Tailoring the structure of casein micelles through a multifactorial approach to manipulate rennet coagulation properties

Fanny Lazzaro, Antoine Bouchoux, Jared Raynes, Roderick Williams, Lydia Ong, Eric Hanssen, Valérie Lechevalier-Datin, Stéphane Pezennec, Hyun-Jung Cho, Amy Logan, et al.

To cite this version:

Fanny Lazzaro, Antoine Bouchoux, Jared Raynes, Roderick Williams, Lydia Ong, et al.. Tailoring the structure of casein micelles through a multifactorial approach to manipulate rennet coagulation properties. Food Hydrocolloids, 2020, 101, pp.105414. 10.1016/j.foodhyd.2019.105414 . hal-02373068

HAL Id: hal-02373068

https://institut-agro-rennes-angers.hal.science/hal-02373068

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Tailoring the structure of casein micelles through a multifactorial approach to manipulate rennet coagulation properties

Fanny Lazzaro\textsuperscript{1,2,*}, Antoine Bouchoux\textsuperscript{3}, Jared Raynes\textsuperscript{4}, Roderick Williams\textsuperscript{4}, Lydia Ong\textsuperscript{5,6,7}, Eric Hanssen\textsuperscript{6}, Valérie Lechevalier\textsuperscript{1}, Stéphane Pezennec\textsuperscript{1}, Hyun-Jung Cho\textsuperscript{8}, Amy Logan\textsuperscript{4}, Sally Gras\textsuperscript{5,6,7}, Frederic Gaucheron\textsuperscript{1}

1 STLO, Agrocampus Ouest, INRA, 35000, Rennes, France
2 CNIEL, Paris, France
3 TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
4 CSIRO Agriculture & Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia
5 Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
6 Advance Microscopy Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
7 The ARC Dairy Innovation Hub, The University of Melbourne, Parkville, Victoria, 3110
8 Biological Optical Microscopy Platform, University of Melbourne, Parkville VIC 3010, Australia

* Corresponding author. STLO, Agrocampus Ouest, INRA, 65 rue de Saint-Brieuc 35000, Rennes, France. flazzaro@hotmail.fr

\textsuperscript{© }2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/
Abstract:
The properties of casein micelles are known to be affected by modifications to the environment, such as variations in pH or the addition of salts, yet the scientific literature typically considers the effects of one factor at a time, while in industrial processes, several modifications are performed simultaneously. The aim of this study was to assess the impact of multifactorial environmental modifications on the colloidal, structural and rennet coagulation properties of casein micelles in a simplified model system. A key finding was that dense regions (~ 20 nm in size) could be released from the casein micelle. The addition of NaCl and CaCl\(_2\) had opposing effects, i.e. enhancing or limiting this micellar disruption, respectively. A decrease in pH had the strongest impact on the mineral balance, causing the colloidal CaP to solubilize and the micelle to swell. The rennet clotting time was impacted by variations in pH and NaCl content. Interestingly, a consideration of all three levels of casein micelle structure and their interactions was needed to explain variations in the firmness of rennet gels. This study illustrates the complex interplay of factors affecting micellar structure and improves our understanding of how micelles can be manipulated to control their properties.

Keywords: casein micelle, rennet properties, internal structure, multifactorial modifications, small angle neutron scattering, cryo transmission electron microscopy
1 Introduction

In milk, casein proteins (\(\alpha_s1\), \(\alpha_s2\), \(\beta\) and \(\kappa\)) and minerals (mainly calcium phosphate (CaP) nanoclusters) self-assemble to form a colloid referred to as the casein micelle. Electrostatic, hydrophobic and Van der Waals forces hold the different components together leading to a polydisperse population of particles 100 – 200 nm in diameter (Dalgleish & Corredig, 2012; Holt, Carver, Ecroyd, & Thorn, 2013; Holt, 2016; Holt & Horne, 1996; Horne, 2017; Thorn et al., 2005). There is a consensus that casein micelles are stabilized through electrostatic and steric repulsions due to the presence of a polyelectrolyte brush of \(\kappa\)-casein at the micellar surface (de Kruif, 1999; de Kruif & Zhulina, 1996; Tuinier & de Kruif, 2002). Despite extensive studies the internal structure of the casein micelle, i.e. the interactions between caseins and the minerals located within the colloid structure, is still under debate. The recent use of small angle X-ray and neutron scattering (SAXS and SANS, respectively) in parallel with cryo-transmission electron microscopy (cryo-TEM) has enabled questions around the internal structure to be partially answered, although without general agreement (Bouchoux et al., 2015; Bouchoux, Gésan-Guiziou, Pérez, & Cabane, 2010; Day, Raynes, Leis, Liu, & Williams, 2017; De Kruif, 2014; Ingham et al., 2015, 2016; Marchin, Putaux, Pignon, & Léonil, 2007; Pignon et al., 2004; Shukla, Narayanan, & Zanchi, 2009). An early model for the micelle structure was the submicelle model (Schmidt, 1982; Walstra, 1999), more recently a second model has proposed a more open structure composed of dense regions, water channels and CaP nanoclusters. Environmental factors such as variations in pH, temperature and the addition of salts or chelating agents (de Kort, Minor, Snoeren, van Hooijdonk, & van der Linden, 2011; Gaucheron, 2004; Lazzaro et al., 2017; Silva et al., 2013) induce shifts in the mineral balance between the diffusible and colloidal phases of the casein micelle. These mineral modifications also involve colloidal modifications that lead to changes in the functional properties of the casein micelle, such as the formation and stability of emulsions, thermal stability, and response to acid and rennet coagulation (Broyard & Gaucheron, 2015; Gaucheron, 2004). Although the mineral
fraction only represents a small proportion of the milk components (0.7%), it is used to control the properties of numerous manufactured dairy products.

The response of casein micelles to the addition of chymosin (rennet) and gelation is also of primary interest. For simplicity, the rennet coagulation mechanism applied to the micelles within many dairy ingredient steams can be divided into three steps: firstly, chymosin hydrolyzes κ-casein located at the surface of the casein micelle by cleaving the Phe(105)-Met(106) bond. Once sufficient κ-casein has been hydrolyzed, depleted micelles aggregate together, as described by many authors including Lucey and colleagues (Lucey, 2002), followed by a reorganization and reticulation to form the casein gel network structure (Dalgleish & Corredig, 2012). In reality this is continual process, and compositional factors such as changes in the fat or protein content (Guinee et al., 1997), pH (Mishra et al., 2005) or the addition of calcium (Udabage et al., 2001) can influence the onset and rate of gelation and the functionality of the resulting gel. Rennet coagulation can be assessed by two main characteristics: (i) the rennet clotting time (RCT), which quantifies the time elapsed from the addition of rennet or chymosin to the detectable onset of gelation, and (ii) the gel firmness. The RCT mainly depends on the rate of the enzymatic reaction and the aggregation of the para-caseinates (first and second steps), while the firmness depends on the organization and the strength of the resulting gel (third step).

Variations in pH and the addition of NaCl and CaCl₂ are steps commonly applied to control the coagulation of milk. Many studies have been published describing the separate influence of each of these parameters on the colloidal properties and on the rennet coagulation properties of the casein micelle (Bulca, Wolfschoon-Pombo, & Kulozik, 2016; Choi, Horne, & Lucey, 2007; Daviau, Famelart, Pierre, Gouderdranche, & Maubois, 2000; Deeth & Lewis, 2015; Famelart, Le Graet, & Raulot, 1999; Famelart, Lepesant, Gaucheron, Le Graet, & Schuck, 1996; Grufferty & Fox, 1985; Karlsson, Ipsen, & Ardö, 2007; Karlsson et al., 2007; Sandra, Ho, Alexander, & Corredig, 2012; Sbodio, Tercero, Coutaz, & Revelli, 2006; Zhao & Corredig, 2015; Zoon, van
Although necessary to understand the dissociated effect of each parameter, this monofactorial approach does not correspond to the reality of the dairy industry where a multifactorial approach often occurs with the simultaneous variation of several parameters.

The aim of the current study was to investigate the effect of simultaneous modifications of the physico-chemical parameters on both the colloidal properties and the rennet induced coagulation of casein micelles in a simple model system, with a goal of better understanding the response of casein micelles to environmental changes. An experimental matrix of 27 different suspensions of casein micelles in non-native conditions within water, with variations in added NaCl and CaCl$_2$, at three different pH was designed. A combination of multiple advanced biophysical techniques, such as cryo-TEM and SAXS, was used to make a thorough characterization of the casein micelles in terms of physicochemical, structural and renneting properties. Appropriate statistical analyses were applied to establish the relationships between the colloidal and the rennet coagulation properties of the modified casein micelles, leading to the first study that combines SAXS characterization with an assessment of the functional properties of casein micelles.

2 Materials and methods

2.1 Chemicals

All chemicals used for this study, hydrochloric acid (VWR chemicals, Fontenay-sous-Bois, France), NaCl (PanReac AppliChem, Barcelona, Spain), CaCl$_2$ (VWR International, Leuven, Belgium) and sodium azide (Riedek-de Haên, Seelze, Germany) were of analytical grade.

2.2 Materials

Experiments were carried out using a native phosphocaseinate (NPC) powder resuspended in deionised water at 24.2± 0.8 g kg$^{-1}$ of protein. Concentrated NPC was supplied by Gillot SAS (Saint Hilaire de Briouze, France) and obtained by microfiltration (0.1 µm pore size membrane)
of raw skimmed milk followed by diafiltration against milli-Q water. The concentrate was then spray dried according to the method described by Pierre, Fauquant, Le Graet, & Maubois (1992) and Schuck et al., (1994) using Bionov facilities (Rennes, France). Casein and their associated minerals represented more than 90% of the total solid content of the powder. Residual whey proteins (3%) (w/w) and traces of lactose were present in the powder.

For the coagulation experiments, Chr. Hansen (Hoersholm, Denmark) supplied commercial chymosin (CHY-MAX M 200, 200 IMCU ml⁻¹).

2.3 Preparation of casein micelle suspensions

An experimental matrix was designed to assess the concomitant effects of variations in pH and the addition of NaCl or CaCl₂. The range of pH and the final concentrations of added NaCl and CaCl₂ were selected to produce suspensions which would form gels within one hour after the addition of a set amount of chymosin. The pH values targeted were 5.7, 6.3 or 6.9 and the final concentrations of NaCl and CaCl₂ in the suspensions were 0, 50 and 100 mmol kg⁻¹ or 0, 7.5 and 15 mmol kg⁻¹, respectively. A full experimental design was carried out, where 27 different suspensions of casein micelles were prepared in water, with different salt and pH environments.

The suspensions were named from A to Z, and CTRL to represent the control which consisted of NPC in water at pH 6.9, with no added salts (Fig.1).

Dispersion of the NPC powder in milli-Q water was performed as described in Lazzaro et al., (2017). Briefly, the powder was stirred (900 rpm) at 40 °C for 6 h, followed by an additional 16 h at room temperature overnight. The proper resuspension of the ingredient was checked by laser light diffraction according to Schuck, Dolivet, & Jeantet (2012), ensuring the proportion of insoluble particle was below 10 %. Varying amounts of stock solutions of NaCl (2.5 mol kg⁻¹ in milli-Q water, pH 6.9) and CaCl₂ (0.25 mol kg⁻¹ in milli-Q water, pH 6.9) were added to the concentrated suspensions of NPC in milli-Q water with stirring to reach the required salt concentration. The pH shift induced by the addition of salts was corrected using HCl 1M in milli-Q water and set to 5.7, 6.3 or 6.9. The suspensions were then diluted to 24.2 ± 0.8 g kg⁻¹ of
protein and left overnight at room temperature. If necessary, the pH was readjusted prior to experiments. For convenience, Tables 1, 2, 3 and Figures 6, 7, 8 report the results of different analyses for a set on 9 samples only. These selected samples correspond to the corners of the cubic experimental design (suspensions A, B, D, E, J, L, M, CTRL ; extreme points) and the center point of the experimental design (suspension T) (Fig. 1).

