Effect of Thymoquinone and Transforming Growth Factor-β1 on the Cell Viability of Nasal Polyp-Derived Fibroblast

Ferryan Sofyan1,2*, Delfitri Munir1,3, Imam Budi Putra2, Retno Sulistyo Wardani1, Restu Syamsul Hadi1, Devira Zahara1, Rosita Juwita Sembiring1,6, Andrina Y. M. Rambe1, Taufik Ashar1

1 Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 2 Philosophy Doctor In Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 3 Department of Dermatology and Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 4 Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia; 5 Department of Clinical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 6 Faculty of Public Health, Universitas Sumatera Utara, Medan, Indonesia

Abstract

BACKGROUND: Nasal polyps are benign masses in the nasal cavity and the abnormal growth of sinonasal tissue due to a chronic inflammatory process. Many fibroblasts populate the nasal polyp stroma release cytokines such as Transforming Growth Factor (TGF) and producing a variety of cytokines resulting in inflammatory cell infiltration. Thymoquinone (TQ) is the main active component in Nigella sativa oil and has the ability to reduce cell viability in many cancer cell lines.

AIM: The purpose of this study was to determine the effect of TQ and TGF-β1 on cell viability of Nasal Polyp-Derived Fibroblast.

MATERIALS AND METHODS: Nasal polyp-derived fibroblasts were isolated from nasal polyp specimen and treated with various concentrations of TQ at 1–1000 μM and TGF-β1 at 5 ng/ml to determine the cell viability using the Cell Counting Kit-8 assay after 48 h incubation.

RESULTS: TQ significantly reduced the viability of nasal polyp fibroblast cells to 72.49% at 20 μM until 1000 μM. TGF-β1 at 5 ng/ml significantly reduced the viability of nasal polyp fibroblast cells to 81.96% and TGF-β1 appears to have a dual effect that depends on the concentration of TQ.

CONCLUSION: This study proved that TQ and TGF-β1 were able to reduce the viability of nasal polyp fibroblast cells.

Introduction

Nasal polyps are benign masses in the nasal cavity and the abnormal growth of sinonasal tissue due to a chronic inflammatory process in the nasal mucosa and paranasal sinuses [1, 2]. Nasal polyps marked by inflammatory cell infiltration, structural fibrosis, edematous stromal tissue, and basement membrane thickening. Many fibroblasts populate the nasal polyp stroma, producing a variety of cytokines for polymorphonuclear leukocytes [3]. The majority of fibroblasts in the stroma of nasal polyps release cytokines such as Transforming Growth Factor (TGF), interleukin-6, and matrix metalloproteinases, resulting in inflammatory cell infiltration [1]. TGF-β1 plays a role in regulating the processes of proliferation, differentiation, migration, and apoptosis [4]. TGF-β1 plays an important role in the formation and growth of nasal polyps, triggers cell remodeling, and growth, which causes fibrosis by attracting stromal cells, angiogenesis, and accumulation of extracellular matrix [5]. TGF-β1 is known to trigger the proliferation by increased cell viability, but another reports TGF-β decrease the viability [6, 7].

The main active component of nigella sativa essential oil is thymoquinone (TQ), which has been shown to suppress multi-cancer cell proliferation both in vitro and in vivo [8]. TQ is a powerful antioxidant in healthy tissues, but it causes the production of reactive oxygen species in tumors [9]. The previous study reported that TQ has been shown to reduces cell survival or cell viability canine osteosarcoma, human...
adenocarcinoma breast cancer (MCF7), and cancer human ovarian adenocarcinoma (BG-1) [10]. Cell viability is a measure of the number of living cells in a population [11].

In the stroma of nasal polyps, there is increase in the number of fibroblast cells in the early phase of nasal polyps and abnormal fibroblast proliferation [12]. [13]. TQ and TGF-β1 have been shown to affect viability in various cancer cell lines, but its effect on nasal polyps is unknown. Until now, there has been no report on the effect of TQ and TGF-β1 on nasal polyp fibroblast cell viability and this study was aimed to determine the effect of TQ and TGF-β1 on nasal polyp-derived fibroblast viability.

