Some Applications of Generalized Mountain Pass Lemma

FENGYING LI*

The School of Economic and Mathematics, Southwestern University of Finance and Economics,
Chengdu 611130, China

BINGYU LI AND SHIQING ZHANG

College of Mathematics, Sichuan University, Chengdu 610064, People’s Republic of China

Abstract

The Ghoussoub-Preiss’s generalized Mountain Pass Lemma with Cerami-Palais-Smale type condition is a generalization of classical MPL of Ambrosetti-Rabinowitz, we apply it to study the existence of the periodic solutions with a given energy for some second order Hamiltonian systems with symmetrical and non-symmetrical potentials.

Key Words: Second order Hamiltonian systems, periodic solutions, Ghoussoub-Preiss’s Generalized Mountain Pass Lemma, Cerami-Palais-Smale condition at some levels for a closed subset.

2000 Mathematical Subject Classification: 34C15, 34C25, 58F.

1. Introduction and Main Results

In 1948, Seifert([17]) studied the periodic solutions of the Hamiltonian systems using geometrical and topological methods; in 1978 and 1979, Rabinowitz([15,16]) studied the periodic solutions of the Hamiltonian systems using global variational methods; in 1980’s, Benci ([4]) and Gluck-Ziller([9]) and Hayashi([11]) used Jacobi metric and very complicated geodesic methods and algebraic topology to study the periodic solutions for second order Hamiltonian systems with a fixed energy:

\[
\begin{align*}
\ddot{q} + V'(q) &= 0 \\
\frac{1}{2} |\dot{q}|^2 + V(q) &= h
\end{align*}
\]

They proved the following very general theorem:

*Email:lify0308@163.com
Theorem 1.1 Suppose $V \in C^1(\mathbb{R}^n, \mathbb{R})$, if
\[\{ x \in \mathbb{R}^n | V(x) \leq h \} \]
is bounded, and
\[V'(x) \neq 0, \quad \forall x \in \{ x \in \mathbb{R}^n | V(x) = h \}, \]
then the (1.1)-(1.2) has a periodic solution with energy h.

For the existence of multiple periodic solutions for (1.1)-(1.2), we can refer Groessen([10]) and Long [12] and the references there.

Ambrosetti–Coti Zelati([1]) used Ljusternik-Schnirelmann theory with classical $(PS)^+$ compact condition to get the following Theorem:

Theorem 1.2 Suppose $V \in C^2(\mathbb{R}^n \setminus \{0\}, \mathbb{R})$ satisfies:
- $(A1). 3V'(x) \cdot x + V''(x)x \cdot x \neq 0, \forall x \in \Omega = \mathbb{R}^n \setminus \{0\}$;
- $(A2). V'(x) \cdot x > 0, \quad \forall x \in \Omega$;
- $(A3'). \exists \alpha \in (0, 2), such that
 \[V'(x) \cdot x \geq -\alpha V(x), \quad \forall x \in \Omega; \]
- $(A4'). \exists \delta \in (0, 2) \text{ and } r > 0, such that
 \[V'(x) \cdot x \leq -\delta V(x), \quad \forall 0 < |x| \leq r; \]
- $(A5'). \liminf_{|x| \to +\infty} \left[V(x) + \frac{1}{2} V'(x) \cdot x \right] \geq 0.$

Then $\forall h < 0$ the system (1.1)-(1.2) has at least a non-constant weak periodic solution which satisfies (1.1)-(1.2) pointwise except on a zero-measurable set.

Ambrosetti-Coti Zelati ([2]) used a variant of the classical Mountain-Pass Lemma and a constraint minimizing method to get the following Theorems:

Theorem 1.3 Suppose $V \in C^1(\mathbb{R}^n \setminus \{0\}, \mathbb{R})$ satisfies:
- $(V1). V(-\xi) = V(\xi), \forall \xi \in \Omega = \mathbb{R}^n \setminus \{0\}$;
- $(V2). \exists \alpha \in [1, 2), such that
 \[\nabla V(\xi) \cdot \xi \geq -\alpha V(\xi) > 0, \quad \forall \xi \in \Omega; \]
- $(V3). \exists \delta \in (0, 2) \text{ and } r > 0, such that
 \[\nabla V(\xi) \cdot \xi \leq -\delta V(\xi), \quad \forall 0 < |\xi| \leq r; \]
- $(V4). V(\xi) \to 0, \quad \text{as } |\xi| \to +\infty.$

