Erythropoiesis-stimulating agent slows the progression of chronic kidney disease: a possibility of a direct action of erythropoietin

Kazuhiko Tsuruya, Hisako Yoshida, Takaichi Suehiro, Kiichiro Fujisaki, Kosuke Masutani and Takanari Kitazono

Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

ABSTRACT
Background Controversy exists regarding the renoprotective effect of erythropoiesis-stimulating agent (ESA) in progressive chronic kidney disease (CKD) with renal anemia. In this study, we examined whether ESA therapy has a renoprotective effect in progressive CKD.

Methods The subjects in this retrospective observational study were 68 non-dialysis dependent CKD patients with renal anemia. We compared the progression rate (PR), defined by the slope of the linear regression line of estimated glomerular filtration rate, measured during 6 months just before and after the start of ESA therapy. We also investigated the factors affecting renoprotective efficacy of ESA therapy against the progression of CKD.

Results Median (interquartile range) PR decreased significantly from 6.2 (3.7–12.7) to 4.0 (0.3 to 7.3) mL/min/1.73 m²/year after the start of ESA therapy. Blood pressure levels and rate of medication with renin-angiotensin system inhibitors were comparable between the two periods. Next, we investigated the factors affecting renoprotective efficacy of ESA therapy against the progression of CKD. Thirty patients were good renal responders, defined as those with the ratio of post-/pre-PR of ≥0.5 and the difference of pre- minus post-PR ≥5.0 mL/min/1.73 m²/year, and 38 patients were poor renal responders who did not meet the definition of good renal responders. Multivariable logistic regression analysis showed that weekly ESA dose, but not increase in hemoglobin level, was a significant and independent determinant of the renoprotective effect of ESA.

Conclusion ESA therapy slows the progression of CKD and part of the effect might be attributed to the direct renoprotective action of ESA.

ARTICLE HISTORY
Received 19 September 2015
Revised 13 December 2015
Accepted 20 December 2015
Published online 28 January 2016

KEYWORDS
Benefits beyond anemia correction; erythropoiesis-stimulating agent; progression rate; renal anemia; renoprotection

Introduction
Chronic kidney disease (CKD) is characterized by progressive kidney damage and impaired kidney function. When CKD progresses to end-stage renal disease (ESRD), chronic dialysis or a kidney transplant is required to sustain life. Anemia is a common complication of CKD that may begin in the early stages of the disease and becomes more common and severe with deterioration of renal function, and has been proposed as one of the major factors that contribute to the progression of CKD.1,2 Erythropoiesis-stimulating agent (ESA) has been reported to have an organ-protective effect in several organs such as kidney, heart, and brain, through the improvement of anemia and/or its own direct cytoprotective action.3 With regard to the renal system, several clinical trials have demonstrated the inhibitory effect of ESA against the progression of CKD. For example, Kuriyama et al.4 reported a renoprotective effect of ESA in patients with predialysis CKD, and Gouva et al.5 also showed in a randomized controlled trial (RCT) that treatment of anemia in CKD patients could slow the decline in renal function in 88 non-diabetic predialysis CKD patients. Similarly in diabetic CKD, post-hoc analysis of the RENAAL study data6 demonstrated that a higher hemoglobin level was associated with a slower rate of progression of diabetic nephropathy.

On the other hand, two large studies, the CREATE study7 and CHOIR study,8 did not detect any renoprotective effects for anemia correction to the levels of healthy individuals. Subsequently, more strong evidence that endorses the conclusions of these two studies was published from the TREAT study.9 The study confirmed that patients treated with active ESA required fewer blood transfusions and suffered less fatigue, however, the same treatment failed to reduce mortality, cardiovascular morbidity, and halt progression to ESRD. Whereas in
Japan, Tsubakihara et al." randomly divided 321 patients with CKD not on dialysis with serum creatinine (sCr) > 2 mg/dL and hemoglobin <10 g/dL into two hemoglobin target groups; 11.0–13.0 g/dL by treatment with darbepoetin alfa, and 9.0–11.0 g/dL with epoetin alfa, and compared the composite renal endpoint defined as initiation of renal replacement therapy, doubling of sCr, renal transplantation, or death. The renal survival rate estimated by Kaplan–Meier tended to be higher in the high hemoglobin target arm, albeit insignificantly.

