Leptin coordinates efferent sympathetic outflow to the white adipose tissue through the midbrain centrally-projecting Edinger-Westphal nucleus in male rats

Lu Xu a,i, Nóra Füredi b,c, Christoph Lutter b,1,2, Bram Geenen a, Erika Pétervári c, Márta Balaskó d, Ádám Dénes d, Krisztina J. Kovács e, Balázs Gaszner b,3, Tamás Kozicza,4,b,g,h,*,2

a Department of Anatomy Medical Imaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
b Department of Anatomy and Center for Neuroscience, Medical School, Pécs University, Pécs, Hungary
c Department of Translational Medicine, Medical School, Pécs University, Pécs, Hungary
d Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
e Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, Hungary
f Institute of Clinical Genetics, Mayo Clinic, MN, USA
g University of Medicine and Pharmacy, Cluj Napoca, Cluj, Romania
h University of Medicine and Pharmacy, Cluj Napoca, Cluj, Romania

ARTICLE INFO

Keywords:
- Urocortin 1
- Leptin receptor
- STAT3
- Pseudorabies virus
- Energy metabolism

ABSTRACT

The centrally-projecting Edinger-Westphal nucleus (EWcp) hosts a large population of neurons expressing urocortin 1 (Ucn1) and about half of these neurons also express the leptin receptor (LepRb). Previously, we have shown that the peripheral adiposity hormone leptin signaling energy surfeit modulates EWcp neurons. Here, we hypothesized that Ucn1/LepRb neurons in the EWcp would act as a crucial neuronal node in the brain-white adipose tissue (WAT) axis modulating efferent sympathetic outflow to the WAT. We showed that leptin bound to neurons of the EWcp stimulated STAT3 phosphorylation, and increased Ucn1-production in a time-dependent manner. Besides, retrograde transneuronal tract-tracing using pseudorabies virus (PRV) identified EWcp Ucn1 neurons connected to WAT. Interestingly, reducing EWcp Ucn1 contents by ablating EWcp LepRb-positive neurons with leptin-saporin, did not affect food intake and body weight gain, but substantially (+26%) increased WAT weight accompanied by a higher plasma leptin level and changed plasma lipid profile. We also found that ablation of EWcp Ucn1/LepRb neurons resulted in lower respiratory quotient and oxygen consumption one week after surgery, but was comparable to sham values after 3 and 5 weeks of surgery. Taken together, we report that EWcp/LepRb/Ucn1 neurons not only respond to leptin signaling but also control WAT size and fat metabolism without altering food intake. These data suggest the existence of a EWcp-WAT circuitry allowing an organism to recruit fuels without being able to eat in situations such as the fight-or-flight response.

1. Introduction

Maintaining body adiposity is a physiological necessity and disturbance of tightly controlled regulation of the body’s fat stores leads to obesity, a disease resulting from nutrient excess where energy intake significantly exceeds energy expenditure (Morton et al., 2006). Leptin, a

https://doi.org/10.1016/j.neuropharm.2021.108898
Received 12 April 2021; Received in revised form 29 September 2021; Accepted 21 November 2021
Available online 1 December 2021
0028-3908/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
hormone derived from adipocytes, conveys information about nutritional reserves to the brain, where it acts to modulate metabolism and maintain energy balance (Zhang et al., 1994; Gao and Horvath, 2007; Simerly, 2008; Myers et al., 2009). Leptin acts through the long form of the leptin receptor (Leprb), by activating various signaling pathways in distinct populations of Leprb-neurons (Niswender et al., 2004; Villanueva and Myers, 2008; Rahmouni et al., 2009). These nerve cells reside in brain areas involved in regulating energy balance, such as in the hypothalamus and brainstem (Elmqquist et al., 1998; Figlewicz et al., 2006; Leinninger et al., 2009). One such area is the centrally-projecting Edinger-Westphal nucleus (EWcp) in the rostral midbrain (Scott et al., 2009; Caron et al., 2010; Xu et al., 2011). The significance of EWcp in mediating food consumption and stress-related behaviors has become increasingly acknowledged (Turek and Ryabinin, 2005; Ryabinin and Weitemier, 2006; Korosi et al., 2005; Kozicz, 2007; Kozicz et al. 2001, 2011, 2011; Rouwette et al., 2011; Xu et al. 2009, 2010, 2011, 2012, 2014; Fureld et al., 2017).

The EWcp is the major seat of urocortin 1 (Ucn1) neurons in the brain (Kozicz et al., 1998; Bittencourt et al., 1999). Ucn1 is an important modulator of metabolic functions and feeding behavior (Kuperman and Chen, 2008). Intracerebroventricular administration of Ucn1 strongly suppresses food intake (Benoit et al., 2000; Wang et al., 2001), and increases body temperature and oxygen consumption (De Fanti and Martínez, 2002). In the mouse, EWcp/Ucn1 neurons respond to in vitro leptin administration with a slow activation of the JAK2-STAT3 signaling pathway (Xu et al., 2011). Systemic injection of leptin increases Ucn1-content of the EWcp, whereas mice lacking Leprb exhibit decreased Ucn1 expression (Xu et al., 2011).

While most studies have been focused on leptin’s action on the brain, the brain also modulates the efferent sympathetic outflow to the adipose tissue (Zhang et al., 2014). As the primary energy store, the adipose tissue plays an important role in energy balance. Histologically and functionally two distinct types of fat tissues can be distinguished: white adipose tissue (WAT) and brown adipose tissue (BAT). The WAT stores chemical energy in the form of triglycerides whereas the BAT dissipates chemical energy in the form of heat through thermogenesis (Zhang et al., 2014). Because BAT has a relatively small fat storage capacity and a high metabolic demand to support a continuous thermogenic response, it relies on continuous free fatty acids from WAT.

The sympathetic nervous system (SNS) is the main driver for adipose tissue lipolysis. In the WAT, SNS stimulation leads to the breakdown of lipids, causing smaller fat cell size and reducing leptin release. In the BAT, SNS stimulation induces lipolysis and thus Uncoupling Protein 1 (UCP1) activation (a marker for thermogenesis). Therefore, it has been hypothesized that coordinated sympathetic action of BAT and WAT would maximize leptin’s effect on energy expenditure and fat metabolism (Zeng et al., 2015). However, an important research gap exists in understanding how leptin actions would be connected to the sympathetic activation of WAT and BAT.

Although the Edinger-Westphal nucleus has been traditionally considered as the parasympathetic component of the oculomotor complex (e.g. Warwick, 1954; Klooster et al., 1993), retrograde injection of EWcp neurons has been reported after pseudorabies virus (PRV) injection into the sympathetic stellate ganglion, BAT, pancreas, spleen and adrenal gland (Jansen et al., 1997; Farkas et al., 1998; Cano et al., 2001; Zhang et al., 2013; Shah et al., 2013). Besides, Ucn1 fibers occur in the lamina VII of the mouse spinal cord (Korosi et al., 2007). Importantly, the EWcp is the major Ucn1-containing brain region, the suprachiasmatic nucleus and lateral superior olive (Bittencourt et al., 1999) do not project to the lateral horn of the spinal cord (Tucker and Saper, 1985). These facts strongly implicate EWcp/Ucn1 neurons in controlling the sympathetic nervous system’s impact on adipose tissue function (for review see: Cano et al., 2021).

