REVIEW

Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism [version 1; referees: 2 approved]

Vladimir N. Uversky 1-3

1Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33620, USA
2Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 7 Institutskaya St., 142290 Pushchino, Moscow Region, Russian Federation
3Laboratory of Structural Dynamics, Stability and Folding Of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Av., 194064 St. Petersburg, Russian Federation

Abstract

Despite attracting the close attention of multiple researchers for the past 25 years, α-synuclein continues to be an enigma, hiding sacred truth related to its structure, function, and dysfunction, concealing mechanisms of its pathological spread within the affected brain during disease progression, and, above all, covering up the molecular mechanisms of its multipathogenicity, i.e. the ability to be associated with the pathogenesis of various diseases. The goal of this article is to present the most recent advances in understanding of this protein and its aggregation and to show that the remarkable structural, functional, and dysfunctional multifaceted nature of α-synuclein can be understood using the proteoform concept.
Corresponding author: Vladimir N. Uversky (vuversky@health.usf.edu)

How to cite this article: Uversky VN. Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism [version 1; referees: 2 approved] F1000Research 2017, 6(F1000 Faculty Rev):525 (doi: 10.12688/f1000research.10536.1)

Copyright: © 2017 Uversky VN. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: The author(s) declared that no grants were involved in supporting this work.

Competing interests: The author declares that he has no competing interests.

First published: 20 Apr 2017, 6(F1000 Faculty Rev):525 (doi: 10.12688/f1000research.10536.1)
Introduction

α-synuclein is a small, highly abundant, and highly conserved presynaptic protein with intimate links to many neurodegenerative diseases and is one of the more intensively studied human proteins. In fact, since its discovery in 1991, followed by the demonstration of its natively unfolded nature, and especially after finding in 1997 a potential relationship between α-synuclein aggregation and the pathology of Parkinson’s disease (PD), this protein has attracted the close attention of many researchers specializing in various scientific areas. According to the Web of Science database, as of 17 February 2017, there were 15,367 publications about this protein, reflecting collective efforts of 37,066 researchers affiliated with 6,326 organizations from 93 countries/territories, and more than 3,140 papers were published on α-synuclein during the past 2 years alone. Figure 1 represents a more detailed view of these publications by showing the cumulative number of publications for the past 26 years and the annual number of publications dedicated to this protein.

Despite immense efforts, this 25-year-old enigmatic protein continues to keep multiple secrets related to its structure, function, dysfunction, multipathogenicity, and pathology transmission. The aforementioned considerations constitute a perfect stage for an important question related to α-synuclein: what is so special about this protein that makes it a multipathogenicity carrier? The goal of this article is to shed some light on understanding of this protein and its aggregation.

Multipathogenicity angle

To better understand why researchers continue to study this protein, let’s consider what multipathogenicity means for α-synuclein. Although originally considered a potential cause of PD (where aggregated α-synuclein is present in the form of intracellular inclusions, Lewy bodies [LBs] and Lewy neurites [LNs], this protein is known to be involved in the pathogenesis of a diverse group of neurodegenerative diseases collectively known as synucleinopathies. Some of these maladies include Alzheimer’s disease (AD), neurodegeneration with brain iron accumulation type 1, pure autonomic failure, Down’s syndrome, amyotrophic lateral sclerosis-parkinsonism-dementia complex of Guam, multiple system atrophy (MSA), and several LB disorders (that, in fact, might represent a clinical continuum), such as sporadic and familial PD, dementia with LBs (DLB), diffuse LB disease, the LB variant of AD, and PD dementia. These (and potentially many other) neurodegenerative diseases can be considered α-synuclein-related brain amyloidoses, since all of them are characterized by the presence of common pathological intracellular inclusions containing α-synuclein in selectively vulnerable neurons and glia and since the onset and progression of their clinical symptoms, as well as the degeneration of affected brain regions, are linked to the formation of abnormal filamentous aggregates containing α-synuclein. Importantly, accumulated evidence indicates that α-synuclein-based aggregation and deposition of LBs can affect multiple areas of the peripheral and central nervous systems, such as the dorsal raphe nucleus, dorsal nucleus of the vagus nerve, hypothalamic nuclei, intermedialateral nucleus, locus coeruleus, nucleus basalis of Meynert, and substantia nigra, whereas LNs can be found in the basal ganglia, cerebral cortex, dorsal nucleus of the vagus nerve, and sympathetic ganglia as well as in the intramural autonomic ganglia of the gastrointestinal tract. In line with these earlier observations, a recent study of the inclusion pathologies in PD and DLB confirmed the abundant presence of LBs and LNs in the dorsal motor vagal and solitary nuclei, locus coeruleus, parabrachial nuclei, pedunculopontine and raphe nuclei, periaqueductal gray, prepositus hypoglossal, substantia nigra, reticular formation, and ventral tegmental area and demonstrated the presence of LN in brainstem fiber tracts and the existence of LBs and LNs in cranial nerve, premotor oculomotor, precerebellar, and vestibular brainstem nuclei. This study also

Figure 1. A time course of the development of interest in α-synuclein-related research. Web of Science data related to the publications dedicated to α-synuclein: the cumulative number of publications for the past 26 years (pink area plot) and the annual number of publications dedicated to this protein (cyan bars).
supported an important notion that α-synuclein deposition-related pathological processes can spread and do so transneuronally along anatomical pathways\(^5\). Recently, application of the α-synuclein proximity ligation assay revealed the presence in the post-mortem brain tissue from PD patients of previously unrecognized pathology in the form of extensive diffuse deposition of α-synuclein oligomers that were often localized, in the absence of LBs, to neuroanatomical regions mildly affected in PD\(^5\).

Obviously, although the diversity of synucleinopathies and related symptoms potentially can be attributed to the complexity of the organization of brain and nervous system (different motor and non-motor symptoms are the manifestation of the malfunction of different brain and nervous system regions), this complexity, in general, cannot be used to explain the cause of the multifaceted, α-synuclein-related pathology at the molecular level. In fact, since α-synuclein is highly expressed throughout the brain, accounting for as much as 1% of the total protein in soluble cytosolic brain fractions\(^2\), and since any given synucleinopathy possesses unique spatiotemporal characteristics (happens at a specific time due to the malfunction of a specific brain region), some other factors, likely related to α-synuclein and its interaction with the environment (such as mutations in the SYN homolog gene, presence of alternatively spliced isoforms, post-translational modifications (PTMs), toxic insult, oxidative stress, presence of dopamine, metal ions, specific binding partners, etc.), should be taken into account.

Connection of synucleinopathies to other diseases

Recent studies provided further support for an interesting molecular link between the synucleinopathies and other neurodegenerative diseases by demonstrating the ability of α-synuclein to interact with and regulate proteins specific to several degenerative maladies. For example, it was shown that α-synuclein can interact and co-aggregate with mutant huntingtin, a protein related to Huntington’s disease\(^3\), and with tau protein, the aggregation of which is associated with various tauopathies, including AD\(^3\).

A cooperation of α-synuclein with β-amyloid (Aβ) was shown to block SNARE-dependent vesicle fusion\(^4\), whereas interaction with Aβ led to the inhibition of Aβ deposition and reduced plaque formation\(^1\). Finally, α-synuclein was also shown to engage in interaction with autophagy/beclin1 regulator 1, a protein related to MSA pathogenesis, and this binding was dramatically enhanced by the α-synuclein phosphorylation at serine 129\(^2\). Note that the aforementioned interactions of α-synuclein with the proteins associated with other neurodegenerative diseases can be grouped into two classes – interactions leading to the co-aggregation of α-synuclein with said proteins and interactions leading to the modulation of functionality of proteins targeted by α-synuclein.

