はじめに

本稿では重症頭部外傷の治療のトレンドに関して2017年米国Brain Trauma Foundationが公開した米国の重症頭部外傷ガイドライン第4版における改訂のポイントについて触れ、そのエビデンスの基になっているデータに加え最近のランダム比較試験（randomized controlled trial：RCT）の結果について触れると、頭部外傷（traumatic brain injury：TBI）は大きくびまん性脳損傷（diffuse brain injury：DBI）と局所性脳損傷（focal brain injury：FBI）に分けられる。FBIは脳挫傷、硬膜外血腫、硬膜下血腫、脳内ないし脳室内血腫を含む文字どおり局所に限局した損傷を示し、大量の出血の場合摘出が必要とされるためevacuate massと表現される。一方のDBIは単純に大きなFBIではない。びまん性軸索損傷（diffuse axonal injury：DAI）や脳虚血、脳血管損傷、脳腫脹などを含めた広範囲にわたる脳損傷を指す。DAIは剪断損傷や回転損傷などFBIと異なる損傷機序により生ずる白質損傷で、画像診断が不明瞭で顕微鏡下病理組織学的変化に留まることもある。似通った用語であるが、DAIはDBIに

連絡先：大塩恒太郎，〒216-8511 川崎市宮前区菅生2-16-1 聖マリアンナ医科大学脳神経外科
Address reprint requests to：Kotaro Oshio, M.D., Department of Neurosurgery, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki-shi, Kanagawa 216-8511, Japan

Updates on the Management of Severe Traumatic Brain Injury

Kotaro Oshio, M.D., Atsushi Kobayashi, M.D., Tetsuya Ikeda, M.D., Taigen Sase, M.D., Masashi Uchida, M.D., Takashi Matsumori, M.D., Hidemichi Ito, M.D., Hiroshi Takasuna, M.D., and Yuichiro Tanaka, M.D.
Department of Neurosurgery, St. Marianna University School of Medicine

The treatment approaches for severe head injury have not drastically improved in the last 20 years. Various treatment techniques such as hypothermia therapy and progesterone administration have been evaluated, albeit without drastic improvement. Severe head injury is a heterogeneous clinical presentation in which diffuse and focal brain injury coexist, thereby often complicating multiple trauma. Thus, there is minimal higher-level evidence by randomized controlled trials on head injury. Currently, treatment guidelines have been supported by expert opinions. In this article, we introduce the revisions and updates in the fourth edition of the United States serious head trauma guidelines and the goal-directed approach from the Trauma Quality Improvement Program of the American College of Surgeons. In addition, we introduce several remarkable ongoing randomized controlled trials and overview new treatment trends.

(Received November 30, 2018; accepted February 26, 2019)

Key words : traumatic brain injury, intensive care, guideline, RCT
Jpn J Neurosurg (Tokyo) 28: 621–628, 2019
含まれる1病態であり混同しないよう解釈する必要がある。DBIの画像診断を理解するには、1991年米国頭部外傷データバンク（Traumatic Coma Data Bank : TCDB）にて提唱されたTCDB CT分類が理解しやすい。この分類はTBIをDBIとevacuate mass、すなわちFBIの2者に分けている。さらにDBIの画像上の特徴としてevacuate massがないことを挙げ、加えて外傷性くも膜下出血などの異常所見の有無、脳幹周囲槽の圧排消失、正中偏位の有無で簡潔に分類し（Fig.1）、それぞれの発生率と予測予後が示された点が画期的であった7)。また、TBIは受傷時のGlasgow Coma Scale score（GCS）により軽症（mild TBI : GCS 13〜15）、中等症（moderate TBI : GCS 9〜12）、重症（severe TBI : GCS 3〜8）に分けて考えることも多いが、画像を中心に分類するTCDB分類と混同せず解釈する必要がある、重症度にかかわらずTBIはDBIとFBIが併存することが多く、この異種混在が外傷による脳損傷の病態生理を複雑にしている。これは外傷のRCTが成果を挙げられず一因と考えられ、20年間飛躍的な進歩が見られた現状を説明する。

