A Program to Determine the Exact Competitive Ratio of List s-Batching with Unit Jobs

Wolfgang Bein † Leah Epstein † Lawrence L. Larmore § John Noga ¶

Abstract

We consider the online list s-batch problem, where all the jobs have processing time 1 and we seek to minimize the sum of the completion times of the jobs. We give a Java program which is used to verify that the competitiveness of this problem is $619/583$.

Keywords: Design of Algorithms; Online Algorithms; Batching; TCP acknowledgment.

1 Background

In the paper "Optimally Competitive List Batching" [1] we give results regarding online batching problems. For one problem – the online list s-batch problem, where all the jobs have processing time 1 and we seek to minimize the sum of the completion times of the jobs – we have used a computer program to obtain some of our results. The purpose of this document to make this program publicly available. The program is printed in Section 4. It is also available for download from www.egr.unlv.edu/~bein/pubs/VerifyLowerBound.java in ASCII format. The reader should consult the full paper [1] or the earlier conference version [2], but in the interest of self-containedness, we briefly define the problem in Section 2 and repeat the results in Section 3.

2 Introduction

A batching problem is a scheduling problem where a set of jobs $\mathcal{J} = \{J_i\}$ with processing times $\{p_i \geq 0\}$ must be scheduled on a single machine, and where \mathcal{J} must be partitioned into batches B_1, \ldots, B_r. All jobs in the same batch are run jointly and each job’s completion time is defined to be the completion time of its batch. We assume that when a batch is scheduled it requires a setup time s. In an s-batch [sequential] problem the length of a batch, i.e., the time required to process the batch, is the sum of the processing times of its member jobs. The goal is to find a schedule that minimizes the sum of completion times $\sum C_i$, where C_i denotes the completion time of J_i in a given schedule.

Given a sequence of jobs, a batching algorithm must assign every job J_i to a batch. More formally, a feasible solution is an assignment of each job J_i to the m_i^{th} batch, $i \in \{1, \ldots, n\}$. In this paper, we consider the list version of the problem, where the given order of the jobs must be respected, i.e., $m_i \leq m_j$ if $i < j$.

*The research of the first and third authors was supported by NSF grant CCR-0132093.
†School of Computer Science, University of Nevada, Las Vegas, NV 89154, USA. bein@cs.unlv.edu
‡Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il
§School of Computer Science, University of Nevada, Las Vegas, NV 89154, USA. larmore@cs.unlv.edu
¶Department of Computer Science, California State University, Northridge, CA 91330, USA. jnoga@csun.edu
An online algorithm for a list batching problem must choose each \(m_i \) before receiving \(J_{i+1} \), i.e.,
each job must be scheduled before a new job is seen, and even before knowing whether \(J_i \) is the
last job. After receiving \(J_i \), an algorithm has only two choices, namely whether to assign \(J_i \) to
the same batch as \(J_{i-1} \) or not. Throughout this paper, we will use the phrase “\(\mathcal{A} \) batches at step \(i \)”
to mean that algorithm \(\mathcal{A} \) decides that \(J_i \) is the first job of a new batch, i.e. \(m_i = m_{i-1} + 1 \). We use
the phrase “current batch” to denote the batch to which the last job was assigned. Then, when
\(J_i \) is received, \(\mathcal{A} \) must decide whether to add \(J_i \) to the current batch, or “close” the current batch
and assign \(J_i \) to a new batch.

Online algorithms are analyzed in terms of \textit{competitiveness}, a measure of the performance that
compares the decision made online with the optimal offline solution for the same problem. We say
that an algorithm \(\mathcal{A} \) is \(C \)-competitive if, for any sequence of jobs \(\{ J_i \} \), \(\mathcal{A} \) finds a schedule whose cost
is at most \(C \cdot cost_{\text{opt}} \), where \(cost_{\text{opt}} \) is the minimum cost of any schedule for that input sequence.

3 The Case \(s = 1 \) and \(p_i = 1 \)

In our papers [1, 2] we give a solution for the offline problem. We define a function \(F[n] \) for \(n \geq 0 \),
as follows. For \(n = m(m+1)/2 + k \) for some \(m \geq 0 \) and some \(0 \leq k \leq m+1 \), then
\[
F[n] = \frac{m(m+1)(m+2)(3m+5)}{24} + k(n+m-k+1) + \frac{k(k+1)}{2}.
\] (1)

\textbf{Theorem 1} For \(\text{optcost}[n] \), \(\text{optcost} = F[n] \) for all \(n \geq 0 \). Furthermore, if \(n = \frac{m(m+1)}{2} + k \) for
some \(m \geq 0 \) and some \(0 \leq k \leq m+1 \), the optimal size of the first batch is
\[
\begin{cases}
m & \text{if } k = 0 \\
m \text{ or } m+1 & \text{if } 0 < k < m+1 \\
m+1 & \text{if } k = m+1
\end{cases}
\]

For the online problem we define the following algorithm in [2, 1]. Define \(\mathcal{D} \) to be the online
algorithm which batches after jobs: 2, 5, 9, 13, 18, 23, 29, 35, 41, 48, 54, 61, 68, 76, 84, 91, 100,
108, 117, 126, 135, 145, 156, 167, 179, 192, 206, 221, 238, 257, 278, 302, 329, 361, 397, 439, 488,
545, 612, 690, 781, 888, 1013, 1159, 1329, 1528, 1760, and 2000+40i for all \(i \geq 0 \).

