There is exactly one $\mathbb{Z}_2\mathbb{Z}_4$-cyclic 1-perfect code

Joaquim Borges and Cristina Fernández-Córdoba

Abstract

Let C be a $\mathbb{Z}_2\mathbb{Z}_4$-additive code of length $n > 3$. We prove that if the binary Gray image of C, $C = \Phi(C)$, is a 1-perfect nonlinear code, then C cannot be a $\mathbb{Z}_2\mathbb{Z}_4$-cyclic code except for one case of length $n = 15$. Moreover, we give a parity check matrix for this cyclic code. Adding an even parity check coordinate to a $\mathbb{Z}_2\mathbb{Z}_4$-additive 1-perfect code gives an extended 1-perfect code. We also prove that any such code cannot be $\mathbb{Z}_2\mathbb{Z}_4$-cyclic.

Index Terms

Perfect codes, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, simplex codes.

I. INTRODUCTION

A $\mathbb{Z}_2\mathbb{Z}_4$-linear code C is the binary Gray image of a $\mathbb{Z}_2\mathbb{Z}_4$-additive code $C \subseteq \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$, and if $\beta = 0$, then C is a binary linear code. If $\alpha = 0$, then C is called \mathbb{Z}_4-linear. In 1997, a first family of $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect codes was presented in [11] in the more general context of translation-invariant propelinear codes. Lately, in 1999, all $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect codes were fully classified in [6]. Specifically, for every appropriate values of α and β, there exists exactly one $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect code C. Note that when $\beta = 0$, then C is a Hamming code. In subsequent papers ([5] and [9]), $\mathbb{Z}_2\mathbb{Z}_4$-linear extended 1-perfect codes were also classified. But it was not until 2010, when an exhaustive description of general $\mathbb{Z}_2\mathbb{Z}_4$-linear codes appeared [3]. More recently, in 2014, $\mathbb{Z}_2\mathbb{Z}_4$-cyclic codes have been defined in [1], and also studied in [4].

After all these papers, a natural question is to ask for the existence or nonexistence of $\mathbb{Z}_2\mathbb{Z}_4$-cyclic 1-perfect codes, of course, excluding the linear (Hamming) case when $\beta = 0$. In this paper, we show that such codes do not exist with only one exception. This unique $\mathbb{Z}_2\mathbb{Z}_4$-cyclic 1-perfect code has binary length 15, with $\alpha = 3$ and $\beta = 6$. We also give a parity check matrix for such code. If we add an even parity check coordinate to a $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect code, then we obtain a $\mathbb{Z}_2\mathbb{Z}_4$-linear extended 1-perfect code. We show that none of these codes can be $\mathbb{Z}_2\mathbb{Z}_4$-cyclic.

Manuscript received Month day, year; revised Month day, year.

J. Borges is with the Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain (e-mail: joaquim.borges@uab.cat)

C. Fernández-Córdoba is with the Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain (e-mail: cristina.fernandez@uab.cat).

This work has been partially supported by the Spanish MICINN grant TIN2013-40524-P and by the Catalan AGAUR grant 2014SGR-691.
The paper is organized as follows. In the next section, we give basic definitions and properties. Moreover, we give the type of all $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect codes, computing some parameters that were not specified in [6]. In Section III, we give the main results of this paper. First, we prove that in a $\mathbb{Z}_2\mathbb{Z}_4$-cyclic 1-perfect code, β must be a multiple of α. This, immediately excludes a lot of cases. For the remaining ones, using a key property of simplex codes, we prove that α cannot be greater than 3. Therefore, finally, we have only one possible case when $\alpha = 3$ and $\beta = 6$. In Example 3.2 we give a parity check matrix for this code in a cyclic form. In Section IV we prove that a $\mathbb{Z}_2\mathbb{Z}_4$-linear extended 1-perfect code, with $\alpha > 0$, cannot be $\mathbb{Z}_2\mathbb{Z}_4$-cyclic.

II. Preliminaries

Denote by \mathbb{Z}_2 and \mathbb{Z}_4 the rings of integers modulo 2 and modulo 4, respectively. A binary code of length n is any non-empty subset C of \mathbb{Z}_2^n. If that subset is a vector space then we say that it is a linear code. Any non-empty subset C of \mathbb{Z}_4^n is a quaternary code of length n, and an additive subgroup of \mathbb{Z}_4^n is called a quaternary linear code. The elements of a code are usually called codewords.

