GDP-tubulin incorporation into growing microtubules modulates polymer stability

Odile Valiron 1*, Isabelle Arnal 2, Nicolas Caudron 1, Didier Job 1

1 GIN, Grenoble Institut des Neurosciences INSERM : U836 ; CEA, Université Joseph Fourier - Grenoble I, CHU Grenoble, UJF - Site Sainte La Tronche BP 170 38042 Grenoble Cedex 9,FR
2 ICM, Interactions cellulaires et moléculaires CNRS : UMR6026, Université de Rennes 1, IFR140, bat. 13 et 14 Campus de Beaulieu 35042 RENNES CEDEX,FR

* Correspondence should be adressed to: Odile Valiron <odile.valiron@ujf-grenoble.fr

Abstract

Microtubule growth proceeds through endwise addition of nucleotide bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends, followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, whereas microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties and this may reveal a novel form of microtubule structural plasticity.

MESH Keywords Animals; Biochemistry; methods; Centrosome; metabolism; Cryoelectron Microscopy; methods; Dimerization; Filtration; Guanosine Diphosphate; chemistry; Guanosine Triphosphate; chemistry; Humans; Hydrolysis; Microtubules; chemistry; metabolism; Nucleotides; chemistry; Polymers; chemistry; Tubulin; chemistry; Tubulin Modulators; chemistry

Author Keywords Cytoskeleton; Microtubules; Nucleotide; Protein; Self-assembly; Tubulin; GTP Hydrolysis; GTP-Tubulin; Microtubule Dynamics

In mammalian cells, microtubules are centrally involved in many vital processes such as cell morphogenesis and motility. Microtubule arrays display substantial variations in their dynamic behaviour, depending on the cell cycle or on the cell type, and this dynamic character is crucial to microtubular functions. The building blocks of microtubules are αβ-tubulin heterodimers. Tubulin subunits associate laterally and longitudinally into growing microtubules (1, 2) in the form of either tubulin dimers or oligomers (3–5). Microtubules shorten through tubulin oligomer loss (6). It is currently assumed that the GDP-tubulin subunits (GDP-tub) which build up the microtubule wall originate from the incorporation of GTP-tubulin complexes (GTP-tub) followed by GTP hydrolysis in the polymer wall (7).

Microtubule growth displays spontaneous transitions between growing and shrinking states, known as dynamic instability (8). Microtubule length variations are currently viewed as principally governed by the behaviour of the microtubule ends (9). It has long been assumed that GTP hydrolysis at the extremity of microtubules determined tubulin addition and loss (10). Recent studies show that, for a given nucleotide bound state of the tubulin dimers, microtubule length fluctuations are also dependent on structural events occurring at polymer ends. For example, microtubule tip-binding proteins such as EB1 can regulate dynamics and tip structure of microtubules assembled from purified tubulin (11) and structural differences between microtubule tips have been shown in studies on kinesin-microtubule interactions (12). This reveals that microtubule ends can also experiment “structural plasticity” (13). Although the switch-like behaviour of ends is essential for dynamic instability, microtubules could also exhibit structural plasticity along their length (13,14). Such plasticity could imply that the tubulin subunits constituting the microtubule wall exist in several structural and/or biochemical states which may influence microtubule dynamic properties (13,14).

Although the dominant view is currently that microtubule growth proceeds exclusively from the incorporation of GTP-tub, there are scattered reports of direct GDP-tub incorporation into growing polymers (15,16). However, other studies indicate that GDP-tub does not significantly participate to elongation (17–19). Additionally, recent structural studies have revealed differences between GTP-tub and GDP-tub intra-dimer and inter-dimer interactions. This led to the suggestion that GDP-tub could not be directly incorporated in microtubules under any conditions (7). Here, we have re-examined the possibility of a direct GDP-tub incorporation into growing microtubules, using a minimal tubulin assembly system composed of nucleotide bound tubulin dimers, in the absence of excess free nucleotide (15,20–22). Within the framework of our study, such a minimal system had substantial advantage over usual systems in which tubulin assembles in the presence of excess of free GTP. The proportion of GTP-tub and GDP-tub added in solution could be controlled at...
will without the complication of excess free GTP competing with GDP for the tubulin nucleotide binding site; when GTP-tub assembles above the critical concentration in bulk assembly tests, microtubules undergo a phase of assembly followed by a phase spontaneous disassembly (15,20–22), which allow monitoring of both assembly and disassembly dynamics; additionally, in the present study, a similar minimal assembly system proved to be usable for study of individual microtubule dynamics at tubulin concentrations below the critical concentration, using short microtubule seeds or centrosomes to nucleate tubulin assembly. Using such minimal assembly systems, we show that substantial amounts of GDP-tub can be incorporated in growing microtubules during both microtubule bulk assembly and seed or centrosome nucleated microtubule assembly. Microtubules assembled from GTP-tub and GDP-tub mixtures (GTP-tub/GDP-tub mix) display altered dynamics. Our results suggest that the GDP-tub constituting the microtubule wall may be in different structural states according to their initial nucleotide bound state, with resulting variations in intrinsic microtubule disassembly properties. This may reveal a novel form of microtubule structural plasticity.

