Ground states of 2D \(\pm J \) Ising spin glasses obtained via stationary Fokker–Planck sampling

O Melchert and A K Hartmann

Institut für Physik, Universität Oldenburg, Carl-von-Ossietzky Strasse, 26111 Oldenburg, Germany
E-mail: melchert@theorie.physik.uni-oldenburg.de and alexander.hartmann@uni-oldenburg.de

Received 29 August 2008
Accepted 2 October 2008
Published 28 October 2008

Abstract. We investigate the performance of the recently proposed stationary Fokker–Planck sampling method, considering a combinatorial optimization problem from statistical physics. The algorithmic procedure relies upon the numerical solution of a linear second-order differential equation that depends on a diffusion-like parameter \(D \). We apply it to the problem of finding ground states of 2D Ising spin glasses for the \(\pm J \) model. We consider square lattices with side length up to \(L = 24 \) with boundary conditions of two different types and compare the results to those obtained by exact methods. A particular value of \(D \) is found that yields an optimal performance of the algorithm. We compare the situation with this optimal value of \(D \) to the case of a percolation transition, which is found when studying the connected clusters of spins flipped by the algorithm. However, even for moderate lattice sizes, it becomes more and more difficult to find the exact ground states with the algorithm. This means that the approach, at least in its standard form, seems to be inferior to other approaches like parallel tempering.

Keywords: disordered systems (theory), spin glasses (theory), heuristics, stochastic search

ArXiv ePrint: 0808.3869
1. Introduction

During the last few decades, a vast number of heuristic methods have been developed that aim to solve optimization problems by employing ideas from physics and related disciplines [1, 2]. Among these, stochastic search strategies, e.g. simulated annealing [3, 4], parallel tempering Monte Carlo methods [5, 6], extremal optimization [7, 8] and genetic algorithms [9, 10], provide valuable tools for locating points in the configuration space that correspond to a near-optimal or even an optimal value of the underlying cost function. Here we investigate a recently proposed heuristic for stochastic optimization, called stationary Fokker–Planck (SFP) sampling [11, 12]. The basic idea is to perform a Langevin dynamics for the variables of a given system with the potential given by the cost function. Through iteratively decreasing the stochastic noise, the variables will be driven into a global minimum of the cost function. Langevin dynamics can also be cast in terms of a Fokker–Planck equation as an evolution equation for the probability density of the variables of the cost function. Related to this, SFP sampling aims to estimate the asymptotic probability density of a stochastic search process by estimating the marginal densities of the individual variables that enter the cost function. Moreover, the influence of the cost function on the search process therein depends on a diffusion-like parameter D. Upon its introduction in [13], the approximation of a stationary probability density via the SFP algorithm was illustrated for the two-parameter Michalewicz function, an unconstrained test function for global optimization. In [14] the authors presented an implementation of the SFP algorithm and showed its applicability to the five-parameter Levy No. 5 function, again a test function for global optimization, and the XOR problem, a fundamental problem relevant e.g. to the subject of machine learning. In both latter cases the SFP algorithm was used to construct probability densities, consistent with the asymptotic statistical properties of the search process. The point in the search space that was found to have the maximum probability was then used as an initial point for the search for a global optimal point using the deterministic Powell algorithm [15].

doi:10.1088/1742-5468/2008/10/P10019
We now give a brief overview over the past applications of the SFP algorithm. In [11] the SFP algorithm was detailed further and tested for various unconstrained optimization problems. Among those were the two-parameter Schwefel function, a separable problem for which the algorithm converges after only one step of iteration, and the 20-parameter Rosenbrock function. Originally designed to address problems defined on continuous unconstrained configuration spaces, the SFP algorithm can also be applied to discrete and constrained problems through the introduction of proper penalty functions in addition to the cost function. The introduction of additional functions intended to model constraints on the individual variables was illustrated for the knapsack problem, an NP-hard combinatorial optimization problem. Therefore, instances of the knapsack problem with up to 30 variables were considered. Besides that, the construction of heuristics based on the SFP algorithm in combination with a downhill simplex routine [15] was discussed. Recently [12] the asymptotic convergence properties of the SFP algorithm were studied by means of numerical experiments considering the two-parameter Michalewicz function and the XOR problem. Moreover, its applicability to problems that arise in the field of statistical inference was outlined by showing how the SFP algorithm can be efficiently used to perform maximum likelihood and Bayesian training of neural networks.