Given two binary vectors $u, v \in \mathbb{Z}_2^n$, the (Hamming) distance between x and y, denoted $d(u, v)$, is the number of coordinates in which they differ. The (Hamming) weight of any vector $z \in \mathbb{Z}_2^n$, $w(z)$, is the number of nonzero coordinates of z. The Lee weights of any vector $z \in \mathbb{Z}_2^n$, $w_L(z)$, is the rational sum of the Lee weights of its components. If $a, b \in \mathbb{Z}_4^n$, then the Lee distance between a and b is $d_L(a, b) = w_L(a - b)$. For a vector $u \in \mathbb{Z}_2^n \times \mathbb{Z}_4^\beta$ we write $u = (u | u')$ where $u \in \mathbb{Z}_2^n$ and $u' \in \mathbb{Z}_4^\beta$. The weight of u is $w(u) = w(u) + w_L(u')$. If $u, v \in \mathbb{Z}_2^n \times \mathbb{Z}_4^\beta$, the distance between $u = (u | u')$ and $v = (v | v')$ is defined as $d(u, v) = d(u, v) + d_L(u', v')$. The classical Gray map $\phi : \mathbb{Z}_4 \rightarrow \mathbb{Z}_2^2$ is defined by

$$\phi(0) = (0, 0), \quad \phi(1) = (0, 1), \quad \phi(2) = (1, 1), \quad \phi(3) = (1, 0).$$

If $a = (a_1, \ldots, a_m) \in \mathbb{Z}_4^m$, then the Gray map of a is the coordinatewise extended map $\phi(a) = (\phi(a_1), \ldots, \phi(a_m))$.

We naturally extend the Gray map for vectors $u = (u | u') \in \mathbb{Z}_2^n \times \mathbb{Z}_4^\beta$ so that $\Phi(u) = (u | \phi(u'))$. Clearly, the Gray map transforms Lee distances and weights to Hamming distances and weights. Hence, if $u, v \in \mathbb{Z}_2^n \times \mathbb{Z}_4^\beta$, we have that $d(u, v) = d(\Phi(u), \Phi(v))$.

A binary code C of length n is called 1-perfect if any vector not in C is at distance one from exactly one codeword in C. Such codes have minimum distance 3 between any pair of codewords, and the cardinality is $|C| = 2^n/(n + 1)$.

It is well known that $n = 2^t - 1$, for some $t \geq 2$ and hence $|C| = 2^{2^t-t-1}$. For any t, there is exactly one linear 1-perfect code, up to coordinate permutation, which is called the Hamming code. An extended 1-perfect code C' is obtained by adding an even parity check coordinate to a 1-perfect code C. In this case, C' has minimum distance 4, length $n + 1 = 2^t$, and size $|C'| = 2^{2^t-t-1}$.

The dual of a binary Hamming code is a constant weight code called simplex. The dual of an extended Hamming code is a linear Hadamard code. In this paper, we make use of two important properties [8], [10]:

(a) A binary Hamming code is cyclic, that is, its coordinates can be arranged such that the cyclic shift of any codeword is again a codeword. Therefore, simplex codes are also cyclic.
(b) An extended Hamming code of length greater than 4 is not cyclic. Hence, a linear Hadamard code of length greater than 4 is not cyclic.

A $\mathbb{Z}_2\mathbb{Z}_4$-additive code C is an additive subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. Such codes are extensively studied in \cite{3}. Since C is a subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, it is also isomorphic to a group $\mathbb{Z}_2^{\gamma} \times \mathbb{Z}_4^{\delta}$. Therefore, C is of type $2^{\gamma+\delta}$ as a group, it has $|C| = 2^{\gamma+\delta}$ codewords, and the number of codewords of order less than two in C is $2^{\gamma+\delta}$.

Let X (respectively Y) be the set of \mathbb{Z}_2 (respectively \mathbb{Z}_4) coordinate positions, so $|X| = \alpha$ and $|Y| = \beta$. Unless otherwise stated, the set X corresponds to the first α coordinates and Y corresponds to the last β coordinates. Call C_X (respectively C_Y) the punctured code of C by deleting the coordinates outside X (respectively Y), and removing repeated codewords, if necessary. Let C_b be the subcode of C which contains all order two codewords and the zero codeword. Let κ be the dimension of $(C_b)_X$, which is a binary linear code.

According to \cite{3}, and considering all these parameters, we say that C is a $\mathbb{Z}_2\mathbb{Z}_4$-additive code of type $(\alpha, \beta; \gamma, \delta; \kappa)$. The binary Gray image of C is $C = \Phi(C) = \{\Phi(x) \mid x \in C\}$. In this case, C is called a $\mathbb{Z}_2\mathbb{Z}_4$-linear code of type $(\alpha, \beta; \gamma, \delta; \kappa)$ and its length is $n = \alpha + 2\beta$.

The standard inner product in $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, defined in \cite{3}, can be written as

$$\mathbf{u} \cdot \mathbf{v} = 2 \left(\sum_{i=1}^{\alpha} u_i v_i \right) + \sum_{j=1}^{\beta} u_j' v_j' \in \mathbb{Z}_4,$$

where the computations are made taking the zeros and ones in the α binary coordinates as quaternary zeros and ones, respectively. The dual code of C, is defined in the standard way by

$$C^\perp = \{ \mathbf{v} \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \mid \mathbf{u} \cdot \mathbf{v} = 0, \text{ for all } \mathbf{u} \in C \}.$$

The types of dual codes are related in \cite{3}.

Proposition 2.1 (\cite{3}): If C is a $\mathbb{Z}_2\mathbb{Z}_4$-additive code of type $(\alpha, \beta; \gamma, \delta; \kappa)$, then its dual code C^\perp is of type $(\alpha, \beta; \alpha + \gamma - 2\kappa, \beta - \gamma - \delta + \kappa; \alpha - \kappa)$.