Experimental procedures

Tubulin preparation

Tubulin was purified from fresh bovine brain as described previously (23). To prepare GTP-tub or [³H]-GTP-tub, pure tubulin was incubated in PEM buffer (100 mM Pipes (pH 6.7), 1 mM EGTA, 1 mM MgCl₂), for 10 minutes at 4°C, in the presence of either 1 mM GTP (for GTP-tub) or 0.5 mM GTP supplemented with 100 μCi/μM [³H]-GTP (for [³H]-GTP-tub). Free nucleotides were removed using Biogel P30 chromatography.

GDP-tub or [³H]-GDP-tub was obtained as the cold disassembly product of microtubules initially polymerized from pure tubulin (100 μM) during 20 min at 35°C in PEM buffer in the presence of 5 mM MgCl₂, 30% (v/v) glycerol, and either 1 mM GTP or 0.5 mM GTP with 100 μCi/μM [³H]-GTP. After tubulin assembly, microtubules were centrifuged at 179,000 g during 1 hr at 35°C on a cushion containing PEM buffer with 60% glycerol. The pellet was washed 2 times with PEM at 35°C. GDP-tub and [³H]-GDP-tub were obtained after dilution in PEM buffer at 4°C of pellets of microtubules assembled from respectively either GTP alone or GTP and [³H]-GTP mixtures.

Tyr-tub was prepared according to Paturle (24). Briefly, tubulin was equilibrated in MEM buffer (100 mM Mes, 1 mM EGTA, 1 mM MgCl₂) through Biogel P30 chromatography. Then tubulin (44 μM final concentration) was incubated in MEM buffer containing ATP (5 mM), DTT (5 mM), MgCl₂ (25 mM), tyrosine (0.5 mM), KCl (100 mM) and tubulin tyrosine ligase (50 μM/ml), at 30°C for 30 min. Sample was cooled down on ice and centrifuged at 200,000g at 4°C for 10 min to remove tubulin aggregates. The supernatant containing Tyr-tub was subjected to gel filtration in Biogel P30 equilibrated in PEM buffer.

To prepare Detyr-tub, purified tubulin (50 μM) was incubated with carboxypeptidase A (2 μg/ml) during 15 min at 30°C. Reaction was stopped with 20 mM DTT addition. Aggregates were removed by centrifugation (200,000g, 10 min, 4°C). DTT was removed by gel filtration through Biogel P30 chromatography.

Microtubule assembly conditions

GTP-tub, GTP-tub/GDP-tub mix or radioactive tubulin mixtures (either [³H]-GTP-tub alone or [³H]-GTP-tub/GDP-tub mix or GTP-tub)[³H]-GDP-tub mix) were aliquoted (20 μl) at 4°C in tubes. Tubulin assembly was initiated by immersing tubes in a water bath at 35°C. At selected time points, reactions were stopped. Stop procedures and further processing of the samples were adapted to the parameter to be measured, as described below (Filter assay) and in Supplemental Results (Analysis of microtubule nucleation and mean length and Microtubule sedimentation assay). All measurements were done in triplicate.

Filter assay

To estimate polymeric radioactive tubulin concentration at selected time points, we used a previously developed filter assay (25), with minor modifications. Briefly, either [³H]-GTP-tub alone or [³H]-GTP-tub/GDP-tub mix or GTP-tub[³H]-GDP-tub mix were prepared at 4°C, aliquoted and assembled as above. Tubulin assembly was stopped by adding to samples 1 ml of 100 mM Mes (pH 6.7) containing 1 mM EGTA, 1 mM MgCl₂, 0.75% glutaraldehyde and 50% (v/v) sucrose (25°C). GF/F glass fiber filters (one filter per time point aliquot) were placed in a vacuum filtration device, and washed with 4 ml of PEM buffer containing 25% glycerol (buffer PEM-G). Microtubule suspensions were applied to filters under negative pressure. At this step, [³H]-labelled cross-linked microtubules were trapped on filters and the bulk of unassembled subunits passed through filters. Then filters were washed 3 times with 4 ml of PEM-G buffer. To extract [³H]radioactivity from filters, they were incubated under shaking during 30 min with 2 ml ethanol in vials (1 vial per filter). Then liquid scintillation cocktail was added (10 ml per vial) and radioactivity was counted. Polymerized [³H]-tubulin concentrations were estimated from the radioactivity measured on filters, and from the specific activity of [³H]-tubulin obtained during tubulin preparation. The [³H]-tubulin specific activity (cpm/μmole of tubulin) was calculated as the ratio of the number of cpm contained in an aliquot of the starting tubulin solution over the amount of tubulin contained in the same aliquot.
Preparation of EGS cross-linked microtubule seeds (EGS-seeds)

