Basic Study

Loss of Dicer1 impairs hepatocyte survival and leads to chronic inflammation and progenitor cell activation

Xu-Feng Lu, Yong-Jie Zhou, Lei Zhang, Hong-Jie Ji, Li Li, Yu-Jun Shi, Hong Bu

Author contributions: Lu XF, Shi YJ and Bu H designed the research; Lu XF performed the research; Zhou YJ and Zhang L contributed analytic tools; Ji HJ and Li L analyzed the data; and Lu XF, Shi YJ and Bu H wrote the paper; all authors read and approved the final manuscript.

Supported by National Key Clinical Project, and National Sciences; and Technology Major Project of China, No. 2012ZX10002-017.

Ethics approval: This study was reviewed and approved by the ethic committee of the West China Hospital of Sichuan University’s Institutional Review Board.

Institutional animal care and use committee: All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the West China Hospital of Sichuan University (IACUC-No. S200904-P001).

Conflict-of-interest: The authors declare that they have no conflict of interest or financial interests.

Data sharing: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Yu-Jun Shi, MD, PhD, Laboratory of Pathology, West China Hospital, Sichuan University, 37 Wainan Guoxuexiang, Chengdu 610041, Sichuan Province, China. shiyunj@scu.edu.cn
Telephone: +86-28-85164030

Abstract

AIM: To investigate the continuous hepatic histopathological processes which occur in response to the loss of Dicer1.

METHODS: We generated a hepatocyte-selective Dicer1 knockout mouse and observed the gradual hepatic histopathological changes in the mutant liver. Immunohistochemistry and Western blotting were performed to detect Dicer1 expression. We performed hematoxylin and eosin staining, Periodic acid-Schiff staining, Oil Red O staining, and Masson’s trichrome staining to detect histological changes in Dicer1-deficient livers. Ki67 immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and Western blotting were used to determine hepatocyte proliferation and apoptosis. Serum biochemistry, cytokine assays, and flow cytometric analysis were performed to quantify liver necrosis and inflammation. Fibrogenic markers were determined by Western blotting and qPCR. CK19, CD133, and OV6 immunofluorescence were used to detect progenitor cells. Hepatocellular carcinoma (HCC) development.

RESULTS: Dicer1 inactivation resulted in significant architecture disorganization and metabolism disruption.
MicroRNAs (miRNAs) play a critical role in hepatocyte survival and result in profound cell apoptosis and continuous necrosis. In contrast to previous reports, the mutant liver exhibited chronic inflammation and progressive fibrosis, and could not be repopulated by Dicer1-positive cells. In addition, extensive activation of hepatic progenitor cells was observed. Primary HCC was observed as early as 4 mo after birth.

CONCLUSION: Hepatic loss of Dicer1 results in complex chronic pathological processes, including hepatocyte death, inflammatory infiltration, chronic fibrosis, compensatory proliferation, progenitor activation, and spontaneous hepatocarcinogenesis.

Key words: Dicer1; microRNAs; Liver inflammation; Liver fibrosis; Hepatocellular carcinoma

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: MicroRNAs (miRNAs) play a critical role in the regulation of multiple biological genes in the liver. The liver-specific loss of Dicer1, an endoribonuclease essential for precursor miRNAs maturation, results in liver injury and spontaneous development of hepatocellular carcinoma (HCC); however, the gradual histological changes involved in these processes have not been completely characterized. In contrast to previous reports, we found that Dicer1 inactivation causes typical chronic liver injury characterized by profound hepatocyte apoptosis, continuous liver necrosis, active compensatory proliferation, noticeable triad inflammation, progressive liver fibrosis, significant progenitor activation, and spontaneous hepatocarcinogenesis. Our work provides new insights into the role of miRNA in liver injury and HCC development. These results may also aid in the development of a miRNA therapeutic strategy for the prevention and treatment of HCC.

