IL-21 Regulates the Differentiation of a Human γδ T Cell Subset Equipped with B Cell Helper Activity

Nadia Caccamo1, Matilde Todaro2, Marco P. La Manna1, Guido Sireci1, Giorgio Stassi2, Francesco Dieli1*

1 Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy, 2 Dipartimento di Discipline Chirurgiche ed Oncologiche, Università degli Studi di Palermo, Palermo, Italy

Abstract

Vγ9Vδ2 T lymphocytes recognize nonpeptidic antigens without presentation by MHC molecules and display pleiotropic features. Here we report that coculture of Vγ9Vδ2 cells with phosphoantigen and IL-21 leads to selective expression of the transcription repressor Bcl-6 and polarization toward a lymphocyte subset displaying features of follicular B-helper T (TFH) cells. TFH-like Vγ9Vδ2 cells have a predominant central memory (CD27+CD45RA−) phenotype and express ICOS, CD40L and CXCR5. Upon antigen activation, they secrete IL-4, IL-10 and CXCL13, and provide B-cell help for antibody production in vitro. Our findings delineate a subset of human Vγ9Vδ2 lymphocytes, which, upon interaction with IL-21-producing CD4 TFH cells and B cells in secondary lymphoid organs, is implicated in the production of high affinity antibodies against microbial pathogens.

Introduction

Development of efficient humoral immune response results in the production of a high-affinity antibodies that are essential for the clearance of many infectious pathogens. Generation of these protective antibodies takes place in specialized structures in secondary lymphoid organs, known as germinal centers (GCs), and requires the combination of diverse events such as isotype-switch, somatic hypermutation and affinity maturation, which occur upon interaction between activated B lymphocytes and CD4 follicular helper T (TFH) lymphocytes [1,2]. TFH cells are defined by follicular localization and high expression of specific markers [3–7]: CXCR5 which drives TFH cells to migrate into the B cell follicles; the inhibitory receptor PD-1 and the costimulatory molecule ICOS, which interact with their corresponding ligands on B lymphocytes; the signature cytokine IL-21, which predominantly acts as a paracrine factor for GC B lymphocytes, but has only limited autocrine function as regulator of TFH lineage fate. The transcriptional repressor Bcl-6 is a crucial intrinsic regulator of TFH lineage commitment, but the differentiation pathway from naive CD4 to TFH cells is the subject of intense studies.

However, the finding that γδ T cell-deficient mice do not show marked defects in IgM and IgG production, suggested that γδ T cells may have a modulatory, rather than a primary function in the control of humoral immunity. Antibody production was also increased in in vitro cultures of human γδ T cells with B cells [16,17], but the amount of secreted antibody was low and the mechanisms underlying the observed B-cell help were not examined. More recent studies have shown that human γδ T cells are found in secondary lymphoid tissues [18,19], where they are scattered throughout the T zone and clustered within follicles [20], express costimulatory molecules after TCR-triggering and provide B-cell help in vitro, suggesting their participation in humoral immunity [20].

The majority of human peripheral blood γδ T cells, express a TCR consisting of the Vγ9 and the Vδ2 chains (here and thereafter referred to as Vγ9Vδ2 cells) and recognize nonpeptidic phosphorylated metabolites of isoprenoid biosynthesis produced by microorganisms and stressed cells [21–23]. Upon activation, Vγ9Vδ2 cells can be skewed toward distinct effector functions depending on polarizing cytokines, in analogy to CD4 helper T cells [24–26]. Accordingly, under appropriate culture conditions, Vγ9Vδ2 cells divert from the typical Th1-like phenotype and polarize to Th2 [26,27], Th1 [28,29] and Treg cells [30]. Such a broad plasticity emphasizes the capacity of Vγ9Vδ2 cells to influence the nature of immune response to different challenges.

We and others have shown that antigen-stimulated Vγ9Vδ2 cells acquire TFH-associated features (ICOS, CD40L and CXCR5 surface expression, IL-21R mRNA expression, IL-4...
and IL-10 secretion) and provide B-cell help for antibody production [30,25,31]; moreover, a recent study by Bansal et al. [32], reported that V_{9V82} T cells stimulated with the phosphoantigen HMB-PP in the presence of IL-21, express markers associated with T_{FH} cells and support antibody production by B cells, clearly pointing to IL-21 as the key cytokine for differentiation of this T_{FH}-like V_{9V82} cell subset.

Yet no data are available on the relative role of antigen and cytokines for the regulation of lineage-specifying factors required for the differentiation of T_{FH} V_{9V82} cells.

We show here that in human V_{9V82} cells, Bcl-6 expression and polarization towards T_{FH} cells are efficiently induced by coordinated TCR triggering and IL-21. Moreover, we provide detailed phenotypic and functional analysis of T_{FH}-like V_{9V82} cells, and in agreement with the study of Bansal et al. [32], suggest that the interaction between V_{9V82} T_{FH} cells, CD4 T_{FH} cells and B cells in reactive secondary lymphoid tissues may profoundly impact on the production of high affinity antibodies against microbial pathogens.

Methods

Subjects

Peripheral blood mononuclear cells (PBMC) were isolated from buffy coats of healthy volunteers by density gradient centrifugation using Ficoll-Hypaque (Pharmacia Biotech, Uppsala, Sweden). PBMC and mononuclear cells were also isolated from fresh tonsils of patients undergoing tonsillectomy. According to Italian rules (art. 13, DLgs n. 196/03), this study did not require authorisation by the local ethical committee. The study was performed in accordance to the principles of the Helsinki declaration and all individuals gave written informed consent to participate.