Let C be a $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect code. Then, the corresponding $\mathbb{Z}_2\mathbb{Z}_4$-additive code $\Phi^{-1}(C)$ is also called 1-perfect code. Such codes are completely characterized.

Proposition 2.2 (\cite{6}):

(i) Let $n = 2^t - 1$, where $t \geq 4$. Then, for every r such that $2 \leq r \leq t \leq 2r$, there is exactly one $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect code of length n, up to coordinate permutation, with parameters $\alpha = 2^r - 1$ and $\beta = 2^{t-1} - 2^{r-1}$.

(ii) There are no other $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect codes.

Here, we strengthen a little this result by computing the type of these codes. Since r and t completely determine a $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect code, we denote such code by $C_{r,t}$. The corresponding $\mathbb{Z}_2\mathbb{Z}_4$-additive code is $C_{r,t} = \Phi^{-1}(C_{r,t})$.

Proposition 2.3: Let $C_{r,t}$ be of type $(\alpha, \beta; \gamma, \delta; \kappa)$ and let $(C_{r,t})^\perp$ be the dual code of type $(\bar{\alpha}, \bar{\beta}; \bar{\gamma}, \bar{\delta}; \bar{\kappa})$. Then,
(i) The parameters of $C_{r,t}$ are:
\[
\alpha = 2^r - 1; \quad \beta = 2^{t-1} - 2^{r-1}; \\
\gamma = 2^r - 1 - 2r + t; \\
\delta = 2^{t-1} - 2^{r-1} + r - t; \\
\kappa = \gamma.
\]

(ii) The parameters of $(C_{r,t})^\perp$ are:
\[
\bar{\alpha} = \alpha; \quad \bar{\beta} = \beta; \\
\bar{\gamma} = 2r - t; \quad \bar{\delta} = t - r; \\
\bar{\kappa} = \bar{\gamma}.
\]

Proof: The parameters α, β, $\bar{\alpha}$ and $\bar{\beta}$ follow directly from Proposition 2.1.

On the one hand, the binary linear code $C_0 = \langle \{x \mid 0, \ldots, 0 \in C_{r,t}\} \rangle_X$ is clearly 1-perfect, i.e. a Hamming code. Hence, C_0 has dimension $2^r - r - 1$. This means that the zero codeword in $(C_{r,t})^\perp$ (and any other one) is repeated 2^{2^r-r-1} times in $C_{r,t}$. On the other hand, consider a vector of the form
\[
u = (u \mid u') = (0, \ldots, 0 \mid 0, \ldots, 0, 2, 0, \ldots, 0) \in \mathbb{Z}_2^2 \times \mathbb{Z}_4^4,
\]
where $\alpha = 2^r - 1$ and $\beta = 2^{t-1} - 2^{r-1}$. Since the minimum distance in $C_{r,t}$ is 3, the minimum weight is also 3 because $C_{r,t}$ is distance invariant [11]. Hence ν must be at distance one from a weight 3 codeword $x = (x \mid x')$, where $w(x) = 1$ and $x' = u'$. Indeed, if $w(x) = 0$ and $w(x') = 3$, then $2x$ would have weight 2. Therefore, $(C_{r,t})^\perp$ has 2^β distinct codewords of order two (including here the zero codeword). We conclude that $C_{r,t}$ has $2^\beta \cdot 2^{2^r-r-1}$ order two codewords (again, including the zero codeword). Thus, the dimension of $(C_{r,t})^\perp$ is
\[
\gamma + \delta = \beta + 2^r - r - 1 = 2^{t-1} + 2^{r-1} - r - 1.
\]

The size of $C_{r,t}$ is 2^{2^r-t-1}. Therefore,
\[
\gamma + 2\delta = 2^t - t - 1.
\]

Combining Equations [1] and [2] we obtain the values of γ and δ.

As can be seen in [6], the quotient group $\mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta / C_{r,t}$ is isomorphic to $\mathbb{Z}_2^{2^r-t} \times \mathbb{Z}_4^{t-1}$. In other words, $C_{r,t}^\perp$ has parameters $\bar{\gamma} = 2r - t$ and $\bar{\delta} = t - r$. Now, the values of κ and $\bar{\kappa}$ are easily obtained by applying Proposition 2.1.

Let $v = (v_1, \ldots, v_m)$ be an element in \mathbb{Z}_2^m or \mathbb{Z}_4^m. We denote by $\sigma(v)$ the right cyclic shift of v, i.e. $\sigma(v) = (v_m, v_1, \ldots, v_{m-1})$. We recursively define $\sigma^j(v) = \sigma(\sigma^{j-1}(v))$, for $j = 2, 3, \ldots$. For vectors $\nu = (u \mid u') \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$ we extend the definition of σ as the double right cyclic shift of ν, that is, $\sigma(\nu) = (\sigma(u) \mid \sigma(u'))$.

