Tracking Genomic Cancer Evolution for Precision Medicine: The Lung TRACERx Study

Jamal-Hanjani, Mariam; Hackshaw, Alan; Ngai, Yenting; Shaw, Jacqueline; Dive, Caroline; Quezada, Sergio; Middleton, Gary; de Bruin, Elza; Le Quesne, John; Shafi, Seema

Total number of authors: 71

Published in: PLoS Biology

Link to article, DOI: 10.1371/journal.pbio.1001906

Publication date: 2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jamal-Hanjani, M., Hackshaw, A., Ngai, Y., Shaw, J., Dive, C., Quezada, S., Middleton, G., de Bruin, E., Le Quesne, J., Shafi, S., Falzon, M., Horswell, S., Blackhall, F., Khan, I., Janes, S., Nicolson, M., Lawrence, D., Forster, M., Fennell, D., ... Swanton, C. (2014). Tracking Genomic Cancer Evolution for Precision Medicine: The Lung TRACERx Study. PLoS Biology, 12(7), Article e1001906. https://doi.org/10.1371/journal.pbio.1001906

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Tracking Genomic Cancer Evolution for Precision Medicine: The Lung TRACERx Study

Mariam Jamal-Hanjani1,2, Alan Hackshaw3, Yenting Ngai3, Jacqueline Shaw4, Caroline Dive5, Sergio Quezada6, Gary Middleton7, Elza de Bruin1, John Le Quesne4, Seema Shafi1, Mary Falzon8, Stuart Horswell9, Fiona Blackhall10, Iftekhar Khan3, Sam Janes11, Marianne Nicolson12, David Lawrence13, Martin Forster2, Dean Fennell4,14, Siow-Ming Lee2, Jason Lester15, Keith Kerr16, Salli Muller17, Natasha Iles3, Sean Smith3, Nirupa Murugaesu1,2, Richard Mitter9, Max Salm9, Aengus Stuart9, Nik Matthews18, Haydn Adams19, Tanya Ahmad2, Richard Attanoo20, Jonathan Bennett21, Nicolai Juul Birkbak22, Richard Booton23, Ged Brady24, Keith Buchan25, Arrigo Capitano8, Mahendran Chetty26, Mark Cobbold27, Philip Crosbie28, Helen Davies29, Alan Denison30, Madhav Djeorman31, Jacki Goldman32, Tom Haswell33, Leena Joseph34, Malgorzata Kornaszewska35, Matthew Krebs36, Gerald Langman36, Mairead MacKenzie33, Joy Millar26, Bruno Morgan4, Babu Naidu37, Daisuke Nonaka38,34, Karl Peggs6, Catrin Pritchard39, Hardy Remmen25, Andrew Rowan40, Rajesh Shah41, Elaine Smith42, Yvonne Summers38,43, Magali Taylor44, Selvaraju Veeriah1, David Waller45, Ben Wilcox46, Maggie Wilcox33, Ian Woolhouse47, Nicholas McGranahan40, Charles Swanton1,2,40.

