Equation $x^i y^j x^k = u^i v^j u^k$ in words

Jana Hadravová and Štěpán Holub
Faculty of Mathematics and Physics, Charles University
186 75 Praha 8, Sokolovská 83, Czech Republic
hadravova@ff.cuni.cz, holub@karlin.mff.cuni.cz

Abstract. We will prove that the word $a^i b^j a^k$ is periodicity forcing if $j \geq 3$ and $i + k \geq 3$, where i and k are positive integers. Also we will give examples showing that both bounds are optimal.

1 Introduction

Periodicity forcing words are words $w \in A^*$ such that the equality $g(w) = h(w)$ is satisfied only if $g = h$ or both morphisms $g, h : A^* \rightarrow \Sigma^*$ are periodic. The first analysis of short binary periodicity forcing words was published by J. Karhumäki and K. Culik II in [2]. Besides proving that the shortest periodicity forcing words are of the length five, their work also covers the research of the non-periodic homomorphisms agreeing on the given small word w over a binary alphabet. What in their work attracts attention the most, is the fact, that even short word equations can be quite difficult to solve. The intricacies of the equation $x^2 y^3 x^2 = u^2 v^3 u^2$, proved to have only periodic solution [3], nothing but reinforced the perception of difficulty. Not frightened, we will extend the result and prove that the word $a^i b^j a^k$ is periodicity forcing if $j \geq 3$ and $i + k \geq 3$, where i and k are positive integers. Also we will give examples showing that both bounds are optimal.

2 Preliminaries

Standard notation of combinatoric on words will be used: $u \leq_p v$ ($u \leq_s v$ resp.) means that u is a prefix of v (u is a suffix of v resp.). The maximal common prefix (suffix resp.) of two word $u, v \in A^*$ will be denoted by $u \wedge_v v$ ($u \wedge_s v$ resp.). By the length of a word u we mean the number of its letters and we denote it by $|u|$. A (one-way) infinite word composed of infinite number of copies of a word u will be denoted by u^ω. It should be also mentioned that the primitive root of a word u, denoted by p_u, is the shortest word r such that $u = r^k$ for some positive k. A word u is primitive if it equals to its primitive root. Words u, v are conjugate if there are words α, β such that $u = \alpha \beta$ and $v = \beta \alpha$. For further reading, please consult [6].
We will briefly recall a few basic and a few more advanced concepts which will be needed in the proof of our main theorem. Key role in the proof will be played by the Periodicity lemma [6]:

Lemma 1 (Periodicity lemma). Let \(p \) and \(q \) be primitive words. If \(p^\omega \) and \(q^\omega \) have a common factor of length at least \(|p| + |q| - 1 \), then \(p \) and \(q \) are conjugate. If, moreover, \(p \) and \(q \) are prefix (or suffix) comparable, then \(p = q \).

Reader should also recall that if two word satisfy an arbitrary non-trivial relation, then they have the same primitive root. Another well-known result is the fact that the maximal common prefix (suffix resp.) of any two different words from a binary code is bounded (see [6, Lemma 3.1]). We formulate it as the following lemma:

Lemma 2. Let \(X = \{x, y\} \) and let \(\alpha \in xX^* \), \(\beta \in yX^* \) be words such that \(\alpha \land \beta \geq |x| + |y| \). Then \(x \) and \(y \) commute.

The previous lemma can be formulated also for the maximal common suffix:

Lemma 3. Let \(X = \{x, y\} \) and let \(\alpha \in X^*x \), \(\beta \in X^*y \) be words such that \(\alpha \land \beta \geq |x| + |y| \). Then \(x \) and \(y \) commute.

The most direct and most well known case is the following.

Lemma 4. Let \(s = s_1s_2 \) and let \(s_1 \leq_p s \) and \(s_2 \leq_p s \). Then \(s_1 \) and \(s_2 \) commute.

Proof. Directly, we obtain \(s = s_1s_2 = s_2s_1 \).

Next, let us remind the following property of conjugate words:

Lemma 5. Let \(u, v, z \in A^* \) be words such that \(uz = zv \). Then \(u \) and \(v \) are conjugate and there are words \(\sigma, \tau \in A^* \) such that \(\sigma \tau \) is primitive and

\[
\begin{align*}
u &\in (\sigma \tau)^*, \\
z &\in (\sigma \tau)^*\sigma, \\
v &\in (\tau \sigma)^*.
\end{align*}
\]

We will also need not so well-know, but interesting, result by A. Lentin and M.-P. Schützenberger [3].

