Risk analysis for sustainable supplier selection

M Rahmadani1,2 and Suparno 1,3

1Department of Industrial and Systems Engineering, Sepuluh Nopember Institute of Technology, Surabaya, Indonesia
2megarhma@gmail.com, 3suparno@ie.its.ac.id

Abstract. One of the important factors to survive in a competitive market is sustainable supplier selection. It is especially important because suppliers, who consider three dimensions of sustainability, namely economic, social, and environmental, are upstream players in the supply chain. Considering risk to choose the best supplier may lead to a more extensive and complex sustainable supplier selection process. Therefore, not only will the supplier selected by its performance but also by considering the unexpected deviations. In particular, to tackle this issue, this paper proposes a sustainable supplier selection model by integrating the DEMATEL-ANP and FMEA methods by considering supplier risk in the decision process. The result shows that the best supplier which aligns with the criteria for selecting sustainable suppliers. Moreover, it has a smaller risk compared to other suppliers. As a representative in this research is a pharmaceutical company.

Keywords: Sustainable supplier selection, DEMATEL, ANP, FMEA

1. Introduction

The need for health services in Indonesia is increasing every year and the role of the pharmaceutical industry is needed in managing the availability of medicines and medical devices. In fulfilling drug raw materials, it still has limitations because pharmaceutical companies have a dependency on imported raw materials of about 95%. In the global supplier, there are several risks that occur, one of which is the supplier of Apple company in China that violates security and the environment. The supplier conducts air pollution such as emissions of poisonous gas and the disposal of heavy metal waste which causes illness for the people who live around the supplier's factory. The case resulted in several organizations and communities in China boycotting all Apple products and harming Apple's company. The events that have occurred above directly affect the sustainability of the supply system of raw materials in the company. If the disruption continues and requires a long recovery time, the company's business processes can be disrupted and cause the company can not meet market demand.

To reduce the risks that occur in the material supply chain flow, it is necessary to have an appropriate supplier selection and assessment system[1].

In producing products, companies not only pay attention to economic and social aspects but also can consider environmental aspects, so that companies can contribute to achieving sustainable development. In addition to the government's demand for the company's contribution in realizing sustainable development, it turns out there are consumer demands on the company to produce sustainable products. According to [2] the company is not only responsible for using the concept of sustainability in its production process, but also must consider the concept of sustainability in selecting
suppliers. Selection of sustainable suppliers is a very important activity in the supply chain, because suppliers are the upstream of the supply chain. To evaluate suppliers in the process of selecting sustainable suppliers, a decision analysis is needed to determine which criteria are most influential in selecting suppliers. These criteria will support the supplier evaluation process and determine the suppliers to be selected. The supplier evaluation process is carried out in order to compare several suppliers who will then make a decision on which suppliers to choose. In the decision making process in determining the best suppliers from several suppliers, a multi-criteria decision making (MCDM) method is used because this method in making decisions involves more than one criterion. These criteria will support the supplier evaluation process and determine the suppliers to be selected. The supplier evaluation process is carried out in order to compare several suppliers who will then make a decision on which suppliers to choose. In the decision making process in determining the best suppliers from several suppliers, a multi-criteria decision making (MCDM) method is used because this method in making decisions involves more than one criterion. These criteria will support the supplier evaluation process and determine the suppliers to be selected. The supplier evaluation process is carried out in order to compare several suppliers who will then make a decision on which suppliers to choose. In the decision making process in determining the best suppliers from several suppliers, a multi-criteria decision making (MCDM) method is used because this method in making decisions involves more than one criterion.

Based on research that has been done previously regarding the selection of sustainable suppliers [3] - [6] that very few consider the interrelationship between criteria in the selection of sustainable suppliers and in some cases that occur there are decision-making problems that are not structured hierarchically because there are interactions and dependencies between criteria. In addition, the process of selecting sustainable suppliers by considering the risk of making considerations in the selection of suppliers will be more extensive and complex so that the selected suppliers are not only seen based on performance, but also considered unexpected deviations from suppliers. Therefore, this study aims to create a sustainable supplier selection model by considering supplier risk by integrating the DEMATEL-ANP and FMEA methods.

