Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer’s Disease

David E. Kang,a,b,d,* and Jung A. Woa,c

aByrd Institute and Alzheimer’s Center, USF Health Morsani College of Medicine, Tampa, FL, USA
bDepartment of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, USA
cDepartment of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, USA
dDivision of Research, James A. Haley VA Hospital, Tampa, FL, USA

Accepted 12 August 2019

Abstract. The defining pathological hallmarks of Alzheimer’s disease (AD) are proteinopathies marked by the amyloid-β (Aβ) peptide and hyperphosphorylated tau. In addition, Hirano bodies and cofilin-actin rods are extensively found in AD brains, both of which are associated with the actin cytoskeleton. The actin-binding protein cofilin known for its actin filament severing, depolymerizing, nucleating, and bundling activities has emerged as a significant player in AD pathogenesis. In this review, we discuss the regulation of cofilin by multiple signaling events impinging on LIM kinase-1 (LIMK1) and/or Slingshot homolog-1 (SSH1) downstream of Aβ. Such pathophysiological signaling pathways impact actin dynamics to regulate synaptic integrity, mitochondrial translocation of cofilin to promote neurotoxicity, and formation of cofilin-actin pathology. Other intracellular signaling proteins, such as β-arrestin, RanBP9, Chronophin, PLD1, and 14-3-3 also impinge on the regulation of cofilin downstream of Aβ. Finally, we discuss the role of activated cofilin as a bridge between actin and microtubule dynamics by displacing tau from microtubules, thereby destabilizing tau-induced microtubule assembly, missorting tau, and promoting tauopathy.

Keywords: Alzheimer’s disease, amyloid, β-arrestin, chronophin, cofilin, cytoskeleton, F-actin, LIMK1, microtubule, mitochondria, PLD1, slingshot, SSH1, tau

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia, accounting for ~65% of all dementia cases [1, 2]. Two pathological hallmarks define AD brains, namely the accumulation of senile plaques composed of the amyloid-β (Aβ) peptide and neurofibrillary tangles/neuropil threads composed of hyperphosphorylated tau. Aβ is a peptide derived from the amyloid-β protein precursor (AβPP) via two sequential proteolytic cleavages by BACE1 (β-secretase) and the presenilin complex (γ-secretase) [3]. Neurofibrillary tangles and neuropil threads are intracellular inclusions principally composed of the microtubule-associated protein tau in hyperphosphorylated form [4], which are ultrastructurally seen as
paired helical filament [5]. In addition to Aβ and tau, multiple other proteinopathies are found in brains of AD and related dementias, including as α-synuclein-containing Lewy bodies [6] and TDP-43 inclusions [7], as well as Hirano bodies [8, 9] and coflin-actin rods [10], the latter two being associated with the actin cytoskeleton.

Aβ42 and Tau in AD Pathogenesis

Evidence of an early causal role of Aβ (i.e., Aβ cascade hypothesis) [11] is supported by multiple lines of genetic evidence, such as mutations in APP and PSEN1 or PSEN2 that co-segregate with early-onset familial AD. All APP FAD mutations identified thus far are concentrated near the mutations also increase the ratio of Aβ oligomers [19]. Expression of this APP mutation in transgenic mice leads to learning and memory deficits associated with impaired LTP, enhanced neuroinflammation, and tau hyperphosphorylation in the absence of thioflavin S-positive amyloid plaques. However, intracellular E22Δ Aβ oligomers accumulate in an age-dependent fashion, indicating that Aβ oligomers are sufficient and fibrillar amyloid deposition is not necessary for Aβ-induced neurotoxicity and memory deficits [20].

Numerous studies have shown that Aβ promotes the hyperphosphorylation of tau in vitro and in vivo [21, 22]. Aβ also enhances tauopathy in transgenic mice engineered to express a frontotemporal dementia (FTDP-17) tau mutation [23]. Depletion of Aβ by injection of an antibody directed against Aβ reduces not only Aβ pathology but also tau pathology in the APP/tau/presenilin-1 mutant (3xTg) mice [24]. However, despite the tauopathy promoting effects of Aβ, the toxic effects of Aβ require the presence of tau. For example, neurite retraction and progressive neuronal atrophy are seen when neurons are treated with Aβ but not in neurons derived from tau knockout mice [18, 25]. Learning and memory impairment as well as high sensitivity to excitotoxin treatment are present in mutant APP transgenic mice but not in the same transgenic mice on a tau-knockout background, even though the level of Aβ deposition is unaffected by tau [26]. While Aβ induces impairments in LTP and axonal transport of mitochondria, such impairments are lost in tau knockout neurons [27], indicating that tau is required for multiple facets of Aβ-induced neurotoxicity.

One of the earliest changes in tau observed in AD is the mislocalization of tau from somatodendritic compartments [28, 29]. Hyperphosphorylation of tau is linked to reduced affinity for microtubules and mislocalization to dendritic spines, where tau promotes the removal of surface AMPA and NMDA receptors critical for excitatory synaptic transmission [30]. When expressed in neurons, tau lacking multiple phosphorylation sites fails to mislocalize tau to dendritic spines and affect excitatory synaptic transmission [30]. Notably, like soluble Aβ oligomers, soluble hyperphosphorylated tau rather than insoluble tau aggregates may be the toxic species, since turning off FTD mutant tau expression in an inducible transgenic model does not remove insoluble PHF-1 positive tangle-like structures over several months but improves learning and memory [31].
These results all indicate that Aβ-induced toxic signals are transmitted via tau. However, what might be a mechanism of transmitting Aβ-induced neurotoxic signals from the cell surface? Aβ oligomers rapidly promote the disassembly of microtubules but only in cells expressing tau [32]. Moreover, the actin-binding protein cofilin is also required for Aβ oligomer-induced neurotoxicity [33]. Multiple neuronal surface receptors for Aβ oligomers have been identified, including PrPc, NMDARs, mGluR5, IR/IGFR, LlrB2, α7nAchR, p75NTR, LRP1, integrins, and others [34–37]. These receptors appear to function discretely as well as in coordination with each other to transmit Aβ oligomer signals via multiple signaling cascades. In this review, we will highlight some downstream signaling events, focusing on the actin and microtubule cytoskeletal network.

ACTIN AND MICROTUBULE NETWORKS IN NEURONS

The highly polarized nature of neurons dictates their reliance on the cytoskeletal networks to define their morphology and the distribution of various organelles and proteins to specific polarized regions. These cytoskeletal elements are composed of the actin (microfilament), neurofilament (intermediate filaments), and microtubule networks distributed in overlapping and discrete patterns throughout neurons. While the actin and microtubule networks have been well studied, the neurofilament network is the least well understood. Nonetheless, these intermediate neurofilaments are known to contribute to neuronal morphology and vesicular mobility [38].

