A study on the erosion hazard rate of Limboto Lake catchment area

S Eraku¹ and M H Jamil²

¹Department of Geography Education, Faculty of Mathematics and Natural Science, Universitas Negeri Gorontalo
²Agribusiness Study Program, Department of Social Economic of Agriculture, Faculty of Agriculture, Hasanuddin University

E-mail: sunartyeraku@ung.ac.id

Abstract. Damages to the land resources, mainly those happening on the drainage basin at Alo, Gorontalo occur in consequence of degradation of the ground surface layer as hit by raindrops and rainwater flow that carry soil surface. This issue becomes quite serious due to illegal logging and agricultural land conversion, mostly for maize fields as one of Gorontalo’s top commodities. As an attempt to analyze the problems, this study is undergone through field observation and documentation. This study covers aspects of socio-biogeophysical characteristics of the Alo drainage basin and analyzes the level of soil surface erosion and tolerable erosion rate. The result shows that 98.75 percent of erosion hazard is classified into low-to-moderate, covering approximately 6,874.721 hectares. Meanwhile, 1.25 percent of the high-to-extreme level of erosion hazard is 98.79 hectares wide. This suggests that the inappropriate use of land is more likely to increase the erosion hazard rate.

1. Introduction

Preserving conservation sites from threats is quite a duty these days. The treats are from various illegal activities, such as logging, hunting, kinds of land conversion, mineral exploration and exploitation, or conflict of land use. It is important to manage land resources in the context of development in Indonesia years ahead, as now more complex challenges begin to emerge. These challenges are (1) pressures from local people, (2) land conversions and working shifts, (3) forest degradation and land damages, and (4) environmental damages and natural disasters. Therefore, a sustainable concept of land resources management focusing on tackling the challenges needs to be designed and formulated on local, regional, and national scale [1].

Damages to land resources in watersheds are the aftereffect of loss of soil surface by raindrops and rainwater’s carrying capacity, eventually creating a critical land zone. It is caused by over exploitations of productive lands and careless activities towards environment preservation. Some of the main factors to damage the catchment area are deforestation and cultivation with less or no appliance on soil conservation principles. As reported by the State Ministry of Environment and Forestry, in entire Indonesia, floods in 2006 only affected 124 districts in total. The number increased to 240 districts in 2007. This was aggravated by the pervasive spread of damaged catchment areas over Indonesia and nearly 4.2 percent of land conversion rates per year [2].
Limboto Lake is a natural lake located in Gorontalo regency. Stretched approximately 3,000 hectares wide, it is the estuary of 5 main rivers, namely Bone Bolango, Alo, Daenaa, Bionga, and Molamahu River. As an icon of both Gorontalo regency and province, Limboto Lake possesses a significant role, either as an ecological and hydrological function, or socio-economical support to the locals [9]. Functioning as hydrological support, it acts as a catchment area for the five top rivers, also as control of disaster and erosion handling. It also acts as a model of biodiversity, providing habitat for plants and animals. Limboto Lake supports the locals in the socio-economical sector, delivering commodities for the fish farmers. Furthermore, it also takes part as a medium of cultural development, education and research, and as a tourism object. Such important roles Limboto Lake possesses, that government needs to sustain its existence.

Alo drainage basin is among the largest watersheds nearby the Limboto Lake catchment area, having an area of 48.828 hectares, covering 52 percent of the Limboto Lake catchment area, making it a benchmark when analyzing Limboto Lake catchment area entirely. One major quest needs to be solved by the tendency of a functional land shift by local people. Most of the locals are farmers. Thus they tend to explore the land in the upstream area of the watershed, resulting in gradual deforestation. The forest is cut down then replaced by farms (mainly maize fields), as an effort of industrial extensification, without scrutiny analysis on the watershed’s environmental support capacity. There is not enough intensive management and technology used in maize farms located in a hilly area of the watershed.

As mentioned in Lihawa [3], there was a decrease in the size of forests in Alo watershed, from 5,587 hectares in 2003 to 4,478 hectares two years later. By that, Alo watershed has more dry farmland and wide open ground than other sub-watersheds, also, most lands have a slope of 49.3 percent. On the other hand, farmlands expanded significantly from 1,398 hectares in 2003 to 30,338 hectares in 2005. This might trigger an increase in surface flow rate in the rainy season, being very prone to erosion. Lihawa then asserted that erosions in Alo were categorized as heavy ones, rated 190.36 tons/hectares/year or 9,294,695.62 tons/year in total. Meanwhile, as claimed in BPDAS-BB [4], Hidayat and Kakizawa [5], State Agency for Research and Development, and Control of Regional Environmental Impact [6], erosion level of Limboto Lake catchment area have met the number of 9,902,588.12 tons/ year. As per 2006, the area of the lake has shrunk into less than 3,000 hectares, with an average depth of 2.5 meters. The shrinkage occurred as a result of illegal logging and agricultural land conversions to maize fields. Subehi et al. [7] and Saleh et al. [8] also blamed the existence of water hyacinth, causing lake sedimentation and also damaging ecosystems of the lake.

