OPTIMAL COMPARISON OF P-NORMS OF DIRICHLET POLYNOMIALS

A. DEFANT AND A. PÉREZ

ABSTRACT. Let $1 \leq p < q < \infty$. We show that

$$\sup \|D\|_{H_q} \|D\|_{H_p} = \exp \left(\frac{\log x}{\log \log x} \left(\log \sqrt{\frac{q}{p}} + O \left(\frac{\log \log \log x}{\log \log x} \right) \right) \right),$$

where the supremum is taken over all non-zero Dirichlet polynomials of the form $D(s) = \sum_{n \leq x} a_n n^{-s}$. An application is given to the study of multipliers between Hardy spaces of Dirichlet series.

1. INTRODUCTION

Let $1 \leq p < \infty$. Given a Dirichlet polynomial $D(s) = \sum_n a_n n^{-s}$, its p-norm is defined as

$$\|D\|_{H_p} := \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |D(it)|^p dt \right)^{1/p}. \quad (1)$$

The fact that the previous limit exists, can be argued by means of Bohr’s one-to-one correspondence between Dirichlet series and (formal) power series in infinitely many variables [3]. Using that every $n \in \mathbb{N}$ has a unique prime number decomposition $n = p^{\alpha} := p_1^{\alpha_1} p_2^{\alpha_2} \ldots$, where $p = (p_n)_{n \in \mathbb{N}}$ is the ordered sequence of primes and $\alpha \in \mathbb{N}_0^{(\mathbb{N})}$, the set of eventually null sequences in $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Following Bohr [3] we can identify every Dirichlet series $D = \sum_n a_n n^{-s}$ with the (formal) power series

$$LD \equiv \sum_{\alpha \in \mathbb{N}_0^{(\mathbb{N})}} a_{p^\alpha} z^\alpha,$$

the so-called Bohr lift. In case $D(s)$ is a Dirichlet polynomial, LD is then a trigonometric polynomial. And if $d\omega$ denotes the Haar measure on the infinite-dimensional torus $\mathbb{T}^\mathbb{N}$, Birkhoff Ergodic Theorem implies that the limit in (1) exists, being $\|D\|_{H_p} = \|LD\|_{L_2(\mathbb{T}^\mathbb{N})}$ (see [3] for the details). This shows in particular that $\| \cdot \|_{H_p}$ is a norm on the space of Dirichlet polynomials; and moreover, its completion \mathcal{H}_p can be seen as a Banach space of Dirichlet series isometric to the Hardy space $H_p(\mathbb{T}^\mathbb{N})$ (defined as in [5]) through Bohr’s identification. The

2010 Mathematics Subject Classification. 30B50, 42AXX, 42BXX.

Key words and phrases. Dirichlet polynomial, prime number, trigonometric polynomial.

The research of the second author was partially done during a stay in Oldenburg (Germany) under the support of a PhD fellowship of “La Caixa Foundation”, and of the projects of MINECO/FEDER (MTM2014-57838-C2-1-P) and Fundación Séneca - Región de Murcia (19368/PI/14).
systematic study of the Banach spaces \mathcal{H}_p started in [11] and [9]. Recall that in the
setting of almost periodic functions, this type of limit was firstly considered by
Besicovitch [2].

Given $1 \leq p, q < \infty$ we define

$$\mathfrak{U}(q, p, x) := \sup \|D\|_{\mathcal{H}_q} \text{ taken over all } 0 \neq D(s) = \sum_{n \leq x} a_n s^n.$$

Along the paper we will always assume that $1 \leq p < q < \infty$, since this is the
interesting case.

Let us introduce some notation: given $x > 0$ big enough, we define recursively

$$\log_1 x := \log x$$
$$\log_k x := \log_{k-1} x \text{ for } k > 1.$$

The main result of the paper

reads as follows:

Theorem 1.1. For every $1 \leq p < q < \infty$

$$\mathfrak{U}(q, p, x) = \exp \left(\frac{\log x}{\log_2 x} \left(\log \sqrt{\frac{q}{p}} + O \left(\frac{\log_3 x}{\log_2 x} \right) \right) \right).$$