Lemma 6. Suppose that \(x, y \in A^* \) do not commute. Then \(xy^+ \cup x^+y \) contains at most one imprimitive word.

We now introduce some more terminology. Suppose that \(x \) and \(y \) do not commute and let \(X = \{x, y\} \), i.e. we suppose that \(X \) is a binary code. We say that a word \(u \in X^* \) is \(X \)-primitive if \(u = v^i \) with \(v \in X^* \) implies \(u = v \). Similarly, \(u, v \in X^* \) are \(X \)-conjugate, if \(u = \alpha \beta \) and \(v = \beta \alpha \) and the words \(\alpha \) and \(\beta \) are from \(X^* \).

In the following lemma, first proved by J.-C. Spehner [7], and consequently by E. Barbin-Le Rest and M. Le Rest [1], we will see that all words that are imprimitive but \(X \)-primitive are \(X \)-conjugate of a word from the set \(x^*y \cup xy^* \).
Source of the inspiration of both articles was an article by A. Lentin and M.-P. Schützenberger [4] with its weaker version stating that if the set of \(X \)-primitive words contains some imprimitive words, then so does the set \(x^*y \cup xy^* \). As a curiosity, we mention that Lentin and Schützenberger formulated the theorem for \(x^*y \cap y^*x \) instead of \(x^*y \cup y^*x \) (for which they proved it). Also, the Le Rests did not include in the formulation of the theorem the trivial possibility that the word \(x \) or the word \(y \) is imprimitive.

Lemma 7. Suppose that \(x, y \in A^* \) do not commute and let \(X = \{x, y\} \). If \(w \in X^* \) is a word that is \(X \)-primitive and imprimitive, then \(w \) is \(X \)-conjugate of a word from the set \(x^*y \cup y^*x \). Moreover, if \(w \notin \{x, y\} \), then primitive roots of \(x \) and \(y \) are not conjugate.

Putting together Lemma [5] with Lemma [7] we get the following result:

Lemma 8. Suppose that \(x, y \in A^* \) do not commute and let \(X = \{x, y\} \). Let \(C \) be the set of all \(X \)-primitive words from \(X^+ \setminus X \) that are not primitive. Then either \(C \) is empty or there is \(k \geq 1 \) such that

\[
C = \{x^iyx^{k-i}, 0 \leq i \leq k\} \quad \text{or} \quad C = \{y^iyx^{k-i}, 0 \leq i \leq k\}.
\]

The previous lemma finds its interesting application when solving word equations. For example, we can see that an equation \(x^iy^jx^k = z\ell \), with \(\ell \geq 2 \), \(j \geq 2 \) and \(i + k \geq 2 \) has only periodic solutions. (This is a slight modification of a well known result of Lyndon and Schützenberger [5]). Notice, that we can use the previous lemma also with equations which would generate notable difficulties if solved “by hand”. E.g. equation

\[
(yx)^iyx(xy)^jxy(xy)^k = z^m,
\]

with \(m \geq 2 \), has only periodic solutions.

We formulate it as a special lemma:

Lemma 9. Suppose that \(x, y \in A^* \) do not commute and let \(X = \{x, y\} \). If there is an \(X \)-primitive word \(\alpha \in X^* \) and a word \(z \in A^* \), such that

\[
\alpha = z^i,
\]

with \(i \geq 2 \), then \(\alpha = x^kyx^\ell \) or \(\alpha = y^kxy^\ell \), for some \(k, \ell \geq 0 \).

We finish this preliminary part with the following useful lemmas:

Lemma 10. Let \(u, v, z \in A^* \) be words such that \(z \leq_s v \) and \(uv \leq_p zv^i \), for some \(i \geq 1 \). Then \(uv \in zp^*_v \).

Proof. Let \(0 \leq j < i \) be the largest exponent such that \(zv^j \leq_p uv \) and let \(r = (zv^j)^{-1}uv \). Then \(r \) is a prefix of \(v \). Our assumption that \(z \leq_s v \) yields that \(v \leq_s vr \) and

\[
r(r^{-1}v) = v = (r^{-1}v)r.
\]

From the commutativity of words \(r^{-1}v \) and \(r \), it follows that they have the same primitive root, namely \(p_v \). Since \(uv = (zv^j)r \) we have \(uv \in zp^*_v \), which concludes the proof.
Lemma 10 has the following direct corollary.