Materials and Methods

Reagent

Dulbecco's Phosphate Buffer Saline, trypsin EDTA, enzyme collagenase, and antibiotic-antimycotic mixture were purchased from Gibco (Grand Island, NY, USA). TQ >98% powder, cell counting Kit-8 (CCK-8), and TGF-β1 human were purchased from Sigma–Aldrich (St. Louis, MO, USA) and dimethyl sulfoxide was purchased from (AppliChem).

Isolation of primary nasal polyp fibroblasts

Nasal polyp specimen taken from 1 patient with non-eosinophilic chronic rhinosinusitis with nasal polyp by endoscopic simple polypectomy in the Department of Otorhinolaryngology Dr. Cipto Mangunkusumo Hospital, Jakarta. Subjects were
excluded if they had active allergy, inflammation, aspirin hypersensitivity, and previous sinonasal surgery or if they had received antibiotics, antihistamine, steroids, or other medications for at least 4 weeks preceding surgery. Allergy status was defined using the skin prick test. This study was approved by the ethics committee of the University of Indonesia and Dr. Cipto Mangunkusumo Hospital. Nasal polyp tissue was placed in a sterile tube containing 25 ml of PBS (Gibco) and 1% antibiotic-antimycotic combination (Gibco) and stored in a cooler at 4°C and immediately transported to the integrated cell laboratory foundation of YARSI University, Jakarta. Decontamination was performed by inserting pieces of tissue into a tube containing betadine for 2 min, wash with 70% alcohol for 2 min, and do it 3 times. Transfer the tissue to a culture dish containing sterile PBS plus antibiotics-antimycotics. Pieces of lower tissue cleaned of fat and blood vessels until clean. The tissue was cut with scissors and a razor blade with a size of 1 cm × 2 cm. Transfer the tissue pieces to a culture dish containing collagenase/dispose and stored in a sterile container and then placed in the freezer. Transfer the tissue pieces to a new culture dish containing sterile PBS. Using sterile tweezers, carefully separate the epidermis and dermis. The dermis was taken and cut into small pieces using sterile scissors and then put into a 15 ml tube containing Trypsin-EDTA. Vortex for 5 min then incubate for 1 h and repeat the vortex again. Filter using a 70 μm cell strainer, put in a 15 ml tube containing DMEM growing medium. Centrifuge for 10 min at 1500 rpm, then discard the supernatant, and dissolve the pellet with complete growth medium and DMEM plus 10% FBS. Plant in a culture plate and then incubate in a 37°C, 5% CO₂ and followed by incubation for 48 h. No significant toxicity on NPDF was observed at concentrations <20 μM. However, significant toxicity on NPDF was observed at concentrations ≥ 20 μM (p < 0.001) as seen from the cell morphology and IC50 value. Using prism nine application, the IC50 value was obtained 21.93 μM so that the TQ dose of 21.93 μM showed that it was able to inhibit 50% of the biological activity of fibroblast cells derived from nasal polyps (Figure 1).

Cytotoxic test

The CCK-8 assay demonstrated a dose dependent toxic effect with increasing concentrations of thymoquinone on NPDF under starved conditions. The doses of TQ given to nasal polyp fibroblast cells in this study were 1, 5, 10, 15, 20, 50, 100, 200, 400, and 1,000 μM and incubated for 48 h. No significant toxicity was observed at concentrations <20 μM. However, significant toxicity on NPDF was observed at concentrations ≥ 20 μM (p < 0.001) as seen from the cell morphology and IC50 value. Using prism nine application, the IC50 value was obtained 21.93 μM so that the TQ dose of 21.93 μM showed that it was able to inhibit 50% of the biological activity of fibroblast cells derived from nasal polyps (Figure 1).

Morphology

`\HFWR174RFHOOYLDELOLW`
the viability of nasal polyp-derived fibroblast cells at a concentration of 20 μM – 1000 μM (Figure 3).

Figure 3: Bar graph showing the results of cell viability assessment in the control and thymoquinone group.