There already exist inequalities comparing the p-norms of certain type of trigono-
metric polynomials on \mathbb{T}^N

$$P(z) = \sum_{\alpha \in \mathbb{N}_0^N} c_\alpha z^\alpha.$$

Recall that $P(z)$ is said to be m-homogeneous (for some $m \in \mathbb{N}$) if $c_\alpha = 0$
whenever $|\alpha| := \alpha_1 + \alpha_2 + \ldots \neq m$. Let us denote

$$H_{m}^{q,p} := \sup \|P\|_{L_q(\mathbb{T}^N)} / \|P\|_{L_p(\mathbb{T}^N)},$$

where the supremum is taken over all m-homogeneous polynomials $P(z) \neq 0$.
Basing on Weissler’ result [14] about hypercontractive estimates for the Poisson
semigroup, Bayart [11 Theorem 9] proved that

$$H_{m}^{q,p} \leq \left(\frac{\sqrt{q}}{p} \right)^m.$$

Recently, it has been shown that the best constant $C > 0$ such that $H_{m}^{q,p} \leq C^m$, is
precisely $C = \sqrt{q/p}$ (see [7]). We can deduce from the previous estimation that
every polynomial $P(z)$ as above satisfies

$$\|P\|_{L_q(\mathbb{T}^N)} \leq H_{\deg(P)}^{q,p} \|P\|_{L_p(\mathbb{T}^N)},$$

where $\deg(P) := \max \{|\alpha| : c_\alpha \neq 0\}$.

Indeed, the rotation invariance of the Haar measure yields that

$$\|P\|_{L_r(\mathbb{T}^N)} = \|\hat{P}\|_{L_r(\mathbb{T} \times \mathbb{T}^N)} \text{ for each } 1 \leq r < \infty$$

where \hat{P} is the trigonometric polynomial on $\mathbb{T} \times \mathbb{T}^N \equiv \mathbb{T}^N$ given by

$$\hat{P}(z, \omega) = z^{\deg(P)} P(\omega_1 z^{-1}, \omega_2 z^{-1}, \ldots), \quad (z, \omega) \in \mathbb{T} \times \mathbb{T}^N.$$
But \(\tilde{P} \) is an \(m \)-homogeneous polynomial with \(m = \deg(P) \), so can apply (2) to \(\tilde{P} \) and use (4) to conclude that (3) holds. Using Bohr’s lift, we can reformulate this last inequality in terms of Dirichlet polynomials \(D(s) = \sum_n a_n n^{-s} \) as

\[
\|D\|_{H_q^m} \leq H_{q,p}^m \|D\|_{H_q^p}, \quad \text{where } m = \max \{ \Omega(n) : a_n \neq 0 \}.
\]

Recall that \(\Omega(n) = \Omega(p^\alpha) = |\alpha| \) is the function which counts the number of prime divisors of \(n \) (with multiplicity). It satisfies \(\Omega(n) \leq \log n / \log 2 \), which let us deduce that

\[
\mathcal{U}(q,p,x) \leq \exp \left(\frac{\log x}{\log 2} \sqrt{\log x} \frac{\log \sqrt{\frac{q}{p}}}{\log \sqrt{\frac{p}{q}}} \right).
\]

Nevertheless, this upper bound is far from being optimal: A well-known inequality due to Helson [10] together with an old estimation of \(\max \{ d(n) : n \leq x \} \) in terms of \(x \) due to Wigert [15], gives that

\[
\sum_{n \leq x} a_n \nu_n \leq \exp \left(\frac{\log x}{\log 2} \left(\log \sqrt{\frac{q}{p}} + O \left(\frac{\log q}{\log 2} \right) \right) \right).
\]

This is the upper estimate for the special case \(\mathcal{U}(2,1,x) \) given in Theorem 1.1, and hence in this case it remains to prove the lower estimate. But in the general case the estimate for \(\mathcal{U}(q,p,x) \) needs a more delicate argument which is carried out in Section 2. It relies on a decomposition method inspired by [11], in combination with (2) and a deep number theoretical result of Bruijn. Section 3 deals with the construction of a suitable family of Dirichlet polynomials to obtain the lower estimate for \(\mathcal{U}(q,p,x) \). We follow an argument based on the Central Limit Theorem, which was used in [12] to give optimal bounds for the constants in the Khintchine-Steinhaus inequality. To adapt this idea to our problem, we have to develop a quantitative result concerning the convergence of the \(p \)-moments for the special sequence of random variables we handle (Lemma 3.1 and Theorem 3.2).

