We are met upon an occasion which must be recognised as of the utmost importance in relation to the teaching of medicine in Edinburgh and, as we shall hope, to the advance of medical science. To-day we inaugurate another portion of the splendid buildings which the liberality of the community and of the Government has enabled the University to dedicate to the study and the teaching of the science and art of medicine. It may, I think, safely be said that no other university is able to offer so magnificent a home to its Medical Faculty. Let us resolve so to teach and so to learn, that our work may be in some degree worthy of these noble buildings.

Most naturally, on such an occasion, we turn our eyes to the past, and think of the long array of physicians who have gone before us, and of the progress which our art has made as the result of their great labours. And not less naturally we survey our present position, and look towards the future, in the hope that we may obtain some slight forecast of what it may have in store for us and for our successors.

Let us first turn to the past, and take a rapid survey of certain typical stages or phases of our art, and which are, if duly pondered, in my opinion fitted to yield us instruction and interest of a peculiar kind.

The first reference which I shall make is to a phase best known to us in connexion with the practice of the early physicians of Greece. When I say early, I mean those prior to the time of Hippocrates—that is, to the fifth century before Christ. This phase may, however, be traced in any infant civilisation, because it is the outcome of the natural effort of the human mind, even in its untutored condition, to relieve suffering and cure disease. It is characterized by the empirical application of such remedial agents as are supposed to have been found serviceable in conditions apparently similar, and by the haphazard trial of new agents.
practice must therefore have been, at best, traditional and empirical, often largely mingled with superstition, and disfigured by the most extraordinary and unreasonable rites. The practitioners of those days were usually priests, and the patients congregated in the vicinity of the temples. Sometimes the temples were erected beside mineral springs, sometimes they were situated in specially salubrious localities. In the temples dedicated to such work there were records of past cures which guided the priest-practitioners in the application, and encouraged the patient in the use of the treatment. The study of medicine in those days—or, rather, the initiation into its practice—must have been of the most unsatisfactory kind. The novitiate would be spent in picking up the traditional formulae and plans of treatment, learning a system of mere routine, and with little encouragement to reasoning as to the causes or nature of disease or the action of remedies.

Happily a brighter day dawned for medical science, and through it for humanity, on the appearance of Hippocrates, justly termed the Father of Medicine. His was perhaps the greatest mind that ever devoted itself to the study of disease. Although inheriting the traditions of the Asclepiadse, being a member of that priestly medical race, he was not content to tread in the beaten track, but set himself to observe, to study, to reflect. He watched diseases carefully in their successive phases, and noted them with marvellous accuracy. He tested by observation and experiment the value of the remedies held in repute, and manifested a philosophical freedom alike from credulity and scepticism as to their actions. He strove to regulate with wisdom the diet of his patients, and to improve their general hygienic conditions. He discovered, and in all his teaching insisted upon, the restorative power of nature, the vis medicatrix nature, and in his practice he sought to accommodate himself to its processes. Of the importance of this great principle we cannot speak too strongly. In these days we think of it rather as a law inherent in the tissues of the body, comparable with the law of the organic world that there is a natural tendency to return to the original type. We shall have occasion constantly, as we study medicine together, to see how this principle acts. Let time be given, and let the agent which has disturbed the natural processes cease to operate, and the tissues will manifest their power of returning to their normal condition. The aggregate of such tissue changes manifests itself in the restoration of the general bodily health.

Hippocrates embodied the results of his observations, investigations, and his reflections in books, which are universally prized as among the most interesting relics of antiquity. Nowhere in literature can we find more exquisite words than those in which he describes the difficulties besetting our work as students of the medical art,—words which are familiar in all civilized countries, and have been adopted by some of the most
famous writers of many lands: "The art is long; life is brief; occasion sudden; to make experiment dangerous, judgment difficult." If you make a study of the Hippocratic writings (as I hope that some of you will) you will be amazed at the insight, the sagacity, and even the knowledge which they display.

But, unfortunately, he and all physicians for long afterwards laboured under one fatal disadvantage—they knew little or nothing of anatomy, and, consequently, had no correct ideas of physiology; and so, necessarily, they present to us the spectacle of fine intellects working at medicine without a sufficient substratum of scientific knowledge to guide their inquiries or explain their results. Had it been possible for them to build upon such a foundation as has been so carefully prepared for us, they might have achieved successes for which the world has had to wait for thousands of years. But in consequence of this ignorance the Hippocratic writings contain statements which a mere beginner in our day would be able to controvert, and which a thoughtless man might ridicule.

