Humanizing \(\pi \)-Class Glutathione S-Transferase Regulation in a Mouse Model Alters Liver Toxicity in Response to Acetaminophen Overdose

Matthew P. Vaughn1,*, Debika Biswal Shinohara1,2,*, Nicole Castagna1, Jessica L. Hicks1, George Netto1, Angelo M. De Marzo1, Traci J. Speed1, Zachary R. Reichert1, Bernard Kwabi-Addo3, Colin J. Henderson4, C. Roland Wolf5, Srinivasan Yegnasubramanian1,*, William G. Nelson1,*

1 Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America, 2Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America, 3Howard University Cancer Center, Howard University, Washington, District of Columbia, United States of America, 4Cancer Research United Kingdom Molecular Pharmacology Unit, Biomedical Research Institute, Ninewells Hospital and Medical School, Dundee, United Kingdom

Abstract

Background: Glutathione S-transferases (GSTs) metabolize drugs and xenobiotics. Yet despite high protein sequence homology, expression of \(\pi \)-class GSTs, the most abundant of the enzymes, varies significantly between species. In mouse liver, hepatocytes exhibit high mGSTP expression, while in human liver, hepatocytes contain little or no hGSTP1 mRNA or hGSTP1 protein. \(\pi \)-class GSTs are known to be critical determinants of liver responses to drugs and toxins: when treated with high doses of acetaminophen, mGSTP1/2+/+ mice suffer marked liver damage, while mGSTP1/2−/− mice escape liver injury.

Methodology/Principal Findings: To more faithfully model the contribution of \(\pi \)-class GSTs to human liver toxicology, we introduced hGSTP1, with its exons, introns, and flanking sequences, into the germline of mice carrying disrupted mGSTP genes. In the resultant hGSTP1+mGSTP1/2−/− strain, \(\pi \)-class GSTs were regulated differently than in wild-type mice. In the liver, enzyme expression was restricted to bile duct cells, Kupffer cells, macrophages, and endothelial cells, reminiscent of human liver, while in the prostate, enzyme production was limited to basal epithelial cells, reminiscent of human prostate. The human patterns of hGSTP1 transgene regulation were accompanied by human patterns of DNA methylation, with bisulfite genomic sequencing revealing establishment of an unmethylated CpG island sequence encompassing the gene promoter. Unlike wild-type or mGSTP1/2−/− mice, when hGSTP1+mGSTP1/2−/− mice were overdosed with acetaminophen, liver tissues showed limited centrilobular necrosis, suggesting that \(\pi \)-class GSTs may be critical determinants of toxin-induced hepatocyte injury even when not expressed by hepatocytes.

Conclusions: By recapitulating human \(\pi \)-class GST expression, hGSTP1+mGSTP1/2−/− mice may better model human drug and xenobiotic toxicology.

Citation: Vaughn MP, Biswal Shinohara D, Castagna N, Hicks JL, Netto G, et al. (2011) Humanizing \(\pi \)-Class Glutathione S-Transferase Regulation in a Mouse Model Alters Liver Toxicity in Response to Acetaminophen Overdose. PLoS ONE 6(10): e25707. doi:10.1371/journal.pone.0025707

Editor: Anna Carla Goldberg, Albert Einstein Institute for Research and Education, Brazil

Received July 22, 2011; Accepted September 8, 2011; Published October 11, 2011

Copyright: © 2011 Vaughn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The studies were supported by National Institutes of Health/National Cancer Institute grants CA91409, CA70196, and CA58236. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: syegnasu@jhmi.edu (SY); bnelson@jhmi.edu (WN)

† These authors contributed equally to this work

Introduction

Cytosolic glutathione S-transferases (GSTs) are encoded by a superfAMILY OF genes grouped into \(\pi \), \(\mu \), \(\sigma \), \(\theta \), \(\zeta \), and \(\omega \) classes by primary amino acid sequence [1,2]. The enzymes, which can exist as homo- or heterodimers of subunit polypeptides, catalyze reactions involving the conjugation of reduced glutathione (GSH) to electrophilic substrates. By targeting electrophiles generated by cytochrome P450s for conjugation with GSH, GSTs contribute to coordinated drug and xenobiotic metabolism, promoting the ultimate elimination of potential toxics by the ATP-dependent glutathione S-conjugate export pump [3]. The \(\pi \)-class GST, a homodimeric enzyme which was first described as a placental isofrom, has since been found in many different tissues and is now known to be the most abundant of the GSTs [4]. The amino acid sequence of \(\pi \)-class GST subunit polypeptides is remarkably conserved across species, perhaps because the enzymes have been implicated in a broad array of vital cell and tissue functions, including xenobiotic metabolism, cell signaling, mutagen/carcinogen defense, and antineoplastic drug resistance [5].