Cell Purification and Culture

Peripheral blood CD14^{+} monocytes and V_{9V82} cells were isolated by positive selection with CD14- and V_{9}CD14 monoclonal antibodies (mAbs), followed by cell sorting with a FACSAria (BD Biosciences). Sorted V_{9V82} cells were incubated in U-bottom 96-well plates with labelled mAbs in PBS containing 1% FCS, for 30 min at 4°C according to manufacturers’ recommendations, washed, and analyzed by flow cytometry on an FACS Calibur or FACS Canto II (BD Biosciences) and analyzed with FlowJo software (Tree Star). Viable cells were gated by forward and side scatter, and the analysis was performed on 100,000 acquired events for each sample.

FACS Staining and Sorting

The following conjugated antibodies were used in different combinations: anti-V_{9} (B6, BD Biosciences), anti-V_{9} (B3, BD Biosciences), anti-CD27 (IA4, BD Biosciences), anti-CD45RA (M-T271, BD Biosciences), anti-CD25 (M-A251, BD Pharmingen), anti-CCR7 (a gift of Dr. M. Lipp, Max-Delbruch-Center for Molecular Medicine, Berlin, Germany), anti-HLADR mono- morphic (a gift of Prof. V. Horváth, Institute of Molecular Genetics, Academy of Science of the Czech Republic, Prague), anti-ICOS (a generous gift of Dr. R.A. Koeckx, anti-CD40L (TRAP1, BD Biosciences), anti-CCR3 (61282.111, R&D Systems), anti-CCR4 (1G1, BD Biosciences), anti-CCR5 (2D7, BD Biosciences), anti-CCR6 (11A9, BD Biosciences), anti-CXCR3 (1C6/CXCR3, BD Biosciences), anti-CXCR5 (a gift of Dr. R. Koeczk, Molecular Immunology, Robert Koch Institute, Berlin, Germany) and isotype control mAbs. V_{9V82} cells were incubated in U-bottom 96-well plates with labelled mAbs in PBS containing 1% FCS, for 30 min at 4°C according to manufacturers’ recommendations, washed, and analyzed by flow cytometry on an FACS Calibur or FACS Canto II (BD Biosciences) and analyzed with FlowJo software (Tree Star). Viable cells were gated by forward and side scatter, and the analysis was performed on 100,000 acquired events for each sample.

Proliferation, Cytokine Analysis and Chemotaxis Assay

Proliferation of primed V_{9V82} cells was assessed 72 hours after stimulation of cells (10^{5}/ml) with IPP (10^{-5} M final concentration) and irradiated DCs and measured by CFSE dilution. The cytokine-producing capacity of primed V_{9V82} cells was assessed by stimulation of cells (10^{5}/ml) for 24 hrs with IPP (10^{-5} M final concentration) and irradiated DCs. Cytokines (TNF-α, IFN-γ, IL-2, IL-4, IL-10 and IL-17) and chemokine (CXCL13) in culture supernatants were measured by ELISA, according to the manufacturer’s instructions (R&D Systems). Intracellular staining for IFN-γ, IL-4, IL-10 and IL-17 was done on V_{9V82} cells stimulated for 6 hrs with IPP (10^{-5} M final concentration) in the presence of GolgiStop (BD Biosciences) for the final 4 hrs of culture. Cells were fixed and made permeable with BD Cytofix/Cytoperm Plus (BD Biosciences) according to the manufacturer’s instructions. Cells were incubated with fluorescein isothiocyanate (FITC)-labeled anti-IFN-γ mAb (B27, BD Biosciences), PE-labelled anti-IL-4 mAb (BD4-8, BD Biosciences), PE-labeled anti-IL-10 mAb (JES5-16E3, BD Biosciences) and APC-labeled anti-IL-17 mAb (eBIO64-DEC17, eBioscience), or isotype control mAbs. Cells were washed and data were acquired on a FACSCalibur or FACS Canto II (BD Biosciences) and analyzed with FlowJo software (Tree Star).

The chemotactic ability of IL-21-primed V_{9V82} cells was assayed using a double-chamber system with 3-μm pores (Transwell, Costar), according to [31]. Briefly, 10^{4} V_{9V82} cells were added to the upper chamber and recombinant human CXCL13 (R&D Systems, 3 μM final concentration) to the lower chamber and incubated at 37°C for 2 h in a 5% CO_{2} humidified incubator. In some experiments, anti-CXCR5 or isotype control mAbs were added to the lower chamber during the test. Assays were performed in triplicate. Afterward, the membrane was removed, washed on the upper side with PBS, fixed, and stained. Migrated cells were counted microscopically at x1000 magnification in five randomly selected fields per well. Percentage migration was calculated by measuring the counts recovered from the lower chamber and comparing them to the total input counts. Results represent the mean ± SD of three independent experiments.
Antibody Production in vitro

V9V82 T cell help in antibody production was studied as follows. IL-21–primed V9V82 T cells were co-cultured with sorted tonsillar B cells in 96-well plates at 10^6 cells/well each of T and B cells in the presence or absence of IPP, in RPMI 1640 medium supplemented with 10% heat-inactivated FCS (Euroclone), 2 mM L-glutamine, 20 mM HEPES and 100 U/ml penicillin/streptomycin. 10 days later IgM, IgG, and IgA levels in the culture supernatants were determined by ELISA.

