NONARCHIMEDEAN DYNAMICAL SYSTEMS AND FORMAL GROUPS

by

Laurent Berger

Abstract. — We prove two theorems that confirm an observation of Lubin concerning families of p-adic power series that commute under composition: under certain conditions, there is a formal group such that the power series in the family are either endomorphisms of this group, or semi-conjugate to endomorphisms of this group.

Introduction

Let K be a finite extension of \mathbb{Q}_p, and let \mathcal{O}_K be its ring of integers and \mathfrak{m}_K the maximal ideal of \mathcal{O}_K. In [Lub94], Lubin studied nonarchimedean dynamical systems, namely families of elements of $X \cdot \mathcal{O}_K[X]$ that commute under composition, and remarked (page 341 of ibid.) that “experimental evidence seems to suggest that for an invertible series to commute with a noninvertible series, there must be a formal group somehow in the background”. Various results in that direction have been obtained (by Hsia, Laubie, Li, Movahhedi, Salinier, Sarkis, Specter, ...; see for instance [Li96], [Li97a], [Li97b], [LMS02], [Sar05], [Sar10], [SS13], [HL16], [Ber17], [Spe18]), using either p-adic analysis, the theory of the field of norms or, more recently, p-adic Hodge theory. The purpose of this article is to prove two theorems that confirm the above observation in many new cases, using only p-adic analysis.

If $g(X) \in X \cdot \mathcal{O}_K[X]$, we say that g is invertible if $g'(0) \in \mathcal{O}_K^\times$ and noninvertible if $g'(0) \in \mathfrak{m}_K$. We say that g is stable if $g'(0)$ is neither 0 nor a root of unity. For example, if S is a formal group of finite height over \mathcal{O}_K and if $c \in \mathbb{Z}$ with $p \nmid c$ and $c \neq \pm 1$, then $f(X) = [p](X)$ and $u(X) = [c](X)$ are two stable power series, with f noninvertible and u invertible, having the following properties: the roots of f and all of its iterates are simple, $f \not\equiv 0 \mod \mathfrak{m}_K$ and $f \circ u = u \circ f$. Our first result is a partial converse of this. If

2010 Mathematics Subject Classification. — 11S82 (11S31; 32P05).
Key words and phrases. — Nonarchimedean dynamical system; formal group; p-adic analysis.
\(f(X) \in X \cdot \mathcal{O}_K[X] \), let \(U_f \) denote the set of invertible power series \(u(X) \in X \cdot \mathcal{O}_K[X] \) such that \(f \circ u = u \circ f \), and let \(U_f'(0) = \{ u'(0), \ u \in U_f \} \). This is a subgroup of \(\mathcal{O}_K^\times \).

Theorem A. — Let \(K \) be a finite extension of \(\mathbb{Q}_p \) such that \(e(K/\mathbb{Q}_p) \leq p - 1 \), and let \(f(X) \in X \cdot \mathcal{O}_K[X] \) be a noninvertible stable series. Suppose that

1. the roots of \(f \) and all of its iterates are simple, and \(f \not\equiv 0 \) mod \(m_K \);
2. there is a subfield \(F \) of \(K \) such that \(f'(0) \in \mathcal{m}_F \) and such that \(U_f'(0) \cap \mathcal{O}_F^\times \) is an open subgroup of \(\mathcal{O}_F^\times \).

Then there is a formal group \(S \) over \(\mathcal{O}_K \) such that \(f \in \text{End}(S) \) and \(U_f \subset \text{End}(S) \).

Condition (1) can be checked using the following criterion (proposition \[\text{[Lub94]} \]).

Criterion A. — If \(f(X) \in X \cdot \mathcal{O}_K[X] \) is a noninvertible stable series with \(f \not\equiv 0 \) mod \(m_K \), and if \(f \) commutes with a stable invertible series \(u(X) \in X \cdot \mathcal{O}_K[X] \), then the roots of \(f \) and all of its iterates are simple if and only if \(f'(X)/f'(0) \in 1 + X \cdot \mathcal{O}_K[X] \).

If \(K = \mathbb{Q}_p \), condition (2) of Theorem A amounts to requiring the existence of a stable invertible series that commutes with \(f \).

