Abstract

In this paper we present an approach to reduce data sparsity problems when translating from morphologically rich languages into less inflected languages by selectively stemming certain word types. We develop and compare three different integration strategies: replacing words with their stemmed form, combined input using alternative lattice paths for the stemmed and surface forms and a novel hidden combination strategy, where we replace the stems in the stemmed phrase table by the observed surface forms in the test data. This allows us to apply advanced models trained on the surface forms of the words.

We evaluate our approach by stemming German adjectives in two German→English translation scenarios: a low-resource condition as well as a large-scale state-of-the-art translation system. We are able to improve between 0.2 and 0.4 BLEU points over our baseline and reduce the number of out-of-vocabulary words by up to 16.5%.

1 Introduction

Statistical machine translation (SMT) is currently the most promising approach to automatically translate text from one natural language into another. While it has been successfully used for a lot of languages and applications, many challenges still remain. Translating from a morphologically rich language is one such challenge where the translation quality of modern systems is often still not sufficient for many applications.

Traditional SMT approaches work on a lexical level, that is every surface form of a word is treated as its own distinct token. This can create data sparsity problems for morphologically rich languages, since the occurrences of a word are distributed over all its different surface forms. This problem becomes even more apparent when translating from an under-resourced language, where parallel training data is scarce.

When we translate from a highly inflected language into a less morphologically rich language, not all syntactic information encoded in the surface forms may be needed to produce an accurate translation. For example, verbs in French must agree with the noun in case and gender. When we translate these verbs into English, case and gender information may be safely discarded.

We therefore propose an approach to overcome these sparsity problems by stemming different morphological variants of a word prior to translation. This allows us to not only estimate translation probabilities more reliably, but also to translate previously unseen morphological variants of a word, thus leading to a better generalization of our models. To fully maximize the potential of our SMT system, we looked at three different integration strategies. We evaluated hard decision stemming, where all adjectives are replaced by their stem, as well as soft integration strategies, where we consider the words and their stemmed form as translation alternatives.

2 Related Work

The specific challenges arising from the translation of morphologically rich languages have been widely studied in the field of SMT. The factored
3 Stemming

In order to address the sparsity problem, we try to cluster words that have the same translation probability distribution, leading to higher occurrence counts and therefore more reliable translation statistics. Because of the respective morphological properties of our source and target language, word stems pose a promising type of cluster. Moreover, stemming alleviates the OOV problem for unseen morphological variants. Because of these benefits, we chose stem clustering in this paper, however, our approach can work on different types of clusters, e.g. synonyms.

Morphological stemming prior to translation has to be done carefully, as we are actively discarding information. Indiscriminately stemming the whole source corpus hurts translation performance, since stemming algorithms make mistakes and often too much information is lost.

Adding the stem of every word as an alternative to our source sentence greatly increases our search space. Arguably the majority of the time we need the surface form of a word to make an informed translation decision. We therefore propose to keep the search space small by only stemming selected word classes which have a high diversity in inflections and whose additional morphological information content can be safely disregarded.

For our use case of translating from German to English, we chose to focus only on stemming adjectives. Adjectives in German can have five different suffixes, depending on the gender, number and case of the corresponding noun, whereas in English adjectives are only rarely inflected. We can therefore discard the information encoded in the suffix of a German adjective without losing any vital information for translation.

3.1 Degrees of Comparison

While we want to remove gender, number and case information from the German adjective, we want to preserve its comparative or superlative nature. In addition to its base form (e.g. schön [pretty]), a German adjective can have one of five suffixes (-e, -em, -en, -er, -es). However, we cannot simply remove all suffixes using fixed rules, because the comparative base form of an adjective is identical to the inflected masculine, nominative, singular form of an attributive adjective.

For example, the inflected form schöner of the adjective schön is used as an attributive adjective in

130
the phrase schön Mann [handsome man] and as a comparative in the phrase schön wird es nicht [won’t get prettier]. We can stem the adjective in the attributive case to its base form without any confusion (schön Mann), as we generate a form that does not exist in proper German. However, were we to apply the same stemming to the comparative case, we would lose the degree of comparison and still generate a valid German sentence (schön wird es nicht [won’t be pretty]) with a different meaning than our original sentence. In order to differentiate between cases in which stemming is desirable and where we would lose information, a detailed morphological analysis of the source text prior to stemming is vital.

