ON \((p, q)\)-STANCU-SZÁSZ-BETA OPERATORS AND THEIR APPROXIMATION PROPERTIES

Mohammad Mursaleen,
Ahmed Ahmed Hussin Ali Al-Abied,
Faisal Khan and Mohammed Abdullah Salman

Abstract. In the present paper, we have introduced the generalized form of \((p, q)\)-analogue of the Szász-Beta operators with Stancu type parameters. We have studied the local approximation properties of these operators and obtained the convergence rate and weighted approximation.

Keywords: Szász-Beta operators; Stancu type parameters; weighted approximation.

1. Introduction and preliminaries

In the last two decades, the applications of \(q\)-calculus emerged as a new area in the field of approximation theory. The development of \(q\)-calculus has led to the discovery of various modifications of Bernstein polynomials involving \(q\)-integers. The aim of these generalizations is to provide appropriate and powerful tools to application areas such as numerical analysis, computer-aided geometric design and solutions of differential equations.

In 1987, Lupas \[11\] introduced the first \(q\)-analogue of the classical Bernstein operators and investigated its approximating and shape preserving properties. Another \(q\)-generalization of the classical Bernstein polynomial is due to Phillips \[20\]. Several generalization of well known positive linear operators based on \(q\)-integers were introduced and their approximation properties have been studied by several researchers.

Recently, Mursaleen et al introduced the use of \((p, q)\)-calculus in approximation theory and constructed the \((p, q)\)-analogue of Bernstein operators \[13\] and \((p, q)\)-analogue of Bernstein-Stancu operators \[15\]. Most recently, the \((p, q)\)-analogue of

Received February 20, 2019; accepted December 12, 2019

2020 Mathematics Subject Classification. Primary 41A10; Secondary 41A25, 41A36
some more operators have been studied in [1]- [3], [5], [12], [14], [16], [17], [18] and [19].

The \((p, q)\)-integer was introduced to generalize or unify several forms of \(q\)-oscillator algebras well known in the Physics literature related to the representation theory of single parameter quantum algebras. The \((p, q)\)-integer is defined by

\[
\begin{aligned}
\begin{cases}
\frac{p^n - q^n}{p - q} & (p \neq q \neq 1) \\
\frac{1 - q^n}{1 - q} & (p = 1) \\
n & (p = q = 1)
\end{cases}
\end{aligned}
\]

The \((p, q)\)-binomial expansion is

\[
(ax + by)^n_{p,q} := \sum_{k=0}^{n} p^{(n-k)(n-k-1)} q^{k(k-1)/2} \left[\begin{array}{c} n \\ k \end{array} \right]_{p,q} a^{n-k} b^k x^{n-k} y^k,
\]

\[(x + y)^n_{p,q} := (x + y)(px + qy)(p^2 x + q^2 y) \cdots (p^{n-1} x + q^{n-1} y),
\]

\[(1 - x)^n_{p,q} := (1 - x)(p - qx)(p^2 - q^2 x) \cdots (p^{n-1} - q^{n-1} x).
\]

The \((p, q)\)-binomial coefficients are defined by

\[
\left[\begin{array}{c} n \\ k \end{array} \right]_{p,q} := \frac{[n]_{p,q}!}{[k]_{p,q}! [n-k]_{p,q}!},
\]

The definite integral of a function \(f\) is defined by

\[
\int_0^a f(t) d_{p,q} t = (q - p) a \sum_{k=0}^{\infty} f\left(\frac{p^k}{q^{k+1} a}\right) \frac{p^k}{q^{k+1}}, \quad if \ | \frac{p}{q} | < 1,
\]

\[
\int_0^a f(t) d_{p,q} t = (p - q) a \sum_{k=0}^{\infty} f\left(\frac{q^k}{p^{k+1} a}\right) \frac{q^k}{p^{k+1}}, \quad if \ | \frac{q}{p} | < 1.
\]

There are two \((p, q)\)-analogues of the classical exponential function defined as follows

\[
e_{p,q}(x) = \sum_{n=0}^{\infty} \frac{p^{n(n-1)/2}}{[n]_{p,q}!} x^n,
\]
and
\[E_{p,q}(x) = \sum_{n=0}^{\infty} q^{\frac{n(n-1)}{2}} \frac{x^n}{[n]_{p,q}^{p,q}}, \]
which satisfy the equality \(e_{p,q}(x)E_{p,q}(-x) = 1 \). For \(p = 1 \), \(e_{p,q}(x) \) and \(E_{p,q}(x) \) reduce to \(q \)-exponential functions.

For \(m, n \in \mathbb{N} \), the \((p, q)\)-Beta and the \((p, q)\)-Gamma functions are defined by
\[B_{p,q}(m, n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} d_{p,q}x, \]
and
\[\Gamma_{p,q}(n) = \int_0^\infty p^\frac{n(n-1)}{2} E_{p,q}(-qx)d_{p,q}x, \quad \Gamma_{p,q}(n+1) = [n]_{p,q}^{p,q}. \]
respectively. The two functions are connected through
\[B_{p,q}(m, n) = q^{\frac{2-m(m-1)}{2}} p^{-\frac{m(m+1)}{2}} \frac{\Gamma_{p,q}(m)\Gamma_{p,q}(n)}{\Gamma_{p,q}(m+n)}. \]

For \(p = 1 \), all the notions of the \((p, q)\)-calculus reduce to those of \(q \)-calculus.

