Maximum Length Record of Common Two-banded Seabream (*Diplodus vulgaris* Geoffroy Saint-Hilaire, 1817) for Aegean Sea with Turkish Waters

Özgür Cengiz¹ • Şükrü Şenol Paruğ²* • Bayram Kızılkaya³

¹Van Yüzüncü Yıl University, Faculty of Fisheries, Van/Turkey
²Kastamonu University, Faculty of Fisheries, Kastamonu/Turkey
³Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Çanakkale/Turkey

ABSTRACT

The maximum length, weight, and age information of living things in an ecosystem are necessary for population dynamics and stock assessment studies. Hence, the recording of such data may be beneficial for scientific databases for life history and fisheries science. The common two-banded seabream (*Diplodus vulgaris* Geoffroy Saint-Hilaire, 1817) is a widespread demersal marine fish, which belongs to the Sparidae family and inhabits down to 90 m depth. Because it is a demanded seafood, it has commercial importance and usually available in the fish market almost every month of the year in Turkey. A single specimen of common two-banded seabream with 31.9 cm in total length and 467.00 g in total weight, which was caught off İbrice Bight (Saroz Bay) with handline by a professional fisherman on 12 June 2015, was obtained from a fishmonger. This study aims to present the maximum size record of this species for the Aegean Sea with Turkish waters.

Please cite this paper as follows:

Cengiz, Ö., Paruğ, Ş. Ş. and Kızılkaya, B. (2019). Maximum Length Record of Common Two-banded Seabream (*Diplodus vulgaris* Geoffroy Saint-Hilaire, 1817) for Aegean Sea with Turkish Waters. *Alinteri Journal of Agriculture Sciences*, 34(2): 160-163. doi: 10.28955.alinterizbd.638974

Introduction

The common two-banded seabream (*Diplodus vulgaris* Geoffroy Saint-Hilaire, 1817) is a demersal marine fish, which inhabits inshore waters on rocky or sandy bottoms and posidoniabeds down to 90 m depth. It is a common fish with a wide distribution range in the Eastern Atlantic, from the Bay of Biscay to the Cap Verde Islands and around the Madeira and the Canary Islands, and from Angola to South Africa. It is also present throughout the Mediterranean Sea and in the Black Sea (Bauchot and Hureau 1986; Mouine et al. 2010).

Maximum length and weight are important parameters used in life history studies and fishery science. These measurements are applied directly or indirectly in most stock assessment models (Borges 2001; Cengiz 2014). Therefore, it is important to regularly update the maximum size of commercially important species (Navarro et al. 2012; Cengiz et al. 2019a). This study presents the maximum size record of the species for the Aegean Sea with Turkish waters.

Materials and Methods

Saroz Bay, which is situated in the Northeastern Aegean Sea, is connected to the North Aegean with a depth of approximately 600 m to the west. The shelf extends at a water depth of 90-120 m. The length of the bay is about 61 km and
the width at the opening to the Aegean Sea is about 36 km (Eronat and Sayın 2014; Cengiz et al. 2019b). As Saroz Bay had been closed to bottom trawl fishing since 2000 (Cengiz et al. 2011) and no industrial activity was prevalent in the area (Sarı and Çağatay 2001), the bay can be considered as a pristine environment (Cengiz et al. 2013; 2019c; 2019d).

A single specimen of *D. vulgaris* was caught off İbrice Bight (Saroz Bay) (Fig. 1) at 15 m depth with handline by fisherman on 12 June 2015. In legal regulations of Turkey (communique no: 2016/35), the total length is expressed as the projection length between the front end of the fish head and the end point of the longest ray of the caudal fin when the mouth is closed. Hereby, the specimen was subsequently measured to the nearest mm and weighted to the nearest g. Some morphometric and meristic characters were measured. Unfortunately, the specimen was not preserved as it was sold by a professional fisherman at the fish market.