His lofty and philanthropic character could not brook the old traditional narrowness of admitting to the profession only those who were born into the families of the priest-physicians. He gave oral instruction in anatomy—as he knew it—and in medicine to every one who showed disposition and capacity to learn, and thus laid open the mysteries of medicine to the world at large. Happy must they have been who sat at his feet and looked into his serene and noble face, gathering from him the knowledge that his powerful intellect had derived from his wide and deep experience. For intellectual impulse and moral influence no student could have been more favoured. Although his work was done five centuries before the Christian era, its influence is lasting to this day over the whole civilized world.

We must hasten to consider that phase of medicine which we may say prevailed during the Middle Ages. It added little or nothing to our real knowledge, because it had to a large extent ceased to study nature for itself, was contented rather to cite old authorities, the Hippocratic writings, and those of Celsus and Galen. Servile submission to authority is fatal to progress in all sciences, and in none more than in medicine. For progress it is essential that the worker shall bring himself into vital relationship with the facts which lie before him. He observes them, classifies them, reasons about them, and in so far as may be necessary, subjects them to the test of experiment. There is little proof that such work was done by men of this type in the time to which I now refer. Francois Rabelais, although much more famous as a satirist than as a physician, may serve as an illustration of the physicians of that age. About the year 1530, at the age of forty-five, having thrown off his monk's habit and abandoned his monastery, as he had long before abandoned all faith in the monastic
system, he resolved to become a physician, and entered the university of Montpelier. In consideration of his years, education, and abilities he was allowed to graduate within two months of the commencement of his studies, although I can find no evidence that he had previously addicted himself to the study of medicine; and a month or two later he was a recognised university teacher, and erelong a hospital physician. You may wonder what he was prepared to teach after so short a training. His lectures were upon the aphorisms of Hippocrates, and, somewhat later, on his book of prognostics. One can imagine the delight with which the intelligent student would listen to the prelections on the first aphorism of the first book, to which I have already referred, and to many others; but if he also followed in the hospitals, he would be bewildered with the difficulty of bringing his clinical observations into accord with many of the Hippocratic doctrines, and, with the dawning of better knowledge round about him, would be longing for the birth of a new science as well as a revival of the old.

Another type which we must ever honour is that of the great beginners of anatomical investigation—men like Vesalius and Fallopius, who laboured at the sciences which constitute the essential foundations of the medical art. Patient and most ingenious students of nature, they began to work at the right place, and without them the discoveries of a Harvey and the work of a Sydenham would have been impossible.

Another typical stage is that which we may call the stage of the system builders. There have been two great periods of system-building in medicine, but that to which I shall chiefly refer was in the last century. Writing a hundred years ago, William Cullen, who at that time occupied this chair, the greatest man who has ever held it, says, "When I applied myself to the study of physic I learned only the system of Boerhaave, and even when I came to take a professor's chair in this university I found that system here in its entire and full force, and even up to the time of writing, it was held to be authoritative in many places." It seems as if each of the great physicians of last century set himself to discover a system, a principle or group of principles, which should explain to him the facts of disease and guide him in its treatment. I do not purpose to ask you at present to listen to an explanation of the systems of Boerhaave and Hoffman, and Stähil and Haller, nor even to those of Scottish growth propounded by Cullen and by Brown,—a John Brown very different from him whose name we honour as that of the author of Rab and His Friends and of Locke and Sydenham. Suffice it to say that your predecessors in this university and in all the seats of medical learning in the world had to occupy themselves, amid more important work, with mastering the pros and cons of the different systems then dominant. It is now
admitted, almost by common consent, that we have not yet in medicine arrived at the period for wide generalization and true system making, that our work is still rather the patient and laborious investigation of facts in all the various departments of our science and art. Still I think it could be shown, without much difficulty, and I think it well to say so here, that these systems, although they only had their day and ceased to be, served in their time good purposes.