2.4 Recovery of the diffusible phases of the suspensions

Aliquots (15mL) of each NPC suspension were ultrafiltered by centrifugation for 30 min, at 20°C and 1800 g. using Vivaspin concentrators (molecular weight cut-off 10 kDa, Vivascience, Palaiseau, France). The diffusible phases were analyzed to determine the concentrations of diffusible ions and used for the dilution of the suspension for the turbidity (τ) and nanoparticle tracking analysis (NTA) measurements and for the background determination for the SAXS measurements.

2.5 Analysis

2.5.1 Protein content

The total nitrogen content of each suspension was determined according to the Kjeldahl method (IDF standard 20-1, 2014). A factor of 6.38 was used to convert nitrogen to protein concentration. Measurements were performed in duplicate.

2.5.2 Mineral composition and distribution

Total and diffusible cations (calcium Ca, sodium Na) and anions (chloride Cl, inorganic phosphate Pi) contents were determined as described in Lazzaro et al., (2017). Colloidal concentrations were deduced by subtracting the concentration of diffusible ions from the concentration of total ions. The mineral concentrations were adjusted to account for the small differences in protein content (see section 2.5.1.).

2.5.3 Turbidity measurements
Absorbance measurements were carried out at 600 nm and 20 °C using a UV-visible spectrometer (UVmc², Safas, Monaco). The casein micelle suspensions were diluted 10 times in their diffusible phases and analyzed immediately. The diffusible phase for each suspension was also analyzed. Absorbance measurements were converted into turbidity (τ) according to the following formula:

\[ \tau = 2.303 \times \frac{OD(600\text{nm})}{l} \]  

with \( OD(600\text{nm}) \) being the optical density of the suspension (difference between the absorbance of the diluted suspension and the absorbance of its diffusible phase); and \( l \) the light path length (\( l = 1 \text{ cm} \)).

### 2.5.4 Nanoparticle tracking analysis

Nanoparticle Tracking Analysis (NTA) was performed at 20 °C using a Nanosight NS300 (Malvern Instruments, Malvern, United Kingdom) equipped with a Nanosight syringe pump. The principle of NTA is based on the tracking of individual particles in suspension. A large dilution (40,000 times) of the casein micelle suspension in their own diffusible phase was necessary to meet the optimal settings of the apparatus, \( i.e. 20 – 100 \) particles per frame during the measurement combined to a dark background image. A syringe was loaded with the diluted suspension and the focus adjusted manually. The infusion rate was set to 20, the camera level to 12 and 5 video images of 60 s each were recorded. The video images of the movement of particles under Brownian motion were analyzed by the NTA image analysis software (V 3.0 0064., Malvern Instruments). The minimum screen gain, and detection threshold of 3 were selected to maximize the detection of small particles (< 50 nm diameter). The particle size distributions obtained (data not shown) were fitted with a log-normal population of particles using Schulz equation (Schulz, 1935):

\[ W(R, r_{NTA}, \sigma) = \frac{R^2}{\Gamma(Z+1)} \left( \frac{Z+1}{r_{NTA}} \right)^{Z+1} \times \exp \left[ - \frac{R}{r_{NTA}}(Z + 1) \right] \]  

\[ (2) \]
Where \( r_{\text{NTA}} \) is the average radius of the particles and \( Z \) relates to the polydispersity (\( \sigma \)) of the particle radii (\( R \)) given by the expression:

\[
\sigma = \left( \frac{\langle R^2 \rangle}{r_{\text{NTA}}^2} - 1 \right) = \frac{1}{Z+1}
\]

The value of \( \sigma \) varied from 0.23 to 0.47 within the set of suspensions and \( r_{\text{NTA}} \) was further used in the statistical analyses.

### 2.5.5 Cryogenic Transmission Electron microscopy

A thin vitrified film of casein micelle suspension was prepared as described in the method of Chen et al., (2011). A Formvar lacey carbon film mounted on a 300 mesh copper grids (ProSciTech, Queensland, Australia) were glow discharged for 15 s and used as a hydrophilic support on which the suspensions (4 \( \mu \)L) were adsorbed. After 30 s, the grids were plunged in liquid ethane using a Vitrobot (FEI Company, Eindhoven, Netherlands) to freeze the sample. The grids were observed on a Technai G2 TF30 (FEI company, Eindhoven, Netherlands) operating at 200 kV and equipped with a Gatan US1000 2kX2k CCD Camera (Gatan). Between 10 and 20 micrographs per suspension were recorded under low-dose conditions with defocus values of 4 - 6 \( \mu \)m. Image analysis was performed using Image J software (National Institute of Health, USA). Due to the large numbers of samples, this process was automated through the use of macros set up within Image J. In total, between 1,554 particles (in suspension TEM) and 29,092 particles (in suspension B) were measured in three steps:

i) The region of interest (ROI) was defined:

Particle detection was strictly limited to the area free from the grid structure and ice particles present as a result of sample preparation.

ii) Particle detection:

To detect particles, the background was subtracted from images using a ‘rolling ball’ algorithm and smoothed using Gaussian filtering before the threshold was applied and particles measured. Touching particles were separated using the distance transform watershed plugin (Quasi-
Euclidean). Most of the very large particles (diameter > 50 nm) were often partially hidden by the grid. Therefore, the grid-obstructed particles were excluded from the detection only if more than 10% of the area defined by the best-fitted ellipse drawn around the particle was hidden under the grid. In order to prevent any misrepresentative segmentation, which can be caused from automatic detection, all segmentation results were visualized and the overlay was saved as a separate image that was manually inspected.

iii) Shape measurement of the particles:

Feret’s diameter was determined for each particle detected. Particles were defined as small (< 50 nm in Feret’s diameter) or large (> 50 nm in Feret’s diameter). The ratio of small to large particles was then calculated for each suspension and defined as \( \Gamma_{s/l} \).

2.5.6 Small angle X-ray scattering measurements, data treatment and modelling

The SAXS measurements were carried out on the suspensions and their respective diffusible phases at the SAXS/WAXS beamline of the Australian Synchrotron (Clayton, Melbourne, Australia). The beamline is equipped with a Pilatus 1 M detector (170 mm x 170 mm, effective pixel size of 172 x 172 µm). Each sample was measured at sample-to-detector lengths of 7.106 m and 0.721 m with respective photon energies of 8.2 keV (1.512 Å) or 18.1 keV (0.685 Å). Merging the data from both distances provided a q range of \( 1.3 \times 10^{-3} \) to \( 1.93 \, \text{Å}^{-1} \). The samples were drawn into a 1.5 mm glass capillary; allowing continuous flow through the X-ray beam during measurements. The data were obtained from at least 10 exposures of 2 s intervals at 20°C. The capillary was rinsed with water, followed by 8 M guanidine and again with water before being air-dried between each sample analysis.

The SAXS intensities were normalized to an absolute scale and at least 10 measurements per sample were averaged to obtain the intensity profiles using ScatterBrain (V 2.71) (Australian Synchrotron, Clayton, Australia). Measurements of the diffusible phases for each suspension were subtracted from the corresponding scattering intensities of the suspensions to account for background. Finally, the intensities were adjusted to account for the difference in total protein.
content of the suspensions in Primus (V 3.2) (ATSAS, Hamburg, Germany). Igor software (V 7.0.2.2) (Wave Metrics, Lake Oswego, USA) was used to merge the data from the 7.106 and 0.721 m detector distances to obtain the final curves \( I = f(q) \).

The SAXS scattering intensity curves were fitted according to the model of Bouchoux et al., (2010) with slight modifications. This model considers three populations of particles: Population A, observed at low q (up to 6 \( \times 10^{-3} \) Å\(^{-1} \)), where the scattering intensity corresponds to the presence of casein micelles; population B, in the intermediate q regions (6 \( \times 10^{-3} \) to 2 \( \times 10^{-2} \) Å\(^{-1} \)), where the scattering corresponds to dense regions inside the casein micelles and population C; at high q (7-8 \( \times 10^{-2} \) Å\(^{-1} \)) attributable to the CaP nanoclusters. The intensity depends on the form factor of each population \( P_n(q) \) (approximated by the form factor of polydisperse spheres of mean radius \( r_n(q) \)) and on prefactors \( a, b \) and \( c \):

\[
I(q) = aP_a(q) + bP_b(q) + cP_c(q) \tag{4}
\]

with:

\[
a = \alpha \times n_a (Vma \times \Delta \rho_a)^2 \tag{5}
\]

\[
b = \alpha \times n_b (Vmb \times \Delta \rho_b)^2 \tag{6}
\]

\[
c = \alpha \times n_c (Vmc \times \Delta \rho_c)^2 \tag{7}
\]

where \( n_a, n_b, n_c \) were the number of scatterers for each population, \( Vma, Vmb, Vmc \) their volume and \( \Delta \rho_a, \Delta \rho_b, \Delta \rho_c \) their contrast, respectively.

The absolute number of casein micelles was assumed to be the same in all the suspensions. This hypothesis is based on the observations of Moitzi, Menzel, Schurtenberger, & Stradner, (2011) that a decrease in pH left the number of casein micelles unmodified, even if some casein micelle materials are subdivided into individual monomers or smaller casein aggregates with a resulting decrease in micelle size and mass. In the present study, it was also assumed that the modifications of the pH and the addition of NaCl and CaCl\(_2\) applied in the experimental design were not sufficient to cause the complete disruption of the micellar structure. This implies that the \( n_a \) value is not affected by the physical-chemical modifications of our samples. We chose to
set it \( n_a \) to 1 so that \( n_b \) and \( n_c \) are defined relative to a singular casein micelle. As a consequence, the constant \( \alpha \) accounts for both the electron scattering length and the absolute number density of casein micelles in the samples.

This model was tested on our data according to the procedure of Bouchoux et al., (2010). First, the value of the radius of each population, \( r_a \), \( r_b \) and \( r_c \), and the prefactors, \( a \), \( b \), \( c \), were determined by fitting the model to the experimental data with polydispersities set to \( \sigma_a = 1/3 \), \( \sigma_b = 1/3 \) and \( \sigma_c = 0.2 \). The good quality of the fits support the value of polydispersity used in this study to describe scattering that relates to casein micelle size. Note that we decided not to use the polydispersity values determined by NTA (2.5.4) given that the SAXS and the NTA methods cover different size ranges for the assessment of the physical properties of the particles in suspension.

In a second step, the value of the constant \( \alpha \) was calculated from the control sample (CTRL) using the prefactor \( a \) obtained from the fit, the size (and therefore volume) of the micelle in this case, and the contrast \( \Delta \rho_a \) of a native casein micelle in water, i.e. \( 0.018 \text{ e}^{-} \text{Å}^{-3} \) \( (\rho_{water} = 0.334 \text{ e}^{-} \text{Å}^{-3}) \).

In a third step, the values of \( \Delta \rho_a \), \( n_b \) and \( n_c \) were calculated for the 27 suspensions using the sizes and prefactors obtained from the fits. The micelle, \( \Delta \rho_a \) was simply calculated from prefactors \( a \) and sizes \( r_a \), knowing that \( n_a = 1 \). The number of dense regions \( n_b \) was calculated from prefactors \( b \), sizes \( r_b \), and making the assumption that contrast \( \Delta \rho_b \) is relatively insensitive to the physical-chemical modifications performed in this study. \( \Delta \rho_b \) is taken as \( 0.035 \text{ e}^{-} \text{Å}^{-3} \), i.e. twice the contrast of the micelle assuming that dense regions occupy 50% of the total volume of the casein micelle (Bouchoux et al. 2010). The CaP nanoclusters / Protein inhomogeneities, \( n_c \) was calculated from prefactors \( c \), sizes \( r_c \), and an estimated contrast \( \Delta \rho_c \) of \( 0.172 \text{ e}^{-} \text{Å}^{-3} \) that was also assumed to be constant between samples. Note that in a recent work, Ingham et al., (2016) suggest a new interpretation and assign the high q features of SAXS data to the presence of inhomogeneous protein structures of 1-3 nm length scale instead of CaP nanoclusters. As our
purpose is not to take a position on this question, we decided not to restrict our analysis solely to
the interpretation of Bouchoux et al. (2010). A number of possible inhomogeneities \( n_{\text{cPI}} \) was
therefore calculated following Ingham’s postulate, this time using an estimated contrast of 0.126
e- Å\(^{-3}\) (Ingham et al., 2016).

