Effect of paclobutrazol on fruit quality and physio-chemical composition of Mango cvs. Dashehari, Langra, Chausa and Fazri

Ashok Kumar¹*, Singh CP² and Sant Ram³

¹Professor, Uttaranchal college of Agriculture Science, Uttaranchal University, Dehradun-248007, U.K. India
²Professor, Department of Horticulture, G.B.P.U.A&T- Pant Nagar, U.P., India
³Professor, Department of Horticulture, G.B.P.U.A&T- Pant Nagar U.K. India

*Corresponding Author: Ashok Kumar, Professor, Uttaranchal college of Agriculture Science, Uttaranchal University, Dehradun-248007, U.K. India, Email: yadavakdr@gmail.com

Received Date: Mar 26, 2019 / Accepted Date: Apr 11, 2019 / Published Date: Apr 13, 2019

Abstract
Soil application of Paclobutrazol (applied as a cultar of 0.5 g/ meter canopy diameter and 1.0 g/meter canopy diameter) evaluated as a method is slightly increased TSS, Acidity total sugar, non-reducing sugar, non-reducing sugar, β-carotene, Ascorbic Acid compare to control. However, the treatment is better in higher doses (1gm/meter canopy diameter) compare lower doses (0.5 gm / meter canopy diameter). The chemical name Poclobutrazol [(2 RS, 3RS)-1-(4-chlorophenly)-4, 4- dimethyl -2-[1,2,4-trizol -1-y)] pentan-3-ethanol.

Keywords: Paclobutrazol (PBZ); Cultar; Amino-Cyclo Propane; TSS

Cite this article as: Ashok Kumar, Singh CP, Sant Ram. 2019. Effect of paclobutrazol on fruit quality and physio-chemical composition of Mango cvs. Dashehari, Langra, Chausa and Fazri. Int J Plant Sci Hor. 1: 80-88.

Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright © 2019; Ashok Kumar

The production scenario of different fruits in India indicates that all the fruits occupied 6,480 thousand ha area with 92,846 thousand MT production and 14.3 MT/ha productivity during 2016-17. The total allocation to the fruits in the country has been increased from 6,235 to 6,480 thousand ha over the previous year, while the total production of fruits has also been increased from 89,512 to 92,846 thousand MT.

The area under mango cultivation was 1077.6 thousand ha during 1991-92 which reaches up to 2516 thousand ha in 2013-14 and recorded 2262.8 thousand ha in 2016-17. However, the production has been fluctuating drastically. During 1991-92, the total production was 8,715.6 thousand MT which was increased up to 13,997 thousand MT in 2007-08. During
2008-09 the production was declined from 13997 thousand MT to 12,750 thousand MT. From 2009-10 there is continuous increase in the mango production (15,026.7 thousand MT) to 2016-17 (19,686.9 thousand MT). A total 109.99 % increase in area under mango cultivation has been recorded from 1991-92 to 2014-15 while, 125.88 % increase in production was recorded during the same period. However, productivity has been fluctuating drastically from 1991-92 to 2014-15. The productivity of 8.1 MT/ha was recorded during 1991-92 whereas, it was declined up to 5.5 MT/ha in 2008-09 and again increased up to 8.5 MT/ha in 2014-15 and reached up to maximum productivity of 8.7 MT/ha in 2016-17.

Paclobutrazol is usually applied to the soils due to its low solubility and long residual activity, this class of growth retardants is most efficacious as it reduces shoot elongation and promotes flowering, and yield in the Commercial mango of Indo China., Australia and South Africa. Reduced numbers of panicles for the uses of paclobutrazol despite increased fruit set resulting increased yield. Paclobutrazol [(2 RS, 3RS)-1-(4-chlorophenyl)-4, 4-dimethyl -2-[1, 2, 4-trizol -1-yl)] Pentan -3-ethanol did not affect sugar, pH, colour, K or glucose - fructose ratio in grapes (zoectleine et al., 1991), amino- cyclo propane, carboxylic acid, ethylene, respiration. Sorbitol, fructose, glucose, sucrose and malic acid in apple [1]. Paclobutrazol reduced sugar concentration in apple [2-8], grape Persimmon [7], TSS in cherry [9], acidity in apricot [10] and grape [11-13].