Multifunctionality angle

Many papers in the field start with an introductory sentence stating that α-synuclein is a small, highly conserved presynaptic protein with unknown function. This statement is a bit odd, tacking into account all the efforts of numerous researchers working on α-synuclein. In fact, according to the PubMed database (as of 16 December 2016), there were more than 7,150 papers mentioning synuclein function, many of those papers were dedicated to the detailed investigation of what this protein can do, and, as a result, many potential functions were ascribed to α-synuclein. The explanation of this contradiction (many functions are described, but function is unknown) is in the logistics of the classical structural biology relying on the influential “one gene – one enzyme – one function” hypothesis, according to which each gene encodes a single protein that has a unique biological function and is responsible for a single step in a metabolic pathway\(^3\). In line with this hypothesis, distortion of normal protein function (in the form of loss of a normal function or gain of a pathological function) might represent the molecular basis of a proteinopathy.

However, since α-synuclein was shown to have not one but many functions (see below), this immediately brought significant uneasiness to functional data interpretation, leading to the logical conclusion that the observed multifunctionality indicates the lack of a unique function and, therefore, could be unreal. Although, from the viewpoint of the “one protein – one function” model, these observations provide grounds for the “protein with unknown function” epithet, an alternative (and much more intriguing and lucrative) hypothesis stating that α-synuclein is indeed a multifunctional protein, which can, in fact, do everything ascribed to it (and, probably, much more than that). In this case, problems with different α-synuclein-based functions might be directly or indirectly related to the pathogenesis of different synucleinopathies. In other words, a spectrum of functions can cause a spectrum of dysfunctions that might lead to a spectrum of diseases.

Early work in this direction showed that functions of α-synuclein can range from fatty acid binding\(^5\) to interaction with plasma membranes and formation of membrane channels or modification of their activity\(^5\), association with mitochondria causing mitochondrial dysfunction\(^6\), metal binding\(^3\), interaction with pesticides and herbicides\(^6\), synaptic vesicle release and trafficking\(^4\), positive and negative regulation of neurotransmitter release\(^6\), regulation of certain enzymes and transporters\(^4\), control of neuronal survival\(^4\), regulation of the neuronal apoptotic response\(^4\) and protection of neurons from various apoptotic stimuli\(^4\), and promiscuous interaction with hundreds of unrelated proteins and other binding partners\(^4\). In the past 2 years, the phenomenon of α-synuclein multifunctionality was further confirmed and elaborated by adding a long list of new functions. Note that the inventory below is far from being exhaustive, since over 1,100 articles dedicated to synuclein function were published during the last 2 years, and, therefore, it is physically impossible to cover all new developments in this commentary owing to the space restrictions.

Knockout studies of the synuclein functionality

Knockout experiments, where the target gene is made inoperative, represent a useful approach for the evaluation of the global biological role of a query protein. Earlier studies showed that although α-synuclein-null mice were viable, fertile, and characterized by intact brain architecture, they possessed altered dopamine release and displayed a reduction in striatal dopamine and attenuated dopamine-dependent locomotor response\(^8\). Furthermore, α-synuclein-null mice were characterized by a selective deficiency of undocked vesicles without affecting docked vesicles in
hippocampal synapses93, showed abnormal compartmentalization of norepinephrine in dentate gyrus94, possessed greatly increased rates of operant behavior during intracranial self-stimulation95, and showed an earlier onset of symptoms of experimental autoimmune encephalomyelitis96 but were resistant to the Parkinsonian neurotoxin MPTP that inhibits mitochondrial complex I97. This MPTP resistance was also present in the \(\gamma\)-synuclein and double \(\alpha\)-synuclein/\(\gamma\)-synuclein-null mutant animals98, and \(\alpha\)-synuclein-null mice were shown to have an attenuated loss of striatal dopamine caused by prolonged chronic MPTP administration99.

Multiple studies of the \(\alpha\)-synuclein-knockout models suggested that this protein plays a role in lipid metabolism. In fact, \(\alpha\)-synuclein-null animals were characterized by decreased brain palmitate uptake and altered palmitate metabolism100, showed increased incorporation and turnover of the docosahexaenoic acid in brain phospholipids101, possessed reduced arachidonate turnover in brain phospholipids102, and showed increased mass of brain neutral lipids103.

Binding promiscuity

Among biological activities recently ascribed to \(\alpha\)-synuclein is a numerous set of examples providing solid support for its reputation as a promiscuous binder. In fact, multiple new examples were reported showing that this protein is engaged in interaction with the multifunctional co-chaperone Bcl-2-associated athanogene-I104, prolyl oligopeptidase leading to enhanced \(\alpha\)-synuclein dimerization105, various synaptosomal proteins106, mitochondria-associated membranes107, molecular chaperone Munc18-1, which is a key component of the exocytic machinery that controls the release of neurotransmitters108, the neuronal phosphoprotein synapsin III109, voltage-dependent anion channel110, a suicide inhibitor of monoamine oxidases, rasagiline111, and the aldehyde of serotonin, 5-hydroxyindoleacetaldehyde112.

Control of cellular processes

Furthermore, \(\alpha\)-synuclein has been linked to several cellular processes, such as activation of microglia113, involvement in the regulation of autophagy114,115, initiation of innate and adaptive immune responses116, membrane remodeling117,118, regulation of synaptic vesicle size119, contribution to axonal transport impairment120, stress-induced mitochondrial morphological remodeling (in cooperation with parkin and PINK1)121, alteration of endoplasmic reticulum–mitochondrial communication122, promotion of microtubule nucleation and enhancement of microtubule growth rate via interaction with microtubules and tubulin \(\alpha,\beta\) tetramer123, and inhibition of signaling related to the ATF6 pathway, which is a protective branch of the unfolded protein response124, and even serving as a brain antimicrobial peptide that exhibits noticeable antibacterial activity against \textit{Escherichia coli} and \textit{Staphylococcus aureus}125.

\(\alpha\)-synuclein radicals

Recently, Kumar \textit{et al.} exploited an intriguing possibility that the formation of proteinaceous radicals might contribute to PD pathogenesis126. Using the highly sensitive immuno-spin trapping technique, the authors showed that in the midbrains of manebo- and paraquat-co-exposed mice, the activation of NADPH oxidase and inducible nitric oxide synthase took place, eventually leading to the peroxynitrite-mediated formation of \(\alpha\)-synuclein radicals in the dopaminergic neurons of exposed mice127. Furthermore, the process of \(\alpha\)-synuclein radical formation paralleled death dopaminergic neurons in the midbrains of manebo- and paraquat-co-exposed mice, indicating that there is an intricate link between protein radicals and disease progression128.

Regulation of various proteins

\(\alpha\)-synuclein was also shown to regulate complexin-1 and midbrain-specific factor forhead box P1 expression129, enhance histone H3 lysine-9 (H3K9) dimethylation and promote H3K9me2-dependent transcriptional responses130, protect the functions of Hsp90 clients, such as Akt and mTOR, when the activity of Hsp90 is blocked131, stimulate protein phosphatase-2A (PP2A) activity and regulate tyrosine hydroxylase phosphorylation via the control of PP2A methylation132, modulate the trafficking and function of glutamate N-methyl-d-aspartate receptor133, and promote Notch1 intracellular domain degradation via interaction with the ubiquitin E3 ligase Fbw7134.

