1. Introduction

Consider the classical non-autonomous linear initial value problem

\[\dot{Y}(t) = A(t)Y(t), \quad Y(0) = y_0, \]

where \(Y(t) \in GL(n, \mathbb{R}) \), and \(A(t) \in \mathfrak{gl}(n, \mathbb{R}) \). It is easy to see that if \(A(t) = A \) is constant, the solution of (1) is given by a matrix exponential, \(Y(t) = \exp(tA)y_0 \).

In the non-autonomous case the exponential \(\exp(\int_0^t A(s)ds)y_0 \) fails in general to solve (1) due to the non-commutativity of \(A(t) \) at different times [10]. However, it turns out that by adding particular Lie polynomials to the integral \(\int_0^t A(s)ds \) in the exponential \(\exp(\int_0^t A(s)ds)y_0 \), one can approximate the solution \(Y(t) \) of (1) in the non-autonomous case to an arbitrary high precision. Magnus [22] understood how to obtain the exact solution of (1) by describing the Lie series yielding an exponential solution of (1). More precisely, he showed that the logarithm of \(Y(t) \) can be characterised as the solution of a particular differential equation summarised in the next theorem.

Theorem 1 (Classical Magnus expansion, [22]). The solution of (1) can be expressed in terms of a matrix exponential,

\[Y(t) = \exp(\Omega(A(t))y_0, \]

where \(\Omega(A(t)) \) is the Magnus expansion of \(A(t) \).
where \(\Omega(A)(t) \) is a matrix-valued function solving the differential equation

\[
\dot{\Omega}(A)(t) = \sum_{n \geq 0} B_n \frac{\text{ad}^{(n)}_{\Omega(A)}(A)(t)}{n!}
\]

with initial value \(\Omega(0) = 0 \), and with \(B_n \) denoting the \(n \)th Bernoulli number.

Recall that \(\text{ad}^{(n)}_{X}(Y) := [X, \text{ad}^{(n-1)}_{X}(Y)] \), and \(\text{ad}^{(0)}_{X}(Y) := Y \). Introducing a parameter \(\lambda \), we see that from integrating and iteratively expanding (2) an infinite powers series \(\Omega(\lambda A)(t) = \sum_{j \geq 0} \Omega_j(A)(t) \lambda^j \) of nested integrals over iterated matrix commutators of the function \(A(t) \) results. The coefficients of the first three orders of \(\Omega(\lambda A)(t) \) are

\[
\begin{align*}
\Omega_1(A)(t) &= \int_0^t dt_1 A(t_1) \\
\Omega_2(A)(t) &= -\frac{1}{2} \int_0^t dt_1 \int_0^{t_1} dt_2 [A(t_2), A(t_1)] \\
\Omega_3(A)(t) &= \frac{1}{4} \int_0^t dt_1 \int_0^{t_1} dt_2 \int_0^{t_2} dt_3 [[A(t_3), A(t_2)], A(t_1)] \\
&\quad + \frac{1}{12} \int_0^t dt_1 \int_0^{t_1} dt_2 \int_0^{t_1} dt_3 [A(t_2), [A(t_3), A(t_1)]]
\end{align*}
\]

Over the decades, the Magnus expansion \(\Omega(A)(t) \) has been studied in great detail from the point of view of applied mathematics \([2, 20, 24, 25, 30]\). More recently, deeper mathematical fine structures of the Magnus expansion have been unfolded using more advanced algebraic tools. See, e.g., the references \([8, 9, 14, 15]\).

The last remark is related to an observation that links the above series to the general solution of certain linear fixed point equations under the name pre-Lie Magnus expansion. Indeed for two matrix-valued functions \(U \) and \(V \), define the product \([1, 15]\)

\[
(U \triangleright V)(t) = \int_0^t ds [U(s), V(t)].
\]

One verifies that the following identity

\[
(U \triangleright V)(t) \triangleleft W - U \triangleright (V \triangleright W) = (V \triangleright U) \triangleleft W - V \triangleright (U \triangleright W)
\]

is satisfied, which is known as left pre-Lie relation. The product \([3]\) therefore defines a pre-Lie algebra \([3, 23]\) on the space of matrix-valued functions. Note that the commutator \([U, V] := U \triangleright V - V \triangleright U \) defines a Lie bracket, i.e., pre-Lie algebras are Lie admissible. Let \(\ell^{(n)}_{U \triangleright V}(V) := U \triangleright \ell^{(n-1)}_{U \triangleright V}(V) \), where \(\ell^{(0)}_{U \triangleright V}(V) := V \). Using the product \([3]\) in expansion (2) yields the simple presentation of the Magnus expansion in terms of its underlying pre-Lie product \([3]\).

Corollary 1 (Pre-Lie Magnus expansion, \([11, 14]\)). The Magnus expansion solves the fixed point equation

\[
\hat{\Omega}(A)(t) = \sum_{n \geq 0} B_n \frac{\text{ad}^{(n)}_{\hat{\Omega}(A)(t)}}{n!}
\]
In [15] it was observed that the pre-Lie relation (4) allows to reduce the number of terms in the expansion \(\Omega(\lambda A)(t) \). For instance, at order four, one finds that

\[
\Omega_4(A)(t) = \frac{1}{6}((A \circ A) \circ A) + \frac{1}{12} A \circ ((A \circ A) \circ A).
\]

For details and more recent results we refer the reader to [17, 18].

