	0.58(18)
O1	C1	C2	C3	147.18(11)	C9	C8	C13	C14	-178.61(12)
O1	C1	C2	C6	-79.68(14)	C9	C10	C11	C12	0.2(2)
O1	C1	C5	C4	-136.14(13)	C10	C11	C12	C13	-0.6(2)
C1	Si1	C16	C17	-152.54(10)	C11	C12	C13	C8	0.2(2)
C1	Si1	C18	C19	60.73(13)	C11	C12	C13	C14	179.36(13)
C1	Si1	C20	C21	176.91(10)	C12	C13	C14	C15	-179.51(13)
C1	C2	C3	C4	-28.21(13)	C13	C8	C9	C10	-1.0(2)
C1	C2	C6	C7	-119.12(14)	C13	C14	C15	C6	-1.2(2)
C1	C2	C6	C15	63.27(15)	C15	C6	C7	C8	-0.96(18)
C2	C1	C5	C4	-17.64(15)	C16	Si1	C1	o1	52.16(10)
C2	C3	C4	C5	18.46(16)	C16	Si1	C1	C2	-72.33(11)
C2	C6	C7	C8	-178.57(12)	C16	Si1	C1	C5	172.77(9)
C2	C6	C15	C14	179.61(12)	C16	Si1	C18	C19	-60.36(13)
C3	C2	C6	C7	7.95(18)	C16	Si1	C20	C21	-61.17(12)
C3	C2	C6	C15	-169.66(11)	C18	Si1	C1	O1	-68.81(9)
C3	C4	C5	C1	-0.30(17)	C18	Si1	C1	C2	166.71(10)
C5	C1	C2	C3	27.78(13)	C18	Si1	C1	C5	51.80(11)
C5	C1	C2	C6	160.92(11)	C18	Si1	C16	C17	-33.30(13)
C6	C2	C3	C4	-161.47(11)	C18	Si1	C20	C21	59.96(12)
C6	C7	C8	C9	179.27(12)	C20	Si1	C1	O1	173.84(8)
Table S8. Hydrogen Atom Coordinates (Å\times 10^4) and Isotropic Displacement Parameters (Å^2\times 10^3) for compound 4s.

Atom	x	y	z	U(eq)
H1	2015	6564	2217	42
H2	1908	9222	2489	27
H3A	3345	11697	1885	35
H3B	3268	11405	2589	35
H4	5329	9885	2333	37
H5	4682	7385	1860	33
H7	1396	12784	1748	26
H9	0	15171	1433	34
H10	-2065	16253	1142	41
H11	-3996	14575	1107	42
H12	-3849	11844	1366	36
H14	-2426	9427	1716	30
H15	-364	8382	2009	29
H16A	231	7394	874	29
H16B	226	9208	607	29
H17A	951	8121	-310	52
H17B	-476	7390	-137	52
H17C	858	6311	-39	52
H18A	3537	6863	118	33
H18B	4512	6981	692	33
H19A	3823	4235	500	60
H19B	2295	4751	597	60
H19C	3372	4816	1140	60
H20A	2567	11329	792	29
H20B	4056	10594	785	29
H21A	3693	9834	-225	46
H21B	3498	11770	-143	46
H21C	2212	10597	-218	46
Compound 7

Experimental Section:

A colorless needle crystal with dimensions 0.36 x 0.09 x 0.03 mm was mounted on a Nylon loop using very small amount of paratone oil.

Data were collected using a Bruker CCD (charge coupled device) based diffractometer equipped with an Oxford Cryostream low-temperature apparatus operating at 173 K. Data were measured using omega and phi scans of 1.0° per frame for 30 s. The total number of images was based on results from the program COSMO where redundancy was expected to be 4.0 and completeness to 0.83 Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS multi-scan technique, supplied by George Sheldrick. The structures are solved by the direct method using the SHELXS-97 program and refined by least squares method on F^2, SHELXL-97, which are incorporated in SHELXTL-PC V 6.10.

The structure was solved in the space group P2_12_12_1 (# 19). All non-hydrogen atoms are refined anisotropically. Hydrogens were calculated by geometrical methods and refined as a riding model. The Flack parameter is used to determine chirality of the crystal studied, the value should be near zero, a value of one is the other enantiomer and a value of 0.5 is racemic. The Flack parameter was refined to -0.03 (19), confirming the absolute stereochemistry. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the program within Platon also report that we have the correct enantiomer based on this comparison. All drawings are done at 50% ellipsoids.

