Predicting University Dropout through Data Mining: A Systematic Literature

Article in Indian Journal of Science and Technology - February 2019
DOI: 10.17485/jst/2019/v12i4/139729

2 authors:

Mayra Alban Taipe
Universidad Técnica de Cotopaxi (UTC)
4 PUBLICATIONS 0 CITATIONS

SEE PROFILE

David Mauricio
National University of San Marcos
34 PUBLICATIONS 96 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Personal project. I wanted to show the use of computing to improve the competitiveness of the industry View project

Serious Game View project

All content following this page was uploaded by Mayra Alban Taipe on 09 February 2019.

The user has requested enhancement of the downloaded file.
Predicting University Dropout through Data Mining: A Systematic Literature

Mayra Alban1* and David Mauricio2
1Technical University of Cotopaxi, Faculty of Computer Science and Computer Systems, Ecuador; mayra.alban@utc.edu.ec
2National University of San Marcos, Artificial Intelligence Group, Perú; dmauricios@unmsm.edu.pe

Abstract

Objectives: To make a systematic review of literature on the prediction of university student dropout through data mining techniques. Methods/Analysis: The study was developed as a systematic review of the literature of empirical research results regarding the prediction of university dropout. In this phase, the review protocol, the selection requirements for potential studies and the method for analyzing the content of the selected studies were provided. The classification presented in section 3 allowed answering the main research question. What are the aspects considered in the prediction of university student desertion through data mining? Findings: University dropout is a problem which affects universities around the world, with consequences such as reduced enrolment, reduced revenue for the university, and financial losses for the State which funds the studies, and also constitutes a social problem for students, their families, and society in general. Hence the importance of predicting university dropout, that is to say identify dropout students in advance, in order to design strategies to tackle this problem. Novelty/Improvement: This is the first work to perform an integral systematic literature review about university dropout prediction through data mining, with studies from 2006–2018.

Keywords: Data Mining, Dropout Factors, Dropout Prediction, Machine Learning, University Student Dropout

1. Introduction

There is currently an increasing interest in researching the topic of university dropout around the world1, with one of the main concerns being elevated rates of occurrence2. Dropout negatively affects institutions in the reduction of enrolment and the non-achievement of institutional objectives3. As a consequence, students, universities and governments are affected in both economic and social terms. Furthermore, dropout becomes a critical topic when university administrators do not possess the tools necessary to identify students who are at risk of leaving the institution. In turn, potential corrective measures are reduced4, which might have enabled student retention at higher education institutions5. In the same way, the early prediction of student dropout has become a major challenge, as well as identifying the factors which contribute to this increasingly occurring phenomenon6. One possible reason that there are still high university dropout rates may be associated with the fact that most of the prediction models applied to solve this problem are difficult to interpret7. A significant effort has been made to close the university dropout gap and thus reduce dropout rates. Nonetheless, this effort has been insufficient8; according to the Organization for Economic Cooperation and Development (OECD), in 2016, European dropout rates ranged between 30% and 50%, while in the United States the student dropout rate was 37%9.

In some Latin American countries, such as Columbia, dropout rates exceeded 40%, while in Brazil they reached approximately 54%. In Costa Rica, the dropout rate reached 50%2, with public universities presenting higher dropout rates than private ones10. One of the measures to deal with university dropout is based on predicting its rates; therefore, data mining is used, aimed at developing methods to identify patterns among large datasets and
Predicting University Dropout through Data Mining: A Systematic Literature

In general, this process follows four stages, which range from data pre-processing to result evaluation (Figure 1).

Prior literature survey on data mining and education have covered topics such as: learning management systems, intelligent tutoring systems, adaptive educational systems, learning analytics, student modeling, and predicting academic performance. However, none of these considers the topic of university dropout, despite the large number of studies regarding factors that influence university dropout and techniques for dropout prediction. For this reason, the present study aims to answer the following question: What aspects are considered in predicting university student dropout through data mining?

In order to perform this systematic review, we considered the methodologies applied by, which consist in three stages:

Planning: This stage identifies the need for research and the determination of a review protocol.

Implementation: This stage implements the plan; the defined protocol is applied as well as the inclusion and exclusion criteria.

Results: This stage presents the results and statistical analysis of the selected documents.

2.1 Planning

Five research questions were proposed in order to determine the aspects that have been developed to predict university student dropout.

- Question 1 (Q1): What techniques are used for data pre-processing?
- Question 2 (Q2): What factors affect dropout?
- Question 3 (Q3): What techniques are used for factor selection?
- Question 4 (Q4): What techniques are used for prediction and what are their levels of reliability?
- Question 5 (Q5): What tools are used?

Articles from conferences and journals indexed in Scimago Journal Country Rank (SJR) with impact factor were reviewed in the following databases: Science Direct, ACM Digital Library, IEEE Xplore, Springer, DOAJ, Taylor and Francis, Emerald, Proquest and Ebsco. For document selection, the inclusion and exclusion criteria presented in Table 1 were applied.

The following search criteria were considered: “dropout student” OR “drop out student” OR “dropping student” AND “data mining”, which were applied to the title, abstract and keywords in the search period between January 2006 and December 2017.

Table 1. Criteria for document selection

Inclusion	Exclusion
Models to provide a solution to the problem of university student dropout.	Prediction documents that are unrelated to university student dropout, such as primary, secondary and postgraduate education.
Documents that present factors influencing university dropout.	Documents not related to data mining.
Papers that include prediction based on data mining.	Documents that do not have numeric experimentation.
Papers that present metrics to assess the quality of predictive models.	Documents that are not found within the established search period.
Papers that respond to the research questions.	