In this article, we show that by an appropriate ‘autonomization’ the linear initial value problem (1) can be presented as a Lie group integration problem along the lines of [19]. In this context, post-Lie algebras [21, 11] occur naturally replacing pre-Lie algebras. The classical Magnus expansion (2) is seen to be a special case of the so-called post-Lie Magnus expansion introduced in [11, 12, 13]. This observation motivates to compare explicitly certain Runge–Kutta–Munthe-Kaas schemes with Magnus integrator schemes. It is hoped that this comment may help to relate the theories of Lie group integrators [5, 19] and Magnus integrators [2], which have hitherto developed on separate lines.

The paper is organised as follows. In Section 2 we recall the notions of pre- and post-Lie algebras and show how the pre- and post-Lie Magnus expansions are naturally defined. Section 3 shows how Lie group integration and the post-Lie Magnus expansion can be related to the classical Magnus expansion. Section 4 compares Runge–Kutta versus Magnus integration methods, and ends with a remark regarding continuous stage methods and a link to the classical Magnus expansion.

Acknowledgements: This research was supported by The Research Council of Norway, the FRIPRO programme, grant No. 231632 and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement No. 691070.

2. Post- and Pre-Lie Magnus expansions

We briefly recall the algebraic notions of post- and pre-Lie algebras [4, 11, 21, 23].

Definition 1. A post-Lie algebra \((g, [\cdot, \cdot], \bowtie)\) consists of a Lie algebra \((g, [\cdot, \cdot])\) and a binary product \(\bowtie : g \otimes g \to g\) such that the following relations hold for all elements \(x, y, z \in g\)

\[
\begin{align*}
\bowtie [y, z] &= [x \bowtie y, z] + [y, x \bowtie z], \\
[x, y] \bowtie z &= a_\bowtie(x, y, z) - a_\bowtie(y, x, z),
\end{align*}
\]

where the associator \(a_\bowtie(x, y, z) := x \bowtie (y \bowtie z) - (x \bowtie y) \bowtie z\).

Proposition 1. [21] Let \((g, [\cdot, \cdot], \bowtie)\) be a post-Lie algebra. For \(x, y \in g\) the bracket

\[
[x, y] := x \bowtie y - y \bowtie x + [x, y]
\]

satisfies the Jacobi identity. The resulting Lie algebra is denoted \((g, [\cdot, \cdot])\).

We remark that the above notion of post-Lie algebra has an adjoint \((g, -[\cdot, \cdot], \rhd)\).

Proposition 2. [21] If \((g, [\cdot, \cdot], \bowtie)\) is a post-Lie algebra, then \((g, -[\cdot, \cdot], \rhd)\), where

\[
x \rhd y := x \bowtie y + [x, y],
\]

is also a post-Lie algebra.
Proof. We repeat the proof as it is instructive to get acquainted with this set of identities. Indeed, we have

\[-x \triangleright [y, z] = -x \triangleright [y, z] - [x, [y, z]]
= -[x \triangleright y, z] - [y, x \triangleright z] - [[x, y], z] - [y, [x, z]]
= -[x \triangleright y, z] - [y, x \triangleright z].\]

Next we calculate

\[(y \triangleright x) \triangleright z = (y \triangleright x) \triangleright z + [y, x] \triangleright z + [y \triangleright x, z] + ([y, x], z)\]
and

\[y \triangleright (x \triangleright z) = y \triangleright (x \triangleright z) + [y \triangleright x, z] + [x, y \triangleright z] + [y, x \triangleright z] + [y, [x, z]].\]

The difference gives

\[a (y, x, z) = a (y, x, z) + [x, y \triangleright z] + [y, x \triangleright z] + [y, [x, z]] - [y, x] \triangleright z - ([y, x], z).\]

Together with \(a (x, y, z) \) this gives the difference

\[a (x, y, z) - a (y, x, z) = -[x, y] \triangleright z - ([y, x], z) = -[x, y] \triangleright z.\]

\[\Box\]

Example 1. Let \(\mathcal{X}(M)\) be the space of vector fields on a manifold \(M\), equipped with a linear connection. The covariant derivative of \(Y\) in the direction of \(X\), denoted \(\nabla_X Y\), defines an \(\mathbb{R}\)-linear, non-associative binary product \(X \triangleright Y := \nabla_X Y\) on \(\mathcal{X}(M)\). The torsion \(T\) is a skew-symmetric tensor field of type \((1, 2)\) defined by

\[T(X, Y) := X \triangleright Y - Y \triangleright X - [X, Y],\]

where the bracket \([, ,]\) on the right is the Jacobi bracket of vector fields. The torsion admits a covariant differential \(\nabla T\), a tensor field of type \((1, 3)\). Recall the definition of the curvature tensor \(R\), a tensor field of type \((1, 3)\) given by

\[R(X, Y)Z = X \triangleright (Y \triangleright Z) - Y \triangleright (X \triangleright Z) - [X, Y] \triangleright Z.\]

In the case of a flat connection with constant torsion, i.e., \(R = 0 = \nabla T\), we have that \((\mathcal{X}(M), -T(\cdot, \cdot), \triangleright)\) defines a post-Lie algebra. Indeed, the first Bianchi identity shows that \(-T(\cdot, \cdot)\) obeys the Jacobi identity; as \(T\) is skew-symmetric it therefore defines a Lie bracket. Moreover, flatness is equivalent to \(\Box\) as can be seen by inserting \(\Box\) into the statement \(R = 0\), whilst \(\Box\) follows from the definition of the covariant differential of \(T\):

\[0 = \nabla T(Y, Z; X) = X \triangleright T(Y, Z) - T(Y, X \triangleright Z) - T(X \triangleright Y, Z).\]

The formalism of post-Lie algebras assists greatly in understanding the interplay between covariant derivatives and integral curves of vector fields, which is central to the study of numerical analysis on manifolds.