For all these cited applications, systems with rather few degrees of freedom were studied. To get an impression of whether an optimization algorithm is really competitive, larger problems have to be treated. Here, we investigate the performance of the SFP algorithm by applying it to a combinatorial optimization problem from statistical physics. More precisely, we perform ground state (GS) calculations for two-dimensional $±J$ Ising spin glasses (ISGs) with nearest-neighbor interactions. The $±J$ ISG is a disordered model system in which the sign of the interactions is chosen randomly but the magnitude of the interactions is fixed to a value J. We consider square lattices of side length $L \leq 24$, i.e. up to $N = 576$ spin variables. The fact that there exist exact algorithms that yield GS properties within a computing time that is bounded by a polynomial in the number of spins turns the 2D ISG into an expedient testbed for evaluating the performance of heuristics like the SFP algorithm.

The paper is organized as follows. In section 2 we describe $±J$ ISGs in more detail, in section 3 we explain the heuristic algorithm that we have employed in order to find GS spin configurations and section 4 contains the results on the algorithm performance. Section 5 concludes with a summary.

2. Model

Within the scope of this paper, we perform GS calculations of two-dimensional Ising spin glasses with nearest-neighbor interactions. The model consists of $N = L \times L$ spins $\sigma = (\sigma_1, \ldots, \sigma_N)$ with $\sigma_i = \pm 1$ located on the sites of a square lattice. The energy of a given spin configuration is measured by the Edwards–Anderson Hamiltonian

$$H(\sigma) = -\sum_{(i,j)} J_{ij} \sigma_i \sigma_j,$$

where the sum runs over all pairs of adjacent spins. Therein, the bonds J_{ij} are quenched random variables drawn from a bimodal disorder distribution that allows for values $J_{ij} = \pm 1$ with equal probability (the $±J$ model). The bonds can take either sign and thus

doi:10.1088/1742-5468/2008/10/P10019
Ground states of 2D $\pm J$ Ising spin glasses obtained via stationary Fokker–Planck sampling

Figure 1. Features of an ISG: (a) ferromagnetic ($J_{ij} = +1$, straight line) and antiferromagnetic ($J_{ij} = -1$, jagged line) bonds. Ferromagnetic bonds favor parallel alignment of the connected spins, while an antiferromagnetic bond leads preferentially to an antiparallel alignment. (b) Competing interactions give rise to frustration: no matter how the spin at the upper right corner is oriented, one of the incident bonds is not satisfied. (c) One GS for an instance of a $\pm J$ ISG with $L = 4$ and periodic boundary conditions in the horizontal direction. For clarity only those spins that point upwards are shown.

lead to competing interactions among the spins giving rise to frustration; see figure 1. A plaquette, i.e. an elementary square on the lattice, is said to be frustrated if it is bordered by an odd number of negative bonds. Frustration, in effect, rules out a GS in which all the bonds are satisfied. For the $\pm J$ model considered here, the GS is highly degenerate: there are numerous spin configurations that all have minimal energy. Moreover, the average number of GSs increases exponentially with N [16, 17]. As a result, the problem of finding a GS spin configuration for a given realization of the bond disorder is quite involved. In the remainder of this section, we very briefly describe the algorithms that we have used to generate the exact GS data to which we compare the results of the SFP heuristic.

(i) Free–periodic (FP) boundary conditions (BCs). For the 2D ISG, where there are periodic boundary conditions in at most one direction, exact GS spin configurations can be found in polynomial time. This is possible through a mapping to an appropriate minimum weight perfect matching problem [1, 18, 19]. Here we state only the general idea of this method. For this mapping, the system needs to be represented by its frustrated plaquettes and paths connecting those pairwise, i.e. matching them. In doing so, individual path segments are confined to run perpendicular across bonds on the spin lattice. Those bonds that are crossed by path segments are not satisfied in the corresponding spin configuration. The weight of the matching is just the sum of all unsatisfied bonds. Hence, finding a minimum weighted perfect matching on the graph of frustrated plaquettes then corresponds to finding a spin configuration on the original spin lattice for which a minimal number of bonds are broken (in case of the $\pm J$ model), and hence a GS. Using this approach, since the minimum weight perfect matching problem is polynomially solvable, rather large systems, easily with $L = 500$ [20], can be treated on single-processor systems.

