The Gut and Parkinson’s Disease—A Bidirectional Pathway

Susanne Fonseca Santos 1, Hadassa Loth de Oliveira 2, Elizabeth Sumi Yamada 1, Bianca Cruz Neves 2 and Antonio Pereira Jr. 1,3*

1 Graduate Program in Neuroscience and Cell Biology, Institute of Biology, Federal University of Pará, Belém, Brazil, 2 Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 3 Department of Electrical and Biomedical Engineering, Institute of Technology, Federal University of Pará, Belém, Brazil

Humans evolved a symbiotic relationship with their gut microbiome, a complex microbial community composed of bacteria, archaea, protists, and viruses, including bacteriophages. The enteric nervous system (ENS) is a gateway for the bidirectional communication between the brain and the gut, mostly through the vagus nerve (VN). Environmental exposure plays a pivotal role in both the composition and functionality of the gut microbiome and may contribute to susceptibility to neurodegenerative disorders, such as Parkinson’s disease (PD). The neuropathological hallmark of PD is the widespread appearance of alpha-synuclein aggregates in both the central and peripheral nervous systems, including the ENS. Many studies suggest that gut toxins can induce the formation of α-syn aggregates in the ENS, which may then be transmitted in a prion-like manner to the CNS through the VN. PD is strongly associated with aging and its negative effects on homeostatic mechanisms protecting from inflammation, oxidative stress, and protein malfunction. In this mini-review, we revisit some landmark discoveries in the field of Parkinson’s research and focus on the gut-brain axis. In the process, we highlight evidence showing gut-associated dysbiosis and related microbial-derived components as important players and risk factors for PD. Therefore, the gut microbiome emerges as a potential target for protective measures aiming to prevent PD onset.

Keywords: Parkinson’s disease, enteric nervous system, microbiome, neurotoxicants, probiotics

INTRODUCTION

Parkinson’s Disease (PD) is a common neurodegenerative disorder typically associated with the progressive loss of dopaminergic neurons located in the midbrain nucleus substantia nigra pars compacta (SNpc) (1). Although the cardinal symptoms of PD are motor impairments attributed to the depletion of the neurotransmitter dopamine in the striatum, a major target of the SNpc (2), it has been long recognized [for review, see (3)] that other non-motor symptoms, including olfactory (4–6) and gastrointestinal (GI) dysfunction (4), appear during the so-called premotor phase of the disease.

The neuropathological hallmark of PD is the presence of cytoplasmic inclusions, called Lewy bodies (LB) or Lewy neurites (7–9), in SNpc neurons (10). LBs are composed mostly of α-synuclein (α-syn) aggregates (11–13), whose aberrant soluble oligomeric conformations are thought to mediate its toxic effects (14). Alpha-syn is an intrinsically disordered protein (IDP), which lacks a stable 3D structure under physiological conditions and is characterized by exacerbated structural plasticity and conformational adaptability (15). As other IDPs possessing amyloidogenic
regions (16), α-syn can turn into a promiscuous binder leading to abnormal interactions and the development of PD (17). Tuttle et al. (18) provided a detailed 3D structure of functional α-syn fibrils (see Figure 1), using solid-state NMR spectroscopy. The study may serve as the basis for a better understanding of molecular mechanisms involved in α-syn fibril nucleation and propagation. In addition, such structural information may provide useful insights on possible interactions of α-synuclein with other proteins and small molecules and allow the emergence of new tools with potential to facilitate both the diagnosis and treatment of PD (e.g., imaging agents and therapeutic drugs).

Aggregates of α-syn fibrils are also found in neural tissue located outside the central nervous system (CNS) of PD patients, in both the autonomic and enteric nervous system (ENS), an outcome which may be associated with the non-motor symptoms of the disease [for review, see (3)]. These findings led Braak et al. (4) to propose a staging system for the progression of the disease following a specific pattern of α-syn aggregates spreading from peripheral toward more centralized locations in the brain. The triggering event would be the invasion of vulnerable neural structures such as the olfactory epithelium and the ENS, which interface directly with the external environment (5, 22), by a neurotoxicant (“neurotropic virus”) (23). While both structures (24, 25) possess immunological and physical barriers protecting them against environmental insults, these barriers steadily deteriorate with aging [for review, see (26, 27)], which is the biggest risk factor for idiopathic PD (28).