Figure 1. Saroz Bay and sampling station

Results and Discussion

The captured common two-banded seabream was 31.9 cm in total length and 467.00 g in total weight (Fig. 2). Some morphometric and meristic characters for *D. vulgaris* is presented in Table 1. The comparison of the maximum lengths and weights recorded for *D. vulgaris* in the Aegean Sea with Turkish waters is given in Table 2.

Figure 2. The common two-banded seabream with 31.9 cm TL and 467.00 g TW

Author(s)	Area	N	L_{max} (cm)	W_{max} (g)
Petrakis and Stergiou (1995)	Euboikos Gulf, Greece	28	14.7	-
Can et al. (2002)	İskenderun Bay, Turkey	105	27.0	-
Moutopoulos and Stergiou (2002)	Cyclades, Greece	122	29.6	-
Karakulak et al. (2006)	Gökçeada Island, Turkey	93	25.0	-
Özaydın and Taşkavak (2006)	İzmir Bay, Turkey	63	15.4	80.00
Akyol et al. (2007)	Gökova Bay, Turkey	69	26.5	-
Gökte et al. (2007)	North Aegean, Turkey	18	13.3	28.00
Gökte et al. (2010)	İskenderun Bay, Turkey	22	17.9	91.77
İşmen et al. (2007)	Saroz Bay, Turkey	23	19.1	104.00
Özaydın et al. (2007)	İzmir Bay, Turkey	1615	23.1	-
İlyaz et al. (2008)	İzmir Bay, Turkey	242	18.7	-
Karakulak et al. (2008)	Theraikos Gulf, Greece	50	16.7	-
Acarli et al. (2009)	Homa Lagoon, Turkey	68	14.1	45.83
Gürkan et al. (2010)	Candarli Bay, Turkey	119	10.1	11.60
Cengiz (2013)	Gallipoli Peninsula, Turkey	50	28.4	347.08
Acarli et al. (2014)	Homa Lagoon, Turkey	81	15.2	52.90
Bilge et al. (2014)	Southern Aegean, Turkey	1893	23.1	-
Altın et al. (2015)	Gökçeada Island, Turkey	334	22.6	160.60
Kara et al. (2017)	Gediz Estuary, Turkey	87	13.0	31.80
This study	Saroz Bay, Turkey	1	31.9	467.00

As well known, the individuals in populations exposed to high levels fishing pressure will respond by reproducing at smaller average sizes and ages and so reached maximum...
lengths may getting and getting smaller. But, the one individual that subjected to no overfishing pressure could be reached that kind of length (Filiz 2011; Cengiz et al. 2019e). On the other hand, any factor that might possibly influence growth has been shown to have an effect, including nutrient availability, feeding, light regime, oxygen, salinity, temperature, pollutants, current speed, nutrient concentration, predator density, intra-specific social interactions and genetics (Helfman et al. 2009; Acarli et al. 2018). In conclusion, the present study proves that this species can grow above the previous maximum data reported in the Aegean Sea with Turkish waters. The information presented here may be used to compare the similar parameters in ongoing fishery studies all over world by providing the scientific support to the fisheries scientists.

Acknowledgements

The authors would like to thank the fisherman Engin TUNÇ and Semih KALE for their supports.

References

Acarli, D., Kara, A., Bayhan, B., and Çoker, T., 2009. Catch composition and catch efficiency of species caught from Homa Lagoon (İzmir Bay, Aegean Sea). Ege Journal of Fisheries and Aquatic Sciences 26(1): 39-47.

Acarli, D., Kara, A., and Bayhan, B., 2014. Length-weight relations for 29 fish species from Homa Lagoon, Aegean Sea, Turkey. Acta Ichthyologica et Piscatoria 44(3): 249-257.

Acarli, D., Kale, S., and Çakır, K., 2018. A new maximum length for the garfish, Belone belone (Linnaeus, 1761) in the coast of Gökçeada Island (Aegean Sea, Turkey). Cahiers de Biologie Marine 59: 385-389.

