The role of bile acids in carcinogenesis

Tadeja Režen1 · Damjana Rozman1 · Tünde Kovács2,3 · Patrik Kovács2 · Adrienn Sipos2 · Péter Bai2,3,4 · Edit Mikó2,3

Received: 28 December 2021 / Revised: 3 March 2022 / Accepted: 28 March 2022 / Published online: 16 April 2022
© The Author(s) 2022

Abstract
Bile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.

Keywords Bile acid · Primary bile acid · Secondary bile acid · Bile acid biosynthesis · Bile acid receptors · Bile acid transporters · Microbiome · CA · CDCA · DCA · LCA · UDCA · Carcinogenesis · TGR5 · S1PR2 · Muscarinic receptor CHRM2 · Muscarinic receptor CHRM3 · FXR · PXR · CAR · VDR · LXR · SHP · Oesophageal carcinoma · Gastric cancer · Hepatocellular carcinoma · Pancreatic adenocarcinoma · Colorectal carcinoma · Breast cancer · Prostate cancer · Ovarian cancer · Epithelial–mesenchymal transition · Oxidative stress · Warburg metabolism

Abbreviations
AKT Serine/threonine kinase 1
AMPK AMP-activated protein kinase
AP-1 Activator protein-1
APE1 Apurinic/apyrimidinic endodeoxyribonuclease 1
ATG5 Autophagy related 5
BA Bile acids
Bai Bile acid inducible operon
Bax Bcl-2-associated X protein
Bcl-2 B-cell lymphoma 2
BE Barrett’s esophagus

Edit Mikó
miko.edit@med.unideb.hu

1 Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
2 Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen 4032, Hungary
3 MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen 4032, Hungary
4 Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
Beclin-1/BECN1	Coiled-coil myosin-like	**FAS**	Fas Cell Surface Death Receptor
BIRC7/Livin	Baculoviral IAP repeat-containing protein 7	**FGF19**	Fibroblast growth factor 19
BSEP/ABCB11	ATP-dependent cassette transporter	**FGF15**	Fibroblast growth factor 15
BSH	Bile salt hydrolases	**FGFR4**	Fibroblast growth factor receptor 4
BRCA1	Breast cancer type 1 susceptibility protein	**FLK1/KDR**	Fetal liver kinase 1/ Kinase
CA	Cholic acid	**FXR/ NR1H4**	Farnesoid X receptor
CAR/NR1H3	Cyclic adenosine monophosphate	**FXREs**	FXR response elements
CHRM2/3	Constitutive androstane receptor	**GADD153**	Growth arrest- and DNA damage-inducible gene 153
CDCA	Chenodeoxycholic acid	**GBC**	Gallbladder cancer
CDX1/2	Caudal type homeobox 1/2	**GERD**	Gastroesophageal reflux disease
C/EBPα	CCAAT/enhancer-binding protein alpha	**GCDCA**	Glycochenodeoxycholic acid
CHRM2/3	Muscarinic receptor 2/3	**GCDA**	Glycochenodeoxychololate acid
C-Myc	Myc-related translation/ localization regulatory factor	**GCDC**	Glycocylcholic acid
COX2	Cyclooxygenase-2	**GDC**	Glycodeoxycholic acid
CRC	Colorectal carcinoma	**GLCA**	Glycolithocholic acid
CREB	CAMP response element-binding protein	**GPBAR1/TGR5**	G-protein-coupled bile acid receptor/
CSC	Cancer stem cells	**HCC**	Takeda-G-protein-receptor-5
CYP	Cytochrome P450	**HDCA**	Glycoursodeoxycholic acid
CYP7A1	Cholesterol 7α-hydroxylase	**HNF4α**	Hepatocellular carcinoma
CYP7B1	25-Hydroxycholesterol 7α-hydroxylase	**HSC**	Hepatic stellate cells
CYP8B1	Sterol 12α-hydroxylase	**I-BABP**	Intestinal BA-binding protein
CYP27A1	Sterol 27-hydroxylase	**IGFBP2**	Insulin-like growth factor binding protein 2
CYP3A4	Cytochrome P450 family 3 subfamily	**IKKβ/IKBKB**	Inhibitor Of Nuclear Factor kappa B Kinase Subunit Beta
DC	Deoxycholate	**IKB**	interleukin 1
DCA	Deoxycholic acid	**IL6**	interleukin 6
Dlc1	Deleted in Liver Cancer 1	**IL8/CXCL8**	interleukin 8
DNA-PK	DNA-dependent protein kinase	**iNOS**	inducible nitric oxide synthase
DR5	Death receptor 5	**JAK2**	Janus kinase 2
EAC	Oesophageal adenocarcinoma	**JNK**	C-Jun N-terminal kinase
EGF	Epidermal growth factor	**JUN**	Jun Proto-Oncogene AP-1
EGFR	Epithelial growth factor receptor	**KLF4**	Transcription Factor Subunit
EMT	Epithelial–mesenchymal transition	**LBD**	Kruppel Like Factor 4
EPHA2	EPH Receptor A2	**LCA**	Ligand-binding domain
ER	Estrogen receptor	**LCT**	Lithocholytaurine
ERK	Extracellular signal-regulated kinase	**Lod**	Limit of detection
FAK/PTK2	Focal adhesion kinase		
Abbreviation	Description
LRH-1/NR5A2	Liver receptor homolog-1
LXRα/β/NR1H3-2	Liver X receptor
mACHR	Muscarinic acetylcholine receptor
MAPK/MEK	Mitogen-activated protein kinase
MCA	Muricholic acid
MCL1	Induced myeloid leukemia cell differentiation protein
MDM2	Mouse double minute 2
MDM4	Double Minute 4
MDR1/ABCB1	Multidrug resistance protein 1
MMP2	Matrix metalloproteinase 2
MMP9	Matrix metalloproteinase 9
MRP2/ABCC2	Multidrug resistance-associated protein 2
MRP3/ABCC3	Multidrug resistance-associated protein 3
MRP4/ABCC4	Multidrug resistance-associated protein 4
MSK1/RPS6KA5	Nuclear mitogen- and stress-activated protein kinase 1
mTOR	Mammalian target of rapamycin
mTORC1	Mammalian target of rapamycin complex 1
MUC2	Mucin 2
MUC4	Mucin 4
MUTYH	MutY DNA Glycosylase
MYC	Myc proto-oncogene protein
NB	Neuroblastoma
NDRG2	N-Myc downstream regulated gene 2
ND	Not detected
NF-κB	Nuclear factor kappa-light-chain-enhancer of activated B cells
NOX5	NADPH Oxidase 5
NR	Nuclear receptor
NRF2/NFE2L2	Nuclear factor erythroid 2-related factor 2
NR4A1/Nur77/TR3/NGFIB	Nuclear receptor subfamily 4 group A member 1
NSCLC	Non-small cell lung cancer
NTCP/SLC10A1	Sodium/taurocholate cotransporting polypeptide
OATP1A2/SLCO1A2	Solute carrier organic anion transporter family member 1A2
OATP1B/SLCO1B	Solute carrier organic anion transporter family
OGG1	8-Oxoguanine DNA glycosylase
PGC-1α	Peroxisome proliferator-activated receptor gamma coactivator 1 alpha
PGE2	Prostaglandin E2
PI3K	Phosphatidylinositol 3-kinase
PKA	Protein kinase A
PKC	Protein kinase C
PLA2	Phospholipase A2
Prx2	Peroxisiredoxin II
PXR/ NR1H2	Pregnane X receptor
PTEN	Phosphatase and tensin homolog
p38/MAPK14	P38 MAP kinase
Rac1	Rac family small GTPase 1
Raf1	Proto-oncogene, serine/threonine kinase
RhoA	Ras homolog family member A
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
RXR	Retinoid X receptor
S1PR2	Sphingosine-1-phosphate receptor 2
SLC51A/B or OSTα/β	Solute carrier family members
SLC10A1/NTCP	Solute carrier family 10
SLC10A2/ASBT	Sodium-dependent bile acid transporter
SRC-1/NC0A1	Steroid receptor coactivator 1
SHP/ NR5O2	Small heterodimer partner
SLC51A/B or OSTα/β	Solute carrier family members
SRC-1/NC0A1	Steroid receptor coactivator 1
SphK2	Sphingosine kinase 2
SREBF	Sterol regulatory element-binding factor
SphK2	Sphingosine kinase 2
STAT3	Signal transducer and activator of transcription 3
SULT	Sulfotransferase
TCA	Taurocholic acid
TCDC	Taurochenoatecholic acid
TCDDA	Taurochenodeoxycholic acid
Background

Bile acids (BAs) belong to cholesterol-derived sterols. Due to the side chain carboxyl group and hydroxylation of their steroid ring they are more polar than cholesterol. They have an amphipatic character for which they are known as natural detergents. Majority of cholesterol is excreted by bile acids that are prone to enterohepatic circulation between the gallbladder and the liver. Cholesterol absorption in the intestine and cholesterol secretion into the bile both require bile salts, which are, together with enterohepatic circulation of BAs, crucial for balancing the plasma cholesterol level [1].

BAs are also signaling molecules. They deorphanized the farnesoid X nuclear receptor (FXR) which is now known as a ligand-inducible transcription factor responsive to BAs [2]. It is important to note that BAs are metabolized in a similar manner as xenobiotics, contributing to the cross-talk between the endogenous and xenobiotic metabolism in the liver through nuclear receptors Pregnane X receptor (PXR), constitutive androstane receptor (CAR) and others [3]. While their synthesis takes place exclusively in the liver, the homeostasis and excretion involve multiple organs and compartments in the body. After discovering their signaling role, BAs have been considered as pro-carcinogenic molecules [4–6]. However, recent studies have provided evidence that in certain cancers, BAs can have antineoplastic features (e.g. breast cancer [7–11]). This novel, context-dependent, dualistic finding prompted us to thoroughly assess the involvement of BAs in carcinogenesis and cancer progression.

Bile acid biosynthesis

The excess of free cholesterol is toxic to cells and needs to be excreted, primarily through conversion to more polar BAs. The introduction of a hydroxyl group in cholesterol reduces the half-life and directs the oxidized molecule to excretion [12]. BA synthesis is thus the main cholesterol detoxification pathway where multiple cytochrome P450 (CYP) enzymes are involved in the classical or alternative pathways (Fig. 1). The two major primary BAs in humans are cholic acid (CA) and chenodeoxycholic acid (CDCA). They are synthesized in the liver and secreted into the gallbladder as glycine or taurine conjugates [13]. The BA composition in mice substantially differs from the humans which has to be taken into account when using mouse as a model for BA related diseases. The mouse Cyp2c70 metabolizes CDCA to more hydrophilic primary muricholic acids (MCAs) [14].

The first enzyme of the classical BA synthesis pathway is cholesterol 7α-hydroxylase (CYP7A1), leading to 7α-cholesterol in a rate-limiting reaction step, followed by several enzymatic conversions. This enzyme is prone to the negative feedback regulation by BAs and FXR [2]. Sterol 12α-hydroxylase (CYP8B1) lies at the branching point that leads to CA. Sterol 27-hydroxylase (CYP27A1) is needed for both CA and CDCA. In the alternative pathway, cholesterol is first metabolized by CYP27A1 to form 27-hydroxycholesterol that is a substrate for 25-hydroxycholesterol 7α-hydroxylase (CYP7B1) and later other enzymes [15]. The alternative pathway leads majorly to CDCA. The ratio of CA to CDCA is determined by the expression level of CYP8B1, which transforms a di-hydroxylated BA to tri-hydroxylated BA. The alternative pathway is estimated to account for about 10% of cholesterol conversion [16]. Of importance, there are major differences in individual BA synthesis genes in mouse and in humans which may be due also to different biological roles of human and mouse BA species (reviewed in [15]).

Bacterial metabolism of bile acids, production of secondary bile acids

Hepatocytes secrete BAs to the bile canaliculi. By fusing with each other bile canaliculi form bile ducts, which eventually form the hepatic duct that runs to the gallbladder. The gallbladder empties to the duodenum upon feeding and, hence, releases BAs to the gastrointestinal tract. Primary BAs emulsify dietary fats and activate pancreatic
lipases in the small bowel. BAs are then reabsorbed through the enterocytes and get to the liver for reuptake and reuse through the portal circulation. This circle is termed the enterohepatic circulation of BAs. A fraction of the reabsorbed BAs enter the systemic circulation (total BA concentration in the serum is < 5 µM in a healthy individual) and exert hormone-like effects [7, 17–20]. The reference concentrations of the serum, tissue and fecal bile acids are in Tables 1, 2, 3.
Table 1 Reference serum bile acid levels

	Cohort size, reference	n = 40 [303]	n = 8 [304]	n = 30 [305]	n = 28 [306]	n = 56 (pooled) serum [7]
		Mean ± SEM	Mean ± SD	Mean ± SEM	Mean ± SEM	Mean
Primary bile acids	CA	181.5 83.1	440 651	162.05 40.19	153.68 159.64	287
	GCA	233.0 56.0	85 55	42.55 13.72	72.86 93.69	301
	TCA	179.7 47.0	14 12	2.04 0.63	18.56 29.4	71
	CDCA	256.8 56.3	380 410	1160.64 299.60	654.78 660.43	563
	GCDCA	771.5 111.9	450 210	975.59 205.81	649.19 648.55	931
	TCDCA	120.2 21.8	69 56	7.51 1.74	54.28 69.18	137
Secondary bile acids	DCA	386.7 66.0	320 120	593.27 141.09	402.76 350.11	701
	GDCA	246.2 42.5	104 44	190.78 44.32	156.39 149.88	415
	TDCA	44.9 11.8	21 18	44.06 8.66	24.62 22.68	61
	LCA	12.8 1.8	17 20	9.74 1.51	94.95 57.21	31
	GLCA	16.3 4.1	17 20	25.26 15.82	25.26 15.82	25
	TLCA	23.4 3.6	0.33 0.52	0.46 0.07	22.82 19.29	25
	UDCA	137.6 25.1	43 27	208.35 32.94	130.83 114.96	147
	GUDCA	76 40	60.92 9.76	128.04 178.12	330	
	TUDCA	5.0 1.1	2.7 2.7	6.24 5.63	6.24 5.63	6.24 5.63

All concentrations are in nM
CA Cholic acid, CDCA Chenodeoxycholic acid, DCA Deoxycholic acid, GCA Glycocholic acid, GCDCA Glycochenodeoxycholic acid, GDCA Glycodeoxycholic acid, GGLCA Glycolithocholic acid, GUDCA Glycoursodeoxycholic acid, LCA lithocholic acid, TCA Taurocholic acid, TCDCA Taurochenodeoxycholic acid, TDCA Taurodeoxycholic acid, TLCA Taurolithocholic acid, TUDCA Tauroursodeoxycholic acid, UDCA Ursodeoxycholic acid

Table 2 Reference fecal bile acid levels

	Cohort size, Reference	n = 97 [307]	n = 28 [308]	n = 15 [309]	
		Mean µg/mg ± SD	Median nmol/g	Q1; Q3	Median ng/mg of dry feces
Primary bile acids	CA	56.16 255.46	20.19	5.03;1304.28	0.23
	GCA	199.35 317.56	2.23	1.39;3.55	0.72
	TCA	4.14 7.82	0.72	0.46;2.11	0.46;2.11
	CDCA	29.65 102.48	5.17	2.56;10.51	0.72
	GCDCA	3.35 10.5	1.41	0.37;3.58	0.37;3.58
Secondary bile acids	DCA	110.41 167.88	2.67	1.44;6.83	2.67
	GDCA	4.84 12.5	1.75	0.86;6.63	0.86;6.63
	TDCA	548.75 336.88	2339.24	1737.09;2782.40	3.1
	LCA	0.18 0.18	0.91	0.41;1.28	0.41;1.28
	GLCA	4.94 4.46	1.03	0.36;2.80	0.36;2.80
	TLCA	17.21 8.76	8.76;33.48	0.1	0.1
	UDCA	0.81 3.88	0.65	0.38;0.87	0.38;0.87
	GUDCA	0.37 0.71	0.07;1.23	0.07;1.23	

CA Cholic acid, CDCA Chenodeoxycholic acid, DCA Deoxycholic acid, GCA Glycocholic acid, GCDCA Glycochenodeoxycholic acid, GDCA Glycodeoxycholic acid, GGLCA Glycolithocholic acid, GUDCA Glycoursodeoxycholic acid, LCA lithocholic acid, TCA Taurocholic acid, TCDCA Taurochenodeoxycholic acid, TDCA Taurodeoxycholic acid, TLCA Taurolithocholic acid, TUDCA Tauroursodeoxycholic acid, UDCA Ursodeoxycholic acid
BAs are very powerful surfactants [21]; therefore, bacteria, mostly in the large bowel, need to protect themselves against being disintegrated by BAs. For example, lipopolysaccharides serve as membrane components in Gram-negative bacteria to passively ward off external toxins or BAs [22]. In addition to that, bacteria have a more sophisticated enzymatic system to cope with BAs termed BA conversion [23].

The hydroxyl groups and the tauryl or glycyl conjugate on BAs are crucial elements of the molecular structure of BAs for their strong surfactant properties. Therefore, the removal, modification or substitution of these molecular elements diminishes the potentially toxic features of primary BAs and renders them largely apolar. The dehydroxylated primary BAs are called secondary BAs and the main site for converting primary BAs to secondary BAs is the large bowel [24]. Secondary BAs can be resorbed to the portal circulation and are transported to the liver, where, however, hydroxylation and conjugation needs to be restored for reuse. The main secondary BAs in humans are lithocholic acid (LCA), deoxycholic acid (DCA) and to a lesser extent, ursodeoxycholic acid (UDCA) [24, 25].

Bile salt hydrolases (BSHs) are responsible for the deconjugation of BAs, namely the removal of glycine or taurine by breaking the C24 N-acyl bond. Glycine and taurine can be fed into the metabolism of bacteria to be used as an energy source [23]. BSH activity is common among the bacteria inhabiting the small and the large intestines [23]; both aerobic [26] and anaerobic bacteria can deconjugate bile salts [27]. Namely, among the Gram-positive bacteria BSH was identified in Clostridium [27–30], Enterococcus [27, 31], Bifidobacterium [27, 32, 33], Lactobacillus [34, 35], Streptococcus [36], Eubacterium [37] and Listeria, among Gram-negative bacteria in Bacteroides [30, 38, 39], while among archea Methanobrevibacter smithii and Methanospirillum hungatei [40].

