Characteristics of Water-soluble Inorganic Ions in Aerosol and Precipitation and their Scavenging Ratios in an Urban Environment in Southwest China

Chuanjie Lin¹, Tingting Huo¹, Fumo Yang², Bin Wang¹, Yang Chen³, Huanbo Wang¹*

¹ School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
² National Engineering Research Center for Flue Gas Desulfurization, Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
³ Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

ABSTRACT

Daily fine particulate matter (PM₂.₅) and precipitation samples were collected simultaneously at an urban site in southwest China in four segregated months in 2015 for measuring major water-soluble inorganic ions (WSIIs). Online hourly concentrations of PM₁₀ and PM₂.₅ were also monitored, which showed annual mean concentrations of 67.8 and 41.6 µg m⁻³, respectively. PM₂.₅ showed the highest concentration in winter and lowest in summer. The mean annual concentration of the total WSIIs was 20.3 µg m⁻³, accounting for about 48.7% of PM₂.₅. Among the total WSIIs in ambient PM₂.₅, SO₄²⁻ was the predominant component (49.7%), followed by NH₄⁺ (24.1%) and NO₃⁻ (21.4%). NH₄⁺ and SO₄²⁻ were the two most abundant ions in precipitation, followed by Ca²⁺ and NO₃⁻. Seasonal patterns of the major inorganic ions in precipitation were similar to those in PM₂.₅, with the highest concentration in winter and lowest in summer. The mean scavenging ratios were 454, 445, 364, 456, and 394 for SO₂⁻, NO₃⁻, NH₄⁺, Cl⁻, and K⁺, and 116, 353, and 18 for gas SO₂, HNO₃, and NH₃, respectively. The higher scavenging ratios of particulate ions than their gaseous precursors suggest the higher contributions of particles than gases to the total wet deposition.

Keywords: Wet scavenging, Water-soluble inorganic ions, PM₂.₅, Precipitation chemistry

1 INTRODUCTION

Wet scavenging efficiently removes particulate matter and their gaseous precursors from the atmosphere (Wang et al., 2018a). In-cloud (rainout) and below-cloud (washout) scavenging are the two components of wet scavenging processes for air pollutants. For particulate matter, rainout and washout mechanisms are different, with rainout involving mostly nucleation of aerosols (acting as cloud condensation nuclei) and to a much less extent impaction scavenging, whereas washout involving mainly impaction scavenging (collected by falling raindrops) (Zhang and Vet, 2006). For gases, dissolution in liquid water droplets is the mechanism for both rainout and washout processes. The relative contributions of rainout and washout to the total wet deposition could be estimated based on the sequential precipitation sampling measurements (Aikawa and Hiraki, 2009). For example, using this method, Xu et al. (2017) estimated that washout contributed about 56%, 61%, and 47% to total wet scavenging of SO₂⁻, NO₃⁻, and NH₄⁺, respectively, in Beijing, and Ge et al. (2016) obtained 88%, 92%, and 84% in Dalian and 56%, 50%, and 46% in Dandong in North China. Furthermore, washout accounted for about two-thirds of total wet scavenging for NO₃⁻ and half for SO₂⁻ in Japan using the same method (Aikawa et al., 2014; Kajino and Aikawa, 2015).
Scavenging ratio (W), defined as the ratio of a pollutant concentration in precipitation to that in air, can be a useful indicator for wet scavenging efficiency (Engelmann, 1971). This parameter depends on the physical and chemical characteristics of both particles and precipitation, and can vary by up to two orders of magnitude with different chemical species. Budhavant et al. (2020) estimated the scavenging ratios of ten major chemical species in PM$_{10}$ over the Northern Indian Ocean, and obtained values of less than 50 for black carbon and up to 3000 for Cl$^-$ and NO$_3^-$. Cheng and Zhang (2017) investigated the scavenging ratios of eight inorganic ions at 13 monitoring sites across Canada and obtained values varying by a factor of up to 6, with larger values for chemical species with higher fractions in coarse particles, e.g., Ca$^{2+}$ and NO$_3^-$. The important role that below-cloud scavenging plays on ambient aerosol concentration under different rain conditions has also been demonstrated by field experiments and numerical studies (Zhang et al., 2004; Gao et al., 2019; Lu et al., 2019; Luan et al., 2019).

Due to the strong dependence of scavenging ratio on the characteristics of particles and precipitation, existing database are subject of large uncertainties. Scavenging ratio obtained from parallel measurements of ambient particulate matter and precipitation chemistry over long sampling periods may reduce such uncertainties. Furthermore, it is even more complicated for wet-scavenged chemical species involving both particulate- and gaseous-phase pollutants in air, such as SO$_2^{2-}$, NO$_3^-$, and NH$_4^+$. Kasper-Giebl et al. (1999) estimated that 89–96%, 4–12%, and 49–79% of SO$_2^{2-}$, NO$_3^-$, and NH$_4^+$ in precipitation were from the scavenging of their ambient particulate-phase ions, respectively, with the rest from the gaseous pollutants (SO$_2$, HNO$_3$, and NH$_3$). Similarly, Cheng and Zhang (2017) suggested that HNO$_3$ dominated the particulate NO$_3^-$ in wet scavenging with a percentage contribution of about 72%, whereas the contributions from particulate SO$_2^{2-}$ and NH$_4^+$ were greater than the corresponding gas SO$_2$ and NH$_3$, with an average percentage contribution of 63% and 70%, respectively. Comprehensive investigation on the relative contributions from gases and particles to the total wet deposition may improve the wet scavenging models of SO$_2^{2-}$, NO$_3^-$, and NH$_4^+$, and consequently reduce the uncertainties in prediction of particle concentrations during precipitation periods.

Wanzhou is a small urban city, situated in southwest China. The climate in Wanzhou is characterized by high relative humidity, extremely low wind speeds all year round, and abundant rainfall with annual precipitation of about 1200 mm. Thus, wet scavenging is expected to play an important role in removing pollutants from the atmosphere. Previous studies have focused on the dry and wet deposition fluxes of nitrogen or other pollutants in southwest China (Wang et al., 2016; Wang et al., 2018a), but provided no information on the wet scavenging processes or scavenging ratios of water-soluble inorganic ions. The present study aims to fill this knowledge gap by simultaneously measuring PM$_{2.5}$ and precipitation chemistry in different seasons of a year. The main objectives are to (1) investigate the dynamic characteristics of PM$_{2.5}$ and PM$_{10}$ during rainfall processes, (2) characterize major water-soluble inorganic ions in PM$_{2.5}$ and precipitation, and (3) estimate the scavenging ratios of major inorganic ions and gaseous precursors as well as their relative contributions.

