Histopathological Diagnostic Value of the IgG4⁺/IgG⁺ Ratio of Plasmacytic Infiltration for IgG4-Related Diseases

A PRISMA-Compliant Systematic Review and Meta-Analysis

Chuwen Deng, MD, Wenli Li, PhD, Si Chen, MD, Wen Zhang, PhD, Jing Li, MD, Chaojun Hu, MD, Xiaoting Wen, MD, Fengchun Zhang, PhD, and Yongzhe Li, MD

Abstract: This article aims to perform a meta-analysis to evaluate the diagnostic value of the immunoglobulin G (IgG)G4⁺/IgG⁺ ratio of plasmacytic infiltration for IgG4-related diseases. Four databases—EMBASE, ISI Web of Knowledge, PubMed, and the Cochrane Library—were systematically searched. Approximately 200 participants from several studies were included in this research. The area under the curve of the negative likelihood ratios were 3.12 (95% CI, 1.07–9.16) and 0.26, respectively. The specificity was 90.20% (95% CI, 81.20–95.80). The positive and negative likelihood ratios were 18.94 [95% confidence interval (CI), 2.89–124.30]. The sensitivity was 58.80% (95% CI, 50.90–66.30) and the specificity was 90.20% (95% CI, 81.20–95.80). The positive and negative likelihood ratios were 3.12 (95% CI, 1.07–9.16) and 0.26 (95% CI, 0.09–0.70), respectively. The area under the curve of the summary receiver-operating characteristic was 0.88.

To conclude, the IgG4⁺/IgG⁺ ratio of plasmacytic infiltration is modestly effective in diagnosing IgG4-related disease.

(Medicine 94(9):e579)

Abbreviations: AUC = area under the curve, DOR = diagnostic odds ratio, HPF = high power fields, IgG4-RD = IgG4-related disease, LR+ = positive likelihood ratio, LR− = negative likelihood ratio, SROC = summary receiver-operating characteristic.

INTRODUCTION

Immunoglobulin G (IgG4)-related disease (IgG4-RD) is a systemic immune-mediated disease characterized by storiform fibrosis, infiltration of IgG4⁺ plasma cells in involved organs, and, in some cases, elevated serum IgG4 levels. IgG4-RD can affect almost any organ and common sites of involvement are the pancreas, salivary glands, orbit, and lymph nodes. Few studies have focused on the incidence or prevalence of IgG4-RD, but recent epidemiological studies have shown that approximately 6700 to 26,000 patients have developed IgG4-RD over the past 20 years in Japan.

Diagnosis of IgG4-RD mainly depends on 4 criteria: histopathology, imaging, serology, and response to steroid therapy. However, these criteria are insufficient for diagnosing IgG4-RD. Imaging of involved organs cannot efficiently differentiate tumors and IgG4-RD. Furthermore, elevated serum IgG4 is not exclusively observed in IgG4-RD, and 30% of IgG4-RD patients indeed present normal IgG4 levels. Histopathological evidence has shown higher sensitivity and specificity for steroid therapy, and is widely accepted as the gold standard for the diagnosis of IgG4-RD.

Histopathological findings of IgG4⁺ plasma cells are the most important features of IgG4-RD, especially the IgG4⁺/IgG⁺ ratio. Over the past decade, numerous studies have evaluated the IgG4⁺/IgG⁺ ratio for its ability to accurately diagnose IgG4-RD. However, inconsistent conclusions relating to the diagnostic performance of IgG4⁺/IgG⁺ ratio antibodies have been drawn. The aim of this study was to systematically review the literature to determine the diagnostic performance of the IgG4⁺/IgG⁺ ratio in patients with IgG4-RD.

METHODS

Literature Search

Studies were identified in the EMBASE, ISI Web of Knowledge, PubMed, and the Cochrane Library databases. To retrieve all relevant publications related to histopathological findings of IgG4⁺ plasma cells, we searched for the following terms: “IgG4/IgG ratio,” “IgG4⁺/IgG⁺ ratio,” “ratio of IgG4⁺/IgG⁺,” and “IgG4⁺/IgG⁺” combined with IgG4-related diseases. No limits were placed on ethnicity or geographic region, and all documents were updated to September 2014. Additional relevant references cited in searched articles were also selected. All analyses of this systemic review were based on previous published studies, thus no ethical approval and patient consent are required.