But before I leave this subject I shall say a few words regarding what I may call the last of the systems, and certainly the most extraordinary ever invented—that devised by Hahnemann, and which still is so far accepted by many persons. According to this system it is impossible for us to know anything of the real nature of disease. All that we can know is the set of symptoms by which disease manifests itself. Medicines produce effects on the human body which are symptoms of disease, and a medicine which has the power of producing a certain symptom, is capable of removing the symptom and the disease to which the symptom is due. Hahnemann states further that medicines should be given in very minute doses, diluted and subdivided in an extraordinary degree. Adding, for example, two minims of aconite juice, mixed with an equal quantity of alcohol, to 98 drops of spirit constitutes the first dilution; one drop of that to 99 of spirit is the second; another of that to 99 of water or spirit makes the third; and so on to the thirtieth, or the 300th. And then of that he found that a few drops prove a potent remedy. If any one has doubts as to the precise value of these extraordinary revelations as to treatment, he may perhaps be guided by a consideration of the opinions as to the nature of disease propounded by the same authority. In the "Organon," he states that all chronic diseases are varieties of psora, syphilis, and sycosis. By the last he seems to mean condyloma; by the first he undoubtedly means itch. Now think of what effects flow from suppressed psora. I shall read you a passage: "Psora" or itch "is the one great foundation cause and generatrix of many other, yea, innumerable forms of disease, which, under the names of nervous debility, hysteria, hypochondriasis, mania, melancholia, imbecility, insanity, epilepsy, convulsions of all kinds, softening of the bones (rickets), scoliosis, kyphosis, caries, cancer, fungus haematodes, gout, haemorrhoids, jaundice, cyanosis, dropsy, amenorrhea, haematemesis, epistaxis, haemoptysis, bleeding from the bladder and uterus, asthma, suppuration of lungs, impotence and sterility, megrim, deafness, cataract, renal calculus, paralyses, loss of sense, and pains of a thousand kinds which figure as separate entities in pathology."

Where could one find a more preposterous farrago of nonsense than this doctrine? A good deal may be heard in fashionable practice about suppressed gout. But suppressed scabies! It were
absurd to argue on the subject. And I take leave to say that the other doctrines of this system-builder are equally unworthy of credit, being egregiously unsound in science and useless as guides in practice. As to the minute doses, we know that often the same medicines are taken in quantities vastly greater than those recommended by Hahnemann, without any appreciable effect. If, then, you believe that these smaller doses do produce palpable effects, you accept a position astounding to a logical mind, that the effect of a part may be greater than the effect of the whole. Then, as to the principle of similars which was promulgated as the sole law of therapeutics, whilst it is true that some cases can be adduced which give colour to the view, vastly more do not, and a large number illustrate the very opposite principle.

You are not to suppose that these several phases which I have represented to you in rough outline correspond to a regular chronological succession all over the world. On the contrary, at almost any time in the world's history you might find men worthy to be ranked among the most enlightened workers; and even in the best times you might find men who deserve to be assigned positions in the lower categories, viz., of the early historic or almost prehistoric stage of medicine.

Gentlemen, what is the type to which I desire to see you conform yourselves? It does not correspond exactly to any of those which I have named. The physician of our time ought to be well versed in the sciences of chemistry and natural philosophy; he should be stored with knowledge of the structure and functions of the organic world. In the course of these studies he should have learned habits of accurate observation, of cautious induction, and of inquiry suggested by rational speculation. He should have mastered human anatomy, and know well the functions of the body; he should know the morbid processes to which it is liable, and the symptoms and signs by which these processes manifest themselves; he should be acquainted with the actions and modes of employing the really important articles of the materia medica; and he should reverently recognise that his work is almost the noblest to which man can apply himself. Our ideal physician is proud of his profession of medicine, modest as to what the art has yet attained to, still more modest as to his own acquirements. He sets himself to study patiently and thoroughly the cases entrusted to him, and, after due consideration, and on what seems to him good grounds, to use all the means in his power for the advantage of the patient. He is thus not a routine practitioner; he wishes, as all should, to advance his profession as well as to advance in it, and therefore he so works and reasons that inevitably, from time to time, he is rewarded by the discovery of new facts; and if he continues to work, he will find that somehow he gets into relationship with all the men of similar aspirations and labours, and can appreciate their new facts with a readiness that were otherwise
impossible. You well know that nowhere in the world do greater advantages exist for laying broad and deep the foundations of sound practical knowledge than you enjoy here, and I assure you that if you cultivate carefully the intellectual and moral qualities and habits to which I have referred, you will grow up to be physicians of the best type that the world has ever known.