2 METHODS

2.1 Sampling and Chemical Analysis

PM$_{2.5}$ and precipitation samples were collected in parallel in Wanzhou. The sampling site is located on the roof of a building inside the Chongqing Three Gorges University (108°13'E, 30°48'N), about 28 m above the ground, which is influenced by local vehicular emission and point sources (Wang et al., 2016). 23-h PM$_{2.5}$ samples were collected by an air pollutant sampler (URG Corp., URG-3000K, North Carolina, USA) from 11:00 a.m. to 10:00 a.m. the next day at a flow rate of 15 L min$^{-1}$. Two channels of the air pollutant sampler were used to collect PM$_{2.5}$ samples in parallel. The left channel was preceded by two annual denuders coated with glycerol/Na$_2$CO$_3$ and glycerol/citric acid solution for trapping HNO$_3$ and NH$_3$ sequentially, and then a Teflon filter was equipped for mass weighting. The right channel was loaded with quartz filter for water-soluble inorganic ions analysis. Daily precipitation samples were collected using an automatic atmospheric deposition sampler equipped with a rain gauge sensor (APS-3A, Xianglan Scientific Instruments Co., Ltd., China). Wanzhou has a subtropical monsoon climate with temperature above 0°C all
year round, hence, precipitation at this location is almost always in rain. Although rainfall samples were collected on a daily basis in order to match PM$_{2.5}$ sampling campaign, the rain gauge sensor could automatically record the detailed information of each rainfall event, including the beginning and ending time, besides the rainfall amount. Sampling campaigns were conducted in four months in 2015: from 2nd to 29th in April, 2nd to 30th in July, 16th October to 13th November, 16th December to 14th January in 2016, representing spring, summer, autumn, and winter, respectively. Note that PM$_{2.5}$ samples were not available from 2nd to 7th July due to the sampler maintenance. PM$_{2.5}$ samples were stored in the dark and at −18°C until analysis to prevent the evaporation of volatile compounds, while rainfall samples were filtered through a 0.45 µm filter after collection and refrigerated at 4°C.

Five cations (Na$^+$, NH$_4^+$, K$^+$, Mg$^{2+}$, Ca$^{2+}$) and three anions (Cl$^−$, SO$_4^{2−}$, NO$_3^{−}$) were determined by an ion chromatography (DX-600, Dionex, Sunnyvale, CA) for both PM$_{2.5}$ and rainfall samples. Cations were measured using a CS12A column with 20 mM methanesulfonic acid (MSA) as an eluent while anions were analyzed using an AS11-HC column with 30 mM KOH as an eluent. Ions in rainfall samples were measured directly, while PM$_{2.5}$ samples should be extracted using ultrapure water before ion chromatography analysis. HNO$_3$ and NH$_3$ captured by denuders were extracted using ultrapure water first, and then measured by an ion chromatography. A detailed description of PM$_{2.5}$ and rainfall sampling as well as water-soluble inorganic ions analysis were presented in Wang et al. (2016, 2018b). For Na$^+$ in PM$_{2.5}$, the field blanks varied largely and might result in large uncertainties. For Mg$^{2+}$ and Ca$^{2+}$, most of PM$_{2.5}$ samples were below the detection limits due to their relatively low concentrations. Hence, only five water-soluble inorganic ions in PM$_{2.5}$ including SO$_4^{2−}$, NO$_3^{−}$, NH$_4^+$, Cl$^−$, and K$^+$ were discussed in the following section.

Hourly concentrations of PM$_{2.5}$ and PM$_{10}$ were measured using online PM$_{2.5}$/PM$_{10}$ analyzer (FH62C14, Thermo Fisher, U.S.). Hourly concentrations of SO$_2$ were not available at the sampling site and obtained from an air quality monitoring station about 6 km away.

2.2 Data Analysis

The rate of change in particle concentration (ΔC) for each rainfall event was defined as follows:

$$\Delta C(\%) = \frac{(C_b - C_a)}{C_b} \times 100\%$$ \hspace{1cm} (1)

where C_b is the average concentration of PM$_{2.5}$ or PM$_{10}$ within 3 h before the rain, C_a is the average concentration during the rain. If the value of ΔC is positive, it means that PM$_{2.5}$ or PM$_{10}$ decreases when rainfall occurs, otherwise, it indicates that PM$_{2.5}$ or PM$_{10}$ increases during rain. Calculation of ΔC requires that the free-rainfall period between two events is higher than 3 h, otherwise, consecutive rainfall events are combined (Aikawa et al., 2014). As a consequence, a total of 7, 8, 14, and 13 rainfall events were obtained in spring, summer, autumn, and winter, respectively (Table S1).

Scavenging ratio of major inorganic ions in each month was calculated based on monthly mean concentration as follows (Kasper-Giebl et al., 1999; Cheng and Zhang, 2017):

$$W = \frac{C_{\text{VW}} \times \rho_a}{C_{\text{av}} \times \rho_w}$$ \hspace{1cm} (2)

where C_{VW} is the volume weighted mean (VWM) concentration of inorganic ions in precipitation (mg L$^{-1}$), C_{av} is the mean concentration of water-soluble inorganic ions in the air (µg m$^{-3}$), and ρ_a and ρ_w are the density of air (1200 g m$^{-3}$) and water, respectively.

SO$_4^{2−}$, NO$_3^{−}$, and NH$_4^+$ in rainfall originated from both particles and gaseous precursors. Hence, it is assumed that the difference between the total and particulate wet scavenging was from the gaseous precursor. Scavenging ratio of gaseous precursor was calculated followed by Cheng and Zhang (2017). The procedure for estimating the scavenging ratio of HNO$_3$ was described in detail, and the calculation for the scavenging ratio of SO$_2$ and NH$_3$ was done similarly.

