A Literature Overview of Virtual Reality (VR) in Treatment of Psychiatric Disorders: Recent Advances and Limitations

Mi Jin Park¹, Dong Jun Kim², Unjoo Lee³, Eun Jin Na¹ and Hong Jin Jeon¹,²*

¹ Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea, ² Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea, ³ Department of Electronic Engineering, Hallym University, Kangwon, South Korea

In this paper, we conduct a literature survey on various virtual reality (VR) treatments in psychiatry. We collected 36 studies that used VR to provide clinical trials or therapies for patients with psychiatric disorders. In order to gain a better understanding of the management of pain and stress, we first investigate VR applications for patients to alleviate pain and stress during immersive activities in a virtual environment. VR exposure therapies are particularly effective for anxiety, provoking realistic reactions to feared stimuli. On top of that, exposure therapies with simulated images are beneficial for patients with psychiatric disorders such as phobia and posttraumatic stress disorder (PTSD). Moreover, VR environments have shown the possibility of changing depression, cognition, even social functions. We review empirical evidence from VR-based treatments on psychiatric illnesses such as dementia, mild cognitive impairment (MCI), schizophrenia and autism. Through cognitive training and social skill training, rehabilitation through VR therapies helps patients to improve their quality of life. Recent advances in VR technology also demonstrate potential abilities to address cognitive and functional impairments in dementia. In terms of the different types of VR systems, we discuss the feasibility of the technology within different stages of dementia as well as the methodological limitations. Although there is room for improvement, its widespread adoption in psychiatry is yet to occur due to technical drawbacks such as motion sickness and dry eyes, as well as user issues such as preoccupation and addiction. However, it is worth mentioning that VR systems relatively easily deliver virtual environments with well-controlled sensory stimuli. In the future, VR systems may become an innovative clinical tool for patients with specific psychiatric symptoms.

Keywords: virtual reality, psychiatric treatment, psychiatric disorders, dementia, motion sickness
INTRODUCTION

Virtual reality (VR) is defined as a computer-generated simulation, such as a set of images and sounds that represents a real place or situation, that can be interacted with, in a seemingly real or physical way by a person using special electronic equipment. It can transmit visual, auditory, and various sensations to users through a headset to make them feel as if they are in a virtual or imagined environment (1).

The concept of VR was introduced in the 1950s, and the maturity of VR for entertainment is now evident. Currently, more than 230 companies are producing various products related to VR and performing research and development, including global companies such as Samsung Electronics, Apple, Facebook, Amazon, and Microsoft. VR systems consist of VR headsets, a computer, and video. Recently, chairs, gloves, and sensors have been added. VR headsets refer to head-mounted goggles. They are equipped with a speaker or headphones. VR systems that include the transmission of vibrations and other sensations to the user through a game controller, gloves or chairs are known as haptic feedback systems (2). This tactility is advantageous as the sense of presence can be improved by actually sensing the shock or vibration to the user in the medical field, video games, and military training. A 4D (four-dimensional) system of VR refers to a VR system with a motion chair that enhances reality for users with integrated movement according to the content of the VR video. Depending on the type of system and programing, the user may interact with the environment from a first- or third-person's point of view. In the case of the latter, the user can move around a virtual representation of themselves, called an ‘avatar’ (3).

In medical fields, multidisciplinary research has tried to apply VR systems to domains of diagnosis, treatment, and so on. Especially, in psychiatry, traditional tools of treatment have mainly been limited to interpersonal psychotherapy and medication. However, VR can provide various types of stimulation (4). Intuitively, it helps in relieving pain, stress, and anxiety in an imagined space, and VR makes it possible to provide efficient educational and psychological training without causing harm to patients (5). It therefore has the possibility of changing PTSD, phobia, anxiety, depression, cognition, and social functions in patients with psychiatric illnesses.

Indeed, over the past few decades, therapeutic virtual reality (VR) has emerged as a successful solution for a wide range of psychiatric disorders. In the 1990s, Rothbaum et al. conducted the first study in the field of psychiatry to investigate the efficacy of VR focusing on treating acrophobia in college students and found that VR is successful in reducing their fear of heights (6). The early studies established the efficacy of VR exposure therapy for a number of anxiety and related disorders. For example, VR exposure therapies have shown benefits for patients with a specific phobia or posttraumatic stress disorder (PTSD) by the extinction of traumatic experiences through their repetitive exposures, and the extinction of pain by pulling the patients focus away from painful conditions. The broad reach of VR has enabled its use in the evaluation and rehabilitation of patients with schizophrenia and autism through improvements of their social activities. The reports included in this review, show that VR is also an efficacious way for Amnestic MCI (mild cognitive impairment) and early to moderate Alzheimer's disease through cognitive reserve and training.

VR-based treatment currently faces hurdles preventing its wide use as a real tool in psychiatry practice, such as motion sickness and dry eyes as well as user issues such as preoccupation and addiction. However, VR systems can deliver and confront virtual environments with well-controlled sensory stimuli. With a review of the current utilization of VR in the field of psychiatry, we highlight both the benefits and limitations of VR use, as it is just beginning to be applied as a new modality in psychiatry. We have tried to describe the evidence of the utility of VR in psychiatric conditions and the types of procedures followed in those studies.

