An Item Analysis according to the Rasch Model of the German 12-item WHO Disability Assessment Schedule (WHODAS 2.0)

Lusine Vaganian (✉ lusine.vaganian@uni-koeln.de)
University of Cologne Faculty of Human Sciences: Universitat zu Koln Humanwissenschaftliche Fakultät
[ORCID: 0000-0001-9718-4106]

Sonja Bussmann
University of Cologne Faculty of Human Sciences: Universitat zu Koln Humanwissenschaftliche Fakultät

Maren Boecker
Uniklinik RWTH Aachen: Universitätsklinikum Aachen

Michael Kusch
University Hospital Cologne: Uniklinik Koln

Hildegard Labouvie
University Hospital Cologne: Uniklinik Koln

Alexander L. Gerlach
University of Cologne Faculty of Human Sciences: Universitat zu Koln Humanwissenschaftliche Fakultät

Jan C. Cwik
University of Cologne Faculty of Human Sciences: Universitat zu Koln Humanwissenschaftliche Fakultät

Research Article

Keywords: WHODAS 2.0, Disability, Cancer, Rasch analysis, Psychometric properties

DOI: https://doi.org/10.21203/rs.3.rs-224499/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Purpose: The World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) assesses disability in individuals irrespective of their health condition. Previous studies validated the usefulness of the WHODAS 2.0 using classical test theory (CTT). This study is the first investigating the psychometric properties of the 12-items WHODAS 2.0 in patients with cancer using item response theory (IRT), i.e., item analysis according to the Rasch model.

Methods: In total, 350 cancer patients participated in the study. Rasch analysis of the 12-items version of the WHODAS 2.0 included testing unidimensionality, local independence, and testing for differential item functioning (DIF) with regard to age, gender, type of cancer, presence of metastases, psycho-oncological support, and duration of disease.

Results: After accounting for local dependence, which was mainly found across items of the same WHODAS-domain, satisfactory overall fit to the Rasch model was established ($\chi^2 = 36.14$, $p = 0.07$) with good reliability (PSI = 0.82) and unidimensionality of the scale. DIF was found for gender (testlet ‘Life activities’) and age (testlet ‘Getting around/Self-care’), but the size of DIF was not substantial.

Conclusion: Overall, the analysis results according to the Rasch model support the use of the WHODAS 2.0 12-item version as a measure of disability in cancer patients.

Introduction

About 15% of the world's population live with some form of disability [1]. According to the World Health Organization (WHO), a person's functioning and disability are best described by a dynamic interaction between contextual factors and health conditions [2]. In addition to establishing a patient’s diagnosis, it is necessary to assess the overall condition in particular areas of life (i.e., the disability of a patient with regard to home tasks, work or other social areas) in order to ensure sound clinical decision-making and selection of appropriate interventions for patients [3]. Since disability can affect many life areas, it is difficult to ensure a suitable, reliable and valid measurement of its impact on the live of a person.

In 2001, the WHO developed the International Classification of Functioning, Disability, and Health (ICF) and defined disability as “an umbrella term for impairments, activity limitations or participation restrictions” [2]. Based on the ICF, the World Health Organization's Disability Assessment Schedule 2.0 (WHODAS 2.0) was developed to provide a standardized method for measuring health and disability [3]. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [4], recommend the WHODAS 2.0 as “the best current measure of disability for routine clinical use” [5].

The scale is an established tool for the assessment of functioning difficulties in six domains (cognition, mobility, self-care, getting along, life activities, and participation). It has been developed for individuals with any kind of disease and is available in three different length regarding the number of items (12, 12 + 24, and 36 items) and as interview-, self- or proxy-administered versions [3]. Usage of the WHODAS 2.0 is
continuously increasing, and it is available in 47 languages and dialects [6]. It has been validated for different health conditions, for example, depression [7], multiple sclerosis [8], or myocardial infarction [9].

Cancer patients have to cope with their diagnosis and master the disease-associated tasks and changes. In addition, they may also suffer from disability. The disabilities experienced by cancer patients can differ substantially, due to the heterogeneity of cancer entities and individual disease progression. Thus, it is pertinent to consider the application of the WHODAS 2.0 in the oncological context as well.

