The non-synonymous mutation in bovine SPP1 gene influences carcass weight

Hirokazu Matsumoto a,*, Ryosuke Kohara a, Makoto Sugi a, Azumi Usui a, Kenji Oyama b, Hideyuki Mannen c, Shinji Sasazaki c

a Laboratory of Animal Genetics, Faculty of Agriculture, Tokai University, Kamakura, 240-8542, Japan
b Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Kusatsu, Shiga, 525-2110, Japan
c Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan

A R T I C L E I N F O

Keywords:
Genetics
Animal breeding
Cattle
DNA sequencing
Gene mutation
Promoter
Carcass weight
Japanese Black cattle
Muscle
SNP
SPP1

A B S T R A C T

Meat quality in beef cattle is controlled by genetic factors. SPP1 (secreted phosphoprotein 1) gene, coding a multifunctional cytokine with diverse biological functions, is the candidate gene influencing carcass traits. In this study, we tried to discover DNA polymorphisms associated with beef quality in bovine SPP1 gene, so that two SNPs (single nucleotide polymorphisms) in the promoter region and one SNP in the CDS (coding sequence) region were identified. Although the former were predicted to alter SPP1 expression, they did not show any effects on the traits. On the contrary, statistical analysis revealed that g.58675C>T, a non-synonymous mutation from threonine to methionine in the conservative region, had a significant effect on carcass weight. Carcass weight of the animals with C/T allele (473.9 ± 6.0 kg) was significantly heavier than that of the C/C homozygotes (459.2 ± 2.8 kg). Because SPP1 gene functions in skeletal muscle cells as a positive regulator, the non-synonymous mutation might influence muscle development and remodeling, resulting in increased carcass weight of the C/T animals. Our results indicate that the SNP can be applied as a DNA marker for the improvement of beef cattle.

1. Introduction

The Japanese Black cattle, one of the four Japanese beef breeds known as Wagyu, are the major beef breed in Japan. One of the characteristics of Japanese Black cattle is high marbling, contributing to positive effect on the eating quality of beef. The main breeding objective in Japanese Black cattle is improvement of carcass traits. Although Beef Marbling Standard is regarded as one of the important traits because it influences price, efforts are thriving to improve other carcass traits including carcass weight, meat color and fatty acid composition.

Genetic factors are known to influence on carcass traits (Ibeagha-Awemu et al., 2008), and, therefore, improvement of carcass traits by the genetic method will be useful. Some studies have reported DNA polymorphisms which influence beef quality. For example, Taniguchi et al. (2004) identified a non-synonymous mutation in SCD (stearyl-CoA desaturase) gene and elucidated that this SNP (single nucleotide polymorphism) influences fatty acid composition of beef cattle. Another example is NCAPG (Non-SMC Condensin I Complex, Subunit G) gene. A non-synonymous mutation in this gene has been shown to affect carcass weight (Eberlein et al., 2009; Setoguchi et al., 2009). Carcass traits are quantitative traits and modified by numerous genes. Therefore, additional DNA markers in other genes will be required for rapid and efficient breed improvement.

In the previous study, gene expression patterns were compared between cattle with superior carcass traits and that with inferior carcass traits, resulting that 12 genes were identified as the candidate genes for additional DNA markers of carcass traits (Matsumoto et al., 2013a). The genes identified by this comparison included the genes which are already known to have effects on carcass traits, FABP4 (fatty acid-binding protein-4), IGF1 (insulin-like growth factor-1) and LEP (leptin) genes (Curi et al., 2005; Nkrumah et al., 2007; Hoashi et al., 2007; Reyna et al., 2010; Narukami et al., 2011; Orrù et al., 2011), but association between the other candidate genes by the expression analysis and carcass traits remains to be elucidated. Among these candidates, we analyzed ELOVL5 (Elongation of very long chain fatty acids 5) gene and revealed that a SNP identified in the promoter region influences fat-related traits (Matsumoto et al., 2013b). We also identified two SNPs in the promoter region of

* Corresponding author.
E-mail address: yamato@tsc.u-tokai.ac.jp (H. Matsumoto).

https://doi.org/10.1016/j.heliyon.2019.e03006
Received 14 June 2019; Received in revised form 12 September 2019; Accepted 5 December 2019
2405-8440/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
MMP14 (matrix metalloproteinase 14) gene which influence fat-related traits (Matsumoto et al., 2019).

