Average-Case Integrality Gap for Non-Negative Principal Component Analysis

Afonso S. Bandeira\(^1\), Dmitriy Kunisky\(^{†2}\), and Alexander S. Wein\(^{‡2}\)

\(^1\)Department of Mathematics, ETH Zürich
\(^2\)Department of Mathematics, Courant Institute of Mathematical Sciences, NYU

December 3, 2020

Abstract

Montanari and Richard (2015) asked whether a natural semidefinite programming (SDP) relaxation can effectively optimize \(x^\top W x\) over \(\|x\| = 1\) with \(x_i \geq 0\) for all coordinates \(i\), where \(W \in \mathbb{R}^{n \times n}\) is drawn from the Gaussian orthogonal ensemble (GOE) or a spiked matrix model. In small numerical experiments, this SDP appears to be tight for the GOE, producing a rank-one optimal matrix solution aligned with the optimal vector \(x\). We prove, however, that as \(n \to \infty\) the SDP is not tight, and certifies an upper bound asymptotically no better than the simple spectral bound \(\lambda_{\text{max}}(W)\) on this objective function. We also provide evidence, using tools from recent literature on hypothesis testing with low-degree polynomials, that no subexponential-time certification algorithm can improve on this behavior. Finally, we present further numerical experiments estimating how large \(n\) would need to be before this limiting behavior becomes evident, providing a cautionary example against extrapolating asymptotics of SDPs in high dimension from their efficacy in small “laptop scale” computations.
1 Introduction

Recovering the most significant directions or principal components of a matrix from noisy observations is a fundamental problem in both mathematical statistics and applications \footnote{With the exception of the critical case $\beta = 1$, where thresholding $\lambda_{\max}(W)$ does not distinguish P from Q, but it is possible to do so by considering more sophisticated statistics \cite{JO20}.}. The theoretical asymptotics of this task have been studied at length by analyzing idealized spiked matrix models. While the first such models, proposed by Johnstone \cite{Joh01}, concerned Gaussian observations from a covariance matrix deformed by adding a rank-one “spike,” the following simpler Wigner spiked matrix model captures much of the same phenomenology. We consider the following two probability distributions P and Q over $n \times n$ symmetric matrices.

- Under $Q = Q_n$, observe $W \in \mathbb{R}_{\text{sym}}^{n \times n}$ drawn from the Gaussian orthogonal ensemble (GOE), meaning $W_{ii} \sim \mathcal{N}(0, \frac{1}{n})$ and $W_{ij} = W_{ji} \sim \mathcal{N}(0, \frac{2}{n})$ for $i \neq j$ with all $\frac{n(n+1)}{2}$ of these entries distributed independently. We also write $Q = \text{GOE}(n)$ for this distribution.
- Under $P = P_n$, first draw $u \sim \text{Unif}(S^{n-1})$ for $S^{n-1} \subset \mathbb{R}^n$ the sphere of unit radius, and then observe $W = W_0 + \beta \cdot uu^\top$ for $W_0 \sim \text{GOE}(n)$ and some fixed $\beta > 0$, held constant as $n \to \infty$.

Two natural statistical questions arise: (1) detection or testing, where we observe W drawn from P or Q and must decide which distribution W was drawn from, and (2) recovery or estimation, where we observe $W \sim P$ and seek to produce a good estimate of u. In either case, the associated optimization problem of computing the largest eigenvalue is natural to consider:

$$\lambda_{\max}(W) := \max_{\|x\|_2 = 1} x^\top W x.$$ \hspace{1cm} (1)

For recovery, computing the maximizer x^\ast (the top eigenvector of W) performs maximum likelihood estimation of u. For detection, computing and thresholding $\lambda_{\max}(W)$ itself is a natural and often effective strategy. The optimal value and optimizer of $\lambda_{\max}(W)$ can be approximated (to arbitrary accuracy) in time $\text{poly}(n)$, so these correspond to efficient algorithms for recovery and detection, respectively. Moreover, these algorithms are essentially optimal: almost whenever \footnote{We say that a sequence of events A_n occurs with high probability under a sequence of probability measures P_n if $\lim_{n \to \infty} P_n[A_n] = 1$.} it is possible to distinguish P from Q with high probability\footnote{With the exception of the critical case $\beta = 1$, where thresholding $\lambda_{\max}(W)$ does not distinguish P from Q, but it is possible to do so by considering more sophisticated statistics \cite{JO20}.} thresholding $\lambda_{\max}(W)$ achieves this; whenever it is possible to estimate u non-trivially then the optimizer x^\ast achieves this.

Proposition 1 \footnote{This result is proved in the seminal work of [FP07, CDMP09, MRZ15, BMV+18]. \label{prop:1}} \cite{FP07, CDMP09, MRZ15, BMV+18}. Let $W \sim P$ with parameter $\beta \geq 0$ (note that taking $\beta = 0$ gives $P = Q$), and let u be the spike vector. Let $x^\ast(W)$ be the optimizer of $\lambda_{\max}(W)$, the top eigenvector of W scaled to have unit norm. Then, we have almost surely

$$\lim_{n \to \infty} \lambda_{\max}(W) = \begin{cases} 2 & \text{if } 0 \leq \beta \leq 1, \\ \beta + \beta^{-1} > 2 & \text{if } \beta > 1, \end{cases}$$ \hspace{1cm} (2)

$$\lim_{n \to \infty} |\langle x^\ast(W), u \rangle| = \begin{cases} 0 & \text{if } 0 \leq \beta \leq 1, \\ \frac{1}{\sqrt{1 - \beta^{-2}}} > 0 & \text{if } \beta > 1. \end{cases}$$ \hspace{1cm} (3)

Moreover, if $0 \leq \beta < 1$ then there is no function of W that with high probability selects correctly whether W is drawn from P or Q, and if $0 \leq \beta \leq 1$ then there is no unit vector-valued function of W that has inner product with x asymptotically bounded away from zero with high probability when $W \sim P$.

