Serious Non-AIDS events: Immunopathogenesis and interventional strategies

Denise C Hsu1*, Irini Sereti2 and Jintanat Ananworanich3

Abstract

Despite the major advances in the management of HIV infection, HIV-infected patients still have greater morbidity and mortality than the general population. Serious non-AIDS events (SNAEs), including non-AIDS malignancies, cardiovascular events, renal and hepatic disease, bone disorders and neurocognitive impairment, have become the major causes of morbidity and mortality in the antiretroviral therapy (ART) era. SNAEs occur at the rate of 1 to 2 per 100 person-years of follow-up. The pathogenesis of SNAEs is multifactorial and includes the direct effect of HIV and associated immunodeficiency, underlying co-infections and co-morbidities, immune activation with associated inflammation and coagulopathy as well as ART toxicities. A number of novel strategies such as ART intensification, treatment of co-infection, the use of anti-inflammatory drugs and agents that reduce microbial translocation are currently being examined for their potential effects in reducing immune activation and SNAEs. However, currently, initiation of ART before advanced immunodeficiency, smoking cessation, optimisation of cardiovascular risk factors and treatment of HCV infection are most strongly linked with reduced risk of SNAEs or mortality. Clinicians should therefore focus their attention on addressing these issues prior to the availability of further data.

Keywords: Serious non-AIDS events, Immune activation, HIV infection

Introduction

Since the first description of AIDS in 1981, there have been tremendous advances in understanding the biology of the virus, the host’s immune response and the clinical management of HIV infection. The introduction of combination antiretroviral therapy (ART) in 1996 has revolutionized HIV treatment, increasing the average life expectancy after HIV diagnosis from 10.5 to 22.5 years from 1996 to 2005 [1]. The estimated life expectancy for a 30 year old male infected with a drug-sensitive virus in 2010 and starting ART at about 6 years post infection can be as high as 75 years in some predictive models [2].

Despite the success of ART, life expectancy in HIV-infected patients is still lower than uninfected persons [2-4] and mortality in HIV-infected patients can be up to 15 times higher when compared with the general population, matched for sex and age [3]. In the pre-ART era, AIDS was the primary cause of death in HIV-infected patients [5-7]. With the use of ART, mortality due to serious non-AIDS events (SNAEs) has become more prominent especially in resource-rich settings [6,8-13] and in patients with higher CD4 T cell counts [7,14].

Definition of serious non-AIDS events

Non-AIDS events (NAEs) are clinical events that do not meet the definition of AIDS–defining events based on the 1993 US Centers for Disease Control and Prevention (CDC) AIDS indicator conditions [15]. They encompass multiple diseases involving different organ systems, including cardiovascular, liver and renal disease, non-AIDS-defining malignancies, diabetes, neuropsychiatric disorders and bone-related abnormalities [16].

SNAEs are NAEs that result in death, are life-threatening, cause prolonged hospitalization and persistent incapacity or are associated with significant morbidity [12,14,17]. Most studies include cardiovascular, liver and end stage renal disease, as well as non-AIDS-defining cancers [11,14,18,19]. Other studies include an even broader range of conditions such as non-AIDS-related infections and psychiatric events [7,12,16,17,20].
Incidence of SNAEs
The incidence of SNAEs in ART-treated patients is around 1 to 2 per 100 person-years of follow-up (PYFU) [11,14,17-19,21], (Table 1), but can be up to 60 per 100 PYFU in a cohort of treatment-experienced patients with multidrug resistant virus [12]. The relative contribution of non-AIDS malignancy, cardiovascular, liver and end stage renal disease to SNAEs vary across studies due to inconsistencies in the definition of SNAEs and differences in the rates of underlying co-morbidities e.g. Hepatitis B virus (HBV) and Hepatitis C virus (HCV) co-infection. However, non-AIDS malignancy, cardiovascular disease (CVD) and liver disease combined seem to account for >80% of SNAEs according to several published studies [9,11,14,17,18]. The incidence of non-AIDS malignancy and cardiovascular disease is about 2-fold higher in HIV-infected patients in the ART era when compared to the general population [22-26].

SNAEs are associated with worse outcome than AIDS events in the ART era. Compared with ART-treated patients without events, the risk of death is increased by 7 to 11-fold in those with SNAEs and by 4 to 5-fold in those with AIDS events [11,14]. Amongst SNAEs, liver-related events are associated with the highest mortality [11,14], followed by renal events, malignancies and cardiovascular events, with estimated 12-month mortality of 39.7, 32.7, 29.5 and 6.1% respectively [11].

SNAEs pathogenesis
Prior to the Strategies for Management of Antiretroviral Therapy (SMART) Study, ART toxicities were thought to be a major contributor to SNAEs. In the SMART Study, over 5000 HIV-infected patients with CD4 T cell count >350 cells/μL were randomized to either episodic ART (when CD4 T cell count fell below 250 cells/μL) or continuous ART. Patients on episodic ART had 1.8-fold increase in mortality and 1.7-fold increase in SNAEs (defined as major cardiovascular, renal or hepatic disease) when compared to those on continuous ART [27], thereby highlighting the role of HIV viraemia and immunodeficiency in the pathogenesis of SNAEs [28].

The pathogenesis of SNAEs is in fact multifactorial and complex (Figure 1). The direct effect of HIV and associated immunodeficiency, underlying co-morbidities and co-infections, immune activation with associated inflammation and coagulopathy as well as ART toxicities can all contribute.

The direct effect of HIV
Uncontrolled HIV replication causes immune activation and progressive decline in CD4 T cell count [29]. In addition, HIV can also contribute directly to organ dysfunction and SNAEs. HIV can infect human hepatic stellate cells and induce collagen expression and pro-inflammatory cytokines secretion in vitro [30,31]. HIV can also mediate dysregulation of glomerular podocytes in HIV-transgenic mouse models [32], as well as apoptosis of human renal tubular cell lines [33]. Therefore, direct effect of HIV may contribute to decline in renal function and increase risk of chronic kidney disease [34]. HIV may contribute directly to non-AIDS malignancy [35], as it can be oncogenic by activating proto-oncogenes [36] or by blocking tumour suppressor genes [37] in cell lines. Increased rates of microsatellite instability in tumours of HIV-infected patients have also been found [38].

Immunodeficiency
Lower nadir or pre-ART CD4 T cell count is associated with increased risk of SNAEs [11,14,16,39]. In addition, the degree of CD4 T cell recovery after ART initiation also influences the incidence of SNAEs [14,18,21,39]. A 100 cells/μL lower latest CD4 T cell count in ART-treated patients is associated with a 30% increase in the risk of SNAEs, even after adjusting for smoking status, diabetes mellitus, hyperlipidaemia, HCV and HBV co-infection and alcohol abuse [18]. Lower latest CD4 T cell count in ART-treated patients is also associated with an increase in mortality [40,41].

Suboptimal restoration of CD4 T cells may be secondary to a number of factors including decreased thymic function [42,43] and impaired homeostatic responses and survival of T cells [44]. HIV replication and immune activation stimulate the secretion of transforming growth factor (TGF-β), mainly by regulatory T cells, with macrophages also contributing. TGF-β triggers collagen production by fibroblasts [45-47]. The resultant structural damage and fibrosis of the lymphoid tissues restricts T cell access to interleukin-7 (IL-7) on the fibroblastic reticular cell (FRC) network [45] thus limiting naïve CD4 T cell survival [48,49]. Furthermore, ongoing immune activation leads to rapid CD4 T cell turnover, overwhelming the already impaired renewal mechanisms [44], resulting in suboptimal CD4 recovery [50,51].

Co-infections
Due to common routes of transmission, HIV-infected patients also have increased risk of exposure to other infections that can cause organ dysfunction.

