Palladium-Catalyzed trans-Hydroalkoxylation: Counterintuitive Use of an Aryl Iodide Additive to Promote C–H Bond Formation

Ashis Das,† Luca Buzzetti,† Mikus Purinš, and Jerome Waser*†

ABSTRACT: We report an enantioselective palladium-catalyzed trans-hydroalkoxylation of propargylic amines with a trifluoroacetaldehyde-derived tether to build chiral oxazolidines. Diastereoselective hydrogenation using a heterogeneous palladium catalyst then gave access to protected benzylc amino alcohols in 45−87% yields and 84−94% ee values. Hydroalkoxylation of the alkynes required a catalytic amount of aryl iodide, highlighting the counterintuitive key role played by a putative Pd(II)/ArI oxidative addition complex to promote oxyarylation product instead of oxypalladation/protodemetalation.

KEYWORDS: enantioselective catalysis, palladium catalysis, hydrogenation, chiral auxiliary, amino alcohols, tethers, dynamic kinetic asymmetric transformation

In order to access this important subclass of amino alcohols, we envisioned a new catalytic process via hydroalkoxylation of the triple bond instead of the arylalkoxylation. For it to be successful, a catalyst will need to be designed to promote C–H bond formation via protodemetalation, which had been observed only as a minor side reaction in our previous studies.

Herein, we report the first enantioselective palladium-catalyzed trans-hydroalkoxylation of propargylic amines via in situ tethering (Scheme 1C). The key for success was the counterintuitive use of a catalytic amount of aryl iodide 7a as additive together with a commercially available chiral diphosphine ligand to promote oxypalladation/protodemetalation instead of oxypalladation/reductive elimination. Diastereoselective hydrogenation under standard heterogeneous conditions then gave access to monoaryl amino alcohol derivatives in high yield and stereoselectivity. Fine-tuning of the structure of aryl iodide 7 was essential to promote the desired transformation.

In our previous work, an interesting result was obtained for the tethered oxyarylation of propargylic amine 1a when DACH-phenyl Trost diphosphine ligand L1 and Pd2(dba)3·CHCl3 as the palladium source were used. The desired oxyarylation product 3a′ was obtained in only 66% yield and 66% ee, but the protodemetalation product 3a was observed in 29% yield and 96% ee (Scheme 2).

Received: April 13, 2022
Revised: June 3, 2022
Published: June 13, 2022
We therefore decided to optimize the trans-hydroalkoxylation process as an alternative to the failed alkoxyarylation of terminal alkynes (Table 1). The first obvious experiment was to remove aryl iodide 7b as it should not be needed for the transformation (entry 1). Surprisingly, no product 3a was formed and we only recovered the starting materials. This result indicated that a Pd−Ar complex may be necessary to promote the hydroalkoxylation step. In fact, when a catalytic amount (20 mol %) of iodobenzene (7c) was added, product 3a was obtained in 23% yield and 94% ee (entry 2). In addition, we also observed the formation of the arylated product in about 20% yield. The role of the aryl iodide is not only to oxidize palladium, as the use of Pd(II) catalysts in its absence did not provide 3a (entry 3). Instead, we recovered only the tethered starting material. When the monophosphine ligand L2,11 which gave the best results in our previous work,3 was used, 3a was obtained only in 13% yield and 38% ee (entry 4). We then investigated the effect of substitution on the arene ring. 2-Iodotoluene (7d) provided product 3a in 27% yield and 86% ee (entry 5). 2-Iodobenzotrifluoride (7e) delivered 3a in 30% yield and 92% ee (entry 6), while 2-iodoanisole (7a) gave 3a in good yield (90%) and enantioselectivity (92%) (entry 7). When the methoxy group was substituted with a fluoro group (7f), 3a was obtained in 90% yield and 86% ee (entry 8), while the large tert-butyldimethylsilyloxy-substituted aryl iodide 7g gave 3a in just 9% yield and 64% ee (entry 9). With a methoxy group in the para position (7h), 3a was formed only in 14% yield with 89% ee (entry 10). From these results, it is apparent that ortho substitution with a small potentially coordinating group is beneficial for the yield but has only a slight influence on the enantioselectivity. The DACH-phenyl Trost ligand L1 was the best ligand. Other ligands (entries 11 and 12), including (R)-SIPHOS-PE (L3) and (R)-MOP (L4), delivered 3a in lower yields (50% and 80%, respectively) as a racemate.

