Hyperfine-structure-resolved laser spectroscopy of many-electron highly charged ions

Naoki Kimura, Priti, Yasutaka Kono, Pativate Pipatpakorn, Keigo Soutome, Naoki Numadate, Susumu Kuma, Toshiyuki Azuma, & Nobuyuki Nakamura

Hyperfine structures of highly charged ions (HCIs) are favourable spectroscopic targets for exploring fundamental physics along with nuclear properties. Recent proposals of HCI atomic clocks highlight their importance, especially for many-electron HCIs, and they have been theoretically investigated by refining atomic-structure calculations. However, developments in hyperfine spectroscopy of many-electron HCIs have not proceeded due to experimental difficulty. Here, we demonstrate hyperfine-structure-resolved laser spectroscopy of HCIs in an electron beam ion trap plasma, employing the magnetic-dipole transition in the 4d⁶5s state of ¹²⁷I⁷⁺. Ion-state manipulation by controlled electron collisions in the well-defined laboratory plasma enables laser-induced fluorescence spectroscopy of trapped HCIs. The observed spectrum of evaporatively cooled ions under low magnetic fields shows characteristic features reflecting the hyperfine structures. The present demonstration using combined optical and plasma approaches provides a benchmark for state-of-the-art atomic calculations of hyperfine structures in many-electron HCIs, and offers possibilities for a variety of unexploited experiments.
Nuclear electron interactions induce particularly small splitting in atomic energy levels, defined as hyperfine structure. Spectroscopically investigating hyperfine structures reveals highly valuable information related to nuclear properties and atomic structures. Extension of the spectroscopic target, from the usually studied neutral atoms or singly charged ions to highly charged ions (HCIs), represents an excellent approach to enhance hyperfine interactions owing to contracted electron clouds. Spectroscopic measurements of hyperfine structures in few-electron HCIs, such as H-, He-, Li-, and Be-like ions, have been widely performed by taking advantage of their large hyperfine splittings. They have successfully contributed to tests of relativistic and quantum electrodynamics (QED) atomic theories as well as investigations of nuclear properties.

In contrast to few-electron HCIs, hyperfine spectroscopy of many-electron HCIs provides distinctive examples to gain a deeper understanding about complex relativistic electron correlations. Nevertheless, this implicates considerable experimental challenges as high spectral resolution (i.e., better than their slightly enhanced hyperfine structure) is required. Such HCIs have recently attracted much attention, triggered by proposals for their application in high-precision atomic clocks. HCI clocks are expected to be a highly sensitive probe for time variations of the fundamental constants for testing modern physical theories beyond the Standard Model. They demonstrated a CW-laser-induced fluorescence (LIF) spectroscopy of HCIs using Ar$^{13+}$, and their transition wavelengths have been experimentally investigated.

Here, we study the hyperfine structures in the 4$d_{5/2}^{9}5$s metastable states of Pd-like 127I$^{+}$ using laser-induced fluorescence (LIF) spectroscopy. Historically, LIF spectroscopy of trapped HCIs free from systematic Doppler shifts was pioneered by Hosaka et al. They demonstrated a CW-laser-induced fluorescence spectroscopy of the electric-dipole (E1)-allowed transition 2s-2$p_{3/2}$ of H-like ions in an electron beam ion trap (EBIT) plasma by monitoring the enhancement of the Lyman-α emission. In the past decade, resonant laser spectroscopy (RLS) of forbidden transitions using a combination of pulsed laser and time-resolved fluorescence detection has investigated the simple doublet fine-structure splittings in Ar$^{13+}$ (see ref. 46) and Fe$^{3+}$ (see ref. 47) under a strong magnetic field without an electron beam. In this paper, we demonstrate time-resolved LIF spectroscopy of HCIs in an EBIT using E1-forbidden transitions both for laser excitation and fluorescence detection. High-resolution spectroscopy of the transition between highly excited metastable states is achieved with the aid of excitation processes in the EBIT plasma. A similar experimental scheme was proposed for 3$d_{5/2}^4$s in Ni-like HCI; however, this has not yet been demonstrated. It is worth emphasizing that we operate the EBIT with a low magnetic field condition to suppress the Zeeman splitting and employ the evaporative cooling technique for reduction of the Doppler line broadening, leading to clear observation of the hyperfine splitting.

