Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/ acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY.
An unexpected finding of mammal mites (Psoroptidia: Sarcoptoidea) on a bird

Luiz Gustavo de Almeida Pedroso*, Fabio Akashi Hernandes*

*Departamento de Zoologia, Av. 24-A, 1515, 13506-900, Universidade Estadual, Paulista, Rio Claro, São Paulo State, Brazil.

Short note

ABSTRACT

The psoroptidian mite *Myocoptes musculinus* (Koch, 1844) is the most common species of the family Myocoptidae (Sarcoptoidea), along with its main host, the house mouse *Mus musculus* Linnaeus. The present article reports the first recorded confirmation of *M. musculinus* on a bird – the tropical screech-owl *Megascops choliba* (Vieillot). Finding myocoptid mites on a non-rodent host is an additional case of predator-prey contamination.

Keywords: horizontal transfer; contamination; ectoparasites; Strigiformes; Myocoptidae; Myocoptes

Introduction

Mites of the family Myocoptidae Gunther, 1942 (Astigmata: Psoroptidia: Sarcoptoidea) are permanent ectoparasites associated with rodents (Mammalia: Rodentia) (Bochkov 2010; O’Connor 2009). These mites are specialized to live on the skin of their hosts, except for the genus *Trichoecius* Canestrini, 1899, which is specialized for living on fur (Bochkov 2010; Fain 1970; Fain et al. 1970). Currently 6 genera and more than 60 myocoptid species have been recognized (Bochkov 2010; Bochkov et al. 2016; Bochkov and O’Connor 2017; Fain 1970; Fain et al. 1970). The genus *Myocoptes* Claparède, 1869 is the most diverse in this family, comprising 23 described species (Bochkov 2010; Bochkov and O’Connor 2017), including *Myocoptes musculinus* (Koch, 1844) the most common species, distributed worldwide along with its main host, the house mouse *Mus musculus* Linnaeus, 1758 (Rodentia: Muridae). This mite is also the main cause of the myocoptic mange in laboratory white mice around the world (Rice et al. 2013).

The two myocoptids recorded on non-rodent hosts are likely contaminations: *M. ictonyx* Fain, 1970 was described from the striped polecat *Ictonyx striatus* (Perry, 1810) (Carnivora: Mustelidae) from Africa (Fain et al. 1970), and *M. musculinus* was also recorded on the spotted-tailed quoll *Dasyurus maculatus* (Kerr, 1792) (Marsupialia: Dasyuridae) from Australia (Vilcins et al. 2008). Samples recovered from these hosts were scarce and both species are known to prey on rodents (Bochkov 2010; Vilcins et al. 2008; Fain et al. 1970).

In the present study we report the finding of *M. musculinus* on a bird, the tropical screech-owl *Megascops choliba* (Vieillot, 1817) (Aves: Strigidae) in Brazil.

Materials and methods

During September of 2015 a tropical screech owl *Megascops choliba* was kept in captivity after being attacked and injured by a dog in Mogi Mirim, São Paulo State, Brazil. The owl was fed daily with live white mice (*Mus musculus*). After a month, the bird died and was taken to the Acari laboratory of the São Paulo State University (UNESP) in Rio Claro, where it was washed for ectoparasites following the technique described by Clayton and Walther (1997). The recovered mites were put in 30% lactic acid for 24 hours, then mounted on microscopic
slides using Hoyers medium and heated at 50 °C for 5 days. The slides were then sealed with varnish and labeled. The mites were identified by means of a light microscope with differential interference contrast following Fain (1970).

Results and discussion

A total of 5 males, 7 females, 3 nymphs and 1 larva of *Myocoptes musculinus* (Figure 1) were recovered from *Megascops choliba*. The bird had no evidence of any harmful effects, such as mange or plucking behavior.

Similar cases of horizontal transfer between psoroptidian mites to new host species often result in severe and harmful effects by the mites (Andriantsoanirina et al. 2015; 2016; Hernandes et al. 2014; Mironov 2013; Skerratt et al. 1998).