About 6-14% of HIV-infected patients have HBV and about 25-30% have HCV infection, with the rates varying depending on endemicity of HBV in the population and the prevalence of injecting drug use [52]. HBV and/or HCV co-infection greatly increases the risk of SNAEs despite ART [9,11,14,18,39,53]. Co-infection with HCV is associated with increased risk of renal disease (1.5-fold) [54,55], cardiovascular disease (1.5-fold) [56], cirrhosis (19-fold) and hepatocellular carcinoma (5-fold) [57].
Table 1 Summary of studies describing the incidence of SNAEs in various patient populations

Study	Study population	N	Median follow-up (yrs)	Male (%)	Median age (yrs)	Median nadir CD4 count (cells/μL)	Median baseline CD4 count (cells/μL)	HBV + (%)	HCV + (%)	Rate of SNAEs per 100 PYFU	Ref	
EuroSIDA	A prospective observational cohort of HIV-infected patients in Europe, Israel and Argentina followed from 2001-09.	12844	73	39	178	403	6	24	1.8	[14]		
SMART (S) ESPRIT(E)	S: HIV-infected patients with CD4 count >350 cells/μL were randomized to either CD4 count guided episodic use of ART or to continuous use of ART. E: HIV-infected patients with CD4 count >300 cells/μL were randomized to interleukin-2 plus ART or to ART alone.	5472	S: 2.4	S: 73	S: 43 E: 40	S: 250 E: 197	S: 597 E: 457	S: 2	S: 15	1 [11,27,127]		
SMART (S) ESPRIT(E)	An observational cohort of HIV-infected patients with CD4 count >500 cells/μL in Spain from 1996-2011.	5185	10	80	43	348	630	5	28	1.4 [17]		
CoRIS	A prospective multicenter observational cohort of HIV-infected patients in Spain followed from 2004-2010.	650	B: 650	US: 1129	B: 31 US: 74	B: 33 US: 40	B: 199 US: 243	B: 1 US: 1.2			[18]	
OPTIMA	HIV-infected patients with resistance to at least 2 different multidrug regimens were randomized to (a) re-treatment with either standard (≤4) or intensive (≥5) antiretroviral drugs and (b) either treatment starting immediately or after a 12-week monitored ART interruption.	6007	2.5	70	74	107	11	22	10.5	10.5 [20]		
ATHENA	An observational cohort of ART naive HIV-infected patients starting ART in the Netherlands, 1996-2010.	6440	3.9	75	39	200	7	6	1.2	[21]		
when compared with HIV mono-infected patients in the ART era.

HIV-infected patients also have increased risk of exposure to Human papillomavirus (HPV) [58], that is implicated in the pathogenesis of cervical and anal cancer [59,60].

Other co-morbidities

HIV-infected patients also have higher prevalence of traditional cardiovascular risk factors such as smoking [61-63], elevated total cholesterol/HDL ratio [61-64] and substance abuse [65]. Some studies also found higher rates of hypertension and diabetes [64,66], but these findings have not been confirmed by others [62,63,67].

Smoking is a major cause of increased mortality in ART-treated patients, accounting for a loss of >12 life years, and is associated with >4-fold increase in all-cause mortality, >5-fold increase in non-AIDS mortality, >4-fold increase in cardiovascular-related mortality and >3-fold increase in cancer-related mortality [68].

Though uncontrolled HIV replication, immunodeficiency, co-infection and co-morbidities are important contributors to the pathogenesis of SNAEs, these factors only partially account for the increased risk of SNAEs in HIV-infected patients. HIV elite controllers have increased coronary plaques and carotid intima media thickness when compared to uninfected controls even after adjustment for traditional cardiovascular risk factors [69,70], demonstrating that factors other than uncontrolled viral replication, immunodeficiency, traditional risk factors, and ART toxicities contribute to increased cardiovascular risks in HIV-infected patients.

Immune activation

Inflammation is central to the process of atherosclerosis [71,72], tumour progression [73,74] and liver fibrosis [75,76] in the general population. High levels of biomarkers associated with inflammation (C-reactive protein, CRP, and IL-6) and coagulopathy (D-dimer and fibrinogen) are associated with increased risk of cardiovascular disease [77,80], increased cancer risks [81-83] and mortality [80,84-86] in the general population.

In HIV-infected patients, CRP, IL-6 and D-dimer levels [61] as well as markers of T cell activation [50,87] remain higher than uninfected controls despite suppressive ART. Furthermore, higher CRP, IL-6 and D-dimer [88-90], soluble CD14 (sCD14, a marker of LPS-induced monocyte activation) [91] and lymphocyte activation markers [92] are associated with higher mortality.

In ART-treated patients, CRP, IL-6 and D-dimer levels are also associated with increased risk of CVD, independent of other CVD risk factors [93,94]. These markers are also associated with increased risks of both infection-related and infection unrelated cancers even after adjusting for demographics and CD4 T cell count [95]. Recently, higher levels of tumour necrosis factor (TNF) were also found to be significantly associated with increased risk of SNAEs [96]. Therefore these data suggest that immune activation plays a very important role in SNAEs pathogenesis.

Intermittent viraemia

The drivers of immune activation are diverse. Intermittent HIV viraemia can occur in 20-30% of ART-treated patients [97,98]. The presence of viraemia whilst on
ART is associated with higher IL-6, D-dimer and sCD14 levels [62] and SNAEs [11,39]. In addition, viraemia below the limit of detection of conventional assays also correlates with persistent T cell activation [99]. Therefore, residual viraemia may partially be responsible for persistent immune activation despite ART.

Co-infections
The presence of co-infections also contributes to continual stimulation and activation of the immune system. Asymptomatic CMV infection has been associated with CD8 T cell activation in ART-treated patients [100]. CMV specific CD4 T cells can cause a systemic inflammatory response that is sustained even during latent infection [101] and is associated with atherogenesis [102,103]. Hepatitis C co-infection is also associated with increased CD8 T cell activation when compared with HIV mono-infected patients despite ART [104,105].

Microbial translocation
Microbial translocation due to impaired mucosal barrier integrity may be another cause of immune activation in HIV infection. Rhesus macaques with chronic SIV infection have disruptions of the epithelial barrier of the colon and increased lipopolysaccharide (LPS) staining. The levels of LPS staining in the colon also correlated with the levels of LPS in the draining lymph nodes and remote peripheral lymph nodes [106]. African green monkeys are natural hosts of SIV. In chronic SIV infection, they display little immune activation, maintain mucosal barrier integrity and do not progress to AIDS [107]. However, the injection of LPS into SIV-infected African green monkeys was associated with increases in T cell activation, sCD14 and SIV viremia [108]. In HIV-infected patients, plasma LPS also correlated with plasma interferon (IFN)-α and T cell activation levels [109]. These data suggest that impaired mucosal barrier integrity and microbial translocation may induce immune activation.

Markers of microbial translocation e.g. LPS, sCD14 [110] and bacterial 16 s rDNA [111] do not always normalise with ART. LPS can induce tissue factor expression on monocytes [112]. Tissue factor is the initiator of the coagulation cascade [113] and its expression on monocytes is correlated with D-dimer levels [112]; suggesting that microbial translocation may contribute to atherogenesis and increased CVD [112].

Antiretroviral therapy
Finally, adverse effects of ART may also contribute to SNAEs. A detailed review of ART-related toxicities is beyond the scope of this review. Protease inhibitors as a class, as well as indinavir, lopinavir and abacavir may be associated with increased risk of CVD [25,114,115]. Some studies found that the rate of liver-related deaths is increased per year of ART [116,117]. The cohort described by Weber et al have high rates of HBV and HCV infection, 17% and 66%, respectively [116]. Though patients with HBV or HCV infection have about 5-fold greater risk of hepatotoxicity after ART initiation [118-120], ART is essential as it slows fibrosis progression [121] and reduces liver-related mortality by about 10-fold [122]. In patients without chronic viral hepatitis, ART toxicity rarely causes liver-related mortality, at a rate of 0.04 per 1000 person years [123].