Lu XF, Zhou YJ, Zhang L, Ji HJ, Li L, Shi YJ, Bu H. Loss of Dicer1 impairs hepatocyte survival and leads to chronic inflammation and progenitor cell activation. World J Gastroenterol 2015; 21(21): 6591-6603 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i21/6591.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i21.6591

INTRODUCTION

MicroRNAs (miRNAs) are a large family of small non-coding endogenous RNAs (19-25 nucleotides in length) that negatively mediate gene expression at the post-transcriptional level through processes such as transcript degradation or translational repression by binding to the 3' untranslated region (3'UTR) of target messenger RNAs (mRNAs)[1,2]. Dicer1 is a highly conserved ribonuclease III enzyme that is critical for further cleavage of about 70-nucleotide hairpin precursor RNA (pre-miRNAs) to generate mature miRNAs[3,4]. Dicer1 depletion essentially causes a global loss of mature Dicer1-dependent miRNAs, resulting in a lethal phenotype at approximately embryonic day 7.5 (E7.5) due to loss of pluripotency and embryonic stem cell proliferation defects[5]. Thus, approaches involving the conditional deletion of the Dicer1 allele have been used to evaluate miRNA function in a range of tissues and organs. Accumulating reports have revealed the critical role of miRNAs in diverse fundamental biological processes, such as proliferation, differentiation, apoptosis, genomic stability, and signaling pathways[1,6-9]. Moreover, hundreds of miRNAs have previously been identified in mammalian genomes, and these miRNAs are estimated to regulate more than 50% of human protein-coding genes[7]. In addition, each miRNA targets numerous miRNAs[8,9].

Given that miRNAs are key players associated with various diseases or cancers, growing evidence suggests that miRNAs function as either tumor suppressors or oncogenes in tumorigenesis[10,11]. Specific deletion of hepatocyte Dicer1 results in increased fetal gene expression in the mature liver, defective liver zonation, preserved hepatic function, and the spontaneous development of hepatocellular carcinoma (HCC)[12-14]. Understanding the progression of HCC will contribute to the development of better diagnosis and therapies; however, the functions of Dicer1 and miRNAs in liver cancer remain unclear. miR-122 is a product of Dicer1 and the most abundant hepatocyte-specific miRNA, accounting for approximately 70% of the total miRNA population in the liver. miR-122 plays a fundamental role in fatty acid and cholesterol metabolism, as well as in hepatitis C viral replication[16,17]. miR-122 loss in murine liver results in the development of nonalcoholic steatohepatitis, liver fibrosis, and HCC[18]. Decreased miR-122 levels in liver cancer promote metastasis[19]. miR-199a/b-3p suppresses HCC growth through the PAK4/Raf/MEK/ERK pathway[20], whereas miR-26a targets cyclin D2 and cyclin E2 mRNA to induce G1 arrest and promote tumor development[21]. The downregulation of certain miRNAs, such as miR-24a, miR-15a/b, miR-150, and miR-195, has also been noted in human liver cancer through the use of a c-Myc-induced mouse model of HCC[22,23]. miRNA-deficient hepatocytes exhibit a delay in cell cycle progression via a G1 to S phase block during liver regeneration[24,25].

Despite the important role of miRNAs in the liver, their function in the development of HCC remains unclear. Here, we developed a hepatocyte-specific Dicer1-deficient mouse and comprehensively elucidated the gradual hepatic pathological changes that occur over time.

MATERIALS AND METHODS

Animal care and use statement

The animal protocol was designed to minimize pain and discomfort for the animals used in the study. The animals were acclimatized to laboratory conditions...
(23 °C, 12 h/12 h light/dark, 50% humidity, ad libitum access to food and water) for two weeks prior to experimentation. All animals were euthanized by barbiturate overdose (intravenous injection, 150 mg/kg pentobarbital sodium) for tissue collection.

**Animals**

Alb-Cre mice were mated with Dicer1fl/fl mice to generate hepatocyte-specific Dicer1 knockout mice (Alb-Cre; Dicer1fl/fl) as described previously. Genotyping was performed by PCR of tail DNA to distinguish wild-type mice and knockout mice. Liver samples were obtained at indicated time points for gross observation and to create frozen or paraffin sections. All animal experiments were approved by the Ethics Committee of the West China Hospital of Sichuan University.

**Histological staining**

Liver tissues were fixed in 10% formalaldehyde and the 4-μm sections were subjected to hematoxylin and eosin staining, Periodic acid-Schiff staining, and Masson’s trichrome staining. All staining was performed using standard procedures. For Oil Red O staining, fresh liver samples were cut into 6-μm thick cryosections. Cryosections were incubated with Oil Red O solution (0.5% w/v Oil Red O in isopropyl alcohol) for 20 min and counterstained with hematoxylin.