また脳損傷を一次性と二次性に分ける分類もある。すでに生じた一次性脳損傷を修復するのは現時点では不可能であり、再生医療の進歩に期待するしかない。そのため二次性脳損傷をいかに防ぐかが主眼となる。脳損傷後に発生するメディエーターは、グルタミン酸、IL-1β、IL-6、IL-10、TNF-α、TGF-βやNO、ROSなどのフリーラジカルが知られている。これらを抑制する治療として、プロゲステロン投与の効果をみたStudy of a Neuroprotective Agent, Progesterone, in Severe Traumatic Brain Injury (SYNAPSE)12)，The Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment trial (ProTECT III)13)，エリスロポエチンの投与を行ったErythropoietin in Traumatic Brain Injury trial (EPO-TBI)8)などのRCTが行われたが、いずれも良好な結果を得るに至らず、二次性脳損傷を抑える新薬に至らせていない。こうした背景もあり、頭部外傷は現状の少ないエビデンスを基に構築された神経集中治療管理のガイドラインが沿って治療が進められる。本稿では日本に先立ち2017年に改訂された米国ガイドライン第4版の改訂ポイントに加え、エビデンスの少ない現状をエキスパートオピニオンにより補い、治療の道程を示す役割をしている。
Trauma Quality Improvement Program (TQIP)を紹介する。

米国重症頭部外傷ガイドライン
第4版の改訂ポイント

ガイドラインはエビデンスとなる質の高い研究結果を基に段階的な推奨を与えるものであるが、米国の重症頭部外傷ガイドラインは1995年より版を重ね、2007年の第3版から10年を経て2017年に第4版に改訂された2)。第4版では治療法が11項目アップデートされた（Table 1）。また従来1つにまとめられていたモニタリングと推奨治療閾値を、それぞれのセクションに分けて示す形式としている（Table 2, 3）。重症頭部外傷ガイドラインにおけるlevelⅠエビデンスは、2004年のCorticosteroid Randomization After Significant Head injury (CRASH) trialにて頭部外傷後急性期1週間における経静脈的なステロイド療法が無効であることが示され10)非推奨となったもののみである。それぞれの項目の子細はhttps://www.braintrauma.org/coma/guidelinesを参照していただきたい。ここでは、ガイドラインに含まれた2012年以降に発表のあった重要なRCTがある1の広範囲減圧開頭と2の予防的低体温について詳述する。

1 広範囲減圧開頭の位置づけ

外減圧手術は、2011年に報告されたDecompressive Craniectomy study（DECRA）3)の結果を受けIIAで推奨しないとしている。このDECRAはTCDB CT分類のDBIのⅢ型（中脳周囲槽の圧排や消失、正中構造偏位0〜5mm、25 ml以上の占拠性病変（-））の広範囲脳腫脹をきたした症例群を対象として両側前頭部の広範囲減圧開頭の効果を検討したRCTであり、外減圧治療是有意にICPを下げが6か月後のextended Glasgow Outcome Scale（GOS）はむしろ不良であったと結論している。ただし、対象となる外傷の種類が限定されており、減圧が両側前頭開頭であること、治療介入のタイミングなどいくつか限定があったため、level II Aとして12×15 cmと大きくhemicraniotomyを置くことは推奨すると残し、Randomized Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of Intra-Cranial Pressure trial（RESCUEicp）6)の結果を注視すると推察した。そこでRescueicpは2016年に報告され、外減圧群で死亡率が22%低下することが示された。また、12か月後のextended GOSにてupper severe disabilityかそれ以上を予後良好と定義し有効性を示した。しかし、その点に関してはまだまな議論がありcorrespondenceの意見の1つで、障害を残してもよいとするかに疑念が残り、この試験は失敗と評価し「頭蓋内圧亢進症のすべての症状にICPモニタリングのみの治療管理アルゴリズムを適用する時代の終焉である」との意見があった6)。

2 予防的低体温

頭蓋内圧亢進前に予防的に介入した低体温療法の効果を平温療法と比較し検証したThe National Acute Brain Injury Study：Hypothermia II（NABISH II）では、両群に有意な差を認めなかった4)。また、2015年頭蓋内圧亢進に対しsecond stageにて低体温療法で介入するEuropean Study of Therapeutic Hypothermia（32〜35℃）for Intracranial Pressure Reduction after Traumatic Brain Injury（EUROTHERM）の結果が出たが、死亡率、機能予後ともに低体温群で悪く、低体温療法の治療介入に関しては良好な結果は出ていない1)。ただしNABISH IIサブ解析においてDBIで低体温群の予後は不良であるが、evacuated mass群でよい傾向が認められたとの結果より、現在治療ターゲットを急性硬膜下血腫に絞り低体温療法の効果をみるHypOthermia for Patients requiring Evacuation of Subdural Hematoma（HOPES）trialが行われている。

第3版までのオピニオンリーダーの意見によるガイドラインから第4版は大きく舵を切った。今後は頭部外傷治療においてこれまで基本的な治療とコンセンサスを得ていた事項まで、治療根拠となるエビデンスを求めた臨床研究が検証されると予測される。

