Quantum Dynamical \tilde{R}-Matrix with Spectral Parameter from Fusion

Xu-Dong Luo†, Xing-Chang Song‡†, Shi-Kun Wang§ and Ke Wu†

† Department of Physics, Peking University, Beijing 100871, China
‡ Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China
§ CCAST(World Laboratory), Beijing 100080, China
and Institute of Applied Mathematics, Academia Sinica, Beijing 100080, China

Abstract

A quantum dynamical \tilde{R}-matrix with spectral parameter is constructed by fusion procedure. This spin-1 \tilde{R}-matrix is connected with Lie algebra $so(3)$ and does not satisfy the condition of translation invariance.

1 Introduction

Since the classical dynamical r-matrix \cite{[1]} first appeared on the scene of integrable many body system, many dynamical r-matrices have been found in integrable models such as Calogero-Moser model \cite{[2]}, Sine-Gorden soliton case \cite{[3]} and the general case for the Ruijsenaars systems \cite{[4]}. These dynamical r-matrices do not satisfy the ordinary classical Yang-Baxter equation, so its quantization is rather nontrivial. The quantum dynamical Yang-Baxter (QDYB) equation, which appeared first in the quantization of Toda field theory \cite{[5]} and later in the quantization of KZB equation \cite{[6]}, had been studied widely for various integrable models and its algebraic structure was explored \cite{[7],[8],[9]}

In contrast to the non-dynamical one \cite{[10]}, only a few dynamical R matrices are constructed explicitly and most of them can be obtained from Felder’s solution \cite{[6]} by taking a gauge transformations \cite{[9]}. So how to construct new R matrix is still an interesting and challenging problem. As an efficient method to obtain higher-spin R matrix, fusion procedure \cite{[11]} has been applied to dynamical R matrix \cite{[12]}. In this paper, we construct a spin-1 quantum dynamical R-matrix with spectral parameter by “fusing” together the spin-$\frac{1}{2}$ R-matrices which satisfy the QDYB equation \cite{[7]}:

\[
R_{12}(\lambda_{12}, x + \gamma h^{(3)})R_{13}(\lambda_{13}, x - \gamma h^{(2)})R_{23}(\lambda_{23}, x + \gamma h^{(1)}) = R_{23}(\lambda_{23}, x - \gamma h^{(1)})R_{13}(\lambda_{13}, x + \gamma h^{(2)})R_{12}(\lambda_{12}, x - \gamma h^{(3)}).
\] (1)

Where the spectral parameters λ_{ij} are defined as $\lambda_{ij} = \lambda_i - \lambda_j$, $x = \sum \nu x_{\nu} h_{\nu}$ is the dynamical variable and h is the Cartan subalgebra of the underlying simple Lie algebra. Taking values in $\text{End}(V_1 \otimes V_2 \otimes V_3)$, R matrix appears as $R_{12}(x + \gamma h^{(3)})(V_1 \otimes V_2 \otimes V_3) = (R_{12}(x + \gamma \mu)(V_1 \otimes V_2)) \otimes V_3$ if $h^{(3)}$ has weight μ in space V_3. Other symbols have a similar meaning.

In braid form, the QDYB equation (1) reads as

\[
\tilde{R}_{23}(\lambda_{12}, x + \gamma h^{(1)})\tilde{R}_{12}(\lambda_{13}, x - \gamma h^{(2)})\tilde{R}_{23}(\lambda_{23}, x + \gamma h^{(1)}) = \tilde{R}_{12}(\lambda_{23}, x - \gamma h^{(1)})\tilde{R}_{23}(\lambda_{13}, x + \gamma h^{(2)})\tilde{R}_{12}(\lambda_{12}, x - \gamma h^{(3)}),
\] (2)

where $\tilde{R}_{ij} = P_{ij} R_{ij}$ and P_{ij} is the permutation operator acting on spaces $V_i \otimes V_j$. If \tilde{R}
matrices satisfy the condition of translation invariance:

\[
[D^{(i)} + D^{(j)}, \tilde{R}_{ij}(\lambda, x)] = 0; \quad D^{(i)} = \sum_\nu h^{(i)}_\nu \partial_{x^\nu},
\]