\(\alpha\)-synuclein in the family circle

Synucleins constitute a family of closely related presynaptic proteins encoded by three distinct genes and are found only in vertebrates135. In addition to \(\alpha\)-synuclein, which is also known as the non-amyloid-\(\beta\) component (NAC) precursor protein or synelfin136-138, this family includes \(\beta\)-synuclein (phosphoneuroprotein 14 or PNP14)139-141, and \(\gamma\)-synuclein (breast cancer-specific gene 1 [BCSG1] or persyn)142-144. There is 78% identity between human \(\alpha\) and \(\beta\)-synucleins, with the major difference between the two being the lack of the significant part of the NAC region145. Human \(\gamma\)-synuclein shares 60% sequence similarity with \(\alpha\)-synuclein and lacks the tyrosine-rich C-terminal tail that represents a signature of \(\alpha\) and \(\beta\)-synucleins18,146. Importantly, in addition to the traditional \(\alpha\)-synuclein-containing pathological inclusions, the development of several synucleinopathies is accompanied by the appearance of \(\alpha\)-, \(\beta\)-, and \(\gamma\)-synuclein-positive vesicular-like lesions at the presynaptic axon terminals in the hippocampal dentate, hilar, and CA2/3 regions147.

Structurally, all members of the synuclein family are intrinsically disordered at physiological conditions but adopt comparable partially folded conformations at acidic pH or at high temperature148. Both \(\alpha\)- and \(\gamma\)-synucleins can easily form fibrils under a variety of identical conditions149, whereas \(\beta\)-synuclein fibrillation requires the presence of some metal ions (Zn2+, Pb2+, and Cu2+)150.

Fibrillation of human \(\alpha\)-synuclein can be inhibited by the addition of either \(\beta\)- or \(\gamma\)-synuclein \textit{in vitro}151, with \(\beta\)-synuclein being shown to inhibit \(\alpha\)-synuclein aggregation in an animal model152. NMR paramagnetic relaxation enhancement experiments revealed that \(\beta\)-synuclein forms transient heterodimers with \(\alpha\)-synuclein that are characterized by high specificity and weak affinity153. Recently, the competition of \(\beta\)-synuclein for binding sites at the surfaces of lipid vesicles and at the surfaces of \(\alpha\)-synuclein fibrils was proposed as a molecular mechanism of the \(\beta\)-synuclein-driven inhibition of lipid-induced \(\alpha\)-synuclein aggregation and secondary nucleation
of α-synuclein fibrillation, respectively105. In agreement with this inhibitory action of β-synuclein, some positive results of the use of β-synuclein as a means for reducing aggregated α-synuclein levels were obtained in preclinical studies106.

Double-knockout of α- and β-synucleins in mice did not impair basic brain functions or survival, and no significant changes were detected in the ultrastructure of synuclein-deficient synapses, in synaptic plasticity, or in the pool size of synaptic vesicles107. However, these double null animals were characterized by the decreased dopamine levels in their brains and showed selective changes in the levels of synaptic signaling proteins, such as complexins and 14-3-3 proteins107. Recently, analysis of the triple α-synuclein/β-synuclein/γ-synuclein-knockout mice revealed that these proteins have profound effects on the presynaptic architecture and serve as “important orchestrators of presynaptic terminal topography”, regulating presynapse size and organization of the pool of synaptic vesicles108. A systematic analysis of the structural and functional features of the nigrostriatal system in mice with every possible combination of knockout members of the synuclein family revealed that although these proteins have noticeable functional redundancy, some functions are specific for a particular member and therefore the remaining synucleins cannot fully compensate for the deficiency of a lost family member109. For example, β-synuclein was shown to be needed for the efficient maintenance of balance and coordination in aged animals, whereas the presence of α-synuclein is crucial for stabilization of the striatal dopamine level and cannot be compensated by other family members109.

Regulatability angle

Also, a set of recent studies was dedicated to the analysis of various means of regulation of α-synuclein, its normal and pathological functions, and aggregation. It was shown that this protein can be regulated, at the expression level, by the microRNAs miR-34b and miR-34c110 as well as miR-19b, miR-29a, and miR-29c111, by promoter methylation in the α-synuclein gene SNCA112, and by other means of epigenetic-mediated regulation113. Aggregation of α-synuclein can be controlled by antibodies at substoichiometric concentrations (as low as 1:1000 antibody to protein ratio)114. Different monoclonal anti-C-terminal antibodies were shown to differently interact with different forms of α-synuclein (monomeric or aggregated), with the antibodies with the strongest binding to aggregated protein also being the strongest inhibitors of α-synuclein fibrillation and membrane permeabilization115. Aggregation of α-synuclein can be modulated via interaction with the moonlighting 14-3-3 proteins116, by caspase-1-mediated truncation117, by the small secretory chaperone proSAAS118, or by Geum urbanum extract119. The aggregation, toxicity, levels, and secretion of α-synuclein were shown to be controlled by endocytic recycling pathway components, such as Rab8b, Rab11a, Rab13, and Slp5120. Also, interaction with an anti-amyloidogenic agent, ginsenoside Rg1, was shown to inhibit the fibrillation and toxicity of α-synuclein and disaggregate preformed fibrils121. The extracellular α-synuclein can be sorted in extracellular vesicles in a SUMOylation-dependent manner122, whereas the extracellular release of this protein is controlled by the DnaJ/Hsc70 chaperone complexes123. The nuclear accumulation and toxicity of α-synuclein can be regulated by a novel protein, TRIM28124, that controls the fate specification of the neural cells125, whereas loss of lysosomal β-glucocerebrosidase activity promotes global intracellular accumulation and toxicity of α-synuclein126.

Structural polymorphism angle

Protein-chameleon

The immense multifunctionality and related multipathogenicity of α-synuclein suggest that this protein should have a highly amenable structure to be able to do everything ascribed to it. In agreement with this hypothesis, it was recognized early on that α-synuclein is a typical intrinsically disordered protein (IDP) that does not have a stably folded structure under physiological conditions127,128. Furthermore, α-synuclein can serve as an illustrative example of the protein-chameleon concept28, where protein has a highly pliable structure that is extremely sensitive to the environmental conditions. Such a protein is able to morph under the action of numerous factors. As a result, α-synuclein may “stay substantially unfolded, or adopt an amyloidogenic partially folded conformation, or fold into α-helical or β-structural species, both monomeric and oligomeric. Furthermore, it might form several morphologically different types of aggregates, including oligomers (spheres or doughnuts), amorphous aggregates, and or amyloid-like fibrils”129.

The intrinsically disordered nature of α-synuclein is not only a property of the purified protein in vitro but also preserved in vivo, as shown by the analysis of this protein endogenously expressed in the central nervous system, erythrocytes, and mammalian cell lines using native and denaturing gel electrophoresis techniques, size-exclusion chromatography, and an oligomer-specific ELISA129.

Residual structure

It was pointed out that although α-synuclein behaves as a highly disordered protein, the solution conformation of this protein is not a random coil but contains some residual structure127,133. This residual structure is extremely sensitive to various environmental factors134. For example, based on the in-cell NMR analysis, it was recently concluded that the conformations of α-synuclein in the cellular environment are more compact than those of the isolated protein in vitro134. These more compact in vivo conformations provide efficient shielding of the residues of the aggregation-prone NAC region, thereby countering spontaneous aggregation135 and supporting the “functional misfolding” hypothesis, according to which a polypeptide chain of an IDP can spontaneously misfold “to sequester the preformed elements inside the non-interactive or
Effects of post-translational modifications

Similar to many other IDPs, α-synuclein is subject to numerous PTMs, such as phosphorylation, ubiquitination, SUMOylation, O-GlcNAcylation, N-terminal acetylation, nitrosylation, and truncation, among which phosphorylation, truncation, and ubiquitination are believed to be the major disease-associated PTMs. Since α-synuclein might have multiple PTMs affecting different residues, and since multiple sites can be subjected to a given PTM (e.g., phosphorylation might occur at S87, S129, or Y125, whereas K12, K21, or K23 can be subjected to ubiquitination), this protein is likely to be highly heterogeneous in its native state. This PTM-driven heterogeneity creates an important problem related to understanding the role of individual PTMs in the structural properties, normal function, misfolding, aggregation, and dysfunction of α-synuclein. Besides the identification of the enzymes involved in regulating these PTMs, a solution to this problem requires the preparation of site-specifically modified proteins. A breakthrough in this direction was achieved in Lashuel’s group, who elaborated a set of enzymatic, synthetic, and semisynthetic strategies for the site-specific and tightly controlled introduction of PTMs at single or multiple sites. These approaches pave the way for generating pure and homogeneously modified samples of α-synuclein.

