Aphotic N2 Fixation in the Eastern Tropical South Pacific Ocean

Sophie Bonnet, Julien Dekaezemacker, Kendra Turk-Kubo, Thierry Moutin, Robert Hamersley, Olivier Grosso, Jonathan Zehr, Douglas Capone

To cite this version:
Sophie Bonnet, Julien Dekaezemacker, Kendra Turk-Kubo, Thierry Moutin, Robert Hamersley, et al.. Aphotic N2 Fixation in the Eastern Tropical South Pacific Ocean. PLoS ONE, Public Library of Science, 2013, 8 (12), pp.e81265. 10.1371/journal.pone.0081265. hal-02163828

HAL Id: hal-02163828
https://hal.archives-ouvertes.fr/hal-02163828
Submitted on 11 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Aphotic N₂ Fixation in the Eastern Tropical South Pacific Ocean

Sophie Bonnet1*, Julien Dekaezemacker1*, Kendra A. Turk-Kubo2, Thierry Moutin1, Robert M. Hamersley3, Olivier Grosso1, Jonathan P. Zehr2, Douglas G. Capone4

1 Mediterranean Institute of Oceanography, Institut de Recherche pour le Développement, Aix Marseille Université, Centre National de la Recherche Scientifique Marseille/Noumea, New Caledonia, France, 2 Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America, 3 Environmental Studies, Soka University of America, Aliso Viejo, California, United States of America, 4 Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America

Abstract

We examined rates of N₂ fixation from the surface to 2000 m depth in the Eastern Tropical South Pacific (ETSP) during El Niño (2010) and La Niña (2011). Replicated vertical profiles performed under oxygen-free conditions show that N₂ fixation takes place both in euhypic and aphotic waters, with rates reaching 155 to 509 µmol N m⁻² d⁻¹ in 2010 and 24±14 to 118±87 µmol N m⁻² d⁻¹ in 2011. In the aphotic layers, volumetric N₂ fixation rates were relatively low (<1.00 nmol N L⁻¹ d⁻¹), but when integrated over the whole aphotic layer, they accounted for 87–90% of total rates (euphotic-aphotic) for the two cruises. Phylogenetic studies performed in microcosms experiments confirm the presence of diazotrophs in the deep waters of the Oxygen Minimum Zone (OMZ), which were comprised of non-cyanobacterial diazotrophs affiliated with nifH clusters 1K (predominantly comprised of γ-proteobacteria), 1G (predominantly comprised of γ-proteobacteria), and 3 (sulfate reducing genera of the δ-proteobacteria and Clostridium spp., Vibrio spp.). Organic and inorganic nutrient addition bioassays revealed that amino acids significantly stimulated N₂ fixation in the core of the OMZ at all stations tested and as did simple carbohydrates at stations located nearest the coast of Peru/Chile. The episodic supply of these substrates from upper layers are hypothesized to explain the observed variability of N₂ fixation in the ETSP.

Introduction

The efficiency of oceanic carbon (C) sequestration depends upon many factors, among which is the availability of nutrients to support phytoplankton growth in the illuminated surface ocean. In particular, large amounts of nitrogen (N) are required, as it is an essential component of proteins, nucleic acids and other cellular constituents. Dissolved N in the form of nitrate (NO₃⁻) or ammonium (NH₄⁺) is directly usable for growth, but concentrations of fixed N are low (<1 µmol L⁻¹) and often growth-limiting in most of the open ocean euphotic zone [1]. Dinitrogen (N₂) gas dissolved in seawater, on the other hand, is very abundant in the euphotic zone (ca. 450 µmol L⁻¹) and could constitute a nearly inexhaustible N source for the marine biota. However, only certain prokaryotic ‘N₂-fixers’ (or diazotrophs) are able to use this N source since they can break the triple bond between the two N atoms of the N₂ molecule, and convert it into a usable form (i.e. NH₃) for assimilation.

The focus of much recent marine N₂ fixation research has been on the NO₃⁻-poor environments of the surface tropical ocean, where it may sustain up to 50% of ‘new’ primary production [2,3]. The filamentous cyanobacterium Trichodesmium spp., which is widespread in the tropical ocean and has a macroscopic growth form [4], may fix from 60 [5] to 80 Tg of N per year [6]. Until the last decade, this organism was the focus of the bulk of research as it is conspicuous and easily collected [4]. However, since then, studies of the abundance and diversity of the nifH gene required for N₂ fixation have elucidated the importance of unicellular pico- and nano-planktonic cyanobacteria [7,8], extending the geographical extent of diazotrophy beyond tropical waters [9], and potentially narrowing the gap between direct measurements and geochemically-based global marine N fixation rates [5]. These molecular tools have also revealed the presence of putative non-cyanobacterial diazotrophs (possessing and potentially expressing the nifH gene) in diverse aquatic environments [10], including surface seawater, hydrothermal vents and lakes [11] and references therein). In marine waters, these diazotrophs seem to be almost ubiquitous [12], but few studies e.g. [13,14] have focused on these non-cyanobacterial diazotrophs, and our knowledge of their distribution in the ocean and their biogeochemical importance for the marine N budget is still very limited.

The N budget for the global ocean is poorly constrained, with some suggestions that sinks (denitrification and anammox) exceed sources (N₂ fixation) [15]. The high energy and iron (Fe)
In this study, we investigated N2 fixation along a transect across the ETSP in 2010 and 2011 through temperature, oxygen and nutrient measurements were performed at 6 stations in 2010 and 7 stations in 2011 (Fig. 1). Vertical profiles of temperature, chlorophyll a, fluorescence and dissolved oxygen were obtained using a SeaBird 911 plus CTD equipped with a model 43 oxygen sensor and a Wetlabs ECO-AFL/FL chlorophyll fluorometer. Oxygen values were calibrated by micro-Winkler [33]. Seawater samples were collected at selected depths using a rosette equipped with 24 12-L Niskin bottles. Samples for inorganic nutrient (NO3− and PO43− concentrations) analyses were collected in acid-washed 20-mL plastic bottles. Nutrient concentrations were determined using standard colorimetric techniques [34] on a Bran Luebbe AA3 autoanalyzer. Detection limits for the procedures were 0.02 to 0.52 μmol L−1 for NO3− and PO43− concentrations. Analyses were undertaken at the University of New Hampshire-hydrographic and nutrient measurements were performed 6 stations in 2010 and 7 stations in 2011. Vertical profiles of temperature, chlorophyll a, fluorescence and dissolved oxygen were obtained using a SeaBird 911 plus CTD equipped with a model 43 oxygen sensor and a Wetlabs ECO-AFL/FL chlorophyll fluorometer. Oxygen values were calibrated by micro-Winkler [33]. Seawater samples were collected at selected depths using a rosette equipped with 24 12-L Niskin bottles. Samples for inorganic nutrient (NO3− and PO43− concentrations) analyses were collected in acid-washed 20-mL plastic bottles. Nutrient concentrations were determined using standard colorimetric techniques [34] on a Bran Luebbe AA3 autoanalyzer. Detection limits for the procedures were 0.02 to 0.52 μmol L−1 for NO3− and PO43− concentrations. Analyses were undertaken at the University of New Hampshire.