Bovine SPP1 (secreted phosphoprotein 1) gene, also known as OPN (osteopontin), is the other candidate for additional DNA markers of carcass traits. This gene possesses 8 exons covering 57,376 bp on BTA6. An encoded protein is a multifunctional cytokine with diverse functions including bone re-modeling, wound healing and apoptosis (Singh et al., 2018). Some previous studies have reported the effects of this gene on economic traits. An in/del in the promoter region (T9/T10) has been shown to influence growth traits (Allan et al., 2007; White et al., 2007). A SNP in intron 4 also has an effect on body weight (Pareek et al., 2008). These data suggest that DNA polymorphisms in SPP1 gene can be applied as DNA markers for breeding of Japanese Black cattle. The aim of this study was to develop additional genetic markers associated with beef quality, so that DNA polymorphisms in bovine SPP1 gene were explored and their associations with carcass traits were examined.

2. Materials and methods

2.1. Animals and traits

In this study, 484 Japanese Black cattle (324 steers and 160 heifers) from diverse areas in Japan for purposes of progeny testing of sires were analyzed. Genomic DNA samples were extracted from the musculus trapezius by standard phenol chloroform extraction. Among these cattle, eight cattle were tested for sequence comparison to search for DNA polymorphisms. Additional 22 cattle were tested to analyze the linkage relationship between c.-1121C>T and c.-1117G>A. These cattle were chosen considering ancestry to minimize their genetic relationship. For the association study, genotypes of all animals including 30 cattle for sequence comparison were analyzed. The average ages in months ±SD of this group at slaughter was 28.70 ± 1.27.

Carcass traits were measured by official graders of the Japan Meat Grading Association: dressed carcass weight (kg), rib-eye area (cm²), rib thickness (cm), subcutaneous fat thickness (cm), yield estimate and Beef Marbling Standard. Fatty acid composition of the meat was studied as SD of C6, C9, C12, C14, C16, C18, and C20. Least squares method in JMP 13.2 (SAS Institute Inc., Cary, NC) was applied to introduce a Fm4Hl (New England Biolabs, Ipswich, MA) recognition site for the fragment, because no suitable restriction enzyme was detected at the site. The primer sequences for g.58675C>T were 5’-GCA
gAGCCGAGCGAGCTCG-3’ and 5’-ACCTTCCCATATG
GAATGACGCAGCG-3’. A mismatch nucleotide (underscore) was adopted to introduce a Fm4Hl for purposes of progeny testing of sires. The primer sequences for c.-1117G>A and g.58675C>T were 58°C at 30 s, annealing temperature for 30 s, and 72°C for 30 s. Annaling temperatures for c.-1117G>A and g.58675C>T were 58°C and 60°C, respectively.

2.2. Sequence comparison

The coding sequence (CDS) regions, exons 3–8, and the promoter region of SPP1 gene were tested. The approximately 2 kb upstream of the translation initiation site was analyzed as the promoter region where SPP1 promoter activity was confirmed by Dudemaine et al. (2014). We designed the primers based on GenBank sequence (AC_000163.1) with Oligo7 (Molecular Biology Insights, Vondelpark, CO). For PCR, Go-Taq® (Promega Corporation, Madison, WI) and EX-Taq® (Takara Bio, Siga, Japan) were used as DNA polymerase. Ex-Taq® (Takara Bio) was applied to amplify the region including exons 3 and 4 and Go-Taq® (Promega Corporation) to amplify the rest. PCR was performed using the following conditions: 35 cycles at 95°C for 30 s, annealing temperature for 30 s, and 72°C for 30 s. To amplify the partial promoter region (-1004 ~ -57), extension procedure was performed for 60 s. The primer sequences and the PCR conditions are shown in Table 1.

Target region	Primer (5’→3’)	Tm (°C)	Size (bp)
Promoter (-1863 ~ -990)	F: TATAGCAGTTATCATGATCCAT R: CAAAGAATCTGAACTTATCGG	60	919
Promoter (-1004 ~ -57)	F: AAGGTATATAATGGGAAACCT R: TGGAACTTTCTCCATTTATA	50	990
Promoter (-655 ~ -172)	F: ATATTTCCATCTGATATTTAG R: AGCTGTCTTGTGTAATGTGTA	55	657
Exons 3, 4	F: GAGTAGGCTAAAGAGGGGAC R: AGCAAGACAGAGTTATATCT	60	539
Exons 5, 6	F: TTATCAGCTTACGGACCCTGT R: GCTGTGAATACTCAAAGAGTGGA	62	997
Exon 7	F: GCTTTGACACCACATTCTTTGCG R: TGGGTCAATCAATACCATCATCGA	60	384
Exon 8	F: GGTGGTGAAGGAGTAGAGGGATTA R: TCTGTTAAATGGTACCTTGGTTTT	54	467

F: forward primer; R: reverse primer.