Acknowledgement. The CCD based x-ray diffractometer at Michigan State University were upgraded and/or replaced by departmental funds.

The following are 50% thermal ellipsoidal drawings of the molecule in the asymmetric cell with various amount of labeling.
Figure S26. ORTEP representation of compound 7.

Note: The Model has Chirality at C1 (Verify) S
Note: The Model has Chirality at C2 (Verify) S
Figure S27. This is a drawing of the packing of compound 7 along the a-axis.
Table S9. Crystal data and structure refinement for compound 7.

Identification code	rem312
Empirical formula	C21 H24 N2 O6 Si
Formula weight	428.51
Temperature	173(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 6.6788(4) Å
	b = 9.7813(6) Å
	c = 33.0675(16) Å
Volume	2160.2(2) Å³
Z	4
Density (calculated)	1.318 Mg/m³
Absorption coefficient	1.304 mm⁻¹
F(000)	904
Crystal size	0.36 x 0.09 x 0.03 mm³
Theta range for data collection	2.67 to 67.26°.
Index ranges	-7≤h≤6, -11≤k≤11, -36≤l≤38
Reflections collected	8614
Independent reflections	3585 [R(int) = 0.0596]
Completeness to theta = 67.26°	97.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9644 and 0.6531
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	3585 / 0 / 274
Goodness-of-fit on F²	1.088
Final R indices [I>2sigma(I)]	R1 = 0.0834, wR2 = 0.2177
R indices (all data)	R1 = 0.1006, wR2 = 0.2276
Absolute structure parameter	-0.03(9)
Largest diff. peak and hole	0.835 and -0.324 e.Å⁻³
Table S10. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\overline{\text{Å}}^2 \times 10^3$) for compound 7. $U(\text{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	$U(\text{eq})$
Si(1)	1583(2)	62(2)	1972(1)	35(1)
O(1)	2080(6)	1216(4)	1184(1)	36(1)
O(2)	-1217(7)	1565(5)	1296(2)	50(1)
O(3)	5487(7)	3493(5)	108(1)	48(1)
O(4)	3835(8)	4826(7)	-282(2)	67(2)
O(5)	-2145(9)	6978(5)	273(2)	59(1)
O(6)	-3930(7)	5826(5)	696(2)	49(1)
N(1)	4014(7)	4177(5)	24(2)	37(1)
N(2)	-2407(9)	6000(5)	492(2)	43(1)
C(1)	2217(9)	-121(6)	1402(2)	34(1)
C(2)	1213(10)	-1200(6)	1118(2)	34(1)
C(3)	2652(10)	-1279(7)	755(2)	42(2)
C(4)	4718(10)	-754(6)	903(2)	43(2)
C(5)	4458(9)	-460(6)	1349(2)	37(1)
C(6)	884(9)	-2563(6)	1330(2)	32(1)
C(7)	-1012(10)	-2850(7)	1486(2)	42(2)
C(8)	-1389(11)	-4057(7)	1687(2)	47(2)
C(9)	124(11)	-4994(8)	1736(2)	50(2)
C(10)	2003(10)	-4719(6)	1578(2)	44(2)
C(11)	2391(11)	-3517(6)	1373(2)	40(2)
C(12)	350(10)	1845(6)	1133(2)	34(1)
C(13)	560(9)	2993(6)	839(2)	29(1)
C(14)	-985(9)	3937(6)	802(2)	31(1)
C(15)	-806(9)	4974(6)	524(2)	33(1)
C(16)	815(9)	5111(6)	267(2)	36(1)
C(17)	2283(9)	4140(6)	306(2)	34(1)
C(18)	2230(9)	3102(6)	590(2)	30(1)
C(19)	2788(13)	1680(8)	2134(2)	55(2)
C(20)	-1128(10)	118(9)	2113(2)	51(2)
C(21)	2819(12)	-1372(7)	2255(2)	46(2)
Table S11. Bond lengths [Å] and angles [°] for compound 7.