Table 1: The results of cell viability assessment in the control and thymoquinone group

Groups	n	Mean (SD)	Post hoc	TQ (1 μM)	TQ (5 μM)	TQ (10 μM)	TQ (15 μM)	TQ (20 μM)	TQ (50 μM)	TQ (100 μM)	TQ (200 μM)	TQ (400 μM)	TQ (800 μM)	TQ (1000 μM)
Control	2	100		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (1 μM)	2	92.14 (4.86)	0.024 <0.001	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (5 μM)	2	94.93 (4.84)	0.015 <0.001	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (10 μM)	2	96.08 (4.94)	0.008 <0.001	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (15 μM)	2	98.16 (16.78)	0.044 <0.001	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (20 μM)	2	72.49 (4.67)	0.015 <0.001	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (50 μM)	2	5.6 (0.62)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (100 μM)	2	5.21 (0.13)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (200 μM)	2	5.44 (0.46)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (400 μM)	2	5.78 (0.54)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (800 μM)	2	5.81 (0.65)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
TQ (1000 μM)	2	5.62 (0.26)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Discussion

Nigella sativa also known as Black Seed, Alhabahat Alsawda, and Alkamoun Alaswad [17]. TQ is the main active component in Nigella sativa essential oil, which inhibits multi-cancer cell proliferation and development both in vitro and in vivo [8]. TQ is a terpenoid molecule with the chemical formula (2-isopropyl-5-methylbenzo-1,4-quinone) and the greatest TQ level in black cumin was discovered in Ethiopia (3.098.5 mg/kg) [18].

Fibroblasts derived from nasal polyps are a valid in vitro model for research, because fibroblasts are an important component of the ground substance in nasal polyps and are involved in various inflammatory responses associated with disease pathogenesis [19].

The cytotoxic test is a biological screening method that uses tissue cell samples in vitro to examine the impact of chemicals on cell growth. IC50 parameters and cell morphology were used to estimate cytotoxic potential [20]. This is the first study to show that TQ has an effect on nasal polyp-derived fibroblast cells. The cytotoxic potential of TQ was determined by observing cell morphology and IC50 parameters [20]. Using prism nine application, the IC50 value in this study was 21.93 μM. IC50 TQ has also been reported in various cell line viability studies, including in rat hepatic stellate cell lines with an IC50 of 28.91 μM, and HepG2 cell proliferation with an IC50 of 46 μM [21], [22]. From another study reported, an IC50 TQ value of 25 μM in breast cancer cell lines was the minimum dose that has been able to inhibit the proliferation of breast cancer cells by stopping the S phase significantly in the cell cycle [23]. From this study, we find that TQ at 21.93 μM is the minimum concentration that has been able to inhibit 50% biological activity of cells. The limitations of our study were that we did not observe the proliferation and cell cycle of nasal polyp fibroblasts.

Cell viability is a measure of the proportion of live and healthy cells in a population [24]. Cell viability assays are used to determine how a cell responds to a pharmacological or chemical stimulus. This assay is used to test the efficacy of newly developed cancer-targeting therapies [24], [25]. Various compounds can cause toxicity to cells through different mechanisms such as the destruction of cell membranes, prevention of protein synthesis, irreversible binding to receptors, and polydeoxyribonucleotide inhibition [26]. In our study, we also report the effect of TQ with or without TGF-β1 on the cell viability of nasal polyp-derived fibroblast. Using the CCK-8 assay, it was demonstrated that a TQ 20 μM concentration for 48 h was able to significantly reduce the viability of nasal polyp fibroblast cells to 72.49% or a decrease of 27.51% compared to the

Figure 4: Shows comparison the action of TQ with or without TGF-β1 on cell viability.

TGF-β1 5 ng/ml also decreases the viability of nasal polyp-derived fibroblast cells to 81.96% ± 6.13. In the combine group with TQ at 5 μM, cell viability was decreased to 86.65% ± 0.35; 10 μM to 84.86% ± 0.57; 15 μM to 86.35% ± 0.29; and 20 μM to 84.86% ± 0.57 (Table 2). Using the ANOVA test showed that there was a significant difference in all groups (p < 0.05) and using Bonferroni for post hoc test, there was only the TGF-β1 group made a significant decrease in the viability of nasal polyp-derived fibroblast cells (Figure 4).