**Immunohistochemistry and immunofluorescence**

Paraffin-embedded liver sections were incubated with appropriately diluted antibodies, including Dicer1 (Novus Biologicals, United States), Ki67 (Thermo Scientific, United States), CK19 (Abcam, United Kingdom), SOX2 (Abcam, United Kingdom), OCT4 (Abcam, United Kingdom), MIC1 (OV6) (Novus Biologicals, United States), and CD133 (Millipore, United States). The results were developed by the 3,3’-diaminobenzidine (DAB) method or directly observed under a fluorescent microscope.

**TUNEL assay**

The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was used to detect apoptotic hepatocytes according to the manufacturer's instructions (Roche Applied Science, Switzerland).

**Western blotting**

Protein samples were separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto activated-polyvinylidene difluoride membrane (Bio-Rad, United States). Immunoblotting was performed using standard protocol. Signals were detected via chemiluminescence using an ECL kit (Millipore, United States) on a ChemiDoc XRS gel documentation system (Bio-Rad, United States). The primary antibodies used for immunoblotting include cyclin D1 (Abcam, United Kingdom), CDK1 (Abcam, United Kingdom), Bax (Cell Signaling Technology, United States), Bcl-2 (Cell Signaling Technology, United States), cleaved Caspase-3 (Cell Signaling Technology, United States), α-smooth muscle actin (α-SMA) (Abcam, United Kingdom), β-actin (Cell Signaling Technology, United States), and GAPDH (Kangchen, China).

**Quantitative reverse-transcriptase polymerase chain reaction**

Total RNA was extracted from liver samples using Trizol reagent (Invitrogen, United States). Total RNA was used as a template to synthesize cDNA using the iScript cDNA synthesis kit (Bio-Rad, United States). q-PCR reactions were performed using a Bio-Rad CFX96™ Real-Time PCR system with SsoFast™ EvaGreen Supermix (Bio-Rad, United States). The relative expression of target genes was normalized to an internal β-actin control. Relative gene expression with a greater than 2-fold change was considered statistically significant.

**Serum biochemistry and cytokine assay**

Blood samples were obtained from the orbital vascular plexus of the mice. Aspartate amino-transferase (AST) and alanine amino-transferase (ALT) serum levels were determined. Serum cytokine levels were analyzed on a Luminex 200 system using a Millipore Map Mouse Cytokine/Chemokine Magnetic Bead Panel kit (Millipore, United States) according to the manufacturer’s instructions.

**Flow cytometric analysis**

Liver leukocytes were isolated and subjected to flow cytometric analysis as described previously. The monoclonal antibody CD45-APC (BD, United States) was used to detect total liver leukocytes. The population of intrahepatic inflammation cells was normalized to the amount of total liver leukocytes. Flow cytometric analysis was performed on a Navios flow cytometer (Beckman Coulter, United States) and analyzed with Kaluza (Beckman Coulter, United States).

**Statistical analysis**

All results were expressed as the mean ± SD. For statistical analysis, P-values were calculated using an unpaired Student’s t-test (GraphPad Prism 5 software). P < 0.05 was considered statistically significant.

**RESULTS**

**Abnormal appearance and disturbed metabolism of the Dicer1-deficient liver**

To address the overall loss of miRNAs in the liver, we generated hepatocyte-specific Dicer1-deficient mice and examined Dicer1 protein expression in the liver. As shown in Figure 1C and D, Dicer1 protein was robustly depleted in the livers of both young and adult mutant...
mice, which suggested that Dicer1 disruption was persistent with the development and growth of the mutant liver. The mutant mice were born alive at the expected Mendelian ratio; no obvious abnormalities regarding appearance, body weight, or weaning behavior were noted compared with the littermate controls. All mutant mice matured normally and were fertile. Notably, the livers of the adult Alb-Cre; Dicer1$^{fl/fl}$ mice exhibited an approximately 25% increase in the ratio of liver weight/body weight (L.W./B.W.) compared with their littermates (Figure 2A and B). Similar to the previous study, the Dicer1-deficient liver exhibited noticeable appearance defects. The 1-mo-old mutant liver was pale in color and gradually returned to normal liver color at 3 mo of age.