The substituents on the gonane core of BAs can be also modified, the term “secondary BA” typically stands for the removal of 7α or 7β-hydroxyl groups from primary BAs. Clostridiales and Eubacteria were shown to play a major role in dehydroxylation [23, 41–45], although other genre or species were also implicated (e.g. Bacteroidetes, Escherichia) [7, 38, 44, 46, 47]. Although BA deconjugation and dehydroxylation are different processes, they may be linked through regulatory circuits [30]. Other reactions of BAs involve oxidation, and epimerization that can be linked to intestinal Firmicutes (Clostridium, Eubacterium, and Ruminococcus), Bacteroidetes and Escherichia [23, 36, 37, 41, 42, 44, 45, 48]. Bacterial enzymes involved in secondary BA production are assembled in the BA inducible

Table 3 Reference tissue bile acid levels
Gastric juice (µM)
n=10 [310]
Mean ± SEM
Primary bile acids
CA
GCA
TCA
CDCA
GCDCA
TCDA
Secondary bile acids
DCA
GDCA
TDC
LCA
GLCA
TLCA
UDCA
GUDCA
TUDCA

CA Cholic acid, CDCA Chenodeoxycholic acid, DCA Deoxycholic acid, GCA Glycocholic acid, GCDCA Glycochenodeoxycholic acid, GDCA Glycodeoxycholic acid, GLCA Glycolithocholic acid, GUDCA Glycoursodeoxycholic acid, LCA lithocholic acid, TCA Taurocholic acid, TDCDA Taurodeoxycholic acid, TDCA Taurodeoxycholic acid, TLCA Taurolithocholic acid, TUDCA Taursodeoxycholic acid, UDCA Ursodeoxycholic acid, ND not detected, LOD limit of detection
Interactions between BAs and gut microbiota are bidirectional. Microbiota can transform primary BAs and, hence, modulate the composition of the BA pool [49, 50]. Inversely, BAs can influence the composition of the microbiome as well [51–56] and facilitate bacterial translocation to tissues [57], further underlining that notion BAs act as potent drivers of the early intestinal microbiota maturation [58]. Oncobiosis (dysbiosis associated with cancers) [59] can alter the secondary BA pool that may contribute to carcinogenic effects [4, 5, 7, 18]. It is of note that several other non-BA bacterial metabolites are known that play role in carcinogenesis [60–64].

Bile acid transporters

The enterohepatic circulation of BAs depends on BA transporters in the gastrointestinal system. Almost 90% of BAs are involved in circulation due to efficient active transport [65]. Different uptake and efflux BAs transporters are present in the hepatic and intestinal cells (Fig. 2). After BAs are synthesized in the liver they are transported into the bile mainly by the ATP-dependent cassette transporter (BSEP) [65], but also minor transporters, the multidrug resistance-associated protein 2 (MRP2, ABCB2) and the multidrug resistance protein 1 (MDR1, ABCB1) [65]. From the intestinal lumen, BAs are uptaken into the intestinal cells by the major apical sodium-dependent bile acid transporter (SLC10A2, ASBT), which transports BAs also across the canalicular membrane in cholangiocytes and renal tubule apical membrane from glomerular filtrate [66]. BAs are then effluxed into the portal circulation by two Solute Carrier.
Family members, SLC51A or OSTα and SLC51B or OSTβ. The bile acids are then taken back up into hepatocytes by the major transporter the solute carrier family 10 (SLC10A1, NTCP), [65].

BAs can enter the systemic circulation via export across the hepatic sinusoidal membrane by OSTα/OSTβ, the multidrug resistance-associated protein 3 (MRP3, ABCC3) and the multidrug resistance-associated protein 4 (MRP4, ABCC4) [67]. The MRP transporters have a role in reducing hepatic BA concentration in cholestatic conditions. MRP3 and MRP4 are also present in cholangiocytes, where they efflux BAs to portal circulation and are part of the cholehepatic shunt together with ASBT [66]. Several transporters are expressed in the kidney, where they participate in BA elimination via urine (Fig. 2) [66, 68, 69]. The Solute Carrier Organic Anion Transporter Family, OATP1B1 or SLCO1B1 and OATP1B3 or SLCO1B3 contribute to the systemic clearance of BAs via liver [70]. Other cells also express BA transporters and can, therefore, uptake BAs from the systemic circulation [68, 69, 71].

Bile acids as signaling molecules

In addition to their role in digestion, BAs act as signaling molecules. BAs can activate membrane receptors (Fig. 3), such as G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), muscarinic receptors (CHRM2 and CHRM3) and nuclear receptors (NRs), such as farnesoid X receptor (FXR, NR1H4), PXR (NR1H2), vitamin D receptor (VDR, NR1H1), CAR (NR1H3) and liver X receptor (LXR, NR1H2-3). Each BA can interact with more than one receptor. Receptors are differentially activated by BAs. For example, FXR is activated by CDCA > DCA > LCA > CA [72], while TGR5 is activated by LCA > DCA > CDCA > CA [73, 74], respectively. VDR and PXR are mainly activated by LCA. BAs mediate immune responses [75], gastrointestinal mucosal barrier function, gestation [76], carcinogenesis [11, 18, 56] and metabolic diseases [20]. The activation of BA receptors may lead to the induction of signaling pathways involved in the regulation of several physiological functions, such as glucose, lipid and energy metabolism, as well as, in cancers. Below, we review the mode of action of BA receptors and highlight those receptor-mediated functions that have a key role in regulating the behavior of cancer cells.

Cell membrane receptors

G protein-coupled bile acid receptor 1 (GPBAR1, TGR5)

TGR5 is a member of the G protein-coupled receptor superfamily, highly expressed in the epithelium of the gallbladder [77], the intestine [74], the brown adipose tissue and the skeletal muscle [20], as well as in the brain [78]. TGR5 is also expressed in human monocytes/macrophages [73]. TGR5 is not expressed by hepatocytes, while Kupffer cells and liver sinusoidal cells can express the receptor [79].

Secondary BAs LCA and DCA are the most potent, natural ligands for TGR5, but the receptor also responds to CDCA and CA [73, 74] and a set of artificial ligands [80–84] (Table 4). Ligand binding to the TGR5 receptor triggers activation of adenylate cyclase leading to the production of cAMP [73, 74, 85] and the downstream activation of extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase A (PKA), protein kinase B (AKT), mammalian target of rapamycin complex 1 (mTORC1) and Rho kinase [86–89]. TGR5 activation leads to metabolic changes characterized by energy expenditure and β-oxidation [20, 90]. BA-dependent induction of TGR5 has immunomodulating effects. Most studies point to TGR5-dependent immunosuppression [73, 79, 91–94] partly due to the suppression of the Toll-Like Receptor 4—Nuclear factor-κB (TLR4–NF-κB) pathway [91, 93, 94]. In line with that, in a murine model of breast cancer, LCA treatment induced the proportions of tumor-infiltrating lymphocytes through TGR5 [7].

Sphingosine-1-phosphate receptor 2 (S1PR2)

Conjugated BAs activate S1PR2 [95–97] that upregulates the expression of sphingosine kinase 2 (SphK2), which in turn enhances the level of sphingosine-1-phosphate in the nucleus. Elevated nuclear sphingosine-1-phosphate inhibits the function
of histone deacetylases resulting in the upregulation of genes encoding nuclear receptors and enzymes involved in lipid and glucose metabolism [98] Similar to TGR5, ligand binding to S1PR2 can activate different downstream signaling pathways, such as ERK, AKT and/or c-Jun N-terminal kinase (JNK1/2) [96, 97, 99, 100]. Glycochenodeoxycholic acid (GCDCA) can trigger apoptosis in hepatocytes through activating S1PR2 [101]. S1PR2 is highly expressed in macrophages [102] and has widespread immunological roles [100, 102, 103].

Muscarinic receptors (CHRM2 and CHRM3)

Taurine conjugated BAs can activate muscarinic receptors, the cholinergic receptor muscarinic 2 and 3 (CHRM2 and CHRM3). CHRMs are overexpressed in colon cancer cells and stimulate cell proliferation and invasion [104, 105]. Taurolithocholic acid (TLCA) induces cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR (epithelial growth factor receptor)/ERK1/2 signaling [106].

Nuclear receptors

Farnesoid X receptor (FXR, NR1H4)

FXR is a member of the nuclear hormone receptor superfamily. There are two FXR genes, encoding FXRα and FXRβ of which only FXRα is expressed, FXRβ is present as a non-expressed pseudogene in humans. The FXR receptor heterodimerizes with retinoid X receptor (RXR) and binds to FXR response elements (FXREs) within the regulatory regions of its target genes [107]. BAs are physiological ligands for FXR (with decreasing affinity: CDCA, DCA, LCA, CA) [72]. FXR is expressed mainly in the liver, intestine, kidney and adrenal glands [107].

FXRα controls BA synthesis, transport and detoxification. The activation of FXR receptor by BAs reduces the expression of Cyp7a1 and Cyp8b1, key enzymes of BA biosynthesis pathway. In the liver, FXRα induces the transcription of its target gene encoding small heterodimer partner
(SHP, NR5O2), an orphan nuclear hormone receptor (see in detail later) that lacks a DNA binding domain and acts as a transcriptional repressor [108]. SHP inhibits the expression of Cyp7a1 through the inhibition of the interaction with liver receptor homolog-1 (LRH-1, NR5A2) [109]. In addition to LRH-1, SHP also prevents the function of hepatocyte nuclear factor-4α (HNF4α), a positive regulator of Cyp7a1 and Cyp8b1 [110]. In the intestine, FXRα induces the expression of fibroblast growth factor 19 (FGF19) in humans and its mouse homolog fibroblast growth factor 15 (FGF15). The secreted growth factor via portal blood reaches the liver where it binds to its receptor, fibroblast growth factor receptor 4 (FGFR4) and induces JNK and ERK pathways and causes repression of Cyp7a1, thus reducing BA synthesis [111]. In addition to Cyp7a1, Cyp8b1 is also repressed by FXRα via SHP-dependent mechanism involving HNF4α [110].

FXRα is also a key regulator of BA transport by influencing the expression of BA transporters. FXRα activation suppresses BA reuptake to hepatocytes through repressing the expression of NTCP via SHP dependent mechanism [112]. At the same time, FXRα facilitates the efflux of BAs from hepatocytes into bile by enhancing the expression of BSEP and into the systemic circulation via O斯塔/β transporter [113]. FXRα also upregulates MR2, which promotes BA secretion into the gallbladder. Finally, FXRα regulates the expression of intestinal BA-binding protein (I-BABP) in the ileum which promotes transport of BAs from enterocytes into portal blood [114] whereas limits enterocyte uptake of BAs by reducing ASBT expression. FXRα increases the expression of enzymes involved in the detoxification of BAs, such as cholesterol 25-hydroxylase or cytochrome P450 family 3 subfamily A4 (CYP3A4) [115], dehydroepiandrosterone-sulfotransferase (SULT) 2a1 [116] and uridine 5′-diphosphate-glucuronosyltransferase 2B4 (UGT2B4) [117]. Many studies have reported the relationship between FXR and inflammation. NF-κB activation suppressed FXR-mediated gene expression, indicating that there is a negative crosstalk between the FXR and NF-κB signaling [118].

Pregnane X receptor (PXR, NR1I2)

In humans, PXR is mainly expressed in the liver and intestine [119]. Among BAs, the most potent ligand of PXR is LCA, and the oxidized, 3-keto form of LCA. PXR acts as a xenobiotic sensor and regulates the expression of genes involved in the detoxification and metabolism of BAs [120]. Upon ligand binding, PXR binds to the promoter of its target gene as a heterodimer with RXR. Activation of PXR induces the uptake of xenobiotics, their modification by phase I enzymes (CYPs, including CYP3A, CYP2B, CYP2C), conjugation by phase II enzymes, such as glutathione S-transferases, UDP-glucuronosyl-transferases (UGTs) and sulfotransferases, and finally elimination by phase III drug transporters including MDR1, MRP2 and organic anion-transporting polypeptide (OATP2) [120]. The activation of PXR prevents cholesterol gallstone disease by regulating BA biosynthesis and transport [121] and protects the liver against LCA-induced toxicity [122–125]. PXR activation disrupts the interaction between HNF4α and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α, PPARG1C1), which is required for the activation of CYP7A1 gene expression, thus reducing the expression of CYP7A1 and inhibiting the synthesis of BAs [126]. PXR activation is anti-inflammatory [127–129]. PXR activation facilitates lipogenesis, suppressing β-oxidation and ketogenesis and gluconeogenesis [130–132]. Furthermore, PXR through HNF4 and PGC-1α modulates the expression of CYP7A1 [133].

Constitutive androstane receptor (CAR, NR113)

CAR is the closest relative to the PXR and is expressed primarily in the liver. First studies identified that CAR has constitutive transcriptional activity in the absence of its ligand [134]. Later, it was reported that the constitutive transcriptional activity of CAR is reversed by androstanone metabolites, which are inverse agonists [135]. CAR can be activated by direct ligand binding and indirect activation by CAR controls the expression of drug-metabolizing enzymes and transporters, thereby supporting the detoxification of xenobiotics [120, 139]. In contrast to PXR, it remains unclear whether BAs can function as natural ligands for CAR; nevertheless, there are reports underscoring the involvement of CAR in BA signaling [111].

Vitamin D receptor (VDR, NR111)

In humans, VDR is highly expressed in the kidney, intestine, bone as well as in hepatocytes but expressed at low levels in other tissues [140–142]. LCA is a potent endogenous VDR ligand [143, 144]; hence, VDR can act as an intestinal BA sensor. VDR activation induces expression of CYP3A that metabolizes LCA [143, 145]. In addition, VDR induces the expression of SULT2A1, MRP3 and ASBT to stimulate BA sulfonation, excretion and transport [146–148]. The activated VDR plays a role in the inhibition of BA synthesis via suppression of CYP7A1, thus protecting liver cells during cholestasis [140].

VDR can function as a nuclear receptor and a membrane-bounded receptor. Upon ligand binding, VDR translocates into the nucleus, where it binds to DNA response elements
as a heterodimer with RXR to mediate gene transcription. Plasma membrane-associated VDR receptor activates several signaling cascades to inhibit CYP7A1 transcription [142, 149]. It has been shown that the activation of membrane VDR signaling by LCA in the liver activates MEK1/2ERK1/2 pathway, which stimulates nuclear VDR/RXR heterodimer recruitment of corepressors to inhibit CYP7A1 gene transcription [150]. In biliary epithelial cells, bile salts (CDCA, UDCA) stimulate the expression of cathelicidin, an antimicrobial peptide, via VDR and FXR to control innate immunity [151]. The possible role of VDR in regulating immunity and the role of VDR in different cancer cells and diseases is reviewed in detail elsewhere [152].

Liver X receptor (LXR, NR1H2-3)

LXRs are activated by naturally occurring cholesterol metabolites such as oxysterols and bind to DNA as heterodimers with the RXR [153]. LXRα (NR1H3) and LXRβ (NR1H2) share a high structural homology [154]. LXRβ is ubiquitously expressed, while LXRα is primarily expressed in the liver, the adipose tissue, the intestine and macrophages. Upon ligand activation LXRs regulate gene expression via binding to LXR response elements in the promoter regions of the target genes. LXRα promotes the conversion of cholesterol into BAs through the induction of CYP7A1 expression in the liver. LXRs enhance the efflux of cholesterol from cells [155] and have an anti-inflammatory response in the adipose tissue and macrophages. Upon ligand activation LXRs regulate gene expression via binding to LXR response elements in the promoter regions of the target genes. LXRα promote the conversion of cholesterol into BAs through the induction of CYP7A1 expression in the liver. LXRs enhance the efflux of cholesterol from cells [155] and have an anti-inflammatory response in the adipose tissue and macrophages. Upon ligand activation LXRs regulate gene expression via binding to LXR response elements in the promoter regions of the target genes.

Small heterodimer partner (SHP, NR5O2)

SHP is a unique nuclear receptor that contains a ligand-binding domain but lacks the conserved DNA-binding domain. SHP acts as a transcriptional corepressor regulating different metabolic processes, including lipid, glucose, energy homeostasis and BA synthesis via interaction with multiple transcription factors and nuclear receptors (reviewed in [158]). BAs or FGF19 signaling enhances posttranslational modifications of SHP, which modulates the regulatory function of SHP protein [159, 160]. SHP acts as an inhibitory regulator in Hedgehog/Gli signaling pathway [161].

Effects of bile acids in cancers

The role of BAs was implicated in a wide variety of neoplasias (Fig. 4, Tables 5, 6, 7). When assessing the effects of BAs, one has to keep in mind that the concentrations applied in the experiments need to correspond to the reference concentrations in serum or the compartment in question (e.g. parts of the gastrointestinal tract). However, several reports are using substantially higher concentrations than the reference. These studies need to be considered as ones using “therapeutic” concentrations. In the forthcoming chapters, we will review those neoplasias where BAs were implicated in pathogenesis.

Oesophageal carcinoma

The development of Barrett’s esophagus (BE) and its progression to oesophageal adenocarcinoma (EAC) are linked to gastroesophageal reflux disease (GERD). Conjugated BAs, mainly taurocholic acid (TCA) and glycocholic acid (GCA) are the main BA constituents in GERD refluxate [162]. Conjugated BA levels in the refluxate from patients with advanced BE or EAC are significantly higher than from patients with benign BE [163]. Conjugated BAs, as TCA or taurodeoxycholic acid (TDCA), promote EAC progression [164, 165] (Table 7). Unconjugated BAs, including DCA and CDCA, induce oxidative stress, DNA damage and inflammation contributing to EAC carcinogenesis, while UDCA protects against DCA-induced injury (Tables 5 and 7).

Apparently, numerous BA receptors as TGR5, S1PR2, FXR and VDR are activated in EAC cells in response to BAs in the refluxate [164–167]. In good agreement with that, the inhibition of the FXR receptor suppresses tumor cell viability in vitro and reduced tumor formation in nude mouse xenografts [168]. Furthermore, TGR5 is highly expressed in the EAC and precancerous lesions and is associated with worse overall survival [169] suggesting that these observations can be translated to the human situation.

Acidic bile acids bring about oxidative stress, TDCA can induce NADPH Oxidase 5 (NOX5) through TGR5 [164]. Furthermore, bile acids can induce inflammation through FXR activation [170] and the EGFR–STAT3 (signal transducer and activator of transcription 3)—Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) pathway [171]. Acidic bile salts can also induce epithelial–mesenchymal transition (EMT) through vascular endothelial growth factor (VEGF) signaling in Barrett’s cells [172]. Interestingly, the activation of the EGFR-DNA-PKs (DNA-dependent protein kinase) pathway by insulin-like growth factor binding protein 2 (IGFBP2) protects EAC cells against acidic bile salt-induced DNA damage [173].

