ON A CLASS OF LIFTING MODULES

HATICE INANKIL, SAIT HALICIOĞLU, AND ABDULLAH HARMANCI

Abstract. In this paper, we introduce principally δ-lifting modules which are analogous to δ-lifting modules and principally δ-semiperfect modules as a generalization of δ-semiperfect modules and investigate their properties.

1. Introduction

Throughout this paper all rings have an identity, all modules considered are unital right modules. Let M be a module and N, P be submodules of M. We call P a supplement of N in M if $M = P + N$ and $P \cap N$ is small in P. A module M is called supplemented if every submodule of M has a supplement in M. A module M is called lifting if, for all $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is small in M. Supplemented and lifting modules have been discussed by several authors (see [2, 4, 6]) and these modules are useful in characterizing semiperfect and right perfect rings (see [4, 7]).

In this note, we study and investigate principally δ-lifting modules and principally δ-semiperfect modules. A module M is called principally δ-lifting if for each cyclic submodule has the δ-lifting property, i.e., for each $m \in M$, M has a decomposition $M = A \oplus B$ with $A \leq mR$ and $mR \cap B$ is δ-small in B, where B is called a δ-supplement of mR. A module M is called principally δ-semiperfect if, for each $m \in M$, M/mR has a projective δ-cover. We prove that if M_1 is semisimple, M_2 is principally δ-lifting, M_1 and M_2 are relatively projective, then $M = M_1 \oplus M_2$ is a principally δ-lifting module. Among others we also prove that for a principally δ-semiperfect module M, M is principally δ-supplemented, each factor module of M is principally δ-semiperfect, hence any homomorphic image and any direct summand of M is principally δ-semiperfect. As an application, for a projective module M, it is shown that M is principally δ-semiperfect if and only if it is principally δ-lifting, and therefore a ring R is principally δ-semiperfect if and only if it is principally δ-lifting.

In section 2, we give some properties of δ-small submodules that we use in the paper, and in section 3, principally δ-lifting modules are introduced and various properties of principally δ-lifting and δ-supplemented modules are obtained. In section 4, principally δ-semiperfect modules are defined and characterized in terms of principally δ-lifting modules.

In what follows, by \mathbb{Z}, \mathbb{Q}, \mathbb{Z}_n and \mathbb{Z}/\mathbb{Z}_n we denote, respectively, integers, rational numbers, the ring of integers and the \mathbb{Z}-module of integers modulo n. For unexplained concepts and notations, we refer the reader to [1, 4].

2000 Mathematics Subject Classification. 16U80.

Key words and phrases. lifting modules, δ-lifting modules, semiperfect modules, δ-semiperfect modules.
2. δ-Small Submodules

Following Zhou [9], a submodule N of a module M is called a δ-small submodule if, whenever $M = N + X$ with M/X singular, we have $M = X$. We begin by stating the next lemma which is contained in [9] Lemma 1.2 and 1.3].

Lemma 2.1. Let M be a module. Then we have the following.

(1) If N is δ-small in M and $M = X + N$, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$.

(2) If K is δ-small in M and $f : M \to N$ is a homomorphism, then $f(K)$ is δ-small in N. In particular, if K is δ-small in $M \subseteq N$, then K is δ-small in N.

(3) Let $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2$ is δ-small in $M_1 \oplus M_2$ if and only if K_1 is δ-small in M_1 and K_2 is δ-small in M_2.

(4) Let N, K be submodules of M with K is δ-small in M and $N \leq K$. Then N is also δ-small in M.

Lemma 2.2. Let M be a module and $m \in M$. Then the following are equivalent.

(1) mR is not δ-small in M.

(2) There is a maximal submodule N of M such that $m \notin N$ and M/N singular.

Proof. (1) \Rightarrow (2) Let $\Gamma := \{B \leq M \mid B \neq M, mR + B = M, M/B$ singular$\}$. Since mR is not δ-small in M, there exists a proper submodule B of M such that $mR + B = M$ and M/B singular. So Γ is non empty. Let A be a nonempty totally ordered subset of Γ and $B_0 := \cup_{B \in A} B$. If m is in B_0 then there is a $B \in A$ with $m \in B$. Then $B = mR + B = M$ which is a contraction. So we have $m \notin B_0$ and $B_0 \neq M$. Since $mR + B_0 = M$ and M/B_0 singular, B_0 is upper bound in Γ. By Zorn’s Lemma, Γ has a maximal element, say N. If N is a maximal submodule of M there is nothing to do. Assume that there exists a submodule K containing N properly. Since N is maximal in Γ, K is not in Γ. Since $M = mR + N$ and $N \leq K$, so $M = mR + K$. M/K is singular as a homomorphic image of singular module M/N. Hence K must belong to the Γ. This is the required contradiction.

(2) \Rightarrow (1) Let N be a maximal submodule with $m \in M \setminus N$ and M/N singular. We have $M = mR + N$. Then mR is not δ-small in M. \square

Let A and B be submodules of M with $A \leq B$. A is called a δ-cosmall submodule of B in M if B/A is δ-small in M/A. Let A be a submodule of M. A is called a δ-coclosed submodule in M if A has no proper δ-cosmall submodules in M. A submodule A is called δ-coclosure of B in M if A is δ-coclosed submodule of M and it is δ-cosmall submodule of B. Equivalently, for any submodule $C \leq A$ with A/C is δ-small in M/C implies $C = A$ and B/A is δ-small in M/A. Note that δ-coclosed submodules need not always exist.
Lemma 2.3. Let A and B be submodules of M with $A \subseteq B$. Then we have:

1. A is δ-cosmall submodule of B in M if and only if $M = A + L$ for any submodule L of M with $M = B + L$ and M/L singular.