HE staining revealed distinctive features of the mutant livers, including a disrupted architecture due to enlarged hepatocytes, disorganized hepatic trabeculae, fibrosis surrounding portal tracts, and obliterated hepatic sinususes. Dicer1 loss in liver impairs lipid and glucose metabolism. To further address metabolic disorders in the mutant liver, we examined lipid and glycogen deposition in hepatocytes. Consistent with previous reports, increased accumulation of lipid droplets was noted in 1-mo-old mutant livers compared with wild-type livers as determined by Oil Red O staining (Figure 2C). However, the lipid droplets were significantly reduced in 2-mo-old mice, which might contribute to alterations in liver color ranging from pale to dark red. PAS staining indicated that the mutant liver exhibited significantly reduced glycogen storage after overnight fasting (Figure 2C). In contrast to steatosis, which gradually disappears as the liver matures, the glycogen deficiency was not corrected throughout the lifespan.

**Loss of Dicer1 impairs hepatocyte survival and stimulates compensatory proliferation**

We examined hepatocyte necrosis, apoptosis, and proliferation in the Dicer1-inactive liver. Noticeable necrosis was observed in 2-mo-old Dicer1-deficient mice (Figure 3A and B). Tissue damage in the Dicer1-deficient livers was also confirmed by the examination of ALT and AST, both of which exhibited a statistical increase at two months after birth (Figure 3C). Hepatocyte necrosis induced the release of interleukin-1α (IL-1α), which triggers compensatory proliferation and HCC development (Figure 3D). Moreover, as observed in TUNEL staining, Dicer1-deficient livers exhibited approximately 1% TUNEL-positive hepatocytes in 1-mo-old mice, and this number increased to greater than 2% in 2-mo-old mice (Figure 4A and B). Hepatocyte death prompted us to examine regeneration in the diseased livers. We performed Ki67 immunohistochemistry and determined the number of the proliferating hepatocytes. Dicer1-deficient livers exhibited an increased number of Ki67-positive cells (Figure 4A and B), indicating compensatory proliferation.
proliferation in response to the cell death. The proportion of Ki67 positive cells increased with age. To obtain further insight into hepatocyte proliferation and apoptosis, we performed immunoblotting to analyze the expression of mitotic markers (e.g., cyclin D1 and CDK1) and apoptotic markers (e.g., including Bax, Bcl-2, and Cleaved Caspase-3). This analysis revealed that the Dicer1-deficient hepatocytes exhibited survival defects, resulting in continuous hepatocyte death and the triggering of long-lasting compensatory proliferation (Figure 4C).

**Dicer1-deficient mice exhibit chronic inflammation and fibrosis**

Hepatocyte death is always associated with inflammation; thus, we explored whether liver injury activated inflammatory infiltration in the mutant livers. At 1 mo, Dicer1-deficient livers exhibited focal necrosis with a mild infiltration of inflammatory cells that was concentrated around the portal triads and extended into the parenchyma (Figure 5A). Moderate to severe inflammation consistent with increased necrosis was observed in the 2-mo-old Dicer1-deficient livers. Consistent with the histologic appearance of mutant livers, flow cytometric analysis revealed that infiltrating inflammatory cells were increased 4-fold in the Dicer1-deficient livers (Figure 5B). We further investigated whether serum cytokines increased in response to chronic inflammation. Interleukin-1β (IL-1β), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) serum levels were significantly increased in Dicer1-
Lu XF et al. Dicer1 loss induces liver inflammation

Figure 3  Increased necrotic area in the Dicer1⁻⁻ liver. A: Hematoxylin-eosin stained liver tissue from Dicer1⁻⁻ mouse shows necrosis (Scale bar: 200 μm). The necrotic area is circled with black dotted lines; B: Quantitative analysis of necrotic area observed on HE stained sections (mean ± SD; n = 4-5). *P < 0.05 vs wild-type mice; C: ALT and AST serum levels in the wild-type and Dicer1-deficient mice at indicated time points (mean ± SD; n = 4-6). *P < 0.05 vs wild-type mice; D: IL-1α expression in Dicer1⁻⁻ liver was compared with control littersmates (mean ± SD; n = 4). *P < 0.05 vs wild-type mice. ALT: Alanine amino-transferase; AST: Aspartate amino-transferase.