Human \(\pi \)-class GSTs are encoded by a single gene, hGSTP1, while mice have two such genes, mGSTP1 and mGSTP2. Each of the genes has 7 exons that encode enzyme subunit polypeptides of 210 amino acids [5]. The degree of protein homology is striking: of the 210 amino acids, 170 (81%) are completely conserved, and accounting for conserved and semi-conserved substitutions, the
amino acid sequence across species has a 94% homology. hGSTPI, mGSTp1, and mGstp2 also share some common transcriptional promoter elements, including an AP1 (TGA[C/G/T]CA) transcription factor binding site and GC boxes (GGGCCGG) permitting SP1 transcription factor binding just upstream of a TATA box. hGSTPI and mGstp2 have two SP1 binding sites; mGstp1 has only one. For hGSTPI, the SP1 site and at least one of the SP1 sites must be intact for hGSTPI transcription to occur [6,7].

Despite the extensive coding sequence homology, the transcription promoter regions and introns display little similarity across species, aside from the AP1 and SP1 sites. hGSTPI contains several unique promoter elements that could contribute to transcriptional regulation, including a pentad B sequence repeated 18 to 21 times and an overlapping NF-kB and C/ERP site (TTAAGGGAAT-TTGC). Also noteworthy is the abundance of CpG dinucleotides (n = 59) found between an [ATAAA]n repeat region and the hGSTPI transcription start site. These CpGs, which are unmethylated in normal cells, are targeted for de novo methylation in many human cancers, leading to somatic epigenetic silencing of transcription [8,9].

As a consequence of the likely differences in transcriptional regulation, π-class GST expression patterns vary widely across species, and these expression differences appear to have functional consequences. As an example, shortly after the discovery of rGST-P, the rat π-class GST, levels of the enzyme were found to be sterotypically elevated in preeclamptic hepatic foci, and in neoplastic lesions, induced by the chemical carcinogens diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) [10]. Because rGST-P is not expressed in rat hepatocytes under normal conditions, the appearance of rGST-P-expressing cells has emerged as a reliable biomarker of hepatocarcinogenesis in the rat [11,12]. However, this rat model has been difficult to extend to mice, which exhibit constitutive production of mGSTp1/2 in normal hepatocytes, or to humans, which like rats fail to express π-class GSTs in hepatocytes, but do not induce π-class GST expression in preeclampsia or neoplastic lesions [13,14,15,16,17,18,19]. Of interest, many strains of mice appear much less susceptible than rats to liver carcinogenesis induced by chemical carcinogens [5,20].

In an attempt to recapitulate human patterns of π-class GST expression in mice, we introduced the full-length hGSTPI gene, along with its cis-regulatory sequences, into the germline of mice carrying disrupted mGstp1 gene. The resultant “humanized” strain of hGSTPI+mGstp1/2−/− mice showed marked differences from wild-type mGstp1/2+/+ mice in the expression of π-class GSTs in liver tissues, with an absence of the enzymes in hepatocytes that was reminiscent of the lack of enzymes in human hepatocytes, but maintenance of expression in bile duct cells, Kupffer cells, macrophages, and endothelial cells. These expression differences were responsible for functional differences in liver toxicity, with hGSTPI+mGstp1/2−/− mice exhibiting far less liver injury than mGstp1/2+/+ mice upon administration of high doses of acetaminophen [21]. Nonetheless, hGSTPI+mGstp1/2−/− mice did manifest limited centrilobular necrosis not seen in mGstp1/2−/− mice, suggesting that π-class GSTs remained critical determinants of liver damage even when not present in hepatocytes.

Results

π-class GST expression in hGSTPI+ mGstp1/2−/− mice

To create humanized hGSTPI+ mGstp1/2−/− mice, a linearized DNA fragment containing full length hGSTPI gene (~1138 to +3600) was microinjected into C57BL/6 mouse oocytes, yielding some 16 offspring. Before attempting to target this gene to the germline of mice, this construct or a 5′ deletion construct with truncated 5′ regulatory regions lacking the [ATAAA]n pentad repeat (Fig. 1A), was transfected into Hep3B human liver cancer cells, which are normally devoid of π-class GSTs as a result of epigenetic silencing of hGSTPI attributable to somatic CpG island hypermethylation [16]. hGSTPI transfection promoted expression of π-class GST subunit polypeptides and an increase in GST activity (Fig. 1B–C). Three hGSTPI++ founder mice were then crossed to C57BL/6 mGstp1/2−/− mice; after two generations of breeding the resultant hGSTPI+mGstp1/2−/− mouse strain was maintained by breeding with mGstp1/2−/− mice and selecting progeny carrying hGSTPI++ alleles. hGSTPI+mGstp1/2−/− mice were not grossly different in appearance or behavior from mGstp1/2+/+ or mGstp1/2−/− mice.

