Peculiar seasoning in the neutrino day-night asymmetry: where and when to look for spices?

O. Kharlanov

\(\nu \)Moscow State University, Moscow, Russia

16th Lomonosov Conference on Elementary Particle Physics
26 August, 2013
What is seasoning?

1. Culinary seasoning
2. Solar ν seasonal effects & other time-regular effects
 - $\sim 7\%$ flux variations due to seasonal variation of Sun-to-Earth distance
 - solar cycles (including those assumed to exist due to acoustic waves in the core) \rightarrow neutrino flux variation
 - Solar ν oscillations inside the Earth \rightarrow Day-Night Asymmetry and its bizarre time variations (OUR TALK!)
Why Solar ν Day-Night Asymmetry?

- DNA is a slight variation of flavor composition of solar neutrinos resulting from the nighttime neutrino propagation inside the Earth [Carlson, 1986; Baltz, Weneser, 1986]
Why Solar ν Day-Night Asymmetry?

- DNA is a slight variation of flavor composition of solar neutrinos resulting from the nighttime neutrino propagation inside the Earth [Carlson, 1986; Baltz, Weneser, 1986]
- **Crucial** for the entire framework of νOsc
- **Uniquely predictable** given the Solar and the Earth’s structure and neutrino mixing params
- Today, DNA effect can be considered as a test of consistency of the theory, not just as another way to extract data on $\Delta m_{ij}^2, \theta_{ij}$

![Image](image-url)
Why Solar ν Day-Night Asymmetry?

- DNA is a slight variation of flavor composition of solar neutrinos resulting from the nighttime neutrino propagation inside the Earth [Carlson, 1986; Baltz, Wenenser, 1986]
- Crucial for the entire framework of νOsc
- Uniquely predictable given the Solar and the Earth’s structure and neutrino mixing params
- Today, DNA effect can be considered as a test of consistency of the theory, not just as another way to extract data on $\Delta m^2_{ij}, \theta_{ij}$
- SK nearly sees it for ^8B ν’s, although, at $1 - 2\sigma$
Why Solar ν Day-Night Asymmetry?

- DNA is a slight variation of flavor composition of solar neutrinos resulting from the nighttime neutrino propagation inside the Earth [Carlson, 1986; Baltz, Weneseer, 1986]
- **Crucial** for the entire framework of νOsc
- **Uniquely predictable** given the Solar and the Earth’s structure and neutrino mixing params
- Today, DNA effect can be considered as a **test of consistency** of the theory, not just as another way to extract data on Δm_{ij}^2, θ_{ij}
- SK nearly sees it for 8B ν’s, although, at $1 - 2\sigma$

We show here that this Day-Night effect has a number of peculiarities, incl. nontrivial seasonal signatures, which can help distinguish it from noise and other effects.
Why Solar ν Day-Night Asymmetry?

- DNA is a slight variation of flavor composition of solar neutrinos resulting from the nighttime neutrino propagation inside the Earth [Carlson, 1986; Baltz, Weneser, 1986]
- Crucial for the entire framework of νOsc
- Uniquely predictable given the Solar and the Earth’s structure and neutrino mixing params
- Today, DNA effect can be considered as a test of consistency of the theory, not just as another way to extract data on $\Delta m^2_{ij}, \theta_{ij}$
- SK nearly sees it for $^8\text{B} \nu$'s, although, at $1 - 2\sigma$

We show here that this Day-Night effect has a number of peculiarities, incl. nontrivial seasonal signatures, which can help distinguish it from noise and other effects

N.B. Extraction of DNA needs a long-term observation \rightarrow we inevitably face seasonal effects!
Oscillations in matter & Earth regeneration [1]

The theory of DNA is quite conventional,

\[i\lambda \partial_x R(x, x_0) = H(x)R(x, x_0), \quad R(x_0, x_0) = 1; \]

\[H(x) = \left(-\cos 2\theta_0 + \frac{2E V(x)}{\Delta m^2} \right) \sigma_1 + \sin 2\theta_0 \sigma_3, \]

\[R_{f,f'}(x, x_0) \equiv \langle \nu_f(x) | \nu_{f'}(x_0) \rangle \] is the flavor evolution matrix \((f, f' = e, \mu)\)

\[V(x) = \sqrt{2} G_F N_e(x) \] is the Wolfenstein potential
\[\lambda = \Delta m^2 / 4E = \pi / l_{osc}, \quad l_{osc} \sim 20...300 \text{ km} \]
\[\sin^2 2\theta_0 \approx 0.86, \Delta m^2 \approx 7.6 \times 10^{-5} \text{ eV}^2 [PDG2012] \]

\[E \] is the \(\nu\) energy
\[x \] goes along the \(\nu\) ray

\[N_e(x) \] is the electron density
Oscillations in matter & Earth regeneration [2]

\[i\lambda \partial_x R(x, x_0) = \left\{ \left(-\cos 2\theta_0 + \frac{2E V(x)}{\Delta m^2} \right) \sigma_1 + \sin 2\theta_0 \sigma_3 \right\} R(x, x_0) \]

