Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean

Wuhui Lin1, Liqi Chen2, Shi Zeng3, Tao Li4, Yinghui Wang1 & Kefu Yu1

Sediment resuspension occurs in the global ocean, which greatly affects material exchange between the sediment and the overlying seawater. The behaviours of carbon, nutrients, heavy metals, and other pollutants at the sediment-seawater boundary will further link to climate change, eutrophication, and marine pollution. Residual β activity of particulate 234Th (RAP$_{234}$) is used as a novel proxy to track sediment resuspension in different marine environments, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Sediment resuspension identified by high activity of RAP$_{234}$ is supported by different lines of evidence including seawater turbidity, residence time of total 234Th, Goldschmidt’s classification, and ratio of RAP$_{234}$ to particulate organic carbon. A conceptual model is proposed to elucidate the mechanism for RAP$_{234}$ with dominant contributions from 234Th-238U and 212Bi-228Th. The ‘slope assumption’ for RAP$_{234}$ indicated increasing intensity of sediment resuspension from spring to autumn under the influence of the East Asian monsoon system. RAP$_{234}$ can shed new light on 234Th-based particle dynamics and should benefit the interpretation of historical 234Th-238U database. RAP$_{234}$ resembles lithophile elements and has broad implications for investigating particle dynamics in the estuary-shelf-slope-ocean continuum and linkage of the atmosphere-ocean-sediment system.

Active biogeochemical processes associated with sediment resuspension have occurred in the global ocean1. The interactions between sediment and seawater play an important role in the burial of materials and their resupply to the overlying water column, which greatly affect the carbon cycle, nutrients, trace metals, and other pollutants. The bottom nepheloid layer occurs at the boundary between sediment and seawater and was widely studied in the GEOSECS-JGOFS-GEOTrACES era2. Although the bottom nepheloid layer can be identified by physical3, biological4, chemical5, and geological parameters6, the quantitative particle dynamic processes have been investigated by 234Th/238U disequilibrium method with particulate 234Th, dissolved 234Th, activity ratio of 234Th to 238U, activity ratio of particulate 234Th to dissolved 234Th, and residence time of 234Th610. The 234Th/238U disequilibrium method is on the basis of the distinct behaviours of 234Th and 238U in seawater (the particle-reactive 234Th and conservative 238U). This method is used to quantify the particle process of sediment resuspension79. However, photosynthesis generally occurs alongside sediment resuspension on the shallow continental shelf due to the penetration of sunlight into the full seawater column. The 234Th/238U disequilibrium method reflects the integrated results of all particle processes in seawater and cannot distinguish sediment resuspension from photosynthesis. Additionally, sediment resuspension enhances the scavenging of 234Th and probably leads to the overestimation of export flux of 234Th on the shallow continental shelf. Owing to the shortcomings of 234Th/238U disequilibrium method, Residual β activity of particulate 234Th (RAP$_{234}$) is proposed for the first time to track sediment resuspension.

RAP$_{234}$ derived from the second counting rate of particulate 234Th could be a powerful complement to 234Th/238U disequilibrium method in tracking sediment resuspension from low- to high-latitude oceans, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Seawater turbidity, residence time of total 234Th, and the ratio of RAP$_{234}$ to particulate organic carbon (POC) were also measured to support the occurrence of sediment resuspension. The mechanism and conceptual model of RAP$_{234}$ are represented and illustrated. This new definition of RAP$_{234}$ is analogous to that of gross β in drinking water11. RAP$_{234}$ is a sensitive proxy for...
distinguishing sediment resuspension from photosynthesis and for indicating the intensity of sediment resuspension without any additional sampling and measurement. Although further work needs to be conducted, RAP\textsubscript{234} behaves in a similar manner to lithophile elements and can be a novel approach to investigate quantitative particle dynamics in the estuary-shelf-slope-open ocean continuum.

Results and Discussion

Abnormally high activity of RAP\textsubscript{234}. The second counting rate of particulate 234Th is generally overlooked due to its constant value of 0.3–0.4 counts per minute (cpm)12–14. In this study, RAP\textsubscript{234} was calculated (see Appendix A1–A3), and data at selected stations are depicted in Fig. 1. High activity of RAP\textsubscript{234} was commonly observed from low- to high-latitude oceans.

In the western Arctic Ocean (Fig. 1a), RAP\textsubscript{234} did not vary with depth at deep stations (SR12 and SR15) with a mean activity of 1.95 ± 0.28 Bq/m3. However, RAP\textsubscript{234} increased with depth on the continental shelf (e.g., SR3). The layers (SR3) can be divided into upper layers (2.08 ± 0.24 Bq/m3) and deep layers (4.92 ± 0.30 Bq/m3), which were separated by the halocline at a depth of 10m according to the salinity profile. RAP\textsubscript{234} of the upper layers at SR3 was comparable with that of stations SR12 and SR15, while RAP\textsubscript{234} of the deep layers at SR3 was significantly higher than that of SR12 and SR15.

This high RAP\textsubscript{234} value could be qualitatively related to sediment resuspension and is used to determine the impact of sediment resuspension on export fluxes of 234Th without any additional sampling and measurement. The layer with a high RAP\textsubscript{234} value must be screened out during the integration of 234Th and POC export fluxes, because sediment resuspension can bias 234Th and POC fluxes related to photosynthesis. The finer grain size of the surface sediment as well as intensive hydrodynamics were observed at station SR3 in shallow waters, which favoured sediment resuspension15,16. Additionally, the high particulate 210Pb and deficit of 234Th to 238U had also been attributed to sediment resuspension on the continental shelf of the Chukchi Sea10,17.

In the South China Sea (Fig. 1b), high activity of RAP\textsubscript{234} was evident on the continental shelf (A6 and A7) outside the Pearl River Estuary during autumn. The average RAP\textsubscript{234} activities for coastal stations (A6 and A7) and open ocean stations (A1 and A2) were 2.16 ± 0.37 Bq/m3 and 0.68 ± 0.19 Bq/m3, respectively. This region was significantly affected by monsoon winds, especially during autumn. Sediment resuspension was stimulated under the influence of strong winds and shallow depth on the continental shelf, which had previously been demonstrated via the activity ratio of particulate 234Th to dissolved 234Th8.