Based on the above data, we hypothesized that Leprb neurons in the EWcp would form an important component of a midbrain–SNS–WAT axis. More specifically, EWcp/Ucn1 neurons would 1) receive a message via leptin about the abundance of lipids in the WAT; 2) integrate this message via second messenger systems such as JAK2-STAT3, MAPK/ERK, and PI3K/AKT to mediate EWcp neuron’s activity, and modulate sympathetic tone that, in turn, would control WAT function. To test this hypothesis, we first assessed whether leptin directly bound to EWcp/Ucn1 neurons. Next, we comprehensively evaluated the effect of peripheral leptin administration on second messenger signaling (pSTAT3, pAKT, and pERK) and Ucn1 peptide and mRNA dynamics in the EWcp. To test that EWcp-Ucn1 neurons indeed innervate the WAT, we applied retrograde viral tracing. Finally, we investigated whether ablation of leptin receptor-expressing EWcp-Ucn1 neurons would influence WAT size, leptin dynamics, and metabolic parameters such as oxygen consumption, carbon dioxide production, and respiratory quotient (calorimetry).

2. Materials and methods

2.1. Animals

Studies were performed with male Wistar rats (225–390 g). Animals from our Animal Facility of the Department of Anatomy in Pécs (original breeding pairs purchased from Charles River), were used for leptin administration (28 rats), Leprb binding (8 rats), Leprb neuron ablation (32 rats) and calorimetry (8 rats). Retrograde tracing was done in 8 rats from Toxi-coop, Budapest, Hungary. Rats were housed in standard plastic cages (40 × 25 × 20 cm; 6 rats/cage) in a temperature- and humidity-controlled environment, on a 12-hrs light/12-hrs dark cycle (lights on at 6:00 AM), with free access to tap water and rat chow. They were allowed 1 week of acclimation before an experiment. The use of male rats was preferred in this study because the EWcp/Ucn1 neurons are estrogen sensitive and the effect of the estrus cycle could have influenced the results (Derks et al., 2010).

Animals were sacrificed by an overdose of anesthetic injection (sodium-pentobarbital, Nembutal, Sanofi, Budapest, Hungary; 100 mg/kg body weight). All efforts were made to minimize the number of animals used and their suffering. In vivo experimental procedures were permitted by the National Food Chain Safety Office in Hungary (license numbers: BA02/2000-26/2011 and BA02/2000-22/2017). The licenses were given based on the scientific approvals of the Animal Welfare Committee at Pécs University and the National Scientific Ethical Committee on Animal Experimentation in Hungary.

2.2. Cy3-labeled leptin binding

To test if leptin binds specifically to EWcp-neurons, rats were transcardially perfused with 50 ml of 0.1 M sodium phosphate-buffered saline (PBS; pH 7.4), decapitated, and their brains rapidly dissected. Then, 100 µm-thick brain sections containing the EWcp were incubated with 1 µM (n = 4 rats) or 50 nM (n = 4 rats) Cy3-labeled leptin (Phoenix Pharmaceuticals, Burlingame, CA, USA) for 20 min at 4 °C. As a negative control EWcp sections from the same rats were incubated with inactivated, Cy3-labeled leptin that was boiled for 10 min before use. Subsequently, the sections were fixed with 4% paraformaldehyde (PFA), mounted on glass slides, and analyzed with a confocal laser scanning microscope (Leica Microsystems TCS SP2 AOBS system, Wetzlar, Germany). For further details of this method, see Kieffer et al. (1997).

2.3. Leptin injection

Rats (n = 4 per group) were injected intraperitoneally (i.p.) with either leptin (3 mg/kg in sterile PBS, pH 7.4), or an equal volume vehicle, and sacrificed 0, 1, 2 or 4 h later. The dose of leptin injection was determined based on an earlier work by Rick et al. (2001). Recombinant mouse leptin was obtained from the National Hormone and Peptide Program (Dr. A.F. Parlow, Los Angeles, CA, USA). After deep anesthetization with Nembutal (100 mg/kg body weight), they were...
transcardially perfused with 50 ml of 0.1 M PBS (pH 7.4) followed by 250 ml 4% ice-cold PFA in 0.2 M Millonig sodium phosphate buffer (pH 7.4). After decapitation, brains were dissected and stored in the PFA for 2 days. Then, brains were transferred into 30% sucrose in PBS, and when completely submerged, 6 series of 25 μm-thick coronal sections were cut at the midlevel of the EWcp (5.0–7.0 mm caudal to the level of Bregma; see Paxinos and Franklin, 2003) on a freezing microtome (Microm, Walldorf, Germany), saved in sterile antifreeze solution (0.1 M PBS, 30% ethylene glycol, 20% glycerol), and stored at −20 °C until immunohistochemistry for pSTAT3, pAKT, PERK and Ucn1.

2.4. Retrograde transneural tract-tracing

For retrograde tracing, Ba-DupGreen (BDG), a recombinant, Bartha-derivered pseudoviruses virus expressing green fluorescent protein (GFP; Zs. Boldogkó, University of Szeged, Szeged, Hungary) was used (Boldogkó et al., 2002). This virus strain shows highly specific retrograde, transneuronal spread, which has been extensively characterized in our previous studies (e.g. Dénes et al., 2005; Dénes et al., 2006). Considering the spread of the virus in sympathetic circuits, upon uptake by nerve terminals in the target organ (i.e. VAT) viral capsids travel in a retrograde direction to ganglia, replicate and infect neurons that reside in the intermediolateral cell column of the spinal cord (IML). IML neurons are innervated by various autonomic nuclei in the brain stem and the hypothalamus as it has also been demonstrated in various track tracing studies using different PRV strains. BDG has special features compared to earlier PRV derivatives, as it shows highly specific retrograde, transneuronal spread and expresses GFP with immediate-early kinetics under the regulation of the human CMV promoter, allowing early identification of infected neurons in different brain areas.

BDG virus was grown in porcine kidney (PK-15) cells to a titer of 6 × 10^8 plaque-forming units (PFU)/ml. BDG was concentrated to 1.5 × 10^10 PFU/ml by ultracentrifugation at 70,000 g (for details see Dénes et al., 2006). The virus stocks were aliquoted and stored at −80 °C. Aliquots were thawed immediately before injection and stored at 4 °C during surgery.

Rats were anesthetized by i.p. injection of a mixture of 50 mg/kg ketamin (Richter, Budapest, Hungary), 10 mg/kg xylazin (Sopfa, Praha, Czech Republic) and 5 mg/kg prometazin (EGIS, Budapest, Hungary). Epidymidal VAT was exposed through an abdominal midline incision and placed onto sterile cotton wool. Then, 0.4–0.4 μl BDG was injected with a Hamilton syringe at 5 equidistant places into the WAT (sum: 2 μl). Finally, the peritoneum and abdominal wall was sutured.

Rats were housed individually and monitored twice a day. Five days later, animals were sacrificed by deep Nembutal (100 mg/kg) anesthetization and transcardially perfused with 50 ml saline followed by 400 ml ice-cold Zamboni’s solution (4% PFA and 0.2% picric acid in 0.1 M PBS; pH 7.4). Brains were postfixed in the same fixative for 16 h, and cryoprotected in 10% sucrose. Four series of 30 μm thick sections were cut and were stored at −20 °C in sterile antifreeze solution as described above. Productive infection was observed in 6 rats, by identification of GFP-containing neurons along the sympathetic neuraxis (Dénes et al., 2005).