Some of you, realizing the only too manifest imperfection of our art, and impressed by the pessimist views held by so many men whose judgment in other respects we value, may be inclined to doubt whether we are entitled to claim very much merit for medicine as it now exists. The late renowned Professor of Logic and Metaphysics in this university asked the question, in what respect modern medicine could be shown to be superior to that of Hippocrates, and doubted if it could be shown to be better at all. The great Napoleon said to his physicians during his last illness, "Your disgusting preparations are good for nothing. Medicine is a collection of blind prescriptions which destroy the poor, sometimes succeed with the rich, but whose results are more injurious than useful to humanity." And some of you will remember that passage of Faust in which Mephistopheles, in advising an ingenuous youth as to the choice of a profession, says,

"The spirit of medicine is easy to be grasped;
One studies through the great and little world
To let things go in the end as pleases God."

With such opinions boldly expressed, we need not wonder that many think lightly of medicine (especially when they are enjoying good health), but I am persuaded that any one who duly weighs the evidence supplied by the history of the art and a study of its present condition will arrive at a very different conclusion.

Let us compare our position to-day with that of a physician so recent as James Gregory, who occupied this chair in the beginning of the present century. I am assured by Sir Robert Christison that his teaching, as well as his skill in practice, was of the very highest kind. Sir Robert said, in his address as President of the British Medical Association, that Gregory was the most captivating lecturer he ever heard, and gave to his students all that in those days could be given. Think for a moment of what has transpired since his time. Look first at our progress in respect of diagnosis and prognosis. We can now tell the condition of a heart with wonderful precision, and forecast the prospects of a patient suffering from heart-disease. We can detect the beginnings of pulmonary disease when it is still in many cases amenable to treatment. We can trace the evidences of its advance or of its decline. In diseases of the kidneys we can in most cases tell with precision the exact form of the malady, and the stage which it has reached. In regard to the diseases of the brain and spinal cord and nerves we are steadily progressing. Who dreamt in Gregory’s days of thrombosis and embolism of the brain, of the various dis-
eases of the cord which we know so familiarly as locomotor ataxy, spastic paralysis, and many other scleroses? What was then known of post-diphtheritic paralysis, or of the lesions proper to nerves? How important the revelations afforded by the ophthalmoscope in relation to many cerebral diseases, as well as other maladies. Think also of the importance of the discrimination of the different forms of continued fever—the practical importance, I say, in relation to saving life and preventing disease. In Gregory's day no one dreamt of discriminating between typhus and enteric fever, and, consequently, there was no clue to the investigation of the etiology of these maladies such as has been followed up with such marvellously good results.

But are we not entitled to claim that in regard to treatment also great progress has been made? Our increasingly accurate knowledge of pathology is of service only in so far as it helps us to a more competent and far-reaching treatment. I think that we may claim that the growing accuracy of our knowledge as to the actions and modes of action of remedies is enabling us in a considerable number of respects to fulfil indications afforded by the study of disease. Thus we have, in the management of cases of heart-disease, learned when to withhold and when to administer certain remedies, powerful for good and for evil according to the conditions under which they are employed. By their judicious use many a sufferer from cardiac disease is enabled to live, and even to work, for years, who would doubtless have in former days speedily succumbed to the dread malady. As to pulmonary diseases, perhaps it can scarcely be said that we have medicines of corresponding value to those for cardiac cases; still our resources for treatment are much better than they were, and every one knows that the prospects of a phthisical patient who is seen in an early stage are by no means so gloomy as they were in former times. In the treatment of the affections of the pleura, what vast improvements have been attained by the adoption of mechanical measures! And in the management of certain stomach diseases other mechanical methods have produced equally wonderful results. Many of you will remember a man, who was admitted to my wards last winter, who looked as if in the last stage of consumption, all the debility, emaciation, hectic, being, however, a consequence of dilatation of the stomach. You saw how, under the treatment devised by Kussmaul, his condition improved week by week, until he left the Infirmary a healthy man, fit for his ordinary occupation. I might refer to many other instances of improved treatment, some of which leave scarcely anything to be desired.

But the modern methods of statistical research enable us to present an overwhelmingly convincing demonstration of the advance of medicine as shown in the saving of human life. Take, for example, the recently published report of the Local Government Board for England and Wales:
Annual Death-Rate per 1000. 1841-50. 1851-60. 1861-70. 1871-80.
All Causes, . . . 22.4 22.2 22.5 21.5
Seven Zymotic Diseases, — 4.11 4.14 3.36
Fever, — 0.91 0.88 0.49

