An evolutionarily conserved phosphatidate phosphatase maintains lipid droplet number and endoplasmic reticulum morphology but not nuclear morphology

Anoop Narayana Pillai, Sushmita Shukla and Abdur Rahaman*

ABSTRACT

Phosphatidic acid phosphatases are involved in the biosynthesis of phospholipids and triacylglycerol, and also act as transcriptional regulators. Studies to ascertain their role in lipid metabolism and membrane biogenesis are restricted to Opisthokonta and Archaeplastida. Here, we report the role of phosphatidate phosphatase (PAH) in Tetrahymena thermophila, belonging to the Alveolata clade. We identified two PAH homologs in Tetrahymena, TtPAH1 and TtPAH2. Loss of function of TtPAH1 results in reduced lipid droplet number and an increase in endoplasmic reticulum (ER) content. It also results in more ER sheet structure as compared to wild-type Tetrahymena. Surprisingly, we did not observe a visible defect in the nuclear morphology of the ΔTtPAH1 mutant. TtPAH1 rescued all known defects in the yeast pah1Δ strain and is conserved functionally between Tetrahymena and yeast. The homologous gene derived from Trypanosoma also rescued the defects of the yeast pah1Δ strain. Our results indicate that PAH, previously known to be conserved among Opisthokonts, is also present in a set of distant lineages. Thus, a phosphatase cascade is evolutionarily conserved and is functionally interchangeable across eukaryotic lineages.

KEY WORDS: Phosphatidic acid hydrolase, Lipin, Tetrahymena thermophila, Lipid droplet, Nuclear membrane expansion, Endoplasmic reticulum

INTRODUCTION

Eukaryotic cell organelles are enclosed by a membrane composed of the lipid bilayer and proteins. Phospholipids constitute the major structural components of lipid bilayers and play a central role in membrane biogenesis, lipid metabolism and signaling (Van Meer et al., 2008). The lipid composition of the membrane is critical for maintaining the shape, size and number of organelles, and is established through synthesis, transport and modification of phospholipids (McMahon and Gallop, 2005). The regulation of lipid synthesis and storage is critical for maintaining lipid homeostasis since both excess and poor fat storage results in various lipid-associated disorders (Klingenspor et al., 1999; Reue et al., 2008). The lipid composition of the membrane is critical for maintaining lipid homeostasis since both excess and poor fat storage results in various lipid-associated disorders (Klingenspor et al., 1999; Reue et al., 2008). The lipid composition of the membrane is critical for maintaining lipid homeostasis since both excess and poor fat storage results in various lipid-associated disorders (Klingenspor et al., 1999; Reue et al., 2008). The lipid composition of the membrane is critical for maintaining lipid homeostasis since both excess and poor fat storage results in various lipid-associated disorders (Klingenspor et al., 1999; Reue et al., 2008). The lipid composition of the membrane is critical for maintaining lipid homeostasis since both excess and poor fat storage results in various lipid-associated disorders (Klingenspor et al., 1999; Reue et al., 2008). The lipid composition of the membrane is critical for maintaining lipid homeostasis since both excess and poor fat storage results in various lipid-associated disorders (Klingenspor et al., 1999; Reue et al., 2008). The lipid composition of the membrane is critical for maintaining lipid homeostasis since both excess and poor fat storage results in various lipid-associated disorders (Klingenspor et al., 1999; Reue et al., 2008).
Caenorhabditis elegans, downregulation of lipin affects the dynamics of the peripheral ER and nuclear envelope (Golden et al., 2009; Gorjánácz and Mattaj, 2009). Defects in mammalian lipins lead to various metabolic disorders including lipodystrophy and insulin resistance, rhabdomyolysis, peripheral neuropathy and inflammation (Reue et al., 2000; Müller-felber et al., 2010).

Fig. 1. Domain organization, sequence analysis and function of PAH protein. (A) Schematic representation of the role of PAH in lipid biosynthesis. PA is a key precursor used for the synthesis of PE and PC through the CDP-DAG pathway. In the presence of choline and ethanolamine, these phospholipids are synthesized through the Kennedy pathway. In metazoans, the pathway that converts CDP-DAG to PC/PE (CDP-DAG pathway) does not exist, whereas both the pathways are present in yeast. G-3-P, glycerol-3-phosphate; LPA, lysophosphatidate; PI3P, phosphatidylinositol-3-phosphate; PI4P, phosphatidylinositol-4-phosphate; PI(3,5)P2, phosphatidylinositol-3, 5-biphosphate; PS, phosphatidylserine. (B) Domain organization of TtPAH1 and TtPAH2. Predicted N-LIP and C-LIP domains are indicated in the boxes. Also shown are the positions of a conserved glycine residue in N-LIP and the HAD with its conserved DXDXT/V motif in C-LIP. (C) Multiple sequence alignment showing partial sequences of N-LIP and the HAD with its conserved DXDXT/V motif in C-LIP. Conserved glycine residue in N-LIP and catalytic motif (DXDGT/V) in C-LIP are indicated inside the box.
Besides serving enzymatic functions, lipins also act as transcriptional regulators (Finck et al., 2006; Zhang and Reue, 2017). Mammalian lipins regulate gene expression by modulating the activity of key transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ), PPAR co-activator 1α (PGC-1α) and sterol regulatory element binding protein (Phan et al., 2004; Peterson et al., 2011; Kim et al., 2013). Yeast Pah1 translocates to the nucleus where it interacts with the promoter of phospholipid synthesis genes (Santos-Rosa et al., 2005).

Phosphorylation and dephosphorylation at multiple sites regulate the activity and subcellular localization of PAH proteins. In yeast, Cdc28 phosphorylation of Pah1 is critical for cell cycle progression while phosphorylation by Pho85 plays other roles; in mammals, mTOR kinases phosphorylate lipins (Laplante and Sabatini, 2009; Peterson et al., 2011; Choi et al., 2012). Dephosphorylation of Pah1 by Cdc28 phosphorylation of Pah1 is critical for cell cycle progression.