Results

Concept of the plasma-assisted laser spectroscopy. In the present experiment, we prepare the $(4d_{5/2}^{9}5s)_{J=3}$ metastable state of 127I$^{+}$ in an EBIT and irradiate the trapped HCI with a pulsed laser, as shown in Fig. 1a. Figure 1b shows the experimental scheme used with the level structure of 127I$^{+}$. Due to the closed 4d^{10} shell structure in the ground state, the excitation energy to the first excited fine-structure level $(4d_{5/2}^{9}5s)_{J=3}$ is relatively high at ~47 eV. Although such high-energy states are generally de-excited in a short time, the lifetimes for every hyperfine level in $(4d_{5/2}^{9}5s)_{J=3}$ are longer than 10 s because their de-excitation processes are strongly forbidden, except for M3 and hyperfine-mixing E2 transitions. From the long-lived fine-structure level, the extreme ultraviolet (EUV) electric-quadrupole (E2) transition $(4d_{5/2}^{9}5s)_{J=2} \rightarrow (4d_{5/2}^{9}5s)_{J=0}$ was induced by pulsed laser excitation via the M1 transition $(4d_{5/2}^{9}5s)_{J=3} \rightarrow (4d_{5/2}^{9}5p)_{J=2}$. Both the initial and excited levels in the laser excitation are metastable states without any E1 decay path; thus, the natural width of the transitions is estimated to be 10^{-5} cm$^{-1}$ (1 cm$^{-1}$ = 2.99792 × 1010 Hz) from the theoretical 4 μs lifetime of the upper fine-structure level $(4d_{5/2}^{9}5s)_{J=2}$. The intrinsically narrow natural width of the laser transitions contributes to the high resolution in spectroscopic measurements, revealing the hyperfine structure.

The long-lived state $(4d_{5/2}^{9}5p)_{J=3}$ of 127I$^{+}$ was continuously prepared through collisional and radiative processes in the EBIT plasma. Although increasing the number of trapped ions necessitates an enhanced electron density of the plasma, electron collisions must be suppressed to detect LIF emissions from the laser-excited fine-structure level with a lifetime of the order of microseconds. We controllably maintained the EBIT electron density below 1010 cm$^{-3}$, where the total collisional excitation and de-excitation rate out of the $(4d_{5/2}^{9}5p)_{J=2}$ level was approximately 103 s$^{-1}$ (see ref. 49). The production rate of $(4d_{5/2}^{9}5s)_{J=3}$ under an electron density of 1010 cm$^{-3}$ was estimated to be ~160 s$^{-1}$ from collisional-radiative modeling.

Thus, the excitation rate by the pulsed laser was operated at less than 1 s$^{-1}$ to avoid depletion of the population in the initial state $(4d_{5/2}^{9}5s)_{J=3}$. This well-designed closed transition cycle, including the plasma processes, maintains the sequential LIF detection, suppressing the unintended population loss for the initial and excited levels in the laser excitation. We emphasize that the well-defined laboratory plasma and its control along with a deep understanding of the excitation and de-excitation dynamics through collisional-radiative modeling allow us to detect the LIF, even though the ions are in plasma.

The hyperfine splitting for each fine-structure level is given by the magnetic-dipole hyperfine-structure constant A_{fi}, the electric-quadrupole hyperfine-structure constant B_{fi}, and the quantum numbers J, F, and I. A_{fi} and B_{fi} are relevant values to the atomic structure and the nuclear moments. The nuclear properties of 127I, the only stable isotope of iodine, have been well investigated; however, this has not yet been demonstrated. It is worth emphasizing that we operate the EBIT with a low magnetic field condition to suppress the Zeeman splitting and employ the evaporative cooling technique for reduction of the Doppler line broadening, leading to clear observation of the hyperfine splitting.
Prediction of the spectral profile. The hyperfine structures split the laser transition into 14 components, considering the selection rules for M_1 transitions ($\Delta F = \pm 1, 0$). Spectral simulations were performed to predict the features of the laser excitation spectrum, including hyperfine structures. Figure 2a shows the statistical weight of the initial state with the wavenumber deviation Δk corresponding to the difference from the original transition energy without the hyperfine structures. Figure 2b shows the spectral intensity gA, which is the sum of Einstein A coefficients of the $\Delta M_F = 0$ transitions for every magnetic sub-level. We also calculated the Zeeman splitting using the intermediate magnetic field treatment, as shown in Fig. 2c. Equations and atomic codes

Fig. 1 Schematic diagram of the present laser spectroscopy. a Brief overview of the present laser-induced fluorescence (LIF) spectroscopy with the schematic trap region and ions. b Experimental scheme with the energy diagram of 127I$^7^+$. The population rate of $(4d^95s)_J=3$ ($1/\tau_{\text{population}}$) was estimated, using collisional-radiative modeling. $\tau_{\text{coll}}, \tau_{\text{E2}},$ and τ_{laser} are depopulation lifetimes by electron collision, electric-quadrupole ($E2$) radiative decay, and laser-induced magnetic-dipole ($M1$) excitation, respectively. An electron energy of 105 eV and a density of 10^{10} cm$^{-3}$ are assumed in the collisional-radiative rates, corresponding to the present experimental condition. The energy structure and lifetime were calculated using GRASP2018.
are summarized in “Methods”. According to the simulation, the M1 transition lines are distributed over several cm⁻¹, and the spectral features under low magnetic field conditions have an asymmetric profile because of their specific quantum numbers and the intrinsic difference in the Racah coefficients between these transitions. At high magnetic fields above 0.5 T, such as that in a typical EBIT, magnetic sub-level-resolved transitions spread over a wide Δk range, which hinders the experimental assignment of hyperfine components. To overcome this difficulty, we employed the low magnetic field operation (0.03 T) of a compact electron beam ion trap (CoBIT) at the University of Electro-Communications. Although this magnetic field is not classified as the weak-field limit, it is sufficiently low enough to suppress the Zeeman splitting below 0.05 cm⁻¹. The asymmetries of these splittings are less than 0.01 cm⁻¹. This quasi-Zeeman-free condition enables us to resolve the hyperfine structures.

