Randomized selection with quintary partitions

Krzysztof C. Kiwiel

December 22, 2003

Abstract

We show that several versions of Floyd and Rivest’s algorithm Select for finding the \(k\)th smallest of \(n\) elements require at most \(n + \min\{k, n - k\} + o(n)\) comparisons on average and with high probability. This rectifies the analysis of Floyd and Rivest, and extends it to the case of nondistinct elements. Our computational results confirm that Select may be the best algorithm in practice.

Key words. Selection, medians, partitioning, computational complexity.

1 Introduction

The selection problem is defined as follows: Given a set \(X := \{x_j\}_{j=1}^n\) of \(n\) elements, a total order \(<\) on \(X\), and an integer \(1 \leq k \leq n\), find the \(k\)th smallest element of \(X\), i.e., an element \(x\) of \(X\) for which there are at most \(k - 1\) elements \(x_j < x\) and at least \(k\) elements \(x_j \leq x\). The median of \(X\) is the \([n/2]\)th smallest element of \(X\). (Since we are not assuming that the elements are distinct, \(X\) may be regarded as a multiset).

Selection is one of the fundamental problems in computer science. It is used in the solution of other basic problems such as sorting and finding convex hulls. Hence its literature is too vast to be reviewed here; see, e.g., [DHUZ01, DoZ99, DoZ01] and [Knu98, §5.3.3]. We only stress that most references employ a comparison model (in which a selection algorithm is charged only for comparisons between pairs of elements), assuming that the elements are distinct. Then, in the worst case, selection needs at least \((2 + \epsilon)n\) comparisons [DoZ01], whereas the pioneering algorithm of [BFP+72] makes at most \(5.43n\), its first improvement of [SPP76] needs \(3n + o(n)\), and the most recent improvement in [DoZ99] takes \(2.95n + o(n)\). Thus a gap of almost 50% still remains between the best lower and upper bounds in the worst case.

The average case is better understood. Specifically, for \(k \leq [n/2]\), at least \(n + k - 2\) comparisons are necessary [CuM89, Knu98, Ex. 5.3.3–25], whereas the best upper bound is \(n + k + O(n^{1/2}\ln^{1/2}n)\) [Knu98, Eq. (5.3.3.16)]. Yet this bound holds for a hardly implementable theoretical scheme [Knu98, Ex. 5.3.3–24], whereas a similar frequently cited bound for the algorithm Select of [FlR75b] doesn’t have a full proof, as noted in [Knu98].
Ex. 5.3.3–24 and [PRKT83]. Significantly worse bounds hold for the classical algorithm Find of [Hoa61], also known as quickselect, which partitions X by using the median of a random sample of size $s \geq 1$. In particular, for $k = \lceil n/2 \rceil$, the upper bound is $3.39n + o(n)$ for $s = 1$ [Knu98, Ex. 5.2.2–32] and $2.75n + o(n)$ for $s = 3$ [Gru99, KMP97], whereas for finding an element of random rank, the average cost is $3n + o(n)$ for $s = 1$, $2.5n + o(n)$ for $s = 3$ [KMP97], and $2n + o(n)$ when $s \to \infty$, $s/n \to 0$ as $n \to \infty$ [MaR01]. In practice Find is most popular, because the algorithms of [BFP72, SPP76] are much slower on the average [Mus97, Val00]. For the general case of nondistinct elements, little is known in theory about these algorithms, but again Find performs well in practice [Val00].

Our aim is to rekindle theoretical and practical interest in the algorithm Select of [FlR75b, §2.1] (the versions of [FlR75b, §2.3] and [FlR75a] will be addressed elsewhere). We show that Select performs very well in both theory and practice, even when equal elements occur. To outline our contributions in more detail, we recall that Select operates as follows. Using a small random sample, two elements u and v almost sure to be just below and above the kth are found. The remaining elements are compared with u and v to create a small selection problem on the elements between u and v that is quickly solved recursively. By taking a random subset as the sample, this approach does well against any input ordering, both on average and with high probability.

First, we revise Select slightly to simplify our analysis. Then, without assuming that the elements are distinct, we show that Select needs at most $n + \min\{k, n - k\} + O(n^{2/3}\ln^{1/3}n)$ comparisons on average; this agrees with the result of [FLR75b, §2.2] which is based on an unproven assumption [PRKT83, §5]. Similar upper bounds are established for versions that choose sample sizes as in [FLR75a, Meh00, Rei85] and [MoR95, §3.3]. Thus the average costs of these versions reach the lower bounds of $1.5n + o(n)$ for median selection and $1.25n + o(n)$ for selecting an element of random rank (yet the original sample size of [FLR75b, §2.2] has the best lower order term in its cost). We also prove that non-recursive versions of Select, which employ other selection or sorting algorithms for small subproblems, require at most $n + \min\{k, n - k\} + o(n)$ comparisons with high probability (e.g., $1 - 4n^{-2\beta}$ for a user-specified $\beta > 0$); this extends and strengthens the results of [GeS03, Thm 1], [Meh00, Thm 2] and [MoR95, Thm 3.5].

Since theoretical bounds alone needn’t convince practitioners (who may worry about hidden constants, etc.), a serious effort was made to design a competitive implementation of Select. Here, as with Find and quicksort [Sed77], the partitioning efficiency is crucial. In contrast with the observation of [FLR75b, p. 169] that “partitioning X about both u and v [is] an inherently inefficient operation”, we introduce a quintary scheme which performs well in practice.

Relative to Find, Select requires only small additional stack space for recursion, because sampling without replacement can be done in place. Still, it might seem that random sampling needs too much time for random number generation. (Hence several popular implementations of Find don’t sample randomly, assuming that the input file is in random order, whereas others [Val00] invoke random sampling only when slow progress occurs.) Yet our computational experience shows that sampling doesn’t hurt even on random inputs, and it helps a lot on more difficult inputs (in fact our interest in Select was sparked by the poor performance of the implementation of [FLR75a] on several inputs...
of \textcite{Val00}). Most importantly, even for examples with relatively low comparison costs, \textbf{Select} beats quite sophisticated implementations of \textbf{Find} by a wide margin, in both comparison counts and computing times. To save space, only selected results are reported, but our experience on many other inputs was similar. In particular, empirical estimates of the constants hidden in our bounds were always quite small. Further, the performance of \textbf{Select} is extremely stable across a variety of inputs, even for small input sizes (cf. §7.3). A theoretical explanation of these features will be undertaken elsewhere. For now, our experience supports the claim of \textcite{FIR75b, §1} that “the algorithm presented here is probably the best practical choice”.

The paper is organized as follows. A general version of \textbf{Select} is introduced in §2 and its basic features are analyzed in §3. The average performance of \textbf{Select} is studied in §4. High probability bounds for nonrecursive versions are derived in §5. Partitioning schemes are discussed in §6. Finally, our computational results are reported in §7.

Our notation is fairly standard. \(|A|\) denotes the cardinality of a set \(A\). In a given probability space, \(P\) is the probability measure, and \(E\) is the mean-value operator.

2 The algorithm \textbf{Select}

In this section we describe a general version of \textbf{Select} in terms of two auxiliary functions \(s(n)\) and \(g(n)\) (the sample size and rank gap), which will be chosen later. We omit their arguments in general, as no confusion can arise.

\textbf{Select} picks a small random sample \(S\) from \(X\) and two pivots \(u\) and \(v\) from \(S\) such that \(u \leq x_k^* \leq v\) with high probability, where \(x_k^*\) is the \(k\)th smallest element of \(X\). Partitioning \(X\) into elements less than \(u\), between \(u\) and \(v\), greater than \(v\), and equal to \(u\) or \(v\), \textbf{Select} either detects that \(u\) or \(v\) equals \(x_k^*\), or determines a subset \(\hat{X}\) of \(X\) and an integer \(\hat{k}\) such that \(x_{\hat{k}}\) may be selected recursively as the \(\hat{k}\)th smallest element of \(\hat{X}\).

Below is a detailed description of the algorithm.

Algorithm 2.1.

\textbf{Select}(\(X, k\)) (Selects the \(k\)th smallest element of \(X\), with \(1 \leq k \leq n := |X|\))

Step 1 (Initiation). If \(n = 1\), return \(x_1\). Choose the sample size \(s \leq n - 1\) and gap \(g > 0\).

Step 2 (Sample selection). Pick randomly a sample \(S := \{y_1, \ldots, y_s\}\) from \(X\).

Step 3 (Pivot selection). Set \(i_u := \max\{\lceil ks/n - g\rceil, 1\}\), \(i_v := \min\{\lceil ks/n + g\rceil, s\}\). Let \(u\) and \(v\) be the \(i_u\)th and \(i_v\)th smallest elements of \(S\), found by using \textbf{Select} recursively.

Step 4 (Partitioning). By comparing each element \(x\) of \(X\) to \(u\) and \(v\), partition \(X\) into \(L := \{x \in X : x < u\}\), \(U := \{x \in X : x = u\}\), \(M := \{x \in X : u < x < v\}\), \(V := \{x \in X : x = v\}\), \(R := \{x \in X : v < x\}\). If \(k < n/2\), \(x\) is compared to \(v\) first, and to \(u\) only if \(x < v\) and \(u < v\). If \(k \geq n/2\), the order of the comparisons is reversed.

Step 5 (Stopping test). If \(|L| < k \leq |L \cup U|\) then return \(u\); else if \(|L \cup U \cup M| < k \leq n - |R|\) then return \(v\).

Step 6 (Reduction). If \(k \leq |L|\), set \(\hat{X} := L\) and \(\hat{k} := k\); else if \(n - |R| < k\), set \(\hat{X} := R\) and \(k := k - n + |R|\); else set \(\hat{X} := M\) and \(k := k - |L \cup U|\). Set \(\hat{n} := |\hat{X}|\).
Step 7 (Recursion). Return $\text{SELECT}(\hat{X}, \hat{k})$.

A few remarks on the algorithm are in order.

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from the following observations. The returns of Steps 1 and 5 deliver the desired element. At Step 6, \hat{X} and \hat{k} are chosen so that the kth smallest element of X is the \hat{k}th smallest element of \hat{X}, and $\hat{n} < n$ (since $u, v \notin \hat{X}$). Also $|S| < n$ for the recursive calls at Step 3.

(b) When Step 5 returns u (or v), SELECT may also return information about the positions of the elements of X relative to u (or v). For instance, if X is stored as an array, its k smallest elements may be placed first via interchanges at Step 4 (cf. §6). Hence after Step 3 finds u, we may remove from S its first i_u smallest elements before extracting v. Further, Step 4 need only compare u and v with the elements of $X \setminus S$.

(c) The following elementary property is needed in §4. Let c_n denote the maximum number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at most $c_s + c_{n-i_u}$ comparisons with $s < n$, Step 4 needs at most $2(n-s)$, and Step 7 takes at most $c_{\hat{n}}$ with $\hat{n} < n$, by induction $c_n < \infty$ for all n.