More specifically, the behavior of $\lambda_{\max}(W)$ is established by \cite{FP07}, while the behavior of $|\langle x^\ast(W), u \rangle|$ is determined by \cite{CDMP09} (both building on the seminal results of \cite{BAA05}). The impossibility of “detection” or of selecting whether W is drawn from P or Q with high probability is shown by \cite{MRZ15} by establishing contiguity of these two sequences of probability
measures. Finally, \[BMV^+18\] show that this contiguity implies the impossibility of estimating \(u\) with positive correlation.

More refined models follow from choosing more structured distributions of \(u\). This corresponds to extracting principal components under some prior knowledge of their structure. One natural example was introduced by [MR15], where \(u\) is chosen uniformly from the positive orthant of \(S^{n-1}\) instead of the entire sphere, which yields the problem of non-negative PCA. Here, the null model \(Q\) remains as above, while \(P\) is replaced with \(P^+\) defined as follows:

- Under \(P^+\), first draw \(v \sim \text{Unif}(S^{n-1})\), let \(u\) have entries \(u_i = |v_i|\), and then observe \(W = W_0 + \beta uu^\top\) for \(W_0 \sim \text{GOE}(n)\) and some fixed \(\beta > 0\).

Following the case of classical PCA, we might hope to attack detection and recovery by solving the optimization problem

\[
\lambda^+(W) := \max_{x \geq 0, \|x\|_2 = 1} x^\top W x, \tag{4}
\]

where \(x \geq 0\) means \(x_i \geq 0\) for each \(i \in [n]\). Here, however, a crucial difference between classical PCA and non-negative PCA arises: unlike \(\lambda_{\max}(W)\) and the associated optimizer, it is \(\text{NP}-\text{hard}\) to compute \(\lambda^+(W)\) for general \(W\). [DKP02]. Therefore, non-negative PCA poses a more substantial algorithmic challenge.

Nonetheless, using an approximate message-passing (AMP) algorithm [MR15] showed that it is possible to solve this problem essentially to optimality for random inputs from \(Q\) or \(P^+\).

We focus now just on the “null” case \(W \sim Q = \text{GOE}(n)\).

Proposition 2 (Part of Theorem 2 and Proposition 4.5 of [MR15]). Almost surely for \(W \sim \text{GOE}(n)\),

\[
\lim_{n \to \infty} \lambda^+(W) = \sqrt{2}. \tag{5}
\]

Moreover, for any \(\varepsilon > 0\), there exists an algorithm that runs in time \(\text{poly}(n)\) (with runtime also depending on \(\varepsilon\)) and computes \(x \in S^{n-1}\) with \(x \geq 0\) that has \(x^\top W x \geq \sqrt{2} - \varepsilon\) with high probability.

This same algorithm is also effective for detection between \(Q\) and \(P^+\) and recovery under \(P^+\).

Remark. One may check that various simpler algorithms do not produce a solution of the same quality. For example, if \(v\) is the top eigenvector of \(W\), then one simple algorithm is to take \(v^+ = \max(0, v_i)\) and return \(x = v^+/\|v^+\|\). However, computing heuristically, we have

\[
x^\top W x \approx \frac{1}{\|v^+\|^2} \cdot 2\langle v, v^+ \rangle^2 \approx 2 \cdot 2 \cdot \left(\frac{1}{2}\right)^2 = 1, \tag{6}
\]

whereby this choice of \(x\) is inferior to that produced by AMP.

In this paper, we study an alternative to AMP, also suggested in [MR15], where we substitute for the intractable optimization problem \(\lambda^+(W)\) the following tractable convex relaxation, a natural **semidefinite program (SDP)**:

\[
\text{SDP}(W) := \max_{X \succeq 0, \text{Tr}(X) = 1} \langle X, W \rangle \geq \lambda^+(W). \tag{7}
\]

In [MR15], numerical experiments are presented that suggest that this SDP is effective in recovering \(x\) under \(P^+\), the restriction of the top eigenvector of the optimizer \(X^*\) to only positive entries giving a comparable estimate of \(u\) to the AMP algorithm (see their Section 5.3). In Section 4, we present analogous experiments for \(W \sim \text{GOE}(n)\), and note that in this case the SDP is often **tight**, the optimizer \(X^*\) being rank one within numerical tolerances. While the SDP is much slower than AMP, its apparent efficacy is nevertheless tantalizing, suggesting that the algorithmic tractability of non-negative PCA might be unified with other situations where SDP relaxations of maximum likelihood estimation are tight [BKS14]. Furthermore, the SDP offers
some advantages over AMP: it algorithmically proves (or certifies) an upper bound on the value of \(\lambda^+(W) \), and it may also exhibit robustness properties that SDPs have been shown to enjoy in other settings \([F01, MPW16, RTJM16]\). The problem of determining the asymptotic behavior of the SDP as \(n \to \infty \) under \(W \sim \text{GOE}(n) \) was also posed explicitly as Open Problem 9.5 in the lecture notes \([Ban15]\) of one of the authors.