Animal studies have supported the claim that α-syn aggregates propagate in a prion-like manner ([29]; for review, see (30)] via microtubule-associated transport along axons (31). In summary, the prion hypothesis of PD proposes that amyloidogenic α-syn would induce a conformational change in the endogenous protein through permissive templating, convert it into a likeness of itself (32, 33) and propagate retrogradely through the vagus nerve or the olfactory tract from the ENS or the olfactory bulb, respectively. Even though definitive proof for this prion hypothesis is still missing (30) and there is the controversial possibility that intestinal α-syn aggregates have a brain origin (34, 35), it has been shown that vagotomy is associated with a decreased risk for PD in humans (36, 37). Also, grafted neurons in PD patients develop α-syn aggregate pathology (38–40) and α-syn from PD patients can cause nigrostriatal degeneration in mice and non-human primates (41). Remarkably, exogenous α-syn fibrils, either PD patient-derived or produced in E. coli, were able to seed the formation of LB-like inclusions which spread from the GI tract to the brain through the vagus nerve in rats (31).

Prior to Braak’s hypothesis, however, there was already strong evidence pointing to the role played by exogenous toxins in the etiology of sporadic PD. For instance, postencephalitic parkinsonism (von Economo’s disease), which has an autoimmune basis caused by a viral illness (42), is associated with degeneration of the basal ganglia (43). Additionally, the discovery of parkinsonism induced by 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP) through self-administration, in 1982 (44) brought to light a new class of xenobiotic substances that may cause PD-like symptoms by environmental contact. MPTP is a lipophilic compound which readily passes into the brain where it is converted by monoamine oxidase B (MAO-B) to 1-methyl-4-phenylpyridinium (MPP+) (45) which is taken up by dopaminergic cells and impairs mitochondria respiration by poisoning complex I (46). There are many heterocyclic molecules that structurally resemble MPTP and are found in the brain from both endogenous and exogenous sources, such as tetrahydroisoquinolines (TIQ) and β-carbolines (β-C). For instance, a TIQ derivative, salsolinol, which is produced by enterobacteria (47) and has been found in the urine of PD patients, may have a double-faced, dose-dependent effect on the nigrostriatal pathway as either a harmful or protective agent (48).

The evidence for the role played by toxins in inducing parkinsonism and the relative scarcity of familial cases (about 10%) (49) underscores the importance of environmental and lifestyle factors over genetic ones in the etiology of the disease (50–52). Some chronic diseases have been associated with a phenomenon called evolutionary mismatch when ancestral traits are no longer adaptive in modern contexts (53, 54). For instance, α-syn is involved with normal synaptic function by regulating, among other things, the size of presynaptic vesicles (55) and the assembly of SNARE proteins involved with the docking of synaptic vesicles to presynaptic membranes (56). However, as old age became common in humans after the early upper Paleolithic (57), the steady increase in longevity seen in modern times may have had a collateral effect on the protein homeostasis (proteostasis) network, which coordinates protein synthesis, folding, trafficking, disaggregation, and degradation (58, 59). The breakdown of proteostasis, which is a common feature of many neurodegenerative diseases (60), means that misfolded proteins may accumulate due to lack of clearance or failure to refold into their native structures (61). In the case of prion-like proteins, this may cause further protein misfolding (template effect) leading to protein aggregation and ultimately cell death (62).