Based on \((p, q)\)-calculus, very recently Acar \[1\] defined the \((p, q)\) analogue of Szász operators as
\[S_{n,p,q}(f; x) = \sum_{k=0}^{[n]_{p,q}} s_{n,k}^{p,q}(x)f\left(\frac{[k]_{p,q}}{q^{k-2}[n]_{p,q}}\right) \]
for \(x \in [0, \infty), 0 < q < p \leq 1 \), where
\[s_{n,k}^{p,q}(x) = \frac{q^{k(k-1)} x^k}{E_{p,q}([n]_{p,q}x) [k]_{p,q}}. \]

Gupta and Noor \[9\] proposed Szász-Beta operators and obtained some direct results in simultaneous approximation. Gupta and Aral \[8\] extended the studies and they proposed the \(q \)-analogue of Szász-Beta operators. Later on Aral and Gupta \[4\] introduced the \((p, q)\)-analogue of the Szász-Beta operators as follows
\[D_{n}^{(p,q)}(f; x) = \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{1}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^{k-1}}{(1+pt)^{n+k+1}} f(p^{k+1}qt) d_{p,q}t. \]
where $s_{n,k}^{p,q}(x)$ is defined in (1.2). In this paper, we have generalized this operator (1.3) with Stancu type parameters. Assuming that $0 \leq \alpha \leq \beta$, for $x \in [0, \infty), 0 < q < p \leq 1$, we define

$$D_{n,p,q}^{\alpha,\beta}(f; x) = \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{1}{B_{p,q}(k, n+1)} \int_{0}^{\infty} \frac{t^{k-1}}{(1+pt)^{n+k+1}} f \left(\frac{[n]_{p,q}t^{k+1} + \alpha}{[n]_{p,q} + \beta} \right) dt.$$

(1.4)

2. Auxiliary results

Lemma 2.1. For $x \in [0, \infty), 0 < q < p \leq 1$, we have

(i) $D_{n}^{p,q}(1; x) = 1$,

(ii) $D_{n}^{p,q}(t; x) = x$,

(iii) $D_{n}^{p,q}(t^2; x) = \frac{[2]_{p,q}qx}{p[n-1]_{p,q}} + \frac{pn[n]_{p,q}x^2}{[n-1]_{p,q}}$,

(iv) $D_{n}^{p,q}(t^3; x) = \frac{p^3[n]_{p,q}^2}{q^3[n-1]_{p,q}[n-2]_{p,q}} x^3$

+ $\left(\frac{(p2_{p,q} + p^2)[n]_{p,q}}{p^2 q^4([n-1]_{p,q}[n-2]_{p,q})} + \frac{(p^2 q + 2pq^2)[n]_{p,q}}{q^6([n-1]_{p,q}[n-2]_{p,q})} \right) x^2$

+ $\left(\frac{[2]_{p,q}}{p^3 q^6([n-1]_{p,q}[n-2]_{p,q})} + \frac{(p2_{p,q} + p^2)}{q^3 p^3 5q^5([n-1]_{p,q}[n-2]_{p,q})} \right) x$,

(v) $D_{n}^{p,q}(t^4; x) = \frac{q^{12}[n-1]_{p,q}[n-2]_{p,q}[n-3]_{p,q}}{p^n[n]_{p,q}^{13}} x^4$

+ $\frac{[n]_{p,q}^2 (p^5 + 3p^3 q^2 + 2p^2 q^3 + p^3 q^4 + 3q^6)}{q^{11}[n-1]_{p,q}[n-2]_{p,q}[n-3]_{p,q}} x^3$

+ $\frac{[n]_{p,q}}{p^3 q^4([n-1]_{p,q}[n-2]_{p,q}[n-3]_{p,q})} \left(p^8 + 3p^7 q + 5p^6 q^2 \right.$

+ $5p^5 q^3 + 4p^4 q^4 + p^4 q^4 + 3p^3 q^3 + 2p^2 q^4 + 4pq^5 \right) x^2$

+ $\frac{(p^6 + 2p^5 q + p^4 q^2 + p^3 q^3 + p^3 q^4 + p^3 q^3 + p^3 q^4 + 2pq^4 + 2p^4 q^2 + 2pq^5 + pq^3 + q^6)}{p^n q^n[n-1]_{p,q}[n-2]_{p,q}[n-3]_{p,q}} x.$

Lemma 2.2. Let $e_r(t) = t^r$, $r \in \mathbb{N} \cup \{0\}$. For $x \in [0, \infty), 0 < q < p \leq 1, 0 \leq \alpha \leq \beta$, we have

(i) $D_{n,p,q}^{\alpha,\beta}(e_0; x) = 1$,

(ii) $D_{n,p,q}^{\alpha,\beta}(e_1; x) = \frac{[n]_{p,q}}{[n]_{p,q} + \beta} x + \frac{\alpha}{[n]_{p,q} + \beta}$.
(iii) \(D_{n,p,q}^{(\alpha,\beta)} (e_2; x) \) = \[
\frac{p[n\beta_d^3_{p,q}]}{[n-1]_{p,q}([n\beta_d^3_{p,q} + \beta])^2} x^2 + \frac{[n]_{p,q}(q(p + q)[n\beta_d^3_{p,q} + 2\alpha p[n-1]_{p,q})}{p([n\beta_d^3_{p,q} + \beta])^2[n-1]_{p,q}} x^2 + \frac{([n\beta_d^3_{p,q} + \beta])^2}{\alpha^2} \]

