Immunological characterization of recombinant
Salmonella enterica serovar Typhi FliC protein expressed in *Escherichia coli*

Gaurav Jindal¹,², Rupinder Tewari¹, Ankur Gautam¹, Satish K Pandey² and Praveen Rishi²*

Abstract

Like any other enteric pathogen, *Salmonella* also encounters acidic stress in the stomach as well as within the host macrophage milieu. However, the pathogen is reported to combat this stress through acid tolerance response (ATR), expressing a number of genes and eventually the proteins. Recently, an acid induced outer membrane phenotype encoded by *fliC* gene in *Salmonella enterica* serovar Typhi has been identified. In the present study, *fliC* gene was cloned to study its biological implications. The recombinant FliC (rFliC) protein was observed to stimulate the production of antibodies. These antibodies could also recognize the FliC protein (antigen) in the clinical samples i.e. blood samples from typhoid patients as well as healthy blood samples spiked with serovar Typhi. Moreover, the rFliC also reacted with the sera from patients suffering with typhoid fever indicating its *in-vivo* immunogenicity. Ex-vivo study revealed that rFliC has the potential to stimulate the macrophages to generate higher levels of inflammatory mediators such as malondialdehyde (MDA) and nitrite. The inflammatory potential of FliC was also confirmed *in-vivo* by the paw oedema test as well as by flicking response of the inflamed paw indicating hyperalgesia occurring during inflammatory response. The findings of the present study indicate that acid induced FliC might be one of the factors enhancing the virulence of serovar Typhi under the host acidic conditions and may prove to be helpful in designing the prophylactic measures.

Keywords: Outer membrane proteins (OMPs), *Salmonella enterica* serovar Typhi, Flagellin (FliC), Immunogenicity, Inflammation, Thermal hyperalgesia

Introduction

Salmonella pathogenicity is multifactorial and the expression of various virulence determinants has been reported to differ under *in-vivo* and *in-vitro* situations (Chanana et al. 2007a, b; Cruz et al. 2010 and Diacovich et al. 2010). Therefore, there is a renewed interest in understanding the behavior of the pathogens in different environments of the host like low pH, elevated temperature, changes in osmotic strength, presence of cationic peptides as well as the availability of ions and nutrients.

Salmonella has been reported to combat inorganic acidity in the stomach as well as in the intracellular milieu of macrophages through acid tolerance response (ATR). A number of genes including PhoP/Q regulon, *fur* gene (iron stress), RpoS and *adi* operon regulating arginine decarboxylase in *Salmonella* (Bpearson et al. 1998 and Kieboom et al. 2006) have been identified for combating acid stress. However, the paucity of information on stress induced proteins of serovar Typhi, the causative agent of typhoid fever is surprising in view of *Salmonella* pathogenicity being multi-phasic and multifactorial. Very little is known about the phenotypic expression of the pathogen in the ever changing environment of the host with respect to outer-membrane proteins which first come in contact with the host.

The outer-membrane proteins (OMPs) of bacteria function as a dynamic interface between the bacterium and its surrounding environment and are involved in regulating the transport of nutrients and bactericidal agents. However, functions of OMPs induced under the host conditions have not been specified particularly in serovar Typhi. Recently, *fliC* gene encoding an acid...
induced outer-membrane protein (AIP) has been identified (Jindal et al. 2011). Prompted by this observation, fliC gene of serovar Typhi was cloned to assess the in-vivo immunogenic and inflammatory potential of FliC phenotype in the present study.

Materials and methods

Reagents

Luria-Bertani (LB) medium (Hi-media, India) was used for bacterial culture. Chemicals and antibiotics were purchased from Sigma-Aldrich, USA and IPTG (Isopropyl-β-D-thiogalactopyranoside) was purchased from USB Corp., USA. All restriction and modifying enzymes for manipulation of DNA were obtained from MBI Fermentas, Germany. Chromatographic columns and molecular weight markers for gel filtration chromatography were purchased from GE Healthcare Biosciences, Piscataway, USA with the exception of nickel nitrilotriacetic acid (Ni²⁺–NTA) -agarose which was purchased from Qiagen, USA. Custom oligonucleotides were purchased from Sigma Genosys (Bangalore, India).

