Abstract. We describe the spectrum structure for the restricted Dirichlet fractional Laplacian in multi-tubes, i.e. domains with cylindrical outlets to infinity. Some new effects in comparison with the local case are discovered.

Keywords: fractional Laplacian, multi-tubes, Dirichlet spectrum, virtual level

AMS classification codes: Primary: 35R11, Secondary: 81Q10.

1 Introduction

The goal of this paper is obtaining a better understanding of spectral properties of some non-local operators in domains with cylindrical outlets to infinity. This study has various motivations.

The standard positive Laplacian $-\Delta$ in a domain $\Omega \subset \mathbb{R}^n$ corresponds, up to a multiplicative constant, to the quantization of the kinetic energy $\frac{p^2}{2m}$ of a free particle with momentum p and mass m, confined in Ω. This is because the quantization procedure maps the classical momentum p to the operator $-i\nabla$. The Dirichlet condition in this case means the hard walls of the domain. However, the relativity theory tells that the choice of kinetic energy as above is not appropriate for high energies and for a massive relativistic particle it should be replaced by $\sqrt{p^2 + m^2}$. Thus, the corresponding quantum Hamiltonian should be chosen as $\sqrt{-\Delta + m^2}$ (see,
e.g., [1, 2, 3] for further details). This gives an inspiration to study fractional powers of the Helmholtz operator, especially their spectral properties. Notice that such powers are non-local operators, which significantly complicates the problem.

We discuss mainly the fractional Laplacian though our results can be transferred to the fractional Helmholtz operator.

As in case of a non-relativistic particle, the important complication to the statement of the problem is brought by the boundary condition. In contrast to the local case, we have a non-unique procedure to impose the Dirichlet condition. The first choice is to take the spectral power \((-\Delta_\Omega)^s\) of the conventional Dirichlet Laplacian in \(\Omega\). In this case the analysis of spectrum of such a problem reduces to the analysis of the standard Dirichlet Laplacian.

The second way is to consider the so-called restricted Dirichlet fractional Laplacian \(A_\Omega^s\). It is defined by the quadratic form

\[
a_\Omega^s[u] = (A_\Omega^s u, u) := \int_{\mathbb{R}^n} |\xi|^{2s} |\mathcal{F}_n u(\xi)|^2 d\xi,
\]

where \(\mathcal{F}_n\) stands for the \(n\)-dimensional Fourier transform

\[
\mathcal{F}_n u(\xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-i\xi \cdot x} u(x) dx.
\]

The domain of the quadratic form \(a_\Omega^s\) is defined as follows:

\[
\text{Dom}(a_\Omega^s) = \tilde{H}^s(\Omega) := \{ u \in H^s(\mathbb{R}^n) : \text{supp} u \subset \Omega \},
\]

where \(H^s(\mathbb{R}^n)\) is the classical Sobolev–Slobodetskii space (see, e.g., [4, Subsection 2.3.3])

\[
H^s(\mathbb{R}^n) = \{ u \in L_2(\mathbb{R}^n) : |\xi|^s \mathcal{F}_n u(\xi) \in L_2(\mathbb{R}^n) \}.
\]

In what follows, we assume \(s \in (0, 1)\). This case has a strong connection to the theory of stochastic processes. While the Laplacian \(\Delta\) in \(\mathbb{R}^n\) can be considered as a generator of the standard Brownian semigroup \(\exp(t\Delta)\), the fractional Laplacian, or more exactly the operator \(-(-\Delta)^s\) for \(s \in (0, 1)\), stands for the generator of the Lévi-stable motion semigroup. In both cases restricting to the domain \(\Omega\) and posing the Dirichlet conditions means posing
the killing or absorbing boundary condition for the original random process (see, e.g., [2, 3, 5]).

The study of spectral problems for the conventional Dirichlet Laplacian in domains with cylindrical outlets to infinity has a long history. Typically the spectra of such problems consist of continuous spectra covering the ray $[\lambda^*, +\infty)$ with some positive threshold λ^* and a number of eigenvalues (bound states) below the threshold which may appear because of the geometrical structure of the domain in a finite region (the junction). Usually this takes place if it is possible to inscribe a sufficiently large body into the junction (see, e.g., [6, 7, 8, 9]) or if the cylinder is bended or broken (see, e.g., [10, 11, 12]). Typically, a finite number of eigenvalues may appear under the threshold of the continuous spectrum. In some special cases it is possible to prove the uniqueness of such an eigenvalue (see, e.g., [7, 8, 13]).

For the relativistic case, we know only two recent works [14] and [15] which discuss a similar problem for the Dirac operator $-i\nabla$. However, we stress that in contrast to A_Ω^s, this operator is local.

The structure of the paper is the following. In Section 2 we recall some well-known facts about the Caffarelli–Silvestre extension and prove an important auxiliary lemma. Section 3 is devoted to the spectrum of A_Ω^s in a (straight) tube.

In Section 4 we study the spectral properties of A_Ω^s in a perturbed multi-tube. This means that outside some compact set K, the domain Ω coincides with a finite union of non-intersecting congruent semi-tubes, cf. [16]. We prove that, like in the local case $s = 1$, the essential spectrum coincides with that in one semi-tube. However, in comparison with the local case, this result holds only under the following additional assumption: the axes of semi-tubes are not co-directional.

In Section 5 we study the influence of a local widening of a tube on the spectrum of the operator A_Ω^s. It is well known (see, e.g., [17] and references therein) that in the local case, arbitrary such widening produces points of the discrete spectrum under the threshold (in other words, the threshold is a virtual level for the Dirichlet Laplacian). This effect obviously holds for the spectral fractional Laplacian. The same statement turns out to be true for the restricted fractional Laplacian. A bit unexpectedly, the proof for $n = 2$, $s \leq 1/2$ is essentially more complicated than in other cases.

We use letter C and c (with or without indices) to denote various positive constants. To indicate that C depends on some parameters, we list them in
the parentheses: $C(\ldots)$.

2 Caffarelli–Silvestre extensions

The relation between fractional differential operators and generalized harmonic extensions was discovered more than fifty years ago [18] and became popular thanks to the celebrated work [19]. Namely, given $u \in \tilde{H}^s(\Omega)$, the function

$$U_s(x, y) = \int_{\mathbb{R}^n} \mathcal{P}_s(x - \tilde{x}, y) u(\tilde{x}) d\tilde{x}, \quad x \in \mathbb{R}^n, \ y \in \mathbb{R}_+,$$

(1)

with the generalized Poisson kernel

$$\mathcal{P}_s(x, y) = \frac{\Gamma\left(\frac{n+2s}{2}\right)}{\pi^{\frac{n}{2}} \Gamma(s)} \frac{y^{2s}}{(|x|^2 + y^2)^{\frac{n}{2}+s}},$$

minimizes the weighted Dirichlet integral

$$\mathcal{E}_s^\Omega(W) = \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s} |\nabla W(x, y)|^2 dx dy$$

over the set

$$\mathcal{W}(u) = \{W = W(x, y) : \mathcal{E}_s^\Omega(W) < \infty, \ W|_{y=0} = u\}$$

and solves the boundary value problem

$$-\text{div}(y^{1-2s} \nabla W) = 0 \quad \text{in} \quad \mathbb{R}^n \times \mathbb{R}_+; \quad W|_{y=0} = u.$$

Moreover, the following relations hold:

$$A_s^\Omega u = -C(s) \lim_{y \to 0^+} y^{1-2s} \partial_y U_s(\cdot, y), \quad a_s^\Omega[u] = C(s) \mathcal{E}_s^\Omega(U_s),$$

(2)

where $C(s) = \frac{4^s \Gamma(s+1)}{2s \Gamma(1-s)}$ (the limit is understood in the sense of functionals on $\tilde{H}^s(\Omega)$ and pointwise at every point of smoothness of u).