Bond	Length
Si(1)-C(19)	1.854(8)
Si(1)-C(20)	1.870(7)
Si(1)-C(21)	1.878(6)
Si(1)-C(1)	1.943(6)
O(1)-C(12)	1.320(7)
O(1)-C(1)	1.496(7)
O(2)-C(12)	1.209(8)
O(3)-N(1)	1.222(7)
O(4)-N(1)	1.201(7)
O(5)-N(2)	1.213(7)
O(6)-N(2)	1.232(7)
N(1)-C(17)	1.485(8)
N(2)-C(15)	1.470(8)
C(1)-C(5)	1.543(8)
C(1)-C(2)	1.562(9)
C(2)-C(6)	1.521(8)
C(2)-C(3)	1.541(9)
C(2)-H(2)	1.0000
C(3)-C(4)	1.552(9)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(5)	1.511(10)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-C(11)	1.380(9)
C(6)-C(7)	1.396(9)
C(7)-C(8)	1.378(10)
C(7)-H(7)	0.9500
C(8)-C(9)	1.373(10)
C(8)-H(8)	0.9500
C(9)-C(10)	1.386(10)
C(9)-H(9)	0.9500
Bond	Distance
-----------------------------	----------
C(10)-C(11)	1.382(9)
C(10)-H(10)	0.9500
C(11)-H(11)	0.9500
C(12)-C(13)	1.491(8)
C(13)-C(18)	1.390(8)
C(13)-C(14)	1.390(8)
C(14)-C(15)	1.373(8)
C(14)-H(14)	0.9500
C(15)-C(16)	1.383(8)
C(16)-C(17)	1.372(9)
C(16)-H(16)	0.9500
C(17)-C(18)	1.384(8)
C(18)-H(18)	0.9500
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800
C(21)-H(21C)	0.9800
C(19)-Si(1)-C(20)	108.9(4)
C(19)-Si(1)-C(21)	107.7(3)
C(20)-Si(1)-C(21)	108.9(4)
C(19)-Si(1)-C(1)	105.3(3)
C(20)-Si(1)-C(1)	117.1(3)
C(21)-Si(1)-C(1)	108.6(3)
C(12)-O(1)-C(1)	121.5(4)
O(4)-N(1)-O(3)	124.1(5)
O(4)-N(1)-C(17)	117.7(5)
O(3)-N(1)-C(17)	118.1(5)
O(5)-N(2)-O(6)	123.7(6)
O(5)-N(2)-C(15)	118.4(6)
O(6)-N(2)-C(15)	117.9(5)
O(1)-C(1)-C(5) 101.1(5)
O(1)-C(1)-C(2) 106.0(4)
C(5)-C(1)-C(2) 101.7(5)
O(1)-C(1)-Si(1) 112.0(4)
C(5)-C(1)-Si(1) 109.9(4)
C(2)-C(1)-Si(1) 123.4(4)
C(6)-C(2)-C(3) 113.9(5)
C(6)-C(2)-C(1) 112.3(5)
C(3)-C(2)-C(1) 103.5(5)
C(6)-C(2)-H(2) 109.0
C(3)-C(2)-H(2) 109.0
C(1)-C(2)-H(2) 109.0
C(2)-C(3)-C(4) 106.9(5)
C(2)-C(3)-H(3A) 110.3
C(4)-C(3)-H(3A) 110.3
C(2)-C(3)-H(3B) 110.3
C(4)-C(3)-H(3B) 110.3
H(3A)-C(3)-H(3B) 108.6
C(5)-C(4)-C(3) 105.6(5)
C(5)-C(4)-H(4A) 110.6
C(3)-C(4)-H(4A) 110.6
C(5)-C(4)-H(4B) 110.6
C(3)-C(4)-H(4B) 110.6
H(4A)-C(4)-H(4B) 108.7
C(4)-C(5)-C(1) 105.2(5)
C(4)-C(5)-H(5A) 110.7
C(1)-C(5)-H(5A) 110.7
C(4)-C(5)-H(5B) 110.7
C(1)-C(5)-H(5B) 110.7
H(5A)-C(5)-H(5B) 108.8
C(11)-C(6)-C(7) 119.2(6)
C(11)-C(6)-C(2) 122.3(5)
C(7)-C(6)-C(2) 118.5(5)
C(8)-C(7)-C(6) 121.1(6)
C(8)-C(7)-H(7) 119.5
C(6)-C(7)-H(7) 119.5
C(9)-C(8)-C(7) 119.7(7)
C(9)-C(8)-H(8) 120.2
C(7)-C(8)-H(8) 120.2
C(8)-C(9)-C(10) 119.4(6)
C(8)-C(9)-H(9) 120.3
C(10)-C(9)-H(9) 120.3
C(11)-C(10)-C(9) 121.4(6)
C(11)-C(10)-H(10) 119.3
C(9)-C(10)-H(10) 119.3
C(6)-C(11)-C(10) 119.3(6)
C(6)-C(11)-H(11) 120.4
C(10)-C(11)-H(11) 120.4
O(2)-C(12)-O(1) 126.5(5)
O(2)-C(12)-C(13) 122.9(5)
O(1)-C(12)-C(13) 110.6(5)
C(18)-C(13)-C(14) 119.5(5)
C(18)-C(13)-C(12) 121.2(5)
C(14)-C(13)-C(12) 119.3(5)
C(15)-C(14)-C(13) 119.1(5)
C(15)-C(14)-H(14) 120.5
C(13)-C(14)-H(14) 120.5
C(14)-C(15)-C(16) 123.4(5)
C(14)-C(15)-N(2) 119.2(5)
C(16)-C(15)-N(2) 117.4(5)
C(17)-C(16)-C(15) 115.7(5)
C(17)-C(16)-H(16) 122.1
C(15)-C(16)-H(16) 122.1
C(16)-C(17)-C(18) 123.7(6)
C(16)-C(17)-N(1) 118.7(5)
C(18)-C(17)-N(1) 117.6(5)
C(17)-C(18)-C(13) 118.6(5)
C(17)-C(18)-H(18) 120.7
C(13)-C(18)-H(18) 120.7
Si(1)-C(19)-H(19A) 109.5
Si(1)-C(19)-H(19B) 109.5
H(19A)-C(19)-H(19B) 109.5
Si(1)-C(19)-H(19C) 109.5
H(19A)-C(19)-H(19C) 109.5
H(19B)-C(19)-H(19C) 109.5
Si(1)-C(20)-H(20A) 109.5
Si(1)-C(20)-H(20B) 109.5
H(20A)-C(20)-H(20B) 109.5
Si(1)-C(20)-H(20C) 109.5
H(20A)-C(20)-H(20C) 109.5
H(20B)-C(20)-H(20C) 109.5
Si(1)-C(21)-H(21A) 109.5
Si(1)-C(21)-H(21B) 109.5
H(21A)-C(21)-H(21B) 109.5
Si(1)-C(21)-H(21C) 109.5
H(21A)-C(21)-H(21C) 109.5
H(21B)-C(21)-H(21C) 109.5