The particulate NO$_3^{−}$ concentration in rainfall was first estimated as follows:
\[[\text{pNO}_3^-]_{\text{prec}} = W_{\text{PM}}[\text{pNO}_3^-]_{\text{PM}} + W_{\text{CPM}}[\text{pNO}_3^-]_{\text{CPM}} \]

(3)

where \([\text{pNO}_3^-]_{\text{prec}}\) is the part of \(\text{NO}_3^-\) wet scavenging from particulate \(\text{NO}_3^-\). \(W_{\text{PM}}\) and \(W_{\text{CPM}}\) are monthly scavenging ratio of fine and coarse particles, respectively. \(W_{\text{PM}}\) could be calculated from the scavenging ratio of \(K^+\), while \(W_{\text{CPM}}\) could be calculated based on the average scavenging ratio of \(\text{Ca}^{2+}, \text{Mg}^{2+}\), and \(\text{Na}^+\). In this study, the coarse particles data were not available, thus the contributions from coarse particles were neglected. \([\text{pNO}_3^-]_{\text{PM}}\) and \([\text{pNO}_3^-]_{\text{CPM}}\) are monthly mean concentration of \(\text{NO}_3^-\) in fine and coarse particles, respectively. Note that the concentrations of major inorganic ions in coarse particles were not available, alternative data assumptions were made, which were discussed in the following section in detail. Then, the scavenging ratio of \(\text{HNO}_3\) and its contribution were calculated as follows:

\[[\text{HNO}_3]_{\text{prec}} = [\text{total } \text{NO}_3^-]_{\text{prec}} - [\text{pNO}_3^-]_{\text{prec}} \]

(4)

\[W_{\text{HNO}_3} = \frac{[\text{HNO}_3]_{\text{prec}}}{[\text{HNO}_3]_{\text{air}}} \]

(5)

\[\%\text{HNO}_3 = \left(\frac{[\text{HNO}_3]_{\text{prec}}}{[\text{total } \text{NO}_3^-]_{\text{prec}}} \right) \times 100 \]

(6)

\[\%\text{pNO}_3^- = \left(\frac{[\text{pNO}_3^-]_{\text{prec}}}{[\text{total } \text{NO}_3^-]_{\text{prec}}} \right) \times 100 \]

(7)

where \([\text{total } \text{NO}_3^-]_{\text{prec}}\) means the monthly VWM concentrations of \(\text{NO}_3^-\) in rainfall, \([\text{HNO}_3]_{\text{prec}}\) is the concentration of \(\text{NO}_3^-\) in rainfall from gas contribution, and \([\text{HNO}_3]_{\text{air}}\) is ambient concentration of gas \(\text{HNO}_3\). \%\text{HNO}_3 and \%\text{pNO}_3^- are the contributions of \(\text{HNO}_3\) and particulate \(\text{NO}_3^-\) to the total \(\text{NO}_3^-\) wet scavenging, respectively. In some cases, the calculated \([\text{HNO}_3]_{\text{prec}}\) value was negative, then we assumed that only particulate \(\text{NO}_3^-\) contributed to the wet scavenging and the contribution from gas \(\text{HNO}_3\) was negligible.

3 RESULTS AND DISCUSSION

3.1 Variations of Hourly Particulate Matter Concentrations during Rain Events

During the observation periods, the accumulated rainfall amounts were 79.2, 152.8, 85.8, and 31.7 mm in spring, summer, autumn, and winter, respectively, while the corresponding total rainfall hours were 57.1, 61.7, 38.2, and 53.3 h. Note that the rainfall data were obtained in a typical month rather than three months in each season. In Wanzhou, rainfall was the most abundant in summer and least in winter. Although the total rainfall hours were similar in spring, summer, and winter, the accumulated amounts varied about five times due to the different rainfall intensities. Rain could be classified into three categories based on the rainfall intensity (Luan et al., 2019): light rain (0.1–2.5 mm h\(^{-1}\)), moderate rain (2.6–7.6 mm h\(^{-1}\)), and heavy rain (> 7.6 mm h\(^{-1}\)). Regarding the rain events recorded by rain gauge sensor, the predominant rain category was light rain in all seasons, in particular in spring and winter where the numbers of light rain events accounted for about 96% and 100% of the total events, respectively. Moderate and heavy rain events contributed to about 15.8% and 17.9% of the total events in summer, and 5.3% and 3.6% in autumn, respectively.

Particulate matter concentrations were affected by many factors, such as source emissions and wet scavenging effects. Fig. 1 shows the hourly concentrations of \(\text{PM}_{2.5}, \text{PM}_{10}\), and rain intensities during the observation periods. For those rainfall events with relatively long durations and/or high rainfall intensities, \(\text{PM}_{2.5}\) and \(\text{PM}_{10}\) concentrations decreased greatly during rain, e.g., on 19\(^{th}\) April, 15\(^{th}\) July, and 25\(^{th}\) October in 2015, and 7\(^{th}\) January 2016, indicating that wet scavenging...
Fig. 1. Hourly concentrations of PM$_{2.5}$, PM$_{10}$, and rainfall intensity in spring, summer, autumn, and winter.

played an important role on the decreases of the PM$_{2.5}$ and PM$_{10}$ concentrations. However, for those rainfall events with short durations or low intensities, the scavenging effects exhibited large variations, implying that other factors would primarily contribute to the variations of particle concentrations. For example, on 21st July with the rain duration of 0.8 h and rain intensity of 0.13 mm h$^{-1}$, PM$_{2.5}$ and PM$_{10}$ concentrations decreased by 39% and 48% during rain, respectively. We found that this phenomenon was caused by the increased PM$_{2.5}$ and PM$_{10}$ concentrations during the rush hours in the evening, and when the rush hours ended after 21:00 local time, the air pollutants concentrations began to decrease. This can be supported by the increased NO$_2$ concentrations during the rush hours and the decreased concentrations one or two hours before the rain. That means the decreases of PM$_{2.5}$ and PM$_{10}$ concentrations on this day were ascribed to the emission reduction after rush hours rather than the wet scavenging effects. On 24th December, PM$_{2.5}$ and PM$_{10}$ concentrations increased by about 27% during rain period although it lasted about 8 hours from 7:00 to 17:00 local time. The reason for this phenomenon was similar to the rain event on 21st July, which was caused by the high emissions during the rush hours when rain occurred, resulting in relatively high average PM$_{2.5}$ and PM$_{10}$ concentrations. Furthermore, no evident variations of PM$_{2.5}$ and PM$_{10}$ concentrations were observed before and during rain on 7th April, in which the duration was about 5 h and rainfall intensity was greater than 1.0 mm h$^{-1}$. In total, those distinct scavenging effects for different rainfall events indicated that other factors also affected the overall scavenging effects besides rainfall duration and intensities.
The variations of PM$_{2.5}$ and PM$_{10}$ concentrations were not uniform for each event, showing increasing or decreasing trends when rainfall occurred (Fig. 2). For PM$_{10}$, almost all events showed decreasing trends in spring. In other seasons, the number of events with decreasing trends accounted for about 62.5–71.4% of the total rain events. For PM$_{2.5}$, the number of events presenting decreasing trends accounted for 50–64.3% of the total rainfall events, implying the important role of wet scavenging effects on decreasing particle concentrations.

