Catalase C262T genetic variation and cancer susceptibility: A comprehensive meta-analysis with meta-regression and trial sequential analysis

Md Abdul Barek1,2, Sarah Jafrin1,2, Md. Abdul Aziz3 and Mohammad Safiqul Islam1,2

Abstract
Several genetic association studies have analyzed the link between the catalase (CAT) C262T variant and different cancers, but the findings remain controversial. Our research centered on establishing a comprehensive correlation between the C262T variant and different cancers. This study was conducted using RevMan 5.4 software following the PRISMA 2020 guidelines. For this meta-analysis, 53 case-control studies (18,258 cases and 47,476 controls) were chosen. The analysis revealed that three genetic models were statistically linked (P < 0.05) to overall cancer susceptibility in codominant model 2 (COD2): odds ratio (OR) = 1.16, COD3: OR = 1.21, recessive model (RM): OR = 1.20). After stratification by ethnicity, a significant link (P < 0.05) was found in Caucasians (COD2: OR = 1.18, COD3: OR = 1.17, over-dominant model (ODM): OR = 1.19) and Asians (COD3: OR = 1.49). Subgroup analyses revealed a significant correlation (P < 0.05) with blood-and-bone-marrow-related cancer, skin cancer, gastrointestinal-tract-related cancer, prostate cancer, and gynecologic cancer. Three genetic models in population-based controls (COD2: OR = 1.19, COD3: OR = 1.17, RM: OR = 1.19) and two genetic models in hospital-based controls (COD3: OR = 1.40, RM: OR = 1.24) were found to be significantly correlated (P < 0.05) with cancer. Also, three genetic models for polymerase chain reaction-restriction fragment length polymorphism (COD3: OR = 1.46; RM: OR = 1.34, ODM: OR = 0.80) and three models for MALDI-TOF + MassARRAY (COD2: OR = 1.32, RM: OR = 1.26, allele model: OR = 1.14) genotyping methods showed significant association (P < 0.05) with cancer. The meta-regression showed that the quality scores might be a source of significant heterogeneity under the COD2 model (coefficient = 0.176, P = 0.029). Trial sequential analysis also validated the adequacy of the sample size on overall findings. Our results indicate that CAT C262T variant is associated with overall cancer susceptibility, especially in Caucasians and Asians. This variant may also be associated with blood-and-bone-marrow-related, GIT-related, prostate, skin, and gynecological cancers.

Keywords
Catalase, CAT C262T, Polymorphism, Meta-analysis, Cancer

Date received: 17 February 2022; revised: 11 May 2022; accepted 13 May 2022
Introduction
Cancer is a major worldwide public health issue at present. The prevalence of cancer and cancer-related morbidity and mortality are rising at an alarming rate. Based on the GLOBOCAN estimation, in 2020, more than 19 million people were supposed to be affected by different cancers and approximately 10 million people were supposed to die due to cancer. In 2020, the most common cancer was breast cancer (2.3 million new cases) and the fifth-highest reason for global death. The second most frequent cancer and the leading cause of mortality was lung cancer, with an estimated 2.2 million cases and 1.8 million deaths in 2020. Colorectal carcinoma was the third-highest prevalent cancer and the second most common cause of death in the world. Cancer progresses for multiple reasons, including genetic, racial, environmental, lifestyle, infection, and other associated factors.

Materials & methods
Methods of literature search
We followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 principles for our meta-analysis. From October 15, 2021 to December 07, 2021, the articles were carefully reviewed in electronic literature resources such as PubMed, ScienceDirect, the Wiley Online Library, BMC, and the Cochrane Library. Duplicate studies were eliminated using EndNote X 7.0 software. The following terms—“catalase”, “CAT”, “C262T”, “rs1001179”, “polymorphism”, “variant”, “cancer”, “tumor”, “malignancy”—were used in searches, either alone or in combination. In this meta-analysis, no language or country restrictions were applied, and only online literature was considered for evaluation. We looked over the reference lists of all of the papers we selected to see if any studies were missing.

Study eligibility
For studies to be included, the following criteria were implemented: (a) human-sample-based case-control or cohort studies; (b) cancer was assessed as the major outcome of the study; (c) studies analyzed CAT C262T polymorphism and various cancers; and (d) the publications provided enough data to assess odds ratio (OR) and 95% confidence interval (CI) values.

The criteria for exclusion were: (a) reviews, expert opinions, letters to the editor, and case reports; (b) duplicate or overlapped research; (c) articles that examined other CAT polymorphisms; and (d) animal studies.

Data extraction
The data were collected individually by two authors (MAB and SJ), followed by the above-mentioned criteria. They individually performed a literature review and evaluation, and entered data into an Excel spreadsheet. If a disagreement appeared during the inquiry, it was resolved through discussion by other investigators (MAB and MSI). The first author’s name, publication year, country of publication, ethnicity, cancer types, age of cases and controls, cancer stages, genotyping methods, type of control, number of patients and controls, genotypes, and P-value from HWE were selected for data collection from each study. To select publications for the meta-analysis, the Rayyan QCRI was applied.

Methodological quality assessment
To assess the quality of the included studies, the Newcastle–Ottawa Scale (NOS) was applied. The
Jadad scale was used to verify data integrity in randomized controlled trials, if necessary.14

Statistical analysis, heterogeneity, and publication bias

The Review Manager 5.4 (RevMan 5.4) software was applied to investigate the link between CAT C262T polymorphism and various malignancies. To assess the significance of the link, seven distinct genotypic models were used: codominant model 1 (COD1), COD2, COD3, dominant model (DM), over-dominant model (OD), recessive model (RM), and allele model (AM). We employed the \(\chi^2 \)-based \(I^2 \)-statistic and the Q-test to assess potential heterogeneity. If the \(P \)-value was lower than 0.1, the \(Q \) results indicated significant heterogeneity, and a random-effects model was applied. In other cases (\(P > 0.1 \)), the fixed-effects model was applied. Sensitivity assessments were carried out by deleting chosen studies one at a time in order to classify any substantial risk differences across studies for each parameter. The funnel plot asymmetry, Begg–Mazumdar rank correlation, and Egger’s test were applied to evaluate the publication biases. The threshold for statistically significant publication bias was \(P \leq 0.05 \). In addition, various subgroups were implemented in our investigation, including ethnicity, cancer types, genotyping methods, and type of control sources (hospital or population).

The meta-regression analysis was also performed to evaluate the impact of the quality scores of studies on overall findings or to identify the source heterogeneity. In addition, trial sequential analysis (TSA) was applied to test whether the estimated sample sizes are adequate enough to generate a statistically significant result.