2.5. Neuron ablation

Rats were anesthetized by i.p. injection of a mixture of 78 mg/kg ketamine (Calypsol, Richter Gedeon, Budapest, Hungary) and 13 mg/kg xylazin (Sedaxylan, Eurovet Animal Health BV, Bladel, The Netherlands). Then, the scull was drilled on the left side, an incision made on the dura mater, and an injection needle stereotactically inser-
PBS washes, sections were mounted on gelatin-coated slides, air dried, dehydrated in 30%, 50%, 70%, 96% and absolute alcohol solutions (5 min, respectively), cleared in xylene for 2 × 10 min and cover-slipped with Depex.

Immunofluorescence. Phosphorylated anti-Hormone-Sensitive Lipase (p-HSL) staining. After deparaffinization, sections were incubated in Tris-buffered saline (TBS) with 0.1% Triton X-100 (TBS-T), for 1 h, and incubated in primary rabbit anti-pHSL (Ser 563; 1:100), for 16 h. This was followed by 2 h incubation with secondary donkey anti-rabbit-Alexa Fluor 647 serum (1:200). Next, sections were incubated in DAPI (1 μg/ml), for 10 min, and embedded in Entellan.

For single immunolabeling of Ucn1, pAKT or pERK, free-floating sections were treated with 3% H2O2, for 20 min, at room temperature.

To reveal WAT innervating Ucn1 neurons, double immunolabeling of GFP and Ucn1 was performed. EWCp sections were processed as described for single immunolabeling, but with incubation in a mixture of primary chicken anti-GFP serum (1:2000) and primary rabbit anti-Ucn1 serum (1:30,000), for 16 h, and then in a mixture of Cy2-conjugated anti-chicken and Cy3-conjugated anti-rabbit sera (1:100) for 2 h.

To reveal WAT innervating Ucn1 neurons, double immunolabeling of GFP and Ucn1 was performed. EWCp sections were processed as described for single immunolabeling, but with incubation in a mixture of primary chicken anti-GFP serum (1:2000) and primary rabbit anti-Ucn1 serum (1:30,000), for 16 h, and then in a mixture of Cy2-conjugated anti-chicken and Cy3-conjugated anti-rabbit sera (1:100) for 2 h.

Finally, sections were mounted on gelatin-covered slides, air dried and coverslipped with a few drops of FluorSave™ (Merck).

2.10. Antisera and immunohistochemistry controls

Polyclonal rabbit anti-Ucn1 serum was a generous gift from Dr. W.W. Vale† (#5779; The Salk Institute, La Jolla, CA, USA, RRID AB_2313740). Monoclonal chicken anti-GFP was from Abcam (#13970; Cambridge, MA, USA, RRID AB_300798), polyclonal rabbit anti-pAKT Ser473 (#4058, RRID AB_331168), rabbit anti-pSTAT3 Tyr705 (#9131, RRID AB_321586) and rabbit anti-pHSL (Ser563; #4139 RRID AB_2135495) from Cell Signaling Technology (Danvers, MA, USA), and polyclonal rabbit anti-pERK Tyr204 (#7976, RRID AB_2297323) and goat anti-Ucn1 (#sc-1825, RRID AB_2304014) from Santa Cruz Biotechnology (Santa Cruz, CA, USA). NDS, Cy2-conjugated donkey-anti-mouse (#715-225-151, RRID AB_2340827), Cy2-conjugated donkey-anti-goat (#705-225-147 RRID AB_2307341), Cy2-conjugated donkey-anti-chicken (#703-225-155, RRID AB_2340370), and Cy3-conjugated donkey-anti-rabbit (#711-165-152, RRID AB_2307443) sera were obtained from Jackson ImmunoResearch (West Grove, PA, USA) and Alexa Fluor 647-conjugated donkey-anti-rabbit serum (#A12137, RRID AB_2536183) from Thermo Fisher Scientific.

The specificity of the Ucn1 antisera (#5779 and #sc-1825) was tested earlier in the rat (Gasztler et al., 2004; Füredi et al., 2017). pAKT (#4058, Xu et al., 2011), pSTAT3 (#9131, Xu et al., 2011) phsL (#4139, Xu et al., 2011), and pERK (#7976, Xu et al., 2011) sera are also well-trusted widely used antibodies for immunolabelings. Omission and replacement of primary and secondary antibodies with respective non-immune sera abolished the signal in all pre-tests in this experiment also.

2.11. In situ hybridization

In situ hybridization of Ucn1 mRNA was carried out on free-floating sections, as follows. Antisense and sense (control) RNA probes were generated using a linearized 550 bp Ucn1 cDNA, subcloned in pBlue-script (Stratagene, Agilent Technologies, Santa Clara, CA, USA), and labeled with DIG-11-UTP using a labeling kit from Roche Molecular Biochemicals (Basel, Switzerland). Sections were fixed in 0.1 M borax-buffered 4% PFA (pH 9.5), at 4 °C for 30 min, and rinsed 4 × 7 min in 0.1 M PBS. After rinsing in autoclaved MQ water, acetylation was performed with 0.25% acetic anhydride in 0.1 M triethanolamine buffer (pH 8.0), for 10 min, followed by rinsing in 2 times (2 ×) concentrated standard saline citrate buffer (SSC; pH 7.0), for 5 min. Hybridization mixture (50% deionized formamide, 0.3 M NaCl, 0.001 M EDTA, Denhardt’s solution, 10% dextran sulphate; pH 7.0) together with 0.5 mg/ml tRNA and the mRNA-digoxigenin (DIG) probe (2.5 ng/ml), were placed in a water bath at 80 °C for 5 min, and then on ice for another 5 min. Sections were incubated in hybridization solution, for 16 h at 60 °C, rinsed 4 × 7 min with 4 × SSC, incubated for 30 min at 37 °C in preheated RNase A medium (0.5 M NaCl, 0.01 M Tris/HCl, 0.001 M EDTA, 0.01 mg/ml RNase A; pH 8.0) that had been added just before the start of incubation, and stringently rinsed in steps with decreasing SSC concentrations (2 ×, 1 ×, 0.5 ×, 0.1 ×, ×), for 30 min at 58 °C. DIG-label was detected with the alkaline phosphatase method with nitroblue tetrazolium chloride/5-bromo-4-chloro-3-indolyl phosphate-toluidine salt (NBT/BCIP) as substrate. Briefly, after rinsing 4 × 5 min with buffer A (0.1 M Tris/HCl, 0.15 M NaCl, pH 7.5) sections were pre-incubated in buffer A containing 0.5% blocking agent (Roche) for 1 h, followed by 3 h incubation with sheep anti-DIG-AP (Roche; 1: 5000) in buffer A containing 0.5% blocking agent. Subsequently, sections were rinsed 4 times in buffer A, for 5 min, followed by 2 times 5 min rinsing in buffer B (0.1 M Tris/HCl, 0.15 M NaCl, 0.05 M MgCl2; pH 9.5). After 6 h incubation in NBT/BCIP medium (10 ml buffer B, 2.4 mg levamisole, 175 ml NBT/BCIP mixture; Roche) in a light-tight box, the reaction was stopped by placing the sections in buffer C (0.1 M Tris/HCl, 0.01 M EDTA; pH 8.0).

Sections were mounted on gelatin coated slides and embedded using Kaiser’s glycerol gelatin (Boom Chemicals).

