The Sensitivity and Specificity of Loop-Mediated Isothermal Amplification and PCR Methods in Detection of Foodborne Microorganisms: A Systematic Review and Meta-Analysis

Yasaman Sadeghi1,2, Pegah Kananjizadeh1, Solmaz Ohadian Moghadam3, Ahad Alizadeh4,5, Mohammad Reza Pourmand1, Neda Mohammadi6, *Davoud Afshar7, Reza Ranjbar8

1. Department of Pathobiology, Urology Research Center, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2. MAHAK Hematology Oncology Research Center, MAHAK Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3. Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
4. Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
5. Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
6. Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
7. Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
8. Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

*Corresponding Author: Email: afshar.d@zums.ac.ir

(Received 10 Aug 2021; accepted 25 Sep 2021)

Abstract

Background: The loop-mediated isothermal amplification (LAMP) method is frequently used for identifying many microorganisms. The present review aimed to evaluate the sensitivity and specificity of LAMP method for detection of food-borne bacteria and to compare these features with those of polymerase chain reaction (PCR), as an alternative molecular diagnostic procedure, and with cultivation method, as the gold standard method.

Methods: The literature was searched in electronic databases (PubMed, Scopus, Web of Science, and EMBASE) for recruiting publications within Jan 2000 to Jul 2021. We used the combinations of keywords including foodborne disease, LAMP, PCR, Loop-mediated isothermal amplification, and polymerase chain reaction. Meta-analysis was used to adjust the correlation and heterogeneity between the studies. The efficiency of the methods was presented by negative likelihood ratio, positive likelihood ratio, sensitivity, specificity, and odds ratio using forest plots. A P-value less than 0.05 was considered as statistical significance cut off. The confidence intervals were presented at the 95% interval.

Results: Overall, 23 relevant studies were analyzed. The sensitivities of LAMP and PCR methods were estimated to be 96.6% (95% CI: 95.0-97.7) and 95.6% (95%CI: 91.5-97.8), respectively. The specificities of LAMP and PCR were also estimated to be 97.6% (95%CI: 92.6-99.3) and 98.7% (95%CI: 96.5-99.5), respectively.

Conclusion: The specificities of LAMP and PCR assays were determined by comparing their results with cultivation method as the gold standard. Overall, the specificity of both PCR and LAMP methods was low for detection of fastidious bacteria. Nevertheless, LAMP and PCR methods have acceptable specificities and sensitivities, and their application in clinical practice necessitates more studies.

Keywords: Food-borne pathogen; Specificity; Sensitivity; Loop-mediated isothermal amplification (LAMP); Polymerase chain reaction
Introduction

In recent years, multiple molecular methods have been introduced for detecting different foodborne microorganisms. One of these methods is the loop-mediated isothermal amplification (LAMP) assay rapidly for rapid identification of a broad-range of microorganisms. In this assay, the amplification of the target sequence is carried out under isothermal temperature varying from 60 to 66 °C (1). Similar to PCR, the LAMP assay also requires specific primers to amplify the target sequence. However, unlike PCR which needs one primer pair for amplification, the LAMP assay requires four or six specific primers (F3, B3, FIP, BIP, LB and LF) binding to six or eight separate regions within the target sequence (2). Consequently, the higher number of primers increases the efficiency and specificity of the assay (3). In the LAMP assay, the final product can be detected by the naked eye without any additional processing which is one of the advantages of LAMP assay (4). Despite many advantages, there are some argues regarding the specificity and sensitivity of LAMP assay.

Cultivation is considered as the gold standard method for detection of foodborne microorganisms growing in vitro (5). In fact, the specificity and sensitivity of other diagnostic methods are usually judged by culture results (6). There are multiple reports regarding the specificity and sensitivity of LAMP assay, and therefore, the current study aimed to compare the specificity and sensitivity of the LAMP assay with those of PCR and cultivation methods for detecting different foodborne microorganisms.

Methods

The present meta-analysis was conducted to evaluate the sensitivity and specificity of two molecular techniques; LAMP and PCR and also to compare these specifications with those of the cultivation method as the gold standard.

