Profiling the long noncoding RNA interactome in the regulatory elements of target genes by chromatin in situ reverse transcription sequencing

Shilin Zhang1*, Yichen Wang1*, Lin Jia1*, Xue Wen1*, Zhonghua Du1*, Cong Wang1,2, Yajing Hao3, Dehai Yu1, Lei Zhou1, Naifei Chen1, Jingchen Chen1,2, Huiling Chen4, Hui Zhang7, Ilkay Celik2, Günhan Gülsoy6, Jianjun Luo3, Baoming Qin7, Xueling Cui8, Zhonghui Liu8, Songling Zhang1#, Miguel A. Esteban7#, Ferhat Ay5#, Wei Xu1#, Runsheng Chen3#, Wei Li1#, Andrew R. Hoffman2#, Ji-Fan Hu1,2#, Jiuwei Cui1#

1 Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
2 Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
3 CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, P.R. China
4 Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
5 La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
6 Google Inc., Mountain View, CA 94043, USA
7 Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
8 Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
Supplemental Tables

Table S1. Top fifty RNAs that interact with the Sox2 promoter

gene.id	gene.name	Description	locus	p-value	Quality
ENSMUSG00000075014	Gm10800	predicted_gene_10800	299666546-96667301	0.000	0.00
ENSMUSG00000079312	Gm26870	predicted_gene_26870	2996662236-96664063	0.000	0.00
ENSMUSG00000075015	Gm10801	predicted_gene_10801	2996662366-96664083	0.000	0.00
ENSMUSG00000058691	Gm10717	predicted_gene_10717	2996662813-96663316	0.000	0.00
ENSMUSG00000095280	Gm21738	predicted_gene_21738	3000002813-96663316	0.000	0.00
ENSMUSG00000069547	Gm10719	predicted_gene_10719	3000002813-96663316	0.000	0.00
ENSMUSG00000086519	Gm10721	predicted_gene_10721	3000002813-96663316	0.000	0.00
ENSMUSG00000095186	Gm10718	predicted_gene_10718	3000002813-96663316	0.000	0.00
ENSMUSG00000074564	Gm10720	predicted_gene_10720	3000002813-96663316	0.000	0.00
ENSMUSG00000091028	Gm10722	predicted_gene_10722	3000002813-96663316	0.000	0.00
ENSMUSG00000096201	Gm10715	predicted_gene_10715	3000002813-96663316	0.000	0.00
ENSMUSG00000096662	Gm10714	predicted_gene_10714	3000002813-96663316	0.000	0.00
ENSMUSG00000079600	Gm17604	predicted_gene_17604	3000002813-96663316	0.000	0.00
ENSMUSG00000096736	Gm17535	predicted_gene_17535	3000002813-96663316	0.000	0.00
ENSMUSG00000016234	Gm43535	predicted_gene_43535	3000002813-96663316	0.000	0.00
ENSMUSG00000016028	Gm43520	predicted_gene_43520	3000002813-96663316	0.000	0.00
ENSMUSG00000066810	Gm10101	predicted_gene_10101	3000002813-96663316	0.000	0.00
ENSMUSG00000088607	Pflx21	plxipoxeny_associated_transcript_21	3000002813-96663316	0.000	0.00
ENSMUSG00000016612	Gm43078	predicted_gene_43078	3000002813-96663316	0.000	0.00
ENSMUSG00000064945	Rny3	RNA-Y3 small cytoplasmic-associated_with_Ro_protein	3000002813-96663316	0.000	0.00
ENSMUSG00000010826	Snhg14	small_nuclear_RNA_host_gene_14	3000002813-96663316	0.000	0.00
ENSMUSG00000010628	Gm4358	predicted_gene_4358	3000002813-96663316	0.000	0.00
ENSMUSG00000031654	Cbml1	cerebellin_1_precurso protein	3000002813-96663316	0.000	0.00
ENSMUSG00000026790	Od71f	outer_dense_fiber_of_sperm_tails_2	3000002813-96663316	0.000	0.00
ENSMUSG00000080592	Gm17571	predicted_gene_17571	3000002813-96663316	0.000	0.00
ENSMUSG00000017569	RP24-47KCI5.2	-	3000002813-96663316	0.000	0.00
ENSMUSG00000013322	Gm37404	predicted_gene_37404	3000002813-96663316	0.000	0.00
ENSMUSG00000085328	Gm17131	predicted_gene_17131	3000002813-96663316	0.000	0.00
ENSMUSG00000094472	Gm21987	predicted_gene_21987	3000002813-96663316	0.000	0.00
ENSMUSG00000055491	Pprc1	peroxisome_proliferative_activsed_receptor_gama_coactivator_related_1	3000002813-96663316	0.000	0.00