Akyol, O., Kinacgil, H. T., and Şevik, R., 2007. Longline fishery and length-weight relationships for selected fish species in Gökova Bay (Aegean Sea, Turkey). International Journal of Natural and Engineering Sciences 1: 1-4.

Altın, A., Ayyıldız, H., Kale, S., and Alver, C., 2015. Length-weight relationships of 49 fish species from shallow waters of Gökçeada Island, Northern Aegean Sea. Turkish Journal of Zoology 39: 1-5.

Bauchot, M. L., and Hureau, J.C., 1986. Sparidae. In: Poissons de l’Atlantique du Nord-Est et de la Méditerranée. Vol. 2 (Whitehead P.J.P., Bauchot M.L., Hureau J.C., Nielsen J. & Tortonese E., eds), pp. 883-907. Paris: Unesco.

Bilge, G., Yapıcı, S., Filiz, H., and Çerim, H., 2014. Weight-length relations for 103 fish species from the Southern Aegean Sea, Turkey. Acta Ichthyologica et Piscatoria 44: 263-269.

Borges, L., 2001. A new maximum length for the Snipefish Macrophasmus scolopax. Cybium 25: 191-192.

Can, F. C., Başusta, N., and Çekiç, M., 2002. Weight-length relationships for selected fish species of the small-scale fisheries off south coast of Iskenderun Bay. Turkish Journal of Veterinary and Animal Sciences 26: 1181-1183.

Cengiz, Ö., İşmen, A., Özekinci, U., and Öztekin, A., 2011. Saroz Körfezi (Kuzey Ege Denizi) balık faunası üzerine bir araştırmaya. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi 11: 31-37.

Cengiz, Ö., 2013. Length-weight relationships of 22 fish species from the Gallipoli Peninsula and Dardanelles (northeastern Mediterranean, Turkey). Turkish Journal of Zoology 37: 419-422.

Cengiz, Ö., Özekinci, U., İşmen, A., and Öztekin, A., 2013. Age and growth of the four-spotted megrim (Lepidorhombus bosci Risso, 1810) from Saros Bay (Northern Aegean Sea, Turkey). Mediterranean Marine Science 14(1): 36-44.

Cengiz, Ö., 2014. A new maximum length record of the Bluefish (Pomatomus saltatrix Linnaeus, 1766) for Turkey Seas. Bittlis Eren Universitesi Fen Bilimleri Dergisi 3: 113-116.

Cengiz, Ö., Kızilkaya, B., and Paruğ, Ş.Ş., 2019a. Maximum size record of brown meagre (Sciaena umbra Linnaeus, 1758) for Aegean Sea. KSU Journal of Agriculture and Nature 22(4): 659-663 (In Turkish).

Cengiz, Ö., Paruğ, Ş.Ş., and Kızilkaya, B., 2019b. Occurrence of rudderfish (Centropophus niger Gmelin, 1789) in Saroz Bay (Northern Aegean Sea, Turkey). Turkish Journal of Agriculture-Food Science and Technology 7(5): 799-801.

Cengiz, Ö., Paruğ, Ş.Ş., and Kızilkaya, B., 2019c. Weight-length relationship and reproduction of Bogue (Boops boops Linnaeus, 1758) in Saros Bay (Northern Aegean Sea, Turkey). KSU Journal of Agriculture and Nature 22(4): 577-582 (In Turkish).

Cengiz, Ö., Paruğ, Ş.Ş., and Kızilkaya, B., 2019d. First record of wide-eyed flounder (Bothus podas Delaroche, 1809) in Saroz Bay (Northern Aegean Sea, Turkey). Turkish Journal of Agriculture-Food Science and Technology 7(6): 899-902.

Cengiz, Ö., Kızilkaya, B., and Paruğ, Ş.Ş., 2019e. Growth characteristics of annular seabeam (Diplodus annularis Linnaeus, 1758) for Turkish Waters. KSU Journal of Agriculture and Nature 22(5): 817-822 (In Turkish).