As for the Southern Ocean (Fig. 1c), sediment resuspension also occurred at coastal station (D2-4B) due to active hydrodynamics and shallow depths near Elephant Island. The \textquoteleft Island Effect\textquoteright had been demonstrated to be a significant process for providing iron from the sediment to stimulate primary production in this \textquoteleft High Nutrient Low Chlorophyll\textquoteright region18. The average RAP\textsubscript{234} value at station D2-4B (2.27 ± 0.42 Bq/m3) was higher than that of D2-2 and D3-4 (1.46 ± 0.20 Bq/m3) in the open ocean, which could be used as a novel approach to identify sediment resuspension.

Mechanism of RAP\textsubscript{234}. The potential radionuclides associated with high RAP\textsubscript{234} activity and suspended particles in the seawater can be classified into external and internal radionuclides. The external radionuclides associated with suspended particles refer to the surface-bound radionuclides with high particle reactivity. The radionuclides and their activities in natural seawater have previously been compiled20 and can be classified into low and high particle reactivity (Table 1) according to their particle-seawater distribution coefficient (K\textsubscript{d})20. A high K\textsubscript{d} indicates high particle reactivity. Other artificial radionuclides with short half-lives are not considered due to a lack of nuclear facilities in our sampling region. Otherwise, radionuclides, such as 91Y, 152Eu, etc., should be taken into account when nuclear fuel reprocessing facilities are in operation near this sea area21.

Although the components of suspended particles, including POC, lithogenic materials, biogenic inorganic materials, and hydrogenous materials, display distinct affinity for radionuclides22, the requirements for major external radionuclides are high activity in seawater and high K\textsubscript{d}. The high activity of 234Th with high particle reactivity results in the direct measurement of surface-bound particulate 234Th without additional radiochemical
Therefore, the dominant external radionuclide associated with the β external contributions to the Sea 28. Terrigenous particles from marine sediment via sediment resuspension can reach 70% in the bottom nepheloid layer 27. It has also been reported that particulate 238U can even reach 95% of total 238U due to sediment resuspension 29. Therefore, 234Th supported by 238U is probably the dominant contribution to internal radionuclides, especially on the shallow continental shelf with active hydrodynamics.

The concentration of suspended particles in the bottom layer of seawater reached values of up to 9.5 mg/L on the continental shelf of the western Arctic Ocean 10. The activity, emitting particle type with energy, and the yield for radionuclides in the marine sediment are presented in Table 2. The activities of some radionuclides are consistent with the limit- s suspended particles is 234Th after sample collection. Surface-bound 234Th with a short half-life (24.1 days) on the suspended particles was unsupported by its parent radionuclides 238U, which remains in the seawater due to low Kd. RA234 was measured over 120 days after sampling. This surface-bound 234Th on external particles will decay away. Consequently, the unsupported 234Th adsorbed on external particles should not contribute to RA234.

The internal radionuclides of suspended particles were more complicate than the external radionuclides. The suspended particles can be classified into terrigenous and biogenic particles in order to analyse the internal radionuclides. In the bottom nepheloid layer, terrigenous particles resuspended from marine sediment could reach 70% 27. The concentration of suspended particles in the bottom layer of seawater reached values of up to 9.5 mg/L on the continental shelf of the western Arctic Ocean during the 5th Chinese National Arctic Research Expedition (CHINARE-5), which was significantly higher than that of the upper seawater and indicated the occurrence of sediment resuspension. High concentrations of suspended particle material were also observed for bottom seawater in the western Arctic Ocean 10. The activity, emitting particle type with energy, and the yield for radionuclides in the marine sediment are presented in Table 2. The activities of some radionuclides are consistent with the limiting direct measurement in the Chukchi Sea 28. Some α-particle-emitting radionuclides are also presented, because the daughter radionuclides supported by these α-particle-emitting radionuclides could contribute to the β count, such as 226Ra and its daughter radionuclides. Therefore, an exhaustive overview of the radionuclides in biogenic and terrigenous particles will benefit comprehensive understanding.

The requirements of the major contributors to internal radionuclides include high activity, high energy of β particles, and high yield. 234Pa, the daughter radionuclide of 234Th, emits β particles with a maximum energy of 2.28 MeV (Table 2). The small-volume technique via β counting of 234Th is on the basis of 234Pa measurement. The lower energy β particles from other radionuclides were significantly shielded during source preparation with a layer of Mylar film and two layers of aluminium foil 23, 24, to prevent external contributions to the β counting 25. Therefore, the dominant external radionuclide associated with the suspended particles is 234Th after sample collection.

In our study, only RA234 derived from the second counting rate of particulate 234Th was investigated. Low activity and low Kd of radium in seawater lead to extremely low activity of radium for adsorption onto external suspended particles. Radium and its progeny, such as 224Ra 25, should not contribute to RA234 via surface adsorption. Additionally, to our knowledge, there is no tectonically active region on the continental shelf of the Chukchi Sea to provide high radium activity 26. Therefore, the radionuclides with low Kd in seawater, such as radium, should not significantly contribute to RA234.

The internal radionuclides of suspended particles were more complicate than the external radionuclides. The suspended particles can be classified into terrigenous and biogenic particles in order to analyse the internal radionuclides.

Radionuclide (Low Kd)	Activity (Bq/m³)	Radionuclide (High Kd)	Activity (Bq/m³)
40K	11,000–12,000	234Th	44
82Rb	110	210Pb, 210Bi, 210Po	1–10
2H	70	212Ac, 212Th, 234Th, 231Pa	10⁻⁷–10⁻²
211U	48		
210U	44	232Th	10⁻⁴
3He	6		
35S	2.2		
Be, Ra, Rn, 90Sr, 32Cs	1–10		
39P, 39P	10⁻¹		
32Si, 99Te	10⁻¹–10⁻²		
39K, 32S, 31Ar, 34Ar	10⁻⁴		
85Ri	10⁻⁵		

Table 1. Typical activities of radionuclides in natural seawater.
that of 238U in the marine sediment derived from the crust\cite{31,32}. High activity of 228Th in bottom layer seawater had previously been directly measured as a result of sediment resuspension in the Baltic Sea\cite{31}. Therefore, 212Bi supported by 228Th-232Th should be considered when sediment resuspension occurs due to its high activity, β energy, and yield.