Patterns of π-class GST expression differ substantially between humans and mice

To ascertain whether human π-class GST expression patterns were recapitated in mice by transfer of hGSTPI, with all of its known cis-regulatory sequences, various tissues from mice and from humans were subjected to immunohistochemical staining analyses of enzyme content using anti-π-class GST antibodies (Fig. 2A). For liver tissues, in mGstp1/2+/+ mice, π-class GSTs were present in the nucleus and cytoplasm of hepatocytes, but not prominently in Kupffer cells, bile duct cells, and endothelial cells, while in hGSTPI+mGstp1/2−/− mice, enzyme expression was restricted to non-hepatocytes, including endothelial cells, Kupffer cells, and bile duct cells. In this way, the pattern of π-class GST expression in human liver, where the hepatocytes are devoid of the enzymes but show expression in bile duct, endothelial, and Kupffer cells, was better recapitated in hGSTPI+mGstp1/2−/− mice than in mGstp1/2+/+ mice. Human prostate tissues produce π-class GSTs predominantly in basal epithelial cells, and much less so in luminal epithelial cells. As in the liver, this human pattern of expression was better recapitated in hGSTPI+mGstp1/2−/− mice than in mGstp1/2+/+ mice. Furthermore, the antibodies used could detect both mouse and human π-class GST with great specificity, as no immunoreactive peptides were evident in tissues from mGstp1/2−/− mice.

Next, mRNAs from various tissues from mice and from humans were subjected to quantitative RT-PCR for hGSTP1, hGSTP1, hGAPDH, and hAPDH (Fig. 2B). In tissues from mature male C57BL/6 wild type mice, mGstp1 mRNA was present at high levels in the liver, relative to hGSTP1 mRNA, and expressed at lower levels in the kidney and in each of the lobes of the prostate. In contrast, in human tissues, hGSTP1 mRNA, relative to hGAPDH, was barely detectable in the liver, but expressed at low levels in the kidney and prostate. For hGSTPI+mGstp1/2−/− mice, hGSTPI mRNA expression patterns, relative to mGstp1 mRNA, resembled that of hGSTPI mRNA, relative to hGAPDH, in human tissues; hGSTPI mRNA was nearly absent from the liver, while present in the kidney and in each of the prostate lobes. Of note, anatomically distinct mouse prostate lobes may be analogous to non-anatomically distinct human prostate zones, so each of the mouse lobes was considered independently, while the human prostate was assessed as a single entity.
Acetaminophen Toxicity in Humanized GSTP1 Mice

Figure 1. Full length hGSTP1 directs expression of catalytically-active GSTs. When transfected into Hep3B cells, which do not express hGSTP1 mRNA or hGSTP1 polypeptides, (A) both full length hGSTP1 (~1138 bp to +3600) and hGSTP1 with [ATAA]n ([AT]n) repeat sequences deleted (~78 to +3600) directed expression of (B) GSTP1 polypeptides, as detected by immunoblot analysis, and (C) active GSTs, as detected by CDNB assay using the indicated volumes of Hep3B cell lysates, with appearance of the glutathione conjugate of CDNB monitored as change in OD340 nm. (A–C) Yellow box, position of [AT]n repeat; Green box, position of CpG island; positions are shown with respect to the hGSTP1 transcriptional start site; blue boxes, position of exons; rhGSTP1, recombinant human GSTP1 polypeptides in vitro. Transfection controls directed expression of GFP polypeptides. doi:10.1371/journal.pone.0025707.g001

methylations changes at a CpG island sequence encompassing the hGSTP1 transcriptional regulatory region [8,16]. Remarkably, though the gene microinjected into mouse oocytes was without any 5-mC bases, when maintained in the germline, the hGSTP1 alleles present in hGSTP1+ mGstp1/2−/− mice established patterns of CpG dinucleotide methylation in adult cells that was similar to those seen in hGSTP1 in normal adult human cells [Fig. 3] [22]. This suggested that cis-elements in hGSTP1 were not only sufficient to establish human patterns of hGSTP1 expression in hGSTP1+ mGstp1/2−/− mice, but also sufficient to establish human patterns of CpG dinucleotide/CpG island methylation. Finally, the lack of expression of π-class GSTs in hepatocytes and prostate luminal cells in hGSTP1+ mGstp1/2−/− mice could not be explained by hypermethylation of hGSTP1 CpG island sequences.