(3)

we can rewrite equation (2) as

\[
\tilde{R}_{23}(\lambda_{12}, x + 2\gamma h^{(1)})\tilde{R}_{12}(\lambda_{13}, x)\tilde{R}_{23}(\lambda_{23}, x + 2\gamma h^{(1)})
\]

\[
= \tilde{R}_{12}(\lambda_{23}, x)\tilde{R}_{23}(\lambda_{13}, x + 2\gamma h^{(1)})\tilde{R}_{12}(\lambda_{12}, x).
\]

(4)

This paper is organized as follows. In section 2, we obtain some useful properties of \(\tilde{R}^{(1/2, 1/2)}\) matrix. In section 3, using the \(\tilde{R}^{(1, 1)}\) matrix, we construct the \(\tilde{R}^{(1, 1)}\) matrix by fusion procedure and prove that the new matrix satisfies the QDYB equation too. Finally, we discuss our results and compare it with paper [12] in section 4.

2 Properties of spin- \(1/2\) \(\tilde{R}\)-matrix

According to spin- \(1/2\) chain, \(h^{(i)}(\otimes V_i) = \text{diag}\{\frac{1}{2}, -\frac{1}{2}\}(\otimes V_i)\), there is the simplest \(\tilde{R}\) matrix solution with spectral parameter [1]:

\[
\tilde{R}^{(1/2, 1/2)}(\lambda, x) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{\sinh \gamma \sinh (x + \lambda)}{\sinh x \sinh (\lambda - \gamma)} & \frac{\sinh \lambda \sinh (x + \gamma)}{\sinh x \sinh (\lambda - \gamma)} & 0 \\
0 & \frac{\sinh \lambda \sinh (x - \gamma)}{\sinh x \sinh (\lambda - \gamma)} & \frac{\sinh \gamma \sinh (x - \gamma)}{\sinh x \sinh (\lambda - \gamma)} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

(5)

This \(\tilde{R}^{(1/2, 1/2)}\) matrix satisfies the "weight zero" condition

\[
[h^{(i)} + h^{(j)}, \tilde{R}_{ij}(\lambda, x)] = 0,
\]

(6)

and it has one triple eigenvalue 1 and one single eigenvalue \(-\frac{\sinh(\lambda + \gamma)}{\sinh(\lambda - \gamma)}\).

To the triple eigenvalue, its right-acting eigenvectors are

\[
u^{(1)}(x) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \quad u^{(0)}(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}; \quad u^{(-1)}(x) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix},
\]

(7)

and its left-acting eigenvectors are

\[
\overline{\nu}^{(1)}(x) = (1, 0, 0, 0) \\
\overline{\nu}^{(0)}(x) = \frac{1}{\sqrt{2}}(0, \sinh(x - \gamma), \sinh(x + \gamma), \sinh x \cosh \gamma) \\
\overline{\nu}^{(-1)}(x) = (0, 0, 0, 1).
\]

(8)

While the eigenvalue is \(-\frac{\sinh(\lambda + \gamma)}{\sinh(\lambda - \gamma)}\), the right-acting and left-acting eigenvectors are

\[
v^{(0)}(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \frac{\sinh(x + \gamma)}{\sinh x \cosh \gamma} \\ -\frac{\sinh(x - \gamma)}{\sinh x \cosh \gamma} \\ 0 \end{pmatrix}; \quad \overline{v}^{(0)}(x) = \frac{1}{\sqrt{2}}(0, 1, -1, 0)
\]