3 Preliminary analysis

In this section we analyze general features of sampling used by SELECT.

3.1 Sampling deviations and expectation bounds

Our analysis hinges on the following bound on the tail of the hypergeometric distribution established in [Hop63] and rederived shortly in [Chv79].

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r are red, and r' be the random variable representing the number of red balls drawn. Let $p := r/n$. Then

$$P[r' \geq ps + g] \leq e^{-2g^2/s} \quad \forall g \geq 0.$$ \hfill (3.1)

We shall also need a simple version of the (left) Chebyshev inequality [Kor78 §2.4.2].

Fact 3.2. Let z be a nonnegative random variable such that $P[z \leq \zeta] = 1$ for some constant ζ. Then $Ez \leq t + \zeta P[z > t]$ for all nonnegative real numbers t.

3.2 Sample ranks and partitioning efficiency

Denote by $x_1^* \leq \ldots \leq x_n^*$ and $y_1^* \leq \ldots \leq y_s^*$ the sorted elements of the input set X and the sample set S, respectively. Thus x_k^* is the kth smallest element of X, whereas $u = y_{i_u}^*$ and $v = y_{i_v}^*$ at Step 3. This notation facilitates showing that for the bounding indices

$$k_l := \max \{ \lceil k - 2gn/s \rceil, 1 \} \quad \text{and} \quad k_r := \min \{ \lceil k + 2gn/s \rceil, n \},$$ \hfill (3.2)

we have $x_{k_l}^* \leq u \leq x_k^* \leq v \leq x_{k_r}^*$ with high probability for suitable choices of s and g.
Lemma 3.3. (a) $P[x_k^* < u] \leq e^{-2g^2/s}$ if $i_u = \lfloor ks/n - g \rfloor$.
(b) $P[u < x_k^*] \leq e^{-2g^2/s}$.
(c) $P[v < x_k^*] \leq e^{-2g^2/s}$ if $i_v = \lfloor ks/n + g \rfloor$.
(d) $P[x_k^* < u] \leq e^{-2g^2/s}$.
(e) $i_u \neq \lfloor ks/n - g \rfloor$ iff $k \leq gn/s$; $i_v \neq \lfloor ks/n + g \rfloor$ iff $n < k + gn/s$.

Proof. (a) If $x_k^* < y_{i_u}$, at least $s - i_u + 1$ samples satisfy $y_i \geq x_{i+1}^*$ with $j := \max_{x_j^* = x_i^*} j$.
In the setting of Fact 3.1, we have $r := n - j$ red elements $x_j \geq x_{j+1}^*$, $ps = s - js/n$ and $r' \geq s - i_u + 1$. Since $i_u = \lfloor ks/n - g \rfloor < ks/n - g + 1$ and $j \geq k$, we get $r' > ps + (j - k)s/n + g \geq ps + g$. Hence $P[x_k^* < u] \leq P[r' \geq ps + g] \leq e^{-2g^2/s}$ by 3.1.
(b) If $y_{i_u}^* < x_k^*$, i_u samples are at most x_k^*, where $r := \max_{x_j^* = x_i^*} j$. Thus we have r red elements $x_j \leq x_{k_r}^*$, $ps = rs/n$ and $r' \geq i_v$. Now, $1 \leq r \leq k_l - 1$ implies $2 \leq k_l = \lfloor k - 2gn/s \rfloor$ by (3.2) and thus $k_l < k - 2gn/s + 1$, so $-r's/n > -ks/n + 2g$. Hence $i_u - ps - g \geq ks/n - g - rs/n - g > 0$, i.e., $r' > ps + g$; invoke 3.1 as before.
(c) If $y_{i_v}^* < x_k^*$, i_v samples are at most x_k^*, where $r := \max_{x_j^* = x_i^*} j$. Thus we have r red elements $x_j \leq x_{r_v}^*$, $ps = rs/n$ and $r' \geq i_v$. But $i_u - ps - g \geq ks/n + g - rs/n - g \geq 0$ implies $r' \geq ps + g$, so again 3.1 yields the conclusion.
(d) If $x_k^* < y_{i_u}$, $s - i_v + 1$ samples are at least x_{j+1}^*, where $j := \max_{x_j^* = x_i^*} j$. Thus we have $r := n - j$ red elements $x_j \geq x_{j+1}^*$, $ps = s - js/n$ and $r' \geq s - i_v + 1$. Now, $i_v < ks/n + g + 1$ and $j \geq k_r \geq k + 2gn/s$ (cf. (3.2)) yield $s - i_v + 1 - ps - g \geq js/n - ks/n - g - 1 - g \geq 0$. Thus $x_{k_r}^* < ps + g$; hence $P[x_{k_r}^* < v] \leq P[r' \geq ps + g] \leq e^{-2g^2/s}$ by (3.1).
(e) Follows immediately from the properties of $\lfloor \cdot \rfloor$ [Knu97 §1.2.4].

We may now estimate the partitioning costs of Step 4. We assume that only necessary comparisons are made (but it will be seen that up to s extraneous comparisons may be accommodated in our analysis; cf. Rem. 3.4(a)).

Lemma 3.4. Let c denote the number of comparisons made at Step 4. Then

\[
P[c \leq \bar{c}] \geq 1 - e^{-2g^2/s} \quad \text{and} \quad \Ec \leq \bar{c} + 2(n - s)e^{-2g^2/s} \quad \text{with} \quad \bar{c} := n + \min\{k, n - k\} - s + 2gn/s. \tag{3.3a, 3.3b}
\]

Proof. Consider the event $\mathcal{A} := \{c \leq \bar{c}\}$ and its complement $\mathcal{A}' := \{c > \bar{c}\}$. If $u = v$ then $c = n - s \leq \bar{c}$; hence $P[\mathcal{A}'] = P[\mathcal{A}' \cap \{u < v\}]$, and we may assume $u < v$ below.

First, suppose $k < n/2$. Then $c = n - s + \lvert \{x \in X \setminus S : x < v\}\rvert$, since $n - s$ elements of $X \setminus S$ are compared to v first. In particular, $c \leq 2(n - s)$. Since $k < n/2$, $\bar{c} = n + k - s + 2gn/s$. If $v \leq x_{k_r}^*$, then $\{x \in X \setminus S : x < v\} \subset \{x \in X : x \leq v\} \setminus \{u, v\}$ yields $\lvert \{x \in X \setminus S : x < v\}\rvert \leq k_r - 2$, so $c \leq n - s + k_r - 2$; hence $k_r < k + 2gn/s + 1$, we get $c \leq n + k - s + 2gn/s - 1 \leq \bar{c}$. Thus $u < v \leq x_{k_r}^*$ implies \mathcal{A}. Therefore, $\mathcal{A}' \cap \{u < v\}$ implies $\{x_{k_r}^* < v\} \setminus \{u, v\}$, so $P[\mathcal{A}' \cap \{u < v\}] \leq P[x_{k_r}^* < v] \leq e^{-2g^2/s}$ (Lem. 3.3(d)). Hence we have (3.3), since $\Ec \leq \bar{c} + 2(n - s)e^{-2g^2/s}$ by Fact 3.2 (with $z := c$, $\zeta := 2(n - s)$).

Next, suppose $k \geq n/2$. Now $c = n - s + \lvert \{x \in X \setminus S : u < x\}\rvert$, since $n - s$ elements of $X \setminus S$ are compared to u first. If $x_{k_i}^* \leq u$, then $\{x \in X \setminus S : u < x\} \subset \{x \in X : u \leq x\} \setminus \{u, v\}$ yields $\lvert \{x \in X \setminus S : u < x\}\rvert \leq n - k_i - 1$; hence $k_i \geq k - 2gn/s$ gives $c \leq n - s + (n - k) + 2gn/s - 1 \leq \bar{c}$. Thus $\mathcal{A}' \cap \{u < v\}$ implies $\{u < x_{k_i}^*\} \setminus \{u, v\}$, so $P[\mathcal{A}' \cap \{u < v\}] \leq P[u < x_{k_i}^*] \leq e^{-2g^2/s}$ (Lem. 3.3(b)), and we get (3.3) as before.
The following result will imply that, for suitable choices of s and g, the set \hat{X} selected at Step 6 will be “small enough” with high probability and in expectation; we let $\hat{X} := \emptyset$ and $\hat{n} := 0$ if Step 5 returns u or v, but we don’t consider this case explicitly.

Lemma 3.5. $P[\hat{n} < 4gn/s] \geq 1 - 4e^{-2g^2/s}$, and $E\hat{n} \leq 4gn/s + 4ne^{-2g^2/s}$.

Proof. The first bound yields the second one by Fact 3.2 (with $z := \hat{n} < n$). In each case below, we define an event E that implies the event $B := \{\hat{n} < 4gn/s\}$.

First, consider the middle case of $i_u = [ks/n - g]$ and $i_v = [ks/n + g]$. Let $E := \{x_{k_u} \leq u \leq x_v \leq x_{k_v}\}$. By Lem. 3.3 and the Boole-Benferroni inequality, its complement E' has $P[E'] \leq 4e^{-2g^2/s}$, so $P[E] \geq 1 - 4e^{-2g^2/s}$. By the rules of Steps 4–6, $u \leq x_k \leq v$ implies $X = M$, whereas $x_{k_u} \leq u \leq v \leq x_{k_v}$ yields $\hat{n} \leq k_r - k_l + 1 - 2; \text{ since } k_r < k + 2gn/s + 1$ and $k_l \geq k - 2gn/s$ by (3.2), we get $\hat{n} < 4gn/s$. Hence $E \subset B$ and thus $P[B] \geq P[E]$.

Next, consider the left case of $i_u \neq [ks/n - g], \text{ i.e., } k \leq gn/s$ (Lem. 3.3(e)). If $i_v \neq [ks/n + g]$, then $n < k + gn/s$ (Lem. 3.3(e)) gives $\hat{n} < n < k + gn/s \leq 2gn/s$; take $E := \{n < k + gn/s\}$, a certain event. For $i_v = [ks/n + g]$, let $E := \{x_v \leq u \leq x_{k_v}\}$; again $P[E] \geq 1 - 2e^{-2g^2/s}$ by Lem. 3.3(c,d). Now, $x_v \leq u \leq x_{k_v}$ gives $\hat{n} \leq k_r - 1 < k + 2gn/s \leq 3gn/s$; therefore $E \subset B$.