Recall that for a Lie algebra \((\mathfrak{g}, [, ,])\), its enveloping algebra is an associative algebra \((U(\mathfrak{g}), \cdot)\) such that \(\mathfrak{g} \subset U(\mathfrak{g})\) and \([a, b] = a \cdot b - b \cdot a\) in \(U(\mathfrak{g})\). As a Lie algebra \(\mathfrak{g}\) with product \(\triangleright\), the enveloping algebra of a post-Lie algebra \((\mathfrak{g}, [, ,], \triangleright)\) is \(U(\mathfrak{g})\) together with an extension of the post-Lie product \(\triangleright\) onto \(U(\mathfrak{g})\) defined such that for all \(u \in \mathfrak{g}\) and \(A, B \in U(\mathfrak{g})\)

\[u \triangleright (A \cdot B) = (u \triangleright A) \cdot B + A \cdot (u \triangleright B)\]
\[(u \cdot A) \triangleright B = a (u, A, B).\]
Proposition 3 [12] implies that a post-Lie algebra \((g, \cdot, \triangleright)\) has a second Lie algebra structure \(\hat{g}\) associated to the bracket \([\cdot, \cdot]\) defined in \([5]\). As a vector space, its enveloping algebra \((U(\hat{g}), \ast)\) is isomorphic to \(U(g)\). Moreover, the post-Lie product of \((g, \cdot, \triangleright)\) lifted to \(U(g)\) permits to define another associative product on \(U(g)\), such that \(U(g)\) with this new product is isomorphic as a Hopf algebra to \((U(\hat{g}), \ast)\). See [12] for details. By some abuse of notation we denote the lifted post-Lie product and new associative product on \(U(g)\) by \(\triangleright\) respectively \(\ast\). One of the central results is the following

Proposition 3. [12] For \(A, B, C \in U(g)\) we have
\[
(A \ast B) \triangleright C = A \triangleright (B \triangleright C).
\]

From the point of view of Lie group integration we are interested in comparing the two exponentials \(\exp^\ast\) and \(\exp\), both defined in appropriate completions of \((U(g), \cdot)\) respectively \((U(\hat{g}), \ast)\).

Proposition 4. [12] Consider the post-Lie algebra \((X(G), -T(\cdot, \cdot), \triangleright)\) associated to a flat, constant torsion connection \(\triangleright\), as per Example [7]. Then

1. The exponential \(\exp^\ast(tf)\) is associated with the pullback of functions along integral curves, i.e., let

\[
y(t) = f(y(t)), \quad y(0) = y_0,
\]

then \(\exp^\ast(tf) : g(y_0) \mapsto g(y(t))\) for any \(g \in C^\infty(M)\).

2. The exponential \(\exp(tf)\) gives the pullback of functions along geodesics of the product \(\triangleright\), i.e., let \(z(t)\) solve the geodesic equation

\[
\dot{z}(t) \triangleright \dot{z}(t) = 0, \quad z(0) = z_0, \quad \dot{z}(0) = f(z_0),
\]

then \(\exp(tf) : g(z_0) \mapsto g(z(t))\) for any \(g \in C^\infty(M)\).

The two exponentials are related by the post-Lie Magnus expansion:

Lemma 1 (Post-Lie Magnus expansion, [12][14]). The exponentials \(\exp^\cdot\) and \(\exp^\ast\) are related by the mapping \(\theta(t) : g \rightarrow \hat{g}\),
\[
\exp^\ast(tf) = \exp^\cdot(\theta(f)(t)),
\]
where \(\theta(f)(t)\) solves the differential equation
\[
\dot{\theta}(f)(t) = \dexp_{\theta(f)}^{-1}(\exp^\cdot(\theta(f)) \triangleright f)(t), \quad \theta(f)(0) = 0.
\]

For sufficiently small \(t > 0\), the map \(\theta(f)(t)\) is invertible, and its inverse \(\chi(f)(t)\) solves
\[
\dot{\chi}(f)(t) = \dexp_{-\chi(f)}^{-1}(\exp^\ast(-\chi(f)) \triangleright f)(t), \quad \chi(f)(0) = 0,
\]
such that
\[
\exp^\ast(\chi(f)(t)) = \exp^\cdot(tf).
\]

Remark 1. We remark that identity [14] encodes backward error analysis for the forward exponential Euler method [11][21]. Indeed, the Lie–Euler integration scheme is the numerical method that approximates solutions of the initial value problem [21] below by following Lie group exponentials, i.e.,
\[
y_1 = \exp(h\lambda_* f(y_0))y_0.
\]
Backward error analysis studies properties of the approximate flow by finding modified vector fields \tilde{f} for which the exact flow $\tilde{y}(t)$ coincides with y_n at the discretisation times t_n. This problem is exactly that of finding $\chi(f)(t)$ for which $\exp(tf) = \exp^*(\chi(f)(t))$, for the post-Lie algebra structure on $C^\infty(M, \mathfrak{g})$ defined in [21] Prop. 2.10.

We also remark that the inverse of the post-Lie Magnus expansion has appeared in the study of isospectral flows [13].

2.0.1. Pre-Lie Magnus expansion. Observe that if the Lie algebra \mathfrak{g} in Definition 1 is trivial, i.e., $[\cdot, \cdot] = 0$, then the post-Lie algebra $(\mathfrak{g}, [\cdot, \cdot], \triangleright)$ reduces to (\mathfrak{g}, \cdot), which satisfies the definition of a pre-Lie algebra. The latter being defined as:

Definition 2. A left pre-Lie algebra (\mathfrak{p}, \lhd) consists of a vector space \mathfrak{p} and a binary product $\lhd : \mathfrak{p} \otimes \mathfrak{p} \to \mathfrak{p}$ such that, for all elements $x, y, z \in \mathfrak{p}$

\[
a_{\lhd}(x, y, z) = a_{\lhd}(y, x, z).
\]

Note that (15) in explicit form already appeared in (4) above. The notion of right pre-Lie algebra is analogously defined with a \triangleright product.