2. Estimation from Above

Here we prove the upper estimate from Theorem 1.1

\[
\mathcal{U}(q,p,x) \leq \exp \left(\frac{\log x}{\log 2} \left(\log \sqrt{\frac{q}{p}} + O \left(\frac{\log q}{\log 2} \right) \right) \right)
\]

\textbf{Proof.} Fix \(2 \leq y \leq x \) and denote

\[
S(x,y) = \{ n \leq x : p_t | n \Rightarrow p_t \leq y \},
\]

\[
L(x,y) = \{ n \leq x : p_t | n \Rightarrow p_t > y \}.
\]

Let \(D(s) = \sum_{n \leq x} a_n n^{-s} \) be a Dirichlet polynomial. Since each \(1 \leq n \leq x \) can be uniquely decomposed as a product \(n = jk \) for some \(j \in S(x,y) \) and \(k \in L(x,y) \),
We choose a proper value of uniformly for \(p \geq 1 \). To prove it, we will use Bohr’s lift and translate the previous elements into trigonometric polynomials. Let \(P = \mathcal{L} D \) be the trigonometric polynomial

\[
P(\omega) = \sum_{\alpha \in \mathbb{N}_0^n} a_\alpha \omega^\alpha.
\]

If \(\lambda := \pi(y) \), each \(\alpha \in \mathbb{N}_0^n \) has the form \(\alpha = (\gamma, \beta) \) where \(\gamma \in \mathbb{N}_0^\lambda \), \(\beta \in \mathbb{N}_0^{\mathbb{N}} \). Hence, for \(\omega = (u, v) \in \mathbb{T}^\lambda \times \mathbb{T}^\gamma = \mathbb{T}^\gamma \)

\[
P(u, v) = \sum_{\gamma \in \mathbb{N}_0^\lambda} P_\gamma(v) u^\gamma \quad \text{where} \quad P_\gamma(v) = \sum_{\beta \in \mathbb{N}_0^{\mathbb{N}}} c_{(\gamma, \beta)} v^\beta.
\]

For each \(j \in S(x, y) \) we have that \(\mathcal{L} D_j = P_\gamma \) whether \(j = p^{(\gamma,0)}. \) Hence

\[
\| D_j \|^p_{\mathcal{H}_p} = \| P_\gamma \|^p_{L_p^{\mathbb{N} \setminus \gamma}} = \int_{\mathbb{T}^{\mathbb{N} \setminus \gamma}} \left| \int_{\mathbb{T}^\gamma} P(u, v) u^{-\gamma} du \right|^p dv \leq \int_{\mathbb{T}^{\mathbb{N} \setminus \gamma}} \left| \int_{\mathbb{T}^\gamma} |P(u, v)|^p dv \right| du = \| P \|^p_{L_p^{\mathbb{N} \setminus \gamma}} = \| D \|^p_{\mathcal{H}_p}.
\]

This proves the claim. Notice that every \(k \in L(x, y) \) satisfies \(x \geq k \geq y^{\Omega(k)}. \) Combining this inequality with (5) and (2), for each \(j \in S(x, y) \) we have that

\[
\| D_j \|^p_{\mathcal{H}_q} \leq \exp \left(\frac{\log x}{\log y} \log \sqrt{\frac{q}{p}} \right) \| D \|^p_{\mathcal{H}_p}.
\]

Applying this to (7), we get

\[
\| D \|^p_{\mathcal{H}_q} \leq \sum_{k \in S(x, y)} \| D_j \|^p_{\mathcal{H}_q} \leq |S(x, y)| \exp \left(\frac{\log x}{\log y} \log \sqrt{\frac{q}{p}} \right) \| D \|^p_{\mathcal{H}_p}.
\]

A deep result due to Bruijn [13, p. 359, Theorem 2] states that

\[
\log |S(x, y)| = Z \left(1 + O \left(\frac{1}{\log y} + \frac{1}{\log_2 x} \right) \right)
\]

uniformly for \(2 \leq y \leq x \), where

\[
Z = Z(x, y) := \frac{\log x}{\log y} \log \left(1 + \frac{y}{\log x} \right) + \frac{y}{\log y} \log \left(1 + \frac{\log x}{y} \right).
\]

We choose a proper value of \(y \) to minimize the constant in (8).

\[
y := \exp \left(\frac{(\log x)^2}{\log_2 x + \log_3 x} \right) = \log x \exp \left(\frac{(\log x)^2}{\log_2 x + \log_3 x} \right),
\]

Notice that

\[
\frac{y}{\log y} = \frac{\log x}{\log_2 x} O \left(\frac{1}{\log_2 x} \right) \quad \text{and} \quad \log \left(1 + \frac{\log x}{y} \right) = O(\log_3 x).
\]
Using that \(\log (1 + t) \leq t \) for each \(t > 0 \), we can bound
\[
Z \leq \frac{y}{\log y} \left(1 + \log \left(1 + \frac{\log x}{y} \right) \right) \quad \text{and so} \quad Z = \frac{\log x}{\log_2 x} O \left(\frac{\log_3 x}{\log_2 x} \right).
\]
Using this estimation in (9), we get that
\[
(10) \quad \log |S(x, y)| = \frac{\log x}{\log_2 x} O \left(\frac{\log_3 x}{\log_2 x} \right).
\]
On the other hand, for the taken value of \(y \)
\[
(11) \quad \exp \left(\frac{\log x}{\log y} \log \sqrt{\frac{q}{p}} \right) = \exp \left(\frac{\log x}{\log_2 x} \left(\log \sqrt{\frac{q}{p}} + \frac{\log_3 x}{\log_2 x} \right) \right).
\]
Replacing estimations (10) and (11) in (8), we conclude the result. \(\square \)