The function U_s is usually called the Caffarelli–Silvestre extension of u. The set $\mathcal{W}(u)$ is also called the set of admissible extensions of u.

The following statement will be used in Section 5.
Lemma 1. Let \(n > 2 - 2s \) \footnote{This is a restriction only for \(n = 1 \).} Assume that \(\Omega \) is bounded. Then for any function \(u \in \tilde{H}^s(\Omega) \), its Caffarelli–Silvestre extension belongs to \(L^2(\mathbb{R}^n \times \mathbb{R}_+) \) with weight \(y^{1-2s} \).

Proof. Using formula (1) and the Fourier transform in \(x \) we obtain

\[
I := \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}|U_s(x,y)|^2 \, dx dy = \int_0^\infty \int_{\mathbb{R}^n} |\mathcal{F}_n U_s(\xi,y)|^2 \, d\xi dy
\]

\[
= (2\pi)^\frac{n}{2} \int_{\mathbb{R}^n} |\mathcal{F}_n u(\xi)|^2 \int_0^\infty y^{1-2s}|\mathcal{P}_s(\xi,y)|^2 \, dy d\xi.
\]

Notice that the function \(\mathcal{P}_s \) is spherically symmetric in \(x \) and homogeneous: \(\mathcal{P}_s(x,y) = y^{-n}\mathcal{P}_s(y^{-1}x,1) \). This implies

\[
\mathcal{F}_n \mathcal{P}_s(\xi,y) = \mathcal{F}_n \mathcal{P}_s(y\xi,1) =: \hat{\mathcal{P}}_s(y|\xi|).
\]

Therefore, we can change the variable in the last integral and obtain

\[
I = (2\pi)^\frac{n}{2} \int_{\mathbb{R}^n} |\xi|^{2s-2} |\mathcal{F}_n u(\xi)|^2 \int_0^\infty t^{1-2s}|\hat{\mathcal{P}}_s(t)|^2 \, dt.
\]

Since \(\mathcal{P}_s \) is smooth in \(x \), \(\hat{\mathcal{P}}_s \) is rapidly (in fact, exponentially) decaying at infinity, and the second integral evidently converges. Since \(u \) is compactly supported, its Fourier transform is smooth, and the first integral converges for \(2 - 2s < n \). This concludes the proof. \(\square \)

3 **Spectral problem in a straight tube**

Let \(\omega \) be a bounded domain (connected open set) in \(\mathbb{R}^{n-1} \), and let \(Q \) be a tube (cylinder)

\[
Q = \omega \times \mathbb{R} = \{ x = (x',z) : x' \in \omega, z \in \mathbb{R} \}.
\]

(3)

Recall that the space \(\tilde{H}^s(\omega) \) is compactly embedded into \(L^2(\omega) \) and thus the spectrum of the operator \(A^\omega_s \) is purely discrete and consists of a sequence of eigenvalues

\[
0 < \lambda_1(A^\omega_s) < \lambda_2(A^\omega_s) \leq \lambda_3(A^\omega_s) \leq \ldots \leq \lambda_k(A^\omega_s) \leq \ldots \to +\infty.
\]
The corresponding sequence of eigenfunctions \(\varphi_k(A_\omega^s) \) can be chosen orthonormal in \(L_2(\omega) \).

The following assertion is more or less standard. We provide its proof for completeness.

Lemma 2. The first eigenvalue \(\lambda_1(A_\omega^s) \) (in what follows we denote it by \(\Lambda_s \)) is simple and the corresponding eigenfunction \(\varphi_1(A_\omega^s) \) can be chosen positive in \(\omega \).

Proof. By [20, Theorem 3], for any \(u \in \tilde{H}^s(\omega) \) we have \(|u| \in \tilde{H}^s(\omega) \), and the inequality \(a_\omega^s[|u|] \leq a_\omega^s[u] \) holds. Therefore, without loss of generality we can assume \(\varphi_1(A_\omega^s) \) non-negative. Then the strong maximum principle [21, Theorem 2.5] (see also [22]) shows that \(\varphi_1(A_\omega^s) > 0 \) in \(\omega \). Finally, if \(\Lambda_s \) was multiple eigenvalue, we could find a sign-changing eigenfunction, a contradiction.

The max-min principle (see, e.g., [23, §10.2]) easily implies that the eigenvalues of the operator \(A_\omega^s \) decrease when the domain \(\omega \) expands.

Remark 1. The inequality between restricted and spectral fractional Laplacians ([24, Theorem 2], see also the survey [25]) implies that

\[
\lambda_k(A_\omega^s) < \left(\lambda_k(-\Delta_\omega) \right)^s, \quad k \in \mathbb{N}.
\]

Exact values of \(\lambda_k(-\Delta_\omega) \) are well known for several domains. For \(\lambda_k(A_\omega^s) \), up to our knowledge, no exact values are known, and sufficiently sharp estimates are obtained only in the ball, see [26] and references therein. We also mention the paper [27], where, besides two-sided estimates for \(\lambda_k(A_\omega^I) \) on the interval \(I = (-1,1) \), the two-term asymptotics was derived:

\[
\lambda_k(A_\omega^I) = \left(\frac{k\pi}{2} - \frac{(1-s)\pi}{4} \right)^{2s} + O\left(\frac{1}{k} \right), \quad k \to \infty
\]

(recall that \(\lambda_k(-\Delta_I) \equiv \left(\frac{k\pi}{4} \right)^2 \)).

In this section we relate the spectra of \(A_\omega^Q \) and \(A_\omega^s \).