2. If A is δ-small and B is δ-coclosed in M, then A is δ-small in B.

Proof. (1) Necessity: Let $M = B + L$ and M/L be singular. We have $M/A = B/A + (L + A)/A$ and $M/(L + A)$ is singular as homomorphic image of singular module M/L. Since B/A is δ-small, $M/A = (L + A)/A$ or $M = L + A$.

Sufficiency: Let $M/A = B/A + K/A$ and M/K singular. Then $M = B + K$. By hypothesis, $M = A + K$ and so $M = K$. Hence A is δ-cosmall submodule of B in M.

(2) Assume that A is δ-small submodule of M and B is δ-coclosed in M. Let $B = A + K$ with B/K singular. Since B is δ-coclosed in M, to complete the proof, by part (1) it suffices to show that K is δ-small submodule of B in M. Let $M = B + L$ with M/L singular. By assumption, $M = A + K + L = K + L$ since $M/(K + L)$ is singular. By (1), K is δ-small submodule of B in M.

Lemma 2.4. Let A, B and C be submodules of M with $M = A + C$ and $A \subseteq B$. If $B \cap C$ is a δ-small submodule of M, then A is a δ-cosmall submodule of B in M.

Proof. Let $M/A = B/A + L/A$ with M/L singular. We have $M = B + L$ and $B = A + (B \cap C)$. Then $M = A + (B \cap C) + L = (B \cap C) + L$. Hence $M = L$ since $B \cap K$ is δ-small in M and M/L is singular. Hence B/A is δ-small in M/A. Thus A is δ-cosmall submodule of B in M.

3. Principally δ-Lifting Modules

In this section, we study and investigate some properties of principally δ-lifting modules. The following definition is motivated by [9, Lemma 3.4] and Lemma 3.4.

Definition 3.1. A module M is called finitely δ-lifting if for any finitely generated submodule A of M has the δ-lifting property, that is, there is a decomposition $M = N \oplus S$ with $N \leq A$ and $A \cap S$ is δ-small in S. In this case $A \cap S$ is δ-small in S if and only if $A \cap S$ is δ-small in M. A module M is called principally δ-lifting if for each cyclic submodule has the principally δ-lifting property, i.e., for each $m \in M$, M has a decomposition $M = A \oplus B$ with $A \leq mR$ and $mR \cap B$ is δ-small in B.

Example 3.2. Every submodule of any semisimple module satisfies principally δ-lifting property.

Example 3.3. Let p be a prime integer and n any positive integer. Then the \mathbb{Z}-module $M = \mathbb{Z}/Zp^n$ is a principally δ-lifting module.
Lemma 3.4 is proved in [7] and [9].

Lemma 3.4. The following are equivalent for a module M.

1. M is finitely δ-lifting.
2. M is principally δ-lifting.

Let M be a module and N a submodule of M. A submodule L is called a δ-supplement of N in M if $M = N + L$ and $N \cap L$ is δ-small in L (therefore in M).

Proposition 3.5. Let M be a principally δ-lifting module. The we have:

1. Every direct summand of M is a principally δ-lifting module.
2. Every cyclic submodule C of M has a δ-supplement S which is a direct summand, and C contains a complementary summand of S in M.

Proof. (1) Let K be a direct summand of M and $k \in K$. Then M has a decomposition $M = N \oplus S$ with $N \leq kR$ and $kR \cap S$ is δ-small in M. It follows that $K = N \oplus (K \cap S)$, and $kR \cap (K \cap S) \leq kR \cap S$ is δ-small in M and so $kR \cap (K \cap S)$ is δ-small in K. Therefore K is a principally δ-lifting module.

(2) Assume that M is a principally δ-lifting module and C is a cyclic submodule of M. Then we have $M = N \oplus S$, where $N \leq C$ and $C \cap S$ is δ-small in M. Hence $M = N + S \leq C + S \leq M$, we have $M = C + S$. Since S is direct summand and $C \cap S$ is δ-small in M, $C \cap S$ is δ-small in S. Therefore S is a δ-supplement of C in M. \square

Theorem 3.6. The following are equivalent for a module M.

1. M is a principally δ-lifting module.
2. Every cyclic submodule C of M can be written as $C = N \oplus S$, where N is direct summand and S is δ-small in M.
3. For every cyclic submodule C of M, there is a direct summand A of M with $A \leq C$ and C/A is δ-small in M/A.
4. Every cyclic submodule C of M has a δ-supplement K in M such that $C \cap K$ is a direct summand in C.
5. For every cyclic submodule C of M, there is an idempotent $e \in \text{End}(M)$ with $eM \leq C$ and $(1 - e)C$ is δ-small in $(1 - e)M$.
6. For each $m \in M$, there exist ideals I and J of R such that $mR = mI \oplus mJ$, where mI is direct summand of M and mJ is δ-small in M.