86% ee (entry 5). 2-Iodobenzotrifluoride (7e) delivered 3a in 30% yield and 76% ee (entry 6), while 2-iodoanisole (7a) gave 3a in good yield (90%) and enantioselectivity (92%) (entry 7). When the methoxy group was substituted with a fluoro group (7f), 3a was obtained in 90% yield and 86% ee (entry 8), while the large tert-butyldimethylsilyloxy-substituted aryl iodide 7g gave 3a in just 9% yield and 64% ee (entry 9). With a methoxy group in the para position (7h), 3a was formed only in 14% yield with 89% ee (entry 10). From these results, it is apparent that ortho substitution with a small potentially coordinating group is beneficial for the yield but has only a slight influence on the enantioselectivity. The DACH-phenyl Trost ligand L1 was the best ligand. Other ligands (entries 11 and 12), including (R)-SIPHOS-PE (L3) and (R)-MOP (L4), delivered 3a in lower yields (50% and 80%, respectively) as a racemate.

We decided to optimize the trans-hydroalkoxylation process as an alternative to the failed alkoxyarylation of terminal alkynes (Table 1). The first obvious experiment was to remove aryl iodide 7b, as it should not be needed for the transformation (entry 1). Surprisingly, no product 3a was formed and we only recovered the starting materials. This result indicated that a Pd−Ar complex may be necessary to promote the hydroalkoxylation step. In fact, when a catalytic amount (20 mol %) of iodobenzene (7c) was added, product 3a was obtained in 23% yield and 94% ee (entry 2). In addition, we also observed the formation of the arylated product in about 20% yield. The role of the aryl iodide is not only to oxidize palladium, as the use of Pd(II) catalysts in its absence did not provide 3a (entry 3). Instead, we recovered only the tethered starting material. When the monophosphine ligand L2,11 which gave the best results in our previous work,3 was used, 3a was obtained only in 13% yield and 38% ee (entry 4). We then investigated the effect of substitution on the arene ring. 2-Iodotoluene (7d) provided product 3a in 27% yield and 86% ee (entry 5). 2-Iodobenzotrifluoride (7e) delivered 3a in 30% yield and 92% ee (entry 6), while 2-iodoanisole (7a) gave 3a in good yield (90%) and enantioselectivity (92%) (entry 7). When the methoxy group was substituted with a fluoro group (7f), 3a was obtained in 90% yield and 86% ee (entry 8), while the large tert-butyldimethylsilyloxy-substituted aryl iodide 7g gave 3a in just 9% yield and 64% ee (entry 9). With a methoxy group in the para position (7h), 3a was formed only in 14% yield with 89% ee (entry 10). From these results, it is apparent that ortho substitution with a small potentially coordinating group is beneficial for the yield but has only a slight influence on the enantioselectivity. The DACH-phenyl Trost ligand L1 was the best ligand. Other ligands (entries 11 and 12), including (R)-SIPHOS-PE (L3) and (R)-MOP (L4), delivered 3a in lower yields (50% and 80%, respectively) as a racemate. In more "industrially preferred" solvents such as toluene (entry 13) and ethyl acetate (entry 14), the yield and enantioselectivity were lower. Finally, the reaction could be scaled up to

Table 1. Optimization of the Formation of Oxazolidine 3a

entry deviation from conditions	yield (%)	ee (%)
1 no 7b	<5	
2 7c	23	94
3 no 7, PdCl2, Pd(OAc)2, PdI2 or Pd[MeCN]4(BF4)2	<5	
4 7c, L2 instead of L1	13	38
5 7d	27	86
6 7e	30	76
7 7a	90	92
8 7f	90	86
9 7g	9	64
10 7h	14	89
11 L3 instead of L1	50	<5
12 L4 instead of L1	80	<5
13 toluene instead of DCM	>95	80
14 ethyl acetate instead of DCM	50	85
15 7a, L1, 0.4 mmol scaled	83	90

*Reaction conditions: 0.1 mmol of 1 (1 equiv), 2 (1.4 equiv), ligand (7 mol %), K3PO4 (1.0 equiv), ArI 7 (20 mol %), and Pd catalyst (2.5 mol %) in 0.5 mL of solvent unless specified otherwise.