Finally, consider the right case of $i_v \neq [ks/n + g], \text{ i.e., } n < k + gn/s$. If $i_u \neq [ks/n - g]$ then $k \leq gn/s$ gives $\hat{n} < n < 2gn/s$; take $E := \{k \leq gn/s\}$. For $i_u = [ks/n - g]$, $E := \{x_{k_u} \leq u \leq x_{k_v}\}$ has $P[E] \geq 1 - 2e^{-2g^2/s}$ by Lem. 3.3(a,b). Now, $u \leq x_{k_u}$ implies $X \subset M \cup R$, whereas $x_{k_u} \leq u$ yields $\hat{n} \leq n - k_l$ with $k_l \geq k - 2gn/s$ and thus $\hat{n} < 3gn/s$. Hence $E \subset B$. \qed

Corollary 3.6. $P[c \leq \bar{\epsilon} \text{ and } \hat{n} < 4gn/s] \geq 1 - 4e^{-2g^2/s}$.

Proof. Check that $E \subset B$, as $\hat{n} < 4gn/s$ by Lems. 3.4 and 3.5. If $n \leq 2(n - s) \leq \bar{\epsilon}$ (cf. 3.3(c)) in the left and right subcases. \qed

Remark 3.7. Suppose Step 3 resets $i_u := i_u$ if $k \leq gn/s$, or $i_v := i_v$ if $n < k + gn/s$, finding a single pivot $u = v$ in these cases. The preceding results remain valid.

4 Analysis of the recursive version

In this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest’s samples

For positive constants α and β, consider choosing $s = s(n)$ and $g = g(n)$ as

$$s := \min\{[\alpha f(n)], n - 1\} \text{ and } g := (\beta s \ln n)^{1/2} \text{ with } f(n) := n^{2/3} \ln^{1/3} n.$$ \hspace{1cm} (4.1)

This form of g gives a probability bound $e^{-2g^2/s} = n^{-2\beta}$ for Lems. 3.4 3.5. To get more feeling, suppose $\alpha = \beta = 1$ and $s = f(n)$. Let $\phi(n) := f(n)/n$. Then $s/n = g/s = \phi(n)$ and \hat{n}/n is at most $4\phi(n)$ with high probability (at least $1 - 4/n^2$, i.e., $\phi(n)$ is a contraction factor; note that $\phi(n) \approx 2.4\%$ for $n = 10^6$ (cf. Tab. 1.1).
Theorem 4.1. Let C_{nk} denote the expected number of comparisons made by Select for s and g chosen as in (4.1) with $\beta \geq 1/6$. There exists a positive constant γ such that

$$C_{nk} \leq n + \min\{k, n - k\} + \gamma f(n) \quad \forall 1 \leq k \leq n. \tag{4.2}$$

Proof. We need a few preliminary facts. The function $\phi(t) := f(t)/t = (\ln t/t)^{1/3}$ decreases to 0 on $[e, \infty)$, whereas $f(t)$ grows to infinity on $[2, \infty)$. Let $\delta := 4(\beta/\alpha)^{1/2}$. Pick $\bar{n} \geq 3$ large enough so that $e - 1 \leq \alpha f(\bar{n}) \leq \bar{n} - 1$ and $e \leq \delta f(\bar{n})$. Let $\bar{\alpha} := \alpha + 1/f(\bar{n})$. Then, by (4.1) and the monotonicity of f and ϕ, we have for $n \geq \bar{n}$

$$s \leq \bar{\alpha} f(n) \quad \text{and} \quad f(s) \leq \bar{\alpha} \phi(\bar{\alpha} f(\bar{n}))/f(n), \tag{4.3}$$

$$f(\delta f(n)) \leq \delta \phi(\delta f(\bar{n}))/f(n). \tag{4.4}$$

For instance, the first inequality of (4.3) yields $f(s) \leq f(\bar{\alpha} f(n))$, whereas

$$f(\bar{\alpha} f(n)) = \bar{\alpha} \phi(\bar{\alpha} f(\bar{n}))/f(n) \leq \bar{\alpha} \phi(\bar{\alpha} f(\bar{n}))/f(n).$$

Also for $n \geq \bar{n}$, we have $s = \lceil \alpha f(n) \rceil = \alpha f(n) + \epsilon$ with $\epsilon \in [0, 1)$ in (4.1). Writing $s = \bar{\alpha} f(n)$ with $\bar{\alpha} := \alpha + \epsilon/f(n) \in [\alpha, \bar{\alpha})$, we deduce from (4.1) that

$$gn/s = (\beta/\bar{\alpha})^{1/2} f(n) \leq (\beta/\alpha)^{1/2} f(n). \tag{4.5}$$

In particular, $4gn/s \leq \delta f(n)$, since $\delta := 4(\beta/\alpha)^{1/2}$. For $\beta \geq 1/6$, (4.1) implies

$$ne^{-2\delta^2/s} \leq n^{1-2\beta} = f(n)n^{1/3-2\beta} \ln^{-1/3} n \leq f(n) \ln^{-1/3} n. \tag{4.6}$$

Using the monotonicity of ϕ and f on $[e, \infty)$, increase \bar{n} if necessary to get

$$2\bar{\alpha} \phi(\bar{\alpha} f(\bar{n})) + \delta \phi(\delta f(\bar{n})) + 4\phi(\bar{n})\bar{n}^{1/3-2\beta} \ln^{-1/3} \bar{n} \leq 0.95. \tag{4.7}$$

By Rem. 2.2(c), there is γ such that (4.2) holds for all $n \leq \bar{n}$; increasing γ if necessary, we have

$$2\bar{\alpha} + 2\delta + 8\bar{n}^{1/3-2\beta} \ln^{-1/3} \bar{n} \leq 0.05\gamma. \tag{4.8}$$

Let $n' \geq \bar{n}$. Assuming (4.2) holds for all $n \leq n'$, for induction let $n = n' + 1$.

The cost of Step 3 can be estimated as follows. We may first apply Select recursively to S to find $u = y_{i_u}^*$, and then extract $v = y_{i_v}^*$ from the elements $y_{i_{u+1}}^*, \ldots, y_{i_v}^*$ (assuming $i_u < i_v$; otherwise $v = u$). Since $s \leq n'$, the expected number of comparisons is

$$C_{su} + C_{s-i_u, i_v-i_u} \leq 1.5s + \gamma f(s) + 1.5(s - i_u) + \gamma f(s - i_u) \leq 3s - 1.5 + 2\gamma f(s). \tag{4.9}$$

Table 4.1: Sample size $f(n) := n^{2/3} \ln^{1/3} n$ and relative sample size $\phi(n) := f(n)/n$.

n	10^3	10^4	10^5	10^6	$5 \cdot 10^6$	10^7	$5 \cdot 10^7$	10^8
$f(n)$	190.449	972.953	486.476	23995.0	72287.1	117248	353885	568986
$\phi(n)$	190449	0.97295	0.48648	0.023995	0.014557	0.011725	0.007078	0.005690
The partitioning cost of Step 4 is estimated by (3.3) as
\[
E_c \leq n + \min \{k, n-k\} - s + 2gn/s + 2ne^{-2g^2/s}.
\]
(4.10)

The cost of finishing up at Step 7 is at most \(C_{\hat{n}} \leq 1.5n + \gamma f(\hat{n})\). But by Lem. 3.3,
P[\hat{n} \geq 4gn/s] \leq 4e^{-2g^2/s}, and \(\hat{n} < n\), so (cf. Fact 3.2 with \(z := 1.5n + \gamma f(\hat{n})\))
\[
E(1.5n + \gamma f(\hat{n})) \leq 1.5 \cdot 4gn/s + \gamma f(4gn/s) + [1.5n + \gamma f(n)]4e^{-2g^2/s}.
\]
Since \(4gn/s \leq \delta f(n)\), \(f\) is increasing, and \(f(n) = \phi(n)n\) above, we get
\[
EC_{\hat{n}} \leq 6gn/s + \gamma f(\delta f(n)) + [1.5 + \gamma \phi(n)]4ne^{-2g^2/s}.
\]
(4.11)

Add the costs (4.9), (4.10) and (4.11) to get
\[
C_{nk} \leq 3s - 1.5 + 2\gamma f(s) + n + \min \{k, n-k\} - s + 2gn/s + 2ne^{-2g^2/s} + 6gn/s + \gamma f(\delta f(n)) + [1.5 + \gamma \phi(n)]4ne^{-2g^2/s}
\]
\[
\leq n + \min \{k, n-k\} + \left[2s + 8gn/s + 8ne^{-2g^2/s}\right] + \left[2f(s) + f(\delta f(n)) + 4ne^{-2g^2/s}\phi(n)\right].
\]
(4.12a)

(4.12b)

By (4.3)–(4.6), the bracketed term in (4.12a) is at most 0 \(\gamma f(n)\) due to (4.3), and that in (4.12b) is at most \(0.95f(n)\) from (4.7); thus (4.2) holds as required. \(\square\)

We now indicate briefly how to adapt the preceding proof to several variations on (4.1); choices similar to (4.13) and (4.17) are used in [Meh00] and [FlR75a], respectively.

Remarks 4.2. (a) Theorem 4.1 holds for the following modification of (4.1):
\[
s := \min \{\lceil\alpha f(n)\rceil, n-1\} \text{ and } g := (\beta s \ln \theta s)^{1/2} \text{ with } f(n) := n^{2/3} \ln^{1/3} n,
\]
(4.13)

provided that \(\beta \geq 1/4\), where \(\theta > 0\). Indeed, the analogue of (4.3) (cf. (4.1), (4.13))
\[
 gn/s = (\beta/\alpha)^{1/2}f(n)(\ln \theta s/\ln n)^{1/2} \leq (\beta/\alpha)^{1/2}f(n)(\ln \theta s/\ln n)^{1/2}
\]
(4.14)

works like (4.3) for large \(n\) (since \(\lim_{n \to \infty} \ln \theta s/\ln n = 2/3\)), whereas replacing (4.6) by
\[
 ne^{-2g^2/s} = n(\ln s)^{-2/3} \leq f(n)(\alpha \theta)^{-2/3}n^{(1-4\beta)/3} \ln^{-(1+4\beta)/3} n,
\]
(4.15)

we may replace \(\tilde{n}^{1/3-2\beta} \leq (\alpha \theta)^{-2/3}\tilde{n}^{(1-4\beta)/3}\) in (4.7)–(4.8).

(b) Theorem 4.1 holds for the following modification of (4.1):
\[
s := \min \{\lceil\alpha f(n)\rceil, n-1\} \text{ and } g := (\beta s \ln \epsilon t n)^{1/2} \text{ with } f(n) := n^{2/3} \ln^{\epsilon t/3} n,
\]
(4.16)

provided either \(\epsilon _t = 1\) and \(\beta \geq 1/6\), or \(\epsilon _t > 1\). Indeed, since (4.16) = (4.1) for \(\epsilon _t = 1\), suppose \(\epsilon _t > 1\). Clearly, (4.3)–(4.3) hold with \(\phi(t) := f(t)/t\). For \(\beta \geq 1/6\) and \(n\) large enough, we have \(g^2/s = \beta \ln \epsilon t n \geq \beta \ln n\); hence, replacing \(2\beta / 2\beta\) and \(\ln^{-1/3}\) by \(\ln^{-\epsilon t/3}\) in (4.6)–(4.8), we may use the proof of Thm 4.1.