Example 2. The natural geometric example of a pre-Lie algebra is given in terms of a differentiable manifold M with a flat and torsion-free connection. Vanishing torsion and curvature are expressed in terms of the corresponding covariant derivation ∇ on the space $\chi(M)$ of vector fields on M satisfying the two equalities $\nabla f g - \nabla g f = [f, g]$ and $\nabla [f, g] = [\nabla f, \nabla g]$, respectively. From this we deduce that $f \triangleright g := \nabla f g$ defines a left pre-Lie algebra structure on $\chi(M)$. Let $M = \mathbb{R}^n$ with its standard flat connection. For two vector fields $f(x) = \sum_{i=1}^n f^i(x) \frac{\partial}{\partial x^i}$ and $g(x) = \sum_{i=1}^n g^i(x) \frac{\partial}{\partial x^i}$ it follows that

\[
(f \lhd g)(x) = \sum_{i=1}^n \left(\sum_{j=1}^n f^j(x) \frac{\partial}{\partial x^j} g^i(x) \right) \frac{\partial}{\partial x^i}.
\]

Let us look at Lemma 1 from the pre-Lie algebra point of view. Guin and Oudom [27] lifted the pre-Lie product of a pre-Lie algebra (\mathfrak{p}, \lhd) to the symmetric algebra $S(\mathfrak{p})$, and showed that this permits to introduce a noncommutative associative product on $S(\mathfrak{p})$, widely referred to as Grossman–Larson product, such that the resulting (Hopf) algebra is isomorphic (as a Hopf algebra) to the enveloping algebra $(U(\mathfrak{g}), *)$. Recall that \mathfrak{g} is the Lie algebra defined in terms of the pre-Lie product, see Definition 2. Chapoton and Patras [9] proved an analog of Lemma 1 in the pre-Lie case, i.e., the exponential \exp^* and the Grossman–Larson exponential \exp^*, defined in appropriate completions of $(S(\mathfrak{p}), \cdot)$ respectively $(U(\mathfrak{g}), *)$, are related by the pre-Lie Magnus expansion:

\[
\exp^*(\Omega_{\lhd}(x)(t)) = \exp(x t),
\]

where

\[
\Omega_{\lhd}(x) := \sum_{n \geq 0} \frac{B_n}{n!} t^n \Omega_{\lhd}(x)^n (x).
\]

Recall that the compositional inverse $W(x) := \Omega_{\lhd}^{-1}(x)$ is given by

\[
W(x) := \sum_{n \geq 0} \frac{1}{(n+1)!} t^n \chi_{\lhd}(x),
\]
such that

\[(20) \exp^*(tx) = \exp(W(x)(t)).\]

Returning to Example 2, where the particular pre-Lie algebra (16) is defined, we consider the initial value problem \(\dot{y} = f(y),\ y(0) = y_0\), where \(f\) is a vector field on \(\mathbb{R}^n\). The exact solution is given by the Grossman–Larson exponential, \(y(t) = \exp^*(tf)\). Identity (17) defines the backward error analysis of the explicit forward Euler method on \(\mathbb{R}^n\), i.e., \(\exp^*(\Omega \mapsto (hf))(y) = y + hf(y)\), where \(h\) denotes the step size [7, 10, 26]. On the other hand, from (20) we deduce that the Taylor expansion of the exact solution can be expressed as a series in iterated pre-Lie products

\[
\exp^*(tf)(y) = y + W(tf)(y) = y + tf(y) + \frac{t^2}{2}(f \circ f)(y) + \frac{t^3}{6}(f \circ (f \circ f))(y) + \cdots.
\]

3. Lie group integration and the Post-Lie Magnus expansion

Let \(\mathcal{X}(M)\) be the space of vector fields on a manifold \(M\). Lie group integration [5, 19] concerns initial value problems of the form

\[(21) \dot{y} = (\lambda_* f(y,t))(y), \quad y(0) = p,\]

where \(f : M \times \mathbb{R}^+ \to \mathfrak{g}\), and \(\lambda_* : \mathfrak{g} \to \mathcal{X}(M)\) is the infinitesimal action of the Lie algebra \(\mathfrak{g}\) arising from a transitive group action \(\Lambda : G \times M \to M\) as

\[
\lambda_*(u)(p) = \frac{d}{dt} \bigg|_{t=0} \Lambda(exp(tu), p).
\]

Whilst Runge–Kutta–Munthe-Kaas (RKMK) methods can be applied to non-autonomous problems, many theoretical results have only been derived in the autonomous setting. It is a standard result for equations on \(\mathbb{R}^n\) that non-autonomous problems may be autonomized by the addition of an extra variable corresponding to time. Whilst this results in an equivalent method (provided the RK coefficients in the Butcher tableau obey \(c_i = \sum_j a_{ij}\), as is usually assumed), this can be useful for theoretical purposes.