2.12. RNA extraction from adipose tissue and cDNA synthesis

Small pieces of WAT or BAT (~1–10 mm3) were used for RNA-free RNA isolation. Tissue was incubated with 500 μl TRIzol® (Invitrogen) on ice, for 30 min, crushed using small glass cylinders, and sonificated to maximize RNA yield in an Ultrasonic processor (Sonics & Materials, Newton, USA), for 30 s. After adding 200 μl chloroform, the sample was centrifuged for 15 min at 4 °C, at 14,000 rpm. The aqueous phase was incubated for 10 min at 20 °C with 1 μl (20 μg) of glycogen (Thermo Fisher Scientific, Waltham, MA, USA) and 500 μl iso-propanol, and centrifuged again at 4 °C and 14,000 rpm, for 10 min. The cell pellet was rinsed for 1 min with 1 ml 75% ethanol, centrifuged at 4 °C and 14,000 rpm, for 5 min, air-dried, dissolved in 50 μl diethyl pyrocarbonate (DEPC)-treated MQ water, and its RNA concentration determined with a ND-1000 spectrophotometer (NanoDrop, Wilmington, USA).

For cDNA synthesis 100 ng isolated RNA was incubated in 11 μl DEPC-treated MQ with 1 μl (0.25 mM) random primers (Roche), for 10 min at 70 °C. Then, a mixture of 4 μl First Strand Buffer (5x), 2 μl of 10 mM dithiothreitol, 0.5 μM Rnasin (RNase inhibitor), 0.5 μl (100 U) Superscript II (all from Invitrogen) and 1 μl (0.5 mM) dNTPs (Roche) was added. cDNA synthesis was done for 75 min at 37 °C and ended by putting the samples at 95 °C, for 10 min. cDNA was stored at –20 °C.

2.13. Quantitative RT-PCR

Q-PCR was performed with a 7500 Real-Time PCR machine (Applied Biosystems, Foster City, USA), in 96 well plates (4tiitude, Surrey, UK) filled with a mixture of 1.5 μl DEPC-treated MQ, 12.5 μl Power SYBR® Green mixture (2x, Applied Biosystems) and 3 μl (15 pmol) UCF1 (forward CAAAGCTCCACCCGCAACAG, reverse ATTCGTCATGCGTTCGTT) or ADRB3 (forward CCACA-GAAGGTGTTCAACACT, reverse AATGGCCAGGAGGCAT) primers (both from Biologen, Nijmegen, The Netherlands) to which 5 μl cDNA had been added. As a reference gene, ribosomal subunit 18S was used.
(forward: TTGCTGATCCACATCTGCTGG, reverse ATTCGCA-GCAGGATGCAGAA) as this housekeeping gene appeared to be reliable (Derks et al., 2008). The reaction cycle was as follows: a single denaturation step of 10 min at 95 °C, followed by 40 repetitions of 15 s of denaturation at 95 °C and 1 min of elongation at 60 °C. Next, dissociation was performed during 15 s at 95 °C, 1 min at 60 °C, and finally 15 s at 95 °C. qPCR data were analyzed using the Applied Biosystems 7500 PCR machine SDS 10 software. The $2^{-\Delta\Delta CT}$ method has been applied to further evaluate the gene expression after assessment of melting curves.

2.14. Image analysis

Images were made with either an Orthoplan light microscope (Leitz, Wetzlar, Germany) equipped with a DFC420C digital camera (Leica Microsystems, Wetzlar, Germany), or a DM IRE2 inverted fluorescence microscope (Leica). For quantitation of the amount of immunoreactive material in the EWcp, two parameters were studied: 1) the total number of immunoreactive neuronal profiles present in 4 coronal sections of the EWcp between −5.5 mm and −6.5 mm to the Bregma, and 2) per neuron, the specific immunoreactivity (ir) signal density (SSD) averaged over all neurons present in these sections, using Image J software (version 1.37, NIH, Bethesda, MD, USA). The SSD was corrected for background density outside the EWcp and expressed in arbitrary units per neuron. Measuring the size of adipocytes was done using the ImageJ software. Sizes of adipocyte fat vacuoles were expressed as the average of measurements performed by two independent observers.

2.15. Statistics

Data are presented as means with the standard error of the mean (SEM). Data shown in Figs. 3–5 were analyzed by two-way analysis of variance (ANOVA), with ‘leptin’ and ‘time’ as independent variables, preceded by tests for normality (Shapiro-Wilk test; Shapiro and Wilk, 1965) and homogeneity of variance (Bartlett’s Chi-square test; Snedecor and Cochran, 1989), followed by Fisher’s post hoc analysis (Stat Soft, Tulsa, OK, USA) (α = 5%). Datasets in Figs. 7–10 were evaluated using two-tailed type 2 Student’s t-test after testing for normality and variance.

3. Results

3.1. The sensor: leptin binds to EWcp neurons

Previously we showed that approximately ~45% of EWcp-Ucn1 neurons expressed the short form of leptin receptor and responded to i.p. leptin injection (Xu et al., 2011). However, to study that leptin can physically bind to leptin receptor on EWcp-Ucn1 neurons and its effect on Ucn1 neuronal structure and function is not mediated by indirect neuronal pathways, we incubated acute midbrain slices containing the EWcp with Cy3-labeled leptin. Cy3-labeled leptin binding was present in the EWcp. Cy3-labeled leptin in 1 μM concentration caused a clear strong labeling of EWcp neurons. The 50 nM Cy3-labeled leptin provided a punctate cell surface signal in the EWcp (Fig. 1). This provides evidence that leptin binds to leptin receptor on EWcp-Ucn1 neurons.

3.2. The integrator: effect of leptin administration on EWcp-Ucn1 neuronal signaling

Previously, we reported that leptin activated STAT3 signaling in the EWcp-Ucn1 neurons within 2–4 h of i.p. injection (Xu et al., 2011). However, previous research has shown that leptin also recruits intracellular pathways other than STAT3 (for review see Liu et al., 2018). To obtain a comprehensive understanding of intracellular signaling pathway(s) recruited by leptin, we assessed the presence and dynamics of pSTAT3, pAKT and pERK, in a time-dependent manner. Leptin crosses the blood-brain barrier with differential dynamics (Banks et al., 2000; Faouzi et al., 2007). Therefore, we examined brain samples 0, 1, 2 and 4 h after leptin injection. To validate our approach, we first investigated the widely characterized and validated effect of i.p. leptin on pSTAT3 activation in the mediobasal hypothalamus (MBH), with saline-injected rats as controls. In line with previous literature (Xu et al., 2011), the strongest pSTAT3-ir in neuronal cell nuclei was observed 2 h after
injection (Supplementary Fig. 1). Similarly, the most robust activation of pSTAT3 in the EWcp was observed at 2 h (Fig. 2), whereas no immunopositive cell nuclei were seen at 1 h and 4 h (Fig. 2). Saline-injected rats did not show pSTAT3-ir either in MBH or EWcp at any time points.

In line with literature data, in the MBH, leptin administration induced pAKT-ir relative to saline-treated animals, with a maximal effect at 4 h (Supplementary Fig. 1). Interestingly, no pAKT-ir was observed in the EWcp at any time point after leptin administration (Fig. 2) suggesting that leptin does not recruit the AKT signaling pathway in the EWcp.

