Quantitative assessment of vegetation layers in tropical evergreen forests of Arunachal Pradesh, Eastern Himalaya, India

Sudhansu Sekhar Dash1,*, Samiran Panday2, Dinesh Singh Rawat3, Vikas Kumar4, Subhajit Lahiri3, Bipin Kumar Sinha1 and Paramjit Singh5

1Botanical Survey of India, CGO Complex, Sector-1, Salt Lake, Kolkata 700 064, India
2Department of Botany, Budge Budge College, South 24 Parganas 700 137, India
3Central National Herbarium, Botanical Survey of India, Howrah 711 103, India
4Environmental Technology Division, CSIR-IHBT, Palampur 176 061, India
5Department of Botany, Central University of Punjab, Bathinda 151 001, India

The present study deals with first-hand information on quantitative assessments of different vegetation layers (viz. trees, saplings, seedlings, shrubs and herbs) collected from 57 permanent plots (size 400 m²), established for long-term monitoring of biodiversity and study of functional aspects in Namdapha National Park (NPP), Arunachal Pradesh, Eastern Himalaya, India during 2017. We grouped all the plots into six clusters as study sites. A total of 60 taxa of trees, 67 shrubs and 81 herbs were recorded within 57 plots during the study. The average species richness per site for trees was 20.83 ± 1.62, saplings 16.0 ± 1.15, seedlings 15.83 ± 1.35, shrubs 23.83 ± 1.58 and herbs 32.67 ± 0.92. Total stem density varied from 117.5 to 181 ha –1 (152.58 ± 10.04 ha–1) for trees (circumference ≥31.5 cm), 881 to 3000 ha –1 (1652.17 ± 317.61 ha–1) for shrubs and from 76750 to 98545 ha –1 (92032.17 ± 3246.60 ha –1) for herbs. Tree regeneration status at all the six study sites was ‘good’ (i.e. density of seedlings > saplings > trees). The distribution of tree stems (circumference ≥31.5 cm) into different size classes showed highest relative density in the lowest stem size class (10–20 cm diameter) which also indicates good tree regeneration in the study area. Dipterocarpus retusus Blume was the most dominant tree species in the core zone area of NNP with ‘good’ regeneration status.

Keywords: Biodiversity, Dipterocarpus retusus, regeneration status, tropical evergreen forests, vegetation layers.

Introduction

Quantifiable analysis of community composition is a prerequisite for the precise evaluation of biodiversity, and it plays a central role in conservation biology1–4. Quantification of the contemporary composition of Himalayan forests is crucial in order to assess the role of climate change on future species coexistence and to provide baseline data for the long-term monitoring processes and species shift in the Himalayan ranges5,6. There is a dearth of studies reporting floristic composition and community structure in tropical evergreen forests of Eastern Himalaya, India. Therefore, a detailed ecological study in these forests is necessary to generate baseline data to assess the different ecological consequences of ongoing and future climate change6.

A comprehensive floristic account of the Namdapha National Park (NPP), Arunachal Pradesh was made by Chauhan et al.7. This was later supplemented by some notable discoveries, i.e. Sapria himalayana, Begonia tesserarica, Ceropegia lucida and Bretschneidera sinensis8–11. Nath et al.12 analysed the vegetation and tree population structure in a few selected sites of NNP, while Deb and Sundriyal3,14 observed the tree species gap phase performance, tree regeneration and seedling survival pattern, especially in the buffer zone of the Park. Barbhuiya et al.15 studied the leaf litter decomposition of dominant tree species in NPP. Sarmah et al.16,17 documented the ethno-botanical knowledge and natural resource utilization pattern of the tribal living in and around NNP. Besides, plant community structure and tree regeneration from different districts of Arunachal Pradesh were studied by several researchers18–25. The aim of this study was to evaluate the species composition, richness, density, basal area and dominance of trees, saplings, seedlings, shrubs and herbs in the western part of NNP.

Materials and methods

Study area

The experimental site is situated in the western part of Arunachal Pradesh near the international border of India and Myanmar. The Park occupies an area of 1985 km² and lies between 27°23′–27°39′N lat. and 96°15′–96°58′E long. with altitude ranging from 200 to
4571 m amsl. The Park exhibits high diversity of flora and fauna, and is well known as one of India’s pristine biodiversity regions. The vegetation of the Park ranges from lowland tropical forests to alpine scrubs. The lowland tropical rainforest of Namdapha represents the largest remaining Dipterocarpus forests in India. NNPN exhibits tropical climate experiencing typical monsoon with prolonged rainy season. At lower altitudes, temperature varies from 5°C to 35°C, while it falls to 0°C or below at higher elevations. The annual precipitation ranges from a minimum of 1400 mm to a maximum of 5865–9511 mm. Below at higher elevations, the annual precipitation varies from 5°C to 35°C, while it falls to 0°C or below at higher elevations. The average relative humidity remains high (>60%) throughout the year, except during the dry season (November–April).