2.3. PCR-RFLP genotyping

The primer sequences to amplify the region including c.-1117G>A were 5’-ATCACAGGGGACTTGACCTTTCTCG-3’ and 5’-ACCTTCCCATATGGAATGAGGCAGGCG-3’. A mismatch nucleotide (underscore) was adopted to introduce a Fm4Hl (New England Biolabs, Ipswich, MA) recognition site for the fragment, because no suitable restriction enzyme was detected at the site. The primer sequences for g.58675C>T were 5’-GCA
gAGCCGAGCGAGCTCG-3’ and 5’-TCAAGGGCTATG
GAATGACGCAGCG-3’. This PCR product was digested by NciIII (New England Biolabs). PCR was performed with Go-Taq® (Promega Corporation) using the following conditions: 35 cycles at 95°C for 30 s, annealing temperature for 30 s, and 72°C for 30 s. Annaling temperatures for c.-1117G>A and g.58675C>T were 58°C and 60°C, respectively.

2.4. Association analysis

Least squares method in JMP 13.2 (SAS Institute Inc., Cary, NC) was applied to analyze all traits. Analysis of variance (ANOVA) was executed to detect significant factors within a model. The model considered the effects of genotypes of the SNPs, prefecture, year and sex, and the linear and quadratic regressions of age at slaughter. Effect of sires was not considered in the analytical model due to small number of progeny per sire (3.2 head on average). Differences between least squares means for c.-1117G>A and g.58675C>T were analyzed by Tukey-Kramer’s honestly significant difference (HSD) test. The animals with T/T allele of g.58675C>T were excluded from this analysis due to the limited number (n = 3).

3. Results

3.1. Polymorphism search

By sequence comparison with eight Japanese Black cattle, three SNPs in the SPP1 gene were identified: c.-1121C>T (rs110292932) and c.-1117G>A (rs110254070) were identified in the promoter region and g.58675C>T (rs133929040) in exon 8 of the CDS (Figure 1). Two SNPs in the promoter region were identified in the adjacent area, so that we analyzed their relationship with additional 22 cattle. Animals with C allele of c.-1121C>T possessed G allele of c.-1117G>A and vice versa.
predicted to influence the 218th amino acid (arrow). The amino acid sequence on this region is highly conserved among Artiodactyla (Figure 2). Because g.58675C>T was a non-synonymous mutation in highly conserved region, suggesting that the effects on carcass weight and milk coagulation properties might be derived from functional/structural alteration of SPP1 protein.

Three SNPs in SPP1 gene were identified in the Japanese Black population. We expected effects of the SNPs in the promoter region because SPP1 was among candidates associating with carcass traits identified by the microarray analysis (Matsumoto et al., 2013a), but they did not influence any carcass traits. On the other hand, the SNP in the CDS, g.58675C>T, showed an effect on carcass weight. As far as we know, this is the first report that this SNP influences economic traits of beef cattle, although Viale et al. (2017) reported the effect of the same SNP on milk coagulation properties of Holstein-Friesian cattle. This SNP was a non-synonymous mutation in highly conserved region, suggesting that the effects on carcass weight and milk coagulation properties might be derived from functional/structural alteration of SPP1 protein.

3.2. Associations between SNPs and traits

As influences of the SNPs on SPP1 expression and function were suggested, genotypes of animals were analyzed for later association analysis. c.-1121C>T was excluded from this analysis, because this SNP was assumed to be linked with c.-1117G>A. The A allele of c.-1117G>A was minor and its frequency was 0.23. On the other hand, the minor allele of g.58675C>T was the T allele (0.09). The T/T homozygotes of g.58675C>T were rare in this population (n = 3). The ANOVA test was performed to analyze the SNPs’ effects on the traits (Table 2). The effect of g.58675C>T was observed on carcass weight (p = 0.0078), while c.-1117G>A did not show any effects on the traits. The HSD test revealed the detailed effects of g.58675C>T (Table 3). Carcass weight of the C/T cattle (473.9 ± 6.0 kg) was significantly heavier than those of the C/C cattle (459.2 ± 2.8 kg).