(9)
respectively.
These eigenvectors satisfy
\[
\begin{align*}
\mathbf{\pi}^{(a)}(x)v_{(a)}(x) &= \mathbf{\pi}^{(0)}(x)u_{(a)}(x) = 0, & a = 1, 0, -1 \\
\mathbf{\pi}^{(0)}(x)v_{(0)}(x) &= 1; & \mathbf{\pi}^{(a)}(x)u_{(b)}(x) = \delta_{ab}, & a, b = 1, 0, -1
\end{align*}
\]
so we can construct two projection operators for the triplet and singlet
\[
\begin{align*}
P(x) &= \sum_{a} u_{(a)}(x)\mathbf{\pi}^{(a)}(x); & Q(x) &= v_{(0)}(x)\mathbf{\pi}^{(0)}(x) \\
id_{4(4)} &= P(x) + Q(x),
\end{align*}
\]
in which \(id_{4(4)} = \text{diag}\{1, 1, 1, 1\}\), \(P(x)\) and \(Q(x)\) have the properties:
\[
\begin{align*}
P^2(x) &= P(x); & Q^2(x) &= Q(x); & P(x)Q(x) = Q(x)P(x) = 0 \\
P(x)u_{(a)}(x) &= u_{(a)}(x), & \mathbf{\pi}^{(a)}(x)P(x) &= \mathbf{\pi}^{(a)}(x); & a = 1, 0, -1.
\end{align*}
\]
Now, we can rewrite \(\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda, x)\) as
\[
\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda, x) = P(x) - \frac{\sinh(\lambda + \gamma)}{\sinh(\lambda - \gamma)}Q(x).
\]
It is obvious that
\[
\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda = -\gamma, x) = P(x). \tag{12}
\]
Applying this property to equation (2), we obtain
\[
\begin{align*}
P_{23}(x + \gamma h^{(1)})\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda, x - \gamma h^{(3)})\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda, x + \gamma h^{(1)})
\end{align*}
\]
\[
\left.\begin{align*}
&= \tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda, x - \gamma h^{(3)})\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda, x + \gamma h^{(1)})P_{12}(x - \gamma h^{(3)}) \\
&= P_{12}(x - \gamma h^{(3)})\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda, x + \gamma h^{(1)})\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}(\lambda, x - \gamma h^{(3)}) \tag{13}
\end{align*}\right.
\]
\section{Construct spin- 1 \(\tilde{R}\)-matrix}

Refer to fusion procedures in papers [1], [2], we "fuse" dynamical \(\tilde{R}^{(1,1)}\) matrix with spectral parameter as follows
\[
\left[\tilde{R}^{(1,1)}_{12,34}(\lambda, x)\right]_{cd}^{ab} = \\
\mathbf{\pi}_{12}^{(a)}(x - \gamma h^{(3,4)})\mathbf{\pi}_{34}^{(b)}(x + \gamma h^{(1,2)})\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}_{23}(\lambda, x + \gamma h^{(1)} - \gamma h^{(4)})\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}_{12}(\lambda, x - \gamma h^{(3,4)})
\times\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}_{34}(\lambda, x + \gamma h^{(1,2)})\tilde{R}^{(\frac{1}{2}, \frac{1}{2})}_{23}(\lambda, x + \gamma h^{(1)} - \gamma h^{(4)})u_{12(c)}(x - \gamma h^{(3,4)})u_{34(d)}(x + \gamma h^{(1,2)}) \tag{14}
\]
in which \(a, b, c, d\) take values among 1, 0, -1 and \(h^{(i,j)}\) means \(h^{(i)} + h^{(j)}\), so this \(\tilde{R}^{(1,1)}\) matrix is a 9 \(\times\) 9 matrix.

In order to prove that equation (14) satisfies QDYB equation too, we define two \(4 \times 4\) matrices as follows:
\[
u = (u_{(1)}, u_{(0)}, 0, u_{(-1)}); \quad \mathbf{\pi} = \begin{pmatrix}
\mathbf{\pi}^{(1)} \\
\mathbf{\pi}^{(0)} \\
0 \\
\mathbf{\pi}^{(-1)}
\end{pmatrix}.
\]
then, we replace \(\varpi^{(a)} \) and \(\varpi^{(b)} \) by \(\varpi \) as well as replacing \(u(c) \) and \(u(d) \) by \(u \) in equation (14), such that \(\tilde{R}^{(1,1)} \) is changed into a 16 \(\times \) 16 matrix, where the added seven rows and seven columns are nothing but zero in fact. Such \(u \) and \(\varpi \) matrices not only keep \(u(x)\varpi(x) = P(x) \), \(P(x)u(x) = u(x) \) and \(\varpi(x)P(x) = \varpi(x) \), but also satisfy the weight zero condition too. Now the QDYB equation becomes

\[
\tilde{R}^{(1,1)}_{34,56}(\lambda_{12}, x + \gamma h^{(1,2)}) \tilde{R}^{(1,1)}_{12,34}(\lambda_{13}, x - \gamma h^{(5,6)}) \tilde{R}^{(1,1)}_{34,56}(\lambda_{23}, x + \gamma h^{(1,2)}) \\
= \tilde{R}^{(1,1)}_{12,34}(\lambda_{23}, x - \gamma h^{(5,6)}) \tilde{R}^{(1,1)}_{34,56}(\lambda_{13}, x + \gamma h^{(1,2)}) \tilde{R}^{(1,1)}_{12,34}(\lambda_{12}, x - \gamma h^{(5,6)}).
\]

