Multiple immunity-related genes control susceptibility of Arabidopsis thaliana to the parasitic weed Phelipanche aegyptiaca

Christopher R Clarke, So-Yon Park, Robert Tuosto, Xiaoyan Jia, Amanda Yoder, Jennifer Van Mullekom, James Westwood

1 Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
2 School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
3 Department of Statistics, Virginia Tech, Blacksburg, VA, United States

Corresponding Authors: Christopher R Clarke, James Westwood
Email address: christopher.clarke@usda.gov, westwood@vt.edu

Parasitic weeds represent a major threat to agricultural production across the world. Little is known about which host genetic pathways determine compatibility for any host–parasitic plant interaction. We developed a quantitative assay to characterize the growth of the parasitic weed Phelipanche aegyptiaca on 46 mutant lines of the host plant Arabidopsis thaliana to identify host genes that are essential for susceptibility to the parasite. A. thaliana host plants with mutations in genes involved in jasmonic acid biosynthesis/signaling or the negative regulation of plant immunity were less susceptible to P. aegyptiaca parasitization. In contrast, A. thaliana plants with a mutant allele of the putative immunity hub gene Pfd6 were more susceptible to parasitization. Additionally, quantitative PCR revealed that P. aegyptiaca parasitization leads to transcriptional reprogramming of several hormone signaling pathways. While most tested A. thaliana lines were fully susceptible to P. aegyptiaca parasitization, this work revealed several host genes essential for full susceptibility or resistance to parasitism. Altering these pathways may be a viable approach for limiting host plant susceptibility to parasitism.
Title Multiple immunity-related genes control susceptibility of *Arabidopsis thaliana* to the parasitic weed *Phelipanche aegyptiaca*

Authors and affiliations

Christopher R. Clarke¹*, So-Yon Park², Robert Tuosto², Xiaoyan Jia², Amanda McGough³, Jennifer H. Van Mullekom³, and James H. Westwood²*

1 Genetic Improvement for Fruits and Vegetables Lab, ARS, USDA; Beltsville, MD; USA
2 School of Plant and Environmental Sciences, Virginia Tech; Blacksburg, VA, USA
3 Department of Statistics; Virginia Tech, Blacksburg, VA, USA

*Correspondence to: westwood@vt.edu, christopher.clarke@ars.usda.gov

Keywords: *Phelipanche aegyptiaca*, parasitic plants, parasite resistance, parasite susceptibility, *Arabidopsis thaliana*, plant immunity

Abstract

Parasitic weeds represent a major threat to agricultural production across the world. Little is known about which host genetic pathways determine compatibility for any host – parasitic plant interaction. We developed a quantitative assay to characterize the growth of the parasitic weed *Phelipanche aegyptiaca* on 46 mutant lines of the host plant *Arabidopsis thaliana* to identify host genes that are essential for susceptibility to the parasite. *A. thaliana* host plants with mutations in genes involved in jasmonic acid biosynthesis/signaling or the negative regulation of plant immunity were less susceptible to *P. aegyptiaca* parasitization. In contrast, *A. thaliana* plants
with a mutant allele of the putative immunity hub gene *Pfd6* were more susceptible to parasitization. Additionally, quantitative PCR revealed that *P. aegyptiaca* parasitization leads to transcriptional reprogramming of several hormone signaling pathways. While most tested *A. thaliana* lines were fully susceptible to *P. aegyptiaca* parasitization, this work revealed several host genes essential for full susceptibility or resistance to parasitism. Altering these pathways may be a viable approach for limiting host plant susceptibility to parasitism.

Introduction

The parasitic weed *Phelipanche aegyptiaca* (syn. *Orobanche aegyptiaca*) is an obligate holoparasite, lacking the capacity for photosynthesis and fully dependent on parasitization of a host plant for nutrients and completion of its lifecycle. *P. aegyptiaca*, which is commonly known as Egyptian broomrape, is a major biotic constraint to crop production throughout much Eastern Europe, Asia, and Northern Africa (Parker 2013). *P. aegyptiaca* is able to parasitize a remarkably broad host range of dicotyledonous plants including crop and non-crop species. The crop-containing plant families for which *P. aegyptiaca* is a major threat are *Solanaceae*, *Fabaceae*, *Apiaceae* and *Cucurbitaceae* (Parker 2013). Additionally, *P. aegyptiaca* can successfully parasitize the model host plant *Arabidopsis thaliana* which makes it a promising model parasitic plant (Goldwasser et al. 2000; Westwood 2000), despite the significant challenges of working with *P. aegyptiaca* in a laboratory setting.

P. aegyptiaca is a member of the Orobanchaceae family, which includes the overwhelming majority of agriculturally relevant parasitic weeds. Other members of the family that are major pests in agricultural production systems include *Striga hermonthica* (purple witchweed), a widespread and devastating parasite of cereal crops throughout Africa (Spallek et al. 2013),
Orobanche cumana (sunflower broomrape), one of the primary biotic constraints to sunflower production in Europe and Asia (Molinero-Ruiz et al. 2015), and Orobanche cernua (nodding broomrape), a costly weed of tomato and other solanaceous crops throughout Africa, Asia, and Europe (Parker 2013). Although much has been written about the ability of parasitic weeds to germinate in response to host-specific chemical cues (e.g., (Zwanenburg et al. 2016)), develop haustoria to invade host plant tissues (Yoshida et al. 2016), and extract nutrient through vascular connections (Irving & Cameron 2009), relatively little is known about the host plant immune responses and parasitic plant virulence mechanisms throughout these stages of plant – parasite interactions (See (Kaiser et al. 2015) and (Clarke et al. 2019) for review).

Because of the close physical association and shared angiosperm characteristics between parasitic plants and their hosts, mechanical and chemical controls are largely ineffectual in the control of parasitic weeds. Development of genetically resistant host crops is the most promising strategy for managing parasitic weeds (Rubiales et al. 2016). Unfortunately, to date only a few resistance (R) genes or resistance-associated quantitative trait loci have been identified for parasitic weeds. A classic nucleotide-binding-site, Leucine-rich-repeat (LRR) R gene that confers resistance to S. gesnerioides was cloned from cowpea (Li & Timko 2009). A pattern recognition receptor (PRR) in tomato that confers resistance to the stem parasite Cuscuta reflexa was identified in tomato (Hegenauer et al. 2016). Recently, another LRR receptor-like kinase was identified as responsible for sunflower resistance to O. cumana (Duriez et al. 2019). Several other resistance loci have been deployed in the management of O. cumana on sunflower, but the parasite rapidly overcomes such resistance (Molinero-Ruiz et al. 2015).

An alternative genetic strategy for the control of parasitic weeds is the alteration of host plant genes that are essential for parasite attachment or development, so called susceptibility genes
For example, genes involved in the biosynthesis of parasite germination stimulants or transport of critical nutrients to the parasite are potential susceptibility genes. Identifying the genetic pathways that underpin host compatibility for parasite attachment and development is an essential first step toward finding susceptibility genes. To that end, we developed an assay to quantify the ability of *P. aegyptiaca* to successfully attach and develop on *A. thaliana* roots, and quantified susceptibility to parasite attachment and development for 46 mutant lines of *A. thaliana*. The primary goal in this work was to test the impact on a parasitic plant of host plant hormone signaling and immunity-related genes that have been either demonstrated or hypothesized to be involved in plant susceptibility to other pathogen classes.

Materials and Methods

Plant growth and quantifying parasite attachment and development

The parasite attachment assay was conducted using a randomized incomplete block design due to large number of tested genotypes. For each experimental block, four mutant plant lines were randomly selected from the pool of all mutant lines in the collection. Approximately 25 *A. thaliana* seeds of each of the four mutant lines plus the wild type background ecotype were stratified in water at 4°C for two days in then planted in Sunshine #1 potting mix (Sungro). Plants were grown in a Conviron ATC40 growth chamber at 20°C, 12-hour light cycle and light intensity of 90µmol m⁻² s⁻¹ for 10 days. Eight Polyethylene (PE) bags with glass fiber grade A (GFA) paper (Whatman) backings were made as previously described (Westwood 2000) with dimensions of 26 cm x 9 cm (Fig. 1A). The 10-day-old *A. thaliana* seedlings were gently removed from the soil and the roots were washed with water until free of soil. The plants were transplanted such that the roots were positioned between the PE bag and the GFA paper and the
hypocotyl extended from the top of the bag (Fig. 1a). One plant of each of the four mutant lines and one plant of the wild type background ecotype were randomly distributed into each of the PE bags and placed under a laboratory growth light with a 12-hour light cycle for 12 days. *P. aegyptiaca* seeds were sterilized following previously described protocols (Westwood 2000) and placed on wet GFA paper in a sealed Petri plate (Fisher Scientific) for six days to condition the seeds (Westwood 2000). The strigolactone analog rac-GR24 was then applied to the conditioned *P. aegyptiaca* seeds at a concentration of 2 mg/L to stimulate germination. The Petri dishes were resealed and stored in the dark for an additional 24 hours. Conditioned and stimulated *P. aegyptiaca* seeds were inoculated onto the roots of the *A. thaliana* plants in the PE bags (12 days after transplanting from soil) using a fine-tipped paintbrush. By placing germinated *P. aegyptiaca* seeds immediately adjacent to developed roots, the impact of differential root development among the various tested *Arabidopsis* mutants was limited. The seeds were aligned to be within 0.3 mm of roots that had grown since the transplanting (lighter colored roots) and approximately 35 seeds were placed along the roots of each plant in each bag.

