Group Actions, Cyclic Coverings and Families of K3-Surfaces

Alessandra Sarti

Abstract. In this paper we describe six pencils of K3-surfaces which have large Picard number ($\rho = 19, 20$) and each contains precisely five special fibers: four have A-D-E singularities and one is non-reduced. In particular, we characterize these surfaces as cyclic coverings of some K3-surfaces described in a recent paper by Barth and the author. In many cases, using 3-divisible sets, resp., 2-divisible sets, of rational curves and lattice theory, we describe explicitly the Picard lattices.

Introduction

Recently, using various methods (toric geometry, mirror symmetry, etc.), many families of K3-surfaces with large Picard number and small number of special fibers have been constructed and studied (see [D, VY, Be]). Here we use group actions and cyclic coverings to describe six new families where the generic surface has Picard number 19 and we identify four surfaces with Picard number 20. These six pencils are related to three families of K3-surfaces studied by Barth and the author [BS]: the generic surface has Picard number 19 and the pencils contain four surfaces with singularities of A − D − E type and $\rho = 20$ and one non-reduced fiber. The families arise as minimal resolutions of quotients X^n_λ / G_n where G_n is a special finite subgroup of $SO(4, \mathbb{R})$ containing the Heisenberg group and $\{X^n_\lambda\}_{\lambda \in \mathbb{P}_1}$ is a G_n-invariant pencil of surfaces in \mathbb{P}_3, the latter are described in [S1] (we recall some facts in Section 1). In Sections 1 and 2 we describe six normal subgroups H of G_n which contain the Heisenberg group, describe the fixed points of H on X^n_λ, and show that the minimal resolutions are pencils of K3-surfaces which contain five special surfaces. In Section 3 we show that the new families are certain cyclic coverings of the surfaces of [BS]. Then, by a classical result of Inose, [I, Cor. 1.2], they have the same Picard number, hence the general surface in each of the six pencils has Picard number 19 and we have four surfaces with Picard number 20. In Section 4 by using the rational curves on the minimal resolutions and 2-divisible and 3-divisible sets of rational curves, we describe completely the Picard lattice of many of the surfaces.

1 Notations and Preliminaries

There are two classical 2:1 coverings:

$$SU(2) \rightarrow SO(3, \mathbb{R}) \quad \text{and} \quad \sigma: SU(2) \times SU(2) \rightarrow SO(4, \mathbb{R}).$$
Denote by $T, O \subset SO(3, \mathbb{R})$, the rotation groups of the tetrahedron and octahedron, by \tilde{T}, \tilde{O} the corresponding binary subgroups of $SU(2)$, and let $G_6 := \sigma(\tilde{T} \times \tilde{T})$, $G_8 := \sigma(\tilde{O} \times \tilde{O})$. We denote an element of $SU(2) \times SU(2)$ and its image in $SO(4, \mathbb{R})$ by (p_1, p_2). Let $X_6^s = s_6 + \lambda q^4$ and $X_8^s = s_8 + \lambda q^4$ denote the pencils of G_6- and G_8-invariant surfaces in \mathbb{P}^3, which are described in [S1]; s_6 denotes a G_6-invariant homogeneous polynomial of degree six and s_8 denotes a G_8-invariant homogeneous polynomial of degree eight; and $q := x_0^2 + x_1^2 + x_2^2 + x_3^2$ is the equation of the quadric $\mathbb{P}_1 \times \mathbb{P}_1$ in \mathbb{P}^3. The base locus of the pencils X_n^s are $2n$ lines on the quadric with n in each ruling, and each pencil contains exactly four nodal surfaces, cf. [S1].

Now recall the matrix:

$$C := \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix} \in O(4, \mathbb{R}),$$

which operates on an element $(p_1, p_2) \in G_1 \times G_2$ by:

$$C^{-1}(p_1, p_2)C = (p_2, p_1).$$

Moreover we specify the following matrices of $SO(4, \mathbb{R})$:

$$\begin{pmatrix}
q_1, 1
\end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} q_2, 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix},$$

$$\begin{pmatrix}
q_3, 1
\end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} q_4, 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Using these matrices the groups have the following generators:

Group	Generators
G_6	$(q_2, 1), (1, q_2), (p_3, 1), (1, p_3)$
G_8	$(q_2, 1), (1, q_2), (p_3, 1), (1, p_3), (p_4, 1), (1, p_4)$

Denote by PG the image of a subgroup $G \subset SO(4, \mathbb{R})$ in $\mathbb{P} GL(4, \mathbb{R})$. We define the types of lines in \mathbb{P}^3 which are fixed by elements $(p_1, p_2) \in PG$ of order 2, 3 or 4 in the following way:

order	type
2	M
3	N
4	R
1.1 Normal Subgroups

In [S2] the author classifies all the subgroups of $SO(4, \mathbb{R})$ which contain the Heisenberg group $V \times V$. Here we consider all the normal subgroups of G_6 and of G_8 which contain the subgroup $V \times V$, resp. G_6. We denote by H such a normal subgroup, by $o(H)$ its order and by $i(H) = [G_n:H]$ the index of H in G_n. We list below all the groups H and their generators, following the notation of [S2]. Moreover, we do not consider separately the groups H and $C^{-1}HC$ or, in general, groups which are conjugate in $O(4, \mathbb{R})$. The group $T \times T$ is in fact the same as G_6, but to avoid confusion we use this notation when we consider it as subgroup of G_8.