With that in mind, there is a bigger probability that flood might happen in high rainfall. It is worsened by the high rate of air humidity in Gorontalo, having 80.17 percent on average. The maximum rainfall with 24 rainy days is in December [2]. This evidence is enough as a proof of urgency to conserve Limboto Lake to reduce the rate of lake degradation. Hence, one needs to conduct a study on the level of erosion hazard on the Limboto Lake catchment area.

2. Research Method
The research took place in the Alo drainage basin, Tibawa district, Gorontalo Regency, province of Gorontalo, precisely at the west of Limboto district. Tibawa district is at the longitude of 122° 46' 56" - 122° 53' 47" E and latitude of 0° 45' 51" - 0° 39' 14" N. Alo river is a river with most sediment deposits of 124.83 tons/hectares flowing to Limboto Lake. Alo drainage basin covers six villages, namely Datahu, Iloponu, Buhu, Isimu Utara, Labanu, and Motilango village, all under the administration of Tibawa district. This is shown in Figure 1 as follows:
2.1. Data collection and data analysis

2.1.1. Data collection. This study encompasses the socio-biogeophysical characters of Alo watershed and involves the rate of surface erosion and tolerable erosion rate. Field observation and documentation were conducted to collect data of slope length and area, land use by the locals, varieties of plants, conservations completed, sufficient depth of soil, soil color and texture, land cover, and soil sampling. The main climate data of the research are rainfall and air temperature. Data of rainfall are obtained from four rainfall stations, i.e., the meteorological station of Djalaluddin Airport, Alo station, Kwandang station, and Biyonga station. The obtained data then are converted into the isohyetal map and rain erosivity map to acquire data of spatial rainfall and erosivity spread. The mock approach is preferred to extract data of the air temperature obtained from the meteorological station at Djalaludin Airport of Gorontalo.

2.1.2. Data analysis. A descriptive analysis is performed to break down and present data of environmental conditions of and land use in Alo watershed in forms of the table. The spatial and ecological approach is undergone by using Geographical Information System (GIS) to observe the spatial spread of the environmental situation of the watershed, i.e., the condition of the hillside, soil, land use, socio-economy, and culture. The approach involves the following steps:

2.1.3. Level of erosion hazard. The impact of actual land use towards erosion and land degradation is measured by a comparison ratio of real soil erosion value (A) and tolerable soil erosion (T). Actual land use will not trigger land degradation if A < T, and vice versa. The impact is then classified into three categories, safe (A<), unsafe (T<A<2T), and highly unsafe (A<2T).

The data gathered is then set as a benchmark to measure the erosion hazard rate. The parameters of measurement are the value of erosion rate and soil solum. The rate of erosion hazard is then arranged based on five criteria of level: extremely low, low, moderate, high, and extremely high. The data is presented in table 1.
Table 1. Measurement of erosion hazard rate

Soil solum (cm)	Levels of erosion	I	II	III	IV	V
Deep > 90	Erosion (ton/ha/year)	EL	L	M	H	EH
Moderate 60-90		L	M	H	EH	EH
Shallow 30-60		M	H	EH	EH	EH
Extremely Shallow < 30		H	EH	EH	EH	EH

Source: Department Of Forestry (2004)

Description:
EL: extremely low
H: high
L: low
EH: extremely high
M: moderate

3. Research results and discussion

3.1. Erosion level
Arsyad [1] asserts that erosion is a process of movement of the soil or its parts from a place to another by natural media. There is a parametric model to predict the rate of erosion of a plot of land developed by Wischmeier and Smith [9] called Universal Soil Loss Equation (USLE). USLE enables planners to predict the average rate of erosion of a certain soil at a given slope steepness by a certain rain pattern for every kind of plantation and land conservation. It is an equation used to put various physical parameters and managements, affecting erosion rate into six principal factors in which each value can be presented numerically.

3.2. Rain erosivity.
Rain’s kinetic energy plays a major role in determining erosion level as energy in a raindrop is responsible for the destruction of soil aggregates. Quantification of rain erosivity is based on data of average rainfall yearly, the number of rainy days, and maximum daily rainfall collected from four mentioned stations.