Eligibility Criteria

Studies meeting the following criteria were eligible for inclusion: those that assessed the diagnostic accuracy of

OPEN
histopathological findings of IgG4+ plasma cells with an
IgG4+/IgG+ ratio ≥0.40 and IgG4+/high power fields (HPFs)
>10 for IgG4-RD; sufficient data reported to construct 2-by-2
tables; no criteria for published language; and studies based on
animals or cell cultures and case reports; conference abstracts
without subsequent publication in full text were excluded. In the
case of overlapping studies, only the study with the largest
sample size was included in our analysis.

Data Extraction

Data were extracted from all selected studies by 2 inde-
pendent investigators. Interresearcher disagreements were
resolved by consensus or by a third investigator. The following
data were collected from each selected study: first author’s
name; publication year; country in which the study was per-
formed; study design; and study results. Study quality was
assessed using the Quality Assessment of Diagnostic Accuracy
Studies (QUADAS) tool. Authors of the identified studies were
contacted via e-mail if further study details were needed.

Statistical Analysis

Statistical analysis was performed using STATA 11.2 soft-
ware (Stata Corporation, College Station, TX, USA) and Meta-
DiSc 1.4 (Unit of Clinical Biostatistics, Ramon y Cajal Hospital,
Madrid, Spain). Heterogeneity between studies was evaluated by
Cochrane Q-statistic as well as I²-statistic. A P value >0.10 in
Q-statistic indicated lack of heterogeneity among studies.
I² <25% was considered low heterogeneity, 25% to 50% mod-
erate, and >50% a high degree of inconsistency. Finally, the
overall or pooled diagnostic odds ratio (DOR), sensitivity, speci-
city, positive likelihood ratio (LR+) and negative likelihood
ratio (LR−), and their 95% CIs were obtained by a random-effects
or a fixed-effects model in the presence (P ≤ 0.10 or I² > 50%) or
absence (P > 0.10 and I² ≤ 50%) of heterogeneity, respectively.
The area under the summary receiver-operating characteristic
(SROC) curves represented the overall performance of the detec-
tion method. A P value <0.05 (2 sided) was considered signifi-
cant. Evaluation of threshold effect and publication bias was also
undertaken.

RESULTS

Literature Search

Electronic and manual searches yielded a total of 388
potentially eligible articles. A flow chart of screening articles
for meta-analysis is illustrated in Figure 1. Three hundred
seventy-two articles were excluded by screening the titles
and abstracts. A further 7 duplicated articles were excluded.
A total of 9 eligible studies were included in the meta-
analysis.7–15

FIGURE 1. Flow chart of studies included in the meta-analysis.
Study Characteristics

The characteristics of the 9 studies are summarized in
Table 1. A total of 170 IgG4-RD patients and 90 controls were involved in these studies. With regard to the geographic location of the studies, 2 were carried out in the United States, 7,8 6 in Japan, 12–15 and 1 in Korea. 12 Assessment using QUADAS indicated that the studies were of medium quality, with positive results for at least 6/14 items (Figure 2).

Meta-Analysis of IgG4+/IgG Ratio of Plasmacytic Infiltration

The sensitivity of the IgG4+/IgG ratio of plasmacytic infiltration ranged from 19.8% to 96.8%, and the reported specificity ranged from 50.0% to 97.8%. The pooled DOR was 18.94 (95% CI, 2.89–124.30; I² = 57.80%). The sensitivity was 58.80% (95% CI, 50.00–66.30; Q = 107.67, P < 0.01; I² = 91.60%) and the specificity was 90.20% (95% CI, 81.20–95.80; Q = 21.87, P = 0.01; I² = 58.90%), respectively. The area under the curve (AUC) of the SROC was 0.88. The forest plots and SROC are shown in Figure 3A and B, and Figure 4A, respectively.