The attachment rate for each individual *A. thaliana* plant was quantified 15 days after inoculation. Every *P. aegyptiaca* seed was examined under a dissecting microscope (Zeiss Stemi SV11) at 12x magnification and classified as either non-germinated, germinated but not attached, or attached. Not attached and attached germinated seeds were distinguished by probing with a 0.3 mm wide dissecting probe to test for adherence of the parasite radicle to the *A. thaliana* roots. The attached *P. aegyptiaca* plants were further classified as either early-stage attachment/haustoria connection, early-stage tubercle, or late-stage tubercle which correspond to the stages 3, 4.1, and 4.2 in the Parasitic Plant Genome Project datasets (Westwood et al. 2012; Yang et al. 2014) (Fig. 1D). The 0.3 mm dissecting probe was used to distinguish the three
attached classifications as follows: an attached radicle thinner than 0.3 mm was categorized as an attached radicle/initial attachment (stage 3). A tubercle formed that is thicker than 0.3 mm but has no secondary roots was categorized as an early-stage tubercle (stage 4.1) and coincides with the completion of the vascular connection/feeding bridge between the parasite and the host plant. A tubercle with secondary roots longer than 0.3 mm was categorized as a late-stage tubercle (stage 4.2). The rate of attachment for each of the three stages was determined by calculating the ratio of all of the *P. aegyptiaca* seeds that had reached at least the designated stage (*i.e.* the rate of initial attachment included the count of late-stage tubercles plus early-stage tubercles) divided by the total number of germinated *P. aegyptiaca* seeds (*i.e.* the total number of all stages plus those seeds that germinated but did not attach to hosts).

Statistical analysis of attachment rates

We used a generalized linear mixed model (SAS/STAT(R) 9.2 User's Guide 2016) to analyze different rates of parasitization at each of the three developmental stages. This model is based on the binomial distribution with the logit link. The SAS script and example files are uploaded to the Ag Data Commons (https://data.nal.usda.gov/dataset/data-multiple-immune-pathways-control-susceptibility-arabidopsis-thaliana-parasitic-weed-phelipanche-aegyptiaca). The one fixed effect of interest was treatment of the plants. The treatments are the different host plant genetic pathways which were compared to the respective wildtype in our model (Col-0, Ler-0, or Ws-2). Both bag and position were set as fixed effects to account for any systematic variability within both bag and position. The experiment was specified as a random block, which allows us to determine significance of the fixed effects above and beyond experiment to experiment variability. This also accounts for the fact that results within an experiment may be more related than results across experiments. Our response variable was the ratio of attachment stage total to...
overall germinated seed total (described above). We compared 95% and 99% confidence
intervals on the odds ratio estimates at each of the three stages to determine which treatments are
statistically significantly different from the wildtype. An odds ratio greater than one indicates
that *P. aegyptiaca* is more successful on the mutant line relative to the wildtype. An odds ratio
less than one indicates that *P. aegyptiaca* is less successful on the mutant line than on the
wildtype.

Type III tests of fixed effects indicated that there was no significant variation dependent on the
bag. However, there was a significant effect dependent on the position of the plant within the bag
for early and late stage tubercle attachment rates (Table S1). Tukey-Kramer analysis of the least
square means of the differences of position with adjustment for multiple comparisons showed
that significant differences (p<0.05) always included plants on the edge of the bag (positions 1
and 5). We hypothesize that these differences were due to the edge of the GFA paper drying out
more unevenly than the center of the GFA paper. Therefore, it is essential to randomize the
position of the plants within each bag, as was done here.

Time-lapse photography

A PE bag containing *A. thaliana* eco. Col-0 was inoculated with stimulated *P. aegyptiaca* seeds
as described above. The bags were mounted on a metal hanger inside a 11.3-liter Rubbermaid
container that had a 70 mm diameter hole cut in the side for insertion of a macro camera lens and
the top portion was covered with aluminum foil with a narrow opening so that the *A. thaliana*
shoots could be exposed to light (12-hour light-dark cycles) while the parasites were in darkness.
The camera was a Sigma SD14 digital camera with a 70mm Sigma DG macro lens. The camera
flash provided the light source for the photography. The *A. thaliana* was watered through a tube
that fed directly into the bag, so that the plant did not have to be disturbed during the time-lapse photography. For recording aboveground plant growth, a tomato (*Solanum lycopersicum*) was used as host because *Arabidopsis* does not support robust aboveground growth in our experimental setup. A Nikon D5100 camera with a Nikon DX AF-S Nikkor lens was used. Pictures were taken at 9-minute intervals for 37 days over the course of the above and below ground segments. Sigma Photo Pro software (Sigma Corporation of America) was used to convert the images from raw X3F format into JPEG. Adobe Premiere Pro CC 2017 was then used to assemble the images and for video editing to make the time-lapse video at 24 fps.

Quantitative RT-PCR

Three biological replicates of approximately 40 0.5cm root sections were harvested from both inoculated and time-matched mock-inoculated *A. thaliana* eco. Col-0 plants at early attachment stage, early vascularization/early tubercle stage, and late tubercle stage (six total experimental conditions with 3 biological replicates and 3 technical replicates each). RNA was extracted using a Qiagen RNeasy kit. cDNA was synthesized using Superscript cDNA synthesis kit (Invitrogen) following the manufacturer’s recommended protocol. qRT-PCRs were performed by StepOnePlus Real-Time PCR System (Invitrogen) with Power SYBR green master mix (Invitrogen). The reaction condition was 2 min at 50°C and 10 min at 95°C followed by 40 cycles at 95°C for 15 s, at 56°C for 15s, and 72°C for 15s. Dissociation curves were evaluated to confirm the specificity. Relative quantification was calculated by 2-ΔΔCT method using qBase+ software. Three housekeeping genes (*SAND, UBQ10, and UFP*) were used for the normalization. geNorm analysis revealed that geNorm M-value of all three genes (*SAND, UBQ10, and UFP*) were 0.762, 0.709, and 0.619, relatively (qBASE+, Biogazelle). The recommended cutoff value is one or less. Calibrated, normalized relative quantification values for each gene were compared
between the mock-inoculated and *Phelipanche*-inoculated plants for each parasite developmental stage using a two-tailed, two-sample unequal variance *t*-test. The primers used are described in Table S2. All primers were previously designed in other studies: (Jacobs et al. 2011) (*VSP2, MYB51, EXPPT1, BOI, SID2, WRKY53*), (Paponov et al. 2008) (*IAA13, IAA2, ACS6*), (Nguyen et al. 2016) (*ARR10, UBQ10*), (Šašek et al. 2014) (*SAND*), (Tran et al. 2017) (*UFP*), (Pegadaraju et al. 2007) (*PAD4*), (Zhang et al. 2014) (*PRI*). All primers were validated to be specific to *A. thaliana* DNA and to not amplify any product from cDNA prepared from early tubercle stage *P. aegyptiaca* tissue.

Results

A quantitative screen for host plant resistance and susceptibility to parasitic weeds

We developed a quantitative assay to measure the susceptibility of *A. thaliana* to *P. aegyptiaca* attachment and tubercle development based on previously described techniques (Westwood 2000). *A. thaliana* plants grown in PE bags with GFA backing (Fig. 1a) allow for host roots to be directly inoculated with *P. aegyptiaca*. All *P. aegyptiaca* seeds were stimulated with the strigolactone analog rac-GR24 (Yoneyama et al. 2010), which is an effective germination stimulant for *P. aegyptiaca* (Fig. 1b). *P. aegyptiaca* attachment and development can be monitored in this growth system. Our analysis of time-lapse video of *P. aegyptiaca* (Video S1 - available at https://figshare.com/articles/PhelipancheParasitization_mov/11894388) growth highlighted the acceleration in parasite growth following development of the floral meristem. Therefore, the challenge for our assay of parasite growth on mutants was to devise a method that could provide sensitive, reproducible measures of parasite success during a developmental stage characterized by relatively small changes in growth. The number of *P. aegyptiaca* seedlings at
various growth stages can be counted under a dissecting microscope (Fig. 1c). Graphical
representation of the typical attachment and tubercle development rates from inoculation of \(P. \) aegyptiaca onto wildtype \(A. \) thaliana is shown in Fig. 1d. All data from all parasite attachment
experiments are in Table S3. Because of the substantial number of comparisons made in this
analysis (three different stages for each of 46 mutant lines compared to wildtype), we primarily
focus on differences that met the more stringent 99% confidence limit cutoff (see methods) to
minimize false positives. Based on this cutoff, only between 2 and 9 mutant lines showed altered
susceptibility to \(P. \) aegyptiaca parasitization at any specific stage compared to wildtype \(A. \)
thaliana (Table S4).

