Regularity of Schrödinger’s functional equation in the weak topology and moment measures *

Toshio Mikami†

Abstract

We study the continuity and the measurability of the solution to Schrödinger’s functional equation, with respect to space, kernel and marginals, provided the space of all Borel probability measures is endowed with the weak topology. This is a continuation of our previous result where the space of all Borel probability measures was endowed with the strong topology. As an application, we construct a convex function of which the moment measure is a given probability measure, by the zero noise limit of a class of stochastic optimal transportation problems.

1 Introduction

We briefly describe E. Schrödinger’s functional equation (see section 7 in [25] and also [2, 11, 24]). Let S be a σ-compact metric space and $q \in C(S \times S; (0, \infty))$. For Borel probability measures μ_1, μ_2 on S, find a product measure $\nu_1 \nu_2$ of nonnegative σ-finite Borel measures on S for which the following holds:

$$\begin{align*}
\mu_1(dx) &= \nu_1(dx) \int_S q(x, y) \nu_2(dy), \\
\mu_2(dy) &= \nu_2(dy) \int_S q(x, y) \nu_1(dx).
\end{align*}$$

(1.1)

*2010 Mathematics Subject Classification : Primary 60G30 ; Secondary 93E20
†This work was supported by JSPS KAKENHI Grant Numbers JP26400136 and JP16H03948.
It is known that (1.1) has the unique solution $\nu_1 \nu_2$ though ν_1 and ν_2 are unique up to a constant. When S is compact, we assume that the following holds so that ν_i, $i = 1, 2$ are unique (see Lemma 3.1 in section 3):

$$\nu_1(S) = \nu_2(S)$$

(1.2)

(see [3, 4, 10, 11, 17, 19, 21] and the references therein).

$$\mu(dx dy) := \nu_1(dx) q(x, y) \nu_2(dy).$$

(1.3)

$$u_i(x_i) := \log \left(\int_S q(x_1, x_2) \nu_j(dx_j) \right), \quad i, j = 1, 2, i \neq j.$$ \hspace{1cm} (1.4)

Then $\exp(u_1(x))$ and $\exp(u_2(x))$ are positive and

$$\mu(dx dy) = q(x, y) \exp(-u_1(x) - u_2(y)) \mu_1(dx)\mu_2(dy).$$

(1.5)

(1.1) can be rewritten as follows: for $i, j = 1, 2, i \neq j$,

$$\mu_i(dx_i) = \exp(-u_i(x_i))\mu_i(dx_i) \int_S q(x_1, x_2) \exp(-u_j(x_j))\mu_j(dx_j).$$

(1.6)

In particular, Schrödinger’s problem (1.1) is equivalent to finding a function $u_1(x_1) + u_2(x_2)$ for which (1.6) holds.

Let $\mathcal{M}(S)$ and $\mathcal{P}(S)$ respectively denote the space of all Radon measures and that of all Borel probability measures on S, where a Radon measure means a locally finite and inner regular Borel measure. It is easy to see that ν_1 and ν_2 are functionals of μ_1, μ_2 and q:

$$\nu_i(dx) = \nu_i(dx; q, \mu_1, \mu_2), \quad u_i(x) = u_i(x; q, \mu_1, \mu_2), \quad i = 1, 2.$$ \hspace{1cm} (1.7)

In [20], we considered the case where $\mathcal{P}(S)$ is endowed with the strong topology and showed that if S is compact, then the following is continuous:

$$\nu_i(dx; \cdot, \cdot, \cdot) : C(S \times S) \times \mathcal{P}(S) \times \mathcal{P}(S) \mapsto \mathcal{M}(S),$$

$$\{u_i(x; \cdot, \cdot, \cdot)\}_{x \in S} : C(S \times S) \times \mathcal{P}(S) \times \mathcal{P}(S) \mapsto C(S)$$

and $u_i \in C(S \times C(S \times S) \times \mathcal{P}(S) \times \mathcal{P}(S))$. Here $\mathcal{M}(S)$ is endowed with the strong topology and $C(S \times S)$ and $C(S)$ are, respectively, endowed with
the topology induces by the uniform convergence on $S \times S$ and S. We also showed that if S is σ-compact, then the following is Borel measurable:

$$\int_{S} f(x) \nu_1(dx; \cdot, \cdot, \cdot) : C(S \times S) \times \mathcal{P}(S) \times \mathcal{P}(S) \mapsto \mathbb{R}, \quad f \in C_0(S)$$

$$u_i : S \times C(S \times S) \times \mathcal{P}(S) \times \mathcal{P}(S) \mapsto \mathbb{R}.$$

As an application of this measurability result, we showed that the coefficients of the mean field PDE system for the h-path process with given two end point marginals are measurable functions of space, time and marginal. In this paper we consider the case where $\mathcal{P}(S)$ is endowed with the weak topology and show the continuity and measurability results on ν_i and u_i (see Theorem 2.1 and Corollaries 2.1-2.3 in section 2).

Next we describe an application of our regularity result. Let $\varepsilon > 0$, $W(t)$ and $\gamma(t) = \gamma(t; \omega)$, respectively, denote a d-dimensional Brownian motion and a progressively measurable \mathbb{R}^d-valued stochastic process on a filtered probability space. Consider the following SDE in a weak sense (see e.g. [8]):

$$dX^{\varepsilon, \gamma}(t) = \gamma(t) dt + \sqrt{\varepsilon} dW(t). \quad (1.8)$$

For $P_0, P_1 \in \mathcal{P}(\mathbb{R}^d),$

$$V_\varepsilon(P_0, P_1) := \inf \left\{ E \left[\int_0^1 \frac{1}{2\varepsilon} |\gamma(t)|^2 dt \right] : P X^{\varepsilon, \gamma}(t) = P_t, t = 0, 1 \right\}, \quad (1.9)$$

where $V_\varepsilon(P_0, P_1) := \infty$ if the set over which the infimum is taken is empty.

For $P \in \mathcal{P}(\mathbb{R}^d),$

$$S(P) := \begin{cases} \int_{\mathbb{R}^d} p(x) \log p(x) dx, & \text{if } p(x) := \frac{P(dx)}{dx} \text{ exists}, \\ \infty, & \text{otherwise}. \end{cases} \quad (1.10)$$

For $\varepsilon, r > 0$, $P_1 \in \mathcal{P}(\mathbb{R}^d),$

$$\Psi_{\varepsilon, r}(P_1) := \inf \left\{ S(P) - \varepsilon V_\varepsilon(P, P_1) + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 P(dx) : P(dx) = p(x) dx \in \mathcal{P}(B_r) \right\}, \quad (1.11)$$

where

$$B_r := \{ x \in \mathbb{R}^d : |x| \leq r \}.$$
As an application of our regularity result, we show that a minimizer \(p_{0,r,\varepsilon}(x)dx \) of \(\Psi_{\varepsilon,r}(P_1) \) exists and a subsequence weakly converges, as \(\varepsilon \to 0 \), to a Borel probability measure \(p_0(x)dx \) such that \(-\log p_0(x)\) is convex and \(P_1 \) is a moment measure of \(-\log p_0(x)\), i.e.,
\[
P_1(dx) = (p_0(x)dx)D(-\log p_0(x))^{-1}.
\]
(1.12)

This is a stochastic optimal transportation approach for the construction of moment measures (see [5, 23] and the references therein). \(\Psi_{\varepsilon,r}(P_1) \) formally converges, as \(\varepsilon \to 0 \), to the functional considered in [23] where they take the infimum over \(\mathcal{P}(\mathbb{R}^d) \) instead of \(\mathcal{P}(B_r) \). Our approach makes the proof easier than [23] since \(\mathcal{P}(B_r) \) is compact in the weak topology but can not be applied if we replace \(\mathcal{P}(B_r) \) by \(\mathcal{P}(\mathbb{R}^d) \), which we regret. We also show that \(p_{0,r,\varepsilon}(x) \) has a subsequence which uniformly converges, as \(\varepsilon \to 0 \), to \(p_0(x) \), provided \(P_1 \) is compactly supported (see Theorem 2.2 in section 2). In the proof, we make use of properties of the solution to Schrödinger’s functional equation and the duality theorem for \(V_\varepsilon(P_0, P_1) \):
\[
V_\varepsilon(P_0, P_1) = \sup \left\{ \int_{\mathbb{R}^d} f(x)P_1(dx) - \int_{\mathbb{R}^d} \varphi(0, x; f)P_0(dx) \bigg| f \in C^\infty_c(\mathbb{R}^d) \right\}.
\]
(1.13)