Our study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (7).

Literature search

The literature was searched in electronic databases (PubMed, Scopus, web of science, and EMBASE) within Jan 2000 to Jul 2021. In order to retrieve as many relevant studies as possible, different combinations of keywords including foodborne disease, LAMP, PCR, Loop-mediated isothermal amplification, and Polymerase chain reaction were utilized. Moreover, the reference lists of the relevant papers were scrutinized to include any missed studies (8).

Study selection

Only full text English articles were included in the final analysis. At first, duplicate articles were removed. Then, the articles were screened by the titles and irrelevant ones were excluded. The abstracts of remaining articles were analyzed. Finally, those articles evaluating and comparing the three methods; LAMP and PCR and cultivation were selected. In order to be able to determine the sensitivities and specificities, the selected studies should have reported their results as false positive (FP), true positive (TP), false negative (FN) and true negative (TN). The microorganisms examined in the selected studies generally included naturally foodborne microorganisms. However, the food samples were artificially infected with reference strains in some studies. The studies reporting the sensitivity and specificity indexes based on the CFU/ml or primer specificity were excluded from meta-analysis.

Finally, nine items were extracted from eligible articles, including author's name, the year of publication, country, studied microorganism, type of food sample, the total number of samples, utilized technique, and the rates of TP, TN, FN, FP, sensitivity and specificity.

Statistical analysis
The data were analyzed using R version 3.4.1(9). The accuracy of the methods was presented as an overall negative likelihood ratio, positive likelihood ratio, sensitivity, specificity, and odds ratio. It was important to apply the same strategy to perform accurate analysis regarding sensitivities and specificities. For this, the random effect model of meta-analysis was used to adjust the correlation between sensitivities and specificities and also the heterogeneity between different studies. Due to the correlation between sensitivity and specificity, using the I-square statistic to estimate the level of heterogeneity was problematic. In other words, a large I-square statistic renders a high heterogeneity because of the correlation. The forest plot was used to estimate the overall negative likelihood ratio, positive likelihood ratio, sensitivity, specificity, and odds ratio.

A P-value less than 0.05 was considered as the statistical significance cutoff. Confidence intervals were presented at the 95% level.

Results

Overall, 16050 articles were retrieved from the initial search, of which 11419 were excluded as duplicates. Screening of the reminded articles by titles further omitted 3052 irrelevant studies. Totally, 672 studies were selected by screening the article abstracts, of which 248 were relevant by studying full texts (Fig. 1). Based on our selection criteria, 23 articles were finally analyzed (Table 1). Forest plots of the unadjusted results of these 23 studies have been shown in Figs. 2 and 3.

Fig. 1: The selection procedure for eligible studies to be included in the systematic review and meta-analysis
According to the included studies, the sensitivity and specificity were presented as 95 percent confidence intervals. The non-significant p-values of I^2 showed that there was no evidence of heterogeneity between the studies. According to the sample sizes of studies, the sizes of the black squares show the weight of each study. TN: true negative; FP: false positive.
Fig. 3: The forest plots for estimating overall specificity (top chart) and sensitivity (bottom chart) of PCR. According to the included studies, the sensitivity and specificity were presented as 95 percent confidence intervals. The red vertical lines show either the overall sensitivity or specificity. The significant p-values of I^2 showed heterogeneity between the studies. According to sample sizes of the studies, the sizes of black squares show the weight of each study.