ART has been associated with improved renal function and a slower rate of eGFR decline in HIV-infected patients [124,125]. Though tenofovir use is associated with higher risk of acute renal injury and greater loss of renal function than other ART regimen, the overall risk of serious renal event is not high, in 0.5% of patients [126].

Interventions to reduce SNAEs
Strategies to reduce SNAEs include preventing and reversing immunodeficiency, the modification of traditional risk factors, treatment of co-infections and addressing drivers of immune activation. A wide variety of agents are currently being examined for their potential effects in reducing immune activation and SNAEs (Table 2). However, the majority of studies that have been performed are small, are heterogeneous in terms of ART status and show conflicting findings. The majority of studies used markers of immune activation, in particular CD8 T cell activation as outcome measures. Some recent studies have also included sCD14 and D-dimer. However, randomized placebo-controlled trials that use clinical outcome measures are rare [127].

Preventing and reversing immunodeficiency

ART initiation prior to advanced immunodeficiency

Data from randomized controlled trials suggest that deferral of ART initiation until CD4 T cell count <250 cells/μL was associated with increased SNAEs, AIDS-related events and mortality [128-130]. Observational studies suggest that ART initiation at CD4 T cell count >350 cells/μL is associated with lower risk of SNAEs [14], AIDS-defining illness or death when compared to deferring ART [131-134]. The benefit of ART initiation at CD4 T cell count >350 cells/μL when compared to deferring until CD4 T cell count ~350 cells/μL is insignificant in some studies when the analysis is restricted to mortality alone [131,134]. Results from the START study (NCT00867048), a multicenter international trial designed to assess the risks and benefits of initiating ART at CD4 T cell count at >500 or <350 cells/μL will likely shed further light on this issue. Nonetheless, given that the majority of HIV-infected patients start ART with CD4 T cell count <250 cells/μL [135,136], earlier HIV diagnosis and initiation
of ART before advanced immunodeficiency will likely reduce SNAEs.

Improving CD4 T cell recovery

A number of studies have investigated the use of cytokines critical for T cell homeostasis e.g. IL-2 and IL-7 to enhance CD4 T cell recovery. Though subcutaneous IL-2 administration in concert with ART resulted in sustained increase in CD4 T cell count, this did not translate into clinical benefit [127]. Subcutaneous IL-7 administration also leads to increase in CD4 T cells in phase I and II studies [137,138] but clinical outcomes have not yet been assessed. The restoration of TH17 cells and improvement in TH17/T regulatory cell ratio may be especially important given their roles in mucosal immunity [139,140].

Modulating the effects of lymphoid tissue fibrosis

Lymphoid tissue fibrosis is associated with poor CD4 T cell restoration after ART initiation [49]. TGF-β is key in the process of lymphoid tissue fibrosis. Pirfenidone can reduce TGF-β production and has anti-fibrotic effects [45,141]. Pirfenidone administered to rhesus macaques prior to SIV infection was associated with reduced lymph node fibrosis and preservation of lymph node CD4 T cells [142]. TNF blockade with adalimumab was also associated with attenuated TGF-β expression, reduced lymph node fibrosis and preserved lymph node architecture in a recent rhesus macaque study [47]. The effect of pirfenidone or adalimumab on lymph node fibrosis in HIV infection has not been studied to date.

Potential strategies to reduce SNAEs	Interventions investigated or under evaluation	References
Preventing immunodeficiency	Initiate ART prior to advanced immunodeficiency	[14,128-134]
Increasing CD4 T cell recovery		
Cytokine therapy	Subcutaneous IL-2	[127]
Modulating lymphoid tissue fibrosis		
Pirfenidone	Human data pending	
Angiotensin receptor antagonist	Human data pending	
ACE inhibitor	Human data pending	
Managing co-morbidities		
Smoking cessation		[68,145]
Optimise blood pressure, lipids and diabetic control		[146,147]
ART switch		[152-160]
Reducing chronic antigen stimulation		
Residual viraemia	Raltegravir intensification	[161-170]
HBV and HCV co-infection	Hepatitis B and C treatment	[105,175,176]
CMV co-infection	Valganciclovir	[178]
CMV co-infection	Valacyclovir	[179]
Reducing inflammation		
Statins		[182-187]
COX-2 inhibitors		[195,196]
Aspirin		[199]
Hydroxychloroquine & Chloroquine		[191-193]
Leflunomide		[200]
Prednisone		[201-204]
Reducing microbial translocation		
Balancing microbiota	Prebiotic, probiotic and symbiotic	[210-213]
Reducing bacterial/endotoxin load	Rifaximin	Human data pending
Bovine colostrum		[167]
Sevelamer	Human data pending	
Improving mucosal integrity	Lubiprostone	Human data pending
Reducing inflammation in the gut	Mesalamine	Human data pending
The renin-angiotensin pathway is involved in cardiac, renal and liver fibrosis. Binding of angiotensin II to the angiotensin 1 receptor on cardiac fibroblast, hepatic stellate cells or mesangial cells leads to proliferation as well as collagen and TGF-β synthesis [143,144]. Trials on the effect of angiotensin converting enzyme (ACE) inhibitor e.g. lisinopril (ClinicalTrials.gov identifier: NCT01535235), angiotensin II receptor antagonists e.g. losartan (NCT01852942, NCT01529749) and telmisartan (NCT01928927) in modulating lymphoid tissue fibrosis are currently underway.

Optimizing cardiovascular risk factors

In the D.A.D study, patients who stopped smoking had about 30% reduction in the risk of CVD [145]. Surprisingly, a reduction in mortality was not seen. This may be because patients ceased smoking after the diagnosis of a serious illness and succumb before the benefit of smoking cessation on mortality can be seen [145]. In the Danish HIV cohort, previous smokers had a >1.5-fold reduction in mortality when compared with current smokers. In addition, though previous smokers have higher rates of AIDS-related deaths when compared with never smokers, the incidence of non-AIDS-related death was not different between previous and never smokers [68]. These data suggest that smoking cessation alone would result in significant benefits and should be encouraged.

Modification of other cardiovascular risk factors e.g. treatment of hypertension, dyslipidaemia and optimal glycaemic control in diabetic patients is critical. Suggested target levels have been published [146,147]. Each 10 mmHg reduction in systolic blood pressure and each 38 mg/dL reduction in total cholesterol is associated with a 5 and 20% reduction in risk of CVD, respectively [148]. However, in patients with known hypertension, diabetes or dyslipidaemia meeting indication for treatment, over 40% were not on treatment [149]. Given that a significant proportion of SNAEs are cardiovascular events, more aggressive detection and management of cardiovascular risk factors will likely reduce SNAEs.

ART modification is a potential strategy to reduce cardiovascular risk [150]. A recent review of switch studies have been published [151]. Switching from stavudine to tenofovir was associated with a reduction in total cholesterol and triglycerides and an increase in limb fat [152]. Switching from protease inhibitors to efavirenz or nevirapine was associated with reduction in total cholesterol [153]. However, this switch is not possible in patients with non-nucleoside reverse transcriptase inhibitor resistance. Switching from lopinavir/ritonavir to atazanavir (both boosted with ritonavir 100 mg or unboosted) was associated with reduction of total cholesterol and triglycerides, though greater reductions were seen with unboosted atazanavir [154-156]. Switching to atazanavir was also associated with a reduction in cardiovascular risk score [157]. Though switching from lopinavir/ritonavir to raltegravir was associated with improvement in lipid profile [158,159], no change in endothelial function was detected [160]. The importance of having fully active backbone antiretrovirals was highlighted in the SWITCHMRK study where patients switched to raltegravir had higher rates of virologic failure [158].

