Increased Curie Temperature Induced by Orbital Ordering in La$_{0.67}$Sr$_{0.33}$MnO$_3$/BaTiO$_3$ Superlattices

Fei Zhang1,2, Biao Wu1,2,3, Guowei Zhou1,2, Zhi-Yong Quan1,2* and Xiao-Hong Xu1,2

Abstract

Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO$_3$ layers between La$_{0.67}$Sr$_{0.33}$MnO$_3$ layers effectively enhances ferromagnetic order and increases the Curie temperature of La$_{0.67}$Sr$_{0.33}$MnO$_3$/BaTiO$_3$ superlattices. The preferential orbital occupancy of $e_g(x^2−y^2)$ in La$_{0.67}$Sr$_{0.33}$MnO$_3$ layers induced by the tensile strain of BaTiO$_3$ layers is identified by X-ray linear dichroism measurements. Our results reveal that controlling orbital ordering can effectively improve the Curie temperature of La$_{0.67}$Sr$_{0.33}$MnO$_3$ films and that in-plane orbital occupancy is beneficial to the double exchange ferromagnetic coupling of thin-film samples. These findings create new opportunities for the design and control of magnetism in artificial structures and pave the way to a variety of novel magnetoelectronic applications that operate far above room temperature.

Keywords: La$_{0.67}$Sr$_{0.33}$MnO$_3$/BaTiO$_3$ superlattices, High Curie temperature, Orbital ordering, Tensile strain

PACS: 75.47.Lx, 51.60.+a, 68.35.Ct

Background

A common observation in perovskite manganite films is that the Curie temperature (T_C) decreases with the reduction of film thickness, which limits their potential for spintronic devices such as field-effect transistors, magnetic tunnel junctions, spin valves, and nonvolatile magnetic memory [1–5]. This is the so-called “dead layer,” defined as the thinnest layer for which ferromagnetic behavior is observed [6–8]. This dead layer phenomenon may be related to electronic and/or chemical phase separation [9, 10], to growth characteristics and microstructure [11, 12], or to manganese e_g orbital reconstruction [13, 14]. Recently, many efforts have been made to increase the T_C of ultrathin perovskite manganite films by superlattice interface control and precise strain tuning [15–18]. Among the perovskite manganites, La$_{0.67}$Sr$_{0.33}$MnO$_3$ (LSMO) films have drawn increasing interest due to their colossal magnetoresistance effect, high T_C, and half metallicity [19–23]. Also LSMO-based heterostructures have been investigated because of the interfacial couplings and intermixing of atoms etc. [24–28]. M. Ziese et al. reported ferromagnetic order of ultrathin LSMO layers in LSMO/SrRuO$_3$ superlattices stabilized down to layer thicknesses of at least two unit cells (u.c.) that exhibits a T_C above room temperature [29]. First principle calculations indicate that the T_C of LSMO films can be increased by more than an order of magnitude by controlling orbital ordering using the regular intercalation of adequate layers in LSMO/BaTiO$_3$(BTO) superlattices. In such a configuration, the LSMO layers with occupied $e_g(x^2−y^2)$ orbitals are associated with a strong in-plane double exchange, resulting in a high T_C [30]. This phenomenon has been observed in temperature-dependent magnetization data [30].