Methodology

Experimental sites and field work: The present study was conducted in the western part of NNPN that serves as a gateway for visitors, forest personnel and residents of Gangtok, Lachung and Sela villages (both villages are located on the eastern fringe of the Park). The under-storey vegetation of the study site exhibits dense naturalized bamboo, banana, zingiber, ferns, etc. The high density of the understorey vegetation is one of the major constrains for sampling. Therefore, we adopted stratified random sampling method to study vegetation along six trails (each being 2.5–3 km long) denoted as B1, B2, C1, C2, C3 and C4. Of these, four sites (C1, C2, C3 and C4) belong to the core zone, while two (B1 and B2) fall in the buffer zone of the Park. In the core zone, sites C1–C4 begin from the ‘25 mile base camp’ area towards four directions, i.e. uphill (C2), downhill (C4), east (C3) and west (C1). B1 represents Haldibari–Hornbill area, while B2 represents Bulbuliya–Hornbill area. Sampling plots (long-term monitoring plots) were established, mapped (GPS) and marked along the track route in each site with a distance of 200–250 m. Table 1 provides details of each site.

Data collection

The field data on different vegetation layers, viz. trees, saplings, seedlings, shrubs and herbs were collected using quadrat method in 2017. The entire monitoring plot of size 400 m² was considered as a quadrat for tree vegetation. Within each tree quadrat, four sub-quadrats were nested for saplings (size 25 m²), four for seedlings (size 1 m²), four for shrubs (size 25 m²) and five for herbs (size 1 m²). Circumference was used to differentiate tree life stages into mature trees (C ≥ 31.5 cm at 1.37 m above ground level), saplings (C = 10.5–31.4 cm) and seedlings (C < 10.5 cm). The number of individuals of each species was counted within the respective quadrats and noted on their respective field-data sheets (separate sheets for trees, saplings, seedlings, shrubs and herbs). Circumference was measured with the help of graduated tape or diameter with callipers. Species occurring within each plot were collected, processed and preserved according to standard protocol.

Data analysis

The collected plant specimens were identified with help of the literature and on consultation of different herbaria (ASSAM, ARUN, CAL). The quantifiable data of different vegetation layers of each site were computed for density, basal area and importance value index (IVI) following Misra. In the present study, IVI of herbs was calculated by summing relative frequency and relative density following Rasingam and Parthasarathy. Various diversity indices, viz. dominance index, diversity index, evenness index, Margalef index and Fisher alpha were calculated for each site. Individual trees were divided into eight diameter at breast height (DBH) classes, i.e. 10–20, 21–30, 31–40, 41–50, 51–60 cm, and so on. The density–diameter distribution of trees was calculated to understand the pattern of regeneration and structure of each forest stand. The dominance–diversity curves (d–d curves) for six sites were derived from IVI values of different vegetation layers. The regeneration status of tree species was determined on the basis of population size of seedlings and saplings, following Shankar. The statistical analysis was performed using MS Excel and SPSS.

Table 1. General details of the study sites in Namdapha National Park, Eastern Himalaya, India

Forest stand or trail	Code given	Coordinates	Altitude (m amsl)
Haldibari – Hornbill	B1	27°31’25.68”–27°31’36.89”N, 96°23’45.37”–96°24’59.45”E	460–591
Hornbill – Bulbuliya	B2	27°31’47.35”–27°32’20.79”N, 96°29’13.31”–96°27’29.81”E	560–745
25 mile – 19 mile (west)	C1	27°27’33.19”–27°27’56.13”N, 96°24’35.03”–96°25’30.25”E	483–612
25 mile – Goodbye point (uphill)	C2	27°27’09.64”–27°27’43.52”N, 96°25’39.44”–96°25’53.90”E	586–951
25 mile – 27 mile (east)	C3	27°27’49.31”–27°27’49.31”N, 96°26’02.60”–96°26’26.50”E	542–589
25 mile – riverside (downhill)	C4	27°27’52.62”–27°29’23.23”N, 96°24’17.63”–96°27’49.64”E	331–487

Note: The table provides details of each study site in Namdapha National Park, Eastern Himalaya, India.
Table 2. Phytosociological attributes and diversity indices for different vegetation layers at six study sites