![Table]

1.2 Fixed Points

We analyze the different kind of fixed points for elements of the subgroups $PH \subset PG$ in the same way as in [BS]. Recall that the elements of the form $(p, 1)$ or $(1, p)$ have each two disjoint lines of fixed points contained in one ruling, respectively, in the other ruling of the quadric (cf. [S1, 5.4, p. 439]).

Fixed Points on the Quadric: The subgroups $G_1 \times 1$ and $1 \times G_2$ of PH operate on the two rulings of the quadric and determine orbits of lines. We give the lengths of the orbits in the following tables. In the first row we write the order of the element which fixes two lines of the orbit:

![Table]
Fixed Points Off the Quadric: We denote by F_L the fixed group of a line L of \mathbb{P}^3 in PH and by H_L the stabilizer group of L in PH, i.e.,

$$F_L := \{ h \in PH \text{ s.t. } hx = x \text{ for all } x \in L \}$$

$$H_L := \{ h \in PH \text{ s.t. } hL = L \}.$$

Moreover, denote by $\ell(L)$ the length of the H-orbit of the line L and by g a representative of a conjugacy class in H:

Group	$T \times V$	$(TT)'$	$V \times V$				
F_L	(q_1, q_1)	(q_1, q_1)	(q_1, q_1)				
type	Z_2	Z_2	Z_2				
$\ell(L)$	6	6	6				
$	H_L	/	F_L	$	4	4	4

Here we denote by $q_3 \in SU(2)$ the product of q_1 and q_2. In the last column of the table the sum runs over $i, j = 1, 2, 3$. In this case we have nine distinct conjugacy classes with just one element.

Group	$O \times T$	$(OO)'$				
F_L	(q_1, q_1)	(p_3, p_3)				
type	Z_2	Z_3				
$\ell(L)$	18	32				
$	H_L	/	F_L	$	8	3

Group	$T \times T$				
F_L	(q_2, q_2)				
Type	Z_2				
$\ell(L)$	18				
$	H_L	/	F_L	$	4

Remark 1.1 By taking the generator (p_3, p_3) for $(TT)'$ instead of (p_3, p_3) we find a group $(TT)''$ which is conjugate in $O(4, \mathbb{R})$ to $(TT)'$. The description of the fixed points is similar to that in the case of $(TT)'$.

2 Quotient Surfaces

2.1 Quotient Singularities

We now consider the projections:

$$\pi_H: X^6_\lambda \rightarrow X^6_\lambda / H, \quad \pi_{H'}: X^8_\lambda \rightarrow X^8_\lambda / H'$$
with \(H = T \times V \), \((TT)\)' or \(V \times V \); \(H' = O \times T \), \((OO)''\) or \(T \times T \). In this section we run the same program as in [BS, §3] and describe the singularities of the quotients (for the details cf. [BS]).

Fixed Lines on \(q \): The image in the quotient of the lines of the base locus of the pencils \(X_6^\lambda \) and \(X_8^\lambda \) and of the intersection points of the lines of the base locus are smooth. Observe that the points of intersection of the lines of the base locus of the pencils form one orbit under the action of \(T \times V \), \(V \times V \), \(O \times T \) and \(T \times T \). In the case of the groups \((TT)'\) we have three orbits and in the case of the group \((OO)''\) we have two orbits, as described in §1.2, this means that the lines in the quotient will meet three times and two times. Now we consider the points of intersection of the lines of the base locus with the other fixed lines on \(q \). In the table below we do not write the groups \((TT)'\) and \(V \times V \) because they do not have fixed points on \(q \) other than the lines of the base locus. We denote by \(\text{Fix}(P) \) the fix-group in \(PG \) of a point \(P \). In the next table we write the length and the number of orbits of fixed points, and we describe which kind of singularities we have in the quotient:

Group	\(T \times V \)	\(O \times T \)	\((TT)' \)	\(V \times V \)	\((OO)'' \)	\(T \times T \)
Fix(\(P \))	\(Z_3 \times Z_2 \)	\(Z_3 \times Z_2 \)	\(Z_4 \times Z_3 \)	\(Z_2 \times Z_3 \)	\(Z_3 \times Z_2 \)	\(Z_3 \times Z_3 \)
Length	8	24	48	48	24	24
Number	6	2	1	2	2	1
Sing.	6A_2	1A_1	2A_3	2A_1	1A_1	1A_1

Fixed Lines Off \(q \): Denote by \(o(L) \) the order of the fix-group \(F_L \) of \(L \). The number of points not on \(q \) cut out on \(X_7^\lambda \) by \(L \) is:

Group	\(T \times V \)	\((TT)' \)	\(V \times V \)	\(O \times T \)	\((OO)'' \)	\(T \times T \)
\(o(L) \)	2	2	2	2	2	2
Number	4	4	6	4	8	6

In the next table we show in each case length and number of \(H_L \)-orbits, the number and type(s) of the quotient singularity(ies):

Group	\(O \times T \)	\((OO)'' \)	\(T \times T \)
\(o(L) \)	2	2	2
Type	\(M \)	\(M' \)	\(M' \)
Length	8	3	3
Number	1	2	2
Singularities	\(A_1 \)	2A_2	2A_1

https://doi.org/10.4153/CMB-2006-055-0 Published online by Cambridge University Press
The Singular Surfaces: We denote by ns the number of nodes on the surfaces and by F the fix-group of a node in H. In the table below, we give the number of orbits of nodes and their fix-groups in PH, PH' and we describe the singularities in the quotient. We recall [BS, Proposition 3.1]:

Proposition 2.1 Let X be a nodal surface with $F \subset SO(3)$ the fix-group of the node. Then the image of this node on X/H is a quotient singularity locally isomorphic with C^2/F, where $F \subset SU(2)$ is the binary group which corresponds to F.