Actin filaments (F-actin) are concentrated in leading edge of non-neuronal cells [39]. In a similar manner, F-actin is enriched in growth cones of immature neurons and in dendritic spines and presynaptic zones of mature neurons [40, 41]. In dendritic spines, F-actin crosslinks surface receptors as well as integral postsynaptic proteins such as drebrin and PSD95 [7]. In presynaptic zones, F-actin acts as a scaffold to mediate vesicular trafficking and regulates neurotransmitter release [42]. Actin dynamics (polymerization, depolymerization, severing, bundling, etc.) continually regulate synaptic remodeling at both sides of the synapse and hence mediate changes in synaptic plasticity [43]. Actin dynamics are regulated by several different pathways including the Rho family of small GTPase (RhoA, Rac1, cdc42), and various actin-binding proteins (ADF/cofilin, drebrin, profilin, Arp2/3, etc). Of note, Rho family GTPases generally promote actin polymerization at leading edge of cells by cycling between the inactive GDP-bound to the active GTP-bound state, thereby regulating cell migration and growth cone motility [44, 45]. On the other hand, ADF/cofilin enhances actin dynamics through F-actin severing [46].

The neuronal organization and distribution of microtubules are distinct from the actin network [47]. Microtubules are polar structures polymerized from α- and β-tubulin heterodimers that assemble into hollow tubules via the binding and hydrolysis of GTP [48]. The fast-growing end is termed the plus end, whereas the slow-growing end is termed the minus end. In axons, the plus end is directed away from the cell body toward the presynaptic terminal, whereas dendrites possess mixed populations of plus and minus ends pointing away from the cell body [49]. Unlike the actin network, microtubules are not enriched at synaptic sites but can transiently assemble inside dendritic spines in an activity-dependent manner [47, 50, 51]. The microtubule-associated proteins (MAPs), which include MAP1A, MAP1B, MAPT2, MAP4, and tau, regulate the assembly, stability, and disassembly of the microtubule network [48, 52]. Microtubule dynamics play important roles in neurite extension, arborization, and dendritic spine morphogenesis [47, 51]. In addition, microtubules in neurons function as ‘tracks’ for transport of proteins and organelles along axons and dendrites. These transport activities are mediated by motor proteins such as kinesin and dynein [54]. This function is particularly important in long axons that require the long-distance anterograde transport of organelles such as mitochondria and synaptic vesicles as well as retrograde transport of dysfunctional mitochondria and misfolded proteins for autophagic clearance [55]. As extensively illustrated in tauopathies, disruption of axonal transport is thought to play a key role in synaptic dysfunction in these neurodegenerative diseases [56, 57].

Aβ, TAU, AND THE MICROTUBULE NETWORK

Tauopathy is induced by the detachment of tau from microtubules, associated with tau hyperphosphorylation [53]. While Aβ is not required to induce tauopathy, as evidenced by multiple tauopathies lacking Aβ pathology (FTLD-tau, PSP, CBD, etc.)
with subsequent release of inorganic phosphate (Pi).

Monomers, after which ATP is hydrolyzed to ADP.

The actin oligomer serves as a seed for elongation by the incorporation of ATP-actin.

Actin assembly is initiated by the rate-limiting nucleation step in which actin forms dimers and trimers.

Actin assembly of G-actin in a head to tail configuration, giving rise to its polarity (barbed and pointed ends).

Assembly and disassembly of G-actin to F-actin is a process critical to many cellular processes, including cell motility, migration, dendritic spine morphogenesis, as well as provision of physical force for membrane bending needed for endocytosis and exocytosis [66–69]. F-actin is composed of two stranded helical polymers derived from the assembly of G-actin in a head to tail configuration, giving rise to its polarity (barbed and pointed ends).

Actin assembly is initiated by the rate-limiting nucleation step in which actin forms dimers and trimers. The actin oligomer serves as a seed for elongation of filaments by the incorporation of ATP-actin monomers, after which ATP is hydrolyzed to ADP with subsequent release of inorganic phosphate (Pi). ADF/Cofilin, a family of actin-binding protein, is one of the key regulators of actin dynamics via its F-Actin severing, depolymerizing, nucleating, and bundling activities [70]. Cofilin is inactivated by phosphorylation on Ser3 by LIM kinase1 (LIMK1) [71], whereas its dephosphorylation by Slingshot Homolog-1 (SSH1) activates cofilin [72]. In addition to phosphorylation, cofilin activity is also regulated by its interaction with the membrane polyphosphoinositide PI(4,5)P2, which inhibits cofilin binding to F-actin [73, 74]. Activated cofilin differentially modulates actin dynamics depending on the ratio of cofilin to actin. At regions of high cofilin/actin ratios, cofilin can bind and stabilize F-actin in a twisted form, thereby promoting the nucleation of actin rather than severing [75]. However, at regions of low cofilin/actin ratios, cofilin does not bind ADP-actin fast enough to saturate F-actin but induces persistent severing to create new barbed and pointed ends [75], which may enhance filament depolymerization from pointed ends (−) and/or filament growth from barbed ends (+) [76]. These processes mediated by activated cofilin greatly contribute to dendritic spine remodeling in neurons [77]. Cofilin activity is facilitated by other actin-binding proteins, such as coronin 1A and Aip1, which can enhance cofilin recruitment to F-actin, increase cofilin severing activity, or accelerate monomer dissociation from F-actin [78–81].

Aβ IN COFILIN DEREGULATION

Table 1 summarizes findings from various model systems and human brains regarding cofilin deregulation with direct relevance for AD pathogenesis (Table 1). Figure 1 also illustrates a schematic model incorporating mechanistic findings from a survey of the literature. These points are specifically discussed in the sections below.

