In utero exposure to di(n-butyl) phthalate and testicular dysgenesis

Citation for published version:
Mahood, IK, Scott, HM, Brown, R, Hallmark, N, Walker, M & Sharpe, RM 2007, 'In utero exposure to di(n-butyl) phthalate and testicular dysgenesis: comparison of fetal and adult end points and their dose sensitivity' Environmental Health Perspectives, vol 115, no. Supplement 1, pp. 55-61. DOI: 10.1289/ehp.9366

Digital Object Identifier (DOI):
10.1289/ehp.9366

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Environmental Health Perspectives

Publisher Rights Statement:
Copyright This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Disorders of male reproductive health are common and perhaps increasing in the Western world (Sharpe and Skakkebaek 2003; Toppari et al. 1996). These include cryptorchidism and hypospadias, which present at birth, and low sperm counts and testicular atrophy, which manifest in young adulthood. Evidence suggests that these disorders may have a common origin in fetal life (Sharpe and Skakkebaek 2003; Skakkebaek et al. 2001). Based on this evidence, these disorders similar to those reported in human testicular dysgenesis syndrome (TDS), including infertility, cryptorchidism, focal “dysgenetic areas,” and Sertoli cell–only tubules in the adult testis. Humans are widely exposed to DBP, but at much lower levels than those causing adverse effects in rats.

OBJECTIVES: The objective of this study was to evaluate end points affected by DBP action in rats in fetal and adult life that are relevant to humans TDS, and to compare their dose sensitivity.

METHODS: Pregnant rats were gavaged daily with corn oil (control) or with 4, 20, 100, or 500 mg/kg DBP. We examined adult end points of TDS (infertility, cryptorchidism) and indicators within the fetal testis of dysgenesis [abnormal Leydig cell (LC) aggregation, multinucleated gonocytes (MNGs)], as well as conditions that may result from these indicators in adulthood (occurrence of focal dysgenetic areas). Fetal testis weight and testicular testosterone levels were also evaluated.

RESULTS: The fetal end points analyzed (testicular testosterone levels, abnormal LC aggregation, occurrence of MNGs) were most sensitive to disruption by DBP, as all were significantly affected at a dose of 100 mg/kg/day DBP, with a trend toward effects occurring at 20 mg/kg/day DBP; adult end points were affected consistently only by 500 mg/kg/day DBP.

CONCLUSIONS: The fetal end points we evaluated can be objectively quantified and may prove helpful in evaluating the health risk of exposure to DBP and other phthalates, as well as identifying DBP-sensitive fetal events that have adult consequences/end points that are identifiable in human TDS.

KEY WORDS: cryptorchidism, di(\textit{n}-butyl) phthalate, dose response, dose sensitivity, dysgenetic areas, infertility, Leydig cell aggregation, male reproductive development, multinucleated gonocytes, testicular dysgenesis syndrome. Environ Health Perspect 115(suppl 1):55–61 (2007). doi:10.1289/ehp.9366 available via http://dx.doi.org/ [Online 8 June 2007]
both fetal and postnatal life, and four different doses of DBP (4, 20, 100, and 500 mg/kg/day) were used. Our results show that it is the fetal end points that are the most sensitive to DBP action.

Materials and Methods

Animals, treatments, sample collection, and processing. Wistar rats were maintained in our own animal facility according to UK Home Office guidelines (Animal (Scientific Procedures) Act 1986), and were fed a soy-free breeding diet (SDS, Dundee, Scotland). Time-mated females [day of vaginal plug = gestation day (GD) 0.5] were treated from GD13.5 to either GD20.5 (fetal samples) or GD21.5 (postnatal tissue) with either 0 (controls, 4, 20, 100, or 500 mg/kg DBP (Sigma, Dorset, UK) in 1 mL/kg corn oil administered daily by oral gavage. The DBP was 99% pure according to the supplier. Corn oil was obtained from a supermarket and was used as obtained.

Fetal samples. Control and DBP-treated pregnant dams were killed by inhalation of carbon dioxide followed by cervical dislocation on GD21.5. Fetuses were removed, decapitated, and placed in ice-cold phosphate-buffered saline (PBS; Sigma). Testes were removed via microdissection, fixed for 1 hr in Bouins fixative, and then transferred to 70% ethanol. Fixed testes were weighed and then processed into paraffin wax using standard methods. One or more male fetuses from each litter were subsequently used for the quantitative and immunohistochemical studies described below; selection of fetuses for further study was random.

