A Phylogenetic Perspective on the Evolution of Mediterranean Teleost Fishes

Christine N. Meynard¹,², David Mouillot³, Nicolas Mouquet¹, Emmanuel J. P. Douzery¹

¹ Institut des Sciences de l’Evolution, UMR 5554-CNRS-IRD, Université de Montpellier II, Place Eugène Bataillon, CC065, Montpellier, France, ² INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, CS 30016, Montferrier-sur-Lez, France, ³ Ecosystèmes Lagunaires, UMR 5119 CNRS-UM2-IFREMER-IRD, Place Eugene Bataillon, Montpellier, France

Abstract
The Mediterranean Sea is a highly diverse, highly studied, and highly impacted biogeographic region, yet no phylogenetic reconstruction of fish diversity in this area has been published to date. Here, we infer the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank. We assembled a DNA supermatrix composed of four mitochondrial genes (12S ribosomal DNA, 16S ribosomal DNA, cytochrome c oxidase subunit I and cytochrome b) and two nuclear genes (rhodopsin and recombination activating gene I), including 62% of Mediterranean teleost species plus 9 outgroups. Maximum likelihood and Bayesian phylogenetic and dating analyses were calibrated using 20 fossil constraints. An additional 124 species were gathered onto the chronogram according to their taxonomic affinity, checking for the effects of taxonomic coverage in subsequent diversification analyses. We then interpreted the time-line of teleost diversification in light of Mediterranean historical biogeography, distinguishing non-endemic natives, endemics and exotic species. Results show that the major Mediterranean orders are of Cretaceous origin, specifically ~100–80 Mya, and most Perciformes families originated 80–50 Mya. Two important clad origin events were detected. The first at 100–80 Mya, affected native and exotic species, and reflects a global diversification period at a time when the Mediterranean Sea did not yet exist. The second occurred during the last 50 Mya, and is noticeable among endemic and native species, but not among exotic species. This period corresponds to isolation of the Mediterranean from Indo-Pacific waters before the Messinian salinity crisis. The Mediterranean fish fauna illustrates well the assembly of regional faunas through origination and immigration, where dispersal and isolation have shaped the emergence of a biodiversity hotspot.

Introduction
The Mediterranean fish fauna is unique, characterized by a history of isolation and connectivity [1] resulting from tectonic movements and changes in ocean circulation. Isolation of the Mediterranean is reflected in its rich marine flora and fauna, with an estimated total of 17,000 species [1]. 619 fish species have been inventoried in the Mediterranean, among which 13% are endemic, 2% are introduced, and 67% are non-endemic natives. 85% of these fish are teleosts [2]. General geological and oceanographic processes such as those involved at the origin of the Mediterranean Sea have been shown to influence regional histories of fish diversity globally [3,4]. Studying the Mediterranean region may therefore illustrate mechanisms contributing to diversification of teleosts and help us understand the current distribution of diversity in the region.

During the Cretaceous (145–65 Mya), the Mediterranean was part of the Tethys Sea and was connected with the Atlantic as well as with the Indo-Pacific oceans. At this time, Africa, Europe and the Adriatic plates were coming closer together, making this ancestral Mediterranean Sea smaller and smaller, and drastically changing its shape and connectivity. By the Miocene (23–5 Mya), the Mediterranean Sea was isolated from the Indo-Pacific. Subsequently, circa 7–5 Mya, it is believed to have been isolated from the Atlantic as well, causing a period of important environmental stress characterised by high desiccation and low sea level known as the Messinian Salinity Crisis (MSC) [5,6]. During the MSC, the Mediterranean Sea was probably reduced to a series of small lakes, causing a rise in water salinity and a very important extinction crisis among the fish fauna. However, about 5 Mya, the connection with the Atlantic Ocean reopened through the Strait of Gibraltar, allowing colonization of new species into the Mediterranean [5,6]. Today, the Mediterranean Sea is...
enclosed by land, with only two small connections to other oceans: the Strait of Gibraltar, and the Suez Canal, an artificial connection to the Red Sea that was opened in 1869 [2]. Despite the Strait of Gibraltar being only 14 km wide, it largely determines water circulation and productivity patterns, especially in the western Mediterranean [7].

A dated phylogeny of teleost taxa specific to the Mediterranean Sea is crucial to understand how episodes of drastic environmental changes in water circulation, environmental conditions, and level of isolation [5] have marked the evolution of its current diversity. To date, however, no phylogenetic reconstruction of teleost fish diversification events in the region has been published. Teleost fish represent the largest vertebrate group on Earth, with an estimated 27,000–31,000 species worldwide [3] (see also FishBase, http://www.fishbase.org). Building a phylogeny of teleosts remains challenging and controversial due to the large number of species and the lack of agreement regarding classification of some major orders and families [8,9]. For example, one of its largest orders, the Perciformes, includes a mixture of fairly disparate polyphyletic taxa [8,9,10]. There are published phylogenies for some groups, such as the families Gobiidae [11], Sparidae [12,13], and Labridae [14], which include several representatives of Mediterranean species. However, the most complete dated teleost phylogeny published to date [15] includes only 16 Mediterranean species and an additional 34 genera (represented by Mediterranean congeners) that occur in the Mediterranean.

The main goal of this study was to reconstruct a dated phylogeny of Mediterranean teleost species based on available molecular data to investigate the potential biogeographic causes that underlie current fish diversity in the Mediterranean Sea. We used the inferred dated phylogeny to explore the possibility that biogeographic events have differentially affected native and exotic species, and to relate major changes in diversity to the Earth history. First, the end-Cretaceous extinction crisis and radiation described for fish at the global scale [3], should be reflected in the Mediterranean for all clades. Second, if the isolation of Atlantic and Indo-Pacific waters was important in the emergence of fish diversity in the Mediterranean Sea, we would expect a peak in clade origin among native species before and until the MSC, at the time when water circulation between these two oceans started to be restricted (~40–20 Mya). Such a diversification burst would support the idea that limited dispersal from the Atlantic may have played a major role in maintaining and generating biodiversity within the Mediterranean, though we cannot exclude a complementary contribution of other regional mechanisms such as local isolation or extreme environmental conditions. Finally, if allopatric speciation due to the formation of highly isolated lakes during the MSC was the main driver of current diversity, we would expect a more recent origin of native clades centred around the MSC (~7–5 Mya). In both cases, these peaks should be observed among native and endemic species, but not among exotic species.

Materials and Methods

Data harvesting

Nucleotide sequences for Mediterranean teleost fishes (as listed in [16] and references therein), plus 9 additional extra-Mediterranean species were downloaded from GenBank using the seqinR package in R v.2.12.1 [17]. Six loci, each represented by >50 species, were identified for further analyses (Appendix S1 and S2). This minimum taxonomic representation potentially ensured a greater resolving phylogenetic power [18]. The DNA markers selected included 4 mitochondrial genes — 12S ribosomal RNA (12S rDNA; 221 species), 16S ribosomal RNA (16S rDNA; 265 species), cytochrome c oxidase subunit I (COXI; 118 species), and cytochrome b (CYB; 235 species) –, and two nuclear genes, the intronless rhodopsin (RHO; 183 species) and the recombination activating gene I (RAG1; 80 species). These markers have been used previously to unravel phylogenetic relationships among closely and distantly related species [19,20,21,22,23,24,25]. Because mitochondrial genes display average faster evolutionary rates as compared to nuclear exons, the former provide resolving power for closely related organisms, while the latter provide better resolution for deeper nodes [4,15].

The final analysis included 363 Mediterranean teleost species (62% of the total number of teleost species in the region), representing all orders, 110 families and 237 genera present in the Mediterranean Sea, and 9 extra-Mediterranean species (see Appendix S1).

Phylogenetic analyses

Downloaded sequences were individually aligned for each gene using MAFFT [26], version 5. The resulting alignments were inspected and further refined manually. Ambiguous regions of the alignments were filtered using Gblocks [27], version 0.91b. Parameters were set so that the minimum block length was 10 sites, and the maximum number of contiguous non-conserved positions was 5, while conserving sites with a maximum of 50% of gaps. The resulting aligned sequences had the following number of positions (% of the original alignments): 297 (30%) for 12S rRNA, 376 (62%) for 16S rRNA, 622 (58%) for COXI, 1107 (97%) for CYB, 437 (57%) for RHO, and 1,424 (33%) for RAG1. Aligned sequences were then concatenated into a supermatrix of 4,263 sites, and analysed for phylogenetic reconstruction under maximum likelihood (ML) [28]. The best-fitting model of sequence evolution was selected using the Akaike information criterion and hierarchical likelihood ratio tests calculated under Modeltest version 3.7 [29]. Both criteria identified the general time reversible (GTR) model of nucleotide exchangeabilities, with a Gamma (Γ) distribution plus a fraction (I) of invariable sites to account for among-sites substitution rate heterogeneities. All GTR+I+I branch length parameters were estimated from the data.

A preliminary unconstrained analysis resulted in some widely accepted clades being polyphyletic, leading us to enforce the following topological constraints in subsequent tree searches: Clupeiformes + Danio, Gadiformes, Lampriformes, Myctophiformes, Pleuronectiformes, Stomiiformes, and Tetraodontiformes for orders [30,31,32,33], and Labridae [14] for families. The orders Scorpaeniformes and Syngnathiformes, and the family Serranidae (Perciformes) were also constrained based on FishBase classification and on the lack of published evidence that these clades would be polyphyletic. Conversely, because there is published evidence that the family Sciaenidae (Centracanthidae, Perciformes) is genuinely included within the Serranidae [34], and that the Echeneidae are nested within the Carangidae [22] we did not constrain these taxa. Moreover, we rooted the trees with elopomorphs (here Anguilliformes + Notacanthiformes) as the sister-group of the remaining teleosts.

A first tree was built using the Randomized Accelerated Maximum Likelihood algorithm RAxML [35], v7.0.4. The resulting tree was the starting point for a deeper exploration of the topological space using PAUP* [36], version 4b10. Different cycles of tree search with tree-bisection reconnection (TBR) branch swapping and model parameter re-estimation were performed. The number of TBR rearrangements was increased to 10,000, 50,000, and then 100,000. The search was stopped as no further increase in log-likelihood was observed. The highest-likelihood tree thus identified was taken as the 6-gene best ML.
phylogenetic hypothesis for subsequent analyses. The corresponding phylograms were subjected to the super-distance matrix (SDM) approach [37] to estimate the relative substitution rate among 12S rDNA, 16S rDNA, COXI, CYB, RHO and RAG1.

Node stability was estimated under ML through 400 replicates of bootstrap re-sampling of the DNA supermatrix [28]. For each replicate, PAUP* computed the highest-likelihood tree based on the re-estimation of the GTR$+\Gamma$ model parameters, with the 6-gene ML topology as a starting point, and 10,000 TBR branch swapping rearrangements. The bootstrap percentages of the consensus tree were mapped on the highest-likelihood phylogram using the bppConsense utility of the Bio++ program suite [38]. All trees were drawn using the APE library [39] within the R statistical package.