We now perform a similar autonomization for the Lie group integration problem, for which the most convenient method is to augment the Lie group \(G\) to \(G \times \text{Aff}(1)\). We recall the definition of the group of affine transformations

\[
\text{Aff}(1) := \left\{ \begin{pmatrix} x & t \\ 0 & 1 \end{pmatrix} \mid x, t \in \mathbb{R} \right\}.
\]

The associated Lie algebra, \(\text{aff}(1)\), is generated by the two matrices

\[
e_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad e_{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
\]

The first element corresponds to translation, indeed we have

\[
\exp(te_0) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}
\]

From this last result, the following is immediate:

Lemma 2. The non-autonomous linear initial value problem (1) is equivalent to the following Lie group integration representation on \(G\)

\[
\dot{Y} = A(Y) \cdot Y, \quad Y(0) = \begin{pmatrix} y_0 & 0 \\ 0 & I \end{pmatrix},
\]
where $G := GL(n) \times \text{Aff}(1)$, $\mathfrak{g} := \mathfrak{gl}(n) \times \mathfrak{aff}(1)$, and $\mathcal{Y}(t) \in G$, $\mathcal{A} : G \rightarrow \mathfrak{g}$ take the form

\begin{equation}
\mathcal{Y} = \begin{pmatrix} Y & 0 & 0 \\ 0 & x & t \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathcal{A}(y, x, t) = \begin{pmatrix} A(t) & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
\end{equation}

Note that this corresponds to the special case where the manifold $M = G$ and the group action on G is trivial. By abuse of notation, we identify the map $\mathcal{A} : G \rightarrow \mathfrak{g}$ with the vector field $\lambda_*(\mathcal{A}) \in \mathcal{X}(G)$. In the autonomous case, this corresponds to the identification of $\mathcal{A} \in \mathfrak{gl}(n)$ with the right-invariant vector field with tangent vector A at the origin.

In contrast, here the vector field \mathcal{A} is not fully right-invariant due to the time-dependence. Instead, let $e_{-1}, e_0, e_1, \ldots, e_d$ be a basis for the space of right-invariant vector fields \mathfrak{g}, where e_{-1}, e_0 are the products of the basis vectors for $\mathfrak{aff}(1)$ with the zero vectors in $\mathfrak{gl}(n)$. A general vector field takes the form

$$\mathcal{V} = \sum_{i=-1}^d v_i(y, x, t)e_i,$$

whilst the vector fields \mathcal{A} live in the Lie subalgebra $\mathfrak{t} \subset \mathcal{X}(G)$ comprising vector fields of the form

$$\mathcal{V} = v_0e_0 + \sum_{i=1}^d v_i(t)e_i.$$

Note that these are precisely the vector fields of the form

$$\lambda_* \begin{pmatrix} A(t) & 0 & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}$$

for some constant $v_0 = a$ and matrix $A(t) \in \mathfrak{gl}(n)$. We will write such vectors $\hat{\mathcal{A}}$, distinguished from \mathcal{A} as we allow the constant to be any real a rather than 1. For our purposes, a will always be either 1 or 0, but as it is important to distinguish the two, we preserve this distinction of notation. To see that the space \mathfrak{t} is indeed a Lie subalgebra in $\mathcal{X}(G)$, we use the identification of vector fields with derivations on $C^\infty(G)$ functions φ to obtain

$$[f\hat{\mathcal{H}}, g\hat{\mathcal{K}}](\varphi) = f\hat{\mathcal{H}}(g\hat{\mathcal{K}}(\varphi)) - g\hat{\mathcal{K}}(f\hat{\mathcal{H}}(\varphi)) = f\hat{\mathcal{H}}(g\hat{\mathcal{K}}(\varphi)) - g\hat{\mathcal{K}}(f\hat{\mathcal{H}}(\varphi)) + fg[\hat{\mathcal{H}}, \hat{\mathcal{K}}](\varphi),$$

from which we see that given vector fields $\hat{\mathcal{H}}, \hat{\mathcal{K}}$, their Jacobi bracket is

\begin{equation}
\left[\hat{\mathcal{H}}, \hat{\mathcal{K}} \right] = \lambda_* \begin{pmatrix} [H(t), K(t)] + h\hat{K}(t) - k\hat{H}(t) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
\end{equation}

Following [28], we recall that the right Cartan connection \triangleright on $\mathcal{X}(G)$ is defined by setting $\hat{\mathcal{H}} \triangleright \hat{\mathcal{K}} := 0$ for right-invariant $\hat{\mathcal{H}}, \hat{\mathcal{K}}$. Indeed, this extends uniquely to a connection \triangleright on $\mathcal{X}(G)$ by writing a general vector field in the from $f_i\hat{\mathcal{H}}_i$ for some $f_i \in C^\infty(G)$ and $\hat{\mathcal{H}}_i$ a basis for \mathfrak{g} and enforcing

\begin{equation}
(f_i\hat{\mathcal{H}}_i) \triangleright (g_j\hat{\mathcal{K}}_j) = f_i dg_j(\hat{\mathcal{H}}_i)\hat{\mathcal{K}}_j + f_jg_j(\hat{\mathcal{H}}_i \triangleright \hat{\mathcal{K}}_j).
\end{equation}
This restricts to a bilinear product on \(t \), indeed we compute
\[
(25) \; \tilde{H} \triangleright \tilde{K} = \lambda \left(\begin{array}{ccc} h \frac {\partial K}{\partial t}(t) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).
\]

Lemma 3. The space \((t, [\cdot, \cdot], \triangleright)\) is a post-Lie algebra, where \(\triangleright \) is the right Cartan connection and \([\cdot, \cdot]_t\) is the negative of the associated torsion tensor. The two exponentials in the corresponding enveloping algebras are interpreted as follows: for any \(\tilde{H} \), \(\exp (\tilde{H}(t)) \tilde{K}_{0} \) is the geodesic through the point \(\tilde{K}_{0} \in G \) in the direction \(\tilde{H}(\tilde{K}_{0}) \) and hence coincides with the matrix exponential. In contrast, \(\exp^* (\tilde{H}(t)) \tilde{K}_{0} \) is the integral curve of \(\tilde{H} \) passing through \(\tilde{K}_{0} \), and hence solves the equation (1).