Corollary A. — If \(f(X) \in X \cdot \mathbb{Z}_p[X] \) is a noninvertible stable series such that the roots of \(f \) and all of its iterates are simple and \(f \not\equiv 0 \) mod \(p \), and if \(f \) commutes with a stable invertible series \(u(X) \in X \cdot \mathbb{Z}_p[X] \), then there is a formal group \(S \) over \(\mathbb{Z}_p \) such that \(f \in \text{End}(S) \) and \(U_f \subset \text{End}(S) \).

There are examples of commuting power series where \(f \) does not have simple roots, for instance \(f(X) = 9X + 6X^2 + X^3 \) and \(u(X) = 4X + X^2 \) with \(K = \mathbb{Q}_3 \) (more examples can be constructed following the discussion on page 344 of \[\text{[Lub94]} \]). It seems reasonable to expect that if \(f \) and \(u \) are two stable noninvertible and invertible power series that commute, with \(f \not\equiv 0 \) mod \(m_K \), then there exists a formal group \(S \), two endomorphisms \(f_S \) and \(u_S \) of \(S \), and a nonzero power series \(h \) such that \(f \circ h = h \circ f_S \) and \(u \circ h = h \circ u_S \). We then say that \(f \) and \(f_S \) are *semi-conjugate*, and \(h \) is an *isogeny* from \(f_S \) to \(f \) (see for instance \[\text{[Li97a]} \]).

The simplest case where this occurs is when \(m \) is an integer \(\geq 2 \), and the nonzero roots of \(f \) and all of its iterates are of multiplicity \(m \) (for an example of a more complicated case, see remark \[\text{[3.5]} \]). In this simplest case, we have the following.

Theorem B. — Let \(K \) be a finite extension of \(\mathbb{Q}_p \), let \(f(X) \in X \cdot \mathcal{O}_K[X] \) be a noninvertible stable series and take \(m \geq 2 \). Let \(h(X) = X^m \). Suppose that

1. the nonzero roots of \(f \) and all of its iterates are of multiplicity \(m \)
2. \(f \not\equiv 0 \mod m_K \).

Then there exists a finite unramified extension \(L \) of \(K \) and a noninvertible stable series \(f_0(X) \in X \cdot \mathcal{O}_L[[X]] \) with \(f_0 \not\equiv 0 \mod m_K \), such that \(f \circ h = h \circ f_0 \), and the roots of \(f_0 \) and all of its iterates are simple.

If in addition \(u \) is an element of \(U_f \) with \(u'(0) \equiv 1 \mod m_K \), then there exists \(u_0 \in U_{f_0} \) such that \(u \circ h = h \circ u_0 \). Finally, if there is a subfield \(F \) of \(K \) such that \(f'(0) \in m_F \) and such that \(U'_f(0) \cap \mathcal{O}_F^\times \) is an open subgroup of \(\mathcal{O}_F^\times \), then \((f_0^m)'(0) \in m_F \) and \(U'_0(0) \cap \mathcal{O}_F^\times \) is an open subgroup of \(\mathcal{O}_F^\times \).

Condition (1) can be checked using the following criterion (proposition 3.2).

Criterion B. — If \(f(X) \in X \cdot \mathcal{O}_K[[X]] \) is a noninvertible stable series with \(f \not\equiv 0 \mod m_K \), and if \(f \) commutes with a stable invertible series \(u(X) \in X \cdot \mathcal{O}_K[[X]] \), then the nonzero roots of \(f \) and all of its iterates are of multiplicity \(m \) if and only if the nonzero roots of \(f \) are of multiplicity \(m \), and the set of roots of \(f' \) is included in the set of roots of \(f \).

We have the following simple corollary of Theorem B when \(K = \mathbb{Q}_p \).

Corollary B. — If \(m \geq 2 \) and \(f(X) \in X \cdot \mathbb{Z}_p[[X]] \) is a noninvertible stable series such that the nonzero roots of \(f \) and all of its iterates are of multiplicity \(m \) and \(f \not\equiv 0 \mod p \), and if \(f \) commutes with a stable invertible series \(u(X) \in X \cdot \mathbb{Z}_p[[X]] \), then there is a unramified extension \(L \) of \(\mathbb{Q}_p \), a formal group \(S \) over \(\mathcal{O}_L \) and \(f_S \in \text{End}(S) \) such that \(f \circ X^m = X^m \circ f_S \).