Host genetic pathways essential for susceptibility to \(P. \) aegyptiaca

\(P. \) aegyptiaca is a successful pathogen of \(A. \) thaliana (Goldwasser et al. 2000); therefore, our
assay of attachment and development rates is more suited to identify mutations that attenuate \(A. \)
thaliana susceptibility to \(P. \) aegyptiaca parasitization than mutations that increase susceptibility.
The 46 tested mutant lines include numerous disruptions in key signaling pathways (Table 1). It
is important to note that many of these genes are involved in several different genetic pathways
due to the substantial crosstalk among many of the signaling pathways. Examples include \(pad4 \)
and \(eds1 \) which are involved in salicylic acid (SA) signaling, but also critical for several \(R \) gene-
mediated responses (Cui et al. 2017; Rustérucci et al. 2001) and the substantial crosstalk between
jasmonic acid (JA), SA, and ethylene signaling (Koornneef & Pieterse 2008).

For the stage of initial parasitization/haustoria development, no mutant lines were less
susceptible than wildtype \(A. \) thaliana at the 99% confidence level (Fig. 2). This result
demonstrates that none of the tested host endogenous signaling pathways are essential for \(P. \)
aegyptiaca to form haustoria and attach to host roots. However, plants overexpressing *Ethylene Response Factor 2* (ERF2), a transcription factor upregulated in the presence of ethylene that activates numerous immune responses (Catinot et al. 2015), were significantly less susceptible than wildtype to *P. aegyptiaca* initial attachment at the 95% confidence level, suggesting that elevated host ethylene levels may attenuate initial attachment. The attachment rates were more variable within and among experiments for the early attachment stage compared to the two later stages measuring tubercle growth (Table S3).

Eight *A. thaliana* mutant lines were attenuated in the ability to support *P. aegyptiaca* early-stage tubercle formation at the 99% confidence limit (Fig. 3). Five of the less susceptible mutants involve knockouts in jasmonic acid biosynthesis or signaling (*dde2, dde2/pad4, dde2/sid2, jar1/mlo, jar1/axr1*) suggesting that *P. aegyptiaca* requires functional host JA signaling and biosynthesis to form successful tubercles. However, neither the *jar1* nor *jin1* single mutant is less susceptible to *P. aegyptiaca* tubercle formation. *pad4* plants were also less susceptible to *P. aegyptiaca* tubercle development. PAD4 is involved in both SA signaling and TIR *R*-gene signaling. Because other mutants defective in SA accumulation (*sid2* and *NahG*) and *R*-gene-mediated responses (*sgt1, rar1, and rpm1*) were not significantly less susceptible to parasite attachment, the reason *pad4* plants are less susceptible at the early tubercle stage remains uncertain. Lastly, the mutants *cpr5* and *edr1* were substantially less susceptible to early-stage tubercle formation. Both of these mutants have been previously shown to constitutively express multiple plant defense pathways and be more resistant to several microbial biotrophic plant pathogens (Bowling et al. 1997; Christiansen et al. 2011; Tang et al. 2005; Yoshida et al. 2002).

Six of the mutants (*jar1/axr1, jar1/mlo, cpr5, dde2/pad4, dde2, and dde2/sid2*) identified as being less susceptible to early-stage tubercles also supported significantly fewer late-stage *P.
aegeyptiaca tubercles at the 99% confidence limit (Fig. 4). Additionally, the jaz4/5/9 mutant, which is defective in JA responses because the JAZ4, JAZ5, and JAZ9 proteins are all transcriptional regulators triggered by jasmonate (Pauwels & Goossens 2011; Yan et al. 2014), also supported fewer late-stage tubercles than WT A. thaliana. The JA biosynthesis mutant jar1 supported fewer late stage tubercles at the 95% confidence level giving further support to the hypothesis that several genes involved in host JA signaling and biosynthesis are essential for P. aegeyptiaca parasitism.

In addition to the JA signaling and biosynthesis mutant lines, the DELLA quad mutant (gai/rga/rgl1/rgl2) and rdr6 mutant lines supported fewer late-stage tubercles at the 99% confidence level. The DELLA genes (GAI, RGR, and RGLs) are negative growth regulators controlled by Gibberellic acid (GA), and this quad mutant is more resistant to the biotrophic pathogen Pseudomonas syringae and more susceptible to the necrotrophic pathogen Alternaria brasssicola (Navarro et al. 2008).

Host genetic pathways essential for resistance to P. aegeyptiaca

Two tested mutants, mpk4 and pfd6-1, were more susceptible to initial P. aegeyptiaca parasitization (Fig. 2). PFD6 is a subunit of the prefoldin complex, and pfd6 mutants are defective in microtubule function and formation (Gu et al. 2008) and is a putative hub of the A. thaliana immune system (Mukhtar et al. 2011). pfd6-1 mutants were also significantly more susceptible to supporting early-stage tubercle development by P. aegeyptiaca (Fig. 3). We, therefore, hypothesize that PFD6 is an important component of the host plant immune response against plant parasitization.
None of the tested mutant lines supported significantly more late-stage *P. aegyptiaca* tubercles compared to wildtype *A. thaliana* at the 99% confidence level (Fig. 4). However, *pfd6* did support significantly more late-stage tubers at the 95% confidence level. Additionally, the triple mutant *arr1/arr10/arr11*, which is deficient in cytokinin signaling (Mason et al. 2005), also supported more late-stage *P. aegyptiaca* tubercles at the 95% confidence level.

Parasitization by *P. aegyptiaca* *alters the transcription of several immunity-related genes*

We monitored transcript levels of twelve defense- and hormone signaling-associated genes of *A. thaliana* (Table S2) following *P. aegyptiaca* parasitization. Significant upregulation of the glucosinolate biosynthetic gene *MYB51* and downregulation of the negative cell death regulator BOI were observed during initial haustorial attachment (Fig. 5). During early stage tubercle development, the pattern-trigged immunity (PTI) marker gene *WRKY 53* is significantly upregulated. During late-stage tubercle development, only smaller magnitude changes in gene expression were observed, most notably significant down-regulation in the JA marker gene *VSP2* and the SA marker gene *SID2*. Whether these changes are more directly associated with host defense responses or parasite virulence strategies remains unknown.

Discussion

The importance of several genes for *A. thaliana* resistance and susceptibility to *P. aegyptiaca* was revealed by our novel quantitative screen for plant parasitism. Given the artificial nature of the PE bag growth system, these observations are a starting point for elucidating the host molecular pathways that dictate whether a host is resistant or susceptible to attack from a parasitic plant. Notably, the *mpk4, gai1*, and *cpr5* plants exhibited marked reduced growth compared to wildtype in the PE bags. Additionally, substantial crosstalk among many of the
studied pathways (Koornneef & Pieterse 2008), complicates our ability to definitively list which host pathways are critical for supporting plant parasitism. Nevertheless, this data provides the foundation for understanding the host genetics of susceptibility to plant parasitism. We discuss the host pathways that appear to be the most important below.

JA/SA signaling

Several host genes involved in JA biosynthesis and signaling are (e.g. dde2, jar1, jaz4/5/9) are required for full host susceptibility to development of parasite tubercles (Figs. 3 and 4). Several of these mutants also supported fewer early-stage haustorial attachments (Fig. 2), but not significantly as determined by our stringent cutoff (Table S4). Therefore, we conclude that aberrations in host endogenous JA signaling can compromise compatibility to *P. aegyptiaca* parasitization. Further supporting this hypothesis, JA signaling genes were previously identified as upregulated in response to compatible parasitization of *Lotus japonicus* by *P. aegyptiaca* (Hiraoka et al. 2008), *A. thaliana* by *O. ramosa* (Dos Santos et al. 2003), sorghum by *Striga* (Hiraoka & Sugimoto 2008), and *Medicago truncatula* by *Orobanche crenata* (Die et al. 2007). The common interpretation of these studies is that hosts induce JA-related defense responses to deter the parasite, but all of these hosts are susceptible to the respective parasites. Exogenous jasmonate treatment was previously shown to limit *P. aegyptiaca* parasitism (Bar-Nun & Mayer 2008), suggesting that general perturbations in JA signaling may attenuate the compatibility of host plants to root parasitization.

JA signaling plays a critical role in numerous components of plant response to pathogen attack, including antagonism to SA signaling (Gutjahr & Paszkowski 2009; Kazan & Manners 2008). A reasonable hypothesis is that the JA mutants are less susceptible to parasitism because of
elevated SA levels. High levels of SA are often associated with reduced virulence of biotrophic plant pathogens (Thomma et al. 2001). Application of exogenous SA was previously shown to reduce parasitism of clover by the closely related parasite *Orobanche minor* (Kusumoto et al. 2007). However, several SA-deficient mutants (*e.g.* *sid2* and *NahG*) were not more susceptible to parasite attachment and development. Additionally, a few mutants with known defects in SA accumulation and/or signaling (*ndr1* and *pad4*) were actually less susceptible to early- and late-stage tubercle development at the 95% confidence interval. Taken together, these results suggest that perturbations to functional crosstalk between SA and JA signaling limit the ability of *P. aegyptiaca* to parasitize *A. thaliana*. Therefore, we hypothesize that wildtype-functional SA and JA signaling is required by the parasite, potentially because these pathways are precisely targeted and manipulated during parasitism to support the attachment and development of the parasite. This hypothesis is further supported by the observation that the DELLA quad mutant plants are significantly less susceptible to late-stage tubercle development. The DELLA quad mutant was previously shown to be much more susceptible to biotrophs, likely due to aberrations in SA-JA crosstalk (Navarro et al. 2008). The DELLA genes are repressed by GA and parasitized tissue likely contains low levels of GA based on the expression of the marker gene *EXP-PT1* (Fig. 5).