(iv) \(D_{n,p,q}^{(\alpha,\beta)} (e_3; x) \) = \[
\frac{p^3[n\beta_d^3_{p,q}]}{q^3([n\beta_d^3_{p,q} + \beta])^3[n-1]_{p,q}([n-2]_{p,q})} x^3 + \frac{[n]_{p,q}(p^3 q + 2p^2 q^2 + 2p + q) + 3p^2 q^3}{pq^6([n\beta_d^3_{p,q} + \beta])^3[n-1]_{p,q}([n-2]_{p,q})} x^2 + \frac{([n\beta_d^3_{p,q} + \beta])^3}{\alpha^3} \]

(v) \(D_{n,p,q}^{(\alpha,\beta)} (e_4; x) \) = \[
\frac{p^6[n\beta_d^3_{p,q}]}{q^4([n\beta_d^3_{p,q} + \beta])^3[n-1]_{p,q}([n-2]_{p,q}([n-3]_{p,q})} x^4 + \frac{[n]_{p,q}(p^5 + 3p^3 q^2 + 2p^2 q^3 + 2p q^4 + q^5) + 4p^3 q^5}{q^6([n\beta_d^3_{p,q} + \beta])^3[n-1]_{p,q}([n-2]_{p,q}([n-3]_{p,q})} x^3 + \frac{([n\beta_d^3_{p,q} + \beta])^3}{\alpha^4} \]

\[
+ \frac{5p^5 q^3 + 2p^4 q^4 + p^3 q^4 + 2p^3 q^3 + 2p^2 q^4 + pq^5}{n\beta_d^3_{p,q}([n-2]_{p,q}([n-3]_{p,q})} x^2 + \frac{4\alpha [n\beta_d^3_{p,q}([n-3]_{p,q})]}{6\alpha^2 p^6 q^9[n-2]_{p,q}([n-3]_{p,q})} x + \frac{\alpha^3[n-1]_{p,q}([n-2]_{p,q}([n-3]_{p,q})^6}{([n\beta_d^3_{p,q} + \beta])^4} \]

Proof. Using Lemma 2.1, we can easily say, (i) \(D_{n,p,q}^{(\alpha,\beta)} (e_0; x) = 1 \). Moreover

(ii) \(D_{n,p,q}^{(\alpha,\beta)} (e_1; x) \) = \[
\sum_{k=0}^{\infty} \frac{s_{n,k}^{p,q}(x)}{B_{p,q}(k,n+1)} \frac{1}{(1+pt)^{n+k+1}} \left(\frac{[n]_{p,q} p^{k+1} q t + \alpha}{[n\beta_d^3_{p,q} + \beta]} \right) d_{p,q} t \]

= \[
\frac{[n]_{p,q}}{[n\beta_d^3_{p,q} + \beta]} \sum_{k=0}^{\infty} \frac{s_{n,k}^{p,q}(x)}{B_{p,q}(k,n+1)} \frac{p^{k+1} q t}{(1+pt)^{n+k+1}} d_{p,q} t \]

+ \[
\frac{\alpha}{[n\beta_d^3_{p,q} + \beta]} \sum_{k=0}^{\infty} \frac{s_{n,k}^{p,q}(x)}{B_{p,q}(k,n+1)} \frac{1}{(1+pt)^{n+k+1}} d_{p,q} t \]
\[
D_n^{p,q}(e_1; x) = \frac{[n]_{p,q}}{[n]_{p,q} + \beta} D_n^{p,q}(e_1; x) + \frac{\alpha}{[n]_{p,q} + \beta} D_n^{p,q}(e_0; x)
\]

\[
= \frac{[n]_{p,q}}{[n]_{p,q} + \beta} x + \frac{\alpha}{[n]_{p,q} + \beta}.
\]

\[
(iii) D_{n,p,q}^{(\alpha,\beta)}(e_2; x) = \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{1}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}} \left(\frac{[n]_{p,q}p^{k+1} + \alpha}{[n]_{p,q} + \beta} \right)^2 d_p q t
\]

\[
= \frac{[n]_{p,q}^2}{([n]_{p,q} + \beta)^2} \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{p^{k+1} q}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^k}{(1 + pt)^{n+k+1}} d_p q t
\]

\[
+ 2\alpha [n]_{p,q} \frac{[n]_{p,q}^2}{([n]_{p,q} + \beta)^2} \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{p^{k+1} q}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^k}{(1 + pt)^{n+k+1}} d_p q t
\]

\[
+ \frac{\alpha^2}{([n]_{p,q} + \beta)^2} \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{1}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}} d_p q t
\]

\[
+ \frac{[n]_{p,q}^2}{([n]_{p,q} + \beta)^2} D_n^{p,q}(e_2; x) + \frac{2\alpha [n]_{p,q}}{([n]_{p,q} + \beta)^2} D_n^{p,q}(e_1; x)
\]

\[
+ \frac{\alpha^2}{([n]_{p,q} + \beta)^2} D_n^{p,q}(e_0; x)
\]

\[
(iv) D_{n,p,q}^{(\alpha,\beta)}(e_3; x) = \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{1}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}} \left(\frac{[n]_{p,q}p^{k+1} + \alpha}{[n]_{p,q} + \beta} \right)^3 d_p q t
\]