Parameters	Study site	Statistics (N = 6)			
		Maximum	Minimum	Mean	SE
Tree					
No. of plots (size 400 m²)	10 11 10	11	11	9.50	0.67
No. of taxa	21 28 20	28	16	20.83	1.62
No. of individuals	63 80 47	80	47	57.83	5.22
Total stem density (ha⁻¹)	157 181	181	117.5	152.58	10.04
Total basal area (m² ha⁻¹)	34.11 34.05	34.05	22.73	38.05	7.98
Dominance index	0.07 0.05	0.05	0.12	0.11	0.02
Diversity index	2.80 3.10	3.10	2.38	2.65	0.11
Evenness index	0.57 0.78	0.80	0.72	0.72	0.03
Margalef index	4.83 6.16	6.16	2.00	4.83	0.90
Fisher alpha	11.03 15.31	15.31	13.16	11.83	0.97
Tree regeneration status	Fair	38.71	29.01	29.01	1.03
	Good	16.13	20.66	20.66	2.03
	New (only seedling stage)	9.68 3.23	27.62	27.62	3.03
	Nil (without regeneration)	29.03 7.41	38.71	38.71	4.03
	Poor	6.45	10.23	10.23	4.03
Saplings					
No. of plots (size 25 m²)	40 44 40	44	28	38.00	2.68
No. of taxa	18 20	20	14	16.00	1.15
No. of individuals	37 51 40	51	32	36.33	3.77
Total stem density (ha⁻¹)	370 463.64	463.64	400	389.56	38.91
Total basal area (m² ha⁻¹)	0.58 0.78	0.78	0.62	0.61	0.07
Dominance index	0.08 0.21	0.21	0.12	0.11	0.02
Diversity index	2.69 2.74	2.74	1.92	2.48	0.13
Evenness index	0.82 0.78	0.82	0.57	0.77	0.05
Margalef index	4.71 4.83	4.83	2.96	4.22	0.30
Fisher alpha	13.83 12.12	12.12	8.65	12.74	2.43
Seedlings					
No. of plots (size 1 m²)	40 44 40	44	28	38.00	2.68
No. of taxa	17 20	20	14	16.00	1.15
No. of individuals	79 71 64	79	50	57.67	6.73
Total stem density (ha⁻¹)	19,750 16,136	16,136	16,000	16,726.51	
Total basal area (m² ha⁻¹)	0.58 0.78	0.78	0.62	0.61	0.07
Dominance index	0.08 0.21	0.21	0.12	0.11	0.02
Diversity index	2.69 2.74	2.74	1.92	2.48	0.13
Evenness index	0.82 0.78	0.82	0.57	0.77	0.05
Margalef index	4.71 4.83	4.83	2.96	4.22	0.30
Fisher alpha	13.83 12.12	12.12	8.65	12.74	2.43
Shrubs					
No. of plots (size 25 m²)	40 44 40	44	28	38.00	2.68
No. of taxa	17 20	20	14	16.00	1.15
No. of individuals	79 71 64	79	50	57.67	6.73
Total stem density (ha⁻¹)	19,750 16,136	16,136	16,000	16,726.51	
Total basal area (m² ha⁻¹)	0.58 0.78	0.78	0.62	0.61	0.07
Dominance index	0.08 0.21	0.21	0.12	0.11	0.02
Diversity index	2.69 2.74	2.74	1.92	2.48	0.13
Evenness index	0.82 0.78	0.82	0.57	0.77	0.05
Margalef index	4.71 4.83	4.83	2.96	4.22	0.30
Fisher alpha	13.83 12.12	12.12	8.65	12.74	2.43
Herbs					
No. of plots (size 1 m²)	40 44 40	44	28	38.00	2.68
No. of taxa	22 22	22	19	23.83	1.58
No. of individuals	135 110	110	138	152.83	30.22
Total stem density (ha⁻¹)	1350 1000	1000	3000	1652.17	317.61
Total basal area (m² ha⁻¹)	1.37 0.61	0.61	1.3	0.90	0.16
Dominance index	0.09 0.26	0.26	0.14	0.15	0.03
Diversity index	2.6 2.31	2.31	1.67	2.32	0.14
Evenness index	0.79 0.53	0.53	0.64	0.66	0.05
Margalef index	3.66 4.46	4.46	2.16	3.71	0.35
Fisher alpha	6.65 9.26	9.26	5.81	8.01	1.31

Note: The data for **Saplings** and **Seedlings** have been transposed to match the format of the other layers for consistency.
Results and discussion

The variation in phytosociological attributes of different Himalayan forests is driven by environmental variables, including soil condition, slope angles, species composition, elevation, regional climate and topography. In the present study, we found slight to noticeable variations in the phytosociological attributes and diversity indices of all the five vegetation layers, viz. trees, saplings, seedlings, shrubs and herbs from one site to another. The hierarchical cluster analysis (using the Bray–Curtis similarity, single linkage) is depicted in Figure 1 using tree species composition in 57 plots nested across the six sites. Two sites in the buffer zone area, viz. B1 and B2 showed maximum similarity in tree species composition, while maximum dissimilarity was observed between two sites in the core zone area, viz. C1 and C2. A total of 60 species of trees, 67 shrubs and 81 herbs were recorded from the 57 plots. The species richness (SR) among the sites varied from 16 to 28 for trees, 19 to 29 for shrubs, 12 to 20 for saplings, 10 to 20 for seedlings and 31 to 36 for herbs (Table 2), which was much higher than the SR reported by Das et al.24 for shrubs, saplings, seedlings and herbs (except trees layers that were found to be similar) from Pinus merkusii-dominated forests of Anjaw, Arunachal Pradesh. Behera and Kushwaha18 observed high SR for trees (cbh ≥ 15 cm) from Subansiri district, Arunachal Pradesh than that in the present study (trees, cbh ≥ 31.5 cm).

Figure 1. Hierarchical cluster analysis (Bray–Curtis, single linkage) of six study sites using tree species composition.

Figure 2. Distribution of trees into different size classes.