METHODS AND RESULTS

To identify ‘virtual reality’ in the field of psychiatry, a PubMed literature search was performed which included articles published prior to 31 December 2018, and which included the terms “virtual reality” and “psychiatry” and “treatment” or “therapy.” We then categorized them as articles related to “posttraumatic Stress Disorders (PTSD),” “phobia,” “anxiety disorders,” “schizophrenia,” “autism,” “dementia and mild cognitive impairment (MCI),” and “pain and stress.” Additional relevant articles were found through a manual bibliographic search. Eligibility criteria were: 1) articles in English; 2) human studies; and 3) articles focused on virtual reality and psychiatric disorders. We collect 36 studies that made use of VR to provide various types of stimulations for patients with psychiatric problems (Table 1).

DISCUSSION

Treatment of Posttraumatic Stress Disorders (PTSD)

Posttraumatic Stress Disorder (PTSD) is a psychological reaction that occurs after experiencing stress that has caused life-threatening extreme mental trauma (42). An individual’s quality of life is greatly reduced by re-experiencing the situation with awakening, anxiety, agitation, and insomnia symptoms. Among PTSD, many VR studies have been focused on veterans who have been exposed to battles in Iraq and Afghanistan, to alleviate their trauma (43), reduce suicidal ideation (44), decrease depression and anger (16), and to improve their PTSD (30). Discharged soldiers can have destructive behaviors to both themselves and others as a result of rage and depression caused by PTSD. However, they can learn to solve these situations in a safe and well-controlled environment called VR. Since the key in the emotion-processing theory (EPT) is to expose and modify their unique fear structure, the virtual environment is ideal in the sense of its flexibility and customization (45). As they are exposed to sources of their disorder, they decrease the feelings of fear and anxiety in the form of VR-based habituation therapy. Dr. Rothbaum at the Emory University Hospital provided a randomized, double-blind,
Randomization to exposure VR-CBT with treatment as usual, 100 mg D-cycloserine versus
Children scheduled for elective
Immersive VR enhanced DBT
Randomization to VR with standard
15 training sessions of either NIRS
VRET plus group treatment versus
Two second-level treatment
VRE treatment either with or without
Child and adolescent patients
Diminished preoperative anxiety,
VR cognitive-motor training, 45 min,
Preoperative VR tour of the operating
21-year-old Latino male patient
Active duty soldiers with PTSD
Conclusions
Randomization to 10 sessions of
RCT
Method
Middle-aged adults with
6 weeks of VRE therapy combined
RCT
14 weekly sessions for VR exposure
or in vivo exposure or waiting list
Randomization to 10 sessions of
Prolonged exposure, VRE, or a minimal attention waitlist
Participants met criteria for
PTSD (n = 50)
RCT
6 weeks of VRE therapy combined
with d-cycloserine, alprazolam, or placebo
Alcohol dependent subjects
(n = 12)
Case control study
10 sessions of VRET, consisted of
3 steps: relaxation, presentation of a high risk situation, and aversive situation
Primiporous parturient women having labor
(n = 30)
RCT
Randomization to VR with standard care group and only standard care group
No group differences in average or peak subjective distress during exposure therapy
Reducions in negative emotions for Patient 1, mixed results for Patient 2
Temporal relationship between posttraumatic and depressive symptoms.
during VRE
Significant improvements in severity of auditory visual hallucination, depressive
symptoms and quality of life
Increased positive emotions and decreased negative emotions
NFT in VR is expected to yield greater
effects than training in 2D
Higher tendency to effectively overcome the fear of flying in VR with diaphragmatic breathing
Improvement in both CBT groups, more effective in VRE
Significant reductions in PTSD symptoms in Prolonged exposure and VRE groups
Decreased metabolism in the basal ganglia after VRET (PET shows)
Decreased pain during the episiotomy repair
When use of VR with local anesthesia

TABLE 1 | Clinical trials or therapies with virtual reality (VR) in psychiatry.