Proof. This is essentially a specialisation of Example 1, as the Cartan connection \(\triangleright \) defined above is flat and has constant torsion (see [28]). In this instance we can give the calculations explicitly. Indeed, defining the Lie bracket \([\tilde{H}, \tilde{K}]_t = [\tilde{H}, \tilde{K}] - \tilde{H} \triangleright \tilde{K} + \tilde{K} \triangleright \tilde{H}\) as per Example 1, from (23) and (25) we find
\[
[\tilde{H}, \tilde{K}]_t = \lambda \left(\begin{array}{ccc} [H(t), K(t)] & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).
\]

As per Example 1, flatness of the connection is expressed by
\[
\tilde{H} \triangleright (\tilde{K} \triangleright \tilde{J}) - \tilde{K} \triangleright (\tilde{H} \triangleright \tilde{J}) - [\tilde{H}, \tilde{K}] \triangleright \tilde{J} = 0.
\]

To see this, we note that we need only check the top left block in the matrix representation of elements of \(t \), which is
\[
h \frac {\partial}{\partial t} (k \frac {\partial J}{\partial t}) - k \frac {\partial}{\partial t} (h \frac {\partial J}{\partial t}) - 0 = 0.
\]

The remaining post-Lie axiom to check is the constant torsion relation
\[
\tilde{H} \triangleright [\tilde{K}, \tilde{J}] - [\tilde{K}, \tilde{H} \triangleright \tilde{J}] - [\tilde{H} \triangleright \tilde{K}, \tilde{J}] = 0,
\]

which as all but the top left block of the associated matrix are zero reduces to the computation
\[
h \left(\frac {\partial}{\partial t} [K, J] - [K, \frac {\partial J}{\partial t}] - \frac {\partial K}{\partial t}, J \right) = 0,
\]
as can be seen by expanding the commutators using Leibniz rule. \(\Box \)

We are now in a position to relate the classical and post-Lie Magnus expansions.

Theorem 2 (Geometric Magnus expansion). Let \(A \in t \) be associated to the \(GL(n; \mathbb{R}) \)-valued function \(A(t) \) as per (22). The solution of the equation defining the post-Lie Magnus expansion in the post-Lie algebra \((t, [\cdot, \cdot], \triangleright)\),
\[
\dot{\theta}(A)(\tau) = \text{dexp}^{-1}_{\theta(A)} \left(\exp (\theta(A)) \triangleright A \right)(\tau),
\]
evaluated at initial time \(t = 0 \), is given by
\[
\dot{\theta}(A)(\tau)(0) = \left(\begin{array}{ccc} \Omega(A)(\tau) & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right),
\]
where \(\Omega(A) \) is the classical Magnus expansion.
Proof. We begin by noting that the identity (11) allows us to write \(\exp(\theta(\tilde{A})(\tau) \triangleright \tilde{A}) = \exp^*(\tau\tilde{A}) \triangleright \tilde{A} \). Using (10) we find that
\[
\exp^*(\tau\tilde{A}) \triangleright \tilde{A} = \tilde{A} + \tau\tilde{A} \triangleright \tilde{A} + \tau^2 \frac{1}{2} \tilde{A} \triangleright (\tilde{A} \triangleright \tilde{A}) + \tau^3 \frac{1}{6} \tilde{A} \triangleright (\tilde{A} \triangleright (\tilde{A} \triangleright \tilde{A})) + \cdots.
\]
By the definition of the connection \(\triangleright \), we have for all \(n \geq 1 \)
\[
\ell_n(\tilde{A} \triangleright (\tilde{A} \triangleright \tilde{A}))(t) = \tilde{A} \triangleright (\ell_{n-1}(\tilde{A}))(t) = \begin{pmatrix}
a_n & \frac{\partial}{\partial t}A(t) & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
d\end{pmatrix},
\]
from which it follows that
\[
(\exp^*(\tau A) \triangleright A)(t) = \begin{pmatrix}
\sum_{k \geq 0} \frac{\tau^k}{k!} A^{(k)}(t) & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
d\end{pmatrix}.
\]
In particular, \(\exp^*(\tau A) \triangleright A \) is the vector field which evaluates to \(A(t + \tau) \) at time \(t \).
Now \(\theta(A)(\tau) \) is a vector field in \(t \), which we evaluate at time \(t = 0 \) (the position in space is unimportant due to (quasi-)right-invariance). By the above, the differential equation may then be re-written
\[
\dot{\theta}(A)(\tau)(0) = d\exp^{-1}_{\theta(A)}(\tilde{A})(\tau)(0).
\]
We recall that the Lie bracket \([\cdot, \cdot]\) on \(t \) takes the form
\[
[\tilde{A}(t), \tilde{B}(t)] = \lambda \begin{pmatrix}
[A(t), B(t)] & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
d\end{pmatrix}.
\]
By expanding the series for \(d\exp^{-1} \) in the above brackets, it follows that the component of \(\theta(A)(\tau) \) in \(\aff(1) \) is simply \(e_0 \), and hence the equation for the remaining component in \(GL(n; \mathbb{R}) \) reduces to the classical Magnus equation (2).

