High-quality draft genome sequence of *Effusibacillus lacus* strain skLN1\(^T\), facultative anaerobic spore-former isolated from freshwater lake sediment

Miho Watanabe\(^1,2\)*, Riho Tokizawa\(^1\), Hisaya Kojima\(^1\) and Manabu Fukui\(^1\)

Abstract

Effusibacillus lacus strain skLN1\(^T\) is the type strain of the type species in the genus *Effusibacillus* which is the one of the genera in the family *Alicyclobacillaceae* within the phylum *Firmicutes*. *Effusibacillus lacus* strain skLN1\(^T\) is a Gram-positive, spore-forming thermophilic neutrophile isolated from freshwater lake sediment. Here, we present the draft genome sequence of strain skLN1\(^T\), which consists of 3,902,380 bp with a G + C content of 50.38%.

Keywords: Draft genome sequence, Spore forming bacteria, The family *Alicyclobacillaceae*, The genus *Effusibacillus*

Organism information

Classification and features

E. lacus strain skLN1\(^T\) was isolated from sediments of a freshwater lake, Lake Yamanashi, Japan [8]. Cell wall structure of this strain is Gram-positive type. Cells of this strain are spore-forming rods varied from 5 to 100 \(\mu\)m in length (Fig. 1, Table 1). The major cellular fatty acids of this strain are iso-C\(_{14}:0\), iso-C\(_{15}:0\) and iso-C\(_{16}:0\). Respiratory quinones of this strain are MK-7 (99.5%) and MK-8 (0.5%). The cell-wall peptidoglycan of this strain consists of mesodiaminopimelic acid, alanine and glutamic acid, indicating the presence of A\(_{1}\)y-type polymer. This bacterium is facultative anaerobe and is capable of respiration and fermentation. Sugars, organic acids, peptides and amino acids are used for fermentative growth of this strain. Strain skLN1\(^T\) reduce nitrate to nitrite under anaerobic conditions in the presence of lactate. This strain cannot grow lithoautotrophically with elemental sulfur or thiosulfate under oxic/anoxic conditions in the presence nitrate.

The phylogenetic position of *E. lacus* strain skLN1\(^T\) among the members of the family *Alicyclobacillaceae* is shown in the phylogenetic tree based on the 16S rRNA gene sequence (Fig. 2). Strain skLN1\(^T\), *E. consoiciatus* and *E. pohliae* are classified into an independent cluster in the family *Alicyclobacillaceae*.

* Correspondence: m.watanabe@pop.lowtem.hokudai.ac.jp

\(^1\)Institute of Low Temperature Science, Hokkaido University, Nishi 8, Kita 19, Kita-ku, Sapporo, Hokkaido 060-0819, Japan

\(^2\)Postdoctoral Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Genome sequencing information

Genome project history

E. lacus strain skLN1T was selected for genome sequencing on the basis of its 16S rRNA gene-based phylogenetic position in the family *Alicyclobacillaceae* (Fig. 2). Table 2 shows a summary of the genome sequencing project information and its association with MIGS version 2.0 compliance [9]. The genome consists of 127 contigs, which has been deposited at DDBJ/EMBL/GenBank under accession number BDUF01000000.

Growth conditions and genomic DNA preparation

E. lacus strain skLN1T (DSM 27172) was grown aerobically on TSB liquid medium (Daigo) at 50 °C without shaking. Genomic DNA was extracted from collected cells using Wizard® genomic DNA purification kit (Promega).

Genome sequencing and assembly

The genome sequence of strain skLN1T was determined using paired-end Illumina sequencing at Hokkaido System Science Co., Ltd. (Japan). The 11,205,386 reads were generated from a library with 100 bp inserts. After trimming of the reads, a total of 11,009,340 high-quality filtered paired end reads with a hash length of 95 bp were obtained. Reads were assembled de novo using Velvet version 1.2.08 into 127 scaffolds.