1 Translational Cancer Therapeutics Laboratory, University College London Cancer Institute, London, United Kingdom, 2 Department of Medical Oncology, University College London Hospitals, London, United Kingdom, 3 Cancer Research UK & UCL Cancer Trials Centre, London, United Kingdom, 4 Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom, 5 Cancer Research UK Manchester Institute, Manchester, United Kingdom, 6 Immune Regulation and Tumour Immunotherapy Laboratory, University College London Cancer Institute, London, United Kingdom, 7 Department of Medical Oncology, Birmingham Heartlands Hospital, Birmingham, United Kingdom, 8 Department of Pathology, University College London Hospitals, London, United Kingdom, 9 Department of Bioinformatics and BioStatistics, Cancer Research UK, London Research Institute, London, United Kingdom, 10 Institute of Cancer Studies, University of Manchester and The Christie Hospital, Manchester, United Kingdom, 11 Department of Respiratory Medicine, University College London Hospitals, London, United Kingdom, 12 Department of Medical Oncology, Aberdeen University Medical School & Aberdeen Royal Infirmary, Aberdeen, Scotland, United Kingdom, 13 Department of Cardiothoracic Surgery, Heart Hospital, London, United Kingdom, 14 Department of Medical Oncology, University of Leicester & Leicester University Hospitals, Leicester, United Kingdom, 15 Department of Clinical Oncology, Velindre Hospital, Cardiff, Wales, United Kingdom, 16 Department of Pathology, Aberdeen University Medical School & Aberdeen Royal Infirmary, Aberdeen, Scotland, United Kingdom, 17 Department of Pathology, University of Leicester & Leicester University Hospitals, Leicester, United Kingdom, 18 The Advanced Sequencing Facility, London Research Institute, London, United Kingdom, 19 Department of Radiology, University Hospital Llandough, Cardiff, Wales, United Kingdom, 20 Department of Pathology, University Hospital Llandough, Cardiff, Wales, United Kingdom, 21 Department of Respiratory Medicine, University of Leicester & Leicester University Hospitals, Leicester, United Kingdom, 22 Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark, 23 Department of Respiratory Medicine, University Hospital of South Manchester, Manchester, United Kingdom, 24 Cancer Research UK Manchester Institute, Manchester, United Kingdom, 25 Department of Cardiothoracic Surgery, Aberdeen University Medical School & Aberdeen Royal Infirmary, Aberdeen, United Kingdom, 26 Department of Respiratory Medicine, University Hospital of South Manchester, Manchester, United Kingdom, 27 Department of Clinical Immunology, University of Birmingham, Birmingham, B15 2TT, 28 North West Lung Centre, University Hospital of South Manchester, Manchester, United Kingdom, 29 Department of Respiratory Medicine, University Hospital Llandough, Cardiff, Wales, United Kingdom, 30 Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, United Kingdom, 31 Department of Radiology, Birmingham Heartlands Hospital, Birmingham, United Kingdom, 32 Department of IT, London Research Institute, London, United Kingdom, 33 Independent Cancer Patient’s Voice, London, united kingdom, 34 Department of Pathology, University Hospitals of South Manchester, Manchester, 35 Department of Cardiothoracic Surgery, University Hospital Llandough, Cardiff, Wales, United Kingdom, 36 Department of Cellular Pathology, Birmingham Heartlands Hospital, Birmingham, United Kingdom, 37 Department of Thoracic Surgery, Birmingham Heartlands Hospital, Birmingham, United Kingdom, 38 The Christie Hospital, Manchester, United Kingdom, 39 Department of Biochemistry, University of Leicester, Leicester, United Kingdom, 40 Translational Cancer Therapeutics Laboratory, London Research Institute, London, United Kingdom, 41 Department of Cardiothoracic Surgery, University Hospitals of South Manchester, Manchester, United Kingdom, 42 Department of Radiology, University Hospitals of South Manchester, Manchester, United Kingdom, 43 Department of Medical Oncology, University Hospital of South Manchester, Manchester, United Kingdom, 44 Department of Radiology, University College London Hospitals, London, United Kingdom, 45 Department of Cardiothoracic Surgery, University of Leicester & Leicester University Hospitals, Leicester, United Kingdom, 46 School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom, 47 Department of Respiratory Medicine, Birmingham Heartlands Hospital, Birmingham, United Kingdom
Introduction

Each patient’s cancer has a unique genomic landscape, often comprised of populations of genetically distinct, separated subclones with the potential to undergo dynamic evolutionary processes throughout the disease course [1,2]. One of the major challenges in achieving the goal of precision medicine lies in obtaining an accurate view of this genomic landscape, in order to choose the appropriate therapeutic regimen [3]. Intratumour heterogeneity poses a challenge in that a single tumour biopsy may not fully capture the current or future tumour landscape and merely represents a “snapshot” of the disease in space and time. Several studies have demonstrated branched evolution in different tumour types, including breast [4,5], pancreatic [6], kidney [7], colorectal [8], and prostate [9] cancers, as well as haematological malignancies such as chronic lymphoblastic leukaemia [1] and acute lymphoblastic leukaemia [10]. Understanding how tumour clonal heterogeneity impacts upon clinical outcome, and how cancer subclones compete, adapt, and evolve through the disease course in relation to therapy, is an area of unmet clinical and scientific need. Lung TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy [Rx]), a prospective study of patients with primary non-small cell lung cancer (NSCLC), aims to define the evolutionary trajectories of lung cancer in both space and time through multiregion and longitudinal tumour sampling and genetic analysis. By following cancers from diagnosis to relapse, tracking the evolutionary trajectories of tumours in relation to therapeutic interventions, and determining the impact of clonal heterogeneity on clinical outcomes, TRACERx may help to identify novel therapeutic targets for NSCLC and may also serve as a model applicable to other cancer types.