In the present experiment, line broadening is expected to be dominated by the Doppler effect due to ion motion in the EBIT, since the Zeeman splitting, laser linewidth, and natural width of the transition are all less than 0.05 cm⁻¹. Figure 2d shows the spectral broadening simulation under the assumption of a Maxwellian distribution for the kinetic energies of the trapped ions in the EBIT. In the low-temperature region, the width of each transition line becomes narrow, and the associated features originating from the F = 7/2 → F' = 7/2 and F = 9/2 → F' = 9/2 transitions appear around 17,631–17,632 cm⁻¹. The simulation shows that the ions should be cooled below 20 eV to characterize the hyperfine structures and determine the spectroscopic parameters.

Measurement of the laser-induced fluorescence. Figure 3a shows the present experimental setup. From CH₃I vapor, ¹²⁷I⁺ ions were produced by an electron beam and stored in an electrostatic trap potential formed by the electron beam and three successive cylindrical drift-tube (DT) electrodes. To efficiently produce ¹²⁷I⁺ ions, the electron beam energy (105 eV) and current (2 mA) were experimentally determined by monitoring the emission intensity of the E2 transition ((4d⁹/₂25s)_{j=9} → (4d⁸/₂5p)_{j=0})⁴⁹. To excite the M1 transitions, we used a wavelength-tunable dye laser (Sirah Cobra-Stretch with the dual 3000 lines/mm grating option, Exciton Rhodamine 6G/Ethanol dye solution, 567 nm) pumped by the second harmonic of an Nd:YAG nanosecond-pulsed laser (Cutting Edge Optics Gigashot, 10 ns) with a 100 Hz repetition rate. The wavelength of the laser was monitored using a high-precision wavemeter (High Finesse, WS-6-600). The laser pulse energy was tuned and maintained at ~7 mJ/pulse by the combination of a λ/2 wave plate and polarizer. The polarization of the laser was perpendicular to the magnetic field so that only the ΔmF = 0 transitions were excited. LIF was monitored with a time-resolving extreme ultraviolet (EUV) spectrometer consisting of an aberration-corrected concave grating (Hitachi 001-0660) and a position-sensitive detector (PSD, Quantar Technology Inc., model 3391)³³. A typical ¹²⁷I⁺ emission spectrum obtained with the EUV spectrometer is shown in Fig. 3b. Owing to the large difference in wavelength, the LIF signal can be readily distinguished from the laser-scattering noise. The prominent line at 49 eV is the detection of LIF signal from the continuous emission induced by collisional and radiative processes in the plasma, the time spectrum of the E2 transition was recorded with a Multi-Channel-Scaler (MCS) as shown in Fig. 3c. The observed lifetime of the LIF signal was ~4 µs, which agrees with our theoretical calculation.

LIF spectrum and its analysis. Figure 4 shows the laser wavelength spectrum of the LIF signal. It took a few hours to...
The hyperfine spectrum was fitted with a model function incorporating all hyperfine-resolved transitions with the same Doppler width k_D. The model function is described in "Methods". The center of the transition energy for each line is determined by the original transition energy k_0 for the fine-structure transition and the hyperfine-structure constants for each of the initial and excited fine-structure levels. The relative line intensity for each transition was defined by the simulation in Fig. 2b. Consequently, the seven parameters $A_{hfs}, B_{hfs}, A'_{hfs}, B'_{hfs}, k_0, k_{2h}$, and total spectral intensity I_0 were determined in the fitting procedure, where the primed quantities refer to the excited fine-structure level. Note that theoretically calculated Einstein A coefficients were used to determine the simulated intensities. The intensity model mainly depends on the Racah coefficients, whereas the actual intensity is slightly different because of the hyperfine mixing with other fine-structure levels. We theoretically evaluated the hyperfine-mixing effect on the transition intensities and found that this contribution is less than 0.05 s$^{-1}$ for every Einstein A coefficient. This uncertainty in the model function affects the determination of the experimental values by less than 1 % of the experimental uncertainty and is thus considered insignificant. The statistical population in the intensity model may also be disturbed by the lifetime difference between hyperfine levels65. However, in the case of 127I$^+$, it is not necessary to consider such possibilities because the radiative decay rates are at least 10^7 times longer than the collisional-radiative rate supplying the population to the metastable fine-structure level; hence, the populations are not quenched by spontaneous decay to the ground state. Thus, we consider the intensity model used here to be reasonable for determining the constants. The fitted profiles for each hyperfine component and their convolution are shown in Fig. 4. The obtained parameters are listed in Table 1 along with the theoretical values calculated by the GRASP code taking the Breit and quantum electrodynamic (QED) effects into account. The reduced-chi-square in the fitting was 1.1. From the laser wavelength stability during the measurement, the systematic errors for the hyperfine-structure constants were estimated to be 0.3 GHz. The systematic error of k_0 is 0.03 cm$^{-1}$ taking the absolute accuracy of the wavemeter into account. The resulting k_0 is 0.46 ± 0.04 cm$^{-1}$ corresponding to an ion temperature of 15 ± 2 eV under the assumption that Doppler broadening dominates in the spectral linewidth. The shallow trapping potential formed by the zero DT voltage and the thin electron density with a low magnetic field enabled the trapped ions to be evaporatively cooled down to temperatures similar to those found in forced evaporative cooling by turning off the electron beam46. The narrow Doppler width realized in the present measurement is essentially important for resolving the hyperfine splitting.