TTPAH1 localizes on ER and encodes functional phosphatidate phosphatase

We focused our study on TTPAH1. To assess its localization, we overexpressed it bearing a green fluorescent protein (GFP) tag. Analysis of confocal images showed that TTPAH1-GFP was distributed throughout the cell (Fig. 2A). To evaluate whether TTPAH1 associates with ER membrane, Tetrahymena cells expressing TTPAH1-GFP were labeled with ER-Tracker Red dye, and analyzed by confocal microscopy. The results revealed that TTPAH1-GFP is localized to ER membrane in addition to the cytoplasm (Fig. 2B). To examine whether TTPAH1 encodes a functional phosphatidate phosphatase, we expressed a tandem affinity purification (TAP)-tagged fusion protein in Tetrahymena. We then purified the protein from lysates and measured phosphatidate phosphatase activity using a colorimetric assay. The purified protein migrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) at its expected size, near 100 kDa, but there were also more abundant smaller species, probably corresponding to proteolytic products (Fig. 2C). This purified protein dephosphorylated PA in a Mg²⁺-dependent manner (Fig. 2D,E). Taken together, these results confirm that TTPAH1 is a functional PAH in Tetrahymena.

TTPAH1 is dispensable for normal growth of Tetrahymena and loss of TTPAH1 does not affect expression of TTPAH2

In many organisms such as Saccharomyces cerevisiae, C. elegans and Drosophila melanogaster, PAH is required for normal growth (Santos-Rosa et al., 2005; Golden et al., 2009; Ugrankar et al., 2011). To assess whether TTPAH1 is essential for normal growth of Tetrahymena, we generated the knockout strain by removing all 45 copies of TTPAH1 from the macronuclear of wild-type Tetrahymena by homologous recombination. The knockout strains thus generated (ΔTtpah1) were analyzed by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), which confirmed the absence of TTPAH1 transcripts (Fig. 3A,B). The growth of ΔTtpah1 cells was not significantly different from that of wild-type cells (Fig. 3C). Moreover, there was no visible defect in the morphology of the knockout cells (data not shown). To rule out the possibility that the lack of growth defect in ΔTtpah1 is due to compensatory overexpression of TTPAH2 in these cells, we compared the expression of TTPAH2 in ΔTtpah1 with that in wild-type cells. The expression of TTPAH2 was not enhanced in ΔTtpah1 cells (Fig. 3D,E). Taken together, these results suggest that TTPAH1 is dispensable for normal growth of Tetrahymena.

TTPAH1 is required to maintain lipid droplet number in Tetrahymena

Lipid droplets are ubiquitous eukaryotic organelles mainly used for storing lipids (Murphy, 2001). They consist of a hydrophobic core...
of neutral lipids, such as triacylglycerol, sterols and sterol esters, surrounded by a phospholipid monolayer originating from the ER (Tauchi-Sato et al., 2002; Farese and Walther, 2009; Radulovic et al., 2013). Lipid droplet growth occurs either by localized synthesis of lipids or by fusion with other lipid droplets (Thiele and Spandl, 2008). Since Pah proteins are required for the synthesis of triacylglycerol, we compared lipid droplet numbers between ΔTtpah1 and wild-type cells. Lipid droplets were visualized by staining with Oil Red O, and the number of lipid droplets was counted after analyzing confocal images by LSM Image analyzer. The number of lipid droplets decreased significantly in ΔTtpah1 (Fig. 4A,B). Although there was no visible difference in the size of
lipid droplets, quantitative analysis showed ~60% reduction in lipid droplet numbers compared to wild type (Fig. 4B). To provide further evidence that TtPAH1 is involved in lipid droplet biogenesis, we overexpressed TtPAH1-GFP in wild-type Tetrahymena cells. Overexpression of TtPAH1 resulted in a ~20% increase in lipid droplet number compared to wild type (Fig. 4C,D). To demonstrate the specificity of this effect, we similarly overexpressed DRP6-GFP (a dynamin-related protein in Tetrahymena) and observed that it did not affect the lipid droplet number (Fig. 4D). Hence, we conclude that TtPAH1 is required to maintain normal lipid droplet number in Tetrahymena. Decreased lipid droplet accumulation in ∆Ttpah1 was not due to decreased nutrient uptake since we saw a similar reduction when the comparison between ∆Ttpah1 and wild-type was performed under starvation conditions (Fig. 4E,F). Under starvation conditions, we observed a ~60% reduction in lipid droplet number in ∆Ttpah1 cells. Moreover, the size of lipid droplet in ∆Ttpah1 was smaller than in wild-type cells (Fig. 4E). Taken together, these results suggest that TtPAH1 influences the number and size of the lipid droplets in Tetrahymena.

TtPAH1 is needed for maintaining tubular ER in Tetrahymena

The ER is a complex network consisting of flat sheets and highly curved tubules, and their abundance varies with cell cycle stages. The ER serves as the primary site for de novo lipid biosynthesis. We hypothesized that PAH regulates ER morphology since phosphatidic acid, a major component of ER, is converted to DAG by PAH. To determine whether TtPAH1 is important in maintaining ER morphology, we stained both ∆Ttpah1 and wild-type cells with ER-Tracker Red dye and analyzed morphology by confocal microscopy (Fig. 5A,B; Fig. S1). The ER content increased significantly in cells lacking TtPAH1, as measured by the mean density of ER-Tracker Red staining (Fig. 5C). Moreover, in wild-type cells, the ER appeared mainly as a network of fine tubules with occasional small patches, likely to represent ER sheets (Fig. 5A,B; Fig. S1). These patches seemed larger and more abundant in the absence of functional TtPAH1. This result suggests that TtPAH1 is required for creating and/or maintaining the ER structure.