Trauma Quality Improvement Program（TQIP）

TQIPはAmerican College of Surgeons（ACS）よりリリースされ、その中でgoals-directed approachとして明確な管理目標が数値として示されているのが特徴である15)。その基準値とそこから考えられる避けるべき状態をTable 4に示す。これらの数値を神経集中治療の管理目標とすることと明記しておりガイドラインとは性格が異なる。ほとんどの項目で正常に近い数値を保つことを推奨する中、ヘモグロビン値は「7 g/dl以上」としている。Robertsonらは、頭部外傷後の患者の輸血療法の閾値となるヘモグロビン値を、割り当てられた10 g/dlと7 g/dlとした場合、10 g/dl群で外傷後脳出血の拡大リスクが2.3倍になったと報告している1113)。これらの機序は、輸血に用いられる老化した赤血球が血管内皮において炎
Table 1 Updated treatment recommendations

Topic	Level	Recommendations
Decompressive craniectomy	Level II A	• Bifrontal DC is not recommended to improve outcomes as measured by the GOS-E score at 6 mo post-injury in severe TBI patients with diffuse injury (without mass lesions), and with ICP elevation to values > 20 mmHg for more than 15 min within a 1-h period that are refractory to first-tier therapies. However, this procedure has been demonstrated to reduce ICP and to minimize days in the ICU.
• A large frontotemporoparietal DC (not less than 12 × 15 cm or 15 cm diameter) is recommended over a small frontotemporoparietal DC for reduced mortality and improved neurologic outcomes in patients with severe TBI.		
Prophylactic hypothermia	Level II B	• Early (within 2.5 h), short-term (48 h post-injury), prophylactic hypothermia is not recommended to improve outcomes in patients with diffuse injury.
Hyperosmolar therapy	Level III	Recommendations from the prior (Third) edition not supported by evidence meeting current standards.
Mannitol is effective for control of raised ICP at doses of 0.25 to 1 g/kg body weight. Arterial hypotension (systolic blood pressure < 90 mmHg) should be avoided.		
Restrict mannitol use prior to ICP monitoring to patients with signs of transtentorial herniation or progressive neurologic deterioration not attributable to extracranial causes.		
Cerebrospinal fluid drainage	Level II B	• An EVD system zeroed at the midbrain with continuous drainage of CSF may be considered to lower ICP burden more effectively than intermittent use.
• Use of CSF drainage to lower ICP in patients with an initial GCS < 6 during the first 12 h after injury may be considered.		
Ventilation therapies	Level II B	• Prolonged prophylactic hyperventilation with PaCO₂ of ≤ 25 mmHg is not recommended. Recommendations from the prior (Third) edition not supported by evidence meeting current standards.
Hyperventilation is recommended as a temporizing measure for the reduction of elevated ICP. Hyperventilation should be avoided during the first 24 h after injury when CBF often is reduced critically.		
If hyperventilation is used, SjO₂ or BtpO₂ measurements are recommended to monitor oxygen delivery.		
Anesthetics, analgesics, and sedatives	Level II B	• Administration of barbiturates to induce burst suppression measured by EEG as prophylaxis against the development of intracranial hypertension is not recommended.
• High-dose barbiturate administration is recommended to control elevated ICP refractory to maximum standard medical and surgical treatment. Hemodynamic stability is essential before and during barbiturate therapy.		
• Although propofol is recommended for the control of ICP, it is not recommended for improvement in mortality or 6 month outcomes. Caution is required as high-dose propofol can produce significant morbidity.		
Steroids	Level I	• The use of steroids is not recommended for improving outcome or reducing ICP. In patients with severe TBI, high-dose methylprednisolone was associated with increased mortality and is contraindicated.
Nutrition	Level II A	• Feeding patients to attain basal caloric replacement at least by the fifth day and at most by the seventh day post-injury is recommended to decrease mortality.
Level II B | • Transgastric jejunal feeding is recommended to reduce the incidence of ventilator-associated pneumonia. |
症性カスケードを惹起し結果として微小循環障害を生ずることによると考えられている。これらの結果や考察に基づけば、外傷急性期の出血による貧血の補正は、ショック状態やさらなる貧血の進行を回避しつつも、脳出血の拡大を避けるという観点からヘモグロビン値7 g/dlまで輸血療法を控えるほうがよいといえる。