Adult samples. Male rats 90 days of age were killed by inhalation of CO₂ followed by cervical dislocation. Testes were carefully inspected for normality of the epididymis and vas deferens and then removed, weighed, fixed for 5–6 hr in Bouins fixative, and then transferred to 70% ethanol. Testes were halved after approximately 3 hr fixation to aid penetration of the fixative. Testes were then further cut into four to eight blocks, depending on size, and embedded in paraffin as described above. At necropsy, testicular position was classified as high abdominal (at level of the kidney), mid-abdominal, inguinal, or scrotal, which enabled classification of testes into cryptorchid or scrotal groups. In controls, all testes were scrotal in position. Individual testes from adult animals that exhibited any gross epidiymal lesions were excluded from histologic analysis to avoid possible confounding effects of this change on testicular morphology (Barlow and Foster 2003; Mylchreest et al. 1998); this applied to two testes from a total of 13 males. Before dissection, the adult male rats underwent a fertility test. This involved each male rat being housed singly for 1 week with a female rat of proven fertility. Males were classified as fertile if offspring were produced.

For the studies above, animals were treated humanely and with regard for alleviation of suffering. All studies were performed according to the Animal (Scientific Procedures) Act (1986) under Project Licence approval by the UK Home Office.

Testicular testosterone analysis. Testicular testosterone levels were measured by radioimmunoassay, as described previously (Fisher et al. 2003), on GD21.5 in individual testes from males from four to six litters per treatment group. After dissection, testes weresnap frozen on dry ice and stored at −70°C before analysis. Testes were defrosted and homogenized individually in 0.5 mL PBS; an aliquot of this solution was then extracted with 2 mL diethyl ether, shaken for 5 min, and then placed in a bath of methanol cooled with dry ice. The nonaqueous portion of the extract was then decanted, dried overnight in a fume hood, and reconstituted in assay buffer. The limit of detection of the assay was 40 pg/testis.

Immunohistochemistry. Specific proteins were detected by immunohistochemistry using methods that have been described previously (Fisher et al. 2003). Sections (5 µm) were mounted onto coated slides (BDH Chemicals, Poole, UK), dewaxed, and rehydrated. Slides were incubated in 3% (vol/vol) hydrogen peroxide in methanol to block endogenous peroxidase activity, then washed in Tris-buffered saline (TBS; 0.05 M Tris, 0.85% NaCl, pH 7.4 at room temperature). Non-specific binding sites were blocked with an appropriate normal serum diluted 1:5 in TBS containing 5% bovine serum albumin (Sigma). Sections were incubated with the primary antibodies 3β-hydroxysteroid dehydrogenase (3β-HSD; 1:4000; gift from I. Mason, Edinburgh, UK) or smooth muscle actin (SMA, 1:2000; Sigma) overnight at 4°C.

Specific binding sites were blocked with an appropriate normal serum diluted 1:5 in TBS containing 5% bovine serum albumin (Sigma). Sections were incubated with the primary antibodies 3β-hydroxysteroid dehydrogenase (3β-HSD; 1:4000; gift from I. Mason, Edinburgh, UK) or smooth muscle actin (SMA, 1:2000; Sigma) overnight at 4°C.

The next morning, slides were incubated 30 min with the appropriate secondary antibody conjugated to biotin, at a dilution of 1:500 (rabbit anti-mouse or swine anti-rabbit; DAKO, Cambridgeshire, UK). The biotinylated antibody was linked to horseradish peroxidase (HRP) by 30-min incubation with avidin-biotin–HRP complex (ABC-HRP; DAKO). Antibody localization was determined by application of diaminobenzidine (liquid DAB; DAKO) until staining in control sections was optimal; the reaction was stopped by immersing slides in distilled water. Slides were counterstained with hematoxylin, dehydrated, and mounted using Pertex mounting media (Cell Path; Hemel Hempstead, UK).