2. The Material and Method

2.1 Decision-Making Trial and Evaluation Laboratory (DEMATEL)

DEMATEL is a method for building and analyzing structured models and there is a causal relationship between the factors [7]. There are several completion steps in the DEMATEL method as follows:

- Make a direct relationship matrix.
 Assessment of the relationship between these criteria in the form of matrix A pairwise comparison with the number of nxn for each expert where a_{ij} is the level of influence of factor i on factor j whose judgment is carried out by expert to k.

- Normalization of the direct relationship matrix
 Based on the matrix A relationship, then normalizing the direct X matrix relationship using the following equation:

 \[
 X = k \cdot A
 \]

 \[
 k = \frac{1}{\max_{i=1}^{n} \sum_{j=1}^{n} a_{ij}}
 \]

 where $i, j = 1, 2, ..., n$

- Get a total relationship matrix
 The total relationship matrix or the T matrix symbolized as the identity matrix is obtained using the following equation:

 \[
 T = X (1 - X)^{-1}
 \]

- Calculating vector dispatch (D) and receiver (R)
Each dispatcher vector (D) and receiver (R) will correspond to the number of rows and columns in the T matrix. The D + R value indicates the importance of a criterion with other criteria. The greater the value, the higher the relevance. If the D-R value is positive, it indicates that a criterion is a cause and an impact to other criteria. Whereas if the D-R value is negative, it indicates that a criterion is receiving an impact from other criteria. Calculation of D and R using the following equation:

\[T = [t_{ij}]_{nxn} \quad i, j = 1,2,3, \ldots, n \]

(3)

\[D = \left[\sum_{j=1}^{n} t_{ij} \right]_{nx1} = [t_{f}]_{nx1} \]

(4)

\[R = \left[\sum_{j=1}^{n} t_{ij} \right]_{1xm} = [t_{f}]_{nx1} \]

(5)

- Make a causal diagram

Based on the results of the total matrix T which provides information about the relationship between criteria (as much as the effect of criterion i on criterion j) then all of that information will be converted in a causal diagram.

2.2 Analytic Network Process (ANP)

ANP is one method that can be used to solve MCDM problems. The ANP method is a method of developing the Analytic Hierarchy Process (AHP) method, where the ANP method is able to make decisions involving interactions and interrelationships between criteria and reciprocity of criteria in clusters and between clusters [8]. Some stages in decision making with the ANP method are as follows:

- Structure the problem and develop a linkage model
 Determine the goals or objectives of problem solving, determine criteria referring to control criteria, and determine alternative choices.

- Form a comparison matrix and comparison scale
 The decision maker will make a pairwise comparison of all elements in the ANP structure using a scale of 1-9 where 1 (equally important) to 9 (absolutely more important). Eigenvector comparison matrix with the following equation:

\[A \cdot w = \lambda_{max} \cdot w \]

(6)

Where A is a pairwise comparison matrix, w is the eigenvector and is the largest eigenvalue, \(\lambda \)

- calculate the consistency rating of an expert

\[CI = (\lambda_{max} - n) / (n-1) \]

(7)

To calculate the consistency ratio obtained from the comparison of the consistency index and the number of random consistency index (RI).

\[CR = \frac{CI}{RI} \]

(8)

- Make Supermatrix

Supermatrix is the result of priority vectors from pairwise comparisons between clusters, nodes, and alternatives. Supermatrix consists of 3 stages namely, unweighted supermatrix (unweighted supermatrix), weighted supermatrix (weighted supermatrix) and supermatrix limit (limiting supermatrix).