Although the existence of 40K, 226Ra, and 210Pb had been confirmed by γ-spectrometry for bottom seawater in the northeast Atlantic Ocean\cite{33}, these radionuclides and their progenies have lower β particle energies. Their contribution to β counting rate should be minimal due to the shielding effect of aluminium foil\cite{24}.

Biogenic particles make a major contribution to suspended particles in the upper ocean when photosynthesis occurs. The biotas make preferential use of low atomic number elements, such as C, N, P, S and others. Many radionuclides with high atomic numbers are not essential elements for these biotas. Typical radionuclides found in marine biotas are shown in Table 3. The dominant radionuclide amongst the marine biotas is 40K, the activity of which is two orders of magnitude greater than that of the other radionuclides. The shield effect of aluminium foil during source preparation of particulate 234Th limits the contribution by 40K to RAP$_{234}$ due to low β energy.

Therefore, the activity of RAP$_{234}$ was low in the euphotic layer due to a major fraction of suspended particles from photosynthesis.

The dominant radionuclides contributing to the high activity of RAP$_{234}$ in bottom seawater are likely to be 234Th-238U and 212Bi-228Th in the particles resuspended from marine sediments. RAP$_{234}$ was re-measured three times 120 days after the sampling date to check its stability. It indicated that RAP$_{234}$ is constant due to the long half-lives of 238U and 228Th-232Th and the relatively enclosed environment of the crystal lattice in the mineral derived from marine sediments that constrain any deficit or ingrowth process of the daughter-parent radionuclides.

However, the exact percentage of 234Th-238U and 212Bi-228Th for RAP$_{234}$ was not obtained in our study due to limitations on the volume of seawater available. Only 4–8 L of seawater was sampled on the continental shelf for 234Th analysis. The phenomenon, abnormally high activity of RAP$_{234}$, was constant due to the long half-lives of 238U and 228Th-232Th and the relatively enclosed environment of the crystal lattice in the mineral derived from marine sediments that constrain any deficit or ingrowth process of the daughter-parent radionuclides.

As a result, RAP$_{234}$ is not only sensitive to indicate sediment resuspension process in the continental shelf but also is sensitive to indicate sediment resuspension with small volume of seawater via β-counter with high detector efficiency. The relative contributions of 234Th-238U and 212Bi-228Th should vary with distinct sea areas. The specific characteristic of sediment and intensity of sediment resuspension will determine their relative contributions as well as activity of RAP$_{234}$.

Table 2. Activity, emitting particle (with energy), and radionuclide yield in marine sediments\cite{39}.

Radionuclide	Typical activity (Bq/kg-d.w.)	Emitting particle	Energy (MeV)	Yield (%)
40K	500	β	1.31	89.3
210Pb	150	β	0.063	19.8
210Bi	150	β	1.16	100
210Po	150	α	5.30	100
234Th	150	α	4.69	76.3
89Sr	120	β	0.273	100
226Ra	10–100	γ	0.48	10.4
228Ra	10–100	α	4.78	94.5
212Ac	10–100	β	0.039	100
213Ac	10–100	β	1.17	32
214Th	10–100	α	5.42	72.7
212Bi	10–100	β	2.25	48.4
214Th	10–100	α	4.01	77
210U	10–100	α	4.20	77
212U	10–100	α	4.77	72.4
228Th	10–100	β	0.19	72.5
214Pa	10–100	β	2.28	99
36Cl	1–10	β	0.15	100
90Sr	1–10	β	0.55	100
90Y	1–10	β	2.28	100
137Cs	1–10	β	0.51	94.6
39U	1–10	α	4.40	55
234Th	0.1–1	α	5.1	100
241Am	0.1–1	α	5.4	100
3H	10^{-2}	β	0.018	100
Seawater turbidity to indicate sediment resuspension. Seawater turbidity was measured at six stations ranging in location from the southern Chukchi Sea to the open Arctic Ocean during the CHINARE-6. Extremely high turbidity was observed within the bottom 10 m layer at stations SR1, SR3, SR5, and SR7 (Fig. 2a–d), which were located in the southern and central Chukchi Sea, suggesting that intensive sediment resuspension occurred near the bottom on the shallow continental shelf. This is expected because strong bottom currents in the Chukchi Sea are often observed in summer15,34. In contrast, seawater turbidity was almost invariable with depth at stations SR9 and R10 (Figs 2e and 4f), which were located on the northern shelf or in the open ocean. Neither weak currents nor great depth should favor sediment resuspension15,34.

Residence time of total \(^{234}\text{Th}\) to indicate sediment resuspension. The residence time of total \(^{234}\text{Th}\) was calculated and represented using an irreversible steady-state model (Appendix Table A1)36. Our results were consistent with other studies of this region17–30. The residence time of total \(^{234}\text{Th}\) on the continental shelf was significantly shorter than that in the open Arctic Ocean. The high nutrients waters supplied from the North Pacific Ocean can support high photosynthesis and scavenge \(^{234}\text{Th}\) on the continental shelf relating to nutrient depletion and low photosynthesis in the open ocean30,41.

The residence time of total \(^{234}\text{Th}\) for bottom seawater was shorter than that for upper-layer seawater, which had been attributed to sediment resuspension to enhance the scavenging of \(^{234}\text{Th}\) from seawater42. Therefore, the short residence time of total \(^{234}\text{Th}\) for the bottom layer also provided another clue to sediment resuspension on this shallow, but hydrodynamically active, continental shelf.

\[\text{RA}_{234} \text{ and POC to indicate sediment resuspension.} \] The relationship between \(\text{RA}_{234}\) and POC was investigated in the western Arctic Ocean (Fig. 3). The slope of linear regression line between \(\text{RA}_{234}\) and POC was about 0.16 Bq/mmol C for suspended particles. As for the end-member of sediment in the Chukchi Sea, the activity of \(^{238}\text{U}\) was about 50 Bq/kg26, while the activity of \(^{232}\text{Th}\) was generally comparable with that of \(^{238}\text{U}\) in the marine sediment24. The average concentration of POC was about 1% with a range of 0.5% to 2% in the marine sediment23. Thus, the sediment fingerprint is characterized by its ratio of \(^{238}\text{U-}^{234}\text{Th}\) and \(^{232}\text{Th-}^{238}\text{U}\) to POC. The sediment residence time of \(^{234}\text{Th}\) for bottom seawater was shorter than that for upper-layer seawater, which had been attributed to sediment resuspension to enhance the scavenging of \(^{234}\text{Th}\) from seawater42. Therefore, the short residence time of total \(^{234}\text{Th}\) for the bottom layer also provided another clue to sediment resuspension on this shallow, but hydrodynamically active, continental shelf.