\textbf{Theorem 2} \(\mathcal{D} \) is \(\frac{619}{583} \)-competitive, and no online algorithm for the list \(s \)-batch problem restricted
to unit job sizes has competitiveness smaller than \(\frac{619}{583} \).

\textit{Proof:} Consider the algorithm \(\mathcal{D} \) described above. Verifying that \(\mathcal{D} \) maintains a cost ratio of at
most \(\frac{619}{583} \) for all job sequences with less than 2000 jobs is done by the Java program in Section [1].
Consider now sequences with more than 2000 jobs. Then the contribution of job \(i > 2000 \) to the
optimal cost is at least \(i+1 \). For \(\mathcal{D} \) the contribution of this job \(i \) consists of the setup times prior
to job 2000 plus the setup times later, plus the number jobs \(i \) as well the the subsequent jobs in
the same batch. This amount is no more than \(48 + \left\lceil \frac{i-2000}{40} \right\rceil + i + 39 \), because 39 is the maximum
number of additional jobs in this batch. Thus the for the ratio of cost we obtain
\[
\frac{48 + \left\lceil \frac{i-2000}{40} \right\rceil + i + 39}{i+1} \leq \frac{48 + i + 38}{i+1} < \frac{41}{40} + \frac{38}{i+1} \leq \frac{619}{583}
\]

The contribution of the first 2000 jobs to the optimal cost is larger than a contribution in a
short sequence (with 2000 jobs or less) because the size of the optimal batches increase with the
number of jobs. Therefore \(\mathcal{D} \) is \(\frac{619}{583} \)-competitive.

We now turn to the verification of the lower bound. Any online algorithm for list batching
restricted to unit jobs is described by a sequence of decisions: should the \(i^{th} \) job be the first job
in a new batch? Thus any such online algorithm can be represented as a path in a decision tree where a node at level \(i \) has two children: one representing the choice not to batch prior to job \(i \) and one representing making job \(i \) the first job in a new batch. We note that the algorithm never batches upon the arrival of the first job. We have verified that any path from the root to a node with depth \(d \) in this decision tree must encounter a node at which the ratio of online cost to offline cost is at least \(\frac{619}{583} \); and thus we have established that lower bound. Verification was done using our computer program.

Interestingly, the lower bound verification program requires consideration of only the portion of the decision tree to depth 100. That is, if the decision tree is truncated at any level less than 100, the lower bound is not obtained. What this means is that, if an online algorithm is informed in advance that there will be at most 99 jobs, it can achieve a competitiveness less than \(\frac{619}{583} \).

Given that there are exponentially many paths from the root to a node at depth \(d \), two notes on efficiency are appropriate here. First, if a node is encountered where the ratio of costs is greater than or equal to \(\frac{619}{583} \) then no further descendants need to be checked. This alone brings the calculation described above to manageable levels. Second, given two nodes \(n_1 \) and \(n_2 \) which have not been pruned by the previous procedure, if the online cost at \(n_1 \) is less or equal to the online cost at \(n_2 \) and both have done their most recent batching at the same point then descendants of \(n_2 \) need not be considered. This follows because the cost on any sequence of choices leading from \(n_2 \) is greater or equal to the same cost on \(n_1 \). We illustrate the preceding ideas with the diagram of Figure 1.

Level \(i \) contains all possible decisions after \(i \) jobs have arrived. The symbolic Gantt chart next to every decision node show the schedule the algorithm constructs at that node. In the Gantt charts black squares denote setup times, while white squares are used to denote jobs. The cost of the algorithm is written into the node. Note that we can prune at level 3 because \(\frac{12}{11} > \frac{619}{583} \). Also note that descendants of node \(n_2 \) need not be considered.

![Pruned Decision Tree](image)