Effects of familial PD mutations

Among the important factors responsible for the modulation of α-synuclein’s residual PTMs are familial PD mutations. In addition to “traditional” PD mutations (such as A53T, A30P, and E46K) that have been known to the scientific community for a relatively long time, several “new” disease-associated mutations in α-synuclein (H50Q, G51D, and A53E) were discovered over the past 3 years. These mutations were shown to differentially modulate α-synuclein functions and aggregation propensity. For example, the formation of non-fibrillar aggregate (such as oligomers or protofibrils) and not fibrils was accelerated by the A30P mutation. Two other “traditional” PD mutants, A53T and E46K, were both shown to be characterized by accelerated fibrillation. Similarly, aggregation and fibrillation of the H50Q mutant were dramatically accelerated. On the other hand, significant reduction in α-synuclein oligomerization and fibrillation was induced by the G51D and A53E mutations, with the G51D mutant shown to form amorphous aggregates, and with the A53E mutant being able to eventually form very thin amyloid fibrils.

It is known that although mutations can modulate the aggregation propensity of α-synuclein, the global structure of this IDP is rather insensitive to mutations. Furthermore, based on the results of the extensive molecular dynamics simulations in aqueous solution, it has been concluded that fibril structure was not affected by PD-related mutations (A30P, E46K, H50Q, G51D, A53E, and A53T), but the relative stabilities of fibrillar structures and their conformational preferences were altered by mutations. However, the dynamics and residual structure present in the conformational ensembles of monomeric α-synuclein were clearly affected by the familial PD mutations. For example, by strategic placing of tryptophan residues, the effect of three PD mutations (A53T, E46K, and A30P) on the site-specific structural dynamics of this protein was analyzed. This analysis showed that mutations affected local conformational flexibility, microenvironment, and solvent exposure. Analysis of the effects of various mutations on the dynamics of the α-synuclein conformational ensemble revealed that the intramolecular diffusion of this protein is differently affected by aggregation-promoting and aggregation-inhibiting mutations, being correspondingly either drastically slowed down or accelerated in comparison with that of the wild-type protein. To address the role of tyrosine residues on early stages of α-synuclein aggregation and the effects of these residues on protein dynamics, three modeled Tyr mutants (Y39A, Y133A, and Y125A/Y133A/Y136A) were subjected to all-atom molecular dynamics simulation. This analysis revealed that the residue Tyr133 plays an important role in driving intramolecular interactions between the hydrophobic residues in the N- and C-terminal regions and is crucial for the fibrillation process.

Polymorphism of aggregated forms of α-synuclein

Not only is monomeric α-synuclein characterized by structural polymorphism but also its oligomeric and insoluble aggregated forms are polymorphic at both structural and functional levels. For example, application of the cryo-electron microscopy image reconstruction technique revealed that oligomers that are kinked and trapped during α-synuclein fibril formation are characterized by different sizes, β-sheet contents, and levels of exposed hydrophobicity. Also, two morphologically different oligomeric α-synuclein forms were found in human post-mortem PD brain tissue. The presence of two different types of oligomeric species formed by the wild-type α-synuclein and its familial PD-related mutants A30P, E46K, and A53T was described using hydrogen/deuterium exchange monitored by mass spectrometry. Although generated at specific conditions, oligomers of the wild-type α-synuclein and its familial PD-related mutants A30P, A53T, E46K, H50Q, and G51D have similar global structures and are composed of a similar number of monomers, but they interact differently with biological membranes.

Several recent observations are in line with the idea that oligomeric/fibrillar forms of α-synuclein might be functionally different, indicating the presence of a functional polymorphism among the aggregated polymorphs. For example, it was found that fibrillar α-synuclein can trigger inflammatory responses, whereas oligomeric forms of this protein were unable to initiate these cascades. Although both oligomeric and fibrillar forms of α-synuclein are able to generate free radicals, only the oligomeric protein can reduce endogenous glutathione and cause subsequent neuronal toxicity. Also, microtubule assembly was shown to be efficiently inhibited by fibrillar α-synuclein, and this fibril-mediated inhibitory effect was greater than that of the oligomeric species (protofibrils).
Slight changes in the environmental conditions during the fibrillation process were shown to cause the formation of morphologically different amyloid fibrils with distinctive molecular characteristics that can be inherited by the next generation of fibrils through self-propagation\(^{175}\). Under specific conditions, pure forms of structurally different fibrillar polymorphs of \(\alpha\)-synuclein were obtained and characterized structurally and functionally\(^{176}\). In addition to different morphologies, these polymorphs were characterized by different structures, different levels of toxicity, different \textit{in vivo} and \textit{in vitro} seeding and propagation properties\(^{177}\), different molecular arrangement in the unit cell, and distinct dynamic features\(^{178}\). Subsequent structural and physical characterization of several fibrillar polymorphs assembled from \(\alpha\)-synuclein supported the notion that the same protein can assemble into a variety of large particles with fibrillar shapes, that fibrillar polymorphs are morphologically and nanomechanically different, and that exceptional structural and physical polymorphism is present within the fibrillar form of this protein\(^{179}\). These findings provide mechanical foundation for better understanding of the nature of different \(\alpha\)-synuclein strains\(^{179}\) that define the ability of the aggregated \(\alpha\)-synuclein to be engaged in different neurodegenerative diseases\(^{178}\).

Strains and transmission angle

It is important to note that the phenomenon of polymorphism of amyloid fibrils is not an exclusive property of \(\alpha\)-synuclein but was described for other amyloidogenic proteins\(^{180,181}\) and was linked to the phenomenon of strains originally found in mammalian prion protein\(^{182-185}\) and now described for \(\alpha\)-synuclein\(^{175}\), yeast and fungal prions\(^{186-188}\), transthyretin\(^{190}\), and insulin\(^{189}\) as well as A\(\beta\)\(^{191}\) and tau protein\(^{192}\). Strain phenomenon is related to the peculiarities of amyloid propagation and transmission, where different aggregated forms of a protein can cause the development of different pathologies. In relation to the subject of this article, the ability of \(\alpha\)-synuclein to aggregate into distinct high-molecular-weight assemblies was proposed to be associated with the ability of this protein to cause different synucleinopathies\(^{179}\). This idea is supported by the direct observation of the induction of different synucleinopathies after the administration of the different \(\alpha\)-synuclein strains (oligomers, ribbons, and fibrils) by injection into rat brain\(^{193}\).

Another analogy of aggregated \(\alpha\)-synuclein to prion protein is its “infectivity”, i.e. the ability to be efficiently transmitted between neurons, thereby supporting the pathological spread within the affected brain during disease progression (e.g. as described by Braak’s staging criteria of PD\(^{194,195}\)). Although original models describing interneuronal propagation suggested some passive release of aggregated \(\alpha\)-synuclein from injured, degenerated, or dead neurons, a recent study showed that intact, relatively healthy neurons are engaged in efficient cell-to-cell passage of \(\alpha\)-synuclein\(^{196}\). It was also indicated that endosomal processing might serve as a point of convergence between the transcellular propagation of aggregated \(\alpha\)-synuclein and the intracellular trafficking of this protein\(^{197}\). A crucial role of high-affinity binding of preformed \(\alpha\)-synuclein fibrils to the lymphocyte-activation gene 3 protein is for the initiation of endocytosis and transmission of aggregated \(\alpha\)-synuclein, thereby propagating its toxicity and leading to the loss of dopamine neurons and the development of biochemical and behavioral deficits \textit{in vivo}\(^{198}\). Importantly, it is not only exogenous fibrillar forms of \(\alpha\)-synuclein that are able to promote cellular pathologies, since soluble amyloid oligomers that precede LB formation were also linked to the cell-to-cell transmission of \(\alpha\)-synuclein pathology\(^{199}\).