A $\mathbb{Z}_2\mathbb{Z}_4$-additive code $C \subseteq \mathbb{Z}_2^2 \times \mathbb{Z}_4^4$ is a $\mathbb{Z}_2\mathbb{Z}_4$-cyclic code if for each codeword $x \in C$, we have that $\sigma(x) \in C$. Such codes were first defined in [1] and also studied in [4]. As can be seen in [1], the dual of a $\mathbb{Z}_2\mathbb{Z}_4$-cyclic code is also $\mathbb{Z}_2\mathbb{Z}_4$-cyclic.
III. THERE IS NO NONTRIVIAL $\mathbb{Z}_2\mathbb{Z}_4$-CYCLIC PERFECT CODES WITH ONE EXCEPTION

We say that a code is nontrivial if it has more than two codewords and its minimum distance is $d > 1$. Apart from 1-perfect codes, there is only another nontrivial binary perfect code. It is the linear binary Golay code of length 23. But this code has not any $\mathbb{Z}_2\mathbb{Z}_4$-linear structure apart from the binary linear one [12]. Therefore, any binary nonlinear and nontrivial $\mathbb{Z}_2\mathbb{Z}_4$-linear perfect code is a 1-perfect code.

In this section, we prove that for any $\mathbb{Z}_2\mathbb{Z}_4$-linear 1-perfect code, which is not a Hamming code, its corresponding $\mathbb{Z}_2\mathbb{Z}_4$-additive code cannot be $\mathbb{Z}_2\mathbb{Z}_4$-cyclic with exactly one exception.

Proposition 3.1: If $C_{r,t}$ is a $\mathbb{Z}_2\mathbb{Z}_4$-cyclic 1-perfect code, then $t = r$ or $t = 2r$.

Proof: By the argument in the proof of Proposition 2.3, we may assume that $C_{r,t}$ contains a codeword of the form $x = (x \mid 2, 0, \ldots, 0)$ with $w(x) = 1$. Now, consider the codeword $z = \sigma^\beta(x)$. If $z \neq x$ then $z + x$ would have weight 2. Consequently, z must be equal to x implying that β is a multiple of α, that is, $2^t - 1 \leq 2^r - 1$ is a multiple of $2^r - 1$. Thus,

$$\frac{2^{t-1}(2^t - 1)}{2^r - 1} \in \mathbb{N} \implies \frac{(2^t - 1)}{2^r - 1} \in \mathbb{N}.$$

Therefore r divides $t - r$ implying that r divides t. Since $r \leq t \leq 2r$, the only possibilities are $t = r$ or $t = 2r$.

If $t = r$, then $C_{r,t} = \Phi(C_{r,t})$ is linear, i.e. a Hamming code. In effect, it is well known that its coordinates can be arranged such that it is a binary cyclic code. We are interested in those codes whose binary Gray image is not linear, that is, when $t = 2r$. For this case, $t = 2r$, we have that $C_{r,2r}$ is of type

$$(2^r - 1, 2^{r-1}(2^r - 1); 2^r - 1, 2^{r-1}(2^r - 1) - r; 2^r - 1),$$

and applying Proposition 2.3 we obtain that its dual code $C_{r,2r}^\perp$ is of type

$$(2^r - 1, 2^{r-1}(2^r - 1); 0, 0).$$

Example 3.2: For $r = 2$ we have that the type of $C_{2,4}$ is $(3, 6; 3, 4; 3)$. By Proposition 2.3 its dual code $C_{2,4}^\perp$ is of type $(3, 6; 0, 2; 0)$. Consider the matrix

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 2 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 2 & 3 & 1 \end{pmatrix}.$$

The matrix H generates a code of type $(3, 6; 0, 2; 0)$. Any column is not a multiple of another one. Hence the code C_* with parity check matrix H has minimum distance at least 3, type $(3, 6; 3, 4; 3)$ and size 2^{11}. Therefore, C_* is the $\mathbb{Z}_2\mathbb{Z}_4$-additive 1-perfect code $C_{2,4}$ and H generates $C_{2,4}^\perp$. Note that the second row of H is the shift of the first one. Also, the first row minus the second one gives the shift of the second row. Since the shift of any row of H is a codeword, we have that the shift of any codeword is again a codeword. Consequently, $C_{2,4}^\perp$ is a $\mathbb{Z}_2\mathbb{Z}_4$-cyclic code and so is $C_{2,4}$.

From now on, we denote by $D^{(r)}$ the code $C_{r,2r}^\perp$ of binary length $n = \alpha + 2\beta = 2^{2r} - 1$. Hence, $D^{(r)}_b$ is the set of codewords of order 2 and the zero codeword. Recall that the dual of a binary Hamming code is called simplex.
Of course, the coordinates of a simplex code can be arranged such that the code is cyclic. We denote by S_r a cyclic simplex code of length $2^r - 1$.

Lemma 3.3: The code $D^{(r)}$ is a constant weight code, where all nonzero codewords have weight 2^{2r-1}.