(ii) Periodic–periodic (PP) BCs. For the 2D ISG with fully periodic boundary conditions, the density of states can be calculated in polynomial time [16, 21]. The respective algorithm relies on a combinatorial expansion of the partition function,
Ground states of 2D ±J Ising spin glasses obtained via stationary Fokker–Planck sampling

originally introduced for the pure 2D Ising model [22]. Therein, the algorithmic procedure is based on a high temperature expansion of the underlying partition function, where it is possible to relate the coefficients of individual expansion terms to closed graphs on the square lattice. Note that this algorithm does not yield GS spin configurations; instead it gives rise to the GS energy. Due to the different approach, somewhat smaller systems \(L \approx 64 \) are easily feasible.

3. Algorithm

Here, we briefly describe the stationary Fokker–Planck sampling algorithm as introduced in [13] and further detailed in [11, 12, 14], where also more details about the general framework can be found. SFP sampling is based on the interrelation between the Langevin and Fokker–Planck equations that allow for the stochastic description of a given system. As noted in [11] a Langevin equation, as a stochastic differential equation, contains the building blocks for a stochastic search strategy. In this regard, a stochastic dynamics for \(\mathbf{x} = (x_1, \ldots, x_N) \) under the influence of a cost function \(V(\mathbf{x}) \) can be written as

\[
\dot{x}_n = -\frac{\partial V(x_n)}{\partial x_n} + \epsilon(t),
\]

where \(\epsilon(t) \) is a Gaussian white noise with mean \(\langle \epsilon(t) \rangle = 0 \) and a correlation function \(\langle \epsilon(t) \epsilon(t') \rangle = D \delta(t - t') \), where \(D \) signifies the diffusion constant. By the above equation the variables \(x_n \) interact through the forces induced by the cost function \(V(\mathbf{x}) \) under the influence of a rapidly fluctuating noise \(\epsilon(t) \). Further, the probability density of a system as modeled by the equation above is governed by a Fokker–Planck equation of the form

\[
\dot{p}(x) = \sum_{n=1}^{N} \frac{\partial}{\partial x_n} \left[\frac{\partial V}{\partial x_n} p(x) \right] + \sum_{n=1}^{N} \sum_{m=1}^{N} D_{nm} \frac{\partial^2 p(x)}{\partial x_n \partial x_m},
\]

a linear differential equation, where \(D_{nm} = \delta_{nm} D \). The absence of infinite cost values and a bounded search space for the optimization of \(V(\mathbf{x}) \), realized by constraints of the form \(L_n^- \leq x_n \leq L_n^+ \), further ensures that a stationary solution for the density \(p(x) \) exists. One introduces the conditional densities

\[
p(x_n \mid \{x_{j \neq n}\}) = \frac{p(x)}{\int p(x_n \mid \{x_{j \neq n}\}) p(x_n) \, dx_n},
\]

i.e. the evolution of variable \(x_n \) given the positions of all the other variables where \(p(x_n) = \int p(x_n \mid \{x_{j \neq n}\}) p(\{x_{j \neq n}\}) \, dx_{j \neq n} \) denotes the respective marginal density. The one-dimensional projection of equation (3)

\[
D \frac{\partial p(x_n \mid \{x_{j \neq n} = x^*_j\})}{\partial x_n} + p(x_n \mid \{x_{j \neq n} = x^*_j\}) \frac{\partial V(x_n)}{\partial x_n} = 0,
\]

describing the evolution of variable \(x_n \) while keeping all the other variables at fixed positions \(x_{j \neq n} = x^*_j \), can be used to draw points from the conditional density and therewith sample the corresponding marginal density \(p(x_n) \). This is possible by casting equation (5) into a linear second-order differential equation form for the cumulative distribution \(y \) that