Covalently cross-linked microtubule seeds were prepared using ethylene glycol-bis-succinimidylsuccinate (EGS) (26). Tubulin (100 μM) in a total volume of 200 μl was assembled for 15 min at 35°C in 80 mM Pipes (pH 6.7), 1 mM EGTA, 50% (v/v) glycerol, 5 mM MgCl₂ and 1 mM GTP. Microtubules were crosslinked by incubation for 15 min at 35°C after addition of 3.4 mM final concentration of EGS. To quench the EGS in excess, the mixture was diluted into 1.8 ml of a buffer containing 80 mM Pipes (pH 6.7), 1 mM EGTA, 50% sucrose, 10 mM glutamate and 1 mM MgCl₂, and incubated for 1 hr at room temperature. The solution was then centrifuged at 200,000g for 1 hr at room temperature. The pellet containing cross-linked microtubules (EGS-seeds) was resuspended in 80μl of PEM buffer.

Microtubule immunostaining

In microtubule self-assembly conditions (over-critical GTP-tub concentration), after stopping the assembly reaction microtubules were diluted in PEM buffer supplemented with 10% glycerol. They were then centrifuged on coverslips at 77,000g during 30 min at room temperature and fixed with methanol for 6 min at −20°C. Coverslips were processed for indirect immunofluorescence analysis as previously described (27) using primary anti Detyr-tub antibody (28) and primary anti Tyr-tub antibody (clone YL1/2; 29). At sub-critical GTP-tub concentration, microtubules were nucleated on centrosomes as described (30) and immunolabelled as above.

Video-Microscopy and Data Analysis

Video-microscopy and analysis were performed as previously described (31). Briefly, samples were prepared in perfusion chambers. Purified centrosomes were first perfused into the chamber on ice. Samples (60 μl) containing either GTP-tub or GTP-tub/GDP-tub mix were then perfused in the chamber and microtubule assembly was observed at 37°C under an Olympus BX51 microscope equipped with Differential Interference Contrast prisms and a camera (Sony, XC-ST70/CE). Images were recorded every 2 sec and microtubule dynamics measurements and data analysis were performed using NIH-Image and Kaleidagraph softwares. For growth and shrinkage rates, standard deviations were calculated as standard error of the mean, assuming a normal data distribution. For catastrophe frequencies, standard deviations were calculated as catastrophe frequency/(√n), where n is the number of events counted, assuming a Poisson distribution (32).

RESULTS

GDP-tub incorporates in self-assembled microtubules and modulates their assembly-disassembly properties

We tested the incorporation of GTP-tub or GDP-tub into growing microtubules in a chemically simple system (15, 20–22) in which microtubules were assembled from solutions containing GTP-tub/GDP-tub mix, in the absence of free nucleotide. Starting mixtures contained either [3H]GTP-tub and unlabelled GDP-tub or unlabelled GTP-tub and [3H]GDP-tub. We verified (Supplemental Results, Fig. S1) that our tubulin preparations were devoid of detectable amounts of nucleotide-diphosphokinase (NDP) activity, which could induce conversion of free GDP-tub to free GTP-tub during our experiments (33). The incorporation of either GTP-tub or of GDP-tub in microtubules assembled from GTP-tub/GDP-tub mix could then be selectively monitored by counting the [3H]nucleotide radioactivity associated to microtubules trapped on filters (see Experimental Procedures, 22).

In the absence of GDP-tub, GTP-tub assembly follows a bell shaped curve, with a phase of microtubule assembly followed by a phase of microtubule disassembly (Fig. 1A), as described before (22). In our experiments, in agreement with previous reports (7, 19), GDP-tub alone was unable to polymerize (not shown). Addition of GDP-tub to GTP-tub did not detectably modify the maximum of GTP-tub incorporation into microtubules (Fig. 1A–D (●)). Interestingly, when [3H]GDP-tub was mixed with GTP-tub in starting suspension, [3H]-GDP-tub was incorporated in assembling microtubules (Fig. 1B–D (●)). GDP-tub incorporation occurred in amounts proportional to the initial GDP-tub/GTP-tub ratio (Fig. 1E). As a result of the incorporation of GDP-tub, the total tubulin assembly level increased at increasing initial GDP-tub concentrations (Fig. 1A–D (●)). The assembly phase was prolonged whereas, in a quantitative analysis, initial microtubule nucleation and elongation seemed little affected (Supplemental Results, Fig. S2). The disassembly phase was conspicuously prolonged at increasing GDP-tub concentrations, to such an extent that instead of exhibiting a characteristic symmetrical bell shaped aspect (Fig. 1A), the tubulin assembly-disassembly curve became right skewed (Fig. 1D). Compared to the control, the bulk microtubule half disassembly time increased 5 fold at a 1.5/1 initial GDP-tub/GTP-tub ratio (Fig. 1F).

