Supplement of Biogeosciences, 15, 6573–6589, 2018
https://doi.org/10.5194/bg-15-6573-2018-supplement
© Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Diazotrophy as the main driver of the oligotrophy gradient in the western tropical South Pacific Ocean: results from a one-dimensional biogeochemical–physical coupled model

Audrey Gimenez et al.

Correspondence to: Audrey Gimenez (audrey.gimenez@mio.osupytheas.fr) and Melika Baklouti (melika.baklouti@mio.osupytheas.fr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Supplementary material

Symbol	Definition	Units	Value HNF	Value BAC	Value PHYS	Value UCYN	Value PHYL	Value TRI
K_{LDOP}	Half-saturation constant for LDOP	mol.L$^{-1}$	-	6.62 10^{-7}	6.57 10^{-7}	6.57 10^{-7}	5.66 10^{-6}	5.66 10^{-6}
Q_P^{min}	minimum phosphate content	mol.cell$^{-1}$	1.27 10^{-12}	1.15 10^{-15}	-	-	-	-
Q_P^{max}	maximum phosphate content	mol.cell$^{-1}$	3 Q_P^{min}	3 Q_P^{min}	-	-	-	-
Q_N^{min}	minimum nitrogen content	mol.cell$^{-1}$	16 Q_N^{min}	16 Q_N^{min}	-	-	-	-
Q_N^{max}	maximum nitrogen content	mol.cell$^{-1}$	3 Q_N^{min}	3 Q_N^{min}	-	-	-	-
Q_C^{min}	minimum carbon content	mol.cell$^{-1}$	106 Q_P^{min}	106 Q_P^{min}	-	-	-	-
Q_C^{max}	maximum carbon content	mol.cell$^{-1}$	3 Q_C^{min}	3 Q_C^{min}	-	-	-	-

DOP assimilation

Intracellular contents

$V_{NO_3}^{max}$	Maximum uptake rate for NO$_3$	mol.cell$^{-1}$.s$^{-1}$	$\mu \cdot Q_N^{max}$	$\mu \cdot Q_N^{max}$	-	-	-	-
$V_{NH_3}^{max}$	Maximum uptake rate for NH$_4$	mol.cell$^{-1}$.s$^{-1}$	$\mu \cdot Q_N^{max}$	$\mu \cdot Q_N^{max}$	-	-	-	-
$V_{PO_4}^{max}$	Maximum uptake rate for PO$_4$	mol.cell$^{-1}$.s$^{-1}$	$\mu \cdot Q_P^{max}$	$\mu \cdot Q_P^{max}$	-	-	-	-
V_{DON}^{max}	Maximum uptake rate for DON	mol.cell$^{-1}$.s$^{-1}$	$\mu \cdot Q_P^{max}$	$\mu \cdot Q_P^{max}$	-	-	-	-
V_{DOP}^{max}	Maximum uptake rate for DOP	mol.cell$^{-1}$.s$^{-1}$	$\mu \cdot Q_P^{max}$	$\mu \cdot Q_P^{max}$	-	-	-	-

Nutrients assimilation

| ω | sinking rate | m.d$^{-1}$ | 1.0 | 25.0 | 1.0 | 25.0 | 1.0 | 25.0 |
| TT_{DET_P} | Turnover time for DET-P | d$^{-1}$ | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |

Particulate matter hydrolysis and sink

DETS-C	DETL-C	DETS-N	DETL-N	DETS-P	DETL-P
1.0	25.0	1.0	25.0	1.0	25.0

Table 1. Model parameters which differ from Alekseenko et al. (2014) mentioned in Section 2.2.2, with μ = maximum growth rate.
Symbol	Definition	Value TRI	Value UCYN	Units
μ_{max}	maximum growth rate	2.08×10^{-6}	3.2×10^{-5}	s$^{-1}$
k_m	specific natural mortality rate	1.16×10^{-6}	1.16×10^{-6}	s$^{-1}$
$Q_{C_{min}}$	minimum cell quota of C	2.28×10^{-10}	6.84×10^{-15}	mol.cell$^{-1}$
$Q_{C_{max}}$	maximum cell quota of C	6.84×10^{-15}	2.05×10^{-14}	mol.cell$^{-1}$
$Q_{N_{min}}$	minimum cell quota of N	3.44×10^{-11}	1.03×10^{-15}	mol.cell$^{-1}$
$Q_{N_{max}}$	maximum cell quota of N	1.03×10^{-10}	3.09×10^{-15}	mol.cell$^{-1}$
$Q_{P_{min}}$	minimum cell quota of P	3.44×10^{-11}	1.03×10^{-15}	mol.cell$^{-1}$
$Q_{P_{max}}$	maximum cell quota of P	1.03×10^{-10}	3.09×10^{-15}	mol.cell$^{-1}$
$Q_{C_{CN}}$	minimum cell C:N ratio	5.0	5.0	mol.mol$^{-1}$
$Q_{C_{CP}}$	maximum cell C:N ratio	19.8	19.8	mol.mol$^{-1}$
$Q_{C_{XP}}$	minimum cell C:P ratio	35.33	35.33	mol.mol$^{-1}$
$Q_{C_{XP}}$	maximum cell C:P ratio	318.0	318.0	mol.mol$^{-1}$

Growth and Intracellular contents

- μ_{max}: maximum growth rate
- k_m: specific natural mortality rate
- $Q_{C_{min}}$: minimum cell quota of C
- $Q_{C_{max}}$: maximum cell quota of C
- $Q_{N_{min}}$: minimum cell quota of N
- $Q_{N_{max}}$: maximum cell quota of N
- $Q_{P_{min}}$: minimum cell quota of P
- $Q_{P_{max}}$: maximum cell quota of P
- $Q_{C_{CN}}$: minimum cell C:N ratio
- $Q_{C_{CP}}$: maximum cell C:P ratio

Nutrients assimilation

- K_{NO^3-}: Half-saturation constant for NO^3-
- $V_{NO^3-}^{max}$: Maximum uptake rate for NO^3-
- K_{NH^4+}: Half-saturation constant for NH^4+
- $V_{NH^4+}^{max}$: Maximum uptake rate for NH^4+
- K_{PO^4-}: Half-saturation constant for PO^4-
- $V_{PO^4-}^{max}$: Maximum uptake rate for PO^4-
- K_{DON}: Half-saturation constant for DON
- V_{DON}^{max}: Maximum uptake rate for DON
- K_{DOP}: Half-saturation constant for DOP
- V_{DOP}^{max}: Maximum uptake rate for DOP

Diazotrophy process

- $Nase_{prod}^{max}$: Maximum rate of increase of nitrogenase activity
- $Nase_{decr}^{max}$: Maximum rate of decay of nitrogenase activity
- K_{Nase}: Coefficient of nitrogenase degradation
- $COST_{DIAZO}$: Respiration cost for nitrogen fixation
- $EXUD_{DON}$: Exudation part of N$_2$ fixed towards DON
- $EXUD_{NH_4}$: Exudation part of N$_2$ fixed towards NH_4

Table 2. Model Parameters relative to diazotroph organisms TRI and UCYN
Figure SM 1 Temporal dynamics of the *in situ* mixed layer depths estimated using a climatology (de Boyer Montégut et al., 2004) at WMA (green circles) and WGY (blue circles), and simulated by the model (green line).
Figure SM 2 Atmospheric forcings provided by the Weather Research Forecast model and extracted at the WMA (green) and WGY (blue) locations from September 2014 to September 2015
Figure SM 3 Evolution of monthly averaged (a) sea surface temperature (SST), (b) surface density and (c) mixed layer depths (MLD) from September 2014 to August 2015 predicted by the model (green line) and calculated with climatologies (WOA13 for SST and Surface density, and de Boyer Montegut et al., 2004 for MLD)