* Correspondence: quanzy@sxnu.edu.cn
1Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
2Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
*Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
In this work, we synthesized LSMO/BTO superlattices using pulsed laser deposition (PLD) and reveal the relationship between the origin of high T_C and manganese e_g orbital occupancy through the use of X-ray linear dichroism (XLD) measurements. We show that the regular intercalation of BTO layers between LSMO layers can effectively enhance ferromagnetic order and increases the T_C of ultrathin LSMO films due to the orbital occupation of $e_g(x^2−y^2)$ in Mn$^{3+}$ ions. Notably, the origin of the T_C increase is different from the one suggested theoretically by A. Sadoc et al., who showed that only the central LSMO layers contribute to high T_C and that the interfacial layers adjacent to the BTO layers are associated with a weak in-plane double exchange due to $e_g(3z^2−r^2)$ orbital occupation [30]. We find that the preferential orbital occupancy of $e_g(x^2−y^2)$ in both the central and the interfacial LSMO layers is induced by BTO layer strain, and gives rise to the in-plane double exchange coupling in LSMO/BTO superlattices, resulting in high T_C. Our findings provide a method to design and control magnetism in artificial structures and have potential for spintronic device applications—including spin-valve devices or nonvolatile magnetic memory working at temperatures far above room temperature.

Methods

(001)-oriented [(LSMO)$_3$/BTO)$_3$]$_n$ superlattices (denoted as SL-n, where n is the number of unit cells, $n = 3, 4, 10$ is the number of cycles) samples were synthesized on (001) SrTiO$_3$ substrates using PLD. A stoichiometric polycrystalline target was used in a 100-mTorr oxygen environment at a substrate temperature of 725 and 780 °C for LSMO and BTO, respectively. A KrF excimer laser ($\lambda = 248$ nm) with a 2 Hz repetition rate was employed. Energy of 350 and 300 mJ was focused on the targets to obtain the LSMO and BTO layers, respectively. After the growth, the samples were annealed in a 300-Torr oxygen atmosphere in situ for 1 h to improve their quality and reduce their inherent oxygen deficit and then cooled to room temperature. As a reference, two LSMO films with 3 and 40 u.c. thickness (denoted as LSMO(3) and LSMO(40), respectively) were also prepared using PLD under the same conditions for comparison with the SL-n superlattices. To grow films epitaxially with atomic precision, we prepared an atomically flat, single-terminated SrTiO$_3$ surface by etching in an NH$_4$F-buffered HF solution (BHF) and subsequently annealing in an oxygen atmosphere at a temperature of 960 °C. The surface topography of a BHF-treated, bare (001) SrTiO$_3$ substrate was characterized by atomic force microscopy (AFM) analysis, as shown in Fig. 1d. The surface is very smooth, and there are clear steps separating the terraces.

The growth process for each film was monitored in situ using real-time reflection high-energy electron diffraction (RHEED) analysis, providing precise control of the thickness at the unit cell scale and an accurate characterization of the growth dynamics. The crystal structures and surface morphologies were investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). To confirm the strain in the samples, Raman spectra were also recorded using a microscopic confocal Raman spectrometer (RM2000, Renishaw, England) excited with a 514.5 nm Ar$^+$ ion laser. The magnetic properties and T_C of the samples...
were measured with a superconducting quantum interference device (SQUID) magnetometer with in-plane applied magnetic field. The magnetization was calculated after a linear background subtraction of the SrTiO$_3$ substrate diamagnetic contribution. The transport properties were determined in the Van der Pauw four-point probe configuration using a Quantum Design Physical Properties Measurement System (PPMS) over temperatures ranging from 20 to 365 K. X-ray absorption spectroscopy (XAS) and XLD measurements were made at Beamline BL08U1A of the Shanghai Synchrotron Radiation Facility and U19 of National Synchrotron Radiation Laboratory in the total electron yield (TEY) mode at room temperature.

