Research Article
Multivalent Functions Related with an Integral Operator

Syed Ghoos Ali Shah, 1 Saqib Hussain, 1 Saima Noor, 2 Maslina Darus, 3 and Ibrar Ahmad 1

1Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
2Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Hofuf 31982 Al Ahsa, Saudi Arabia
3Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Correspondence should be addressed to Syed Ghoos Ali Shah; alishahsyedghoos@gmail.com
Received 15 August 2021; Revised 27 September 2021; Accepted 28 September 2021; Published 6 December 2021

Copyright © 2021 Syed Ghoos Ali Shah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this present paper, we introduce and explore certain new classes of uniformly convex and starlike functions related to the Liu–Owa integral operator. We explore various properties and characteristics, such as coefficient estimates, rate of growth, distortion result, radii of close-to-convexity, starlikeness, convexity, and Hadamard product. It is important to mention that our results are a generalization of the number of existing results in the literature.

1. Introduction

Let \(\mathbb{C} \) denote the complex plane and assume that \(A_p \) denotes the class of \(p \)-valent function of the form
\[
\lambda(\omega) = \omega^p + \sum_{t=1}^{\infty} a_{t+p} \omega^{t+p} \quad (p \in \mathbb{N} = \{1,2,\ldots\}),
\]
which are analytic in the open unit disc \(\mathbb{U} = \{ \omega: |\omega| < 1 \} \). Specially, for \(p = 1 \), we denote \(A_1 = A \).

By \(U \), \(K \), and \(S \), the subclasses of \(A_p \) consist of all univalent, convex, and starlike functions \(S(\alpha) \). We also denote \(S(\alpha) \), the class of starlike function of order \(\alpha \), \(\alpha \in [0,1) \). In 1991, Goodman [1, 2] introduced the classes \(UST \) and \(UCV \) of uniformly starlike and uniformly convex functions, respectively. A function \(\lambda \) is uniformly starlike (uniformly convex) in \(\mathbb{U} \) if \(\lambda \) is in \(UST \) (\(UCV \)) and has the property that, for every circular arc \(\gamma \) contained in \(\mathbb{U} \), with center \(\zeta \) also in \(\mathbb{U} \),
the arc \(\lambda(\gamma) \) is starlike (convex) with respect to \(\lambda(\zeta) \). A more useful representation of \(UST \) and \(UCV \) was given in [3]; see [4, 5], for details:
\[
\lambda \in UST \iff \left| \frac{\omega \lambda'(\omega)}{\lambda(\omega)} - 1 \right| \leq R \left(\frac{\omega \lambda'(\omega)}{\lambda(\omega)} \right), \quad (\omega \in \mathbb{U}),
\]
and
\[
\lambda \in UCV \iff \left| \frac{\omega \lambda''(\omega)}{\lambda'(\omega)} \right| \leq R \left(1 + \frac{\omega \lambda''(\omega)}{\lambda'(\omega)} \right), \quad (\omega \in \mathbb{U}).
\]

In 1999, for \(k \geq 0 \), Kanas and Wisniowska [6] introduced the classes \(k - UST \) and \(k - UCV \) of \(k \)-uniformly convex and \(k \)-uniformly starlike functions, respectively, see also [7–10].

Let \(k - UST (\alpha, \beta) \) denote the subclass of \(A_p \) consisting of functions of form (1) and satisfy the following inequality:
\[
\Re \left(\frac{\omega \lambda'(\omega)}{\lambda(\omega)} - \alpha \right) > k \left| \frac{\omega \lambda'(\omega)}{\lambda(\omega)} - \beta \right|, \quad (0 \leq \alpha < \beta \leq 1; k(1-\beta) < (1-\alpha); \omega \in \mathbb{U}).
\]
Also, let $k - \text{UCV} (a, \beta)$ denote the subclass of A_p consisting of functions of form (1) and satisfy the following inequality:

\[
\Re \left(1 + \frac{\omega \lambda''(\omega)}{\lambda'(\omega)} - \alpha \right) > k \left| 1 + \frac{\omega \lambda''(\omega)}{\lambda'(\omega)} - \beta \right|, \\
(0 \leq \alpha < \beta \leq 1; k(1 - \beta) < (1 - \alpha); \omega \in \mathcal{W}).
\]

(5)

It follows from (4) and (5) that

\[
k - \text{UCV} (a, \beta) \Rightarrow \omega \lambda'_\ast \in k - \text{UST} (a, \beta).
\]

(6)

Notice that, $k - \text{UST} (a, 0) = S(a)$ and $k - \text{UCV} (a, 0) = K(a)$ for $k = 0$. The convolution (Hadamard product) for two functions $\lambda, \delta \in A_p$, is defined by

\[
\lambda(\omega) \ast \delta(\omega) = \omega^p + \sum_{\ell=0}^{\infty} a_{\ell+1} b_{\ell+1} \omega^{\ell+p},
\]

(7)

and

\[
Q_{b,p}^a \lambda(\omega) = \lambda(\omega) \quad (a \geq 0; b > -1; p \in \mathbb{N}).
\]

(9)

For $\lambda \in A_p$, given by (1), and using properties of gamma function, we have

\[
Q_{b,p}^a \lambda(\omega) = \omega^p + \frac{\Gamma(a + b + p)}{\Gamma(b + p)} \sum_{\ell=0}^{\infty} \frac{\Gamma(b + p + \ell)}{\Gamma(a + b + p + \ell)} a_{\ell+1} b_{\ell+1} \omega^{\ell+p}.
\]