Then $\forall h < 0$, the problem (1.1) – (1.2) has a weak periodic solution.
\textbf{Theorem 1.4} Suppose V satisfies (V1), (V3), (V4) and
\quad (V2'). \exists \alpha \in (0, 2), \text{ such that }
\quad \nabla V(\xi) \cdot \xi \geq -\alpha V(\xi) > 0, \ \forall \xi \in \Omega;
\quad (V5). V \in C^2(\Omega, \mathbb{R}) \text{ and }
\quad 3 \nabla V(\xi) \cdot \xi + V''(\xi) \cdot \xi > 0.

Then for any $h < 0$, (1.1) - (1.2) has a weak periodic solution.

\textbf{Theorem 1.5} Suppose $V \in C^1(\mathbb{R}^n \setminus \{0\}, \mathbb{R})$ satisfies:
\quad (V_1). V(-q) = V(q);
\quad (V_2). There are constant $0 < \alpha < 2$ such that
\quad \langle V'(q), q \rangle \geq -\alpha V(q) > 0, \ \forall q \in \mathbb{R}^n \setminus \{0\};
\quad (V_3). \exists \delta \in (0, 2), r > 0, \text{ such that }
\quad \langle V'(q), q \rangle \leq -\delta V(q), \ \forall 0 < |q| \leq r;
\quad (V_4). V(q) \to 0, \text{ as } |q| \to +\infty.

Then for any given $h < 0$, the system (1.1) - (1.2) has at least a non-constant weak periodic solution which can be obtained by Mountain Pass Lemma.

Motivated by these papers, we use Ghoussoub-Preiss’s Generalized Mountain Pass Lemma with Cerami-Palais-Smale condition at some levels for a closed subset to study the new periodic solutions with symmetrical and non-symmetrical potentials, we obtain the following Theorems:

\textbf{Theorem 1.6} Suppose $V \in C^1(\mathbb{R}^n, R)$ and $h \in R$ satisfies
\quad (B_1). V(-q) = V(q).
\quad (B_2). \exists \mu_1 > 0, \mu_2 \geq 0, s.t. V'(q) \cdot q \geq \mu_1 V(q) - \mu_2.
\quad (B_3). V(q) \geq h, |q| \to +\infty.
\quad (B_4). \forall q \neq 0, 3V'(q) \cdot q + V''(q)q \cdot q \neq 0.

Then for any $h > \frac{\mu_2}{\mu_1}$, (1.1) - (1.2) has at least one non-constant periodic solution with the given energy h, which can be obtained by the generalized MPL method.

\textbf{Corollary 1.1} Suppose $a > 0, \mu_1 \geq 2, \mu_2 \geq 0, V(q) = a|q|^\mu_1 + \frac{\mu_2}{\mu_1},$ then the conditions of Theorem 1.1 hold and for any $h > \frac{\mu_2}{\mu_1}$, (1.1) - (1.2) has at least two non-constant periodic solution with the given energy h.

\textbf{Theorem 1.7} Suppose $V \in C^1(\mathbb{R}^n, R)$ and $h \in R$ satisfies (B_2), (B_3) and (B_5)
\quad \exists r > 0, s.t.
\quad \inf_{u \in F} \int_0^1 (h - V(u)) dt > 0,
\quad \text{where}
\quad F \triangleq \{ u \in H^1 | \| \dot{u} \|_{L^2} = r \}.

Then $\forall h > \frac{\mu_2}{\mu_1}$, (1.1)-(1.2) has at least one non-constant periodic solution with energy h.