Results

Characteristics and quality assessment of eligible studies

There were 321 entries identified in five databases during the primary search. A total of 185 documents were eliminated due to redundancy; 25 articles were excluded for being discursive studies; 21 studies were eliminated after reading the manuscript title and full abstract; 15 were removed from the rest 90 studies for different arguments and reasons. Finally, based on the inclusion and elimination characteristics, 53 complete studies with 18,258 cancer patients and 47,476 controls, were included for the assessment in this meta-analysis (Figure 1 and Table 1).

In this meta-analysis, 38 studies of Caucasians, 9 of Asians, and 6 of mixed and other populations were analyzed. The included studies were also categorized based on cancer as: 5 studies were blood-and-bone-marrow-related cancer (chronic myeloid leukemia + acute myeloid leukemia + leukemia + myeloproliferative neoplasms), 3 lung, 11 breast, 3 non-Hodgkin lymphoma, 4 gastrointestinal tract (GIT)-related (gastric cancer + colorectal cancer), 8 prostate, 4 head and neck cancer and central nervous system cancer (glioma + meningioma + acoustic neuroma + laryngeal cancer), 3 skin (basal cell carcinoma + melanoma + cutaneous squamous cell carcinoma), 3 gynecological (cervical cancer + ovarian cancer), 6 hepatocellular, and 3 other cancers (pancreatic cancer + testicular cancer + multiple myeloma). A total of seven different genotyping methods (polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), MALDI-TOF, TaqMan, MassARRAY, pyrosequencing, competitive allele-specific PCR (KASP), and allele-specific-PCR (AS-PCR)) were used for the identification of polymorphisms in patients and controls. The sample sizes ranged from 24 to 2,171 in cases and from 23 to 25,184 in controls. The general properties of all studies are listed in Table 1.

According to the quality assessment tool (NOS), the maximum studies included had a score of more than 5 (high quality). Only one study was of moderate quality (score 5; Table S1).

Meta-analysis on overall cancer and ethnicity

Our findings demonstrated that the CAT C262T SNP was significantly linked with higher cancer risk in three genotype models: COD2 (CC vs. TT: OR = 1.16, CI = 1.03–1.32, \(P = 0.018 \)), COD3 (CC vs. TC: OR = 1.21, CI = 1.11–1.33, \(P = 1.82 \times 10^{-5} \)), and RM (CC vs. TT + TC: OR = 1.20, CI = 1.10–1.31, \(P = 1.95 \times 10^{-5} \)) (Table 2, Figure 2). The connection between C262T variant and cancer risk in the Caucasian population was evaluated in 38 case-control studies with a number of 13,112 cancer patients and 41,436 controls. As shown in Table 2, COD2 (OR = 1.18, CI = 1.03–1.38, \(P = 0.027 \)), COD3 (OR = 1.17, CI = 1.06–1.29, \(P = 0.003 \)), and the ODM (OR = 1.19, CI = 1.04–1.36, \(P = 0.011 \)) showed a significant link (\(P > 0.05 \)) with cancer. In Asians, nine articles with 3,248 patients and 3,200 controls were assessed. Only one genetic model, COD3 (OR = 1.49, CI = 1.17–1.91, \(P = 0.002 \)), showed a strong association with cancer. No statistically significant relationship was observed in any genetic model in the mixed and other populations, as shown in Table 2 and Figure S1.

Meta-analysis based on cancer types

Three genetic models, including COD1 (OR = 0.77, CI = 0.64–0.93, \(P = 0.008 \)), DM (OR = 0.80, CI = 0.67–0.95, \(P = 0.013 \)), and ODM (OR = 0.78, CI = 0.65–0.94, \(P = 0.009 \)) showed a significant association between C262T SNP and blood-and-bone-marrow-related cancer. Only
one genetic model, ODM (OR = 0.86, CI = 0.76–0.98, P = 0.023), showed a significant link between C262T and GIT-related cancer. The C26 T variant was also linked with the risk of prostate cancer in all genotypic models: COD1 (OR = 1.13, CI = 1.04–1.24, P = 0.005), COD2 (OR = 1.51, CI = 1.27–1.80, P = 3.15 × 10⁻⁶), COD3 (OR = 1.30, CI = 1.08–1.55, P = 0.005), RM (OR = 1.43, CI = 1.21–1.70, P = 3.85 × 10⁻⁵), ODM (OR = 1.09, CI = 1.00–1.19, P = 0.048), and AM (OR = 1.21, CI = 1.03–1.43, P = 0.021), except DM. Three genetic models,
Table 1. Characteristics of the selected studies for detecting the connection of C262T (rs1001179) polymorphism with cancer.

Study ID	Country	Ethnicity	Cancer type	Age (Mean ± SD)	Cancer stage	Genotyping method	Control type	Cases Controls	TT	TC	CC	P-value
Abbas 2021	Iraq	Caucasian	BC	51.60 ± 13.28	NIA	PCR-RFLP	PB	70 30 5 18 47	2 0 28	0.000		
Ahn 2005	USA	Caucasian	BC	58.60	56.10	NIA	MALDI-TOF	PB	1008 1056 45 349 614	42 335 679	0.933	
Ayami 2013	Turkey	Caucasian	Laryngeal cancer	50.29 ± 14.86	NIA	PCR-RFLP	HB	25 23 2 10 13	0 11 12	0.132		
Banescu 2014	Romania	Caucasian	BC	64.90 ± 6.70	NIA	PCR-RFLP	HB	78 75 17 30 31	6 25 44	0.372		
Banescu 2016	Portugal	Caucasian	CC	50.01 ± 13.07	NIA	PCR-RFLP	PB	119 106 36 25 58	14 27 65	0.001		
Castaldo 2015	UK	Caucasian	BC	48.67 ± 13.78	NIA	PCR-RFLP	PB	350 400 118 199 33	114 244 42	0.000		
Datkhile 2020	India	Asian	CC	71.30 ± 8.10	NIA	PCR-RFLP	PB	1417 1008 2 99 1316	1 67 940	0.863		
Franko 2018	UK	Caucasian	MM	72.30 ± 5.30	NIA	PCR-RFLP	HB	123 83 15 64 44	5 47 31	0.020		
Funke 2008	Germany	Caucasian	CRC	55.60 ± 11.90	NIA	PCR-RFLP	PB	270 796 12 97 161	32 252 512	0.887		
Geybels 2015	Netherland	Caucasian	PC	54.40 ± 14.00	NIA	PCR-RFLP	PB	204 239 5 67 132	8 85 146	0.300		
Ho 2006	China	Asian	LC	57.30 ± 12.80	NIA	PCR-RFLP	PB	160 241 6 49 105	8 86 147	0.281		
Jamhiri 2017	Iran	Caucasian	CRC	59.30 ± 14.10	NIA	PCR-RFLP	PB	96 222 6 14 76	4 45 173	0.593		
Karunasighe 2012	New Zealand	Mixed	PC	66.45	57.40	NIA	PCR-RFLP	PB	258 434 15 99 144	16 160 258	0.145	
Koop 2017	Denmark	Caucasian	BC	51.70 ± 17.66	NIA	PCR-RFLP	PB	497 493 26 176 295	23 167 303	0.999		