- There are various approximate approaches to this equation which are relevant to the Earth regeneration effect for solar neutrinos [D’Olivo, 1992; Supanitsky, D’Olivo, Medina-Tanco, 2008; Lisi, Montanino, 1997; de Holanda, Wei Liao, Smirnov, 2004; Ioannisian, Smirnov, 2004; Blennow, Ohlsson, 2004; Aleshin, Kharlanov, Lobanov, 2013]

- The exact solution for arbitrary density profile \(V(x) \) is unknown \(\Rightarrow \) expansions / solutions for simplified profiles
Oscillations in matter & Earth regeneration [2]

\[i \lambda \partial_x R(x, x_0) = \left\{ \left(-\cos 2\theta_0 + \frac{2EV(x)}{\Delta m^2} \right) \sigma_1 + \sin 2\theta_0 \sigma_3 \right\} R(x, x_0) \]

- There are various approximate approaches to this equation which are relevant to the Earth regeneration effect for solar neutrinos [D’Olivo, 1992; Supanitsky, D’Olivo, Medina-Tanco, 2008; Lisi, Montanino, 1997; de Holanda, Wei Liao, Smirnov, 2004; Ioannisian, Smirnov, 2004; Blennow, Ohlsson, 2004; Aleshin, Kharlanov, Lobanov, 2013]
- The exact solution for arbitrary density profile \(V(x) \) is unknown \(\Rightarrow \) expansions / solutions for simplified profiles

These approaches give virtually the same results for solar neutrinos in the Earth, considered as a spherically-symmetric layered structure (PREM)
Oscillations in matter & Earth regeneration [3]

Day/night probabilities of observing ν_e:

$P_e(\text{day}) = \frac{1}{2} + \frac{1}{2} \cos 2\theta_{\text{Sun}} \cos 2\theta_0,$

$P_e(\text{night}) = \frac{1}{2} + \frac{1}{2} \cos 2\theta_{\text{Sun}} \left\{ \cos 2\theta_n^- + 2 \sin 2\theta_0 \sum_{j=1}^{n-1} \Delta \theta_j \cos 2\Delta \psi_{n,j} \right\},$

n is the number of crossed interfaces between the Earth’s layers

$\Delta \psi_{n,j} \approx \pi L_{n,j}/\ell_{\text{osc}}$ is the osc. phase diff. (detector–jth crossing pt.)

$\Delta \theta_j$ are jumps of the effective mixing angle

θ_n^- is the effective mixing angle under the detector
As time goes by...

\[P_e(\text{night}) = \frac{1}{2} + \frac{1}{2} \cos 2\theta_{\text{Sun}} \left\{ \cos 2\theta_n - 2 \sin \theta_0 \sum_{j=1}^{n-1} \Delta \theta_j \cos 2\Delta \psi_{n,j} \right\} \]

- The number of crossed interfaces \(n \) changes, depending on the zenith angle \(\Theta_Z(t) \)
- The distance from the \(j \)th crossing pt. to the detector \(L_{n,j} = L_{n,j}(\Theta_Z(t)) \)
As time goes by...

\[P_e(\text{night}) = \frac{1}{2} + \frac{1}{2} \cos 2\theta_{\text{Sun}} \{ \cos 2\theta_n - 2 \sin 2\theta_0 \sum_{j=1}^{n-1} \Delta\theta_j \cos 2\Delta\psi_{n,j} \} \]

- The number of crossed interfaces \(n \) changes, depending on the zenith angle \(\Theta_Z(t) \)
- The distance from the \(j \)th crossing pt. to the detector \(L_{n,j} = L_{n,j}(\Theta_Z(t)) \)
- The oscillation phases \(\Delta\psi_{n,j} \approx \pi L_{n,j}/\ell_{\text{osc}} \) vary by much more than \(\pi \) during the night
As time goes by...