2.3 Failure Mode and Effects Analysis (FMEA)

The FMEA method used in this study adopts the research that has been done [9] where there is an improvement in the calculation of the Risk Priority Number (RPN). Failure mode is an unexpected deviation from supplier performance where failure mode will be in accordance with supplier selection criteria. FMEA was developed for supplier selection by giving a "discount" on the criteria weights.
According to the risk of each supplier. So that suppliers who have high risk, will get a big "discount" on the criteria weights. The weighted criteria that have been given a "discount" will be the final weight for analysis of supplier selection. Equations (9) through (11) are used for FMEA calculations while equation (11) is an integration formulation for DEMATEL-ANP and FMEA.

\[R = S \times O \]
(9)
\[ep = -0.1 \times D + 1.55 \]
(10)
\[RPN = \left(\frac{R-1}{99} \right)^{ep} \times 100 \]
(11)

\[Risk \ discount = Bot\ Bot\ Kriteria\ dari\ DEMATEL\ ANP \times \left(1 - Risk \right) \]
(12)

2.4 Case Study

PT. ABC is one of the largest pharmaceutical companies in Indonesia. This company produces and markets medicines in Indonesia. Until now, PT. ABC has produced more than 284 kinds of products and is grouped into products with trade names, generic drug products, government ordered products and patent products. In addition the company also manufactures licensed products from companies in several countries. In addition to meeting national needs, PT. ABC carried out drug export cooperation to several countries that have been pioneered since 2013. Before identifying the supplier selection criteria, the determination of raw materials and their suppliers is the first object of observation in this study. At this stage observations and interviews were carried out at the procurement department to obtain appropriate raw materials and suppliers for this research. PT. ABC produces several medicinal products, but the main product produced is medicine A. Active Raw Materials used in making medicine A are active raw materials X. To meet this demand there are several active raw material suppliers X namely supplier 1, supplier 2 and suppliers 3. Some of these suppliers will be alternatives in the ANP network model.

The criteria and sub-criteria were adopted from several previous studies, then submitted and conducted interviews with the procurement department expert PT XYZ. The aim is to determine which criteria and sub-criteria are consistent with the strategy of PT. XYZ Table 1 shows a list of criteria and sub-criteria that suppliers have verified.

Criteria	Sub-criteria
1 Cost / Price	Product price, Transportation cost, Payme nt term, Duty
2 Delivery	On time delivery, Lead Time
3 Quality	Supplier certification, Chemical purity
4 Production Facilities and Capacity	Supply capacity, Size of product
5 Service	After sales service, Warranty
6 Pollution production	Financial stability
7 Environmental management	Pollution control
8 system	Environment Certification, Green technology, Materials used in the supplied components that reduce the impact on natural resources
Green Transportation	Eco-efficient transportation, Green fuels
9 Occupational health and safety	Health and safety practices, OHSAS 18001
10 management systems	

3. Results and Discussion

3.1 Application of Dematel Method
To find out each sub-criterion has a relationship with other sub-criteria by comparing the stress value (0.0884) with the value of the matrix. If the matrix value is greater than the stress value then the sub-criteria has an influence on other sub-criteria and vice versa if the matrix value is smaller than the stress value then the sub-criteria has no effect on the other sub-criteria. The next step after the total relationship matrix is obtained, namely calculating the vector D and R which is then used to calculate prominence (D + R) and relation (D - R). The value of prominence (D + R) indicates the level of importance of the sub-criteria to the choice of sustainable suppliers, but for the value of the relationship (D - R) shows the causal relationship on the sub-criteria.