\[\text{Conceptual model of RA}_{234}\text{.} \] The conceptual model of \(\text{RA}_{234}\) is illustrated in Fig. 4. Biogenic and terrigenous particles make the dominant contributions to suspended particles in the upper ocean and bottom nepheloid layer, respectively. Both kinds of particles can adsorb high particle-reactive radionuclides onto particle surfaces. In seawater, the dominant surface-bound radionuclide is \(^{234}\text{Th}\). The external and unsupported \(^{234}\text{Th}\) adsorbed on biogenic and terrigenous particles decays away after 120 days and should not contribute to \(\text{RA}_{234}\). Radionuclides with high atomic number are seldom taken up by biotas as essential elements. Thus, biogenic particles play a minor role in \(\text{RA}_{234}\). The internal radionuclides of terrigenous particles, dominated by \(^{234}\text{Th}\), supported by \(^{238}\text{U}\) and \(^{212}\text{Bi}\), should exist and contribute to the second \(\beta\) counting rate of particulate \(^{234}\text{Th}\) after 120 days due to the long half-lives of \(^{238}\text{U}\) (4.47 × 10^7 y) and \(^{226}\text{Th}\-^{232}\text{Th}\) (1.91 y and 1.4 × 10^4 y) in the minerals. Both \(^{238}\text{Th}\) and \(^{238}\text{U}\) have been categorised as lithophile elements according to Goldschmidt's classification44.
which is analogous to aluminium, titanium and other lithophile elements to trace the terrigenous fraction. Although ^{228}Th and ^{238}U were not measured directly in our study due to the limitation of seawater volume, both ^{228}Th and ^{238}U in resuspended particles had been directly measured and attributed to sediment resuspension in other studies.

On the continental shelf, low activity of RAP$_{234}$ in the upper layer and high value in the deep layer at SR3 can be interpreted as dominant photosynthesis and sediment resuspension, respectively. In comparison, low activity of RAP$_{234}$ remained stable considering of its activity uncertainty at SR15 in the open ocean (Fig. 1a), while a peak value of POC was observed in the subsurface layer at a depth of 47 m (Appendix Table A1, 3.57 mmolC/m3 at SR15). Subsurface chlorophyll maximum had been widely observed in the Arctic Ocean due to the supplement of nutrients in the subsurface layer. Although POC was variable due to heterogeneous photosynthesis, RAP$_{234}$ was vertically uniform as a result of small contributions to RAP$_{234}$ from biogenic particles.

Consequently, RAP$_{234}$ refers to the terrigenous particles resuspended from marine sediment, which is probable to trace sediment resuspension with sufficient sensitivity via β counter. RAP$_{234}$ could be a nice addition to the $^{234}\text{He}/^{238}\text{U}$ disequilibrium and seawater turbidity methods to distinguish particle processes related to photosynthesis and sediment resuspension.

Advantages of RAP$_{234}$. The relationship between RAP$_{234}$ and POC was utilized to distinguish particle processes, including photosynthesis and sediment resuspension, in the western Arctic Ocean (Fig. 3). Biogenic
particle were characterized by low RA_{P234} in addition to variable concentrations of POC, which depended on intensity of photosynthesis. In comparison, sediment resuspension can elevate RAP_{234}. Therefore, sediment resuspension and photosynthesis could be distinguished with distinct RA_{P234}, while seawater turbidity and 234Th/238U disequilibrium method could not differentiate sediment resuspension from photosynthesis. Additionally, the slope of linear regression between RAP_{234} and POC, ‘slope assumption’, has the potential to indicate the intensity of sediment resuspension (Fig. 3).

The linear regression between activity ratio of 234Th to 238U and POC (Fig. 5) was compared with that of RAP_{234} and POC (Fig. 3). The correlation coefficient of RA_{P234} and POC (0.815) is greater than that of 234Th/238U and POC (0.44). Both sediment resuspension and photosynthesis can enhance the scavenging of 234Th. It is difficult to distinguish these two processes via 234Th/238U method. However, RAP_{P234} is directly related to the terrigenous fraction from sediment resuspension based on the conceptual model (Fig. 4). Additionally, the 234Th/238U disequilibrium method has a memory effect that records the integrated particle dynamics during the past several months. Both RA_{P234} and POC are instantaneous parameters relative to the parameters of 234Th/238U disequilibrium method with memory effects. Therefore, a better regression result for RA_{P234} and POC was obtained compared with the 234Th/238U disequilibrium method.

RA_{P234} and its implications for export flux of 234Th. The 234Th/238U disequilibrium method reflects the integrated particle dynamics, including sediment resuspension and photosynthesis, on the shallow continental shelf. Sediment resuspension can enhance the scavenging of 234Th and deficit of 234Th to 238U, overestimating export flux of 234Th. From the conceptual model of RA_{P234}, high activity of RA_{P234} was directly related to sediment resuspension. Sediment resuspension can be qualitatively identified on the basis of RA_{P234} to screen out the layer in which sediment resuspension occurred when export flux of 234Th was integrated into the shallow water column. However, export flux of 234Th may be underestimated following screening when photosynthesis occurs in conjunction with sediment resuspension.

Two endmembers, biogenic particles and resuspended particles, are assumed to exist in bottom seawater. The surface-bound concentrations of 234Th on biogenic and resuspended particles were assumed to be f_1 and f_2.
respectively, in order to estimate the export fluxes of 234Th from these two kinds of particles. The exact values of f_1 and f_2 were determined by two factors: particle concentration and the adsorbing ability of the particles. Most of the time, the particle concentration could be quantified by chemical proxies with distinct values for biogenic and resuspended particles, such as δ^{13}C, Al, Ti and others. Biogenic and resuspended particles have low and high activity of RAP234, respectively. Therefore, there is a potential to quantify the concentrations of biogenic and resuspended particles by mean of RAP234.