Proof. (1)\Rightarrow(2) Let C be a cyclic submodule of M. By hypothesis there exist N and S submodules of M such that $N \leq C$, $C \cap S$ is δ-small in M and $M = N \oplus S$. Then we have $C = N \oplus (C \cap S)$.
(2) ⇒ (3) Let C be a cyclic submodule of M. By hypothesis, $C = N \oplus S$, where N is direct summand and S is δ-small in M. Let $\pi : M \to M/N$ be the natural projection. Since S is δ-small in M, we have $\pi(S)$ is δ-small in M/N. Since $\pi(S) \cong S \cong C/N$, C/N is δ-small in M/N.

(3) ⇒ (4) Let C be a cyclic submodule of M. By hypothesis, there is a direct summand $A \leq M$ with $A \leq C$ and C/A is δ-small in M/A. Let $M = A \oplus A'$. Hence $C = A \oplus (A' \cap C)$. Let $\sigma : M/A \to A'$ denote the obvious isomorphism. Then $\sigma(C/A) = A' \cap C$ is δ-small in A'.

(4) ⇒ (5) Let C be any cyclic submodule of M and $K \leq M$ such that $C \cap K$ is a direct summand of C, $M = C + K$ and $C \cap K$ is δ-small in K. Hence $C = (C \cap K) \oplus X$ for some $X \leq C$. Then $M = X + (C \cap K) + K = X \oplus K$. Let $e : M \to X : e(x + k) = x$ and $(1 - e) : M \to K ; e(x + k) = k$ are projection maps. $e(M) \subseteq X \subseteq C$ and $(1 - e)C = C \cap (1 - e)M = C \cap K$ is δ-small in $(1 - e)M$.

(5) ⇒ (6) Let mR be any cyclic submodule of M. By hypothesis, there exists an idempotent $e \in \text{End}(M)$ such that $eM \leq mR$, $M = eM \oplus (1 - e)M$ and $(1 - e)mR$ is δ-small in $(1 - e)M$. Note that $(mR) \cap ((1 - e)M) = (1 - e)mR$ (for if $m = em_1 + y$, where $em_1 \in eM$, $y \in (mR) \cap ((1 - e)M)$. Then $(1 - e)m = em_1 + (1 - e)y = y$ and so $(1 - e)mR \leq (mR) \cap ((1 - e)M)$. Let $mr = (1 - e)m' \in (mR) \cap ((1 - e)M)$. Then $mr = (1 - e)m' \in (1 - e)mR$. So $(mR) \cap ((1 - e)M) \leq (1 - e)mR$. Thus $(mR) \cap ((1 - e)M) = (1 - e)mR$. So $mR = eM \oplus (1 - e)mR$. Let $I = \{ r \in R : mr \in eM \}$ and $J = \{ t \in R : mt \in (1 - e)mR \}$. Then $mR = mI \oplus mJ$, $mI = eM$ and $mJ = (1 - e)mR$ is δ-small in $(1 - e)M$.

(6) ⇒ (1) Let $m \in M$. By hypothesis, there exist ideals I and J of R such that $mR = mI \oplus mJ$, where mI is direct summand and mJ is δ-small in M. Let $M = mI \oplus K$ for some submodule K. Since $K \cap mR \cong mJ$ and mJ is δ-small in M, M is principally δ-lifting. \qed

Note that every lifting module is principally δ-lifting. There are principally δ-lifting modules but not lifting.

Example 3.7. Let M be the \mathbb{Z}-module \mathbb{Q} and $m \in M$. It is well known that every cyclic submodule mR of M is small, therefore δ-small in M. Hence M is a principally δ-lifting \mathbb{Z}-module. If N is a nonsmall proper submodule of M, then N is neither direct summand nor contains a direct summand of M. It follows that M is not a lifting \mathbb{Z}-module.

It is clear that every δ-lifting module is principally δ-lifting. However the converse is not true.

Example 3.8. Let R and T denote the rings in [9] Example 4.1, where
\[R = \sum_{i=1}^{\infty} \bigoplus \mathbb{Z}_2 + \mathbb{Z}_2.1 = \{(f_1, f_2, \ldots, f_n, f, \ldots) \in \prod_{i=1}^{\infty} \mathbb{Z}_2\} \]
and \[T = \left\{ \begin{bmatrix} x & y \\ o & x \end{bmatrix} : x \in R, y \in \text{Soc}(R) \right\}. \]
Then \(\text{Rad}_3(T) = \begin{bmatrix} 0 & \text{Soc}(R) \\ 0 & 0 \end{bmatrix} \)
and \(T/\text{Rad}_3(T) \) is not semisimple as isomorphic to \(R \). So \(T \) is not \(\delta \)-semiperfect by \cite{9} Theorem 3.6. Hence \(T \) is not a \(\delta \)-lifting module over \(T \). It is easy to show that \(T/\text{Rad}_3(T) \) lift to idempotents of \(T \), so \(T \) is a semiregular ring. Since \(T \) is a \(\delta \)-semiregular ring, every finitely generated right ideal \(H \) of \(T \) can be written as \(H = aT \oplus S \), where \(a^2 = a \in T \) and \(S \leq \text{Rad}_3(T) \) by \cite{9} Theorem 3.5. Hence \(T \) is a principally \(\delta \)-lifting module.

Proposition 3.9. Let \(M \) be a principally \(\delta \)-lifting module. If \(M = M_1 + M_2 \) such that \(M_1 \cap M_2 \) is cyclic, then \(M_2 \) contains a \(\delta \)-supplement of \(M_1 \) in \(M \).