Results and Discussion

Figure 1a shows the RHEED oscillations recorded during the growth of the SL-3 sample on a TiO$_2$-terminated (001) SrTiO$_3$ substrate. The LSMO and BTO film thicknesses were controlled by counting the RHEED intensity oscillations. For optimized conditions, RHEED oscillations remain visible throughout the superlattice deposition process, indicating a layer-by-layer growth. The inset of Fig. 1d shows the clear streaky RHEED diffraction pattern after the growth of the SL-3 sample. Typical XRD patterns shown in Fig. 1b reveal high-quality growth in the (001) orientation for all three superlattices. As expected, the LSMO peaks shift slightly to a higher angle while the BTO peaks shift to a lower angle (compared to the bulk value), which reflects the strain state of the interfaces between the LSMO layers and the BTO layers (i.e., in-place cell parameter elongation for LSMO and reduction for BTO). This desired strain can be maintained over the whole film thickness due to the repeating intercalation of LSMO and BTO layers. Raman spectra measured at 300 K for the SL-10 and LSMO(40) samples are shown in Fig. 1c. Compared to LSMO(40) sample, a slight low-frequency shift of bands at 252 cm$^{-1}$ was observed in SL-10 sample, indicating the LSMO layers in SL-10 sample with a tensile strain induced by BTO layers [31–33]. In addition, the high quality of the superlattices was confirmed by TEM. Figure 2a is the cross-sectional high-resolution TEM (HRTEM) of the SL-3 sample on a (001)-oriented SrTiO$_3$ substrate, endorsing high-quality epitaxial growth of LSMO/BTO superlattice. The inset of Fig. 2a is the corresponding fast Fourier transform (FFT), which suggests that the film is indeed in single phase. Figure 2b shows the enlarged image of Fig. 2a. The image shows atomically sharp interfaces between the LSMO and BTO layers highlighted by red arrows. In the superlattices, there is no obvious interdiffusion at the interfaces, and the LSMO and BTO layers are fully strained to the SrTiO$_3$ substrates. This observation was consistent with the XRD results.

Next, we present a description of the magnetic properties of the SL-n samples. The temperature-dependent magnetization for SL-n films with $n=3, 4, 10$, as well as the LSMO(3) sample, are shown in Fig. 3a. Here, the measurement is carried out over a temperature range from 5 to 350 K with a magnetic field (3000 Oe) applied parallel to the surface of the SrTiO$_3$ substrates. Note that the T_C of the superlattices is significantly improved compared to the LSMO(3) film [6], of which T_C is around 45 K (see the inset in Fig. 3a). For the SL-10 sample, the T_C increases above 265 K compared to the LSMO(3) film and reaches a maximum value of T_C=310 K. Figure 3b shows corresponding magnetic hysteresis loops for the four samples measured at 5 K, showing obvious ferromagnetic signal with a saturation magnetization (M_s) of $\sim 1.5 \mu_B$/Mn—except for the LSMO(3) film. Here, the ferromagnetism of the LSMO layers in the SL-n samples comes from the total LSMO triple layers, which is different from those reported by A. Sadoc et al., who showed that the ferromagnetic exchange is just related to the central LSMO layers and is independent of the interfacial LSMO layers adjacent to BTO layers using first principle calculations [30]. Given that ferromagnetism is only derived from the central
LSMO layers, the \(M_s \) value of our SL-n films calculated from the original measurement data will become \(\sim 4.5 \, \mu_B/\text{Mn} \), which will exceed the theoretical low temperature value of the LSMO (\(\sim 3.67 \, \mu_B/\text{Mn} \)) [34]. Note that the \(M_s \) per spin is much less than of bulk LSMO, suggesting either a fraction of nonmagnetic spins, a ferrimagnetic spin arrangement, or strong spin-canting [18, 35]. More work will be needed to quantify decreased \(M_s \) in this LSMO/BTO system. Also, the magnetic anisotropy of the SL-n samples with \(n = 3, 4, 10 \) were studied. The magnetic hysteresis loops for the magnetic field applied in-plane and out-of-plane measured at 5 K (not shown here) display that the easy magnetization direction is parallel to the film plane for the three samples is parallel to the film plane axis for the three samples is parallel to the film plane. The corresponding magnetic hysteresis loops of four samples measured at 5 K.

