ONCE MORE ON POSITIVE COMMUTATORS

ROMAN DRNOVŠEK

Abstract. Let A and B be bounded operators on a Banach lattice E such that the commutator $C = AB - BA$ and the product BA are positive operators. If the product AB is a power-compact operator, then C is a quasi-nilpotent operator having a triangularizing chain of closed ideals of E. This theorem answers an open question posed in [3], where the study of positive commutators of positive operators has been initiated.

1. Introduction

Let X be a Banach space. The spectrum and the spectral radius of a bounded operator T on X are denoted by $\sigma(T)$ and $r(T)$, respectively. A bounded operator T on X is said to be power-compact if T^n is a compact operator for some $n \in \mathbb{N}$. A chain \mathcal{C} is a family of closed subspaces of X that is totally ordered by inclusion. We say that \mathcal{C} is a complete chain if it is closed under arbitrary intersections and closed linear spans. If \mathcal{M} is in a complete chain \mathcal{C}, then the predecessor \mathcal{M}_- of \mathcal{M} in \mathcal{C} is defined as the closed linear span of all proper subspaces of \mathcal{M} belonging to \mathcal{C}.

Let E be a Banach lattice. An operator T on E is called positive if the positive cone E^+ is invariant under T. It is well-known that every positive operator T is bounded and that $r(T)$ belongs to $\sigma(T)$. A bounded operator T on E is said to be ideal-reducible if there exists a non-trivial closed ideal of E invariant under T. Otherwise, it is ideal-irreducible. If the chain \mathcal{C} of closed ideals of E is maximal in the lattice of all closed ideals of E and if every one of its members is invariant under an operator T on E, then \mathcal{C} is called a triangularizing chain for T, and T is said to be ideal-triangularizable. Note that such a chain is also maximal in the lattice of all closed subspaces of E (see e.g. [1, Proposition 1.2]).

In [3] positive commutators of positive operators on Banach lattices are studied. The main result [3, Theorem 2.2] is the following
Theorem 1.1. Let A and B be positive compact operators on a Banach lattice E such that the commutator $C = AB - BA$ is also positive. Then C is an ideal-triangularizable quasi-nilpotent operator.

Examples in [3] show that the compactness assumption of Theorem 1.1 cannot be omitted. They are based on a simple example that can be obtained by setting $A = S^*$ and $B = S$, where S is the unilateral shift on the Banach lattice l^2.

Theorem 1.1 has been further extended in [5, Theorem 3.4]. Recall that a bounded operator T on a Banach space is called a Riesz operator or an essentially quasi-nilpotent operator if $\{0\}$ is the essential spectrum of T.

Theorem 1.2. Let A and B be positive operators on a Banach lattice E such that the sum $A + B$ is a Riesz operator. If the commutator $C = AB - BA$ is a power-compact positive operator, then it is an ideal-triangularizable quasi-nilpotent operator.

In this note we answer affirmatively the open question posed in [3, Open questions 3.7 (1)] whether is it enough to assume in Theorem 1.1 that only one of the operators A and B is compact.

2. Preliminaries

If T is a power-compact operator on a Banach space X, then, by the classical spectral theory, for each $\lambda \in \mathbb{C} \setminus \{0\}$ the operator $\lambda - T$ has finite ascent k, i.e., k is the smallest natural number such that $\ker ((\lambda - T)^k) = \ker ((\lambda - T)^{k+1})$. In this case the (algebraic) multiplicity $m(T, \lambda)$ of λ is the dimension of the subspace $\ker ((\lambda - T)^k)$.

We will make use of the following extension of Ringrose’s Theorem.

Theorem 2.1. Let T be a power-compact operator on a Banach space X, and let \mathcal{C} be a complete chain of closed subspaces invariant under T. Let \mathcal{C}' be a subchain of \mathcal{C} of all subspaces $\mathcal{M} \in \mathcal{C}$ such that $\mathcal{M}_- \neq \mathcal{M}$. For each $\mathcal{M} \in \mathcal{C}'$, define $T_\mathcal{M}$ to be the quotient operator on $\mathcal{M}/\mathcal{M}_-$ induced by T. Then

$$\sigma(T) \setminus \{0\} = \bigcup_{\mathcal{M} \in \mathcal{C}'} \sigma(T_\mathcal{M}) \setminus \{0\}.$$

Moreover, for each $\lambda \in \mathbb{C} \setminus \{0\}$ we have

$$m(T, \lambda) = \sum_{\mathcal{M} \in \mathcal{C}'} m(T_\mathcal{M}, \lambda).$$

Proof. In the case of a compact operator T the first equality is proved in [12, Theorem 7.2.7], while the second equality follows from the theorem
Theorem 2.2. Let A and B be bounded operators on a Banach space. If AB is power-compact, then BA is power-compact and

$$m(AB, \lambda) = m(BA, \lambda)$$

for each $\lambda \in \mathbb{C} \setminus \{0\}$.

The following theorem is a consequence of [9, Theorem 4.3]; see a recent paper [7, Theorem 0.1] which also contains the easily proved proposition [7, Proposition 0.2] that a positive operator is ideal-irreducible if and only if it is semi non-supporting (the notion used in [9]).

Theorem 2.3. Let S and T be positive operators on a Banach lattice E such that $S \leq T$ and $r(S) = r(T)$. If T is an ideal-irreducible power-compact operator, then $S = T$.

3. Results

The main result of this note is the following extension of Theorem 1.1 (and [3, Theorem 2.4] as well).

Theorem 3.1. Let A and B be bounded operators on a Banach lattice E such that $AB \geq BA \geq 0$ and AB is a power-compact operator. Then the commutator $C = AB - BA$ is an ideal-triangularizable quasi-nilpotent operator.

