Preparation of PLA blends by polycondensation of D,L-lactic acid using supported 12-tungstophosphoric acid as a heterogeneous catalyst

Liana S. Chafran, Mateus F. Paiva, Juliene O.C. Freitas, Maria José A. Sales, Sílvia C.L. Dias, José A. Dias

Univrsidade de Brasília, Campus Darcy Ribeiro - Asa Norte, Instituto de Química, Laboratório de Catálise (A1-62/21), Brasília-DF, 70910-900, Brazil

ARTICLE INFO

Keywords:
Materials chemistry
Materials science

ABSTRACT

Poly(lactic acid) (PLA) is a significant polymer that is based on renewable biomass resources. The production of PLA by polycondensation using heterogeneous catalysis is a focus for sustainable and economical processes. A series of samples comprising 12-tungstophosphoric acid (H₃PW) supported on activated carbon, silica, and alumina induced the catalytic polymerization of D,L-lactic acid to form blends of PLA. The catalysts were characterized by multiple techniques to confirm the integrity of the Keggin anion as well as the acidity, which is the key property for relating structure to activity. The best reaction conditions were established for H₃PW/C and tested for the other supported catalysts. The obtained polymer was a blend that was characterized as an enantiomeric excess (ee) of as much as 95% L-PLA (PLLA) with a mass average molar mass (Mₐ) of approximately 14,900 daltons. The role of H₃PW in these polymerizations was demonstrated, i.e., without the Keggin acid, only oligomeric units (Mₐ < 10,000 daltons) could be obtained. Additionally, inverse relationships between the Mₐ of PLA and the enthalpy (-ΔH) of the strongest sites of the catalysts were distinguished, i.e., PLAMw-H₃PW/Al₂O₃ > PLAMw-H₃PW/SiO₂, whereas the acidity (-ΔH) order was as follows: H₃PW/SiO₂ > H₃PW/Al₂O₃ > H₃PW/C. These findings could be attributed to the correct tuning of strength and the accessibility of the sites to produce longer polymeric chains.

1. Introduction

Poly(lactic acid) (PLA) is one polymer among many that is based on renewable resources and may be used in sustainable plastics. PLA is considered a promising biopolymer due to its properties and its estimated renewable resources and may be used in sustainable plastics. PLA is considered a promising biopolymer due to its properties and its estimated renewable resources and may be used in sustainable plastics. PLA is considered a promising biopolymer due to its properties and its estimated renewal.

Reducing costs in the production of PLA may be achieved through the use of less expensive monomers. The majority of reports in the literature include pure L- or D-lactic acid or L- or D-lactide as the starting source of PLA synthesis [8, 9, 10, 11, 12]. In contrast, the use of a racemic mixture (D,L-lactic acid) as the starting material for PLA is much less explored. Kaitan et al. [13] studied the polymerization of lactic acid and lactide (both D,L) and obtained low (500 – 2300 Da) and high (8 x 10³ - 150 x 10³ Da) molecular mass PDLLA. In both cases, only amorphous polymers were synthesized according to differential scanning calorimetry (DSC).
results. Du et al. [14] prepared atactic PLA from rac-lactide using a Schifff base ligand on aluminum ethyl and isopropanoxide complexes with different chiralities. Kucharczyk et al. [15] synthesized carboxyl-functionalized PLA by the direct melt polycondensation of lactic acid and pentenic acid without any catalyst and concluded that there was a direct influence of the optical purity of the lactic acid monomer (i.e., L or D,L). Pure lactic acid created longer branches with unreacted carboxyl groups compared with D,L-lactic acid, which generated a higher concentration of COOH-end groups. Again, the D,L-lactic acid produced non-crystalline PLA. These examples explain the relatively low level of attention that the use of D,L-lactic acid has received as a possible source of PLA, which is mainly because amorphous materials were created.

Recently, we found that carbon-supported H3PW12O40 could be used as a catalyst in the conversion of D,L-lactic acid to enantioselective blends of PLA [16]. Keggin heteropolyacid (HPA) is an important class of solid acids among which 12-tungstophosphoric acid (H3PW12O40, H3PW) is particularly important because it can be used in acid catalysis for greener processes [17, 18, 19, 20, 21]. It has been shown that the H3PW/C catalyst is an alternative for use in such reactions involving an inexpensive monomer of D,L-lactic acid. Different loadings of H3PW/C and calcination temperatures have been studied to optimize PLA formation. Precise experimental conditions have been developed and have resulted in the formation of PLA blends with a high level of enantiomeric excess (85%) [16].

Based on these results, we considered whether there are more economical or efficient supports for H3PW that could be used efficiently for the same polycondensation reaction. Moreover, we wondered if the same level of enantioselectivity would be possible and whether there could be some additional effect of the carrier or the acidity of the catalyst used. Thus, the objective of this work was to examine cheaper supports (silica and alumina) for H3PW catalysts that, under similar conditions of the polycondensation reaction, could produce PLA with the same high enantiomeric selectivity. A comparison was conducted with the carbon-supported system, and we verified the properties of the obtained PLA polymers via 1H/13C NMR spectroscopy, powder X-ray diffraction (XRD), specific optical rotation, gel permeation chromatography (GPC), and DSC.