(continued)
Study ID	Country	Ethnicity	Cancer type	Age (Mean ± SD)	Cancer stage	Genotyping method	Control type	Cases	Controls
Lightfoot 2006	UK/USA	Mixed	NHL	52.40 ± 9.80		NIA TaqMan PB	Control	909	1437
Liu 2015	China	Asian	HCC	49.38 ± 11.14		NIA PCR-RFLP HB	Control	266	248
Moradi 2018	Iran	Caucasian	OC	48.00 ± 5.00		NIA AS-PCR HB	Control	74	153
Nahon 2011	France	Caucasian	HCC	55.93		NIA NIA TqMan HB	Control	84	153
Pascual-Geler	Spain	Caucasian	PC	59.00 ± 13.33		NIA NIA TqMan HB	Control	150	150
Patil 2020	India	Asian	GC	59.00 ± 13.33		NIA PCR-RFLP HB	Control	200	400
Quick-1 2008	USA	Caucasian	BC	63.30 ± 8.40		NIA MALDI-TOF PB	Control	569	974
Quick-2 2008	USA	Caucasian	BC	63.30 ± 8.40		NIA MALDI-TOF PB	Control	569	974
Rajaraman-1	USA	Caucasian	Meningioma	54.80 ± 5.80		NIA NIA TqMan HB	Control	548	108
Rajaraman-2	USA	Caucasian	Meningioma	54.80 ± 5.80		NIA NIA TqMan HB	Control	548	108
Rajaraman-3	USA	Caucasian	Meningioma	54.80 ± 5.80		NIA NIA TqMan HB	Control	548	108
Saadat 2015	Iran	Caucasian	BC	45.20 ± 10.70		NIA PCR-RFLP PB	Control	407	395
Sousa 2016	Brazil	Mixed	HCC	63.00 ± 8.60		NIA MALDI-TOF PB	Control	106	139
Rajaraman-1	USA	Caucasian	Meninoma	59.00 ± 13.33		NIA NIA TqMan PB	Control	59	13
Rajaraman-2	USA	Caucasian	Meninoma	59.00 ± 13.33		NIA NIA TqMan PB	Control	59	13
Rajaraman-3	USA	Caucasian	Meninoma	59.00 ± 13.33		NIA NIA TqMan PB	Control	59	13
Teif 2013	Turkey	Caucasian	PC	63.00 ± 8.60		NIA NIA TqMan PB	Control	238	256
Titov 2017	Russia	Caucasian	LC	59.00 ± 13.33		NIA NIA TqMan PB	Control	291	246
Trifa 2016	Romania	Caucasian	PC	63.00 ± 8.60		NIA NIA TqMan PB	Control	328	363
Trifa 2017	Taiwan	Taiwanese	BC	63.00 ± 8.60		NIA NIA TqMan PB	Control	260	224
Total				18,258				47,476	

Note: Table 1. Continued. AML: acute myeloid leukemia; AN: acoustic neuroma; BC: breast cancer; BCC: basal cell carcinoma; CC: cervical cancer; CML: chronic myeloid leukemia; CRC: colorectal cancer; CSCC: cutaneous squamous cell carcinoma; GC: gastric cancer; HB: hospital-based; HCC: hepatocellular carcinoma; LC: lung cancer; MM: malignant mesothelioma; MPN: myeloproliferative neoplasms; NIA: no information available; OC: ovarian cancer; PB: population-based; PC: prostate cancer; TC: testicular cancer.
including COD1 (OR = 1.21, CI = 1.02–1.44, \(P = 0.033 \)), DM (OR = 1.19, CI = 1.00–1.41, \(P = 0.044 \)), and ODM (OR = 1.21, CI = 1.02–1.45, \(P = 0.032 \)) revealed a substantial link with the risk of skin carcinoma. Our findings also revealed that the rs1001179 variant is significantly linked with gynecological malignancy in four genetic models: COD2 (OR = 2.94, CI = 1.06–8.16, \(P = 0.039 \)), DM (OR = 1.73, CI = 1.01–2.97, \(P = 0.045 \)), RM (OR = 2.51, CI = 1.01–6.19, \(P = 0.047 \)), and AM (OR = 1.73, CI = 1.04–2.88, \(P = 0.036 \)) (Table 3, Figure S2).

Meta-analysis based on control sources

The connection between the CAT C262T variant with cancer, depending on population-based control sources, was evaluated in 33 studies with 14,546 cancer patients and 42,644 controls. Three genetic models showed a link between the C262T SNP and the risk of cancer in COD2 (OR = 1.19, CI = 1.08–1.32, \(P = 0.0003 \)), COD3 (OR = 1.17, CI = 1.06–1.29, \(P = 0.003 \)), and RM (OR = 1.19, CI = 1.08–1.31, \(P = 0.0004 \)). In contrast, an analysis of hospital-based control sources was evaluated in 20 studies with 3,712 cancer patients and 4,832 controls, which revealed that two genetic models, COD3 (OR = 1.40, CI = 1.16–1.70, \(P = 0.0005 \)) and RM (OR = 1.24, CI = 1.04–1.48, \(P = 0.018 \)), were correlated with the risk of cancer (Table S2).

Meta-analysis based on genotyping methods

Subgroup analysis depending on the genotyping methods (Table S3) showed that three genetic association models, including COD3, RM, and ODM were significantly associated with cancer risk for PCR-RFLP from 23 studies (OR = 1.46, CI = 1.15–1.86, \(P = 0.002 \), OR = 1.34, CI = 1.08–1.67, \(P = 0.009 \), and OR = 0.80, CI = 0.70–0.93, \(P = 0.003 \), respectively) and three genetic association models—COD2, RM, and AM—were significantly associated with cancer risk for MALDI-TOF + MassARRAY from 7 studies (OR = 1.32, CI = 1.11–1.56, \(P = 0.001 \), OR = 1.26, CI = 1.07–1.49, \(P = 0.005 \), and OR = 1.14, CI = 1.07–1.21, \(P = 5.68 \times 10^{-5} \), respectively). No statistically significant correlation was found for TaqMan (20 studies) and other genotyping methods (3 studies).