Figure 3. Dominance–diversity curves for different sites (a) trees, (b) shrubs and (c) herbs.
The average density per site recorded in the present study was 152.58 ± 10.04 ha⁻¹ for trees, 1652.17 ± 317.61 ha⁻¹ for shrubs and 92032.2 ± 3246.6 ha⁻¹ for herbs (Table 2) which was in agreement with the density, range of trees and shrubs reported from other forests of Arunachal Pradesh by Rana and Gairola23 and Das et al.,24 but herb density in the present study was much higher comparatively. Pearson’s correlation analysis revealed that the tree density was negatively related with density of shrubs and herbs, while positively (P > 0.05) with the density of saplings and seedlings (Appendix 1). The tree density organized into different size classes represented reverse J-shaped distribution (Figure 2) because a higher stem density occurred in the lower size classes (10–20, 21–30 cm) and it decreased in higher classes. Such distribution in natural forest stands indicates a stable population with good regeneration status.42–44 Occurrence of 17.52% individuals in the core zone area and 14.97% in the buffer zone area in the highest diameter class (>80 cm) in the present study is indicative of old and climax forest that has maintained good regeneration status and reproductive success over the ages.

In the present study, Dipterocarpus retusus was identified as the dominant species in tree layers at all the four sites in the core zone area of NNP (Table 3), while the two sites in the buffer zone, viz. B1 and B2 were dominated by Dirosyllum excelsum and Altingia excelsa respectively. The shrub layer was dominated by Bambusa

Table 3. Four dominant taxa (with IVI value) at different study sites in tree, shrub and herb layers

Site	Tree layer	Shrub layer	Herb layer
B1	Dysoxylum excelsum Blume (58.52)	Bambusa tulda Roxb. (71.53)	Amischotolype mollissima (Blume) Hassk. (50.46)
	Messa ferrea L. (36.58)	Milissa roxburghiana Hook.f. & Thomson (59.22)	Chloranthus elatioi Link (18.19)
	Cleidion javanicum Blume (31.16)	Strobiolanthes secunda T. Anderson (32.37)	Begonia palmata D.Don (17.79)
	Dipterocarpus retusus Blume (22.88)	Sabia lanceolata Colebr. (15.39)	Myrioneuron nutans Wall. ex Hook. f. (15.01)
B2	Altingia excelsa Noronha (26.27)	Boehmeria macrophylla Hornem. (37.92)	Elatostema sessile J.R.Forst. & G. Forst. (24.89)
	Dysoxylum excelsum Blume (25.21)	Sarpsona ternatum (Wall.) Hook.f. (33.18)	Selaginella monospora Spring (19.39)
	Colona floribunda (Wall. ex Kurz) Craib (24.02)	Milissa roxburghiana Hook.f. & Thomson (31.97)	Myrioneuron nutans Wall. ex Hook. f. (13.93)
	Dipterocarpus retusus Blume (21.45)	Myxopyrum smilacifolium (Wall.) Blume (25.60)	Balsispermum calycinum Müll. Arg. (11.73)
C1	Dipterocarpus retusus Blume (143.33)	Bambusa tulda Roxb. (108.09)	Carex baccans Nees (20.99)
	Mallotus roxburghianus Müll. Arg. (23.14)	Musa velutina H.Wendl. & Drude (58.25)	Amischotolype mollissima (Blume) Hassk. (18.59)
	Knema cinerea var. glauca (Blume) Y.H. Li (16.81)	Calamus erectus Roxb. (43.29)	Pollia secundiflora (Blume) Bakh.f. (17.23)
	Ficus altissima Blume (14.35)	Ensete glaucum (Roxb.) Cheesman (33.66)	Centotheca lappacea (L.) Desv. (14.48)
C2	Dipterocarpus retusus Blume (87.44)	Bambusa tulda Roxb. (111.95)	Elatostema platyphyllum Wedd. (24.95)
	Shorea assamica Dyer (45.13)	Calamus erectus Roxb. (38.43)	Selaginella monospora Spring (21.69)
	Quercus lamellosa Sm. (30.74)	Smilax perfoliata Loutr. (15.94)	Amischotolype mollissima (Blume) Hassk. (20.06)
	Terminalia myriocarpa Van Heurck & Müll. Arg. (23.53)	Strobiolanthes secunda T. Anderson (14.22)	Begonia batacoid Buch.-Ham. ex D. Don (16.91)
C3	Dipterocarpus retusus Blume (73.02)	Bambusa tulda Roxb. (70.99)	Phrynium pubinerve Blume (24.91)
	Terminalia myriocarpa Van Heurck & Müll. Arg. (33.28)	Musa balhistanica Colla (35.12)	Elatostema platyphyllum Wedd. (15.29)
	Duabanga grandiflora (DC.) Walp. (20.71)	Musa velutina H. Wendl. & Drude (32.27)	Hedychium coccineum Buch.-Ham. ex Sm. (13.70)
	Cleidion javanicum Blume (18.56)	Calamus erectus Roxb. (25.78)	Rhynechotrichum ellipticum (Wall. ex D. Dietr.) A. DC. (12.79)
C4	Dipterocarpus retusus Blume (54.21)	Bambusa tulda Roxb. (74.30)	Amischotolype mollissima (Blume) Hassk. (20.01)
	Magnolia hodgsonii (Hook. f. & Thomson) H. Keng (35.46)	Calamus erectus Roxb. (48.83)	Piper hymenophyllum (Miq.) Wight (16.56)
	Kydia calycina Roxb. (26.21)	Saurauia napaulensis DC. (21.98)	Begonia batacoid Buch.-Ham. ex D. Don (14.29)
	Bombax ceiba L. (19.78)	Lea indica (Burm. f.) Merr. (18.58)	Psychotria denticulata Wall. (9.54)
Table 4. Comparison of diversity (H'), dominance (D) and evenness (E) indices in the present study with those of other studies from Arunachal Pradesh.