Proof. Let \mathcal{C} be a chain (of closed ideals) that is maximal in the lattice of all closed ideals invariant under AB. By maximality, this chain is complete. Let \mathcal{C}' be a subchain of all subspaces $\mathcal{M} \in \mathcal{C}$ such that $\mathcal{M}_\perp \neq \mathcal{M}$. Since $AB \geq BA \geq 0$ and $AB \geq C \geq 0$, every member of \mathcal{C} is also invariant under the operators BA and C, and these operators are power-compact operators by the Aliprantis-Burkinshaw theorem [2, Theorem 5.14]. For any ideal $\mathcal{M} \in \mathcal{C}'$, $r((AB)_{\mathcal{M}}) \geq r((BA)_{\mathcal{M}})$, since $(AB)_{\mathcal{M}} \geq (BA)_{\mathcal{M}} \geq 0$. We will prove that $r((AB)_{\mathcal{M}}) = r((BA)_{\mathcal{M}})$ for every ideal $\mathcal{M} \in \mathcal{C}'$, and so $(AB)_{\mathcal{M}} = (BA)_{\mathcal{M}}$ by Theorem 2.3.
Assume there are ideals $M \in C'$ such that $r((AB)_M) > r((BA)_M)$. Among them choose $M_0 \in C'$ for which $\lambda_0 := r((AB)_M)$ is maximal. Such an ideal exists, because for each $\epsilon > 0$ there are only finitely many eigenvalues of AB with the absolute value at least ϵ. For each ideal $M \in C'$ with $r((AB)_M) > \lambda_0$, we must have $r((AB)_M) = r((BA)_M)$, and so $(AB)_M = (BA)_M$ by Theorem 2.3. The same conclusion holds in the case when $r((AB)_M) = r((BA)_M) = \lambda_0$. If $\lambda_0 = r((AB)_M) > r((BA)_M)$, then

$$m((AB)_M, \lambda_0) > 0 = m((BA)_M, \lambda_0).$$

If $r((AB)_M) < \lambda_0$, then

$$m((AB)_M, \lambda_0) = 0 = m((BA)_M, \lambda_0).$$

In view of Theorem 2.1 we now conclude that $m(AB, \lambda_0) > m(BA, \lambda_0)$. However, by Theorem 2.2 we have $m(AB, \lambda_0) = m(BA, \lambda_0)$. This contradiction shows that, for each $M \in C'$, $(AB)_M = (BA)_M$ and so $C_M = (AB)_M - (BA)_M = 0$. By Theorem 2.1, we conclude that C is quasi-nilpotent.

Finally, it is a simple consequence (see e.g. [5, Theorem 1.3]) of the well-known de Pagter’s theorem (see [1, Theorem 9.19] or [10]) that C has a triangularizing chain of closed ideals of E. In fact, we can simply complete the chain C to a triangularizing chain of closed ideals for the operator C. □

As a corollary we obtain the answer to an open question posed in [3, Open questions 3.7 (1)].

Corollary 3.2. Let A and B be positive operators on a Banach lattice E such that the commutator $C = AB - BA$ is a positive operator. If one of the operators A and B is power-compact (in particular, compact), then the commutator C is an ideal-triangularizable quasi-nilpotent operator.

Proof. By a simple induction, we have $0 \leq (AB)^n \leq A^n B^n$ for every $n \in \mathbb{N}$. Assume now that for $n \in \mathbb{N}$ one of the operators A^n and B^n is compact, so that the operator $A^n B^n$ is compact. Then the operator $(AB)^m$ is also compact by the Aliprantis-Burkinshaw theorem [2, Theorem 5.14]. Therefore, Theorem 3.1 can be applied. □

It should be noted that a recent preprint [6, Theorem 4.5] gives an independent proof of Corollary 3.2 in the case when one of the operators A and B is compact.

Acknowledgements. This research was partly supported by the Slovenian Research Agency.
References

[1] Y. A. Abramovich, C. D. Aliprantis, *An invitation to operator theory*, American Mathematical Society, Providence, 2002.

[2] C. D. Aliprantis, O. Burkinshaw, *Positive operators*, Reprint of the 1985 original, Springer, Dordrecht, 2006.

[3] J. Bračič, R. Drnovšek, Y. B. Farforovskaya, E. L. Rabkin, J. Zemánek, *On positive commutators*, Positivity 14 (2010), 431–439.

[4] R. Drnovšek, *Triangularizing semigroups of positive operators on an atomic normed Riesz space*, Proc. Edinburgh Math. Soc. 43 (2000), 43–55.

[5] R. Drnovšek, M. Kandić, *More on positive commutators*, J. Math. Anal. Appl. 373 (2011), 580–584.

[6] N. Gao, *On commuting and semi-commuting positive operators*, preprint, arXiv:1208.3495 [math.FA].

[7] D. W. Hadwin, A. K. Kitover, M. Orhon, *Strong monotonicity of spectral radius of positive operators*, preprint, arXiv:1205.5583v1 [math.FA].

[8] M. Konvalinka, *Triangularizability of polynomially compact operators*, Integral Equations Operator Theory 52 (2005), 271–284.

[9] I. Marek, *Frobenius theory of positive operators: Comparison theorems and applications*, SIAM J. Appl. Math. 19 (1970), 607–628.

[10] B. de Pagter, *Irreducible compact operators*, Math. Z. 192 (1986), 149–153.

[11] A. Pietsch, *Eigenvalues and s-numbers*, Cambr. Univ. Press, 1987.

[12] H. Radjavi, P. Rosenthal, *Simultaneous Triangularization*. Springer-Verlag, New York, 2000.

Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

E-mail address: roman.drnovsek@fmf.uni-lj.si