Loss of TtPAH1 does not manifest visible nuclear envelope defect in Tetrahymena

Tetrahymena harbors one polyploid, phenotypically active macronucleus (MAC) and a diploid transcriptionally silent germline micronucleus (MIC). To determine whether TtPAH1 function is necessary to maintain normal nuclear envelope (NE) morphology, we analyzed the NE by expressing and visualizing NUP3-GFP (a nuclear pore component marker specifically localizing to macronucleus) in ∆Ttpah1 cells and wild-type cells. This comparison did not reveal any visible defect in size or shape of the NE in ∆Ttpah1 cells (Fig. 6A). Like in wild-type, the 4,6-diamidino-2-phenylindole, dihydrochloride (DAPI)-stained DNA appeared round, compact and nonfragmented (Fig. 6A). Consistent with this, isolated DAPI-stained nuclei from wild-type and mutant cells expressing NUP3-GFP seemed identical (Fig. 6B). To further confirm that deletion of TtPAH1 did not affect nuclear morphology, we stained isolated nuclei (both MAC and MIC) with a lipophilic dye (3,3′,3′′,3′′′-dihexyloxycarbocyanine iodide, DHCC) to visualize nuclear membrane. As with Nup3-GFP, we did not observe any visible defect in nuclear membranes of MAC (Fig. 6C). We also did not observe any detectable change in MIC structure (Fig. 6C). These results suggest that TtPAH1 is not essential for maintaining normal nuclear morphology in Tetrahymena. Our results are in contrast to findings in S. cerevisiae, where cells lacking PAH showed normal expansion of nuclear envelope that appeared as a nuclear membrane projections lacking DNA. Our results, taken together with our analysis of the ER, suggest that defects in ER morphology in Tetrahymena do not necessarily affect nuclear morphology, unlike the coupling in other organisms.

TtPAH1 restores different phenotypes of pah1Δ yeast cells

Though TtPAH1 is not required for regulating nuclear expansion and nuclear shape in Tetrahymena, we asked whether the ciliate protein could rescue the nuclear defects in S. cerevisiae pah1Δ, which might be expected if the homologous proteins retain the same enzymatic activity. To assess nuclear morphology in budding yeast, we expressed nucleoplasmin protein PUS as a GFP-fusion and visualized pah1Δ cells expressing TtPAH1.

In pah1Δ, the nuclei in nondividing cells often appeared as two lobes interconnected by a long nuclear membrane extension (Fig. 7A) (Santos-Rosa et al., 2005). In contrast, pah1Δ expressing TtPAH1 showed nearly normal nuclear morphology (Fig. 7A). This result suggests that TtPAH1 can substitute for one or more functions of the yeast homolog.

pah1Δ also exhibits slow growth at 30°C, temperature-sensitive growth at 37°C (Han et al., 2006) and respiratory deficiency (i.e. growth defect) on nonfermentable carbon sources (Han et al., 2007). Along with rescue of the nuclear morphology defect, expression of TtPAH1 restored growth both at 30°C and 37°C (Fig. 7B). To evaluate the role of TtPAH1 in rescuing respiratory deficiency, we grew cells on plates containing glycerol as nonfermentable carbon source. The pah1Δ expressing TtPAH1 grew faster than control pah1Δ cells (Fig. 7B).

Nuclear expansion in yeast is linked to the induction of phospholipid biosynthetic genes (Santos-Rosa et al., 2005). Deletion of PAH1 induces the expression of inositol-3-phosphate synthase (INO1), the transcription factor INO2 and phosphatidyl-N-methylethanolamine N-methyltransferase (OP13), which are involved in the induction of phospholipid biosynthetic genes, leading to overly developed ER and aberrant expansion of nuclear membrane (Santos-Rosa et al., 2005). To test whether TtPAH1 inhibits abnormal nuclear expansion in pah1Δ yeast by inhibiting the phospholipid biosynthesis genes, we have analyzed the mRNA levels of INO1, OP13 and INO2 by quantitative real-time PCR using Sec 63 (a resident ER membrane protein unaffected by PAH1 deletion) as a control (Santos-Rosa et al., 2005). TtPAH1 repressed expression of all three genes tested, suggesting that TtPAH1 could replace yeast PAH1.
in regulating expression of phospholipid biosynthesis genes (Fig. 7C). Taken together, these results suggest that TIPA1H retains all the known functions of yeast PAH1, and hence is functionally conserved between yeast and Tetrahymena.

A conserved DXDXT/V motif at C-LIP is essential for the catalytic activity of Pah1/lipin in yeast and mammals (Finck et al., 2006; Han et al., 2007). We identified a similar motif (666 DIDGT 670) in the predicted C-LIP of TtPah1 and evaluated if the motif is important for
the function of *TtPAH1* by mutating two aspartate residues (D666,668E) (*TtPAH1mut*). Since *TtPAH1* functionally replaces yeast *PAH1*, we attempted to complement *pah1Δ* yeast cells with *TtPAH1mut*, and evaluated nuclear morphology, and growth in different temperatures and media. The mutant protein did not rescue aberrant nuclear morphology, slow growth at 30°C and the respiratory defect to the wild-type level (Fig. 7A,D). These results suggest that the catalytic activity of TtPah1 is important for its function.
Fig. 4. TtPAH1 maintains lipid droplet number in *Tetrahymena*. (A) Confocal images of *Tetrahymena* cells showing lipid droplets stained with Oil Red O dye. Wild-type cells and knockout cells were imaged together simultaneously. The wild-type cells were stained with DAPI to distinguish them from knockout cells. (B) Box plot showing the distribution of lipid droplet numbers in wild-type (*n*=35) versus ΔTtpah1 (*n*=38) cells. (C) Confocal images of wild-type and TtPAH1-GFP-expressing cells showing lipid droplets after staining with Oil Red O dye. (D) Box plot showing lipid droplet numbers in wild-type cells, cells overexpressing TtPAH1-GFP (*n*=20) and cells overexpressing GFP-DRP6 (*n*=20). An increase in lipid droplet number is observed in cells expressing TtPAH1-GFP. (E) Confocal images of *Tetrahymena* cells showing lipid droplets stained with Oil Red O dye. Wild-type (WT) and knockout cells after starvation were imaged together simultaneously. Knockout cells were stained with DAPI to distinguish them from wild-type cells. Both the size and number of lipid droplets are reduced in ΔTtpah1 cells (*n*=20) and ΔTtpah1 (*n*=22) cells under starved condition.