3.2 Implementation

We used readily available part-of-speech (POS) taggers, namely the TreeTagger (Schmid, 1994) and RFTagger (Schmid and Laws, 2008), for morphological analysis and stemming. In order to achieve accurate results, we performed standard machine translation preprocessing on our corpora before tagging. We discarded exceedingly long sentences and sentence pairs with a large length difference from the training data. Special dates, numbers and symbols were normalized and we smart-cased the first letter of every sentence. Typically preprocessing for German also includes splitting up compounds into their separate parts. However, this would confuse the POS taggers, which have been trained on German text with proper compounds. Furthermore, our compound splitting algorithm might benefit from a stemmed corpus, providing higher occurrence counts for individual word components. We therefore refrain from compound splitting before tagging and stemming.

We only stemmed words tagged as attributive adjectives, since only they are inflected in German. Predicative adjectives are not inflected and therefore were left untouched. Since we want to retain the degree of comparison, we used the fine-grained tags of the RFTagger to decide when and how to stem. Adjectives tagged as comparative or superlative were stemmed through the use of fixed rules. For all others, we used the lemma output by the TreeTagger, since it is the same as the stem and was already available in our system.

Finally, our usual compound splitting (Koehn and Knight, 2003) was trained and performed on the stemmed corpus.

4 Integration

After clustering the words into groups that can be translated in the same or at least in a similar way, there are different possibilities to use them in the translation system. A naive strategy is to replace each word by its cluster representative, called hard decision stemming. However, this carries the risk of discarding vital information. Therefore we investigated techniques to integrate both, the surface forms as well as the word stems, into the translation system. In the combined input, we add the stemmed adjectives as translation alternatives to the preordering lattices. Since this poses problems for the application of more advanced translation models during decoding, we propose the novel hidden combination technique.

4.1 Hard Decision Stemming

Assuming that the translation probabilities of the word stems can be estimated more reliably than those of the surface forms, the most intuitive strategy is to consequently replace each surface form by its stem. This has the advantage that afterwards the whole training pipeline can be performed in exactly the same manner as it is done in the baseline system. For tuning and testing, the adjectives in the development and test data are stemmed and replaced in the same manner as in the training data.

4.2 Combined Input

Mistakes made during hard decision stemming cannot be recovered. Soft integration techniques avoid this pitfall by deferring the decision whether to use the stem or surface form of a word until decoding. We enable our system to choose by combining both the surface form based (default) phrase table and the word stem based (stemmed) phrase table log-linearly. The weights of the phrase scores are then learned during optimization.

In order to be able to apply both phrase tables at the same time, we need to modify the input of the decoder. Our baseline system already uses preordering lattices, which encode different reordering possibilities of the source sentence. We replaced every edge in the lattice containing an adjective by two edges: one containing the surface form and the other the word stem. This allows the decoder to choose which word form to use depending on the word and its context.
4.3 Hidden Combination

While we are able to modify our phrase table to use both surface forms and stems in the last strategy, other models in our log-linear system suffer from the different types of source input. For example, the bilingual language model (Niehues et al., 2011) is based on tokens of target words and their aligned source words. In training, we can use either the stemmed corpus or the original one, but during decoding a mixture of stems and surface forms occurs. For the unknown word forms the scores will not be accurate and the performance of our model will suffer. Similar problems occur when using other translation models such as neural network based translation models.

We therefore developed a novel strategy to integrate the word stems into the translation system. Instead of stemming the input to fit the stemmed phrase table, we modified the stemmed phrase table so that it can be applied to the surface forms. The workflow is illustrated in Figure 1. We extracted all the stem mappings from the development and test data and compiled a stem lexicon. This maps the surface forms observed in the dev and test data to their corresponding stems. We then applied this lexicon in reverse to our stemmed phrase table, in effect duplicating every entry containing a stemmed adjective with the inflected form replacing the stem. Afterwards this “unstemmed” phrase table is log-linearly combined with the default phrase table and used for translation.