Meta-Analysis of IgG4+ Plasma Cells/HPF

In order to compare the IgG4+/IgG+ ratio of plasmacytic infiltration with IgG4+ plasma cells/HPF, we performed meta-analysis of IgG4+ plasma cells/HPF based on the articles included in this research. The sensitivity of IgG4+ plasma cells/HPF ranged from 38.00% to 97.60%, and reported specificity ranged from 50.00% to 81.80%. The pooled DOR was 26.16 (95% CI, 5.66–120.95; Q = 4.83, P = 0.44; I² = 0%). The sensitivity was 72.20% (95% CI, 63.30–80.00; Q = 54.63, P = 0.00; I² = 90.80%) and the specificity was 72.50% (95% CI, 56.10–85.40; Q = 2.40, P = 0.79; I² = 0%). The LR+ and LR- were 3.08 (95% CI, 1.91–4.96; Q = 4.15, P = 0.53; I² = 0%) and 0.09 (95% CI, 0.03–0.31; Q = 7.39, P = 0.19; I² = 32.30%), respectively. The AUC of the SROC was 0.91. The forest plots and SROC are shown in Figure 3C and D, and Figure 4B, respectively.

Exploration of Threshold Effect

A Spearman rank correlation was performed to confirm the threshold effect; indication of no threshold effect was found [Spearman correlation coefficient = −0.77, P = 0.009; the slope (b) of the regression equation did differ from zero (P = 0.412)].

Table 1. Characteristics of Studies Included in the Meta-Analysis of Diagnostic Performance of IgG4+/IgG Ratio in IgG4-RD

Reference	Author	Year	Disease	Case Number (n = 154)	Male Number (n = 70)	Female Number (n = 154)	Mean Age, y	Control Number (n = 69)	Male Number (n = 30)	Female Number (n = 30)	Mean Age, y
7	Graham et al	2014	IgG4-related sclerosing cholangitis	9	9	61.3	0	0	0	0	0
8	Lehman et al	2014	IgG4-related skin disease	50	NR	NR	0	0	0	0	0
9	Moriyama et al	2014	Mikulicz disease	13	5	64.5	1	1	70	70	70
10	Moriyama et al	2014	Mikulicz disease	13	5	64.5	1	1	70	70	70
11	Uehara et al	2013	IgG4-related lymphadenopathy	13	9	64.5	16	NR	NR	NR	NR
12	Sato et al	2013	IgG4-related skin diseases	10	9	64	0	0	0	0	0
13	Go et al	2012	IgG4-related disease	14	7	51.2	21	14	50.3	50.3	50.3
14	Kawano et al	2012	IgG4-related tuberculosis	20	18	64	0	0	0	0	0
15	Kubota et al	2010	IgG4-related lymphoplasmacytic infiltrative disorder	10	5	57.6	9	5	56.1	56.1	56.1

Reference	Region	Design	Plasma Cells of IgG4+/IgG+ Ratio >40%	IgG4+ Plasma Cells/High Power Fields >10	QUADAS Scores						
7	United States	Case only	4	0	40	2	0	0	0	10	0
8	United States	Case only	5	0	45	0	0	0	0	10	0
9	Japan	Case control	13	0	0	0	0	0	0	0	0
10	Japan	Case control	9	0	41	0	0	0	0	0	0
11	Japan	Case control	13	0	0	16	0	0	0	0	0
12	Korea	Case control	10	0	0	0	0	0	0	0	0
13	Japan	Case only	0	0	3 9	0	0	0	0	0	0
14	Japan	Case only	7	0	3 9	0	0	0	0	0	0
15	Japan	Case only	15	0	0	22	0	0	0	0	0

FN = false negative, FP = false positive, IgG4-RD = immunoglobulin G4-related disease, NA = not applicable, NR = no report, QUADAS = Quality Assessment of Diagnostic Accuracy Studies, TN = true negative, TP = true positive.
Publication Bias

The presence of a statistically significant slope coefficient ($P < 0.05$) was considered to indicate possible bias. We conducted funnel plots that represented a somewhat symmetric curve (Figure 5). The P value of the slope coefficient was calculated to be 0.00, indicating that publication bias was observed in the included studies.