Figure 1. Data mining process for university dropout prediction.
Mayra Alban and David Mauricio

Indian Journal of Science and Technology

Vol 12 (4) | January 2019 | www.indjst.org

3. Result

Table 2 summarizes the total identified and selected documents by information source, Science Direct being the main source of information, with 40% of the primary selected studies. Meanwhile, Emerald and ACM Digital Library present rates of 4.47% and 1.49%, respectively. Figure 3 exhibits the increase in studies during the past 12 years and the interest that researchers have in solving the problem of university dropout prediction. 87% of the primary selected documents come from journals (58 studies out of 67), and 13% correspond to publications in conferences (9 studies of 67), as presented in Figure 4. From the selected documents, we identified three aspects regarding university dropout prediction: factors, techniques and tools, all of which are specified in the framework of the present study.

Dropout factors: The reasons for which students leave studies.

Data mining techniques: The objective of these techniques is to discover patterns, profiles and trends through

Table 3. Techniques for data pre-processing

ID	Technique
TDP1	Multivariate analysis of variance[22]
TDP2	Bagging[26]
TDP3	Discretization[22,37,39]
TDP4	Attribute-based filtering[40,53]
TDP5	Single imputation[41]
TDP6	Multiple imputation[47,48]
TDP7	Normalization[22,37,26,43,42,12]
TDP8	Oversampling[22]
TDP9	Simple random sampling[43,42]

2.2 Implementation

We performed the search process based on the strategies proposed in section 2. Once selected, each document’s content was reviewed in order to determine whether it matched the established selection criteria. The systematic literature review process is presented in Figure 2.

Figure 2. Systematic literature review process.

Table 2. Selected papers

Source	Identified papers	Selected papers
Science Direct	378	27
ACM Digital Library	326	1
IEEE Xplore	41	10
Springer	260	6
DOAJ	71	5
Taylor and Francis	27	5
Emerald	110	3
Proquest	148	4
Ebsco	320	6
Total	**1681**	**67**

Figure 3. Temporal trend of selected publications on university dropout.

Figure 4. Publications on university dropout prediction.
Predicting University Dropout through Data Mining: A Systematic Literature

Indian Journal of Science and Technology
Vol 12 (4) | January 2019 | www.indjst.org

4

Vol 12 (4) | January 2019 | www.indjst.org

Predicting University Dropout through Data Mining: A Systematic Literature

Indian Journal of Science and Technology
Vol 12 (4) | January 2019 | www.indjst.org

4

Table 4. Personal dimension factors

ID	Factors	
PDF01	Adjustment	
PDF02	Age 2, 20, 25, 28, 44–55	
PDF03	Change of goal 21, 23, 24, 56	
PDF04	Choice to change current course 23	
PDF05	Country or city of origin 19, 37, 29	
PDF06	Dependents	
PDF07	Disability	
PDF08	Domicile 24, 70, 31, 20	
PDF09	Encouragement and support from parents 25	
PDF10	Engagement of students 28, 43, 56, 58	
PDF11	Ethnicity 2, 39, 26, 25, 33, 12, 47, 68, 79, 71, 60	
PDF12	Gender 2, 11, 22, 20, 28, 44, 45, 50, 39, 33, 61, 62, 48, 70	81
PDF13	Has a computer	
PDF14	Health problem	
PDF15	Interest level in the current course 13	
PDF16	Intrinsic motivation 41, 79	
PDF17	Leadership	
PDF18	Level of commitment 40	
PDF19	Living on campus	
PDF20	Loneliness 57	
PDF21	Marital status 5, 22, 49, 68, 29, 73	
PDF22	Measure of student persistence 45, 69	
PDF23	Pessimism	
PDF24	Residency 20, 66, 31	
PDF25	Self-efficacy	
PDF26	Student satisfaction 28, 44, 52, 57	
PDF27	Tuition fee source 22	
PDF28	Vocational involvement 24	
PDF29	Work experience	
PDF30	Year of birth 40	

Table 5. Academic dimension factors

ID	Factors
ADF01	Absenteeism 24
ADF02	Academic ability 75, 61
ADF03	Academic overload 22
ADF04	Academic performance 5, 61, 81
ADF05	Age at admission 65
ADF06	Average formative assessment result 20
ADF07	Best test score GPA 1.5, 64, 69, 34, 37, 44, 46, 47, 48, 56, 57, 59, 33, 70, 80, 81
ADF08	Cohort 26, 60, 70, 71
ADF09	Curricular involvement 48
ADF10	Degree 27, 36, 48, 59, 59
ADF11	Degree aspiration 22, 28
ADF12	Degree program length 24
ADF13	Drop out intention 22
ADF14	Educational goal 28
ADF15	English language literacy 41
ADF16	Enrolled in other institution 28
ADF17	Entry qualifications 7, 69
ADF18	Experience 22
ADF19	Final examination test 20, 77, 26, 46, 58, 65
ADF20	First and second mid-term exam grade 45
ADF21	First semester credit load 23
ADF22	Motive for choice 24
ADF23	Number quiz 55
ADF24	Participate in extra curriculum activity 28, 31
ADF25	Points from secondary 49, 58, 12
ADF26	Progression outcome 2
ADF27	Readiness 2
ADF28	Recognized credits 41, 60, 29
ADF29	Resources use 22
ADF30	Satisfaction with course 31
ADF31	Score of academic integration 45, 59, 65
ADF32	Scores 25, 38, 69, 29, 65, 79, 84
ADF33	Self-evaluation 51, 64
ADF34	Student enrolment status 28, 73, 12
ADF35	Study center 45, 73
ADF36	Study level 20, 41, 30, 33
ADF37	Study shift 43
ADF38	Success rate 54
ADF39	Support for learning 22
ADF40	Total failed courses 50

data analysis using pattern recognition technologies and advanced data analysis techniques.