(10)

We also denote $k - \text{EU}_q (a, b, p, \alpha, \beta, \mu, \nu) = k - U (a, b, p, \alpha, \beta, \mu, \nu) \cap E_q$, where E_q the class of functions $\lambda \in A_p$ of form (1) for which $\arg (a_i) = \pi + (n - 1)\eta$. For more details, see [15–20].
1.1. Special Cases. Specializing parameters, $a, b, \alpha, \beta, \mu,$ and $\nu,$ we obtain the following subclasses studied by various authors:

1. $k - U(0, b, p, \alpha, \beta, \mu) = k - U(\alpha, \beta, \mu)$ [21]
2. $k - \mathcal{U}_o(0, b, p, \alpha, \beta, \mu) = k - \mathcal{U}_o(\alpha, \beta, \mu)$ [21]
3. $0 - \mathcal{U}_o(0, b, p, \alpha, 1, 0, 1) = \mathcal{CV}(\alpha)$ [22]
4. $k - \mathcal{U}_o(0, b, p, \alpha, 1, 0, 1) = k - \text{UCV}(\alpha)$ [23]
5. $1 - U(0, b, p, \alpha, 1, 0, 1) = \text{UCV}(\alpha)$ [24]
6. $k - U(0, b, p, \alpha, 0, 0) = k - \text{UST}(\alpha, \beta)$ [25]

2. Main Results for the Class $k - U(a, b, \alpha, \beta, \mu, \nu)$

2.1. Coefficient Estimates. In this section, we obtain a necessary and sufficient condition for functions $\lambda(\omega)$ in the classes $k - \mathcal{U}_o(a, b, p, \alpha, \beta, \mu, \nu)$.

Theorem 1. A function $\lambda(\omega)$ given by (1) is in the class $k - U(a, b, p, \alpha, \beta, \mu, \nu)$ if

$$\Gamma(a + b + p) \sum_{n=1}^{\infty} |D_{a,p}(1 + k) - C_{a,p}(\alpha + k\beta)| \leq C_p(1 + k) - D_p(\alpha + k\beta),$$

(12)

where

$$C_{a,p} = 1 - \nu + \nu(t + p)(1 + \mu(t + p - 1)),$$

(13)

$$D_{a,p} = t + p + \nu(t + p)(t + p - 1)(1 + \mu(t + p)),$$

(14)

$$C_p = p + \nu(p - 1)(1 + \mu p),$$

(15)

$$-1 \leq \alpha < \beta \leq 1, 0 \leq \mu < 1, k(1 - \beta) < 1 - \alpha, \alpha \geq 0, b > 1, \quad p \in \mathbb{N} \quad \text{and} \quad \omega \in \mathbb{U}.$$

(17)

Proof. It suffices to show that inequality (11) holds true. As we know,

$$\Re \left[1 + ke^{i\theta} \right] \left\{ \frac{(1 - \nu)\omega(Q_{b,p}^n\lambda(\omega))' + \nu\omega(Q_{b,p}^n\lambda(\omega))^'}{((1 - \nu)(Q_{b,p}^n\lambda(\omega))' + \nu\omega(Q_{b,p}^n\lambda(\omega))^')^m} \right\} \geq \alpha,$$

(19)

which can be written as

$$\Re(A(\omega)/B(\omega)) \geq \alpha,$$

where

$$A(\omega) = (1 + ke^{i\theta}) \left\{ \frac{(1 - \nu)\omega(Q_{b,p}^n\lambda(\omega))' + \nu\omega(Q_{b,p}^n\lambda(\omega))^'}{((1 - \nu)(Q_{b,p}^n\lambda(\omega))' + \nu\omega(Q_{b,p}^n\lambda(\omega))^')^m} \right\} - \beta ke^{i\theta} \left\{ (1 - \nu)Q_{b,p}^n\lambda(\omega) + \nu\omega(Q_{b,p}^n\lambda(\omega))^' + \mu\omega^2(Q_{b,p}^n\lambda(\omega))^m \right\},$$

(20)

Then, we have

$$|A(\omega) + (1 + \alpha)B(\omega)| - |A(\omega) - (1 + \alpha)B(\omega)| \geq 0.$$
Now,

\[
|A(\omega) + (1 - \alpha)B(\omega)| \left| [C_p + (1 - \alpha)D_p + ke^{i\theta}(C_p - \beta D_p)] \omega^p - \frac{\Gamma(a + b + p)}{\Gamma(b + p)} \right| \\
\times \sum_{t=1}^{\infty} \left| ke^{i\theta}(\beta C_{t+p} - D_{t+p}) - D_{t+p} - (1 - \alpha)C_{t+p} \right| \times \frac{\Gamma(b + p + t)}{\Gamma(a + b + p + t)} |a_{t+p}| \omega^{\alpha t + p} |.
\]

(23)

Also,

\[
|A(\omega) - (1 + \alpha)B(\omega)| = \left| [C_p - (1 + \alpha)D_p + ke^{i\theta}(C_p - \beta D_p)] \omega^p + \frac{\Gamma(a + b + p)}{\Gamma(b + p)} \right| \\
\times \sum_{t=1}^{\infty} \left| ke^{i\theta}(\beta C_{t+p} - D_{t+p}) - D_{t+p} + (1 + \alpha)C_{t+p} \right| \times \frac{\Gamma(b + p + t)}{\Gamma(a + b + p + t)} |a_{t+p}| \omega^{\alpha t + p} |.
\]