The next step is to interpolate the calculations result of every rain station by El30 to gather rain erosivity value of every land unit by ArcView 3.3 software, to be then overlapped by a map of a land unit. The result is in following table 2.

Table 2. Erosivity calculation of every land unit in Alo drainage basin

No	Land unit	R	width (ha)
1	D1IB	113000,00	76.36
2	D1IIIB	53000,00	31.82
3	D1IIIpc	190000,00	77.77
4	D1IIIPt	420000,00	4.08
5	D1IIpc	113000,00	154.83
6	D1IIPc	190000,00	49.09
7	D1Ipc	113000,00	486.63
8	D1Ipm	420000,00	27.78
9	D1Ipt	190000,00	301.32
10	D1IVB	53000,00	252.30
11	D1IVpc	392000,00	548.75
12	D1IVPt	51000,00	30.99
13	D1VB	198000,00	9.26
Also, the watershed has C, D, and E climate type with rain intensity of 1,100-1,400 mm/year. It determines the power of raindrops toward the ground, a number of raindrops, rain spread area, and rate of soil erodibility. One of the contributing factors of erosion rate is rain erosivity (R) presented in EI30; energy interaction with maximum rain intensity during 30 minutes; E stands for kinetic energy during a rainy period in the ton-m ha-l cm-l rain, and I30 stands for maximum rain intensity during 30 minutes in cm/hour. The highest rate of erosivity in Alo watershed is 1,102,000 tons-m ha-l cm-l occurring on a land unit of structural hills of granite rocks (S1IVPt) with an area of 5.4 hectares, with class IV slope steepness and land use of shrubs. A similar rate of erosivity also occurred in D1VPc with an area of 35.36 hectares. Concurrently, the lowest rate of erosivity, 47,000 tons-m ha-l cm-l, took place on unit S1IPt with an area of 165.24 hectares. On karst hills, the highest rate of erosivity took place on unit K1IVPc and K2IVPc, both with an area of 101.36 hectares and 3.6 hectares, respectively, at a rate of 198,000 tons-m ha-l cm-l. What differentiates between both kinds of land is on their use, shrubs in granite rocks, and karst hills for settlements. Following figure 2 shows the full spread of rain erosivity.

Unit	Code	Area	Erosivity
S1IVPt	S1IVPt	5.4	1,102,000
S1IPt	S1IPt	5.1	47,000
K1IVPc	K1IVPc	101.36	198,000
K2IVPc	K2IVPc	3.6	198,000
S1IVPc	S1IVPc	35.36	1,102,000
S1IPt	S1IPt	165.24	47,000
3.3. Soil erodibility

Soil erodibility is the value of soil resistance against water erosion (infiltration and percolation). The rate of soil erodibility factor value (K) is determined by soil texture, structure, permeability, and organic matter contained. Soil structure is observed at the place during field sampling, while other factors are seen by using soil core sampler. Furthermore, the data of each factor are classified based on the operational guide of Rencana Teknik Lapangan-Rehabilitasi Lahan dan Konservasi Tanah (Field Technical Plan-Land Rehabilitation and Soil Conservation).

The value of soil erodibility is classified as a means of measuring soil susceptibility rates against erosion. Arsyad [10] denotes that there are six classifications of the rate, from very low to very high. The quantification result of the K value presented in Table 5.3 is classified based on K value to determine the susceptibility rate of soil on every land unit in the Alo drainage basin.

The four previous factors are critical in determining soil erodibility. When analyzing soil texture, one needs to observe the ratio of soil particle size and portion, forming three textures of soil: sand, silt, and clay. A bond between soil particles of clay-dominant soil texture is strong, making it more resistant to erosion. A soil texture dominated by sand has low susceptibility to erosion since the infiltration rate is high that it can minimize runoff water. Au contraire, silt-dominated soil texture is more likely to erode for it consists of a particle of soft sand and a little portion of organic matter.

Furthermore, elements of the C-organic matter by some means tends to restructure soil and increase its permeability, carrying capacity to absorb soil water, and its fertility. Accumulated organic elements on the ground surface can decrease the likelihood of erosion. Regarding soil structure factors, secondary soil particles can be formed apart from the primary soil particles. However, it is rare for them to be formed; in a profile in a given circumstance, the particles can present unique patterns. These auxiliary units are sorted into classes, types, and levels. In conclusion, soil structure has an impact on how the soil can absorb water. Granular and loose soil structure can free the runoff water, decreasing surface water simultaneously.