Real-time Quantitative RT-PCR

Total RNA was extracted with the ABI PRISM 6100 Nucleic Acid PrepStation (Perkin-Elmer Applied Biosystems) according to the manufacturer’s instructions. Random hexamers and an MMLV Reverse Transcriptase kit (Stratagene, La Jolla, CA) were used for cDNA synthesis. Transcripts were quantified by real-time quantitative PCR on an ABI PRISM 7700 Sequence Detector (Perkin-Elmer Applied Biosystems) with Applied Biosystems predesigned TaqMan Gene Expression Assays and reagents according to the manufacturer’s instructions. The following probes were used (identified by Applied Biosystems assay identification number): RORC, Hs01076112_m1; TBX21, Hs00203436_m1; BCL6, Hs00277037_m1; GATAS, Hs00231122_m1; IL21R, Hs00222310_m1; IFNG, Hs00174143_m1; IL-4, Hs00174122_m1; IL-10, Hs00174086_m1; IL-13, Hs00174379_m1; IL-21, Hs00222397_m1. For each sample, mRNA abundance was normalized to the amount of 18S rRNA.

Statistics

A standard two-tailed t-test or a t-test with Welch’s correction was used for statistical analysis. P values of <0.05 were considered significant.

Results

Factors Inducing the Differentiation of V9V82 T_HF Cells

It has been previously shown that antigen-stimulated V9V82 cells acquire TFH-associated features (ICOS, CD40L and CXCR5 surface expression, IL-4 and IL-10 secretion and B-cell help for antibody production) [20,25,31], including expression of IL-21R mRNA [25], yet no data are available on the antigen and cytokine requirements for the differentiation of this subset of T_HF V9V82 cells. To identify conditions that permit the polarization of human T_HF V9V82 cells, we stimulated highly purified subsets of naïve (T_naïve, CD45RA^CD27^), central memory (T_CM, CD45RA^CD27^), effector memory (T_EM, CD45RA^CD27^) and terminally-differentiated effector memory (T_EMRA, CD45RA^CD27^) V9V82 cells with irradiated autologous DCs and antigen (IPP), together with different cytokines (see Materials and Methods for details), and analyzed their surface marker expression. Primarily, we used ICOS expression as a signature of T_HF V9V82 cells because (a) expression of high levels of ICOS is a defining feature of CD4 T_HF cells [33], (b) ICOS is not expressed by resting V9V82 cells and (c) the ability of CD4 [34] and V9V82 [31] T_HF cells to help B cells is mediated by ICOS.

In the absence of exogenous cytokines, only a small percentage (2% or less) of antigen-primed V9V82 cells expressed ICOS. Addition of IL-2 or IL-15 did not enhance ICOS expression (Figure 1A), but addition to cultures of IL-21 strongly induced expression of ICOS on the majority of V9V82 T cells (Figure 1A). V9V82 cells with a T_naïve, and a T_CM phenotype were the only subsets that can be polarized to ICOS expression upon culture with antigen and IL-21, while T_EM and T_EMRA V9V82 cells failed to express any of the tested T_HF surface markers under similar cytokine priming conditions (Figure 1B). Therefore, in subsequent in vitro culture experiments we used sorted CD27^ V9V82 T cells (which contains both T naive and a T_CM cells) as a starting population.

The vast majority of V9V82 T cells differentiated in the presence of antigen and IL-21 had a predominant central memory phenotype as they did not express CD45RA, but expressed CD27. Moreover, they expressed the activation markers CD25 and HLA-DR, and the costimulatory molecules CD40 and ICOS. They also expressed low levels CXCR3, but they did not express CXCR3, CCR3, CCR5 and CCR6 (Figure 1C).

Time-course experiments showed, that ICOS expression by V9V82 T cells differentiated in the presence of antigen and IL-21 was evident after 2 days of culture, reached a peak at day 4–6 and declined by day 8 onwards (Figure 1D).

The Relative Role of Antigen and IL-21 in the Regulation of Lineage-Specifying Factors

Bcl-6 was recently identified as a master regulator of T_HF differentiation [35–37]. We therefore measured the expression of mRNA encoding human Bcl-6 ([BCL6]) in V9V82 T_HF cells. Culture of sorted V9V82 T cells with antigen and IL-21 induced high expression of BCL6, while expression of RORC (RORγt), TBX21 (T-bet) and GATIL was induced only slightly or not at all (Figure 2A). Addition of IL-1β, IL-2, IL-6, IL-15 or TGβ, either alone, or in combination with IL-21 (data not shown), to cultures of V9V82 T cells and antigen did not induce BCL6 expression (Figure 2B).

To investigate early events in the differentiation of V9V82 T_HF cells and the relative role of antigen and the polarizing cytokine IL-21, we assessed the kinetics of expression of mRNA encoding for IL-21R and BCL6. Data are shown in Figure 2C and 2D, respectively. Resting, unstimulated V9V82 T cells do not constitutively express both IL21R and BCL6. V9V82 TCR stimulation by antigen induced expression of IL21R mRNA, as early as 6 hrs after stimulation. Expression of IL21R mRNA peaked on day 2–5 and consistently decreased on day 6. Antigen stimulation alone was not sufficient to induce detectable BCL6, indicating that upregulation of lineage-specifying transcription factors requires combination of antigen and IL-21. Accordingly, BCL6 was significantly induced by antigen in the presence of IL-21, which peaked on days 3–6 and decreased by day 9 onwards.