Concluding remarks: proteoforms to the rescue

The knowledge of the peculiar behavior of \(\alpha\)-synuclein accumulated over the past two decades provides an illustration of an important notion that the complexity of a biological system is mostly determined by its proteome size and not by the genome size\(^{200}\). In fact, the number of functionally different proteins found in eukaryotic organisms is substantially higher than the number of genes. The functional diversification of proteinaceous products of a gene is achieved by several means, including the allelic variations (i.e. single or multiple point mutations, indels, SNPs) at the DNA level, alternative splicing, and other pre-translational mechanisms affecting mRNA, complemented by a wide spectrum of various PTMs of a polypeptide chain. As a result of all of these events, a set of distinct protein molecules can be created from a single gene, giving rise to the proteoform concept\(^{201}\). Recently, it was proposed that in addition to the aforementioned means that increase the chemical variability of a polypeptide chain, the protein’s structural diversity can be further increased by some other mechanisms, such as intrinsic disorder and function\(^{202}\). In this view, a correlation between protein structure and function is considered a “protein structure–function continuum”, where a given protein exists as a dynamic conforma-
tional ensemble containing multiple proteoforms (conformational/baseline, inducible/modified, and functioning) characterized by diverse structural features and miscellaneous functions\(^{202}\). In application to \(\alpha\)-synuclein, the protein structure–function continuum idea is further enhanced by the presence of remarkable structural and functional variability of its self-aggregated forms. Therefore, due to its ability to oligomerize and aggregate, an intrinsically disordered \(\alpha\)-synuclein is characterized by the enormously expanded set of proteoforms where each of the various monomeric, oligomeric, and insoluble species is further split into numerous conformational/basic, inducible/modified, and functioning proteoforms. In other words, as illustrated by Figure 2, consideration of \(\alpha\)-synuclein through the proteoform prism provides a logical explanation for its remarkable structural, functional, and dysfunctional multifaceted nature.

Outlined in this article, the proteoform-centric view of \(\alpha\)-synuclein represents an important shift in understanding the biology and pathology of this protein. In fact, despite the enormous amount of effort expended by the scientific community to find a single most important physiological function of \(\alpha\)-synuclein, there is no clear understanding of the unique biological role of this protein as of yet. However, as it follows from a great deal of the published
work on α-synuclein, the applicability of the “one sequence – one structure – one function” paradigm to this protein is questionable. In other words, it seems that the search for a single physiological function of α-synuclein may be entirely misplaced, since the intrinsically disordered nature of the protein, which defines the structural polymorphism of the conformational ensemble of its monomeric form, bestows multifunctionality upon α-synuclein. Logical consequences of this structural heterogeneity and multifunctionality of a monomeric protein are the structural polymorphism of aggregated states and a “spectrum of dysfunctions” that define a range of diseases. Therefore, the enormous structural and functional complexity of α-synuclein has serious implications for future studies to understand the biology of this protein and for the development of future therapeutic strategies targeting α-synuclein.

Abbreviations

Aβ, β-amyloid; AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; H3K9, histone H3 lysine-9; IDP, intrinsically disordered protein; LB, Lewy body; LN, Lewy neurite; MSA, multiple system atrophy; NAC, non-amyloid-β component; PD, Parkinson’s disease; PP2A, protein phosphatase-2A; PTM, post-translational modification.

Competing interests

The author declares that he has no competing interests.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

1. Maroteaux L, Scheller RH: The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Brain Res Mol Brain Res. 1991; 11(3–4): 336–43. PubMed Abstract | Publisher Full Text
2. Weinreb PH, Zhen W, Poon AW, et al.: NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry. 1996; 35(43): 13709–15. PubMed Abstract | Publisher Full Text
3. Polymeropoulos MH, Lavedan C, Leroy E, et al.: Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997; 276(5321): 2045–7. PubMed Abstract | Publisher Full Text
4. Spillantini MG, Schmidt ML, Lee VM, et al.: Alpha-synuclein in Lewy bodies. Nature. 1997; 388(6645): 893–40. PubMed Abstract | Publisher Full Text
5. Lewy FH: Paralysie Agitans. Pathologische Anatomie. In: Lewandowski M (ed), Handbuch der Neurologie. Springer, Berlin, 1912; 920–933.
6. Forno LS: Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol. 1996; 55(3): 259–72. PubMed Abstract | Publisher Full Text
7. McKelvie IG, Dickson DW, Lowe J, et al.: Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005; 65(12): 1863–72. PubMed Abstract | Publisher Full Text
8. Wakabayashi K, Yoshimoto M, Tsuji S, et al.: Alpha-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett. 1998; 249(2–3): 180–2. PubMed Abstract | Publisher Full Text
9. Spillantini MG, Crowther RA, Jakob R, et al.: Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett. 1998; 251(3): 205–8. PubMed Abstract | Publisher Full Text
10. Gai WP, Power JH, Blumbergs PC, et al.: Multiple-system atrophy: a new alpha-synuclein disease? Lancet. 1998; 352(9127): 547–8. PubMed Abstract | Publisher Full Text
11. Trojanowski JQ, Goedert M, Iwatsubo T, et al.: Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death Differ. 1998; 5(10): 832–7. PubMed Abstract | Publisher Full Text
12. Takeda A, Mallory M, Sundsmo M, et al.: Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am J Pathol. 1998; 152(2): 367–72. PubMed Abstract | Free Full Text
13. Lücking CB, Brice A: Alpha-synuclein and Parkinson’s disease. Cell Mol Life Sci.
40. Uversky VN, Li J, Fink AL: Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular link between Parkinson's disease and heavy metal exposure. J Biol Chem. 2001; 276(47):44284–96

41. Santner A, Uversky VN: Metalloproteomics and metal toxicity of α-synuclein. Metallomics. 2010; 2(6):378–80

42. Ahmad A, Burns CS, Fink AL, et al.: Peculiarities of copper binding to α-synuclein. J Biomol Struct Dyn. 2012; 29(4):825–42

43. Carboni E, Linger P: Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson's disease. Metallomics. 2015; 7(3):395–404

44. Uversky VN, Li J, Bower K, et al.: Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson's disease. Neurotoxicology. 2002; 23(4–5):527–36

45. Uversky VN, Li J, Fink AL: Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease. FEBS Lett. 2001; 500(3):105–8

46. Payton JE, Perrin RJ, Clayton DF, et al.: Protein–protein interactions of alpha-synuclein in brain homogenates and transfected cells. Brain Res Mol Brain Res. 2001; 95(1–2):192–48

47. Jin J, Li GJ, Davis J, et al.: Identification of novel proteins associated with both alpha-synuclein and DJ-1. Mol Cell Proteomics. 2007; 6(5):845–59

48. Abeliovich A, Schmitz Y, Farriàs I, et al.: Mice lacking alpha-synuclein display functional deficits in the noradrenergic dopamine system. Neurocon. 2000; 28(1):239–52