4. Runge–Kutta versus Magnus integration methods
The post-Lie Magnus expansion is a key ingredient in Runge–Kutta–Munthe-Kaas (RKM) schemes for the numerical solution of differential equations on homogeneous spaces [12]. In this section we illustrate by means of examples that Magnus integrators may be seen as special instances of RKM methods applied to equations of the type
\[
\dot{Y} = A(t)Y, \quad Y(0) = Y_0,
\]
where \(A, Y \in \mathbb{R}^{n \times m} \). We recall that when applying an RKM method to such an equation, the internal stages (with \(i = 1, \ldots, s \)) take the form
\[
(27) \quad u_i = h \sum_{j=1}^{s} a_{ij} \tilde{f}_j
\]
\[
(28) \quad \tilde{f}_i = \text{exp}_{u_i}^{-1} A(t_0 + hc_i) = A(t_0 + hc_i) - \frac{1}{2} [u_i, A(t_0 + hc_i)] + \cdots,
\]
and the scheme progresses by
\[
(29) \quad Y_1 = \exp \left(h \sum_{i=1}^{s} b_i \tilde{f}_i \right) Y_0,
\]
where \(a_{ij}, b_i, c_i \) form the Butcher tableau of the underlying RK scheme. We evaluate the consequences of two two-stage methods: the Heun scheme and the two stage Gauss–Legendre method. The corresponding tableaux are:

\[
\begin{array}{ccc|ccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{4} - \omega & \frac{1}{4} + \omega & \frac{1}{4} & \frac{1}{4} \\
\end{array}
\]

where Heun is on the left and Gauss–Legendre on the right, with \(\omega = \sqrt{3} / 6 \).

Heun scheme

This method is explicit. Indeed we will begin by noting that \(u_1 = 0 \), so that

\[
\tilde{f}_1 = \text{dexp}^{-1}(A(t_0)) = A(t_0).
\]

We then find that \(u_2 = hA(t_0) \), and hence

\[
\tilde{f}_2 = \text{dexp}_{hA(t_0)}(A)(t_1) \approx A(t_1) - \frac{h}{2}[A(t_0), A(t_1)].
\]

Using the two term approximation for \(\text{dexp}^{-1} \) above, we therefore obtain the integration scheme

\[
Y_1 = \exp \left(\frac{h}{2}(A_0 + A_1) - \frac{h^2}{4}[A_0, A_1] \right) Y_0,
\]

where \(A_0 := A(t_0) \) and \(A_1 := A(t_1) \). It can be shown that this is the Magnus integrator obtained from taking the first two terms in the Magnus series and approximating the integrals by the trapezoidal rule.

Gauss–Legendre scheme

Here the situation is somewhat more complicated, as the method is implicit. Indeed, for simplicity write \(\tau_i = t + hc_i, i = 1, 2 \). We will then use the shorthand \(A_i := A(\tau_i) \), giving the system

\[
\begin{align*}
 u_1 &= \frac{h}{4} \tilde{f}_1 + h(\frac{1}{4} - \omega) \tilde{f}_2 \\
 u_2 &= h(\frac{1}{4} + \omega) \tilde{f}_1 + \frac{h}{4} \tilde{f}_2 \\
 \tilde{f}_1 &= \text{dexp}_{u_1}^{-1} A_1 \\
 \tilde{f}_2 &= \text{dexp}_{u_2}^{-1} A_2.
\end{align*}
\]

If we truncate the series for \(\text{dexp}^{-1} \) to two terms once again, we find

\[
\begin{align*}
 \tilde{f}_1 &= A_1 - \left[\frac{h}{4} \tilde{f}_1 + h(\frac{1}{4} - \omega) \tilde{f}_2, A_1 \right] \\
 \tilde{f}_2 &= A_2 - \left[h(\frac{1}{4} + \omega) \tilde{f}_1 + \frac{h}{4} \tilde{f}_2, A_2 \right].
\end{align*}
\]

Suppose we solve the above system by a single function iteration starting from the first order approximation \(\tilde{f}_1 = A_1 \). This gives the explicit forms

\[
\begin{align*}
 \tilde{f}_1 &= A_1 + \frac{h}{2}(\frac{1}{4} - \omega)[A_1, A_2] \\
 \tilde{f}_2 &= A_2 - \frac{h}{2}(\frac{1}{4} + \omega)[A_1, A_2].
\end{align*}
\]
The resulting integration scheme is (inserting the value $\omega = \sqrt{\frac{3}{6}}$)

$$Y_1 = \exp \left(\frac{h}{2} (A_1 + A_2) - \frac{h^2 \sqrt{3}}{12} [A_1, A_2] \right) Y_0,$$

which is identical to the standard order four Magnus integrator obtained from the two point Gauss quadrature [2].

Continuous stage methods

In his monograph from 1987, Butcher [3, Section 385] suggested to study the exact solution of an ordinary differential equation obtained by applying a continuous stage Runge–Kutta method. Sums are replaced by integrals, this means that rather than indexing the stages u_i, \tilde{f}_i in (27–28), one may consider a continuum of stages $u(\tau), \tilde{f}(\tau), \tau \in [0, 1]$ and introduce continuous Runge–Kutta coefficients $a(\tau, \sigma), b(\tau)$. By choosing

$$b(\tau) \equiv 1, \quad a(\tau, \sigma) = \begin{cases} 1 & 0 \leq \sigma \leq \tau \\ 0 & \text{otherwise} \end{cases}$$

the resulting Runge–Kutta scheme will produce the exact solution to the ordinary differential equation.