We therefore take up the following two questions concerning this SDP and related algorithmic approaches when \(W \sim \text{GOE}(n) \).

1. When \(W \sim \text{GOE}(n) \), does \(\text{SDP}(W) \to \sqrt{2} \) in probability as \(n \to \infty \)?

As we will see, the answer in the limit \(n \to \infty \), in surprising contrast to the experiments of \([MR15]\) for small \(n \), is no. In fact, we instead have \(\text{SDP}(W) \to \lambda_{\text{max}}(W) \approx 2 \) as \(n \to \infty \). We then ask whether any remotely efficient algorithm that certifies upper bounds on \(\lambda^+(W) \) can improve upon this.

2. Does there exist an algorithm that runs in time \(\exp(O(n^{1-\eta})) \) for some fixed \(\eta > 0 \) and computes \(c : \mathbb{R}^{n \times n}_{\text{sym}} \to \mathbb{R} \) with the following two properties?

 * For all \(W \in \mathbb{R}^{n \times n}_{\text{sym}} \), we have \(c(W) \geq \lambda^+(W) \).
 * When \(W \sim \text{GOE}(n) \), we have \(c(W) \leq 2 - \epsilon \) with high probability for some fixed \(\epsilon > 0 \).

We provide rigorous evidence, based on the low-degree polynomial method, that even the answer to this much broader question again is no.

1.1 Organization

The remainder of the paper is organized as follows. In Section 2, we state and prove a lower bound on \(\text{SDP}(W) \) when \(W \sim \text{GOE}(n) \). In Section 3 we state and prove a reduction from a certain hypothesis testing problem to the problem of certifying bounds on \(\lambda^+(W) \), and review evidence from prior work that this hypothesis testing problem is computationally hard. Finally, in Section 4 we present the results of larger numerical experiments that capture the departure from the “tight regime” where the optimizer of \(\text{SDP} \) has rank one, a striking example of the difference between theoretical asymptotics and computations tractable at “laptop scale” for semidefinite programming.

2 Lower Bound on Semidefinite Programming

In this section we will prove the following result, which gives the asymptotic value of \(\text{SDP}(W) \).

Theorem 3. For any \(\epsilon > 0 \), \(\lim_{n \to \infty} P[2 - \epsilon \leq \text{SDP}(W) \leq 2 + \epsilon] = 1 \) where \(W \sim \text{GOE}(n) \).

The main technical tool required will be the following concentration inequality for the entries of a random projection matrix.

Proposition 4. Let \(\delta \in (0, 1) \). Let \(P \in \mathbb{R}^{n \times n} \) be the orthogonal projection matrix to a Haar-distributed subspace of \(\mathbb{R}^n \) having dimension \(r := \delta n \). Then, for any \(K > 0 \), there exist constants \(C_{\delta,K}, C'_{\delta,K} > 0 \) such

\[
\mathbb{P} \left[\max_{i, j \in [n]} \left\{ \begin{array}{ll} |P_{ii} - \delta| & \text{if } i = j \\ |P_{ij}| & \text{if } i \neq j \end{array} \right\} \leq C_{\delta,K} \sqrt{\frac{\log n}{n}} \right] \geq 1 - \frac{C'_{\delta,K}}{n^K}.
\]

See, e.g., \([KB20]\) for a careful proof.

Proof of Theorem 3 For the upper bound, note that \(\langle X, W \rangle \leq \lambda_{\text{max}}(W) \) for any \(X \) feasible for the SDP. The bound then follows from standard bounds on the spectrum of \(W \) \([AGZ10]\).
For the lower bound, fix $\alpha, \delta \in (0, 1)$. Let $r = \delta n$, assuming for the sake of simplicity that this is an integer. Let P be the orthogonal projector to the span of the r eigenvectors of W having the largest eigenvalues. Then, define

$$X = X^{(\alpha, \delta)} := (1 - \alpha)\frac{1}{r} P + \alpha\frac{1}{n} 1_n 1_n^\top,$$

where $1_n \in \mathbb{R}^n$ is the vector with all entries equal to 1. Denote by F the event that X is feasible for the SDP, i.e., the event that $\text{Tr}(X) = 1$, $X \succeq 0$, and $X \succeq 0$.

We first show that, for any fixed $\alpha, \delta \in (0, 1)$, $\mathbb{P}[F] \rightarrow 1$. Since $\text{Tr}(P) = r$, we have $\text{Tr}(X) = 1$, and $X \succeq 0$ since X is a convex combination of two positive semidefinite matrices. In particular, $X_{ii} \geq 0$ for all $i \in [n]$. For the off-diagonal entries, we observe that the range of P is a Haar-distributed r-dimensional subspace of \mathbb{R}^n. Thus by Proposition [4] with high probability, for all $i, j \in [n]$ with $i \neq j$,

$$X_{ij} \geq \frac{\alpha}{n} - \frac{1 - \alpha}{r} |P_{ij}| \geq \frac{\alpha}{n} - C_\delta (1 - \alpha) \frac{1}{n} \sqrt{\frac{\log n}{n}},$$

for some constant $C_\delta > 0$ depending only on δ. In particular, for α, δ fixed as $n \rightarrow \infty$, this is non-negative for all sufficiently large n, thus $X_{ij} \geq 0$ for all $i, j \in [n]$ with high probability. Combining these observations, we find that F occurs with high probability.