Author and date of publication	Subjects	Design	Method	Conclusions
Doniger et al., 2018 (7)	Middle-aged adults with Alzheimer’s disease family history (n = 125)	RCT	VR cognitive-motor training, 45 min, twice/week for 12 weeks	Increased cognitive function
Reger et al., 2019 (6)	Active duty soldiers with PTSD (n = 108)	Observational	Randomization to exposure via 10 sessions of prolonged exposure or VRE or 5-week minimal attention waitlist	No group differences in average or peak subjective distress during exposure therapy
Flores et al., 2018 (9)	Two patients with spinal cord injury with psychiatric symptoms (n = 25)	Case report	4 VR DBT sessions for Patient 1, 2 VR DBT sessions for Patient 2	Reductions in negative emotions for Patient 1, mixed results for Patient 2
Peskin et al., 2018 (10)	Men and women with World trade center-related PTSD (n = 13)	RCT	100 mg D-cycloserine versus placebo augmented VRE sessions for 12 weeks	Temporal relationship between posttraumatic and depressive symptoms. during VRE
Du Sert et al., 2018 (11)	Schizophrenia patients with refractory AVH (n = 19)	RCT	A 7-week phase-II, randomized, partial cross-over trial	Significant improvements in severity of auditory visual hallucination, depressive symptoms and quality of life
Pot-Kolder et al., 2018 (12)	Patients with a psychotic disorder and paranoid ideation (n = 116)	RCT	VR-CBT with treatment as usual, 1 h long, 16 individual session versus treatment as usual	Significant reduction in momentary paranoid ideation and anxiety
Gold et al., 2018 (13)	Child and adolescent patients with burn injury (n = 143)	RCT	Totally 5 min long VR game with standard of care versus standard of care only	Significant reduction in acute procedural pain and anxiety
Gomez et al., 2017 (14)	21-year-old Latino male patient with burn injury (n = 64)	Observational	Immersive VR enhanced DBT mindfulness skills training, 4 sessions for 1 month	Increased positive emotions and decreased negative emotions
Ryu et al., 2017 (15)	Children scheduled for elective surgery (n = 69)	RCT	Preoperative VR tour of the operating theatre, 4 min video	Lower scores of the Yale Preoperative Anxiety Scale, Induction Compliance Checklist, and Procedural Behavior Rating Scale
Eijlers et al., 2017 (16)	Children undergoing elective day care surgery (n = 200)	RCT	Preoperative VRE intervention, 15 min	Diminished preoperative anxiety, postoperative pain, and the use of postoperative analgesics
Beidet et al., 2017 (17)	Veterans and active duty soldiers with combat-related PTSD (n = 92)	RCT	VRET plus group treatment versus VRET with psychoeducation control	Decrease on PTSD scale for both group and decrease in social isolation for VRET plus group treatment
Ferrer-Garcia et al., 2017 (18)	Patients with bulimia nervosa and binge eating disorder (n = 64)	Case control	Two second-level treatment condition: VR- Cue Exposure Therapy or additional CBT	More proportion of achievement of treatment for binge eating or purging episodes
Blume et al., 2017 (19)	Children with ADHD (n = 90)	RCT	15 training sessions of either NIRS based NFT in VR, NIRS based NFT in 2D or biofeedback training in VR, 60–70 min for each session	NFT in VR is expected to yield greater effects than training in 2D
Shiban et al., 2017 (20)	29 patients with aviophobia (n = 29)	RCT	VRE treatment either with or without diaphragmatic breathing	Higher tendency to effectively overcome the fear of flying in VR with diaphragmatic breathing
Bouchard et al., 2017 (21)	Patients with social anxiety disorder (N = 59)	RCT	14 weekly sessions for VR exposure or in vivo exposure or waiting list	Improvement in both CBT groups, more effective in VRE
Reger et al., 2016 (22)	Active-duty soldiers (n = 162)	RCT	Randomization to 10 sessions of Prolonged exposure, VRE, or a minimal attention waitlist	Significant reductions in PTSD symptoms in Prolonged exposure and VRE groups
Norrholm et al., 2016 (23)	Participants met criteria for PTSD (n = 50)	RCT	In the d-cycloserine group, elevated startle before VR therapy predicted better outcome	In the d-cycloserine group, elevated startle before VR therapy predicted better outcome
Son et al., 2015 (24)	Alcohol dependent subjects (n = 12)	Case control study	Decreased metabolism in the basal ganglia after VRET (PET shows)	Decreased metabolism in the basal ganglia after VRET (PET shows)
Jahani Shoorab et al., 2015 (25)	Primiporous parturient women having labor (n = 30)	RCT	Randomization to VR with standard care group and only standard care group	Decreased pain during the episiotomy repair When use of VR with local anesthesia
TABLE 1 | Continued

Author and date of publication	Subjects	Design	Method	Conclusions
Rothbaum et al., 2014 (26)	Iraq and Afghanistan war veterans with PTSD (n = 156)	RCT	An introductory session and five sessions of VRE augmented with d-cycloserine or alprazolam or placebo	Significantly improved PTSD symptoms from pre- to posttreatment across all conditions
Marco et al., 2013 (27)	Participants diagnosed with eating disorders (n = 34)	Case control study	15 CBT group sessions and 8 individual psychotherapy sessions with VR	Improved body image and this improvement was maintained at the one-year follow-up
Pallavicini et al., 2013 (28)	Undergraduate students (n = 39)	Case control study	Same experience was offered using test, audio, video, and VR	VR was less effective than other procedures in eliciting stressor responses
Diener et al., 2013 (29)	Patients with arachnophobia (n = 58)	RCT	A single dose of quetiapine XR or placebo prior to a VR	Effect of VR challenge on behavioral avoidance, psychophysiological reaction
Malbos et al., 2013 (30)	Agoraphobic participants (n = 18)	Case control study	VRET only and VRET with cognitive therapy	The isolated effects of VRET did not seem to be less than the effects of VRET with cognitive therapy
McKay et al., 2012 (31)	Active duty service members with PTSD (n = 20)	Observational	Open-label, single-group VRET	Reduction in PTSD symptoms, improvement in PTSD, depression and anxiety
Culbertson et al., 2012 (32)	Healthy treatment-seeking cigarette smokers (n = 11)	RCT	Randomization to CBT plus either smoking-VR Cue Exposure Therapy or placebo-VR Cue Exposure Therapy	Higher quit rate, smoking fewer cigarettes per day
Park et al., 2011 (33)	Inpatients with schizophrenia (n = 91)	RCT	Comparison social skills training using VR role playing to social skills training using traditional role playing, over 10 semiweekly sessions for 5 weeks	Improved more in conversational skills and assertiveness
McKay et al., 2011 (34)	Active duty military personnel with combat-related PTSD (n = 20)	RCT	Randomization to VR-graded exposure therapy or treatment as usual	Higher number of improvements reported, more improvement on the CAPS score
St-Jacques et al., 2010 (35)	Agoraphobic participants (n = 31)	RCT	Randomization to in vivo exposure alone or in virtual reality-based exposure	VR did not increase motivation toward psychotherapy
Gerardi et al., 2008 (36)	A 29-year-old veteran	Case report	90-min individual session, once weekly over 4 weeks	Decreased rating scale scores (CAPS, PTSD Symptom Scale Self-Report)
Difeo et al., 2007 (37)	Male disaster workers with PTSD (n = 21)	Case control study	Assignment to a VR treatment or a waitlist control	Significant decline in CAPS scores
Walshe et al., 2003 (38)	Subjects with simple phobia/accident phobia (n = 14)	Observational	An open study, computer games and virtual reality therapy, 12 1-h sessions	Significant post treatment reductions on all measures
Rothbaum et al., 2001 (39)	Male Vietnam combat veterans with PTSD (n = 10)	Observational	Open clinical trial, 8 to 16 sessions, 2 virtual environments	Significant reduction from baseline in symptoms
Rothbaum et al., 2000 (40)	Patients with fear of flying (n = 49)	Case control study	Randomization to VRE therapy, standard exposure therapy, or a waitlist control, 4 sessions of exposure out of 8 sessions	VRE and standard exposure both superior to wait-list
Rothbaum et al., 1999 (41)	A Vietnam combat veteran with PTSD	Observational	VRE, 2 virtual environments	Decrease on CAPS and self-rated PTSD
Rothbaum et al., 1996 (42)	A 42-year-old female with a debilitating fear and avoidance of flying	Case report	Anxiety management techniques and the VRE	All self-report measures of fear and avoidance of flying decreased