Theorem 1. The spectrum of \(A_\omega^Q \) coincides with the ray

\[
\sigma(A_\omega^Q) = \sigma_{ess}(A_\omega^Q) = [\Lambda_s, +\infty),
\]

where \(\Lambda_s \) is the smallest eigenvalue of \(A_\omega^s \).
Proof. First of all, we recall that, for any semi-bounded self-adjoint operator, the minimum of its spectrum coincides with the minimum of the corresponding Rayleigh quotient. In particular,

$$\inf_{v \in \tilde{H}^s(\omega)} \frac{a_s^Q[v]}{\|v; L_2(\omega)\|^2} = \Lambda_s.$$

For any \(u \in \tilde{H}^s(Q)\) and \(z \in \mathbb{R}\) let us define \(u_z \in \tilde{H}^s(\omega)\) by the formula

$$u_z(x') = u(x', z),$$

and denote \(U_{z,s}\) its Caffarelli–Silvestre extension. Then we have

$$a_s^Q[u] = C(s) \int_0^\infty \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} y^{1-2s} \left(|\nabla' U_s(x', z, y)|^2 + |\partial_z U_s(x', z, y)|^2 \right) dzdx' dy$$

$$\geq C(s) \int_{\mathbb{R}} \int_0^\infty \int_{\mathbb{R}^{n-1}} y^{1-2s} |\nabla' U_{z,s}(x', y)|^2 dx' dy dz$$

$$\geq \int_{\mathbb{R}} \Lambda_s \|u_z; L_2(\omega)\|^2 dz = \Lambda_s \|u; L_2(Q)\|^2,$$

where \(\nabla'\) is the gradient with respect to \((x', y)\). Thus,

$$\inf \sigma(A^Q_s) = \inf_{u \in \tilde{H}^s(Q)} \frac{a_s^Q[u]}{\|u; L_2(Q)\|^2} \geq \Lambda_s.$$

To prove (4), we introduce the Dirichlet fractional Helmholtz operator in a domain \(\Omega \subset \mathbb{R}^n\)

$$A_{s,\kappa}^\Omega = (-\Delta_\Omega + \kappa^2)^s.$$

It is defined by its quadratic form

$$a_{s,\kappa}^\Omega[u] = (A_{s,\kappa}^\Omega u, u) := \int_{\mathbb{R}^n} (|\xi|^2 + \kappa^2)^s |\mathcal{F}_n u(\xi)|^2 d\xi, \quad u \in \tilde{H}^s(\Omega).$$

In the case of a bounded domain \(\omega\) we denote by \(\Lambda_{s,\kappa}\) the first eigenvalue of the operator \(A_{s,\kappa}^\omega\) and by \(\varphi_{s,\kappa}\) the corresponding eigenfunction, which can be chosen positive and normalized in \(L_2(\omega)\).
Obviously, for any $\Omega \subset \mathbb{R}^n$

$$a_{s,\kappa_1}^\Omega \leq a_{s,\kappa_2}^\Omega \quad \text{for} \quad \kappa_1 \leq \kappa_2.$$

Therefore, the function $f(\kappa) = \Lambda_{s,\kappa}$ is increasing. Moreover, it is continuous, $f(0) = \Lambda_s$, and $f(\kappa) \to +\infty$ as $\kappa \to +\infty$, so

$$\{\Lambda_{s,\kappa}: \kappa \in [0, +\infty)\} = [\Lambda_s, +\infty).$$

First, we give an informal explanation of (4). We claim that the function $\varphi_{s,\kappa}(x')e^{ikz}$ is an “eigenfunction of continuous spectrum” for A_s^Q corresponding to the “eigenvalue” $\Lambda_{s,\kappa}$. Indeed, we have

$$F_n[A_{s,k}^Q \varphi_{s,\kappa}(x')e^{ikz}](\xi) = F_n[A_{s,\kappa}^Q \varphi_{s,\kappa}](\xi') \delta(\zeta - \kappa),$$

where $\xi = (\xi', \zeta)$ is the dual variable to $x = (x', z)$, and thus

$$F_n[A_{s,k}^Q \varphi_{s,\kappa}(x')e^{ikz}](\xi) = |\xi'|^2 s F_n[A_{s,\kappa}^Q \varphi_{s,\kappa}](\xi') \delta(\zeta - \kappa) = F_n[A_{s,\kappa}^Q \varphi_{s,\kappa}](\xi') \delta(\zeta - \kappa) = \Lambda_{s,\kappa} F_n[\varphi_{s,\kappa}(x')e^{ikz}](\xi', \zeta),$$

and the claim follows.

To be more formal, we construct for any $\Lambda_{s,\kappa}$ with $\kappa \geq 0$ a Weyl sequence for the operator A_s^Q. We put

$$v_m(x) = \varphi_{s,\kappa}(x') \chi_m(z), \quad m \in \mathbb{N},$$

where

$$\chi_m(z) = e^{ikz} \chi \left(\frac{z - 2m^2}{m} \right),$$

and χ is a smooth cutoff function such that $\chi(z) = 1$ for $|z| \leq 1$ and $\chi(z) = 0$ for $|z| \geq 2$. One can easily check that $\chi_{m_1}(z) \chi_{m_2}(z) \equiv 0$ if $m_1 \neq m_2$, so it is enough to prove that

$$\frac{\|A_{s,k}^Q v_m - \Lambda_{s,\kappa} v_m; L_2(Q)\|}{\|v_m; L_2(Q)\|} \to 0 \quad \text{as} \quad m \to +\infty.$$

We have

$$F_n[A_{s,k}^Q v_m - \Lambda_{s,\kappa} v_m](\xi) = F_n[A_{s,k}^Q v_m](\xi) - F_n[A_{s,k}^Q \varphi_{s,\kappa}](\xi') F_1[\chi_m](\zeta) = \left(|\xi'|^2 s - (|\xi'|^2 + \kappa^2 s) \right) F_n[A_{s,\kappa}^Q \varphi_{s,\kappa}](\xi') F_1[\chi_m](\zeta),$$

8
so, by the Parseval theorem we obtain that

\[\|A_Q^s v_m - \Lambda_{s,\kappa} v_m; L_2(Q)\|^2 \]

\[= \int_{\mathbb{R}^n} \left((|\xi'|^2 + |\zeta|^2)^s - (|\xi'|^2 + \kappa^2)^s \right)^2 |\mathcal{F}_{n-1}[\varphi_{s,\kappa}](\xi')|^2 |\mathcal{F}_1[\chi_m](\zeta)|^2 d\xi' d\zeta. \]

We use the relation \(|\mathcal{F}_1[\chi_m](\zeta)| = m |\mathcal{F}_1[\chi](m(\zeta - \kappa))|\), change the variable and arrive at

\[\|A_Q^s v_m - \Lambda_{s,\kappa} v_m; L_2(Q)\|^2 \]

\[= m \int_{\mathbb{R}^n} \left((|\xi'|^2 + \frac{\tau}{m} + \kappa|^2)^s - (|\xi'|^2 + \kappa^2)^s \right)^2 |\mathcal{F}_{n-1}[\varphi_{s,\kappa}](\xi')|^2 |\mathcal{F}_1[\chi](\tau)|^2 d\xi' d\tau \]

\[\leq m \int_{\mathbb{R}^n} \left(\left(\frac{\tau}{m} + \kappa \right)^2 - \kappa^2 \right)^{2s} |\mathcal{F}_{n-1}[\varphi_{s,\kappa}](\xi')|^2 |\mathcal{F}_1[\chi](\tau)|^2 d\xi' d\tau \]

\[\leq m \int_{\mathbb{R}} \left(\left(\frac{\tau}{m} \right)^2 + 2\kappa \left| \frac{\tau}{m} \right| \right)^{2s} |\mathcal{F}_1[\chi](\tau)|^2 d\tau \int_{\mathbb{R}^n-1} |\mathcal{F}_{n-1}[\varphi_{s,\kappa}](\xi')|^2 d\xi' \leq \frac{C_1(s,\kappa)}{m^{2s-1}}. \]