Overview of Lung TRACERx

Lung TRACERx incorporates longitudinal sample collection from diagnosis to relapse in order to investigate how each cancer responds to treatment, the potential mutational processes and mechanisms involved in drug resistance, and development of metastatic disease. Although here we discuss TRACERx in NSCLC, the proposed longitudinal sample collection and study template is also relevant to other tumour types. TRACERx, conducted across six sites in the United Kingdom (London, Leicester, Manchester, Aberdeen, Birmingham, and Cardiff), will enrol 842 patients with primary NSCLC stages I-IIIA over an accrual period of four years with a total five-year follow-up per patient. Primary surgically resected NSCLC tumours and associated lymph nodes, surplus to diagnostic requirements, will be subject to multiregion sampling and subsequent whole-exome and/or whole-genome sequencing. In patients suffering disease recurrence, consent will be obtained for a further biopsy to assess how the tumour clonal structure has changed through therapy and disease progression. The primary objectives of TRACERx are to determine the relationship between intratumour heterogeneity and clinical outcome (disease-free survival [DFS] and overall survival [OS]), and to establish the impact of adjuvant platinum-containing regimens on intratumour heterogeneity in relapsed disease. The secondary objectives include developing and validating an intratumour heterogeneity index as a prognostic or predictive biomarker and identifying drivers of genomic instability, metastatic progression, and drug resistance by identifying and tracking the dynamics of somatic mutational heterogeneity. TRACERx also aims to define clonally dominant drivers of disease to address the role of clonal driver dominance in targeted therapeutic response, and to guide lung cancer treatment stratification. The sample collection per patient and overall study schema are summarised in Figure 1 and Figure 2, respectively.

Spatial Heterogeneity and Branched Evolution in NSCLC

Previous efforts to characterise the cancer genome of NSCLC have involved the analysis of copy number alterations [11,12], targeted sequencing of candidate cancer genes [13,14] and next-generation sequencing of genomes and/or exomes [15–18]. By interrogating the mutational spectrum of tumours, these studies have demonstrated its complex and heterogeneous genomic landscape from point mutations to large structural variants, and the high mutational burden of smoking-related NSCLC. However, few studies in NSCLC have investigated the clonal and subclonal architecture of lung cancer tumours and their evolution through disease progression. The TRACERx consortium has developed methods to analyse the dynamics of genetic intratumour heterogeneity within individual tumours over time [7]. Distance-based phylogenetic trees will be inferred from the variants, insertions and deletions (INDELS), and

Citation: Jamal-Hanjani M, Hackshaw A, Ngai Y, Shaw J, Dive C, et al. (2014) Tracking Genomic Cancer Evolution for Precision Medicine: The Lung TRACERx Study. PLoS Biol 12(7): e1001906. doi:10.1371/journal.pbio.1001906

Published July 8, 2014

Copyright: © 2014 Jamal-Hanjani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study is primarily funded by Cancer Research UK, but has also received funding from the Roses Trust, the Academy of Medical Sciences, and is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Abbreviations: cfDNA, circulating-free tumour DNA; CTC, circulating tumour cell; DFS, Disease-Free Survival; EGFR, epidermal growth factor receptor; GL DNA, germ line DNA; INDELS, insertions and deletions; NSCLC, Non-Small Cell Lung Cancer; OS, Overall Survival; PFS, Progression-Free Survival; Rx, therapy; TRACERx, TRAcking non-small cell lung Cancer Evolution through therapy (Rx).

* Email: charles.swanton@cancer.org.uk

The Community Page is a forum for organizations and societies to highlight their efforts to enhance the dissemination and value of scientific knowledge.

PLOS Biology | www.plosbiology.org

2 July 2014 | Volume 12 | Issue 7 | e1001906
structural variations observed in multi-region exome sequence datasets from a single tumour, allowing the discrimination of conserved early genetic mutations present at all sites of the primary tumour from later somatic events present in parts of the tumour and/or metastatic sites. This estimated temporal ordering will give insight into the potential relationships of such changes with ploidy shifts, chromosomal instability, and mutational processes that may change during the course of tumour progression.

