Ground-based observations of Kepler asteroseismic targets

K. Uytterhoeven1,2, *, R. Szabó2, J. Southworth3, S. Randall4, R. Østensen5, J. Moleńa-Żakowicz6, M. Marconi7, D.W. Kurtz8, L. Kiss9, J. Gutiérrez-Soto10, S. Frandsen11, P. De Cat12, H. Bruntt13, M. Broida14, X.B. Zhang14, J.H. Telting15, M. Stęślicki9, V. Ripepi16, A. Pigulski17, M. Paparó2, R. Oreiro5, C. Ngeow16, E. Niemczura6, J. Nemec17, A. Narwied18, P. Mathias18, S. Martín-Ruiz10, H. Lehmann19, G. Kopacki6, C. Karoff20,11, J. Jackiewicz21, M. Ireland9, D. Huber9, A.A. Henden22, G. Handler23, A. Grigahcène24, E.M. Green25, R. Garrido10, L. Fox Machado26, J. Debosscher4, O.L. Creevey27, G. Catanzaro28, Z. Bognár29,10, S. Bernabei30

1 Lab. AIM, CEA/DSM-CNRS-Université Paris Diderot; CEA, IRFU, SAp, Saclay, 91191, Gif-sur-Yvette, France
2 Konkoly Observatory of the Hungarian Academy of Sciences, 1121 Budapest, Hungary
3 Department of Physics, University of Warwick, Coventry CV4 7AL, UK
4 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany
5 Institutu voor Sterrenkunde, KULeuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
6 Instytut Astronomiczny, Uniwersytet Wrocławi, Kopernika 11, 51-622 Wroclaw, Poland
7 INAF - Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy
8 Jeremiah Horrocks Institute of Astrophysics, University of Central Lancashire, Preston PR1 2HE, UK
9 Sydney Institute for Astrophysics, School of Physics, University of Sydney, Australia
10 Instituto de Astrofísica de Andalucía (CSIC), Apdo 3004, 18080 Granada, Spain
11 Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
12 Royal Observatory of Belgium, Ringlaan 3, 1180 Brussel, Belgium
13 LESIA, Observatoire de Paris-Meudon, 92195 Meudon, France
14 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
15 Nordic Optical Telescope, Santa Cruz de La Palma, Spain
16 National Central University, No. 300, Jhongda Rd, Jhongli City, Taoyuan County 32001, Taiwan
17 Department of Physics & Astronomy, Camosun College, Victoria, British Columbia, Canada
18 Lab. d’Astrophysique de Toulouse-Tarbes, Université de Toulouse, CNRS, 57 avenue d’Azereix, 65000 Tarbes, France
19 Thüringer Landessternwarte, 07778 Tautenburg, Germany
20 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
21 Department of Astronomy, New Mexico State University, Las Cruces, NM 88001, USA
22 American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138, USA
23 Institut für Astronomie, Türkenschanzstr. 17, 1180 Wien, Austria
24 Centro de Astrofísica, Faculdade de Ciências, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
25 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
26 Observatorio Astronómico Nacional, Instituto de Aeronáutica, UNAM, Ensenada B.C., Apdo. Postal 877, México
27 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain
28 INAF - Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy
29 INAF - Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
30 INAF - Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna, Italy

Received 01 April 2010, accepted —
Published online later

Key words stars: fundamental parameters, stars: oscillations

We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 36 different instruments at 31 telescopes on 23 different observatories in 12 countries are in use and a total of more than 530 observing nights has been awarded.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction

The Kepler Asteroseismic Science Consortium, KASC, unites hundreds of astroseismologists from institutes all over the world in different topical Working Groups, with the aim of performing seismic studies of all types of pulsating stars across the Hertzsprung-Russell diagram, based on Kepler time-series space photometry. The ground-based observational Working Groups (GBOsWG) take care of the organisation of ground-based observations in support of the Kepler space data. Additional ground-based multi-colour and spectral information are indispensable for a successful seismic modelling (see, e.g., Uytterhoeven et al. 2008a, 2009; Uytterhoeven 2009). The need for ground-based support data is motivated by two objectives: 1) the characterization of all Kepler targets in terms of fundamental stellar parameters, 2) the identification of mode parameters from multi-colour and spectral time-series observations for selected pulsators.