Symmetry transformations used to generate equivalent atoms:
Table S12. Anisotropic displacement parameters ($\text{Å}^2 \times 10^3$) for compound 7. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^* a^* U_{11} + ... + 2h k a^* b^* U_{12}]$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Si(1)	31(1)	34(1)	39(1)	1(1)	-2(1)	3(1)
O(1)	27(2)	34(2)	46(2)	5(2)	0(2)	3(2)
O(2)	34(3)	46(3)	69(3)	18(2)	13(2)	6(2)
O(3)	35(3)	52(3)	58(3)	-6(2)	9(2)	7(2)
O(4)	48(3)	88(4)	65(3)	31(3)	20(2)	5(3)
O(5)	60(4)	43(3)	75(3)	15(2)	6(3)	16(3)
O(6)	35(3)	40(2)	72(3)	-2(2)	5(2)	15(2)
N(1)	24(3)	42(3)	46(3)	2(2)	7(2)	-6(2)
N(2)	45(3)	37(3)	47(3)	-3(2)	-3(3)	2(3)
C(1)	25(3)	32(3)	45(3)	4(3)	-2(2)	7(3)
C(2)	30(3)	31(3)	41(3)	-1(2)	-1(3)	9(3)
C(3)	40(4)	46(3)	40(3)	3(3)	-3(3)	3(3)
C(4)	34(3)	36(3)	60(4)	3(3)	6(3)	7(3)
C(5)	16(3)	37(3)	57(4)	6(3)	-4(3)	7(2)
C(6)	29(3)	24(3)	42(3)	-5(2)	-3(3)	-1(2)
C(7)	29(3)	54(4)	43(3)	-7(3)	-2(3)	9(3)
C(8)	43(4)	49(4)	47(4)	-3(3)	9(3)	-6(4)
C(9)	62(5)	46(3)	42(4)	4(3)	3(3)	-5(4)
C(10)	40(4)	32(3)	59(4)	-2(3)	-6(3)	9(3)
C(11)	41(4)	34(3)	46(4)	-6(3)	1(3)	-6(3)
C(12)	28(3)	25(3)	48(3)	2(2)	2(3)	3(3)
C(13)	26(3)	26(3)	36(3)	-1(2)	-1(2)	1(2)
C(14)	26(3)	28(3)	40(3)	-3(2)	-1(2)	1(2)
C(15)	33(3)	26(2)	40(3)	-2(3)	-2(2)	6(3)
C(16)	41(3)	30(3)	36(3)	1(2)	-2(3)	-5(3)
C(17)	29(3)	34(3)	39(3)	-3(2)	4(3)	2(3)
C(18)	23(3)	26(3)	41(3)	-4(2)	1(2)	6(2)
C(19)	58(5)	58(5)	50(4)	-7(3)	-7(4)	-5(4)
C(20)	39(4)	69(5)	44(3)	-1(3)	2(3)	-7(4)
C(21)	54(5)	39(3)	43(4)	7(3)	1(3)	20(3)
Table S13. Hydrogen coordinates (x 10\(^4\)) and isotropic displacement parameters (Å\(^2\)x 10\(^3\)) for compound 7.

