Fingerprint of Galactic Loop I on polarized microwave foregrounds

Hao Liu

1 The Niels Bohr Institute & Discovery Center, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
2 Key laboratory of Particle and Astrophysics, Institute of High Energy Physics, CAS, 19B YuQuan Road, Beijing, China
e-mail: liuhao@nbi.dk
June 19, 2018

ABSTRACT

Context: Currently, detection of the primordial gravitational waves by the B-mode of Cosmic Microwave Background (CMB) is primarily limited by our knowledge of the polarized microwave foreground emissions. Thus improvements of the foreground analysis are necessary. As revealed in Liu et al. (2018), the E-mode and B-mode of the polarized foreground have noticeable different properties, both in morphology and frequency spectrum, suggesting that they arise from different physical processes, and need to be studied separately.

Aims: I will study the polarized emission from Galactic loops, especially Loop I, and mainly focus on the following issues: Does it contribute predominantly to the E-mode or B-mode? In which frequency bands and in which sky regions can it be identified?

Methods: Based on a well known result about the magnetic field alignment in supernova explosions, a theoretical expectation is established that the loop polarizations should be predominantly E-mode. In particular, the expected polarization angles of Loop I are compared with those from the real microwave band data of WMAP and Planck.

Results and conclusions: The comparison between model and data shows remarkable consistency between data and expectation at all bands and for a large area of the sky. This result suggests that the polarized emission of Galactic Loop I is a major polarized component in all microwave bands from 23 to 353 GHz, and a considerable part of the polarized foreground is likely originated from a local bubble associated with Loop I, instead of the far more distant Galactic emission. The result also provides a possible way to explain the reported E-to-B excess (Planck Collaboration et al. 2016b) by contribution of the loops. Finally, this work may also provide the first geometrical evidence that the Earth was hit by a supernova explosion.

1. Introduction

Galactic Loop I is a large circular structure on the north Galactic sky whose brightest part is also referred to as the north polar spur (NPS) (Berkhuijsen et al. 1971, Salter 1983). It shines from the radio band to the γ-ray band (Haslam et al. 1981, Haslam et al. 1981), including microwaves (Bennett et al. 2013, Planck Collaboration et al. 2016a), and possibly even affects the cosmic rays (Bhat et al. 1985). The origin of this structure is suggested to be an old supernova (Berkhuijsen et al. 1971, Salter 1983, Wolk 2007) that created its own local bubble which happens to be in close contact with the Orion local bubble (Eggen & Aschenbach 1995, Breitschwerdt & de Avillez 2006).

The brightest part of Loop I is a few tens of degree in width, and is about 60° away from its center, whose sky direction is around (l, b) = (329°, 17.5°) (Berkhuijsen et al. 1971, Mertsch & Sarkar 2013). The distance of the old supernova is not well determined, but can be of the order of 10^2 pc (Mertsch & Sarkar 2013). Estimating from its roughly 60° angular radius, the front side of the explosion must have traveled at least half the distance to us.

Although it is quite natural to imagine that the Earth could have been hit by a supernova explosion, to date, there are only indirect evidences given by statistical expectation (Whitten et al. 1976, Clark et al. 1977); oceanic traces of 60Fe (Knie et al. 2004, 44Ti (Fields & Ellis 1999, Burgess & Zuber 2000), and other isotopes (Fields & Ellis 2005); and a combined estimation (Benítez et al. 2002). In principle, a much more direct evidence could be obtained by geometric considerations: before the explosion hits the Earth, observers facing the supernova can only see its signal from the front side. Therefore, if one sees the supernova signal from both front and back sides, then the Earth must have been hit by the supernova explosion. The most difficult part of this idea is how to associate a signal coming from the back side with a supernova remnant lying in the front side. Fortunately, in this work it is shown that this problem can be solved by comparing the polarization angles measured in the microwave bands with the expectation of a minimal Loop I model.

As briefly introduced in Appendix A, the polarized signals can be decomposed into the E and B modes. It was suggested by Liu et al. (2018) that for a better foreground removal, such EB decomposition should be done in form of

\[(Q, U) \equiv (Q_E, U_E) + (Q_B, U_B). \quad (1)\]

If the \((Q_E, U_E)\) and \((Q_B, U_B)\) signals are found to be associated with different physical mechanisms, then such decomposition is a natural choice. This will be confirmed in this work by showing the loop polarizations are predominantly E-mode.

The paper is organized as follows: Section 2 explains why the loop polarizations are predominantly E-mode, which is also...
observable in real data. Section 3 proposes a simplified model for the Loop I polarization angles that contains no free parameters, and which is found to be consistent with the real foregrounds at 99.999% confidence level. This strongly supports that the polarized microwave foregrounds are largely from Loop I, as well as that the Earth has been hit by the Loop I supernova explosion. Finally, the results are discussed in Section 4 and conclusions are given in Section 5.

2. Loops and E-mode

2.1. Why the loops are predominantly E-mode

This work starts from a simple model of the loop polarizations, which allows several trivial parameters (position, size, radial profile, intensity, etc.) but there is only one major assumption: signals from the loop are polarized along the radial directions of the supernova. This assumption is based on the conclusion that the shell magnetic fields are along the tangent directions (van der Laan 1962), which was confirmed by Whiteoak & Gardner (1968) and Milne (1987), and recently reviewed and developed by Dubner & Giacani (2015) and Petruk et al. (2016). Also note that this major assumption is not a new one: application and verification of this assumption on the microwave maps can also be found in, e.g., Vidal et al. (2015).