Group	$T \times V$	$(TT)'$	$V \times V$
λ	$\lambda_1 \lambda_2 \lambda_3 \lambda_4$	$\lambda_1 \lambda_2 \lambda_3 \lambda_4$	$\lambda_1 \lambda_2 \lambda_3 \lambda_4$
ns	12 48 48 12	12 48 48 12	12 48 48 12
Orbit	1 1 1 1	3 3 1 1	3 3 3 3
F	$Z_2 \times Z_2 \ id \ id \ Z_2 \times Z_2$	$T \ Z_3 \ id \ Z_2 \times Z_2$	$Z_2 \times Z_2 \ id \ id \ Z_2 \times Z_2$
Lines	$1M_1$	$1M_1$	$3M_{ij}$
Meeting	$1M_2$	$1M_2$	$4N_1$
Sing.	D_4	$A_1 \ A_1 \ D_4$	$3E_6 \ 3A_5 \ A_1 \ D_4$

Group	$O \times T$	$(OO)'$	$T \times T$
λ	$\lambda_1 \lambda_2 \lambda_3 \lambda_4$	$\lambda_1 \lambda_2 \lambda_3 \lambda_4$	$\lambda_1 \lambda_2 \lambda_3 \lambda_4$
ns	24 72 144 96	24 72 144 96	24 72 144 96
Orbit	1 1 1 1	2 2 3 2	2 1 1 2
F	$T \ Z_2 \times Z_2 \ Z_2 \ Z_3$	$O \ Z_4 \ Z_2 \ D_3$	$T \ Z_2 \ id \ Z_3$
Lines	$3N \ 1M \ 1M' \ 1N$	$3R \ 1R \ 1M \ 1N(4') \ 3M \ 1M \ 1N(4')$	
Meeting	$4N_1 \ 2M'$	$4N(4') \ 3M$	$4N(4')$
Sing.	$E_6 \ D_4 \ A_3 \ A_5$	$2E_7 \ A_7 \ A_3 \ 2D_5$	$2E_6 \ A_3 \ A_1 \ 2A_5$

2.2 Rational Curves

Let

$$\mu: Y_{\lambda, H} \rightarrow X^n_{\lambda}/H$$

be the minimal resolution of the singularities of X^n_{λ}/H. In the following table we give the number of rational curves coming from the curves of the base locus of X^n_{λ} (denote it by ν_1) and from the resolution of the singularities. The latter are of three kinds: those coming from the intersection points of the lines of the base locus with other fixed lines on q, those coming from fixed points which are off q and do not come from nodes of X^n_{λ}, and those coming from the nodes. We denote their numbers by ν_2, ν_3 and ν_4; then the total number of rational curves is $\nu := \nu_1 + \nu_2 + \nu_3 + \nu_4$. The configurations of some of the curves are then given in the figures in Section 5. In the table we write the discriminant d of the intersection matrix, too. This is easy to compute because we know the configurations of the rational curves. Since in each case $d \neq 0$, the classes of the curves are independent in $NS(Y_{\lambda, H})$.

[doi:10.4153/CMB-2006-055-0] Published online by Cambridge University Press
The Smooth X^n_λ:

Group	$T \times V$	$(TT)'$	$V \times V$	$O \times T$	$(OO)'''$	$T \times T$
ν_1	4	2	6	3	2	4
ν_2	12	—	—	9	2	4
ν_3	3	15	9	7	14	10
ν	19	17	15	19	18	18
d	$2^5 \cdot 3^3 \cdot 5$	$2^3 \cdot 3^6 \cdot 7$	$2^1 \cdot 3^5 \cdot 7$	$2^4 \cdot 3^2 \cdot 7$	$2^4 \cdot 3^6 \cdot 7$	$2^2 \cdot 3^6 \cdot 7$

The Singular X^μ_λ:

In this case the surfaces X^μ_λ do not have extra singularities on q_λ, hence the number ν_1 and ν_2 remain the same as above and we do not write them again.

Group	$T \times V$	$(TT)'$						
λ	λ_1	λ_2	λ_3	λ_4	λ_1	λ_2	λ_3	λ_4
ν_3	—	3	3	—	—	3	15	12
ν_4	4	1	1	4	18	15	1	4
ν	20	20	20	20	20	20	18	18
d	$-2^5 \cdot 3^3 \cdot 5$	$-2^6 \cdot 3^6 \cdot 7$	$-2^6 \cdot 3^3 \cdot 5$	$-2^4 \cdot 3^1 \cdot 5$	$-3^3 \cdot 5$	$-2^6 \cdot 3^1 \cdot 5$	$-2^4 \cdot 3^6 \cdot 5$	$-2^2 \cdot 3^6 \cdot 5$