(15)

For simplicity, we introduce \(\tilde{R}_{ij}(\lambda) \) := \(\tilde{R}^{(1,1)}_{ij}(\lambda, x + \gamma \sum_{k=1}^{i-1} h^{(k)} - \gamma \sum_{l=j+1}^{6} h^{(l)}) \), and replace \(u_{ij}(x + \gamma \sum_{k=1}^{i-1} h^{(k)} - \gamma \sum_{l=j+1}^{6} h^{(l)}) \) and \(\varpi_{ij}(x + \gamma \sum_{k=1}^{i-1} h^{(k)} - \gamma \sum_{l=j+1}^{6} h^{(l)}) \) by \(\cap_{ij} \) and \(\cap_{ij} \) respectively. After these notations, the weight zero condition means

\[
[A_{i}, i+1(\lambda), B_{j}, j+1(\lambda')] = 0; \quad if \quad i + 1 < j \ or \ j + 1 < i
\]

in which \(A, B \in \{ \tilde{R}, \cap, \bar{\cap} \} \). By the relation (13) and its analogue, we can reduce equation (15) to

\[
\begin{align*}
\text{l.h.s.} &= \cap_{12} \cap_{34} \cap_{56} \cap_{12}(\lambda_{12}) \cap_{34}(\lambda_{13}) \cap_{56}(\lambda_{23}) \cap_{12} \cap_{34} \cap_{56} \\
\text{r.h.s.} &= \cap_{12} \cap_{34} \cap_{56} \cap_{12}(\lambda_{12}) \cap_{34}(\lambda_{13}) \cap_{56}(\lambda_{23}) \cap_{12} \cap_{34} \cap_{56} \\
S_{i+1}(\lambda) &= (\tilde{R}_{i+1,i+2}(\lambda, x) \tilde{R}_{i+1,i+2}(\lambda) \tilde{R}_{i+1,i+2}(\lambda) \tilde{R}_{i+1,i+3}(\lambda)) \tilde{R}_{i+1,i+2}(\lambda + \gamma)).
\end{align*}
\]

Using QDYB equation (2) and its analogue, we have proved \(S_{34}(\lambda_{12})S_{12}(\lambda_{13})S_{34}(\lambda_{23}) = S_{12}(\lambda_{23})S_{34}(\lambda_{13})S_{12}(\lambda_{12}) \), or l.h.s. = r.h.s. in above equation. In other words, the fusion procedure is practicable.

If we rewrite equation (15) in the standard 9 \(\times \) 9 matrix form \(\tilde{R}^{(1,1)}(\lambda, x) \), it becomes

\[
\begin{align*}
\tilde{R}^{(1,1)}_{JK}(\lambda_{12}, x + \gamma h^{(I)}) \tilde{R}^{(1,1)}_{IJ}(\lambda_{13}, x - \gamma h^{(K)}) \tilde{R}^{(1,1)}_{JK}(\lambda_{23}, x + \gamma h^{(I)}) \\
= \tilde{R}^{(1,1)}_{IJ}(\lambda_{23}, x - \gamma h^{(K)}) \tilde{R}^{(1,1)}_{JK}(\lambda_{13}, x + \gamma h^{(I)}) \tilde{R}^{(1,1)}_{IJ}(\lambda_{12}, x - \gamma h^{(K)}).
\end{align*}
\]

(17)

It is just the original QDYB equation (2). Notice that this \(\tilde{R}^{(1,1)}(\lambda_{12}, x + \gamma h^{(I)}) \) matrix is of spin- 1 since \(h^{(I)}(\otimes V_{t}) \) (in which \(t \in \{ I, J, K \} \)) becomes \(\text{diag}\{ 1, 0, -1 \} (\otimes V_{t}) \) by taking the singlet of spin-0 away.