Because the nuclear spin and moments of 127I are well-known50, the experimentally obtained hyperfine-structure constants are used to validate the theoretical calculation of the electron orbital for each fine-structure level. Experimental results obtained here show reasonable agreement with theoretical values, considering the

![Fig. 3 Overview of the LIF detection setup. a Schematic of the experimental setup consisting of the electron beam ion trap (EBIT) with a time-resolved laser-induced fluorescence (LIF) detection system. FG, DG, MCS, and PSD represent a Function Generator, Delay Generator, Multi-Channel-Scaler, and Position-Sensitive detector, respectively. b Typical EUV emission spectrum. c Time-resolved signal for the laser-induced E2 transition fluorescence.](image)

![Fig. 4 Experimental LIF spectrum. The fitting result (black line) is shown with separated profiles (blue, green, and orange lines) for every transition. The error bar for each experimental data point (red diamond) represents the statistical error.](image)
uncertainties. The transition energy k_0 obtained by the experiment agrees with the theoretical calculation within $\pm0.1\%$. The Breit interaction shifts the transition energy by 2%, which is important to reproduce the experimental result. The energy of each fine-structure level has been compiled in the NIST database from several experimental results using passive spectroscopy, and the uncertainty was evaluated to be 100 cm^{-1}. In the present study, we clearly demonstrate that our active spectroscopic approach succeeded in directly measuring the transition energy and greatly reducing its uncertainty. This clarified the importance of the relativistic configuration-interaction (RCI) correction for the Breit interaction.

Discussion

We have demonstrated laser spectroscopy of forbidden transitions between metastable states of HCl ions stored in an EBIT by employing Pd-like 127I$^+$. The laser excitation spectrum of the HCl in a quasi-Zeeman-free low magnetic field revealed distinct hyperfine structures, which provided evidence for the enhancement of the hyperfine interaction via a contracted electron cloud with a 5s valence electron. The resulting hyperfine-structure constants of highly charged ions with a well-known nucleus provide a benchmark for atomic orbital calculations with relativistic many-electron correlations, allowing for discussion of the electron cloud in the vicinity of the nucleus for each fine-structure level. Even though the transition observed in this study is not a proposed HCI clock candidate, the building of a benchmark to understand hyperfine structures in many-electron HCl ions makes a significant step toward developing such clocks, considering especially that the currently most promising clock candidates with a 5s-4f level crossing are intrinsically accompanied by a similar characteristic electron configuration having a single 5s electron. The established benchmarks would serve as a reference to enhance the understanding of the hyperfine interaction in many-electron HCl ions.

The present hyperfine-structure-resolved laser spectroscopy offers future possibilities for experimental studies in nuclear physics using HCl ions, such as a broad investigation of unknown nuclear spins and moments and hyperfine anomalies with a specialized EBIT for highly charged radionuclides recently. High-precision atomic orbital calculations have been extensively developed to investigate nuclear properties from hyperfine-structure constants. This approach had the privilege for particular nuclei with optically accessible transitions to include non-luminescent transitions with the present laser spectroscopy scheme is also possible. The laser spectroscopy of 3d55s2 transitions in Ni-like ions has already been proposed, and their transition wavelengths have been systematically investigated by theoretical calculations. Here, we follow the systematic study to discuss the versatility of the present laser spectroscopy. Figure 5 shows the atomic number dependence of the transition energies theoretically calculated by the FAC methods, along with optical E1 transition energies of Ag-like ions for comparison. In the Z $>$ 60 region, Pd-like ions are not shown because they are not suitable for the present laser spectroscopy since the (4d95s2) ground state is not metastable due to the 4d95s2-4d44f level crossing. In contrast to the typical electronic E1 transitions, these transitions with a number of inner-shell electrons show a gradual increase in the transition energy with increasing atomic number. As a result, most regions where Z $>$ 30, transitions in either Pd- or Ni-like ions are available for laser excitation.