Here the supremum is taken over all classical solutions \(\varphi(t, x; f) \) to the following Hamilton-Jacobi-Bellman PDE:
\[
\frac{\partial \varphi(t, x)}{\partial t} + \frac{\varepsilon}{2} \Delta_x \varphi(t, x) + \frac{\varepsilon}{2} |D_x \varphi(t, x)|^2 = 0, \quad (t, x) \in [0, 1) \times \mathbb{R}^d,
\]
(1.14)
\[
\varphi(1, x) = f(x)
\]
(see [17, 18, 21, 26] and the references therein).
\[
g_\varepsilon(t, z) := \frac{1}{\sqrt{2\pi\varepsilon t}} \exp \left(-\frac{|z|^2}{2\varepsilon t} \right), \quad t > 0, z \in \mathbb{R}^d,
\]
(1.15)
\[
g_\varepsilon(t)(x, y) := g_\varepsilon(t, y - x), \quad t > 0, x, y \in \mathbb{R}^d.
\]
(1.16)
It is known that for any \(P_0, P_1 \in \mathcal{P}(\mathbb{R}^d) \) for which \(P_1(dy) \ll dy \), there exists the unique weak solution to the following two end points problem of SDE (see [12] and also [20, 21]):
\[
dx_1 = \varepsilon D_x u_1(X^{\varepsilon}(t); g_\varepsilon(1 - t), P X^{\varepsilon}(t)^{-1}, P_1)dt + \sqrt{\varepsilon}dW(t), \quad 0 < t < 1,
\]
(1.16)
\[
PX^{\varepsilon}(t)^{-1} = P_1, \quad t = 0, 1.
\]
$X^\varepsilon(t)$ is called the h-path process for $\sqrt{\varepsilon}W(t)$ on $[0,1]$ with initial and terminal distribution P_0 and P_1 respectively. The following is also known:

$$P(X^\varepsilon(0), X^\varepsilon(1))^{-1}(dxdy) = \nu_1(dx; g_\varepsilon(1), P_0, P_1)g_\varepsilon(1, y - x)\nu_2(dy; g_\varepsilon(1), P_0, P_1).$$

(1.17)

Suppose that $V_\varepsilon(P_0, P_1)$ is finite (see Remark 2.2 in section 2 for a sufficient condition). Then X^ε in (1.16) is the unique minimizer of $V_\varepsilon(P_0, P_1)$ (see [6, 9, 13–22, 26, 27] and the references therein). Besides, there exists $f_o \in L^1(P_1)$ which is unique up to a constant such that the following holds (see [17, 18, 20, 21, 26] and the references therein and also (1.5)):

$$f_o(y) - \varphi(0, x; f_o) = \log p_1(y) - u_2(y; g_\varepsilon(1), P_0, P_1) - u_1(x; g_\varepsilon(1), P_0, P_1).$$

(1.18)

In particular, the following holds:

$$V_\varepsilon(P_0, P_1) = \int_{\mathbb{R}^d} f_o(x)P_1(dx) - \int_{\mathbb{R}^d} \varphi(0, x; f_0)P_0(dx)$$

$$= S(P_1) - \int_{\mathbb{R}^d} u_2(x; g_\varepsilon(1), P_0, P_1)P_1(dx)$$

$$- \int_{\mathbb{R}^d} u_1(x; g_\varepsilon(1), P_0, P_1)P_0(dx)$$

$$= H(P(X^\varepsilon(0), X^\varepsilon(1))^{-1}(dxdy)|P_0(dx)g_\varepsilon(1, y - x)dy)$$

$$= S(P_1) - H(P_0(dx)P_1(dy)|P(X^\varepsilon(0), X^\varepsilon(1))^{-1}(dxdy))$$

$$- \int_{\mathbb{R}^d \times \mathbb{R}^d} \log g_\varepsilon(1, y - x)P_0(dx)P_1(dy)$$

(1.19)

(see (1.5)). Here H denotes the relative entropy of two measures: for $m, n \in \mathcal{P}(S \times S)$,

$$H(m|n) = \begin{cases}
\int_{S \times S} \log \frac{m_{(dxdy)}}{n_{(dxdy)}} m(dxdy), & \text{if } m \ll n, \\
\infty, & \text{otherwise.}
\end{cases}$$

(1.20)

These facts also play a crucial role in the proof of our result.

Remark 1.1 If $V_\varepsilon(P_0, P_1)$ is finite, then $P_1(dy) \ll dy$. Indeed, $V_\varepsilon(P_0, P_1)$ is the relative entropy of $P(X^\varepsilon)^{-1}$ with respect to $P_0*P(\sqrt{\varepsilon}W)^{-1}$ on $C([0,1];\mathbb{R}^d)$ and

$$P_0 * P(\sqrt{\varepsilon}W(1))^{-1}(dy) = \left(\int_{\mathbb{R}^d} g_\varepsilon(1, y - x)P_0(dx)\right)dy.$$
Here \ast denotes the convolution of two measures.

In section 2 we state our main results and prove them in sections 3-4.

2 Main result

In this section we state our main results. We first describe assumptions precisely.

(A1) S is a complete σ-compact metric space.

(A1)' S is a compact metric space.

(A2) $q \in C(S \times S; (0, \infty))$.

We remark that $\mathcal{P}(S)$ is endowed with the weak topology and $C(S \times S)$ is endowed with the topology induced by the uniform convergence on every compact subset of S.

Under (A1), let $\{K_m\}_{m \geq 1}$ and $\{\varphi_m\}_{m \geq 1}$ be, respectively, a nondecreasing sequence of compact subsets of S and that of functions in $C_0(S; [0, 1])$ such that the following holds:

$$S = \bigcup_{m \geq 1} K_m, \quad \varphi_m(x) = 1, \quad x \in K_m, \quad m \geq 1.$$

If $S = \mathbb{R}^d$, then $K_m := B_m$ and we assume that $\varphi_m \in C_0(B_{m+1}; [0, 1])$. For $i \neq j$, $i, j = 1, 2$,

$$u_{i|m}(x_i; q, \mu_1, \mu_2) := \log \left(\int_S q(x_1, x_2) \varphi_m(x_j) \nu_j(dx_j; q, \mu_1, \mu_2) \right), \quad (2.1)$$

provided the right hand side is well defined (see (1.7) and also (1.4)).

$$\mu(dx dy; q, \mu_1, \mu_2) := \nu_1(dx; q, \mu_1, \mu_2) q(x, y) \nu_2(dx; q, \mu_1, \mu_2). \quad (2.2)$$

The following is the continuity result of $\nu_1 \nu_2$, μ and $u_{i|m}$.

Theorem 2.1

Suppose that (A1) and (A2) hold and that $q_n \in C(S \times S; (0, \infty))$, $\mu_i, \mu_{i,n} \in \mathcal{P}(S)$, $n \geq 1$, $i = 1, 2$ and

$$\lim_{n \to \infty} q_n = q, \quad \text{locally uniformly,} \quad (2.3)$$

$$\lim_{n \to \infty} \mu_{1,n} \mu_{2,n} = \mu_1 \mu_2, \quad \text{weakly.} \quad (2.4)$$
Then for any $f \in C_0(S \times S)$,
\[
\lim_{n \to \infty} \int_{S \times S} f(x, y) \nu_1(dx; q_n, \mu_{1,n}, \mu_{2,n}) \nu_2(dy; q_n, \mu_{1,n}, \mu_{2,n}) = \int_{S \times S} f(x, y) \nu_1(dx; q, \mu_1, \mu_2) \nu_2(dy; q, \mu_1, \mu_2).
\] (2.5)

In particular,
\[
\lim_{n \to \infty} \mu(dx dy; q_n, \mu_{1,n}, \mu_{2,n}) = \mu(dx dy; q, \mu_1, \mu_2), \quad \text{weakly.} \quad (2.6)
\]

For any $\{x_{i,n}\}_{n \geq 1} \subset S$ which converges, as $n \to \infty$, to $x_i \in S$, $i = 1, 2$ and for sufficiently large $m \geq 1$,
\[
\lim_{n \to \infty} \sum_{i=1}^{2} u_i|m(x_{i,n}; q_n, \mu_{1,n}, \mu_{2,n}) = \sum_{i=1}^{2} u_i|m(x_i; q, \mu_1, \mu_2), \quad (2.7)
\]

Theorem 2.1 implies the following which can be shown in the same way as in [20], Corollary 2.1 and we omit the proof.

Corollary 2.1 Suppose that (A1) and (A2) hold. Then the following are Borel measurable: for $i = 1, 2$,
\[
\int_S f(x) \nu_i(dx; \cdot, \cdot, \cdot) : C(S \times S) \times \mathcal{P}(S) \times \mathcal{P}(S) \mapsto \mathbb{R}^d, \quad f \in C_0(S),
\]
\[
u_i : S \times C(S \times S) \times \mathcal{P}(S) \times \mathcal{P}(S) \mapsto \mathbb{R}^d.
\]

If S is compact, then $\nu_1(S) = \nu_2(S)$ (see [12]). This implies, from Theorem 2.1, the following of which the proof is omitted.

Corollary 2.2 Suppose that (A1)' and the assumption of Theorem 2.1 except (A1) hold. Then the following holds: for $i = 1, 2$:
\[
\lim_{n \to \infty} \int_S f(x) \nu_i(dx; q_n, \mu_{1,n}, \mu_{2,n}) = \int_S f(x) \nu_i(dx; q, \mu_1, \mu_2), \quad f \in C(S),
\]
and for any $\{x_{n}\}_{n \geq 1} \subset S$ which converges, as $n \to \infty$, to $x \in S$,
\[
\lim_{n \to \infty} u_i(x_n; q_n, \mu_{1,n}, \mu_{2,n}) = u_i(x; q, \mu_1, \mu_2).
\]
A uniformly bounded sequence of convex functions on a convex neighborhood N_A of a convex subset A of \mathbb{R}^d is compact in $C(A)$, provided $\text{dist}(A, N_A)$ is positive (see e.g., [1], section 3.3). We describe an additional assumption and state a stronger result than above, provided $S \subset \mathbb{R}^d$.

