Mitochondrial apoptosis and BH3 mimetics [version 1; peer review: 3 approved]

Haiming Dai1-3*, X. Wei Meng1,2*, Scott H. Kaufmann1,2*

1Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
2Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
3Center for Medical Physics and Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China

* Equal contributors

Abstract

The BCL2-selective BH3 mimetic venetoclax was recently approved for the treatment of relapsed, chromosome 17p-deleted chronic lymphocytic leukemia (CLL) and is undergoing extensive testing, alone and in combination, in lymphomas, acute leukemias, and solid tumors. Here we summarize recent advances in understanding of the biology of BCL2 family members that shed light on the action of BH3 mimetics, review preclinical and clinical studies leading to the regulatory approval of venetoclax, and discuss future investigation of this new class of antineoplastic agent.

Keywords

BCL-2 inhibitors, venetoclax, BAX activation, BAK activation, BH3 mimetics

Open Peer Review

Approval Status

1 2 3

version 1

01 Dec 2016

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Sharad Kumar, University of South Australia, Adelaide, Australia
2. Alan Richardson, Keele University, Keele, UK
3. Kapil Bhalla, M.D. Anderson Cancer Center, Houston, USA

Any comments on the article can be found at the end of the article.
Introduction

The recent regulatory approval of venetoclax for the treatment of chronic lymphocytic leukemia (CLL) culminates 30 years of investigation in many labs worldwide. Milestones in this effort have included the cloning of BCL2 at the t(14;18) translocation in follicular lymphomas\(^2\), demonstration that BCL2 inhibits cell death\(^3\), realization that BCL2 is elevated in CLL\(^4,5\), recognition that BCL2 and its anti-apoptotic paralogs bind BH3-only proteins through their BH3-binding grooves\(^6\), identification of ABT-737 and navitoclax as BH3-binding groove-directed inhibitors of BCL2 and BCLX\(_\alpha\,\beta\)\(^7,8\), demonstration that navitoclax is active against CLL\(^9\), and derivation of venetoclax as a BCL2-selective BH3 mimetic\(^10\). While the approval of venetoclax for CLL is a triumph in its own right, the challenge remains to optimize the use of this agent and other BH3 mimetics for improved therapy of diverse malignancies. To provide context for these ongoing efforts, we review recent progress in understanding the action of BCL2 family proteins, summarize the clinical status of venetoclax and other BH3 mimetics, and discuss possible approaches to predicting whether various cancers will respond to these agents.

Mitochondrial apoptosis and BAX/BAK activation

BH3 mimetics are designed to inhibit anti-apoptotic BCL2 family proteins, leading to BAX and BAK activation\(^1,2,11\). Accordingly, recent advances in understanding the functions of various BCL2 family members provide important insight into the therapeutic effects of BH3 mimetics.

Mitochondrial apoptosis

BCL2 family members regulate apoptosis, a distinct form of cell death that plays critical roles in development, immune response, and tissue homeostasis\(^12-17\). This type of cell death can be triggered through two different pathways depending on the stimulus. The death receptor pathway is initiated through binding of death ligands to certain cell surface receptors. In contrast, the mitochondrial or intrinsic apoptotic pathway involves the release of mitochondrial intermembrane proteins, including cytochrome c and Smac/Diablo, to the cytosol, where they contribute to subsequent apoptotic changes\(^18-20\). The translocation of these intermembrane proteins is modulated by the BCL2 family of proteins.

Based on differences in structure and function, BCL2 family members are divided into three subgroups\(^20-22\): BAX and BAK, which contain three distinct BCL2 homology (BH) domains and, upon activation, permeabilize the mitochondrial outer membrane (MOM) by forming proteinaceous pores\(^23-26\) or in other ways\(^27-30\); the anti-apoptotic family members BCL2, BCLX\(_\alpha\,\beta\), MCL1, BCLW, and BCL2A1 (also called BFL1 in humans and A1 in mice), which typically contain four BH domains and oppose MOM permeabilization; and the BH3-only proteins BIM, BID, PUMA, NOXA, BAD, BIK, BMF, and HRK, which share homology with other BCL2 family members only in their 15-amino-acid \(\alpha\)-helical BH3 domain and induce apoptosis by facilitating BAX and/or BAK activation\(^31\).

BAX/BAK activation models

Three different models have been proposed to explain BAX and BAK activation. The direct activation model proposes that certain BH3-only proteins directly interact with BAX and/or BAK to cause a conformational change that leads to BAX/BAK oligomerization and activation\(^32,33\). In this model, the major role of anti-apoptotic BCL2 family members is to inhibit the BH3-only proteins. The indirect activation model proposes that BAX and BAK are tonically activated but are restrained by anti-apoptotic BCL2 family members\(^34\). In this model, BH3-only proteins induced by various death signals primarily inhibit the anti-apoptotic BCL2 family members, leading to the release of activated BAX and BAK. Finally, the unified model proposes that anti-apoptotic BCL2 family proteins inhibit both BH3-only proteins and activated BAX or BAK\(^35\). In both instances, the exposed BH3 domains of the pro-apoptotic proteins are neutralized by interaction with BH3-binding grooves, extended clefts on the surfaces of anti-apoptotic BCL2 family members\(^36,37\). The BH3 mimetics described below have been identified and developed based on their ability to occupy the same BH3-binding grooves.