The present demonstration achieved precise determination of the transition energy with an uncertainty of $\Delta k_0/k_0 < 3 \times 10^{-6}$ for the M1 transition, which is inaccessible by emission spectroscopy due to the rapid E2 decay path from the upper fine-structure level. From a technical perspective, we have succeeded in extending precision spectroscopy for trapped HCl ions from spontaneously emitted transitions to include non-luminescent transitions, providing a wider variety of spectroscopic targets. This offers various opportunities, including the investigation of HCI clock candidates. Prospects of the HCI atomic clock have also spurred developments in HCI laser spectroscopy with part-per-million uncertainties. Several laser spectroscopic methods for forbidden transitions of trapped HCl ions from systematic Doppler shifts have been reported. These demonstrations employed a simple fine-structure transition in the doublet ground term of Al$^{13+}$, whose transition energy is precisely known from direct wavelength measurements using passive spectroscopy, leading to recent quantum logic spectroscopy. However, many potential candidates for the HCI atomic clock are not directly accessible using such passive spectroscopy because they possess complicated level structures with hyperfine splitting, and their clock transitions do not emit in plasmas owing to their long lifetime. Therefore, the extension of laser spectroscopy of HCl to complex systems is an important challenge to overcome. The present scheme can be applied to investigate the repump transitions and measure the hyperfine-structure constants of a clock state, which are otherwise not accessible using passive spectroscopic methods.

Finally, we discuss the possibilities of other applications using the present spectroscopic technique. The time-resolved LIF detection technique can be applied to hyperfine-level-selective lifetime measurements without cascade contributions from higher levels, leading to deeper investigations of hyperfine interaction.

Table 1 Summary of the experimental and theoretical values for (4d95s2)J\rightarrow3 and (4d95s2)J\rightarrow2 in 127I$^+$.

Experiment	Theory	MCDF	Breit	QED	
A_{α} [GHz]	10.3 ($\pm 0.3_{\text{stat}} \pm 0.3_{\text{syst}}$)	10.39 (± 0.05)	10.41	-1.7×10^{-2}	$+3.3 \times 10^{-3}$
B_{α} [GHz]	2.9 ($\pm 1.8_{\text{stat}} \pm 0.3_{\text{syst}}$)	2.32 (± 0.02)	2.37	-4.2×10^{-2}	$+4.0 \times 10^{-4}$
A_{β} [GHz]	15.8 ($\pm 0.3_{\text{stat}} \pm 0.3_{\text{syst}}$)	15.33 (± 0.03)	15.45	-1.2×10^{-1}	$+7.5 \times 10^{-3}$
B_{β} [GHz]	1.5 ($\pm 1.4_{\text{stat}} \pm 0.3_{\text{syst}}$)	2.02 (± 0.01)	2.05	-2.8×10^{-2}	$+3.0 \times 10^{-4}$
k_0 [cm$^{-1}$]	17633.67 ($\pm 0.02_{\text{stat}} \pm 0.03_{\text{syst}}$)	17616 (± 2.2)	18016	-418	$+18$
The uncertainties in the transition energy were estimated as follows: The present of uncertainties in the theoretically calculated values due to various corrections. The present transition \((4d_{5/2}^0 5s)_{j=2} - (4d_{5/2}^0 5s)_{j>3}\) in \(^{127}\)I\(^+\) is highlighted by the star symbol. The purple-shaded region indicates wavelength ranges where it is generally difficult for lasers to reach (<200 nm).

Methods

Theoretical transition energy. The transition energy between the fine-structure levels in \(4d^55s^0\) is obtained in the framework of multi-configuration Dirac-Fock (MCDF) calculations, combined with the relativistic configuration-interaction (RCI) approach, using the atomic-structure calculation code package GRASP2018\(^{41}\). First, MCDF calculations were performed with an active space of single- and double-electron excitation from the 4s, 4p, and 4d orbitals up to 8g. Each nl orbital \((n = 5–8, l = s, p, d, f, g)\) is added individually, with each outer orbital optimized while keeping all inner orbitals fixed. Furthermore, to account for core–core and core–valence correlations with the inner orbitals, excitations from the 3f \((l = s, p, d)\) orbitals were also included. This active space treatment led to \(3,300,000\) \(jj\)-coupled configurations. Moreover, corrections from the Breit interaction, that is, transverse photon interaction in the low-frequency limit, and QED corrections separating the self-energy and vacuum polarization corrections, are included in the RCI calculation.

