Review Article

Meta-Analysis of Naoxintong Capsule for Patients with Vascular Dementia

Li Li,1,2 Yawei Zheng,2,3 Jinjing Bao,1,2 Yandong Zhao,1,2 Qiuchi Zhang,1,2 Wenlei Li,1,2 and Minghua Wu1,2

1Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
2Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
3Nanjing University of Chinese Medicine, Nanjing, China

Correspondence should be addressed to Wenlei Li; liwenlei80@163.com and Minghua Wu; mhuawu@163.com

Received 28 November 2021; Revised 18 April 2022; Accepted 24 May 2022; Published 6 July 2022

Academic Editor: Mario Dioguardi

Copyright © 2022 Li Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Vascular dementia (VaD) is the second most common form of dementia among the elderly. There is currently no unequivocal recommendation of an effective treatment option for VaD. Objective. The purpose of this study was to evaluate the efficacy and safety of Naoxintong capsule (NXT) in the treatment of VaD patients. Methods. We searched for randomized controlled trials (RCTs) published before September 2021 in PubMed, Embase, Web of Science, Cochrane Library, CNKI, VIP, and Wanfang databases. The trials assessed the efficacy and/or safety of NXT in treating patients with VaD. A meta-analysis was then performed using Stata 14.0 software. Results. A total of 33 studies comprising 2,947 patients with VaD were included in this study. The meta-analysis revealed that NXT improved cognitive function in VaD patients, increasing the mini-mental state examination (MMSE) score by 3.33 points (WMD = 3.33, 95% CI (2.72, 3.94)), the Montreal Cognitive Assessment (MoCA) score by 4.31 points (WMD = 4.31, 95% CI (2.72, 5.90)), and the Hasegawa dementia scale (HDS) by 2.71 points (WMD = 2.71, 95% CI (1.26, 4.17)). Furthermore, NXT significantly improved the daily lives of VaD patients, lowering the activities of daily living (ADL) score by 5.85 points (WMD = −5.85, 95% CI (−7.03, −4.66)). NXT improved the total effective rate (TER) (OR = 2.62, 95% CI (2.09, 3.29)) of the patients without increasing the occurrence of adverse events (AEs; OR = 0.72, 95% CI (0.43, 1.22)). Subgroup analysis revealed that whether NXT was used alone or in combination with western medicine, it could enhance the overall curative effect. Conclusions. NXT may be an effective and safe treatment option for VaD. However, because of the limited number and quality of articles included, this study’s findings need to be validated by additional high-quality, large-sample, and multicenter RCTs (Systematic Review Registration Number: PROSPERO; https://clinicaltrials.gov/ct2/show/CRD42021233199).

1. Introduction

Vascular dementia (VaD) is a condition characterized by clinical or subclinical cerebrovascular damage induced by an ischemic/hemorrhagic stroke or other cerebrovascular diseases. VaD is the second most common cause of dementia in the elderly [1]. The prevalence of VaD increases with age, and the risk doubles after every five years [2]. Cerebrovascular disease and associated risk factors (hyperlipidemia, hypertension, diabetes, or smoking), as well as ischemic white matter disease, are factors that fuel the development of VaD [3, 4]. The primary pathological mechanism for VaD is decreased cerebral blood perfusion [5]. Cerebral ischemia and hypoxia can cause brain tissue loss, resulting in cognitive and memory impairment [6]. Apart from memory loss, VaD causes language deficits and impaired executive functions or emotional changes, impairing families’ and society’s capacity to operate daily [7].

Currently, there is no treatment guideline approved by the Food and Drug Administration (FDA) for the treatment of VaD [8]. The available treatment options for VaD are aimed at addressing the modifiable VaD risk factors such as hypertension, diabetes, smoking, and atherosclerosis or at delaying disease progression and alleviating behavioral symptoms such as secondary prevention of stroke [9]. Current therapeutic strategies for cognitive impairment
include regulation of the cholinergic system via inhibition of acetylcholinesterase (AChE) or direct stimulation of muscarinic and nicotinic receptors, neuroprotection via glutamate-induced N-Methyl D-aspartate (NMDA) receptor overstimulation, and the use of anti-inflammatory and anti-oxidant agents [10–12]. However, cholinesterase inhibitors have been linked to a variety of adverse effects, including gastrointestinal discomfort and bradycardia, among others [13]. Therefore, there is an urgent need to investigate the most effective methods for preventing vascular injury and develop effective and safe treatment options.

People's desire for traditional Chinese medicine for the treatment of VaD has increased in recent years. Naoxintong capsule (NXT), a standardized product of 16 natural components, including 13 plant drugs and 3 animal drugs, namely Radix Astragali seu Hedysari, Radix Angelicae Sinensis, Radix Paeoniae Rubra, Chuanxiong Rhizoma, Carthami Flos, Persicae Semen, Salviae miltiorrhizae radix et rhizome, Achyranthis bidentatae, Spatholobi Stem, Cinnamomi Ramulus, Mori Ramulus, Myrrha, Olibanum, Scorpio, Lumbricus, and Hirudo, has been extensively used in China to treat VaD [14]. The specific characteristics of these 16 natural materials are summarized in Table 1. NXT has been reported to have neuroprotective effects. NXT improves anti-oxidant capacity and prevents calcium overload and reactive oxygen species (ROS) generation, thereby maintaining the mitochondrial membrane potential [15]. NXT protects primary neurons against oxygen-glucose deprivation and reoxygenation (OGD/R) induced injury by inhibiting the mitochondrial apoptotic pathway, which is mediated in part by PI3K-Akt signaling pathway activation [16]. In a previous study, NXT was found to significantly improve the spatial learning-memory ability of VaD mice with chronic hypoperfusion, improve nervous tissue morphology, and inhibit the number of activated astrocytes all at the same time [17]. Other studies have revealed that NXT may reduce the damage of CA1 neurons in rats with ischemic injury and decrease the resting state of hippocampal neurons in vascular dementia model animals [18].

A growing body of research suggests that NXT may improve the memory function and daily behavior of VaD patients. Clinical comparative data on treatment regimens and assessment methods, on the other hand, are few. We performed a systematic review and meta-analysis to assess the safety and efficacy of NXT in the treatment of VaD. This study provides fresh insight into future NXT clinical research.

2. Materials and Methods

This study was registered with PROSPERO (https://clinicaltrials.gov/ct2/show/CRD42021233199) and carried out in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines [19].

2.1. Inclusion Criteria. We included all randomized controlled trials (RCTs) that utilized NXT to treat VaD, independent of demographic characteristics, the language of publication, or publication status. While there was no need for allocation concealment or blinding, the included studies had to randomly assign participants to comparison groups. Regardless of gender or age, all participants had VaD with comparable baseline characteristics. The Diagnostic and Statistical Manual of Mental Disorders (DSM) or other internationally recognized diagnostic criteria were used to make the VaD diagnosis. The experimental group received NXT alone or in combination with Western medicine (WM) such as AChE inhibitors (donepezil), anti-dementia drugs (memantine), psychostimulants and nootropics (piracetam and oxiracetam), peripheral vasodilators (dualix, hydrgine, buflomedil, and nicergoline), or selective calcium channel blockers with primarily vascular effects (nimodipine and flunarizine). To manage cerebrovascular risk factors or other basic diseases, all patients may get routine treatment (RT), such as anti-hypertensive drugs, anti-diabetics, lipid-lowering drugs, or anti-platelets. At least one of the following outcome indicators was used: mini-mental state examination (MMSE), Montreal Cognitive Assessment (MoCA), Hasegawa dementia scale (HDS), activities of daily living (ADL), or total effective rate (TER).

2.2. Exclusion Criteria. We excluded studies that used other Chinese medicine therapies such as Chinese patent medicine, Chinese medicine decoction, and acupuncture, as well as other special therapies such as exercise/physical therapy, psychological intervention, and behavioral interventions. Furthermore, we excluded studies with multiple publications, systematic reviews, case reports, or important data reports, as well as clinical trials where relevant data could not be retrieved or when the corresponding authors could not respond and provide the data.

2.3. Outcomes and Definitions. The efficacy evaluation included cognitive functions, the ability of daily living, and the total effective rate. The primary clinical outcome was MMSE. Secondary clinical outcomes included MoCA, HDS, ADL, and TER. MMSE, MoCA, and HDS were used to assess cognitive function, while ADL was used to assess daily living abilities. The TER was mostly determined by the improvement of the aforementioned cognitive function scales. In addition, the occurrence of adverse events (AEs) such as stomach upset, nausea, or loss of appetite was used to assess safety.

2.4. Information Sources and Search. Databases such as PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP information resource integration service platform (VIP), and Wanfang Data knowledge service platform (WanFang Data) were searched from inception to September 2021. We included search terms such as “Vascular Dementia,” “Nao Xin Tong,” “Nao Xin Tong Capsule,” and “Buchang NaoXinTong Capsule,” using methods that combined MeSH terms with free terms.
2.5. **Study Selection and Data Extraction.** Two researchers conducted an independent review of the literature, data extraction, and cross-checking. The third researcher resolved disagreements via discussion or arbitration. To begin, duplicate studies were eliminated using NoteExpress software, and then studies that did not meet the inclusion criteria were eliminated after reading the titles and abstracts. The studies that met the inclusion criteria were thoroughly reviewed, and then data, including general information, methodological information, participant information, interventions, and outcomes, were extracted using Excel software.