In a series of control experiments, tubulin assembly was monitored using either turbidity measurements (Supplemental Results, Fig. S3) or microtubules sedimentation assays (Supplemental Results, Fig. S4). In turbidity assays, GDP-tub alone was unable to polymerize whereas addition of excess free GTP produced the expected sustained microtubule assembly (Supplemental Results, Fig. S1A). The assembly of GTP-tub/GDP-tub mix yielded assembly plots similar to those observed in the same conditions using filter assays (Fig. 1A–D), which was also the case of assembly plots derived from microtubule sedimentation assays (Supplemental Results, Fig. S4).

These results provide compelling evidence that GDP-tub can be directly co-incorporated into growing microtubules, together with GTP-tub. Additionally, our results suggest that GDP-tub incorporation in microtubules could impair microtubule disassembly.
GDP-tub co-assembly occurs along the whole polymer length but does not induce detectable changes in the microtubule lattice organization.

To directly visualize GDP-tub incorporation into microtubules we used GDP-tub or GTP-tub made of different tubulin tyrosination variants. Previous work has shown that tubulin tyrosination variants such as tyrosinated tubulin (Tyr-tub) and detyrosinated tubulin (Detyr-tub) have distinct immunoreactivity properties (34) but have indistinguishable in vitro assembly properties (24). To test the reliability of tubulin variants as reporters of the tubulin bound nucleotide state, GDP-Detyr-tub was mixed with GTP-Tyr-tub or, in symmetric experiments GTP-Detyr-tub was mixed with GDP-Tyr-tub. Tubulin mixtures were assembled at 35°C and sedimented microtubules were assayed for their tubulin composition. The proportion of Detyr-tub or Tyr-tub incorporated in microtubules was a function of the initial Detyr-tub or Tyr-tub bound nucleotide state and was in good agreement with the ratio of GTP-tub/GDP-tub incorporation estimated from radioactive measurements (Fig. 2A And Supplemental Results). Thus, over the time course of our experiments, the association of each tubulin variant with its bound nucleotide was stable enough to allow qualitative visualization of GDP-tub incorporation in growing microtubules. Microtubules assembled from Tyr-GTP-tub/Detyr-GDP-tub mix were then sedimented and double stained with Tyr-tub and Detyr-tub antibodies. Immunofluorescence analysis showed that polymers were uniformly and homogeneously stained by both antibodies (Fig. 2B). These results indicate that GDP-tub is incorporated in growing microtubules during the whole assembly process.

We then used cryo-electron microscopy to examine the structure of microtubules assembled either from GTP-tub alone or from GTP-tub/GDP-tub mix (Fig. 2C). Based on the moire pattern observed on microtubule images, we determined the microtubule protofilament number and the frequency of lattice defects as previously described (35, 36). We also assessed the aspect of microtubule ends in polymerizing and depolymerizing conditions and we analyzed the disassembly products of polymers exposed to high calcium concentrations (37, 38). We found no significant difference between GTP-tub or GTP-tub/GDP-tub polymers (not shown). Thus, incorporation of GDP-tub into microtubules did not induce any obvious changes in the polymer structure.

GDP-tub incorporated into microtubules nucleated from seed or centrosomes

The experiments shown above were performed at high initial tubulin concentrations, compatible with efficient spontaneous microtubule nucleation. We investigated whether GDP-tub could also be incorporated in growing microtubules at sub-critical tubulin concentrations, in seed- or centrosome-nucleated tubulin assembly conditions. In our experiments, critical concentration was 30 μM. The incorporation of GDP-tub in microtubules elongating from EGS-seeded microtubules was monitored using filter assays as described above (Fig. 1B–D). Fig. 3(A–B) shows that microtubules assembled from tubulin solutions containing GDP-tub and GTP-tub in a 0.5/1 proportion incorporated nearly 1 molecule of GDP-tub for 2 molecules of GTP-tub. We then tested whether GDP-tub incorporation occurred in microtubules nucleated on centrosomes by using immunofluorescence microscopy and tubulin variants as markers of GDP-tub and GTP-tub incorporation. Again, results showed apparently homogeneous qualitative incorporation of GDP-tub during assembly (Fig. 3C).

These results indicate robust and direct incorporation of GDP-tub into seed or centrosome nucleated microtubules, at sub-critical tubulin concentrations.