The KASC GBOsWG is making great efforts in organising and planning telescope time on various instruments around the world to meet these objectives and to ensure an optimal seismic exploitation of the Kepler data. So far, 36 different instruments at 31 telescopes on 23 different observatories in 12 countries are involved and a total of more than 530 observing nights has been awarded.

2 Characterization of 5000+ KASC targets

The Kepler space data do not provide information on basic stellar parameters such as effective temperature \((T_{\text{eff}})\), gravity \((\log g)\), metallicity, and the projected rotational velocity \((v \sin i)\), which are important to classify the targets and are crucial for successful asteroseismic modelling. Hence, spectral and multi-colour information are needed to complement the space data. A first effort to compile a catalogue of stellar parameters, derived from Sloan photometry, has been undertaken in the form of the Kepler Input Catalogue (KIC, Latham et al. 2005). However, the accuracy of values of \(T_{\text{eff}}\) and \(\log g\) in KIC is generally too low for seismic modelling. Hence, additional ground-based efforts are required.

The aim of the KASC GBOsWG is to obtain for each of the 5000+ KASC asteroseismic targets a spectrum with a sufficient resolution to derive \(T_{\text{eff}}\), \(\log g\), micro-turbulence, \(v \sin i\) and metallicity (Sousa et al. 2008; Frasca et al. 2006; Bruntt 2009; Niemczura et al. 2009), and multi-colour information to derive reddening, metallicity, and absolute magnitude (Rogers 1995; Kupka & Bruntt 2001).

The systematic characterization of 5000+ targets requires a huge observational effort and involves a long-term project, spread out over several instruments. So far, within the KASC GBOsWG, more than 278 nights have been awarded for the characterization project with 26 different instruments on 17 observatories. More time has been and will be applied for.

The first effort to characterize asteroseismic Kepler targets dates back to 2004. Since then, a project is running to characterize KASC solar-like stars (Molenda-Zakowicz et al. 2007, 2008, 2009b). Nowadays, several observational projects, focussed either on a specific pulsation class or on several classes simultaneously, are ongoing to systematically observe all KASC targets. In Table 1 we present an overview of the awarded observing time for target characterization. Additional information on the observations is given in Uytterhoeven et al. (2010). In addition to the spectroscopic and multi-colour observations, an interferometric project is ongoing with PAVO@CHARA at Mt Wilson Observatory (USA) to measure angular diameters for some of the brightest Kepler targets. Results on the physical parameter determination of a selection of \(\delta\) Sct, \(\gamma\) Dor and hybrid targets are recently presented in Catanzaro et al. (2010).

More observing time has been applied for. Spectropolarimetric observations are planned to investigate magnetic signatures in selected Cepheids, RR Lyr, \(\delta\) Sct, and Be stars with ESPaDOnS@CFHT, Mauna Kea (USA) (P.I. JN, JG-S). An ambitious proposal to observe 95% of all KASC asteroseismic targets with the multi-fiber, multi-object spectrograph LAMOST@4m telescope at Xinglong observatory (CN) has been submitted (P.I. PDC).

3 Time-series observations of selected promising Kepler pulsators

Important key ingredients for an asteroseismic study are precise pulsation frequencies, accurately identified pulsation modes, and strong constraints on atmospheric parameters. Accurate values of the pulsation frequencies will be provided for by the Kepler photometry, while accurate atmospheric parameters will be derived from the ground-based data obtained in the framework of the project outlined in the previous section.