2. Materials and methods

2.1. Preparation of the supported catalysts

The supported catalysts were obtained by the impregnation technique. Solutions of H3PW (H3PW12O40 nH2O; 99.9%, obtained from Sigma, USA) in 0.1 mol L−1 hydrochloric acid (HCl, acquired from Vetec, Brazil) were prepared to attain 20, 30, and 40 wt.% H3PW on the supports (activated carbon, silica, and alumina, purchased from Aldrich, USA). The detailed procedure can be found elsewhere [16]. The prepared catalysts were subjected to different calcination temperatures (200, 300, and 400 °C) in a muffle furnace (EDG model 3P-S, Brazil) for 4 h. The supported catalysts were analyzed by elemental analyses (EDXRF spectrometer from Shimadzu, model EDX 720, Japan) according to a method that has already been described in the literature [22, 23]. The results confirmed that the actual and nominal loadings were similar (±2%). Also, no chloride was detected after the calcination.

2.2. Characterisation of the materials

X-ray powder diffraction patterns (XRD) were obtained in a Bruker powder diffractometer (model D8 Focus, 0–2θ, Germany) using CuKα = 0.15418 nm radiation, operating at 40 kV and 30 mA, a scanning rate of 1° min−1 at increments of 0.02° for all of the samples. For the supported catalysts, the 2θ ranges were from 5 to 50° and 5 to 35° for the PLA materials.

The infrared spectra were obtained in a Thermo Scientific Nicolet 6700 model FT-IR spectrometer (USA) in transmittance mode (KBr pellets) with 256 scans, resolution of 4 cm−1, at room temperature (25 °C), from 4000 to 400 cm−1.

The nuclear magnetic resonance (NMR) spectra were obtained for the solid (catalysts) and liquid (PLA) samples. For the solid catalysts, a Bruker, Avance III HD-Ascend model (14.1 T, 600 MHz for 1H) spectrometer (Germany) was used. Magic angle spinning solid state nuclear magnetic resonance (MAS NMR) spectroscopy was performed in a 4-mm CP/MAS probe with zirconia rotors. The conditions for 31P were the following: 243.1 MHz, spin rate of 10 kHz, pulse duration of 4.75 μs, 10 s interval between pulses, and 512 acquisitions. The reference used was NH4H2PO4 (δ = 0.9 ppm), which was corrected to H3PO4 85% (δ = 0 ppm). For the liquid samples, a Varian Mercury Plus spectrometer (USA) was used at 7.05 T (300 MHz for 1H) with a 5-mm glass tube and 20-Hz spin rate. The acquisition conditions of the NMR spectra were the following: i) 1H, 300 MHz, single pulse of 4.5 μs duration, acquisition time of 0.1 s, interval between pulses of 1 s, minimum of 20 acquisitions, and internal reference of CDCl3 (δ = 7.3 ppm); ii) 31P, 75.459 MHz, single pulse of 4.5 μs duration, acquisition time of 0.1 s, 1H decoupling, interval between pulses of 1 s, minimum of 1000 acquisitions, and internal reference of CDC13 (δ = 77.0 ppm).

The textural data were obtained through gaseous N2 physisorption at −196 °C in ASAP 2020C equipment from Micromeritics, USA. The specific surface areas and volumes of the pores were evaluated from the adsorption and desorption isotherms of nitrogen, which were calculated according to the known Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively. The fitting models were obtained using the software provided by the manufacturer (ASAP 2020, V3.01). The degasification operation was performed in 0.5 g of the catalyst, under vacuum at 100 °C, for 12 h, immediately before the adsorption measurements.

The acidities of the catalysts were obtained with microcoulometric pyridine (Aldrich, Sure/Seal, minimum of 99%, USA) adsorption in the liquid phase using cyclohexane (Vetec, 99%, Brazil, purified by distillation under P2O5, Merck, Germany). The calcined supported H3PW (0.5 g) was suspended in anhydrous cyclohexane (50 mL), and a pyridine solution (0.1 mol L−1) in cyclohexane was incrementally added by a syringe pump to the slurry. After each addition, the heat evolved from the reaction of the base with the solid was measured using a calorimeter (model ISC 4300 from Calorimetry Sciences Corporation, USA). Between additions, we waited 4–5 min, which was sufficient to reach system equilibrium. Additional experimental details can be found in the literature reported by our group [24, 25, 26, 27, 28].

Gel permeation chromatography (GPC) profiles were obtained for PLA at 40 °C in a Malvern Instruments model Viscotek RtxMax (UK) equipped with a refractive index detector, a 60-position autosampler, and three GPC columns (8 mm × 30 cm) in KF-802.5, KF-804L, and KF-805L ovens that were compatible with tetrahydrofuran (THF). The mobile phase was eluted at 1 mL min−1 with THF (C6H5O2H, Aldrich, inhibitor-free for HPLC, 99.9%, USA). The system was calibrated using polystyrene. The samples were prepared using 1.6–2.0 mg of synthesized PLA per ml THF and filtered through a 0.45-μm membrane filter.

The specific optical rotation ([α]D25) was determined with an automatic Bellingham + Stanley model ADP220 polarimeter (UK) with a 50-mm filling tube. The measurements were performed at a wavelength of 589.3 nm (sodium D-line) at 25 °C in a solution of chloroform using concentrations of 1 g dl−1. The enantiomeric excess (ee) was calculated according to the following equation: ee (%) = \(\frac{[\alpha]D^25_{polymer} - [\alpha]D^25_{PLLA \ (pure)}}{[\alpha]D^25_{PLLA \ (pure)}} \times 100 \), where [α]D25 polymer and [α]D25 PLLA (pure) are the specific optical rotations of the obtained polymer and the pure PLLA (both at 25 °C), respectively. The value for PLLA was taken as -156° [1].