doi:10.1088/1742-5468/2008/10/P10019
is connected to the marginal density via

\[y(x_n\{x_{j\neq n} = x_j^*}\}) = \int_{-\infty}^{\infty} p(x_n\{x_{j\neq n} = x_j^*\}) \, dx'_n. \]

\[
\frac{d^2 y}{dx_n^2} + D^{-1} \frac{\partial V}{\partial x_n} \frac{dy}{dx_n} = 0,
\]

together with the boundary conditions \(y(L_n^-) = 0 \) and \(y(L_n^+) = 1 \); \(y \) is a uniformly distributed random variable, in the interval \([0, 1]\). Therefore an inversion method can be used to draw random deviates from the conditional density. Further, the iterative execution of the following steps yields an algorithm for the approximation of \(y \):

1. Fix the variables \(x_{j\neq n} = x_j^* \) and approximate \(y(x_n\{x_{j\neq n} \}) \) by use of equation (6).
2. Construct a lookup table from \(y(x_n\{x_{j\neq n} \}) \) so as to generate a deviate \(x_n^* \) drawn from the stationary distribution \(p(x_n\{x_{j\neq n} = x_j^*\}) \).
3. Update \(x_n = x_n^* \) and repeat the procedure for a new variable \(x_{j\neq n} \).

Finally, the marginal \(y(x_n) \) can be obtained as the expected value of the conditional \(y(x_n\{x_{j\neq n} \}) \) over the set \(\{x_{j\neq n}\} \) and the marginal densities \(p(x_n) \) for the individual variables \(x_n \) follow by differentiation.

The implementation of the spin model introduced in section 2 is carried out as follows. For a numerical treatment of equation (6) we set up its finite difference analogue based on a one-dimensional mesh with an overall number of \(m \) mesh points and a uniform mesh width \(\Delta \). We therein employed a second-order centered approximation for the derivatives as well as the cost function in terms of the mesh width. The cost function is further identified with the energy function of the spin system (see equation (1)), and the set of variables \(x \) is consequently identified with the spin degrees of freedom that are bounded by \(-1 \leq \sigma_n \leq 1\) and are allowed to take one of the \(m \) values \(-1, -1 + \Delta, \ldots, 1 - \Delta, 1\). However, according to the model introduced in section 2 valid configurations consist of spins with integer values \(\pm 1 \) only. To account for these constraints on the spins, the energy function gets an additional term that favors those configurations, where the constraints on the spins are met. For example, the local energy of an individual spin can be changed to

\[
V(\sigma_i\{\sigma_{j\neq i}\}) = -\sum_{j \in N(i)} J_{ij} \sigma_j \sigma_i + \lambda(1 - \sigma_i \sigma_i),
\]

wherein \(N(i) \) comprises all spins adjacent to spin \(i \). In this case, any deviation from the allowed spin values is paid for with an additional cost, while the penalty term equates to zero if the constraints are met. So as to adjust the parameter \(\lambda \), we performed several trial runs. We found that the results do not strongly depend on \(\lambda \), provided that the two terms in the above formula are approximately of the same order. During the execution of the algorithm, we measure configurational properties like energy and magnetization \(M = \sum_1^N \sigma_i / N \) that correspond to the momentarily approximated density. Despite the penalty term in equation (7), the momentary density can lead to spin configurations where the \(\sigma_i \) are not strictly \(\pm 1 \) but deviate slightly. We correct for those deviations by rounding to the closest number \(\pm 1 \), before we evaluate configurational properties. In the following we present our results on the performance of the SFP algorithm applied to the problem of finding ground states of 2D \(\pm J \) ISGs.