We decided to optimize the trans-hydroalkoxylation process as an alternative to the failed alkoxyarylation of terminal alkynes (Table 1). The first obvious experiment was to remove aryl iodide 7b, as it should not be needed for the transformation (entry 1). Surprisingly, no product 3a was formed and we only recovered the starting materials. This result indicated that a Pd−Ar complex may be necessary to promote the hydroalkoxylation step. In fact, when a catalytic amount (20 mol %) of iodobenzene (7c) was added, product 3a was obtained in 23% yield and 94% ee (entry 2). In addition, we also observed the formation of the arylated product in about 20% yield. The role of the aryl iodide is not only to oxidize palladium, as the use of Pd(II) catalysts in its absence did not provide 3a (entry 3). Instead, we recovered only the tethered starting material. When the monophosphine ligand L2,11 which gave the best results in our previous work,3 was used, 3a was obtained only in 13% yield and 38% ee (entry 4). We then investigated the effect of substitution on the arene ring. 2-Iodotoluene (7d) provided product 3a in 27% yield and 86% ee (entry 5). 2-Iodobenzotrifluoride (7e) delivered 3a in 30% yield and 92% ee (entry 6), while 2-iodoanisole (7a) gave 3a in good yield (90%) and enantioselectivity (92%) (entry 7). When the methoxy group was substituted with a fluoro group (7f), 3a was obtained in 90% yield and 86% ee (entry 8), while the large tert-butyldimethylsilyloxy-substituted aryl iodide 7g gave 3a in just 9% yield and 64% ee (entry 9). With a methoxy group in the para position (7h), 3a was formed only in 14% yield with 89% ee (entry 10). From these results, it is apparent that ortho substitution with a small potentially coordinating group is beneficial for the yield but has only a slight influence on the enantioselectivity. The DACH-phenyl Trost ligand L1 was the best ligand. Other ligands (entries 11 and 12), including (R)-SIPHOS-PE (L3) and (R)-MOP (L4), delivered 3a in lower yields (50% and 80%, respectively) as a racemate. In more "industrially preferred" solvents such as toluene (entry 13) and ethyl acetate (entry 14), the yield and enantioselectivity were lower. Finally, the reaction could be scaled up to
0.4 mmol, reducing the catalyst and the ligand loading to 1.25 and 3.5 mol %, respectively, to give a similar yield and stereoselectivity (entry 15).

We then evaluated the scope of the transformation (Scheme 3). Aryl propargylic amines, prepared in a single step from the terminal alkyne (see the Supporting Information), gave access to the corresponding trisubstituted olefins bearing the chiral oxazolidine auxiliary in good yield and stereoselectivity.

On the para position of the aryl ring, both electron-rich and electron-poor substituents were tolerated and the products $3b$−d and $3e$−l were obtained in 72−87% yields and 84−94% ee values. The functional group tolerance included halogens ($3e$−i) and even a potentially Pd(0) sensitive bromine ($3g$), an ester ($3j$), a ketone ($3k$), and a cyanide ($3l$). meta-substituted products $3m$−p were obtained in 79−89% yields and 86−90% ee values. The reaction was more sluggish with substituents in an ortho position, and only product $3q$ bearing a small fluoride group could be isolated in 45% yield and 84% ee. The disubstituted product $3r$ was obtained in 77% yield and 86% ee.

The reaction tolerated heterocycles such as thiophene ($3s$), pyridine ($3t$), and quinoline ($3u$) on the alkyne. Propargyl amines with alkyl substituents on the alkyne delivered products $3v$,w in lower yield and enantioselectivity. To evaluate the scalability of this protocol, the reaction on propargyl amine $3a$ was performed on a 3 mmol scale and gave an 82% yield of $3a$ without loss of the optical purity. The absolute configuration of the products was assigned by an X-ray crystallographic analysis of $3a$, confirming the Z geometry of the double bond.

We then examined the stereoselective hydrogenation directed by the installed chiral oxazolidine. We submitted alkene $3a$ to hydrogenation with Pearlman's catalyst. Under these conditions, we could access the reduced and benzyl-deprotected product $4a$ in 85% yield and 90% ee with perfect diastereoselectivity and retention of the enantiopurity (Scheme 4).

Substitution at the para ($4a$−j), meta ($4m$,n,r), and ortho ($4q$) positions of the arene was well tolerated, as were different electronic properties. However, chlorine-, bromine-, and heterocycle-containing olefins did not deliver the hydrogenation products. An ester was well tolerated and gave product $4j$ in 82% yield, while ketone $3k$ and nitrile $3l$ were further reduced to the corresponding alcohol $4k$ and amine $4l$.

