1. Introduction

Let M be an n-dimensional projective algebraic manifold in certain projective space \mathbb{CP}^N. The hyperplane line bundle of \mathbb{CP}^N restricts to an ample line bundle L on M, which is called a polarization of M. A Kähler metric g is called a polarized metric, if the corresponding Kähler form represents the first Chern class $c_1(L)$ of L in $H^2(M, \mathbb{Z})$. Given any polarized Kähler metric g, there is a Hermitian metric h on L whose Ricci form is equal to ω_g. For each positive integer $m > 0$, the Hermitian metric h_L induces the Hermitian metric h_L^m on L^m. Let (E, h_E) be a Hermitian vector bundle of rank r with a Hermitian metric h_E. Consider the space $\Gamma(M, L^m \otimes E)$ of all holomorphic sections for large m. For $U, V \in \Gamma(M, L^m \otimes E)$, the pointwise and the L^2 inner products are defined as

$$\langle U(x), V(x) \rangle_{h_L^m \otimes h_E}$$

and

$$(U, V) = \int_M \langle U(x), V(x) \rangle_{h_L^m \otimes h_E} dV_g,$$ \hspace{1cm} (1.1)

respectively, where $dV_g = \frac{\omega_g^n}{n!}$ is the volume form of g. Let $\{S_1, \ldots, S_d\}$ be an orthonormal basis of $\Gamma(M, L^m \otimes E)$ with respect to (1.1), where $d = d(m) = \dim \Gamma(M, L^m \otimes E)$. For any $x \in M$, define a matrix $S = S(x)$ by

$$S = \left(\langle S_i, S_j \rangle_{h_L^m \otimes h_E} \right).$$

For any positive integer b, define

$$\sigma_b \equiv \text{tr}(S^b).$$ \hspace{1cm} (1.2)
The value σ_b is independent of the choice of the orthonormal basis because under different basis of $\Gamma(M, L^m \otimes E)$, the matrices S are similar. Moreover, S is diagonalizable. Since E is of rank r, there exists a unitary matrix Q and a diagonal matrix D such that $Q^*SQ = D$, where

$$D_{ij} = \begin{cases} \lambda_i \delta_{ij}, & \text{if } 1 \leq i, j \leq r; \\ 0, & \text{otherwise.} \end{cases}$$ (1.3)

Furthermore, there exists an orthonormal basis $\{T_i\}_{i=1}^d$ such that

$$\sigma_b = \text{tr}(S^b) = \text{tr}(D^b) = \sum_{i=1}^d \|T_i(x)\|_{h_m^b}^{2b}.$$ (1.4)

From (1.3), we have

$$\sigma_b = \sum_{i=1}^r \lambda_i^b,$$

where λ_i are the nonzero eigenvalues of S. For $b > r$, σ_b can be written as a polynomial of $\sigma_1, \cdots, \sigma_r$. Hence we only need to compute $\sigma_1, \cdots, \sigma_r$.

The asymptotic behavior of σ_b plays a very important rule in Kähler-Einstein geometry. In the case of $b = 1$, Zelditch [7] and Catlin [1] independently proved the existence of an asymptotic expansion (Tian-Yau-Zeldtich expansion) of the Szegö kernel. In the break through paper of Donaldson [2], using the expansion, he was able to prove the stability for the manifold admitting constant scalar curvature.

The result of Zeldtich and Catlin is stated as follows:

Theorem (Zelditch, Catlin). Let M be a compact complex manifold of dimension n (over \mathbb{C}) and let $(L, h) \to M$ be a positive Hermitian holomorphic line bundle. Let x be a point of M. Let g be the Kähler metric on M corresponding to the Kähler form $\omega_g = \text{Ric}(h)$. For each $m \in \mathbb{N}$, h induces a Hermitian metric h_m on L^m. Let $\{s_1^m, \cdots, s_{d_m}^m\}$ be any orthonormal basis of $H^0(M, L^m)$, $d_m = \dim H^0(M, L^m)$, with respect to the inner product (1.1). Then there is an asymptotic expansion:

$$\sigma_1 = \sum_{i=1}^{d_m} \|s_i^m(x)\|_{h_m}^2 \sim a_0(x)m^n + a_1(x)m^{n-1} + a_2(x)m^{n-2} + \cdots$$ (1.5)