Research studying the psychometric properties of the WHODAS 2.0 in an oncological context is rare. Only few studies exist based on classical test theory (CTT), which showed good to excellent reliability, good convergent and discriminant validity, and supported the 6-domain structure [10,11]. However, within Chinese breast cancer patients a 7-domain structure was identified [12]. An advantageous alternative to CTT is item response theory (IRT), which can be used to assess the unidimensionality of the items, sampling invariance, and local dependence problems [13,14]. According to Rasch (1965), this must be re-examined for each new population the measure is applied to [as cited in 14]. Studies employing IRT analysis on the WHODAS 2.0 have looked at different health conditions like myocardial infarction, stroke, osteoarthritis, depression, and brain injuries [15,9,16-18]. These studies confirmed the assumption of unidimensionality for the 36 item version as well as 12 items short version of the WHODAS 2.0.

However, to the best of the authors' knowledge, Rasch analysis has not yet been applied to the WHODAS 2.0 in an oncological context. That is why this study aims to examine the applicability of the 12-items version of the WHODAS 2.0 among patients afflicted by various types of cancer with the aid of Rasch-analysis, especially to investigate the assumptions of unidimensionality, invariance across different exogenous variables, local independence of items, and the targeting.

Method

Participants and procedure

Participants were invited to participate in the study using SoSciSurvey [19] as an online survey consisting of various questionnaires. The link was posted on social media platforms and online cancer support groups as part of a validation study [20]. All participants gave their informed consent online. Inclusion criteria were: age \geq 18 years and current or in the past cancer diagnosis. Exclusion criteria were not defined. In total, $N = 350$ cancer patients (283 women (80.9%), 66 men (18.9%), 1 gender diverse (0.3%)) completed the 12-items version of the WHODAS 2.0 were included.

We received the permission of WHO for utilization of the WHODAS 2.0 (License: CC BY-NC-SA 3.0 IGO). All procedures contributing to this work comply with the relevant national and institutional committees' ethical standards on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. The work was approved by the Ethics Commission of the University's Faculty of Medicine (reference number 18-098).
Assessment instruments

WHODAS 2.0. Global health status was assessed using the German version of the 12-item self-administered version of the WHODAS 2.0 [3]. The scale is an established and validated tool for the assessment of functioning difficulties in six domains (understanding and communicating, mobility, self-care, getting along, life activities, and participation). The participants estimate how many difficulties they have had in performing various activities in the last 30 days on a 5-point Likert-type scale (none = 0, mild, moderate, severe, extreme/cannot do = 4). Higher scores reflect a more significant disability [3].

HADS. Self-reported distress was assessed using the German version of the Hamilton Anxiety Depression Scale (HADS) [21]. The scale is an established tool for the assessment of anxiety and depression in cancer patients [22,23]. The HADS consists of 14 items with a total score (HADS-T) ranging from 0-42. Subscale scores for depression and anxiety may additionally be calculated. Higher scores on the HADS indicate more severe depression and anxiety. To identify patients with an increased need for psychosocial care and especially for depression symptoms in cancer patients, a sum score of HADS-T ≥ 15 can be used as the cut-off value [24].

Statistical analyses

Data were analyzed using SPSS version 26.0 [25] and RUMM2030 software [26]. Patients’ characteristics are described by means and standard deviations. One item is missing from one patient of the 12-item WHODAS version, which was replaced by using the mean of the other items as recommended by Üstün et al. [3].

IRT methodology was used to assess the psychometric properties of the WHODAS 2.0 in an oncological context. IRT models, including Rasch models, allow a nuanced analysis of an instrument’s psychometric properties because they focus on the items and how persons respond to them. Person parameters are estimated, which express the individual extent of a latent trait, which in the case of WHODAS 2.0 is disability [27]. Likewise, on the same latent trait, the item difficulty parameters are estimated. ‘Easy’ WHODAS-items would be items that are already scored high in the direction of disability by patients with only minor disabilities, whereas ‘difficult’ WHODAS-items would be items that are only scored high by patients with major disabilities. During the process of the item analysis according to the Rasch model, it is tested whether patients respond as expected to each item. For example, a patient with major disabilities should also score high on an ‘easy’ WHODAS-item. In order to properly test the fit of the WHODAS-data to the Rasch model, this paper follows the current state-of-the-art Rasch analysis requirements [28] and the CREATE guidelines for reporting valuation studies [29].

Given the polytomous WHODAS-items, the Partial Credit Model (PCM) [30] was used. According to the Rasch model, performing analysis comprises the investigation of how well the data meets the expectations of the measurement model, i.e., unidimensionality, local independence, and absence of differential item functioning (DIF). In this sense, the analysis according to the Rasch model can be
understood as an iterative process in which potential deviations from the model’s expectations are investigated and – if possible – resolved.