Gastric cancer

Carcinogenesis in gastric cancer is a sequential process that includes chronic superficial gastritis, intestinal metaplasia (IM), atrophic gastritis, intramucosal carcinoma, dysplasia and invasive neoplasia [174]. IM is considered a risk factor for gastric tumorigenesis. The concentrations of
Bile acids (BAs) in gastric juice positively correlate with the degree of intestinal metaplasia [175] and BAs serve a critical multi-pronged role in the induction of intestinal metaplasia. BAs can enhance caudal-related homeobox family 2 (CDX2) and mucin 2 (MUC2) expression via FXR/NF-κB signaling [176, 177] and cyclooxygenase-2 (COX-2) expression via induction of SHP [178], all promoting gastric intestinal metaplasia. Acidic bile salts can induce telomerase activity in a c-Myc-dependent fashion [179, 180], while DCA can induce the metaplastic phenotype of gastric cancer cells [181] (see Tables 6 and 7). TGR5 is a key factor in BA-induced gastric metaplasia via HNF4α [181], EGFR and mitogen-activated protein kinase (MAPK) [182] activation and promotes EMT in gastric carcinoma cells [183]. TGR5 is overexpressed in gastrointestinal adenocarcinomas, and moderate to strong TGR5 staining is associated with decreased patient survival [184]. Nevertheless, there anticarcinogenic effects of bile acids in gastric cancer, as UDCA (Table 5) or DCA in supraphysiological concentrations [185, 186] or 23(S)-mCDCA [187].

Hepatocellular carcinoma (HCC)

Several studies have shown that more hydrophobic BAs as LCA, DCA and CDCA, are the main promoters of liver cancer and can contribute to the development of HCC (see in Table 7) [188–192]. Nevertheless, CDCA (> 100 µM) [193, 194], UDCA and Tauroursodeoxycholic acid (TUDCA) inhibit HCC cell growth and induce apoptosis [195–199] (see in Tables 5 and 6). Deregulation of BA homeostasis marked by the expression of hepatic BA transporters (BSEP, OStαβ, MRP2, MDR2-3, NTCP) is diminished leading to increased hepatic BA sequestration and inflammation and reduced FXR signaling [200–203] in liver cirrhosis and non-alcoholic steatohepatitis that are risk factors for the development of HCC. In good agreement with that, metabolomics identified long-term elevated serum BAs in HCC patients.
Cancer type	Cell models	Concentration	Effects	Ref
Glioblastoma	A172, LN229	400–800 µM	UDCA inhibits cell viability, induces ROS production and endoplasmic reticulum stress, synergizes with proteasome inhibitor Bortezomib	[314]
Neuroblastoma	SH-SY5Y	100 µM	TUDCA protects against mitochondrial damage, cell death and ROS generation via mitophagy	[315]
Pancreatic cancer	HPAC, Capan1	0.2 mM	UDCA reduces intracellular ROS level and Prx2 expression, as well as suppresses EMT and stem cell formation	[227]
Prostate cancer	DU145	0–200 µg/ml	UDCA inhibits cell growth and induces apoptosis via extrinsic and intrinsic pathways	[274]
Melanoma	M14, A375	0–300 µg/ml	UDCA inhibits cell proliferation and induces apoptosis via ROS-triggered mitochondrial-associated pathway	[316]
Hepatocellular carcinoma (HCC)	Huh-BAT, HepG2	750 µM	UDCA has a synergistic effect on the antitumor activity of sorafenib in HCC cells via activation of ERK and dephosphorylation of STAT3	[195]
	HepG2, BEL7402	0.1–1 mM	UDCA inhibits proliferation and induces apoptosis of HCC cell lines by blocking cell cycle and regulating the expression of Bax/ Bcl-2 genes. UDCA suppresses growth of BEL7402 cells in vivo	[196]
	HepG2	0.25–1 mM	UDCA induces apoptosis via regulating of Bax to Bcl-2 ratio, the expressions of Smac and Livin, and caspase-3 expression and activity	[197]
	Huh-Bat, SNU761, SNU475	200 µM	UDCA suppresses cell growth and induces DLC1 tumor suppressor protein expression by inhibiting proteasomal DLC1 degradation in an ubiquitin-independent manner	[198]
	HepG2, SK-Hep1, SNU-423, Hep3B	100 µM	UDCA switches oxaliplatin-induced necrosis to apoptosis via inhibition of ROS production and activation of the p53-caspase 8 pathway	[199]
Oral Squamous Carcinoma	HSC-3	100–400 µg/ml	UDCA induces apoptosis via caspase activation	[318]
Leukemia	T leukemia cell line (Jurkat cell)	100 µg/ml	TUDCA and UDCA induce a delay in cell cycle progression	[319]
Gastric cancer	MKN-74	200 µM	UDCA suppresses chenodeoxycholic acid-induced PGE2 production and tumor invasiveness without affecting the COX-2 expression	[320]
	SNU601, SNU638	0.25–1 mM	UDCA induces apoptosis, which is mediated by lipid raft-dependent death receptor 5 (DR5) expression and activation	[321]
	SNU601	0.6–1 mM	UDCA induces apoptosis via MEK(MAPK)/ERK pathway. DCA-mediated ERK activation exerts an antiapoptotic activity in this cell line	[322]
	SNU601	0.5–1 mM	UDCA induces apoptosis via CD95/Fas death receptor, downregulates ATG5 level and prevents autophagic pathway	[323]
The role of bile acids in carcinogenesis

[204] and children (<5 years of age) with bile salt export pump deficiency developed HCC [205]. FXR activity is a major inhibitor of HCC carcinogenesis. Whole-body FXR-deficient mice spontaneously develop liver tumors [206, 207] in which the activation of the Wnt/β-catenin signaling pathway and oxidative stress were identified as the major drivers [208–210]. Nevertheless, liver-specific FXR deficiency in mice does not induce spontaneous liver tumorigenesis, but may only serve as a tumor initiator [211]. Due to their amphipathic nature, BAs can disrupt the plasma membrane and activate protein kinase C (PKC) and phospholipase A2 (PLA2) inducing the p38-MAPK-p53-NFκB pathway [212, 213]. Inflammation can suppress FXR activity that contributes to bile acid accumulation and carcinogenesis [185, 193, 194, 214].

Interestingly, senescence-associated secretory phenotype has crucial role in promoting obesity-associated HCC development in mice. Administration of high-fat diet to mice induces alterations in the gut microbiota and increases the levels of DCA. Increased DCA level promotes SASP

Table 5 (continued)

Cancer type	Cell models	Concentration	Effects	Ref
Oesophageal cancer / Barrett’s esophagus	BAR-T, BAR-10 T	125–250 µM	UDCA increases antioxidant expression and prevents DCA-induced DNA damage and NF-κB activation	[324]
	SKGT-4, OE33	300 µM	UDCA inhibits DCA-induced NF-κB, AP-1 activation and COX-2 upregulation	[325]
	BE CP-A	0.1–0.2 mM	GUDCA has cytoprotective role by inhibiting oxidative stress	[326]
Colon cancer	HCT116	500 µM	UDCA inhibits DCA-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling	[246]
	HCT116	500 µM	UDCA suppresses DCA-induced apoptosis by stimulating AKT-dependent survival signaling	[327]
	HCT116	500 µM	UDCA protects colon cancer cells from apoptosis induced by DCA by inhibiting apoptosis formation independently of the survival signals mediated by the PI3K, MAPK, or cAMP pathways	[328]
	HCT116	400 µM	UDCA inhibits cell proliferation by suppressing the expression of c-Myc protein and cell cycle regulatory molecules	[329]
	HT29, HCT116	0.2 mM	UDCA inhibits cell proliferation by regulating ROS production, induces activation of ERK1/2, and inhibits formation of colon cancer stem-like cell	[244]
	HCT116	300 µM	UDCA inhibits interlin β1 and blocks DCA-induced NF-κB and AP-1 activation	[330]
	HT-29	250 µM	UDCA suppresses cell growth, which is enhanced in the presence of cavelin; UDCA promotes endocytosis and degradation of EGFR receptor	[331]
	HCT116, COLO 205	50 µg/ml	TUDCA suppresses NF-κB signaling and ameliorates colitis-associated tumorigenesis	[332]
Cholangiocarcinoma	Mz-ChA-1	0.2–200 µM	TUDCA inhibits cell growth via a signal-transduction pathway involving MAPK p42/44 and PKCα	[333]
Table 6 Antitumor effects of bile acids other than UDCA in cancers

Cancer types	Cell lines	Concentration of bile acids	Effects of bile acids	Refs.
Breast cancer	MCF7, MDA-MB-231	LCA (50–200 µM)	LCA induces TGR5 expression and exhibits anti-proliferative and pro-apoptotic effects. LCA inhibits lipogenesis and reduces ERα expression in MCF7 cells	[10]
	MCF7, 4T1	LCA (0.3 µM)	LCA inhibits cell proliferation, EMT transition, VEGF production and induces antitumor immune response and elicits changes in metabolism through TGR5 receptor	[7]
	MCF7, 4T1	LCA (0.3 µM)	LCA induces NRF2/NFE2L2 dependent oxidative/nitrosative stress via TGR5/CAR receptors	[11]
	MCF7	CDCA (50 µM)	CDCA activates FXR receptor and inhibites Tamoxifen-resistant breast cancer cells proliferation and EGF-induced growth through downregulation of HER2 expression	[268]
	MCF7, MDA-MB-231	CDCA (30 µM)	CDCA induces cell death via activation of FXR	[334]
Colon cancer / Colorectal carcinoma	Caco-2, HT29C19A	LCA (20 µM)	LCA activates VDR to block inflammatory signals in colon cells	[335]
	HCT116	LCA (150–400 µM)	LCA activates p53 and promotes apoptosis by its binding to MDM4 and MDM2, key negative regulators of p53	[336]
	HCT116	DCA, CDCA (500 µM)	DCA and CDCA induce apoptosis	[337]
	HCT116	DCA (200–250 µM)	DCA induces apoptosis via AP-1 and C/EBP mediated GADD153 expression	[338]
	HCT116	DCA (0.05–0.3 mM)	DCA in physiologically relevant dose inhibits cell growth and induces apoptosis	[242]
Gallbladder cancer (GBC)	NOZ, GBC-SD, EGH1	DCA (50–200 µM)	DCA functions as a tumor suppressive factor in GBC by interfering with miR-92b-3p maturation	[339]
Gastric cancer	SGC7901	DCA (0.1–0.3 mM)	DCA induces apoptosis via the mitochondrial-dependent pathway	[186]
	BGC-823	DCA (0.3 mM)	DCA inhibits the growth of gastric cancer cells via p53 mediated pathway	[185]
	SNU-216, MKN45	DCA (200 µM)	DCA induces MUC2 expression and inhibits tumor invasion and migration	[340]
Hepatocellular carcinoma (HCC)	HEPG2, L02	CDCA (10–50 µM)	CDCA reduces the expression of inflammation mediators, inhibits STAT3 phosphorylation and increases expression of SOCS3 via FXR	[193]
	HepG2, Huh7, mouse hepatoma Hepa 1–6	CDCA (50–100 µM)	CDCA induces tumor suppressor N-Myc downstream regulated gene 2 (NDRG2) expression through FXR receptor	[194]
Neuroblastoma (NB)	SK-n-MCIXC, BE(2)-m17, SK-n-SH, Lan-1	LCA (100 µM)	LCA selectively kills the NB cell lines while sparing normal neuronal cells. LCA triggers intrinsic and extrinsic pathways of apoptosis	[8]
phenotype in hepatic stellate cells (HSCs), which in turn secretes various tumor-promoting factors in the liver, thus facilitating HCC development in mice exposed to chemical carcinogen [6]. SHP has a pleiotropic role in HCC, regulates cell proliferation [215], apoptosis [216], epigenetic changes [217] and inflammation [200, 218], which are associated with the antitumor role of SHP in the development of liver cancer.

Pancreatic adenocarcinoma

BAs are involved in the induction and development of pancreatic adenocarcinoma at multiple stages. Gallstone formation can block bile flow and, therefore, can induce and sustain pancreatitis [219], a risk factor for pancreatic adenocarcinoma [220–222]. In fact, several BA species showed a drastic increase in pancreatic adenocarcinoma patients [223]. Treatment of pre-malignant pancreatic ductal cells with bile induced carcinogenic transformation [224, 225]. In pancreatic adenocarcinoma cells BAs decrease susceptibility to apoptosis, boost cell cycle progression, the expression of inflammatory mediators and cellular movement, and, in high concentrations, may perturb biomembranes (Table 7) [220, 226]. UDCA, similar to its previously discussed beneficial properties, prevents EMT in pancreatic adenocarcinoma cell lines and, therefore, has antineoplastic properties (Table 5) [227].

Colorectal carcinoma (CRC)

The western diet has tumor promoting activity associated with elevated concentrations of colonic BA (mainly LCA and DCA) and increased fecal BA levels, as detected in samples from CRC patients [228]. In animals, a high-fat diet stimulates bile discharge and results in elevated BA levels in the colon [229]. Moreover, cholecystectomy, through prolonging BA exposure of the intestinal mucosa, has been suggested as a risk factor for the development of CRC [230].

BAs induce genetic instability marked by genomic instability and DNA damage via oxidative stress, defects in mitotic checkpoints, cell cycle arrest, improper chromosome alignment and multipolar division [231, 232]. Genomic instability caused by BAs is coupled with apoptosis resistance due to the degradation of p53 and the inhibition of caspase-3 activity [233]. Furthermore, secondary BAs perturb cell membranes and modulate signaling cascades [234, 235].
Cancer types	Cell lines	Concentration of bile acids	Effects of bile acids	Refs.
Breast cancer	4T1	DC (100 µM)	DC promotes survival of breast cancer cells by elevating FLK-1 (KDR) and decreasing ceramide-mediated apoptosis of breast cancer progenitor cells	[341]
Cholangiocarcinoma	THLE-3	CDCA (100 µM) LCA (100 µM)	CDCA and LCA induce Snai1 and reduce E-cadherin expression and facilitate invasion and migration	[188]
KMBC	TCDC, DC, GCDC (200 µM)		BAs participate in progression of cholangiosarcoma by activating EGFR and inducing COX-2 expression via MAPK cascade	[342]
human: HuCCT1, CCLP1, SG231,	TCA (100 µM)		TCA promotes cholangiosarcoma cell invasion via activation of S1PR2. TCA induces invasive growth of cells, upregulate COX2 expression and PGE2 production through S1PR2 receptor	[96]
rat: BDE1, BDEspTDEh10				[95]
RMCCA-1	TLCA		TLCA induces cell growth through muscarinic acetylcholine receptor (mAChR) and EGFR/ERK1/2 signaling pathways	[106]
Colon cancer / Colorectal carcinoma	HT29, SW620	LCA (30 µM)	LCA induces expression of urokinase-type plasminogen activator receptor (uPAR) and enhances cell invasiveness via ERK1/2 and AP-1 pathway	[343]
H508, SNU-C4	LCT (300 µM)		LCT interacts with M3 muscarinic receptor and increases cell growth	[105]
HCT-8/E11, SRC transformed PCmsc cells	LCA, CDCA, DCA (10 µM)		BAs stimulate cellular invasion, which was dependent on several signaling pathways, such as RhoA, Rac1, PI3K, PKC, MAPK, COX2 and FXR receptor	[344]
Normal human colonic epithelial cells (HCoEpiC)	LCA, DCA (100 µM)		BAs promote colon cancer by inducing cancer stemness in colonic epithelial cells via modulating CHRM3 and Wnt/β-catenin signaling	[238]
CaCo-2	LCA (26.6 µM)		LCA increases cell invasion through promoting matrix metalloproteinase 2 (MMP-2) secretion	[345]
HCT116, HT29	LCA (20 µM), DCA (150 µM)		BAs promote colon carcinogenesis via regulation of Nur77-mediated cell proliferation and apoptosis	[190]
HCT116	LCA (30 µM)		LCA induces IL-8 expression by activating Erk1/2 MAPK and suppressing STAT3	[346]
			Metformin inhibits LCA induced IL-8 upregulation in HCT116 cells by suppressing ROS production and NF-kB activity	[347]
Table 7 (continued)

Cancer types	Cell lines	Concentration of bile acids	Effects of bile acids	Refs.
SNU-C4, H508	GLCA, GDCA, (50–300 µM), DCA (300–1000 µM)	BAs induce colon cancer cell proliferation which is CHRM3-dependent and is mediated by transactivation of EGFR	[348]	
HCT116	DC (0.3–0.5 mM)	DC induces mitochondrial oxidative stress and activates NF-kB in cancer cells through multiple mechanisms involving NAD(P)H oxidase, Na⁺/K⁺-ATPase, CYP, Ca²⁺ and the terminal mitochondrial respiratory complex IV	[349]	
HT-29	DCA (2.50 µM)	DCA promotes colorectal tumorigenesis through activation of EGFR-MAPK pathway and induction of calcium signaling	[350]	
HT-29, Caco-2, HCA7, HCT116	DCA (300 µM)	DCA activates COX-2 signaling and mediates proliferation and invasiveness of colorectal epithelial cancer cells	[351]	
HCT-116, HCA-7	DCA (300 µM)	DCA activates EGFR, MAPK and STAT3 signaling and induces tumorigenicity. DCA-induced activation of cellular signaling is mediated by the TGR5	[226]	
SW-480, LoVo	DCA (5–50 µM)	DCA activates β-catenin signaling and promotes colon cancer cell growth and invasiveness	[352]	
HCT116, DLD-1, SW620	DCA (100–200 µM)	DCA induces upregulation of *EPHA2* in colon cancer cells, which is due to activation of ERK 1/2 cascade, and is p53-independent	[353]	
Caco-2	DCA (20 µM)	DCA stimulates colon cancer cell migration via PKC	[354]	
Caco-2, HT-29	DC < 20 µM > 100 µM	Low-dose (< 20 µM) DC stimulates colon cancer cell proliferation, while high dose (> 100 µM) induces apoptosis in colon cancer cells	[355]	
HCT116	DCA (250 µM)	DCA stimulates pro-apoptotic and anti-apoptotic signaling pathways; sensitivity to DCA induces apoptosis can be modulated by the ERK/MAP kinase	[356]	
HCT116	DCA (200 µM)	DCA suppresses p53 by stimulating proteasome-mediated degradation of p53. DCA suppression of p53 is mediated by stimulating the ERK signaling pathway	[357]	
Cancer types	Cell lines	Concentration of bile acids	Effects of bile acids	Refs.
-------------------	--	------------------------------	--	-------
		DCA (200 µM)	DCA upregulates MUC2 transcription via multiple pathways involving activation of EGFR/PKC/Ras/RAf-1/MEK1/ERK/CREB, PI3/Akt/IKKB/NF-κB and p38/MSK1/CREB while DCA induced MUC2 transcription is inhibited by JNK/C-Jun/AP-1 pathway	[358]
		DCA (50–500 µM)	DCA induces oxidative stress and upregulates Thioredoxin reductase (TR) mRNA	[359]
		DCA (50–200 µM)	DCA activates anti-apoptotic effect of NF-κB and induces IL-8 expression	[360]
		/	DCA and tauro-β-muricholic acid have major role in promoting cancer stem cell proliferation	[361]
Endometrial cancer	Ishikawa	CDCA (5 µM)	CDCA enhances cyclin D1 expression and promotes cancer cell proliferation through TGR5-dependent CREB signaling activation	[362]
Gastric cancer	Normal human gastric epithelial cell: GES-1	CDCA, DCA (200 µM)	BAs upregulate CDX2 and MUC2 expression via activation of FXR/NF-κB signaling pathway	[176]
	Normal human gastric epithelial cell: GES-1 tumorigenic gastric cell lines (AGS, MKN45, BGC823, AZ521, N87, KATO III, SGC7901)	DCA (200 µM)	DCA activates TGR5-ERK1/2 pathway following induction of HNF4α expression, which further promotes metaplasia markers expression through direct regulation of KLF4 and CDX2	[181]
	AGS	DCA (50 µM)	DCA activates ERK1/2, MAPK and causes a TGR5-dependent trans-phosphorylation of the EGFR	[182]
	MKN74, MKN45	TLCA, TDCA (100 µM)	Activation of TGR5 by BAs promotes EMT process	[183]
	MKN45, AGS	DCA (100 µM)	DCA enhances COX-2 expression via CDX1 and SHP	[178]
	MKN28, MGC803, SGC7901	DCA, CDCA (100 µM)	BAs under acidic conditions increase TERT expression by activation of c-MYC transcription	[179]
Table 7 (continued)