Molecular dating

Divergence times among taxa were estimated using a Bayesian relaxed molecular clock dating strategy [40]. We compiled a list of fossil records and calibrations that have been used in previous publications, and we selected 20 paleontological constraints based on the following criteria:

(1) Only primary calibrations were considered, whereas secondary calibrations, based on molecular estimates, were discarded. Following recommendations in [41], minimum and maximum bounds were based solely on fossil information.

(2) The fossil record under focus should be unambiguous. For example, a calibration at 161 Mya for Gadiformes [42] is described in [43] as “probable”, though the first certain fossil for this order dates from the Ypresian (56–48 Mya). Because of these discrepancies, we decided to leave this calibration point out.

(3) The taxonomic group involved in the calibration should be well resolved in the highest-likelihood phylogeny.

As a result, 20 nodes were constrained according to the available paleontological information (Table 1). For each calibration, we set the minimum (lower) date to the age of the geological stage corresponding to the oldest fossil record. The maximum (upper) bound corresponds to the earliest fossil record for the sister clade, as recommended in [41]. In addition, a 225–152 million years prior was used on the root age for the split between elopomorphs and the remaining teleosts [15]. Due to the incompleteness of the fossil record, all time calibrations were set as soft bounds [44], i.e., 5% of the total probability mass was allocated outside the specified bound. The log-normal rate-autocorrelated model was chosen to relax the molecular clock assumption because of its ability to reasonably fit various data sets [45]. Branch lengths were measured under the CAT mixture model [46], with a general time reversible (GTR) model of exchangeability among nucleotides, and a 4-category Gamma (Γ) distribution of substitution rates across sites to handle different substitution rates among the mitochondrial and nuclear loci. Dating estimates were computed by the Bayesian procedure implemented in the PhyloBayes software [47], version 3.2c (http://www.phylobayes.org). We used the CAT Dirichlet process with the number of components, weights and profiles all inferred from the ML topology, and a birth-death prior on divergence times. Four independent Markov Chains Monte Carlo (MCMC) were run for 4,000 cycles (i.e., 4,000,000 generations), with sampling every 5 cycles. After a burn-in of 200 cycles (i.e.,

Node Number	Name of clade	Time constraints	Reference
1	Notacanthidae vs Anguilliformes	L94	[43,69]
2	Anguilliformes	L50	[43]
3	Clupeiformes	L57	[43]
4	Zebranthurus vs Medaka (Clupeomorpha)	L150-U165	[70]
5	Myctophidae	L70	[43]
6	Aulopiformes	L96-U128	[15]
7	Tetraodontiformes	L59-U98	[15]
8	Tetraodon vs Takifugu	L32-56	[70]
9	Sparidae	L48	[43]
10	Stickleback vs (Tetraodon+Takifugu)	L97-U151	[70]
11	Gasterosteiformes (stickleback)	L71	[70]
12	Labrus vs Symphodus*	L40-U84	[43]
13	Gobiidae	L40 – U84	[15]
14	Scombridae	L61	[43]
15	Pleuronectiformes	L51-U99	[15]
16	Soledae, Pleuronectiformes	L40	[43]
17	Beloniformes	L40	[43]
18	Blenniidae	L40	[43]
19	Pomacentridae	L50 – U84	[15]
20	Medaka vs Stickleback	L97-U151	[70]

*Notice that this node corresponds to the bifurcation between two genera and not to the family Labridae.

Node numbers correspond to the numbers shown in Figure 1.

doi:10.1371/journal.pone.0036443.t001
200,000 generations), log-likelihood and model parameters stabilized. We computed the maximum difference of age estimated for each node by the 4 chains. We observed that the median of these differences in divergence times did not exceed 0.7 Ma, ensuring that convergence had been reached.

Diversification events through time

We classified species into natives, exotics and endemics following [16] and references therein: exotic species are species that are found in the Mediterranean Sea and for which there are records of introduction between 1810 and 2006; endemics have a distribution restricted to the Mediterranean; and the rest are non-endemic natives.

We then pruned the full chronogram to study the frequency and timing of diversification events among endemics, non-endemic natives and exotic species by dropping taxa that did not belong to the group of interest (e.g. to build the exotic species tree we dropped all the natives and extra-Mediterranean species). Then we recorded the date of each split and plotted diversification events by time period. To check whether these patterns of diversification were different from random, we sampled the same number of species randomly and without replacement from the full tree (n = 38 for endemics, n = 60 for exotics; n = 263 for non-endemic natives). For each sampling, we recorded the diversification events and calculated their median. This random sampling was repeated 1000 times for each case. We performed a two-tailed significance test i.e. the observed value was considered significantly different from random whenever it was outside the central 95% resampled distribution. We then repeated the same randomizations using either the lower or the upper bounds in the confidence intervals of each node age.

Note that we preferred this randomization strategy over the strategy of estimating diversification rates for each group for two reasons: (1) diversification rates estimates are likely to be biased by incomplete sampling [48] and (2) we are interested here in the timing of diversification events, more than on the estimates of diversification rates that could be obtained using this separate methodology. However we also built lineages-through-time plots for each chronogram analyzed to look at a more precise time-line of diversification events, and compare results from enriched trees (see below).
Figure 2. Histograms of the ages of the diversification events. Histograms are shown for (a) all species found in the Mediterranean Sea, (b) exotics only, (c) non-endemic natives, and (d) endemics. Dashed lines indicate the median based on the mean (M) node age estimates as well as based on the lower (L) and upper (U) bounds for each node’s 95% credibility interval. Asterisks near the letters indicate significantly different ages than those expected by a random draw of the same age. Asterisks near the letters indicate significantly different ages than those expected by a random draw of the same age.

Results

Phylogenetic relationships

While we assumed the monophyly of several groups, many higher level relationships were recovered without the need of imposing constraints on nodes [15,50,51]. In this way, Notacanthus is the sister group of Anguilliformes, and Clupeiformes form a deep-branching group, followed by Gadiformes, Myctophiformes, Aulopiformes, and other younger clades (Figure 1a). By contrast, the order Perciformes is polyphyletic, with different families spread along the tree: Sparidae + Centracanthidae, and Serranidae (Figure 1b), Labridae, Gobiidae, and Scombridae (Figure 1c), and Carangidae and Blenniidae (Figure 1d). Three additional families are monophyletic and branch in the crown part of the tree: Mugilidae, Blenniidae, and Pomacentridae (Figure 1d). By contrast, two families are paraphyletic because Echeneidae (Echeneis and Remora: Figure 1d) is nested within Carangidae [22], and Centracanthidae (Figure 1b) is nested within Scombridae [34]. Within Carangidae, the monophyly of the tribes Carangini and Naufragini [52] is supported.

Molecular dating

The dated phylogeny suggests that the diversification of the Mediterranean teleosts sampled here started during the Jurassic at least 166–153 Mya (Figure 1a). The diversification of most Perciformes families was estimated to occur during the late Paleocene to mid-Eocene, while the origin of some of the most important orders such as Clupeiformes, Gadiformes and Aulopiformes were dated back to around 80–50 Mya (Figure 1a). Most large Perciformes families such as Sparidae and Gobiidae started their diversification at around 80–50 Mya (Figure 1b and 1c). Among the youngest Perciformes families we can find Callionymidae, which diversified 14–2 Mya (Figure 1b). Most terminal nodes were dated as <30 Mya, but some exceptions can be found. For example the node that separates the two Pomacentridae species Abudelfayyis gregensis and Chromis chromis was estimated at 82–57 Mya (Figure 1d).

Diversification events through time

When all species are considered together in the analysis of diversification, most splitting events took place within the last 40 Mya, with a median at 43 Mya (median at 36–31 Mya if considering upper and lower node age bounds respectively, see Figure 2a). However, this scenario varies when endemics, non-endemic natives and exotic species are considered separately. Exotic species only showed one diversification peak at 100–80 Mya, but no peak during the last 50 Mya (Figure 2b), and presented a median value for diversification events of 90 Mya (99–78 Mya). Non-endemic native species showed a primary peak at 40–20 Mya and a secondary peak at 100–80 Mya (Figure 2c), and had an overall median of 45 Mya (59–33 Mya). Endemics showed a primary peak at 100–80 Mya and a secondary peak at 40–20 Mya (Figure 2d), with an overall median value of 81 Mya (91–70 Mya). Similar diversification patterns are observed when using any of the chronograms enriched by taxon grafting (results not shown), and are supported by the lineage-through-time plots (Figure 3). The slope of the lineage-through-time plots for the grafted species were set to the age of the node where they had been attached. This resulted in four additional chronograms of increasing taxonomic coverage including 404, 416, 473 and 496 species respectively, the most complete of which includes 93% of all Mediterranean endemics and 87% of non-endemic natives (see Appendix S3 for details).

We finally repeated this diversification analysis increasing the taxonomic coverage. First, we attached to the backbone chronogram additional species for which sequence data were not available but for which congeneric species were already present in the ML topology by “grafting” them as polytomies at the most recent common ancestor [MRCA] [49]. In a first step, we attached species that had 2 congeners represented in the chronogram to the node that linked the two species in question (33 species, see Appendix S3). On a second step, we added species that had at least one congener represented in the chronogram by attaching them to the node that linked the congener with the closest (non-congener) species. Third, we attached species which had members of the same family, and finally those that were represented by members in the same order, attaching them to the node that linked all the members of the same clade. Branch lengths leading to each
endemics increases between 100–80 Mya and between 40–
10 Mya (Figure 3), as it is observed for non-endemic natives.
However, exotic species only showed an increase in the slope after
100 Mya. These patterns remain consistent whether the raw dated
phylogeny (Figure 3a), the grafted trees including congeneric
representatives (Figure 3b and 3c), or family and order represen-
tatives (Figure 3d and 3e) are considered.

To summarize, three general patterns were evidenced in all
diversification analyses. First, endemic and native species showed a
significantly younger diversification median age than expected by
a random draw of the same number of species from the phylogeny
(Figure 2). Second, diversification median age of exotic species was
not different from random (Figure 2). And finally, natives and
endemics showed a peak in diversification in the last 50 Mya that
was not found for the exotic pool (Figure 2 and 3).

Discussion

Reliability of the teleost phylogeny and timetree
estimates

Four elements are crucial to reliably approach the evolutionary
history of Mediterranean teleosts in our analysis: taxon sampling,
gene sampling, topology inferred, and divergence times. First, we
have followed a strategy of increasing taxon sampling at the
expense of the number of markers because our focus on the
understanding of the diversification patterns of Mediterranean
teleosts required a stable phylogenetic picture with a wide
taxonomic coverage and a reduced systematic error [53].
Conversely, other studies have favoured the number of genes by
comparing complete teleost mitochondrial genomes (e. g. [10]).