Bacterial strains, plasmids and culture conditions

Standard strain of Salmonella enterica serovar Typhi Ty2 (strain DBL–8, David Bruce Laboratory, East Everleigh, near Marlborough Wiltshire) was initially procured from Central Research Institute, Kasauli, India. pET28c (+) plasmid, E. coli DH5α and E. coli BL21 (DE3) (Novagen, USA) were used as expression vector, for propagation of plasmid and as an expression host, respectively. E. coli strains were grown aerobically at 37°C in LB medium and the recombinant E. coli strains were cultivated in the same medium (Sambrook et al. 2001) containing 50 μg ml⁻¹ kanamycin. The medium was inoculated with 1% of 10–12 h seed culture and incubated under shaking conditions at 37°C and 150 rpm.

Clinical samples

Sixteen clinical samples (13 Widal positive sera and 3 blood culture positive blood samples) were collected from various hospitals in the city. 4 blood samples collected from apparently healthy individuals were spiked with different concentrations of serovar Typhi cells.

Animals

BALB/c mice (18–22 g) (either sex) were procured from Central Animal House, Panjab University, Chandigarh (India). The animals were housed under standard conditions of light and dark cycle with free access to food (Ashirwad Industries Pvt Ltd, Ropar, India) and water ad-libitum. Care and use of animals was in accordance with the guidelines of the Institutional Animals Ethics Committee, Panjab University, Chandigarh (India).

Expression and purification of rFliC in E. coli

A single colony of E. coli BL21 (DE3) harboring recombinant pET28c (+) fliC plasmid was inoculated in 5 mL LB broth (Hi-media, India) containing kanamycin (50 μg/mL) and was grown overnight at 37°C. 1% (v/v) of overnight grown culture was inoculated in 400 mL LB medium containing kanamycin (50 μg/mL) and cells were allowed to grow to an optical density (OD₆₀₀) of 0.5-0.6 at 37°C. The expression of target protein was induced by adding isopropyl-1-thio-β-d-galactopyranoside (IPTG) (final concentration varies from 0.1 to 1.0 mM) under different conditions (15°C-37°C, 4–8 h, 200 rpm).

The 8 h induction cultures were harvested by centrifugation for the purification of recombinant protein. Wet cells were re-suspended in 20% (v/v) lysis buffer (50 mM Tris–HCl pH- 8.0, containing 300 mM NaCl, 2 mM β-mercaptoethanol, 1 mM phenylmethylsulphonyl fluoride and 10% glycerol) and cells were disrupted by sonication. The debris was pelleted by centrifugation at 13,400 × g
for 15 min at 4°C and re-suspended in the lysis buffer (pH-8.0) containing 8 M Urea. The debris was removed by centrifugation at 15,000 x g for 20 min at 4°C. The supernatant was added to a Ni²⁺-NTA resin column (1 ml bed volume) equilibrated with lysis buffer and was allowed to bind slowly. After being washed with 4–5 ml of the lysis buffer containing 20 and 40 mM imidazole, the target protein was eluted using elution buffer (the lysis buffer with 300 mM L-1 imidazole) and 1.5 ml fraction was collected. All the fractions were pooled and dialyzed thoroughly against 50 mM Tris–HCl containing 150 mM NaCl, 1 mM DTT (dithiothreitol) and 10% glycerol. The purified rFliC was then used for further experiments. Protein concentration was determined by Bradford method (Bradford et al. 1976), using Bovine Serum Albumin (BSA) as standard.

Though fliC gene was cloned and expressed in E. coli successfully, but further analysis revealed that most of the rFliC was present in inclusion bodies or insoluble fraction. Changing poly-histidine tag from N-terminal to C-terminal, lowering of incubation temperature and IPTG concentration for induction followed by dialysis resulted in the production of rFliC in soluble fraction which is in concordance with the findings of Shafiani et al. (2005).

