Hepatitis E infection in a patient with rheumatoid arthritis treated with leflunomide
A case report with emphasis on geoepidemiology

Francesco Carubbi, MD, PhDα, Giovanna Picchi, MDβ, Salvatore Di Bartolomeo, MDα, Alessandra Ricciardi, MDγ, Paola Cipriani, MD, PhDγ, Laura Marola, MDγ, Alessandro Grimaldi, MDγ, Roberto Giacomelli, MD, PhDα

1. Introduction

Hepatitis E virus (HEV) is a nonenveloped single-stranded positive RNA virus belonging to Hepeviridae family.[1] There are at least 4 human pathogenic HEV-genotypes (GT1–4), which display a specific geographical distribution.[1,2] In particular, GT1 and GT2 infect only humans, are spread by the fecal-oral route, and are prevalent in regions with low sanitation standards. GT3 and GT4 are the most prevalent strains in industrialized countries, and the infection with such strains is considered a zoonosis, being pigs, wild boars, and deers the major source of infection. Although rare, interhuman infection seems possible, in particular through blood products.[3]

Hepatitis E is an infectious disease due to inflammation of the liver caused by hepatitis E virus (HEV) and represents one of the most common causes of acute hepatitis and jaundice in the world. Although data of hepatitis E infection in patients with rheumatoid arthritis (RA) are accumulating, little is known on the course of HEV infection. We reported, for the 1st time, a case of patient with RA with hepatitis E that developed during leflunomide therapy in combination with low-dose steroids.

Lessons: To our knowledge, this report is the 1st case of acute E hepatitis in a patient with RA developed during leflunomide therapy in combination with low-dose steroids. Moreover, geoepidemiology of infection is important, due to the fact that Abruzzo, a central region of Italy, has the highest HEV seroprevalence in general population, related to the zoonotic transmission of the infection from domestic and wild animals. Our case highlighted that immunosuppressive therapy, and in particular leflunomide, could be safely reintroduced after the resolution of the infection and the clearance of the virus. Further studies are needed to evaluate potential advantages in serologic testing for HEV infection as a part of the routine workup done to patients with rheumatic diseases and selected for immunosuppressive therapy.

Abbreviations: ACPA = anticitrullinated protein antibody, CRP = C-reactive protein, DAS = disease activity score, DMARDs = disease-modifying antirheumatic drugs, GT = genotype, HEV = hepatitis E virus, HBV = hepatitis B virus, HCV = hepatitis C virus, HEV = hepatitis E virus, RA = rheumatoid arthritis.

Keywords: hepatitis E infection, hepatitis E virus, leflunomide, rheumatoid arthritis
months in immunocompetent and 3 months in immunocompro-
mised patients.[4] In particular, solid organ transplant
receivers may develop a chronic infection in $> 50\%$ of cases,[5,6] and data
concerning its incidence in individuals infected with the human
imunodeficiency virus, or patients with hematologic or
rheumatic disorders receiving immunosuppressive therapy, are
accumulating in the literature.[7–9] In these patients, chronic
infeciton can rapidly lead to liver cirrhosis and failure.

In addition, several extra-hepatic manifestations, in particular
neurologic, renal, hematologic, and rheumatic, have been
reported in association with HEV infection.[10–12]

Hepatic involvement is one of the most common complications
of immunosuppressive treatment in patients with rheumatoid
arthritis (RA). Reactivation of viruses such as hepatitis B (HBV)
and hepatitis C (HCV) viruses, or de novo hepatic infection can
occur as side effect of conventional synthetic (cs) or biologic (b)
disease-modifying antirheumatic drug (DMARD) therapy.[13–15]

We report a case of acute hepatitis E in a patient with RA
during immunosuppressive treatment with leflunomide and a
stable dose of prednisone and receiving hepatitis B prophylaxis
with entecavir.

2. Case presentation

In January 2018, a 39-year-old woman with severe arthritis of
wrist and metacarpophalangeal joints was admitted to our
Rheumatology Unit. The affected joints were warm, erythematous,
swollen, and painful, but fever was not detected, and the general
physical examination found no abnormalities, except a systolic
murmur on the left 4° intercostal space. She was born in Albania,
has been living in L’Aquila, a city of the Abruzzo region of central
Italy, for 8 years, and did not travel abroad over the previous
months. Her medical history was remarkable for a chronic
autoimmune thyroiditis, a congenital subaortic defect of the
triventricular septum, and a previously resolved, HBV infection.
She had a 13-year history of rheumatoid factor-positive and
anticitrullinated protein antibody-positive RA with joint erosions.
In the past, she had been treated with subcutaneous injections of
meberotrexate 15 mg/wk, with good response, until May 2017,
when she was admitted to Pneumology Unit of our hospital due to
the occurrence of fever, worsening dyspnea, and nonproductive
cough. High resolution computed tomography of the lungs
revealed limited areas of ground glass opacity in the upper right
and left lobes. Cultures of bronchoalveolar lavage fluid were
negative for most common bacteria, including mycobacteria.
Methotrexate was stopped, and a prolonged course of corticoste-
roids and broad-spectrum antibiotics were started.