Analysis of MNGs. We identified MNGs using multilocal blue staining of GD21.5 testis sections from one or more testes from animals selected at random from five to nine litters per treatment group. Slides were dewaxed and rehydrated as for immunohistochemistry. The toluidine blue stain (BDH Chemicals) was filtered and applied to slides at a 50% dilution with distilled water. Once staining was optimal the slides were immersed in distilled water and then dehydrated and mounted. To analyze the occurrence of MNGs, we used an Olympus BH-2 microscope (Olympus Optical, London, UK) fitted with a Prior automatic stage (Prior Scientific Instruments Ltd, Cambridge, UK). One complete testis cross-section from each animal was analyzed, and the percentage of seminiferous cord cross-sections that contained one or more MNGs was recorded. We did not record the number of MNGs per cord or the number of nuclei per MNG. The analyzer was blinded with respect to the treatment status of animals.

LC cluster analysis. LC aggregation was objectively quantified using previously described methods (Mahood et al. 2005). Testes from one or more fetuses per litter at GD21.5, from five to six litters per treatment group, were randomly selected and serially sectioned. DBP treatment results in unequal distribution of LC throughout the testis due to their abnormal migration/aggregation into more central regions (Mahood et al. 2005).

To avoid sampling errors because of this unequal distribution, we selected three sections per testis that corresponded to uniform intervals through the serially sectioned testis (25, 50, and 75% intervals, which were thus 20–30 sections apart from each other); these sections were immunostained for 3β-HSD as described above.

Quantification of LC clustering in these sections was undertaken using Image-Pro Plus 4.5.1 software and equipment (Media Cybernetics UK, Wokingham, Berkshire, UK). Specimens immunostained for 3β-HSD were of sufficient homogeneity, high contrast, and low background to allow computer-assisted thresholding and subsequent computer-assisted counting of LC (3β-HSD–immunopositive) clusters and determination of LC cluster area. Digital images of complete testis sections were captured at ×40 magnification. The software was used to trace around each section, creating an area of interest; the area of each section could then be calculated. Computer-assisted thresholding was then used to identify and analyze clusters of 3β-HSD–immunopositive cells, generating data on cluster number and the proportion of each section occupied by LC clusters, as described in detail elsewhere (Mahood et al. 2005). To take account of the decrease in LC size in DBP-exposed males (Mahood et al. 2005), each LC cluster was expressed as a percentage of the total LC cluster area in each animal. Clusters were then arbitrarily assigned to one of three groups: small clusters, accounting for ≤ 5% of the total.
Cryptorchid and scrotal testis weights from adult male rats exposed in utero to 500 mg/kg DBP. Values are litter mean ± SE for 4–16 litters per treatment group.

Incidence of cryptorchidism. We assessed the incidence of dysgenesis in each of the treatment groups in adult male rats by visual analysis of SMA immunostained sections from four to eight blocks per testis for each animal. Sections were checked for the occurrence of Sertoli cell–only (SCO) tubules and focal dysgenetic areas in each testis (cryptorchid and scrotal). Testes were obtained from one or more animals from at least five separate litters from each treatment group.

Image capture. Images were examined and photographed using a Provis microscope (Olympus Optical, London, UK) fitted with a Kodak DCS330 digital camera (Eastman Kodak, Rochester, NY, USA). Images were compiled using Photoshop 7.0 (Adobe Systems Inc., Mountain View, CA, USA).

Statistical analysis. We used data for each of the fetal end points and for adult testis weight to derive a mean value for each litter; litter means ± SE were then computed and used for statistical analyses. Data were analyzed by one-way analysis of variance followed by the Bonferroni post-test. The incidence of infertility per litter (Figure 1A) or when analyzed using incidence of infertility per litter (p = 0.03). The 500-mg/kg DBP treatment group was also the only treatment group to have a significantly elevated incidence of cryptorchidism compared with the control group, with 90% of animals exhibiting either unilateral or bilateral cryptorchidism compared with no animals in the control group (Figure 1B); this difference was equally evident when data were analyzed as incidence of cryptorchidism per litter (p = 0.005). In all other treatment groups, we found only one case of cryptorchidism (unilateral), and this was in the group exposed to 100 mg/kg DBP. Exposure to 500 mg/kg DBP during gestation resulted in a significant decrease in testis weight compared with control animals both at GD21.5 and in adulthood (Figure 2A,B), although the reduction in adulthood was attributable solely to the high incidence of cryptorchid testes (Figure 2C). Animals exposed to 4, 20, or 100 mg/kg DBP did not show any significant change in testis weight at either GD21.5 (Figure 2A) or in adulthood (Figure 2B). Testicular testosterone levels in GD21.5 animals were significantly decreased in both the 500- and 100-mg/kg DBP treatment groups compared with control values (Figure 3). We found no significant effect of DBP treatment on fetal body weight or on litter size (data not shown).