Figure 1: The Decision Tree used in the Pruning Procedure
4 Java Program

The program is compiled with javac, version 1.6.0_10.

```java
import java.util.LinkedList;
import java.util.ListIterator;
import java.util.Vector;

public class VerifyLowerBound {
    // Maximum number of jobs that should be considered
    private static int howFar=100;

    /* The idea is to keep the leaves in the tree (the partial candidates) which
    must be considered (have not been pruned yet) in a linked list called candidates.
    */

    public static void main(String[] args) {
        int count = 0;
        int[] opt = calculateOpt();
        int[] suggested = {0,2,5,9,13,18,23,29,35,41,48,54,61,68,76,84,91,100,108,117,
                          126,135,145,156,167,179,192,206,221,238,257,278,302,329,361,
                          397,439,488,545,612,690,781,888,1013,1159,1329,1528,1760,2000};
        LinkedList<PartialCandidate> candidates = new LinkedList<PartialCandidate>();
        PartialCandidate pC;

        // Start with the tree that results after considering just 1 job
        candidates.add(new PartialCandidate());

        /* While there are candidates remaining, remove the first. If it has reached the
        maximum number of jobs that should be considered, print out the solution and
        add one to the count. If the candidate has not reached the maximum number of
        jobs, check whether
        1) has a cost ratio strictly smaller than 619/583 AND
        2) it does not have a just as good candidate already in the list.
        If both are true, then add both of its children to the list of candidates.
        */

        while (candidates.size() !=0) {
            pC = candidates.remove();
            if (pC.getHowFar() > howFar) {
                count++;
                System.out.println(pC);
            } else if (583*pC.evalCost() < 619*opt[pC.getHowFar()]) {
                if (!existJustAsGood(pC,candidates)) {
                    candidates.add(new PartialCandidate(pC,false));
                }
            }
        }
    }
}
```
candidates.add(new PartialCandidate(pC, true));
}
}
System.out.print(count + " candidates achieve a cost ratio strictly smaller");
System.out.println(" than 619/583 on all sequences no longer than " + howFar);

// Verify that the suggested candidate succeeds up to 2000 jobs
boolean success = true;
int value = 0, j = 0;
for (int i = 1; i < 2000; i++) {
 value += (i - suggested[j] - 1) + i + j + 1;
 if (i == suggested[j + 1])
 j++;
 if (583 * value > 638 * opt[i])
 success = false;
}
System.out.println("The suggested candidate is a success up to 2000 jobs? " + success);

// Uses Theorem 1 to calculate the offline optimum costs
private static int[] calculateOpt() {
 int n, m = 0, howMany = 2001;
 int[] answer = new int[howMany];
 answer[0] = 0;
 for (n = 0; n < howMany - 1; n++) {
 if (2 * n < (m + 2) * (m + 1))
 answer[n + 1] = answer[n] + n + m + 2;
 else {
 m++;
 answer[n + 1] = answer[n] + n + m + 2;
 }
 }
 return answer;
}

/* Checks to see if the list already has a candidate which has gotten as far, has no greater cost, uses no more set ups, and has the most recent set up at the same location, */
private static boolean existJustAsGood(PartialCandidate pC, LinkedList<PartialCandidate> ll) {
 PartialCandidate jAGC;
 ListIterator<PartialCandidate> i = ll.listIterator(0);
 while (i.hasNext()) {
 // Code...
 }
}
jAGC = i.next();
if (
 jAGC.getHowFar() == pC.getHowFar() &&
 jAGC.evalCost() <= pC.evalCost() &&
 jAGC.getSetUps().size() <= pC.getSetUps().size() &&
 jAGC.getSetUps().lastElement().equals(pC.getSetUps().lastElement())
)
 return true;
}
return false;
}

/* An algorithm for the unit job batching problem can be specified by
where the set up times occur (or equivalently where it batches). A
partial candidate is an incompletely specified algorithm. A partial
candidate has a list (stored in setUps) which specifies where the
set up times occur only for sequences of up to a certain length (ie
the depth in the tree - stored in howFar).
*/

class PartialCandidate {

 private Vector<Integer> setUps;
 private int howFar;

 // Create the only reasonable candidate for the sequence of 1 job.
 public PartialCandidate() {
 setUps = new Vector<Integer>();
 setUps.add(0);
 howFar = 1;
 }

 /* Given a partial candidate create a new partial candidate which
 is defined for sequences one job longer. Determine whether to
 add an additional set up at this point based upon the value of
 batch.
 */
 public PartialCandidate(PartialCandidate pC, boolean batch) {
 Vector<Integer> prevSetUps = pC.getSetUps();
 int prevHowFar = pC.getHowFar();

 setUps = new Vector<Integer>();
 for (int i=0; i<prevSetUps.size(); i++) {
 setUps.add(prevSetUps.get(i));
 }
 }
}
if (batch)
 setUp.add(prevHowFar);

howFar = prevHowFar+1;
}

// Calculate cost of the partial candidate on a sequence of howFar jobs.
public int evalCost() {
 int value=0;
 for (int i=1; i<setUp.size(); i++)
 value += (i+setUp.get(i))*(setUp.get(i)-setUp.get(i-1));
 value += (setUp.size()+howFar)*(howFar setUp.size()-1));
 return value;
}

// Used to print out the partial candidate
public String toString() {
 String str="";
 for (int i=0; i setUp.size(); i++)
 str += setUp.get(i)+" ";
 str += "Cost "+evalCost();
 return str;
}

// Accessors
public Vector<Integer> getSetUp() {
 return setUp;
}

public int getHowFar() {
 return howFar;
}

}

References

[1] W. Bein, L. Epstein, J. Noga, and L. Larmore. Optimally competitive list batching. to appear Theoretical Computer Science.

[2] W. Bein, L. Epstein, J. Noga, and L. Larmore. Optimally competitive list batching. In Proceedings of the 9th Scandinavian Workshop on Algorithm Theory, LNCS 3111, pages 77–89. Springer Verlag, 2004.