Histological Heterogeneity in NSCLC

Lung cancer is a histologically highly heterogeneous disease. Mixed lung tumours containing more than one histological type, such as adenosquamous tumours, combined small-cell tumours (small-cell combined with NSCLC), or tumours with areas of histological dedifferentiation are not uncommon. Within adenocarcinomas, histological variety is the rule, with most tumours showing a mixture of patterns, the commonest being lepidic/in situ, acinar, solid, papillary, and micropapillary. Solid and micropapillary patterns are associated with worse outcome [19–21]. Some patterns show associations with known driving mutations [22,23], although these relationships are incompletely described at present. Furthermore, nuclear grade, which is not currently routinely assessed, often shows heterogeneity and is itself related to outcome [24,25]. It is not known to what extent this spatial histological heterogeneity reflects genomic heterogeneity as opposed to epigenetic or microenvironmental influences.

TRACERx aims to correlate histological heterogeneity with genomic heterogeneity and potentially improve the predictive and prognostic value of histological appearances in NSCLC.

Tumour Heterogeneity, Outcome, and Impact of Platinum Chemotherapy in NSCLC

It is unclear why adjuvant chemotherapy following surgery for primary NSCLC is effective in some patients but not in others. An increasing body of evidence supports the association of patterns of intratumour heterogeneity, in multivariate analyses, with poor survival outcome in NSCLC and other solid tumours [26]. Indeed, work from us and others has shown that chromosomal instability, a driver of intratumour heterogeneity, is associated with cancer drug resistance, and numerous studies have documented the association of chromosomal instability with poor outcome in NSCLC [26–31]. The impact of intratumour heterogeneity on evolutionary fitness, together with the documented relationship of heterogeneity with drug resistance, supports the potential predictive nature of this candidate biomarker. Cytotoxic therapies have also been shown to influence the genomic landscape of drug-resistant diseases [32,33], which raises the concern that increased genomic complexity in cytotoxic refractory tumours may potentiate tumour adaptation. However, studies to date are based on the analysis of small retrospective cohorts such that the true relationship between intratumour heterogeneity and clinical outcome, as well as the impact of platinum-based chemotherapy on the tumour genomic landscape, is currently unknown. TRACERx will prospectively assess whether an intratumour heterogeneity index can predict response to adjuvant therapy, and attempt to validate intratumour heterogeneity as an effective prognostic and predictive biomarker independent of known factors, such as tumour stage.

Defining Drivers of Intratumour Heterogeneity and Drug Resistance

Deep sequencing analyses are revealing vast clonal heterogeneity present in solid tumours, including NSCLC, and the spatial and temporal dynamics of cancer subclones that emerge during the disease course and following acquired drug resistance [34,35]. We have shown that drivers of intratumour heterogeneity can be defined in vivo and that one mechanism driving tumour heterogeneity in colorectal cancer, DNA replication stress, may be targetable [36]. Defining such processes in longitudinal solid tumour cohorts may have therapeutic relevance in attempting to limit tumour heterogeneity, adaptation, and cancer evolution [37]. TRACERx aims to develop an improved understanding of the relationship between phenotypic and genetic intratumour heterogeneity with cancer evolution, and identify further drivers of genomic instability. Ultimately it is hoped that this will support the development of novel therapeutic approaches to limit relapse and improve outcomes in NSCLC.
Impact of Intratumour Heterogeneity on Host Immunity and Tumour Neo-Antigenic Repertoire

Whilst evidence suggests that intratumour heterogeneity may significantly limit the antitumour activity of targeted therapeutics [38], its overall effect on the anticancer immune response may be beneficial, since high levels of intratumoral mutational diversity may generate neo-antigens perceived by the immune system as non-self, thus providing relevant targets for immune-based therapies [38–40]. TRACERx aims to provide a resource to define the impact of intratumour heterogeneity on cancer immunity throughout tumour evolution and therapy. Through the integration of clinical and tumour multiregion sequencing data with immunological analysis, the consortium will assess various aspects of tumour immunobiology, including the overall impact of distinct drivers of intratumour heterogeneity on immune infiltration and function, the proportion of tumour infiltrating lymphocytes with the ability to recognise neo-antigens, and whether novel T cell receptors that recognise phospho-peptides preferentially expressed by tumour cells can be identified in patients, with NSCLC serving as a platform for the development of future immunotherapeutic strategies.