Putative hubs and regulators of plant immunity

pfd6 plants were significantly more susceptible to *P. aegyptiaca* parasitization than wildtype host plants (Figs. 2, 3, and 4). Even though our assay is biased toward identifying mutant host plants that are less susceptible to *P. aegyptiaca* parasitization, the increased susceptibility of *pfd6* was one of the strongest and most consistent phenotypes identified. PFD6 is a putative immunity hub protein (Mukhtar et al. 2011) involved in microtubule dynamics (Gu et al. 2008). It is possible that microtubules are being deployed to prevent parasitization, and disruption of microtubule
formation is sufficient to support increased parasitization. Several plant pathogens target microtubules as part of their attack (Hardham 2013; Lee et al. 2012). Overexpression of PFD6 or genes involved in similar functions may be sufficient to increase the resistance of host plants against parasitic plants.

Obligate holoparasites, such as P. aegyptiaca, are analogous to biotrophic microbial plant pathogens because they rely on living host tissue for the completion of their lifecycle. Multiple mutants that have hyper-activated immunity and are resistant to several biotrophic plant pathogens (cpr5 and edr1) were substantially more resistant to P. aegyptiaca as well. This finding suggests that increased activation of known immune pathways that function in the control of biotrophic microbial plant pathogens is sufficient, in some instances, to also limit the severity of infestation by parasitic plants.

Auxin/cytokinin

The arr1/10/11 triple mutant supported more development of late-stage P. aegyptiaca tubercles than wildtype A. thaliana (Fig. 4) but only at the 95% confidence level. This finding suggests that host plant insensitivity to cytokinins leads to increased parasite attachment. The related parasite Phtheirospermum japonicum was recently shown to translocate cytokinins into host tissue to alter host development (Spallek et al. 2017). The reduced parasite attachment rates to axr1 plants (Figs. 3 and 4) potentially contradict the hypothesis that altered cytokinin signaling enhances host susceptibility to P. aegyptiaca. Though initially identified as an essential component of Arabidopsis response to auxin treatment, AXR1 is also involved in sensitivity to ethylene (Timpte et al. 1995), cytokinin (Li et al. 2013), and methyl-jasmonate (Tiryaki & Staswick 2002). axr1 mutant plants are expected to have lower sensitivity to cytokinins due to
increased stability of the ARR5 protein, a negative regulator of cytokinin responses (Li et al. 2013). We hypothesize that the reduced susceptibility to parasitization of the axr1 A. thaliana genotype is due to reduced sensitivity to ethylene (see below) as opposed to reduced sensitivity to cytokinins. Alternatively, reduced sensitivity to auxin signaling may explain the reduced susceptibility of axr1 mutants to P. aegyptiaca. Local auxin biosynthesis and response gene activation were recently implicated as essential for haustorial formation by the P. japonicum (Ishida et al. 2016). However, the auxin signaling mutants tir1 and aux1 were not differentially susceptible to formation of P. aegyptiaca tubercles.

Ethylene signaling

The ethylene signaling mutant lines, including ein2, did not support differential rates of P. aegyptiaca attachment and development compared to wildtype A. thaliana. Nevertheless, several observations suggest that ethylene signaling is an important part of host plant responses to P. aegyptiaca parasitism. First, host plants overexpressing Erf2, were substantially less susceptible to initial haustorial attachment by P. aegyptiaca (Fig. 2). Second, the dde2 mutant line (JA biosynthesis) exhibited substantially reduced susceptibility to P. aegyptiaca tubercle development, but the quad signaling mutant line (Tsuda et al. 2009) (dde2/pad4/sid2/ein2) was not less susceptible to parasitization. This result suggests that loss of function in SA signaling or ethylene signaling is sufficient to rescue the reduced susceptibility associated with defective host plant JA biosynthesis. Wildtype level P. aegyptiaca attachment rates were not rescued when infecting the double mutants dde2/pad4 and dde2/sid2 suggesting that the rescued attachment rate is due to the ein2 mutation in the dde2 background. We were not able to directly test this hypothesis because dde2/ein2 double mutant plants do not grow in the PE bag system for unknown reasons. Third, the resistant-to-parasitism mutant edr1 has perturbed ethylene
signaling, specifically in the crosstalk of SA and ethylene signaling (Tang et al. 2005). However, the edr1 phenotype may be more predominant due to EDR1’s role as a negative regulator of plant immunity (see above). Given the high degree of crosstalk between JA and SA signaling with ethylene signaling (Koornneef & Pieterse 2008), it will be challenging to determine the extent to which both of these host hormone-signaling pathways are independently required for successful P. aegyptiaca parasitization.

RNAi

RDR6 is involved in RNAi signaling and rdr6 mutant plants are less susceptible to late-stage P. aegyptiaca tubercle formation, suggesting that P. aegyptiaca may exploit host-derived RNAi pathways during parasitization. The distantly related parasitic plant Cuscuta campestris, for example, secretes sRNA molecules into host plant tissue to silence plant-immunity and auxin-signaling gene pathways (Shahid et al. 2018). However, other mutants deficient in RNAi signaling (dcl1 and rdr1/2/6) are not less susceptible to P. aegyptiaca. Indeed, both dcl1 and rdr1/2/6 are among the most susceptible mutants tested in terms of late-stage tubercle development (Fig. 4). DCL1 is essential for most miRNA biogenesis (Bologna & Voinnet 2014) and plays a role in the negative regulation in an RDR6-involved RNA-silencing pathway (Qu et al. 2008). It is possible that P. aegyptiaca exploits this RNA-silencing pathway during parasitization, hence dcl1 (negative regulator) mutants are highly susceptible and rdr6 mutants are significantly less susceptible to tubercle development. However, the differential susceptibility of the rdr6 and the rdr1/2/6 lines cannot be explained at this time. A more thorough examination is necessary to determine the role of RNAi in Arabidopsis – P. aegyptiaca interactions.
Pathways that appear not to be involved in susceptibility/resistance to *P. aegyptiaca* parasitization

It is important to note that the majority of tested mutant *A. thaliana* genotypes were not significantly different from wildtype in their susceptibility to *P. aegyptiaca* parasitization (Table S4). This result suggests that the ability of *P. aegyptiaca* to parasitize host plant tissue is robust, which is also supported by the relatively broad host range of *P. aegyptiaca* (Parker 2013).

Surprisingly, every tested *A. thaliana* mutant line was able to support some level of parasite attachment. In contrast, a recent similar screen of the obligate stem parasite *Cuscuta reflexa* on multiple tomato introgression lines revealed multiple genotypes where the host-parasite interaction was incompatible (Krause et al. 2018). We consider the lack of increased susceptibility of *bak1-4* plants to be the most surprising result. We originally hypothesized that this mutant was the best candidate for a genotype more susceptible to parasitization because BAK1 is critical for many components of PTI (Chinchilla et al. 2009), which is a critical part of the plant immune response against many other classes of plant pests (Jones & Dangl 2006) including the parasitic plant *C. reflexa* (Hegenauer et al. 2016). Future studies with the *bak1-5* allele that specifically blocks innate immunity without impairing brassinosteroid signaling (Schwessinger et al. 2011) may be informative. *mpk4* plants, which are deficient in map kinase signaling – another critical component of PTI (Rasmussen et al. 2012), were more susceptible to early attachment than wildtype (Fig. 2). But the increased susceptibility was not persistent through early and late stage *P. aegyptiaca* tubercle development. It is possible that *P. aegyptiaca* is already highly adept at subverting *A. thaliana* PTI. However, we show that the PTI marker gene *WRKY53* is significantly upregulated in response to tubercle development (Figure 5).

Several of the borderline increased susceptibility genotypes, such as *bak1-4*, should be tested in
the PE bag system using a related parasite such as *O. minor* that is largely incompatible on *A. thaliana* (Goldwasser et al. 2000). Starting with an incompatible interaction will more readily enable discovery of host genes that underpin resistance to parasitism than the assay described here performed with the compatible *P. aegyptiaca* parasite.

Conclusion

This work demonstrates that the parasitization potential of *P. aegyptiaca* on *A. thaliana* is remarkably robust and not fully dependent on any of the genetic pathways tested here. However, *P. aegyptiaca* parasitization is at least partially limited in a small selection of *A. thaliana* mutant lines. The most robust phenotype revealed from this study is that multiple genes involved in JA signaling and biosynthesis are critical for full host plant susceptibility to *P. aegyptiaca*. Additionally, this work revealed that the putative immunity hub protein PFD6 is a critical component of the plant immune response that limits the severity of *P. aegyptiaca* parasitization.