Data mining tools: This refers to software used to extract patterns, trends and regularities to discover and better understand the data and predict future behavior 12.

a) Q1: What techniques are used for data pre-processing?

In the pre-processing stage, eleven techniques were identified (Table 3). This stage allows the management of anomalies as well as the correction of atypical and
missing values17. The purpose of these techniques is to improve the properties of the variables and solve data anomalies to optimize the search process of data mining algorithms18. This is based on three activities: integration, cleaning and transformation of the information. All of the studies20 involving the pre-processing stage are concentrated around the activity of data transformation, with the techniques of normalization and discretization being the most commonly used. However, integration and cleaning activities are also important; as in19,20 indicate; selecting the wrong variables in the data mining process can negatively affect prediction accuracy for these techniques.

b) Q1: What factors affect dropout?

We identified 112 factors to predict university dropout, which were classified according to the five dimensions (personal, academic, economic, social and institutional) proposed by author21.

Personal factors: These constitute characteristics that determine student behavior such as feelings, thoughts or actions, which are decisive in the development of their educational environment. We identified 31 factors in the personal category, and these corresponded to approximately 28\% of the total identified factors, as shown in Table 4. For many authors, personal factors are the main cause of students dropping out of university, and Table 4 evidences this fact. Age and gender are the most frequently used factors for prediction; this is because they are considered internal factors of variability which are simple to define and measure22.

Academic factors: These refer to the development of students in their formative process. We identified 40 academic factors, which correspond to 36\% of the total identified factors, presented in Table 5.

Analysis of these factors shows that the university entrance test is the most frequently used factor in the literature. However, it bears mentioning that the learning process at university has a close relationship with preceding study levels, impacting further educational achievements23. In the same way, the score that a student obtains in the university entrance examination is considered an indicator to explain success or failure in academic trajectory at university5. In this sense, many studies have analyzed the predictive validity of this factor, considering it a predictor of cognitive and attitudinal characteristics that is of the utmost importance for students to succeed at university24.

Economic factors: These are related to students’ ability to satisfy the economic requirements that present themselves during the academic program. In this dimension, 15 factors were identified that affect dropout, and they correspond to approximately 13\% of the total analyzed factors, which are presented in Table 6. These economic dimension factors refer to material comforts and the ability of parents to allocate more and better resources for the academic performance of their children, which has a significant impact on academic achievements25.

Social factors: These are aspects that affect students as a whole, and which are determined by their place and space, as presented in Table 7.

On the other hand, the social dimension focuses on the importance of the interaction between students and their social environment; interaction in relation to the institution, academic norms, and study habits26.

Institutional factors: The factors that correspond to this category relate to the structural and functional characteristics of an institution, which are presented in Table 8; these represent approximately 3.53\% of the total analyzed factors.

c) Q3: What techniques are used for factor selection?

We identified ten techniques for factor selection, which are presented in Table 9. The objective of these techniques is to select the most relevant factors used as input
variables for dropout prediction models. Approximately 55% (23 out of 42 studies) used descriptive statistics, as this technique produces the characteristics of dispersion, location and distribution of the variables. Additionally, the technique is frequently used to identify patterns regarding student characteristics and behaviors related to dropout. Of these 23 studies, 14 are oriented towards variable correlation and apply this type of analysis to evaluate the association and relationship of quantitative data in terms of directionality, through correlation coefficients. On the other hand, 12% (5 out of 42 studies) apply Principal Components Analysis to reduce the dimensionality of the observed variables to a number of hypothetical variables; thus, groups of variables that correlate with one another are created. These variables are transformed into independent factors that are implemented in dropout prediction models.

We identified 14 data mining techniques, which had been classified into artificial intelligence and statistical method techniques; these are presented in Tables 10 and 11. Approximately 79% (22 out of 28 studies) used Decision tree classifiers. According to this technique is used due to its flexibility when processing data of a numerical and categorical nature, its monotonic transformations of explanatory variables, and the ease of interpreting results. Furthermore, it presents better accuracy rates. In and mention that the algorithm ID3 (Decision tree classifier) is effective in classifying data from student history registers and is more sensitive in comparison to other algorithms.