Proof. Assume that \(M = M_1 + M_2 \) and \(M_1 \cap M_2 \) is cyclic. Then we have \(M_1 \cap M_2 = N \oplus S \), where \(N \) is direct summand of \(M \) and \(S \) is \(\delta \)-small in \(M \). Let \(M = N \oplus N' \) and \(M_2 = N \oplus (M_2 \cap N') \). It follows that \(M_1 \cap M_2 = N \oplus (M_1 \cap M_2 \cap N') = N \oplus S \).

Let \(\pi : M_2 = N \oplus (M_2 \cap N') \rightarrow N' \) be the natural projection. It follows that \(\pi(M_1 \cap M_2 \cap N') = M_1 \cap M_2 \cap N' = \pi(S) \). Since \(S \) is \(\delta \)-small in \(M \), it is \(\delta \)-small in \(N' \) by Lemma 2.2. Hence \(M = M_1 + (M_2 \cap N'), M_2 \cap N' \leq M_2 \) and \(M_1 \cap (M_2 \cap N') \) is \(\delta \)-small in \(M_2 \cap N' \). \(M_2 \cap N' \) is contained in \(M_2 \) and a \(\delta \)-supplement of \(M_1 \) in \(M_2 \). This completes the proof. \(\square \)

Let \(M \) be a module. A submodule \(N \) is called **fully invariant** if for each endomorphism \(f \) of \(M \), \(f(N) \leq N \). Let \(S = \text{End}(M_R) \), the ring of \(R \)-endomorphisms of \(M \). Then \(M \) is a left \(S \)-, right \(R \)-bimodule and a principal submodule \(N \) of the right \(R \)-module \(M \) is fully invariant if and only if \(N \) is a sub-bimodule of \(M \). Clearly \(0 \) and \(M \) are fully invariant submodules of \(M \). The right \(R \)-module \(M \) is called a **duo module** provided every submodule of \(M \) is fully invariant. For the readers’ convenience we state and prove Lemma 3.10 which is proved in \cite{5}.

Lemma 3.10. Let a module \(M = \bigoplus_{i \in I} M_i \) be a direct sum of submodules \(M_i \) (\(i \in I \)) and let \(N \) be a fully invariant submodule of \(M \). Then \(N = \bigoplus_{i \in I} (N \cap M_i) \).

Proof. For each \(j \in I \), let \(p_j : M \rightarrow M_j \) denote the canonical projection and let \(i_j : M_j \rightarrow M \) denote inclusion. Then \(i_j p_j \) is an endomorphism of \(M \) and hence \(i_j p_j(N) \subseteq N \) for each \(j \in I \). It follows that \(N \subseteq \bigoplus_{j \in I} i_j p_j(N) \subseteq \bigoplus_{j \in I} (N \cap M_j) \subseteq N \), so that \(N = \bigoplus_{j \in I} (N \cap M_j) \). \(\square \)

One may suspect that if \(M_1 \) and \(M_2 \) are principally \(\delta \)-lifting modules, then \(M_1 \oplus M_2 \) is also principally \(\delta \)-lifting. But this is not the case.
Example 3.11. Consider the \(\mathbb{Z} \)-modules \(M_1 = \mathbb{Z}/2\mathbb{Z} \) and \(M_2 = \mathbb{Z}/28\mathbb{Z} \). It is clear that \(M_1 \) and \(M_2 \) are principally \(\delta \)-lifting. Let \(M = M_1 \oplus M_2 \). Then \(M \) is not a principally \(\delta \)-lifting \(\mathbb{Z} \)-module. Let \(N_1 = (1,2)\mathbb{Z} \) and \(N_2 = (1,1)\mathbb{Z} \). Then \(M = N_1 + N_2 \), \(N_1 \) is not a direct summand of \(M \) and does not contain any nonzero direct summand of \(M \). For any proper submodule \(N \) of \(M \), \(M/N \) is singular \(\mathbb{Z} \)-module. Hence the principal submodule does not satisfy \(\delta \)-lifting property. It follows that \(M \) is not principally \(\delta \)-lifting \(\mathbb{Z} \)-module. By the same reasoning, for any prime integer \(p \), the \(\mathbb{Z} \)-module \(M = (\mathbb{Z}/\mathbb{Z}p) \oplus (\mathbb{Z}/\mathbb{Z}p^3) \) is not principally \(\delta \)-lifting.

We have already observed by the preceding example that the direct sum of principally \(\delta \)-lifting modules need not be principally \(\delta \)-lifting. Note the following fact.

Proposition 3.12. Let \(M = M_1 \oplus M_2 \) be a decomposition of \(M \) with \(M_1 \) and \(M_2 \) principally \(\delta \)-lifting modules. If \(M \) is a duo module, then \(M \) is principally \(\delta \)-lifting.

