Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux*

Stefan Allmann1, Pauline Morand2, Charles Ebikeme2, Lara Gales3,4,5, Marc Biran2, Jane Hubert3,4,5, Ana Brennand1, Muriel Mazet4, Jean-Michel Franconi2, Paul A. M. Michels4, Jean-Charles Portais3,4,5, Michael Boshart1, and Frédéric Bringaud2

1From Biozentrum, Genetik, Ludwig-Maximilians-Universität München, Grosshadenerstr. 2-4, D-82152 Martinsried, Germany
2Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université Bordeaux Segalen, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France, 3Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, 4INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, CNRS, UMR5504, F-31400 Toulouse, France.
5Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Université catholique de Louvain, Avenue Hippocrate 74, B-1200 Brussels, Belgium

*Running title: Carbon source dependent flux changes for NADPH production

To whom correspondence should be addressed:
Michael Boshart, Biozentrum, Genetik, Ludwig-Maximilians-Universität München, Grosshadenerstr. 2-4, D-82152 Martinsried, Germany, Email: boshart@lmu.de Phone: (49) 89 2180 74600. Fax: (49) 89 2180 74629
Frédéric Bringaud, Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université Bordeaux Segalen, CNRS, 146 rue Léo Saignat, 33076 Bordeaux, France, Email bringaud@rsmb.u-bordeaux2.fr Phone: (33) 5 57 57 46 32. Fax: (33) 5 57 57 45 56

Keywords: Trypanosome; NADPH production; Gluconeogenesis; Oxidative stress, Transhydrogenase-like shunt

Background: NADPH production is critical for growth and oxidative stress management.

Results: Redundancy of the pentose phosphate pathway and the cytosolic malic enzyme for NADPH synthesis is carbon source-independent in procyclic trypanosomes.

Conclusion: The parasite has gluconeogenic capacity from proline.

Significance: Flexible carbon source dependent flux changes for essential NADPH supply.

SUMMARY

All living organisms depend on NADPH production to feed essential biosyntheses and for oxidative stress defense. Protozoan parasites like the sleeping sickness pathogen Trypanosoma brucei adapt to different host environments, carbon sources and oxidative stresses during their infectious life cycle. The procyclic stage develops in the midgut of the tsetse insect vector, where they rely on proline as carbon source, although they prefer glucose when grown in rich media. Here, we investigate the flexible and carbon source-dependent use of NADPH synthesis pathways in the cytosol of the procyclic stage. The T. brucei genome encodes two cytosolic NADPH-producing pathways, the pentose phosphate pathway (PPP) and the NADP-dependent malic enzyme (MEc). Reverse genetic blocking of those pathways and a specific inhibitor (dehydroepiandrosterone) of glucose-6-phosphate dehydrogenase together established redundancy with respect to H₂O₂ stress management and parasite growth. Blocking both pathways resulted in ~10-fold increase of susceptibility to H₂O₂ stress and cell death. Unexpectedly, the same pathway redundancy was observed in glucose-rich and glucose-depleted conditions, suggesting that gluconeogenesis can feed the PPP to provide NADPH. This was confirmed by (i) a lethal phenotype of RNAi-mediated depletion of glucose-6-phosphate isomerase (PGI) in the glucose-depleted Δmec/Δmec null background, (ii) a ~10-fold increase of susceptibility to H₂O₂ stress observed for the Δmec/ΔmecΔRNAPGI double mutant compared...
to the single mutants and (iii) the 13C-enrichment of glycolytic and PPP intermediates from cells incubated with [U-13C]-proline, in the absence of glucose. Gluconeogenesis supported NADPH supply may also be important for nucleotide and glycoconjugate syntheses in the insect host.

In any living organism, the cellular redox homeostasis has to be maintained. Reactive oxygen species (ROS) originate from aerobic metabolism or from the environment. ROS include superoxide anions, hydrogen peroxide and hydroxyl radicals that damage nucleic acids, proteins, lipids and membranes. Aerobic organisms have evolved efficient antioxidant systems to preserve a reducing milieu. This is particularly true for parasites, which can successfully withstand the oxidative burst that is part of the mammalian host innate immunity upon infection. Reactive oxygen stress conditions are also faced in the fly vector along the digenetic life-cycle (1). Many parasitic organisms are highly sensitive to oxidative stress, as observed for the intracellular stages of *Plasmodium* (2), *Toxoplasma* (3), *Trypanosoma cruzi* (4) and for extracellular stages like the *T. brucei* bloodstream form (5). Consequently, selective disruption of the parasite redox balance is an effective approach to therapeutic intervention (6-8).

For ROS detoxification in *T. brucei*, electrons from NADPH are transferred through a cascade of electron carriers involving trypanothione and several small dithiol redox proteins (9). Trypanothione is a condensation product of two glutathione and one spermidine molecules (10). Maintenance of the trypanothione-based redox homeostasis is also critical for production of deoxyribonucleotides required for replication and repair of DNA and for metabolism and biogenesis of iron-sulfur clusters. Consequently, interfering with trypanothione biosynthesis and utilization is detrimental for trypanosomes (11-14).

NADPH is the key metabolite in these processes, since it is the only source of electrons for trypanothione reduction. NADPH is the product of two enzymatic reactions of the pentose phosphate pathway (PPP), the glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphoglucose dehydrogenase (6PGDH) catalysed steps. Both enzymes show a dual cytosolic and glycosomal localization in trypanosomes (15-18). The oxidative branch of the PPP produces ribose-5-phosphate required for nucleic acid biosynthesis, and NADPH is a major source of reducing equivalents for biosynthetic processes, including de novo synthesis of fatty acids (19). Therefore, PPP activity should be essential for the bloodstream form of *T. brucei*, independently of trypanothione metabolism. In fact, in bloodstream *T. brucei* cell death results from RNAi down regulation of G6PDH or 6PGDH, and incubation with dehydroepiandrosterone (DHEA), a potent uncompetitive inhibitor of G6PDH (20,21).

The central energy metabolism of the procyclic insect stage is more flexible and can adapt to changing carbon sources. In the midgut this is mainly proline. For example, NADPH can theoretically be produced in the cytosol and the mitochondrion of the trypanosomatids by two isoforms of the malic enzyme (ME) (22). The relative roles of the PPP and alternative reactions to provide NADPH have not been investigated so far.

Here we show that the oxidative branch of the PPP and the cytosolic MEc isoform can both contribute to and individually sustain the essential NADPH supply in the cytosol of procyclic trypanosomes. Surprisingly, the PPP can also operate in glucose-depleted conditions. We provide direct genetic and metabolomic evidence that this is due to gluconeogenic flux, by producing glucose 6-phosphate from proline, illustrating the flexible carbon source-dependent flux changes in the procyclic stage of the parasite.

EXPERIMENTAL PROCEDURES

Trypanosomes and Cell Cultures – The procyclic form of *T. brucei* EATRO1125 was cultured at 27°C in SDM79 medium containing 10% (v/v) heat-inactivated fetal calf serum and 35 µg/mL hemin (23). The SDM79 used for glucose-depleted growth was modified by omitting glucose and the addition of 50 mM N-acetylglucosamine (GlcNAc), which is a non metabolized glucose analog inhibiting glucose import (24).