(c) Theorem 4.1 remains true if we use \(\beta \geq 1/6\),
\[
s := \min \{\lceil\alpha n^{2/3}\rceil, n-1\}, \text{ } g := (\beta s \ln n)^{1/2} \text{ and } f(n) := n^{2/3} \ln^{1/2} n.
\]
(4.17)

Again (4.3)–(4.3) hold with \(\phi(t) := f(t)/t\), and \(\ln^{-1/2}\) replaces \(\ln^{-1/3}\) in (4.6)–(4.8).

(d) None of these choices gives \(f(n)\) better than that in (4.1) for the bound (4.2).
4.2 Reischuk’s samples

For positive constants α and β, consider using

$$s := \min \{ \lceil \alpha n^{\epsilon_s} \rceil, n - 1 \} \quad \text{and} \quad g := (\beta s n^\epsilon)^{1/2} \quad \text{with} \quad (4.18a)$$

$$\eta := \max \{ 1 + (\epsilon - \epsilon_s)/2, \epsilon_s \} < 1 \quad \text{for some fixed} \ 0 < \epsilon < \epsilon_s. \quad (4.18b)$$

Theorem 4.3. Let C_{nk} denote the expected number of comparisons made by SELECT for s and g chosen as in (4.18). There exists a positive constant γ_η such that for all $k \leq n$

$$C_{nk} \leq n + \min \{ k, n - k \} + \gamma_\eta f_\eta(n) \quad \text{with} \quad f_\eta(n) := n^\eta. \quad (4.19)$$

Proof. The function $f_\eta(t) := t^\eta$ grows to ∞ on $(0, \infty)$, whereas $\phi_\eta(t) := f_\eta(t)/t = t^{\eta-1}$ decreases to 0, so f_η and ϕ_η may replace f and ϕ in the proof of Thm 4.1. Indeed, picking $\bar{n} \geq 1$ such that $\bar{\alpha} n^{\epsilon_s} \leq \bar{n} - 1$, for $n \geq \bar{n}$ we may use $s = \bar{\alpha} n^{\epsilon_s} \leq \bar{\alpha} f_\eta(n)$ with $\alpha \leq \bar{\alpha} \leq \bar{\alpha} := 1 + 1/\bar{n}^{\epsilon_s}$ to get analogues (4.13)–(4.14) and the following analogue of (4.3)

$$gn/s = (\bar{\beta}/\bar{\alpha})^{1/2}n^{1+(-\epsilon_s)/2} \leq (\beta/\alpha)^{1/2} f_\eta(n). \quad (4.20)$$

Since $g^2/s = \beta n^\epsilon$ by (4.18), and $te^{-2\beta n}/tn^\eta$ decreases to 0 for $t \geq t_\eta := \left(\frac{1 - \eta}{2 \beta}\right)^{1/\epsilon}$, we may replace (4.16) by

$$ne^{-2g^2/s} = ne^{-2\beta n^\epsilon} \leq \bar{n}^{1-\eta}e^{-2\beta n^\epsilon} f_\eta(n) \quad \forall n \geq \bar{n} \geq t_\eta. \quad (4.21)$$

Hence, with $\bar{n}^{1-\eta}e^{-2\beta n^\epsilon}$ replacing $\bar{n}^{1/2-\beta n^\epsilon} \ln^{-1/3} \bar{n}$ in (4.7)–(4.8), the proof goes through. \[\square\]

Remarks 4.4. (a) For a fixed $\epsilon \in (0, 1)$, minimizing η in (4.18) yields the optimal sample size parameter

$$\epsilon_s := (2 + \epsilon)/3, \quad (4.22)$$

with $\eta = \epsilon_s > 2/3$ and $f_\eta(n) = n^{(2+\epsilon)/3}$; note that if $s = \alpha n^{\epsilon_s}$ in (4.18), then $g = (\alpha \beta)^{1/2} n^{\epsilon_s}$ with $\epsilon_g := (1 + 2\epsilon)/3$. To compare the bounds (4.2) and (4.19) for this optimal choice, let $\Phi_\epsilon(t) := (t^\epsilon/\ln t)^{1/3}$, so that $\Phi_\epsilon(t) = f_\eta(t)/f(t) = \phi_\eta(t)/\phi(t)$. Since $\lim_{n \to \infty} \Phi_\epsilon(n) = \infty$, the choice (4.1) is asymptotically superior to (4.18). However, $\Phi_\epsilon(n)$ grows quite slowly, and $\Phi_\epsilon(n) < 1$ even for fairly large n when ϵ is small (cf. Tab. 4.2). On the other hand, for small ϵ and $\beta = 1$, the probability bound $e^{-2g^2/s} = e^{-2n^\epsilon}$ of (4.18) is weak relative to $e^{-2g^2/s} = n^{-2}$ ensured by (4.1).

(b) Consider using $s := \min \{ \lceil \alpha n^{\epsilon_s} \rceil, n - 1 \}$ and $g := \beta^{1/2} n^{\epsilon_s}$ with $\epsilon_s, \epsilon_g \in (0, 1)$ such that $\epsilon := 2\epsilon_g - \epsilon_s > 0$ and $\eta := \max \{ 1 + \epsilon_g - \epsilon_s, \epsilon_s \} < 1$. Theorem 4.3 covers this choice. Indeed, the equality $1 + \epsilon_g - \epsilon_s = 1 + (\epsilon - \epsilon_s)/2$ shows that (4.18b) and (4.20) remain valid, and we have the following analogue of (4.21)

$$ne^{-2g^2/s} \leq \bar{n}^{1-\eta}e^{-2(\beta/\alpha) n^\epsilon} f_\eta(n) \quad \forall n \geq \bar{n} \geq \left[(1 - \eta)\bar{\alpha}/(2 \beta \epsilon)\right]^{1/\epsilon}, \quad (4.23)$$

so compatible modifications of (4.7)–(4.8) suffice for the rest of the proof. Note that $\eta \geq (2 + \epsilon)/3$ by (a); for the choice $\epsilon_s = 1/2$, $\epsilon_g = 7/16$ of [Rei85], $\epsilon = 3/8$ and $\eta = 15/16$.

9
Since the sampling efficiency decreases when X shrinks, consider the following modification. For a fixed cut-off parameter $n_{\text{cut}} \geq 1$, let $s\text{Select}(X, k)$ be a “small-select” routine that finds the kth smallest element of X in at most $C_{\text{cut}} < \infty$ comparisons when $|X| \leq n_{\text{cut}}$ (even bubble sort will do). Then SELECT is modified to start with the following

Step 0 (Small file case). If $n := |X| \leq n_{\text{cut}}$, return $s\text{Select}(X, k)$.

Our preceding results remain valid for this modification. In fact it suffices if C_{cut} bounds the expected number of comparisons of $s\text{Select}(X, k)$ for $n \leq n_{\text{cut}}$. For instance, (4.2) holds for $n \leq n_{\text{cut}}$ and $\gamma \geq C_{\text{cut}}$, and by induction as in Rem. 2.2(c) we have $C_{nk} < \infty$ for all n, which suffices for the proof of Thm 4.1.

Another advantage is that even small n_{cut} (1000 say) limits nicely the stack space for recursion. Specifically, the tail recursion of Step 7 is easily eliminated (set $X := \hat{X}$, $k := \hat{k}$ and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach n_{cut}. For example, for the choice of 4.1 with $\alpha = 1$ and $n_{\text{cut}} = 600$, at most four recursive levels occur for $n \leq 2^{31} \approx 2.15 \cdot 10^9$.

5 Analysis of nonrecursive versions

Consider a nonrecursive version of SELECT in which Steps 3 and 7, instead of SELECT, employ a linear-time routine (e.g., Pick [BFP 72]) that finds the ith smallest of m elements in at most γ_pm comparisons for some constant $\gamma_p > 2$.

Theorem 5.1. Let c_{nk} denote the number of comparisons made by the nonrecursive version of SELECT for a given choice of s and g. Suppose $s < n - 1$.

(a) For the choice of 4.1 with $f(n) := n^{2/3} \ln^{1/3} n$, we have

$$p[c_{nk} \leq n + \min\{k, n-k\} + \hat{\gamma}_p f(n)] \geq 1 - 4n^{-2/3} \quad \text{with} \quad (5.1a)$$

$$\hat{\gamma}_p := (4\gamma_p + 2)(\beta/\alpha)^{1/2} + (2\gamma_p - 1)\lfloor \alpha + 1/f(n) \rfloor, \quad (5.1b)$$

also with $f(n)$ in (5.1b) replaced by $f(3) > 2$ (since $n \geq 3$). Moreover, if $\beta \geq 1/6$, then

$$E c_{nk} \leq n + \min\{k, n-k\} + (\hat{\gamma}_p + 4\gamma_p + 2) f(n). \quad (5.2)$$

(b) For the choice of 4.13, if $\theta s \leq n$, then (5.1a) holds with $n^{-2/3}$ replaced by $(\alpha \theta)^{-2/3} n^{-4/3} \ln^{-2/3} n$. Moreover, if $\beta \geq 1/4$, then (5.2) holds with $4\gamma_p + 2$ replaced by $(4\gamma_p + 2)(\alpha \theta)^{-2/3}$.
(c) For the choice of (4.18), (5.1) holds with \(f(n) \) replaced by \(f_\eta(n) := n^1 + n^{-2/3} \) by \(e^{-2^{3n^\eta}} \). Moreover, if \(n^{1-n^{-2/3}} \leq 1 \), then (5.2) holds with \(f \) replaced by \(f_\eta \).

Proof. The cost \(c_{nk} \) of Steps 3, 4 and 7 is at most \(2\gamma_P s + c + \gamma_P \hat{n} \). By Cor. 3.6 the event \(C := \{ c \leq \bar{c}, \hat{n} < 4gn/s \} \) has probability \(P[C] \geq 1 - 4e^{-2g^2/s} \). If \(C \) occurs, then

\[
c_{nk} \leq n + \min\{k, n - k\} - s + 2gn/s + 2\gamma_P s + \gamma_P [4gn/s]
\leq n + \min\{k, n - k\} + (4\gamma_P + 2) gn/s + (2\gamma_P - 1) s.
\]

(5.3)

Similarly, since \(E_{c_{nk}} \leq 2\gamma_P s + E_c + \gamma_P \hat{E}n \), Lems. 3.4 3.5 yield

\[
E_{c_{nk}} \leq n + \min\{k, n - k\} + (4\gamma_P + 2) gn/s + (2\gamma_P - 1) s + (4\gamma_P + 2) ne^{-2g^2/s}.
\]

(5.4)

(a) Since \(e^{-2g^2/s} = n^{-2\beta} \), \(s = [\alpha f(n)] \leq \bar{\alpha} f(n) \) from \(s < n - 1 \) and (4.3), and \(gn/s \) is bounded by (4.5), (5.3) implies (5.1). Then (5.2) follows from (4.6) and (5.4).