Paclobutrazol did not affect TSS and Firmness of Apple [14], Banana [15], Cherry [13], Mango [16], Peach [17,18], Pear [19] and Plum. It could not affect acidity in peach [17,18]. Paclobutrazol also increased fruit TSS in Apple [20], Grape [15], Plum [21] and fruit ripening was retarded by Paclobutrazol in Apple [2,3,11], Citrus. In contrast paclobutrazol induced early maturity and ripening in grape.

Reynold, Peach [22,23]. This report discusses the effect of PBZ on fruit qualitative and physio-chemical composition of 'Tommy Atkins' mango trees grown at the Upper Awash Agro-industry Enterprise in Ethiopia. This is the first study in Ethiopia on the effect of growth retardants on fruit trees and other crops (Ethiopian Agricultural Research Organization planning office pers. Comm).

Material and Methods
The present investigation was carried out in the department of Horticulture, college of Agriculture in G.B. Pant University of Agriculture & Technology, Pant Nagar (India).

Treatment and Layout - The treatment consist of different doses of paclobutrazol of different doses of paclobutrazol namely 1.0 g/meter canopy diameter and 0.5 g/meter canopy diameter along with control.

Physio-chemical Analysis- The observation on various physio-chemical analysis character were recorded from 22 June and 22 July, harvested fruits recorded on 10 days of storage in all replications according to the experiments. The physio-chemical parameters viz, TSS was determined with the help of hand refractometer. Acidity was estimated by titrating pulp extract with 0.1 N NaOH using phenolphthalein indicators. Total sugar, β-carotene etc. was determined according to method suggested by Ranganna.

Statistical Design -The observation recorded were subjected to statically analysis by using completely randomized design for lab experiment and valid conclusion were draw only in significant differences between the treatment mean at 5% level of probability (Conchran and Cox, 1959). In order to compare treatments of critical difference were calculated.
Result and Discussion

The fruits were kept in corrugated Fiber Board (CFB) boxes in single layer under ambient temperature (30-33°C). The time taken for ripening of fruits in cultivars (1992), Dashehari, Langra, Chausa and Fazri were 1-2 days earlier in both the consecutive years. However, lowest doses of Paclobutrazol 0.5 g/m canopy diameter was ineffective on early ripening, similar was the dots, oblong to oblong oblique with base rounded to oblique round medium sized, skin smooth, medium thick, though and non-adhering. The flesh is yellow, firm with almost no fibre, scanty juice and delightful aroma, very sweet test of excellent quality. Table 1A to 1B shown that Paclobutrazol treated Dashehan Mango is slightly increase TSS (23.40%), acidity (0.22%), total sugar (15.33%), reducing sugar (3.89%) non-reducing sugar (11.46%), β-carotene (1.42%) and ascorbic acid (36.79mg)

However, this treatment is better in higher doses of Paclobutrazol (1.0 g/meter canopy diameter) compare to lower doses (0.5 g/meter canopy diameter). Paclobutrazol treated Mango cvs. Dashehari, Langa, Chausa and Fazri was more pronounced than these applied later and paclobutrazol were higher doses confirming the fact that was capable of increasing TSS, acidity (percent.), ascorbic acid, total sugar, reducing and non-reducing sugar, β-carotene in mango cultivars and taken lower time to ripen after harvest. Data's further shows that PBZ treatment induced 1-2 days earlier ripening with reduction of fruit size, increased in weight loss with higher TSS and total sugar and low acidity and better fruit quality in terms of TSS and total sugar due to PBZ.

Treatment	TSS(%)	Acidity (%)	Total Sugar (%)	Reducing Sugar (%)	Non reducing Sugar(%)	βcarotene	Ascorbic acid (mg)
Dashehari Control	23.4	0.22	15.33	3.89	11.46	1.42	36.79
1.0g PBZ m tree canopy diam.	23.73	0.2	15.39	3.9	11.51	1.14	37.16
Langra Control	21.07	0.18	17.35	5.82	11.54	1.38	132.34
1.0g PBZ m tree canopy diam.	21.83	0.17	17.39	5.85	11.56	1.39	132.43
Chausa Control	21.66	0.26	17.47	5.34	12.14	1.12	38.86
1.0g PBZ m tree canopy diam.	21.71	0.25	17.51	5.36	13.23	1.13	39.35
Fazri Control	17.57	0.31	13.64	5.66	7.98	1.15	12.91
1.0g PBZ m tree canopy diam.	17.81	0.29	13.69	5.67	8.05	1.16	13.21
CD at 5%	0.2	0.84	0.19	0.12	0.4	0.76	0.51
Cultivar	0.14	0.59	0.13	0.86	0.28	0.54	0.36
Treatment	0.28	NS	0.29	NS	NS	NS	0.72
Interaction	0.28	NS	0.29	NS	NS	NS	0.72