Group	$V \times V$	$O \times T$						
λ	λ_1	λ_2	λ_3	λ_4	λ_1	λ_2	λ_3	λ_4
ν_3	—	9	9	—	2	4	5	3
ν_4	12	3	3	12	6	4	3	5
ν	18	29	18	18	20	20	20	20
d	$-2^{10} \cdot 5$	$-2^{10} \cdot 5$	$-2^{10} \cdot 5$	$-2^{10} \cdot 5$	$-2^4 \cdot 3^2 \cdot 7$	$-2^4 \cdot 3^1 \cdot 7$	$-2^5 \cdot 3^1 \cdot 7$	$-2^6 \cdot 3^2 \cdot 7$

Group	$(OO)'''$	$T \times T$						
λ	λ_1	λ_2	λ_3	λ_4	λ_1	λ_2	λ_3	λ_4
ν_3	—	8	12	6	—	8	10	2
ν_4	16	7	3	10	12	3	1	10
ν	20	19	19	20	20	19	19	20
d	$-2^4 \cdot 7$	$2^2 \cdot 3^2 \cdot 7$	$2^8 \cdot 3^2 \cdot 7$	$-2^8 \cdot 7$	$-3^4 \cdot 7$	$2^4 \cdot 3^6 \cdot 7$	$2^3 \cdot 3^6 \cdot 7$	$-2^4 \cdot 3^4 \cdot 7$

2.3 K3-Surfaces

Since the groups H and H' contain the subgroups $V \times V$ of G_6, resp., $T \times T$ of G_8, the projections π_H and π_H' are ramified on the lines of the base locus of the families X^μ_λ with ramification index two and three. By using Hurwitz’ formula and the fact that in each case the previous rational curves are independent in the Neron–Severi group, the same computation as in [BS, section 5] shows that the minimal resolutions of the quotients are K3-surfaces, a direct proof of this fact is given in the next section.
3 Cyclic Coverings

We give another description of the pencils of K3-surfaces by using cyclic coverings. We consider the pairs G_n and H so that G_n/H is cyclic, in our cases either $|G_n/H| = 3$ or $|G_n/H| = 2$, and we consider the map:

$$\pi: X^n_0/H \longrightarrow X^n_0/G_n$$

3.1 The General Case

For the moment assume that X^n_0 is smooth. The group G_n/H acts on the points of the fiber $\pi^{-1}(P)$. If the point P is not fixed by G_n/H, then the map is $3:1$ or $2:1$ there. If P is fixed by G_n/H then we have a singularity on X^n_0/H, more precisely an A_2 or an A_1, now the fiber $\pi^{-1}(P)$ is one point and the map has multiplicity 2 or 3 there (cf. [M2, Lemma 3.6 p. 80]). We have a rational map between the minimal resolutions of X^n_0/H and X^n_0/G_n:

$$\gamma: Y_{\lambda,H} \longrightarrow Y_{\lambda,G_n}$$

which is $3:1$ or $2:1$. Observe that this map is not defined over the (-2)-rational curves in the blow up of singular points of X^n_0/G_n that come from fixed points of G_n/H on X^n_0/H. The surfaces $Y_{\lambda,H}$ are K3-surfaces as well and by [I, Cor. 1.2] these have the same Picard number $\rho(Y_{\lambda,H}) = \rho(Y_{\lambda,G_n}) = 19$.

In this section we describe the map γ by using cyclic coverings. For the general theory about 2-cyclic coverings and 3-cyclic coverings we refer to the article by Nikulin [N] and to articles by Miranda [M1] and Tan [T]. For the convenience of the reader, in Section 5, Figure 1, we recall the configurations of (-2)-rational curves on the smooth surfaces Y_{λ,G_n} and on Y_{λ,G_n} given in [BS]. By [BS, Proposition 6.1] the following classes are 3-divisible in $\text{NS}(Y_{\lambda,G_n})$:

$$\mathcal{L} := L_1 - L_2 + L_4 - L_5 + N_1 - N_2 + N_3 - N_4 + N_5 - N_6 + N_7 - N_8,$$
$$\mathcal{L}' := L_1' - L_2' + L_4' - L_5' + N_1 - N_2 + N_3 - N_4 - N_5 + N_6 - N_7 + N_8,$$

and also:

$$\mathcal{L} - \mathcal{L}' = L_1 - L_2 + L_4 - L_5 - L_1' + L_2' - L_4' + L_5' + 2(N_5 - N_6 + N_7 - N_8),$$
$$\mathcal{L} + \mathcal{L}' = L_1 - L_2 + L_4 - L_5 + L_1' - L_2' + L_4' - L_5' + 2(N_1 - N_2 + N_3 - N_4).$$

Making reduction modulo three we find the classes:

$$\mathcal{M} := L_1 - L_2 + L_4 - L_5 - L_1' + L_2' - L_4' + L_5' - (N_5 - N_6 + N_7 - N_8),$$
$$\mathcal{M}' := L_1 - L_2 + L_4 - L_5 + L_1' - L_2' + L_4' - L_5' - (N_1 - N_2 + N_3 - N_4).$$