THE GUT-BRAIN AXIS AND PARKINSON’S DISEASE

The gut-brain axis is mediated by intense bidirectional communication between the CNS and the ENS (63). Through the ENS, the gut microbiota influences the development and function of all divisions of the nervous system (64) and this association was established very early during the evolution of multicellular organisms. The first nervous system appeared more than 500 million years ago before the divergence of cnidarians and bilaterians, the two metazoan sister groups (65). That primitive brain had a simple structure, organized as a diffuse nerve net which controlled a restricted set of basic behaviors and was the template for the subsequent evolution of the mammalian ENS (66–68), which retained many of its basic structural characteristics, such as a network of nervous ganglia distributed in the myenteric and submucous plexuses (69). Higher vertebrates went to evolve an additional set of neural structures in the central nervous system (CNS), tasked with the control of more sophisticated behaviors (70). However, the ENS and the CNS maintain intense crosstalk through reciprocal connections mediated by the VN (Figure 1) and pelvic nerve in mammals.
FIGURE 1 | The gut epithelium is a multifunctional interface. The bidirectional interplay between the brain and the gut is mediated by neural, such as the vagus nerve (VN-gateway), and humoral pathways, such as the lymphatic tissue and the bloodstream (Non-VN gateways). A monolayer of epithelial cells separates the intestinal lumen and the complex gut microbiome from the underlying lymphoid and enteric nervous tissues. The structure of alpha-synuclein amyloid fibrils (PDB 2N0A) is based on atomic-resolution molecular data from NGL Viewer (19). Members of the gut microbiome and their extracellular compounds may trigger responses in the VN through enteroendocrine cells, which are contacted by vagus nerve terminals through specialized structures called neuropods (NP) (20). Microbial antigens can cross the gut epithelium through microfold cells, playing a central role in localized inflammatory responses [adapted from Bohórquez et al. (21)]. Toll-like receptors are microbe-sensing proteins, present in intestinal epithelial cells, mediating recognition of commensal bacteria from the harmful/inflammatory ones. ENS, enteric nervous system; M, microfold cells; NP, neuropods; PP, Peyer’s patches; TLR4, Toll-like receptor 4; VN, vagus nerve.

THE GUT MICROBIOME AND BRAIN FUNCTION

There is increasing evidence of the association between microbiome dysfunction and CNS-related co-morbidities, such as anxiety, depression, autism spectrum disorders, Alzheimer’s disease and PD (88–92). This association probably arose as a by-product of natural selection forces acting on microorganisms to adapt to the host and vice-versa (93). The effect of the microbiota on the CNS can lead to behavior modifications (93–95) and even to host manipulation (96) associated with increasing fitness of its bacterial populations. For instance, the microbiome can influence social interactions by acting on the nutritional behavior of individual animals, particularly those from social species where individuals share microbes and interact around foods (97). The proximate neuro-endocrinological and inflammatory mechanisms underlying this type of host manipulation are largely shared by the microbiome and the host (98, 99). For instance, levels of many neurotransmitters that are important for the expression of social behavior, such as serotonin (5-HT), dopamine, norepinephrine (NE), γ-aminobutyric acid (GABA), and glutamate are either expressed or regulated by bacteria (100–102). Particularly, most of the body’s serotonin (5-HT) (5-hydroxytryptamine) is produced in the gut by enterochromaffin cells (EC) under the influence...
of the microbiome (103). The activation of 5-HT₄ receptors induces the maturation of the ENS and regulates its adult function (104). In the gut, there are three major metabolic pathways leading from the essential amino acid tryptophan (Trp) to 5-HT, kynurenine (Kyn), and indole derivatives, which are under the direct or indirect control of the microbiota (105). During inflammatory states, most tryptophan is diverted to the production of Kyn and its metabolites kynurenine acid (KYNA) and quinolinic acid (QUIN) (106). While KYNA is considered neuroprotective, QUIN can cause excitotoxicity and contribute to the neuropathogenesis of PD [for review, see (107)].

Although α-syn aggregates are also seen in the ENS of normally aging subjects (108), especially in the appendix (109), it is more prevalent in PD patients (110). Recent in vivo models showed that accumulation of α-syn aggregates in the ENS can be induced by alterations in the gut microbiome (111). Interestingly, Sampson et al. (112) demonstrated in mice, genetically modified to overexpress α-syn, that the presence of gut microbiota is necessary to promote pathological alterations and motor deficits similar to PD. They also demonstrated that fecal transplants from PD patients impair motor function in the same mouse strain, strongly suggesting that gut microbes may play a pivotal role in the onset of synucleinopathies such as PD (112). Underlying these findings is the fact that microbial amyloids produced by some members of the gut microbiota can be released in the extracellular space, where they can be internalized by neighboring cells, including neurons, and seed the formation of pathological aggregates of endogenous α-syn through permissive templating (113, 114). The failure of normal clearance mechanisms such as the ubiquitin-proteasome system, characteristic of both familial and idiopathic PD (115), to degrade the misfolded protein, may facilitate the seeding process.