The adsorbing capacity of distinct particle compositions can be quantified by different values of K_d for thorium. The particle compositions include lithogenic particles, opal, carbonate carbon, organic carbon, etc. If the K_d for thorium can be obtained for biogenic and resuspended particles, f_1 and f_2 can be calculated (Eqs 1 and 2).

$$f_1 = a \times TSP \times K_{d-bio} \times A_{D234}$$
$$f_2 = b \times TSP \times K_{d-res} \times A_{D234}$$

where a and b represent the fraction of biogenic and resuspended particles derived from chemical proxies. TSP is the total suspended particles in the seawater (mg/L). K_{d-bio} and K_{d-res} are the particle-seawater distribution coefficients for biogenic and resuspended particles (L/kg), and A_{D234} is the dissolved activity of 234Th in seawater (Bq/m3). If f_1 and f_2 can be calculated, the export flux of 234Th ($F_{234-bio}$) derived from the biogenic process can be obtained:

$$F_{234-bio} = \frac{f_1}{f_1 + f_2} \times \left(A_{238U} - A_{T234}^0 \right) \times \text{Depth}$$

Substituting for f_1 and f_2 gives

$$F_{234-bio} = \frac{a \times K_{d-bio}}{a \times K_{d-bio} + b \times K_{d-res}} \times \left(A_{238U} - A_{T234}^0 \right) \times \text{Depth}$$

Therefore, the export flux of 234Th ($F_{234-bio}$) derived from biogenic process can be determined from the fraction of biogenic particles and K_{d}. In natural seawater, the fraction of biogenic particles, along with its uncertainty, can be quantified by chemical proxy. Large uncertainties in the fraction of particles occur, because the chemical proxies for endmember are generally difficult to identify. Although the K_d for thorium for distinct particle compositions had been derived under the laboratory conditions, K_{d-bio} and K_{d-res} are difficult to obtain in natural seawater, especially when complex particle compositions co-occur in biogenic and resuspended particles. The accuracy of the particle fraction and K_d will constrain the exact estimation for export fluxes of 234Th derived from biogenic particles.

RAP_{234}: a linkage of the atmosphere-ocean-sediment system. To validate the 'slope assumption', the A transect was revisited to investigate RAP_{234} and POC in the South China Sea during spring and autumn. The slope of linear regression between RAP_{234} and POC in Fig. 6 was also greater in autumn (0.30) than in spring (0.19), which may be attributed to sediment resuspension. Sediment resuspension could increase the terrigenous fraction and elevate RAP_{234}. The intensity of sediment resuspension had been indicated to be high in the same sea region in autumn relative to spring via the ratio of particulate 234Th to dissolved 234Th under the influence of the East Asian monsoon system. Therefore, the assumption of the slope of linear regression between RAP_{234} and POC is confirmed in the South China Sea. RAP_{234} will shed new light on 234Th-based particle dynamics to investigate the linkage of the atmosphere-ocean-sediment system, such as the typhoons and their impacts on sediment.

A novel approach of RAP_{234} is proposed for the first time to trace sediment resuspension from low- to high-latitude oceans. High activity of RAP_{234} was widely observed on the continental shelf in relation to sediment resuspension (Fig. 1). Sediment resuspension was also corroborated by seawater turbidity, residence time of total 234Th, Goldschmidt’s classification, and fingerprint ratio of RAP_{234} to POC from the sediment endmember in the western Arctic Ocean. The mechanism and conceptual model of RAP_{234} was investigated and illustrated (Fig. 4). RAP_{234} is sufficiently sensitive to identify sediment resuspension via β counter with high detector efficiency. The advantage of RAP_{234} is that it is a supplementary parameter to the 234Th/238U disequilibrium method and does...
not require any additional sampling and measurement to distinguish sediment resuspension from photosynthesis, while both the 234Th/238U disequilibrium and seawater turbidity methods cannot differentiate biogenic particles from terrigenous particles. RAP234 is a potential proxy to trace sediment resuspension without a memory effect. RAP234 could also be used to screen out the layer to bias integration of 234Th and POC fluxes. The slope of the linear regression between RAP234 and POC was used to indicate the higher intensity of sediment resuspension in the South China Sea during autumn. Similar to the definition of gross β, RAP234 may stimulate some debate but is also meaningful to identify and indicate the intensity of sediment resuspension. From the mechanism proposed, RAP234 refers to the terrigenous fraction and has potentially broad implications for investigating the dynamics of suspended particles in the estuary-shelf-slope-ocean continuum and the linkage of the atmosphere-ocean-sediment system.

Methods

Sampling. Seawater samples were collected for 234Th analysis from low- to high-latitude ocean in the western Arctic Ocean, the South China Sea, and the Southern Ocean (Fig. 7). Seven stations (SR1, SR3, SR5, SR7, SR9, SR12, SR15) were sampled in the western Arctic Ocean during the 5th Chinese National Arctic Research Expedition (CHINARE-5) in September, 2012 (Fig. 7b). The sea ice extent during the sampling period was the lowest since the first satellite measurement taken in 1979. Seawater turbidity was measured and was indicated by red stars on the continental shelf (SR1, SR3, SR5, SR7, SR9) and the open ocean (R10) (Fig. 7b).

A transect (six stations) was taken from the continental shelf to the open ocean outside the mouth of the Pearl River in the northern South China Sea during 2–8 November, 2010 (autumn) and 16–18 May, 2011 (spring) (Fig. 7c). Stations A7, A6, and A5 were on the continental shelf (depth < 100 m). Three stations were analysed around Elephant Island, off the north-eastern Antarctic Peninsula on 22–25 January, 2012 during the 28th CHINARE-Antarctic (Fig. 7d). Only station D2-4B was near coast of Elephant Island with the depth of 53 m. Two stations (D2-2 and D3-4) were in the open ocean with the depth over 3000 m.

Analysis of 234Th. The 234Th/238U disequilibrium method has been widely applied in the global ocean with a huge database to quantify the marine biological carbon pump, which modulates glacial/interglacial atmospheric carbon dioxide and climate change. The international calibration of 234Th was conducted under the framework of GEOTRACES. The small-volume technique via β counting of 234Th has been extensively studied due to its high sampling resolution. The radiochemical analysis of 234Th had been described.