(A3.r) There exists $C_r > 0$ for which $x \mapsto C_r|x|^2 + \log q(x, y)$ and $y \mapsto C_r|y|^2 + \log q(x, y)$ are convex on B_r for any $y \in B_r$ and any $x \in B_r$ respectively.

Remark 2.1 If $\log q(x, y)$ has bounded second order partial derivatives on B_r, then (A3.r) holds.

$$||f||_{\infty, r} := \sup_{x \in B_r} |f(x)|, \quad f \in C(B_r).$$ \hspace{1cm} (2.8)

The following is a stronger convergence result than Corollary 2.2.

Corollary 2.3 Let $r > 0$. Suppose that (A3.r) and the assumptions of Corollary 2.2 with $S = B_r$ hold. Then for any $r' < r$,

$$\lim_{n \to \infty} \sum_{i=1}^{2} ||u_i(\cdot; q_n, \mu_{1,n}, \mu_{2,n}) - u_i(\cdot; q, \mu_1, \mu_2)||_{\infty, r'} = 0. \hspace{1cm} (2.9)$$

$$\mathcal{P}_p(\mathbb{R}^d) := \left\{ P \in \mathcal{P}(\mathbb{R}^d) \left| \int_{\mathbb{R}^d} |x|^p P(dx) < \infty \right. \right\}, \quad p \geq 1. \hspace{1cm} (2.10)$$

As an application of our regularity result, we show that there exists a convex function of which the moment measure is a given probability measure.

Theorem 2.2 For any $P_1(dx) = p_1(x)dx \in \mathcal{P}_2(\mathbb{R}^d)$ for which $S(P_1)$ is finite, there exists a minimizer of $\Psi_{\varepsilon,r}(P_1)$. For any minimizer $P_{0,r,\varepsilon}(dx) = p_{0,r,\varepsilon}(x)dx$ of $\Psi_{\varepsilon,r}(P_1)$,

$$p_{0,r,\varepsilon}(x) = \frac{1}{C_\varepsilon} I_{B_r}(x) \exp \left(-\varepsilon u_1(x; g_\varepsilon(1), P_{0,r,\varepsilon}, P_1) - \frac{1}{2} |x|^2 \right), \hspace{1cm} (2.11)$$

where C_ε is a normalizing constant. Besides, there exists a subsequence of $p_{0,r,\varepsilon}(x)dx$ which weakly converges, as $\varepsilon \to 0$, to a probability measure $p_0(x)dx$ such that $p_1(x)dx$ is a moment measure of $-\log p_0$ (see (1.12)). Suppose, in addition, that P_1 is compactly supported. Then there exists a subsequence of $p_{0,r,\varepsilon}(x)$ which uniformly converges, as $\varepsilon \to 0$, to a probability density function $p_0(x)$ such that $p_1(x)dx$ is a moment measure of $-\log p_0$.

Remark 2.2 If $P_0, P_1(dx) = p_1(x)dx \in \mathcal{P}_2(\mathbb{R}^d)$ and $S(P_1)$ is finite, then $V_\varepsilon(P_0, P_1)$ is finite. Indeed, from (1.19),

$$V_\varepsilon(P_0, P_1) \leq S(P_1) - \int_{\mathbb{R}^d\times\mathbb{R}^d} \log g_\varepsilon(1, y - x) P_0(dx)p_1(y)dy$$

since, from (1.6), by Jensen’s inequality,

$$u_2(y; g_\varepsilon(1), P_0, P_1) \geq \int_{\mathbb{R}^d} (\log g_\varepsilon(1, y - x) - u_1(x; g_\varepsilon(1), P_0, P_1)) P_0(dx).$$

3 Lemmas

In this section we state and prove lemmas. When it is not confusing, we omit the dependence of u_i, ν_i on q, ν_1, ν_2.

We state lemmas which will be used in the proof of Corollary 2.3.

For $r > 0$ and $q \in C(B_r \times B_r; (0, \infty))$,

$$m_{q,r} := \min\{q(x,y)| |x|, |y| \leq r\},$$

$$M_{q,r} := \max\{q(x,y)| |x|, |y| \leq r\}.$$ (3.1)

Lemma 3.1 (3, p. 194) Suppose that (A2) with $S = B_r$ holds. Then, for any $\mu_1, \mu_2 \in \mathcal{P}(B_r)$, there exists a unique pair of nonnegative finite measures ν_1, ν_2 on B_r for which (1.1) and the following holds (see (1.4) for notation):

$$\frac{1}{\sqrt{M_{q,r}}} \leq \nu_1(B_r) = \nu_2(B_r) \leq \frac{1}{\sqrt{m_{q,r}}}.$$ (3.2)

$$\frac{m_{q,r}}{\sqrt{M_{q,r}}} \leq \exp(u_i(x)) \leq \frac{M_{q,r}}{\sqrt{m_{q,r}}}, \quad x \in B_r, i = 1, 2.$$ (3.3)

The following lemma will be used in the proofs of Lemmas 3.4 and 3.6 and Theorems 2.1 and 2.2 and is given the proof for the sake of completeness.

Lemma 3.2 Suppose that (A1) and (A2) hold. Then for any $\mu_1, \mu_2 \in \mathcal{P}(S)$ and sufficiently large $m \geq 1$,

$$\min_{x,y \in \text{supp}(\varphi_m)} \frac{q(x_1, y)q(x, x_2)}{q(x, y)} \times \int_{S \times S} \varphi_m(x)\varphi_m(y) \mu(dx dy) \quad (3.4)$$

$$\leq \exp(u_{1|m}(x_1) + u_{2|m}(x_2))$$

$$\leq \max_{x,y \in \text{supp}(\varphi_m)} \frac{q(x_1, y)q(x, x_2)}{q(x, y)}, \quad x_1, x_2 \in S.$$
\[
\inf_{x,y \in K_m} q(x, y)^{-1} \mu(K_m \times K_m) \leq \int_S \varphi_m(x) \nu_1(dx) \int_S \varphi_m(y) \nu_2(dy) \leq \sup_{x,y \in \text{supp}(\varphi_m)} q(x, y)^{-1}.
\]

(Proof) The proof is done by the following (see (1.3) and (2.1)):
\[
\nu_1(dx) \nu_2(dy) = q(x, y)^{-1} \mu(dx dy),
\]
provided the right hand side is positive. □

For the sake of completeness, we prove the following lemma which will be used in the proofs of Lemma 3.6 and Theorem 2.2.

Lemma 3.3 Let \(C \) and \(\nu \in M(\mathbb{R}^d) \) be a convex subset of \(\mathbb{R}^d \) and a nonnegative Radon measure respectively. Suppose that \(C \ni x \mapsto f(x, y) \) is convex \(\nu(dy) \)-a.e.. Then \(C \ni x \mapsto \log \int_{\mathbb{R}^d} \exp(f(x, y)) \nu(dy) \) is convex.

(Proof) For \(x, y \in C \) and \(\lambda \in (0, 1) \), by Hölder’s inequality,
\[
\int_{\mathbb{R}^d} \exp(f(\lambda x + (1 - \lambda)y, x_2)) \nu(dx_2) \leq \int_{\mathbb{R}^d} \exp(\lambda f(x, x_2) + (1 - \lambda)f(y, x_2)) \nu(dx_2)
\]
\[
\leq \left(\int_{\mathbb{R}^d} \exp(f(x, x_2)) \nu(dx_2) \right)^\lambda \left(\int_{\mathbb{R}^d} \exp(f(y, x_2)) \nu(dx_2) \right)^{1 - \lambda}.
\]

The following lemma will be used in the proof of Theorem 2.2.

Lemma 3.4 Suppose that Theorem 2.1 holds. Then for any \(r, \varepsilon > 0 \), the following is lower-semicontinuous on \(B_{P_2(\mathbb{R}^d), r} \times B_{P_2(\mathbb{R}^d), r} \) (see (1.4), (1.7)) and (L.13) for notation):
\[
\mu_1 \mu_2 \mapsto \sum_{i=1}^2 \int_{\mathbb{R}^d} \left\{ u_i(x; g_\varepsilon(1), \mu_1, \mu_2) + \frac{|x|^2}{2\varepsilon} \right\} \mu_i(dx).
\]
(Proof) From (1.19),
\[
\sum_{i=1}^{2} \int_{\mathbb{R}^d} \left\{ u_i(x; g_\varepsilon(1), \mu_1, \mu_2) + \frac{|x|^2}{2\varepsilon} \right\} \mu_i(dx) = H(\mu_1(dx)\mu_2(dy)|\mu(dx\,dy; g_\varepsilon(1), \mu_1, \mu_2)) + \frac{1}{\varepsilon} \left(\int_{\mathbb{R}^d} x\mu_1(dx), \int_{\mathbb{R}^d} y\mu_2(dy) \right) - \log \sqrt{2\pi\varepsilon^d}
\]
(see (1.17) and (2.2) for notation). Since \((m, n) \mapsto H(m(dx\,dy)|n(dx\,dy))\) is lower semicontinuous (see [7], Lemma 1.4.3), the proof is over from Theorem 2.1. □

The following lemma will be also used in the proof of Theorem 2.2 and is given the proof for readers’ convenience.