These results indicate that the coordinated combination of TCR triggering by antigen and the presence of IL-21, induces sustained expression of BCL6 in human V9V82 T cells, which is consistent with their ability to promote differentiation and polarization towards T_HF cells.

Proliferation Potential and Cytokine Production of V9V82 T_HF Cells

In the following set of experiments, we assessed the proliferation potential of purified V9V82 T_HF. To this end, we generated in vitro V9V82 T_HF cells with antigen and IL-21, as previously described. V9V82 T_HF cells were sorted, labelled with CFSE and stimulated again in vitro with IPP in the presence of irradiated DCs. As shown in Figure 3A, proliferation of V9V82 T_HF cells was very low in the presence of DCs, but without antigen. As expected, upon stimulation with antigen and DCs, or with immobilized anti-CD3 mAb, V9V82 T_HF cells, showed significant proliferation, indicating that they
have an high proliferative potential to TCR ligands, and suggesting that they are at an early stage of memory cell differentiation.

We then studied the pattern of cytokine production in V\textsubscript{c}9V\textsubscript{d}2 TFH cells, after a 24 hrs stimulation period with antigen and DCs in vitro. As shown in Figure 3B, V\textsubscript{c}9V\textsubscript{d}2 TFH cells produced very few, if any, amounts of cytokines upon stimulation with DCs, but in the absence of antigen. However, V\textsubscript{c}9V\textsubscript{d}2 TFH cells that had been stimulated by antigen and DCs, produced IL-2, IL-4 and, to a lower extent, IL-10, but not IFN-\gamma, TNF-\alpha or IL-17. Moreover, and differently than CD4 TFH cells, V\textsubscript{c}9V\textsubscript{d}2 T cells cultured with antigen and IL-21 did not produce IL-21, in agreement with previously published results [25].

This pattern of cytokine production was confirmed by flow cytometry studies in V\textsubscript{c}9V\textsubscript{d}2 TFH cells 6 hrs after in vitro culture with antigen and DCs: as expected from the ELISA data, antigen-stimulated V\textsubscript{c}9V\textsubscript{d}2 T cells expressed IL-4 and IL-10, but not IFN-\gamma or IL-17 (Figure 3C).

Given that V\textsubscript{c}9V\textsubscript{d}2 TFH cells are capable of producing the Th2 cytokines, IL-4 and IL-10 in the spite of very low, if any, GATA-3 expression, we analysed whether this pattern involved other Th2 cytokines. In agreement with the ELISA and flow cytometry data, antigen-stimulated V\textsubscript{c}9V\textsubscript{d}2 TFH cells expressed IL-4 and IL-10 mRNA, but not IL-13 mRNA (Figure 3D). Moreover, and as expected, antigen-stimulated V\textsubscript{c}9V\textsubscript{d}2 TFH cells did not express both IL-13, IFNG and IL-21 mRNA.

Thus V\textsubscript{c}9V\textsubscript{d}2 TFH cells are characterized by the distinctive pattern of IL-4 and IL-10 expression in the absence of significant GATA-3 and IL-13 expression. Finally, and differently than CD4 TFH cells, V\textsubscript{c}9V\textsubscript{d}2 TFH cells neither express nor produce IL-21.

Chemokine Production and Migratory Properties of V\textsubscript{c}9V\textsubscript{d}2 TFH Cells

It has been previously demonstrated that V\textsubscript{c}9V\textsubscript{d}2 T cells stimulated with HMB-PP in the presence of IL-21, but not of IL-2 or IL-4, express CXCL13 mRNA, and the secretion of CXCL13 by PBMC stimulated with antigen and IL-21 depends on the presence of V\textsubscript{c}9V\textsubscript{d}2 T cells [25]. Data reported in Figure 4A confirm that V\textsubscript{c}9V\textsubscript{d}2 TFH cells stimulated by IPP and DCs, secrete CXCL13 into the supernatant.

The finding that IL-21-primed V\textsubscript{c}9V\textsubscript{d}2 TFH cells express low levels of CXCR5 led us to explore if the expressed CXCR5 is functional, by assessing migration in response to the CXCR5 ligand, CXCL13 in a 2 hrs assay. IL-21-primed V\textsubscript{c}9V\textsubscript{d}2 TFH cells migrated readily in response to CXCL13 (Figure 4B), but migration was significantly inhibited by an anti-CXCR5 mAb added to cultures (Figure 4B), indicating that the expressed CXCR5 receptor is functional.
Vc9Vd2 Tfh Cells Help B Cells for Antibody Production

As Vc9Vd2 Tfh cells express costimulatory molecules and produce IL-4 and IL-10 upon antigen stimulation, we tested whether or not these cells were able to support B cells to secrete immunoglobulins. To this end, we generated in vitro Vc9Vd2 Tfh cells with IPP and IL-21, as previously described. Vc9Vd2 Tfh cells were sorted and cultured with CD19 B cells isolated from the tonsil of the same donor, in the presence or absence of antigen. As shown in Figure 5, B cells produced comparable low amounts of IgA, IgG and IgM when cultured for 10 days without Vc9Vd2 T cells, but co-culture of B cells with Vc9Vd2 Tfh cells and IPP resulted in an 15-fold increase in the production of IgG, a 10-fold increase in the production of IgA and a 5-fold increase in the production of IgM. Of note, Vc9Vd2 Tfh cells failed to cause significant increase of antibody production in co-cultures with B cells carried out in the absence of antigen.