Development of Minimally Invasive Methods to Study Tumour Evolution

Primary and metastatic tumours will be genetically profiled to identify clonal and subclonal driver mutations. However, our analysis of the primary tumour is limited to tissue surplus to diagnostic requirement, albeit multiregional, and our analysis of metastatic sites is likely to be restricted to one location, emphasising the need to develop less invasive approaches to follow tumour evolution. Circulating biomarkers have the potential to monitor minimal residual disease, forecast early progression, and document subclonal evolution through therapy and acquired drug resistance [41]. Here we propose to extend the TRACERx consortium’s expertise in minimally invasive biomarker approaches to monitor tumour subclonal evolution through serial analysis of circulating-free tumour DNA (cfDNA) and circulating tumour cells (CTCs) before surgery and throughout the disease course. We have shown that cfDNA analysis is technically...
Strategic therapies in the advanced disease setting within the DARWIN (Deciphering Anti-tumour Response With INtratumour Heterogeneity) Clinical Trial Programme that is currently in development. The consortium will attempt to define a new process for drug development, stratifying DFS outcomes based on clonal dominance of the targetable event, and map the tumour's subclonal dynamics during the acquisition of drug resistance.

Metastatic Disease and Defining the Origins of the Lethal Subclone

Clonal diversity between primary and metastatic tumours in the same patient has been demonstrated in different tumour types, including but not limited to, breast [49], pancreatic [6,46], prostate [9], and medulloblastoma [47]. Longitudinal sample collection and genomic analysis from the primary tumour through disease progression and at the time of death has the potential to identify the genetic features and subclonal origin of the metastatic process. In an interesting case of prostate cancer, Haffner and colleagues correlated whole-genome sequencing data from a primary tumour with three sites of metastases collected at autopsy 17 years after presentation [9]. Despite genetic heterogeneity among metastases, there were many shared events suggesting a monoclonal origin. Through histological assessment, alongside sequencing, they identified the lethal metastatic clone originating from the primary tumour. Patients who develop terminal metastatic NSCLC in TRACERx will be asked to consider enrolling in an autopsy programme that will be open nationally. For each patient, TRACERx will have accumulated an unprecedented amount of genetic data, and accessing tissue from multiple sites of disease after death would give some insight into the evolving constellation of genetic aberrations and a potential model for the metastatic process. Circulating biomarkers collected at this point may add to this model, although as previously mentioned, the extent to which these biomarkers reflect tumour genomics in NSCLC is yet to be fully determined.

Conclusions

The importance of intratumour heterogeneity is increasingly recognised as a driver of tumour progression, drug resistance and treatment failure in solid tumours [5,6,27,44,47,50–52]. The presence of subclonal driver events may prove a significant challenge to biomarker development and drug target discovery efforts, and contribute to drug resistance and poor survival outcome [10,44,53,54]. Despite the impressive developments of international large-scale sequencing consortia, the spatial separation of tumour subclones, the changing nature of the disease over time, and the impact of such diversity upon outcome are yet to be addressed [3]. Lung TRACERx is a large-scale study integrating complex genomic data with phenotypic clinical annotation and outcome in order to decipher the heterogeneity of the cancer genome and mutational pathways involved in NSCLC pathogenesis. It aims to develop clinically meaningful measures of intratumour heterogeneity to guide patient management and treatment stratification [55] and to prospectively define thresholds of tumour heterogeneity for clinical risk stratification. With increasing awareness of the need to obtain tissue and genetically profile cancers in order to stratify treatment, the concept of longitudinal tissue collection and analysis has become more acceptable in oncological practice. In following cancers from diagnosis to relapse, tracking the evolutionary trajectories of tumours in relation to therapeutic interventions, and determining the impact of clonal heterogeneity on clinical outcomes, TRACERx may also serve as a model applicable to other cancer types.