Table 2. Calculation Results of the D - R Vector and the D + R Vector

Criteria	Sub-criteria	D	R	D-R	D + R
Cost/price	Product price (PP)	2.0964	1.7823	0.3140	3.8787
	Transportation cost (TC)	1.5518	1.1661	0.3857	2.7179
	Payment term (PT)	1.0194	1.2923	-0.2730	2.3117
	Duty (D)	0.8948	0.7132	0.1816	1.6080
Delivery	On time delivery (OTD)	1.8602	1.8307	0.0295	3.6909
	Lead Time (LT)	1.5850	1.7856	-0.2005	3.3706
Quality	Supplier certification (SC)	2.8708	1.6803	1.1905	4.5511
	Chemical purity (CP)	2.8740	2.1060	0.7680	4.9801
Production Facilities and Capacity	Supply capacity (SCT)	1.4973	1.5383	-0.0410	3.0356
	Size of product (SP)	0.7750	0.7387	0.0362	1.5137
Service	After sales service (AS)	1.6040	2.1477	-0.5438	3.7517
	Warranty (W)	1.5587	2.2408	-0.6821	3.7995
Financial Capability	Financial stability (FS)	1.5215	1.8982	-0.3768	3.4197
Pollution production	Pollution control (PC)	1.3967	1.8017	-0.4050	3.1984
Environmental management System	Environment Certification (EC)	1.9052	1.9724	-0.0672	3.8776
	Green technology (GT)	2.3694	2.0319	0.3375	4.4013
	Materials used in the supplied				
	components that reduce the impact				
	on natural resources (MAT)	1.8566	2.0151	-0.1585	3.8717
Green Transportation	Eco-efficient transportation (ET)	1.2269	1.3318	-0.1048	2.5587
	Green fuels (GF)	0.9419	1.3322	-0.3903	2.2741
Occupational health and	Health and safety practices (HS)	2.2924	1.6948	0.5976	3.9872
safety management systems	OHSAS 18001 (OH)	1.5195	1.5670	-0.0475	3.0865

After the decision making hierarchy model is made, the ANP network model is made based on the interrelationship between sub-criteria on the impact diagram map.

3.2 Application of ANP Method

The first stage carried out in the sub-chapter is to carry out the process of weighting between criteria and sub-criteria where the input is the result of a paired comparison questionnaire of criteria, sub-criteria and alternatives that are filled in by experts. This data processing uses Super Decision 2.10 software. There are 2 columns in the weighting table, normalized by cluster, which shows the local weights of the sub-criteria and limiting is a global weight between the criteria and sub-criteria that can be seen in table 3. After obtaining the local weights from the sub-criteria, the local weight of the criteria is calculated first. Limiting weights are divided by normalized weights by cluster and then calculating the average in the grouping of sub-criteria according to the criteria, so the results are local criteria weights. Global weights are obtained by multiplying local weights obtained, so that global
weights can be used as a basis in the supplier selection process. Global Weight Criteria, sub-criteria and alternatives can be seen in Table 4.

Table 3. Local Weight Sub-Criteria

Sub-criteria	Normalized by Clusters	Limiting
D	0.10108	0.012002
PT	0.24277	0.028827
PP	0.61032	0.072471
TC	0.04583	0.005442
LT	0.46723	0.04027
OTD	0.53277	0.045919
EC	0.38742	0.051617
GT	0.37229	0.0496
MAT	0.24029	0.032014
FS	1	0.048302
ET	0.62696	0.033368
GF	0.37304	0.019854
HS	0.59854	0.068917
OH	0.40146	0.046224
PC	1	0.056438
SP	0.02692	0.001775
SCT	0.97308	0.064173
CP	0.62097	0.158964
SC	0.37903	0.097028
US	0.59038	0.039434
W	0.40962	0.02736

Table 4. Global Weights

Criteria	Sub-criteria	Alternative	Global Weight	
0.1187	0.1011	S1 0.0040	S2 0.0035	S3 0.0045
	0.2428	S2 0.0097	S2 0.0084	S3 0.0108
	0.6103	S3 0.0243	S2 0.0210	S3 0.0272
0.0862	0.0458	S3 0.0018	S2 0.0016	S3 0.0020
	0.4672	S3 0.0135	S2 0.0117	S3 0.0151
	0.5328	S3 0.0154	S2 0.0133	S3 0.0172
	0.3874	S3 0.0173	S2 0.0150	S3 0.0194
0.1332	0.3723	S3 0.02899	S3 0.3752	S3 0.0166
	0.3349	S3 0.0144	S3 0.0186	
0.0483	0.2403	S3 0.0012	S3 0.0097	
	1.0000	S3 0.0120	S3 0.0120	
0.0532	0.6270	S3 0.0162	S3 0.0140	
	0.3730	S3 0.0100	S3 0.0125	
0.1151	0.5985	S3 0.0066	S3 0.0058	
	0.4015	S3 0.0231	S3 0.0259	
0.0564	1.0000	S3 0.0155	S3 0.0173	