Lemma 11. Let $w, v, t \in A^*$ be words such that $|t| \leq |w|$ and $wv \leq_{p} tv^i$, for some $i \geq 1$. Then $w \in tp^*_v$.

Proof. Lemma 10 with $u = t^{-1}w$ and z empty yields that $wv \in p^*_v$. Then $wv \in tp^*_v$ and from $|t| \leq |w|$, we obtain that $w \in tp^*_v$.

Lemma 12. Let $u, v \in A^*$ be words such that $|u| \geq |v|$. If αu is a prefix of v^i and $u\beta$ is a suffix of v^i, for some $i \geq 1$, then $\alpha u \beta$ and v commute.

Proof. Since αu is a prefix of v^+ and $|u| \geq |v|$, we have $\alpha^{-1}v\alpha \leq_{p} u \leq_{p} u\beta$. Our assumption that $u\beta$ is a suffix of v^i yields that $u\beta$ has a period $|v^i|$. Then, $u\beta \leq_{p} (\alpha^{-1}v\alpha)^i$ and, consequently, $\alpha u \beta \leq_{p} v^i$. From $v \leq_{s} u\beta$ and Lemma 10, it follows that $\alpha u \beta \in p^*_v$, which concludes the proof.

Lemma 13. Let $u, v \in A^*$ be words such that $|u| \geq |v|$. If αu and βu are prefixes of v^i, for some $i \geq 1$, and $|\alpha| \leq |\beta|$, then α is a suffix of β, and $\beta \alpha^{-1}$ commutes with v.

Proof. Since αu is a prefix of v^+ and $|u| \geq |v|$, we have $\alpha^{-1}v\alpha \leq_{p} u$. Similarly, $\beta^{-1}v\beta \leq_{p} u$. Therefore, $\alpha^{-1}v\alpha = \beta^{-1}v\beta$.

and $|\alpha| \leq |\beta|$ yields $\alpha \leq_{s} \beta$. From $\beta \alpha^{-1}v = v\beta \alpha^{-1}$ we obtain commutativity of v and $\beta \alpha^{-1}$.

Notice that the previous result can be reformulated for suffixes of v^i:

Lemma 14. Let $u, v \in A^*$ be words such that $|u| \geq |v|$. If $u\alpha$ and $u\beta$ are suffixes of v^i, for some $i \geq 1$, and $|\alpha| \leq |\beta|$, then α is a prefix of β, and $\alpha^{-1} \beta$ commutes with v.

3 Solutions of $x^iy^jx^k = u^iv^juk$

Theorem 1. Let $x, y, u, v \in A^*$ be words such that $x \neq u$ and

$$x^iy^jx^k = u^iv^juk,$$

where $i + k \geq 3$, $ik \neq 0$ and $j \geq 3$. Then all words x, y, u and v commute.

Proof. First notice that, by Lemma 10 theorem holds in case that either of the words x, y, u or v is empty. In what follows, we suppose that x, y, u and v are non-empty. By symmetry, we also suppose, without loss of generality, that $|x| > |u|$ and $i \geq k$; in particular, $i \geq 2$. Recall that p_x (p_y, p_u, p_v resp.) denote the primitive root of x (y, u, v resp.).

We first prove the theorem for some special cases.
(A) Let $p_x = p_u$. Then $p_x^{i} y^j p_x^{-k} = v^j$ for some $n \geq 1$, and we are done by Lemma 5.

Notice that the solution of case (A) allows us to assume the useful inequality

$$(i + k - 1) |u| < |p_x|, \quad (*)$$

since otherwise p_x^ω and u^ω have a common factor of the length at least $|p_x| + |u|$, and u and x commute by the Periodicity lemma. From

$$(u^{-i+1} p_x u^{-k}) u = u(u^{-i} p_x u^{-k+1})$$

and Lemma 5 we see that there are words σ and τ such that $\sigma \tau$ is primitive and

$$(u^{-i+1} p_x u^{-k}) \in (\sigma \tau)^m, \quad u = (\sigma \tau)\ell \sigma, \quad u^{-i+1} p_x u^{-k} \in (\tau \sigma)^m,$$

for some $m \geq 1$ and $\ell \geq 0$. Then we have

$$u = (\sigma \tau)\ell \sigma, \quad p_x = u^i (\tau \sigma)^m u^{-k-1} = u^{i-1} (\sigma \tau)^m u^k, \quad (**)$$

for some $m \geq 1$ and $\ell \geq 0$.