Generally, the decreasing rates of PM$_{10}$ by rainfall were higher than PM$_{2.5}$ for every event (Fig. 2), which can be explained by the size-dependent below-cloud impaction scavenging efficiency (Wang et al., 2010). Besides particle size distribution, removal rates are also related to the concentrations of particles before rain. The rates of change in particle concentrations were grouped with PM$_{10}$ or PM$_{2.5}$ concentrations before rain at 20 µg m$^{-3}$ interval bins. As shown in Fig. 3(a), ΔC typically increased with the increases of PM$_{10}$ and PM$_{2.5}$ concentrations, and the highest change rate in PM$_{10}$ and PM$_{2.5}$ concentrations appeared in the range of 80–100 µg m$^{-3}$ and 60–80 µg m$^{-3}$, respectively. This trend was also observed by Olszowski (2016), in which the scavenging effect was well correlated with higher particle concentrations before rain. Note that ΔC showed decreasing trends when PM$_{10}$ and PM$_{2.5}$ concentrations were higher than 100 µg m$^{-3}$. This phenomenon indicated that other meteorological conditions might govern the severe PM$_{10}$ and PM$_{2.5}$ pollution and then the wet scavenging effect was overwhelmed.

It has been reported that the rainfall intensity also influenced the variations of particle concentrations (He and Balasubramanian, 2008; Luan et al., 2019). As shown in Fig. 3(b), ΔC was highest (higher than 50%) for both PM$_{10}$ and PM$_{2.5}$ when rainfall intensities were higher than 2 mm h$^{-1}$, indicating that moderate or heavy rain exhibited relatively high scavenging efficiency on particulate matter. This can also be explained by the precipitation-intensity dependent below-cloud scavenging efficiency (Wang et al., 2010). Scavenging effects were positive for each moderate or heavy rainfall event with the value of ΔC in the range of 8.3–90.9% for PM$_{10}$ and 2.6–93.5% for PM$_{2.5}$, respectively. However, no obvious trends of ΔC were observed for light rains, likely because other factors overwhelmed the below-cloud scavenging effect.

3.2 Gaseous Precursors and Water-soluble Inorganic Ions in PM$_{2.5}$ and Rainfall

Among the three gaseous precursors discussed here, the annual mean concentrations were the lowest for HNO$_3$, followed by SO$_2$, and highest for NH$_3$ (Table 1). From a seasonal perspective, SO$_2$ showed the highest concentration in spring and lowest in summer. SO$_2$ is primarily emitted from coal combustion for residential heating, power plants and industrial use in China. Wanzhou is located in southwest China with a temperature of above 0°C all year round, and residential heating using coal may not be extensive in this region. Thus, the seasonal patterns of SO$_2$ were

![Fig. 2. The variations of PM$_{10}$ (a) and PM$_{2.5}$ (b) concentrations for each rainfall event.](image-url)
Fig. 3. The variations of PM$_{10}$ and PM$_{2.5}$ grouped by particle concentrations before rain (a), and rain intensity bins (b).

Table 1. Seasonal and annual concentrations of gaseous precursors and major inorganic ions in PM$_{2.5}$ and precipitation.

	In PM$_{2.5}$ (µg m$^{-3}$)	In precipitation (µeq L$^{-1}$)											
	Cl$^-$	SO$_4^{2-}$	NO$_3^-$	NH$_4^+$	K$^+$	Cl$^-$	SO$_4^{2-}$	NO$_3^-$	NH$_4^+$	K$^+$	Ca$^{2+}$	Na$^+$	Mg$^{2+}$
Spring	0.27	8.1	2.9	4.1	0.35	4.8	92.5	30.4	78.6	4.6	74.4	3.1	10.5
Summer	0.05	8.9	3.4	3.4	0.23	4.2	50.3	19.1	70.1	1.7	29.3	2.9	4.3
Autumn	0.59	7.5	3.7	3.9	0.41	6.7	116.6	33.8	104.6	4.9	104.9	54.7	8.8
Winter	1.3	15.4	8.6	7.7	0.58	23.0	146.0	51.3	103.6	6.1	76.3	12.1	15.1
Annual	0.59	10.1	4.3	4.9	0.40	6.3	79.4	25.9	82.2	3.4	54.6	13.6	7.1
	SO$_2$ (µg m$^{-3}$)	HNO$_3$ (µg m$^{-3}$)	NH$_3$ (µg m$^{-3}$)										
Spring	14.8	1.4	14.2										
Summer	9.3	2.8	16.3										
Autumn	11.5	1.0	14.1										
Winter	12.3	1.4	8.9										
Annual	12.0	1.6	13.1										
mainly influenced by the meteorological conditions and chemical transformations rather than source emissions. High temperature and strong solar radiation in summer could enhance photochemical reactions, leading to the decrease of gaseous precursor concentration such as SO$_2$ and the increase of the secondary aerosol such as SO$_4^{2-}$. In addition, the high planetary boundary layer height in summer favors the pollutants dispersion and then leads to the low SO$_2$ concentration. Contrary to the case of SO$_2$, HNO$_3$ and NH$_3$ exhibited the maximum concentrations in summer and lowest values in winter and autumn, which were likely associated more with the source emission and thermodynamic behavior of NH$_4$NO$_3$ than other conditions (Wang et al., 2018b).