2.6. **Risk of Bias in the Included Studies.** Two researchers independently assessed the risk of bias in the included studies using the “risk of bias” evaluation tool in the Cochrane Handbook for Systematic Reviews of Interventions (Review Manager, 2014) and relevant assessment guidelines. A total of seven items were included in the risk assessment: (1) random sequence generation, (2) allocation concealment, (3) blinding of participants and personnel, (4) blinding of outcome data, (5) incomplete outcome data, (6) selective reporting, and (7) other bias. According to the evaluation criteria, the seven items were classified as having a “high risk of bias,” “low risk of bias,” or “unclear risk of bias.” The disagreements were resolved by a third researcher via discussion or arbitration.

2.7. **Data Analysis.** Stata 14.0 software was used to conduct the meta-analysis. Continuous variables were analyzed using the weight mean difference (WMD) and 95% confidence interval (CI), while binary variables were analyzed using the odds ratio (OR) and 95% CI. On the other hand, we used the Q test and I^2 index to determine the statistical heterogeneity among the included studies [20]. A $P < 0.05$ and $I^2 \geq 50\%$ indicated the presence of statistical heterogeneity. When there was no statistical heterogeneity, the fixed-effects model was used. Otherwise, the random-effects model was used [21]. Both the fixed- and random-effects models used the I-V method. The subgroup analysis was conducted based on clinical heterogeneity. We used funnel plots to conduct a preliminary analysis of publication bias in studies with a sample size greater than or equal to 10. Asymmetry in the distribution of funnel plots suggested a high likelihood of publishing bias. Additionally, Egger’s test was used to examine the potential of publication bias. A P value greater than 0.05 was shown to be linked with a low likelihood of publication bias. Considering that Western medication encompassed a very heterogeneous category, we conducted a meta-regression analysis to explore its influence on heterogeneity in this study. If necessary, subgroup analysis was conducted according to the type of WM. In order to make the results have more clinical value, the main subgroup analyses were performed according to the treatment approach (NXT vs. blank, NXT + WM vs. WM, and NXT vs. WM). Additionally, to assess the stability and reliability of the study findings, sensitivity analysis was performed by observing the changes in the combined effect and statistical heterogeneity after stepwise elimination of the studies.

2.8. **Evidence Quality Grade Analysis.** The GRADE pro-Guideline Development Tool was used to grade the quality of evidence for the outcomes. There were four levels of evidence quality: high, moderate, low, and very low. RCTs were initially rated as having a high quality of evidence, but it was required to examine if any issues were reducing their quality across five dimensions: risk of bias, inconsistency, indi-rectness, imprecision, and publication bias, to make a comprehensive judgment [22, 23].

3. **Results**

3.1. **Search Results.** There were 338 publications that met the search strategies from PubMed ($n = 4$), Embase ($n = 8$), the Cochrane Library ($n = 1$), Web of Science ($n = 11$), CNKI ($n = 106$), Wanfang Data ($n = 112$), and VIP ($n = 96$). After screening for duplicates using NoteExpress, a professional document management software, a total of 139 articles were retained. Following a review of the titles and abstracts, 71 articles were excluded, while 35 articles were excluded after a full-text review. Finally, 33 articles were included in the meta-analysis (Figure 1).

3.2. **Study Characteristics.** This study included 33 randomized controlled trials with 2,947 VaD patients (1,486 in the experimental group and 1,461 in the control group) [24–56]. The intervention comparison between the experimental groups and control groups may be summarized as a comparison of three types of treatment strategies: NXT versus blank, NXT + WM versus WM, or NXT versus WM. Table 2 shows the characteristics of these 33 RCTs. The NXT of all included studies were from the same manufacturer, with the same ingredients. The dosage of NXT was recommended by the instructions. However, the duration of NXT was different, which includes 2, 3, and 6 months.

3.3. **Risk of Bias in the Included Studies.** The randomized allocation was stated in all the 33 studies, whereas 11 studies described the specific allocation methods [24, 26, 30, 32–34, 41, 46, 48, 53, 56]. However, in 3 studies, the random sequence generation was not standardized [32, 46, 48]. None of the studies addressed allocation concealment, and only 1 study used a double-blind method [32]. The remaining 32 studies did not use participant or staff blinding. Furthermore, it was unclear if they used blinding of the outcome data. One study included an outcome indicator: Efficacy Index. However, there was no report for Efficacy Index in the results section, which indicated that it adopted selective reports. Therefore, we evaluated that it had a high risk of reporting bias [50]. However, this had no effect on our analysis (Figures 2 and 3).
Table 1: Details of the NXT.

Chinese name	Pharmaceutical name	Species	Family
Huangqiu*	Radix Astragali seu Hedysari	Astragalus mongholicus Bunge	Fabaceae
Danggui wei*	Radix Angelicae Sinensis	Angelica sinensis (Oliv.) Diels	Apiaceae
Chishao*	Radix Paeoniae Rubra	Paeonia obvata Maxim	Paeoniaceae
Chuanxiong*	Chuanxiong Rhizoma	Ligusticum striatum DC	Apiaceae
Honghua*	Carthami Flos	Carthamus tinctorius L	Asteraceae
Taoren*	Persicae Semen	Amygdalus sect. Persicae	Rosaceae
Danshen*	Salviae miltiorrhizae radix et rhizome	Salvia miltiorrhiza Bunge	Lamiaceae
Niuxi*	Achyranthis bidentatae	Achyranthes bidentata Blume	Amaranthaceae
Jixueteng*	Spatholobi Stem	Spatholobus suberectus Dunn	Leguminosae
Guizhi*	Cinnamomi Ranulus	Cinnamomum cassia (L.) J.Presl	Lauraceae
Sangzhí*	Mori Ramulus	Morus alba L	Moraceae
Moyao*	Myrrha	Commiphora myrrha (Nees) Engl	Burseraceae
Ruxiang[△]	Olibanum	Boswellia Roxb	Burseraceae
Quanxie[△]	Scorpio	Buthus martensi Karsch	Buthidae
Dilong[△]	Lumbricus	Pheretima asiatica Michaelsen	Megascoleidae
Shuizhi[△]	Hirudo	Leech	Hirudinidae

*Plant drugs and △animal drugs.

3.4. Results of the Meta-Analysis

3.4.1. Mini-Mental State Examination (MMSE). Thirty studies with a total of 2,712 patients showed that the use of NXT in the treatment of VaD improved the MMSE. We used a random-effects model after the heterogeneity test ($I^2 = 90.5\%$, $P \leq 0.001$). The meta-analysis revealed a significant difference between the experimental group and control group in increasing the MMSE score (WMD = 3.33, 95% CI (2.72, 3.94); Figure 4). A funnel plot analysis of the 30 asymmetrically distributed studies, on the other hand, indicated possible publication bias (Figure 5). Similarly, Egger’s test results showed a high likelihood of publication bias ($P = 0.016$). Meta-regression analysis showed that the WM category had no significant influence on heterogeneity among studies ($P = 0.082$).

Subgroup Analysis of MMSE. Subgroup analysis of the MMSE was conducted depending on the treatment approach (NXT vs. blank, NXT + WM vs. WM, and NXT vs. WM; Table 3). The meta-analysis found a significant difference in MMSE between the experimental and control groups in the NXT versus blank subgroup (WMD = 2.99, 95% CI (2.37, 3.94)). Similarly, the results demonstrated a significant difference in MMSE increase between the experimental and control groups in the NXT + WM versus WM subgroup (WMD = 4.15, 95% CI (3.55, 4.75)). In addition, the meta-analysis showed a significant difference in MMSE increase between the experimental and control groups in the NXT versus WM subgroup (WMD = 2.56, 95% CI (1.48, 3.64)).

3.4.2. Montreal Cognitive Assessment (MoCA). Four studies with a total of 416 patients reported that the use of NXT in the treatment of VaD enhanced the MoCA effect. We used a random-effects model after the heterogeneity test ($I^2 = 79.7\%$, $P = 0.002$). The meta-analysis showed that there was a significant difference in increasing the MoCA score between the experimental group and control group (WMD = 4.31, 95% CI (2.72, 5.90); Figure 6). Egger’s test results showed that there was little possibility of publication bias ($P = 0.345$). Meta-regression analysis showed that the WM category had no significant influence on heterogeneity among studies ($P = 0.096$).

Subgroup Analysis of the MoCA. Subgroup analysis of the MoCA was performed depending on the treatment approach (NXT vs. blank and NXT + WM vs. WM; Table 3). The meta-analysis found a significant difference in the MoCA increase between the experimental and control groups in the NXT versus blank subgroup (WMD = 2.98, 95% CI (2.21, 3.75)). The meta-analysis results, on the other hand, revealed a significant difference in the MoCA increase between the experimental and control groups in the NXT + WM versus WM subgroup (WMD = 5.61, 95% CI (4.50, 6.73)).