The DSC curves were constructed with a Shimadzu Scientific Instruments device (model DSC-60, Japan) from -50 to 250 °C at 10 °C min−1 using approximately 5 mg of sample in a closed aluminum crucible under helium flow (30 mL min−1). During the cooling of the samples, a nitrogen flow (100 mL min−1) was used as the drag gas. Two scans were obtained for each sample, and for the analyses, the results of the curves of...
the second scans were used. The temperature at the midpoint of the change in slope of the DSC heat-capacity change was taken as the glass transition temperature (T_g).

2.3. Catalytic polycondensation of D,L-lactic acid

The initial reaction occurred by obtaining a pre-polymer without the addition of catalyst. The reaction was performed using a round-bottomed three-necked glass flask (50 mL) containing 15 mL of D,L-lactic acid (Vetec, 84.5–85.5%, Brazil). With the aid of a condenser coupled to the flask. The system was maintained at 160 °C for 4 h under a constant flow of nitrogen gas (White Martins, industrial grade, 99.998%, Brazil) to facilitate the release of water during this step. After completion, the condenser was removed, and approximately 0.1 wt.% of catalyst was inserted into the flask. The system was placed under vacuum, and the other two necks of the flask were hermetically sealed. Each reaction was kept at a constant temperature of 180 °C for 15 h. The obtained PLA was then dissolved in 10 mL of chloroform (Cromoline, p.a., 99.8%, Brazil) and further centrifuged (4000 rpm) for the recovery of the heterogeneous catalyst. The recrystallization procedure was performed via the addition of 50 mL methanol in a 100-mL round-bottomed glass flask. The material was placed in a rotary evaporator to ultimately obtain the solid polymer. The average yield was approximately 60% as calculated gravimetrically. Additional details of the procedure can be found elsewhere [16].

3. Results and discussion

3.1. Structures and properties of the catalysts

The good results obtained with 20 wt.% H$_3$PW/C in the polycondensation of D,L-lactic acid [16] prompted us to study other supported H$_3$PW systems. The choices of silica and alumina supports were based on the following: i) their wide availability and low cost, and ii) they are catalysts with loadings of 20 wt.% H$_3$PW on silica or alumina that have been studied and characterized by our group [24, 25, 26]. Thus, the good and reliable characterizations of the catalysts enabled us to choose the best for testing.

Thermal studies have demonstrated compromises between the temperature of calcination, the integrity of the Keggin anion, and the acidity [27, 28]. For the supported catalysts, complete characterizations by XRD, FT-IR, and 31P MAS NMR have been accomplished [25, 26, 29, 30]. Essentially, calcinations far beyond 400 °C are not recommended (especially for long times) because decomposition of the Keggin structure becomes evident.

The XRD patterns and FT-IR spectra of the H$_3$PW supported on silica, alumina, and carbon exhibited some similar aspects. All the profiles are practically independent of the H$_3$PW loading from 20 to 40 wt.% and thermal treatments from 200 to 500 °C [25, 26, 29] for H$_3$PW/support (support = carbon or Al$_2$O$_3$). Powder XRD of H$_3$PW, in its hexahydrated form, displayed main peaks at 2θ = 10.4; 25.4 and 33.5°, corresponding to the (110), (222) and (422) planes, respectively [24]. However, it is well known in the literature that the hydration degree concerning the secondary structure changes very much the pattern, because different crystalline systems are detected for each actual hydrated proton present in the structure [24, 27].

The XRD patterns (Figs. 1 and 2) revealed a halo from the respective support and a poor crystalline pattern of 20 wt.% H$_3$PW/support (support = carbon or Al$_2$O$_3$), except for a large peak at 2θ = 8.5° in the XRD of H$_3$PW/carbon. This reflection for H$_3$PW was assigned to the presence of hydrated polymers that were either isolated molecular moieties or small crystallites containing a few Keggin units [31, 32, 33]. Using the Scherrer equation, it was possible to calculate a nanocrystal size of approximately 3 nm. For the 20 wt.% H$_3$PW/Al$_2$O$_3$, it was not possible to detect any characteristic peak of H$_3$PW. However, the H$_3$PW on the silica support (Fig. 3) had peaks of crystalline H$_3$PW for loadings as low as 10 wt.% [25]. In these cases, the crystallite size was also approximately 3 nm (calculated from 2θ ~ 8.5°). Upon treatments at 500 °C, the peaks of crystalline WO$_3$ were observed on all three supports, which confirmed the decomposition of pure H$_3$PW at that temperature [28, 29].

The FT-IR spectra of the non-calcined H$_3$PW showed the fingerprint
bands of the Keggin structure at 1080 cm\(^{-1}\) \((\nu_{\text{as-(P–O)}})\), 983 cm\(^{-1}\) \((\nu_{\text{as-(W=W)})}\), 892 cm\(^{-1}\) \((\nu_{\text{as-(W-Oc-W)})}\) and 797 cm\(^{-1}\) \((\nu_{\text{as-(W-Oe-W)})}\), which agreed with the literature [23]. The FT-IR spectra of the H\(_3\)PW/C (Fig. 4) clearly demonstrated the presences of the Keggin anions on the composites, whereas, in the thermal treatments, the fragmentations of the polyanion could be detected either by the presence of bands from the lacunary phase derivative of Keggin anions or the stretching bands of W–O from the WO\(_3\) moieties [29]. However, for the alumina and silica supports, the superposition of the Keggin fingerprint bands with those in the same region of the materials made it more difficult to observe the primary structure of the H\(_3\)PW [25, 26]. In those cases, one may either subtract the spectra of the support (which requires cautious experimental data) or carefully analyze the bands. In these cases, the analyses were more difficult with lower loadings. For example, for alumina, the presence of the actual bands at 981 (W=O) and 892 cm\(^{-1}\) (W–Oc–W) became more visible with increasing H\(_3\)PW loading (e.g., approximately 40 wt.%).