Heterogeneity and publication bias analysis

From the analysis, we identified that different genetic models showed significant heterogeneity (\(P < 0.1 \)) in which random-effects models were implemented (Table 2, Table 3, Table S2, Table S3). In our meta-analysis, we used both Begg’s funnel plot and Egger’s test to investigate the publication bias, which revealed that there was no bias (Table S4). A similar result is shown in the funnel plots of Figure S3.

Meta-regression and sensitivity analysis

Based on the quality scores of studies as a source of heterogeneity, we performed a meta-regression as shown in Table S5. The analysis showed that the quality scores might be a source of significant heterogeneity under the COD2 genetic model (coefficient = 0.176, CI = 0.018–0.335, \(P = 0.029 \)). During the sensitivity study, individual papers in the meta-analysis were removed one by one to see whether individual data changed the pooled ORs; our results were found to be consistent among all genetic models (Figure S4).

TSA

We performed a TSA for CAT C262T in the allele models for the overall study, Caucasian, Asian, and mixed and other populations as depicted in Figure S5(a) to (d) with a sample size of 26,251, 30,517, 7,403, and 6,367 subjects, respectively. As per the analysis, the cumulative Z-curve (indicated by the blue line) exceeded the futility boundaries (indicated by the red line) in the overall, Caucasians, and Asians, and the total sample were firm enough to validate our results. Therefore, our findings were sufficient, and no further analysis was required for validation.

Discussion

Cancer is the most severe public health problem in the present world and the second-highest cause of mortality in this century. In this meta-analysis, we looked at 53 case-control studies with 65,734 samples (18,258 cases and 47,476 controls) from 18 countries using seven genetic models and found that there is a link between the CAT C262T variant and the risk of various cancers.

External variables, such as ROS or ionizing radiation, build up over time and may impact DNA expression in hematopoietic stem cells by causing double strand breaks. The CAT gene has many SNPs, including rs7943316, rs769214, and rs1001179. In the regulatory regions of the CAT gene, a C → T mutation at nucleotide −262 in the 5' non-coding region is a common polymorphism (C262T/ rs1001179). This variant within the promoter region has been demonstrated to alter transcription factor binding. As a result, the CAT gene’s transcription and expression are altered. CAT C262T polymorphism is linked not only to cancer, but also to many other disorders. In the present meta-analysis, three genotype models, namely COD2 (OR = 1.16, \(P = 0.018 \)), COD3 (OR = 1.21, \(P = 1.82 \times 10^{-5} \)), and RM (OR = 1.20, \(P = 1.95 \times 10^{-5} \)) showed a statistically significant association with cancer. Also, a significant association...
Table 2. Meta-analysis for detecting the connection of CAT C262T (rs1001179) polymorphism with overall cancer and ethnicity.

Genetic Model	No. of studies	OR	95% CI	P-value	Test of association	Test of heterogeneity	No. of studies	OR	95% CI	P-value	Model	P-value	I^2 (%)	OR	95% CI	P-value	Model	P-value	I^2 (%)
Overall																			
COD1	53	0.97	0.90–1.05	0.448	Random	<0.001	56.29	38	0.97	0.90–1.05	0.505	Random	0.001	48.23					
COD2	1.16	1.03–1.32	0.018	Random	0.017	32.04	38	1.18	1.03–1.38	0.027	Random	0.005	41.4						
COD3	1.21	1.11–1.33	1.82 × 10^{-5}	Fixed	0.281	9.6	38	1.17	1.06–1.29	0.003	Fixed	0.244	13.09						
DM	1.01	0.94–1.09	0.836	Random	<0.0001	58.91	38	1.01	0.93–1.09	0.877	Random	<0.001	59.06						
RM	1.20	1.10–1.31	1.95 × 10^{-5}	Fixed	0.262	10.62	38	0.96	0.90–1.03	0.242	Random	0.009	38.95						
ODM	0.95	0.89–1.02	0.152	Random	<0.001	50.65	38	1.19	1.04–1.36	0.011	Random	0.045	29.9						
AM	1.04	0.98–1.11	0.156	Random	<0.001	57.98	38	1.04	0.97–1.12	0.261	Random	<0.001	64.45						

Asian																			
COD1	9	0.88	0.62–1.25	0.474	Random	0.0001	75.02	6	1.14	0.88–1.47	0.330	Random	0.024	61.37					
COD2	0.91	0.67–1.22	0.524	Fixed	0.522	0	6	1.22	0.93–1.61	0.151	Fixed	0.873	0						
COD3	1.49	1.17–1.91	0.002	Fixed	0.370	7.74	6	1.26	0.95–1.67	0.110	Fixed	0.761	0						
DM	0.93	0.71–1.23	0.626	Random	0.005	63.73	6	1.14	0.90–1.44	0.277	Random	0.041	56.74						
RM	1.23	0.98–1.54	0.070	Fixed	0.961	0	6	1.24	0.95–1.62	0.121	Fixed	0.903	0						
ODM	0.87	0.65–1.17	0.366	Random	0.0005	71.3	6	1.12	0.87–1.45	0.386	Random	0.022	62						
AM	1.00	0.89–1.13	0.986	Fixed	0.259	20.74	6	1.05	0.95–1.16	0.338	Fixed	0.110	44.36						

AM: allele model (T vs. C); COD1: codominant 1 (TC vs. CC); COD2: codominant 2 (TT vs. CC); COD3: codominant 3 (TT vs. TC); DM: dominant model (TT + TC vs. CC); ODM: over-dominant model (TC vs. TT + CC); RM: recessive model (TT vs. TC + CC).
was found between the C262T variant and cancer in three genotypic models of the Caucasian population (COD2: OR = 1.18, \(P = 0.027 \); COD3: OR = 1.17, \(P = 0.003 \); ODM: OR = 1.19, \(P = 0.011 \)) and one genotypic model of the Asian population (COD3: OR = 1.49, \(P = 0.002 \)).