One fundamental requirement of the Rasch model is unidimensionality, i.e., the items of a scale should assess only one underlying construct. Unidimensionality was tested with principal component analysis (PCA) of the residuals [31]. The idea is to use the items with the highest negative/positive loadings on the first residual factor to create two subsets of items. The separate person estimates of these two subsets are used to identify significant differences using independent t-tests. The proportion of significant t-tests should not exceed 5% to confirm unidimensionality [32].

Another assumption is that of local independence. This implies that there should be no residual correlations between items when extracting the trait factor [28]. Locally dependent items respectively items which are linked in some way, can lead to overestimation of reliability, parameter estimation bias, and problems with construct validity [33]. Following the recommendations of Christensen et al. [33] and Marais [34], a cut-off value of 0.2 above the average residual correlation was used to assess local dependence (LD). There are different strategies to deal with LD, such as combining the locally dependent items to testlets by adding them together.

One more assumption is that there is no item bias with regard to exogenous variables (no DIF). If DIF is given, the difficulty of an item is different for different groups (e.g., males and females). In other words, in different groups, the corresponding item indicates the latent characteristic in different ways [28]. We tested the items for DIF by looking at gender (woman, man), age (median split of the sample: below and above 54), type of cancer (breast, other forms of cancer, multiple cancers), presence of metastases (yes, no, unknown), psycho-oncological support (yes, no) and duration of disease (median split of the sample: below and above 3.9 years). In case of DIF, we evaluated the impact of DIF by computing equated scores [35]. Due to too small group sizes, we had to exclude the one gender diverse person for the DIF analysis of gender and combine the residual cancer types into one category, 'other forms of cancer' for the DIF analysis of cancer type.

Additionally, item fit as indicated by standardized residuals within a range of ± 2.5 and overall model fit indicated by a non-significant Chi-Square probability $p > 0.01$, were investigated [31,36]. Moreover, the ordering of item thresholds was analyzed. Item thresholds are the transition points between two adjacent respond categories.

The scale's internal consistency was estimated using Person Separation Index (PSI). The PSI is equivalent to Cronbach's alpha and can be interpreted similarly with a requirement of a minimum value of .7 for group and .85 for individual use [28]. Targeting was assessed graphically based on the person-item threshold distribution graph. Person-item maps demonstrate how person parameters and item thresholds are distributed along the trait dimension.

Results
Mean age of the $N = 350$ participants was 52.34 years ($SD = 14.07$). They reported mean HADS-T scores of 13.9 ($SD = 8.00$) and all completed the WHODAS 2.0 questionnaire. One hundred fifty-four cancer patients (44.0 %) exceeded the HADS-T score of 14, indicating relevant distress. A selection of descriptive statistics and an overview of cancer diagnoses among the participants are presented in Table 1. The averages of the 12 items of the WHODAS 2.0 and the six WHODAS domains [3] can be found in table 2.

The initial analysis of all 12 items of the WHODAS 2.0 showed a satisfactory overall model fit ($\chi^2 = 88.21$, $p = 0.01$). However, several items displayed LD, two items showed item-mist, DIF was found for items 1 and 12 in relation to age, for items 7 and 11 in relation to gender, and for item 12 related to disease duration and disordered thresholds in six items.

As LD seemed to be the major problem, we focused at first on accounting for it. Several locally dependent item clusters were consistent with the six WHODAS 2.0 domains (‘Self-care’, ‘Getting around’, ‘Life activities’, ‘Understanding and Communicating’, ‘Participating in society’ and ‘Getting along with people’). After combining the two items of each domain into one testlet, LD was still present between the domain-testlets ‘Getting around’ and ‘Self-care’, which were subsequently combined to one common testlet.

After applying these strategies, there was no further evidence of LD nor item misfit. The assumption of unidimensionality could be confirmed. The t-test showed satisfactory results with 11 significant tests (3.30%). However, DIF related to age was found for the testlet ‘Getting around/ Self-care’ and related to gender for testlet ‘Life activities’. Elderly persons seemed to have more difficulties in the domain ‘Getting around/ Self-care’ than younger persons with the same level of disability, and women seemed to have more difficulties in ‘Life activities’ than men with the same level. After splitting the testlet ‘Life activities’ for gender-DIF and computing equated scores, only a minor difference was found, and the gender-DIF was considered as being not substantial. The situation was similar regarding the age-DIF, although the difference in equated scores between the younger and older patients was slightly higher, with a maximum score difference of about 2 points in the middle range of the person location (between 0 and 1). However, in the other parts of the disability dimension, the difference was negligible. The minor impact of the age-DIF in the present sample can also be seen if one compares the mean WHODAS 2.0-person parameters between the younger and older patients once with and once without adjusting for DIF. The effect size [37] for the comparison of younger and older patients without DIF adjustment was $d = 0.44$, whereas it was $d = 0.52$ with DIF-adjustment.