Following filtration of seawater with 25-mm diameter Quartz Microfiber (QMA, nominal pore size 1.0 μm), the direct measurement of particulate 234Th without radiochemical separation was obtained from the difference in values between the first β counting after sampling and the second β counting after 120 days as a result of high activity of 234Th in seawater. After treating with MnO₂ co-precipitation, the activity of total 234Th was also calculated from the difference between the first and second β counting rates of total 234Th. The activity of 234Th and its associated uncertainty were calculated according to Eqs 4–9.

$$A_{234} = \frac{N_1 - N_2}{\nu V} \exp (\lambda_{234} t)$$
\[
\delta A_{P234} = \left(\frac{(n_{P1} + n_{P2})}{\varepsilon V}\right) \exp(\lambda_{234} t) \tag{5}
\]

\[
A_{T234} = \frac{n_{T1} - n_{T2}}{\varepsilon V \eta} \exp(\lambda_{234} t) \tag{6}
\]

\[
\left(\frac{\delta A_{T234}}{A_{T234}}\right)^2 = \left(\frac{\delta \eta}{\eta}\right)^2 + \frac{n_{T1} + n_{T2}}{T(n_{T1} - n_{T2})^2} \tag{7}
\]

\[
A_{T234} = A_{T234} \exp(\lambda_{234} t) - \frac{\lambda_{234} A_{238U}}{\lambda_{234} - \lambda_{238}} \left[\exp(\lambda_{234} t - \lambda_{238} t) - 1\right] \tag{8}
\]

\[
\left(\frac{\delta A_{T234}}{A_{T234}}\right)^2 = \left(\frac{\delta \eta}{\eta}\right)^2 + \frac{n_{T1} + n_{T2}}{T(n_{T1} - n_{T2})^2} \times (A_{T234})^2 + \left[\exp(\lambda_{234} t) - 1\right]^2 \times (b_{238U})^2 \tag{9}
\]

The dimensions and definitions of the parameters are given in Table 4. Equations 4–9 had been deduced in detail with the similar principle55.

Definition and calculation of RA\textsubscript{P234}. The second counting rate of particulate ^{234}Th (n_{P2}) was usually overlooked, because only the difference between the first and second counting rates ($n_{P1} - n_{P2}$) was used to calculate particulate ^{234}Th using Eq. 4. In the open ocean, the second counting rate of particulate ^{234}Th (n_{P2}) was relatively stable with a value of 0.3–0.4 cpm, which also depends on the instrumental background with a normal value of 0.15–0.2 cpm via gas-flow proportional low-level RIS\textregistered\textregistered\textregistered\,\textbeta\,-counter (Model GM-25-5, RIS\textregistered\textregistered\textregistered National Laboratory, Denmark)12–14. In this study, the abnormally high second counting rate of particulate ^{234}Th was observed for bottom seawater on the continental shelf in the western Arctic Ocean. This phenomenon was further confirmed in the South China Sea and the Southern Ocean. RA\textsubscript{P234} derived from the second counting rate of particulate ^{234}Th and instrumental background was proposed for the first time to investigate this abnormal value of particulate ^{234}Th. Equations 10 and 11 were used to calculate RA\textsubscript{P234} and its uncertainty:

\[
RA_{P234} = \frac{n_{P2} - n_{P1}}{\varepsilon V} \tag{10}
\]

\[
\delta RA_{P234} = \left(\frac{(n_{P2} + n_{P1})}{\varepsilon V}\right) \tag{11}
\]

All the parameters in Eqs 10 and 11 are defined in Table 4. The detector efficiency of RA\textsubscript{P234} is equal to that of particulate ^{234}Th because of the similar energy of \textbeta particles being emitting by radionuclide candidates. The second counting rate of particulate ^{234}Th (0.54 ± 0.02 cpm) was very constant after 136 days, 304 days, and 495 days from the sampling date, which indicates that it was mainly radionuclides with long half-lives that contributed to RA\textsubscript{P234}. The stability of the second counting rate of particulate ^{234}Th has been demonstrated24.

Notice that RA\textsubscript{P234} was not a signal from a certain radionuclide. In fact, RA\textsubscript{P234} was the residual \textbeta activity for particulate ^{234}Th after more than 120 days, which was usually recognized to be the stable methodological background for particulate ^{234}Th and was therefore neglected. This residual \textbeta activity may include several radionuclides with long half-lives. It should be treated as a supplementary parameter for total ^{234}Th and particulate ^{234}Th and has advantage of being able to trace sediment resuspension without any additional sampling and analysis based on the small-volume technique for ^{234}Th.

The definition of RA\textsubscript{P234} is similar to that of gross \textbeta in drinking water. Most of the time, the exact radionuclides and their contributions to gross \textbeta cannot be identified11. However, gross \textbeta is an essential parameter for screening the level of radiological pollution, especially during nuclear emergency. The detector efficiencies of ^{89}Sr and ^{137}Cs are artificially chosen to calculate that of gross \textbeta for drinking water, although a spread of energies of \textbeta particles from distinct radionuclides (^{40}K) with different detector efficiencies is very common11. Analogously, the definition of RA\textsubscript{P234} is proposed and is convenient for tracing sediment resuspension without any additional sampling and measurement.

Although the abnormally high second counting rate of total ^{234}Th was also observed for the bottom seawater on the continental shelf as that of particulate ^{234}Th, the second counting rate of total ^{234}Th was not discussed in this study. The radionuclides contributing to the second counting rate of total ^{234}Th are more complex than that of particulate ^{234}Th due to the additional MnO\textsubscript{2} co-precipitation. The radiochemical treatment of MnO\textsubscript{2} co-precipitation for total ^{234}Th can scavange other radionuclides of low K_{f} with variable chemical recovery, such as radium and its progenies, onto the MnO\textsubscript{2} particle surface13,56, especially for the tectonically active sea region with ^{224}Ra diffusion into the overlying seawater25.
Particulate organic carbon. Following the second counting of particulate 234Th, the POC was measured with an Elemental Analyzer (Elementar vario EL III) after removing the carbonate fraction by fuming with concentrated hydrochloric acid. The blank of the method was subtracted. The analytical precision was always better than 10%.

Seawater turbidity. The seawater turbidity was measured using a turbidity sensor (Rinko-profiler) during the 6th CHINARE from 27 July to 7 August 2014. The turbidity sensor works on the basis of backscattering principle and has a range of 0~1 FTU. The reference material was Formazin. A few abnormal values over 1 FTU arising from the present of bubbles were discarded. The precision of the turbidity sensor was 0.03 FTU.