Neural network classifiers and support vector machines hold the second highest frequency of use, since these data mining approaches are considered powerful tools for solving classification problems and are used frequently for their simplicity and ease of understanding. Four statistical techniques were identified, corresponding to a total of 36 references, or 3% (4 out of 14 techniques) of the total studies analyzed. Of these, 54% (21 out of 39 studies) applied Linear Regression and Logistic Regression, as

Table 7. Social dimension factors

ID	Factors
SDF01	Campus accommodation
SDF02	Category (marginalized or vulnerable section of society)
SDF03	College status
SDF04	Community support
SDF05	Employment status
SDF06	Family problems
SDF07	Family type
SDF08	Father’s educational level
SDF09	Housing indicator
SDF10	Level of involvement in social media
SDF11	Means of transport
SDF12	Migrated before
SDF13	Mother migrated
SDF14	Mother’s educational level
SDF15	Occupation
SDF16	Parent occupation
SDF17	Political status
SDF18	Social status
SDF19	Stress
SDF20	Student use of drugs
SDF21	Use of recreational facilities

Table 8. Institutional dimension factors

ID	Factors
IDF1	Campus environment
IDF2	High school type
IDF3	Institutional involvement
IDF4	University infrastructure

Table 9. Techniques for the selection of factors

ID	Techniques
TSF01	Analysis of variance
TSF02	Descriptive Statistics
TSF03	Feature extraction algorithm
TSF04	Genetic Algorithm
TSF05	Hosmer and Lemeshow
TSF06	Locality Preserving Projection
TSF07	Maximum Likelihood
TSF08	Neighborhood Preserving Embedding
TSF09	Principal Components Analysis
TSF10	Kaiser Meyer Olkin
TSF11	U Mann Whitney

d) Q4: What techniques are used for prediction and what are their levels of reliability?
these are frequently used techniques for classifications based on data characteristics, and are flexible in the use of categorical and continuous predictor variables. On the other hand, regarding the accuracy of data mining techniques, the authors considered metrics such as sensibility, specificity, and accuracy. Of these, accuracy is determined by the ratio of True Positives (TP) to True Negatives (TN) among the total of registers, as formulated in equation (1).

$$\frac{TP + TN}{TP + TN + FP + FN} \times 100$$ \hspace{1cm} (1)

where, FP is the number of false positives and FN the number of false negatives. Tables 12 and 13 report the accuracy levels of the data mining techniques that reached a ratio higher than 60% and have a dataset composed of a number higher than 100 students.

The results show that the most accurate techniques are the Decision Tree Classifier, with the classifiers C4.5, ID3, and CART, reaching an accuracy of 98%, 97.5%, and 97%, respectively. The results evidence that the most accurate technique is Linear Regression (87.8%). However, these results cannot be generalized, as they depend on the dataset and the considered variables.

e) Q4: What tools are used?

We identified four tools in studies with artificial intelligence techniques, and seven tools in those using statistical methods; these are presented in Tables 14 and 15, respectively. The results highlight that the most widely used tools are WEKA and SPSS Modeler, most likely due to their wide variety of automatic learning algorithms for data mining tasks, flexibility in predictive modeling, and their facilities and functionalities.

4. Discussion

Of the 67 studies identified on university student dropout prediction, 18% contemplate the pre-processing phase. Therefore, this underlines the importance of this phase in obtaining variable properties, solving data anomalies, and increasing accuracy rates. We found that 90% of the studies regarding dropout prediction contemplate factor dimension, which evidences its relevance to the scientific community. Age, gender, ethnicity, and entrance exam performance are the most commonly used factors and correspond to the personal dimension. Although the total factors are wide-ranging, their behavior changes from one context to another; therefore, there is much controversy over which factors prove to be most efficient in university dropout prediction. With respect to factor selection techniques, 34% of studies used descriptive statistics and 7% used principal components analysis. This is one of the most relevant phases when predicting dropout due to its reduction in variable dimensionality. Thus, it allows us to adequately select the most predominant factors used as input variables in dropout prediction models. With regards to the techniques used to predict dropout, currently, statistical techniques are most commonly used. However, these are gradually being replaced by artificial intelligence techniques, since the latter present higher accuracy rates. Nevertheless, these rates vary according to the factors and educational context, the educational environment, and the theoretical framework of the analysis.

5. Conclusions

This study presents a systematic literature review on the aspects of data mining considered for predicting university dropout. We identified 1,681 primary studies related to the topic, from amongst which 67 documents were selected according to the established inclusion and exclusion criteria, identifying five important dimensions: factors, pre-processing techniques, factor selection techniques, prediction, and tools. This study makes an
inventory of 112 factors that influence dropout prediction. These factors were classified into five dimensions: personal, academic, economic, social, and institutional; the most commonly studied was the personal dimension, which considers factors such as age, ethnicity and gender. Furthermore, we identified ten pre-processing techniques, the most widely used being normalization and discretization. There were ten techniques for factor selection, of which descriptive statistics and Principal Component Analysis were the most referenced. Additionally, four

Table 12. Accuracy of artificial intelligence techniques

Dataset size	Techniques	Accuracy (%)
200	Feed forward neural network	82
	Probabilistic ensemble PESFAM	62
	SEDM	94
193	Feed forward neural network	84
	Support vector machine	83
	Probabilistic ensemble simplified fuzzy ARTMAP	97
170	Naive Bayes	81
	J48	70
240	ID3	92.50
	ID3 (Renyi)	97.50
150	Support vector machine	89.84
	Decision tree classifier	86.32
	Rule induction	81.98
3,200	Naive Bayes	85
	Artificial neural networks	62
	Decision trees and random forest	63
62,375	Artificial neural network	84
	Decision tree classifier	82
	Bayesian networks	76
300	C4.5	98
	CART	97
	Logistic regression	86
775	Excalibur (J48)	80
	SNA (PART)	92
3,617	General Bayesian network	89
	C4.5	86
21,654	Artificial neural networks	85
	Support vector machine	90
	Decision tree classifier	89
	Logistic regression	80
	Logistic regression	84
	Naive Bayes	83
	Support vector machine	67
	Decision tree classifier	83
128	Decision tree classifier	84
	Logistic regression	84
	Naive Bayes	82
	Artificial neural network	82

