Dark solitons as quasiparticles in trapped condensates

V. A. Brazhnyi†, V. V. Konotop1,2† and L. P. Pitaevskii‡

1Centro de Física Teórica e Computacional, Universidade de Lisboa,
Complexo Interdisciplinar, Avenida Professor Gama Pinto 2, Lisbon 1649-003, Portugal
2Departamento de Física, Universidade de Lisboa,
Campinho, Edifício C8, Piso 6, Lisboa 1749-016, Portugal
3Dipartimento di Fisica, Università di Trento and Istituto Nazionale per la Fisica della Materia,
CRS-BEC, 38050 Trento, Italy, and Kapitza Institute for Physical Problems, 119334 Moscow, Russia

We present a theory of dark soliton dynamics in trapped quasi-one-dimensional Bose-Einstein condensates, which is based on the local density approximation. The approach is applicable for arbitrary polynomial nonlinearities of the mean-field equation governing the system as well as to arbitrary polynomial traps. In particular, we derive a general formula for the frequency of the soliton oscillations in confining potentials. A special attention is dedicated to the study of the soliton dynamics in adiabatically varying traps. It is shown that the dependence of the amplitude of oscillations on the trap frequency (strength) is given by the scaling law $X_0 \propto \omega^{-\gamma}$ where the exponent γ depends on the type of the two-body interactions, on the exponent of the polynomial confining potential, on the density of the condensate and on the initial soliton velocity. Analytical results obtained within the framework of the local density approximation are compared with the direct numerical simulations of the dynamics, showing remarkable match. Various limiting cases are addressed. In particular for the slow solitons we computed a general formula for the effective mass and for the frequency of oscillations.

PACS numbers: 0375.Kk, 03.75.Lm, 05.45.Yv

I. INTRODUCTION

One of the main properties of solitons, making them to be of special interest for physical applications, is preserving their localized shapes during evolution and mutual interactions [1]. Due to this robustness solitons can be regarded as quasiparticles and systems possessing large number of such excitations can be described in terms of the distribution function governed by the kinetic equation [2].

In the mean-field theory [3] description of the quasi-one-dimension homogenous Bose gas is reduced to the exactly integrable nonlinear Shrödinger (NLS) [or one-dimensional (1D) Gross-Pitaevskii (GP)] equation, and therefore solitons are expected to play a prominent role in the dynamical and statistical properties of low-dimensional condensates. When interatomic interactions are repulsive, the GP equation possesses dark (or grey) soliton solutions [4,13]. Existence of the dark solitons was confirmed by a number of recent experiments with BEC’s confined by elongated traps [3].

In practice, condensates appear to be never homogeneous, and therefore effect of external potentials on the dark-soliton dynamics is a subject of special interest (see e.g. [4,13,25,10] and references therein). An inhomogeneity of a system by itself does not invalid possibilities of description of solitons as quasiparticles (in some approximation, of course). In particular, one can explore Hamiltonian approach to an effective particle with one degree of freedom, instead of dealing with the original equation for the macroscopic wave function, which is a system with infinite degrees of freedom. Moreover, one can extend the respective description on the gas of solitons, which now will be described by a distribution function governed either by Fokker-Planck equation (for the case where a soliton bearing system interacts with a thermal bath, see e.g. [13]) or by a kinetic equation with respective collision integral, as this is shown in [7] for the case of interaction of solitons with a noncondensed atoms.

A quasiparticle description of dark solitons can be obtained from the perturbation theory in adiabatic approximation [3] (sometimes called the collective variable approach). At the same time, as was shown in [10], a concept of a quasiparticle naturally emerges from the Landau theory of superfluidity and can be justified on the basis of the mean field theory within the framework of the local density approximation. It turns out, that a dark soliton moves in an external potential without deformation of its density profile as a particle of mass $2m$. The local density approximation is rather general, allowing direct extension to other nonlinear equations, related to the BEC dynamics, as well as to various (non-parabolic) types of the trap potential. Building up such a generalized theory is the main goal of the present paper.

In real experimental conditions the external trap potential can depend not only on coordinate, but also on time. That is why the second aim of the present work is the description of the effect of adiabatic time-dependence of the external parameters on the dark soliton motion.

The paper is organized as follows. We start with the
II. DARK SOLITON IN A TIME-DEPENDED PARABOLIC TRAP

Let us start with the dynamics of a dark soliton described by the GP equation

$$i \hbar \Psi_t = -\frac{\hbar^2}{2m} \Psi_{xx} + \frac{1}{2} m \omega^2 x^2 \Psi + g|\Psi|^2 \Psi - \mu \Psi.$$ \hspace{1cm} (1)

Here $g = 2\hbar^2 a_s/(ma_0^2)$, a_s is s-wave scattering length and a_0 the transverse linear oscillator length, which describes the BEC in an elongated trap at low densities (see also [3] for the details of derivation by means of the multiple scale expansion method).

It has been shown in Ref. [10] (see also the details below Sec. IIIB) that the dark soliton dynamics in a parabolic trap can be successfully described within the framework of the local density approximation. This means that, in spite of the presence of the 1D homogeneous (i.e., when $\omega = 0$) GP equation [3] (see also [2], §5.5):

$$\Psi(x, t) = \sqrt{n_0} \left(\frac{v}{c} + \frac{\sqrt{c^2 - u^2}}{c} \tanh \left[\frac{x - X(t)}{\ell} \right] \right),$$ \hspace{1cm} (2)

where $X(t) = vt$, v is the velocity of the soliton, n_0 is the unperturbed linear density, $c = \sqrt{\mu/m}$ is the speed of sound and $\ell = \hbar/(m\sqrt{c^2 - u^2})$ is the width of the soliton. Then the influence of the trap is accounted for by considering a general function $X(t)$ which dependence on time is to be obtained.

The energy of the system can be defined as

$$E = \int \left[\frac{\hbar^2}{2m} |\Psi_x|^2 + \frac{g}{2} |\Psi|^2 - n_0 \right] dx = \frac{4}{3} \hbar c n_0 \left(1 - \frac{v^2}{c^2} \right)^{3/2}$$ \hspace{1cm} (3)

and for the dark soliton solution (2) can be rewritten in a form of the conservation law

$$c^2 (X) - u^2 = (G E)^{2/3}$$ \hspace{1cm} (4)

where $G = 3g/(4\hbar m)$. The introduced dependence $c = c(X)$ is the key point of the local density approximation: the sound velocity is substituted by its local value computed in the point where the center of the soliton is located. In the Thomas-Fermi (TF) approximation, when the atomic density is given by $n(x) = \frac{1}{g} \left(\mu - \frac{m \omega^2 x^2}{2} \right)$, one has

$$c^2(X) = \frac{g}{m} n(X) = c_0^2 - \frac{1}{2} \omega^2 X^2$$ \hspace{1cm} (5)

with $c_0 = \sqrt{\mu/m}$. Substituting $v = dX/dt$ in (1), the energy conservation can be rewritten as follows [10]

$$\frac{m_s}{2} \left(\frac{dX}{dt} \right)^2 + \frac{m_s \omega^2}{2} X^2 = E_\ast.$$ \hspace{1cm} (6)

Here we introduced the effective mass of the soliton considered as a quasiparticle

$$m_s = 2m,$$ \hspace{1cm} (7)

the frequency of the soliton oscillations $\omega_\ast = \omega/\sqrt{2}$ [8, 9] and the effective soliton energy

$$E_\ast = \frac{m_s c_0^2}{2}, \hspace{1cm} c_0^2 = c_0^2 - (G E)^{2/3}$$ \hspace{1cm} (8)

which, altogether with E, is a constant of motion. The amplitude of oscillations governed by (3) is

$$X_0 = \sqrt{2 E_\ast/m_s \omega^2}.$$ \hspace{1cm} (9)

One of the characteristic features of the introduced quasiparticles is that their dynamics is determined not only by their local properties (velocity and amplitude) but also by the environment, i.e. by the unperturbed density. As a result any change of the trap characteristics (say, trap frequency or geometry) will affect solitons not only by changing the domain of their motion but also through the change of the density. It turns out that the local density approximation is a suitable framework for description of mentioned phenomena in the case when time variation of the parameters of the system is slow enough.