On the event F, we have

$$\text{SDP}(W) \geq \langle W, X \rangle = (1 - \alpha) \cdot \frac{1}{r} \sum_{i=1}^{r} \lambda_i(W) + \alpha\frac{1}{n} 1_n^\top W 1_n.$$

The second term is distributed as $\mathcal{N}(0, 2\alpha^2/n)$, and the first term is with high probability bounded below by $(1 - \alpha)(2 - f(\delta))$ for some $f(\delta)$ with $\lim_{\delta \rightarrow 0} f(\delta) = 0$, by the convergence of the law of the empirical spectrum of W to the semicircle distribution [AGZ10]. In particular, for any $\varepsilon > 0$, we may choose $\alpha, \delta \in (0, 1)$ sufficiently small that the above argument shows $\text{SDP}(W) \geq 2 - \varepsilon$ with high probability.

We note that the general proof technique of “nudging” an initial construction that is not feasible for a convex program towards a deterministic feasible point has been used before for relaxations of the cut polytope where the latter point is the identity matrix [AU03, KB20, MRX19]. Our proof adapts this to our different SDP constraints by using the all-ones matrix for this purpose instead.

Question 5 (Sum-of-squares relaxations). It would be interesting to extend this result to lower bounds on higher-degree sum-of-squares relaxations of $\lambda^+(W)$; based on our results in Section 8, it is natural to conjecture that no relaxation of constant degree certifies a bound strictly smaller than 2 on $\lambda^+(W)$ as $n \rightarrow \infty$ (since this would refute Conjecture 7). We remark that, in working with inequality constraints, there are a number of reasonable ways to formulate a sum-of-squares relaxation of given degree; see, e.g., [Lau09, OZ13] for some discussion of these details. To the best of our knowledge, lower bounds for sum-of-squares relaxations with inequality constraints have not been studied for high-dimensional random problems, so this problem would be a convenient testing ground to see whether these nuances play an important technical role.

3 Evidence for General Hardness of Certification

We first formalize the notion of a certification algorithm.

Definition 6 (Certification algorithm). Suppose an algorithm takes as input $W \in \mathbb{R}^n_{\text{sym}}$ and outputs a number $c(W) \in \mathbb{R}$ such that $c(W) \geq \lambda^+(W)$ for all $W \in \mathbb{R}^n_{\text{sym}}$. If when $W \sim \text{GOE}(n)$ then $c(W) \leq K$ with high probability as $n \rightarrow \infty$, then we say that this algorithm certifies the bound $\lambda^+(W) \leq K$.
The key property of a certification algorithm is that it must give a valid upper bound on \(\lambda^+(W) \) no matter what input matrix \(W \) is supplied; in particular, it must even do so for \(W \) that are atypical under the distribution \(\text{GOE}(n) \). However, this upper bound only needs to be a “good” bound for typical \(W \sim \text{GOE}(n) \). One notable class of certification algorithms are convex relaxations such as the SDP \(\text{(7)} \). Note that \(\lambda_{\text{max}}(W) \) certifies the bound \(\lambda^+(W) \leq 2 + o(1) \).

The goal of this section is to provide formal evidence for the following conjecture, which states that this simple certificate cannot be improved except by a fully exponential-time “brute force” search.

Conjecture 7. For any fixed \(\varepsilon > 0 \) and \(\eta > 0 \), there is no algorithm of runtime \(\exp(O(n^{1-\eta})) \) that certifies the bound \(\lambda^+(W) \leq 2 - \varepsilon \) (in the sense of Definition 6).

We will argue that the certification problem is hard by reduction from a particular hypothesis testing problem, which we define next.

Definition 8 (Centered Bernoulli distribution). For a constant \(\rho \in (0, 1) \), let \(X_\rho \) be the distribution over \(\mathbb{R}^n \) where \(u \sim X_\rho \) is drawn by drawing each coordinate \(u_i \) independently as

\[
 u_i = \begin{cases}
 \sqrt{\frac{1-\rho}{\rho m}} & \text{with probability } \rho, \\
 -\sqrt{\frac{\rho}{(1-\rho)m}} & \text{with probability } 1-\rho.
 \end{cases}
\]

(12)

This is scaled so that \(\mathbb{E}[u_i] = 0 \) and \(\|u\| \to 1 \) in probability.

Definition 9. Given constants \(\gamma > 0 \) and \(\beta > -1 \), the spiked Wishart model with spike prior \(X_\rho \) consists of the following pair of probability distributions. Let \(N = N(n) \in \mathbb{N} \) such that \(n/N \to \gamma \) as \(n \to \infty \).

- Under \(Q \), draw \(y_1, \ldots, y_N \sim \mathcal{N}(0, I_n) \) independently.
- Under \(P \), first draw \(u \sim X_\rho \). If \(\beta \|u\|^2 \leq -1 \), draw \(y_1 = \cdots = y_N = 0 \). Otherwise, draw \(y_1, \ldots, y_N \sim \mathcal{N}(0, I_n + \beta uu^T) \) independently (noting that the covariance matrix is positive definite).

If \(\beta < 0 \), we call such a model a negatively-spiked Wishart model.