Since \(\varphi_{s,\kappa}\) are normalized, we get

\[\|v_m; L_2(Q)\|^2 = \int_{\mathbb{R}} \left| \chi \left(\frac{z - 2m^2}{m} \right) \right|^2 dz = m \|\chi; L_2(\mathbb{R})\|^2 = C_2 m, \]

and finally

\[\frac{\|A_Q^s v_m - \Lambda_{s,\kappa} v_m; L_2(Q)\|}{\|v_m; L_2(Q)\|} \leq \frac{C(s,\kappa)}{m^s} \to 0, \quad m \to +\infty, \]

as desired. \(\square\)

Corollary 1. Let \(Q = \omega \times \mathbb{R}_+\) be a semi-tube. Then the spectrum of \(A_Q^s\) coincides with the ray \([\Lambda_s, +\infty)\), where \(\Lambda_s\) is the smallest eigenvalue of \(A_s^\omega\).

Indeed, Theorem \(\text{[1]}\) and monotonicity of the spectra on domain imply the relation \(\sigma(A_Q^s) \subset [\Lambda_s, +\infty)\), whereas the relation \([\Lambda_s, +\infty) \subset \sigma_{\text{ess}}(A_s^\omega)\) holds due to the same Weyl sequence.
4 Problem in a perturbed multi-tube

Let Ω be a \textit{perturbed multi-tube}, that is, outside of some compact set \mathcal{K}, Ω coincides with a finite union of non-intersecting semi-tubes Q_j, $j = 1, \ldots, N$. We assume that

- all Q_j are congruent to $Q = \omega \times \mathbb{R}_+$ (recall that ω is connected);
- the axes of Q_j, $j = 1, \ldots, N$, are not co-directional, see Fig. 1.

![Figure 1: Perturbed multi-tube](image)

Remark 2. We stress that the latter assumption is not needed in the local case $s = 1$.

First, we prove an auxiliary statement.

Theorem 2. For any $R > 0$ and for arbitrary $u \in \tilde{H}^s(\Omega)$, the following inequality holds:

$$a_s^\Omega[u] \geq \left(\Lambda_s - CR^{-2s} \right) \|u; L_2(\Omega)\|^2 - C\|u; L_2(\mathbb{B}_R)\|^2,$$

where $\mathbb{B}_R = \{x \in \mathbb{R}^n : |x| < R\}$ is the ball, and C does not depend on u and R.

10
Proof. Here we partly follow the line of the proof of [28, Lemma 1] (see also [29]) but essentially modify it for the nonlocal case, cf. [30, Lemma 3.1]. For the sake of brevity we denote by $U(x, y) = U_s(x, y)$ the Caffarelli–Silvestre extension of u.

We choose $r_0 > 0$ such that the ball B_{r_0} contains the compact set K, and the truncated cylinders $Q_j \setminus B_{r_0}$ can be covered by disjoint conical domains C_j, $j = 1, \ldots, N$, with the common vertex at the origin. Without loss of generality we assume that $R > 2(r_0 + 2)$.

Let ρ_1 and ρ_2 be smooth cutoff functions of $r = \sqrt{|x|^2 + y^2}$ such that $\rho_1(r) = 0$ for $r > r_0 + 2$, $\rho_2(r) = 0$ for $r < r_0 + 1$, $\rho_1^2 + \rho_2^2 = 1$. Then we have

$$|\nabla U|^2 = \sum_{k=1,2} \left(|\nabla (U \rho_k)|^2 - 2U \nabla U \cdot \rho_k \nabla \rho_k - U^2 |\nabla \rho_k|^2 \right).$$

Since $2U \nabla U = \nabla (U^2)$, integration by parts gives

$$\int_0^\infty \int_{\mathbb{R}^n} y^{1-2s} |\nabla U(x, y)|^2 \, dx \, dy = \sum_{k=1,2} \left(\int_0^\infty \int_{\mathbb{R}^n} y^{1-2s} |\nabla (U \rho_k)|^2 \, dx \, dy
ight)$$

$$+ \int_0^\infty \int_{\mathbb{R}^n} U^2 \rho_k \text{div}(y^{1-2s} \nabla \rho_k) \, dx \, dy - \int_{\mathbb{R}^n} U^2 y^{1-2s} \rho_k \partial_y \rho_k \, dx \bigg|_{y=0}$$

$$=: \sum_{k=1,2} (I_{k1} + I_{k2} - I_{k3}). \quad (6)$$

The surface integrals I_{k3} ($k = 1, 2$) disappear since ρ_k depend only on r and $\partial_y \rho_k(x, y) = O(y)$ as $y \to +0, x \in \mathbb{R}^n$.

To estimate terms I_{k2} we split the representation (1) as follows:

$$U(x, y) = U_1(x, y) + U_2(x, y) := \left(\int_{\mathbb{R}} + \int_{\mathbb{R}^n \setminus \mathbb{R}} \right) \mathcal{P}_s(x - \tilde{x}, y)u(\tilde{x}) \, d\tilde{x}.$$

and note that

$$|\rho_k \text{div}(y^{1-2s} \nabla \rho_k)| = |y^{1-2s} \rho_k \Delta \rho_k + (1 - 2s)y^{-2s} \rho_k \partial_y \rho_k|$$

$$\leq C y^{1-2s} \chi_{[r_0+1, r_0+2]}(r),$$

11
where χ_G stands for the characteristic function of the set G. This gives

$$|I_{k2}| \leq C \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}(U_1^2(x,y) + U_2^2(x,y))\chi_{[r_0+1, r_0+2]}(r) \, dx \, dy =: J_1 + J_2.$$

The estimate of J_1 follows from the fact that the Poisson kernel $P_s(\cdot, y)$ has L_1-norm equal to one, see, e.g., [19] or [31]. So the Young inequality yields

$$J_1 \leq C \int_0^{r_0+2} y^{1-2s}||U_1(\cdot, y); L_2(\mathbb{R}^n)||^2 \, dy \leq C \int_0^{r_0+2} y^{1-2s}||u; L_2(\mathbb{B}_R)||^2 \, dy.$$