(Means followed by different letters within columns significantly differ by Fisher’s LSD at p=0.05).
Table 1B: Effects Paclobutrazol treatment on fruit quality and physio-chemical composition of Mango cv Dashehari, Langra, Chausa and Fazri (1997-98).

Treatment	TSS(%)	Acidity(%)	Total Sugar(%)	Reducing Sugar(%)	Nonreducing Sugar(%)	β-carotene	Ascorbic acid (mg)
Dashehari							
Control 0.5g PBZ m tree canopy diam.	23.31	0.23	15.35	3.88	11.44	1.13	37.75
	23.65	0.2	15.42	3.88	11.48	1.14	37.12
Langra							
Control 0.5g PBZ/ m tree canopy diam.	21.11	0.18	17.37	5.81	11.54	1.37	132.32
	21.78	0.17	17.41	5.83	11.54	1.38	132.37
Chausa							
Control 0.5g PBZ/ m tree canopy diam.	21.64	0.26	17.48	5.33	12.13	1.11	38.97
	21.81	0.25	17.54	5.36	13.15	1.13	39.33
Fazri							
Control 0.5g PBZ/ m tree canopy diam.	17.54	0.31	13.64	5.67	7.46	1.14	22.89
	17.75	0.29	13.73	5.65	8.04	1.16	13.17
CD at 5%							
Cultivar	0.6	0.84	0.11	0.43	0.37	0.56	0.44
Treatment	0.43	0.59	0.79	0.3	0.26	0.4	0.31
Interaction	0.86	NS	NS	0.61	NS	NS	0.63

(Means followed by different letters within columns significantly differ by Fisher’s LSD at p=0.05)
Effect of paclobutrazol on fruit quality and physio-chemical composition of Mango cvs. Dashehari, Langra, Chausa and Fazri

DOI: https://doi.org/10.36811/ijpsh.2019.110009

Figure 1A: Effects Paclobutrazol treatment on fruit quality and physio-chemical composition of Mango cvs Dashehari, Langra, Chausa and Fazri (1997-98).

Figure 1B: Effects Paclobutrazol treatment on fruit quality and physio-chemical composition of Mango cvs Dashehari, Langra, Chausa and Fazri (1997-98).
Effect of paclobutrazol on fruit quality and physio-chemical composition of Mango cvs. Dashehari, Langra, Chausa and Fazri

DOI: https://doi.org/10.36811/ijpsh.2019.110009
IJPSH: April-2019: Page No: 80-88

Figure 2A: Effect of Paclobutrazol on fruit quality and Physio-Chemical composition of Mango Cvs. Dashehari, Langra, Chaura and Fazri. (1998-99).

Figure 2B: Effect of Paclobutrazol on fruit quality and Physio-Chemical composition of Mango Cvs. Dashehari, Langra, Chaura and Fazri (1998-99).
Conclusion

The findings of the present investigation revealed that foliar application of Paclobutrazol 1.0 g and 0.5 g per canopy diameter was an effective way for improvement of flowering and fruiting quality of Mango cvs. Dashehari, Langra, Chausa and Fazli. Whereas, Paclobutrazol was most effective for maintaining fruit set percentage, fruit drop percentage and fruit retention percentage in Mango and slightly increased TSS, Acidity total sugar, non-reducing sugar, non-reducing sugar, β-carotene, and Ascorbic Acid compare to control.

Acknowledgement

I take this opportunity to express my sincere thanks, profound sense of severance and gratitude to late Dr. Sant Ram, Prof. and Dean PGS and Chairman my advisor committee for his valuable suggestions, guidance, keen interest constructive criticism and unending encouragement during the course of these investigation and preparations of manuscript.