Suppressing chronic antigen stimulation

Reducing residual viraemia

Intensification studies have been performed to assess the impact of adding antiretroviral agents to a suppressive ART regimen (as measured by conventional assays). None of the raltegravir intensification studies were able to demonstrate reduction in ultra-sensitive plasma HIV-RNA levels [161-167]. In addition, the majority of studies also found no reduction in markers of T cell [161-164,167] or monocyte activation [167]. However, some studies have noted a reduction in D-dimer levels [168], T cell activation [165,166,169] as well as an early transient increase in 2-LTR circles post raltegravir intensification [168,170], suggesting that residual viraemia was occurring prior to raltegravir intensification and was contributing to immune activation in some patients.

Maraviroc intensification studies have also been performed and yielded conflicting data. Some found reduction in T cell activation [171-173] whilst others found increase in CD4 and CD8 T cell activation both in the peripheral blood and in the rectal mucosa after maraviroc intensification [174]. Hunt et al postulated that the binding of maraviroc to CCR5 prevents the interaction between CCR5 and its natural ligands. Excess CCR5 ligands may then bind to other chemokine receptor such as CCR3 and CCR4 on T cells, leading to T cell activation [174]. Therefore, the beneficial effect of adding antiretroviral agents to an already suppressive ART regimen is uncertain based on currently available data.

Treating other co-infections

HCV treatment and suppression of HCV viraemia is associated with reductions in CD4 and CD8 T cell activation [105]. Sustained virologic response is associated with reduced liver-related complications as well as both liver-related and non liver-related mortality in co-infected patients [175,176]. Unfortunately, HCV treatment may be limited by contraindications, adverse events, high costs, and drug interactions. Next generation agents with higher efficacy and better side effect profiles may revolutionise the management of HIV/HCV co-infected patients [177].

Treatment of other persistent viral infection has also been investigated. Eight weeks of valganciclovir in ART-treated, CMV seropositive patients led to a significant reduction of CMV viraemia as well as a reduction in CD8
T cell activation [178]. In a study targeting HSV co-infection using 12 weeks of valacyclovir in ART-treated, HSV-1 and HSV-2 seropositive patients, no change in T cell activation, CRP or IL-6 levels was demonstrated [179].

Anti-inflammatory agents

Statins are 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors. Not only do statins reduce serum cholesterol [180], they may also have anti-inflammatory properties [181]. Statin use is associated with reduced monocyte activation (unpublished data McComsey et al.), decline in CRP levels [182] as well as reduced T cell activation [183] in ART-treated and in untreated, HIV-infected patients [184]. A retrospective observational study of ART-treated patients showed that statin use is associated with a 3-fold reduction in mortality [185]. Though not statistically significant, a trend for reduction in SNAEs [186] and mortality [187] has also been seen in other retrospective observational studies.

Hydroxychloroquine (HCQ) and its analogue chloroquine (CQ) have immunomodulatory, anti-inflammatory and anti-HIV properties [188-190]. In patients with uncontrolled viral replication, the use of CQ was associated with reduced CD8 T cell activation [191] whereas the same effect was not seen with HCQ [192]. However a non-randomized study of HCQ in 20 ART-treated patients showed decline in plasma LPS, IL-6 and reduced T cell and monocyte activation [193]. Thus findings are inconclusive.

COX-2 inhibitors inhibit cyclooxygenase type 2, reducing Prostaglandin E2 production, thereby reducing activation of T cells through the cyclic adenosine monophosphate (cAMP) pathway [194]. Studies on COX-2 inhibitors have been small and reduction in T cell activation tended to occur in viraemic patients [195,196]. However, it is important to bear in mind that COX-2 inhibitors are associated with increased cardiovascular risk, via a direct pharmacologic consequence of inhibition of COX-2 [197]. Therefore assessing the utility of COX-2 inhibitors without using clinical outcome measures may be insufficient.

Aspirin is a cornerstone in the secondary prevention of vascular disease [198]. In a pilot study, aspirin use was associated with reduced platelet activation, a decrease in sCD14 in monocytes and reductions in CD38 and HLA-DR on CD4 and CD8 T cells. However, there was no change in IL-6, D-dimer and CRP [199]. An aspirin study with larger number of participants is in development with the AIDS Clinical Trials Group.

Leflunomide is an immunomodulatory agent that is used in the treatment of rheumatoid arthritis. The administration of leflunomide in untreated, HIV-infected patients for 28 days was associated with a decrease in CD8 T cell activation [200].

The use of prednisone in patients with untreated chronic HIV infection was associated with less CD4 T cell depletion, a decline in CD4 T cell activation and stable HIV viral load [201,202]. Prednisone at 0.5 mg/kg/day in ART-treated patients was also associated with a reduction in CD8 T cell activation and TNF levels as well as a transient decrease in IL-6 [203]. However, in another study using prednisone at 40 mg/day, no reduction in CD4 or CD8 T cell activation, plasma IL-6 or TNF levels was found [204]. Furthermore, long-term prednisone use, especially at doses >7.5 mg/day is associated with significant adverse effects such as osteoporosis, impaired glucose tolerance, dyslipidaemia, weight gain, cataract formation and increased risk of infections [205]. Even short courses have been associated with an increased risk of osteonecrosis in HIV-infected patients [206].

Targeting microbial translocation

Given that HIV infection has been associated with depressed levels of beneficial gut microbiota and elevated levels of pathogenic microbiota [207], a range of prebiotics (selectively fermented ingredients that changes the growth and/or activity of certain gut microflora, resulting in health benefits [208]), probiotics (live microorganisms that when consumed, confer a health benefit [209]) and synbiotics (combinations of pre and probiotics) are under investigation.

A prebiotic oligosaccharide mixture has been associated with improvement in microbiota composition and reduction in sCD14 in untreated HIV-infected patients [210]. A retrospective cohort study on both ART-treated and untreated HIV-infected patients found that probiotic yogurt consumption was associated with a greater increase in CD4 T cell count even after adjustment for ART [211]. A double-blind randomized placebo-controlled trial in 20 untreated HIV-infected patients found reductions in plasma bacterial DNA and IL-6 levels in patients receiving synbiotics [212]. However, a synbiotic agent in ART-treated women found no change in microbial translocation nor immune activation status despite improvement in the levels of probiotic species [213]. Therefore, more randomized controlled clinical trial data are needed to clarify the effects of pre and probiotics in reducing immune activation.

Bovine colostrum contains oligosaccharides, growth factors, immunoglobulins and antimicrobial peptides and has some activity in alleviating HIV-associated diarrhoea in single arm studies [214-216]. However a randomized controlled trial on the addition of bovine colostrum to suppressive ART found no change in CD4 T cell count, markers of microbial translocation nor T cell activation [167].

A number of new agents that target microbial translocation are under evaluation. Rifaximin is a minimally
absorbed oral rifamycin antibiotic that has activity against both gram-positive and gram-negative enteric bacteria [217]. It is effective in the treatment of hepatic encephalopathy, by reducing ammonia-producing enteric bacteria [218,219]. There are currently 3 clinical trials of rifaximin in HIV-infected patients (ClinicalTrials.gov identifier: NCT01654939, NCT01866826 and NCT01465955). Lubiprostone is a chloride channel activator that is used in the treatment of constipation [220]. It has been found to enhance recovery of mucosal barrier function in ischemic porcine colon [221]. A pilot study of lubiprostone in ART treated, virologically suppressed patients with CD4 T cell count <350 cells/μL (NCT01839734) is currently recruiting. Sevelamer is a phosphate binder that is used in the treatment of constipation [220]. It has been found to enhance recovery of mucosal barrier function in ischemic porcine colon [221]. A pilot study of lubiprostone in ART treated, virologically suppressed patients with CD4 T cell count <350 cells/μL (NCT01839734) is currently recruiting.

Sevelamer is a phosphate binder that is used in the management of inflammatory bowel disease [225]. A trial using mesalamine in ART treated, virologically suppressed patients with CD4 T cell count <350 cells/μL (NCT01090102) is currently enrolling.