TN: true negative; FP: false positive
Reference	Country	Microorganism	All samples	Food samples	Detection methods	Sensitivity	Specificity	Results
						T P F N P T N		
17	United Kingdom	Campylobacter jejuni	97 samples	Raw poultry meat, offal, raw shellfish, and milk samples	qPCR	100	85	5 0 6 34
18	China	Salmonella strains	85 samples	Minced meat of pig raw milk	LAMP	100	100	1 0 0 70
19	China	Escherichia coli	36 samples	Eggs, raw sausage, salmon, ham, cooked ham, bacon, chicken, beef, pork, duck,	Multiplex PCR	100	80	5 1 2 53
				hard cheese, raw-milk				
20	Iran	Escherichia coli	18 samples	Eggs, raw milk, Raw Kobiide, salad, chicken, cheese	Multiplex PCR	100	4 0 1 13	
21	Egypt	Listeria monocytogenes	66	Clinical samples	PCR	100	98.72	9 2 15
			100	Food samples				
22	China	Listeria monocytogenes	2 reference	Chicken samples	PCR	71.42	100	5 2 0 53
		strains	10 target					
			60 chicken					
			samples					
23	Louisiana, USA	Shiga toxin-producing Escherichia coli (STEC)	50 STEC	Ground beef	LAMP	100	7 0 0 53	
			40 non-STEC strains					
24	Japan	Verotoxin-producing bacteria, Salmonella, Shigella	50 Mixed human feces	NA'	PCR	100	1 0 0 49	
25	China	Listeria monocytogenes	182 Strains	Various food samples	LAMP	96.70	100	1 6 0 39
					PCR	91.20	100	1 0 0 39
26	USA	Staphylococcus spp.	118 clinical isolates	NA	LAMP	98	100	2 5 0 10
					PCR	92.49	100	1 0 0 10
27	Italy	Salmonella	175 samples	Minced meat and meat preparations made from poultry meat intended to be eaten	qPCR	100	100	1 0 0 75
			(102 spiked	cooked				
			samples and 73 real samples					

Available at: http://ijph.tums.ac.ir
No.	Country	Sample Description	Method	Sensitivity (%)	Specificity (%) 100%	Positives	Negatives	Total	Interpreted
28	Canada	632 stool samples from pediatric patients	qPCR	100	100	2	0	0	61
29	Japan	6 Human fecal samples	qPCR	100	6	0	0	0	
30	China	Seafood Samples	PCR	89.58	99.75	9	3	8	17
31	China	Raw milk	LAMP	94.79	99.75	9	3	28	
32	China	Spiked stool samples	qPCR	98.11	99.75	9	3	79	
33	USA	97 stool and other clinical samples	PCR	98.11	99.75	9	3	79	
34	China	70 seafood samples	LAMP	100	100	1	6	18	
35	China	Various food samples during 2003-2007	LAMP	100	100	0	7	0	
36	Canada	Samples of fresh produce	LAMP	100	100	1	0	8	

References:
1. Shiga toxin-producing Escherichia coli (STEC)
2. E. Coli serovars, Listeria monocytogenes serovars, Shigella spp., Salmonella spp., Vibrio cholerae, Campylobacter spp., Legionella spp.
3. 48 V. Parahaemolyticus and 10 non-V. Parahaemolyticus strains
4. Salmonella enterica subsp. Enterica, Listeria monocytogenes, Enterobacter sakazakii, Shigella spp., Salmonella spp.
5. C. jejuni, V. fluvialis, V. Mimicus, V. Metchnikovii, V. Cholerae, ETEC, V. Parahaemolyticus, C. Coli, V. Parahaemolyticus, EIEC, EPEC, Y. Enterocolitica, DAEC, Shigella spp., Salmonella spp.
6. S. Typhi, L. Monocytogenes, C. Lari
7. 31 strains of both Gram-negative and Gram-positive bacteria (Pseudomonas aeruginosa ATCC 9721, Listeria monocytogenes, Staphylococcus aureus, Campylobacter jejuni ATCC 33560, Campylobacter coli)
Due to the correlation between the sensitivity and the specificity indexes, the data were analyzed using the DerSimonian and Laird methods. The random effects model was used to analyze the PCR data due to the high heterogeneity. Although there was no heterogeneity among LAMP data, the random effects model was also used to analyze the LAMP data for being able to compare its results with those of PCR. The sensitivity of LAMP and PCR method were estimated to be 96.6% (95% CI: 94.9%-97.7%) and 95.6% (95% CI: 91.5%-97.8%). The specificities of LAMP and PCR methods were also estimated to be 97.6% (95%CI: 92.6%-99.3%) and 98.7% (95%CI: 96.5%-99.5%), respectively. Table 2 shows the sensitivities and specificities of LAMP and PCR methods in comparison with cultivation technique as the gold standard.