Cancer types	Cell lines	Concentration of bile acids	Effects of bile acids	Refs.
Hepatocellular carcinoma (HCC)	HuH-7, Hep3B	CDCA (100 µM)	CDCA induces EMT phenotypes in HCC cells via FXR	
	Huh7, Hep3B and mouse primary hepatocytes (MPH)	LCA (20 µM), DCA (150 µM)	BA s promote liver carcinogenesis via regulation of Nur77-mediated cell proliferation and apoptosis	
	Huh-BAT, SNU-761, SNU-475	DCA (100 µM)	DCA induces ER stress accelerated apoptosis in NTCP-positive HCC cells under hypoxic conditions, while DCA induces COX-2-dependent IL-8 overexpression in NTCP-negative human HCC cells mediated by NFκB	
	SMMC7721, Huh7	GCDC (200 µM)	GCDC promotes HCC invasion and migration by AMPK/mTOR dependent autophagy activation	[363]
	HepG2, Bel-7402, Huh7	GCDA (100 µM)	GCDA contributes to the development of HCC and chemoresistance by inducing MCL1 phosphorylation at T163 via ERK1/2, which stabilizes MCL1 protein to enhance its antiapoptotic function	
	HepG2, Bel7402, QGY7703, SMMC7721, Huh7	GCDA (100 µM)	GCDA induces survival and chemoresistance of liver cancer cells through activation of BCL-2 by phosphorylation	[364]
	LX2, Huh7	DCA (20–80 µM)	DCA causes HSC senescence by modulating malignant behavior of HCC	[365]
	HepG2	TCDCA (100 µM)	TCDCA promotes liver cancer via down-regulation of the expression of tumor suppressor gene CEBPα	
	Hep3B	LCA, CDCA (100 µM)	BA s increase cancer invasiveness in human hepatocellular carcinoma and cholangiocarcinoma through repressing E-cadherin and inducing Snail expression	[366]
Hypopharyngeal squamous cell carcinoma	FaDu cells	CA (100 µM), CDCA (100 µM), DCA (100 µM), LCA (20 µM)	BA s induce EMT markers TGFβ1 and MMP-9 in vitro	
Non-small cell lung cancer (NSCLC)	H1975, H1299, PC-9, A549	DCA (20–40 µM)	DCA increases cell migration and invasion through a TGR5-dependent way. TGR5 promotes NSCLC cell proliferation and migration via JAK2/STAT3 pathway	
Oesophageal adenocarcinoma (EAC) /	HET-1A	DCA (300 µM), CDCA (300 µM), LCA (25 µM)	BA s activate the unfolded protein response and induce Golgi fragmentation via a src-kinase dependent mechanism contributing to cancer progression in the esophagus	[367]
Barett’s esophagus				
Cancer types	Cell lines	Concentration of bile acids	Effects of bile acids	Refs.
--------------	------------	----------------------------	---------------------	-------
SEG-1, BE3, CPC-A, CPC-C	CDCA (100–300 µM)	CDCA induces activation of IKKβ/TSC1/ mTOR pathway leading to enhanced EAC cell proliferation	[370]	
OE-33, SK-GT-4	CDCA (100 µM)	CDCA stimulates the development of human esophageal cancer by promoting angiogenesis via the COX2 pathway	[371]	
HET-1A, QH	DCA (100–300 µM)	DCA promotes development of gastroesophageal reflux disease and Barrett’s oesophagus by modulating integrin-αv trafficking	[372]	
OE19, OE33	DCA (100, 300 µM)	DCA inhibits Notch signaling pathway with induction of CDX2 gene expression contributing to the formation of Barrett’s oesophagus	[373]	
OE19	DCA (300 µM)	DCA shows carcinogenic effects via upregulation of COX2, CDX2 and downregulation of DNA repair enzymes (MUTYH, OGG1)	[374]	
OE-19, OE-33	TCA (100 µM)	TCA promotes invasive growth of EAC cells via S1PR2	[165]	
OE19	DCA (50–300 µM)	DCA promotes the progression of EAC by inducing inflammation	[375]	
HET-1A, CP-A, CP-C, OE33	DCA (0.2 mM)	DCA increases Beclin-1/BECN1 expression and autophagy but chronic exposure to BAs leads to decreased Beclin-1/BECN1 expression and autophagy resistance	[376]	
BAR-T	DCA (250 µM)	DCA induces ROS/RNS production, which causes genotoxic injury, and simultaneously induces activation of the NF-κB pathway, which enables cells with DNA damage to resist apoptosis	[377]a	
OE33, KYSE-30	DCA (100–200 µM)	DCA is genotoxic to oesophageal cells at neutral and acid pH through the induction of ROS	[378]	
	DCA ≥ 100 µM	DCA induces DNA damage and NF-κB activation (at doses of 100 µM and higher in oesophageal OE33 cells)	[379]	
SEG-1, SKGT-4, CP-A	CDCA, DCA (100 µM, 200 µM)	BAs induce CREB and AP-1-dependent COX2 expression in Barrett’s oesophagus and EAC through ROS-mediated activation of PI3K/AKT and ERK1/2	[380]	
Table 7 (continued)

Cancer types	Cell lines	Concentration of bile acids	Effects of bile acids	Refs.
Het-1A, SEG-1, HKESC-1, HKESC-2	DCA (100–1000 µM)	DCA upregulates both intestinal differentiation factor *CDX2* and goblet cell-specific gene *MUC2* in normal esophageal and cancer cell lines suggesting the involvement of DCA in the pathogenesis of Barrett esophagus	[381]	
SEG-1 cells	DCA (50–300 µM)	DCA induces *MUC2* overexpression by activation of NF-kB transcription through a process involving PKC-dependent but not PKA, independent of activation of MAP kinase	[382]	
SKGT-4	DCA (300 µM)	DCA induces *COX2* expression via Erk1/2, p38-MAPK and AP-1-dependent mechanisms	[383]	
OE33 cells	DCA (250 µM)	DCA promotes the expression of *KLF4* and *OCT4* via IL-6/STAT3 signaling pathway. DCA has a malignancy-inducing effect on the transformation of EAC stem cells	[384]	
BAR-T, OA, FLO	TDCA (10⁻¹¹ M)	TDCA induces cell proliferation through the upregulation of NOX5-S expression and ROS production mediated by activation of the TGR5 receptor	[164]	
OE33, FLO-1, Esc2	DCA (100 µM)	DCA enhances the aggressive phenotype of EAC cells with concomitant metabolic changes occurring via downregulation of *UCP2*	[385]	
Table 7 (continued)

Cancer types	Cell lines	Concentration of bile acids	Effects of bile acids	Refs.
Pancreatic cancer	T3M4, HPAF, Capan-1	DCA, CDCA (5–100 µM)	BAs increase the tumorigenic potential of pancreatic cancer cells by inducing FXR/FAK/c-Jun axis to upregulate MUC4 expression	[386]
	BxPC-3, AsPC-1, Capan-2	DCA (300 µM)	DCA activates EGFR, MAPK and STAT3 signaling and induces tumorigenicity. DCA-induced activation of cellular signaling is mediated by the TGR5	[226]

Abbreviations:
- AKT: Serine/Threonine Kinase 1
- AMPK: AMP-activated protein kinase
- Ap-1: activator protein-1
- BA: bile acid
- Bcl-2: B-cell lymphoma 2
- Beclin-1: Coiled-Coil Myosin-Like BCL2-Interacting Protein
- CDCA: chenodeoxycholic acid
- CDX1: Caudal Type Homeobox 1
- CDX2: Caudal Type Homeobox 2
- CEBPα: CCAAT/enhancer-binding protein alpha
- CHRM3: Muscarinic Acetylcholine Receptor M3
- COX2: cyclooxygenase-2
- CREB: cAMP response element-binding protein
- DC: Deoxycholate
- DCA: Deoxycholic acid
- DCF: Deoxycholic acid
- EAC: Oesophageal adenocarcinoma
- EMT: epithelial-mesenchymal transition
- EPHA2: EPH Receptor A2
- ERK: extracellular signal-regulated kinase
- FAK/PTK2: focal adhesion kinase
- FGFR2: Fetal liver kinase 1
- FXR: farnesoid X receptor
- GCDA: Glycochenodeoxycholic acid
- GLCA: Glycolithocholic acid
- HCC: hepatocellular carcinoma
- HNF4α: hepatocyte nuclear factor-4α
- HSC: hepatic stellate cells
- IKKβ: Inhibitor Of Nuclear Factor Kappa B Kinase Subunit Beta
- IL1: interleukin 1
- IL6: interleukin 6
- IL8/CXCL8: interleukin 8
- JAK2: Janus kinase 2
- JNK: c-Jun N-terminal kinase
- JUN: Jun Proto-oncogene, AP-1 Transcription Factor Subunit
- KLF4: Kruppel Like Factor 4
- LCA: Lithocholic acid
- LCT: Lithocholyltaurine
- mAChR: muscarinic acetylcholine receptor
- MAPK/MEK: mitogen-activated protein kinase
- MCL1: myeloid leukemia cell differentiation protein
- MMP2: matrix metalloproteinase 2
- NR4A1/Nur77/TR3/NGFIB: Nuclear receptor subfamily 4 group A member 1
- NSCLC: non-small cell lung cancer
- NTCP/SLC10A1: sodium/taurocholate cotransporting polypeptide
- OCT4/POU5F1: Octamer-Binding Transcription Factor
- OGG1: 8-Oxoguanine DNA Glycosylase
- PGE2: prostaglandin E2
- PI3K: Phosphatidylinositol 3-kinase
- PKA: protein kinase A
- PKC: protein kinase C
- Rac: Rac family GTPase 1
- Rac1: Ras Homolog Family Member A
- RNS: reactive nitrogen species
- ROS: reactive oxygen species
- SHP: Small heterodimer partner
- STAT: signal transducer and activator of transcription
- TCA: Taurocholic acid
- TCDC: Taurochenodeoxycholic acid
- TCDCA: Taurochenodeoxycholic acid
- TGF-β: Transforming growth factor β-1
- TGR5: G-protein-coupled bile acid receptor
- uPAR/PLAUR: urokinase-type plasminogen activator receptor
- WNT: Wingless-type MMTV integration site family

Other abbreviations:
- ABC: ATP-binding cassette
- CGI: cAMP response element-binding protein
- CYP: Cytochrome P450 oxidase
- ER: estrogen receptor
- ETS: ETS Transcription Factor
- FFA: free fatty acids
- FGF: fibroblast growth factor
- HIF-1α: hypoxia-inducible factor 1α
- IL: interleukin
- JAK: Janus kinase
- JUN: Jun Proto-oncogene
- KLF: Kruppel Like Factor
- MAPK: mitogen-activated protein kinase
- MSH: mismatch repair proteins
- NAMPT: nicotinamide phosphoribosyltransferase
- NF-κB: nuclear factor κB
- NOX: NADPH oxidase
- OGD: oxidative gene damage
- PPAR: Peroxisome proliferator-activated receptor
- SIRT1: sirtuin 1
- TLR: Toll-like receptor
- TSC1: TSC Complex Subunit 1
- TXNRD1: Thioredoxin reductase 1
- uPAR: urokinase-type plasminogen activator receptor
- WNT: Wingless-type MMTV integration site family
- XBP: X-box binding protein
- XPG: X-ray repair cross-complementing group 1
- YAP: Yes-associated protein
- ZEB1: Zinc finger E-box binding homeobox 1

Notes:
- The table continues with additional entries and details on the effects of bile acids on various cancer types and cell lines.
These all lead to colonic cell hyperproliferation, survival and invasion [236, 237].

The disruptive effect of BAs on colon epithelium evokes a compensatory cell renewal mechanism by inducing colonic epithelial cells to become cancer stem cells (CSCs) through β-catenin signaling (Table 7) [238]. In the CRC rodent model, both LCA and DCA have tumor promoter role on colonic crypt cells in the early stages of colon carcinogenesis [239]; however, it is important to note that BAs are suggested as tumor promoters, but not as mutagenic agents, since they can not induce tumor formation without a carcinogen/mutagen or a genetic alteration [240, 241]. It should be noted that DCA in low concentrations (0.05–0.3 mM) inhibit colonic cell proliferation via cell cycle block and apoptosis pathways (Table 6) [242].

UDCA can reduce the concentration of toxic BA in stool and blood [243] and has shown to protect against CRC by inhibiting CSC and CRC cell formation and proliferation [244, 245], oncogenic signaling pathways [246], as well as, inducing tumor surveillance [247] (Table 5). Moreover, UDCA can reduce CRC recurrence [248], as well as the risk to develop CRC in patients with pre-cancerous conditions, as colitis [249] or primary biliary cirrhosis [250].

Sustained inflammation was implicated in the pathogenesis of colorectal cancer due to barrier breach, and bacterial translocation leading to inflammation and neoplastic transformation of colonic epithelial cells [251–253]. TGR5 activation by UDCA and LCA may also exert anti-inflammatory responses through TLR4 activation or by reducing pro-inflammatory cytokine production in the colon that can decrease the frequency of developing CRC [254]. BAs can change the gut microbial community [255, 256], suggesting that BAs may also interfere with bacterial translocation.

Breast cancer

The BAs in the breast are of gut origin [257, 258]. Hepatic production of BA is reduced in breast cancer patients as marked by decreasing levels of serum and fecal BAs [7, 259]. Furthermore, bacterial conversion of BAs to secondary BAs is also suppressed, which is the most dominant in in situ and stage I patients [7]. The serum bile acid composition of breast cancer and benign breast disease patients is different; specifically, breast cancer patients had higher serum chenodeoxycholic acid levels and lower dihydroxy tauro-conjugated BA (Tdi-I) and sulfated dihydroxy glyco-conjugated bile acids (Gdi-S-I) [260]. Total fecal bile acid levels are lower in breast cancer patients as compared to controls [259]. LCA concentrations in the breast can be higher than the serum levels [261] (Table 6). Reports showed increased DCA levels in the serum [262] and the breast cyst fluid [263] of breast cancer patients.

LCA is an inhibitor of breast cancer cell proliferation (Table 6) [7, 258, 264]. However, the reports on DCA and UDCA are contradictory [7, 258, 262–264] in physiological concentrations, LCA tunes cancer cell metabolism towards a more oxidative state (through AMP-activated protein kinase (AMPK), PGC-1β and NRF1/NFE2L1) and induces mild oxidative stress through reducing NRF2 (nuclear factor erythroid 2-related factor 2, NFE2L2) expression and inducing Inducible nitric oxide synthase (iNOS) that reverts EMT, reduces VEGF expression, induces antitumor immunity and changes to cancer metabolism that culminates in reduced metastasis formation [7, 11]. In supraphysiological concentrations (> 1 µM) LCA inhibits fatty acid biosynthesis [10] and induces cell death [8–10, 265, 266]. LCA does not exert antiproliferative effects in its tissue reference concentrations on non-transformed primary fibroblasts [7]. LCA exerts its antineoplastic effects through the TGR5 [7] (Table 6).

CDCA in supraphysiological concentrations induces MDRs through FXR [265] and modulates estrogen and progesterone receptor-mediated gene transcription [267]. Furthermore, CDCA inhibits tamoxifen-resistant breast cancer cell proliferation through the activation of the FXR receptor [268] (Table 6). In contrast to that, a report by Journe and colleagues [269] showed that FXR activation has a positive correlation with estrogen receptor expression and luminal characteristics, as well as supported cancer cell proliferation.

Prostate cancer

Among the BAs LCA, UDCA and CDCA exerted antiproliferative effects in prostate cancer. Activation of FXR by CDCA inhibits proliferation of prostate cancer cells, reduces lipid anabolism via inhibiting Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) [270] and induces the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) [271] (Table 6). Interestingly, FXR signaling also controls androgen metabolism in prostate cancer cells, its activation reduces the expression of UDP-glucuronosyltransferase (UGT) 2B15 and UGT2B17 within cells and causes a reduction of androgen glucuronidation [272]. Similar to CDCA, LCA has antiproliferative effects in prostate cancer and induces apoptosis, endoplasmic reticulum stress, autophagy and mitochondrial dysfunction [9, 273] (see Table 6). UDCA induces death receptor-mediated apoptosis in human prostate cancer cells [274] (Table 5).

Ovarian cancer

In the serum of ovarian cancer patients, 3b-hydroxy-5-cholenoic acid, GUDCA, DCA and TCDCA levels decreased [275, 276]; importantly, taurochenodeoxycholic acid levels decreased in early-stage epithelial ovarian cancer [276]. Zhou and colleagues have shown that sulfolithocholyglycine
and TCA showed changes in the serum of ovarian cancer patients [277]. Changes to the BA pool are so characteristic that Guan and colleagues suggested [278] a set of 12 BAs, including glycolithocholic acid, to be used as markers to separate healthy controls from ovarian cancer patients.