Inhibition of Gene Expression by RNAi – The inhibition by RNAi of gene expression in procyclic forms (25) was performed by expression of stem-loop “sense/anti-sense” RNA molecules of the targeted sequences (26) introduced in the pLew100 expression vector, which contains the phleomycin resistance gene
Construction of the pLew-MEc/m-SAS plasmid used to simultaneously target by RNAi the mRNAs of both malic enzyme genes, which encode the cytosolic and mitochondrial isoforms (MEc: Tb11.02.3120 and MEM: Tb11.02.3130, respectively) (\(\text{RNK} \) MEc/m-C3 cell line), was described before (28). The pLew-MEc-SAS and pLewMEM-SAS plasmids, designed to inhibit by RNAi the expression of the MEc gene or the MEM gene, respectively, were created in the pLew100 vector with the same strategy described above, employing the same restriction sites. The targeting cassettes correspond to the end of the MEc (from position 1465 bp to 1695 bp) or MEM (from position 1476 bp to 1716 bp) coding sequence followed by the first 224 bp or 268 bp, respectively, of the 3'UTR. The resulting plasmids (pLew-MEc-SAS and pLew-MEM-SAS) contain a sense and antisense version of the targeted gene fragment, separated by a 60 bp or 40 bp fragment, respectively. The pLew-PGI-SAS plasmid designed to inhibit the expression of the glucose-6-phosphate isomerase (PGI) gene (Tb927.1.3830) was made using the pLew100 vector with the same strategy described above, employing the same restriction sites. The targeting area corresponds to the midsection of the coding region (from position 889 bp to position 1366 bp) of the PGI gene. The constructed plasmid (pLew-PGI-SAS) contains a sense and antisense version of the targeted gene area, separated by a 40 bp fragment. The sense-antisense cassette designed to target expression of the G6PDH gene (21) was introduced into the HindIII and BamHI sites of the pLew100 vector to produce the pLewG6PDH-SAS plasmid.

Gene knock-out of the MEc gene – Replacement of both alleles of the MEc gene by the blasticidin and puromycin resistance markers via homologous recombination was performed with DNA fragments containing a resistance marker gene flanked by the MEc UTR sequences. Briefly, the pGEMt plasmid was used to clone a HpaI DNA fragment containing the blasticidin (BSD) and puromycin (PAC) resistance marker gene preceded by the MEc 5'-UTR fragment (581 bp) and followed by the MEc 3'-UTR fragment (579 bp).

Trypanosome transfection – The EATRO1125 procyclic form cell line (EATRO1125.T7T), constitutively expressing the T7 RNA polymerase gene and the tetracycline repressor under the control of a T7 RNA polymerase promoter for tetracycline-inducible expression (26), was the recipient of all transfections. Transfection and selection in SDM79 medium containing combinations of hygromycin B (25 \(\mu \)g/mL), neomycin (10 \(\mu \)g/mL), blasticidin (10 \(\mu \)g/mL), phleomycin (5 \(\mu \)g/mL) and puromycin (1 \(\mu \)g/mL) followed previous reports (29). The selected ∆mecc::BSD/∆mecc::PAC cell line (named ∆mecc) was also transfected with the pLewG6PDH-SAS plasmid to create the ∆mecc::PAC G6PDH mutant and the pLew-PGI-SAS plasmid to generate the ∆mecc::PAC PGI mutant. The PPGI mutant was obtained by transfecting the pLew-PGI-SAS plasmid into EATRO1125.T7T. Primer sequences are available upon request.

Enzymatic Assays – Sonicated (5 sec at 4°C) crude extracts of trypanosomes resuspended in cold hypotonic buffer (10 mM potassium phosphate, pH 7.8) were tested for malic enzyme (EC 1.1.1.40) and pyruvate kinase (EC 2.7.1.40) activities (30).

Western Blot Analyses – Total protein extracts of the procyclic form of T. brucei (2 x 10⁶ cells) were separated by SDS-PAGE (10%) and blotted on Immobilon-P filters (Millipore) (31). Immunodetection was performed as described (31,32) using as primary antibodies, the rabbit anti-serum against G6PDH (1:1,000 dilution), the mouse anti-serum against the cytosolic fumarase (Fhc) (1:100 dilution) (33) and the mouse anti-serum against the mitochondrial trypanothione-dependent try paredoxin peroxidase (TRYP2) (1:500 dilution) (34). Goat anti-rabbit or anti-mouse Ig/peroxidase (1:10,000 dilution) was used as secondary antibody and revelation was performed using ECL™ Western Blotting Detection Reagents as described by the manufacturer (Amersham Biosciences). For Western blot analyses of the PGI protein an Immobilon-FL membrane (Millipore) was used and infrared fluorescence detection by the Odyssey scanner (LI-COR). The polyclonal rabbit anti-serum against the PGI (1:800) was detected by the goat anti-rabbit antibody IRDye680LT (1:25,000) (LI-COR). The monoclonal paralflagellar rod (PFR) mouse anti-serum L13D6 (1:2,000) (35) was detected with the goat anti-mouse IRDye800 (1:10,000) (LI-COR).

Oxidative Stress Assays – The susceptibility of trypanosomes towards oxidative stress was measured with an adapted protocol of the
Alamar Blue Assay (36,37). Cells were grown to densities between 6 x 10^6 - 1.5 x 10^7 cells/mL and diluted to 4 x 10^6 cells/mL (GOX assays) or 1.5 x 10^6 cells/mL (XOX assays). A volume of 180 µL of cell suspension was distributed to the corresponding wells of a 96-well plate. Then 20 µL of glucose oxidase (GOX) or xanthine oxidase (XOX) solutions with increasing concentrations were added to the respective wells (GOX and XOX from Sigma). After 22 h (GOX) or 44 h (XOX) incubation, 20 µL of a 0.49 mM Resazurin (Sigma) solution in PBS were added to each well and 2 h later the fluorescence was measured in a Tecan Safire plate reader with an excitation wavelength of 530 nm and an emission wavelength of 590 nm. The background caused by the medium was measured and subtracted. All Alamar Blue Assay results are mean of triplicate assays of a given biological experiment. Wells without addition of GOX/XOX were used as reference and set to 100% cell viability. When using XOX as inducing agent, 5 mM hypoxanthine was added to the culture medium as substrate. The G6PDH inhibitor DHEA was added at 15 µM to the respective cultures 24 h before inducing oxidative stress.

Mass spectrometry analysis – Wild type cells grown in glucose-rich or glucose-depleted media were washed twice with PBS and resuspended in PBS containing 2 mM [U-13]C-proline with (10 mM) or without glucose, respectively. The cells were incubated for 2 h at 27°C before fast filtration preparation of the samples for mass spectrometry analysis, as described before (38). Metabolites were analyzed by ion-exchange chromatography coupled with tandem mass spectrometry (IC-MS/MS) using the method described in Bolten et al. (39). Retention time on the column and MRM (multiple reaction Monitoring) transition of each analyzed metabolite are shown in Table 1. The 13C-mass isotopomer distribution of intracellular metabolites was determined from relevant isotopic clusters in the IC-MS/MS analysis, according to Kiefer et al. (40). 13C-mass isotopomer distribution measurements were performed using a triple quadrupole mass spectrometer (4000Qtrap, Applied Biosystems). To obtain 13C-labeling patterns (13C-isotopologes), isotopic clusters were corrected for the natural abundance of isotopes other than 13C, using the home-made software IsoCor (available at http://metasys.insa-toulouse.fr/software/isocor/) (41).