Proof. Let \(M = M_1 \oplus M_2 \) be a duo module and \(mR \) be a submodule of \(M \). By Lemma 3.10, \(mR = ((mR) \cap M_1) \oplus ((mR) \cap M_2) \). Since \((mR) \cap M_1 \) and \((mR) \cap M_2 \) are principal submodules of \(M_1 \) and \(M_2 \) respectively, there exist \(A_1, B_1 \leq M_1 \) such that \(A_1 \leq (mR) \cap M_1 \leq M_1 = A_1 \oplus B_1 \), \(B_1 \cap ((mR) \cap M_1) = B_1 \cap (mR) \) is \(\delta \)-small in \(B_1 \), and \(A_2, B_2 \leq M_2 \) such that \(A_2 \leq (mR) \cap M_2 \leq M_2 = A_2 \oplus B_2 \), \(B_2 \cap ((mR) \cap M_2) = B_2 \cap (mR) \) is \(\delta \)-small in \(B_2 \). Then \(M = A_1 \oplus A_2 \oplus B_1 \oplus B_2 \), \(A_1 \oplus A_2 \leq N \) and \((mR) \cap (B_1 \oplus B_2) = ((mR) \cap B_1) \oplus ((mR) \cap B_2) \) is \(\delta \)-small in \(M_1 \oplus M_2 \). \(\square \)

Lemma 3.13. The following are equivalent for a module \(M = M' \oplus M'' \).

1. \(M' \) is \(M'' \)-projective.
2. For each submodule \(N \) of \(M \) with \(M = N + M'' \), there exists a submodule \(N' \leq N \) such that \(M = N' \oplus M'' \).

Proof. See [7, 41.14] \(\square \)

Theorem 3.14. Let \(M_1 \) be a semisimple module and \(M_2 \) a principally \(\delta \)-lifting module. Assume that \(M_1 \) and \(M_2 \) are relatively projective. Then \(M = M_1 \oplus M_2 \) is principally \(\delta \)-lifting.

Proof. Let \(0 \neq m \in M \) and let \(K = M_1 \cap ((mR) + M_2) \). We divide the proof into two cases:

Case (i): \(K \neq 0 \). Then \(M_1 = K \oplus K_1 \) for some submodule \(K_1 \) of \(M_1 \) and so \(M = K \oplus K_1 \oplus M_2 = (mR) + (M_2 \oplus K_1) \). Hence \(K \) is \(M_2 \oplus K_1 \)-projective. By Lemma 3.13 there exists a submodule \(N \) of \(mR \) such that \(M = N \oplus (M_2 \oplus \)
We may assume $(mR) \cap (M_2 \oplus K_1) \neq 0$. Note that for any submodule L of M_2, we have $(mR) \cap (L + K_1) = L \cap ((mR) + K_1)$. In particular $(mR) \cap (M_2 + K_1) = M_2 \cap ((mR) + K_1)$. Then $mR = N \oplus (mR) \cap (K_1 \oplus M_2)$. There exist $n \in N$ and $m' \in (mR) \cap (K_1 \oplus M_2)$ such that $m = n + m'$. Then $nR = N$ and $m'R = (mR) \cap (K_1 \oplus M_2)$. Since $(mR) \cap (M_2 + K_1) = M_2 \cap ((mR) + K_1)$, $M_2 \cap ((mR) + K_1)$ is a direct submodule of M_2 and M_2 is principally δ-lifting, there exists a submodule X of $M_2 \cap ((mR) + K_1) = (mR) \cap (M_2 \oplus K_1)$ such that $M_2 = X \oplus Y$ and $Y \cap M_2 \cap ((mR) + K_1) = Y \cap ((mR) + K_1)$ is δ-small in $M_2 \cap ((mR) + K_1)$ and in M_2. Hence $M = (N \oplus X) \oplus (Y \oplus K_1)$. Since $N \oplus X \leq mR$ and $(mR) \cap (Y \oplus K_1) = Y \cap ((mR) + K_1)$, $(mR) \cap (M_2 \oplus K_1)$ is δ-small in $Y \oplus K_1$. So M is δ-lifting.

Case (ii): $K = 0$. Then $mR \leq M_2$. Since M_2 is δ-lifting, there exists a submodule X of mR such that $M_2 = X \oplus Y$ and $(mR) \cap Y$ is δ-small in Y for some submodule Y of M_2. Hence $M = X \oplus (M_1 \oplus Y)$. Since $(mR) \cap (M_1 \oplus Y) = (mR) \cap Y$ and $(mR) \cap (M_1 \oplus Y) = (mR) \cap Y$ is δ-small in Y. By Lemma 2.11(3), $(mR) \cap (M_1 \oplus Y)$ is δ-small in $M_1 \oplus Y$. It follows that M is δ-lifting.

A module M is said to be a \textit{principally semisimple} if every cyclic submodule is a direct summand of M. Tuganbayev calls a principally semisimple module as a regular module in $[3]$. Every semisimple module is principally semisimple. Every principally semisimple module is principally δ-lifting. For a module M, we write $\text{Rad}_3(M) = \sum \{L \mid L$ is a δ-small submodule of $M \}$.

Lemma 3.15. Let M be a principally δ-lifting module. Then $M/\text{Rad}_3(M)$ is a principally semisimple module.

Proof. Let $m \in M$. There exists $M_1 \leq mR$ such that $M = M_1 \oplus M_2$ and $(mR) \cap M_2$ is δ-small in M_2. So$(mR) \cap M_2$ is δ-small in M. Then

\[
M/\text{Rad}_3(M) = [(mR + \text{Rad}_3(M))/\text{Rad}_3(M)] \oplus [(M_2 + \text{Rad}_3(M))/\text{Rad}_3(M)]
\]

because $(mR + \text{Rad}_3(M)) \cap (M_2 + \text{Rad}_3(M)) = \text{Rad}_3(M)$. Hence every principal submodule of $M/\text{Rad}_3(M)$ is a direct summand. \square

Proposition 3.16. Let M be a principally δ-lifting module. Then $M = M_1 \oplus M_2$, where M_1 is a principally semisimple module and M_2 is a module with $\text{Rad}_3(M)$ essential in M_2.