More supporting discussions about this major assumption can be found in Appendix B but the assumption itself is pure geometry and is easy to apply. Thus a typical model for Loop I polarization is generated as follows: First I take a Gaussian radial profile for the polarization intensity, which is maximized and equal to 1 at 58° to the center of Loop I (58° is the angular radius of the brightest part of Loop I), and with a 20° FWHM (the FWHM parameter will affect the shape of the angular power spectrum, but here we mainly pay attention to “zero or not”, thus this parameter is not important). Then the polarization angles are set to along the radial directions of Loop I. The result of this model is shown in Figure 1 and compared with the real Loop I polarization angles at the WMAP K-band (22.8 GHz) with a 20° wide mask to emphasis the NPS region. However, note that the model is actually full sky, only that the main power localized around Loop I. This is very convenient in avoiding the leakage from E-mode to B-mode, because such leakage does not exist for a full sky map. Hence the full sky angular power spectra of the model is calculated and shown in the lower panel of Figure 1.

The excellent agreement between the polarization angles of the model and data shown in the upper panels of Figure 1 fully supports the major assumption. Then, by connecting Figure 1 with the geometrical interpretation of the E and B modes in real space (see Appendix A), one can see that the major assumption above can produce only E-mode polarizations. This is confirmed by the angular power spectra of the model in Figure 1 which is calculated as described above. The angular power spectra have positive EE & TE spectra, but are zero for BB & TB. Note that this important property depends only on the major assumption.

Therefore, polarized loop signals will form an E-mode foreground family, whose presence will certainly provide net EE and TE excess. This can be naturally associated with the E-mode excess reported by Planck Collaboration et al. (2016b) in term of an E-to-B ratio roughly equal to 2. This will be discussed in Section 2.3.

Fig. 1. Upper left: Example of the expected loop polarization directions (by small black lines). Upper right: Polarization directions of the WMAP K-band in the Loop I region, with Loop I marked by a black circle. The color scales of the upper panels are for the polarized intensity, which is 0–100 μK for the K-band and -1–1.2 for the model (here the absolute amplitude of polarization intensity is meaningless for the model, thus such an unphysical range is chosen to maximize visibility of the thin lines). Lower: the angular power spectrum of the model shown in upper-left, calculated without a mask. Note that the polarization directions in the model are strictly along the normal vectors, and some small misalignments are only visual effects due to pixelization.

2.2. E-mode loops/arches in real data

To directly investigate the E-mode loops in real data, the WMAP K-band and Planck 353 GHz full sky polarization maps are decomposed using Equation 1 and the E and B mode polarization intensities calculated respectively as $P_E = \sqrt{Q^2 + U^2}$ and $P_B = \sqrt{Q^2 + U^2}$. The results of such decomposition are shown in Figure 2. Apparently, after decomposition, all loop structure are visible in P_E but disappears in P_B, which strongly supports the loop polarizations to be an E-mode foreground family. This was also tested by Liu et al. (2018).

The ratio between the E and B mode polarization intensities is calculated as $\rho = P_E / P_B$ and presented in Figure 3 especially for the arch regions. The median and mean values of $\rho = P_E / P_B$ are compared for inside and outside the arch regions, and the results are listed in Table 1. For all cases ρ are apparently higher for the inside regions, which further supports the loops polarizations to be mainly E-mode. Then a simple test is done to show the significance of the values in Table 1. For each band the corresponding arch mask is rotated to 192 evenly distributed directions (corresponding to $N_{side} = 4$), and for each direction, the new mean value is calculated inside the new mask. For the K-band, none of the 192 new directions gives higher mean value of ρ than the unrotated one (5.4, thus the confidence
Fig. 2. The polarization intensity maps and their EB decompositions at the K-band (upper) and 353 GHz (lower). From left to right: total polarized intensity P, P_E, and P_B. The loop-like structures are marked by black or white lines depending on visibility. They are apparently visible in E-mode (middle) but disappear in B-mode (right).

Table 1. The median and mean values of ρ for the region inside/outside the arch regions shown in Figure 3.

	Median inside (outside)	Mean inside (outside)
K-band	2.6 (1.9)	5.4 (2.8)
353 GHz	1.9 (1.3)	3.0 (2.1)

The confidence level is at least 99.5%. Similarly, for 353 GHz the confidence level is 99%.

2.3. Loops and E-mode excess

It was reported by the Planck Collaboration et al. (2016b) that there is an excess of the E-mode foreground in the 353 GHz band with an EE-to-BB ratio of about 2, and possible explanations were proposed based on the MHD properties, see, e.g., Caldwell et al. (2017), Kandel et al. (2017), Kritsuk et al. (2017). With the proposals from Section 2.1–2.2, a parallel direction is opened, in which the E-mode excess can be naturally explained by the existence of the loops. Detailed works in this direction will follow, and a tentative estimation is that, due to the reported E-to-B ratio, the loops can contribute as much as the ordinary diffuse Galactic foreground emission, which is expected to have similar E and B mode spectra.

Also note that, for the loop polarizations, the shape of their E-mode angular power spectra is determined by choice of the trivial parameters. Since the real sky can possibly contain many loop-like structures (Kiss et al. 2004; Könyves et al. 2007; Mertsch & Sarkar 2013; Vidal et al. 2015), it is quite possible to fit the observed polarized foreground spectrum by a family of loops, which is an interesting direction for future work.