References

1. Wang SY, Steffins GL. 1987. Effects of Paclobutrazol on accumulation of Organic Acids and total phenols in wood. J. Plant growth regulation. 6: 209-213. Ref.: https://bit.ly/2UKzor3
2. Greene DW, Murray J. 1983. Effects of Paclobutrazol (PP333) and analogs on growth, fruit quality and storage potential of 'Delicious apples' proc. Xth anu. Meeting Plant growth Regulator Society of America. 1983-207-212 East Lansing, USA, PGR Society of America.
3. Greene DW. 1989. Effect of Paclobutrazol and analogs on growth, yield, fruit quality and storage potential or Delicious `apples. J Am soc Hort Sci. 116: 807-812. Ref.: https://bit.ly/2P3tZ9A
4. Byun JK, chang KH. 1986. Influence of Paclobutrazol on Carbohydrate, Mineral Nutrition and fruit quality of Fuji Apple trees. J Korean Soci Hort Sci. 27: 331-337. Ref.: https://bit.ly/2q1EZM
5. Luo Y, Yainwright H, Morre KG. 1987. Effects of orchard application of Paclobutrazol on the composition and firmness of Apple fruits. Scientia Hort. 39: 301-309. Ref.: https://bit.ly/2Ge0SgY
6. Elfving DC, Lougheed EC, Chu CL, et al. 1990. Effects of Daminozide Paclobutrazol and Uniconazole treatments on' McIntosh' Apples at harvest and following storage. J Amer Soci Hort Sci. 115: 750-756. Ref.: https://bit.ly/2U58q9u
7. Lee YM, Kim CC. 1991. Effect of Plant Growth Regulators on the maturation of Sweet Persimmon (Diospyros kaki L.). Korean Soc Hort Sci. 32: 173-177. Ref.: https://bit.ly/2P0q4tX
8. EI- Khoreiby AM, Unrath CR, Lehman, LJ. 1990. Paclobutrazol spray timing Influence Apples green growth. Hort Sci. 24: 310-312.
9. Looney NE, Mckellar JE. 1987. Effect of foliar and soil surface applied Paclobutrazol on vegetative growth and fruit quality of sweet cherries. J Ame Sci Hor. 112: 71-76. Ref.: https://bit.ly/2KnCNYZ
10. Mehta K, Rana HS, Awashti RP. 1990. Effects of Triaconazol and Paclobutrazol on quality of apricot Cvs. New Castle (Prunus armeniaca L), Advances in Plani Sci. 3: 219-223.
11. Shaltout AD, Salem AT, Kelany AS. 1988. Effect of pre bloom sprays and soil drenches of Paclobutrazol on growth, yield and fruit composition of 'Roumi Red Grapes. J Amer Soci Hort Sci.
Effect of paclobutrazol on fruit quality and physio-chemical composition of Mango cvs. Dashehari, Langra, Chausa and Fazri

DOI: https://doi.org/10.36811/ijpsh.2019.110009

12. Zoecklein BW, Wolf TK, Judge JM. 1991. Paclobutrazol effects on fruit Composition and fruit rot of Riesling. (Vitis Vinifera) Grapes in Virginia. Plant Growth Regulators Soc of Amer Quarterly. 19: 101-111. Ref.: https://bit.ly/2Da1jHc

13. Facteau TJ, Chestnut NE. 1991. Growth fruiting, flowering and fruit Quality Sweet Cherries treed with Paclobutrazol. Hort Sci. 26: 276-27. Ref.: https://bit.ly/2UR5zWc

14. Elfving DC, Chu CL, Lougheed EC, et al. 1987. Effected of Daminozide and Paclobutrazol treatment of fruit ripening and storage behaviors of McIntosh' Apples, J Amero Soci Hort Sci. 112: 910-915.

15. Otmani EI, Jabri K, Sedhi M. 1992. Paclobutrazol effect on deelopment on Greenhouse and growth banana: a 2-year assessment. Acta Hortic. 196: 8996.