(B) Let p_y and p_v be conjugate.

Let α and β be such that $p_y = \alpha \beta$ and $p_v = \beta \alpha$. Since $x^i p_y$ is a prefix of $u^i p_v^+$, we can see that $u^{-i} x^i \alpha \beta \leq_p \beta (\alpha \beta)^+$. From Lemma 10 we infer that and $u^{-i} x^i \in \beta (\alpha \beta)^*$. Similarly, by the mirror symmetry, $p_y^{x^k} \leq_p p_v^{+1} u^k$ yields that $x^k u^{-k} \in (\alpha \beta)^* \alpha$. Then

$$x^{i+k} = u^i p_v^{n+1} u^k,$$

for some $n \geq 1$. From $|v| > |y|$, it follows that $|v| \geq |y| + |p_v|$ and, consequently,

$$(i + k) (|x| - |u|) = j (|v| - |y|) \geq 3 |p_v|.$$

Then $n \geq 3$ and we are done by Lemma 9.

(C) Let p_x and p_v be conjugate.

Let α and β be such that $p_x = \alpha \beta$ and $p_v = \beta \alpha$. From (C) and $i \geq 2$, it follows that $u^i p_v$ is a prefix of p_x^*. Then $u^i (\beta \alpha) \leq_p \alpha (\beta \alpha)^+$ and Lemma 12 yields that $u^i \in \alpha (\beta \alpha)^*$. From $i |u| < |p_x|$, it follows $u^i = \alpha$. Since p_x is a suffix of $\alpha \beta \alpha u^k = p_x u^{i+k}$ and u is a prefix of p_v, we deduce from Lemma 3 that x and u commute, case (A).

We will now discuss separately cases when $|x| \geq |v|$ and $|x| < |v|$.

1. **Suppose that** $|x| \geq |v|$.

If $i \geq 3$ or $x \neq p_x$, then $(u^{-i} x^i) x^{i-1}$ is a prefix of v^j that is longer than $|p_x| + |x|$ by (C). By the Periodicity lemma, p_x is a conjugate of p_v and we are in case (C). The remaining cases deal with $i = k = 2$ and $i = 2, k = 1$.
1a) First suppose that \(i = k = 2 \). Since \((u^{-i}x)x\) is a prefix of \(v^i\) and \((xu^{-k})x\) is a suffix of \(v^j\), we get, by Lemma 12, that \((u^{-i}x)x(xu^{-k})x\) commutes with \(v\). Then
\[
x^3 = u^i p_u u^k,
\]
for some \(n \geq 0 \). From \((i + k - 1)|u| < |p_u| \leq |x|\) and \(|p_v| \leq |v| \leq |x|\) we infer that \(n \geq 2 \). Therefore, \(p_u = p_x \) holds by Lemma 9 and we have case (A).

1b) Suppose now that \(i = 2 \) and \(k = 1 \). We will have a look at the words \(u \) and \(x = p_x \) expressed by \(\ast \ast \). Let \(h = (\sigma \tau)^m \) and \(h' = (\tau \sigma)^m \). Then \(\ast \ast \) yields
\[
u = (\sigma \tau)^l \sigma, \quad x = u^2 h' = uh_u.
\]

1b.i) Suppose now that \(|p_v| \leq |uh|\). Since \(h'u'h \) is a prefix of \(v^i\) and \(u'h \) is a suffix of \(v^j\), we obtain by Lemma 12 that \(h'u'h = p_u^n \). From \(|p_v| \leq |uh|\), we infer \(n \geq 2 \) and, according to Lemma 9, \(\sigma \) and \(\tau \) commute. Then also \(x \) and \(u \) commute and we have case (A).

1b.ii) Suppose that \(|p_v| > |uh|\). From \(|x| \geq |v| \geq |p_v|\), it follows that \(p_v = h'u'h_1 \) for some prefix \(u_1 \) of \(u \). We can suppose that \(u_1 \) is a proper prefix of \(u \), otherwise \(x \) and \(v \) are conjugate and we have case (C). Then \(u_1 h' \leq p \) \(u'h \leq p (\sigma \tau)^+ \) and, by Lemma 13, we obtain \(u u_1^{-1} \in (\sigma \tau)^+ \). Therefore, \(u_1 \in (\sigma \tau)^+ \). Since \(h \leq p v \), we can see that \(\sigma \tau \leq p \tau \sigma^+ \). Lemma 8 then implies commutativity of \(\sigma \) and \(\tau \). Therefore, the words \(x \) and \(u \) also commute and we are in case (A).