Further investigation into the identified genes that affect the degree of host plant susceptibility to parasitization will further elucidate the molecular mechanisms of plant parasitism. Alteration of these genetic pathways has the potential to help control parasitic weed infestation through either enhanced expression of resistance-associated genes or reduced expression of susceptibility-associated genes. Several of the susceptibility associated genes identified in this work cannot be knocked out without substantial negative impacts on the plants such as male sterility (*e.g.*, *dde2*) or growth retardation (*e.g.* *cpr5*). This work serves as a starting point for understanding which genetic pathways are essential for plant susceptibility. Additionally, the viability of overexpressing PFD6 or other identified resistance-associated genes to control parasitic plant infection needs to be determined in future work.
Acknowledgements

We sincerely thank the Arabidopsis Biological Resource Center, John McDowell, Boris Vinatzer, Jeff Dangl, Ryan Anderson, Peter Morris, Nick Harberd, Georg Felix, Birgit Kemmerling, and Christian Voigt for providing seeds.

References

Alonso JM, Hirayama T, Roman G, Nourizadeh S, and Ecker JR. 1999. EIN2, a Bifunctional Transducer of Ethylene and Stress Responses in Arabidopsis. Science 284:2148-2152. 10.1126/science.284.5423.2148

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hom E, Kerner M, Mulholland C, Pinkabu R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, and Ecker JR. 2003. Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301:653-657. 10.1126/science.1086391

Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, and Parker JE. 2002. Regulatory Role of SGT1 in Early R Gene-Mediated Plant Defenses. Science 295:2077. 10.1126/science.1067747

Bar-Nun N, and Mayer AM. 2008. Methyl jasmonate and methyl salicylate, but not cis-jasmone, evoke defenses against infection of Arabidopsis thaliana by Orobanche aegyptiaca. Weed Biology and Management 8:91-96. 10.1111/j.1445-6664.2008.00280.x

Berger S, Bell E, and Mullet JE. 1996. Two Methyl Jasmonate-Insensitive Mutants Show Altered Expression of AtVsp in Response to Methyl Jasmonate and Wounding. Plant Physiology 111:525-531. 10.1104/pp.111.2.525

Boch J, Verbsky ML, Robertson TL, Larkin JC, and Kunkel BN. 1998. Analysis of Resistance Gene-Mediated Defense Responses in Arabidopsis thaliana Plants Carrying a Mutation in CPR5. Molecular Plant-Microbe Interactions 11:1196-1206. 10.1094/MPMI.1998.11.12.1196

Bologna NG, and Voinnet O. 2014. The Diversity, Biogenesis, and Activities of Endogenous Silencing Small RNAs in Arabidopsis. Annual Review of Plant Biology 65:473-503. 10.1146/annurev-arplant-050213-035728

Bowling SA, Clarke JD, Liu Y, Klessig DF, and Dong X. 1997. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. The Plant Cell 9:1573-1584. 10.1105/tpc.9.9.1573

Catinot J, Huang P-Y, and Zimmerli L. 2015. Ethylene response factors in Arabidopsis immunity. Journal of Experimental Botany 67:1231-1241. 10.1093/jxb/erv518

Century KS, Holub EB, and Staskawicz BJ. 1995. NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proceedings of the National Academy of Sciences of the United States of America 92:6597-6601.
Chinchilla D, Shan L, He P, de Vries S, and Kemmerling B. 2009. One for all: the receptor-associated kinase BAK1. *Trends in Plant Science* 14:535-541. https://doi.org/10.1016/j.tplants.2009.08.002

Christiansen KM, Gu Y, Rodibaugh N, and Innes RW. 2011. Negative regulation of defence signalling pathways by the EDR1 protein kinase. *Molecular plant pathology* 12:746-758. 10.1111/j.1364-3703.2011.00708.x

Clarke CR, Timko MP, Yoder JI, Axtell MJ, and Westwood JH. 2019. Molecular dialog between parasitic plants and their hosts. *Annual Review of Phytopathology* 57.

Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, and Panstruga R. 2006. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. *Nat Genet* 38:716-720. http://www.nature.com/ng/journal/v38/n6/suppinfo/ng1806_S1.html

Cui H, Gobbato E, Kracher B, Qiu J, Bautor J, and Parker JE. 2017. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. *New Phytologist* 213:1802-1817. 10.1111/nph.14302

Die JV, Dita MA, Krajinski F, González-Verdejo CI, Rubiales D, Moreno MT, and Román B. 2007. Identification by suppression subtractive hybridization and expression analysis of *Medicago truncatula* putative defence genes in response to Orobanche crenata parasitization. *Physiological and Molecular Plant Pathology* 70:49-59. https://doi.org/10.1016/j.pmpp.2007.06.001

Dos Santos CV, Letousey P, Delavault P, and Thalouarn P. 2003. Defense Gene Expression Analysis of Arabidopsis thaliana Parasitized by Orobanche ramosa. *Phytopathology* 93:451-457. 10.1094/PHYTO.2003.93.4.451

Duriez P, Vautron S, Auriac M-C, Bazerque J, Boniface M-C, Callot C, Carrère S, Cauet S, Chabaud M, Gentou F, Lopez-Sendon M, Paris C, Pegot-Espagnet P, Rousseaux J-C, Pérez-Vich B, Velasco L, Bergès H, Piquemal J, and Muñoz S. 2019. A receptor-like kinase enhances sunflower resistance to Orobanche cumana. *Nature Plants* 5:1211-1215. 10.1038/s41477-019-0556-z

Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, and Voigt CA. 2013. Elevated Early Callose Deposition Results in Complete Penetration Resistance to Powdery Mildew in Arabidopsis. *Plant Physiology* 161:1433-1444. 10.1104/pp.112.211011

Frye CA, and Innes RW. 1998. An Arabidopsis Mutant with Enhanced Resistance to Powdery Mildew. *The Plant Cell* 10:947-956. 10.1105/tpc.10.6.947

Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, and Carrington JC. 2010. Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection. *The Plant Cell* 22:481-496. 10.1105/tpc.109.073056

Glazebrook J, Rogers EE, and Ausubel FM. 1996. Isolation of Arabidopsis Mutants with Enhanced Disease Susceptibility by Direct Screening. *Genetics* 143:973-982.

Goldwasser Y, Plakhine D, and Yoder JI. 2000. Arabidopsis thaliana susceptibility to Orobanche spp. *Weed Science* 48:342-346. 10.1614/0043-1745(2000)048[0342:WBAE]2.0.CO;2

Grant M, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes R, and Dangl J. 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. *Science* 269:843-846. 10.1126/science.7638602
Gu Y, Deng Z, Paredez AR, DeBolt S, Wang Z-Y, and Somerville C. 2008. Prefoldin 6 is required for normal microtubule dynamics and organization in Arabidopsis. *Proceedings of the National Academy of Sciences* 105:18064-18069. 10.1073/pnas.0808652105

Gutjahr C, and Paszkowski U. 2009. Weights in the Balance: Jasmonic Acid and Salicylic Acid Signaling in Root-Biotroph Interactions. *Molecular Plant-Microbe Interactions®* 22:763-772. 10.1094/MPMI-22-7-0763

Hardham AR. 2013. Microtubules and biotic interactions. *The Plant Journal* 75:278-289. 10.1111/tpj.12171

He K, Gou X, Yuan T, Lin H, Asami T, Yoshida S, Russell SD, and Li J. 2007. BAK1 and BKK1 Regulate Brassinosteroid-Dependent Growth and Brassinosteroid-Independent Cell-Death Pathways. *Current Biology* 17:1109-1115. https://doi.org/10.1016/j.cub.2007.05.036

Kazan K, and Manners JM. 2008. Jasmonate Signaling: Toward an Integrated View. *Plant Physiology* 146:1459. 10.1104/pp.107.115717

Kemmerling B, Schwedt A, Rodriguez P, Mazzotta S, Frank M, Qamar SA, Mengiste T, Betsuyaku S, Parker JE, Müssig C, Thomma BPHJ, Albrecht C, de Vries SC, Hirt H, and Nürnberger T. 2007. The BRI1-Associated Kinase 1, BAK1, Has a Brassinolide-
Independent Role in Plant Cell-Death Control. Current Biology 17:1116-1122.

https://doi.org/10.1016/j.cub.2007.05.046

Koorneef M, Elgersma A, Hanhart CJ, van Loenen-Martinet EP, van Rijn L, and Zeevaart JAD. 1985. A gibberellin insensitive mutant of Arabidopsis thaliana. Physiologia Plantarum 65:33-39. 10.1111/j.1399-3054.1985.tb02355.x

Koorneef A, and Pieterse CMJ. 2008. Cross Talk in Defense Signaling. Plant Physiology 146:839. 10.1104/pp.107.112029

Krause K, Johnsen HR, Pielach A, Lund L, Fischer K, and Rose JKC. 2018. Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder (Cuscuta reflexa). Physiologia Plantarum 162:205-218. 10.1111/ppl.12660