The annual mean concentration of PM$_{2.5}$ was 41.6 ± 24.5 µg m$^{-3}$, with the highest concentration in winter and lowest in summer. The total concentration of the five major water-soluble inorganic ions (WSIIs) was 20.3 µg m$^{-3}$, accounting for about 48.7% of PM$_{2.5}$. All five water-soluble inorganic ions displayed the highest concentrations in winter (Fig. 4 and Table 1), which were partly related to the unfavorable diffusion conditions, i.e., extremely weak wind (< 1 m s$^{-1}$) and low precipitation amount. In addition, the relative humidity was generally higher than 80% in winter, which was conducive to secondary inorganic aerosol formation through heterogeneous reactions and thus increased the concentrations of SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$. Biomass burning for residential heating in winter probably contributed to the higher concentrations of Cl$^-$ and K$^+$. The lowest concentrations of the five inorganic ions appeared in summer due to the favorable diffusion conditions and abundant precipitation with the exception of SO$_4^{2-}$, which was in autumn. Furthermore, the pronounced high concentrations of NO$_3^-$ in winter and extremely low concentrations in summer were governed by the thermodynamic equilibrium of NH$_4$NO$_3$, since the low temperature and high relative humidity in winter were conducive to the formation of particulate NO$_3^-$, whereas high temperature in summer enhanced the volatilization of NH$_4$NO$_3$ (Wang et al., 2018b). Compared with the other inorganic ions, the relatively higher concentration of SO$_4^{2-}$ in summer was mainly ascribed to the intense photochemical reactions as mentioned above. In PM$_{2.5}$, the winter/summer ratios were 1.7, 6.7, 2.3, 25, and 2.5 for SO$_4^{2-}$, NO$_3^-$, NH$_4^+$, Cl$^-$, and K$^+$, respectively, indicating that NO$_3^-$ and Cl$^-$ presented the largest seasonal variations.

Among the five major water-soluble inorganic ions in PM$_{2.5}$, SO$_4^{2-}$ is the most abundant ion, showing seasonal mean contributions of 46–64% to WSIIs during the sampling periods, implying the important contributions of coal combustion to PM$_{2.5}$ pollution. Besides SO$_4^{2-}$, NO$_3^-$ and NH$_4^+$ were also predominant components of WSIIs. In autumn and winter, NO$_3^-$ and NH$_4^+$ showed comparable contributions, each of which was about half of that of SO$_4^{2-}$. However, SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$ presented distinct contributions to WSIIs in summer, where the percentage of SO$_4^{2-}$ was about 3 times that of NH$_4^+$ and even 7 times higher than that of NO$_3^-$. The relatively high contribution of SO$_4^{2-}$ and quite low contribution of NO$_3^-$ were consistent with the patterns of their concentrations. The fractions of Cl$^-$ and K$^+$ in WSIIs were minor, ranging from 0.37% in summer to 3.8% in winter for Cl$^-$ and from 1.6 to 2.6% for K$^+$.

Fig. 4. Seasonal patterns of (a) PM$_{2.5}$, (b) Cl$^-$, (c) K$^+$, (d) SO$_4^{2-}$, (e) NO$_3^-$, and (f) NH$_4^+$ in PM$_{2.5}$ as well as the seasonal VWM concentrations of inorganic ions in rainfall.
As shown in Fig. 4 and Table 1, the seasonal variations of eight inorganic ions in rainfall followed the patterns of those in PM$_{2.5}$, showing the highest VWM concentrations in winter and lowest in summer. Besides the relatively low concentrations of pollutants in the air, dilution effect due to the abundant rainfall was also responsible for the lower concentrations of those inorganic ions in summer. Compared the winter/summer ratios of the inorganic ions in PM$_{2.5}$ and rainfall, it could be found that the seasonal variations were more pronounced in PM$_{2.5}$ than in rainfall except for SO$_4^{2-}$, implying the sensitivity of the air pollutants to the meteorological conditions. Although Ca$^{2+}$ concentrations were very low in PM$_{2.5}$, they were almost comparable to NH$_4^+$ in rainfall in spring and autumn, highlighting a high contribution from coarse particles to rainfall. On an equivalent amount basis, rainfall was dominated by NH$_4^+$ and SO$_4^{2-}$, followed by Ca$^{2+}$ and NO$_3^-$ (Table 1). The distribution of inorganic ions abundance in rainfall at Wanzhou was similar to Hangzhou (Han et al., 2019), but slightly different from the mean value across China which showed SO$_4^{2-}$ and Ca$^{2+}$ as the most abundant species (Li et al., 2019b).

3.3 Scavenging Ratios of Major Inorganic Ions

Calculating scavenging ratios of inorganic ions and gaseous pollutants required more parameters, including the concentrations of major inorganic ions in fine particles, coarse particles and rainfall, and the concentrations of SO$_2$, HNO$_3$, and NH$_3$. Fine/coarse fractions of these ions were not measured in the present study, but were previously reported for urban sites in Chongqing (Li et al., 2018a, b), which can be considered to be representative of the location of the present study. Briefly, Mg$^{2+}$ and Ca$^{2+}$ were mainly distributed in coarse particles, SO$_2^{2-}$, NH$_4^+$, and K$^+$ were primarily in fine particles, and Na$^+$, NO$_3^-$, and Cl$^-$ were distributed in both fine and coarse particles (Table S2). In this study, the concentrations of inorganic ions in coarse particles were not available. Considering the relatively high fractions of coarse particles for Mg$^{2+}$, Ca$^{2+}$, and Na$^+$, the scavenging ratios of these ions will be highly uncertain if their concentrations in coarse particles were ignored. Meanwhile, the scavenging ratio of coarse particles (W_{cPM}) cannot be obtained due to the lack of coarse particles data, since W_{cPM} was determined by averaging scavenging ratios of Na$^+$, Mg$^{2+}$, and Ca$^{2+}$ (Cheng and Zhang, 2017). Nevertheless, it is assumed that the influences due to the lack of coarse particles data would be minor on those inorganic ions dominated in fine particles. Thus, the scavenging ratios were only analyzed for SO$_2^{2-}$, NO$_3^-$, NH$_4^+$, Cl$^-$, and K$^+$ using their concentrations in PM$_{2.5}$. Taking into account the fractions of K$^+$ in fine particles around 80%, the scavenging ratio of K$^+$ multiplied by 0.8 was assumed to be the scavenging ratio of fine particle (W_{fPM}).