(b) Proceed as for (a), using (4.13) instead of (4.3) and (4.6).

(c) Argue as for (a), using the proof of Thm 4.3 in particular (4.12)–(4.21).

Corollary 5.2. The nonrecursive version of Select requires \(n + \min\{k, n - k\} + o(n) \) comparisons with probability at least \(1 - 4n^{-2/3} \) for the choice of (1.1), at least \(1 - 4(\alpha \theta)^{-2/3} n^{-4\beta/3} \) for the choice of (1.3), and at least \(1 - 4e^{-23n^{\eta}} \) for the choice of (1.18).

Remarks 5.3. (a) Suppose Steps 3 and 7 simply sort \(S \) and \(\hat{X} \) by any algorithm that takes at most \(\gamma_S(s \ln s + \hat{n} \ln \hat{n}) \) comparisons for a constant \(\gamma_S \). This cost is at most \((s + \hat{n})\gamma_S \ln n \), because \(s, \hat{n} < n \), so we may replace \(2\gamma_P \) by \(\gamma_S \ln n \) and \(4\gamma_P \) by \(4\gamma_S \ln n \) in (5.3)–(5.4), and hence in (5.1)–(5.2). For the choice of (1.1), this yields

\[
P \left[c_{nk} \leq n + \min\{k, n - k\} + \hat{\gamma}_S f(n) \ln n \right] \geq 1 - 4n^{-2\beta} \quad \text{with (5.5a)}
\]

\[
\hat{\gamma}_S := (4\gamma_S + 2\ln^{-1} n)(\beta/\alpha)^{1/2} + (\gamma_S - \ln^{-1} n)[\alpha + 1/f(n)],
\]\n
(5.5b)

\[
E_{c_{nk}} \leq n + \min\{k, n - k\} + (\hat{\gamma}_S + 4\gamma_S + 2\ln^{-1} n) f(n) \ln n,
\]

(5.6)

where \(\ln^{-1} n \) may be replaced by \(\ln^{-1} 3 \), and (5.6) still needs \(\beta \geq 1/6 \); for the choices (4.13) and (4.18), we may modify (5.5)–(5.6) as in Thm 5.1(b,c). Corollary 5.2 remains valid.

(b) The bound (5.2) holds if Steps 3 and 7 employ a routine (e.g., Find [Hoa61, AHU74 §3.7]) for which the expected number of comparisons to find the \(i \)th smallest of \(m \) elements is at most \(\gamma_P m \) (then \(E_{c_{nk}} \leq 2\gamma_P s + E_c + \gamma_P \hat{E}n \) is bounded as before).

(c) Suppose Step 6 returns to Step 1 if \(\hat{n} \geq 4gn/s \). By Cor. 3.8 such loops are finite wp 1, and don’t occur with high probability, for \(n \) large enough.

(d) Our results improve upon [GeS03, Thm 1], which only gives an estimate like (5.1a), but with \(4n^{-2\beta} \) replaced by \(O(n^{1-2\beta/3}) \), a much weaker bound. Further, the approach of [GeS03] is restricted to distinct elements.

We now comment briefly on the possible use of sampling with replacement.
Remarks 5.4. (a) Suppose Step 2 of SELECT employs sampling with replacement. Since the tail bound (3.1) remains valid for the binomial distribution [Chv79, Hoe63], Lemma 3.3 is not affected. However, when Step 4 no longer skips comparisons with the elements of \(S \), \(-s\) in (3.3) and (4.10) is replaced by 0 (cf. the proof of Lem. 3.4), 2\(s\) in (4.12a) by 3\(s\) and 2\(\bar{a}\) in (4.18) by 3\(\bar{a}\). Similarly, adding \(s \) to the right sides of (5.3)–(5.4) boils down to omitting \(-1\) in (5.15) and \(-\ln^{-1} n\) in (5.51). Hence the preceding results remain valid.

(b) Of course, sampling with replacement needs additional storage for \(S \). This is inconvenient for the recursive version, but tolerable for the nonrecursive ones because the sample sizes are relatively small (hence (3.3) with \(-s\) omitted is not too bad).

(c) Our results improve upon [MoR95, Thm 3.5], corresponding to (4.18) with \(\epsilon = 1/4 \) and \(\beta = 1 \), where the probability bound \(1 - O(n^{-1/4}) \) is weaker than our \(1 - 4e^{-2n^{1/4}} \), sampling is done with replacement and the elements are distinct.

(d) Our results subsume [Meh00, Thm 2], which gives an estimate like (5.2) for the choice (4.13) with \(\beta = 1 \), using quickselect (cf. Rem. 5.3(b)) and sampling with replacement in the case of distinct elements.

6 Ternary and quintary partitioning

In this section we discuss ways of implementing SELECT when the input set is given as an array \(x[1:n] \). We need the following notation to describe its operations in more detail.

Each stage works with a segment \(x[l:r] \) of the input array \(x[1:n] \), where \(1 \leq l \leq r \leq n \) are such that \(x_i < x_l \) for \(i = 1:l-1 \), \(x_r < x_i \) for \(i = r+1:n \), and the \(k \)th smallest element of \(x[1:n] \) is the \((k-l+1)\)th smallest element of \(x[l:r] \). The task of SELECT is extended: given \(x[l:r] \) and \(l \leq k \leq r \), SELECT\((x, l, r, k, k_-, k_+) \) permutes \(x[l:r] \) and finds \(l \leq k_- \leq k \leq k_+ \leq r \) such that \(x_i < x_k \) for all \(l \leq i < k_- \), \(x_i = x_k \) for all \(k_- \leq i \leq k_+ \), \(x_i > x_k \) for all \(k_+ < i \leq r \). The initial call is SELECT\((x, 1, n, k, k_-, k_+) \).

A vector swap denoted by \(x[a:b] \leftrightarrow x[b+1:c] \) means that the first \(d := \min(b+1-a, c-b) \) elements of array \(x[a:c] \) are exchanged with its last \(d \) elements in arbitrary order if \(d > 0 \); e.g., we may exchange \(x_{a+i} \leftrightarrow x_{c-i} \) for \(0 \leq i < d \), or \(x_{a+i} \leftrightarrow x_{c-d+1+i} \) for \(0 \leq i < d \).

6.1 Ternary partitions

For a given pivot \(v := x_k \) from the array \(x[l:r] \), the following ternary scheme partitions the array into three blocks, with \(x_m < v \) for \(l \leq m < a \), \(x_m = v \) for \(a \leq m \leq d \), \(x_m > v \) for \(d < m \leq r \). The basic idea is to work with the five inner parts of the array

\[
\begin{array}{ccccccc}
\text{x < v} & \text{x = v} & \text{x > v} & \text{?} & \text{x > v} & \text{x = v} & \text{x > v} \\
\text{l} & \text{l} & \text{p} & \text{i} & \text{j} & \text{q} & \text{r}
\end{array}
\tag{6.1}
\]

until the middle part is empty or just contains an element equal to the pivot

\[
\begin{array}{ccccccc}
\text{x = v} & \text{x < v} & \text{x = v} & \text{x > v} & \text{x = v} & \text{x < v} & \text{x = v} \\
\text{l} & \text{p} & \text{j} & \text{i} & \text{q} & \text{l}
\end{array}
\tag{6.2}
\]
(i.e., \(j = i - 1 \) or \(j = i - 2 \)), then swap the ends into the middle for the final arrangement
\[
\begin{array}{c|c|c|c}
 x < v & x = v & x > v \\
 \hline
 l & a & d \\
 \hline
 r & \bar{r} & \bar{v}
\end{array}
\] (6.3)

A1. [Initialize.] Set \(v := x_k \) and exchange \(x_i \leftrightarrow x_k \). Set \(i := \bar{l} := l \), \(p := l + 1 \), \(q := r - 1 \) and \(j := \bar{r} := r \). If \(v < x_r \), set \(\bar{r} := q \). If \(v > x_r \), exchange \(x_i \leftrightarrow x_r \) and set \(\bar{l} := p \).

A2. [Increase \(i \) until \(x_i \geq v \).] Increase \(i \) by 1; then if \(x_i < v \), repeat this step.

A3. [Decrease \(j \) until \(x_j \leq v \).] Decrease \(j \) by 1; then if \(x_j > v \), repeat this step.

A4. [Exchange.] (Here \(x_j \leq v \leq x_i \).) If \(i < j \), exchange \(x_i \leftrightarrow x_j \); then if \(x_i = v \), exchange \(x_i \leftrightarrow x_p \) and increase \(p \) by 1; if \(x_j = v \), exchange \(x_j \leftrightarrow x_q \) and decrease \(q \) by 1; return to A2. If \(i = j \) (so that \(x_i = x_j = v \)), increase \(i \) by 1 and decrease \(j \) by 1.

A5. [Cleanup.] Set \(a := \bar{l} + j - p + 1 \) and \(d := \bar{r} - q + i - 1 \). Exchange \(x[l: p - 1] \leftrightarrow x[p: j] \) and \(x[i: q] \leftrightarrow x[q + 1: \bar{r}] \).

Step A1 ensures that \(x_i \leq v \leq x_r \), so steps A2 and A3 don’t need to test whether \(i \leq j \); thus their loops can run faster than those in the schemes of [BeM93, Prog. 6] and [Knu97, Ex. 5.2.2–41] (which do need such tests, since, e.g., there may be no element \(x_i > v \)).

6.2 Preparing for quintary partitions

At Step 1, \(r - l + 1 \) replaces \(n \) in finding \(s \) and \(g \). At Step 2, it is convenient to place the sample in the initial part of \(x[l: r] \) by exchanging \(x_i \leftrightarrow x_{i+r+\text{rand}(r-i)} \) for \(l \leq i \leq s := l+s-1 \), where \(\text{rand}(r-i) \) denotes a random integer, uniformly distributed between 0 and \(r-i \).

Step 3 uses \(k_u := \max \{ [l-1+is/m-g], l \} \) and \(k_v := \min \{ [l-1+is/m+g], r_s \} \) with \(i := k-l+1 \) and \(m := r-l+1 \) for the recursive calls. If \(\text{SELECT}(x, l, r_s, k_u, k_u^+, k_v^-) \) returns \(k_u^+ \geq k_v \), we have \(v := u := x_{k_u} \), so we only set \(k_v^- := k_v, k_u^+ := k_u^+ \) and reset \(k_u^+ := k_v - 1 \). Otherwise the second call \(\text{SELECT}(x, k_u^+, 1, r_s, k_v^-, k_v^+) \) produces \(v := x_{k_v} \).