DISCUSSION

The diagnosis of IgG4-RD mainly relies on a triad of clinical characteristics: results of serum IgG4 tests, imaging features, and histological assessment. However, the common clinical manifestations are not specific to IgG4-RD. Furthermore, the performance of serum IgG4 is not satisfactory, having moderate specificity and sensitivity. Histopathological findings were considered the gold standard of IgG4+ plasma cells, especially the IgG4+/IgG+ ratio and IgG4+/HPF. To date, no systematic evaluation of the IgG4+/IgG+ ratio has been performed. To our knowledge, this study is the first meta-analysis to provide precise and controlled data on the diagnostic performance of the IgG4+/IgG+ ratio in IgG4-RD.

The IgG4+/IgG+ ratio was found to be a potential diagnostic biomarker of IgG4-RD, and its diagnostic performance needs to be confirmed. There were 9 eligible studies of medium quality (QUADAS scores >6, Figure 2) included in this meta-analysis (Table 1). The pooled specificity was high (90.20%), in comparison with a relatively low sensitivity (58.80%), which revealed that the diagnostic performance of the IgG4+/IgG+ ratio could identify controls better than IgG4-RD. The SROC curve implies that the IgG4+/IgG+ ratio showed moderate

Withdrawals explained	Yes	No	Unclear
Uninterpretable results reported			
Relevant clinical information			
Relevant standard results blinded			
Index test results blinded			
Adequate reference standard description			
Adequate index test description			
Incorporation avoided	Yes	No	Unclear
Differential verification avoided	Yes	No	Unclear
Partial verification avoided	Yes	No	Unclear
Acceptable delay between tests	Yes	No	Unclear
Acceptable reference criteria	Yes	No	Unclear
Acceptable selection criteria	Yes	No	Unclear

FIGURE 2. Quality assessment of included studies based on the Quality Assessment of Diagnostic Accuracy Studies tool.

Adequate reference standard description
Relevant standard results blinded
Adequate index test description
Incorporation avoided
Differential verification avoided
Partial verification avoided
Acceptable delay between tests
Acceptable reference criteria
Acceptable selection criteria

FIGURE 3. Forests plot of the accuracy of IgG4+/IgG+ ratio and IgG4+/HPF for the diagnosis of IgG4-RD. (A) Sensitivity forest plot of the IgG4+/IgG+ ratio. (B) Specificity forest plot of the IgG4+/IgG+ ratio. (C) Sensitivity forest plot of the IgG4+/HPF. (D) Specificity forest plot of the IgG4+/HPF. HPF = high power field, IgG4-RD = immunoglobulin G-related disease.
FIGURE 4. SROCs of IgG4/+/IgG+/HPF and IgG4/+/IgG+/HPF for IgG4-RD diagnosis. (A) SROC for IgG4/+/IgG+/ ratio. (B) SROC for IgG4/+/IgG+/ ratio. HPF = high power field, IgG4-RD = immunoglobulin G4-related disease, SROC = summary receiver-operating characteristic.

Some limitations in this meta-analysis need to be noted. The cutoff value of the IgG4/+/IgG+/ ratio remains somewhat controversial, and exploring its clinical significance might help further our understanding of the IgG4/+/IgG+/ ratio; however, relatively few studies have focused on this aspect. Second, meta-analysis of IgG4+/IgG+/ plasma cells/HPF only considered the studies that we included for the IgG4+/IgG+/ ratio, and thus, requires further research.

In conclusion, the IgG4+/IgG+/ ratio is a modestly effective diagnostic biomarker for IgG4-RD, with a low sensitivity but a high specificity.

