Unraveling the Mechanism of the IrIII-Catalyzed Regiospecific Synthesis of α-Chlorocarbonyl Compounds from Allylic Alcohols

Man Li, Amparo Sanz-Marco, Samuel Martinez-Erro, Víctor García-Vázquez, Binh Khanh Mai, Jacob Fernández-Gallardo, Fahmi Himo,* and Belén Martín-Matute*[^a]
Table of contents

S2 General Information
S2 Synthesis and characterization of allylic alcohols
S2 General procedure for the isomerization of allylic alcohols
S3 Characterization data for ketones 2e-2f
S4 General procedure for the isomerization / chlorination of allylic alcohols
S4 Characterization data for α-chloroketones 3a-3e
S5 Kinetic isotope effect studies
S8 Deuterium labeling cross-over studies for the isomerization of allylic alcohols
S11 1H and 13C NMR spectra of allylic alcohol 1g-d
S12 1H and 13C NMR spectra of ketones 2e-2f
S16 1H and 13C NMR spectra of α-chloroketones 3a-3e
S20 1H and 13C NMR spectra of deuterium labeling cross-over studies
S24 DFT studies
S24 Reaction profile of the Ir(III) catalyzed isomerization and isomerization-chlorination of allylic alcohol 1b
S26 Reaction profile of the Ir(III) catalyzed isomerization and isomerization-chlorination of allylic alcohol 1e in acetone
S28 Additional results for the Ir(III) catalyzed isomerization and isomerization-chlorination of allylic alcohol 1e in mixture solvent
S30 Calculated absolute energies and energy corrections
S32 Cartesian coordinates
S76 Reference
General information

All reagents were used as obtained from commercial sources without further purification. Flash chromatography was performed with 60 Å (35-70 µm) silica gel (GC 60A 35-70 Micron, DAVISIL) using mixtures pentane / EtOAc as eluent. Analytical TLC was performed on aluminum plates pre-coated with silica gel (Merck, Silica Gel 60 F254). Compounds were detected by exposure to UV light or by revealing the plates in a solution of 5% KMnO₄ in water. ¹H and ¹³C NMR spectra were recorded at 400 or 500 MHz and 100 or 125 MHz respectively on Bruker Advance spectrometers. Chemical shifts (δ) are shown in ppm, using the residual peaks of CH(D)Cl₃ (δH 7.26 and δC 77.00) as reference. Coupling constants (J) are given in Hz. High-resolution mass spectra (HRMS) were recorded on Bruker microTOF ESI-TOF mass spectrometer.

Synthesis and characterization of allylic alcohols

Allylic alcohols 1a,¹ 1a-d,¹ 1b,¹ 1b-d,¹ 1e,¹ 1e-d,² 1f,¹ 1f-d,³ 1g⁴ were synthesized according to literature procedures.

(‡E)⁴-(4-Methoxyphenyl)but-3-en-2-ol (1g-d₁)

To a stirred solution of (‡E)-4-(4-methoxyphenyl)but-3-en-2-one (10 mmol, 1.76 g) and CeCl₃ x 7H₂O (10 mmol, 3.65 g) in MeOH (50 mL), NaBD₄ (10 mmol, 0.42 g) was added at 0 °C. The reaction was stirred until TLC analysis showed no starting material left. After addition of an aqueous solution of NH₄Cl (sat., 10 mL), MeOH was evaporated and the allylic alcohol was extracted with EtOAc (3 x 15 mL), washed with brine, dried over MgSO₄, filtered and evaporated. Purification by column chromatography (SiO₂; petroleum ether / EtOAc, 9:1) afforded 1g-d₁ as a white solid (1.27 g, 71 %, 96% D).

¹H NMR (400 MHz, CDCl₃) δ 7.31–7.28 (m, 2H), 6.86–6.83 (m, 2H), 6.49 (d, J = 15.9 Hz, 1H), 6.11 (d, J = 15.9 Hz, 1H), 3.70 (s, 3H), 1.35 (s, 3H) ppm.

¹³C NMR (100 MHz, CDCl₃) δ 159.3, 131.5, 129.5, 129.0, 127.7, 114.1, 68.6 (t, Jₐₓₓ = 21.9 Hz), 55.3, 23.4 ppm.

HRMS (ESI): m/z calcd for C₁₁H₁₃O₂D⁺Na⁺: 202.0949 [M+Na⁺]; found: 202.0952.

General procedure for the isomerization of allylic alcohols

To a solution of the allylic alcohol 1 (0.2 mmol, 1 equiv.) in a mixture of acetone and H₂O (2:1, 0.1 M), [Cp*IrCl₂]: (4 mg, 2.5 mol%) was added. The resulting mixture was stirred at room temperature and monitored by TLC. When the reaction was completed, EtOAc (10 mL) and H₂O (10 mL) were added to the mixture and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO₄, filtered and the solvent was removed under reduce pressure. The crude was purified by flash chromatography affording the corresponding carbonyl compound 2.
Characterization data for ketones 2e-2f

Deuterium-propiophenone (2e-d₁)

The title compound was prepared according to general procedure from allylic alcohol 1e-d₁ (94% D) (27 mg). The reaction was stirred 3 h at room temperature. Purification by column chromatography (SiO₂; Petroleum ether / EtOAc = 10:1) afforded 2e-d₁ (94% D) as a colorless oil (16 mg, 62%). Deuterium content was determined to 40% in Cβ and 54% in Cα.

1H NMR (400 MHz, CDCl₃) δ 7.99–7.94 (m, 2H), 7.58–7.53 (m, 1H), 7.49–7.44 (m, 2H), 3.03–2.95 (m, 1.46H), 1.24–1.19 (m, 2.59H) ppm.

13C NMR (100 MHz, CDCl₃) δ 201.0, 137.1, 133.0, 128.7, 128.1, 31.9, 31.8 (t, 1J_C,D = 19.2 Hz, product with deuterium in Cα), 8.3, 8.14 (t, 1J_C,D = 19.9 Hz, product with deuterium in Cβ) ppm.

HRMS (ESI): m/z calcd for C₁₀H₉OD+Na⁺: 158.0687 [M+Na⁺]; found: 158.0687.

The title compound was also prepared according to general procedure using acetone and D₂O (2:1, 0.1 M) instead of acetone and H₂O (2:1, 0.1 M) from allylic alcohol 1e (27 mg). The reaction was stirred 3 h at room temperature. Purification by column chromatography (SiO₂; Petroleum ether / EtOAc = 10:1) afforded 2e-d₁ (84% D) as a colorless oil (15 mg, 57%). Deuterium content was determined to 84% in Cα.

1H NMR (400 MHz, CDCl₃) δ 7.98–7.94 (m, 2H), 7.57–7.54 (m, 1H), 7.48–7.44 (m, 2H), 3.04–2.95 (m, 1.16H), 1.25–1.21 (m, 3H) ppm.

13C NMR (100 MHz, CDCl₃) δ 201.1, 137.1, 133.0, 128.7, 128.1, 31.9, 31.6 (t, 1J_C,D = 19.3 Hz, product with deuterium in Cα), 8.3 ppm.

Deuterium-1-phenylpentan-3-one (2f-d₁)

The title compound was prepared according to general procedure from allylic alcohol 1f-d₁ (99% D) (33 mg). The reaction was stirred 3 h at room temperature. Purification by column chromatography (SiO₂; Petroleum ether / EtOAc = 10:1) afforded 2f-d₁ (99% D) as a colorless oil (31 mg, 99%). Deuterium content was determined to 43% in Cβ and 56% in Cα.

1H NMR (400 MHz, CDCl₃) δ 7.30–7.26 (m, 2H), 7.21–7.17 (m, 3H), 2.92–2.89 (m, 2H), 2.75–2.17 (m, 2H), 2.42–2.37 (m, 1.44H), 1.05–1.01 (m, 2.57H) ppm.

13C NMR (100 MHz, CDCl₃, mixture of products with deuterium in Cα or Cβ) δ 210.9, 210.8, 141.3, 128.6, 128.4, 126.2, 44.02, 44.01, 36.2, 35.9 (t, 1J_C,D = 19.2 Hz, product with deuterium in Cα), 29.99, 29.97, 7.83, 7.73 (t, 1J_C,D = 19.9 Hz, product with deuterium in Cβ) ppm.