3.4.3. Hasegawa Dementia Scale (HDS). NXT enhanced the HDS effect in the treatment of VaD, in 9 studies with a total of 917 patients. We used a random-effects model after conducting a heterogeneity test ($I^2 = 93.5\%$, $P \leq 0.001$). The meta-analysis revealed a significant difference in increasing the HDS score between the experimental group and control group (WMD = 2.71, 95% CI (1.26, 4.17); Figure 7). Egger’s test indicated that publication bias was unlikely ($P = 0.058$). Meta-regression analysis showed that the WM category was one of the sources of heterogeneity among studies ($P = 0.024$).

Subgroup Analysis of the HDS. Subgroup analysis of the HDS was performed according to the treatment approach (NXT + WM vs. WM and NXT vs. WM; Table 3). The meta-analysis indicated a significant difference in the HDS increase between the experimental and the control groups in the NXT + WM versus WM subgroup (WMD = 1.26, 95% CI (0.07, 2.45)). The meta-analysis showed a significant difference in the HDS increase between the experimental and control groups in the NXT versus WM subgroup.
(WMD = 2.90, 95% CI (1.26, 4.55)). Based on the results of meta-regression analysis, the necessary subgroup analysis of the HDS was performed according to the WM category. The meta-analysis indicated a significant difference in the HDS increase between the experimental and the control groups in the nimodipine subgroup (WMD = 0.67, 95% CI (0.25, 1.09), $I^2 = 0$%) and the Duxil subgroup (WMD = 5.52, 95% CI (4.73, 6.30), $I^2 = 12$%). In addition, there was only one study report on aniracetam, hydergine, and pyrithioxin dihydrochloride, which could not be pooled because of too few studies.

3.4.4. Activities of Daily Living (ADL). Fifteen studies with a total of 1,487 patients reported an improvement in ADL when NXT was used to treat VaD. After performing a heterogeneity test ($I^2 = 87.6\%$, $P \leq 0.001$), we used a random-effects model. The meta-analysis showed a significant difference in ADL score decrease between the experimental group and control group (WMD = −5.85, 95% CI (−7.03, −4.66); Figure 8). On the other hand, a funnel plot analysis of the 15 studies revealed minimal evidence of publication bias due to their very symmetrical distribution (Figure 9). Similarly, Egger’s test indicated that publication bias was unlikely ($P = 0.327$). Meta-regression analysis showed that the WM category had no significant influence on heterogeneity among studies ($P = 0.790$).

Subgroup Analysis of ADL. Subgroup analysis of the ADL was conducted based on the different treatment strategies (NXT vs. blank, NXT + WM vs. WM, and NXT vs. WM; Table 3). The meta-analysis revealed a significant difference in the ADL decrease between the experimental and control groups in the NXT versus blank subgroup (WMD = −9.10, 95% CI (−11.33, −6.87)). Similarly, the meta-analysis revealed a significant difference in ADL decrease between the experimental and control groups in the NXT + WM versus WM subgroup (WMD = −5.15, 95% CI (−7.06, −3.24)). In addition, the meta-analysis revealed a significant difference in ADL decrease between the experimental and control groups in the NXT versus WM subgroup (WMD = −5.99, 95% CI (−7.72, −4.26)).

3.4.5. Total Effective Rate (TER). The TER of NXT in the treatment of VaD was reported in 24 studies with a total of 2,228 patients. The calculation of TER in one study [51] was based on the improvement of MoCA, and 2 studies [33, 56] were based on the improvement of HDS, and the others were based on the improvement of MMSE. We used a fixed-effects model after the heterogeneity test ($I^2 = 0\%$, $P = 0.815$). The meta-analysis revealed a significant difference between the experimental group and the control group in enhancing the TER (OR = 2.62, 95% CI (2.09, 3.29); Figure 10). A funnel plot analysis of the 24 studies asymmetrically distributed studies indicated the possibility of publication bias (Figure 11); a finding confirmed by the Egger’s test ($P < 0.001$). Meta-regression analysis showed that the WM category had no significant influence on heterogeneity among studies ($P = 0.604$).

Subgroup Analysis of TER. Subgroup analysis of the TER was conducted based on the different treatment strategies (NXT + WM vs. WM and NXT vs. WM; Table 3). The meta-analysis of the NXT + WM versus WM subgroup revealed a significant difference in the TER increase between the experimental and control groups (OR = 3.13, 95% CI (2.29, 4.28)). Additionally, the meta-analysis found a significant
Author	Year	Size (M/F)	Age (year)	Course of disease (month)	Interventions	Duration	Outcomes	AEs (T/C)
Fenghui	2008	22/14 19/13	65.5 ± 14.2	6 - 28	NXT 2# tid + CON-WM WM: buflomedil hydrochloride	2 m	TER	NA
Gaoli	2012	28/17 27/18	63.8 ± 6.2	28.8 ± 14.4	NXT 4# tid + CON-WM WM: nimodipine	3 m (12 w)	MMSE, ADL, TER	NA
Guoqingjun	2013	24/15 21/18	66.9 ± 8.9	47.64 ± 11.40	NXT 2 - 4# tid WM: nimodipine	6 m	MMSE, HDS, ADL, TER	2/5
Guoweiing	2009	14/16 15/15	65.5 ± 8.53	29.16 ± 17.88	NXT 3# tid + CON-WM WM: duxil	6 m	MMSE, TER	NA
Hanzhengguo	2007	18/12 17/13	69.4 ± 7.2	12	NXT 1# tid WM: hydergine	3 m	MMSE, HDS, TER	None
Huanchaoyun	2004	50/47	64.2 ± 4.8		NXT 2# tid WM: hydergine	2 m (60 d)	TER	NA
Huangdan	2019	25/21 26/21	63.65 ± 2.24		NXT 4# tid + CON-WM WM: duxil	3 m	MMSE, MoCA, TER	3/4
Huanggensian	2013	76.4 ± 7.8	74.0 ± 5.8	35.78 ± 73.20	NXT 3# tid WM: donepezil	2 m (8 w)	MMSE, ADL, TER	None
Huangying	2015	20/16 17/19	70.33 ± 7.47	31.59 ± 14.77	NXT TWM: flunarizine	6 m	MMSE, ADL	NA
Jiangyouyi	2006	18/12 17/13	65.6 ± 4.2	17.40 ± 15.60	NXT 3# tid WM: duxil	2 m	HDS, TER	NA
Jiangyuan	2014	21/13 19/13	60.38 ± 2.54	2.51 ± 3.33	NXT 3# tid + CON-WM WM: donepezil	2 m (8 w)	MMSE, TER	NA
Jiajiaojiao	2011	35/25 33/27	72.5 ± 7.1	10 ± 180	NXT 3# tid + CON-WM WM: pyrithioxin dihydrochloride	6 m	MMSE, HDS, ADL, TER	3/4
Lijiyuan	2008	47/21 40/26	66.4 ± 6.2		NXT 3# tid + CON-WM WM: hydergine	3 m (90 d)	MMSE, TER	NA
Liwei	2017	23/20 25/26	65.7 ± 6.4		NXT 4# tid No WM	6 m	MMSE, MoCA, ADL	NA
Ziqian	2017	68/51 72/47	66.85 ± 3.96	45.96 ± 12.48	NXT 3# tid WM: nimodipine	6 m	MMSE, HDS, ADL, TER	6/8
Liuzhong	2012	24/17 25/16	61.5 ± 4.3	18.0 ± 12.0	NXT 4# tid + CON-WM WM: nimodipine	3 m (12 w)	MMSE, ADL, TER	NA
Liuwei	2012	16/14 17/13	65.1 ± 5.1		NXT 3# tid WM: memantine	2 m	MMSE, MoCA, TER	None
Manbin	2019	47/47	60.48 ± 6.73	34.68 ± 8.88	NXT 3# tid + CON-WM WM: memantine	2 m	MMSE, MoCA, TER	None
Xiaohui	2018	45/43 43/26	68.38 ± 4.57	67.90 ± 6.01	NXT 3# tid No WM	6 m	MMSE, MoCA, AEs	3/0
Shengchenxi	2009	28/17 26/19	66.25 ± 7.16	25.68 ± 5.64	NXT 3# tid WM: duxil	3 m (12 w)	MMSE, HDS, ADL, TER	None
Songzi	2014	25/21	68.14 ± 4.35	28.2 ± 8.04	NXT 3# tid WM: duxil	6 m	MMSE, HDS, ADL	NA
Author	Year	Size (M/F)	Age (year)	Course of disease (month)	Interventions	Duration	Outcomes	AEs (T/C)
--------------	------	------------	------------	---------------------------	-----------------------------------	----------	-------------------	-----------
Wangweijia	2011	15/15	15/7	69.9 ± 11.2	T C NXT 4# tid WM: duxil	2 m(60d)	MMSE, TER	NA
Yanfuling	2012	12/17	15/15	70.69 ± 6.98	Clear NXT 3# tid WM: nimodipine	3 m(12 w)	MMSE, HDS	NA
Yangping	2019	20/22	21/19	66.3 ± 2.5	T C NXT 4# tid + CON-WM WM: nimodipine	3 m	MMSE, TER	NA
Yangxiaoyan	2014	37/37	37/37	65.82 ± 3.19	T C NXT 4# tid + CON-WM WM: nimodipine	3 m	MMSE, ADL, TER	NA
Yaoxinsheng	2011	22/17	17/19	65.4 ± 6.3	T C NXT 4# tid + CON-WM WM: nimodipine	3 m	MMSE, ADL, TER	NA
Yudehai	2012	17/13	15/15	55~73	Clear NXT 4# tid WM: flunarizine	6 m	MMSE, ADL	NA
Yuanlibo	2018	27/26	26/21	67.51 ± 5.67	Clear NXT 4# tid + CON-WM WM: oxiracetam + nicergoline	3 m	MMSE, TER	NA
Zhengdejun	2009	30/30	30/30	67.8 ± 5.7	Clear NXT 2# tid WM: nimodipine	3 m	MMSE, TER	NA
Zhengtaolin	2014	20/22	21/19	66 ± 7	Clear NXT 3# tid WM: oxiracetam	3 m(12 w)	MMSE, ADL	None
Zhoulongshou	2013	18/16	19/13	64.3 ± 6.7	Clear NXT 3# tid + CON-WM WM: donepezil	2 m(8 w)	MMSE, TER, AEs	3/4
Zhouwei	2009	30/30	30/30	70.26 ± 5.21	Clear NXT 4# tid WM: aniracetam	6 m	MMSE, HDS	9/12
Zhuyingjun	2015	26/29	34/31	55~84	Clear NXT 4# tid + CON-WM WM: nimodipine	6 m	MMSE, ADL, TER	NA