16. Kulkarni VJ. 1988a. Chemical control of tree vigour and promotion of flowering and Fruiting in Mango (Mengifera indica L.) using paclobutrazol J Hort Sci. 63: 557-566. Ref.: https://bit.ly/2GfxQeP

17. Choi JS, Shin KC, Kim JK, et al. 1990. The effect of foliar application of Paclobutrazol on the vegetative growth, fruit quality and storage behaviors of 'Kubko' Peach (Prumus persica L Batsch.), J Korean soci Hort Sci. 31: 135-114. Ref.: https://bit.ly/2D5077W

18. Chun JP, Lee JC. 1989. The effect of foliar application of Paclobutrazol on vegetative growth, Fruit quality and storage behaviour of Okubo Peach trees Abstracts of communicated papers, Horticultural Abstracts, Korean Society for Horticultural Science 7: 126-127 Presented at the 27th meeting of the Korean Society for Horticultural Science held at kyung Hee University 11 Feb.1989.

19. Huang WD, Shen TI. 1987. The effects of PP 333 (Paclobutrazol) on the growth of seedling of Pyrus betulaefolia. Bge and on the growth and fruiting of Yali Pear (P.bretschneideri cv. Yali), Acta Hortic. 14: 223-231.

20. Kulkarni VJ. 1989. Tree vigor control in mango IIIrd International Mango Symp. Darwin, Australia, 25-29 September, 37.

21. Chandel JS, Jindal KK. 1991. Effect of Triacontanol (TRIA) and Paclobutrazole on fruit set, yield and quality of Japanese plum. Hort J. 4: 21-25.

22. George AP, Lloyd J, Nissen RJ. 1992. Effects of hydrogen cyn Paclobutrazol and pruning date on dormancy release of the low chill Peach Cvs Florida prince in subtropical Australia. Australian J of Exp Agric. 32: 89-95. Ref.: https://bit.ly/2Vym4mU

23. Allan P, George AP, Nissen RJ, et al. 1993. Effect of Paclobutrazol on phonological cycling of low chill Florida prince' Peach in Sub tropical Australia. Scientia Hortic. 53: 73-84.

24. Curry EA, Williams MW. 1983. Promalin or GA3 increase pedicels and Fruit Length and leaf size of" Delicious" Apples treated with Paclobutazol, Hort Sci. 18: 214-215.

25. Embree GC, Craing WF, Forsyth FR. 1987. Effects of Daminozide, Chloromequat, and paclobutrazole on growth and fruiting of 'clapp’s favourite’Pear Hort Sci. 22: 55-56.

26. Khader SESA. 1990. Orchard application of Paclobutrazol on ripening, quality and storage of Mango fruits. Scientia Hort. 41: 329-335. Ref.: https://bit.ly/2Vw81OK
27. Steffins GL, Wang SY. 1984. Physiological changes induced by Paclobutrazol (PP333) in Apples, Acta. Hortic. 146: 135-142. Ref.: https://bit.ly/2G99ioG

28. Steffins GL, Stafford AE, Lin JT. 1990. Gibberellins of Apple seeds from Paclobutrazol treated trees. Proc. Plant. Growth Regulator Society of America. XVII Annual Meeting St. Paul Minnesota, USA, 5-6 August 1990. 36, Ithaca, New York USA; Plant Growth Regulator Society of America. Ref.: https://bit.ly/2Gdofai

29. Steffins GL, Wang SY, Byun JK. 1984. Effects if altering Gibberellins availability on growth and chemical composition of apple seedling Proc. Xth Ann. meeting, Plant Growth Regulator Soc. of Amc.; Boston. Massachusetts, P. 45, Lake Alfred Florida, USA, Florida, Department of Citrus.

30. Steffins GL, Wang SY, Steffins CL, et al. 1983. Influence of Paclobutrazol (PP333) on apple seedlings, growth and Physiology Proc. Plant growth Regulat. Soc Amer. 10: 195-206. Ref.: https://bit.ly/2VzEvHR

31. Swietlik D, Miller SS. 1983. The effect of Paclobutrazol on growth and response to Water stress of apple seedlings. J Amer Soc Hort Sci. 108: 1076-1080. Ref.: https://bit.ly/2WYSR4Q

32. Reynolds AG, Wardle DA, Cottrell AC, et al. 1991. Advancement of ‘Reisling ‘fruit maturity by Paclobutrazol induced reduction of lateral shoot growth J. Amer Sci Hort Sci. 117: 430-435.

33. Forlani M, Coppola V. 1992. Use of two growth regulators on grape (Cvs. Paclobutrazol and S 3307. Vigneveini. 19: 39-52.