Second, the relative evolutionary rates among the 6 genes — as
measured by the SDM procedure [37] — showed that the slowest-
evolving marker is, as expected, the nuclear gene RAG1. Furthmore, the mitochondrial and nuclear DNA supermatrix
of ~4,300 unambiguously aligned sites combined genes with
contrasted evolutionary dynamics. This likely provided phylol-
genetic resolving power at lower taxonomic level for the faster-
evolving markers (e.g., CYB, COXI), and at deeper levels for the
slower-evolving ones (RAG1, RHO, mitochondrial rDNAs).
Certainly the resolution of additional teleost diversification events
during intermediate periods of time will require gathering
evolutionary signal in complete mitogenomes and other nuclear
markers (e.g. [10,54]). However, considering supplementary genes
would have required sequencing de novo, which was out of the
scope of this project. Third, the amount of missing character states
in our supermatrix was 59 %. This reflects our choice of sampling
incomplete taxa to maximize the taxonomic coverage. Although
this approach may decrease phylogenetic accuracy, it has been
shown that the limited availability of complete characters is more
important than the excess of missing character states [55].
Therefore, additional taxa involving a non-negligible amount of
missing data may not compromise the accuracy of the phyloge-
netic inference [56]. Fourth, as the phylogenetic tree contains the
primary information about both evolutionary rates and divergence
times, the estimation of the teleost timetree heavily relies upon the
correct measurement of branch lengths through realistic models of
sequence evolution. The CAT mixture model used here distributes
the alignment sites into categories to handle the site-specific
nucleotide preferences [46]. Thanks to its more efficient ability to
detect multiple substitutions, branch lengths estimated under the
CAT model will be less affected by saturation and will handle the heterogeneity present between nuclear and mitochondrial loci. Finally, we improved the phylogenetic resolution of our tree by securing the monophyly of widely accepted taxa, and leaving other clades unconstrained. Although it can be argued that the constrains impose an additional level of subjectivity in the analysis, as we had to decide which clades needed to be constrained or not, supplementary analyses comparing constrained versus unconstrained trees (results not shown) showed that the timing of speciation events is not influenced by these decisions and that our conclusions are robust to the phylogenetic structure presented here.

Timeline of the diversification of native and exotic species

Here we draw for the first time a timeline of origin and diversification events for the teleosts of the Mediterranean Sea. Overall, the diversification of all major clades in the Mediterranean (Figure 1) coincides with that published by Santini and colleagues [15] for teleosts at the global scale. Santini et al.’s work was based on one nuclear gene (RAG1) sampled for 225 species, and 45 calibrations. Here we used more genes to build a dated phylogeny of 372 species, and 29 calibrations. What in [15] species were chosen to maximize the number of teleost orders worldwide, we selected species according to a biogeographic criterion, i.e. their occurrence in the Mediterranean Sea. A major consequence of our strategy was that several orders and families had two or more representatives in the tree, while some others were not represented. Despite these differences in the circumscription of the taxa and phylogenetic markers, all major clades represented in [15] were sampled here. More importantly, the evolutionary history of speciation events in the Mediterranean could not be deduced from a global study such as [15] where only 34 Mediterranean genera and an additional 16 Mediterranean species were represented.

Our results show similar dates of diversification for some of the major orders and families, but they also reveal a difference in tempo between native and exotic species. The fact that median diversification age for exotic species was different from random, but those of native species was (Figure 2), suggests that speciation within the region has been affected by a succession of biogeographic events at the global but also at the local scale. However, diversification events among native species did not originate slowed down. Although the incomplete representation of the different taxa may influence our perception of speciation and extinction events, neither lineage-through-time plots (Figure 3) nor comparisons with random expectation (Figure 2) suggest any acceleration of speciation events during the MSC. By the beginning of this period the African, Arabic and European landmasses were effectively separating the Indian and Atlantic oceans. The Eocene-Oligocene transition that corresponds with this period is also marked by large global climate changes. This transition culminated with the MSC at around 6 Mya, which probably eliminated a large portion of fish diversity in the region [5,6] and
where locally surviving species were mostly neritic [63]. However, during this time, the Indian Ocean and the Atlantic fish faunas remained isolated, providing plenty of opportunities for vicariant speciation and promoting a higher diversification rate which has been suggested as the basis of the Mediterranean fish diversity today [5,6]. Therefore, both the timing of diversification events among natives (Figures 2 and 3) and the analysis of the fossil record in the Mediterranean [63,64], point to an important role of the separation between the Indian Ocean and the Atlantic Ocean as a driver of current fish diversity in the area. The fossil record also shows a wide variety of fish that are now extinct in the area, suggesting that part of this diversity has been shaped by important extinction events, and a balance between origination and extinction [64]. Adding to this evidence, paleontological analyses in the Mediterranean have already demonstrated that the picture regarding the MSC is not as simple as originally thought, i.e. that the Mediterranean was not hyper saline everywhere and that many species could have survived extinction locally [63]. In particular, biochemical analysis of sediments and fossil faunas including otoliths have shown that some interior parts of the Mediterranean, specifically in Italy, would have been connected to the Sea and would have shown salinity levels comparable to those currently present in the Mediterranean Sea [64,65,66]. Therefore, the MSC may have played a rather secondary role in speciation events leading to the current fish diversity in the Mediterranean.

Certainly our results regarding the tempo of diversification could have been influenced by our coverage of the different groups analysed. For example, in the raw dated phylogeny we represented 46% of all endemic teleosts in the Mediterranean (Figure 3a). Attaching species to the most recent common ancestors if they had at least one congener represented increases this representation to 66% (Figure 3c, see Appendix S3 for number of species added at each level). Finally, by also considering species that had a member of the same family (Figure 3d) or on the same order (Figure 3e) we increased the coverage of endemics to 92%. Although one may argue that the patterns observed in the most complete chronogram are due to an artefact of adding species to deeper family and order nodes, this argument cannot be applied to the analysis carried out adding only congeners to the backbone tree. Here, one would expect accentuated patterns that are already present in the backbone chronogram for endemic species. These analyses do not show any increase in diversification of endemics or natives during the MSC, but they always show the two above-mentioned peaks after 100 Mya and 40 Mya (Figure 3). Therefore we expect that these patterns will be robust to analyses using further gene sequencing and additional species.

Conclusions

Overall our results show that fish diversity in the Mediterranean Sea originated largely during the Cretaceous and Paleocene during episodes of global change, when the Mediterranean Sea still did not exist. They also suggest that the isolation between Atlantic and Indo-Pacific waters before the MSC had a large role in the emergence of native and endemic species diversity. Beyond the establishment of phylogenetic relationships among Mediterranean marine fish and advances in the comprehension of evolutionary history underlying this diversity, our study paves the way towards a phylogenetic perspective in the conservation of fish biodiversity at a macroecological scale [67]. In a different vein, understanding the interplay between phylogenetic diversity and environmental gradients at large biogeographic scales may also help us understand the mechanisms that are behind the emergence and maintenance of diversity [68]. This understanding is fundamental in the Mediterranean Sea where biodiversity may be at high risk under the rates of current global changes [1,2,6,67].

Supporting Information

Appendix S1 Catalog of GenBank sequences used in the phylogenetic analysis.

Appendix S2 Gene representation and saturation in the phylogenetic analysis.

Appendix S3 Species grafted at their most recent common ancestor (MRCA).

Acknowledgments

We are greatly thankful to Ylenia Chiari for useful comments on earlier versions of this manuscript. We are also in debt with David M. Kaplan for giving us access to different clusters, and with Laure Velez for adding name authorities in the appendices. This publication is contribution No 2012-004 of the Institut des Sciences de l’Evolution de Montpellier (UMR 5554 – CNRS-IRD).

Author Contributions

Conceived and designed the experiments: CNM NM DM. Performed the experiments: CNM NJR JD. Analysed the data: CNM NJR JD. Wrote the paper: CNM NM DM NJR. Given Mediterranean fish database: DM.

References

1. Coll M, Proult C, Sternbeek J, Kaschner K, Lasram FB, et al. (2010) The biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. Plos One 5, e11842.
2. Lasram FB, Guilhaumon F, Mouillot D (2009) Fish diversity patterns in the Mediterranean Sea: deviations from a mid-domain model. Marine Ecology-Progress Series 376: 253–267.
3. Friedman M (2010) Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings of the Royal Society B-Biological Sciences 277: 1675–1683.
4. Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, et al. (2007) A new time-scale for ray-finned fish evolution. Proceedings of the Royal Society B-Biological Sciences 274: 489–498.
5. Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: Situation, problems and prospects for future research. Marine Pollution Bulletin 40: 367–376.
6. Lejeune C, Chevaldoune P, Pergent-Martini C, Boudouresque CF, Perez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology and Evolution 25: 250–260.
7. Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 156: 153–173.
8. Nelson JS (2006) Fishes of the world. New Jersey, USA: John Wiley & Sons.
9. Stiasny ML, Wiley EO, Johnson GD, de Carvalho MR (2004) Gnathostome Fishes. In: Cracraft J, Donoghue MJ, eds. Assembling the tree of life. New York, USA: Oxford University Press.
10. Miyah M, Takehima H, Endo H, Ishiguro NB, Inoue JG, et al. (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 26: 121–130.
11. Giovannotti M, Cerioni PN, La Mesa M, Caputo V (2007) Molecular phylogeny of the three paedomorphic Mediterranean gobies (Perciformes: Gobiidae). Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 308B: 722–729.
12. De la Herran R, Rejon CR, Rejon MR, Garrido-Ramos MA (2001) The molecular phylogeny of the Sparidae (Pisces, Perciformes) based on two satellite DNA families. Heredity 87: 691–697.
11. Orrell TM, Carpenter KE (2004) A phylogeny of the fish family Sparidae (porgies) inferred from mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 32: 425–434.

12. Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Molecular Phylogenetics and Evolution 36: 370–390.

13. Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evolutionary Biology 9, 194.

14. Lasmå F, Mouillot D (2009) Increasing southern invasion enhances congruence between endemic and exotic Mediterranean fish fauna. Biological Invasions 11: 697–710.

15. Carnevale G, Landini W, Sarti G (2006) Mare versus Lago-mare: marine fishes and the Mediterranean environment at the end of the Messinian Salinity crisis. Palaeogeography Palaeoclimatology Palaeoecology 245: 353–367.

16. Girone A, Nolf D, Cavallo O (2010) Fish otoliths from the pre-evaporitic (Early Miocene) of Tuscany, Italy. Palaeogeography Palaeoclimatology Palaeoecology 257: 81–105.

17. Cavin L (2008) Paleobiogeography of Cretaceous Bony Fishes (Actinistia, Dipnoi and the oldest Teleostei). In: Cavin L, Longbottom A, Richter M, eds. Fishes and the Mesozoic. Geological Society of London, Special Publication 295. pp 165–183.

18. Bentin MJ, De programma PC, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S, eds. The time tree of life. Oxford: Oxford University Press. pp 33–86.

19. Yamanoue Y, Mita M, Nishida M (2006) The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes & Genetic Systems 81: 29–39.

20. Patterson C (1993) Ostichthyes: Teleostei. In: Benton MJ, ed. The fossil record 1: 621–650.

21. Yang Z, Rannala B (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution 23: 212–226.

22. Lepage T, Bryant D, Philippe H, Larillot N (2007) A general comparison of relaxed molecular clock models. Molecular Biology and Evolution 24: 2669–2680.

23. Larillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution 21: 1109–1120.

24. Larillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25: 2266–2268.

25. Morton H, Potts MD, Plockin JB (2010) Inferring the Dynamics of Diversification: A Coalescent Approach. Plos Biology 8, e1000493.

26. Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Science USA 103: 3841–3845.

27. Li CH, Lu GQ, Ori G (2008) Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Systematic Biology 57: 519–531.

28. Pong Z, He S, Wang J, Wang W, Diao R (2006) Mitochondrial molecular clocks and the origin of the major Osteichthyes clades (Pisces: Teleostei): A new insight. Gene 370: 113–124.

29. Reed DL, Carpenter KE, deGravelle MJ (2002) Molecular systematics of the Jacks (Perciformes: Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches. Molecular Phylogenetics and Evolution 23: 513–524.

30. Deluc S, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics 6: 361–375.

31. Li FT, Che J, Murphy RW, Zhao H, Zhao EM, et al. (2009) New insights to the molecular phylogenetics and generic assessment in the Rhacophoridae (Anura) based on two nuclear and three mitochondrial genes, with comments on the evolution of reproduction. Molecular Phylogenetics and Evolution 51: 1009–1019.

32. Wiens JJ (2005) Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 54: 526–538.

33. Philippe H, Smell EA, Baptiste E, Lopez P, Holland PW, et al. (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Molecular Biology and Evolution 9: 1740–1752.

34. Arratia G (2000) Phylogenetic relationships of Teleostei: past and present. Estudios Oceanológicos 19: 19–51.

35. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Molecular Phylogenetics and Evolution 26: 110–120.

36. Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20: 80–86.

37. Cavin L, Longbottom A, Richter M, eds. The breakdown of Pangea. London: Geological Society of London, Special Publication 295, pp 165–183.

38. Carnevale G, Landini W, Narii M, Wu J, Muraki A, et al. (2006) New insights to the Mediterranean basin: nature, timing and magnitude of the extinction events. Quaternary International 131: 101–107.

39. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Molecular Phylogenetics and Evolution 26: 110–120.

40. Gebruk D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20: 80–86.

41. Benton MJ, Devenoge PC, Asher RJ (2009) Calibrating and constraining molecular clocks. In: Hedges SB, Kumar S, eds. The time tree of life. Oxford: Oxford University Press. pp 33–86.

42. Yamanoue Y, Mita M, Nishida M (2006) The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes & Genetic Systems 81: 29–39.

43. Patterson C (1993) Ostichthyes: Teleostei. In: Benton MJ, ed. The fossil record 1: 621–650.

44. Lepage T, Bryant D, Philippe H, Larillot N (2007) A general comparison of relaxed molecular clock models. Molecular Biology and Evolution 24: 2669–2680.

45. Larillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology and Evolution 21: 1109–1120.

46. Larillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25: 2266–2268.

47. Morton H, Potts MD, Plockin JB (2010) Inferring the Dynamics of Diversification: A Coalescent Approach. Plos Biology 8, e1000493.

48. Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Science USA 103: 3841–3845.

49. Li CH, Lu GQ, Ori G (2008) Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Systematic Biology 57: 519–531.

50. Pong Z, He S, Wang J, Wang W, Diao R (2006) Mitochondrial molecular clocks and the origin of the major Osteichthyes clades (Pisces: Teleostei): A new insight. Gene 370: 113–124.

51. Reed DL, Carpenter KE, deGravelle MJ (2002) Molecular systematics of the Jacks (Perciformes: Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches. Molecular Phylogenetics and Evolution 23: 513–524.

52. Deluc S, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nature Reviews Genetics 6: 361–375.

53. Li FT, Che J, Murphy RW, Zhao H, Zhao EM, et al. (2009) New insights to the molecular phylogenetics and generic assessment in the Rhacophoridae (Anura) based on two nuclear and three mitochondrial genes, with comments on the evolution of reproduction. Molecular Phylogenetics and Evolution 51: 1009–1019.

54. Wiens JJ (2005) Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology 54: 526–538.

55. Philippe H, Smell EA, Baptiste E, Lopez P, Holland PW, et al. (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Molecular Biology and Evolution 9: 1740–1752.

56. Philippe H, Smell EA, Baptiste E, Lopez P, Holland PW, et al. (2004) Phylogenomics of eukaryotes: impact of missing data on large alignments. Molecular Biology and Evolution 9: 1740–1752.
and phylogenetic diversity respond to environmental gradients across France.

69. Inoue JG, Kumazawa Y, Miya M, Nishida M (2009) The historical biogeography of the freshwater knifefishes using mitogenomic approaches: a Mesozoic origin of the Asian notopterids (Actinopterygii: Osteoglossomorpha). Molecular Phylogenetics and Evolution 51: 486–499.

70. Benton MJ, Donoghue PCJ (2007) Paleontological evidence to date the tree of life. Molecular Biology and Evolution 24: 26–53.
Appendix Table S1: GenBank sequence catalog.

ORDER	FAMILY	SPECIES	12S	16S	COXI	CytB	Rhod	RAG1	
Anguilliformes	Anguillidae	*Anguilla anguilla* (Linnaeus 1758)	AF266494	AB021749	AP007233	AB021776	L78007		
Muraenesocidae	Muraenidae	*Muraenox cinereus* (Forsskål 1775)	AF417318	EF607449	AU295080				
		Enchelycore anatina (Lowe 1838)							
		Gymnothorax unicolor (Delarohe 1809)							
		Muraena helena (Linnaeus 1758)							
	Nemichthyidae	*Nemichthys scolopaceus* Richardson 1848	AB049989	AY952481	EU148262	AB038418			
	Nettastomatidae	*Nettastoma melanurum* Rafinesque 1810	DQ645673	DQ645712					
	Ophichthidae	*Echelus myrus* (Linnaeus 1758)	DQ645651	DQ645690					
Aulopiformes	Aulopidae	*Aulopus filamentosus* (Bloch 1792)							
Chlorophthalmidae		*Chlorophthalmus agassizi* Bonaparte 1840	AP002918	DQ027906	DQ027975	EF439508	EF439358	FJ896455	
	Ipnopidae	*Bathypterois dubius* Vaillant 1888	AY141326	AY141396	AY141257				
	Synodontidae	*Bathypterois grallator* (Goode & Bean 1886)							
	Synodus saurus								
	Sudis hyalina	Rafinesque 1810							
Synodontidae	Adrianichthyidae	*Oryzias latipes* (Temminck & Schlegel 1846)	AP008948.1	AP008948.1	AP008948.1	AP008948.1	NM_001104	EF095641.695	
Order	Family	Genus	Species	Accessions					
--------------------	--------------------	----------------------	------------------------------	-----------------------------					
Beryciformes	Belonidae	Belone belone	gracilis (Linnaeus 1761)	AF231541, AF231514, EU036423, AY141268					
		Belone	svtovidovi Collette & Parin 1970	AF243956, AF243880					
		Tylosurus acus	(Lacepède 1803)	AF231571, AF231528, AF231656, EF427530					
	Exocoetidae	Exocoetis volitans	Linnaeus 1758	AP002933, AP002933, AP002933, AP002933					
	Hemiramphidae	Hemiramphus far	(Forsskål 1775)	AY693487, EU148546, AY693516					
		Hyporhamphus affinis	(Günther 1866)	EF609376					
	Scomberesocidae	Scomberesox saurus	(Walbaum 1792)	AF243984, AB355963, AY308771					
	Berycidae	Beryx splendens	Lowe 1834	AF092197, AF100909, EF609297, AB108491, AY141265, EF095636					
	Holocentridae	Sargocentron	rubrum (Forsskål 1775)	AP004432, AP004432, AP004432, AP004432					
		Trachichthyidae	Geophybroberyx darwini	DQ108100					
		Hoplostethus	mediterraneus Cuvier 1829	AY141335, DQ885093, AY141264, EF095635					
	Clupeiformes	Clupeidae	Alosa alosa (Linnaeus 1758)	AP009131, AP009131, AP009131, EU224046, EU224142					
		Alosa fallax	(Lacepède, 1803)	EU552737, EU552574, EU491985					
		Dussumieria acuta	Valenciennes 1847	EU014222					
		Dussumieria elopsoides	Bleeker 1849	EU364556, EF607361					
		Etrumeus teres	(DeKay 1842)	DQ912038, DQ912073, AP009139, EU552621, DQ912110					
		Pellonula leonensis	Boulenger 1916	NC_009591.1, NC_009591.1, NC_009591.1, NC_009591.1, DQ912130					
		Sardina pilchardus	(Walbaum 1792)	DQ912053, DQ912088, EF609451, AF472582, EF439304					
		Sardinella aurita	Valenciennes 1847	DQ912032, DQ912067, AM911173, EU552619, EF439427, DQ912104					
		Sardinella maderensis	(Lowe 1838)	AP009143, AM911205, AM911175, AF472583, EF439303					
Order	Family	Species	GenBank Accession Numbers	EMBL Accession Numbers	NCBI Accession Numbers				
------------------------	----------------	----------------------------------	---------------------------	------------------------	------------------------				
Engraulidae	Spratelloides	*Spratelloides delicatulus* (Bennett 1832)	DQ912058	DQ912093	AP009144	AP009144	DQ912128		
		Sprattus sprattus (Linnaeus 1758)	AP009234	AM911201	AM911177	AF472581	EU491991		
Cypriniformes	Engraulis	*Engraulis encrasicolus* (Linnaeus 1758)	DQ912031	DQ912066	AM911182	EU552563	EU224151	DQ912103.1	U71093
	Cyprinidae	*Danio rerio* (Hamilton 1822)	NC_002333.2	NC_002333.2	NC_002333.2	NC_002333.2	NM_131084.1		
Cyprinodontiformes	Aphanius	*Aphanius dispar* (Rüppell 1829)				ADU05964			
		Aphanius fasciatus (Valenciennes 1821)				AFU05965	AF299273		
		Aphanius iberus (Valenciennes 1846)					AF299274		
Poesiliidae	Gambusia	*Gambusia affinis* (Baird & Girard 1853)	NC_004388.1	NC_004388.1	NC_004388.1	NC_004388.1			
Dactylopteriformes	Dactylopterus	*Dactylopterus volitans* (Linnaeus 1758)	AF150006			EF439514	AY141282		
Gadiformes	Gadidae	*Gadiculus argenteus* Guichenot 1850					EU224053	EU224201	
		Merlangius merlangus (Linnaeus 1758)							
		Micromesistius poutassou (Risso 1827)							
		Trisopterus luscus (Linnaeus 1758)							
		Trisopterus minutus (Linnaeus 1758)							
Lotidae	Gaidropsarus	*Gaidropsarus bicayensis* (Collett 1890)							
		Gaidropsarus mediterraneus (Linnaeus 1758)							
		Gaidropsarus vulgaris (Cloquet 1824)							
		Molva dypterygia (Pennant 1784)							
Macrouridae	Coryphaenoides	*Coryphaenoides guentheri* (Vaillant 1888)							