The present study tested the hypothesis that ESA therapy ameliorates the progression of CKD. To test this hypothesis, we compared the progression rate (PR) of CKD before and after ESA therapy. The results showed a renoprotective effect of ESA in patients with progressive CKD.

Methods

Recruitment of patients

We recruited 68 Japanese patients with progressive CKD and renal anemia in whom administration of ESA [subcutaneous injection of epoetin α to 38 patients (56%) and epoetin β to 30 patients (44%)] was started between January 2005 and October 2008 and whose clinical data including sCr and hemoglobin concentration were available at least once bimonthly for 6 months just before and the subsequent 6 months after the start of ESA therapy.

The indication to start ESA therapy in this study was when the hemoglobin level was less than 10 g/dL in several test results following a diagnosis of renal anemia. Target hemoglobin level was 10 g/dL or higher, which is lower than the target hemoglobin level (11 g/dL or higher) recommended by Japanese Society for Dialysis Therapy guidelines for renal anemia. Target hemoglobin level was 10 g/dL or higher, which is lower than the target hemoglobin level (11 g/dL or higher) recommended by Japanese Society for Dialysis Therapy guidelines for renal anemia in CKD, because this guideline had not been published when the recruited patients received ESA therapy.

Tables 1 and 2 list the clinical profiles and various parameters measured at the initiation of ESA therapy. Both sexes were equally recruited and patients with diabetic nephropathy as an original disease formed 25% of the recruited patients. The mean (SD) age was 62 (15) years and most (90%) patients were being treated with renin-angiotensin system (RAS) inhibitor. The mean (SD) sCr and hemoglobin were 3.9 (1.7) mg/dL and 8.9 (0.8) g/dL, respectively, and the median (interquartile range; IQR) estimated glomerular filtration ratio (eGFR) was 12.6 (9.2–18.2) mL/min/1.73 m², indicating that the subjects in the present study were in a relatively advanced state of CKD and renal anemia.

Study design and definition of CKD progression rate

We compared the PR measured during 6 months just before and after the start of ESA therapy. The sCr level was measured in all samples by the enzymatic method. The eGFR was calculated using the following equation:

\[eGFR (\text{mL/min/1.73m}^2) = 194 \times S \text{Cr}^{-1.094} \times A e^{-0.287} (0.739, \text{if female}) \]

PR (mL/min/1.73 m²/year) was defined as the rate of deterioration of eGFR. Pre-PR and post-PR were calculated from the slope of the regression line during 6 months just before and after the start of ESA therapy, respectively. We also investigated the factors affecting renoprotective efficacy of ESA therapy against the progression of CKD.

The study protocol was approved by the local ethics committee of Kyushu University Hospital (No. 25-300)

| Table 1. Clinical profile at the start of ESA therapy (N = 68). |
|-----------------|-----------------|
| Male/female, n | 34/34 |
| Age, years | 62 ± 15 |
| Original kidney disease (DM/non-DM), n | 17/51 |
| Chronic glomerulonephritis, n (%) | 23 (34) |
| Diabetic nephropathy, n (%) | 17 (25) |
| Nephrosclerosis, n (%) | 13 (19) |
| Polycystic kidney disease, n (%) | 3 (4) |
| Others, n (%) | 12 (18) |
| Blood pressure | |
| Systolic blood pressure, mmHg | 137 ± 16 |
| Diastolic blood pressure, mmHg | 72 ± 11 |
| Treatment with RAS inhibitors, n (%) | 61 (90) |
| Treatment with ARB, n (%) | 50 (74) |
| Treatment with ACE inhibitor, n (%) | 13 (19) |
| Data are mean ± SD or number (percentage) of patients. ESA, erythropoiesis-stimulating agent; DM, diabetes mellitus; RAS, renin-angiotensin system; ARB, angiotensin II receptor blocker; ACE, angiotensin I converting enzyme. |