Cofilin-actin pathology

Actin-based pathologies including Hirano bodies [8, 9] and cofilin-actin rods/aggregates are significantly increased in AD and animal models of AD [82–85]. Specifically, a study by Rahman and colleagues reported a 4-fold increase in cofilin rods/aggregates in AD versus age-matched controls, which correlates with the extent of tauopathy [85]. Previous studies have also shown that bioactive Aβ dimers/trimers at subnanomolar concentrations promote cofilin-actin rod formation in a subset of neurons associated with activation of cofilin and NADPH oxidase (NOX) [33, 70, 82, 86]. While it is not clear whether cofilin-actin pathology plays an essential role in AD pathogenesis, it is certainly a pathology saliently present in AD brains.
Model	Treatment	Active cofilin	Overall findings	References
AD and aging brains	N/A	N/A	Cofilin in Hirano bodies increase with age and AD	[8, 9]
AD brains, rat neurons	ATP depletion or oxidative stress	Increased	Increased cofilin-actin rods	[82–85]
Primary neurons	Natural Aβ oligomers, inflammatory cytokines	Increased	Increased cofilin-actin rods via Nox & PrPc	[86, 115]
Primary neurons	Natural Aβ oligomers	Increased	Cofilin-actin rods increased w/ SSH1 & decreased w/ LIMK1	[87]
AD patients, Tg2576 mice, mouse neurons	Aβ1-42 oligomers	Increased	Reduced PAK & Drebrin in AD and Tg2676 mice; increased pPAK surrounding Aβ deposits	[100]
3xTg mice	N/A	Increased	Reduced PAK; dominant-negative PAK results in memory deficits in 3xTg mice	[101]
Primary neurons	Aβ1-40 & Aβ1-25 fibrils	Decreased	Increased LIMK1 activation in dystrophic neurites	[102]
Rat brain	Aβ1-40 fibrils	Increased	Reduced PSD95 & GluR1 and decreased silent synapses	[103]
AD brains, APP/PS1 x RanBP9 +/- mice	Aβ1-42 oligomers	Increased	APP/PS1 mice with increased cofilin activation; RanBP9 promotes SSH1 stability; RanBP9 reduction mitigates cofilin-actin pathology synaptic deficits in APP/PS1 mice	[82, 96, 107]
APP/PS1 x RanBP9 Tg	N/A	Increased	RanBP9 Tg promotes cofilin activation in synaptosomes	[108]
APP/PS1 x cofilin+/- mice, primary neurons	Aβ1-42 oligomers	Increased	Integrin conformers found to mediate Aβ oligomer-induced cofilin activation & translocation to mitochondria; cofilin+/- mitigates synaptic plasticity deficits in APP/PS1 mice	[33]
AD brains, LilrB2 ko mice and primary neurons	Aβ1-42 oligomers	Increased	LilrB2, an Aβ oligomer receptor that mediates cofilin activation and synaptic plasticity deficits	[110]
Primary neurons	Natural Aβ oligomers	Increased	Aβ-induced loss of dendritic spines mediated by calcineurin & cofilin; calcineurin activates SSH1	[111, 112]
AD brains, APP/PS1 mice, primary neurons	Aβ1-42 oligomers	Decreased	Increased cofilin phosphorylation in PSD fraction of AD and APP/PS1 mouse brains	[116]
Cholinergic neurons	Aβ1-42 oligomers	Decreased	Increased cofilin phosphorylation and actin stabilization selectively in cholinergic neurons via p75	[117]
APP/PS1 mice	N/A	Biphasic	Cofilin activation increased at 4 months and decreased at 10 months of APP/PS1 mice	[118]
Cell line	PAR-2	Increased	Cofilin activation requires β-arrestin-mediated scaffolding of CIN & cofilin	[121, 122]
Brain slices & neurons	Aβ1-42 oligomers	Increased	Activation of CIN by ATP depletion promotes cofilin-actin rod formation	[125]
Primary neurons	ATP depletion	Increased	Cofilin displaces tau from microtubules by increasing cofilin-microtubule complex in APP/PS1 mice; Cofilin+/- rescues imbalance of complexes	[132]
APP/PS1 x cofilin+/- mice	N/A	Increased	Cofilin+/- rescues tauopathy in TauP301 S mice; Activated cofilin (S3A) selectively promotes tauopathy & microtubule instability	[132]
TauP301 S x cofilin+/- mice	N/A	N/A	Cofilin+/- rescues tauopathy in TauP301 S mice; Activated cofilin (S3A) selectively promotes tauopathy & microtubule instability	[132]
Primary neurons	Aβ1-42 oligomers	Increased	Aβ oligomers promote cofilin activation and F-actin dynamics at the axon initial segment (AIS), thereby mediating tau missorting to somatodendritic compartments	[133]
and clearly serves as evidence for the deregulation of cofilin and actin in AD. The formation of cofilin-actin pathology (rods and aggregates) requires several key events. First, cofilin must be in the activated form (dephosphorylated), as SSH1 or CIN-mediated cofilin dephosphorylation and LIMK1-mediated cofilin phosphorylation promotes and inhibits cofilin-actin rod generation, respectively [83, 87]. Notably, phospholipase-mediated hydrolysis of phosphatidylinositol 4,5-biphosphate (PI(4,5)P₂), which locally releases active cofilin from the membrane, also dynamically contributes to cofilin activation [88, 89]. Second, activated cofilin levels must rise to saturate local regions of F-actin in the presence abnormally high levels of ADP-actin, which preferentially binds to cofilin [75, 83, 90].

Third, cofilin must undergo intermolecular disulfide linkages via oxidation of several key cysteine residues [91]. These cofilin-actin inclusions are generally reversible and can form under conditions of heat shock, osmotic stress, ATP depletion, excitotoxicity, ischemia, and oxidative stress, potentially interfering with axonal/neuritic transport and depleting activated cofilin needed for actin remodeling [70]. For example, ischemia-induced cofilin-actin pathology interferes with mitochondrial transport and leads to synaptic failure, which could be partially rescued by LIMK1 or its upstream activator Rho [92].
Activated cofilin also plays an important role in mitochondrial dysfunction via direct translocation to mitochondria. Upon oxidative stress, cofilin becomes oxidized on several cysteine residues, thereby promoting intramolecular disulfide bridging of cofilin [93]. This causes cofilin to lose affinity for actin and translocate to mitochondria, where it induces swelling, drop in mitochondrial membrane potential, and cytochrome c release by promoting the opening of the permeability transition pore [93–95]. Interestingly, this occurs independently of Bax. In addition to cofilin oxidation, dephosphorylation (or activation) of cofilin is required for its translocation to the mitochondria and oxidant-induced apoptosis. When oxidation of cofilin is prevented by cysteine mutagenesis, oxidant-induced apoptosis is also inhibited. Furthermore, knockdown of endogenous cofilin by siRNA also inhibits both oxidant and staurosporine-induced apoptosis, indicating that cofilin is critical for mitochondria-mediated apoptosis [93–95].

Woo and colleagues first demonstrated that Aβ1-42 oligomers promote the translocation of cofilin to mitochondria, which induces a drop in mitochondrial membrane potential, increase in mitochondrial superoxide, and cell death. These events are largely abolished by siRNA-mediated knockdown of cofilin [96] or SSH1 [33]. Liu and colleagues showed that activated cofilin forms a complex with the tumor suppressor protein p53, which promotes the translocation of p53 to both mitochondria and nucleus [97]. Cofilin interaction with the mitochondrial fission protein Drp1 has also been reported to regulate both mitochondrial morphology and apoptosis [98, 99]. In brains of AD patients, the level of mitochondrial cofilin is strongly increased compared to healthy age-matched controls [33], indicating a role for cofilin in mitochondrial dysfunction in AD.

LIMK1 and SSH1 pathways

Aβ has been shown to play important roles in cofilin deregulation and synaptic dysfunction via both LIMK1 and SSH1 pathways. LIMK1-mediated phosphorylation of cofilin generally involves upstream Rac-PAK signaling, which leads to cofilin inactivation. PAK1 and PAK3 levels and activity are depleted in AD brains [100], which leads to the activation of cofilin and loss of drebrin, a postsynaptic actin-stabilizing protein. Similar loss of drebrin is found in APP/PS1, Tg2576, and 3xTg transgenic models of AD [33, 100, 101]. Zhao and colleagues found that Aβ1-42 oligomers can directly induce PAK signaling deficits in primary neurons [100]. Despite a general loss of PAK levels and signaling in AD brains, pPAK is intensely increased surrounding Aβ deposits together with cofilin pathology [100]. Arsenault et al. confirmed the loss of PAK in AD brains and 3xTg mice and showed that expression of a dominant-negative form of PAK results in memory deficits in 3xTg mice [101]. In contrast, Heredia and colleagues showed that Aβ1-40 and Aβ25-35 fibrils induce the activation of LIMK and resultant cofilin inactivation (phosphorylation), associated with dystrophic neurites in primary neurons [102]. This finding may help to explain the intense pPAK staining surrounding the presumably fibrillar Aβ deposits in AD brains [100], although another recent study found that injection of Aβ1-40 fibrils into rat brains results in increased activation of cofilin rather than inactivation [103]. Indeed, Ariadna and colleague showed the activation LIMK1 by Aβ1-42 fibrils, but this was paradoxically associated with increased cofilin activation, suggesting that Aβ1-42 fibrils may act via bifurcating mechanisms of Rac-LIMK1 activation and perhaps also activation of the SSH1 pathway, the latter perhaps via Rac-mediated activation of NOX and oxidation of 14-3-3 releasing SSH1 [104, 105].