In $\text{NS}(Y_{\lambda,G_n})$ the following classes are 2-divisible:

$$\mathcal{L} := L_1 + L_3 + L_5 + M_1 + M_3 + M_4 + R_1 + R_3,$$
$$\mathcal{L}' := L_1' + L_3' + L_5' + M_2 + M_3 + M_4 + R_1 + R_3.$$
Consider also the classes $\mathcal{L} + \mathcal{L}'$ and $\mathcal{L} - \mathcal{L}'$, which after reduction modulo two are the same as:

$$\mathcal{M} := L_1 + L_3 + L_5 + L'_1 + L'_3 + M_1 + M_2.$$

These classes consist of six disjoint A_2-configurations of curves and of eight disjoint A_1-configurations of curves (according to [T, N]). These are the resolutions of A_2 and A_1 singularities of X^n_λ / G_n which arise by doing the quotient of X^n_λ / H by G_n / H. We construct the 3-cyclic coverings and the 2-cyclic coverings by using the divisors $\mathcal{L}, \mathcal{L}', \mathcal{M}, \mathcal{M}'$. We recall briefly the construction in the case of 3-cyclic coverings. Then in the case of 2-cyclic coverings it is similar. First to avoid producing singularities, we blow up the meeting points of the A_2-configurations. Call Y^0_{λ, G_n} the surface which we obtain after these blow-ups. The meeting points are replaced by (-1)-curves and the two (-2)-curves become now (-3)-curves. Denote by $\phi: Y^0_{\lambda, G_n} \to Y^0_{\lambda, G_n}$ the 3-cyclic covering with branching divisor $\mathcal{L}, \mathcal{L}'$ or $\mathcal{M}, \mathcal{M}'$ then

Proposition 3.1 A configuration of curves on Y^0_{λ, G_n}:

$$\begin{align*}
-3 & \quad -1 & \quad -3 \\
-3 & \quad -1 & \quad -1
\end{align*}$$

becomes a configuration:

$$\begin{align*}
-1 & \quad -3 & \quad -1
\end{align*}$$

on Y^1_{λ, G_n}.

Proof We do the computation for one configuration of curves $L_1 - L_2$; this is the same in the other cases. Denote again by L_1 and L_2 the curves on Y^0_{λ, G_n} which now are (-3)-curves and denote by E the exceptional (-1)-curve. By the properties of cyclic coverings we have $\phi^*L_1 = 3\tilde{L}_1$, where \tilde{L}_1 is the strict transform of L_1. Then:

$$9(\tilde{L}_1)^2 = (\phi^*L_1)^2 = (\deg \phi)L_1^2 = -9.$$

Hence $(\tilde{L}_1)^2 = -1$. Since $E \cdot (L_1 - L_2) = 0$ the map ϕ is not ramified on E and the restriction $\phi|_E$ is 3:1 onto E. Hence we have $\phi^*E = \bar{E}$ and $E^2 = (\phi^*E)^2 = (\deg \phi)E^2 = 3E^2 = -3$.

Our surface Y^1_{λ, G_n} is now no longer minimal. By blowing down the (-1)-curves, the curve E also becomes a (-1)-curve, so we blow it down, too. By construction, the surfaces which we obtain are minimal $K3$-surfaces and are exactly the surfaces $Y_{\lambda, H}$.
which are obtained as the minimal resolutions of X^6_λ/H, in fact we have a commutative diagram:

\[
\begin{array}{ccccccccc}
Y^1_{\lambda,G_6} & \phi & Y^0_{\lambda,G_6} \\
Y_{\lambda,H} & \gamma & Y_{\lambda,G_6} \\
X^6_\lambda/H & \pi & X^6_\lambda/G_6
\end{array}
\]

The construction is similar in the case of 2-cyclic coverings of the surfaces Y_{λ,G_6}. This gives another description of the families of K3-surfaces $Y_{\lambda,T\times V}, Y_{\lambda,(TT)'}$ and $Y_{\lambda,O\times T}, Y_{\lambda,(OO)''}$ as finite coverings of the families Y_{λ,G_6} and Y_{λ,G_6}.

Remark By using the divisors L' and M' on Y_{λ,G_6} for the coverings we obtain the surfaces $Y_{\lambda,V\times T}$ and $Y_{\lambda,(TT)''}$ and by taking the divisor L' on Y_{λ,G_6} we obtain the surface $Y_{\lambda,T\times O}$. We do not discuss these surfaces separately in the sequel.

3.2 The Special Cases

In these cases, the situation is a little more complicated. Now in the counterimage $\pi^{-1}(P)$ of some singular point P of X^6_λ/G_6, coming from the A_1-singularities of X^6_λ we have singularities on X^6_λ/H, too. In the following table we give the singularities in the quotient $X^6_\lambda/G_n, n = 6, 8$ and the type and the number of singularities in the counterimage on X^6_λ/H. As in [BS] we denote by 6, 1, . . . , 8, 4 the special surfaces in the families.

G_6	G_8	$\pi^{-1}(P)$							
$T\times V$	E_6	A_1	A_3	A_5	E_6	D_4	A_3	A_5	
$(TT)'$	$3E_6$	$3A_5$	A_1	D_4	$(OO)'$	$2E_7$	A_3	D_5	
$V\times V$	$3D_4$	$3A_1$	$3A_3$	$3D_4$	$T\times T$	$2E_6$	A_3	A_1	$2A_5$

By resolving the quotients we get a map like γ as before and so again by the result of Inose the minimal resolutions of the special K3-surfaces are K3-surfaces too with Picard number 20. We can describe this map as before by using cyclic coverings. In the case of the special surfaces in the family Y_{λ,G_6} we construct 3-cyclic covering as in the general case by using the divisors L, L', M, M', which are in the case of the special surfaces 3-divisible, too, cf. [BS, 6.2]. By taking L and L' we obtain the special K3-surfaces in the families $Y_{\lambda,T\times V}$, resp., $Y_{\lambda,V\times T}$, by taking M and M' we obtain the special K3-surfaces in the covering $Y_{\lambda,(TT)'}$ and $Y_{\lambda,(TT)''}$. In the case of the
special surfaces in the family \(Y_{\lambda,G_6} \) we take the divisors \(\mathcal{L}, \mathcal{L}', \mathcal{M} \) and we do 2-cyclic coverings. By taking \(\mathcal{L} \) or \(\mathcal{L}' \) we find the singular surfaces in the family \(Y_{\lambda,O \times T} \), resp., \(Y_{\lambda,T \times O} \), and by taking \(\mathcal{M} \) we find the singular surfaces in the family \(Y_{\lambda,(00)''} \).