Occurrence of MNGs at GD21.5. All treatment groups, including the control group, had MNGs within the seminiferous cords at GD21.5 (Figure 4A,B). Prenatal exposure to either 500 or 100 mg/kg DBP resulted in a significant increase in the occurrence of MNGs compared with controls; also,

Figure 1. Incidence of infertility (A) and cryptorchidism (B) in adult male rats exposed in utero (GD13.5–GD21.5) to corn oil (control) or DBP. Values shown in parentheses are the number of infertile/fertile animals (A) and the number of animals with either unilateral or bilateral cryptorchid/normal testis position (B). Animals were derived from five to seven litters except for the 20 mg/kg DBP group, which was derived from three litters.

Figure 2. Testis weights at GD21.5 (A) or in adulthood (B) in male rats exposed in utero (GD13.5–GD21.5) to corn oil (control) or DBP. (C) Breakdown comparison of cryptorchid and scrotal testis weights from adult male rats exposed in utero to 500 mg/kg DBP. Values are litter mean ± SE for 4–16 litters per treatment group (based on 26–96 animals/group).

Figure 3. Testicular testosterone levels at GD21.5 in animals exposed in utero (GD13.5–GD21.5) to corn oil (control) or DBP. Testosterone values are litter mean ± SE for four to six litters per group.

Table 1. Incidence of infertility (%), cryptorchidism, SCO tubules, and focal dysgenetic areas in each testis (cryptorchid and scrotal). Testes were obtained from one or more animals from at least five separate litters from each treatment group.

Figure 4. Incidence of infertility (A) and cryptorchidism (B) in adult male rats exposed in utero (GD13.5–GD21.5) to corn oil (control) or DBP. (C) Breakdown comparison of cryptorchid and scrotal testis weights from adult male rats exposed in utero to 500 mg/kg DBP. Values are litter mean ± SE for 4–16 litters per treatment group (based on 26–96 animals/group).
we found an increase in the occurrence of MNGs in animals exposed to 20 mg/kg DBP (Figure 4C), although it was not statistically significant.

LC clustering/aggregation at GD21.5. Changes in LC distribution were obvious in both the 100- and 500-mg/kg DBP treatment groups (Figure 5D,E) compared with controls (Figure 5A); these changes were most pronounced in the highest dose group, with large LC clusters being evident in the center of the testes (Figure 5E). LC distribution in testis sections from the 4- and 20-mg/kg treatment groups were not obviously different from controls (Figures 5B,C). Objective analysis of LC aggregation revealed a significant decrease in total LC cluster number per testis section in animals exposed to either 100 or 500 mg/kg DBP (Figure 6A). This pattern was similarly reflected in the data for the percentage of total cluster area accounted for by small clusters (Figure 6B). LC clusters of medium size were evident in all treatment groups but were only significantly increased above control values in the 100-mg/kg DBP group (Figure 6C). The occurrence of large LC clusters was evident only in groups of males exposed to 20, 100, or 500 mg/kg DBP (Figure 6D). However, compared with control animals, the number of large LC clusters was significantly increased only in the 500-mg/kg group, in which approximately 40% of the total LC cluster area was accounted for by clusters of this size (Figure 6D).