2
Table S2. Top fifty pathways of the Sox2 promoter-interacting RNAs

pathway ID	PATHWAY_DESC	target_gene_in_this_pathway	target_gene_in_all_pathway	rich_factor	P_Value	q_value		
mmu0110	Metabolic pathways	143	121	1286	7510	0.7449539	1	1
mmu0200	Pathways in cancer	56	121	397	7510	0.9450021	1	1
mmu0415	PDK-Akt signaling pathway	53	121	345	7510	1.0281794	0.7723307	1
mmu0460	Neuroactive ligand-receptor interaction	47	121	285	7510	1.1048033	0.4516955	1
mmu0492	ligand-receptor interaction	45	121	198	7510	1.5225854	0.0086541	0.6585235
mmu0414	Endocytosis	45	121	282	7510	1.0690493	0.5969877	1
mmu0415	Rap1 signaling pathway	40	121	215	7510	1.2463955	0.4532003	1
mmu0410	MAPK signaling pathway	40	121	258	7510	1.0591898	0.6498145	1
mmu0420	Calcium signaling pathway	38	121	180	7510	1.6143126	0.0305302	1
mmu0505	Proteoglycans in cancer	38	121	203	7510	1.2540793	0.1516755	1
mmu0414	RAS signaling pathway	37	121	229	7510	1.0824319	0.5657807	1
mmu0430	Axon guidance	36	121	175	7510	1.3781573	0.0522714	1
mmu0480	Regulation of actin cytoskeleton	36	121	217	7510	1.1115171	0.4730308	1
mmu0472	Phosphatidylinositol 3-kinase pathway	35	121	143	7510	1.6397073	0.0052294	0.7425711
mmu0422	cGMP-PKG signaling pathway	35	121	172	7510	1.3623246	0.0882948	1
mmu0450	Focal adhesion	35	121	203	7510	1.1556648	0.3512603	1
mmu0470	Olfactory transduction	30	121	1082	7510	0.1867498	1	1
mmu0474	Glioma signaling pathway	28	121	115	7510	1.6311523	0.0121716	0.4901462
mmu0426	Adrenergic signaling in cardiomyocytes	28	121	140	7510	1.2594341	0.1978534	1
mmu0430	Hippo signaling pathway	28	121	154	7510	1.2180583	0.2860805	1
mmu0450	Trifluridine signaling pathway	27	121	140	7510	1.2920224	0.1633235	1
mmu0421	Cytokine-cytokine receptor interaction	27	121	265	7510	0.6825779	1	1
mmu0515	Phosphatidylinositol 3-kinase pathway	26	121	176	7510	0.9155512	1	1
mmu0450	Signaling pathways regulating pluripotency of stem cells	25	121	140	7510	1.1006117	0.5638137	1
mmu0452	Chemokine signaling pathway	23	121	197	7510	0.7821806	1	1
mmu0496	FoxO signaling pathway	22	121	134	7510	1.0999875	0.5544964	1
mmu0430	Jak-STAT signaling pathway	22	121	161	7510	0.9154435	1	1
mmu0515	Tuberculosis	22	121	176	7510	0.8374219	1	1
mmu0530	Urease metabolism	22	121	178	7510	0.9280127	1	1