Theoretical hyperfine-structure constants. Using the GRASP2018 code, we calculated the magnetic-dipole hyperfine-structure constant \(A_{\mu B}\) and electric-quadrupole hyperfine-structure constant \(B_{\mu B}\) for each fine-structure level \((4d_{5/2}^0 5s)_{J=2}\) and \((4d_{3/2}^0 5s)_{J=2}\). For the input values, the nuclear magnetic moment \(\mu_N\) and nuclear electric-quadrupole moment \(Q\) were taken from ref.\(^{40}\). GRASP2018 also provides hyperfine-structure splitting calculations taking hyperfine mixing with other fine-structure levels into account. We compared two calculation cases, i.e., with and without considering shifts due to hyperfine mixing. It was found that the resulting shift in energy for each hyperfine level would be unobservable in the experiment. Each correction for the hyperfine-structure constants was also evaluated using the same procedure as for the transition energy calculation.

Estimation of uncertainties for the theoretical values. There are several origins of uncertainties in the theoretically calculated values due to various corrections. The uncertainties in the transition energy were estimated as follows: The present MCDF-CI calculations involve valence–valence (VV), core–valence (CV), and core–core (CC) correlations. They are considered by including configurations generated from all single- and double-excitations from the 3s, 3p, 3d, 4s, 4p, 4d, and 5s orbitals to the active spaces (AS) of virtual orbitals. Here we define four virtual orbital sets as follows: AS1 = \{5p, 5d, 5f, 5g\}, AS2 = AS1 + \{6s, 6p, 6d, 6f, 6g\}, AS3 = AS2 + \{7s, 7p, 7d, 7f, 7g, 7h\}, and AS4 = AS3 + \{8s, 8p, 8d, 8f, 8g, 8h\}. We estimated the convergence with the size of the basis set by taking the difference between the transition energies calculated in the AS3 and AS4 stages (\(\pm 22\) cm\(^{-1}\)). The calculated transition energies are summarized in Supplementary Table I. The detail of the corrections in the full active space set (AS4) calculation result is shown in Supplementary Table II. We adopted this value for the uncertainty in the electron correlation calculation because additional correlations were not expected to exceed this convergence value even when considering more virtual orbitals. Another possible source of uncertainty is related to the calculated contribution from the Breit interaction. The corresponding correction value was perturbatively computed in the RCI calculation through the exchange of a single transverse photon in the low-frequency limit\(^{41,42}\). Comparing the Breit contributions obtained from the perturbative approach to calculations in which the Breit term is included in a variational SCF process allows us to estimate the uncertainty due to the perturbative approach\(^{49,70}\). Previous studies have found that the magnitude of this effect is less than 0.3% in the Ni-like case (among others)\(^{69,70}\) and that it is significantly reduced when the active space is expanded. Here, we assume the maximum error owing to the perturbative treatment and adopt a 0.5% uncertainty related to the Breit correction. The resulting uncertainty is 2 cm\(^{-1}\). The QED contributions were smaller than the uncertainties related to correlation effects. Thus, the resulting uncertainty associated with these terms was negligible. The uncertainty in the Dirac-Fock term is caused by the uncertainty in the root-mean-square of the nuclear radius, which is insignificant for \(^{127}\)I\(^+\) (\(\pm 0.008\) fm\(^{-1}\)). The total uncertainty was calculated by applying the error propagation rule (quadratic summation) to individual sources of uncertainty. This yielded an uncertainty in the theoretical transition energy of 22 cm\(^{-1}\). This uncertainty is strongly dominated by the electron correlation. We also estimated the uncertainty for each \(A_{\mu B}\) and \(B_{\mu B}\) constant by employing the same procedure adopted for the transition energy.

Simulation of the Zeeman splitting. The Zeeman splitting for each hyperfine level was calculated using the HFZSEEMAN95 package\(^{52,77}\), which is based on inputs from GRASP2018\(^{41}\). This calculation employs an accurate treatment of the intermediate-field regime; therefore, the calculated splittings are reliable for a wide range of magnetic fields. Figure 2c shows the differences in the Zeeman splitting between the initial and excited levels of the laser transition.

Simulation of the transition intensities. The hyperfine-structure-resolved Einstein \(A\) coefficients were obtained by the summation of the Einstein \(A\) coefficients for every \(\Delta m_F\) = 0 transition at each initial hyperfine-structure level. The transition rate for an \(M1\) transition between magnetic hyperfine-sublevels \(m_{F_i}\) and \(m_{F_f}\) is given by

\[
A(\Gamma m_{F_i} \rightarrow \Gamma m_{F_f}) = \frac{2.69735 \times 10^{13}}{\lambda} \sum_{j} |\langle \Gamma m_{F_f} | \hat{M}^{(1)} | \Gamma m_{F_i} \rangle|^2,
\]

where \(\hat{M}^{(1)}\) is the magnetic-dipole operator, and \(\lambda\) is the transition wavelength (in Å). Using the wavefunction expansion of the magnetic hyperfine substates,

\[
|\Gamma m_{F_i} > = \sum_{j} d_{j,i} |j\rangle |\Gamma m_{F_i} >
\]

