Entanglement of formation for a class of \((2 \otimes d)\)-dimensional systems

F. Lastra, C. E. López, L. Roa, and J. C. Retamal

1Departamento de Física, Universidad de Santiago de Chile, USACH, Casilla 307 Correo 2 Santiago, Chile
2Center for the Development of Nanoscience and Nanotechnology, 9170124, Estación Central, Santiago, Chile
3Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile.

(Dated: January 26, 2013)

Currently the entanglement of formation can be calculated analytically for mixed states in a \((2 \otimes 2)\)-dimensional Hilbert space. For states in higher dimensional Hilbert space a closed formula for quantifying entanglement does not exist. In this regard only entanglement bounds has been found for estimating it. In this work, we find an analytical expression for evaluating the entanglement of formation for bipartite \((2 \otimes d)\)-dimensional mixed states.

PACS numbers: 03.67 Mn, 03.65 Yz

Entanglement in multipartite quantum systems is an issue of fundamental interest in the fields of Quantum Information and Quantum Computation [1][5]. Although we know the entanglement of formation of a general mixed state of two qubits [6], for general bipartite mixed states in higher dimensional Hilbert space is unknown. A particular result is known for entanglement of formation of isotropic states in arbitrary dimensions [7, 8]. For general states the efforts have led to bounds for estimating the amount of entanglement [9][11].

In this work we find an analytical expression for evaluating the entanglement of formation for a class of \(2 \otimes d\) dimensional mixed states. Specifically we consider the calculation of EoF for \(2 \otimes d\) bipartite mixed states obtained from tripartite \(2 \otimes 2 \otimes d\) pure states after tracing out one of the two-dimensional subsystem. Two physical models that meet such requirements are studied and the EoF is compared with a lower bound for EoF in higher dimensional systems [10].

Our treatment appeals to recent developments in the study of quantum correlations for bipartite quantum systems. The extension of classical mutual information to its quantum counterpart have shown that quantum correlations go beyond entanglement [12]. The difference between quantum mutual information and classical correlation is defined as the quantum discord [13], which measures the quantumness or Bayesian degree of a bipartite state [14]. A closed formula for quantum discord in a class of two-qubit states was achieved by Luo et al. [15] and by Ali et al. [16]. The study of such correlations has attracted much attention in last years [17–22]. At this respect, Koashi and Winter found an identity for a tripartite \((ABC)\) pure quantum state [23], that relates the entanglement of formation (EoF) \(E_{AC}\) of the reduced pair \(AC\) to the classical correlation (CC) \(J_{AB}^-\) in the pair \(AB\) and to the von Neumann entropy of the reduced state of \(A\). Thus, the identity maps the problem of finding the EoF between \(A\) and \(C\) to the problem of finding the CC of the partition \(AB\). This is schematically represented in Fig. 1. It is important to emphasize that the identity is not imposing restrictions on the dimensionality of the involved subsystems but on the purity of the tripartite state [23].

\[
E_{AC} + J_{AB}^- = S_A, \tag{1}
\]

where \(S_A\) is the von Neumann entropy for the reduced state \(\rho_A\). The CC [24][25] is defined by the optimization:

\[
J_{AB}^- = \max_{\{\Pi_x\}} [S_A - S(\rho_{AB}^{\Pi_x})], \tag{2}
\]

\(S(\rho_{AB}^{\Pi_x}) = \sum_x p_x S_x^A\) is the quantum conditional entropy of \(A\) averaged on all possible outcomes of the measurement \(\{\Pi_x\}\) performed on the subsystem \(B\), \(p_x = \text{Tr}\{\Pi_x \rho_{AB}\}\) is the probability with outcome \(x\), and \(\rho_A^x = \text{Tr}_C\{\Pi_x \rho_{AB}\}\) is the reduced state of the state of \(A\). Because of the nonsymmetric nature of the CC and by choosing three different vertices in Fig. 1 we find that there are six relations of the kind [1]. Denoting the ordering ABC for Fig. 1 by even permutations we can obtain two additional equalities for