\[\text{doi:10.1088/1742-5468/2008/10/P10019} \]
4. Results

So as to quantify the performance of the SFP heuristic we compare the resulting GS spin configurations for 2D $\pm J$ ISGs to those obtained by the exact methods outlined in section 2. Specifically, we generated 100 test instances for several system sizes in the range $L = 4, \ldots, 24$ for both FP and PP BCs. One such test instance consists of a set of bonds together with the corresponding GS energy. On input the SFP algorithm takes the set of bonds, the GS energy, a value D for the diffusion constant, a seed that controls steps (2) and (3) listed in section 3 and an overall number of sweeps t after which the respective run of the algorithm should terminate. One sweep therein consists of N iterations of the three steps introduced in section 3. The spin configuration from which a run of the SFP algorithm is started is initialized at random. The algorithm constructs an approximate density from which the spin configurations are accessible. If the corresponding configurational energy turns out to be equal to the GS energy, the run is completed and recorded as successful. If the computational budget is exceeded and the GS energy is not reached by any encountered spin configuration, then the run is recorded as not successful. Finally, we simulated a number n of copies of each test instance with different initial spin configurations and different seeds for the SFP algorithm. For completeness, we mention that within the simulations we fixed the value of λ that enters the penalty function in equation (7) to $\lambda = 1/4$ and the number of mesh points was taken to be $m = 40$. The smaller the value of m the lesser the computational effort that it takes to solve equation (6). We checked that the results do not depend on our particular choice of m.

4.1. Dependence on the diffusion constant

We performed GS calculations using the SFP algorithm for different values for the diffusion constant $D = 0.1, \ldots, 1.3$ and for different system sizes L. For each test instance we simulated $n = 32$ copies. Consequently a test instance was completed successfully if at least one of the n runs correctly identified a GS.

First of all we were interested in the fraction p_{GS} of correctly identified GSs as a function of the diffusion constant. Results for the FP BC case with $n = 32$ and a number of $t = 10^4$ sweeps are shown in figure 2. For small system sizes ($L \leq 10$) the algorithm correctly identifies GSs for a large fraction ($p_{\text{GS}} = 0.8–1.0$) of test instances over a comparatively broad region of D values. For larger system sizes it performs best close to $D = 0.4$, as is evident from figure 2. From equation (6) it can be seen that in the limit of large D the influence of the cost function on the search process is strongly suppressed. Hence, in the limit $D \to \infty$ the search process gets purely random. On the other hand, at low values of D the cost function dominates the search process and the system rapidly evolves towards a local minimum in the configurational energy and gets stuck there, very probably. At intermediate values of the diffusion constant the search process is properly guided by the cost function and the algorithm has the ability to surmount energy barriers in order to proceed towards a more feasible spin configuration. To support this intuition, figure 5 illustrates three runs of the SFP algorithm for $D = 0.1, 0.4$ and 1.0. However, for a fixed computational budget it can be seen that the GS yield of the algorithm rapidly decreases with increasing system size. As a consequence we did not consider systems of

\[\text{doi:10.1088/1742-5468/2008/10/P10019} \]
Figure 2. Results for FP BCs with a maximal number of $t = 10^4$ sweeps. The figure shows the fraction p_{GS} of correctly identified GSs as function of the diffusion constant D for different system sizes L.

Figure 3. Results for FP BCs with a maximal number of $t = 10^4$ sweeps. The figure shows the effect of the number of simulated copies n on the fraction of correctly identified GSs.

size $L > 24$. This yields one of the main results of this paper: that the SFP is not able to find exact GSs for even moderate sizes of the system.

Figure 3 shows how the value of p_{GS} is influenced by the number n of simulated copies of a test instance. Although the advantage decreases with increasing n, the data suggest that it is beneficial to perform more than just a single run on a given test instance. To understand this issue, we investigated the distribution of the time until termination of the SFP algorithm for an individual test instance more closely. More precisely, we performed 10^6 runs for one test instance of size $L = 8$, again for different values of D. We found a heavy-tailed distribution, peaked at a small value of t ($t \approx 30$ for $D = 0.4$), where for larger values of D the peak is less pronounced.

In cases where the algorithm fails to identify a GS correctly, it nevertheless reaches a spin configuration with an energy $E = E_{GS} + \Delta E$ close to optimality as can be seen from the averaged relative difference $\langle \Delta E/E_{GS} \rangle$ from the GS energy, illustrated in figure 4.
Ground states of 2D ±J Ising spin glasses obtained via stationary Fokker–Planck sampling

Figure 4. Results for FP BCs with a maximal number of \(t = 10^4 \) sweeps. The figure shows the relative difference of the best energy found from the GS energy as a function of \(D \). The horizontal dashed line indicates the respective value obtained using a \(T = 0 \) MC simulation.