To estimate J_2 we notice that the inequalities $|\vec{x}| \geq R$ and $|x| \leq r_0 + 2$ imply $|x - \vec{x}| \geq |\vec{x}|/2$. Using the Bunyakovsky–Cauchy–Schwarz inequality we obtain

$$J_2 \leq C \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}\chi_{[r_0+1, r_0+2]}(r) \left(\int_{\mathbb{R}^n \setminus \mathbb{B}_R} y^{2s} \frac{y^{2s}}{(|\vec{x}|^2/4 + y^2)^{n+2s}} \, d\vec{x} \right)^2 \, dx \, dy$$

$$\leq C(r_0)||u; L_2(\Omega)||^2 \int_0^\infty \int_{\mathbb{R}^n \setminus \mathbb{B}_R} y^{1-2s} \frac{y^{4s}}{(|\vec{x}|^2/4 + y^2)^{n+2s}} \, d\vec{x} \, dy$$

$$= C(r_0)||u; L_2(\Omega)||^2 \int_0^\infty \int_{\mathbb{R}^n \setminus \mathbb{B}_R} \frac{\tau^{4s}}{\tau^2 + 1/4} \, d\tau \int_{\mathbb{R}^n \setminus \mathbb{B}_R} |\vec{x}|^{2-2s-2n} \, d\vec{x}$$

$$\leq C(r_0)||u; L_2(\Omega)||^2 R^{2-n-2s}.$$

We substitute these estimates into (6) and arrive at

$$a_s^\Omega[u] = C(s) \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}||\nabla U||^2 \, dx \, dy \geq C(s) \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}||\nabla (U \rho_2)||^2 \, dx \, dy$$

$$- C(r_0)R^{2-n-2s}||u; L_2(\Omega)||^2 - C(r_0)||u; L_2(\mathbb{B}_R)||^2.$$

(7)

Denote by V the Caffarelli–Silvestre extension of the function $u \rho_2$. Since $U \rho_2$ is an admissible extension of $u \rho_2$, we have

$$\int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}||\nabla (U \rho_2)||^2 \, dx \, dy \geq \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}||\nabla V||^2 \, dx \, dy.$$

12
Now we introduce a partition of unity on the unit sphere in $\mathbb{R}^n \times \mathbb{R}$, that is a set of smooth, non-negative, zero order positively homogeneous functions $\varphi_j(x, y) \equiv \varphi_j(\frac{x}{r}, \frac{y}{r})$, $j = 1, \ldots, N$, such that

$$
\varphi_j(x, y) = \varphi_j(x, -y); \quad \varphi_j(x, 0) \equiv 1 \quad \text{for} \quad x \in C_j; \quad \sum_{j=1}^{N} \varphi_j^2(x, y) \equiv 1.
$$

Similarly to (6) we derive

$$
\int_{0}^{\infty} \int_{\mathbb{R}^n} y^{1-2s} |\nabla V|^2 \, dx \, dy = \sum_{j=1}^{N} \left(\int_{0}^{\infty} \int_{\mathbb{R}^n} y^{1-2s} |\nabla (V \varphi_j)|^2 \, dx \, dy \right)
$$

$$
+ \int_{0}^{\infty} \int_{\mathbb{R}^n} V^2 \varphi_j \text{div}(y^{1-2s} \nabla \varphi_j) \, dx \, dy - \int_{\mathbb{R}^n} V^2 y^{1-2s} \varphi_j \partial_y \varphi_j \, dx \bigg|_{y=0} \right). \quad (8)
$$

It is easy to see that

$$
|\nabla_x \varphi_j| \leq \frac{C}{r}; \quad |\partial_y \varphi_j| \leq \frac{Cy}{r^2}; \quad |\Delta \varphi_j| \leq \frac{C}{r^2};
$$
on the other hand, we have

$$
V(x, y) = \int_{\mathbb{R}^n \setminus B_{r_0+1}} \mathcal{P}_s(x - \tilde{x}, y)(u \rho_2)(\tilde{x}) \, d\tilde{x},
$$

that gives $V(x, y) = O(y^{2s})$ as $y \to +0$, $x \in \mathbb{B}_{\frac{r}{4}}$.

Therefore the last term in (8) vanishes, and we obtain

$$
\int_{0}^{\infty} \int_{\mathbb{R}^n} y^{1-2s} |\nabla V|^2 \, dx \, dy \geq \sum_{j=1}^{N} \int_{0}^{\infty} \int_{\mathbb{R}^n} y^{1-2s} |\nabla (V \varphi_j)|^2 \, dx \, dy
$$

$$
- C \int_{0}^{\infty} \int_{\mathbb{R}^n} V^2 \frac{y^{1-2s}}{|x|^2 + y^2} \, dx \, dy.
$$

Since $V \varphi_j$ is an admissible extension for the function $u \rho_2 \varphi_j$ supported in C_j, Corollary 11 gives

$$
C(s) \int_{0}^{\infty} \int_{\mathbb{R}^n} y^{1-2s} |\nabla (V \varphi_j)|^2 \, dx \, dy \geq a^2_s \|u \rho_2 \varphi_j\| \geq \Lambda_s \|u \rho_2 \varphi_j\|_{L_2(C_j)}^2,
$$
whereas Lemma 2.1 in [32] provides the estimate
\[
\int_0^\infty \int_{\mathbb{R}^n} V^2 \frac{y^{1-2s}}{|x|^2 + y^2} dxdy \leq C \| x \|^{-s} u \|_{L^2(\Omega)}^2.
\]
Substituting all estimates into (7), we arrive at
\[
a_s^\Omega[u] \geq \Lambda_s \sum_{j=1}^{N} \| u \rho_j \|_{L^2(C_j)}^2 - C \| x \|^{-s} u \|_{L^2(\Omega)}^2
\]
\[\quad - C(r_0) R^{2-n-2s} \| u \|_{L^2(\Omega)}^2 - C(r_0) \| u \|_{L^2(B_R)}^2,
\]
and (5) follows. □

Theorem 3. Under the above assumptions, the essential spectrum of A_s^{Ω} coincides with the ray $[\Lambda_s, +\infty)$, where Λ_s is the smallest eigenvalue of A_s^{ω}.

Proof. The Weyl sequence constructed in the proof of Theorem 1 shows that $[\Lambda_s, +\infty) \subset \sigma_{ess}(A_s^{\Omega})$.

To prove the opposite inclusion we need to check that if $\lambda = \Lambda_s - 2\delta$ with some positive δ then λ does not belong to the the essential spectrum of A_s^{Ω}.