The hydrogenation of $3a$ proceeded on a 1 mmol scale without any loss of stereoselectivity. The deprotection of the ...
trifluoroacetate group on 4a could be easily performed with toluenesulfonic acid to give deprotected amino alcohol 8 in 74% yield.

A speculative reaction mechanism based on literature precedents in palladium catalysis is presented in Scheme 5.14

Scheme 5. Speculative Catalytic Cycles

From NMR experiments, we saw a reversible reaction of propargylic amine 1a with ethoxy trifluoroethanol 2 to produce hemiaminal I.1 The catalytic cycle is most probably initiated by oxidative addition of ArI on Pd(0) complex II to give Pd(II) complex III. Reaction with I can then occur either via syn- or anti-palladation,15 both being well established.16 Both pathways would require decoordination of the X ligand (most probably iodide) on palladium, to enable either coordination of the alkyne for anti-palladation (IV to VII) or coordination of the oxygen for syn-palladation (V to VI). As the geometry of product 3a indicates that protodemetalation is occurring from trans-palladation complex VII, an isomerization of cis-palladation complex VI would be required to explain the formation of the product in case of syn-palladation. Although rare, similar isomerizations have been proposed.17 In case of VI, it could be facilitated by the donating effect of the oxygen atom. From VII, protodemetalation then gives product 3a and regenerates Pd(II) complex III. Alternatively, reductive elimination would lead to tetrasubstituted product 3a’. As oxypalladation can be reversible, it is not clear if the dynamic kinetic resolution process of I would occur at this step or only at the stage of isomerization/reductive elimination.

15P(1H) NMR studies first confirmed the formation of a Pd(0)dba diphosphine (L1) complex, as reported in the literature.18 When o-iodoanisole 7a was added to the Pd(0)L1-dba species, an immediate reaction was observed with the appearance of two new signals in the NMR (see section E in the Supporting Information). However, the exact structure of this species remains unclear, as the NMR data does not match the reported spectra of Pd oxidative addition complexes with bidentate phosphine ligands.19 With regard to the promotion of the reaction by the aryl iodide additive, it would be difficult to understand why more electrophilic palladium salts such as PdCl2, Pd(OAc)2, PdI2, and Pd[MeCN]3(BF4)2 would fail in the oxypalladation step. Therefore, the aryl ligand may be important to accelerate the protodemetalation step by increasing the electron density on palladium. The potentially coordinating small ortho substituent in 7a,f may play a role in promoting protodemetalation over reductive elimination. More in-depth mechanism studies are needed to elucidate the reaction mechanism and propose a model for stereinduction and additive effects.

In conclusion, we have developed a palladium-catalyzed hydroalkoxylation of propargylic amines based on in situ tether formation. After diastereoselective hydrogenation directed by the catalytically formed chiral oxazolidine auxiliary, valuable enantioenriched amino alcohol precursors were obtained. The key for success in the hydroalkoxylation reaction was the use of an ortho-substituted aryl iodide as an additive. Currently, this effect is not well understood and mechanistic investigations will be the topic of future work. The discovery of the importance of aryl palladium oxidative addition complexes in promoting alkyne functionalization and protodemetalation has nevertheless already set the basis for the development of new catalytic processes.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.2c01809.

Experimental procedures and analytical data for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Jerome Waser — Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; orcid.org/0000-0002-4570-914X; Email: jerome.waser@epfl.ch

Authors

Ashis Das — Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Present Address: FIS-Fabbrica Italiana Sintetici, viale Milano 26, 36075 Montecchio Maggiore, Italy.

Luca Buzzetti — Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Present Address: FIS-Fabbrica Italiana Sintetici, viale Milano 26, 36075 Montecchio Maggiore, Italy.

Mikus Purins — Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Complete contact information is available at: https://pubs.acs.org/10.1021/acscatal.2c01809

Author Contributions

1A.D. and L.B. contributed equally.

Notes

The authors declare no competing financial interest. Raw data for NMR, IR and HPLC is available free of charge from Zenodo.org: https://doi.org/10.5281/zenodo.6634788.
ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC Consolidator Grant SeleCHEM, No. 771170) and EPFL. We thank Dr. Rosario Scopelliti and Dr. Farzaneh Fadaii Tirani from ISIC at EPFL for X-ray analysis. This publication was created as part of NCCR catalysis, a National Centre of Competence in Research funded by the Swiss National Science Foundation (Grant No. 180544).