\[
= \frac{[n]_{p,q}^3}{([n]_{p,q} + \beta)^3} \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{p^{3k+3} q^3}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^{k+2}}{(1 + pt)^{n+k+1}} d_p q t
\]

\[
+ 3\alpha [n]_{p,q}^2 \frac{[n]_{p,q}^3}{([n]_{p,q} + \beta)^3} \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{p^{2k+2} q^2}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^{k+1}}{(1 + pt)^{n+k+1}} d_p q t
\]

\[
+ 3\alpha^2 [n]_{p,q} \frac{[n]_{p,q}^3}{([n]_{p,q} + \beta)^3} \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{p^{k+1} q}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^k}{(1 + pt)^{n+k+1}} d_p q t
\]

\[
+ \frac{\alpha^3}{([n]_{p,q} + \beta)^3} \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{1}{B_{p,q}(k, n+1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}} d_p q t
\]

\[
+ \frac{[n]_{p,q}^3}{([n]_{p,q} + \beta)^3} D_n^{p,q}(e_3; x) + \frac{3\alpha [n]_{p,q}^2}{([n]_{p,q} + \beta)^3} D_n^{p,q}(e_2; x)
\]

\[
+ \frac{\alpha^3}{([n]_{p,q} + \beta)^3} D_n^{p,q}(e_1; x)
\]
On \((p, q)\)-Stancu-Szász-Beta Operators and Their Approximation Properties

\[
\begin{align*}
+ 3\alpha^2 [p, q, \alpha, \beta] D_n^{p, q}(e_1; x) & \quad + \frac{\alpha^3}{(n, p, q + \beta)^3} D_n^{p, q}(e_0; x) \\
+ \frac{p^3 [n, q, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}{q^3 [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
+ \frac{[n, p, q] [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}{p q^3 [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
\frac{1}{2} & \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \sum_{k=0}^{\infty} \frac{[n, p, q] [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]

\[
\begin{align*}
+ & \frac{1}{2} \int_0^x (n, q, p, q + \beta)^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha)
+ \frac{3 q \alpha [2, p, q [n, p, q + \beta]^3 [n - 1, p, q [n - 2, p, q] [n - 2, p, q] \alpha}
\end{align*}
\]
We readily obtain the following lemma.

Lemma 2.3. For \(x \in [0, \infty) \), \(0 < q < p \leq 1 \), \(0 \leq \alpha \leq \beta \), we have

\[
(i) D_{n,p,q}^{\alpha,\beta}((t - x)^2) = \left(\frac{[n]_{p,q}}{([n]_{p,q} + \beta)^2 - [n]_{p,q} + 1} \right) x^2 + \frac{\alpha^2}{([n]_{p,q} + \beta)^2} \\
(ii) D_{n,p,q}^{\alpha,\beta}((t - x)^4) = \left(\frac{p^6 [n]_{p,q}^7}{q^4 ([n]_{p,q} + \beta)^4 [n - 1]_{p,q} [n - 2]_{p,q} [n - 3]_{p,q}} \right) x^4 - \frac{4p^3 [n]_{p,q}^5}{q^6 ([n]_{p,q} + \beta)^3 [n - 1]_{p,q} [n - 2]_{p,q}} + \frac{4[11]([n]_{p,q} + \beta)}{([n]_{p,q} + \beta)^4 [n - 1]_{p,q} [n - 2]_{p,q}} + 1 \right) x^4 \\
+ \left(\frac{[n]_{p,q}}{([n]_{p,q} + \beta)^2 [n - 1]_{p,q}} - \frac{4[n]_{p,q}}{([n]_{p,q} + \beta)} + 1 \right) x^4 \\
+ \left(\frac{[n]_{p,q}}{([n]_{p,q} + \beta)^4 [n - 1]_{p,q} [n - 2]_{p,q} [n - 3]_{p,q}} \right) x^4
\]
In this section, we present local approximation theorem for operators \(D_{\alpha,\beta}^{n,p,q} \). By \(C_B[0, \infty) \), we denote the space of all real-valued continuous and bounded functions \(f \) defined on the interval \([0, \infty) \). The norm \(\| \cdot \| \) on the space \(C_B[0, \infty) \) is given by

\[
\| f \| = \sup_{0 \leq x < \infty} | f(x) | .
\]

Further, let us consider the following \(K \)-functional:

\[
K_2(f, \delta) = \inf_{g \in W^2} \left\{ \| f - g \| + \delta \| g'' \| \right\}
\]

where \(\delta > 0 \) and \(W^2 = \{ g \in C_B[0, \infty) : g', g'' \in C_B[0, \infty) \} \). By Theorem 2.4 of [6], there exists an absolute constant \(C > 0 \) such that

\[
(3.1) \quad K_2(f, \delta) \leq C \omega_2(f, \sqrt{\delta})
\]

where

\[
\omega_2(f, \sqrt{\delta}) = \sup_{0 < h \leq \sqrt{\delta}} \sup_{x \in [0, \infty)} \left| f(x + 2h) - 2f(x + h) + f(x) \right|
\]
is the second order modulus of smoothness of \(f \in C_B[0, \infty) \). The usual modulus of continuity of \(f \in C_B[0, \infty) \) is defined by
\[
\omega(f, \delta) = \sup_{0 < h \leq \delta} \sup_{x \in [0, \infty)} | f(x + h) - f(x) | .
\]