| Table 2. Clinical parameters at the start of ESA therapy (N = 68). |
|-----------------|-----------------|
| Total protein, g/dL | 6.7 ± 0.8 |
| Albumin, g/dL | 3.9 (3.4–4.0) |
| Blood urea nitrogen, mg/dL | 57 ± 19 |
| Serum creatinine, mg/dL | 3.7 (2.6–4.9) |
| Uric acid, mg/dL | 7.3 ± 1.8 |
| Sodium, mEq/L | 141 ± 2 |
| Potassium, mEq/L | 5.0 ± 0.7 |
| Chloride, mEq/L | 110 ± 12 |
| Calcium, mg/dL | 8.5 ± 0.8 |
| Phosphate, mg/dL | 4.3 (3.8–4.9) |
| Total cholesterol, mg/dL | 174 (142–194) |
| Triglycerides, mg/dL | 112 (82–166) |
| Hemoglobin, g/dL | 8.9 ± 0.8 |
| Hematocrit (%) | 27.7 ± 2.5 |
| C-reactive protein, mg/dL | 0.11 (0.05–0.48) |
| Up/Ucr, g/gCr | 2.2 (0.8–4.3) |
| eGFR, mL/min/1.73 m² | 12.6 (9.2–18.2) |

Data are mean ± SD or median (interquartile range). ESA, erythropoiesis-stimulating agent; Up/Ucr, urinary protein/creatinine ratio; eGFR, estimated glomerular filtration rate.
and registered in the clinical trial registry (UMIN000013311). This study was performed according to the Ethics of Clinical Research (Declaration of Helsinki).

Evaluation of factors associated with the renoprotective response to ESA therapy

The renoprotective efficacy of ESA therapy was determined from the extent of PR change. Good renal responders represented patients with both pre-post difference (pre-PR minus post-PR) larger than 5 mL/min/1.73 m²/year and post/pre ratio of PR (post-PR/pre-RP) smaller than 0.5. The cutoff values represented the median values of pre-post difference and post/pre ratio of PR. The poor renal responders were defined as those who did not meet the definition of good renal responders.

Statistical analysis

Estimated GFR and PR between the baseline (before ESA) and after ESA therapy were compared by Wilcoxon’s signed rank test. Between good and poor renal responders, continuous variables were compared using Student’s t-test or the Mann–Whitney U test and categorical variables using the chi-square test or Fisher’s exact test according to the normality of the distribution of the data. A multivariable logistic regression analysis was applied to determine the factors associated with the renoprotective efficacy of ESA therapy. The proportion of good renal responders in the groups divided according to quartiles of the dose of ESA was compared using the Cochran–Armitage test. A Kaplan–Meier analysis with log-rank test was used to compare renal survival between the good and poor renal responders. Data are expressed as mean ± SD, median (IQR), or number (%). A p values less than 0.05 denoted the presence of a statistically significant difference.

Results

ESA therapy slows the PR of CKD

The median (IQR) ESA dose administered during 6 months was 2330 (1690–3190) U/week [40.4 (29.1–52.7) U/kg/week]. The median (IQR) eGFR decreased over time, being 16.2 (11.9–23.8), 12.6 (9.2–18.2), and 10.0 (6.8–14.4) before 6 months, at the start, and after 6 months of ESA therapy, respectively (Figure 1). The median (IQR) PR during 6 months decreased significantly from 6.2 (3.7–12.7) before ESA therapy to 4.0 (–0.3 to 7.3) mL/min/1.73 m²/year after ESA therapy (p < 0.0001, Figure 2). On the other hand, the mean blood pressure (137/72 vs. 138/71 mmHg) and percentage of patients treated with renin-angiotensin inhibitors (78% vs. 81%) were comparable between the two periods.