ICPモニタリング

2012年にBEST TRIP study3によりICPモニタリングを行った群とCTと神経学的所見により管理を行った群の比較で治療結果に有意差がなかったことによりICPモニタリングの有用性に懐疑的な見方がされた。ここで改めてICPモニタリングは治療ではなくベッドサイドモニタリングであること強調したい。過去の研究をみてみてもICPが上昇したときの死亡率が高いことは明らかであり、ベッドサイドで持続的にICPモニタリングをすることで、拡大する血腫、頭蓋内圧亢進への迅速で客観的な判断と対処が可能となり、その有用性に疑いはない。ICPモニタリングに大切な課題はそこから得られる情報をどのように解釈するかという点である。また受傷早期、減圧開頭前のICPモニタリングは、神経所見の悪化や経過観察の頭部CTに依存せず、進行性に増大する血腫や脳浮腫に伴う頭蓋内圧亢進への迅速な対処を可能とする。

本邦ではICPセンサー挿入は脳組織内への留置が最多である。われわれはeloquent areaを避け、前額底に置くことを基本としているが、側脳室前角への脳室ドレナージと合わせ穿頭術で行うこともある。モニタリングの期間は通常外傷後脳浮腫がピークとなる受傷3〜4日頃を目安とする。

II ICPモニタリング

2012年にBEST TRIP study3によりICPモニタリングを行った群とCTと神経学的所見により管理を行った群の比較で治療結果に有意差がなかったことによりICPモニタリングの有用性に懐疑的な見方がされた。ここで改めてICPモニタリングは治療ではなくベッドサイドモニタリングであること強調したい。過去の研究をみてみてもICPが上昇したときの死亡率が高いことは明らかであり、ベッドサイドで持続的にICPモニタリングをすることで、拡大する血腫、頭蓋内圧亢進への迅速で客観的な判断と対処が可能となり、その有用性に疑いはない。ICPモニタリングに大切な課題はそこから得られる情報をどのように解釈するかという点である。また受傷早期、減圧開頭前のICPモニタリングは、神経所見の悪化や経過観察の頭部CTに依存せず、進行性に増大する血腫や脳浮腫に伴う頭蓋内圧亢進への迅速な対処を可能とする。

III 脳灌流圧（CPP）の解釈

CPPの推奨値は60 mmHg以上とされているが、CPPの至適な数値を判断するには、脳血流の自動調節能が正常であるか否かを判断する必要がある。そのための1つと
Table 2 Updated monitoring recommendations

Topic	Recommendations
Intracranial pressure monitoring	Level II B · Management of severe TBI patients using information from ICP monitoring is recommended to reduce in-hospital and 2-week post-injury mortality. Recommendations from the prior (Third) edition not supported by evidence meeting current standards. ICP should be monitored in all salvageable patients with a TBI (GCS 3–8 after resuscitation) and an abnormal CT scan. An abnormal CT scan of the head is one that reveals hematomas, contusions, swelling, herniation, or compressed basal cisterns. ICP monitoring is indicated in patients with severe TBI with a normal CT scan if ≥2 of the following features are noted at admission: age > 40 years, unilateral or bilateral motor posturing, or SBP < 90 mmHg.
Cerebral perfusion pressure monitoring	Level II B · Management of severe TBI patients using guidelines-based recommendations for CPP monitoring is recommended to decrease 2-wk mortality.
Advanced cerebral monitoring	Level III · Jugular bulb monitoring of AVDO₂, as a source of information for management decisions, may be considered to reduce mortality and improve outcomes at 3 and 6 mo post-injury.

AVDO₂: arteriovenous oxygen content difference, CPP: cerebral perfusion pressure, CT: computed tomography, GCS: Glasgow Coma Scale, ICP: intracranial pressure, SBP: systolic blood pressure, TBI: traumatic brain injury
Bold: new or revised recommendations
Reprinted from Reference 2

Table 3 Updated recommendations: thresholds

Topic	Recommendations
Blood pressure thresholds	Level III · Maintaining SBP at ≥100 mmHg for patients 50 to 69 years old or at ≥110 mmHg or above for patients 15 to 49 or >70 years old may be considered to decrease mortality and improve outcomes.
Intracranial pressure thresholds	Level II B · Treating ICP > 22 mmHg is recommended because values above this level are associated with increased mortality. Level III · A combination of ICP values and clinical and brain CT findings may be used to make management decisions. *The committee is aware that the results of the RESCUEicp trial were released after the completion of these Guidelines. The results of this trial may affect these recommendations and may need to be considered by treating physicians and other users of these Guidelines. We intend to update these recommendations if needed. Updates will be available at https://braintrauma.org/coma/guidelines.
Cerebral perfusion pressure thresholds	Level II B · The recommended target CPP value for survival and favorable outcomes is between 60 and 70 mmHg. Whether 60 or 70 mmHg is the minimum optimal CPP threshold is unclear and may depend upon the autoregulatory status of the patient. Level III · Avoiding aggressive attempts to maintain CPP > 70 mmHg with fluids and pressors may be considered because of the risk of adult respiratory failure.
Advanced cerebral monitoring thresholds	Level III · Jugular venous saturation of <50% may be a threshold to avoid in order to reduce mortality and improve outcomes.