4 Picard Lattices

We compute the Picard lattices of the general K3-surface in the families \(Y_{\lambda,T \times V} \), \(Y_{\lambda,O \times V} \) and of the special surfaces with \(\rho = 20 \) in each pencil. First we recall some facts. Denote by \(W \) the lattice spanned by the curves of Section 2, 2.2. If \(W \) is not the total Picard lattice, which we call \(NS \), there is an integral lattice \(W' \) such that \(W \subset W' \subset NS \) with \(\rho := [W':W] \), a prime number. Denote by \(d(W), d(W') \) the discriminant of the lattices \(W, W' \). Since \([W':W]^2 = d(W) \cdot d(W')^{-1} \) (cf. [BPV, Lemma 2.1, p. 12]), we find that \(p^2 \) divides the discriminant of \(W \). Denote by \((W'/W)^p \) the \(p \)-subgroup of \((W'/W) \subset NS'/NS \) and denote by \(T \) the transcendental lattice orthogonal to the Picard lattice. Since the discriminant groups \(T'/T \) and \(NS'/NS \) are isomorphic (cf. [BPV, p. 13, Lemma 2.5]), they have the same rank which is \(\leq \text{rk}(T) \). It follows that also \(\text{rk}(W'/W)^p \leq \text{rk}(T) \).

Proposition 4.1 The Picard lattices of the generic surface \(Y_{\lambda,T \times V} \) and \(Y_{\lambda,O \times T} \) are generated by the 19 rational curves of Section 2.2 and the classes:

\[
\begin{align*}
\tilde{L}'/3 & := L_1 - L_2 + L_4 - L_5 + L'_1 - L'_2 + L'_3 - L'_4 + L''_1 - L''_2 + L''_3, \\
\tilde{h}_1/2 & := L_1 + L_3 + L_5 + L'_1 + L'_3 + L'_5 + M_1 + M_3, \\
\tilde{h}_2/2 & := L_1 + L_3 + L_5 + L''_1 + L''_3 + L''_5 + M_1 + M_3,
\end{align*}
\]

of \(NS(Y_{\lambda,T \times V}) \), then the lattice has discriminant \(2 \cdot 3 \cdot 5 \), resp., the classes

\[
\begin{align*}
\tilde{L}''/2 & := L_1 + L_3 + L_5 + L'_1 + L'_3 + L'_5 + M_1 + M_2, \\
k_1/3 & := L_1 - L_2 + L_4 - L_5 - L'_1 + L'_3 - L'_4 + L''_1 + N_1 - N_2 + N_3 - N_4,
\end{align*}
\]

of \(NS(Y_{\lambda,O \times T}) \), then the lattice has discriminant \(2^3 \cdot 3 \cdot 7 \).

Proof

Step 1. The discriminant of the lattice generated by the 19 curves is \(2^5 \cdot 3^3 \cdot 5 \) hence we can have 2-divisible classes or 3-divisible classes. The divisor \(\tilde{L}' \) is 3-divisible since it is the pull back of the divisor \(\mathcal{L}' \) on \(Y_{\lambda,G_6} \) which is 3-divisible, too. And we cannot have more 3-divisible classes. If there are no 2-divisible classes, then the group
would contain the classes $M_1/2, M_2/2, M_3/2, (L_1 + L_3 + N_1 + L_1' + L_2')/2,
(L_1 + L_3 + L_5 + L_1'' + L_2'' + L_3')/2, (L_1' + L_3' + L_5' + L_1'' + L_2'' + L_3')/2$ which are independent
classes with respect to the intersection form. Since the rank of $(W'\setminus W)^2$ is less than or equal to the rank of $T'\setminus T$ which is at most three, it cannot happen that we find five classes as before. Hence some combination of them must be contained in the Neron–Severi group. So we have

$$
\frac{1}{2} \left(\lambda (L_1 + L_3 + L_5) + \lambda' (L_1' + L_3' + L_5') + \lambda'' (L_1'' + L_3'' + L_5'') + \mu_1 M_1 + \mu_2 M_2 + \mu_3 M_3 \right) \in NS
$$

for some parameters $\lambda, \lambda', \lambda'', \mu_1, \mu_2, \mu_3 \in \mathbb{Z}_2$.

By Nikulin $[N]$ such a 2-divisible set contains 8 curves. So putting $\lambda'' = 0$ and $\mu_3 = 0$ we get the divisor $h_1/2$, putting $\lambda' = 0$ and $\mu_2 = 0$ we get the divisor $h_2/2$. The discriminant of the lattice W together with these three classes now become $2 \cdot 3 \cdot 5$, hence we cannot have more torsion classes.