Proof: The weight distributions of dual codes are related by the MacWilliams identity [7], [11], as well as for binary linear codes. It is well known that any 1-perfect code has the same weight distribution as the Hamming code of the same length. Therefore, $D^{(r)}$ must have the same weight distribution as the simplex code of length $n = 2^{2r} - 1$. Hence, the weight of any nonzero codeword is $(n + 1)/2 = 2^{2r-1}$. ■

Proposition 3.4: If $D^{(r)}$ is $\mathbb{Z}_2\mathbb{Z}_4$-cyclic, then $(D^{(r)})_X = S_r$. Moreover, a codeword $z \in D^{(r)}$ has the zero vector in the \mathbb{Z}_2 part, $z = (0, \ldots , 0 | z'_1, \ldots , z'_b)$, if and only if $z \in D^{(r)}_0$.

Proof: A generator matrix for $D^{(r)}$ would have the form

$$G = \left(\begin{array}{c|c} G_1 & G_2 \end{array} \right),$$

where G_1 is a $r \times 2^r - 1$ generator matrix for $(D^{(r)})_X$. Since the minimum weight of $C_{r,2r}$ is 3, G_1 has neither repeated columns, nor the zero column. Therefore G_1 has as columns all the nonzero binary vectors of length r and $(D^{(r)})_X = S_r$. The size of $D^{(r)}$ is $|D^{(r)}| = 2^{2r}$ and the number of codewords of order less than or equal to 2 is $|D^{(r)}_0| = 2^r$. Hence, $D^{(r)}$ can be viewed as a set of 2^r cosets of $D^{(r)}_0$. We conclude that each codeword in $(D^{(r)})_X$ appears 2^r times in $D^{(r)}$. So, the zero codeword in $(D^{(r)})_X$ appears in $D^{(r)}$ exactly in the codewords of $D^{(r)}_0$. ■

Proposition 3.5: Suppose that $D^{(r)}$ is $\mathbb{Z}_2\mathbb{Z}_4$-cyclic. If we change the coordinates ‘2’ by ‘1’ in $(D^{(r)}_b)_Y$ we obtain 2^{r-1} copies of S_r.

Proof: Clearly, when we change the twos by ones in $(D^{(r)}_b)_Y$, we obtain a binary linear cyclic code D with constant weight and dimension r. By [2], D must be a simplex code or a replication of a simplex code. Since the dimension is r, we conclude that D is a replication of a simplex code of length $2^r - 1$. Moreover, since $(D^{(r)}_b)_Y$ is cyclic, D is a replication of S_r. ■

Therefore, if $D^{(r)}$ is $\mathbb{Z}_2\mathbb{Z}_4$-cyclic, any order 4 codeword is of the form:

$$z = (x_1, \ldots , x_\alpha \mid y^{(1)}, \ldots , y^{(2^{r-1})}),$$

where $y^{(i)} = (y_1^{(i)}, \ldots , y_\alpha^{(i)})$, for all $i = 1, \ldots , 2^{r-1}$. The set of coordinate positions of $y^{(i)}$ will be called the ith block. Taking into account that $2z \in D^{(r)}_b$ and by Proposition 3.5 we see that z has 2^{r-1} odd coordinates (i.e. coordinates from $\{1,3\}$) in any block at the same positions. In other words, $y^{(i)} \equiv y^{(j)} \pmod{2}$, for all $i, j = 1, \ldots , 2^{r-1}$.

Corollary 3.6: Let $z = (x_1, \ldots , x_\alpha \mid y^{(1)}, \ldots , y^{(2^{r-1})}) \in D^{(r)}$ be an order 4 codeword and assume that $D^{(r)}$ is...
\[Z_2Z_4 \text{-cyclic. Then, } (y^{(1)}, \ldots, y^{(2r-1)}) \text{ has:} \]

\[
\begin{align*}
2^{2r-2} & \quad \text{odd coordinates} \\
2^{r-2}(2^{r-1} - 1) & \quad \text{twos, and} \\
2^{r-2}(2^{r-1} - 1) & \quad \text{zeroes.}
\end{align*}
\]

Proof: The result follows from Lemma 3.3, Proposition 3.4 and Proposition 3.5.

For any binary vector \(x = (x_1, \ldots, x_m) \), the support of \(x \) is the set of nonzero positions, \(\text{supp}(x) = \{ i \mid x_i \neq 0 \} \). Note that \(w(x) = |\text{supp}(x)| \). We define \(\overline{\text{supp}}(x) = \{1, \ldots, m\} \setminus \text{supp}(x) \) as the complementary support of \(x \).

Lemma 3.7: Let \(S_r \) be a cyclic simplex code of length \(2^r - 1 \), with \(r > 2 \). For any pair of codewords \(x, y \in S_r \) we have that \(|\text{supp}(x) \cap \text{supp}(y)| \) is even. In other words, \(x \) cannot have an odd number of nonzero positions in \(\overline{\text{supp}}(y) \).