\[P_e(\text{night}) = \frac{1}{2} + \frac{1}{2} \cos 2\theta_{\text{Sun}} \left\{ \cos 2\theta_n + 2 \sin 2\theta_0 \sum_{j=1}^{n-1} \Delta \theta_j \cos 2\Delta \psi_{n,j} \right\} \]

- The number of crossed interfaces \(n \) changes, depending on the zenith angle \(\Theta_Z(t) \)
- The distance from the \(j \)th crossing pt. to the detector \(L_{n,j} = L_{n,j}(\Theta_Z(t)) \)
- The oscillation phases \(\Delta \psi_{n,j} \approx \pi L_{n,j}/\ell_{\text{osc}} \) vary by much more than \(\pi \) during the night
- Thus, the observed DNA is a time average of a rapidly oscillating function!
As time goes by...

\[P_e(\text{night}) = \frac{1}{2} + \frac{1}{2} \cos 2\theta_{\text{Sun}} \left\{ \cos 2\theta_n - 2 \sin 2\theta_0 \sum_{j=1}^{n-1} \Delta \theta_j \cos 2\Delta \psi_{n,j} \right\} \]

- The number of crossed interfaces \(n \) changes, depending on the zenith angle \(\Theta_Z(t) \).
- The distance from the \(j \)th crossing pt. to the detector \(L_{n,j} = L_{n,j}(\Theta_Z(t)) \).
- The oscillation phases \(\Delta \psi_{n,j} \approx \pi L_{n,j}/\ell_{\text{osc}} \) vary by much more than \(\pi \) during the night.
- Thus, the observed DNA is a time average of a rapidly oscillating function!

In order to cope with such an object, we use the stationary phase approximation

\[
\int_{a}^{b} F(\tau) e^{i\lambda S(\tau)} d\tau = \sqrt{\frac{2\pi i}{\lambda S''(\tau_0)}} F(\tau_0) e^{i\lambda S(\tau_0)} + \frac{F(\tau_0) e^{i\lambda S(\tau_0)}}{i\lambda S'(\tau)} \bigg|_{a}^{b} + O(\lambda^{-3/2}), \quad \lambda \to +\infty,
\]

where \(F(\tau) \) and \(S(\tau) \) are smooth on \([a, b]\) and \(S'(\tau) = 0 \) only at \(\tau = \tau_0 \in (a, b) \).
It is easy to see that...

\[P_e(\text{night}) = \frac{1}{2} + \frac{1}{2} \cos 2\theta_{\text{Sun}} \left\{ \cos 2\theta_n + 2 \sin 2\theta_0 \sum_{j=1}^{n-1} \Delta \theta_j \cos 2\Delta \psi_{n,j} \right\} \]

- Stationary points \(\Theta'_Z(t) = 0 \): midnights when integrating over the night and solstices when integrating over the seasons;
- Edge terms vanish
- We take the dependence \(\Theta_Z(t) \) from spherical astronomy
- The small parameter here is \(\ell_{osc}/L_{n,j} \)
It is easy to see that...

\[P_e(\text{night}) = \frac{1}{2} + \frac{1}{2} \cos 2\theta_{\text{Sun}} \{ \cos 2\theta_n^- + 2 \sin 2\theta_0 \sum_{j=1}^{n-1} \Delta \theta_j \cos 2\Delta \psi_{n,j} \} \]

- Stationary points \(\Theta'_Z(t) = 0 \): midnights when integrating over the night and solstices when integrating over the seasons;
- Edge terms vanish
- We take the dependence \(\Theta_Z(t) \) from spherical astronomy
- The small parameter here is \(\ell_{\text{osc}} / L_{n,j} \)

\[\langle P_e(\text{night}) - P_e(\text{day}) \rangle_{\text{year}} \approx \frac{1}{2} \cos 2\theta_{\text{Sun}} (\cos 2\theta_n^- - \cos 2\theta_0) \]

\[+ \cos 2\theta_{\text{Sun}} \sin 2\theta_0 \sum_{j=1}^{n-1} \Delta \theta_j \sum_{s=\pm 1} \frac{\mathcal{O}(r_j - r_n \sin(\chi + s\varepsilon))}{2\pi \sqrt{\sin \varepsilon \cos \chi \sin(\chi + s\varepsilon)}} \frac{\sqrt{r_j^2/r_n^2 - \sin^2(\chi + s\varepsilon)}}{\lambda L_{n,j}^{\text{solstice}}} \times \cos\{2\Delta \psi_{n,j}^{\text{solstice}} + s'(s - 1)\pi/4\}, \]