In this study, supplier selection is not only based on an assessment of its performance, but also considered an unexpected deviation (failure mode) from supplier performance in accordance with the supplier selection criteria that have been determined in the previous stage. At this stage the Failure Mode and Effect Analysis (FMEA) method is used to identify and assess risks associated with unexpected deviations from supplier performance. Each failure mode will be identified the potential impact that occurs if the failure mode occurs (potential effect), then analyze the causes of failure mode (risk cause) and analyze the controls (current control). The workmanship stages in this section consist of identifying failure mode, evaluating severity values, occurrence and detection and calculation of risk priority number (RPN). This identification phase is carried out by means of discussion with experts. There are 8 risks identified from 7 criteria’s supplier selection, i.e. cost / price (increase in raw material prices (R1), increase in shipping costs (R2)), delivery (delay in delivery of raw materials (R3)), quality (purity of raw material compounds not in accordance with standard (R4)), production facilities and capacity (suppliers cannot meet company demand (R5)), service (less responsive supplier response (R6)), pollution production (environmental pollution occurs (R7)), occupational health and safety management systems (Occupational accidents occur at supplier employees (R8)). The results of the risk assessment for each supplier can be seen in table 5. This assessment uses the FMEA 1-10 scale for severity (S), occurrence (O) and detection (D)[10].

This assessment process uses the FMEA approach that has been developed by [9] by using equations 9 through equation 10. One example of calculation of risk to supplier 1 is the delivery criterion (R2) where S = 2, O = 3, D = 5. So the calculation results are R = 6, ep = 1.05 and RPN = 4.350% or 0.04350. RPN calculation results for each supplier can be seen in table 6.
The results obtained by the ANP method are supplier weights that are seen based on the performance or capability of each supplier, while data processing with FMEA is carried out a risk assessment for each supplier that has been previously identified. Both of these results will be input into the calculation in this section by using the equation development that has been done by [9] in equation 12. Risk-discounted score is the final weighting where the weight obtained from ANP will be given a discount based on an assessment of the risks that will occur to each supplier. The following are the results of the calculation of Risk-discounted score which can be seen in table 7.

Criteria	S1	S2	S3
Cost / Price	0.03524	0.02364	0.03585
Delivery	0.02761	0.02189	0.02407
Production facility	0.04461	0.03863	0.04999
Quality	0.01617	0.01400	0.01812
Service	0.01782	0.01543	0.01997
Occupational health and safety management systems	0.03498	0.03253	0.03641
Pollution production	0.01890	0.01636	0.02118
Environmental management system	0.02032	0.01347	0.02317
Financial Capability	0.06786	0.06494	0.06803
Green Transportation	0.02169	0.01826	0.01357
Total	0.29635	0.25621	0.28464

In the process of selecting sustainable suppliers at PT XYZ, it integrates the DEMATEL-ANP and FMEA methods, where the results of the calculation of the RPN on FMEA will be used as a deduction from the weight of the supplier obtained from calculations with DEMATEL-ANP. The greater the RPN value, the greater the deduction for supplier weights. The supplier selection process in this study not only looks at the (positive) performance of the supplier but also looks at the possible risks that will occur to the supplier. So that suppliers who have good performance and have a low risk will be the chosen supplier or the best supplier. The risk-discounted score calculation results into the supplier's final weight by integrating the DEMATEL-ANP and FMEA methods.