The available studies assessed the effects of BAs at supraphysiological concentrations. These concentrations of BAs are cytotoxic and induce apoptosis likely due to changes to membrane damage [279, 280] that is unlikely at physiological concentrations of BAs [7]. DCA can modulate the expression of breast cancer type 1 susceptibility protein (BRCA1) and the estrogen receptor and, through these, can control drug sensitivity of ovarian cancer cells [Table 6] [281]. Furthermore, cholyglycinate interferes with the transport of cisplatin [282] and TCDC sensitizes ovarian carcinoma cells to doxorubicin and Mitomycin [280]. LXR [283–285], PXR [286], VDR [287–296] or CAR [297, 298] activation was shown to exert protective features against ovarian cancer, similar to BA-elicited effects suggesting that BAs may have a more profound role in protecting against ovarian cancer. These protective effects involved the suppression of proliferation [283, 284, 286], invasion [291], EMT [288], de novo fatty acid biosynthesis [295], the proportions of the cancer stem cell population [289], and the improvement of the efficacy of chemotherapy [285, 297, 298] culminating in better patient survival [292, 293]. Conflicting with these observation on report provided evidence that under certain conditions PXR may support proliferation [299]. BAs can influence the expression and the activity of multiple PARP enzymes [300]; therefore, it is likely that BAs could modulate the efficacy of PARP inhibition that is a novel modality in the chemotherapy of ovarian cancer.

Conclusions

Primary and secondary BAs are long-standing players in carcinogenesis. Although these molecules were considered as initiators of neoplasias, recent advances have shown that the pro- or anticarcinogenic activity of BAs varies among neoplasias [301], most probably due to differences in the expression of BA receptors, transporters and cell-specific differences in the outcome of receptor activation. Key pathways activated in neoplasias by BAs are regulated by nuclear receptors, FXR, CAR, SHP, PXR, LXR and VDR and other membrane receptors such as S1PR2, TGR5, CHRM2 and CHRM3. They activate numerous downstream signaling pathways such as EGFR, STAT3, MAPK, HNF4α, NF-kB, TLR4, SOCS3 and β-catenin just to name some. Furthermore, BAs regulate all aspects of tumor development and progression, the EMT, invasion, metabolism, apoptosis, proliferation, senescence, immune environment and response to chemotherapy.

The effect of BAs on neoplasias also depends on the concentrations used in the studies. While in certain models BAs in low concentration have anti-cancer effects, in super physiological concentrations BAs have pro-cancer effects. This phenomenon is related to their amphipathic structure and the activation of additional off-target pathways not triggered at physiological concentration. At high concentrations, BAs may perturb membranes and activate signaling pathways that sense disturbance of membranes, such as PLA2 and PKC. At high concentrations, they are also toxic and activate the detoxifying pathways, which regulate the activity of transporters of steroid hormones and chemotherapeutics.

Therefore, we would urge the community to carry out studies where the concentrations of BAs correspond to the reference concentrations established for the tissue or, as a proxy, to the serum reference concentrations. As a continuation of that, in the case of UDCA the therapeutic serum concentrations can also be used as a guide. These data are summarized in Table 1. Such studies would be invaluable to understand the (patho)physiological roles of BAs and would give a good frame for the therapeutic applicability.

Along the same lines, it is apparent that BAs can be considered as possible treatment options in certain cancers. Foremost, UDCA, that is a therapeutically available drug, has beneficial effects in multiple neoplasias (e.g. [227, 248, 302]. Table 5) pointing towards the possibility for repurposing UDCA. The picture for other BAs is hazier due to frequent contradictions making it hard to outline applicability. However, before the application of BAs in neoplasias we would need to decipher the cross-talk between BAs and drug metabolism, the effect on drug efficacy and drug availability, and discover the possible adverse effects of BAs, that is currently largely missing. Moreover, it is tempting to consider the manipulation of the intestinal microbiome to affect the levels of selected secondary bile acids in humans. Finally, the modulators of BA receptors should be considered as therapeutic options as well. Given the emerging evidence on the potential anti-cancer effects of BAs, further studies are vital in order to develop novel therapeutic strategies using BAs.

Search strategy and selection criteria

References to this review were identified through the prior knowledge of the authors that was complemented by systematic search of PubMed by using the combinations “Prostate cancer AND (bile acid)”, “Gastric cancer AND (bile acid)”, “Hepatocellular carcinoma AND (bile acid)”, “Oesophageal cancer AND (bile acid)”, “(bile acid) receptors AND cancer”, “(bile acid) receptors AND prostate cancer”, “(bile acid) receptors AND gastric cancer”, “(bile acid) receptors AND hepatocellular carcinoma”, “(bile acid) receptors...
AND oesophageal cancer”, “(bile acid) AND ABC AND transporter”, “(bile acid) AND SLC AND transporter”, “(bile acid) AND SLCO AND transporter”, “(bile acid) AND transport AND review”, “Farnesoid X receptor (FXR) AND the cancer types assessed in the study”, “Pregnane X receptor (PXR) AND the cancer types assessed in the study”, “Constitutive androstane receptor (CAR) AND the cancer types assessed in the study”, “Vitamin D receptor (VDR) AND the cancer types assessed in the study” “Liver X receptor (LXR) AND the cancer types assessed in the study”, “Small heterodimer partner (SHP) AND the cancer types assessed in the study”. Articles published in English were included with no restriction on publication date. All references were checked at Pub Peer, two papers were flagged ([215] and [156]), but when reviewing the reports we decided that the issues raised do not impact on the main message and kept the message.

Acknowledgements Not applicable.

Author contributions Writing and revising the manuscript: TR, DR, TK, PK, AS, PB, EM. Visualization: TR, AS.

Funding Open access funding provided by University of Debrecen. Our work was supported by grants from the NKFIH (K123975, FK128387, DE-UKNP-21–5-DE-462, ÚNKP-21–3-1-DE-105). Edit Mikó was supported by the Borayi fellowship of the Hungarian Academy of Sciences. “Project no. TKP2021-EGA-19 and TKP2021-EGA-20 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-EGA funding scheme.” PB was supported by a grant from the Hungarian Academy of Sciences (POST-COVID2021-33). Our work was supported by the Slovenian Research Agency programme grant P1-0390.

Availability of supporting data Not applicable.

Declarations

Conflict of interests The authors declare no conflict of interest.

Ethical approval and Consent to participate Not applicable.

Consent for publication All authors agreed on the publication of the current version of manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Stieger B (2003) Biliary cholesterol secretion: more lessons from patients? J Hepatol 38:843–846
2. Pellicciari R, Gioiello A, Costantino G (2006) Potential therapeutic applications of farnesoid X receptor (FXR) modulators. Expert Opin Ther Pat 16:333–341
3. Cai X, Young GM, Xie W (2021) The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim Biophys Acta Mol Basis Dis 1867:166101
4. Sipos A, Ujlaki G, Mikó E, Maka E, Szabó J, Uray K, Krasznai Z, Bai P (2021) The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 27:33
5. Kiss B, Mikó E, Sebő E, Toth J, Ujlaki G, Szabó J, Uray K, Bai P, árkosy P (2020) Oncobiosis and microbial metabolite signaling in pancreatic adenocarcinoma. Cancers (Basel) 12:E1068
6. Yoshimoto S, Loo T, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K, Ishikawa Y, Hara E, Ohtani N (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101
7. Miko E, Vida A, Kovacs T, Ujlaki G, Tencsényi G, Marton J, Sari Z, Kovacs P, Borotko A, Hußjér Z, Csonka T, Antal-Szalmas P, Watanabe M, Gombos I, Csoka B, Kiss B, Vígh L, Szabo J, Mehes G, Sebestyen A, Goedert JJ, Bai P (1859) Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim Biophys Acta Bioenerg 2018:958–974
8. Goldberg AA, Beach A, Davies GF, Harkness TA, Leblanc A, Titorenko Vl (2011) Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells. Oncotarget 2:761–782
9. Gafar AA, Draz HM, Goldberg AA, Bashandy MA, Bakry S, Khalifa MA, Abushair W, Titorenko Vl, Sanderson JT (2016) Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells. PeerJ 4:e2445
10. Luu TH, Bard JM, Carbonnelle D, Chaillou C, Huvelin JM, Bobin-Dubigeon C, Nazih H (2018) Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol 41:13–24
11. Kovács P, Csonka T, Kovács T, Sári Z, Ujlaki G, Sipos A, Karányi Z, Szécs D, Hegedüs C, Uray K, Jankó L, Kiss M, Kiss B, Laoui D, Virág L, Méhes G, Bai P, Mikó E (2019) Lithocholic acid, a metabolite of the microbiome, increases oxidative stress in breast cancer. Cancers (Basel) 11:1255
12. Rezen T, Rozman D, Pascussi JM, Monostory K (2014) Interplay between cholesterol and drug metabolism. Biochim Biophys Acta Proteins Proteom 2011:146–160
13. Hafner M, Rezen T, Rozman D (2011) Regulation of hepatic lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol 41:13–24
14. Honda A, Miyazaki T, Iwamoto H, Hirayama T, Morishita Y, Momma T, Ueda H, Mizuno S, Sugiyama F, Takahashi S, Iketani S, Takeda T (2020) Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J Lipid Res 61:54–69
15. Lorbek G, Lewinska M, Rozman D (2012) Cytochrome P450s in the synthesis of cholesterol and bile acids—from mouse models to human diseases. FEBS J 279:1516–1533
16. Monte MJ, Marín JJ, Antelo A, Vazquez-Tato J (2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15:804–816
17. MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, Louie G, Kueider-Paisley A, Moseley MA, Thompson
18. Miko E, Kovacs T, Sebo E, Toth J, Csonka T, Ujlaki G, Sipos
19. Sarin SK, Pande A, Schnabl B (2019) Microbiome as a therapeu-
T. Režen et al.
243
Page 28 of 39
21. Hofmann AF, Mysels KJ (1987) Bile salts as biological sur-
25. Kuang J, Zheng X, Huang F, Wang S, Li M, Zhao M, Sang C,
23. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB
26. Yesair DW, Himmelfarb P (1970) Hydrolysis of conjugated bile
28. Gopal-Srivastava R, Hylemon PB (1988) Purification and char-
31. Wijaya A, Hermann A, Abriouel H, Specht I, Yousif NM,
33. Tanaka H, Hashiba H, Kok J, Mieraui I (2000) Bile salt
34. Gopal-Srivastava R, Hylemon PB (1988) Purification and
35. Oh JK, Lee JY, Lim SJ, Kim MJ, Kim GB, Kim JH, Hong SK,
salt hydrolase from Lactobacillus acidophilus PF01. J Microbiol
36. Salvioh G, Salati R, Bondi M, Fratalocchi A, Sala BM, Gibert-
tini A (1982) Bile acid transformation by the intestinal flora
37. Hirano S, Masuda N (1981) Transformation of bile acids by
38. Marion S, Desharnais L, Studer N, Dong Y, Notter MD, Poudel
39. Stellwag EJ, Hylemon PB (1976) Purification and characteriza-
40. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR (2008)
41. Hofmann AF, Mysels KJ (1987) Bile salts as biological sur-
facts. Colloids Surf 30:145–173
42. Bertani B, Ruiz N (2018) Function and biogenesis of lipopoly-
43. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB
44. Ridlon JM, Devendran S, Alves JM, Doden H, Wolf PG, Pereira
45. Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-
46. Vital M, Rud T, Schlüter D (2019) Diversity
47. Narushima S, Itoha K, Miyamoto Y, Park SH, Nagata K, Kuruma
48. Vital M, Rud T, Schlüter D (2019) Diversity
49. Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-
50. Begley M, Gahan CGM, Hill C (2005) The interaction between
51. García-Quintanilla M, Prieto AI, Barnes L, Ramos-Morales F, Casadesus J (2006) Bile-induced curing of the virulence plas-
52. Merritt ME, Donaldson JR (2009) Effect of bile salts on the DNA
53. Prieto AI, Ramos-Morales F, Casadesus J (2004) Bile-induced
54. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB
55. Long SL, Gahan CCM, Joyce SA (2017) Interactions between
gut bacteria and bile in health and disease. Mol Aspects Med
56. Chikai T, Nakao H, Uchida K (2006) Deoxycholic acid formation
57. Tanaka H, Hashiba H, Kok J, Mieraui I (2000) Bile salt
58. Wijaya A, Hermann A, Abriouel H, Specht I, Yousif NM,
59. Oh JK, Lee JY, Lim SJ, Kim MJ, Kim GB, Kim JH, Hong SK,
salt hydrolase from Lactobacillus acidophilus PF01. J Microbiol
36. Salvioh G, Salati R, Bondi M, Fratalocchi A, Sala BM, Gibert-
tini A (1982) Bile acid transformation by the intestinal flora
37. Hirano S, Masuda N (1981) Transformation of bile acids by
eutrobacter fragilis subsp. fragi-
32. Hofmann AF, Mysels KJ (1987) Bile salts as biological sur-
41. Hofmann AF, Mysels KJ (1987) Bile salts as biological sur-
facts. Colloids Surf 30:145–173
42. Bertani B, Ruiz N (2018) Function and biogenesis of lipopoly-
43. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB
44. Ridlon JM, Devendran S, Alves JM, Doden H, Wolf PG, Pereira
45. Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-
46. Vital M, Rud T, Schlüter D (2019) Diversity
47. Narushima S, Itoha K, Miyamoto Y, Park SH, Nagata K, Kuruma
48. Vital M, Rud T, Schlüter D (2019) Diversity
49. Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, Méndez-
50. Begley M, Gahan CGM, Hill C (2005) The interaction between
51. García-Quintanilla M, Prieto AI, Barnes L, Ramos-Morales F, Casadesus J (2006) Bile-induced curing of the virulence plas-
52. Merritt ME, Donaldson JR (2009) Effect of bile salts on the DNA
53. Prieto AI, Ramos-Morales F, Casadesus J (2004) Bile-induced
54. Ridlon JM, Hylemon PB (2012) Identification and characteriza-
tion of two bile acid coenzyme A transferases from Clostridium
55. Long SL, Gahan CCM, Joyce SA (2017) Interactions between
gut bacteria and bile in health and disease. Mol Aspects Med
56. Chikai T, Nakao H, Uchida K (2006) Deoxycholic acid formation
57. Tanaka H, Hashiba H, Kok J, Mieraui I (2000) Bile salt
58. Wijaya A, Hermann A, Abriouel H, Specht I, Yousif NM,
59. Oh JK, Lee JY, Lim SJ, Kim MJ, Kim GB, Kim JH, Hong SK,
54. Schaffler H, Breitrick A (2018) Clostridium difficile—from colono-
ization to infection. Front Microbiol 9:646
55. Sorg JA, Sonenshein AL. (2010) Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 192:4983–4990
56. Tsuei J, Chau T, Mills D, Wan YJ (2014) Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med 239:1489–1504
57. Sčocum MM, Sittić KM, Specian RD, Deitch EA (1992) Absence of intestinal bile promotes bacterial translocation. Am Surg 58:305–310
58. van Best N, Rolle-Kampczyk U, Schaaf FG, Basic M, Olde Daminik SWM, Bleich A, Savelkoul PHM, von Bergen M, Pen-
ders I, Hornef MW (2020) Bile acids drive the newborn’s gut microbiota maturation. Nat Commun 11:3692
59. Thomas RM, Jobin C (2015) The microbiome and cancer: is the “oncobiome” mirage real? Trends in Cancer 1:24–35
60. Miko E, Vida A, Bai P (2016) Translational aspects of the micro-
biome-to-be exploited. Cell Biol Toxicol 32:153–156
61. Sári Z, Kovács T, Csonka T, Jankó L, Csonka T, Sebő É, Toth D, Árkosy P, Kovács I, Méhes G, Árkosy P, B. P, (2020) Fecal expression of E. coli lymse decarboxylase (LdcC) is downregulated in E-cadherin negative lobular breast carcinoma. Physiol Int. https://doi.org/10.1556/2060.2020.00016
62. Sári Z, Mikó E, Kovács T, Boratok A, Ujlaki G, Jankó L, Kiss B, Uray K, Bai P (2020) Indostylsulfate, a metabolite of the microbi-
ome has cytosstatic effects in breast cancer via activation of AHR and PXR receptors and induction of oxidative stress. Cancers (Basel) 12:2915
63. Sári Z, Mikó E, Kovács T, Jankó L, Csonka T, Sebő É, Toth J, Tóth D, Árkosy P, Boratok A, Ujlaki G, Tóth M, Kovács I, Szabó J, Kiss B, Méhes G, Goedert JJ, Bai P (2020) Indolepro-
ponic acid, a metabolite of the microbiome, has cytosstatic properties in breast cancer by activating AHR and PXR receptors and inducing oxidative stress. Cancers (Basel) 12:2411
64. Kovács T, Mikó E, Vida A, Sebő É, Toth J, Csonka T, Boratok A, Ujlaki G, Lente G, Kovács P, Tóth D, Árkosy P, Kiss B, Méhes G, Goedert JJ, Bai P (2019) Cadaverine, a metabolite of the micro-
bione, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep 9:1300
65. Dawson PA, Lan T, Rao A (2009) Thematic review series: Bile acids: Bile acid transporters. Am Soc Biochem Mol Biol 2:2340–2357
66. Claro Da Silva T, Polli JE, Swaan PW (2013) The solute car-
rier family 10 (SLC10): Beyond bile acid transport. Pergamon, Berlin, pp 1260–1287
67. Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bnnett NW, Corvera CU (2010) Expression and function of the bile acid receptor GprBARI (TGR5) in the murine enteric nervous system. Neuropathologeretor Motil 22:814–825
68. Keitel V, Donner M, Winandy S, Kovács R, Häussinger D (2008) Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 372:78–84
69. Sato H, Genet C, Strehle A, Thomas C, Lobstein A, Wagner N, Mioskowski C, Auwerx J, Saladin R (2007) Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europea. Biochem Biophys Res Commun 362:793–798
70. Pelliccari R, Gioiello A, Macchiariulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, Puzanszki M, Rada A, Pastoreni E, Schoonjans K, Auwerx J (2009) Discovery of glypha-ethyl-
23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem 52:7958–7961
71. Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Rizzo G, Orlandi S, Sadeghpour B, Wang XX, Jiang T, Levi M, Puz-
anszki M, Adorini L (2010) Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol 78:617–630
72. Genet C, Strehle A, Schmidt C, Boudjelal G, Lobstein A, Schoonjans K, Souchet M, Auwerx J, Saladin R, Wagner A (2010) Structure-activity relationship study of betulinic acid, a novel and selective TGR5 agonist, and its synthetic derivatives: potential impact in diabetes. J Med Chem 53:178–190
73. Zheng C, Zhou W, Wang T, You P, Zhao Y, Yang Y, Wang X, Luo J, Chen Y, Liu M, Chen H (2015) A novel TGR5 activator WB403 promotes GLP-1 secretion and preserves pancreatic β-cells in type 2 diabetic mice. PLoS ONE 10:1–16
74. Pols TWH, Nortega LG, Norum M, Auwerx J, Schoonjans K (2011) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54:1263–1272
75. Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubritz R, Ullmer C, Knoefel WT, Herebian D, Maryatpek E, Häussinger D, Keitel V (2016) TGR5 is essential for bile acid-dependent cholangiocarcinoge proliferation in vivo and in vitro. Gut 65:487–501
76. Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA, LaRusso NF (2013) Ciliary subcellu-
lar localization of TGR5 determines the cholangiocarcinoge functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 304:2
91. Guo C, Su J, Li Z, Xiao R, Wen J, Li Y, Zhang M, Zhang X, Maruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, Kanatani A, Tamai Y (2006) Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol 191:197–205
92. Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor Gpbar1 (TGR5) suppresses gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway. Oncotarget 6:34402–34413
93. Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-Protein-coupled bile acid receptor Gpbar1 (TGR5), not only a metabolic regulator. Front Physiol 7:1–9
94. Pols TWH, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, Giosiello A,adorini L, Pellicciari R, Auwerx J, Schoonjans K (2011) TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 14:747–757
95. Liu R, Zhao R, Zhou X, Liang X, Campbell DJW, Zhang X, Zhang L, Shi R, Wang G, Pandak WM, Sirica AE, Hylemon PB, Zhou H (2014) Conjugated bile acids promote cholangiocarcinoma cell invasion through activation of sphingosine 1-phosphate receptor 2. Hepatology 59:908–918
96. Liu R, Li X, Qiang X, Luo L, Hylemon PB, Jiang Z, Zhang L, Zhou H (2015) Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line. J Biol Chem 290:30988–31002
97. Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Bohdan P, Zhang L, Zhou H, Hylemon PB (2012) Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55:267–276
98. Nagahashi M, Takabe K, Liu R, Peng K, Wang X, Wang Y, Hait NC, Wang X, Allegro JC, Yamada A, Aoyagi T, Liang J, Pandak WM, Spiegel S, Hylemon PB, Zhou H (2015) Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 61:1216–1226
99. Nagahashi M, Yuzo K, Hirose Y, Nakajima M, Ramanathan R, Hait NC, Hylemon PB, Zhou H, Takabe K, Wakai T (2016) The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J Lipid Res 57:1636–1643
100. Yang J, Yang L, Tian L, Ji X, Yang L, Li L (2018) Sphingosine 1-phosphate (S1P)/S1P receptor 2/3 axis promotes inflammatory M1 polarization of bone marrow-derived macrophage via G(o) i/o /PI3K/JNK pathway. Cell Physiol Biochem 49:1677–1697
101. Karimian G, Buist-Homan M, Schmidt M, Tietje UF, de Boer JF, Klappe K, Kok JW, Combettes L, Tordjman T, Faber KN, Moshage H (1832) Sphingosine kinase-1 inhibition protects primary mammary gland carcinomas against bile salt-induced apoptosis. Biochim Biophys Acta Mol Basis Dis 2013:1922–1929
102. Hughes JE, Srinivasan S, Lynch KR, Proia RL, Ferdek P, Hedrick CC (2008) Sphingosine-1-phosphate induces an antimicrobial phenotype in macrophages. Circ Res 102:950–958
103. Grigorova IL, Schwab SR, Phan TG, Pham TH, Okada T, Cyster JG (2009) Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat Immunol 10:58–65
104. von Rosenvinge EC, Raufman JP (2011) Muscarinic receptor signaling in colon cancer. Cancers 3:971–981
105. Cheng K, Chen Y, Zimmniak P, Raufman JP, Xiao Y, Frucht H (2002) Functional interaction of lithocholic acid conjugates with M3 muscarinic receptors on a human colon cancer cell line. Biochim Biophys Acta Mol Basis Dis 1588:54–55
106. Amonyngcharoen S, Suruyto T, Thantananuwat A, Watcharsit P, Satayavivad J (2015) Taurocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway. Int J Oncol 46:2317–2326
107. Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, Morris TS, Lamph WW, Evans RM, Weinberger C (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81:687–693
108. Seol W, Choi HS, Moore DD (1996) An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272:1336–1339
109. Goodwin B, Jones SA, Price RR, Watson MA, Mckee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliwer SA (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LXR-1 represses bile acid biosynthesis. Mol Cell 6:517–526
110. Zhang M, Chiang JYL (2001) Transcriptional regulation of the human sterol 12α-hydroxylase gene (CYP7B1): roles of hepatic nuclear factor 4α in mediating bile acid repression. J Biol Chem 276:41690–41699
111. Kong B, Wang L, Chiang JYL, Zhang Y, Klaassen CD, Guo GL (2012) Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 56:1034–1043
112. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorff DJ, Karpen SJ (2001) The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121:140–147
113. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorff DJ, Suchy FJ (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276:28857–28865
114. Grobert J, Zaghini I, Fujii H, Jones SA, Kliwer SA, Willson TM, Ono T, Besnard P (1999) Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesol X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 274:29749–29754
115. Gnerre C, Blättler S, Kaufmann MR, Looser R, Meyer UA (2004) Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics 14:635–645
116. Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, Chatterjee B (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 276:42549–42556
117. Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran-Sandoval D, Kuipers F, Kosykh V, Frucht JC, Staels B (2003) FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 124:1926–1940
118. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W (2008) Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology 48:1632–1643
131. Nakamura K, Moore R, Negishi M, Sueyoshi T (2007) Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol Aspects Med 30:297–343
132. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, Mackenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kiweyer SA (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 98:3369–3374
133. Wistuba W, Gnaewuch C, Liebisch G, Schmitz G, Langmann T (2007) Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR. World J Gastroenterol 13:4230–4235
134. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci USA 98:3375–3380
135. Jonker JW, Liddle C, Downes M (2012) FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol 130:147–158
136. Li T, Chiang JYL (2005) Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7α-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol 288:74–84
137. Wallace K, Cowie DE, Konstantinou DK, Hill SJ, Tjelle TE, Axon A, Koruth M, White SA, Carlsen H, Mann DA, Wright MC (2010) The PXR is a drug target for chronic inflammatory liver disease. J Steroid Biochem Mol Biol 120:137–148
138. Kakizaki S, Yamazaki Y, Takizawa D, Negishi M (2008) New insights on the xenobiotic-sensing nuclear receptors in liver disease—CAR and PXR. Curr Drug Metab 9:614–621
139. Cheng J, Shah YM, Gonzalez FJ (2012) Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci 33:323–330
140. Zhou J, Zhai Y, Mu Y, Gong H, Uppal H, Toma D, Ren S, Evans RM, Xie W (2006) A novel pregnane X receptor-mediated and steroid regulatory element-binding protein-independent lipogenic pathway. J Biol Chem 281:15013–15020
141. Nakamura K, Moore R, Negishi M, Sueyoshi T (2007) Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J Biol Chem 282:9768–9776
142. Kodama S, Moore R, Yamamoto Y, Negishi M (2007) Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochemical Journal 407:373–381
143. Bhalla S, Ozalp C, Fang S, Xiang L, Kemper JK (2004) Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1α. Functional implications in hepatic cholesterol and glucose metabolism. J Biol Chem 279:45139–45147
144. Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W, Moore DD (1997) Differential transactivation by two isoforms of the orphan nuclear hormone receptor CAR. J Biol Chem 272:23565–23571
145. Forman BM, Tzameli I, Choi HS, Chen J, Simha D, Seol W, Evans RM, Moore DD (1998) Androstane metabolites bind to and deactivate the nuclear receptor CAR-β. Nature 395:612–615
146. Li H, Wang H (2010) Activation of xenobiotic receptors: Driving into the nucleus. Expert Opin Drug Metab Toxicol 6:409–426
147. Baes M, Gulick T, Choi HS, Martinoli MG, Simha D, Moore DD (1994) A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements. Mol Cell Biol 14:1544–1552
148. di Masi A, De Marinis E, Ascenzi P, Marino M (2009) Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol Aspects Med 30:297–343
149. Wagner M, Halilbasic E, Marschall HU, Zollner G, Fickert P, Langner C, Zatloukal K, Denk H, Trauner M (2005) CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 42:420–430
150. Han S, Chiang JY (2009) Mechanism of vitamin D receptor inhibition of cholesterol 7α-hydroxylase gene transcription in human hepatocytes. Drug Metab Dispos 37:469–478
151. Li Z, Kar Kruijt J, van der Sluijs RJ, Van Berkel TJ, Hoekstra M (2013) Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiol Genom 45:268–275
152. Norman AW (2006) Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 147:5542–5548
153. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1131–1136
154. Nehring JA, Zierold C, DeLuca HF (2007) Lithocholic acid can carry out in vivo functions of vitamin D. Proc Natl Acad Sci USA 104:10006–10009
155. Cheng J, Fang ZZ, Kim JH, Krausz KW, Tanaka N, Chiang JY, Gonzalez FJ (2014) Intestinal CYP3A4 protects against lithocholic-acid-induced hepatotoxicity in intestine-specific VDR-deficient mice. J Lipid Res 55:445–465
156. Chatterjee B, Echchgadda I, Song CS (2005) Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol 400:165–191
157. McCarthy TC, Li X, Sinal CJ (2005) Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 280:23232–23242
158. Chen X, Chen F, Liu S, Glaeser H, Dawson PA, Hofmann AF, Kim RB, Shneider BL, Pang KS (2006) Transactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1α,25-dihydroxyvitamin D3 via the vitamin D receptor. Mol Pharmacol 69:1913–1923
159. Huthakangas JA, Oliveira CJ, Bishop JE, Zanello LP, Norman AW (2004) The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 18:2660–2671
160. Han S, Li T, Ellis E, Strom S, Chiang JY (2010) A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol Endocrinol 24:1151–1164
161. Daldebert E, Biyeyme JM, Mve B, Mercey M, Wendum D, Ffrinicieli D, Coilly A, Fouassier L, Corpechot C, Poupon R, Housset C, Chignard N (2009) Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136:1435–1443
162. Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26:662–687
163. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383:728–731
164. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P (2000) Control of cellular cholesterol
efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci USA 97:12097–12102

156. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L, Hogensen J, O’Connell RM, Cheng G, Saez E, Miller JF, Tontonoz P (2004) LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119:299–309

157. De Marino S, Carino A, Masullo D, Finamore C, Marchianò S, Cipriani S, Di Leva FS, Catalanotti B, Novellino E, Limongelli V, Fiorucci S, Zampella A (2017) Hydoxoyecolic acid derivatives as liver X receptor-α and G-protein-coupled bile acid receptor agonists. Sci Rep 7:1–13

158. Zhang Y, Hagedorn CH, Wang L (1812) Role of nuclear receptor SHP in metabolism and cancer. Biochim Biophys Acta Mol Basis Dis 2011:893–908

159. Miao J, Xiao Z, Kanamaluru D, Min G, Yau PM, Veenstra TD, Ellis E, Strom S, Suino-Powell K, Xu HE, Kemper JK (2009) Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin-proteosomal degradation. Genes Dev 23:986–996

160. Miao J, Fang S, Lee J, Comstock C, Knudsen KE, Kemper JK (2009) Functional Specificities of Brm and Brg-1 Swi/Snf ATPases in the Feedback Regulation of Hepatic Bile Acid Biosynthesis. Mol Cell Biol 29:6170–6181

161. Kim KJ, Kim KH, Cho HK, Kim HY, Choong JH (2010) SHP (small heterodimer partner) suppresses the transcriptional activity and nuclear localization of Hedgehog signalling protein Gli1. Biochemical Journal 427:413–422

162. Gottle DC, Morgan AP, Ball D, Owen RW, Cooper MJ (1991) Composition of gastro-oesophageal refluxate. Gut 32:1093–1099

163. Yasuda H, Hirata S, Inoue K, Mashima H, Ohnishi H, Yoshiba K, Ito M, Yasuda M, Ota H, Haruma K (2013) Relation between bile acid reflux into the stomach and the risk of atrophic gastritis and intestinal metaplasia: a multicenter study of 2283 cases. Dig Endosc 25:519–525

164. Yu JH, Zheng JB, Qi J, Yang K, Yu WH, Wang K, Wang CB, Sun XJ (2019) Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway. Int J Oncol 54:879–892

165. XU Y, Watanabe T, Tanigawa T, Machida H, Okazaki H, Yamagami H, Watanabe K, Tominaga K, Fujiwara Y, Oshinti N, Arakawa T (2010) Bile acids induce cdx2 expression through the farnesoid x receptor in gastric epithelial cells. J Clin Biochem Nutr 46:81–86

166. Park MJ, Kim KH, Kim KY, Cheong J (2008) Bile acid induces expression of COX-2 through the homeodomain transcription factor CDX1 and orphan nuclear receptor SHP in human gastric cancer cells. Carcinogenesis 29:2385–2393

167. Wang X, Sun L, Wang X, Kang H, Ma X, Wang M, Lin S, Liu M, Dai C, Dai Z (2017) Acidified bile acids enhance tumor progression and telomerase activity of gastric cancer in mice dependent on c-Myc expression. Cancer Med 6:788–797

168. Wang X, Zhou P, Sun X, Zheng J, Wei G, Zhang L, Wang H, Yao J, Lu S, Jia P (2015) Acidified bile acids increase hTERT expression via c-myc activation in human gastric cancer cells. Oncol Rep 33:3038–3044

169. Ni Z, Min Y, Han C, Yuan T, Lu W, Ashktorab H, Smoot DT, Wu Q, Wu J, Zeng W, Shi Y (2020) TGR5-HNF4α-4phala axis contributes to bile acid-induced gastric intestinal metaplasia markers expression. Cell Death Discovery 6:56

170. Yasuda H, Hirata S, Inoue K, Mashima H, Ohnishi H, Yoshiba M (2007) Involvement of membrane-type bile acid receptor M-BAR/TGR5 in bile acid-induced activation of epidermal growth factor receptor and mitogen-activated protein kinases in gastric carcinoma cells. Biochim Biophys Res Commun 354:154–159

171. Carino A, Graziosi L, D’Amore C, Cipriani S, Marchiano S, Marino E, Zampella A, Rende M, Mosci P, Distrettu E, Domini A, Fiorucci S (2016) The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget 7:61021–61035

172. Cao W, Tian W, Hong J, Li D, Tavares R, Noble L, Moss SF, Resnick MB (2013) Expression of bile acid receptor TGR5 in gastric adenocarcinoma. Am J Physiol Gastrointest Liver Physiol 304:322–327

173. Yang HB, Song W, Cheng MD, Fan HF, Gu X, Qiao Y, Lu X, Yu RH, Chen LY (2015) Deoxycholic acid inhibits the growth of BGC-823 gastric carcinoma cells via a p53-mediated pathway. Mol Med Rep 11:2749–2754
201. Zollner G, Wagner M, Fickert P, Silbert D, Fuchsbichler A, Zat
200. Yang CS, Yuk JM, Kim JJ, Hwang JH, Lee CH, Kim JM, Oh
198. Chung GE, Yoon JH, Lee JH, Kim HY, Myung SJ, Yu SJ, Lee
197. Zhu L, Shan LJ, Liu YJ, Chen D, Xiao XG, Li Y (2014) Urso-
195. Lee S, Cho YY, Cho EJ, Yu SJ, Lee JH, Yoon JH, Kim YJ (2018)
194. Langhi C, Pedraz-Cuesta E, Donate Y, Marrero PF, Haro D,
192. Nguyen PT, Kanno K, Pham QT, Kikuchi Y, Kakimoto M, Kob-
191. Jang ES, Yoon JH, Lee SH, Lee SM, Lee JH, Yu SJ, Kim YJ,
189. Kainuma M, Takada I, Makishima M, Sano K (2018) Farnesoid
186. Song W, Yang HB, Chen P, Wang SM, Zhao LP, Xu WH, Fan HF, Gu X, Chen LY (2013) Apoptosis of human gastric carcinoma SGC-7901 induced by deoxychoolic acid via the mitochondri-
dependent pathway. Appl Biochem Biotechnol 171:1061–1071
187. Guo C, Qi H, Yu Y, Zhang Q, Su J, Yu D, Huang W, Chen WD, Wang YD (2015) The G-protein-coupled bile acid receptor Gpr5 (TGR5) inhibits gastric inflammation through antagoniz-
ing NF-κB signaling pathway. Front Pharmacol 6:287
185. Fukuse K, Ohtsuka H, Omogawa T, Oshio H, Ii T, Mutoh M, Katayose Y, Kiyotani T, Okawa M, Motoi F, Egawa S, Abe T, Unno M (2008) Bile acids repress E-cadherin through the induction of Snail and increase cancer invasiveness in human hepatobiliary carcinoma. Cancer Sci 99:1785–1792
184. Kainuma M, Takada I, Makishima M, Sano K (2018) Farnesoid X receptor activation enhances transforming growth factor β-induced epithelial-mesenchymal transition in hepatocellular carcinoma cells. Int J Mol Sci 19:1–9
190. Hu Y, Chau T, Liu HX, Liao D, Keane R, Nie Y, Yang H, Wan YJY (2015) Bile acids regulate nuclear receptor (Nur77) expression and intracellular location to control proliferation and apoptosis. Mol Cancer Res 13:281–292
191. Jang ES, Yoon JH, Lee SH, Lee SM, Lee JH, Yu SJ, Kim YJ, Lee HS, Kim CY (2014) Sodium taurocholate cotransporting polypeptide mediates dual actions of deoxycholic acid in human hepatocellular carcinoma cells: Enhanced apoptosis versus growth stimulation. J Cancer Res Clin Oncol 140:133–144
192. Nguyen PT, Kanno K, Pham QT, Kikuchi Y, Kakimoto M, Kobatake T, Otani Y, Kishikawa N, Miyauchi M, Aririko K, Ito M, Tazuma S (2020) Senescent hepatic stellate cells caused by deoxycholic acid modulates malignant behavior of hepatocellular carcinoma. J Cancer Res Clin Oncol 146:3255–3268
193. Xu Z, Huang G, Gong W, Zhou P, Zhao Y, Zhang Y, Zeng Y, Gao M, Pan Z, He F (2012) FXR ligands protect against hepatocellular inflammation via SOCS3 induction. Cell Signal 24:1658–1664
194. Langhi C, Pedraz Cuesta E, Donate Y, Marrero PF, Haro D, Rodriguez JC (2013) Regulation of N-Myc downstream regulated gene 2 by bile acids. Biochem Biophys Res Commun 434:102–109
195. Lee S, Cho YY, Cho EJ, Yu SJ, Lee JH, Yoon JH, Kim YJ (2018) Synergistic effect of ursoodeoxycholic acid on the antitumor activity of sorafenib in hepatocellular carcinoma cells via modulation of STAT3 and ERK. Internation. J Mol Med 42:2551–2559
196. Liu H, Qin CY, Han GQ, Xu HW, Meng M, Yang Z (2007) Mechanism of apoptotic effects induced selectively by urso-
dehoxycholic acid on human hepatoma cell lines. World J Gastroenterol 13:1652–1658
197. Zhu L, Shan LJ, Liu YJ, Chen D, Xiao XG, Li Y (2014) Urso-
dehoxycholic acid induces apoptosis of hepatocellular carcinoma cells in vitro. J Dig Dis 15:684–693
198. Chung GE, Yoon JH, Lee JH, Kim HY, Myung SJ, Yu SJ, Lee SH, Lee SM, Kim YJ, Lee HS (2011) Ursoodeoxycholic acid-induced inhibition of DLC1 protein degradation leads to sup-
pression of hepatocellular carcinoma cell growth. Oncol Rep 25:1739–1746
199. Lim SC, Choi JE, Kang HS, Si H (2010) Ursoodeoxycholic acid switches oxalipatin-induced necrosis to apoptosis by inhibiting reactive oxygen species production and activating p53-caspase 8 pathway in HepG2 hepatocellular carcinoma. Int J Cancer 126:1582–1595
200. Yang CS, Yuk JM, Kim JJ, Hwang JH, Lee CH, Kim JM, Oh GT, Choi HS, Jo EK (2013) Small heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mito-
ochondrial uncoupling protein 2. PLoS ONE 8:e63435
201. Zollner G, Wagner M, fickert P, Silbert D, Fuchsbichler A, Zat-
loukal K, Denk H, Trauner M (2005) Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int 25:367–379
202. Halibasic E, Claudel T, Trauner M (2013) Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol 58:155–168
203. Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M (2017) Bile acids and alcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 65:350–362
204. Zhang W, Zhou L, Yin P, Wang J, Lu X, Wang X, Chen J, Lin X, Xu G (2015) A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma. Sci Rep 5:8984
205. Knisely AS, Strautiens KS, Meier Y, Stieger B, Byrne JA, Knisely AS, Strautiens KS, Meier Y, Stieger B, Byrne JA, Knisely AS, Strautiens KS, Meier Y, Stieger B, Byrne JA
associated with and regulates hepatocellular carcinoma. Gastroenterology 134:793–802