3. Estimation from below

Along this section we will denote for every \(n \in \mathbb{N} \) and \(z \in \mathbb{C}^n \)
\[
Q_n(z) = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} z_j.
\]
A special case of the Khinchine-Steinhaus inequality given in [12, Theorem 2] states that for every \(r \geq 1 \) and every \(n \)
\[
\int_{\mathbb{T}^n} |Q_n(z)|^{2r} \, dz \leq \Gamma(r + 1).
\]
Let us point out that here the constant on the right side of this inequality is independent of \(n \), and even optimal since by the central limit theorem
\[
\lim_{n \to \infty} \int_{\mathbb{T}^n} |Q_n(z)|^{2r} \, dz = \Gamma(r + 1).
\]
Hence by Stirling’s formula for every \(r \geq 1 \)
\[
(12) \quad \int_{\mathbb{T}^n} |Q_n(z)|^{2r} \, dz \leq \sqrt{2\pi r} \left(\frac{r}{e} \right)^r e^{\frac{4m^2}{e}}.
\]
We will need a similar lower estimate.

Lemma 3.1. For \(m, n \in \mathbb{N} \) with every \(n > m + 1 \) we have
\[
\int_{\mathbb{T}^n} |Q_n(z)|^{2m} \, dz \geq \frac{1}{n^m} \sum_{\alpha \in \mathbb{N}_0^n, |\alpha| = m} \frac{m!}{\alpha!} \frac{z^{\alpha}}{\sqrt{n}^m},
\]
(as usual we here write \(\alpha! = \prod_j \alpha_j! \)), hence by integration (and the orthogonality of the monomials on \(\mathbb{T}^n \))
\[
\int_{\mathbb{T}^n} |Q_n(z)|^{2m} \, dz = \frac{1}{n^m} \sum_{\alpha \in \mathbb{N}_0^n, |\alpha| = m} \left(\frac{m!}{\alpha!} \right)^2.
\]
Now we make use of the Cauchy-Schwartz inequality and again the multinomial formula to deduce that

\[
\left(\sum_{\alpha \in \mathbb{N}_0^{|\alpha|=m}} \frac{m!}{\alpha!} \right)^{1/2} \left(\sum_{\alpha \in \mathbb{N}_0^{|\alpha|=m}} 1 \right)^{1/2} \geq \sum_{\alpha \in \mathbb{N}_0^{|\alpha|=m}} \frac{m!}{\alpha!} = n^m,
\]

and since

\[
\sum_{\alpha \in \mathbb{N}_0^{|\alpha|=m}} 1 = \binom{m+n-1}{m},
\]

we arrive at

\[
(13) \quad \int_{\mathbb{T}^n} |Q_n(z)|^{2m} \, dz \geq n^m \binom{m+n-1}{m}^{-1}.
\]

In order to be able to handle the binomial coefficient we need the following estimate

\[
(14) \quad \binom{m+n-1}{m} \leq \frac{1}{\sqrt{2\pi}} \sqrt{\frac{m+n-1}{n-1}} \frac{(m+n-1)^{m+n-1}}{(n-1)^{n-1} m^m};
\]

indeed, by Stirling’s formula for every \(k \)

\[
\sqrt{2\pi} \left(\frac{k}{e} \right)^k e^{\frac{1}{12k+1}} < k! < \sqrt{2\pi k} \left(\frac{k}{e} \right)^k e^{\frac{1}{12k}}
\]

which gives

\[
\frac{(m+n-1)!}{(n-1)! m!} \leq \frac{\sqrt{2\pi(m+n-1)}}{\sqrt{2\pi(n-1)}} \left(\frac{n-1}{m} \right)^{n-1} e^{\frac{1}{12(n-1)+1}} \frac{e^{\frac{1}{12m+1}}}{2\pi m} \left(\frac{m}{n} \right)^m e^{\frac{1}{12m+1}},
\]

and consequently (14). We combine now (13) and (14) to obtain

\[
\int_{\mathbb{T}^n} |Q_n(z)|^{2m} \, dz \geq \sqrt{2\pi} n^m \sqrt{\frac{m(n-1)}{m+n-1}} \frac{(n-1)^{n-1} m^m}{m+n-1} \frac{m^m}{(1 + \frac{m}{n-1})^{n-1}} \sqrt{\frac{n-1}{m+n-1}} \left(\frac{n}{m+n-1} \right)^m
\]