Significant amount of oxygen radicals trigger the destruction of cellular structures and functions, as well as the death of a cell. As a result, ROS-induced DNA damage in cells can cause aberrant genetic changes in cells, which can contribute to cancer initiation and progression. The \(\textit{CAT} \) gene is essential in the neutralization of reactive species and is involved in antioxidant defense systems. A study in Romania demonstrated that the \(\textit{CAT} \) C262T polymorphism is correlated with chronic myeloid leukemia (OR = 0.59, \(P = 0.01 \))\(^{41}\); however, another study found no significant association with the \(\textit{CAT} \) −21A/T (\(P = 0.037 \)) polymorphism with the risk of CML\(^{46}\) and leukemia.\(^{44}\) In our meta-analysis, we found that only one genetic model (ODM: OR = 0.86, \(P = 0.023 \)) was significantly connected with GIT-related cancer. Populations from Europe, Australia, New Zealand, and North America have the greatest rates of colon cancer, with Hungary and Norway ranked top for men and women, respectively.\(^{1}\)

According to Liu et al. 2016, \(\textit{CAT} \) gene polymorphisms are related to an elevated risk of prostate cancer.\(^{64}\) The TT genotype of C262T showed a considerably higher prostate cancer risk than the CC genotype. When compared to the CC genotype, the TT genotype exhibited 1.94- and 3.83-fold higher susceptibility to disease and malignancy, respectively.\(^{31}\) A significant association was also reported by another study conducted in New Zealand.\(^{25}\) In our meta-analysis, we found that six genetic models of C262T (COD1: OR = 1.13, \(P = 0.005 \); COD2: OR = 1.51, \(P = 3.15 \times 10^{-5} \); COD3: OR = 1.30, \(P = 0.005 \); RM: OR = 1.43, \(P = 3.85 \times 10^{-5} \); ODM: OR = 1.09, \(P = 0.048 \); AM: OR = 1.21, \(P = 0.021 \)) have a significant connection with prostate cancer. According to a study conducted in Portugal, the C262T polymorphism showed a higher risk of cervical cancer (OR = 3.03, \(P = 0.003 \)).\(^{13}\) In our meta-analysis,
Table 3. Meta-analysis for detecting the connection of CAT C262T (rs1001179) polymorphism with different cancer subtypes.

Genetic Model	No. of studies	Test of association	Test of heterogeneity	Genetic Model	No. of studies	Test of association	Test of heterogeneity								
Blood-and-bone-marrow-related cancer (CML + AML + leukemia + MPN)				BC											
COD1	5	0.77	0.64–0.93	0.008	Fixed	0.143	41.82	3	0.95	0.74–1.23	0.694	Fixed	0.833	0	
COD2	0.92	0.64–1.32	0.634	Fixed	0.141	42.12		1.08	0.64–1.82	0.763	Fixed	0.256	26.72		
COD3	1.24	0.72–2.15	0.436	Random	0.087	50.72		1.15	0.67–1.98	0.605	Fixed	0.338	7.88		
DM	0.80	0.67–0.95	0.013	Fixed	0.178	36.52		0.97	0.76–1.24	0.834	Fixed	0.711	0		
RM	1.02	0.72–1.46	0.905	Fixed	0.121	45.23		1.10	0.66–1.83	0.717	Fixed	0.280	21.48		
ODM	0.78	0.65–0.94	0.009	Fixed	0.116	46.02		0.94	0.73–1.21	0.655	Fixed	0.910	0		
AM	0.87	0.75–1.00	0.052	Fixed	0.147	41.15		1.00	0.82–1.23	0.990	Fixed	0.520	0		
BC	COD1	11	1.02	0.90–1.17	0.730	Random	<0.001	60.15	3	0.92	0.78–1.08	0.302	Fixed	0.694	0
COD2	1.08	0.93–1.26	0.308	Fixed	0.938	0		1.21	0.88–1.66	0.238	Fixed	0.626	0		
COD3	1.08	0.93–1.27	0.317	Fixed	0.605	0		1.31	0.96–1.80	0.095	Fixed	0.870	0		
DM	1.04	0.92–1.18	0.568	Random	0.004	60.91		0.96	0.82–1.12	0.566	Fixed	0.540	0		
RM	1.09	0.93–1.26	0.285	Fixed	0.946	0		1.25	0.93–1.69	0.143	Fixed	0.711	0		
ODM	1.02	0.89–1.16	0.808	Random	0.005	60.44		0.90	0.77–1.05	0.179	Fixed	0.787	0		
AM	1.04	0.94–1.14	0.465	Random	0.028	50.43		1.01	0.89–1.14	0.885	Fixed	0.406	0		
GIT-related cancer (GC + CRC)															
COD1	4	0.67	0.41–1.11	0.118	Random	<0.001	86.81	8	1.13	1.04–1.24	0.005	Fixed	0.124	38.4	
COD2	0.74	0.54–1.01	0.055	Fixed	0.858	0		1.51	1.27–1.80	3.15 × 10⁻⁶	Fixed	0.120	40.74		
COD3	1.29	0.70–2.38	0.409	Random	0.046	62.55		1.30	1.08–1.55	0.005	Fixed	0.857	0		
DM	0.74	0.52–1.04	0.085	Random	0.006	76.16		1.18	0.99–1.42	0.068	Random	0.016	59.34		
RM	1.06	0.80–1.41	0.681	Fixed	0.671	0		1.43	1.21–1.70	3.85 × 10⁻⁵	Fixed	0.374	7.07		
ODM	0.86	0.76–0.98	0.023	Fixed	0.552	0		1.09	1.00–1.19	0.048	Fixed	0.460	0		
AM	0.70	0.45–1.10	0.125	Random	<0.001	84.71		1.21	1.03–1.43	0.021	Random	0.004	66.57		
HNC and CNS cancer (glioma + meningioma + AN + laryngeal cancer)															
COD1	4	0.86	0.69–1.08	0.202	Fixed	0.562	0	3	1.21	1.02–1.44	0.033	Fixed	0.985	0	
COD2	0.85	0.51–1.40	0.522	Fixed	0.474	0		1.03	0.67–1.59	0.884	Fixed	0.844	0		
COD3	1.00	0.60–1.68	0.999	Fixed	0.338	11.07		0.85	0.55–1.32	0.477	Fixed	0.877	0		
DM	0.86	0.70–1.07	0.177	Fixed	0.662	0		1.19	1.00–1.41	0.044	Fixed	0.957	0		
RM	0.90	0.55–1.48	0.687	Fixed	0.412	0		0.97	0.63–1.48	0.872	Fixed	0.851	0		
ODM	0.87	0.70–1.09	0.234	Fixed	0.485	0		1.21	1.02–1.45	0.032	Fixed	0.994	0		
AM	0.89	0.75–1.07	0.212	Fixed	0.684	0		1.13	0.98–1.30	0.101	Fixed	0.913	0		
Gynecological cancer (CC + OC)															
COD1	3	1.39	0.78–2.46	0.264	Random	0.051	81.13	3	0.90	0.72–1.12	0.341	Fixed	0.953	0	
COD2	2.94	1.06–8.16	0.039	Random	0.011	17.75		1.16	0.72–1.87	0.543	Fixed	0.503	0		
COD3	2.12	0.96–4.67	0.062	Random	0.056	10.01		1.31	0.80–2.13	0.282	Fixed	0.567	0		
DM	1.73	1.01–2.97	0.045	Random	0.044	9.49		0.92	0.74–1.15	0.471	Fixed	0.851	0		
Genetic Model	No. of studies	Test of association	Test of heterogeneity	Test of association	Test of heterogeneity										
---------------	---------------	---------------------	----------------------	---------------------	----------------------										
		OR	95% CI	P-value	Model	P-value	I² (%)	OR	95% CI	P-value	Model	P-value	I² (%)		
RM	6	2.51	1.01–6.19	0.047	Random	0.009	10.51	1.22	0.76–1.95	0.411	Fixed	0.488	0		
ODM	1.07	0.62–1.85	0.801	Random	0.022	65.8	0.88	0.70–1.09	0.243	Fixed	0.961	0			
AM	1.73	1.04–2.88	0.036	Random	0.001	6.99	0.98	0.82–1.17	0.806	Fixed	0.600	0			
HCC															
COD1	6	0.95	0.72–1.24	0.682	Fixed	0.233	26.91	1.22	0.76–1.95	0.411	Fixed	0.488	0		
COD2	1.23	0.55–2.78	0.612	Fixed	0.212	29.72	0.88	0.70–1.09	0.243	Fixed	0.961	0			
COD3	1.28	0.55–2.98	0.573	Fixed	0.211	29.88	0.98	0.82–1.17	0.806	Fixed	0.600	0			
DM	0.96	0.74–1.24	0.746	Fixed	0.201	31.3	0.98	0.82–1.17	0.806	Fixed	0.600	0			
RM	1.24	0.55–2.79	0.597	Fixed	0.223	28.24	0.98	0.82–1.17	0.806	Fixed	0.600	0			
ODM	0.95	0.73–1.24	0.697	Fixed	0.258	23.4	0.98	0.82–1.17	0.806	Fixed	0.600	0			
AM	0.97	0.77–1.23	0.828	Fixed	0.128	41.54	0.98	0.82–1.17	0.806	Fixed	0.600	0			