Theorem 3.1. Let \(f \in C_B[0, \infty) \) and \(0 < q < p \leq 1 \), \(0 \leq \alpha, \beta \leq 1 \). Then for all \(n \in \mathbb{N} \), there exists an absolute constant \(C > 0 \) such that
\[
| D_{n,p,q}^{\alpha,\beta}(f; x) - f(x) | \leq C \omega_2(f, \delta_n(x)) + \omega(f, \alpha_n(x)),
\]
where
\[
\delta_n(x) = \sqrt{D_{n,p,q}^{\alpha,\beta}((t-x)^2; x) + (\alpha_n(x))^2}, \quad \alpha_n(x) = \frac{[n]_{p,q}}{[n]_{p,q} + \beta} x + \frac{\alpha}{[n]_{p,q} + \beta} - x.
\]

Proof. For \(x \in [0, \infty) \), we consider the auxiliary operators \(\bar{D}^*_n \) defined by
\[
\bar{D}^*_n(f; x) = D_{n,p,q}^{\alpha,\beta}(f; x) + f(x) - f \left(\frac{[n]_{p,q}}{[n]_{p,q} + \beta} x + \frac{\alpha}{[n]_{p,q} + \beta} \right).
\]
From Lemma 2.2 (i), (ii) and Lemma 2.3 (i), we observe that the operators \(\bar{D}^*_n(f; x) \) are linear and reproduce the linear functions. Hence
\[
\bar{D}^*_n(1; x) = D_{n,p,q}^{\alpha,\beta}(1; x) + 1 - 1 = 1,
\]
\[
\bar{D}^*_n(t; x) = D_{n,p,q}^{\alpha,\beta}(t; x) + x - \left(\frac{[n]_{p,q}}{[n]_{p,q} + \beta} x + \frac{\alpha}{[n]_{p,q} + \beta} \right) = x,
\]
\[
\bar{D}^*_n((t-x); x) = \bar{D}^*_n(t; x) - x \bar{D}^*_n(1; x) = 0.
\]
Let \(x \in [0, \infty) \) and \(g \in W^2 \). Using the Taylor’s formula
\[
g(t) = g(x) + g'(x)(t-x) + \int_x^t (t-u)g''(u)du.
\]
Applying \(\bar{D}^*_n \) to both sides of the above equation, we have
\[
\bar{D}^*_n(g; x) - g(x) = g'(x)\bar{D}^*_n((t-x); x) + \bar{D}^*_n\left(\int_x^t (t-u)g''(u)du; x \right)
\]
\[
= D_{n,p,q}^{\alpha,\beta} \left(\int_x^t (t-u)g''(u)du; x \right)
\]
\[
- \int_x^t \frac{[n]_{p,q}}{[n]_{p,q} + \beta} x + \frac{\alpha}{[n]_{p,q} + \beta} \left(\frac{[n]_{p,q}}{[n]_{p,q} + \beta} x + \frac{\alpha}{[n]_{p,q} + \beta} - u \right) g''(u)du.
\]
On the other hand, since
\[
| \int_x^t (t-u)g''(u)du | \leq \int_x^t | t-u | g''(u) | du \leq \| g'' \| \int_x^t | t-u | | du | \leq (t-x)^2 \| g'' \| .
\]
and

\[
\left| \int_{x}^{\lfloor n \rfloor_{p,q} + \frac{x}{\lfloor n \rfloor_{p,q} + \beta}} + \int_{x}^{\lfloor n \rfloor_{p,q} + \frac{\alpha}{\lfloor n \rfloor_{p,q} + \beta}} \left(\frac{\lfloor n \rfloor_{p,q}}{\lfloor n \rfloor_{p,q} + \beta} x + \frac{\alpha}{\lfloor n \rfloor_{p,q} + \beta} - u \right) g''(u) \, du \right| \\
\leq \left(\frac{\lfloor n \rfloor_{p,q}}{\lfloor n \rfloor_{p,q} + \beta} x + \frac{\alpha}{\lfloor n \rfloor_{p,q} + \beta} - x \right)^2 \| g'' \|.
\]

We conclude that

\[
\left| \bar{D}_n^* (g; x) - g(x) \right| \leq \left| D_{n,p,q}^{\alpha,\beta} \left(\int_{x}^{t} (t - u) g''(u) \, du; x \right) \\
- \int_{x}^{\lfloor n \rfloor_{p,q} + \frac{x}{\lfloor n \rfloor_{p,q} + \beta}} + \int_{x}^{\lfloor n \rfloor_{p,q} + \frac{\alpha}{\lfloor n \rfloor_{p,q} + \beta}} \left(\frac{\lfloor n \rfloor_{p,q}}{\lfloor n \rfloor_{p,q} + \beta} x + \frac{\alpha}{\lfloor n \rfloor_{p,q} + \beta} - u \right) g''(u) \, du \right| \\
\leq \| g'' \| \left| D_{n,p,q}^{\alpha,\beta} ((t - x)^2; x) + \| g'' \| \left(\frac{\lfloor n \rfloor_{p,q}}{\lfloor n \rfloor_{p,q} + \beta} x + \frac{\alpha}{\lfloor n \rfloor_{p,q} + \beta} - x \right)^2 \right| \\
= \| g'' \| \delta_n^2(x).
\]

