A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins

Bettina M. Lengsfeld1, Kayla N. Berry1, Sharmistha Ghosh2*, Masateru Takahashi2† & Nicole J. Francis1

1Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA,
2Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA.

Propagation of chromatin states through DNA replication is central to epigenetic regulation and can involve recruitment of chromatin proteins to replicating chromatin through interactions with replication fork components. Here we show using a fully reconstituted T7 bacteriophage system that eukaryotic proteins are not required to tether the Polycomb complex PRC1 to templates during DNA replication. Instead, DNA binding by PRC1 can withstand passage of a simple replication fork.

Epigenetic regulation through chromatin structure requires chromatin based information to be propagated through cell cycles. During DNA replication, chromatin structure, including chromatin bound proteins, is disrupted as DNA is unwound and copied. To understand how chromatin structure can be restored after DNA replication, it is important to understand how DNA replication affects chromatin proteins. Many chromatin proteins interact with DNA replication proteins, and these interactions are implicated in recruiting them to replicating DNA. Such chromatin proteins include Chromatin Assembly Factor 1 (CAF-1), the maintenance DNA methyltransferase (DNMT1), and histone modifying enzymes, all of which have been shown to associate with chromatin during DNA replication in cells through interactions with proteins at the replication fork. DNA replication proteins that interact with these chromatin proteins include the DNA polymerase processivity factor PCNA and the MCM replicative helicase1–3. These chromatin proteins may facilitate DNA replication itself, or be important for restoring chromatin structure on newly replicated DNA4.

Proteins that are bound to chromatin throughout the cell cycle may also be stabilized on chromatin during the passage of the replication fork by interacting with replication proteins5. However, it is possible that some chromatin proteins have evolved to withstand passage of DNA replication forks.

Polycomb Group (PcG) proteins are essential regulators of development and differentiation that maintain gene repression by altering chromatin structure6,7. We previously found that the Drosophila PcG complex PRC1 remains bound to chromatin or DNA through replication in a cell-free system consisting of the SV40 large T-Antigen in conjunction with mammalian cell extracts8. Binding through DNA replication does not require nucleosomes but depends on self-association and DNA binding by the PSC subunit of PRC18,9. PSC is bound throughout S-phase in cells, including to newly replicated DNA8,9. These experiments highlight the importance of the intrinsic self-association and DNA binding properties of PRC1 during DNA replication, but do not address whether interactions with eukaryotic replication proteins are also required. We therefore asked whether PRC1 could withstand passage of a T7 bacteriophage replication fork that does not use eukaryotic proteins.

Bacteriophage DNA replication systems have been pivotal to uncovering basic mechanisms of DNA replication10. This is because the fundamental processes of DNA replication, including template unwinding by protein helicases, and copying by DNA polymerases—are universal to DNA replication. Just two T7 bacteriophage DNA replication components are sufficient to unwind a double stranded DNA template and copy one strand: the gp4 replicative helicase11, and the gp5 polymerase in a complex with the processivity factor, E. coli thioredoxin (gp5-trx)12.

Results
To replicate PRC1 bound DNA with the T7 system, a double stranded plasmid template with an entry site for the gp4 helicase was used (Fig. 1). The helicase unwinds the template in the 5’ to 3’ direction, allowing the T7
polymerase to copy the other strand. This strand displacement replication is analogous to leading strand replication, in that it involves unwinding of the DNA duplex, and synthesis of a continuous complementary DNA strand. T7 polymerase can carry out highly processive rolling circle replication under these conditions, producing long multimers of the template strand. To ensure that the plasmid templates are instead copied only once, a nick was introduced upstream of the helicase entry site to inhibit passage of the polymerase.

PRC1 was bound to DNA templates, which were then replicated with gp5-trx and gp4 (Fig. 1E, 2). To determine whether PRC1 is bound to the template, stopped reactions were sedimented through sucrose gradients. We previously showed that PRC1-bound plasmids sediment more rapidly in sucrose gradients than unbound plasmids. We find that when PRC1 is bound prior to replication, the full-length replicated (radiolabeled) templates sediment near the bottom of the gradient, indicating that PRC1 is bound to the replicated DNA (Fig. 2B, C).

To determine if PRC1 remains bound through replication or is dislodged and rebinds, excess double or single stranded DNA competitor was added during the initial binding step (t1) or at the start of the replication (t3). If the same amount of competitor DNA is added at the start of replication (t3), after PRC1 is bound to the template, the replicated templates sediment near the bottom of the gradient (Fig. 2E,G; 3E, G). This indicates that PRC1 is still bound to the replicated templates, even in the presence of competitor. We noticed that when competitor is added after PRC1 is bound to the template, the templates sediment more rapidly than when no competitor is added (Fig. 2C, E; 3C, E). Thus template-bound PRC1 may form additional contacts with the competitor plasmids, thereby creating more rapidly sedimenting
complexes. We conclude that PRC1 remains bound to DNA during replication rather than being released and rebinding (Fig. 4).

Discussion

These experiments demonstrate that interactions between PRC1 and DNA can withstand DNA unwinding and copying, the fundamental steps in DNA replication. Eukaryotic replication proteins are thus not required to tether PRC1 to the template through DNA replication. Importantly, it is still possible that PRC1 does interact with eukaryotic replication proteins, and that these interactions modulate its behavior during DNA replication. However, our results indicate that the ability to remain bound through the basic transactions of DNA replication is an intrinsic activity of PRC1 and does not depend on interactions with eukaryotic proteins. DNA binding and chromatin compacting activities of PRC1 are broadly conserved; we hypothesize that PRC1 has evolved to withstand DNA replication to mediate epigenetic regulation. Recent work has highlighted the role of non-specific nucleic acid binding activity in tethering chromatin
proteins\(^{16}\). Our work suggests this activity may be especially important during DNA replication.

