THERE EXIST NO MINIMALLY KNOTTED PLANAR SPATIAL GRAPHS ON THE TORUS

SENJA BARTHEL

Abstract. We show that all nontrivial embeddings of planar graphs on the torus contain a nontrivial knot or a nonsplit link. This is equivalent to showing that no minimally knotted planar spatial graphs on the torus exist that contain neither a nontrivial knot nor a nonsplit link all of whose components are unknots.

1. Introduction

All considered graphs are undirected finite graphs and we will work in the piecewise linear category. A graph embedding is an embedding $f : G \to S^3$ of a graph G in S^3 up to ambient isotopy and the corresponding spatial graph G is the image of this embedding. A graph G is planar if there exists an embedding $f : G \to S^2$. Such an embedding is called trivial and its image is a trivial spatial graph. A spatial graph G is minimally knotted if G is nontrivial but for every edge e, $G - e$ is trivial. Some authors call minimally knotted spatial graphs almost trivial, almost unknotted or Brunnian. In this paper, a nontrivial link is a nonsplit link with at least two components.

Previous research on minimally knotted spatial graphs has been undertaken: The first example of a minimally knotted spatial graph was an embedding of a handcuff graph given by Suzuki [1]. Kawauchi [2], Wu [3] and Inaba and Soma [4] showed that every planar graph has a minimally knotted embedding. Ozawa and Tsutsumi [5] proved that minimally knotted embeddings of planar graphs are totally knotted. Especially minimally knotted Θ_n-graphs have generated some interest. Kinoshita [6] gave the first example of a minimally knotted Θ_3-graph (see Figure 1) which Suzuki [7] generalised to give examples of minimally knotted Θ_n-graphs for all $n \geq 3$. Closely related are ravels which are nontrivial embeddings of Θ_n-graphs that contain no nontrivially knotted subgraph; this definition is equivalent to the one given by Farkas, Flapan and Sullivan [8]. The concept of ravels has been introduced by Castle, Evans and Hyde [9] as local entanglements that are not caused by knots or links and may lead to new topological structures in coordination polymers. A ravel in a molecule has been synthesized by Lindoy et al [10]. Castle, Evans and Hyde [11] conjectured the following:

Conjecture. (Castle, Evans, Hyde [11])

All nontrivial embeddings of planar graphs on the torus include a nontrivial knot or a nonsplit link.

With Theorem 1 we prove that their conjecture is true.

Theorem 1. (Knots and links existence)

Let G be a planar graph and $f : G \to S^3$ be an embedding of G with image G. If G is contained in the torus T^2 and contains no nontrivial knot nor a nonsplit link, then f is trivial.

Since Θ_n-graphs are planar, it follows from Theorem 1 that on the torus there exist no minimally knotted embeddings of Θ_n-graphs with $n > 2$. This gives us the following Corollary:

Corollary. (Ravels do not embed on the torus)

Every nontrivial embedding of Θ_n-graphs on the torus contains a knot.

We conclude by showing that all made assumptions are necessary. Explicit ambient isotopies that transform spatial graphs which fulfil the assumptions of Theorem 1 into the plane \mathbb{R}^2, are given in [12]. There is also a consequence of Theorem 1 shown: Nontrivial 3-connected and simple planar spatial graphs that are embedded on a torus are chiral. A graph is simple if it contains no loops and no multi-edges. It is 3-connected if at least three vertices and their incident edges have to be deleted to decompose the graph or to reduce it to a single vertex.