According to a general law of the Hamiltonian mechanics, the adiabatic invariant

$$I(E) = \frac{1}{2\pi} \int p dX$$ \hspace{1cm} (10)

stays constant [12]. Time dependence of the amplitude of oscillation can be defined from this condition. The canonical momentum, which enters in (10), can be computed explicitly using the formula

$$p = \int_0^v \frac{\partial E}{\partial v} \frac{dv}{v}$$ \hspace{1cm} (11)
what gives
\[p = -2\hbar \left(\frac{v}{c} \sqrt{1 - \frac{v^2}{c^2}} + \arcsin \left(\frac{v}{c} \right) \right). \] (12)

It turns out, however, for calculation of the adiabatic invariant it is more convenient to use the general equation between \(I \) and the frequency of oscillations:
\[\frac{dI}{dE} = \frac{1}{2\pi} \oint \frac{dX}{v} = (\omega_s)^{-1}. \] (13)

Taking into account that \(\omega_s = \omega/\sqrt{2} \) does not depend on \(E \) and using an obvious boundary condition \(I = 0 \) at \(v \to 0 \), we easily find a simple equation
\[I = \frac{\sqrt{2}}{\omega} \left(E - \frac{4\hbar m c^3}{3g} \right). \] (14)

It is not difficult to show (see, for example, Eq. (17.10) in [3]), that in the TF approximation one has
\[c_0^2 = gn(0)/m \propto \omega^{2/3}, \quad \text{i.e.} \quad c_0^3 \propto \omega, \] (15)
so the second term on r.h.s. of (14) is constant.

Thus preserving the adiabatic integral in an adiabatic process implies preserving \(E/\omega \), what in the case of slowly varying frequency implies \(E \propto \omega \). Taking again into account that according [3] in the TF approximation \(c_0 \propto \omega^{1/3} \), one deduces from (8) that \(E_s \propto \omega^{2/3} \). Finally, the scaling law for the amplitude of oscillations, defined by (10), reads
\[X_0 \propto \omega^{-2/3}. \] (16)

It is worth to underline that this law is different that one for a conventional harmonic oscillator, where \(X_0 \propto \omega^{-1/2} \), even though the motion of the soliton is pure harmonic. The point is that in our case the ratio \(E/\omega \), but not \(E_s/\omega \), is preserved.

An important feature of the soliton dynamics is that in the case at hand the soliton frequency does not depend on the energy. Hence the frequency of the soliton oscillations does not depend on the amplitude of the soliton, what corroborates with the analysis of the oscillations of the small-amplitude solitons [see (93) below and subsequent discussion] as well with the earlier studies [10, 11].

We have checked the obtained predictions, made on the basis of the local density approximation, numerically. The typical results are presented in Fig. 1.

The local density approximation essentially uses that the background of the condensate is static, i.e. that the dark soliton motion does not excite the motion of the whole condensate. In practice, due to finiteness of the system, such a supposition strictly speaking does not hold, and the whole condensate also undergoes oscillations with the frequency of the condensate \(\omega \), what follows directly from the Ehrenfest theorem. The difference of the frequencies of the condensate and of the dark soliton, i.e. between \(\omega \) and \(\omega_s \), results in the beating of the dark soliton [3], which are clearly observable in Fig. 1. Respectively, one can identify the two slopes corresponding to the maxima and to the minima of the soliton amplitudes. We will use the subindexes “+” and “−” for the respective quantities. In other words, each of the results presented in panels (a) – (c) and (e) – (g) is characterized by the two scaling laws: \(X_{0, \pm} = \tilde{X}_{\pm} \omega^{-\gamma \pm} \) shown explicitly in Fig. 1(a),(e). The exponents \(\gamma \pm \) are different (although their difference is relatively small), what requires a definition of some averaged exponent \(\gamma \) which could be compared with the theoretical predictions. We obtain such exponent numerically from the dynamics of the averaged amplitude, i.e. using the formula
\[\tilde{X}_0 = \frac{1}{2} \left(\frac{\tilde{X}_+}{\omega^{\gamma +}} + \frac{\tilde{X}_-}{\omega^{\gamma -}} \right). \] (17)

Summary of the results for the averaged exponent \(\gamma \) are presented in panels (d) and (h). As one can see from the figures the law of the change of the amplitude of soliton oscillations stays close to the predicted law \(\gamma = 2/3 \) for relatively slow solitons and relatively large densities. Meantime deviations are clearly seen in Fig. 1(c) and (e). In the last case the exponent \(\gamma \) is essentially less than the predicted in our analytical consideration. It turns out, however that the mentioned deviation from 2/3 law is observed for small densities. This is natural from point of view of the theory. Indeed, our consideration was based on the TF approximation for the atomic density, when \(n_0 \propto \omega^{2/3} \). This approximation fails at low densities, and must be substituted by the Gaussian distribution, where \(n_0 \propto \omega^{1/2} \). Then by repeating the above our arguments for the Gaussian distribution, instead if the TF one, one finds
\[X_0 \propto \omega^{-1/2}, \] (18)
i.e. the law of the dependence of the amplitude of oscillation of the conventional linear oscillator on the frequency, what corroborates with the numerical findings.

III. GENERAL APPROACH

A. Generalized equation.

The theory developed in the previous section can be generalized for NLS equation with arbitrary power-law
nonlinearity and non-parabolic potential. More specifically, in the present section we consider the equation
\[i\hbar \Psi_t = \frac{\hbar^2}{2m} \Psi_{xx} + U(x)\Psi + g|\Psi|^{2\alpha}\Psi - \mu \Psi \] \hspace{1cm} (19)
where \(\alpha \) is a positive integer and \(g > 0 \), which describes interacting particles of mass \(m \) in an external potential \(U(x) \). The exponent \(\alpha \) characterizes the effective inter-particle interactions. In particular when \(\alpha = 1 \) and \(g = 2\hbar^2a_s/(ma_s^2) \) one recovers the GP equation \(\text{(1)} \) considered in the previous section.

The chemical potential \(\mu \) introduced in \(\text{(19)} \) is determined by the link valid for a homogeneous condensate: \(\mu = gn^\alpha \). Thus the sound speed \(c \) connected to the chemical potential by the relation \(mc^2 = n\mu/dn \) can be expressed as follows
\[c^2 = \frac{\alpha g}{m} n^{\alpha - 1}. \hspace{1cm} (20) \]

There are several reasons to consider more general equation \(\text{(19)} \). First of all, equation \(\text{(1)} \), being completely integrable, possesses very specific soliton properties. It is interesting to investigate the soliton dynamics in a more general situation. The case of \(\alpha = 2 \) is particularly important, because corresponding equation can be used in different physical problem. Such a situation can take place near the Feshbach resonance. In this case the s-wave scattering length depends on magnetic field as \(a_s = a_g + \Delta/(B - B_0) \) where \(a_g \) is the background value of the scattering length, and \(B_0 \) and \(\Delta \) are the location and width of the resonance. If magnetic field is equal to \(B_c = B_0 + \Delta/a_g \), the scattering length turns to zero and the dominant interaction among atoms is due to three-body effects.

Indeed, in the higher approximations of the Bogoliubov theory expansion of the chemical potential of an uniform gas with respect to density \(n \) has form
\[\mu = a_s n \left[b_1 + b_2(na_s^3)^{1/2} + b_3(na_s^3) \ln \frac{1}{na_s^3} \right] + g_2n^2, \] \hspace{1cm} (21)
where \(b_1 = 4\pi\hbar^2/m \) and other coefficients \(b \) can be calculated (see [3], \(\S 4.2 \)). Coefficient \(g_2 \) depends on three-body interactions and cannot be calculated explicitly. However, it stays finite for \(B = B_c \), while three first terms disappear, giving \(\mu = g_2n^2 \). Correspondingly,
the non-linear term in the mean-field equation has form $g_2 \Psi^4 \Psi$. The sign of g_2 cannot be defined from general considerations. We assume that $g_2 > 0$. After averaging with respect to the transverse motion we obtain [19] with $\alpha = 2$ and $g = g_2/(3\pi^2 a_\perp^4)$.