RESULTS

Subcellular localization of the ME activity in procyclic T. brucei – In procyclic trypanosomes grown in glucose as carbon source, the PPP is a major source of NADPH (15). However, other NADP-dependent enzymatic activities, such as that of ME, have been reported in insect stage trypanosomatids (42,43). Two isoforms of the NADP-dependent ME are encoded in the T. brucei genome, MEc (Tb11.02.3120) and MEm (Tb11.02.3130) and might contribute to NADPH regeneration. One isoform (MEm) has a potential N-terminal mitochondrial targeting sequence (0.90 probability Mitoprot prediction; http://ihg.gsdf.org/ihg/mitoprot.html). To address the subcellular localization of the ME activity, procyclic T. brucei cells were permeabilized with increasing concentrations of digitonin. Soluble and insoluble fractions at each concentration were separated and analyzed for ME activity (Fig. 2A). A mitochondrial marker (TRYP2) and a cytosolic marker (FHc) were quantified by Western analysis of an aliquot of each fraction (Fig. 2B). ME activity is released to the supernatant at low digitonin concentrations, which correlates with the cytosolic marker. A second release of activity to the supernatant at higher digitonin concentration correlates with the appearance of the mitochondrial marker. In summary, ME activity is dually localized and equally distributed among the cytosolic and mitochondrial compartments.

Analysis of ME-deficient cell lines – To investigate the respective functional roles of the isoforms we created three different inducible RNAi knockdown cell lines. One RNAi hairpin construct targets both ME isoforms (ΔMEc/m) and the other constructs each target specifically the individual isoforms (ΔMEc or ΔMEm). RNAi against both isoforms led to a severe growth phenotype four days after induction with tetracycline (Fig. 3A). Samples were taken in parallel for ME activity assays. The ME activity is decreased to a very low level after three to four days, correlating with the growth phenotype (Fig. 3A). In the RNAi cell lines targeting only the cytosolic ME we did not see a growth phenotype (Fig. 3C), but targeting the mitochondrial isoform resulted in the severe phenotype (Fig. 3B) similar as observed when targeting both isoforms (Fig. 3A). All non-induced clones showed normal growth (Fig. 3A-
C). The ME activities were reduced to around 40% after tetracycline induction in the cell lines with singly targeted MEc or MEm (Fig. 3B,C). We concluded that under standard culture conditions the mitochondrial ME isoform is essential, but not the cytosolic ME. This was fully confirmed by the successful creation of a Δmec/Δmec knockout cell line, named Δmec (Fig. 3D). As expected, this line proliferated as the parental control and the remaining total ME activity within the Δmec line was similar to the activity in the induced RNAi ΔMEc line (Fig. 3D).

Cytosolic ME-deficient (Δmec) cells cannot tolerate depletion or inhibition of G6PDH – To explore an alternative source of NADPH of possible physiological relevance in procyclic T. brucei we depleted the major NADPH source, the PPP in the wild-type background and in the Δmec mutant background. There are two NADPH producing steps in the PPP, G6PDH and 6PGDH. By depleting or inhibiting G6PDH, the downstream 6PGDH activity is also affected due to substrate limitation. Knockdown of G6PDH by RNAi in the wild-type background had no effect on the growth of the cells (Fig. 4A), in contrast to the same treatment in the bloodstream stage (20,21). However, the induction of the G6PDH RNAi in the Δmec background resulted in one of the most dramatic growth phenotypes we observed so far in procyclic trypanosomes (Fig. 4B). As MEc can rescue the G6PDH deficiency, the main function of the MEc is obviously NADPH production. We also conclude that the degree of RNAi-mediated repression of G6PDH is limiting for NADPH production but not for ribose synthesis. The genetic interaction was confirmed by chemical inhibition of T. brucei G6PDH by dehydroepiandrosterone (DHEA), a specific inhibitor of G6PDH in T. brucei (20,21,44). We determined the LD_{50} of this compound for the procyclic Δmec line to be 18 μM after 48 h of incubation (Fig. 4D). The LD_{50} for wild-type cells was at least 10-fold higher (data not shown). Using 15 μM of DHEA we observed a growth defect and cell death after 5-6 days in Δmec cells but not in wild-type cells, exactly as upon RNAi induction (Fig. 4C). The IC_{50} value for G6PDH inhibition by DHEA in vitro is 2.8 ± 0.6 μM (44). Assuming efficient uptake of the drug, 15 μM DHEA would result in 86% inhibition of G6PDH. As wild-type cells can perfectly tolerate much higher concentrations of DHEA (not shown) as well as efficient RNAi depletion of G6PDH (Fig. 4A), we attempted to delete the G6PDH gene. Although we obtained double drug resistant lines with G6PDH locus-specific marker integration, a G6PDH allele or G6PDH protein was always retained in these clones, suggestive of triploidization (Table S1).

In trypanosomes, this type of locus triploidization upon targeting is indicative of gene essentiality (45), which can be also observed in Leishmania (46). We concluded that G6PDH and ME are redundant with respect to NADPH production, yet the PPP must have an additional and essential function. The cells might well tolerate PPP deficiency over the short time of RNAi-dependent knockdown or DHEA inhibition experiments, but for clonal outgrowth of cells the PPP seems to be essential, probably because of its function in nucleotide synthesis (47,48).

Δmec mutant cells control oxidative stress in the absence of glucose – As a sensitive assay for the contributions of G6PDH and MEc to NADPH production we quantified the oxidative stress sensitivity of the respective mutants. Detoxification of ROS depends on NADPH supply. Oxidative stress was applied by continuous H_{2}O_{2} production with glucose oxidase (GOX) or xanthine oxidase (XOX) in the growth medium (49,50). This results in a more physiological stress type compared to the bolus application of H_{2}O_{2}, which acts only transiently with a half-life time of about 10 min under standard culture conditions (51). DHEA-mediated inhibition of G6PDH or deletion of MEc alone resulted in a very moderate increase in susceptibility (Fig. 5A). However, incubation of the Δmec mutant cell line with 15 μM DHEA for 2 days caused a severe increase in H_{2}O_{2} susceptibility (Fig. 5A) and growth inhibition (Fig. 4D). These data confirm the redundancy of the PPP and the MEc activities for NADPH production and for maintenance of the cytosolic redox state when glucose is available as carbon source.

Procyclic trypanosomes grow in essentially glucose-free conditions in the insect gut. Therefore, we tested the Δmec mutant in glucose-depleted medium for susceptibility to oxidative stress. We expected increased susceptibility, due to low PPP activity under glucose-depleted conditions. Figure 5B shows that the Δmec mutant was not significantly more susceptible to oxidative stress than wild-type cells. By inhibition of G6PDH (and hence the PPP) with DHEA we obtained the same phenotype as in glucose-fed conditions. One
possible explanation would be that uptake of residual glucose from the serum is sufficient to feed the PPP. This is however extremely unlikely, as we added a large excess of N-acetylglucosamine (GlcNAc, 50 mM) to the medium to inhibit the uptake of the residual glucose present in FCS (0.5 mM). GlcNAc has been shown to inhibit glucose-uptake (24). The alternative would be glucose-independent supply of glucose 6-phosphate (G6P) via gluconeogenic flux. Production of glucose 6-phosphate from a non glycolytic source through gluconeogenesis has been suspected in trypanosomatids but not experimentally verified to date (52).