Fig. 5 Potential of the present laser spectroscopy for studying heavy nuclei. Atomic number (Z) dependence of the theoretical transition energies in Pd-like (red) and Ni-like (blue) ions, along with the transition energies of the \(E1\) transition \(5s-5p_{1/2}\) in Ag-like ions (orange) for comparison. The present transition \((4d_{5/2}^0 5s)_{j=2} - (4d_{5/2}^0 5s)_{j>3}\) in \(^{127}\)I\(^+\) is highlighted by the star symbol. The purple-shaded region indicates wavelength ranges where it is generally difficult for lasers to reach (<200 nm).
together with the Wigner–Eckart theorem (the dipole operator only acts on the electronic space, so we may decouple the nuclear and electronic parts in the reduced matrix element), Eq. (1) can be re-written as

\[
A(\gamma F' \rightarrow \Gamma m_F) = \frac{2.69735 \times 10^{14}}{\lambda^3} \sum_q \sum_{j_F} \sum_{j_{F'}} d_{jF} d_{j'F'} \sqrt{(2F+1)(2F'+1)} e^{-m_q} \\
\left(F \choose \gamma \right) \left(F' \choose \gamma \right) \left(-1 \right)^{F+F'+\frac{1}{2}}.
\]

(3)

Here, \(d_{jF}\) are the expansion coefficients, and \(\left| \gamma \right|\) is the reduced transition matrix element between the fine-structure levels. The A coefficients for all \(M_1\) transitions were calculated using the HFSZEMAN95 package. \(^{22}\) Finally, we sum the Einstein A coefficients for the \(\Delta m_F = 0\) transitions of every \(m_F\) sub-level and obtained the transition intensities \(g_\gamma\) of the \(M_1\) transitions, as shown in Fig. 2b.

Fitting model. We determined the hyperfine-structure constants \(A_{d_0}, B_{d_0}, A_{d_{1s}}, B_{d_{1s}}\) and the fine-structure transition wavenumber \(\nu_0\) using the following model equation to fit experimental data:

\[
f(k) = k_0 \sum_{jF} \frac{C_{jF} C + B_{jF} B}{2 l(l-1)} \exp\left(\frac{4(2k - (k_0 + k_{jF}))}{k_p^2}\right).
\]

(4)

Here, it is assumed that each line profile is defined by a Gaussian function with the same linewidth because the hyperfine splitting energies are significantly smaller than the fine-structure transition energy, \(k_p\) represents the full-width at half maximum (FWHM) of the transition line profiles. For \(g_{jF}\), we employed theoretically calculated results for the relative transition intensities, as described in the previous section. \(k_0\) is the original transition energy between the fine-structure levels \((4d_{1s}^0 S_{1s})_{3/2} - (4d_{1s}^1 S_{1s})_{5/2}\), \(k_{jF}\) is the hyperfine-structure shift for each transition given by \(k_{jF} = k_p - k_0\).

\[
k_{jF} = k_p - k_0.\]

(5)

\(k_p\) and \(k_0\) are hyperfine-structure shifts from the original level for \((4d_{1s}^0 S_{1s})_{3/2}\) and \((4d_{1s}^1 S_{1s})_{5/2}\), respectively. The hyperfine splitting at each fine-structure level is given by

\[
k_{jF} = \frac{1}{2} A_{jF} C + B_{jF} B \frac{C(C+1) - l(l+1)(l'+1)}{2l(l-1)(l'+1)}\]

(6)

and

\[
k_{jF} = \frac{1}{2} A_{jF} C + B_{jF} B \frac{C(C+1) - l(l+1)(l'+1)}{2l(l-1)(l'+1)}\]

(7)

Here, \(C = F(F+1) - l(l+1) - 1(l+1)\)

(8)

and

\(C = F(F+1) - l(l+1) - 1(l+1)\)

(9)

Under the assumption of a Maxwellian distribution, the equation for the ion temperature and spectral linewidth is given by:

\[
T = \frac{M c}{8 k_B n_2} \frac{k_0}{k_0} \frac{1}{k_0} \frac{1}{k_0},
\]

(10)

where \(M, c, k_0\) are the particle mass, speed of light, and Boltzmann constant, respectively. Equation (10) can be re-written as:

\[
k_0 = \sqrt{\frac{8 T k_B n_2 k_0}{M c}}.
\]

(11)

