The authors consider subadditive functions bounded above on a shift-compact set.

Let X be an abelian topological group. A set $A \subseteq X$ is called shift-compact if for every sequence $(x_n)_{n \in \mathbb{N}}$ tending to 0 in X there exists $x \in X$ such that the set $\{n \in \mathbb{N} : x + x_n \in A\}$ is infinite.

The main result is the following theorem.

Theorem. Let X be an abelian metric group and $f : X \to \mathbb{R}$ a subadditive function. If f is bounded above on a set $T \subset X$ whose k-fold sum $\sum_{i=1}^{k} T$ is shift-compact for some $k \in \mathbb{N}$, then f is locally bounded at each point of X.

A consequence of the above theorem is that if $f : X \to \mathbb{R}$ is a subadditive function locally bounded at some point, then f is locally bounded at each point of X.

The third section is devoted to some connections among WNT-property, boundedness on a shift-compact set, and local boundedness at a point.

Let us describe the WNT-property. Let $f : X \to \mathbb{R}$ be defined on an abelian metric group and $H^k = f^{-1}(-k, k)$ for $k \in \mathbb{N}$. Function f is called a WNT-function if for every convergent sequence $(u_n)_{n \in \mathbb{N}}$ in X there exist $k \in \mathbb{N}$, an infinite set $M \subset \mathbb{N}$ and $t \in X$ such that $\{t + u_m : m \in M\} \subset H^k$. For a function $f : X \to \mathbb{R}$ defined on an abelian metric group the following implications hold:

(i) if f is locally bounded at a point, then f is bounded on a shift-compact set in X;
(ii) if f is bounded on a shift-compact set in X, then f is WNT.

Furthermore, if $f : X \to \mathbb{R}$ defined on an abelian metric group is subadditive then the following conditions are equivalent:

(i) f is locally bounded at some point;
(ii) f is WNT;
(iii) f is bounded above on a shift-compact set;
(iv) f is bounded on a shift-compact set.

Reviewer: Sanja Varošanec (Zagreb)

MSC:

- 39B62 Functional inequalities, including subadditivity, convexity, etc.
- 28C10 Set functions and measures on topological groups or semigroups, Haar measures, invariant measures
- 54E52 Baire category, Baire spaces

Keywords:

shift-compact set; null-finite set; Haar-null set; Haar-meagre set; subadditive function; local boundedness

Full Text: DOI

References:

[1] Bachar, J.M., Bade, W.G., Curtis, Jr. P.C., Dales, H.G., Thomas, M.P.: Radical Banach Algebras and Automatic Continuity, Lect. Notes Math. 975, Springer (1981)
[2] Banakh, T.; Jabłońska, E., Null-finite sets in metric groups and their applications, Israel J. Math., 230, 361-386 (2019) · Zbl 1490.39032 · doi:10.1007/s11856-018-1826-6
[3] Berz, E., Sublinear functions on $((\mathbb{R}, \mathbb{R}))$, Aequationes Math., 12, 200-206 (1975) · Zbl 0308.39004 · doi:10.1007/BF01836548
[4] Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, 2nd ed. Cambridge University Press, 1989 (1st ed. 1987) · Zbl
[37] Miller, H.I.; Ostaszewski, A.J., Group action and shift-compactness, J. Math. Anal. Appl., 392, 1, 23-39 (2012) · Zbl 1251.54035 · doi:10.1016/j.jmaa.2012.02.021

[38] Miller, H.I., Miller-Van Wieren, L., Ostaszewski, A.J.: Beyond Erdős-Kunen-Mauldin: Singular Sets with shift-compactness properties. arXiv:1901.09654

[39] Parthasarathy, KR, Probability Measures on Metric Spaces (1967), New York: Academic Press, New York

[40] Pettis, BJ, Remarks on a theorem of E. J. McShane, Proc. Am. Math. Soc., 2, 166-171 (1951) · Zbl 0043.05502 · doi:10.1090/S0002-9939-1951-0048012-3

[41] Piccard, S.: Sur les ensembles de distances des ensembles de points d’un espace Euclidien, Mem. Univ. Neuchâtel, vol. 13, Secrétariat Univ., Neuchâtel (1939) · Zbl 0023.01802

[42] Rosenbaum, RA, Sub-additive functions, Duke Math. J., 17, 227-247 (1950) · Zbl 0043.06603 · doi:10.1215/S0012-7094-50-01721-2

[43] Steinhaus, H., Sur les distances des points des ensembles de mesure positive, Fund. Math., 1, 99-104 (1920) · Zbl 47.0179.02 · doi:10.4064/fm-1-1-93-104

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.