Inhibition of glucose-independent G6P production phenocopies G6PDH deficiency – To address the possibility of glucose-independent supply of G6P, expression of the PGI gene was down-regulated by RNAi in the wild-type and the Δmec mutant background. PGI and hexokinase are the only enzymes in T. brucei that can give rise to G6P as product (Fig. 1). Therefore, in glucose-depleted medium the tetracycline induced Δmec^{RNAi}/PGI double mutant but not the single ^RNAiPGI mutant should phenocopy the G6PDH deficiency. The growth behavior of the respective cell lines in glucose-rich and glucose-depleted conditions is shown in Figure 6. Under glucose-depleted conditions (Fig. 6B) only the induced Δmec^{RNAi}PGI but not the induced ^RNAiPGI mutant died. Thus, cell death is likely to result from NADPH depletion in analogy to the Δmec^{RNAi}G6PDH double mutant (see Fig. 4B). Tetracycline induction in the presence of glucose (Fig. 6A) resulted in cell death in both, the Δmec^{RNAi}PGI and the ^RNAiPGI mutants. This is expected due to glycosomal ATP depletion, as glycolysis is blocked. The ATP consumed to produce G6P cannot be regained in the pathway. The same mutant cell lines were then subjected to oxidative stress assays in glucose-depleted conditions (Fig. 6C). The induced ^RNAiPGI mutant showed the same susceptibility as the uninduced control, but the induced Δmec^{RNAi}PGI had significantly increased oxidative stress susceptibility. It should be noted that the result in Figure 6C is virtually indistinguishable from the analogous experiment with MEc and G6PDH double deficiency (Fig. 4B). This further supports the redundant roles of MEc and the PPP to provide the essential cytosolic NADPH. Most interestingly, under glucose-depleted culture conditions the PPP seems clearly active. This reveals gluconeogenic flux up to the level of G6P. In the physiological context, this G6P should derive from proline.

Metabolic evidence of gluconeogenesis – To investigate the gluconeogenic flux from proline as carbon source, procyclic cells were incubated with uniformly ^13C-enriched proline ([U-^13C]-proline) in the presence and absence of glucose. Incorporation of ^13C into intermediate metabolites was quantified by IC-MS/MS and the values for selected glycolytic and PPP metabolites are shown in Fig. 7. The incorporation of ^13C-atoms into glycolytic metabolites in the presence of glucose was low (Fig. 7A), as expected, as the proline consumption is repressed by the presence of glucose (53). High ^13C-incorporation was observed with proline as the only carbon source (Fig. 7B). For all glycolytic intermediates analysed (phosphoenolpyruvate, PEP; 2- or 3-phosphoglycerate, 2/3-PGA; 1,3-bisphosphoglycerate, 1,3-BPGA; fructose 1,6-bisphosphate, FBP; fructose 6-phosphate, F6P and G6P) the fraction of ^13C-enriched molecules is >85% in glucose-depleted conditions, compared to ~10% in the presence of glucose. For additional control, glutamine was added to the medium in glucose-depleted conditions. Glutamine has been shown to serve as carbon source and share with proline the same degradation pathway from glutamate (53). As expected, isotopic dilution was seen (Fig. 7B). In contrast, the addition of threonine only resulted in a minimal dilution effect (Fig. 7B). Threonine can be degraded to acetyl-CoA but can neither repress proline consumption, as does glucose, nor compete with proline degradation. The relative low amounts of [U-^13C]-hexose phosphate (FBP, F6P and G6P) and [U-^13C]-triose phosphate glycylglycine intermediates compared to partially ^13C-enriched molecules (Fig. 7A) is probably due to introduction of ^12C carbons at the carboxylation/decarboxylation step catalysed by PEP carboxykinase (PEPK) and the complete reversibility of the PEPC/malate dehydrogenase/fumarase branch (54) and our unpublished data).

The key result of this experiment is the evidence for production of [U-^13C]-G6P from [U-^13C]-proline. As this occurs only in glucose-depleted conditions, clear evidence for flux in the gluconeogenic direction is derived. Interestingly, the same degree of enrichment is seen for hexose phosphates (FBP, F6P and G6P) and the PPP intermediates (6-phosphogluconolactone and sedoheptulose 7-
phosphate), confirming that proline-derived G6P feeds the PPP.

DISCUSSION

Although glucose is sparse or absent in the natural environment of procyclic trypansomes, the insect midgut (55), the common in vitro culture conditions are glucose-rich. Here, we have identified the metabolic pathways used to produce cytosolic NADPH, in glucose-rich and glucose-depleted conditions. The reduced cofactor NADPH is essential for biosynthetic pathways and detoxification of ROS generated by oxidative stress. The candidate enzymatic reactions providing NADPH in the cytosol, i.e. the first and third steps of the PPP (G6PDH and 6PGDH, respectively) and MEc, were shown to have a redundant function in glucose-rich conditions. The Δmec/ΔG6PDH.i (i stands for tetracycline-induced) double mutant dies rapidly after few days of induction, while the Δmec and ΔPNK/G6PDH.i single mutants show no significant growth alteration. Hypersusceptibility to oxidative stress of the Δmec cell line incubated with DHEA, a specific inhibitor of G6PDH, indicates that the common function of the two pathways is production of NADPH, which is essential for defense against ROS. This redundancy may compensate in trypanosomatids the lack of a transhydrogenase gene (56), which in other organisms catalyzes the reversible conversion of NADH into NADPH. In contrast to procyclic cells, the bloodstream form cells of *T. brucei* are highly susceptible to DHEA (21). This implies that the contribution of MEc to NADPH production is minor in bloodstream trypanosomes, although MEc is expressed in this developmental stage (22). The essential function of the PPP for NADPH production in bloodstream forms is in agreement with the high glycolytic and PPP fluxes, while metabolic flux through MEc is expected to be relatively low (15). A low level of PPP function may also be essential upon long term culture of procyclic cells due to the role in nucleotide biosynthesis through ribose 5-phosphate. This is supported by our inability to knock out the *G6PDH* gene.

In contrast to expectation, the PPP and MEc pathways can both provide NADPH to procyclic cells, also in glucose-depleted conditions. As a control, the Δmec/ΔG6PDH.i double mutant died in glucose-depleted medium (data not shown) as it did in glucose-rich medium (Fig. 4B). However, the susceptibility to oxidative stress of the wild-type cells incubated or not with DHEA was the same as the sensitivity of Δmec mutant cells, in glucose-depleted conditions. This provided strong evidence for a flux through the PPP in the absence of glucose, suggesting an alternative hexokinase-independent source of G6P. The obvious hypothesis, gluconeogenesis, was confirmed by the observed oxidative stress hypersensitivity of the Δmec/ΔMEcPGI.i mutant in a glucose-depleted environment. PGI, the enzyme reversibly converting F6P into G6P, is an essential step of gluconeogenesis. In addition to this genetic evidence, we directly demonstrated for the first time what has been proposed and tested experimentally (22, 23). In contrast to expectation, the PPP and MEc conversion of NADH into NADPH is the common function of the two pathways and detoxification of ROS generated by oxidative stress. The candidate enzymatic reactions providing NADPH in the cytosol, i.e. the first and third steps of the PPP (G6PDH and 6PGDH, respectively) and MEc, were shown to have a redundant function in glucose-rich conditions. The Δmec/ΔG6PDH.i (i stands for tetracycline-induced) double mutant dies rapidly after few days of induction, while the Δmec and ΔPNK/G6PDH.i single mutants show no significant growth alteration. Hypersusceptibility to oxidative stress of the Δmec cell line incubated with DHEA, a specific inhibitor of G6PDH, indicates that the common function of the two pathways is production of NADPH, which is essential for defense against ROS. This redundancy may compensate in trypanosomatids the lack of a transhydrogenase gene (56), which in other organisms catalyzes the reversible conversion of NADH into NADPH. In contrast to procyclic cells, the bloodstream form cells of *T. brucei* are highly susceptible to DHEA (21).