With the \(\tilde{R}^{(1,1)}_{ij} \) matrix (5) and the fusion method (14), we obtain

\[
\tilde{R}^{(1,1)}(\lambda, x) =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a(\lambda, x) & 0 & b(\lambda, -x) & 0 & 0 & e(\lambda, x) & 0 & 0 \\
0 & c(\lambda, x) & 0 & d(\lambda, x) & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & b(\lambda, x) & 0 & 0 & 0 & 0 & f(\lambda, -x) & 0 & 0 \\
0 & 0 & f(\lambda, x) & 0 & 0 & 0 & 0 & a(\lambda, x) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b(\lambda, x) \\
0 & 0 & e(\lambda, -x) & 0 & 0 & 0 & 0 & 0 & c(\lambda, -x) \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

(18)
in which
\[a(\lambda, x) = \frac{\sinh(2\gamma) \sinh(\lambda + x)}{\sinh(2\gamma - \lambda) \sinh x} \quad b(\lambda, x) = \frac{\sinh(\lambda) \sinh(2\gamma - x)}{\sinh(2\gamma - \lambda) \sinh x} \]

\[c(\lambda, x) = \frac{\sinh \gamma \sinh(2\gamma) \sinh(\lambda + x) \sinh(\gamma + \lambda + x)}{\sinh(\gamma - \lambda) \sinh(2\gamma - \lambda) \sinh x \sinh(\gamma + x)} \]
\[d(\lambda, x) = \frac{\sinh(2\gamma) \sinh(\lambda) \sinh(2\gamma + x) \sinh(\lambda + x) \cosh \gamma}{\sinh(\gamma - \lambda) \sinh(2\gamma - \lambda) \sinh(\gamma - x) \sinh(\gamma + x)} \]
\[e(\lambda, x) = -\frac{\sinh \lambda \sinh(\gamma + \lambda) \sinh(\gamma + x) \sinh(2\gamma + x)}{\sinh(\gamma - \lambda) \sinh(2\gamma - \lambda) \sinh(\gamma - x) \sinh(\gamma + x)} \]
\[f(\lambda, x) = \frac{2 \sinh \gamma \sinh \lambda \sinh(\gamma - x) \sinh(\lambda + x)}{\sinh(\gamma - \lambda) \sinh(2\gamma - \lambda) \sinh x \sinh(\gamma + x)} \]
\[g(\lambda, x) = \frac{\sinh(\gamma + \lambda) + \sinh \lambda (\cosh(2x) - \cosh(2\gamma) - \sinh^2(2\gamma))}{\sinh(\gamma - \lambda) \sinh(2\gamma - \lambda) \sinh(\gamma - x) \sinh(\gamma + x)}. \]

The obtained \(\hat{R}^{(1,1)} \) matrix has three distinct eigenvalues, say, 1, \(-\frac{\sinh(\lambda + 2\gamma)}{\sinh(\lambda - 2\gamma)}\) and \(\frac{\sinh(\lambda + \gamma) \sinh(\lambda + 2\gamma)}{\sinh(\lambda - \gamma) \sinh(\lambda - 2\gamma)} \) whose multiplicity are 5, 3 and 1 respectively. This \(\hat{R}^{(1,1)} \) is connected with Lie algebra \(so(3) \). By direct calculation, we can show that it does satisfy the QDYB equation (17) with \(h^{(l)}(\otimes \hat{V}_l) = \text{diag}\{1, 0, -1\}(\otimes \hat{V}_l) \).

4 Discussion

From the expression (18), we find the \(\hat{R}^{(1,1)} \) matrix does not satisfy the translation invariance condition (3). In other words, if we want to translate it to the form of equation (4), we will obtain a more complex \(\hat{R}^{(1,1)} \) matrix form. In fact, it is just the matrix of \(\hat{R}^{(1,1)}(\lambda, x + \gamma h^{(I,J)}) \) where \(h^{(I,J)} \) means \(h^{(I)} + h^{(J)} \), so we have to construct new commuting operators different from those in paper [7], in which the condition (3) was used in constructing commuting operators. For the simplicity of the expression of \(R \)-matrix, we had better use more symmetric form as equation (1) or (2), rather than the form as equation (4).