The overall model fit of the final solution was satisfactory ($\chi^2 = 88.21$, $p = 0.07$) with good reliability PSI = 0.81. Table 3 shows the summary fit statistic of the initial and final analysis.

Figure 1 shows the targeting of the scale with a mean person location value of $M = -0.78$ ($SD = 1.03$). This result means that the patients had a lower mean level of disability than the average difficulty of the scale (which is 0). The person distribution was slightly off-centered, with more people showing lower levels of disability and only a relatively small number of persons with high levels of disability. The item threshold
distribution shows that the scale measures a wide range of disability, except for very low levels and very high levels of disability.

A transformation table of the WHODAS 2.0-scores to interval-level person parameters is provided in table 4.

Discussion

This study aimed at assessing and is the first to provide information about the psychometric properties of the 12-item version of the WHODAS 2.0 within a sample of cancer patients using modern psychometric analysis, i.e., Rasch analysis. The use of Rasch analysis has numerous potential advantages over CTT when assessing self-reported health outcomes. For example, it allows a nuanced analysis of the psychometric properties because of its focus on single items and how persons respond to them, it permits testing bias or DIF in different subgroups, and facilitates a transformation of ordinal into interval level scores. The use of the interesting and cancer-specific DIF variables should be highlighted. Overall, the Rasch measurement model's application on the WHODAS 2.0 showed a good model fit with good reliability after making some modifications related to LD.

The scale showed several pairs of locally dependent items corresponding to the domains of the WHODAS 2.0 [3]. After combining them to domain-specific testlets, one last LD could be observed between the testlets 'Getting around' and 'Self-care', which had to be combined to one common testlet. In terms of content, this makes sense since both assess facets of activities of daily living (ADL). The findings of LD within the scale are comparable with other studies. For example, Luciano et al. [7] reported correlated pairs of items within the domains 'Getting around', 'Self-care' and 'Getting along with people' or Snell et al. [16] within the domain 'Self-care'. We found LD in all domains of the WHODAS 2.0 like Kutlay et al. [17] or Küçükdeveci et al. [18] and additionally one between the two domains assessing ADL.

DIF was tested by gender, age, type of cancer, the presence of metastases, psycho-oncological support, and duration of disease. For most of these external variables, no DIF was found. However, in contrast to other studies [e.g. 9], uniform DIF occurred related to age for testlet 'Getting around/ Self-care' and related to gender for testlet 'Life activities'. After DIF splitting for gender and computing equated scores, we only found a relatively small inconsiderably difference in the equated scores. However, there was a bigger difference with a maximum score difference of about 2 points in the middle range of the person's location regarding age. This result denotes that patients with the same level of disability responded differently to the items of the ADL-testlet dependent on their age. Specifically, elderly individuals seem to have more difficulties in this domain than younger persons with the same level of disability. However, this difference becomes visible only in the middle range. Patients with either a high or low level of disabilities reported the same problems in this area irrespective of their age.

Given that the DIF was found only in a tiny part of the assessed dimension and given the only minor differences (in term of effect sizes) when comparing younger and older patients with and without the DIF
adjustment, we decided not to adjust for DIF. However, our sample is relatively young, with a mean age of 52.34 years. In a sample with more elderly patients, a more relevant age-DIF might be found.

The confirmation of unidimensionality of the scale is consistent with other Rasch analyses on the WHODAS 2.0 [9,15]. Additionally, targeting (Fig. 1) was satisfactory for the present sample with a mean person location value of $M = -0.78$ ($SD = 1.03$). However, for low and high levels of disability, the targeting is not as good as item thresholds are missing in these areas of the dimension. The WHODAS 2.0 was initially developed to provide a standardized method for measuring health and disability in the general population [3]. Our results indicate that even in a sample of patients with cancer, the differentiation in the lower segment of disability is not optimal – an area where probably most of the people of a healthy population would be located. However, the differentiation within a healthy population or persons with no respectively very low levels of disability may not be so relevant for assessment of oncology patients and the improvement of clinical decision making in psycho-oncology. However, more difficult items are also missing, making it hard to precisely assess disability in patients with a high level of disability using the 12-items version of the WHODAS 2.0. A good example is the Getting around-domain. In the 12-item version, the items "Standing for long periods such as 30 minutes?" and "Walking a long distance such as a kilometer (or equivalent)?" are indicators for this domain – activities that might be far too difficult to perform for severely ill patients. Here it might be sensible to either include some more items of the WHODAS 2.0 36 items version or develop a better targeted short scale for patients with a higher level of disability (e.g., with WHODAS items like: "Moving around inside your home.").