Continued...
Family	Genus	Species	Author	Accession Numbers		
Hynemocephalus	italicus	Giglioli 1884		FJ215246		
Nezumia	aequalis	Günther 1878		FJ215280		
Trachyrincus	scabrus	(Rafinesque 1810)		FJ215298		
Merlucciidae	Merluccius	merluccius 1758	Linnaeus	DQ274008		
				EF609408		
				DQ174062		
				EF439400		
Meridae	Guttigadus	latifrons 1908	Holt & Byrne	EU148219		
Mora moro	moro	(Risso 1810)		AY368285		
				AY368307		
				EF609410		
				DQ197964		
				AY368322		
Phycidae	Phycis	blennoides 1768	Brünnich	AY845393		
				AY850365		
	Phycis	phycis 1766	Linnaeus	DQ197978		
				DQ197880		
Gasterostiformes	Gasterosteidae	Gasterosteus	aculeatus 1758	NC_003174.1		
			Linnaeus	NC_003174.1		
				NC_003174.1		
				EU637962.1		
				AB445183		
	Puigitus	pungitus 1758	Linnaeus	NC_011571.1		
				NC_011571.1		
	Spinachia	spinachia 1758	Linnaeus	NC_011582.1		
				NC_011582.1		
Hypoptychidae	Hypoptychus	dybowskii 1880	Steindachner	NC_004400		
Gobiesociformes	Apletodon	dentatus 1887	Facciola	AF549200		
				AF549207		
	Diplocogaster	bimaculata 1788	Bonnaterre	AF549197		
				AF549205		
	Gouania	willdenowi 1810	Risso	EF363030		
				EF363032		
	Lepadogaster	candollei 1810	Risso	AY036588		
				AF549203		
	Lepadogaster	lepadogaster 1788	Bonnaterre	AY036589		
				AF549202		
	Lepadogaster	purpurea 1788	Bonnaterre	AY036599		
				AF549201		
	Opeatogenys	gracilis 1864	Canestrini	AF549196		
				AF549206		
Lampriformes	Lampridae	Lampris	guttatus 1878	AF049726		
				AF049736		
				DQ885096		
				DQ197959		
				AY308764		
Taxonomic Order	Family	Species	Author/Year	Accession Numbers		
-----------------	-------------	--------------------------------	-------------	-------------------		
Lophotidae	Lophotus	*lacepede* Giorni 1809	AY036616	AY036618	FJ896461	
Regalecidae	Regalecus	*glesne* Ascanius 1772	AF049728	EU099465	AY368328	EF107625
Trachipteridae	Zu	*cristatus* (Bonelli 1819)	AY652748	AY652749	FJ896462	
Lophiiformes	Lophius	*budegassa* Spinola 1807	EF095552			
	piscatorius	Linnaeus 1758	AY368294			
Myctophiformes	Myctophidae	*Benthosema* glaciale (Reinhardt 1837)	DQ532843	EU148098	EU366728	
	Ceratosepelus maderensis (Lowe 1839)					
	Diaphus metopoclampus (Cocco 1829)					
	Diaphus rafinesquii (Cocco 1838)					
	Diogenichthys atlanticus (Tåning 1928)					
	Electrona risso (Cocco 1829)					
	Gonichthys coco (Cocco 1829)					
	Hygophum benoiti (Cocco 1838)					
	Hygophum hygorn (Lütken 1892)					
	Lobianchia dolineini (Zugmayer 1911)					
	Lobianchia gemellarii Cocco 1838					
	Myctophum punctatum Rafinesque 1810					
	Notoscopecus bolini Nafpaktitis 1975					
	Symbolophorus veranyi (Moreau 1888)					
Notacanthiformes	Notacanthidae	*Notacanthus bonaparte* Risso 1840	X99182	X99181	EU148274	
Order	Family	Species	Author	Accession Numbers	GenBank Accession Numbers	
-----------------------	-------------------	--------------------------------------	-------------------------	-------------------	--------------------------	
Osmeriformes	Argentinidae	*Argentina sphyraena* Linnaeus 1758		EU492324	EU492231	
Perciformes	Acropomatidae	*Synagrops japonicus* (Döderlein 1883)				
Apogonidae		*Apogon imberbis* (Linnaeus 1758)	Linnaeus 1758	AM158282	FJ462721	
Blenniidae		*Aidablennius sphynx* (Valenciennes 1836)				
		Aidablennius ocellaris (Linnaeus 1758)				
		Coryphoblennius galerita (Linnaeus 1758)				
		Lipophrys adriaticus (Steindachner & Kolombatovic 1883)				
		Lipophrys canevae (Vinciguerra 1880)	Linnaeus 1758			
		Lipophrys dalmatius (Steindachner & Kolombatovic 1883)				
		Lipophrys nigriceps (Vinciguerra 1883)				
		Lipophrys pholis (Linnaeus 1758)	Linnaeus 1758			
		Lipophrys trigloides (Valenciennes 1836)				
		Omobranchus punctatus (Valenciennes 1836)		OPU90393		
		Parablennius gattorugine (Linnaeus 1758)		AF414715	DQ160198	
		Parablennius incognitus (Bath 1968)	Linnaeus 1758	AY098784	AY098829	
		Parablennius pilicornis (Cuvier 1829)		AY098795	AY098831	
		Parablennius rouxi (Cocco 1833)	Linnaeus 1758	AY098781	AY098833 AJ872148	
		Parablennius sanguinolentus (Pallas 1814)		AF414697	AF428241	
		Parablennius tentacularis (Brünnich 1768)		AY098780	AY098838	
		Parablennius zvonimiri (Kolombatovic 1892)		AY098790	AY098840	
Scientific Name	Accession Numbers					
---------------------------------	--------------------					
Salaria pavo (Risso 1810)	AY098798					
Scartella cristata (Linnaeus 1758)	AY098803					
Brama brama (Bonnaterre 1788)						
Callanthias ruber (Rafinesque 1810)	EF120863					
Callionymus lyra Linnaeus 1758	AY141344					
Callionymus maculatus Linnaeus 1810						
Callionymus reticulatus Valenciennes 1837	EU491962					
Alectis alexandrinus (Geoffroy Saint-Hilaire 1817)	AF363738					
Alepes djedaba (Forsskål 1775)	EF613269					
Caranx cryos (Mitchell 1815)						
Caranx hippos (Linnaeus 1766)	AY050717					
Caranx rhonchus Geoffroy Saint-Hilaire 1817	AY050733					
Elagatis bipinnulata (Quoy & Gaimard 1825)	EU014213					
Lichia amia (Linnaeus 1758)	EF392593					
Pseudocaranx dentex (Bloch & Schneider 1801)	EF609442					
Seriola carpenteri Mather 1971	EF392607.1					
Seriola dumerili (Risso 1810)	EF607552					
Seriola fasciata (Bloch 1793)	AY050748					
Seriola rivoliana Valenciennes 1833	AB264297					
Trachinotus ovatus (Linnaeus 1758)	AY141388					
Family	Species	GenBank Accession Numbers	NCBI Accession Numbers			
------------------------	--------------------------------	---------------------------	------------------------			
Trachurus mediterraneus	Steindachner 1868	AF487412	AY526548 EU036619			
Trachurus picturatus	Bowdich 1825	AF487415 EU148351	AY526546 EF439329			
Trachurus trachurus	Linnaeus 1758	AB108498 AB108498	AY526533 EU491981			
Centracanthidae	Centracanthus cirrus Rafinesque 1810		EU167766			
	Spicara flexuosa Rafinesque 1810		EU036502 EU036606 EU167804			
	Spicara maena (Linnaeus 1758)	AP009164 AP009164	AY247343 EU036610 EU167805			
	Spicara smaris (Linnaeus 1758)		EF439599 EF439465			
Centrolophidae	Centrolophus niger (Gmelin 1789)	AB205412 AB205434 AB205456 EF439348				
	Schedophilus ovalis (Cuvier 1833)	AB205413 AB205435 AB205457 EF427506				
Cepolidae	Cepola macrophthalmalma (Linnaeus 1758)	DQ027923 DQ027993	EF439350 EU167817			
Chaetodontidae	Chaetodon hoefleri Steindachner 1881	EF616824 EF616908				
Cichlidae	Cichlasoma bimaculatum (Linnaeus 1758)	EF432874 AY263863 AF145128 EU706368				
Coryphaenidae	Coryphaena equiselis Linnaeus 1758	DQ874715 AY579555 DQ885087 AY050761 DQ874824 EU167822				
	Coryphaena hippurus Linnaeus 1758	DQ874715 AY579555 DQ885087 AY050761 DQ874824 EU167822				
Echeneidae	Echeneis naucrates Linnaeus 1758	AY141389 DQ532869	AY050763 AY141315 EU167829			
	Remora osteochir (Cuvier 1829)	EU574934				
	Remora remora (Linnaeus 1758)	AY836584 EU403077				
Epigonidae	Epigonus constanciae (Giglioli 1880)	EF120867				
	Epigonus telescopus (Risso 1810)	EF609350 DQ197949 DQ197851 EU167904				
Gempylidae	Ruvettus pretiosus Cocco 1833	EU003538 DQ874736	EU003556 DQ80265 DQ874813			
Gobiidae	Species	Accession 1	Accession 2			
-------------------------------	--	--------------	--------------			
	Aphia minuta (Risso 1810)	EF218623	EF218638			
	Buenia affinis Iljin 1930	EF218628	EF218643			
	Crystallogobius linearis (Düben 1845)	EF218635	EF218650			
	Gobius auratus Risso 1810	AF067254	AF067267			
	Gobius bucchichi Steindachner 1870	EF218627	EF218642			
	Gobius cobitis Pallas 1814	EF218629	EF218644			
	Gobius cruentatus Gmelin 1789	EF218626	EF218641			
	Gobius niger Linnaeus 1758	EF218630	EF218645	AY884591		
	Gobius paganellus Linnaeus 1758	EF218636	AF518216			
	Gobius xanthocephalus Heymer & Zander 1992	DQ382237				
	Knipowitschia panizzea (Verga 1841)	AF067259	AJ616812			
	Lesueurigobius friesii (Malm 1874)	EF218624	EF218639			
	Lesueurigobius suerii (Risso 1810)	EF218625	EF218640			
	Pomatoschistus canestrinii (Ninni 1883)	AJ616818	AJ616835			
	Pomatoschistus knerii (Steindachner 1861)	EF218632	EF218647			
	Pomatoschistus marmoratus (Risso 1810)	AF067262	AF067275			
	Pomatoschistus microps (Krøyer 1838)	AJ616811	AJ616828	AJ550471		
	Pomatoschistus minutus (Pallas 1770)	EF218633	EF218648	AY940726		
	Pomatoschistus norvegicus (Collett 1902)	AJ616814	AJ616831			
	Pomatoschistus pictus (Malm 1865)	AJ616807	AJ616834			
Pomatoschistus quagga (Heckel 1837)
AF067264 AF067277

Pseudaphya ferreri (de Buen & Fage 1908)
EF218631 EF218646

Zebenus zebrus (Risso 1827)
AF067266 AF067279

Zosterisessor ophiocephalus (Pallas 1814)
EF218634 EF218649 AY884592

Haemulidae
Parapristipoma octolineatum (Valenciennes 1833)
DQ197977 DQ197879 HQ676666