Another physical system where the equation of the state with $\alpha = 2$ is valid, is an 1D Bose gas in so-called Tonks-Girardeau (TG) limit of impenetrable particles. This limit can be achieved for a gas of small density. It has been shown by Girardeau that there exists an exact mapping between states of this system and an ideal 1D Fermi gas. In particular in this case one has $\mu = gn^2$ with $g = \hbar^2 \pi^2/(2m)$. It has also been rigorously shown that one can find density distribution of such gas in a 1D trap by minimization of the energy functional [17]

$$E = \int \left[\frac{\hbar^2}{2m} \left((\sqrt{n})_x \right)^2 + \frac{g}{3} n^3 + U(x)n \right] dx.$$ (22)

On the basis of these considerations authors of Ref. [18] suggested to use equation (19) for dynamics of the TG gas. However, the hydrodynamic-like equation (19) can not give a satisfactory description of dynamics of an ideal 1D Fermi gas. Nevertheless it can be useful for a Bose gas near the TG limit, where equation of state approximately follows the $\alpha = 2$ law, but dynamic is still not an ideal gas-type.

The case $\alpha = 2$ is often referred also as a quintic nonlinear Schrödinger (QNLS) equation. For the sake of brevity in what follows use this terminology.

We mention that other polynomial models are also considered in literature [19].

B. Soliton in the generalized equation.

Let us consider now a condensate in the absence of external field, $U(x) = 0$. Eq. (19) takes the form

$$i\hbar \Psi_t = \frac{\hbar^2}{2m} \Psi_{xx} + g|\Psi|^{2\alpha} \Psi - \mu \Psi$$ (23)

and is subject to the finite density boundary conditions:

$$\lim_{x \to \pm \infty} \Psi(x, t) = \sqrt{n_0} e^{\pm i\theta}$$ (24)

where the constant θ can be considered without restriction of generality in the interval $[0, \pi/2]$: $\theta \in [0, \pi/2]$. Then dark solitons, $\Psi_s(x, t)$, will be associated with traveling wave solutions, characterized by the following dependence of the density on the spatial coordinate and time:

$$|\Psi_s(x, t)|^2 \equiv n^2(x - vt),$$ (25)

where v is the soliton velocity. Below such solutions will also be referred to as unperturbed.

The energy of the soliton solution can be defined as

$$E = \int \mathcal{E}(x) dx$$ (26)

where the energy density $\mathcal{E}(x)$ is given by

$$\mathcal{E}(x) = \frac{\hbar^2}{2m} |\Psi_x|^2 + \frac{g}{\alpha + 1} (|\Psi|^{2\alpha+2} - n_0^{\alpha+1}) - gn_0^\alpha (|\Psi|^2 - n_0).$$ (27)

The energy is an integral of motion. Hence taking into account that the dark soliton depends on the two parameters (n_0, v) and connecting the mean density with the speed of sound by [20], one concludes that the energy of the dark soliton is a function of c and v:

$$E = E(c, v).$$ (28)

C. The local density approximation.

Consider now propagation of a dark soliton in a condensate with the density, varying due to the external trap potential: $n = n(x)$ with $n(0) = n_0$ (for the sake of definiteness the trap potential will be assumed having minimum at $x = 0$: $U(0) = 0$). In particular, in the TF approximation the function $n(x)$ is given by

$$n(x) = n_{TF}(x) \equiv g^{-1/\alpha} [\mu - U(x)]^{1/\alpha}.$$ (29)

This formula determines the dependence of the sound velocity on the spatial coordinate [c.f. (3)]:

$$c^2(x) = c_0^2 - \frac{\alpha}{m} U(x),$$ (30)

where c_0 is expressed through n_0 by the link [20].

Now we define the local density approximation as an assumption that the conservation law [28] is valid for a soliton in the inhomogeneous condensate, i.e., that c can be changed to its local value $c(X)$, where X is the position of the center of the soliton, computed using the unperturbed soliton wave function $\Psi_s(x, t)$. Respectively, X and v are considered as functions of time related by the equation $dX/dt = v(t)$.

Thus, in the local density approximation the equation of motion of the soliton is determined from [28]:

$$E(c(X), v) - E = 0.$$ (31)

Here E is the constant energy of the soliton.

Eq. (31) can be viewed as an equation of motion of a quasiparticle, which can be associated to the dark soliton. Then $E(c(X), v)$ must be associated with the Hamiltonian of the quasiparticle after expressing the velocity v through the canonical momentum p according to the formula [10]. After inverting this formula, one obtains the Hamiltonian of the quasiparticle:

$$H(p, X) = E(c(X), v(p, X)).$$ (32)

Finally, the adiabatic invariant and the frequency are computed according to formulas [10] and [13], which are obviously valid in the general case.
D. Justification of the local density approximation.

In the present subsection we shall show that equation for the energy of a soliton, obtained for an uniform condensate, is actually valid also for a trapped condensate in the local density approximation. Thus the trapping potential does not enter explicitly in the expression for the energy of a soliton.

To this end we define a real-valued wavefunction of the background \(F(x) \) such that \(n_0(x) = n_0 F^2(x) \) is the density of the condensate in the absence of the soliton and \(F(x) \) solves the equation

\[
-\frac{\hbar^2}{2m} F_{xx} + g n_0^\alpha F^{2\alpha+1} + [U(x) - \mu] F = 0 \quad (33)
\]

and

\[
n_0 = n_0(0) \quad \text{subject to the normalization conditions} \quad F(0) = 1 \quad \text{and} \quad F_x(0) = 0.
\]

The density of the ”grand canonical energy” of the inhomogeneous condensate can be written down as follows

\[
\mathcal{E}'(x) = \frac{\hbar^2}{2m} |\Psi_x|^2 + \frac{g}{1 + \alpha} n^{\alpha+1}(x) + [U(x) - \mu] n(x),
\]

\[
(34)
\]

Here \(n(x) = |\Psi|^2 \). Let the soliton center be at \(x = X \), \(\ell \) be a soliton width and \(L_0 \) be the spatial extension of the condensate. Then we introduce \(\delta \) such that \(L_0 \gg \delta \gg \ell \) and separate the integration on two domains

\[
E' = \int_{|x-X|>\delta} \mathcal{E}'dx + \int_{|x-X|<\delta} \mathcal{E}'dx. \quad (35)
\]

Next, we add to the first term an integral \(\int_{|x-X|<\delta} \mathcal{E}_0' dx \) and, correspondingly, deduct it from the second term in \(E' \).

For the case of a dark soliton solution, which is exponentially localized around \(x = X \), the first integral can be approximated (with the exponential accuracy) as follows

\[
\int_{|x-X|>\delta} \mathcal{E}'dx + \int_{|x-X|<\delta} \mathcal{E}_0' dx \approx \int_{-\infty}^{\infty} \mathcal{E}_0' dx = E_0 \quad (36)
\]

where \(E_0 \) is the energy of the unperturbed condensate.

In order to compute the other two integrals we represent

\[
\mathcal{E}'(x) - \mathcal{E}_0'(x) = \frac{\hbar^2}{2m} |\Psi_x|^2 + \frac{g}{1 + \alpha} \left[n^{\alpha+1}(x) - n^{\alpha+1}_0(x) \right] - g n_0^\alpha (x) \left[n(x) - n_0(x) \right] + \frac{\hbar^2}{2m} \frac{F_{xx}}{F} n(x) - \frac{\hbar^2 n_0}{4m} (F^2)_{xx}. \quad (37)
\]

As it is shown in Appendix A, the last two terms can be made as small as necessary by choosing the potential large enough, while in the rest of the terms related to the background \(x \) can be securely substituted by \(X \) (due to their smoothness in the region of the soliton motion). This leads us to the final expression for the energy of the soliton:

\[
E_s = \int_{|x-X|<\delta} \left(\mathcal{E}' - \mathcal{E}_0' \right) dx \approx \int_{|x-X|<\delta} \left\{ \frac{\hbar^2}{2m} |\Psi_x|^2 + \frac{g}{1 + \alpha} \left[|\Psi|^{2\alpha+2} - n^{\alpha+1}_0(X) \right] - g n_0^\alpha (X) \left[|\Psi|^2 - n_0(X) \right] \right\} dx. \quad (38)
\]

The obtained integral does not depend (in the leading order) on the particular choice of the parameter \(\delta \). Then comparing the expression (38) with (20), (27) one can verify that they lead to the same expression for the soliton energy, where the only substitution \(n_0 \) by \(n_0(X) \) must be made.