3
2 A Few Lemmas

Define Sobolev space:

\[H^1 = W^{1,2}(R/TZ, R^n) = \{u : R \rightarrow R^n, u \in L^2, \dot{u} \in L^2, u(t+1) = u(t)\} \]

Then the standard \(H^1\) norm is equivalent to

\[\|u\| = \|u\|_{H^1} = \left(\int_0^1 |\dot{u}|^2 dt \right)^{1/2} + |\int_0^1 u(t) dt|. \]

Lemma 2.1 ([1,10]) Let \(f(u) = \frac{1}{2} \int_0^1 |\dot{u}|^2 dt \int_0^1 (h-V(u)) dt\) and \(\bar{u} \in H^1\) be such that \(f'(\bar{u}) = 0\) and \(f(\bar{u}) > 0\). Set

\[\frac{1}{T^2} = \frac{\int_0^1 (h-V(\bar{u})) dt}{\frac{1}{2} \int_0^1 |\dot{u}|^2 dt} \quad (2.1) \]

Then \(\bar{q}(t) = \bar{u}(t/T)\) is a non-constant \(T\)-periodic solution for (1.1)-(1.2).

By symmetry condition \((B_1)\), similar to Ambrosetti-Coti Zelati [2], let

\[E_1 = \{u \in H^1 = W^{1,2}(R/Z, R^n), u(t+1/2) = -u(t)\} , \]

\[E_2 = \{u \in H^1 = W^{1,2}(R/Z, R^n), u(-t) = -u(t)\} . \]

By the symmetrical condition \((B_1)\) and Palais’s symmetrical principle([14]) or similar proof of [1,2], we have

Lemma 2.2 If \(\bar{u} \in E_i\) is a critical point of \(f(u)\) and \(f(\bar{u}) > 0\), then \(\bar{q}(t) = \bar{u}(t/T)\) is a non-constant \(T\)-periodic solution of (1.1)-(1.2).

Using the famous Ekeland’s variational principle, Ekeland proved

Lemma 2.3 (Ekeland[7]) Let \(X\) be a Banach space, \(F \subset X\) be a closed (weakly closed) subset. Suppose that \(\Phi\) defined on \(F\) is Gateaux-differentiable and lower semi-continuous (or weakly lower semi-continuous) and bounded from below. Then there is a sequence \(x_n \subset F\) such that

\[\Phi(x_n) \rightarrow \inf_{F} \Phi \]

\[(1 + \|x_n\|)\|\Phi'(x_n)\| \rightarrow 0. \]

Motivated by the paper of Cerami[6], Ekeland [7], Ghoussoub-Preiss[8] presented a weaker compact condition than the classical \((CPS)_c\) condition:

Definition 2.1 ([7,8]) Let \(X\) be a Banach space, \(F \subset X\) be a closed subset, let \(\delta(x, F)\) denotes the distance of \(x\) to the set \(F\). Suppose that \(\Phi\) defined on \(X\) is Gateaux-differentiable, if sequence \(\{x_n\} \subset X\) such that

\[\delta(x_n, F) \rightarrow 0, \]

\[\Phi(x_n) \rightarrow c, \]
\[(1 + \|x_n\|)\|\Phi'(x_n)\| \to 0,\]

then \(\{x_n\}\) has a strongly convergent subsequence.

Then we call \(f\) satisfies \((CPS)_{c,F}\) condition at the level \(c\) for the closed subset \(F \subset X\), we denote it as \((CPS)_{c,F}\).

We can give a weaker condition than \((CPS)_{c}\) condition:

Definition 2.2 Let \(X\) be a Banach space. \(F \subset X\) be a weakly closed subset. Suppose that \(\Phi\) defined on \(X\) is Gateaux-differentiable, if sequence \(x_n\) such that

\[\delta(x_n, F) \to 0,\]

\[\Phi(x_n) \to \gamma,\]

\[(1 + \|x_n\|)\|\Phi'(x_n)\| \to 0,\]

then \(\{x_n\}\) has a weakly convergent subsequence.

Then we call \(f\) satisfies \((W CPS)_{c,F}\) condition.

Now by **Lemma 2.3**, it’s easy to prove

Lemma 2.4 Let \(X\) be a Banach space,

(i). Let \(F \subset X\) be a closed subset. Suppose that \(\Phi\) defined on \(X\) is Gateaux-differentiable and lower semi-continuous and bounded from below, if \(\Phi\) satisfies \((CPS)_{\inf \Phi,F}\) condition, then \(\Phi\) attains its infimum on \(F\).