We will consider the strong detection problem where the goal is to give a test \(f : \mathbb{R}^{n \times N} \to \{p, q\} \) that takes input \(y = (y_1, \ldots, y_N) \) and distinguishes between \(P \) and \(Q \) with error probability \(o(1) \), i.e.,

\[
 \lim_{n \to \infty} P[f(y) = p] = \lim_{n \to \infty} Q[f(y) = q] = 1. \tag{13}
\]

When \(\beta^2 > \gamma \) (the “BBP transition”), it is well-known that strong detection is possible in polynomial time via the maximum (if \(\beta > 0 \)) or minimum (if \(\beta < 0 \)) eigenvalue of the sample covariance matrix \(\text{BBP ‘95} \text{[BS06]} \). While strong detection is sometimes (depending on \(\rho \)) possible when \(\beta^2 < \gamma \) via brute force search, this is conjectured to be impossible in subexponential time.

Conjecture 10 (\text{BKW‘20}). For any constants \(\gamma > 0 \), \(\beta > -1 \), \(\rho \in (0, 1) \), \(\eta > 0 \) such that \(\beta^2 < \gamma \), there is no algorithm of runtime \(\exp(O(n^{1-\eta})) \) that achieves strong detection in the spiked Wishart model with parameters \(\gamma, \beta \) and spike prior \(X_\rho \).

This conjecture is justified in \text{BKW‘20} by formal evidence based on the low-degree polynomial method, a framework based on \text{BHK+19} \text{HS17} \text{HKS17} \text{Hop18} that has been successful in predicting and explaining computational hardness in a wide variety of tasks in high-dimensional statistics; see \text{KWB’19} for a survey. More precisely, it is shown (Theorem 3.2 of \text{BKW‘20}) that when \(\beta^2 < \gamma \), no multivariate polynomial \(f : \mathbb{R}^{n \times N} \to \mathbb{R} \) of degree \(D = o(n/\log n) \) can distinguish \(P \) and \(Q \) in the sense of \(\mathbb{E}_P[f(y)] = -\infty \) while \(\mathbb{E}_Q[f(y)] = 1 \). (This is true not only for the centered Bernoulli prior but more generally for any spike prior where the \(u_i \) are distributed i.i.d. as \(\frac{1}{\sqrt{n}} \pi \) for a fixed distribution \(\pi \) on \(\mathbb{R} \) that is subgaussian with \(\mathbb{E}[\pi] = 0 \) and \(\mathbb{E}[\pi^2] = 1 \).) Degree-\(D \) polynomial tests of the above form are believed to be as powerful as any
exp(Ω(D))-time algorithm (where Ω hides factors of log n) for a broad class of high-dimensional testing problems; see [Hop18; KWB19; DKWB19].

We are now prepared to state the main result of this section, which shows that if it is possible to certify a bound on \(\lambda^+ (\mathbf{W}) \) below 2, then it is possible to produce a test between \(\mathcal{P} \) and \(\mathbb{Q} \) in a particular negatively-spiked Wishart model whose parameters lie in the “hard” regime \(\beta^2 < \gamma \). An immediate consequence is that Conjecture 10 implies Conjecture 7.

Theorem 11 (Reduction from detection to certification). Suppose there exists a constant \(\varepsilon > 0 \) and a \(t(n) \)-time certification algorithm \(c : \mathbb{R}^{n \times n} \rightarrow \mathcal{P} \) for \(\lambda^+ \) such that, with high probability as \(n \to \infty \), \(c(\mathbf{W}) \leq 2 - \varepsilon \) when \(\mathbf{W} \sim \text{GOE}(n) \). Then there exist constants \(\gamma > 1 \), \(\beta \in (-1, 0) \), and \(\rho \in (0, 1) \) (depending on \(\varepsilon \)) such that there is a \((t(n) + \text{poly}(n)) \)-time algorithm computing \(f : \mathbb{R}^{n \times N} \rightarrow \{p, q\} \) that achieves strong detection (in the sense of (13)) in the negatively-spiked Wishart model with parameters \(\gamma, \beta \) and spike prior \(\mathcal{X}_\rho \).

The proof is similar to that of Theorem 3.8 in our prior work [BK20] (which gives the analogous result when the constraint set is \(\{\pm 1/\sqrt{m}\}^n \) instead of the positive orthant) with one key difference. As in [BK20], the idea of the reduction is to create a GOE matrix whose top eigenspace has been “rotated” to align with the orthogonal complement of the span of the given Wishart samples. If the samples come from \(\mathcal{P} \) (with \(\beta \) slightly greater than \(-1 \) and \(\gamma \) slightly greater than \(1 \)) then the Wishart samples are nearly orthogonal to the planted vector \(\mathbf{u} \), so this has the effect of planting \(\mathbf{u} \) in the top eigenspace of the matrix. We would like to plant a non-negative vector in the top eigenspace so that any certifier is forced to output a bound larger than \(2 - \varepsilon \). However, we cannot take \(\mathbf{u} \) to be non-negative because it is important for Wishart hardness (Conjecture 10) that \(\mathbf{u} \) have mean zero. The key idea is to instead choose \(\mathbf{u} \) to be a mean-zero vector that is highly correlated with a certain non-negative vector \(\hat{\mathbf{z}} \); this is the purpose of the centered Bernoulli prior \(\mathcal{X}_\rho \).

Proof of Theorem 11 Suppose a certification algorithm as stated exists. We will use this to design a test \(f \) achieving strong detection in the negatively-spiked Wishart model.