AM: allele model (T vs. C); **AML:** acute myeloid leukemia; **AN:** acoustic neuroma; **BC:** breast cancer; **BCC:** basal cell carcinoma; **CC:** cervical cancer; **CI:** confidence interval; **CML:** chronic myeloid leukemia; **CNS:** central nervous system; **COD1:** codominant 1 (TC vs. CC); **COD2:** codominant 2 (TT vs. CC); **COD3:** codominant 3 (TT vs. TC); **CRC:** colorectal cancer; **CSCC:** cutaneous squamous cell carcinoma; **DM:** dominant model (TT + TC vs. CC); **GC:** gastric cancer; **GIT:** gastrointestinal tract; **HCC:** hepatocellular carcinoma; **HNC:** head and neck cancer; **LC:** lung cancer; **MM:** malignant mesothelioma; **MPN:** myeloproliferative neoplasms; **NHL:** non-Hodgkin lymphoma; **OC:** ovarian cancer; **ODM:** over-dominant model (TC vs. TT + CC); **OR:** odds ratio; **PC:** prostate cancer; **RM:** recessive model (TT vs. TC + CC); **TC:** testicular cancer.
we found that four genetic models (COD2: OR = 2.94, \(P = 0.039 \); DM: OR = 1.73, \(P = 0.045 \); RM: OR = 2.51, \(P = 0.047 \); AM: OR = 1.73, \(P = 0.036 \)) have a significant connection with gynecologic cancer.

Different studies revealed that genetic variations in the \textit{CAT} gene were not associated with lung cancer,24 breast cancer,26,29 acoustic neuroma,28 malignant mesothelioma,17 hepatocellular carcinoma,20 and non-Hodgkin lymphoma.21,33 However, we did not find any significant risk of the \textit{CAT} \textit{C}262\textit{T} polymorphism and lung cancer, non-Hodgkin lymphoma, head and neck cancer, central nervous system cancer, breast cancer, and hepatocellular carcinoma. Since the late 1970s, the case-fatality percentages of hepatocellular carcinoma have dropped in many Eastern and South-East Asian nations, including China, Taiwan, the Republic of Korea, and the Philippines.65 In our meta-analysis, we also found that three genetic models (COD2: OR = 1.19, \(P = 0.0003 \); COD3: OR = 1.17, \(P = 0.003 \); RM: OR = 1.19, \(P = 0.0004 \)) in population-based controls and two genetic models (COD3: OR = 1.40, \(P = 0.0005 \); RM: OR = 1.24, \(P = 0.018 \)) in hospital-based controls have a statistically significant connection with cancer. In addition, three genetic models for PCR-RFLP (COD3: OR = 1.46, \(P = 0.002 \); RM: OR = 1.34, \(P = 0.009 \); ODM: OR = 0.80, \(P = 0.003 \)) and three models for MALDI-TOF + MassARRAY (COD2: OR = 1.32, \(P = 0.001 \); RM: OR = 1.26, \(P = 0.005 \); AM: OR = 1.14, \(P = 5.68 \times 10^{-5} \)) genotyping methods showed a significant association with cancer progression.

The consistency and repeatability of our results across all of the genetic models confirmed their validity. We used heterogeneity analysis, publication bias assessment, meta-regression, and sensitivity analyses to conduct our meta-analysis. Also, the TSA results suggest that no additional studies are required to validate our findings. Despite the fact that we approached this meta-analysis with caution, there are several drawbacks that must be noted. First, only published case-control studies were included. Second, the total number of studies included in the analysis is rather limited (53), despite a large number of patients (cases + controls = 49,027). Third, we stratified studies only based on ethnicity, cancer type, genotyping methods, and source of control—no other characteristics. With the exception of these limitations, the included case-control publications are of excellent quality, the analysis of the data is robust, and the findings of this study are acceptable.

Conclusion

In summary, our findings support the hypothesis that the \textit{CAT} \textit{C}262\textit{T} polymorphism is significantly associated with overall cancer, especially in Caucasians and Asians. This variant may also be associated with other cancers such as blood-and-bone-marrow-related, GIT-related, prostate, skin, and gynecological cancers. To confirm the risk identified in the current statistical analysis, large-scale investigations should be undertaken in the future.

Acknowledgements

Not applicable.

Ethical approval

Not applicable.

This work received no funding.

Data availability

All data related to the manuscript were added in the manuscript main file, figures, tables and supplementary materials. The corresponding author will provide additional information on a valid request if required.

Author contributions

The literature search and data collection were performed by Md Abdul Barek and Sarah Jafrin. Mohammad Saqiful Islam performed the statistical analyses for this meta-analysis. The initial draft of the manuscript was co-written by Md Abdul Barek and Md. Abdul Aziz. Mohammad Saqiful Islam reworked the manuscript, critically updated it for important intellectual substance, and made substantial contributions to conceptualization and design. The paper was read and approved for submission by all the authors.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Mohammad Saqiful Islam https://orcid.org/0000-0003-4924-5319

Supplemental material

Supplemental material for this article is available online.