218. Yang CS, Kim JJ, Kim TS, Lee PY, Kim SY, Lee HM, Shin DM, Nguyen LT, Lee MS, Jin HS, Kim KK, Lee CH, Kim MH, Park SG, Kim JM, Choi HS, Jo EK (2015) Small heterodimer partner interacts with NLPR3 and negatively regulates activation of the NLPR3 inflammasome. Nat Commun 6:6115

219. Gandhi D, Ojili V, Npal P, Nagar A, Hernandez-Delima FJ, Bajaj D, Choudhary G, Gupta N, Sharma P (2020) A pictorial review of gall stones and its associated complications. Clin Imaging 60:228–236

220. Fung HY, Chen YC (2016) Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective. World J Gastroenterol 22:7463–7477

221. Fu H, Li Y, Bai G, Yin R, Yin C, Shi W, Zhang LG, Li R, Zhao R (2019) Persistent cholestasis resulting from duodenal papillary carcinoma in an adolescent male: A case report. Medicine 98:e15708

222. Thomas RM, Jobin C (2020) Microbiota in pancreatic health and disease: the next frontier in microbiome research, Nature Reviews. Gastroenterol Hepatol 17:53–64

223. Rees DO, Crick PJ, Jenkins GJ, Wang Y, Griffiths WJ, Brown TH, Al-Sarireh B (2017) Comparison of the composition of bile acids in bile of patients with adenocarcinoma of the pancreas and benign disease. J Steroid Biochem Mol Biol 174:290–295

224. Adachi T, Tajima Y, Kuroki T, Mishima T, Kitasato A, Fukuda K, Tsutsui R, Kanematsu T (2006) Bile reflux into the pancreatic ducts is associated with the development of intraductal papillary carcinoma in hamsters. J Surg Res 136:106–111

225. Tucker ON, Dannenberg AJ, Yang EY, Fahey Lii TJ (2004) Bile acids induce cyclooxygenase-2 expression in human pancreatic cancer cell lines. Carcinogenesis 25:419–423

226. Nagathihalli NS, Beesetty L, Lee W, Washington MK, Chen X, Lockhart AC, Merchant NB (2014) Novel mechanistic insights into ectodomain shedding of EGFR Ligands Amphieregulin and TGF-α: impact on gastrointestinal cancers driven by secondary bile acids. Can Res 74:2062–2072

227. Kim YJ, Jeong SH, Kim EK, Cho JH (2017) Ursodeoxycholic acid suppresses epithelial-mesenchymal transition and cancer stem cell formation by reducing the levels of peroxi- doxin II and reactive oxygen species in pancreatic cancer cells. Oncol Rep 38:3632–3638

228. Reddy BS, Wynder EL (1977) Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer 39:2533–2539

229. Murakami Y, Tanabe S, Suzuki T (2016) High-fat diet-induced apoptosis of colonic epithelial cells. J Nutr Biochem 2:483–486

230. Ohsenkuhn T, Marsteller I, Hay U, Diebold J, Paumgartner G, Goke B, Sackmann M (2003) Does ursodeoxycholic acid change the proliferation of the colorectal mucosa? A randomized, placebo-controlled study. Digestion 68:209–216

231. Turner DJ, Alaish SM, Zou T, Rao JN, Wang JY, Strauch ED (2007) Bile salts induce resistance to apoptosis through NF-kappaB-mediated XIAP expression. Ann Surg 245:415–425

232. Ridlon JM, Wolf PG, Gaskins HR (2016) Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 7:201–215

233. Huang XP, Fan XT, Desjeux JF, Castagna M (1992) Bile acids, non-phorbol-ester-type tumor promoters, stimulate the phosphorylation of protein kinase C subunits in human platelets and colon cell line HT29. Int J Cancer 52:444–450

234. Moschetta A, Portincasa P, van Erpecum KJ, Debellis L, Vanberg-Henegouwen GP, Palasciano G (2003) Sphingomyelin protects against apoptosis and hyperproliferation induced by deoxycholate: potential implications for colon cancer. Dis Sci 48:1094–1101

235. Zimber A, Gaspach C (2008) Bile acids and derivatives, their nuclear receptors FXR, PXR and ligands: role in health and disease and their therapeutic potential. Anticancer Agents Med Chem 8:540–563

236. Farhana L, Nangia-Makker P, Arbit E, Shango K, Sarkar S, Mahmud H, Hadden T, Yu Y, Majumdar AP (2016) Bile acid: a potential inducer of colon cancer stem cells. Stem Cell Res Ther 7:181

237. Hori T, Matsumoto K, Sakaitani Y, Sato M, Morotomi M (1998) Effect of dietary deoxycholic acid and cholesterol on fecal steroid concentration and its impact on the colonic crypt cell proliferation in azoxymethane-treated rats. Cancer Lett 124:79–84

238. Di Ciula A, Gnarra J, Lunardi Baccetto R, Molina-Molina E, Bonfrate L, Wang DQ, Portincasa P (2017) Bile acid physiology. Ann Hepatol 16:34–34. https://doi.org/10.5064/5601.3001.0010.5493

239. Di Ciula A, Wang DQ, Molina-Molina E, Lunardi Baccetto R, Calamita G, Palmieri VO, Portincasa P (2017) Bile acids and cancer: direct and environmental-dependent effects. Ann Hepatol 16:587–590

240. Deng Z, Claycombe KJ, Reindl KM (2015) Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation. J Nutr Biochem 26:1022–1028

241. Hess LM, Krutzsch MF, Guilien J, Chow HH, Einspahr J, Batta AK, Salen G, Reid ME, Earnest DL, Alberts DS (2004) Results of a phase I multiple-dose clinical study of ursodeoxycholic acid. Cancer Epidemiol Biomark Prev 13:861–867

242. Kim EK, Cho JH, Kim EJ, Kim YJ (2017) Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth. PLoS ONE 12:1–11

243. Ragias B, Tsioulas GJ, Allan C, Wal R, Brasitus TA (1994) The effect of bile acids and piroxicam on MHC antigen expression in rat colonocytes during colon cancer development. Immunology Reviews 98:e15708

244. Alberts DS, Martinez ME, Hess LM, Einspahr JG, Green SB, Bhattahtaryya AK, Guilien J, Krutzsch M, Batta AK, Salen G, Fales L, Koonce K, Parish D, Clouser M, Roe D, Lance P (2005) Gastroenterologist, Phase III trial of ursodeoxycholic acid to prevent colorectal adenoma recurrence. J Natl Cancer Inst 97:846–853

245. Tong BY, Emond MJ, Haggitt RC, Bronner MP, Kimmy MB, Kowdley KV, Brentnall TA (2001) Ursodiol use is associated with lower prevalence of colonic neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Ann Intern Med 134:89–95

246. Serfaty L, De Leusse A, Rosmorduc O, Desaint B, Flejou JF, Chazouilleres O, Poupon RE, Poupon R (2003) Ursodeoxycholic acid therapy and the risk of colorectal adenoma in patients with...
primary biliary cirrhosis: an observational study. Hepatology 38:203–209

251. Garrett WS (2015) Cancer and the microbiota. Science 348:80–86

252. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE (2012) A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 10:575–582

253. Raskov H, Burchardt J, Pommergaard HC (2017) Linking gut microbiota to colorectal cancer. J Cancer 8:3378–3395

254. Ward JBJ, Lajczak NK, Kelly OB, O’Dwyer AM, Giddam AK, Ni Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ (2017) Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312:G550–G558

255. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–1781

256. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB (2012) Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in I10/-/- mice. Nature 487:104–108

257. Javitt NB, Budai K, Miller DG, Cahan AC, Raju U, Levitz M (1994) Breast-gut connection: origin of chenodeoxycholic acid in breast cyst fluid. Lancet 343:633–635

258. Tang W, Putluri V, Ambati CR, Dorsey TH, Putluri N, Ambus S (2019) Liver- and microbiome-derived bile acids accumulate in human breast tumors and inhibit growth and improve patient survival. Clin Cancer Res 11:1078–1432

259. Murray WR, Blackwood A, Calman KC, MacKay C (1980) Familial breast cancer and malignant breast lesions. Steroids 175:108914

260. Luo C, Zhang X, He Y, Chen H, Liu M, Wang H, Tang L, Tu G, Li K (2015) Large-scale profiling of metabolic dysregulation in ovarian cancer. J Cancer 8:316–326

261. Mukherjee S, Javitt NB, Budai K, Miller DG, Cahan AC, Raju U, Levitz M (2012) Use of plasma metabolomics to identify diagnostic biomarkers for early stage epithelial ovarian cancer. J Cancer 7:1265–1272

262. Zhou M, Guan W, Walker LD, Mezencev R, Benigno BB, Gray A, Fernández MF, McDonald JF (2010) Rapid mass spectrometric metabolic profiling of blood sera detects ovarian cancer with high accuracy. Cancer Epidemiol Biomark Prev 19:2262–2271

263. Guan W, Zhou M, Hampton CY, Benigno BB, Walker LD, Gray A, McDonald JF, Fernández FM (2009) Ovarian cancer detection from metabolic liquid chromatography/mass spectrometry data by support vector machines. BMC Bioinformatics 10:259

264. Pascual MJ, Macias RI, Garcia-Del-Pozo J, Serrano MA, Marin C, Álvarez-García M, Gonzalez-Jaen J (2001) Enhanced efficiency of the placental barrier to cis-platin through binding to glycocholic acid. Anticancer Res 21:2703–2707

265. Rough JJ, Monroy MA, Yerrum S, Daly JM (2010) Anti-proliferative effect of LXR agonist T0901317 in ovarian carcinoma cells. J Ovar Res 3:13

266. Pocelová M, Trnka J, Křížková E, Vágnerová D, Zvěřilová K, Malý V, Křížek J, Hafnerová H, Vacek J, Švábe M, Smetana J, Kopecký V (2012) Inhibition of proliferative activity of ovarian cancer cells by bile acids. J Cell Sci 125:4075–4085

267. Scates CD, Brandi L, Belloni R, Arlotta D, Di Tommaso A, De Vito AA, Polazzi B, Cavallone A, Scanziani E, Tognoni G, Gualdi A, Morelli MG, Bossi S, Belloni A, Barbier O (2008) Activators of the farnesoid X receptor negatively regulate androgen glucuronidation in human prostate cancer LNCAP cells. Biochem J 410:245–253

268. Goldberg AA, Titorenko VI, Beach A, Sanderson JT (2013) Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ 1:e122

269. Lee WS, Jung JH, Panchanathan R, Yun JW, Kim DH, Kim HJ, Kim GS, Ryu CH, Shin SC, Hong SC, Choi YH, Jung J-M (2017) Ursodeoxycholic acid induces death receptor-mediated apoptosis in prostate cancer cells. J Biomed Sci 24:16–21

270. Ke C, Hou Y, Zhang H, Fan L, Guo B, Zhang F, Yang K, Wang J, Lou G, Li K (2015) Anti-proliferative activity of hyperforin in human prostate cancer LNCaP cells. Biochem J 410:245–253

271. Liu J, Tong SJ, Wang X, Qu LX (2014) Farnesoid X receptor inhibitors inhibit LNCaP cell proliferation via the upregulation of PTEN. Exp Ther Med 8:1209–1212

272. Kaeding J, Bouchaert E, Bélanger J, Caron P, Chouinard S, Verreault M, Larouche O, Pelletier G, Staels B, Bélanger A, Barbier O (2008) Activators of the farnesoid X receptor negatively regulate androgen glucuronidation in human prostate cancer LNCAP cells. Biochem J 410:245–253
growth inhibition and apoptosis of anticancer agents in ovarian cancer cells. Int J Oncol 49:1211–1220

287. Bandera Merchan B, Morcillo S, Martin-Nuñez G, Tinahones FJ, Macías-González M (2017) The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol 167:203–218

288. Hou YF, Gao SH, Wang P, Zhang HM, Liu LZ, Ye MX, Zhou GM, Zhang ZL, Li BY (2016) 1α,25(OH)2D3 suppresses the migration of ovarian cancer SKOV-3 cells through the inhibition of epithelial–mesenchymal transition. Int J Mol Sci 17:E1285

289. Ji M, Liu L, Hou Y, Li B (2019) 1α,25-Dihydroxyvitamin D3 restrains stem cell-like properties of ovarian cancer cells by enhancing vitamin D receptor and suppressing CD44. Oncol Rep 41:3393–3403

290. Li J, Li B, Jiang Q, Zhang Y, Liu A, Wang H, Zhang J, Qin Q, Hong Z, Li BA (2018) Do genetic polymorphisms of the vitamin D receptor contribute to breast/ovarian cancer? A systematic review and network meta-analysis. Gene 677:211–227

291. Lungchukiet P, Sun Y, Kasiappan R, Quarni W, Niciosa SV, Zhang X, Bai W (2015) Suppression of epithelial ovarian cancer invasion into the omentum by 1α,25-dihydroxyvitamin D3 and its receptor. J Steroid Biochem Mol Biol 148:138–147

292. Silvagno F, Poma CB, Realmuto C, Ravarino N, Ramella A, Santoro N, D’Amelio P, Fusco L, Pescarmona G, Zola P (2010) Analysis of vitamin D receptor expression and clinical correlations in patients with ovarian cancer. Gynecol Oncol 119:121–124

293. Tamez S, Norizoe C, Takahashi D, Shimojima A, Usuda Y, Yanahara N, Tanaka T, Okamoto A, Ushimura M (2009) Vitamin D receptor polymorphisms and prognosis of patients with epithelial ovarian cancer. Br J Cancer 101:1957–1960

294. Cordes T, Hoellen F, Dittmer C, Salehin D, Kümmel S, Friedrich E, Kolben T, Hester A, Furst S, Burges A, Mahner S, Jeschke M, Rodrigues E, Rodrigues CMP, Castro-Caldas M (2017) Tauroligand metabolome and targeted bile acid profiling reveals potential novel biomarkers for drug-induced liver injury. Medicine (Baltimore) 96:e16717

295. James SC, Fraser K, Young W, Heenan PE, Garry RB, Keenan JJ, Talley NJ, Joyce SA, McNab WC, Roy NC (2021) Concentrations of faecal bile acids in participants with functional gut disorders and healthy controls. Metabolites 11:2

296. Wei W, Wang HF, Zhang Y, Zhang YL, Niu BY, Yao SK (2020) Altered metabolism of bile acids correlates with clinical parameters and the gut microbiota in patients with diarrhoea-predominant irritable bowel syndrome. World J Gastroenterol 26:7153–7172

297. Sergeev I, Keren N, Naftali T, Konikoff FM (2020) Cholecytokinin and biliary sphincterotomy increase faecal bile loss and improve lipid profile in dyslipidaemia. Dig Dis Sci 65:1223–1230

298. Zhao A, Wang S, Chen W, Zheng X, Huang F, Han X, Ge K, Rajani C, Huang Y, Yu H, Zhu J, Jia W (2020) Increased levels of conjugated bile acids are associated with human bile reflux gastritis. Sci Rep 10:11601

299. Jännti SE, Kivi-lompolo M, Ohrnberg L, Piituläinen KH, Nygren H, Oreläiš M, Hyytälinen T (2014) Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 406:7799–7815

300. Setchell KD, Rodrigues CM, Clerici C, Solinas A, Morelli A, Gurtung C, Boyer J (1997) Bile acid concentrations in human milk and rat liver tissue and in hepatocyte nuclei. Gastroenterology 112:226–235

301. Honda A, Yoshida T, Tanaka N, Matsuzaki Y, Be B, Shoda J, Osuga T (1995) Increased bile acid concentration in bile reflux gastritis. Sci Rep 10:11601

302. Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CMP (2009) Bile acids: Regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 50:1721–1734

303. Trottier J, Bialek A, Caron P, Straka RJ, Milkiewicz P, Barbier O (2011) Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PLoS ONE 6:e22094