This allows us to retain our generalization won by using word clusters to estimate phrase probabilities, and still use all models trained on the surface forms. Using the hidden combination strategy, stemming can easily be implemented into current state-of-the-art SMT systems without the need to change any of the advanced models beyond the phrase table. This makes our approach highly versatile and easy to implement for any number of system architectures and languages.

5 Experiments

Since we expect stemming to have a larger impact in cases where training data is scarce, we evaluated the three presented strategies on two different scenarios: a low-resource condition and a state-of-the-art large-scale system. In both scenarios we stemmed German adjectives and translated from German to English.

In our low-resource condition, we trained an SMT system using only training data from the TED corpus (Cettolo et al., 2012). TED translations are currently available for 107 languages and are being continuously expanded. Therefore, there is a high chance that a small parallel corpus of translated TED talks will be available in the chosen language.

In the second scenario, we used a large-scale state-of-the-art German→English translation system. This system was trained on significantly more data than available in the low-resource condition and incorporates several additional models.

5.1 System Description

The low-resource system was trained only on the TED corpus provided by the IWSLT 2014 machine translation campaign, consisting of 172k lines. As monolingual training data we used the target side of the TED corpus.

The large-scale system was trained on the European Parliament Proceedings, News Commentary, TED and Common Crawl corpora provided for the IWSLT 2014 machine translation campaign (Cettolo et al., 2014), encompassing 4.69M lines. For the monolingual training data we used the target side of all bilingual corpora as well as the News Shufle and the Gigaword corpus.

Before training and translation, the data is preprocessed as described in Section 3.2. The noisy Common Crawl corpus was filtered with an SVM classifier as described by Mediani et al. (2011). After preprocessing, the parallel corpora are word-aligned with the GIZA++ toolkit (Gao and Vo-
gol, 2008) in both directions. The resulting alignments are combined using the grow-diag-final-and heuristic. The Moses toolkit (Koehn et al., 2007) is used for phrase extraction. For the large-scale system, phrase table adaptation combining an in-domain and out-of-domain phrase table is performed (Niehues and Waibel, 2012). All translations are generated by our in-house phrase-based decoder (Vogel, 2003).

We used 4-gram language models (LMs) with modified Kneser-Ney smoothing, trained with the SRILM toolkit (Stolcke, 2002) and scored in the decoding process with KenLM (Heafield, 2011).

All our systems include a reordering model which automatically learns reordering rules based on part-of-speech sequences and, in case of the large-scale system, syntactic parse tree constituents to better match the target language word order (Rottmann and Vogel, 2007; Niehues and Kolss, 2009; Herrmann et al., 2013). The resulting reordering possibilities for each source sentence are encoded in a lattice.

For the low-resource scenario, we built two systems. One small baseline with only one phrase table and language model, as well as aforementioned POS-based preordering model, and an advanced system using an extended feature set of models that are also used in the large-scale system. The extended low-resource and the large-scale system include the following additional models.

A bilingual LM (Niehues et al., 2011) is used to increase the bilingual context during translation beyond phrase boundaries. It is built on tokens consisting of a target word and all its aligned source words. We also used a 9-gram cluster LM built on 100 automatically clustered word classes using the MKCLS algorithm (Och, 1999).

The large-scale system also uses an in-domain LM trained on the TED corpus and a word-based model trained on 10M sentences chosen through data selection (Moore and Lewis, 2010).

In addition to the lattice preordering, a lexicalized reordering model (Koehn et al., 2005) which stores reordering probabilities for each phrase pair is included in both extended systems.

We tune all our systems using MERT (Venugopal et al., 2005) against the BLEU score. Since the systems have a varying amount of features, we reoptimized the weights for every experiment.

For the low-resource system, we used IWSLT test 2012 as a development set and IWSLT test 2011 as test data. For the large-scale system, we used IWSLT test 2011 as development data and IWSLT test 2012 as test data.