Phosphatidate phosphatase is conserved across eukaryotic lineages

Prior studies on the role of PAH proteins in the regulation of lipid homeostasis and membrane biogenesis have focused mainly on the Opisthokont and Archaeplastid clades. The cellular function of PAH is not yet known in organisms belonging to clades distantly related to Opisthokont, such as the Excavata. Fig. 8A shows an evolutionary tree with representative organisms for each clade. The sequence analysis of PAH homologs from organisms belonging to different clades suggest that it is conserved across eukaryotic lineages (Fig. 8B). In this study, we established the role of *PAH1* in regulating lipid homeostasis and membrane biogenesis in *Tetrahymena*, an Alveolate. By complementation of *pah1Δ* yeast cells with *Trypanosoma PAH1* (*TbPAH1*), we further show that conservation appears to extend to another group, the Excavates. *TbPAH1* rescued the growth, respiratory and nuclear defects of *pah1Δ* yeast cells (Fig. 8C,D).

The Arabidopsis *PAH* homolog *AtPAH2* has previously been shown to possess some functions of *S. cerevisiae PAH1*, based on its ability to rescue the slow growth phenotype of *pah1Δ* yeast. However, it was not reported whether the plant homolog also rescues the nuclear envelope defect (Nakamura et al., 2009; Mietkiewska et al., 2011). We used *AtPAH2* to complement the *pah1Δ* yeast strain. In addition to rescuing the growth phenotype, *AtPAH2* mitigated the aberrant nuclear morphology of *pah1Δ* yeast cells, confirming conservation between Opisthokonta and Archaeplastida (Fig. 8C,D). Taken together, these results along with results from earlier reports suggest that the *PAH* phosphatase cascade is functionally conserved across eukaryotic lineages, indicating that it originated before the lineages diverged very early in eukaryotic evolution.

DISCUSSION

In this study, we have identified two homologs of *LIPIN/PAH* in *T. thermophila*. We report that *TtPAH1* is a phosphatidic acid phosphatase involved in the regulation of lipid droplet biogenesis and ER morphology in *Tetrahymena*. Regulation of lipid homeostasis and membrane biogenesis is fundamental to all eukaryotes, and the presence of a regulation cascade comprising Pah1 and its phosphatase complex Nem1-Spo7 has been shown in yeast (Siniossoglou et al., 1998; Péterfy et al., 2001; Han et al., 2011). We used *AtPAH2* to complement the *pah1Δ* yeast strain. In addition to rescuing the growth phenotype, *AtPAH2* mitigated the aberrant nuclear morphology of *pah1Δ* yeast cells, confirming conservation between Opisthokonta and Archaeplastida (Fig. 8C,D). Taken together, these results along with results from earlier reports suggest that the *PAH* phosphatase cascade is functionally conserved across eukaryotic lineages, indicating that it originated before the lineages diverged very early in eukaryotic evolution.

Fig. 5. TtPAH1 is needed for maintaining tubular ER. (A) The top panel shows wild-type (WT) and ΔTtpah1 (KO) cells imaged simultaneously in the same field after staining with ER-Tracker Red. The left panel represents the confocal stack; the right panel is a single mid plane confocal slice. Wild-type cells were stained with DAPI to distinguish them from ΔTtpah1 cells. The enlarged images of ΔTtpah1 (bottom left) and wild-type (bottom right) cells are shown, indicating ER sheet (arrows) and ER tubule (arrowheads) structures. To rule out the effect of DAPI staining on ER morphology, we also stained ΔTtpah1 cells with DAPI and imaged them simultaneously with wild-type cells and found similar results. (B) Box plot showing the mean density of ER-Tracker Red staining. The mean intensity of ΔTtpah1 (*n*=32) is significantly higher than that of wild type (*n*=25).
are also reported in plants (Nakamura et al., 2009; Mietkiewska et al., 2011), mammals, (Kim et al., 2007), worms (Golden et al., 2009) and flies (Ugrankar et al., 2011). All studies are restricted to Opisthokonta and Archaeplastida clades. The presence of such a cascade is not reported in the distantly related lower eukaryotic clades such as Alveolata and Excavata. In the present study, we
observed that PAH from the clades belonging to Excavata and Alveolata functionally replaces yeast PAH1. We, therefore, conclude that this phosphatidic acid phosphatase cascade regulating membrane biogenesis and lipid homeostasis is conserved across the eukaryotic evolutionary tree.

Fungi (S. cerevisiae), nematodes (C. elegans) and insects (D. melanogaster) express one PAH homolog (Han et al., 2006; Golden et al., 2009; Ugrankar et al., 2011), whereas mammals express three and plants (Arabidopsis thaliana) express two homologs (Donkor et al., 2007; Nakamura et al., 2009). The presence of two PAH homologs in a lower eukaryote, such as Tetrahymena, is unusual since multiple homologs are mainly found in higher organisms. Previous studies have shown that deletion of PAH leads to growth and development defects in yeast (Han et al., 2006, 2007; Adeyo et al., 2011), D. melanogaster (Ugrankar et al., 2011) and C. elegans (Golden et al., 2009). In contrast, loss of PAH1 in Tetrahymena did not result in growth defect. The normal growth and development of Δtpah1 mutant cells may be attributed to the presence of another homolog, TtPAH2.

TiPah1 displays cytoplasmic as well as membrane localization consistent with previously characterized mammalian lipin and yeast Pah1 (Péterfy et al., 2001; Han et al., 2006). Dephosphorylation of Pah1 regulates its subcellular localization and promotes its translocation from the cytoplasm into ER, where it converts PA to DAG (Karanasios et al., 2010). PA phosphatase regulates lipid droplet number by generating its precursor TAG from the substrate PA (Adeyo et al., 2011). The role of PAH/LIPIN in lipid droplet biogenesis or lipid storage has been established in yeast (Adeyo et al., 2011), Drosophila (Ugrankar et al., 2011) and C. elegans (Golden et al., 2009). By generating the deletion of TtPAH1 in Tetrahymena, we demonstrated its role in lipid droplet biogenesis. Overexpression of TtPAH1 in wild-type cells leads to an increase in lipid droplet number, further corroborating its role in lipid droplet biogenesis.