Note: T: treatment group, C: control group, M: male, F: female, NXT: Naoxingtong, WM: western medicine, CON-WM: Western medicine of the control group, MMSE: Mini-mental state examination, MoCA: Montreal cognitive assessment, HDS: Hasegawa dementia scale, ADL: activities of daily living, TER: total effective rate, AEs: adverse events, d: day, w: week, m: month, and NA: not mentioned.
3.4.6. Adverse Events (AEs). Twelve studies with a total of 1,247 patients reported AEs associated with the use of NXT to treat VaD. Five studies reported no AEs in either the experimental or control groups. Seven studies reported a total of 29 patients who experienced AEs. The incidence of AEs was 4.65% (29/624). Among them, 28 patients experienced gastrointestinal irritation, whereas only 1 patient reported dizziness. We used a fixed-effects model after the heterogeneity test ($I^2 = 0.0\%$, $P = 0.818$). The meta-analysis showed no difference in the occurrence of AEs between the experimental group and control group (OR = 0.72, 95% CI (0.43, 1.22); Figure 12). Additionally, Egger’s test showed that publication bias was unlikely ($P = 0.254$).

Figure 2: Risk of bias summary.

Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Feng Hui 2008	0	1	1	0	0	0	0
Gao Li 2012	0	1	1	0	0	0	0
Guo Qingjun 2013	0	1	1	0	0	0	0
Guo Weling 2009	0	1	1	0	0	0	0
Han Xinggao 2007	0	1	1	0	0	0	0
Huang Chaoyun 2004	0	1	1	0	0	0	0
Huang Dang 2019	0	1	1	0	0	0	0
Huang Dexian 2013	0	1	1	0	0	0	0
Huang Ying 2015	0	1	1	0	0	0	0
Jiang Youyi 2006	0	1	1	0	0	0	0
Jiang Yuan 2014	0	1	1	0	0	0	0
Jin Jiao 2011	0	1	1	0	0	0	0
Li Jinyu 2008	0	1	1	0	0	0	0
Liu Qingjian 2012	0	1	1	0	0	0	0
Liu Ruizhi 2012	0	1	1	0	0	0	0
Li Wei 2017	0	1	1	0	0	0	0
Li Yanhong 2017	0	1	1	0	0	0	0
Man Bin 2019	0	1	1	0	0	0	0
Miao Hui 2018	0	1	1	0	0	0	0
Sheng Chenxia 2009	0	1	1	0	0	0	0
Song Zhi 2014	0	1	1	0	0	0	0
Wang Wanjia 2011	0	1	1	0	0	0	0
Yan Fuling 2012	0	1	1	0	0	0	0
Yang Ping 2019	0	1	1	0	0	0	0
Yang Xiaoyan 2014	0	1	1	0	0	0	0
Yao Xinfeng 2011	0	1	1	0	0	0	0
Yuan Lih 2018	0	1	1	0	0	0	0
Yu Dehai 2012	0	1	1	0	0	0	0
Zheng Dejun 2009	0	1	1	0	0	0	0
Zheng Tielin 2014	0	1	1	0	0	0	0
Zhou Longzhou 2013	0	1	1	0	0	0	0
Zhou Wei 2009	0	1	1	0	0	0	0
Zhu Yingjun 2015	0	1	1	0	0	0	0

3.5. Stratified Analyses. Considering the different duration of NXT among the included studies, we conducted a stratified analysis (Table 4). The meta-analysis revealed that there was no significant difference in increasing the HDS score in the 3-month duration between the experimental group and control group (WMD = 2.18, 95% CI (−0.78, 5.14)). Apart from this, there were significant differences in MMSE, MoCA, HDS, ADL, and TER between the experimental group and control group in different durations (2, 3, and 6 months). In the NXT versus WM subgroup, there was no significant difference in increasing the HDS score (WMD = 2.18, 95% CI (−0.78, 5.14)) and TER (OR = 1.81, 95% CI (0.87, 3.76)) in the 3-month duration. In the NXT + WM versus WM subgroup, there was no significant difference in decreasing ADL score in the 6-month duration (WMD = −4.07, 95% CI (−12.78, 4.64)). These changes were thought to result from the decrease in sample size.

3.6. Sensitivity Analysis. Sensitivity analyses were performed on the MMSE, MoCA, HDS, ADL, TER, and AEs. We serially eliminated one study and performed a meta-analysis of the remaining studies to ascertain changes in the combined effect. The findings indicated that the estimated points were within 95% CI of the total effect, and no directional changes occurred (Figures 13(a)−13(f)). Sensitivity analysis revealed very few changes in the combined effect of the MMSE, MoCA, HDS, ADL, TER, and AEs, thus validating the study findings.

3.7. Evidence Quality Grade Analysis. GRADE pro-Guide-line Development Tool was used to assess the evidence quality of the following outcomes: MMSE, MoCA, HDS, ADL, TER, and AEs. Table 5 summarizes the GRADE evidence for outcome measures. The evidence quality of this study was downgraded mainly because of the high risk of bias in the included studies. In addition, the high statistical heterogeneity and publication bias possibility of several outcomes also affect the quality of evidence evaluation. In summary, the evidence quality rating was low.

- The difference in the TER increase between the experimental and control groups in the NXT versus WM subgroup (OR = 2.16, 95% CI (1.56, 3.00)).
NOTE: Weights are from random effects analysis
Overall (I-squared = 90.5%, p = 0.000)
Liwei (2017)
Zhengtaolin (2014)
Liuqingjian (2012)
Liuruixia (2012)
Miaohui (2018)
Yangxiaoyan (2014)
Huanggenxian (2013)
Zhoulongshou (2013)
Hanxingguo (2007)
Zhuyingjun (2015)
Manbin (2019)
Yangping (2019)
Songzhi (2014)
Yuanlibo (2018)
Zhengdejun (2009)
Zhengtaolin (2014)
Zhoulongshou (2013)
Zhouwei (2009)
Zhuyingjun (2015)
Overall (I-squared = 90.5%, p = 0.000)

Study ID	WMD (95% CI)	% Weight
Gaoli (2012)	4.90 (3.70, 6.10)	3.47
Guoqingjun (2013)	3.82 (2.40, 5.24)	3.30
Guowelling (2009)	1.51 (0.27, 2.75)	3.44
Hanxinguo (2007)	1.00 (−0.44, 2.44)	3.28
Huangdan (2019)	5.06 (3.63, 6.49)	3.29
Huanggenxian (2013)	1.87 (−0.05, 3.79)	2.87
Huangying (2015)	1.82 (0.59, 3.05)	3.45
Jiangyuan (2014)	4.28 (3.09, 5.47)	3.48
Jinaigu (2011)	1.62 (0.23, 3.01)	3.32
Lijinian (2008)	3.17 (1.85, 4.49)	3.37
Liwei (2017)	3.10 (1.28, 4.92)	2.96
Liyanhong (2017)	6.53 (5.68, 7.38)	3.72
Liuqingjian (2012)	5.30 (4.21, 6.39)	3.56
Liuruxia (2012)	2.32 (0.57, 4.07)	3.02
Manbin (2019)	5.09 (4.06, 6.12)	3.60
Miaohui (2018)	2.98 (2.32, 3.64)	3.83
Shengchenxia (2009)	3.39 (1.71, 5.07)	3.07
Songzhi (2014)	4.42 (2.73, 6.11)	3.07
Wangweijia (2011)	1.83 (0.61, 3.05)	3.46
Yanfuling (2012)	0.57 (−0.16, 1.30)	3.79
Yangping (2019)	3.10 (0.72, 5.48)	2.49
Yangxiaoyan (2014)	4.87 (3.59, 6.15)	3.41
Yaoxinsheng (2011)	5.00 (2.73, 7.27)	2.58
Yudehai (2012)	2.65 (1.12, 4.18)	3.20
Yuanlibo (2018)	4.68 (4.46, 4.90)	3.99
Zhengdejun (2009)	1.15 (−0.23, 2.53)	3.33
Zhengtaolin (2014)	2.50 (1.60, 3.40)	3.69
Zhoulongshou (2013)	3.36 (2.20, 4.52)	3.50
Zhouwei (2009)	1.88 (0.13, 3.63)	3.02
Zhuyingjun (2015)	5.48 (4.25, 6.71)	3.45

NOTE: Weights are from random effects analysis

Figure 4: Forest plot for MMSE of NXT in vascular dementia.