Biological implications of rFliC

In-vivo expression of rFliC

The in-vivo immunogenicity of rFliC was assessed qualitatively as well as quantitatively. For this, anti-serum to rFliC was raised in New-zealand rabbits and recognition of antigen by the raised antisera was evaluated by ELISA as described earlier (Chander et al. 2004). Briefly ELISA plates were precoated with 100 μl Poly-L-lysine (0.1 M) (Sigma) in phosphate buffer saline (PBS), pH 7.4 and incubated for 1 hour at room temperature. The plates were washed three times with PBS. 100 μl of different concentrations of Fli C protein (0 to 100 μg/ml) or healthy blood sample spiked with cultured serovar Typhi as well as typhoid patients’ blood samples were added to respective wells of ELISA plate. The coated plates were incubated overnight at 4°C, and then washed three times with PBS containing 0.05% Tween 20 (PBST). The antisera against Flic antigen was diluted (1:10000) in PBS-M (phosphate buffer containing 0.1% skimmed milk) and 100 μl was added in each well. The plates were then incubated for 1 hour at 37°C. After washing three times with PBS-T, secondary antibody (alkaline phosphatase conjugated goat anti-rabbit IgG) (Sigma) was diluted (1:10000) in PBS-M, and 100 μl was added to each well and again the plates were incubated for 1 hour at 37°C. The plates were washed again, and subsequently 100 μl of p-nitrophenylphosphate was added to each well. Thereafter, the plates were incubated at 37°C for 20 min and absorbance was measured at 405 nm. This, quantitative evaluation for reactivity of anti-FliC antibody was assessed by ELISA using (i) rFliC antigen as such as well as (ii) patient blood samples or healthy blood samples spiked with different concentrations of clinical isolates of serovar Typhi. Qualitative evaluation for assessing the reactivity of rFliC with the sera from patients suffering with typhoid fever (Widal positive) was performed by Western blotting as described by us earlier (Jindal et al. 2011).

Assessment of ex-vivo inflammatory potential of rFliC

Determination of malondialdehyde (MDA) Level

The amount of MDA formed (a measure of lipid peroxidation) in the culture supernatant of macrophages was assayed by the reaction with thiobarbituric acid (TBA) (Wills et al. 1966). The results were expressed as nanomoles of MDA per mg of protein, using the molar extinction coefficient of chromophore (1.56 x 10⁵ M⁻¹ cm⁻¹).

Determination of nitrite levels

The amount of nitric oxide in cell free supernatant was determined by Griess reaction (Green et al. 1982). The assay is based on the propensity of nitric oxide, oxidized to nitrate and nitrite under physiological conditions as described by Bharrhan et al. (2011). The nitrite levels in all the samples were quantified according to the standard graph of sodium nitrite.

Assessment of in-vivo inflammatory potential of rFliC

Paw oedema test

To assess the in-vivo inflammatory potential of rFliC protein by the oedema test qualitatively as well as quantitatively, mice were divided into the following groups, each comprising of six mice. Each mouse was injected intradermally with 0.1 mL of the following preparations in the dorsal foot pad of the left paw (Rishi et al. 2008), (i) 1% (w/v) of carrageenan (Hainan Kaiyang Trade Co. 2012, 255)
pH-4.5; (iv) 7.5

mercury column of plethysmometer, which was earlier
that every time paw was dipped to the same level in the
were marked above the tibiotarsal junctions to ensure
containing mercury. In brief, the paws of test animals
was done using an plethysmometer, which is instrument
for inflammation. Quantitative assessment of oedema
All the mice were observed at regular intervals up to 3 h
right paw of each mouse served as a negative control.

Compared with most other sequenced
confirmed through DNA sequencing by primer walking.

μ7.5

Salmonella enterica
(100% identity) (Parkhill et al. 2001). The pET
found to be similar to FliC from serovar Typhi Ty2
databank, the deduced amino acid sequence of FliC was
characterized using in-gel trypsin digestion followed
The over-expressed acid induced protein (AIP) was
peptide mass fingerprinting (MALDI-TOF) and
characterization of acid stress induced OMP
The expression of the recombinant FliC was analyzed by
SDS-PAGE. A clear band around 53 kDa was observed from
E. coli BL21 (DE3) harboring pGRP-1 after 8 h induc-
tion at 30°C using 0.4 mM IPTG concentration (Figure 1B).
The molecular mass of the rFliC was 53.2 kDa consisting of
1521 amino acid residues of FliC and 18 amino acid residues of C-terminal fusion segment. It contained the His\(_{6}\) affinity tag and a unique thrombin cleavage site.

The inter group variation was assessed using one
day analysis of variance (ANOVA) followed by Fischer’s
Statistical significance of the results was calcul-
ated at least at p< 0.05.