We now focus on the correlation between increased \(T_C \) and electron orbital occupancy in the LSMO/BTO superlattices. It is known that the Mn\(^{3+}\) ions are Jahn-Teller active, and a slightly distorted orthorhombic structure can stabilize one of the e\(_g\) orbitals. Supposing the e\(_g\)(3z\(^2\)−r\(^2\)) is occupied, an interlayer double exchange interaction between the Mn\(^{3+}\) and Mn\(^{4+}\) ions will take place primarily along the c direction for (001)-oriented LSMO material. When e\(_g\)(x\(^2\)−y\(^2\)) is occupied, the intra-layer double exchange will become very strong and the interlayer double exchange will decline in strength. In ultrathin films, in-plane interactions dominate the magnetic exchange and \(T_C \). Thus, control of the orbital ordering is important for obtaining high-temperature ferromagnetism. That is to say, a high-occupancy probability of the e\(_g\)(x\(^2\)−y\(^2\)) orbital can result in a high \(T_C \) for (001)-oriented LSMO films.

In our LSMO/BTO samples, the lattice parameter of the BTO (\(a = 0.397−0.403 \, \text{nm} \) from a tetragonal to rhombohedral phase) is larger than that of LSMO (\(a = 0.387 \, \text{nm} \)), resulting in a ~4% lattice mismatch [36–38]. Thus, the LSMO layers in our superlattices are in a high-tensile strain state (\(c < a \)), causing occupancy in the e\(_g\)(x\(^2\)−y\(^2\)) orbital [39]. We now discuss the manganese e\(_g\) orbital occupancy in relation to XLD measurements, which is an extremely sensitive probe for the electronic structure and the d orbital (e\(_g\)) electron occupancy (schematic diagram shown in Fig. 4d), which has proven in referential occupancy at interfaces [14]. The XAS spectra were measured at the Mn L\(_{2,3}\)-edges for the photon polarization (E) parallel to the sample plane (E//) and perpendicular to it (E\(_{\perp}\)). The XLD is calculated as the XAS intensity difference between the \(E_{//} \) and \(E_{\perp} \) components to determine the occupancy of the Mn\(^{3+}\) e\(_g\) orbitals. In (001)-oriented LSMO films, the out-of-plane direction corresponds to [001], and the in-plane direction was obtained with E//[100], as shown in Fig. 4d. The area under the XLD curve at the L\(_2\)-edge peak (\(\Delta \text{XLD} \)) represents the difference between the relative occupancies of the e\(_g\)(x\(^2\)−y\(^2\)/3z\(^2\)−r\(^2\)) orbitals. A positive/negative \(\Delta \text{XLD} \) (on average) is ascribed attributed to a preferential occupancy of the e\(_g\)(3z\(^2\)−r\(^2\))/(x\(^2\)−y\(^2\)) orbitals for (001) LSMO films. Figure 4a, b shows the XLD spectra, as well as the in-plane and out-of-plane XAS spectra, of SL-3 and SL-10 samples. The \(\Delta \text{XLD} \) area at the L\(_2\)-edge peak is negative, implying a preferential occupancy of the e\(_g\)(x\(^2\)−y\(^2\)) orbital (see Fig. 4e), which is consistent with the results reported by D. Pesquera et al. [39]. Consequently, in our LSMO/BTO superlattices, the interfacial tensile strain is originated from the lattice mismatch between the BTO and LSMO layers. It induces in-plane orbital ordering of the e\(_g\)(x\(^2\)−y\(^2\)) orbital occupancy in the LSMO layers, achieving high \(T_C \). This negative value of the \(\Delta \text{XLD} \) area is also evidence that the Mn\(^{3+}\) ions in the LSMO triple layers have the same orbital occupancy, which contributes to high-temperature ferromagnetism. Also, the absolute value of \(\Delta \text{XLD} \) for the SL-10 sample is
significantly larger than that of the SL-3 sample, which corresponds to the increased T_C seen in Fig. 3a.