The role of PAH proteins in maintaining ER structure is well established in yeast and C. elegans (Simionescu et al., 1998; Campbell et al., 2006; Golden, Liu and Cohen-Fix, 2009). The loss of PAH produces a morphological change in many organelles in Drosophila, but perturbation of ER morphology was not reported.
Interestingly, deletion of macronuclear copies of TtPAH1 in Tetrahymena alters ER morphology, resulting in an increased proportion of sheet to tubule structure. One possibility for the altered ER morphology could be the change in phospholipid flux arising from the loss of PAH1, leading to change in the phospholipid composition of ER. We observed increased intensity of ER-Tracker Red dye in ΔTtpah1 cells, indicating higher levels of sulphonyl urea receptor (SUR) of ATP-sensitive K+ channel in these cells. The expansion of the ER by deletion of PAH1 is in general associated with increased expression of membrane proteins that include ER resident proteins in other organisms such as Schizosaccharomyces pombe, C. elegans, and Yarrowia lipolytica (Tange, 2002; Golden et al., 2009; Guerfal et al., 2013). Therefore, we speculate that the increased ER membrane synthesis in ΔTtpah1 cells concomitantly increases the production of ER-associated proteins and might include ER resident proteins such as SUR. However, this remains to be tested in Tetrahymena.

Loss of PAH in mammals and C. elegans results in a defect in nuclear envelope breakdown (NEBD) without any nuclear expansion (Golden et al., 2009; Gorjánácz and Mattaj, 2009). The regulation of nuclear expansion by PAH is restricted to yeast, which could be explained by the presence of the CDP-DAG pathway in yeast and its absence in mammals and C. elegans (Bahmanyar et al., 2014; Bahmanyar, 2015). The accumulation of PA due to loss of PAH1 leads to the excess synthesis of phospholipids PE and PC via the CDP-DAG pathway, resulting in massive nuclear expansion in yeast (Santos-Rosa et al., 2005; Han et al., 2006; Bahmanyar et al., 2014). It is interesting to note that although Tetrahymena possesses the CDP-DAG pathway for phospholipid synthesis, nuclear expansion was not visible in ΔTtpah1. Although we have used only NUP-GFP as a marker to detect nuclear expansion, it might be useful to test with other nuclear markers as well. However, we believe that NUP3-GFP is also a reliable marker since nuclear membrane flares seen in yeast contain assembled nuclear pore structures (Siniossoglou et al., 1998). Further, by staining the nuclear membrane with a lipophilic dye that should stain any membranous structure, we failed to detect any visible flares in both micronucleus and macronucleus of ΔTtpah1. These results suggest that unlike yeast, in which expansion of the nuclear membrane is very prominent, there is no extensive expansion of the nuclear membrane in ΔTtpah1.

(Ugrankar et al., 2011). Interestingly, deletion of macronuclear copies of TtPAH1 in Tetrahymena alters ER morphology, resulting in an increased proportion of sheet to tubule structure. One possibility for the altered ER morphology could be the change in phospholipid flux arising from the loss of PAH1, leading to change in the phospholipid composition of ER. We observed increased intensity of ER-Tracker Red dye in ΔTtpah1 cells, indicating higher levels of sulphonyl urea receptor (SUR) of ATP-sensitive K+ channel in these cells. The expansion of the ER by deletion of PAH1 is in general associated with increased expression of membrane proteins that include ER resident proteins in other organisms such as Schizosaccharomyces pombe, C. elegans, and Yarrowia lipolytica (Tange, 2002; Golden et al., 2009; Guerfal et al., 2013). Therefore, we speculate that the increased ER membrane synthesis in ΔTtpah1 cells concomitantly increases the production of ER-associated proteins and might include ER resident proteins such as SUR. However, this remains to be tested in Tetrahymena.

Loss of PAH in mammals and C. elegans results in a defect in nuclear envelope breakdown (NEBD) without any nuclear expansion (Golden et al., 2009; Gorjánácz and Mattaj, 2009). The regulation of nuclear expansion by PAH is restricted to yeast, which could be explained by the presence of the CDP-DAG pathway in yeast and its absence in mammals and C. elegans (Bahmanyar et al., 2014; Bahmanyar, 2015). The accumulation of PA due to loss of PAH1 leads to the excess synthesis of phospholipids PE and PC via the CDP-DAG pathway, resulting in massive nuclear expansion in yeast (Santos-Rosa et al., 2005; Han et al., 2006; Bahmanyar et al., 2014). It is interesting to note that although Tetrahymena possesses the CDP-DAG pathway for phospholipid synthesis, nuclear expansion was not visible in ΔTtpah1. Although we have used only NUP-GFP as a marker to detect nuclear expansion, it might be useful to test with other nuclear markers as well. However, we believe that NUP3-GFP is also a reliable marker since nuclear membrane flares seen in yeast contain assembled nuclear pore structures (Siniossoglou et al., 1998). Further, by staining the nuclear membrane with a lipophilic dye that should stain any membranous structure, we failed to detect any visible flares in both micronucleus and macronucleus of ΔTtpah1. These results suggest that unlike yeast, in which expansion of the nuclear membrane is very prominent, there is no extensive expansion of the nuclear membrane in ΔTtpah1.
membrane in *Tetrahymena* upon deletion of *TtPAH1*. Nuclear volume in *Tetrahymena* is variable presumably due to differential ploidy level in the MAC (Raikov 1976; Gorovsky 1980; Bodenbender et al., 1992). Therefore, one could speculate a ploidy level in the MAC (Raikov 1976; Gorovsky 1980; volume in [48x694]1640 extract, 0.003% ferric EDTA). For conjugation, cells of different mating types were grown to log phase, washed and starved in DMC (0.17 mM sodium citrate, 0.1 mM NaH₂PO₄, 0.1 mM Na₂HPO₄, 0.65 mM CaCl₂ and 0.1 mM MgCl₂) for 16-24 h at 30°C (Orias et al., 2000). For long-term storage, wild-type or knockout cells were starved and frozen in liquid nitrogen in 4% DMSO (Bruns et al., 2000).