Seasonal and annual mean scavenging ratios of five inorganic ions and three gases are summarized in Table 2. On an annual basis, SO$_2^{2-}$, NO$_3^-$, and Cl$^-$ showed comparable scavenging ratios at around 450, which was about 13–25% higher than the values for NH$_4^+$ and K$^+$. As shown in Fig. S1, positive correlations of equivalent concentrations between [NH$_4^+$] and [SO$_2^{2-}$ + NO$_3^-$] were observed in the four seasons, with the correlation coefficients higher than 0.90 and the slopes of linear regressions being around 1.0, suggesting that SO$_2^{2-}$ and NO$_3^-$ were fully neutralized by NH$_4^+$, and (NH$_4$)$_2$SO$_4$ and NH$_4$NO$_3$ were the two major chemical forms in PM$_{2.5}$. Consequently, it seems that SO$_2^{2-}$, NO$_3^-$, and NH$_4^+$ should have consistent scavenging ratios due to their coexistence in fine particles. However, slightly higher values of SO$_2^{2-}$ and NO$_3^-$ than NH$_4^+$ were observed. As mentioned above, about 30%–40% of Cl$^-$ and NO$_3^-$ were found in coarse particles, thus the relatively higher scavenging ratio of NO$_3^-$ was in part ascribed to the contributions from coarse particles. The slightly higher scavenging ratio of SO$_2^{2-}$ was probably attributed to the in-cloud rainout process, since SO$_2^{2-}$ could be formed efficiently through in-cloud oxidation of SO$_2$ by H$_2$O$_2$ or O$_3$, and then the cloud droplets including SO$_2^{2-}$ could be removed as the rainfall falls. Based on Eqs. (2)–(5), the annual mean scavenging ratio was 116, 353, and 18 for SO$_2$, HNO$_3$, and NH$_3$, respectively. The different scavenging ratios of the three gases could be partly explained by their different solubilities. HNO$_3$ is the most soluble species, followed by NH$_3$, and SO$_2$ is the least soluble gas, with a Henry’s law constant of around 2.1×10^7, 6.1×10^4, and 1.2×10^3 mol m$^{-3}$ pa$^{-1}$, respectively (Sander, 2015). NH$_3$ solubility is higher than SO$_2$, their relative low scavenging ratio might be responsible for the short lifetime of NH$_3$. The air pollutants incorporated into precipitation occurs at cloud level, however, the ambient concentrations were measured at the ground. Over this vertical distance, NH$_3$ may transform into particulate NH$_4^+$ and consequently lead to the wet scavenging mainly from particulate NH$_4^+$ rather than gas NH$_3$.

Dilution effect due to the abundant rainfall was also responsible for the lower concentrations of those inorganic ions in summer. Compared the winter/summer ratios of the inorganic ions in PM$_{2.5}$ and rainfall, it could be found that the seasonal variations were more pronounced in PM$_{2.5}$ than in rainfall except for SO$_4^{2-}$, implying the sensitivity of the air pollutants to the meteorological conditions. Although Ca$^{2+}$ concentrations were very low in PM$_{2.5}$, they were almost comparable to NH$_4^+$ in rainfall in spring and autumn, highlighting a high contribution from coarse particles to rainfall. On an equivalent amount basis, rainfall was dominated by NH$_4^+$ and SO$_4^{2-}$, followed by Ca$^{2+}$ and NO$_3^-$ (Table 1). The distribution of inorganic ions abundance in rainfall at Wanzhou was similar to Hangzhou (Han et al., 2019), but slightly different from the mean value across China which showed SO$_4^{2-}$ and Ca$^{2+}$ as the most abundant species (Li et al., 2019b).
Table 2. Scavenging ratios of inorganic ions and gaseous precursors on mass basis in literatures.

Sampling site	Period	$W_{\text{SO}_2^-}$	$W_{\text{NO}_3^-}$	$W_{\text{NH}_4^-}$	W_{Cl^-}	W_{K^+}	W_{SO_4}	W_{HNO_3}	W_{NH_3}	Reference
Wanzhou, China (urban)	2015 spring	660	792	471	747	597	100	637	0	This study
	2015 summer	326	1100	445	3532	355	40	373	34	
	2015 autumn	815	551	491	426	556	242	387	13	
	2015 winter	547	443	292	768	490	194	326	0	
	2015 annual	454	445	364	456	394	116	353	18	
Mt. Sonnblick, Europe (mountain)	Nov. 1991–Nov. 1993	1680	3120	2160	n.a.	n.a.	n.a.	n.a.	n.a.	Kasper–Giebl et al. (1999)a
Salvatierra, Spanish (rural)	Jul. 1992–Jun. 1993	1000	3000	2000	10000	2000	n.a.	n.a.	n.a.	Encinas and Casado (1999)
Vitoria, Spanish (urban)	Jan. 1995–Dec. 2000	2830	2330	1739	3030	1151	n.a.	n.a.	n.a.	Encinas et al. (2004)
AIRMoN 14 sites, U.S.	A decade	672	n.a.	372	n.a.	n.a.	n.a.	588	n.a.	Hicks (2005)a
Singapore (urban)	Jan.–Sep. 2006	2596	2134	1660	2624	744	n.a.	n.a.	n.a.	He and Balasubramanian (2008)
CAPMON, Canada (13 sites, rural)	between 1984 and 2011	471–734	583–1224	283–848	1855–5779	497–996	125–1339	749–5527	n.a.	Cheng and Zhang (2017)
Hyderabad, India	Aug. 2006	160	317	389	109	723	n.a.	n.a.	n.a.	Kulshrestha et al. (2009)
Maldives	May 2014–Apr. 2015	203–696	1300–3045	251–771	1019–3273	554–1488	n.a.	n.a.	n.a.	Buddhavant et al. (2020)b
Beijing, China (urban)	Jun.–Aug. 2014	312	420	168	n.a.	n.a.	n.a.	n.a.	n.a.	Xu et al. (2017)a

n.a. no available data.

a convert to the scavenging ratio on mass basis; b calculated scavenging ratio based on the concentrations in aerosol and precipitation.

Different seasonal patterns of the scavenging ratios were observed for different inorganic ions and gases. Seasonal variations in scavenging ratios are caused by many factors, such as ambient concentrations of the ions, rain intensities and associated precipitation chemistry and droplet spectra. These factors would affect the dissociate rate of related pollutants between ambient air and rain droplets, below-cloud evaporation of droplets, etc., all of which would contribute to the overall calculated scavenging ratio. The maximum scavenging ratio was observed in autumn for both SO_2^- and NH_4^+, and the minimum value appeared in summer and winter, respectively. In contrast, the highest scavenging ratio was found in summer for Cl^- and NO_3^- and lowest in autumn and winter, respectively. The highest scavenging ratios of SO_2, HNO_3, and NH_3 were observed in autumn, spring, and summer, respectively.