Proof: The distance between \(x \) and \(y \) must be \(2^{r-1} \). Therefore,

\[
d(x, y) = |\text{supp}(x)| + |\text{supp}(y)| - 2|\text{supp}(x) \cap \text{supp}(y)| = 2^{r-1}.
\]

But the weight of any codeword is \(2^{r-1} \). Thus,

\[
2^{r-1} + 2^{r-1} - 2|\text{supp}(x) \cap \text{supp}(y)| = 2^{r-1},
\]

implying that \(|\text{supp}(x) \cap \text{supp}(y)| = 2^{r-2} \), which is even for \(r > 2 \). Hence, \(|\text{supp}(x) \cap \overline{\text{supp}}(y)| \) is also even for \(r > 2 \).

Proposition 3.8: Suppose that \(D^{(r)} \) is \(Z_2Z_4 \)-cyclic and \(r > 2 \). Let \(z = (x_1, \ldots, x_\alpha \mid y^{(1)}, \ldots, y^{(2^{r-1})}) \in D^{(r)} \) be an order 4 codeword. For any distinct \(i, j \), define

\[N_{i,j} = \{ \ell \mid 1 \leq \ell \leq \alpha, \ y^{(i)}_\ell, y^{(j)}_\ell \in \{0, 2\}, \ y^{(i)}_\ell \neq y^{(j)}_\ell \}, \]

i.e. \(N_{i,j} \) is the set of coordinate positions where \(y^{(i)} \) has a ‘2’ and \(y^{(j)} \) has ‘0’ or vice versa. Then, \(|N_{i,j}| \) is even.

Proof: Suppose to the contrary that \(|N_{i,j}| \) is odd. Assume that \(i < j \) and consider the codeword \(v = \sigma^{\alpha(j-1)}(z) \).

Clearly, \(u = v + z \) has the zero vector in the \(Z_2 \) part. Thus, by Proposition 3.4, \(u \) is an order two codeword. Now, comparing with the codeword \(2v \) (or \(2z \)), we can see that \(u \) has an odd number of twos in \(\overline{\text{supp}}(2v) \) in the \(j \)th block, contradicting Lemma 3.7.

As a consequence, we obtain that in any order 4 codeword, the number of twos in any block has the same parity.

Corollary 3.9: Suppose that \(D^{(r)} \) is \(Z_2Z_4 \)-cyclic and \(r > 2 \). Let \((x_1, \ldots, x_\alpha \mid y^{(1)}, \ldots, y^{(2^{r-1})}) \in D^{(r)} \) be an order 4 codeword. Put \(\eta_\ell(y) = \{|\ell| 1 \leq \ell \leq \alpha, \ y^{(k)}_\ell = 2\} \). Then, \(\eta_1(y), \ldots, \eta_{2^{r-1}}(y) \) all have the same parity.

Proof: Straightforward from Proposition 3.8.

Lemma 3.10: Suppose that \(D^{(r)} \) is \(Z_2Z_4 \)-cyclic and \(r > 2 \). As before, let \(z = (x_1, \ldots, x_\alpha \mid y^{(1)}, \ldots, y^{(2^{r-1})}) \in D^{(r)} \) be an order 4 codeword. Then, there exist different \(k, k' \in \{1, \ldots, 2^{r-1}\} \) such that \(\eta_k(y) \neq \eta_{k'}(y) \). Moreover,
if for some \(\ell \in \{1, \ldots, \alpha\} \) we have \(y^{(k)}_\ell = 0 \) and \(y^{(k')}_\ell = 2 \), then

\[
\{ i : 1 \leq i \leq 2^{r-1}, \quad y^{(i)}_\ell = 0 \} = \{ j : 1 \leq j \leq 2^{r-1}, \quad y^{(j)}_\ell = 2 \} = 2^{r-2}.
\]

Proof: The total number of twos in \(z \) is \(2^{r-2}(2^{r-1} - 1) \) (see Corollary 3.6). But this number is not divisible by \(2^{r-1} \) and hence not all the blocks have the same number of twos. This proves that \(\eta_k(y) \neq \eta_k'(y) \) for some \(k, k' \in \{1, \ldots, 2^{r-1}\} \).

Let \(k \) and \(k' = k + 1 \) be such that \(\eta_k(y) \neq \eta_{k'}(y) \). Without loss of generality, we assume that \(k' = 2^{r-1} \) and \(k = 2^{r-1} - 1 \). After some shifts of \(z \), we can get the situation that \(y^{(k)}_\alpha \neq y^{(k')}_\alpha \), where \(y^{(k)}_\alpha, y^{(k')}_\alpha \in \{0, 2\} \).

That is, the last coordinates of the last two blocks are in \(\alpha \), \(y^{(2^{r-1})} \). Hence, by Corollary 3.9, \(\eta_{2^{r-1}}(y) \) must change its parity as well, implying that \(y^{(2^{r-1}-2)}_\alpha \neq y^{(2^{r-1}-1)}_\alpha \) and \(y^{(2^{r-1}-2)}_\alpha, y^{(2^{r-1}-1)}_\alpha \in \{0, 2\} \). With the same argument, \(y^{(2^{r-1}-3)}_\alpha \neq y^{(2^{r-1}-2)}_\alpha \), \(y^{(2^{r-1}-3)}_\alpha, y^{(2^{r-1}-2)}_\alpha \in \{0, 2\} \), and so on. Therefore, in this last coordinate, half of the blocks have a ‘0’ and half of the blocks have a ‘2’. \hfill \square

Now, we are ready to prove the nonexistence of a \(\mathbb{Z}_2\mathbb{Z}_4 \)-cyclic code \(D(r) \) for \(r > 2 \).