Two mechanisms of BH3 mimetic-induced killing

Neutralization of BH3-binding grooves on anti-apoptotic BCL2 family members is not, by itself, sufficient to kill cells. Instead, binding of BH3 mimetics to anti-apoptotic BCL2 family members must result in BAX and/or BAK activation to elicit cell death. This BAX/BAK activation can occur by one of two processes (Figure 1).

First, a subset of BH3-only proteins, termed direct activators, can directly activate BAX and BAK. This group of proteins includes BIM, tBID (a cleaved form of BID), and PUMA\(^38,39\). The role of NOXA as a direct activator has been controversial, with some studies showing activation of BAX or BAK by NOXA protein\(^40,41\) and other studies reporting that NOXA BH3 peptide cannot directly activate BAX or BAK\(^42,43\). Chen et al. recently reported that interruption of the gene encoding NOXA in cells already lacking BID, BIM, and PUMA causes increased resistance to multiple apoptotic stimuli, suggesting an important role for NOXA in BAX/BAK activation\(^44\). To the extent that BH3-only proteins are constitutively activated but sequestered by anti-apoptotic BCL2 family members\(^45,46\), displacement of BH3-only proteins by BH3 mimetics can provide a driving force for BAX and BAK activation (Figure 1, Model 1).

Recent results, however, suggest that an alternative mechanism might also contribute to BH3 mimetic-induced killing. In particular, Chen and coworkers reported that BID/BIM/PUMA/NOXA-deficient cells can still undergo apoptosis after certain treatments such as etoposide or ultraviolet light, suggesting the existence of additional BAX/BAK activation pathways\(^47\). We simultaneously reported that BAK can undergo lipid-dependent autoactivation under cell-free conditions\(^48\). Within intact cells, the extent of constitutive BAK oligomerization (indicative of partial activation) correlated with BAK protein levels across a panel of lymphohematopoietic cell lines. Moreover, BAK knockdown diminished the extent of BAK oligomerization, suggesting concentration-dependent autoactivation \textit{in situ}\(^49\).

If BAK undergoes concentration-dependent autoactivation, how can cells with high BAK levels survive? Our further studies
demonstrated that constitutively activated BAK is bound to BCLXL, MCL1, or less commonly BCL2. Based on these observations, BH3 mimetics might be killing cells by displacing partially activated BAK from anti-apoptotic BCL2 family members (Figure 1, Model 2). Consistent with this possibility, cells with constitutive BAK⋅MCL1 complexes were particularly sensitive to the MCL1 antagonist A-1210477, whereas those with constitutive BAK⋅BCLXL complexes were more sensitive to the BCL2/BCLXL inhibitor navitoclax. In agreement with these observations, mice harboring a BAK mutant with reduced affinity for BCLXL had diminished T cells and platelets, suggesting that BCLXL-mediated neutralization of constitutively activated BAK is also important for the survival of certain cell lineages in vivo.

In other cells, e.g. human embryonic stem cells, BAX is constitutively activated, likewise conferring sensitivity to BH3 mimetics.

Current status of BH3 mimetics
As these complex and highly dynamic interactions between various BCL2 family members were being elucidated, small molecules that could mimic the effects of BH3-only proteins were also being developed. ABT-737, the first compound identified as a bona fide BH3 mimic, exhibited high affinity for BCL2, BCLXL, and BCLW (Kᵢ <1 nM) and lower affinity for MCL1 and A1/BFL1 (Kᵢ >1000 nM). Although ABT-737 killed cells in a BAX/BAK-dependent manner and exhibited anti-tumor activity, it was not orally bioavailable and displayed poor aqueous solubility, precluding its clinical development.

Navitoclax: inhibitor of BCL2, BCLXL, and BCLW
Navitoclax (ABT-263), an orally bioavailable small molecule with a binding profile similar to that of ABT-737, also disrupts interactions involving BCL2 and BCLXL, causes BAX/BAK-dependent apoptosis in vitro, and induces complete regressions in xenograft models of small-cell lung cancer (SCLC) and acute lymphoblastic leukemia (ALL). In early clinical testing, navitoclax displayed single-agent activity against relapsed/refractory lymphoid malignancies, especially CLL. Adding navitoclax to the monoclonal anti-CD20 antibody rituximab improved both response rate and progression-free survival in previously untreated CLL compared to rituximab alone. This hypersensitivity of CLL was thought to reflect frequent deletion of genes on chromosome 13q14 encoding miR15A and miR16A, two microRNAs that normally inhibit BCL2 expression. Loss of these microRNAs is thought to result in constitutive BCL2 overexpression and BCL2 addiction.