Dynamic behavior of centrosome nucleated microtubules assembled in the presence of GDP-tub

Microtubules nucleated on centrosomes were visualized by standard video-DIC microscopy for direct tests of GDP-tub effects on individual polymer dynamics. Centrosomes were pre-adsorbed on the surface of a perfusion chamber. Samples containing GTP-tub (25 μM) without or with increasing GDP-tub concentrations (from 5 to 25 μM) were then injected into the chamber and observed under the microscope at 37°C. In these conditions, the average microtubule growth rate was unaffected by addition of up to 3.8 μM of GDP-tub. In the 3.8 μM–12.5 μM GDP-tub concentration range, the average growth rate decreased linearly with the GDP-tub concentration (Fig. 4A, B). GDP-tub concentrations above 12.5 μM inhibited microtubule nucleation on centrosomes.

The catastrophe frequency increased when microtubules were assembled in the presence of GDP-tub concentration from 7.6 μM and above (Fig. 4A). It has been shown that, at sub-critical GTP-tub concentration, microtubule catastrophe rates increase with decreased elongation rates (32, 39). Here, the elongation rate was lower in the presence of GDP-tub compared to control. To know whether the decrease in elongation rate accounted for increased catastrophe rate, we compared catastrophe frequencies versus growth rate in the absence (Fig. 4C, black symbols) and in the presence (Fig. 4C, empty symbols) of added GDP-tub. Plot analysis showed similar catastrophe rates at equal elongation rates, regardless of the presence or absence of added GDP-tub at the onset of assembly. These results indicate that, in our experimental conditions, GDP-tub addition increased the catastrophe frequency due to a decrease in the polymer growth rate, in the absence of detectable modification of intrinsic microtubule catastrophe properties.

Interestingly, the microtubule shrinkage rate decreased linearly with increasing GDP-tub concentration above 3.8 μM, being circa 50% inhibited at a 12.5 μM GDP-tub concentration (Fig. 4D). Microtubule shrinkage has been previously demonstrated to be a zero order reaction, depending on intrinsic structural properties of microtubules, not on the composition of the soluble tubulin pool (8). Accordingly,
shrinkage rates were similar when chambers containing microtubules grown from centrosomes were perfused with PEM buffer alone or in
the presence of added GDP-tub complexes (Table 1). The shrinkage rate was also in the same range during the spontaneous catastrophes
observed in control samples, containing only GTP-tub in the soluble pool (Table 1). We also checked that, in the range of GTP
concentrations used in our study, the shrinkage rate of microtubules assembled at various GTP-tub concentrations was not significantly
correlated with the microtubule growth rates, as previously shown (32).

Collectively, our results indicate that direct GDP-tub incorporation into the microtubule wall occurs in both self- assembled
microtubule and seed nucleated polymers. GDP-tub incorporation apparently induces a decrease of the microtubule growth rate and the
microtubule shrinkage rate. The decrease of the shrinkage rate most probably results from a modification of the intrinsic stability
properties of microtubules.

DISCUSSION

In this study, we show substantial GDP-tub incorporation into polymerizing microtubules with resulting impaired microtubule
dynamic parameters. The main novelty of our study is the use of a simple system containing only GTP-tub and GDP-tub without any free
nucleotide, allowing direct measurements and visualization of the incorporation of both GTP-tub and GDP-tub.

The possibility of a direct incorporation of GDP-tub into polymerizing microtubules has been subject of controversy. Based on
turbidimetry measurements, previous studies have suggested GDP-tub incorporation in the microtubule wall (15, 16), which has been
questioned in subsequent work (17–19). Additionally, direct GDP-tub incorporation seemed precluded according to recent structural
studies indicating that the shape of GDP-tub does not fit the microtubule lattice (7). Our data show a different picture, demonstrating that
robust and substantial direct GDP-tub incorporation into growing microtubules can be achieved. However, GDP-tub incorporation in
microtubules occurs only if GTP-tub is also present at a concentration sufficient to support microtubule assembly, indicating obligatory
co-incorporation of GTP-tub with GDP-tub. It has been suggested that microtubule assembly can involve the incorporation of tubulin
oligomers (3). Maybe, GDP-tub can be incorporated by “hitch hinking” polymerizing GTP-tub oligomers, although other models are
possible. Such a co-incorporation of GDP-tub with GTP-tub fits with recent studies indicating that GTP-tub and GDP-tub may be similarly
bent and that subunits straighten only after their incorporation into microtubules (40, 41).

Our data indicate that neither initial microtubule nucleation nor initial microtubule elongation were sizeably affected by GDP-tubulin
incorporation during microtubule assembly in our bulk microtubule assembly conditions. According to previous work (22), at the high
tubulin concentrations used in bulk assembly conditions, the rate of microtubule elongation is limited during most of the assembly phase
by intrinsic structural factors such as the speed of tube closure (22). In this view our data could indicate that tube closure is not impaired
by co-incorporation of GDP-tub together with GTP-tub. In apparent contrast, in our study, the growth rate of centrosome nucleated
microtubules decreased at increasing GDP-tub concentrations. However, at sub-critical tubulin concentrations, the availability of free
tubulin dimers becomes rate limiting for microtubule growth (32). Our data would then indicate that GDP-tubulin behaves as a
competitive inhibitor of GTP-tub, when the tubulin concentration becomes rate limiting.