Vegetation layers	Dipterocarpus-dominant tropical forest (Present study)	Pinus merkysti-dominant temperate forest24	Albizia–Artocarpus – Terminalia mixed subtropical forest21	Rhododendron-dominant temperate forest22
Tree	D 0.05–0.16	0.14–0.32	0.072–2.08	0.07–0.08
	H 2.38–3.1	1.82–2.27	0.89–4.17	2.59–2.80
	E 0.57–0.8	0.65–0.78	–	0.92–0.96
Shrub	D 0.08–0.29	0.05–0.12	0.118–0.142	0.09–0.11
	H 1.75–2.81	2.14–3.03	2.99–3.27	2.13–2.46
	E 0.3–0.75	0.97–0.98	–	0.83–0.97
Herb	D 0.06–0.13	0.07–0.11	0.077–0.133	0.06–0.10
	H 2.69–3.17	2.27–2.57	0.55–4.15	2.49–3.01
	E 0.42–0.67	0.94–0.95	–	0.92–0.95
Sapling	D 0.08–0.21	0.16–0.20		
	H 1.92–2.74	1.69–1.88		
	E 0.57–0.9	0.94–0.97		
Seedling	D 0.09–0.26	0.33–0.53		
	H 1.67–2.6	0.91–1.25		
	E 0.5–0.79	0.63–0.78		

Appendix 1. Pearson’s correlation between the phytosociological parameters of different vegetation layers.

Tden	Tbas	Tdom	Tdiv	Saden	Sabas	Sadiv	Seden	Sebas	Sediv	Shden	Shbas	Shdiv	Hden
Tbas	0.65	1.00											
Tdom	−0.61	0.15	1										
Tdiv	0.45	−0.36	−0.94	1									
Saden	0.46	0.57	0.02	0.05	1								
Sabas	0.44	0.40	−0.13	0.24	0.97	1							
Sadiv	0.54	−0.06	−0.90	0.74	−0.19	−0.08	1						
Seden	0.24	0.00	−0.33	0.33	0.33	0.35	−0.01	1					
Sebas	−0.60	−0.45	0.16	−0.07	0.02	0.08	−0.28	0.53	1				
Sediv	0.50	0.28	−0.61	0.34	−0.09	−0.06	0.86	−0.06	−0.19	1			
Shden	−0.57	0.04	0.83	−0.67	0.36	0.28	−0.93	0.10	0.51	−0.73	1		
Shbas	−0.69	−0.19	0.79	−0.58	0.19	0.14	−0.94	0.12	0.55	−0.85	0.96	1	
Shdiv	0.54	−0.07	−0.84	0.74	−0.15	−0.03	0.95	−0.23	−0.46	0.75	−0.92	−0.92	1
Hden	−0.20	−0.73	−0.57	0.73	−0.08	0.13	0.45	0.26	0.52	0.17	−0.23	−0.12	0.41
Hdiv	−0.54	−0.26	0.53	−0.42	−0.45	−0.46	−0.28	−0.91	−0.32	−0.30	0.14	0.21	−0.06

Tden, Tree stem density; Tbas, Tree basal area; Tdom, Tree dominance index; Tdiv, Tree diversity index; Saden, Sapling density; Sabas, Sapling basal area; Sabas, Sapling density; Sebas, Sapling basal area; Sediv, Diversity index; Shden, Shrub density; Shbas, Shrub basal area; Shdiv, Shrub diversity index; Hden, Herb density; Hdiv, Herb diversity index.

tulda at all the sites in the core zone and in site B2 in the buffer zone, while shrub layer in site B1 was dominated by Boehmeria macrophylla. In the core zone Carex bac-cans, Elatostema platyphyllum, Elatostema platyphyllum and Amischotolype mollissima were recorded as the dominant herbs at sites C1, C2, C3 and C4 respectively, while in the buffer zone one site was dominated by Ela-tostema sessile and the other (B1) by Amischotolype mol-lissima.

The d–d curves clearly delimit the vegetational layers along different gradients and also show their dominance due to various ecological factors. Figure 3 shows the d–d curves for trees, shrubs and herbs respectively versus log normal values at different sites. The different diversity indices recorded from NNP were compared with those reported from other Eastern Himalayan forests (Table 4)21,22,24. The sites in the buffer zone area represented slightly higher values of SR, diversity, evenness, Margalef index and Fisher alpha index in comparison to the core zone area in the present study, while inverse results were obtained for dominance index. The tree dominance index showed significant negative correlation with the diversity index ($r = 0.94$, $P < 0.05$). Similar relation between dominance and diversity index was reported in some other Himalayan forests45–48.