3. Model without free parameters

An important adjustment of the basic model discussed in Section 2.1 is to eliminate all free parameters and fix the model. This has the great advantage that no fitting is needed at all, hence the model is completely independent to the data.

This is done as follows:

1. Only the polarization angles are considered, so all parameters about amplitude become irrelevant.
2. The Loop I emission is regarded as coming from the associated bubble whose radius can be bigger than the distance to its center, such that the emission can cover full sky.
3. Finally, with the major assumption mentioned in the beginning of Section 2.1 and the already known (l, b) coordinates of the Loop I central supernova remnant, all polarization angles can be calculated without any other parameters or assumptions.

By the above procedures one gets a full sky pattern of the Loop I polarization angles. Note that, although the emissions from Loop I was not regarded as full sky before, people have already discussed the possibility that the signal from Loop I is extended beyond the NPS region, e.g., Planck Collaboration et al. (2016c); Vidal et al. (2015).

3.1. Visual inspection

A completely determined model means no need for fitting, thus the full sky polarization angles can be calculated straightforwardly and compared with the polarization angles measured at the WMAP K-band (2° smoothing), as shown in Figure 4. By simple visual inspections, one can easily see qualitative similarity between the model and data for most part of the sky: In the north sky, starting from the central black line, the color at the left hand side starts from green and goes anti-clockwise along the color disc until green again; while in the right hand side (still north) the color starts from yellow and goes clockwise to green. Similarly, in the south sky the color variation left of the central black line is clockwise from purple to blue, and for the right hand side it is anti-clockwise from purple to blue. All these color rotations are the same for both the data and the Loop I

3 In this work, the angular radius of the local bubble is not necessarily same to the angular radial of Loop I, which is $\sim 60°$.

4 See the color disc in the low left of each panel in Figure 4 for the rotational color-to-angle mapping.
model, which indicates that the polarized microwave emission is associated with Loop I for a large area of the sky.

Note that the model-to-data comparison can be made more fair by considering only the E-mode of the WMAP K-band data, by which one expects and does see a better data-to-model consistency, especially in the lower right corner of the map, as also presented in Figure 4.

3.2. Significance estimation

The visual inspection in Section 3.1 is good for understanding, but is not quantitative. For example, the red and yellow colors are visually very different, but the corresponding angles can be close to each other. Therefore, the consistency between data and model is quantitatively tested below by the mean angle difference (MAD) \(\langle \delta \rangle \) defined below.

Let the polarization angle difference be \(\delta = \theta_1 - \theta_2 \), then by the definition of polarization angles, \(\delta \) is identical to \(\delta \equiv (\theta_1 - \theta_2) \pm 180^\circ \). Moreover, if one don’t care about the sign, then \(\delta \) is also identical to \(-\delta \). To reflect these symmetries, in this work, the polarization angle difference is defined as

\[
\delta = \begin{cases}
\arcsin(\sin(\delta)) & \text{if } \delta \geq 0 \\
90^\circ - |90^\circ - \arccos(\cos(\delta))| & \text{if } \delta < 0
\end{cases}
\]

where \(\delta \) always lies between 0°–90°, and all four angles \(\pm\theta \,^{\circ} \) and \(\pm(\theta - 180^\circ) \) are regarded as equivalent. Then the MAD \(\langle \delta \rangle \) is defined as

\[
\langle \delta \rangle = \arctan2 \left(\frac{\sum \sin(\delta)}{\sum \cos(\delta)} \right),
\]

where the \(\arctan2 \) function is a variant of the \(\arctan \) function that takes two parameters to return a result in the range \([0, 2\pi]\). With the above definition, the similarity between two sets of angles can be roughly evaluated by \(\cos(\langle \delta \rangle) \), where \(\cos(\langle \delta \rangle) = 1 \) means the two sets of angles are identical. For two independent maps, the expectation of \(\langle \delta \rangle \) should be centered around 45°, and due to the central limit theorem, for data sets with more degrees of freedom (such as more pixels), the distribution of \(\langle \delta \rangle \) is more narrow and Gaussian.

The sky region at low Galactic latitudes is dominated by the strong emission from the Galactic plane, thus a ring mask is used to exclude \(|\theta| < 20^\circ \). Meanwhile, the area with very low polarized signal is dominated by noise, which is uncorrelated with any real signal, thus a fraction \(\rho \approx 25\% \) of the sky\(^5\) with the lowest \(P_E \) is also excluded. The loop signal is expected to decay with increasing radius to the center, thus only the region less than 120° from the center of Loop I is used. The combined mask is shown in the left panel of Figure 5.

The MAD between the real K-band map and the minimal model is first calculated with the mask shown in the left panel of Figure 5 which is \(\langle \delta \rangle = 15.6^\circ \), with \(\cos(\langle \delta \rangle) = 0.96 \), very close to 1. Then realistic simulations are done by first converting the input \((Q, U)\) Stokes parameter map into \(a_{E}^{EB} \) using HEALPix\(^6\) (Görs
t et al. 2005), then randomizing the phases for \(a_{E}^{E} \) and \(a_{E}^{B} \) respectively, and inverse transforming to real space using HEALPix to get a simulated map. Since the EE and BB spectra are unaffected by the phases, such an operation will completely change the morphology of the input map without changing its E and B spectra. Note that the B-mode is set to zero in the simulations, because the model is also pure E-mode. Using 100 simulations generated like this, I find none that yields a MAD below 20° for the region in use, as illustrated by the histograms of all simulations in Figure 5. According to this test, the E-mode of the K-band foreground map gives polarization angles that are consistent with those calculated in our minimal model at a 99.999% confidence level\(^7\).