REFERENCES

1. Takahashi H, Yamamoto M, Suzuki C, et al. The birthday of a new syndrome: IgG4-related diseases constitute a clinical entity. Autoimmun Rev. 2010;9:591–594.
2. Umehara H, Okazaki K, Masaki Y, et al. A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details. Mod Rheumatol. 2012;22:1–14.
3. Sahani DV1, Kalva SP, Farrell J, et al. Autoimmune pancreatitis: imaging features. Radiology. 2004;233:345–352.
4. Ghazale A, Chari ST, Smyrk TC, et al. Value of serum IgG4 in the diagnosis of autoimmune pancreatitis and in distinguishing it from pancreatic cancer. Am J Gastroenterol. 2007;102:1646–1653.
5. Sah RP, Chari ST. Serologic issues in IgG4-related systemic disease and autoimmune pancreatitis. Curr Opin Rheumatol. 2011;23:108–113.
6. Deshpande V, Zen Y, Chan JK, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012;25:1181–1192.
7. Graham RP, Smyrk TC, Chari ST, et al. Isolated IgG4-related sclerosing cholangitis: a report of 9 cases. Hum Pathol. 2014;45:1722–1729.
8. Lehman JS, Smyrk TC, Pittelkov MR. Increased immunoglobulin (Ig) G4-positive plasma cell density and IgG4/IgG ratio are not specific for IgG4-related disease in the skin. Am J Clin Pathol. 2014;141:234–238.
9. Moriyama M, Furukawa S, Kawano S, et al. The diagnostic utility of biopsies from the submandibular and labial salivary glands in IgG4-related dacyroadenitis and sialoadenitis, so-called Mikulicz’s disease. Int J Oral Maxillofac Surg. 2014;43:1276–1281.

diagnostic performance for IgG4-RD. The pattern of the data points in the SROC curve did not suggest a “shoulder-arm” shape, and the AUC of SROC was 0.88. Taken together, these results indicate that the IgG4+/IgG+ ratio had a modest level of overall diagnostic accuracy for IgG4-RD. Considering that IgG4+/HPF was also regarded as an important histological feature of IgG4-RD diagnosis, we also performed a meta-analysis of IgG4+/HPF. Compared with the IgG4+/IgG+ ratio, the pooled specificity of IgG4+/HPF was lower (72.50%) but the sensitivity was higher (72.20%). The AUC of SROC was 0.91. Primary comparison revealed that the diagnostic performance of IgG4+/HPF was better than that of the IgG4+/IgG+ ratio.

Heterogeneity has been found in the pooled DOR of the IgG4+/IgG+ ratio (18.94, P = 0.01; 95% CI: 0.3–100). In order to explore the heterogeneity found across studies, publication bias and Spearman rank correlation were performed. No statistical difference was found using Spearman rank correlation, which means that there was no threshold effect among these studies. However, publication bias was found in this meta-analysis, which could introduce heterogeneity.
10. Uehara T, Masamoto J, Yoshizawa A, et al. IgG4-related disease-like fibrosis as an indicator of IgG4-related lymphadenopathy. *Ann Diagn Pathol.* 2013;17:416–420.

11. Sato Y, Takeuchi M, Takata K, et al. Clinicopathologic analysis of IgG4-related skin disease. *Mod Pathol.* 2013;26:523–532.

12. Go H, Kim JE, Kim YA, et al. Ocular adnexal IgG4-related disease: comparative analysis with mucosa-associated lymphoid tissue lymphoma and other chronic inflammatory conditions. *Histopathology.* 2012;60:296–312.

13. Kawano M, Mizushima I, Yamaguchi Y, et al. Immunohistochemical characteristics of IgG4-related tubulointerstitial nephritis: detailed analysis of 20 Japanese cases. *Int J Rheumatol.* 2012;2012:609–795.

14. Kubota T, Moritani S, Katayama M, et al. Ocular adnexal IgG4-related lymphoplasmacytic infiltrative disorder. *Arch Ophthalmol.* 2010;128:577–584.

15. Yamamoto H, Yamaguchi H, Aishima S, et al. Inflammatory myofibroblastic tumor versus IgG4-related sclerosing disease and inflammatory pseudotumor: a comparative clinicopathologic study. *Am J Surg Pathol.* 2009;33:1330–1340.