Aphotic N2 fixation in the Pacific Ocean

Methods

Our research was carried out during two cruises in the ETSP, aboard the R/V Atlantis in February and March 2010, and the R/V Melville in March and April 2011. Experiments were performed along a transect that began in northern Chile and ran west along 20°S, from the nutrient-rich waters at 82°W to the more oligotrophic and low-NO3− waters at 100°W, and returned along 10°S (Fig. 1). No specific permissions were required for these locations/activities as both cruises took place in international waters. This study did not involve endangered or protected species. The coastal waters of this region of the ETSP are characterized by a permanent wind-driven upwelling of cool nutrient-replete water (Fig. 1), which supports high primary productivity and a persistent subsurface OMZ, where O2 concentrations are low enough to induce the anaerobic processes of the N cycle, such as denitrification and anammox [30,31,32]. These O2-deficient waters are carried by Eckman transport westward beyond the limit of our transect. The ETSP is subjected to the inter-annual climatic variability of the El Niño-Southern Oscillation (ENSO), which modulates the strength of the upwelling. The 2010 cruise took place during an El Niño event (Multivariate ENSO index: 1.5) and the 2011 cruise during a La Niña event (Multivariate ENSO index: −1.49) [NOAA Climate Diagnostics Center, Wolter and Timlin (2009, 1999); data from http://www.esrl.noaa.gov/psd/enso/mei/table.html].

Hydrographic and nutrient measurements

Hydrographic and nutrient measurements were performed at 6 stations in 2010 and 7 stations in 2011 (Fig. 1). Vertical profiles of temperature, chlorophyll a, fluorescence and dissolved oxygen were obtained using a SeaBird 911 plus CTD equipped with a model 43 oxygen sensor and a Wetlabs ECO-AFL/FL chlorophyll fluorometer. Oxygen values were calibrated by micro-Winkler [33]. Seawater samples were collected at selected depths using a rosette equipped with 24 12-L Niskin bottles. Samples for inorganic nutrient (NO3− and PO43− concentrations) analyses were collected in acid-washed 20-mL plastic bottles. Nutrient concentrations were determined using standard colorimetric techniques [34] on a Bran Luebbe AA3 autoanalyzer. Detection limits for the procedures were 0.02 to 0.52 μmol L−1 for NO3− and PO43− concentrations. Analyses were undertaken at the University of New Hampshire.

Vertical profiles of N2 fixation

Rates of N2 fixation were measured using the 15N2 tracer method [35]. Water samples were dispensed into acid-leached 4.5-L polycarbonate bottles. During the 2010 cruise, this work was exploratory and unreplicated (except for nutrient addition bioassays, see below) measurements were made at 12 to 14 depths between the surface and 2000 m at stations 1, 9 and 11. During the 2011 cruise, samples were collected at stations 1, 5, 6, 7, 9 and 11 in triplicates at 12 depths between the surface and 2000 m, with a specific focus on O2 gradients. Depths were chosen in order to sample the oxicline, at least 3 depths within the core of the OMZ, as well as an additional 3 within the second increasing oxygen concentrations below the OMZ. Most of these depths were located in the aphotic zone.

On both cruises, specific care was taken to avoid O2 contamination and to perform incubations under strict oxygen-free conditions as described in [36]. Briefly, before each profile, the 36 4.5-L bottles were filled with deionized water, then the deionized water was flushed with argon and finally filled with seawater via tubing into the bottom of the argon-filled bottles to minimize gas exchange. Bottles were then closed with septa and spiked with 3 mL 15N2 (99 atom % EURISO-TOP) via a gas-tight syringe. Each bottle was shaken 30 times to fragment the 15N2 bubble and facilitate its dissolution. Recent work has suggested that with this method, there may be incomplete equilibration of the added 15N2 gas bubble with the seawater sample, resulting in a dissolved 15N2 concentration in the sample that is lower than the equilibrium value assumed in the calculation of 15N2 fixation rates [37]. This may lead to a potential underestimate of N2 fixation rates [38,39]. Therefore, the values given in the present study should be considered as minimum estimates (discussed below). Bottles were then incubated either in on-deck incubators at irradiiances specific from the sampling depth using blue screening and cooled with circulating surface seawater (photic samples), or in dark rooms at 12°C or 5°C depending of the sampling depth. After incubation, the triplicate bottles from each depth were filtered onto precombusted (4 h at 450°C) 25-mm GF/F filters. Filters were stored at −20°C until the end of the cruise, then dried for 24 h at 60°C and stored dry until mass spectrometric analysis. During the 2011 cruise, an extra 4.5-L bottle was collected at each depth of the profile, spiked with 15N2 and immediately filtered in
order to determine the initial background δ^{15}N in the particulate organic N (PON) for calculations of N$_2$ fixation rates. During the 2010 cruise, the value of δ^{15}N in air (0.00366) was used as a reference value for these calculations, which may introduce a potential bias, except at Station 1 where 15N atom % of the PON at depth was available.

Nutrient addition bioassays in the core of the OMZ

Nutrient addition bioassays of N$_2$ fixation were performed at one single depth in the core of the OMZ (based on O$_2$-CTD profiles) at 3 stations (Stations 5, 7 and 11, between 140- and 450-m depth) during the 2010 cruise and at 6 stations (Stations 1, 5, 6, 7, 9 and 11, between 320- and 475-m depth) during the 2011 cruise. All experiments were performed in triplicate and under strict oxygen-free conditions (using the argon flushing method described above) to avoid inhibition of N$_2$ fixation by oxygen. Immediately after collection, bottles were capped with septa and amended with nutrients via syringes. During the 2010 cruise, at each of the 3 stations, triplicate bottles were left as unamended controls, and a second set of bottles was amended with glucose to obtain a final concentration of 1 μmol L$^{-1}$. During the 2011 cruise, triplicate bottles were left as unamended controls, and a second set of triplicate bottles was amended with a mixture of three simple carbohydrate substrates (39% glucose, 29% acetate and 32% pyruvate, final total concentration of 1 μmol carbohydrate L$^{-1}$) to test the effect of a source of dissolved organic C (DOC) on N$_2$ fixation. A third set was amended with a mixture of three amino acids as a source of both DOC and dissolved organic N (DON) (20% leucine, 23% glutamic acid and 56% alanine) to reach a final concentration of 1 μmol amino acids L$^{-1}$. The proportion of each carbohydrate and amino-acid has been chosen in order to add the same quantity of organic C in the two treatments (4 μmol L$^{-1}$). A fourth set was amended with ATP (source of dissolved organic P, DOP) to reach a final concentration of 1 nmol L$^{-1}$, and a fifth set was amended with 8 μmol L$^{-1}$ of NO$_3^-$ to test its potential inhibitory effect on heterotrophic N$_2$ fixation. Bottles were then incubated in a dark cold room at 12$^\circ$C for 24 h in order to leave enough time to induce any potential nutrient stimulation. After 24 h, all bottles were spiked with 15N$_2$ as described above, and incubation was continued under the same conditions for an additional 24 h. At the end of each incubation, the three treatments and control replicates were filtered as described above in order to measure N$_2$ fixation rates, and amplification of the nifH gene (2010 only). Samples were also collected from bottles sacrificed at time zero in order to quantify background NO$_x$ and PO$_4^{3-}$ concentrations at every station. NO$_x$ concentrations were also measured just after the NO$_3^-$ additions in order to confirm the added concentrations at the beginning of the incubations (data not shown).