(24)

Using (23) and (24), then we can obtain the following inequality:

\[
|A(\omega) + (1 - \alpha)B(\omega)| - |A(\omega) - (1 + \alpha)B(\omega)| \geq \left| ke^{i\theta}(\beta D_p - C_p) - (C_p - \beta D_p) \right| \\
- C_p - (1 - \alpha)D_p - C_p + (1 + \alpha)D_p \omega^p - \frac{\Gamma(a + b + p)}{\Gamma(b + p)} \\
\times \sum_{t=1}^{\infty} \left| ke^{i\theta}(\beta C_{t+p} - D_{t+p}) - (\beta C_{t+p} - D_{t+p}) \right| \\
- D_{t+p} - (1 - \alpha)C_{t+p} + D_{t+p} - (1 + \alpha)C_{t+p} \times \frac{\Gamma(b + p + t)}{\Gamma(a + b + p + t)} |a_{t+p}| \omega^{\alpha t + p} |.
\]

(25)

The last expression is bounded below by 0 if

\[
\frac{\Gamma(a + b + p)}{\Gamma(b + p)} \sum_{t=1}^{\infty} \left| D_{t+p}(1 + k) - C_{t+p}(\alpha + k\beta) \right| \frac{\Gamma(b + p + t)}{\Gamma(a + b + p + t)} |a_{t+p}| \leq C_p (1 + k) - D_p (\alpha + k\beta),
\]

(26)
which complete the proof.

Theorem 2. Let $\lambda(\omega)$ be given by (1) and in $\LE(U)_{\eta}$; then, $\lambda \in k - \LE(U)_{\eta}(a, b, p, \alpha, \beta, \mu, \nu)$ if and only if

$$\Gamma(a + b + p) \sum_{t=1}^{\infty} \left[D_{t+\eta}(1 + k) - C_{t+\eta}(a + k\beta) \right]$$

where C_{t+p}, D_{t+p}, C_{p}, and D_{p} are given by (13)–(16), respectively.

Proof. In view of Theorem 2, we need only to show that $\lambda \in k - \LE(U)_{\eta}(a, b, p, \alpha, \beta, \mu, \nu)$ satisfies coefficient inequality (27). If $\lambda \in k - \LE(U)_{\eta}(a, b, p, \alpha, \beta, \mu, \nu)$, then, by definition, we have

$$\lambda_t = \omega^p - \left(\frac{\left[C_{p}(1 + k) - D_{p}(a + k\beta) \right] e^{((1 - \eta)t)}}{\Gamma(a + b + p) / \Gamma(b + p) / \Gamma(a + b + p + t) \Gamma(a + b + p + t)} \right) \omega^{t+p}, \quad 0 \leq \eta \leq 2\pi, t \geq 1,$$

is an external function for (27).
Corollary 1. Let the function \(\lambda (w) \) defined by (1) be in the class \(k - E U_\eta (a, b, p, \alpha, \beta, \mu, \nu) \); then,

\[
|a_{t+p}| \leq \frac{C_p(1 + k) - D_p(\alpha + k\beta)}{(\Gamma(a + b + p)/\Gamma(b + p))\left[D_{t+p}(1 + k) - C_{t+p}(\alpha + k\beta)\right](\Gamma(b + p + t)/\Gamma(a + b + p + t))} \quad (t \in \mathbb{N}),
\]

with equality in (32), is attained for the function \(\lambda_{t, \eta}(w) \) given by (31).

\[
\lambda_{t, \eta}(w) = \omega^p - \left(\frac{C_p(1 + k) - D_p(\alpha + k\beta)e^{i(1-\eta)\theta}}{(\Gamma(a + b + p)/\Gamma(b + p))\left[D_{t+p}(1 + k) - C_{t+p}(\alpha + k\beta)\right](\Gamma(b + p + t)/\Gamma(a + b + p + t))}\right)\omega^{t+p},
\]

where \(0 \leq \eta \leq 2\pi \) and \(t \geq 1 \). Then, \(\lambda(w) \) is in the class \(k - E U_\eta (a, b, p, \alpha, \beta, \mu, \nu) \) if and only if it can be expressed as

\[
\lambda(w) = \sum_{t=0}^{\infty} \theta_t \lambda_{t, \eta}, \quad (34)
\]

Theorem 3. Let the function \(\lambda \in k - E U_\eta (a, b, p, \alpha, \beta, \mu, \nu) \) with argument property as in class \(E_\eta \). Define \(\lambda_j(w) = \omega \) and

\[
\lambda_j(w) = \theta_0 \lambda_0(w) + \sum_{t=1}^{\infty} \theta_t \left[\omega^p - \left(\frac{C_p(1 + k) - D_p(\alpha + k\beta)e^{i(1-\eta)\theta}}{(\Gamma(a + b + p)/\Gamma(b + p))\left[D_{t+p}(1 + k) - C_{t+p}(\alpha + k\beta)\right](\Gamma(b + p + t)/\Gamma(a + b + p + t))}\right)\omega^{t+p}\right]
\]

where \(\theta_t \geq 0 \) \((t \geq 0)\) and \(\sum_{t=0}^{\infty} \theta_t = 1 \).