Plectorhinchus mediterraneus (Guichenot 1850)
DQ197979 DQ197881

Pomadasys incisus (Bowdich 1825)
EU410417 DQ197981 DQ197883 HQ676679

Pomadasys stridens (Forsskål 1775)
HQ676685

Istiophoridae
Tetrapturus albidus Poey 1860
DQ854632 DQ882009

Tetrapturus belone Rafinesque 1810
DQ854640 DQ882010

Tetrapturus georgii Lowe 1841
DQ854642 DQ882011

Labridae
Acantholabrus palloni (Risso 1810)
AF517587 DQ197923 DQ197825

Centrolabrus exoletus (Linnaeus 1758)
AF414200 AY092041

Coris julis (Linnaeus 1758)
AJ810130 AY092042 AY328856 EU167885

Ctenolabrus rupestris (Linnaeus 1758)
AJ810131 AF517586

Labrus merula Linnaeus 1758
AJ810141 AF517592

Labrus viridis Linnaeus 1758
AJ810142 AF517593

Lappanella fasciata (Cocco 1833)
AF517589

Symphodus baillonii (Valenciennes 1839)
AY092052 AY092037

Symphodus cinereus (Bonnaterre 1788)
AJ810147 AY092036
Species	Accession Numbers			
Symphodus doderleini 1890	AF517602			
Symphodus mediterraneus (Linnaeus 1758)	AJ810148			
Symphodus melanocercus (Risso 1810)	AF517595			
Symphodus melops (Linnaeus 1758)	AF517601			
Symphodus ocellatus (Linnaeus 1758)	AJ810150			
Symphodus roissali (Risso 1810)	AY092039			
Symphodus rostratus (Bloch 1791)	AY092040			
Symphodus tinca (Linnaeus 1758)	AF517596			
Thalassoma pavo (Linnaeus 1758)	AY328877.1			
Xyrichtys novacula (Linnaeus 1758)	EF439246			
Lutjanus argentimaculatus (Forsskål 1775)	DQ900672			
Luvarus imperialis Rafinesque 1810	AB276966			
Dicentrarchus labrax (Linnaeus 1758)	AY141370			
Dicentrarchus punctatus (Bloch 1792)	AF247437			
Chelon labrosus (Risso 1827)	DQ016292			
Liza aurata (Risso 1810)	EF437077			
Liza ramado (Risso 1827)	EF437079			
Liza saliens (Risso 1810)	EF437081			
Mugil cephalus Linnaeus 1758	DQ225777			
Oedalechilus labeo (Cuvier 1829)	Z71995			
Family	Genus	Species	Authors	Accession Numbers
-----------------	------------------------	--------------------------	------------------	------------------------------------
Mullidae	Mullus	barbatus Linnaeus 1758	EF439552	
		surmuletus Linnaeus 1758	EF439143	
	Upeneus	moluccensis (Bleeker 1855)	AF227675	
Nomeida	Psenes	pellucidus Lütken 1880	AB205425	
			AB205447	
			AB205469	
Pinguipedidae	Pinguipes	brasilianus Cuvier 1829	EU074542	
Polyprionidae	Polyprion	americanus (Bloch &	AM158291	
		Schneider 1801)		
Pomacentridae	Abudefduf	vaigiensis (Quoy &	AF436880	
		Gaimard 1825)		
	Chromis	chromis (Linnaeus 1758)	AF517577	
Pomatomidae	Pomatomus	saltatrix (Linnaeus 1766)	AF055612	
Priacanthidae	Priacanthus	hamrur (Forsskål 1775)	DQ885115	
Rachycentridae	Rachycentron	canadum (Linnaeus 1766)	DQ532949	
Scaridae	Scarus	ghobban Forsskål 1775	EF609452	
	Sparsisoma	cretense (Linnaeus 1758)	SCU95777	
Sciaenidae	Argyrosomus	regius (Asso 1801)	DQ197924	
	Umbrina	canariensis Valenciennes 1843	EF392637	
		cirrosa (Linnaeus 1758)	AF143198	
Scombridae	Acanthocybium	solandri (Cuvier 1832)	DQ854648	
		rochei (Risso 1810)	AB176810	
	Euthynus	alletteratus (Rafinesque 1810)	AB176806	
		pelamis (Linnaeus 1758)	AB176808	

Accession numbers: EF439552, EF439143, DQ197965, EF095617, EF095658, AF227675, EU167747, AB205425, AB205447, AB205469, EU074542, AM158291, DQ107915, EF392605, EF427493, AF436880, DQ006016, AY208557, AF517577, AY208527, AY208640, AF055612, DQ080341, DQ080430, EU167741, DQ885115, DQ885111, EU167865, DQ532949, EF609446, AB292793, EU167910, SCU95777, AF517578, DQ198004, DQ197906, DQ457040, DQ854648, DQ874727, DQ835838, DQ080324, DQ874804, AB176810, DQ835852, DQ835838, DQ835838, DQ080311, DQ080400, AB176806, DQ874730, DQ835903, DQ080308, DQ80398, AB176808, DQ874729, DQ835922, DQ080315, DQ80410.
Family	Species	Accession Numbers					
Serranidae							
		Rastrelliger kanagurta (Cuvier 1816)	DQ497857				
		Sarda sarda (Bloch 1793)	DQ874691 DQ874723 DQ835917 DQ080300 DQ874800				
		Scomber japonicus Houttuyn 1782	AB241442 EF458394 EF433288 AB018996 AY141311				
		Scomber scombrus Linnaeus 1758	AB241438 DQ874720 DQ835839 DQ080334 DQ874797 EU477493				
		Scomberomorus commerson (Lacepède 1800)	EF095579 EF095607 DQ107670 DQ497865 EF095634 EF095676				
		Scomberomorus tritor (Cuvier 1832)	AF231582 AF231539 AF231666				
		Thunnus alalunga (Bonnaterre 1788)	AB176804 DQ835820 DQ080289 DQ080389				
		Thunnus thynus (Linnaeus 1758)	AY507951 DQ835876 DQ080266 DQ080358				
		Epinephelus aeneus (Geoffroy Saint-Hilaire 1817)	AY141367 AY947593 DQ197950 AY141291				
		Epinephelus caninus (Valenciennes 1843)	AM158294 AY947585 AJ420204				
		Epinephelus coioides (Hamilton 1822)	AY947608 DQ107891 DQ354156				
		Epinephelus hafensis (Ben-Tuvia 1853)	AJ420207				
		Epinephelus malabaricus (Bloch & Schneider 1801)	DQ067309 DQ107871				
		Epinephelus marginatus (Lowe 1834)	AM158299 AY947595 AB179759 DQ197854				
		Mycteroperca rubra (Bloch 1793)	AM158292 AY947587 DQ197969 DQ197871				
		Serranus atricauda Günther 1874	AM158286 DQ197999 EF439313				
		Serranus cabrilla (Linnaeus 1758)	AM158283 DQ198000 EF439445				
		Serranus hepatus (Linnaeus 1758)	AM158289 EF439586 EF439449				
		Serranus scriba (Linnaeus 1758)	AM158288 DQ198001 EF439451				
Siganidae		**Siganus luridus** (Rüppell 1829)	DQ532959 DQ898056				
Family	Species	GenBank Accession Numbers					
-------------	---	--------------------------					
Siganidae	*Siganus rivulatus* Forsskål & Niebuhr 1775	DQ898115, DQ898075					
	Sillago sihama (Forsskål 1775)	EU257812, EU257202, EF607562, EU167874					
Sparidae	*Boops boops* (Linnaeus 1758)	AF247396, DQ197932, EF439263, EU167763					
	Crenidens crenidens (Forsskål 1775)	AF247397, AF240699					
	Dentex dentex (Linnaeus 1758)	DQ532863, AF143197, EF427464					
	Dentex gibbosus (Rafinesque 1810)	AJ247272, DQ197941, DQ197843					
	Dentex macrourus (Bloch 1791)	AJ247273, EF392580, EF427466					
	Dentex macrourus Valenciennes 1830	EU410413, DQ197942, DQ197844					
	Diplodus annularis (Linnaeus 1758)	AJ247286, EF392581, EF427467					
	Diplodus bellottii (Steindachner 1882)	AJ247288					
	Diplodus cervinus (Lowe 1838)	AF247420, AF240723, DQ197847					
	Diplodus puntazzo (Walbaum 1792)	AJ247291, EF392585, EF427471					
	Diplodus sargus (Linnaeus 1758)	AF365354, EF427554, DQ197848					
	Diplodus vulgaris (Geoffroy Saint-Hilaire 1817)	AJ247294, DQ197947, DQ197849					
	Lithognathus mormyrus (Linnaeus 1758)	AF247410, AF240712, DQ197863, EU167782					
	Oblada melanura (Linnaeus 1758)	AF247399, AF240701, EF439410, EU167786					
	Pagellus acarne (Risso 1827)	AF247411, AF240713, DQ197872					
	Pagellus bellottii Steindachner 1882	AF247412, DQ197971, DQ197873					
	Pagellus bogaraveo (Brünnich 1768)	DQ197972, DQ197874					
	Pagellus erythrinus (Linnaeus 1758)	AJ247284, DQ197973, EF439417, EU167790					
Scientific Name	Linnaeus Year	Accession Numbers					
---	---------------	-------------------					
Pagrus auriga	1843	AY178433 AF247425 DQ197974 DQ197876 EU167788					
Pagrus caeruleostictus	(1830)	AJ247276 DQ197975 DQ197877 EU167789					
Pagrus pagrus	(1758)	AY178431 AF247426 DQ197976 DQ197878 EU167791					
Sarpa salpa	(1758)	AF247402 DQ197992 EF439306 HQ676686					
Sparus aurata	(1758)	EF095565 AF247432 AF240735 EU224181 EF095657					
Spondyliosoma cantharus	(1758)	AF247403 AF240705 EF439321					
Sphyraena sphyraena	(1758)	AY141386 DQ532964 DQ080263 AY141312					
Sphyraena viridens	Cuvier 1829						
Sphyraenidae		AY141386 DQ532964 DQ080263 AY141312					
Stromateidae							
Pampus argenteus	Euphrasen 1788	AY141383 AY141453 DQ107596 AY141309					
Sphyraenidae							
Tetragonurus cuvieri	Risso 1810	AB205429 AB205451 AB205473					
Trachinidae							
Echiichthys vipera	Cuvier 1829	EU492114 EU492019					
Trachinus draco	Linnaeus 1758	AY141378 AF518227 EF439610 AY141304					
Trachinus radiatus	Cuvier 1829	DQ198015 EF439480					
Trachinidae							
Lepidopus caudatus	Euphrasen 1788	AF100917 DQ080261 DQ080352					
Trichiurus lepturus	Linnaeus 1758	DQ874687 AB201821 EF607600 DQ364151 DQ874796 EU167903					
Trachinidae							
Tripterygion delaisi	Cadenat & Blache 1970	AY098809 AY098849 AJ872120					
Tripterygion melanurus	Guichenot 1850	AJ868524 AJ872145					
Tripterygion tripteronotus	Risso 1810	AF324198 AJ872130					
Trachyuridae							
Lepidopus caudatus	Euphrasen 1788	AF100917 DQ080261 DQ080352					
Trichiurus lepturus	Linnaeus 1758	DQ874687 AB201821 EF607600 DQ364151 DQ874796 EU167903					
Triterygiidae							
Tripterygion delaisi	Cadenat & Blache 1970	AY098809 AY098849 AJ872120					
Tripterygion melanurus	Guichenot 1850	AJ868524 AJ872145					
Tripterygion tripteronotus	Risso 1810	AF324198 AJ872130					
Trachyuridae							
Lepidopus caudatus	Euphrasen 1788	AF100917 DQ080261 DQ080352					
Trichiurus lepturus	Linnaeus 1758	DQ874687 AB201821 EF607600 DQ364151 DQ874796 EU167903					
Uranoscopidae							
Uranoscopus scaber	Linnaeus 1758	AF518213 DQ198017 EU036628					
Xiphiidae							
Xiphias gladius	Linnaeus 1758	DQ854646 DQ874734 DQ107623 DQ080249 DQ874811					
Family	Genus	Species Name	GenBank ID 1	GenBank ID 2	GenBank ID 3	GenBank ID 4	
---------------	---------------------------	--	--------------	--------------	--------------	--------------	
Pleuronectiformes	Bothidae	*Arnoglossus imperialis* (Rafinesque 1810)	AF542209	AY359651	AY141283		
		Arnoglossus laterna (Walbaum 1792)	AF542210	AY359653	EU224096		
		Arnoglossus thori Kyle 1913	AF542208	AY157329	AY029189		
		Bothus podas (Delaroche 1809)	AF542221	AY157326	AF324334	AY368313	
Citharidae		*Citharus linguatula* (Linnaeus 1758)	AF542220	AY157325	EF439510	AY141323	
Pleuronectidae		*Platichthys flesus* (Linnaeus 1758)	AB125244	AY359670	EU524278	AB125334	EU492025
		Pleuronectes platessa Linnaeus 1758	AF542207	AY157328	EU224075	EU224175	
Scophthalmidae		*Lepidorhombus boscii* (Risso 1810)	AM931031	DQ304652	EF439534	EF439124	
		Lepidorhombus whiffiagonis (Walbaum 1792)	AY998042	DQ195533	EF427570	EF439125	
		Psetta maxima (Linnaeus 1758)	AF517557	AY359664	AY164471	EU224174	
		Scophthalmus rhombus (Linnaeus 1758)	AY998044	AY359665	EF427597	EF439439	
Soleidae		*Bathysolea profundicola* (Vaillant 1888)			AY359659		
		Buglossidium luteum (Risso 1810)			EU492126	EU492030	
		Dicologlossa cuneata (Moreau 1881)	AB125241	AY157321	AB125331	EF456044	
		Microchirus azevia (de Brito Capello 1867)	AB125238	AY157318	AB125329	EF427488	
		Microchirus boscanion (Chabanaud 1926)	AB125239	AY125250	AB125330		
		Microchirus hexophthalmus (Bennett 1831)	AB125242	AY125253	AB125332		
		Microchirus ocellatus (Linnaeus 1758)					
		Microchirus variegatus (Donovan 1808)	AF542218	AY157327	AF113198		
		Pegusa impar (Bennett 1831)	AF542215	AY141429	EF427582	AY141284	AF113192
Pegusa lascaris (Risso 1810) AB125234 AB125245 AB125325 EF427491
Solea aegyptiaca Chabanaud 1927 AF289718
Solea senegalensis Kaup 1858 AB125235 AY359661 AB125326 EF439167
Solea solea (Linnaeus 1758) AF488492 AF488442 AB125327 EU224131 EF095644
Synaptura lusitanica de Brito Capello 1868 AB125243 AB125254 AB125333 EF439470
Synapturichthys kleinii (Risso 1827) AB125237 AB125248 AB125328 EF439468