CPP: cerebral perfusion pressure, CT: computed tomography, ICP: intracranial pressure, RESCUEicp trial: Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of ICP, SBP: systolic blood pressure
Bold: new or revised recommendations
Reprinted from Reference 2
してpressure reactivity index（PRx）をモニタリングする方法が有効とされるが今のところ日本では汎用化されていない。

脳組織酸素分圧（PbtO2）モニタリング

最後に本邦では承認されていない脳組織酸素分圧（PbtO2）モニタリングを治療アルゴリズムに入れたRCTであるBOOST-IIの第二相試験について触れる。

この試験はICPモニタリングにPbtO2モニタリングを加え、ICP上昇とPbtO2低下のそれぞれに対応する階層的な治療アルゴリズムを用意し、ICP上昇のみに対応する治療と比較した第二相試験である。中身の詳細はBOOST-II試験のweb appendixにある。結果は良いが治療のアルゴリズムを変更するのみで新たな治療を加えることなくよい成績を得ることができると示されている。

まとめ

重症頭部外傷の治療に関わって、さまざまなRCTが行われてきたが、いずれも有効性を裏づける十分な証拠はない。そこで、避けていたほうがよいことも徐々に明らかになっており、これらの管理を遵守する必要がある。

またICPモニタリングの重要性は変わりないが、ICPの値が高い場合、病態に応じた治療をするため、今後、神経集中治療管理と新たな治療アルゴリズムの重要性がより増すとも考えられる。

著者全員は日本脳神経外科学会へのCOI自己申告を完了している。本論文に関して開示すべきCOIはない。

文 献

1) Andrews PJD, Sinclair HL, Rodriguez A, Harris BA, Battison CG, Rhodes JRK, Murray GD; Eurotherm3235 Trial Collaborators: Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med 373: 2403-2412, 2015.

2) Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, Rubiano AM, Shutter L, Tasker RC, Vavilala MS, Wilberger J, Wright DW, Ghajar J: Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 80: 6-15, 2017.

3) Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T; Global Neurotrauma Research Group: A trial of intracranial pressure monitoring in traumatic brain injury. N Engl J Med 367: 2471-2481, 2012.

4) Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, Janis LS, Wilde E, Taylor P, Harshman K, Conley A, Puccio A, Levin HS, McCauley SR, Bucholz RD, Smith KR, Schmidt JH, Scott JN, Yonas H, Okonkwo DO: Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol 10: 131-139, 2011.

5) Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, Kossmann T, Ponsford J, Seppelt I, Reilly P, Wolfe R, Investigators DT; Australian, New Zealand Intensive Care Society Clinical Trials Group; DECRA Trial Investigators: Australian and New Zealand Intensive Care Society Clinical Trials Group: Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 364: 1493-1502, 2011.

6) Hutchinson PJ, Kolas AG, Timofeev IS, Corteau EA, Czosnyka M, Timothy J, Anderson I, Bulters DO, Belli A, Eynon CA, Ladley J, Mendelow AD, Mitchell PM, Wilson MH, Critchley G, Sahuquillo J, Unterberg A, Servadei F, Teasdale GM, Pickard JD, Menon DK, Murray GD, Kirkpatrick PJ; RESCUEicp Trial Collaborators: Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med 375: 1119-1130, 2016.
重症頭部外傷に対する集中治療 up-to date

大塩和太郎 小林 敦 池田 哲也 佐瀬 泰玄 内田 将司
松森 隆史 伊藤 英道 高砂 浩史 田中雄一郎

重症頭部外傷の治療成績はここ20年改善してきたであろうか？低体温療法やプロゲステロン投与などさまざまな治療法が模索されてきたが、いまだわれわれは劇的な改善を得るに至らない。重症頭部外傷はびまん性脳損傷と局所性脳損傷が混在する不均一な病態で、全身の多発外傷を合併することも多い。外傷機転も一定でなく、病態の均一化が難しいこともあり頭部外傷の分野ではエビデンスレベルの低いRCTが少ない。治療ガイドラインはexpert opinionによって成り立つ部分が多いのが現状である。ここでは、第4版にアップデートされた米国重症頭部外傷ガイドラインの改訂ポイントとAmerican College of SurgeonsのTrauma Quality Improvement Program（ACS TQIP）よりgoal directed approachを紹介する。加えて、比較的最近のRCTにみるエビデンスに基づく新たな治療トレンドに言及する。