Theorem 3.11: There is no \(\mathbb{Z}_2\mathbb{Z}_4 \)-cyclic 1-perfect code \(C \) such that \(C = \Phi(C) \) is nonlinear except for the case when \(C = C^* \) is the code of Example 3.2 of type \((3, 6; 3, 4; 3) \), which is a \(\mathbb{Z}_2\mathbb{Z}_4 \)-cyclic code.

Proof: Assume that \(C \) is a \(\mathbb{Z}_2\mathbb{Z}_4 \)-cyclic 1-perfect code such that \(C = \Phi(C) \) is nonlinear. By Proposition 3.1, \(C \) must be a code \(C_{7,2r} \). If \(r = 2 \), then we have seen the \(\mathbb{Z}_2\mathbb{Z}_4 \)-cyclic code \(C^* = C_{2,4} \) in Example 3.2. Suppose now that \(r > 2 \).

Let \(z = (x_1, \ldots, x_\alpha | y^{(1)}, \ldots, y^{(2^{r-1})}) \in C^1 \) be an order 4 codeword. Define

\[
\lambda = \left\{ \ell : 1 \leq \ell \leq \alpha, \quad y^{(\ell)}_\ell = 2, \quad \forall i = 1, \ldots, 2^{r-1} \right\}, \quad \text{and}
\mu = \left\{ \ell : 1 \leq \ell \leq \alpha, \quad \text{such that } \exists k, k' \text{ with } y^{(k)}_\ell \neq y^{(k')}_\ell; \right\}
\]

\[
\{ y^{(k)}_\ell \neq y^{(k')}_\ell \in \{0, 2\} \}.
\]

Then, by Lemma 3.10 the number of twos in \(z \) is \(2^{r-1}\lambda + 2^{r-2}\mu \). We have seen in Corollary 3.6 that this must equal \(2^{r-2}(2^{r-1} - 1) \). Thus, we obtain

\[
2\lambda + \mu = 2^{r-1} - 1,
\]

implying that \(\mu \) is an odd number. But this is a contradiction with Proposition 3.8. \hfill \square

IV. The Nonexistence of Nontrivial \(\mathbb{Z}_2\mathbb{Z}_4 \)-Cyclic Extended Perfect Codes

Given a \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive 1-perfect code \(C_{r,t} \) (\(2 \leq r \leq t \leq 2r \)), we denote by \(C'_{r,t} \) the extended code obtained by adding an even parity check coordinate (of course, at the \(\mathbb{Z}_2 \) part). Then, \(C'_{r,t} \) is a \(\mathbb{Z}_2\mathbb{Z}_4 \)-additive extended 1-perfect code. Recall that \(C_{r,t} \) is of type

\[
(2^t - 1, 2^{t-1} - 2^{r-1}; 2^r - 1 - 2r + t, 2^{t-1} - 2^{r-1} + r - t; 2^r - 1 - 2r + t).
\]
Since \(|C'_{r,t}| = |C_{r,t}|, |(C'_{r,t})_b| = |(C_{r,t})_b|, \) and \(|((C'_{r,t})_b)_x| = |((C_{r,t})_b)_x|\), we have that \(C'_{r,t}\) is of type
\[
(2^r, 2^{t-1} - 2^{t-1}; 2^r - 1 - 2r + t, 2^{t-1} - 2^{t-1} + r - t; 2^r - 1 - 2r + t).
\]

In this section, we prove that \(C'_{r,t}\) is not \(\mathbb{Z}_2\mathbb{Z}_4\)-cyclic for \(t > 2\). For this, we begin examining the case \(r = 2\). In such case, we have \(t \in \{2, 3, 4\}\). The case \(t = r = 2\) corresponds to a binary linear cyclic code of length 4 and two codewords. Such code is the trivial repetition code of length 4. Hence, we consider the cases \(t = 3\) and \(t = 4\).

Lemma 4.1: The codes \(C'_{2,3}\) and \(C'_{2,4}\) are not \(\mathbb{Z}_2\mathbb{Z}_4\)-cyclic.

Proof: First, we consider the code \(C'_{2,3}\). The type of \(C'_{2,3}\) is \((4, 2; 2, 1; 2)\). Hence, \(C'_{2,3}\) contains 8 codewords of order 4. Let \(x = (x_1', x_2')\) be one such codeword. Since any codeword in \(C'_{2,3}\) has weight 4 or 8, it follows that \(x_1'\) and \(x_2'\) must be both odd coordinates (otherwise 2x would have weight 2). Also, we have that \(w(x) = 2\). If we consider the codeword \(x + \sigma(x)\), we can see that \(x + \sigma(x)\) must have weight 4, implying that \(x = (1, 0, 1, 0)\) (or \(x = (0, 1, 0, 1)\)). Now, take a codeword \(y = (y_1', y_2')\) such that \(y_1' = x_1'\) and \(y_2' \neq x_2'\) (a simple counting argument shows that exactly half of the codewords have equal the last two coordinates). We have that \(d(x, y) \in \{0, 4\}\) and hence \(d(x, y) \in \{2, 6\}\), a contradiction.