Besides some strengths, the present study also has limitations. There is a relatively high percentage of breast cancer patients in the sample of this study. Accordingly, the results may only be generalized to cancer patients with caution. Due to small group sizes, we had to combine the residual cancer types into one category, ‘other forms of cancer’, for DIF analysis. To examine the influence of various cancer forms decidedly, especially cancer types with more severe disease progress, additional research would be interesting and important. Nevertheless, in our study, we could use the presence of metastases or the duration of disease as an indicator for the severity. Both of these indicators showed no DIF. Also, the sample’s psychological distress, measured by the HADS-T, is roughly equally distributed across the cancer forms. We therefore can assume that the type of cancer does not unduly influence the response behavior. Furthermore, the sample was recruited from social media platforms and within online cancer support groups. As a result of this, the sample is relatively young, with a mean age of 52.34 years. The scale’s targeting was good for the present sample but already shows an off-centered person distribution with a relatively small frequency of persons with a high level of disability. This result indicates a bias by low disability levels in this sample. Also, a high percentage (41.7%) of the cancer patients have an active job situation, indicating a relative fit sample. The item threshold distribution shows that the scale measures a wide range of disability but not across the entire range. With respect to this and the small age-DIF we found in our study, future research should examine a sample with a higher level of disability and perhaps include some additional items suited for the assessment of higher levels of disability.
Conclusion

The present study provides essential information about the psychometric properties of the 12-items version of the WHODAS 2.0 in the oncological context. The Rasch analysis of the 12-items version of the WHODAS 2.0 showed that this measurement may be used well in the oncological context, especially those who have an impairment are adequately assessed with it. The instrument is non-biased with respect to gender, type of cancer, the presence of metastases, psycho-oncological support, and duration of disease. There might be only a need for critical consideration with respect to age, especially in the elderly.

Declarations

Acknowledgments

We thank all participants for their time and afford, and all self-help groups for the support of our study.

Funding

None.

Conflict of interest

All authors declare to have no conflict of interest affecting this manuscript.

Availability of data and material

Data not published within the article are available after approval by a regional ethical review board and can be shared by reasonable request.

Code availability (software application or custom code)

SPSS code can be shared upon reasonable request.

Authors' contributions

Substantial contributed to the study conception and design was made by all authors. Material preparation, study conception and design: Lusine Vaganian, Sonja Bussmann, Alexander L. Gerlach and Jan C. Cwik. Data analysis and interpretation: Lusine Vaganian, Maren Boecker. Supervision or mentoring: Alexander L. Gerlach and Jan C. Cwik. First draft of the manuscript was written by Lusine Vaganian and all authors revising it critically and gave final approval of the version to be submitted and any revised version of the manuscript.

Ethics approval
All procedures contributing to this work comply with the relevant national and institutional committees' ethical standards on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. The work was approved by the Ethics Commission of the University’s Faculty of Medicine (reference number 18-098; date of the positive statement: April 18, 2018).

Consent to participate/ for publication

All participants provided online informed consent including all the information about study content and aims, procedure etc..

References

1. World Health Organization [WHO], & The World Bank (2011). *World Report on Disability*. Malta: World Health Organization.

2. World Health Organization (2001). *International Classification of Functioning, Disability and Health*. Geneva: World Health Organization.

3. Üstün, T. B., Kostanjesek, N., Chatterji, S., & Rehm, J. (2010). Measuring health and disability: Manual for WHO Disability Assessment Schedule (WHODAS 2.0) Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.

4. American Psychiatric Association (2013). *Diagnostic and statistical manual of mental disorders: DSM-5™, 5th ed* (Diagnostic and statistical manual of mental disorders: DSM-5™, 5th ed.). Arlington, VA, US: American Psychiatric Publishing, Inc.

5. Gold, L. H. (2014). DSM-5 and the Assessment of Functioning: The World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0). *Journal of the American Academy of Psychiatry and the Law Online, 42*(2), 173-181.

6. Federici, S., Bracalenti, M., Meloni, F., & Luciano, J. V. (2017). World Health Organization disability assessment schedule 2.0: An international systematic review. *Disabil Rehabil, 39*(23), 2347-2380, doi:10.1080/09638288.2016.1223177.