2.5.7 Rennet coagulation properties

The coagulation properties of samples were assessed using a ChymoGRAPH® (Chr Hansen,
Denmark) which uses a similar physical principal to the Formagraph (McMahon & Brown, 1982)
and where coagulation is determined according to the movement of a stainless steel, loop
pendulum immersed in the samples. Casein micelles suspensions (10 g) were weighed into the
wells of the ChymoGRAPH® stainless steel block which was immersed in a water bath for 10
min to equilibrate the temperature of the block and suspension to 30°C. A sample of 400 µL of
the enzyme solution (chymosin diluted ten times in milli-Q water) was added and the
suspensions, stirred for 30 s with the spoons and transferred from the water bath to the
oscillating plate. A Peltier module maintained the temperature of the block at 30°C. When the
coagulation began, the resulting increase in viscosity and the formation of gels caused the
pendulums to oscillate together with the samples. The movement of each pendulum was
measured by the use of optical fibers over a period of 60 min and the data collected using the
ChymoGRAPH® software (V 1.0, Chr Hansen, Denmark). The RCT corresponded to the time
elapsed from chymosin addition to the detectable onset of gelation, where gelation was defined
as at the time point when the firmness of the suspensions was > 0. The maximal firmness
recorded during the 60 min duration of the experiment was defined as the firmness of the gel.

2.5.8 Statistical treatments

As mentioned in section 2.3., a complete experimental design was carried out to study the
combined effects of variation in pH (5.7, 6.3, 6.9), NaCl addition (0, 50, 100 mmol kg\(^{-1}\)) and
CaCl\(_2\) addition (0, 7.5, 15 mmol kg\(^{-1}\)) on the colloidal and renneting properties of the casein
micelles (Fig. 1).
The data set was subjected to principal component analysis (PCA) to highlight relationships between measured variables, and similarities between samples. The general purpose of PCA is to summarize a data set with an optimized, controlled loss of information (Jolliffe, 1986; Abdi & Williams, 2010). It allows one to identify patterns which are the most representative of the variability in the whole data set, and to locate individual samples on similarity maps based on these patterns.

If the data consist in p variables measured for each of the samples, any sample may be represented as a point in a p-dimensional space. Then, PCA can be viewed as the projection of the data on a subspace which maximizes the dispersion of the projected data (variance maximization). The axes that define this subspace, are new variables, called principal components, which are linear combinations of the p initial variables. They are orthogonal (thus uncorrelated) and ordered by decreasing projected variance, in such a way that the few first principal components account together for the most part of the variability (the "information") in the data set. For each principal component, the coefficients for the p initial variables (called "loadings") illustrate their respective contributions in the principal component, and are used to interpret the physical meaning of the new variable. Each sample is then characterized by the respective values taken by these new variables, called the scores of the sample on the different principal components. These scores represent the coordinates of each sample on a factorial map, whose axes origin corresponds to the average spectrum.

PCA was performed after variable centering and scaling to unit variance using the R software package (R Core Team, 2018) and the FactoMineR package (Lê, Josse, & Husson, 2008). All the correlations mentioned in the results and discussion section were found to be significant (p < 0.05) using the paired student t-test.

In addition, multiple linear regression was also applied to the SAXS variables $r_a$, $n_b$ and $n_{CaP}$, using the software STATGRAPHICS Centurion XVII (V. 17.1.10, Statpoint Technologies, The Plains, USA) in order to evaluate the effect of these structural features on the firmness of the
gel. A model of firmness was defined that included the quadratic effects of $r_a$, $n_b$ and $n_CaP$ and the second order interactions between these factors. The full equation of the model was:

$$\text{Firmness} = \text{constant} + r_a + n_b + n_c + r_a^2 + n_b^2 + n_c^2 + (r_a \times n_b) + (r_a \times n_c) + (n_b \times n_c)$$

(8)

The LS-means were calculated and differences regarded as significant for $p < 0.05$. Non-significant effects were excluded from the model, except when first order effects were participating in interaction effects.

3 Results and discussion

The experimental protocol applied in this study allowed the effect of variations in added NaCl and CaCl$_2$ on the colloidal properties and gelation properties of the casein micelle to be examined. Analysis was performed at three different pH, and conditions for each suspension were non-native and carefully controlled, to allow for compositional structure-function effects to be isolated.

The results of the biophysical analyses are presented and discussed in two main sections. In the first section, the PCA analyses are used to (i) assess the impacts of variation in pH and the addition of NaCl and CaCl$_2$ on the mineral balance of the casein micelle, (ii) establish relationships between the structure of the casein micelle and its other colloidal properties. In the second section, the relationships between rennet coagulation properties and colloidal and structural features of casein micelle are considered. For these experiments rennet is added to induce coagulation, but no starter culture is added to simplify the model experimental system examined. PCA analyses were able to explain the variation observed in RCT, while linear regression is able to explain interactions between the structural properties and the firmness of the rennet gels.

3.1 Colloidal and structural properties of the modified casein micelles
In the general case, the output of PCA is dual: it consists numerically in i) the loadings of the initial variables in each of the principal components, which illustrate the main dimensions of variability in the data set, and ii) the scores of the samples on the principal components, i.e. their coordinates on similarity maps. It was found that almost 80 % of the variability (total variance) observed within our experimental design is accounted for together by the first four principal components (34.4 %, 23.5 %, 11.2 % and 10.1 %, respectively). To illustrate the respective contributions of the initial variables to principal components, one may use correlations between initial variables and principal components, e.g. as in Fig. 2 and Fig. 4.

As a rule of interpretation and for example, PC1 is highly positively correlated with colloidal Ca, while PC2 is highly positively correlated with diffusible Na (Fig. 2). Any sample with a high positive score on PC1 (PC2, respectively) would then be characterized by a high content in colloidal Ca (diffusible Na, respectively).

3.1.1 Impact of the environmental modifications on the mineral balance of the casein micelle

Analysis of the partition of minerals Ca, Pi, Na and Cl between the colloidal and diffusible phases of the suspensions (Table 1) revealed that the colloidal ions consisted mainly in Ca and Pi, whereas Na and Cl were mainly present in the diffusible phases of the suspensions when NaCl was added. Figure 2 shows the strong, positive correlations between the pH and colloidal Ca and Pi (0.85 and 0.80, respectively) and a negative correlation with the concentration of diffusible Pi (- 0.86). The diffusible Ca concentration was weakly, but still significantly, impacted by variation in pH, with a correlation coefficient of - 0.5 (Fig. 3).

The strongest variation of Ca in the diffusible phase was attributed to the addition of CaCl₂, with a correlation coefficient of 0.84 (Fig. 4). Colloidal and diffusible concentrations of Pi were also significantly impacted by the addition of CaCl₂ but to a much smaller extent, with correlation coefficients of 0.42 and - 0.42 respectively (Fig. 3). These results confirm that modifications in
pH and CaCl$_2$ induced opposite effects on the mineral content of the casein micelle, with pH inducing a stronger effect compared to CaCl$_2$ addition. A decrease in pH led to the solubilization of the CaP nanoclusters, which has been reported in the literature (Dalgleish & Law, 1989; Daviau, Famelart, Pierre, Goudrdranche, & Maubois, 2000; Famelart, Lepesant, Gaucher, Le Graet, & Schuck, 1996; Le Graet & Brulé, 1993; Le Graet & Gaucheron, 1999; Le Ray et al., 1998; van Hooydonk, Boerrigter, & Hagedoorn, 1986; Zoon, van Vliet, & Walstra, 1989). Conversely, the addition of CaCl$_2$ limited CaP solubilization presumably by shifting the Ca$^{2+}$ equilibrium through the saturation of the diffusible phase (Moitzi et al., 2011). Added Ca would also directly associate with caseins and/or with the diffusible Pi and precipitate as CaP (Le Ray et al., 1998; Philippe, Le Graet, & Gaucheron, 2005; Philippe, Gaucheron, Le Graet, Michel, & Garem, 2003; Udabage, McKinnon, & Augustin, 2000).

The addition of NaCl positively correlated with the diffusible Na and Cl concentrations (0.99 and 0.95, respectively) (Fig. 2), which was consistent with the presence of NaCl in the diffusible phase. No significant correlation was found between NaCl addition and the concentrations of colloidal ions (Fig. 2) i.e. NaCl had no direct effect on the mineral content of the casein micelle within the range studied (0 to 100 mmol kg$^{-1}$). This result is in agreement with the finding of Karlsson, Ipsen, & Ardö (2007) who reported no change in the colloidal CaP content. However, this observation differs from the results of Aoki, Umeda, & Nakao, (1999); Famelart et al., (1996); Grufferty & Fox, 1985; Zhao & Corredig, (2015); Zoon et al., (1989) who reported that solubilization of Ca, and occasionally Pi, occurred when NaCl was added to fresh or reconstituted skim milk or casein micelle suspensions. These discrepancies could arise from differences in pH, as in most cases, variations in pH induced by NaCl addition were not corrected, and/or the amount of added NaCl was 3 to 5 times higher than in the present study.

### 3.1.2 Consequences on the structural properties of the casein micelle

The SAXS data presented in Fig. 5 were treated primarily using the sponge-like model defined by Bouchoux, Gésan-Guiziou, Pérez, & Cabane, (2010) which uses three populations to
interpret the SAXS pattern of casein micelles. The alternate interpretation of Ingham et al., (2016) also defines three population but attributes population C; at high q (7-8 \times 10^{-2} \, \text{Å}^{-1}), to protein inhomogeneties rather than the CaP nanoclusters. Given that we have decided not to rely exclusively on the interpretation of either Ingham et al., (2016) or Bouchoux et al., (2010), the implications of both studies are discussed here. The SAXS patterns (Fig. 5) show variability in the intensity of signal across these 3 different regions for the set of 9 selected samples. The structural features determined from the SAXS data \((r_a, \Delta \rho_a, r_b, \eta_b, r_c, \eta_c)\) for the 27 suspensions were compared to the other physico-chemical variables (e.g. concentrations of colloidal and diffusible minerals, \(\tau, r_{nano}, \Gamma_{s/l}\)) for each population of scatterers (A, B and C) and analysed by PCA (Figs. 2, 3, 4). These correlations and the relevance of the two SAXS models applied are discussed in the following sections.

3.1.2.1 Population A: the casein micelle

The modelling of the SAXS data enabled 2 variables, \(r_a\) and \(\Delta \rho_a\), describing the casein micelle radius and its contrast to be defined, respectively. The radius, \(r_a\) varied from 41.5 to 58.1 nm (Table 2), which is consistent with values determined in earlier characterizations of milk or casein micelle dispersions by SAXS (Bouchoux et al., 2010; Ingham et al., 2016; Pignon et al., 2004; Shukla et al., 2009). Moreover, \(r_a\) positively correlated with the mean micellar radius measured by NTA, \(r_{NTA}\) (53.8 < \(r_{NTA}\) < 74.8 nm) of the different suspensions (Fig. 2 and Table 2), with a correlation coefficient of 0.72. These size measurements are close to those for native casein micelles in milk measured by NTA (Priyashantha et al. 2019).