Figure 1. Location of stations superimposed upon seawater temperature at 75-m-depth. (A) the 2010 cruise (R/V Atlantis), and (B) the 2011 cruise (R/V Melville). Station numbering are identical to that of 2 companion papers [28,42]).

doi:10.1371/journal.pone.0081265.g001
Mass spectrometric analyses

The isotopic enrichment of particulate N after the incubation of seawater with 15N$_2$ was measured by continuous flow isotope ratio mass spectrometry of pelletized filters (Europa Integra-CN), calibrated every 10 samples using reference material (International Atomic Energy Agency [AIEA], Analytical Quality Control Services). The linearity of 15N atom % as a function of increasing sample PON mass was verified as detailed in [40] on both natural and 15N enriched material. This step is critical in ultra-oligotrophic environments or deep waters, where suspended PON concentrations are low. 15N atom % was linear (Fisher test, $p < 0.01$) between 0.20 and 39 mmol N, which is within the range of PON measured in all of our samples (0.27 to 4.91 mmol N depending on the station and depth).

Detection and quantification limits for particulate N were calculated daily, as 3 times and 10 times the standard deviation of 15N analysis of blanks, respectively. Detection limits ranged from 0.10 to 0.17 µmol N, and quantification limits ranged from 0.13 to 0.26 µmol N, depending on the station. The 15N isotope enrichment of a sample was calculated using the 15N atom % excess over the 15N atom % in samples taken from the same station at time zero, which was determined on bottles filtered immediately after adding 15N$_2$. We considered the results to be significant when 15N excess enrichments were greater than 3 times the standard deviation obtained with ten AIEA references (15N atom % >0.0005). The quantification limit of N$_2$ fixation in this study was 0.01 nmol L$^{-1}$ d$^{-1}$. If only one of the 3 replicate measurements was quantifiable, the average of the 3 replicates was forced equal to zero, in order to provide minimum estimates of N$_2$ fixation.

In order to determine areal rates, N$_2$ fixation measurements were trapezoidally depth-integrated from the summed products of the average of two adjacent rate measurements (including those equal to zero) with the depth interval between them. The standard deviation on the triplicates (2011 cruise) was also used for a trapezoidally depth-integration in order to obtain the standard deviation on integrated rates.

Statistical analysis

Controls and experimental nutrient treatments were compared using a 2-tailed non parametric Mann-Whitney mean comparison test ($n = 3$, $a = 0.05$, unpaired samples).

Phylogenetic characterization of diazotrophs

In order to characterize the potential diazotrophs present in the core of the OMZ that responded to the addition of glucose, nucleic acid samples were collected from triplicate bioassays during the 2010 cruise for amplification of the *nifH* gene. At T0 and at the termination of the experiment, bottles were immediately filtered as described in [41] onto 25-mm, 0.2-µm Supor filters (GE Osmotics, Minnetonka, MN), and immediately flash frozen in liquid N$_2$. All filters were stored at −80°C thereafter.

DNA samples were extracted using the Qiagen All Prep kit (Valencia, CA), according to manufacturer’s guidelines, with modifications to include freeze-thaw and bead-beating steps to

![Figure 2. Horizontal and vertical distributions of hydrological and biogeochemical parameters during the 2010 cruise (R/V Atlantis). (A, B) temperature, (C, D) dissolved oxygen, (E, F) chlorophyll fluorescence in the northern transect (left panels) and southern transect (right panels).](https://journal.pone.org/doi/10.1371/journal.pone.0081265.g002)
disrupt the cells [42]. The wash steps of this protocol were automated using a QIAcube (Qiagen). DNA extracts were stored at −20°C until use.

Nested PCR amplification targeting a fragment of the \textit{nifH} gene was carried out using degenerate primers \textit{nifH}1-4 [43,44] using the reaction and thermocycling conditions described in [42]. Amplions were purified using a QIAquick Gel Extraction Kit (Qiagen) and cloned using the TOPO TA Cloning Kit for Sequencing (Invitrogen, Carlsbad, CA) according to the manufacturer’s guidelines. Purified recombinant plasmids containing partial \textit{nifH} sequences were recovered from clones using the Montage Plasmid Miniprep96 Kit (Millipore, Billerica, MA) and sequenced using Sanger technology at the UC Berkeley DNA Sequencing Center. All DNA extractions and as PCR preparations were performed in a PCR-amplicon free facility at UCSC described in [42].

Sequencer 5.1 sequence analysis software (Gene Codes Corporation, Ann Arbor, MI) was used to remove vector contamination and low-quality reads from raw sequences. All resulting partial \textit{nifH} sequences were imported into a curated \textit{nifH} database (http://pum.ucsc.edu/~wwwzehr/research/database/), translated into amino acid sequences, aligned to the existing hidden Markov model alignment using the Quick Align function, and nucleic acids were realigned to the aligned amino acids in the ARB software environment. Sequences generated from the nutrient addition bioassays were clustered at 97% nucleotide similarity using CD-HIT-EST [45]. Nucleic acid trees used the Jukes-Cantor correction for branch length. Trees generated in ARB were exported into iTOL for the display of associated metadata. All partial \textit{nifH} sequences recovered were submitted to Genbank under Accession numbers KF515738 - KF515848.

Results

Hydrographic and nutrient profiles

During both cruises, oceanographic conditions were consistent with active wind-driven upwelling off the coast of Northern Chile and Peru (Fig. 1), associated with a vertically and horizontally extensive OMZ (Fig. 2C and 3B). During the 2010 cruise (R/V Atlantis, El Niño), the zone of decreasing dissolved oxygen (oxycline) was located at ca. 70–100 m at stations 11 and 9, and suboxic conditions ([O$_2$] <20 \mu mol kg$^{-1}$ [46]) were reached at 125 m and 130 m respectively at these two stations. The suboxic zone expanded from 130–750 m at Station 11. During the 2011 cruise (Fig. 3B, R/V Melville, La Niña conditions), the oxycline was shallower (ca. 30–40 m) at stations 11 and 9 compared to 2010, and suboxic conditions were reached at 65 m at both stations. The suboxic zone expanded from 70–850 m at Station 11. On the southern transect (Stations 1, 3 and 5, Fig. 2D and 4B), the water column was well oxygenated during both cruises (ca. 200 \mu mol kg$^{-1}$) over the first 200 m, and O$_2$ concentrations decreased with depth to reach minimum values of ca. 80 \mu mol kg$^{-1}$ at 300 m depth.