\[
\geq \sqrt{2\pi} m \left(\frac{m}{e} \right)^m \left(\frac{n-1}{m+n-1} \right)^{m+1/2};
\]

for the last estimate we use that \((1 + 1/x)^x \leq e\) for \(x \geq 1 \). To bound the last factor, we use that \((1 - 1/x)^x > e^{-2}\) for \(x > 2 \), so that

\[
\left(\frac{n-1}{m+n-1} \right)^{m+1/2} \geq e^{-2 \frac{m(n+1/2)}{m+n-1}} \geq e^{-4m^2/n}.
\]

This completes the argument.

To simplify the notation, from now on given two functions \(f, g \) depending on \(p, q \) and probably other variables, we will write \(f \gg g \) when \(f \geq c g \) for some constant \(c = c(p, q) \) depending on \(p \) and \(q \) but independent of the rest of variables.
Theorem 3.2. Let \(n, k \in \mathbb{N} \) with \(n > \lfloor kq/2 \rfloor + 1 > \lfloor kp/2 \rfloor + 1 > 1 \). Then

\[
\frac{\|Q^k_n\|_q}{\|Q^k_n\|_p} \gg k^{\frac{k}{2p} - \frac{1}{p}} \left(\frac{q}{p} \right)^{k/2} e^{-\frac{ak^2}{n}}.
\]

Proof. Since \(kp \geq 2 \) by hypothesis, we can use (12) bound

\[
\|Q^k_n\|_p \leq (\pi kp)^{\frac{1}{2p}} \left(\frac{k}{2e} \right)^{\frac{k}{2}} e^{\frac{1}{4k^2}}.
\]

On the other hand, we want to give a lower bound of \(\|Q^k_n\|_q \). Let \(m := \lfloor kq/2 \rfloor \geq 1 \).

Since \(kq \geq 2m \), we can write

\[
\|Q^k_n\|_q = \int_{\mathbb{T}^n} |Q_n(\omega)|^{kq} \, d\omega \geq \left(\int_{\mathbb{T}^n} |Q_n(\omega)|^{2m} \, d\omega \right)^{\frac{kq}{2m}}.
\]

We can then use the lower bound of Lemma 3.1 in (16) to deduce that

\[
\|Q^k_n\|_q \geq (\sqrt{2\pi m})^{k/2m} \left(\frac{m}{e} \right)^{k/2} e^{-\frac{2km}{n}}.
\]

Combining (17) and (15) we arrive to

\[
\frac{\|Q^k_n\|_q}{\|Q^k_n\|_p} \geq (\sqrt{2\pi m})^{\frac{k}{2m} - \frac{1}{p}} \cdot \frac{m^{\frac{k}{2m}}}{(\frac{k}{2e})^{\frac{k}{2}}} \cdot \frac{m^{\frac{k}{2}}}{(\frac{k}{2})^{\frac{k}{2}}} \cdot e^{\frac{1}{4k^2} e^{-\frac{2km}{n}}}.
\]

Using again \(kq/2 \geq m \geq kq/2 - 1 \), we get that

\[
\frac{m^{\frac{k}{2m}}}{(\frac{k}{2})^{\frac{k}{2}}} \gg k^{\frac{k}{2p} - \frac{1}{p}} \quad \frac{m^{\frac{k}{2m}}}{(\frac{k}{2e})^{\frac{k}{2}}} \geq k^{\frac{k}{2p} - \frac{1}{p}} \quad \frac{m^{\frac{k}{2}}}{(\frac{k}{2})^{\frac{k}{2}}} \gg k^{\frac{k}{2p} - \frac{1}{p}}
\]

(19)

\[
\frac{m^{\frac{k}{2}}}{(\frac{k}{2})^{\frac{k}{2}}} \gg \left(\frac{q}{p} \right)^{\frac{k}{2}} \quad \frac{m^{\frac{k}{2m}}}{(\frac{k}{2e})^{\frac{k}{2}}} \gg \left(\frac{q}{p} \right)^{\frac{k}{2}}.
\]

(20)

Applying (19) and (20) to (18) we can conclude that

\[
\frac{\|Q^k_n\|_q}{\|Q^k_n\|_p} \gg k^{\frac{k}{2p} - \frac{1}{p}} \left(\frac{q}{p} \right)^{\frac{k}{2}} e^{-2km/n} \geq k^{\frac{k}{2p} - \frac{1}{p}} \left(\frac{q}{p} \right)^{\frac{k}{2}} e^{-\frac{ak^2}{n}},
\]

which is what we wanted. \(\square \)