Now we compare our results with paper [12]. At first, QDYB equation (4) tends to be independent from the spectral parameter by requiring \(\lambda \rightarrow \pm \infty \). Secondly we need change dynamical variable \(x \rightarrow -\gamma x \) in our \(\hat{R}^{(\frac{1}{2}, \frac{1}{2})} \) and \(\hat{R}^{(1,1)} \) matrices because QDYB equation takes different forms in these two papers. At last, we need translate expression (18) to \(\hat{R}^{(1,1)}(\lambda, x + \gamma h^{(I,J)}) \) as discussed before. After these changes of \(\lambda \) and \(x \) in \(\hat{R}^{(1,1)}(\lambda, x + \gamma h^{(I,J)}) \), we indeed obtain the \(\hat{R}^{(1,1)} \) matrix gauge equivalent to the one in paper [12]. The single eigenvalue \(q \) of \(\hat{R}^{(\frac{1}{2}, \frac{1}{2})} \) matrix in paper [12] is connected to \(e^{\pm 2\gamma} \) when we take \(\lambda \rightarrow \pm \infty \) respectively.

For the six-vertex elliptic solution of QDYB equation, eigenvalues of \(\hat{R}^{(\frac{1}{2}, \frac{1}{2})} \) matrix are not made of one triplet and one singlet. It is still an open problem about how to construct its higher-spin \(\hat{R} \) matrix.
Acknowledgments

One of authors (X.D. Luo) would like to thank C. Xiong for useful discussions. This work was supported by Scientific Project of Department of Science and Technology in China, Natural Scientific Foundation of Chinese Academy of Sciences, Doctoral Programme Foundation Institution of Higher Education and Foundation of NSF.

References

[1] J. Avan and M. Talon, Phys.Lett. B 303 (1993) 33.

[2] E. K. Sklyanin, Alg. and Anal 6 (1994) 227; H. W. Braden and T. Suzuki, Lett. Math. Phys. 30 (1994) 147; E. Billey, J. Avan, and O. Babelon, Phys. Lett. A 186 (1994) 114.

[3] O. Babelon and D. Bernard, Phys.Lett. B 317 (1993) 363.

[4] J. Avan and G. Rollet, *The classical r-matrix for the relativistic Ruijsenaars-Schneider system* Preprint Brown HET 1014 (1995); Yuri B. Suris, Phys. Lett. A 225 (1997) 253.

[5] J.L. Gervais and A. Neveu, Nucl. Phys. B 238 (1984) 125.

[6] G. Felder, *Conformal field theory and integrable systems associated to elliptic curve*, hep-th/9407154; G. Felder, *Elliptic quantum groups*, Proc. ICMP, Paris 1994.

[7] J. Avan, O. Babelon, and E. Billey, Commun. Math. Phys. 178 (1996) 281;

[8] D. Arnaudon, E. Buffenoir, E. Ragoucy and Ph. Roche, *Universal Solutions of Quantum Dynamical Yang-Baxter Equations*, q-alg/9712037; O. Babelon, D. Bernard and E. Billy, Phys.Lett. B 375 (1996) 89; G. Felder, V. Tarasov and A. Varchenko, *Solutions of the elliptic qKZB equations and Bethe ansatz* /q-alg/9606003.

[9] P. Etingof and A. Varchenko, *Solutions of the quantum dynamical Yang-Baxter equation and dynamical quantum groups* /q-alg/9708015; G. E. Arutyunov and S. A. Frolov, Commun. Math. Phys. 191 (1998) 15.

[10] Z.Q. Ma, *Yang-Baxter equation and quantum enveloping algebras*, (World Scientific. 1993) 1; X.D. Sun, S.K. Wang and K. Wu, J. Math. Phys. 36 (1995) 6043; S.K. Wang, J. Phys. A: Math.Gen. 29 (1996) 2259.

[11] P.P.Kulish and E.K.Sklyanin, Lecture notes in physics 151, (Springer, 1982) 61; P.P.Kulish, N.Yu.Reshetikhin and E.K.Sklyanin, Lett.Math.Phys. 5 (1981) 393; L. Mezincescu and R.I.Nepomechie, *Quantum Groups, in Proceedings of the Argenne workshop*, (World Scientific. 1991) 206.

[12] X.C. Song, *Quantum Dynamical R-Matrix From Fusion*, to appear in Commun. Theor. Phys. 29 (1998).