The concept of microbial dysbiosis also comprises the bacteriophage components of the microbiome (116). Bacteriophages (phages) are viral parasites of bacteria and are important regulators of host-microbiome interactions through horizontal gene transfer and antagonistic coevolution (117, 118). Besides targeting bacteria, phages can impact human health by playing a direct role on intestinal inflammatory processes (119) and possibly causing α-syn misfolding (120). A recent study showed significant differences in the gut phagobiota of PD patients and healthy individuals and a depletion of Lactobacillus bacteria (121) in the former, which is associated with the regulation of gut permeability (122) and dopamine production (102), two factors linked with the early signs of PD in the gut (123). Phage therapy has recently returned to the spotlight as an alternative antimicrobial strategy (124, 125). Eventually, it may also contribute to fighting PD through targeted approaches to manipulate the microbiome (121).

Probiotic bacteria have been linked to improved GI symptoms associated with PD (126). Probiotics affect the functionality of the CNS through beneficial interactions with the commensal gut microbiota and modulation of gut-derived inflammation (127). The microbiota of PD patients exhibits a pro-inflammatory profile (128, 129) due to increased intestinal permeability to endotoxins (lipopolysaccharide) (130). Bacterial amyloids may also favor a pro-inflammatory environment in the gut (131). A common bacterial component, the Curli amyloids, share structural and biophysical properties with amyloids and are produced by E. coli through coordinated biosynthetic processes (132). Other components of the gut microbiome are also known to produce functional extracellular amyloids [e.g., Salmonella, Klebsiella, Citrobacter, and Bacillus species; (133)]. Since probiotic treatment induces an anti-inflammatory peripheral immune response in multiple sclerosis patients (134) there is a possibility they may also be beneficial for PD patients, although there are no reports corroborating this hypothesis. One option is to take advantage of Lactobacilli’s ability to inhibit the formation of biofilms by pathogenic bacteria (135, 136). One caveat, however, is that the effects of probiotics are highly variable, being person-specific, as shown in a recent study (137). This limitation may be counteracted with the use of genetically-modified probiotics able to deliver novel therapeutics efficiently and with site specificity (138). Despite the increasing number of probiotic products available to consumers and the aggressive marketing proclaiming their efficacy, there have been few studies addressing concerns about efficacy and, more importantly, the safety of these products (139). There is an urgent need for more studies about the therapeutic potential of specific bacterial strains to help maintain oxidative and protein homeostasis in the ENS.

CONCLUDING REMARKS

Aging is the main risk factor for the development of PD (140) and delaying the aging process is neuroprotective to PD in animal models (141). Aging is also associated with the accumulation of neuroinflammatory sequelae and the breakdown of homeostatic mechanisms that protect against protein misfolding, oxidative stress, decreased mitochondrial function, etc. The gut, as one of the main gateways to environmental exposure to the brain, may contribute to increasing the susceptibility to these factors. The microbiome has a protective effect mitigating this exposure, and dysbiosis seems to be a pivotal risk factor for PD and other neurological disorders. Thus, the adoption of preventive measures to ensure a healthy microbiome throughout the lifetime can potentially decrease the risk of developing PD and other neurodegenerative diseases. The widespread use of antibiotics, for instance, which can kill gut bacteria indiscriminately, can cause a shift of the microbiome to an alternative stable state with unknown consequences in the long term (142).