Figure 5 shows comparison the action of TQ with or without TGF-β1 5 ng/ml which caused a decrease in viability at all groups. In the groups with concentration 5, 10, and 15 μM, TGF-β1 caused a more decrease in cell viability when compared to group without TGF-β1, whereas in the 20 μM group, TGF-β1 caused an increase in cell viability when compared to group without TGF-β1.
Table 2: The results of cell viability assessment in the control, transforming growth factor-β1, and thymoquinone groups

Groups	n	Mean (SD) (%)	Cell viability
Control	2	100	100
TGF-β1	2	81.96 (6.13)	81.96 (6.13)
TQ (5 μM) + TGF-β1	2	86.65 (0.33)	86.65 (0.33)
TQ (10 μM) + TGF-β1	2	84.86 (0.57)	84.86 (0.57)
TQ (15 μM) + TGF-β1	2	86.35 (0.29)	86.35 (0.29)
TQ (20 μM) + TGF-β1	2	88.46 (0.82)	88.46 (0.82)

Note:
- TGF-β1: Transforming growth factor-β1.
- SD: Standard deviation.
- TQ: Thymoquinone.
- *a* is anova.
- *b* is Bonferroni.
- *p* value is <0.001.

Figure 4: Bar graph of cell viability assessment.

Figure 5: Comparison bar graph of cell viability assessment.

Samarghandian et al. (2019) proved that TQ, 25, 50, and 100 μM for 72 h were able to reduce cell viability to about 60% and increase apoptosis of A549 lung tumor cells by increasing caspase-3 and caspase-9 but did not decrease the viability of normal control cell MRC-5 fibroblast cells (human fetal lung cell line)[28]. In this study, TQ was able to reduce the viability of nasal polyp fibroblast cells, but some compounds such as 1,25(OH)2D3 (active compound of vitamin D) or calcitrol which were shown to have anti-proliferative, pro-apoptotic and pro-differentiation properties, and anti-cancer properties were not able to reduce the viability of nasal polyp fibroblast cells up to a dose of 1000 nM with incubation for 72 h [13]. Fucoxanthin which is able to trigger apoptosis in various cancer cell lines has also been shown to be unable to reduce the viability of nasal polyp fibroblast cells [29]. In this study, we found that TGF-β1 5 ng/ml caused a significant decrease in nasal polyp fibroblast cell viability compared to controls (Figure 4). Until now, there has been no report on the effect of TGF-β1 on the viability of fibroblasts derived from nasal polyps. Viability and proliferation are two different characteristics of cells. Viability is a measure of the number of living cells in a population, while proliferation is a measure of cell division or the number of cells that divide, and not all living cells divide. Although proliferation can be interpreted as viability, the absence of proliferation is not automatically considered a sign of cell death [11]. Some researchers suspect that the proliferation that occurs in nasal polyp fibroblasts depends on the amount of TGF-β1 concentration given. A decrease in the concentration of TGF-β1 will inhibit proliferation and increase in the concentration of TGF-β1 will inhibit proliferation [30]. Another report states that low levels of TGF-β1 stimulate fibroblast proliferation and increase profibrotic factor release, whereas higher levels of TGF-β1 promote myofibroblast development [31]. In our study, TGF-β1 appears to have a dual action that depends on the concentration of TQ. TGF-β1 reduced cell viability at TQ < 15 μM, but TGF-β1 increase cell viability at TQ 20 μM (Figure 5). The dual action of TGF-β1 was also reported by Zhang et al. who reported that low concentrations of TGF-β (0.1 ng/ml) in benign cells were able to induce proliferation, whereas at high concentrations (10 ng/ml)/ml)/ml), they stop growth in the same cells. The effect of TGF-β on benign cells does not necessarily result in growth arrest. In normal physiological circumstances, TGF-β appears to have a dual action that depends on the concentration of TQ. TGF-β1 concentration given.

Conclusion

This study concluded that TQ and TGF-β1 can reduce cell viability of nasal polyp-derived fibroblast.
The limitation of this study is that we did not identify the signaling pathway involved in the effect of TQ and TGF-β1 on the viability of nasal polyp-derived fibroblast cells.