Table 2: Sensitivity and specificity of LAMP and PCR methods

Variable	Model Results						
	LAMP	PCR					
	Estimate	Lower bound	Upper bound	P-value	Estimate	Lower bound	Upper bound
Negative Likelihood Ratio	0.048	0.016	0.146	< 0.001	0.007	0.126	
Positive Likelihood Ratio	39.176	12.423	123.548	< 0.001	65.911	22.971	189.117
Sensitivity	0.966	0.950	0.977	< 0.001	0.915	0.978	
Specificity	0.976	0.926	0.993	< 0.001	0.965	0.995	
Odds Ratio	1409.797	327.498	6068.818	< 0.001	2391.372	574.948	9946.395

P value = <0.001

Discussion

LAMP and PCR are two molecular methods frequently used to identify microorganisms in research and clinical settings. There are many studies indicating that LAMP assay benefits from higher sensitivity and specificity in comparison with other molecular detection methods such as PCR and Real-time PCR (10, 11). In the present meta-analysis, we evaluated the sensitivities and
specificities of LAMP and PCR techniques in detection of foodborne transmitted bacteria and compared them to those of culture technique as the gold standard. To the best of our knowledge, this is the first comprehensive systematic review and meta-analysis estimating the sensitivities and specificities of LAMP and PCR methods for detecting foodborne bacteria.

Cultivation is considered as the gold standard method for detection of foodborne pathogens. However, several alternative molecular assays have recently been introduced that are user friendly and easy to perform. LAMP and PCR techniques are two common for detecting foodborne pathogens in food and stool specimens (12).

According to our statistical analysis, sensitivities of LAMP and PCR techniques were estimated to be 96.6% and 95.6% (P<0.001), respectively. Since the low initial copies of pathogens in food specimens may be lost during sample processing, evaluating sensitivity is an important factor for diagnostic methods of microorganisms. Rapid detection methods usually have high sensitivities. In fact, molecular methods are considered to be highly sensitive in comparison with conventional procedures due to their short-term running period. Rapid methods such as PCR and LAMP reduce user-born errors during the experiment rendering them more sensitive than the methods with long processing periods (13). Considering the fact that many factors could kill alive bacteria, the bacterial count is usually low in stool specimens. Therefore, the methods with high sensitivities are more useful and reliable in these conditions. We here observed that the sensitivity of PCR was slightly higher than LAMP rendering PCR as a valuable diagnostic method in these conditions.

The larger number of primers per target in LAMP increases the primer-primer interactions. The LAMP product is a series of concatemers of the target region, giving rise to a characteristic “ladder” or banding pattern on a gel, rather than a single band as with PCR and it seems to be less sensitive than PCR to inhibitor in case of complex samples, likely due to the use of a DNA polymerase rather than Taq polymerase as in PCR.

The specificity of a diagnostic test refers to the accuracy of the test in diagnosis of true negative cases. Therefore, a test with high specificity should render negative results in germ-free specimens. In the present study, the specificities of LAMP and PCR methods were estimated to be 97.6% and 98.7% (P<0.001) respectively. In LAMP method, the target gene is amplified using four pairs of primers improving the reaction specificity. In other words, using additional specific primers reduces the rate of false positive results (14). There are also many publications indicating a higher specificity for LAMP method than other diagnostic tests (15, 16).

The specificity of LAMP and PCR procedures is usually determined by comparing the results with the cultivation method as the gold standard. For fastidious microorganisms that barely grow on commercial media, the specificity of molecular methods will decrease because of the exaggerated false positive results. Therefore, it is best to consider the specificity of molecular methods in regard to the target microorganisms.

Conclusion

The LAMP and PCR methods have acceptable specificities and sensitivities necessitating conduction of more studies to establish them as routine and valid diagnostic modalities.

Ethical considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Financial source

The author declares that there was no financial support for this study.
Conflict of interest

The authors declare that there is no conflict of interests.