All results are reported as case-sensitive BLEU scores calculated with one reference translation.

5.2 Low-resource Condition

The results for the systems built only on the TED corpus are summarized in Table 1 for the small system and Table 2 for the extended system. The baseline systems reach a BLEU score on the test set of 30.25 and 31.33 respectively.

In the small system we could slightly improve to 30.30 using only stemmed adjectives. However, in the extended system the hard decision strategy could not outperform the baseline. This indicates that for words with sufficient data it might be better to translate the surface forms.

Adding the stemmed forms as alternatives to the preordering lattice leads to an improvement of 0.2 BLEU points over the small baseline system. In the larger system with the extended features set, the combined input performed better than the hard decision stemming, but is still 0.1 BLEU points below the baseline. With this strategy we do not tap the full potential of our extended system, as there is still a mismatch between the combined input and the training data of the advanced models.

The hidden combination strategy rectifies this problem, which is reflected in the results. Using the hidden combination we could achieve our best BLEU score for both systems. We could improve by almost 0.4 BLEU points over the small baseline system and 0.3 BLEU points on the system using extended features.

Table 1: TED low-resource small systems results.

System	Dev	Test
Baseline	28.91	30.25
Hard Decision	29.01	30.30
Combined Input	29.13	30.47
Hidden Combination	29.25	30.62

Table 2: TED extended features systems results.

System	Dev	Test
Baseline	29.73	31.33
Hard Decision	29.74	30.84
Combined Input	29.97	31.22
Hidden Combination	29.87	31.61
5.3 Large-scale System

In order to assess the impact of our stemming on a state-of-the-art system, we tested our techniques on a large-scale system using training data from several domains. The results of these experiments are summarized in Table 3. The baseline system achieved a BLEU score of 30.89 on the test set.

As in the low-resource condition, the hard decision to use only the stems causes a slight drop in performance. Given the large amount of training data, the problem of having seen a word few times is much less severe than before.

When we combine the inputs, we can improve the translation quality to our best score of 31.10 BLEU points. The hidden combination performs similarly. By using combined input or hidden combination, we achieved a gain of 0.2 BLEU points over the baseline.

5.4 Further Analysis

In this work we have focused on selectively stemming only a small subset of our input text, namely adjectives. We therefore do not expect to see a large difference in BLEU score in our systems and indeed the improvements, while existent, are moderate. It is a well known shortcoming of automatic metrics that they cannot differentiate between acceptable translation alternatives and errors. Since time and monetary constraints did not allow us to perform a full-scale human evaluation, we use the OOV rate and manual inspection to demonstrate the benefits of our approach.

For a monolingual user of machine translation systems, even an imperfect translation will be better than no translation at all. We therefore looked at the out-of-vocabulary (OOV) rate of our systems.

477 OOV words occurred in the test set of the low-resource baseline. This means of the 1433 lines in our test set, on average every third contained an untranslated word. With stemming we were able to translate 79 of those words and reduce the number of OOV words by 16.5%. Even in the large-scale system, which is trained on a large amount of data and therefore has an already low OOV rate, we achieved a decrease of 4%. Figure 2 shows an example sentence where we managed to translate two previously OOV words using the hidden combination strategy. Furthermore, stemming can also improve our word choices as shown in the example in Figure 3.

6 Conclusion

In this paper we addressed the problem of translating from morphologically rich languages into less inflected languages. The problem of low occur-

System	Dev	Test
Baseline	38.30	30.89
Hard Decision	38.25	30.82
Combined Input	**38.65**	**31.10**
Hidden Combination	38.40	31.08

Table 3: IWSLT large-scale systems results.
reference counts for surface forms and high out-of-vocabulary rates for unobserved surface forms can be alleviated by stemming words.

We showed that stemming has to be done carefully, since SMT systems are highly sensitive to lost information. Given our use case of German to English translation, we chose to only stem adjectives, which can have five suffixes depending on gender, number and case of the corresponding noun. We took special care to ensure comparative and superlative adjectives retained their degree of comparison after stemming.