Proof. Assume that

\[
\lambda(w) = \sum_{t=1}^{\infty} \theta_t \lambda_{t, \eta} = \sum_{t=0}^{\infty} \theta_t \left[\omega^p - \left(\frac{C_p(1 + k) - D_p(\alpha + k\beta)e^{i(1-\eta)\theta}}{(\Gamma(a + b + p)/\Gamma(b + p))\left[D_{t+p}(1 + k) - C_{t+p}(\alpha + k\beta)\right](\Gamma(b + p + t)/\Gamma(a + b + p + t))}\right)\omega^{t+p}\right]
\]

Then, by Theorem 2, \(\lambda \in k - E U_\eta (a, b, p, \alpha, \beta, \mu, \nu) \). It follows that

\[
\lambda(w) = \sum_{t=1}^{\infty} \left[\frac{C_p(1 + k) - D_p(\alpha + k\beta)e^{i(1-\eta)\theta}}{(\Gamma(a + b + p)/\Gamma(b + p))\left[D_{t+p}(1 + k) - C_{t+p}(\alpha + k\beta)\right](\Gamma(b + p + t)/\Gamma(a + b + p + t))} \right] \theta_t \times \left[\frac{\Gamma(a + b + p)}{\Gamma(b + p)} \left[D_{t+p}(1 + k) - C_{t+p}(\alpha + k\beta)\right] \frac{\Gamma(b + p + t)}{\Gamma(a + b + p + t)} \right]
\]

Conversely, assume that the function \(\lambda(w) \) defined by (1) belongs to the class \(k - E U_\eta (a, b, p, \alpha, \beta, \mu, \nu) \); then,

\[
|a_{t+p}| \leq \frac{C_p(1 + k) - D_p(\alpha + k\beta)}{(\Gamma(a + b + p)/\Gamma(b + p))\left[D_{t+p}(1 + k) - C_{t+p}(\alpha + k\beta)\right](\Gamma(b + p + t)/\Gamma(a + b + p + t))} \quad (t \in \mathbb{N}).
\]
Setting \(\delta_i = (\Gamma (a + b + p) \Gamma (b + p)) [D_{t+p} (1 + k) - C_{t+p} (a + k\beta)] (\Gamma (b + p + t) / \Gamma (a + b + p + t)) C_{t+p} (1 + k) - D_p (a + k\beta)] a_{t+p}, (t \geq 1) \) and \(\delta_i = 1 - \sum_{i=0}^{\infty} \delta_i, \) then \(\lambda (\omega) = \sum_{i=0}^{\infty} \delta_i \lambda_{t+i} \) and this completes the proof. \(\square \)

2.2. Growth and Distortion Result. In this section, we find a growth and distortion bound for functions in the classes \(k \in \mathcal{U}_p (a, b, p, \alpha, \beta, \mu). \)

Theorem 4. Let the function \(\lambda (\omega) \) be defined by (1) in the class \(k \in \mathcal{U}_p (a, b, p, \alpha, \beta, \mu); \) then, for \(|\omega| = r < 1, \)

\[
\begin{align*}
\lambda (\omega) & \leq r^p \leq |\lambda (\omega)| \leq r^p \\
+ \left(\frac{C_p (1 + k) - D_p (a + k\beta)}{(b + p/a + b + p) [D_{p+1} (1 + k) - C_{p+1} (a + k\beta)]} \right) r^{p+1} \quad (|\omega| = r)
\end{align*}
\]

and

\[
\begin{align*}
|\lambda' (\omega)| & \leq r^{p-1} \leq p|\lambda' (\omega)| \leq r^{p-1} \\
+ \left(\frac{C_p (1 + k) - D_p (a + k\beta)}{(b + p/a + b + p) [D_{p+1} (1 + k) - C_{p+1} (a + k\beta)]} \right) r^{p} \quad (|\omega| = r),
\end{align*}
\]

where equalities (38) and (39) hold for the function \(\lambda (\omega) \) given by (27), for \(\omega = \pm r. \)

Proof. From Theorem 2, we have

\[
\begin{align*}
C_p (1 + k) - D_p (a + k\beta) \sum_{i=1}^{\infty} a_{t+i} & \leq \Gamma (a + b + p) \Gamma (b + p) \sum_{i=1}^{\infty} [D_{t+p} (1 + k) - C_{t+p} (a + k\beta)] a_{t+p} \\
& \leq C_p (1 + k) - D_p (a + k\beta).
\end{align*}
\]

The last inequality follows from Theorem 2. Thus,

\[
|\lambda (\omega)| \leq |\omega|^p + \sum_{i=1}^{\infty} |a_{t+i}| |\omega|^t p \leq r^p + r^{p+1} \sum_{i=1}^{\infty} |a_{t+i}| \leq r^p
\]

\[
+ \left(\frac{C_p (1 + k) - D_p (a + k\beta)}{(b + p/a + b + p) [D_{p+1} (1 + k) - C_{p+1} (a + k\beta)]} \right) r^{p+1}.
\]

Similarly,

\[
|\lambda' (\omega)| \leq p|\omega|^{p-1} + \sum_{i=1}^{\infty} (t + p) |a_{t+i}| |\omega|^{t p-1} \leq r^{p-1} + r^p \sum_{i=1}^{\infty} (t + p) |a_{t+i}| \leq r^{p-1} + r^{p-1} \sum_{i=1}^{\infty} (t + p) |a_{t+i}| \leq p|\omega|^{p-1} + \left(\frac{C_p (1 + k) - D_p (a + k\beta)}{(b + p/a + b + p) [D_{p+1} (1 + k) - C_{p+1} (a + k\beta)]} \right) r^p
\]