The PCA also suggests a dependency between the micellar size and mineral balance. Indeed, \(r_a\) showed negative correlations with colloidal concentrations of Ca and Pi (-0.71 and -0.38, respectively) and a positive correlation with the concentration of diffusible Pi (0.38) (Fig. 2). The solubilization of the micellar CaP caused by a decrease in pH resulted in an increase in micellar size due to swelling. This size increase also affected the turbidity of the suspensions that increased (correlation coefficient of -0.46 between pH and \(\tau\)) (Fig. 2). These results were in
agreement with those of Daviau et al., (2000) and van Hooydonk et al., (1986) but differed to the 
observations of Moitzi et al., (2011) and Ouanezar, Guyomarc'h, & Bouchoux, (2012). These 
last authors reported a decrease of micellar diameter, measured by multiple angle 3D light 
scattering or by AFM microscopy, respectively. In these studies, skim milk and casein micelle 
powders were resuspended in deionised water or synthetic milk ultrafiltrate (lactose free saline 
solution), respectively, providing a different ionic environment for the casein micelles than in our 
study. In addition, the pH ranges covered in these studies were lower than herein, possibly 
leading to differences in behavior when the colloid is exposed to more severe conditions. 

CaCl$_2$ addition had no impact on $r_a$ (Fig. 3), which was in agreement with results reported by 
Philippe et al., (2005); Philippe et al., (2003) and Udabage et al., (2000). Conversely, the 
concentrations of NaCl and diffusible Na significantly correlated with $r_a$ (-0.46, -0.43, 
respectively) (Fig. 2), with NaCl addition slightly reducing the diameter of the casein micelle. This 
differs from the findings of Zhao & Corredig, (2015) and Karlsson, Ipsen, Schrader, & Ardö, 
(2005), where an increase in the size of casein micelles was observed. It is possible, however, 
that in these previous studies, the increase in size was due to the decrease in pH (not corrected) 
induced by NaCl addition rather than the direct effect of the soluble NaCl salt. Here, $\tau$ negatively 
correlated with NaCl (-0.46) (Fig. 2), reflecting a decrease in scattering following NaCl addition. 
This result was in accordance with the two studies cited above and could be caused by a 
decrease in micellar size and/or internal rearrangements of the micelle structure. Diffusible Na 
may screen the negative charge on $\kappa$-casein CMP, causing a partial collapse of the hairy layer 
and a slight decrease in micellar size. The impact of NaCl on the size and turbidity of the casein 
micelles could also be related to the release of small casein aggregates (dense regions) from 
casein micelles. This argument is developed further in section 3.1.2.2 of the present paper. $\Delta \rho_a$, 
defined as the contrast of the casein micelle, corresponds to the electron density of the micelle 
($\rho_{CM}$) relative to the electron density of the diffusible phase ($\rho_{DF}$), which consists of water 
containing ions (Ca, Na, Cl and Pi) from the NPC powder and/or the addition of NaCl and CaCl$_2$. 

19
The contribution of these diffusible ions to $\rho_{DF}$ ranged from 0.02 to 0.73 %, and thus, was not taken into account here and $\rho_{DF}$ was considered constant and equal to the electron density of water, (0.334 e$^{-}$Å$^{-3}$). Therefore, in the present study, $\Delta \rho_a$ directly reflected the variation of the electron density of the casein micelle. This value depended on the volume, the casein concentration and the CaP content of the casein micelles. $\Delta \rho_a$ varied between 0.010 and 0.018 e$^{-}$Å$^{-3}$ (Table 2), which is of same order of magnitude as the contrast of a native casein micelle described by Bouchoux et al., (2010) and Ingham et al., (2016). $\Delta \rho_a$ presented a negative correlation (-0.86) with $r_a$ (Fig. 2). It also positively and strongly correlated with concentrations of colloidal Ca and Pi (0.90 and 0.67, respectively) (Fig. 2). These results were consistent with an increase in the volume of the casein micelle due to a depletion in CaP, leading to a decrease in the electron density of the micelle.

3.1.2.2 Population B: the dense regions

The scattering caused by population B is characterized by $r_b$, the radius, and $n_b$, the number of dense regions per casein micelle. Both features showed variability within the full sample set, with RSD’s of 38.9 and 84.1 %, respectively (Table 2). PCA analysis (Fig 2.) indicates a strong and positive correlation (0.73) between $n_b$ and $\Gamma_{s/l}$, the ratio of small (< 50 nm in Feret’s diameter) to large (> 50 nm in Feret’s diameter) particles detected on cryo-TEM micrographs (section 2.5.5) (Fig. 6).

Large black and homogeneous strands crossing the cryo-TEM micrographs (Fig. 6) correspond to the grids that support the suspensions and large circular spots (e.g. suspension E) or merged spots (e.g. suspension D) were individual casein micelles and aggregates of casein micelles, respectively. Differences in the granularity of the background of the images were attributed to the presence of small-dissociated aggregates of the casein micelle that were present in the diffusible phase. This feature was directly quantified by the ratio $\Gamma_{s/l}$. Image analysis revealed that these small particles have diameter of around 5 nm (around the resolution limit of the TEM microscope) to 50 nm (data not shown), which was is agreement with the size range of the
population B modelled by SAXS measurements (from 6.1 nm to 21.9 nm in radius – Table 2).

This correlation between the increase in $n_b$ and $\Gamma_{b}$ suggests that the dense protein regions
detected by SAXS were not only present inside the micelle but could also be present outside the
casein micelle in the diffusible phase, although the composition of the particles outside the
casein micelle is not known.

A positive correlation of 0.49 was also observed between $n_b$ and both NaCl and diffusible Na
(Fig. 2), indicating that NaCl addition increased $n_b$. Conversely, enrichment of the suspensions
with CaCl$_2$ weakly but significantly, reduced $n_b$ (correlation coefficient of -0.39) (Fig. 7). Small
particles of around 20 nm in diameter were also observed by Müller-Buschbaum, Gebhardt,
Roth, Metwalli, & Doster (2007) using atomic force microscopy under similar conditions. These
authors reported a decrease of the number of small particles in the presence of increasing Ca,
consistent with observations here. To date, only the present study and that of Müller-Buschbaum
et al., (2007) report the presence of dissociated aggregates outside of the casein micelle based
on observations by microscopy and SAXS. It is reasonable to assume, however, that such small
particles would not sediment by ultracentrifugation and a parallel can be established between
our observations and the increasing presence of caseins in the supernatant obtained by
ultracentrifugation, defined as soluble caseins. Our observations are also consistent with
Famelart et al., (1999); Zhao & Corredig, (2015), who reported an increase in the concentration
of soluble casein after NaCl addition. Conversely, Famelart et al., (1999); Philippe et al., (2005);
Udabage et al., (2000) observed a decrease in soluble caseins when CaCl$_2$ was added. This
may be explained by considering the actions of these two ions. NaCl would be responsible for
the disruption and loosening of the internal structure of the casein micelle by neutralizing
negative charges on the casein chains, whereas CaCl$_2$ would either favor the creation of new
bonds between the phosphorylated caseins and/or prevent the dissociation of casein materials
by limiting the solubilization of CaP nanoclusters. Our finding of an increase in soluble casein
due to pH-induced dissociation of CaP nanoclusters is also consistent with reports by Dalgleish & Law, (1989); Le Graet & Gaucheron, (1999); and van Hooydonk et al., (1986).

In the present study, there was no significant correlation between pH and \( n_b \) (Fig. 2). There was however, a direct and strong effect of pH on \( n_{cCaP} \) (the number of population C scatterers per micelle, correlation of 0.81), which correlates negatively with \( n_b \) (- 0.45) (Fig. 2). CaCl\(_2\) addition had no significant impact on the size of the dense regions (Fig. 7), while NaCl caused their decrease, as shown by the correlation between \( r_b \) and the concentration of NaCl and therefore diffusible Na and Cl (- 0.50, - 0.53 and - 0.45, respectively) (Fig. 2). The decrease of population C also led to a decrease in size of the dense regions (correlation coefficient of 0.47 between \( n_{cCaP} \) and \( r_b \)) (Fig. 2). Finally, it is interesting to note that \( n_b \) and \( r_b \) were inversely correlated (- 0.59) (Fig. 2), meaning that the more dense the regions within the micelle, the smaller the size of these regions.

### 3.1.2.3 Population C: CaP nanoclusters or protein inhomogeneities

The mean radius of population C (\( r_c \)) ranged from 1.5 to 1.7 nm, for the set of suspensions studied with a RSD of 3.1 % (Table 2). This indicates that this population is of similar size in each suspension, regardless of the physico-chemical modifications applied. However, the number per casein micelle, \( n_{cCaP} \), varied from 75 to 244. Considering this population as CaP, the number is close, although lower than the values of CaP nanoclusters in a native casein micelle which has been calculated as ~285 by de Kruif, Huppertz, Urban & Petukhov, (2012). In our experiments, the suspension of NPC powder in water caused ~20 % of the colloidal CaP to dissolve (calculated based on the colloidal and diffusible contents of the CTRL sample) (Table 1). This reduction in CaP could explain the discrepancy with the data of de Kruif and colleagues. The number observed, however, is consistent with the findings of Bouchoux et al., (2010), who reported ~210 CaP nanoclusters per casein micelle.
If the population C scatterers were considered as protein inhomogeneities, their number per casein micelle varied from 140 to 453, which is about 17 times lower than the value found by Ingham et al., (2016) (Table 2). This difference may be due to the application of a simple sphere form factor in this study compared to the combination of a Sorensen form factor and hard sphere structure factor used by Ingham et al., (2016). Our approach was nevertheless sufficient to fit the SAXS pattern in the high q-region (Fig. 5). The properties of the C-scatterers i.e. constant size and varying number of C-scatterers per casein micelle indicated the disappearance of this population adhered to an “all-or-nothing” rule, where population C either “dissolved” completely upon modification of the environment or remained intact within the casein micelle.

According to the PCA analysis, \( n_{cCaP} \) correlated highly with pH (0.80), concentrations of colloidal Ca and Pi (0.86 and 0.80, respectively) and with concentration of diffusible Pi (- 0.84) (Fig. 2), indicating that the high q feature disappeared with the pH-induced dissolution of colloidal CaP. Similar pH induced changes in SAXS patterns of casein micelles were reported by Ingham et al., (2016) and Marchin et al., (2007). The disappearance of the high q feature was also observed when colloidal CaP was removed from the casein micelle by the use of chelating agents (EDTA or Na\(_3\)Cit) (Day et al., 2017; Ingham et al., 2016; Marchin et al., 2007; Piłkowski, Nicolai, & Durand, 2007). These correlations are therefore consistent with the assignment of this population as CaP nanoclusters, as suggested by Holt, de Kruijf, Tuinier, & Timmins, (2003).

The correlations between \( n_{cCaP} \) noted above are not inconsistent, however, with the hypothesis of Ingham et al. (2016) i.e. that this population of particles corresponds to protein inhomogeneities. In this case, protein inhomogeneities would be closely linked to micellar CaP. Dissolution of the CaP from the casein micelle would also induce the disruption of the protein inhomogeneities. Such an arrangement would be in agreement with the dual binding model of Horne, (1998), that considers CaP nanoclusters not only as crosslinking agents but also as charge neutralizers between casein chains that allow proteins to form more hydrophobic interactions. Further analysis in the form of cross comparisons between the evolution of the high
q SAXS shoulder and the specific intensity variation at $q = 0.035 \, \text{Å}^{-1}$ observed either in SANS or resonant X-ray scattering would bring interesting information about this CaP nanocluster / protein inhomogeneity dependency. Finally, $n_{\text{CaP}}$ correlated negatively with $n_b (-0.45)$ and with $\Gamma_{s/l} (-0.43)$, and correlated positively with $r_b (0.47)$ (Fig. 2). Whilst these correlations could arise from a number of structural changes within the micelle, they suggest that protein from the micelle is being released into the diffusible phase.