The scavenging ratio values of SO_2^-, NH_4^+, and K^+ obtained in the present study generally agreed well with existing data reported in literature (Table 2); however, those of NO_3^- were slightly lower than reported in the other regions, which was probably related to the different size distributions among different regions, among other factors. Contrary to the predominant coarse mode distribution of NO_3^- influenced by natural sources or sea salt in other regions (Zhang et al., 2008), about 70%–80% of NO_3^- was found in fine mode in the study region, which might result in lower scavenging ratio since rainfall scavenges coarse particles more efficiently. Additionally, the sampling site in this study is an urban site, which is severely affected by the vehicle emissions and hence results in relatively high ambient concentrations of NO_2 and NO_3^-. For the three gases, limited NH_3 scavenging ratios were reported in the previous studies. The scavenging ratio of SO_2
Fig. 5. Relative contributions of particulate and gas-phase to the total wet scavenging of SO_4^{2-}, NO_3^-, and NH_4^+ during the sampling periods.

in this study was within the range of those values in the literatures, while the value for HNO_3 was somewhat lower in this study (Table 2).

As expected, particulate SO_4^{2-} was the dominant contributor to rainfall SO_4^{2-}, accounting for 69.4%, while gas SO_2 contributed about 30.6% (Fig. 5), which were consistent with those conducted at rural sites in Canada (Cheng and Zhang, 2017). Similar to SO_4^{2-}, particulate NO_3^- accounted for about 70% of the rainfall NO_3^-, which was much higher than those reported by Cheng and Zhang (2017) (around 28%) and Kasper-Giebl et al. (1999) (about 4–12%). The discrepancies between our results and other literatures were probably attributed to the different characteristic of sampling location, where the sampling site with higher ambient NO_3^- concentrations exhibited higher relative contributions of particulate NO_3^-. The relative contribution of particulate NH_4^+ to total wet scavenging was 86.6%, which was higher than those in Cheng and Zhang (2017) (70%) and Kasper-Giebl et al. (1999) (48–79%).

4 CONCLUSIONS

Water-soluble inorganic ions in ambient fine particles and in precipitation were characterized, and relative contributions from particulate and gaseous pollutants to inorganic ions in precipitation were quantified. PM$_{2.5}$ and PM$_{10}$ concentrations were generally decreased after occurrence of moderate or heavy rain event, but this was not always the case after light rain event due to too many other factors affecting the ambient concentration. The scavenging ratio values derived for the five inorganic ions that were mostly distributed in fine particles varied by 25% on average, e.g., about 450 for SO_4^{2-}, NO_3^-, and Cl^-, 364 for NH_4^+, and 395 for K^+, likely due to their slightly different fine/coarse fractions. Scavenging ratios for gaseous species investigated here differed greatly, e.g., 353 for HNO_3, 116 for SO_2, and 18 for NH_3, likely related to their different solubility or lifetime in air. Besides, major sources and chemical processes might have contributed to the ambient concentrations of some chemical species and thus substantially lowered the scavenging ratio, e.g., for the case of NH_3. Seasonal variations of the scavenging ratios were a factor of 1.7–8 for different air pollutants. Wet scavenging of SO_4^{2-}, NO_3^-, and NH_4^+ were primarily from particulate forms (> 69%), especially considering that only fine particles were considered in this estimation due to the lack of the coarse particles data. The scavenging ratio data obtained in this study may be used for improving the prediction of particle concentrations during rain periods using air quality models.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (grant numbers...
SUPPLEMENTARY MATERIAL

Supplementary data associated with this article can be found in the online version at https://doi.org/10.4209/aaqr.200513

REFERENCES

Aikawa, M., Hiraki, T. (2009). Washout/rainout contribution in wet deposition estimated by 0.5 mm precipitation sampling/analysis. Atmos. Environ. 43, 4935–4939. https://doi.org/10.1016/j.atmosenv.2009.07.057

Aikawa, M., Kajino, M., Hiraki, T., Mukai, H. (2014). The contribution of site to washout and rainout: Precipitation chemistry based on sample analysis from 0.5 mm precipitation increments and numerical simulation. Atmos. Environ. 95, 165–174. https://doi.org/10.1016/j.atmosenv.2014.06.015

Budhavant, K., Andersson, A., Holmstrond, H., Bikkina, P., Bikkina, S., Satheesh, S.K., Gustafsson, O. (2020). Enhanced light-absorption of black carbon in rainwater compared with aerosols over the northern Indian Ocean. J. Geophys. Res. 125, e2019JD031246. https://doi.org/10.1029/2019JD031246

Cheng, I., Zhang, L. (2017). Long-term air concentrations, wet deposition, and scavenging ratios of inorganic ions, HNO₃, and SO₂ and assessment of aerosol and precipitation acidity at Canadian rural locations. Atmos. Chem. Phys. 17, 4711–4730. https://doi.org/10.5194/acp-17-4711-2017

Encinas, D., Casado, H. (1999). Rain-Aerosol coupling in a rural area in the Basque Country (Spain): Scavenging ratios. Aerosol Sci. Technol. 30, 411–419. https://doi.org/10.1080/027868299304462

Encinas, D., Calzada, I., Casado, H. (2004). Scavenging ratios in an urban area in the Spanish Basque Country. Aerosol Sci. Technol. 38, 685–691. https://doi.org/10.1080/02786820490460716

Engelmann, R.J. (1971). Scavenging prediction using ratios of concentrations in air and precipitation. J. Appl. Meteorol. 10, 493–497. https://doi.org/10.1175/1520-0450(1971)0102.0.CO;2

Gao, B., Ouyang, W., Cheng, H.G., Xu, Y., Lin, C.Y., Shen, J. (2019). Interactions between rainfall and fine particulate matter investigated by simultaneous chemical composition measurements in downtown Beijing. Atmos. Environ. 218, 117000. https://doi.org/10.1016/j.atmosenv.2019.117000

Ge, B.Z., Wang, Z.F., Gbaguidi, A.E., Zhang, Q.X. (2016). Source Identification of acid rain arising over northeast China: Observed evidence and model simulation. Aerosol Air Qual. Res. 16, 1366–1377. https://doi.org/10.4209/aaqr.2015.05.0294

Han, Y., Xu, H., Bi, X.H., Lin, F.M., Jiao, L., Zhang, Y.F., Feng, Y.C. (2019). The effect of atmospheric particulates on the rainwater chemistry in the Yangtze River Delta, China. J Air Waste Manage. 69, 1452–1466. https://doi.org/10.1080/10962247.2019.1674750

He, J., Balasubramanian, R. (2008). Rain-aerosol coupling in the tropical atmosphere of southeast Asia: Distribution and scavenging ratios of major ionic species. J. Atmos. Chem. 60, 205–220. https://doi.org/10.1007/s10874-008-9118-x