HRMS (ESI): m/z calcd for C₁₁H₁₃OD+Na⁺: 186.1000 [M+Na⁺]; found: 186.0992.
General procedure for the isomerization / chlorination of allylic alcohols

To a solution of the allylic alcohol 1 (0.2 mmol, 1 equiv.) and N-chlorosuccinimide (32 mg, 0.24 mmol, 1.2 equiv.) in a mixture of acetone and H$_2$O (2:1, 0.1 M), [Cp*IrCl$_2$]$_2$ (4 mg, 2.5 mol%) was added. The resulting mixture was stirred at room temperature and monitored by TLC. When the reaction was completed, EtOAc (10 mL) and H$_2$O (10 mL) were added to the mixture and the aqueous layer was extracted with EtOAc (3 x 5 mL). The combined organic layers were dried over MgSO$_4$, filtered and the solvent was removed under reduce pressure. The crude was purified by flash chromatography affording the corresponding α-chlorocarbonyl compound.

Characterization data for α-chloroketones 3a-3e

4-Deuterium-3-chloro-4-phenylbutan-2-one (3a-d$_1$)

![Image of 4-Deuterium-3-chloro-4-phenylbutan-2-one (3a-d$_1$)](image)

The title compound was prepared according to general procedure from allylic alcohol 1a-d$_1$ (96% D) (36 mg). The reaction was stirred 18 h at room temperature. Purification by column chromatography (SiO$_2$; Petroleum ether / EtOAc = 10:1) afforded 3a-d$_1$ (94% D) as a colorless oil (33 mg, 91%). Deuterium content was determined to 94% in Cβ.

1H NMR (400 MHz, CDCl$_3$, mixture of 2 diastereomers (1:1)) δ 7.34–7.21 (m, 5H), 4.40 (d, $J = 7.9$ Hz, 1H), 3.32 (dt, $J = 6.2$, 2.1 Hz, 0.53H), 3.07 (dt, $J = 8.0$, 2.1 Hz, 0.53H), 2.29 (s, 3H), 2.28 (s, 3H) ppm.

13C NMR (100 MHz, CDCl$_3$, mixture of 2 diastereomers (1:1)) δ 202.8, 136.3, 129.5, 128.8, 127.4, 63.88, 63.86, 39.5 (t, $^1J_{C,D} = 19.9$ Hz), 39.4 (t, $^1J_{C,D} = 20.4$ Hz), 27.0 ppm.

1H and 13C NMR spectras were in agreement with those reported in the literature.5

Deuterium-3-chlorooctan-2-one (3b-d$_1$)

![Image of Deuterium-3-chlorooctan-2-one (3b-d$_1$)](image)

The title compound was prepared according to general procedure from allylic alcohol 1b-d$_1$ (92% D) (33 mg). The reaction was stirred 18 h at room temperature. Purification by column chromatography (SiO$_2$; Petroleum ether / EtOAc = 10:1) afforded 3b-d$_1$ (82% D) as a colorless oil (18 mg, 57%). Deuterium content was determined to 63% in Cβ and 19% in Cα.

1H NMR (400 MHz, CDCl$_3$) δ 4.17 (d, $J = 8.2$ Hz, 0.81H), 2.31 (s, 3H), 1.94–1.78 (m, 1.37H), 1.34–1.30 (m, 6H), 0.91–0.88 (m, 3H) ppm.

13C NMR (100 MHz, CDCl$_3$, mixture of 2 diastereomers (1:1)) δ 204.4, 203.8, 64.4, 64.3 (t, $^1J_{C,D} = 17.2$ Hz, product with deuterium in Cα), 33.8, 33.6 (t, $^1J_{C,D} = 20.0$ Hz, product with deuterium in Cβ), 33.6 (t, $^1J_{C,D} = 19.4$ Hz, product with deuterium in Cβ), 31.24, 31.22, 29.9, 29.8, 26.1, 26.0, 25.8, 25.7, 22.5 ppm.

HRMS (ESI): m/z calcd for C$_8$H$_{14}$OD$_{35}$Cl+Na$: 186.0766 [M+Na]$^+$; found: 186.0762.
4-Deuterium-3-chloro-4-(4-methoxyphenyl)butan-2-one (3g–di)

The title compound was prepared according to general procedure from allylic alcohol 1g–di (96% D) (36 mg). The reaction was stirred 18 h at room temperature. Purification by column chromatography (SiO₂; Petroleum ether / EtOAc = 9:1) afforded 3g–di (96% D) as a colorless oil (35 mg, 98%). Deuterium content was determined to 96% in Cβ.

1H NMR (400 MHz, CDCl₃; mixture of 2 diastereomers (1:1)) δ 7.15–7.11 (m, 2H), 6.87–6.83 (m, 2H), 4.36–4.34 (m, 1H), 3.79 (s, 3H), 3.26–3.24 (m, 0.52H), 3.03–3.01 (m, 0.52H), 2.27 (s, 3H), 2.27 (s, 3H) ppm.

13C NMR (100 MHz, CDCl₃; mixture of 2 diastereomers (1:1)) δ 203.0, 158.9, 130.5, 128.2, 114.2, 64.09, 64.07, 55.4, 39.2, 38.88 (t, 1J_{C,D} = 20 Hz), 38.85 (t, 1J_{C,D} = 20.0 Hz), 27.02, 27.01 ppm. HRMS (ESI): m/z calced for C₁₁H₁₂O⁺ClD+Na⁺: 236.0559 [M+Na⁺]; found: 236.0554.

Deuterium-2-chloro-1-phenylpropan-1-one (3e–di)

The title compound was prepared according to general procedure from allylic alcohol 1e–di (94% D) (34 mg). The reaction was stirred 18 h at room temperature. Purification by column chromatography (SiO₂; Petroleum ether / EtOAc = 10:1) afforded 3e–di (92% D) as a colorless oil (30 mg, 88%). Deuterium content was determined to 31% in Cβ and 61% in Cα.

1H NMR (400 MHz, CDCl₃) δ 8.06–8.03 (m, 2H), 7.65–7.61 (m, 1H), 7.54–7.50 (m, 2H), 5.29–5.26 (m, 0.39H), 1.77–1.75 (m, 2.69H) ppm.

13C NMR (100 MHz, CDCl₃) δ 193.8, 134.3, 133.9, 129.1, 128.9, 52.9, 52.6 (t, 1J_{C,D} = 23 Hz, product with deuterium in Cα), 20.0, 19.9 (t, 1J_{C,D} = 20.0 Hz, product with deuterium in Cβ) ppm.

Kinetic isotope effect studies

Isomerization

[1e–di] and [1e]

Two parallel reactions, one with 1-phenylprop-2-en-1-ol (1e) and another with 1-phenylprop-2-en-1-d₁-1-ol (94% D, 1e–di), were carried out. Allylic alcohol 1e or 1e–di (0.1 mmol) and [Cp*IrCl₂]₂ (2.5 mol%, 2 mg) were dissolved in Acetone-d₆ / D₂O (2:1) (0.1 M, 1.0 mL) in a capped vial. The solution was transferred into an NMR tube and the tube was transferred to the NMR spectrometer. Signals from the aromatic protons of the product were used to monitor the formation of propiophenone (2e). 1H NMR spectra were recorded every 3 min. Each experiment was performed by duplicate. The average of the initial rate plots for the experiments with each allylic alcohol (1e, 1e–di) are given in Figure S1. A KIE of 1.66 ± 0.11 was obtained.
Isomerization / chlorination

[1e-d1] and [1e]

Ten parallel reactions, five with 1-phenylprop-2-en-1-ol (1e) and other five with 1-phenylprop-2-en-1-d-1-ol (94% D, 1e-d1), were carried out. Allylic alcohol 1e or 1e-d1 (0.1 mmol), NCS (16 mg, 0.12 mmol) and [Cp*IrCl₂]₂ (2.5 mol%, 2 mg) were dissolved in Acetone / H₂O (2:1) (0.1 M, 1.0 mL) in a capped vial. The reactions were quenched at 30 seconds, 1 min, 1.30 min, 2 min and 2.30 min. Signals from the aromatic protons of the product were used to monitor the formation of 2-chloro-1-phenylpropan-1-one (3e). Each experiment was performed by duplicate. The average of the initial rate plots for the experiments with each allylic alcohol (1e, 1e-d1) are given in Figure S2. A KIE of 0.88 ± 0.01 was obtained.
Figure S3. Kinetic profile of the Ir(III) catalyzed isomerization / chlorination of 1e.