In this sense, to prove the structure of the H\(_3\)PW on any of these composites, \(^{31}\)P MAS NMR is more effective than other methods (Fig. 5). The spectra of 20% H\(_3\)PW/support (carbon, SiO\(_2\), or Al\(_2\)O\(_3\)) calcined at 400 °C demonstrated the maintenance of the Keggin structure with different degrees of interaction that depended on the support. Clearly, there was a widening of the \(^{31}\)P signal that was characteristic of the Keggin structure and centered at -14.5 ppm for H\(_3\)PW/C, which indicated a strong interaction with this support. A strong interaction was also observed for the alumina-supported system with much lower widening, but a shift of the original H\(_3\)PW signal from -15.1 ppm to -13.5 ppm was present [26]. For H\(_3\)PW/SiO\(_2\), the signal at -14.9 ppm was practically unaffected, independent of the H\(_3\)PW loading [25]. The \(^{31}\)P spectrum of pure H\(_3\)PW has been demonstrated to be dependent on hydration, which can range from -11 to -16 ppm (i.e., the anhydrous to the hydrated form, respectively), according to the literature [24, 34]. Thus, the chemical signal related to the \(^{31}\)P environment of H\(_3\)PW shifted to more positive values (low field) due to the interaction of the support with the Keggin anion. This behavior has been widely established in the literature for H\(_3\)PW supported on silica, alumina, zirconia, and niobia [22, 23, 25, 26]. The same trend has been observed for supported catalysts calcined at 200 and 300 °C, which demonstrates that, in all cases, the Keggin structure was maintained under those preparation conditions. These results are important because they substantiate the acidity properties of these materials. The main effect is the high electronic delocalization on the Keggin

Fig. 4. FT-IR of X% H\(_3\)PW/C calcined at (a) 200; (b) 300; (c) 400 and (d) 500 °C.

Fig. 5. \(^{31}\)P MAS NMR spectra of H\(_3\)PW and supported (20%), calcined at 400 °C.
anion in the donor capacity of H₃PW protons. Once the protons are kept on the secondary structure of H₃PW after thermal treatment, a higher potential acidity will be reached based on the negative charge distribution of the anion on the intact Keggin structure [35].

The proposed interaction observed by ³¹P MAS NMR could be confirmed by measurements of the heating of pyridine adsorption on the solids by microcalorimetry. Table 1 displays the average enthalpies (ΔH₁) and the numbers of the strongest sites of the catalysts (n₁). The leveling effect on the strength and enhanced accessibility to the protons of H₃PW on the different supports have been demonstrated by calorimetry and adsorption (Cal-Ad) method [24, 25, 26]. Supporting H₃PW on different carriers caused their originally strong Brunsted sites to become weaker, which was expected because a fraction of the protons of H₃PW reacted with the mostly basic surface sites of the supports. The order of the measured acid strengths (ΔH₁) was H₃PW > H₃PW/Al₂O₃ > H₃PW/SiO₂ > H₃PW/C, which corresponds to the average enthalpies of 143, 114, 98, and 95 kJ mol⁻¹, respectively. However, the accessibility (n₁) to the strongest acid sites was significantly increased with the supports. The n₁ ordered was H₃PW/Al₂O₃ > H₃PW/C > H₃PW/SiO₂ > H₃PW with the numbers of sites equaling 0.15, 0.13, 0.10, and 0.08 mmol g⁻¹, respectively. Thus, the strengths and the numbers of sites might be important parameters of the catalysts that correlate with some properties of the PLA polymer preparation.

The textural properties of the supported catalysts were obtained (Table 2) using low temperature N₂ adsorption. The nitrogen adsorption-desorption isotherms of the catalysts were determined to be predominantly type IV according to the BET model and IUPAC classification. A decrease of the BET specific surface from the parent support was observed, which could be attributed to the deposition of the nanocrystalline H₃PW on the pore opening, which blocked the entrance of the molecular nitrogen during adsorption. Additionally, the reductions of the original BET specific surfaces from the pure supports were 17%, 18%, and 45% for carbon, alumina, and silica, respectively. Considering that the amount of dispersed H₃PW was the same (20 wt.%), these findings may indicate a possible effect on the activities of the materials.

3.2. Catalytic polycondensation and polymer characterisation

The polycondensation of D,L-lactic acid was optimized for the 20% H₃PW/C catalyst via TG/DTG analysis of the temperature of the maximum derivative mass loss for the degradation of the polymer (T_d) [16]. Based on these best conditions, the supported catalysts on silica and alumina were tested (i.e., at a temperature of 180 °C for 15 h, 0.1 wt.% catalyst, 20 wt.% H₃PW/support calcined at 400 °C). Thus, the PLA produced in each reaction was characterized by ¹H/¹³C NMR, XRD, GPC, and specific optical rotation.