References

1. Mirzai S, Safi S, Mossavari N, Afshar D, Bolourchian M (2016). Development of a loop-mediated isothermal amplification assay for rapid detection of Burkholderia mallei. Cell Mol Biol (Noisy-le-grand), 62:32-6.
2. Ranjbar R, Afshar D (2015). Development of a loop-mediated isothermal amplification assay for rapid detection of Yersinia enterocolitica via targeting a conserved locus. Iran J Microbiol, 7(4):185-90.
3. Notomi T, Okayama H, Masubuchi H, et al (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 28(12):E63.
4. Ushikubo H (2004). [Principle of LAMP method—a simple and rapid gene amplification method]. Urinax, 54:107-112.
5. N Muhammad, M A Hossain, A K Musa, et al (2010). Seroepidemiological study of human brucellosis among the population at risk. Mymensingh Med J, 19(1):1-4.
6. Keessen E, Hopman N, van Leengoed L, et al (2011). Evaluation of four different diagnostic tests to detect Clostridium difficile in piglets. J Clin Microbiol, 49(5):1816-21.
7. Panic N, Leoncini E, De Belvis G, et al (2013). Evaluation of the endorsement of the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement on the quality of published systematic review and meta-analyses. PLoS One, 8(12):e83138.
8. Asar S, Jalalpour S, Ayoubi F, et al (2016). PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Journal of Rafsanjan University of Medical Sciences, 15(1): 68-80.
9. The R Development Core Team (2013). R: A language and environment for statistical computing. http://softlibre.unizar.es/manuales/aplicaciones/r/fullrefman.pdf
10. Nliwasa M, MacPherson P, Chisala P, et al (2016). The sensitivity and specificity of loop-mediated isothermal amplification (LAMP) assay for tuberculosis diagnosis in adults with chronic cough in Malawi. PLoS One, 11:e0155101.
11. Khan M, Wang R, Li B, et al (2018). Comparative evaluation of the LAMP assay and PCR-based assays for the rapid detection of Alternaria solani. Front Microbiol, 9:2089.
12. Lakshmi BA, Kim S (2021). Recent trends in the utilization of LAMP for the diagnosis of viruses, bacteria, and allergens in food. Recent Developments in Applied Microbiology and Biochemistry, 2021: 291-297.
13. Mandal P, Biswas A, Choi K, Pal U (2011). Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol, 6:87-102.
14. Ailenberg M, Silverman M (2000). Controlled hot start and improved specificity in carrying out PCR utilizing touch-up and loop incorporated primers (TULIPS). Biotechniques, 29:1018-20, 1022-4.
15. Pöschl B, Wanesorn J, Thekisoe O, et al (2010). Comparative diagnosis of malaria infections by microscopy, nested PCR, and LAMP in northern Thailand. Am J Trop Med Hyg, 83:56-60.
16. Zhao H-B, Yin G-Y, Zhao G-P, et al (2014). Development of loop-mediated isothermal amplification (LAMP) for universal detection of enteroviruses. Indian J Microbiol, 54:80-86.
17. Sails AD, Fox AJ, Bolton FJ, et al (2003). A realtime PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Appl Environ Microbiol, 69(3):1383-90.
18. Li X, Zhang S, Zhang H, et al (2009). A loop-mediated isothermal amplification method targets the phoP gene for the detection of Salmonella in food samples. Int J Food Microbiol, 133:252-258.
19. Yuan Y, Xu W, Zhai Z, et al (2009). Universal primer-multiplex PCR approach for simultaneous detection of Escherichia coli, Listeria monocytogenes, and Salmonella spp. in food samples. J Food Sci, 74(8):M446-52.
20. Tavakoli HR, Najafi A, Ahmadi A (2010). Rapid, specific and concurrent detection of Listeria, Salmonella and Escherichia coli pathogens by
21. Shalaby MA, Mohamed MS, Mansour MA, AS AE-H (2011). Comparison of polymerase chain reaction and conventional methods for diagnosis of Listeria monocytogenes isolated from different clinical specimens and food stuffs. *Clin Lab*, 57:919-924.