\[s' \equiv \text{sgn}\{L_{n,j}^{\text{solstice}} - r_n \cos(\chi + s\varepsilon)\}, \quad \Theta_Z = \pi - \chi - s\varepsilon \quad (\text{solstice } s = \pm 1); \quad \chi \text{ is the detector latitude, } \varepsilon = 23.5^\circ; \quad r_j \text{ are the radii of the Earth's shells.} \]
A test drive: analytics vs. numerics

\[A_{dn} = \frac{2(P_e(\text{night}) - P_e(\text{day}))}{P_e(\text{night}) + P_e(\text{day})} \]

The constant vertical shift is due to the unaccounted fine structure of the crust under the detector. It is smooth enough and is season-independent, so we do not bother about it.
A test drive: different latitudes

\[A_{dn} = \frac{2(P_e(\text{night}) - P_e(\text{day}))}{P_e(\text{night}) + P_e(\text{day})} \]

Indeed, the closer to the Tropic, the more vivid are the oscillatory contributions of the stationary points!

Gran Sasso Kamioka Tropic
(42.5N) (36.4N) (23.5N)
• The peak structure of $A_{dn}(E)$ is up to 10% in amplitude and comes from the vicinities of the two solstices.

• For off-tropic latitudes, it is strongly suppressed.
The Miracles of the Stationary points

- The peak structure of $A_{dn}(E)$ is up to 10% in amplitude and comes from the vicinities of the two solstices.
- For off-tropic latitudes, it is strongly suppressed.
- The contributions of the stationary points are localized, i.e. are not proportional to the observation time. In particular, their contributions to the half-year average A_{dn} are two times larger!!! Thus, they can be extracted with a $\sqrt{2}$ times larger (statistical) efficiency.
The peak structure of $A_{dn}(E)$ is up to 10% in amplitude and comes from the vicinities of the two solstices.

For off-tropic latitudes, it is strongly suppressed.

The contributions of the stationary points are localized, i.e. are not proportional to the observation time. In particular, their contributions to the half-year average A_{dn} are two times larger!!! Thus, they can be extracted with a $\sqrt{2}$ times larger (statistical) efficiency.

Moreover, it is wrong to say that the Earth’s core does not contribute to DNA since the Sun rarely descends low enough to shine through it. Rareness is not a measure for this localized contribution!
The tropical Sun

\[A_{\text{dn}} = \frac{2(P_e(\text{night})-P_e(\text{day}))}{P_e(\text{night})+P_e(\text{day})} \]

The curves around \(\chi = 23.5^\circ \) exhibit the clean and vivid oscillations; the positions of the peaks are very sensitive to \(\Delta m^2 \) and \(\{r_j\} \).
Interference experiment in ν oscillations?
When and where to look for spices? (a conclusion)

- **When?** Near the **solstices**
- **Where?** Near the Tropics, the closer the better (Sao Paolo, 23°33’S)
When and where to look for spices? (a conclusion)

- **When?** Near the solstices
- **Where?** Near the Tropics, the closer the better (Sao Paolo, $23^\circ 33' S$)
- **Why?** To extremely precisely determine the radii of the Earth’s shells and the solar neutrino mass-squared difference
When and where to look for spices? (a conclusion)

- **When?** Near the solstices
- **Where?** Near the Tropics, the closer the better (Sao Paolo, 23°33’S)
- **Why?** To extremely precisely determine the radii of the Earth’s shells and the solar neutrino mass-squared difference
- **Really?** In order to distinguish these effects, one needs within one order more detection events at the currently achieved energy resolution $\delta E \sim 0.5$ MeV, if one employ the adaptive recognition of wave-like patterns on the $A_{dn}(E)$ profile [to be published]
The numerical simulations were made using the Supercomputing cluster “Lomonosov” (MSU)

References
[1] S. S. Aleshin, O. G. Kharlanov, and A. E. Lobanov, Analytical treatment of long-term observations of the day-night asymmetry for solar neutrinos, Phys. Rev. D 87, 045025 (2013).
[2] O. G. Kharlanov, and A. E. Lobanov, Peculiar seasonal effects in the neutrino day-night asymmetry, submitted to Phys. Rev. D.
Thank you for your attention!