PPPred: Classifying Protein-phenotype Co-mentions Extracted from Biomedical Literature

Morteza Pourreza Shahri
Gianforte School of Computing
Montana State University
mpourrezashahri@montana.edu

Gillian Reynolds
Department of Plant Sciences and Pathology
Montana State University
gillian.reynolds@student.montana.edu

Mandi Marie Roe
Department of Microbiology and Immunology
Montana State University
mandi.roe@student.montana.edu

Indika Kahanda
Gianforte School of Computing
Montana State University
indika.kahanda@montana.edu

ABSTRACT
The MEDLINE database provides an extensive source of scientific articles and heterogeneous biomedical information in the form of unstructured text. One of the most important knowledge present within articles are the relations between human proteins and their phenotypes, which can stay hidden due to the exponential growth of publications. This has presented a range of opportunities for the development of computational methods to extract these biomedical relations from the articles. However, currently, no such method exists for the automated extraction of relations involving human proteins and human phenotype ontology (HPO) terms. In our previous work, we developed a comprehensive database composed of all co-mentions of proteins and phenotypes. In this study, we present a supervised machine learning approach called PPPred (Protein-Pheonotype Predictor) for classifying the validity of a given sentence-level co-mention. Using an in-house developed gold standard dataset, we demonstrate that PPPred significantly outperforms several baseline methods. This two-step approach of co-mention extraction and classification constitutes a complete biomedical relation extraction pipeline for extracting protein-phenotype relations.

CCS CONCEPTS
• Computing methodologies → Information extraction; Supervised learning by classification; • Applied computing → Bioinformatics.

KEYWORDS
Biomedical Relation Extraction, Protein-phenotype Relations, Supervised Learning

ACM Reference Format:
Morteza Pourreza Shahri, Gillian Reynolds, Mandi Marie Roe, and Indika Kahanda. 2019. PPPred: Classifying Protein-phenotype Co-mentions Extracted from Biomedical Literature. In 10th ACM Int'l Conference on Bioinformatics.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM-BCB ’19, September 7–10, 2019, Niagara Falls, NY, USA.© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6666-3/19/09... $15.00
https://doi.org/10.1145/3307339.3342167

1 INTRODUCTION
Proteins are one of the most critical biomolecules for the development and maintenance of life [3]. A cell’s full complement of expressed proteins, the proteome, is both dynamic and multidimensional with many proteins operating in a complex network ensuring the integrity of cellular structure and function [20]. Changes in critical regions of a protein’s structure often caused by errors in the underlying genetic sequence of the protein or in its regulation can alter the protein’s function-specific 3D structure, resulting in an alteration of phenotype [11]. In the medical context, a phenotype can be characterized as a deviation from normal morphology or behavior [52]. Well known alterations in phenotype brought about by changes in one or more proteins or their regulation involved in important biological pathways include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, cancer, cystic fibrosis and type II diabetes [3, 12, 25]. Uncovering novel changes in protein structure, function and regulation, and understanding how these alterations lead to human disorders is a very active area of research in the biological community [3, 5, 11, 12, 20, 25, 31, 35]

Human Phenotype Ontology (HPO) is a standardized vocabulary that includes a wide range of phenotypic abnormalities observed in human diseases [17]. HPO is composed of five sub-ontologies among which Phenotypic abnormalities is the main sub-ontology that describes clinical abnormalities. Each sub-ontology includes HPO terms and associated HPO Identifiers (IDs), e.g. Parkinsonism, HP:0001300. Each sub-ontology is organized in a hierarchical structure where more general terms are close to the top while more specific terms are closer to the bottom. Each pair of terms in the hierarchy are linked with an is-a relationship. In this paper, we use phenotypes and HPO terms, interchangeably. HPO website1 provides gold-standard annotations for a large collection of human proteins through biocuration, which is the process of extracting knowledge from unstructured text and storing the data in knowledge bases. However, currently, only a small portion of known human proteins have HPO annotations [17]. But, it is believed that there are many other human proteins that are associated with diseases and hence

1https://hpo.jax.org/app
The role of KIF4 in human gastric cancer is still unclear.

Figure 1: An example of a bad co-mention in which the sentence does not convey a relation between the protein, i.e. “KIF4”, and the phenotype, i.e. “cancer”. (PMID: 20711700)

should be annotated with HPO terms (Peter Robinson, personal communication, 2015).