Table 12. (Continued)

Dataset size	Techniques	Accuracy (%)
189	K-Nearest neighbor	87
	Decision tree classifier	79
	Naive Bayes	76
	Artificial neural network	73
32,538	Logistic regression	66
	Random forest	62
	K-Nearest neighbor	64
200	ID3	90.90
	C4.5	89.09
	CART	86.06
	ADT	87.27

200 | K-Nearest neighbor | 74 |
	Radial basis function	70
	Support vector machine	79
	Support vector machine	65
	Logistic regression	65
	Random forest	86
	Gradient boosting decision tree	88

Table 13. Accuracy of statistical techniques

Dataset Size	Technique	Accuracy (%)	Reference
237	Logistic regression	71.80	23
6,733	Logistic regression	56.60	29
293	Logistic regression	85.50	29
1,064	Logistic regression	85.80	26
588	Linear regression	87.80	29
37,006	Discriminant analysis	69.10	24
134	Discriminant analysis	81.30	27
209	Discriminant analysis	78.20	24

(Continued)
Table 14. Tools used in studies applying artificial intelligence techniques

Tools	AI1	AI2	AI3	AI7	AI9
WEKA	46.3, 61, 63, 67, 69, 79	63, 61, 63, 67, 69	61, 63, 67, 69, 65, 67	61, 67, 65, 67	67
SPSS Modeler	63, 76	63, 76	63	63	63
Matlab	61, 63	61, 63	61	61	61
SAS Enterprise	61	61	61	61	61
Rapid Miner	61	61	61	61	61

Table 15. Tools used in studies applying statistical techniques

Tools	S1	S2	S3
WEKA	28, 63, 68	62	67
SPSS Modeler	79, 63, 70	83, 38, 27	63
Matlab	63	63	63
R	63	63	63
ISFE SYSTEM	63	63	63
SAS Enterprise	63	63	63
Excel	63	63	63

Sixteen techniques were identified for dropout prediction, and these were classified into statistics and artificial intelligence. The statistical techniques presented a higher frequency of use, while the artificial techniques presented greater accuracy rates. Finally, there are many data mining tools, of which the most used are WEKA and SPSS Modeler.

Consequently, it is clear that university dropout prediction is of interest to the scientific community, evidenced by the large volume of works on the topic, and its socio-economic impact. To address the problem of dropout, highly accurate techniques are being developed, however we cannot identify one technique that is clearly superior, for prediction accuracy depends mainly on the context, data and technique characteristics; any potential alternative must consider these factors.

6. References

1. Márquez-Vera C, Morales CR, Soto SV. Predicting school failure and dropout by using data mining techniques. IEEE Revista Iberoamericana de Tecnologías del Aprendizaje 2013; 8(1):7–14. https://doi.org/10.1109/RITA.2013.2244695

2. Yukseturk O, Ezeke vs, Türel YK. Predicting dropout student: an application of data mining methods in an online education program. European Journal of Open, Distance and E-learning. 2014; 17(1):118–33. https://doi.org/10.2478/eurodl-2014-0008

3. Lin SH. Data mining for student retention management. Journal of Computing Sciences in Colleges. 2012; 27(4): 92–9.

4. Hu YH, Lo CL, Shih SP. Developing early warning systems to predict students’ online learning performance. Computers in Human Behavior. 2014; 36:469–78. https://doi.org/10.1016/j.chb.2014.04.002

5. Jia P, Malone T. Using predictive modelling to identify students at risk of poor university outcomes. Higher Education. 2015; 70(1):127–49. https://doi.org/10.1007/s10734-014-9829-7

6. Lye CT, Ng LN, Hassan MD, Goh WW, Law CY, Ismail N. Predicting Pre-university student’s Mathematics achievement. Procedia-Social and Behavioral Sciences. 2010; 8:299–306. https://doi.org/10.1016/j.sbspro.2010.12.041

7. Wray J, Barrett D, Aspland J, Gardiner E. Staying the course: Factors influencing pre-registration nursing student progression into Year 2–A retrospective cohort study. International Journal of Nursing Studies. 2012; 49(11):1432–42. https://doi.org/10.1016/j.ijnurstu.2012.06.006. PMid:22770946

8. Rodríguez-Gómez D, Feixas M, Gairín J, Mu-oz JL. Understanding Catalan University dropout from a comparative approach. Procedia-Social and Behavioral Sciences. 2012; 46:1424–9. https://doi.org/10.1016/j.sbspro.2012.05.314

9. Cantú-Martínez PC. Educación ambiental y la escuela como espacio educativo para la promoción de la sostenibilidad. Revista Electrónica Educare. 2014; 18(3):39–52. https://doi.org/10.15359/ree.18-3.3

10. Sittichai R. Why are there dropouts among university students? Experiences in a Thai University. International Journal of Educational Development 2012; 32(2):283–9. https://doi.org/10.1016/j.ijedudev.2011.04.010

11. Rebbapragada S, Basu A, Semple J. Data mining and revenue management methodologies in college admissions. Communications of the ACM. 2010; 53(4):128–33. https://doi.org/10.1145/1721654.1721690

12. Romero C, Ventura S. Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and
Predicting University Dropout through Data Mining: A Systematic Literature Review

Cybernetics. 2010; 40(6):601–18. https://doi.org/10.1109/TSMCC.2010.2053532

13. Pappamitsiou Z, Economides AA. Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Journal of Educational Technology and Society. 2014; 17(4):49–64.