For solar-like oscillators, mode identification relies on the regularity of the frequency pattern in the power spectrum (e.g. Mathur et al. 2010). This method is not directly applicable to larger amplitude pulsators, for which a combination of non-linear effects, rotation, and convection selects the observed modes in a way that is not yet fully understood (e.g. Townsend 2009; Miglio et al. 2008; Suárez et al. (2008, 2009b). Nowadays, several observational projects, focussed either on a specific pulsation class or on several classes simultaneously, are ongoing to systematically observe all KASC targets. In Table 1 we present an overview of the awarded observing time for target characterization. Additional information on the observations is given in Uytterhoeven et al. (2010). In addition to the spectroscopic and multi-colour observations, an interferometric project is ongoing with PAVO@CHARA at Mt Wilson Observatory (USA) to measure angular diameters for some of the brightest Kepler targets. Results on the physical parameter determination of a selection of \(\delta\) Sct, \(\gamma\) Dor and hybrid targets are recently presented in Catanzaro et al. (2010).

More observing time has been applied for. Spectropolarimetric observations are planned to investigate magnetic signatures in selected Cepheids, RR Lyr, \(\delta\) Sct, and Be stars with ESPaDOnS@CFHT, Mauna Kea (USA) (P.I. JN, JG-S). An ambitious proposal to observe 95% of all KASC asteroseismic targets with the multi-fiber, multi-object spectrograph LAMOST@4m telescope at Xinglong observatory (CN) has been submitted (P.I. PDC).

3 Time-series observations of selected promising Kepler pulsators

Important key ingredients for an asteroseismic study are precise pulsation frequencies, accurately identified pulsation modes, and strong constraints on atmospheric parameters. Accurate values of the pulsation frequencies will be provided for by the Kepler photometry, while accurate atmospheric parameters will be derived from the ground-based data obtained in the framework of the project outlined in the previous section.

For solar-like oscillators, mode identification relies on the regularity of the frequency pattern in the power spectrum (e.g. Mathur et al. 2010). This method is not directly applicable to larger amplitude pulsators, for which a combination of non-linear effects, rotation, and convection selects the observed modes in a way that is not yet fully understood (e.g. Townsend 2009; Miglio et al. 2008; Suárez et al. (2008, 2009b). Nowadays, several observational projects, focussed either on a specific pulsation class or on several classes simultaneously, are ongoing to systematically observe all KASC targets. In Table 1 we present an overview of the awarded observing time for target characterization. Additional information on the observations is given in Uytterhoeven et al. (2010). In addition to the spectroscopic and multi-colour observations, an interferometric project is ongoing with PAVO@CHARA at Mt Wilson Observatory (USA) to measure angular diameters for some of the brightest Kepler targets. Results on the physical parameter determination of a selection of \(\delta\) Sct, \(\gamma\) Dor and hybrid targets are recently presented in Catanzaro et al. (2010).

More observing time has been applied for. Spectropolarimetric observations are planned to investigate magnetic signatures in selected Cepheids, RR Lyr, \(\delta\) Sct, and Be stars with ESPaDOnS@CFHT, Mauna Kea (USA) (P.I. JN, JG-S). An ambitious proposal to observe 95% of all KASC asteroseismic targets with the multi-fiber, multi-object spectrograph LAMOST@4m telescope at Xinglong observatory (CN) has been submitted (P.I. PDC).

3 Time-series observations of selected promising Kepler pulsators

Important key ingredients for an asteroseismic study are precise pulsation frequencies, accurately identified pulsation modes, and strong constraints on atmospheric parameters. Accurate values of the pulsation frequencies will be provided for by the Kepler photometry, while accurate atmospheric parameters will be derived from the ground-based data obtained in the framework of the project outlined in the previous section.

For solar-like oscillators, mode identification relies on the regularity of the frequency pattern in the power spectrum (e.g. Mathur et al. 2010). This method is not directly applicable to larger amplitude pulsators, for which a combination of non-linear effects, rotation, and convection selects the observed modes in a way that is not yet fully understood (e.g. Townsend 2009; Miglio et al. 2008; Suárez et al. (2008, 2009b). Nowadays, several observational projects, focussed either on a specific pulsation class or on several classes simultaneously, are ongoing to systematically observe all KASC targets. In Table 1 we present an overview of the awarded observing time for target characterization. Additional information on the observations is given in Uytterhoeven et al. (2010). In addition to the spectroscopic and multi-colour observations, an interferometric project is ongoing with PAVO@CHARA at Mt Wilson Observatory (USA) to measure angular diameters for some of the brightest Kepler targets. Results on the physical parameter determination of a selection of \(\delta\) Sct, \(\gamma\) Dor and hybrid targets are recently presented in Catanzaro et al. (2010).