7. Luciano, J. V., Ayuso-Mateos, J. L., Fernández, A., Serrano-Blanco, A., Roca, M., & Haro, J. M. (2010). Psychometric properties of the twelve item World Health Organization Disability Assessment Schedule II (WHO-DAS II) in Spanish primary care patients with a first major depressive episode. *Journal of Affective Disorders, 121*(1), 52-58, doi:https://doi.org/10.1016/j.jad.2009.05.008.

8. Magistrale, G., Pisani, V., Argento, O., Incerti, C., Bozzali, M., Cadavid, D., et al. (2015). Validation of the World Health Organization Disability Assessment Schedule II (WHODAS-II) in patients with multiple sclerosis. *Multiple Sclerosis Journal, 21*, 448-456, doi:10.1177/1352458514543732.

9. Kirchberger, I., Braitmayer, K., Coenen, M., Oberhauser, C., & Meisinger, C. (2014). Feasibility and psychometric properties of the German 12-item WHO Disability Assessment Schedule (WHODAS 2.0) in a population-based sample of patients with myocardial infarction from the MONICA/KORA myocardial infarction registry. *Population Health Metrics, 12*(1), 27, doi:10.1186/s12963-014-0027-8.
10. Norouzi, H., Roohi, S., Shahhosseini, M., & Nouri Ghasemabady, R. (2020). Psychometric Properties of the World Health Organization Disability Assessment Scale 2.0 among Iranian Cancer Patients. *Middle East Journal of Cancer, 11*(3), 333-342, doi:10.30476/mejc.2019.81280.0.

11. Pösl, M., Cieza, A., & Stucki, G. (2007). Psychometric properties of the WHODASII in rehabilitation patients. *Qual Life Res, 16*(9), 1521-1531, doi:10.1007/s11136-007-9259-4.

12. Zhao, H. P., Liu, Y., Li, H. L., Ma, L., Zhang, Y. J., & Wang, J. (2013). Activity limitation and participation restrictions of breast cancer patients receiving chemotherapy: psychometric properties and validation of the Chinese version of the WHODAS 2.0. *Quality of Life Research, 22*(4), 897-906, doi:10.1007/s11136-012-0212-9.

13. Fischer, G. H. (1987). Applying the principles of specific objectivity and of generalizability to the measurement of change. *Psychometrika, 52*(4), 565-587, doi:10.1007/bf02294820.

14. Gustafsson, J.-E. (1980). Testing and obtaining fit of data to the Rasch model. *British Journal of Mathematical and Statistical Psychology, 33*(2), 205-233, doi:10.1111/j.2044-8317.1980.tb00609.x.

15. Luciano, J. V., Ayuso-Mateos, J. L., Aguado, J., Fernandez, A., Serrano-Blanco, A., Roca, M., et al. (2010). The 12-item World Health Organization Disability Assessment Schedule II (WHO-DAS II): a nonparametric item response analysis. *BMC Medical Research Methodology, 10*(1), 45, doi:10.1186/1471-2288-10-45.

16. Snell, D. L., Siegert, R. J., & Silverberg, N. D. (2020). Rasch analysis of the World Health Organization Disability Assessment Schedule 2.0 in a mild traumatic brain injury sample. *Brain Inj, 34*(5), 610-618, doi:10.1080/02699052.2020.1729417.

17. Kutlay, S., Küçükdeveci, A. A., Elhan, A. H., Oztuna, D., Koç, N., & Tennant, A. (2011). Validation of the World Health Organization disability assessment schedule II (WHODAS-II) in patients with osteoarthritis. *Rheumatol Int, 31*(3), 339-346, doi:10.1007/s00296-009-1306-8.

18. Küçükdeveci, A. A., Kutlay, Ş., Yıldızlar, D., Öztuna, D., Elhan, A. H., & Tennant, A. (2013). The reliability and validity of the World Health Organization Disability Assessment Schedule (WHODAS-II) in stroke. *Disabil Rehabil, 35*(3), 214-220, doi:10.3109/09638288.2012.690817.

19. Leiner, D. J. (2014). SoSci Survey (Version 2.4.00-i) [Computer Software]. Available at https://www.soscisurvey.de.

20. Cwik, J. C., Vaganian, L., Bussmann, S., Gerlach, A. L., Labouvie, H., & Kusch, M. (in press). Assessment of coping with cancer-related burdens: psychometric properties of the Cognitive-Emotional Coping with Cancer (CECC) scale and the German Mini-Mental Adjustment to Cancer (Mini-MAC) scale. *Journal of Psychosocial Oncology Research and Practice.*

21. Herrmann-Lingen, C., Buss, U., & Snaith, P. R. (2011). *Hospital Anxiety and Depression Scale-Deutsche Version (HADS-D).* Bern: Huber.