Proof. Let M_1 be a submodule of M such that $\text{Rad}_3(M) \oplus M_1$ is essential in M and $m \in M_1$. Since M is principally δ-lifting, there exists a direct summand M_2 of M such that $M_2 \leq mR$, $M = M_2 \oplus M_2'$ and $mR \cap M_2'$ is δ-small in M. Hence $mR \cap M_2'$ is a submodule of $\text{Rad}_3(M)$ and so $mR \cap M_2' = 0$. Then $m \in M_2$ and $mR = M_2$. Since $M_2 \cap \text{Rad}_3(M) = 0$, M_2 is isomorphic to a submodule of $M/\text{Rad}_3(M)$. By
Lemma 3.15. \(M/\text{Rad}_\delta(M) \) is principally semisimple, \(M_2 \) is principally semisimple.

On the other hand, \(\text{Rad}_\delta(M) = \text{Rad}_\delta(M'_2) \) is essential in \(M_2 \) that it is clear from the construction of \(M'_2 \).

A nonzero module \(M \) is called \(\delta \)-hollow if every proper submodule is \(\delta \)-small in \(M \), and \(M \) is \emph{principally} \(\delta \)-hollow if every proper cyclic submodule is \(\delta \)-small in \(M \), and \(M \) is \emph{finitely} \(\delta \)-hollow if every proper finitely generated submodule is \(\delta \)-small in \(M \). Since finite direct sum of \(\delta \)-small submodules is \(\delta \)-small, \(M \) is principally \(\delta \)-hollow if and only if it is finitely \(\delta \)-hollow.

Lemma 3.17. The following are equivalent for an indecomposable module \(M \).

1. \(M \) is a principally \(\delta \)-lifting module.
2. \(M \) is a principally \(\delta \)-hollow module.

Proof. (1)\(\Rightarrow \) (2) Let \(m \in M \). Since \(M \) is a principally \(\delta \)-lifting module, there exist \(N \) and \(S \) submodules of \(M \) such that \(N \leq mR \), \(mR \cap S \) is \(\delta \)-small in \(M \) and \(M = N \oplus S \). By hypothesis, \(N = 0 \) and \(S = M \). So that \(mR \cap S = mR \) is \(\delta \)-small in \(M \).

(2)\(\Rightarrow \) (1) Let \(m \in M \). Then \(mR = (mR) \oplus (0) \). By (2) \(mR \) is \(\delta \)-small and \((0) \) is direct summand in \(M \). Hence \(M \) is a principally \(\delta \)-lifting module.

Lemma 3.18. Let \(M \) be a module, then we have

1. If \(M \) is principally \(\delta \)-hollow, then every factor module is principally \(\delta \)-hollow.
2. If \(K \) is \(\delta \)-small submodule of \(M \) and \(M/K \) is principally \(\delta \)-hollow, then \(M \) is principally \(\delta \)-hollow.
3. \(M \) is principally \(\delta \)-hollow if and only if \(M \) is local or \(\text{Rad}_\delta(M) = M \).

Proof. (1) Assume that \(M \) is principally \(\delta \)-hollow and \(N \) a submodule of \(M \). Let \(m + N \in M/N \) and \((mR + N)/N + K/N = M/N \). Suppose that \(M/K \) is singular. We have \(mR + K = M \). Since \(M/K \) is singular and \(M \) is principally \(\delta \)-hollow, \(M = K \).

(2) Let \(m \in M \). Assume that \(mR + N = M \) for some submodule \(N \) with \(M/N \) singular. Then \((m + K)R = (mR + K)/K \) is a cyclic submodule of \(M/K \) and \((mR + K)/K + (N + K)/K = M/K \) and \(M/(N + K) \) is singular as an homomorphic image of \(M/N \). Hence \((N + K)/K = M/K \) or \(N + K = M \). By hypothesis \(N = M \).

(3) Suppose that \(M \) is principally \(\delta \)-hollow and it is not local. Let \(N \) and \(K \) be two distinct maximal submodules of \(M \) and \(k \in K \setminus N \). Then \(M = kR + N \) and \(M/N \) is a simple module, and so \(M/N \) is a singular or projective module. If \(M/N \) is singular, then \(M = N \) since \(kR \) is \(\delta \)-small. But this is not possible since \(N \) is maximal. So \(M/N \) is projective. Hence \(N \) is direct summand. So \(M = N \oplus N' \)
for some nonzero submodule N' of M, that is, N and kR are proper submodules of M. Since every proper submodule of M is contained in $\text{Rad}_\delta(M)$, $M = \text{Rad}_\delta(M)$. The converse is clear.

Proposition 3.19. Let M be a module. Then the following are equivalent.

1. M is principally δ-hollow.
2. If N is submodule with M/N cyclic, then N is a δ-small submodule of M.

Proof. (1) \Rightarrow (2) Assume that N is a submodule with M/N cyclic. Lemma 2.1 implies that M/N is principally δ-hollow since being δ-small is preserved under homomorphisms. Since M/N has maximal submodules, and by Lemma 3.18, M/N is local. There exists a unique maximal submodule N_1 containing N. Hence N is small, therefore it is δ-small.