IV. EXAMPLES OF LANDAU DYNAMICS OF DARK SOLITONS

In the present section we consider two examples relevant in different ways to the BEC dynamics in low dimensions.

A. Dark soliton of the GP equation in a polynomial trap.

1. General approach.

Let us now turn to the case where the “polynomial” trap

\[
U(x) = \frac{m}{2} \omega^{2r} x^{2r}
\]

with \(r \) being a positive integer, \(r = 1, 2, ..., \) and \(\omega \) being a function slowly depending on time: \(\omega = \omega(t) \). If \(r = 1 \), then \(U(x) \) is transformed in the conventional parabolic trap considered in Sec. III. Then \(\omega \) is the trap frequency. For this reason and for the sake of brevity of notations in what follows \(\omega \) is referred to as a frequency independently on the value of \(r \).

The question we are interested in is the dependence
of the amplitude of the soliton oscillations on the frequency, subject to the adiabatic change of the last one. The explicit form of \(p \), given by \[12\], allows one to solve the problem analytically in a general case, i.e. for the arbitrary integer \(r \).

Now the link between the velocity and the coordinate

\[
v^2 + \frac{1}{2} \omega^2 r X^{2r} = c_s^2
\]

\[40\]

\([c_s \text{ was defined in } 35] \) and expression for the amplitude of the oscillations of the soliton, \(X_0 \) is given by:

\[
X_0 = \frac{2^{1/(2r)} c_s^{1/r}}{\omega}.
\]

Next one can compute the following quantities:

- The normalization condition

\[
N = \int_{-x_{TF}}^{x_{TF}} n(x) dx = \frac{2r(2n_0)^{1+1/(2r)}}{2r + 1} \left(\frac{g}{m} \right)^{1/(2r)} \frac{1}{\omega}
\]

\[42\]

where \(N \) is the total number of atoms and we introduced the TF radius

\[
x_{TF} = \left(\frac{2g n_0}{m} \right)^{1/(2r)} \frac{1}{\omega}.
\]

- The adiabatic invariant

\[
I = \frac{\hbar m^{1-1/(2r)} c_s^{2+1/r}}{g \omega} G_r,
\]

\[44\]

where the constant \(G_r \) is defined in \[2\] and the details of calculations are presented in Appendix \[2\].

- The frequency of the soliton [using \[13\]]

\[
\omega_s = R_r c_s^{1-1/r} \omega
\]

\[45\]

where

\[
R_r = \frac{\pi}{2^{1/(2r)}} \left(\int_{-1}^{1} \frac{dx}{\sqrt[2r]{1-x^{2r}}} \right)^{-1}.
\]

\[46\]

The obtained relations, as well as constancy of the total number of particles \(N \) and of the adiabatic invariant \(I \) subject to slow change of the frequency readily allow one to get the scaling relations [they follow from \[12\] and \[14\], respectively]:

\[
n_0 \propto \omega^{2r/(1+2r)} \quad \text{and} \quad c_s \propto \omega^{r/(1+2r)}.
\]

\[47\]

Finally, taking into account the link \[11\] we arrive at the general scaling relation determining the dependence of the amplitude of the soliton oscillations on the frequency

\[
X_0 \propto \omega^{-\gamma}, \quad \gamma = \frac{2r}{1+2r}
\]

\[48\]

2. **GP dark soliton in an \(x^4 \)-trap.**

Let us consider in more details dynamics of a soliton in a non-parabolic trap with the potential energy

\[
U(x) = \frac{m}{2} \omega^4 x^4
\]

\[49\]

(i.e. the case \(r = 2 \)). Now \(R_2 = \pi 2^{1/4} K(1/\sqrt{2}) \approx 0.847 \), \(K(\cdot) \) being the complete elliptic integral of the first kind, and the frequency of soliton oscillations depends on the energy of the condensate [see \[40\] and \[45\]]. The exponent defined by \[18\] is \(\gamma = 0.8 \).

B. Dark soliton in the QNLS limit.

As the next example we consider the equation

\[
i \hbar \Psi_t = -\frac{\hbar^2}{2m} \Psi_{xx} + \frac{1}{2} m \omega^2 x^2 \Psi + g |\Psi|^4 \Psi - \mu \Psi.
\]

\[50\]

Now \(\alpha = 2 \) and \(r = 1 \). Although general approach, similar to one developed in the preceding section is also available in the case at hand, it becomes rather involved and cumbersome. That is why, here we consider the physically relevant case of the parabolic potential which reveals the main physical features of highly nonlinear models.
The dark soliton solution has the following form \[\Psi_s(x,t) = \sqrt{n_s(x,t)} e^{i\theta_s(x,t)}\] \[n_s(x,t) = \sqrt{gn_0} \frac{12\sqrt{2}n_0(e^2 - v^2) e^{(x-X(t))/\ell}}{c^2 (4 + e^{(x-X(t))/\ell})^2 - 12(e^2 - v^2)}\] \[\theta_s(x,t) = -\arctan \left(\frac{c^2 e^{(x-X(t))/\ell} - 2c^2 + 6v^2}{6\ell c^2 - v^2} \right)\] where \(X(t) = vt + x_0\), \(x_0\) is a constant, and \(\ell = h/(2m\sqrt{c^2 - v^2})\).

The TF distribution now acquires the form \[n_{TF}(x) = \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{-\mu - \frac{1}{2}m\omega^2x^2}}\] and the normalization conditions defines the chemical potential \(\mu = \sqrt{2m\omega N}/\pi\).

The energy is computed from \[\Psi_s\] to be \[E = \hbar \sqrt{\frac{m}{g}} \frac{\sqrt{3}}{4\sqrt{2}} (c^2 - v^2) \ln \frac{2c + \sqrt{3}u}{2c - \sqrt{3}u}.\] Taking into account that due to \[c^2 = c_0^2 - \omega^2x^2\] now \[E_0 = \hbar n_0 c_0\] and introducing the notation \[E = E_0 \sqrt{\frac{3}{4}} \left(1 - \frac{\omega^2 x^2}{c_0^2} - \frac{v^2}{c_0^2}\right) \times \ln \frac{2\sqrt{c_0^2 - \omega^2x^2} - \sqrt{3}\sqrt{c_0^2 - \omega^2x^2} - v^2}{2\sqrt{c_0^2 - \omega^2x^2} - \sqrt{3}\sqrt{c_0^2 - \omega^2x^2} - v^2}.\] Respectively, the energy of the zero velocity dark soliton is \(E_0 = E(v = 0) \approx 1.14E_0\).