Unfortunately, navitoclax also acutely induced thrombocytopenia, reflecting the role of BCLXL in platelet survival. Although this thrombocytopenia could be diminished by treating patients with 150 mg navitoclax/day for one week followed by therapeutic doses of 325 mg daily, maximal BCLXL inhibition was never achieved in lymphoid malignancies because of toxicities of BCLXL inhibition in other normal tissues. Moreover, clinical activity of navitoclax in solid tumors was limited. SCLC appeared to respond better than did other tumors, but only 3% (one in 39) of patients achieved even a partial response (PR). In addition,
when navitoclax was combined with other agents, including carboplatin/paclitaxel, gemcitabine, or irinotecan, extensive toxicity and limited efficacy were observed.

Venetoclax: a BCL2-selective inhibitor for CLL and beyond

Developed specifically to avoid the thrombocytopenia associated with BCLXL inhibition, venetoclax exhibits selectivity for BCL2 over BCLXL (Kd <0.01 nM versus 48 nM, respectively), kills cells in a BAX/BAK-dependent manner, and spares platelets. In light of the navitoclax clinical results, the first phase I trial of venetoclax was conducted in relapsed or refractory (R/R) CLL, including CLL with deletions of the short arm of chromosome 17 (17p), where the tumor suppressor gene TP53 is located, unmutated IGHV, or fludarabine-resistant disease. Among 116 patients treated, 59% achieved PR and 20% clinical complete remission (CR), including 5% who had no detectable residual disease by flow cytometry. A subsequent single-arm phase II trial demonstrated a 72% PR and 7.5% CR rate in R/R CLL with 17p deletion. The major side effect in these trials was tumor lysis syndrome (TLS), which could be minimized by starting at a dose of 20 mg daily and ramping up weekly to 400 mg daily over 5 weeks. These observations led to FDA approval of venetoclax for 17p-deleted CLL in April 2016 (http://www.fda.gov/Drugs/InformationOnDrugs/Approved-Drugs/ucm495351.htm). However, consistent with the idea that venetoclax, as a BH3 mimetic, should induce apoptosis in a TP53-independent manner, venetoclax kills CLL cells ex vivo regardless of their TP53 mutation status. Accordingly, a retrospective analysis of TP53 status in cases treated in the original phase I trial might clarify whether TP53 wild-type CLL also responds clinically, which could broaden the indication for venetoclax.

Beyond CLL, venetoclax exhibits activity against a variety of lymphoid malignancies. In preclinical studies, concurrent inhibition of BCLXL is required for venetoclax to kill most ALL cells, the notable exception being MLL-rearranged (MLLr) ALL. In this latter disease, BCL2 is highly expressed because of DOT1L-mediated H3K79 methylation, rendering MLLr ALL sensitive to venetoclax alone. A clinical trial of venetoclax in MLLr ALL is awaited with interest.

Venetoclax is also active against lymphomas. In a phase I trial, venetoclax monotherapy had an overall response rate of 44% (Table 1) in various R/R non-Hodgkin lymphomas. Addition of the alkylating agent bendamustine and anti-CD20 antibody rituximab resulted in an even more impressive overall response rate in follicular lymphoma, diffuse large B-cell lymphoma, and marginal zone lymphoma (Table 2). In combination with the Bruton’s tyrosine kinase inhibitor ibrutinib, venetoclax also induced remissions in R/R mantle cell lymphoma.

BCL2 has also been implicated in the survival of multiple myeloma (MM) cells, particularly those with t(11;14) translocation. Accordingly, MMs with this translocation have a higher response rate to venetoclax than those without (24% versus 4%). In addition, a trial of venetoclax in combination with bortezomib and dexamethasone in R/R MM appears promising.

Venetoclax has also been extensively studied in acute myelogenous leukemia (AML). A preclinical study suggested that AML is exquisitely sensitive to single-agent venetoclax ex vivo. A subsequent phase II clinical trial, however, demonstrated responses (CR/CRi) in only six of 32 patients (19%) with R/R AML. This somewhat low response rate may be related to the upregulation of BCLXL and MCL1 in this disease, particularly at the time of AML relapse, as well as other factors such as HOX gene expression. Interestingly, combinations of venetoclax with low-dose cytarabine or DNA methyltransferase inhibitors exhibit response rates of 44% and 76%, respectively, in elderly patients with previously untreated AML, raising the possibility that using venetoclax as a sensitizing agent might be particularly effective in this patient population.