The B cell helper activity of Vc9Vd2 Tfh cells in in vitro cocultures was strictly dependent on their provision of both costimulatory molecules and cytokines. In fact, blocking of CD40L or ICOS caused a drastic reduction of both IgG and IgA production (Figure 6). Similarly, addition to cocultures of antibodies neutralizing IL-4 and IL-10 caused reduction of IgG production, while a modest, not significant decrease of IgA production was only observed upon neutralization of IL-10, but not of IL-4 (Figure 6).

These data therefore suggest that antigen stimulation in the presence of IL-21 induces a population of Vc9Vd2 Tfh cells which supplies B cells with costimulatory signals and cytokines required for immunoglobulin production.

Discussion

Vc9Vd2 T cells display in vitro a certain degree of plasticity in their function, that is reminiscent of conventional CD4 T cells. In analogy with CD4 T cells, where a plethora of specialized subsets affect the host’s response, Vc9Vd2 T cells may readily and rapidly assume distinct Th1-, Th2-, Th17- and Treg-like effector functions, [24–30] suggesting that they profoundly influence cell-mediated immune responses. Comparatively, little is known about their role in antibody-mediated immune responses. We [31] and others [20,25] previously identified a unique subset of peripheral blood and tonsil Vc9Vd2 cells with Tfh-like properties, which upon antigen stimulation express ICOS, CD40L, CXCR5, and IL-21R, secrete IL-4 and IL-10 and provide B-cell help for antibody production in vitro, but the cytokine requirements for differentiation of this Tfh-like Vc9Vd2 cell subset have not been examined yet.
Here we show that in human V_{c9}V_{d2} T_{FH} cells, Bcl-6 expression and polarization towards a T_{FH}-like phenotype is efficiently induced by coordinated antigen stimulation of the specific TCR and IL-21. The in vitro differentiated V_{c9}V_{d2} T_{FH} cells exhibit a T_{CM} phenotype, illustrated by the expression of CD27 in the absence of CD45RA. V_{c9}V_{d2} T_{FH} cells distinctively express both activation (CD25 and HLA-DR) and costimulatory (CD40L and ICOS) molecules and also express, although at low levels,
CXCR5, a chemokine receptor that has been identified as a marker of TFH cells [1,2], but they do not express any other tested chemokine receptor (CXCR3, CCR3, CCR4, CCR5, and CCR6). Conversely, Th1-like V\textsubscript{γ9}V\textsubscript{δ2} T cells express CXCR3 and CCR5 [19], and Th17-like V\textsubscript{γ9}V\textsubscript{δ2} T cells express CCR6 [29]. Expression of CXCR5 on human V\textsubscript{γ9}V\textsubscript{δ2} TFH cells is a matter of debate. Brandes and colleagues [20] did not detect CXCR5 expression on both peripheral blood and tonsillar V\textsubscript{γ9}V\textsubscript{δ2} T cells, while other studies [31,38] found this receptor being expressed by a subset of V\textsubscript{γ9}V\textsubscript{δ2} TFH. Moreover, Forster et al. [39] found that in healthy individuals, 2% of peripheral blood γδ T cells, but ~23% of tonsillar γδ T cells express CXCR5 and this percentage consistently increased in HIV-infected individuals. While we have no obvious explanation for the discrepancy in CXCR5 expression on peripheral blood V\textsubscript{γ9}V\textsubscript{δ2} T cells between these studies, in mice, CXCR5 expression during primary responses depends on sequential signaling by CD28 and OX40, suggesting the requirement for APCs [40,41]. Hence, the presence or absence of DCs in the in vitro cultures might influence the outcome of CXCR5 expression. Thus, V\textsubscript{γ9}V\textsubscript{δ2} TFH cells differentiated in vitro with antigen and IL-21 can clearly express CXCR5, providing a molecular explanation for their clustering in germinal centres [20,25]. Our present data also show that IL-21 plays a role in stimulating expression of the CXCR5 ligand, the chemokine CXCL13, by V\textsubscript{γ9}V\textsubscript{δ2} TFH cells. Overall, our results indicate that IL-21 drives V\textsubscript{γ9}V\textsubscript{δ2} T cells to assume a TFH-like phenotype, thus evoking the crucial effect of IL-21 in the generation of CD4 TFH cells [42–44]. Similar results have been observed in mice.

Figure 5. V\textsubscript{γ9}V\textsubscript{δ2} TFH cells help B cells for antibody production. V\textsubscript{γ9}V\textsubscript{δ2} T cells were cultured with an equal number of irradiated DCs and IPP, in the presence of IL-21. At the end of culture, V\textsubscript{γ9}V\textsubscript{δ2} TFH cells were sorted, and cultured with CD19 B cells isolated from the tonsil of the same donor, in the presence or absence of IPP. Ten days later, total IgG, IgA and IgM levels in culture supernatants were assessed by ELISA. *p<0.001 and **p<0.02 when compared with the group consisting of B cells cultured with V\textsubscript{γ9}V\textsubscript{δ2} TFH cells but in the absence of antigen. One out of five independent experiments is shown.

doi:10.1371/journal.pone.0041940.g005

Figure 6. V\textsubscript{γ9}V\textsubscript{δ2} TFH cell helper activity requires costimulatory molecules and cytokines. V\textsubscript{γ9}V\textsubscript{δ2} T cells were cultured with an equal number of irradiated DCs and IPP, in the presence of IL-21. At the end of culture, V\textsubscript{γ9}V\textsubscript{δ2} TFH cells were sorted and cultured with CD19 B cells isolated from the tonsil of the same donor, in the presence of IPP and mAbs to costimulatory molecules or cytokines (see Materials and Methods). Ten days later, total IgG and IgA levels in culture supernatants were assessed by ELISA. *p<0.005 and **p<0.02 when compared with the group consisting of B cells cultured with V\textsubscript{γ9}V\textsubscript{δ2} TFH cells and antigen. One out of five independent experiments is shown.

doi:10.1371/journal.pone.0041940.g006
published very recently by Bansal et al. [32], who have reported that Vγ9Vδ2 T cells stimulated with the phosphoantigen HMB-PP in the presence of IL-21, express markers associated with T FH cells and support antibody production by B cells.