Soil permeability is of how capable soil is to release the runoff water. It is also influenced by soil structure and texture and organic matter. Consequently, the higher the permeability is, the rate of surface water flow is less likely to increase since high permeability will trigger a high infiltration rate. On the contrary, the water is more potential to turn into surface water flow when soil permeability is low.

Nomograph and calculation formula are two methods used in computing soil erodibility (K value). By nomograph, some parameters need to be observed: a) soil texture (in a fraction of silt, very soft sand, and sand); b) amount of organic matter contained; c) soil structure, and d) soil permeability. The result shows that the smallest K value, 0.01, is on land units K1IIIB, K1IVB, and K1IIIPc. Meanwhile,
the largest K value is in D1IPt, D1IVPc, and D1IVPt counted 0.118. The measurement result of soil erodibility by formula 8 is in the following table 3.

Land unit	Area (hectares)	M	A	b	c	K	Soil erodibility rate
D1IB	76.36	68.19	2.95	2	5	0.07	Extremely Low
D1IIIB	31.82	68.19	2.95	2	5	0.07	Extremely Low
D1IIIIPc	77.77	35.82	1.78	3	5	0.11	Low
D1IIIIPt	4.08	45.16	2.22	3	5	0.11	Low
D1IPc	154.83	68.19	2.95	2	5	0.07	Extremely Low
D1IPt	49.09	25.36	1.78	3	5	0.11	Low
D1PVc	486.63	68.19	2.95	2	5	0.07	Extremely Low
D1Pm	27.78	32.31	2.74	3	5	0.11	Low
D1Pt	301.32	32.31	2.74	4	6	0.18	Low
D1Vc	252.30	56.59	2.95	2	5	0.07	Extremely Low
D1VPc	548.75	32.31	2.74	4	6	0.18	Low
D1VPt	30.99	32.31	2.74	4	6	0.18	Low
D1VC	3.60	32.31	2.74	3	2	0.01	Extremely Low
D1IPk	52.00	32.31	2.74	2	5	0.07	Extremely Low
K1IB	118.19	32.31	2.74	3	2	0.01	Extremely Low
K1IVPc	101.36	32.31	2.74	3	5	0.11	Low
S1IB	153.20	35.82	1.78	3	6	0.14	Low
S1IIIB	231.61	35.82	1.78	3	6	0.14	Low
S1IIIIPc	424.00	35.82	1.78	3	6	0.14	Low
S1IIIIPt	17.19	32.31	2.74	3	5	0.11	Low
S1IPc	312.08	32.31	2.74	3	5	0.11	Low
S1IPm	1,010.54	25.36	1.78	3	3	0.04	Extremely Low
S1IPt	165.24	40.90	0.88	3	5	0.11	Low
S1IVB	6.83	38.44	2.69	3	6	0.14	Low
S1IVPc	600.53	38.44	3.60	3	5	0.11	Low
S1IVPt	5.40	38.44	2.69	3	5	0.11	Low
S1VC	67.20	35.82	1.78	3	6	0.14	Low
S1VPc	47.12	25.36	1.78	3	3	0.04	Extremely Low
S1VC	255.00	32.31	2.74	3	5	0.11	Low
S2IIIB	201.46	32.31	2.74	3	5	0.11	Low
S2IIIIPc	439.54	32.31	2.74	3	5	0.11	Low
S2IPc	126.55	32.31	2.74	3	5	0.11	Low
S2IVB	24.73	35.82	1.78	3	6	0.14	Low
S2IVPc	138.27	35.82	1.78	3	6	0.14	Low
S2VC	32.91	35.82	1.78	3	6	0.14	Low
From table 3, it can be concluded that the K value of 0.04 spread on land units S1IPc and S1VPc, both having 1,010.54 and 47.12 hectares of area, respectively. The difference between the two units lies on the structural hills of granite rocks with slope steepness of 0-8% and 25-40%, respectively. Both land units are used as mixed dry farmland.

3.4. Prediction of soil surface erosion
USLE (Universal Soil Loss Equation) formula is used to predict surface erosion in the Alo drainage basin. This is a parametrical model developed by Wischmeier and Smith to predict the erosion of a land plot. The equation involves six factors influencing erosion rate, namely: rain erosivity (R), Soil erodibility (K), slope length (L), slope steepness (S), covering vegetations (C), and special treatment of soil conservation (P).

The result of erosion rate is a prediction of average long-term erosion rate from erosion pattern under certain circumstances. The unit measured when analyzing erosion rate on a plot of land is a land unit formed from overlapping result map of the landscape, slope steepness, land, and its use. The following table 4 presents the quantification result of erosion rate in Alo watershed and its spread map, as shown in figure 3.