In most solid tumors, BCLXL and MCL1 appear to be more important than BCL2 in inhibiting apoptosis. However, SCLC

Disease	Number	OR (%)	CR	PR	Stable	PROG	Median progression-free survival (months)	12-month survival
WM	4	100%	0%	100%	0%	0%	NR	NR
MCL	28	75%	21%	54%	15%	4%	14	82%
MZL	3	67%	21%	54%	29%	14%	NR	NR
DLBCL-RT	7	43%	1%	12%	24%	14%	11	100%
DLBCL	34	38%	14%	24%	30%	22%	17	72%

Abbreviations: CR, complete remission; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; NHL, non-Hodgkin lymphoma; NR, not reported; OR, overall response rate; PR, partial remission; PROG, progressive disease; RT, Richter’s transformation; WM, Waldenstrom’s macroglobulinemia.
and estrogen receptor-positive (ER+) breast cancer exhibit high BCL2 expression and venetoclax sensitivity. Accordingly, clinical studies of venetoclax in these malignancies appear to be warranted but have not yet been initiated.

BCLX\textsubscript{L} inhibitor: WEHI-539

BCLX\textsubscript{L} is frequently expressed at high levels in solid tumors, including colorectal, hormone-refractory prostate, and mesenchymal breast cancers, conferring chemotherapy resistance. A BCLX\textsubscript{L} inhibitor could be particularly useful in treating these cancers. WEHI-539 and its more potent derivative A-1155463 selectively and tightly bind to BCLX\textsubscript{L}. In mice, A-1155463 causes reversible on-target thrombocytopenia and inhibits SCLC xenograft growth. In addition, WEHI-539 synergizes with carboplatin in ovarian cancer cell lines and with doxorubicin in osteosarcoma.

Because of the role of BCLX\textsubscript{L} in platelet survival, clinical application of a selective BCLX\textsubscript{L} inhibitor could be a challenge. As with navitoclax, a possible lead-in dose of BCLX\textsubscript{L} inhibitor may lower the risk of severe thrombocytopenia, but clinical efficacy might also be compromised because suboptimal BCLX\textsubscript{L} inhibition also during the lead-in might facilitate the development of tumor cell tolerance. Therefore, development of an alternative strategy to mitigate thrombocytopenia might be important for the successful application of BCLX\textsubscript{L} inhibitors.

MCL1 inhibitor: A-1210477

MCL1 is also an attractive target. MCL1 elevation occurs in many tumors and is associated with poor prognosis. Moreover, MCL1 contributes to therapy resistance, especially to ABT-737, navitoclax, and venetoclax.

To date, only one MCL1-selective inhibitor, A1210477, has been reported. This agent disrupts complexes of MCL1 with BH3-only proteins, kills MCL1-dependent cells, and exhibits synergy with navitoclax in vitro. Studying an agent with these properties in vivo could potentially be productive.

Prediction of BH3 mimetic sensitivity or resistance

Even though BH3 mimetic sensitivity or resistance can be predicted by algorithms that essentially measure levels of anti-apoptotic BCL2 family members, sum the values, and subtract levels of BAX and BAK, this approach detects differences between sensitive and resistant groups of cell lines or tumors, overlap between the groups might make it difficult to use this approach to dictate therapy for individual patients. Moreover, this approach generally fails to take into account endogenous levels of BH3-only proteins and other binding partners that could alter the anti-apoptotic or pro-apoptotic potentials of the proteins assayed.

BH3 profiling assays

BH3 profiling involves treating mitochondria with BH3 peptides and measuring cytochrome c release or mitochondrial depolarization as a strategy to predict sensitivity to BH3 mimetics or therapies that act through inducing BH3-only proteins. Because the BAD BH3 and HRK BH3 domains have different affinities for anti-apoptotic BCL2 family proteins, with BAD binding BCL2 and BCLX\textsubscript{L} tightly but HRK binding only BCLX\textsubscript{L}, subtracting the cytochrome c release caused by HRK from that caused by BAD (BAD–HRK) reportedly predicts venetoclax sensitivity. Results using this assay suggested that the maturation stage of T-ALLs determines their sensitivity to navitoclax or venetoclax, with most T-ALLs exhibiting navitoclax sensitivity but early T-cell progenitor ALL being sensitive to venetoclax. This assay also predicted that a substantial percentage of AMLs would be sensitive to venetoclax. In a subsequent phase II study of venetoclax monotherapy in AML, however, BH3 profiling results correlated only weakly with time on study, suggesting that determinants of response are more complicated than originally envisioned.

Building on the experience with BH3 profiling, a modified assay called “dynamic BH3 profiling” involves exposure of cells to diluent versus any potential anticancer drug or combination followed by assessment of mitochondrial depolarization by BIM BH3 peptide in permeabilized cells. Early experience with this assay in multiple model systems indicates that drug-induced increases

Table 2. Efficacy of bendamustine/rituximab/venetoclax against NHL.

FL^b	DLBCL	MZL	
Number of patients	27	16	6
OR	78%	38%	80%
CR	30%	25%	20%
PR	48%	13%	60%
Stable	4%	13%	0%
PROG	7%	38%	0%

^bSummarized from 67.
^aAbbreviations: DLBCL, diffuse large B-cell lymphoma; CR, complete remission; FL, follicular lymphoma; MZL, marginal zone lymphoma; OR, overall response; PR, partial remission, PROG, progressive disease.
in BIM BH3 peptide-induced mitochondrial depolarization after 16 hours of drug exposure correlate with the extent of cell death at 72–96 hours of continuous drug exposure ex vivo. Whether this assay will provide improved ability to predict response to BH3 mimetics in the clinical setting remains to be determined.