Acknowledgements. I thank Tom Coates, Erica Flapan, Youngsik Huh, Stephen Hyde, Danielle O’Donnol, Makoto Ozawa, Matt Rathbun and Kouki Taniyama for helpful comments and discussions. I also want to thank my PhD supervisor Dorothy Buck under whose supervision the research was undertaken. It was financially supported by the Roth studentship of Imperial College London mathematics department, the DAAD, the Evangelisches Studienwerk, the Doris Chen award, and by a JSPS grant awarded to Kouki Taniyama.
2.1. Outline of the proof. The proof uses two theorems of Scharlemann, Thompson [13] and Ozawa, Tsutsumi [5]. We assume that the spatial graph G we consider is given by an embedding $f : G \to T^2$ of a planar graph G and furthermore that G contains no nontrivially knotted or linked subgraph. We conclude that G must be trivial. During the proof, we need the following two definitions:

Definition. An embedding $f : G \to S^3$ of a graph G is **primitive**, if for each component G_i of G and any spanning tree T_i of G_i, the bouquet graph $f(G_i)/f(T_i)$ obtained from $f(G_i)$ by contracting all edges of $f(T_i)$ in S^3 is trivial.

Definition. An embedding $f : G \to S^3$ of a graph G is **free**, if the fundamental group of $S^3 - f(G)$ is free.

The argument of the proof is as follows: We start showing that the statement is true for non-standardly embedded tori in Lemma 1. With Lemma 2 we argue that it is sufficient to consider connected graphs. Then we show in Lemma 3 that a bouquet graph on T^2 either contains a nontrivial knot or is trivial. Since any connected spatial graph G on T^2 contracts to a bouquet graph on T^2, it follows that G is primitive if it contains no nontrivial knot. By Theorem 2 we know that the restriction $f_{|G'}$ is free for all connected subgraphs G' of G. By Lemma 2 together with Theorem 3 we conclude that G is trivial.

2.2. Preparations for the proof.

Lemma 1. (Nonstandardly embedded torus) Let \mathbb{T}^2 be a torus that is not standardly embedded. Any spatial graph G that is embedded on \mathbb{T}^2 and that contains no nontrivial knot is trivial.

Proof. If the spatial graph G contains a cycle that follows a longitude of the torus \mathbb{T}^2, this cycle is knotted since \mathbb{T}^2 itself is knotted. Therefore, no such subgraph of G can exist and we find a meridian m of \mathbb{T}^2 that has no intersection with G. This shows that G in embedded in the twice punctured sphere $\mathbb{T}^2 - m \cong S^2 - \{p_1, p_2\}$. Therefore, G is trivial.

It follows from Lemma 1 that the statement of Theorem 1 is true for nonstandardly embedded tori. Therefore, we consider the standardly embedded torus T^2 from now on which saves us from considering case studies.

Lemma 2. (Connectivity Lemma) The image G of an embedding $f : G \to T^2 \subset S^3$ of a graph G with $n > 1$ connected components on the standard torus T^2 either contains a nonsplit link, or no nonsplit linked subgraph and decomposes into n disjoint components of which at least $n - 1$ components are trivial.

Proof. Take any connected component $f(G_i)$ of the embedding $f(G)$ on the torus T^2. The complement of $f(G_i)$ in the torus (without considering the rest of the spatial graph $f(G - G_i)$) is a collection of pieces that can be the punctured torus, discs and essential annuli. (An essential annulus contains a simple closed curve that does not bound a disc in the torus.)

In the case that the complement of $f(G_i)$ in T^2 includes the punctured torus, $f(G_i)$ is trivial and splits from the other components.

If the complement of $f(G_i)$ in T^2 is only a collection of discs, then all other components of $f(G)$ lie in one of those discs and therefore the graph is split. ($f(G_i)$ might or might not contain a nonsplit link.)

In the case that the complement of $f(G_i)$ in T^2 includes an essential annulus A, it is possible that other components of G are embedded in this annulus. A component G_j might be embedded in the annulus in two ways: Either the complement of $f(G_j)$ in A is a punctured annulus and therefore $f(G_j)$ is trivial and splits from the rest of the spatial graph $f(G - G_j)$. Or $f(G_j)$ splits the annulus into two annuli. The annulus A has one type of an essential curve c running inside it; c is parallel to the boundary curves of A. If $f(G_j)$ splits A into two annuli, a subgraph of $f(G_j)$ must be deformable to be parallel to c. If c is a meridian or a preferred longitude of T^2, both components $f(G_i)$ and $f(G_j)$ are split and trivial since the torus is a standard torus. If c is neither a meridian nor a longitude of T^2, $f(G_i)$ and $f(G_j)$ form a nonsplit link.