Now, taking into account boundedness of \(\bar{D}_n^* \), we have

\[
\left| \bar{D}_n^* (f; x) \right| \leq \left| D_{n,p,q}^{\alpha,\beta} (f; x) \right| + 2 \| f \| \leq 3 \| f \|.
\]

Therefore

\[
\left| D_{n,p,q}^{\alpha,\beta} (f; x) - f(x) \right| \leq \left| \bar{D}_n^* (f - g; x) - (f - g)(x) \right| + \left| f \left(\frac{\lfloor n \rfloor_{p,q}}{\lfloor n \rfloor_{p,q} + \beta} x + \frac{\alpha}{\lfloor n \rfloor_{p,q} + \beta} \right) - f(x) \right| \\
+ \left| \bar{D}_n^* (g; x) - g(x) \right| \\
\leq \left| \bar{D}_n^* (f - g; x) \right| + \left| (f - g)(x) \right| + \left| f \left(\frac{\lfloor n \rfloor_{p,q}}{\lfloor n \rfloor_{p,q} + \beta} x + \frac{\alpha}{\lfloor n \rfloor_{p,q} + \beta} \right) - f(x) \right| \\
+ \left| \bar{D}_n^* (g; x) - g(x) \right| \\
\leq 4 \| f - g \| + \omega(f, \alpha_n(x)) + \delta_n^2(x) \| g'' \|.
\]

Hence, taking the infimum on the right-hand side over all \(g \in W^2 \), we have the following result

\[
\left| D_{n,p,q}^{\alpha,\beta} (f; x) - f(x) \right| \leq 4 K_2(f, \delta_n^2(x)) + \omega(f, \alpha_n(x)).
\]

In view of the property of \(K \)-functional, we get

\[
\left| D_{n,p,q}^{\alpha,\beta} (f; x) - f(x) \right| \leq C_2(f, \delta_n(x)) + \omega(f, \alpha_n(x)).
\]

This completes the proof of the theorem. \(\square \)
4. Approximation properties in weighted spaces

Let \(B_\rho[0, \infty) \) be the space of all real valued functions on \([0, \infty)\) satisfying the condition \(|f(x)| \leq M_f \rho(x)\), where \(M_f \) is a constant depending only on \(f \) and \(\rho(x) \) is a weight function.

Let \(C_\rho[0, \infty) \) be the space of all continuous functions in \(B_\rho[0, \infty) \) with the norm

\[
\|f\|_\rho = \sup_{x \in [0, \infty)} \frac{|f(x)|}{\rho(x)}
\]

and

\[
C_\rho^0 = \left\{ f \in C_\rho[0, \infty) : \lim_{x \to \infty} \frac{|f(x)|}{\rho(x)} < \infty \right\}.
\]

In what follows, we assume the weight function as \(\rho(x) = 1 + x^2 \).

Theorem 4.1. Let \(0 < q = q_n < p = p_n \leq 1 \) such that \(q_n \to 1, p_n \to 1 \), as \(n \to \infty \). For each \(f \in C_\rho^0 \), we have

\[
\lim_{n \to \infty} \|D_{\alpha, \beta}^{n, p_n, q_n}(f; x) - f(x)\|_\rho = 0.
\]

Proof. With elementary calculations, it can be easily followed that \(\lim_{n \to \infty} \|D_{\alpha, \beta}^{n, p_n, q_n}(e_i; \cdot) - e_i\|_\rho = 0 \), where \(e_i(x) = x^i, i = 0, 1, 2 \). By weighted Korovkin theorem given in [7], we get the required result.

Next we give the following theorem to approximate all functions in \(C_\rho^0 \). This type of result is discussed in [10] for locally integrable functions.

Theorem 4.2. Let \(0 < q = q_n < p = p_n \leq 1 \) such that \(q_n \to 1, p_n \to 1, q_n^a \to 1, p_n^a \to 1 \) as \(n \to \infty \). For each \(f \in C_\rho^0 \) and \(a > 0 \), we have

\[
\lim_{n \to \infty} \sup_{x \in [0, \infty)} \frac{|D_{\alpha, \beta}^{n, p_n, q_n}(f; x) - f(x)|}{(1 + x^2)^{1+a}} = 0.
\]

Proof. For any fixed \(x_0 > 0 \),

\[
\sup_{x \in [0, \infty)} \frac{|D_{\alpha, \beta}^{n, p_n, q_n}(f; x) - f(x)|}{(1 + x^2)^{1+a}} \leq \sup_{x \leq x_0} \frac{|D_{\alpha, \beta}^{n, p_n, q_n}(f; x) - f(x)|}{(1 + x^2)^{1+a}} + \sup_{x \geq x_0} \frac{|D_{\alpha, \beta}^{n, p_n, q_n}(f; x) - f(x)|}{(1 + x^2)^{1+a}}
\]

\[
\leq \|D_{\alpha, \beta}^{n, p_n, q_n}(f; x) - f(x)\|_{C[0, x_0]} + \|f\|_\rho \sup_{x \geq x_0} \frac{|D_{\alpha, \beta}^{n, p_n, q_n}(1 + t^2; x)|}{(1 + x^2)^{1+a}}
\]

\[
+ \sup_{x \geq x_0} \frac{|f(x)|}{(1 + x^2)^{1+a}}
\]
\begin{equation}
 = I_1 + I_2 + I_3.
\end{equation}