The fact that only myocoptid mites were found on the owl might indicate that the bird was previously free of typical bird mites (Astigmata: Analgoidea, Pterolichoidea) and therefore there was no competition between mammalian (Astigmata: Sarcoptoidae) and avian mites. Notwithstanding, the owl’s condition (injured, stressed and caged) probably facilitated colonization by the atypical mites.

Other cases in which potential mite transfer can occur involve interspecific interaction between birds, such as feather mites on obligatory brood parasite birds. However, in most of these cases, mites are not transmitted from foster parents to the bird parasitic nestling, but instead are acquired from a conspecific host later in life, probably during copulation or other intraspecific interaction (Atyeo and Gaud 1983; Gaud 1992). Birds of prey (e.g. falcons, hawks and owls), which prey on many bird species, and thus could have a higher probability of acquiring mites from their prey, were rarely reported with mites other than their typical associated taxa. *Proctophyllodes polyxenus* Atyeo & Braasch, 1966 (Analgoidea: Proctophyllodidae), a typical passerine-associated feather mite, was also recorded on three owl species, which certainly represent predator-prey contamination (Atyeo and Braasch 1966; Philips 2000).

On the other hand, a recent cophylogenetic study on feather mites of the genera *Proctophyllodes* Robin, 1877 and *Trouessartia* Canestrini, 1899 (Analgoidea: Proctophyllodidae and Trouessartiidae) concluded that horizontal transfer – i.e. between different host species – is

Figure 1 *Myocoptes musculinus* (Koch, 1844), dorsal view of male (left) and female (right).
probably the main cause for speciation in these mites, suggesting that interspecific transfer can occur more commonly in nature than what was previously estimated (Doña et al. 2017).

The present finding represents the first record of a mammal mite on a bird; the opposite situation was recorded by Gaud (1992), who reported a few specimens of \textit{Ciconiacarus} Gaud, 1973 (Pterolichoidea: Vexillariidae), typically associated with hornbills (Aves: Bucerotiformes), on two old-world monkey skins of the genera \textit{Colobus} and \textit{Cercopithecus}. The author later discovered that the monkeys and the bird were placed on the same table during the taxidermy process in the field.

Discovering \textit{M. musculinus} on an atypical host like a strigid bird is obviously a case of predator-prey contamination. Still, despite the phylogenetic distance between the hosts, the similarity of their symbiotic mites is remarkably close, and it might suggest a possible route from which the lineage of mammal associated psoroptidians (Astigmata: Sarcoptoidea) successfully colonized these new hosts by evolving from bird associated mites (Analgoidea) (Klimov and O'Connor 2008; 2013).

\textbf{Acknowledgements}

The authors thank Antônio B.A. Fontanella (São Paulo State University, Rio Claro) for collecting the tropical screech owl, and also L. Keiper for revising the manuscript. The study was funded by the São Paulo Research Foundation (FAPESP) [2016/11671-1].

\textbf{References}

Andriantsoanirina V., Ariey F., Izri A., Bernigaud C., Fang F., Guilhot J., Chosidow O., Durand R. 2015. Wombats acquire scabies from humans and/or dogs from outside Australia. Parasitol. Res., 114: 2079-2083. doi:10.1007/s00436-015-4422-2

Andriantsoanirina V., Fang F., Ariey F., Izri A., Foulet F., Botterel F., Bernigaud C., Chosidow O., Huang W., Guilhot J., Durand R. 2016. Are humans the initial source of canine mange? Parasit. Vectors, 9: 177. doi:10.1186/s13071-016-1555-y

Atheyo W.T., Braasch N.L. 1966. The feather mite genus \textit{Proctophyllodes} (Sarcoptiformes: Proctophyllodidae). Bulletin of the University of Nebraska State Museum, 5: 1-354.

Atheyo W.T., Gaud J. 1983. Feather mites of obligate brood parasites. J. Parasitol., 69: 455-458.

Bochkov A.V. 2010. A review of mammal-associated Psoroptidia (Acariformes: Astigmata). Acarina, 18: 99-260.