Figure 4  Dicer1⁻⁻ liver displays increased hepatocyte death and compensatory proliferation. A: Significant hepatocyte apoptosis and proliferation in the Dicer1-deficient liver (Scale bar: 100 μm); B: Quantification of hepatocyte apoptosis (TUNEL staining) and proliferation (Ki67 immunohistochemistry) in Dicer1-deficient liver (mean ± SD; n = 4-5). *P < 0.05 vs wild-type mice; C: Western blot analysis of the liver tissue lysates with indicated antibodies. GAPDH was used as an internal control.
deficient mice compared with control mice at the indicated time points (Figure 5C). Remarkably, a low degree of fibrosis at the portal triads was observed in young Dicer1-deficient livers, as revealed by Masson’s trichrome staining. Enlarging fibrosis, as well as mild fibrotic septa around the portal triads, was observed thereafter (Figure 6A). Portal fibrosis was accompanied by a number of activated hepatic stellate cells (HSCs) that expressed α-SMA and produced hepatocyte growth factor (HGF) (Figure 6B and C). Accordingly, the expression of fibrogenic factors, such as transforming growth factor-β (TGF-β), collagen type 1a1 (Col1a1), and collagen type 4a1 (Col4a1), were significantly elevated in mutant livers (Figure 6C).

**Dicer1 loss induces hepatic progenitor cell activation**

Active proliferation of hepatic progenitor cells marked by CK19, also known as ductular reaction, was evident in the mutant liver, and the progenitors appeared to extensively extend into the lobules (Figure 7A). We next examined stem cell marker and embryonic protein expression in the liver. Unexpectedly, neither CD133, a widely-expressed mesenchymal stem cell marker, nor MIC1 (OV6), a characteristic hepatic progenitor cell marker, was observed in Dicer1-deficient livers (Figure 7A). Sparse hematopoietic cells were observed throughout Dicer1-deficient livers until 7 wk, and these cells were not observed in the control livers shortly after birth (data not shown). Instead, positive expression of OCT4 and SOX2, both of which are embryonic and multifunctional gene products, was consistently observed in hepatocytes at least two months after birth (Figure 7B). We next analyzed the expression of other core pluripotency transcription

---

**Figure 5** Dicer1-deficient liver develops chronic inflammation. A: Hematoxylin-eosin staining show remarkable liver inflammation in Dicer1-deficient livers (Scale bar: 100 μm); B: Intrahepatic inflammation cells was determined by flow cytometric analysis for the pan-leucocyte marker CD45 in 2-mo-old mice (mean ± SD; n = 4-6), a P < 0.05 vs wild-type mice; C: Serum cytokine concentrations were determined by Luminex assay, Dicer1-deficient mice expressed significantly higher level of IL-1β, IL-6, MCP-1, and TNF-α (mean ± SD; n = 4-6). a P < 0.05 vs wild-type mice.

---
factors, such as KLF4, SSEA1, c-Myc, and Nanog. As shown in Figure 7C, the expression of these genes was noticeably increased in mutant livers.

**Spontaneous development of HCC in mutant liver**

Spontaneous HCC in both male and female Dicer1-deficient mice was observed as early as 4 mo after birth. By 6 mo, 4 of the 20 mutant mice developed HCC with 1 to 3 separate macroscopic tumor foci in each liver (Figure 8A and B). The tumor cells exhibited remarkable features of smoothly demarcated edges surrounded by fibrous encapsulation, pseudoglandular, and nuclear pleomorphism as assessed by microscopy (Figure 8A). The later tumor stages were well-differentiated with an invasive appearance (data not shown). Most noticeably, Dicer1 expression was negative in the HCC lesion and non-tumor tissues (Figure 8C and D).

**DISCUSSION**

A number of new insights into the role of miRNAs in the coordination of diverse hepatic biological processes were revealed using a mouse model with hepatocyte-specific deletion of the *Dicer1* gene. Similar to previous reports, we observed that loss of Dicer1 led to significant hepatic architecture disorganization and metabolic disorders. Most notably, in contrast to previous reports, we found that Dicer1 inactivation caused typical chronic liver injury characterized by profound hepatocyte apoptosis, continuous liver necrosis, active compensatory proliferation, noticeable triad inflammation, progressive liver fibrosis, significant progenitor activation, and spontaneous hepatocarcinogenesis.

In agreement with a previous study, Dicer1 is required to sustain proper lipid and glucose metabolism. miR-122, the most abundant liver-specific miRNA, plays a critical role in cholesterol biosynthesis[29]. miR-122 loss secondary to Dicer1 deficiency leads to marked steatosis. Which miRNA is responsible for glucose metabolism dysregulation remains unclear. It is also unclear why glycogen deficiency remained evident when steatosis was resolved in the adult mice.