	x	y	z	U(eq)
H(2)	-108	-838	1024	41
H(3A)	2154	-702	530	50
H(3B)	2764	-2233	657	50
H(4A)	5764	-1457	861	52
H(4B)	5107	86	756	52
H(5A)	5301	323	1432	44
H(5B)	4831	-1268	1513	44
H(7)	-2059	-2201	1454	51
H(8)	-2689	-4242	1790	56
H(9)	-116	-5822	1878	60
H(10)	3045	-5370	1611	52
H(11)	3681	-3350	1262	48
H(14)	-2149	3866	965	38
H(16)	905	5831	75	43
H(18)	3311	2476	615	36
H(19A)	2413	2415	1947	83
H(19B)	4246	1567	2133	83
H(19C)	2342	1913	2408	83
H(20A)	-1261	397	2396	76
H(20B)	-1719	-791	2077	76
H(20C)	-1824	777	1939	76
H(21A)	4242	-1409	2183	68
H(21B)	2177	-2239	2183	68
H(21C)	2685	-1216	2547	68
Table S14. Torsion angles [°] for compound 7.

Torsion Angle	Torsion Angle Value
C(12)-O(1)-C(1)-C(5)	175.7(5)
C(12)-O(1)-C(1)-C(2)	69.9(6)
C(12)-O(1)-C(1)-Si(1)	-67.3(6)
C(19)-Si(1)-C(1)-O(1)	-40.6(5)
C(20)-Si(1)-C(1)-O(1)	80.6(5)
C(19)-Si(1)-C(1)-C(5)	-155.7(4)
C(20)-Si(1)-C(1)-C(5)	-167.9(5)
C(21)-Si(1)-C(1)-C(5)	-169.1(5)
O(1)-C(1)-C(2)-C(6)	-169.3(4)
C(5)-C(1)-C(2)-C(6)	-38.3(7)
Si(1)-C(1)-C(2)-C(6)	85.4(6)
O(1)-C(1)-C(2)-C(3)	67.5(5)
C(5)-C(1)-C(2)-C(3)	-37.9(6)
Si(1)-C(1)-C(2)-C(3)	-161.6(4)
C(6)-C(2)-C(3)-C(4)	-100.2(6)
C(1)-C(2)-C(3)-C(4)	22.0(6)
C(2)-C(3)-C(4)-C(5)	2.9(7)
C(3)-C(4)-C(5)-C(1)	27.2(7)
O(1)-C(1)-C(5)-C(4)	-68.5(6)
C(2)-C(1)-C(5)-C(4)	40.6(6)
Si(1)-C(1)-C(5)-C(4)	173.0(4)
C(3)-C(2)-C(6)-C(11)	36.1(8)
C(1)-C(2)-C(6)-C(11)	-81.1(7)
C(3)-C(2)-C(6)-C(7)	-144.2(6)
C(1)-C(2)-C(6)-C(7)	98.6(6)
C(11)-C(6)-C(7)-C(8)	0.9(9)
C(2)-C(6)-C(7)-C(8)	-178.9(6)
C(6)-C(7)-C(8)-C(9)	0.5(10)
C(7)-C(8)-C(9)-C(10)	-1.1(10)
C(8)-C(9)-C(10)-C(11)	0.4(10)
Atom Bond & Angle	Value
------------------	-------
C(7)-C(6)-C(11)-C(10)	-1.5(9)
C(2)-C(6)-C(11)-C(10)	178.2(6)
C(9)-C(10)-C(11)-C(6)	0.9(10)
C(1)-O(1)-C(12)-O(2)	11.6(9)
C(1)-O(1)-C(12)-C(13)	-168.7(5)
O(2)-C(12)-C(13)-C(18)	-165.3(6)
O(1)-C(12)-C(13)-C(18)	14.9(8)
O(2)-C(12)-C(13)-C(14)	11.7(9)
O(1)-C(12)-C(13)-C(14)	-168.0(5)
C(18)-C(13)-C(14)-C(15)	-1.3(8)
C(12)-C(13)-C(14)-C(15)	-178.4(5)
C(13)-C(14)-C(15)-C(16)	2.2(9)