22. Tang M-J, Zhou S, Zhang X-Y, et al (2011). Rapid and sensitive detection of Listeria monocytogenes by loop-mediated isothermal amplification. *Curr Microbiol*, 63:511-516.

23. Wang F, Jiang L, Ge B (2012). Loop-mediated isothermal amplification assays for detecting Shiga toxin-producing *Escherichia coli* in ground beef and human stools. *J Clin Microbiol*, 50:91-97.

24. Nishimura N, Takaoka N, Baba Y, et al (2012). [Direct PCR detection of food-borne bacteria from mixed human feces]. *Kansenshogaku Zasshi*, 86(6):741-8.

25. Wang L, Li Y, Chu J, et al (2012). Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains. *Mol Biol Rep*, 39:445-449.

26. Xu Z, Li L, Chu J, et al (2012). Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. *Food Res Int*, 47:166-173.

27. Delibato E, Anniballi F, Vallebona PS, et al (2013). Validation of a 1-day analytical diagnostic real-time PCR for the detection of *Salmonella* in different food meat categories. *Food Anal Methods*, 6:996–1003.

28. Vallières E, Saint-Jean M, Rallu F (2013). Comparison of three different methods for detection of Shiga toxin-producing *Escherichia coli* in a tertiary pediatric care center. *J Clin Microbiol*, 51:481-486.

29. Ishii S, Segawa T, Okabe S (2013). Simultaneous quantification of multiple food-and waterborne pathogens by use of microfluidic quantitative PCR. *Appl Environ Microbiol*, 79:2891-2898.

30. Wang L, Shi L, Su J, Ye Y, Zhong Q (2013). Detection of *Vibrio parahaemolyticus* in food samples using in situ loop-mediated isothermal amplification method. *Gene*, 515:421-425.

31. Wang YZ, Wang DG (2013). Development and evaluation of a loop-mediated isothermal amplification (LAMP) method for detecting foodborne *Salmonella* in raw milk. *Advanced Materials Research*, 647:577–582.

32. Hu Q, Lyu D, Shi X, et al (2014). A modified molecular beacons-based multiplex real-time PCR assay for simultaneous detection of eight foodborne pathogens in a single reaction and its application. *Foodborne Pathog Dis*, 11:207–214.

33. Rundell MS, Pingle M, Das S, et al (2014). A multiplex PCR/LDR assay for simultaneous detection and identification of the NIAID category B bacterial food and water-borne pathogens. *Diagn Microbiol Infect Dis*, 79(2):135-40.

34. Di H, Ye L, Neogi SB, et al (2015). Development and evaluation of a loop-mediated isothermal amplification assay combined with enrichment culture for rapid detection of very low numbers of *Vibrio parahaemolyticus* in seafood samples. *Biol Pharm Bull*, 38:88-87.

35. Yan M, Xu L, Jiang H, et al (2017). PMA-LAMP for rapid detection of *Escherichia coli* and shiga toxins from viable but non-culturable state. *Microb Pathog*, 105:245-250.

36. Han L, Wang K, Ma L, et al (2020). Viable but nonculturable *Escherichia coli* O157: H7 and *Salmonella* enterica in fresh produce: rapid determination by loop-mediated isothermal amplification coupled with a propidium monoazide treatment. *Appl Environ Microbiol*, 86:e02566-19.

37. Xu C, Luo H, Zhang Y (2020). Development of multiplex loop-mediated isothermal amplification for three foodborne pathogens. *Food Science and Technology*, 40(Suppl. 1): 205-210.

38. Srimongkol G, Ditmangklo B, Choopara I, et al (2020). Rapid colorimetric loop-mediated isothermal amplification for hypersensitive point-of-care *Staphylococcus aureus* enterotoxin A gene detection in milk and pork products. *Sci Rep*, 10(1):7768.

39. Kreitlow A, Becker A, Schotte U, et al (2021). Establishment and validation of a loop-mediated isothermal amplification (LAMP) assay targeting the trrRSBCA locus for rapid detection of *Salmonella* spp. in food. *Food Control*, 126:107973.