References

1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. \textit{CA Cancer J Clin} 2021; 71: 209–249.

2. Jafrin S, Aziz MA and Islam MS. Role of \textit{IL-1β rs1143634 (+3954C>T)} polymorphism in cancer risk: an updated meta-analysis and trial sequential analysis. \textit{J Int Med Res} 2021; 49: 1–24.
3. Aziz MA, Jafri S and Islam MS. Human TERT promoter polymorphism rs2853669 is associated with cancers: an updated meta-analysis. *Hum Cell* 2021; 34: 1066–1081.

4. Waris G and Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. *J Carcinog* 2006; 5: 14–14.

5. Younus H. Therapeutic potentials of superoxide dismutase. *Int J Health* 2018; 12: 88–93.

6. Forsberg L, de Faire U and Morgenstern R. Oxidative stress, human genetic variation, and disease. *Arch Biochem Biophys* 2001; 389: 84–93.

7. Ahn J, Gammon MD, Santella RM, et al. Associations between breast cancer risk and the catalase genotype, fruit and vegetable consumption, and supplement use. *Am J Epidemiol* 2005; 162: 943–952.

8. Khodayari S, Salehi Z, Fakhrieh S., et al. Catalase gene C-262 T polymorphism: importance in ulcerative colitis. *J Gastroenterol Hepatol* 2013; 38: 819–822.

9. Castaldo SA, da Silva AP, Matos A, et al. The role of CYBA (p22phox) and catalase genetic polymorphisms and their possible epistatic interaction in cervical cancer. *Tumor Biol* 2015; 36: 909–914.

10. Shen Y, Li D, Tian P, et al. The catalase C-262 T gene polymorphism and cancer risk: a systematic review and meta-analysis. *Medicine (Baltimore)* 2015; 94: 1–8.

11. Page MJ, Mckenzie JE and Bossuyt PM. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021; 372: n71.

12. Ouzzani M, Hammady H, Fedorowicz Z, et al. Rayyan—a web and mobile app for systematic reviews. *Syst Rev* 2016; 5: 210–210.

13. Wells G, Shea B and Connell O. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses 2014.

14. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials* 1996; 17: 1–12.

15. Pascual-Geler M, Robles-Fernandez I, Monteagudo C, et al. Impact of oxidative stress SNPs and dietary antioxidant quality score on prostate cancer. *Int J Food Sci Nutr* 2020; 71: 500–509.

16. Kopp TI, Vogel U, Draggsted LO, et al. Association between single nucleotide polymorphisms in the antioxidant genes CAT, GR and SOD1, erythrocyte enzyme activities, dietary and life style factors and breast cancer risk in a Danish prospective cohort study. *Oncotarget* 2017; 8: 62984–62997.

17. Franko A, Kotnik N, Goricar K, et al. The influence of genetic variability on the risk of developing malignant mesothelioma. *Radiol Oncol* 2018; 52: 105–111.

18. Cebrian A, Pharaoh PD, Ahmed S, et al. Tagging single-nucleotide polymorphisms in antioxidant defense enzymes and susceptibility to breast cancer. *Cancer Res* 2006; 66: 1225–1233.

19. Choi JY, Neuhausser ML, Barnett M, et al. Polymorphisms in oxidative stress–related genes are not associated with prostate cancer risk in heavy smokers. *Cancer Epidemiol Biomark Prev* 2007; 16: 1115–1120.

20. Ezzikouri S, El Feydi AE, Afifi R, et al. Polymorphisms in antioxidant defence genes and susceptibility to hepatocellular carcinoma in a Moroccan population. *Free Radic Res* 2010; 44: 208–216.

21. Farawela H, Khorsheid M, Shaheen I, et al. The association between hepatitis C virus infection, genetic polymorphisms of oxidative stress genes and B-cell non-Hodgkin’s lymphoma risk in Egypt. * Infect Genet Evol* 2012; 12: 1189–1194.

22. Funke S, Hoffmeister M, Brenner H, et al. Effect modification by smoking on the association between genetic polymorphisms in oxidative stress genes and colorectal cancer risk. *Cancer Epidemiol Biomark Prev* 2009; 18: 2336–2338.

23. He C, Qureshi AA and Han J. Polymorphisms in genes involved in oxidative stress and their interactions with lifestyle factors on skin cancer risk. *J Dermatol Sci* 2010; 60: 54–56.

24. Ho JC, Mak JC, Ho SP, et al. Manganese superoxide dismutase and catalase genetic polymorphisms, activity levels, and lung cancer risk in Chinese in Hong Kong. *J Thorac Oncol* 2006; 1: 648–653.

25. Karunasinghe N, Han DY, Goudie M, et al. Prostate disease risk factors among a New Zealand cohort. *J Nutrigenet Nutrigenomics* 2012; 5: 339–351.

26. Li Y, Ambrosone CB, McCullough MJ, et al. Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk. *Carcinogenesis* 2009; 30: 777–784.

27. Quick SK, Shields PG, Nie J, et al. Effect modification by catalase genotype suggests a role for oxidative stress in the association of hormone replacement therapy with postmenopausal breast cancer risk. *Cancer Epidemiol Biomark Prev* 2008; 17: 1082–1087.

28. Rajaraman P, Hutchinson A, Rothman N, et al. Oxidative response gene polymorphisms and risk of adult brain tumors. *Neuro Oncol* 2008; 10: 709–715.

29. Saadat M and Saadat S. Genetic polymorphism of CAT C-262 T and susceptibility to breast cancer, a case-control study and meta-analysis of the literatures. *Pathol Oncol Res* 2015; 21: 433–437.

30. Tang H, Dong X, Day RS, et al. Antioxidant genes, diabetes and dietary antioxidants in association with risk of pancreatic cancer. *Carcinogenesis* 2010; 31: 607–613.

31. Tefik T, Kucukgergin C, Sanli O, et al. Manganese superoxide dismutase Ile58Thr, catalase C-262 T and myeloperoxidase G-463A gene polymorphisms in patients with prostate cancer: relation to advanced and metastatic disease. *BJU Int* 2013; 112: E406–E414.

32. Tsai SM, Wu SH, Hou MF, et al. Oxidative stress-related enzyme gene polymorphisms and susceptibility to breast cancer in non-smoking, non-alcohol-consuming Taiwanese women: a case-control study. *Ann Clin Biochem* 2012; 49: 152–158.