Continuing to expand the knowledgebases such as HPO database through biocuration is of utmost importance for potential future downstream applications in medicine and healthcare. However, biocuration, which is usually performed manually with the help of computational tools [9], is generally considered tedious and resource-consuming. Hence, efficient and accurate computational tools are required to expedite the process in order to bridge the gap between the typically slower rate of human annotation versus the vast and exponentially-increasing amount of literature concerned with the subject [9]. As a result, developing computational models to extract relations between proteins and phenotypes has gained recent interest among scientists working in the field of biomedical natural language processing [10, 16, 18, 37]. However, to the best of our knowledge, no such computational methods exist for automatically extracting human protein-HPO term relations from biomedical literature. In this paper, we use the terms “relations” and “relationships”, interchangeably.

As a solution to the above, we propose a two-step approach for extracting human protein-HPO term relations. The first step is to extract protein-HPO co-mentions, which are co-occurrences of protein names and phenotype names in a certain span of text i.e. a sentence, a paragraph, etc [16]. In our previous work, we developed ProPheno², which is an online and publicly accessible dataset composed of proteins, phenotypes (HPO terms), and their co-occurrences (co-mentions) in text which are extracted from Medline abstracts and PubMed Central (PMC) Open Access full-text articles using a sophisticated in-house developed text mining pipeline [29]. This dataset covers all terms in the Phenotypic abnormality sub-ontology. However, a knowledge-free Natural Language Processing (NLP) pipeline extracts every co-mention of proteins and phenotypes, but not all protein-phenotype co-mentions simply imply that there is a relationship between the two entities (see Figure 1 for an example).

Therefore, in the second step, extracted co-mentions are filtered using a co-mention classifier that can distinguish between good and bad co-mentions. We define a co-mention as a good co-mention if there is enough evidence conveyed in the corresponding span of text indicating a relationship between the protein and the phenotype. In other words, a good co-mention is a valid relationship between the two entities according to the meaning of the context text. Figure 2 depicts an example of a good co-mention of a protein and a phenotype in a sentence. The combination of a co-mention extractor and co-mention classifier/filter constitutes a complete relation extraction pipeline.

The development of PPPred (Protein-Phenotype Predictor), a novel co-mention classifier for classifying protein-phenotype co-mentions, is the primary focus of the work presented in this paper. We first randomly select a subset of co-mentions from the ProPheno database and have them curated through two biologists. This gold-standard dataset is composed of 809 human protein-HPO term co-mentions annotated with binary labels of good/bad. Then we use this gold-standard dataset for developing predictive models using machine learning techniques. Our machine learning models employ a large collection of both syntactic and semantic features. Finally, we demonstrate that PPPred significantly outperforms other baseline methods on the task of protein-HPO terms co-mention classification.

The main contributions of the paper are as follows. This is the first analysis of the problem of human protein-HPO term relation extraction from biomedical literature. We model this relation extraction task as a two-step process composed of co-mention extraction and classification. We formulate the co-mention classification problem as a supervised learning problem using the gold-standard data generated by biologists. This is also the first such gold-standard data for human protein-HPO term relation extraction and is made publicly available. A filter or a classifier that could identify good co-mentions can be used by annotators to significantly speed up the biocuration process. In addition, this can be used to provide much higher quality co-mentions as input to other downstream applications such as human protein-HPO term prediction [28], which would likely lead to better predictions.

The rest of the paper is organized as follows. Section 2 provides a brief background on the related work in this area. The proposed method is discussed in Section 3. Section 4 discusses the results of running this method and compares the results with other methods and provides a discussion on the results. Finally, Section 5 concludes the study and discusses future work and open problems.

2 RELATED WORK

The main approaches for biomedical relation extraction include co-occurrence-based methods, rule-based methods, and machine learning-based methods. Co-occurrence methods simply look for any co-mention of the two entities of interest in a particular span of text, e.g. sentence, paragraph, etc., and usually provide low precision and high recall values [4]. Rule-based methods define linguistic patterns and extract the relations using the patterns [1, 13, 22, 26, 30]. The rules can be derived from manually annotated corpora

²http://propheno.cs.montana.edu

³https://github.com/MSU-KAHANDA-LAB/protein-phenotype-relation-extraction
using machine learning algorithms or defined manually by a domain expert. Several studies focus on employing lexical analyzers and parsers to identify the relations between entities \([7, 34, 38, 39]\). For example, Yakushiji et al. introduce a full parser for analyzing biomedical text using a general-purpose parser \([39]\).

Machine learning-based approaches are also employed for the relation extraction from biomedical text \([16, 19, 21, 36]\). The machine learning category includes methods based on feature engineering, graph kernels, and deep learning. Support Vector Machines (SVMs) have shown high performance in biomedical relation extraction, but they need feature engineering which is a skill-dependent task \([40]\). Kernel-based methods also require designing suitable kernel functions. Deep neural network-based methods eliminate the need for feature extraction and defining rules, and provide state-of-the-art on various tasks in biomedical relation extraction \([27, 40]\). However, they typically require very large data sets compared to other traditional machine learning models.