In England and Wales the annual death-rate during the last decennium has fallen from 22.5 to 21.5 per thousand of population, and from zymotic disease from 4.14 to 3.36, while the mortality from fever alone has fallen from 0.88 to 0.49 per 1000. From these facts it follows:— First, That an immense saving of life has occurred during the past decennium—a saving of about a quarter of a million of human lives; second, that this diminution has, to a large extent, arisen from diminution of mortality from zymotic diseases. Look at this table showing the mortality from fever during the past ten years:

1870, . 0.80 per 1000. 1876, . 0.44
1871, . 0.70 1877, . 0.41
1872, . 0.61 1878, . 0.42 0.38 per 1000.
1873, . 0.58 1879, . 0.30
1874, . 0.59 1880, . 0.32
1875, . 0.59

You observe that steadily year by year improvement has taken place. The mortality has diminished from 0.80 per 1000 in 1870 to 0.32 per 1000 in 1880. Now, gentlemen, I claim that it is our profession which has saved that quarter of a million of lives in England. To a large extent the saving has been effected by prevention rather than by cure, although cures also may be justly claimed by us. The prevention has been the work of medical men; they have made the discoveries as to morbid agencies; they have awakened the public interest in the subject in so far as it has been awakened, and it is to them that the legislative measures are mainly due. What other agency is there that can claim to have saved a quarter of a million of lives? It takes even a formidable war to destroy as many. Think, gentlemen, of a population larger than that of Edinburgh saved in a single period of ten years. But, then, the deaths do not represent all, for, for each death in the community, there are many illnesses; and it is customary to reckon that for every fatal case there are twelve serious illnesses. We have thus three millions of formidable illnesses warded off by the precautions taken. Consider what every formidable illness implies in the way of expenditure, and loss of earnings, and you will see that not only is there a saving of human life, an alleviation of human suffering, but a saving of wealth, which is of great importance to the community.

Surely this testimony would satisfy the most sceptical as to what medicine is now achieving. But I wish to refer to one other kind of evidence, which is rapidly accumulating and which is full of promise. It is known to you all that when the poison of smallpox is introduced beneath the skin, it produces a much less severe
attack of small-pox than it does when introduced in the ordinary way. It is possible that an explanation of this may be found in the fact that the subcutaneous tissue affords a much less favourable nidus for the primary development of the micro-organisms than do the mucous membranes to which it in ordinary cases is applied. You know also that in the case of small-pox, as of many other diseases, one attack in most cases confers subsequent immunity, and further, that the poison of cow-pox, which many believe to be that of small-pox passed through the body of the cow, when inoculated into the human subject, produces a mild disease, which confers a remarkable immunity from subsequent attacks of small-pox. Until lately we had made no approach to an explanation of this fact, but certain discoveries of the last eighteen months seem to throw light upon the process. Some of you will remember that in the opening lecture last session, I dealt with the subject of micro-organisms in relation to disease, and, among others, described two diseases due to that cause, viz., splenic fever of cattle, with its human congener, wool-sorter’s disease, and malignant pustule due to Bacillus Anthracis, and the disease known as cholera of fowls, which is distinctly traceable to another micro-organism. Splenic fever is a very malignant and rapidly fatal disease, but Pasteur,1 to whom the world owes a profound debt of gratitude for his magnificent discoveries in connexion with the whole subject of parasitic disease, has succeeded in modifying the bacillus in such a way as that it produces only a mild malady, and yet one which confers immunity from subsequent attacks, even when the animal is exposed to the most virulent bacillus poison. He ascertained that at 107° to 110° Fahr., with observance of some other conditions, the culture of the bacillus may be carried on and yet no spores be produced; by degrees the vitality of the micro-organism diminishes, and after a time wholly disappears. During this period of diminishing vitality, he found that the culture exhibits a series of diminishing degrees of virulence, and that at last its power of exciting disease entirely disappears. On account of the immense social importance of these facts, Pasteur was asked to give a public demonstration of the effects of his system. Accordingly, 50 sheep were put at his disposal, and of these he inoculated 25 with the modified bacillus. Shortly afterwards, all the 50 were inoculated with virulent bacillus poison, and every one of those not protected took the disease and died of splenic fever within fifty hours, while the other 25 presented no symptom. It is always well to have such results as these tested by other independent observers, and I find that Bouley amply confirms Pasteur’s results. On the 16th June of the present year he experimented upon 35 sheep, of

1 At the time that the lecture was delivered I was not aware of my colleague Prof. Greenfield’s claims to the credit of being the first discoverer in this matter.
which 16 were unprotected, while 19 had been inoculated after Pasteur's method. Into the whole 35 he inoculated a mixture of blood and splenic pulp from a sheep which had died four hours before from splenic fever. In three days 15 of the unprotected had died of anthrax, while the 19 remained perfectly well. Thus, you see that we have absolute demonstration of the possibility of rendering animals incapable of taking splenic fever.