33. Lightfoot TJ, Skibola CF, Smith AG, et al. Polymorphisms in the oxidative stress genes, superoxide dismutase, glutathione peroxidase and catalase and risk of non-Hodgkin’s lymphoma. *Haematologica* 2006; 91: 1222–1227.

34. Kakoura MG, Demetriou CA, Loizidou MA, et al. MnSOD and CAT polymorphisms modulate the effect of the Mediterranean diet on breast cancer risk among Greek-Cypriot women. *Eur J Nutr* 2016; 55: 1535–1544.

35. Liu Y, Xie L, Zhao J, et al. Association between catalase gene polymorphisms and risk of chronic hepatitis B, hepatitis B virus-related liver cirrhosis and hepatocellular carcinoma in Guangxi population: a case-control study. * Medicine (Baltimore)* 2015; 94: 1–8.
36. Ebrahimpour S and Saadat I. Association of CAT C-262 T and SOD1 A251G single nucleotide polymorphisms susceptible to gastric cancer. *Mol Biol Res* 2014; 3: 223–229.

37. Jamhiri I, Saadat I and Omidvari S. Genetic polymorphisms of superoxide dismutase-1 A251G and catalase C-262 T with the risk of colorectal cancer. *Mol Biol Res Commun* 2017; 6: 85–90.

38. Geybels MS, van den Brandt PA, van Schooten FJ, et al. Oxidative stress–related genetic variants, pro- and antioxidant intake and Status, and advanced prostate cancer risk. *Cancer Epidemiol Biomark Prev* 2015; 24: 178–186.

39. Ding G, Liu F, Shen B, et al. The association between polymorphisms in prooxidant or antioxidant enzymes (myeloperoxidase, SOD2, and CAT) and genes and prostate cancer risk in the Chinese population of Han nationality. *Clin Genitourin Cancer* 2012; 10: 251–255.

40. Su S, He K, Li J, et al. Genetic polymorphisms in antioxidant enzyme genes and susceptibility to hepatocellular carcinoma in Chinese population: a case-control study. *Tumor Biol* 2015; 36: 4627–4632.

41. Banescu C, Trifa AP, Voidzasan S, et al. CAT, GPX1, MnSOD, GSTM1, GSTT1, and GSTP1 genetic polymorphisms in chronic myeloid leukemia: a case-control study. *Oxid Med Cell Longev* 2014; 2014: 875861–875861.

42. Aynali G, Dogan M, Sutcu R, et al. Polymorphic variants of MnSOD Val16Ala, CAT-262 C < T and GPX1 Pro198Leu genotypes and the risk of laryngeal cancer in a smoking population. *J Laryngol Otol* 2013; 127: 997–1000.

43. Nahon P, Sutton A, Rufat P, et al. A variant in myeloperoxidase promoter hastens the emergence of hepatocellular carcinoma in patients with HCV-related cirrhosis. *J Hepatol* 2012; 56: 426–432.

44. Eras N, Turkoz G, Tombak A, et al. From six gene polymorphisms of eNOS, catalase and myeloperoxidase gene polymorphism (CAT C-262 T) and risk of male infertility. *Hematology* 2015; 47: 97–100.

45. Patil MN, Gudur A, Gudur R, et al.Study of genetic polymorphisms of eNOS, catalase, and myeloperoxidase genes in prostate cancer in Turkish men: preliminary results. *Genet Mol Res* 2016; 15: 4210–4238.

46. Cuchra M, Mucha B, Markiewicz L, et al. The role of base excision repair in pathogenesis of breast cancer in the Polish population. *Mol Carcinog* 2016; 55: 1899–1914.

47. Banescu C, Iancu M, Trifa AP, et al. From six gene polymorphisms of the antioxidant system, only GPX Pro198Leu and GSTP1 Ile105Val modulate the risk of acute myeloid leukemia. *Oxid Med Cell Longev* 2015; 2016: 1–10.

48. Abd-Al-Abbas HS and Jebor MA. The correlation between CAT C-262 T and SOD1 A251G single nucleotide polymorphisms susceptible to gastric cancer. *Mol Biol Res* 2014; 3: 223–229.

49. Sousa VC, Carmo RF, Vasconcelos LR, et al. Association of catalase and glutathione peroxidase 1 polymorphisms with chronic hepatitis C outcome. *Ann Hum Genet* 2016; 80: 145–153.

50. Sukiennicki GM, Marciniak W, Muszyńska M, et al. Iron levels, genes involved in iron metabolism and antioxidative processes and lung cancer incidence. *PLoS One* 2019; 14: 1–13.

51. Trifa AP, Banescu C, Dima D, et al. Among a panel of polymorphisms in genes related to oxidative stress, CAT-262 C>T, GPX1 Pro198Leu and GSTP1 Ile105Val influence the risk of developing BCR-ABL negative myeloproliferative neoplasms. *Hematology* 2016; 21: 520–525.

52. Banescu C, Iancu M, Trifa AP, et al. Association of antioxidant gene (MnSOD, CAT, and GPx1) polymorphisms in non-Hodgkin lymphoma and overall survival rate at five years from diagnosis. *Acta Med Marisiensis* 2019; 65: 25–30.

53. Yassae F, Salimi S, Etemadi S, et al. Comparison of CAT-21A/T gene polymorphism in women with pre-eclampsia and control group. *Adv Biomed Res* 2018; 7: 133–133.

54. Saify K, Saadat I and Saadat M. Influence of A-21 T and C-262 T genetic polymorphisms at the promoter region of the catalase (CAT) on gene expression. *Environ Health Prev Med* 2016; 21: 382–386.

55. Sabouhi S, Salehi Z, Bahadori MH, et al. Human catalase gene polymorphism (CAT C-262 T) and risk of male infertility. *Andrologia* 2015; 47: 97–101.

56. Yeh HL, Kuo LT, Sung FC, et al. Association between polymorphisms of antioxidant gene (MnSOD, CAT, and GPx1) and risk of coronary artery disease. *Biomed Res Int* 2018; 2018: 508689.

57. Velkovska MA, Goricar K, Blagus T, et al. Association of genetic polymorphisms in oxidative stress and inflammation pathways with glaucoma risk and phenotype. *J Clin Med* 2021; 10: 1148.

58. Liu K, Liu X, Wang M, et al. Two common functional catalase gene polymorphisms (rs1001179 and rs794316) and cancer susceptibility: evidence from 14,942 cancer cases and 43,285 controls. *Oncotarget* 2016; 7: 62954–62965.

59. Petrick JL, Florio AA, Znaor A, et al. International trends in hepatocellular carcinoma incidence, 1978–2012. *Int J Cancer* 2020; 147: 317–330.