\[
E_{AC} + J_{AC}^- = S_A, \tag{3}
\]

\[
E_{BC} + J_{BA}^- = S_B, \tag{4}
\]

\[
E_{AB} + J_{AC}^- = S_B, \tag{5}
\]

\[
E_{BC} + J_{AB}^- = S_A, \tag{6}
\]

\[
E_{AC} + J_{AB}^- = S_C. \tag{7}
\]
after measuring the subsystem CAB and BCA. On the other hand, by exchanging B and C on Fig. 1, we obtain an equality for the ordering ACB: $E_{AB} + J_{AC} = S_A$, which gives rise to equalities for BAC and CBA after permutations. Thus, according to equations (1) and (2) the EoF E_{AC} is given by:

$$E_{AC} = \min_{\Pi_x} [S(\rho_{AB}|\{\Pi_x\})]. \quad (3)$$

Let us assume a general $2 \otimes 2 \otimes d$ tripartite pure state given by:

$$|\Psi\rangle_{ABC} = c_{gg}|gg\rangle_{AB}|\psi_1\rangle + c_{ge}|ge\rangle_{AB}|\psi_2\rangle + c_{eg}|eg\rangle_{AB}|\psi_2\rangle + c_{ee}|ee\rangle_{AB}|\psi_4\rangle, \quad (4)$$

where $|\psi_i\rangle$ are arbitrary states of the d-dimensional system C. By tracing out one qubit we are led with a $(2 \otimes d)$-dimensional mixed state. The relation (3) allows us to obtain the entanglement of formation for that bipartite mixed states, inasmuch as we can solve the optimization process to obtain the conditional entropy associated with the $2 \otimes 2$ partition. The problem of optimizing $S(\rho_{AB}|\{\Pi_x\})$ can be solved at least numerically. However, there are some special classes of states (4) where the $2 \otimes 2$ partition corresponds to a X state. This is the case for $|\psi_1\rangle|\psi_2\rangle = (|\psi_1\rangle|\psi_3\rangle = 0$ and $|\psi_4\rangle|\psi_2\rangle = |\psi_4\rangle|\psi_3\rangle = 0$. For such classes an analytical recipe is available for solving the optimization process required to obtain E_{AC} (5). When these conditions hold, in the basis $\{|gg\rangle = |0\rangle, |ge\rangle = |1\rangle, |eg\rangle = |2\rangle, |ee\rangle = |3\rangle\}$ we lead with a state of the form:

$$\text{Tr}_C (|\Psi\rangle_{ABC}
$$

Our first example considers two atoms (A and B), each of them interacting resonantly with a single quantized mode of a cavity field (system C) in a Fock state. This physical situation is described through the two-atom Tavis-Cummings (TC) Hamiltonian: $H = \hbar g (|\sigma_A + \sigma_B\rangle_\psi \langle \sigma_\psi + \sigma_B\rangle_\psi a_C + \langle \sigma_\psi + \sigma_B\rangle_\psi a_C^\dagger)$, where σ_A and σ_B are the ladder Pauli operators for the jth atom, a_ψ (a†) is the annihilation (creation) operator for photons in cavity C, and \hbar is the coupling constant. Let us assume that the system is initially in the state $|\Psi(0)\rangle = (|gg\rangle + |ee\rangle)_{AB}|n\rangle_C$. Since the TC Hamiltonian preserves the total number of excitation, the cavity mode will evolve within a 5-dimensional Hilbert space spanned by $\{|n-2\rangle, |n-1\rangle, |n\rangle, |n+1\rangle, |n+2\rangle\}$ for $n \geq 2$. For $n = 0, 1$ the dimension will be 3 and 4 respectively. On the other hand, the atomic system will evolve within the subspace $\{|gg\rangle, |+\rangle, |ee\rangle\}$ with $|+\rangle = (|eg\rangle + |ge\rangle)/\sqrt{2}$. By solving the Schrödinger equation, the state at time t is described by the state:

$$|\Psi(t)\rangle = c_1(t)|gg\rangle|n+2\rangle + c_2(t)|+\rangle|n+1\rangle + c_3(t)|ee\rangle|n\rangle + c_4(t)|gg\rangle|n\rangle + c_5(t)|+\rangle|n-1\rangle + c_6(t)|ee\rangle|n-2\rangle, \quad (7)$$

where the probability amplitudes are

$$c_1(t) = -i\beta\sqrt{(n+1)(n+2)} \left[1 - \cos(\sqrt{2(n+3)}g)t\right], \quad (8a)$$
$$c_2(t) = -i\beta\sqrt{2n} \left[1 - \cos(\sqrt{2(n+3)}g)t\right], \quad (8b)$$
$$c_3(t) = \beta \left[1 - \frac{(n+1)}{2n+3} \left[1 - \cos(\sqrt{2(n+3)}g)t\right]\right], \quad (8c)$$
$$c_4(t) = \alpha \left[1 - \frac{n}{2n-1} \left[1 - \cos(\sqrt{2(n-1)}g)t\right]\right], \quad (8d)$$
$$c_5(t) = -i\alpha\sqrt{\frac{n}{2n-1}} \sin(\sqrt{2(n-1)}g)t, \quad (8e)$$
$$c_6(t) = -i\alpha\sqrt{\frac{n}{2n-1}} \left[1 - \cos(\sqrt{2(n-1)}g)t\right]. \quad (8f)$$

The entanglement of formation E_{AC} between the atom A and the cavity mode C is given in terms of the quantum correlations embedded in the AB subsystem. The reduced density matrix ρ_{AB} has the form of an X state. The matrix elements in that representation are $\rho_{00} = |c_1|^2 + |c_2|^2$, $\rho_{01} = 2c_1 c_2*$, $\rho_{10} = 2c_1 c_2$, $\rho_{11} = |c_3|^2 + |c_4|^2$, $\rho_{31} = |c_3|^2 + |c_4|^2$, and $\rho_{03} = \rho_{30} = c_3 c_4$. E_{AC} is the minimum of $S(\rho_{AB}|\{\Pi_x\})$ in equation (6) and it is obtained analytically through the optimal eigenvalues $\{v_+(\theta), w_+(\theta')\}$ of the density matrices ρ_0 and ρ_1 (10).

As an example, let us consider the case $n = 0$ where the total system has dimension $2 \otimes 2 \otimes 3$. In such case we found that there are two sets of parameters that can minimize Eq. (6) with corresponding eigenvalues:
restricted the dimensionless time $\tau = \sqrt{6 g t}/2 \pi$.

$\{v_\pm(\theta_1) = w_\pm(\theta'_1)\}$ and $\{v_\pm(\theta_2), w_\pm(\theta'_2)\}$, where

$$
\theta_1 = \theta'_1 = \sqrt{(\alpha^2 + c_1^2 - c_3^2)^2 + 4(\alpha c_3 + \frac{1}{2} |c_2|^2)^2},
$$

(9)

$$
\theta_2 = \frac{|\alpha^2 + c_1^2 - \frac{1}{2} |c_2|^2|}{\alpha^2 + c_1^2 + \frac{1}{2} |c_2|^2}, \quad \theta'_2 = \frac{|c_3^2 - \frac{1}{2} |c_2|^2|}{c_3^2 + \frac{1}{2} |c_2|^2}.
$$

(10)

At a time t the EoF is

$$
E_{AC} = \min\{S(\theta_1, \theta'_1), S(\theta_2, \theta'_2)\},
$$

(11)