ESA dose as an independent factor associated with the renoprotective effect of ESA

The weekly dose of ESA was significantly larger in the good renal responders than the poor renal responders.
There were also significant differences in diastolic blood pressure, sCr, eGFR, and pre-PR between the two groups (Supplementary Tables S1 and S2). However, there was no difference in the amount of change in hemoglobin level between the high and poor renal responders (Supplementary Table S2). A multivariable logistic regression analysis identified the “weekly dose of ESA” as a significant and independent determinant of the renoprotective efficacy of ESA therapy, and the odds ratio for the effect of every 10 units/kg/week increase in ESA dose was 1.39 (Table 3).

Based on these results, the subjects were divided into quartile groups according to weekly dose of ESA (<29.1; 29.1–40.4; 40.4–52.7; >52.7 units/kg/week). The proportion of the good renal responders increased in accordance with higher weekly dose of ESA (Figure 3, p = 0.002).

Outcome

During the follow-up period (48.4 ± 16.7 months), 7 (10.3%) patients died and 2 (2.9%) patients developed stroke (annual incidences of death and stroke: 2.6% and 0.7%, respectively). Malignancies were detected in 7 (10.3%) patients, 4 (5.9%) of whom developed hepatocellular carcinoma and the remaining 3 (4.4%) had colonic cancer. There were no significant differences in these outcomes between good and poor renal responders, except for modest significant difference in development of colonic cancer between them, although the follow-up periods were significantly longer in good renal responders than in poor renal responders (Supplementary Table S3).

Discussion

The present study demonstrated a renoprotective effect of ESA therapy in patients with progressive CKD and the results suggested that the efficacy of ESA was due to the direct effect of ESA in addition to a indirect effect through improvement of anemia.

In CKD, anemia decreases the tissue oxygen partial pressure in the renal interstitium and accelerates interstitial damage due to “hypoxia”, which contributes to the progression of CKD as a final common pathway. Improvement of anemia by ESA therapy is associated with increased oxygen supply to the renal interstitium due to an increase in the oxygenized hemoglobin content and cardiac function, which in turn slows down the progression of CKD. In the point of view of this mechanism, a previous study reported by Kuriyama et al. represented the renoprotective effect due to improvement of anemia. A post-hoc analysis of the previously reported RCT by Tsubakihara et al. also demonstrated that achieving a higher target hemoglobin level with ESA is associated with a greater renoprotective effect in patients with stage 5 CKD. Likewise, in our study, mean hemoglobin level is significantly increased from 8.9 to 9.4 g/dL after 6 month of ESA therapy, thus, it is considered that one mechanism of renoprotective effect must be attributed to improvement of anemia.

In addition to the indirect action through improvement of anemia, the renoprotective effect of ESA was suggested due to the direct organ-protective property of ESA in the present study. Various studies have shown that ESA has an organ-protective effect independent of

Table 3. Multivariable logistic regression analysis for good renal responder to ESA therapy

Outcome	Odds ratio	95% CI	p
Weekly dose of ESA (10 U/kg/week)	1.39	1.05–1.97	0.019
Diastolic blood pressure (mmHg)	0.95	0.89–1.02	0.156
Hemoglobin (g/dL)	0.96	0.90–1.02	0.923
C-reactive protein (mg/dL)	1.75	0.90–4.45	0.113
Up/Ucr (g/gCr)	0.89	0.63–1.21	0.149
eGFR (mL/min/1.73 m²)	1.11	0.96–1.30	0.149
Pre-PR (ml/min/1.73 m²/year)	1.12	1.00–1.30	0.052

Good renal responder to ESA therapy was defined as the ratio of post-/pre-PR of <0.5 and the difference of pre- minus post-PR >5.0 mL/min/1.73 m²/year. ESA, erythropoiesis-stimulating agent; CI, confidential interval; Up/Ucr, urinary protein/creatinine ratio; eGFR, estimated glomerular filtration rate; pre-PR, progression rate during 6 months before ESA therapy.
anemia correction.14 Animal experiments have demonstrated recently that other types of erythropoietin (EPO) without erythropoiesis-stimulating activity, such as asialo-EPO and carbamylated EPO, have organ-protective effects on the central nervous system, heart, and kidney, indicating that EPO has direct actions independent of its erythropoietic function.15,16 These findings support our conclusion that EPO has a renoprotective property independently of anemia correction.