Preformed complexes as potential predictors of response

An alternative approach to predicting BH3 mimic sensitivity might come from recent studies demonstrating constitutive BAK activation in a variety of cells\(^1\,^2\). If BAK is constitutively bound to BCLX\(_s\), cells are significantly more sensitive to navitoclax, and if BAK is constitutively bound to MCL1, cells are more sensitive to A-1210477\(^3\), suggesting that measurement of preformed BCLX\(_s\)-BAK and MCL1-BAK complexes might provide insight into sensitivity to the respective BH3 mimetics. There is also a correlation between preformed BCL2-BAK complexes and venetoclax sensitivity\(^3\), perhaps reflecting the fact that these complexes, though somewhat less stable, nonetheless form when BCL2 is expressed at high levels or harbors gain-of-function mutations\(^1\,^4\). All of these complexes between BAK and anti-apoptotic BCL2 family members can, like complexes between BH3-only proteins and anti-apoptotic BCL2 family members\(^5\,^6\), be detected and potentially quantified by immunoprecipitation\(^7\). Because anti-apoptotic BCL2 family members are expressed on the cytoplasmic surfaces of multiple organelles, not just mitochondria\(^8\,^9\), it is possible that immunoprecipitation followed by immunoblotting for BAK, BAX, and BH3-only proteins will provide a more complete picture of the cellular balance between pro-apoptotic and anti-apoptotic BCL2 family members than MOM permeabilization analyses alone.

Opportunities for future development

While the recent FDA approval of venetoclax marks a milestone in apoptosis research, there is still much work to be done. As mentioned above, the results of single-agent venetoclax trials in TP53 wild-type CLL, other lymphoid malignancies, SCLC, and ER\(^+\) breast cancer are awaited with interest. Moreover, further studies examining the optimal use of venetoclax as a chemosensitizing agent are needed.

Based on the observed clinical activity of venetoclax in CLL, the prospect of selectively targeting BCLX\(_s\) and MCL1, especially in cancers with BCLX\(_s\) or MCL1 amplification\(^9\), is also appealing. There are, however, substantial obstacles. The role of BCLX\(_s\) in platelet survival and the consequent thrombocytopenia induced by BCLX\(_s\) inhibition hampered the development of navitoclax\(^10\). Whether it will be possible to develop a clinically viable strategy for avoiding or overcoming this on-target side effect with selective BCLX\(_s\) inhibitors remains to be determined. Likewise, it was reported over a decade ago that MCL1 is required for hematopoietic stem cell survival\(^11\). Because it now appears that this might be due to a BH3-binding groove-independent role for MCL1 in oxidative phosphorylation\(^12\) rather than the role of MCL1 in apoptosis, it is possible that MCL1-selective BH3 mimetics will not be as toxic to normal cells as MCL1 gene disruption. The development of an MCL1 inhibitor that can be applied in preclinical tumor models and possibly in clinical trials would allow this hypothesis to be tested.

Finally, a substantial fraction of tumors might be resistant to selective BCL2, BCLX\(_s\), or MCL1 inhibitors. To the extent that these agents act by releasing partially activated BAK or BAX from preformed complexes\(^13\), cells lacking activated BAK and BAX will experience little or no effect from these inhibitors. One strategy for sensitizing these cells to BH3 mimetics would be to treat with chemotherapeutic agents that activate BH3-only proteins, leading to BAK or BAX activation\(^10\). Alternatively, it might be possible to induce apoptosis in these cells using BH3 mimetics that directly activate BAK and/or BAX. Whether it will be possible to derive such compounds and target them in a way that allows cancer cell-selective killing also remains to be determined.

Competing interests

The authors declare that they have no competing interests.

Grant information

Preparation of this review was supported in part by a grant from the NIH (R01 CA166741). Haiming Dai is also supported by the Hundred-Talent Program of the Chinese Academy of Sciences.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

We thank members of the Kaufmann lab for provocative discussions and Deb Strauss for editorial assistance. We also apologize to many colleagues whose important contributions could not be highlighted because of space limitations.