TRACERx is not without its limitations. In determining the full extent of intratumour heterogeneity, we are reliant on tissue collected surplus to diagnostic requirements, and therefore entire tumours are not sequenced. However, with deep sequencing and multi-region sampling, together with retrospective genomics analysis of residual surplus tumour tissue guided by the metastatic sample datasets, we hope to achieve significant coverage of the relevant tumour genomic landscape within each patient. Analysing circulating biomarkers, such as cfDNA and CTCs, may further complement the tumour sequencing data and identify additional genetic aberrations not detected by primary or metastatic tumour sequencing. We anticipate that a biopsy of a metastatic site may not be appropriate in all patients, but having taken into account expected rates of attrition, we will have a sufficient number of cases to meet the study outcome objectives. Finally, our ability to detect subclonal somatic events occurring at low variant allele frequencies is limited by the power of our existing methods, but as sequencing and bioinformatics methods advance, TRACERx will...
References

1. Landau DA, Carter SL, Sojaion P, McKenna A, Stevenson K, et al. (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152: 714-726.

2. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458: 719-724.

3. Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13: 795-806.

4. Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, et al. (2012) The life history of breast cancer. Cell 148: 200-213.

5. Shah SP, Rehm A, Goya R, Olszani A, Ha G, et al. (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 469: 395-399.

6. Stratton MR, Yachida S, Medie LJ, Stephens PJ, Pleasance ED, et al. (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467: 1109-1113.

7. Greigler M, Rowan AJ, Horowell S, Larkin J, Endesfield D, et al. (2012) Intratumor heterogeneity and branched evolution revealed by multi-region sequencing. N Engl J Med 366: 883-892.

8. Radford SP, Will OC, Domange E, Graham TA, Bocking A, et al. (2009) Core classification of lung adenocarcinoma. Mod Pathol 25: 1117-1127.

9. Hoffner MC, Mosbruger T, Epple D, Fedor H, Heathay CM, et al. (2013) Tracking the clonal origin of lethal prostate cancer. J Clin Invest 123: 4918-4922.

10. Anderson K, Lutz C, van Diel FW, Bateman CM, Guo Y, et al. (2011) Genetic variation of clonal architecture and propagating cells in gliomas. Nature 469: 356-361.

11. Weir BA, Woo MS, Getz G, Perner S, Ding L, et al. (2010) Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 138: 1441-1454, 1454 e1441–1447.

12. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458: 719-724.

13. Ding L, Getz G, Wheeler DA, Mardis ER, et al. (2009) Core classification of lung adenocarcinoma on the lung development regulator TTF-1. Cancer Res 67: 6007-6015.

14. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, et al. (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455: 1069-1073.

15. Dees ND, et al. (2012) Genomic landscape of non-small cell lung cancer. Cancer Res 72: 1556-1563.

16. Lee W, Jiang Z, Liu J, Haviger PM, Guan Y, et al. (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150: 1107-1120.

17. Amin MB, Tamboli P, Merchant SH, Oredon NG (2012) Mapping the hallmarks of lung adenocarcinoma: a distinctive histological feature with possible prognostic significance. Am J Surg Pathol 26: 358-364.

18. Miyoshi T, Nakaoka K, Shirakusa T, et al. (2003) Early-stage lung adenocarcinomas with a micropapillary pattern, a distinct pathological marker for a significantly poor prognosis. Am J Surg Pathol 27: 103-109.

19. Barletta JA, Yeap BY, Chirieac LR (2010) Prognostic significance of grading in lung adenocarcinoma. Cancer 116: 699-660.

20. Ninomiya H, Hirashima K, Nomura RI, et al. (2012) Micropapillary adenocarcinoma Significance of the micropapillary pattern. Lung Cancer 63: 235-240.

21. Shaw AT, Yeap BY, Minos-Kerudon M, Dignam MR, Costa DB, et al. (2009) Clinical features and outcome of patients with non-small cell lung cancer who harbor EML4-ALK. J Clin Oncol 27: 4247-4253.

22. Kadota K, Suzuki K, Kachala SS, Zabor EC, Sima CS, et al. (2012) A grading system combining architectural features and mitotic count predicts recurrence in stage I lung adenocarcinoma. Mod Pathol 25: 1117-1127.