What is the benefit of redundant NADPH sources in procyclic *T. brucei* in both glucose rich and depleted conditions? The primary role of the irreversible reaction catalyzed by MEc is apparently cytosolic NADPH production. Therefore, MEc can provide a high flexibility to adapt NADPH production to cellular need, whatever carbon source is available. In glucose-depleted conditions, carbon flow from proline metabolism can be redistributed towards the MEc route without affecting production of the essential gluconeogenic precursor PEP. Indeed, PEP can be produced from three different pathways starting from cytosolic malate (MEc and the glycosomally located pyruvate:phosphate dikinase - PPDK), mitochondrial malate (MEc and PPDK) or glycosomal malate (malate:dehydrogenase and phosphoenolpyruvate carboxykinase - PEPC) (28). A single route is sufficient to feed gluconeogenesis (white arrows in Fig. 1). This redundancy is confirmed by the nearly wild-type growth rates of Δmec, Δpepck, and Δppdk null mutants (Fig. 6B, (38) and data not shown, respectively). In glucose-rich conditions, the MEc reaction is a single-step bridge between two main branches of glucose metabolism that lead to mitochondrial succinate and acetate production (black arrows in Fig. 1).
Redistribution of the carbon flow towards acetate production from glucose-derived malate has no significant impact on the growth rate and allows an increase of NADPH production through MEc. Flux reduction in the mitochondrial succinate branch, due to this redistribution, is well tolerated, since ablation of this branch by \(\Delta \text{pepck} \), \(\Delta \text{frdk} \) (mitochondrial NADH-dependent fumarate reductase) or \(\Delta \text{fhh} \) (mitochondrial fumarase) mutants does not affect the growth rate of procyclic cells (33,38,58). Thus, an increase of NADPH demand may lead to an increase of acetate production from glucose metabolism. The suggested role of MEc is consistent with a recent \textit{in silico} analysis of flux distribution between the different metabolic branches using a multiobjective-criteria bioinformatics approach (59). The simulations predict that ME activity is primarily responsible for the high flexibility observed for the excreted succinate/acetate ratio (33,54).

As an extension of the flux redistribution model discussed above, we propose a cycle able to increase the metabolic flux through MEc, in both glucose-depleted and glucose-rich conditions. Given the reversibility of the PPDK reaction (60), a cycle made up of MEc and three glycosomal steps (PPDK working in the gluconeogenic direction, PEPCK and malate dehydrogenase) may operate without impact on the energy metabolism and glycosomal ATP balance to produce cytosolic NADPH sustained by NADH production in the glycosomes (see Fig. 1). The relevance of this hypothetical cycle, which may also include the mitochondrial MEm instead of MEc, is its’ ability to substitute for the absence of cytosolic and mitochondrial transhydrogenases. A similar cycle for converting NADH into NADPH has been engineered in \textit{S. cerevisiae} and due to its function named transhydrogenase-like shunt (61). A \textit{S. cerevisiae} strain was modified to optimise ethanol production, which was limited by the redox imbalance created during fermentation. By overexpressing ME, malate dehydrogenase and pyruvate carboxylase (PYC) it was possible to decrease NADH levels by using it for NADPH for the cost of ATP, which is used during the reaction catalysed by pyruvate carboxylase. The cycle we propose in \textit{T. brucei} is able to use glycosomal NADH for production of cytosolic/mitochondrial NADPH without a net cost of ATP, as PPDK and PEPCK replace pyruvate carboxylase (see Fig. 1). The ATP used in the PPDK reaction is regained in the PEPCK reaction. Our proposed transhydrogenase-like shunt is therefore potentially more efficient than the synthetic one used for metabolic engineering of \textit{S. cerevisiae}. The cycle depends on glycosomal NADH availability and may only be active temporarily, to compensate peak demands of cytosolic NADPH, e.g. during oxidative stress. Irrespective of the precise model, MEc clearly serves to assure the essential NADPH production in procyclic trypanosomes in different metabolic situations. This may be most relevant in the insect vector where a relatively low flux through the oxidative branch of the PPP has to be supported by gluconeogenesis.

A second ME isoform (MEm) is expressed in the \textit{T. brucei} mitochondrion, and accounts for approximately half of the total ME activity in procyclic cells (Figs. 1 and 2). In contrast to MEc, MEm is essential, whatever carbon source is provided. MEm also builds a single-step bridge between the mitochondrial succinate and acetate pathways and is not critical for the metabolic network. This strongly supports the view that MEm is essential mainly for NADPH production. The argument implies that there is no other significant source of NADPH in the mitochondrion of procyclic cells. The absence of transhydrogenases in trypansomatids has already been mentioned.

The metabolism of trypanosomes in the tsetse vector or under conditions mimicking the tsetse environment is a largely unexplored field of research and of key interest to understand the developmental adaptations in the life cycle. In this context, our direct demonstration of a gluconeogenic flux is an important advance. Gluconeogenesis seems to be essential for virulence of the related pathogen \textit{Leishmania major} in macrophages and establishment of infection in mice. When intracellular stages that reside in the parasitophorous vacuole cannot support gluconeogenesis (62) or synthesise specific sugars (63) the amastigotes stop replicating but remain viable. This cell cycle arrest phenotype may be caused by depletion of R5P for nucleotide synthesis. Supplementation with exogenous amino acids stimulates the growth of intracellular amastigotes (64), suggesting adaptation of the amastigotes to the sugar-poor but amino acid-rich environment. In the gut and hemolymph of the insect vector of \textit{T. brucei}, a gluconeogenic flux may not only contribute to maintain the redox balance of the cell, but be crucial for synthesizing R5P and
certain sugars for cell-surface glycoconjugates as shown in *Leishmania* (62). As discussed above, NADPH can also be provided by ME as an alternative source. Recent studies on cancer cells demonstrated that ME plays a central metabolic role to control NADPH levels and furthermore plays a regulatory role in preventing senescence of mammalian cells (65). The surprising similarity of metabolic adaptation mechanisms to meet NADPH demand in response to growth conditions highlights the importance of investigating metabolism in defined functional states, be it developmental stages of a parasite, host environment or the proliferative capacity and malignancy of differentiated mammalian cell populations in the tissue context.
REFERENCES