where we have written $S(\theta, \theta')$ for the conditional entropy [6]. For $S(\theta_1, \theta'_1)$, $p_0 = p_1 = 1/2$ and for $S(\theta_2, \theta'_2)$, $p_0 = \alpha^2 + c_1^2 + |c_2|^2/2$ and $p_1 = 1 - p_0$. The dynamics of E_{AC} is shown in Fig. [2] where we restricted the dimensionless time $\tau = \sqrt{6 g t}/2 \pi$ to one period. We observe that the entanglement is zero for $\tau = 1/2$ where the $(2 \otimes 3)$-dimensional separable state given by $\rho = |g\rangle \langle g| \otimes |\phi\rangle \langle \phi| + \beta^2/9 |c_3\rangle \langle c_3| \otimes |0\rangle \langle 0|$, with $|\phi\rangle = \alpha |0\rangle - 2 \beta \sqrt{2}/3 |2\rangle$. Although there is no entanglement, this state is maintaining quantum correlations as can be checked by calculating the quantum discord which is different from zero except for $\alpha = 0$ (classical state) and $\alpha = 1$ (factorized state). The amount of discord in such case is called dissonance [14]. For $\tau = 1$ the system is again in the factorized initial state. From Eqs. [6] we realize that the arising of entanglement is related with the population $c_2(t)$ of the symmetric state $|+\rangle$, c.i.e., entanglement will arise whenever $c_2(t) \neq 0$.

From Fig. [2] we see that the entanglement dynamics suffers abrupt changes. These happen for dimensionless times $\tau \approx 0.40098$ and $\tau \approx 0.59902$. These behavior arise because there are two solutions leading to equation [11]. For $\tau \lessapprox 0.40098$ the minimum conditional entropy is $S(\theta_2, \theta'_2)$. For $0.40098 \lessapprox \tau \lessapprox 0.59902$ the minimum conditional entropy is $S(\theta_1, \theta'_1)$. For $\tau \gtrapprox 0.59902$ the solution is again $S(\theta_2, \theta'_2)$. These abrupt changes appear for all α different to zero. Evidence for the existence of abrupt changes in a lower bound for disentanglement dynamics in higher dimensional systems has been previously reported [20].

By assuming the initial state $|\Psi(0)\rangle = (\alpha |g\rangle + \beta |e\rangle)_{AB}|n\rangle_C$ the atom-field system will evolve inside a $(2 \otimes 4)$-dimensional Hilbert space when $n = 1$ and inside a $(2 \otimes 5)$-dimensional Hilbert space when $n \geq 2$. Fig. [3] shows the evolution of the E_{AC} for $n = 2$. In this case the symmetric state associated to the cavity state $|n - 1\rangle$ is also populated, i.e., entanglement arises when the probability amplitudes $c_2(t)$ and $c_3(t)$ are different from zero. We notice that at $\tau = 1/2$ the entanglement approaches to zero. At that dimensionless time the atom A and the field mode C are near the factorized state $\rho = |g\rangle \langle g| \otimes |\phi\rangle \langle \phi| + \beta^2 |c_3\rangle \langle c_3| \otimes |0\rangle \langle 0|$, with $|\phi\rangle = \alpha |0\rangle - 2 \beta \sqrt{2}/3 |2\rangle$. In other words, at $\tau = 1/2$ the state of the atomic subsystem has been approximately swapped to the field state. The minimum observed at $\tau = 1$ corresponds approximately to the initial state. On the other hand, for this initial state we found that there are three set of parameters that can minimize Eq. [6], that is, the EoF will corresponds to $E_{AC} = \min\{S(\theta_1, \theta'_1), S(\theta_2, \theta'_2), S(\theta_3, \theta'_3)\}$ where the entropies can be obtained following the previous procedure. The dependence on three different entropies is the responsible for the abrupt changes showed in Fig. [3].

Figs. [2] and [3] shows the lower bound [11] used to compare with EoF. In both cases it follows monotonically the EoF, however it does not exhibit the abrupt changes.

Different initial conditions for this system can be considered whose evolution result in a X-type state for the atomic subsystem. In particular, initial entanglement between one atom and the cavity mode can be consid-
The state where the matrix elements A and cavity mode (blue line) for the initial state $|\Psi(0)\rangle = (|gg\rangle + \beta|ee\rangle)_{AB}|0\rangle_C$ with $\alpha = 0.3$. The red and green lines shows the evolution of the conditional entropies $S(\theta_1, \theta'_1)$ and $S(\theta_2, \theta'_2)$ respectively. Black line corresponds to the lower bound.