(ii). Let \(F \subset X\) be a weakly closed subset. Suppose that \(\Phi\) defined on \(F\) is Gateaux-differentiable and weakly lower semi-continuous and bounded from below, if \(\Phi\) satisfies \((W CPS)_{\inf \Phi,F}\) condition, then \(\Phi\) attains its infimum on \(F\).

Definition 2.3 ([7,8]) Let \(X\) be a Banach space, \(F \subset X\) be a closed subset. If \(z_0, z_1\) belong different disjoint connected components in \(X \setminus F\), then we call \(F\) separates \(z_0\) and \(z_1\).

Motivated by the famous classical Mountain Pass Lemma of Ambrosetti-Rabinowitz [3], Ghoussoub-Preiss [8] gave a generalized MPL:

Lemma 2.5 (Ghoussoub-Preiss’s generalized MPL [8],[7]) Let \(X\) be a Banach space. Suppose that \(\Phi(u) : X \to R\) is a continuous Gateaux-differentiable function with \(\Phi' : X \to X^*\) norm-to-weak* continuous. Take two points \(z_0, z_1\) in \(X\), and define

\[\Gamma = \{c \in C^0([0, 1]; X)|c(0) = z_0, c(1) = z_1\}\]

\[\gamma = \inf_{c \in \Gamma} \max_{0 \leq t \leq 1} \Phi(c(t))\]

Let \(F \subset X\) be a closed subset separating \(z_0\) and \(z_1\). Assume that

\[\Phi(x) > \max\{\Phi(z_0), \Phi(z_1)\}, \forall x \in F,\]

\(\Phi\) satisfies condition \((CPS)_{\gamma,F}\) on the level \(\gamma\) for the set \(F\). Then there is a critical point of \(\Phi\) on the level \(\gamma\).
3 The Proof of Theorem 1.6

We define weakly closed subsets of H^1:

$$F = \{ u \in H^1 \mid \int_0^1 (V(u) + \frac{1}{2} V'(u) u) dt = h \}.$$

$$F_i = \{ u \in E_i \mid \int_0^1 (V(u) + \frac{1}{2} V'(u) u) dt = h \}, i = 1, 2.$$

Lemma 3.1 If $(B_2) - (B_4)$ hold, then $F, F_1, F_2 \neq \emptyset$.

Proof Similar to the proof of [1]. Let $u \in H^1, u \neq 0$ be fixed. For $a > 0$, let

$$g_a(u) = g(au) = \int_0^1 [V(au) + \frac{1}{2} V'(au) au] dt$$

By $(B_4) \frac{d}{da} g_a(u) \neq 0$, so g_a is strictly monotone. Notice that

$$g_a(0) = g(0) = V(0) \leq \frac{\mu_2}{\mu_1}$$

When a is large, we use $(B_2) - (B_3)$ to have

$$g_a(0) = g(0) = V(0) \leq \frac{\mu_2}{\mu_1}$$

Therefore, we have

$$g_a(+\infty) = g(+\infty) > h$$

So for any given $u \in H^1, u \neq 0$, there is $a(u) > 0$ such that $a(u)u \in F$. Similarly we can prove that for any given $u \in E_i, u \neq 0$, there is $a(u) > 0$ such that $a(u)u \in F_i$.

Lemma 3.2 If $(B_1), (B_2)$ and (B_4) hold, then for any given $c > 0, f(u)$ satisfies $(CPS)_{c,F_i}$ condition, that is: If $\{ u_n \} \subset H^1$ satisfies

$$\delta(u_n, F_i) \to 0, f(u_n) \to c > 0, \quad (1 + \| u_n \|) f'(u_n) \to 0. \quad (3.1)$$

Then $\{ u_n \}$ has a strongly convergent subsequence.