(2) \Rightarrow (1) We prove that every cyclic submodule is δ-small in M. So let $m \in M$ and $M = mR + N$ with M/N singular. Then M/N is cyclic. By hypothesis, N is δ-small submodule of M. By Lemma 2.1 there exists a projective semisimple submodule Y of N such that $M = (mR) \oplus Y$. Let $Y = \bigoplus_{i \in I} N_i$ where each N_i is simple. Now we write $M = ((mR) \bigoplus_{i \neq j} N_j) \oplus N_i$. Then $M/((mR) \bigoplus_{i \neq j} N_j)$ is cyclic module as it is isomorphic to simple module N_i. By hypothesis, $((mR) \bigoplus_{i \neq j} N_j)$ is δ-small in M. Again by Lemma 2.1 there exists a projective semisimple submodule Z of $((mR) \bigoplus_{i \neq j} N_j)$ such that $M = Z \oplus N_i$. Hence M is projective semisimple module. So $M = N \oplus N'$ for some submodule N'. Then N' is projective. M/N is projective as it is isomorphic to N'. Hence M/N is both singular and projective module. Thus $M = N$. \hfill \Box

4. Applications

In this section, we introduce and study some properties of principally δ-semiperfect modules. By [9], a projective module P is called a **projective δ-cover** of a module M if there exists an epimorphism $f : P \twoheadrightarrow M$ with $\text{Ker} f$ is δ-small in P, and a ring is called **δ-perfect** (or **δ-semiperfect**) if every R-module (or every simple R-module) has a projective δ-cover. For more detailed discussion on δ-small submodules, δ-perfect and δ-semiperfect rings, we refer to [9]. A module M is called **principally δ-semiperfect** if every factor module of M by a cyclic submodule has a projective δ-cover. A ring R is called **principally δ-semiperfect** in case the right R-module R is principally δ-semiperfect. Every δ-semiperfect module is principally δ-semiperfect. In [9], a ring R is called **δ-semiregular** if every cyclically presented R-module has a projective δ-cover.

Theorem 4.1. Let M be a projective module. Then the following are equivalent.

1. M is principally δ-semiperfect.
(2) M is principally δ-lifting.

Proof. (1)⇒ (2) Let $m \in M$ and $P \xrightarrow{f} M/mR$ be a projective δ-cover and $M \xrightarrow{\pi} M/mR$ the natural epimorphism.

Then there exists a map $M \xrightarrow{g} P$ such that $fg = \pi$. Then $P = g(M) + \text{Ker}(f)$. Since $\text{Ker}(f)$ is δ-small, by Lemma 2.1 there exists a projective semisimple submodule Y of $\text{Ker}(f)$ such that $P = g(M) \oplus Y$. So $g(M)$ is projective. Hence $M = K \oplus \text{Ker}(g)$ for some submodule K of M. It is easy to see that $g(K \cap mR) = g(K) \cap \text{Ker}(f)$ and $\text{Ker}(g) \leq mR$. Hence $M = K + mR$. Next we prove $K \cap (mR)$ is δ-small in K. Since $\text{Ker}(f)$ is δ-small in P, $g(K) \cap \text{Ker}(f) = g(K \cap mR)$ is δ-small in P by Lemma 2.1(4). Hence $K \cap (mR)$ is δ-small in K since g^{-1} is an isomorphism from $g(M)$ onto K.

(2)⇒ (1) Assume that M is a principally δ-lifting module. Let $m \in M$. There exist direct summands N and K of M such that $M = N \oplus K$, $N \leq mR$ and $mR \cap K$ is δ-small in K. Let $K \xrightarrow{\pi} M/mR$ denote the natural epimorphism defined by $\pi(k) = k + mR$ where $k \in K$, $k + mR \in M/mR$. It is obvious that $\text{Ker}(\pi) = mR \cap K$. It follows that K is projective δ-cover of M/mR. So M is principally δ-semiperfect.

Corollary 4.2. Let R be a ring. Then the following are equivalent.

(1) R is principally δ-semiperfect.
(2) R is principally δ-lifting.
(3) R is δ-semiregular.

Proof. (1)⇔ (2) Clear by Theorem 4.1

(2)⇔ (3) By Theorem 3.6 (2), R is principally δ-lifting if and only if for every principal right ideal I of R can be written as $I = N \oplus S$, where N is direct summand and S is δ-small in R. This is equivalent to being R δ-semiregular since for any ring R, $\text{Rad}_\delta(R)$ is δ-small in R and each submodule of a δ-small submodule is δ-small.

The module M is called principally δ-supplemented if every cyclic submodule of M has a δ-supplement in M. Clearly, every δ-supplemented module is principally δ-supplemented. Every principally δ-lifting module is principally δ-supplemented.
In a subsequent paper we investigate principally δ-supplemented modules in detail. Now we prove:

Theorem 4.3. Let M be a principally δ-semiperfect module. Then

1. M is principally δ-supplemented.
2. Each factor module of M is principally δ-semiperfect, hence any homomorphic image and any direct summand of M is principally δ-semiperfect.