### 3.2 Coagulation properties of the modified casein micelles

The RCT and the maximum firmness of the gel, defined here as firmness, were determined for the 27 suspensions using data obtained from the firmness curves (Fig. 8). These two parameters were linked to the other colloidal and structural variables through PCA and multiple linear regression analyses.

#### 3.2.1 Rennet clotting time

The use of rennet made the 27 suspensions clot between 1.1 to 42.4 min (RSD of 113.5%). This large variability was first ascribed to the variation in pH, as there was a significant correlation between RCT and pH with a coefficient of 0.69 (Fig. 2). A consequence of the pH decrease was the solubilization of the micellar Ca and Pi (section 3.1.1). Therefore RCT also positively correlated with the concentration of colloidal Ca and Pi, and with diffusible Pi with coefficients of 0.49, 0.61 and -0.61, respectively (Fig. 2). A reduction in RCT as a result of a decrease in pH has been well described in the literature (Choi et al., 2007; Daviau et al., 2000; Karlsson et al., 2007; Zoon et al., 1989). This has been ascribed to the enhancement of enzyme activity and a decrease in the electrostatic repulsion between paracaseinates at low pH that favored aggregation.

A weaker but significant and positive correlation was also observed between diffusible Na and RCT (0.39) (Fig. 2), meaning that an increased concentration of this ion in the diffusible phase led to an increase in the RCT. Similar effects of added NaCl have been also reported by (Bulca et al., 2016; Famelart et al., 1999; Grufferty & Fox, 1985; Karlsson et al., 2007; Sbodio et al.,
2006; Zhao & Corredig, 2015; Zoon et al., 1989) and were attributed to a decrease in the rate of
the rennet enzyme due to the screening of charges on κ-casein and the enzyme.

The negative correlations of RCT with τ and rₐ (- 0.47 and – 0.53, respectively) (Fig. 2) indicated
that large micelles clotted more quickly than small ones, a finding that was opposite to those
made in the studies of Ekstrand, (1980) and Ford & Grandison, (1986). The increase of the
micellar size in the present study was a consequence of the pH decrease that caused the
micelles to swell and also potentially caused other structural changes. The correlation between
these two factors is probably a disguised effect of the pH and the effect of pH on both micelle
size and structure. In the two previous studies with opposing findings, the micelles were
fractionated according to their size by ultracentrifugation and did not undergo any physico-
chemical treatment, which could further explain these differences.

3.2.2 Firmness of the rennet gel formed within the first 60 min of coagulation

Although the firmness was highly variable, with an RSD of 34 % (Table 3) within the set of
suspensions, this variable did not correlate directly with the other colloidal and structural
characteristics of the casein micelle suspensions. Indeed, the firmness, concentrations of CaCl₂
and concentrations of diffusible Ca were the only well-projected variables as defined by the 3rd
and 4th dimensions of the PCA analysis (Fig. 4). Vectors representing concentrations of CaCl₂
and diffusible Ca were orthogonal to the vector for firmness, reflecting no correlations between
these variables. However, PCA estimates the first order correlations between variables, and
does not take into account the interactions that might exist between the different features.

A second statistical approach, multiple linear regression, was therefore used to assess the effect
of possible interactions between variables on the firmness of the rennet gels. Structural SAXS
features revealed to be excellent candidates for this complementary analysis for two reasons.
Firstly, these variables were unique and interesting descriptors reporting information at three
different structural levels: 1) the casein micelle, 40 to 60 nm in radius and previously described
as population A; 2) the dense regions, 6 to 22 nm in radius and previously described as
population B; 3) the CaP nanoclusters (or protein inhomogeneities), 1.5 to 1.7 nm in radius and
previously described as population C. Secondly, these variables correlated significantly with the
whole set of colloidal and mineral features determined by other techniques and constituted a
way to summarize the whole set of data. Therefore, \( r_a \), \( n_b \) and \( n_{CaP} \) were subject to linear
regression in order to define a predictive model of the firmness that considered the quadratic
effects and the second order interactions between these variables. For consistency, the values
of \( n_{CaP} \) used in this statistical analysis were determined considering population C as CaP
nanoclusters. This would make no difference in the properties of the model, as there was a
proportional relationship linking \( n_{CaP} \) for CaP nanoclusters and \( n_{PI} \) for protein inhomogeneities.
Based on the experimental design, the following model equation was established to predict the
maximum firmness of the rennet gels made from the suspensions:

\[
\text{Firmness} = 187.3 - 3.5 \times r_a - 1.2 \times n_b - 0.9 \times n_{CaP} + 0.02 \times (r_a \times n_c) \tag{9}
\]

where \( r_a \) was the radius of the casein micelle, \( n_b \) and \( n_{CaP} \) were the number of dense regions
and CaP nanoclusters per casein micelle, respectively. This model explained 68.5% of the
variability of the firmness. Statistical analysis also revealed that the interaction between \( r_a \) and \( n_c \)
\((r_a \times n_c)\) and the first order effect of \( n_b \) in this model were significant. These two contributions had
a statistical weight of 35.3% and 27% in the model, respectively.

Figure 9.A and B. displays each suspension in the first four dimensions of the PCA. The
suspensions are colored according to their firmness (orange for weak, red for medium, black for
strong). Figure 9.A represents the evolution of firmness within the set of samples, defined by
PCs 3 and 4 with the arrow pointing in the direction of increasing firmness (the same direction as
seen in Figure 4). The negative coefficient assigned to \( n_b \) in the firmness equation model
indicates that the release of protein from the casein micelles led to the formation of weaker gels.
This direct effect is well illustrated when reading Figure 9.A from the bottom right corner
As described earlier, the release of dense regions was favored by the addition of NaCl and limited by the addition of CaCl$_2$. The influence of NaCl on the firmness has been examined by several groups but conflicting results have been reported. Consistent with the results reported here, Famelart et al., (1999) and Grufferty & Fox (1985) did not observe any modification of the moduli or the curd tension of the rennet gels upon addition of NaCl. However, Bulca et al., (2016) and Zhao & Corredig, (2015) reported a decrease in the firmness or stiffness of the rennet gels. While Zoon et al., (1989) observed higher moduli for 8h aged gels supplemented in NaCl but lower moduli was observed only 1 h after the addition of rennet to the milk, corresponding to the experimental conditions of the present study. The negative effect of NaCl on the firmness of rennet gels is poorly explained in the literature. A competition between Na$^+$ and Ca$^{2+}$ has been proposed, as well as the screening of casein charges and in some cases, the solubilization of the micellar CaP (Grufferty & Fox, 1985; Zhao & Corredig, 2015). Based on the significant correlations that link $n_b$ and NaCl and the significant negative effect of $n_b$ on the firmness of the rennet gel, we would argue that the decrease in firmness observed with the addition of NaCl is due to the release of protein from the casein micelles. This explanation is similar to that of Gaygadzhiev, Massel, Alexander, & Corredig, (2012), who found that the addition of sodium caseinate to milk inhibited the aggregation of casein micelles. In this case, the soluble dense regions may adsorb on the surface of the paracaseinate formed after rennet addition, causing an increase in the steric repulsion between the rennet-altered particles which would limit the aggregation phenomenon and the formation of a firm network.

In contrast, there is a general consensus that CaCl$_2$ addition increases gel firmness (Deeth & Lewis, 2015; Sandra et al., 2012; Zoon et al., 1988). In this case, this improvement was attributed to the ability of Ca to preserve the number of CaP bonds between the caseins within the micelle but also within the casein gel network. It was demonstrated in section 3.1.2.2, that...
CaCl$_2$ addition limited the release of dense regions, which consequently had a positive impact on the firmness of the gels through the decrease of $n_b$.

The effect of the interaction between $r_a$ and $n_{CaP}$ appears to be more subtle. The direct effect of $r_a$ could be seen in figure 9.B from the upper right corner (suspension M - small casein micelle) to the bottom left corner (suspension A, D, O - large and swollen casein micelle). There were no direct and simple consequences of $r_a$ on the gel firmness. This can be illustrated by the medium size micelles (center of the graph, suspensions B, S, V, L for instance) that can either form weak, medium or strong gels. This result was quite consistent with the observation of Dalgleish, Brinkhuis, & Payens, (1981) who found no dependence between the size of micelles and their coagulation. Yet, several authors have reported that small casein micelles form stronger gels (Ford & Grandison, 1986; Logan et al., 2015; Niki, Kohyama, Sano, & Nishinari, 1994). However, in these studies, the micelles were in their native state because they were either isolated from milk by ultracentrifugation or were in milk samples that were selected from cows who produced small casein micelles. In contrast, the present study involved modifications to the environment that affected the size of the casein micelles.

The direct effect of $n_{CaP}$ can be observed in figure 9.B from the upper left corner (suspension B – poor in population C) to the bottom right corner (suspensions L, Y – rich in population C) but no direct dependency of gel firmness on $n_{CaP}$ was observed. This population may be either CaP nanoclusters or protein inhomogeneities. In both cases, the presence of such interactions, whether they are mineral-protein or protein-protein interactions, would create more crosslinking points resulting in a stronger gel network.

The literature reports a quadratic relationships between pH and rennet gel firmness, i.e. there is a parabolic increase in the gel firmness with pH up to a maximum value, followed by a parabolic decrease in firmness (Choi et al., 2007; Karlsson et al., 2007; Lucey, Johnson, & Horne, 2003; Zoon et al., 1989). A change in pH modifies the ionization of individual amino acids, either
increasing or decreasing the electrostatic interactions between casein chains. A simultaneous consequence is the solubilization of the micellar CaP at lower pH, which decreases the attractive interactions between casein molecules. The addition of a chelating agent to milk or casein suspension similarly leads to the solubilization of micellar CaP (de Kort et al., 2011; McCarthy et al., 2017; Mizuno & Lucey, 2005; Pitkowski et al., 2007) and causes a decrease in the firmness of the rennet gels (Choi et al., 2007).

At this point, it is important to remember that the variations of $r_a$ and $n_{cCaP}$ were not impacted by only one factor (size fractionation, or pH, or chelating agent addition) but by the simultaneous effect of three factors (pH, NaCl and CaCl$_2$). Therefore, the firmness modeling reveals that the interaction between those variables should be considered. The interaction between $r_a$ and $n_{cCaP}$ on the rennet gel firmness means that the firmness at a given $r_a$ depended on $n_{cCaP}$ and vice versa. As an example to illustrate this interaction, suspensions containing medium sized casein micelles (from 45 to 47 nm in radius) can lead to the formation of weaker gels if the amount of C-particles is too low (suspension B). Yet these micelles formed medium strength gels (suspensions P, E, C) if their C-particle content increased, or even stronger gels when those casein micelles are rich in C-particles (suspensions X, I, T). Similarly, small casein micelles that were rich in C-particles formed weaker gels (suspension W, K, M) but an increase in micelle size led to an increase in gel firmness (suspension H, V, T). Large casein micelles, depleted in C particles (suspension A, O, D) also formed weaker gels.

4 Conclusion

The multifactorial experimental design applied here allowed the effect of three variables: pH, NaCl and CaCl$_2$ on the colloidal and rennet coagulation properties of casein micelles to be assessed and ranked. Variations in pH had the strongest influence on the mineral balance of the casein micelles. A decrease in pH caused the colloidal CaP to solubilize. In contrast, NaCl addition had no impact on the mineral content of the casein micelle. The solubilization of
colloidal CaP caused the micelle to shrink while the addition of NaCl reduced the size of the casein micelle due to the release of small particles into the diffusible phase. The presence of such particles, around 25 nm in diameter, was strongly supported by experimental SAXS data combined with observations by cryo-TEM. These particles are believed to be part of the dense regions described by Bouchoux et al. (2010); here they were observed both inside and outside of the casein micelle. CaCl$_2$ had no effect on the casein micelle size but prevented disruption of the dense regions within the micelle. The SAXS data also revealed the presence of a high-q structural feature (the C-population), that were of a constant size (~1.6 nm in radius) but varied in number with different environmental conditions. Their presence was strongly dependent to the CaP content of the casein micelle. This feature could be assigned to the presence of either CaP nanoclusters or protein inhomogeneities.