In the present study, microtubules assembled from GDP-tub/GTP-tub mix displayed impaired disassembly behavior, involving a
decrease of the individual polymer shrinkage rate. Previous works have established that hydrolysis of the tubulin bound nucleotide within
the microtubule wall is required for subsequent microtubule disassembly (42, 43). Thus, microtubule disassembly is dramatically
impaired when microtubules were assembled in the presence of a slowly hydrolysable analog of GTP, GMPCpp (42). Obviously, in our
experiments, the incorporation of GDP-tub in the polymer wall is not followed by hydrolysis of the bound nucleotide. GDP may thus
function as a natural non hydrolysable analog of GTP, with resulting impairment of the disassembly properties of microtubules assembled
in the presence of GDP-tub.

Whether microtubules are assembled from GTP-tub alone or from GTP-tub/GDP-tub mix, they are ultimately composed of GDP-tub.
Yet, microtubules have different dynamic properties according to the composition of the starting tubulin solution. Such dynamic
differences uncoupled to the bound nucleotide state in the microtubule wall provide a striking illustration of the recently proposed concept
of microtubule structural plasticity (13).

Microtubules assembled with GMPcpp show detectable modifications in their lattice organization (44) and in the structure of their
oligomeric breakdown products (38). We have not detected such modifications in polymers assembled in the presence of GDP-tub.
Maybe, in our conditions, lattice modifications are blurred by the mixed incorporation of GTP- and GDP-tub, compared to a homogeneous
incorporation of GMPcpp-tubulin complexes in previous work. Alternatively, structural alterations in polymers assembled with GDP-tub
may be truly undetectable at the level of electron-microscopy resolution.

The fundamental discovery that GTP hydrolysis in the microtubule wall is required for microtubule disassembly (44), not for
microtubule assembly as previously assumed, has been a substantial surprise for scientists in the microtubule field. This discovery
indicated a strong link between GTP hydrolysis and microtubule stability, a remarkable microtubule feature that cells could use for
GDP-tubulin incorporation in microtubules

microtubule regulations. However, exchanging GTP for a slowly hydrolysable analog is the only known way to modulate the bound nucleotide hydrolysis in the microtubule wall during tubulin assembly and the existence of a naturally occurring non hydrolysable analog of GTP may look as a remote possibility. Our data indicate that GDP may represent such an analog and a regulation of microtubule disassembly through GDP-tub incorporation in cellular microtubules is an attractive possibility. In the absence of a structural signature allowing visual identification of polymers assembled with GDP-tub, tests of such a possibility may rely on the characterization and manipulation of putative regulatory systems which could modulate the GDP-tub/GTP-tub ratio at the end of cellular microtubules.

Footnotes:
* We thank Dr. Annie Andrieux and Dr. Christian Delphin for critical reading of the manuscript. This work was supported by grants from La Ligue Nationale Contre le Cancer (O.V., D.J.) and ANR-07- PCVI-0012 (L.A.).

The abbreviations used are
Detyr-tub : deytrosinated tubulin
GDP-tub : GDP-tubulin complex
GMPCPP : guanylyl-(α, β)-methylene-diphosphonate
GTP-tub : GTP-tubulin complex
NDP kinase : nucleosidediphosphate kinase
Tyr-tub : tyrosinated tubulin
video-DIC : video-differential interference contrast