Although these findings suggest that Vγ9Vδ2 T cells follow a similar differentiation pathway as conventional CD4 T FH cells in their IL-21 requirement, expression of other important T FH cell markers including PD-1, SAP, BTLA and CD57 is necessary to precisely define the Vγ9Vδ2 T FH cell population. The determination of the co-expression of these markers is also important as this would resolve the proportion of the T FH cell subset within the total Vγ9Vδ2 T cells derived from the in vitro culture. This is important for three reasons: (1) expression of two activations markers, CD25 and HLA-DR, rises the question of the heterogeneity of the in vitro activated Vγ9Vδ2 T cells; (2) it is not clear whether or not all Vγ9Vδ2 T cells can be biased towards a T FH phenotype by IL-21, or are rather specific subsets of Vγ9Vδ2 T cells pre-programmed to become T FH-like cells and expand rapidly under the right conditions, as suggested by the heterogeneity of T FH-like Vγ9Vδ2 T cells in peripheral blood and tonsils [31]; (3) ICOS is not exclusively associated with T FH functions [45]. In our experiments, only T naives and a T CM subset of Vγ9Vδ2 T cells acquire some T FH features when stimulated with IPP and IL-21 in the presence of irradiated DCs since these subsets have the highest proliferative potential amongst Vγ9Vδ2 T cells [19], high ICOS expression after 12 days of culture should be the hallmark of their proliferation, rather than differentiation to a T FH subset. Thus, differential ICOS expression by T naives/T CM and/or T FH subsets might also explain the observed trend with peak expression on day 4–6, and again on day 12.

IL-21 is the main cytokine shown to induce CD4 T FH cells, but other cytokines have also been shown to induce T FH cells, and these include IL-6, and IL-12. The requirements for the generation of conventional CD4 T FH cells seem to be different for human and for mouse. While surprisingly in humans IL-12 also induces IL-21 production in a STAT-4-dependent manner [46,47], in mouse IL-6 signaling also induces IL-21-secreting CD4 T FH cells [44,48]. Although we have not formally determined the signaling pathway that operates in Vγ9Vδ2 T FH cells, data reported in Figure 2B clearly show that addition of IL-1β, IL-2, IL-6, IL-12, IL-15 or TGFβ, either alone, or in combination with IL-21, to cultures of Vγ9Vδ2 T cells and antigen did not induce or even enhance BCL6 expression.

The acquisition of T FH-associated markers by Vγ9Vδ2 T cells and their dependence on IL-21 was initially suggested by microarray studies [25]. IL-21 turned out to have a similar capacity as the related cytokine IL-2 to support and sustain antigen-induced Vγ9Vδ2 T cell proliferation, yet without promoting the supposedly signatory cytokines IFN-γ and TNF-α [49], thus highlighting a much greater plasticity of Vγ9Vδ2 cell responses than previously appreciated [23]. While IL-21 may potentiate the cytolytic function of Vγ9Vδ2 T cells when combined with IL-2 [50], previous findings [25] and results here reported demonstrate that IL-21 on its own specifically co-stimulates expression of the chemokine receptor CXCR5, that enables T FH cells to migrate into the B cell follicles, and also the CXCR5 ligand, CXCL13 that attracts further CXCR5+ T cells, such as naive B cells and early activated CD4 T cells. As CXCR5 and CXCL13 are uniquely expressed in B cell follicles but mostly absent from extrafollicular areas, including the T zones of lymph nodes, spleen and Peyer’s patches, this implicates a role for IL-21-stimulated Vγ9Vδ2 T cells in orchestrating immune cell trafficking to the GCs.

Differently than CD4 T FH cells, Vγ9Vδ2 T FH cells generated by culture with antigen and IL-21 do not produce IL-21, in agreement with previously published results [25]. On the other hand, the in vitro differentiated Vγ9Vδ2 T FH cells have a Th2-type pattern of cytokine production upon short-term antigen stimulation in vitro, as they secrete IL-2, IL-4, and IL-10, but not IL-17, IFN-γ and TNF-α. This finding clearly contrasts with the cytokine production pattern of the Th1-like T EM subsets of Vγ9Vδ2 T cells, which preferentially secrete IFN-γ and TNF-α [19]. The finding of a population of Vγ9Vδ2 T cells that secretes IL-1 and IL-10 is new, and expands previous results demonstrating IL-4 production by resting [27,51] and Vγ9Vδ2 clones [26,52], most of which express CD27 (M. Bonneville and E. Scotet, unpublished observations). Moreover, and accordingly, we previously found that secretion of IL-4 and IL-10 was confined to the CD27+ subset of CXCR5+ Vγ9Vδ2 T cells [31]. However, Vγ9Vδ2 T FH cells lack expression of GATA-3, and IL-13 mRNAs, both signatures of Th2 cells. The dissociated expression of IL-4 and IL-13/GATA-3 was unexpected but confirms a very recent paper in a mouse model of helminth infection [53], showing that IL-4, but not IL-13, was made by T FH cells. In contrast, Th2 cells produced both cytokines. IL-13 production by Th2 cells was associated with large amounts of cellular transcription factor GATA-3, which was necessary for sustaining IL-13-producing. Conversely, T FH cells produced only IL-4 and did not express GATA-3. Altogether, the results in mice and the data here reported in human Vγ9Vδ2 T FH cells, indicate previously unappreciated regulation of these duplicated cytokines, as suggested by the differences between IL-4- and IL-13-expression in dependence on and expression of GATA-3.