During the 2011 cruise, on the northern transect at Stations 7 and 9 (Fig. 3D), surface NO$_x$ concentrations were ca. 6 \mu mol L$^{-1}$, increased quickly with depth (nitracline ca. 50 m) to reach ca. 37 \mu mol L$^{-1}$ in the core of the OMZ. Close to the coast (Station 11), the nitracline was shallower (ca. 25 m) than that of the oceanic stations, and NO$_x$ concentrations increased quickly to reach concentrations of ca. 30–40 \mu mol L$^{-1}$ in the core of the OMZ. On the southern transect (Fig. 4D), NO$_x$ concentrations were ca. 0.10 \mu mol L$^{-1}$ over the first 100 m of the water column. The depth of the nitracline was 85 m and 130 m at Stations 1 and 5,

Figure 3. Horizontal and vertical distributions of hydrological and biogeochemical parameters during the 2011 cruise (R/V Melville) – Northern transect (10°S). (A) temperature, (B) dissolved oxygen, (C) chlorophyll a fluorescence, (D) NO$_x$ concentrations, (E) PO$_4^{3-}$ concentrations, (F) Mean N$_2$ fixation rates (n = 3). doi:10.1371/journal.pone.0081265.g003
respectively, and concentrations increased progressively to reach values of ca. 40 μmol L\(^{-1}\) below the oxygen minimum and down to 2000 m. PO\(_4\) concentrations (Fig. 3E and 4E) followed the same trend as NO\(_x\) in the northern transect, with surface concentrations of 0.40–0.60 μmol L\(^{-1}\) and a shallower phosphocline near the coast (Station 11) compared to open ocean stations. In the southern transect, surface PO\(_4\) concentrations were lower compared to those of the northern transect (0.03–0.30 μmol L\(^{-1}\)) and the phosphocline was located deeper (ca. 150 m).

During both cruises, chlorophyll a fluorescence (Fig. 2E–F, 3C, 4C) was highest at stations located along the northern transect. It was much lower in 2010 compared to 2011, especially at stations nearest the coast of Peru on the Northern transect.

Vertical profiles (0 to 2000 m) of N\(_2\) fixation

During the 2010 cruise, N\(_2\) fixation was detected in 34 of 40 samples representing all three stations (Fig. 5). The overall range of rates measured over the cruise was from the detection limit to 0.80 nmol L\(^{-1}\) d\(^{-1}\). The highest rates were measured in O\(_2\) deficient waters at the oxyclines or in the core of the OMZ (Fig. 5), and reached values up to 0.57 nmol L\(^{-1}\) d\(^{-1}\), 0.6 nmol L\(^{-1}\) d\(^{-1}\) and 0.53 nmol L\(^{-1}\) d\(^{-1}\) at Stations 1, 11 and 9, respectively. Below the OMZ, rates were always measurable and were at 1000 m depth 0.16 nmol L\(^{-1}\) d\(^{-1}\), 0.23 nmol L\(^{-1}\) d\(^{-1}\) and 0.06 nmol L\(^{-1}\) d\(^{-1}\) at these stations. Integrated rates over the 2000 m water column were 155 μmol N m\(^{-2}\) d\(^{-1}\) at Station 1, 288 μmol N m\(^{-2}\) d\(^{-1}\) at Station 9, and 509 μmol N m\(^{-2}\) d\(^{-1}\) at Station 11 (Table 1). The average integrated rate over the cruise was 317 μmol N m\(^{-2}\) d\(^{-1}\). Integrated N\(_2\) fixation rates in the aphotic zone accounted for 73 to 99% of the rates measured over the entire water column depending on the station. When considering all the stations, the average areal rate in the aphotic zone was 87% of the total rate over the entire water column (Table 1).

During the 2011 cruise, N\(_2\) fixation rates were significantly greater than zero in 140 of the 216 measurements made (Fig. 3F, Fig. 6). The overall range of rates measured was from detection limit to 0.26±0.12 nmol L\(^{-1}\) d\(^{-1}\). In the northern transect (Fig. 3F, Fig. 6), the highest rates of N\(_2\) fixation over the vertical profiles were measured in the oxycline as in 2010, and mean rates (n = 3) reached 0.15±0.13 nmol L\(^{-1}\) d\(^{-1}\) at Station 7 and 0.19±0.28 nmol L\(^{-1}\) d\(^{-1}\) at Station 9 at the oxycline. At station 11, the highest rates were found in surface waters (0.22±0.19 nmol L\(^{-1}\) d\(^{-1}\)) but rates at the oxycline were also measurable (0.06±0.03 nmol L\(^{-1}\) d\(^{-1}\)). Below the OMZ (ca. 400–2000 m), rates were also measurable and ranged from 0.00±0.01 to 0.26±0.12 nmol L\(^{-1}\) d\(^{-1}\), the highest rates being measured at station 9 at 1000 m depth. In the southern transect (Fig. 4F, Fig. 6), the rates ranged from 0.00±0.01 to 0.26±0.12 nmol L\(^{-1}\) d\(^{-1}\), the highest rates being observed at Station 1 just below the second oxycline at 750 m depth. At this station, aphotic rates were measurable at 450 m, 750 m, 1000 m and 1500 m depth. Integrated rates over the 2000 m water column ranged from 24±14 μmol m\(^{-2}\) d\(^{-1}\) at Station 5 to 118±87 μmol m\(^{-2}\) d\(^{-1}\) at Station 1 (Table 1). The average integrated rates over the 2011 cruise were 64 μmol m\(^{-2}\) d\(^{-1}\). Integrated N\(_2\) fixation rates over the aphotic zone accounted for

![Figure 4. Horizontal and vertical distributions of hydrological and biogeochemical parameters during the 2011 cruise (R/V Melville)

– Southern transect (20°S). (A) temperature, (B) dissolved oxygen, (C) chlorophyll a fluorescence, (D) NO\(_3\) concentrations, (E) PO\(_4\) concentrations, (F) Mean N\(_2\) fixation rates (n = 3). doi:10.1371/journal.pone.0081265.g004](http://example.com/fig4.png)
90% of total rates measured over the entire water column (Table 1) over the cruise.

Nutrient addition bioassays in the core of the OMZ

During the 2010 cruise, nutrient concentrations in the core of the OMZ (140 to 450 m) where experiments were performed ranged from 24.0 to 37.0 μmol L\(^{-1}\) for NO\(_x\) and 1.20 and 3.00 μmol L\(^{-1}\) for PO\(_4\)\(^{3-}\) (data not shown). Mean N\(_2\) fixation rates in control bottles at Stations 5, 7 and 11 were 0.12±0.02, 0.16±0.04 and 0.17±0.02 nmol N L\(^{-1}\) d\(^{-1}\), respectively (n = 3; Fig. 7). At the 2 most oceanic Stations 5 and 7, glucose amendments did not result in any significant increase of N\(_2\) fixation (p>0.05). At Station 11 near the Peruvian coast, glucose amendments resulted in a significant (p<0.05) increase in N\(_2\) fixation rates by a factor of 3.2, to reach 0.56±0.04 nmol N L\(^{-1}\) d\(^{-1}\) (Fig. 7).