For instance, $|\Psi(0)\rangle = \alpha|gg\rangle|n + 1\rangle + \beta|ee\rangle|n\rangle$ and $|\Psi(0)\rangle = \alpha|eg\rangle|n + 1\rangle + \beta|ee\rangle|n\rangle$.

A second physical scenario is a system consisting of two atoms A and B interacting with a common reservoir C. After tracing out the reservoir degrees of freedom the dynamics of the atomic subsystem is described by the master equation: $\dot{\hat{\rho}} = (\gamma/2)(2J\rho J^\dagger - J^\dagger J\rho - \rho J^\dagger J)$, with $J = \sigma_A + \sigma_B$. This model has been used to describe the dissipative dynamics of a collection of cold ions coupled through the center-of-mass mode [27]. However, by considering explicitly the reservoir degrees of freedom and initially in the vacuum state the overall system will evolve in a $(2 \otimes 2 \otimes 3)$-dimensional Hilbert space. Let us assume the initial state $|\Psi(0)\rangle = (|gg\rangle + \beta|ee\rangle)_{AB}|0\rangle_C$, where $|0\rangle = \prod_k |0\rangle_k$ is the reservoir the vacuum state. Inspecting the occupied Hilbert space throughout the evolution we found that the overall state is given by:

$$|\Psi(t)\rangle = \alpha|gg\rangle_{AB}|0\rangle_C + c_1(t)|ee\rangle_{AB}|0\rangle_C + c_2(t)|+\rangle_{AB}|1\rangle_C + c_3(t)|gg\rangle_{AB}|2\rangle_C,$$

where $|\bar{k}\rangle$ are collective states of the reservoir having k excitations [28]. In this case the probability amplitudes become $c_1(t) = \beta e^{-\gamma t}$, $c_2(t) = \beta e^{-\gamma t}\sqrt{1 - e^{-2\gamma t}}$ and $c_3(t) = \sqrt{1 - \alpha^2 - c_1^2(t) - c_2^2(t)}$.

This evolution takes to the atomic subsystem to be an X state where the matrix elements $\rho_{00} = c_1^2$, $\rho_{03} = \alpha c_1$, $\rho_{11} = \rho_{22} = \rho_{12} = \rho_{21} = c_2^2/2$ and $\rho_{33} = \alpha^2 + c_3^2$. Here, we have also two relevant sets of parameters minimizing Eq. [7], leading to eigenvalues \(\{v_+(\theta_2), w_+(\theta'_2)\}\) with

$$\begin{align*}
\theta_1 &= \theta'_1 = e^{-4\gamma t}\left[\beta^2(2e^{3\gamma t}\alpha + e^{2\gamma t}\beta - \beta^2)^2 + (e^{4\gamma t} - 3e^{2\gamma t}\beta^2 + \beta^2)^2\right]^{1/2},
\theta_2 &= 1 + e^{2\gamma t} - \frac{\beta^2}{3e^{2\gamma t} - 1},
\theta'_2 &= \frac{\left[2e^{4\gamma t} - 5e^{2\gamma t}\beta^2 + 3\beta^2\right]}{2e^{4\gamma t} - 3e^{2\gamma t}\beta^2 + \beta^2}.
\end{align*}$$

In this case, the EoF is again given by Eq. (11) with $p_0 = e^{-4\gamma t}/(3e^{2\gamma t} - 1)\beta^2/2$ for $S(\theta_2, \theta'_2)$ and $p_0 = p_1 = 1/2$ for $S(\theta'_1, \theta'_2)$. Fig. 4 shows the two relevant conditional entropies $S(\theta_1, \theta'_1)$ and $S(\theta_2, \theta'_2)$, the EoF, and a lower bound. In this case the dynamics between atom A and the reservoir evolves in a $(2 \otimes 3)$ Hilbert space. We observe that there is only one abrupt change along the entanglement dynamics and that the atom-reservoir state converge to the factorized state $|g\rangle(|\alpha\rangle + \sqrt{1 - \alpha^2}|2\rangle)$ for time $t >> 1/\gamma$. Notice that the reservoir converge to an coherent superposition when $\alpha = 0$. The abrupt change holds at time for which the conditional entropies are equal and it depends on the initial probability amplitudes. As in previous cases, the lower bound has a monotonic behavior with respect to the EoF and it does not exhibit the abrupt change.