As an alternative to the hard decision strategy, where every word is replaced by its stem, we proposed two soft integration techniques incorporating the stems and surface forms as alternative translation paths in the preordering lattices. State-of-the-art SMT systems consist of a log-linear combination of many advanced models. Combining the surface forms and word stems posed problems for models relying on source side tokens. We therefore developed a novel hidden combination technique, where the word stems in the phrase table are replaced by the observed surface forms in the test data. This allowed us to use the more reliably estimated translation probabilities calculated on the word stems in the decoder while simultaneously applying all our other models to the surface forms of the words.

We evaluated our approach on German→English translation in two scenarios, one low-resource condition and a large-scale state-of-the-art SMT system. Given the low-resource condition, we evaluated a small, basic system as well as a more sophisticated system using an extended feature set. Using the hidden combination strategy, we were able to outperform the baseline systems in all three experiments by 0.2 up to 0.4 BLEU points. While these improvements may seem moderate, they were achieved solely through the modification of adjectives. We were also able to show that our systems generalized better than the baseline as evidenced by the OOV rate, which could be decreased by 16.5% in the low-resource condition.

Acknowledgments
The project leading to this application has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement n° 645452.

References
Cettolo, M., C. Girardi, and M. Federico. 2012. WIT3: Web Inventory of Transcribed and Translated Talks. In Proceedings of the 16th Annual Meeting of the European Association for Machine Translation, Trento, Italy.

Cettolo, M., J. Niehues, S. Stüker, L. Bentivogli, and M. Federico. 2014. Report on the 11th IWSLT Evaluation Campaign, IWSLT 2014. In Proceedings of the 11th International Workshop on Spoken Language Translation, Lake Tahoe, California, USA.

Dyer, C., S. Muresan, and P. Resnik. 2008. Generalizing Word Lattice Translation. In Proceedings of the 46th Annual Meeting of the ACL: Human Language Technologies, Columbus, Ohio, USA.

Gao, Q. and S. Vogel. 2008. Parallel Implementations of Word Alignment Tool. In Proceedings of the Software Engineering, Testing, and Quality Assurance for Natural Language Processing, Columbus, Ohio, USA.

Hardmeier, C., A. Bisazza, M. Federico, and F.B. Kessler. 2010. FBK at WMT 2010: Word Lattices for Morphological Reduction and Chunk-based Reordering. In Proceedings of the Fifth Workshop on Statistical Machine Translation and Metrics MATR, Uppsala, Sweden.

Heafield, K. 2011. KenLM: Faster and Smaller Language Model Queries. In Proceedings of the Sixth Workshop on Statistical Machine Translation, Edinburgh, UK.

Herrmann, T., J. Niehues, and A. Waibel. 2013. Combining Word Reordering Methods on Different Linguistic Abstraction Levels for Statistical Machine Translation. In Seventh Workshop on Syntax, Semantics and Structure in Statistical Translation, Atlanta, Georgia, USA.

Koehn, P. and H. Hoang. 2007. Factored Translation Models. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, Czech Republic.
Koehn, P. and K. Knight. 2003. Empirical Methods for Compound Splitting. In *Proceedings of the 10th Conference of the European Chapter of the ACL*, Budapest, Hungary.

Koehn, P., A. Axelrod, A.B. Mayne, C. Callison-Burch, M. Osborne, and D. Talbot. 2005. Edinburgh System Description for the 2005 IWSLT Speech Translation Evaluation. In *Proceedings of the 2nd International Workshop on Spoken Language Translation*, Pittsburgh, Pennsylvania, USA.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. 2007. Moses: Open Source Toolkit for Statistical Machine Translation. In *Proceedings of the 45th Annual Meeting of the ACL*, Prague, Czech Republic.

Macherey, K., A. Dai, D. Talbot, A. Popat, and F. Och. 2011. Language-independent Compound Splitting with Morphological Operations. In *Proceedings of the 49th Annual Meeting of the ACL: Human Language Technologies*, Portland, Oregon, USA.