14. Bakhshinategh B, Zaiane OR, ElAtia S, Ipperciel D. Educational data mining applications and tasks: A survey of the last 10 years. Education and Information Technologies. 2018; 23(1):537–53. https://doi.org/10.1007/s10639-017-9616-z

15. Kitchenham B. Procedures for performing systematic reviews. Keele, UK, Keele University. 2004; 33:1–26.

16. Girón F. Factores de Riesgo que Ocasionaron la Deserción de Estudiantes de la Facultad de Ingeniería de la Universidad Rafael Landívar. Tesis de maestría). Universidad Rafael Landívar; 2014. p. 1–71.

17. Romero C, Ventura S, Pechnizkiy M, Baker RS. Handbook of educational data mining. CRC Press; 2010. p. 1–526. https://doi.org/10.1201/b10274. PMCID:PMC3568769

18. Rivero Pérez JL. Técnicas de aprendizaje automático para la detección de intrusos en redes de computadoras. Revista Cubana de Ciencias Informáticas. 2014; 8(4):52–73.

19. Lara JA, Lizcano D, Martínez MA, Pazos J, Riera T. A system for knowledge discovery in e-learning environments within the European Higher Education Area-Application to student data from Open University of Madrid, UDIMA. Computers and Education. 2014; 72:23–36. https://doi.org/10.1016/j.compedu.2013.10.009

20. Tan M, Shao P. Prediction of student dropout in e-Learning program through the use of machine learning method. International Journal of Emerging Technologies. 2015; 10(1):11–17. https://doi.org/10.3991/ijet.v10i1.4189

21. Maimon O, Browarnik A. NHECD-Nano health and environmental commented database. Data mining and knowledge discovery handbook, Springer; 2009. p. 1221–41. https://doi.org/10.1007/978-0-387-09823-4_64

22. Yasmin D. Application of the classification tree model in predicting learner dropout behaviour in open and distance learning. Distance Education. 2013; 34(2):218–31. https://doi.org/10.1080/01587919.2013.793642

23. Nistor N, Neubauer K. From participation to dropout: Quantitative participation patterns in online university courses. Computers and Education. 2010; 55(2):663–72. https://doi.org/10.1016/j.compedu.2010.02.026

24. Sangodiah A, Beleya P, Muniandy M, Heng LE, Spr CR. Minimizing student attrition in higher learning institutions in Malaysia using support vector machine. Journal of Theoretical and Applied Information Technology. 2015; 71(3):1–9.

25. Arulampalam W, Naylor RA, Smith JP. Dropping out of medical school in the UK: Explaining the changes over ten years. Medical Education. 2007; 41(4):385–94. https://doi.org/10.1111/j.1365-2929.2007.02710.x PMid:17430284

26. Xing W, Chen X, Stein J, Marcinkowski M. Temporal predication of dropouts in MOOCs: Reaching the low hanging fruit through stacking generalization. Computers in Human Behavior. 2016; 58:119–29. https://doi.org/10.1016/j.chb.2015.12.007

27. Chen R. Institutional characteristics and college student dropout risks: A multilevel event history analysis. Research in Higher Education. 2012; 53(5):487–505. https://doi.org/10.1007/s11162-011-9241-4

28. Bayer J, Bydzovská H, Géryk J, Obsivac T, Popelinsky L. Predicting drop-out from social behaviour of students. International Educational Data Mining Society; 2012. p. 1–7.

29. Hovdhaugen E. Transfer and dropout: Different forms of student departure in Norway. Studies in Higher Education. 2009; 34(1):1–17. https://doi.org/10.1080/03075070802457009

30. Heredia D, Amaya Y, Barrientos E. Student dropout predictive model using data mining techniques. IEEE Latin America Transactions. 2015; 13(9):3127–34. https://doi.org/10.1109/TLA.2015.7350068

31. Pal S. Mining educational data to reduce dropout rates of engineering students. International Journal of Information Engineering and Electronic Business. 2012; 4(2):1–7. https://doi.org/10.5815/ijieeb.2012.02.01

32. Sivakumar S, Venkataraman S, Selvaraj R. Predictive modeling of student dropout indicators in educational data mining using improved decision tree. Indian Journal of Science and Technology. 2016; 9(4):1–5. https://doi.org/10.17485/ijst/2016/v9i4/78032

33. Liang J, Yang J, Wu Y, Li C, Zheng L. In Big data application in education: dropout prediction in edx MOOCs. IEEE Second International Conference on Multimedia Big Data (BigMM); 2016. p. 440–43. https://doi.org/10.1109/BigMM.2016.70 PMCID:PMC5052158

34. Herzog S. Measuring determinants of student return vs. dropout/stopout vs. transfer: A first-to-second year analysis of new freshmen. Research in Higher Education. 2005; 46(8):883–928. https://doi.org/10.1007/s11162-005-6933-7

35. Predicting student dropout in higher education [Internet]. [cited 2016 Jun 20]. Available from: https://arxiv.org/abs/1606.06364.