[1g-d1] and [1g]

Two parallel reactions, one with (E)-4-(4-methoxyphenyl)but-3-en-2-ol (1g) and another with (E)-4-(4-methoxyphenyl)but-3-en-2-d-2-ol (96% D, 1g-d1), were carried out. Allylic alcohol 1g or 1g-d1 (0.1 mmol) and [Cp*IrCl2]2 (2.5 mol%, 2 mg) were dissolved in Acetone-d6 / D2O (2:1) (0.1 M, 1.0 mL) in a capped vial. The solution was transferred into an NMR tube and the tube was transferred to the NMR spectrometer. Signals from the aromatic protons of the product were used to monitor the formation of propiophenone (2g). 1H NMR spectra were recorded every 3 min. Each experiment was performed by duplicate. The average of the initial rate plots for the experiments with each allylic alcohol (1g, 1g-d1) are given in Figure S4. A KIE of 1.62 ± 0.12 was obtained.

Figure S4. Kinetic isotope effect of the Ir(III) catalyzed isomerization / chlorination of 1g.
Deuterium labeling cross-over studies for the isomerization of allylic alcohols

Deuterium labeling cross-over studies for the isomerization of allylic alcohols with 1,2-disubstituted double bonds (Scheme S1) were described in our previous work.\(^1\)

![Scheme S1](image)

Scheme S1. Cross-over experiments previously reported

\([1a-d_1] \text{ and } [1g]\)

Allylic alcohols \([1a-d_1]\) (0.1 mmol, 15 mg, 96\%D) and \([1g]\) (0.1 mmol, 18 mg) were dissolved in the same flask in a mixture of acetone and water (2:1, 0.1 M). \([\text{Cp}^*\text{IrCl}_2\text{]}_2\) (4.0 mg, 2.5 mol\%) was added, the reaction was stirred for 3 h until TLC indicated no starting material was remaining. When the reaction was completed, EtOAc (10 mL) and H\(_2\)O (10 mL) were added to the mixture and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layers were dried over MgSO\(_4\), filtered and the solvent was removed under reduced pressure. Purification by column chromatography (SiO\(_2\); Petroleum ether / EtOAc 10:1) afforded 2a-d\(_1\) as a colorless oil (13 mg, 84\%) and 2g as a white solid (15 mg, 86\%). No deuterium scrambling between the two substrates was observed.

![Scheme S2](image)

Scheme S2. Cross-over experiments of 1g and 1a-d\(_1\)
4-Deuterium-4-phenylbutan-2-one (2a-d1)

Deuterium content was determined to 96% in Cβ.

1H NMR (400 MHz, CDCl$_3$) δ 7.30–7.26 (m, 2H), 7.21–7.17 (m, 3H), 2.91–2.86 (m, 1.04H), 2.78–2.75 (m, 2H), 2.14 (s, 3H) ppm.

13C NMR (100 MHz, CDCl$_3$) δ 208.1, 141.1, 128.7, 128.4, 126.3, 45.3, 30.2, 29.6 (t, 1J$_{CD}$ = 19.7 Hz,) ppm. 1H and 13C NMR spectra were in agreement with those reported in the literature.

4-(4-Methoxyphenyl)butan-2-one (2g)

1H NMR (400 MHz, CDCl$_3$) δ 7.11–7.08 (m, 2H), 6.84–6.81 (m, 2H), 3.78 (s, 3H), 2.86–2.82 (m, 2H), 2.74–2.70 (m, 2H), 2.13 (s, 3H) ppm.

13C NMR (100 MHz, CDCl$_3$) δ 208.3, 158.1, 133.2, 129.4, 114.0, 55.4, 45.6, 30.2, 29.0 ppm.

HRMS (ESI): m/z calcld for C$_{11}$H$_{14}$O$_2$+Na$: 201.0886 [M+Na]$^+$; found: 201.0881.

[1e-d1] and [1h]

Allylic alcohols [1e-d1] (0.1 mmol, 14 mg, 94%D) and [1g] (0.1 mmol, 17 mg) were dissolved in the same flask in a mixture of acetone and water (2:1, 0.1 M). [Cp*IrCl$_2$]$_2$ (4.0 mg, 2.5 mol%) was added, the reaction was stirred for 3 h until TLC indicated no starting material was remaining. When the reaction was completed, EtOAc (10 mL) and H$_2$O (10 mL) were added to the mixture and the aqueous layer was extracted with EtOAc (3 x 5 mL). The combined organic layers were dried over MgSO$_4$, filtered and the solvent was removed under reduced pressure. Purification by column chromatography (SiO$_2$; Petroleum ether / EtOAc 10:1) afforded 2e-d1 as a colorless oil (7 mg, 50%) and 2h as a white solid (12 mg, 73%). No deuterium scrambling between the two substrates was observed.

Scheme S3. Cross-over experiments of 1h and 1e-d1
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.97–7.93 (m, 2H), 6.95–6.91 (m, 2H), 3.86 (s, 3H), 2.95 (q, \(J = 7.3\) Hz, 2H), 1.21 (t, \(J = 7.3\) Hz, 3H) ppm.
\(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 199.6, 163.4, 130.4, 130.2, 113.8, 65.6, 31.6, 8.6 ppm. \(^1\)H and \(^1\)C NMR spectra were in agreement with those reported in the literature.\(^1\)

Deuterium-propiophenone (2e-\(d_i\))

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.99–7.96 (m, 2H), 7.58–7.53 (m, 1H), 7.48–7.44 (m, 2H), 3.04–2.95 (m, 1.45H), 1.24–1.19 (m, 2.64H) ppm.
\(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 201.1, 137.1, 133.0, 128.7, 128.1, 31.9, 31.8 (t, \(^1J_{C,D} = 19.2\) Hz, product with deuterium in C\(\alpha\)), 8.3, 8.14 (t, \(^1J_{C,D} = 19.9\) Hz, product with deuterium in C\(\beta\)) ppm.
1H and 13C NMR spectra of allylic alcohol 1g-d_1

(E)-4-(4-Methoxyphenyl)but-3-en-2-d_2-2-ol (1g-d_1)
1H and 13C NMR spectra of ketones 2e-2f

Deuterium-propiophenone (2e-d$_1$)
Deuterium-propiophenone (2e-d₁) when Acetone / D₂O (2:1) is used as solvent
Deuterium-1-phenylpentan-3-one (2f-\textit{d}_1)
1H and 13C NMR spectra of α-chloroketones 3a-3e

4-Deuterium-3-chloro-4-phenylbutan-2-one (3a-d_1)
Deuterium-3-chlorooctan-2-one (3b-\textit{d}_1)
4-Deuterium-3-chloro-4-(4-methoxyphenyl)butan-2-one (3g-d$_1$)
Deuterium-2-chloro-1-phenylpropan-1-one (3e-d_1)
1H and 13C NMR spectra of deuterium labeling cross-over studies
4-Deuterium-4-phenylbutan-2-one (2a-d_1)

\[
\begin{array}{c}
\text{H/D} \\
\text{O} \\
\hline
\end{array}
\]
4-(4-Methoxyphenyl)butan-2-one (2g)
1-(4-Methoxyphenyl)propan-1-one (2h)
Deuterium-propiophenone (2e-d_1)
DFT studies

Reaction profile of the Ir(III) catalyzed isomerization and isomerization-chlorination of allylic alcohol 1b

The mechanism of the Ir-catalyzed isomerization and isomerization-chlorination of 1,2-disubstituted allylic alcohol 1b was also investigated by DFT calculations. The calculated Gibbs energy profile is depicted in Figure S5 and the corresponding optimized structures are given in Figure S6.