mmu0411	Insulin secretion	21	121	80	7510	1.6356834	0.0256943	1
mmu0473	Glioblastoma multiforme	21	121	98	7510	1.4264906	0.0894218	1
mmu0470	Inflammatory mediator regulation of TRP channels	21	121	126	7510	1.1166825	0.5246433	1
mmu0491	Insulin signaling pathway	21	121	142	7510	0.9807527	1	1
mmu0454	Cell adhesion molecules (CAMs)	21	121	164	7510	0.8574849	1	1
mmu0515	Influenza A	21	121	171	7510	0.927303	1	1
mmu0515	Epstein-Barr virus infection	21	121	217	7510	0.6463657	1	1
mmu0420	Adipogenesis	20	121	74	7510	1.810642	0.010298	0.7313571
mmu0520	Morphine addiction	20	121	83	7510	1.4487259	0.0359613	1
mmu0470	Phosphatidylinositol signaling system	20	121	96	7510	1.3570322	0.1794444	1
mmu0472	Pancreatic secretion	20	121	101	7510	1.329655	0.1756367	1
mmu0470	Retinoic acid signaling pathway	20	121	102	7510	1.3186031	0.1096189	1
mmu0460	HIF-1 signaling pathway	20	121	110	7510	1.2389085	0.3109193	1
mmu0491	Insulin resistance	20	121	111	7510	1.2678047	0.330999	1
mmu0515	Glioblastoma multiforme	20	121	112	7510	1.1563171	0.3561545	1
mmu0472	Glioblastoma multiforme	20	121	120	7510	1.0150969	0.832695	1
ID	Oligo Name	Oligo sequence	Product size					
----	------------	----------------	--------------					
RT-PCR								
Platr10	SJ229	CACTGCTGTTTTGGAGCTCCAT	121bp					
	SJ230	TGGGACAGTCTCTGGATGGCCT						
Pou5f1	J648	CAGAGGATGCTGAGTGGGCTGTA	142bp					
	J649	TCAACCCTCAAGGTCCTCCAC						
Sox2	J652	GAAGTTTTGAGCCCGAGGCTTAAG	164bp					
	J653	TGCACGCGCCCTGCGGAGATCTG						
Nanog	J650	GCTTAGGGGGCATTCTCTGATCTA	133bp					
	J651	ACCTGAAACCTCCACTAGAGT						
Peln4	JH4902	TGGCAGCCTCTGGATGGGCA	122bp					
	JH4093	CTTCCTCTGACTTGGTAACATC						
Actb	J880	CAGGTCATACCATGGCAATGAGC	135bp					
	J881	CGGATGTCCACGTCAACATGAGT						
U2	JH1055	ATCTGTTCCTTACGTTTAATATCTG	151bp					
	JH1056	GGGTGCACCCTCTGGAGGTA						
shRNAs								
Platr10		TTCTGTGTATCTGTGGAGCCAGGCA						
	1	CCTGCTGCTCTGTAATCAATCCAAATGTA						
	2	CTGCCAGCATCTGACTAAGATAGAT						
	3	TAGATGCTCTCTCCAGGAGGTAG						
	4							
Snhg14		TTCAAAACAATTTGTGAAGAATGTAA						
	1	TCTCAGTATGTCAATAGATGAAG						
	2							
Control (shCT)		GCAGCAACCTGGACACGTGATCTTAA						
CRIST Cas9 gRNA								
Sox2	pSox2-1	GGGGGTGAGGACACGTGCTG						
	pSox2-2	GAGGCAATTCGCCCTCATCAGCAT						
	5'-gCT	GAGAGGTACAATGGTCACTC						
Pou5f1	pPou5f1-1	GAACATTCAATGGATGTTC						
pPou5f1-2