Krol E, Mentzel T, Chinchilla D, Boller T, Felix G, Kemmerling B, Postel S, Arents M, Jeworutzki E, Al-Rasheid KAS, Becker D, and Hedrich R. 2010. Perception of the Arabidopsis Danger Signal Peptide 1 Involves the Pattern Recognition Receptor AtPEPR1 and Its Close Homologue AtPEPR2. Journal of Biological Chemistry 285:13471-13479. 10.1074/jbc.M109.097394

Kusumoto D, Goldwasser Y, Xie X, Yoneyama K, Takeuchi Y, and Yoneyama K. 2007. Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Annals of botany 100:537-544. 10.1093/aob/mcm148

Lawton K. 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Molecular Plant-Microbe Interactions v. 8:pp. 863-870-1995 v.1998 no.1996. 10.1094/MPMI-8-0863

Lee AH-Y, Hurley B, Felsensteiner C, Yea C, Chinchilla D, Boller T, Felix G, Kemmerling B, Postel S, Arents M, Jeworutzki E, Al-Rasheid KAS, Becker D, and Hedrich R. 2010. Perception of the Arabidopsis Danger Signal Peptide 1 Involves the Pattern Recognition Receptor AtPEPR1 and Its Close Homologue AtPEPR2. Journal of Biological Chemistry 285:13471-13479. 10.1074/jbc.M109.097394

Kusumoto D, Goldwasser Y, Xie X, Yoneyama K, Takeuchi Y, and Yoneyama K. 2007. Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Annals of botany 100:537-544. 10.1093/aob/mcm148

Li J, and Timko MP. 2009. Gene-for-Gene Resistance in Striga-Cowpea Associations. Science 325:1094.

Li Y, Kurepa J, and Smalle J. 2013. AXR1 promotes the Arabidopsis cytokinin response by facilitating ARR5 proteolysis. The Plant Journal 74:13-24. 10.1111/tpj.12098

Lincoln C, Britton JH, and Estelle M. 1990. Growth and development of the axr1 mutants of Arabidopsis. The Plant Cell 2:1071-1080. 10.1105/tpc.2.11.1071

Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, and Schulze-Lefert P. 2005. Pre- and Postinvansion Defenses Both Contribute to Nonhost Resistance in Arabidopsis. Science 310:1180-1183. 10.1126/science.1119409

Lorenzo O, Piqueras R, Sánchez-Serrano JI, and Solano R. 2003. ETHYLENE RESPONSE FACTOR1 Integrates Signals from Ethylene and Jasmonate Pathways in Plant Defense. The Plant Cell 15:165-178. 10.1105/tpc.007468

Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, and Schaller GE. 2005. Multiple Type-B Response Regulators Mediate Cytokinin Signal Transduction in Arabidopsis. The Plant Cell 17:3007-3018. 10.1105/tpc.105.035451

Molinero-Ruiz L, Delavault P, Pérez-Vich B, Pacureanu-Joita M, Bulos M, Altieri E, and Dominguez J. 2015. History of the race structure of Orobanche cumana and the breeding
of sunflower for resistance to this parasitic weed: A review. 2015 13:-8.

Mukhtar MS, Carvunis A-R, Dreze M, Epplle P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura MT, Pevzner SJ, Donovan SE, Ghamsari L, Santanab M, Romero V, Poulin MM, Gebreb F, Gutierrez BJ, Tam S, Monachello D, Boxem M, Harbort CJ, McDonald N, Gai L, Chen H, He Y, Vandenhaute J, Roth FP, Hill DE, Ecker JR, Vidal M, Beynon J, Braun P, and Dangl JL. 2011. Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science 333:596-601.

Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JDG, and Parker JE. 2002. Arabidopsis RAR1 Exerts Rate-Limiting Control of R Gene–Mediated Defenses against Multiple Pathogens. The Plant Cell 14:979-992. 10.1105/tpc.001040

Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, and Jones JDG. 2008. DELLAs Control Plant Immune Responses by Modulating the Balance of Jasmonic Acid and Salicylic Acid Signaling. Current Biology 18:650-655.

http://dx.doi.org/10.1016/j.cub.2008.03.060

Nawrath C, and Métraux JP. 1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. The Plant Cell 11:1393-1404.

Nguyen KH, Ha CV, Nishiyama R, Watanabe Y, Leyva-González MA, Fujita Y, Tran UT, Li W, Tanaka M, Seki M, Schaller GE, Herrera-Estrella L, and Tran LT. 2016. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proceedings of the National Academy of Sciences 113:3090-3095. 10.1073/pnas.1600399113

Paponov IA, Paponov M, Teale W, Menges M, Chakrabortee S, Murray JAH, and Palme K. 2008. Comprehensive Transcriptome Analysis of Auxin Responses in Arabidopsis. Molecular Plant 1:321-337. http://dx.doi.org/10.1093/mp/ssm021

Parker C. 2013. The Parasitic Weeds of the Orobanchaceae. In: Joel DM, Gressel J, and Musselman LJ, eds. Parasitic Orobanchaceae: Parasitic Mechanisms and Control Strategies. Berlin, Heidelberg: Springer Berlin Heidelberg, 313-344.

Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, and Daniels MJ. 1996. Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. The Plant Cell 8:2033-2046. 10.1105/tpc.8.11.2033

Pauwels L, and Goossens A. 2011. The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. The Plant Cell 23:3089. 10.1105/tpc.111.089300

Pegadaraju V, Louis J, Singh V, Reese JC, Bautor J, Feys BJ, Cook G, Parker JE, and Shah J. 2007. Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. The Plant Journal 52:332-341. 10.1111/j.1365-313X.2007.03241.x

Peragine A, Yoshikawa M, Wu G, Albrecht HL, and Poethig RS. 2004. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes & Development 18:2368-2379. 10.1101/gad.1231804

Pickett FB, Wilson AK, and Estelle M. 1990. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiology 94:1462-1466. 10.1104/pp.94.3.1462
Qiu J-L, Zhou L, Yun B-W, Nielsen HB, Fiil BK, Petersen K, MacKinlay J, Loake GJ, Mundy J,
and Morris PC. 2008. Arabidopsis Mitogen-Activated Protein Kinase Kinases MKK1 and
MKK2 Have Overlapping Functions in Defense Signaling Mediated by MEKK1, MPK4,
and MKS1. Plant Physiology 148:212-222. 10.1104/pp.108.120006

Qu F, Ye X, and Morris TJ. 2008. ArabidopsisDRB4, AGO1, AGO7, and RDR6 participate in a
DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1.
Proceedings of the National Academy of Sciences. 10.1073/pnas.0805760105

Rasmussen MW, Roux M, Petersen M, and Mundy J. 2012. MAP Kinase Cascades in
Arabidopsis Innate Immunity. Frontiers in plant science 3:169-169.

10.3389/fpls.2012.00169

Robinson-Beers K, Pruitt RE, and Gasser CS. 1992. Ovule Development in Wild-Type
Arabidopsis and Two Female-Sterile Mutants. The Plant Cell 4:1237-1249.
10.1105/tpc.4.10.1237

Salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root
growth. New Phytologist 203:805-816. 10.1111/nph.12822

Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A, and Zipfel C. 2011.
Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and
Innate Immunity by the Regulatory Receptor-Like Kinase BAK1. PLOS Genetics
7:e1002046. 10.1371/journal.pgen.1002046

10.1038/nature25027

Spallek T, Melnyk CW, Wakatake T, Zhang J, Sakamoto Y, Kiba T, Yoshida S, Matsunaga S,
Sakakibara H, and Shirasu K. 2017. Interspecies hormonal control of host root
morphology by parasitic plants. Proceedings of the National Academy of Sciences
114:5283. 10.1073/pnas.1619078114

Spallek T, Mutuku M, and Shirasu K. 2013. The genus Striga: a witch profile. Molecular plant
pathology 14:861-869. 10.1111/mpp.12058

Staswick PE, Su W, and Howell SH. 1992. Methyl jasmonate inhibition of root growth and
induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proceedings
of the National Academy of Sciences 89:6837-6840.
Tang D, Christiansen KM, and Innes RW. 2005. Regulation of Plant Disease Resistance, Stress Responses, Cell Death, and Ethylene Signaling in Arabidopsis by the EDR1 Protein Kinase. *Plant Physiology* 138:1018. 10.1104/pp.105.060400

Thomma BPHJ, Penninckx IAMA, Cammue BPA, and Broekaert WF. 2001. The complexity of disease signaling in Arabidopsis. *Current Opinion in Immunology* 13:63-68. https://doi.org/10.1016/S0952-7915(00)00183-7

Timpte C, Lincoln C, Pickett FB, Turner J, and Estelle M. 1995. The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. *The Plant Journal* 8:561-569. 10.1046/j.1365-313X.1995.8040561.x

Tiryaki I, and Staswick PE. 2002. An Arabidopsis Mutant Defective in Jasmonate Response Is Allelic to the Auxin-Signaling Mutant axr1. *Plant Physiology* 130:887-894. 10.1104/pp.005272

Tran T, Chen S, and Wang X. 2017. Root assays to study pattern-triggered immunity in plant-nematode interactions. *European Journal of Plant Pathology* 147:955-961. 10.1007/s10658-016-1053-0