Figure S5. Calculated Gibbs energy profile (kcal/mol) for the Ir-catalyzed isomerization and isomerization-chlorination of the 1,2-disubstituted allylic alcohol 1b.
Figure S6. Optimized transition state structures for the Ir-catalyzed isomerization and isomerization-chlorination of the 1,2-disubstituted allylic alcohol 1b. Most hydrogen atoms are omitted for clarity.
Reaction profile of the Ir(III) catalyzed isomerization and isomerization-chlorination of allylic alcohol 1e in acetone

The iridium-catalyzed isomerization and isomerization-chlorination of 1e were also investigated in pure acetone solvent. The obtained mechanism is summarized in Scheme S4 and the calculated Gibbs energy profile is given in Figure S7. Additional results are shown in Figures S8.

Scheme S4. Catalytic cycle for iridium-catalyzed isomerization and isomerization-chlorination of 1e in acetone.
Figure S7. Calculated Gibbs energy profile (kcal/mol) for the iridium-catalyzed isomerization and isomerization-chlorination of 1e in acetone.
Figure S8. Calculated Gibbs energy profiles (kcal/mol) for the tautomerization (TS\textsubscript{7\textsubscript{PA}}) and chlorination (TS\textsubscript{7-Cl\textsubscript{PA}}) of enol with the presence of acid.

Additional results for the reaction profile of the Ir(III) catalyzed isomerization and isomerization-chlorination of allylic alcohol 1e in mixture solvent

Figure S9. Calculated results of the transition states for the β-hydride elimination (red line) for 1e in mixed solvent.
Figure S10. Other related transition states.

Figure S11. Calculated results of the solvent molecule bound Ir complexes.

Note that 1b-TS6a, TS7-ClPA, and TS7-2 are marked with an asterisk (*) in Figures S5, S8, and S10. These geometries have one additional imaginary frequency each (<11 cm⁻¹). Many attempts were made to eliminate these frequencies without success. It was therefore replaced by a real frequency of the same magnitude in the RRHO calculations. Experience of similar cases shows that the error bar of this treatment rather small.
Calculated absolute energies and energy corrections.

Stationary point	Thermal correction to Gibbs free energy at 298.15 K (a.u.)	Solvation energy (1,2-ethanediol) (a.u.)	Solvation energy (acetone) (a.u.)	Single-point energy B3LYP-D3(BJ)/6-311+G(2d,2p)-LanL2TZ (a.u.)
Int0	0.177731	-0.031727	-0.03876685	-1415.56924
1e	0.131289	-0.0073282	-0.012747807	-424.34247
Int1	0.338296	-0.0263049	-0.03719252	-1839.94537
Int1a	0.333866	-0.0273437	-0.03642263	-1839.93684
TS1	0.330577	-0.0438554	-0.04918539	-1839.9095
Cl	-0.015023	-0.1082721	-0.106616512	-460.303727
Int2	0.337494	-0.0927755	-	-1379.44856
Int2-1	0.332171	-	-0.045825	-1839.91606
Int2-2	0.323789	-0.03038793	-	-1379.047812
TS2	0.340167	-0.0903728	-	-1379.44352
TS2-1	0.332064	-	-0.05117642	-1839.9063
Int3	0.342751	-0.0862779	-0.08915502	-1379.4596
TS3	0.335945	-0.0831679	-0.09121115	-1379.44021
TS3-1	0.331783	-0.08479065	-	-1379.40993
TS3-2	0.318755	-0.02925298	-	-1379.02081
Int4	0.33688	-0.0794104	-0.08850632	-1379.45133
Int5	0.324282	-0.024881	-0.03652413	-1379.0701
TS4	0.326127	-0.0231173	-0.03525848	-1379.05332
Int6	0.327014	-0.0156046	-0.02680351	-1379.08527
TS5	0.32527	-0.0190275	-0.02952035	-1379.07031
TS5'	0.321455	-0.024159	-0.0373598	-1379.04478
Int7	0.326234	-0.0239193	-0.03406303	-1379.08384
Int7'	0.326073	-0.0193528	-0.03001527	-1379.07936
Int8	0.338243	-0.0884587	-	-1379.47075
Int8'	0.334822	-0.0856912	-	-1379.44206
enol-2e	0.131419	-0.006742	-0.013395438	-424.357489
TS6	0.322564	-0.0330413	-	-1379.05688
HCl	-0.011159	-	-0.005837941	-460.8368445
TS6-1	0.336929	-	-0.04697915	-1839.932292
Int7a	0.326914	-0.0326893	-	-1379.06791
Int8a	0.335464	-0.0929712	-	-1379.45777
TS7	0.430585	-0.01161317	-0.02710323	-1273.047926
TS7'	0.328942	-0.088525	-	-1379.42921
Reaction	E (kcal/mol)	T (K)	ΔS (kcal/mol K)	ΔH (kcal/mol)
--------------	--------------	-------	----------------	---------------
TS7-1'	0.327128	-	-0.05685025	-1839.889585
TS7a	0.642132	-0.0875532	-	-2228.18383
TS7-1	0.169848	-0.016515089	-	-577.2706145
TS7-2	0.64382	-0.0808438	-	-2228.15455
Int8-1'	0.336155	-	-0.09185151	-1379.482518
NCS	0.049112	-0.010068983	-0.018253663	-820.3831089
NCS_H	0.062016	-0.0146046	-0.017817015	-360.795937
TS7-Cl1	0.358597	-0.0196575	-0.03531431	-1669.11239
TS7-Cl1-1	0.224604	-0.0195048	-	-1321.22719
PA	0.165153	-	-0.02135876	-1106.580747
TS7_PA	0.313697	-	-0.02781981	-1530.952029
TS7-ClPA	0.390505	-	-0.03887871	-2351.369655
2e	0.132112	-0.0058937	-0.013518894	-424.37639
3e	0.121325	-0.0072839	-0.015760102	-884.002559
1b	0.18875	-0.008058832	-	-389.8624591
1b-Int1	0.393213	-0.02640865	-	-1805.459418
1b-TS1	0.389646	-0.03892499	-	-1805.435741
1b-Int2	0.398849	-0.0843768	-	-1344.983328
1b-TS2	0.394592	-0.08647104	-	-1344.964158
1b-Int3	0.39566	-0.08529072	-	-1344.969341
1b-Int4	0.38219	-0.01854475	-	-1344.593817
1b-TS3	0.385288	-0.01816271	-	-1344.575368
1b-Int5	0.383752	-0.01642682	-	-1344.600569
1b-TS4	0.381414	-0.01904003	-	-1344.585082
1b-Int6	0.381735	-0.02329859	-	-1344.594461
1b-TS4'	0.379243	-0.01863777	-	-1344.56746
1b-Int6'	0.38348	-0.01773765	-	-1344.59491
1b-Int7	0.395099	-0.08990164	-	-1344.981989
1b-Int7'	0.391609	-0.08471962	-	-1344.954925
enol-2b	0.187666	-0.005755112	-	-389.8725094
1b-TS5	0.378673	-0.03154026	-	-1344.569849
1b-Int6a	0.380522	-0.03375327	-	-1344.577289
1b-Int7a	0.392974	-0.09554218	-	-1344.968063
1b-TS6	0.608596	-0.0121008	-	-1169.605751
1b-TS6'	0.38719	-0.08876148	-	-1344.936633
1b-TS6a	0.817081	-0.08518187	-	-2124.745749
1b-TS6-CI	0.470623	-0.01825662	-	-1600.149305
2b	0.187688	-0.006317016	-	-389.888055
3b	0.176349	-0.007281511	-	-849.5163828
Int0-H2O	0.203074	-0.027629	-	-1492.05185
Int0-actone	0.256668	-0.0248193	-	-1608.82026
Cartesian coordinates.