As to the number of pERK-ir neurons, ANOVA revealed main effects of ‘leptin’ (F1,23 = 9.45; P < 0.01) and ‘time’ (F3,23 = 5.14; P < 0.01), and a leptin × time interaction (F3,23 = 3.25; P < 0.05; Fig. 3I). For the saline group (Fig. 3A–D), we observed no difference at any time point, but in the leptin group (Fig. 3E–H) after 4 h the number of pERK-positive neurons was markedly lower than at 0 h (−71%; P < 0.05), 1 h (−79%; P < 0.0005) and 2 h (−74%; P < 0.01), and markedly lower (−78%; P < 0.01) than in the saline group (Fig. 3I). As to the SSD of the pERK-ir neurons, ANOVA revealed a main effect of ‘leptin’ (F1,24 = 11.46; P < 0.005) and ‘time’ (F3,24 = 3.71; P < 0.01; Fig. 4I). In saline-injected rats, the SSD revealed a tendency to increase at 1 h after injection (−18%; P = 0.09; Fig. 4I), but at 4 h it was significantly lower than at 1 h (−32%; P < 0.005) and 2 h (−22%; P < 0.05). In the leptin group, at 1 h, the SSD was higher than at leptin-injected rats, the pERK-ir was markedly lower (−59%; P < 0.005).

These results provide additional evidence that leptin directly recruits EWcp-Ucn1 neurons and primarily recruits STAT3 and pERK signaling pathways.

3.3. The integrator: effect of leptin administration on Ucn1 mRNA and peptide abundance

Previously we reported that leptin increased Ucn1 protein expression 4 h after i.p. leptin injection (Xu et al., 2011). To show that such a leptin-mediated increase in Ucn1 peptide abundance is accompanied by increased mRNA expression, we quantitatively assessed the Ucn1 mRNA content of the EWcp neurons using in situ hybridization. We found a clear hybridization signal in EWcp neurons (Fig. 4). The strength of hybridization was quantified by counting the number of mRNA-expressing neurons and determining the neuronal SSD of the hybridization signal. We found no effects of leptin or time or a leptin × time interaction on the number of neurons (Fig. 4I). However, the SSD of the neurons showed effects of leptin (F1,24 = 11.46; P < 0.005) and time (F3,24 = 3.71; P < 0.05) as well as a leptin × time interaction (F3,24 = 3.5; P < 0.05; Fig. 4E–H). In saline-injected rats, the SSD revealed a tendency to increase at 1 h after injection (−18%; P = 0.09; Fig. 4I), but at 4 h it was significantly lower than at 1 h (−32%; P < 0.005) and 2 h (−22%; P < 0.05). In the leptin group, at 1 h, the SSD was higher than at

Fig. 2. Dynamics of pSTAT3 and pAKT immunoreactivity in the centrally-projecting Edinger-Westphal nucleus (EWcp) upon leptin injection. Two hours after leptin injection pSTAT3 immunoreactivity (red neuronal nuclei) appeared in the EWcp. No remarkable pSTAT3 immunosignal was detected in phosphate buffered saline-treated (control) rats and in leptin-injected animals at any other time points. Leptin injection did not induce pAKT protein expression in the EWcp at any groups and time points. Bars: 30 μm.
time 0 (+24%; P < 0.05) and stayed at that level at 2 and 4 h. As a result of these time-dependent responses in both groups, 4 h after injection the SSD was markedly higher (+54%) in the leptin group than in the saline group (P < 0.0005).

To determine the amount of Ucn1 peptide in the EWcp in response to leptin injection, we measured the numbers and SSD of the respective Ucn1-ir neurons. For the number, no effect of leptin and time or a leptin × time interaction was observed at any time point after injection (Fig. 5). However, the SSD revealed an almost significant effect of leptin (F1,24 = 3.74, P = 0.06) and post hoc analysis showed that after 4 h (P < 0.05), the SSD of Ucn1-ir neurons was markedly higher (+48%) in the leptin-injected rats than in the controls (Fig. 5).

These results confirm our previous observation, and reveal that leptin first increased Ucn1 mRNA expression followed by increased Ucn1 peptide abundance.

3.4. The effector - retrograde tracing from WAT

Pre-sympathetic outflow from EWcp has been previously established towards the stellate ganglion, BAT, pancreas, and spleen (Jansen et al., 1997; Farkas et al., 1998; Cano et al., 2001; Zhang et al., 2011). To explore whether EWcp/Ucn1 neurons are a source of pre-sympathetic innervation to the WAT too, we injected PRV coupled with BDG into the epididymal fat pad. Five days later, we found strong GFP-ir in EWcp, indicating productive infection and the presence of BDG. Each mid-level section of the EWcp showed about 10 immunopositive neurons (Fig. 6A, D). Double immunolabeling demonstrated that about 80% of the labeled neurons were Ucn1-positive (Fig. 6C, F).

These results strongly suggest that EWcp-Ucn1 neurons provide a higher-order pre-sympathetic innervation of WAT.
3.5. The effector – the impact of EWcp/LepRb/Ucn1 neurons on white adipose tissue

To assess EWcp/LepRb/Ucn1 neurons’ functional effects on WAT, we injected leptin-conjugated saporin toxin into the EWcp. Successful ablation of LepRb-positive EWcp neurons was assessed by Ucn1-immunohistochemistry. As it is rather difficult to perform a midline injection into the EWcp without damaging the superior sagittal sinus, we recently developed an oblique approach (for details see ref. Füredi et al., 2017). With this, our success rate was about 60% with rats revealing a good injection site targeting the EWcp.

Leptin-saporin injected rats exhibited ~34% less EWcp/LepRb/Ucn1-ir neurons than controls (saporin-injected) (t(11) = 3.397, P < 0.005; control: 25.15 ± 0.83; ablation: 16.63 ± 2.2; Fig. 7A). As previously reported, approximately 45% of the Ucn1 neurons are LepRb positive (Xu et al., 2011), which means that the leptin-conjugated saporin injection had successfully ablated the majority (34/45; 75%) of the LepRb positive EWcp/Ucn1 neurons (Fig. 7A’).

EWcp/Ucn1 neuronal ablation resulted in increased weight of the right WAT (+26%; t(11) = -2.162; P < 0.05; control: 0.125 ± 0.012; ablation: 0.158 ± 0.01; the weights of left and right of WAT were corrected for body weight) compared to controls (Fig. 7B). We found no significant effect in the left WAT.

Next, we tested whether LepRb/Ucn1 neuron ablation influences WAT size. We counted the number of WAT cells in HE-stained WAT sections. WAT adipocytes showed a relatively large variation in their size both in control and in leptin-saporin-treated rats. In rats with EWcp/LepRb/Ucn1 neuron ablation, we observed a larger number of large adipocytes and fewer small adipocytes than controls on both left and right WAT (P < 0.05). This change in WAT size-frequency distribution was also mirrored by the mean adipocyte surface area, which showed a 25% increase for the left WAT and a 20% increase for the right WAT (P < 0.05; Fig. 7D and E).

Finally, we also assessed lipolysis in WAT by measuring p-HSL-ir in the right WAT. HSL is the main player involved in the lipolytic pathways. No effect of leptin-saporin injection on the density of p-HSL-ir was observed (P = 0.42; control: 35.33 ± 4.03; ablation: 37.29 ± 5.61; Fig. 7C) suggesting that the ablation of EWcp-Ucn1 neurons does not...
Fig. 5. Semi-quantitative immunofluorescence for Ucn1 peptide in the centrally-projecting Edinger-Westphal nucleus (EWcp) upon saline (PBS) and leptin (lep) treatment. Representative images of Ucn1 neurons (green) (A) in the EWcp 4 h upon PBS and leptin injection. The Ucn1-immunoreactive (ir) cell count was not affected by the treatment at any time points (B). The Ucn1 peptide content of the cells was significantly higher at 4 h (*P < 0.05), compared to the PBS-injected rats. SSD: specific signal density; a.u: arbitrary unit. Bars: 100 μm.