36. Wood L, Kiperman S, Esch RC, Leroux AJ, Truscott SD. Predicting dropout using student-and school-level factors: An ecological perspective. School Psychology Quarterly. 2017; 32(1):1–35. https://doi.org/10.1037/spq0000152. PMid:27030991

37. Natek S, Zwillin M. Student data mining solution–knowledge management system related to higher education
institutions. Expert Systems with Applications. 2014; 41(14):6400–7. https://doi.org/10.1016/j.eswa.2014.04.024
38. Lam-On N, Boongoen T. Using cluster ensemble to improve classification of student dropout in Thai university. International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS); 2014. p. 452–7. https://doi.org/10.1109/SCIS-ISIS.2014.7044875
39. Paura L, Arhipova I. Cause analysis of students’ dropout rate in higher education study program. Procedia-Social and Behavioral Sciences. 2014; 109:1282–6. https://doi.org/10.1016/j.proced.2013.12.625
40. Li W, Gao M, Li H, Xiong Q, Wen J, Wu Z. Dropout prediction in MOOCs using behavior features and multi-view semi-supervised learning. International Joint Conference on Neural Networks (IJCNN); 2016. p. 3130–7. https://doi.org/10.1109/IJCNN.2016.7727598
41. Hoffait AS, Schyns M. Early detection of university students with potential difficulties. Decision Support Systems. 2017; 101:1–11. https://doi.org/10.1016/j.dss.2017.05.003
42. Lykourentzou I, Giannoukos I, Nikolopoulos V, Mpardis G, Loumos V. Dropout prediction in e-learning courses through the combination of machine learning techniques. Computers and Education. 2009; 53(3):950–65. https://doi.org/10.1016/j.compedu.2009.05.010
43. Janosz M, Archambault I, Morizot J, Pagani LS. School engagement trajectories and their differential predictive relations to dropout. Journal of Social Issues. 2008; 64(1):21–40. https://doi.org/10.1111/j.1540-4560.2008.00546.x
44. Badr G, Alglobail A, Almutairi H, Almutery M. Predicting students’ performance in university courses: A case study and tool in KSU mathematics department. Procedia Computer Science. 2016; 82:80–9. https://doi.org/10.1016/j.procs.2016.04.012
45. Levy Y. Comparing dropouts and persistence in e-learning courses. Computers and Education. 2007; 48(2):185–204. https://doi.org/10.1016/j.compedu.2004.12.004
46. Huang S, Fang N. Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers and Education. 2013; 61:133–45. https://doi.org/10.1016/j.compedu.2012.08.015
47. Koonce DA, Hening DA. Data imputation to identify potential dropouts. Proceedings, Institute of Industrial and Systems Engineers (IISE); 2009. p. 1–246.
48. Jadić M, Garača Ž, Ćukušić M. Student dropout analysis with application of data mining methods. Management: Journal of Contemporary Management Issues. 2010; 15(1):31–46.
49. Park JH, Choi HJ. Factors influencing adult learners’ decision to drop out or persist in online learning. Journal of Educational Technology and Society. 2009; 12(4):207–17.
50. Dewan MAA, Lin F, Wen D. Predicting dropout-prone students in e-learning education system. IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Communications and its Associated Workshops (UIC-ATC-ScalCom); 2015. p. 1735–40. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.315
51. Duque LC. A framework for analysing higher education performance: students’ satisfaction, perceived learning outcomes, and dropout intentions. Total Quality Management and Business Excellence. 2014; 25(1–2):1–21. https://doi.org/10.1080/14783363.2013.807677
52. Onah DF, Sinclair J, Boyatt R. Dropout rates of massive open online courses: Behavioural patterns. EDULEARN14 Proceedings; 2014. p. 5825–34.
53. Fei M, Yeung DY. Temporal models for predicting student dropout in massive open online courses. IEEE International Conference on Data Mining Workshop (ICDMW); 2015. p. 256–63. https://doi.org/10.1109/ICDMW.2015.174
54. Saranya A, Rajeswari J. Enhanced prediction of student dropouts using fuzzy inference system and logistic regression. ICTACT Journal on Soft Computing. 2016; 8(2):1–6.
55. Reschly AL, Christenson SL. Prediction of dropout among students with mild disabilities: A case for the inclusion of student engagement variables. Remedial and Special Education. 2006; 27(5):276–92. https://doi.org/10.1177/0742054706291618
56. Park JH, Choi HJ. Factors influencing adult learners’ decision to drop out or persist in online learning. Journal of Educational Technology and Society. 2009; 12(4):207–17.
57. Dewan MAA, Lin F, Wen D. Predicting dropout-prone students in e-learning education system. IEEE 12th International Conference on Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing and Communications and its Associated Workshops (UIC-ATC-ScalCom); 2015. p. 1735–40. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.315
58. Sultana S, Khan S, Abbas MA. Predicting performance of electrical engineering students using cognitive and non-cognitive features for identification of potential dropouts. International Journal of Electrical Engineering Education. 2017; 54(2):105–118. https://doi.org/10.1177/0020720916688484
59. Chen R, DesJardins SL. Exploring the effects of financial aid on the gap in student dropout risks by income level. Research in Higher Education. 2008; 49(1):1–18. https://doi.org/10.1007/s11162-007-9060-9
60. Yi H, Zhang L, Yao Y, Wang A, Ma Y, Shi Y, Chu J, Loyalka P, Rozelle S. Exploring the dropout rates and causes of dropout in upper-secondary Technical and Vocational Education and Training (TVET) schools in China. International Journal of Educational Development. 2015; 42:115–23. https://doi.org/10.1016/j.ijedudev.2015.04.009