22. Mitchell, A. J., Meader, N., & Symonds, P. (2010). Diagnostic validity of the Hospital Anxiety and Depression Scale (HADS) in cancer and palliative settings: A meta-analysis. *Journal of Affective Disorders, 126*(3), 335-348, doi:https://doi.org/10.1016/j.jad.2010.01.067.
23. Vodermaier, A., & Millman, R. D. (2011). Accuracy of the Hospital Anxiety and Depression Scale as a screening tool in cancer patients: a systematic review and meta-analysis. *Supportive Care in Cancer, 19*(12), 1899 - 1908, doi:10.1007/s00520-011-1251-4.

24. Jenniches, I., Lemmen, C., Cwik, J. C., Kusch, M., Labouvie, H., Scholten, N., et al. (2020). Evaluation of a complex integrated, cross-sectoral psycho-oncological care program (isPO): a mixed-methods study protocol. *BMJ open, 10*(3), e034141-e034141, doi:10.1136/bmjopen-2019-034141.

25. IBM Corporation (Released 2019). IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.

26. Andrich, D., Sheridan, B., & G., L. (2009). RUMM 2030. Perth, WA: RUMM Laboratory.

27. da Rocha, N. S., Chachamovich, E., de Almeida Fleck, M. P., & Tennant, A. (2013). An introduction to Rasch analysis for Psychiatric practice and research. *Journal of Psychiatric Research, 47*(2), 141-148, doi:https://doi.org/10.1016/j.jpsychires.2012.09.014.

28. Tennant, A., & Conaghan, P. G. (2007). The Rasch measurement model in rheumatology: what is it and why use it? When should it be applied, and what should one look for in a Rasch paper? *Arthritis Rheum, 57*(8), 1358-1362, doi:10.1002/art.23108.

29. Xie, F., Pickard, A. S., Krabbe, P. F., Revicki, D., Viney, R., Devlin, N., et al. (2015). A Checklist for Reporting Valuation Studies of Multi-Attribute Utility-Based Instruments (CREATE). *Pharmacoeconomics, 33*(8), 867-877, doi:10.1007/s40273-015-0292-9.

30. Masters, G. N. (1982). A rasch model for partial credit scoring. *Psychometrika, 47*(2), 149-174, doi:10.1007/BF02296272.

31. Pallant, J. F., & Tennant, A. (2007). An introduction to the Rasch measurement model: an example using the Hospital Anxiety and Depression Scale (HADS). *Br J Clin Psychol, 46*(Pt 1), 1-18, doi:10.1348/014466506x96931.

32. Smith, E. V., Jr. (2002). Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. *J Appl Meas, 3*(2), 205-231.

33. Christensen, K. B., Makransky, G., & Horton, M. (2017). Critical Values for Yen's Q3: Identification of Local Dependence in the Rasch Model Using Residual Correlations. *Applied Psychological Measurement, 41*(3), 178-194, doi:10.1177/0146621616677520.

34. Marais, I. (2013). Local Dependence. In K. B. Christensen, S. Kreiner, & M. Mesbah (Eds.), *Rasch models in health* (pp. 111-130). Hoboken, NJ: John Wiley & Sons, Ltd.

35. Christensen, K. B., Thorborg, K., Hölmich, P., & Clausen, M. B. (2019). Rasch validation of the Danish version of the shoulder pain and disability index (SPADI) in patients with rotator cuff-related disorders. *Qual Life Res, 28*(3), 795-800, doi:10.1007/s11136-018-2052-8.

36. Siegert, R. J., Tennant, A., & Turner-Stokes, L. (2010). Rasch analysis of the Beck Depression Inventory-II in a neurological rehabilitation sample. *Disabil Rehabil, 32*(1), 8-17, doi:10.3109/09638280902971398.

37. Cohen, J. (1988). *Statistical Power Analysis for the Behavioral Sciences*. Hillsdale, NJ: Lawrence Earlbaum Associates.
Tables

Table 1 Characteristics of cancer patients (N = 350).
Gender	
Male	66 (18.9)
Female	283 (80.9)
Divers	1 (0.3)
Age (in years)	52.34±14.07 (20-83)

Marital status	
Single (without partnership)	32 (9.1)
Single (with partnership)	50 (14.3)
Married	212 (60.6)
Divorced	39 (11.1)
Widowed	11 (3.1)
Civil partnership	4 (1.1)
Dissolution of Civil partnership	2 (0.6)