Figure 3: Risk of bias.
4. Discussion

The purpose of this study was to determine the efficacy and safety of NXT in patients with VaD. The meta-analysis included 33 RCTs with a total of 2,947 patients with VaD. The data indicated that NXT could significantly improve cognitive function and the daily living ability of patients with VaD. NXT was shown to improve the total effective rate of patients without increasing the occurrence of AEs. The most common adverse events associated with NXT were gastrointestinal symptoms, such as stomach upset, nausea, or loss of appetite. Subgroup analysis revealed that whether NXT was used alone or in combination with western medicine, it had the potential to enhance the overall therapeutic effect.

With the increase in the average life expectancy of contemporary individuals, dementia has become a serious public health concern. Worldwide, over 36 million people suffer from dementia, with VaD accounting for at least 20% of all cases [57]. Additionally, the burden of VaD on patients’ families, medical care, and long-term care has increased. In many countries, the costs of VaD management have surpassed the cost of cancer or heart disease management. Patients, particularly those who have had a stroke, are at a higher risk of acquiring dementia. Acute stroke was linked with a rapid decrease in cognitive ability that persisted over time in a large population-based study [58, 59]. Therefore, it is important to explore different therapy options that may help VaD patients enhance their cognitive ability and quality of life.

Cholinesterase inhibitors and memantine are the most widely studied drugs for Alzheimer’s disease (AD). While the drugs are effective in the treatment of AD, their efficacy in treating VaD is limited. The majority of studies have shown that cholinesterase inhibitors may slightly enhance cognition in patients with VaD (an improvement on the VADAS-cog scale was about 2 points, which was about half
Besides, it has been shown that the cholinesterase inhibitors and memantine improve the overall function of patients with VaD, although evidence on the activities of daily living and behavior remains inconsistent [60]. Previous studies using galantamine in a group of patients with simple VaD and mixed dementia suggested that it may have some advantages. However, many major randomized controlled 6-month trials with galantamine, donepezil, and rivastigmine have been performed with NINDS-AIREN or VaD and reported mixed results [61–63]. On the other hand, although studies on nimodipine in the treatment of subcortical VaD lack key efficacy indicators, they have demonstrated improvements in certain outcomes including memory. In general, there is a dearth of evidence on VaD treatment methods [64].

NOTE: Weights are from random effects analysis

Overall $(I^2 = 93.5\%, p = 0.000)$

Study ID	WMD (95% CI)	% Weight
Huangdan (2019)	5.36 (3.93, 6.79)	25.68
Liwei (2017)	3.10 (1.15, 5.05)	21.77
Manbin (2019)	6.02 (4.22, 7.82)	22.86
Miaohui (2018)	2.96 (2.12, 3.80)	29.70
Overall $(I^2 = 79.7\%, p = 0.002)$	4.31 (2.72, 5.90)	100.00

NOTE: Weights are from random effects analysis

Overall $(I^2 = 79.7\%, p = 0.002)$

Study ID	WMD (95% CI)	% Weight
Guoqingjun (2013)	1.01 (-0.04, 2.06)	11.45
Hanxingguo (2007)	1.20 (-0.25, 2.65)	10.85
Jiangyouyi (2006)	5.00 (3.60, 6.40)	10.94
Jinaiguo (2011)	1.26 (0.07, 2.45)	11.25
Liyanhong (2017)	0.69 (0.18, 1.20)	11.99
Shengchenxia (2009)	5.14 (3.78, 6.50)	11.00
Songzhi (2014)	6.33 (5.01, 7.65)	11.06
Yanfuling (2012)	0.25 (-0.80, 1.30)	11.45
Zhouwei (2009)	4.01 (2.07, 5.95)	10.00
Overall $(I^2 = 93.5\%, p = 0.000)$	2.71 (1.26, 4.17)	100.00

Figure 6: Forest plot for MoCA of NXT in vascular dementia.

Figure 7: Forest plot for HDS of NXT in vascular dementia.
most effective preventive approach and to develop multi-targeted therapy alternatives.

Our systematic review indicated that using NXT as monotherapy or adjuvant for VaD patients may be helpful and usually safe. NXT originated from the classic Chinese medicine prescription, “Buyang Huanwu Decoction,” was approved by the China Food and Drug Administration (CFDA) and accepted by the 2015 edition of the Chinese Pharmacopoeia as modern Chinese medicine. NXT was used to invigorate Qi and promote blood circulation. NXT has been used to treat cardiovascular and cerebrovascular diseases such as stroke, coronary heart disease, and angina pectoris for decades. NXT contains 16 Chinese herbal medicines, and more than 200 bioactive constituents have been identified [65]. An HPLC-DAD fingerprint for NXT has been established to represent the character of NXT and to enhance its specificity for quality control and assessment [66]. Previously published research indicated that the traditional Chinese medicine “Buyang Huanwu Decoction” may protect hippocampal cells in the CA1 region [67]. Additionally, prior research has shown that NXT protects against a range of cardiovascular diseases, including atherosclerosis, ischemic stroke, and ischemia-reperfusion injury [65]. NXT ameliorates lipid metabolism and attenuates oxidative inflammation, thus protecting against atherosclerosis. In addition, NXT suppresses ischemia/reperfusion injury-induced activation of the NOD-like receptor pyridine domain-containing protein 3 (NLRP3) inflammasome and IL-1β expression [68]. On the other hand, NXT has been demonstrated to recruit and mobilize early endothelial progenitor cells (EPCs)/circulating angiogenic cells (CACs), thereby enhancing the formation of new blood vessels through the VEGF/eNOS signaling [69]. NXT also decreased blood serum levels of Livin, IL-18, and IFN-γ contents, and increased VEGF in patients with VaD, thus inhibiting apoptosis and vascular damage. VaD’s etiology is very complicated and involves many factors, including lipid metabolism disorder, increased blood viscosity, oxidative

Study ID	WMD (95% CI)	% Weight
Gaoli (2012)	-5.30 (-6.36, -4.24)	7.68
Guoqingjun (2013)	-5.23 (-6.92, -3.54)	7.01
Huanggenxian (2013)	-4.03 (-7.01, -1.05)	5.40
Huangying (2015)	-3.56 (-5.24, -1.88)	7.02
Jinaiguo (2011)	0.23 (-1.77, 2.23)	6.63
Livei (2017)	-9.10 (-11.33, -6.87)	6.34
Liyanhong (2017)	-9.77 (-11.02, -8.52)	7.50
Liuqingjian (2012)	-5.00 (-6.18, -3.82)	7.57
Shengchenxia (2009)	-4.55 (-6.81, -2.29)	6.30
Songzi (2014)	-6.19 (-8.41, -3.97)	6.36
Yangxiaoyan (2014)	-7.41 (-8.15, -6.67)	7.92
Yaoxinsheng (2011)	-5.40 (-7.29, -3.51)	6.77
Yudehai (2012)	-6.99 (-8.64, -5.34)	7.06
Zhengtaolin (2014)	-7.00 (-9.59, -4.41)	5.88
Zhuyingjun (2015)	-8.66 (-12.37, -4.95)	4.55
Overall (I-squared = 87.6%, p = 0.000)	-5.85 (-7.03, -4.66)	100.00

Figure 8: Forest plot for ADL of NXT in vascular dementia.

Figure 9: Funnel plot for ADL of NXT in vascular dementia.
damage, or vascular inflammatory stimulation [70]. Indeed, NXT upregulated VEGF expression in ischemic endothelial cells, inhibited endothelial cell apoptosis, and maintained endothelial cell integrity. One of NXT’s brain-protective mechanisms has been linked to a decrease in endothelial dysfunction, which promotes angiogenesis and protects ischemic injured nerves.

To assess the effect of NXT on cognitive function, we used the MMSE as the primary outcome indicator coupled with the MOCA or HDS scale. MMSE, MoCA, and NCSE are the most commonly used evaluation methods in previous research [71–74]. We demonstrated that NXT may not only improve cognitive function in VaD patients but also improve overall activities of daily living as measured by the ADL. Evaluation of clinical efficacy is multifaceted. It involves a thorough evaluation of general clinical changes via activities of daily life (functional endpoints) in addition to measuring cognitive function using objective screening tests (cognitive endpoints). Due to the absence of apparent symptoms in patients with mild to moderate VaD, it is difficult to assess symptom improvement. In this case, cognitive ability and overall living ability are used as the primary assessment indicators.