61. do Nascimento RLS, das Neves Junior RB, de Almeida Neto MA, de Araújo Fagundes RA. Educational data mining: An application of regressors in predicting school dropout. International Conference on Machine Learning and Data Mining in Pattern Recognition; 2018. p. 246–57. https://doi.org/10.1007/978-3-319-96133-0_19
62. Tümen S, Shuruf B, Hatti J. Student pathways at the university: Patterns and Predictors of Completion. Studies in Higher Education. 2008; 33(3):233–52. https://doi.org/10.1080/03075070802049145
63. Thammasiri D, Delen D, Meesad P, Kasap N. A critical assessment of imbalanced class distribution problem: The case of predicting freshmen student attrition. Expert Systems with Applications. 2014; 41(2):321–30. https://doi.org/10.1016/j.eswa.2013.07.046
64. Vogel C, Hochberg J, Hackstein S, Bockshecker A, Bastiaens TJ, Baunöl U. Dropout in distance education and how to prevent it, EdMedia+ innovate learning. Association for the Advancement of Computing in Education (AACE); 2018. p. 1788–99.
65. Al-barrak MA, Al-razgan MS. Predicting students’ performance through classification: A case study. Journal of Theoretical and Applied Information Technology. 2015; 75(2):167–75.
66. Iepsen EF, Bercht M, Reategui E. In Detection and assistance to students who show frustration in learning of algorithms. IEEE Frontiers in Education Conference (FIE); 2013. p. 1183–9. https://doi.org/10.1109/FIE.2013.6685017
67. Guarín CEL, Guzmán EL, González FA. A model to predict low academic performance at a specific enrollment using data mining. IEEE Revista Iberoamericana de tecnologías del Aprendizaje. 2015; 10(3):119–25. https://doi.org/10.1109/RITA.2015.2452632
68. Martinho VR, Nunes C, Minussi CR. In Prediction of school dropout risk group using neural network. 2013 Federated Conference on Computer Science and Information Systems; 2013. p. 111–14.
69. Duarte R, Ramos-Pires A, Gonçalves H. Identifying at-risk students in higher education. Quality Control and Applied Statistics. 2015; 60(5):557–8.
70. Willging PA, Johnson SD. Factors that influence students’ decision to drop out of online courses. Journal of Asynchronous Learning Networks. 2009; 13(3):115–27.
71. González-Flores M, Heracleous M, Winters P. Leaving the safety net: an analysis of dropouts in an urban conditional cash transfer program. World Development. 2012; 40(12): 2505–21. https://doi.org/10.1016/j.worlddev.2012.05.020
72. Belo P, Oliveira C. The relation between experiences and expectations with university dropout. Procedia-Social and Behavioral Sciences. 2015; 187:98–101. https://doi.org/10.1016/j.prosbs.2015.03.019
73. Stratton LS, O’Toole DM, Wetzel JN. A multinomial logit model of college stopout and dropout behavior. Economics of Education Review. 2008; 27(3):319–31. https://doi.org/10.1016/j.econedurev.2007.04.003
74. Arulampalam W, Naylor RA, Smith JP. Effects of in-class variation and student rank on the probability of withdrawal: Cross-section and time-series analysis for UK university students. Economics of Education Review. 2005; 24(3): 251–62. https://doi.org/10.1016/j.econedurev.2004.05.007
75. Di Pietro G, Cutillo A. Degree flexibility and university drop-out: The Italian experience. Economics of Education Review. 2008; 27(5):546–55. https://doi.org/10.1016/j.econedurev.2007.06.002
76. Hershkowitz A, Nachmias R. Online persistence in higher education web-supported courses. The Internet and Higher Education. 2011; 14(2):98–106. https://doi.org/10.1016/j.iheduc.2010.08.001
77. Ćukušić M, Garača Ž, Jadić M. Online self-assessment and students’ success in higher education institutions. Computers and Education. 2014; 72:100–9. https://doi.org/10.1016/j.compedu.2013.10.018
78. Oseguera L, Rhee BS. The influence of institutional retention climates on student persistence to degree completion: A multilevel approach. Research in Higher Education. 2009; 50(6):546–69. https://doi.org/10.1007/s11162-009-9134-y
79. Willcoxson L, Cotter J, Joy S. Beyond the first-year experience: The impact on attrition of student experiences throughout undergraduate degree studies in six diverse universities. Studies in Higher Education. 2011; 36(3):331–52. https://doi.org/10.1080/03075070903581533
80. Human-Vogel S, Rabe P. Measuring self-differentiation and academic commitment in University students: A case study of education and engineering students. South African Journal of Psychology. 2015; 45(1):60–70. https://doi.org/10.1177/0081246314548808
81. Melguizo T, Sanchez F, Velasco T. Credit for low-income students and access to and academic performance in higher education in Colombia: A regression discontinuity approach. World Development. 2016; 80:61–77. https://doi.org/10.1016/j.worlddev.2015.11.018
82. Arbib DC, Meiran N. Performance on the antisaccade task predicts dropout from cognitive training. Intelligence. 2015; 49;25–31. https://doi.org/10.1016/j.intell.2014.11.009
83. Elffers L. Staying on track: behavioral engagement of at-risk and non-at-risk students in post-secondary vocational education. European Journal of Psychology Education. 2013; 28(2):545–62. https://doi.org/10.1007/s10212-012-0128-3
84. Arifi M. Exploring factors in contributing student progress in the Open University. International Journal of Education and Information Technology. 2016; 6(1):1–29. https://doi.org/10.7763/IJIIET.2016.V6.653
85. Aziz AA, Idris WMRW, Hassan H, Jusoh JA, Emran NA. Implementing Aproiri Algorithm for Predicting Result Analysis. GSTF Journal on Computing (JOC). 2018; 2(4):87–92.