Call \(y_1, \ldots, y_N \) the samples from the Wishart model. Draw \(\hat{\mathbf{W}} \sim \text{GOE}(n) \) and let \(\lambda_1 \leq \cdots \leq \lambda_n \) be its eigenvalues. Let \(\mathbf{v}_1, \ldots, \mathbf{v}_N \) be a uniformly random orthonormal basis for \(V := \text{span}(\{y_1, \ldots, y_N\}) \) and let \(\mathbf{v}_{N+1}, \ldots, \mathbf{v}_n \) be a uniformly random orthonormal basis for the orthogonal complement \(V^\perp \). Let \(\mathbf{W} := \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^\top \).

Then, using the certification algorithm computing \(c(\mathbf{W}) \) as a subroutine, we compute the test \(f \) as

\[
 f(\mathbf{W}) := \begin{cases}
 q & \text{if } c(\mathbf{W}) \leq 2 - \varepsilon, \\
 p & \text{otherwise}.
 \end{cases}
\]

(14)

When \((y_1, \ldots, y_N) \sim \mathbb{Q} \), then \(\mathbf{W} \) has the law \(\text{GOE}(n) \), so \(c(\mathbf{W}) \leq 2 - \varepsilon \) with high probability, and thus \(f(\mathbf{W}) = q \) with high probability. Thus to complete the proof it suffices to show that, when \((y_1, \ldots, y_N) \sim \mathcal{P} \), then \(c(\mathbf{W}) > 2 - \varepsilon \) with high probability, whereby we will have \(f(\mathbf{W}) = p \) with high probability.

To this end, suppose \((y_1, \ldots, y_N) \sim \mathcal{P} \) with \(\mathbf{u} \) the spike vector. Let \(z \geq 0 \) be the vector

\[
 z_i = \begin{cases}
 1/\sqrt{m} & \text{if } u_i > 0 \\
 0 & \text{otherwise},
 \end{cases}
\]

(15)
and note that \(\|z\| \to 1 \) and \(\langle z, u \rangle \to \sqrt{1-\rho} \) in probability. Let \(\hat{z} := z/\|z\| \). We then have

\[
c(W) \geq \lambda^+(W) \\
\geq \hat{z}^T W \hat{z} \\
= \sum_{i=1}^{n} \lambda_i \langle \hat{z}, v_i \rangle^2 \\
\geq \lambda_1 \sum_{i=1}^{N} \langle \hat{z}, v_i \rangle^2 + \lambda_{N+1} \sum_{i=N+1}^{n} \langle \hat{z}, v_i \rangle^2 \\
\geq \lambda_1 \sum_{i=1}^{N} \langle \hat{z}, v_i \rangle^2 + \lambda_{N+1} \left(1 - \sum_{i=1}^{N} \langle \hat{z}, v_i \rangle^2 \right)
\]

and, since \(\{v_1, \ldots, v_n\} \) is an orthonormal basis and \(\|\hat{z}\| = 1 \),

\[
= \lambda_{N+1} - (\lambda_{N+1} - \lambda_1) \sum_{i=1}^{N} \langle \hat{z}, v_i \rangle^2. \tag{16}
\]

Recalling that \(\{v_i\}_{i=1}^{N} \) is an orthonormal basis for \(\text{span}(\{y_1, \ldots, y_N\}) \), we have \(\sum_{i=1}^{N} v_i v_i^\top \preceq \frac{1}{\mu} Y \) where \(Y = \frac{1}{N} \sum_{i=1}^{N} y_i y_i^\top \) and \(\mu \) is the smallest nonzero eigenvalue of \(Y \). We therefore have

\[
\sum_{i=1}^{N} \langle \hat{z}, v_i \rangle^2 \leq \frac{1}{\mu N} \sum_{i=1}^{N} \langle \hat{z}, y_i \rangle^2. \tag{17}
\]

Also, viewing \(Y \) as a sample covariance matrix under a spiked matrix model, we have \(\mu \to (\sqrt{\gamma} - 1)^2 > 0 \) in probability by Theorem 1.2 of [BS06].

For fixed \(\hat{z} \), since \(y_i \sim \mathcal{N}(0, I_n + \beta uu^\top) \) we have that \(\langle \hat{z}, y_i \rangle \) is Gaussian with mean zero and variance

\[
\mathbb{E} \langle \hat{z}, y_i \rangle^2 = \mathbb{E} [\hat{z}^\top y_i y_i^\top \hat{z}] = \hat{z}^\top \mathbb{E} [y_i y_i^\top] \hat{z} = \hat{z}^\top (I_n + \beta uu^\top) \hat{z} \to 1 + \beta(1 - \rho) \tag{18}
\]

in probability, where we have used \(\langle z, u \rangle \to \sqrt{1-\rho} \) and \(\|z\| \to 1 \). Therefore \(\frac{1}{\mu} \sum_{i=1}^{N} \langle \hat{z}, y_i \rangle^2 \to 1 + \beta(1 - \rho) \) in probability as well.

By the convergence of \(\{\lambda_i\} \) to the semicircle law on \([-2, 2]\) [AGZ10], we have \(\lambda_{N+1} - \lambda_1 \leq 5 \) with high probability. Also, by choosing \(\gamma > 1 \) sufficiently close to 1, we can ensure \(\lambda_{N+1} \geq 2 - \varepsilon/2 \) with high probability.