Results

Characterization of acid stress induced OMP
The expression of the recombinant FliC was analyzed by
SDS-PAGE. A clear band around 53 kDa was observed from
E. coli BL21 (DE3) harboring pGRP-1 after 8 h induc-
tion at 30°C using 0.4 mM IPTG concentration (Figure 1B).
The molecular mass of the rFliC was 53.2 kDa consisting of
1521 amino acid residues of FliC and 18 amino acid residues of C-terminal fusion segment. It contained the His\(_{6}\) affinity tag and a unique thrombin cleavage site.

The inter group variation was assessed using one
day analysis of variance (ANOVA) followed by Fischer’s
Statistical significance of the results was calcul-
ated at least at p< 0.05.

Results

Characterization of acid stress induced OMP
The expression of the recombinant FliC was analyzed by
SDS-PAGE. A clear band around 53 kDa was observed from
E. coli BL21 (DE3) harboring pGRP-1 after 8 h induc-
tion at 30°C using 0.4 mM IPTG concentration (Figure 1B).
The molecular mass of the rFliC was 53.2 kDa consisting of
1521 amino acid residues of FliC and 18 amino acid residues of C-terminal fusion segment. It contained the His\(_{6}\) affinity tag and a unique thrombin cleavage site.

The inter group variation was assessed using one
day analysis of variance (ANOVA) followed by Fischer’s
Statistical significance of the results was calcul-
ated at least at p< 0.05.

Results

Characterization of acid stress induced OMP
The expression of the recombinant FliC was analyzed by
SDS-PAGE. A clear band around 53 kDa was observed from
E. coli BL21 (DE3) harboring pGRP-1 after 8 h induc-
tion at 30°C using 0.4 mM IPTG concentration (Figure 1B).
The molecular mass of the rFliC was 53.2 kDa consisting of
1521 amino acid residues of FliC and 18 amino acid residues of C-terminal fusion segment. It contained the His\(_{6}\) affinity tag and a unique thrombin cleavage site.

The distribution of the expressed target protein in total
cell lystate, soluble fraction and in the insoluble fraction
was also analyzed by SDS-PAGE (data not shown). The
major proportion of target recombinant protein in cell lys-
ate was found to be accumulated in the precipitates and
only a trace amount was observed in the soluble fraction.

The recombinant His\(_{6}\)-FliC from the precipitates was shown to have recovered in the soluble form after dialysis.

Purification of rFliC
The thick band was separated on SDS-PAGE (Figure 1B, lane-3) by means of the affinity chromatography with Ni\(^{2+}\)-NTA resin. The recombinant FliC was found to be homogenous as indicated by a single protein band on
SDS-PAGE. The band of approximate 53 kDa corre-
sponded to the rFliC. The yield of purified rFliC protein
was in the range of 6–10 mg/L.

Biological implications of rFliC

In-vivo immunogenicity of rFliC
The titre of anti-rFliC antibodies in the hyper-immune
serum was found out to be 1: 10000 indicating the im-
munogenic potential of rFliC. An antibody titer is
defined as highest dilution of the antibody that gives
positive result with the minimum amount of antigen.
The reactivity of anti-rFliC antibodies with different con-
centrations of FliC of serovar Typhi has been shown in
Figure 2A. This clearly shows that the raised antibodies
could detect rFliC antigen to the level of 1.25 μg/mL.
Further, raised antibodies could also detect FliC in the
patient’s blood samples or healthy blood samples spiked
with cultured serovar Typhi (Figure 2B). This figure also
shows the absence of the antigen in unspiked healthy
blood sample. Reactivity of rFliC with the sera of typhoid
patients (Widal-positive) revealed its in-vivo immuno-
genicity. Out of 13 typhoid patients sera tested, 9 sera
were recognized by rFliC protein (Figure 2C). In con-
trast, none of the six normal sera from apparently
healthy individuals reacted with this protein.

Effect of rFliC on macrophage inflammatory molecules
(Ex-vivo)

MDA levels
On interacting the macrophages with the rFliC (Figure 3)
it was found that the protein could stimulate the
macrophages to produce significantly higher MDA levels (p<0.001) as compared to that of the macrophages interacted with *Salmonella enterica* serovar Typhi cells (p<0.05), OMPs of serovar Typhi grown under normal conditions and with OMPs of serovar Typhi grown under acid stress conditions (p<0.05).

Nitrite Levels

The rFliC significantly (p<0.001) increased the nitrite levels also (Figure 4), generated by macrophages as compared to level generated by macrophages interacted with serovar Typhi cells, OMPs of serovar Typhi under normal conditions and with OMPs of serovar Typhi under normal conditions and with OMPs of serovar Typhi under acid stress conditions (p<0.05).