Lemma 3. (Bouquet Lemma) The image B of an embedding $f : B \to T^2 \subset S^3$ of a connected bouquet graph B on the torus T^2 either contains a nontrivial knot or is trivial.
Every nontrivial embedding of planar graphs in the torus cannot be planar by assumption, it follows from Theorem 3 that \(f \) is not a nontrivial knot. By Lemma 3, an unknotted bouquet graph \(B \) on the torus without self-intersections:

- (1) \(T(0, 0) \) loops that bound a disc in \(T^2 \) (trivial elements in \(\pi_1(T^2) \)),
- (2) \(T(0, 1) \) meridional loops,
- (3) \(T(1, 0) \) longitudinal loops,
- (4) \(T(1, n) \) loops or alternatively \(T(n, 1) \) loops, \(n \geq 1 \)

Loops of type (1) do not contribute to nontriviality of \(B \).

If \(B \) has loops of the types (1), (2) and (3) only, it is trivial.

If \(B \) has loops of type (4), there are – beside the loops \(T(0, 0) \) – only three types of loops simultaneously embeddable on the torus without self-intersections: \(T(1, 0), T(1, n) \) and \(T(1, n + 1) \) (respectively \(T(0, 1), T(n, 1) \) and \(T(n + 1, 1) \)). This can easily be confirmed by applying the formula of Rolfsen’s exercise 2.7 [14]: If two torus knots \(T(p, q) \) and \(T(p', q') \) intersect in one point transversally, then \(pq' - qp' = \pm 1 \). Such a bouquet is trivial. \(\square \)

Theorem 2. (Ozawa and Tsutsumi’s freeness criterion [5])

An embedding \(f \) of a graph \(G \) in \(S^3 \) is primitive if and only if the restriction \(f|_{G'} \) is free for all connected subgraphs \(G' \) of \(G \).

Theorem 3. (Scharlemann and Thompson’s planarity criterion [13])

An embedding \(f(G) \to S^3 \) of a graph \(G \) is trivial if and only if

(a) \(G \) is planar and
(b) for every subgraph \(G' \subset G \), the restriction \(f|_{G'} \) is free.

2.3. **The proof.** We are now ready to prove Theorem 1:

Proof. It follows from Lemma 1 that the statement of Theorem 1 is true for nonstandardly embedded tori. Therefore, we assume that \(G \) is embedded in the standard torus \(T^2 \). By the connectivity Lemma 2 we can assume that \(G \) is connected. Any connected spatial graph contracts to a spatial bouquet graph \(B \) if a spanning tree \(T \) is contracted in \(S^3 \). If the spatial graph is embedded in a surface, edge contractions can be realised in the surface. It follows that a connected spatial graph \(G \) which is embedded in the torus \(T^2 \), contracts to a bouquet graph \(B \) which also is embedded in \(T^2 \) if a spanning tree is contracted. Since \(G \) contains no nontrivial knot by assumption, \(B \) also contains no nontrivial knot. By Lemma 3, an unknotted bouquet graph \(B \) on the torus \(T^2 \) is trivial. Therefore, any bouquet graph \(B = f(G)/f(T) \) which is obtained from \(f(G) \) by contracting all edges of \(f(T) \) in \(S^3 \) is trivial and \(f \) is primitive by definition. By Theorem 2, the restriction \(f|_{G'} \) is free for all connected subgraphs \(G' \) of \(G \). Then Lemma 2 ensures that the restriction \(f|_{G'} \) is free for all subgraphs \(G' \subset G \) since \(G \) contains no nonsplit link by assumption. As \(G \) is planar by assumption, it follows from Theorem 3 that \(f(G) \) is trivial. \(\square \)

Corollary. (Ravels do not embed on the torus)

Every nontrivial embedding of \(\Theta_n \)-graphs on the torus contains a knot.