In regard to that strange malady which has somewhat unfortunately been termed the cholera of fowls, though it has nothing in common with human cholera, excepting that it occurs as an epidemic, and is very deadly, there have been conclusive proofs that protection may be afforded by modifying the germ. Pasteur has found that he could produce this alteration by making his successive cultures at long intervals, and supplying abundance of oxygen. You all understand what is meant by cultures. Each one of these micro-organisms has one or more fluids in which it grows with great readiness. Chicken tea is that most appropriate for fowl cholera germ. If a single drop of the infected liquid be added to a quantity of sterilized chicken-tea, a rapid development takes place in the fluid. If a drop of this be taken and added to a new portion of sterilized tea a further development occurs, and so on—the virulence always continuing the same. But Pasteur found that if he greatly prolonged the intervals between each successive planting of his germs he had taken the first step, and that if he supplied oxygen freely he had taken the remaining step needful for the production of germs of weaker destructive power. And he found that this inoculation resulted in immunity from subsequent attacks, however virulent the poison which was then employed.

Had time permitted I should have liked to tell you about other discoveries regarding these matters, and particularly that of Chauveau, which seems to have proved that the severity of the attack is closely related to the number of bacilli introduced. I shall only take time to mention the remarkable statement of Gaultier, that during the past year he has discovered a method by which animals may be protected from the poison of rabies. He inoculated sheep with that poison in the ordinary way, and found them susceptible to its action. He then injected the poison into the jugular veins of sheep without producing any very marked effect, but when he attempted to produce rabies in these animals by the ordinary process of cutaneous inoculation, he failed to produce the disease. This discovery, if it should be confirmed, will, like that regarding anthrax, probably prove important in relation to the prevention of dreadfully fatal human disease. At all events, it is clear that we may justly suppose ourselves not far off from very important new discoveries in relation to the prevention of disease by processes akin to that introduced by Jenner. It may be that some day we may have children protected from scarlet fever, perhaps from hooping-cough and measles, as they now are from small-pox, and
women may possibly be protected from the dangers of puerperal fever by simple and innocuous processes.

These discoveries have led me to speak of the possible future of our art; but it is not only in connexion with them that we are entitled to look for great progress, new remedies will be discovered fitted to alter physiological processes, others may be found which will compensate for defects in the organism—perhaps some which may modify anatomical changes by directly influencing the growth of tissues.

One of the most striking features of our age is the consen-
taneousness of thought. When a great event occurs, the whole world is simultaneously thinking of it. And the art of medicine benefits by this circumstance. Each striking discovery is known throughout the world within a few weeks of its publication, and the attention of observers everywhere is directed to the sub-
ject. Moreover, the general standard of professional information is steadily rising year by year. Therefore, as the whole medical world is thus working together, and working on a higher platform of general knowledge, new discoveries must be made more rapidly than ever before. These walls will witness the demonstration of things of which at present we do not dream, as year by year a higher and a deeper acquaintance with the truths of nature is evoking the unresting intellect of man.

May the work we are to do in this room be useful and a source of happiness to ourselves and to others, and may God prosper each of us, and all who may be our successors in this great School.

ARTICLE II. — On the Development of Malignant from Non-
malignant Tumours of the Uterus. (From the Laboratory of Prof. Slawjansky's Gynaecological Clinic, St Petersburg.) By William Maslovsky, M.D.

(Read before the Edinburgh Obstetrical Society, 23rd November 1881.)

For the last ten years it has been a question in gynaecology whether malignant tumours of the epithelial type (carcinoma) can be developed from adenoma. During this time the possibility of such a change has been discussed by pathologists.

In the year 1873 Dr Matthews Duncan and Prof. Slawjansky described a polypus removed in soft masses from the uterine cavity of a woman aged 52, whose hymen was entire. Consider-
ing the age of the patient, the general appearance, softness, and fragility of the tumour, Dr Duncan thought it was malignant; but Prof. Slawjansky, after a careful microscopical examination, decided that it was non-malignant, an adenoma uteri polyposum hemorrhagicum.

1 Edin. Med. Journal, August 1873, p. 97, and Obst. Journal of Great Brittain and Ireland, Nov. 1873, p. 497.