The renneting properties were most impacted by a decrease in pH, causing a reduction in RCT, while NaCl supplementation led to longer RCT. Variations in gel firmness were more complex but could be explained by considering the interactions between the size of the casein micelle, the C-population and the dissociation of dense regions within the casein micelle.

Together the data presented here illustrate the complex interactions of three variables on the properties of casein micelles in a simple model system relevant to products such as purified casein micelles, fractionated from milk and prepared by diafiltration. This study provides a framework that links existing literature on the effect of single variables and improves our understanding of how the properties of casein micelles can be manipulated to control micelle size, structure and functional properties. It also provides a basis for future studies to examine casein micelles in more complex dairy product matrices and as a function of processing.

5 Acknowledgment

Acknowledgements are given to François Boué for the interesting discussions regarding the modeling of the SAXS data, to Arlette Leduc for assistance in the analysis of the minerals, to Mi
Xu for assistance with data collection at the Australian Synchrotron and the Biological Optical Microscopy Platform (BOMP) at the Bio21 Molecular Science and Biotechnology Institute for access to equipment.

Fundings: This work was supported by the French Dairy Interbranch Organization (CNIEL) for their financial support and by Chr Hansen through the loan of a Chymograph®. Sally Gras and Lydia Ong are supported by the Australian Research Council’s Industrial Transformation Research Program (ITRP) funding scheme (project number IH120100005). The ARC Dairy Innovation Hub is a collaboration between the University of Melbourne, The University of Queensland and Dairy Innovation Australia Ltd. The SAXS experiments were undertaken on the SAXS/WAXS beamline at the Australian Synchrotron, Victoria, Australia (Proposal No. AS163/SAXS/11019).

6 References

Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.

Aoki, T., Umeda, T., & Nakao, T. (1999). Effect of sodium chloride on the properties of casein micelles, Milchwissenschaft, 54(2), 91–93.

Bouchoux, A., Gésan-Guiziou, G., Pérez, J., & Cabane, B. (2010). How to squeeze a sponge: casein micelles under osmotic stress, a SAXS study. Biophysical Journal, 99(11), 3754–3762.

Bouchoux, A., Ventureira, J., Gésan-Guiziou, G., Garnier-Lambrouin, F., Qu, P., Pasquier, C., Pézennec, S., Schweins, R., Cabane, B. (2015). Structural heterogeneity of milk casein micelles: a SANS contrast variation study. Soft Matter, 11(2), 389–399.

Broyard, C., & Gaucheron, F. (2015). Modifications of structures and functions of caseins: a scientific and technological challenge. Dairy Science & Technology, 95(6), 831-862
Bulca, S., Wolfschoon-Pombo, A., & Kulozik, U. (2016). Rennet coagulation properties of UHT-treated phosphocasein dispersions as a function of casein and NaCl concentrations. *International Journal of Dairy Technology, 69*(3), 328–336.

Chen, Y.-Y., Peng, B., Yang, Q., Glew, M. D., Veith, P. D., Cross, K. J., Goldie, K.N., Chen, D., O’Brien-Simpson, N., Dashper, S.G., Reynolds, E. C. (2011). The outer membrane protein LptO is essential for the O-deacylation of LPS and the co-ordinated secretion and attachment of A-LPS and CTD proteins. *Molecular Microbiology, 79*(5), 1380–1401.

Choi, J., Horne, D. S., & Lucey, J. A. (2007). Effect of insoluble calcium concentration on rennet coagulation properties of milk. *Journal of Dairy Science, 90*(6), 2612–2623.

Dalgleish, D. G., Brinkhuis, J., & Payens, T. A. J. (1981). The coagulation of differently sized casein micelles by rennet. *European Journal of Biochemistry, 119*(2), 257–261.

Dalgleish, D. G., & Corredig, M. (2012). The Structure of the Casein Micelle of Milk and Its Changes During Processing. *Annual Review of Food Science and Technology, 3*(1), 449–467.

Dalgleish, D. G., & Law, A. J. R. (1989). pH-Induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release. *Journal of Dairy Research, 56*(05), 727.

Daviau, C., Famelart, M.-H., Pierre, A., Goudedranche, H., & Maubois, J.-L. (2000). Rennet coagulation of skim milk and curd drainage: effect of pH, casein concentration, ionic strength and heat treatment. *Le Lait, 80*(4), 397–415.

Day, L., Raynes, J. K., Leis, A., Liu, L. H., & Williams, R. P. W. (2017). Probing the internal and external micelle structures of differently sized casein micelles from individual cows milk by dynamic light and small-angle X-ray scattering. *Food Hydrocolloids, 69*, 150–163.

de Kort, E., Minor, M., Snoeren, T., van Hooijdonk, T., & van der Linden, E. (2011). Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions. *International Dairy Journal, 21*(12), 907–913.

de Kruif, C. G. (1999). Casein micelle interactions. *International Dairy Journal, 9*(3–6), 183–188.
de Kruif, C. G. (2014). The structure of casein micelles: a review of small-angle scattering data. *Journal of Applied Crystallography, 47*(5), 1479–1489.

de Kruif, C. G., & Zhulina, E. B. (1996). K-casein as a polyelectrolyte brush on the surface of casein micelles. *Colloids and Surfaces A: Physicochemical and Engineering Aspects, 117*(1–2), 151–159.

Deeth, H. C., & Lewis, M. J. (2015). Practical consequences of calcium addition to and removal from milk and milk products. *International Journal of Dairy Technology, 68*(1), 1–10.

Ekstrand, B., Larsson-Raznikiewicz, M., Perlmann, C. (1980). Casein micelle size and composition related to the enzymatic coagulation process. *Biochimica et Biophysica Acta-General Subjects, 630*(3), 361–366.

Famelart, M.-H., Le Graet, Y., & Raulot, K. (1999). Casein micelle dispersions into water, NaCl and CaCl2: physicochemical characteristics of micelles and rennet coagulation. *International Dairy Journal, 9*, 293–297.

Famelart, M.-H., Lepesant, F., Gaucheron, F., Le Graet, Y., & Schuck, P. (1996). pH-Induced physicochemical modifications of native phosphocaseinate suspensions: Influence of aqueous phase. *Le Lait, 76*(5), 445–460.

Ford, G. D., & Grandison, A. S. (1986). Effect of size of casein micelles on coagulation properties of skim milk. *Journal of Dairy Research, 53*(01), 129.

Gaucheron, F. (2004). *Minéraux et produits laitiers*. Paris: Technique & Documentation.

Gaygadzhiev, Z., Massel, V., Alexander, M., & Corredig, M. (2012). Addition of sodium caseinate to skim milk inhibits rennet-induced aggregation of casein micelles. *Food Hydrocolloids, 26*(2), 405–411.

Grufferty, M. B., & Fox, P. F. (1985). Effect of added NaCl on some physicochemical properties of milk, *Irish Journal of Food Science and Technology, 9*(1), 1–9.
Guinee, T. P., Gorry, C. B., O'Callaghan, D. J., O'Kennedy, B. T., O'Brie, N., Fenelon, M. A. (1997). The effects of composition and some processing treatments on the rennet coagulation properties of milk. *International Journal of Dairy Technology. 50*(3), 99-106

Holt, C., Carver, J. A., Ecroyd, H., & Thorn, D. C. (2013). Invited review: Caseins and the casein micelle: Their biological functions, structures, and behavior in foods. *Journal of Dairy Science, 96*(10), 6127–6146.

Holt, C., de Kruiif, C. G., Tuinier, R., & Timmins, P. A. (2003). Substructure of bovine casein micelles by small-angle X-ray and neutron scattering. *Colloids and Surfaces A: Physicochemical and Engineering Aspects, 213*(2–3), 275–284.

Holt, C., Timmins, P. A., Errington, N., & Leaver, J. (1998). A core-shell model of calcium phosphate nanoclusters stabilized by beta-casein phosphopeptides, derived from sedimentation equilibrium and small-angle X-ray and neutron-scattering measurements. *European Journal of Biochemistry, 252*(1), 73–78.

Holt, C. (2016). Casein and casein micelle structures, functions and diversity in 20 species. *International Dairy Journal, 60*, 2–13.

Holt, C., & Horne, D. S. (1996). The hairy casein micelle: Evolution of the concept and its implications for dairy technology. *Nederlands Melk En Zuiveltijdschrift, 50*(2), 85–111.

Horne, D. S. (1998). Casein interactions: casting light on the black boxes, the structure in dairy products. *International Dairy Journal, 8*(3), 171–177.

Horne, D. S. (2017). A balanced view of casein interactions. *Current Opinion in Colloid & Interface Science, 28*, 74–86.

Ingham, B., Erlangga, G. D., Smialowska, A., Kirby, N. M., Wang, C., Matia-Merino, L., Haverkamp, R.G., Carr, A. J. (2015). Solving the mystery of the internal structure of casein micelles. *Soft Matter, 11*(14), 2723–2725.

International Dairy Federation. (2014). Milk and milk products - Determination of nitrogen content - Part 1: Kjeldahl principle and crude protein calculation.
Ingham, B., Smialowska, A., Erlangga, G. D., Matia-Merino, L., Kirby, N. M., Wang, C.,

Haverkamp, R. G., Carr, A. J. (2016). Revisiting the interpretation of casein micelle SAXS data. *Soft Matter*, 12(33), 6937–6953.

Jolliffe I. (2011) *Principal Component Analysis*. Berlin: Springer

Karlsson, A. O., Ipsen, R., & Ardö, Y. (2007). Influence of pH and NaCl on rheological properties of rennet-induced casein gels made from UF concentrated skim milk. *International Dairy Journal*, 17(9), 1053–1062.

Karlsson, A. O., Ipsen, R., Schrader, K., & Ardö, Y. (2005). Relationship between physical properties of casein micelles and rheology of skim milk concentrate. *Journal of Dairy Science*, 88(11), 3784–3797.

Lazzaro, F., Saint-Jalmes, A., Violleau, F., Lopez, C., Gaucher-Delmas, M., Madec, M.-N., Beaucher, E., Gaucheron, F. (2017). Gradual disaggregation of the casein micelle improves its emulsifying capacity and decreases the stability of dairy emulsions. *Food Hydrocolloids*, 63, 189–200.

Le Graet, Y., & Brulé, G. (1993). Les équilibres minéraux du lait : influence du pH et de la force ionique, *Le Lait*, 73(1), 51–60.

Le Graet, Y., & Gaucheron, F. (1999). pH-induced solubilization of minerals from casein micelles: influence of casein concentration and ionic strength, *Journal of Dairy Research*, 66(2), 215–224.

Le Ray, C., Maubois, J.-L., Gaucheron, F., Brulé, G., Pronnier, P., & Garnier, F. (1998). Heat stability of reconstituted casein micelle dispersions: changes induced by salt addition. *Le Lait*, 78(4), 375–390.

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. *Journal of Statistical Software*, 25(1).
Logan, A., Leis, A., Day, L., Øiseth, S. K., Puvanenthiran, A., & Augustin, M. A. (2015). Rennet gelation properties of milk: Influence of natural variation in milk fat globule size and casein micelle size. *International Dairy Journal, 46*, 71–77.

Lucey, J. A. (2002). Formation and physical properties of milk protein gels. *Journal of Dairy Science, 85*(2), 281–294.

Lucey, J. A., Johnson, M. E., & Horne, D. S. (2003). Invited review: Perspectives on the basis of the rheology and texture properties of cheese. *Journal of Dairy Science, 86*(9), 2725–2743.

Marchin, S., Putaux, J.-L., Pignon, F., & Léonil, J. (2007). Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering. *The Journal of Chemical Physics, 126*(4), 045101.