for certain smooth coefficients $a_j(x)$ with $a_0 = 1$. More precisely, for any k:

$$\| \sum_{i=1}^{d_m} \|s_i^m(x)\|_{h_m}^2 - \sum_{k=0}^{N} a_j(x)m^{n-k}\|c^\mu \|_C \leq C_{N, \mu} m^{n-N-1},$$

where $C_{N, \mu}$ depends on N, μ and the manifold M.
In [4], Lu proved that each coefficient $a_j(x)$ is a polynomial of the curvature and its covariant derivatives. In particular, $a_1(x) = \frac{1}{2}\rho(x)$ is half of the scalar curvature of the Kähler manifold. All polynomials $a_j(x)$ can be represented by a polynomial of the curvature and its derivatives. Moreover, Lu and Tian [5, Theorem 3.1] proved that the leading term of a_j is $C\Delta^{j-1}\rho$, where ρ is the scalar curvature and $C = C(j, n)$ is a constant.

In this paper, we establish an asymptotic expansion for σ_b. Note that both Zelditch and Catlin used Szegö kernel or Bergman kernel in their proofs. Their methods, however, do not apply to the case $b > 1$. To establish the expansion, we go back to peak section estimates. Using the peak section method in [6], we are able to get the expansion of σ_b, which generalizes the result of Zelditch and Catlin. Our result is:

Theorem 1.1. Let M be a compact complex manifold of dimension n, $(L, h_L) \to M$ a positive Hermitian holomorphic line bundle and (E, h_E) a Hermitian vector bundle of rank r. Let g be the Kähler metric on M corresponding to the Kähler form $\omega_g = \text{Ric}(h_L)$. Let $\Gamma(M, L^m \otimes E)$ be the space of all holomorphic global sections of $L^m \otimes E$, and let $\{T_1, \cdots, T_d\}$ be an orthonormal basis of $\Gamma(M, L^m \otimes E)$. Let

$$\sigma_b = \sum_{i=1}^{d} \|T_i(x)\|_{h^m_L \otimes h_E}^{2b}.$$
(1.6)

Then for m big enough, there exists an asymptotic expansion

$$\sigma_b(x) \sim a_0(x)m^{bn} + a_1(x)m^{bn-1} + \cdots$$
(1.7)

for certain smooth coefficients $a_j(x)$. The expansion is in the sense that

$$\|\sigma_b - \sum_{k=0}^{N} a_k m^{bn-k}\|_{C^\mu} \leq C(\mu, N, M)m^{bn-N-1}$$

for positive integers N, μ and a constant $C(N, \mu, M)$ depending only on N, μ and the manifold.

The second main result of this paper focuses on compact complex manifolds with analytic Kähler metrics. It is well-known that the Tian-Yau-Zeldtich expansion does not converge in general. Even if it is convergent, it may not converge to σ_1. We proved that in the case when the metric is analytic, the optimal result may achieve: The asymptotic expansion is convergent and the limit approaches σ_b faster than any other polynomials.
Theorem 1.2. With the notations as in the above theorem, suppose that the Hermitian metrics h_L and h_E are real analytic at a fixed point x. Then for m big enough, the expansion
\[
\sigma_b(x) \sim a_0(x)m^{bn} + a_1(x)m^{bn-1} + \cdots
\] (1.8)
is convergent for certain smooth coefficients $a_j(x)$. There is a $\delta > 0$ such that the coefficient $a_j(x)$ satisfies
\[
|a_j(x)| < \frac{C}{\delta^j}
\]
for some constant C. Moreover, the expansion is convergent in the sense
\[
\|\sigma_b - \sum_{k=0}^N a_km^{bn-k}\|_{C^\mu} \leq Cm^{bn}(\delta m)^{-N-1}
\]
for a constant $C(\mu, \delta)$ which only depends on μ.

Theorem 1.2 gives that

Corollary 1.1. With the notations as in the above theorem, the limit of the series
\[
\lim_{N \to \infty} \sum_{k=0}^N a_km^{bn-k}
\]
exists.