Equations (11) and (4) provide theoretical spectra.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The FAC is available at https://www-amdis.iaea.org/FAC, the GRASP2018 code at https://www-amdis.iaea.org/GRASP2IK, and the HFSZEMAN95 code at https://doi.org/10.17632/rv2vs27pg.1.
27. Dzuba, V. A. & Flambaum, V. V. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transition 228Th. Phys. Rev. A, 93, 052517 (2016).
28. Nandy, D. K. & Sahoo, B. K. Highly charged We$^{13+}$, Ir$^{16+}$, and Pt$^{17+}$ ions as promising optical clock candidates for probing variations of the fine-structure constant. Phys. Rev. A, 94, 032504 (2016).
29. Cheung, C. et al. Accurate prediction of clock transitions in a highly charged ion with complex electronic structure. Phys. Rev. Lett. 122, 163201 (2018).
30. Beloy, K., Dzuba, V. A. & Brewer, S. M. Quadruply ionized barium as a candidate for a high-accuracy optical clock. Phys. Rev. Lett. 125, 173002 (2020).
31. Yu, Yan-mei & Sahoo, B. K. Investigating ground-state fine-structure properties to explore suitability of boronlike S$^{17+}$-K$^{14+}$ and galliumlike Nb$^{46+}$-Ru$^{43+}$ ions as possible atomic clocks. Phys. Rev. A, 99, 022513 (2019).
32. Weidinger, A. et al. Identification of the predicted 5s-4f level crossing optical lines with applications to metrology and searches for the variation of fundamental constants. Phys. Rev. Lett. 114, 158001 (2015).
33. Bekker, H. et al. Detection of the 5p-4f orbital crossing and its optical clock transition in Pr$^{3+}$. Nat. Commun. 10, 5651 (2019).
34. Kimura, N. et al. Direct determination of the energy of the first excited fine-structure level in Be$^{8+}$. Phys. Rev. A, 100, 052508 (2019).
35. Liang, S.-Y. et al. Probing multiple electric-dipole-forbidden optical transitions in measurements of a magnetic octupole decay in isotopically pure nickel-58 ions with Z<86. Data Nucl. Data Tables 95, 786 (2009).
36. Egl, A. et al. Application of the continuous stern-Gerlach effect for laser spectroscopy of the 40Ar$^{34+}$-fine structure in a penning trap. Phys. Rev. Lett. 123, 123001 (2019).
37. Draganić, I. et al. High precision wavelength measurements of QED-sensitive forbidden transitions in highly charged argon ions. Phys. Rev. Lett. 91, 183001 (2003).
38. Soria Orts, R. et al. Exploring relativistic many-body recoil effects in highly charged ions. Phys. Rev. Lett. 97, 103002 (2006).
39. Yao, K. et al. M$_{\gamma}$-dependent lifetimes due to hyperfine induced interference effects. Phys. Rev. Lett. 97, 183001 (2006).
40. Chantler, C. T., Nguyen, T. V. B., Lowe, J. A. & Grant, I. P. Convergence of the Breit interaction in self-consistent and configuration-interaction approaches. Phys. Rev. A, 90, 062504 (2014).
41. Koziol, K. Breit and QED contributions in atomic structure calculations of tungsten ions. J. Quant. Spectrosc. Radiat. Transfer, 242, 106772 (2020).
42. Safronova, M. S., Safronova, U. I., Porsey, S. G., Kozlov, M. G. & Radchenko, Y. Relativistic all-order many-body calculations of energies, wavelengths, and M1 and E2 transition rates for the 3d9 configurations in tungsten ions. Phys. Rev. A, 97, 012502 (2018).
43. Angeli, I. & Marinova, K. P. Table of experimental nuclear ground state charge radii: an update. Data Nucl. Data Tables 99, 69 (2013).
44. Andersson, M. & Jönsson, P. HFSZEEMAN-A program for computing weak and intermediate magnetic-field and hyperfine-induced transition rates. Comput. Phys. Commun. 178, 156 (2008).
45. Li, W., Brage, T. & Jönsson, P. HFSzeeman95-A program for computing weak and intermediate magnetic-field- and hyperfine-induced transition rates. Comput. Phys. Commun. 253, 107211 (2020).

Acknowledgements
We would like to thank Dr. Haruka Tanji-Suzuki for providing an optical table. We also thank Dr. Michiharu Wada, Dr. Kunihito Okada, Dr. Takayuki Yamaguchi, and Dr. Kiattichart Chartchhand for fruitful discussions. This work was supported by the RIREN Pioneer Prospects and by the JSPS KAKENHI Grant Nos. 16H00018, 20K20110, and 22K13990.

Author contributions
N.K. conceived and initiated this work. N.K., S.K., T.A., and N. Nak. designed the experimental scheme and selected the target ion. N.K. and Priti carried out the LIF measurement using a compact EBIT device developed by N. Nak. Y.K., P. Pipi, K.S., and N. Num. provided support for the EBIT operation. The laser system was constructed by N.K. and S.K. The experimental data were analyzed by N.K. and Priti. The theoretical calculation was performed by Priti. N.K. prepared the initial manuscript assisted by Priti, S.K., T.A., and N. Nak. All authors discussed the result and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42005-023-01127-x.

Correspondence and requests for materials should be addressed to Nakis Kimura.

Peer review information Communication Physics thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