Now, by differentiating (1), we obtain

\[
|\lambda' (\omega)| \leq p|\omega|^{p-1} + \sum_{i=1}^{\infty} (t + p) |a_{t+i}| |\omega|^{t p-1} \leq r^{p-1} + r^p \sum_{i=1}^{\infty} (t + p) |a_{t+i}| \leq p|\omega|^{p-1} + \left(\frac{(p + 1)C_p (1 + k) - D_p (a + k\beta)}{(b + p/a + b + p) [D_{p+1} (1 + k) - C_{p+1} (a + k\beta)]} \right) r^p
\]
Given by (31).

\[|\lambda'(\omega)| \geq |\omega|^p - \sum_{i=1}^{\infty} |a_{\tau+i}| |\omega|^p \geq pr^{p-1} - r^p \sum_{i=1}^{\infty} (t+p)|a_{\tau+i}| \geq pr^{p-1} \]

\[- \left(\frac{(p+1)[C_p(1+k) - D_p(\alpha+k\beta)]}{(b+p(a+b+p)[D_{\tau+p}(1+k) - C_{\tau+p}(\alpha+k\beta)]} \right)^p. \tag{44} \]

Using Theorem 2 in (44), we have

\[\frac{(b+p)}{(a+b+p)} \frac{D_{\tau+p}(1+k) - C_{\tau+p}(\alpha+k\beta)}{2} \sum_{i=1}^{\infty} (t+p)|a_{\tau+i}| \leq \frac{\Gamma(a+b+p)}{\Gamma(b+p)} \cdot \left[\sum_{i=1}^{\infty} |D_{\tau+p}(1+k) - C_{\tau+p}(\alpha+k\beta)| \right] \]

\[\leq C_p(1+k) - D_p(\alpha+k\beta), \tag{45} \]

or, equivalently

\[\sum_{i=1}^{\infty} (t+p)|a_{\tau+i}| \leq \frac{2(a+b+p)}{(b+p)} \frac{C_p(1+k) - D_p(\alpha+k\beta)}{D_{\tau+p}(1+k) - C_{\tau+p}(\alpha+k\beta)} \]

\[\sum_{i=1}^{\infty} (t+p)|a_{\tau+i}| \leq \frac{(a+b+p)}{(b+p)} \frac{C_p(1+k) - D_p(\alpha+k\beta)}{D_{\tau+p}(1+k) - C_{\tau+p}(\alpha+k\beta)} \] \tag{46}

Using (46) into (43) and (44) yields inequality (39). \(\Box \)

2.3. Radii of Close-to-Convexity, Starlikeness, and Convexity.

\[r_1 = \inf \left(\frac{(2-p-\kappa)}{(t+p-\kappa)} \frac{\Gamma(a+b+p)\Gamma(b+p)}{\Gamma(a+b+p+1)\Gamma(b+p+1)} \left[D_{\tau+p}(1+k) - C_{\tau+p}(\alpha+k\beta) \right] \right)^{1/\Gamma}, \quad t \geq 1. \tag{47} \]

(ii) \(\lambda(\omega) \) is convex of order \(\kappa \) \((0 \leq \kappa < 1) \) in the disc \(|\omega| < r_2 \), where

\[r_2 = \inf \left(\frac{p(2-p-\kappa)}{(t+p)(t+p-\kappa)} \frac{\Gamma(a+b+p)\Gamma(b+p)}{\Gamma(a+b+p+1)\Gamma(b+p+1)} \left[D_{\tau+p}(1+k) - C_{\tau+p}(\alpha+k\beta) \right] \right)^{1/\Gamma}, \quad t \geq 1. \tag{48} \]

These results are sharp for the extremal function \(\lambda(\omega) \) given by (31).

Proof

(i) Given \(\lambda \in \mathcal{E}_\eta \) and \(\lambda \) is starlike of order \(\kappa \), we have

\[\left| \frac{\lambda'(\omega)}{\lambda(\omega)} - 1 \right| < 1 - \kappa. \tag{49} \]

For the left-hand side of (49), we have

\[\left| \frac{\lambda'(\omega)}{\lambda(\omega)} - 1 \right| \leq \frac{p-1 + \sum_{i=1}^{\infty} k + p - 1 |a_{\tau+i}| |\omega|^p}{1 - \sum_{i=1}^{\infty} |a_{\tau+i}| |\omega|^p}. \tag{50} \]
2.4. Modified Hadamard Product. Let the function λ be defined by

$$\lambda = \frac{\Gamma(a + b + p)\Gamma(b + p)\Gamma(1 + k) - C_{t+p}(\alpha + k\beta)}{C_p(1 + k) - D_p(\alpha + k\beta)} |a_{t+p}|.$$

(51)

The last expression is less than $1 - \chi$ if

$$\sum_{\ell=1}^{\infty} \left(\frac{k + p - \chi}{2 - p - \chi}\right) |a_{t+p}| |a_{t+p}| < 1.$$

(52)

We can say (49) is true if

$$\left(\frac{k + p - \chi}{2 - p - \chi}\right) |a_{t+p}| = \frac{\Gamma(a + b + p)\Gamma(b + p)\Gamma(1 + k) - C_{t+p}(\alpha + k\beta)}{C_p(1 + k) - D_p(\alpha + k\beta)} a_{t+p} \leq 1.$$

(53)

or, equivalently,

$$|a_{t+p}| = \frac{\Gamma(a + b + p)\Gamma(b + p)\Gamma(1 + k) - C_{t+p}(\alpha + k\beta)}{(k + p - \chi)[C_p(1 + k) - D_p(\alpha + k\beta)]}.$$

(54)

which is required.