Toxicity of acetaminophen (APAP)

Data obtained from in vivo studies using purified enzymes suggested that π-class GSTs might be major contributors to the liver disposition of acetaminophen (N-acetyl-p-aminophenol; APAP) by catalyzing reactions between its reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI) and glutathione [23]. However, when mGstp1/2−/− mice were challenged with an overdose of acetaminophen (APAP), the mice exhibited a marked decreased, of acetaminophen (APAP) by catalyzing reactions between its reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI) and glutathione [23]. How-

ever, when exposed to acetaminophen treatment relative to saline-treated control. This gender bias in APAP mediated ALT elevations was also present in the acetaminophen-treated hGSTP1+ mGstp1/2−/− mice, which also did not show significant elevations in ALT relative to saline-treated controls. In fact, regardless of genotype, female mice did not exhibit elevations in ALT following acetaminophen treatment.

In a second experiment, mice were administered 300 mg/kg acetaminophen or vehicle by oral gavage in order to more faithfully model human exposure to the drug. Serum markers of parenchymal liver damage (as measured by ALT and AST) as well as biliary duct damage (as measured by alkaline phosphatase and total bilirubin) were assessed at various timepoints (Fig. 6A). In wildtype mice levels of ALT and AST increased relative to saline-treated controls. In fact, regardless of genotype, female mice did not show significant elevations in ALT following acetaminophen treatment. Female mice did not show significant elevations in ALT following acetaminophen treatment. However, when mGstp1/2−/− mice were challenged with a lower dose of acetaminophen, the mice exhibited a marked decreased, of acetaminophen treatment relative to saline-treated control. This gender bias in APAP mediated ALT elevations was also present in the acetaminophen-treated hGSTP1+ mGstp1/2−/− mice, which also did not show significant elevations in ALT relative to saline-treated controls. In fact, regardless of genotype, female mice did not exhibit elevations in ALT following acetaminophen treatment.
Discussion

The generation of a “humanized” hGSTP1-transgenic mouse strain has created a new mouse model for the study of human metabolism, toxicology, and carcinogenesis. The different patterns of \(\pi \)-class GST expression in \(m\text{Gstp1/2}^{-/-} \) mice and \(h\text{GSTP1}^{+/-} m\text{Gstp1/2}^{-/-} \) mice, with accompanying differences in response to drugs like acetaminophen, may provide new insights not just into the biochemistry of drug and toxin disposition, but rather the cell and tissue specific responses to stress and injury inflicted by such agents. In this way, \(h\text{GSTP1}^{+/-} m\text{Gstp1/2}^{-/-} \) mice can join an increasing family of “humanized” transgenic mice created to better understand the xenobiotic metabolism [24].

To make such “humanized” transgenic mice, three general approaches have been pursued. One technique involves the construction of transgenes containing cDNA encoding human metabolizing enzymes ligated to transcription regulatory sequences to drive cell- or organ-specific enzyme expression. A second strategy features recombination (or “knock-in”) of human coding sequences into an orthologous mouse gene. For mice generated in this way, human enzymes can be produced in a mouse pattern of expression. To create mice in which human enzymes are present in a human pattern of expression, introduction of the entire human gene into the germline of mice, as was done for \(h\text{GSTP1} \), may be required. This last approach relies upon the recognition of human transcriptional regulatory sequences by murine transcription factors, which can direct chromatin assembly and lineage-specific gene expression. For \(h\text{GSTP1}^{+/-} m\text{Gstp1/2}^{-/-} \) mice, the observed patterns of \(h\text{GSTP1} \) expression were most consistent with significant conservation in transcriptional trans-regulation between human and mouse. Finally, for any of the “humanized” transgenic mice producing human enzymes, there is a concern that simultaneous expression of both human and mouse enzymes might interfere generally with metabolic processes. The availability of gene knockout strains, such as \(m\text{Gstp1/2}^{-/-} \) mice, for breeding crosses with mice carrying human transgenes can reduce this worry.