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.
REFERENCES

1. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. *Neuron*. (2003) 39:889–909. doi: 10.1016/S0896-6273(03)00568-3
2. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. *J Neurol Neurosurg Psychiatry* (1992) 55:181–4.
3. Garcia-Ruiz PJ, Chaudhuri KR, Martinez-Martin P. Non-motor symptoms of Parkinson's disease A review… from the past. *J Neurol Sci.* (2014) 338:30–3. doi: 10.1016/j.jns.2014.01.002
4. Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. *J Neural Transm.* (2003) 110:517–36. doi: 10.1007/s00702-002-0808-2
5. Doty RL, Deems DA, Stellar S. Olfactory dysfunction in Parkinsonism. A general deficit unrelated to neurologic signs, disease stage, or disease duration. *Neurology.* (1988) 38:1237–1237.
6. Pearce RK, Hawkes CH, Daniel SE. The anterior olfactory nucleus in Parkinson's disease. *Mov. Disord.* (1995) 10:283–7. doi: 10.1002/mds.870100309
7. Lewy F. Paralysis agitans pathologische anatomie. In: Lewandowsky M, editor. *Handbuch der Neurologie.* Berlin: Springer (1912). p. 920–33.
8. Okazaki H, Lipkin IE, Aronson SM. Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadriparesis in flexion. *J Neuropath Exp Neurol.* (1961) 20:237–44.
9. Polymeropoulos MH, Lavedan C, Leroy E, Iide SE, Deheja A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. *Science.* (1997) 276:2045–7. doi: 10.1126/science.276.5321.2045
10. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. *J Neurol Neurosurg Psychiatry.* (1988) 51:745–52. doi: 10.1136/jnnp.51.6.7469
11. Goedert M. Alpha-synuclein and neurodegenerative diseases. *Nat Rev Neurosci.* (2001) 2:492–501. doi: 10.1038/sj.nrn.3200664
12. Gründemann J, Schlaudraff F, Haeckel O, Liss B. Elevated α-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease. *Nucleic Acids Res.* (2008) 36:e238. doi: 10.1093/nar/gkn084
13. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. α-Synuclein in filamentous inclusions of Lewy bodies from familial Parkinson's disease and dementia with Lewy bodies. *Proc Natl Acad Sci USA.* (1998) 95:6469–73. doi: 10.1073/pnas.95.11.6469
14. Stefanias L. α-Synuclein in Parkinson's disease. *Cold Spring Harb Perspect Med.* (2012) 2:a003999. doi: 10.1101/cshperspect.a003999
15. Uversky VN. Wrecked regulation of intrinsically disordered proteins in disease. *Biochim Biophys Acta BBA Proteins Proteomics.* (2007) 1792:714–21. doi: 10.1016/j.bbadis.2008.08.057-0
16. Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. *Cell.* (2012) 148:1188–203. doi: 10.1016/j.cell.2012.02.022
17. Stopachinski BE, Diamond MI. The prison model for progression and diversity of neurodegenerative diseases. *Lancet Neurol.* (2017) 16:323–32. doi: 10.1016/S1474-4227(17)30037-3
18. Lawson VA, Furness JB, Klemm HM, Pontell L, Chan E, Hill AF, et al. The brain to gut pathway: a possible route of prion transmission. *Gut.* (2010) 59:1643–51. doi: 10.1136/gut.2010.222620
19. Ulusoy A, Phillips RJ, Helwig M, Klinkenberg M, Powley TL, Di Monte DA. Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. *Acta Neuropathol.* (2017) 133:381–93. doi: 10.1007/s00401-014-1343-6
20. Liu B, Fang F, Pedersen NL, Tildemann A, Ludvigsson JF, et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. *Neurology.* (2017a) 89:1996–2002. doi: 10.1212/WNL.0000000000003961
21. Svensson E, Horváth-Pujó E, Thomsen RW, Djurhuus JC, Pedersen L, Borchgramm P, et al. Vogatomy and subsequent risk of Parkinson's disease. *Ann Neurol.* (2015) 78:522–9. doi: 10.1002/ana.24448
22. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olano CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. *Nat Med.* (2008a) 14:504–6. doi: 10.1038/nm1744
23. Jang H, Bolte DA, Webster RG, Smynev RJ. Viral parkinsonism. *Biochim Biophys Acta.* (2009) 1792:714–21. doi: 10.1016/j.bbadis.2008.08.001
24. von Econdomo C, Enechelatis lambargia: its sequelae and treatment. *JAMA.* (1931) 98:255. doi: 10.1001/jama.1932.037302901701039
25. Ono M, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. *Acta Neuropathol.* (2014) 128:805–20. doi: 10.1007/s00401-014-1343-6
26. Goedert M. The amyloid state of proteins in human diseases. *Cell.* (2012) 148:1188–203. doi: 10.1016/j.cell.2012.02.022
27. Stopaczynski BE, Diamond MI. The prison model for progression and diversity of neurodegenerative diseases. *Lancet Neurol.* (2017) 16:323–32. doi: 10.1016/S1474-4227(17)30037-3
28. Lawson VA, Furness JB, Klemm HM, Pontell L, Chan E, Hill AF, et al. The brain to gut pathway: a possible route of prion transmission. *Gut.* (2010) 59:1643–51. doi: 10.1136/gut.2010.222620
29. Ulusoy A, Phillips RJ, Helwig M, Klinkenberg M, Powley TL, Di Monte DA. Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. *Acta Neuropathol.* (2017) 133:381–93. doi: 10.1007/s00401-014-1661-2
30. Liu B, Fang F, Pedersen NL, Tildemann A, Ludvigsson JF, Eckborn A, et al. Vogatomy and Parkinson disease: a Swedish register-based matched-cohort study. *Neurology.* (2017a) 89:1996–2002. doi: 10.1212/WNL.0000000000003961
31. Svensson E, Horváth-Pujó E, Thomsen RW, Djurhuus JC, Pedersen L, Borchgaram P, et al. Vogatomy and subsequent risk of Parkinson's disease. *Ann Neurol.* (2015) 78:522–9. doi: 10.1002/ana.24448
32. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olano CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. *Nat Med.* (2008a) 14:504–6. doi: 10.1038/nm1744
33. Jang H, Bolte DA, Webster RG, Smynev RJ. Viral parkinsonism. *Biochim Biophys Acta.* (2009) 1792:714–21. doi: 10.1016/j.bbadis.2008.08.001
34. von Econdomo C, Enechelatis lambargia: its sequelae and treatment. *JAMA.* (1931) 98:255. doi: 10.1001/jama.1932.037302901701039
65. Kelava I, Rentzsch F, Techau U. Evolution of eumetazoan nervous systems: insights from cnidarians. *Philos Trans R Soc B Biol Sci.* (2015) 370:20150065. doi: 10.1098/rstb.2015.0065