Construction and expression of *TtPAH1-GFP, TtPAH1-TAP and NUP3-GFP*

To generate the *TtPAH1-GFP* construct, full-length *TtPAH1* was amplified from genomic DNA using specific primers (Table S1). The amplified product was cloned into an entry vector using a pENTR/D-TOPO kit (Invitrogen). This was further cloned into the destination vector pIGF (Tetrahymena-specific DNA-based vector, a gift from Doug Chalker, Washington University, USA) using LR clonase. For expressing *TtPAH1* as TAP-tagged protein, full-length *TtPAH1* was PCR amplified using specific primers with a Xhol restriction site on the forward primer and an Apal restriction site in the reverse primer (Table S1), and the amplified product was cloned into *Tetrahymena*-specific vector pVGF (from Meng-Chao Yao, University of Washington, USA) using Xhol and Apal restriction sites.

TtPAH1-TAP and *TtPAH1-GFP* were transformed into wild-type *Tetrahymena* cells using 20 μg of the plasmid by electroporation (Gaertig et al., 1994). Transformants were selected with 100 μg/ml paromomycin sulfate and induced with 1 μg/ml cadmium chloride for 4-5 h to stimulate transcription of the transgene from the *MIT1* promoter. The NUP3-GFP in NCVB vector (from Aaron Turkewitz, University of Chicago, USA) was linearized and introduced biologically into vegetative *Tetrahymena* by particle bombardment, and the transformants were selected using 60 μg/ml blasticidin in the presence of 1 μg/ml cadmium chloride (Rahaman et al., 2008).

Disruption of *TtPAH1*

5′UTR and 3′UTR of *TtPAH1* were PCR amplified and cloned into the pcRII vector (Invitrogen). To amplify 5′UTR, SacI and EcoRI restriction sites were incorporated in the forward and reverse primer, respectively (Table S1). For amplification of 3′UTR, EcoRI and Xhol restriction sites were included in the forward and reverse primer, respectively (Table S1). Finally, the NEO3 cassette was introduced between 5′UTR and 3′UTR using EcoRI restriction sites. The resulting knockout construct was linearized by digesting with SacI and Xhol restriction enzymes and introduced biologically into vegetative *Tetrahymena* by particle bombardment as previously described (Gaertig et al., 1994; Cassidy-Hanley, 2003). The complete replacement of endogenous *TtPAH1* was achieved by growing the transformants in the presence of increasing concentrations of paromomycin sulfate (≤1.2 mg/ml) with 1 μg/ml cadmium chloride.

Semi-quantitative RT-PCR

Total RNA was isolated from Δ*tpha1* cells and wild-type cells using a RNeasy Mini Kit (Qiagen). A QuantiTect Reverse Transcription Kit (Qiagen) was used to synthesize cDNA. PCR reactions were performed with 100 ng cDNA using alpha-tubulin (αTU1)- and *TtPAH1*-specific primers (Table S1) in the same reaction for 25-40 cycles.

Purification of TtPAH1-TAP

For purification of TtPAH1-TAP, *Tetrahymena* cells harboring *TtPAH1-pVGF* were grown to a density of 3×10^8 cells/ml. The culture was induced with 1 μg/ml cadmium chloride for 5 h at 30°C, and cells from 300 ml cultures were collected by centrifugation. The cell pellet was resuspended in 10 ml lysis buffer [20 mM Tris-HCl (pH 8.00), 100 mM NaCl, 0.5% NP-40, 10% glycerol] supplemented with a mixture of protease inhibitors (pepsatin, E-64, aprotinin and protease inhibitor cocktail). The lysate was clarified by ultracentrifugation (Optima L100K, 70Ti rotor, Beckman Coulter, Brea, CA, United States) for 1 h at 250,000 g. To minimize proteolysis, all subsequent steps were carried out at 4°C unless mentioned otherwise. Rabbit-IgG agarose slurry (Sigma-Aldrich) pre-equilibrated with wash buffer was added to the clarified lysate and was kept for binding for 2 h. Resin was collected by centrifugation (1 min at 3000 g) and washed with 50 bed volumes of wash buffer [20 mM Tris-HCl (pH 8.00), 2 mM

Materials and Methods

Strains and culture conditions

Wild-type CU428.1 and B2086 strains of *T. thermophila* were grown at 30°C in SPP medium (2% proteose peptone, 0.2% dextrose, 0.1% yeast extract, 0.003% ferric EDTA). For conjugation, cells of different mating
MgCl₂, 0.2 mM EGTA, 0.1% Tween 20, 10% glycerol, 1 mM DTT, 0.1 mM PMSF). Resin was incubated with 2 μl TeV protease in 200 μl cleavage buffer [10 mM Tris-HCl (pH 8.00), 0.1 M NaCl, 0.1% Tween 20, 0.5 mM EDTA, 1 mM DTT] for 1.5 h at room temperature, followed by further incubation at 4°C overnight. The eluate after protolytic cleavage was adjusted to 3 mM CaCl₂ and mixed with three volumes of calmodulin binding buffer [10 mM Tris-HCl (pH 8.00), 100 mM NaCl, 1 mM Mg acetate, 1 mM imidazole, 2 mM CaCl₂, 0.1% Tween 20, 10 mM βME]. This was incubated with 100 μl calmodulin resin (GE Healthcare, Buckinghamshire, UK) at 4°C for 1 h. The resin was recovered by centrifugation and washed with calmodulin binding buffer. Protein was eluted with calmodulin elution buffer [10 mM Tris-HCl (pH 8.00), 100 mM NaCl, and 1 mM Mg acetate, 1 mM imidazole, 10 mM EGTA, 0.1% Tween 20, 10 mM 2-mercaptoethanol] (Witkin and Collins, 2004). Eluted fractions were loaded on 10% SDS polyacrylamide gel, and the protein was detected by silver staining.

Growth analysis

TtPAH1 knockout cells and wild-type cells were grown in triplicate. When the cell number reached 1×10⁶/ml, cells were counted using a hemocytometer at 2 h intervals after fixation with formalin. The averaged cell density was plotted against time.

Isolation of nuclei

Tetrahymena cells (50 ml, 5×10⁶ cells/ml) were centrifuged (1100 g for 2 min) at 4°C and cell pellets were washed with pre-chilled Solution A (sucrose 0.1 M, gum arabic 4% v/v, MgCl₂ 0.0015 M, Spermendine Hydrochloride 0.01% v/v) and resuspended in freshly prepared Oil Red O solution. Cells were washed and washed in 0.1 M HEPES and resuspended in the same solution before imaging in a confocal microscope (Binner, 1996). For ER staining, Tetrahymena cells were grown in the same media at 30°C to early log phase and analyzed by confocal microscopy. The results from three independent experiments were used for analysis of nuclear morphology.