Int0			
Ir	-0.15382200	0.39496500	-0.00174100
Cl	-2.31817700	1.29491700	-0.02793100
Cl	0.81093300	2.53301000	0.05727800
C	-0.27054300	-1.56544300	0.90888500
C	1.08606200	-1.02404400	1.04990700
C	1.64137300	-0.84583800	-0.26044600
C	0.60871900	-1.02529000	-1.13981100
C	-0.55205700	-1.70234900	-0.48802700
C	-1.18206000	-1.93213600	2.03388800
C	-0.99997200	-1.30527500	2.98083000
H	-2.22672300	-1.80687100	1.74409100
C	1.78312900	-0.75174700	2.34157700
C	2.29038900	-1.65797700	2.69464500
C	1.07691400	-0.43571900	3.11162600
C	2.52758800	0.03685600	2.22340200
H	0.99997200	-1.30527500	2.98083000
C	-0.55205700	-1.70234900	-0.48802700
C	-1.18206000	-1.93213600	2.03388800

Int1			
Ir	-0.58810300	-0.26989500	0.25609600
Cl	0.71060600	-1.29412900	-1.53605300
Cl	-0.28333100	-2.39787800	1.40675700
C	-1.89447200	1.47697400	-0.33195100
C	-2.16457800	1.08977700	1.04831600
C	-2.68183500	-0.24630700	1.03264900
C	-2.66718800	-0.72616000	-0.34387100
C	-2.22725100	0.36727900	-1.17693200
C	-1.49042100	2.83582800	-0.81033800
C	-0.63499300	2.76945000	-1.48595500
H	-2.32920400	3.30910800	-1.33383600
C	-0.24946200	1.98202600	2.24297600
C	-2.93912700	2.61589800	2.33765600
C	-1.18161800	2.64156400	2.16961200
C	-1.94979500	1.39920500	3.16024100
C	-3.31951100	-1.01610400	2.20137600
H	-2.80083300	-0.62244700	3.14219700
H	-2.90347600	-2.06434400	2.13173900
H	-4.29017100	-0.95142000	2.22379300
---	---		
Int3			
Ir	0.27757900 0.89043400 0.25243600		
Cl	0.86613000 3.19935000 -0.09808100		
C	-1.74755900 0.32159400 1.19575100		
C	-1.13346100 -0.81988300 0.55315100		
C	-0.98109800 -0.50389500 -0.85564200		
C	-1.43413400 0.85263700 -1.06201600		
C	-1.92030800 1.35628700 0.22430000		
C	-0.88130900 0.41019900 2.64582700		
C	-1.41112250 -0.20834100 3.24456100		
H	2.02510000 1.43852300 3.00611100		
H	-0.88941100 -2.15087300 1.18865700		
H	-1.80684900 -2.74921800 1.14275400		
H	-0.10722900 -2.70823200 0.67109600		
H	-0.59637100 -2.05538100 2.23478900		
C	-0.51175600 -1.44335100 -1.91630000		
H	0.23320600 -2.14627000 -1.53815800		
H	-0.08895800 -0.90979500 -2.76873700		
H	-1.36286700 -2.03058500 -2.27980300		
C	-1.52806700 1.57977600 -2.61685700		
H	-2.52876400 1.44603500 -2.78889900		
H	-0.79781200 1.20708300 -3.08157800		
H	-1.35035600 2.64702300 -2.22296700		
C	-2.54730400 2.69311100 0.43792900		
H	-2.58065500 2.96736000 1.49352600		
H	-3.58295200 2.67472400 0.87986100		
H	-2.00732500 3.46952200 -0.10676800		
H	-3.10531400 0.05259800 2.80734300		
C	1.42655200 -3.06796300 4.61547000		
C	2.25711400 -3.33716900 3.52569400		
C	2.59117700 -2.31923400 2.63381800		
C	2.09864200 -1.02280000 2.85334300		
C	1.28729600 -0.74923900 3.92988900		
C	0.94973600 -1.77264100 4.81877200		
H	1.16422100 -3.86063800 5.30836200		
C	2.64659300 -4.33797400 3.37851300		
C	3.24493800 -2.53897100 1.79364600		
H	0.92381400 0.25799600 4.09196100		
H	0.32056100 -1.55294400 5.67555300		
C	2.44244300 0.04645300 1.81487800		
H	3.48641900 0.36093300 1.99075800		
C	2.09575700 -0.37189000 0.38650900		
H	2.28102800 0.50077700 -0.68769500		
H	1.86177200 -1.41747100 0.22261800		
H	2.14914300 0.14134800 -1.70217100		
H	2.84592500 1.42102200 -0.58561600		
O	1.57047400 1.20924000 2.04848400		
H	2.09294800 2.05158800 1.85962600		
TS3			
Ir	-0.05286800 0.56922900 -0.10796500		
Cl	0.58013100 2.74614700 -0.92501990		
C	-1.66989100 1.41047700 1.18629500		
C	-1.19316100 0.23188900 1.84647600		
C	-1.38793900 -0.89340000 0.96095800		
C	-2.06747500 -0.41936200 -0.22898300		
C	-2.21437100 1.00626700 -0.11388500		
C	-1.71954300 2.79894800 1.73166600		
H	-1.42133500 3.52240900 0.97040800		
H	-2.73934000 3.03450900 2.05580700		
C	-0.56212200 0.14925000 3.19795800		
C	-0.22414400 1.12720600 3.54222600		
C	0.29152600 -0.53245200 3.19060700		
H	-1.28905900 -0.23285300 3.92359200		
C	-1.06191500 -2.31459000 1.29364200		
H	-0.08610200 -2.39309100 1.77861300		
C	-1.05386500 -2.94490100 0.40829500		
C	-1.81369200 -2.72204300 1.97874100		
C	-2.55522300 -1.62946000 -1.35575400		
H	-3.55958800 -1.64333900 -1.12575200		
H	-1.91137400 -2.13627600 -1.51765300		
H	-2.61423900 -0.70304500 -2.28667800		
C	-2.90293300 1.92467500 -0.10634800		
H	-2.99756800 1.47813000 -2.05799800		
H	-2.34979900 2.86017100 -1.16759600		
H	-3.90907300 2.15341600 -0.69750600		
Ir 8.78474800 2.34793500 -2.82564500
H 10.20034000 3.19743900 -1.43786200
H 8.81434800 2.69761600 0.56054700
H 6.62333900 1.58016200 0.30823200
H 7.17064900 1.43923200 -3.94703700
H 9.38488700 2.57631600 -3.70135600
C 5.47620000 0.71797300 -2.05671400
H 4.37132600 1.35762500 1.08714800
Cl 4.84314500 0.02462700 -0.87584200
C 3.62556400 -0.63238800 -1.04939800
H 5.51342200 -0.29260900 -0.88663300
H 3.37638500 -1.49108100 -0.43708700
H 3.14923600 -0.55478100 -2.02208000
O 4.97354300 0.62369300 -3.16741800

Int6
Ir 0.12950000 0.77912000 0.01785100
Cl 0.67627400 2.72746400 -1.33793100
C -1.93807500 1.35945500 0.45783500
C -1.51397100 0.37855100 1.42915600
C -1.26772800 -0.85324500 0.71509400
C -1.70550100 -0.67966900 -0.66237300
C -2.06456400 0.67683100 -0.83079100
C -2.38408600 2.76401300 0.71818300
H -2.00879500 3.43295200 -0.05996700
H -3.47875600 2.82901500 0.73575400
H -1.42435500 0.56887000 2.91166300
H -1.23368900 1.61283500 3.16575700
H -0.62081700 -0.03290900 3.34072600
H -2.36485700 0.26778500 3.38879100
C -0.86507100 -2.16174400 1.31693800
H -0.38992500 -2.20362600 2.28984200
H -0.16432900 -2.68605400 0.66355500
H -1.74605900 -2.79882400 1.46188200
C -1.80817200 -1.78013800 -1.66501200
H -2.73553100 -2.34174800 -1.49544400
H -0.97574800 -2.48144400 -1.57285800
H -1.82582800 -1.40082500 -2.68751800
H -2.50996200 1.34203800 -2.09206900
H -2.31534200 0.71336700 -2.96247500
H -1.97192600 2.28376700 -2.23105100
H -3.58382800 1.55997600 -2.05479600
H -2.00655400 3.12605700 1.67648700
C 0.35446300 -1.03454600 -5.83837600
C 0.49062900 0.12439900 -5.07159400
C 0.86580400 0.04090000 -3.72118800
C 1.09208100 -1.21574700 -3.14558500
C 0.94781400 -2.37472700 -3.91968700
C 0.58812800 -2.28610200 -5.26068800
H 0.06615500 -0.96423600 -6.83826200
H 0.30315300 1.09756000 -5.51516400
H 0.94118900 0.94642200 -3.13899800
H 1.11637200 -3.33421300 -3.44299900
H 0.48484400 -3.18815600 -5.85635300
C 1.41018000 -1.37018200 -1.69469700
H 0.81376100 1.69189400 1.09182700
C 1.86228500 -0.17614200 -0.93460600
C 2.01283900 -0.23916800 0.47161900
H 2.38411300 0.59050500 -1.49103400
H 2.72174600 0.41810600 0.95938300
H 1.81793400 -1.18271100 0.97083900
O 1.27674800 -2.46903600 -1.14805900