Figure 5. Sample runs for one test instance of size \(L = 18 \) and three different values of the diffusion constant \(D \). For \(D = 0.4 \) the GS was correctly identified after \(t = 3393 \) sweeps. (a) Energy of the momentary spin configuration. (b) Best energy value found so far.

Therein, the best performance of the algorithm is again obtained for a value close to \(D = 0.4 \). The horizontal line indicates the respective values obtained using a zero-temperature Monte Carlo (\(T = 0 \) MC) simulation: while starting with a random initial spin configuration proposed spin flips are accepted only if this reduces the configurational energy. This is the most naive algorithm that one can devise and it almost surely evolves towards a local minimum. As evident from figure 4, the SFP algorithm at \(D \approx 0.4 \) outperforms the \(T = 0 \) MC simulation, but at values \(D > 0.6 \) the latter one appears to perform better. This is due to the fact that at higher values of \(D \) the search process is no longer guided by the cost function in a proper manner. Also one can see that for \(D \to 0 \), the results of the SFP algorithm converges towards the \(T = 0 \) MC result, as expected.

To gain insight into why the algorithm performs best near a particular value of \(D \) we analyzed the individual runs more close. While figure 5(a) shows the momentary
configurational energy E, figure 5(b) shows E_B, the corresponding best energy value found so far. Disregarding the initial stage of the simulation, a new lower value for E_B basically means that a different valley in the energy landscape with a lower value of the minimum local energy has been found. In between two successive records for E_B some fraction of spins get flipped at least once, which is necessary to surmount the energy barrier between the valleys. We call connected sets of these spins clusters. For each run of the algorithm we then analyzed the largest of the clusters as regards its geometric properties, i.e. volume V and spanning lengths with respect to the independent lattice directions. So as to limit boundary effects, we performed the cluster analysis on test instances with PP BCs. Although the lattice sizes amenable to numerical simulation are far too small for performing a decent finite size scaling analysis, we can still use the results to support our intuition on the performance of the SFP heuristic. As illustrated in figure 6, simulations reveal that at small values of D flipped spins are isolated or form clusters that are negligible compared to the system size. At larger values of D the flipped spins comprise clusters that cover notable parts of the whole lattice. It appears that a value of the diffusion constant close to $D = 0.4$ signifies a threshold above which clusters appear that have a size of the order of the lattice size. The occurrence of these clusters is directly connected to the algorithm’s capability of surmounting energy barriers in order to escape local minima in the configurational energy. It is now intriguing to speculate on whether the performance of the algorithm is connected to some kind of percolation transition in terms of these clusters, as observed for an improved version of extremal optimization (τ-EO) applied to the 3D Edwards–Anderson spin glass [23]. The data suggest a percolation transition around $D_c \approx 0.5$ (not shown), where the value of D_c was estimated from the common crossing point of the curves that describe the percolation probability for different system sizes. Again, due to the rather small values of L no decent finite size scaling analysis was possible. For the range of system sizes studied, D_c appears to be somewhat larger than the optimal value of D. Considering the data shown in figure 2 one finds that the optimal value of D increases slightly as the system size increases. Therefore, we cannot rule out the possibility that the optimal value of D shifts to even larger values and approaches D_c in the

Figure 6. Cluster analysis of spins that got flipped at least once in between two successive values of $E_B(t)$, and the relative size of the largest cluster found for each run.
Figure 7. Fraction of successfully completed test instances as function of the number of sweeps carried out at $D = 0.4$. (a) Increase of typical timescales with increasing system size L. (b) Decrease of typical timescales with increasing number n of simulated copies for each test instance.

limit of large systems well beyond the maximal system size studied here, i.e. $L = 24$. This would then suggest a connection between the algorithm performance and a percolation of the clusters investigated. For the reasons explained above, as this would give an intuitive and plausible explanation for the optimal performance of the algorithm, we consider this situation as reasonable.