References

1. Tsujimoto Y, Cosman J, Jaffe E, et al.: Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228(4706): 1440–3. [PubMed Abstract](https://pubmed.ncbi.nlm.nih.gov/2809934/) | [Publisher Full Text](https://doi.org/10.1126/science.3947054)

2. Cleary ML, Smith SD, Sklar J: Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 1986; 47(1): 19–29. [PubMed Abstract](https://pubmed.ncbi.nlm.nih.gov/3722905/) | [Publisher Full Text](https://doi.org/10.1016/0092-8674(86)90028-2)

3. Vaux DL, Cory S, Adams JM: Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335(6189): 440–2. [PubMed Abstract](https://pubmed.ncbi.nlm.nih.gov/3304758/) | [Publisher Full Text](https://doi.org/10.1038/335440a0)

4. Strasser A, Harris AW, Cory S: bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 1991; 67(3): 989–99. [PubMed Abstract](https://pubmed.ncbi.nlm.nih.gov/1889434/) | [Publisher Full Text](https://doi.org/10.1016/0092-8674(91)90640-E)
5. Hanada M, Delia D, Aitio A, et al.: Bcl-2 gene hypomethylation and high-level expression in chronic lymphocytic leukemia. Blood. 1993; 82(6): 1820–8. PubMed Abstract
6. Robertson LE, Plunkett W, McConnell K, et al.: Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia. 1996; 10(3): 456–9. PubMed Abstract
7. Sattler M, Liang H, Nettesheim D, et al.: Structure of Bcl-xL:Bak peptide complex: recognition between regulators of apoptosis. Science. 1997; 279(5345): 983–6. PubMed Abstract
8. Ottersdorf T, Elmore SW, Shoemaker AR, et al.: An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005; 438(7042): 677–81. PubMed Abstract
9. Tse C, Shoemaker AR, Adickes J, et al.: ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008; 68(9): 3421–8. PubMed Abstract
10. Roberts AW, Seymour JF, Breen JR, et al.: Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol. 2012; 30(5): 488–90. PubMed Abstract
11. Rev J Med. 2013; 19(2): 202–17. PubMed Abstract
12. Nt Chonghaile T, Letal A: Mimicking the B3 domain to kill cancer cells. Oncogene. 2008; 27(Suppl 1): S149–57. PubMed Abstract
13. Strasser A, Cory S, Adams JM: Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J. 2011; 30(18): 3667–83. PubMed Abstract
14. Anderson MA, Huang D, Roberts A: Targeting BCL2 for the treatment of lymphoid malignancies. Semin Hematol. 2014; 51(3): 219–27. PubMed Abstract
15. Martino JC, Youle RJ: Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011; 21(1): 92–101. PubMed Abstract
16. Fuchs Y, Steller H: Programmed cell death in animal development and disease. Cell. 2011; 147(4): 742–58. PubMed Abstract
17. Hyman BT, Yuan J: Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 2012; 13(6): 395–406. PubMed Abstract
18. Jiang X, Wang X: Cytochrome C-mediated apoptosis. Annu Rev Biochem. 2004; 73: 87–106. PubMed Abstract
19. Eckert PG, Vaux DL: The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol. 2005; 17(5): 626–30. PubMed Abstract
20. Taylor RC, Cullen SP, Martin SJ: Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008; 9(3): 231–41. PubMed Abstract
21. Cory S, Adams JM: The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002; 2(9): 647–56. PubMed Abstract
22. Czabotar PE, Lessene G, Strasser A, et al.: Control of apoptosis by the BCL2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014; 15(1): 49–62. PubMed Abstract
23. Antonsson B, Conti F, Ciavatta A, et al.: Inhibition of Bax channel-forming activity by Bcl-2. Science. 1997; 277(5324): 370–2. PubMed Abstract
24. Ma S, Hockings C, Anwari K, et al.: Assembly of the Bax apoptotic pore: a critical role for the Bak protein d6 helix in the multimerization of homodimers during apoptosis. J Biol Chem. 2013; 288(36): 26027–38. PubMed Abstract
25. Salvador-Gallejo R, Mund M, Cosentino K, et al.: Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J. 2016; 35(4): 389–401. PubMed Abstract
26. Grolle L, Wurm CA, Brüser C, et al.: Bax assemblies into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J. 2016; 35(4): 402–13. PubMed Abstract
27. Basaraz G, Nechustan A, Drozhnin O, et al.: Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at submonolayer concentrations. Proc Natl Acad Sci U S A. 1999; 96(10): 5492–7. PubMed Abstract
28. Terrones O, Etebarnia A, Landajuela A, et al.: BIM and cIAP are not mechanistically equivalent when assisting BAX to permeabilize bilayer membranes. J Biol Chem. 2006; 281(12): 7790–803. PubMed Abstract
with carboxatin and etoposide in patients with extensive-stage small cell lung cancer. Br J Cancer. 2012; 106(6): 839–45.
PubMed Abstract | Publisher Full Text | Free Full Text

52. Kips TJ, Erdat H, Grosbiö S, et al.: A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2015; 56(10): 2826–33.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

53. Camminno A, Calin GA, Fabbri M, et al.: mir-15 and mir-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005; 102(19): 6929–34.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

54. Klein U, Lia M, Crespo M, et al.: The DLEU2/mir-15a:16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010; 17(1): 28–40.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

55. Del Gaudio Moore V, Brown JR, Corto M, et al.: Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest. 2007; 117(1): 112–21.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