(ii) Using the fact that λ is convex if and only if $\omega' \lambda'(\omega)$ is starlike, we can prove (ii) on similar lines to the proof of (i). \(\square\)

Theorem 6. Let $\lambda_j(\omega)$ \((j = 1, 2)\) be defined by

$$\lambda_j(\omega) = \omega^p + \sum_{t=1}^{\infty} a_{t+p} \omega^{t+p}, \quad a_{t+p} \geq 0, i \in \mathbb{N}.$$

(55)

Then, we define the modified Hadamard product of $\lambda_1(\omega)$ and $\lambda_2(\omega)$ by

$$(\lambda_1 * \lambda_2)(\omega) = \omega^p - \sum_{t=0}^{\infty} a_{t+p,1} a_{t+p,2} \omega^{t+p}.$$

(56)

Now, we prove the following.

Proof. We need to prove the largest Φ_1, such that

$$\frac{[D_{t+p}(1 + k) - C_{t+p}(\Phi_1 + k\beta)]}{C_p(1 + k) - D_p(\alpha + k\beta)} |a_{t+p,1}| |a_{t+p,2}| \leq 1.$$

(57)

From Theorem 2, we have

$$\sum_{t=1}^{\infty} \left(\frac{\Gamma(a + b + p)\Gamma(b + p)\Gamma(1 + k) - C_{t+p}(\alpha + k\beta)}{C_p(1 + k) - D_p(\alpha + k\beta)} |a_{t+p}| \right) \leq 1.$$

(58)

$$\sum_{t=1}^{\infty} \left(\frac{\Gamma(a + b + p)\Gamma(b + p)\Gamma(1 + k) - C_{t+p}(\alpha + k\beta)}{C_p(1 + k) - D_p(\alpha + k\beta)} |a_{t+p,1}| \right) \leq 1.$$

(59)
By Cauchy–Schwarz inequality, we have

\[
\sum_{i=1}^{\infty} \frac{\Gamma (a + b + p) / \Gamma (b + p) \left[D_{t+p} (1 + k) - C_{t+p} (a + k\beta) \right] \Gamma (b + p + t) / \Gamma (a + b + p + t)}{C_{p} (1 + k) - D_{p} (a + k\beta)} |a_{t+p,1} | a_{t+p,2} \leq 1.
\]

(60)

Thus, it is sufficient to show that

\[
\left[\frac{D_{t+p} (1 + k) - C_{t+p} (\Phi_1 + k\beta)}{C_{p} (1 + k) - D_{p} (\Phi_1 + k\beta)} |a_{t+p,1} | a_{t+p,2} \right] \leq \left[\frac{\Gamma (a + b + p) / \Gamma (b + p) \left[D_{t+p} (1 + k) - C_{t+p} (a + k\beta) \right] \Gamma (b + p + t) / \Gamma (a + b + p + t)}{D_{t+p} (1 + k) - C_{t+p} (\Phi_1 + k\beta)} \right] \Gamma (b + p + t) / \Gamma (a + b + p + t)
\]

(61)

That is,

\[
\sqrt{a_{t+p,1} a_{t+p,2} \leq \left[\frac{C_{p} (1 + k) - D_{p} (\Phi_1 + k\beta)}{\Gamma (a + b + p) / \Gamma (b + p) \left[D_{t+p} (1 + k) - C_{t+p} (a + k\beta) \right] \Gamma (b + p + t) / \Gamma (a + b + p + t)} \right] \frac{\Gamma (b + p + t) / \Gamma (a + b + p + t)}{D_{t+p} (1 + k) - C_{t+p} (\Phi_1 + k\beta)} \left[\frac{C_{p} (1 + k) - D_{p} (a + k\beta)}{C_{p} (1 + k) - D_{p} (a + k\beta)} \right]}
\]

(62)

Note that

\[
\sqrt{a_{t+p,1} a_{t+p,2} \leq \frac{C_{p} (1 + k) - D_{p} (a + k\beta)}{\Gamma (a + b + p) / \Gamma (b + p) \left[D_{t+p} (1 + k) - C_{t+p} (a + k\beta) \right] \Gamma (b + p + t) / \Gamma (a + b + p + t)}}
\]

(63)

Consequently, from (62) and (63), we obtain

\[
\frac{C_{p} (1 + k) - D_{p} (a + k\beta)}{\Gamma (a + b + p) / \Gamma (b + p) \left[D_{t+p} (1 + k) - C_{t+p} (a + k\beta) \right] \Gamma (b + p + t) / \Gamma (a + b + p + t)} \leq \left[\frac{C_{p} (1 + k) - D_{p} (\Phi_1 + k\beta)}{D_{t+p} (1 + k) - C_{t+p} (\Phi_1 + k\beta)} \right] \frac{\Gamma (b + p + t) / \Gamma (a + b + p + t)}{C_{p} (1 + k) - D_{p} (a + k\beta)}
\]