On current hospital admission, treatment for RA included
prednisone 5 mg/d; other chronic medications were l-thyroxine
50 μg/d, esomeprazole 40 mg/d, inhaled fluticasone furoate/vi-
lanterol 92/22 μg/d, cholecalciferol 25,000 IU/mo. Figure 1
displays a summary of the clinical and laboratory course of the
patient. The activity (DAS28-C-reactive protein [CRP] 5.22) and
severity (namely seropositivity and erosive disease) of RA
required the reintroduction of DMARD treatment. However,
in consideration of the medium–high risk of these drugs on
reactivation of HBV (anti-Hbc and anti-Hbs positive patient with
negative HBV-DNA), she started prophylactic therapy with
entecavir 0.5 mg/d. One month after, leflunomide 20 mg/d was
added.

![Figure 1](image-url)
In March 2018, 1 month after starting treatment with leflunomide and 2 months after starting treatment with entecavir, she complained diffuse itching and persistent fatigue. Laboratory data revealed elevated liver enzyme levels, and she was admitted to Infectious Diseases Unit of our hospital. Two hypotheses were proposed: firstly, a drug-induced liver injury hence with possible hepatotoxic drugs including leflunomide was stopped; secondly, a reactivation of occult hepatitis B despite therapy with entecavir, so HBV-DNA was tested. Blood counts, total protein, albumin, total bilirubin, electrolytes, renal tests, CRP, and coagulation test results were within normal ranges. Antinuclear antibodies and other autoimmune hepatitis serologic markers were also negative. An ultrasound scan of the abdomen showed no abnormalities of the liver or gallbladder, no dilation of the intrahepatic or extrahepatic bile ducts and no evidence of thrombosis of the suprahepatic veins or portal venous system. A broad spectrum of other hepatotropic viruses, including hepatitis A and hepatitis C viruses, herpes simplex virus, cytomegalovirus, Epstein–Barr virus, human immunodeficiency virus, and parvovirus B19, was also tested but recent infections could be ruled out. HBV-DNA was also negative. Interestingly, positivity for anti-HEV IgM (1.99 IU/mL) and IgG (0.86 IU/mL) was observed. HEV-RNA of the GT3 genotype was 724 IU/mL indicating acute E hepatitis. The patient reported a consumption of undercooked pig sausages some weeks before the onset of symptoms. During the follow-up, her clinical conditions gradually improved, the transaminase levels diminished within 3 weeks, no specific antiviral therapy was started and she was discharged.

After the resolution of the infection and the clearance of the virus, because of persistent articular complaints, leflunomide was restarted at the same dosage, with a close clinical and laboratory follow-up to rapidly reveal any sign of liver injury. Seven months later, liver enzyme levels were normal. Anti-HEV IgG persisted, and anti-HEV IgM decreased to the threshold value. HEV-RNA was negative in the serum.

Written informed consent was obtained from the patient for publication of this case report and accompanying images.

3. Discussion

There are several causes of increased liver function tests in patients with rheumatic diseases, including drug toxicity, liver involvement by the rheumatic disease itself, concomitant autoimmune hepatic disease, or infections, and an accurate differential diagnosis is important to choose the best treatment for the patient. In the case we described here, the occurrence of acute liver injury could be associated with the introduction of leflunomide and entecavir, giving suspect for a drug toxicity. However, we detected ongoing acute E hepatitis and such finding underscores that in immunocompromised patients with liver cytolysis, investigations for HEV infection must be performed routinely, especially in high endemic areas, as is the case for Abruzzo region. The HEV is an ubiquitous virus and outbreaks occur against an unomide and entecavir, giving suspect for a drug toxicity. However, the clinical course of our patient was self-limiting, the virus was eradicated from the serum without chronic transformation, and we did not observe recurrence of hepatitis nor persistent infection of HEV infection during the following 7 months, even after the reintroduction of leflunomide.

In general, the outcome of HEV infection seems favorable in patients with inflammatory arthritides treated with immunosuppressants, with no evolution to chronic hepatitis or fulminating liver failure. In case of hepatitis E occurrence, discontinuation of DMARDs is recommended, and administration of ribavirin may be necessary in high-risk patients. Our case highlighted that csDMARDs, and in particular leflunomide, could be safely reintroduced after the resolution of the infection and the clearance of the virus, with a close monitoring of hepatic function tests and HEV-RNA.

4. Conclusion

Although case reports of hepatitis E infection in patients with RA are accumulating, little is known on the course of HEV infection in patients with inflammatory rheumatic disorders. We reported a case of patients with RA with hepatitis E that developed during leflunomide therapy in combination with low-dose steroids. In immunocompromised patients with unexplained liver cytolysis, investigations for HEV infection must be performed routinely, including not only tests for IgG and IgM antibodies, but also RT-PCR assays for HEV-RNA in blood and stool specimens, due to the fact that these patients may have no detectable antibodies even when the virus is present. Likewise, the reintroduction of immunosuppressive drugs can be considered once the polymerase chain reaction tests for HEV-RNA revert to negative in blood and/or stool specimens. Further
studies are needed to evaluate potential advantages in serologic testing for HEV infection as a part of the routine workup done to patients with rheumatic diseases and selected for DMARD therapy.