RCT, randomized controlled trial; VR, virtual reality; VRE, virtual reality exposure; PTSD, posttraumatic stress disorder; CBT, cognitive-behavioural therapy; NIRS, near-infrared spectroscopy; CAPS, clinician administered PTSD scale; NFT, neurofeedback training.

six-session VR exposure treatment in 156 patients diagnosed with PTSD among discharged soldiers returning from the Iraq and Afghan wars (26). The study concluded that VR treatment was associated with the reduction in PTSD diagnoses and symptoms in Iraq and Afghanistan veterans. Another study suggested that VR with skin conductance reactivity is a diagnostic tool for PTSD as well as a treatment (47). Veterans with PTSD displayed larger skin conductance reactivity across VR combat events, but not for non-combat VR events. The VR exposure therapy system, “Bravemind,” is currently distributed to over 50 sites, including VA hospitals, military bases, and university centers to provide relief from PTSD for soldiers (48).

Anxiety Disorders and Specific Phobia

These days, some VR systems create highly immersive experiences using more invasive devices such as Head mounted Display (HMDs). A new generation of realistic simulation can therefore
serve as a promising assessment and therapy for erroneous anxiety-provoking thinking. In general, these symptoms are viewed as serious conditions where patients worry about something fearful excessively and persistently. Reproducing the traditional exposure interventions in VR, Maples-Keller et al. reviewed several case studies of social anxiety disorders and generalized anxiety disorders (49). This is merely the beginning of an explosion in potential provided by ever increasing sophisticated technology. It worth noting that the effectiveness of applying VR in this domain is also quantitatively being analyzed (50).

More specifically, phobia is a type of anxiety disorder characterized by marked and persistent fears that are cued by the presence or anticipation of specific objects or situations with a desire to avoid that condition due to high levels of fear and discomfort (43). Phobia includes acrophobia, flight phobia, phobias for insects or animals, and so on. Exposure therapy in VR is helpful because we can deal with such specific phobias in a virtual world, and it can be cost-effectively performed (29). In VR, patients with phobia can reproduce the situation they actually feel fearful of and face it themselves. Repeated use of VR increases the threshold of anxiety and makes it less insensitive, resulting in the reduced incidence of actual situations. Initially, VR graded exposure therapy was found to be successful in reducing fear of spiders (51, 52), social phobia (53), and flight phobia (3, 54) after applying it to a small number of subjects. A self-training program with mobile VR individuals with acrophobia has been safely and successfully applied to reduce fear of heights (55). It can be safely applied at home and at the hospital. It can be easily interrupted or repeated depending on the situation. VR can reduce the degree of anxiety by exposing the patient to a virtual dental care scenario in an incremental manner (56, 57). Similarly, a pilot study has applied a VR headset as a fear reduction tool and pain distraction for fear of needles, where 94.1% of pediatric subjects reported an improvement after using VR during immunization (58). Recently, VR with repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex has been applied in participants with spider phobias. It diminished activation in the left inferior frontal gyrus in functional near-infrared spectroscopy (fNIRS) during an emotional Stroop paradigm (59).