2. Suppose that \(|x| < |v|\) and \(i|x| = i|u| + |v|\).

From \(x \leq_s v \), we have \(x \leq_s x u^k \). Since \(u \leq_p x \) we deduce from Lemma 3 that \(x \) and \(u \) commute, thus we have case (A).

3. Suppose that \(|x| < |v|\) and \(i|x| > i|u| + |v|\).

Let \(r \) be a non-empty word such that \(u^i v r = x^i \). Notice that \(|r| < |p_x|\) otherwise the words \(p_x \) and \(p_u \) are conjugate and we have case (C). Considering
the words u and p_x expressed by ([13]), we can see that $(\tau\sigma)^m u^{k-1}u^i$ is a prefix of v and $u^{i-1}(\sigma\tau)^m$ is a suffix of v. Notice also that we have case (A) if σ and τ commute.

3a) Consider first the special case when $r = u^k$.

3a.i) If $i = k$, then $v^{j-2} = u^i y^i u^i$. If $j \geq 4$, we have case (B) by Lemma [9] If $j = 3$, then the equality $u^j v^i = x_1$ implies $x = u^{2i} y^i u^{2i}$ and we get case (A) again by Lemma [9].

3a.ii) Suppose therefore that $k < i$. Notice that $u = \sigma$, otherwise, from $\tau\sigma \leq_p v$ and $u^k = r \leq_p v$, we get commutativity of σ and τ. Therefore,

$$v \in (\tau\sigma)^m \sigma^{k-1} p_x^k \sigma^{i-1}(\sigma\tau)^m.$$

We have

$$v u^k x^{i-k} = u r x^{i-k} = u^{-i} x^{i-k}.$$

From $i > k$ and ([13]) we get $|u^{-i} x^{i-k}| > 0$ and, consequently, $|v u^k| > |x^k|$. Let v' denote the word $v u^k x^{i-k}$. Then $v^{j-2} v' = r y^i$, and $j \geq 3$ together with $|v| > |x| > |u^k| = |v|$ yields that v' is a suffix of y^i. According to ([13]), $v' = u^{-i} x^{i-k} \in (\tau\sigma)^m \sigma^{k-1} p_x^k$. Then, σ^k is a suffix of y^j and we have

$$(\sigma^k y \sigma^{-k}) = \sigma^k y^j \sigma^{-k} = v^{j-2} v' \sigma^{-k}.$$

This is a point where Lemma [9] turns out to be extremely useful. Direct inspection yields that $v^{j-2} v' \sigma^{-k}$ is not a power of a word from $\{\sigma, \tau\}^*$. One can verify, for example, that the expression of $v^{j-2} v' \sigma^{-k}$ in terms of σ and τ contains exactly $j-2$ occurrences of $\tau \sigma$. Therefore, Lemma [9] yields that σ and τ commute, a contradiction.

3b) We first show that $r = u^k$ holds if $k \geq 2$. Indeed, if $k \geq 2$ then $u^k p_x u^{-k}$ is a suffix of v and, consequently, $u^k p_x u^{-k} r$ is a suffix of x^i. Since $u^k p_x u^{-k} u^k$ is also a suffix of x^i, we can use Lemma [14] and get commutativity of x with one of the words $u^{-k} r$ or $r^{-1} u$. From $|r| < |p_x|$ and $|u^k| < |p_x|$, we get $r = u^k$.

3c) Suppose that $k = 1$ and $r \neq u$.

3c.i) If $|r| < |u|$, then r is a suffix of u and $|x r^{-1} u| > |x|$. Since $x r^{-1} \leq_p v$ and $k = 1$, the word $x = x r^{-1} r$ is a suffix of $x r^{-1} u$. Therefore, $x r^{-1}$ is a suffix of $(x r^{-1})^+$. Since $u^2 \leq_p x$ and $|x r^{-1}| \geq |u| + (|u| - |r|)$, the Frequency lemma implies that the primitive root of $u r^{-1}$ is a conjugate of p_u. But since p_u is prefix comparable with $x r^{-1}$, we obtain that $x r^{-1} \in p_u^+$ Then also $r \in p_u^+$ and $x r^{-1} \in p_u^+$ Consequently, x and u commute, and we have case (A).