Proof. As there exist no pair of disjoint cycles in a \(\Theta_n \)-graph, such a graph does not contain a nonsplit link. Since \(\Theta_n \)-graphs are planar, the corollary follows directly from Theorem 1. \(\square \)

Remark. Simple 3-connected nontrivial embeddings of planar graphs in the torus are chiral as shown in [15].

2.4. **All assumptions that have been made are necessary.** This can be seen by considering the following examples:

- There exist nontrivial embeddedings on \(T^2 \) that contain neither a nontrivial knot nor a nonsplit link. Those are embeddings of graphs which are not planar.

 Examples: \(K_{3,3} \) and \(K_4 \) embedded as shown left in the figure below.

- There exist nontrivial embeddings of planar graphs that contain neither a nontrivial knot nor a nonsplit link. Those are not embedded in the torus.

 Examples: Kinoshita-theta curve (middle in the figure below) and every ravel.

- There exist nontrivial embeddings of planar graphs on \(T^2 \).

 Examples: Spatial graphs that are subdivisions of nontrivial torus knots with \(n > 0 \) vertices and \(n \) edges.
 (Right in the figure below.)
Figure 1. All assumptions are necessary.

REFERENCES

[1] S. Suzuki, On Linear Graphs in 3-sphere, Osaka J. Math., 7, 375-396, 1970.
[2] A. Kawauchi, Almost identical imitations of (3,1)-dimensional manifold pairs, Osaka J. Math., 26, 743-758, 1989.
[3] Y.-Q. Wu, Minimally knotted embeddings of planar graphs, Math. Z., 214, 653-658, 1993.
[4] H. Inaba and T. Soma, On spatial graphs isotopic to planar embeddings, KNOTS’96 (Tokyo), World Sci., 1-22, 1997.
[5] M. Ozawa, Y. Tsutsumi, Primitive Spatial Graphs and Graph Minors, Rev. Mat. Complut., 20, 391-406, 2007.
[6] S. Kinoshita, On elementary ideals of polyhedra in the 3-sphere, Pacific J. Math., 42, 89-98, 1972.
[7] S. Suzuki, Almost Unknotted Θ_n-curves in the 3-sphere, Kobe J. Math, 1, 19-22, 1984.
[8] C. Farkas, E. Flapan, W. Sullivan, Unravelling tangled graphs, J. of Knot Theory Ramifications, 21, 1250074, 2012.
[9] T. Castle, M. E. Evans and S. T. Hyde, Ravels: knot-free but not free. Novel entanglements of graphs in 3-space, New J. Chem., 32, 1484-1492, 2008.
[10] F. Li, J. C. Clegg, L. F. Lindoy, R. B. Macquart and G. v. Meehan, Metallosupramolecular self-assembly of a universal 3-ravel, Nat. Commun., 2, 205.1-205.5, 2011.
[11] T. Castle, M. E. Evans and S. T. Hyde, All toroidal embeddings of polyhedral graphs in 3-space are chiral, New J. Chem., 33, 2107-2113, 2009.
[12] S. Barthel and D. Buck Toroidal embeddings of abstractly planar graphs are knotted or linked, preprint.
[13] M. Scharlemann and A. Thompson, Detecting unknotted graphs in 3-space, Diff. Geom., 34, 539-560, 1991.
[14] D. Rolfsen, Knots and Links, Publish or Perish, 1976. Reprint, AMS, 2003.
[15] S. Barthel, On chirality of toroidal embeddings of polyhedral graphs in 3-space, preprint.

Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
E-mail address: s.barthel11@imperial.ac.uk