3.3. Critical range and the BICEP2 region

Now one may recall the discussions in Section 1 about how to determine whether the supernova has hit the Earth or not. The division between the front and back sides is made at 90° from the loop center, which is marked by a black circle in Figure 4. If the

5 It was confirmed that the result does not change much for \(\rho = 20\%–30\% \), so in the following calculations \(\rho = 25\% \) is adopted.

6 Note that the real foreground emissions are non-Gaussian, non-homogeneous, thus it is very difficult to make a random simulation that can fully reproduce all physical and statistical properties of the polarized foreground. The simulations here faithfully reproduce the angular spectrum of the foreground, but are still imperfect in reproducing the characteristic phases of \(a_{E}^{E} \) and \(a_{E}^{B} \) that represents the non-Gaussian, non-homogeneous properties of the foreground.
Similarity between the minimal model and the data is significant for both sides of the black circle, then it is suggested that the Earth has been hit by the Loop I supernova explosion.

For this purpose, the region shown in the left panel of Figure 5 is divided into two sub-regions and shown in the same figure as the middle and right panels: the middle panel shows the inside region (front side, from 0° to 90°), and the right panel shows the outside region (back side, from 90° to 120°). The resulting MAD for the inside region is \(\langle \delta_\theta \rangle = 16.2^\circ \), with \(\cos(\langle \delta_\theta \rangle) = 0.96 \); and for the outside region it is \(\langle \delta_\theta \rangle = 14.3^\circ \), with \(\cos(\langle \delta_\theta \rangle) = 0.97 \). Using \(10^5 \) simulations generated as described in Section 3.2 for the two regions respectively, I find the values of both regions to be significant at a 99.999% confidence level, which are also shown in Figure 6 by red and blue lines. Thus both the inside and outside regions are suggested to be associated with Loop I, which means we are likely sitting inside the bubble of Loop I.

Meanwhile, the above calculation is also done for the BICEP2 region shown in Figure 5 and the result is included in Figure 6, which has an exceptionally low value of \(\langle \delta_\theta \rangle = 9.7^\circ \) and \(\cos(\langle \delta_\theta \rangle) = 0.99 \). Due to the smaller size of the BICEP2 region, the distribution of \(\langle \delta_\theta \rangle \) is much wider and is apparently non-Gaussian. Using \(10^5 \) simulations, I find the association between Loop I and the BICEP2 region is still confirmed at 99.96%.

3.4. Other frequencies and CMB

The analyses presented in Section 3.2–3.3 are also done for all the WMAP and Planck frequency bands that contain polarization data, including the WMAP K, Ka, Q, V, W; and the Planck 30, 44, 70, 100, 143, 217, 353 GHz. The Planck SMICA CMB map with polarization is subtracted from each of them to roughly remove the CMB \(^7\), and the Planck LFI bandpass mismatch correction is applied to 30, 44 and 70 GHz bands. A complete list of \(\langle \delta_\theta \rangle \) is presented as Table 2, in which one can see that all of them give apparently lower \(\langle \delta_\theta \rangle \) than the 45° expectation, where the minimal confidence level is no less than 99% for each band. This means all WMAP and Planck frequencies bands are significantly contaminated by the Loop I polarized emissions. If all bands are regarded as independent, then the combination of them will give an amazingly high confidence level.

Also note that the Planck 30 and 44 GHz bands (marked in blue in the table) give apparently higher \(\langle \delta_\theta \rangle \) than the neighbors, especially 30 GHz. This is most likely due to the bandpass mismatch leakage (Planck Collaboration et al. 2016d,e) that remains due to its low amplitude, all results in this work are nearly same with/without subtracting the CMB.
even after correction (Weiland et al. 2018). A similar abrupt value exists for the Planck 100 GHz band in the BICEP2 region, which is also marked in blue. On the other hand, the case for the Planck 70 GHz band is a little bit unclear: it is also contaminated by the bandpass mismatch leakage, but the amplitude of contamination is regarded as less than 30 and 44 GHz. One can still see from Table 2 that 70 GHz has moderately higher $\langle \delta_0 \rangle$ than the neighbors, which can be due to either the remaining bandpass mismatch leakage, or relatively lower polarized foreground at 70 GHz. The later could be good news for detection of the primordial B-mode, however, since a full consideration of the systematics is very complicated, the above discussions are only suggestive. An updated work can be done when the future Planck data release becomes available, which may have lower systematics.

$\langle \delta_0 \rangle$ is also calculated between the minimal model and the Planck SMICA CMB map. In this case, for the three masks shown in Figure 5 ($\langle \delta_0 \rangle$) are 41.4", 43.1", and 38.5" respectively. Interestingly, these values are much closer to 45", but are still systematically lower, which indicates a possible residual loop contamination even in the final CMB polarization product.

4. Discussion

It was pointed out by Liu et al. (2014), von Hausegger et al. (2016) that the Galactic Loop I may leave residual on the final CMB intensity map, which is partly verified in this work for the E-mode. This gives a good reason to follow the suggestions by Liu et al. (2018) to adopt the decomposition in Equation 1, which may help to improve to the estimation of the CMB B-mode.