Fig. 6. Ucn1 neurons innervate the white adipose tissue. Green fluorescent protein (GFP) (A, D) appeared in the neurons of the centrally-projecting Edinger-Westphal nucleus (EWcp) after injection of GFP-expressing pseudorabies virus (Virus) into the white adipose tissue. The immunolabeling for Ucn1 peptide (B, E; red) revealed that most of the virus-infected cells were immunopositive for Ucn1 also (C, F). Bars: 30 μm.
These results show that EWcp/Ucn1 neuronal ablation increases right WAT weight and the number of large adipocytes and the mean adipocyte surface area in both left and right WAT but does not directly affect lipolysis.

3.6. The effector – the impact of EWcp/LepRb/Ucn1 neurons on brown adipose tissue

As a previous study by Zhang et al. (2011) showed a direct innervation of EWcp neurons of BAT, the effect of neuron ablation on the BAT was also studied. Rats with EWcp/LepRb/Ucn1 neuron ablation showed a 9-times higher amount of both UCP1 mRNA (t(10) = 2.819; P < 0.01; Fig. 8B) and β3-adrenergic receptor (ADRB3) mRNA (t(8) = 3.954; P < 0.005; Fig. 8C) than controls. No significant effect was observed for the left BAT.

These results confirm previous observations and show that EWcp/LepRb/Ucn1 neuron ablation influences BAT weight and increases UCP1 as well as ADRB3 mRNA expression in the BAT.

3.7. The effector – the impact of EWcp/LepRb/Ucn1 neurons on plasma leptin and lipid profile

In rats with EWcp/LepRb/Ucn1 ablation, the leptin plasma level tended to be higher than the controls (+51%; t(8) = −1.17; P = 0.1; control: 2.97 ± 0.8, ablation: 4.46 ± 1; n = 6; Fig. 9A). On the other
hand, circulating levels of triglycerides were clearly lower (−50%; t(10) = 3.85; P < 0.01; control: 0.42 ± 0.03; ablation: 0.28 ± 0.02; Fig. 9F). The HDL level was higher than in controls (32%; t(10) = -2.44; P < 0.05; control: 0.41 ± 0.05; ablation: 0.54 ± 0.03; Fig. 9C), whereas the LDL level showed a strong trend towards being lower (−27%; t(9) = 2.12; P = 0.06; control: 0.81 ± 0.07; ablation: 0.64 ± 0.06; Fig. 9D). Circulating cholesterol and NHDL did not appear to have been affected by ablation (Fig. 9B, E).

These results reveal that with EWcp/LepRb/Ucn1 ablation alters plasma lipid profiles.

3.8. The effector – impact of EWcp/LepRb/Ucn1 neurons on feeding and energy homeostasis

Bodyweight and food intake parameters (see Fig. 10A) were studied during 5 weeks after leptin-saporin injection. None of these parameters

![Fig. 9. Effects of EWcp/LepRb/Ucn1 neuron ablation on blood lipid profiles. Plasma leptin (A), cholesterol (B), high density lipoprotein (HDL) (C), low density lipoprotein (LDL), non-high density lipoprotein (NHDL) (D), and triglyceride (E) levels. The plasma HDL level increased (⁎P < 0.05) while triglyceride (⁎P < 0.01) deceased upon EWcp/LepRb/Ucn1 cell ablation.](image)

![Fig. 10. Effects of EWcp/LepRb/Ucn1 neuron ablation on feeding and energy homeostasis. Bodyweight (BW) (A), food intake (B), oxygen consumption (VO₂) (C), the diurnal pattern of (VO₂) (D) and that of the respiratory quotient (RQ) (E) were assessed in saporin-injected (control) and leptin-saporin-ablated (treated) rats. One week after Ucn1 neuron ablation the RQ was significantly (⁎P < 0.005) reduced.](image)
showed any significant effect of EWcp/LepRb/Ucn1 neuron ablation. Calorimetry, revealed a clear diurnal pattern in both ablation and control rats, as to Q\(_{\text{CO}_2}/\text{QO}_2\) and O\(_2\) consumption (\(\text{QO}_2\)). Both parameters were highest during the dark period (\(\text{QO}_2; P < 0.05, \text{VO}_2; P < 0.001\); Fig. 10C). Furthermore, during the light period small effects of LepRb/Ucn1 neuron ablation on \(\text{QO}_2\) (−6%; \(t(5) = 1.8; P = 0.06\) and \(\text{QO}_2\) (−8.4%; \(t(5) = 5.37; P < 0.005\)) were observed. These effects were only present during the first week after injection (Fig. 10D and E). No effects of ablation were observed at later time points.

These results demonstrate that EWcp Ucn1 neuron loss reduces respiratory quotient and oxygen consumption during the dark period.

4. Discussion

We provide evidence for a midbrain-WAT regulatory circuit via midbrain LepRb/Ucn1 neurons, supported by the following findings: 1) leptin can bind to neurons in the EWcp, 2) peripheral administration of leptin recruits pSTAT3 signaling at 2 h, and decreases pERK signaling at 4 h, 3) peripheral leptin differentially modulates the expression of Ucn1, 4) EWcp-Ucn1 neurons provide pre-sympathetic innervation to the WAT and BAT structure and function in a different manner. Below these findings will be discussed in detail.

4.1. Leptin recruits different signaling pathways in EWcp neurons

We found that leptin indeed binds to its receptor in the EWcp-Ucn1 neurons, suggesting that leptin can directly regulate Ucn1 neurons’ activity in the EWcp. This is corroborated by the finding that leptin treatment induced pSTAT3 at 2 h after leptin administration. However, we saw no pSTAT3 at 4 h after the injection. This activation pattern of pSTAT3 in the EWcp is in line with the temporal dynamics of leptin action in the dorsomedial and ventromedial hypothalamus (DMH, VMH; Faouzi et al., 2007), but it is in contrast to leptin-induced STAT3 phosphorylation in the ARC, which peaks already at 30 min after leptin injection and persists for at least 6 h (Guo et al., 2004). The relatively transient action of leptin on the EWcp is in line with our observation of an immediate, short-term effect of leptin on the electrical activity of the EWcp (Xu et al., 2011).

Leptin activates other signaling molecules downstream of LepRb, such as those constituting the PI3K-AKT (Niswender et al., 2001, 2004) and MAPK-ERK pathways (Rahmouni et al., 2009). In the present study, no phosphorylation of AKT was detected in the EWcp, suggesting that this pathway is not recruited by leptin action in the EWcp. This idea should not be surprising, because no changes in pAKT were observed upon leptin infusion in the hypothalamus either (Burgos-Ramos et al., 2010) and the effect of leptin on food intake, does not seem to involve AKT activation (Carvalheira et al., 2005). Concerning pERK, the picture is different. We found that 4 h after leptin injection, the amount of pERK-ir was markedly reduced compared to rats injected with saline. This effect differs from the effect of leptin on pERK in other parts of the brain. For instance, leptin rapidly (within 30 min) activates pERK in the hypothalamus, but no leptin effects are seen in extrahypothalamic nuclei like the nucleus of the solitary tract (Benomar et al., 2005; Rahmouni et al., 2009).