4.2. Dependence on the number of sweeps

We further performed simulations to get a grip on how the fraction of successfully completed test instances depends on the number of sweeps carried out by the SFP algorithm. We therein fixed the value of the diffusion constant to $D = 0.4$ so as to ensure an optimal performance of the algorithm. Figure 7 presents the results obtained for 100 test instances for $L = 4 \cdots 18$ each. In the simulation we considered a maximal number of $n = 96$ copies for each test instance. As is evident from figure 7(a) the typical timescale after which the SFP algorithm yields a fraction $p_{GS} \approx 1$ increases from $O(1)$ for the smallest system considered, i.e. $L = 4$ ($N = 16$), to $O(10^3)$ for $L = 12$ ($N = 144$). However, an attempt to characterize quantitatively the median running time of the SFP algorithm failed. This is due to the fact that for several test instances it was not possible to define a median running time. Already for $L = 6$, 3% of the test instances did not allow us to define a median, meaning that for those instances less than $n/2$ of the simulated copies resulted in a GS (12%, 18%, 34% for $L = 8$, 10, 12 respectively). Nevertheless, from this figure it is obvious that the effort to reach a true GS seems to grow exponentially with system size, although an exact polynomial algorithm exists. This raises the question of whether the SFP algorithm can be considered as competitive for combinatorial optimization problems; see the discussion below.

Finally, figure 7(b) illustrates for $L = 10$ how the fraction of correctly identified GSs is affected by the overall number of copies simulated for each test instance. Although the advantage decreases with increasing n, it is beneficial to consider values $n > 1$ since this significantly reduces the typical timescales on which the SFP algorithm approaches $p_{GS} \approx 1$.
5. Conclusions

We investigated the performance of the recently proposed SFP heuristic, applied to the combinatorial optimization problem of finding GSs for 2D \(\pm J \) ISGs. Therefore we compared the results of the heuristic algorithm to those obtained using exact algorithms, considering systems with up to \(N = 576 \) spin variables. Our numerical experiments indicate a best performance of the SFP algorithm for a value \(D = 0.4 \) of the diffusion constant. Apart from that, the capability of the algorithm for correctly identifying GSs rapidly decreases with increasing number of spin variables. In order to assess its performance we considered a very basic implementation of the SFP algorithm, meaning that the sampling scheme was carried out at a fixed value of the diffusion constant \(D \). Recently, Romá et al [24] reported on a study that aimed to determine GS properties of 2D and 3D ISGs using the parallel tempering (PT) Monte Carlo method. For the \(\pm J \) model in 2D, they considered system sizes up to \(L = 24 \) with PP BCs. For a properly calibrated algorithm and considering only \(n = 1 \) independent runs per test instance, they obtained values of \(p_{\text{GS}} \approx 1.0 \) for all the system sizes investigated. This is superior to the basic implementation of the SFP heuristic studied here, where the fraction of correctly identified GSs for \(L = 12 \) is already saturated at a value \(p_{\text{GS}} \approx 0.96 \) for \(n = 96 \) (\(p_{\text{GS}} \approx 0.54 \) for \(n = 1 \)). Following the paradigm of the PT algorithm, an improvement of the method could consist in simulating several copies of one problem realization at different values of the diffusion constant close to and above the optimal value \(D \approx 0.4 \). Copies at distinct values of \(D \) should therein exchange in a scheduled manner, where the objective is to yield spin configurations that possess a minimal configurational energy. Nevertheless, in contrast to the PT case, where detailed balance rules, we do not see at the moment how such an exchange can be performed in a controlled manner. Hence, at the current stage, PT approaches seem to be better heuristics for GSs of combinatorial optimization problems—in particular, also because PT is quite simple to implement.

Nevertheless, the SFP is still of interest, since it is an inherently physical approach and because the optimal performance may be connected to a percolation transition in the dynamics of the systems. Hence, the algorithm might contribute to a better understanding of the relation between dynamic and static complexity of complex systems.

Acknowledgments

We are deeply indebted to L Saul for providing the computer code for obtaining the density of states in the case of PP BCs. We acknowledge financial support from the VolkswagenStiftung (Germany) within the program ‘Nachwuchsgruppen an Universitäten’. The simulations were performed at the GOLEM I cluster for scientific computing at the University of Oldenburg (Germany).