During the 2011 cruise, nutrient concentrations in the core of the OMZ (320 to 475 m) where experiments were performed ranged between 33.12 and 38.72 μmol L\(^{-1}\) for NO\(_x\) and from 2.33 to 3.03 μmol L\(^{-1}\) for PO\(_4\)\(^{3-}\). Mean N\(_2\) fixation rates in the control bottles ranged from 0.00±0.01 at Station 11 to 0.07±0.01 and 0.07±0.04 nmol N L\(^{-1}\) d\(^{-1}\) at Stations 9 and 5, respectively (n = 3; Fig. 7). At Stations 1 and 9, N\(_2\) fixation rates were significantly (p<0.05) stimulated by simple carbohydrate additions

Table 1. Areal N\(_2\) fixation rates (μmol N m\(^{-2}\) d\(^{-1}\)) calculated from measurements performed in the euphotic and aphotic zones during the 2010 and 2011 cruises.

Station	Total 0-2000 m (μmol N m\(^{-2}\) d\(^{-1}\))	Euphotic (μmol N m\(^{-2}\) d\(^{-1}\))	Aphotic (μmol N m\(^{-2}\) d\(^{-1}\))
2010			
Station 9	288	49	239
Station 11	509	8	501
Station 1	155	71	84
Average	317	43 (13%)	275 (87%)
2011			
Station 7	50±39	10±10	40±29
Station 9	101±79	09±04	92±74
Station 11	25±17	04±02	21±14
Station 5	24±14	05±05	19±09
Station 1	118±87	01±01	117±86
Average	64	06 (10%)	58 (90%)

Uncertainties are derived from the standard errors of triplicate measurements for the 2011 cruise.

doi:10.1371/journal.pone.0081265.t001
by a factor of 5.5 and 4.6, to reach 0.14±0.07 and 0.30±0.30 nmol N L⁻¹ d⁻¹, respectively (Fig. 8). At all stations, the addition of amino acids resulted in a significant (p<0.05) increase in N₂ fixation rates, by a factor of 4 to 7. The highest rates were reached at Station 9 after AA additions with 0.27±0.08 nmol N L⁻¹ d⁻¹. ATP addition never resulted in any significant increase of N₂ fixation rates (p>0.05) and NO₃⁻ additions never resulted in any decrease of N₂ fixation rates (p<0.05). However, at Station 7, NO₃⁻ additions resulted in a significant (p<0.05) increase of N₂ fixation by a factor of 7 to 0.07±0.02 nmol N L⁻¹ d⁻¹.

Phylogenetic characterization of diazotrophs in 2010 glucose addition bioassays

A full phylogenetic characterization of diazotrophs in the upper 200 m of the ETSP water column was performed during the same cruises and is detailed in a companion paper [42]. In this study we report the complementary phylogenetic characterization of samples from the core of the OMZ (Fig. 8). Partial nifH sequences recovered during deep glucose addition bioassays during 2010 at Stations 5, 7 and 11, indicated that diazotrophs were present in the deep waters of the OMZ. The diazotrophic community was comprised of non-cyanobacterial diazotrophs affiliated with nifH clusters 1K (predominantly comprised of α-proteobacteria), 1G (predominantly comprised of γ-proteobacteria), and 3 (sulfate reducing genera of the δ-proteobacteria as well Clostridium spp., Vibrio spp, etc.) (Fig. 9). Clear differences exist between OMZ diazotrophic community composition at each station. The Station 5 community was dominated by nifH cluster 1K sequences, many of which are closely related to a phylotype (94–97% nucleic acid similarity) originally reported at Hydrostation S (North Atlantic) from a depth of 1000 m (BT5167A10 (DQ481253) [47]), although a few putative γ-proteobacterial (1G) sequences were also recovered that affiliated with γETSP3, a cluster recovered from the ETSP [42]. Although the lowest number of total sequences was recovered from Station 7, they were mainly affiliated with cluster 1G, along with a few 1K sequences. In contrast, clone libraries from Station 11 were dominated by cluster 3 sequences, along with a few 1G sequences, but no 1K sequences (Fig. 9).

Despite being prevalent in clone libraries, both αETSP1 and εIII-ETSP groups were not detected at abundances great enough to quantify using Taqman® qPCR assays during the course of
these experiments (see Figure S1 in File S1). Because the abundances of these targets did not increase as a result of nutrient amendments, it is difficult to speculate whether any of them were responsible for the increased N$_2$ fixation rates we measured after glucose addition.

Discussion

Active N$_2$ fixation in deep and NO$_3$-rich waters of the ETSP

In this study, we measured during 2 consecutive years N$_2$ fixation in surface waters affected by the OMZ, but reveal that N$_2$ fixation below the euphotic zone is more important: 87 and 90% of total areal N$_2$ fixation were measured in the aphotic zone in 2010 and 2011, respectively. In these aphotic layers, volumetric N$_2$ fixation rates were relatively low (<1.00 nmol N L$^{-1}$ d$^{-1}$), but when integrated over the whole aphotic layer, they ranged from 84 to 501 µmol N m$^{-2}$ d$^{-1}$ in 2010 and from 19 ± 09 to 117 ± 86 µmol N m$^{-2}$ d$^{-1}$ in 2011 (Table 1). In 2011, rate measurements were replicated (triplicates) and calculations performed very carefully using a real T0 for every depth. These 2011 measurements are thus more reliable than those measured in 2010. These measurements in aphotic waters add new information compared previously published studies [26,28] in the area. The hypotheses explaining the persistence of N$_2$ fixation in these high NO$_x$ (ca. 40 µmol L$^{-1}$) environments are largely developed in the companion paper [28]. First, fixed N loss processes occur in this region [31,48], creating a deficit of N relative to P, which is potentially favorable for N$_2$ fixation [24]. In particular, anammox removes NH$_4^+$, which has an immediate inhibitory effect on N$_2$ fixation [49]. Secondly, N$_2$ fixation is an anaerobic process [50] due to the irreversible inactivation of the nitrogenase enzyme by O$_2$ [51]. It is possible that the low O$_2$ concentrations in the OMZ and down to 2000 m contribute to the protection of nitrogenase [52], decrease the energy cost of maintaining intracellular
anaerobiosis [53], and thus facilitate N₂ fixation. Finally, redox conditions in the OMZ favor the equilibrium formation of the most bioavailable form of iron Fe²⁺ [54], which could help to support the high Fe requirements of nitrogenase [16,17]. For these reasons, OMZs and deeper waters may represent favorable ecological niches for N₂ fixation, as shown in this study.