3c.ii) Suppose therefore that $|r| > |u|$. Then u is a suffix of r. Since r is a suffix of p_x and $p_x = u^i (\tau\sigma)^m$, the word r is a suffix of $u^i (\tau\sigma)^m$. From $|v| > |x|$ we obtain $u^{-i} x u^i \leq_p v$. Consequently, from $p_x = u^i (\tau\sigma)^m$ and $r \leq_p v$, it follows that r is a prefix of $(\tau\sigma)^m u^i$. Consider first the special case when $r \in (\tau\sigma)^m p_u^*$. If $r \in (\tau\sigma)^m p_u^+$, then $r \leq_a u^i (\tau\sigma)^m$ yields that $(\tau\sigma)^m$ and u commute by Lemma [9] Consequently, σ and τ commute, and we have case (A). Therefore, $r = (\tau\sigma)^m$, $p_x = u^i r$ and $v = u^{-i} x r^{-1} \in (r u^i)^+$. We have proved that x and v have conjugate primitive roots, which yields case (C). Consider now the general case.
If \(m \leq \ell \), then \((\tau \sigma)^m\) is a suffix of \(u \). Since \(r \) is a prefix of \((\tau \sigma)^m u^i\), and \(u \preceq_r r \), we get from Lemma 10 the case \(r \in (\tau \sigma)^m p^*_u \).

Suppose that \(m > \ell \). Then \(u \) is a suffix of \((\tau \sigma)^m\). Let \(s \) denote the word \((\tau \sigma)^m u^{-1} = (\tau \sigma)^{m-\ell-1} r \).

If \(|r| \geq |(\tau \sigma)^m| \), then \(r = s'su \) for some \(s' \). From \(r \preceq_p (\tau \sigma)^m u^i \), it follows that \(s'su \) is a prefix of \(su^{i+1} \). Lemma 11 then yields \(s's \in sp^*_u \). Therefore \(r \in su^{i+1} \) and from \(su = (\tau \sigma)^m \), we have the case \(r \in (\tau \sigma)^m p^*_u \).

Let \(|r| < |(\tau \sigma)^m| \). From \(|r| > |u| \) and \((\tau \sigma)^m = su \), we obtain that there are words \(s_1, s_2 \) such that \(s = s_1 s_2 \), \(r = s_2 u \preceq_p v \) and \(s_1 \preceq_s v \). Since \(s \) is both a prefix and a suffix of \(u \), Lemma 4 implies that \(s_1 \) and \(s_2 \) have the same primitive root, namely \(p_s \).

Note that \(p_x = u^i s_2 s_1 \). We now have

\[
(\alpha \beta \gamma)^{i-1} u^i s_2 s_1 = (\alpha \beta \gamma)^i u^i s_2 s_1.
\]

From \(i \geq 2 \), it follows that \(u^i s_2 s_1 \) is a suffix of \((u^i s u)^{i-1} u^i \) for some \(n \geq 1 \). Lemma 3 then yields commutativity of \(s \) and \(u \). Hence, words \(x \) and \(u \) also commute and we are in case (A).

4. Suppose now that \(|x| < |v| \) and \(i|x| < i|u| + |v| \).

First notice that in this case also \(k|x| < k|u| + |v| \). If \(j|y| \geq |v| + |p_y| \), then, by the Periodicity lemma, \(p_y \) and \(p_y \) are conjugate, and theorem holds by (B). Assume that \(j|y| < |v| + |p_y| \). Then, since \(i|x| < i|u| + |v| \) and \(k|x| < k|u| + |v| \), we can see that \(j = 3 \) and there are non-empty words \(\alpha \), \(\beta \) and \(\gamma \) for which \(y = \alpha \beta \gamma \) and \(v = (\beta \gamma)(\alpha \beta \gamma)(\alpha \beta \gamma) \). Therefore, \(\gamma x \leq |v| \) and \(u^i \gamma x \) is a prefix of \(x^2 \). Therefore, by Lemma 10, \(u^i \gamma \) commutes with \(x \). We obtain the following equalities:

\[
 v = \gamma p^*_x \alpha, \quad y^\dagger = \alpha v \gamma = (\alpha \gamma)p^*_x (\alpha \gamma), \]