C(13)-C(14)-C(15)-N(2)	-178.0(5)
O(5)-N(2)-C(15)-C(14)	173.2(6)
O(6)-N(2)-C(15)-C(14)	-5.6(8)
O(5)-N(2)-C(15)-C(16)	-7.0(8)
O(6)-N(2)-C(15)-C(16)	174.2(5)
C(14)-C(15)-C(16)-C(17)	-0.5(8)
N(2)-C(15)-C(16)-C(17)	179.6(5)
C(15)-C(16)-C(17)-C(18)	-2.1(9)
C(15)-C(16)-C(17)-N(1)	176.6(5)
O(4)-N(1)-C(17)-C(16)	-17.6(8)
O(3)-N(1)-C(17)-C(16)	165.9(6)
O(4)-N(1)-C(17)-C(18)	161.1(6)
O(3)-N(1)-C(17)-C(18)	-15.4(8)
C(16)-C(17)-C(18)-C(13)	2.9(9)
N(1)-C(17)-C(18)-C(13)	-175.8(5)
C(14)-C(13)-C(18)-C(17)	-1.1(8)
C(12)-C(13)-C(18)-C(17)	176.0(5)

Symmetry transformations used to generate equivalent atoms:
Space Group P2\(1\)2\(1\)2\(1\)
Wavelength 1.54178
Flack \(x\) -0.03
Flack (su) 0.09

Bijvoet Pairs 1395
Coverage ... 86.8
DiffCalcMax. 288.57
Outlier Crit 577.13
Sigma Crit. 0.25
Select Pairs 416
Number Plus 290
Number Minus 126
Aver. Ratio 0.986
RC 0.955

Normal Prob. Plot
Sample Size. 1386
Corr. Coeff. 0.964
Intercept .. -0.032
Slope 1.123

Bayesian Statistics
Type Gaussian
Select Pairs 1386
P2(true).... 1.000
P3(true).... 1.000
P3(rac-twin) 0.6E-29
P3(false) .. 0.0E+00
G 0.9415
G (su) 0.0810
Hooft y 0.03
Hooft (su) . 0.04
X. References

(1) COSMO V1.61, *Software for the CCD Detector Systems for Determining Data Collection Parameters*. Bruker Analytical X-ray Systems, Madison, WI (2009).

(2) APEX2 V2010.11-3. *Software for the CCD Detector System*; Bruker Analytical X-ray Systems, Madison, WI (2010).

(3) SAINT V 7.68A *Software for the Integration of CCD Detector System*; Bruker Analytical X-ray Systems, Madison, WI (2010).

(4) SADABS V2008/2 Program for absorption corrections using Bruker-AXS CCD based on the method of Robert Blessing; Blessing, R.H. *Acta Cryst*. 1995, A51, 33-38.

(5) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* 2009, 42, 339-341.

(6) Sheldrick, G.M. A short history of SHELX, *Acta Cryst*. 2008, A64, 112-122.

(7) Flack, H. D. *Acta Cryst*. 1983, A39, 876-881.

(8) Spek, A.L. *J. Appl. Cryst*. 2003, 36, 7-13.