For an incomplete sky coverage (which is the case for all individual ground-missions), the above decomposition is inevitably affected by the E-to-B and B-to-E leakage. Although there are already many methods to prevent such leakages (Smith 2006; Kim & Naselsky 2010; Zhao & Baskaran 2010; Bunn & Wandelt 2017; Koi Ramanah et al. 2018), they are mainly designed for Gaussian and homogeneous CMB signals, and are hence problematic for non-Gaussian, non-homogeneous signals, like diffuse Galactic foregrounds. Therefore, a large (or even full) sky coverage – either by combining various ground missions or by a space mission (Hazumi et al. 2012; Challinor et al. 2018) – is apparently preferred for detection of primordial gravitational waves.

If the supernova explosion is spherically symmetric, then by our major assumption, the loop emission is 100% E-mode. However, in reality, the supernova explosion can be asymmetric, thus there can be residual B-mode emission from the loops. For example, a multiple supernova explosion scenario was studied by Vasiliev et al. (2017), in which the overall shape of the shell is naturally asymmetric. Also, in Figure 2 although much fainter, one can still see some suspicious loop-like structures in the P_B map, which might be this kind of residual. Meanwhile, another source of the B-mode from loops due to projection is also discussed in Appendix B.

Previous work (Liu et al. 2018) had confirmed that for both the E-mode and the B-mode families in the BICEP2 zone, the polarization angles are nearly same from 217 to 353 GHz; meanwhile, Table 2 tells us that in the BICEP2 zone, the polarization angle is tightly related to Loop I. These two facts reminds us the possibility that the B-component from Loop I (if any) may also affects the high Galactic latitudes, like the BICEP2 area.

It should also be noted that the LSA model (Page et al. 2007) for the Galactic magnetic field can also give consistent results to the WMAP K-band polarization angles, as well as explain the typical foreground polarization fraction. The disadvantage of this model is that it needs to fit several free parameters about the Galactic spiral structure and the high energy electron distribution; whereas the model in Section 3 has no free parameters and requires no fitting. Apparently the latter is more preferable. Moreover, to avoid circular argument, a model based on fitting has to stop at what the data look like, and can not be used for further purpose like explaining the E-mode excess – which can be done easily and naturally by this work. However, in reality, the line-of-sight integration for the polarized signal consists of both local and remote parts, thus the real case is more likely the combination of this work and the LSA model.

The polarized signal can change its polarization direction due to integration along the line-of-sight (LOS), and such integration can easily decrease the total polarization intensity, which is called depolarization. Such depolarization is considered both by Page et al. (2007) and in Appendix B as well as the works for three dimensional foreground analysis (Sun et al. 2008; Fauvet et al. 2011; Green et al. 2015; Martínez-Solaeche et al. 2017). All these work depends on knowledge of the Galactic and local magnetic field, but our knowledge on those is far from perfect. Therefore, a three-dimensional analysis for polarized foreground still requires a better constraint.

5. Conclusion

The main conclusions of this work are listed below:

1. The supernova explosions can produce predominantly E-mode foreground (Section 2.1).
2. The E-mode loops provides a new way to explain the E-to-B excess phenomenon (Section 2.3).
3. A large part of the polarized foreground is likely coming from a local bubble associated with Loop I, which suggests that the Earth was hit by a supernova explosion (Section 3.3).
4. The E-mode foreground from Loop I is identified at all WMAP and Planck frequency bands and for a large area of the sky, including the high Galactic latitudes (Section 3.4). However, a further confirmation using future CMB maps that may have better controlled systematics is still necessary.
5. For a better foreground analysis and removal, the foreground maps should be pre-decomposed into E, B modes as shown in Equation 1 and the two components should be studied separately.

Acknowledgements. I sincerely thank Pavel Naselsky, Sebastian von Hausegger and James Cresswell for valuable discussions and suggestions, as well as the anonymous referee for carefully reading the article and giving very helpful comments. This research has made use of data/product from the WMAP (The WMAP data release 2013) and Planck (The Planck data release 2015) collaborations. Some of the results in this paper are derived using the HEALPix (Górski et al. 2005) package. This work was partially funded by the Danish National Research Foundation (DNRF) through establishment of the Discovery Center and the Villum Fonden through the Deep Space project. Hao Liu is also supported by the Youth Innovation Promotion Association, CAS.
Table 2. List of $\langle \delta \theta \rangle$ in degree between the minimal Loop I model and 23-353 GHz bands. $\langle \delta \theta \rangle \ll 45^\circ$ indicates apparent model-data correlation. Some cells are suspicious because they are apparently higher than the neighboring bands, thus they are marked in blue. All unmarked values are apparently lower than the 45° expectation. Especially, the BICEP2 region is amazingly correlated with Loop I for all frequency bands except for the suspicious values.