4. Discussion

Three SNPs in SPP1 gene were identified in the Japanese Black population. We expected effects of the SNPs in the promoter region because SPP1 was among candidates associating with carcass traits identified by the microarray analysis (Matsumoto et al., 2013a), but they did not influence any carcass traits. On the other hand, the SNP in the CDS, g.58675C>T, showed an effect on carcass weight. As far as we know, this is the first report that this SNP influences economic traits of beef cattle, although Viale et al. (2017) reported the effect of the same SNP on milk coagulation properties of Holstein-Friesian cattle. This SNP was a non-synonymous mutation in highly conserved region, suggesting that the effects on carcass weight and milk coagulation properties might be derived from functional/structural alteration of SPP1 protein.

SPP1 protein undergoes various post-translational modifications to acquire its biological functions, including phosphorylation, glycosylation and proteolytic modification (Barry et al., 2000; Kazanecki et al., 2007; Christensen et al., 2008). The importance of phosphorylation toward SPP1 has been well characterized. For example, macrophage is activated by phosphorylated SPP1 (Weber et al., 2002). Phosphorylated form of SPP1 is also required for normal osteoclast function (Katayama et al., 1998). Meanwhile, SPP1 secreted by some types of cancers is likely less phosphorylated (Anborgh et al., 2011). The status of SPP1 protein.

Meanwhile, this SNP was predicted not to disturb the mRNA second structure (data not shown), suggesting no influence on gene expression.

Trait	c.-1117G>A	g.58675C>T
Carcass traits		
Carcass weight	ns	**
Rib-eye area	ns	ns
Rib thickness	ns	ns
Subcutaneous fat thickness	ns	ns
Yield estimate	ns	ns
Beef marbling score	ns	ns
Fatty acid composition		
C14:0	ns	ns
C14:1	ns	ns
C16:0	ns	ns
C16:1	ns	ns
C18:0	ns	ns
C18:1	ns	ns
C18:2	ns	ns

*p < 0.05; **p < 0.01; ***p < 0.005; ns (non-significant).
phosphorylation can be different depending on cell types, indicating that alteration of phosphorylation might affect SPP1 function.

Threonine is one of the most commonly phosphorylated amino acids and phosphorylated sites are well conserved evolutionally in general. Therefore, the 218th threonine, the amino acid g.58675C > T was predicted to change into methionine, might be a phosphorylation site. Because proteolytic modifications are essential for SPP1 to be functional and some cleavage sites of this protein have been shown to be controlled by phosphorylation of specific amino acids (Sørensen et al., 1994; Christensen et al., 2005), the 218th threonine might be a target of proteolytic modifications and one of key amino acids for SPP1 function. In other words, g.58675C > T might alter SPP1 phosphorylation and its function as a signaling module, so that carcass weight might be affected. However, although Sørensen et al. (1994) identified most of phosphorylated sites in bovine SPP1 protein, it remains to be elucidated whether the 218th threonine is phosphorylated or not.

Many researchers have discussed the association between SPP1 gene and muscle development and remodeling. SPP1 protein is highly expressed in muscle tissues of muscular dystrophy patients, although undetectable in normal muscle (Zanotti et al., 2011). A SNP in SPP1 promoter has been shown to influence disease severity in Duchenne muscular dystrophy: rare allele of rs28357094 yields less SPP1 protein, causing greater phenotype (Pegoraro et al., 2011). The same SNP also modifies muscle size in healthy people. The effect was observed only in females, maybe because SPP1 is an estrogen-sensitive gene (Hoffman et al., 2013). These phenomena might be derived from the function that SPP1 plays in muscle regeneration (Kuraoka et al., 2016).

Recently, Nghiem et al. (2017) clarified a part of SPP1 functions in skeletal muscle cells. They found that induction of SPP1 protein decreased myostatin (MSTN) expression and increased AKT serine/threonine kinase 1 (AKT1) expression and that MSTN expression was controlled by AKT1. Their findings suggest that SPP1 can decrease MSTN expression through AKT1 signaling. MSTN is a well-known and well-conserved negative regulator of skeletal muscle cell proliferation and differentiation (Carnac et al., 2007) and cattle lacking functional MSTN are known as “double muscled cattle” with increased muscle mass (Kambadur et al., 1997; McPherron and Lee, 1997). The non-synonymous mutation identified in this study might influence on this SPP1-AKT1-MSTN pathway: T allele of g.58675C > T might activate AKT1 stronger to suppress MSTN expression, resulting in increased carcass weight.