The exact mechanism of the direct renoprotective action of EPO is not clear at this stage, but several mechanisms are considered. The first possible mechanism is the inhibitory effect of EPO on apoptosis of renal tubular cells.17 The similar mechanism has also been reported in other kidney disease models, such as acute kidney injury induced by ischemia reperfusion injury18 and lipopolysaccharide,19 puromycin aminonucleoside-induced nephrotic syndrome,20 and streptozotocin-induced diabetic nephropathy.21 The second possible mechanism is the inhibitory effect of EPO on oxidative stress injury. EPO has been reported to have direct anti-oxidative action by exploiting intracellular anti-oxidative mechanisms such as heme oxygenase-1 and glutathione peroxidase, as well as indirect anti-oxidative action by inducing iron depletion and thereby inhibiting iron-dependent oxidative injury. Such mechanisms are suggested to be involved in the renoprotective effects of ESA in acute kidney injury and CKD.22,23 The third possible mechanism is the inhibitory effect of EPO on inflammation and fibrosis. Attenuation of interstitial inflammation and fibrosis by EPO therapy has been reported in the models of chronic cyclosporine nephropathy,24 ureteral obstruction,25–27 and Thy-1 glomerulonephritis.28

In addition, other mechanisms have been suggested to be involved in the direct renoprotective effect of EPO.29–31 Notably, darbepoetin therapy is reported to ameliorate podocyte injury and reduce proteinuria through a direct effect on podocytes.32 In the present study, no decrease in urinary protein/creatinine ratio was noted at 6 months after commencement of ESA therapy. These results make it difficult to consider that ESA made a direct effect on podocytes in our study. Instead, the efficacy could be due to some other protective action of ESA against tubulointerstitial damage in CKD, such as anti-apoptotic or anti-oxidative action.

In the CREATE, CHOIR, and TREAT studies, active ESA therapy did not show any renoprotective effect.7–9 However, the different results among these large-scale RCTs and the present study may be due to differences in clinical features and methodology. For example, the rates of cardiovascular co-morbidities, the target levels of hemoglobin, and dose of ESA were higher in these studies than ours; these factors might have unfavorable effect on the renoprotective actions of ESA.

The TREAT study9 showed almost 2-fold increased risk of stroke in the higher hemoglobin arm, whereas in the present study, the annual rate of stroke was only 0.8%. The favorable outcome in our study could be attributed to the relatively lower dosage of ESA used compared with the TREAT study. In fact, the results of a recent surveillance data published by Imai et al.33 reported no relationship between ESA therapy and stroke or cancer in Japanese patients. It is assumed that the relatively low maximum dose of ESA (24,000 units/month) approved by the Ministry of Health, Labor and Welfare in Japan, could have protected against the adverse effects of ESA, although this dose is thought to be too small to maintain hemoglobin level of 11 g/dL recommended by the guidelines for renal anemia in CKD in Japan.11

The present study has several limitations. First, this study was conducted by a retrospective chart review and does not have a randomly assigned control group. Second, the sample size is relatively small. Third, a period of evaluation of PR was short. Forth, data on iron metabolism were not available. Nevertheless, confirmation of the hypothesis is plausible because our data are consistent with the results of the previous two recent studies reported from Japan, including one large-scale epidemiological study34 and another RCT.9 In addition, renoprotective effect of high hemoglobin levels (12.9 g/dL) using higher dose of ESA (about 6000 units/week) has been demonstrated by a RCT which has been conducted in post-renal transplant recipients with renal dysfunction and anemia.35 The dose of ESA in this RCT is similar to the maximum dose used in our study and approved in Japan until the other day, while is much lower compared to the doses used in the higher hemoglobin target groups in the CREATE, CHOIR, and TREAT studies.