56. Mason KD, Carpinelli MR, Fletcher JI, et al.: Programmed anuclear cell death delimits platelet life span. Cell. 2007; 128(6): 1173–86.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

57. Josseteon EC, White MJ, Dowling MR, et al.: Platelet life span and apoptosis. Methods Mol Biol. 2012; 798: 59–71.
PubMed Abstract | Publisher Full Text | Free Full Text

58. Gandhi L, Camidge DR, Ribeiro de Oliveira M, et al.: A Phase 2 Study of Venetoclax Monotherapy in Patients with Relapsed/Refractory Non-Hodgkin Lymphoma. Ann Oncol. 2015; 26(9): 1772–80.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

59. Rudin CM, Hanek LM, Garen EB, et al.: Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res. 2012; 18(11): 3163–9.
PubMed Abstract | Publisher Full Text | Free Full Text

60. Vlahovic G, Kananta V, Wang D, et al.: A phase I safety and pharmacokinetic study of ABT-263 in combination with carboplatin/paclitaxel in the treatment of patients with solid tumors. Invest New Drugs. 2014; 32(3): 976–84.
PubMed Abstract | Publisher Full Text | Free Full Text

61. Feels JM, Lima CM, Hurewitz HI, et al.: A phase I clinical trial of navitoclax, a targeted high-affinity Bcl-2 family inhibitor, in combination with gemcitabine in patients with solid tumors. Invest New Drugs. 2014; 32(5): 937–45.
PubMed Abstract | Publisher Full Text | Free Full Text

62. Tolcher AW, LaRusso P, Arzt J, et al.: Safety, efficacy, and pharmacokinetics of navitoclax (ABT-263) in combination with ritonavir: results of an open-label, phase 1 study. Cancer Chemother Pharmacol. 2015; 76(5): 1041–9.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

63. Roberts AW, Davis MS, Page JM, et al.: Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016; 374(4): 311–22.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

64. Stitgenauer S, Eichhorst B, Schetelig J, et al.: HOX gene expression predicts sensitivity of MLL-rearranged leukemia. Cancer Discov. 2014; 4(3): 362–75.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

65. Seiler C, Reiter A, Stilgenbauer S, et al.: Selective BCL-2 Inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014; 4(3): 362–75.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

66. Kondapala M, Polley DA, Petlin J, et al.: Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov. 2016; (6): 1106–17.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

67. Keilholz U, van den Engelen RB, Probst R, et al.: Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood. 1998; 91(3): 991–1000.
PubMed Abstract

68. Kontro M, Kumar A, Majumder MM, et al.: HOX gene expression predicts response to BCL-2 inhibition in acute myeloid leukemia. Leukemia. 2016; 30(1): 87–95.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

69. Lin TL, Strickland SA, Fiedler W, et al.: Phase IIb study of venetoclax with low-dose cytarabine in treatment-naïve patients age ≥ 65 with acute myelogenous leukemia. J Clin Oncol. 2016; 34(suppl): abstract 7007.
Reference Source

70. Polley DA, Dinardo CD, Thirman MJ, et al.: Results of a phase 1b study of venetoclax plus decitabine or azacitidine in untreated acute myeloid leukemia patients > 65 years ineligible for standard induction therapy. J Clin Oncol. 2015; 33(suppl): (suppl., abstract 7009).
Reference Source

71. Kondo S, Lacea T, Ohki M, et al.: An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Clin Cancer Res. 2015; 19(19): 5144–55.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

72. Abe K, Akiyama R, Iida T, et al.: A Phase 1 Study of Venetoclax (ABT-199) Monotherapy in Patients with Relapsed/Refractory Non-Hodgkin Lymphoma. Cancers (Basel). 2016; 8(1): 13.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

73. A Dose-Escalation Study of Venetoclax (ABT-199) in Combination with Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma. J Clin Oncol. 2016; 34(suppl): abstract 8302.
Reference Source
94. Willeme-Tourni S, Robillard N, Gomez P, et al.: Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia. 2000; 14(7): 1248–52. Published Abstract | Publisher Full Text

95. Sieghart W, Losert D, Shrommr S, et al.: Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J Hepatol. 2006; 44(1): 151–7. Published Abstract | Publisher Full Text

96. Zhuang L, Lee CS, Sclyer RA, et al.: Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MIF levels decrease during progression of melanoma. Mod Pathol. 2007; 20(4): 416–26. Published Abstract | Publisher Full Text

97. Ding Q, He X, Xia W, et al.: Myeloid cell leukemia-1 inversely correlates with glycosyn thase synthase kinase-βeta activity and associates with poor prognosis in human acute myeloid leukemia. Cancer Res. 2007; 67(10): 5694–71. Published Abstract | Publisher Full Text

98. Quinn BA, Dash R, Azab B, et al.: Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs. 2011; 20(10): 1397–411. Published Abstract | Publisher Full Text | Free Full Text

99. Meng XW, Lee SH, Dai H, et al.: Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafensin (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem. 2007; 282(41): 29831–46. Published Abstract | Publisher Full Text