Scorpaeniformes Cottidae

Taurulus bubalis (Euphrasen 1786) AY141363 EU492317 EU492224

Scorpaenidae

Pontinus kuhlii (Bowdich 1825) DQ197983 DQ197885
Pterois miles (Bennett 1828) DQ125237 AJ429402 EU148593 EF209664
Scorpaena elongata Cadenat 1943 EF456020 EF456081
Scorpaena maderensis Valenciennes 1833 DQ197996 DQ197898
Scorpaena notata Rafinesque 1810 DQ125235 AF518222 DQ197997 DQ197899
Scorpaena porcus Linnaeus 1758 DQ125238 EF392615 EU036590
Scorpaena scrofa Linnaeus 1758 DQ125234 AF518223 EU036494 EF439442
Scorpaenodes arenai Torchio 1962 DQ125239

Sebastidae

Helicolenus dactylopterus (Delaroche 1809) DQ125236 EU410418 EF609371 DQ197956 DQ197858
Trachyscorpia cristulata (Goode & Bean 1896) AY538980

Triglidae

Chelidonichthys lucernus (Linnaeus 1758) AY141362 EF120859 EF609323 EF427548 AY141287
Eutrigla gurnardus (Linnaeus 1758) EF427560 EF439111
Lepidotrigla cavillone (Lacepède 1801) EF439536 EF439389
Stomiiformes

Gonostomatidae

Trigla lyra Linnaeus 1758

Trigloporus lastoviza (Bonnaterre 1788)

Cyclothone braueri Jespersen & Tånig 1926

Cyclothone pygmaea Jespersen & Tånig 1926

Gonostoma denudatum Rafinesque 1810

Phosichthyidae

Ichthyococcus ovatus (Cocco 1838)

Stomiidae

Chauliodus sloani Bloch & Schneider 1801

Stomias boa boa (Risso 1810)

Syngnathiformes

Centriscidae

Macroramphus scolopax (Linnaeus 1758)

Fistulariidae

Fistularia commersonii Rüppell 1838

Fistularia petimba Lacepède 1803

Syngnathidae

Entelurus aequoreus (Linnaeus 1758)

Hippocampus fuscus Rüppell 1838

Hippocampus hippocampus (Linnaeus 1758)

Hippocampus ramulosus Leach 1814

Nerophis ophidion (Linnaeus 1758)
Species	GenBank Accession Numbers
Syngnathus abaster Risso 1827	AF354959 AF355010 AF356060
Syngnathus acus Linnaeus 1758	AF354940 AF354991 AF356040
Syngnathus rostellatus Nilsson 1855	AF354941 AF354992 AF356041
Syngnathus taenionotus Canestrini 1871	AF354960 AF355011 AF356061
Syngnathus typhle Linnaeus 1758	AF354960 AF354992 AF356041
Capros aper (Linnaeus 1758)	EF095553 DQ532846 EU148107 AP009159 AY141262 EF095638
Mola mola (Linnaeus 1758)	AY700258 DQ532911 AP006238 AY940835 AF137215 EF095643
Ranzania laevis (Pennant 1776)	AP006047 AP006047 DQ521011 EF392608 EF427496
Lagocephalus sceleratus (Gmelin 1789)	AB194240 EF362414
Lagocephalus spadiceus (Richardson 1845)	EF60741 9
Sphoeroides pachyaster (Müller & Troschel 1848)	AP006745 AB194239 EU074598 EF392642 EF427517
Sphoeroides spengleri (Bloch 1785)	AY700284 AY679668 AY700354
Takifugu rubripes (Temminck & Schlegel 1850)	NC_004299.1 NC_004299.1 NC_004299.1 NC_004299.1 AF137214.1 AY700363
Tetraodon nigroviridis Marion de Procé 1822	NC_007176.1 NC_007176.1 NC_007176.1 NC_007176.1 AJ293018.1
Zeus faber Linnaeus 1758	AF149993 DQ027916 EF609496 DQ198019 EF439493 FJ215202

For each species represented in the phylogeny we have listed the GenBank accession number of each gene used in the phylogenetic analysis. An empty cell represents a gene that was not included in the analysis. Species names, corresponding name authorities and classification follow FishBase version 02/2011 (http://www.fishbase.org/).
Appendix 2 Summary of gene representation and saturation in the phylogenetic analysis.

In this appendix we provide a summary of representation for each gene, as well as an analysis of saturation by gene.

Gene representation

Even though the percent of species represented solely by mitochondrial genes is large, more than half of the species in the phylogeny are represented by some combination of nuclear and mitochondrial genes (Table A2.1). The least represented gene is RAG1 with 80 species, followed by COXI, with 118 species (Figure A2.1). The best represented gene is 16S, with 265 species (Figure A2.1). The phylogeny contains a total of 373 species, so these numbers correspond to a minimum of 21 % and a maximum of 71 % respectively. Moreover, whereas 16% of the species are represented by only 1 gene, and 5 % are represented by all 6 genes, the vast majority are represented by at least 2 genes (84 %) (Figure A2.2).

Table A2.1 Number of cases and corresponding percent (based on the total number of species in the phylogeny) where the species was represented by nuclear versus mitochondrial genes.

Model	Number of species	Percent
Only mitochondrial genes	154	41.3
Only nuclear genes	13	3.5
Some combination of nuclear and mitochondrial genes	206	55.2
Only 1 nuclear gene	175	46.9
Both RAG1 and RHOD genes	44	11.8
Figure A2.1
Number of species represented for each gene (based only on the 373 species represented in the phylogeny).

- **12S**: 152 represented, 221 not represented
- **16S**: 108 represented, 265 not represented
- **COXI**: 255 represented, 118 not represented
- **CytB**: 138 represented, 235 not represented
- **RHOD**: 190 represented, 183 not represented
- **RAG1**: 293 represented, 80 not represented
Figure A2.2
Number of species represented by 1, 2, 3, 4, 5 or 6 genes (based on the 373 species represented in the phylogeny), irrespective of whether they are nuclear or mitochondrial.

Saturation information by gene

Here we compared saturation of the nucleotide substitutions in the two nuclear recombination activating gene 1 (RAG1) and rhodopsin (RHO) markers and 4 mitochondrial cytochrome b (CYB), 12S rRNA, 16S rRNA, and cytochrome c oxidase subunit 1 (COX1) markers when inferring the phylogeny of Mediterranean teleosts.

To evaluate whether the slower-evolving RAG1 and RHO and the faster-evolving CYB, 12S rRNA, 16S rRNA, and COX1 saturated when reconstructing the teleost phylogeny, we constructed saturation-plots of the number of maximum likelihood inferred substitutions between any pair of taxa (i.e., patristic distances measured on the highest-likelihood phylogram reconstructed from each of the 6 alignments) against the corresponding observed (apparent) number of nucleotide differences in the 6 alignments. The slope of the regression lines for example suggest that the saturation level of the RAG1 marker is moderate, whereas the COX1 display stronger saturation. The former will provide phylogenetic information for deeper nodes in the Mediterranean teleost tree, whereas the latter will provide information for terminal nodes.
Saturation plot of the RAG1 marker.
Dashes correspond to the regression line through the origin (slope = 0.52).

Saturation plot of the RHO marker.
Dashes correspond to the regression line through the origin (slope = 0.26).

Saturation plot of the CYB marker.
Dashes correspond to the regression line through the origin (slope = 0.28).