In summary, we have obtained an analytical recipe to evaluate the entanglement of formation for a class of $2 \otimes d$ bipartite mixed states. For this class of states the calculation of EoF is mapped to an optimization process for calculating a conditional entropy in a $2 \otimes 2$ partition. Previous result for lower bounds shows to be in agreement with our findings. Finally, we have found abrupt changes in the entanglement dynamics as consequence of the optimization process leading to the minimum value of the quantum conditional entropy.

These results open the possibility for extending this treatment to evaluate EoF for arbitrary dimensions aided by such optimization for conditional entropies which can be realized numerically at least.

C.E.L. acknowledges financial support from DICYT 041131LC and PBCT-CONICYT PSD54, L.R. from Fondecyt 1080535 and J.C.R. from Fondecyt 1100700. F.L., C.E.L. and J.C.R. acknowledge support from Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia.

\begin{thebibliography}{99}
\bibitem{1} R. Horodecki, et al., Rev. of Mod. Phys. \textbf{81}, 865 (2009).
\bibitem{2} O. Guhne and G. Toth, Phys. Rep. \textbf{103}, 20504 (2009).
\bibitem{3} S.P. Walborn, et al., Nature \textbf{440}, 1022 (2006).
\bibitem{4} M.P. Almeida, et al., Science \textbf{316}, 519 (2007).
\bibitem{5} J. Laurat, et al., Phys. Rev. Lett. \textbf{99}, 180504 (2007).
\bibitem{6} W.K. Wootters, Phys. Rev. Lett. \textbf{80}, 2245 (1998).
\bibitem{7} B.M. Terhal and K.G.H. Vollbrecht, Phys. Rev. Lett. \textbf{85}, 2625 (2000).
\bibitem{8} P. Runta and C.M. Caves, Phys. Rev. A \textbf{67}, 012307 (2003).
\bibitem{9} E. Gerjuoy, Phys. Rev A \textbf{67}, 052308 (2003).
\end{thebibliography}
[10] K. Chen, S. Albeverio, and S.M. Fei, Phys. Rev. Lett. 95, 210501 (2005); K. Chen, S. Albeverio, and S.M. Fei, Phys. Rev. Lett. 95, 040504 (2005).
[11] O. Guhne, M. Reimpell, and R.F Werner, Phys. Rev. Lett. 98, 110502 (2007).
[12] B. Groisman, S. Popescu, and A. Winter, Phys. Rev. A. 72, 032317 (2005).
[13] H. Ollivier and W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
[14] K. Modi, et al., Phys. Rev. Lett. 104, 080501 (2010).
[15] S. Luo, Phys. A. 77, 042303 (2008).
[16] M. Ali, et al., Phys. A. 81, 042105 (2010).
[17] A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008).
[18] B.P. Lanyon, et al., Phys. Rev. Lett. 101, 200501 (2008).
[19] A. Shabani and D.A. Lidar, Phys. Rev. Lett. 102, 100402 (2009).
[20] L. Mazzola, J. Piilo, and S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010).
[21] A. Ferraro, et al., Phys. Rev. A. 81, 052318 (2010).
[22] T. Werlang, et al., Phys. Rev. A 80, 024103 (2009); F.F. Fanchini, et al., Phys. Rev. A 81, 052107 (2010); F. F. Fanchini, et al., arXiv:1006.2460v2 (2011).
[23] M. Koashi and A. Winter, Phys. Rev. A. 69, 022309 (2004).
[24] L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).
[25] V. Vedral, Phys. Rev. Lett. 90, 050401 (2003).
[26] F. Lastra, et al., Phys. Rev. A. 75, 062324 (2007).
[27] S. Schneider and G.J. Milburn, Phys. Rev. A 65, 042107 (2002).
[28] C.E. López, et al., Phys. Rev. Lett. 101, 080503 (2008).