1. Hao, Z., Kasumba, I., and Aksoy, S. (2003) Insect. Biochem. Mol. Biol. 33, 1155-1164
2. Muller, S. (2004) Mol. Microbiol. 53, 1291-1305
3. Akerman, S. E., and Muller, S. (2005) J. Biol. Chem. 280, 564-570
4. Boveris, A., Sies, H., Martino, E. E., Docampo, R., Turrens, J. F., and Stoppani, A. O. (1980) Biochem. J. 188, 643-648
5. He, S., Dayton, A., Kuppusamy, P., Werbovetz, K. A., and Drew, M. E. (2012) Antimicrob. Agents Chemother. 56, 2428-2434
6. Luscher, A., de Koning, H. P., and Mäser, P. (2007) Curr. Pharm. Des. 13, 555-567
7. Muller, I. B., Das Gupta, R., Luersen, K., Wrenger, C., and Walter, R. D. (2008) Mol. Biochem. Parasitol. 160, 1-7
8. Birkholtz, L. M., Williams, M., Niemand, J., Louw, A. I., Persson, L., and Heby, O. (2011) Biochem. J. 438, 229-244
9. Krauth-Siegel, R. L., and Comini, M. A. (2008) Biochim. Biophys. Acta 1780, 1236-1248
10. Heise, N., and Opperdoes, F. R. (1999) Mol. Biochem. Parasitol. 111, 249-257
11. Azéma, L., Claustre, S., Alric, I., Blonski, C., Willson, M., Périé, J., Baltz, T., Tetaud, E., Bringaud, F., Cottem, D., Opperdoes, F. R., and Barrett, M. P. (2004) Biochem. Pharmacol. 67, 459-467
12. Lee, S. H., Stephens, J. L., and Englund, P. T. (2007) Nat. Rev. Microbiol. 5, 287-297
13. Barrett, M. P., and Gilbert, I. H. (2002) Curr. Top. Med. Chem. 2, 471-482
14. Cordeiro, A. T., Thiemann, O. H., and Michels, P. A. (2009) Bioorg. Med. Chem. 17, 2483-2489
15. Leroux, A. E., Maugeri, D. A., Opperdoes, F. R., Cazzulo, J. J., and Nowicki, C. (2011) FEMS Microbiol. Lett. 314, 25-33
16. goat, A., and Schonenberger, M. (1979) Acta Trop. 36, 289-292
17. Azéma, L., Claustre, S., Alric, I., Blonski, C., Willson, M., Périé, J., Baltz, T., Tetaud, E., Bringaud, F., Cottem, D., Opperdoes, F. R., and Barrett, M. P. (2004) Biochem. Pharmacol. 67, 459-467
18. Lee, S. H., Stephens, J. L., and Englund, P. T. (2007) Nat. Rev. Microbiol. 5, 287-297
19. Barrett, M. P., and Gilbert, I. H. (2002) Curr. Top. Med. Chem. 2, 471-482
20. Cordeiro, A. T., Thiemann, O. H., and Michels, P. A. (2009) Bioorg. Med. Chem. 17, 2483-2489
21. Leroux, A. E., Maugeri, D. A., Opperdoes, F. R., Cazzulo, J. J., and Nowicki, C. (2011) FEMS Microbiol. Lett. 314, 25-33
22. Brun, R., and Schonenberger, M. (1979) Acta Trop. 36, 289-292
23. Azéma, L., Claustre, S., Alric, I., Blonski, C., Willson, M., Périé, J., Baltz, T., Tetaud, E., Bringaud, F., Cottem, D., Opperdoes, F. R., and Barrett, M. P. (2004) Biochem. Pharmacol. 67, 459-467
24. Lee, S. H., Stephens, J. L., and Englund, P. T. (2007) Nat. Rev. Microbiol. 5, 287-297
25. Barrett, M. P., and Gilbert, I. H. (2002) Curr. Top. Med. Chem. 2, 471-482
26. Cordeiro, A. T., Thiemann, O. H., and Michels, P. A. (2009) Bioorg. Med. Chem. 17, 2483-2489
27. Wirtz, E., Leal, S., Ochatt, C., and Cross, G. A. (1999) Mol. Biochem. Parasitol. 99, 89-101
28. Coustou, V., Biran, M., Breton, M., Guegan, F., Riviere, L., Plazolles, N., Nolan, D., Barrett, M. P., Franconi, J. M., and Bringaud, F. (2008) J. Biol. Chem. 283, 16342-16354
29. Riviére, L., van Weelden, S. W., Glass, P., Vegh, P., Coustou, V., Biran, M., van Hellemond, J. J., Bringaud, F., Tielens, A. G., and Boshart, M. (2004) J. Biol. Chem. 279, 45337-45346
30. Klein, R. A., Linstead, D. J., and Wheeler, M. V. (1975) Parasitology 71, 93-107.
31. Harlow, E., and Lane, D. (eds). (1988) Antibodies: a laboratory manual, Cold Spring Harbor Laboratory Press
32. Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds). (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press
33. Harlow, E., and Lane, D. (eds). (1988) Antibodies: a laboratory manual, Cold Spring Harbor Laboratory Press
34. Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds). (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press
35. Harlow, E., and Lane, D. (eds). (1988) Antibodies: a laboratory manual, Cold Spring Harbor Laboratory Press
36. Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds). (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press
37. Harlow, E., and Lane, D. (eds). (1988) Antibodies: a laboratory manual, Cold Spring Harbor Laboratory Press
38. Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds). (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press
39. Harlow, E., and Lane, D. (eds). (1988) Antibodies: a laboratory manual, Cold Spring Harbor Laboratory Press
40. Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds). (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press