Craven presents a machine learning method for mapping information from Medline abstracts to knowledge bases \([8]\). Katrenko and Adriaans propose a method that uses syntactic information and can be used with various machine learning methods \([15]\). Supervised and unsupervised methods have also been employed in different studies that show improvement in the relation extraction task \([2, 18, 23, 33]\).

Khorram and Mercer introduce a machine learning method for identifying genotype-phenotype relations which uses a semi automatic approach for annotating more sentences to enlarge the training set \([16]\). Extracting the relations between genotypes and phenotypes can also be performed by combining molecular and phenotypic information \([10]\).

Despite a large number of studies conducted on extracting entity relations from the biomedical literature (including a handful of methods for extracting relations between genes/proteins and phenotypes), no methods exist specifically for human protein-HPO term relation extraction. Therefore, to the best of our knowledge, this is the first study on the problem of protein-HPO term relation extraction from biomedical literature and the PPPred is the first such method. We note that GenePheno \([14]\) is the only related method that uses an ontology-based approach to extract gene-phenotype associations from the literature. It first recognizes all mentions of gene and HPO terms within sentences in the whole corpora and then uses a co-occurrence based metric for ranking those pairs. Highest ranked pairs are predicted as gene-phenotype associations. While GenePheno does not predict top-ranked relations (i.e. sentences), we still use it as one of the baseline methods due to the close proximity of the problem solved by their method and the task of protein-phenotype co-mention classification addressed by PPPred.

3 METHODOLOGY

3.1 Approach

In this work, we formulate the task of co-mention classification as a supervised learning problem as described below.

Given a context \(C = w_1 e_1 \ldots w_n e_n\) composed of words \(w_i\) and the two entities \(e_1\) and \(e_2\), we define a mapping \(f_R(\cdot)\) as:

\[
f_R(T(C)) = \begin{cases} 1 & \text{if } e_1 \text{ and } e_2 \text{ are related according to } R \\ 0 & \text{otherwise,} \end{cases}
\]

where \(T(C)\) is a high-level feature representation of the context, \(e_1\) and \(e_2\) are the entities representing the protein and the phenotype and \(R\) is the relation that represents the protein-phenotype relationship between the two. An example is considered a positive example if the meaning of the context suggests that the protein mentioned has this function (i.e. a good co-mention). Otherwise, it is labeled as a negative example.

In this work, the context \(C\) is a single sentence (i.e., the sentence containing the mentions of the two entities). Figure 2 depicts a sentence which is labeled as a positive example (i.e., \(f_R = 1\)) because it provides evidence for the relationship between the two entities “Insulin” (protein) and “Atherosclerosis” (phenotype). We model this problem as a supervised learning problem and use binary classifiers for learning \(f_R\).

Figure 3 depicts the overview of the PPPred pipeline, which is capable of classifying sentence-level co-mentions of proteins and phenotypes from biomedical literature. In this figure, we start by inputting a set of sentences that contain co-mentions of proteins and phenotypes. The preprocessing step is comprised of tokenization, removing punctuations and stop words, and stemming. In the next step, we extract features from the input sentences and train the model which is able to extract the relations. The steps are discussed in detail in the following sections.

3.2 Dataset

The first step in building a co-mention classifier is to create a manually-annotated gold-standard dataset of co-mentions of proteins and phenotypes. For this purpose, we use ProPheno 1.0 \([29]\), which is a dataset of proteins-phenotypes extracted from the entire biomedical literature. This dataset maps the proteins and phenotypes to the corresponding UniProt IDs and HPO IDs. We randomly select a dataset of 809 sentence-level co-mentions of proteins and phenotypes from ProPheno. This dataset is then annotated by two biologists to generate the gold-standard dataset. The annotators were provided instructions to label a co-mention as good/positive.

\(\text{https://www.uniprot.org}\)
Table 1: The class distribution in the gold standard dataset

Type of Sentences	Good	Bad	Total
Sentences from abstracts	169	147	316
Sentences from full-texts	348	145	493
All sentences	517	292	809

if the sentence conveys that the protein and the phenotype has a relationship. Otherwise, the co-mention was labeled bad/negative.