100. Konopleva M, Contractor R, Tsoa T, et al.: Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell. 2006; 10(5): 375–88. Published Abstract | Publisher Full Text

101. Chen S, Dai Y, Harada H, et al.: Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res. 2007; 67(2): 782–91. Published Abstract | Publisher Full Text

102. F1000 Recommendation

103. Yecies D, Carlson NE, Deng J, et al.: Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood. 2010; 115(6): 3304–13. Published Abstract | Publisher Full Text | Free Full Text

104. Xiao Y, Nimper P, Sheppard GS, et al.: MCL-1 is a Key Determinant of Breast Cancer Cell Survival: Validation of MCL-1 Dependency Utilizing a Highly Selective Small Molecule Inhibitor. Mol Cancer Ther. 2015; 14(8): 1837–47. Published Abstract | Publisher Full Text | F1000 Recommendation

105. Al-Harbi S, Hill BT, Mazumder S, et al.: An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood. 2011; 118(3): 3579–90. Published Abstract | Publisher Full Text | Free Full Text

106. Ferrari RM, Stewart DP, Koss B, et al.: Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fission to respiration. Nat Cell Biol. 2012; 14(6): 575–83. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

107. Metino D, Khaw SL, Glaser SP, et al.: Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood. 2012; 119(24): 5807–16. Published Abstract | Publisher Full Text | Free Full Text

108. Khaw SL, Menino D, Anderson MA, et al.: Both leukemic and normal peripheral B lymphoid cells are highly sensitive to the selective pharmacological inhibition of prosurvival Bcl-2 with ABT-199. Leukemia. 2014; 28(6): 1207–15. Published Abstract | Publisher Full Text | F1000 Recommendation

109. Schwikart M, Huang X, Lill JR, et al.: Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 2010; 463(7277): 103–7. Published Abstract | Publisher Full Text | F1000 Recommendation

110. Wertz IE, Kusam S, Lam C, et al.: Sensitivity to antibulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 2011; 471(7336): 119–4. Published Abstract | Publisher Full Text | F1000 Recommendation

111. Deng J, Carlson N, Takeyama K, et al.: BH3 profiling identifies three distinct classes of apoptotic blockers to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell. 2007; 12(2): 171–85. Published Abstract | Publisher Full Text

112. Ryan JA, Brunelle JK, Letal A: Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+ CD8- thymocytes. Proc Natl Acad Sci U S A. 2010; 107(29): 12895–900. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

113. Ni Chonghaile T, Sarosiek KA, Vo TT, et al.: Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011; 334(6059): 1129–33. Published Abstract | Publisher Full Text | Free Full Text

114. Vo TT, Ryan J, Carrasco R, et al.: Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell. 2012; 151(2): 344–55. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

115. Chen L, Wills SN, Wei A, et al.: Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2006; 17(3): 399–403. Published Abstract | Publisher Full Text | F1000 Recommendation

116. Chonghaile TN, Roderick JE, Glenfield C, et al.: Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2011; 4(9): 1074–87. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

117. Montero J, Sarosiek KA, DeAngelis JD, et al.: Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015; 160(6): 977–89. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

118. Dai H, Meng XW, Lee SH, et al.: Context-dependent Bcl-2/Bak interactions regulate lymphoid cell apoptosis. J Biol Chem. 2009; 284(27): 18311–22. Published Abstract | Publisher Full Text | Free Full Text

119. Smith AJ, Dai H, Correia C, et al.: Noxa/Bcl-2 protein interactions contribute to bortezomib resistance in human lymphoid cells. J Biol Chem. 2011; 286(20): 17682–92. Published Abstract | Publisher Full Text | Free Full Text

120. Krajewski S, Tanaka S, Takayama S, et al.: Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1992; 52(19): 4701–14. Published Abstract

121. Krajewski S, Bodrug S, Gascoyne R, et al.: Obligate role of anti-apoptotic MCL-1 and BCL-2 proteins in normal and neoplastic lymph node cells. Am J Pathol. 1994; 145(3): 515–25. Published Abstract | Free Full Text

122. O'Neill KL, Iwasaki H, Ong CC, et al.: Differential targeting of prosurvival Bcl-2 family members by the BH3-only ligand PBA induces apoptosis in MCL-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MIF levels decrease during progression of melanoma. Mod Pathol. 2007; 20(4): 416–26. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

123. Opferman JT, Iwasaki H, Ong CC, et al.: Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005; 307(5712): 1101–4. Published Abstract | Publisher Full Text | F1000 Recommendation

124. O'Neill KL, Huang K, Zhang J, et al.: Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016; 30(6): 973–88. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Peer Review Status: ✔ ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Kapil Bhalla
 Department of Leukemia, M.D. Anderson Cancer Center, Houston, TX, USA
 Competing Interests: No competing interests were disclosed.

2. Alan Richardson
 Keele University, Keele, UK
 Competing Interests: No competing interests were disclosed.

3. Sharad Kumar
 Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com