Assume the contrary and consider the corresponding Weyl sequence that is a sequence $\{u_k\}_{k=1}^{+\infty} \subset \tilde{H}^s(\Omega)$ orthonormal in $L^2(\Omega)$ such that
\[
a_s^\Omega[u_k] \to \lambda \quad \text{as} \quad k \to +\infty.
\] (9)

However, choosing R so large that $CR^{-2s} \leq \delta$, we obtain by Theorem 2
\[
a_s^\Omega[u_k] \geq (\Lambda_s - CR^{-2s}) - C \| u_k \|_{L^2(B_R)}^2 \geq \lambda + \delta - C \| u_k \|_{L^2(B_R)}^2.
\]

By (9), the sequence $\{u_k\}$ is bounded in $H^s(B_R)$. By the Rellich Theorem, it is precompact in $L^2(B_R)$. Since it is orthonormal, we obtain
\[
\| u_k \|_{L^2(B_R)} \to 0 \quad \implies \quad \liminf a_s^\Omega[u_k] \geq \lambda + \delta,
\] that contradicts (9). □

Remark 3. If the cross-sections of the outlets to infinity differ, then a similar argument proves the relation $\sigma_{ess}(A_s^{\Omega}) = [\Lambda_s, +\infty)$, where Λ_s is the minimal of the smallest eigenvalues for the Dirichlet fractional Laplacians on the cross-sections.
5 Widening of the tube

The simplest multi-tube is a locally expanded cylinder (3) (see Fig. 2). Namely, we introduce the layer

$$\Pi_\ell = \{ x = (x', z) \subset \mathbb{R}^n : |z| < \ell \}, \quad \ell > 0,$$

and assume that a domain $Q' \supsetneq Q$ coincides with Q outside Π_ℓ, whereas the set $Q' \cap \Pi_\ell$ is bounded. Denote for the brevity

$$Q_\ell = Q \cap \Pi_\ell; \quad Q'_\ell = Q' \cap \Pi_\ell.$$

![Locally expanded cylinder](image)

By Theorem 3, we have

$$\sigma_{ess}(A^Q_s) = \sigma_{ess}(A'^Q_s) = [\Lambda_s, +\infty),$$

where Λ_s is the smallest eigenvalue of the operator A'^Q_s. Denote the corresponding positive eigenfunction by $\varphi_s(x')$.

The main result of this section is the following.

Theorem 4. The discrete spectrum of A'^Q_s is not empty. Namely, there is at least one eigenvalue in the interval $(0, \Lambda_s)$.

Proof. To prove this theorem we show that

$$\inf \sigma(A'^Q_s) < \Lambda_s.$$

This can be done via the max-min principle by construction of a function $u \in \tilde{H}^s(Q')$ that satisfies the inequality

$$a'^Q_s [u] - \Lambda_s \| u \|_{L_2(Q')}^2 < 0.$$
According to (2), it is sufficient to construct a function \(W = W(x, y) \) such that

\[
C(s) \mathcal{E}_s^{Q'}[W] - \Lambda_s \|W(\cdot, 0)\; ; L_2(Q')\|^2 < 0.
\]

(10)

To that end, we introduce a family of functions \(W_\varepsilon, \varepsilon > 0 \), in the following way:

\[
W_\varepsilon(x, y) = U(x', y)\rho_\varepsilon(z, y) + w_\varepsilon(x, y).
\]

Here \(U \) is the Caffarelli–Silvestre extension of \(\varphi_s \), the correction term \(w_\varepsilon \) will be chosen later, whereas \(\rho_\varepsilon \) is a cutoff function:

\[
\rho_\varepsilon(z, y) := \begin{cases}
\rho(\varepsilon |z|), & \text{if either } n \geq 3 \text{ or } n = 2 \text{ and } s \in (\frac{1}{2}, 1); \\
\rho(\varepsilon \sqrt{y^2 + z^2}), & \text{if } n = 2 \text{ and } s \in (0, \frac{1}{2}],
\end{cases}
\]

where \(\rho \) is a smooth function on \(\mathbb{R}_+ \), \(\rho(r) \equiv 1 \) for \(r \leq 1 \) and \(\rho(r) \equiv 0 \) for \(r \geq 2 \), and \(\rho'(r) \leq 0 \).

Inserting \(W_\varepsilon \) into (10) we obtain

\[
C(s) \mathcal{E}_s^{Q'}[W_\varepsilon] - \Lambda_s \|W_\varepsilon(\cdot, 0)\; ; L_2(Q')\|^2 = \mathcal{I}_1 + \mathcal{I}_2 + \mathcal{I}_3 + \mathcal{I}_4,
\]

(11)

where

\[
\mathcal{I}_1 = C(s) \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}|\nabla U(x', y)|^2 \rho_\varepsilon^2(z, y) \, dx \, dy - \Lambda_s \int_{\mathcal{Q}} \varphi_s^2(x') \rho_\varepsilon^2(z, 0) \, dx,
\]

\[
\mathcal{I}_2 = C(s) \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}(2U \nabla U \cdot \rho_\varepsilon \nabla \rho_\varepsilon + U^2 |\nabla \rho_\varepsilon|^2) \, dx \, dy,
\]

\[
\mathcal{I}_3 = 2C(s) \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}(U \rho_\varepsilon) \cdot \nabla w_\varepsilon \, dx \, dy - 2\Lambda_s \int_{\mathcal{Q}} \varphi_s(x') \rho_\varepsilon(|z|) w_\varepsilon(x, 0) \, dx,
\]

\[
\mathcal{I}_4 = C(s) \int_0^\infty \int_{\mathbb{R}^n} y^{1-2s}|\nabla w_\varepsilon(x, y)|^2 \, dx \, dy - \Lambda_s \int_{\mathcal{Q}} w_\varepsilon^2(x, 0) \, dx.
\]

It is easy to see that

\[
\mathcal{I}_1 \leq \int_{\mathbb{R}} \left(C(s) \int_0^\infty y^{1-2s}|\nabla U(x', y)|^2 \, dx' \, dy - \Lambda_s \int_{\omega} \varphi_\varepsilon^2(x') \, dx' \right) \rho^2(\varepsilon |z|) \, dz = 0.
\]
Let us estimate I_2. Notice that if either $n \geq 3$ or $n = 2$ and $s \in (\frac{1}{2}, 1)$ then the first term disappears, and we have

$$I_2 = C(s) \int_0^\infty \int_{\mathbb{R}^{n-1}} y^{1-2s} U^2 \, dx' \, dy \int_\mathbb{R} (\rho'_\varepsilon(|z|))^2 \, dz \lesssim C\varepsilon \int_1^2 (\rho'(r))^2 \, dr = O(\varepsilon)$$

(the inequality (\ast) is due to Lemma [1]).