REFERENCES

(1) Noyori, R. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture). Angew. Chem., Int. Ed. 2002, 41, 2008–2022.
(2) (a) Williams, K.; Lee, E. Importance of drug enantiomers in clinical pharmacology. Drugs 1985, 30, 333–354. (b) Calcetara, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. (c) Jeschke, P. Current status of chirality in agrochemicals. Pest Manag. Sci. 2018, 74, 2389–2404.
(3) (a) Buzzetti, L.; Purigù, M.; Greenwood, P. D. G.; Waser, J. Enantioselective Carbocoetheraffinitation/Hydrogenation for the Synthesis of Amino Alcohols via a Catalitically Formed Chiral Auxiliary. J. Am. Chem. Soc. 2020, 142, 17334–17339. (b) Purigù, M.; Waser, J. Asymmetric Cyclopropanation and Epoxidation via a Catalytically Formed Chiral Auxiliary. Angew. Chem., Int. Ed. 2022, 61, e202113925.
(4) Trost, B. M.; Bunt, R. C.; Lemoine, R. C.; Calkins, T. L. Dynamic Kinetic Asymmetric Transformation of Diene Monomers: A Practical Asymmetric Synthesis of Vinylglycinol, Vivagatrin, and Ethambutol. J. Am. Chem. Soc. 2000, 122, 5968–5976.
(5) (a) Orcel, U.; Waser, J. Palladium-Catalyzed Vicinal Amino Alcohols Synthesis from Allyl Amines by In Situ Tether Formation and Intramolecular Pd-catalyzed Carboetherification and Carboamination. Tetrahedron Lett. 2016, 55, 12881–12885. (c) Muriel, B.; Orcel, U.; Waser, J. Palladium-Catalyzed Carboamination of Aliphatic Alcohols Using a Trifluorocatalaldelyde-Derived Tether. Org. Lett. 2017, 19, 3548–3551.
(6) (a) For reviews, see: Bergmeier, S. C. The Synthesis of Vicinal Amino Alcohols. Tetrahedron 2000, 56, 2561–2576. (b) Donohoe, T. J.; Callens, C. K. A.; Flores, A.; Lacy, A. R.; Rathi, A. H. Recent Developments in Methodology for the Direct Oxyamination of Olefins. Chem. - Eur. J. 2011, 17, 58–76. (c) For selected examples, see: Kurandina, D.; Yadagiri, D.; Rivas, M.; Kavun, A.; Chuentragool, A.; Callens, C. K. A.; Flores, A.; Lacy, A. R.; Rathi, A. H. Recent Developments in Methodology for the Direct Oxyamination of Olefins. Chem. - Eur. J. 2011, 17, 58–76.
(7) (a) Williams, K.; Lee, E. Importance of drug enantiomers in clinical pharmacology. Drugs 1985, 30, 333–354. (b) Calcetara, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340.
(8) Duthion, B.; Métro, T. X.; Pardo, D. G.; Cossy, J. Rearrangement of N-alkyl 1,2-amino alcohols. Synthesis of (S)-toliprolol and (S)-propanol. Tetrahedron 2009, 65, 6696–6706.
(9) (a) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylation: Applications in Total Synthesis. Chem. Rev. 2003, 103, 2921–2943. (b) Trost, B. M.; Machacek, M. R.; Aponick, A. Predicting the stereochemistry of diphenylphosphino benzoic acid (DPPBA)-based palladium-catalyzed asymmetric allylic alkylation reactions: a working model. Acc. Chem. Res. 2006, 39, 747–760.
(10) Greenwood, P. D. G.; Grenet, E.; Waser, J. Palladium-catalyzed Carbo-oxygenation of Propargylic Amines using in situ Tether Formation. Chem. - Eur. J. 2019, 25, 3010–3013.
(11) (a) Trost, B. M.; Breit, B.; Organ, M. G. On the nature of the asymmetric induction in a palladium-catalyzed allylic alkylation. Tetrahedron Lett. 1994, 35, 5817–5820. (b) Huang, D. S.; Liu, X. Q.; Li, L. J.; Cai, Y. D.; Liu, W. G.; Shi, Y. Enantioselective Bromoaminocyclization of Allyl N-Tosylcarbamates catalyzed by a Chiral Phosphine Sc(OTf)3 complex. J. Am. Chem. Soc. 2013, 135, 8101–8104.