Conclusions
Despite the use of ART, HIV-infected patients still have higher mortality and morbidity when compared to the general population. SNAEs occur at the rate of about 1-2 per 100 PYFU and are the predominant causes of morbidity and mortality in HIV-infected patients in the ART era. Many factors contribute to the pathogenesis of SNAEs including the direct effect of HIV and associated immunodeficiency, underlying co-morbidities, immune activation and ART toxicities. Though multiple interventions have been investigated or are ongoing, most of the studies are small, of short duration and clinical outcome measures have not been ascertained. The cost required to investigate the effectiveness of an intervention to reduce SNAEs may be prohibitively high as it will require thousands of participants with possibly several years of follow up.

Currently, the interventions with evidence to suggest an association with reduced risk of SNAEs or mortality are starting ART before advanced immunodeficiency, smoking cessation, optimisation of cardiovascular risk factors and treatment of HCV infection. Clinicians should focus their attention on addressing these issues prior to the availability of further data.

Abbreviations
ACE: Angiotensin converting enzyme; ART: Antiretroviral therapy; cAMP: Cyclic adenosine monophosphate; CDC: Centers for disease control and prevention; CQ: Chloroquine; CRP: C-reactive protein; CVD: Cardiovascular disease; EBV: Epstein-Barr virus; FRC: Fibroblastic reticular cell; HIV: Hepatitis B virus; HCV: Hepatitis C virus; HCO: Hydroxychloroquine; HPV: Human papillomavirus; IL-7: Interleukin-7; IFN: Interferon; LPS: Lipopolysaccharide; NAE: Non-AIDS events; PYY: Person-years of follow-up; sCD14: Soluble CD14; SIR: Standardized incidence ratio; SMART: Strategies for management of antiretroviral therapy; SNAE: Serious non-AIDS events; START: Strategic timing of antiretroviral treatment; TGF: Transforming growth factor; TNF: Tumour necrosis factor.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DH, JA, IS contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Author details
1The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia. 2HIV Pathogenesis Unit, Laboratory of Immunoregulation, NIAID/NIH, Bethesda, MD, USA. 3HIV Netherlands Australia Thailand Research Collaboration and SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand.

Received: 1 October 2013 Accepted: 26 November 2013

Published: 13 December 2013

References
1. Harrison KM, Song R, Zhang X: Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States. J Acquir Immune Defic Syndr 2010, 53:124–130.
2. Nakagawa F, Lodwick RK, Smith CJ, Smith R, Cambiano V, Lundgren JD, Delpech V, Phillips AN: Projected life expectancy of people with HIV according to timing of diagnosis. AIDS 2012, 26:335–343.
3. Lohse N, Hansen AB, Pedersen G, Kronborg G, Gerstoft J, Sorensen HT, Varth M, Obel N: Survival of persons with and without HIV infection in Denmark, 1995-2005. Am J Public Health 2007, 97:1203–1208.
4. Palella FJ Jr, Baker RK, Moorman AC, Chmiel JS, Wood KC, Brooks JT, Holmberg SD: Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr 2006, 43:27–34.
5. Krentz HB, Kliwer G, Gill MJ: Changing mortality rates and causes of death for HIV-infected individuals living in Southern Alberta, Canada from 1984 to 2003, HIV Med 2005, 6:99–106.
6. Reiss P, Ledergerber B, d’Arminio Monforte A, Monforte A, Phillips A, Lundgren JD, Kirk O: Risk of all-cause mortality associated with nonfatal AIDS and serious non-AIDS events among adults infected with HIV. J Acquir Immune Defic Syndr 2005, 39:187–191.
7. Lohse N, Hansen AB, Pedersen G, Kronborg G, Gerstoft J, Sorensen HT, Varth M, Obel N: Survival of persons with and without HIV infection in Denmark, 1995-2005. Am J Public Health 2007, 97:1203–1208.
8. Palella FJ Jr, Baker RK, Moorman AC, Chmiel JS, Wood KC, Brooks JT, Holmberg SD: Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr 2006, 43:27–34.
9. Causes of death in HIV-1-infected patients treated with antiretroviral therapy, 1996-2006: collaborative analysis of 13 HIV cohort studies. Clin Infect Dis 2010, 50:1387–1396.
10. Lewden C, May T, Rosenthal E, Burty C, Bonnet F, Morlat P, Seret D, et al: Changes in causes of death among adults infected by HIV between 2000 and 2005: the “Mortalite 2000 and 2005” surveys (ANRS EN19 and Mortavic). J Acquir Immune Defic Syndr 2008, 48:100–108.
11. Neuhaus J, Swanson KM, Kyriakides TC, et al: Quality of life of patients with advanced HIV/AIDS: measuring the impact of both AIDS-defining events and non-AIDS serious adverse events. J Acquir Immune Defic Syndr 2009, 51:631–639.
combination antiretroviral therapy and risk of death from specific causes: no evidence for any previously unidentified increased risk due to antiretroviral therapy. AIDS 2012, 26:315–323.

14. Mocroft A, Reiss P, Gasiorowski J, Ledergerber B, Kowalska J, Chiesi A, Gatell J, Rakhmanova A, Johnson M, Kirk O, Lundgren J. Serious fatal and non-fatal non-AIDS-defining illnesses in Europe. J Acquir Immune Defic Syndr 2016, 72:262–270.

15. CDC: 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep 1992, 41:1–19.

16. Masia M, Padilla S, Alvarez D, Calvo M, Leal L, Perez I, Planas M, Arnedo M, Mallois J, Gatell JM, Garcia F. Rate and Predictors of Non-AIDS Events in a Cohort of HIV-Infected Patients with a CD4 T Cell Count Above 500 Cells/mm(3). AIDS Res Hum Retroviruses 2013, 29:161–1167.

17. Bellizzo WH, Drellana LC, Grinziebn B, Madero JS, La Rosa A, Veloso VG, Sanchez J, Ismerio Moreira R, Crabbe-Mariee B, Garcia Messina O, et al. Analysis of serious non-AIDS events among HIV-infected adults at Latin American sites. AIDS Med Healt 2010, 11:554–564.

18. Wester CW, Koethe JR, Shepherd BE, Stenness SE, Rebeiro PF, Kipp AM, Hong H, Bussmann H, Gaothle T, McGowan CC, et al. Non-AIDS-defining events among HIV-infected adults receiving combination antiretroviral therapy in resource-replete versus resource-limited urban setting. AIDS 2011, 25:1471–1479.

19. Ferry T, Raffi F, Collin-Filleul L, Dupon M, Dallamonica P, Waldner A, Strady C, Chene G, Leport C, Moing VL: Uncontrolled viral replication as a risk factor for non-AIDS severe clinical events in HIV-infected patients on long-term antiretroviral therapy: APROCO/COPTOLO (ANRS CO8) cohort study. J Acquir Immune Defic Syndr 2009, 51:407–411.

20. Zhang S, van Sighem A, Kesseling A, Grau G, Smits P, Prins JM, Kauffman R, Richter C, de Wolf F, Reiss P. Episodes of HIV viremia and the risk of non-AIDS diseases in patients on suppressive antiretroviral therapy. J Acquir Immune Defic Syndr 2012, 60:265–272.

21. Powles T, Robinson D, Stebbing J, Shamshi N, Nelson M, Gazzard B, Mandelia S, Moller H, Bower M: Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol 2009, 27:884–890.

22. Bedimo RJ, McGinnis KA, Dunlap M, Rodriguez-Barradas MC, Justice AC: Incidence of non-AIDS-defining malignancies in HIV-infected versus noninfected patients in the HAART era: impact of immunosuppression. J Acquir Immune Defic Syndr 2009, 52:200–208.

23. Shiels MS, Cole SR, Kirch GD, Poole C: A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J Acquir Immune Defic Syndr 2009, 52:611–622.

24. Islan FM, Wu J, Janson J, Wilson DP: Relative risk of cardiovascular disease among people living with HIV: a systematic review and meta-analysis. HIV Med 2012, 13:453–468.