Table 1
Catalyst	Temperature (°C)	ΔH₁ (kJ mol⁻¹)	n₁ (mmol g⁻¹)
H₃PW	200	148	0.08
H₃PW	300	150	0.08
H₃PW	400	130	0.07
20% H₃PW/C	200	96	0.13
20% H₃PW/C	300	93	0.13
20% H₃PW/C	400	91	0.12
20% H₃PW/SiO₂	200	114	0.10
20% H₃PW/SiO₂	300	116	0.11
20% H₃PW/SiO₂	400	110	0.09
20% H₃PW/Al₂O₃	200	98	0.15
20% H₃PW/Al₂O₃	300	100	0.14
20% H₃PW/Al₂O₃	400	97	0.12

* The enthalpies measured in this work are the averages of the first additions of pyridine (limiting reagent) in the calorimetric titration. The standard deviation is ±1 kJ mol⁻¹ in all cases.

The PLA produced was first analyzed by ¹H and ¹³C NMR. Fig. 6a–d shows the ¹H NMR spectra of the polymers obtained after the catalytic reaction using pure silica and 20 wt.% H₃PW/SiO₂ calcined at 200, 300, and 400 °C. In the spectra, the singlet at 7.3 ppm refers to the CDCl₃ solvent, and the quartet between 5.0 and 5.3 ppm is attributable to the hydrogen atoms of the methine group (–CH–CH₃). This quartet appeared with high resolution even though it had small multiplets located between 5.2 and 5.3 ppm. Additionally, there was a doublet at approximately 1.60 ppm that was related to the hydrogen atoms of the methyl group (–CH₃). The observed signals between 4.2 and 4.5 ppm may refer to the presence of oligomeric units. For the polymers catalyzed by 20% H₃PW/SiO₂ and calcined at 200, 300, and 400 °C, it was possible to observe very low signals between 3.6 and 3.9 ppm, which were not evident in the spectra of the polymers obtained from pure silica. For the PLA obtained from pure silica, there was a low signal at approximately 2.3 ppm that was related to the hydrogen atoms associated with the carboxylic acids. Therefore, it was plausible to infer that the PLA obtained by the catalysis with pure silica presented a certain number of monomers in the final structure.

The ¹³C NMR spectra of the PLA obtained from pure silica and 20% H₃PW/SiO₂ calcined at 200, 300, and 400 °C were similar to those obtained with H₃PW/C (Fig. 7a–d). The signals observed at 66.8 ppm were attributable to the carbon of the –CH group of the D isomer, and the signals at 69.0 ppm were attributable to the –CH of the L-isomer in the equimolar mixture of D,L-lactic acid [16]. Additionally, the signals appearing at 16.7 ppm were attributable to the carbon of the –CH₃ group of the L-isomer. At 20.3 ppm, the signals were attributable to the carbon of the –CH₃ group of the D isomer. At 169.7 ppm, the signals were...
attributable to the carbon of the carboxyl group (–C=O). As the calcination temperature of the supported catalysts was increased, an increase in the intensity of the L-isomer signals was observed, which suggests a slight increase in racemization during the polymerization of samples obtained with catalysts that were subjected to higher calcination temperatures.

The 1H NMR spectra of the PLA obtained with pure alumina and 20% H$_3$PW/Al$_2$O$_3$ catalysts are shown in Fig. 8a–d. All spectra revealed a singlet at 7.3 ppm (CDCl$_3$) and a quartet between 5.0 and 5.3 ppm that were attributable to the hydrogen atom of the carboxylic group chain end and the hydrogens of the methine group (–CH–CH$_3$), respectively. The observed doublet at approximately 1.60 ppm was related to the hydrogen of the methyl group (–CH$_3$). The signals between 4.2 and 4.5 ppm referred to the presence of oligomeric units. The spectra revealed a low resolution for the sample catalyzed by pure alumina; however, the resolution sharpened as the calcination temperature increased for the supported catalysts. The signals that appeared at approximately 3.6 and 3.9 ppm for the polymers obtained from 20% H$_3$PW/C and 20% H$_3$PW/SiO$_2$ were not evident for those obtained with 20% H$_3$PW/Al$_2$O$_3$, but instead generated a low intensity signal at 2.2 ppm (which was possibly related to hydrogen atoms associated with carboxylic acids) for pure alumina. These findings suggest that little or no racemization occurred when 20% H$_3$PW/Al$_2$O$_3$ was applied.

Nonetheless, the quartet for the methine group at approximately 5.2 ppm was observed with significantly greater resolution in the 1H NMR spectra of the PLA obtained from pure and supported alumina catalysts than from those obtained from the catalysts using silica or carbon supports. This finding is corroborated by the 13C NMR spectra acquired from the same polymers (Fig. 9). In summary, the spectra of the 1H and 13C NMRs of the PLA obtained by catalytic reactions using supported H$_3$PW on silica and alumina revealed a potential system for the synthesis of enantioselective PLA and possible blends. Importantly, this is an initial qualitative analysis, and complementary techniques will confirm these points.
The PLA products appear to be enantiomeric in form. To prove their crystallinities, X-ray diffraction patterns (Figs. 10 and 11) were acquired for the polymers obtained by the catalytic reaction using pure silica, alumina, and their supported H₃PW. In all cases, two intense peaks at 2θ = 19.1° and 16.7° were observed for planes hkl (203) and (110/200), respectively, and two less intense peaks at approximately 2θ = 22.4° and 14.8° were observed for planes hkl (015) and (010), respectively [36]. These results indicated that one or more of the crystalline enantiomers of PLA formed because patterns of racemic PLA exhibit no XRD peaks [36, 37]. No peaks related to H₃PW [38] or halos from the supports (i.e., silica or alumina) were observed in any synthesized polymer.