The most intriguing finding in our work involves the continuous hepatocyte necrosis and progressive fibrosis noted in the Dicer1-deficient mice. Our findings are quite different from a previous report by Sekine *et al*[13], which suggested that Dicer1 loss resulted in robust apoptosis, not necrosis, in mutant hepatocytes. Noticeable apoptosis was similarly shown in our mutant mouse liver. In addition, we observed continuous parenchymal necrosis in the liver as early as only one month after birth. It is widely known that necrosis causes inflammation, whereas apoptosis does not[30,31]. Prominent chronic inflammatory infiltration and progressive fibrosis in the liver tissues, together with significantly increased serum hepatic enzyme and inflammatory cytokine levels, provides solid evidence of parenchymal necrosis in the mutant livers. The continuous death of hepatocytes triggers compensatory liver regeneration[32]. A previous report by Song *et al*[24] demonstrated that global loss of miRNAs secondary to the knockout of DGCR8 (an
Lu XF et al. Dicer1 loss induces liver inflammmation

A

DAPI  CK19  OV6  Merge

WT

Dicer1<sup>-/-</sup> WT

Dicer1<sup>-/-</sup>

DAPI  CK19  CD133  Merge

WT

Dicer1<sup>-/-</sup> WT

Dicer1<sup>-/-</sup>

B

DAPI  SOX2  Merge

WT

Dicer1<sup>-/-</sup> WT

Dicer1<sup>-/-</sup>

DAPI  OCT4  Merge
A: Immunofluorescence of CK19, CD133 and OV6 in the 1-mo-old mutant liver section exhibits recombination did not repopulate the Dicer1-deficient tumor tissue. Other evidence also confirmed that our Dicer1-deficient mouse liver, given that Dicer1 positive cells liver is completely and properly reconstituted by FAH withdrawal of NTBC. In this case, the Fah mutant liver by replacing dead hepatocytes caused by the 4-(trifluoromethyl)benzoyl]-1, 3-cyclohexanedione to rely on a lifelong dietary supplement of 2-[2-nitro-fumarylacetoacetate hydrolase (FAH) causes the mice in Fah-deficient mice or tumorigenesis; this notion has been well elucidated metabolism in the absence of inflammation, fibrosis, eventually exhibit a normal architecture with normal pathways are initiated by hepatocyte death and cause risk factors for hepatocarcinogenesis as summarized in Figure 8E. In addition, increased levels of chronic pro-tumorigenic cytokines, such as IL-6 and TNF-α, are also considered risk factors for hepatocarcinogenesis. These pathways are initiated by hepatocyte death and cause inflammation, fibrosis, compensatory proliferation, and HCC promotion, as summarized in Figure 8E.

Our study has revealed that hepatic loss of Dicer1 results in complex pathological processes, including hepatocyte immaturity, metabolic disorders, hepatocyte death, inflammatory infiltration, chronic fibrosis, compensatory proliferation, progenitor activation, and ultimately spontaneous hepatocarcinogenesis. miRNAs
dysregulation is essential for HCC carcinogenesis. However, it is still difficult to confirm the specific miRNA that plays the dominate role in the development of HCC using Dicer1-inactive mice. Intensive studies should be performed to clarify the distinct role of each individual miRNA in HCC. An improved understanding of the pathogenesis of liver cancer would provide cues for liver cancer diagnostics and prognosis. These results may also provide further insights for the development of a miRNA therapeutic strategy for the prevention and treatment of HCC.

**ACKNOWLEDGMENTS**

We thank Dr. Hua-Shun Li for kindly providing the Dicer1 flox mice.

**COMMENTS**

**Background**

Hepatocellular carcinoma (HCC) is associated with numerous liver diseases, such as hepatitis B virus, nonalcoholic steatohepatitis, and miRNAs loss. miRNAs play critical roles in diverse liver fundamental biological processes, but the role of miRNAs in the development of HCC remains unclear.
Lu XF et al. Dicer1 loss induces liver inflammation

Research frontiers
Dicer1 is an endoribonuclease essential for the maturation of precursor miRNAs. Specific deletion of Dicer1 in hepatocytes has revealed liver injury and spontaneous development of HCC. The hotspot of current research is the gradual histological changes involved in HCC processes in the Dicer1-deficient liver.