The existing natural population of trees at all the six forest stands exhibited ‘good’ regeneration status (i.e. density of seedlings > saplings > trees) in general during the study period, which varied at species level (i.e. same taxon showed different status at different sites). In
Table 5. Regeneration status of tree species in the Namdapha National Park, Arunachal Pradesh during 2017

Tree taxon	Study site					
	B1	B2	C1	C2	C3	C4
Actinodaphne obovata (Nees) Blume	Fair	Nil	–	–	–	–
Aesculus assamica Griff.	New	Nil	–	Nil	–	Fair
Alianthus excelsa Roxb.	Good	Nil	New	New	–	Poor
Alangium chinense (Lour.) Harms	Fair	–	Nil	–	–	–
Albizia procer (Roxb.) Benth.	–	Nil	–	New	–	–
Alnus nepalensis D.Don	–	–	–	–	Nil	–
Altingia excelsa Noronha	Nil	Fair	–	–	–	–
Aralia armata (Wall. ex G.Don) Seem.	Fair Good	–	–	–	Fair	–
Balakata baccata (Roxb.) Esse	–	Poor	Poor	–	–	Nil
Bischofia javanica Blume	Fair	Nil	–	–	–	Nil
Bombax ceiba L.	–	–	–	–	–	Nil
Bridelia glauca Blume	–	Fair	New	Fair	Fair	
Callicarpa arboarea Roxb.	–	–	New	–	Good	–
Cardiota urens L.	–	–	Nil	Fair	–	–
Castanopsis indica (Roxb. ex Lindl.) A.DC.	New	Good	–	–	–	–
Cinnamomum bejolghota (Buch.-Ham.) Sweet	Fair	Good	New	Poor	Fair	New
Cinnamomum glanduliferum (Wall.) Meisn.	Nil	–	–	–	Nil	New
Cleidion javanicum Blume	Fair	Good	–	Fair	Fair	
Colona floribunda (Kurz) Craib	–	–	Fair	–	–	–
Crateva religiosa G.Forst.	–	Nil	–	–	–	–
Diplocarpus retusus Blume	Good	Nil	Good	Good	Fair	Good
Dvabanga grandiflora (DC.) Walp.	–	–	–	–	Fair	–
Dysoxylum excelsion Blume	Good	Good	Fair	Good	Good	Good
Elaeocarpus rugosus Roxb. ex G.Don	–	Fair	–	Fair	–	–
Engelharditia spicata Lechen ex Blume	–	–	Nil	–	Nil	Nil
Erythrina arborescens Roxb.	–	–	–	–	–	–
Evodia fraxinifolia (Hook.) Benth.	–	–	Nil	–	–	–
Ficus altissima Blume	Fair	Nil	Good	New	Good	–
Ficus auriculata Lour.	–	–	–	New	–	–
Ficus nervosa B.Heyne ex Roth	–	Nil	–	–	–	–
Glochidion khasicum (Müll.Arg.) Hook.f.	Nil	Nil	–	–	–	Fair
Grewia eriocarpa Juss.	–	New	Fair	Nil	–	–
Gymnocardia odorata R.Br.	–	Nil	–	–	–	–
Knema cinerea var. glauca (Blume) Y.H. Li	–	Fair	Nil	Good	Poor	Good
Kydia calyclina Roxb.	Nil	–	–	New	Fair	–
Lasianthus lucidus Blume	Nil	Fair	–	Fair	–	–
Litssea monoptera (Roxb.) Pers.	–	Fair	Nil	–	–	–
Macaranga denticulata (Blume) Müll.Arg.	Fair	Good	New	New	–	–
Machilus gamblei King ex Hook. f.	–	Poor	Fair	Poor	Good	–
Magnolia hodgsonii (Hook.f. & Thomson) H.Keng	Good	Good	Fair	Nil	Good	–
Mallotus roxburghianus Müll.Arg.	–	Good	New	Fair	–	–
Mangifera sylvestica Roxb.	Nil	Fair	–	–	–	–
Melia azedarach L.	–	Fair	–	–	–	–
Mesua ferrea L.	Good	–	Poor	Poor	New	–
Ocotea lanceifolia (Schott) Mez	Poor	Good	–	–	Nil	Fair
Olea dioica Roxb.	–	–	–	–	–	–
Oreocnide integrigfolia (Gaudich.) Miq.	–	New	Poor	–	Good	–
Photinia integrigfolia Lindl.	–	–	–	Poor	–	–
Pocanglo (locally identified)	–	Fair	–	–	–	–
Quercus lamellosa Sm.	–	–	Nil	–	–	–
Quercus semiserrata Roxb.	Fair	Nil	Fair	Good	–	–
Saprosma ternatum (Wall.) Hook.f.	Poor	–	–	–	–	–
Saurasia armata Kurz	Fair	Good	–	New	Good	Good
Schima wallichii Choisy	New	–	Nil	–	–	–
Shorea assamica Dyer	Fair	Fair	–	Poor	–	Fair
Styrox serrulatus Roxb.	–	Nil	–	Nil	–	–
Terminalia myriocarpa Van Heurec & Müll. Arg.	Fair	Nil	Good	Fair	Fair	Good
Toona ciliate M.Roem.	–	–	–	–	–	–
Turpinia pomifera (Roxb.) DC.	Nil	Poor	Nil	–	–	–
Uvaria dioeca Roxb.	–	–	–	Fair	–	–
species-level regeneration, majority of the species (29.01%) showed ‘fair’ regeneration status while 20.66% exhibited ‘good’ regeneration status and 10.23±5.03% species showed ‘poor’ regeneration status. About 12.48% of the species were only represented by seedlings (‘new’ regeneration) and 27.62% showed ‘Nil’ regeneration (Table 5). Inter- and intra-species competition, dense and virgin canopy cover (large and medium-sized trees) and abundant undergrowth of herbaceous layer could be reasons affecting the regeneration, particularly for species with ‘poor’ and ‘Nil’ regenerating status. However, the present contribution is part of ongoing work in the park. Further progress with increasing the number of monitoring plots may highlight the possible reasons for regeneration failure by some species.