Theorem A implies conjecture 5.3 of [HL16] for those \(K \) such that \(e(K/\mathbb{Q}_p) \leq p - 1 \). It also provides a new simple proof (that does not use \(p \)-adic Hodge theory) of the main theorem of [Spe18]. Note also that Theorem A holds without the restriction “\(e(K/\mathbb{Q}_p) \leq p - 1 \)” if \(f'(0) \) is a uniformizer of \(\mathcal{O}_K \) (see [Spe17]). This implies “Lubin’s conjecture” formulated at the very end of [Sar10] (this conjecture is proved in [Ber17] using \(p \)-adic Hodge theory, when \(K \) is a finite Galois extension of \(\mathbb{Q}_p \)) as well as “Lubin’s conjecture” on page 131 of [Sar05] over \(\mathbb{Q}_p \) if \(f \not\equiv 0 \mod p \).

The results of [HL16], [Ber17] and [Spe18] are proved under strong additional assumptions on \(\text{wideg}(f) \) (namely that \(\text{wideg}(f) = p \) in [Spe18], or that \(\text{wideg}(f) = p^h \), where \(h \) is the residual degree of \(K \), in [HL16] and [Ber17]). Theorem A is the first general result in this direction that makes no assumption on \(\text{wideg}(f) \), besides assuming that it is finite. It also does not assume that \(f'(0) \) is a uniformizer of \(\mathcal{O}_K \).

Theorem A and its corollary are proved in section §2 and theorem B and its corollary are proved in section §3.
1. Nonarchimedean dynamical systems

Whenever we talk about the roots of a power series, we mean its roots in the p-adic open unit disk \mathcal{O}_p. Recall that the Weierstrass degree $\text{wideg}(g(X))$ of a series $g(X) = \sum_{i \geq 1} g_i X^i \in X \cdot \mathcal{O}_K[X]$ is the smallest integer $i \leq +\infty$ such that $g_i \in \mathcal{O}_K$. We have $\text{wideg}(g) = +\infty$ if and only if $g \equiv 0 \mod \mathfrak{m}_K$.

If $r < 1$, let $H(r)$ denote the set of power series in $K[[X]]$ that converge on the closed disk $\{z \in \mathcal{O}_p such that |z|_p \leq r\}$. If $h \in H(r)$, let $\|h\|_r = \sup_{|z|_p \leq r} |h(z)|_p$. The space $H(r)$ is complete for the norm $\|\cdot\|_r$. Let $H = \text{proj lim}_{r < 1} H(r)$ be the ring of holomorphic functions on the open unit disk.

Throughout this article, $f(X) \in X \cdot \mathcal{O}_K[X]$ is a stable noninvertible series such that $\text{wideg}(f) < +\infty$, and U_f denotes the set of invertible power series $u(X) \in X \cdot \mathcal{O}_K[X]$ such that $f \circ u = u \circ f$.

Lemma 1.1. — A series $g(X) \in X \cdot K[[X]]$ that commutes with f is determined by $g'(0)$.

Proof. — This is proposition 1.1 of [Lub94].

Proposition 1.2. — If U_f contains a stable invertible series, then there exists a power series $g(X) \in X \cdot \mathcal{O}_K[[X]]$ and an integer $d \geq 1$ such that $f(X) \equiv g(X^{pd}) \mod \mathfrak{m}_K$.

We have $\text{wideg}(f) = pd$ for some $d \geq 1$.

Proof. — This is the main result of [Lub94]. See (the proof of) theorem 6.3 and corollary 6.2.1 of ibid.

Proposition 1.3. — There is a (unique) power series $L(X) \in X + X^2 \cdot K[[X]]$ such that $L \circ f = f'(0) \cdot L$ and $L \circ u = u'(0) \cdot L$ if $u \in U_f$. The series $L(X)$ converges on the open unit disk, and $L(X) = \lim_{n \to +\infty} f^\circ n(X)/f'(0)^n$ in the Fréchet space \mathcal{H}.