25. Martinez E, Milinkovic A, Buira E, de Lazzari E, Leon A, Larrousse M, Lonca M, Laguno M, Blanco JL, Mallois J, et al. Incidence and causes of death in HIV-infected persons receiving highly active antiretroviral therapy compared with estimates for the general population of similar age and from the same geographical area. HIV Med 2007, 8:251–258.

26. El-Sadr WM, Lundgren J, Neaton JD, Gordin F, Abrams D, Ardiano RC, Babiker A, Burman W, Cummeci N, Cohlen CJ, et al. CD4+ cell count-guided interruption of antiretroviral treatment. N Engl J Med 2006, 355:2283–2296.

27. Strategies for Management of Antiretroviral Therapy Study Group, Lundgren JD, Babiker A, El-Sadr W, Emerley S, Grund B, Neaton JD, Neuhaus J, Phillips AE: Inferior clinical outcome of the CD4+ cell count-guided antiretroviral treatment interruption strategy in the SMART study: role of CD4+ Cell counts and HIV RNA levels during follow-up. J Infect Dis 2008, 197:1145–1155.

28. Lawn SD, Butera ST, Folks TM: Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clin Microbiol Rev 2001, 14:73–777.

29. Tuayma AC, Hong F, Saiman Y, Wang C, Oskok D, Mosoian A, Chen P, Chen BK, Mlotman ME, Barsal MB: Human immunodeficiency virus (HIV)-1 infects human hepatic stellate cells and promotes collagen I and monocyte chemoattractant protein-1 expression: implications for the pathogenesis of HIV/hepatitis C virus-induced liver fibrosis. Hepatology 2010, 52:621–622.

30. Hong F, Saiman Y, Si C, Mosoian A, Bansal MB: X4 Human immunodeficiency virus type 1 gp120 promotes human hepatic stellate cell activation and collagen I expression through interactions with CXCR4. PLoS One 2012, 7:e36599.

31. Zuo Y, Matsusaka T, Zhong J, Ma J, Ma L, Hanna Z, Jolicoeur P, Fogo AB, Ichikawa I: HIV-1 genes vpr and nef synergistically damage podocytes, leading to glomerulosclerosis. J Am Soc Nephrol 2006, 17:2832–2843.

32. Kasapi AA, Fan S, Singhal PC: p30 modulates HIV-1 gp120-induced apoptosis in human proximal tubular cells: associated with alteration of TGF-beta and Smad signaling. Nephron Exp Nephrol 2006, 102:e30–e38.

33. Wyatt CM, Melambo K, Klotman PE. Recent progress in HIV-associated nephropathy. Annual review of medicine 2012, 63:147–159.

34. Deekhen JF, Tien AL, Rudek MA, Okular C, Young M, Little RF, DeBuse BJ: The rising challenge of non-AIDS-defining cancers in HIV-infected patients. Clin Infect Dis 2012, 55:1228–1235.

35. Wright S, Lu X, Peterlin BM: Human immunodeficiency virus type 1 tat directly transcribes through attenuation sites within the mouse c-myc gene. J Mol Biol 1994, 243:568–573.

36. Harrod R, Nacsa J, Van Lint C, Hansen J, Karpoval T, McNally J, Franchini G: Human immunodeficiency virus type 1 Tat/co-activator acetyltransferase interactions inhibit p53-dependent acetylation and p53-responsive transcription. J Biol Chem 2001, 276:12310–12318.

37. Bedi GC, Westra WH, Farzadegan H, Pitta PM, Sidransky D: Microsomal instability in primary neoplasms from HIV + patients. Nat Med 1995, 1:65–68.

38. Baker JV, Peng G, Rapkin J, Abrams D, Silberberg MJ, MacArthur RD, Caver W, Hrey VK, Neaton JD: CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection. AIDS 2008, 22:841–848.

39. Marlin B, Thiebaut R, Bucher HC, Rodeaud V, Costagliola D, Dorruci M, Hamouda O, Prins M, Walker S, Porter K, et al: Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy. AIDS 2009, 23:1743–1753.

40. Smith C, Sabin CA, Lundgren JD, Thiebaut R, Weber M, Monforte A, Kirk O, Friis-Moller N, Phillips A, et al: Factors associated with specific causes of death amongst HIV-positive individuals in the D:A:D Study. AIDS 2010, 24:1537–1548.

41. Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP: The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol 2000, 18:529–560.

42. Douek DC, McFarland RD, Silverberg MJ, MacArthur RD, Cavert WP, Hrey VK, Neaton JD: CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection. AIDS 2008, 22:841–848.

43. Estes JD, Wietgrefe S, Schacker T, Southern P, Beilman G, Reilly C, Milush JM, Estes JD, Wietgrefe S, Schacker T, Southern P, Beilman G, Reilly C, Milush JM, et al: Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. Clin Infect Dis 2011, 52:998–1008.

44. Estes JD, Wietgrefe S, Schacker T, Southern P, Beilman G, Reilly C, Milush JM, Ligdon JD, Sodora DL, Carli JR, Haase AT: Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor beta 1-positive regulatory T cells and begins in early infection. J Infect Dis 2007, 195:551–561.

45. Tabb B, Morlock DR, Truvey CM, Quinones OA, Hao XP, Smedley J, Macallister R, Piatak M Jr, Harris LD, Paiardini M, et al: Reduced inflammation and lymphoid tissue immunopathology in rhesus macaques receiving anti-tumor necrosis factor treatment during primary simian immunodeficiency virus infection. J Infect Dis 2013, 207:860–892.

46. Schacker TW, Brenchley JM, Beilman GJ, Reilly C, Pambuccian SE, Taylor J, Skada D, Larson M, Douek DC, Haase AT: Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 2006, 13:556–560.

47. Zeng M, Southern PJ, Reilly CS, Beilman GJ, Chipman JG, Schacker TW, Haase AT: Lymphoid tissue damage in HIV-1 infection depletes naive T
cells and T cell reconstitution after antiretroviral therapy. PloS Pathog 2012, 8(10):e1002437.

50. Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, Deeks SG. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 2003, 187:1534–1543.

51. Lederman MM, Calabrese L, Funderburg NT, Clagett B, Medvik K, Bonilla H, Gripshover B, Salata RA, Taege A, Lissorig M, et al. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J Infect Dis 2011, 204:1217–1226.

52. Alter MJ. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol 2006, 44:56–59.

53. Thio CL, Seaberg EC, Skolasky R Jr, Phair J, Visscher B, Munoz A, Thomas DL: HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS). Lancet 2002, 360:1921–1926.

54. Fischer MJ, Wyatt CM, Gordon K, Gibert CL, Brown ST, Rimland D, Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, Deeks SG: Risk factors for coronary heart disease among veterans with and without HIV and hepatitis C. Circ Cardiovasc Qual Outcomes 2011, 4:425–432.

55. Giordano TP, Kramer JR, Souchek J, Richardson P, El-Serag HB, Freiberg MS, Chang CC, Skanderson M, McGinnis K, Kuller LH, Kraemer KL, Hsu E: Seroepidemiology of High-Risk HPV in HIV-Negative and HIV-Infected Men. J Acquir Immune Defic Syndr 2010, 53:292–303.

56. Rodriguez-Barradas MC, Justice AC, Parikh CR: Human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 2003, 187:1527–1533.

57. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, Runlay A, Lowe GD: Fibrin D-dimer and coronary heart disease: prospective study and meta-analysis. JAMA 2005, 294:1799–1807.

58. Kritchevsky SB, Zhou X, Kritchevsky DM, Kritchevsky J, Ferrucci L, Fried LP, Blanc E, Shahar E, Himmelfarb H, Moore TR, et al: Associations of elevated interleukin-6 and C-reactive protein levels, variation in the interleukin-6 gene promoter, and subsequent risk of coronary heart disease and mortality: an individual participant meta-analysis. JAMA 2010, 303:132–140.