One observation made during the expansion of the \(h\text{GSTP1}^{+/-} m\text{Gstp1/2}^{-/-} \) mouse colony was a general increase in litter size of the \(h\text{GSTP1}^{+/-} m\text{Gstp1/2}^{-/-} \) mice as compared to \(m\text{Gstp1/2}^{-/-} \) mice. The mechanistic basis for this difference has not been established. However, \(\pi \)-class GSTs were originally assigned the “P” (or “\(\pi \)” family designation because the enzymes were first found in the placenta [4]. Perhaps, \(\pi \)-class GSTs provide...
Acetaminophen Toxicity in Humanized GSTP1 Mice

Figure 3: The hGSTP1 transgene in hGSTP1+mGstp1/2−/− mice recapitulates the pattern of methylation seen in normal human cells. Bisulfite genomic sequencing for 5-meC in four amplicons (labeled BiSeq 1–4) from the hGSTP1 CpG island using DNA from various hGSTP1+mGstp1/2−/− mouse tissues (hGSTP1+ liver, prostate, kidney), along with DNA from human white blood cells (normal hGSTP1 5-meC pattern) and Hep3B cells (hypermethylated at hGSTP1 CpG island). Each row represents a summary of multiple independently cloned alleles from each sample as indicated. Circles indicate the relative position of CpG dinucleotides within the bisulfite sequencing amplicon. The color of each circle is scaled to the fraction of alleles methylated for the indicated CpG according to the heatmap shown at the bottom.

doi:10.1371/journal.pone.0025707.g003

some sort of fetal development or survival advantage, whether mouse or human. This advantage may also be manifest in a greater than ∼60% transmission of the hGSTP1 transgene on the mGstp1/2−/− background (the expected frequency is 50%). Aside from the slight increase in litter size and gene transmission, there were no other obvious gross phenotypes in the mGstp1/2−/− mice treated with APAP there

When subjected to APAP overdoses, hGSTP1+mGstp1/2−/− mice responded differently than mGstp1/2+/+ mice. There were also notable differences between the serum ALT levels of male and female mice after administration of acetaminophen. This phenomenon is in agreement with previous reports [25,26] and is likely due to gender-dependent differences in expression of π-class GSTs; female mice have significantly lower expression of GST-π and are resistant to damage [21]. Despite intensive study, the mechanism(s) by which APAP, and APAP metabolism, cause liver injury has not been fully elucidated. Although APAP can be converted by cytochrome P450 enzymes to NAPQI, a reactive intermediate capable of inflicting significant damage, NAPQI can be detoxified by conjugation to GSH [27,28]. The notion that π-class GSTs might afford protection against NAPQI generation from an overdose of APAP was undermined by the finding of a decrease, rather than increase, in liver injury accompanying APAP poisoning in mGstp1/2−/− versus mGstp1/+/+ mice, a phenomenon confirmed by the current study [21]. Remarkably, between mGstp1/2−/− and mGstp1/+/+ mice treated with APAP there were no differences in GSH depletion, though GSH levels recovered more quickly in mGstp1/2−/− mice. In addition, the difference in toxicity could not be attributed to differential expression of enzymes, such as CYP2E1 and other Phase I enzymes, responsible for the metabolism to acetaminophen to NAPQI [21,29]. This π-class GST effect on APAP hepatotoxicity was reflected in the pattern and amount of damage generated by APAP overdose in hGSTP1+mGstp1/2−/− mice, which express little, if any, π-class GSTs in hepatocytes, but exhibit abundant expression in bile duct cells, Kupffer cells, macrophages, and endothelial cells. Taken together, the data strongly suggest that π-class GSTs act to promote liver injury both by intrinsically augmenting hepatocyte death when expressed in hepatocytes, and also by indirectly triggering hepatocyte death when present in other liver cell types. One possibility for the intrinsic mechanism may be the influence of π-class GSTs on intracellular signaling pathways, such as the c-Jun N-terminal kinase (Jnk) pathway typically activated by cellular stress and proinflammatory cytokines [30]. In wild-type mice, APAP has been found to trigger prolonged activation of the Jnk pathway that contributes to hepatocyte death [31]. mGstp1/2−/− mice have been shown to have significantly higher basal levels of Jnk signaling compared wild type mice, but show only modest, if any, increase from this basal signaling after exposure to acetaminophen [29]. π-class GSTs, encoded by genes responsive to AP-1 transcription factors (and thus Jnk signaling), therefore interfere with constitutive Jnk activation, providing an autoregulatory loop that may be perturbed differently in the hepatocytes from mGstp1/2+/+, mGstp1/2−/−, and hGSTP1+mGstp1/2−/− mice subjected to the oxidative stress of APAP overdose, and this may partly underlie the differential levels of acetaminophen toxicity seen in these mice. The mechanism by which π-class GSTs present in bile duct cells, Kupffer cells,
macrophages, and endothelial cells can trigger limited centrilobular necrosis in hepatocytes devoid of the enzyme is less clear. Nonetheless, centrilobular necrosis constitutes a common mode of human liver injury in response to liver toxin exposure. Perhaps, \(hGSTP1 + mGstp1/2^{2/-} \) mice may better model this type of liver response to toxins than wild-type mouse strains which contain high levels of \(p \)-class GSTs in hepatocytes.