Tsuda K, Sato M, Stoddard T, Glazebrook J, and Katagiri F. 2009. Network Properties of Robust Immunity in Plants. *PLOS Genetics* 5:e1000772. 10.1371/journal.pgen.1000772

van Schie CCN, and Takken FLW. 2014. Susceptibility Genes 101: How to Be a Good Host. *Annual Review of Phytopathology* 52:551-581. 10.1146/annurev-phpto-102313-045854

von Malek B, van der Graaff E, Schneitz K, and Keller B. 2002. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. *Planta* 216:187-192. 10.1007/s00425-002-0906-2

Westwood JH. 2000. Characterization of the Orobanche–Arabidopsis system for studying parasite–host interactions. *Weed Science* 48:742-748. 10.1614/0043-734X(2000)048[0742:COAS]2.0.CO;2

Westwood JH, dePamphilis CW, Das M, Fernández-Aparicio M, Honaaas LA, Timko MP, Wafula EK, Wickett NJ, and Yoder JI. 2012. The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga. *Weed Science* 60:295-306. 10.1614/WS-D-11-00113.1

Yan H, Yoo M-J, Koh J, Liu L, Chen Y, Acikgoz D, Wang Q, and Chen S. 2014. Molecular Reprogramming of Arabidopsis in Response to Perturbation of Jasmonate Signaling. *Journal of Proteome Research* 13:5751-5766. 10.1021/pr500739v

Yang Z, Wafula EK, Honaaas LA, Zhang H, Das M, Fernández-Aparicio M, Huang K, Bandaranayake PCG, Wu B, Der JP, Clarke CR, Ralph PE, Landherr L, Altman NS, Timko MP, Yoder JI, Westwood JH, and dePamphilis CW. 2014. Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty. *Molecular Biology and Evolution* 32:767-790. 10.1093/molbev/msu343

Yoneyama K, Awad AA, Xie X, Yoneyama K, and Takeuchi Y. 2010. Strigolactones as germination stimulants for root parasitic plants. *Plant & cell physiology* 51:1095-1103. 10.1093/pcp/pcp055

Yoshida S, Cui S, Ichihashi Y, and Shirasu K. 2016. The Haustorium, a Specialized Invasive Organ in Parasitic Plants. *Annual Review of Plant Biology* 67:643-667. 10.1146/annurev-arplant-043015-111702
Yoshida S, Ito M, Nishida I, and Watanabe A. 2002. Identification of a novel gene HYS1/CPR5 that has a repressive role in the induction of leaf senescence and pathogen-defence responses in Arabidopsis thaliana. The Plant Journal 29:427-437. 10.1046/j.0960-7412.2001.01228.x

Zentella R, Zhang Z-L, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, and Sun T-p. 2007. Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling in Arabidopsis. The Plant Cell 19:3037. 10.1105/tpc.107.054999

Zhang L, Du L, Shen C, Yang Y, and Poovaiah BW. 2014. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+–calmodulin–AtSR1/CAMTA3 signaling. The Plant Journal 78:269-281. 10.1111/tpj.12473

Zwanenburg B, Pospíšil T, and Ćavar Zeljković S. 2016. Strigolactones: new plant hormones in action. Planta 243:1311-1326. 10.1007/s00425-015-2455-5

Figure Legends

Figure 1. Pipeline for quantifying attachment and tubercle development rate of *P. aegyptiaca* on *A. thaliana*. A) Example of *A. thaliana* lines growing in PE bags before inoculation with *P. aegyptiaca*. Plants were randomly distributed. B) Typical germination rates of *P. aegyptiaca* seedlings following conditioning and treatment with germination stimulants. n = 3 plates for each germination stimulant with approximately 100 total seeds per plate. C) Example of germinated and ungerminated *P. aegyptiaca* radicles (red arrows) on *A. thaliana* roots. Germinated seedlings are counted to quantify the attachment and tubercle development rates. D) Rate of attachment and tubercle development of *P. aegyptiaca* on wildtype (Col) *A. thaliana* roots for the three parasite development stages considered in this work – initial haustorial connection and attachment, early-stage tubercle, and late-stage tubercle. n = 8. The attachment rate is the number of seeds that reached that stage of development divided by the total number of *germinated* seeds.

Figure 2. Mutations in multiple immunity-related genes significantly affect the susceptibility of *A. thaliana* to initial parasitization by *P. aegyptiaca*. Marker points indicate the estimated odds ratio of the rate of early attachment of *P. aegyptiaca* on the mutant line relative to wildtype *A. thaliana*.
An odds ratio greater than one indicates that *P. aegyptiaca* is more successful on the
mutant line than wildtype. An odds ratio less than one indicates that *P. aegyptiaca* is less
successful on the mutant line than wildtype. The shapes of the marker points depict the ectotype
background for each mutant line. The capped error bars represent the 95% confidence interval
and the uncapped error bars (overlapping but extending) represent the 99% confidence interval.
A confidence interval that does not cross the vertical line at attachment rate = 1 (the normalized
attachment rate to wildtype *Arabidopsis*) is considered statistically different at the indicated
confidence level. Data represent at least 14 replicates from at least two independent experiments
for each mutant line.

Figure 3. Mutations in multiple immunity-related genes significantly affect the susceptibility of
A. thaliana to early tubercle development by *P. aegyptiaca*. Marker points indicate the estimated
odds ratio of the rate of early attachment of *P. aegyptiaca* on the mutant line relative to wildtype
A. thaliana. An odds ratio greater than one indicates that *P. aegyptiaca* is more successful on the
mutant line than wildtype. An odds ratio less than one indicates that *P. aegyptiaca* is less
successful on the mutant line than wildtype. The shapes of the marker points depict the ectotype
background for each mutant line. The capped error bars represent the 95% confidence interval
and the uncapped error bars (overlapping but extending) represent the 99% confidence interval.
A confidence interval that does not cross the vertical line at attachment rate = 1 (the normalized
attachment rate to wildtype *Arabidopsis*) is considered statistically different at the indicated
confidence level. Data represent at least 14 replicates from at least two independent experiments
for each mutant line.

Figure 4. Mutations in multiple immunity-related genes significantly affect the susceptibility of
A. thaliana to supporting late tubercle development by *P. aegyptiaca*. Marker points indicate the
estimated odds ratio of the rate of early attachment of *P. aegyptiaca* on the mutant line relative to wildtype *A. thaliana*. An odds ratio greater than one indicates that *P. aegyptiaca* is more successful on the mutant line than wildtype. An odds ratio less than one indicates that *P. aegyptiaca* is less successful on the mutant line than wildtype. The shapes of the marker points depict the ectotype background for each mutant line. The capped error bars represent the 95% confidence interval and the uncapped error bars (overlapping but extending) represent the 99% confidence interval. A confidence interval that does not cross the vertical line at attachment rate = 1 (the normalized attachment rate to wildtype *Arabidopsis*) is considered statistically different at the indicated confidence level. Data represent at least 14 replicates from at least two independent experiments for each mutant line.

Figure 5. *P. aegyptiaca* parasitization alters the transcription of marker genes for multiple hormone-signaling pathways. Relative expression of twelve genes of interest were determined in the roots of both inoculated and mock-inoculated *A. thaliana* eco. Col-0 plants across the three studied stages: early attachment (A), early-stage tubercle development (B), and late-stage tubercle development (C). Data bars depict the expression of the 12 indicated genes relative to three stably-expressed housekeeping genes (*SAND, UBQ10, and UFP*) from 3 biological and 5 technical replicates. Error bars represent the standard error. Data were normalized to set the relative expression of each gene in the mock-inoculated condition to one. Asterisks indicate statistically different means compared to mock-inoculated plants at the same growth stage based on paired *t*-test (p < 0.05).

Table S1. Type III test for fixed effects for the factors plant, position, and bag on attachment odds ratios.
Table S2. qPCR primers used in this study.

Table S3. Detailed results from all attachment rate experiments.

Table S4. Total number of mutant lines more or less susceptible than wildtype *A. thaliana* to *P. aegyptiaca* parasitization.

Video S1. Time-lapse of *P. aegyptiaca* parasitization of *A. thaliana* including below-ground attachment, vegetative growth and above-ground vegetative growth and floral production when attached to *S. lycopersicum.*
Figure 1

Pipeline for quantifying attachment and tubercle development rate of *P. aegyptiaca* on *A. thaliana*.

A) Example of *A. thaliana* lines growing in PE bags before inoculation with *P. aegyptiaca*. Plants were randomly distributed. **B)** Typical germination rates of *P. aegyptiaca* seedlings following conditioning and treatment with germination stimulants. *n* = 3 plates for each germination stimulant with approximately 100 total seeds per plate. **C)** Example of germinated and ungerminated *P. aegyptiaca* radicles (red arrows) on *A. thaliana* roots. Germinated seedlings are counted to quantify the attachment and tubercle development rates. **D)** Rate of attachment and tubercle development of *P. aegyptiaca* on wildtype (Col) *A. thaliana* roots for the three parasite development stages considered in this work – initial haustorial connection and attachment, early-stage tubercle, and late-stage tubercle. *n* = 8. The attachment rate is the number of seeds that reached that stage of development divided by the total number of *germinated* seeds.
Mutations in multiple immunity-related genes significantly affect the susceptibility of *A. thaliana* to initial parasitization by *P. aegyptiaca*.