Schizophrenia

Patients with schizophrenia show anhedonia, social withdrawal, and a blunted affect, which can lead to rumination and isolation. While exposure therapy in anxiety-related disorders uses VR as a simulation tool, the so-called avatar therapy for negative symptoms of schizophrenia focuses on interactive VR. In a computer-generated virtual world, VR users are no longer simply external observers, but active participants. It is one of the key variables in understanding social environments that need to be controlled, and thus provides exciting applications to research and treatment (60). For example, interactive VR therapy has shown benefits in social skills such as role-playing (33), memory function (61), medication management skills (62), job interviews (63), and vocational training (64). Recent VR-based cognitive rehabilitation programs also manage positive symptoms in schizophrenia such as auditory verbal hallucinations (11).

Autism

Autism is characterized by a state of being trapped in one’s own world. It is a childhood developmental disability. Children with autism do not interact with others. They do not have emotional ties. VR approaches for rehabilitation in autism tend to create virtual environments integrated with other equipment, facilitating cognitive processes of training such as concentration and other functional skills in everyday life. The University of Texas has developed a training program to assist in the social skills training of autistic children (65). It uses brain imaging and Electroencephalography (EEG) monitoring. It also uses avatars to put children in situations such as job interviews and meetings. They practice reading social signals and expressing socially appropriate behaviors. After completion of the program, the activity of the brain area associated with social understanding was found to be increased in participants’ brain image. Smith and colleagues at the Northwestern University Psychiatry Department have reported that young adults diagnosed with autism spectrum have a higher job search rate than the comparative group at six months after receiving job interviews through VR (66). For the purpose of training outdoor activity, individuals with Autism spectrum disorder were placed in a three-dimensional city and given a set of tasks that involved taking buses through a game. A statistically significant increase in measures of knowledge of the process of riding a bus, a reduction in the electro-dermal activity, and a high success rate in their application were found (67).

Dementia and Mild Cognitive Impairment (MCI)

Lessons from the Nun study have revealed that cognitive reserve and training are also important in preventing Alzheimer's disease (68). Dementia is a broad term describing such disorders of the brain that progress over time. Basically, in evaluating cognitive dysfunction and detecting MCI, VR has been applied and has exhibited very high accuracy. Cushman et al. (69) have investigated navigational impairment of early Alzheimer's disease, using both real-world and laptop PC based virtual environments in the same subjects; 35 young normal controls, 26 older normal controls, 12 patients with mild cognitive impairment and 14 patients with early Alzheimer’s disease (AD). It was found that virtual environment testing provides a valid assessment of navigational skills for aging and Alzheimer's disease (69). Also, there is a systematic review that presented a status of VR applications for diagnostic assessment and cognitive training in Alzheimer's disease and MCI. Both semi-immersive and fully-immersive VR technology can be feasible amongst individuals living within the earlier stages of dementia outside of a hospital environment (70). While much of the VR studies appear to focus on the treatment of anxiety or phobias, the population of VR applications is underdeveloped. Even though sample sizes are limited, VR-based cognitive training has shown benefits for episodic memory in Amnestic MCI and early to moderate Alzheimer's disease (71). Moreover, Moyle et al., explored the feasibility of VR in individuals with a range of cognitive impairments from mild to more severe stages of dementia (72). VR was perceived to have a positive effect on people with dementia, although a greater level of fear and anxiety
during VR were experienced compared to those in the normative sample (72). Some individuals in the earlier stages of dementia experienced boredom, and VR technology was also found to increase fear and anxiety in one study. However, it is perhaps not surprising that recent advances in VR rehabilitation applications keep pointing to the feasibility of VR training in healthy elderly persons as well as in pathological populations (73).

Stress and Pain Alleviation

Stress and pain have deleterious effects on the mind and body. In order to decrease one's attention available for conscious pain processing, VR usage for stress and pain alleviation typically provides simple forms of distraction (e.g., watching videos or playing video games). Although the physical mechanisms are not well understood, the patients focus moves away from the conscious attention on the stressful and painful condition during the occupational activity (74). While patients can learn pain-management techniques as mindfulness, several experimental results suggest that VR techniques has actual benefits for subjective pain reduction (75). For example, Oculus Rift uses DEEP, a meditation application to help users breathe deeply. The application works through a band surrounding the chest to measure breathing. In another pilot study, 44 participants attended a mindfulness conference putting on an Oculus Rift DK2 VR helmet and floated down a calm 3D computer-generated virtual river while listening to digitized DBT mindfulness skills training instructions. Participants reported significantly less sadness, anger, and anxiety but more relaxation (76). Dr. Spiegel's team at the Cedars-Sinai Hospital has given chronic patients the opportunity to get out of the hospital through VR and to enjoy the natural scenery. This could reduce a patient's stress and shorten hospital stays (77). Relaxation and meditation in various VR applications have become increasingly widespread for treating patients at home or in hospitals (78).

Studies at the University of Barcelona have shown that applying VR to depressed patients can reduce the severity of their depression and self-degradation and increase satisfaction (79). By limiting distractions from the real world and increasing the sense of presence, VR may facilitate mindfulness practice as well.

Limitations

Clearly, exposure to VR applications may result in significant discomfort for the majority of people, with symptoms of motion sickness including eye fatigue, headaches, nausea, and sweating (80, 81). VR Sickness is different from common motion sickness because motion sickness is caused by visual perception of self-motion while VR sickness does not require actual movement. A conflict between accommodation and vergence depth cues on stereoscopic displays is a significant cause of visual discomfort from VR (82). Dry eyes due to an overheated display in an enclosed space and retinal damage due to blue light are also concerns. As shown in this review, only a few large-sized and well-designed studies have been conducted in psychiatry with VR.