Stabilization or improvement of ADL may be a more important endpoint in the late stage of VaD owing to cognitive impairment associated with severe dysfunction.
Table 4: Results of the stratified analysis based on different NXT duration.

Subgroup	Overall	2-month duration	3-month duration	6-month duration				
	Studies	WMD (95% CI)/ OR (95% CI)	Studies	WMD (95% CI)/ OR (95% CI)	Studies	WMD (95% CI)/ OR (95% CI)	Studies	WMD (95% CI)/ OR (95% CI)
MMSE								
Overall	30	3.33 (2.72, 3.94)	5	3.37 (2.10, 4.65)	14	3.35 (2.35, 4.34)	11	3.28 (2.17, 4.40)
NXT vs. blank	2	2.99 (2.37, 3.61)	0	—	0	—	2	2.99 (2.37, 3.61)
NXT + WM vs. WM	14	4.15 (3.55, 4.75)	3	4.27 (3.27, 5.28)	8	4.66 (4.28, 5.04)	3	4.88 (0.26, 5.50)
NXT vs. WM	14	2.56 (1.48, 3.64)	2	1.84 (0.81, 2.87)	6	1.73 (0.81, 2.66)	6	1.56 (1.76, 5.36)
MoCA								
Overall	4	4.31 (2.72, 5.90)	1	6.02 (4.22, 7.82)	1	5.36 (3.93, 6.79)	2	2.98 (2.21, 3.75)
NXT vs. blank	2	2.98 (2.21, 3.75)	0	—	0	—	2	2.98 (2.21, 3.75)
NXT + WM vs. WM	2	5.61 (4.50, 6.73)	1	6.02 (4.22, 7.82)	1	5.36 (3.93, 6.79)	0	—
NXT vs. WM	0	—	0	—	0	—	0	—
HDS								
Overall	9	2.71 (1.26, 4.17)	1	5.00 (3.60, 6.40)	3	2.18 (-0.78, 5.14)	5	2.59 (0.63, 4.54)
NXT vs. blank	0	—	0	—	0	—	0	—
NXT + WM vs. WM	1	1.26 (0.07, 2.45)	0	—	0	—	1	1.26 (0.07, 2.45)
NXT vs. WM	8	2.90 (1.26, 4.55)	1	5.00 (3.60, 6.40)	3	2.18 (-0.78, 5.14)	4	2.94 (0.41, 5.47)
ADL								
Overall	15	-5.85 (-7.03, -4.66)	1	-4.03 (-7.01, -1.05)	6	-5.82 (-6.95, -4.68)	8	-6.11 (-8.49, -3.73)
NXT vs. blank	1	-9.10 (-11.33, -6.87)	0	—	0	—	1	-9.10 (-11.33, -6.87)
NXT + WM vs. WM	6	-5.15 (-7.06, -3.24)	0	—	4	-5.58 (-7.22, -4.48)	2	-4.07 (-12.78, 4.64)
NXT vs. WM	8	-5.99 (-7.72, -4.26)	1	-4.03 (-7.01, -1.05)	2	-5.69 (-8.09, -3.30)	5	-6.39 (-8.71, 4.06)
TER								
Overall	24	2.62 (2.09, 3.29)	8	2.58 (1.66, 4.01)	10	3.31 (2.26, 4.86)	6	2.16 (1.50, 3.09)
NXT vs. blank	0	—	0	—	0	—	0	—
NXT + WM vs. WM	15	3.13 (2.29, 4.28)	4	2.73 (1.37, 5.44)	8	4.15 (2.65, 6.49)	3	2.21 (1.27, 3.36)
NXT vs. WM	9	2.16 (1.56, 3.00)	4	2.48 (1.40, 4.41)	2	1.81 (0.87, 3.76)	3	2.12 (1.32, 3.40)

Figure 12: Forest plot for AEs of NXT in vascular dementia.
Study	Estimate	Lower Cl limit	Upper Cl limit
Gaoli (2012)			
Guoqingjun (2013)			
Guowei (2009)			
Hanxingguo (2007)			
Huanggenxian (2013)			
Huangying (2015)			
Jiangyuan (2014)			
Jinsu (2011)			
Lijianan (2008)			
Liru (2012)			
Liyan (2017)			
Liuzhong (2012)			
Liyu (2012)			
Shengxu (2009)			
Songzi (2014)			
Wangwei (2011)			
Yanfeng (2012)			
Yangping (2019)			
Yangxiaoyuan (2014)			
Yaoxinsheng (2011)			
Yudehai (2012)			
Yuanlin (2018)			
Zhengde (2009)			
Zhengtao (2014)			
Zhoulongshou (2013)			
Zhouwei (2009)			
Zhouyin (2015)			
Liwei (2017)			
Lijinyan (2008)			
Jinaiguo (2011)			
Jiangyuan (2014)			
Guoqingjun (2013)			

Figure 13: Continued.
Figure 13: Continued.
In severe dementia, when cognitive function is unlikely to improve, domain-specific and global as common primary endpoints may be more suitable. In this study, we demonstrated that NXT may also improve daily living activities in patients with VaD, indicating that NXT has multiple protective effects against VaD.

4.1. Limitations. The following limitations of this study should be noted. First, the methodological quality of the included studies was generally low. Although all studies explicitly mentioned randomization, only a few studies detailed the method of random grouping. Moreover, none of the studies stated whether or not they used allocation...
concealment. Only one study used a double-blind design; participants and researchers were not blinded in the other studies. The studies did not specify whether the findings were evaluated blindly. As a consequence, the reliability of the results may be limited. Second, since NXT is a Chinese patent medication, all studies included in this review were conducted in China, and the published articles were written in Chinese, which may lead to potential selection bias. Third, there is no consensus on the most preferred Western medicine for treating VaD, and therefore, a variety of western medicines were used in control groups throughout the included studies. This made it difficult to carry out subgroup analysis according to the types of western medicines. Fourth, MMSE and TER were likely to exhibit publication bias as a consequence of the potential of unreported negative findings, which may decrease the stability of results. For studies with no statistical significance, researchers may consider them of little significance and not publish them or delay publication [75]. Therefore, the improvements in MMSE and TER in this meta-analysis may overestimate the efficacy of the intervention. Fifth, since only four studies with small samples reported MoCA, the findings may be less stable. Sixth, based on the above factors, the current evidence quality of this study was low, so the application in the clinic should be cautious.

5. Conclusion

Taken together, our meta-analysis demonstrated that NXT has the potential to enhance the cognitive function and daily living ability of patients without increasing the risk of adverse events whether used alone or in combination with western medicine. This seemed to remind us that NXT may be an effective and safe treatment option for VaD. However, given the low methodological quality of the included RCTs and the quality of current evidence, the findings need to be validated using large sample size, high-quality multicenter RCTs.

Abbreviations

Abbreviation	Description
VaD:	Vascular dementia
FDA:	Food and drug administration
AChE:	Acetylcholinesterase
NMDA:	N-methyl D-aspartate
NXT:	Naoxintong capsule
PRISMA:	Preferred reporting items for systematic reviews and meta-analyses
RCTs:	Randomized controlled trials
DSM:	Diagnostic and statistical manual of mental disorders
WM:	Western medicine
RT:	Routine treatment
MMSE:	Mini-mental state examination
MoCA:	Montreal Cognitive Assessment
HDS:	Hasegawa dementia scale
ADL:	Activities of daily living
TER:	Total effective rate
AEs:	Adverse events
CNKI:	China National Knowledge Infrastructure
WMD:	Weight mean difference
CI:	Confidence interval
OR:	Odds ratio
CFDA:	China food and drug administration
NLRP3:	Domain-containing protein 3
EPCs:	Endothelial progenitor cells
CACs:	Circulating angiogenic cells
ROS:	Reactive oxygen species
OGD/R:	Oxygen-glucose deprivation and reoxygenation

Data Availability

The data used to support the findings of this study are included within the article.

Additional Points

(i) Naoxintong capsule has good efficacy on vascular dementia. (ii) Naoxintong Capsule has good safety for vascular...
dementia. (iii) Naoxintong Capsule may be an effective and safe way for vascular dementia.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

L. Li, Y. W. Zheng, J. J. Bao, W. L. Li, and M. H. Wu conceived and designed the experiments. L. Li, Y. W. Zheng, and J. J. Bao performed the experiments. L. Li and Y. W. Zheng analyzed the data. L. Li, Y. W. Zheng, J. J. Bao, Y. D. Zhao, and Q. C. Zhang wrote the manuscript. L. Li, Y. W. Zheng, L. Li, and M. H. Wu revised the manuscript. All authors reviewed and approved the manuscript prior to submission. L. Li, Yawei Zheng, and Jinjing Bao have contributed equally to this work.