Band	ν (GHz)	K	Ka	Q	44	V	70	W	100	143	217	353	
In & Out	15.6	22.8	28.4	33.0	40.7	44.1	60.8	70.4	93.5	100	143	217	353
Inside	16.2	25.0	16.6	16.4	26.1	27.4	28.7	22.2	17.3	19.8	18.3	19.8	
Outside	14.3	31.1	16.2	17.3	32.5	34.5	36.8	21.7	16.8	20.6	19.3	19.5	
BICEP2	9.7	53.5	9.0	6.8	27.2	21.8	30.2	19.5	55.5	5.3	4.1	7.7	
Appendix A: Illustration of the E and B modes in real space

Analysis of the full sky polarization data requires a prior definition of the local reference frame for each sky direction, which depends on the choice of the coordinate system. This is not rotationally invariant and is inconvenient, so it is usual to decompose the polarized signal into the sum of many circular structures, with each one being rotationally invariance. For each circular structure, there are two linearly independent components called the E-mode and the B-mode. E-mode means the polarization direction is either parallel or perpendicular to the normal vectors, and B-mode means the polarization direction is either 45° or 135° from the normal vectors, as illustrated in Figure A.1. From the definition, one can see that the E and B modes are statistically equivalent for a Gaussian random field, as well as for an ordinary diffuse Galactic foreground. More information about definitions and practical ways to extract the E and B modes from CMB maps can be found in Zaldarriaga & Seljak (1997), Kamionkowski et al. (1997b), Zaldarriaga (1998), Kim & Naselsky (2010), Kamionkowski & Kovetz (2016).

As mentioned above, the smooth component will be suppressed by the supernova, and the PS component will be erased. Then the PO component is aligned with the line-of-sight (LOS), which can not generate any visible polarization (but is related to the Faraday rotation). The contribution PB component is projected from the PY component by a factor of sin(θ), which is already suppressed. Further more, since the LOS will cross a shell two times at P and P’, the PB components at these two points will cancel each other, which means a further cancellation. Therefore, after projection and LOS-integration, the major component of the magnetic field that is effective for polarization is the PN component. However, the PB component after suppression and cancellation can be small but non-zero, which might be a source of the B-mode emission from loops.

Appendix B: Illustration for the loop magnetic field and projection

In Figure B.1 it is illustrated how the loop magnetic field affects the polarization observation, in which S is the center of the supernova remnant, P is one point on the shell, O is the observer, N is an auxiliary point above the paper with NP being perpendicular to the paper, and AB and XY are auxiliary lines that are perpendicular to the line-of-sight and radial direction of the supernova respectively. For point P on the shell, due to the shell expansion, the magnetic field lines are suppressed and become along the shell, thus they should be perpendicular to the normal vector PS. This allows two magnetic field components along PN and PY respectively. The PN component is parallel to the tangential direction of the projected loop on the two dimensional sky, thus it is exactly the one discussed in this paper. The PY component can be decomposed into two components along PO and PB respectively.

The background interstellar magnetic field before the SN explosion can have both regular (smooth) and turbulent components, see for example Beck et al. (1996). The smooth component is expected to have only large scale variation, while the turbulent component is expected to have random fluctuation at small scales. The threshold for “large scale” and “small scale” is not absolutely defined, but in this work, it is assumed that the smooth component has negligible variation in the size of an SN bubble, where as the turbulent component has random directions in the bubble volume. In this context, their contributions are discussed respectively below.

Appendix B.1: Contribution of the smooth background magnetic field

As mentioned above, the smooth component will be suppressed by the supernova, and the PS component will be erased. Then the PO component is aligned with the line-of-sight (LOS), which can not generate any visible polarization (but is related to the Faraday rotation). The contribution PB component is projected from the PY component by a factor of sin(θ), which is already suppressed. Further more, since the LOS will cross a shell two times at P and P’, the PB components at these two points will cancel each other, which means a further cancellation. Therefore, after projection and LOS-integration, the major component of the magnetic field that is effective for polarization is the PN component. However, the PB component after suppression and cancellation can be small but non-zero, which might be a source of the B-mode emission from loops.

A complete calculation of the LOS integration in case of smooth background magnetic field is very difficult, thus a much simplified toy model is provided for example, with the following assumptions/simplifications:

1. The observer stays at \([x, y, z] = [0, 0, 0]\), the center of SN is \([0, 0, 1]\), and the coordinate of P is \([R \sin(\theta) \cos(\phi), R \sin(\theta) \sin(\phi), R \cos(\theta)]\).
2. The SN will only erase the PS component.
3. The background magnetic field (before SN explosion) is \(B = [\sin(\theta_1) \cos(\phi_1), \sin(\theta_1) \sin(\phi_1), \cos(\theta_1)]\), whose direction is uniformly distributed on the sphere. However, for one realization, \(B\) is a constant vector

Therefore, the effective magnetic field along PN and PB at point P are:

\[
B_{PN} = \sin(\theta_1) \sin(\delta) \\
B_{PB} = \frac{R - \cos(\theta)}{1 + R^2 - 2R \cos(\theta)} [R \cos(\theta_1) \sin(\theta) + (1 - R \cos(\theta)) \cos(\delta) \sin(\theta_1)],
\]

where \(\delta = \phi_1 - \phi\).

The polarization angle is bound with the magnetic field, and so are the Stokes parameters. Therefore, Equation B.1 gives the following Stokes parameters:

\[
Q(R, \theta, \theta_1, \delta) = \cos[2 \arctan(B_{PN}, B_{PB})] \\
U(R, \theta, \theta_1, \delta) = \sin[2 \arctan(B_{PN}, B_{PB})].
\]
integrated stoke parameters along the LOS are: the shell radius (this is a simplified assumption). Therefore, the where R, θ, and γ is the component along the 0ϕ plane, and \mathbf{NP} is perpendicular to the \mathbf{OPS} plane.

Here, according to the coordinate system shown in Figure B.1 the Q Stokes parameter corresponds to the E-mode, and the U Stokes parameter corresponds to the B-mode.