RanBP9 is a scaffolding protein known to promote Aβ production [106] and is highly elevated in brains of AD patients [107] and APP transgenic mice [82, 96]. RanBP9 was shown to promote cofilin activation via enhancing SSH1 in primary neurons and in brain [82]. RanBP9 transgenic mice also contain increased activated cofilin in synaptosomes [108], where cofilin-mediated synaptic remodeling is well known [109]. Conversely, genetic reduction of *RanBP9* mitigates both amyloid and cofilin-actin pathology in APP/PS1 transgenic mice [82], indicating a role for the RanBP9-SSH1 pathway in cofilin-actin pathology. Moreover, Kim and colleagues observed increased levels of cofilin activation in AD brains with no apparent changes in phospho-LIMK1 [110]. In the same study, the Aβ oligomer receptor LilrB2 was shown to mediate the activation of cofilin by Aβ1-42 oligomers [110], while Woo and colleagues found that β1-integrin conformers mediate Aβ1-42 oligomer-induced cofilin activation via the activation of SSH1 [33]. The neurotoxic effects of Aβ1-42 oligomers could be abolished by knockdown of SSH1, which also mitigates mitochondrial translocation of activated cofilin [33]. In the same study, genetic reduction of cofilin was
shown to mitigate the loss of drebrin and other F-actin-associated synaptic proteins as well as deficits in synaptic plasticity (i.e., LTP) and memory in APP/PS1 transgenic mice [33]. The role of SSH1 in Aβ-induced cofilin activation is supported by a previous study showing that Aβ-induced dendritic spine loss is mediated by calcineurin and cofilin [111]. This is likely via calcineurin-mediated dephosphorylation of SSH1, which activates cofilin [112], by allowing SSH1 to escape inhibition by 14-3-3 proteins [105, 113]. The role of reactive oxygen species (ROS) in both SSH1 and cofilin activation is highlighted by observations that oxidation of 14-4-3 releases both SSH1 [105] and cofilin [114] from 14-3-3-mediated inhibitory control. Indeed, NOX-mediated ROS production is required for Aβ-induced cofilin activation [33] and cofilin-actin rod formation [86, 115]. Furthermore, direct oxidation of cofilin is also required for both mitochondrial translocation of cofilin [93] and cofilin-actin rod assembly [91].

Despite the strong evidence for a role of cofilin activation and oxidation in AD pathogenesis, other studies have shown that cofilin inactivation may also play a role in AD pathogenesis. In the postsynaptic density (PSD) fraction of AD and APP/PS1 mouse brains, phospho-cofilin is increased, and short duration (30 min) Aβ1-42 oligomer treatment promotes cofilin phosphorylation together with F-actin stabilization in dendritic spines [116], which decreases synaptic plasticity. Another study showed that Aβ oligomers increase cofilin phosphorylation and actin polymerization selectively in basal forebrain cholinergic neurons but not in non-cholinergic neurons via a p75-dependent mechanism [117]. In APP/PS1 transgenic mouse brains, phospho-cofilin is reduced at 4 months of age (early pathology) and then increased at 10 months of age (mid-late pathology) [118], indicating a biphasic regulation of cofilin during Aβ pathogenic progression. Hence, different Aβ species and conformations appear to act on cofilin in differing ways, depending on the locality, age, and neuronal type. This may not be entirely surprising, given the differences in the localization, affinity, and downstream signaling cascades coupled to perhaps a dozen known Aβ receptors expressed in different neuronal populations [34–37]. In cultured hippocampal primary neurons, bioactive Aβ dimers/trimers induce cofilin-actin rod formation (which requires cofilin activation) in neurites of only ∼20–30% of neurons, while organotypic hippocampal slices treated with Aβ dimers/trimers preferentially increase cofilin-actin rods in the dentate gyrus and the mossy fiber track but not in CA regions [87]. Hence, the binding of Aβ species to different neuronal Aβ receptors may promote cofilin activation, while other receptors might respond in the opposite direction depending on Aβ concentration, type, and locality. Despite the changes in phospho-cofilin seen by Aβ and in AD models, it is important to emphasize that the phosphorylation state of cofilin is not the sole determinant of cofilin activation status, as the local hydrolysis of PI(4,5)P2 releases active cofilin from the membrane [88, 89]. This pool of cofilin is far more difficult to measure and has largely been ignored in prior studies. Nevertheless, the observation that genetic reduction of cofilin rescues neurotoxicity [96] as well as synaptic plasticity and memory deficits in APP/PS1 transgenic mice [33] strongly supports the notion that cofilin (whether via activation, inactivation, or other mechanisms) mediates neurotoxic signaling induced by Aβ.

β-ARRESTIN, CHRONOPHIN, AND PLD1

While β-arrestins are traditionally known for their roles in G-protein coupled receptor (GPCR) fine-tuning and desensitization, it is now widely accepted that β-arrestins act as multifunctional adaptor proteins that regulate multiple signaling pathways [119, 120]. For example, Protease-activated receptor-2 (PAR-2)-mediated activation of cofilin requires β-arrestin to scaffold together cofilin and chronophin (CIN), a cofilin activating phosphatase [121, 122]. This action appears to be localized to the leading edge of cells [121]. Intriguingly, both β-arrestin1 and β-arrestin2 are significantly elevated in brains of AD patients, both of which promote γ-secretase activity to enhance Aβ production in brain [123, 124]. β-arrestin2 also plays an important role in dendritic spines and synapses via translocating activated cofilin to dendritic spines [77]. Hence, β-arrestin2-deficient neurons are resistant to Aβ-induced dendritic spine loss [77]. The CIN/Hsp90 complex functions as an ATP sensor, and upon ATP depletion, CIN dissociates from Hsp90 [125]. This leads to CIN activation and dephosphorylation of cofilin, thereby promoting cofilin-actin rod formation under conditions of ATP depletion [125].