Table 2: Most frequent HPO terms mentioned in the dataset

Index	HPO ID	HPO Term	Depth	Frequency
1	HP:0002664	Neoplasm	2	348
2	HP:0003002	Breast carcinoma	5	69
3	HP:0001909	Leukemia	4	24
4	HP:0002861	Melanoma	4	21
5	HP:000855	Insulin resistance	5	15

Table 3: Most frequent proteins mentioned in the dataset

Index	UniProt ID	Protein Name	Freq.
1	P04626	Receptor tyrosine-protein kinase erbB-2	120
2	Q9Y617	Phosphoserine aminotransferase	45
3	O14788	Tumor necrosis factor ligand superfamily member 11	23
4	P01308	Insulin	20
5	P03971	Muellerian-inhibiting factor	14

Table 4 also demonstrates the most frequent protein-phenotype pairs mentioned in the dataset. We observe that 10% of the co-mentions in the dataset mention above protein-phenotype pair, which shows this pair is a well-studied protein-phenotype pair. Figure 4 depicts the distribution of the depths of HPO terms in the gold-standard.

3.3 Preprocessing

In the next step, we perform preprocessing on the sentences, which is basically employing tokenization, and removing highly frequent words from sentences (stop words), and also performing lemmatization. In this step, we replace protein and phenotype entities by PROT and PHENO, respectively. This replacement helps us to keep track of the actual labels when the sentence contains more than one entity with the same name and helps to avoid confusion when the entity names contain more than one word.

3.4 Feature Extraction

We define the following items as the features for classification. These features are categorized into three major types, i.e. bag-of-words, engineered features, and distantly supervised (DS) features.

3.4.1 Bag-of-words (BoW) Feature. Here each feature is a token from the context sentence while the feature value is their corresponding frequency.
Table 4: Most frequent protein-HPO term pairs mentioned in the dataset

Index	UniProt ID	HPO ID	Protein Name	HPO Term	Frequency
1	P04626	HP:0002664	Receptor tyrosine-protein kinase erbB-2	Neoplasm	79
2	Q9Y617	HP:0002664	Phosphoserine aminotransferase	Neoplasm	42
3	P04626	HP:0003002	Receptor tyrosine-protein kinase erbB-2	Breast carcinoma	31
4	P99486	HP:0002664	SPARC	Neoplasm	9
5	P21860	HP:0002664	Receptor tyrosine-protein kinase erbB-3	Neoplasm	8

3.4.2 Engineered Features. We obtained these features based on (1) domain expertise and (2) informative features used with similar relation extraction problem [21]. The full list of engineered features and their value type (within parentheses) is as follows:

(1) Shortest dependency path between PROT and PHENO in the dependency graph of the sentence (integer).
(2) The head words of PROT and PHENO in the sentences (string).
(3) Part-of-speech tags of the entities and next tokens of entities in the sentences (string).
(4) The number of tokens in sentences (integer).
(5) Existence of interaction words acquired from a study by Chowdhary et al [6] (boolean).
(6) Existence of seven trigger words provided by biologists, e.g. "provide", "improve", "confer", etc (boolean).
(7) Position of PROT in the sentence (integer).
(8) Position of PHENO in the sentence (integer).
(9) Tokens before and after PROT and PHENO (string).
(10) Whether PROT is mentioned before PHENO in the sentence (boolean).
(11) Existence of doubt in the sentence, e.g. "may", "might", etc (boolean).
(12) Existence of negation words such as "no", "not", etc (boolean).

3.4.3 DS Features. We obtained the DS features by utilizing (1) the full set of co-mentions (i.e. unlabeled) available in ProPheno, and (2) the annotations available in the HPO database, which we call the silver-standard (SS). These features are listed in detail as follows:

(1) Number of co-mentions containing the protein name (integer).
(2) Number of co-mentions containing the phenotype name (integer).
(3) Number of co-mentions containing both protein and phenotype name (integer).
(4) Normalized number of co-mentions containing the protein name (float).
(5) Normalized number of co-mentions containing the phenotype name (float).
(6) Normalized number of co-mentions containing both protein and phenotype name (float).
(7) Number of pair-specific co-mentions containing the protein name (integer).
(8) Number of pair-specific co-mentions containing the phenotype name (integer).
(9) Number of pair-specific co-mentions containing both protein and phenotype name (integer).
(10) Normalized number of pair-specific co-mentions containing the protein name (float).
(11) Normalized number of pair-specific co-mentions containing the phenotype name (float).
(12) Normalized number of pair-specific co-mentions containing both protein and phenotype name (float).
(13) Number of annotations in SS for the protein (integer).
(14) Number of annotations in SS for the phenotype (integer).
(15) Annotation score for the protein and the phenotype in SS (0 or 1).
(16) Number of propagated annotations in SS for the protein (integer).
(17) Number of propagated annotations in SS for the phenotype (integer).
(18) Propagated annotation score for the protein and the phenotype in SS (0 or 1).