References
1. McCave, I. Local and global aspects of the bottom nepheloid layers in the world ocean. Netherlands Journal of Sea Research 20, 167–181 (1986).
2. Jeandel, C. et al. What did we learn about ocean particle dynamics in the GEOSECS-JGOFS era? Progress in Oceanography 6–16 (2015).
3. Hall, I., Schmidt, S., McCave, I. & Reys, J. Particulate matter distribution and 234Th/238U disequilibrium along the Northern Iberian Margin: implications for particulate organic carbon export. Deep Sea Research Part I: Oceanographic Research Papers 47, 557–582 (2000).
4. Turley, C. Bacteria in the cold deep-sea benthic boundary layer and sediment–water interface of the NE Atlantic. FEMS microbiology ecology 33, 89–99 (2000).

Parameter	Dimension	Definition
$\lambda_{234}^{}$	day$^{-1}$	Decay constant of 234Th
$\lambda_{238}^{}$	day$^{-1}$	Decay constant of 238U

Sample information
- t: day, Elapsed time between sampling date and detecting date
- t_1: day, Elapsed time between MnO$_2$ formation date and detecting date
- t_2: day, Elapsed time between sampling date and MnO$_2$ formation date
- T: min, β-counting time for particulate and total 234Th
- V: m3, Volume of seawater

Detector information
- ε: Detector efficiency

Processing and analysis information
- n_{P1}: Bq, First β counting rate of particulate 234Th
- n_{P2}: Bq, Second β counting rate of particulate 234Th
- n_T: Bq, First β counting rate of total 234Th
- n_{T2}: Bq, Second β counting rate of total 234Th
- n_0: Bq, Instrumental background with a normal value of 0.2 cpm
- η: Chemical recovery of 230Th
- δ_{η}: Uncertainty of η

Calculated parameter
- A_{P234}: Bq/m3, Activity of particulate 234Th at sampling time
- A_{T234}: Bq/m3, Activity of total 234Th at MnO$_2$ formation time
- A_{T234}^T: Bq/m3, Activity of total 234Th at sampling time
- A_{238U}: Bq/m3, Activity of 238U at sampling time
- R_{A234}: Bq/m3, Activity of Residual β activity of particulate 234Th at sampling time
- $\delta_{A_{234}}$: Uncertainty of particulate 234Th
- $\delta_{A_{T234}}$: Uncertainty of A_{T234}
- $\delta_{A_{T234}}^\eta$: Uncertainty of A_{T234}
- $\delta_{A_{238U}}$: Uncertainty of A_{238U}
- $\delta_{R_{A234}}$: Uncertainty of R_{A234}

Table 4. List of parameters with dimensions and definitions.
5. Guo, L. & Santchi, P. H. Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer. *Geochimica et Cosmochimica Acta* 64, 651–660 (2000).

6. Rutgers van der Loeff, M., Meyer, R., Rudels, B. & Racher, E. Resuspension and particle transport in the benthic nepheloid layer in and near Fram Strait in relation to faunal abundances and 210Pb depletion. *Deep Sea Research Part I: Oceanographic Research Papers* 49, 1941–1958 (2002).

7. Inthorn, M., Rutgers van der Loeff, M. & Zabel, M. A study of particle exchange at the sediment-water interface in the Benguela upwelling area based on 210Pb/226Ra disequilibrium. *Deep Sea Research Part I: Oceanographic Research Papers* 53, 1742–1761 (2006).

8. Cai, P., Zhao, D., Wang, L., Huang, B. & Dai, M. Role of particle stock and phytoplankton community structure in regulating particulate organic carbon export in a large marginal sea. *Journal of Geophysical Research: Oceans* 120, 2063–2095 (2015).

9. Muir, G., Pates, J. M., Karageorgis, A. & Kaberi, H. 234Th/238U disequilibrium as an indicator of sediment resuspension in Thermalkos Gulf, northwestern Aegean Sea. *Continental shelf research* 25, 2476–2490 (2005).

10. Moran, S. et al. Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves. *Deep Sea Research Part II: Topical Studies in Oceanography* 52, 3427–3451 (2005).

11. EPA. in *Method 900.1* 1-10 (EPA, USA, 2009).

12. Zhou, K., Noddor, S. D., Dai, M. & Hall, J. A. Insignificant enhancement of export flux in the highly productive subtropical front, east of New Zealand: a high resolution study of particle export fluxes based on 234Th-238U disequilibria. *Biogeosciences* 9, 973–992, doi: 10.5194/bg-9-973-2012 (2012).

13. Benetze-Nelson, C. R. et al. Testing a new small-volume technique for determining 234Th in seawater. *Journal of Radioanalytical and Nuclear Chemistry* 248, 795–799, doi: 10.1023/a:1010621618652 (2001).

14. Cai, P. et al. A high-resolution study of particle export in the southern South China Sea based on 234Th/238U disequilibrium. *Journal of Geophysical Research: Oceans* 113, doi:10.1029/2007JC004268 (2008).

15. Woodgate, R. A., Aagaard, K. & Weingartner, T. J. A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991. *Deep Sea Research Part II: Topical Studies in Oceanography* 52, 3116–3149 (2005).

16. Sun, Y.-c. et al. Biogenic and terrigenous coarse fractions in surface sediments of the western Arctic Ocean and their sedimentary environments. *Acta Oceanologica Sinica* 33, 103–114 (2011).

17. Chen, M. et al. Importance of lateral transport processes to 210Pb budget in the eastern Chukchi Sea during summer 2003. *Deep Sea Research Part II: Topical Studies in Oceanography* 51, 53–62 (2004).

18. Dutay, J.-C., Tagliabue, A., Kriest, I. & van Hulten, M. Modelling the role of marine particle on large scale 231Pa, 230Th, Iron and 210Pb in the eastern Chukchi Sea. *Deep Sea Research Part II: Topical Studies in Oceanography* 52, 2063–2095 (2005).

19. Dutay, J.-C., Tagliabue, A., Kriest, I. & van Hulten, M. Modelling the role of marine particle on large scale 231Pa, 230Th, Iron and 210Pb in the eastern Chukchi Sea. *Deep Sea Research Part II: Topical Studies in Oceanography* 52, 3116–3149 (2005).