Incidence of focal dysgenesis in adulthood. Visual analysis of SMA-immunostained testis sections from each treatment group revealed that all cryptorchid testes examined from the 500- and 100-mg/kg DBP groups had SCO tubules present (Table 1). Of the 11 cryptorchid testes examined in the 500-mg/kg DBP group, 7 had one or more focal dysgenetic areas. In testes from control animals, we found neither SCO tubules nor areas of focal dysgenesis (Figure 7A). SCO tubules were found in all DBP-exposed groups except the 4 mg/kg treatment group (Table 1). However, not all testes examined in each group had SCO tubules present. Interestingly, we found that a similar number of testes in the two highest dose groups (500 and 100 mg/kg) had SCO tubules (~ 66% of testes examined); this incidence was statistically significant when data were analyzed for individual animals (Table 1) or based on the incidence per litter (i.e., any animal per litter exhibiting SCO tubules; \(p = 0.04 \)). Focal dysgenetic areas were detected only in the 500- and 100-mg/kg DBP animals (Figure 7B,C); 55% of testes examined in the 500-mg/kg group and approximately 33% in the 100-mg/kg dose group had areas of dysgenesis present. However, only the incidence of dysgenetic areas in the 500-mg/kg DBP group achieved statistical significance when analyzed for individual animals (Table 1); this was of borderline significance when evaluated per litter (\(p = 0.05 \)).

Discussion

We and others have shown that fetal exposure of male rats to DBP, or certain other phthalates, results in a high incidence of disorders such as cryptorchidism, hypospadias, and infertility (Barlow and Foster 2003; Ema et al. 1998, 2000; Fisher et al. 2003; Gray et al. 1999; Mylchreest et al. 1998, 1999, 2000). These disorders are collectively similar to those reported in human TDS patients, and as such, the focus of the present study was to investigate DBP-induced changes in fetal life and in adulthood that were considered relevant to TDS. To date, studies investigating the effects of DBP on male reproductive development have used end points that may be relevant to human TDS (occurrence of cryptorchidism, decreased fertility), or that are not relevant (nipple retention in male rats), or that are presently of uncertain relevance (decreased AGD) (Barlow and Foster 2003; Barlow et al. 2004; Carruthers and Foster 2005; Ema et al. 1998, 2000; Mylchreest et al. 1998, 1999, 2000; Zhang et al. 2004). Similarly, changes in gene and protein expression after DBP exposure, which have been found to be more sensitive to the effects of DBP (Lehmann et al. 2004), cannot be related directly to TDS other than when the changes relate to expression of genes involved in LC hormone production. These include reduction in the expression of genes and proteins involved in cholesterol transport and steroidogenesis leading to a concomitant

Figure 4. Occurrence of MNGs (arrows) in representative photomicrographs of testicular sections collected on GD21.5 from rats exposed in utero (GD13.5–GD20.5) to corn oil (control; A) or 500 mg/kg/day DBP (B). Tissues were stained with toluidine blue; bar = 50 µm. (C) Percentage of seminiferous cords containing MNGs on GD21.5 in animals exposed in utero to DBP (mg/kg/day); values are litter mean ± SE for five to nine litters per treatment group.

*\(p < 0.001 \) compared with control.

Figure 5. Representative photomicrographs illustrating the change in distribution of Leydig cells (3β-HSD-positive, brown) in the testes of GD21.5 animals exposed in utero (GD13.5–GD20.5) to corn oil (control; A) or DBP doses of (B) 4, (C) 20, (D) 100, or (E) 500 mg/kg/day. Tissues were counterstained with hematoxylin; bar = 0.5 mm.
The percentage occurrence of small (B), medium (C), and large (D) LC clusters are shown for each treatment group. Values shown are litter mean ± SE for five to six litters per treatment group. Small clusters account for ≥ 5% of the total LC cluster area per testis, medium clusters for 5.1–14.9%, and large clusters for ≥ 15%.

**p < 0.01. #p < 0.001 compared with respective control values.

Table 1. Incidence of SCO tubules and dysgenetic areas in the testes of adult male rats exposed in utero (GD13.5–GD20.5) to corn oil (control) or to DBP. The number of LC clusters per testis section (A) and the percentage occurrence of each LC cluster type (B) are shown for each treatment group. Values shown are litter mean ± SE for five to six litters per treatment group. Small clusters account for ≥ 5% of the total LC cluster area per testis, medium clusters for 5.1–14.9%, and large clusters for ≥ 15%.

DBP (mg/kg/day)	No. of LC clusters	Percent of total LC clusters
0 (control)	0	0 (0/0)
100	11	Yes (11/11)^*
200	1	Yes (1/2)^*
400	0	—

Numbers in parentheses indicate the number of testes that exhibited either SCO tubules or dysgenetic areas of the total number of testes analyzed. Each scrotal and cryptorchid testis analyzed was from a different animal and represented at least three different litters; seven of the analyzed cryptorchid testes were from unilaterally cryptorchid animals for which the corresponding scrotal testis was also analyzed.