Potential impacts on N budgets in the ETSP

Aphotic N₂ fixation is currently ignored in oceanic N budgets based on biogeochemical rate measurements. However, this dataset indicates that rates in aphotic waters of the ETSP are of the same order of magnitude than those commonly measured in the tropical and sub-tropical NO₃⁻-depleted surface ocean (Table 2), where N₂ fixation has commonly been studied. The potential significance of the N₂ fixation rates measured in our study can be evaluated by comparing them with fixed N losses via denitrification and anammox measured in the same region. N losses in the ETSP have been estimated to range from 9 to 25 Tg N yr⁻¹ (Table 3, [31,55,56,57]) in the upwelling area extending 175 km offshore, and 1860 km along the Peruvian-Chilean coast with an area extant of 3.26 × 10¹¹ m² [31,56]. If we consider the same spatial extent for N₂ fixation, this process could potentially add 0.04 to 0.9 Tg N to the system in this area and therefore could compensate for up to 11% of the estimated N loss processes in the upwelling region of the ETSP (Table 3) (i.e. up to 78% of N losses). N₂ fixation in deep waters of the ETSP may be a significant source of N for the ETSP, and needs to be taken into account in future N budgets. Further coupled measurements between N gain and loss processes at the same stations/depths need to be performed to better constrain the magnitude of N gains in this region.

Figure 9. Results from the molecular analyses of the 2010 glucose amendment experiments. Neighbor joining tree of partial nifH nucleotide sequences. Nodes are labeled with nifH cluster designations according to the convention established [74]. The number of sequences recovered from stations and treatments for each phylotype are indicated in boxes to the right of the tree.

doi:10.1371/journal.pone.0081265.g009
Effects of nutrients on N₂ fixation

The diazotrophic community of the ETSP characterized in this study, as well as in a companion study [42] is comprised of an assemblage of non-cyanobacterial diazotrophs, and little can be inferred about their metabolism from partial *nifH* sequences. However, we performed nutrient addition bioassays using molecules representing common labile components of the dissolved organic matter pool in marine waters (simple carbohydrates, amino-acids and ATP), which shed some light on nutrient control of N₂ fixation in the core of the OMZ. Our results indicated that simple carbohydrate additions significantly stimulated N₂ fixation at stations located nearest the coast during both cruises and at Station 9 during the 2011 cruise (Figs. 7, 8). In OMZs, organic C is largely supplied by vertical flux of planktonic production from shallower layers or by horizontal transport [60]. Thus this supply of organic C is not constant but rather episodic, which could explain why N₂ fixation appears so variable in space, in time, and between cruises and years, as reported in the present study and by [26]. This seems to be the case for N loss processes as well, since organic C supply has been correlated with regional

Table 2. Examples of published studies showing the range of oceanic N₂ fixation areal rates measured in some contrasting oceanic environments.

Location	Areal rates (μmol m⁻² d⁻¹)	Integration depth (m)	Reference
Hypoxic basin (Southern California Bight)	150	885	[37]
ETSP coastal OMZ	7–190	120	[26]
ETSP	0–148	150–200	[28]
ETSP subtropical gyre	12–190	150–200	[14]
Eastern North Pacific gyre	520	mixed layer	[20]
North Atlantic	59–898	15 (Trichodesmium bloom)	[3]
ETSP aphotic zone	19–501	2000	This study

doi:10.1371/journal.pone.0081265.t002

Table 3. Comparison between estimated fixed N losses via denitrification and anammox and fixed N gains via N₂ fixation (estimated from the 0–2000 m depth integrated rates measured in this study) in the ETSP.

Area considered	N losses (Tg·yr⁻¹)	N gains (based on 2011 cruise) (Tg·yr⁻¹)	N gains (based on 2010+2011 cruise) (Tg·yr⁻¹)
1.26×10¹¹ m²	**9–25**	0.04–0.9	0.05–1.1
2.23×10¹² m²	9–25	0.3–1	0.3–7

*Upwelling area extending 175 km from, and 1860 km along the Peruvian-Chilean coast [31,56].

**Estimates from [31,55,56,57].

doi:10.1371/journal.pone.0081265.t003
the OMZ have not yet been fully characterized, we do not know if they possess genes for reduction and assimilation of NO$_3^-$ or NO$_2^-$. Detailed studies at the single cell level would be needed to characterize the metabolism of these organisms and understand why microbes fix N$_2$ in the presence of so much NO$_3^-$. In addition to possible energy and C, N and P sources derived from molecules like amino acids, carbohydrates or ATP, electron sources and donors are also very important to know for characterizing the physiology of the diazotrophs present in the ETSP. Molecules like O$_2$, NO$_3^-$ and less favorably SO$_4^{2-}$ are common electron acceptor and they are used for different types of respirations like aerobic respiration, or anaerobic denitrification and sulfate reduction. These different respiratory pathways potentially supporting N$_2$ fixation are performed by organisms with different physiology which each have their own environmental sensitivities for fixing N$_2$.

Phylogenetic characterization of diazotrophs

Our characterization of the diazotrophic community in the core of the OMZ revealed the presence of potential N$_2$-fixing heterotrophs based on the presence of the *nifH* gene. We did not detect the cyanobacterial diazotrophs commonly found in other regions of the open ocean; in contrast, most of the *nifH* genes amplified from the OMZ clustered with α-, γ- and δ-proteobacteria. This result is consistent with the observations of Turk-Kubo [42] in the upper 200 m of the ETSP water column, where 96% of sequences were also affiliated with proteobacteria. Based on these results, and other studies conducted in the ETSP and the South Pacific Gyre [14,26,70], it is clear that the ETSP diazotrophic community is different from other well-studied tropical and subtropical oceans such as that of the North Pacific, North Atlantic and Indian Oceans. The cyanobacterial diazotrophic phyotypes commonly found at high abundances in these other ocean provinces appear to be either sporadically present at low abundances (i.e. *Trichodesmium*, UCYN-A), or undetected altogether (i.e. UCYN-B, diatom-diazotroph associations) in the ETSP.

The amplification of diverse non-cyanobacterial *nifH*-containing organisms from OMZ waters in the ETSP affiliated with *nifH* clusters 1K, 1G and 3, is consistent with the findings of other studies conducted in anoxic waters [26,36,71] and in abyssopelagic waters [47]. However, the results from this study underscore the difficulty inherent in identifying the diazotrophic community responsible for N$_2$ fixation rates. It is important to note that *nifH* cluster 1K sequences have been reported as contaminants in many studies, including a study in the ETSP [12]. However, none of the sequences recovered here had greater than 90% amino acid similarity and 83% nucleic acid similarity to reported contaminants. Nevertheless, as a result of the use of highly degenerate primers and nested PCR cycles necessary to amplify this important but low-abundance gene target, contamination must always be considered as a source for heterotrophic diazotroph sequences, whether from PCR and DNA extraction reagents or from sampling or handling procedures, despite the screening of PCR and reagent blank controls as in this study.