After \(u \) and \(v \) have been found, our array looks as follows
\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
 x < u & x = u & u < x < v & x = v & x > v & ? \\
 \hline
 l & k_u^- & k_u^+ & k_v^- & k_v^+ & r & r_s & r
\end{array}
\] (6.4)

Setting \(\bar{l} := k_u^-, \bar{p} := k_u^+ + 1, \bar{r} := r - r_s + k_u^+, \bar{q} := \bar{r} - k_v^+ + k_v^- - 1 \), we exchange \(x[k_v^- + 1: r_s] \leftrightarrow x[r_s + 1: \bar{r}] \) and then
\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
 x < u & x = u & u < x < v & ? & x = v & x > v \\
 \hline
 l & \bar{l} & \bar{p} & k_v^- & \bar{q} & \bar{r} & r
\end{array}
\] (6.5)

The third part above is missing precisely when \(u = v \); in this case (6.5) reduces to (6.1) with initial \(p := \bar{p}, q := \bar{q}, i := p - 1 \) and \(j := q + 1 \). Hence the case of \(u = v \) is handled via the ternary partitioning scheme of [6.4] with step A1 omitted.
6.3 Quintary partitions

For the case of $k < \lfloor (r + l)/2 \rfloor$ and $u < v$, Step 4 may use the following quintary scheme to partition $x[l:r]$ into five blocks, with $x_m < u$ for $l \leq m < a$, $x_m = u$ for $a \leq m < b$, $u < x_m < v$ for $b \leq m \leq c$, $x_m = v$ for $c < m \leq d$, $x_m > v$ for $d < m \leq r$. The basic idea is to work with the six-part array stemming from \[(6.5)\]
\[
\begin{array}{cccccc}
 x = u & u < x < v & x < u & ? & x > v & x = v \\
 l & p & i & j & q & r
\end{array}
\]
\[
\text{ until } i \text{ and } j \text{ cross}
\]
\[
\begin{array}{cccccc}
 x = u & u < x < v & x < u & x > v & x = v \\
 l & p & i & j & q & r
\end{array}
\]
we may then swap the second part with the third one to bring it into the middle
\[
\begin{array}{cccccc}
 x = u & x < u & u < x < v & x > v & x = v \\
 l & p & b & c & i & q & r
\end{array}
\]
and finally swap the extreme parts with their neighbors to get the desired arrangement
\[
\begin{array}{cccccc}
 x < u & x = u & u < x < v & x = v & x > v \\
 l & a & b & c & d & r
\end{array}
\]

B1. [Initialize.] Set $p := k_v^-$, $q := \bar{q}$, $i := p - 1$ and $j := q + 1$.

B2. [Increase i until $x_i \geq v$.] Increase i by 1. If $x_i \geq v$, go to B3. If $x_i < u$, repeat this step. (At this point, $u \leq x_i < v$.) If $x_i > u$, exchange $x_i \leftrightarrow x_p$; otherwise exchange $x_i \leftrightarrow x_p$ and $x_p \leftrightarrow x_{p+1}$ and increase p by 1. Increase p by 1 and repeat this step.

B3. [Decrease j until $x_j < v$.] Decrease j by 1. If $x_j > v$, repeat this step. If $x_j = v$, exchange $x_j \leftrightarrow x_{q+1}$; decrease q by 1 and repeat this step.

B4. [Exchange.] If $i \geq j$, go to B5. Exchange $x_i \leftrightarrow x_j$. If $x_i > u$, exchange $x_i \leftrightarrow x_p$ and increase p by 1; otherwise if $x_i = u$, exchange $x_i \leftrightarrow x_p$ and $x_p \leftrightarrow x_{p+1}$ and increase p by 1. If $x_j = v$, exchange $x_j \leftrightarrow x_q$ and decrease q by 1. Return to B2.

B5. [Cleanup.] Set $a := \bar{l} + i - p$, $b := a + \bar{p} - \bar{l}$, $d := \bar{r} - q + j$ and $c := d - \bar{r} + q$. Swap $x[\bar{l}:p-1] \leftrightarrow x[p:j]$, $x[l+:\bar{p}-1] \leftrightarrow x[\bar{p}:b-1]$, and finally $x[i:q] \leftrightarrow x[q+1:r]$.

For the case of $k \geq \lfloor (r + l)/2 \rfloor$ and $u < v$, Step 4 may use the following quintary scheme, which is a symmetric version of the preceding one obtained by replacing \[(6.5)\]–\[(6.8)\] with
\[
\begin{array}{cccccc}
 x = u & x < u & ? & x > v & u < x < v & x = v \\
 l & p & i & j & q & r
\end{array}
\]
\[
\begin{array}{cccccc}
 x = u & x < u & x > v & u < x < v & x = v \\
 l & p & j & i & q & r
\end{array}
\]
\[
\begin{array}{cccccc}
 x = u & x < u & u < x < v & x > v & x = v \\
 l & p & j & b & c & q & r
\end{array}
\]
C1. [Initialize.] Set $p := \bar{p}$, $q := \bar{q} - k_v^{-} + k_u^{+} + 1$, $i := p - 1$ and $j := q + 1$, and swap $x[p; k_v^{-} - 1] \leftrightarrow x[k_u^{+}; \bar{q}]$.

C2. [Increase i until $x_i > u$.] Increase i by 1. If $x_i < u$, repeat this step. If $x_i = u$, exchange $x_i \leftrightarrow x_p$, increase p by 1 and repeat this step.

C3. [Decrease j until $x_j \leq u$.] Decrease j by 1. If $x_j \leq u$, go to C4. If $x_j > v$, repeat this step. (At this point, $u < x_j \leq v$.) If $x_j < v$, exchange $x_j \leftrightarrow x_q$; otherwise exchange $x_j \leftrightarrow x_q$ and $x_q \leftrightarrow x_q$ and decrease \bar{q} by 1. Decrease q by 1 and repeat this step.

C4. [Exchange.] If $i \geq j$, go to C5. Exchange $x_i \leftrightarrow x_j$. If $x_i = u$, exchange $x_i \leftrightarrow x_p$ and increase p by 1. If $x_j < v$, exchange $x_j \leftrightarrow x_q$ and decrease q by 1; otherwise if $x_j = v$, exchange $x_j \leftrightarrow x_q$ and $x_q \leftrightarrow x_q$ and decrease \bar{q} and q by 1. Return to C2.

C5. [Cleanup.] Set $a := \bar{l} + i - p$, $b := a + p - \bar{l}$, $d := \bar{r} - q + j$ and $c := d - \bar{r} + \bar{q}$. Swap $x[l; p - 1] \leftrightarrow x[p; j]$, $x[i; q] \leftrightarrow x[q + 1; \bar{q}]$ and finally $x[c + 1; \bar{q}] \leftrightarrow x[\bar{q} + 1; \bar{r}]$.

To make (6.3) and (6.9) compatible, the ternary scheme may set $b := d + 1$, $c := a - 1$. After partitioning l and r are updated by setting $l := b$ if $a \leq k$, then $l := d + 1$ if $c < k$; $r := c$ if $k \leq d$, then $r := a - 1$ if $k < b$. If $l \geq r$, SELECT may return $k_{-} := k_{+} := k$ if $l = r$, $k_{-} := r + 1$ and $k_{+} := l - 1$ if $l > r$. Otherwise, instead of calling SELECT recursively, Step 6 may jump back to Step 1, or Step 0 if sSelect is used (cf. §4.3).

A simple version of sSelect is obtained if Steps 2 and 3 choose $u := v := x_k$ when $r - l + 1 \leq n_{\text{cut}}$ (this choice of [FlR75a] works well in practice, but more sophisticated pivots could be tried); then the ternary partitioning code can be used by sSelect as well.

7 Experimental results

7.1 Implemented algorithms

An implementation of SELECT was programmed in Fortran 77 and run on a notebook PC (Pentium 4M 2 GHz, 768 MB RAM) under MS Windows XP. The input set X was specified as a double precision array. For efficiency, the recursion was removed and small arrays with $n \leq n_{\text{cut}}$ were handled as if Steps 2 and 3 chose $u := v := x_k$; the resulting version of sSelect (cf. §§4.3 and 6.3) typically required less than $3.5n$ comparisons. The choice of (4.1) was employed, with the parameters $\alpha = 0.5$, $\beta = 0.25$ and $n_{\text{cut}} = 600$ as proposed in [FlR75a]; future work should test other sample sizes and parameters.

For comparisons we developed a Fortran 77 implementation of the riSELECT algorithm of [Val00]. Briefly, riSELECT behaves like quickselect using the median of the first, middle and last elements, these elements being exchanged with randomly chosen ones only if the file doesn’t shrink sufficiently fast. To ensure $O(n)$ time in the worst case, riSELECT may switch to the algorithm of [BFP+72], but this never happened in our experiments.

7.2 Testing examples

We used minor modifications of the input sequences of [Val00], defined as follows:

random A random permutation of the integers 1 through n.
onezero A random permutation of $\lceil n/2 \rceil$ ones and $\lfloor n/2 \rfloor$ zeros.

sorted The integers 1 through n in increasing order.

rotated A sorted sequence rotated left once; i.e., $(2, 3, \ldots, n, 1)$.

organpipe The integers $(1, 2, \ldots, n/2, n/2, \ldots, 2, 1)$.

m3killer Musser’s “median-of-3 killer” sequence with $n = 4j$ and $k = n/2$:

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & \ldots & k - 2 & k - 1 & k & k + 1 & \ldots & 2k - 2 & 2k - 1 & 2k \\
1 & k + 1 & 3 & k + 3 & \ldots & 2k - 3 & k - 1 & 2 & 4 & \ldots & 2k - 2 & 2k - 1 & 2k
\end{pmatrix}.
$$

twofaced Obtained by randomly permuting the elements of an m3killer sequence in positions $4\lfloor \log_2 n \rfloor$ through $n/2 - 1$ and $n/2 + 4\lfloor \log_2 n \rfloor - 1$ through $n - 2$.

For each input sequence, its (lower) median element was selected for $k := \lceil n/2 \rceil$.

These input sequences were designed to test the performance of selection algorithms under a range of conditions. In particular, the onezero sequences represent inputs containing many duplicates [Sed77]. The rotated and organpipe sequences are difficult for many implementations of quickselect. The m3killer and twofaced sequences are hard for implementations with median-of-3 pivots (their original versions [Mus97] were modified to become difficult when the middle element comes from position k instead of $k + 1$).

7.3 Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and twofaced sequences, for each input size, 20 instances were randomly generated; for the deterministic sequences, 20 runs were made to measure the solution time.