The trigonometric polynomial \(Q^k_n = \sum_{\alpha} c_\alpha z^\alpha \) satisfies that \(c_\alpha \neq 0 \) if and only if \(\alpha \in \mathbb{N}_0^k \) with \(|\alpha| = k \). Let us fix a real number \(x > e^{e^x} \) and consider the values

\[
k(x) := \left\lceil \frac{\log x}{\log_2 x + \log_3 x} \right\rceil \quad \text{and} \quad n(x) := \pi(x^{1/k(x)}).
\]

The correspondent Dirichlet series via Bohr transform is then of the form

\[
D_x(s) = \mathcal{L}^{-1} Q^k_{n(x)} = \left(\sum_{i=1}^{n(x)} \frac{1}{\sqrt{n}p_i^n} \right)^{k(x)} = \sum_{m \leq x} a_m m^{-s}.
\]
Theorem 3.3. For each $1 \leq p < q < \infty$

$$\frac{\|D_{x}\|_{q}}{\|D_{x}\|_{p}} \geq \exp \left(\frac{\log x}{\log_{2} x} \left(\log \sqrt{\frac{q}{p}} + O \left(\frac{\log_{3} x}{\log_{2} x} \right) \right) \right).$$

Proof. Using the prime number theorem, and more specifically a bound due to Dusart [8, Theorem 1.10], we have that for $x^{1/k(x)} \geq 599$

$$\pi(x^{1/k(x)}) \geq \frac{k(x)x^{1/k(x)}}{\log x} \left(1 + \frac{k(x)}{\log x} \right).$$

Therefore

$$\frac{k(x)}{n(x)} \leq \frac{\log x}{x^{1/k(x)}} = \exp \left(\log_{2} x - \frac{\log x}{k(x)} \right) \leq \exp \left(- \frac{\log_{3} x}{\log_{2} x} \right) = \frac{1}{\log_{2} x}.$$

Note that $n(x)/k(x)$ tends to infinity when x does, so for x big enough the hypothesis of Theorem 3.2 are satisfied. This means that we can bound

$$\frac{\|D_{x}\|_{q}}{\|D_{x}\|_{p}} \gg k(x) \frac{1}{x^{1/k(x)}} \left(\frac{q}{p} \right)^{k(x)/2} e^{-\frac{k(x)^{2}q}{n(x)}} = \exp \left(k(x) \left(\log \sqrt{\frac{q}{p}} + f(x) \right) \right)$$

where

$$f(x) = \left(\frac{1}{2q} - \frac{1}{2p} \right) \log k(x) - \frac{k(x)}{n(x)} = O \left(\frac{1}{\log_{2} x} \right).$$

Finally observe that

$$k(x) = \frac{\log x}{\log_{2} x} \left(1 + O \left(\frac{\log_{3} x}{\log_{2} x} \right) \right),$$

which completes the proof. □

4. Application to multipliers

Recall that a sequence of real numbers $(\lambda_{n})_{n \in \mathbb{N}}$ is said to be a multiplier from \mathcal{H}_{p} to \mathcal{H}_{q}, if for every Dirichlet series $\sum_{n} a_{n} n^{-s}$ in \mathcal{H}_{p} we have that $\sum_{n} \lambda_{n} a_{n} n^{-s}$ belongs to \mathcal{H}_{q}. In [1], Bayart makes use of Weissler result [14] to obtain sufficient conditions for a multiplicative sequence (λ_{n}) (i.e., $\lambda_{nm} = \lambda_{n} \lambda_{m}$ for all m, n) to be a multiplier from \mathcal{H}_{p} to \mathcal{H}_{q}. Here we use Theorem [1] to give a sufficient condition for a not necessarily multiplicative sequence of positive real numbers to be a multiplier.

Theorem 4.1. Given $1 \leq p < q < \infty$, let $(\lambda)_{n \in \mathbb{N}}$ be a decreasing sequence of positive real numbers satisfying

$$\sum_{n} \frac{\lambda_{n}}{n \log \log n} \left(\sqrt{\frac{q}{p}} + \varepsilon \right)^{\frac{\log n}{\log \log n}} < \infty \quad \text{for some } \varepsilon > 0.$$

Then $(\lambda_{n})_{n \in \mathbb{N}}$ is a multiplier from \mathcal{H}_{p} to \mathcal{H}_{q}.
Proof. Let us denote
\[g(x) := \exp\left(\frac{\log x}{\log_2 x}\right) A \] where \(A := \log \sqrt{\frac{q}{p}} + \varepsilon. \)