49. F1000 Research 2017, 6(F1000 Faculty Rev):525 Last updated: 20 APR 2017

50. Miki Y, Tanji K, Mori F, et al.: AMBRA1, a novel α-synuclein-binding protein, is implicated in the pathogenesis of multiple system atrophy. Brain Pathol. 2016; 25(6):654–67

51. Beadle GW, Tatum EL: Genetic Control of Biochemical Reactions in Neurospora. Proc Natl Acad Sci U S A. 1941; 27(11):493–506

52. Dev KK, Hofele K, Barbieri S, et al.: Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology. 2003; 45(1):14–44

53. Ottino D, Call T, Szabó I, et al.: Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biol Chem. 2017; 398(1):77–100

54. Page 10 of 15
57. Golovko MY, Rosenberger TA, Feddersen S, et al. Alpha-synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. J Neurochem. 2007; 101(1): 201–11. Published Abstract | Publisher Full Text

58. Golovko MY, Rosenberger TA, Faergeman NJ, et al. Acyl-CoA synthetase activity links wild-type but not mutant alpha-synuclein to brain arachidonate metabolism. Biochemistry. 2006; 45(22): 6956–66. Published Abstract | Publisher Full Text | Free Full Text

59. Barrell-Coblentz G, Golovko MY, Weiner I, et al. Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice. J Neurochem. 2007; 101(1): 132–41. Published Abstract | Publisher Full Text

60. Kemper P, Köhn A, Schneider M, et al.; BAG1 is neuroprotective in vivo and in vitro models of Parkinson’s disease. J Mol Neurosci. 2015; 55(3): 587–95. Published Abstract | Publisher Full Text | Free Full Text

61. Savainen MH, Yan X, Mühlen T, et al. Prolyl oligopeptidase enhances α-synuclein dimerization via direct protein–protein interaction. J Biol Chem. 2015; 290(8): 5117–26. Published Abstract | Publisher Full Text | Free Full Text

62. Betzer C, Movius AJ, Shi M, et al. Identification of synapsosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS One. 2015; 10(2): e0116473. Published Abstract | Publisher Full Text | Free Full Text

63. Guardia-Laguarta C, Arenas-Gomez E, Schon EA, et al. Localization for α-synuclein: possible functional consequences. Front Neuropathol. 2015; 9: 17. Published Abstract | Publisher Full Text | Free Full Text

64. Chai YJ, Sieriecki E, Tomatis VM, et al. Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. J Cell Biol. 2016; 214(6): 705–18. Published Abstract | Publisher Full Text | Free Full Text

65. Published Abstract | Publisher Full Text | Free Full Text

66. Guardia-Laguarta C, Area-Gomez E, Schon EA, et al. New role for α-synuclein in Parkinson’s disease: Alteration of ER-mitochondrial communication. Mov Disord. 2015; 30(8): 1026–33. Published Abstract | Publisher Full Text

67. Cartelli D, Alveri A, Barbieri A, et al.; α-synuclein is a Novel Microtubule Dysmamerase. Sci Rep. 2016; 6: 32389. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

68. Credic JJ, Forcelli PA, Delennoy M, et al.; α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiol Dis. 2015; 76: 112–25. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

69. Park SC, Moon JC, Shin SY, et al.; Functional characterization of α-synuclein protein with antimicrobial activity. Biochim Biophys Acta. 2016; 478(2): 924–8. Published Abstract | Publisher Full Text | Free Full Text

70. Supergo N, Jackiel S, Voigt A, et al.; α-Synuclein enhances histone H3 lysine 9 dimethylation and H3K9me2-dependent transcriptional responses. Sci Rep. 2016; 6: 36328. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

71. Liu W, Mao S, Zhang B, et al.; α-Synuclein y protects Akt and mTOR and renders tumor resistance to radio disruption. Oncogene. 2015; 34(18): 2398–405. Published Abstract | Publisher Full Text

72. Hua G, Xiaoie L, Weive Y, et al.; Protein phosphatase 2A is involved in the tyrosine hydroxylase phosphorylation regulated by α-synuclein. Neurochem Res. 2015; 40(3): 428–37. Published Abstract | Publisher Full Text | Free Full Text

73. Navarra L, Zaittiri M, Longhena F, et al.; α-Synuclein modulates NRB2-containing NMDA receptors and decreases their levels after rotenone exposure. Neurochem Int. 2015; 85–86: 14–23. Published Abstract | Publisher Full Text

74. Fukai H, Yoon JH, Ann EJ, et al.; α-Synuclein negatively regulates Notch1 intracellular domain protein stability through promoting interaction with Fbw7. Neurosci Lett. 2015; 600: 6–11. Published Abstract | Publisher Full Text

75. Clayton DF, George JM; Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res. 1998; 58(1): 1–9. Published Abstract | Publisher Full Text | Free Full Text

76. Ueda K, Fukushima H, Masliah E, et al.; Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1993; 90(23): 11282–6. Published Abstract | Publisher Full Text | Free Full Text

77. Moroteaus L, Campanelli-JT, Scheller RH; Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1998; 8(8): 2804–15. Published Abstract

78. Jakes R, Spillantini MG; Oestrogen: Identification of two distinct synucleins from human brain. FEBBS Lett. 1994; 345(1): 27–32. Published Abstract | Publisher Full Text | Free Full Text

79. Nakajo S, Tsukada K, Omae K, et al.; A new brain-specific 14-kDa protein is a phosphophorin. Its complete amino acid sequence and evidence for phosphorylation. Eur J Biochem. 1993; 217(3): 1057–63. Published Abstract | Publisher Full Text

80. Tobe T, Nakajo S, Tanaka A, et al.; Cloning and characterization of the cDNA encoding a novel brain-specific 14-kDa protein. J Neurochem. 1992; 59(5): 1624–9. Published Abstract | Publisher Full Text | Free Full Text

81. J H, Liu YE, Jia T, et al.; Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res. 1997; 57(4): 759–64. Published Abstract

82. Nominata N, Alimova-Kost MV, Paterson JW, et al.; Organization, expression and polymorphism of the human persyn gene. Hum Mol Genet. 1998; 7(9): 1417–24. Published Abstract | Publisher Full Text | Free Full Text

83. Buchman VL, Hunter HJ, Pinion LG, et al.; Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci. 1998; 18(22): 9335–41. Published Abstract

84. Lavedent C, Leroy E, Deheja A, et al.; Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet. 1998; 103(1): 106–12. Published Abstract | Publisher Full Text | Free Full Text

85. Clayton DF, George JM; The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 1998; 21(10): 249–54. Published Abstract | Publisher Full Text

86. Galvin JE, Uryu K, Lee VM, et al.; Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc Natl Acad Sci U S A. 1999; 96(23): 13450–5. Published Abstract | Publisher Full Text | Free Full Text

Page 11 of 15
110. Uversky VN, L.J. Souillac P, et al.: Biophysical properties of the synucleins and their propensity to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem. 2002; 277(14): 11970–8. Published Abstract | Publisher Full Text

111. Tominov M, Oplindt R, Lev N, et al.: Pathological and clinical aspects of alpha/beta-synuclein in Parkinson's disease and related disorders. Expert Rev Neurother. 2016; 16(5): 505–13. Published Abstract | Publisher Full Text

112. Janowska MK, Wu KP, Baum J: Unveiling transient protein-protein interactions that modulate inhibition of alpha-synuclein aggregation by beta-synuclein, a presynaptic protein that co-localizes with alpha-synuclein. Sci Rep. 2015; 5: 15164. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

113. Tominov M, Oplindt R, Lev N, et al.: Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A. 2004; 101(4): 14966–71. Published Abstract | Publisher Full Text | Free Full Text

114. Breydo L, Morgan D, Uversky VN: Beta-Synuclein Aggregation: a possible role as an anti-parkinsonian factor. Neuron. 2001; 32(2): 213–23. Published Abstract | Publisher Full Text