Lemma 3.5 For any \(r > 0\), \(S\) is lower-semicontinuous on \(B_{\mathcal{P}_2(\mathbb{R}^d), r}\) in the weak topology.

(Proof)
\[
q(x) := \frac{(1 + |x|)^{-d-1}}{\int_{\mathbb{R}^d} (1 + |y|)^{-d-1}dy}, \quad x \in \mathbb{R}^d.
\]
The proof is done by the following:
\[
S(P) = H(P(dx)|q(x)dx) + \int_{\mathbb{R}^d} \log q(x)P(dx)
\]
(see e.g. [7], Lemma 1.4.3). □

\[
\overline{u}_{i,\varepsilon}(x) := \varepsilon u_i(x; g_\varepsilon(1), P_{0,r,\varepsilon}, P_1) + \frac{1}{2} |x|^2, \quad i = 1, 2
\]
\[
\overline{u}_{i|m,\varepsilon}(x) := \varepsilon u_{i|m}(x; g_\varepsilon(1), P_{0,r,\varepsilon}, P_1) + \frac{1}{2} |x|^2.
\]
The following lemmas will be also used in the proof of Theorem 2.2

Lemma 3.6 For any \(\varepsilon, r > 0\) and \(P_1(dx) = p_1(x)dx \in \mathcal{P}(\mathbb{R}^d)\),
\[
\Psi_{\varepsilon,r}(P_1) \leq -\log \text{Vol}(B_r) + \frac{1}{2} \int_{B_r} |x|^2 \frac{dx}{\text{Vol}(B_r)}. \quad (3.12)
\]
Suppose that $P_{0,r,\varepsilon}$ in (2.11) is a minimizer of $\Psi_{\varepsilon,r}(P_1)$. Then for $y_0 := \int_{\mathbb{R}^d} x P_1(dx)$,

$$\exp(-\varepsilon S(P_1) - \int_{\mathbb{R}^d} \frac{1}{2} |x|^2 P_1(dx) - \Psi_{\varepsilon,r}(P_1)) \leq C_\varepsilon \exp(-\varpi_{2,\varepsilon}(y_0)).$$ \hspace{1cm} (3.13)

In particular, for any sequence $\{\varepsilon_n\}_{n \geq 1}$ which converges to 0 as $n \to \infty$, the set $\{ x \in B_r \mid \liminf_{n \to \infty} (\varpi_{1,\varepsilon_n}(x) + \varpi_{2,\varepsilon_n}(y_0)) < \infty \}$ has a positive Lebesgue measure, provided $P_1 \in \mathcal{P}_2(\mathbb{R}^d)$ and $S(P_1)$ is finite.

(Proof) Let $p_{uni,r}$ denote the probability density function of the uniform distribution on B_r. Then the following implies (3.12):

$$\Psi_{\varepsilon,r}(P_1) \leq S(p_{uni,r}(x)dx) + \frac{1}{2} \int_{B_r} |x|^2 \frac{dx}{\text{Vol}(B_r)}. \hspace{1cm} (3.14)$$

We prove (3.13). We only have to consider the case where $S(P_1)$ is finite and $P_1 \in \mathcal{P}_2(\mathbb{R}^d)$. From (1.19) and (2.11), by Jensen’s inequality,

$$\Psi_{\varepsilon,r}(P_1) - S(P_0_{r,\varepsilon}) - \varepsilon \left(S(P_1) - \int_{\mathbb{R}^d} u_2(x; g_{\varepsilon}(1), P_{0,r,\varepsilon}, P_1) P_1(dx) - \int_{\mathbb{R}^d} \frac{1}{2} |x|^2 P_0_{r,\varepsilon}(dx) \right) = - \log C_\varepsilon - \varepsilon S(P_1) + \int_{\mathbb{R}^d} \varpi_{2,\varepsilon}(x) P_1(dx) - \int_{\mathbb{R}^d} \frac{1}{2} |x|^2 P_1(dx) \geq - \log C_\varepsilon - \varepsilon S(P_1) + \varpi_{2,\varepsilon}(y_0) - \int_{\mathbb{R}^d} \frac{1}{2} |x|^2 P_1(dx).$$

Indeed, one can show that $\varpi_{2,\varepsilon}$ is convex from Lemma 3.3 and that $\varpi_{2,\varepsilon}$ is finite and continuous on \mathbb{R}^d since $\nu_1(dx; g_{\varepsilon}(1), P_{0,r,\varepsilon}, P_1)$ is a finite measure on B_r. The last part of this lemma can be shown by Fatou's lemma from (3.4) and from the following: for $m > r$,

$$\varpi_{1,\varepsilon}(x) + \varpi_{2,\varepsilon}(y_0) \geq \varpi_{1|m,\varepsilon}(x) + \varpi_{2,\varepsilon}(y_0), \quad \varpi_{2,\varepsilon} = \varpi_{2|m,\varepsilon}$$

since $\nu_1(dx; g_{\varepsilon}(1), P_{0,r,\varepsilon}, P_1)$ is supported on B_r. \square

We give the proof of the following lemma for readers’ convenience.

Lemma 3.7 (i) For a convex set $C \subset \mathbb{R}^d$, $\text{dist}(x,C)$ is a convex function. (ii) For a bounded sequence of convex sets $\{C_n \subset \mathbb{R}^d\}_{n \geq 1}$, there exists
a closed convex set C_∞ and a subsequence $\{C_{n_k}\}_{k \geq 1}$ of $\{C_n\}_{n \geq 1}$ such that $\{\text{dist}(x, C_{n_k})\}_{k \geq 1}$ converges, as $k \to \infty$, to $\text{dist}(x, C_\infty)$ uniformly on every compact subset of \mathbb{R}^d. (iii) For any $\gamma > 0$, the following holds: for sufficiently large $k \geq 1$,

$$U_{-\gamma}(C_\infty) := \{y \in C_\infty \mid U_\gamma(y) \subset C_\infty\} \subset C_{n_k},$$

where $U_\gamma(y) := \{x \in \mathbb{R}^d : |x - y| < \gamma\}$.

(Proof) (i) For $x_1, x_2 \in \mathbb{R}^d$, $\lambda \in (0, 1)$, $y_1, y_2 \in C$, since $\lambda y_1 + (1 - \lambda)y_2 \in C$,

$$\text{dist}(\lambda x_1 + (1 - \lambda)x_2, C) \leq |\lambda x_1 + (1 - \lambda)x_2 - (\lambda y_1 + (1 - \lambda)y_2)| \leq \lambda|x_1 - y_1| + (1 - \lambda)|x_2 - y_2|.$$ (3.16)

Taking the infimum over all $y_1, y_2 \in C$, the proof is done.

(ii) Since $\{C_n\}_{n \geq 1}$ is bounded, $\{\text{dist}(x, C_n)\}_{n \geq 1}$ is also locally bounded, which implies that there exists a convex function $h(x)$ and a subsequence $\{\text{dist}(x, C_{n_k})\}_{k \geq 1}$ such that

$$\text{dist}(x, C_{n_k}) \to h(x), \quad k \to \infty,$$

uniformly on every compact subset of \mathbb{R}^d (see, e.g., [1], section 3.3).

$$C_\infty := h^{-1}(0).$$

Then it is easy to see that the set C_∞ is a closed convex set and $h(x) = \text{dist}(x, C_\infty)$.

(iii) We only have to consider the case where $U_{-\gamma}(C_\infty) \neq \emptyset$. From (ii), for sufficiently large $k \geq 1$,

$$C_\infty \subset U_{\gamma_k}(C_{n_k}),$$

where

$$\gamma_k := \sup \left\{ |\text{dist}(x, C_{n_k})| + \frac{\gamma}{2} \mid x \in C_\infty \right\} \to \frac{\gamma}{2}, \quad k \to \infty.$$ (3.17)

For $x \in U_{-\gamma}(C_\infty)$, if $x \notin C_{n_k}$, then the following which contradicts (3.17) holds: for $\tilde{\gamma} < \gamma$,

$$\emptyset \neq U_\gamma(x) \cap U_{\tilde{\gamma}}(C_{n_k})^c \subset C_\infty \cap U_{\tilde{\gamma}}(C_{n_k})^c.$$ (3.17)

Indeed, since C_{n_k} is convex, for $x \notin C_{n_k}$, there exists $p \in \mathbb{R}^d$ such that

$$\{y \mid \langle p, y - x \rangle \geq 0\} \subset C_{n_k}^c.$$
4 Proof of main results

In this section we prove our main results.

(Proof of Theorem 2.1) We first prove (2.5). For the sake of simplicity,

\[\nu_{i,n}(dx) := \nu_i(dx; q_n, \mu_{1,n}, \mu_{2,n}), \]
\[\mu_n(dx) := \nu_{1,n}(dx)q_n(x,y)\nu_{2,n}(dy). \]

Since \(\{\mu_{1,n}(dx) = \mu_n(dx \times S), \mu_{2,n}(dy) = \mu_n(S \times dy)\}_{n \geq 1} \) is convergent, \(\{\mu_n\}_{n \geq 1} \) is tight. Take a weakly convergent subsequence \(\{\mu_{n_k}\}_{k \geq 1} \) and denote the limit by \(\mu \). Then it is easy to see that the following holds:

\[\mu_1(dx) = \mu(dx \times S), \quad \mu_2(dy) = \mu(S \times dy). \]

From (A2) and (2.3)-(2.4), the following holds: for any \(f \in C_0(S \times S) \),

\[\lim_{k \to \infty} \int_{S \times S} f(x,y)\nu_{1,n_k}(dx)\nu_{2,n_k}(dy) = \int_{S \times S} f(x,y)q(x,y)^{-1}\mu(dx,dy). \]

Indeed,

\[\nu_{1,n}(dx)\nu_{2,n}(dy) = \left(\frac{1}{q_n(x,y)} - \frac{1}{q(x,y)} \right)\mu_n(dx,dy) + \frac{1}{q(x,y)}\mu_n(dx,dy). \]

The rest of the proof of (2.5) is divided into the following (4.3)-(4.4) which will be proved later.