Recall that there exists \(C > 0 \) such that for every \(x > 1 \), the partial sum operator \(S_x(\sum_n a_n n^{-s}) = \sum_{n \leq x} a_n n^{-s} \) has norm \(\|S_x\|_{\mathcal{H}_p \to \mathcal{H}_p} \leq C \log x \). Given \(D = \sum_n a_n n^{-s} \) in \(\mathcal{H}_p \), we then have
\[
\left\| \sum_{n \leq x} \frac{a_n}{n^s} \right\|_{\mathcal{H}_q} \leq \mathcal{O}(q, p, x) \left\| \sum_{n \leq x} \frac{a_n}{n^s} \right\|_{\mathcal{H}_p} \leq \mathcal{O}(q, p, x) C \log x \|D\|_{\mathcal{H}_p}.
\]

By Theorem [1.1] we deduce that when \(x \) is big enough
\[
(21) \quad \left\| \sum_{n \leq x} \frac{a_n}{n^s} \right\|_{\mathcal{H}_q} \leq g(x) \|D\|_{\mathcal{H}_p}.
\]

Moreover, also if \(x \) tends to infinity we have that
\[
0 \leq g'(x) \leq \frac{A g(x)}{x \log_2 x} \quad \text{and so} \quad \frac{d}{dx} \left(\frac{g(x)}{x \log_2 x} \right) \leq g(x) \left(A - \log_2 x \right) < 0.
\]

This means that for \(n \) big enough,
\[
(22) \quad g(n + 1) - g(n) = \int_n^{n+1} g'(x) \, dx \leq \frac{A g(n)}{n \log_2 n}.
\]

Let \(0 < m < M \) be natural numbers. Using Abel’s summation formula
\[
\sum_{n=m}^{M} \frac{\lambda_n a_n}{n^s} = \sum_{n=m}^{M-1} \left(\sum_{k=1}^{n} \frac{a_k}{k^s} \right) (\lambda_n - \lambda_{n+1}) - \left(\sum_{k=1}^{M} \frac{a_k}{k^s} \right) \lambda_m + \left(\sum_{k=1}^{M} \frac{a_k}{k^s} \right) \lambda_M.
\]

Therefore, taking \(m \) big enough and using (21) and (22)
\[
\left\| \sum_{n=m}^{M} \frac{\lambda_n a_n}{n^s} \right\|_q \leq \|D\|_p \left(\sum_{n=m}^{M-1} g(n) (\lambda_n - \lambda_{n+1}) + g(m-1)\lambda_m + g(M)\lambda_M \right)
\]
\[
\leq \|D\|_p \left(2\lambda_m g(m) + \sum_{n=m}^{M-1} \lambda_n (g(n+1) - g(n)) \right)
\]
\[
\leq \|D\|_p \left(2\lambda_m g(m) + A \sum_{n=m}^{M-1} \frac{\lambda_n g(n)}{n \log_2 n} \right).
\]

The series \(\sum_{n} \frac{\lambda_n g(n)}{n \log_2 n} \) converges by hypothesis. On the other hand, it also follows from this fact that there is an increasing sequence \((N_k)_{k \in \mathbb{N}}\) of natural numbers such that \(\lim_k \lambda_{N_k} g(N_k) = 0 \). Hence, the inequality above leads to the existence of a subsequence of the partial sums of \(\sum_n \lambda_n a_n n^{-s} \) converging in \(\mathcal{H}_q \), which in particular means that \(\sum_n \lambda_n a_n n^{-s} \in \mathcal{H}_q \). \(\square \)
5. Remarks

One of the main tools in the proof of Theorem 1.1 has been (2). This estimation is also valid when we deal with m-homogenous polynomials with coefficients in an arbitrary (complex) Banach space (see [4]). This means that the argument in the proof of Theorem 6 also works for Dirichlet polynomials with coefficients in some complex Banach space.

Although probably without leading to a better estimate in Theorem 1.1, we strongly believe that the inequality from (2) can be improved in the following way:

Conjecture 5.1. For every $1 \leq p < q < \infty$ and $m \in \mathbb{N}$ we have that

$$H_{m}^{q,p} \leq m^{\frac{1}{p} - \frac{1}{q}} \left(\frac{q}{p} \right)^{m}.$$

Indeed, for the case in which $p < q$ are powers of two, we can use elementary methods to show that this conjecture is true. We sketch here the proof of the case $p = 2$ and $q = 4$:

Let $P = \sum_{|\alpha|=m} c_{\alpha} \omega^{\alpha}$ be an m-homogeneous polynomial. Given $\alpha, \gamma \in \mathbb{N}_{0}^{(N)}$ we write $\alpha \leq \gamma$ whenever $\alpha_{n} \leq \gamma_{n}$ for each $n \in \mathbb{N}$. We this notation

$$\|P\|_{2}^{4} = \left(\sum_{|\alpha|=m} |c_{\alpha}|^{2} \right)^{2} = \sum_{|\gamma|=m} \left(\sum_{|\alpha|=m, \alpha \leq \gamma} |c_{\alpha}|^{2} |c_{\gamma - \alpha}|^{2} \right).$$

$$\|P\|_{4}^{4} = \sum_{|\gamma|=2m} \sum_{|\alpha|=m} c_{\alpha} c_{\gamma - \alpha} \leq \sum_{|\gamma|=2m} \left(\sum_{|\alpha|=m, \alpha \leq \gamma} |c_{\alpha}|^{2} |c_{\gamma - \alpha}|^{2} \right) \kappa(\gamma, m).$$

where $\kappa(\gamma, m) = |\{ \alpha : |\alpha| = m, \alpha \leq \gamma \}|$. Among all $\gamma \in \mathbb{N}_{0}^{(N)}$ with $|\gamma| = 2m$, we have that the maximum value of $\kappa(\gamma, m)$ is attained whenever the entries of γ are all either one or zero. In this case, we can calculate explicitly $\kappa(\gamma, m)$ in terms of a combinatorial number that can be estimated by means of Lemma 14 as

$$\kappa(\gamma, m) \leq \binom{2m}{m} \leq \frac{4^{m}}{\sqrt{\pi} m}.$$

We then conclude that

$$\|P\|_{4}^{4} \leq \binom{2m}{m} \leq \frac{4^{m}}{\sqrt{\pi} m} \|P\|_{2}^{4}$$

which gives the desired result.

References

[1] BAYART, F., *Hardy spaces of Dirichlet series and their Composition Operators*. Monatshfte für Mathematik, 136(3), 203-236 (2002).

[2] BESICOVITCH, A. S. *On generalized almost periodic functions*. Proceedings of the London Mathematical Society, 2(1), 495-512 (1926).
OPTIMAL COMPARISON OF P-NORMS OF DIRICHLET POLYNOMIALS

[3] BOHR, H., Über die Bedeutung der Potenzreihen unendlich vieler Variablen in der Theorie der Dirichletschen Reihen $\sum \frac{n!}{n^s}$. Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 4, 441–488 (1913).

[4] CARANDO, D., DEFANT, A. AND SEVILLA-PERIS, P. Some polynomial versions of cotype and applications http://arxiv.org/abs/1503.00850 (2015).

[5] COLE, B. J., AND GAMELIN, T. W. Representing measures and Hardy spaces for the infinite polydisk algebra. Proceedings of the London Mathematical Society, 3(1), 112-142 (1986).

[6] BOHR, H., Über die gleichmäßige Konvergenz Dirichletscher Reihen. J. Reine Angew. Math. 143, 203–211 (1913).

[7] DEFANT, A. AND MASTYLO, M. L^p-norms and Mahler's measure of polynomials on the n-dimensional torus. Constr. Approx. DOI 10.1007/s00365-015-9319-x (2015).

[8] DURSAT, P. Autour de la fonction qui compte le nombre de nombres premiers. Thèse, Université de Limoges (1998).

[9] HEDENMALM, H., LINDQVIST, P., AND SEIP, K. A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0, 1)$. Duke Math. J. 86 , no. 1, 1–37 (1997).

[10] HELSON, H. Hankel forms and sums of random variables. Studia Math., 176(1):85–92, 2006.

[11] KONYAGIN, S. V. AND QUEFFÉLEC, H. The Translation 1/2 in the Theory of Dirichlet Series. Real Analysis Exchange, 27(1), 155-176 (2001).

[12] KÖNIG, H. AND KWAPIEN, S. Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors. Positivity, 5(2), 115-152 (2001).

[13] TENENBAUM, G., Introduction to analytic and probabilistic number theory. Vol. 46 , Cambridge university press (1995).

[14] WEISSLER, F. B., Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. Journal of Functional Analysis, 37(2), 218-234 (1980).

[15] WIGERT, S. Sur l’ordre de grandeur du nombre des diviseurs d’un entier. Arkiv. für Math. 3 (1907), 1–9.

INSTITUT FÜR MATHEMATIK. UNIVERSITÄT OLDENBURG. D-26111 OLDENBURG (GERMANY).

E-mail address: defant@mathematik.uni-oldenburg.de

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE MURCIA, ESPINARDO. 30100 MURCIA (SPAIN).

E-mail address: antonio.perez7@um.es