The second case, $n = 2$ and $s \in (0, \frac{1}{2}]$, is more tricky. We integrate by parts the first term. Similarly to (6), the surface integral disappears, and thus

$$I_2 = C(s) \int_0^\infty \int_{\mathbb{R}^2} U^2 (y^{1-2s}(\partial_s \rho_\varepsilon)^2 - \rho_\varepsilon \partial_y (y^{1-2s} \partial_y \rho_\varepsilon)) \, dx \, dy.$$

As in the proof of Lemma [1] we use the Fourier transform in x' and write

$$\int_\mathbb{R} U(x', y)^2 \, dx' = (2\pi)^\frac{n}{2} \int_\mathbb{R} \left| F_{1\varphi_s}(\xi') \right|^2 \left| \hat{p}(y\xi') \right|^2 \, d\xi',$$

where

$$\hat{p}(t) = F_{1\varphi_s}(t, 1).$$

By the coordinate transform $y = \varepsilon^{-1} r \sin(\theta)$, $z = \varepsilon^{-1} r \cos(\theta)$ we arrive at

$$|I_2| \leq C \int_1^2 \left(r(\rho'(r))^2 + r|\rho''(r)| + |\rho'(r)| \right) \int_0^\frac{\pi}{2} (\varepsilon^{-1} r \sin(\theta))^{1-2s} \times$$

$$\times \int_\mathbb{R} \left| F_{1\varphi_s}(\xi') \right|^2 \left| \hat{p}(\varepsilon^{-1} r \sin(\theta)\xi') \right|^2 \, d\xi' \, d\theta \, dr$$

$$\leq C \int_\mathbb{R} \left| F_{1\varphi_s}(\xi') \right|^2 \int_1^2 \int_0^\frac{\pi}{2} (\varepsilon^{-1} r \sin(\theta))^{1-2s} \left| \hat{p}(\varepsilon^{-1} r \sin(\theta)\xi') \right|^2 \, d\theta \, dr \, d\xi'.$$

We recall that \hat{p} decays exponentially and estimate the interior double
integral as follows:

\[
\int_1^{\pi/2} \int_0^{\pi/2} (\varepsilon^{-1} r \sin(\theta))^{1-2s} |\hat{\rho}(\varepsilon^{-1} r \sin(\theta)\xi')|^2 \, d\theta \, dr \\
\leq C \int_1^{\pi/2} \int_0^{\pi/2} (\varepsilon^{-1} r \sin(\theta))^{1-2s} \exp(-c\varepsilon^{-1} r \sin(\theta) |\xi'|) \, d\theta \, dr \\
\leq C \int_0^{\pi/2} \varepsilon^{2s-1} \exp(-c\varepsilon^{-1} |\xi'|) \, d\theta = C\varepsilon^{2s} \frac{1 - \exp(-c\varepsilon^{-1} |\xi'|)}{|\xi'|}.
\]

Thus,

\[
|I_2| \leq C\varepsilon^{2s} \left(\int_{|\xi'| \leq \varepsilon} + \int_{\varepsilon \leq |\xi'| \leq 1} + \int_{|\xi'| \geq 1} \right) |F_{1}\varphi_s(\xi')|^2 \frac{1 - \exp(-c\varepsilon^{-1} |\xi'|)}{|\xi'|} \, d\xi' \\
=: I_{21} + I_{22} + I_{23}.
\]

Now we recall that $F_{1}\varphi_s$ is smooth, and therefore,

\[
I_{21} \leq C\varepsilon^{2s} \int_0^1 \frac{1 - \exp(-ct)}{t} \, dt \leq C\varepsilon^{2s}, \\
I_{22} \leq C\varepsilon^{2s} \int_{\varepsilon}^{1} \frac{d\xi'_t}{\xi'_t} \leq C\varepsilon^{2s} \log(\varepsilon^{-1}); \\
I_{21} \leq C\varepsilon^{2s} \int_{\mathbb{R}} |F_{1}\varphi_s(\xi')|^2 \, d\xi' \leq C\varepsilon^{2s}.
\]

Summing up, we obtain that in any case

\[
I_2 = O(\delta), \quad \text{where} \quad \delta = \max\{\varepsilon, \varepsilon^{2s} \log(\varepsilon^{-1})\}.
\]

Now we choose $w_{\varepsilon}(x, y) = \delta^2 w(x, y)$, where w is a smooth function supported in $(Q'_\varepsilon \setminus \overline{Q}_1) \times [0, 1)$. Then, easily, the last term in I_3 vanishes, and $I_4 = O(\delta)$. Further, if ε is small enough then we can drop ρ_{ε} in I_3 and recall that U satisfies the equation

\[
\text{div}(y^{1-2s}\nabla U) = 0 \quad \text{in} \quad \mathbb{R}^n \times \mathbb{R}_+.
\]
Therefore, the integration by parts yields
\[
\mathcal{I}_3 = -2C(s)\delta^{\frac{1}{2}} \int_{Q'_\ell \setminus \overline{Q}_\ell} \lim_{y \to 0^+} (y^{1-2s} \partial_y U(x', y)) w(x, 0) \, dx.
\]

We claim that \(\mathcal{I}_3 = -C\delta^{\frac{1}{2}} < 0\) provided \(w \geq 0, \ w(\cdot, 0) \neq 0\). Indeed, changing the variable \(\tau = y^{2s}\), we rewrite the equation (12) as follows:
\[
\Delta_x U(x', \tau^\frac{1}{2s}) + 4s^2 \tau^{\frac{2s-1}{2s}} \partial_{\tau \tau} U(x', \tau^\frac{1}{2s}) = 0 \quad \text{in} \quad \mathbb{R}^n \times \mathbb{R}_+,
\]
and
\[
\mathcal{I}_3 = -2C(s)\delta^{\frac{1}{2}} \int_{Q'_\ell \setminus \overline{Q}_\ell} 2s \lim_{\tau \to 0^+} \frac{U(x', \tau^\frac{1}{2s})}{\tau} w(x, 0) \, dx.
\]

By the strong maximum principle, \(U > 0\) in \(\mathbb{R}^n \times \mathbb{R}_+\). Since \(U(\cdot, 0) = 0\) in \(Q'_\ell \setminus \overline{Q}_\ell\), the differential operator in (13) satisfies the assumptions of the generalized boundary point lemma [33] (see also [34, p. 201]). Namely, we have
\[
\liminf_{\tau \to 0^+} \frac{U(x', \tau^\frac{1}{2s})}{\tau} > 0, \quad x \in Q'_\ell \setminus \overline{Q}_\ell,
\]
and the claim follows.

Finally, we substitute all obtained estimates into (11). This gives
\[
C(s) \mathcal{E}_s^{Q'_\ell}[W_\varepsilon] - \Lambda_s \|W_\varepsilon(\cdot, 0); L_2(Q'_\ell)\|^2 \leq -C\delta^{\frac{1}{2}} + O(\delta).
\]
This, in turn, gives (10) provided \(\delta\) (and therefore \(\varepsilon\)) is small enough, and completes the proof. \(\square\)

Remark 4. Notice that \(\lambda_1(A^Q_s) < (\lambda_1(-\Delta_{Q'_\ell}))^s\), cf. Remark [7].

Acknowledgements. The results of Section 3 were obtained under support of the Russian Foundation for Basic Research (RFBR) grant 20-51-12004. The results of Sections 4 and 5 were obtained under support of the Russian Science Foundation (RSF) grant 19-71-30002.
References

[1] I. W. Herbst, “Spectral theory of the operator \((p^2 + m^2)^{1/2} - Ze^2/r\),” *Communications in Mathematical Physics*, vol. 53, pp. 285–294, Feb. 1977.