115. Brown JW, Buitt AL, Michaels TC, et al.: p-Synuclein suppresses both the initiation and amyloid forms of alpha-synuclein aggregation via competitive binding to surfaces. Sci Rep. 2016; 6: 36010. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

116. Chandra S, Fomal F, Kwon H, et al.: N- and C-terminal fragments of alpha-synuclein modulate its fibrillation. FEBS Lett. 2015; 589(3): 319–25. Published Abstract | Publisher Full Text | Free Full Text

117. Vargas KJ, Schrod N, Davis T, et al.: Synucleins Have Multiple Effects on Presynaptic Architecture. Cell Rep. 2017; 18(1): 161–73. Published Abstract | Publisher Full Text | F1000 Recommendation

118. Komor-Robson N, Peters OM, Millership S, et al.: Combined losses of synuclein reveal their differential requirements for compensating age-dependent alterations in motor behavior and dopamine metabolism. Neurobiol Aging. 2016; 46: 107–12. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

119. Kim JH, Seo M, Kim H, et al.: Nitration of alpha-synuclein phosphorylation at tyrosine 125. J Neurochem. 2013; 126(1): 116–9. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

120. Kuo J, Moorhead AL, Bi, et al.: Activity of alpha-synuclein is regulated by sumoylation. Acta Neuropathol. 2015; 129(5): 695–713. Published Abstract | Publisher Full Text | F1000 Recommendation

121. Fontaine SN, Zheng D, Sabbagh JJ, et al.: DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J. 2016; 35(14): 1537–49. Published Abstract | Publisher Full Text | Free Full Text

122. Rousseaux MW, de Haro M, Lasagna-Reeves CA, et al.: TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. eLife. 2016; 5: pii: e18089. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

123. Pavlou MA, Colombo N, Fuentes-Alvarez S, et al.: Expression of the Parkinson's Disease-Associated Gene Alpha-Synuclein is Regulated by the Neuronal Cell Fate Determinant TRIM32. Mol Neurobiol. 2016; 1–14. Published Abstract | Publisher Full Text | F1000 Recommendation

124. Wong YC, Knein D: Lysosomal trafficking defects link Parkinson's disease with Gaucher's disease. Mov Disord. 2016; 31(11): 1610–8. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

125. Uversky VN, Li J, Fink AL: Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem. 2001; 276(14): 10737–44. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

126. Sciamanna MT, Paleologou KE, Lv G, et al.: Ginsenoside Rb1 inhibits fibrillation of alpha-synuclein: a mechanism that may lower the risk of developing Parkinson's disease. J Neurochem. 2015; 133(3): 389–401. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

127. Binolfi A, Theillet FX, Selenko P: Structural disorder of monomeric alpha-synuclein persists in mammalian cells. Nature. 2016; 530(7588): 45–50. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

128. Uversky VN: Neurodegeneration: The neural chaperone proSAAS blocks normal and abnormal fibrillations. J Mol Struct. 2003; 21(2): 211–34. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

129. Eliezer D, Kufusay E, Russell R Jr, et al.: Combinational losses of alpha-synuclein modulate its fibrillation. J Cell Biol. 2001; 307(5): 693–712. Published Abstract | Publisher Full Text

130. Eliezer D, Fauvet B, Moniatt M, et al.: Alpha-synuclein post-translational modifications as potential biomarkers for Parkinson disease and other synucleinopathies. Mol Cell Proteomics. 2013; 12(12): 3543–58. Published Abstract | Publisher Full Text | Free Full Text

131. Oueslati A, Fournier M, Lashuel HA: Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson's disease pathogenesis and therapies. Prog Brain Res. 2010; 183: 115–45. Published Abstract | Publisher Full Text | Free Full Text

132. Schmid AW, Fauvet B, Moniatt M, et al.: The dynamic structure of alpha-synuclein multimers. J Am Chem Soc. 2013; 135(10): 3965–72. Published Abstract | Publisher Full Text

133. Eliezer D, Kufusay E, Russell R Jr, et al.: Combinational losses of alpha-synuclein modulate its fibrillation. J Mol Biol. 2001; 307(5): 693–712. Published Abstract | Publisher Full Text

134. Schmid AW, Fauvet B, Moniatt M, et al.: Alpha-synuclein post-translational modifications as potential biomarkers for Parkinson disease and other synucleinopathies. Mol Cell Proteomics. 2013; 12(12): 3543–58. Published Abstract | Publisher Full Text | Free Full Text

135. Lashuel HA, Fauvet B, Moniatt M, et al.: Synthetic polyubiquitinated alpha-synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology. Proc Natl Acad Sci U S A. 2013; 110(44): 17726–31. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

136. Bura R, Al-Bouzaid N, Chikh A, et al.: Elucidation of the Role of Site-Specific Nitration of alpha-Synuclein in the Pathogenesis of Parkinson's Disease via Protein Semisynthesis and Mutagenesis. J Am Chem Soc. 2015; 137(15): 5041–52. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

137. Fauvet B, Lashuel HA: Semisynthesis and Enzymatic Preparation of
Post-translationally Modified α-Synuclein. Methods Mol Biol. 2016; 1345: 3–20. PubMed Abstract | Publisher Full Text | F1000 Recommendation

143. Kruger R, Kuhn W, Müller T, et al.: Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998; 18(2): 106–8. PubMed Abstract | Publisher Full Text

144. Tarranz JJ, Algre J, Gómez-Esteban JC, et al.: The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004; 55(2): 164–73. PubMed Abstract | Publisher Full Text | F1000 Recommendation

145. Apple-Cresswell J, Marín-Guerr JC, Encarnacion M, et al.: Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov. Disorder. 2013; 28(6): 811–3. PubMed Abstract | Publisher Full Text

146. Proukakis C, Duzik CG, Brier T, et al.: A novel α-synuclein missense mutation in Parkinson disease. Neurology. 2013; 80(1): 1062–4. PubMed Abstract | Publisher Full Text | Free Full Text

147. Kely AP, Asl YT, Karaoz E, et al.: α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013; 125(5): 753–69. PubMed Abstract | Publisher Full Text | Free Full Text

148. Lesage S, Anheim M, Letourmel F, et al.: G51D α-synuclein mutation causes a novel parkinsonian-pyramidal syndrome. Ann Neurol. 2013; 73(4): 459–71. PubMed Abstract | Publisher Full Text

149. Pasanen P, Myllykangas L, Siitonen M, et al.: The novel Parkinson’s disease linked alpha-synuclein pathological mutation, E46K. J Biomed Sci. 2009; 16(1): 27–34. PubMed Abstract | Publisher Full Text | Free Full Text

150. Lu J, Uversky VN, Fink AL: Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein. Biochemistry. 2001; 40(28): 11604–13. PubMed Abstract | Publisher Full Text

151. Lemkau LR, Comellas G, Kiserov KD, et al.: Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem. 2012; 287(14): 11526–32. PubMed Abstract | Publisher Full Text | Free Full Text

152. Conway KA, Harper JD, Lansbury PT: Accelerated membrane binding. J Biol Chem. 2004; 279(10): 11526–32. PubMed Abstract | Publisher Full Text | Free Full Text

153. Feil C, Cho Y, Liang Z, et al.: Demonstration of reduced aggregation propensity associated Finnish mutation (A53E) attenuates parallel fibre-like membrane binding. J Biol Chem. 2005; 280(10): 9914–22. PubMed Abstract | Publisher Full Text | Free Full Text

154. Kruger R, Kuhn W, Müller T, et al.: Decrease in the solubility of α-synuclein in Parkinson’s disease. Neurol Sci. 2011; 32(5): 729–36. PubMed Abstract | Publisher Full Text | Free Full Text