References

1. Wu F, Ma Y, Wang J, Ou H, Dang H, Zheng Y, et al. Bleomycin A5 suppresses Drp1-mediated mitochondrial fission and induces apoptosis in human nasal polyp-derived fibroblasts. Int J Mol Med. 2021;47(1):346-60. https://doi.org/10.3892/ijmm.2020.4797
PMid:33236140

2. Hopkins C. Chronic rhinosinusitis with nasal polyps. N Engl J Med. 2019;381(1):59-63. https://doi.org/10.1056/nejmc1800215
PMid:31269368

3. Wu F, Tian P, Ma Y, Wang J, Ou H, Zou H. Induction of apoptosis in nasal polyp-derived fibroblasts by bleomycin A5 in vitro. Mol Med Rep. 2018;17:5384-9. https://doi.org/10.3892/mmr.2018.8540
PMid:29393498

4. Li L, Zhang X, Li X, Chengfang LV, Yu H, Xu M, et al. TGF-β1 inhibits the apoptosis of pulmonary arterial smooth muscle cells and contributes to pulmonary vascular medial thickening via the PI3K/Akt pathway. Mol Med Rep. 2016;13(3):2751-6. https://doi.org/10.3892/mmr.2016.4874
PMid:26661477

5. Balsalobre L, Pezato R, Perez-Novo C, Alves MT, Santos RP, Bachtet C, et al. Epithelium and stroma from nasal polyp mucosa exhibits inverse expression of TGF-β1 as compared with healthy nasal mucosa. J Otolaryngol Head Neck Surg. 2013;42(1):29. https://doi.org/10.1186/1916-0216-42-29
PMid:23663486

6. Sun Q, Wu Y, Zhao F, Wang J. Maresin 1 inhibits transforming growth factor-β1-induced proliferation, migration and differentiation in human lung fibroblasts. Mol Med Rep. 2017;16(2):1523-9. https://doi.org/10.3892/mmr.2017.6711
PMid:29067437

7. Ben-Lulu S, Pollak Y, Mogilner J, Bejar J, Coran AG, Sukhnotin I. Dietary transforming growth factor-beta 2 (TGF-β2) supplementation reduces methotrexate-induced intestinal mucosal injury in a rat. PLoS One. 2012;7(9):e45221. https://doi.org/10.1371/journal.pone.0045221
PMid:22964629

8. Ballout F, Habli Z, Rahal ON, Fatfat M, Gali-Muhtasib HU. Thymoquinone-based nanotechnology for cancer therapy: Promises and challenges. Drug Discov Today. 2018;23(5):1089-96. https://doi.org/10.1016/j.drudis.2018.01.043
PMid:29374534

9. Schneider-Stock R, Fakhoury IH, Zaki AM, El-Baba CO, Gali-Muhtasib HU. Thymoquinone. Fifty years of success in the battle against cancer models. Drug Discov Today. 2014;19(1):18-30. https://doi.org/10.1016/j.drudis.2013.08.021
PMid:24001594

10. Kus G, Ozkurt M, Kabaderes S, Erkasap N, Goger G, Demirci F. Antiproliferative and anti-apoptotic effect of thymoquinone on cancer cells in vitro. Bratisl Lek Listy. 2016;119(5):312-6. https://doi.org/10.4149/BLL_2016_059
PMid:29749248

11. Quinlan A. Assessing Viability and Proliferation. United States: Bio-Rad; 2016.

12. Meng J, Zhou P, Liu Y, Liu F, Yi X, Holtappels G, et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS One. 2013;8(12):82373. https://doi.org/10.1371/journal.pone.0082373
PMid:24340021

13. Lee SA, Yang HW, Um JY, Shin JM, Park IH, Lee HM. Vitamin D attenuates myofibroblast differentiation and extracellular matrix accumulation in nasal polyp-derived fibroblasts through smad2/3 signaling pathway. Sci Rep. 2017;7:7299. https://doi.org/10.1038/s41598-017-07561-6

14. Shin SH, Ye MK, Lee DW, Che MH. Effect of acacia honey on transforming growth factor-β1 induced myofibroblast differentiation and matrix metalloproteinase 9 production in nasal polyp fibroblasts. Am J Rhinol Allergy. 2019;33(5):483-9. https://doi.org/10.1177/1945892419843702
PMid:30997818

15. Park IH, Kang JH, Shin JM, Lee HM. Trichostatin a inhibits epithelial mesenchymal transition induced by TGF-β1 in airway epithelium. PLoS One. 2016;11(8):e0162058. https://doi.org/10.1371/journal.pone.0162058
PMid:27571418