Table 4. The spread of soil surface erosion sorted by land units in Alo watershed

Land unit	Area (hectares)	R	K	LS	C	P	CP	Erosion rate (ton/year)	ton/ha/year
D1IB	76.36	0.068	0.400	0.010	0.350	0.004	10.698	0.140	
D1IIIB	31.82	0.068	3.100	0.010	0.350	0.004	38.841	1.221	
D1IIIPc	77.77	0.108	0.400	0.000	0.000	0.020	164.024	2.109	
D1IIIPt	4.08	0.109	0.400	0.000	0.000	0.020	365.114	89.599	
D1IIp	154.83	0.068	0.400	0.010	0.350	0.004	10.698	0.069	
D1IIp	49.09	0.108	0.400	0.000	0.000	0.020	164.024	3.341	
D1Ipc	486.63	0.068	0.400	0.010	0.350	0.004	10.698	0.022	
D1Ipm	27.78	0.109	0.400	0.000	0.000	0.020	365.114	13.144	
D1Ipt	301.32	0.182	0.400	0.010	0.150	0.002	20.771	0.069	
D1IVB	252.30	0.068	3.100	0.010	0.350	0.004	38.841	0.154	
D1IVPc	548.75	0.183	1.400	0.010	0.350	0.004	351.420	0.640	
D1IVPt	30.99	0.182	3.100	0.010	0.350	0.004	100.821	3.253	
D1VB	9.26	0.068	3.100	0.010	0.350	0.004	145.105	15.679	
D1VPC	35.36	0.108	3.100	0.010	0.150	0.002	553.680	15.657	
F1lpk	58.14	0.067	0.400	0.000	0.000	0.020	25.745	0.443	
K2IB	59.19	0.068	0.400	0.010	1.500	0.015	42.604	0.720	
K2IIIB	63.58	0.011	3.100	0.010	0.350	0.004	19.490	0.307	
K2IIIPc	98.75	0.011	3.100	0.010	0.350	0.004	19.490	0.197	
K2IIPm	52.00	0.068	0.400	0.010	1.500	0.015	42.604	0.819	
K2IVB	118.19	0.011	3.100	0.010	0.350	0.004	19.490	0.165	
K2IVPc	101.36	0.108	3.100	0.010	0.350	0.004	231.824	2.287	
S1IB	153.20	0.141	3.100	0.010	0.350	0.004	461.999	3.016	
S1IIIB	231.61	0.141	3.100	0.010	0.350	0.004	461.999	1.995	
S1IIIIB	57.18	0.141	3.100	0.010	0.350	0.004	461.999	8.080	
S1IIIIPc	424.00	0.141	3.100	0.010	0.350	0.004	461.999	1.090	
Table 4 elucidates that there are three groups of erosion rate; group I with A value more than 100 tons/hectare/year, group II having A value of 10-100 tons/hectare/year, and group III with less than 100 tons/hectare/year of value. Land unit S1IVPt (5.40 hectares) is included in the first panel, with A value of 102,608 tons/hectare/year, making it the largest A value of all units. It is due to the factors of slope length and steepness. It has average soil loss of 0.06 mm/year, being smaller compared to average soil loss of entire Alo watershed, losing 3.10 mm soil annually.

Group II consists of 9 land units, i.e., D1IIIPt (89,599 tons/ha/year), D1IpM (13,144 ton/ha/year), D1VBP (15,679 ton/ha/year), D1VPC (15,657 ton/ha/year), S1IIIPt (21,244 ton/ha/year), S1IVB (67,652 ton/ha/year), S1VPc (40,456 ton/ha/year), S2IVB (18,682 ton/ha/year), and S2VB (14,037 ton/ha/year). In contrast to group I, rain erosivity and soil erodibility also partake in determining A

Unit	A Value (ton/ha/year)	Area (ha)	Soil Loss (mm/year)	Slope Length	Steepness
S1IIIPt	312.08	17.19	0.109	400000	
S1IpM	1.01054	15.86	0.109	190000	
S1Ipt	165.24	47000	0.109	1.400	
S1IVB	6.83	303000	0.141	3.100	
S1IVPc	600.53	282000	0.108	1.400	
S1IVPt	5.40	1102000	0.108	1.400	
S1VB	67.20	303000	0.141	3.100	
S1VPc	47.12	399000	0.044	3.100	
S1IVB	255.00	393000	0.108	3.100	
S2IIIB	201.46	520000	0.108	3.100	
S2IIIPc	439.54	190000	0.108	3.100	
S2IpM	126.55	190000	0.108	1.400	
S2IVB	24.73	303000	0.141	3.100	
S2IVPc	138.27	303000	0.141	3.100	
S2VB	32.91	303000	0.141	3.100	

Figure 3. Map of soil surface erosion (A) of Alo watershed
value of this group, beside slope length and steepness, with soil erodibility becoming the most influencing factor.