Proof. — See propositions 1.2, 1.3 and 2.2 of [Lub94].

Lemma 1.4. — If $f(X) \in X \cdot \mathcal{O}_K[[X]]$ is a noninvertible stable series and if f commutes with a stable invertible series u, then every root of f' is a root of $f^\circ n$ for some $n \gg 0$.

Proof. — This is corollary 3.2.1 of [Lub94].

Proposition 1.5. — If $f(X) \in X \cdot \mathcal{O}_K[[X]]$ is a noninvertible stable series with $f \not\equiv 0 \mod \mathfrak{m}_K$, and if f commutes with a stable invertible series u, then the roots of f and all of its iterates are simple if and only if $f'(X)/f'(0) \in 1 + X \cdot \mathcal{O}_K[X]$.
Lemma 2.1. — We have \((f^on)'(X) = f'(f^{on-1}(X)) \cdots f'(f(X)) \cdot f'(X)\). If \(f'(X)/f'(0) \in 1 + X \cdot \mathcal{O}_K[X]\), then the derivative of \(f^{on}(X)\) belongs to \(f'(0)^n \cdot (1 + X \cdot \mathcal{O}_K[X])\) and hence has no roots. The roots of \(f^{on}(X)\) are therefore simple.

By lemma [4], any root of \(f'(X)\) is also a root of \(f^{on}\) for some \(n \geq 0\). If the roots of \(f^{on}(X)\) are simple for all \(n \geq 1\), then \(f'(X)\) cannot have any root, and hence \(f'(X)/f'(0) \in 1 + XO_K[X]\).

\[\square\]

2. Formal groups

We now prove theorem A. Let \(S(X, Y) = L^{0-1}(L(X) + L(Y)) \in K[[X, Y]]\). By proposition [3], \(S\) is a formal group law over \(K\) such that \(f\) and all \(u \in U_f\) are endomorphisms of \(S\). In order to prove theorem A, we show that \(S(X, Y) \in \mathcal{O}_K[[X, Y]]\). Write \(S(X, Y) = \sum_{j \geq 0} s_j(X)Y^j\).

Lemma 2.2. — If \(L'(X) \in \mathcal{O}_K[[X]]\), then \(s_j(X) \in j!^{-1} \cdot \mathcal{O}_K[[X]]\) for all \(j \geq 0\).

Proof. — This is lemma 3.2 of [Li96].

\[\square\]

Lemma 2.2. — If the roots of \(f^{on}(X)\) are simple for all \(n \geq 1\), then \(L'(X) \in \mathcal{O}_K[[X]]\).

Proof. — This is sketched in the proof of theorem 3.6 of [Li96]. We give a complete argument for the convenience of the reader.

We have \((f^on)'(X) = f'(f^{on-1}(X)) \cdots f'(f(X)) \cdot f'(X)\), and by proposition [3], \(f'(X)/f'(0) \in 1 + XO_K[[X]]\). We have \(L(X) = \lim_{n \to +\infty} f^{on}(X)/f'(0)^n\) by proposition [3] so that

\[L'(X) = \lim_{n \to +\infty} \frac{(f^on)'(X)}{f'(0)^n} = \lim_{n \to +\infty} \frac{f'(f^{on-1}(X))}{f'(0)} \cdots \frac{f'(f(X))}{f'(0)} \cdot \frac{f'(X)}{f'(0)},\]

and hence \(L'(X) \in 1 + XO_K[[X]]\).

\[\square\]

Theorem 2.3. — If \(e(K/Q_p) \leq p - 1\), then \(s_j(X) \in \mathcal{O}_K[[X]]\) for all \(j \geq 0\).

Proof. — For all \(n \geq 1\), the power series \(u_n(X) = S(X, f^{on}(X))\) belongs to \(X \cdot K[X]\) and satisfies \(u_n \circ f = f \circ u_n\). Since \(U'_f(0) \cap \mathcal{O}_F^\times\) is an open subgroup of \(\mathcal{O}_F^\times\), there exists \(n_0\) such that if \(n \geq n_0\), then \(u_n'(0) = 1 + f'(0)^n \in U'_f(0)\). We then have \(u_n \in U_f\) by lemma [1].