Apparently, if B_{PN} or B_{PB} is zero, then $U(R, \theta, \theta_1, \delta) \equiv 0$, and the signal is pure E-mode. Since B_{PN} is a constant in the LOS integration, this provides a good example: if the smooth background magnetic field is along \mathbf{OS} (so $\theta_1 = 0$), then the final polarization signal is always pure E-mode.

For an LOS integration, the amplitude of the (Q, U) Stokes parameters is assumed to be scaled by

$$f(R, \theta, \gamma) = \frac{1}{(1 + R^2 - 2R \cos(\theta))^\gamma R^2},$$

where $1 + R^2 - 2R \cos(\theta)$ is the length of \mathbf{PS}, and $\gamma \geq 0$ is a free parameter that describes the decay of the SN signal according to the shell radius (this is a simplified assumption). Therefore, the integrated stoke parameters along the LOS are:

$$Q_s(\theta, \theta_1, \delta) = \int_0^R Q(R, \theta, \theta_1, \delta) f(R, \theta, \gamma) dR,$$

$$U_s(\theta, \theta_1, \delta) = \int_0^R U(R, \theta, \theta_1, \delta) f(R, \theta, \gamma) dR,$$

$$\rho(\theta, \theta_1, \delta) = \frac{Q_s(\theta, \theta_1, \delta)}{U_s(\theta, \theta_1, \delta)}.$$

With Equation B.4 and various values of θ, θ_1, δ, one can calculate the ratio $\rho(\theta, \theta_1, \delta)$ between the two components, which is exactly the EB-ratio at the given sky direction after LOS integration. With various parameters this ratio can be either greater or smaller than 1. For statistical purpose, uniformly distributed sky directions are assumed for the LOS and the initial magnetic field to run 10^4 simulations, and the median EB-ratio is roughly 1.7, which moderately prefers the E-mode.

To roughly illustrate the expected EB-ratio $\rho(\theta, \theta_1, \delta)$ for various choice of the parameters, $\log_{10}(|\rho|)$ is plotted as function of θ, θ_1, and δ in Figure B.2, and in each panel the unplotted parameters are simply random, and note that the results are not sensitive to γ. One can see that the E-mode is apparently preferred for θ around 75°, and is moderately preferred for all θ_1. There is also significant sinusoidal modulation associated with the δ parameter with peaks around $\delta = 0^\circ$, 90°, 180° . . . However, it must be emphasized that Figure B.2 is only statistical, which can not cast effective constraints on a specific realization.

Appendix B.2: Contribution of the turbulent background magnetic field

The turbulent magnetic field is expected to have random directions for different part of the sky, however, due to the supernova explosion, the magnetic field components along the \mathbf{PS} direction are erased, and the magnetic field is constrained within the \mathbf{NPY} plane with uniformly distributed directions, which can be represented in a circular form:

$$u_0 = |B| \sin(\phi)$$

$$v_0 = |B| \cos(\phi),$$

where u_0 is the magnetic field component along the \mathbf{PN} direction, v_0 is the component along the \mathbf{PY} direction, ϕ is the random phase angle in the \mathbf{NPY} plane, and $|B|$ is the amplitude of the magnetic field.

For the region around P, the contribution of the turbulent magnetic field can be regarded as the integration of Equation B.5 with uniformly distributed ϕ. Considering the projection from the \mathbf{NPY} plane to the \mathbf{NPB} plane that is perpendicular to the LOS, Equation B.5 changes from circular to elliptical:

$$u = |B| \sin(\psi)$$

$$v = |B| \cos(\psi) \sin(\theta),$$

where u is the magnetic field component along the \mathbf{PN} direction, v is the component along the \mathbf{PB} direction, ψ is the phase angle of the polar system in the \mathbf{NPB} plane, and $|B'|$ is the amplitude of the effective magnetic field after projection. The polarization angle is simply $\psi' = \psi + 90^\circ$, therefore, for the synchrotron emission, the integrations of the Q, U Stokes parameters for the region around P are:

$$Q \propto \int_0^{2\pi} |B'|^2 \cos(2\psi') d\psi' \propto \cos^2(\theta)$$

$$U \propto \int_0^{2\pi} |B'|^2 \sin(2\psi') d\psi' = 0.$$

As mentioned already in Section B.1 here the Q Stokes parameter represents the E-mode, and the U-Stokes parameter represents the B-mode. Therefore, one can see that the turbulent magnetic field always gives pure E-mode.

The physical meaning of Equation B.7 is: due to the “2ψ” rule of the polarization angles, the symmetry of the integral along the ellipse is broken, so the two directions separated by π no longer cancel each other, which is the source of non-zero...
Fig. B.2. Logarithm EB-ratio $\log_{10}(\rho)$ in case of smooth background magnetic field, and as function of θ (left), θ_1 (middle) and δ (right). The unplotted parameters are random for each panel. The red lines are for $\rho = 1$, so the dots above the red line have higher E-mode, and the dots below the red line have higher B-mode. Note that the results are not sensitive to γ.

E-mode. If $2\nu'$ is replaced by ν' in Equation B.7, then both integrals will be zero.

With Equation B.7 the conclusion is apparent: supernova explosion plus a turbulent background magnetic field will produce pure E-mode in the polarized signal. However, it is always possible that, due to asymmetry of the supernova explosion, the B-mode is small but non-zero.