In Fig. 3(a) we present a typical trajectory of the QNLS dark soliton in a constant trap. One of the main features observed is that the dynamics is not strictly periodic, but undergoes slow modulations (see Fig. 3). The averaged frequency of the dynamics shown is approximately 0.07 (this corresponds to the relation \(\omega_s \approx 0.7\omega\)) while the frequency of the large oscillations of the period is approximately 5 times less. It is worth pointing out that...
the theoretical prediction for the frequency of the large amplitude (slow) dark solitons in the QNLS model gives
\[\omega_s \approx 0.6572 \omega \] (see the Table 1 below) while small amplitude solitons should oscillate with the frequency close to
\[\omega_s \approx \omega \] (see the discussion in Sec. V C).

\[\begin{align*}
\text{FIG. 3:} & \quad (a) \text{ Dependence of the position of the center of the QNLS dark soliton on time for } \omega = 0.1, \, n_0 = 1, \text{ and } v = 0.1 \\
& \quad (b) \text{ Time dependence of the half-period } T/2 \text{ subtracted from figure (a). As before we take } \hbar = 1, \, m = 1 \text{ and } g = 1.
\end{align*} \]

For the next step we studied the adiabatic dynamics of the QNLS dark soliton in a slowly varying trap. The respective results are shown in Fig. 4.

\[\begin{align*}
\text{FIG. 4:} & \quad \text{Dependence of the soliton coordinate on the frequency adiabatically varying according to the law } \omega(t) = (1+0.001t)0.11. \\
& \quad \text{Straight lines show the law } X_0 \propto \omega^{-\gamma}. \text{ In the panels (a) and (d) we show also the laws } X_{0,\pm} \propto \omega^{-\gamma}\pm \text{ [see (17)] by dashed lines. In figures (a), (b) and (c) parameters are } n_0 = 1, \text{ and } v = 0.14; 0.42, \text{ and } 0.85, \text{ correspondingly. In figures (d), (e) and (f) parameters are } v = 0.14, \text{ and } n_0 = 0.4; 0.6, \text{ and } 1, \text{ correspondingly. In the numerical calculations we take } \hbar = 1, \, m = 1 \text{ and } g = 1.
\end{align*} \]

Like in the case of the NLS dark soliton in a parabolic trap one can observe beating of the solution. From the left column [panels (a) to (c)] one detects increase of the frequency with increase of the initial value of the velocity, what is expectable in view of the above discussion. The right column [panels (d) to (f)] show that the frequency of soliton oscillations decay when the background density increases. This last fact is also explained in view of the above discussion, by the fact that increase of the local density subject to constant velocity \(v \) results in increase of the relativistic factor \(c^2 - v^2 \), and thus in bigger difference between the speed of sound and soliton velocity. In all the cases however one observes well pronounced scaling law with the exponent \(\gamma = 0.5 \) for relatively large
range of the parameters.

V. LIMITING CASES

A. Small velocity solitons.

1. General relations.

As we have seen above, increase of the power of the nonlinearity (i.e. of the exponent \(\alpha \)) makes the problem of the computing the frequency and dependence of the frequency on the amplitude of oscillations rather complicated, not allowing one to obtain a general formula linking \(X_0 \) and \(\omega \) for arbitrary \(\alpha \). It turns out however, that the problem can be solved in the limit of small velocities: \(v \ll c \). To this end we take into account that the static dark soliton for any \(\alpha > 0 \) has zero amplitude in its center, and hence the limit of small velocities corresponds to the limit of small \(X \). Then, expanding Eq. (31) with respect to \(v^2 \) and \(X^2 \), one obtains in the leading orders

\[
E = E_0 + \frac{\partial E_0}{\partial v^2} v^2 + \frac{\partial E_0}{\partial X^2} X^2
\]

(59)

where the subindex “0” stands to indicate that the respective quantities are computed in the point \(X = 0 \) and \(v = 0 \). This formula must be viewed as a standard expression

\[
E_s = \frac{m_s}{2} (v^2 + \omega_s^2 x^2)
\]

(60)

for the energy of a harmonic oscillator having mass \(m_s \) and frequency \(\omega_s \). Comparison of (59) with (60) gives the expressions for the effective mass

\[
m_s = 2 \frac{\partial E_0}{\partial v^2}
\]

(61)

and for the frequency of oscillations

\[
\omega_s = \left(\frac{\partial E_0}{\partial X^2} \right)^{1/2} \frac{\partial E_0}{\partial v^2}
\]

(62)

of a small amplitude dark soliton.

Thus to compute frequency dependence of the amplitude of the soliton oscillations from Eq. (29) we have to expand the energy \(E(c(X), v) \) for small \(X \) and \(v \). It is convenient to do this in dimensionless variables which we define as follows:

\[
\psi = n_0^{-1/2} \Psi, \quad \zeta = \frac{mc_0 \sqrt{2 \alpha}}{\hbar} x, \quad \tau = \frac{c_0 m}{\hbar \alpha} t,
\]

(63)

allowing one to rewrite (29) in the dimensionless form

\[
i \psi_\tau = -\psi_{\zeta \zeta} + (|\psi|^{2\alpha} - 1) \psi
\]

(64)

[here we used the relations (21)]. Also we will use the notation \(V = \sqrt{\frac{2 \alpha}{m \zeta}} \). Then looking for the dark soliton solution, i.e. one having form (25) and thus depending only on the running variable \(x - vt \) (what in dimensionless variables means dependence on \(\zeta = 2V \tau \)), and representing \(\psi = \eta \exp(i\theta) \) one obtains (see Appendix D) the link

\[
\theta_\zeta = -V \frac{1 - \eta^2}{\eta^2}
\]

(65)

and the equation for \(\eta \) (notice that according to (24) the boundary conditions now are \(\eta \rightarrow 1 \) and \(\theta_\zeta \rightarrow 0 \) as \(\zeta \rightarrow \pm \infty \))

\[
\eta_{\zeta \zeta} + (1 - \eta^{2\alpha}) \eta - V^2 \frac{1 - \eta^4}{\eta^3} = 0.
\]

(66)

The last equation can be integrated with respect to \(\zeta \) what gives

\[
P^2 = \frac{1}{\alpha + 1} (\eta^{2\alpha+2} - 1) + 1 - \eta^2 - V^2 \frac{(1 - \eta^2)^2}{\eta^2}
\]

(67)

where we designated \(\eta_c = P = P(\eta) \).

Now the energy of the soliton can be rewritten in the form (see Appendix D)

\[
E = \mathcal{E}_0 \frac{2\sqrt{2}}{\sqrt{\alpha}} \int_{\eta_m}^{1} \left[P^2(\eta) + \frac{(1 - \eta^2)^2}{\eta^2} V^2 \right] \frac{d\eta}{P(\eta)}
\]

(68)

where \(\mathcal{E}_0 \) was introduced in (70) and \(\eta_m \) determines the soliton amplitude in its center and solves the equation

\[
P(\eta_m) = 0.
\]

(69)

For a particular case of the zero-velocity dark soliton one has

\[
E_0 = \mathcal{E}_0 G_\alpha,
\]

(70)

where

\[
G_\alpha = \frac{2\sqrt{2}}{\sqrt{\alpha(\alpha + 1)}} \int_0^1 \sqrt{\eta^{2\alpha+2} - (\alpha + 1) \eta^2 + \alpha \eta^2} d\eta.
\]

(Notice that in this case \(\eta_m = 0 \), but \(P(\eta = 0) = \sqrt{\alpha/(\alpha + 1)} \neq 0 \).) Particular values of the energy for some relevant models are presented in Table 4.

2. Effective mass of a dark soliton.

Let us consider now a soliton moving with a small velocity, \(V \ll 1 \). To execute the expansion of the energy we first notice that from (69) and (70) it follows that in the leading order

\[
\eta_m \approx \sqrt{\frac{\alpha + 1}{\alpha}} V.
\]

(71)
Next, we introduce a constant \(\eta_0 \) which satisfies the condition \(\eta_m \ll \eta_0 \ll 1 \) and split the integral in (63) in two ones: \(E = E_1 + E_2 \) where

\[
E_1 = \mathcal{E}_0 \frac{2 \sqrt{2}}{\sqrt{\alpha}} \int_{\eta_0}^{1} \frac{d \eta}{P(\eta)}, \quad E_2 = \mathcal{E}_0 \frac{2 \sqrt{2}}{\sqrt{\alpha}} \int_{\eta_m}^{\eta_0} \frac{d \eta}{P(\eta)}.
\]

As it follows from (67),

\[
\frac{\partial P}{\partial V^2} = -\frac{1}{2 P} \frac{(1 - \eta^2)^2}{\eta^2}
\]

and thus in the limit \(V \to 0 \)

\[
\frac{dE_1}{dV^2} = \mathcal{E}_0 \frac{2 \sqrt{2}}{\sqrt{\alpha}} \int_{\eta_0}^{1} \left[\frac{1}{\alpha + 1} (\eta^{2\alpha+2} - 1) + 1 - \eta^2 \right] \]

\[
\times \frac{\partial}{\partial V^2} P \frac{d \eta}{P_0(\eta)} \approx \mathcal{E}_0 \frac{\sqrt{2}}{\sqrt{\alpha}} \int_{\eta_0}^{1} \frac{(1 - \eta^2)^2}{P_0(\eta)} \frac{d \eta}{\eta^2} \]

\[
\approx \mathcal{E}_0 \frac{\sqrt{2}}{\sqrt{\alpha}} \int_{0}^{1} \frac{d \eta}{\eta} \left[\frac{(1 - \eta^2)^2}{P_0(\eta)} \right] \frac{d \eta}{\eta} + \mathcal{E}_0 \sqrt{2(1 + \alpha)} \frac{\eta_0}{\alpha \eta_0} \tag{72}
\]

(to obtain the last line we substituted the lower limit by zero, due to fast convergence of the integral, and integrated by parts).