Furthermore, although it is clear that a diverse assemblage of non-cyanobacterial *nifH*-containing organisms are present in the OMZ of the ETSP, the best methodologies currently available to characterize dominant members of the diazotrophic community (PCR amplification using degenerate *nifH* primers) often identify organisms present at extremely low levels when targeted using quantitative approaches (i.e. qPCR; Fig. S1 in File S1) [12,47,71]. This, in turn, makes it difficult to argue that these organisms are capable of fixing N$_2$ at cell-specific rates great enough to account for measured bulk rates. An analysis of the expected N$_2$ fixation rates based on abundances and plausible cell-specific N$_2$ fixation rates in the ETSP discussed in [42] indicate that these proteobacteria are unlikely to be responsible for all the measured bulk rates and therefore other N$_2$-fixing organisms could be responsible for a part of N$_2$ fixation in this region but may remain uncharacterized. Identifying which organisms are actively transcribing *nifH* using techniques such as reverse transcription (RT)-qPCR might provide more insight into which diazotrophic taxa are actively fixing nitrogen. However, the challenge of identifying which organisms are important N$_2$-fixers remains the same when designing qPCR primers from sequences derived from RT-PCR based clone libraries, and are further convoluted by potentially low transcript abundances per cell and/or the timing of sampling with respect to diel changes in *nifH* expression (even in the case of heterotrophs).

Conclusions

This study provides one of the first estimates of N$_2$ fixation rates in aphotic waters of the ETSP. It reveals that N$_2$ fixation in aphotic environments is the largest contributor to total areal N$_2$ fixation in ETSP. N$_2$ fixation in high [NO$_3^-$] environments remains an enigma as it requires an additional energetic cost relative to NO$_3^-$ or NH$_4^+$. Further physiological studies are needed to understand the physiological regulation of N$_2$ fixation, especially on newly discovered diazotrophic organisms. Contrary to N$_2$ fixation performed in euphotic layer which sustains new production [3], aphotic N$_2$ fixation may sustain organic matter remineralization. These new sources of N could potentially compensate for as much as 78% of the estimated N loss processes in ETSP, indicating that they need to be taken into account in marine N budgets. Phylogenetic studies confirm the presence of diazotrophs in the deep waters on the OMZ, which are distinct from cyanobacterial phyotypes commonly found in surface oligotrophic waters of the tropical ocean. Organic and inorganic nutrient addition bioassays reveal that amino acids and simple carbohydrates stimulate N$_2$ fixation in the core of the OMZ, and the episodic supply of these nutrients from upper layers may explain the large temporal and spatial variability of N$_2$ fixation in the ETSP. Research on marine heterotrophic N$_2$ fixation is at its beginning and significant progress needs to be made in the refinement of the methods to estimate planktonic N$_2$ fixation in OMZs (15N$_2$ bubble method versus 15N$_2$-enriched seawater) from bulk measurements to single cells analysis. The 15N-enriched seawater method should be coupled to oxygen-free and trace metal-clean procedures to provide more accurate estimates. Progress also needs to be made in the characterization of the community responsible for N$_2$ fixation in these deep waters, as well as the control of their population dynamics by the supply of organic matter. Estimates of global N$_2$ fixation based on field measurements [5,72] are presently lower than geochemically-based (nutrient stoichiometry and isotopic ratio) estimates [73]. Taking into account deep N$_2$ fixation might help to resolve some of this discrepancy. However, progress also needs to be made in the quantification of N loss processes, as recent studies indicate that they may be less sensitive to oxygen than previously thought [59], further complicating the N budget in the ETSP. In future studies, N gain and loss measurements need to be coupled in space and time to further resolve the N budget in the ETSP.

Supporting Information

File S1 Supporting methods, Table S1, and Figure S1.

(DOCX)
Acknowledgments
The authors thank the captains and crews from the R/V Atlantis and R/V Melville for outstanding shipboard operations and anonymous referees for constructive comments.

Author Contributions
Conceived and designed the experiments: SB JD. Performed the experiments: SB JD KT TM OG RH. Analyzed the data: SB JD KT JZ. DC. Contributed reagents/materials/analysis tools: SB JD KT OG. Wrote the paper: SB.