33. Coustou, V., Biran, M., Besteiro, S., Riviere, L., Balzt, T., Franconi, J. M., and Bringaud, F. (2006) J. Biol. Chem. 281, 26832-26846
34. Tetaud, E., Giroud, C., Prescott, A. R., Parkin, D. W., Balzt, D., Biteau, N., Balzt, T., and Fairlamb, A. H. (2001) Mol. Biochem. Parasitol. 116, 171-183
35. Kohl, L., Sherwin, T., and Gull, K. (1999) J. Eukaryot. Microbiol. 46, 105-109
36. Ahmed, S. A., Gogal, R. M. Jr., and Walsh, J. E. (1994) J. Immunol. Methods 170, 211-224
37. Raz, B., Iten, M., Grether-Buhler, Y., Kaminsky, R., and Brun, R. (1997) Acta Trop. 68, 139-147
38. Ebikeme, C., Hubert, J., Biran, M., Gouspillou, G., Morand, P., Plazolles, N., Guegan, F., Dolez, P., Franconi, J. M., Portais, J. C., and Bringaud, F. (2010) J. Biol. Chem. 285, 32312-32324
39. Bolten, C. J., Kiefer, P., Letisse, F., Portais, J. C., and Wittmann, C. (2007) Anal. Chem. 79, 3843-3849
40. Kiefer, P., Nicolas, C., Letisse, F., and Portais, J. C. (2007) Anal. Biochem. 360, 182-188
41. Millard, P., Letisse, F., Sokol, S., and Portais, J. C. (2012) Bioinformatics 28, 1294-1296
42. Cannata, J. J., Frasch, A. C., Cataldi de Flombaum, M. A., Segura, E. L., and Cazzulo, J. J. (1979) Biochem. J. 184, 409-419
43. Orellano, E., and Cazzulo, J. J. (1981) Mol. Biochem. Parasitol. 3, 1-11
44. Gupta, S., Cordeiro, A. T., and Michels, P. A. (2011) Mol. Biochem. Parasitol. 176, 112-115
45. Ingram, A. K., Cross, G. A., and Horn, D. (2000) Mol. Biochem. Parasitol. 111, 309-317
46. Manxner, A., Downing, T., Imamura, H., and Dujardin, J. C. (2012) Trends Parasitol. 28, 370-376
47. Cronin, C. N., Nolan, D. P., and Voorheis, H. P. (1989) FEBS Lett. 244, 26-30.
48. Creek, D. J., Chokkathukalam, A., Jankevics, A., Burgess, K. E., Breitling, R., and Barrett, M. P. (2012) Anal. Chem. 84, 8442-8447
49. Pantopoulos, K., Mueller, S., Atzberger, A., Ansorge, W., Stremmel, W., and Hentze, M. W. (1997) J. Biol. Chem. 272, 9802-9808
50. Sureda, A., Hebling, U., Pons, A., and Mueller, S. (2005) Free Radic. Res. 39, 817-824
51. Mueller, S. (2000) Free Radic. Biol. Med. 29, 410-415
52. Michels, P. A., Bringaud, F., Herman, M., and Hannaert, V. (2006) Biochim. Biophys. Acta 1763, 1463-1477
53. Lamour, N., Riviere, L., Coustou, V., Coombs, G. H., Barrett, M. P., and Bringaud, F. (2005) J. Biol. Chem. 280, 11902-11910
54. Van Weelden, S. W., Fast, B., Vogt, A., Van Der Meer, P., Saas, J., Van Hellemond, J. J., Tielens, A. G., and Boshart, M. (2003) J. Biol. Chem. 278, 12854-12863
55. Bursell, E. (1981) The role of proline in energy metabolism, Plenum Press, New York
56. Berirman, M., Ghedin, E., Hertz-Fowler, et al. (2005) Science 309, 416-422
57. Hannaert, V., Sauvedra, E., Duffieux, F., Szikora, J. P., Rigden, D. J., Michels, P. A., and Opperdoes, F. R. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 1067-1071
58. Coustou, V., Besteiro, S., Riviere, L., Biran, M., Biteau, N., Franconi, J. M., Boshart, M., Balzt, T., and Bringaud, F. (2005) J. Biol. Chem. 280, 16559-16570
59. Ghozlane, A., Bringaud, F., Souedan, H., Dutour, I., Jourdan, F., and Thébault, P. (2012) Adv. Bioinformatics, 2012, 159423
60. Bringaud, F., Balzt, D., and Balzt, T. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7963-7968
61. Sugah, H., Matsuda, F., Hasunuma, T., Ishii, J., and Kondo, A. (2013) Appl. Microbiol. Biotechnol. 97, 1669-1678
62. Naderer, T., Ellis, M. A., Sernee, M. F., De Souza, D. P., Curtis, J., Handman, E., and McConville, M. J. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 5502-5507
63. Garami, A., and Ilg, T. (2001) EMBO J. 20, 3657-3666
64. McConville, M. J., and Naderer, T. (2011) Annu. Rev. Microbiol. 65, 543-561
65. Jiang, P., Du, W., Mancuso, A., Wellen, K. E., and Yang, X. (2013) Nature 493, 689-693
66. Bringaud, F., Barrett, M. P., and Zilberstein, D. (2012) Frontiers in Bioscience 17, 349-374
Acknowledgements - We are grateful to Larissa Ivanova (LMU Munich) and Nicolas Plazolle (Université Bordeaux Segalen) for their invaluable technical support. We thank Artur Cordeiro for providing DHEA. The mass spectrometry and nuclear magnetic resonance equipment used in this study are part of the MetaToul platform (Toulouse, France), that is funded by the Région Midi-Pyrénées, the European Regional Development Fund (ERDF), the INRA and the CNRS, which are gratefully acknowledged.

FOOTNOTES
* This work was supported by the Agence Nationale de la Recherche (ANR) through grants METABOTRYP of the ANR-MIME2007 call and ACETOTRYP of the ANR-BLANC-2010 call to FB, JCP and MB and DFG grant Bo1100/6-2 to MB; FB is also supported by the Centre National de la Recherche Scientifique (CNRS), the Université Bordeaux Segalen, the Conseil Régional d’Aquitaine, the Laboratoire d’Excellence (LabEx) ParaFrapp ANR-11-LABX-0024 and the ParaMet PhD programme of Marie Curie Initial Training Network (FP7). MB, FB and JCP have been supported by a research cooperation grant of the Franco-Bavarian university cooperation center (BFHZ/CCUF).

The abbreviations used are: 1,3-BPGA, 1,3-bisphosphoglycerate, 2/3-PGA, 2- or 3-phosphoglycerate; 6PGDH, 6-phosphogluconate dehydrogenase; DHAP, dihydroxyacetone phosphate; DHEA, dehydroepiandrosterone; F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; FHc, cytosolic fumarase; G6P, glucose 6-phosphate; G6PDH, glucose 6-phosphate dehydrogenase; GlcNAc, N-acetylglucosamine; PGI, phosphoglucose isomerase; GOX, glucose oxidase; MEc, cytosolic NADP-dependent malic enzyme; MEm, mitochondrial NADP-dependent malic enzyme; PEP, phosphoenolpyruvate; PEPCK, phosphoenolpyruvate carboxykinase; PPDK, pyruvate phosphate dikinase; PPP, pentose phosphate pathway; ROS, reactive oxygen species; SEM, standard error of mean; TRYP2, mitochondrial trypanothione-dependent tryparedoxin peroxidase; XOX, xanthine oxidase
FIGURE LEGENDS

FIGURE 1. Metabolic network related to NADPH production. Black arrows indicate enzymatic steps of glucose and proline metabolism of procyclic trypanosomes grown in glucose-rich conditions, while white arrows correspond to proline metabolism in the absence of glucose (66). Dashed arrows symbolize steps for which no evidence of flux is available. The proposed NADH/NADPH converting cycle or transhydrogenase-like shunt is indicated by green arrows. For simplification, only NADP⁺/NADPH and NAD⁺/NADH involved in the putative transhydrogenase-like shunt are shown. Excreted end products of glucose and proline metabolism are indicated by a black background. The pools of metabolites shared by different subcellular compartments are indicated by grey areas. Experimental evidence for most of the intracellular transmembrane translocation is missing. Abbreviations: α-KG, α-ketoglutarate; 1,3-BPGA, 1,3-bisphosphoglycerate; 3-PGA, 3-phosphoglycerate; DHAP, dihydroxyacetone phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; Fum, fumarate; GAP, glyceraldehyde 3-phosphate; G6P, glucose 6-phosphate; Mal, malate; Oxac, oxaloacetate; 3-PGA, 3-phosphoglycerate; PEP, phosphoenolpyruvate; PPP, pentose phosphate pathway; Pyr, pyruvate; R5P, ribulose 5-phosphate; Suc, sucinate; Succ-CoA, succinyl-CoA. Key enzymes are: 1, glucose 6-phosphate dehydrogenase; 2, 6-phosphogluconate dehydrogenase; 3, glucose 6-phosphate isomerase; 4a, phosphofructokinase; 4b, fructose 1,6-bisphosphatase; 5, aldolase; 6, triose phosphate isomerase; 7, glyceraldehydes 3-phosphate dehydrogenase; 8, cytosolic phosphoglycerate kinase; 9, phosphoglycerate mutase; 10, enolase; 11, pyruvate kinase; 12, pyruvate phosphate dikinase; 13, phosphoenolpyruvate carboxykinase; 14, glycosomal malate dehydrogenase; 15, cytosolic and glycosomal fumarase; 16, glycosomal NADH-dependent fumarate reductase; 17, cytosolic malic enzyme; 18, mitochondrial malic enzyme; 19, mitochondrial fumarase; 20a, mitochondrial NADH-dependent fumarate reductase; 20b, succinate dehydrogenase; 21, succinyl-CoA synthetase; 22, α-ketoglutarate dehydrogenase.