*Seven of these 11 testes had dysgenetic areas. ^p = 0.009. *p = 0.029. #p = 0.005.

Figure 6. Number and distribution of LC clusters in testes collected on GD21.5 from male rats exposed in utero (GD13.5–GD20.5) to corn oil (control) or to DBP. The number of LC clusters per testis section (A) and the percentage occurrence of small (B), medium (C), and large (D) LC clusters are shown for each treatment group. Values shown are litter mean ± SE for five to six litters per treatment group. Small clusters account for ≥ 5% of the total LC cluster area per testis, medium clusters for 5.1–14.9%, and large clusters for ≥ 15%.

**p < 0.01. #p < 0.001 compared with respective control values.

Figure 7. Photomicrographs of scrotal testes from adult rats exposed in utero to (A) corn oil (control), or to DBP doses of (B) 500 or (C) 100 mg/kg/day DBP. Although the majority of each cross-section of scrotal testes in DBP-exposed animals had normal seminiferous tubules, some animals exhibited one or more focal dysgenetic areas comprising malformed seminiferous tubules as visualized by immunostaining for SMA to identify peritubular myoid cells. Note the occurrence of unusually large numbers of LCs surrounding the malformed tubules (R). Bar = 100 μm.
SCO tubules formed in the testes of DBP-exposed rats (Mahood et al. 2005, 2006). This model hypothesizes that DBP-induced abnormal migration and aggregation of LCs within the fetal testis "traps" isolated SC, gonocytes, and presumably peritubular myoid cells within them (Fisher et al. 2003). Postnatally, after cessation of DBP treatment, these non-segregated clusters of cells then try to form seminiferous cords; we propose that this process results in the formation of dysgenetic areas focally within the testes, surrounded by otherwise normal tissue with complete spermatogenesis (in scrotal testes). The results from the present dose–response study support our proposed model because dysgenetic areas were seen in adulthood following fetal exposure to either 100 or 500 mg/kg/day DBP, and it is at these doses that abnormal LC aggregation was induced in fetal life. The dose-dependent nature of fetal LC aggregation was induced in fetal life. The and it is at these doses that abnormal LC were seen in adulthood following fetal exposure to DBP alone, it is important to consider the combined risk of exposure to DBP and other phthalates that can exert similar effects (e.g., diethylhexyl phthalate), or indeed other endocrine-disrupting chemicals. Recent studies have reported that pairs of phthalates (Borch et al. 2004) or combination of a phthalate with another anti-androgen with a different mode of action (Hochkiss et al. 2004) produce dose-additive effects on male reproductive malformations in rats. Therefore, studies investigating the dose–response relationships and dose-additive effects of phtha- lates and other endocrine-disrupting chemicals on male reproductive development need to be a focus of future research in order to fully evaluate the risk of human exposure.

We hope that the new fetal end points described in the present study (occurrence of MNGs and abnormal LC aggregation), which can be objectively quantified, will prove a useful resource in future studies. It can be argued that the fetal occurrence of MNGs induced by DBP is irrelevant because it has its known direct consequences for the fetus (which does not reproduce) or the adult. However, because MNGs may reflect altered SC function in fetal life (Ferrara et al. 2006), and it is the number (and function) of the SC that predetermines sperm count and fertility in adulthood, MNGs may provide a sensitive (indirect) measure of such effects. Similarly, the occurrence of abnormal LC aggregation in the fetal testis is potentially of direct evidence to adult testis function, as our evidence suggests that it is an important cause of SCO tubules and focal dysgenetic areas in the testis in adulthood (Mahood et al. 2006). As the latter features are clearly relevant to human TDS (Hoei-Hansen et al. 2003; Sharpe 2006), it would be sensible to concentrate on such end points or to identify other fetal end points that have proven consequences that are detectable in adulthood.