TS5
Ir -0.20701000 0.53382600 -0.14942400
Cl 0.61261600 2.62400700 -1.10233400
C -2.04431700 1.42962900 0.72514400
H -1.61957600 0.38474000 1.59734900
C -1.63132200 -0.86010800 0.84443200
C -2.19439800 -0.58385800 -0.45787300
C -2.36783600 0.83081400 -0.57312200
C -2.19679000 2.83050900 1.04947700
H -1.74621600 3.49609000 0.26915800
H -3.26123500 3.14266000 1.13164500
C -1.24028800 0.52540600 3.03848800
H -0.86943400 1.52852000 3.25580400

S39
TS6

Ir
-0.43435200 0.28638800 -1.13408300
Cl
-0.91649990 1.30332600 0.55202600

-2.04013300 1.11463300 -1.57457500
C
-2.14468880 -0.03822000 -2.43722800
C
-1.96217600 -1.18293900 -1.59455300
C
-2.08035200 -0.72927800 -2.08983300
C
-2.41719800 0.67833000 -2.10555500
C
-2.66024600 2.05616200 -2.05915700
H
-2.36943800 3.24381200 -1.31050100
H
-3.72569400 2.64233400 -2.28132600
C
-2.12746600 -0.03108400 -3.93172600

S42
1b	1b-Int1		
C	1.46097300	-0.40718000	0.51231600
H	2.08563300	-1.10933500	1.09513800
H	2.19829000	-0.07533500	-0.57623300
C	2.35397100	1.15290900	-1.14496600
H	2.44103300	-0.93376100	-1.38399100
H	2.29001000	1.98810000	-0.49377800
O	1.26176300	0.79148800	1.25408400
H	0.75358800	0.56463400	2.04222900
C	0.12428400	-1.09766700	2.01727000
H	0.27447000	-2.00921800	-0.37673100
H	-0.38864600	-1.38029400	1.13822700
H	-0.52106400	-0.41993100	-0.35522500
C	2.27911300	1.47446100	-2.14183300
H	3.14048000	0.56399900	-3.00917300
C	2.67743600	2.16266300	-3.02415100
H	4.64809000	2.12569300	-2.15175100
H	4.51050600	3.02581200	-1.53707500
H	5.26166600	1.43993800	-1.55290800
C	5.39265400	2.49563200	-3.47771200
H	4.77052300	3.17917800	-4.03121900
H	5.52288500	1.59409900	-4.05142000
C	6.75618300	3.13916200	-3.17481900
H	7.26784500	3.39436600	-4.10844700
H	6.65898900	4.05947500	-2.58938300
H	7.40839300	2.46318400	-2.61047500

Fr	-0.90117200	-0.91040800	-0.12775200
Cl	0.38891600	-2.44338200	1.24271500
Cl	-1.12752600	-2.61679000	-1.87063400
C	-1.27295600	1.18039000	0.38708700
C	-2.16818400	0.77432700	-0.68972300
C	-2.98405500	-0.30297300	-0.18893300
C	-2.56361900	-0.60449900	1.16619000
C	-1.52948100	0.35822500	1.53471900
H	-0.26784800	2.28165600	0.29055600
H	0.14566600	2.34215700	-0.71790900
H	0.56297700	2.11982200	0.97664600
C	-2.27824100	1.41486100	-2.03573000
C	-3.00327200	2.23775700	-2.01999600
H	-1.31648300	1.81931000	-2.35813200
H	-2.60160300	0.69009100	-2.78546300
C	-4.05220400	-1.01872900	-0.94712000
H	-3.82970100	-1.04092000	-2.01435000
H	-4.14369400	-2.05297300	-0.61047300
H	-5.01416500	-0.51423300	-0.79599100
C	-3.16818600	-1.61119700	2.08333200
H	-3.94120900	-1.16542300	2.70624800
H	-3.60667000	-2.44179600	1.51872300
H	-2.39638400	-2.04631800	2.73483900
C	-0.87559400	0.43147900	2.87474300
H	-0.51399500	-0.55517800	3.17367800
H	-0.02324100	1.10962700	2.86361400
H	-1.58993400	0.78813200	3.62577100
H	-0.73836700	3.24372000	0.52650900
C	2.27209300	-0.86287800	-0.99124300
H	2.21954100	-1.73996100	-0.34385100
O	0.91078900	-0.57817400	-2.45632200
H	0.64633100	-1.28614600	-2.08273400
C	2.75376000	0.31722300	-2.07821000
C	3.01992900	0.26415100	1.09958500
H	2.94060690	1.23177600	-0.73714500
H	2.79506500	-0.65957400	1.63283600
C	3.13787300	-1.14221200	-2.21553300
H	4.16088500	-1.37234300	-1.90198800
C	2.75406300	-2.00198800	-2.75584700
C	3.16556700	-0.72760200	2.88157300
C	3.62494100	1.37600500	1.90700200
C	2.77997200	1.78169300	3.12421400
H	3.80740800	2.25063800	1.26999600
H	4.61027500	1.04676100	2.26939000
C	3.48203800	2.78211400	4.04663100
H	1.83478700	2.21906400	2.77753100
H	2.50972100	0.88327100	3.69497400
C	2.61634400	3.19476100	5.23902100
	X	Y	Z
H	4.42142800	2.34168600	4.40606600
H	3.76446800	3.67230100	3.46873000
H	3.13739300	3.90588300	5.88759500
H	1.68563900	3.66780600	4.90536600
H	2.34430700	2.32483500	5.84715700
1b-TS1	-0.62562700	0.16548000	0.01428000
Cl	0.98914800	-0.17698700	1.68741600
Cl	-0.24034300	-2.78172000	-1.83184100
C	-2.06227500	1.55728000	-0.78979600
C	-2.48146800	0.24129900	-1.17687200
C	-2.67657500	-0.52764000	0.03794800
C	-2.43508300	0.33344800	1.18496000
C	-2.04116500	1.62052000	0.67597900
C	-1.71637400	2.68165400	-1.70875900
H	-1.32400200	2.30363200	-2.65397200
H	-0.95798500	3.33082300	-1.26675100
C	-2.65992200	-0.28588000	-2.56224700
H	-3.72975400	-0.41275900	-2.77848800
H	-2.24149100	0.39833200	-3.30177900
C	-3.09250300	-1.95744900	0.07901700
H	-2.56359500	-2.52752500	-0.68822300
C	-2.87443300	-2.40677100	1.04861300
H	-4.17440400	-2.01925700	-0.98814200
C	-2.58353800	-0.04382300	2.62297800
C	-3.59437700	0.18756400	2.97823500
C	-2.40444600	-1.11806600	2.76564100
C	-1.86417900	0.49347500	3.24318600
C	-1.72591300	2.82911700	1.49343300
H	-1.30825300	2.54971300	2.46185400
H	-1.00735500	3.47763600	0.99060100
H	-2.64276700	3.40569800	1.66618000
H	-2.69560500	3.28747200	-1.92008500
C	2.19662200	0.05188300	-1.46893900
H	2.53124300	-0.38890600	-0.52636800
O	0.75053800	-0.14467900	-1.57888200
H	0.51463900	-1.13733100	-1.80090000
C	2.42208300	1.53176200	-1.45959500
C	2.79372300	2.22095000	-0.37829800
H	2.24080000	2.04741600	-2.40388000
C	2.93941300	1.68166600	0.55688500
C	2.84702000	-0.65584600	-2.65139200
C	3.93412300	-0.54884000	-2.59069800
C	2.59441800	-1.71946500	-2.64688300
C	2.05690600	-0.22052100	-3.59609200
C	2.94845200	3.71192200	-0.32230100
C	1.79293000	4.36796800	0.45391900
H	2.98946500	4.12856000	-1.33603500
C	3.89770700	3.97177400	0.16727000
C	1.94408200	5.80383600	0.63608800
H	0.85752100	4.15463900	-0.08126000
C	1.69591900	3.88667300	1.43726000
C	0.75802700	6.05980500	1.36341100
H	2.87188000	6.08889400	1.17982700
H	2.06239500	6.53049900	-0.35532800
C	0.88402700	7.59030700	1.48345200
H	-0.17670300	6.34373500	0.81474700
H	0.63684400	6.07503600	2.36208700