59. Danesh J, Kaptoge S, Maren AG, Sanwar N, Wood A, Angelman SB, Wensley N, Higgins JP, Lennon L, Birksdottir G, et al: Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med 2008, 5:e278.

60. Liu J, Kaptoge S, Maren AG, Sanwar N, Wood A, Angelman SB, Wensley N, Higgins JP, Lennon L, Birksdottir G, et al: Long-term interleukin-6 levels and the risk of major cardiovascular diseases and nonsurvival: an individual participant meta-analysis. JAMA 2005, 294:1799–1809.

61. Danesh J, Kaptoge S, Maren AG, Sanwar N, Wood A, Angelman SB, Wensley N, Higgins JP, Lennon L, Birksdottir G, et al: Long-term interleukin-6 levels and the risk of major cardiovascular diseases and nonsurvival: an individual participant meta-analysis. JAMA 2005, 294:1799–1809.

62. Kritchevsky SB, Zhou X, Kritchevsky DM, Kritchevsky J, Ferrucci L, Fried LP, Blanc E, Shahar E, Himmelfarb H, Moore TR, et al: Associations of elevated interleukin-6 and C-reactive protein levels, variation in the interleukin-6 gene promoter, and subsequent risk of coronary heart disease and mortality: an individual participant meta-analysis. JAMA 2010, 303:132–140.

63. Liu J, Kaptoge S, Maren AG, Sanwar N, Wood A, Angelman SB, Wensley N, Higgins JP, Lennon L, Birksdottir G, et al: Long-term interleukin-6 levels and the risk of major cardiovascular diseases and nonsurvival: an individual participant meta-analysis. JAMA 2005, 294:1799–1809.

64. Danesh J, Kaptoge S, Maren AG, Sanwar N, Wood A, Angelman SB, Wensley N, Higgins JP, Lennon L, Birksdottir G, et al: Long-term interleukin-6 levels and the risk of major cardiovascular diseases and nonsurvival: an individual participant meta-analysis. JAMA 2005, 294:1799–1809.

65. Liu J, Kaptoge S, Maren AG, Sanwar N, Wood A, Angelman SB, Wensley N, Higgins JP, Lennon L, Birksdottir G, et al: Long-term interleukin-6 levels and the risk of major cardiovascular diseases and nonsurvival: an individual participant meta-analysis. JAMA 2005, 294:1799–1809.

66. Danesh J, Kaptoge S, Maren AG, Sanwar N, Wood A, Angelman SB, Wensley N, Higgins JP, Lennon L, Birksdottir G, et al: Long-term interleukin-6 levels and the risk of major cardiovascular diseases and nonsurvival: an individual participant meta-analysis. JAMA 2005, 294:1799–1809.

67. Liu J, Kaptoge S, Maren AG, Sanwar N, Wood A, Angelman SB, Wensley N, Higgins JP, Lennon L, Birksdottir G, et al: Long-term interleukin-6 levels and the risk of major cardiovascular diseases and nonsurvival: an individual participant meta-analysis. JAMA 2005, 294:1799–1809.
90. Andrée BB, Hullsieck KH, Boulware DR, Rupert A, French MA, Ruurdukh K, Montes ML, Price H, Barreto P, Audsley J, et al. Biomarkers of inflammation and coagulation are associated with mortality and hepatitis flares in persons coinfected with HIV and hepatitis viruses. J Infect Dis 2013, 207:1379–1388.

91. Sandler NG, Wand H, Roque A, Law M, Nason MC, Dixie NE, Pederson C, Ruurdukh K, Lewin SR, Emeny S, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis 2011, 203:790–790.

92. Hunter PW, Cao HL, Muzoza C, Stevanayana L, Bennett J, Emoneyonu N, Kambalaz A, Neiands TB, Bangsberg DR, Deks SG, Martin JN. Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy. AIDS 2011, 25:2123–2131.

93. Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, Ledergerber B, Lundgren J, et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS One 2012, 7:e44454.

94. Ford ES, Greenwald JH, Richterman AG, Rutten A, Ditchter B, Badralma Y, Natarajan R, Rehm C, Hadigan C, Sereti I. Traditional risk factors and D-dimer predict incident cardiovascular disease events in chronic HIV infection. AIDS 2010, 24:1509–1517.

95. Borge AH, Silverberg MJ, Wentworth D, Glulich AE, Fatkenheuer G, Mitsuysu R, Tambusi G, Sabin CA, Neaton JD, Lundgren JD. Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers. AIDS 2013, 27:1433–1441.

96. McComsey GA, Kitch D, Sax PE, Tierney C, Jahed NC, Melbourne K, Ha B, Hunt P, Sieg SF, Asaad R, Jiang W, Kalinowska M, Luciano AA, Stevens W, Rodriguez B, Landay A, Martin J, Sinclair E, Aker A, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 2010, 202:723–733.

97. Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, Landay A, Martin J, Sinclair E, Aker A, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 2010, 202:723–733.

98. Bivinger C, Bendavid E, Niehaus K, Olslan RH, Olin K, Sundaram V, Wein N, Holodnny M, Hou N, Owens DK, Desai M. Risk of cardiovascular disease from antiretroviral therapy for HIV: a systematic review. PLoS One 2013, 8:e59551.

99. McCot Jr A, Phillips AN, Gatell J, Horban A, Ledergerber B, Zilmer K, Levitov D, Malsz E, Podekareva D, Lundgren JD. CD4 cell count and viral load: Specific rates of AIDS, non-AIDS and deaths according to current antiretroviral use. AIDS 2013, 27:907–918.

100. Weber R, Sabin CA, Friis-Moller N, Reiss P, El-Sadr WM, Kirk O, Dabis F, Law MG, Pradier C, De Wit S, et al. Liver-related deaths in persons infected with the human immunodeficiency virus: the D:A:D study. Arch Intern Med 2006, 166:1632–1641.

101. McCot Jr A, Soriano V, Rockstroh J, Reiss P, Kirk O, De Wit S, Gatell J, Cobbell P, Phillips AN, Lundgren JD. Is there evidence for an increase in the rate of liver-related deaths in patients with HIV? AIDS 2005, 19:2117–2125.

102. Aceti A, Pasquazzi C, Zechini B, De Bac C. Hepatotoxicity development during antiretroviral therapy containing protease inhibitors in patients with HIV: the role of hepatitis B and C virus infection. J Acquir Immune Defic Syndr 2002, 29:41–48.

103. Witt FW, Weaverling GJ, Weel J, Jurriaans S, Lange JM. Incidence of and risk factors for severe hepatotoxicity associated with antiretroviral combination therapy. J Infect Dis 2002, 186:23–31.

104. Sulkowski MS, Thomas DL, Chaixon R, Moore RD. Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection. JAMA 2000, 283:74–80.

105. Braun N, Salvatore M, Rios-Bedoya CF, Fernandez-Carbina A, Paronetto F, Rodriguez-Orenjo JF, Rodriguez-Torres M. Slower fibrosis progression in HIV/HCV-coinfected patients with successful HIV suppression using antiretroviral therapy. J Hepatology 2006, 44:97–105.

106. Koval H, Sabin CA, Ledergerber B, Ryom L, Worm SW, Smith C, Phillips A, Reiss P, Fontes E, Petoumenos K, et al. Antiretroviral drug-related liver mortality among HIV-positive persons in the absence of hepatitis B or C.
143. Kim S, Iwao H: Hepatic fibrosis and the renin-angiotensin system. Ann J Ther 2011, 18:e202–e208.

144. Petoumenos K, Worm S, Reiss P, de Wit S, d’Arminio Monforte A, Sabin C, Friis-Moller N, Weber R, Mercie P, Pradier C et al: Rates of cardiovascular disease following smoking cessation in patients with HIV infection: results from the D:A:D study®. HIV Med 2011, 12:412–421.