Group III has 20 remaining land units, i.e., D2IB (0.140 ton/ha/year), D1IIIB (1.221 ton/ha/year), D1IIIPc (2.109 ton/ha/year), D1IIIPt (0.069 ton/ha/year), D1IVB (0.154 ton/ha/year), D1IVPc (0.640 ton/ha/year), D1IVPt (3.253 ton/ha/year), D2IB (0.140 ton/ha/year), D1IIIB (1.221 ton/ha/year), D1IIIPc (2.109 ton/ha/year), D1IIIPt (0.069 ton/ha/year), D1IVB (0.154 ton/ha/year), D1IVPc (0.640 ton/ha/year), and D1IVPt (3.253 ton/ha/year). The erosion rate of these units is quite low attributable to the area of each unit, ergo, the average of soil loss in Alo watershed is classified as small with the loss of 3.1 mm soil annually.

Additionally, all land units of karst hills have A value below 10 ton/hectare/year, those are: K2IB (0.720 ton/ha/year), K1IIIB (0.307 ton/ha/year), K1IIIPc (0.197 ton/ha/year), K2IPk (0.819 ton/ha/year), K2IPm (0.788 ton/ha/year), K1IVB (0.165 ton/ha/year), and K1IVPc (2.287 ton/ha/year). The erosion rate is low, owing to the low rate of rain erosivity.

3.5. Measurement of tolerable erosion rate (t) and erosion hazard rate (EHR)

It is substantial to measure the maximum limit of tolerable erosion rate as a reference when making decisions in the planning of land conservation. It is meant to preserve soil depth enough for the vegetations to live. T value is determined by some factors, i.e., the effective depth of soil, T value guideline, and weight of soil volume. T value of every land unit is measured up to the value of erosion rate (A). If A < T, actual erosion is less likely to cause land degradation. Otherwise, it is more likely for land degradation to happen if A > T. This research then sorts impact of land use towards land degradation into three categories, explicitly, safe (A<T), unsafe (T<A<2T), and extremely unsafe (A<2T). The result of which is presented in table 5.

According to Table 5, five land units are included in the extremely unsafe category, by reason of A value more than T value those are: D1IIIPt (89.599 tons/ha/year), S1IIIPt (21,244 tons/ha/year), S1IVB (67.652 tons/ha/year), S1IVPt (102.608 tons/ha/year), and S1VPc (40.456 tons/ha/year).

Land unit	Area (hectare)	Erosion rate (ton/year)	T (ton/ha/year)	A (ton/ha/year)	Need for Conservation
D2IB	76.36	10.698	0.475	0.140	Conservation not needed
D1IIIB	31.82	38.841	0.19	1.221	Conservation needed
D1IIIPc	77.77	164.024	0.15	2.109	Conservation needed
D1IIIPt	4.08	365.114	0.2	89.599	Conservation needed
D1IPc	154.83	10.698	0.3	0.069	Conservation not needed
D1IPt	49.09	164.024	0.09	3.341	Conservation needed
D2Ipc	486.63	10.698	0.5	0.022	Conservation not needed
D2Ipm	27.78	365.114	0.09	13.144	Conservation needed
D2Ipt	301.32	20.771	0.5	0.069	Conservation not needed
D1IB	252.30	38.841	0.45	0.154	Conservation not needed
D1IVB	548.75	351.420	0.5	0.640	Conservation needed
D1IVPc	30.99	100.821	0.4	3.253	Conservation not needed
D1IVPt	9.26	145.105	0.225	15.679	Conservation needed
D1VPc	53.36	553.680	0.285	15.657	Conservation needed
F1Ipk	58.14	25.745	0.255	0.443	Conservation needed
K2IB	59.19	42.604	0.24	0.720	Conservation needed
K1IIIB	63.58	19.490	0.045	0.307	Conservation needed
Based on the previous table, denudational hills of granite rocks D_1 IIIB (1.221 ton/hectare/year), D_1 IIIIPc (2.109 ton/hectare/year), D_1 IIIPt 89.599 (ton/hectare/year), D_1 IIPt 13.144 ton/hectare/year), D_1 IVPc (0.640 ton/hectare/year), D_1 VB (15.679 ton/hectare/year), and D_1 VPc (15.657 ton/hectare/year) have $A > T$, henceforth are extremely unsafe and need an immediate conservation. It is on account of the length and steepness factors of the slope. Further, the computation result of the erosion rate is next applied to count erosion hazard rate with the outcome of Table 5 as reference.