Finally, the availability of \(hGSTP1 + mGstp1/2^{2/-} \) mice may permit new studies of carcinogenesis that better recapitulate human cancer development. By comparing responses of \(mGstp1/2^{2+/-} \) and \(Gstp1/2^{2/-} \) mice to chemical carcinogens, \(p \)-class GSTs have been implicated in protection against tumor development in several different organ sites, including the skin, the colon, and the lungs [32,33,34]. For human cancers, the contributions of \(p \)-class GSTs appear to be more complex. During the pathogenesis of some human cancers, such as cancers of the colon, lung, kidney, and stomach, \(hGSTP1 \) has been reported to be expressed at high levels and contribute to anti-neoplastic drug resistance [14,35]. In other human cancers, such as cancers of the prostate, liver, and breast, \(hGSTP1 \) is conspicuously absent [8,16,36]. Absence of \(hGSTP1 \) expression appears mostly attributable to somatic epigenetic silencing attributable to \(de novo \) changes in DNA methylation at a CpG island encompassing the gene promoter. Epigenetic silencing of \(p \)-class GST expression has not been reported for either \(mGstp1/2 \) or for \(rGST-P \). Since \(hGSTP1 \) contains a much higher density of CpG dinucleotides than either of the rodent orthologs, perhaps \(hGSTP1 \) may be more vulnerable than \(mGstp1/2 \) or for \(rGST-P \) to epigenetic silencing during carcinogenesis. This hypothesis can be tested using \(hGSTP1 + mGstp1/2^{2/-} \) mice, which have established both a more human pattern of \(hGSTP1 \) expression in the liver and prostate and a human pattern of \(5^{\text{me}} \)CpG distribution at the \(hGSTP1 \) CpG island.

Materials and Methods

Ethics Statement

Animal Studies. All experimental protocols were approved and performed in accordance with the standards established by the U.S. Animal Welfare Acts, as set forth in the National Institutes of Health guidelines and in the Policy and Procedures Manual of the Johns Hopkins University Animal Care and Use Committee (Approval Numbers MO10M447, MO08M163, MO08M165, MO08M487).

Human Samples. Human tissues and nucleic acids were obtained and used following protocols and guidelines approved by the Johns Hopkins University Institutional Review Board (Study number: NA_00048544). For bisulfite sequencing analysis, human male genomic DNA was obtained from Novagen (Cat # 70572).

Generation of \(hGSTP1 \) transgenic mice

The full length \(hGSTP1 \) gene (-1138 to +3600) was amplified from a bacterial artificial chromosome (BAC) containing sequence from chromosome 11q (accession number AP001184; from

Figure 4. APAP-induced liver injury in male and female wild type, \(mGstp1/2^{2/-} \), and \(hGSTP1 + mGstp1/2^{2/-} \) mice. Serum ALT levels 24 hours after intraperitoneal injection of 300 mg/kg APAP or saline are shown. Compared to \(mGstp1/2^{2/-} \) mice, \(mGstp1/2^{+/+} \) (p<0.04) and \(hGSTP1 + mGstp1/2^{2/-} \) (p<0.03) mice exhibited significantly higher ALT elevations in response to APAP overdose. Data was analyzed by Wilcoxon Rank Sum test. doi:10.1371/journal.pone.0025707.g004
BACPAC Resource Center (BPRC) at Children’s Hospital Oakland Research Institute, Oakland, CA) using \textit{Pfu Ultra} polymerase (Stratagene). A plasmid containing full length \textit{hGSTP1}, along with a plasmid that had the 5'9[ATAAA]n repeat sequences deleted (-78 to $+3600$), were transfected into Hep3B cells, known to be devoid of \textit{hGSTP1} mRNA and \textit{hGSTP1} polypeptides as a result of epigenetic \textit{hGSTP1} silencing, to ensure that the gene was capable of directing expression of catalytically-active \textit{GST\textsubscript{p}} 16.

Transfection was accomplished using Lipofectamine Plus (Invitrogen) in serum free minimal essential medium (MEM). The full length \textit{hGSTP1}-containing construct was then provided to Xenogen (Hopkinton, MA) for pronuclear microinjection and development of the founder mice on a C57BL/6 strain background. To identify \textit{hGSTP1+} progeny, genotyping specifically for \textit{hGSTP1}, even in the presence of wild type mouse DNA, was accomplished by PCR using the forward primer 5'9-AGGCGTGCAGATCACCTAAG-3'9 and the reverse primer 5'9-GCCACATCTGGCTGATTTTT-3'9 with cycling conditions of 95\textdegree C for 3 minutes, 35 cycles of 95\textdegree C for 30 seconds, 59\textdegree C for 30 seconds, and 72\textdegree C for 45 seconds, yielding a 100 base pair product.