1b-Int2

	X	Y	Z
Ir	-0.67566500	0.67206700	0.91548000
Cl	0.24907500	-1.16281900	2.18643800
C	-2.17679100	1.79362500	-0.29114000
C	-2.76208100	1.40091100	0.98166700
C	-2.75224700	-0.03681200	1.05383100
C	-2.14456900	-0.54460300	-0.16628600
C	-1.83163000	0.59199100	-1.00313000
C	-2.10450900	3.18887200	-0.82189700
H	-1.28682600	3.30775600	-1.53494200
C	-3.07081000	3.43981000	-1.33997500
C	-3.42069700	2.33239900	1.95171400
H	-4.47952000	2.42075700	1.68411400
C	-2.98223200	3.32157400	1.92346000
H	-3.36679700	1.94891500	2.97344300
1b-TS4
Ir -0.22942600 0.49908300 -0.15137000
Cl 0.54921700 2.65821000 -0.98952500
C -2.01434700 1.34303700 0.88257900
C -1.54771700 0.23720500 1.65155200
C -1.60732400 -0.95200100 0.81587300
C -2.22491900 -0.57536800 -0.43865400
C -2.41296200 0.84125700 -0.43434800
C -2.14016800 2.76809500 1.31577100
H -1.71919900 3.43387600 0.55868100
H -3.19373500 3.03094900 1.46884100
C -1.07992900 0.27894500 3.07312900
C -0.67770900 1.26933400 3.32822500
H -0.29818800 -0.46128800 3.25471100
H -1.91148300 0.06313600 3.75478300
C -1.28761800 -2.35216400 1.37275800
H -0.59310300 -2.35693100 2.08065200
H -0.82195200 -2.90340100 0.41780900
H -2.19572500 -2.88257000 1.54975000
C -2.63196600 -1.53258300 -1.50982200
H -3.62448400 -1.93742000 -1.27641600
H -1.93636900 -2.37676000 -1.57996100
H -2.69220200 -1.04620500 -2.48528000
C -3.01386600 1.68352300 -1.51402900
C -2.99247000 1.16566300 -2.47513100
H -2.45364100 2.61480600 -1.62527200
H -4.05743800 1.93104300 -1.82930900
H -1.60491700 2.94779400 2.42994000
C 0.55975450 -1.59778600 -2.17501800
H 1.15189100 0.46132600 0.72094700
C 1.12525000 -0.36397100 -1.59639700
C 1.84646500 -0.40216700 -0.34205700
H 1.41798800 0.39968100 -2.31109000
H 1.83438300 -1.37113100 0.15521100
O 0.45374000 -2.65427300 -1.55502300
C 3.13743800 0.38558400 -0.20218500
C 0.10682500 -1.48863700 -3.61932700
H -0.46088000 -0.56697200 -3.78013100
H 0.98685400 -1.44125200 -4.27179400
H -0.48946800 -2.35970400 -3.89301000
H 3.39082000 -0.19021400 -0.73449300
H 3.02650300 1.34167400 -0.72126600
C 3.57935600 0.62487300 1.24173600
H 3.63325200 -0.33325500 1.77862800
C 2.81195300 1.22495900 1.72976600
C 4.92663200 1.34496100 1.34195200
H 4.86750500 2.29005600 0.78688100
H 5.69741600 0.74339500 0.84181600
H 5.34789900 1.62277100 2.78640200
C 4.60966100 2.25173100 3.29644500
H 5.44068400 0.69202600 3.35762600
H 6.31236200 2.13847900 2.83064800

1b-Int6
Ir -1.07908400 0.98272100 -0.57589700
Cl -1.00613500 2.84063300 -2.00645900
C -2.97659200 1.15594000 0.67278800
C -1.85892300 0.49855500 1.37373200
C -1.56048600 -0.74144700 0.71248800
C -2.34087800 -0.74426100 -0.50183100
C -3.28129400 0.38674700 -0.46511800
C -3.60553900 2.44524200 1.09035000
H -4.07908200 2.94623700 0.24454090
H -4.36755100 2.27396400 1.80624900
C -1.26157900 0.97219300 2.65796400
H -1.21943500 0.20630450 2.69315800
H -0.24670700 0.59023100 2.78170100
H -1.86548600 0.62959200 3.50749000
C -0.67824000 -1.85244300 1.18285700
H -0.13870100 -1.57834400 2.08883200
H 0.05152900 -2.12290800 0.41453200
H -1.28958200 -2.73162400 1.41882200
C -2.31896600 -1.83220600 -1.52462100
H -2.99329700 -2.64413100 -1.22378800
Element	X	Y	Z
H	-2.46523600	1.17266700	2.06414000
C	-1.87056300	0.61174000	2.78669100
C	-2.24546700	2.23309100	2.04528000
C	-3.52655900	1.01289300	2.29310800
H	-3.89386800	3.01473000	-0.57384500
C	2.25261900	2.06866800	-1.60329200
H	2.79734300	1.82460600	-0.68260800
O	0.86684700	2.29254900	-1.33991100
C	2.81346200	3.33914800	-2.18545200
C	3.86801900	3.98147200	-1.68634400
C	2.29916000	3.72268000	-3.06549700
C	4.25246600	4.89176800	-2.13693100
H	4.38701800	3.61391900	-0.80451600
C	2.36344600	0.89441300	-2.56510000
C	3.05876300	-0.62427800	-2.21090200

TS3-1

Element	X	Y	Z
Ir	0.50326300	0.36258800	-0.31785500
Cl	1.32498300	2.52947700	-0.92676900
C	0.92384300	-1.42763100	0.88209300
C	0.40315200	-1.87886900	-0.37430200
C	1.33607400	-1.79065700	-1.42570700
H	2.39678600	-0.74609500	-0.83173300
C	2.12581200	-0.64681100	0.60615900
H	0.34094600	-1.70770700	2.22831100
H	-0.75025300	-1.67686600	2.20421100
H	0.68717200	-0.98416200	2.96775800
C	-0.78510400	-2.76110700	-0.57722900
H	-0.45602800	-3.80096100	-0.68746600
C	-1.46635000	-2.71873400	0.27347800
C	-1.33702400	-2.49461800	-1.48163800
C	1.16339100	-1.79025100	-2.87532200
H	0.11057700	-1.77197800	-3.16543600
H	1.70627700	-1.08462200	-3.50628600
C	1.54662100	-2.79541900	-3.08436400
C	3.58408000	-0.15399800	-1.51317700
C	4.46933400	-0.76312900	-1.29769600
C	3.45096700	-0.11578500	-2.59458000
H	3.77711990	0.86190400	-1.16022300
C	3.05905300	-0.05563900	1.61192800
C	3.53630100	0.84258400	1.21860500
C	2.53510400	0.21298000	2.53044700
H	3.84222600	-0.78033100	1.86514700
H	0.64714000	-2.70509900	2.56331800
C	-1.55939500	1.30994300	0.05718400
H	-0.16374800	1.12105900	0.94380200
O	-1.34434300	1.23621300	-1.33412100
C	-1.77541600	2.69754400	0.57829400
C	-1.02356700	3.25807000	1.61293900
C	-2.83698400	3.42084800	0.01112300
C	-1.33899100	4.53216000	2.08580800
H	-0.17869900	2.71473200	2.04256300
C	-3.13155100	4.06986600	-0.97533900
C	-3.43613100	2.97779800	-0.77851600
C	-2.38137400	5.25409700	1.51804100
C	-0.73863800	4.96589300	2.88433500
C	-4.99832300	5.26597800	0.03725900
H	-2.61249000	6.25913700	1.68087700
C	-2.46947200	0.23231900	0.49704200
C	-3.14394600	0.26532700	1.65038100
H	-2.55961600	-0.03679900	-0.18926000
H	-3.80159900	-0.54924900	1.93386000
H	-3.06721600	1.14049300	2.33352700
H	-0.95451000	2.09098500	-1.62968700