Mediani, M., E. Cho, J. Niehues, T. Herrmann, and A. Waibel. 2011. The KIT English-French Translation Systems for IWSLT 2011. In *Proceedings of the Eights International Workshop on Spoken Language Translation*, San Francisco, California, USA.

Moore, R.C. and W. Lewis. 2010. Intelligent Selection of Language Model Training Data. In *Proceedings of the 48th Annual Meeting of the ACL*, Uppsala, Sweden.

Niehues, J. and M. Kolss. 2009. A POS-based Model for Long-Range Reorderings in SMT. In *Proceedings of the Fourth Workshop on Statistical Machine Translation*, Athens, Greece.

Niehues, J. and A. Waibel. 2011. Using Wikipedia to Translate Domain-Specific Terms in SMT. In *Proceedings of the Eights International Workshop on Spoken Language Translation*, San Francisco, California, USA.

Niehues, J. and A. Waibel. 2012. Detailed Analysis of Different Strategies for Phrase Table Adaptation in SMT. In *Proceedings of the Tenth Conference of the Association for Machine Translation in the Americas*, San Diego, California, USA.

Niehues, J., T. Herrmann, S. Vogel, and A. Waibel. 2011. Wider Context by Using Bilingual Language Models in Machine Translation. In *Proceedings of the Sixth Workshop on Statistical Machine Translation*, Edinburgh, UK.

Och, F.J. 1999. An Efficient Method for Determining Bilingual Word Classes. In *Proceedings of the Ninth Conference of the European Chapter of the ACL*, Bergen, Norway.

Rottmann, K. and S. Vogel. 2007. Word Reordering in Statistical Machine Translation with a POS-Based Distortion Model. In *Proceedings of the 11th International Conference on Theoretical and Methodological Issues in Machine Translation*, Skövde, Sweden.

Schmid, H. and F. Laws. 2008. Estimation of Conditional Probabilities with Decision Trees and an Application to Fine-Grained POS Tagging. In *Proceedings of the 22nd International Conference on Computational Linguistics*, Manchester, UK.

Schmid, H. 1994. Probabilistic Part-of-Speech Tagging Using Decision Trees. In *Proceedings of the International Conference on New Methods in Language Processing*, Manchester, UK.

Stolcke, A. 2002. SRILM – An Extensible Language Modeling Toolkit. In *Proceedings of the International Conference of Spoken Language Processing*, Denver, Colorado, USA.

Talbot, D. and M. Osborne. 2006. Modelling Lexical Redundancy for Machine Translation. In *Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the ACL*, Sydney, Australia.

Venugopal, A., A. Zollman, and A. Waibel. 2005. Training and Evaluation Error Minimization Rules for Statistical Machine Translation. In *Proceedings of the Workshop on Data-driven Machine Translation and Beyond*, Ann Arbor, Michigan, USA.

Vogel, S. 2003. SMT Decoder Dissected: Word Reordering. In *Proceedings of the IEEE International Conference on Natural Language Processing and Knowledge Engineering*, Beijing, China.

Weller, M., A. Fraser, and S. Schulte im Walde. 2013a. Using Subcategorization Knowledge to Improve Case Prediction for Translation to German. In *Proceedings of the 51st Annual Meeting of the ACL*, Sofia, Bulgaria.

Weller, M., M. Kisselew, S. Smekalova, A. Fraser, H. Schmid, N. Durrani, H. Sajjad, and R. Farkas. 2013b. Munich-Edinburgh-Stuttgart Submissions of OSM Systems at WMT13. In *Proceedings of the Eighth Workshop on Statistical Machine Translation*, Sofia, Bulgaria.

Wuebker, J. and H. Ney. 2012. Phrase Model Training for Statistical Machine Translation with Word Lattices of Preprocessing Alternatives. In *Proceedings of the Seventh Workshop on Statistical Machine Translation*, Montreal, Canada.

Yang, M. and K. Kirchhoff. 2006. Phrase-Based Backoff Models for Machine Translation of Highly Inflected Languages. In *Proceedings of the 11th Conference of the European Chapter of the ACL*, Trento, Italy.