Nonetheless, leptin’s ability to activate STAT3 indicates that it may be involved in controlling long-term transcriptional changes, such as Ucn1 gene expression. Indeed, we show that Ucn1 gene expression is induced in a time-dependent fashion by peripheral leptin. Specifically, as early as 2 h after leptin injection, Ucn1 mRNA content was elevated, and this elevation continued through 4 h after leptin injection. An increased abundance of Ucn1-ir was only observed 4 h after leptin injection. We conclude that leptin directly binds to LepRb on the EWcp/Ucn1 neurons, and induces STAT3 activation, which in turn increases Ucn1 biosynthesis evidenced by an initial increase in Ucn1 mRNA expression followed by an increase in Ucn1 peptide abundance.

Here a possible limitation of these results must be noted. The potentially painful i.p. injection may have caused some acute stress that could have affected Ucn1 mRNA and peptide abundance in EWcp cells. However, in our earlier studies we did not detect remarkable Ucn1 neuron activation upon intraperitoneal saline injection (Gaszner et al., 2004) and the acute pain-induced Ucn1 neuron activation results in a faster upregulation of Ucn1 (Rouwette et al., 2012) than observed here. Furthermore, there was a non-significant increase of Ucn1 mRNA expression 1 h after PBS injection that then gradually decreased to baseline level.

4.2. EWcp/LepRb/Ucn1 neurons regulate WAT via the autonomic nervous system

Earlier studies showed that when PRV was injected into WAT specifically, neurons in the paraventricular nucleus (PVN) and medial preoptic area (MPA) within the hypothalamus, and many nuclei in the brainstem and the spinal cord were strongly labeled (Ramshad et al., 1998). Sympathetic nerve fibers arise from the intermediolateral (IML) column of the thoracic spinal cord and project to stellate ganglia located just outside of the spinal cord. In turn, stellate ganglia give rise to postsynaptic sympathetic nerve fibers, which subsequently innervate the WAT (Geerling et al., 2014). Here we provide evidence that EWcp Ucn1 neurons were retrogradely labeled after PRV-GFP injection into WAT as well. BDG has special features compared to earlier PRV derivatives, as it shows highly specific retrograde, transneuronal spread and expresses GFP with immediate-early kinetics under the regulation of the human CMV promoter, allowing early identification of infected neurons in different brain areas. These properties are due to specific modifications of the viral genome, which have been described in detail earlier (Boldogkői et al., 2002, 2004). The route of virus infection is closely identical in the case of different target organs until the infection reaches the brain, which has been comprehensively characterized in previous studies. Thus, we have only enclosed pictures of the EWcp nucleus and have not investigated ganglia outside the spinal cord and neurons in the IML in the present paper. Viral labelling in the EWcp indicates specific and indirect neuronal control of the WAT by the EWcp. With this approach it is not possible to tell whether the connections between the EWcp and the IML are direct or indirect and this is a true limitation of the study, because they may take place partially via other autonomic nuclei in the medulla.

Another limitation we have to state is that we do not provide direct experimental evidence if the leptin-sensing EWcp/LepRb/Ucn1 are the same cells that EWcp/Ucn1 neurons project to the IML, although we assume, this is the case. Related to this, one may also argue that besides the EWcp other major Ucn1-containing brain areas (e.g. supraoptic nucleus, lateral superior olive; see in ref. Bittencourt et al., 1999) areas may also project to the IML. However, we could not find any published evidence that direct nerve fiber connections would exist between the supraoptic nucleus, the lateral superior olive and the IML (Tucker and Saper, 1985). Nevertheless, together with the fact that Ucn1 fibers innervate the sympathetic outflow area of the thoracic spinal cord (Korosi et al., 2007), support the view that EWcp is one of the brain regions that regulate SNS components (Cano et al., 2021).

In general, increased sympathetic output from the SNS toward WAT increases plasma TG levels by stimulating hepatic VLDL production, and lipolysis in WAT. The latter results in the release of free fatty acids (FFA), which are transported to the liver to fuel the increased synthesis of VLDL. Ablation of LepRb/Ucn1 neurons resulted in significant WAT weight increase due to an increase in adipocyte size. Also, compared to control rats, rats with EWcp/LepRb/Ucn1 neuron ablation had lower plasma TG, lower LDL and HDL, which is probably due to decreased lipolytic activity. Decreased lipolysis leads to a decrease in circulating FFA, which results in a substrate shortage for hepatic very-low-density lipoprotein (VLDL) production, consequently reducing plasma levels of LDL and TG and increased plasma HDL. Taken together, the fat mass and
plasma lipid analysis suggest that the ablation of LepRb/Ucn1 neurons in the EWcp leads to an overall decrease in lipolysis, indicating a decrease in the SNS outflow to WAT.

To gain more insights into the regulation of EWcp on adipose metabolism, we further investigated the BAT in the rats with EWcp/LepRb/Ucn1 ablation. The SNS densely innervates the BAT, and SNS-mediated BAT thermogenesis is controlled by various brain areas (Boulant, 2000; Watanabe et al., 1994). Norepinephrine (NE) from SNS terminals stimulates ADRB3-activated BAT thermogenesis (Bartness and Song, 2007), enhances expression and synthesis of uncoupling protein-1 (UCP1). We found that the ablation of LepRb/Ucn1 neurons resulted in significant BAT weight increase. In addition, rats with EWcp/LepRb/Ucn1 neuron ablation showed an increased expression of ADRB3 mRNA and UCP1 mRNA in the BAT, suggesting BAT activation happens indeed through an increased SNS activity. These findings corroborate that the EWcp/LepRb/Ucn1 cells contribute to the higher-order control of SNS and BAT thermogenesis that is in agreement with our recent finding that local injection of melanocortin 4 receptor agonists activates EWcp/Ucn1 neurons, leading to the rise of energy metabolism and heat loss via increased peripheral vasodilation (Füredi et al., 2017).

When compiling collected data from WAT and BAT, a paradoxical picture emerges at first sight. On one hand, the EWcp seems to be a brain site involved in adipose metabolism regulation through controlling SNS activity. On the other hand, data of ADRB3 and UCP1 induction would suggest increased SNS innervations to the BAT. Although these data may seem paradoxical, when we consider that animals were all sacrificed two weeks after the surgery, we could propose a potential mechanism to resolve this paradox. Specifically, we suggest that the ablation of EWcp/LepRb/Ucn1 neurons leads to a decreased Ucn1 output towards the SNS. Decreased SNS activity in WAT leads to decreased TG levels and decreased lipolysis resulting in increased WAT size. The concomitant increase in leptin, however, is unable to upregulate Ucn1 production because of the ablation of EWcp/LepRb/Ucn1 neurons. However, leptin would still be able to reach other hypothalamic nuclei to activate the BAT. These results indicate that BAT activation is not primarily regulated by the EWcp/LepRb/Ucn1 neurons, but by the effect of leptin outside the EWcp.

4.3. Involvement of EWcp/LepRb/Ucn1 EWcp in energy balance

Maintenance of energy homeostasis and body weight is achieved by an intricate balance between energy intake (food intake) and expenditure. The ablation of LepRb/Ucn1 neurons in the EWcp has no apparent impact on food intake and body weight. Although not significant, these observations suggest an important notion that the effect of EWcp/LepRb/Ucn1 ablation is independent of leptin/Ucn1 anorexie effects. Earlier studies have found that central administration of Ucn1 results in a potent suppression of food intake (Spina et al., 1996) and increases whole-body oxygen consumption (De Fanti and Martínez, 2002). Interestingly, the fact that within the first week after the surgery, reduced LepRb/Ucn1 expression in the EWcp has led to a transient decrease in respiratory quotient (RQ, indicative of increased fat usage) in the light period; effects that were not seen for the remaining of the experiment, suggests that EWcp/LepRb/Ucn1 neurons modulate specifically WAT lipid mobilization and fat oxidation. In addition to this role of EWcp/LepRb/Ucn1 neurons, recently we have shown that they also contribute to energy intake/expenditure (Füredi et al., 2017).