To calculate the derivative of \(E_2 \) we take into account that \(\eta \) is small over the whole range of integration. Thus

\[
E_2 \approx \mathcal{E}_0 \frac{2 \sqrt{2}}{\sqrt{\alpha}} \int_{\eta_0}^{\eta_m} \frac{\eta}{\sqrt{\eta^2 - \eta_m^2}} \frac{d \eta}{\eta} \]

\[
\approx \mathcal{E}_0 \frac{2 \sqrt{2}}{\sqrt{\alpha}} \eta_0 - \mathcal{E}_0 \sqrt{2} \frac{\eta_m^2}{\alpha + 1} \eta_0 \]

and in the limit \(V \to 0 \) [due to (71)],

\[
\frac{dE_2}{dV^2} = -\mathcal{E}_0 \sqrt{2(1 + \alpha)} \frac{\eta_0}{\alpha \eta_0}. \tag{73}
\]

Sum of (72) and (73) gives us the derivative we are looking for:

\[
\frac{dE_0}{dV^2} = \mathcal{E}_0 F_0, \quad F_0 = \sqrt{\frac{2}{\alpha}} \int_{0}^{1} \frac{d \eta}{\eta} \frac{(1 - \eta^2)^2}{P_0(\eta)} \frac{d \eta}{\eta}. \tag{74}
\]

B. Analysis based on the perturbation theory.

In Ref. [10] it has been argued that the phenomenological approach formulated above can be justified from the viewpoint of the original GP equation with help of the

(We recall that the subindex “0” on the l.h.s. stands for \(v = 0 \) and \(X = 0 \).) Finally, the definition of the effective mass \(m_* \), the explicit expression for the momentum \(P_0 \), and the last formula (74) yields the general expression for the mass of the dark soliton:

\[
m_* = \alpha \mathcal{E}_0 \frac{\epsilon_0^2}{\gamma^2}. \tag{75}
\]

In order to relate the mass of the soliton to the atomic mass \(m \), we recall that \(-dE/d\mu = N \) where \(N \) is the negative “total number of particles” associated with the soliton. Thus, \(m_* = m_*/N \) can be considered as the effective mass of a “solitonic” particle. In the limit \(V \to 0 \) the above quantities can be easily calculated to give

\[
N = \frac{\mathcal{E}_0}{mc_0^2} N_\alpha, \quad N_\alpha = \sqrt{2\alpha} \int_{0}^{1} \frac{1}{\eta^2} \frac{d \eta}{P_0(\eta)} \tag{76}
\]

and

\[
m_* = \frac{\alpha \mathcal{E}_0}{N_\alpha m}. \tag{77}
\]

In Table I we present examples of the effective mass for two relevant cases. From the provided values one can see that the effective mass of the soliton particle is bigger than the mass of a free particle: \(m_* > m \).

3. Frequency of oscillations of a dark soliton.

To conclude this subsection we compute the frequencies of oscillations of dark solitons in a trap, what can be done using the relation (62). To this end we notice that including the trap potential into the scheme developed in the preceding subsection, can be done by simple change the chemical potential \(\mu \) by \(\mu - U(X) \). Thus for the parabolic trap we have

\[
\frac{\partial E_0}{\partial X^2} = \frac{\omega^2}{2} \frac{\partial E_0}{\partial \mu} = \frac{\omega^2 N}{2} \tag{78}
\]

This leads us to the formula

\[
\omega_s = \frac{N_\alpha}{\alpha \mathcal{E}_0} \omega. \tag{79}
\]
the background cannot be considered as a constant, and the theory requires revision. The goal of the present subsection is to develop the modification of the perturbation theory and to obtain from it the exponent γ which describes change of the amplitude of oscillations of the GP dark soliton in a parabolic trap.

To this end we start with the dimensionless form of the one-dimensional GP equation [the variable are introduced in \[83\], see also Eq. \[84\]]

$$i \psi_\tau + \psi_{\zeta \zeta} - \frac{1}{2} \nu^2 \zeta^2 \psi - |\psi|^2 \psi = 0,$$

(80)

where $\nu \equiv \nu(\tau) = \hbar/(2^{1/2}c_0^2m) \omega(t)$. We assume that $\omega(t)$ is a slow function of time, what is expressed by the adiabaticity condition $\frac{1}{\nu} \left| \frac{d\nu}{d\tau} \right| \ll 1$. Accordingly, $\nu(\tau)$ is also a slow function. Notice that $\nu(0) = \nu_0 \ll 1$ as a condition for the local density approximation. We look for a solution of \[83\] in a form of the ansatz (analogous of the well known lens transformation)

$$\psi(\zeta, \tau) = e^{-i f(\tau)} \zeta^2 \frac{1}{\sqrt{L(\tau)}} \phi(\xi, \tilde{\tau}(\tau)),$$

(81)

where ξ is a function on time and on spatial coordinate given by $\xi = \zeta/\sqrt{L(\tau)}$, while $\tilde{\tau}$ is a new temporal variable related to the old one by the equation $\tilde{\tau}_\tau = 1/L$. The functions $L(\tau)$ and $f(\tau)$ are to be determined below. Substitution of \[83\] into \[80\] yields

$$i \phi_\tau + \phi_{\xi \xi} - |\phi|^2 \phi - \left(f_\tau + 4f^2 + \frac{1}{2} \nu^2 \right) L^2 \xi^2 \phi$$

$$ \quad - \frac{i}{2} \left(L_\tau - 4fL \right) \phi - \frac{i}{2} \left(L_\tau - 8fL \right) \xi \phi_\xi = 0.$$

(82)

Let us now require the trap frequency of the new equation (i.e. term proportional to $\xi^2 \phi$) to be constant, say $1/2\nu_0^2$, and dissipative terms, i.e. the linear with respect to ϕ, to vanish. This gives us two equations:

$$\left(f_\tau + 4f^2 + \frac{1}{2} \nu^2 \right) L^2 = \frac{1}{2} \nu_0^2$$

(83)

and

$$L_\tau = 4fL.$$

(84)

The obtained equations will be supplied by the natural initial conditions $f(0) = 0$ and $L(0) = 1$. Then Eq. \[82\] takes the form

$$i \phi_\tau + \phi_{\xi \xi} - |\phi|^2 \phi - \frac{1}{2} \nu_0^2 \xi^2 \phi = -2ifL \xi \phi_\xi.$$

(85)

We emphasize that the last equation is exact with no approximation made, so far.

Before the analysis of \[80\], let us consider Eqs. \[80\] and \[83\] in more details. They can be reduced to a single equation for L:

$$\frac{1}{2} L_{\tau \tau} + \nu^2 L^2 - \nu_0^2 = 0,$$

(86)

Due to adiabaticity the first term in \[80\] is small in comparison with the other ones. Neglecting that term, we find in the leading order

$$L = \frac{1}{\nu} \nu_0 \nu(\tau) \quad \text{and} \quad f = -\frac{\nu_0}{4\nu}.$$

(87)

Then, simple estimates give $L_{\tau \tau} \sim \nu^2 \left(\frac{1}{\nu^2} \left| \frac{d\nu}{d\tau} \right| \right)^2 \ll \nu^2$ and $L \approx \nu_0/\nu \sim 1$, what justifies the approximation made.