Figure 1 Schematic presentation of the pET28c+ vector construct (6887 bp) containing the *fliC* gene responsible for the expression of rFliC designated as pGRP-1. Figure 1B: Expression of the purified rFliC by SDS-PAGE. Lanes-1, 2 & 3: A single band of purified rFliC (different amount of protein) observed after Ni²⁺-NTA affinity chromatography of cell lysate of IPTG induced *E. coli* BL21 (DE3) cells; & 4: Standard Protein Molecular Weight Marker (broad range).

Figure 2 Detection of recombinant FliC protein of serovar Typhi (r-FliC) by ELISA using anti-rFliC antibody. This shows the detection of FliC in different concentrations indicating the FliC variability. Figure 2B: Detection of FliC antigen in clinical samples. Representative bars shows healthy blood samples spiked with cultured serovar Typhi (BS1 to BS4) and patient’s blood samples (PS5 to PS7) using anti-r-FliC antibody by ELISA. NC is negative control i.e. unspiked healthy blood sample. Figure 2C: Western blots analysis showing the reactivity of rFlic with patients’ sera. Lanes-1,3,5,7,8 &10-12: Ni²⁺-NTA purified rFliC of serovar Typhi showing reactivity with typhoid patient (Widal positive) serum on PVDF membrane; Lane-4: Ni²⁺-NTA purified rFliC of serovar Typhi showing no reactivity with patients’ serum.
Inflammatory potential of rFliC (In-vivo)

Mouse paw oedema test

The animals started developing oedema 20 min. after the injection and maximum oedema could be observed in all the groups at 3 h post injection. Inflammation was found to be the maximum in the mice injected with carrageenan (used as positive control) as compared to all the groups (Figure 5A &B). However, no inflammation was observed in the right paw of mice injected with normal saline which served as negative control. Amongst the remaining test groups, the magnitude of inflammation was observed to be the maximum with rFliC (Figure 5C) as compared to the normal and acid-induced OMPs.

Hyperalgesic response

Thermal hyperalgesia depicts the response of mice with inflamed paws depending upon the time required for the withdrawal (flicking response) of the paw injected with different protein preparations (normal OMPs, Acid-induced OMPs and rFliC) (Figure 6). The flicking response observed was the fastest (i.e. time required for the paw withdrawal was the lowest) in case of the paw injected with rFliC indicating thermal hyperalgesic response of mouse to rFliC.

Discussion

The gene encoding acid induced phenotype (AIP) in Salmonella was identified to be fliC gene in the previous study (Jindal et al. 2011). In the present report, serovar Typhi fliC gene was cloned, expressed and the recombinant protein was purified to assess the possible biological implications of this dynamic protein.

The in-vivo immunogenicity of rFliC was indicated by its ability to induce the production of antibodies and to react with them, which is in concordance with our previous study (Chander et al. 2004). Recognitions of FliC in the clinical isolates/samples using anti-FliC antibody also make the above mentioned observation more precise. Furthermore, the reactivity of FliC with the sera of typhoid patients (Widal positive) showed that anti-rFliC antibodies are produced in the serum during the natural course of infection. This observation is in agreement with the earlier study wherein acid-induced OMPs from serovar Typhi were found to be immunogenic in-vivo (Maripandi et al. 2010). Although the sera collected from patients suffering with pyrexia (but Widal test negative) did not react with this protein, sera from patients with non serovar Typhi bacteraemia along with a larger number of typhoid patient sera need to be screened to determine the specificity and the diagnostic utility of this protein.

Macrophages represent an important host defense mechanism. The ability of Salmonella to survive and replicate within these cells is thought to be one of the major determinants for Salmonella pathogenesis (Farr et al. 1986 and Schwan et al. 2000). There is considerable evidence that during Salmonella-induced infection, excessive generation of reactive oxygen species (ROS), like inflammatory molecules occurs which results into lipid peroxidation thereby causing damage to the host cell (Pacher et al. 2007). Many workers have used MDA
level as an index of tissue damage since it is a stable product of oxidative attack of ROS on unsaturated fatty acids. From the present study also, it is interesting to observe that r-FliC alone could induce levels of MDA comparable to that with normal outer membrane proteins (OMPs) which in fact gives the combined effect of several outer membrane proteins, indicating thereby the higher inflammatory potential of FliC moiety.