The performance of SELECT on randomly generated inputs is summarized in Table 7.1, where the average, maximum and minimum solution times are in milliseconds, and the comparison counts are in multiples of n; e.g., column six gives C_{avg}/n, where C_{avg} is the average number of comparisons made over all instances. Thus $\gamma_{\text{avg}} := (C_{\text{avg}} - 1.5n)/f(n)$ estimates the constant γ in the bound (4.2); moreover, we have $C_{\text{avg}} \approx 1.5L_{\text{avg}}$, where L_{avg} is the average sum of sizes of partitioned arrays. Further, P_{avg} is the average number of SELECT partitions, whereas N_{avg} is the average number of calls to sSelect and p_{avg} is the average number of sSelect partitions per call; both P_{avg} and N_{avg} grow slowly with $\ln n$.

Finally, s_{avg} is the average sum of sample sizes; $s_{\text{avg}}/f(n)$ drops from 0.68 for $n = 50K$ to 0.56 for $n = 16M$ on the random and twofaced inputs, and from 0.57 to 0.52 on the onezero inputs, whereas the initial $s/f(n) \approx \alpha = 0.5$. The average solution times grow linearly with n (except for small inputs whose solution times couldn’t be measured accurately), and the differences between maximum and minimum times are fairly small (and also partly due to the operating system). Except for the smallest inputs, the maximum and minimum numbers of comparisons are quite close, and C_{avg} nicely approaches the theoretical lower bound of $1.5n$; this is reflected in the values of γ_{avg}. Note that the results for the random and twofaced sequences are almost identical, whereas the onezero inputs only highlight the efficiency of our partitioning.
Table 7.1: Performance of Select on randomly generated inputs.

Sequence	Size												
		n	Time [msec]	Comparisons [n]	γ_avg	L_avg	P_avg	N_avg	p_avg	s_avg			
			avg	max	min	avg	max	min	[n]	[ln n]	[ln n]	[%n]	
random	50K	3	10	0	1.81	1.85	1.77	5.23	1.22	0.46	1.01	7.62	4.11
	100K	4	10	0	1.72	1.76	1.65	4.50	1.15	0.45	0.99	8.05	3.20
	500K	13	20	10	1.62	1.63	1.60	4.14	1.08	0.59	1.27	7.59	1.86
	1M	24	30	20	1.59	1.60	1.57	3.93	1.06	0.64	1.35	8.18	1.47
	2M	46	50	40	1.57	1.58	1.56	3.73	1.04	0.76	1.59	7.67	1.16
	4M	86	91	80	1.56	1.56	1.55	3.61	1.03	0.94	1.94	7.21	0.91
	8M	163	171	160	1.54	1.55	1.54	3.45	1.03	0.98	1.99	7.45	0.72
	16M	316	321	310	1.53	1.54	1.53	3.44	1.02	0.99	2.02	7.55	0.57
onezero	50K	2	10	0	1.51	1.52	1.50	0.24	1.02	0.28	0.27	1.17	3.41
	100K	3	10	0	1.51	1.51	1.50	0.23	1.01	0.26	0.25	1.14	2.72
	500K	15	20	10	1.51	1.51	1.51	0.26	1.01	0.23	0.23	1.17	1.61
	1M	29	31	20	1.51	1.51	1.51	0.26	1.01	0.22	0.22	1.20	1.29
	2M	52	60	50	1.51	1.51	1.50	0.26	1.01	0.28	0.27	1.14	1.03
	4M	110	111	110	1.50	1.50	1.50	0.26	1.00	0.33	0.26	1.16	0.83
	8M	214	221	210	1.50	1.50	1.50	0.26	1.00	0.38	0.25	1.11	0.66
	16M	426	431	420	1.50	1.50	1.50	0.26	1.00	0.36	0.24	1.11	0.53
twofaced	50K	1	10	0	1.80	1.85	1.74	4.99	1.21	0.46	1.01	7.53	4.11
	100K	3	10	0	1.73	1.76	1.69	4.67	1.16	0.43	0.96	8.23	3.20
	500K	13	21	10	1.62	1.63	1.61	4.07	1.08	0.61	1.30	7.85	1.87
	1M	24	31	20	1.59	1.60	1.58	3.82	1.06	0.67	1.40	7.86	1.47
	2M	46	51	40	1.57	1.58	1.56	3.66	1.04	0.75	1.58	7.98	1.16
	4M	86	91	80	1.56	1.56	1.55	3.60	1.03	0.95	1.96	7.36	0.92
	8M	164	171	160	1.54	1.55	1.54	3.48	1.03	0.96	1.98	7.48	0.72
	16M	319	321	311	1.53	1.54	1.53	3.38	1.02	1.00	2.06	7.74	0.57

Table 7.2 exhibits similar features of Select on the deterministic inputs. The results for the sorted and rotated sequences are almost the same, whereas the solution times on the organpipe and m3killer sequences are between those for the sorted and random sequences.

The performance of riSelect on the same inputs is described in Tables 7.3 and 7.4, where \(N_{\text{rnd}} \) denotes the average number of randomization steps. On the random sequences, the expected value of \(C_{\text{avg}} \) is of order 2.75n [KMP97], but Table 7.3 exhibits significant fluctuations in the numbers of comparisons made. The results for the onezero sequences confirm that binary partitioning may handle equal keys quite efficiently [Sed77]. The results for the twofaced, rotated, organpipe and m3killer inputs are quite good, since some versions of quickselect may behave very poorly on these inputs [Val00] (note that we used the “sorted-median” partitioning variant as suggested in [Val00]). Finally, the median-of-3 strategy employed by riSelect really shines on the sorted inputs.

As always, limited testing doesn’t warrant firm conclusions, but a comparison of Select and riSelect is in order, especially for the random sequences, which are most frequently used in theory and practice for evaluating sorting and selection algorithms. On the random inputs, the ratio of the expected numbers of comparisons for riSelect and Select is asymptotically 2.75/1.5 \(\approx 1.83 \); incidentally, the ratio of their computing times approaches 553/316 \(\approx 1.75 \) (cf. Tabs. 7.1 and 7.3). Note that Select isn’t just asymp-
Table 7.2: Performance of SELECT on deterministic inputs.

| Sequence | Size n | Time [msec] | Comparisons [n] | γ_avg | L_avg | P_avg | N_avg | p_avg | σ_{avg} | \%
|----------|--------|-------------|-----------------|-------|-------|-------|-------|-------|-------|
| | avg max| min | avg max min | | | | | | |
| sorted | | | | | | | | | |
| 50K | 2 10 | 0 | 1.80 1.88 1.71 | 4.92 | 1.21 | 0.44 | 0.98 | 7.80 | 4.08 |
| 100K | 2 10 | 0 | 1.73 1.76 1.71 | 4.76 | 1.16 | 0.44 | 0.97 | 7.83 | 3.21 |
| 500K | 9 11 | 0 | 1.62 1.63 1.61 | 4.09 | 1.08 | 0.60 | 1.27 | 7.91 | 1.86 |
| 1M | 14 20 | 11 | 1.60 1.61 1.58 | 4.02 | 1.06 | 0.63 | 1.34 | 8.05 | 1.46 |
| 2M | 25 30 | 20 | 1.57 1.58 1.57 | 3.75 | 1.04 | 0.77 | 1.60 | 7.46 | 1.16 |
| 4M | 47 51 | 40 | 1.56 1.56 1.55 | 3.59 | 1.03 | 0.95 | 1.95 | 7.45 | 0.91 |
| 8M | 86 91 | 80 | 1.54 1.55 1.53 | 3.50 | 1.03 | 0.99 | 2.03 | 7.55 | 0.72 |
| 16M | 160 161| 160 | 1.53 1.54 1.53 | 3.37 | 1.02 | 1.00 | 2.04 | 7.65 | 0.57 |
| rotated | | | | | | | | | |
| 50K | 2 10 | 0 | 1.80 1.91 1.71 | 4.99 | 1.21 | 0.44 | 0.98 | 7.90 | 4.08 |
| 100K | 2 10 | 0 | 1.74 1.76 1.70 | 4.83 | 1.16 | 0.44 | 0.96 | 7.91 | 3.21 |
| 500K | 8 10 | 0 | 1.62 1.63 1.61 | 4.09 | 1.08 | 0.60 | 1.28 | 8.01 | 1.86 |
| 1M | 14 20 | 10 | 1.60 1.60 1.59 | 4.03 | 1.06 | 0.64 | 1.35 | 8.14 | 1.47 |
| 2M | 25 30 | 20 | 1.57 1.58 1.56 | 3.74 | 1.04 | 0.76 | 1.59 | 7.54 | 1.16 |
| 4M | 48 60 | 40 | 1.56 1.56 1.55 | 3.59 | 1.03 | 0.94 | 1.93 | 7.26 | 0.91 |
| 8M | 84 90 | 80 | 1.54 1.55 1.53 | 3.47 | 1.03 | 0.99 | 2.02 | 7.43 | 0.72 |
| 16M | 161 161| 160 | 1.53 1.54 1.53 | 3.35 | 1.02 | 1.00 | 2.04 | 7.61 | 0.57 |
| organpipe| | | | | | | | | |
| 50K | 1 10 | 0 | 1.80 1.84 1.70 | 5.04 | 1.21 | 0.46 | 1.01 | 7.59 | 4.11 |
| 100K | 2 11 | 0 | 1.74 1.76 1.71 | 4.88 | 1.16 | 0.45 | 0.98 | 8.03 | 3.22 |
| 500K | 8 10 | 0 | 1.62 1.63 1.60 | 4.04 | 1.08 | 0.62 | 1.32 | 7.75 | 1.87 |
| 1M | 16 20 | 10 | 1.59 1.60 1.57 | 3.87 | 1.06 | 0.66 | 1.39 | 7.72 | 1.47 |
| 2M | 30 40 | 20 | 1.57 1.58 1.56 | 3.69 | 1.04 | 0.74 | 1.56 | 7.66 | 1.16 |
| 4M | 54 60 | 50 | 1.56 1.56 1.55 | 3.57 | 1.03 | 0.97 | 1.99 | 7.22 | 0.92 |
| 8M | 101 110| 100 | 1.55 1.55 1.54 | 3.58 | 1.03 | 0.97 | 1.99 | 7.38 | 0.72 |
| 16M | 194 201| 190 | 1.53 1.54 1.53 | 3.39 | 1.02 | 0.99 | 2.02 | 7.68 | 0.57 |
| m3killer | | | | | | | | | |
| 50K | 2 11 | 0 | 1.84 2.27 1.76 | 5.61 | 1.23 | 0.47 | 1.04 | 7.69 | 4.21 |
| 100K | 3 10 | 0 | 1.74 1.77 1.70 | 4.83 | 1.16 | 0.44 | 0.97 | 7.79 | 3.21 |
| 500K | 9 10 | 0 | 1.63 1.64 1.61 | 4.24 | 1.08 | 0.58 | 1.23 | 7.79 | 1.86 |
| 1M | 18 20 | 10 | 1.59 1.60 1.58 | 3.92 | 1.06 | 0.67 | 1.40 | 7.87 | 1.47 |
| 2M | 32 40 | 30 | 1.57 1.58 1.56 | 3.67 | 1.04 | 0.75 | 1.57 | 7.85 | 1.16 |
| 4M | 57 61 | 50 | 1.56 1.56 1.55 | 3.64 | 1.03 | 0.96 | 1.96 | 7.33 | 0.92 |
| 8M | 107 111| 100 | 1.54 1.55 1.54 | 3.51 | 1.03 | 0.96 | 1.97 | 7.39 | 0.72 |
| 16M | 204 221| 200 | 1.53 1.54 1.53 | 3.37 | 1.02 | 0.97 | 1.98 | 7.64 | 0.57 |

Totally faster; in fact riSelect is about 40% slower even on middle-sized inputs. A slow-down of up to 19% is observed on the onezero sequences. The performance gains of SELECT over riSelect are much more pronounced on the remaining inputs, except for the sorted sequences on which SELECT may be twice slower. (However, the sorted input is quite special: increasing \(k \) by 1 (for the upper median) doubled the solution times of riSelect without influencing those of SELECT; e.g., for \(n = 16M \) the respective times were 169 and 158). Note that, relative to riSelect, the solution times and comparison counts of SELECT are much more stable across all the inputs. This feature may be important in applications.