More recently, there has been a growing interest in studying such continuous stage schemes in their own right, for instance, the averaged vector field method (see, e.g., [6]) can be written in such a format, and more general studies of continuous stage Runge–Kutta methods have been undertaken by several authors (see, e.g., [29]). By inserting the coefficients of a continuous stage method into (27–28) and eliminating $\tilde{f}(\tau)$ we obtain

$$u(\tau) = h \int_0^1 a(\tau, \sigma) \operatorname{dexp}_{u(\sigma)}^{-1} A(t_0 + h\sigma) \, d\sigma$$

$$v = h \int_0^1 b(\tau) \operatorname{dexp}_{u(\tau)}^{-1} A(t_0 + h\tau) \, d\tau$$

$$Y_1 = \exp(v) \cdot Y_0,$$

where $c(\tau) = \int_0^1 a(\tau, \sigma) \, d\sigma$. It is perhaps no surprise that if $a(\tau, \sigma)$ and $b(\tau)$ are chosen as in (30) one finds that $u(\tau) \equiv \Omega(A)(t_0 + \tau h)$ in [2] as well as $v = \Omega(A)(t_0 + h)$ so the exact Magnus series expansion is recovered. One may also note that deformations of the Magnus expansion can be obtained by choosing other coefficient functions.

References

[1] A. Agrachev and R. Gamkrelidze, Chronological algebras and nonstationary vector fields, J. Sov. Math. 17 (1981), 1650–1675.

[2] S. Blanes, F. Casas, J.A. Oteo and J. Ros, Magnus expansion: mathematical study and physical applications, Phys. Rep. 470 (2009), 151–238.

[3] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods, John Wiley & Sons, (1987).

[4] P. Cartier, Vinberg algebras, Lie groups and combinatorics, Clay Mathematical Proceedings 11 (2011), 107–126.

[5] E. Celledoni, H. Marthinsen and B. Owren, An introduction to Lie group integrators - basics, new developments and applications, Journal of Computational Physics 257, Part B (2014), 1040–1061.
E. Celledoni, B. Owren and Y. Sun, The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the averaged vector field method, Math. Comp. 83 (2014), 1689–1700.

F. Chapoton, Rooted trees and an exponential-like series, arXiv:math/0209104.

F. Chapoton, A rooted-trees q-series lifting a one-parameter family of Lie idempotents, Algebra & Number Theory 3 (2009), 611–636.

F. Chapoton and F. Patras, Enveloping algebras of pre-Lie algebras, Solomon idempotents and the Magnus formula, Int. J. Algebra and Computation 23, No. 4 (2013), 853–861.

Ph. Chartier, E. Hairer and G. Vilmart, Algebraic structures of B-series, Found. Comput. Math. 10 (2010), 407–427.

C. Curry, K. Ebrahimi-Fard and H. Munthe-Kaas, What is a post-Lie algebra and why is it useful in geometric integration, “Numerical Mathematics and Advanced Applications – ENUMATH 2017”, Springer’s Lecture Notes in Computational Science and Engineering 126, 2018. arXiv:1712.09415

K. Ebrahimi-Fard, A. Lundervold and H. Z. Munthe-Kaas, On the Lie enveloping algebra of a post-Lie algebra, J. Lie Theory 25 No. 4 (2015), 1139–1165.

K. Ebrahimi-Fard, A. Lundervold, I. Mencattini and H. Z. Munthe-Kaas, Post-Lie Algebras and Isospectral Flows, SIGMA 25 No. 11 (2015), 093.

K. Ebrahimi-Fard, I. Mencattini and H. Z. Munthe-Kaas, Post-Lie algebras and factorization theorems, J. Geom. Phys. 119 (2017), 19–33.

K. Ebrahimi-Fard and D. Manchon, A Magnus- and Fer-type formula in dendriform algebras, Found. Comput. Math. 9 (2009), 295–316.

I. J. Epstein, Conditions for a Matrix to Commute with its Integral, Proc. American Math. Soc. 14 (1963), 266–270.

M. J. Hasan Al-Kaabi, Monomial bases for free pre-Lie algebras, Séminaire Lotharingien de Combinatoire 71 (2014), Article B71b.

M. J. Hasan Al-Kaabi, D. Manchon, F. Patras, Monomial bases and pre-Lie structure for free Lie algebras, arXiv:1708.08312

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, Acta Numer. 9 (2000), 215–365.

A. Iserles, Expansions that grow on trees, Notices of the AMS 49 (2002), 430–440.

A. Lundervold and H. Z. Munthe-Kaas, On post-Lie algebras, Lie–Butcher series and moving frames, Found. Comput. Math. 13 Issue 4 (2013), 583–613.

W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7 (1954), 649–673.

D. Manchon, A short survey on pre-Lie algebras, in Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, (A. Carey ed.), E. Schrödinger Institut Lectures in Math. Phys., Eur. Math. Soc. (2011).

B. Mielnik and J. Plebański, Combinatorial approach to Baker–Campbell–Hausdorff exponents Ann. Inst. Henri Poincaré A XII (1970), 215–254.

H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, Phil. Trans. R. Soc. Lond. A 357 (1999), 957–981.

A. Murua, The Hopf Algebra of Rooted Trees, Free Lie Algebras, and Lie Series, Found. Comput. Math. 6 issue 4 (2006), 387–426.

J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, Journal of K-theory: K-theory and its Applications to Algebra, Geometry, and Topology 2, number 1 (2008), 147–167.

M. M. Postnikov, Geometry VI: Riemannian Geometry, Enc. Math. Sci. 91, Springer, Berlin (2001)
[29] W. Tang and Y. Sun, Construction of Runge–Kutta type methods for solving ordinary differential equations, Applied Mathematics and Computation 234 (2014), 179–191.

[30] R. M. Wilcox, Exponential operators and parameter differentiation in quantum physics, J. Math. Phys. 8 (1967), 962–982.

Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.

E-mail address: charles.curry@ntnu.no
E-mail address: kurusch.ebrahimi-fard@ntnu.no
E-mail address: brynjulf.owren@ntnu.no