155. Nuñez A, Cordero A, Wirtz C, et al.: Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. Proc Natl Acad Sci U S A. 2015; 112(26): 8092–7. PubMed Abstract | Publisher Full Text | Free Full Text

156. Ye et al.: The novel Parkinson’s disease linked α-synucleinopathy associated with G51D SNCA mutation. Methods Mol Biol. 2016; 1345: 3–20. PubMed Abstract | Publisher Full Text | F1000 Recommendation

157. Xin W, Emadi S, Williams S, et al.: Toxic Oligomer Alpha-Synuclein Variants Present in Human Parkinson’s Disease Brains Are Differentially Generated In Mammalian Cell Models. Biomolecules. 2015; 5(3): 1634–51. PubMed Abstract | Publisher Full Text | Free Full Text

158. Paslawski W, Myers G, Thomesen K, et al.: Co-expression of two different α-synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry. Angew Chem Int Ed Engl. 2014; 53(29): 7950–3. PubMed Abstract | Publisher Full Text | F1000 Recommendation

159. Stefano G, Lindahl H, Semerzhiev SA, et al.: Oligomers of Parkinson’s Disease-Related α-Synuclein Mutants Have Similar Structures but Distinctive Membrane Permeabilization Properties. Biochemistry. 2015; 54(20): 3142–50. PubMed Abstract | Publisher Full Text | F1000 Recommendation

160. Bousset L, Pieri L, Ruiz-Arlandis G, et al.: Structural and functional characterization of two α-synuclein strains. Nat Commun. 2013; 4: 2575. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

161. Deas E, Cremades N, Angelova PR, et al.: Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson’s Disease. Antioxid Redox Signal. 2016; 24(7): 737–91. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

162. Okawa T, Nonaka T, Terada M, et al.: Amyloid fibrils are the molecular trigger of inflammation in Parkinson’s disease. Biochem. J. 2015; 471(3): 323–33. PubMed Abstract | Publisher Full Text

163. Bhak G, Lee J, Kim T, et al.: Molecular inscription of environmental information into protein suprastructures: temperature effects on unit assembly of α-synuclein oligomers into polymorphic amyloid fibrils. Biochem. J. 2014; 464(2): 259–69. PubMed Abstract | Publisher Full Text

164. Bousset L, Pieri L, Ruiz-Arlandis G, et al.: Structural and functional characterization of two alpha-synuclein strains. Nat Commun. 2013; 4: 2575. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

165. Melki R: Role of Different Alpha-Synuclein Strains in Synucleinopathies, Similarities with other Neurodegenerative Diseases. J Parkinsons Dis. 2015; 5(2): 217–27. PubMed Abstract | Publisher Full Text | Free Full Text

166. Paravastu AK, Leaphart RD, Yao WM, et al.: Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci U S A. 2008; 105(47): 18349–54. PubMed Abstract | Publisher Full Text | Free Full Text

167. Petkova AT, Leaphart RD, Guo Z, et al.: Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science. 2005; 307(5707): 262–9. PubMed Abstract | Publisher Full Text

168. Makrava N, Savchenko R, Alexeeva I, et al.: New Molecular Insight into Mechanism of Evolution of Mammalian Synaptic Prions. Am J Pathol. 2016; 188(4): 1006–14. PubMed Abstract | Publisher Full Text

169. Sam K, Atarashi R, Ishibashi D, et al.: Conformational properties of prion strains can be transmitted to recombinant prion protein fibrils in real-time quaking-induced conversion. J Virol. 2014; 88(20): 11791–801. PubMed Abstract | Publisher Full Text | Free Full Text

170. Sofirotou L, Milani M, Mancini N, et al.: A closer look at prion strains: characterization and important implications. Prion. 2013; 7(2): 99–108. PubMed Abstract | Publisher Full Text | Free Full Text
185. Morales R, Abid K, Soto C: The prion strain phenomenon: molecular basis and unprecedented features. Biochim Biophys Acta. 2007; 1772(6): 681–91. PubMed Abstract | Publisher Full Text | Free Full Text

186. Wickner RB: Yeast and Fungal Prions. Cold Spring Harb Perspect Biol. 2016; 8(9): pii: a023531. PubMed Abstract | Publisher Full Text

187. Sharma A, Bruce KL, Chen B, et al.: Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier. J Biol Chem. 2016; 291(3): 1277–88. PubMed Abstract | Publisher Full Text | Free Full Text

188. Toyama BH, Kelly MJ, Gross JD, et al.: The structural basis of yeast prion strain variants. Nature. 2007; 449(7159): 233–7. PubMed Abstract | Publisher Full Text

189. Arvidsson S, Pilebro B, Westermark P, et al.: Amyloid Cardiomyopathy in Hereditary Transthyretin V30M Amyloidosis - Impact of Sex and Amyloid Fibril Composition. PloS One. 2015; 10(11): e0143456. PubMed Abstract | Publisher Full Text | Free Full Text

190. Sneiders T, Darguiz D, Botyriute A, et al.: pH-Driven Polymorphism of Insulin Amyloid-Like Fibris. PloS One. 2015; 10(8): e0136602. PubMed Abstract | Publisher Full Text | Free Full Text

191. Kodali R, Williams AD, Chemurú S, et al.: Aβ1–40 forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated. J Mol Biol. 2010; 401(3): 503–17. PubMed Abstract | Publisher Full Text | Free Full Text

192. Morales R, Callegari K, Soto C: Prion-like features of misfolded Aβ and tau aggregates. Virus Res. 2015; 207: 106–12. PubMed Abstract | Publisher Full Text

193. Peelants W, Bousse L, Van der Perren A, et al.: α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 2015; 522(7556): 340–4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

194. Lerner A, Bagio A: Olfactory pathogenesis of idiopathic Parkinson disease revisited. Mov Disord. 2008; 23(8): 1076–84. PubMed Abstract | Publisher Full Text

195. Vihanju NP, Brooks PL, Hrzaati LN, et al.: The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol Commun. 2013; 1: 2. PubMed Abstract | Publisher Full Text | Free Full Text

196. Ulusoys A, Musgrove RE, Rusconi R, et al.: Neuron-to-neuron α-synuclein propagation in vivo is independent of neuronal injury. Acta Neuropathol Commun. 2015; 3: 13. PubMed Abstract | Publisher Full Text | Free Full Text

197. Tofaris GK, Goedert M, Spillantini MG: The TranscellularPropagation and Intracellular Trafficking of α-Synuclein. Cold Spring Harb Perspect Med. 2016; pii: a024380. PubMed Abstract | Publisher Full Text

198. Mao X, Ou MT, Karuppagounder SS, et al.: Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016; 353(6307): pii: aaq3374. PubMed Abstract | Publisher Full Text | F1000 Recommendation

199. Illes-Toth E, Ramos MR, Cappai R, et al.: Distinct higher-order α-synuclein oligomers induce intracellular aggregation. Biochem J. 2015; 468(3): 485–93. PubMed Abstract | Publisher Full Text

200. Schlüter H, Apweiler R, Holzhüter H, et al.: Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J. 2009; 3: 11. PubMed Abstract | Publisher Full Text | Free Full Text

201. Smith LM, Kelleher NL: Proteoform: a single term describing protein complexity. Nat Methods. 2013; 10(3): 186–7. PubMed Abstract | Publisher Full Text | Free Full Text

202. Uversky VN: p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept. Int J Mol Sci. 2016; 17(11): pi: E1874. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Referee Status: ✔️ ✔️

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Hilal Lashuel, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
 Competing Interests: No competing interests were disclosed.

1 Vinod Subramaniam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
 Competing Interests: No competing interests were disclosed.