Conclusion

The present study has provided data on tree, shrub and herbaceous communities in selected forest stands of NNP. Similar type of data from different parts of the Park can be generated which will be helpful in assessing the effect of climate change and other ecological impacts. The phytosociological attributes and ecological indices show that NNP has sustained a good floral diversity, with (good) overall regeneration status. The reasons for ‘poor’ and ‘Nil’ regenerating species need to be evaluated for their proper conservation.

1. Oosting, H. J., *The Study of Plant Communities*, W.H. Freeman and Company, San Francisco, CA, USA, 1956.
2. Huang, W., Pohjonen, V., Johansson, S., Nashanda, M., Katigula, M. I. L. and Luukkanen, O., Species diversity, forest structure and species composition in Tanzanian tropical forests. *For. Ecol. Manage.*, 2003, 173(1–3), 11–24.
3. Eila, G. and Obua, J., Ecology tree condition and natural regeneration in disturbed sites of Windi Impenetrable Forest National Park, south western Uganda. *Trop. Ecol.*, 2005, 46(1), 99–111.
4. Mwau, E. N. and Witkowski, Ed. T. F., Population structure and regeneration of multiple-use tree species in a semi-deciduous African tropical rainforest: Implications for primate conservation. *For. Ecol. Manage.*, 2009, 258(5), 840–849.
5. Sharma, C. M., Mishra, A. K., Krishan, R., Tiwari, O. P. and Rana, Y. S., Impact of climate on structure and composition of ridge top forests in Garhwal Himalaya. *Taiwania*, 2016, 61(2), 61–69.
6. Rawat, D. S., Dash, S. S., Sinha, B. K., Kumar, V., Banerjee, A. and Singh, P., Community structure and regeneration status of tree species in eastern Himalaya: A case study from Neora Valley National Park, West Bengal, India. *Taiwania*, 2018, 63(1), 16–24.
7. Chauhan, A. S., Singh, P. K. and Singh, D. K., *Contribution to the Flora of Namdapha, Arunachal Pradesh*, Botanical Survey of India, Calcutta, 1996.
8. Adhikari, D., Arunachalam, A., Majumdar, M., Sarmah, R. and Khan, M. L., A report on the rare root parasite (*Sapria himalayana* Griffiths) in Namdapha National Park in northeast India. *Curr. Sci.*, 2003, 85, 1668–1669.
9. Kumar, A. and Amadudin, M., Rediscovery of an endemic and endangered plant (*Begonia tessariarpa* C.B. Clarke) from Arunachal Pradesh, India, after a century. *Curr. Sci.*, 2006, 91(8), 997–998.
10. Khandal, D., More, M., Kataria, G. and Kambale, S., *Ceropegia lucida* – rediscovery and new distribution record for Arunachal Pradesh, India. *Curr. Sci.*, 2017, 113(11), 2077.
11. Kumar, V., Dash, S. S., Panday, S., Lahiri, S., Sinha, B. K. and Singh, P., *Akaniaea*: A new family record for flora of India and lectotypification of the name *Bretscheniedra sinensis*. Nelumbo, 2017, 59(1), 1–9.
12. Nath, P. C., Arunachalam, A., Khan, M. L., Arunachalam, K. and Barbhuiya, A. R., Vegetation analysis and tree population structure of tropical wet evergreen forests in and around Namdapha national park, north–east India. *Biodivers. Conserv.*, 2005, 14, 2109–2136.
13. Deb, P. and Sundriyal, R. C., Tree species gap phase performance in the buffer zone area of Namdapha National Park, eastern Himalaya, India. *Trop. Ecol.*, 2007, 48(2), 209–225.
14. Deb, P. and Sundriyal, R. C., Tree regeneration and seedling survival patterns in old–growth lowland tropical rainforest in Namdapha National Park, north–east India. *For. Ecol. Manage.*, 2008, 255, 3995–4006.
15. Barbhuiya, A. R., Arunachalam, A., Nath, P. C., Khan, M. L. and Arunachalam, K., Leaf litter decomposition of dominant tree species of Namdapha. *J. For. Res.*, 2008, 13, 25–34.
16. Sarmah, R., Adhikari, D., Majumder, M. and Arunachalam, A., Indigenous technical knowledge of *Lisus* with reference to natural resource utilization in the far eastern villages of Arunachal Pradesh, India. *Indian J. Tradit. Knowl.*, 2006, 5(1), 51–56.
17. Sarmah, R., Arunachalam, A., Majumder, M., Melkania, U. and Adhikari, D., Ethno-medicobotany of Chakmas in Arunachal Pradesh, India. *Indian For.*, 2006, 132(4), 474–484.
18. Behera, M. D., Kushwaha, S. P. S., Roy, P. S., Srivastava, S., Singh, T. P. and Dubey, R. C., Comparing structure and composition of coniferous forests in Subansiri district, Arunachal Pradesh. *Curr. Sci.*, 2002, 82, 70–76.
19. Duchok, R., Kent, K., Devi, K. A., Paul, A. and Khan, M. L., Population structure and regeneration status of medicinal tree *Illicium griffithii* in relation to disturbance gradients in temperate broad-leaved forest of Arunachal Pradesh. *Curr. Sci.*, 2005, 89(4), 673–676.
20. Behera, M. D. and Kushwaha, S. P. S., An analysis of altitudinal behavior of tree species in Subansiri district, eastern Himalaya. *Biodivers. Conserv.*, 2007, 16, 1851–1865.
21. Rana, C. S. and Gairola, S., Forest community structure and composition along an elevational gradient of Parshuram Kund area in Lohit district of Arunachal Pradesh, India. *Nat. Sci.*, 2009, 8(1), 44–52.
22. Bharali, S., Paul, A., Khan, M. L. and Singh, L. B., Species diversity and community structure of a temperate mixed rhododendron forest along an altitudinal gradient in west Siang district of Arunachal Pradesh, India. *Nat. Sci.*, 2011, 9, 125–140.
23. Yam, G. and Tripathi, O. P., Tree diversity and community characteristics in Talle Wildlife Sanctuary, Arunachal Pradesh, Eastern Himalaya, India. *J. Asia Pac. Biodivers.*, 2016, 9, 160–165.
24. Das, A. K., Singh, L. B. and Khan, M. L., Community structure and species diversity of *Pinus merkusii* Jungh. & de Vriese forest along an altitudinal gradient in eastern Himalaya, Arunachal Pradesh, India. *Trop. Ecol.*, 2017, 58(2), 397–408.
25. Paul, A., Khan, M. L. and Das, A. K., Population structure and regeneration status of rhododendrons in temperate mixed broad-leaved forests of western Arunachal Pradesh, India. *Geol. Ecol. Landsca.*, 2018, 3(3), 168–186.
26. Ghosh, A. K., *Qualitative Analysis of Faunal Resources of Proposed Namdapha Biosphere Reserve*, Zoological Survey of India, Calcutta, 1987.
27. Proctor, J., Haridasan, K. and Smith, G. W., How far does lowland evergreen tropical rainforest go? *Global Ecol. Biogeogr.*, 1998, 7, 141–146.
35. Andaman Island, India.