Since \(|f(x)| \leq \|f\|_\rho (1 + x^2)\), we have

\[
I_3 = \sup_{x \geq x_0} \frac{|f(x)|}{(1 + x^2)^{1+a}} \leq \sup_{x \geq x_0} \frac{\|f\|_\rho}{(1 + x^2)^{1+a}} \leq \frac{\|f\|_\rho}{(1 + x_0^2)^{1+a}}
\]

Let \(\epsilon > 0\) be arbitrary. There exists \(n_1 \in \mathbb{N}\) such that

\[
\|f\|_\rho \sup_{x \geq x_0} \frac{|D^{\alpha,\beta}_{n,p,q_n}(1 + t^2; x)|}{(1 + x^2)^{1+a}} < \frac{1}{(1 + x_2^2)^{1+a}} \|f\|_\rho \left(1 + \frac{\epsilon}{3}\right), \quad \forall n \geq n_1
\]

\begin{equation}
< \frac{\|f\|_\rho}{(1 + x^2)^{1+a}} + \frac{\epsilon}{3}, \quad \forall n \geq n_1.
\end{equation}

Hence

\[
\|f\|_\rho \sup_{x \geq x_0} \frac{|D^{\alpha,\beta}_{n,p,q_n}(1 + t^2; x)|}{(1 + x^2)^{1+a}} < \frac{\|f\|_\rho}{(1 + x_0^2)^{1+a}} + \frac{\epsilon}{3}, \quad \forall n \geq n_1.
\]

Thus

\[
I_2 + I_3 < \frac{2\|f\|_\rho}{(1 + x_0^2)^{1+a}} + \frac{\epsilon}{3}, \quad \forall n \geq n_1.
\]

Now, let us choose \(x_0\) to be so large that \(\frac{\|f\|_\rho}{(1 + x_2^2)^{1+a}} < \frac{\epsilon}{6}\).

Then,

\begin{equation}
I_2 + I_3 < \frac{2\epsilon}{3}, \quad \forall n \geq n_1.
\end{equation}

\begin{equation}
I_1 = \|D^{\alpha,\beta}_{n,p,q_n}(f) - f\|_{C[0,x_0]} < \frac{\epsilon}{3}, \quad \forall n \geq n_2.
\end{equation}

Let \(n_0 = \max(n_1, n_2)\). Then, combining (4.1)-(4.4), we get

\[
\sup_{x \in [0, \infty)} \frac{|D^{\alpha,\beta}_{n,p,q_n}(f; x) - f(x)|}{(1 + x^2)^{1+a}} < \epsilon, \quad \forall n \geq n_0.
\]

This completes the proof. \(\square\)

Now we present ordinary approximation in terms of Lipschitz constant defined by

\begin{equation}
lip_M(\gamma) = \left\{ f \in C_B[0, \infty) : |f(t) - f(x)| \leq M \frac{|t-x|^{\gamma}}{(t+x)^{\beta}} \right\},
\end{equation}

where \(M\) is a positive constant and \(0 < \gamma \leq 1\).
Theorem 4.3. Let be \(f \in C_B[0, \infty), \ 0 < q < p \leq 1, \ 0 \leq \alpha \leq \beta, \) then for any \(x \in (0, \infty), \) the following inequality holds:

\[
|D_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| \leq M \left(\frac{\varphi_{n,p,q}(x)}{x} \right)^{\frac{2}{\gamma}},
\]

where \(\varphi_{n,p,q}(x) = D_{n,p,q}^{e_1}(e_1 - x)^2; x). \)

Proof. First, we prove that the result is true for \(\gamma = 1. \) Then, for \(f \in \text{lip}_M(\gamma), \) we obtain

\[
|D_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| \leq \sum_{k=0}^{\infty} s_{n,k}(x) \frac{1}{B_{p,q}(k, n + 1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}}
\]

\[
\times f \left(\frac{[n]_{p,q}^{k+1} qt \alpha}{[n]_{p,q} + \beta} \right) - f(x) \right| dt.
\]

Using \(\sqrt{x} < \sqrt{\frac{[n]_{p,q}^{k+1} qt \alpha}{[n]_{p,q} + \beta}} + x \) and the Cauchy-Schwarz inequality, we get

\[
|D_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| \leq \frac{M}{\sqrt{2}} \sum_{k=0}^{\infty} s_{n,k}(x) \frac{1}{B_{p,q}(k, n + 1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}}
\]

\[
\times \left| \frac{[n]_{p,q}^{k+1} qt \alpha}{[n]_{p,q} + \beta} - x \right| dt.
\]

Therefore, the result is true for \(\gamma = 1. \) We prove that the result is true for \(0 < \gamma \leq 1, \)

applying Hölder’s inequality with \(p = \frac{2}{\gamma}, \ q = \frac{1}{\gamma}, \)

\[
|D_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| \leq \sum_{k=0}^{\infty} s_{n,k}(x) \frac{1}{B_{p,q}(k, n + 1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}}
\]

\[
\times f \left(\frac{[n]_{p,q}^{k+1} qt \alpha}{[n]_{p,q} + \beta} \right) - f(x) \right| dt.
\]

\[
\leq \sum_{k=0}^{\infty} s_{n,k}(x) \left(\frac{1}{B_{p,q}(k, n + 1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}}
\]

\[
\times f \left(\frac{[n]_{p,q}^{k+1} qt \alpha}{[n]_{p,q} + \beta} \right) - f(x) \right| dt.
\]
\[\left| \frac{[n]_{p,q}B^{k+1}q_t + \alpha}{[n]_{p,q} + \beta} - f(x) \right| d_{p,q}t \right\}^2 \]

\[\leq \left\{ \sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{1}{B_{p,q}(k, n + 1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}} \right\}^{2z/n} \]