Site-directed mutagenesis

Point mutations (D666,668E) at the corresponding sites of the TtPAH1 coding region in YCplac111-PAH1 fusion construct were introduced using a Quik Change Site-Directed Mutagenesis protocol (Stratagene), and the mutations were confirmed by DNA sequencing.

Phosphatase assay

Phosphatidic acid phosphatase activity was measured by following the release of water-soluble Pi from chloroform-soluble PA. The standard reaction contained 50 mM Tris-HCl buffer (pH 7.5), 1 mM MgCl₂, 10 mM Triton X-100, 10 mM 2-mercaptoethanol and 1 mM phosphatidic acid in a total volume of 100 μl. Reactions were initiated by the addition of recombinant proteins and carried out in triplicate at 30°C for 20 min. The reaction was terminated by adding 500 μl of 0.1 M HCl in methanol and 1 ml chloroform. To that mixture, 1 ml of water was added for phase separation, and one volume of upper phase was mixed with two volumes of Biomol Green to develop color. The absorbance was measured at 620 nm, and the amount of phosphate produced was quantitated using a standard curve (Han and Carman, 2010).

Sequence analysis

Sequences of Tetrahymena PAH homologs (TTHERM_00189270 and TTHERM_00215970) were retrieved from the Tetrahymena Genome Database and domains were predicted with Interpro protein sequence analysis and classification tool (EMBL-EBI). Multiple sequence alignment was performed with PRALINE. Percent identity matrix was calculated using Clustal2.1. The sequences of PAH used in this study were S000004775 for Trypanosoma cruzi PAH1 (\textit{T. cruzi} PAH1), TtPAH1 (Trypanosoma brucei PAH1) were amplified using specific primers and cloned into YCplac111 (LEU) using Sall/BamHI restriction sites. To assess nuclear membrane morphology and growth rescue, pah1Δ yeast cells (RS453 smp2Δ ade2his3leu2trp1ura3 sph2::TRP1) were transformed with either TtPAH1 or TtPAH1mut or AtPAH2 or TbPAH1 along with PUS-GBP by standard lithium acetate protocol (Gietz and Woods, 2001). Transformsants were screened on solid SD medium lacking uracil and leucine. The transformsants were grown in the same media at 30°C to early log phase and analyzed by confocal microscopy. The results from three independent experiments were used for analysis of nuclear morphology.

Acknowledgements

We thank Prof. Aaron Turkevitz (University of Chicago) for critical evaluation and useful comments on the manuscript; Symeon Siniossoglou (University of
Cambridge) for providing pah1Δ yeast strain and PUS-GFP plasmid; and Laurie K. Read (SUNY at Buffalo) for providing Trypanosoma brucei genomic DNA.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: A.R.; Methodology: A.N.P., A.R.; Validation: A.N.P., A.R.; Formal analysis: A.N.P., A.R.; Investigation: A.N.P., S.S., A.R.; Resources: A.N.P., A.R.; Writing - original draft: A.N.P., S.S., A.R.; Writing - review & editing: A.N.P., S.S., A.R.; Visualization: A.N.P., S.S., A.R.; Supervision: A.R.; Project administration: A.R.; Funding acquisition: A.R.

Funding
This work was supported by the Department of Biotechnology, Ministry of Science and Technology (BT/PR14643/BRB/10/082/2010 to A.R.) and the Council of Scientific and Industrial Research (CSIR Fellowship to A.N.P.).

Supplementary information
Supplementary information available online at http://bioinformatics.org/lookup doi:10.1242/bio.028333 supplemental