Nitric oxide (NO), is another important signaling molecule that acts in many tissues to regulate a diverse range of physiological processes (Moncada et al. 1991). However, excessive amount of NO is potentially toxic and has been implicated in numerous pathological situations and chronic inflammation (Bogdan et al. 2001). Reactive nitrogen intermediates (RNI) such as nitrites are known to be the end products of labile nitric oxide and their quantification is regarded as an indicator of NO generation (Chanana et al. 2007b). Increased level of nitrite in presence of FliC observed in the present study appears to be attributed to TNF-α levels which is known for its potent immuno-stimulating activity of iNOS further increasing the NO level (Eaves-Pyles et al. 2001). This observation was also supported by earlier findings wherein flagellin has been reported to induce the expression of several inflammatory mediators including TNF-α and NO (Ciacci-Woolwine et al. 1998; Liaudet et al. 2003 and Zeng et al. 2003)]. Therefore, it is indicated that inflammatory potential of flagellin may be residing at least partly in the FliC subunit, a
component of outer membrane of the bacteria. Earlier also, it has been reported that stress induced protein(s) do increase the levels of molecule such MDA and NO (Chander et al. 2006 and Chanana et al. 2007).

The ensuing inflammatory response of the intestinal mucosa has long been associated with Salmonella virulence (Valdez et al. 2009). It is known that OMPs have the potential to induce inflammatory reaction along with the release of cytokines (Chanana et al. 2005). In the present study also, the rFliC (an outer membrane phenotype) being the subunit of flagellar complex might have induced inflammation through the increased generation of pro-inflammatory mediators such as MDA and nitrite. Further, rFliC induced thermal hyperalgesia (flicking response) observed during inflammation may be due to the increased diacylglycerol levels. This in turn may activate protein kinase C (PKC) causing changes in pain perception (Pacher et al. 2007).

Therefore, the present study indicates the in-vivo immunogenic and inflammatory potential of flagellin (FliC) phenotype which is an integral part of flagellar motor complex, resides in the outer membrane of the serovar Typhi. Given the role of FliC in these biological implications, this phenotype may be another component of ATR, enhancing the virulence of the pathogen in vivo. Manipulating the expression of this protein may be helpful in formulating strategies for developing preventive intervention against Salmonella infection.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
PR designed the experiments, analyzed the results and drafted the manuscript. RT provided help in developing the recombinant protein, AG designed the primer and helped in cloning experiment. GJ and SKP provided help in developing the recombinant protein. ATR, enhancing the virulence of the pathogen

Acknowledgement
The authors wish to thank Indian Council of Medical Research (ICMR), New Delhi, India for providing financial assistance to carry out this work. The authors also wish to thank Ocimum Biosolutions, Hyderabad for providing financial assistance to carry out this work. The manuscript.

Author details
1Department of Biotechnology, Panjab University, Chandigarh 160014, India.
2Department of Microbiology, Basic Medical Sciences Block, Panjab University, Chandigarh 160014, India.

Received: 27 September 2012 Accepted: 29 September 2012 Published: 15 October 2012