[2] F. Nardini, “Exponential decay for the eigenfunctions of the two body relativistic hamiltonian,” *Journal d’Analyse Mathématique*, vol. 47, pp. 87–109, Dec. 1986.

[3] R. Carmona, W. C. Masters, and B. Simon, “Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions,” *Journal of Functional Analysis*, vol. 91, pp. 117–142, June 1990.

[4] H. Triebel, *Interpolation theory, function spaces, differential operators*. North-Holland mathematical library, North-Holland Pub. Co, 1978.

[5] P. Garbaczewski and V. Stephanovich, “Fractional Laplacians in bounded domains: Killed, reflected, censored, and taboo Lévy flights,” *Physical Review E*, vol. 99, p. 042126, Apr. 2019.

[6] Y. Avishai, D. Bessis, B. G. Giraud, and G. Mantica, “Quantum bound states in open geometries,” *Physical Review B*, vol. 44, pp. 8028–8034, Oct. 1991.

[7] S. A. Nazarov, “Discrete spectrum of cranked, branching, and periodic waveguides,” *St. Petersburg Mathematical Journal*, vol. 23, pp. 351–379, Apr. 2012.

[8] S. A. Nazarov, K. Ruotsalainen, and P. Uusitalo, “The Y-junction of quantum waveguides,” *ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik*, vol. 94, pp. 477–486, June 2014.

[9] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions,” *Journal of Mathematical Analysis and Applications*, vol. 449, pp. 907–925, May 2017.

[10] P. Exner, P. Šeba, and P. Šťovíček, “On existence of a bound state in an L-shaped waveguide,” *Czechoslovak Journal of Physics*, vol. 39, pp. 1181–1191, Nov. 1989.

[11] P. Duclos and P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions,” *Reviews in Mathematical Physics*, vol. 07, pp. 73–102, Jan. 1995.

[12] J. Goldstone and R. L. Jaffe, “Bound states in twisting tubes,” *Physical Review B*, vol. 45, pp. 14100–14107, June 1992.
[13] F. L. Bakharev, S. G. Matveenko, and S. A. Nazarov, “The discrete spectrum of cross-shaped waveguides,” *St. Petersburg Mathematical Journal*, vol. 28, pp. 171–180, Feb. 2017.

[14] P. Exner and M. Holzmann, “Dirac operator spectrum in tubes and layers with a zigzag-type boundary,” *Letters in Mathematical Physics*, vol. 112, no. 5, p. 102, 2022.

[15] W. Borrelli, P. Briet, D. Krejčířík, and T. Ourmières-Bonafos, “Spectral properties of relativistic quantum waveguides,” *Annales Henri Poincaré*, vol. 23, p. 4069–4114, Apr. 2022.

[16] M. A. Lifshits and A. I. Nazarov, “On Brownian exit times from perturbed multi-strips,” *Statistics & Probability Letters*, vol. 147, pp. 1–5, Apr. 2022.

[17] P. Exner and H. Kovářík, *Quantum waveguides*. Theoretical and mathematical physics, Cham Heidelberg: Springer, 2015.

[18] S. A. Molchanov and E. Ostrovskii, “Symmetric stable processes as traces of degenerate diffusion processes,” *Theory of Probability & Its Applications*, vol. 14, pp. 128–131, Jan. 1969.

[19] L. Caffarelli and L. Silvestre, “An Extension Problem Related to the Fractional Laplacian,” *Communications in Partial Differential Equations*, vol. 32, pp. 1245–1260, Aug. 2007.

[20] R. Musina and A. I. Nazarov, “On the Sobolev and Hardy constants for the fractional Navier Laplacian,” *Nonlinear Analysis: Theory, Methods & Applications*, vol. 121, pp. 123–129, 2015.

[21] A. Iannizzotto, S. Mosconi, and M. Squassina, “H^s versus C^0-weighted minimizers,” *Nonlinear Differential Equations and Applications NoDEA*, vol. 22, no. 3, pp. 477–497, 2015.

[22] R. Musina and A. I. Nazarov, “Strong maximum principles for fractional Laplacians,” *Proceedings of the Royal Society of Edinburgh: Section A Mathematics*, vol. 149, no. 5, pp. 1223–1240, 2019.

[23] M. S. Birman and M. Z. Solomjak, *Spectral theory of self-adjoint operators in Hilbert space*. Mathematics and its applications (Soviet series), Dordrecht ; Boston : Norwell, MA, U.S.A: D. Reidel Pub. Co. ; Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 1987.

[24] R. Musina and A. I. Nazarov, “On fractional Laplacians,” *Communications in Partial Differential Equations*, vol. 39, no. 9, pp. 1780–1790, 2014.
[25] A. I. Nazarov, “Variety of fractional Laplacians,” Aug. 2021. arXiv:2108.12924 [math].

[26] B. Dyda, A. Kuznetsov, and M. Kwaśnicki, “Eigenvalues of the fractional Laplace operator in the unit ball,” Journal of the London Mathematical Society, vol. 95, no. 2, pp. 500–518, 2017.

[27] M. Kwaśnicki, “Eigenvalues of the fractional Laplace operator in the interval,” Journal of Functional Analysis, vol. 262, no. 5, pp. 2379–2402, 2012.

[28] F. L. Bakharev and A. I. Nazarov, “Existence of the discrete spectrum in the Fichera layers and crosses of arbitrary dimension,” Journal of Functional Analysis, vol. 281, p. 109071, Aug. 2021.

[29] I. V. Kamotskiǐ, “Surface wave running along the edge of an elastic wedge,” St. Petersburg Mathematical Journal, vol. 20, pp. 59–63, Nov. 2008.

[30] A. I. Nazarov and A. P. Shcheglova, “Solutions with various structures for semilinear equations in \(\mathbb{R}^n \) driven by fractional Laplacian,” Calculus of Variations and Partial Differential Equations, vol. 62, no. 4, 2023.

[31] R. Musina and A. I. Nazarov, “A weighted estimate for generalized harmonic extensions,” Mathematical Inequalities & Applications, vol. 23, no. 2, pp. 419–424, 2020.

[32] R. Musina and A. I. Nazarov, “A tool for symmetry breaking and multiplicity in some nonlocal problems,” Mathematical Methods in the Applied Sciences, vol. 43, pp. 9345–9357, Nov. 2020.

[33] L. I. Kamynin and B. N. Khimchenko, “Theorems of the Giraud type for second-order equations with weakly degenerate nonnegative characteristic part,” Siberian Mathematical Journal, vol. 18, no. 1, pp. 76–91, 1977.

[34] D. E. Apushkinskaya and A. I. Nazarov, “The normal derivative lemma and surrounding issues,” Russian Mathematical Surveys, vol. 77, no. 2, pp. 189–249, 2022.