References:
1. Desai A., Mitchison TJ. 1997 ; Annu Rev Cell Dev Biol. 13 : 83 - 117
2. Valiron O., Caudron N., Job N. 2001 ; Cell Mol Life Sci. 58 : 2069 - 2084
3. Kerssemakers JW., Munteanu EL., Laan L., Noetzel TL., Janson ME., Dogterom M. 2006 ; Nature. 442 : 709 - 712
4. Mozicincacci J., Sandblad L., Wachsmuth M., Brunner D., Karsenti E. 2008 ; PLoS ONE. 3 : (11) e8321 - 10.1371/journal.pone.0008321
5. Wu Z., Wang HW., Ma W., Ouyang Z., Nogales E., Xing J. 2009 ; PLoS ONE. 4 : (10) e7291 - 10.1371/journal.pone.0007291
6. Schek HT., Gardner MK., Cheng J., Odde DJ., Hunt AJ. 2007 ; Curr Biol. 17 : 1445 - 1455
7. Wang HW., Nogales E. 2005 ; Nature. 435 : 911 - 915
8. Mitchison TJ., Kirschner MW. 1984 ; Nature. 312 : 237 - 242
9. Howard J., Hyman AA. 2009 ; Nat Rev Mol Cell Biol. 10 : 569 - 574
10. Carlier MF. 1989 ; Inter Rev Cytol. 115 : 139 - 170
11. Vitre B., Coquelle FM., Heichert C., Garnier C., Chrétien D., Arnal I. 2007 ; Nat Cell Biol. 10 : 415 - 421
12. McIntosh JR., Grischuk EL., Morphew MK., Efremov AK., Zhudenkov K., Volkov VA., Chesnaton IM., Desai A., Mastronarde DN., Ataullakhunov FI. 2008 ; Cell. 135 : 322 - 333
13. Kueh HY., Mitchison TJ. 2009 ; Science. 325 : 960 - 963
14. Dimitrov A., Quesnoit M., Moulet S., Cantaloube I., Pois C., Perez F. 2008 ; Science. 322 : 1353 - 1356
15. Carlier MF., Pantaloni D. 1978 ; Biochemistry. 17 : 1908 - 1915
16. Hame E., Bara JK., Lin CM. 1986 ; Biochemistry. 25 : 7054 - 7062
17. Jamross L., Caplow M. 1980 ; J Biol Chem. 255 : 2284 - 2292
18. Zackroff RV., Weisenberg RC., Deery WJ. 1980 ; J Mol Biol. 139 : 641 - 677
19. Bayley PM., Butler FMM., Manner EJ. 1986 ; FEBS Lett. 205 : 230 - 234
20. Carlier MF., Didry D., Pantaloni D. 1997 ; Biophys J. 73 : 418 - 427
21. O'Brien ET., Erickson HP. 1989 ; Biochemistry. 28 : 1413 - 1422
22. Caudron N., Valiron O., Unson Y., Valiron P., Job D. 2000 ; J Mol Biol. 297 : 211 - 220
23. Paturel-Lafanchère L., Edéh B., Deneuflet P., Van Dorselaer A., Mazanqual H., Le Caër JP., Welhand J., Job D. 1991 ; Biochemistry. 30 : 10523 - 10528
24. Paturel L., Wehland J., Margolis RL., Job D. 1989 ; Biochemistry. 28 : 2698 - 2704
25. Job D., Pabion M., Margolis RL. 1985 ; J Cell Biol. 101 : 1600 - 1689
26. Fanara P., Oback B., Ashman K., Podolecijnik A., Brandl R. 1999 ; EMBO J. 18 : 565 - 577
27. Peris L., Thiery M., Faure J., Saoudi Y., Lafanchère L., Chilton JK., Gordon-Weeks P., Galjart N., Bornens M., Wordeman L., Wehland J., Andreux A., Job D. 2006 ; J Cell Biol. 174 : 839 - 849
28. Paturel-Lafanchère L., Manier M., Trigaunt N., Proillet F., Mazagurh J., Job D. 1994 ; J Cell Sci. 107 : 1529 - 1543
29. Wehland J., Weber K. 1987 ; J Cell Sci. 88 : 185 - 203
30. Popov AV., Poznizakovsky A., Arnal I., Antony C., Ashford AJ., Kinoshita K., Tourenez R., Hyman A., Karsenti E. 2001 ; EMBO J. 20 : 397 - 410
31. Arnal I., Heichert C., Diamantopoulos GS., Chrétien D. 2004 ; Current Biol. 14 : 2086 - 2095
32. Walker RA., O'Brien ET., Pryer NK., Sobeiro MF., Vetter WA., Erickson HP., Salmon ED. 1988 ; J Cell Biol. 107 : 1437 - 1448
33. Nickerson JA., Wells WW. 1978 ; Biochem Biophys Res Comm. 83 : 820 - 826
34. Gundersen GG., Kalnioski MH., Bulinski JC. 1984 ; Cell. 38 : 779 - 789
35. Wade RH., Chrétien D., Job D. 1990 ; J Mol Biol. 212 : 775 - 786
36. Chrétien D., Metot F., Verde F., Karsenti E., Wade R. 1992 ; J Cell Biol. 117 : 1031 - 1040
37. Tran PT., Joshi P., Salmon ED. 1997 ; J Struct Biol. 118 : 107 - 118
38. Müller-Reichert T., Chrétien D., Severin F., Hyman AA. 1998 ; Proc Natl Acad Sci USA. 95 : 3661 - 3666
39. Drechsel DN., Hyman AA., Cobb MH., Kirschner MW. 1992 ; Mol Biol Cell. 3 : 1141 - 1154
40. Rice LM., Montabana EA., Agard D. 2008 ; PNAS. 105 : 5378 - 5383
41. Buey RM., Diaz JF., Andreu JM. 2006 ; Biochemistry. 45 : 5933 - 5938
42. Hyman AA., Salser S., Drechsel DN., Urwin N., Mitchison TJ. 1992 ; Mol Biol Cell. 3 : 1155 - 1167
43. Caplow M., Ruhlen RL., Shanks J. 1994 ; J Cell Biol. 127 : 779 - 788
44. Hyman AA., Chrétien D., Arnal I., Wade RH. 1995 ; J Cell Biol. 128 : 117 - 125
GDP-tubulin incorporation in microtubules