Breeding to create \textit{hGSTP1+Gstp1/2−/−} mice

All mice were housed in a pathogen-free environment, allowed free access to food and water, and were maintained on a 12 hour light/dark cycle. \textit{mGstp1/2−/−} that had been extensively backcrossed to C57BL/6 mice were available for breeding crosses with \textit{hGSTP1+} mice. Genotyping for \textit{mGstp1/2+/+} and \textit{mGstp1/2−/−} was performed using the same PCR reaction conditions as for \textit{hGSTP1+}, but with the following primers: \textit{mGstp1/2+/+} forward 5'9-GGCCACCCAACTACTGTGATA-3'9, \textit{mGstp1/2+/+} reverse 5'9-AGAAGGCCAGGTCCTAAAGC-3'9, \textit{mGstp1/2−/−} forward
5′-CTGTAGCGGCTGATGTTGAA -3′, and \textit{mGstp1}/2/\textit{hGstp1} 2′-reverse 5′-XGCGATTACGTTGTGATGT-3′. To assess patterns of \textit{π}-class GST expression and DNA methylation, mice were euthanized in a CO2 chamber according to Johns Hopkins Animal Care and Use Committee (ACUC) guidelines. After sacrifice, tissues were harvested and immediately placed in formalin or snap frozen in liquid nitrogen for further processing.

Assessment of \textit{π}-class GST expression by quantitative RT-PCR, immunoblot analysis, immunohistochemistry, and enzyme activity assay

RNA isolated from various human and mouse tissues was assayed for the expression of specific mRNAs using a QuantiTect Probe RT-PCR Kit (Qiagen, Valencia, CA) and primer sets for \textit{hGSTP1}, \textit{hGAPDH}, \textit{mGstp1}, \textit{mGstp2}, and \textit{mGAPDH} from Applied...

Figure 6. Acetaminophen-induced hepatic injury in male wildtype, \textit{mGstp1}/2/\textit{hGstp1} 2′/2′, and \textit{hGSTP1}+\textit{mGstp1}/2/\textit{hGstp1} 2′/2′ mice. Baseline serum measurements were taken prior to administration of the drug. Mice were fasted for 12 or 24 hours and then administered vehicle or 300 mg/kg acetaminophen via gavage. (A) Serum AST, ALT, ALP and total bilirubin measurements taken in serum collected at 4, 24, and 48 hours. (B) Serum measurements of AST and ALT at 24 hours after acetaminophen administration. N = 5 mice per group * = p<0.05 by Students t-test.

doi:10.1371/journal.pone.0025707.g006
Biosystems (Foster City, CA). CpG-class GST subunit polypeptide expression was detected in protein lysates from cells and tissues by immunoblot analysis with anti-GSTp antibodies as previously described [8]; GST activity in the lysates was monitored using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate, with recombinant human GSTp (Calbiochem) as a positive control [37]. Human and mouse tissues were evaluated for patterns of CpG-class GST expression via immunohistochemical staining of formalin-fixed, paraffin embedded, tissue sections. Briefly, the sections were deparaffinized by rinsing in xylene and then in a gradient of ethanol (100%–70%) until clear; antigen retrieval was accomplished by citrate steaming for 20 minutes. After incubating for 5 minutes in hydrogen peroxide and rinsed, the slides were probed with anti-GSTp antibody (Stressgen, Ann Arbor, MI) at a 1:1500 dilution, overnight at 4°C. Antibody binding was revealed using a horseradish peroxidase-conjugated secondary antibody (Dako, Denmark) applied to tissue sections for 30 minutes. For color generation and counterstaining, slides were first incubated in diaminobenzidine (Sigma), and then in hematoxylin (Dako).

Bisulfite genomic sequencing for assessment of hGSTP1 CpG island methylation

Sequence mapping of 5′-C bases at the hGSTP1 CpG island was undertaken using bisulfite conversion methods and PCR primers for four amplicons as described by Millar et al. [22].