We normalize the number of co-mentions containing protein name, phenotype name, or a pair of protein-phenotype by dividing their frequencies by the number of unique articles that contain that specific protein, phenotype, or pair, respectively. We also propagate the HPO annotations upward toward the root nodes by using the true path rule that means if an HPO term has an annotation with a specific protein, all of its ancestors are also annotated with that protein.

3.5 Experimental Setup

The scikit-learn\(^5\) package is used for implementing the classifier functionality. We normalize the feature vectors using the L2 norm. In a preliminary analysis, we compared various supervised learning algorithms such as SVM, Naïve Bayes, Decision Trees, K-Nearest Neighbors (KNN), and Gradient Boosting Trees (GBT) using their default parameter settings. We select SVM with Linear kernel for the rest of our experiments. We perform 10-times 5-fold cross-validation for evaluating the models. The performances are reported primarily using F-max (the optimal F-1 value). Precision and Recall at F-max are presented as well. Precision is the fraction of true positives over all the predicted positives, whereas recall is the fraction of true positives over all the actual positives. F-1 is the harmonic mean of precision and recall.

We compare PPPred with three baselines: (1) a strict rule-based method (rule-based 1), (2) a lenient rule-based method (rule-based 2), and (3) GenePheno [14]. The rule-based 1 method was developed in-house by a biologist using broad domain knowledge of the language used when describing alterations in protein sequence.

\(^5\)https://scikit-learn.org/
activity, regulation and the resulting phenotypic changes. Commonly used words for sequence-based alterations included "mutation", "deletion" and "insertion". For protein expression changes, the phrases "upregulation", "upregulates", "downregulation", "down-regulates", "over-expression", "under-expression", "switches off", "switches on", "amplifies" and "enhances" were chosen. For direct protein-phenotype relationship descriptions, the phrases "associated with", "triggered by" and "caused by" were used. This method assigns a score of 1 to co-mentions satisfying at least one of the following rules (and 0 otherwise):

- PROT (upregulation/downregulation/over-expression/under-expression/mutation) causes/does not cause/is (not) associated with PHENO
- some other entity (upregulates/downregulates/silences/inhibits/switches off/switches on/triggers/activates/amplifies/over-expresses/under-expresses/enhances) PROT causing/which causes/which is associated with PHENO
- PEHNO is (not) associated with/triggered/caused by (up-regulation/downregulation/mutation/deletion/insertion/) in PROT
- Mutation/deletion/insertion in PROT causes/is associated with PHENO

The rule-based 2 method is lenient than the rule-based 1 method because it only checks whether any of the keywords in the rule-based 1 method is in the sentences. In other words, this method assigns a score to a co-mention based on the keyword(s) present in the sentence. The order or the position of the keywords (with respect to PROT and PHENO entities) are not considered.

GenePheno [14] is an ontology-based text mining method for predicting gene-phenotype associations using literature. While acknowledging this is not an apples-to-apples comparison, we perform the following in order to adapt it as a baseline. For each co-mention in our gold-standard, if the corresponding pair of the protein and the phenotype exists in the pre-generated GenePheno output file, we consider it as a positive prediction (otherwise negative). We incorporate the NPMI (Normalized Pointwise Mutual Information) scores provided by GenePheno for each co-mention as the confidence scores for the predictions. Note that due to the possibility of the GenePheno method having access to some or all of the co-mentions from our test set, the performance we report is likely an over-estimation.

4 RESULTS AND DISCUSSION

Table 5 demonstrates the F-max, precision at F-max, and recall at F-max values of various supervised learning algorithms. We observe that the Linear SVM and Gradient Boosting Trees algorithms achieve best the F-max value (0.8). In addition, the Decision Trees, Naïve Bayes, and K-Nearest Neighbors algorithms provide F-max values of 0.78, 0.79, and 0.78, respectively. However, by comparing the precision values, we realized that Linear SVM and Gradient Boosting Trees provide higher precision values. Since Linear SVM is one of the top models among all the models we compared, we use that for the rest of our experiments.

Table 5: Comparison of various machine learning algorithms using default parameter settings. Performance evaluated using 5-fold cross-validation and the results reported using F-max and precision/recall at F-max.