20. Rutgers van der Loeff, M. *Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment*. (IAEA, Vienna, 2004).

21. DeVries, T. et al. Testing a new small-volume technique for determining 234Th in seawater. *Deep Sea Research Part II: Topical Studies in Oceanography* 52, 2063–2095 (2005).

22. Li, M. et al. A high-resolution study of particle export in the southern South China Sea based on 234Th/238U disequilibrium. *Journal of Geophysical Research: Oceans* 113, doi:10.1029/2007JC004268 (2008).

23. Trimble, S. & Baskaran, M. The role of suspended particulate matter in 234Th scavenging and 234Th-derived export fluxes of POC in the northern Gulf of Maine. *Continental shelf research* 26, 474–487 (2006).

24. Zhang, J. et al. Uranium and thorium isotopes in marine sediments off northeastern Taiwan. *Marine Geology* 229, 177–190 (2006).

25. Peine, F. *The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves in the Canada Basin of the Arctic Ocean*. *Progress in Oceanography* 112, 81–100, doi: 10.1016/j.pocean.2012.06.002 (2013).

26. Rutgers van der Loeff, M. et al. A high-resolution study of particle export in the southern South China Sea based on 234Th/238U disequilibrium. *Journal of Geophysical Research: Oceans* 113, doi:10.1029/2007JC004268 (2008).

27. Yu, W., He, J., Li, Y., Lin, W. & Chen, L. Particulate organic carbon export fluxes and validation of steady state model of 234Th export from autumn 1990–1991. *Deep Sea Research Part II: Topical Studies in Oceanography* 52, 3116–3149 (2005).

28. Yang, W., Chen, M., Liu, G. & Huang, Y. Distribution of radionuclides at surface sediments in Chukchi Shelf (In Chinese). *Marine Chemistry* 88–102, doi: 10.1016/j.marchem.2005.10.012 (2006).

29. Yamanaka, Y. & Nishizawa, M. Uptake rates of dissolved inorganic carbon and nitrogen by under-ice phytoplankton in the Sea of Okhotsk. *Progress in Oceanography* 112, 81–100, doi: 10.1016/j.pocean.2012.06.002 (2013).

30. Lee, S. H., Stockwell, D. & Whitledge, T. E. Uptake rates of dissolved inorganic carbon and nitrogen by under-ice phytoplankton in the Sea of Okhotsk. *Progress in Oceanography* 112, 81–100, doi: 10.1016/j.pocean.2012.06.002 (2013).

31. Lee, S. H., Whitledge, T. E. & Kang, S.-H. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. *Marine Chemistry* 119, 297–312 (2009).
47. Le Moigne, F. et al. Export of organic carbon and biominerals derived from 234Th and 210Po at the Porcupine Abyssal Plain. *Deep Sea Research Part I: Oceanographic Research Papers* **72**, 88–101 (2013).

48. Luo, S. & Ku, T.-L. On the importance of opal, carbonate, and lithogenic clays in scavenging and fractionating 210Th, 231Pa and 10Be in the ocean. *Earth and Planetary Science Letters* **220**, 201–211 (2004).

49. Chase, Z., Anderson, R. F., Fleisher, M. Q. & Kubik, P. W. The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. *Earth and Planetary Science Letters* **204**, 215–229 (2002).

50. Chiuang, C.-Y. et al. Important role of biomolecules from diatoms in the scavenging of particle-reactive radionuclides of thorium, protactinium, lead, polonium and beryllium in the ocean: a case study with Phaeodactylum tricornutum. *Limnol. Oceanogr.* **59**, 1256–1266 (2014).

51. Parkinson, C. L. & Comiso, J. C. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. *Geophysical Research Letters* **40**, 1356–1361 (2013).

52. Le Moigne, F., Henson, S., Sanders, R. & Madsen, E. Global database of surface ocean particulate organic carbon export fluxes diagnosed from the 234Th technique. *Earth System Science Data* **5**, 295–304 (2013).

53. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. *Nature* **407**, 859–869 (2000).

54. Matti, K. et al. Intercalibration studies of short-lived thorium-234 in the water column and marine particles. *Limnology and Oceanography: Methods* **10**, 631–644 (2012).

55. Lin, W. et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater. *J Environ Radioact* **137**, 22–30 (2014).

56. Waples, J. T., Orlandini, K. A., Weckerly, K. M., Edgington, D. N. & Val Klump, J. Measuring low concentrations of 234Th in water and sediment. *Marine Chemistry* **80**, 265–281 (2003).

57. Knap, A., Michaels, A., Close, A., Ducklow, H. & Dickson, A. Protocols for the joint global ocean flux study (JGOFS) core measurements. **170** (1996).

58. ODV. ODV 4.7.4, https://odv.awi.de/ (2016).

59. Hosseini, A. et al. Background dose rates to reference animals and plants arising from exposure to naturally occuring radionuclides in aquatic environments. *Journal of Radiological Protection* **30**, 235–264 (2010).

60. Brown, J. E., Jones, S. R., Saxen, R., Thöring, H. & Vives i Batlle, J. Radiation doses to aquatic organisms from natural radionuclides. *Journal of Radiological Protection* **24**, A63–A77 (2004).

Acknowledgements

We are grateful to Xinning Liu for help with drawing the figures. Yuan Shen, Hongyang Lin, Fangfang Deng, and Yanpei Zhuang are appreciated for their constructive comments. We thank Pinghe Cai for his comments and providing data in the South China Sea, and the captain and crew members of R/V Xuelong for their assistance during sample collection. We gratefully acknowledge the editor and two anonymous reviewers for their useful comments. This work was supported by the Strategy Foundation for Polar Research of China (20120316), the National Science and Technology Project of China (2012FY130200), the Chinese Projects for Investigations and Assessments of the Arctic and Antarctic (CHINARE2012-15 for 01-04-02, 02-01, 03-02 and 03-04-02), and the Chinese International Cooperation Projects (S2015GR1195, 2015DFG22010, IC201513). All of the data used in this paper are provided in Appendix Tables A1–A3.

Author Contributions

W.L. contributed to sampling, measurement, and writing the paper; L.C. contributed to the design of the sampling strategy and to the discussion; S.Z. and T.L. contributed to the results and the discussion; K.Y. and Y.W. contributed to the methods and the discussion.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Lin, W. et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean. *Sci. Rep.* **6**, 27069; doi: 10.1038/srep27069 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/