The code \(C'_{2,4}\) is an extension of the code \(C^*\) in Example 3.2. Consider the dual code \(D = (C'_{2,3})^\perp\). If \(H\) is a generator matrix for \(C'_{2,4}\), then a generator matrix for \(D\) can be obtained adding, first, a zero column to \(H\) and, second, the row \(f = (1, \ldots, 1 | 2, \ldots, 2)\). Hence, \(D\) is of type \((4, 6; 1, 2; 1)\) and any nonzero codeword \(z \neq f\) has weight 8. Let \(x\) be an order 4 codeword. Clearly, \(x\) must have 4 odd coordinates in the quaternary part (otherwise, 2x would not have weight 8). This implies that \(z = x + \sigma^4(x)\) is an order 4 vector. If \(D\) is cyclic, then \(z = (z | z') \in D\). Note that \(z\) has zeros in all the binary positions, i.e. \(z = (0, \ldots, 0)\). Thus, \(z'\) has 4 odd coordinates and two coordinates, say \(z'_1\) and \(z'_2\), equal to ‘2’. But note that \(z'_1\) or \(z'_2\) (or both) is obtained as the addition of two odd coordinates. Therefore, \(x - \sigma^4(x)\) has weight less than 8, getting a contradiction.

Now, we establish the main result of this section.

Theorem 4.2: If \(C' = C'_{r,t}\) is a \(\mathbb{Z}_2\mathbb{Z}_4\)-additive extended 1-perfect code with \(t \geq 3\), then \(C'\) is not \(\mathbb{Z}_2\mathbb{Z}_4\)-cyclic.

Proof: Consider the subcode \(C'_0 = \{(x | 0, \ldots, 0)\}\). If \(C'\) is \(\mathbb{Z}_2\mathbb{Z}_4\)-cyclic, then clearly \((C'_0)_x\) is a binary linear cyclic code. For every vector \(v = (v | 0, \ldots, 0)\) of odd weight, we have that \(v\) must be at distance 1 from one codeword in \(C'\). Since no codeword \(z\) can have only an odd coordinate in the \(\mathbb{Z}_4\) part (otherwise 2z would have weight 2), it follows that \(v\) is at distance 1 from a codeword in \((C'_0)_x\). Therefore \(C'_0\) must be an extended Hamming code. But such code cannot be cyclic unless it has length 4 [8]. The result then follows by Lemma 4.1.

References

[1] T. Abualrub, I. Siap and H. Aydin, “\(\mathbb{Z}_2\mathbb{Z}_4\)-additive cyclic codes,” IEEE Trans. Inform. Theory, vol. 60, pp. 1508-1514, 2014.

[2] A. Bonisoli, “Every equidistant linear code is a sequence of dual Hamming codes,” Ars Combin., vol. 18, pp. 181-186, 1984.

[3] J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva, “\(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality,” Designs, Codes and Cryptography, vol. 54, pp. 167-179, 2010.

[4] J. Borges, C. Fernández-Córdoba and R. Ten-Valls, “\(\mathbb{Z}_2\mathbb{Z}_4\)-additive cyclic codes, generator polynomials and dual codes,” arXiv: 1406.4425, 2015.
[5] J. Borges, K.T. Phelps and J. Rifà, “The rank and kernel of extended 1-perfect \mathbb{Z}_4-linear and additive non-\mathbb{Z}_4-linear codes,” *IEEE Trans. Inform. Theory*, vol. 49, pp. 2028-2034, 2003.

[6] J. Borges and J. Rifà, “A characterization of 1-perfect additive codes,” *IEEE Trans. Inform. Theory*, vol. 45, pp. 1688-1697, 1999.

[7] P. Delsarte and V. Levenshtein, “Association schemes and coding theory,” *IEEE Trans. Inform. Theory*, 44, pp. 2477-2504 (1998).

[8] J. Justensen and S. Forchhammer, *Two-dimensional Information Theory and coding*, Cambridge Univ. Press., 2010.

[9] D.S. Krotov, “\mathbb{Z}_4-linear perfect codes”, *Diskret. Anal. Issled. Oper.*, Ser. 1. 7(4), pp. 78–90, 2000. In Russian.

[10] F.J. MacWilliams and N.J.A. Sloane, *The Theory of Error-Correcting Codes*, North-Holland Publishing Company, 1977.

[11] J. Pujol and J. Rifà, “Translation-invariant propelinear codes,” *IEEE Trans. Inform. Theory*, vol. 43, pp. 590-598, 1997.

[12] J. Rifà, “On a categorial isomorphism between a class of completely regular codes and a class of distance regular graphs. *Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-8*, vol. 508 LNCS, pp. 164-179, 1990.