It is likely that high levels of Bcl-6 expression in T FH cells restrict GATA-3 to levels insufficient to activate IL-13. Although Bcl-6 is a direct transcriptional repressor for many genes, it might suppress GATA-3 at a post-transcriptional level [37]. Because Bcl-6 overexpression can induce a T FH phenotype [35], it is possible to speculate that delay of Bcl-6 or expression of Blimp-1 in T cells [36] is a prerequisite for relieving repression of the genetic programs, such as extended cytokine expression, necessary for the completion of Th2 differentiation in the periphery.

Production of Th2-type cytokines together with expression of CD40L and ICOS strongly suggests that IL-21-stimulated Vγ9Vδ2 T cells are engaged in B cell activation and help for antibody production. Accordingly, we observed enhanced production of IgM, IgG and IgA when tonsillar B cells were coculturing with IL-21-stimulated Vγ9Vδ2 T FH cells in the presence of Ag, thus fully identifying this cell population as a classical helper cells. Moreover, Ig production was consistently inhibited by blocking CD40-CD40L and ICOS-ICOSL interactions, or by neutralization of IL-4 or IL-10.

In theory one may argue that, due to the preactivation status of tonsillar B cells, Vγ9Vδ2 T FH cells may only be active on already activated B cells and hence during secondary antibody responses. While we have no evidence to support or exclude such a possibility, our previous findings that circulating CXCR5+ Vγ9Vδ2 T FH cells are able to help circulating naive B cells for antibody production [31], strongly suggests that Vγ9Vδ2 T FH cells may play an important regulatory role in all aspects of humoral immunity.

Vγ9 T cells have been reported to support antibody production in immunized and infected mice [11–14]. Of note, GCs are present in TCRζβ+ mice and develop in SCID mice upon adoptive transfer of Vγ T cells and B cells, demonstrating that Vγ T cells are sufficient to orchestrate follicular responses [11,13,54]. In humans, Vγ T cells can be found in secondary lymphoid tissues [17,18],

PLOS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e41940
where they are scattered throughout the T zone and clustered within GCs [19–20].

Contribution of Vγ9Vδ2 Tfh cells to antibody-mediated immune responses may occur early during microbial infections, before full development of acquired responses mediated by CD4 T cells. In humans, Vγ9Vδ2 Tfh cells are resident in the paracortical areas of lymph nodes, where they may become stimulated by antigen and express IL-21: these, pre-activated cells may thus encounter IL-21 produced by CD4 T cells and as a consequence express a distinct set of molecules associated with providing B cell help. The interaction between with Vγ9Vδ2 Tfh cells, IL-21 producing CD4 T cells and B cells in reactive secondary lymphoid tissues is likely to impact on the production of high affinity antibodies against microbial pathogens.

In humans, the vast majority of Vγ9Vδ2 T cells directly recognize nonpeptide ligands without presentation by MHC molecules. Because γδ and γε T cells recognize different types of antigens, the presence of a subset of each of these populations capable of inducing immunoglobulin secretion would provide a mechanism whereby humoral immune responses could be elicited against a diverse array of antigens irrespective of the type of responding T cell. Thus, the presence of Vγ9Vδ2 T cells in germinal centers would broaden the repertoire of antibodies produced by the B cell response.

Acknowledgments

We thank Martin Lipp, Richard Kroczek and Vachal Horejsi for providing us with reagents and Matthias Eberl, Marc Bonniveille and Emmanuel Scotet for sharing unpublished data.

Author Contributions

Conceived and designed the experiments: FD NG C. Stassi. Performed the experiments: MPL G, Sireci MT. Analyzed the data: FD G. Stassi. Wrote the paper: FD G. Stassi.