(12) Sonogashira, K.; Tohda, Y.; Hagihara, N. A. Convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkanes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470.
(13) Pearlman’s Catalyst. Comprehensive Organic Name Reactions and Reagents; Wiley: 2010. DOI: 10.1002/9780470638859.conrr483.
(14) Tsuji, J. Palladium in Organic Synthesis. Top. Organomet. Chem. 2005, 14, 1.
(15) (a) Dyker, G.; Kellner, A. A palladium catalyzed domino coupling process to substituted phenanthrenes. Tetrahedron Lett. 1994, 35, 7633–7636. (b) Nakha, J. S.; Kampf, J. W.; Wolfe, J. W. Intramolecular Pd-catalyzed carboetherification and carboamination. Influence of Catalyst Structure on Reaction Mechanism and Product Stereochemistry. J. Am. Chem. Soc. 2006, 128, 2893. (c) Daini, M.; Yamamoto, A.; Sugimoto, M. Palladium-catalyzed trans- and cis-Carboration of Alkynes Tethered to Chloroborane with Organozirconium Reagents: Ligand-Dependent Complementary Stereoselectivities. J. Am. Chem. Soc. 2008, 130, 2918–2919. (d) Pawliczek, M.; Milde, B.; Jones, P. G.; Werz, D. B. Intramolecular Formal anti-Carbo-palladation/Heck Reaction: Facile Domino Access to Carbo- and Heteroaryl-glycic Dienes. Chem. - Eur. J. 2015, 21, 12303–12307. (e) Cheng, Z.; Zhang, Y. Palladium-Catalyzed anti-Carbosilylation of Alkynes to Access Isoquinolinolone-Containing Exocyclic Vinylsilanes. Org. Lett. 2021, 23, 5772–5776.
(16) (a) Chinchilla, R.; Najera, C. Chemical from Alkynes with Palladium Catalysts. Chem. Rev. 2014, 114, 1783–1826. (b) Fujino, D.; Yorimitsu, H.; Osuka, A. Regiocontrolled Palladium-catalyzed Arylative Cyclization of Alkynes. J. Am. Chem. Soc. 2014, 136, 6255–6258. (c) Pawliczek, M.; Schneider, T. F.; Maass, C.; Stalke, D.; Werz, D. B. Formal anti-Carbopalladation Reactions of Non-Activated Alkynes: Requirements, Mechanistic Insights, and Applications. Angew. Chem., Int. Ed. 2015, 54, 4119–4123. (d) Cai, Z.-J.; Li, F.-H.; Wang, S.-Y.; Ji, S.-J. Palladium-Catalyzed Cascade Arenec/Aryln Annulation: Synthesis of Fluorene-Benzoxazine Derivatives. Org. Lett. 2016, 18, 4810–4813. (e) Garlets, Z. J.; White, D. R.; Wolfe, J. P. Recent Developments in Pd(0)-Catalyzed Alkene-Carboheterofunctionalization Reactions. Asian J. Org. Chem. 2017, 6, 636–653.
(17) Lv, W.; Liu, S.; Chen, Y.; Wen, S.; Lan, Y.; Cheng, G. Palladium-Catalyzed Intermolecular Trans-Selective Carbocatalfunctionalization of Internal Alkynes to Highly Functionalized Alkenes. ACS Catal. 2020, 10, 10516–10522.
(18) Trost, B. M.; Breit, B.; Organ, M. G. On the nature of the asymmetric induction in a palladium catalyzed allylic alkylation. Tetrahedron Lett. 1994, 35, 5817–5820.
(19) Moncarz, J. R.; Brunke, T. J.; Jewett, J. C.; Orchowski, M.;
Glueck, D. S.; Sommer, R. D.; Lam, K.-C.; Incarvito, C. D.;
Concolino, T. E.; Ceccarelli, C.; Zakharov, L. N.; Rheingold, A. L.
Palladium-Catalyzed Asymmetric Phosphination. Enantioselective
Synthesis of PAMP–BH3, Ligand Effects on Catalysis, and Direct
Observation of the Stereochemistry of Transmetalation and Reductive
Elimination. *Organometallics* **2003**, 22, 3205–3221.