5'-gCT	GTGTGAGGGGATTTGGGCTC
	GAAGTGAGGATGATCCTCTGA

FLI1

pFL11-1	GATGAGTGGGTAGCCGCTC
pFL11-2	GTGGACCGCGTATTGCAAG
5'-gCT	GTATGACTGGTGTCCTTTATA

IGF2

pIGF2-1	GCCTTGGCTTTCCCCAAAATT
pIGF2-2	GTCGCCCGGCTTCCAGATAAG
5'-gCT	GTTCTACGGGTGTATGTCAA

Control (gCT)

| GAAGTGAGGATGATCCTCTGA |

LncRNA PCR

LncRNA	Accession	Sequence	Length
Spilr32	JH4117	GAGTAGTGCATTAACTAACGGA	112bp
	JH4118	CCACCTCTAGTTTTCAGAATC	
Spilr33	JH4119	GAGATGTTGCTAAACCAGG	102bp
	JH4120	GAGGCACCTGGAGGACGATG	
Spilr22	JH4096	CTCAGGCTTAAGCTCCAAGGC	126bp
	JH4097	CTTGATGCTGCCCTTCCAAGC	
Spilr5	JH4016	CCGATTGCTGCTGTTTACTT	118bp
	JH4017	CCAGGCTCAGGTTAGCTCCAAC	
Spilr7	JH4020	TGGGCCTTCAGACTCTATCCA	113bp
	JH4021	GCCTCAGGTCGCCATCCAAC	
Spilr8	JH4082	CTCGGAGAGGCTCAGCCACATG	119bp
	JH4083	GAGCTGTCAGCAACATGACATGTC	
Spilr9	JH4027	CACTGCTGGTTTGAGGCTCCCATG	122bp
	JH4028	GTGGGACAGTCTGGATGCGCT	
Snhg14	JH5188	CTGCACTGCAAGAGTAAGTGC	159bp
	JH5189	TGGCCTGTGAACTCAGGCTTA	
Snurf	JH5190	TCAATTGCACTCTGCAAGGCT	208bp
	JH5191	GGCACGAGCAATGCTGTA	
Actb	J880	CAGGTCTACACCAGTAGGATGAAC	135bp
	J881	CGGATGTCACGTCAGCTCATGA	

Sox2

5-Ct	JH4405	CATAGTAGCTCCCCAATCAAAATGG	135bp
JH4406	AATGCAAGGGATTTGAGCTGCACG		
pSox2	JH4373	GAGGCAATCCCGTACGATG	136bp
JH4374	CGCTGGGAAATCTTTGTTCATC		
Off target	JH5877	AGCCACCTGCTGCTCCTCGCTG	128bp
	JH5878	CTGCACGAGATGCAGGGAT	
A. CRIST-seq

Fixation of Cas9-gRNA cells

Cas9-promoter IncRNA complex

Nuclear RNA in situ reverse transcription

Cas9-FLAG immunoprecipitation

Biotinylated cDNA bead purification

Quantitative PCR

Fold enrichment

cDNA library sequencing

Promoter IncRNA interactome

Figure S1. CRIST-seq assay to map the promoter IncRNA interactome.

Chromatin-RNA in situ reverse transcription trap sequencing (CRIST-Seq) assay. Cells were transfected with CRISPR dCas9 gRNA to target the gene promoter. The Cas9-gRNA expressing cells were crosslinked by formaldehyde to fix the promoter RNA chromatin structure. After cell membrane lysis, the nuclei were isolated and the promoter-interacting RNAs were in situ reverse transcribed into cDNAs with biotin-dCTP. The promoter biotin-cDNA chromatin complex was first immunoprecipitated by a Cas9-FLAG antibody, and the promoter-interacting biotin-cDNAs were separated from genomic DNAs by streptavidin beads. The CRIST-captured chromatin cDNAs were aliquoted for Illumina library sequencing or quantitative PCR to measure the enrichment of the identified IncRNAs to the target gene promoter.
A. Sox2 CRIST targeting vector

Sox2 Cas9-gRNA vector used in CRIST assay. Cas9: CRISPR Cas9; gRNA1, 2: two Cas9 guiding RNAs that target the Sox2 promoter (sequences under the diagram); pEF1: the human EEF1A1 promoter; pU6: U6 promoter; pH1: human H1 promoter; T5: the TTTTT termination signal of RNA polymerase III.