(9) Hooft, R. W. W.; Straver, L.H.; Spek, A.L. *J. Appl. Cryst*. 2008, 41, 96-103
CDCl₃, 500 MHz

S1-b
CDCl_3, 500 MHz

$\text{S}1-\varepsilon$

Me

Me

Me

Me

Me

CDCl_3, 500 MHz
^{13}C-NMR (CDCl$_3$, 500 MHz)

![Chemical Structure]

$S1$
CDCl_3, 126 MHz
CDCl₃, 500 MHz

S53
\[\text{CDCl}_3, 126 \text{ MHz} \]
^{13}CCDCl$_3$, 500 MHz

S1-aa

\[
\text{NH} \quad \text{CCl}_3 \quad \text{S}1\text{-aa} \quad \text{CDCl}_3
\]
1H NMR (CDCl$_3$, 126 MHz):

S1-cc
$^{1}J_{CH} = 3\, ppm$
CDCl₃, 500 MHz

OSiMe₃

SiMe₃

S₂-f
CDCl₃, 500 MHz

syn/anti 33-b

Me₃Si
CDCl₃, 500 MHz

.syn/ant S3-c

OMe
Me₃Si

CDCl₃, 126 MHz

syn/anti S₃-c

ppm
CDCl_3, 500 MHz

syn S3-D

Me_3Si

OMe

OMe
CDCl₃, 126 MHz

Syn 3-Si-D

Structure Image
anti S_{3-d}

CDCl$_3$, 126 MHz
^{1}H NMR (CDCl$_3$, 500 MHz, syn/anti S$_3$-e)

![NMR Spectrum Diagram]

- 1.65 ppm (6H, s, Me$_3$Si)
- 4.22 ppm (2H, s, CH$_2$)
- 5.00 ppm (2H, s, CH$_2$)
- 7.83 ppm (2H, s, aromatic)

Chemical shifts in ppm.
1H NMR (CDCl$_3$, 500 MHz)
anti S3-4

CDCl₃ 500 MHz

Me_3Si
CDCl$_3$, 600 MHz

$\text{dr} = 4:1$

$\text{syn/anti} = 3:1$

Me_3Si
CDCl₃, 151 MHz

dr = 4:1

syn/anti S₃⁻¹

CF₃
Me₃Si
O

S₁₀₁
CDCl₃ 600 MHz

syn S₃-K

Me₃Si

Ph
CDCl$_3$, 500 MHz

syn S3-1

![Chemical Structure](attachment:image.png)
CDCl₃, 126 MHz

syn S3-1

Me₃Si

18
anti S3-l

CDCl₃, 500 MHz
\[\text{CDCl}_3, 600 \text{ MHz}\]

anti S-3-m
CDCl$_3$, 500 MHz

Syn S3-n

Ph$_2$MeSi

\[
\text{Syn S3-n}
\]
^{1}H NMR in CDCl$_3$, 126 MHz

syn S$_{3}$-n

\[\text{Ph}^2\text{MeSi} \text{O} \]

\[\text{CH}_2=\text{C} \text{Cl} \]
CDCl$_3$, 500 MHz

syn S30
1H NMR (CDCl$_3$, 600 MHz) and 13C NMR

![NMR Spectrum]

Chemical Structure

![Chemical Structure Image]
CDCl_3, 126 MHz

anti-S3-o

Et_3Si

S121
CDCl₃, 151 MHz

anti S,3-p

PhMe₂S·OMe

S125
S126

C₆D₆, 600 MHz

<chem>PhMe₂Si</chem>

<chem>Cl</chem>

<chem>Cl</chem>

<chem>syn S₃-b</chem>
CDCl_3, 600 MHz

Syn $\text{S}3\text{R}$
CDCl$_3$ 600 MHz

syn S3-S

![Chemical Structure Image]
anti S3-s

Et3Si

CDCl3, 600 MHz
$^{1}J_{3}C\text{CDCl}_{3}$ 500 MHz

anti S-1

\[
\begin{array}{c}
\text{Me}^3Si \\
\text{Me} \\
\text{Me} \\
\end{array}
\]
CDCl₃ 600 MHz

syn/anti S₃-W
The image contains a graph with peaks at various ppm values and a chemical structure labeled as follows:

Chemical Structure

-

Spectroscopic Details

- **Solvent:** CDCl₃
- **Frequency:** 500 MHz
- **Symmetry:** S₃ - x

The peaks are labeled with approximate ppm values indicating the chemical shifts.
3CDC$_3$, 500 MHz
anti SS_3-x