Figure 4c shows temperature-dependent resistivity measured in the temperature range from 20 to 365 K for (001)-oriented SL-n samples with $n = 3$ and 10, respectively. The two samples exhibit a metal-to-insulator transition temperature (T_{MI}). The T_{MI} values of 178 and 310 K for samples SL-3 and SL-10, respectively, correspond to the T_C shown in Fig. 3a. This supports the scenario for a transition at T_C from a paramagnetic insulating phase to a ferromagnetic metallic phase. Thus, the high-temperature ferromagnetism originates from in-plane double exchange interactions between the Mn$^{3+}$ and Mn$^{4+}$ ions as shown in Fig. 4f [40, 41]. In-plane overlap between (partly filled) Mn $e_g(x^2−y^2)$ with O $2p_x$ and O $2p_y$ creates stronger ferromagnetic coupling than that between (more empty) Mn $e_g(3z^2−r^2)$.

Conclusions

In summary, LSMO/BTO superlattices were prepared using PLD and the relationship between high T_C and manganese e_g orbital occupancy was revealed combined with XLD spectra. We showed that the regular intercalation of BTO layers between LSMO layers effectively enhances ferromagnetic order and increases the T_C of LSMO/BTO superlattices. The preferential orbital occupancy of $e_g(x^2−y^2)$ in LSMO layers induced by tensile strain of BTO layers is beneficial to the in-plane double exchange ferromagnetic coupling between Mn$^{3+}$ and Mn$^{4+}$ ions, resulting in a large T_C. Our findings create new opportunities for the design and control of magnetism in artificial structures and offer considerable potential for applications in novel magnetoelectronic applications, including nonvolatile magnetic memory working far above room temperature.

Abbreviations

AFM: Atomic force microscopy; BHF: NH$_4$F-buffered HF solution; FFT: Fast Fourier transform; M_S: Saturation magnetization; PLD: Pulsed laser deposition; PPMS: Physical properties measurement system; RHEED: Real-time reflection high-energy electron diffraction; SQUID: Superconducting quantum interference device; T_C: Curie temperature; TEM: Transmission electron microscopy; TEY: Total electron yield; TMI: Metal-to-insulator transition temperature; XAS: X-ray absorption spectroscopy; XLD: X-ray linear dichroism; XRD: X-ray diffraction

Acknowledgements

The work is financially supported by the NSFC (nos. 51571136, 61434002, and 61306109), the Ministry of Education of China (no. IRT 1156), and Shanxi
Scholarship Council of China (no. 2015-069). The authors also acknowledge Beamline B08U1A (Shanghai Synchrotron Radiation Facility, China) and U19 (National Synchrotron Radiation Laboratory, China) stations for XAS measurements.

Authors’ Contributions FZ, BW, and GZ performed the experiment and performed the tests on the samples. Z-YQ designed and performed the experiment, analyzed the results, and drafted the manuscript. X-HX supervised the work and revised the manuscript. All authors read and approved the final manuscript.

Competing Interests The authors declare that they have no competing interests.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shantou Normal University, Linfen 041004, China. 2 Research Institute of Materials Science, Shantou Normal University, Linfen 041004, China. 3 Suzhou Institute of Nano-Tech and Nano-Bionics, China Academy of Sciences, Suzhou 215123, China.

Received: 23 November 2017 Accepted: 9 January 2018
Published online: 17 January 2018