Putting it all together, the value of \(c(W) \) under \((y_1, \ldots, y_N) \sim \mathbb{P} \) with high probability satisfies

\[
c(W) \geq \lambda_{N+1} - (\lambda_{N+1} - \lambda_1) \sum_{i=1}^{N} \langle \hat{z}, v_i \rangle^2 \geq 2 - \varepsilon/2 - 5(\sqrt{\gamma} - 1)^{-2}(1 + \beta(1 - \rho)),
\]

which exceeds \(2 - \varepsilon \) provided we choose \(\beta > -1 \) close enough to \(-1\) and \(\rho > 0 \) small enough. \(\Box \)

4 Deceptive Finite-Size Effects

Experiments for small \(n \) computing \(\text{SDP}(W) \) suggest, contrary to our results, that \(\text{SDP}(W) \) is in fact very effective in bounding \(\lambda^+(W) \) for \(W \sim \text{GOE}(n) \). Not only do we observe for small \(n \) the value \(\text{SDP}(W) \approx \sqrt{2} \), but we also find that \(\text{SDP}(W) \) appears to be tight: the primal optimizer \(X^* \) often having rank one to numerical tolerances. This is analogous to the efficacy of \(\text{SDP}(W) \) for recovering the spike for \(W \) under the spiked non-negative PCA model discussed in [MRI15]. We describe these results here, as well as further experiments suggesting what size of \(n \) is required for these finite size effects to give way to the correct asymptotics.
The first experiment we consider solves $\text{SDP}(W)$ for many random choices of W, obtains the optimizer X^\star, and considers the numerical rank of X^\star. We plot the results of 50 trials of this experiment with $n = 150$ in Figure 1 and observe that most trials have the second-largest eigenvalue of X^\star of order at most 10^{-4} compared to the trace of 1, whereby X^\star is nearly rank-one and the SDP is nearly tight.

The next experiment solves the following different SDP, which is dual to $\text{SDP}(W)$, and which by a standard strong duality argument has the same value as $\text{SDP}(W)$:

$$\text{SDP}^\star(W) := \min_{Y \succeq 0} \lambda_{\max}(W + Y) = \text{SDP}(W).$$

Having $\text{SDP}(W) \leq 2 - \varepsilon$ therefore has the elegant interpretation of it being possible to “compress” the spectrum of $W \sim \text{GOE}(n)$ below 2 by only increasing each entry. We plot the results of 50 trials of this experiment with $n = 150$ in Figure 2. (These semidefinite programs are solved using version 9.2 of the Mosek solver on a laptop computer with 32GB RAM and an Intel i7-1065G7 processor; the average time to solve an instance is 18.1 minutes.) From these results, this compression indeed appears possible; moreover, the compressed spectrum appears to have an interesting “wall shape” not unlike that of the GOE conditioned on its largest eigenvalue being small; see, e.g., Figure 4 of [MS14].

The final experiment seeks to identify how large we would need to make n in order to observe that the above are all illusory finite-size effects. To do this, we consider our primal witness from the proof of Theorem 3,

$$X^{(\alpha, \delta)} = 1 - \frac{\alpha}{\delta n} P + \frac{\alpha}{n} 1_n 1_n^\top$$

for P the projection matrix to the top δn eigenvectors of $W \sim \text{GOE}(n)$ and α large enough that $X^{(\alpha, \delta)} \succeq 0$ entrywise. In Figure 3, we fix $\delta = 1/25 = 0.04$, and plot both the smallest α making $X^{(\alpha, \delta)}$ feasible for the SDP and the corresponding lower bound $\langle X^{(\alpha, \delta)}, W \rangle$ on the SDP. We see that the smallest α only decays to zero very slowly, as $\tilde{O}(n^{-1/2})$ per our argument. Accordingly, $\langle X^{(\alpha, \delta)}, W \rangle$ also only very slowly approaches its limiting value. Moreover, even to have $\langle X^{(\alpha, \delta)}, W \rangle > \sqrt{2}$ requires $n \sim 10^4$, suggesting that this is roughly the size of n required to observe that $\text{SDP}(W)$ in fact is not typically tight (in stark contrast to $n \sim 10^2$ that is tractable to solve on commodity hardware).

Taken together, these experiments present a striking caution against extrapolating asymptotic behavior for an SDP from experimental results tractably computable in reasonable time in practice. In our case, the correct asymptotic behavior “kicks in” only for problems two orders of magnitude larger than the largest tractable with off-the-shelf software on a personal computer.

Acknowledgements

We thank Yash Deshpande, Sam Hopkins, and Andrea Montanari for helpful discussions.
Figure 1: **SDP primal spectrum for small** n. We plot a histogram of the second-largest eigenvalue of X^* the optimizer of $\text{SDP}(W)$, over 50 trials with $n = 150$.

Figure 2: **SDP dual spectrum for small** n. We plot the means of histograms, with error bars of one standard deviation per bin, for the spectra of W and $W + Y^*$ for Y^* the optimizer of $\text{SDP}^*(W)$, over 50 trials with $n = 150$.
Figure 3: **SDP lower bound convergence.** We fix $\delta = 1/25 = 0.04$, and given W compute the smallest α for such that $X^{(\alpha,\delta)}$, as defined in [20], is feasible for $\text{SDP}(W)$. In the upper graph, for a range of values of n, we plot the mean and an error interval of one standard deviation of 10 values of $\langle X^{(\alpha,\delta)}, W \rangle$, a lower bound on $\text{SDP}(W)$. We note that this clearly exceeds $\lim_{n \to \infty} \mathbb{E}\lambda^+(W) \approx \sqrt{2}$ once $n \gtrsim 10^4$; however, it only very slowly approaches its expected limiting value. In the bottom graph, we likewise plot the mean and standard deviation of the minimum valid value of α, again observing that it only very slowly approaches its limiting value of zero (which may be verified to match the rate our theoretical calculation predicts of $\alpha = O(n^{-1/2})$ up to logarithmic factors).
References

[AGZ10] Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. *An introduction to random matrices*, volume 118. Cambridge University Press, 2010.