Proof Notice that $\forall u \in E_i, \int_0^1 u(t) dt = 0$, so we know $\| u \|_{E_i} \triangleq (\int_0^1 |\dot{u}|^2 dt)^{1/2}$ is an equivalent norm on E_i. Now from $f(u_n) \to c$, we have

$$-\frac{1}{2} \| u_n \|_{E_i}^2 \cdot \int_0^1 V(u_n) dt \to c - \frac{h}{2} \| u_n \|_{E_i}^2 \quad (3.2)$$
By (B_2) we have

\[< f'(u_n), u_n > = \|u_n\|^2_{E_i} \cdot \int_0^1 (h - V(u_n) - \frac{1}{2} < V'(u_n), u_n >) dt \]

\[\leq \|u_n\|^2_{E_i} \int_0^1 [h + \frac{\mu_2}{2} - (1 + \frac{\mu_1}{2})V(u_n)] dt \] \hspace{1cm} (3.3)

By (3.2) and (3.3) we have

\[< f'(u_n), u_n > \leq (h + \frac{\mu_2}{2})\|u_n\|^2_{E_i} + (1 + \frac{\mu_1}{2}) (2c - h)\|u_n\|^2_{E_i} \]

\[= (-\frac{\mu_1}{2}h + \frac{\mu_2}{2})\|u_n\|^2_{E_i} + C_1 \] \hspace{1cm} (3.4)

Where \(C_1 = 2(1 + \frac{\mu_1}{2})c\)

Since \(h > \frac{\mu_2}{\mu_1}\), then (3.1)and (3.4) imply \(\|u_n\|_{E_i}\) is bounded.

The rest for proving \(\{u_n\}\) has a strongly convergent subsequence is standard.

Remark 3.1 We notice that in our proof, we didn’t use the condition

\[\delta(u_n, F_i) \to 0. \] \hspace{1cm} (3.5)

It seems interesting to efficiently use this condition to weak our assumptions.

Lemma 3.2 Let

\[G = \{u \in H^1 | \int_0^1 (V(u) + \frac{1}{2}V'(u)u) dt < h\}; \] \hspace{1cm} (3.6)

\[G_i = \{u \in E_i | \int_0^1 (V(u) + \frac{1}{2}V'(u)u) dt < h\}. \] \hspace{1cm} (3.7)

Then

(i). \(F, F_i, i = 1, 2\) are respectively the boundaries of \(G, G_i\).
(ii).If (B_1) holds, then \(F, F_i, G, G_i\) are symmetric with respect to the origin 0.
(iii).If \(V(0) < h\) holds, then \(0 \in G, G_i, i = 1, 2\).

It’s not difficult to prove the following two Lemmas:

Lemma 3.3 \(f(u)\) is weakly lower semi-continuous on \(H^1\) and \(F, F_i\).

Lemma 3.4 \(F, F_i, i = 1, 2\) are weakly closed subsets in \(H^1\).

Lemma 3.5 The functional \(f(u)\) has positive lower bound on \(F_i\).

Proof By the definitions of \(f(u)\) and \(F_i\), we have

\[f(u) = \frac{1}{4} \int_0^1 |\dot{u}|^2 dt \int_0^1 (V'(u)u) dt, u \in F_i. \] \hspace{1cm} (3.8)

For \(u \in F_i\) and (B_2) ,we have

\[\frac{1}{2} V'(u)u = h - V(u) \geq h - \frac{1}{\mu_1} V'(u)u - \frac{\mu_2}{\mu_1}, \]

\[\Rightarrow \frac{1}{2} V'(u)u \geq h - \frac{1}{\mu_1} V'(u)u - \frac{\mu_2}{\mu_1} \]

\[\Rightarrow \frac{1}{2} V'(u)u \geq \frac{\mu_1}{\mu_1} V'(u)u - \frac{\mu_2}{\mu_1} \]

\[\Rightarrow \frac{1}{2} V'(u)u \geq \frac{\mu_1 - \mu_2}{\mu_1} V'(u)u \]

\[\Rightarrow \frac{1}{2} V'(u)u \geq a V'(u)u \]

\[\Rightarrow f(u) \geq \frac{a}{2} \int_0^1 |\dot{u}|^2 dt \int_0^1 (V'(u)u) dt, u \in F_i. \]
\[V'(u)u \geq \frac{h - \frac{\mu_2}{\mu_1}}{2 + \frac{1}{\mu_1}} > 0. \]

So we have the functional \(f(u) \geq 0 \). Furthermore, we claims that
\[
\inf_{f_2} f(u) > 0,
\]
(3.9)
since otherwise, \(u(t) = \text{const} \) attains the infimum 0.