References
Beasor BL, Wilson L, Foster JW (1998) A low pH inducible, PhoP/Q dependent acid tolerance response protects Salmonella Typhimurium against inorganic acid stress. J Bacteriol 180:2409–2417
Bharhan S, Chopra K, Arora SK, Toor JS, Rishi P (2011) Down-regulation of NF-kappaB signalling by polyphenolic compounds prevents endotoxin-induced liver injury in a rat model. Innate Immun 18:70–79
Bogdan C (2001) Nitric oxide and the immune response. Nature Immunol 2:907–916
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Chanana V, Majumdar S, Rishi P (2007a) Involvement of caspase-3, lipid peroxidation and TNF-alpha in causing apoptosis of macrophages by coordinately expressed Salmonella phenotype under stress conditions. Mol Immunol 44:1511–1518
Chanana V, Ray P, Rishi DB, Rishi P (2007b) Reactive nitrogen intermediates and monokines induce caspase-3 mediated macrophage apoptosis by anaerobically stressed Salmonella Typhi. Clin Exp Immunol 150:368–374
Chanana V, Selhgal R, Rishi P (2005) Salmonella Typhi iron-regulated outer membrane proteins cause oedema and hyperalgesia during inflammation induced in rat model. J Med Microbiol 54:421–423
Chander H, Majumdar S, Sapru S, Rishi P (2006) 55 kDa outer-membrane protein from short-chain fatty acids exposed Salmonella enterica veroTyphi induces apoptosis in macrophages. Antonie Leeuwenhoek 89:317–323
Chander H, Majumdar S, Sapru S, Rishi P (2004) Reactivity of typhoid patients sera with stress induced 55 kDa phenotype in Salmonella enterica serovar Typhi. Mol Cell Biochem 267:75–82
Choudhary A, Tiwari RP, Koul A, Chanana V, Gupta S, Rishi P (2005) Role of Salmonella surface components in immunomodulation of inflammatory mediators. Mol Cell Biochem 270:167–175
Ciacci-Woelwine F, Bloemfold IC, Richardson SH, Mizel SB (1998) Salmonella flagellin induces tumor necrosis factor-alpha in a human promonocytic cell line. Infect Immun 66:1127–1134
Cruz NAAD, Calvia E (2010) The complexities of Porin genetic regulation. J Mol Microbiol Biotechnol 18:234–36
Diacovich L, Gorvel JP (2010) Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol 8:117–128
Eaves-Pyles T, Murthy K, Laudeit L, Virag L, Ross G, Soriano FG, Szabo C, Salzman AL (2001) Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: Iba-8 degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction. J Immunol 166:1248–1260
Farr SB, Ari DR, Tourt D (1986) Oxyen dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc Natl Acad Sci USA 83:8268–8272
Green LC, Wagner DA, Glogowski J, Shipper PL, Wishnok J, Rannerbaum SR (1982) Analysis of nitrate, nitrite and 15 N nitrate in biological fluids. Anal Biochem 126:121–158
Jindal G, Tewari R, Rishi P (2011) Acid induced outer membrane phenotype in Salmonella Typhi–a gene product of rfc. Am J Biomed Sci 3:23–30
Kieboom J, Abebe T (2006) Arginine-dependent acid resistance in Salmonella enterica serovar Typhimurium. J Bacteriol 188:5650–5653
Laudeit L, Szabo C, Evgenov OV, Murthy KG, Pacher P, Virag L, Mabley JC, Marton A, Soriano FG, Kiov MY, Bjornans LJ, Salzman AL (2003) Flagellin from Gram-negative bacteria is a potent mediator of acute pulmonary inflammation in sepsis. Shock 19:131–137
Maripandi A, Salamah AAA (2010) Analysis of Salmonella enteritidis outer membrane proteins and lipopolysaccharide profiles with the detection of immune dominant proteins. Am J Immunol 61–6
Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, patho-physiology and pharmacology. Pharmacol Rev 43:109
Pacher P, Beckman JS, Laudeit L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424
Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KJ, Bentley SD, Holden MT, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connor J, Cronin A, Davis P, Davies RM, Dowd W, Draper L, White N, Fairn J, Feltwell T, Harlin N, Haque A, Hen T, Holroyd S, Jagels K, Krogh A, Larsen TS et al (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852
Preet S, Verma I, Rishi P (2010) Cryptdin-2: a novel therapeutic agent for experimental Salmonella Typhimurium infection. J Antimicrob Chemother 65:991–994
Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York
Schwan W, Huang X, Hu L, Kopecko D (2000) Differential bacterial survival, replication, and apoptosis inducing ability of Salmonella serovars within human and murine macrophages. Infect Immun 68:1005–1013
Shafaini S, Sharma M, Vohra RM, Tevar R (2005) Cloning and characterization of aspartate-B-semialdehyde dehydrogenase from Mycobacterium tuberculosis H37Rv. J Appl Microbiol 98:832–938
Valdez Y, Ferreira RB, Finlay BB (2009) Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol 337:93–127
Wills ED (1966) Mechanism of lipid peroxidation formation in animal tissues. Biochem J 99:667–676
Zeng H, Carlson AQ, Guo Y, Yu Y, Hyaams LSC, Madara JL, Gewirtz AT, Neish AS (2003) Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol 171:3668–3674

doi:10.1186/2191-0855-2-55
Cite this article as: Jindal et al: Immunological characterization of recombinant Salmonella enterica serovar Typhi FliC protein expressed in Escherichia coli. AMB Express 2012 2:55.