145. EACS Guidelines. http://www.eacsociety.org/Portals/0/Guidelines_Online_131014.pdf.

146. Dupe MP, Stein JH, Aberg JA, Fichtenbaum CJ, Gerber JG, Tashima KT, Henry WK, Currier JS, Sprecher D, Glesby MJ: Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medical Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group. Clin Infect Dis, 2003, 37:613–627.

147. Friis-Moller N, Thiebaut R, Reiss P, Weber R, Monforte AD, de Wit S, El-Sadr W, Fontanet A, Worm S, Kiro R, et al: Predicting the risk of cardiovascular disease in HIV-infected patients: the data collection on adverse events of anti-HIV drugs study. Eur J Cardiovasc Prev Rehabil 2010, 17:491–501.

148. Reinsch N, Neuhaus K, Esser S, Potthoff A, Hower M, Mostardt S, Neumann A, Brockmeyer NH, Gelbrich G, Ebel R, Neumann T: Are HIV patients undertreated? Cardiovascular risk factors in HIV: results of the HIV-HEART study. Eur J Prev Cardiol 2012, 19:267–274.

149. Lundgren JD, Battegay M, Behrens G, de Wit S, Guaraldi G, Katlama C, Martinez E, Nair D, Powery WG, Reiss P, et al: European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV Med 2008, 9:72–81.

150. Melé S, Carenzzi L, Cossu MV, Passerini S, Capetti A, Rizzardini G: Lipid Metabolism and Cardiovascular Risk in HIV Infection and HAART: Present and Future Problems. Cholesterol 2010, 2010:271504.

151. Madruga JH, Cassert I, Suleman JM, Etzel A, Zhong L, Holmes CB, Cheng AK, Enjesoa J, Study ET: The safety and efficacy of switching stavudine to tenofovir df in combination with lamivudine and efavirenz in hiv-1-infected patients: three-year follow-up after switching therapy. HIV Clin Trials 2007, 8:381–390.

152. Negredo E, Cruz L, Paredes R, Ruiz L, Fumara CR, Bonjoch A, Gel S, Tuldra A, Balague M, Johnston S, et al: Virological, immunological, and clinical impact of switching from protease inhibitors to nevirapine or to efavirenz in patients with human immunodeficiency virus infection and long-lasting viral suppression. Clin Infect Dis 2002, 34:504–510.

153. Soriano V, Garcia-Gasco P, Vispo E, Ruiz-Sancho A, Blanco F, Martin-Carbonero L, Rodriguez-Novoa S, Morrelo J, de Mendoza C, Rivas P, et al: Efficacy and safety of replacing lopinavir with atazanavir in HIV-infected patients with undetectable plasma viraemia: final results of the SLOAT study. J Antimicrob Chemother 2008, 61:200–205.

154. Malilas J, Podzamczer D, Milinkovic A, Domingo P, Cloet C, Ribera E, Gutierrez F, Knobel H, Cosin J, Ferrer E, et al: Efficacy and safety of switching from boosted lopinavir to boosted atazanavir in patients with virological suppression receiving a LPV/r-containing HAART: the ATAZIP study. J Acquir Immune Defic Syndr 2009, 51:29–36.

155. Gatell J, Salmon-Ceron D, Lazzarin A, Van Wijngaerden E, Antunes F, Leen C, Hopman A, Wirtz V, Odeshoulo L, Van den Dungen M, et al: Efficacy and safety of atazanavir-based highly active antiretroviral therapy in patients with virologic suppression switched from a stable, boosted or unboosted protease inhibitor treatment regimen: the SWAN Study (AI424-097) 48-week results. Clin Infect Dis 2007, 44:1484–1492.

156. Colalunga M, Di Giambenedetto S, Bracciale L, Tamburini E, Cauda R, De Luca A: Cardiovascular risk score change in HIV-1-infected patients switched to an atazanavir-based combination antiretroviral regimen. HIV Med 2008, 9:172–179.

157. Eron JJ, Young B, Cooper DA, Youle M, Dejesus E, Andrade-Villanueva J, Workman C, Zajdencr R, Fatenheuer G, Berger DS, et al: Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet 2010, 375:396–407.

158. Martinez E, Larrousse M, Llibre JM, Gutierrez F, Saumoy M, Antela A, Knobel H, Murillas J, Berenguer J, Pich J, et al: Substitution of raltegravir for ritonavir-boosted protease inhibitors in HIV-infected patients: the SPIRAL study. AIDS 2010, 24:1667–1707.
160. Masia M, Martinez E, Padilla S, Gatell JM, Gutierrez F: Endothelial function in HIV-infected patients switching from a boosted protease inhibitor-based regimen to raltegravir: a substudy of the SPIRAL study. J Antimicrob Chemother 2013, 68:409–413.

161. Gandhi RT, Zheng L, Boschi RJ, Chan ES, Mangolis DM, Read S, Kallungal B, Palmer S, Medvik K, Lederman MM, et al.: The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med 2010, 7:8.

162. Hatano H, Hayes TL, Dahl V, Sinclair E, Lee TH, Hoh R, Lampiris H, Hunt PW, Palmer S, McCune JM, et al.: A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response. J Infect Dis 2011, 203:960–968.

163. Yuki SA, Shergill AK, McQuaid K, Gianella S, Lampiris H, Hare CB, Pandori M, Sinclair E, Gunthard HF, Fischer M, et al.: Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS 2010, 24:2451–2461.

164. Dahl V, Lee E, Peterson J, Spudich SS, Leppala S, Sinclair E, Fuchs D, Palmer S, Price RW: Raltegravir treatment intensification does not alter cerebrospinal fluid HIV-1 infection or immunoinactivation on suppressive therapy. J Infect Dis 2011, 204:1936–1945.

165. Llibre JM, Buzon MJ, Massanella M, Esteve A, Dahl V, Puertas MC, Domingo P, Gatell JM, Larmouze M, Gutierrez M, et al.: Treatment intensification with raltegravir in subjects with sustained HIV-1 viremia suppression: a randomized double-blind study. Antivir Ther 2012, 17:555–564.

166. Vallejo A, Gutierrez C, Hernandez-Novoa B, Diaz L, Madrid N, Abad-Fernandez M, Dronda F, Perez-Elias MJ, Zamora J, Munoz E, et al.: The effect of intensification on raltegravir with the HIV-1 reservoir of latently infected memory CD T cells in suppressed patients. AIDS 2012, 26:1885–1894.

167. Byakwaga H, Kelly M, Purcell DF, French MA, Amin J, Lewin SR, Haskelberg Kain KC, Kaul R, Tan DH: The effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-infected patients on suppressive antiretroviral therapy. J Infect Dis 2011, 204:1352–1354.0.

168. Hatano H, Strain MC, Scherer R, Bacchetti P, Wentworth D, Hoh R, Martin JN, McCune JM, Neaton JD, Tracy RP, et al.: Increase in 2-LTR Circles and Decrease in D-dimer After Raltegravir Intensification in Treated HIV-Infected Patients: A Randomized: Placebo-Controlled Trial. J Infect Dis 2013, 208(9):1436–1442.

169. Massanella M, Negredo E, Puig J, Puertas MC, Buzon MJ, Perez-Alvarez N, Carrillo J, Cottet B, Martinez-Picado J, Blanco J: Raltegravir intensification shows differing effects on CD8 and CD4 T cells in HIV-infected HAART-suppressed individuals with poor CD4 T cell recovery. AIDS 2012, 26:2285–2293.

170. Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, Gatell JM, Domingo P, Paredes R, Sharkey M, et al.: HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 2010, 16:460–465.

171. Cuzin L, Trabelsi S, Gatell JM, Gutierrez F: Endothelial function in HIV-infected patients switching from a boosted protease inhibitor-based regimen to raltegravir: a substudy of the SPIRAL study. J Antimicrob Chemother 2013, 68:209–213.

172. Gandhi RT, Zheng L, Boschi RJ, Chan ES, Mangolis DM, Read S, Kallungal B, Palmer S, Medvik K, Lederman MM, et al.: The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med 2010, 7:8.