B. CRIST targeting gRNAs

Location of the two Cas9 gRNAs in the Sox2 promoter. The Sox2 exon 1 mRNA is shown in blue and the coding region with ATG in green. Two Cas9 gRNAs are highlighted in yellow and PAM sequences in red in the Sox2 promoter region. TS+1: transcription initiation site.

Figure S2. Location of Sox2 Cas9-gRNAs in the CRIST assay.

A. The CRISPR Cas9 Sox2-gRNA vector used in CRIST assay. Cas9: CRISPR Cas9; gRNA1, 2: two Cas9 guiding RNAs that target the Sox2 promoter (sequences under the diagram); pEF1: the human EEF1A1 promoter; pU6: U6 promoter; pH1: human H1 promoter; T5: the TTTTT termination signal of RNA polymerase III.

B. Location of the two Cas9 gRNAs in the Sox2 promoter. The Sox2 exon 1 mRNA is shown in blue and the coding region with ATG in green. Two Cas9 gRNAs are highlighted in yellow and PAM sequences in red in the Sox2 promoter region. TS+1: transcription initiation site.

C.
A. *Pou5f1* CRIST targeting vector

B. Specific CRIST targeting of *Pou5f1*

Figure S3. Specific targeting of the mouse *Pou5f1* promoter in the CRIST assay.

A. The CRISPR Cas9 Pou5f1-gRNA vector. gRNA1, 2: two Cas9 guiding RNAs that target the *Pou5f1* promoter (sequences under the diagram).

B. Specific CRIST targeting of the mouse *Pou5f1* promoter. *pPou5f1*: the targeting site in the *Pou5f1* promoter where the Cas9 gRNAs are designed; 5′-Ct: the *Pou5f1* control site that is 13.9 kb away from the *pPou5f1* target site. Cas9 Vector: cells that were treated with the Cas9 control vector that lacks the gRNAs; Cas9-gRNA: cells that were targeted by both Cas9 and *Pou5f1* gRNAs; Cas9-gCT: cells that were treated with the random control gRNA vector. Off-target: a CRIST control site that is 33.8 kb upstream of the housekeeping gene GAPDH. The chromatin complex was immunoprecipitated with a Cas9-FLAG antibody and an IgG control antibody. CRIST signals were quantitated by real-time PCR using specific primers derived from the pOct4 targeting site, 5′-Ct control site and off-target site. All data shown are mean ±SEM from three independent experiments by normalization over the IgG control. **p<0.01 as compared with Vector and gCT controls.**
A. *IGF2* CRIST targeting vector

![Diagram of CRIST targeting vector]

B. Specific CRIST targeting of *IGF2*

![Graph showing IGF2 binding]

Figure S4. Specific CRIST targeting of the human IGF2 imprinting promoters.

A. The CRISPR Cas9 *IGF2*-gRNA vector. gRNA1, 2: two Cas9 guiding RNAs that target the IGF2 imprinting promoters (P2-P4, sequences under the diagram).

B. Specific CRIST targeting of the growth factor IGF2 promoter. The human IGF2 has four promoters and nine exons. The promoter P1 is not imprinted and it drives the biallelic expression of the growth factor from exons 1, 2, 3, 7, 8, and 9. In contrast, its promoters P2-P4 are imprinted and are expressed exclusively from the paternal allele. In human tumors, however, this imprinting mechanism is dysregulated and causes biallelic expression of the mitogen that promotes tumor growth. We used the CRIST assay to examine the imprinted P2 promoter. pIGF2: the site in the IGF2 promoter where the Cas9 gRNAs are designed; 5'-Ct: IGF2 control site that is 106 kb away from the pIGF2 target site. Vector: cells that were treated with the Cas9 control vector that lacks the gRNAs; Cas9-gRNA: cells that were targeted by both Cas9 and IGF2 gRNAs; Cas9-gCT: cells that were treated with the random control gRNA vector. Off-target: a CRIST control site that is 33.8 kb upstream of the housekeeping gene GAPDH. The chromatin complex was immunoprecipitated with a Cas9-FLAG antibody and an IgG control antibody. CRIST signals were quantitated by real-time PCR using specific primers derived from the pIGF2 targeting site, 5'-Ct control site and off-target site. All data shown are mean±SEM from three independent experiments by normalization over the IgG control. ** p<0.01 as compared with Vector and gCT controls.
A. **FLI1** CRIST targeting vector