(64)

or, equivalently,

\[
\Phi_1 \leq \frac{C_{p} (1 + k) - D_{p} (\Phi_1 + k\beta) \left[\Gamma (a + b + p) / \Gamma (b + p) \left[D_{t+p} (1 + k) - C_{t+p} (a + k\beta) \right] \Gamma (b + p + t) / \Gamma (a + b + p + t) \right] - \left[D_{t+p} (1 + k) - C_{t+p} (\Phi_1 + k\beta) \right] \left[C_{p} (1 + k) - D_{p} (a + k\beta) \right]}{D_{t+p} (1 + k) - C_{t+p} (\Phi_1 + k\beta) \left[\Gamma (a + b + p) / \Gamma (b + p) \left[D_{t+p} (1 + k) - C_{t+p} (a + k\beta) \right] \Gamma (b + p + t) / \Gamma (a + b + p + t) \right] - \left[C_{t+p} (1 + k) - D_{t+p} (a + k\beta) \right]} = \chi(t).
\]

(65)

Since \(\chi(t) \) is an increasing function for \(t \geq 1 \), letting \(t = 1 \) in (65), we obtain
\[\Phi_1 \leq \Phi_1(1) = \left[\frac{C_p(1+k) - D_p(k\beta)}{D_p(1+k)} \left[\frac{(b+p/a+b + p)}{D_{p+1}(1+k) - C_{p+1}(a+k\beta)} \right]^2 \right] - \left[\frac{D_{p+1}(1+k) - C_{p+1}(a+k\beta)}{D_p(1+k)} \right]^2 \left[\frac{C_p(1+k) - D_p(a+k\beta)}{C_p(1+k) - D_p(a+k\beta)} \right]^2 \]

The proof of our theorem is now completed. \[\square \]

Theorem 7. Let \(\lambda_j(\omega) \) \((j = 1, 2)\) given by (55) be in the class \(k = \mathcal{U}_p(a, b, \alpha, \beta, \mu, \nu) \). If the sequence \(\{\Gamma(a + b + p)/\Gamma(b + p) \mid D_{p+1}(1+k) - C_{p+1}(a+k\beta)\Gamma(b+p+t)/\Gamma(a+b+p+t)\} \) is nondecreasing, then function \(h(\omega) = \omega^p - \sum_{r=1}^{\infty} a_{r+p,1}^2 + a_{r+p,2}^2 \omega^{r+p} \) belongs to the class \(k = \mathcal{U}_p(a, b, \alpha, \beta, \mu, \nu) \), where \(\alpha, \beta, \mu, \nu \) are constants such that \(\alpha, \beta, \mu, \nu \geq 0 \) and \(\alpha + \beta + \mu + \nu + 1 > 0 \).

Proof. We need to prove the largest \(\Phi_2 \).

From Theorem 2, we have

\[\sum_{r=1}^{\infty} \left[\frac{\Gamma(a+b+p)/\Gamma(b+p) \left[D_{p+1}(1+k) - C_{p+1}(a+k\beta) \right] \Gamma(b+p+t)/\Gamma(a+b+p+t)}{C_p(1+k) - D_p(a+k\beta)} \right] a_{r+p,1}^2 \leq 1 \]

and

\[\sum_{r=1}^{\infty} \left[\frac{\Gamma(a+b+p)/\Gamma(b+p) \left[D_{p+1}(1+k) - C_{p+1}(a+k\beta) \right] \Gamma(b+p+t)/\Gamma(a+b+p+t)}{C_p(1+k) - D_p(a+k\beta)} \right] a_{r+p,2}^2 \leq 1. \]

It follows from (69) and (70) that

\[\left(a_{r+p,1}^2 + a_{r+p,2}^2 \right) \leq 1. \]

Therefore, we need to find the largest \(\Phi_2 \), such that
\[
\frac{D_{p+t} (1+k) - C_{p+t} (\Phi_2 + k\beta)}{C_p (1+k) - D_p (\Phi_2 + k\beta)}
\]

\[
\leq \frac{1}{2} \left[\Gamma (a+b+p)/\Gamma (b+p) \left[D_{p+t} (1+k) - C_{p+t} (\alpha + k\beta) \right] \Gamma (b+p+t)/\Gamma (a+b+p+t) \right]^{\frac{1}{2}}.
\]

That is,

\[
\Phi_2 \leq \frac{\Gamma (a+b+p)/\Gamma (b+p) \left[D_{p+t} (1+k) - C_{p+t} (\alpha + k\beta) \right] \Gamma (b+p+t)/\Gamma (a+b+p+t) \right]^{\frac{1}{2}}.
\]

Since \(\chi_2 (t) \) is an increasing function for \(t \geq 1 \), letting \(t = 1 \) in (73), we readily have

\[
\Phi_2 \leq_\chi (1) = \frac{\Gamma (a+b+p)/\Gamma (b+p) \left[D_{p+1} (1+k) - C_{p+1} (\alpha + k\beta) \right] \Gamma (b+p+1)/\Gamma (a+b+p+1) \right]^{\frac{1}{2}}.
\]

The proof of our theorem is now completed. \(\square \)

3. Conclusion

In our current investigation, we have presented and studied thoroughly some new subclasses of \(p \)-valent functions related with uniformly convex and starlike functions, in connection with the Liu–Owa integral operator \(Q_{\beta}^{\lambda} (\omega) \) given by (8). We have obtained sufficient and necessary conditions in relation to these classes, including growth, distortion theorem, and radius problem. Some special cases have been discussed as applications of our main results. The techniques and ideas of this paper may stimulate for further research in this area of knowledge.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

SH came with the main thoughts and helped to draft the manuscript, SGAS and IA proved the main theorems, and SN and MD revised the paper. All authors read and approved the final manuscript.