If \(u \in F_i \), then by the symmetry \(u(t + 1/2) = -u(t) \) or \(u(-t) = -u(t) \), we know \(u(t) = 0, \forall t \); by \((B_2) \) we have \(V(0) \leq \frac{\mu_2}{\mu_1} \), by \(h > \frac{\mu_2}{\mu_1} \), we have \(V(0) < h \). By the definition of \(F_i \), \(0 \notin F_i \). So
\[
\inf_{f_2} f(u) > 0.
\]
(3.10)

Now by Lemmas 3.1-3.5 and Lemma 2.4, we know \(f(u) \) attains the infimum on \(F_i \), and we know that the minimizer is nonconstant.

Lemma 3.6 \(\exists z_1 \neq 0, z_1 \in H^1 \) s.t. \(f(z_1) \leq 0 \).

Proof For any given \(y_1 \neq \text{const}, \dot{y}_1 \neq 0 \), so \(\min |y_1(t)| > 0 \), we let \(z_1(t) = R y_1(t) \), then when \(R \) is large enough, by condition \((B_3) \), we have
\[
\int_0^1 (h - V(z_1)) dt \leq 0,
\]
(3.11)
that is,
\[
f(z_1) \leq 0.
\]
(3.12)

Lemma 3.7 \(f(0) = 0 \).

Lemma 3.8 \(F_i \) separates \(z_1 \) and 0.

Proof By \(V(0) < h \), we have that \(0 \in G_i \). By \((B_2) \) and \((B_3) \) and \(h > \frac{\mu_2}{\mu_1} \), we can choose \(R \) large enough such that
\[
z_1 = R y_1 \in \{ u \in H^1 | \int_0^1 (V(u) + \frac{1}{2} V'(u) u) dt \geq (1 + \frac{\mu_1}{2}) \int_0^1 V(u) dt - \frac{\mu_1}{2} \geq (1 + \frac{\mu_1}{2}) h - \frac{\mu_1}{2} > h \}.
\]

So \(F_i \) separates \(z_1 \) and 0.

Now by Lemmas 2.4-2.5, 3.1-3.8, we can prove Theorem 1.6.

4 The Proof of Theorem 1.7

Let
\[
F = \{ u \in H^1 | ||\dot{u}||_{L^2} = r \}.
\]
\[G_1 = \{ u \in H^1 \| \dot{u} \|_{L^2} < r \}, \]
\[G_2 = \{ u \in H^1 \| \dot{u} \|_{L^2} > r \}. \]

Then \(H^1 \setminus F = G_1 \cup G_2. \)

Notice that we can use \((B_5)\) to get that
\[F \cap \{ u \in H^1 \| f(u) \geq c \} = \{ u \in H^1, \frac{1}{2} \int_0^1 (h - V(u))dt \geq c \}, \]
\[H^1 \setminus (F \cap \{ u \in H^1 \| f(u) \geq c \}) = \{ u \in H^1 \| \dot{u} \|_{L^2} < r \} \cup \{ u \in H^1 \| \dot{u} \|_{L^2} > r \} \cup \{ u \in H^1 \| f(u) < c \}. \]

It’s easy to see \(u_1 = 0 \in G_1, \) we choose \(u_2 \) such that \(\| u_2 \|_{L^2} > r, \) so \(u_2 \in G_2. \) Now every path \(g(t) \) connecting \(u_1 \) and \(u_2 \) must pass \(F, \) so we have
\[\max_{0 \leq t \leq 1} f(g(t)) \geq \inf_{u \in F} f(u) = \left(\frac{1}{2} r^2 \right) \inf_{u \in F} \int_0^1 (h - V(u)) \geq c > 0. \]

So from the above, in order to apply Ghoussoub-Preiss’s generalized MPL, now we only need to prove the closed set \(F \) separate \(u_1 \) and \(u_2 \) and \(f \) satisfies \((CPS)_{c,F}.\)

From the definitions of the set \(F \) and \(u_1 \) and \(u_2, \) we know \(F \) separate \(u_1 \) and \(u_2. \)