304. García-Cañaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241

305. Ma Z, Wang X, Yin P, Wu R, Zhou L, Xu G, Niu J (2019) Serum metabolome and targeted bile acid profiling reveals potential novel biomarkers for drug-induced liver injury. Medicine (Baltimore) 98:e16717

306. Sun Z, Huang C, Shi Y, Wang R, Fan J, Yu Y, Zhang Z, Zhu K, Li M, Ni Q, Chen Z, Zheng M, Yang Z (2021) Distinct bile acid profiles in patients with chronic hepatitis B virus infection reveal metabolic interplay between host, virus and gut microbiome. Front Med 8:708495

307. Setchell KD, Rodrigues CM, Clerici C, Solinas A, Morelli A, Gurtung C, Boyer J (1997) Bile acid concentrations in human milk and rat liver tissue and in hepatocyte nuclei. Gastroenterology 112:226–235

308. Honda A, Yoshida T, Tanaka N, Matsuzaki Y, Be B, Shoda J, Osuga T (1995) Increased bile acid concentration in bile reflux gastritis. Sci Rep 10:11601

309. Yao Z, Zhang X, Zhao F, Wang S, Chen A, Huang B, Wang J, Li X (2020) Ursodeoxycholic acid inhibits glisoblastoma progression via endoplasmic reticulum stress related apoptosis and synergizes with the proteasome inhibitor bortezomib. ACS Chem Neurosci 11:1337–1346

310. Fonseca I, Gordin G, Moreira S, Nunes MJ, Azavedo C, Gama MJ, Rodrigues E, Rodrigues CMP, Castro-Caldas M (2017) Tauroursodeoxycholic acid protects against mitochondrial dysfunction and cell death via mitophagy in human neuroblastoma cells. Mol Neurobiol 54:6107–6119

311. Yu H, Fu QR, Huang ZJ, Lin JY, Chen QX, Wang Q, Shen DY (2019) Apoptosis induced by ursodeoxycholic acid in human melanoma cells through the mitochondrial pathway. Oncol Rep 41:213–223

312. Liu H, Xu HW, Zhang YZ, Huang Y, Han GQ, Liang TJ, Wei LL, Qin CY, Qin CK (2015) Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice. World J Gastroenterol 21:10367–10374
The role of bile acids in carcinogenesis

334. Alasmael N, Mohan R, Meira LB, Swales KE, Plant NJ (2016) Anticancer effect of ursodeoxycholic acid in human oral squamous carcinoma HSC-3 cells through the caspases. Nutrients 7:3200–3218

339. Fimognari C, Lenzi M, Cantelli-Forti G, Hrelia P (2009) Apoptosis and modulation of cell cycle control by bile acids in human leukemia T cells. Ann N Y Acad Sci 1171:264–269

320. Wu YC, Chiu CF, Hsueh CT, Hsueh CT (2018) The role of bile acids in cellular invasiveness of gastric cancer. Cancer Cell Int 18:1–8

321. Lim SC, Duong HQ, Choi JE, Lee TB, Kang JH, Oh SH, Han SI (2011) Lipid raft-dependent death receptor 5 (DR5) expression and activation are critical for ursodeoxycholic acid-induced apoptosis in gastric cancer cells. Carcinogenesis 32:723–731

322. Lim SC, Duong HQ, Parajuli KR, Han SI (2012) Pro-apoptotic role of the MEK/ERK pathway in ursodeoxycholic acid–induced apoptosis in SNU601 gastric cancer cells. Oncol Rep 28:1429–1434

323. Lim SC, Han SI (2015) Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death. Oncol Rep 34:1261–1268

324. Peng S, Huo X, Rezaei D, Zhang Q, Zhang X, Yu C, Asanuma K, Cheng E, Pham TH, Wang DH, Chen M, Souza RF, Specchier SJ (2014) In Barrett’s esophagus patients and Barrett’s cell lines, ursodeoxycholic acid increases antioxidant expression and prevents DNA damage by bile acids. Am J Physiol Gastrointest Liver Physiol 307:129–139

325. Abdel-Latif MM, Inoue H, Reynolds JV (2016) Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells. Eur J Cancer Prev 25:368–379

326. Goldman A, Condon A, Adler E, Minnella M, Bernstein C, Bernstein H, Dvorak K (2010) Protective effects of glycuronodeoxycholic acid in Barrett’s esophagus cells. Dis Esophagus 23:83–93

327. Im E, Akare S, Powell A, Martinez JD (2005) Ursodeoxycholic acid can suppress deoxycholic acid-induced apoptosis by stimulating Akt/PKB-dependent survival signaling. Nutr Cancer 51:110–116

328. Saeki T, Yui S, Hirai T, Fujii T, Okada S, Kanamoto R (2012) Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosis formation. Nut Cancer 64:617–626

329. Peiró-Jordán R, Krishna-Subramanian S, Hanski ML, Lüscher-Firzlaff J, Zeitz M, Hanski C (2012) The chemopreventive agent ursodeoxycholic acid inhibits proliferation of colon carcinoma cells by suppressing c-Myc expression. Eur J Cancer Prev 21:413–422

330. Shah SA, Volkov Y, Arfin Q, Abdel-Latif MM, Kelleher D (2006) Ursodeoxycholic acid inhibits interleukin beta 1 and deoxycholic acid-induced activation of NF-kB and AP-1 in human colon cancer cells. Int J Cancer 118:532–539

331. Feldman R, Martinez JD (2009) Growth suppression by ursodeoxycholic acid involves cavelin-1 enhanced degradation of EGFR. Biochem Biophys Acta 1793:1387–1394

332. Kim YH, Kim JH, Kim BG, Lee KL, Kim JW, Koh S-J (2019) Tauroursodeoxycholic acid attenuates colitis-associated colon cancer by inhibiting nuclear factor kappaB signaling. J Gastroenterol Hepatol 34:544–551

333. Alpini G, Kanno N, Phinney JL, Glaser S, Francis H, Taffetani S, LeSage G (2004) Tauroursodeoxycholate inhibits human cholangiocarcinoma growth via Ca2+-, PKC-, and MAPK-dependent pathways. Am J Physiol Gastrointest Liver Physiol 286:973–982

334. Almasael N, Mohan R, Meira LB, Swales KE, Plant NJ (2016) Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential. Cancer Lett 370:250–259

335. Sun J, Mustafi R, Cerda S, Chumsangsri A, Xia YR, Li YC, Bissonnette M (2008) Lithocholic acid down-regulation of NF-kappaB activity through vitamin D receptor in colonic cancer cells. J Steroid Biochem Mol Biol 111:37–40

336. Vogel SM, Bauer MR, Joergner AC, Wilcken K, Brandt T, Veprintsev DB, Rutherford TJ, Fersht AR, Boeckler FM (2012) Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc Natl Acad Sci USA 109:16906–16910

337. Powell AA, LaRue JM, Battka AK, Martinez JD (2001) Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells. Biochem J 356:481–486

338. Qiao D, Im E, Qi W, Martinez JD (2002) Activator protein-1 and CCAAT/enhancer-binding protein mediated GADD153 expression is involved in deoxycholic acid-induced apoptosis. Biochem Biophys Acta 1583:108–116

339. Lin R, Zhan M, Yang L, Wang H, Shen H, Huang S, Huang X, Xu S, Zhang Z, Li W, Liu Q, Shi Y, Chen W, Yu J, Wang J (2020) Deoxycholic acid modulates the progression of gallbladder cancer through N(6)-methyladenosine-dependent microRNA maturation. Oncogene 39:4983–5000

340. Pyo JS, Ko YS, Kang G, Kim WH, Lee BL, Sohn JH (2015) Bile acid induces MUC2 expression and inhibits tumor invasion in gastric carcinomas. J Cancer Res Clin Oncol 141:1181–1188

341. Krishnamurthy K, Wang G, Rokkfeld D, Bierberich E (2008) Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res 10:1–16

342. Yoon JH, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ (2002) Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology 122:985–993

343. Baek MK, Park JS, Park JH, Kim MH, Kim HD, Bae WK, Chung II, Shin BA, Jung YD (2010) Lithocholic acid upregulates uPAR and cell invasiveness via MAPK and AP-1 signaling in colon cancer cells. Cancer Lett 290:123–128

344. Debruyne PR, Brouneck EA, Karaguni IM, Li X, Flatau G, Muller O, Zimer B, Gespach C, Mareel MM (2002) Bile acids stimulate invasion and haptotaxis in human colorectal cancer cells through activation of multiple oncogenic signaling pathways. Oncogene 21:6740–6750

345. Halvorsen B, Staaf AC, Lgaard S, Prydz K, Kolset SO (2000) Lithocholic acid and sulphated lithocholic acid differ in the ability to promote matrix metalloproteinase secretion in the human colon cancer cell line CaCo-2. Biochem J 349:189–193

346. Nguyen TT, Lian S, Ung TT, Xia Y, Han JY, Jung YD (2017) Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity. J Cell Biochem 118:2958–2967

347. Nguyen TT, Ung TT, Li S, Lian S, Xia Y, Park SY, Do Jung Y (2019) Metformin inhibits lithocholic acid-induced interleukin 8 upregulation in colorectal cancer cells by suppressing ROS production and NF-kB activity. Sci Rep 9:1–13

348. Cheng K, Raunap J-P (2005) Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Biochem Pharmacol 70:1035–1047

349. Payne CM, Weber C, Crowley-Skillicorn C, Dvorak K, Bernstein H, Bernstein C, Holubeck B, Dvorakova B, Garewal H (2007) Deoxycholate induces mitochondrial oxidative stress and activates NF-kB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis 28:215–222

350. Centuori SM, Gomes CJ, Trujillo J, Borg J, Brownlee J, Putnam CW, Martinez JD (1861) Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of
calcium signaling in colon cancer cells. Biochem Biophys Acta 2016;663–670

351. Zhu Y, Zhu M, Lance P (2012) Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells. Biochem Biophys Res Commun 425:607–612

352. Pai R, Tarnawski AS, Tran T (2004) Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol Biol Cell 15:2156–2163

353. Li Z, Tanaka M, Kataoka H, Nakamura R, Sanjar R, Shinnura K, Sugimura H (2003) EphA2 Up-regulation induced by deoxycholic acid in human colon carcinoma cells, an involvement of extracellular signal-regulated kinase and p38-independence. J Cancer Res Clin Oncol 129:703–708

354. Milovic V, Teller IC, Murphy GM, Caspary WF, Stein J (2001) Deoxycholic acid stimulates migration in colon cancer cells. Eur J Gastroenterol Hepatol 13:945–949

355. Milovic V, Teller IC, Faust D, Caspary WF, Stein J (2002) Effects of deoxycholate on human colon cancer cells: apoptosis or proliferation. Eur J Clin Invest 32:29–34

356. Qiao D, Stratagouleas ED, Martinez JD (2001) Activation and role of mitogen-activated protein kinases in deoxycholic acid-induced apoptosis. Carcinogenesis 22:35–41

357. Qiao D, Gaitonde SV, Qi W, Martinez JD (2001) Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation. Carcinogenesis 22:957–964

358. Lee HY, Crawley S, Hokari R, Kwon S, Kim YS (2010) Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3K/Akt/kappaB/NF-kappaB and p38/MK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway. Int J Oncol 36:941–953

359. Lechner S, Müller-Ladner U, Schloßmann K, Jung B, McClendon M, Rüschhoff J, Welsh J, Scholmerich J, Kullmann F (2002) Bile acids mimic oxidative stress induced upregulation of thioredoxin reductase in colon cancer cancer cells. Carcinogenesis 23:1281–1288

360. Lee DK, Park SY, Baik SK, Kwon SO, Chung JM, Oh E-S, Kim HS (2004) Deoxycholic acid-induced signal transduction in HT-29 cells: role of NF-kappaB and interleukin-8. Korean J Gastroenterol 43:176–185

361. Fu T, Coulter S, Yoshihara E, Oh TG, Fang S, Cayabab F, Zhu Q, Zhang T, Leblanc M, Liu S, He M, Waiznegrer W, Gasser E, Schnabl B, Atkins AR, Yu RT, Knight R, Liddle C, Downes M, Evans RM (2019) FXR regulates intestinal cancer stem proliferation. Cell 176:1098-1112.e1018

362. Casaburi I, Avena P, Lanzino M, Siscì D, Giordano F, Maris P, Catalano S, Morelli C, Andò S (2012) Chenodeoxycholic acid through a TGR5-dependent CREB signaling activation enhances cyclin D1 expression and promotes human endometrial cancer cell proliferation. Cell Cycle 11:2699–2710

363. Gao L, Lv G, Li R, Liu WT, Zong C, Ye F, Li XY, Yang X, Jiang JH, Hou XI, Jing YY, Han ZP, Wei LX (2019) Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/mTOR dependent autophagy activation. Cancer Lett 454:215–223

364. Liao M, Zhao J, Wang T, Duan J, Zhang Y, Deng X (2011) Role of bile salt in regulating McI-1 phosphorylation and chemoresistance in hepatocellular carcinoma cells. Mol Cancer 10:1–9

365. Zhou M, Qi Z, Zhao J, Liao M, Wen S, Manyi Y (2017) Phosphorylation of Bel-2 plays an important role in glycochenodeoxycholate-induced survival and chemoresistance in HCC. Oncol Rep 38:1742–1750

366. Xie G, Wang X, Huang F, Zhao A, Chen W, Yan J, Zhang Y, Lei S, Ge K, Zheng X, Liu J, Su M, Liu P, Jia W (2016) Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer 139:1764–1775

367. Shellman Z, Aldahhaining A, Verdon B, Mather M, Paleri V, Wilson J, Pearson J, Ward C, Powell J (2016) Bile acids: a potential role in the pathogenesis of pharyngeal malignancy. Clin Otolar- yngol 30:12822

368. Liu X, Chen B, You W, Xue S, Qin H, Jiang H (2018) The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer. Cancer Lett 412:194–207

369. Sharma R, Quilty F, Gilmer JF, Long A, Byrne AM (2017) Unconjugated secondary bile acids activate the unfolded protein response and induce golgi fragmentation via a src-kinase-dependent mechanism. Oncotarget 8:967–978

370. Yan CJ, Izzo JG, Lee DF, Guha S, Wei Y, Wu TT, Chen CT, Kuo HP, Hsu JM, Sun HL, Chou CK, Buttar NS, Wang KK, Huang P, Anaji J, Hung MC (2008) Bile acid exposure up-regulates tuberous sclerosis complex 1/mammalian target of rapamycin pathway in Barrett’s-associated esophageal adenocarcinoma. Can Res 68:2632–2640

371. Soma T, Kaganoi J, Kawabe A, Kondo K, Tsunoda S, Ima- mura M, Shimada Y (2006) Chenodeoxycholic acid stimulates the progression of human esophageal cancer cells: a possible mechanism of angiogenesis in patients with esophageal cancer. Int J Cancer 119:771–782

372. Prichard DO, Byrne AM, Murphy JO, Reynolds JV, O’Sullivan J, Feighery R, Doyle B, Eldin OS, Finn SP, Maguire A, Duff D, Kelleher DP, Long A (2017) Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett’s oesophagus by modulating integrin-αv trafficking. J Cell Mol Med 21:3612–3625

373. Morrow DJ, Avissar NE, Toia L, Redmond EM, Watson TJ, Jones C, Raymond DP, Little V, Peters JH (2009) Pathogenesis of Barrett’s esophagus: bile acids inhibit the Notch signaling pathway with induction of CDX2 gene expression in human esophageal cells. Surgery 146:712–714

374. Burnat G, Majka J, Konturek PC (2010) Bile acids are multifunctional modulators of the Barrett’s carcinogenesis. J Physiol Pharmacol 61:185–192

375. Zhang R, Yin X, Shi H, Wu J, Shakya P, Liu D, Zhang J (2014) Adiponectin modulates DCA-induced inflammation via the ROS/NF-kappaB signaling in esophageal adenocarcinoma cells. Dig Dis Sci 59:89–97

376. Roesly HB, Khan MR, Chen HDR, Hill KA, Narendran N, Watts GS, Chen X, Dvorak K (2012) The decreased expression of Beclin-1 correlates with progression to esophageal adenocarcinoma: The role of deoxycholic acid. Am J Physiol Gastrointest Liver Physiol 302:864–872

377. Huo X, Juergens S, Zhang X, Rezaei D, Yu C, Strauch ED, Wang YJ, Cheng E, Meyer F, Wang DH, Zhang Q, Spechler SJ, Souza RF (2011) Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign barrett’s epithelial cells. Am J Physiol Gastrointest Liver Physiol 301:278–286

378. Jenkins GJS, D’Souza FR, Suzen SH, Eltahir ZS, James SA, Parry JM, Griffiths PA, Baxter JN (2007) Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: The potential role of anti-oxidants in the development of gastroesophageal reflux disease and Barrett’s oesophagus. Carcinogenesis 28:136–142

379. Jenkins GJS, Cronin J, Alhamdani A, Rawat N, D’Souza F, Thomas T, Eltahir Z, Griffiths PA, Baxter JN (2008) The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-κB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis 23:399–405

380. Song S, Guha S, Liu K, Buttar NS, Bresalier RS (2007) COX-2 induction by unconjugated bile acids involves reactive oxygen
The role of bile acids in carcinogenesis

species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 56:1512–1521

381. Hu Y, Jones C, Gellersen O, Williams VA, Watson TJ, Peters JH (1960) Pathogenesis of Barrett esophagus: deoxycholic acid up-regulates goblet-specific gene MUC2 in concert with CDX2 in human esophageal cells. Arch Surg 142(2007):540–545

382. Wu JT, Gong J, Geng J, Song YX (2008) Deoxycholic acid induces the overexpression of intestinal mucin, MUC2, via NF-kB signaling pathway in human esophageal adenocarcinoma cells. BMC Cancer 8:1–10

383. Looby E, Abdel-Latif MMM, Athié-Morales V, Duggan S, Long A, Kelleher D (2009) Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells. BMC Cancer 9:1–15

384. Chen M, Ye A, Wei J, Wang R, Poon K (2020) Deoxycholic acid upregulates the reprogramming factors KFL4 and OCT4 through the IL-6/STAT3 pathway in esophageal adenocarcinoma cells. Technol Cancer Res Treat 19:1533033820945302

385. Xu Y, Feingold PL, Surman DR, Brown K, Xi S, Davis JL, Hernandez J, Schrump DS, Ripley RT (2017) Bile acid and cigarette smoke enhance the aggressive phenotype of esophageal adenocarcinoma cells by downregulation of the mitochondrial uncoupling protein-2. Oncotarget 8:101057–101071

386. Joshi S, Cruz E, Rachagani S, Guha S, Brand RE, Ponnusamy MP, Kumar S, Batra SK (2016) Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer. Mol Oncol 10:1063–1077

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.