Proof. (1) Let $m \in M$. Then M/mR has a projective δ-cover $P \xrightarrow{\beta} M/mR$. There exists $P \xrightarrow{\alpha} M$ such that the following diagram is commutative, $\beta = \pi \alpha$, where $M \xrightarrow{\pi} M/mR$ is the natural epimorphism.

```
\begin{array}{ccc}
P & \xrightarrow{} & M/mR \\
\uparrow{\alpha} & & \downarrow{\beta} \\
M & \xrightarrow{\pi} & 0
\end{array}
```

Then $M = \alpha(P) + mR$, and $\alpha(P) \cap mR$ is δ-small in $\alpha(P)$, by Lemma 2.1 (1). Hence M is principally δ-supplemented.

(2) Let $M \xrightarrow{f} N$ be an epimorphism and nR a cyclic submodule of N. Let $m \in f^{-1}(nR)$ and $P \xrightarrow{g} M/(mR)$ be a projective δ-cover. Define $M/(mR) \xrightarrow{h} N/nR$ by $h(m' + mR) = f(m') + nR$, where $m' + mR \in M/(mR)$. Then $\ker(g)$ is contained in $\ker(hg)$. By projectivity of P, there is a map α from P to N such that $hg = \pi \alpha$.

```
\begin{array}{ccc}
P & \xrightarrow{g} & M/mR \\
\downarrow{\alpha} & & \downarrow{h} \\
N & \xrightarrow{\pi} & N/nR \\
\end{array}
```

It is routine to check that $(nR) \cap \alpha(P) = \alpha(\ker(g))$. By Lemma 2.1 (2), $\alpha(\ker(g))$ is δ-small in N since $\ker(g)$ is δ-small. Let $x \in \ker(\pi \alpha)$. Then $hg(x) = (\pi \alpha)(x) = 0$ or $\alpha(x) \in (nR) \cap \alpha(P)$. So $\ker(\pi \alpha)$ is δ-small. Hence P is a projective δ-cover for $N/(nR)$.

Theorem 4.4. Let P be a projective module with $\text{Rad}_\delta(P)$ is δ-small in P. Then the following are equivalent.

1. P is principally δ-lifting.
2. $P/\text{Rad}_\delta(P)$ is principally semisimple and, for any cyclic submodule πR of $P/\text{Rad}_\delta(P)$ that is a direct summand of $P/\text{Rad}_\delta(P)$, there exists a cyclic direct summand A of P such that $\pi R = A$.

\square
Proof. (1)⇒(2) Since \(P \) is a principally \(\delta \)-lifting module, \(P/\text{Rad}_{\delta}(P) \) is principally semisimple by Lemma 3.15. Let \(\pi R \) be any cyclic submodule of \(P/\text{Rad}_{\delta}(P) \). By Theorem 3.6, there exists a direct summand \(A \) of \(P \) and a \(\delta \)-small submodule \(B \) such that \(xR = A \oplus B \). Since \(B \) is contained in \(\text{Rad}_{\delta}(R) \), \(xR + \text{Rad}_{\delta}(R) = A + \text{Rad}_{\delta}(R) \). Hence \(xR = \overline{A} \).

(2)⇒(1) Let \(xR \) be any cyclic submodule of \(P \). Then we have \(P/\text{Rad}_{\delta}(P) = [(xR+\text{Rad}_{\delta}(P))/\text{Rad}_{\delta}(P)] \oplus [U/\text{Rad}_{\delta}(P)] \) for some \(U \leq P \). By (2), there exists a direct summand \(A \) of \(P \) such that \(P = A \oplus B \) and \(U = B + \text{Rad}_{\delta}(P) \). Then \(P = A + B = A + U + \text{Rad}_{\delta}(P) \). Since \(\text{Rad}_{\delta}(P) \) is \(\delta \)-small in \(P \), there exists a projective and semisimple submodule \(Y \) of \(P \) such that \(P = A \oplus (A + U) \oplus Y \). Since \(P \) is projective, \(A + B \) is also projective and so by Lemma 3.13, we have \(A + B = V \oplus B \) for some \(V \leq A \). Hence \(P = V \oplus B \oplus Y \). On the other hand \((xR) \cap (B \oplus Y) = (xR) \cap B \leq (xR) \cap U \leq \text{Rad}_{\delta}(R) \). Since \(\text{Rad}_{\delta}(R) \) is \(\delta \)-small in \(P \), it is \(\delta \)-small in \(B \oplus Y \) by Lemma 2.1 (3). Thus \(P \) is principally \(\delta \)-lifting. \(\square \)

REFERENCES

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1974.
[2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Brikhauser-Basel, 2006.
[3] C. Lomp, Regular and Biregular Module Algebras, Arab. J. Sci. and Eng., 33(2008), 351-363.
[4] S. Mohamed and B. J. Müller, Continuous and discrete modules, Cambridge University Press, 1990.
[5] A. C. Ozcan, A. Harmanci and P. F. Smith, Duo Modules, Glasgow Math. J., 48(3)(2006), 533-545.
[6] K. Oshiro, Semiperfect modules and quasi-semiperfect modules, Osaka J. Math., 20(1983), 337-372.
[7] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
[8] M.F. Yousif and Y. Zhou, Semiregular, Semiperfect and Perfect Rings Relative To An Ideal, Rocky Mountain J. Math., 32(4)(2002), 1651-1671.
[9] Y. Zhou, Generalizations of Perfect, Semiperfect and Semiregular Rings, Algebra Colloq., 7(3)(2000), 305-318.