Step 2. Again the class L'' is the pull back of the class M' on Y_{L, C_6} hence it is 2-divisible. If there are no 3-divisible classes then the group $(W'\setminus W)^3$ would contain the classes $N_1 - N_2/3, N_3 - N_4/3$ and $(L_1 - L_2 + L_4 - L_5 + L_1' - L_3' + L_5')/3$ which are independent. By specializing to the surfaces $Y_{L, O \times O}^{(8,2)}$ and $Y_{L, O \times O}^{(6,3)}$, we also find here these three independent classes and so $rk(W'\setminus W)^3 \geq 3$. This is not possible. In fact, on these surfaces we have $rk(W) = 20$ which implies $rk(W'\setminus W)^3 \leq 2$. This means that the three classes fit together giving a 3-divisible class in $NS(Y_{L, O \times O}^{(8,2)})$ and $NS(Y_{L, O \times O}^{(6,3)})$ and so in $NS(Y_{L, O \times O})$ (cf. [vGT, Lemma 2.3]).

In the same way as before we can compute the Picard lattices of the special surfaces in the families. We state the results leaving the proofs to the reader.

Proposition 4.2

(i) The Picard lattice of the special surfaces in $Y_{L, T \times Y}$ and $Y_{L, O \times T}$ is generated in all the cases but $Y_{L, O \times T}^{(8,4)}$ by the curves of Section 2.2 and by the classes $L'/3$, $h_1/2$, $h_2/2$, resp. $L''/2$, $k_1/3$ of proposition 4.1. In the case of $Y_{L, O \times T}^{(8,4)}$ the class

$$
\frac{L_1 + L_3 + L_5 + N_1 + C + N_4 + R_2 + M_1}{2}
$$

is a generator too, and they span the 20-dimensional Picard lattice.

(ii) In the case of $Y_{L, O \times (L')}$, and $Y_{L, (L')}$, the class

$$
\frac{L}{3} := \frac{N_1 - N_2 + N_3 - N_4 + N_5 - N_6 + N_7 - N_8 + N_9 - N_{10} + N_{11} - N_{12}}{3}
$$

is a generator too.
is in the Neron–Severi group and in the case of \(Y_{\lambda,(TT)}^{(6,2)}\), the classes
\[
\frac{N_1 + C_1 + N_4 + N_5 + C_2 + N_9 + M_1 + M_2}{2},
\frac{N_1 + C_1 + N_4 + N_9 + C_3 + N_{12} + M_1 + M_3}{2}
\]
are in the Neron–Severi group, too. These together with the 20 curves of Section 2.2 span the 20-dimensional Picard lattice.

(iii) In the case of \(Y_{\lambda,(OO)}^{(8,1)}\), \(Y_{\lambda,(OO)}^{(8,4)}\), the class
\[
\frac{\bar{L}}{2} := M_1 + M_2 + M_3 + M_4 + R_1 + R_3 + R_1' + R_3'
\]
is in the Neron–Severi group and in the case of \(Y_{\lambda,(OO)}^{(8,4)}\), the class
\[
\frac{W}{4} := \frac{R_1 + 2R_2 + 3R_3 + R_1' + 2R_2' + 3R_3'}{4} + \frac{2N_1 + 2C_1 + 3M_1 + M_2 + 2N_3 + 2C_2 + 3M_3 + M_4}{4}
\]
is in the Neron–Severi group, too. Again these classes together with the 20 curves of Section 2.2 span the 20-dimensional Picard lattice. The discriminants of the Picard lattices then are:

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
 & Y_{\lambda,T \times V} & & Y_{\lambda,(TT)'} & & \\
\hline
 d & 6,1 & 6,2 & 6,3 & 6,4 & 6,1 & 6,2 \\
\hline
 & -3 \cdot 5 & -2^2 \cdot 3 \cdot 5 & -2^2 \cdot 3 \cdot 5 & -3 \cdot 5 & -3 \cdot 5 & -2^2 \cdot 3 \cdot 5 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
 & Y_{\lambda,O \times T} & & Y_{\lambda,(OO)''} & & \\
\hline
 d & 8,1 & 8,2 & 8,3 & 8,4 & 8,1 & 8,4 \\
\hline
 & -2^2 \cdot 7 & -2^2 \cdot 3 \cdot 7 & -2^3 \cdot 3 \cdot 7 & -2^2 \cdot 7 & -2^2 \cdot 7 & -2^4 \cdot 7 \\
\hline
\end{array}
\]