66. Furness JB, Stebbing MJ. The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems. *Neurogastroenterol Motil.* (2018) 30:13234. doi: 10.1111/nmo.13234

67. Koizumi O. Origin and evolution of the nervous system considered from the diffuse nervous system of cnidarians. In: Goffredo S, Dubinsky, Z, editors. *The Cnidaria, Past, Present and Future: The World of Medusae and Her Sisters.* Cham: Springer International Publishing (2016). p. 73–91.

68. Shimizu H, Koizumi O, Fujisawa T. Three digestive movements in Hydra regulated by the diffuse nerve net in the body column. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol.* (2004) 190:623–30. doi: 10.1007/s00359-004-0518-3

69. Costa M, Brookes SJH, Hennig GW. Anatomy and physiology of the enteric nervous system. *Gut.* (2000) 47:i19–5. doi: 10.1136/gut.47.suppl_4.i15

70. Kaas J. Evolution of Nervous Systems. 2nd ed. Academic Press (2017).

71. בסיס ד. וולסן MM, תליי נל. המערכת המוסכמת: מעקר של בידריציאליות מקדמת נויטרליות. *Nat Rev Gastroenterol Hepatol.* (2017) 14:134–59. doi: 10.1038/nrastro.2016.191

72. Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. *Nat Rev Gastroenterol Hepatol.* (2016) 13:517–28. doi: 10.1038/nrastro.2016.107

73. Brett S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. *Front Psychiatry.* (2018) 9:44. doi: 10.3389/fpsych.2018.00044

74. Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. *J Inflamm Res.* (2018) 11:203–13. doi: 10.2147/JIR.S163248

75. Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. *Genes Nutr.* (2011) 6:209–40. doi: 10.1007/s12263-011-0229-7

76. ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. *Nat Rev Microbiol.* (2008) 6:776–88. doi: 10.1038/nrmicro1978

77. Selber-Hnativ S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, et al. Human gut microbiota: toward an ecology of disease. *Front Microbiol.* (2017) 8:1265. doi: 10.3389/fmicb.2017.01265

78. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cephalosporin C: a gut microbiota with hormonids. *Science.* (2016) 353:380–2. doi: 10.1126/science.aaf3951

79. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. *Brain Behav Immun.* (2011) 25:397–407. doi: 10.1016/j.bbi.2010.10.023

80. Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. *BMC Microbiol.* (2014) 14:189. doi: 10.1186/1471-2180-14-18

81. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. *Nature.* (2017) 548:43–51. doi: 10.1038/nature23292

82. Zilberman-Reisman I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the holomogeneity of the evolutionary process. *FEBS Microbiol Lett.* (2008) 32:723–35. doi: 10.11171/548-7/867.2008.00123.x

83. Hoffman BU, Lumpkin EA. A gut feeling. *Philos Trans R Soc B Biol Sci.* (2018) 373:20180097. doi: 10.1098/rstb.2018.0097

84. Feher J. 8.3—Intestinal and colonic chemoreception and motility. In: Feher J, editor. *The Bowel and Beyond: The Enteric Nervous System* Academic Press (2017).

85. Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. *Neurogastroenterol Motil.* (2017) 9:3092. doi: 10.1111/nm.13275

86. Bogunovic M, Davé SH, Tilstra JS, Chang DTW, Harpaz N, Xiong H, et al. Enteroendocrine cells express functional Toll-like receptors. *Am J Physiol Gastrointest Liver Physiol.* (2007) 292:G1770–1783. doi: 10.1152/ajpgi.00249.2006

87. Liddle RA. Neuropeptides. *Cell Mol Gastroenterol Hepatol.* (2019) 7:739–47. doi: 10.1016/j.cjmg.2019.01.006

88. Dinan TG, Cryan JF. Gut feelings on Parkinson’s and depression. *Cerebrum.* (2017) 2017:04-17.
95. Lim CK, Fernández-Gomez FJ, Braidy N, Estrada C, Costa S, et al. Involvement of the kynurenine pathway in the pathogenesis of Parkinson's disease. *Proc Natl Acad Sci USA.* (2018) 115:6456–63. doi: 10.1073/pnas.1720017115
96. Agus A, Plancheis J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. *Cell Host Microbe.* (2018) 23:716–24. doi: 10.1016/j.chom.2018.05.003
97. Keesthelyi D, Troost FJ, Jonkers DM, van Donkelaar EL, Dekker J, Buurman WA, et al. Does acute tryptophan depletion affect peripheral serotonin metabolism in the intestine? *Am J Clin Nutr.* (2012) 95:603–8. doi: 10.3945/ajcn.111.028589
98. Lim CK, Fernández-Gomez FJ, Braidy N, Estrada C, Costa S, et al. Involvement of the kynurenine pathway in the pathogenesis of Parkinson's disease. *Proc Natl Acad Sci USA.* (2017) 114:15576–95. doi: 10.1073/pnas.1512009114
99. Böttner M, Zorenkov D, Hellwig I, Barrenscbee M, Harde J, Fricke T, et al. Expression pattern and localization of alpha-synuclein in the human enteric nervous system. *Neurobiol Dis.* (2012) 48:474–80. doi: 10.1016/j.jnd.2012.07.018
100. Gray MT, Munoz DG, Gray DA, Schlossmacher MG, Woulfe JM. Alpha-synuclein in the appendiceal mucosa of neurologically intact subjects. *Mov Disord.* (2014) 29:991–8. doi: 10.1002/mds.25779
101. Barrenscbee M, Zorenkov D, Böttner M, Lange C, Cossais F, Scharf AR, et al. Distinct pattern of enteric phospho-alpha-synuclein aggregates and gene expression profiles in patients with Parkinson's disease. *Acta Neuropathol Commun.* (2017) 5:1. doi: 10.1186/s40478-016-0408-2
102. Chen SG, Strubinskas V, Rane MJ, Demuth DR, Gozal E, Roberts AM, et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged fishier 344 rats and Caenorhabditis elegans. *Sci Rep.* (2016) 6:34477. doi: 10.1038/srep34477
103. Sampson TR, Debelsiu JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. *Cell.* (2016) 167:1469–80.e12. doi: 10.1016/j.cell.2016.11.018
104. Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration. *PLoS Pathog.* (2017) 13:e1006654. doi: 10.1371/journal.ppat.1006654
105. Soto C, Pritzlov S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. *Nat Neurosci.* (2018) 21:1332–40. doi: 10.1038/s41593-018-0235-9
106. McNaught KSP, Olanow CW, Halliwell B, Isacson O, Jenner P. Failure of the ubiquitin–proteasome system in Parkinson’s disease. *Nat Rev Neurosci.* (2001) 2:589–94. doi: 10.1038/35086627
107. Manrique P, Dills M, Young MJ. The human gut phage community and its implications for health and disease. *Viruses.* (2017) 9:14. doi: 10.3390/v9010014
108. Duerkop BA. Bacteriophages shift the focus of the mammalian microbiota. *PLoS Pathog.* (2018) 14:e1007310. doi: 10.1371/journal.ppat.1007310
109. Scanlan PD. Bacteria–bacteriophage coevolution in the human gut: implications for microbial diversity and functionality. *Trends Microbiol.* (2017) 25:614–23. doi: 10.1016/j.tim.2017.02.012
110. Gogokhia L, Buhre K, Bell R, Hoffmann B, Brown DG, Hanke-Gogokhia C, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. *Cell Host Microbe.* (2019) 25:285–99.e8. doi: 10.1016/j.chom.2019.01.008
111. Tetz G, Tetz V. Bacteriophages as new human viral pathogens. *Microorganisms.* (2018) 6:54. doi: 10.3390/microorganisms6020054
112. Tetz G, Brown SM, Hao Y, Tetz V. Bacteriophages as new human viral pathogens. *Microorganisms.* (2018) 6:54. doi: 10.3390/microorganisms6020054
113. Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Baruchelli G, et al. Analysis of gut microbiota in patients with Parkinson's disease. *Viruses.* (2017) 9:40. doi: 10.3390/v9040040
114. Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. *Future Microbiol.* (2016) 11:1855–6. doi: 10.2217/fmc-2015-0159
115. Darby TM, Owens JA, Saeedi BJ, Luo L, Matthews JD, Robison BS, et al. Phage therapy: combating infections with potential for resistance. *Future Microbiol.* (2018) 13:405–17. doi: 10.2217/fmc-2017-0284
116. Pusani C, et al. Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. *Neurogastroenterol Motil.* (2016) 28:e13472. doi: 10.1111/ngeo.13472
117. Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Pusani C, et al. Bacteriophages and prebiotic fiber for constipation associated with Parkinson disease: an RCT. *Neurology.* (2016) 87:1274–80. doi: 10.1212/WNL.0000000000003127
118. Wang H, Lee I-S, Braun C, Enck P. Effect of probiotics on central neuroinflammation in a model of Parkinson’s disease. *Front Neurosci.* (2017) 11:141. doi: 10.3389/fnins.2017.01411
119. Petrov VA, Saltkova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB, et al. Analysis of gut microbiota in patients with Parkinson's disease.
130. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE. (2011) 6:e28032. doi: 10.1371/journal.pone.0028032