VR is developing to improve real-life adaptation of patients with psychiatric problems. However, patients may become preoccupied or addicted to the VR environment, similar to internet game addiction. If patients with schizophrenia have impairment on reality testing, they may have delusional thinking in the VR environment. Doctor-patient relationships and careful education before using VR are mandatory before applying VR treatments in psychiatric patients. In the near future, a guideline to apply VR treatments to patients with psychiatric illnesses should be established. VR will play a role as an alternative option for psychiatrists to use in supporting psychiatric assessments and treatments in patients.

CONCLUSION

Many studies and clinical trials have used VR as a simulation, interaction, and distraction tool for patients with psychiatric illnesses such as PTSD, anxiety, specific phobia, schizophrenia, autism, dementia, and heavy stress. VR environments show the possibility of changing their anxiety, depression, cognition, and social functions by effectively exposing them sources of fear, presenting interactive virtual environments of cognitive-behavioral approaches, and contributing to other rehabilitation applications.

In practice, patients with a psychiatric diagnosis such as depression, bipolar disorder, anxiety disorder, schizophrenia, and even alcohol use disorder share common characteristics such as anxiety, avoidance, and poor insight to their illnesses. Modern VR systems can deliver an ideal place where one can confront the problem which needs to be overcome, not only through talking with doctors, but also through virtual environments with well-controlled sensory stimuli. This may produce cognitive and behavioral changes in patients with psychiatric disorders including autism and dementia. They also have benefits in reducing chronic pain and intensive stress. However, VR needs to overcome technical hurdles such as motion sickness and dry eyes, as well as user hurdles such as preoccupation and addiction.

AUTHOR CONTRIBUTIONS

All authors listed have made substantial, direct, and intellectual contribution to the work and approved it for publication.

FUNDING

This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. NRF-2016M3C7A1947307; PI HJJ), and by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIT (No. NRF-2017M3A9F1027323; PI HJJ). They had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.
REFERENCES

1. Li L, Yu F, Shi D, Shi J, Tian Z, Yang J, et al. Application of virtual reality technology in clinical medicine. Am J Transl Res (2017) 9:3867–80. doi: 10.4247/AM.2017.AB187

2. Bekater-Bodmann NE, Foel J, Diers M, Kamping S, Rance M, Kirsch P, et al. The importance of synchrony and temporal order of visual and tactile input for illusory limb ownership experiences - an FMRI study applying virtual reality. PLoS One (2014) 9:e87013. doi: 10.1371/journal.pone.087013

3. Baus O, Bouchard S. Moving from virtual reality exposure-based therapy to augmented reality exposure-based therapy: a review. Front Hum Neurosci (2014) 8:112. doi: 10.3389/fnhum.2014.00112

4. Mishkind MC, Norr AM, Katz AC, Reger GM. Review of virtual reality treatment in psychiatry: evidence versus current diffusion and use. Curr Psychiatriy Rep (2017) 19:80. doi: 10.1007/s11920-017-0836-0

5. Mantovani F, Castelnuovo G, Gaggioli A, Riva G. Virtual reality training for health-care professionals. Cyberpsychol Behav (2003) 6:389–95. doi: 10.1089/10949310332278772

6. Rothbaum BO, Hodges LF, Kooper R, Opdyke D, Williford JS, North M. Diaphragmatic breathing during virtual reality exposure therapy for aviphtoria: functional coping strategy or avoidance behavior? A pilot study. BMC Psychiatry (2017) 17:229. doi: 10.1186/s12888-016-1181-2

7. Bouchard S, Dumoulin S, Robillard G, Guirard T, Klinger E, Forget H, et al. Virtual reality compared with in vivo exposure in the treatment of social anxiety disorder: a three-arm randomised controlled trial. Br J Psychiatry (2017) 210:276–83. doi: 10.1192/bjp.bp.116.184234

8. Reger GM, Koenen-Woods P, Zetocha K, Smolenski DJ, Holloway KM, Rothbaum BO, et al. Randomized controlled trial of prolonged exposure using imaginal exposure vs. virtual reality exposure in active duty soldiers with deployment-related posttraumatic stress disorder (PTSD). J Consult Clin Psychol (2016) 84:946–59. doi: 10.1037/ccp0000134

9. Norrholm SD, Jovanovic T, Gerardi M, Breezele KG, Price M, Davis M, et al. Baseline psychophysiological and cortisol reactivity as a predictor of PTSD treatment outcome in virtual reality exposure therapy. Behav Res Ther (2016) 82:28–37. doi: 10.1016/j.brat.2016.05.002

10. Son JH, Lee SH, Seok JW, Kee BS, Lee HW, Kim HJ, et al. Virtual reality therapy for the treatment of alcohol dependence: a preliminary investigation with positron emission tomography/computed tomography. J Stud Alcohol Drugs (2015) 76:620–7. doi: 10.15288/jsad.2015.76.620

11. Jahanishooran N, Ehbramzadeh Zagami S, Nahvi A, Mazloum SR, Golmakani N, Talebi M, et al. The effect of virtual reality on pain in primipara women during episiotomy repair: a randomized clinical trial. Iran J Med Sci (2015) 40:219–24. https://www.ncbi.nlm.nih.gov/pubmed/25999621