Bochkov A.V., O'Connor B.M. 2017. A new species of myocoptid mites \textit{Myocoptes} (Comyocoptes) \textit{nesokia} sp. nov. (Acariformes: Myocoptidae) parasitizing \textit{Nesokia indica} (Rodentia: Muridae) in Pakistan. Acta Parasitol., 62: 46-49. doi:10.1515/ap-2017-0005

Bochkov A.V., O'Connor B.M., Skoracki M. 2016. New species and new records of mites of the family Myocoptidae (Acariformes: Sarcoptoidae) from African rodents. J. Med. Entomol., 54: 587-596. doi:10.1093/jme/jtw217

Clayton D.H., Walther B.A. 1997. Collection and quantification of arthropod parasites of birds; pp. 419-440, in: D.H. Clayton and J. Moore (eds.). Host-parasite evolution: general principles and avian models. Oxford: Oxford University Press.

Doña J., Sweet A.D., Johnson K.P., Serrano D., Mironov S.V., Jovani R. 2017. Cophylogenetic analyses reveal extensive host-shift speciation in a highly specialized and host-specific symbiotic system. Mol. Phylogenetics Evol., 115: 190-196. doi:10.1016/j.ympev.2017.09.005

Fain A. 1970. Les Mycoptididae en Afrique au sud du Sahara (Acarina: Sarcoptiformes). Mus. Roy. Afr. Centr., Annals., Sci. Zool., 179: 1-67.

Fain A., Munting A.J., Lukoschus F.S. 1970. Les Mycoptididae parasites des rongeurs en Hollande et en Belgique. Acta Zool. Pathol. Antverp., 50: 67-172.

Hernandes F.A., Pedroso L.G.A., Mironov S.V. 2014. From cuckoos to chickens: a caught-in-the-act case of host shift in feather mites (Arachnidae: Acari: Psoroptoidea). Parasitol. Res., 113: 4355-4361. doi:10.1007/s00436-014-4119-7

Klimov B.P., O'Connor B.M. 2008. Origin and higher-level relationships of psoroptoidian mites (Acari: Astigmata: Psoroptida): Evidence from three nuclear genes 47: 1135-1156.

Klimov B.P., O'Connor B.M. 2013. Is permanent parasitism reversible? – Critical evidence from early evolution of house dust mites. Syst. Biol., 62: 411-423. doi:10.1093/sysbio/syq056

Mironov SV. 2012. New species of the feather mite genus \textit{Proctophyllodes} Robin, 1877 (Acari: Analogiidae: Proctophyllodidae) from European passerines (Aves: Passeriformes), with an updated checklist of the genus. Acarina, 20: 130-158.

Mironov S.V. 2013. \textit{Allopsoroptoides galli} n. g., n. sp., a new genus and species of feather mites (Acari: Analogiidae: Psoroptoidea) causing mange in commercially raised domestic chicken in Brazil. Syst. Parasitol., 85: 201-212. doi:10.1007/s11230-013-9422-y
O'Connor B.M. 2009. Cohort Astigmata. Chapter 16, in: G.W. Krantz, and D.E. Walter (eds.). A manual of acarology, 3rd edition. Lubbock: Texas Tech University Press. pp. 807.

Philips J.R. 2000. A review and checklist of the parasitic mites (Acarina) of the Falconiformes and Strigiformes. J. Raptor Res., 34: 210-231.

Rice K.A., Albacarys L.K., Pate K.A.M., Perkins C., Henderson K.S., Watson J. 2013. Evaluation of diagnosis methods for Mycoptes musculinus according to age and treatment status of mice (Mus musculus). J. Amer. Assoc. Lab. An. Scie., 52: 773-781.

Skerratt L.F., Martin R.W., Handasyde K.A. 1998. Sarcoptic mange in wombats. Aust. Vet. J., 76: 408-410. doi:10.1111/j.1751-0813.1998.tb12389.x

Vilcins I.M., Old J.M., Gerhard K., Deane E.M. 2008. Ectoparasites and skin lesions in wild-caught spotted-tailed Quoll (Dasyurus maculatus) (Marsupialia: Dasyuridae). Comp. Parasitol., 75: 271-277. doi:10.1654/4339.1