References
1. Thiel S, Hammel G, Schmelh A, Schneider CW, Mannhart J (2006) Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313:1942–1945
2. Hueso LE, Pruneda JM, Ferrari V, Burrell G, Valdez-Herrera JP, Simons BD, Littlewood PB, Artacho E, Fert A, Mathur ND (2007) Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445:410–413
3. Qin Q, He S, Song W, Yang P, Wu Q, Feng YP, Chen J (2017) Ultra-low magnetic damping of perovskite La_{2/3}Sr_{1/3}MnO_3 thin films. Appl Phys Lett 110:130412
4. Liang L, Li L, Wu H, Zhu X (2014) Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures. Nanoscale Res Lett 9:325
5. Zheng D, Jin C, Li P, Wang L, Feng L, Mi W, Bai H (2016) Orbital compensation to metallic screening across the manganite metal-insulator transition temperature up to 410 K. Adv Mater Interfaces 3:1500597
6. Xie C, Budnick JI, Wells BO, Woicik JC (2007) Separation of the strain and ferromagnetic properties of La_{2/3}Sr_{1/3}MnO_3 thin films. Appl Phys Lett 91:172509
7. Ziese M, Böttcher D (2013) Magnetic properties of strained La_{2/3}Sr_{1/3}MnO_3 perovskites from first principles. J Phys Condens Matter 25:136005
8. Ziese M, Semmelhack HC, Han KH (2003) Strain-induced orbital ordering in thin La_{2-x}Ca_xMnO_3 films. Sci Rep 9:06162
9. Arbiol J, Laukhin V, Espinós JP (2007) Elastic and orbital effects on thickness-dependent properties of manganite thin films. Phys Rev B 75:205113
10. Artacho E, Fert A, Mathur ND (2007) Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445:410–413
11. Ziese M, Bern F, Pippel E, Hesse D, Vrejoiu I (2012) Stabilization of ferromagnetism in (110)-oriented La_{2/3}Sr_{1/3}MnO_3/BiFeO_3 superlattices. Phys Rev B 85:184424
12. Ziese M, Bern F, Pippel E, Hesse D, Vrejoiu I (2012) Stabilization of ferromagnetism in (110)-oriented La_{2/3}Sr_{1/3}MnO_3/BiFeO_3 superlattices. Phys Rev B 85:184424
13. Yang Y, Qiu H, Shih J, Song W, Wu W, Wang X, Feng Y, Wang Y (2016) Evidence for an orbital phase separation in La_{2-x}Sr_xMnO_3 thin films. Appl Phys Lett 109:052408
14. Ziese M, Bern F, Pippel E, Hesse D, Vrejoiu I (2012) Stabilization of ferromagnetism in (110)-oriented La_{2/3}Sr_{1/3}MnO_3/BiFeO_3 superlattices. Phys Rev B 85:184424
15. Boscher H, Kauz J, Housman EP, Siemons W, Blank DHA, Huijben M, Koster G, Vailionis A, Rijnders R, Aligia J, Schwingenschlögl U (2015) Superior properties of energetically stable La_{2/3}Sr_{1/3}MnO_3/tetragonal BiFeO_3 multiferroic superlattices. ACS Appl Mater Interfaces 7:10612–10616
16. Tebano A, Orsini A, Medaglia PG, Castro DD, Balestrino G, Freelon B, Bostwick A, Chang YJ, Ganes R, Koster G, Vailionis A, Rijnders R, Aligia J, Schwingenschlögl U (2015) Superior properties of energetically stable La_{2/3}Sr_{1/3}MnO_3/tetragonal BiFeO_3 superlattices. J Appl Phys 118:204104
37. Chang K-S, Aronova MA, Lin C-L, Murakami M, Yu M-H, Hatrick-Simpers J, Famodu OO, Lee SY, Ramesh R, Wuttig M, Takeuchi I, Gao C, Bendersky LA (2004) Exploration of artificial multiferroic thin-film heterostructures using composition spreads. Appl Phys Lett 84:3091–3093
38. Xiao CJ, Jin CQ, Wang XH (2008) Crystal structure of dense nanocrystalline BaTiO3 ceramics. Mater Chem Phys 111:209–212
39. Pesquera D, Herranz G, Barla A, Pellegrin E, Bondino E, Magnano E, Sanchez F, Fontcuberta J (2012) Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films. Nat Commun 3:1189
40. Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403
41. de Gennes PG (1960) Effects of double exchange in magnetic crystals. Phys Rev 118:141