![Diagram of CRISPR Cas9 FLI1-gRNA vector](image)

B. Specific CRIST targeting of **FLI1**

![Graph showing FLI1 binding](image)

Figure S5. Specific CRIST targeting of the human **FLI1 promoter.**

A. The CRISPR Cas9 FLI1-gRNA vector. gRNA1, 2: two Cas9 guiding RNAs that target the FLI1 promoter (sequences under the diagram).

B. Specific CRIST targeting of the oncogenic FLI1 promoter. pFLI1: the site in the FLI1 promoter where the Cas9 gRNAs are designed; 5'-Ct: FLI1 control site that is 18.5 kb away from the pFLI1 targeting site. Vector: cells that were treated with the Cas9 control vector that lacks the gRNAs; Cas9-gRNA: cells that were targeted by both Cas9 and FLI1 gRNAs; Cas9-gCT: cells that were treated with the random control gRNA vector. Off-target: a CRIST control site that is 33.8 kb upstream of the housekeeping gene GAPDH. The chromatin complex was immunoprecipitated with a Cas9-FLAG antibody and an IgG control antibody. CRIST signals were quantitated by real-time PCR using specific primers derived from the pFLI1 targeting site, 5'-Ct control site and off-target site. All data shown are mean±SEM from three independent experiments by normalization over the IgG control. ** p<0.01 as compared with Vector and gCT controls.
Figure S6. The FECR1 circRNA-FLI1 promoter interaction as a positive CRIST control.

A. The FECR1-FLI1 CRIST vector. FECR1 is a known circRNA that binds to the FLI1 promoter and regulates its activity in cis. We thus used it as a CRIST positive control. Two Cas9 FLI1 gRNAs are transcribed by U6 and H1 promoters, respectively, and guides the dCas9 to the FLI1 promoter. The FLI1 CRIST-seq library was used to quantitate the enrichment of FECR1 circRNA in the FLI1 promoter.

B. Enrichment of FECR1 in the FLI1 promoter. Vector: cells that were treated with the Cas9 control vector that lacks the gRNAs; Cas9-gRNA: cells that were targeted by both Cas9 and IGF2 gRNAs; Cas9-gCT: cells that were treated with the random control gRNA vector; Vector: cells that were treated with the empty dCas9 vector. The enrichment of FECR1 in the FLI1 promoter was quantitated by qPCR. For comparison, the value of the IgG group was set as 1. ** p<0.01 as compared with the IgG control group.

C. The nuclear lncRNA MALAT1 is used as the FLI1 CRIST negative control. The binding of MALAT1 to the FLI1 promoter was quantitated by qPCR and was standardized over the IgG group.
Figure S7. The top 30 GO enriched target genes of the Sox2-interacting RNA.
The Go enrichment was analyzed using the ggplot2 package (http://had.co.nz/ggplot2/). The top 30 enriched target genes are selected based on the enrichment score and q-value.
Figure S8. The top 30 KEGG pathways of the Sox2-interacting RNAs.
The scatterplot of the top 30 enriched KEGG pathways. KEGG: Kyoto Encyclopedia of Genes and Genomes; rich factor: the ratio of the number of DEGs and the number of all the unigenes in the pathways; Q-value: the corrected p-value.
A. Differentially expressed Sox2 CRIST IncRNAs