Marker points indicate the estimated odds ratio of the rate of early attachment of *P. aegyptiaca* on the mutant line relative to wildtype *A. thaliana*. An odds ratio greater than one indicates that *P. aegyptiaca* is more successful on the mutant line than wildtype. An odds ratio less than one indicates that *P. aegyptiaca* is less successful on the mutant line than wildtype. The shapes of the marker points depict the ectotype background for each mutant line. The capped error bars represent the 95% confidence interval and the uncapped error bars (overlapping but extending) represent the 99% confidence interval. A confidence interval that does not cross the vertical line at attachment rate = 1 (the normalized attachment rate to wildtype *Arabidopsis*) is considered statistically different at the indicated confidence level. Data represent at least 14 replicates from at least two independent experiments for each mutant line.
Figure 3

Mutations in multiple immunity-related genes significantly affect the susceptibility of A. thaliana to early tubercle development by P. aegyptiaca.

Marker points indicate the estimated odds ratio of the rate of early attachment of P. aegyptiaca on the mutant line relative to wildtype A. thaliana. An odds ratio greater than one indicates that P. aegyptiaca is more successful on the mutant line than wildtype. An odds ratio less than one indicates that P. aegyptiaca is less successful on the mutant line than wildtype. The shapes of the marker points depict the ectotype background for each mutant line. The capped error bars represent the 95% confidence interval and the uncapped error bars (overlapping but extending) represent the 99% confidence interval. A confidence interval that does not cross the vertical line at attachment rate = 1 (the normalized attachment rate to wildtype Arabidopsis) is considered statistically different at the indicated confidence level. Data represent at least 14 replicates from at least two independent experiments for each mutant line.
Manuscript to be reviewed
Figure 4

Mutations in multiple immunity-related genes significantly affect the susceptibility of *A. thaliana* to supporting late tubercle development by *P. aegyptiaca*.

Marker points indicate the estimated odds ratio of the rate of early attachment of *P. aegyptiaca* on the mutant line relative to wildtype *A. thaliana*. An odds ratio greater than one indicates that *P. aegyptiaca* is more successful on the mutant line than wildtype. An odds ratio less than one indicates that *P. aegyptiaca* is less successful on the mutant line than wildtype. The shapes of the marker points depict the ectotype background for each mutant line. The capped error bars represent the 95% confidence interval and the uncapped error bars (overlapping but extending) represent the 99% confidence interval. A confidence interval that does not cross the vertical line at attachment rate = 1 (the normalized attachment rate to wildtype *Arabidopsis*) is considered statistically different at the indicated confidence level. Data represent at least 14 replicates from at least two independent experiments for each mutant line.
P. aegyptiaca parasitization alters the transcription of marker genes for multiple hormone-signaling pathways.

Relative expression of twelve genes of interest were determined in the roots of both inoculated and mock-inoculated A. thaliana eco. Col-0 plants across the three studied stages: early attachment (A), early-stage tubercle development (B), and late-stage tubercle development (C). Data bars depict the expression of the 12 indicated genes relative to three stably-expressed housekeeping genes (SAND, UBQ10, and UFP) from 3 biological and 5 technical replicates. Error bars represent the standard error. Data were normalized to set the relative expression of each gene in the mock-inoculated condition to one. Asterisks indicate statistically different means compared to mock-inoculated plants at the same growth stage based on paired t-test (p < 0.05).
A

Early attachment

- Relative expression
- Average mock inoculated (normalized to 1)
- Average inoculation

B

Early tubercle

- Relative expression

C

Late tubercle

- Relative expression
Table 1 (on next page)

The 46 mutant lines considered in this study.
Table 1. The 46 mutant lines considered in this study.

Gene	Involved in	Background	Citation	ABRC #
35s:ERF1-2	Ethylene response/ JA signaling	Col	(Lorenzo et al. 2003)	CS6143
35s:PMR4	Penetration resistance	Col	(Ellinger et al. 2013)	n/a
aba1	ABA signaling	Col	(Alonso et al. 2003)	SALK_027326C
arr1-2/arr10-1/arr11-1	Cytokinin signaling	Ws-2	(Mason et al. 2005)	CS6993
aux1-7	Auxin distribution	Col	(Pickett et al. 1990)	CS3074
aux1-7; ein2	Auxin distribution/ethylene perception	Col	(Lincoln et al. 1990)	CS8843
aux1-7; ein2	Auxin, cytokinin, JA, ethylene signaling	Col	(Lincoln et al. 1990)	CS3075
bak1-4	Master regulator of pattern- triggered immunity	Col	Kemmerling et al. 2007	SALK_116202C
bkk1	Master regulator of pattern- triggered immunity	Col	(Alonso et al. 2003; He et al. 2007)	SALK_057955C
Gene	Function	Background	Year	Accession
---------	---	------------	------	-----------
cpr5	Negative regulator of systemic acquired resistance and programmed cell death	Col/No-0	1998	CS3770
csn5	Core targeted immunity hub	Col	2011	SALK_027705
dcl1-7	RNAi	Ler	1992	CS3089
dde2-2	JA biosynthesis	Col	al. 2002	CS65993
dde2-2/ein2-1/pad4-1/sid2-2	JA biosynthesis, ethylene signaling, SA signaling	Col	2009	CS66007
dde2-2/pad4-1	JA biosynthesis, SA signaling	Col	2009	CS65998
dde2-2/sid2-2	JA biosynthesis, SA signaling	Col	2009	CS65999
edr1-1	Ethylene-dependent stress responses	Col	1998	CS67959
eds1-1	Negative regulator R gene-mediated resistance	Ws-2	1996	n/a
Mutant	Description	Background	Reference	Accession
--------	--------------------------------------	------------	-----------------	-----------
ein2-1	Ethylene signaling	Col	(Alonso et al. 1999)	n/a
gai1	Giberellic acid signaling	Ler	(Koorneef et al. 1985)	CS63
gai-t6 rga-t2 rgl1-1	DELLA genes, giberellic acid signaling	(Navarro et al. 2008)	n/a	
rgl2-1		Col	(Staswick et al. 1992)	n/a
jar1-1	JA biosynthesis	Col	(Tiryaki & Staswick 2002)	CS67934
jar1-1/axr1-3	JA signaling, auxin signaling	(Consonni et al. 2006)	CS9723	
jar1-1/mlo2-11	JA signaling, penetration resistance	Col	(Kaminaka et al. 2006)	CS68738
jaz3/jaz4-1/jaz9-1	JA signaling (repressor)	Col	n/a	
Jaz3 (T3)	JA signaling (overexpression Jaz3)	Col	n/a	
jin1-1	Jasmonic acid signaling	Col	(Berger et al. 1996)	n/a
lsd1-2	Negative regulation of cell death and disease resistance	Col	(Kaminaka et al. 2003; Mukhtar et al. 2011)	CS68738
lsu2-1	Core targeted immunity hub	Col	(Alonso et al. 2003; Mukhtar et al. 2011)	SALK_031648c
Strain	Trait	Genotype	Source	Accession
--------	-------	----------	--------	-----------
lsu2 - 2	Core targeted immunity hub	Col	2011	SALK_126244c
mkk1/mkk2	Map kinase signaling	Col	2008	n/a
mlo2-5; pen2-1	Penetration resistance	Col	al. 2006	CS9717
mpk4	Map kinase signaling	Col	2008	n/a
NahG	SA antagonist	Col	1995	n/a
ndr1-1	R gene-mediated resistance, systemic acquired resistance	Col	1995	CS6358
pad4-1	SA and SA-independent defense responses	Col	et al. 1996	CS3806
pad4-1/ndr1-1	SA signaling, systemic acquired resistance, R gene-mediated resistance	Col	n/a	
pen2-3	Penetration resistance	Col	2005	CS66946
pepr1/pepr2	Perception of DAMPs	Col	2010	n/a
Gene	Function	Strain	Reference	Accession
----------	---	--------	--------------------	-----------
pfd6-1	Core targeted immunity hub	Col	(Alonso et al. 2003; Mukhtar et al. 2011)	n/a
rar1	Master regulator of R gene-mediated immunity	Col	(Muskett et al. 2002)	n/a
rdr1-1/rdr2-1/rdr6-15	RNAi (known problems with pleiotropy)	Col	(Garcia-Ruiz et al. 2010)	CS66485
rdr6-11	RNAi	Col	(Peragine et al. 2004)	CS24285
rpm1	R gene-mediate immunity	Col	(Grant et al. 1995)	n/a
sgt1	Master regulator of R gene-mediate immunity	Col	(Austin et al. 2002)	n/a
sid2-2	SA biosynthesis	Col	(Nawrath & Métraux 1999)	n/a
tir1	Auxin perception	Col	(Ruegger et al. 1998)	CS3798

1 An incomplete representation of the pathways in which the gene is involved.