Since \(f \in \text{lip}_M(\gamma) \), we have

\[|D_{n,p,q}^{\alpha,\beta}(f; x) - f(x)| \leq \frac{M}{x^{\frac{2z}{n}}} \left(\sum_{k=0}^{\infty} s_{n,k}^{p,q}(x) \frac{1}{B_{p,q}(k, n + 1)} \int_0^\infty \frac{t^{k-1}}{(1 + pt)^{n+k+1}} \right) \]

\[\times \left(\frac{[n]_{p,q}B^{k+1}q_t + \alpha}{[n]_{p,q} + \beta} - x \right)^2 d_{p,q}t \right\}^{\frac{2z}{n}} \]

\[= \frac{M}{x^{\frac{2z}{n}}} \left(D_{n,p,q}^{\alpha,\beta}((e_1 - x)^2; x) \right)^{\frac{2z}{n}} \leq M \left(\frac{\varphi_{n,p,q}(x)}{x} \right)^{\gamma}. \]

Therefore, the proof is completed. \(\square \)

REFERENCES

1. T. Acar, \((p, q)\)-generalization of Szász-Mirakyan operators, Math. Methods Appl. Sci. 39(10) (2016) 2685–2695.
2. T Acar, M. Mursaleen, S.A. Mohiuddine, Stancu type \((p, q)\)-Szász-Mirakyan-Baskakov operators, Commun. Fac. Sci. Univ. Ank. Series A1, 67(1) (2018) 116–128.
3. T. Acar, S.A. Mohiuddine, M. Mursaleen, Approximation by \((p, q)\)-Baskakov-Durrmeyer-Stancu operators, Comp. Anal. Op. Theory, 12(6) (2018) 1453–1468.
4. A. Aral, V. Gupta, \((p, q)\)-Variant of Szász-Beta operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 111(3) (2017) 719–733.
5. Q.B. Cai, G. Zhou, On \((p, q)\)-analogue of Kantorovich type Bernstein–Stancu–Schurer operators, Appl. Math. Comput., 276 (2016) 12–20.
6. R. A. Devore, G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
7. A.D. Gadjiev, On P. P. Korovkin type theorems, Mat. Zametki, 20 (1976) 781–786; Transl. in Math. Notes, (5-6) (1978) 995–998.
8. V. Gupta, A. Aral, Convergence of the q-analogue of Szász-Beta operators, Appl. Math. Comput. 216(2) (2010) 374–380.
9. V. Gupta, M.A. Noor, Convergence of derivatives for certain mixed Szász-Beta operators, J. Math. Anal. Appl. 321(1) (2006) 1–9.
10. B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math. 50(1) (1988) 53–63.
11. A. Lupaş, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, 9 (1987) 85–92.
12. M. Mursaleen, A. Al-Abied, M. Nasiruzzaman, Modified (p,q)-Bernstein-Schurer operators and their approximation properties, Cogent Mathematics. 2016 Dec 31;3(1):1236534.
13. M. Mursaleen, K. J. Ansari, Asif Khan, On (p,q)-analogue of Bernstein operators, Appl. Math. Comput., 266 (2015) 874-882 [Erratum: Appl. Math. Comput., 278 (2016) 70–71].
14. M. Mursaleen, A.A.H. Al-Abied, A. Alotaibi, On (p,q)-Szász-Mirakyan operators and their approximation properties, Jour. Ineq. Appl. 2017 (2017): 196.
15. M. Mursaleen, K.J. Ansari, Asif Khan, Some approximation results by (p,q)-analogue of Bernstein-Stancu operators, Appl. Math. Comput., 264 (2015) 392–402 [Corrigendum: Appl. Math. Comput., 269 (2015) 744–746].
16. M. Mursaleen, Faisal Khan, Asif Khan, Approximation by (p,q)-Lorentz polynomials on a compact disk, Complex Anal. Oper. Theory, 10(8) (2016) 1725–1740.
17. M. Mursaleen, Nasiruzzaman, A.A.H. Al-Abied, Dunkl generalization of q-parametric Szász-Mirakjan operators, Internat. Jour. Anal. Appl., 13(2) (2017) 206–215.
18. M. Mursaleen, A. Naaz, A. Khan, Improved approximation and error estimations by King type (p,q)-Szász-Mirakjan-Kantorovich operators, Appl. Math. Comput., 348 (2019) 175-185.
19. M. Mursaleen, S. Rahman, A.H. Alkhaldi, Convergence of iterates of q-Bernstein and (p,q)-Bernstein operators and the Kelisky-Rivlin type theorem, Filomat, 32(12) (2018), 4351–4364.
20. G. M. Phillips, Bernstein polynomials based on the q-integers, The Heritage of P. L. Chebyshev, Ann. Numer. Math., 4 (1997) 511–518.
Faisal Khan
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
faisalamu2011@gmail.com

Mohammed Abdullah Salman
Community College of Qatar, Math and Science Department
P.O. Box 7344, Doha-Qatar
mohammed.salman@ccq.edu.qa