In order to prove the theorem, we therefore prove that if \(S(X, f^{on}(X)) \in \mathcal{O}_K[[X]]\) for all \(n \geq n_0\), then \(s_i(X) \in \mathcal{O}_K[[X]]\) for all \(i \geq 0\). If \(j \geq 1\), let

\[a_j(X) = f^{on}(X) \sum_{i \geq 0} s_{j+i}(X)f^{on}(X)^i = s_j(X)f^{on}(X) + s_{j+1}(X)f^{on}(X)^2 + \cdots.\]
We prove by induction on j that $s_0(X), \ldots, s_{j-1}(X)$ as well as $a_j(X)$ belong to $\mathcal{O}_K[X]$. This holds for $j = 1$; suppose that it holds for j.

We claim that if $h \in \mathcal{H}(r)$ and $\|h\|_r < p^{-1/(p-1)}$, then $\sum_{i \geq 0} s_{j+i}(X)h(X)^i$ converges in $\mathcal{H}(r)$. Indeed, if $s_p(j+i)$ denotes the sum of the digits of $j+i$ in base p, then

$$\text{val}_p(j+i) = \frac{j+i-s_p(j+i)}{p-1} < \frac{i}{p-1} + \frac{j}{p-1}.$$

Let π be a uniformizer of \mathcal{O}_K and let $e = e(K/\mathbb{Q}_p)$ so that $|\pi|_p = p^{-1/e}$. By proposition 1.2 we have

$$f^{\circ n}(X) \in \pi X \cdot \mathcal{O}_K[[X]] + X^{q^n} \cdot \mathcal{O}_K[[X^{q^n}]],$$

where $q = p^d = \text{width}(f)$, so that $\|f^{\circ n}(X)\|_r \leq \max(rp^{-1/e}, r^{q^n})$. If $\rho_n = p^{-1/(e(q^n-1))}$, then

$$\|f^{\circ n}(X)\|_{\rho_n} \leq p^{-q^n/(e(q^n-1))} < p^{-1/e} \leq p^{-1/(p-1)}$$

and the series $\sum_{i \geq 0} s_{j+i}(X)f^{\circ n}(X)^i$ therefore converges in $\mathcal{H}(\rho_n)$.

We have $f^{\circ n}(X) \in \pi X \cdot \mathcal{O}_K[[X]] + X^{q^n} \cdot \mathcal{O}_K[[X^{q^n}]]$, as well as $\text{width}(f^{\circ n}) = q^n$. By the theory of Newton polygons, all the zeroes z of $f^{\circ n}(X)$ satisfy $\text{val}_p(z) \geq 1/(e(q^n-1))$, and hence $|z|_p \leq \rho_n$. The equation $a_j(X) = f^{\circ n}(X)\sum_{i \geq 0} s_{j+i}(X)f^{\circ n}(X)^i$ holds in $\mathcal{H}(\rho_n)$, and this implies that $a_j(z) = 0$ for all z such that $f^{\circ n}(z) = 0$. Since all the zeroes of $f^{\circ n}(X)$ are simple and $f^{\circ n}(X) \not\equiv 0 \mod \pi$, the Weierstrass preparation theorem implies that $f^{\circ n}(X)$ divides $a_j(X)$ in $\mathcal{O}_K[[X]]$, and hence that

$$s_j(X) + s_{j+1}(X)f^{\circ n}(X) + s_{j+2}(X)f^{\circ n}(X)^2 + \cdots \in \mathcal{O}_K[[X]].$$

Choose some $0 < \rho < 1$ and take $n \geq n_0$ such that $\rho_n \geq \rho$. We have

$$f^{\circ n}(X) = f(f^{\circ (n-1)}(X)) \in \pi f^{\circ (n-1)}(X) \cdot \mathcal{O}_K[[X]] + f^{\circ (n-1)}(X)^q \cdot \mathcal{O}_K[[X]].$$

Therefore $\|f^{\circ n}(X)\|_{\rho} \to 0$ as $n \to +\infty$, and $\|s_{j+1}(X)f^{\circ n}(X) + s_{j+2}(X)f^{\circ n}(X)^2 + \cdots\|_{\rho} \to 0$ as $n \to +\infty$. The series $s_j(X)$ is therefore in the closure of $\mathcal{O}_K[[X]]$ inside $\mathcal{H}(\rho)$ for $\|\cdot\|_{\rho}$, which is $\mathcal{O}_K[[X]]$.