Pemasok 1	Pemasok 2	Pemasok 3	
DEMATEL-ANP	0.3349 (rank 2)	0.2899 (rank 3)	0.3752 (rank 1)
Integrasi DEMATEL-ANP dan FMEA	0.3179 (rank 1)	0.2677 (rank 3)	0.3047 (rank 2)

If we look at supplier weights using the DEMATEL-ANP method where this method assesses the performance or ability of suppliers to meet supplier selection criteria, supplier 3 is in first place with a weight of 0.3752. Then supplier 1 is in second place with a weight of 0.3349, while supplier 2 is in the last position with a weight of 0.2899. However, there are differences in the results of the integration of DEMATEL-ANP and FMEA, where in the supplier selection process not only considers the performance of the supplier but also considers the risks that will occur. It can be seen in Table 5.1 that supplier 1 gained the largest weight of 0.3179 while supplier 3 came in second with a weight of 0.3047. Even though supplier 1 is second in the supplier's assessment with DEMATEL-ANP, but suppliers have less risk than other suppliers. So that the final result when calculating the integration of
the DEMATEL-ANP and FMEA methods, supplier 1 is in first place. Whereas for supplier 3, even though it has the highest weight but has a high enough risk, it will provide a considerable weight reduction and make supplier position 3 from the first position to become the second position. So it can be concluded that supplier 1 is a supplier that fits the criteria and sub-criteria of supplier selection at PT. XYZ as well as having a low risk too. Whereas for supplier 3, even though it has the highest weight but has a high enough risk, it will provide a considerable weight reduction and make supplier position 3 from the first position to become the second position. So it can be concluded that supplier 1 is a supplier that fits the criteria and sub-criteria of supplier selection at PT. XYZ as well as having a low risk too.

Conclusion

Various types of MCDM methods have been very widely used in previous studies for the process of selecting sustainable suppliers, but very few consider the relationship between the criteria in the selection of sustainable suppliers and in some cases there are decision-making problems that are not structured hierarchically because there are interactions and dependencies between criteria. In addition, the MCDM method still has limitations where in selecting suppliers it is seen from the positive weight or positive performance of the supplier. While suppliers have some risk or deviation from the performance.

Based on the comparison of supplier weights using only the DEMATEL-ANP method and by integrating the DEMATEL-ANP and FMEA method, it can be concluded that there is a change in results. This shows that suppliers who have good performance (biggest weight) do not necessarily have low risk. So in this study suppliers who have good performance and have a low risk will be the chosen supplier or the best supplier.

References

[1] M. Srinivasan, D. Mukherjee, and A. S. Gaur, “Buyer – supplier partnership quality and supply chain performance : Moderating role of risks , and environmental uncertainty q,” Eur. Manag. J., vol. 29, pp. 260–271, 2011.
[2] T. Gal, T. J. Stewart, and T. Hanne, MULTICRITERIA DECISION MAKING : Advances in MCDM Models , Algorithms , Theory , and Applications. 1999.
[3] F. Kellner and S. Utz, “Sustainability in supplier selection and order allocation : Combining integer variables with Markowitz portfolio theory,” J. Clean. Prod., vol. 214, pp. 462–474, 2019.
[4] A. Cheraghalipour and S. Farsad, “A bi-objective sustainable supplier selection and order allocation considering quantity discounts under disruption risks : A case study in plastic industry,” Comput. Ind. Eng., vol. 118, pp. 237–250, 2018.
[5] H. G. Goren, “A decision framework for sustainable supplier selection and order allocation with lost sales,” J. Clean. Prod., vol. 183, pp. 1156–1169, 2018.
[6] K. Rashidi and K. Cullinane, “A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection : Implications for sourcing strategy,” Expert Syst. Appl., vol. 121, pp. 266–281, 2019.
[7] W. Wu and Y. Lee, “Developing global managers’ competencies using the fuzzy DEMATEL method,” Expert Syst. Appl., vol. 32, pp. 499–507, 2007.
[8] T. L. Saaty and L. G. Vargas, Decision Making with The Analytic Network Process: Economic, Political, Social, and Technological Applications with Benefits, Opportunities, Costs and Risks. 233 Spring Street, New York, NY 10013, USA: Springer Science+Business Media, 2006.
[9] S. Li and W. Zeng, “Risk analysis for the supplier selection problem using failure modes and effects analysis (FMEA),” *J. Intell. Manuf.*, vol. 27, pp. 1309–1321, 2016.

[10] A. Shahin, “Integration of FMEA and the Kano model An exploratory examination,” vol. 21, no. 7, pp. 731–746, 2004.