36. in undisturbed and disturbed tropical lowland forests of Little Rasingam, L. and Parthasarathy, N., Diversity of understory plants p. 242.

37. random sample of an animal population.

38. the number of species and the number of individuals in a

39. Fisher, R. A., Corbet, A. S. and Williams, C. B., The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol., 1943, 12, 42–58.

40. Shankar, U. A case of high tree diversity in a Sal (Shorea robusta) dominated lowland forest of eastern Himalaya: Floristic composition, regeneration and conservation. Curr. Sci., 2001, 81, 776–786.

41. Saxena, A. K. and Singh, J. S., Tree population structure of certain Himalayan forest associations and implications concerning their future composition. Vegetatio, 1984, 58(2), 61–69.

42. Khan, M. L., Rai, J. P. N. and Tripathi, R. S., Population structure of some tree species in disturbed and protected subtropical forests of northeast India. Acta Oecol., 1987, 8(3), 247–255.

43. Rawat, D. S., Tiwari, P., Das, S. K. and Tiwari, J. K., Tree species composition and diversity in montane forests of Garhwal Himalaya in relation to environmental and soil properties. J. Mt. Sci., 2020, 17(12), 3097–3111.

44. Bhuyan, P., Khan, M. L. and Tripathi, R. S., Tree diversity and population structure in undisturbed and human-impacted stands of tropical wet evergreen forest in Arunachal Pradesh, eastern Himalayas India. Biodivers. Conserv., 2003, 12, 1753–1773.

45. Semwal, S., Nautiyal, B. P. and Bhatt, A. B., Dominance diversity patterns and regeneration status of moist temperate forests in Garhwal, part of north-west Himalaya, India. Taiwan J. For. Sci., 2008, 23(4), 351–364.

46. Gairola, S., Sharma, C. M., Suyal, S. and Ghildiyal, S. K., Composition and diversity of five major forest types in moist temperate climate of the western Himalayas. For. Stud. China, 2011, 13(2), 139–153.

47. Rawat, D. S., Tiwari, J. K., Tiwari, P., Nautiyal, M., Parveen, M. and Singh, N., Tree species richness, dominance and regeneration status in western Ramganga valley, Uttarakhand Himalaya, India. Indian For., 2018, 144(7), 595–603.

ACKNOWLEDGEMENTS. We thank the PCCF, Forest Department, Arunachal Pradesh for granting permission to conduct this study, and the Project Director, Namdapha Tiger Reserve and National Park, Miao for logistic support throughout the study. We also thank the Ministry of Environment, Forest and Climate Change, Government of India for financial support through a project (NMHS/2015–16/LG–05).

doi: 10.18520/cs/v120/i5/850-858