Phospholipase D1 (PLD1), an enzyme of the phospholipase superfamily, catalyzes the hydrolysis of phosphatidylcholine (PC) into phosphatidic acid (PA) and choline in response to various stimuli [126]. PI(4,5)P2, which can be produced by PA-mediated
activation of phosphatidylinositol-4-phosphate 5-kinase (PIP5K), functions to both activate PLD1 and inactivate cofilin [127], while phospho-cofilin activates PLD1 upon extracellular stimulation by cabachol [128]. Conversely, PLD1 reciprocally promotes cofilin phosphorylation / inactivation and inhibits cofilin-mediated mitochondrial toxicity [97]. Hence, PLD1 and cofilin reciprocally regulate each other, adding another layer of cofilin regulation. Interestingly, a previous study reported that PLD1 antagonizes Aβ production by regulating the γ-secretase complex [129], raising the specter that cofilin activation status may also impact Aβ production.

COFILIN IN TAUOPATHY

Early studies examining rod-like cofilin aggregates in primary neurons demonstrated 12E8 antibody immunoreactivity in a subset of cofilin-positive rods resembling neuropil threads. The 12E8 antibody recognizes the pSer262/pSer356 of tau and other phosphorylated MAPs, suggesting that cofilin might coprecipitate together with tau and/or other MAPs in cofilin-actin rods [130]. FTDP-17 mutant tau over-expression in transgenic mice and Drosophila has been shown to promote F-actin bundling. These transgenic animal brains contain hyperphosphorylated tau in F-actin-containing rod-like structures, although the presence of tau in cofilin-containing rods was not examined [131]. In AD brains, however, phospho-tau containing neuropil threads and cofilin-actin aggregates do not appear to colocalize, despite the abundance of both structures in the same brains [85], raising a quandary as to the relationship between cofilin and tau in AD.

Both tau and cofilin are required for Aβ-induced mitochondrial and synaptic dysfunction in primary neurons, and either cofilin or tau reduction also rescues defects in synaptic plasticity and memory in APP transgenic mice [18, 25–27, 33]. So how might cofilin and tau signaling down-stream of Aβ be reconciled? Woo and colleagues recently showed that tau-microtubule complexes are decreased, and cofilin-microtubule complexes are increased in APP/PS1 transgenic mice, both of which are prevented by genetic reduction of cofilin [132]. Experiments in vitro, cells, and in vivo suggest a role for cofilin in displacing tau from tubulin/microtubules, which inhibits tau-induced microtubule assembly and axonal transport [132]. Remarkably, genetic reduction of cofilin strongly mitigates tauopathy (tau hyperphosphorylation & insolubility) and synaptic plasticity deficits in Tau-P301S (PS19) mice, in which the ‘activated’ but not ‘inactive’ form of cofilin was found to mediate tauopathy, microtubule instability, and synaptic deregulation in the Tau-P301S model [132]. Hence, these findings show that activated cofilin can displace tau from microtubules, resulting not only in inhibition of tau-mediated microtubule dynamics but also tau hyperphosphorylation and tauopathy. Intriguingly, Zempel and colleagues showed that the axonal initial segment (AIS) of neurons contains a tau diffusion barrier composed of actin filaments that normally keeps tau in axons by preventing its retrograde traffic back to the soma [133]. Aβ oligomer-induced activation of cofilin at the AIS was found to dissolve the tau diffusion barrier, which allows missorting of tau to somatodendritic compartments [133]. Hence, it is plausible that Aβ-induced activation of cofilin, resulting in simultaneous displacement of tau from microtubules and severing of actin filaments (i.e., removing tau diffusion barrier), may underlie the mislocalization of tau from the somato-axonal to somatodendritic compartments, an early feature of tauopathy [28, 29]. It also raises the intriguing possibility that the local actions (i.e., dendritic spines, presynaptic boutons, cell body, and/or AIS) of Aβ oligomers or other neurotoxic insults produce defined and diverse consequences that could mark different components of Aβ-cofilin-tau-mediated signaling in AD pathogenesis.

CONCLUDING REMARKS

The findings generated from multiple studies implicate the critical role of cofilin in AD pathogenesis. These may come in the form of cofilin-actin pathology, deregulated F-actin dynamics, mitochondrial translocation of cofilin to coordinate cell death pathways, and displacement of tau from microtubules, the latter which couples actin dynamics with tau-regulated microtubule dynamics. The regulation of cofilin by multiple pathways interconnect different facets of AD pathogenesis, including Aβ, tau, and the cytoskeleton, suggesting that the machinery of cofilin activation and inactivation cycle represents a key node regulating cytoskeletal pathogenesis in AD. Hence, modulating cofilin activity could be a therapeutic strategy to slow multiple AD pathologies and mitigate synaptic dysfunction. This may be achieved
by regulating upstream effectors, such as LIMK1, SSH1, chronophin, and/or β-arrestin as an alternative to directly targeting Aβ or tau.

ACKNOWLEDGMENTS

This work was supported in part by grants from the VA (1 I01 BX002478-01A1, D.E.K.), NIH (R01 AG053060-01A1, D.E.K.) and Florida department of Health (8AZ29, D.E.K.).

Authors’ disclosures available online (https://www.j-alz.com/manuscript-disclosures/19-0585r1).

REFERENCES

[1] Small GW, Rabins PV, Barry PP, Buckholtz NS, DeKosky ST, Ferris SH, Finkel SI, Gwyther LP, Khachaturian ZS, Lebowitz BD, McRae TD, Morris JC, Oakley F, Schneider LS, Streim JE, Sunderland T, Teri LA, Tune LE (1997) Diagnosis and treatment of Alzheimer disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA 278, 1363-1371.

[2] Kemle K, Ackermann RJ (2018) Issues in geriatric care: Alzheimer disease. FP Essent 468, 26-34.

[3] Holtzman DM, Mandelkow E, Selkoe DJ (2012) Alzheimer disease in 2020. Cold Spring Harb Perspect Med 2, a011585.

[4] Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16, 460-465.

[5] Crowther RA, Wischik CM (1985) Image reconstruction of the Alzheimer paired helical filament. EMBO J 4, 3661-3665.

[6] Kosaka K, Yoshimura M, Ikeda K, Budka H (1984) Diffuse type of Lewy body disease: Progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree—a new disease? Clin Neuropathol 3, 185-192.

[7] Josephs KA, Whitwell JL, Tosakulwong N, Weigand SD, Murray ME, Liesziger AM, Petrucelli L, Senjem ML, Ivnik RJ, Parisi JE, Petersen RC, Dickson DW (2015) TAR DNA-binding protein 43 and pathological subtype of Alzheimer’s disease impact clinical features. Ann Neurol 78, 697-709.

[8] Galloway PG, Perry G, Gambetti P (1987) Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol 46, 185-199.

[9] Maciver SK, Harrington CR (1995) Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport 6, 1985-1988.

[10] Bamburg JR, Bloom GS (2009) Cytoskeletal pathologies of Alzheimer disease. Cell Motil Cytoskeleton 66, 635-649.

[11] Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12, 383-388.

[12] Goate AM (1998) Monogenetic determinants of Alzheimer’s disease: APP mutations. Cell Mol Life Sci 54, 897-901.
is required for amyloid beta-induced impairment of hippocampal long-term potentiation. *J Neurosci* **31**, 1688-1692.

[28] Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. *Nat Rev Neurosci* **8**, 663-672.