There exists a subsequence \(\{n_k\} \subset \{n\} \) and finite measures \(\overline{\nu}_{1,m}, \overline{\nu}_{2,m} \in \mathcal{M}(\text{supp}(\varphi_m)) \) such that for sufficiently large \(m \geq 1 \) and any \(f \in C_0(S \times S) \),

\[\lim_{k \to \infty} \int_{S \times S} f(x,y)\varphi_m(x)\varphi_m(y)\nu_{1,n_k}(dx)\nu_{2,n_k}(dy) = \int_{S \times S} f(x,y)\overline{\nu}_{1,m}(dx)\overline{\nu}_{2,m}(dy). \]

From (4.3), for sufficiently large \(m \geq 1 \) and any Borel sets \(A_1, A_2 \subset S \),

\[\int_{A_1 \times A_2} q(x,y)^{-1}\mu(dx,dy) = \int_{A_1 \times K_m} q(x,y)^{-1}\mu(dx,dy) \int_{K_m \times A_2} q(x,y)^{-1}\mu(dx,dy) \cdot \frac{\overline{\nu}_{1,m}(K_m)\overline{\nu}_{2,m}(K_m)}{\overline{\nu}_{1,m}(K_m)\overline{\nu}_{2,m}(K_m)}. \]
\[(1.4) \text{ implies that } q(x, y)^{-1}\mu(dx\, dy) \text{ is a product measure and is a solution to (1.1).} \]

\[(1.2) \text{ and the uniqueness of the solution to (1.1) implies that (2.5) is true.} \]

We prove \([4.3]-[4.4]\) to compete the proof of (2.5). \([4.3]\) can be proved by the diagonal method, since \([\mu_n]_{n\geq 1}\) is tight and since for sufficiently large \(m \geq 1,\)

\[
\Phi_m(x_1)\Phi_m(x_2)\nu_{1,n_k}(dx_1)\nu_{2,n_k}(dx_2)
= \int_{S}\Phi_m(x)\nu_{1,n_k}(dx)\int_{S}\Phi_m(y)\nu_{2,n_k}(dy)
\]

has a convergent subsequence from \([3.5]\) and any weak limit is a product measure. We prove \([4.4]\). From \([4.2]\) and \([4.3]\), for sufficiently large \(\tilde{m} \geq 1,\)

\[
\int_{(A_1 \times A_2) \cap (K_{\tilde{m}} \times K_{\tilde{m}})} q(x, y)^{-1}\mu(dx\, dy)
= \int_{(A_1 \times A_2) \cap (K_{\tilde{m}} \times K_{\tilde{m}})} \varphi_{\tilde{m}}(x)\varphi_{\tilde{m}}(y)q(x, y)^{-1}\mu(dx\, dy)
= \int_{(A_1 \times A_2) \cap (K_{\tilde{m}} \times K_{\tilde{m}})} \nu_{1,\tilde{m}}(dx)\nu_{2,\tilde{m}}(dy)
= \nu_{1,\tilde{m}}(A_1 \cap K_{\tilde{m}})\nu_{2,\tilde{m}}(K_{\tilde{m}} \cap A_2).
\]

From \([4.6]\), for \(\tilde{m} \geq m,\) setting \(A_i = K_m,\)

\[
\Pi_{1,\tilde{m}}(A_1 \cap K_{\tilde{m}}) = \frac{\int_{(A_1 \times K_m) \cap (K_{\tilde{m}} \times K_{\tilde{m}})} q(x, y)^{-1}\mu(dx\, dy)}{\nu_{2,\tilde{m}}(K_{\tilde{m}})},
\]

\[
\Pi_{2,\tilde{m}}(A_2 \cap K_{\tilde{m}}) = \frac{\int_{(K_m \times A_2) \cap (K_{\tilde{m}} \times K_{\tilde{m}})} q(x, y)^{-1}\mu(dx\, dy)}{\nu_{1,\tilde{m}}(K_{\tilde{m}})}.
\]

\[
\Pi_{1,\tilde{m}}(K_m)\Pi_{2,\tilde{m}}(K_m) = \Pi_{1,m}(K_m)\Pi_{2,m}(K_m) = \int_{K_m \times K_m} q(x, y)^{-1}\mu(dx\, dy).
\]

Substitute \([4.7]\) to \([4.6]\) and let \(\tilde{m} \rightarrow \infty.\) Then we obtain \([4.4]\). \([2.7]\) can be shown from \([2.6] \) by \([3.6].\)

As we mentioned in section 2, we omit the proof of Corollaries 2.1-2.2. Corollary 2.2 and Lemmas 3.1 and 3.3 immediately imply Corollary 2.3 (see [1], section 3.3) and we omit the proof. Indeed, if a sequence of pointwise convergent continuous functions has a uniformly convergent subsequence, then it is uniformly convergent.
We prove Theorem 2.2.

(Proof of Theorem 2.2) Since \(\mathcal{P}(B_r) \) is tight, Lemmas 3.4-3.6 imply the existence of a minimizer \(P_{0,r,\varepsilon}(dx) = p_{0,r,\varepsilon}(x) \) of \(\Psi_{\varepsilon,r}(P_1) \) (see (1.19)). By (1.13),

\[
\Psi_{\varepsilon,r}(P_1) = \inf \left\{ \mathcal{S}(p(x)dx) - \varepsilon \left(\int_{\mathbb{R}^d} f(x)p_1(x)dx - \int_{\mathbb{R}^d} \varphi(0, x; f)p(x)dx \right) \right. \\
+ \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 p(x)dx \left| p(x)dx \in \mathcal{P}(B_r), f \in C_c^\infty(\mathbb{R}^d) \right. \}
\]

(4.8)

Let \(f_{0,r,\varepsilon} \) denote \(f_0 \) in (1.18) with \(P_0 = P_{0,r,\varepsilon} \). Then

\[
\Psi_{\varepsilon,r}(P_1) = \inf \left\{ \mathcal{S}(p(x)dx) + \int_{\mathbb{R}^d} \left(\varepsilon\varphi(0, x; f_{0,r,\varepsilon}) + \frac{|x|^2}{2} \right) p(x)dx \right. \\
- \varepsilon \int_{\mathbb{R}^d} f_{0,r,\varepsilon}(x)p_1(x)dx \left| p(x)dx \in \mathcal{P}(B_r) \right. \}
\]

(see (1.18), (1.5) and Remark 2.2). Indeed,

\[
\int_{\mathbb{R}^d} \varphi(0, x; f_{0,r,\varepsilon})p(x)dx \right. \\
= \left. -\int_{\mathbb{R}^d \times \mathbb{R}^d} \log \left(\frac{\mu(dx dy; g_{\varepsilon}(1), P_{0,r,\varepsilon}, P_1)}{P_{0,r,\varepsilon}(dx)g_{\varepsilon}(1, y - x)} \right) \mu(dx dy; g_{\varepsilon}(1), p(x)dx, P_1), \\
\]

\[
V_{\varepsilon}(p(x)dx, P_1) \\
= \left. -\int_{\mathbb{R}^d \times \mathbb{R}^d} \log \left(\frac{p(x)dx g_{\varepsilon}(1, y - x)}{\mu(dx dy; g_{\varepsilon}(1), p(x)dx, P_1)} \right) \mu(dx dy; g_{\varepsilon}(1), p(x)dx, P_1), \\
\]

and by Jensen’s inequality,

\[
\int_{\mathbb{R}^d \times \mathbb{R}^d} \log \left(\frac{\mu(dx dy; g_{\varepsilon}(1), P_{0,r,\varepsilon}, P_1)}{P_{0,r,\varepsilon}(dx)g_{\varepsilon}(1, y - x)} \right) \frac{p(x)dx g_{\varepsilon}(1, y - x)}{\mu(dx dy; g_{\varepsilon}(1), p(x)dx, P_1)} \right. \\
\times \mu(dx dy; g_{\varepsilon}(1), p(x)dx, P_1) \leq 0.
\]
holds since $\varphi(0, x; f_{0, r, \varepsilon}) - u_1(x; g_\varepsilon(1), P_{0, r, \varepsilon}, P_1)$ is constant C (see (1.18)) and since, for $p(x)dx \in \mathcal{P}(B_r)$,

$$S(p(x)dx) + \int_{\mathbb{R}^d} \left(\varepsilon \varphi(0, x; f_{0, r, \varepsilon}) + \frac{|x|^2}{2} \right) p(x)dx = \int_{B_r} p(x)dx \log \frac{1}{p(x)} \int_{B_r} \varepsilon I_{B_r}(x) \exp(-\varepsilon u_1(x; g_\varepsilon(1), P_{0, r, \varepsilon}, P_1) - \frac{1}{2}|x|^2) - \log C_\varepsilon + C$$