References

Beck, R., Brandenburg, A., Moss, D., Shukurov, A., & Sokoloff, D. 1996, ARA&A, 34, 155
Benítez, N., Maiz-Apellániz, J., & Canelles, M. 2002, Physical Review Letters, 88, 081101
Bennett, C. L., Larson, D., Weiland, J. L., et al. 2013, ApJS, 208, 20
Berkhuijsen, E. M., Haslam, C. G. T., & Salter, C. J. 1971, A&A, 14, 252
Bhat, C. L., Issa, M. R., Mayer, C. J., & Wolfendale, A. W. 1985, Nature, 314, 515
Breitschwerdt, D. & de Avillez, M. A. 2006, A&A, 452, L1
Bunn, E. F. & Wandelt, B. 2017, Phys. Rev. D, 96, 043523
Burgess, C. P. & Zuber, K. 2000, Astroparticle Physics, 14, 1
Caldwell, R. R., Hirata, C., & Kamionkowski, M. 2017, ApJ, 839, 91
Challinor, A., Allison, R., Carron, J., et al. 2018, Journal of Cosmology and Astroparticle Physics, 2018, 018
Clark, D. H., McCrea, W. H., & Stephenson, F. R. 1977, Nature, 265, 318
Dubner, G. & Giacani, E. 2015, A&A, 581, 23
Egger, R. J. & Aschenbach, B. 1995, A&A, 294, L25
Fatuzzo, L., Macías-Pérez, J. F., Aumont, J., et al. 2011, A&A, 526, A145
Fields, B. D. & Ellis, J. 1999, New A, 4, 419
Fields, B. D., Hochmuth, K. A., & Ellis, J. 2005, ApJ, 622, 759
Görski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Green, G. M., Schlafly, E. F., Finkbeiner, D. P., et al. 2015, ApJ, 810, 25
Haslam, C. G. T., Kearsley, S., Osborne, J. L., Phillips, S., & Stoffel, H. 1981, Nature, 289, 470 EP
Haslam, C. G. T., Klein, U., Salter, C. J., et al. 1981, A&A, 100, 209
Hazumi, M., Borrill, J., Chinone, Y., et al. 2012, in Proc. SPIE, Vol. 8442, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter-Wave, 844219
Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997a, Physical Review Letters, 78, 2058
Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997b, Phys. Rev. D, 55, 7368
Kamionkowski, M. & Kovetz, E. D. 2016, ARA&A, 54, 227
Kandel, D., Lazarian, A., & Pogosyan, D. 2017, MNRAS, 472, L10
Kim, J. & Naselsky, P. 2010, A&A, 519, A104
Kiss, C., Moor, A., & Tóth, L. 2004, A&A, 418, 131
Knie, K., Korschinek, G., Faestermann, T., et al. 2004, Physical Review Letters, 93, 171103
Kodi Ramanah, D., Lavaux, G., & Wandelt, B. D. 2018, ArXiv e-prints [arXiv:1801.02226]
Whiteoak, J. B. & Gardiner, F. F. 1968, ApJ, 154, 807
Witten, R. C., CUZZI, J., BORUCKI, W. J., & WOLFE, J. H. 1976, Nature, 263, 398 EP
Wolleben, M. 2007, Astrophys.J., 664, 349
Zhao, W. & Baskaran, D. 2010, Phys. Rev. D, 82, 023001
Zaldarriaga, M. 1998, The Astrophysical Journal, 503, 1
Zaldarriaga, M., Delabrouille, J., & Martínez-Solaech, G., Karakci, A., & Delabrouille, J. 2017, ArXiv e-prints [arXiv:1706.01462]
Mertsch, P. & Sarkar, S. 2013, JCAP, 1306, 041
Müller, D. K. 1987, Australian Journal of Physics, 40, 771
Page, L., Hinshaw, G., Komatsu, E., et al. 2007, ApJS, 170, 335
Petrus, O., Kuzko, T., & Besliseky, V. 2016, MNRAS, 456, 2343
Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016a, A&A, 594, A1
Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016b, A&A, 586, A133
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016c, A&A, 594, A25
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016d, A&A, 594, A92
Planck Collaboration, Ade, P. A. R., Aumont, J., et al. 2016e, A&A, 594, A3
Salter, C. J. 1983, Bull. Astron. Soc. India, 11, 1
Smith, K. M. 2006, Phys. Rev. D, 74, 083002
Sun, X. H., Reich, W., Waelkens, A., & Enßlin, T. A. 2008, A&A, 477, 573
The Planck data release. 2013, https://lambda.gsfc.nasa.gov/product/map/dr5/
van der Laan, H. 1962, MNRAS, 124, 125
Vasiliev, E. O., Shchekinov, Y. A., & Nath, B. B. 2017, MNRAS, 468, 2757
Vidal, M., Dickinson, C., Davies, R. D., & Leahy, J. P. 2015, MNRAS, 452, 656
von Hasegger, S., Liu, H., Mertsch, P. & Sarkar, S. 2016, Journal of Cosmology and Astroparticle Physics, 2016, 023, arXiv:1511.08207
Weiland, J. L., Osumi, K., Addison, G. E., et al. 2018, ArXiv e-prints [arXiv:1801.01226]
Whiteoak, J. B. & Gardiner, F. F. 1968, ApJ, 154, 807
Zaldarriaga, M. & Seljak, U. c. v. 1997, Phys. Rev. D, 55, 1830
Zhao, W. & Baskaran, D. 2010, Phys. Rev. D, 82, 023001