Quasi-cliques in inhomogeneous random graphs

Kay Bogerd

k.m.bogerd@tue.nl

Eindhoven University of Technology

September 11, 2020

Abstract

Given a graph G and a constant $\gamma \in [0,1]$, let $\omega(\gamma)(G)$ be the largest integer r such that there exists an r-vertex subgraph of G containing at least $\gamma \binom{r}{2}$ edges. It was recently shown that $\omega(\gamma)(G)$ is highly concentrated when G is an Erdős-Rényi random graph [Balister, Bollobás, Sahasrabudhe, Veremyev, 2019]. This paper provides a simple method to extend that result to a setting of inhomogeneous random graphs, showing that $\omega(\gamma)(G)$ remains concentrated on a small range of values even if G is an inhomogeneous random graph. Furthermore, we give an explicit expression for $\omega(\gamma)(G)$ and show that it depends primarily on the largest edge probability of the graph G.

1 Introduction

Let $G = (V, E)$ be a simple graph, with vertex set V and edge set E. Given a subset of vertices $S \subseteq V$, let $G[S]$ denote the subgraph of G induced by S. That is, $G[S]$ is a graph with vertex set S and edge set $\{(i, j) : i, j \in S\} \cap E$. A clique is a subset of vertices $C \subseteq V$ such that $G[C]$ is a complete graph, meaning that all vertices in $G[C]$ are connected by an edge. Cliques are an important concept in graph theory, and are often used as a model for community structure [3, 17, 21]. In particular, the problem of finding the largest clique or largest community in a given graph has received much interest [9, 10].

However, for many practical applications the definition of a clique can be too restrictive. Often a few missing edges within a community are fine, as long as the community remains sufficiently well connected. To this end, several relaxations have been proposed for the definition of a clique [25]. One of the most successful of these is known as the γ-quasi-clique, where γ is a parameter [1]. For $\gamma \in [0,1]$, a γ-quasi-clique is a subset of vertices $S \subseteq V$ such that $G[S]$ contains at least $\gamma \binom{|S|}{2}$ edges. That is, a γ-quasi-clique is a subset of vertices such that a fraction γ of all possible edges between them is present.

Just as for cliques, one would like to know the size of the largest quasi-clique in a given graph [2, 8, 26]. However, it comes as no surprise that finding the largest quasi-clique is a computationally hard problem [23, 24], similar to the problem of finding the largest clique [12, 13, 15]. To circumvent this difficulty, a common approach has been to study the related problem of determining the size of the largest clique or quasi-clique in random graphs. For cliques this approach has been very fruitful, and it turns out that the size of the largest clique is highly concentrated in a variety of random graph models. The first results of this type were obtained for Erdős-Rényi random graphs [6, 18, 19, 20], and later similar results were obtained for random geometric graphs [22], and inhomogeneous random graphs [2, 14].
Recently, the size of the largest quasi-clique was also studied in an Erdős-Rényi random graph, where it was shown that the largest quasi-clique is again highly concentrated \cite{4}. The aim of this paper is to extend that result to the setting of inhomogeneous random graphs. In particular, we formalize a heuristic presented in \cite{3}, and show how this (together with the result from \cite{4}) can be applied to show that the largest quasi-clique remains concentrated on a narrow range of values even in an inhomogeneous random graph.

2 Model and results

We are interested in understanding the behavior of the largest quasi-clique in an inhomogeneous random graph. To this end, define the γ-quasi-clique number $\omega_\gamma(G)$ of a graph G as the size of the largest subset of vertices $S \subseteq V$ such that the induced subgraph $G[S]$ contains at least $\gamma \binom{|S|}{2}$ edges, where $\gamma \in [0, 1]$ is a parameter. Note that $\omega_0(G)$ is the familiar clique number of G, usually denoted simply by $\omega(G)$.