References
Adeyo, O., Horn, P. J., Lee, S. K., Binns, D. D., Adejo, O., Horn, P. J., Lee, S. K., Chandrahas, A., Chapman, K. D. and Goodman, J. M. (2011). The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell Biol. 192, 1043-1055.
Allen, S. L. (2000). Isolation of micronuclear and macronuclear DNA. Methods Cell Biol. 62, 213-218.
Anderson, D. J. and Hetzer, M. W. (2008). Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J. Cell Biol. 182, 911-924.
Bahmanyar, S. (2015). Spatial regulation of phospholipid synthesis within the nuclear envelope domain of the endoplasmic reticulum. Nucleus 6, 102-106.
Bahmanyar, S., Biggs, R., Schuh, A. L., Desai, A., Müller-Reichert, T., Audhya, A., Dixon, J. E. and Oegema, K. (2014). Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28, 121-126.
Binnis, D., Januszewski, T., Chen, Y., Hill, J., Markin, V. S., Zhao, Y., Gilpin, C., Chapman, K. D., Anderson, R. G. W. and Goodman, J. M. (2006). An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 173, 719-731.
Bodenbender, J., Prohaska, A., Jauker, F. and Hipke, H., C. G. (1992). DNA elimination and its relation to quantities in the macronucleus of Tetrahymena. Dev. Genet. 13, 103-110.
Brens, P. J., Smith, H. R. and Cassidy-Hanley, D. (2000). Long-Term Storage. Methods Cell Biol. 62, 213-218.
Campbell, J. L., Lorenz, A., Witkin, K.L., Witkin, K.L., Hays, T., Loidl, J. and Cohen-Fix, O. (2012). Tetrahymena as a laboratory model to study adipose tissue deficiency, increased intracellular membrane production. Microb. Cell Fact. 12, 122.
Han, G.-S. and Carman, G. M. (2010). Characterization of the Human LPIN1-encoded Phosphatidate Phosphatase Isoforms. J. Biol. Chem. 285, 14628-14638.
Han, G.-S., W. I. and Carman, G. M. (2006). The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281, 9210-9218.
Han, G.-S., Siniossoglou, S. and Carman, G. M. (2007). The cellular functions of the yeast lipin homolog Pah1p are dependent on its phosphatidate phosphatase activity. J Biol. Chem. 282, 37026-37035.
Karanasios, E., Han, G., Xu, Z., Carman, G. M. and Siniossoglou, S. (2010). A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc. Natl. Acad. Sci. USA 107, 17539-17544.
Kearns, B. G., McGee, T. P., Mayinger, P., Gedvilaite, A., Phillips, S., Li, G., Sjöqvist, G., Sainio, K. and Gombos, E. (2007). Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101-105.
Kim, Y., Gentry, M. S., Harris, T. E. W., Wiley, S. E., Lawrence, J. C. and Dixon, J. E. (2007). A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc. Nat. Acad. Sci. 104, 8596-8601.
Kim, H. E., Bae, E., Jeong, D. Y., Kim, M.-J., Jin, W.-J., Park, S.-W., Han, G.-S., Carman, G. M., Koh, E. and Kim, K.-S. (2013). Lipin1 regulates PPARgamma transcriptional activity. Biochem. J. 453, 49-60.
Klingenspor, M., Xu, P., Cohen, R. D., Weih, C. and Reue, K. (1999). Altered gene expression pattern in the fatty liver dystrophy mouse reveals impaired insulin-mediated cytokine dynamics. J. Biol. Chem. 274, 23078-23084.
Laplante, M. and Sabatini, D. M. (2009). An emerging role of mTOR in lipid biosynthesis minireview. Curr. Biol. 19, R1046-R1052.
Lin, Y. and Carman, G. M. (1989). Purification and characterization of phosphatidate phosphatase from Saccharomyces cerevisiae. J. Biol. Chem. 264, 8641-8645.
Loewen, C. J. R., Gaspar, M. L., Jesch, S. A. and Delon, C. (2004). Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304, 1644-1647.
McMahon, H. T. and Gallop, J. L. (2005). Membrane curvatures and mechanisms of dynamic cell membrane remodelling. Nature 438, 590-596.
Mietkiewska, E., Siloto, R. M. P., Deward, J., Shah, S., Brindle, D. N. and Wesselake, R. J. (2011). Lipins from plants are phosphatidate phosphatases that restore lipid synthesis in a pah1Δ mutant strain of Saccharomyces cerevisiae. FEBS J. 278, 764-775.
Müller-felber, W., Venkateswaran, R., Ogier, H., Desguere, I. and Altuza, C. (2010). LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Hum.Mutat. 31, 1564-1573.
Murphy, D. J. (2001). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Lipid Res. 40, 325-438.
Nadra, K., Charles, A.-S. d. P., Metard, J. J., Hendriks, W. T., Han, G.-S., Grés, S., Carman, G. M., Saulnier-Blanche, J. S., Verheijen, M. H. G. and Chrast, R. (2008). Phosphatidic acid mediates demyelination in Lpin1 mutant mice. Genes Dev. 22, 1847-1861.
Nakamura, Y., Koizumi, R., Shui, G., Shimjojima, M., Menk, M. R. and Itó, T. (2009). Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically. Proc. Natl Acad. Sci. USA 106, 20978-20983.
Orias, E., Hamilton, E. P. and Orias, J. D. (2000). Tetrahymena as a laboratory organism: useful strains, cell culture, and cell line maintenance. Methods Cell Biol. 62, 189-211.
Péterfy, M., Phan, X., Xu, and Reue, K. (2001). Lipidostrophy in the fdd mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nature Genet. 27, 121-124.
Petersen, T. R., Sengupta, S. S., Harris, E. T., Carmack, A. E., Kang, S. A., Balderas, E., Guertin, D. A., Madden, K. L., Carpenter, A. E., Finck, B. N. et al. (2011). mTORC1 complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408-420.
Phan, J., Péterfy, M. and Reue, K. (2004). Lipin expression preceding peroxisome proliferator-activated receptor-γ is critical for adipogenesis in vivo and in vitro. J. Biol. Chem. 279, 29558-29564.
Radulovic, M., Knittelfelder, O., Cristobal-Sarramian, A., Kold, D., Wolinski, H. and Kohlwein, S. D. (2013). The emergence of lipid droplets in yeast: current status and experimental approaches. Curr. Genet. 59, 231-242.
Rahaman, A., Elde, N. C. and Turkewitz, A. P. (2008). A dynamin-related protein required for nuclear remodeling in tetrahymena. Curr. Biol. 18, 1227-1233.
Raikov, I. B. (1976). Evolution of macronuclear organization. Annu. Rev. Genet. 10, 413-440.
Reue, K., Xu, P., Wang, X. and Slavin, B. G. (2000). Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fdd) gene. J. Lipid Res. 41, 1067-1076.
Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S. and Siniosoglou, S. (2005). The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931-1941.

Sherman, F. (2002). Getting started with yeast contents. Methods Enzymol. 350, 3-41.

Siniosoglou, S., Santos-rosa, H., Rappsilber, J., Mann, M. and Hurt, E. (1998). A novel complex of membrane proteins required for formation of a spherical nucleus. EMBO J. 17, 6449-6464.

Tange, Y. (2002). An evolutionarily conserved fission yeast protein, Ned1, implicated in normal nuclear morphology and chromosome stability, interacts with Dis3, Pim1/RCC1 and an essential nucleoporin. J. Cell Sci. 115, 4375-4385.

Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R. and Fujimoto, T. (2002). The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J. Biol. Chem. 277, 44507-44512.

Thiele, C. and Spandi, J. (2006). Cell biology of lipid droplets. Curr. Opin. Cell Biol. 20, 378-385.

Ugrankar, R., Liu, Y., Provaznik, J., Schmitt, S. and Lehmann, M. (2011). Lipin is a central regulator of adipose tissue development and function in drosophila melanogaster. Mol. Cell Biol. 31, 1646-1656.

Van Meer, G., Voelker, D. R. and Feigenson, G. W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112-124.

White, M. J., Hirschs, J. P. and Henry, A. (1991). The OPIl gene of Saccharomyces cerevisiae, a negative regulator of phospholipid biosynthesis, encodes a protein containing polyglutamine tracts and a Leucine Zipper. J. Biol. Chem. 266, 863-872.

Witkin, K. L. and Collins, K. (2004). Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev. 18, 1107-1118.

Zhang, P. and Reue, K. (2017). Lipin proteins and glycerolipid metabolism: Roles at the ER membrane and beyond. Biochim. Biophys. Acta 1859, 1583-1595.