References

Animal (Scientific Procedures) Act, 1986. London: Home Office.
Available: http://www.archive.official-documents.co.uk/ document/hoc/2002-321/321-va.htm [accessed 5 February 2007].
Barlow NJ, Foster PM. 2003. Pathogenesis of male reproduc- tive lesions from gestation through adulthood following in utero exposure to di-(n-butyl) phthalate. Toxicol Pathol 31:397–410; doi:10.1080/0192623032009723.
Barlow NJ, McIntyre BS, Foster PM. 2004. Male reproductive tract lesions at 6, 12, and 18 months of age following in utero exposure to di-(n-butyl) phthalate. Toxicol Pathol 32:79–90; doi:10.1080/01926230320097894.

Barlow NJ, Phillips SJ, Wallace DG, Sar M, Gaido KW, Foster PM. 2003. Quantitative changes in gene expression in fetal rat testes following exposure to di-(n-butyl) phthalate. Toxicol Sci 72:431–441; doi:10.1093/toxsci/kfg087.
Borch L, Ledefogd O, Hass U, Vintermark A. 2004. Steroidogenesis in fetal male rats is reduced by DEHP and DNP, but endocrine effects of DEHP are not modulated by DEHA in fetal, prepubertal and adult male rats. Reprod Toxicol 18:53–61; doi:10.1016/j.reprotox.2003.11.011.
Carruthers CM, Foster PM. 2005. Critical window of male repro- ductive tract development in rats following gestational exposure to di-(n-butyl) phthalate. Birth Defects Res B Dev Reprod Toxicol 74:277–285; doi:10.1002/bdrb.20506.
Ema M, Miyawaki E, Kawashima K. 1998. Further evaluation of developmental toxicity of di-n-butyl phthalate following administration during late gestation. Toxicol Lett 98:97–102; doi:10.1016/S0378-4274(98)00107-8.
Ema M, Miyawaki E, Kawashima K. 2000. Critical period for adverse effects on development of reproductive system in male offspring of rats given di-n-butyl phthalate during late pregnancy. Toxicol Lett 111:271–278; doi:10.1016/S0378-4274(00)01910-7.
Ferrara D, Hallmark N, Scott HS, Brown R, McKinnell C, Mahood IK et al. 2005. Acute and long-term effects of in utero exposure of rats to di(2-ethylhexyl) phthalate on testicu- lar cell development and reproduction. Endocrinology 147:5303–5306; doi:10.1210/en.2005-0527.
Fisher JS, Macpherson S, Marchetti N, Sharpe RM. 2003. Human testicular dysgenesis: a ‘model’ using in utero exposure of the rat to dibutyl phthalate. Hum Reprod 18:1383–94; doi:10.1093/humrep/deg273.
Gray LE Jr, Wold CB, Lambright C, Mann P, Price M, Cooper RL, et al. 1998. Administration of potentially anti-androgenic pesticides (procymidone, linuron, iprodione, chlorothalonil, p,p’-DDE, and ketocazole) and toxic substances (dibutylyl and diethylhexyl phthalate, PCB 109, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of repro- ductive malformations in the rat. Toxicol Ind Health 15:54–68; doi:10.1080/13652029978684664.
Hauser R, Calafat AM. 2005. Phthalate exposure and human health. Occup Environ Med 62:806–810; doi:10.1136/oem.2004.017900.
Hauser R, Duty S, Godfrey-Bailley L, Calafat AM. 2004. Medications as a source of human exposure to phthalates. Environmental Health Perspect 112:751–753.
Hoei-Hansen CE, Holm H, Raajert-De Meyts E, Skakkebaek NE. 2003. Histological evidence of testicular dysgenesis in con- tralateral biopsies from 218 patients with testicular germ cell cancer. J Pathol 203:370–374; doi:10.1002/path.1372.
Hochkiss AK, Parks-Saldittt US, Dettby JS, Lambright C, Ferr J, Vandenbergh JG et al. 2004. A mixture of the “anti- androgens” linuron and butylbenzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. Biol Reprod 71:1892–1901; doi:10.1095/biolreprod.104.031674.
Koch HM, Dreuxler H, Angerer J. 2003. An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 206:77–83; doi:10.1016/S0378-4274(03)00020-9.
Lehmann KP, Phillips S, Sar M, Foster PM, Gaido KW. 2004. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di-(n-butyl) phthalate. Toxicol Sci 81:60–68; doi:10.1093/toxsci/kfh169.