Innovations and breakthroughs
The liver-specific loss of Dicer1 results in liver injury, hepatocyte death, and progenitor activation. Recent studies show that hepatocyte death causes inflammation, fibrosis, compensatory proliferation, and HCC promotion.

Applications
The study results suggest that the ablation of miRNA accelerates liver injury, progenitor activation, and HCC development, and may be useful for the prevention and treatment of HCC in the future.

Terminology
Dicer1 is a highly conserved ribonuclease III enzyme that is critical for further cleavage of pre-miRNAs to generate mature miRNAs. Dicer1 depletion essentially causes a global loss of mature Dicer1-dependent miRNAs, resulting in a lethal phenotype due to the loss of pluripotency and the defects of embryonic stem cell proliferation. miRNAs dysregulation is essential for HCC carcinogenesis.

Peer-review
The authors generated a hepatocyte-selective Dicer1 knockout mouse and further characterized the gradual hepatic histopathological changes in the mutant liver, including hepatocyte proliferation and apoptosis, liver necrosis, inflammation, fibrosis, and HCC development. The authors did a great job providing further detail on the continuous hepatic histopathological processes that occur in response to the loss of Dicer1. Experiments were properly performed and data interpretation is mostly appropriate. This is a good complement to previous research.

Innovations and breakthroughs
Dicer1 is a highly conserved ribonuclease III enzyme that is critical for further cleavage of pre-miRNAs to generate mature miRNAs. Dicer1 depletion essentially causes a global loss of mature Dicer1-dependent miRNAs, resulting in a lethal phenotype due to the loss of pluripotency and the defects of embryonic stem cell proliferation. miRNAs dysregulation is essential for HCC carcinogenesis.

Peer-review
The authors generated a hepatocyte-selective Dicer1 knockout mouse and further characterized the gradual hepatic histopathological changes in the mutant liver, including hepatocyte proliferation and apoptosis, liver necrosis, inflammation, fibrosis, and HCC development. The authors did a great job providing further detail on the continuous hepatic histopathological processes that occur in response to the loss of Dicer1. Experiments were properly performed and data interpretation is mostly appropriate. This is a good complement to previous research.

REFERENCES
1. Krol J, Lo edige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11: 597-610 [PMID: 20661255]
2. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-223 [PMID: 19167326 DOI: 10.1016/j.cell.2009.01.002]
3. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6: 376-385 [PMID: 15852042 DOI: 10.1038/nrm1644]
4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297 [PMID: 14744438 DOI: 10.1016/S0092-8674(04)0045-5]
5. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MQ, Mills AL, Ellledge SJ, Anderson KV, Hannon GJ. Dicer is essential for mouse development. Nat Genet 2003; 35: 215-217 [PMID: 14528307 DOI: 10.1038/ng1255]
6. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012; 13: 358-369 [PMID: 22510765 DOI: 10.1038/nrg3198]
7. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 2012; 13: 271-282 [PMID: 22414664]
8. Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 2010; 11: 252-263 [PMID: 20216554]
9. Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell 2009; 136: 656-668 [PMID: 19239887 DOI: 10.1016/j.cell.2009.01.045]
10. Carchew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136: 642-655 [PMID: 19239886 DOI: 10.1016/j.cell.2009.01.035]
11. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259-269 [PMID: 16557279 DOI: 10.1038/nrc1840]
12. Calin GA, Croce CM. MicroRNA signatures in human cancers.
Lu XF et al. Dicer1 loss induces liver inflammation

regenerates liver by cell fusion. Nature 2003; 422: 901-904 [PMID: 12665833 DOI: 10.1038/nature01539]

35 Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003; 422: 897-901 [PMID: 12665832 DOI: 10.1038/nature01531]

36 Blechacz B, Mishra L. Hepatocellular carcinoma biology. Recent Results Cancer Res 2013; 190: 1-20 [PMID: 22941010 DOI: 10.1007/978-3-642-16037-0_1]

37 Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011; 11: 268-277 [PMID: 21390058 DOI: 10.1038/nrc3034]

38 Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10: 717-728 [PMID: 22704512 DOI: 10.1016/j.stem.2012.05.007]

39 Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Ostereicher CH, Takahashi H, Karin M. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010; 140: 197-208 [PMID: 20141834 DOI: 10.1016/j.cell.2009.12.052]

P- Reviewer: Cheng J, Helle F, Tanimizu N S- Editor: Qi Y L- Editor: Rutherford A E- Editor: Wang CH
