Summary: In this paper, we address the minimum-cost node-capacitated multiflow problem in undirected networks. For this problem, Babenko and Karzanov (JCO 24: 202–228, 2012) showed strong polynomial-time solvability via the ellipsoid method. Our result is the first combinatorial polynomial-time algorithm for this problem. Our algorithm finds a half-integral minimum-cost maximum multiflow in $O(m \log(nCD)SF(n', m', \eta))$ time, where n is the number of nodes, m is the number of edges, k is the number of terminals, C is the maximum node capacity, D is the maximum edge cost, and $SF(n', m', \eta)$ is the time complexity of solving the submodular flow problem in a network of n' nodes, m' edges, and a submodular function with η-time-computable exchange capacity. Our algorithm is built on discrete convex analysis on graph structures and the concept of reducible bisubmodular flows.

MSC:
90C27 Combinatorial optimization
05C21 Flows in graphs

Keywords:
minimum-cost node-capacitated multiflow; discrete convex analysis; cost-scaling method; submodular flow; reducible bisubmodular flow

Full Text: DOI arXiv

References:
[1] Ando, K.; Fujishige, S.; Naitoh, T., Balanced bisubmodular systems and bidirected flows, J. Oper. Res. Soc. Jpn., 40, 3, 437-447 (1997) · Zbl 0901.05051
[2] Babenko, M.A., Karzanov, A.V.: A scaling algorithm for the maximum node-capacitated multiflow problem. In: Proceedings of the 16th annual European symposium on algorithms. pp. 124-135. Springer-Verlag, Berlin, Heidelberg (2008)
[3] Babenko, MA; Karzanov, AV, Min-cost multiflows in node-capacitated undirected networks, J. Comb. Optim., 24, 3, 202-228 (2012) · Zbl 1261.90067 · doi:10.1007/s10878-011-9377-3
[4] Cherkassky, BV. A solution of a problem of multicommodity flows in a network, Ekonomika i Matematicheskie Metody, 13, 143-151 (1977)
[5] Frank, A., Finding feasible vectors of Edmonds-Giles polyhedra, J. Comb. Theory Ser. B, 36, 3, 222-239 (1984) · Zbl 0544.05016 · doi:10.1016/0095-8956(84)90029-7
[6] Frank, A., Connections in Combinatorial Optimization (2011), Oxford: Oxford University Press, Oxford · Zbl 1228.90001
[7] Fujishige, S., Submodular Functions and Optimization (2005), Amsterdam: Elsevier, Amsterdam · Zbl 1119.90044
[8] Fujishige, S.; Iwata, S., Algorithms for submodular flows, IEICE Trans. Inf. Syst., E83D, 3, 322 (2000)
[9] Fujishige, S.; Zhang, X., New algorithms for the intersection problem of submodular systems, Jpn. J. Ind. Appl. Math., 9, 369-382 (1992) · Zbl 0770.90073 · doi:10.1007/BF03167272
[10] Garg, N.; Vazirani, VV; Yannakakis, M., Multiway cuts in node weighted graphs, J. Algorithms, 50, 1, 49-61 (2004) · Zbl 1068.68178 · doi:10.1016/S0196-6774(03)00111-1
[11] Goldberg, AV; Karzanov, AV, Scaling methods for finding a maximum free multiflow of minimum cost, Math. Oper. Res., 22, 1, 90-109 (1997) · Zbl 0871.90063 · doi:10.1287/moor.22.1.90
[12] Hirai, H., Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees, Math. Program. Ser. A, 137, 1, 503-530 (2013) · Zbl 1263.90075 · doi:10.1007/s10107-011-0506-7
[13] Hirai, H., L-extendable functions and a proximity scaling algorithm for minimum cost multiflow problem, Discret. Optim., 18, 1-37 (2015) · Zbl 1387.90220 · doi:10.1016/j.disopt.2015.07.001
[14] Hirai, H.; Fukunaga, T.; Kawarabayashi, K., Discrete convex functions on graphs and their algorithmic applications, Combinatorial Optimization and Graph Algorithms, Communications of NH Shonan Meetings, 67-100 (2017), Singapore: Springer Nature, Singapore · Zbl 1397.90237 · doi:10.1007/978-981-10-6147-9
[15] Hirai, H., A dual descent algorithm for node-capacitated multiflow problems and its applications, ACM Trans. Algorithms,
15, 1, 15:1-15:24 (2018) - Zbl 1457.90026

[16] Hirai, H., L-convexity on graph structures, J. Oper. Res. Soc. Jpn., 61, 1, 71-109 (2018) - Zbl 1391.90475

[17] Karzanov, A.V.: A Minimum Cost Maximum Multiflow Problem. In: Combinatorial methods for flow problems, pp. 138-156. Institute for System Studies, Moscow (1979). In Russian

[18] Karzanov, A.V.: Maximization over the intersection of two compatible greedy-polyhedra. Research Report 91732-OR, Institut für Diskrete Mathematik, Universität Bonn (1991)

[19] Karzanov, AV. Minimum cost multflows in undirected networks, Math. Program., 66, 1, 313-325 (1994) - Zbl 0820.90040 - doi:10.1007/BF01581152

[20] Karzanov, AV., On \((0,1,\pm 1)\) matrices, odd vectors, and bisubmodular polyhedra, Linear Algebra Appl., 422, 1, 17-21 (2007) - Zbl 1121.15022 - doi:10.1016/j.laa.2006.08.033

[21] Lovász, L., On some connectivity properties of eulerian graphs, Acta Math. Acad. Sci. Hung., 28, 1-2, 129-138 (1976) - Zbl 0337.05124 - doi:10.1007/BF01902503

[22] Murota, K., Discrete Convex Analysis (2003), Philadelphia: SIAM, Philadelphia - Zbl 1029.90055 - doi:10.1137/1.9780898718508

[23] Nakamura, M.: An intersection theorem for universal polymatroids: Universal polymatroids (ii). Scientific Papers of the College of Arts and Sciences University of Tokyo 40(2), 95-100 (1990)

[24] Pap, G.: Some new results on node-capacitated packing of A-paths. In: Proceedings of the Thirty-ninth Annual ACM symposium on theory of computing. pp. 599-604. ACM (2007)

[25] Pap, G.: Strongly polynomial time solvability of integral and half-integral node-capacitated multiflow problems. EGRES Technical Report TR-2008-12, Egerváry Research Group (2008)

[26] Schrijver, A., Combinatorial Optimization-Polyhedra and Efficiency (2003), Berlin: Springer, Berlin - Zbl 1041.90001

[27] Vazirani, VV., Approximation Algorithms (2003), Berlin: Springer, Berlin - doi:10.1007/978-3-662-04565-7

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.