As a way to figure out the value of erosion hazard rate, erosion rate, and soil solum is used as parameters. The parameters can help when determining five levels of erosion hazard; extremely low, low, moderate, high, and extremely high. The result is shown in table 6.

Table 6. Erosion hazard rate at Alo watershed

Land unit	Area (ha)	Erosion rate (ton/th)	A (ton/ha/year)	Soilsolum	EHL
D_1 IB	76.36	10.698	0.140	95	Extremely Low
D_1 IIIIB	31.82	38.841	1.221	95	Extremely Low
D_1 IIIIPc	77.77	164.024	2.109	75	Extremely Low
Variable	Value 1	Value 2	Value 3	Value 4	Grade
----------	---------	---------	---------	---------	--------
D_{1IIPt}	4.08	365.114	89.599	100	High
D_{1IIIPc}	154.83	10.698	0.069	100	Extremely Low
D_{1IIPt}	49.09	164.024	3.341	30	Extremely Low
D_{2Ip}	486.63	10.698	0.022	100	Extremely Low
D_{2IPm}	27.78	365.114	13.144	45	Low
D_{1IPt}	301.32	20.771	0.069	100	Extremely Low
D_{1IVB}	252.30	38.841	0.154	90	Extremely Low
D_{1IVPc}	548.75	351.420	0.640	60	Low
D_{1IVPt}	30.99	100.821	3.253	80	Low
D_{1VB}	9.26	145.105	15.679	75	Moderate
D_{1VPc}	35.36	553.680	15.657	95	High
F_{1IPk}	58.14	25.745	0.443	85	Extremely Low
K_{1IB}	59.19	42.604	0.720	80	Extremely Low
K_{1IIIB}	63.58	19.490	0.307	45	Moderate
K_{1IIIPc}	98.75	19.490	0.197	70	Moderate
K_{2IPk}	52.00	42.604	0.819	90	Extremely Low
K_{2IPm}	3.60	2.835	0.788	90	Extremely Low
K_{1IVB}	118.19	19.490	0.165	100	Moderate
K_{1IVPc}	101.36	231.824	2.287	35	Moderate
S_{1IB}	153.20	461.999	3.016	100	Low
S_{1IIIB}	231.61	461.999	1.995	60	Low
S_{1IIIB}	57.18	461.999	8.080	75	Low
S_{1IIIPc}	424.00	461.999	1.090	75	Low
S_{1IIIPt}	17.19	365.114	21.244	75	Moderate
S_{1IIIPc}	312.08	149.705	0.480	55	Extremely Low
S_{3IPc}	1,010.54	1700.510	1.683	65	Moderate
S_{3IPm}	15.86	100.865	6.360	60	Low
S_{3IPt}	165.24	107.252	0.649	60	Low
S_{1IVB}	6.83	461.999	67.652	30	High
S_{1IVPc}	600.53	149.705	0.249	40	Extremely Low
S_{1IVPt}	5.40	554.494	102.608	45	Extremely High
S_{1VB}	67.20	461.999	6.875	75	Low
S_{1VPc}	47.12	1,906.223	40.456	35	High
S_{4IB}	255.00	460.730	1.807	40	Moderate
S_{2IIIB}	201.46	610.514	3.031	45	Moderate
The table shows that four land units, D_{III}Pt (89.599 ton/ha/year), D_{IV}Pc (15.657 ton/ha/year), S_{IV}VB (67.652 ton/ha/year), and S_{IV}IVPt (102.608 ton/ha/year) are in the critical zone. These units are scoring high to extremely high EHR value. This results from the slope steepness and CP value as the key factors. In particular, land unit D_{IV}IVPt is in class IV steepness. However, its use as dry farmland makes it under bad caretaking and accordingly has a CP value of 0.007. Besides, soil solum of the unit is shallow, only 35 cm, by that, the actual erosion exceeds the tolerable erosion rate. Further, figure 6 displays the spread map of EHR in the Alo drainage basin.

S_{IIIPc}	439.54	100.865	0.229	85	Low
S_{IVPc}	126.55	100.865	0.797	85	Low
S_{IVB}	24.73	461.999	18.682	75	Moderate
S_{IVVPc}	138.27	461.999	3.341	75	Low
S_{IVB}	32.91	461.999	14.037	75	Low

The table shows that four land units, D_{III}Pt (89.599 ton/ha/year), D_{IV}Pc (15.657 ton/ha/year), S_{IV}VB (67.652 ton/ha/year), and S_{IV}IVPt (102.608 ton/ha/year) are in the critical zone. These units are scoring high to extremely high EHR value. This results from the slope steepness and CP value as the key factors. In particular, land unit D_{IV}IVPt is in class IV steepness. However, its use as dry farmland makes it under bad caretaking and accordingly has a CP value of 0.007. Besides, soil solum of the unit is shallow, only 35 cm, by that, the actual erosion exceeds the tolerable erosion rate. Further, figure 6 displays the spread map of EHR in the Alo drainage basin.