In this paper, we study the behavior of $\omega_\gamma(G)$ when G is distributed according to the random graph model $G(n, \kappa)$. This model has two parameters: the number of vertices n, and a symmetric measurable function called a *kernel* $\kappa : [0, 1]^2 \to (0, 1)$. Below we introduce the key concepts of this model, for a more detailed overview we refer the reader to Lovász’s book \cite{16}. An element of $G(n, \kappa)$ is a simple graph $G = (V, E)$ that has $n \in \mathbb{N}$ vertices with vertex set $V = [n] := \{1, \ldots, n\}$, and a random edge set E. Each vertex $i \in V$ is assigned a *weight* W_i, which is simply a uniform variable on $[0, 1]$, that is $W_i \sim \text{Unif}(0, 1)$. Conditionally on these weights, the presence of an edge between two vertices $i, j \in V$, with $i \neq j$, is modeled by independent Bernoulli random variables with success probability

$$p_{ij} := \mathbb{P}((i, j) \in E \mid (W_k)_{k \in V}) = \kappa(W_i, W_j).$$

(1)

The kernel $\kappa(\cdot, \cdot)$ and the vertex weights W_i are both not allowed to depend on the graph size n, and therefore the edge probabilities p_{ij} are independent of n. This means that the graphs we consider are necessarily dense and have a number of edges that is quadratic in the graph size.

This brings us to the main result of this paper, which is to show that the γ-quasi-clique number $\omega_\gamma(G)$ of a graph $G \sim G(n, \kappa)$ is concentrated on a small range of values. Furthermore, this result shows that the size of the largest quasi-clique depends primarily on the densest part of the graph, where the edge probabilities are close to their maximum value. This is made precise by the following result.

Theorem 1. Let $\kappa(\cdot, \cdot)$ be a kernel that is continuous and attains its maximum value at the point (c, c) for some $c \in [0, 1]$, and let $p_{\text{max}} := \kappa(c, c)$. Given $p_{\text{max}} < \gamma \leq 1$, define

$$\omega_n^\gamma := \frac{2\log(n)}{D(\gamma, p_{\text{max}})},$$

(2)

where $D(\gamma, p)$ is the Kullback-Leibler divergence between the Bernoulli distributions $\text{Bern}(\gamma)$ and $\text{Bern}(p)$, given by

$$D(\gamma, p) := \begin{cases} \gamma \log \left(\frac{\gamma}{p} \right) + (1 - \gamma) \log \left(\frac{1 - \gamma}{1 - p} \right) & \text{if } \gamma < 1, \\ \log \left(\frac{1}{p} \right) & \text{if } \gamma = 1. \end{cases}$$

(3)

Then, for every $\varepsilon > 0$,

$$\mathbb{P} \left(\omega_n^\gamma(G) \in \left[(1 - \varepsilon)\omega_n^\gamma, (1 + \varepsilon)\omega_n^\gamma \right] \right) \to 1, \quad \text{as } n \to \infty.$$
To display the applicability of the above result, we show that it can be applied to many well-known random graph models. The simplest example is probably the Erdős-Rényi random graph, which is obtained by setting the kernel $\kappa(x, y)$ to a constant independent of x and y. Another commonly used example are the so-called rank-1 random graphs, where $\kappa(x, y) = \varphi(x)\varphi(y)$ for some function φ. Often the function $\varphi(\cdot)$ is the inverse cumulative distribution function of some distribution X, so that $\varphi(W_i)$ can be interpreted as a sample from that distribution. This results in a model similar to that considered in [\[2\]]. The final model that satisfies the conditions in Theorem 1 is the stochastic block model [14], also called the planted partition model in computer science. This model is obtained when the kernel $\kappa(\cdot, \cdot)$ is only allowed to take on finitely many different values.

Note that Theorem 1 gives the first-order behavior of ω_n^γ from (2). More precise results are known for the clique and quasi-clique number in an Erdős-Rényi random graph [2,19], or for the clique number in rank-1 random graphs [5]. Specifically, in those cases the quasi-clique number and clique number are concentrated on two consecutive integers. Therefore, it might be reasonable to expect that it is likewise possible to show such a two-point concentration result in the more general model we consider in this paper. However, this would require a significantly more detailed analyses. The main difficulty here is that the higher order terms of ω_n^γ will likely depend in a complex way on the whole kernel $\kappa(\cdot, \cdot)$ and not just on the maximum value $\kappa(c,c)$. This was also observed for rank-1 random graphs in [5], where several examples are explicitly computed. Thus, the method we use in the proof of Theorem 1 will likely not be precise enough to characterize the higher order terms of ω_n^γ and a different approach would be needed for this.