This proves that $s_j(X)$ as well as $s_{j+1}(X)f^{\circ n}(X) + s_{j+2}(X)f^{\circ n}(X)^2 + \cdots\in \mathcal{O}_K[[X]]$. This finishes the induction and hence the proof of the theorem.

Theorem A now follows: S is a formal group over \mathcal{O}_K such that $f \in \text{End}(S)$. Any power series $u(X) \in X \cdot \mathcal{O}_K[[X]]$ that commutes with f also belongs to $\text{End}(S)$, since $u(X) = [u'(0)](X)$ by lemma 1.1. In particular, $U_f \subset \text{End}(S)$.

To prove corollary A, note that we can replace u by u^{op-1} and therefore assume that $u'(0) \in 1 + p\mathbb{Z}_p$. In this case, $u^{\circ m}$ is defined for all $m \in \mathbb{Z}_p$ by proposition 4.1 of [Lub94] and $U_f'(0)$ is therefore an open subgroup of \mathbb{Z}_p^\times.
3. Semi-conjugation

We now prove theorem B. Assume therefore that the nonzero roots of f and all of its iterates are of multiplicity m. Let $h(X) = X^m$.

Since $q = \text{width}(f)$ is finite, we can write $f(X) = X \cdot g(X) \cdot v(X)$ where $g(X) \in \mathcal{O}_K[X]$ is a distinguished polynomial and $v(X) \in \mathcal{O}_K[[X]]$ is a unit. If the roots of $g(X)$ are of multiplicity m, then $g(X) = g_0(X)^m$ for some $g_0(X) \in \mathcal{O}_K[X]$. Write $v(X) = [c] \cdot (1 + w(X))$ where $c \in k_K$ (and $[c]$ is its Teichmüller lift) and $w(X) \in (m_K, X)$.

Since $m \cdot \deg(g) = q - 1$, m is prime to p and there exists a unique $w_0(X) \in (m_K, X)$ such that $1 + w(X) = (1 + w_0(X))^m$. If $f_0(X) = [c^{1/m}] \cdot X \cdot g_0(X)^m \cdot (1 + w_0(X))^m = f_0(X)^m = h \circ f_0(X)$.

It is clear that $f_0 \not\equiv 0 \mod m_K$. If we write $f_0^n(X) = X \cdot \prod_m (X - \alpha)^m \cdot v_n(X)$ with v_n a unit of $\mathcal{O}_K[X]$, and where α runs through the nonzero roots of f_0^n, then

$$f_0^n(X^m) = X^m \cdot \prod_m (X^m - \alpha^m) \cdot v_n(X^m),$$

so that all the roots of $f_0^n(X^m)$ have multiplicity m. Since $f_0^n(X^m) = f_0^n(X^m)$, the roots of f_0 and all of its iterates are simple. This finishes the proof of the first part of the theorem, with $L = K([c^{1/m}])$.

If $u \in U_f$ and $u'(0) \in 1 + m_K$, then there is a unique $u_0(X) \in 1 + (m_K, X)$ such that $u_0(X)^m = u(X)^m$. We have $u_0'(0) = u'(0)^{1/m}$ and $(f_0 \circ u_0)^m = (u_0 \circ f_0)^m$ as well as $(f_0 \circ u_0)'(0) = (u_0 \circ f_0)'(0)$, so that $u_0 \in U_{f_0}$. This proves the existence of u_0. Since $f(X^m) = f_0(X)^m$, we have $f'(0) = f_0'(0)^m$. We then have $(f_0^m)'(0) = f_0'(0)^m = f'(0) \in m_F$. This finishes the proof of the last claim of theorem B.

Corollary B follows from theorem B in the same way that corollary A followed from theorem A.