Figure 4. Map of Erosion Hazard Rate in Alo drainage basin

It shows that 98.75 percent of land units (a total of 6,874.21 hectares) in Alo Watershed are classified as extremely low to moderate. The remaining 1.25 percents are at a high – extremely high rate. The maximum erosion hazard rate of the Alo basin takes place in some land units. The units involved are D_{IV}IVPc (16.88 hectares) in Buhu Village, unit D_{IV}IVPc (7.71 hectares) in Labanu Village, two units; S_{IV}IVPc and S_{IV}IVB in Motilango Village (having area of 6.83 and 47.11 hectares respectively), and one unit in downstream of Alo basin, S_{IV}IVPt, with an area of 5.4 hectares. In total, land units categorized in extremely low hazard rate have accumulated area of 2,200.53 ha, those in the low category have a total of 2,776.64 ha, units in the moderate class have 1,896.99 hectares, units in high and extremely high have a total area of 93.86 and 5.50 hectares in order. The analysis of erosion hazard spread points out that inappropriate land use in Alo watershed has brought the land capacity to the limit, if not taken care of, it will eventually increase the hazard rate.

Further, of 43 land units, there are 32 units to be taken action immediately, since the A value of the units exceed tolerable erosion rate. Most units are on structural hills with class III, IV, and V slope steepness. Those are: S_{II}VB (18.682 ton/ha/year), S_{II}IVPc (3.341 ton/ha/year), S_{II}VB (14.037 ton/ha/year), S_{IV}IVPc (40.456 ton/ha/year), S_{IV}IVPt (102.608 ton/ha/year), and S_{IV}VB (67.652 ton/ha/year). In conclusion, conservation is needed in most land units in Alo watershed to minimize the rate of soil surface erosion.
4. Conclusion
Slope length and its steepness are the key factors to contribute to the value of erosion rate on a given land unit. 32 of 43 units of lands in Alo watershed have A value that exceeds tolerable erosion rate, by that, such actions of land conservation are needed. It mostly occurred on structural hills with class III, IV, and V slope steepness. The land units categorized in extremely low hazard rate have an overall area of 2,200.53 ha, while those in the low category are 2,776.64 hectares in total. Also, land units in the moderate class have a total of 1,896.99 ha, and units included in high and extremely high are of 93.86 and 5.50 hectares in order. The result of the analysis asserts that improper land use is more likely to trigger an increase in the erosion level hazard.

References
[1] Worosuprojo S 2002 Studi erosi parit dan longsoran dengan pendekatan geomorfologis di Daerah Aliran Sungai Oyo di Daerah Istimewa Yogyakarta
[2] BAPPEDA 2009 Rencana Tata Ruang Wilayah Provinsi Gorontalo 2008 – 2015 (Gorontalo)
[3] Lihawa F 2009 Pengaruh kondisi lingkungan DAS dan penggunaan lahan terhadap hasil sedimen pada DAS Alo-Pohu Provinsi Gorontalo
[4] BPDAS-BB 2004 Technical Planning for Land Rehabilitation and Soil Conservation for Limboto Watershed (Book 1) (Gorontalo)
[5] Hidayat G G and Kakizawa H 2014 Development Process of Watershed Partnership: a Case Study of Limboto Watershed-Gorontalo, Indonesia Indones. J. For. Res. 19–20
[6] BALITBANGPEDALDA 2006 Regional Environmental Status, Gorontalo Province Year 2005 (p. 7). (Gorontalo)
[7] Subehi L, Wibowo H and Jung K 2016 Characteristics of Rainfall-Discharge and Water Quality at Limboto Lake, Gorontalo, Indonesia J. Eng. Technol. Sci. 48 288–300
[8] Saleh S E, Baiquni M and Yunus H S Determinants of Socio-Demography and Household Livelihood (A Study in Iluta and Limehe Timur Village, Gorontalo Regency) Age (Omaha). 15 19
[9] Wischmeier W H, Johnson C B and Cross B V 1971 Soil erodibility nomograph for farmland and construction sites J. soil water Conserv.
[10] Arsyad 2010 Konservasi Tanah dan Air (Bogor: IPB Press)