More observing time has been applied for. Spectropolarimetric observations are planned to investigate magnetic signatures in selected Cepheids, RR Lyr, \(\delta\) Sct, and Be stars with ESPaDOnS@CFHT, Mauna Kea (USA) (P.I. JN, JG-S). An ambitious proposal to observe 95% of all KASC asteroseismic targets with the multi-fiber, multi-object spectrograph LAMOST@4m telescope at Xinglong observatory (CN) has been submitted (P.I. PDC).
Table 1

Overview of the awarded observing time for target characterization. Information is given on the observatory, the telescope and instrument, the number of awarded nights (N) or hours (h), the type of targets, and the principal investigator (P.I.) of the proposal. Proposals aimed at the characterization of several pulsators (\(\gamma\) Dor, \(\delta\) Sct, \(\beta\) Cep, Be, solar-like, roAp, and Slowly Pulsating B (SPB) stars, and stars in clusters) are labelled “combined”. Spectra that were obtained through a filler programme at the beginning or the end of the night, are indicated as “filler”.

Observatory	Telescope	N	Target	P.I.	
Sierra Nevada (E)	0.90m photometer	8N	combined	SM-R	
San Pedro Martir (MX)	1.5m photometer	5N	combined	LFM	
	2.12m spectrograph	2N	combined	LFM	
Tautenburg (D)	2m Coudé	14N	combined	HL	
Teide (E)	IAC80 CAMELOT	14N	combined	KU	
Piszkésteti (H)	1.0m RRC CCD	7N	combined	MP/ZB	
Calar Alto (E)	2.2m BUSCA	5N	combined	KU	
La Palma (E)	INT WFC	5N	combined	KU	
	NOT FIES	3N	combined	KU	
	Mercator HERMES	7N	combined	MB	
	La Palma (E)	2.7m e23	8N	combined	PDC
	Piszkésteti (H)	1.0m RRC CCD	7N	combined	MB
	Tautenburg (D)	2m Coudé	14N	combined	HL
	Torrence (E)	0.90m photometer	2N	Be stars	JG-S
	Skinikas (GR)	1.3m spectrograph	4N	Be stars	JG-S
	La Palma (E)	NOT Alosc	1N	Be stars	JG-S
	Catania (I)	0.9m FRESCO	3N	\(\delta\) Sct stars	GC
	Loiano (I)	1.52m BFOSC	3N	\(\delta\) Sct stars	VR
	Asiago (I)	1.82m AFOSC	3N	\(\delta\) Sct stars	VR
	La Palma (E)	TNG SARG	2h	\(\delta\) Sct stars	VR
	Catania (I)	0.9m FRESCO	15+15+25+12+25N	solar-like stars	JM-Z
	La Palma (E)	TNG SARG	12N	solar-like stars	JM-Z
	Mauna Kea (USA)	CFHT ESPaDOnS	10h	solar-like stars	HB
	Mt Wilson (USA)	CHARA PAVO	>3N	solar-like stars	DH, MI
Steward (USA)	BOK B&C spectrograph	10N	compact stars	EMG	
	La Palma (E)	WHT ISIS	4.5N	compact stars	RØ
	INT IDS	5+4N	compact stars	RO	
	NOT FIES	filler	compact stars	JHT	
	La Palma (E)	NOT FIES	6N+7N	K giants, roAp stars	SF
	Mauna Kea (USA)	CFHT ESPaDOnS	2h	giants in NGC 6811	HB
	La Palma (E)	Mercator HERMES	~45h	binaries with pulsating components	JD
	Tautenburg (D)	2m Coudé	filler	SPB, \(\beta\) Cep stars	HL
	Haute Provence (F)	1.92m SOPHIE	filler	\(\gamma\) Dor stars	PM

2005; Degroote et al. 2010). For these targets, the identification of modes observed by Kepler requires ground-based multi-colour and spectral time-series analysis (e.g. Briquet et al. 2009; Poretti et al. 2009; Uytterhoeven et al. 2008b; Rodriguez et al. 2006).