In order to prove \(f \) satisfies \((CPS)_{c,F}\) for any \(c > 0, \) firstly, from \((B_2),\) similar to the proof of Lemma 3.1, we can get \((\int_0^1 |\dot{u}_n|^2 dt)^{1/2}\) is bounded, then by \((B_3),\) we prove that \(|u_n(0)|\) is bounded. In fact, if otherwise, there exists a subsequence, we still denote it as \(\{u_n(0)\} \) satisfying
\[|u_n(0)| \rightarrow +\infty. \]

By Newton-Leibniz formula and Cauchy-Schwarz inequality, we have
\[\min_{0 \leq t \leq 1} |u_n(t)| \geq |u_n(0)| - \| \dot{u}_n \|_2 \rightarrow +\infty \]
\[(4.13)\]

So by \((B_3)\) we have
\[\int_0^1 V(u_n)dt \geq h, \quad \text{as} \ n \rightarrow +\infty, \quad (4.14) \]
\[\lim_{n \rightarrow \infty} f(u_n) = \lim_{n \rightarrow \infty} \frac{1}{2} \int_0^1 |\dot{u}_n|^2 dt \int_0^1 (h - V(u_n))dt \leq 0, \quad (4.15) \]

which contradicts with \(f(u_n) \rightarrow c > 0. \)

We know that \(H^1 \) is a reflexive Banach space, so \(\{u_n\} \) has a weakly convergent subsequence. The rest that proving \(\{u_n\} \) has a strongly convergent subsequence is standard, we can refer to Ambrosetti-Coti Zelati [2].

Acknowledgements

We would like to thank the supports of NSF of China and a research fund for the Doctoral program of higher education of China.
References

[1] A.Ambrosetti, V.Coti Zelati, Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rat. Mech. Anal. 112(1990), 339-362.

[2] A.Ambrosetti, V.Coti Zelati, Closed orbits of fixed energy for a class of N-body problems, Ann. Inst. H. Poincare, Analyse Non Lineaire 9(1992), 187-200.

[3] A.Ambrosetti, P.Rabinowitz, Dual variational methods in critical point theory and applications, J.of Functional Analysis, 14(1973), 349-381.

[4] V.Benci, Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems, Ann. Inst. Henri Poincare Anal. NonLineaire 1(1984), 401-412.

[5] K.C.Chang, Infinite dimensional Morse theory and mutiple solution problems, Birkhauser, 1993.

[6] G.Cerami, Un criterio di esistenza per i punti critici so variete illimitate, Rend. dell academia di sc.lombardo112(1978), 332-336.

[7] I.Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1990.

[8] N.Ghoussoub, D.Preiss, A general mountain pass principle for locating and clasifying critical points, Ann. Inst. Henri Poincare Anal. NonLineaire 6(1984), 321-330.

[9] H.Gluck and W.Ziller, Existence of periodic motions of conservative systems, in Seminar on minimal submanifolds, E.Bombieri Ed., Princeton Univ. Press,1983.

[10] E.W.C.Van Groesen,Analytical mini-max methods for Hamiltonian break orbits with a prescribed energy, JMAA 132(1988), 1-12.

[11] K.Hayashi, Periodic solutions of classical Hamiltonian systems, Tokyo J.Math., 1983.

[12] Y. Long, Index Theory for Symplectic Paths with Applications, Basel: Birkhauser, 2002.

[13] J.Mawhin, M.Willem,Critical Point Theory and Applications, Springer, 1989.

[14] R.Palais,The principle of symmetric criticality,CMP69(1979),19-30.

[15] P.H.Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31(1978), 157-184.

[16] P.H.Rabinowitz, Periodic solutions of a Hamiltonian systems on a prescribed energy surface, JDE 33(1979), 336-352.

[17] H.Seifert, Periodischer bewegungen mechanischer system, Math.Zeit51(1948), 197-216.
[18] K.Yosida, Functional Analysis, Springer, Berlin, 1978.

[19] P.F.Yuan, S.Q.Zhang, New periodic solutions for a class of singular Hamiltonian systems, Acta.Math.Sinica-New Series, 29(2013), 1205-1218.

[20] W.P.Ziemer, Weakly differentiable functions, Springer, 1989.