16. Zhang L, Bai Y, Yang Y. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB. Oncol Lett. 2016;12:2840-5. https://doi.org/10.3892/ol.2016.4971
PMid:27698868

17. Sahak MK, Kabir N, Abbas G, Draman S, Hashim NH, Hasani Adli DS. The role of Nigella sativa and its active constituents in learning and memory. Evid Based Complement Altern Med. 2016;2016:6075679. https://doi.org/10.1155/2016/6075679
PMid:27022403

18. Gupta B, Ghosh KK, Gupta RC. Thymoquinone. In: Gupta RC, editors. Nutraceuticals. Ch. 39. Netherlands: Elsevier; 2016. p. 541-8.

19. Wang C, Lou H, Wang X, Wang Y, Fan E, Li Y, et al. Effect of budsenide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2015;135(4):922-9.e6. https://doi.org/10.1016/j.jaci.2014.10.018
PMid:25483598

20. Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Res. 2015;36(5):817-20. https://doi.org/10.3892/br.2015.481
PMid:26405534

21. Bai T, Lian LH, Wu YL, Wan Y, Nan JX. Thymoquinone attenuates bleomycin-induced proliferation, migration and differentiation in human nasal polyp fibroblasts. Am J Rhinol Allergy. 2019;33(5):483-9. https://doi.org/10.1038/s41598-017-07561-6
PMid:23318601

22. Ismail N, Abdele-Mottaleb Y, Ahmed AA, El-Maraghy NN. Novel combination of thymoquinone and resveratrol enhances anticancer effect on hepatocellular carcinoma cell line. Futur J Pharm Sci. 2018;4:41-6. https://doi.org/10.1016/j.fjps.2017.08.001

23. Motaghad M, Al-Hassan FM, Hamid SS. Cellular responses with thymoquinone treatment in human breast cancer cell line MCF-7. Pharmacogny Res. 2013;5(5):200-6. https://doi.org/10.4103/0974-8490.112428
PMid:23900121

24. Kamiloiglu S, Sarı G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front. 2020;1:332-49. https://doi.org/10.1002/ffr2.44

25. Adam A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 2016;17(14):1213-21. https://doi.org/10.2174/1389201017666160808160513

Open Access Maced J Med Sci. 2022 Apr 17; 10(8):1392-1398.
26. Aslanturk OS. In vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages. Ch. 1. London: IntechOpen. 2018.

27. Khan MA, Tania M, Fu S, Fu J. Thymoquinone as an anticancer molecule: From basic research to clinical investigation. Oncotarget. 2017;8(31):51907-19. https://doi.org/10.18632/oncotarget.17206 PMid:28881699

28. Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma cells. J Cell Physiol. 2019;234:10421-31. https://doi.org/10.1002/jcp.27710 PMid:30387147

29. Jung H, Lee DS, Park SK, Choi JS, Jung WK, Park WS, et al. Fucoxanthin inhibits myofibroblast differentiation and extracellular matrix production in nasal polyp derived fibroblasts via modulation of smad-dependent and smad-independent signaling pathways. Mar Drugs. 2018;16(9):323. https://doi.org/10.3390/md16090323 PMid:30201895

30. Radajewski K, Wierzchowska M, Grzanka D, Antosik P, Zdrenka M, Burduk P. Tissue remodelling in chronic rhinosinusitis-review of literature. Otolaryngol Pol. 2019;73(5):1-4. https://doi.org/10.5604/01.3001.0013.4121 PMid:31701902

31. Cho JS, Kang JH, Shin JM, Park IH, Lee HM. Inhibitory effect of delphinidin on extracellular matrix production via the MAPK/NF-κB pathway in nasal polyp-derived fibroblasts. Allergy Asthma Immunol Res. 2015;7(3):276-82. https://doi.org/10.4168/aair.2015.7.3.276 PMid:25749779

32. Zhang Q, Yu N, Lee C. Mysteries of TGF-β paradox in benign and malignant cell. Front Oncol. 2014;4:94. https://doi.org/10.3389/fonc.2014.00094 PMid:24860782