Multi-epoch spectroscopy is also important in the case of (eclipsing) spectroscopic binaries with a pulsating component, because by using spectra one can directly derive the component masses (Tango et al. 2006; Vučkovic et al. 2007; Creevey et al. 2009; Desmet et al. 2010), and it is possible to disentangle the binary components (Harmance et al. 2004) and study the line-profile variability of the components in full detail (Uytterhoeven et al. 2005).

To date, within the KASC GBOsWG, a total of at least 256 nights has been awarded with 15 different instruments on 13 observatories for specific time-series projects. Additional telescope time has been applied for. An overview of the awarded observing time is given in Table 2. We refer again to Uytterhoeven et al. (2010) for a description of the observations. The projects involve RR Lyr stars and Cepheids, Slowly Pulsating B stars, \(\beta\) Cep stars, hybrid \(\gamma\) Dor/\(\delta\) Sct candidates, and pulsators in clusters. The latter concerns a large photometric multi-site campaign on the clusters NGC 6866, carried out in 2009, and NGC 6811, scheduled for 2010. The cluster NGC 6866 is known to host at least three \(\delta\) Sct and two \(\gamma\) Dor candidates (Molenda-Żakowicz et al. 2009a), and there are 12 known \(\delta\) Sct stars in NGC 6811 (Luo et al. 2009).

4 Future plans

The ground-based counterpart of Kepler is crucial for the successful execution of seismic studies. The GBOsWG will continue to organise ground-based observations to comple-
Table 2 Overview of the awarded time for the collection of multi-colour or spectral time-series of selected promising asteroseismic Kepler targets. Information is given on the observatory, the telescope and instrument, the number of awarded nights (N), the type of targets, and the principal investigator (P.I.) of the proposal.

Observatory	Telescope	N	Targets	PL
Sierra Nevada (E)	1.5m CCD	15N	NGC 6866	RG
Vienna (A)	0.8m CCD	14N	NGC 6866	GH
Piszkestető (H)	0.9m CCD	14N	NGC 6866	RS
Xinglong (CN)	0.85m CCD	14N	NGC 6866	XZ
Białkow (PL)	0.6m CCD	8+14N	NGC 6866	JM-Z
Catania (I)	0.9m CCD	8N	NGC 6866	KB
Sierra Nevada (E)	1.5m CCD	15N	NGC 6811	RG
Vienna (A)	0.8m CCD	14N	NGC 6811	GH
Piszkestető (H)	0.9m CCD	14N	NGC 6811	RS
Xinglong (CN)	0.85m CCD	14N	NGC 6811	XZ
Białkow (PL)	0.6m CCD	10N	NGC 6811	JM-Z
Loiano (I)	1.52m CCD	10N	NGC 6811	HB
Catania (I)	0.9m CCD	10N	NGC 6811	JM-Z
Teide (E)	IAC-80 CAMELOT	10N	NGC 6811	OC
Apache Point (USA)	NMSU 1.0m	10N	NGC 6811	JJ
Lulin (TW)	0.4m SLT	18N	RR Lyr, Cepheids	NCC
Lulin (TW)	1.0m LOT	3N	RR Lyr, Cepheids	NCG
AAVSONet	0.2-0.6m telescopes	>1N	RR Lyr, Cepheids	AH
Sierra Nevada (E)	0.9m photometer	14N	hybrid γ Dor/δ Sct stars	AOG/SM-R
McDonald (USA)	2.0m B&C spectrograph	7N	SPB, γ Dor stars	PDC
La Palma (E)	Mercator HERMES	11N	Cepheids	HL

Acknowledgements. MB is Postdoctoral Fellow of the Fund for Scientific Research, Flanders. This work was supported by MNiSW grant N203 014 31/2650 and by the National Office for Research and Technology through the Hungarian Space Office Grant No. URK09350 and the ‘Lendület’ program of the Hungarian Academy of Sciences.