In conclusion, the present study demonstrated a renoprotective effect of ESA in patients with progressive CKD. These results suggest a possibility of a direct renoprotective action of ESA independent of improvement of anemia. Further studies are needed to elucidate the mechanism of the renoprotective effect of ESA.

Acknowledgments

We thank Dr. F.G. Issa (www.word-medex.com.au) for the careful reading and editing of the manuscript.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.
1. Iseki K, Ikemiya Y, Iseki C, Takishita S. Haematocrit and the risk of developing end-stage renal disease. *Nephrol Dial Transplant*. 2003;18:899–905.

2. Nangaku M. Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure. *J Am Soc Nephrol*. 2006;17:17–25.

3. Chatterjee PK. Pleiotropic renal actions of erythropoietin. *Lancet*. 2003;360:1890–1892.

4. Kuriyama S, Tomonari H, Yoshida H, Hashimoto T, Kawaguchi Y, Sakai O. Reversal of anemia by erythropoietin therapy retards the progression of chronic renal failure, especially in nondiabetic patients. *Nephron*. 1997;77:176–185.

5. Gouva C, Nikolopoulos P, Ioannidis JP, Siamopoulos KC. Treating anemia early in renal failure patients slows the decline of renal function: A randomized controlled trial. *Kidney Int*. 2004;66:753–760.

6. Mohanram A, Zhang Z, Shahinfar S, Keane WF, Brenner BM, Toto RD. Anemia and end-stage renal disease in patients with type 2 diabetes and nephropathy. *Kidney Int*. 2004;66:1131–1138.

7. Dru¨ eke TB, Locatelli F, Clyne N, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. *N Engl J Med*. 2006;355:2071–2084.

8. Singh AK, Szczech L, Tang KL, et al. Correction of anemia with epoetin alfa in chronic kidney disease. *N Engl J Med*. 2006;355:2085–2098.

9. Pfeffer MA, Burdmann EA, Chen CY, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. *N Engl J Med*. 2009;361:2019–2032.

10. Tsubakihara Y, Gejyo F, Nishi S, et al. High target hemoglobin with erythropoiesis-stimulating agents has advantages in the renal function of non-dialysis chronic kidney disease patients. *Ther Apher Dial*. 2012;16:529–540.

11. Tsubakihara Y, Nishi S, Akiba T, et al. 2008 Japanese Society for Dialysis Therapy: Guidelines for renal anemia in chronic kidney disease. *Ther Apher Dial*. 2010;14:240–275.

12. Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. *Am J Kidney Dis*. 2005;53:982–992.

13. Tsubakihara Y, Akizawa T, Iwasaki M, et al. High hemoglobin levels maintained by an erythropoiesis-stimulating agent improve renal survival in patients with severe renal impairment. *Ther Apher Dial*. 2015;19:457–465.

14. Bahlmann FH, Fliser D. Erythropoietin and renoprotection. *Curr Opin Nephrol Hypertens*. 2009;18:15–20.

15. Kitamura H, Isaka Y, Takabatake Y, et al. Nonerythropoietic derivative of erythropoietin protects against tubulointerstitial injury in a unilateral ureteral obstruction model. *Nephrol Dial Transplant*. 2008;23:1521–1528.

16. Yokomaku Y, Sugimoto T, Kume S, et al. Asialoerythropoietin prevents contrast-induced nephropathy. *J Am Soc Nephrol*. 2008;19:321–328.

17. Cassis P, Gallon L, Benigni A, et al. Erythropoietin, but not the correction of anemia alone, protects from chronic kidney allograft injury. *Kidney Int*. 2012;81:903–918.

18. Oba S, Suzuki E, Nishimatsu H, et al. Renoprotective effect of erythropoietin in ischemia/reperfusion injury: Possible roles of the Akt/endothelial nitric oxide synthase-dependent pathway. *Int J Urol*. 2012;19:248–255.