Acknowledgment. I would like to thank Olgierd Hryniewicz, Roger Koenker, Ronald L. Rivest and John D. Valois for useful discussions.
Table 7.3: Performance of riSelect on randomly generated inputs.

Sequence	Size	Time [msec]	Comparisons [n]	L_{avg}	P_{avg}	N_{rnd}				
	n	avg	max	min	avg	max	min	[ln n]	[n]	
random	50K	2	10	0	3.10	4.32	1.88	3.10	1.63	0.45
	100K	4	10	0	2.61	4.19	1.77	2.61	1.60	0.20
	500K	17	20	10	2.91	4.45	1.69	2.91	1.57	0.25
	1M	33	41	20	2.81	3.79	1.84	2.81	1.57	0.40
	2M	62	90	40	2.60	3.57	1.83	2.60	1.61	0.35
	4M	135	191	90	2.86	4.38	1.83	2.86	1.65	0.55
	8M	249	321	190	2.60	3.48	1.80	2.60	1.58	0.40
	16M	553	762	331	2.99	4.49	1.73	2.99	1.58	0.40
onezero	50K	1	10	0	2.73	3.22	2.68	2.73	1.73	0.00
	100K	3	10	0	2.72	2.88	2.68	2.72	1.80	0.00
	500K	15	20	10	2.74	2.88	2.68	2.74	1.82	0.40
	1M	31	41	30	2.72	2.85	2.68	2.72	1.84	0.55
	2M	62	70	60	2.71	2.99	2.68	2.71	1.82	0.75
	4M	126	131	120	2.73	2.85	2.68	2.73	1.85	1.00
	8M	251	261	240	2.72	2.88	2.68	2.72	1.87	1.00
	16M	505	521	491	2.72	2.85	2.68	2.72	1.85	0.95
twofaced	50K	2	10	0	7.77	8.84	6.88	7.77	1.99	1.25
	100K	8	10	0	7.76	9.63	6.65	7.76	2.07	1.30
	500K	29	40	20	7.59	9.09	6.69	7.59	1.91	1.10
	1M	58	70	50	7.50	9.19	6.63	7.50	1.95	1.30
	2M	123	141	110	8.07	9.05	7.26	8.07	2.04	1.45
	4M	232	281	200	7.64	8.86	6.79	7.64	1.93	1.25
	8M	458	530	401	7.62	8.54	6.96	7.62	1.93	1.35
	16M	905	1132	771	7.56	9.10	6.79	7.56	1.94	1.30

References

[AHU74] A. V. Aho, J. E. Hopcroft and J. D. Ullman, *The Design and Analysis of Computer Algorithms*, Addison-Wesley, Reading, MA, 1974.

[BeM93] J. L. Bentley and M. D. McIlroy, *Engineering a sort function*, Software–Practice and Experience 23 (1993) 1249–1265.

[BFP+72] M. R. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest and R. E. Tarjan, *Time bounds for selection*, J. Comput. System Sci. 7 (1972) 448–461.

[Chv79] V. Chvátal, *The tail of the hypergeometric distribution*, Discrete Math. 25 (1979) 285–287.

[CuM89] W. Cunto and J. I. Munro, *Average case selection*, J. of the ACM 36 (1989) 270–279.

[DHUZ01] D. Dor, J. Hästad, S. Ulfberg and U. Zwick, *On lower bounds for selecting the median*, SIAM J. Discrete Math. 14 (2001) 299–311.

[DoZ99] D. Dor and U. Zwick, *Selecting the median*, SIAM J. Comput. 28 (1999) 1722–1758.

[DoZ01] D. Dor and U. Zwick, *Median selection requires (2 + ε)N comparisons*, SIAM J. Discrete Math. 14 (2001) 312–325.

[FlR75a] R. W. Floyd and R. L. Rivest, *The algorithm SELECT—for finding the i-th smallest of n elements (Algorithm 489)*, Comm. ACM 18 (1975) 173.

[FlR75b] R. W. Floyd and R. L. Rivest, *Expected time bounds for selection*, Comm. ACM 18 (1975) 165–172.

[GeS03] A. V. Gerbessiotis and C. J. Siniolakis, *Randomized selection in n + C + o(n) comparisons*, Information Proc. Letters 88 (2003) 95–100.
Table 7.4: Performance of riSELECT on deterministic inputs.

Sequence	Size	Time [msec]	Comparisons [n]	Lavg [ln n]	Pavg [n]	Nrand				
	n	avg	max	min	avg	max	min	avg	max	min
sorted	50K	1	10	0	1.00	1.00	1.00	1.00	0.09	0.00
	100K	1	10	0	1.00	1.00	1.00	1.00	0.09	0.00
	500K	4	10	0	1.00	1.00	1.00	1.00	0.08	0.00
	1M	7	11	0	1.00	1.00	1.00	1.00	0.07	0.00
	2M	10	10	10	1.00	1.00	1.00	1.00	0.07	0.00
	4M	22	30	20	1.00	1.00	1.00	1.00	0.07	0.00
	8M	43	51	40	1.00	1.00	1.00	1.00	0.06	0.00
	16M	85	91	80	1.00	1.00	1.00	1.00	0.06	0.00
rotated	50K	1	10	0	3.99	4.04	3.94	3.98	2.32	1.60
	100K	2	10	0	3.99	4.03	3.94	3.99	2.28	1.70
	500K	10	10	10	3.99	4.05	3.95	3.99	2.38	2.15
	1M	20	20	20	3.98	4.03	3.96	3.98	2.33	2.10
	2M	41	50	40	3.99	4.05	3.94	3.98	2.36	2.20
	4M	83	90	80	3.98	4.04	3.96	3.98	2.42	2.70
	8M	167	171	160	3.99	4.02	3.95	3.99	2.35	2.65
	16M	336	341	330	3.98	4.02	3.94	3.98	2.37	2.65
organpipe	50K	1	10	0	8.40	9.46	7.00	8.40	2.70	2.95
	100K	6	10	0	8.60	11.04	7.35	8.60	2.61	3.20
	500K	28	40	10	8.51	11.24	6.96	8.51	2.76	3.70
	1M	54	71	40	8.60	10.62	7.56	8.60	2.87	4.30
	2M	109	131	90	8.75	10.72	7.69	8.75	2.71	3.95
	4M	222	260	180	8.94	10.67	7.54	8.94	2.88	4.60
	8M	419	501	361	8.47	10.22	7.44	8.47	2.82	4.55
	16M	862	1172	741	8.71	11.61	7.70	8.71	2.90	5.35
m3killer	50K	0	0	0	8.20	11.82	7.01	8.19	1.91	1.55
	100K	5	11	0	8.29	14.27	6.91	8.29	1.98	1.50
	500K	31	41	20	9.52	14.89	7.11	9.52	1.95	1.80
	1M	53	70	40	8.50	11.77	7.21	8.50	1.81	1.75
	2M	104	140	90	8.17	10.58	6.92	8.17	1.68	1.80
	4M	223	301	180	8.99	12.77	7.06	8.99	1.78	1.80
	8M	425	531	370	8.47	11.16	7.33	8.47	1.69	1.80
	16M	840	1082	751	8.31	11.03	7.41	8.31	1.69	1.85

[Grü99] R. Grübel, *On the median-of-k version of Hoare’s selection algorithm*, Theor. Inform. Appl. **33** (1999) 177–192.

[Hoa61] C. A. R. Hoare, *Algorithm 65: FIND*, Comm. ACM **4** (1961) 321–322.

[Hoe63] W. Hoeffding, *Probability inequalities for sums of bounded random variables*, J. Amer. Statist. Assoc. **58** (1963) 13–30.

[KMP97] P. Kirschenhofer, C. Martínez and H. Prodinger, *Analysis of Hoare’s FIND algorithm with median-of-three partition*, Random Structures and Algorithms **10** (1997) 143–156.

[Knu97] D. E. Knuth, *The Art of Computer Programming. Volume I: Fundamental Algorithms*, third ed., Addison-Wesley, Reading, MA, 1997.

[Knu98] ——, *The Art of Computer Programming. Volume III: Sorting and Searching*, second ed., Addison-Wesley, Reading, MA, 1998.
REFERENCES

[Kor78] V. S. Koroliuk, ed., *Handbook on Probability Theory and Mathematical Statistics*, Naukova Dumka, Kiev, 1978 (Russian).

[MaR01] C. Martínez and S. Roura, *Optimal sampling strategies in quicksort and quickselect*, SIAM J. Comput. 31 (2001) 683–705.

[Meh00] K. Mehlhorn, *Foundations of Data Structures and Algorithms: Selection*, Lecture notes, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 2000. Available at the URL http://www.mpi-sb.mpg.de/~mehlhorn/Informatik5.html

[MoR95] R. Motwani and P. Raghavan, *Randomized Algorithms*, Cambridge University Press, Cambridge, England, 1995.

[Mus97] D. R. Musser, *Introspective sorting and selection algorithms*, Software–Practice and Experience 27 (1997) 983–993.

[PRKT83] J. T. Postmus, A. H. G. Rinnooy Kan and G. T. Timmer, *An efficient dynamic selection method*, Comm. ACM 26 (1983) 878–881.

[Rei85] R. Reischuk, *Probabilistic parallel algorithms for sorting and selection*, SIAM J. Comput. 14 (1985) 396–409.

[Sed77] R. Sedgewick, *Quicksort with equal keys*, SIAM J. Comput. 6 (1977) 240–287.

[SPP76] A. Schönhage, M. Paterson and N. Pippenger, *Finding the median*, J. Comput. System Sci. 13 (1976) 184–199.

[Val00] J. D. Valois, *Introspective sorting and selection revisited*, Software–Practice and Experience 30 (2000) 617–638.