Model	Precision	Recall	F-max
Linear SVM	0.69	0.95	0.8
Decision Trees	0.64	0.99	0.78
Naïve Bayes	0.67	0.97	0.79
K-Nearest Neighbors	0.64	1.0	0.78
Gradient Boosting Trees	0.69	0.95	0.8

Table 6 shows the comparison of the results of running PPPred against two rule-based methods and GenePheno. We observe that rule-based 2 and GenePheno obtain similar values for precision, recall, and F-max, whereas Linear SVM produces a higher F-max value. Linear SVM also achieves higher precision value than the rule-based 2 and GenePheno methods. Due to the lack of confidence scores for the rule-based 1 method, we report the F1-score instead of F-max. We performed the paired T-test on the values to compare the significance of the difference between F-max values. We observed that Linear SVM significantly outperforms other methods by achieving a p-value of 4.3E-13.

Table 6: Comparison of PPPred (uses SVMs with Linear kernel) against several baseline methods. Performance evaluated using 5-fold nested cross-validation and the results reported using F-max and precision/recall at F-max. *F1 score reported in-place of F-max due to the lack of confidence scores for Rule-based 1 method.

Method	Precision	Recall	F-max
Rule-based 1	0.71	0.26	0.38*
Rule-based 2	0.63	1.0	0.78
GenePheno	0.63	1.0	0.78
Linear SVM	0.69	0.95	0.8

Table 6 shows the comparison between the effectiveness of various features on the sentences from the abstracts, full-text articles, and all sentences. The results suggest that we obtain better performance using the co-mentions from the sentences extracted from the full-text articles in comparison with the sentences extracted from the abstracts. The precision values of co-mentions extracted from full-text articles are higher than the values obtained by the abstracts. In other words, the co-mentions extracted from full-text articles could be a valuable source of information for relation extraction. The next observation is that BoW features often provide good performance in terms of precision, recall, and F-max that indicates the BoW features are an essential feature for relation extraction. Engineered features provide higher precision in comparison with DS features, whereas the DS features achieve higher recall values. This observation suggests that these two sets of features can be used as complementary features for relation extraction.

We investigate whether the training set suitably represents the problem by employing the learning curve with training sizes 20%-90% of the data and predicting on the holdout 10% of the data.
Moreover it should be taken into account that the PROT level does not always correlate well with the PHENO burden and that there are numerous examples of metastatic PCa in the absence of significantly elevated PSA levels, particularly when the tumours are poorly differentiated [36].

Our findings, which demonstrated prognostic value of p-eIF2 in PHENO, are partially consistent with this previous research, because PROT is also involved in the PERK-p-eIF2 signaling pathway and predicts better DFS in patients with breast cancer.

Pedigree analyses of five families in which a form of spinocerebellar PHENO (SCA1) is present have been used to obtain additional information on the location of PROT on chromosome 6.

The ratio of free to total PROT may increase the specificity of single serum PSA evaluations without decreasing its sensitivity for the diagnosis of prostate PHENO.

We observed that most of the phenotypes in the selected sentences are "cancer" or related to "cancer". Therefore, the type of entities does not fully distinguish between good and bad co-mentions and requires further investigation.

5 CONCLUSION AND FUTURE WORKS

In this study, we created a co-mention classifier/filter which is capable of distinguishing between good and bad co-mentions of proteins and phenotypes in sentences. We created a pipeline in which we perform preprocessing on manually-annotated sentence-level co-mentions of proteins and phenotypes, and by training a model on a set of features extracted from the sentences, we are able to classify the sentences comprising co-mentions of proteins and phenotypes. This classifier can be employed to perform relation extraction on protein and phenotype entities mentioned in biomedical literature.
We observed that Linear SVM provides the best F-max score using five-fold cross-validation. Nevertheless, there is still a lot of avenues to work in this area. We utilized syntactic features extracted from sentences, however, a potential future work is to use more specific syntactic features from sentences, e.g. the shape of the dependency graph. We also plan to do the classification on positive relations, negative relations, and no relations between entities to be able to extract more specific relations from biomedical literature by converting the problem into a multi-class classification. We also plan to apply deep learning and word embeddings to this dataset. We plan to incorporate the section titles, e.g. Introduction, Conclusion, etc., to employ only the more informative sentences. We also plan to utilize features based on the soft similarity between sentences and in the future, we are going to expand the study and include larger spans of text, i.e. paragraphs and documents.