Here $C_\varepsilon := \int_{B_r} \exp \left(-\varepsilon u_1(x; g_\varepsilon(1), P_{0, r, \varepsilon}, P_1) - \frac{1}{2}|x|^2 \right) dx$, and the equality holds if and only if

$$p(x) = \frac{1}{C_\varepsilon} I_{B_r}(x) \exp \left(-\varepsilon u_1(x; g_\varepsilon(1), P_{0, r, \varepsilon}, P_1) - \frac{1}{2}|x|^2 \right).$$

\[(4.10) \]

We prove the second part of Theorem 2.2. For $i = 1, 2$, $m \geq 1$ and $x \in \mathbb{R}^d$,

$$\nu_{i, \varepsilon}(dx) := \nu_i(dx; g_\varepsilon(1), P_{0, r, \varepsilon}, P_1),$$

$$\mu_\varepsilon(dx, dy) := \nu_{1, \varepsilon}(dx) g_\varepsilon(1, y-x) \mu_\varepsilon(dy),$$

$$u_{i|m, \varepsilon}(x) := u_{i|m}(x; g_\varepsilon(1), P_{0, r, \varepsilon}, P_1)$$

(see (2.1) for notation). Since $\mathcal{P}(B_r)$ is compact, $\{P_{0, r, \varepsilon}\}_{\varepsilon > 0}$ and $\{\mu_\varepsilon\}_{\varepsilon > 0}$ has a weakly convergent subsequence. Let P_0 and μ denote the weak limit along the same subsequence, as $\varepsilon \to 0$, of $P_{0, r, \varepsilon}$ and μ_ε respectively. For sufficiently large $m \geq 1$, by the diagonal method, $\overline{u}_{1|m, \varepsilon}(x) + \overline{u}_{2|m, \varepsilon}(y)$ has a subsequence which is uniformly convergent, as $\varepsilon \to 0$, on every compact subset of $\mathbb{R}^d \times \mathbb{R}^d$ (see (3.11) for notation). Indeed, for sufficiently large $m \geq 1$ and small $\varepsilon > 0$, $\overline{u}_{i|m, \varepsilon}$, $i = 1, 2$ are convex from Lemma 3.3, and $\overline{u}_{1|m, \varepsilon}(x) + \overline{u}_{2|m, \varepsilon}(y)$ is uniformly bounded on every compact subset of $\mathbb{R}^d \times \mathbb{R}^d$, from (3.1):

$$|\overline{u}_{1|m, \varepsilon}(x) + \overline{u}_{2|m, \varepsilon}(y)| + \varepsilon \log \sqrt{2\pi \varepsilon} - \varepsilon \log \mu_\varepsilon(B_m \times B_m), \quad x, y \in \mathbb{R}^d.$$

\[(4.11) \]

Let $\{\varepsilon_n\}_{n \geq 1}$ denote a sequence which converges to 0, as $n \to \infty$ and along which the above sequences are all convergent.

$$u_m(x, y) := \lim_{n \to \infty} (\overline{u}_{1|m, \varepsilon_n}(x) + \overline{u}_{2|m, \varepsilon_n}(y)), \quad m \geq 1, x, y \in \mathbb{R}^d.$$

\[(4.12) \]
There exists the limit
\[u(x, y) := \lim_{m \to \infty} u_m(x, y), \quad x, y \in \mathbb{R}^d. \] (4.13)
since \(m \mapsto u_m \) is nondecreasing (see (3.6)). From Lemma 3.6, there exists \(x_0 \in B_r \) such that \(u(x_0, y_0) < \infty \), since
\[\overline{u}_{1, \varepsilon_n}(x) + \overline{u}_{2, \varepsilon_n}(y_0) \geq \overline{u}_{1|m, \varepsilon_n}(x) + \overline{u}_{2|m, \varepsilon_n}(y_0). \]

To complete the proof of Theorem 2.2, we show that the following holds:
\[\langle x, y \rangle = u(x, y), \quad \mu \text{-a.s.,} \] (4.14)
\[x = D_y u(x_0, y), \quad y = D_x u(x, y_0), \quad \mu \text{-a.s.,} \] (4.15)
\[P_0(dx) = \frac{I_D(x)}{C} \exp(-u(x, y_0)) dx, \] (4.16)
where \(D \) is a convex subset of \(B_r \) and \(C \) is a normalizing constant. Notice that \(u(x, y) \) is convex and is differentiable a.e.

Proof of (4.14) The following implies that (4.14) holds: for sufficiently large \(m \geq r \),
\[\langle x, y \rangle = u_m(x, y), \quad (x, y) \in \mathbb{R}^d \times \text{Int}(\text{supp}(\varphi_m)), \mu \text{-a.s.} \] (4.17)
Indeed, from (4.13) and (4.17), for sufficiently large \(m > r \),
\[\langle x, y \rangle = u_m(x, y) = u_{m'}(x, y) = u(x, y), \quad m' > m, \]
\[(x, y) \in \mathbb{R}^d \times \text{Int}(\text{supp}(\varphi_m))(\subset \mathbb{R}^d \times \text{Int}(\text{supp}(\varphi_{m'}))), \mu \text{-a.s.} \] To prove (4.17), we first prove that the following holds: for sufficiently large \(m \geq r \),
\[\langle x, y \rangle \leq u_m(x, y), \quad (x, y) \in \text{supp}(P_0) \times (\text{supp}(P_1) \cap \text{Int}(\text{supp}(\varphi_m))). \] (4.18)
For \(i \neq j, i, j = 1, 2 \),
\[\mu_{ijm, \varepsilon}(dx_i) := \nu_{i, \varepsilon}(dx_i) \exp(u_{ijm, \varepsilon}(x_i)) = \int_{\{x_j \in \mathbb{R}^d\}} \varphi_m(x_j) \mu_{\varepsilon}(dx_1 dx_2). \] (4.19)
Then for $\delta > 0$ and $(x, y) \in supp(P_0) \times (supp(P_1) \cap Int(supp(\varphi_m)))$

\[
\exp\left(\frac{u_{1|m,\varepsilon}(x) + u_{2|m,\varepsilon}(y)}{\varepsilon}\right)
\]

(4.20)

\[
= \int_{\mathbb{R}^d \times \mathbb{R}^d} \frac{1}{(2\pi \varepsilon)^d} \exp\left(\frac{\langle x_1, y \rangle + \langle x, x_2 \rangle - u_{1|m,\varepsilon}(x_1) - u_{2|m,\varepsilon}(x_2)}{\varepsilon}\right)
\]

\[
\times \varphi_m(x_1)\varphi_m(x_2)\mu_{1|m,\varepsilon}(dx_1)\mu_{2|m,\varepsilon}(dx_2)
\]

\[
\geq \int_{U_\delta(x) \times U_\delta(y)} \frac{1}{(2\pi \varepsilon)^d} \exp\left(\frac{\langle x_1, y \rangle + \langle x, x_2 \rangle - u_{1|m,\varepsilon}(x_1) - u_{2|m,\varepsilon}(x_2)}{\varepsilon}\right)
\]

\[
\times \varphi_m(x_2)p_{1|m,\varepsilon}(dx_1)p_1(x_2)dx_2
\]

(see (3.6)). Indeed, for $m > r$, $\mu_{1|m,\varepsilon}(dx)$ is supported on B_r since $P_{0,r,\varepsilon} \in \mathcal{P}(B_r)$ and

\[
\varphi_{2|m,\varepsilon}(dy) = \left(\int_{B_r} g_\varepsilon(1, y - x)\varphi_m(x)\nu_1,\varepsilon(dx)\right)\nu_2,\varepsilon(dy) = p_1(y)dy.
\]

(4.20) implies (4.18) since

\[
\int_{U_\delta(y)} \varphi_m(x_2)p_1(x_2)dx_2 > 0,
\]

\[
\liminf_{n \to \infty} \mu_{1|m,\varepsilon_n}(U_\delta(x)) \geq \int_{U_\delta(x) \times \mathbb{R}^d} \varphi_m(x_2)\mu(dx_1dx_2)
\]

\[
\geq P_0(U_\delta(x)) - P_1(B_{r_m}^+) > 0, \text{ for sufficiently large } m.
\]

Next we prove that the following holds: for sufficiently large $m \geq 1$,

\[
\langle x, y \rangle \geq u_m(x, y), \mu - a.s.
\]

(4.21)

$A_{m,\delta,k} := \{(x, y) \in B_r \times U_k(0)|\langle x, y \rangle - u_m(x, y) < -\delta\}, \quad \delta > 0, k \geq 1.$

Then $A_{m,\delta,k}$ is open since u_m is convex and finite (see (4.11)-(4.12)) and is continuous. The following implies that (4.21) is true: from (4.12), for sufficiently large $m \geq 1$,

\[
\mu(A_{m,\delta,k}) \leq \liminf_{n \to \infty} \mu_{\varepsilon_n}(A_{m,\delta,k}),
\]

(4.22)

\[
\mu_{\varepsilon_n}(A_{m,\delta,k}) = \int_{A_{m,\delta,k}} \frac{1}{\sqrt{2\pi \varepsilon_n}} \exp\left(\frac{\langle x, y \rangle - u_{1|m,\varepsilon_n}(x) - u_{2|m,\varepsilon_n}(y)}{\varepsilon_n}\right)
\]

\[
\times \mu_{1|m,\varepsilon_n}(dx)\mu_{2|m,\varepsilon_n}(dy)
\]