Acknowledgments

We would like to thank Freescience Information Technology for the English language editing. This study was supported by the National Administration of Traditional Chinese Medicine: Evidence-Based Capacity Building Project (2019XZZXX-NB007), the National Natural Science Foundation of China (81973794), the Jiangsu Province Administration of Chinese Medicine (JD201803), the Jiangsu Province Traditional Chinese Medicine Science and Technology Development Plan Project (ZT202102), and the Jiangsu Graduate Research Innovation Program (KYCX22_1936).

References

[1] E. E. Smith, “Clinical presentations and epidemiology of vascular dementia,” *Clinical Science*, vol. 131, no. 11, pp. 1059–1068, 2017.

[2] J. Hugo and M. Ganguli, “Dementia and cognitive impairment,” *Clinics in Geriatric Medicine*, vol. 30, no. 3, pp. 421–442, 2014.

[3] W. M. van der Flier and P. Scheltens, “Epidemiology and risk factors of dementia,” *Journal of Neurology, Neurosurgery & Psychiatry*, vol. 76, no. suppl_5, pp. v2–v7, 2005.

[4] C. McVeigh and P. Passmore, “Vascular dementia: prevention and treatment,” *Clinical Interventions in Aging*, vol. 1, no. 3, pp. 229–235, 2006.

[5] L. Raz, J. Knoefel, and K. Bhaskar, “The neuropathology and cerebrovascular mechanisms of dementia,” *Journal of Cerebral Blood Flow & Metabolism*, vol. 36, no. 1, pp. 172–186, 2016.

[6] J. De Reuck, C.-A. Maurage, V. Deramecourt et al., “Aging and cerebrovascular lesions in pure and in mixed neurodegenerative and vascular dementia brains: a neuropathological study,” *Folia Neuropathologica*, vol. 56, no. 2, pp. 81–87, 2018.

[7] S. Benisty, “Current concepts in vascular dementia,” *Gériatrie et Psychologie Neuropsychiatrie du Vieillissement*, vol. 11, no. 2, pp. 171–180, 2013.

[8] M. U. Farooq, J. Min, C. Goshgarian, and P. B. Gorelick, “Pharmacotherapy for vascular cognitive impairment,” *CNS Drugs*, vol. 31, no. 9, pp. 759–776, 2017.

[9] S. Takeda, H. Rakugi, and R. Morishita, “Roles of vascular risk factors in the pathogenesis of dementia,” *Hypertension Research*, vol. 43, no. 3, pp. 162–167, 2020.

[10] G. C. Román, S. Salloway, S. E. Black et al., “Randomized, placebo-controlled, clinical trial of Donepezil in vascular Dementia,” *Stroke*, vol. 41, no. 6, pp. 1213–1221, 2010.

[11] R. McShane, M. J. Westby, E. Roberts et al., “Mantinette for dementia,” *Cochrane Database of Systematic Reviews*, vol. 3, no. 3, 2006.

[12] D. H. Nguyen, J. T. Cunningham, and N. Sumien, “Estrogen receptor involvement in vascular cognitive impairment and vascular dementia pathogenesis and treatment,” *GeroScience*, vol. 43, no. 1, pp. 159–166, 2021.

[13] E. Reeve, B. Farrell, W. Thompson et al., “Deprescribing cholinesterase inhibitors and memantine in dementia: guideline summary,” *Medical Journal of Australia*, vol. 210, no. 4, pp. 174–179, 2019.

[14] F. Zhang, B. Huang, Y. Zhao et al., “BNC protects H9c2 Cardiomyoblasts from H2O2-induced oxidative injury through ERK1/2 signaling pathway,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2013, Article ID 802784, 12 pages, 2013.

[15] G. Y. Zhou, X. Q. Hu, and X. H. Chen, “Experimental study on effect of Buchang Naoxintong containing serum for antagonizing hypoxia-induced apoptosis of cortical neurons,” *Chinese Journal of Integrative Medicine*, vol. 27, 2007.

[16] Y. Ma, P. Zhao, J. Zhu et al., “Naoxintong protects primary neurons from oxygen-glucose deprivation/reoxygenation induced injury through PI3K-akt signaling pathway,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2016, Article ID 5819546, 12 pages, 2016.

[17] Y. K. Ma, Y. Yang, B. Zhao et al., “Study on neuroprotective effect of Naoxintong capsules on vascular dementia mice with chronic hypoperfusion,” *China Medical Herald*, vol. 12, 2015.

[18] L. Hong, M. He, and Y. Huang, “Influence of naoxintong capsule on the resting [ca(2+)]i level in hippocampal neurons of the rat models with vascular dementia,” *Pharmacology and Clinicals of Chinese Materia Medica*, vol. 1, pp. 133–135, 2006.

[19] A. Liberati, D. G. Altman, J. Tetzlaff et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration,” *BMJ (Clinical Research)*, vol. 339, 2009.

[20] J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, “Measuring inconsistency in meta-analyses,” *BMJ*, vol. 327, no. 7414, pp. 557–560, 2003.

[21] R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” *Controlled Clinical Trials*, vol. 7, no. 3, pp. 177–188, 1986.

[22] J. L. Aguayo-Albasini, B. Flores-Pastor, and V. Soria-Aledo, “GRADE system: classification of quality of evidence and strength of recommendation,” *Cirugía Española*, vol. 92, no. 2, pp. 82–88, 2014.

[23] H. Balshem, M. Helfand, H. J. Schünemann et al., “GRADE guidelines: 3. rating the quality of evidence,” *Cochrane Database of Systematic Reviews*, vol. 3, no. 4, pp. 401–406, 2011.

[24] H. Feng, X. M. Zhang, and C. L. Liu, “Buchang Naoxintong joint buflomedil treatment of vascular dementia clinical observation,” *Journal of Liaoning University of Traditional Chinese Medicine*, vol. 10, pp. 88–90, 2008.

[25] L. Gao, “Clinical analysis of Naoxintong combined with nimodipine on 45 patients with vascular dementia,” *China Modern Medicine*, vol. 19, pp. 92–94, 2012.
[26] Q. J. Guo and Y. Shi, “Therapeutic Efficacy of Naoxintong capsules on vascular dementia and effect of it on oxidative stress,” *China Pharmacy*, vol. 24, pp. 362–364, 2013.

[27] W. L. Guo, S. J. Liu, and W. J. Lin, “Observation on therapeutic effect of Buchang Naoxintong capsule on vascular dementia,” *Journal of Emergency in Traditional Chinese Medicine*, vol. 18, 2009.

[28] X. G. Han and K. Z. Sun, “Clinical observation on 30 cases of vascular dementia treated by naxoxtong capsules,” *Health Vision Medical Section*, vol. 3, no. 14, pp. 6–7, 2007.

[29] C. Y. Huang, J. J. Zhang, and X. Q. Zhang, “Clinical study on 50 cases of vascular dementia treated by Naoxintong,” *Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease*, vol. 2, pp. 610–611, 2004.

[30] D. Huang, Y. L. Huang, Z. Y. Zhao, and Y. Lv, “Clinical efficacy of donepezil combined with Buchang Naoxintong capsule in treatment of cognitive impairment after cerebral infarction,” *Chinese archives of Traditional Chinese Medicine*, vol. 37, pp. 495–498, 2019.

[31] G. X. Huang and J. B. Lu, “Naoxintong capsule combined with donepezil in the treatment of 32 cases of vascular dementia,” *Zhejiang Journal of Traditional Chinese Medicine*, vol. 48, pp. 775–776, 2013.

[32] Y. Huang, “Clinical observation on Buchang Naoxintong in treating vascular dementia,” *Liaoning Journal of Traditional Chinese Medicine*, vol. 42, pp. 1701–1702, 2015.

[33] Y. Y. Jiang, “30 Cases of vascular dementia treated by Buchang Naoxintong,” *Fujian Journal of Traditional Chinese Medicine*, vol. 37, 2006.

[34] Y. Jiang and F. Xu, “Clinical observation of aricept combined with Naoxintong capsule in treatment of vascular dementia after cerebral infarction,” *Medical Journal of West China*, vol. 26, pp. 698–700, 2014.

[35] A. G. Jin, Z. Jin, and W. L. Zhang, “Effect of Naoxintong capsule on vascular dementia,” *Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease*, vol. 19, pp. 1319–1320, 2011.

[36] J. Y. Li and X. Li, “Naoxintong capsule combined with hydrgine in the treatment of vascular cognitive impairment,” *Hainan Medical Journal*, vol. 19, pp. 12–13, 2008.

[37] W. Li, L. W. Tai, and X. Z. Lai, “Efficacy analysis of Buchang Naoxintong capsules in the treatment of post-stroke vascular dementia,” *Guide to Chinese Medicine*, vol. 15, no. 8, pp. 204–205, 2007.

[38] Y. H. Li, “Levels of livin, VEGF, IL-18 and IFN-γ in vascular dementia patients treated with Naoxintong capsule: clinical observation of 238,” *Information on Traditional Chinese Medicine*, vol. 34, pp. 67–70, 2017.

[39] Q. J. Liu, “Observation on the clinical efficay of nimodipine combined with Buchang Naoxintong in the treatment of 41 cases of vascular dementia,” *China Practical Medicine*, vol. 7, pp. 131–132, 2012.