Polarimetry is a more specific technique for demonstrating the enantioselective formation of molecules. Table 3 shows the ee achieved for the polymers obtained by the catalytic reactions with H₃PW supported on silica and alumina and by the pure supports. There is a marked increase in the conversion towards the L-lactic moiety. It is interesting to note the blank experiments (pre-polymer) and polymer obtained without catalyst (i.e., catalyzed only by the auto-ionization of the carboxylic acid). In all cases, an enantiomeric excess was formed from the beginning of the reaction (produced pre-polymer for 4 h). These results are consistent with the ¹H/¹³C NMR analyses.

Because the supports by themselves apparently demonstrated the capacity to transform D,L-lactic acid into enantioselective PLA as well as the supported H₃PW catalysts, the role of H₃PW should be clarified. For this purpose, GPC measurements of the produced polymers were important and necessary. Table 4 shows the relative average molar masses of the polymers obtained with the different catalysts under the same reaction conditions. Based on these results, the important role of H₃PW on the polycondensation reactions was confirmed. The acidities of the catalysts were fundamental to obtain a higher relative molar mass of the PLA. In other words, without H₃PW, the produced PLA is much more condensed. The acidities of the polymers were measured by the heat of fusion (ΔHₘ) and the relative molar mass of PLA demonstrated that the polycondensation of PLA reached the desired strength of the acid sites, to disperse it by increasing the molar mass (Mₐ and Mₘ) and the enantiomeric excess in the blends. To make this correlation easier to compare, Table 6 provides and organizes these data.

Before a straight comparison is performed, some remarks should be considered. The pre-polymerization step aimed to remove as many water molecules as possible to form the highest number of oligomers. The reaction medium was maintained in an inert atmosphere (under nitrogen flow) to ensure that the equilibrium of the reaction was displaced towards the product (PLA). After the addition of the catalyst, the polymerization reaction began under reduced pressure (vacuum). The oligomers then reacted with each other through a Fisher esterification, which is a nucleophilic substitution. Briefly, the acidic catalyst furnished a proton to react with the acyl group of one oligomer, which allowed it to be more electrophilic. Subsequently, the substitution of an O-H group with an O-R group of a second oligomer and the release of a water molecule after the formation of a tetra-coordinated intermediate occurred [7, 39, 40]. A proposed schematic of this mechanism is represented in Fig. 13.

The GPC results were essential to understand the H₃PW action in the preparation of PLA. Without any catalyst, only low molar mass oligomers (Mₐ < 10,000 daltons) were formed (Table 6, entries 1 to 3). With pure supports (carbon, silica, and alumina), the average molar mass of the formed PLA decreased as the acidity (ΔHₘ) of the support increased (Table 6, entries 4 to 6). Pure H₃PW (Table 6, entry 7), which had reacted under homogeneous conditions, was too strong of a solid acid for the polymerization because a low Mₘ was obtained. Secondary reactions with strong acids have been commonly observed in previous works [41, 42]. The separation process was more difficult in this case, and the purification of PLA using pure H₃PW demanded more care, because it was a homogeneous catalytic reaction.

The inverse relationship between the acidity of the supports and the relative molar mass of PLA demonstrated that the polycondensation of D,L-lactic acid depended on the acidity of the catalyst, which was expected based on the described mechanism (Fig. 13). The strengths of the catalytic sites were probably limiting in terms of promoting polycondensation without many side reactions. Thus, this acidity should be carefully tuned to attain the best properties of the PLA. Using supported H₃PW was one such method to tune the original acidity of H₃PW, i.e., to reach the desired strength of the acid sites, to disperse it by increasing the specific surface area, and to enhance the number of the available sites by providing their accessibility over the supports [33, 43].

The hypothesis that better control of the polycondensation process can be achieved by tuning the acidity of the H₃PW catalyst was proved by using different supported H₃PW samples. First, developing the method for the separation of PLA and the supported catalysts was an easier process than that for pure H₃PW. Second, we also observed an inverse
relationship between the acidity of the supported H$_3$PW and the relative molar mass of the PLA (Table 6, entries 8 to 10). However, the M_w values were higher than those of the pure supports, and a demonstration that polymerization rather than oligomerization really occurred was achieved. Thus, without H$_3$PW, only relatively lower average molar mass oligomers were formed ($M_w < 10,000$ daltons).

In addition to acidity, the accessibilities of the sites can be inferred for the supported catalysts. The PLA produced from the supported catalysts with the highest numbers of sites (n_1) exhibited higher relative average molar mass (Table 6, entries 8 to 10). The small difference in M_w between 20% H$_3$PW/C and 20% H$_3$PW/alumina might be related to the much higher specific surface (BET) of the former. As is known, the heterogeneous catalysis dispersion of acid sites on the surface of a catalyst is an important property for enhancing reaction yield. For pure supports (C, SiO$_2$, and Al$_2$O$_3$), this trend of higher M_w may also be directly related to the higher specific surface (BET$_C >$ BET$_{SiO_2} >$ BET$_{Al_2O_3}$), due to the higher dispersion of acid sites on larger surfaces.