We end this paper with the proof of Theorem 1. This proof is based on the ideas presented in [2, Section 3.1] combined with the results in [4] and [13].

Proof of Theorem 1 Below we consider the upper and lower bound of (4) separately. Furthermore, we will use the following standard asymptotic notation: given deterministic sequences a_n and b_n, we write $a_n = o(b_n)$ when $a_n/b_n \to 0$, and we say that a sequence of events holds with high probability if it holds with probability tending to 1. When limits are unspecified they are taken as the number of vertices n tends to ∞.

Upper bound: We first define a coupling between the random graph $G(n; \kappa)$ and the Erdős-Rényi random graph $G(n;\text{p}_{\text{max}})$, where we recall that $\text{p}_{\text{max}} = \kappa(c,c)$ is the maximum edge probability. For $i \neq j \in [n]$, let $U_{ij} \sim \text{Unif}(0,1)$ be independent uniform random variables on $[0,1]$. Conditionally on these uniform random variables and the weights W_i, with $i \in [n]$, define

\begin{align}
G &= (V, E), \quad \text{with } V = [n], \quad \text{and } E = \{(i,j) : U_{ij} \leq \kappa(W_i, W_j)\}, \\
G' &= (V', E'), \quad \text{with } V' = [n], \quad \text{and } E' = \{(i,j) : U_{ij} \leq \kappa(c,c)\}.
\end{align}

It can easily be seen that G is an inhomogeneous random graph, that is $G \sim G(n, \kappa)$. Similarly, $G' \sim G(n,\text{p}_{\text{max}})$ is distributed as an Erdős-Rényi random graph with edge probability $\text{p}_{\text{max}} = \kappa(c,c)$.

Because the edge probabilities satisfy $p_{ij} = \kappa(W_i, W_j) \leq \text{p}_{\text{max}}$ almost surely, for all $i \neq j \in [n]$, the coupling in (5) shows that $\omega_n^\gamma(G) \leq \omega_n^\gamma(G')$ almost surely. Furthermore, by [4, Theorem 1] if $\gamma < 1$ or [13, Theorem 6] if $\gamma = 1$, it follows that

\begin{align}
\omega_n^\gamma(G') \leq \frac{2}{D(\gamma, \text{p}_{\text{max}})} \left(\log(n) - \log \log(n) + \log(eD(\gamma, \text{p}_{\text{max}})/2) \right) + 1 + \varepsilon,
\end{align}

with high probability.
Combining the above, we obtain
\[
\omega(G) \leq \omega(G')
\]
\[
\leq \frac{2}{D(\gamma, p_{\max})} \left(\log(n) - \log \log(n) + \log(eD(\gamma, p_{max})/2) \right) + 1 + \varepsilon
\]
\[
\leq (1 + \varepsilon)\frac{2\log(n)}{D(\gamma, p_{\max})} = (1 + \varepsilon)\omega_n^\gamma,
\]
with high probability. This shows that \(P(\omega(G) \leq (1 + \varepsilon)\omega_n^\gamma) \to 1 \), completing the proof for the upper bound of \(\gamma \).