In the current study, we identified three SNPs in SPP1 gene by sequence comparison. Statistical analysis revealed the association of one of the SNPs, g.58675C > T, with carcass weight by possibly influencing SPP1 function, structure and/or post-translational modifications. Our study indicates the possibility of SPP1 g.58675C > T as an additional genetic marker to improve beef quality.

Declarations

Author contribution statement

Hirokazu Matsumoto: Conceived and designed the experiments; Wrote the paper.

Ryosuke Kohara, Makoto Sugi, Azumi Usui: Performed the experiments.

Kenji Oyama: Analyzed and interpreted the data.

Hideyuki Mannen, Shinji Sasazaki: Contributed reagents, materials, analysis tools or data.

Funding statement

This work was supported by a Grant from The Ito Foundation (H30-#18).

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

Technical supports were provided by Support Center for Medical Research and Education, Tokai University.

References

Allan, M.F., Thallman, R.M., Cushman, R.A., Echternampk, S.E., White, S.N., Kuehn, I.A., Casa, E., Smith, T.P., 2007. Association of a single nucleotide polymorphism in SPP1 with growth traits and twinning in a cattle population selected for twinning rate. J. Anim. Sci. 85, 341–347.

Asborgh, P.H., Murne, J.C., Tuck, A.B., Chambers, A.F., 2011. Pre- and post-translational regulation of osteopontin in cancer. J. Cell Commun. Signal. 5, 111–122.

Barry, S.T., Ludbrook, S.B., Murrison, E., Horgan, C.R., 2000. Analysis of the SPP1 promoter affect gene expression and the level of osteopontin secretion into bovine milk. Anim. Genet. 45, 629–646.

Eberlein, A., Takasuga, A., Setoguchi, K., Pfuhl, R., Flisikowski, K., Fries, R., Klopp, N., Angelopoulos, T.J., Pegoraro, E., Cox, G.A., Clarkson, P.M., 2013. Alterations in osteopontin modify muscle size in females in both humans and mice. Mamm. Genome 18, 880–886.

Findlay, D.M., 1998. Casein kinase 2 phosphorylation of recombinant rat osteopontin. J. Biol. Chem. 273, 3497–3500.

Ibeagha-Awemu, E.M., Kgwatalala, P., Zhao, X., 2008. A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm. Genome 19, 591–617.

Jung, S.K., McDonald, K., 2011. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinf. 12, 340.

Kambadur, R., Sharma, M., Smith, T.P., Bass, J.J., 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedemontese cattle. Genome Res. 7, 910–916.

Katayama, Y., House, C.M., Udawaya, N., Kazama, J.J., McFarland, R.J., Martin, T.J., Findlay, D.M., 1998. Casein kinase 2 phosphorylation of recombinant rat osteopontin enhances adhesion of osteoclasts but not osteoblasts. J. Cell Physiol. 176, 179–187.
Kazanecki, C.C., Urzua, D.J., Denhardt, D.T., 2007. Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J. Cell. Biochem. 102, 912-924.

Kuraoka, M., Kimura, E., Nagata, T., Okada, T., Aoki, Y., Tachimori, H., Yonemoto, N., Imamura, M., Takeda, S., 2016. Serum osteopontin as a novel biomarker for muscle regeneration in Duchenne muscular dystrophy. Am. J. Pathol. 186, 1302-1312.

Matsumoto, H., Oguri, Y., Mizuno, Y., Ishida, T., Kobayashi, I., Iwasaki, H., Saito, K., Sasago, N., Kobayashi, E., Kuge, S., Honda, T., Sasazaki, S., Oyama, K., Mannen, H., 2013a. Comparative analysis on gene expression profiles in longissimus dorsi muscle of Japanese Black cattle (in Japanese). J. Anim. Genet. 41, 7-14.