12. Rothbaum BO, Price M, Jovanovic T, Norrholm SD, Gerardi M, Dunlop B, et al. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. Am J Psychiatry (2014) 171:640–8. doi: 10.1176/appi.ajp.2014.13121625

13. Marco JH, Perpina C, Botella C. Effectiveness of cognitive behavioral therapy supported by virtual reality in the treatment of body image in eating disorders: one year follow-up. Psychiatry Res (2013) 209:619–25. doi: 10.1016/j.psychres.2013.02.023

14. Pallavicini F, Cipresso P, Raspelli S, Grassi A, Serino V, Vigna C, et al. Is virtual reality always an effective stressors for exposure treatments? Some insights from a controlled trial. BMC Psychiatry (2013) 13:52. doi: 10.1186/1471-244X-13-52

15. Diemer J, Domschke K, Muhlberger A, Winter B, Zavorotnyy M, et al. Virtual reality compared with cognitive enhancer. J Stud Alcohol Drugs (2015) 76:620–7. doi: 10.15288/jsad.2015.76.620

16. Gomez J, Hoffmann HG, Bistricky SL, Gonzalez M, Rosenberg L, Sampaio M, et al. The use of virtual reality facilitates dialectical behavior therapy(R) “Observing Sounds and Visuals” mindfulness skills training exercises for a Latino patient with severe burns: a case study. Front Psychol (2017) 8:1611. doi: 10.3389/fpsyg.2017.01611

17. Iju HJ, Park SJ, Park JW, Kim JW, Yoo HJ, Kim TW, et al. Randomized clinical trial of immersive virtual reality tour of the operating theatre in children before anaesthesia. Br J Surg (2017) 104:1628–33. doi: 10.1002/bjs.10684

18. Beidel DC, Frueh BC, Neer SM, Bowers CA, Trachik B, Uhde TW, et al. Trauma management therapy with virtual-reality augmented exposure therapy for combat-related PTSD: a randomized controlled trial. J Anxiety Disord (2019) 61:64–74. doi: 10.1016/j.janxdis.2017.08.005
52. Garcia-Palacios A, Hoffman H, Carlin A, Furness TA, 3rd, Botella C. Virtual reality exposure therapy for the treatment of posttraumatic stress disorder. *Cyberpsychol Behav Soc Netw* (2011) 14:223–9. doi: 10.1089/cyber.2011.0003

53. St-Jacques J, Bouchard S, Belanger C. Is virtual reality effective to motivate and raise interest in phobic children toward therapy? A clinical trial study of *in vivo* with in *vivo* versus *in vivo* only treatment exposure. *J Clin Psychiatry* (2010) 71:924–31. doi: 10.4088/JCP08m04822hu

54. McIay RN, Wood DP, Webb-Murphy JA, Spira JL, Wiederhold MD, Pyne JM, et al. A randomized, controlled trial of virtual reality-graded exposure therapy for post-traumatic stress disorder in active duty service members with combat-related post-traumatic stress disorder. *Cyberpsychol Behav Soc Netw* (2011) 14:223–9. doi: 10.1089/cyber.2011.0003

55. Hong YJ, Kim HE, Jung VH, Kyeong S, Kim JJ. Usefulness of the mobile virtual reality self-training for overcoming a fear of heights. *Cyberpsychol Behav Soc Netw* (2017) 20:753–61. doi: 10.1089/cyber.2017.0085

56. Wallach HS, Bar-Zei M. Virtual-reality-assisted treatment of flight phobia. *Isr J Psychiatry Relat Sci* (2007) 44:29–32. https://www.ncbi.nlm.nih.gov/pubmed/17655808

57. Hofstetter D, Hoffmann K, Schmied V, Scharf C, Umlauf T. Effects of virtual reality on suicidal ideation in active duty soldiers: an RCT. *J Clin Psychiatry* (2017) 78:10.1002/jcp.25767

58. Hwang JY, Park SM, Choi JS, Lee JY, Lee JY, et al. Developing a virtual reality-based vocational rehabilitation training program for patients with schizophrenia. *Cyberpsychol Behav Soc Netw* (2016) 19:686–91. doi: 10.1089/cyber.2016.0215

59. Kurtz MM, Baker E, Pearson LD, Astur RS. A virtual reality apartment as a measure of medication management skills in patients with schizophrenia: a pilot study. *Schizophr Bull* (2007) 33:1162–70. doi: 10.1093/schbul/sbl039

60. Freeman D. Studying and treating schizophrenia using virtual reality: a new perspective. *Schizophr Bull* (2004) 30:911–21. doi: 10.1093/oxfordjournals.schbul.a003002

61. Sohn BK, Hwang JV, Park SM, Choi JS, Lee JY, Lee JY, et al. Developing a virtual reality-based vocational rehabilitation training program for patients with schizophrenia. *Cyberpsychol Behav Soc Netw* (2016) 19:686–91. doi: 10.1089/cyber.2016.0215

62. Kurtz MM, Baker E, Pearson LD, Astur RS. A virtual reality apartment as a measure of medication management skills in patients with schizophrenia: a pilot study. *Schizophr Bull* (2007) 33:1162–70. doi: 10.1093/schbul/sbl039