131. Miraglia F, Colla E. Microbiome, Parkinson’s disease and molecular mimicry. Cells. (2019) 8:222. doi: 10.3390/cells8030222

132. Taglialegna A, Las I, Valle J. Amyloid Structures as Biofilm Matrix Scaffolds. J Bacteriol. (2016) 198:2579–88. doi: 10.1128/JB.00122-16

133. Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The role of functional amyloids in bacterial virulence. J Mol Biol. (2018) 430:3657–84. doi: 10.1016/j.jmb.2018.07.010

134. Tankou SK, Regev K, Healy BC, Tjon E, Laghi L, Cox LM, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol. (2018) 83:1147–61. doi: 10.1002/ana.25244

135. Söderling EM, Marttinen AM, Haukioja AL. Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro. Curr Microbiol. (2011) 62:618–22. doi: 10.1007/s00284-010-9752-9

136. Vuotto C, Longo F, Donelli G. Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci. (2014) 6:189–94. doi: 10.1038/ijos.2014.52

137. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashirades S, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. (2018) 174:1388–405. doi: 10.1016/j.cell.2018.08.041

138. Singh B, Mal G, Marotta F. Designer probiotics: paving the way to living therapeutics. Trends Biotechnol. (2017) 35:679–82. doi: 10.1016/j.tibtech.2017.04.001

139. Cohen PA. Probiotic safety—no guarantees. JAMA Intern Med. (2018) 178:1577–8. doi: 10.1001/jamainternmed.2018.5403

140. Driver JA, Logroscino G, Gazzano JM, Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology. (2009) 72:432–8. doi: 10.1212/01.wnl.0000341769.50075.bb

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.