Toxicology analyses. Mice were administered acetaminophen (N-acetyl-p-aminophenol; APAP; Sigma) via intraperitoneal (IP) injection or via oral gavage. APAP was used at a concentration of 300 mg/kg in phosphate buffered saline (PBS) and injections were undertaken using mice that were fasted for 12 hours prior to injection. Acetaminophen dosage was selected based on previous reports of hepatotoxicity in mice [21,38]. To assess the injurious effects of APAP on liver histology and function, serum was collected from mice via submandibular venipuncture or cardiac puncture (at terminal timepoints). Serum samples were taken at 4, 24, and 48 hours after gavage. Mice were sacrificed via cardiac puncture/exanguination following administration of 14 mg Aveitin (20 mg/ml, Sigma) or via CO2 asphyxiation. The blood was collected in BD Microtainer SST tubes (BD, Franklin Lakes, NJ), allowed to clot for at least 1 hour at room temperature, and then centrifuged at 16,000×g for 2 minutes at 4°C to allow separation of serum. Serum specimens were assayed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin levels using VetAcce (Alfa Wassermann, West Caldwell, NJ). For histopathology, dissected liver tissues were fixed in buffered formalin, embedded in paraffin, and then processed for tissue section staining with hematoxylin and cosin.

Author Contributions

Conceived and designed the experiments: MV DBS SY WN. Performed the experiments: MV DBS NG JH GN ADM JS ZR BK-A. Analyzed the data: MV DBS GN ADM SY WN. Contributed reagents/materials/analysis tools: CH CW. Wrote the paper: MV DBS GN ADM CH CW SY WN.

References

1. Mannevick B, Avashti YC, Board PG, Hayes JD, Di Gio C, et al. (1992) Nomenclature for human glutathione transferases. Biochem J 283(Pt 1): 395–396.
2. Mannevick B, Board PG, Hayes JD, Lisitsovka I, Pearson WR (2005) Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401: 1–8.
3. Ishikawa T (1999) ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17: 463–468.
4. Sato K, Kitahara A, Satoh K, Ishikawa T, Tatematsu M, et al. (1984) The placental form of glutathione S-transferase as a new marker protein for preneoplasia in rat chemical hepatocarcinogenesis. Gann 75: 199–202.
5. Eaton DL, Bannmler TK (1994) Concise review of the glutathione S-transferases and their significance to toxocology. Toxicol Sci 49: 156–164.
6. Moffat GJ, McLaren AW, Wolf CR (1994) Involvement of Jun and Fos proteins in regulating transcriptional activation of the human pi class glutathione S-transferase gene in multidrug-resistant MCF7 breast cancer cells. J Biol Chem 269: 16397–16402.
7. Moffat GJ, McLaren AW, Wolf CR (1996) Sp1-mediated transcriptional activation of the human Pi class glutathione S-transferase promoter. J Biol Chem 271: 1054–1060.
8. Lee WH, Morton RA, Epstein JJ, Brooks JD, Campbell PA, et al. (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A 91: 11733–11737.
9. Nelson WG, De Marzo AM, Vegaenahraman S (2009) Epigenetic alterations in human prostate cancers. Endocrinology 150: 3991–4002.
10. Kitahara A, Satoh K, Nishimura K, Ishikawa T, Ruike K, et al. (1984) Changes in the protein content of liver and serum enzymes in the early stages of chemical hepatocarcinogenesis. Carcinogenesis 11: 451–458.
28. Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89: 31–41.

29. Elsby R, Kitteringham NR, Goldring CE, Lovatt CA, Chamberlain M, et al. (2003) Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 278: 22243–22249.

30. Adler V, Yin Z, Fuchs SY, Benezza M, Rosario L, et al. (1999) Regulation of JNK signaling by GSTp. Embo J 18: 1321–1334.

31. Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, et al. (2006) c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 131: 165–178.

32. Henderson CJ, Smith AG, Ure J, Brown K, Bacon EJ, et al. (1998) Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci U S A 95: 5275–5280.

33. Ritchie KJ, Henderson CJ, Wang XJ, Vassieva O, Carrie D, et al. (2007) Glutathione transferase pi plays a critical role in the development of lung carcinogenesis following exposure to tobacco-related carcinogens and urethane. Cancer Res 67: 9248–9257.

34. Ritchie KJ, Walsh S, Sansom OJ, Henderson CJ, Wolf CR (2009) Markedly enhanced colon tumorigenesis in ApcMin mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci U S A.

35. Volm M, Mattern J, Samsel B (1991) Overexpression of P-glycoprotein and glutathione S-transferase-pi in resistant non-small cell lung carcinomas of smokers. Br J Cancer 64: 709–704.

36. Esteller M, Corn PG, Urrutia JM, Gabrielon E, Baylin SB, et al. (1998) Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res 58: 4315–4318.

37. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130–7139.

38. Henderson NC, Pollock KJ, Frew J, Mackinnon AC, Flavell RA, et al. (2007) Critical role of c-jun (NH2) terminal kinase in paracetamol-induced acute liver failure. Gut 56: 982–990.