![Chemical Structure](image_url)
CDCl_3 500 MHz

syn S^{-3}-z

Me

Me

Me$_3$Si
CDCl$_3$ 500 MHz

anti S3-aa

Me$_3$Si
syn S3-bb
CDCl$_3$, 126 MHz
1H NMR spectrum

13C NMR spectrum

1H NMR (CDCl$_3$, 126 MHz):

S3-bb
1H NMR (CDCl$_3$, 151 MHz):

![NMR spectrum image]

Chemical shifts (ppm):
1H NMR (CDCl$_3$, 600 MHz)
CDCl₃, 126 MHz
CDCl$_3$, 500 MHz
CDCl₃, 500 MHz

19

Me₃Si
S192

CDCl_3, 126 MHz

19Me$_3$Si

Me

Me
CDCl₃ 500 MHz

Me^3Si
^{29}S
CDCl₃, 126 MHz

S198
CDCl₃, 500 MHz
CDCl₃ 500 MHz

\[
\begin{align*}
\text{CF}_3 & \quad \text{Me}_3\text{Si} \\
\end{align*}
\]
CDCl₃, 500 MHz
CDCl₃, 600 MHz
PhMeO

O

PhMe₂Si

CCl₃, 500 MHz

S215
S216

$\text{CDCl}_3 \: 126 \text{ MHz}$

PhMe_2Si
^{1}H NMR (CDCl$_3$, 500 MHz)

Ph$_2$Mes$_1$...
CDCl_3 500 MHz

\[\text{H} \]

\[\text{Ph}_2\text{Mes}! \]

S221
CDCl₃, 126 MHz

S222
1H NMR (CDCl$_3$, 600 MHz)

Chemical Shifts:
- 3.3 ppm
- 2.12 ppm
- 1.0 ppm

Structure:
![Chemical Structure](image)
$	ext{CDCl}_3$, 151 MHz
CDCl$_3$ 151 MHz

13C NMR
CDCl₃, 500 MHz

1H

Me₃Si
O

Me
CDCl_3, 500 MHz
CDCl₃ 600 MHz

O
Me₃Si

OMe

Me

Me

S249
CDCl₃, 500 MHz

$^\text{Me}$ O

$^\text{Me}^3\text{Si}$
CDCl₃, 500 MHz
Me₃Si

C₆D₆, 62.8 MHz

3a
CDCl₃, 300 MHz
Me₃Si
\[\text{OMe} \]

CDC\textsubscript{3}, 600 MHz

S279
Me_3Si

OMe

CDCl_3, 500 MHz

$3c$
31C, 29Si, 1H NMR: CDCl$_3$, 126 MHz.

![Chemical Structure Image]

Me
S285

CDCl₃, 500 MHz

Me₃Si

OME

OH

4c
CDCl$_3$ 600 MHz
CDCl$_3$, 500 MHz

39

endo tautomer
CDCl₃, 151 MHz
1H NMR (600 MHz, CDCl$_3$) ppm

4h

Me_3Si

OH

F

OC
CDCl₃, 500 MHz
CDCl₃, 600 MHz

Me₃Si, Cl
1H NMR (600 MHz, CDCl$_3$) ppm
CDCl_3, 500 MHz

$3k$
13C NMR (CDCl$_3$, 151 MHz)
^{3}m CDCl$_{3}$ 600 MHz
OH
PhMe
2
Si
4m
O
H

CDCl₃ 126 MHz
1
0.3
4m
PhMe₂Si
HO
CDCl$_3$, 500 MHz

3n

Ph$_2$MeSi
CDCl$_3$, 600 MHz

3o
C₆H₁₂O₃, CDCl₃, 126 MHz

S₃₄₁
31 Me3Si

CDCl3 500 MHz
Me₃Si

3.15

OH

Me

CDCl₃, 500 MHz

S346
CDCl₃, 500 MHz

4w
CDCl₃, 126 MHz
CDCl₃, 600 MHz
CDCl3, 126 MHz
dr = 1:0.6

Me₃Si
CDCl₃ 500 MHz

4aa

Me₃Si

S364
CDCl₃ 600 MHz
dr = 1:0.7
3bb

O
Me₃Si
3bb

CDCl₃, 151 MHz
dr = 1:0.7

S367
PhOH
Me3Si
(-)(1S,2S)-6
CDCl3 500 MHz