Genome annotation

The genome sequence of strain skLN1T was automatically annotated and analyzed through the MiGAP pipeline [10]. In this pipeline, RNAmer [11] and tRNAscan-SE [12] were used to identify rRNA and tRNA genes, respectively. MetaGene Annotator [13] was used for prediction of open reading frames likely to encode proteins (coding sequences), and functional annotation was performed based on reference databases, including Reference Sequence, TrEMBL, and Clusters of Orthologous Groups. Manual annotation was performed using IMC-GE software (In Silico Biology; Yokohama, Japan). Putative CDSs possessing BLASTP matches with more than 70% coverage, 35% identity and E-values less than 1×10^{-5} were considered potentially functional genes. The CDSs were annotated as hypothetical proteins when these

MIGS ID	Property	Term	Evidence codea
Classification	Domain	Bacteria	TAS [9]
	Phylum	Firmicutes	TAS [18, 19]
	Class	Bacilli	TAS [20]
	Order	Bacillaceae	TAS [21, 22]
	Family	Alicyclobacterales	TAS [3, 23]
	Genus	Effusibacillus	TAS [8]
	Species	Effusibacillus lacus	TAS [8]
	Type strain: skLN1T (BDUF00000000)	Variable	TAS [8]
	Cell shape	Rod	TAS [8]
	Motility	Motile	TAS [8]
	Sporulation	Spore-forming	TAS [8]
	Temperature range	28–60 °C	TAS [8]
	Optimum temperature	50–52 °C	TAS [8]
	pH range; Optimum	7.0–8.5; 7.25–7.5	TAS [8]
	Carbon source	Organic acids, sugars, peptones, amino acids	TAS [8]
	Habitat	Freshwater lake sediment	TAS [8]
	Salinity	0% NaCl (w/v)	TAS [8]
	Oxygen requirement	Facultatively anaerobic	TAS [8]
	Biotic relationship	Free-living	NAS
	Pathogenicity	None	NAS
	Geographic location	Yamanashi, Japan	TAS [8]
	Sample collection	March 2009	NAS
	Latitude–Longitude	not reported	NAS
	Altitude	not reported	NAS

*aEvidence codes - TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). NA not available.

Fig. 1 Photomicrograph of cells of *Effusibacillus lacus* strain skLN1T. Cells were grown on aerobic R2A liquid medium at 50 °C for 1 day.
standard values were not satisfied. Transcription start sites of predicted proteins were corrected based on multiple sequence alignments. The protein-coding genes in the genome were also subjected to analysis on WebMGA [14] for the COGs and Protein family annotations.

Transmembrane helices and signal peptides were predicted by using Phobius [15]. CRISPR loci were distinguished using the CRISPR Recognition Tool [16]. General features of *Effusibacillus lacus* strain skLN1T and the MiXs mandatory information were show in Table 1.

Table 2 Project information

MIGS ID	Property	Term
MIGS 31	Finishing quality	High-quality draft
MIGS-28	Libraries used	TruSeq Nano DNA library prep kit
MIGS 29	Sequencing platforms	Illumina Hiseq paired-end
MIGS 31.2	Fold coverage	282x
MIGS-30	Assemblers	Velvet version 1.2.08
MIGS 32	Gene calling method	MetaGene
Locus Tag	Genbank ID	EFBL
	Genbank Date of Release	September 13, 2017
	GOLD ID	NA
	BIOPROJECT	PRJDB5819

Fig. 2 Phylogenetic tree showing the relationship of *Effusibacillus lacus* strain skLN1T and related representatives. The maximum-likelihood tree was constructed with MEGA version 7.0.20 [24] based on ClustalX version 2.1 [25] aligned sequences of 16S rRNA gene. Bootstrap values (percentages of 1000 replications) of ≥50% are shown at nodes.

Genome properties

The total genome of *E. lacus* strain skLN1T was 3,902,380 bp in size with a GC content of 50.38% (Table 3). It was predicted to contain 3733 genes including 3683 protein-coding genes and 50 RNA genes (for tRNA). Approximately 77.5% of the predicted genes were assigned to COG functional categories. The distribution of genes into COGs functional categories is presented in Table 4.