Gene_id	Gene_name	Locus	Fold	p-value	q-value
ENSMUSG00000073291	Gm10491	X:7899356-7908351	14300200.0	1.22681E-38	1.43657E-36
ENSMUSG00000102064	Gm28625	9:8489054-84890749	13446000.0	1.98227E-36	2.15038E-34
ENSMUSG00000065999	Gm13154	4:147553276-147585198	1089.6	1.19663E-07	2.4399E-06
ENSMUSG00000099370	Platricular	13:75647445-75655731	987.3	3.65397E-20	2.1904E-18
ENSMUSG00000031535	S10a3	6:12272780-122801640	350.0	8.5813E-107	3.1165E-104
ENSMUSG00000031995	St14	9:31089401-31131853	181.8	1.00398766	0.032151481
ENSMUSG00000106628	Gm43558	13:64357291-134357501	108.9	0	0
ENSMUSG00000084899	Elav2	6:91230762-91400785	41.9	1.5543E-06	2.66539E-05
ENSMUSG00000105270	Gm42638	5:14550406-145507054	31.1	2.65617E-11	8.4575E-10
ENSMUSG00000087306	A230004M16Rik	13:134357291-134357501	108.9	0	0
ENSMUSG00000097695	Gm26905	5:14550406-145507054	31.1	2.65617E-11	8.4575E-10
ENSMUSG00000023140	Cbx7	15:79891658-79971119	19.7	1.57911E-12	5.69364E-11
ENSMUSG00000087267	4933427J07Rik	2:128955670-128957861	14.2	1.11677E-05	3.30449E-09
ENSMUSG00000165144	Zfp229	17:21730794-21769342	11.8	4.14055E-05	0.00054497
ENSMUSG00000097695	Gm26905	5:14550406-145507054	31.1	2.65617E-11	8.4575E-10
ENSMUSG00000023140	Cbx7	15:79891658-79971119	19.7	1.57911E-12	5.69364E-11
ENSMUSG00000087267	4933427J07Rik	2:128955670-128957861	14.2	1.11677E-05	3.30449E-09

Figure S9. Differentially expressed Sox2 CRIST IncRNAs.
The Sox2 CRIST-seq RNAs were integrated with the RNA-seq >2 fold RNAs data using a VENN program (http://bioinformatics.psb.ugent.be/webtools/Venn). A cut-off threshold of peak enrichment FPKM >50 was arbitrarily set to select CRIST-Seq RNAs. The RNAs are listed in the order of expression fold change of iPSCs over fibroblasts.
Figure S10. Detection of the Sox2 pre-mRNA in the CRIST-seq library.
The abundance of the Sox2 pre-mRNA in the Cas9 Sox2-gRNA CRIST-seq library was detected by two primer sets from the Sox2 coding sequence. The third pair of PCR primers (JH4813/JH4815) from the downstream sequence was used as the negative control. The iPSC cDNA was used as the positive PCR control. Using this more sensitive PCR, we detected the presence of Sox2 pre-mRNA in the CRIST-seq products. As expected, no signals were detected in the Cas9 gCT and the Vector control groups.
A. *Snhg14* RNA-seq data

Gene_id	Gene_name	Locus	PSC_FPKM	FIB_FPKM	Fold	p-value	q-value
ENSMUSG00000100826	Snhg14	7:59384596-59411173	42.22	9.18	4.598299	2.34342E-05	0.000326424

B. *Snhg14* IGV

C. *Snhg14* sequence (NR_015456)

```
1  atttgtgatt   tcaatattata   ttctggttta   caaccttataa   agatagtatt   tcaatttataa
61  ttccagtttta   ttctgcaacct   caatgt tatagttq   actaaatccaa   atttggtaatt   aaaacagcc
121  ctgtatatttt   ttctaaatgta   taaatagttt   ttaaatagttt   ttaaatagttt   ttaaatagttt   aaaacagcc
181  tatttttctta   ttaatttttt   taattttttta   taattttttta   taattttttta   taattttttta   aaaacagcc
241  ttgttctacttta   ttaaaacagta   ttaaaatagttt   ttaaatagttt   ttaaatagttt   ttaaatagttt   aaaacagcc
301  tattttttttctta   ttaattttttta   taatttttttt   taatttttttt   taatttttttt   taatttttttt   aaaacagcc
361  ggcccatatatttt    ttaaaacagta   ttaaaatagttt   ttaaatagttt   ttaaatagttt   ttaaatagttt   aaaacagcc
421  aaccccaaaatttt   taattttttta   taattttttta   taattttttta   taattttttta   taattttttta   aaaacagcc
481  tattttttttttt   tttaatttttt  
```