Children	
No	105 (30.0)
Yes	245 (70.0)
Number of children	1.92±0.81 (1-5)
Age of the youngest child	25.05±14.01 (1-61)

Education	
Certificate of Secondary Education	50 (14.3)
General Certificate of Secondary Education	105 (30.0)
Advanced technical college entrance qualification	46 (13.1)
General qualification for university entrance	149 (42.6)
Professional education	
Without vocational qualification	16 (4.6)
Completed vocational training	188 (53.7)
Bachelor degree	32 (9.1)
Master degree	86 (24.6)
Doctoral or equivalent	6 (1.7)
------------------------	---------
Different form	22 (6.3)
Occupation	
Full time	98 (28.0)
Part-time	77 (22.0)
Retired	116 (33.1)
Marginal part-time job, Minijob	10 (2.9)
Voluntary year of social service	1 (0.3)
Parental leave, other administrative leave	8 (2.3)
Non-working	15 (4.3)
Different form	25 (7.1)
Job situation	
Active	146 (41.7)
Certified sick	56 (16.0)
Different form	148 (42.3)
Types of cancer	
Breast	182 (52.0)
Urological	37 (10.6)
Prostate, testicular	33 (9.4)
Gynecological	29 (8.3)
Hematological	26 (7.4)
Intestinal, rectal	20 (5.7)
Skin	13 (3.7)
Lungs, Bronchia	10 (2.9)
Ear, Nose, Throat	7 (2.0)
Gastric, esophageal, pancreatic	7 (2.0)
Parts of central nervous system	5 (1.4)
Soft tissue	3 (0.9)
Residual category (including other forms of cancer)	29 (8.3)
Metastases	
-----------------	--------
No	260 (74.3)
Yes	78 (22.3)
Unknown	12 (3.4)

Current medical treatment	
No	131 (37.4)
Yes	219 (62.6)

Treatment in the last two months	
None	150 (42.9)
Surgery	42 (12.0)
Chemotherapy	49 (14.0)
Hormonotherapy	71 (20.3)
Radiotherapy	20 (5.7)
Immunotherapy	20 (5.7)
Different form	66 (18.9)

Current psycho-oncological, psychological, psychotherapeutic support	
No	251 (71.7)
Yes	99 (28.3)

Psychiatric or psychotherapeutic treatment in the past regardless of the cancer diagnoses	
No	203 (58.0)
Yes	147 (42.1)

Values are presented in frequency (%) or mean±standard deviation (range).

Table 2 Average of the response options of WHODAS 2.0
Item	Domain	WHODAS 2.0 Domain	M (SD)
1.		Getting around	1.3 (1.3)
2.		Life activities	1.4 (1.2)
3.		Understanding and communicating	1.0 (1.1)
4.		Participating in society	1.4 (1.3)
5.		Participating in society	2.2 (1.2)
6.		Understanding and communication	1.1 (1.2)
7.		Getting around	1.0 (1.4)
8.		Self-care	0.4 (0.9)
9.		Self-care	0.4 (0.8)
10.		Getting along with people	0.8 (1.1)
11.		Getting along with people	1.0 (1.2)
12.		Life activities	1.6 (1.4)

Table 3 Summary fit statistic

Analysis	# items	Item-Residual	Person-Residual	Item-Trait interaction (Overall fit)	Reliability
		M SD	M SD	χ² df p	PSI
Initial	12	-0.37 1.63	-0.29 0.95	88.21 60 0.01	0.87
Final	12	-0.23 1.26	-0.31 0.96	36.14 25 0.07	0.82
Table 4 Conversion table of Rasch logits					
WHODAS 2.0 Score	Interval-scaled person estimate				
------------------	-------------------------------				
0	-3.49				
1	-2.68				
2	-2.15				
3	-1.80				
4	-1.55				
5	-1.35				
6	-1.19				
7	-1.06				
8	-0.94				
9	-0.84				
10	-0.75				
11	-0.67				
12	-0.59				
13	-0.52				
14	-0.45				
15	-0.39				
16	-0.33				
17	-0.27				
18	-0.22				
19	-0.16				
20	-0.11				
21	-0.06				
22	-0.01				
23	0.04				
24	0.09				
25	0.14				
26	0.19				
27	0.24				
28	0.29				
29	0.34				
30	0.39				
31	0.49				
32	0.49				
33	0.54				
34	0.60				
35	0.65				
36	0.71				
37	0.78				
38	0.85				
39	0.93				
40	1.01				
41	1.12				
42	1.23				
43	1.37				
44	1.53				
45	1.74				
46	2.01				
47	2.43				
48	3.08				