23. Petersen I, Kost VF, Friedrich KH, Schlums K, Bocking A, et al. (2009) Core classification of lung cancer: correlating nuclear size and mitoses with ploidy and clinicopathological parameters. Lung Cancer 63: 312-318.

24. McGaraglan N, Burrell RA, Endesfield D, Novelli MR, Swanton C (2012) Cancer clonality: implications for targeted therapies: accentuate the positive, eliminate the negative. Cancer Cell 19: 122-129.

25. Aparicio S, Caldas C (2013) The implications of clonal genome evolution for cancer medicine. Nat Med 19: 482-485.

26. Shaw JA, Page K, Bhlove K, Hava N, Guttery D, et al. (2012) Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res 22: 220-231.

27. Siegel NH, Parsons DW, Peggs KS, Veledarius V, Kirnb PA, et al. (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68: 889-892.

28. Aparicio S, Caldas C (2013) The implications of clonal genome evolution for cancer medicine. Nat Med 19: 482-485.

29. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, et al. (2011) Tumour evolution revealed by single-cell sequencing. Nature 472: 90-94.

30. Sottoriva A, Spiteri I, Piccillo SG, Touloumis A, Collins VP, et al. (2013) Intronar heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110: 4009-4014.

31. Aparicio S, Caldas C (2013) The implications of clonal genome evolution for cancer medicine. Nat Med 19: 482-485.

32. Swanton C, Nicke B, Schuett M, Eklund AC, Ng PG, et al. (2012) Genomic landscape of non-small cell lung cancer in multiple myeloma. Blood 120: 1067-1076.

33. Ding L, Ley TJ, Larson DE, Miller CA, Bokobitz DC, et al. (2012) Clonal evolution in reapsed lung cancer. Cell 148: 434-440.

34. Swanton C (2012) Intratumor heterogeneity: evolution through space and time. Cancer Res 72: 4873-4882.

35. Diaz LA Jr., Williams RT, Wu J, Knide K, Hecht JR, et al. (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 481: 537-540.

36. Burrell RA, Micallel SE, Endesfield D, Groph P, Weller MC, et al. (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494: 492-496.

37. Burrell RA, McGaraglan N, Barke T, Swanton C (2013) The causes and consequences of genetic evolution in cancer. Nature 501: 115-124.

38. Fisher R, Puzyati L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108: 479-485.

39. Peggs KS, Selag NH, Allinson JP (2007) Targeting immunosuppressive cancer therapies: accentuate the positive, eliminate the negative. Cancer Cell 12: 192-199.

40. Selag NH, Parson DW, Peggs KS, Veledarius V, Kirnb PA, et al. (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68: 889-892.

41. Aparicio S, Caldas C (2013) The implications of clonal genome evolution for cancer medicine. Nat Med 19: 482-485.

42. Swanton C, Nicke B, Schuett M, Eklund AC, Ng PG, et al. (2012) Genomic landscape of non-small cell lung cancer. Cancer Cell 17: 978-985.

Acknowledgments

The authors would like to thank Cancer Research UK, the Rosetrees Trust, the Academy of Medical Sciences, and the UCLH National Institute for Health Biomedical Research Centre. The authors would also like to thank the Cancer Research UK Lung Cancer Centre of Excellence, UCL Experimental Cancer Medical Centre, and the UCLH/UCL Cancer Clinical Research Facility.
49. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, et al. (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461: 809–813.

50. Szerlip NJ, Pedraza A, Ghalavany D, Azin M, McGuire J, et al. (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRα amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A 109: 3041–3046.

51. Xu X, Hou Y, Yin X, Rao L, Tang A, et al. (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148: 886–895.

52. Yap T, Gerlinger M, Futreal A, Postzai I, Swanton C (2012) Intratumour Heterogeneity: Seeing the wood for the trees. Sci Transl Med 4: 127ps10.

53. Swanton C, Burrell RA, Futreal PA (2011) Breast cancer genome heterogeneity: a challenge to personalised medicine? Breast Cancer Res 13: 104.

54. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, et al. (2010) Inferring tumor progression from genomic heterogeneity. Genome Res 20: 68–80.

55. Merlo LM, Shah NA, Li X, Blount PL, Vaughan TL, et al. (2010) A comprehensive survey of clonal diversity measures in Barrett’s esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev Res (Phila) 3: 1398–1397.