REFERENCES
\[1\] Behrouz Bokharaeian, Albertio Diaz, Nasrin Taghizadeh, Hamidreza Chitsaz, and Ramyar Chavoshinejad. 2017. SNNPhenA: a corpus for extracting ranked associations of single-nucleotide polymorphisms and phenotypes from literature. Journal of biomedical semantics 8, 1 (2017), 14.
\[2\] Quoc-Chinh Bui, Sophia Katrenko, and Peter MA Sloot. 2010. A hybrid approach to extract Protein-Protein Interactions. Bioinformatics 27, 2 (2010), 259–265.
\[3\] Sumit Kumar Chaturvedi, Mohammad Khursheed Siddiqui, Parvez Alam, and Riwana Hasan Khan. 2016. Protein misfolding and aggregation: mechanism, factors and detection. Process Biochemistry 51, 9 (2016), 1183–1192.
\[4\] Elizabeth S Chen, George Hripcsak, Hua Xu, Marianthi Markatou, and Carol Friedman. 2008. Automated acquisition of disease–drug knowledge from biomedical and clinical documents: an initial study. Journal of the American Medical Informatics Association 15, 1 (2008), 87–98.
\[5\] Fabrizio Chiti and Christopher M Dobson. 2017. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annual review of biochemistry 86 (2017), 27–68.
\[6\] Rajesh Chowdhary, Jinfeng Zhang, and Jun S Liu. 2009. Bayesian inference of protein–protein interactions from biologic literature. Bioinformatics 25, 12 (2009), 1536–1542.
\[7\] Adrien Coulet, Nigam H Shah, et al. 2010. Using text to build semantic networks for pharmacogenomics. Journal of biomedical informatics 43, 6 (2010), 1009–1019.
\[8\] Mark Craven. 1999. Learning to extract relations from MEDLINE. In AAAI-99 workshop on machine learning for information extraction, Vol. 5. The AAAI Press, 604–611.
\[9\] International Society for Biocuration. 2018. Biocuration: Distilling data into knowledge. PLoS Biology 16, 4 (04 2018), 1–8. https://doi.org/10.1371/journal.pho.2002846
\[10\] Chern-Sing Goh, Tara A Gianoulis, et al. 2006. Integration of curated databases to identify genotype-phenotype associations. BMC genomics 7, 1 (2006), 257.
\[11\] Peter W Harrison, Alison E Wright, and Judith E Mank. 2012. The evolution of gene expression and the transcriptome–phenotype relationship. In Seminars in cell & developmental biology, Vol. 23. Elsevier, 222–229.
\[12\] F Ulrich Hartl. 2017. Protein misfolding diseases. Annual Review of Biochemistry 86 (2017), 21–26.
\[13\] Minlie Huang, Xiaoyan Zha, Yu Hao, Donald G Payan, Kumin Qu, and Ming Li. 2004. Discovering patterns to extract Protein–Protein Interactions from full texts. Bioinformatics 20, 18 (2004), 3604–3612.
\[14\] Şenay Kafkas and Robert Hochedez. 2019. Ontology based text mining of gene-phenotype associations: application to candidate gene prediction. Database 2019 (2019).
\[15\] Sophia Katrenko and Pieter Adriaans. 2007. Learning relations from biomedical corpora using dependency trees. In Knowledge Discovery and Emergent Complexity in Bioinformatics. Springer, 61–80.
\[16\] Maryam Khordad and Robert E Mercer. 2017. Identifying genotype-phenotype relationships in biomedical text. Journal of biomedical semantics 8, 1 (2017), 57.
\[17\] Sebastian Köhler, Sandra C Dolkenn, et al. 2013. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic acids research 42, D1 (2013), D966–D974.
\[18\] Jan O Korbel, Tobias Doerks, et al. 2005. Systematic association of genes to phenotypes by genome and literature mining. PLoS biology 3, 5 (2005), e134.
\[19\] Andre Lamurias, Luka A Clarke, and Francisco M Couto. 2017. Extracting microRNA-gene relations from biomedical literature using distant supervision. PLoS one 12, 3 (2017), e0171929.
\[20\] Mark Larance and Angus I Lamond. 2015. Multidimensional proteomics for cell biology. Nature reviews Molecular cell biology 16, 5 (2015), 269.
\[21\] Fei-Yau Lung, Zhe He, Tingting Zhao, Disa Yu, and Jinfeng Zhang. 2019. Extracting chemical–protein interactions from literature using sentence structure analysis and feature engineering. Database 2019 (2019).
\[22\] ASM Ashique Mahmood, Tsung-Jung Wu, Raja Mazumder, and K Vijay-Shanker. 2016. DiMeX: a text mining system for mutation-disease association extraction. PLoS one 11, 4 (2016), e015272S.
\[23\] Edward M Marcotte, Ioannis Xenarios, and David Eisenberg. 2001. Mining literature for Protein–Protein Interactions. Bioinformatics 17, 4 (2001), 359–363.