[40] R. X. Liu, J. L. Zhao, and H. G. Ming, “Efficacy of Buchang Naoxintong in the treatment of occult cerebral infarction with mild cognitive impairment,” *Journal of Hefei Union University*, vol. 14, no. 3, pp. 369-370, 2012.

[41] B. Man, Y. Y. Liu, Q. Wang, and Z. Yuan, “Clinical study on Naoxintong capsules combined with memantine hydrochloride in treatment of vascular dementia,” *Drugs & Clinic*, vol. 34, pp. 979–983, 2019.

[42] H. Miao and T. Zhu, “The effect of Naoxintong on cognitive dysfunction in ischemic cerebrovascular disease,” *Electronic Journal of Modern Medicine and Health Research*, vol. 2, no. 7, pp. 155–156, 2018.

[43] C. X. Sheng, N. X. Su, M. D. He, and S. G. Pan, “Clinical observation on Buchang Naoxintong capsule in treating vascular dementia,” *Contemporary Medicine*, vol. 15, pp. 157–158, 2009.

[44] Z. Song, “Efficacy analysis of Buchang Naoxintong capsule in the treatment of vascular dementia,” *Contemporary Medicine*, vol. 20, no. 30, pp. 137–138, 2014.

[45] W. J. Wang, “Clinical observation on Buchang Naoxintong capsule in treating vascular dementia,” *Chinese and Foreign Medical Research*, vol. 9, pp. 119–120, 2011.

[46] F. L. Yan, J. J. Zhang, and L. Erica, “Efficacy of buchang-naoxintong capsule for the patients with vascular cognitive impairment,” *Chinese Journal of Brain Diseases and Rehabilitation (Electronic Edition)*, vol. 2, no. 1, pp. 12–15, 2012.

[47] P. Yang, F. H. You, and J. J. Lin, “Combination therapy and prognostic evaluation of vascular dementia,” *Journal of Clinical Medical*, vol. 6, p. 46, 2019.

[48] X. Y. Yang, “Clinical analysis of Naoxintong combined with nimodpine on 60 patients with vascular dementia,” *Guide of China Medicine*, vol. 12, pp. 293–294, 2014.

[49] X. S. Yao, “Combined treatment of Naoxintong with nimodpine for vascular dementia,” *Acta Medicinae Universitatis Scientiae et Technologiae Huazhong*, vol. 40, pp. 490–492, 2011.

[50] D. H. Yu, W. Li, and L. Li, “Efficacy observation on buchang naxoxtong capsule in treating 30 cases of vascular dementia,” *Yunnan Journal of Traditional Chinese Medicine and Materia Medica*, vol. 33, no. 6, pp. 42–43, 2012.

[51] L. B. Yuan, “The clinical efficacy of Naoxintong combined with Nierogline and Oxiracetam on patients with vascular cognitive impairment and its effect on neurological improvement,” *Anti-Infection Pharmacy*, vol. 15, pp. 127–129, 2018.

[52] D. J. Zheng, J. Xu, S. X. Fang, J. Y. Pan, and J. X. Fang, “Influence of Buchang Naoxintong on behavioral disorders in patients with vascular dementia,” *Information on Traditional Chinese Medicine*, vol. 26, pp. 75–76, 2019.

[53] T. L. Zheng, Z. Wang, C. Liu, and W. He, “Clinical study on Buchang Naoxintong capsule in treating 85 cases of vascular dementia,” *Shanxi Medical Journal*, vol. 43, pp. 205–207, 2014.

[54] L. S. Zhou and J. X. Wang, “Clinical observation on the treatment of vascular dementia after cerebral infarction by Aricept combined with Naoxintong capsule,” *Zhejiang Journal of Integrated Traditional Chinese and Western Medicine*, vol. 23, pp. 981–982, 2013.

[55] W. Zhou, Y. B. Wu, and X. R. Xu, “Clinical observation on Naoxintong capsule in treating patients with vascular dementia,” *Shandong Medical Journal*, vol. 49, pp. 99–100, 2009.

[56] Y. J. Zhu, “Clinical observation on the treatment of 65 cases of vascular dementia with nimodpine and Naoxintong,” *Jilin Medical Journal*, vol. 36, pp. 3871–3872, 2015.

[57] M. Wortmann, “Dementia: a global health priority—highlights from an ADI and World Health Organization report,” *Alzheimer’s Research & Therapy*, vol. 4, no. 5, p. 40, 2012.

[58] S. T. Pendlebury and P. M. Rothwell, “Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis,” *The Lancet. Neurology*, vol. 8, 2009.

[59] C. S. Ivan, S. Seshadri, A. Beiser et al., “Dementia after stroke: the Framingham study,” *Stroke*, vol. 35, no. 6, pp. 1264–1268, 2004.

[60] National Collaborating Centre for Mental Health (UK), *Dementia: A Nice-Science Guideline on Supporting People with Dementia and Their Careers in Health and Social Care*, British Psychological Society, London, UK, 2006.
[61] A. P. Auchus, H. R. Brashear, S. Salloway, A. D. Korczyn, P. P. De Deyn, and C. Gassmann-Mayer, "Galantamine treatment of vascular dementia: a randomized trial," *Neurology*, vol. 69, no. 5, pp. 448–458, 2007.

[62] S. Black, G. C. Román, D. S. Geldmacher et al., "Efficacy and tolerability of donepezil in vascular dementia: positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial," *Stroke*, vol. 34, no. 10, pp. 2323–2330, 2003.

[63] C. Ballard, M. Sauter, P. Scheltens et al., "Efficacy, safety and tolerability of rivastigmine capsules in patients with probable vascular dementia: the VantagE study," *Current Medical Research and Opinion*, vol. 24, no. 9, pp. 2561–2574, 2008.

[64] L. Pantoni, A. M. Basile, G. Pracucci et al., "Impact of age-related cerebral white matter changes on the transition to disability-the LADIS study: rationale, design and methodology," *Neuroepidemiology*, vol. 24, no. 1-2, pp. 51–62, 2005.

[65] J. Han, H. Tan, Y. Duan et al., "The cardioprotective properties and the involved mechanisms of NaoXinTong capsule," *Pharmacological Research*, vol. 141, pp. 409–417, 2019.

[66] R. Su, Z. S. Tang, F. Liu, Y. B. Chen, and Z. X. Song, "HPLC-DAD fingerprint of Naoxintong capsules," *Central South Pharmacy*, vol. 17, pp. 1–4, 2019.

[67] T. Jinglong, G. Weijuan, L. Jun, Q. Tao, Z. Hongbo, and L. Shasha, "The molecular and electrophysiological mechanism of Buyanghuanwu decoction in learning and memory ability of vascular dementia rats," *Brain Research Bulletin*, vol. 99, pp. 13–18, 2013.

[68] Y. Wang, X. Yan, S. Mi et al., "Naoxintong attenuates ischaemia/reperfusion injury through inhibiting NLRP3 inflammasome activation," *Journal of Cellular and Molecular Medicine*, vol. 21, no. 1, pp. 4–12, 2017.

[69] H. Wang, L. Qiu, Y. Ma et al., "Naoxintong inhibits myocardial infarction injury by VEGF/eNOS signaling-mediated neovascularization," *Journal of Ethnopharmacology*, vol. 209, pp. 13–23, 2017.

[70] H. Wang, Y. Jiang, M. Ding et al., "Simultaneous determination and qualitative analysis of six types of components in Naoxintong capsule by miniaturized matrix solid-phase dispersion extraction coupled with ultra high-performance liquid chromatography with photodiode array detection and qua," *Journal of Separation Science*, vol. 41, no. 9, pp. 2064–2084, 2018.

[71] Y. H. Fang, S. J. Chen, and X. X. Zhou, "Investigation on the current status of the use of 6 stroke cognitive rehabilitation evaluation tools including MoCA, MMSE, NCSE," *Chinese Journal of Rehabilitation*, vol. 29, pp. 40–42, 2014.

[72] M. F. Folstein, S. E. Folstein, and P. R. McHugh, "Mini-mental state," *Journal of Psychiatric Research*, vol. 12, no. 3, pp. 189–198, 1975.

[73] Y. H. Zhang, W. X. Liang, L. Zhu, J. Tao, and L. D. Chen, "Comparison of validity of Montreal cognitive assessment and mini-mental state examination in screening vascular cognitive impairment in cerebral vascular disease," *Chinese Journal of Rehabilitation Medicine*, vol. 27, pp. 432–436, 2012.

[74] Y. Zhu, S. Zhao, Z. Fan et al., "Evaluation of the mini-mental state examination and the Montreal cognitive assessment for predicting post-stroke cognitive impairment during the acute phase in Chinese minor stroke patients," *Frontiers in Aging Neuroscience*, vol. 12, p. 236, 2020.

[75] Y. Zhang, X.-J. Ma, and D.-Z. Shi, "Effect of trimetazidine in patients undergoing percutaneous coronary intervention: a meta-analysis," *PLoS One*, vol. 10, no. 9, Article ID e0137775, 2015.