Methods

T7 template and competitor preparation. The T7 template features a single stranded flap that serves as a 5' entry site for the helicase gp4 which is adjacent to a labeled primer that is extended by T7 polymerase, and a nick created by the 5' end of this primer which serves to terminate replication after a single round. To prepare the internally labeled oligonucleotide, oligonucleotide bml91 (GCGAATAATAATTTTTTCACGTTGAAAATCTCCAAAAAAAAGG CTCCAAA) was 5' end labeled with γ-ATP P\(^{32}\), annealed to bml93 (AAAAATTA TTATTCGCAATTCCTTTAGTTGT) and ligated to bml92 (GCGGAGTGAGAATA GAAAGGAACAACTAAAGGAATT). The internally-labeled and ligated product (bml91*92) was gel extracted from a 6% acrylamide 0.5X TBE/6 M Urea gel. Oligos bml75 (TTT
to the 5’ end of bml91*92, creating a nicked template. The 5’ tail of bml75 is the entry point for the T7 helicase, gp4. Replication by T7 polymerase begins at the 3’ end of bml91*92.

Double stranded competitor DNA, dspUC19, was prepared by Qiagen Maxi prep. To prepare single stranded DNA from double stranded plasmids, dspUC19 was incubated with NlBspQI (New England Biolabs) to introduce a single nick.

Exonuclease III (NEB) was incubated with the plasmid to degrade the nicked strand incubated with Nt.BspQI (New England Biolabs) to introduce a single nick.

To prepare single stranded DNA from double stranded plasmids, dspUC19 was

agarose denaturing gels (25 mM NaOH, 2 mM EDTA). Reactions without fractionated as described above. 25% of each fraction was electrophoresed on 0.8%

reaction were removed to confirm replication. The rest was mixed with equal volume addition of 0.5 volumes are 14 percentage of replicated DNA in the bottom four gradient fractions. Error bars indicate standard deviation.

Figure 4 | Summary of replication experiments demonstrating that PRC1 remains bound through DNA replication in the T7 bacteriophage system. A) Schematic of T7 replication experiments with PRC1. PRC1 is incubated with the template. Competitor DNA is added either with PRC1 (t1) or at the start of replication (t3). PRC1 bound and unbound templates are separated by sucrose gradient sedimentation (repeated from Fig. 2). B) Graph shows the percentage of replicated DNA in the bottom four gradient fractions. Error bars indicate standard deviation.

1. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 19, 575–585 (1999).
2. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10, 192–206 (2009).
3. Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15, 595–605 (2004).
4. Rowbotham, S. P. et al. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCD1. Mol Cell 42, 285–96 (2011).
5. Quivy, J. P. et al. A CAF-1 dependent pool of HP1 during heterochromatin replication. EMBO J. 23, 3516–3526 (2004).
6. Muller, J. & Verrijzer, P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev 19, 150–8 (2009).
7. Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10, 697–708 (2009).
8. Francis, N. J., Follmer, N. E., Simon, M. D., Aggia, G. & Butler, J. D. Polycomb Proteins Remain Bound to Chromatin and DNA during DNA Replication In Vitro. Cell, 110–122 (2009).
9. Lo, S. M. et al. A Bridging Model for Persistence of a Polycomb Group Protein Complex through DNA Replication In Vitro. Mol Cell 46, 784–98 (2012).
10. Lee, S. J. & Richardson, C. C. Choreography of bacteriophage T7 DNA replication. Curr Opin Chem Biol 15, 580–6 (2011).
11. Richardson, C. C. Bacteriophage T7: minimal requirements for the replication of a duplex DNA molecule. Cell 33, 315–7 (1983).
12. Tabor, S. & Richardson, C. C. Selective oxidation of the exonuclease domain of bacteriophage T7 DNA polymerase. J Biol Chem 262, 15330–3 (1987).
13. Zhu, B., Lee, S. J. & Richardson, C. C. Bypass of a nick by the replisome of bacteriophage T7. J Biol Chem 286, 28488–97 (2011).
14. Beh, L. Y., Colwell, L. J. & Francis, N. J. A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence. PNAS 109, (2012).
15. Grau, D. J. et al. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev 25, 2210–21 (2011).
16. Ishida, M. et al. Intrinsic nucleic Acid-binding activity of chp1 chromodomains is required for heterochromatic gene silencing. Mol Cell 47, 228–41 (2012).

Acknowledgements
The authors thank Dr. Charles Richardson for advice and support in working with the T7 bacteriophage system and Dr. Nicole Follmer for comments on the manuscript. This work was funded by a Postdoctoral Fellowship from the American Cancer Society to B.M.L. (#271641) and a grant from NIGMS to N.J.F. (GM078456-01).

Author contributions
B.M.L. designed, carried out, and analyzed the experiments, and wrote the paper. K.N.B. assisted with development of the replication assay and reagent preparation. S.G. and M.T. provided reagents and advice throughout the project. N.J.F. wrote the paper.
How to cite this article: Lengsfeld, B.M., Berry, K.N., Ghosh, S., Takahashi, M. & Francis, N.J. A Polycomb complex remains bound through DNA replication in the absence of other eukaryotic proteins. Sci. Rep. 2, 661; DOI:10.1038/srep00661 (2012).