19. Coldewey SM, Khan AI, Kapoor A, et al. Erythropoietin attenuates acute kidney dysfunction in murine experimental sepsis by activation of the β-common receptor. *Kidney Int*. 2013;84:482–490.

20. Aizawa K, Takeda S, Tashiro Y, et al. Renoprotection by continuous erythropoietin receptor activator in puromycin aminonucleoside-induced nephrotic syndrome. *Am J Nephrol*. 2012;36:419–426.

21. Toba H, Sawai N, Morishita M, et al. Chronic treatment with recombinant human erythropoietin exerts renoprotective effects beyond hematopoiesis in streptozotocin-induced diabetic rats. *Eur J Pharmacol*. 2009;612:106–114.

22. Dang J, Jia R, Tu Y, Xiao S, Ding G. Erythropoietin prevents reactive oxygen species generation and renal tubular cell apoptosis at high glucose level. *Biomed Pharmacother*. 2010;64:681–685.

23. Katavetin P, Tungsanga K, Eiam-Ong S, Nangaku M. Antioxidative effects of erythropoietin. *Kidney Int Suppl*. 2007;107:S10–S15.

24. Lee SH, Li C, Lim SW, et al. Attenuation of interstitial inflammation and fibrosis by recombinant human erythropoietin in chronic cyclosporine nephropathy. *Am J Nephrol*. 2005;25:64–76.

25. Chang YK, Choi DE, Na KR, et al. Erythropoietin attenuates renal injury in an experimental model of rat unilateral ureteral obstruction via anti-inflammatory and anti-apoptotic effects. *J Urol*. 2009;181:1434–1443.

26. Srisawat N, Manotham K, Eiam-Ong S, Katavetin P, Praditpornsilpa K, Eiam-Ong S. Erythropoietin and its non-erythropoietic derivative: Do they ameliorate renal tubulointerstitial injury in ureteral obstruction? *Int J Urol*. 2008;15:1011–1017.

27. Park SH, Choi MJ, Song IK, et al. Erythropoietin decreases renal fibrosis in mice with ureteral obstruction: Role of inhibiting TGF-beta-induced epithelial-to-mesenchymal transition. *J Am Soc Nephrol*. 2007;18:1497–1507.

28. Aizawa K, Tashiro Y, Hirata M, Takeda S, Kawasaki R, Endo K. Renoprotective effect of epoetin beta pegol by the prevention of M2 macrophage recruitment in Thy-1 rats. *J Nephrol*. 2014;7:395–401.

29. Kang DH, Park EY, Yu ES, Lee YS, Yoon KL. Renoprotective effect of erythropoietin (EPO): Possibly via an amelioration of renal hypoxia with stimulation of angiogenesis in the kidney. *Kidney Int*. 2005;67:1683.

30. Bahlmann FH, DeGroot K, Duckert T, et al. Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. *Kidney Int*. 2003;64:1648–1652.

31. Bahlmann FH, Song R, Boehm SM, et al. Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. *Circulation*. 2004;110:1006–1012.

32. Eto N, Wada T, Inagi R, et al. Podocyte protection by darbepoetin: Preservation of the cytoskeleton and nephrin expression. *Kidney Int*. 2007;72:455–463.

33. Imai E, Yamamoto R, Suzuki H, Watanabe T. Incidence of symptomatic stroke and cancer in chronic kidney disease
patients treated with epoetins. Clin Exp Nephrol. 2010;14:445–452.

34. Furumatsu Y, Nagasawa Y, Hamano T, et al. Integrated therapies including erythropoietin decrease the incidence of dialysis: Lessons from mapping the incidence of end-stage renal disease in Japan. Nephrol Dial Transplant. 2008;23:984–990.

35. Choukroun G, Kamar N, Dussol B, et al. Correction of postkidney transplant anemia reduces progression of allograft nephropathy. J Am Soc Nephrol. 2012;23:360–368.