McCarthy, N. A., Power, O., Wijayanti, H. B., Kelly, P. M., Mao, L., & Fenelon, M. A. (2017). Effects of calcium chelating agents on the solubility of milk protein concentrate. *International Journal of Dairy Technology, 70*(3), 415–423.

Mishra, R. I., Govindasamy-Lucey, S. E., Lucey, J. A. (2005). Rheological properties of rennet-induced gels during the coagulation and cutting process: impact of processing conditions. *Journal of texture studies. 36*(2), 190-212.

Mizuno, R., & Lucey, J. A. (2005). Effects of emulsifying salts on the turbidity and calcium-phosphate–protein interactions in casein micelles. *Journal of Dairy Science, 88*(9), 3070–3078.

Moitz, C., Menzel, A., Schurtenberger, P., & Stradner, A. (2011). The pH induced Sol–Gel transition in skim milk revisited. A detailed study using time-resolved light and X-ray scattering experiments. *Langmuir, 27*(6), 2195–2203.

Müller-Buschbaum, P., Gebhardt, R., Roth, S. V., Metwalli, E., & Doster, W. (2007). Effect of calcium concentration on the structure of casein micelles in thin films. *Biophysical Journal, 93*(3), 960–968.
Niki, R., Kohyama, K., Sano, Y., & Nishinari, K. (1994). Rheological study on the rennet-induced gelation of casein micelles with different sizes. *Polymer Gels and Networks, 2*(2), 105–118.

Ouanézar, M., Guyomarc'h, F., & Bouchoux, A. (2012). AFM imaging of milk casein micelles: Evidence for structural rearrangement upon acidification. *Langmuir, 28*(11), 4915–4919.

Philippe, M, Le Graet, Y., & Gaucheron, F. (2005). The effects of different cations on the physicochemical characteristics of casein micelles. *Food Chemistry, 90*(4), 673–683.

Philippe, Marine, Gaucheron, F., Le Graet, Y., Michel, F., & Garem, A. (2003). Physicochemical characterization of calcium-supplemented skim milk. *Le Lait, 83*(1), 45–59.

Pierre, A., Fauquant, J., Le Graet, Y., & Maubois, J.-L. (1992). Préparation de phosphocaséinate natif par microfiltration sur membrane. *Le Lait, 72* (5), 461–474.

Pignon, F., Belina, G., Narayanan, T., Paubel, X., Magnin, A., & Gésan-Guiziou, G. (2004). Structure and rheological behavior of casein micelle suspensions during ultrafiltration process. *The Journal of Chemical Physics, 121*(16), 8138-8146.

Pitkowski, A., Nicolai, T., & Durand, D. (2007). Scattering and turbidity study of the dissociation of the casein by calcium chelation. *Biomacromolecules, 9*, 369–375.

Priyashantha, H., Lundh, Å., Höjer, A., Hetta, M., Johansson, M., and Langton, M. (2019). Interactive effects of casein micelle size and calcium and citrate content on rennet-induced coagulation in bovine milk. *Journal of Texture Studies*, 1-12.

Sandra, S., Ho, M., Alexander, M., & Corredig, M. (2012). Effect of soluble calcium on the renneting properties of casein micelles as measured by rheology and diffusing wave spectroscopy. *Journal of Dairy Science, 95*(1), 75–82.

Sbodio, O. A., Tercero, E. J., Coutaz, R., & Revelli, G. R. (2006). Effect of rennet and sodium chloride concentration on milk coagulation properties. *Ciencia Y Tecnologia Alimentaria, 5*(3), 182–188.

Schmidt, D. G. (1982). *Developments in Dairy Chemistry: 1. Proteins* (P. F. Fox). London: Applied Science Publishers.
Schuck, P., Piot, M., Méjean, S., Le Graet, Y., Fauquant, J., Brulé, G., & Maubois, J. L. (1994). Déshydratation par atomisation de phosphocaséinate natif obtenu par microfiltration sur membrane. *Le Lait*, 74(5), 375–388.

Schuck, P., Dolivet, A., Jeantet, R., (2012). Analytical Methods for Food and Dairy Powders. Oxford: John Wiley & Sons.

Schulz, G. V. (1935). Highly polymerized compounds. CXXII. The relation between reaction rate and composition of the reaction product in macropolymerization processes. *Zeitschrift für Physikalische Chemie*, 30, 379–398.

Shukla, A., Narayanan, T., & Zanchi, D. (2009). Structure of casein micelles and their complexation with tannins. *Soft Matter*, 5(15), 2884.

Silva, N. N., Piot, M., de Carvalho, A. F., Violleau, F., Fameau, A.-L., & Gaucheron, F. (2013). pH-induced demineralization of casein micelles modifies their physico-chemical and foaming properties. *Food Hydrocolloids*, 32(2), 322–330.

Thorn, D. C., Meehan, S., Sunde, M., Rekas, A., Gras, S. L., MacPhee, C. E., Dobson, C. M., Wilson, M. R., Carver, J. A. (2005). Amyloid fibril formation by bovine milk κ-Casein and Its inhibition by the molecular haperones αs- and β-Casein. *Biochemistry*, 44(51), 17027–17036.

Tran Le, T., Saveyn, P., Hoa, H. D., & Van der Meeren, P. (2008). Determination of heat-induced effects on the particle size distribution of casein micelles by dynamic light scattering and nanoparticle tracking analysis. *International Dairy Journal*, 18(12), 1090–1096.

Tuinier, R., & de Kruijf, C. G. (2002). Stability of casein micelles in milk. *The Journal of Chemical Physics*, 117(3), 1290–1295.

Udabage, P., McKinnon, I. R., & Augustin, M. A. (2000). Mineral and casein equilibria in milk: effects of added salts and calcium-chelating agents, *Journal of Dairy Research*, 67(3), 361–370.

Udabage, P., McKinnon, I. R., Augustin, M. A. (2001). Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk. *Journal of Dairy Science*, 84(7), 1569-75.
van Hooydonk, A. C. M., Boerrigter, I. J., & Hagedoorn, H. G. (1986). pH-induced physico-chemical changes of casein micelles in milk and their effect on renneting. 2. Effect of pH on renneting of milk, *Netherland Milk and Dairy Journal*, 40, 297–313.

Walstra, P. (1999). Casein sub-micelles: do they exist? *International Dairy Journal*, 9(3–6), 189–192.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. *Chemometrics and Intelligent Laboratory Systems*, 2(1–3), 37–52.

Zhao, Z., & Corredig, M. (2015). Changes in the physico-chemical properties of casein micelles in the presence of sodium chloride in untreated and concentrated milk protein. *Dairy Science & Technology*, 95(1), 87–99.

Zoon, P., van Vliet, T., & Walstra, P. (1988). Rheological properties of rennet-induced skim milk gels. 3. The effect of calcium and phosphate, *Netherland Milk and Dairy Journal*, 42, 295–312.

Zoon, P., van Vliet, T., & Walstra, P. (1989). Rheological properties of rennet-induced skim milk gels. 4. The effect of pH and NaCl, *Netherland Milk and Dairy Journal*, 43, 17–34.
|          | Diffusible Ca (mmol kg⁻¹) | Colloidal Ca (mmol kg⁻¹) | Diffusible Na (mmol kg⁻¹) | Colloidal Na (mmol kg⁻¹) | Diffusible Cl (mmol kg⁻¹) | Colloidal Cl (mmol kg⁻¹) | Diffusible Pi (mmol kg⁻¹) | Colloidal Pi (mmol kg⁻¹) |
|----------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|
| Average  | 12.4                      | 14.8                     | 64.8                      | 0.2                      | 67.4                      | 0.5                      | 2.4                       | 4.6                      |
| SD       | 6.0                       | 4.3                      | 45.5                      | 0.5                      | 45.7                      | 1.4                      | 1.3                       | 1.3                      |
| RSD (%)  | 48.2                      | 29.2                     | 70.3                      | 300.9                    | 67.8                      | 287.6                    | 55.1                      | 28.1                     |
| minimum  | 2.1                       | 3.6                      | 6.7                       | 0.0                      | 0.0                       | 0.0                      | 0.0                       | 1.9                      |
| maximum  | 22.9                      | 20.2                     | 135.6                     | 2.2                      | 138.0                     | 6.2                      | 5.0                       | 7.2                      |

Full experimental plan - 27 suspensions

|          | Diffusible Ca (mmol kg⁻¹) | Colloidal Ca (mmol kg⁻¹) | Diffusible Na (mmol kg⁻¹) | Colloidal Na (mmol kg⁻¹) | Diffusible Cl (mmol kg⁻¹) | Colloidal Cl (mmol kg⁻¹) | Diffusible Pi (mmol kg⁻¹) | Colloidal Pi (mmol kg⁻¹) |
|----------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|
| A        | 9.6                       | 8.2                      | 8.9                       | 0.0                      | 2.2                       | 1.6                      | 3.8                       | 3.3                      |
| B        | 11.0                      | 8.8                      | 114.4                     | 0.0                      | 102.7                     | 6.2                      | 4.8                       | 1.9                      |
| D        | 20.1                      | 12.0                     | 24.0                      | 0.0                      | 26.9                      | 3.3                      | 2.9                       | 3.5                      |
| E        | 22.8                      | 12.3                     | 121.7                     | 0.0                      | 130.7                     | 0.0                      | 3.4                       | 3.5                      |
| J        | 3.5                       | 15.8                     | 120.2                     | 0.0                      | 94.4                      | 0.0                      | 1.7                       | 4.9                      |
| L        | 14.7                      | 20.2                     | 10.5                      | 0.0                      | 17.9                      | 1.8                      | 0.8                       | 5.4                      |
| M        | 16.3                      | 18.8                     | 135.6                     | 0.0                      | 129.4                     | 0.0                      | 0.0                       | 6.9                      |
| T        | 11.5                      | 15.8                     | 65.4                      | 0.0                      | 69.2                      | 0.0                      | 2.3                       | 5.0                      |
| CTRL     | 2.1                       | 18.0                     | 6.7                       | 0.8                      | 0.0                       | 0.0                      | 1.6                       | 4.9                      |

Selected individual suspensions

|          | Diffusible Ca (mmol kg⁻¹) | Colloidal Ca (mmol kg⁻¹) | Diffusible Na (mmol kg⁻¹) | Colloidal Na (mmol kg⁻¹) | Diffusible Cl (mmol kg⁻¹) | Colloidal Cl (mmol kg⁻¹) | Diffusible Pi (mmol kg⁻¹) | Colloidal Pi (mmol kg⁻¹) |
|----------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------|
| A        | 9.6                       | 8.2                      | 8.9                       | 0.0                      | 2.2                       | 1.6                      | 3.8                       | 3.3                      |
| B        | 11.0                      | 8.8                      | 114.4                     | 0.0                      | 102.7                     | 6.2                      | 4.8                       | 1.9                      |
| D        | 20.1                      | 12.0                     | 24.0                      | 0.0                      | 26.9                      | 3.3                      | 2.9                       | 3.5                      |
| E        | 22.8                      | 12.3                     | 121.7                     | 0.0                      | 130.7                     | 0.0                      | 3.4                       | 3.5                      |
| J        | 3.5                       | 15.8                     | 120.2                     | 0.0                      | 94.4                      | 0.0                      | 1.7                       | 4.9                      |
| L        | 14.7                      | 20.2                     | 10.5                      | 0.0                      | 17.9                      | 1.8                      | 0.8                       | 5.4                      |
| M        | 16.3                      | 18.8                     | 135.6                     | 0.0                      | 129.4                     | 0.0                      | 0.0                       | 6.9                      |
| T        | 11.5                      | 15.8                     | 65.4                      | 0.0                      | 69.2                      | 0.0                      | 2.3                       | 5.0                      |
| CTRL     | 2.1                       | 18.0                     | 6.7                       | 0.8                      | 0.0                       | 0.0                      | 1.6                       | 4.9                      |
| Turbidimetry | NTA | Saxs | Cryo TEM |
|-------------|-----|------|----------|
| $\tau$ (cm$^{-1}$) | $r_{\text{NTA}}$ (nm) | $\Delta$D$_{\text{NTA}}$ (e$^{-}$/Å$^{3}$) | $r_{\text{a}}$ (nm) | $r_{\text{b}}$ (nm) | $r_{\text{c}}$ (nm) | $n_{\text{b}}$ | $n_{\text{LCP}}$ | $n_{\text{MNI}}$ | $r_{\text{S/A}}$ |
| Average | 21.2 | 61.0 | 0.015 | 45.6 | 10.7 | 1.6 | 3.3 | 171.5 | 318.9 | 8.5 |
| SD | 6.8 | 5.5 | 0.002 | 4.2 | 4.2 | 0.0 | 2.8 | 54.0 | 100.4 | 7.8 |
| RSD (%) | 32.1 | 9.0 | 13.5 | 9.3 | 38.9 | 3.1 | 84.1 | 31.5 | 31.5 | 91.0 |
| Minimum | 12.6 | 53.8 | 0.010 | 41.5 | 6.1 | 1.5 | 0.2 | 75.3 | 140.0 | 0.9 |
| Maximum | 43.8 | 74.8 | 0.018 | 58.1 | 21.9 | 1.7 | 13.3 | 243.7 | 453.3 | 35.6 |