Lower bound: Let \(\delta_n = 1/\log(n) \) and define \(S_n := \{ i \in V : W_i \in [c - \delta_n, c + \delta_n] \} \) to be the subset of vertices that have vertex weight \(W_i \) close to \(c \), where we recall that \(c \) is such that the kernel \(\kappa(\cdot, \cdot) \) attains its maximal value at the point \((c, c)\). Note that the set \(S_n \) is random and by Hoeffding’s inequality (see \[7, Theorem 2.8\]), for any \(t > 0 \), we have
\[
P(|S_n| \geq E[|S_n|] - t) \leq \exp\left(-2t^2/n\right) \to 0,
\]
where \(E[|S_n|] = nP(W \in [c - \delta_n, c + \delta_n]) = n^{1-o(1)} \) by definition of \(\delta_n \). Furthermore, define \(p_n := \inf_{(x, y) \in [c - \delta_n, c + \delta_n]} \kappa(x, y) \) and observe that \(p_n \to p_{\max} \) by continuity of the kernel, and thus \(D(\gamma, p_n) \to D(\gamma, p_{\max}) \). Using this, together with \(\omega(G) \) and \(t \) fixed, we obtain
\[
(1 - \varepsilon)\frac{2\log(n)}{D(\gamma, p_n)} \leq (1 - \varepsilon/2)\frac{2\log(E[|S_n|] - t)}{D(\gamma, p_{\max})}
\]
\[
\leq (1 - \varepsilon/3)\frac{2\log(|S_n|)}{D(\gamma, p_{\max})}
\]
\[
\leq (1 - \varepsilon/4)\frac{2\log(|S_n|)}{D(\gamma, p_n)},
\]
with high probability.

Similarly to the coupling in \([\delta]\), conditionally on the uniform random variables \(U_{ij} \), for \(i \neq j \in [n] \), and the vertex weights \(W_i \), for \(i \in [n] \), define
\[
G'' = (V'', E''), \quad \text{with} \quad V'' = [n], \quad \text{and} \quad E'' = \{(i, j) : U_{ij} \leq p_n\}.
\]
Note that the graph \(G'' \) is distributed as the Erdős-Rényi random graph \(G(n, p_n) \) with edge probability \(p_n \).

Given a graph \(G \), recall that \(G[S_n] \) denotes the subgraph induced by the vertices in \(S_n \). Because the kernel is continuous around the point \((c, c)\), there exists an \(n \) large enough such that \(\delta_n \) is small enough to ensure that the edge probabilities satisfy \(p_{ij} \geq p_n \) almost surely, for all \(i \neq j \in S_n \) (note that, if the kernel is continuous everywhere then this holds for every \(n \)). Hence, the coupling in \([\delta]\) shows that \(\omega(G) \geq \omega(G[S_n]) \geq \omega(G''[S_n]) \) almost surely, provided \(n \) is large enough. Combining this with \([6] \) and \([4] \) Theorem 1 if \(\gamma < 1 \) or \([10] \) Theorem 6 if \(\gamma = 1 \), we obtain
\[
\omega(G) \geq \omega(G'[S_n]) \geq \omega(G''[S_n])
\]
\[
\geq \frac{2}{D(\gamma, p_n)} \left(\log(|S_n|) - \log \log(|S_n|) + \log(eD(\gamma, p_n)/2) \right) - \varepsilon
\]
\[
\geq (1 - \varepsilon/4)\frac{2\log(|S_n|)}{D(\gamma, p_n)} \geq (1 - \varepsilon)\frac{2\log(n)}{D(\gamma, p_{\max})} = (1 - \varepsilon)\omega_n^\gamma,
\]
with high probability. This shows that \(P(\omega(G) \geq (1 - \varepsilon)\omega_n^\gamma) \to 1 \), completing the proof for the lower bound of \(\gamma \).
Acknowledgements. The author thanks his supervisors Remco van der Hofstad and Rui M. Castro for extensive proofreading and providing valuable feedback.

References

[1] J. Abello, P. M. Pardalos, and M. G. C. Resende. “On maximum clique problems in very large graphs”. *External memory algorithms*. Ed. by J. M. Abello and J. S. Vitter. Vol. 50. American Mathematical Society, 1999, pp. 119–130.

[2] J. Abello, M. G. Resende, and S. Sudarsky. “Massive quasi-clique detection”. *LATIN 2002: Theoretical Informatics*. Ed. by S. Rajsbaum. Vol. 2286. LATIN 2002. Lecture Notes in Computer Science. Springer, 2002, pp. 598–612.

[3] R. D. Alba. “A graph-theoretic definition of a sociometric clique”. *The Journal of Mathematical Sociology* 3.1 (1973), pp. 113–126.

[4] P. Balister, B. Bollobás, J. Sahasrabudhe, and A. Veremyev. “Dense subgraphs in random graphs”. *Discrete Applied Mathematics* 260 (2019), pp. 66–74.