Next we introduce the notation R for the r.h.s. of \[83\]: $R \equiv -2ifL \xi \phi_\xi$. Since f is small (because of the adiabaticity of the change of ν) this term gives us a perturbation, which is a complementary to the perturbation introduced by a constant parabolic trap, provided ν_0 small, the case considered in detail in \[80\]. Due to their smallness, the effect of different perturbations on the dynamics of the soliton center is additive, allowing one to compute only the contribution of R to the dynamical equation of the soliton center and add it to the equation describing soliton in a stationary potential obtained in \[80\] [see Eq. (32) there]. We skip description of tedious but straightforward calculations \[26\] and present only the final result: the equation for the soliton coordinate, in terms of the rescaled by L variables, is given by

$$\frac{dX}{dr} = V - \frac{1}{2} \nu_0^2 \int_0^\tau X(\tau')d\tau' - \frac{1}{4} \left(\frac{\nu_0}{\nu} \right) V X.$$

(88)

Next we differentiate the last equation with respect to τ and eliminate the “dissipative” term by means of the substitution

$$X = Y(\tilde{\tau}) e^{i \tilde{\tau}}.$$

(89)
where
\[\vartheta = -\ln \left(\frac{V}{k_0^2} \right), \quad \delta = -\frac{V}{8}. \] (90)

Having done this and restoring the original variables we arrive at the final formula
\[X_0 \propto \nu^{-\gamma}, \quad \gamma = \frac{1}{2} + \delta. \] (91)

Comparing this result with \[10\] and \[13\] one can see a remarkable agreement. The perturbation theory, valid for relatively low densities of the condensate, and thus to the Gaussian background, corrects the law \[13\] based on the phenomenological approach, by means of small shift (recall that \(V \ll 1 \) and thus \(\delta \ll 1 \)) toward larger exponent which in the TF limit is given by \[10\]. Moreover, the perturbation theory introduces an explicit dependence of the exponent on the velocity (at this point it is relevant to recall also that the frequency itself does not depend on the soliton velocity). Finally we mention that the obtained result corroborates with the numerical results on the soliton velocity. (d) and (h).

C. A comment on small-amplitude solitons.

Small amplitude dark solitons of the NLS equation with a polynomial nonlinearity of any power of the non-linearity are described by the KdV equation \[23\] and they move with the sound velocity (or more precisely with a velocity slightly deviating from the sound velocity). While self consistent reduction of the 3D GP equation to one-dimensional KdV equation seems to be not possible for realistic condensates (as it is explained in Ref. \[24\]), the KdV being rather academic than practical allows one to predict some features of the underline GP equation.

Moreover, one can easily argue, that the small-amplitude limit of a dark soliton in a parabolic trap is not available. Indeed, existence of a soliton in a trap implies smallness of the soliton width \(\ell \) compared to the trap width \(\sqrt{\hbar/(m\omega)} \). Using the expression for the width of a dark soliton, which is given by \[24\], one immediately obtains the limitation \(\hbar \omega / m \lesssim c^2 - v^2 \). Thus the existence of a trap does not allow the truth small amplitude limit, which would correspond to \(v \to c \).

Let now formally compute the half-period of oscillations of a small-amplitude soliton in a parabolic trap. Under the half-period we understand the time necessary for a soliton to pass the distance between two turning points. To this end associate the velocity
\[c(x) = \omega \sqrt{\frac{\alpha}{2} (x_0^2 - x^2)} \] (92)
where \(x_0 = 2\mu/(m\omega^2) \), with the velocity of the soliton.

Then direct computation gives
\[\omega_{sol} = \frac{\pi}{\int_{-x_0}^{x_0} \frac{dx}{c(x)}} = \sqrt{\frac{\alpha}{2}} \omega. \] (93)

Thus for the small amplitude GP dark soliton in a parabolic trap we obtain \(\omega/\sqrt{2} \), what coincides with the results known for relatively large velocity for the soliton. Eq. \[93\] also gives \(\omega_s = \omega \) for \(\alpha = 2 \), the result recently reported in \[27\].

We emphasize however that presently there are no available results confirming validity of the law \[93\] for small amplitude NLS solitons. The main physical reason for this, mentioned in \[9\], is that in the vicinity of the turning points the density becomes small enough making the problem to be linear and thus not allowing solitonic propagation due to dominating dispersion. Mathematically, the problem occurs due to divergence (see e.g. the second of equations (11) in Ref. \[25\]) of the small amplitude expansion near the points where the condensate density, and thus the speed of sound, in the TF approximation becomes zero (see also discussion of the failure of the small amplitude limit in \[11\]).

VI. CONCLUSION

In the paper we presented development of the theory suggested in the earlier publication \[10\], providing detailed description of the one-dimensional dynamics of a dark soliton in a Bose-Einstein condensate confined by an external potential. The theory is based on the local density approximation and allows one to interpret the dark soliton as a hamiltonian particle. We addressed various generalizations of the theory including the nonlinearity of a general polynomial type as well as non-parabolic potential. We have obtained that the dependence of the amplitude of the soliton oscillations in a external trap depends on the adiabatically changing frequency through the scaling law \(X_0 \propto \omega^{-\gamma} \) where the exponent \(\gamma \) depends on the type of the nonlinearity and on the type of the confining potential. It turns out also that the frequency dependence of the amplitude of the oscillations depends also on the density of the condensate and on the initial velocity, even in the cases when the frequency itself is independent on the above quantities as in the case of the standard nonlinear Schrödinger dark solitons. Also the obtained scaling law in a general case appears to be very different from the corresponding law for the linear oscillator.

We dedicated special attention to the cases of dark solitons within the framework of the Gross-Pitaevskii and quintic nonlinear Schrödinger models. We also have shown that in the limiting case of slow, and thus large-amplitude, solitons one can obtain the general explicit expressions for the effective mass of the dark soliton, considered as a quasi-particle, and for the frequency of its oscillations in the external confining trap.
The results have been verified numerically, showing good agreement with theory, and were shown to be in agreement with outcomes of the direct perturbation theory for solitons.

Acknowledgments

V.V.K. thanks D. E. Pelinovsky for sending the results of Ref [11] and J. Brand for the useful comments. V.A.B. acknowledges support of the FCT grant SFRH/BPD/5632/2001. The work of V. A. B. and V. V. K. was supported by the grant POCI/FIS/56237/2004.

APPENDIX A: ESTIMATES FOR THE BACKGROUND

In the present appendix we provide estimates for the last two terms in (37). For the sake of simplicity the consideration will be restricted to the case of a polynomial parabolic trap (39).

Let us consider the behavior of the function \(F(x) \) in the vicinity of the point \(x \ll L_0 \) (we recall that \(L_0 \) is an effective trap length). The background is obviously an even function of the trap what allows us to look for its solution in a form of the expansion

\[
F = 1 + \sum_{k=1}^{\infty} F_k \zeta^k, \quad \zeta = x^2. \tag{A1}
\]

More specifically we are looking for the coefficients \(F_k \), all of which become zero in the homogeneous case when \(\omega = 0 \). It follows directly from (33) that

\[
\mu = g n_0^a - \frac{\hbar^2}{m} F_1. \tag{A2}
\]

In the homogeneous condensate the chemical potential is given by \(\mu_0 = g n_0^a \) and thus there should be verified that \(F_1 \ll m g n_0^a / \hbar^2 \) for \(\omega \) small enough.