Full experimental design - 27 suspensions

Selected individual suspensions

| | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | CTRL |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $\tau$ (cm$^{-1}$) | 21.4 | 14.6 | 43.8 | 18.0 | 14.0 | 13.8 | 12.6 | 24.5 | 15.7 | 57.0 | 0.018 | 41.5 | 10.1 | 1.5 | 4.0 | 228.0 | 424.1 | 4.6 |
| $r_{\text{NTA}}$ (nm) | 70.8 | 53.8 | 73.4 | 59.6 | 59.3 | 59.8 | 61.8 | 62.1 | 57.0 | 0.018 | 41.5 | 10.1 | 1.5 | 4.0 | 228.0 | 424.1 | 4.6 |
| $\Delta$D$_{\text{NTA}}$ (e$^{-}$/Å$^{3}$) | 0.011 | 0.012 | 0.012 | 0.014 | 0.016 | 0.018 | 0.017 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 |
| $r_{\text{a}}$ (nm) | 54.7 | 45.5 | 54.5 | 46.4 | 41.8 | 43.5 | 42.3 | 44.3 | 41.5 | 10.1 | 41.5 | 10.1 | 1.5 | 4.0 | 228.0 | 424.1 | 4.6 |
| $r_{\text{b}}$ (nm) | 7.6 | 6.9 | 6.1 | 7.6 | 8.7 | 12.8 | 8.3 | 12.2 | 10.1 | 1.5 | 10.1 | 1.5 | 1.5 | 4.0 | 228.0 | 424.1 | 4.6 |
| $r_{\text{c}}$ (nm) | 1.7 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
| $n_{\text{b}}$ | 2.1 | 13.3 | 13.3 | 4.0 | 6.6 | 1.2 | 5.1 | 1.3 | 4.0 | 10.1 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
| $n_{\text{LCP}}$ | 87.0 | 75.3 | 127.4 | 121.6 | 174.2 | 231.7 | 202.6 | 203.1 | 228.0 | 424.1 | 228.0 | 424.1 | 228.0 | 424.1 | 228.0 | 424.1 | 228.0 | 424.1 | 228.0 | 424.1 | 228.0 | 424.1 |
| $n_{\text{MNI}}$ | 161.9 | 140.0 | 236.9 | 226.2 | 376.9 | 431.0 | 376.9 | 377.8 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 | 424.1 |
| $r_{\text{S/A}}$ | 6.7 | 35.6 | 35.6 | 6.2 | 16.8 | 6.7 | 1.7 | 6.0 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 | 4.6 |
|                  | Firmness (A.U.) | RCT (min) |
|------------------|-----------------|-----------|
| full experimental design - 27 suspensions |                 |           |
| Average          | 14.9            | 8.6       |
| SD               | 5.1             | 9.8       |
| RSD (%)          | 34.0            | 113.5     |
| minimum          | 3.0             | 1.1       |
| maximum          | 20.9            | 42.4      |
| Selected individual suspensions |       |         |
| A                | 3.3             | 1.4       |
| B                | 11.5            | 2.9       |
| D                | 14.0            | 1.4       |
| E                | 16.2            | 2.9       |
| J                | 8.0             | 24.6      |
| L                | 17.5            | 11.2      |
| M                | 3.0             | 42.4      |
| T                | 20.9            | 3.4       |
| CTRL             | 13.9            | 11.0      |
Table 1: Distribution of the mineral salts in the suspensions. Colloidal concentrations were determined by subtracting the concentration of diffusible ions from the concentration of total ions. Average, standard deviation (SD), relative standard deviation (RSD), minimum and maximum values were determined on the complete set of 27 samples.

|                | Diffusible Ca (mmol kg\(^{-1}\)) | Colloidal Ca (mmol kg\(^{-1}\)) | Diffusible Na (mmol kg\(^{-1}\)) | Colloidal Na (mmol kg\(^{-1}\)) | Diffusible Cl (mmol kg\(^{-1}\)) | Colloidal Cl (mmol kg\(^{-1}\)) | Diffusible Pi (mmol kg\(^{-1}\)) | Colloidal Pi (mmol kg\(^{-1}\)) |
|----------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Average        | 12.4                             | 14.8                             | 64.8                             | 0.2                              | 67.4                             | 0.5                              | 2.4                              | 4.6                              |
| SD             | 6.0                              | 4.3                              | 45.5                             | 0.5                              | 45.7                             | 1.4                              | 1.3                              | 1.3                              |
| RSD (%)        | 48.2                             | 29.2                             | 70.3                             | 300.9                            | 67.8                             | 287.6                            | 55.1                             | 28.1                             |
| Minimum        | 2.1                              | 3.6                              | 6.7                              | 0.0                              | 0.0                              | 0.0                              | 0.0                              | 1.9                              |
| Maximum        | 22.9                             | 20.2                             | 135.6                            | 2.2                              | 138.0                            | 6.2                              | 5.0                              | 7.2                              |

Selected individual suspensions

|    | Diffusible Na | Colloidal Na | Diffusible Cl | Colloidal Cl | Diffusible Pi | Colloidal Pi |
|----|---------------|--------------|---------------|--------------|---------------|--------------|
| A  | 9.6           | 8.2          | 8.9           | 0.0          | 2.2           | 1.6          | 3.8               | 3.3               |
| B  | 11.0          | 8.8          | 114.4         | 0.0          | 102.7         | 6.2          | 4.8               | 1.9               |
| D  | 20.1          | 12.0         | 24.0          | 0.0          | 26.9          | 3.3          | 2.9               | 3.5               |
| E  | 22.8          | 12.3         | 121.7         | 0.0          | 130.7         | 0.0          | 3.4               | 3.5               |
| J  | 3.5           | 15.8         | 120.2         | 0.0          | 94.4          | 0.0          | 1.7               | 4.9               |
| L  | 14.7          | 20.2         | 10.5          | 0.0          | 17.9          | 1.8          | 0.8               | 5.4               |
| M  | 16.3          | 18.8         | 135.6         | 0.0          | 129.4         | 0.0          | 0.0               | 6.9               |
| T  | 11.5          | 15.8         | 65.4          | 0.0          | 69.2          | 0.0          | 2.3               | 5.0               |
| CTRL| 2.1           | 18.0         | 6.7           | 0.8          | 0.0           | 0.0          | 1.6               | 4.9               |
Table 2: Size-related parameters determined by different analytical methods including Turbidimetry, NTA, SAXS and Cryo-TEM. Average, standard deviation (SD), relative standard deviation (RSD), minimum and maximum values were determined on the complete set of 27 samples. ncCaP and ncPI correspond to the number of C scatterers per casein micelle, in the case where these scatterers are considered as CaP nanoclusters or protein Inhomogeneities, respectively.

|                | Turbidimetry | NTA  | SAXS  | Cryo TEM |
|----------------|--------------|------|-------|----------|
|                | τ (cm⁻¹)     | rNTA (nm) | Δρₚ (e⁻·A⁻³) | rₐ (nm) | rₐ (nm) | rₐ (nm) | nₑ | nₑCaP | nₑPI | Γₛ/l |
| **Average**    | 21.2         | 61.0  | 0.015 | 45.6    | 10.7    | 1.6    | 3.3 | 171.5 | 318.9 | 8.5  |
| **SD**         | 6.8          | 5.5   | 0.002 | 4.2     | 4.2     | 0.0    | 2.8 | 54.0  | 100.4 | 7.8  |
| **RSD (%)**    | 32.1         | 9.0   | 13.5  | 9.3     | 38.9    | 3.1    | 84.1 | 31.5  | 31.5  | 91.0 |
| **minimum**    | 12.6         | 53.8  | 0.010 | 41.5    | 6.1     | 1.5    | 0.2 | 75.3  | 140.0 | 0.9  |
| **maximum**    | 43.8         | 74.8  | 0.018 | 58.1    | 21.9    | 1.7    | 13.3 | 243.7 | 453.3 | 35.6 |

Full experimental design - 27 suspensions

|                | Turbidimetry | NTA  | SAXS  | Cryo TEM |
|----------------|--------------|------|-------|----------|
| A              | 21.4         | 70.8 | 0.011 | 54.7    | 7.6    | 1.7    | 2.1 | 87.0  | 161.9 | 6.7  |
| B              | 14.6         | 53.8 | 0.012 | 45.5    | 6.9    | 1.6    | 13.3 | 75.3  | 140.0 | 35.6 |
| D              | 43.8         | 73.4 | 0.012 | 54.5    | 6.1    | 1.6    | 1.6 | 127.4 | 236.9 | 3.0  |
| E              | 18.0         | 59.6 | 0.014 | 46.4    | 7.6    | 1.6    | 4.0 | 121.6 | 226.2 | 6.2  |
| J              | 14.0         | 59.3 | 0.016 | 41.8    | 8.7    | 1.6    | 6.6 | 174.2 | 324.0 | 16.8 |
| L              | 13.8         | 59.8 | 0.018 | 43.5    | 12.8   | 1.6    | 1.2 | 231.7 | 431.0 | 6.7  |
| M              | 12.6         | 61.8 | 0.017 | 42.3    | 8.3    | 1.6    | 5.1 | 202.6 | 376.9 | 1.7  |
| T              | 24.5         | 62.1 | 0.017 | 44.3    | 12.2   | 1.6    | 1.3 | 203.1 | 377.8 | 6.0  |
| CTRL           | 15.7         | 57.0 | 0.018 | 41.5    | 10.1   | 1.5    | 4.0 | 228.0 | 424.1 | 4.6  |
Table 3: Rennet coagulation properties of Firmness and Rennet Coagulation Time (RCT). Average, standard deviation (SD), relative standard deviation (RSD), minimum and maximum values were determined on the complete set of 27 samples.

|                     | Firmness (A.U.) | RCT (min) |
|---------------------|-----------------|-----------|
| full experimental design - 27 suspensions |                 |           |
| Average             | 14.9            | 8.6       |
| SD                  | 5.1             | 9.8       |
| RSD (%)             | 34.0            | 113.5     |
| minimum             | 3.0             | 1.1       |
| maximum             | 20.9            | 42.4      |
| Selected individual suspensions |           |           |
| A                   | 3.3             | 1.4       |
| B                   | 11.5            | 2.9       |
| D                   | 14.0            | 1.4       |
| E                   | 16.2            | 2.9       |
| J                   | 8.0             | 24.6      |
| L                   | 17.5            | 11.2      |
| M                   | 3.0             | 42.4      |
| T                   | 20.9            | 3.4       |
| CTRL                | 13.9            | 11.0      |