Hicks, B.B. (2005). A climatology of wet deposition scavenging ratios for the United States. Atmos. Environ. 39, 1585–1596. https://doi.org/10.1016/j.atmosenv.2004.10.039

Kajino, M., Aikawa, M. (2015). A model validation study of the washout/rainout contribution of sulfate and nitrate in wet deposition compared with precipitation chemistry data in Japan. Atmos. Environ. 117, 124–134. https://doi.org/10.1016/j.atmosenv.2015.06.042

Kasper-Giebl, A., Kalina, M.F., Puxbaum, H. (1999). Scavenging ratios for sulfate, ammonium and nitrate determined at Mt. Sonnblick (3106 M Asl). Atmos. Environ. 33, 895–906. https://doi.org/10.1016/S1352-2310(98)00279-9
Kulshrestha, U.C., Reddy, L.A.K., Satyanarayana, J., Kulshrestha, M.J. (2009). Real-time wet scavenging of major chemical constituents of aerosols and role of rain intensity in Indian Region. Atmos. Environ. 43, 5123–5127. https://doi.org/10.1016/j.atmosenv.2009.07.025

Li, Q.K., Yang, Z., Li, X.D., Ding, S.Y., Du, F. (2019a). Seasonal characteristics of sulfate and nitrate in size-segregated particles in ammonia-poor and -rich atmospheres in Chengdu, Southwest China. Aerosol Air Qual Res. 19, 2697–2706. https://doi.org/10.4209/aaqr.2019.07.0368

Li, R., Cui, L.L., Zhao, Y.L., Zhang, Z.Y., Sun, T.M., Li, J.L., Zhou, W.H., Meng, Y., Huang, K., Fu, H.B. (2019b). Wet deposition of inorganic ions in 320 cities across China: Spatio-temporal variation, source apportionment, and dominant factors. Atmos. Chem. Phys. 19, 11043–11070. https://doi.org/10.5194/acp-19-11043-2019

Li, Y.P., Hao, Q.J., Wen, T.X., Ji, D.S., Liu, Z.R., Wang, Y.S., Jiang, C.S. (2018a). Mass concentrations and size distributions of water-soluble inorganic ions in atmospheric aerosols in Beijing district, Chongqing, Huan Jing Ke Xue. 39, 4002–4013. https://doi.org/10.13227/j.hjkx.201712077

Li, Y.P., Hao, Q.J., Wen, T.X., Ji, D.S., Liu, Z.R., Wang, Y.S., Li, X.X., He, X.H., Jiang, C.S. (2018b). Pollution characteristics of water-soluble ions in aerosols in the urban area in Beijing of Chongqing. Aerosol Air Qual Res. 18, 1531–1544. https://doi.org/10.4209/aaqr.2017.11.0500

Lu, X.C., Fung, J.C.H. (2018). Sensitivity assessment of PM2.5 simulation to the below-cloud washout schemes in an atmospheric chemical transport model, Tellus B70, 1476435. https://doi.org/10.1080/16000889.2018.1476435

Lu, X.C., Chan, S.C., Fung, J.C.H., Lau, A.K.H. (2019). To what extent can the below-cloud washout effect influence the PM2.5? A combined observational and modeling study. Environ Pollut. 251, 338–343. https://doi.org/10.1016/j.envpol.2019.04.061

Luan, T., Guo, X.L., Zhang, T.H., Guo, L.J. (2019). Below-Cloud aerosol scavenging by different-intensity rains in Beijing City. J. Meteorol. Res. 33, 126–137. https://doi.org/10.1007/s13351-019-0879-0

Olzowskii, T. (2016). Changes in PM10 concentration due to large-scale rainfall. Arabian J. Geosci. 9, 160. https://doi.org/10.1007/s12517-015-2163-2

Sander, R. (2015). Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981. https://doi.org/10.5194/acp-15-4399-2015

Wang, H.B., Yang, F.M., Shi, G.M., Tian, M., Zhang, L.M., Zhang, L.Y., Fu, C.A. (2016). Ambient concentration and dry deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China. Environ Pollut. 219, 235–244. https://doi.org/10.1016/j.envpol.2016.10.016

Wang, H.B., Shi, G.M., Tian, M., Chen, Y., Qiao, B.Q., Zhang, L.Y., Yang, F.M., Zhang, L.M., Luo, Q. (2018a). Wet deposition and sources of inorganic nitrogen in the Three Gorges Reservoir Region, China. Environ Pollut. 233, 520–528. https://doi.org/10.1016/j.envpol.2017.10.085

Wang, H.B., Tian, M., Chen, Y., Shi, G.M., Liu, Y., Yang, F.M., Zhang, L.M., Deng, L.Q., Yu, J., Peng, C., Cao, X.Y. (2018b). Seasonal characteristics, formation mechanisms and source origins of PM2.5 in two megacities in Sichuan Basin, China. Atmos. Chem. Phys. 18, 865–881. https://doi.org/10.5194/acp-18-865-2018

Wang, X., Zhang, L., Moran, M.D. (2010). Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos. Chem. Phys. 10, 5685–5705. https://doi.org/10.5194/acp-10-5685-2010

Xu, D.H., Ge, B.Z., Wang, Z.F., Sun, Y.L., Chen, Y., Ji, D.S., Yang, T., Ma, Z.Q., Cheng, N.L., Hao, J.Q., Yao, X.F. (2017). Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing During the summer of 2014. Environ Pollut. 230, 963–973. https://doi.org/10.1016/j.envpol.2017.07.033

Zhang, L., Michelangeli, D.V., Taylor, P.A. (2004). Numerical studies of aerosol scavenging in low-level, warm stratiform clouds and precipitation. Atmos. Environ. 38, 4653–4665. https://doi.org/10.1016/j.atmosenv.2004.05.042

Zhang, L., Vet, R. (2006). A review of current knowledge concerning size-dependent aerosol removal. China Particulology. 4, 272–282. https://doi.org/10.1016/S1672-2515(07)60276-0

Zhang, L., Vet, R., Wiebe, A., Mihele, C., Sukloff, B., Chan, E., Moran, M.D., Iqbal, S. (2008). Characterization of the size-segregated water-soluble inorganic ions at eight canadian rural sites. Atmos. Chem. Phys. 8, 7133–7151. https://doi.org/10.5194/acp-8-7133-2008