4.1 More Cyclic Coverings

Now we can construct the 3-cyclic covering of \(Y_{\lambda,T \times V}\), by using the 3-divisible classes \(\bar{T}^7\) and the 2-cyclic coverings of \(Y_{\lambda,O \times T}\), by using the 2-divisible class \(\bar{T}^7\). We can do this for the general surface in the pencil and for the special surfaces, too. In this case we obtain another description of the families \(Y_{\lambda,V \times V}\) and \(Y_{\lambda,T \times T}\). In particular, in these cases the general surface in the family also has Picard number 19 and we have four surfaces with Picard number 20. The description of the Picard lattices of the surfaces with \(\rho = 20\) is given in the following proposition (again, we leave the proof to the reader).
Proposition 4.3 The classes
\[
\begin{align*}
L_2 - L_4 + L'_3 - L'_1 &+ N_1 - N_2 + N_3 - N_4 + N_5 - N_6 + N_7 - N_8 \\
N_1 - C_1 + N_4 + N_5 + C_2 + N_8 + M_1 + M_2 \\
N_3 - L'_4 - L_3 - L_4 + N_1 - N_2 - N_3 + N_4 + N_5 - N_6 - N_7 + N_8
\end{align*}
\]
are in \(NS(Y^{(8,1)}_{\lambda,T\times T})\) and in \(NS(Y^{(8,4)}_{\lambda,T\times T})\). Moreover, the class
\[
\frac{N_1 + C_1 + N_4 + N_5 + C_2 + N_8 + M_1 + M_2}{2}
\]
is in \(NS(Y^{(8,4)}_{\lambda,T\times T})\) too. These classes together with the rational curves of Section 2, 2.2 span the 20-dimensional Picard lattices of the surfaces \(Y^{(8,1)}_{\lambda,T\times T}\) and \(Y^{(8,4)}_{\lambda,T\times T}\). Then the lattices have discriminant \(-7\), resp., \(-2^1 \cdot 7\).

5 Configurations of Rational Curves

In Figures 1, 2, 3, and 4 we give the configurations of rational curves on the surfaces with Picard number 19 and 20. In the case of the singular surfaces of the families \(Y_{\lambda,T\times V}\) and \(Y_{\lambda,O\times T}\) also the curves \(L_i, L'_i, L''_i\) are contained on the surfaces, but we do not draw the picture again. Moreover the configurations of curves on the surfaces \(Y^{(6,4)}_{\lambda,T\times V}\) and \(Y^{(6,3)}_{\lambda,T\times V}\) are the same as on the surfaces \(Y^{(6,1)}_{\lambda,T\times V}\), resp., \(Y^{(6,2)}_{\lambda,T\times V}\), so again we draw only one picture.

6 Final Remarks

In Section 4 we identify explicitly the Picard lattice of some K3-surfaces. It is our next aim to compute the transcendental lattices orthogonal to the Picard lattices to classify the K3-surfaces. In particular by a result of Shioda and Inose [SI] K3-surfaces with \(\rho = 20\) are classified by means of their transcendental lattice. By a result of Morrison [Mo], each K3-surface with \(\rho = 19\) or 20 admits a so called Shioda–Inose structure. This means that there is a Nikulin involution, an involution with eight isolated fixed points and the quotient is birational to a Kummer surface. It would be desirable to have an explicit description of this structure for our surfaces.

We do not describe the quotients 3-folds \(\mathbb{P}_3/G_n, \mathbb{P}_3/H\), \(H\) a normal subgroup of \(G_n\). It would be interesting to have a global resolution of these spaces and to see our K3-surfaces as smooth pencils on the smooth 3-folds.

Acknowledgements I thank Wolf Barth for introducing me to cyclic coverings and for many useful discussions, and the referee for pointing out Inose’s paper [I] and for many suggestions improving the presentation of the paper.

https://doi.org/10.4153/CMB-2006-055-0 Published online by Cambridge University Press
Figure 1

Figure 2

Figure 3
References

[BPV] W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Band 4, Springer-Verlag, Berlin, 1984.

[BS] W. Barth and A. Sarti, Polyhedral groups and pencils of K3-surfaces with maximal Picard number. Asian J. Math. 7 (2003), no. 4, 519–538.

[Be] S.-M. Belcastro, Picard lattices of families of K3 surfaces. Comm. Alg. 30 (2002), no. 1, 61–82.

[D] I. V. Dolgachev, Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci. 81 (1996), no. 3, 2599–2630.

[I] H. Inose, On certain Kummer surfaces which can be realized as non-singular quartic surfaces in \mathbb{P}^3. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 3, 545–560.

[M1] R. Miranda, Triple covers in algebraic geometry., Amer. J. Math. 107 (1985), no. 5, 1123–1158.

[M2] -----. Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics 5, American Mathematical Society, Providence, RI, 1995.

[Mo] D. R. Morrison, On K3 surfaces with large Picard number. Invent. Math. 75 (1984), no. 1, 103–121.

[N] V. V. Nikulin, On Kummer Surfaces. Izv. Akad. Nauk SSSR Ser. Math. 39 (1975), no. 2, 278–293, 471.

[S1] A. Sarti, Pencils of symmetric surfaces in \mathbb{P}^3. J. Algebra 246 (2001), no. 1, 429–452.

[S2] -----. Symmetric surfaces with many singularities. Comm. Algebra 32 (2004), no. 10, 3745–3770.
[SI] T. Shioda and H. Inose, On singular K3 surfaces. In: Complex Analysis and Algebraic Geometry. Iwanami Shoten, Tokyo, 1977, pp. 119–136.

[T] S. L. Tan, Cusps on some algebraic surfaces and plane curves, preprint.

[vGT] B. van Geemen and J. Top, An isogeny of K3 surfaces, to appear in Bull. London Math. Soc.

[VY] H. Verril and N. Yui, Thompson series and the mirror maps of pencils of K3 surfaces. In: The Arithmetic and Geometry of Algebraic Cycles. CRM Proc. Lecture Notes 24, Amer. Math. Soc. Providence, RI, 2000, pp. 399–432.

Fachbereich für Mathematik
Johannes Gutenberg-Universität
55099 Mainz
Germany

e-mail: sarti@mathematik.uni-mainz.de