References

[1] Hartmann A K and Rieger H, 2001 Optimization Algorithms in Physics (Berlin: Wiley–VCH)
[2] Hartmann A K and Rieger H (ed), 2004 New Optimization Algorithms in Physics (Weinheim: Wiley–VCH)
[3] Kirkpatrick S, Gelatt C D Jr and Vecchi M P, Optimization by simulated annealing, 1983 Science 220 671
[4] Schneider J J and Kirkpatrick S, 2006 Stochastic Optimization (Berlin: Springer)
[5] Geyer C, Monte Carlo maximum likelihood for depend data, 1991 23rd Symp. on the Interface p 156
[6] Hukushima K and Nemoto K, Exchange Monte Carlo method and application to spin glass simulations, 1996 J. Phys. Soc. Japan 65 1604

doi:10.1088/1742-5468/2008/10/P10019

12
Ground states of 2D $\pm J$ Ising spin glasses obtained via stationary Fokker–Planck sampling

[7] Boettcher S and Percus A G, Optimization with extremal dynamics, 2001 Phys. Rev. Lett. 86 5211
[8] Middleton A A, Improved extremal optimization for the Ising spin glass, 2004 Phys. Rev. E 69 055701(R)
[9] Pál K F, The ground state energy of the Edwards–Anderson Ising spin glass with a hybrid genetic algorithm, 1996 Physica A 233 283
[10] Hartmann A K, Ground-state behavior of the three-dimensional $\pm J$ random-bond Ising model, 1999 Phys. Rev. B 59 3617
[11] Berrones A, Stationary probability density of stochastic search processes in global optimization, 2008 J. Stat. Mech. P01013
[12] Berrones A, Characterization of the convergence of stationary Fokker–Planck learning, 2008 arXiv:0802.3235v2
[13] Berrones A, 2007 Generating Random Deviates Consistent with the Long Term Behavior of Stochastic Search Processes in Global Optimization Computational and Ambient Intelligence (Springer Lecture Notes in Computer Science vol 4507) (Berlin: Springer) pp 1–8
[14] Peña D, Sánchez R and Berrones A, Stationary Fokker–Planck learning for the optimization of parameters in nonlinear models, 2007 MICAI 2007: Advances in Artificial Intelligence (Springer Lecture Notes in Computer Science vol 4827) (Berlin: Springer) pp 94–104
[15] Press W, Teukolsky S, Vetterling W and Flannery B, 2005 Numerical Recipes in C (Cambridge: Cambridge University Press)
[16] Saul I and Kardar M, The 2d $\pm J$ Ising spin glass: exact partition functions in polynomial time, 1994 Nucl. Phys. B 432 641
[17] Landry J W and Coppersmith S N, Ground states of two-dimensional $\pm J$ Edwards–Anderson spin glasses, 2002 Phys. Rev. B 65 134404
[18] Bieche I, Maynard R, Rammal R and Uhry J P, On the ground states of the frustration model of a spin glass by a matching method of graph theory, 1980 J. Phys. A: Math. Gen. 13 2553
[19] Hartmann A K, Domain walls, droplets and barriers in two-dimensional Ising spin glasses, 2007 Rugged Free Energy Landscapes ed W Janke (Berlin: Springer)
[20] Campbell I A, Hartmann A K and Katzgraber H G, Energy size effects of two-dimensional Ising spin glasses, 2004 Phys. Rev. B 70 054429
[21] Saul I and Kardar M, Exact integer algorithm for the two-dimensional $\pm J$ Ising spin glass, 1993 Phys. Rev. E 48 R3221
[22] Kac M and Ward J C, A combinatorial solution of the two-dimensional Ising model, 1952 Phys. Rev. 88 1332
[23] Boettcher S and Sibani P, Comparing extremal and thermal explorations of energy landscapes, 2005 Eur. Phys. J. B 44 317
[24] Romá F, Risa-Gusman S, Ramirez-Pastor A J, Nieto F and Vogel E E, The ground state energy of the Edwards–Anderson spin glass model with a parallel tempering Monte Carlo algorithm, 2008 arXiv:0806.1054v1

doi:10.1088/1742-5468/2008/10/P10019