where \(n \geq 1 \). If \(n \geq 2 \), then \(x \) and \(y \) commute by Lemma 4. If \(n = 1 \), then \(p_x = x \) and \(i = 2 \). Since \(\gamma x^k = v u^k = \gamma x \alpha u^k \) and \(|\alpha u^k| \leq |x| \), also \(k = 2 \) and \(\alpha u^k = x \). Then \(|\alpha| = |\gamma| \) and \(u^2 \gamma = x = \alpha u^2 \). If \(|\alpha| \geq |\gamma| \), then \(u \) and \(\gamma \) commute, a contradiction with \(p_x = x \). Therefore, \(|x| < 3|\gamma| \) and \(|v| = |\gamma x| < 5|\gamma| \). Since \(\gamma \) is a suffix of \(x \) and \(\alpha \) is a prefix of \(x \), \((\gamma \alpha \beta)^2 \gamma \alpha \) is a factor of \(v^3 \) longer than \(|y| + |v| \). Therefore, by the Periodicity lemma, words \(y \) and \(v \) are conjugate, and
we have case (B).

4b) Suppose that \(|u^i\gamma| > |x|\), denote \(z = x^{-1} u^i\gamma\) and \(z' = \gamma^{-1} v\alpha^{-1} = x^k u^{-k}\alpha^{-1}\). From
\[|y| + |\gamma| + |\alpha| < |v| = |\gamma'\alpha|, \]
we deduce \(|y| < |z'|\). Since \(x^{i-1} = zz'\) and \(z'\) is a prefix of \(x^k\), the word \(zz'\) has a period \(|z| < |\gamma|\). Since \(zz'\) is a factor of \(v\) greater than \(|z| + |y|\) and \(v\) has a period \(|p_y|\), the Periodicity lemma implies \(|p_y| \leq |z| < |\gamma|\), a contradiction with \(|\gamma| < |p_y|\).

\(\square\)

4 Conclusion

The minimal bounds for \(i, j, k\) in the previous theorem are optimal. In case that \(i = k\) and \(j\) is even, Eq. (1) splits into two separate equations, which have a solution if and only if either \(i = k\) and \(j = 2\), or \(i = k = 1\), see [2].

Apart from these solutions, we can find non-periodic solutions also in case that \(i \neq k\). Namely, for \(j = 2\) and \(i = k + 1\), we have
\[
\begin{align*}
x &= \alpha^{2k+1} (\beta\alpha^k)^2, & u &= \alpha, \\
y &= \beta\alpha^k, & v &= (\alpha^k \beta)^2 (\alpha^{3k+1} \beta\alpha^k \beta^k). \\
\end{align*}
\]
So far this seems to be the only situation when the equation
\[
x^i y^2 x^k = u^i v^2 u^k
\]
with \(i > k\) has a non-periodic solution. We conjecture that if \(|i - k| \geq 2\), then Eq. (2) has only periodic solutions.

If \(i = k = 1\) and \(j\) is odd, then Eq. (1) has several non-periodic solutions, for example:
\[
\begin{align*}
x &= \alpha \beta \alpha, & u &= \alpha, \\
y &= \gamma, & v &= \alpha \gamma^j \alpha, \\
\end{align*}
\]
where \(\beta^2 = v^{j-1}\).

References

1. Evelyne Barbin-Le Rest and Michel Le Rest. Sur la combinatoire des codes à deux mots. *Theor. Comput. Sci.*, 41:61–80, 1985.
2. Karel Culik II and Juhani Karhumäki. On the equality sets for homomorphisms on free monoids with two generators. *ITA*, 14(4):349–369, 1980.
3. Elena Czeizler, Štěpán Holub, Juhani Karhumäki, and Markku Laine. Intricacies of simple word equations: an example. *Internat. J. Found. Comput. Sci.*, 18(6):1167–1175, 2007.
4. A. Lentin and M.-P. Schützenberger. A combinatorial problem in the theory of free monoids. In G. Pollak, editor, Algebraic theory of semigroups / edited by G. Pollak. North-Holland Pub. Co Amsterdam ; New York, 1979.

5. R. C. Lyndon and M.-P. Schützenberger. The equation $a^m = b^n c^p$ in a free group. The Michigan Mathematical Journal, 9(4):289–298, 12 1962.

6. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of formal languages, vol. 1: word, language, grammar. Springer-Verlag New York, Inc., USA, 1997.

7. J.-P. Spehner. Quelques problèmes d’extension, de conjugaison et de présentation des sous-monoïdes d’un monoïde libre. PhD thesis, Université Paris VII, Paris, 1976.