Matsumoto, H., Shimizu, Y., Tanaka, A., Nogi, T., Tabuchi, I., Oyama, K., Taniguchi, M., Mannen, H., Sasazaki, S., 2013b. The SNP in the promoter region of the bovine ELOVE5 gene influences economic traits including subcutaneous fat thickness. Mol. Biol. Rep. 40, 3231-3237.

Matsumoto, H., Kawaguchi, F., Itoh, S., Yotou, S., Fukuda, K., Oyama, K., Mannen, H., Sasazaki, S., 2019. The SNPs in bovine MMP14 promoter influence on fat-related traits. Meta Gene 20, 100558.

McPherron, A.C., Lee, S.J., 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. U.S.A. 94, 12457-12461.

Messeguer, X., Escudero, R., Farré, D., Núñez, O., Martínez, J., Albè, M.M., 2002. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18, 333-334.

Narukami, T., Sasazaki, S., Oyama, K., Nogi, T., Taniguchi, M., Mannen, H., 2011. Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Anim. Sci. J. 82, 406-411.

Nguyen, P.P., Kornegey, J.N., Uesenkontrakoon, K., Bello, L., Yin, Y., Kesari, A., Mittal, P., Schatzberg, S.J., Many, G.M., Lee, N.H., Hoffan, E.P., 2017. Osteopontin is linked with AKT, FoxO1, and myostatin in skeletal muscle cells. Muscle Nerve 56, 1119-1127.

Nkumah, J.D., Czarnik, U., Mariusz, Pierzchala M., Lech, Zwierzchowski L., 2008. An association between the C>T single nucleotide polymorphism within intron IV of osteopontin encoding gene (SPP1) and body weight of growing Polish Holstein-Friesian cattle. Anim. Sci. Pap. Rep. 26, 251-257.

Pegoraro, E., Hoffman, E.P., Piva, L., Gavassini, B.F., Cagnin, S., Ermani, M., Bello, L., Soraru, G., Pacchioni, B., Bonifati, M.D., Lanfranchi, G., Angelini, C., Kesari, A., Lee, I., Gordinh-Dresman, H., Devaney, J.M., McDonald, C.M., Cooperative International Neuromuscular Research Group., 2011. SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology 76, 219-226.

Reyna, X.F., Montoya, H.M., Castrellon, V.V., Rincin, A.M., Brambante, M.P., Vera, W.A., 2010. Polymorphisms in the SPP1 gene and their effect on growth traits in Mexican beef cattle. Genet. Mol. Res. 9, 875-883.

Setoguchi, K., Watanabe, T., Weikard, R., Albrecht, E., Kühn, C., Kinioshita, A., Sugimoto, Y., Takaoka, A., 2009. The SNP c.1326T>G in the non-SMC condensin I complex, subunit G (NCSAP2) gene encoding a p.444Met variant is associated with an increase in body frame size at puberty in cattle. Anim. Genet. 42, 650-655.

Singh, A., Gill, G., Kaur, H., Amhmed, M., Jalkhu, H., 2018. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog. Orthod. 19, 18.

Sorensen, S.E., Højrup, P., Petersen, E.T., 1994. Posttranslational modifications of bovine osteopontin: Identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci. 4, 2040-2049.

Taniguchi, M., Utsubo, T., Oyama, K., Mannen, H., Kobayashi, M., Tanabe, Y., Ogino, A., Tsuji, S., 2004. Genotype of steroyl-coA desaturation is associated with fatty acid composition in Japanese Black cattle. Mamm. Genome 15, 142-148.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.

Viale, E., Tiezzi, F., Maretto, F., De Marchi, M., Penasa, M., Cassandro, M., 2017. Association of candidate gene polymorphisms with milk technological traits, yield, composition, and somatic cell score in Italian Holstein-Friesian sires. J. Dairy Sci. 100, 7271-7281.

Weber, G.F., Zawaideh, S., Hikita, S., Kumar, V.A., Cantor, H., Ashkar, S., 2002. Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J. Leukoc. Biol. 72, 752-761.

White, S.N., Casas, E., Allan, M.F., Keene, J.W., Snelling, W.M., Wheeler, T.L., Shackelford, S.D., Koohmaraei, M., Smith, T.P., 2007. Evaluation in beef cattle of six deoxyribonucleic acid markers developed for dairy traits reveals an association of six single nucleotide polymorphisms in the IFNAR2, SCD1, and SMC genes with their effect on growth traits in cattle. J. Anim. Sci. 85, 2155-2164.