Insights from the genome sequence

E. lacus strain skLN1T possesses genes of key enzymes for dissimilatory nitrate reduction, i.e. napA (locus tag: EFBL_1421), narGHJI (EFBL_3070–3073), nirK (EFBL_0113), norB (EFBL_3053), nrfA (EFBL_2499) and related genes. Both genes for membrane-bound and periplasmic nitrate reductases (narG and napA)
were identified in the genome. A protein coded in the 61,298–63,379 bp region of contig095 showed high amino-acid sequence similarity (≤ 74%) to nitrous-oxide reductase (NosZ), although the region was not annotated as nosZ gene because of the internal assembly gaps. Genome of E. lacus strain skLN1T contains the genes for complete denitrification to N2 gas (nirK, norB and nosZ) and dissimilatory ammonification (nrfA), although end product of nitrate reduction identified in the previous study was nitrite [8]. The reduction of nitrate to nitrite was reported in several species in the family Alicylobacillaceae, but denitrifying organisms have not been reported in this family. Genetic components involved in dissimilatory nitrate reduction were not found in the genome of Effusibacillus pohliae strain DSM 22757T. Kyrpidia tusciae DSM 2912T possesses norB gene, but genes for the other denitrification enzymes were not found in the genome of this strain [17]. Additionally, genes for dissimilatory sulfur oxidation were not identified in the genome of E. lacus strain skLN1T, although this organism was isolated from a sulfur-oxidizing enrichment culture [8].

Conclusions
This study contributed to the knowledge of genome sequences of the genus Effusibacillus within the family Alicylobacillaceae. The genome of E. lacus strain skLN1T consists of 3683 protein-coding genes and 50 RNA genes. Genes involved in dissimilatory nitrate reduction were identified in the genome of this organism.

Abbreviations
CRISPR: Clustered regularly interspaced short palindromic repeat; MiGAP: Microbial genome annotation pipeline; nap: Periplasmic nitrate reductase; nar: Respiratory nitrate reductase; nir: Nitrite reductase; nor: Nitric oxide reductase; nos: Nitrous oxide reductase; nrf: Ammonia-forming cytochrome c nitrite reductase subunit c552

Acknowledgements
This study was supported by a grant-in-aid for Research Fellow of Japan Society for the Promotion Science to MW and JSPS KAKENHI Grant Number 22370005 to MF.

Authors’ contributions
MF and HK designed and supervised the study. MW characterized the strain. RT and MW carried out all the bioinformatics analysis. MW and HK drafted the manuscript. All authors discussed the data and read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Table 3 Genome statistics
Attribute	Value	% of Total
Genome size (bp)	3,902,380	100
DNA coding (bp)	3,237,729	82.97
DNA G+C (bp)	1,966,019	50.38
DNA scaffolds	127	–
Total genes	3733	100
Protein coding genes	3683	98.66
RNA genes	50	1.34
Pseudo genes	NA	NA
Genes in internal clusters	NA	NA
Genes with function prediction	2588	69.33
Genes assigned to COGs	2893	77.50
Genes with Pfam domains	3111	83.34
Genes with signal peptides	434	11.63
Genes with transmembrane helices	799	21.40
CRISPR repeats	2	–

NA not available

Table 4 Number of genes associated with general COG functional categories
Code	count	%age	description
J	165	4.42	Translation, ribosomal structure and biogenesis
A	0	0.00	RNA processing and modification
K	243	6.51	Transcription
L	146	3.91	Replication, recombination and repair
B	1	0.03	Chromatin structure and dynamics
D	42	1.13	Cell cycle control, cell division, chromosome partitioning
V	30	0.80	Defense mechanisms
T	194	5.20	Signal transduction mechanisms
M	178	4.77	Cell wall/membrane/envelope biogenesis
N	76	2.04	Cell motility
U	69	1.85	Intracellular trafficking, secretion, and vesicular transport
O	125	3.35	Posttranslational modification, protein turnover, chaperones
C	241	6.46	Energy production and conversion
G	176	4.71	Carbohydrate transport and metabolism
E	341	9.13	Amino acid transport and metabolism
F	74	1.98	Nucleotide transport and metabolism
H	165	4.42	Coenzyme transport and metabolism
I	153	4.10	Lipid transport and metabolism
P	177	4.74	Inorganic ion transport and metabolism
Q	83	2.22	Secondary metabolites biosynthesis, transport and catabolism
R	402	10.77	General function prediction only
S	271	7.26	Function unknown
–	840	22.50	Not in COGs

--