\[24\] Mary L McHugh. 2012. Interrater reliability: the Kappa statistic. Biochimica et biophysica acta 1824, 1S (2012), S80–S85.
\[25\] Morteza Pourreza Shahri and Indika Kahanda. 2018. Extracting Co-mention Features from Biomedical Literature for Automated Protein Phenotype Prediction using PHENOObstr. In 10th International Conference on Bioinformatics and Computational Biology. BICOB 2018. 123–128.
\[26\] Morteza Pourreza Shahri and Indika Kahanda. 2019. ProPheno 1.0: An online dataset for accelerating the complete characterization of the human protein-phenotype landscape in biomedical literature. (2019). https://doi.org/10.7287/10.7287/10.7287/53.
\[27\] KE Ravikumar, Majid Rastegar-Mojarad, and Hongfang Liu. 2017. BELminer: adapting a rule-based relation extraction system to extract biological expression language statements from bio-medical literature evidence sentences. Database 2017 (2017).
\[28\] Marylyn D Ritchie, Emily R Holzinger, Ruowang Li, Sarah A Pendergrass, and Ramyar Chavoshinejad. 2017. SNPPhenA: a corpus for extracting ranked associations of single-nucleotide polymorphisms and phenotypes from literature. Journal of biomedical semantics 10, 1 (2019).
\[29\] Takeshi Sekimizu, Hyun S Park, and Jun’ichi Tsujii. 1998. Identifying the interaction between type 2 diabetes and Alzheimer’s disease through cross-reading of protein misfolding. Molecular psychiatry 22, 9 (2017), 1327.
\[30\] See-Kiong Ng and Marie Wong. 1999. Toward routine automatic pathway discovery from on-line scientific text abstracts. Genome Informatics 10 (1999), 104–112.
\[31\] Yifan Peng, Anthony Rios, Ramakanth Kavuluru, and Zhongyu Lu. 2018. Extracting chemical–protein relations with ensembles of SVM and deep learning models. Database 2018 (2018), bay073.
\[32\] Morteza Pourreza Shahri and Indika Kahanda. 2018. Extracting Co-mention Features from Biomedical Literature for Automated Protein Phenotype Prediction using PHENOObstr. In 10th International Conference on Bioinformatics and Computational Biology. BICOB 2018. 123–128.
\[33\] Marylyn D Ritchie, Emily R Holzinger, Ruowang Li, Sarah A Pendergrass, and Dokyoon Kim. 2015. Methods of integrating data to uncover genotype–phenotype interactions. Nature Reviews Genetics 16, 2 (2015), 85.
\[34\] Peter N Robinson. 2012. Deep phenotyping for precision medicine. Human mutation 33, 5 (2012), 777–780.
\[35\] Barbara Rosario and Marta A Hearst. 2004. Classifying semantic relations in biomedical corpora using dependency trees. In Knowledge Discovery and Emergent Complexity in Bioinformatics. Springer, 61–80.
\[36\] Takeshi Sekimizu, Hyun S Park, and Jun’ichi Tsujii. 1998. Identifying the interaction between genes and gene products based on frequently seen verbs in medline abstracts. Genome Informatics 9 (1998), 62–71.
\[37\] Qiancheng Shen, Feixiong Cheng, Hui Ling Song, Weiqiang Lu, Junfei Zhao, Xiaoli An, Mingyao Liu, Guoqiang Chen, Zhongming Zhao, and Jian Zhang. 2017. Proteome-scale investigation of protein allosteric regulation perturbed by somatic mutations in 7,800 cancer genomes. The American Journal of Human Genetics 100, 1 (2017), 5–20.
\[38\] Ayush Singhal, Michael Simmons, and Zhiyong Lu. 2016. Text mining for precision medicine: automating disease-mutation relationship extraction from biomedical literature. Journal of the American Medical Informatics Association 23, 4 (2016), 766–772.
\[39\] Ayush Singhal, Michael Simmons, and Zhiyong Lu. 2016. Text mining genotype-phenotype relationships from biomedical literature for database curation and...
[38] Joshua M Temkin and Mark R Gilder. 2003. Extraction of protein interaction information from unstructured text using a context-free grammar. *Bioinformatics* 19, 16 (2003), 2046–2053.

[39] Akane Yakushiji, Yuka Tateisi, et al. 2000. Event extraction from biomedical papers using a full parser. In *Biocomputing 2001*. World Scientific, 408–419.

[40] Yijia Zhang, Hongfei Lin, Zhihao Yang, Jian Wang, Shaowu Zhang, Yuanyuan Sun, and Liang Yang. 2018. A hybrid model based on neural networks for biomedical relation extraction. *Journal of biomedical informatics* 81 (2018), 83–92.