[29] Biernat J, Mandelkow EM (1999) The development of cell processes induced by tau protein requires phosphorylation of serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains. *Mol Biol Cell* **10**, 727-740.

[30] Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. *Neuron* **68**, 1067-1081.

[31] Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuszkowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. *Science* **309**, 476-481.

[32] King ME, Kan HM, Baas PW, Erisir A, Glabe CG, Bloom GS (2006) Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid. *J Cell Biol* **175**, 541-546.

[33] Woo JA, Zhao X, Khan H, Penn C, Wang X, Joly-Amado A, Weeber E, Morgan D, Kang DE (2015) Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Abeta ligation to beta1-integrin conformers. *Cell Death Differ* **22**, 1069-1070.

[34] Rowan MJ, Klyubin I, Wang Q, Hu NW, Anwyl R (2007) Synaptic memory mechanisms: Alzheimer’s disease amyloid beta-peptide-induced dysfunction. *Biochem Soc Trans* **35**, 1219-1223.

[35] Smith LM, Strittmatter SM (2017) Binding sites for amyloid-beta oligomers and synaptic toxicity. *Cold Spring Harb Perspect Med* **7**, a024075.

[36] Patel AN, Jhamandas JH (2012) Neuronal receptors as targets for the action of amyloid-beta protein (Abeta) in the brain. *Expert Rev Mol Med* **14**, e2.

[37] Kang DE, Roh SE, Woo JA, Liu T, Bu JH, Jung AR, Lim Y (2011) The interface between cytoskeletal aberrations and mitochondrial dysfunction in Alzheimer’s disease and related disorders. *Exp Neurobiol* **20**, 67-80.

[38] Yuan A, Rao MV, Veeranna, Nixon RA (2017) Neurofilaments and neurofilament proteins in health and disease. *Cold Spring Harb Perspect Biol* **9**, a018309.

[39] Ridley AJ (2011) Life at the leading edge. *Cell* **145**, 1012-1022.

[40] Omotade OF, Pollitt SL, Zheng JQ (2017) Actin-based growth cone motility and guidance. *Mol Cell Neurosci* **84**, 4-10.

[41] Urbanska M, Swiech L, Jaworski J (2012) Developmental plasticity of the dendritic compartment: Focus on the cytoskeleton. *Adv Exp Med Biol* **970**, 265-284.

[42] Doussau F, Augustine GJ (2000) The actin cytoskeleton and neurotransmitter release: An overview. *Biochimie* **82**, 353-363.

[43] Fu AK, Ip NY (2017) Regulation of postsynaptic signaling in structural synaptic plasticity. *Curr Opin Neurobiol* **45**, 148-155.

[44] Schelski M, Bradke F (2017) Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. *Mol Cell Neurosci* **84**, 11-28.

[45] Lawson CD, Ridley AJ (2018) Rho GTPase signaling complexes in cell migration and invasion. *J Cell Biol* **217**, 447-457.

[46] Bamberg JR, Wiggan OP (2002) ADP/cofilin and actin dynamics in disease. *Trends Cell Biol* **12**, 598-605.

[47] Coles CH, Bradke F (2015) Coordinating neuronal actin-microtubule dynamics. *Curr Biol* **25**, R677-691.

[48] Goodson HV, Jonasson EM (2018) Microtubules and microtubule-associated proteins. *Cold Spring Harb Perspect Biol* **10**, a026088.

[49] Kellihier MT, Saunders HA, Wildonger J (2019) Microtubule control of functional architecture in neurons. *Curr Opin Neurobiol* **57**, 39-45.

[50] Gu J, Firestein BL, Zheng JQ (2008) Microtubules in dendritic spine development. *J Neurosci* **28**, 12120-12124.

[51] Miller KE, Suter DM (2018) An integrated cytoskeletal model of neurite outgrowth. *Front Cell Neurosci* **12**, 447.

[52] Brouhard GJ, Rice LM (2018) Microtubule dynamics: An interplay of biochemistry and mechanics. *Nat Rev Mol Cell Biol* **19**, 451-463.

[53] Wang Y, Mandelkow E (2016) Tau in physiology and pathology. *Nat Rev Neurosci* **17**, 5-21.

[54] Lu W, Gelfand VI (2017) Moonlighting motors: Kinesin, dynein, and cell polarity. *Trends Cell Biol* **27**, 505-514.

[55] Tammineni P, Cai Q (2017) Defective retrograde transport impairs autophagic clearance in Alzheimer disease neurons. *Autophagy* **13**, 982-984.

[56] Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA (2013) Axonal degeneration in Alzheimer’s disease: When signaling abnormalities meet the axonal transport system. *Exp Neurol* **246**, 44-53.

[57] De Vos KJ, Grieron AJ, Ackerley S, Miller CC (2008) Role of axonal transport in neurodegenerative diseases. *Annu Rev Neurosci* **31**, 151-173.

[58] Saha P, Sen N (2019) Tauopathy: A common mechanism for neurodegeneration and brain aging. *Mech Ageing Dev* **178**, 72-79.

[59] Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. *J Biol Chem* **267**, 17047-17054.

[60] Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y (1995) Proline-directed and non-proline-directed phosphorylation of PHF-tau. *J Biol Chem* **270**, 823-829.

[61] Henriques AG, Oliveira JM, Carvalho LP, da Cruz ESO (2015) Abeta influences cytoskeletal signaling cascades with consequences to Alzheimer’s disease. *Mol Neurobiol* **52**, 1391-1407.

[62] Wang JZ, Xie YY, Grundke-Iqbal I, Iqbal K (2013) Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. *J Alzheimers Dis* **33 Suppl 1**, S123-139.

[63] Thies E, Mandelkow EM (2007) Mis-sorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. *J Neurosci* **27**, 2896-2907.

[64] Ando K, Maruko-Okate A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM (2016) Stabilization of microtubule-unbound tau via tau phosphorylation at Ser262/356 by Par-1/MARK contributes to aggregation of AD-related phosphorylated and Abeta42-induced tau toxicity. *PLoS Genet* **12**, e1005917.

[65] Wang JZ, Zhang Y (2015) Configuration-specific immunotherapy targeting cis pThr231-Pro232 tau for Alzheimer disease. *J Neuro Sci* **348**, 253-255.
[66] Senju Y, Lappalainen P (2019) Regulation of actin dynamics by Pl(4,5)P2 in cell migration and endocytosis. *Curr Opin Cell Biol* **56**, 7-13.

[67] Porta-Shlomi N, Milberg O, Masedunska A, Weigert R (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis. *Cell Mol Life Sci* **70**, 2099-2121.

[68] Inagaki N, Katsuno H (2017) Actin waves: Origin of cell polarization and migration? *Trends Cell Biol* **27**, 515-526.

[69] Komietzny A, Bar J, Mikhaylova M (2017) Dendritic actin cytoskeleton: Structure, functions, and regulations. *Front Neurosci* **11**, 147.

[70] Bamberg JR, Bernstein BW (2016) Actin dynamics and cofilin-actin rods in Alzheimer disease. *Cytoskeleton (Hoboken)* **73**, 477-497.