Another property of PLA with respect to the catalysts pertains to enantioselectivity (ee). A tendency toward the production of selective enantiomers from PLA (PLLA) was observed in the pre-polymer step. In this case, only oligomeric forms of lactic acid were detected as demonstrated by GPC. For pure supports, the general trend involved a decrease of enantioselectivity with increased acidity (Table 6, entries 4 to 6), whereas for supported H$_3$PW, the same trend was observed (Table 6, entries 8 to 10) except for H$_3$PW/alumina. This decrease might be related to competing side reactions during polycondensation as observed in the polydispersity index (M_w/M_n). A possible scheme of the reaction was presented in Fig. 13, and a more detailed description is provided as follows: the oligomers in the L-form grow blocks that connect to each other via catalyst sites and form longer chains with preferred
enantioselectivity. According to the proposed process [16], a cationic SN2 mechanism that is compatible to the inversion of the configuration [1] could explain the enhancement of PLLA in the blend formation. The formation of blends was explained by the linking of block structures (D and L oligomers) interacting with different protons (sites) on the Keggin structure on the supports. These two protonic sites have been demonstrated with the Cal-Ad method [24]. Hence, the enantiomeric blocks might be connected at these sites, which would lead to different PLA

Sample	α_25^deg (deg)	ee (%)
D,L-lactic acid	-4	3
PLA (pre-polymer)	-109	70
PLA (no catalyst)	-140	82
PLA (carbon)	-146	93
PLA (silica)	-148	94
PLA (alumina)	-132	84
PLA (H3PW)	-123	79
PLA (H3PW/C-400 °C)	-133	85
PLA (H3PW/Silica-200 °C)	-116	74
PLA (H3PW/Silica-300 °C)	-115	73
PLA (H3PW/Silica-400 °C)	-129	83
PLA (H3PW/Alumina-200 °C)	-137	88
PLA (H3PW/Alumina-300 °C)	-148	94
PLA (H3PW/Alumina-400 °C)	-149	95

Table 3
Specific optical rotations and enantiomeric excesses (ee) of the D,L-lactic acid starting reagent and different polymers obtained from each catalyst.

Sample	α_25^deg (deg)	ee (%)
PLA/pre-polymer	2278	2705
PLA/No catalyst	4864	7408
PLA/Carbon	4983	9672
PLA/Silica	5285	8350
PLA/Alumina	5267	7709
PLA/H3PW	5914	9818
PLA/(20% H3PW/C)	8469	15189
PLA/(20% H3PW/Silica)	7982	14273
PLA/(20% H3PW/Alumina)	8161	14827

Table 4
GPC characterizations of the polymers obtained from the different catalytic reactions. Supported H3PW materials were calcined at 400 °C.

PLA/Catalyst	M_n (g mol⁻¹)	M_w (g mol⁻¹)	D (M_w/M_n)
PLA/pre-polymer	2278	2705	1.2
PLA/No catalyst	4864	7408	1.5
PLA/Carbon	4983	9672	1.6
PLA/Silica	5285	8350	1.6
PLA/Alumina	5267	7709	1.5
PLA/H3PW	5914	9818	1.6
PLA/(20% H3PW/C)	8469	15189	1.8
PLA/(20% H3PW/Silica)	7982	14273	1.8
PLA/(20% H3PW/Alumina)	8161	14827	1.8

Fig. 12. DSC curves of PLA polymers obtained by polycondensation with the following: (a) H3PW, (b) SiO2, (c) Al2O3, (d) carbon, (e) 20% H3PW/SiO2, (f) 20% H3PW/Al2O3, and (g) 20% H3PW/C. All H3PW/support catalysts were calcined at 400 °C.

Table 5
Thermodynamic parameters obtained by DSC analyses of the polymers from each catalytic process using pure supports, H3PW, and supported H3PW catalysts.

Polymer/Catalyst	T_g (°C)	T_c (°C)	ΔH_g (J g⁻¹)	T_m (°C)	ΔH_m (J g⁻¹)	ΔH_m (J g⁻¹)
Carbon	53	103	-29	134	0.9	148
SiO2	30	84	-15	120	1.2	138
Al2O3	52	100	-25	-	-	149
H3PW	47	100	-32	135	-	148
20% H3PW/Carbon	55	111	-33	144	8	153
20% H3PW/Silica	45	106	-8	125	-	138
20% H3PW/Alumina	58	110	-34	135	8	150

(-) Represents points where the thermodynamic parameters (T_m or ΔH_m) were attributed to a single PLA species because, in the employed method, that species accounted for the majority contribution, and the other species could not be accurately determined by the program.
polymers that mix and form a blend at the end of the reaction. Kinetic studies [44] could elucidate the preponderance of PLLA molecules generated by the polymerization, and this idea will be tested soon.

4. Conclusions

Poly(lactic acid) (PLA) is a bio-based polymer of great importance among “green polymers” due to the growing number of applications that result from its biodegradability. The preparation of PLA by heterogeneous catalytic reactions is a prominent research area for the application of this material at industrial scales. The main challenge includes producing an economical material with a high level of enantioselective isomer and a low level of contamination. This work dealt with 12-tungstophosphoric acid (H₃PW) supported on carbon, silica, and alumina as candidates for heterogeneous catalysts for the polycondensation reaction of D,L-lactic acid, which is a much less expensive precursor than L-lactic acid. Optimal conditions were developed to prepare blends of PLA with up to 95% enantiomeric excess for poly(L-lactic acid; PLLA) under the following conditions: 20 wt.% H₃PW/support calcined at 400 °C, 0.1 wt.% of the catalyst relative to the D,L-lactic acid, a temperature of 180 °C, and a 15 h reaction time. Several blank tests were performed with pure H₃PW and the supports to establish the advantages of the supported catalysts. Pure H₃PW was too strong of a solid acid that it induced side reactions that formed only low molecular weight polymers ($M_w \approx 9000$ daltons). The supports themselves (i.e., carbon, silica, and alumina) formed only oligomers with M_w values lower than 10,000 daltons. Supported H₃PW formed PLA products with an average M_w in the range from 14,000 to 15,000 Da. Thus, the presence of H₃PW was fundamental for obtaining higher polymeric units. An inverse relationship between the

