Fibonacci Numbers

Japheth Wood, PhD

Bard Math Circle AMC 8
November 12, 2019
Fibonacci’s Rabbit Problem

“A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair begets a new pair which from the second month on becomes productive?”

—A problem from the third section of Liber abaci (1202).

(https://www-history.mcs.st-andrews.ac.uk/Biographies/Fibonacci.html)

Recursive Definition

\[F(\text{Next}) = F(\text{Current}) + F(\text{Productive}), \quad F(0) = F(1) = 1 \]

Rabbit Population

Month	0	1	2	3	4	5	6	7	8	9	10
Rabbits	1	1	2	3	5	8	13	21	34	55	89
Solve one of these problems:

- A composition of n is a way to write n as the sum of positive integers (order matters). How many compositions are there of 8 that don’t use 1?

- How many compositions are there of 7 into odd parts?

- How many subsets are there of $\{1, 2, 3, 4, 5\}$ that include no two consecutive numbers?

- In how many ways can you tile a 2×6 rectangle with 2×1 dominoes?

- How many increasing paths are there through the honeycomb from 1 to 7?

- How many ways are there to climb a set of 6 stairs, one or two steps at a time?

- How many binary sequences of length 5 are there, with no consecutive 0’s?

- Find 6 positive integer solutions (x, y) of $y^2 - xy - x^2 = \pm 1$.

- Some problems to solve

- Solutions

- Binet’s Formula
How many *increasing* paths are there through the honeycomb from 1 to 7?

\[\cdots \quad \text{Path}(5) + \text{Path}(6) = \text{Path}(7) \]
\[\text{Path}(n - 2) + \text{Path}(n - 1) = \text{Path}(n) \]

\(n\)	1	2	3	4	5	6	7
\(P(n)\)	1	1	2	3	5	8	13

Paths ending 5-7

Paths ending 6-7
The Fibonacci Sequence

The Fibonacci Sequence is defined by the recurrence relation:

\[F(n) = F(n-1) + F(n-2) \] (for \(n > 2 \)), \(F(1) = 1 \), \(F(2) = 1 \)

\(n \)	0	1	2	3	4	5	6	\(\ldots \)
\(F(n) \)	0	1	1	2	3	5	8	\(\ldots \)

A Fibonacci-ish Sequence (Gibbonacci?)

A Fibonacci-ish Sequence is defined by the recurrence relation:

\[G(n) = G(n-1) + G(n-2) \]

\(n \)	0	1	2	3	4	5	6	\(\ldots \)
\(G(n) \)	4	-2	2	0	2	2	4	\(\ldots \)
Fact 1: Scaling a Fibonacci-ish Sequence yields a ...

n	0	1	2	3	4	5	6	...
$G(n)$	4	-3	1	-2	-1	-3	-4	...
$4G(n)$	16	-12	4	-8	-4	-12	-16	...

Fact 2: If $G(0)$ is 0 then ...

n	0	1	2	3	4	5	6	...
$G(n)$	0	3	3	6	9	15	24	...
$F(n)$	0	1	1	2	3	5	8	...

Fact 3: Subtracting Fibonacci-ish Sequences yields a ...

n	0	1	2	3	4	5	6	...
$G(n)$	4	3	7	10	17	27	...	
$H(n)$	2	1	3	4	7	11	...	
$G(n) - H(n)$	2	2	4	6	10	16	...	
Two interesting Fibonacci-ish sequences

n	0	1	2	3	4	⋯
R(n)	1	r	r²	r³	r⁴	⋯
S(n)	1	s	s²	s³	s⁴	⋯
R(n) - S(n)	0	r - s	r² - s²	r³ - s³	r⁴ - s⁴	⋯
F(n)	0	1	\[\frac{r^2 - s^2}{r - s}\]	\[\frac{r^3 - s^3}{r - s}\]	\[\frac{r^4 - s^4}{r - s}\]	⋯

Necessary (and Sufficient) Conditions

\[R(0) + R(1) = R(2)\] or \[1 + r = r^2\] and also \[1 + s = s^2\]

Both \(r\) and \(s\) are solutions of \(1 + x = x^2\).
\[r = \frac{1 + \sqrt{5}}{2} \approx 1.618\] and \[s = \frac{1 - \sqrt{5}}{2} \approx -0.618\]

Binet’s Formula

\[F(n) = \frac{r^n - s^n}{r - s} = \left(\frac{1 + \sqrt{5}}{2}\right)^n - \left(\frac{1 - \sqrt{5}}{2}\right)^n \div \sqrt{5}\]
The End

Thank You!

Japheth Wood ⟨jwood@bard.edu⟩