[5] K. Bogerd, R. M. Castro, and R. van der Hofstad. “Cliques in rank-1 random graphs: the role of inhomogeneity”. *Bernoulli* 26.1 (2020), pp. 253–285.

[6] B. Bollobás and P. Erdős. “Cliques in random graphs”. *Mathematical Proceedings of the Cambridge Philosophical Society* 80.4191 (1976), pp. 419–427.

[7] S. Boucheron, G. Lugosi, and P. Massart. *Concentration inequalities: a nonasymptotic theory of independence*. Oxford University Press, 2013.

[8] M. Brunato, H. H. Hoos, and R. Battiti. “On effectively finding maximal quasi-cliques in graphs”. *Learning and Intelligent Optimization*. Ed. by V. Maniezzo, R. Battiti, and J.-P. Watson. Vol. 5313. LION 2007. Lecture Notes in Computer Science. Springer, 2008, pp. 41–55.

[9] Y. Dekel, O. Gurel-Gurevich, and Y. Peres. “Finding hidden cliques in linear time with high probability”. *Combinatorics, Probability and Computing* 23.01 (2014), pp. 29–49.

[10] Y. Deshpande and A. Montanari. “Finding hidden cliques of size $\sqrt{N/e}$ in nearly linear time”. *Journal Foundations of Computational Mathematics* 15.4 (2015), pp. 1069–1128.

[11] M. Doležal, J. Hladký, and A. Máthé. “Cliques in dense inhomogeneous random graphs”. *Random Structures & Algorithms* 51.2 (2017), pp. 275–314.

[12] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. “Approximating clique is almost NP-complete”. *Proceedings 32nd Annual Symposium of Foundations of Computer Science*. IEEE, 1991, pp. 2–12.

[13] J. Håstad. “Clique is hard to approximate within $n^{1-\varepsilon}$”. *Acta Mathematica* 182.1 (1999), pp. 105–142.

[14] P. W. Holland, K. B. Laskey, and S. Leinhardt. “Stochastic blockmodels: First steps”. *Social Networks* 5.2 (1983), pp. 109–137.

[15] R. M. Karp. “Reducibility among combinatorial problems”. *Complexity of Computer Computations*. Ed. by R. E. Miller, J. W. Thatcher, and J. D. Bohlinger. Springer, 1972, pp. 85–103.

[16] L. Lovász. *Large networks and graph limits*. American Mathematical Society, 2012.

[17] R. D. Luce. “Connectivity and generalized cliques in sociometric group structure”. *Psychometrika* 15.2 (1950), pp. 169–190.
[18] D. W. Matula. “The employee party problem”. Notices Of The American Mathematical Society 19.2 (1972), pp. 89–156.

[19] D. W. Matula. “The largest clique size in a random graph”. Tech Report CS 7608, Department of Computer Science and Engineering, Southern Methodist University (1976).

[20] C. McDiarmid. “Colouring random graphs”. Annals of Operations Research 1.3 (1984), pp. 183–200.

[21] R. J. Mokken. “Cliques, clubs and clans”. Quality & Quantity 13.2 (1979), pp. 161–173.

[22] T. Müller. “Two-point concentration in random geometric graphs”. Combinatorica 28.5 (2008), pp. 529–545.

[23] G. Pastukhov, A. Veremyev, V. Boginski, and O. A. Prokopyev. “On maximum degree-based γ-quasi-clique problem: Complexity and exact approaches”. Networks 71.2 (2018), pp. 136–152.

[24] J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. “On the maximum quasi-clique problem”. Discrete Applied Mathematics 161.1-2 (2013), pp. 244–257.

[25] J. Pattillo, N. Youssef, and S. Butenko. “On clique relaxation models in network analysis”. European Journal of Operational Research 226.1 (2013), pp. 9–18.

[26] A. Veremyev, O. A. Prokopyev, S. Butenko, and E. L. Pasiliao. “Exact MIP-based approaches for finding maximum quasi-cliques and dense subgraphs”. Computational Optimization and Applications 64.1 (2016), pp. 177–214.