[AU03] David Avis and Jun Umemoto. Stronger linear programming relaxations of max-cut. *Mathematical Programming*, 97(3):451–469, 2003.

[AW10] Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley Interdisciplinary Reviews: Computational Statistics*, 2(4):433–459, 2010.

[Ban15] Afonso S Bandeira. Ten lectures and forty-two open problems in the mathematics of data science. 2015.

[BBAP05] Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. *The Annals of Probability*, 33(5):1643–1697, 2005.

[BHK+19] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. *SIAM Journal on Computing*, 48(2):687–735, 2019.

[BKS14] Afonso S Bandeira, Yuehaw Khoo, and Amit Singer. Open problem: Tightness of maximum likelihood semidefinite relaxations. *arXiv preprint arXiv:1404.2655*, 2014.

[BKW20] Afonso S Bandeira, Dmitriy Kunisky, and Alexander S Wein. Computational hardness of certifying bounds on constrained PCA problems. In *11th Innovations in Theoretical Computer Science Conference (ITCS 2020)*, volume 151, pages 78:1–78:29, 2020.

[BMV+18] Jess Banks, Cristopher Moore, Roman Vershynin, Nicolas Verzelen, and Jiaming Xu. Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization. *IEEE Transactions on Information Theory*, 64(7):4872–4894, 2018.

[BS06] Jinho Baik and Jack W Silverstein. Eigenvalues of large sample covariance matrices of spiked population models. *Journal of Multivariate Analysis*, 97(6):1382–1408, 2006.

[CDMF09] Mireille Capitaine, Catherine Donati-Martin, and Delphine Féral. The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. *The Annals of Probability*, 37(1):1–47, 2009.

[DKP02] Etienne De Klerk and Dmitrii V Pasechnik. Approximation of the stability number of a graph via copositive programming. *SIAM Journal on Optimization*, 12(4):875–892, 2002.

[DKWB19] Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Subexponential-time algorithms for sparse PCA. *arXiv preprint arXiv:1907.11635*, 2019.

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. *Journal of Computer and System Sciences*, 63(4):639–671, 2001.

[FP07] Delphine Féral and Sandrine Péché. The largest eigenvalue of rank one deformation of large Wigner matrices. *Communications in Mathematical Physics*, 272(1):185–228, 2007.

[HKP+17] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm, and David Steurer. The power of sum-of-squares for detecting hidden structures. In *2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 720–731. IEEE, 2017.

[Hop18] Samuel Hopkins. *Statistical inference and the sum of squares method*. PhD thesis, Cornell University, 2018.
[HS17] Samuel B Hopkins and David Steurer. Efficient Bayesian estimation from few samples: community detection and related problems. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 379–390. IEEE, 2017.

[JO20] Iain M Johnstone and Alexei Onatski. Testing in high-dimensional spiked models. Annals of Statistics, 48(3):1231–1254, 2020.

[Joh01] Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics, pages 295–327, 2001.

[KB20] Dmitriy Kunisky and Afonso S Bandeira. A tight degree 4 sum-of-squares lower bound for the Sherrington-Kirkpatrick Hamiltonian. Mathematical Programming, 2020.

[KWB19] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational hardness of hypothesis testing: predictions using the low-degree likelihood ratio. arXiv preprint arXiv:1907.11636, 2019.

[Lau09] Monique Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging Applications of Algebraic Geometry, pages 157–270. Springer, 2009.

[MPW16] Ankur Moitra, William Perry, and Alexander S Wein. How robust are reconstruction thresholds for community detection? In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 828–841. ACM, 2016.

[MR15] Andrea Montanari and Emile Richard. Non-negative principal component analysis: message passing algorithms and sharp asymptotics. IEEE Transactions on Information Theory, 62(3):1458–1484, 2015.

[MRX19] Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower bounds: degree-2 to degree-4. arXiv preprint arXiv:1911.01411, 2019.

[MRZ15] Andrea Montanari, Daniel Reichman, and Ofer Zeitouni. On the limitation of spectral methods: From the gaussian hidden clique problem to rank-one perturbations of gaussian tensors. In Advances in Neural Information Processing Systems, pages 217–225, 2015.

[MS14] Satya N Majumdar and Grégory Schehr. Top eigenvalue of a random matrix: large deviations and third order phase transition. Journal of Statistical Mechanics: Theory and Experiment, 2014(1):P01012, 2014.

[OZ13] Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1537–1556. Society for Industrial and Applied Mathematics, 2013.

[Rao64] C Radhakrishna Rao. The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics, Series A, pages 329–358, 1964.

[Rin08] Markus Ringnér. What is principal component analysis? Nature biotechnology, 26(3):303–304, 2008.

[RTJM16] Federico Ricci-Tersenghi, Adel Javannard, and Andrea Montanari. Performance of a community detection algorithm based on semidefinite programming. In Journal of Physics: Conference Series, volume 699, page 012015, 2016.