Saturation plot of the 12S rRNA marker.
Dashes correspond to the regression line through the origin (slope = 0.28).
Saturation plot of the 16SrRNA marker.
Dashes correspond to the regression line through the origin (slope = 0.16).

Saturation plot of the COX1 marker.
Dashes correspond to the regression line through the origin (slope = 0.09).

The straight line indicates the absence of saturation, i.e., the situation for which the number of inferred substitutions is equal to the number of observed differences in the alignment. Note the difference of X-axis scale between the six plots.
Appendix S3: Species attached to their most recent common ancestor (MRCA). Table S3.1 shows a summary of the level at which the species was attached to the raw chronogram, whereas Table S3.2 shows the list of species attached. Name authorities were taken from FishBase v02/2011.

Table S3.1 Summary of number of species attached to the raw chronogram.

	At least two congeners (C2)	At least one congener (C1)	Family	Order	Total
All Species	33	10	57	24	124
Endemics	9	2	16	4	31
Non-endemic natives	16	6	28	12	62
Exotics	8	2	13	8	31
Order	Family	Species Name	Status	Attachment Level	
---------------	------------------	---	--------	------------------	
Anguilliformes	Chlopsidae	*Chlopsis bicolor* Rafinesque 1810	Native	O	
	Congridae	*Ariosoma balearicum* (Delaroche 1809)	Native	O	
		Conger conger (Linnaeus 1758)	Native	O	
		Gnathophis mystax (Delaroche 1809)	Native	O	
	Heterenchelyidae	*Panturichthys fowleri* (Ben-Tuvia 1953)	Endemic	O	
	Ophichthidae	*Apterichtus anguiformis* (Peters 1877)	Native	F	
		Apterichtus caecus (Linnaeus 1758)	Native	F	
		Dalophys imberbis (Delaroche 1809)	Native	F	
		Ophichthus rufus (Rafinesque 1810)	Endemic	F	
		Ophisurus serpens (Linnaeus 1758)	Native	F	
	Synaphobranchidae	*Dysomma brevirostre* (Facciolà 1887)	Native	O	
Aulopiformes	Evermannellidae	*Evermannella balbo* (Risso 1820)	Native	O	
	Paralepididae	*Paralepis speciosa* Belloti 1878	Endemic	F	
Beloniformes	Exocoetidae	*Cheilopogon furcatus* (Mitchill 1815)	Exotic	F	
		Cheilopogon heterurus (Rafinesque 1810)	Native	F	
		Exocoetus obtusirostris Günther 1866	Native	F	
		Parexocoetus mento (Valenciennes 1847)	Exotic	F	
Clupeiformes	Clupeidae	*Hyrporhamphus picarti* (Valenciennes 1847)	Native	C1	
Gadiformes	Macrouridae	*Nezumia sclerorhynchus* (Valenciennes 1838)	Native	F	
	Moridae	*Eretmophorus kleinembergi* Giglioli 1889	Native	F	
		Gadella maraldi (Risso 1810)	Native	F	
		Lepidon guentheri (Giglioli 1880)	Exotic	F	
		Lepidon lepidion (Risso 1810)	Endemic	F	
		Physiculus dalwigki Kaup 1858	Native	F	
Phylogenetic Group	Family	Species Name	Date of Description	Origin	Category
--------------------	--------	--------------	---------------------	--------	----------
Lophiiformes	Chaunacidae	Chaunax pictus Lowe 1846	Exotic	O	
Mugiliformes	Mugilidae	Liza carinata (Valenciennes 1836)	Exotic	C2	
Myctophiformes	Myctophidae	Diaphus holti Tåning 1918	Native	C2	
		Lampanyctus crocodilus (Risso 1810)	Native	F	
		Lampanyctus pusillus (Johnson 1890)	Native	F	
		Notoscopelus elongatus (Costa 1844)	Endemic	C1	
Myctophiformes	Myctophidae	Diaphus holti Tåning 1918	Native	C2	
Osmeriformes	Alepocephalidae	Alepocephalus rostratus Risso 1820	Native	O	
	Argentinidae	Glossanodon leioGLOSSUS (Valenciennes 1848)	Native	F	
	Microstomatidae	Nansenia iberica Matallanas 1985	Endemic	O	
	Microstomatidae	Nansenia oblata (Facciolà, 1887)	Native	O	
	Microstomatidae	Microstoma microstoma (Risso 1810)	Native	O	
Perciformes	Apogonidae	Apogon pharaonis (Belloti 1874)	Exotic	C1	
	Blenniidae	Hypleurochilus bananensis (Poll 1959)	Native	F	
	Blenniidae	Salaria basilisca (Valenciennes 1836)	Endemic	C1	
	Callionymidae	Callionymus fasciatus Valenciennes 1837	Native	C2	
	Callionymidae	Callionymus filamentosus Valenciennes 1837	Exotic	C2	
	Callionymidae	Callionymus pusillus Delaroche 1809	Native	C2	
	Callionymidae	Callionymus risso Lesueur 1814	Native	C2	
	Callionymidae	Synchiropus phaeton (Günther 1861)	Native	F	
	Carangidae	Campogramma glaycos (Lacepède 1801)	Native	F	
	Carangidae	Nau cares ductor (Linnaeus 1758)	Native	F	
	Centracanthidae	Centracanthus cirrus Rafinesque 1810	Native	F	
	Centrolophidae	Schedophilus medusophagus (Cocco 1839)	Native	F	
	Echeneidae	Remora brachyptera (Lowe 1839)	Native	C2	
	Epigonidae	Epigonus denticulatus Dieuzeide 1950	Native	C2	
	Epigonidae	Microichthys cocii Rüppell 1852	Endemic	F	
	Epigonidae	Microichthys sanzoi Sparta 1950	Endemic	F	
	Gobiidae	Buenia jeffreysii (Günther 1867)	Native	C1	
	Gobiidae	Chromogobius quadrivittatus (Steindachner 1863)	Endemic	F	
	Gobiidae	Chromogobius zebratus (Kolombatovic 1891)	Endemic	F	
Corcyrogobius liechtensteini (Kolombatovic 1891) Endemic F
Deltentosteus collonianus (Risso 1820) Native F
Deltentosteus quadrimaculatus (Valenciennes 1837) Native F
Didogobius bentuvi Miller 1966 Endemic F
Didogobius schlieweni Miller 1993 Endemic F
Didogobius splechtnai Ahnelt & Patzner 1995 Endemic F
Gammogobius steinitzi Bath 1971 Endemic F
Gobius ater Bellotti 1888 Endemic C2
Gobius couchi Miller & El-Tawil 1974 Exotic C2
Gobius fallax Sarato 1889 Endemic C2
Gobius geniporus Valenciennes 1837 Endemic C2
Gobius roulei de Buen 1928 Native C2
Gobius strictus Fage 1907 Endemic C2
Gobius vittatus Vinciguerra 1883 Endemic C2
Lebetus guilleti (Le Danois 1913) Native F
Millerigobius macrocephalus (Kolombatovic 1891) Endemic F
Monishia ochetica (Norman 1927) Exotic F
Odondebuenia balearica (Pellegrin & Fage 1907) Endemic F
Oxyurichthys papuensis (Valenciennes 1837) Exotic F
Pomatoschistus bathi Miller 1982 Endemic C2
Pomatoschistus tortonesei Miller 1969 Endemic C2
Silhouettea aegyptia (Chabanaud 1933) Exotic F
Speleogobius trigloides Zander & Jelinek 1976 Endemic F
Thorogobius ephippiatus (Lowe 1839) Native F
Thorogobius macrolepis (Kolombatovic 1891) Endemic F
Vanneaugobius pruvoti (Fage 1907) Native F

Labridae Pteragogus pelycus Randall 1981 Exotic F
Mullidae Pseudupeneus prayensis (Cuvier 1829) Exotic F
Nomeidae Cubiceps capensis (Smith 1845) Native F
Family	Species	Author	Status	Code
Sciaenidae	*Sciaena umbra* Linnaeus 1758	Native	F	
	Umbrina ronchus Valenciennes 1843	Native	C2	
Scombridae	*Orcynopsis unicolor* (Geoffroy Saint-Hilaire 1817)	Native	F	
Serranidae	*Anthias anthias* (Linnaeus 1758)	Native	F	
	Epinephelus alexandrinus (Forsskål 1775)	Native	C2	
Sparidae	*Rhabdosargus haffa* (Forsskål 1775)	Exotic	F	
Sphyraenidae	*Sphyraena chrysotaenia* Klunzinger 1884	Exotic	C2	
	Sphyraena flavicauda Rüppell 1838	Exotic	C2	
Trachinidae	*Trachinus araneus* Cuvier 1829	Native	C2	
Pleuronectiformes	*Arnoglossus kessleri* Schmidt 1915	Endemic	C2	
	Arnoglossus rueppellii (Cocco 1844)	Endemic	C2	
Cynoglossidae	*Cynoglossus sinasarabici* (Chabanaud 1931)	Exotic	O	
	Symphurus ligulatus (Cocco 1844)	Native	O	
	Symphurus nigrescens Rafinesque 1810	Native	O	
Pleuronectidae	*Platichthys flesus* (Linnaeus 1758)	Native	C2	
Soleidae	*Pegusa nasuta* (Pallas 1814)	Native	C2	
Scorpaeniformes	*Eutelicthys leptochirus* Tortonese 1959	Endemic	O	
	Paraliparis murieli Matallanas 1984	Endemic	O	
Liparidae	*Peristedion cataphractum* (Linnaeus 1758)	Native	O	
Peristediidae	*Papilloculiceps longiceps* (Cuvier 1829)	Exotic	O	
	Platycephalus indicus (Linnaeus 1758)	Exotic	O	
	Sorsogona prionota (Sauvage 1873)	Exotic	O	
Scorpaenidae	*Scorpaena lopeii* Cadenat 1943	Native	C2	
	Scorpaena stephanica Cadenat 1943	Exotic	C2	
Triglidae	*Lepidotrigla dieuzeidei* Blanc & Hureau 1973	Native	C1	
Stomiiformes	*Vinciguerria attenuata* (Cocco 1838)	Native	C1	
Phosichthyidae	*Valenciennellus tripunctulatus* (Esmark 1871)	Native	F	
Sternopychidae	*Bathophilus nigerrimus* Giglioli 1882	Native	F	
Stomiidae	*Nerophis maculatus* Rafinesque, 1810	Native	C1	
Syngnathiformes	*Minyichthys sentus* Dawson, 1982	Native	F	
Species grafted into the final chronogram next to their nearest closest relative for the diversification analyses. Status: species were classified as endemic, (non-endemic) native or exotic. Attachment level: species were attached to a congener if there were at least two congeners present in the phylogeny (C2); if there was only one congener present in the phylogeny (C2), they were attached to the nearest node joining the congener and the closest species in the phylogeny; if no congener was present, the new species was attached to the most recent common ancestor of the same family (F) or of the same order (O), i.e. to the node joining all members of the same family or order. Each one of these attachments levels was carried out sequentially one after the other, in four different and increasingly more species rich chronograms. Species names, the corresponding name authorities and classification follow FishBase version 02/2011 (http://www.fishbase.org/).