Eronat, C., and Sayın, E., 2014. Temporal evolution of the water characteristics in the bays along the eastern coast of the Aegean Sea: Saros, İzmir, and Gökova bays. Turkish Journal of Earth Sciences 23: 53-66.

Filiz, H., 2011. A new maximum length for the red mullet, Mullus barbatus Linnaeus, 1758. Biyoloji Bilimleri Araştırmaları Dergisi 4: 131-135.

Gökçe, G., Aydin, İ., and Metin, C., 2007. Length-weight relationships of 7 fish species from the North Aegean Sea, Turkey. International Journal of Natural and Engineering Sciences 1: 51-52.

Gökçe, G., Mustafa, C., and Filiz, H., 2010. Length-weight relationship of marine fishes off Yumurtalık coast (Iskenderun Bay), Turkey. Turkish Journal of Zoology 34: 101-104.
Gürkan, Ş., Bayhan, B., Akcinar, S. C., ve Taskavak, E., 2010. Length-weight relationship of fish from shallow waters of Candarlı Bay (North Aegean Sea, Turkey). Pakistan Journal of Zoology 42(4): 495-498.

Helfman, G. S., Collatte, B. B., Facey, D. E., ve Bowen, B. W., 2009. The diversity of fishes: biology, evolution and ecology, 2nd edn, Wiley-Blackwell, UK, 720 p.

İlkyaz, A. T., Metin, G., Soykan, O., and Kinacıgil, H. T., 2008. Length-weight relationship of 62 fish species from the Central Aegean Sea, Turkey. Journal of Applied Ichthyology 24: 699-702.

İşmen, A., Özen, O., Altındağç, U., Özekinci, U., ve Ayaz, A., 2007. Weight-length relationships of 63 fish species in Saros Bay, Turkey. Journal of Applied Ichthyology 23: 707-708.

Kara, A., Sağlam, C., Acarlı, D., and Cengiz, Ö., 2017. Length-weight relationships for 48 fish species of the Gediz Estuary, in Izmir Bay (Central Aegean Sea, Turkey). Journal of the Marine Biological Association of the United Kingdom 98(4): 879-884.

Karachle, K. P., and Stergiou, K. I., 2008. Length-length and length-weight relationships of several fish species from the North Aegean Sea (Greece). Journal of Biological Research-Thessaloniki 10: 149-157.

Karakulak, F. S., Erk, H., and Bilgin, B., 2006. Length-weight relationships for 47 coastal fish species from the Northern Aegean Sea, Turkey. Journal of Applied Ichthyology 22: 274-278.

Mouine, N., Ktari, M. H. and Chakroun-Marzouk, N., 2010. Age and growth of Diplodus vulgaris (Sparidae) in the Gulf of Tunis. Cybium 34(1): 37-45.

Moutopulos, D. K., and Stergiou, K. I., 2002. Length-weight and length-length relationships of fish species from the Aegean Sea (Greece). Journal of Applied Ichthyology 18: 200-203.

Navarro, M. R., Villamor, B., Myklevoll, S., Gil, J., Abaunza, P., and Canoura, J., 2012. Maximum size of Atlantic mackerel (Scomber scombrus) and Atlantic chub mackerel (Scomber colias) in the Northeast Atlantic. Cybium 36: 406-408.

Özaydın, O., ve Taskavak, E., 2006. Length-weight relationships for 47 fish species from Izmir Bay (eastern Aegean Sea, Turkey). Acta Adriatica 47(2): 211-216.

Özaydın, O., Uçkun, D., Akalin, S., Leblebici, S., ve Tosunoğlu, Z., 2007. Length-weight relationships of fishes captured from Izmir Bay, Central Aegean Sea. Journal of Applied Ichthyology 23: 695-696.

Petrakis, G., and Stergiou, K. I., 1995. Weight-length relationship for 33 fish species in Greek waters. Fisheries Research 21(3-4): 465-469.

Sari, E., ve Çağatay, M. N., 2001. Distributions of heavy metals in the surface sediments of the Gulf of Saros, NE Aegean Sea. Environment International 26: 169-173.