In fact, we prove a little bit more in Theorem 1.2.

Corollary 1.2. With the notations as in the above theorem, we have
\[
\|\sigma_b - \sum_{k=0}^N a_km^{bn-k}\|_{C^\mu} \leq Ce^{-(\log m)^2}.
\]

Proof. Choose $N = \lfloor \log m \rfloor$ to be the integer part of $\log m$. Then
\[
\|\sigma_b - \sum_{k=0}^N a_km^{bn-k}\|_{C^\mu} \leq Cm^{bn-\log m-1}.
\]

On the other hand,
\[
\| \sum_{k=N+1}^\infty a_km^{bn-k}\|_{C^\mu} \leq Cm^{bn-N-1}.
\]

Thus
\[
\|\sigma_b - \sum_{k=0}^\infty a_km^{bn-k}\|_{C^\mu} \leq Cm^{bn-N} \leq Cm^{bn}e^{-(\log m)^2}.
\]
\[\square\]
More precisely, we have the following result

\[\| \sigma_b - \sum_{k=0}^{\infty} a_k m^{bn-k} \|_{C^\mu} \leq C e^{-\varepsilon (\log m)^2}. \]

(1.9)

The above result \((1.9)\) was only known in very special cases before. In Liu \[3\], she proved the case for \(b = 1\) on a smooth Riemann surface with constant curvature. On a planar domain with Poincaré metric, Engliš proved the same result.

We have multiple definitions for \(O(\frac{1}{m^{k+1}})\) through this paper. In the case that \(h_L\) and \(h_E\) are \(C^\infty\) as the assumption in Theorem 1.1, it denotes a quantity dominated by \(C/m^{k+1}\) with the constant \(C\) depending only on \(k\) and the geometry of \(M\). In the case that \(h_L\) and \(h_E\) are analytic as the assumption in Theorem 1.2, it denotes a pure constant.

The last part of this paper, we compute the coefficient of the new expansion.

Theorem 1.3. With the same notation as in Theorem 1.1, each coefficient \(a_j(x)\) is a homogeneous polynomial of the curvature and its derivatives at \(x\). In particular,

\[a_0 = r \]

\[a_1 = \frac{1}{2} br \rho + \rho_E, \]

and the leading term for \(a_k\) for \(k \geq 2\) is

\[\frac{br k}{(k+1)!} \rho^{k-1} \rho_E, \]

where \(\rho\) is the scalar curvature of \(M\), \(\rho_E\) is the scalar curvature of \(E\), and \(\Delta\) is the Laplace operator of \(M\).

Remark 1.1. Apart from the generality of the above results, the \(C^0\)-estimate of the Tian-Yau-Zelditch expansion, when \(b \neq 1\), was essentially known to \[4\]. Thus, technically the proofs of the above theorems are on the \(C^\mu\) estimates. We developed a theorem on the variation of \(K\)-coordinates to achieve this goal. This is a research announcement. Details of the proofs will follow.

References

[1] D. Catlin. The Bergman kernel and a theorem of Tian. In *Analysis and geometry in several complex variables (Katata, 1997)*, Trends Math., pages 1–23. Birkhäuser Boston, Boston, MA, 1999.

[2] S. K. Donaldson. Scalar curvature and projective embeddings. I. *J. Differential Geom.*, 59(3):479–522, 2001.
[3] C. J. Liu. The asymptotic Tian-Yau-Zelditch expansion on Riemann surfaces with Constant Curvature. (to be appeared in Taiwanese J. Math.), arXiv:0710.1347v3.

[4] Z. Lu. On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math., 122(2):235–273, 2000.

[5] Z. Lu and G. Tian. The log term of the Szegő kernel. Duke Math. J., 125(2):351–387, 2004.

[6] G. Tian. On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom., 32(1):99–130, 1990.

[7] S. Zelditch. Szegő kernels and a theorem of Tian. Internat. Math. Res. Notices, no.(6):317–331, 1998.

E-mail address, Zhiqin Lu, Department of Mathematics, University of California, Irvine, CA 92697: zlu@uci.edu

E-mail address, Chiung-ju Liu, Taida Institute for Mathematical Sciences, Taiwan: cjliu4@ntu.edu.tw