4.4. Conclusions and future perspectives

Internal states, such as e.g. fight-or-flight response, profoundly influence physiology and behavior. A study by Lovett-Barron et al. (2017) identified a set of diverse neuromodulatory systems, including the EWcp governing internal states. The data summarized in this study indicate that WAT-derived leptin binds to the LepRb in the EWcp, increases Ucn1 production in the EWcp, and leads to enhanced sympathetic innervation of WAT. This leads to increased plasma TG levels as well as lipolysis in WAT without altering food intake. Collectively, we propose that the EWcp mediated activation of SNS is required to maintain energy homeostasis under different internal states (e.g. fight-or-flight response; Kozicz et al., 2011 and Xu, 2014) in which an organism needs to recruit fuels without being able to eat.

Author contributions

LX and B Geenen performed the histological techniques, PCR experiments, evaluated the results and performed the statistics. LX wrote the manuscript draft. NF, CL performed the animal surgery, metabolic measurements and immunocytochemistry. EP and MB supervised the metabolic experiments, evaluated the results and prepared the corresponding figures. AD performed the virus injections and evaluated the related results. KJK supervised virus injections and approved the draft manuscript. BG performed and supervised the animal experiments, collected tissue samples, performed the histological techniques and morphometry. TK designed the experiments, supervised data assessment, edited the final version of manuscript which was approved by all authors.

Acknowledgements

NF was supported by the research grant of Pécs University Medical School KA-2020-03, and New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund (ÚNKP-20-4-BB-PTSE-547). EP was supported by the grant from the Pécs University Medical School KA-2019-44. KJK was supported by Hungarian National Research, Development and Innovation Office (124424), and National Brain Research Program 2017-1.2.1-NKP-2017-00002. BG was financed by the Project no. TKP2020-IAK-08 provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2020-4.1.1-TKP2020 funding scheme. (FIKP II, FIKP III), EFOP-3.6.2-1-2017-00008 and NKFIH FK124188. This work was also financed by NAP 2017-1.2.1-NKP-2017-00022; GINOP-2.3.2-15-2016-00050 “PEPSYS” and MTA-TKI14016.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuropharm.2021.108898.

References

Bamshad, M., Aoki, V.T., Adkinson, M.G., Warren, W.S., Barttess, T.J., 1998. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275 (1 Pt 2), R291–R299, Banks, W.A., Clever, C.M., Farrell, C.L., 2000. Partial satiety and regional variation in the blood-to-brain transport of leptin in normal weight mice. Am. J. Physiol. Endocrinol. Metab. 278 (6), E1158–E1165, Bartness, T.J., Song, C.K., 2007. Brain-adipose tissue neural crosstalk. Physiol. Behav. 91 (4), 343–351, Benoit, S.C., Thiele, T.E., Heinrichs, S.C., Rushing, P.A., Blake, K.A., Steeley, R.J., 2000. Comparison of central administration of corticosterone-releasing hormone and urocortin on food intake, conditioned taste aversion, and c-Fos expression. Peptides 21 (3), 345–351, Bensam, Y., Wetzler, S., Lurie-Achagiotis, C., Djiane, J., Tomé, D., Taouis, M., 2005. In vivo leptin infusion impairs insulin and leptin signalling in liver and hypothalamus. Mol. Cell. Endocrinol. 242 (1–2), 59–66, Bittencourt, J.C., Vaughan, J., Arias, C., Rissman, R.A., Vale, W.W., Sawchenko, P.E., 1999. Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J. Comp. Neurol. 415 (3), 285–302, Boldogkői, Z., Reichart, A., Toth, I.E., Sik, A., Erdélyi, F., Medveczky, I., Llorens-Cortés, C., Palkovits, M., Lenkei, Z., 2002. Construction of recombinant pseudorabies viruses optimized for labeling and neurochemical characterization of neural circuitry. Brain Res Mol Brain Res 109 (1–2), 105–118, Boldogkői, Z., Sik, A., Denes, A., Reichart, A., Toth, J., Gerendai, I., Kovács, K.J., Palkovits, M., 2004. Novel tracing paradigms–genetically engineered herpesviruses
Kozicz, T., Sterrenburg, L., Xu, L., 2011b. Does midbrain urocortin 1 matter? A 15-year perspective. Front Neuroanat. 5 (1), 237–240.

Kozicz, T., Yanaihara, H., Arimura, A., 1998. Distribution of urocortin-like immunoreactivity in rat brain. Brain Res. 458 (1–2), 117–123.

Korosi, A., Kozicz, T., Richter, J., Veening, J.G., Olivier, B., Roubos, E.W., 2007. Intracellular signaling of leptin action in the brain: more complicated than a simple ARC. Cell Metabol. 9 (2), 114–123.

Niswender, K.D., Morton, G.J., Stearns, W.H., Rhodes, C.J., Myers Jr., M.G., Schwartz, M.W., 2001. Intracerebroventricular injection of urocortin 1 induces the tyrosine phosphorylation of signal transducer and activator of transcription proteins in the hypothalamus of normal rats in vivo. Endocrinology 142 (5), 1505–1512.

Simpson, J., Tharp, S., Frank, J., 2002. Hypothalamic substrates of metabolic imprinting. Physiol. Behav. 77 (2), 199–207.

The study suggests that leptin signaling modulates the activity of urocortin 1 neurons in the Edinger–Westphal nucleus.
urocortin 1 neurons in the mouse nonpreganglionic Edinger-Westphal nucleus. Endocrinology 152 (3), 979–988.
Xu, L., Scheenen, W.J., Roubos, E.W., Kozicz, T., 2012. Peptidergic Edinger-Westphal neurons and the energy-dependent stress response. Gen. Comp. Endocrinol. 177 (3), 296–304.
Xu, L., Janssen, D., van der Knaap, N., Roubos, E.W., Leshan, R.L., Myers Jr., M.G., Gaszner, B., Kozicz, T., 2014. Integration of stress and leptin signaling by CART producing neurons in the rodent midbrain centrally projecting Edinger-Westphal nucleus. Front. Neuroanat. 8, 8. https://doi.org/10.3389/fnana.2014.00008.
Zeng, W., Fitzgibbons, R.M., Pereira, M.M., Kubasova, N., Barateiro, A., Seixas, E., Lo, Y. H., Kozlova, A., Voix, H., Martini, G.G., Friedman, J.M., Domingos, A.L., 2015. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163 (1), 84–94.

Zhang, Y., Proença, R., Maffei, M., Barone, M., Leopold, L., Friedman, J.M., 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372 (6505), 425–432.
Zhang, Y., Kerman, I.A., Laque, A., Nguyen, P., Faouzi, M., Louis, G.W., Jones, J.C., Rhodes, C., Münzberg, H., 2011 Feb 2. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31 (5), 1873–1884. https://doi.org/10.1523/JNEUROSCI.3223-10.2011. PMID: 21289197; PMCID: PMC3069639.
Zhang, W., Cline, M.A., Gilbert, E.R., 2014. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism. Nutr. Metab. 11, 27. https://doi.org/10.1186/1743-7075-11-27.