TS3-2

S71
	C	H	O
	-3.58882100	6.04972500	-1.12587200
	-4.45946000	4.97892300	-1.30885900
	-6.48721200	4.37598500	-1.72556800
	-7.32788600	6.70087700	-1.94735800
	-5.78726200	8.86083910	-1.68074700
	-2.53609700	5.86812300	-0.93957500
	-4.08236600	3.96322110	-1.24731700
	-3.13611300	8.94526800	-1.02752800
	-3.15544900	9.68908100	-1.93821200
	-2.29694900	8.47272500	-0.10297500
	-4.19648900	10.02031600	-2.84346100
	-2.04105800	7.16479000	1.52692600
	-0.18366000	6.33190700	0.39058700
	-1.83542400	6.20899500	3.45919700
	-3.03625900	5.75445200	2.80562600
	-3.92948200	6.90052700	2.61837900
	-3.26661500	8.06047000	3.12606600
	-1.96108400	7.64514700	3.62485200
	-0.68180800	5.36645000	3.89456400
	0.25447800	5.92443200	3.84783700
	-0.83295600	5.03023200	4.92625200
	-3.35474600	4.34890400	2.42461800
	-2.44775900	3.77601600	2.22826300
	-3.98609400	4.31564900	1.55327900
	-3.89579900	3.86317500	3.24564800
	-5.30471800	6.83475300	2.04328000
	-5.73639600	6.08039400	1.25899000
	-5.60878100	7.79273300	1.61966700
	-6.01865700	6.57361200	2.83326200
	-3.79734500	9.45618700	3.14619400
	-4.24538700	9.67462800	4.12205500
	-4.56549200	9.60044900	2.38460900
	-3.00359100	10.18507000	2.90746500
	-0.94678300	8.53980500	4.24932500
	-1.00265900	9.55262400	3.84692200
	-0.06497800	8.16118400	4.09802300
	-1.13122900	8.59444800	5.29480000
	-0.57150200	4.48791000	3.25772900
	-2.24421230	10.83284900	-1.50926100
	-2.52805100	11.22013400	-0.52778400
	-1.20174100	10.50355400	-1.45062300
	-2.30509600	11.64974000	-2.23112100
	-2.88843600	9.31291700	-2.93646400

TS7-1

C	-4.98052700	9.97375000	5.86924200
C	-3.85905000	9.81673800	5.05160300
C	-4.01448500	9.44895100	3.71916000
C	-5.29175000	9.24118300	3.17545400
C	-6.41021600	9.36926900	4.00962800
C	-6.25558100	9.75278300	5.34540000
H	-4.86147900	10.25002800	6.91066200
H	-2.86342100	9.97928600	5.46318000
H	-3.15661500	9.30879500	3.07031500
H	-7.40313800	9.19055200	3.62055400
H	-7.13025700	9.85666900	5.98058800
C	-5.40182000	8.85501500	1.73314400
C	-7.58360500	7.43081700	0.05722800
C	-6.58403600	9.10995800	1.06973700
C	-6.94530700	8.28012100	-0.21784600
H	-7.43401400	9.45299700	1.59245700
H	-7.49093000	8.87065800	-0.96171800
H	-6.05635600	7.87694000	-0.70694500
O	-4.31980900	8.40244200	1.19975200
O	-4.11945000	8.77060100	-0.44442800
O	-3.97640200	9.30384400	-1.02233700
O	-3.04290300	9.53687900	-1.10271100
H	-4.09516000	10.28223000	-0.82345900
O	-5.53205200	11.05023600	-0.45497100
H	-5.13100100	11.74957900	0.08012200
H	-6.05544700	10.32922200	0.29488800

TS7-2

Ir -4.17214100 -0.46056300 0.53039700
Cl -5.37004900 -0.80349000 2.55295100
C -4.96228400 0.36049700 -1.32581500

S74
Element	X	Y	Z
H	0.33583375	2.81083209	0.82866269
H	-0.99733697	2.33134800	1.44445810
Int0-actone			
Ir	-0.09243700	0.23460700	0.12428700
Cl	0.43285600	2.02334400	-1.43615900
Cl	-2.44094900	-1.86594800	0.59397500
C	1.67082200	-1.03089900	0.32559300
C	1.10526700	-1.20704200	-0.98560500
C	0.50982400	-1.86594800	0.59397500
C	0.59397500	-1.44901300	1.29899200
C	1.67082200	-1.03089900	0.32559300
C	1.10526700	-1.20704200	0.32559300
C	0.86073500	-1.41812400	2.77975800
C	1.15942500	-1.31597100	-0.19451600
C	1.08305400	-0.54660300	-3.02014600
C	2.58342600	-0.20426700	-1.77352700
C	2.21764500	-1.87158900	-2.67199600
C	2.33134800	-1.85777700	0.76923800
H	-0.09069000	-1.50356500	3.30669200
H	1.32735500	-0.47752900	3.08175100
H	1.50892300	-0.00612100	1.29899200
H	3.45479100	0.05855100	-0.14184400
H	3.17111000	-0.00612100	1.29899200
C	0.30864900	-0.58037800	0.64934600
H	1.79836200	-1.79836200	2.25682700
H	2.63697100	-1.85777700	0.76923800
C	0.04582100	2.83543100	2.07307900
C	0.35510800	1.67053700	1.79520400
C	0.58733500	3.42220300	3.34955300
C	1.21227100	2.70971900	3.87792900
C	3.05864900	-0.58037800	0.64934600
C	1.15942500	-3.06127100	-2.18234400
C	1.88451600	-3.46438700	0.92478800
C	0.04582100	2.83543100	2.07307900
O	0.35510800	1.67053700	1.79520400
C	0.58733500	3.42220300	3.34955300
H	1.21227100	2.70971900	3.87792900
H	1.15942500	-3.06127100	-2.18234400
H	1.88451600	-3.46438700	0.92478800
C	0.04582100	2.83543100	2.07307900
O	0.35510800	1.67053700	1.79520400
C	0.58733500	3.42220300	3.34955300
H	1.21227100	2.70971900	3.87792900
H	1.15942500	-3.06127100	-2.18234400
H	1.88451600	-3.46438700	0.92478800
C	0.04582100	2.83543100	2.07307900
O	0.35510800	1.67053700	1.79520400
C	0.58733500	3.42220300	3.34955300
H	1.21227100	2.70971900	3.87792900
H	1.15942500	-3.06127100	-2.18234400
H	1.88451600	-3.46438700	0.92478800
C	0.04582100	2.83543100	2.07307900
O	0.35510800	1.67053700	1.79520400
C	0.58733500	3.42220300	3.34955300
H	1.21227100	2.70971900	3.87792900
H	1.15942500	-3.06127100	-2.18234400
H	1.88451600	-3.46438700	0.92478800

REFERENCES

[1] E. Erbing, A. Vázquez-Romero, A. Bermejo Gómez, A. E. Platero-Prats, F. Carson, X. Zou, P. Tolstoy, B. Martín-Matute, Chem. Eur. J. 2016, 22, 15659-15663.
[2] B. Spiegelberg, A. Dell’Acqua, T. Xia, A. Spannenberg, S. Tin, S. Hinze, J. G.deVries, Chem. Eur. J. 2019, 25, 7820-7825.
[3] A. Sanz-Marco, S. Martinez-Erro, M. Pauze, E. Gómez-Bengoa, B. Martín-Matute, Nat. Commun. 2019, 10, 5244-5253.
[4] W. Xu, Y. Zhou, R. Wang, G. Wu, P. Chen, Org. Biomol. Chem. 2012, 10, 367-371.
[5] N. Ahlsten, A. Bermejo Gómez, B. Martín-Matute, Angew. Chem., Int. Ed. 2013, 52, 6273-6276.