Fig. 1
GDP-tubulin incorporation in spontaneous nucleated microtubules. (A–D) GTP-tub (75 μM) was assembled in the absence (A) or in the presence of GDP-tub (37.5 μM (B), 75 μM (C) or 120 μM (D)). Either GTP-tub or GDP-tub was [3H]-labelled and [3H] incorporation in microtubules was determined to measure GTP-tub (●) or GDP-tub (■) incorporation. Total polymeric tubulin () was calculated by summation of the GDP-tub and GTP-tub curves. (E) Plot of (polymeric GDP-tub concentration/polymeric GTP-tub concentration) ratios at maximum assembly time versus (initial GDP-tub concentration/initial GTP-tub concentration) ratio. (F) Microtubule half-disassembly times. Plot of the microtubule half-disassembly time $t_{1/2}$ versus (initial GDP-tub concentration/initial GTP-tub concentration) ratio: $t_{1/2}$ values were determined from the plots shown in panels A–D.
Fig. 2
Visualization of GDP-tub incorporation into microtubules. (A) Microtubules were assembled from GTP-Detyr-tub (70 μM) and GDP-Tyr-tub (50 μM) (exp 1) or from GTP-Tyr-tub (70 μM) and GDP-Detyr-tub (50 μM) (exp 2). Microtubule composition at the time of maximum assembly was analysed on immunoblots (Supplemental Data). The histogram shows the percentage of Detyr-tub in microtubules. (B) Light microscopy examination of microtubules assembled from GTP-Tyr-tub and GDP-Detyr-tub during 10 min at 35°C in PEM buffer. The bottom panel shows superposition of both images. (C) Cryoelectron microscopy images of the microtubules assembled from GTP-tub (75 μM) and GDP-tub (120 μM).
Fig. 3
GDP-tub incorporation in microtubules nucleated on seeds or on centrosomes. (A–B) Microtubules were assembled from GTP-tub (25 μM) in the presence of microtubule seeds without (A) or with GDP-tub (12.5 μM) (B). Either GTP-tub or GDP-tub was radiolabelled with $[^3]H$ and $[^3]H$ incorporation in microtubules was determined to measure GTP-tub (●) or GDP-tub (■) incorporation. Total polymeric tubulin () was calculated by summation of the GDP-tub and GTP-tub curves. (C) Light microscopy examination of microtubules assembled from centrosomes in the presence of GTP-Detyr-tub (25 μM) and GDP-Tyr-tub (8.3 μM) during 10 min at 35°C in PEM buffer. Both tubulin isotypes were labelled with specific antibodies.

Fig. 4
Microtubules grown from centrosomes: effects of GDP-tub on microtubular dynamics. (A) Dynamic parameters of microtubules polymerized from centrosomes and GTP-tub (25 μM) in the presence of increasing GDP-tub concentrations. Standard deviations are represented in parentheses. n, number of events. (B) Microtubule growth rate versus GDP-tub concentration. (C) Catastrophe frequency versus growth rate of microtubules assembled with increasing concentrations (18, 22, 25 and 28 μM) of GTP-tub (black squares) or with 25 μM of GTP-tub in the presence of increasing GDP-tub concentrations (empty squares). (D) Microtubule shrinkage rate versus GDP-tub concentration.

GTP-tub (μM)	25	25	25	25	25
GDP-tub (μM)	0	3.8	7.6	8.3	12.5
Growth rate	2.30 (0.81) n=379	2.39 (0.78) n=228	2.03 (0.70) n=174	1.89 (0.81) n=245	1.46 (0.69) n=210
Shrinkage rate	32.04 (14.33) n=80	37.33 (15.34) n=38	25.09 (16.40) n=55	23.62 (13.63) n=88	16.88 (12.58) n=83
Catastrophe freq	0.17 (0.034) n=25	0.13 (0.039) n=11	0.17 (0.049) n=12	0.21 (0.048) n=19	0.30 (0.064) n=22
Time of recording	149	85	71	94	74
Table 1
Microtubule shrinkage in different conditions. Microtubule were assembled from GTP-tub (65 μM) at room temperature. Microtubule shrinkage rates were measured either during spontaneous catastrophes (Control) or after chamber perfusion with PEM buffer alone or PEM buffer containing 65 μM GDP-tub as indicated. Standard deviations are represented in parentheses. n, number of events.

Experimental conditions	Perfusion with PEM	Perfusion with GDP-tub (65 μM)	Control GTP-tub (65 μM)
Shrinkage rate (μm/min)	-11.24 (7.04)	-11.70 (5.34)	-16.74 (11.22)
n = 200		n = 228	n = 77