Table 6

#	Sample/polymer	Property (Catalyst)	Property (PLA)
1	D,L-lactic acid	3	-
2	PLA (pre-polymer)	70	2278 2705
3	PLA (no catalyst)	88	4864 7408
4	Carbon	93	4893 9672
5	SiO₂	94	5285 8350
6	Al₂O₃	84	5267 7709
7	H₃PW	79	5914 9818
8	20% H₃PW/C	91	8469 15189
9	20% H₃PW/Al₂O₃	97	8161 14827
10	20% H₃PW/SiO₂	110	7982 14273

- data not available.

ΔH_1 (kJ mol⁻¹) and n_1 (mmol g⁻¹) are for the strongest sites; n_T ($n_1 + n_2$ mmol g⁻¹) is the total acid sites obtained by the Cal-Ad method based on a pyridine probe.

* PLA properties (ee, enantiomeric excess and the average molar masses, M_n and M_w) obtained from the respective process with or without catalysts.

Fig. 13. Reaction scheme of the catalytic polycondensation process of PLLA using H₃PW/support (support = carbon, silica, or alumina).
M_w of PLA and the enthalpy (∆H_f) of the strongest sites of the catalysts was obtained, i.e., PLAMW-HEPW/C > PLAMW-HEPW/A2O3 > PLAMW-HEPW/SiO2; whereas the acidity (∆H_a) order was H2PW/SiO2 > H2PW/Al2O3 > H2PW/C. Therefore, an adequate strength of the solid acid with a H2PW Keggin structure together with the accessibility of these sites was necessary to achieve a successful polycondensation process.

Declarations

Author contribution statement

Liana S. Chafran: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data. Mateus F. Paiva, Juliene O. C. Freitas: Performed the experiments; Analyzed and interpreted the data. Maria José A. Sales: Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Silvia C. L. Dias, José A. Dias: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This work was supported by CNpq (grant numbers: 304660/2015-9; 307867/2016-1 and 307091/2018-0) and CAPES (grant 001) for research, doctorate, and undergraduate scholarships, and financial support provided by UnB/DPI/IQ, CAPES, MCTI/CNPq (grant numbers: 484384/2012-0 and 480165/2013-0), FAPDF (grant numbers: 0193.001348/2016 and 0193.001799/2017), FINATEC, FINEP/CNPETRO, and Petrobras.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] W. Groot, J. van Krieken, O. Sliekers, S. de Vos, Production and purification of lactic acid and lactide, in: R. Auras, L.-T. Lim, S.M. Selke, H. Tsuji (Eds.), Poly(Lactic Acid): Synth. Struct. Prop. Process. Appl., John Wiley & Sons, Hoboken, NJ, USA, 2010, pp. 1–18.
[2] W. Li, Z. Xu, L. Chen, M. Shan, X. Tian, C. Yang, H. Lv, X. Qian, A facile method to produce graphite oxide-g-poly(lactic acid) as an promising reinforcement for PLA nanocomposites, Chem. Eng. J. 237 (2014) 291–299.
[3] S. Inkinn, M. Hakkarien, A.-C. Albertsson, A. Söderståhl, From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors, Biomacromolecules 12 (2011) 523–532.
[4] R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials, Macromol. Biosci. 4 (2004) 835–864.
[5] J. Lunt, Large-scale production, properties and commercial applications of polylactide polymers, Polym. Degrad. Stabil. 59 (1998) 145–152.
[6] D.J. Garlotta, A literature review of poly(lactic acid), J. Polym. Environ. 9 (2001) 63–84.
[7] A. Söderståhl, M. Stolt, Properties of lactic acid based polymers and their correlation with composition, Prog. Polym. Sci. 27 (2002) 1123–1163.
[8] H. Ren, H. Ying, P. Ouyang, P. Xu, J. Liu, Catalyzed synthesis of poly(lactic acid) by macroporous resin Amberlyst-15 composite lactate utilizing melting polycondensation, J. Mol. Catal. A Chem. 366 (2013) 22–29.
[9] B. Peng, Y. Xu, J. Hu, Z. Bu, L. Wu, B. Li, Synthesis of poly(L-lactic acid) using an improved thermal stability by sulfonic acid-catalyzed melt/solid polycondensation, Polym. Degrad. Stabil. 98 (2013) 1784–1789.
[10] J.M. Raase, K.-H. Reichert, R. Schomacker, Stereospecific Condensation of Lactic Acid in Presence of Heterogeneous Catalysts, Macrom. Sympos. 333 (2014) 216–226.
[11] R. Schomacker, K.-H. Reichert, J. Raase, Method for Producing Poly-L-Lactic Acid by Directly Polycondensing L-Lactic Acid, Patent US20160066628A1, 2016.
[12] S. Pivsa-Art, T. Tong-ngok, S. Junnag, R. Wongpinyan, S. Pivsa-art, synthesis of poly(D-lactic acid) using a 2-steps direct polycondensation process, Energy Procedia 34 (2013) 604–609.