References

Briquet, M., Uytterhoeven, K., Morel, T., et al., 2009, A&A 506: 269B
Bruntt, H. 2009, A&A 506, 235
Catanzaro, G., Ripepi, V., Bernabei, S. et al.: 2010, MNRAS, submitted
Creevey, O., Uytterhoeven, K., Martín-Ruiz, S., et al.: 2009, A&A 507, 901
Degroote, P., Aerts, C., Baglin, A., et al.: 2010, Nature 464, 259
Desmet, M., Frémat, Y., Baudin, F., et al.: 2010, MNRAS 401, 418

Frasca, A., Guillout, P., Marilli, E., et al.: 2006, A&A 454, 301
Harmanec, P., Uytterhoeven, K., Aerts, C., 2004, A&A 422, 1013
Kupka, F., Bruntt, H.: 2001, in ‘First COROT/MONS/MOST Ground Support Workshop’, ed. C. Sterken (Brussels: Vrije Unv.), 39
Latham, D.W., Brown, T.M., Monet, D.G., Everett, M., Esquerdo, G. A., Hergenrother, C. W.: 2005, AAS 37, 1340
Luo, Y.P., Zhang, X.B., Luo, C.Q., Deng, L.C., Luo, Z.Q., 2009, New Astronomy 14, 584
Mathur, S., Garcia, R.A., Regulo, C., et al. 2010, A&A 511, A46
Miglio, A., Montalban, J., Noels, A., Eggenberger, P.: 2008, MNRAS 386, 1487
Molenda-Zakowicz, J., Frasca, A., Latham, D.W., Jerzykiewicz, M.: 2007, AcA 57, 301
Molenda-Zakowicz, J., Frasca, A., Latham, D.W.: 2008, AcA 58, 419
Molenda-Zakowicz, J., Kopacki, G., Steślicki, M., Narwid, A., 2009a, AcA 59, 193
Molenda-Zakowicz, J., Jerzykiewicz, M., Frasca, A: 2009b, AcA 59, 213
Niemczura, E., Rodler, F., Müller, A.: 2009, CoAst 158, 146
Poretti, E., Michel, E., Garrido, R., et al.: 2009, A&A 506, 85
Rodríguez, E., Amado, P.J., Suárez, J.C., et al.: 2006, A&A 450, 715
Rogers, N. Y.: 1995, Commun. Asteroseismology, 78, 1
Sousa, S.G., Santos, N.C., Mayor, M., et al.: 2008, A&A 487, 373
Suárez, J.C., Bruntt, H., Buzasi, D.: 2005, A&A 438, 633
Tango, W. J., Davis, J., Ireland, et al.: 2006, MNRAS, 370, 884
Townsend, R.: 2009, AIP Conf. Proc. 1170, 355
Uytterhoeven, K., Briquet, M., Aerts, C., Telting, J. H., Harmanec, P., Lefever, K., Cuypers, J.: 2005, A&A 432, 955
Uytterhoeven, K., Poretti, E., Rainer, M., et al.: 2008a, Journal of Physics, Conf. Ser. 118, 2077
Uytterhoeven, K., Mathias, P., Poretti, E., et al.: 2008b, A&A 489, 2213
Uytterhoeven, K.: 2009, CoAst 158, 156
Uytterhoeven, K., Poretti, E., Mathias, P., et al.: 2009, AIP Conf. Proc. 1170, 327
Uytterhoeven, K., Briquet, M., Bruntt, H., et al.: 2010, AN, submitted (this volume)
Vučkovic, M., Aerts, C., Østensen, R., et al.: 2007, A&A 471, 605