Figure S11. Differential expression of Snhg14 lncRNA in reprogramming.

A. RNA-seq expression of Snhg14 between iPSCs and fibroblasts collected in reprogramming.

B. IGV Sashimi plot of Snhg14 lncRNA between iPSCs and fibroblasts.

C. Snhg14 lncRNA sequence.
A. *Snhg14* RNA-DNA FISH

Snhg14 RNA-DNA FISH. The isolated iPSC clones were subjected to RNA FISH (green) using biotin-14-dCTP-labeled single strand DNA probes for Snhg14. RNA probes are designed to cover the intron region for specific staining of the mature RNAs. Slides were subsequently re-fixed and processed for DNA FISH (red) using digoxigenin-dUTP labeled BAC probe. The nuclear DNA was stained with DAPI (blue). Arrows mark the co-localization of the Snhg14 lncRNA signal with the Pou5f1 DNA signal.

B. *Palr35* RNA-DNA FISH

Palr35 RNA-DNA FISH. Although lncRNA *Palr35* was also differentially expressed in reprogramming, it was not in the list of the Sox2 CRIST-seq. We thus used it as the RNA FISH control. As the control, RNA-FISH did not detect the co-localization of Palr35 with Sox2.

Figure S12. Interaction of lncRNAs with the *Sox2* locus by RNA-DNA FISH.

A. *Snhg14* RNA-DNA FISH. The isolated iPSC clones were subjected to RNA FISH (green) using biotin-14-dCTP-labeled single strand DNA probes for Snhg14. RNA probes are designed to cover the intron region for specific staining of the mature RNAs. Slides were subsequently re-fixed and processed for DNA FISH (red) using digoxigenin-dUTP labeled BAC probe. The nuclear DNA was stained with DAPI (blue). Arrows mark the co-localization of the Snhg14 lncRNA signal with the Pou5f1 DNA signal.

B. *Palr35* RNA-DNA FISH. Although lncRNA *Palr35* was also differentially expressed in reprogramming, it was not in the list of the Sox2 CRIST-seq. We thus used it as the RNA FISH control. As the control, RNA-FISH did not detect the co-localization of Palr35 with Sox2.
A. RAT assay

iPSCs → Cell fixation →Cell membrane lysis → Genomic DNA → Strand-specific IncRNA labeling with biotin-14-dCTP → Biotin DNA pulldown by beads → Sox2 binding → q-PCR

B. Location of q-PCR primers

5'-Ct → Sox2 promoter → Sox2 → 3'-Ct

A B C D E F

C. Snhg14-Sox2 interaction

Enrichment

Snhg14

IncCT

Figure S13. Validation of the Snhg14-Sox2 interaction by the RAT assay.

A. The RAT assay. iPSCs were fixed and Snhg14 IncRNA was labelled by biotin-dCTP in the nucleus using four Snhg14-specific oligonucleotides. The random oligonucleotides were used as the RAT control. After sonication, the biotin-Snhg14-chromatin complex was pulled down by streptavidin beads. The chromatin DNA was purified for qPCR.

B. Location of qPCR primers. Primers B and C are designed from the Sox2 promoter.

C. The Snhg14-Sox2 interaction by qPCR. The Snhg14-pulled down chromatin DNAs were mapped by a series of primers in the Sox2 locus. Note the enriched signal of the Sox2 promoter (B, C sites) in the Snhg14-pulled down chromatin complex.