Mahood IK, Hallmark N, McKinnell C, Walker M, Fisher JS, Sharpe RM. 2005. Abnormal Leydig cell aggregation in the fetal testis of rats exposed to di-(n-butyl) phthalate and its possible role in testicular dysgenesis. Endocrinology 146:613–623; doi:10.1210/en.2004-0711.
Mahood IK, McKinnell C, Walker M, Hallmark N, Scott H, Fisher JS et al. 2006. Cellular origins of testicular dysgenesis in rats exposed to utero to di(2-ethylhexyl) phthalate. Int J Androl 29:148–154; doi:10.1111/j.1365-2605.2005.00576.x.
McKinnell C, Sharpe RM, Mahood K, Hallmark N, Scott H, Ivell R et al. 2005. Expression of insulin-like factor 3 protein in the testis tests during fetal and postnatal development in relation to cryptorchidism induced by in utero exposure to di-(n-butyl) phthalate. Endocrinology 146:4536–4544; doi:10.1210/en.2005-0576.
Mychaleckyj JE, Cattley RC, Foster PM. 1998. Male reproductive tract malformations in rats following gestational and lacta- tional exposure to di-(n-butyl) phthalate: an antianabolic effect? Toxicol Sci 47:447–452; doi:10.1093/toxsci/47.3.447.
Mychaleckyj JE, Sar M, Cattley RC, Foster PM. 1999. Disruption of androgen-regulated male reproductive development by di(2-ethylhexyl) phthalate during late gestation in rats is different from
flutamide. Toxicol Appl Pharmacol 156:81–95; doi:10.1006/taap.1999.8643.
Mylchreest E, Sar M, Wallace DG, Foster PM. 2002. Fetal testosterone insufficiency and abnormal proliferation of Leydig cells and gonocytes in rats exposed to di(n-butyl) phthalate. Reprod Toxicol 16:19–28; doi:10.1016/S0890-6288(01)00201-5.
Mylchreest E, Wallace DG, Cattley RC, Foster PM. 2000. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to di(n-butyl) phthalate during late gestation. Toxicol Sci 55:143–151; doi:10.1093/toxsci/55.1.143.
Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, et al. 2000. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci 58:339–349; doi:10.1093/toxsci/58.3.339.
Rudel RA, Spengler JD, Korn LR, Brody JD. 2003. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol 37:4543–4553; doi:10.1021/es0304596.
Schettler T. 2006. Human exposure to phthalates via consumer products. Int J Androl 29:134–139; doi:10.1111/j.1365-2605.2005.00567.x.
Sharpe RM. 2006. Pathways of endocrine disruption during male sexual differentiation and masculinisation. Best Pract Res Clin Endocrinol Metab 20:91–110; doi:10.1016/j.beem.2005.09.005.
Sharpe RM, Skakkebaek NE. 2003. Male reproductive disorders and the role of endocrine disruption: advances in understanding and identification of areas for future research. Pure Appl Chem 75:2023–2038.
Shultz VD, Phillips S, Sar M, Foster PM, Gaido KW. 2001. Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol Sci 64:233–242; doi:10.1093/toxsci/64.2.233.
Silva MJ, Barr DB, Reedy JA, Malek NA, Hodge CC, Caudill SP, et al. 2004. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ Health Perspect 112:331–338; doi:10.1289/ehp.6723.
Skakkebaek NE, Rajpert-De Meyts E, Main KM. 2001. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978; doi:10.1093/humrep/16.5.972.
Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, et al. 2005. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect 113:1056–1061; doi:10.1289/ehp.8100.
Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillellet LJ Jr, et al. 1996. Male reproductive health and environmental xenoestrogens. Environ Health Perspect 104(suppl 4):741–803; doi:10.2307/3432709.
Wilson VS, Lambright C, Furr J, Ostby J, Wood C, Held G, et al. 2004. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicol Lett 146(3):207–215; doi:10.1016/j.toxlet.2002.09.012.
Zhang Y, Jiang X, Chen B. 2004. Reproductive and developmental toxicity in F1 Sprague-Dawley male rats exposed to di-n-butyl phthalate in utero and during lactation and determination of its NOAEL. Reprod Toxicol 18(5):669–676; doi:10.1016/j.reprotox.2004.04.009.