References
1. Falkowski PG, Barber RT, Smelack V (1998) Biochemical Controls and Feedbacks on Ocean Primary Production. Science 281: 200–206.
2. Karl D, Letelier R, Tupa L, Dore J, Christian J, et al. (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388: 533–538.
3. Capone DG, Burns JA, Michaels AF, Montoya J, Subramaniam A, et al. (2005) Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and sub-tropical North Atlantic Ocean. Global Biogeochemical Cycles 19: 786–787.
4. Capone DG, Zehr JP, Parrel HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276: 1221–1229.
5. Mahaffey C, Michaels AF, Capone DG (2005) The conundrum of marine N2 fixation. American Journal of Science 305: 546–595.
6. Carpenter EJ, Montoya JP, Burns JA, Mulholland M, Subramaniam A, et al. (1998) Extensive bloom of a N2-fixing diatom/cyanobacterial association in the Tropical Atlantic Ocean. Mar Ecol Prog Ser 185: 273–283.
7. Zehr JP, Waterbury JB, Turner PJ, Omorgie E, et al. (2001) Unciliated cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412: 635–638.
8. Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, et al. (2008) Globally Distributed Uncultivated Oceanic N2-Fixing Cyanobacteria Lack Oxygenic Photosystem II. Science 322: 1110–1112.
9. Neebold JA, Foster RA, Sakamoto C, Zehr JP, Johnson KS (2007) Nitrogen fixation by unicellular cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnology and Oceanography 52: 1317–1327.
10. Zehr JP, Mellon MT, Zani S (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Applied and Environmental Microbiology 64: 3444–3450.
11. Zehr JP, Jenks PB, Short SS, Steward GF (2000) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environmental Microbiology 5: 539–554.
12. Farnefled H, Riemann I (2008) Heterotrophic N2-fixing bacteria: overlooked in the marine nitrogen cycle? In: Costas NG, editor. Nitrogen Fixation Research Progress. New York: Nova Science Publishers. pp. 409–423.
13. Riemann I, Farnefled H, Steward GF (2010) Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquatic Microbial Ecology 61: 235–247.
14. Hub H, Lam P, Ferdelman TG, Lavik G, Ditmar T (2012) Heterotrophic organisms dominate nitrogen fixation in the South Pacific Gyre. ISME J 6: 1238–1249.
15. Codispoti LA (2007) An oceanic fixed nitrogen sink exceeding 400 Tg N–1 vs the concept of homeostasis in the fixed-nitrogen inventory. Biogesoses 4: 233–253.
16. Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L (2007) Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnology and Oceanography 52: 2260–2269.
17. Kuska AB, Carpenter EJ, Satucho-Wilhelm S, Sunda WG (2003) Iron requirements for N2 and NH4+ supported growth in cultures of Trichodesmium (IMS 101): comparison with nitrogen fixation rates and Fe: C ratios of field populations. Limnology and Oceanography 48: 1869–1881.
18. Mills MM, Kidane C, Davey M, La Roche J, Geider JG (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429: 292–294.
19. Karl DM, Letheer R, Tupa L, Dore J, Christian J, et al. (1997) The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388: 533–538.
20. Montoya JP, Voss M, Kallm P, Gene DG (1996) A simple, high-precision, high-sensitivity assay for N2 fixation. Applied and Environmental Microbiology 62: 986–993.
21. Hamersley MR, Turk KA, Leinweber A, Gruber N, Zehr JP, et al. (2011) Nitrogen fixation within the western Pacific Ocean. Marine Chemistry 122: 1221–1229.
22. Turk-Kubo K, Achilles KM, Serres TRC, Ochiai M, Montoya J, et al. (2012) Nitrogenase (nifH) gene expression in diazotrophic cyanobacteria in the Tropical North Atlantic in response to nutrient amendments. Frontiers in Microbiology. doi: 10.3389/fmicb.2012.00386.
23. Turk KA, Karamanchandani M, Capone DG, Zehr J (2013) The paradox of marine heterotrophic nitrogen fixation: Abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environmental Microbiology. In revision.
24. Zehr J, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Applied and Environmental Microbiology 55: 2522–2526.
25. Zehr JP, Mellon MT, Zani S, Hansen A, Villareal TA (2004) High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430: 1027–1031.
26. Dupouy C, Petit M, Dandonneau Y (1988) Satellite detected cyanobacteria bloom in the southwestern tropical Pacific. Implication for nitrogen fixation. International Journal of Remote Sensing 8: 389–396.
27. Montoya JP, Holt CM, Zehr JP, Hansen A, Villareal TA, et al. (2004) High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430: 1027–1031.
28. Bonnet S, Biegala IC, Dutrieux P, Slemons LO, Capone DG (2009) Nitrogen fixation in the western equatorial Pacific: Rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance. Global Biogeochemical Cycles 23: GB0312.
29. Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP (2007) Spatial coupling of nitrogen inputs and losses in the ocean. Nature 443: 163–167.
30. Landolfi A, Dietze H, Koeve W, Oschlies A (2013) Overlooked runaway feedback in the marine nitrogen cycle: the vicious cycle. Biogesoses 10: 1311–1363.
31. Fernandez C, Farias I, Ultro O (2011) Nitrogen Fixation in Denitrified Marine Waters. PLoS ONE 6: e20539.
32. Moutin T, Karl DM, Dallam S, Rimmelin P, Raibush P, et al. (2008) Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in biogeochemical cycles. Nature 452: 95–109.
33. Dekezemacker J, Bonnet S, Grosso O, Moutin T, Bresac M, et al. (2013) Evidence of active dinitrogen fixation in surface waters of the eastern tropical south pacific during El Niño and La Niña events and evaluation of its potential nutrient controls. Global Biogeochemistry 46: 436–443.
50. Postgate J (1998) Nitrogen Fixation, 3rd edition. Cambridge: Cambridge University Press.
51. Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chemical Reviews 96: 2983–3011.
52. Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological Reviews 56: 340–373.
53. Grof kopi T, LaRoche J (2012) Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Frontiers in microbiology 3.
54. Moffett J, Goepfert TJ, Naqvi SWA (2007) Reduced iron associated with secondary nitrite maxima in the Arabian Sea. Deep Sea Research Part I: Oceanographic Research Papers 54: 1341–1349.
55. Deutsch C, Gruber N, Key RM, Sarmiento JL, Ganachaud A (2001) Denitrification and N2 fixation in the Pacific Ocean. Global Biogeochemical Cycles 15: 483–506.
56. Codispoti LA, Packard TT (1980) Denitrification rates in the eastern tropical South Pacific. Journal of marine research 38: 453–477.
57. Lipschultz FS, Wofsy C, Ward BB, Codispoti LA, Friedrich G, et al. (1990) Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the eastern tropical South Pacific Ocean. Deep Sea Research, Part A 37: 1513–1541.
58. Montoya JP, Voss M, Kaehler P, Capone DG (1996) A simple, high precision tracer assay for dinitrogen fixation. Applied and Environmental Microbiology 62: 986–993.
59. Kalvelage T, Jensen MM, Coutieras S, Revsbech NP, Lam P, et al. (2011) Oxygen Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum Zones. PLoS ONE 6.
60. Liu KK, Kaplan IR (1984) Denitrification rates and availability of organic matter in marine environments. Earth and Planetary Science Letters 68: 88–100.
61. Kalvelage T, Lavik G, Lam P, Coutieras S, Arteaga L, et al. (2013) Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature geoscience 6: 228–234.
62. Ward BB, Tuit CB, Jayakumar A, Rich JJ, Moffett J, et al. (2008) Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. Deep Sea Research I 55: 1672–1683.
63. Van Wambeke F, Bonnet S, Moutin T, Rainbaud P, Alarcon G, et al. (2008) Factors limiting heterotrophic bacterial production in the southern Pacific Ocean. Biogeosciences 5: 833–845.
64. Moisander PH, Zhang RF, Boyle EA, Hovey I, Montoya J, et al. (2012) Analogous nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific Ocean. The ISME Journal 6: ISME Journal 6: 733–744.
65. Alonso-Sarz L, Gasol JM (2007) Seasonal Variations in the Contributions of Different Bacterial Groups to the Uptake of Low-Molecular-Weight Compounds in Northwestern Mediterranean Coastal Waters. Applied and Environmental Microbiology 73: 3328–3535.
66. Rahav E, Bar-Zeev E, Ohayon S, Eliahtz H, Belkin N, et al. (2013) Dinitrogen fixation in aphotic oxygenated marine environments. Frontiers in microbiology. doi: 10.3389/fmicb.2013.00227.
67. Del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29: 503–541.
68. Ludwig EM, Hosie AHF, Boudres A, Finslay K, Allaway D, et al. (2003) Amino-acid cycling drives nitrogen fixation in legume-rhizobium symbiosis. Nature 422: 722–726.
69. Hartmann A, Fu H, Burris RH (1988) Influence of amino acids on nitrogen fixation ability and growth of Azospirillum spp. Applied and Environmental Microbiology 54: 87–93.
70. Bonnet S, Guirao C, Bruyant F, Prazil O, Van Wambeke F, et al. (2008) Nutrient limitation of primary productivity in the Southeast Pacific (BIOSEPO cruise). Biogeosciences 5: 215–225.
71. Faraidel H, Bentzon-Tilia M, Andersson AF, Bertilsson S, Jots G, et al. (2013) Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. ISME Journal 7: 1413–1423.
72. Carpenter EJ, Capone DG (1992) Significance of Trichodesmium blooms in the marine nitrogen cycle. In: Carpenter EJ, Capone DG, Rueter JG, editors. Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. New York: Springer. pp. 211–217.
73. Carpenter EJ, Capone DG (1992) Significance of Trichodesmium blooms in the marine nitrogen cycle. In: Carpenter EJ, Capone DG, Rueter JG, editors. Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. New York: Springer. pp. 211–217.
74. Gro f kopi T, LaRoche J (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles 11: 235–266.
75. Zehr JP, Cronbliss LL, Church MJ, Omoregie EO, Jenkins BD (2003) Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes. Biotechniques 35: 996–1005.