[71] Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Carolin P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. *Nature* **393**, 805-809.

[72] Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. *Cell* **108**, 233-246.

[73] Yonezawa N, Nishida E, Iida K, Yahara I, Sakai H (1990) Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphorynositides. *J Biol Chem* **265**, 8382-8386.

[74] Gorbatyuk YV, Nosworthy NJ, Robson SA, Bains NP, Maciejewski MW, Dos Remedios CG, King GF (2006) Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction. *Mol Cell* **24**, 511-522.

[75] Andriamiantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. *Mol Cell* **24**, 13-23.

[76] Bernstein BW, Bamberg JR (2010) ADF/cofilin: A functional node in cell biology. *Trends Cell Biol* **20**, 187-195.

[77] Pontrello CG, Sun MY, Fiacco TA, DeFea KA, Ethell IM (2012) Cofilin under control of beta-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. *Proc Natl Acad Sci USA* **109**, E442-451.

[78] Lin MC, Galletta BJ, Sept D, Cooper JA (2010) Overlapping and distinct functions for cofilin, coronin and Aip1 in actin dynamics *in vivo*. *J Cell Sci* **123**, 1329-1342.

[79] Kueh HY, Charras GT, Mitchison TJ, Briehier WM (2008) Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. *J Cell Biol* **182**, 341-353.

[80] Mikati MA, Breitsprecher D, Jansen S, Reisler E, Goode BL (2015) Coronin enhances actin filament severing by recruiting cofilin to filament sides and altering F-Actin conformation. *J Mol Biol* **427**, 3137-3147.

[81] Nadkarni AV, Briehier WM (2014) Aip1 destabilizes cofilin-saturated actin filaments by severing and accelerating monomer dissociation from ends. *Curr Biol* **24**, 2749-2757.

[82] Woo JA, Boggess T, Uhlar C, Wang X, Khan H, Cappos G, Joly-Amado A, De Narvaez E, Majid S, Minamide LS, Bamberg JR, Morgan D, Weeber E, Kang DE (2015) RanBP9 at the intersection between cofilin and Abeta pathologies: Rescue of neurodegenerative changes by RanBP9 reduction. *Cell Death Dis* **6**, 1676.

[83] Minamide LS, Striegel AM, Boyle JA, Meberg PJ, Bamberg JR (2000) Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. *Nat Cell Biol* **2**, 628-636.

[84] Bamberg JR, Bernstein BW, Davis RC, Flynn KC, Golds- bury C, Jensen JR, Maloney MT, Marsden IT, Minamide LS, Pak CW, Shaw AE, Whitman I, Wiggan O (2010) ADF/cofilin-actin rods in neurodegenerative diseases. *Curr Alzheimer Res* **7**, 241-250.

[85] Rahman T, Davies DS, Tannenberg RK, Fok S, Shepherd C, Dodd PR, Cullen KM, Goldsbury C (2014) Cofilin rods and aggregates concur with tau pathology and the development of Alzheimer’s disease. *J Alzheimers Dis* **42**, 1443-1460.

[86] Walsh KP, Kuhn TB, Bamberg JR (2014) Cellular prion protein: A co-receptor mediating neuronal cofilin-actin rod formation induced by beta-amyloid and proinflammatory cytokines. *Prion* **8**, 375-380.

[87] Davis RC, Marsden IT, Maloney MT, Minamide LS, Podlisny M, Selkoe DJ, Bamberg JR (2011) Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation. *Mol Neurodegener* **6**, 10.

[88] van Rheenen J, Song X, van Roosmalen W, Cammer M, Chen X, Desmarais V, Yip SC, Backer JM, Eddy RJ, Condeelis JS (2007) EGF-induced PI(4,5)P2 hydrolisis releases and activates cofilin locally in carcinoma cells. *J Cell Biol* **179**, 1247-1259.

[89] Leyman S, Sidmani M, Ritsma L, Waterschoot D, Eddy R, Dewitte D, Debeir O, Decaeaster C, Vandenckerkhove J, van Rheenen J, Ampe C, Condeelis J, Van Troys M (2009) Unbalancing the phosphatidylinositol-4,5-bisphosphate-cofilin interaction impairs cell steering. *Mol Cell Biol* **20**, 4509-4523.

[90] Chen H, Bernstein BW, Sneider JM, Boyle JA, Minamide LS, Bamberg JR (2004) *In vitro* activity differences between proteins of the ADF/cofilin family define two distinct subgroups. *Biochemistry* **43**, 7127-7142.

[91] Bernstein BW, Shaw AE, Minamide LS, Pak CW, Bamberg JR (2012) Incorporation of cofilin into rods depends on disulide intermolecular bonds: Implications for actin regulation and neurodegenerative disease. *J Neurosci* **32**, 6670-6681.

[92] Shu L, Chen B, Chen B, Xu H, Wang G, Huang Y, Zhao Y, Gong H, Jiang M, Chen L, Liu X, Wang Y (2018) Brain ischemic insult induces cofilin rod formation leading to synaptic dysfunction in neurons. *J Cereb Blood Flow Metab*, doi: 10.1177/0271277817X871559

[93] Klamt F, Zdanov S, Levine RL, Pariser A, Zhang Y, Zhang B, Yu LR, Veenstra TD, Shacter E (2009) Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. *Nat Cell Biol* **11**, 1241-1246.

[94] Wang C, Zhou GL, Vedantam S, Li P, Field J (2008) Mitochondrial uncoupling of ATP1 promotes actin- and cofilin-dependent apoptosis. *J Cell Sci* **121**, 2913-2920.

[95] Chua BT, Volbracht C, Tan KO, Li R, Yu VC, Li P (2003) Mitochondrial translocation of cofilin is an early step in apoptosis induction. *Nat Cell Biol* **5**, 1083-1089.

[96] Woo JA, Jung AR, Lakshmana MK, Bedrossian A, Lim Y, Bu JH, Park SA, Koo EH, Mook-Jung I, Kang DE (2012) Pivotal role of the RanBP9-cofilin pathway in Abeta-induced apoptosis and neurodegeneration. *Cell Death Differ* **19**, 1413-1423.

[97] Liu T, Wang F, LePochat P, Woo JA, Buhkari MZ, Hong KW, Trotter C, Kang DE (2017) Cofilin-mediated neuronal apoptosis via p53 translocation and PDL1 regulation. *Sci Rep* **7**, 11532.
[98] Li G, Zhou J, Budhrajaa A, Hu X, Chen Y, Cheng Q, Liu L, Zhou T, Li P, Liu E, Gao N (2015) Mitochondrial translocation and interaction of cofillin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis. Oncotarget 6, 1834-1849.

[99] Rehklau K, Hoffmann L, Gurniak CB, Ott M, Witke W, Scorrano L, Culmsee C, Rust MB (2017) Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death Dis 8, e3063.

[100] Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, Mori hara T, Ubeda OJ, Ambegaokar S, Hansen JF, Weisbart RH, Teter B, Frautschy SA, Cole GM (2006) Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci 9, 234-242.