Author contributions

Conceptualization: Francesco Carubbi.

Data curation: Francesco Carubbi, Giovanna Picchi, Salvatore Di Bartolomeo, Alessandra Ricciardi, Paola Cipriani, Laura Marola.

Formal analysis: Francesco Carubbi.

Investigation: Francesco Carubbi, Giovanna Picchi, Salvatore Di Bartolomeo, Alessandra Ricciardi, Paola Cipriani.

Supervision: Alessandro Grimaldi, Roberto Giacomelli.

Validation: Giovanna Picchi.

Writing – original draft: Francesco Carubbi, Salvatore Di Bartolomeo.

Writing – review & editing: Giovanna Picchi, Alessandra Ricciardi, Paola Cipriani.

References

[1] Guerra JAAA, Kampa KC, Morsoletto DGB, et al. Hepatitis E: a literature review. J Clin Transl Hepatol 2017;5:376–83.
[2] Nimgaonkar J, Ding Q, Schwartz RE, et al. Hepatitis E virus in blood components: a prevalence and transmission study in southeast England. Lancet 2014;384:1766–73.
[3] Dalton HR, Kamar N, Baylis SA, et al. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on hepatitis E virus infection. J Hepatol 2018;68:1256–71.
[4] Kamar N, Selves J, Mansuy JM, et al. Hepatitis E virus and chronic hepatitis in organ transplant recipients. NEJM 2008;358:811–7.
[5] Fang SY, Han H. Hepatitis E viral infection in solid organ transplant patients. Curr Opin Organ Transplant 2017;22:351–5.
[6] Debes JD, Psano MB, Lotto M, et al. Hepatitis E virus infection in the HIV-positive patient. J Clin Virol 2016;80:102–6.
[7] O’Gorman J, Burke A, O’Flaherty N. Hepatitis E virus - key points for the clinical haematologist. Br J Haematol 2018;181:579–89.
[8] Kobayashi D, Ito S, Takai C, et al. Type-E hepatitis in rheumatoid arthritis patients. Mod Rheumatol Case Rep 2017;1:30–4.
[9] Kamar N, Marion O, Abravanel F, et al. Extrahepatic manifestations of hepatitis E virus. Liver Int 2016;36:467–72.
[10] Pischke S, Hartl J, Pas SD, et al. Hepatitis E virus: Infection beyond the liver? J Hepatol 2017;66:1082–95.
[11] Mclean BN, Gulliver J, Dalton HR. Hepatitis E virus and neurological disorders. Pract Neurol 2017;17:282–8.
[12] Smolen JS, Landewe R, Bijloma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 2017;76:960–77.
[13] Craig E, Cappelli LC. Gastrointestinal and hepatic disease in rheumatoid arthritis. Rheum Dis Clin North Am 2018;44:89–111.
[14] Radovanović-Dinić B, Teić-Rajković S, Zivkovic V, et al. Clinical connection between rheumatoid arthritis and liver damage. Rheumatol Int 2018;38:715–24.
[15] Hartl J, Otto B, Malinn RG, et al. Hepatitis E seroprevalence in Europe: a meta-analysis. Viruses 2016;8:E211.
[16] Mauceri C, Grazia Clemente M, Castiglia P, et al. Hepatitis E in Italy: a silent presence. J Infect Public Health 2018;11:1–8.
[17] Lucarelli C, Spada E, Taitani G, et al. High prevalence of anti-hepatitis E virus antibodies among blood donors in central Italy, February to March 2014. Euro Surveill 2016;21;
[18] Tarantino G, Bagnarelli P, Marzioni M, et al. Hepatitis E in a region of Italy: an emerging autochthonous infection? Dig Liver Dis 2016;48:1340–5.
[19] Serratrice J, Didier P, Cohon P, et al. Acute polyarthritis revealing hepatitis E. Clin Rheumatol 2007;26:1973–5.
[20] Ikeuchi H, Koizuna K, Nakasato M, et al. Hepatitis E during tocilizumab therapy in a patient with rheumatoid arthritis: case report and literature review. Case Rep Rheumatol 2018;2018:6873276.
[21] Bauer H, Luxembourger C, Gottenberg JE, et al. Outcome of hepatitis E virus infection in patients with inflammatory arthritides treated with immunosuppressants: a French retrospective multicenter study. Medicine (Baltimore) 2015;94:e675.
[22] Thodou V, Buechter M, Manka P, et al. Course of hepatitis E infection in a patient with rheumatoid arthritis and autoimmune hepatitis: a case report. Medicine (Baltimore) 2017;96:e9407.
[23] Bibh F, Negro F. Chronic hepatitis E in the immunosuppressed: a new source of trouble? J Hepatol 2009;50:433–7.