$\to 0 \quad n \to \infty.$
Proof of (4.15) For \((x, y) \in \text{supp}(P_0) \times \text{supp}(P_1)\),
\[
\langle x, y \rangle \leq u(x, y) = u(x, y_0) + u(x_0, y) - u(x_0, y_0).
\] (4.23)

Indeed, from (4.13) and (4.18), for sufficiently large \(m > r\) such that \(y \in \text{Int}(\text{supp}(\varphi_m))\),
\[
\langle x, y \rangle \leq u_m(x, y) \leq u(x, y).
\]
(4.13) and the following imply (4.23): from (4.12),
\[
u_m(x, y) = u_m(x, y_0) + u_m(x_0, y) - u_m(x_0, y_0).
\]

\[A := \{(x, y) \in \mathbb{R}^d \times \mathbb{R}^d | \langle x, y \rangle = u(x, y)\}.
\]
u(x, y_0) and \(u(x_0, y)\) are finite for \((x, y) \in A\), since from (4.11) and the equality in (4.23),
\[
\langle x, y \rangle = u(x, y)
\]
\[
\geq \max(u(x, y_0) + u_m(x_0, y) - u(x_0, y_0), u_m(x, y_0) + u(x_0, y) - u(x_0, y_0)).
\]

For a set \(B \subset \mathbb{R}^d\) and a function \(f : B \mapsto \mathbb{R}\),
\[
c \text{co } B := \left\{ \sum^{d+1}_{i=1} \lambda_i x_i \mid \sum^{d+1}_{i=1} \lambda_i = 1, \lambda_i \geq 0, x_i \in B, 1 \leq i \leq d + 1 \right\},
\]
\[
\text{co } f(x) := \left\{ \min_{d+1} \sum^{d+1}_{i=1} \lambda_i f(x_i) \mid x = \sum^{d+1}_{i=1} \lambda_i x_i, \sum^{d+1}_{i=1} \lambda_i = 1, \lambda_i \geq 0, x_i \in B, 1 \leq i \leq d + 1 \right\}, \quad x \in \text{co } B,
\]
\[\infty, \quad x \notin \text{co } B.
\]

Then, from (4.23), for \(x \in \text{supp}(P_0)\),
\[
u(x, y_0) - u(x_0, y_0) \geq \sup \{\langle x, y \rangle - u(x_0, y) | y \in \text{supp}(P_1)\} \geq \sup \{\langle x, y \rangle - \text{con} (u|_{\text{supp}(P_1)})(x_0, y) | y \in \mathbb{R}^d\}.
\] (4.24)

Here \((u|_{\text{supp}(P_1)})(x_0, y)\) denotes the restriction of \(u(x_0, y)\) on \(\text{supp}(P_1)\) and the equality holds if \((x, y_x) \in A\) for some \(y_x \in \text{supp}(P_1)\), in which case \(x \in \partial_y \text{con} (u|_{\text{supp}(P_1)})(x_0, y_x)\), where for a function \(f : \mathbb{R}^d \mapsto \mathbb{R} \cup \{\infty\}\),
\[
\partial_y f(y) := \{x \in \mathbb{R}^d | f(z) \geq f(y) + \langle x, z - y \rangle, \text{ for any } z \in \mathbb{R}^d\}.
\]
In particular, $x \in \partial \con (u|_{\text{supp}(P)}) (x_0, y) \mu-\text{a.s.}$ from (4.14). $x = D_y u(x_0, y), \mu-\text{a.s.}$ since

$$\con (u|_{\text{supp}(P)}) (x_0, y) = u(x_0, y), \quad y \in \text{supp}(P_1),$$

and since $P_1(dx)$ has a probability density function. In the same way, one can show that $y = D_x u(x, y_0) \mu-\text{a.s.}$.

Proof of (4.16)

$$D_{R, \varepsilon} := \{ x \in B_r | \overline{u}_{1, \varepsilon}(x) + \overline{u}_{2, \varepsilon}(y_0) \leq R \}, \quad R > 0$$

(see (3.11) for notation). Then, from Lemma 3.6,

$$\lim_{R \to \infty} \limsup_{\varepsilon \to 0} \int_{D_{R, \varepsilon}} p_{0, r, \varepsilon}(x) dx = 0. \quad (4.25)$$

Indeed,

$$\int_{D_{R, \varepsilon}} p_{0, r, \varepsilon}(x) dx = \frac{1}{C_{\varepsilon} \exp(-\overline{u}_{2, \varepsilon}(y_0))} \int_{B_r \cap D_{R, \varepsilon}} \exp(-\overline{u}_{1, \varepsilon}(x) - \overline{u}_{2, \varepsilon}(y_0)) dx$$

$$\leq \exp(-R) \frac{\text{Vol}(B_r)}{C_{\varepsilon} \exp(-\overline{u}_{2, \varepsilon}(y_0))}.$$

For $\delta > 0$,

$$\psi_{\delta, R, \varepsilon}(x) := \max \left(0, 1 - \frac{\text{dist}(x, D_{R, \varepsilon})}{\delta} \right).$$

Then, from Lemma 3.7, there exists a convergent subsequence $\{\psi_{\delta, R, \varepsilon, k}(x)\}_{k \geq 1}$ in $C(B_r)$ and a closed convex set $D_{R, 0} \subset B_r$ such that

$$\lim_{k \to \infty} \| \psi_{\delta, R, \varepsilon, k} - \psi_{\delta, R, 0} \|_{\infty, r} = 0. \quad (4.26)$$

$$D := \cup_{R > 0} D_{R, 0}.$$

Then we prove that the following holds: for a closed set $B \subset B_r$,

$$\lim_{R \to \infty} \limsup_{k \to \infty} \int_{B \cap D_{R, \varepsilon, k}} p_{0, r, \varepsilon, k}(x) dx$$

$$\leq \frac{1}{\int_D \exp(-u(x, y_0)) dx} \int_{B \cap D} \exp(-u(x, y_0)) dx.$$
The proof of (4.27) is done by the following (4.28)-(4.29) which will be proved later.

\[
\lim_{R \to \infty} \limsup_{k \to \infty} \int_{B \cap D_{R,\varepsilon_k}} \exp(-\overline{u}_{1,\varepsilon_k}(x) - \overline{u}_{2,\varepsilon_k}(y_0)) \, dx \quad (4.28)
\]

\[
\leq \int_{B \cap D} \exp(-u(x, y_0)) \, dx,
\]

\[
\liminf_{k \to \infty} C_{\varepsilon_k} \exp(-\overline{u}_{2,\varepsilon_k}(y_0)) \geq \int_{D} \exp(-u(x, y_0)) \, dx. \quad (4.29)
\]

Notice that, from (4.25), (4.28) and Lemma 3.6, the following holds:

\[
\int_{D} \exp(-u(x, y_0)) \, dx > \exp\left(-\frac{1}{2} \int_{\mathbb{R}^d} |x|^2 P_1(dx) + \log \text{Vol}(B_r) - \frac{1}{2} \int_{B_r} |x|^2 \frac{dx}{\text{Vol}(B_r)}\right) > 0.
\]

We prove (4.28). For sufficiently large \(m \geq 1\),

\[
\int_{B \cap D_{R,\varepsilon}} \exp(-\overline{u}_{1,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx
\]

\[
\leq \int_{B} \psi_{\delta,R,\varepsilon}(x) \exp(-\overline{u}_{1|m,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx
\]

(see (3.11) for notation). Let \(\psi_\delta\) denote the function \(\psi_{\delta,R,0}\) with \(D_{R,0}\) replaced by \(D\). Then for \(m > r\), from (4.12) and (4.26),

\[
\lim_{k \to \infty} \int_{B} \psi_{\delta,R,\varepsilon_k}(x) \exp(-\overline{u}_{1|m,\varepsilon_k}(x) - \overline{u}_{2,\varepsilon_k}(y_0)) \, dx \quad (4.30)
\]

\[
= \int_{B} \psi_{\delta,R,0}(x) \exp(-u_m(x, y_0)) \, dx
\]

\[
\to \int_{B} \psi_{\delta}(x) \exp(-u(x, y_0)) \, dx, \quad m, R \to \infty,
\]

\[
\to \int_{B} I_D(x) \exp(-u(x, y_0)) \, dx, \quad \delta \to 0,
\]

since \(R \to D_{R,\varepsilon}\) is nondecreasing.