[101] Arsenault D, Dal-Pan A, Tremblay C, Bennett DA, Guitton MJ, De Koninck Y, Tonegawa S, Calon F (2014) RanBP9 overexpression reduces dendritic arborization and synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 34, 633-6542.

[102] Bie B, Wu J, Foss JF, Naguib M (2018) Amyloid fibrils induce dysfunction of hippocampal glutamatergic silent synapses. Hippocampus 28, 549-556.

[103] Mendoza-Naranjo A, Contreras-Vellos E, Henriquez DR, Oth C, Bamburg JR, Maccioni RB, Gonzalez-Billault C (2012) Fibrillar amyloid-beta1-42 modifies actin organization affecting the cofilin phosphorylation state: A role for Rac1/cdc42 effector proteins and the slingshot phosphatase. J Alzheimers Dis 29, 63-77.

[104] Han L, Stope MB, de Jesus ML, Oude Weernink PA, De Koninck Y, Tonegawa S, Calon F (2013) PAK inactivation impairs social recognition in 3xTg-AD Mice without increasing brain deposition of tau and Abeta. J Neurosci 33, 10729-10740.

[105] Heredia L, Helguera P, de Olmos G, Sola Vigo F, LaFerla F, Staufenbiel M, de Olmos J, Busciglio J, Caceres A, Lorenzo A (2006) Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: A potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci 26, 6533-6542.

[106] Liu X, Zhao X, Zeng X, Bossers K, Swaab DF, Zhao Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofillin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem 280, 12683-12689.

[107] Eiserer T, Doppler H, Yan IK, Kitatani K, Mizuno K, Storz P (2009) Protein kinase D1 regulates cofillin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol 11, 545-556.

[108] Gohla A, Bokoch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofillin. Curr Biol 12, 1704-1710.

[109] Walsh KP, Minamida LS, Kane SJ, Shaw AE, Brown DR, Pulford B, Zabel MD, Lambeth JD, Kuhn TB, Bamburg JR (2014) Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofillin-actin rods in hippocampal neurons. PLoS One 9, e95995.

[110] Rush T, Martinez-Hernandez J, Dollmeyer M, Frandemiche ML, Borel E, Boisseau S, Jacquier-Sarlín M, Buisson A (2018) Synaptotoxicity in Alzheimer’s disease involved a dysregulation of actin cytoskeleton dynamics through cofilin 1 phosphorylation. J Neurosci 38, 10349-10361.

[111] Wang Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofillin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem 280, 12683-12689.

[112] Gohla A, Bokoch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofillin. Curr Biol 12, 1704-1710.

[113] Walsh KP, Minamida LS, Kane SJ, Shaw AE, Brown DR, Pulford B, Zabel MD, Lambeth JD, Kuhn TB, Bamburg JR (2014) Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofillin-actin rods in hippocampal neurons. PLoS One 9, e95995.

[114] Bie B, Wu J, Foss JF, Naguib M (2018) Amyloid fibrils induce dysfunction of hippocampal glutamatergic silent synapses. Hippocampus 28, 549-556.

[115] Mendoza-Naranjo A, Contreras-Vellos E, Henriquez DR, Oth C, Bamburg JR, Maccioni RB, Gonzalez-Billault C (2012) Fibrillar amyloid-beta1-42 modifies actin organization affecting the cofilin phosphorylation state: A role for Rac1/cdc42 effector proteins and the slingshot phosphatase. J Alzheimers Dis 29, 63-77.

[116] Han L, Stope MB, de Jesus ML, Oude Weernink PA, De Koninck Y, Tonegawa S, Calon F (2013) PAK inactivation impairs social recognition in 3xTg-AD Mice without increasing brain deposition of tau and Abeta. J Neurosci 33, 10729-10740.

[117] Heredia L, Helguera P, de Olmos G, Sola Vigo F, LaFerla F, Staufenbiel M, de Olmos J, Busciglio J, Caceres A, Lorenzo A (2006) Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: A potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci 26, 6533-6542.

[118] Bie B, Wu J, Foss JF, Naguib M (2018) Amyloid fibrils induce dysfunction of hippocampal glutamatergic silent synapses. Hippocampus 28, 549-556.

[119] Mendoza-Naranjo A, Contreras-Vellos E, Henriquez DR, Oth C, Bamburg JR, Maccioni RB, Gonzalez-Billault C (2012) Fibrillar amyloid-beta1-42 modifies actin organization affecting the cofilin phosphorylation state: A role for Rac1/cdc42 effector proteins and the slingshot phosphatase. J Alzheimers Dis 29, 63-77.

[120] Kim JS, Huang TY, Bokoch GM (2009) Reactive oxygen species regulate a slingshot-cofilin activation pathway. Mol Biol Cell 20, 2650-2660.

[121] Lakshmana MK, Yoon IS, Chen E, Bianchi E, Koo EH, Kang DE (2009) Novel role of RanBP9 in BACE1 processing of amyloid precursor protein and amyloid beta peptide generation. J Biol Chem 284, 11863-11872.

[122] Lakshmana MK, Chung JY, Wickramarachchi S, Tak E, Bianchi E, Koo EH, Kang DE (2010) A fragment of the scaffolding protein RanBP9 is increased in Alzheimer’s disease brains and strongly potentiates amyloid-beta peptide generation. FASEB J 24, 119-127.

[123] Wang H, Lewisadder M, Dorn E, Xu S, Lakshmana MK (2014) RanBP9 overexpression reduces dendritic arbor and spine density. Neuroscience 265, 253-262.

[124] Rust MB (2015) AD/cofilin: A crucial regulator of synapse physiology and behavior. Cell Mol Life Sci 72, 3521-3529.

[125] Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, Hyman BT, Shatz CJ (2013) Human LitBin2 is a beta-amyloid receptor and its murine homolog PrIr2 regulates synaptic plasticity in an Alzheimer’s model. Science 341, 1399-1404.

[126] Shankar GM, Bloodood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27, 2866-2875.
controlled phospholipase D1 by phospho-cofilin. EMBO J 26, 4189-4202.

[129] Cai D, Netzer WJ, Zhong M, Lin Y, Du G, Frohman M, Foster DA, Sisodia SS, Xu H, Gorelick FS, Greengard P (2006) Presenilin-1 uses phospholipase D1 as a negative regulator of beta-amyloid formation. Proc Natl Acad Sci USA 103, 1941-1946.

[130] Whiteman IT, Gervasio OL, Cullen KM, Guillemin GI, Jeong EV, Witting PK, Antao ST, Minamide LS, Bamburg JR, Goldsberry C (2009) Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations. J Neurosci 29, 12994-13005.

[131] Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9, 139-148.

[132] Woo JA, Liu T, Fang CC, Cazzaro S, Kee T, LePochat P, Yrigoin K, Penn C, Zhao X, Wang X, Liggett SB, Kang DE (2019) Activated cofilin exacerbates tau pathology by impairing tau-mediated microtubule dynamics. Commun Biol 2, 112.

[133] Zempel H, Dennissen FJA, Kumar Y, Luedtke J, Biernat J, Mandelkow EM, Mandelkow E (2017) Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem 292, 12192-12207.