63. Smith MJ, Fleming MF, Wright MA, Robert AG, Humm LB, Olsen D, et al. Virtual reality job interview training and 6-month employment outcomes for individuals with schizophrenia seeking employment. *Schizophr Res* (2015) 166:86–91. doi: 10.1016/j.schres.2015.05.022

64. Tsang MM, Man DW. A virtual reality-based vocational training system (VRVTS) for people with schizophrenia in vocational rehabilitation. *Schizophr Res* (2013) 144:51–62. doi: 10.1016/j.schres.2012.12.024

65. Kandalfri MR, Didehbani N, Krayczik DC, Allen TT, Chapman SB. Virtual reality social cognition training for young adults with high-functioning autism. *J Autism Dev Disord* (2013) 43:33–44. doi: 10.1007/s10803-012-1544-6

66. Powers MB, Emmelkamp PM. Virtual reality exposure therapy for anxiety disorders: a meta-analysis. *J Anxiety Disord* (2008) 22:561–9. doi: 10.1016/j.janxdis.2007.04.006

67. Van ’t Wou M, Spofford CM, Unger WS, Sebin EB, Shea MT. Skin conductance reactivity to standardized virtual reality combat scenes in veterans with PTSD. *Appl Psychophysiol Biofeedback* (2017) 42:209–21. doi: 10.1007/s10803-017-9366-0

68. Rizzo S. Bravemind Virtual Reality Exposure Therapy (http://ict.usc.edu/prototypes/bravemind/). US: USC (2018).

69. Maples-Keller JL, Bunnell BE, Kim SJ, Rothbaum BO. The use of virtual reality technology in the treatment of anxiety and other psychiatric disorders. *Harv Rev Psychiatry* (2017) 25:103–13. doi: 10.1097/HRP.0000000000000138

70. Obris D, Pinta S, Garcia-Palacios A, Botella C, Szamoskosi S, David D. Virtual reality exposure therapy in anxiety disorders: a quantitative meta-analysis. *Depress Anxiety* (2012) 29:85–93. doi: 10.1002/da.20910

71. Carlin AS, Hoffman HG, Weghorst S. Virtual reality and tactile augmentation in the treatment of spider phobia: a case report. *Behav Res Ther* (1997) 35:153–8. doi: 10.1016/S0005-7967(96)00085-X

72. García-Palacios A, Hoffman H, Carlin A, Furness TA, 3rd, Botella C. Virtual reality in the treatment of spider phobia: a controlled study. *Behav Res Ther* (2002) 40:983–93. doi: 10.1016/S0005-7967(01)00668-7

73. Klinger E, Legeron P, Roy S, Chemin J, Lauer F, Nugues P. Virtual reality exposure in the treatment of social phobia. *Stud Health Technol Inform* (2004) 99:91–119. doi: 10.1016/c705482011-034
74. Jones T, Moore T, Choo J. The impact of virtual reality on chronic pain. *PLoS One* (2016) 11:e0167523. doi: 10.1371/journal.pone.0167523
75. Indovina P, Barone D, Gallo L, Chirico A, De Pietro G, Giordano A. Virtual reality as a distraction intervention to relieve pain and distress during medical procedures: a comprehensive literature review. *Clin J Pain* (2018) 34:858–77. doi: 10.1097/AJP.0000000000000599
76. Navarro-Haro MV, Lopez-Del-Hoyo Y, Campos D, Linehan MM, Hoffman HG, Garcia-Palacios A, et al. Meditation experts try virtual reality mindfulness: a pilot study evaluation of the feasibility and acceptability of virtual reality to facilitate mindfulness practice in people attending a mindfulness conference. *PLoS One* (2017) 12:e0187777. doi: 10.1371/journal.pone.0187777
77. Tashjian VC, Mosadeghi S, Howard AR, Lopez M, Dupuy T, Reid M, et al. Virtual reality for management of pain in hospitalized patients: results of a controlled trial. *JMIR Ment Health* (2017) 4:e9. doi: 10.2196/mental.7387
78. Garrett B, Taverner T, Mcdade P. Virtual reality as an adjunct home therapy in chronic pain management: an exploratory study. *JMIR Med Inform* (2017) 5:e11. doi: 10.2196/medinform.7271
79. Falconer CJ, Rovira A, King JA, Gilbert P, Antley A, Fearon P, et al. Embodying self-compassion within virtual reality and its effects on patients with depression. *BJPsych Open* (2016) 2:74–80. doi: 10.1192/bjpo.bp.115.002147
80. Ohyama S, Nishiike S, Watanabe H, Matsuoka K, Akizuki H, Takeda N, et al. Autonomic responses during motion sickness induced by virtual reality. *Auris Nasus Larynx* (2007) 34:303–6. doi: 10.1016/j.anl.2007.01.002
81. Chen W, Chao JG, Chen XW, Wang JK, Tan C. Quantitative orientation preference and susceptibility to space motion sickness simulated in a virtual reality environment. *Brain Res Bull* (2015) 113:17–26. doi: 10.1016/j.brainresbull.2015.01.007
82. Carnegie K, Rhee T. Reducing visual discomfort with HMDs using dynamic depth of field. *IEEE Comput Graph Appl* (2015) 35:34–41. doi: 10.1109/MCG.2015.98

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Park, Kim, Lee, Na and Jeon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.