Acknowledgments

The fourth author was supported by UKM (Grant GUP-2019-032).

References

[1] A. Goodman, “On uniformly convex functions,” Annales Polonici Mathematici, vol. 56, no. 1, pp. 87–92, 1991.
[2] A. W. Goodman, “On uniformly starlike functions,” Journal of Mathematical Analysis and Applications, vol. 155, no. 2, pp. 364–370, 1991.
[3] J. Miller, “Convex meromorphic mappings and related functions,” Proceedings of the American Mathematical Society, vol. 25, no. 2, p. 220, 1970.
[4] A. Mannino, “Some inequalities concerning starlike and convex functions,” General Mathematics, vol. 12, no. 1, pp. 5–12, 2004.
[5] K. Swaminathan and Raghavendar, “A close-to-convex of basic hypergeometric functions using their Taylor coefficients,” Journal of Mathematical Analysis and Applications, vol. 35, pp. 111–125, 2012.
[6] S. Kanas and A. Wisniowska, “Conic regions and k-uniform convexity,” Journal of Computational and Applied Mathematics, vol. 105, no. 1-2, pp. 327–336, 1999.
[7] A. Lecko and S. Kanas, “On the Fekete–Szegö problem and the domain convexity for a certain class of univalent functions,” Folia Science University Technology Resolve, vol. 73, pp. 49–58, 1990.
[8] V. S. Masih and S. Kanas, “Subclasses of starlike and convex functions associated with the limaçon domain,” Symmetry, vol. 12, no. 6, p. 942, 2020.
[9] D. Raducanu and S. Kanas, “Some class of analytic functions related to conic domains,” Mathematica Slovaca, vol. 64, 2014.
[10] S. G. A. Shah, S. Noor, S. Hussain, A. Tasleem, A. Rasheed, and M. Darus, “Analytic functions related with starlikeness,” Hindawi, Mathematical Problems in Engineering, vol. 2021, Article ID 9924434, 5 pages, 2021.
[11] J. L. Liu and S. Owa, “Properties of certain integral operators,” International Journal of Mathematics and Mathematical Sciences, vol. 3, pp. 69–75, 2004.

[12] M. K. Aouf and T. M. Seoudy, “Some properties of a certain subclass of multivalent analytic functions involving the Liu-Owa operator,” Computers & Mathematics with Applications, vol. 60, no. 6, pp. 1525–1535, 2010.

[13] M. K. Aouf and T. M. Seoudy, “Some preserving subordination and superordination of analytic functions involving the Liu-Owa integral operator,” Computers & Mathematics with Applications, vol. 62, no. 9, pp. 3575–3580, 2011.

[14] M. K. Aouf and T. M. Seoudy, “Some preserving subordination and superordination of the liu-owa integral operator,” Complex Analysis and Operator Theory, vol. 7, no. 1, pp. 275–283, 2013.

[15] M. Darus, S. Hussain, M. Raza, and J. Sokol, “On a subclass of starlike functions,” Results in Mathematics, vol. 73, pp. 1–12, 2018.

[16] S. Hussain, A. Rasheed, and M. Darus, “A subclasses of analytic functions related to k-uniformly convex and starlike functions,” Journal of Functions Spaces, vol. 2017, Article ID 9010964, 7 pages, 2017.

[17] A. Rasheed, S. Hussain, S. Hussain, M. Darus, and S. Lodhi, “Majorization problem for two subclasses of meromorphic functions associated with a convolution operator,” AIMS Mathematics, vol. 5, no. 5, pp. 5157–5170, 2020.

[18] S. G. A. Shah, S. Noor, M. Darus, W. Ul Haq, and S. Hussain, “On meromorphic functions defined by a new class of liu-srivastava integral operator,” International Journal of Analysis and Applications, vol. 18, no. 6, 2020.

[19] H. M. Srivastava and S. Kanas, “Linear operators associated with k-uniformly convex functions,” Integral Transforms and Special Functions, vol. 121–132, p. 9, 2000.

[20] S. G. A. Shah, S. Hussain, A. Rasheed, Z. Shareef, and M. Darus, “Application of quasisubordination to certain classes of meromorphic functions,” Journal of Function Spaces, vol. 2020, Article ID 4581926, 8 pages, 2020.

[21] N. Magesh, “Certain subclasses of uniformly convex functions of order a and type β with varying arguments,” Journal of the Egyptian Mathematical Society, vol. 21, no. 3, pp. 184–189, 2013.

[22] H. Silverman, “Univalent functions with negative coefficients,” Proceedings of the American Mathematical Society, vol. 51, no. 1, p. 109, 1975.

[23] A. Y. Lashin, “On certain subclasses of meromorphic functions associated with certain integral operators,” Computers & Mathematics with Applications, vol. 59, no. 1, pp. 524–531, 2010.

[24] F. Ronning, “Uniformly convex functions and a corresponding class of starlike functions,” Proceedings of the American Mathematical Society, vol. 118, no. 1, pp. 189–196, 1993.

[25] R. M. El-Ashwah, M. K. Aouf, A. A. Hassan, and A. H. Hassan, “Certain new classes of analytic functions with varying arguments,” Journal of Complex Analysis, vol. 2013, Article ID 958210, 5 pages, 2013.