FIGURE 2. Subcellular localization of ME activity by digitonin titration in procyclic T. brucei. A, the ME activity was determined in the supernatant (filled circle) and pellet (open circle) fractions from cells incubated with 0.02-0.6 mg digitonin/mg of protein in STE buffer containing 150 mM NaCl, as indicated. Panel B shows a western blot analysis of marker proteins in the same supernatant (S) and pellet (P) fractions: TRYP2 (mitochondrial trypanothione-dependent tryparedoxin peroxidase) and FHc (cytosolic fumarate hydratase).

FIGURE 3. Growth of ME-deficient cell lines. Growth curves of $^{RNAi}{MEc/m}$ (A), $^{RNAi}{MEM}$ (B), $^{RNAi}{MEc}$ (C) and Δmec (D) mutants. The parental cell line (EATRO1125.T7T) was included in each experiment. Cells were maintained in the exponential growth phase (between 10^6 and 10^7 cells/mL) by dilution, and cumulative cell numbers are presented with and without tetracycline (Tet)-dependent induction as indicated. Malic enzyme activities of induced RNAi mutants (A-C) and of the Δmec mutant (D) is shown together with the parental cells on the right side graph or as an inset in the growth curve, respectively. Error bars indicate the SD of 3 independent experiments. Panel D also shows a PCR analysis of genomic DNA isolated from the parental EATRO1125.T7T (WT) and Δmec cell lines to confirm MEc gene deletion. The lower panel shows PCR fragments amplified with primers based on sequences that flank the 5’UTR and 3’UTR fragments used to target the EMc gene disruption (black boxes) and internal sequences from the MEc gene (PCR products 1 and 2), the puromycin resistance gene (PAC, PCR products 3 and 4) or the blasticidin resistance gene (BSD, PCR products 5 and 6).

FIGURE 4. Cells deficient in cytosolic ME (Δmec) cannot tolerate depletion or inhibition of G6PDH in glucose rich-conditions. A and B, RNAi-mediated down-regulation of G6PDH in the wild-type (WT) (panel A) or Δmec background (panel B). The control of RNAi efficiency by western blot analysis is shown as inset. C, Inhibition of G6PDH by a specific inhibitor (DHEA, 15 μM). D, Dose response curve for DHEA. The estimated LD₅₀ for 48 h incubation with DHEA is 19.3 μM in the Δmec line. The LD₅₀ (48 h) of DHEA for the parental EATRO1125.T7T line is >10-fold higher (data
not shown). All experiments were performed in growth medium containing glucose. Error bars represent the SEM of 4 independent experiments.

FIGURE 5. Susceptibility of Δmec mutant cells to oxidative stress. A, Induction of oxidative stress by different concentrations of glucose oxidase (GOX) or xanthine oxidase (XOX) in glucose-rich medium. B, Induction of oxidative stress using XOX in glucose-depleted medium. Cell viability was quantified by the Alamar Blue assay (see Experimental procedures). The relative fluorescence (% RFU) was calculated by normalisation to the GOX/XOX untreated control for each cell line. Error bars represent the SEM of 3 independent experiments.

FIGURE 6. RNAi-mediated depletion of PGI. A and B, Growth of the wild-type (WT), Δmec, $^{RNAi}_{PGI}$P, and Δmec/$^{RNAi}_{PGI}$ cell lines in glucose-rich (panel A) and glucose-depleted (panel B) media. The control of RNAi efficiency by western blot analysis is shown above the growth curves. PGI protein levels after 4 days of induction were quantified as 15% and 13% (panel A) or 10% and 11% (panel B) for the single and double mutant, respectively. C, Induction of oxidative stress by different concentrations of XOX in glucose-depleted medium. RNAi was induced with tetracycline (Tet) 72 h prior to addition of XOX. Error bars represent the SEM of 3 independent experiments.

FIGURE 7. IC-MS/MS analysis of metabolites after isotopic labeling with $[U-{^{13}}C]$-proline. EATRO1125.T7T cells were incubated for 2 h in PBS containing 2 mM $[U-{^{13}}C]$-proline with (panel A) or without (panel B) glucose prior to metabolite extraction. Enrichment at 0 to 7 carbon positions (m0 to m7) with 13C expressed as percentage of all corresponding molecules (MID; Mass Isotopomer Distribution). Panel B shows two independent experiments of wild-type cells incubated with 2 mM $[U-{^{13}}C]$-proline (lanes 1 and 2), while in lanes 3, 4 and 5, the $[U-{^{13}}C]$-proline-containing medium was supplemented with threonine (3.4 mM), glutamine (3.5 mM) or both, respectively. For each experiment triplicate samples have been analysed by MS with SEM in the following ranges: PEP: 0.0-1.0%; 2-/3-PGA: 0.0-1.3%; 1,3BPGA: 0.0-4.2%; FBP: 0.0-8.0%; F6P: 0.1-4.9%; G6P: 0.0-6.2%; 6PG: 0.0-2.1%; S7P: 0.0-1.8%. For abbreviations of metabolites see legend to figure 1; 2-phosphoglycerate and 3-phosphoglycerate are distinguished by IC-MS/MS and indicated as 2-/3-PGA; 6PG, 6-phosphogluconolactone; S7P, sedoheptulose 7-phosphate.
TABLE 1. Detection parameters for quantitative analysis of intracellular Metabolites by IC-MS/MS. The analysis was performed by ion-exchange chromatography coupled to triple-quadrupole-mass spectrometry in the Multiple Reaction Monitoring (MRM) mode.

Metabolites	Formula	MW (g.mol$^{-1}$)	Retention time a (min)	[M-H]$^-$b	MRM Transitionb	MRM Transition U-13Cc
PEP	C$_3$H$_5$O$_6$P	167.982	38.2	166.975	167/79	170/79
2-PGA	C$_3$H$_7$O$_7$P	185.993	33.6	184.986	185/97	188/97
3-PGA	C$_3$H$_7$O$_7$P	185.993	33.6	184.986	185/97	188/97
1,3-BPGA	C$_3$H$_8$O$_9$P$_2$	265.959	38.0	264.952	265/79	268/79
FBP	C$_6$H$_{12}$O$_9$P$_2$	339.996	48.6	338.989	339/97	345/97
F6P	C$_6$H$_{12}$O$_9$P$_2$	260.030	20.3	259.022	259/97	265/97
G6P	C$_6$H$_{12}$O$_9$P$_2$	260.030	19.2	259.022	259/97	265/97
6PG	C$_6$H$_{12}$O$_9$P$_2$	276.025	31.4	275.017	275/97	281/97
S7P	C$_6$H$_{12}$O$_9$P$_2$	290.040	24.0	289.030	289/97	296/97

a The molecular information, chromatographic retention times (RT)
b MRM transitions for the analyzed metabolites
c MRM transitions of the [13C-U]-labelled compounds used as internal standards.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
A glucose-rich

B glucose-depleted

Figure 7
Cytosolic NADPH homeostasis in glucose-starved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux

Stefan Allmann, Pauline Morand, Charles Ebikeme, Lara Gales, Marc Biran, Jane Hubert, Ana Brennand, Muriel Mazet, Jean-Michel Franconi, Paul A. M. Michels, Jean-Charles Portais, Michael Boshart and Frederic Bringaud

J. Biol. Chem. published online May 10, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M113.462978

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2013/05/10/M113.462978.DC1