References

1. Breinfeld D, Old L, Pamer E, Elsshaw J, Sallusto F, et al. (2000) Follicular B helper T cells express CXC-chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med 192: 1543–1552.
2. Schaeffer P, Willimmann K, Lang AB, Lipp M, Loetscher P, et al. (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192: 1553–1562.
3. Vinuesa CG, Tangey SG, Moser B, Mackay CR (2005) Follicular B helper T cells in antibody responses and autoimmunity. Nat Rev Immunol 5: 833–845.
4. Fazillette N, Marc L, McHeyzer-Williams LJ, McHeyzer-Williams MG (2009) Follicular helper T cells: lineage and location. Immunol 30: 324–335.
5. King C (2009) New insights into the differentiation and function of T follicular helper cells. Nat Rev Immunol 9: 757–766.
6. Pepper M, and Jenkins JM (2011) Origins of CD4+ effector and central memory T cells. Nat Immunol 12: 467–471.
7. Nurieva RI, Chung Y (2010) Understanding the development and function of T follicular helper cells. Cell Mol Immunol 7: 190–197.
8. Crotty S (2011) Follicular helper CD4 T cells (Tfh). Annu Rev Immunol 29: 621–663.
9. Galli G, Nuni S, Tavarnini S, Galli-Stampino L, De Lalla C, et al. (2003) CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med 197: 1051–1057.
10. Quesenle ME, Gonzalez VD, Granath A, Andersson J, Sandberg JK (2007) CXCR5+CCR7+ CD4 T cells are early effector memory cells that infiltrate tissue B cell follicles. Eur J Immunol 37: 3329–3336.
11. Pao W, Wen L, Smith AL, Gulbranson-Judge A, Zheng B, et al. (1996) γδ T cell help of B cells is induced by repeated parasitic infection, in the absence of other T cells. Curr Biol 6: 1317–1325.
12. Maley KC, Odermatt B, Hengartner H, Zinkernagel RM (1999) Interferon-γ-producing γδ T cell-dependent antibody isotype switch in the absence of germinal center formation during virus infection. Proc Natl Acad Sci USA 96: 1160–1165.
13. Wen L, Roberts SJ, Viney JL, Wong FS, Malik S, et al. (1994) Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in γδ T cells. Nature 369: 654–658.
14. Peng SL, Madiaio MP, Hughes DP, Crispie NJ, Owen MJ, et al. (1996) Murine lupus in the absence of γδ T cells. J Immunol 156: 4041–4049.
15. Wen L, Pao W, Wong FS, Peng Q, Craft J, et al. (1996) Germinal center formation, immunoglobulin class switching, and autoimmune production driven by non-CD4 T cells. J Exp Med 183: 2271–2282.
16. Rajagopalan S, Zordan T, Tsokos GC, Lebovitz RM, Lieberman MW (1990) Pathogenic anti-DNA autoantibodies: induction of CD8+ T helper cell lines from patients with active lupus nephritis: isolation of CD4-8+ T helper cell lines that express the γδ T-cell antigen receptor. Proc Natl Acad Sci USA 87: 7020–7024.
17. Horner AA, Jabara H, Ramesh N, Geha RS (1995) γδ T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes. J Exp Med 181: 1239–1244.
18. Groh V, Porcelli S, Fabbi M, Lainier LL, Picker L, et al. (1989) Human lymphocytes bearing T cell receptor γδ7/6 are phenotypically diverse and evenly distributed throughout the lymphoid system. J Exp Med 169: 1277–1294.
19. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, et al. (2003) Differentiation of effector/memory Vγδ2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198: 391–397.
20. Brandes M, Willimmann K, Lang AB, Nam KH, Jin C, et al. (2003) Flexible migration program regulates γδ T-cell involvement in humoral immunity. Blood 102: 3693–3701.
40. Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P (1998) CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med 188: 297–304.

41. Walker LSK, Gulbranson-Judge A, Flynn S, Brocker T, Raykundalia C, et al (1999) Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med 190: 1115–1122.

42. Vogelzang A, McGiure HM, Yu D, Sprent J, Mackay CR, et al. (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29: 127–137.

43. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, et al (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29: 138–149.

44. Suto A, Kashiwakuma D, Kagami S, Hirose K, Watanabe N, et al (2008) Development and characterization of IL-21-producing CD4+ T cells. J Exp Med 205: 1369–1379.

45. Rottman JB, Smith T, Tonra JR, Ganley K, Bloom T, et al (2001) The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat Immunol 2: 605–611.

46. Ma CS, Suryani S, Avery DT, Chan A, Nanan R, et al (2009) Early commitment of naive human CD4+ T cells to the T follicular helper (Tfh) cell lineage is induced by IL-12. Immunol Cell Biol 87: 590–600.

47. Schmitt N, Morita R, Bourdery L, Bentebibel SE, Zuzarowski SM, et al (2009) Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31: 158–169.

48. Dienz O, Eaton JP, Bond JP, Neveu W, Moquin D, et al (2009) The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med 206: 69–78.

49. Eberl M, Altmüller B, Kollas AK, Sanderbrand S, Bahr U, et al. (2002) Accumulation of a potent y8 T-cell stimulator after deletion of the lpr gene in Escherichia coli. Immunology 106: 200–211.

50. Thedrez A, Harly C, Morice A, Salet S, Bonneville M, et al. (2009) IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human Vγ9Vδ2 T cells for adoptive immunotherapy. J Immunol 182: 3423–3431.

51. Ordway DJ, Costa L, Martins M, Silveira H, Amaral L, et al (2004) Increased interleukin-4 production by CD8 and y8 T cells in health-care workers is associated with the subsequent development of active tuberculosis. J Infect Dis 190: 756–766.

52. Devilder MC, Maillet S, Bouye-Moreau I, Donnadieu E, Bonneville M, et al. (2006) Potentiation of antigen-stimulated Vγ9Vδ2 T cell cytokine production by immature dendritic cells (DC) and reciprocal effect on DC maturation. J Immunol 176: 1386–1393.

53. Liang HE, Reichardt RL, Bando JK, Sullivan BM, Ho IC, et al. (2012) Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol 13: 58–66.

54. Dianda L, Gulbranson-Judge A, Pao W, Hayday AC, MacLennan IC, et al. (1996) Germinal center formation in mice lacking y8 T cells. Eur J Immunol 26: 1603–1607.