Next from (33) one can obtain the recurrent formulas

\[
\frac{\hbar^2}{2m} (2k + 2)(2k + 1) F_{k+1} = \frac{g n_0^a}{k!} \left(\frac{d^k F^{2a+1}}{d\zeta^k} \right)_{\zeta=0} - \mu F_k \quad \text{for } k < r \tag{A3}
\]

\[
\frac{\hbar^2}{2m} (2r + 2)(2r + 1) F_{r+1} = \frac{g n_0^a}{r!} \left(\frac{d^r F^{2a+1}}{d\zeta^r} \right)_{\zeta=0} - \mu F_r + \frac{m}{2} \omega^{2r}. \tag{A4}
\]

In order to satisfy the constrain \(F_k = 0 \) at \(\omega = 0 \), we require \(F_{r+1} \ll F_r \). From (A3) and (A4) we obtain the following asymptotic relations

\[
F_k = \mathcal{O} (F_r) = \mathcal{O} (\omega^{2r}), \quad k \leq r \quad \text{and} \quad F_{r+1} = o (\omega^{2r})
\]

which in their turn guarantee the smallness of the integrals

\[
\int_{|x-X|<\delta} \frac{F_{xx} n(x)}{F} dx \propto \omega^{2r} \quad \text{and} \quad \int_{|x-X|<\delta} \frac{d^2 n_0(x)}{dx^2} dx \propto \omega^{2r}
\]

when \(\omega \to 0 \).

APPENDIX B: ON THE LINK AMONG FORMULAS (64), (65) AND (66)

In terms of the amplitude \(\eta \) and the phase \(\theta \), both depending on \(\zeta - 2 V \tau \), Eq. (64) can be rewritten in the form of a system

\[
-2V \zeta = \frac{\eta \kappa}{\eta} - \theta_z^2 + 1 - \eta^{2a} \tag{B1}
\]

\[
2V \eta = 2 \eta \theta_z + \eta \theta_{zz} \tag{B2}
\]

Multiplying (B2) by \(\eta \), integrating with respect to \(\theta \) and using the boundary conditions \(\eta \to 1 \) and \(\theta \to \text{const} \) as \(\zeta \to \pm \infty \), one obtains the link (65).

In order to obtain (66) it is enough to substitute \(\theta_z \) expressed in terms of \(\eta \) through the relation (65) in (B1) and multiply the result by \(\eta \).

APPENDIX C: ADIABATIC INTEGRAL FOR THE GP SOLITON IN A POLYNOMIAL TRAP

The adiabatic integral for the GP dark soliton is computed, using (10) and links (40) and (20) for \(\alpha = 1 \), as follows

\[I = -4\hbar \int_{0}^{X_0} n \left(v \sqrt{1 - \frac{v^2}{c^2}} + \arcsin \left(\frac{v}{c} \right) \right) dx \]

\[= \frac{2^{1+1/(2r)} \pi^{1-1/(2r)} \hbar}{rg_\omega} \int_{c^r}^{e^c} \frac{v(v^2 + u^2)}{(u^2 - v^2)^{1/(2r) - 1/(2r)}} \left(\frac{vu}{v^2 + u^2} + \arcsin \left(\frac{v}{\sqrt{u^2 + v^2}} \right) \right) dv \]

\[= \frac{\hbar m^{1-1/(2r)} y^{2+1/r}}{g_\omega} G_r \]

where the constant \(G_r \) is given by

\[G_r = \frac{2^{1+1/(2r)}}{r} \int_{1}^{1} \frac{y(1 + y^2)}{(1 - y^2)^{1-1/(2r)}} \left[\frac{y}{1 + y^2} + \arcsin \left(\frac{y}{\sqrt{1 + y^2}} \right) \right] dy. \]

(APPENDIX D: CALCULATION OF THE ENERGY (68))

Starting with the definition \((26), (27) \), written as

\[E = E_0 \int_{-\infty}^{\infty} \left[P^2 + \frac{1}{\alpha + 1} (\eta^{2\alpha + 2} - 1) + 1 - \eta^2 \right. \]

\[+ \left. \frac{(1 - \eta^2)^2}{\eta^2} V \right] d\zeta \]

(D1)

and excluding \(P(\eta) \) with the help of \((22) \) one obtains

\[E = 2E_0 \int_{-\infty}^{\infty} \left[\frac{1}{\alpha + 1} (\eta^{2\alpha + 2} - 1) + 1 - \eta^2 \right] d\zeta \]

\[= 4E_0 \int_{\eta_0}^{1} \left[\frac{1}{\alpha + 1} (\eta^{2\alpha + 2} - 1) + 1 - \eta^2 \right] \frac{d\eta}{P(\eta)}. \]

Formula (68) follows from the last equality.

[1] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, *Theory of solitons: Inverse Scattering Method* (Consultants Bureau, New York, 1980).
[2] V. E. Zakharov, Sov. Phys. JETP 33, 538 (1971).
[3] L. P. Pitaevskii, and S. Stringari, *Bose-Einstein Condensation* (Oxford University Press, Oxford, 2003).
[4] According to widespread terminology a dark (or grey) soliton is a localized decrease of density, propagating in a homogeneous medium without deformation of its form.
[5] T. Tsuzuki, J. Low Temp. Phys. 4, 441 (1971).
[6] M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye, and W. Ketterle, Phys. Rev. Lett. 79, 553 (1997); S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999); K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Nature 417, 175 (2002).
[7] P. O. Fedichev, A. E. Muryshev, and G. V. Shlyapnikov, Phys. Rev. A, 60 3220 (1999).
[8] Th. Busch and J. R. Anglin, Phys. Rev. Lett. 84, 2298 (2000).
[9] V. A. Brazhnyi and V. V. Konotop, Phys. Rev. A 68, 043613 (2003).
[10] V. V. Konotop and L. Pitaevskii, Phys. Rev. Lett. 93, 240403 (2004).
[11] D. E. Pelinovsky, D. J. Frantzeskakis, and P. G. Kevrekidis, Phys. Rev. E 72, 016615 (2005).
[12] It is to be clarified here that all the papers [9, 10, 11] used different analytical approaches. In particular, the perturbation theories exploited in [9, 10] and [11] differ with respect to the imposed boundary conditions at \(x \rightarrow \pm \infty \). They are the conditions of the constant (i.e. perturbation independent) phase (i.e. \(\arg \Psi(x, t) \)) [9, 10] and time dependent (and thus perturbation dependent) phase [11]. The difference in complexity of each of approaches as well as their physical relevance can be appreciated to the full extent by studying the convergence of the complete set of the integrals of motion. This last task, however, goes beyond the scope of the present paper.
[13] V. V. Konotop and L. Vázquez, *Nonlinear Random Waves*. (World Scientific, Singapore, 1994).
[14] see e.g. L. D. Landau, and E. M. Lifshitz, *Statistical Physics*, (Pergamon, Oxford, 1960).
[15] There are also corrections due to dependence of the two-body scattering amplitude on momenta. They, however, goes beyond the scope of the present paper.
[16] M. Girardeau, J. Math. Phys. (NY), 1, 516 (1960).
[17] E. H. Lieb and R. Seiringer, Phys. Rev. Lett. 91, 150401 (2003).
[18] E. B. Kolomeisky, T. J. Newman, J. P. Straley, and Xiaoyi Qi, Phys. Rev. Lett. 85, 1146 (2000).
[19] L. Salasnich, A. Parola and L. Reatto, Phys. Rev. A 65, 043614 (2002).
[20] V. V. Konotop and V. E. Vekslerchik, Phys. Rev. E 49, 2397 (1994).
[21] D. J. Frantzeskakis, S. G. Popov, S. G. Porsezian, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
[22] L. D. Landau, and E. M. Lifshitz, *Statistical Physics*, (Pergamon, Oxford, 1960).
Part 1. (Pergamon Press, Oxford 1986).

[23] F. G. Bass, V. V. Konotop, and S. A. Pusenko, Phys. Rev. A 46, 4185 (1992).

[24] V. A. Brazhnyi and V. V. Konotop, Phys. Rev. E 72, 026616 (2005)

[25] D. J. Frantzeskakis, N. P. Proukakis, and P. G. Kevrekidis Phys. Rev. A 70, 015601 (2004).

[26] Derivation of the final equation is reduced to substitution of the expression for the unperturbed dark soliton into the function \(R \) with subsequent calculation of the equations of the direct perturbation theory for dark solitons given by (B1)-(B3) in Ref. [9], where for our purposes it is enough to keep only the leading order.