We prove (4.29).

\[
\tilde{D}_{\delta,m,\varepsilon} := \{x \in B_r|\overline{u}_{1,\varepsilon}(x) - \overline{u}_{1|m,\varepsilon}(x) < \delta\}, \quad \delta > 0.
\]
Then
\[C_\varepsilon \exp(-\overline{u}_{2,\varepsilon}(y_0)) \]
\[\geq \int_{B_r} \psi_{\delta,R,\varepsilon}(x) \exp(-\overline{u}_{1,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx \]
\[\geq \exp(-\delta) \int_{D_{\delta,m,\varepsilon}} \psi_{\delta,R,\varepsilon}(x) \exp(-\overline{u}_{1|m,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx \]
\[= \exp(-\delta) \int_{B_r} \psi_{\delta,R,\varepsilon}(x) \exp(-\overline{u}_{1|m,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx \]
\[- \exp(-\delta) \int_{D_{\delta,m,\varepsilon}^c} \psi_{\delta,R,\varepsilon}(x) \exp(-\overline{u}_{1|m,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx. \]

From (4.30), we only have to prove that the following holds:

\[\lim_{\delta \to 0} \lim_{R \to \infty} \limsup_{m \to \infty} \limsup_{k \to \infty} \int_{D_{\delta,m,\varepsilon}^c} \psi_{\delta,R,\varepsilon,n_k}(x) \]
\[\times \exp(-\overline{u}_{1|m,e_{n_k}}(x) - \overline{u}_{2,e_{n_k}}(y_0)) \, dx = 0. \]

\[\int_{D_{\delta,m,\varepsilon}^c} \psi_{\delta,R,\varepsilon}(x) \exp(-\overline{u}_{1|m,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx \]
\[\leq \int_{U_{\delta}(D_{R,\varepsilon}) \cap D_{\delta,m,\varepsilon}^c} \exp(-\overline{u}_{1|m,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx \]
\[+ \int_{D_{\delta,m,\varepsilon}^c \cap D_{R,\varepsilon}} \exp(-\overline{u}_{1|m,\varepsilon}(x) - \overline{u}_{2,\varepsilon}(y_0)) \, dx, \]

since $\psi_{\delta,R,\varepsilon}^{-1}((0, 1]) = U_{\delta}(D_{R,\varepsilon})$. For any $\gamma > 0$, sufficiently large $m \geq m_0 \geq 1$
and \(k \), from Lemma 3.7 and (4.12),
\[
\int_{U(\delta_{R,\varepsilon} n_k) \cap D_{c R,\varepsilon} n_k} \exp(-\bar{u}_1|_{m,\varepsilon} n_k(x) - \bar{u}_2,\varepsilon n_k(y_0)) \, dx \\
\leq \int_{U_{d+\gamma}(D_{R,0}) \cap U_{-\gamma}(D_{R,0})^c} \exp(-\bar{u}_1|_{m_0,\varepsilon} n_k(x) - \bar{u}_2,\varepsilon n_k(y_0)) \, dx \\
\to \int_{U_{d+\gamma}(D) \cap U_{-\gamma}(D)^c} \exp(-u_{m_0}(x, y_0)) \, dx, \quad k \to \infty,
\]
\[
\to 0, \quad \delta, \gamma \to 0.
\]

\[
\int_{\tilde{D}_{m,c} \cap D_{R,c}} \exp(-\bar{u}_1|_{m,\varepsilon}(x) - \bar{u}_2,\varepsilon(y_0)) \, dx \\
\leq \int_{\tilde{D}_{m,c}} \exp(-\bar{u}_1|_{m,\varepsilon}(x) - \bar{u}_2,\varepsilon(y_0) + R - \bar{u}_2,\varepsilon(y_0)) C_{p_0,r,\varepsilon}(x) \, dx \\
\leq \exp(-2 \inf\{\bar{u}_1|_{m_0,\varepsilon}(x) + \bar{u}_2,\varepsilon(y_0) | x \in B_r\} + R) Vol(B_r) \int_{\tilde{D}_{m,c}} p_{0,r,\varepsilon}(x) \, dx,
\]
(4.33)

\[
\int_{\tilde{D}_{m,c}} p_{0,r,\varepsilon}(x) \, dx = \int_{\tilde{D}_{m,c}} \mu_1(dx) \\
\leq \mu_1|_{m,\varepsilon}(\tilde{D}_{m,c}) + P_1(B_m^c) \\
\leq \int_{\tilde{D}_{m,c}} \mu_1(dx) \\
\leq \exp\left(\frac{-\delta}{\varepsilon}\right) \int_{B_r} p_{0,r,\varepsilon}(x) dx + P_1(B_m^c) \\
\to P_1(B_m^c), \quad \varepsilon \to 0,
\]
\[
\to 0, \quad m \to \infty.
\]

Here, from (3.11) and (4.19) (see also (1.1)),
\[
\exp\left(\frac{-\delta}{\varepsilon}\right) \mu_1(dx) \\
= \exp(u_1(x; g_\varepsilon(1), P_{0,r,\varepsilon}, P_1)) \nu_1(dx) = p_{0,r,\varepsilon}(x) \, dx.
\]

24
(4.11) and (4.12) complete the proof of (4.32).

If \(P_1 \) is compactly supported, then \(u_{ijm,\varepsilon} = u_{ijm',\varepsilon} \) and \(u(x, y) = u_{m'}(x, y) \) for \(m' \geq m \), provided \(B_r \cup \text{supp}(P_1) \subset B_m \). (4.10)-(4.12) imply that the last statement of Theorem 2.2 holds. □

References

[1] I. J. Bakelman: Convex Analysis and Nonlinear Geometric Elliptic Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1994.

[2] S. Bernstein: Sur les liaisons entre les grandeurs aléatoires, Verh. des intern. Mathematikerkongr. Zurich 1932, Band 1, 288-309.

[3] A. Beurling: An Automorphism of Product Measures, Ann. of Math. 72 (1960), 189-200.

[4] Y. Chen, T. Georgiou, M. Pavon: Entropic and displacement interpolation: a computational approach using the Hilbert metric, SIAM J. Appl. Math. 76 (2016), 2375-2396.

[5] D. Cordero-Erausquin, B. Klartag: Moment measures, J.Funct. Anal. 268 (12) (2015), 3834-3866.

[6] P. Dai Pra: A stochastic control approach to reciprocal diffusion processes, Appl. Math. Optim. 23 (1991), 313-329.

[7] P. Dupuis, R. S. Ellis: A Weak Convergence Approach to the Theory of Large Deviations, John Wiley & Sons, New York, 1997.

[8] W. H. Fleming, H. M. Soner: Controlled Markov Processes and Viscosity Solutions, 2nd ed., Springer, Berlin-Heidelberg-New York, 2006.

[9] H. Föllmer: Random fields and diffusion processes, in: Hennequin, P. L.(ed) École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, Lecture Notes in Math. 1362, 101–203, Springer, Berlin-Heidelberg-New York, 2006.

[10] R. Fortet: Résolution d’un Système d’équations de M. Schroedinger, J. Math. Pures Appl. IX (1940), 83-105.
[11] B. Jamison: Reciprocal Processes, Z. Wahr. verw. Gebiete 30 (1974), 65–86.

[12] B. Jamison: The Markov process of Schrödinger, Z. Wahr. Verw. Gebiete 32 (1975), 323–331.

[13] C. Léonard: From the Schrödinger problem to the Monge-Kantorovich problem, J. Funct. Anal. 262 (2012), 1879–1920.

[14] C. Léonard: A survey of the Schrödinger problem and some of its connections with optimal transport, Special Issue on Optimal Transport and Applications, Discrete Contin. Dyn. Syst. 34 (2014), 1533–1574.

[15] T. Mikami: Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes, Probab. Theory Related Fields 129 (2004), 245–260.

[16] T. Mikami: Semimartingales from the Fokker-Planck equation. Appl. Math. Optim. 53, 209–219 (2006)

[17] T. Mikami: Marginal problem for semimartingales via duality, in: Giga, Y., Ishii, K., Koike, S. et al. (eds) International Conference for the 25th Anniversary of Viscosity Solutions, Gakuto International Series. Mathematical Sciences and Applications 30, 133–152, Gakkotosho, Tokyo, 2008.

[18] T. Mikami: Optimal transportation problem as stochastic mechanics, in Selected Papers on Probability and Statistics, Amer. Math. Soc. Transl. Ser. 2, 227, 75–94, Amer. Math. Soc., Providence, RI., 2009.

[19] T. Mikami: Two end points marginal problem by stochastic optimal transportation, SIAM J. Control Optim. 53 (2015), 2449-2461.

[20] T. Mikami: Regularity of Schrödinger’s functional equation and mean field PDEs for h-path processes, to appear in Osaka J. Math.

[21] T. Mikami, M. Thieullen: Duality theorem for the stochastic optimal control problem, Stochastic Process. Appl. 116 (2006), 1815–1835.

[22] L. Rüschendorf, W. Thomsen: Note on the Schrödinger equation and I-projections, Statist. Probab. Lett. 17 (1993), 369–375.
[23] F. Santambrogio: *Dealing with moment measures via entropy and optimal transport*, J. Funct. Anal. 271 (2) (2016), 418-436.

[24] E. Schrödinger: *Ueber die Umkehrung der Naturgesetze*, Sitz. Ber. der Preuss. Akad. Wissen., Berlin, Phys. Math., p. 144, 1931.

[25] E. Schrödinger: *Théorie relativiste de l’électron et l’interprétation de la mécanique quantique*, Ann. Inst. H. Poincaré 2 (1932), 269-310.

[26] X. Tan, N. Touzi: *Optimal transportation under controlled stochastic dynamics*, Ann. Probab. 41 (2013), 3201–3240.

[27] J. C. Zambrini: *Variational processes*, in: Albeverio, S., etal. (eds.) Stochastic processes in classical and quantum systems (Ascona, 1985), Lecture Notes in Phys. 262, 517–529, Springer, Berlin-Heidelberg-New York, 1986.