Example 3.1. — If $p = 3$ and $f(X) = 9X + 6X^2 + X^3$ and $u(X) = 4X + X^2$, so that $f \circ u = u \circ f$, then $f(X) = X(X + 3)^2$ and $f'(X) = 3(X + 3)(X + 1)$. The nonzero roots of f and all of its iterates are therefore of multiplicity 2. We have $f(X^2) = (X(X^2 + 3))^2$ so that $f_0(X) = 3X + X^3$, and the corresponding formal group is G_m (this is a special case of the construction given on page 344 of [Lub94]).

Proposition 3.2. — If $f(X) \in X \cdot \mathcal{O}_K[X]$ is a noninvertible stable series with $f \not\equiv 0 \mod m_K$, and if f commutes with a stable invertible series $u(X) \in X \cdot \mathcal{O}_K[[X]]$, then the nonzero roots of f and all of its iterates are of multiplicity m if and only if the nonzero roots of f are of multiplicity m and the set of roots of f' is included in the set of roots of f.

Proof. — If the nonzero roots of f and all of its iterates are of multiplicity m, then the nonzero roots of f are of multiplicity m. Hence if α is a root of $f^{\circ n}(X)$ with $f(\alpha) \neq 0$, the equation $f(X) = f(\alpha)$ has simple roots. Since α is one of these roots, we have $f'(\alpha) \neq 0$. By lemma 1.4, any root of $f'(X)$ is also a root of $f^{\circ n}$ for some $n \geq 1$. This implies that the set of roots of f' is included in the set of roots of f.

Conversely, suppose that the nonzero roots of f are of multiplicity m, and that $f'(\beta) \neq 0$ for any β that is not a root of f. If α is a nonzero root of $f^{\circ n}(X)$ for some $n \geq 1$, then this implies that the equation $f(X) = \alpha$ has simple roots, so that the nonzero roots of f and all of its iterates are of multiplicity m.

Remark 3.3. — If $p = 2$ and $f(X) = 4X + X^2$ and $u(X) = 9X + 6X^2 + X^3$, then $f \circ u = u \circ f$. The roots 0 and -4 of f are simple, but $f^{\circ 2}(X) = X(X + 4)(X + 2)^2$ has a double root. In this case, f is still semi-conjugate to an endomorphism of G_m, but via the more complicated map $h(X) = X^2/(1 + X)$ (see the discussion after corollary 3.2.1 of [Lub94], and example 2 of [Li96]).

References

[Ber17] L. Berger – “Lubin’s conjecture for full p-adic dynamical systems”, in Publications mathématiques de Besançon. Algèbre et théorie des nombres, 2016, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2016, Presses Univ. Franche-Comté, Besançon, 2017, p. 19–24.
[HL16] L.-C. Hsia & H.-C. Li – “Ramification filtrations of certain abelian Lie extensions of local fields”, J. Number Theory 168 (2016), p. 135–153.
[Li96] H.-C. Li – “When is a p-adic power series an endomorphism of a formal group?”, Proc. Amer. Math. Soc. 124 (1996), no. 8, p. 2325–2329.
[Li97a] , “Isogenies between dynamics of formal groups”, J. Number Theory 62 (1997), no. 2, p. 284–297.
[Li97b] , “p-adic power series which commute under composition”, Trans. Amer. Math. Soc. 349 (1997), no. 4, p. 1437–1446.
[LMS02] F. Laubie, A. Movahhedi & A. Salinier – “Systèmes dynamiques non archimédiens et corps des normes”, Compositio Math. 132 (2002), no. 1, p. 57–98.
[Lub94] J. Lubin – “Nonarchimedean dynamical systems”, Compositio Math. 94 (1994), no. 3, p. 321–346.
[Sar05] G. Sarkis – “On lifting commutative dynamical systems”, J. Algebra 293 (2005), no. 1, p. 130–154.
[Sar10] , “Height-one commuting power series over Z_p”, Bull. Lond. Math. Soc. 42 (2010), no. 3, p. 381–387.
[Spe17] J. Specter – personal communication, 2017.
[Spe18] , “The crystalline period of a height one p-adic dynamical system”, Trans. Amer. Math. Soc. 370 (2018), no. 5, p. 3591–3608.
[SS13] G. Sarkis & J. Specter – “Galois extensions of height-one commuting dynamical systems”, J. Théor. Nombres Bordeaux 25 (2013), no. 1, p. 163–178.
