A Novel Type of Cytoplasmic Granule in Bovine Neutrophils

RENATO GENNARO, BEATRICE DEWALD, URSULA HORISBERGER, HANS ULRICH GUBLER, and MARCO BAGGIOLINI

Wander Research Institute (A Sandoz Research Unit), Wander Ltd., CH-3001 Berne, Switzerland. Dr. Gennaro’s present address is the Department of Biochemistry, University of Trieste, I-34127 Trieste, Italy.

ABSTRACT We obtained cell preparations containing >95% neutrophils from freshly drawn bovine blood. The cells were suspended in sucrose and disrupted in a Dounce homogenizer, and the postnuclear supernate was fractionated by zonal differential sedimentation and by isopycnic equilibration. The subcellular fractions were characterized biochemically by testing for marker enzymes and other constituents known to occur in azurophil and specific granules of other species, and by electrophoretic analysis of extracts of the particulate material. In addition, each fraction was examined by random-sampling electron microscopy.

We found that bovine neutrophils contain in addition to azurophil and specific granules a third type of granule, not known to occur in neutrophils of other species. These novel granules are larger, denser, and considerably more numerous than the two other types. Except for lactoferrin, they lack the characteristic constituents of azurophil granules (peroxidase, acid hydrolases, and neutral proteinases) and of specific granules (vitamin B12-binding protein). Instead, they contain a group of highly cationic proteins not found in the other granules, and they are the exclusive stores of powerful oxygen-independent bactericidal agents.

We studied the fate of the large granules in bovine neutrophils exposed to opsonized particles, the ionophore A 23187, or phorbol myristate acetate. The appearance in the cell-free media of antibacterial activity and of the characteristic highly cationic proteins as revealed by electrophoresis was monitored and compared with the release of azurophil and specific granule markers. In addition, changes of the relative size of the large granule compartment induced by phagocytosis were assessed by morphometry. The results show that exocytosis of the large granules occurs following both phagocytosis and exposure to soluble stimuli. Like the specific granules, the large granules appear to be discharged by true secretion under conditions where the azurophil granules are fully retained.

Biochemical studies of bovine neutrophils were first reported by Hegner (1) who isolated a particulate cytoplasmic fraction enriched in a number of acid hydrolases and alkaline phosphatase. Bovine neutrophils lack lysozyme (2, 3) and have relatively low activities of azurophil granule enzymes. They produce superoxide and H2O2 during phagocytosis, but in addition have a high capacity for oxygen-independent killing of several types of bacteria (3–5).

These properties and the predominance of peroxidase-negative granules seen on electron micrographs stimulated our interest in these cells. The results of our subcellular fractionation study show that bovine neutrophils contain a novel type of cytoplasmic storage granules. The novel organelles are larger, denser, and much more numerous than the azurophil and specific granules, the two types that have been found in all mammalian neutrophils studied so far.

MATERIALS AND METHODS

Materials: Reagents used in our work were obtained from the following sources: Zymosan, α-naphthyl acetate, naphthol AS-D acetate and N-acetyl-D,L-phenylalanine-β-naphthyl ester was obtained from the Sigma Chemical Co. (St. Louis, MO); N-acetyl-D,L-alanine α-naphthyl ester from the Vega-Fox Biochemicals (Tucson, AZ); Cyanocobalamin, 370–740 kBq/g, from The Radiochemical Centre (Amersham, Bucks., UK); Phorbol myristate acetate (PMA) from the Consolidated Midland Corp. (Brewster, NY). Bovine milk lactoferrin was a gift of Dr. B. Senft (University of Giessen, Federal Republic of Germany) and the antiserum to bovine milk lactoferrin was a gift of Dr. P. Masson (International Institute of Cellular and Molecular Pathology, Brussels, Belgium). The phosphate-buffered saline solution (PBS) had the following com-
position: 137 mM NaCl, 2.7 mM KCl, 0.9 mM CaCl₂, 0.5 mM MgCl₂, 8.1 mM Na₂HPO₄, and 1.5 mM KH₂PO₄. A calcium-free PBS with the same composition from which 7.4 mM calcium was omitted was also used.

Subcellular Fractionation: Neutrophils were purified from fresh bovine blood by differential centrifugation combined with hypotonic lysis of contaminating erythrocytes (3, 6). The isolated cells were washed two to three times with calcium-free PBS. Preparations containing 95% or more neutrophils contaminating erythrocytes (3, 6) were used for the fractionation experiments. Before homogenization the cells were pelleted and resuspended at a density of 150 × 10⁶ cells/ml in 0.34 M sucrose solutions made up isotonic saline (11). We carried out isopycnic equilibrium experiments using a Beaufay rotor as described by Bretz and Baggiolini (10), except that sucrose solutions were made up in isotonie saline instead of water. The fractionation data are presented as in our previous paper (10). All cell fractionation procedures were carried out at 4°C.

Analytical Assays: Peroxidase (10), alkaline phosphatase (12), acid 4-nitrophenyl phosphatase (10), N-acetyl-β-glucosaminidase (11), β-glucuronidase (11), and protein (13) were determined according to established methods (10). All cell fractionation procedures were carried out at 4°C.

Electron Microscopy and Morphometry: Resting or phagocytosing neutrophils were fixed in 1:5:1 glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4, for 1 h. The samples were then pelleted in small plastic tubes and left overnight at 4-6°C in the above buffer containing 5% (wt/vol) sucrose. After reacting for peroxidase (24), samples were handled according to standard procedures (25). Aliquots of subcellular fractions obtained by differential sedimentation were processed according to the random-sampling technique of Bretz and Baggiolini and Baudouin et al. (10, 26). For the morphometrical evaluation of granule release during phagocytosis the blocks were sectioned according to the standard sampling procedure (27) to assure that the same cell was not cut twice, and negatives were selected randomly as described by Weibel et al. (28). Phagocytosis was quantified by determination of the relative volume densities of intracellular zymosan (points on phagocytosed zymosan over points on cytoplasm and nucleus). Counting was done on micrographs (×2,700) with a photographically superimposed grid. Discharge of the large granules was quantified on micrographs (×22,000) with a photographically superimposed testing system consisting of bars and points as shown in Fig. 18.

RESULTS

Purification of the Neutrophils

Cells were purified from three to four blood samples obtained from different animals and the preparation yielding the highest percentage of neutrophils was used for subcellular fractionation. The average differential counts (mean percentage ± SD) of the nine preparations used for fractionation experiments were 95.8 ± 2.0 neutrophils, 3.5 ± 1.9 eosinophils, and 0.7 ± 0.6 mononuclear cells.

Morphology of Intact Cells

Inclusions of bovine blood neutrophils reacted for peroxidase (Fig. 1), three types of cytoplasmic granules are recognized. Peroxidase-positive granules, which by analogy with neutrophils from many other species may be termed azurophil or primary, are present in relatively small numbers. Their profiles are round or elongated. As judged from the compact deposits of reaction product, azurophil granules appear to be rich in peroxidase. Among the peroxidase-negative granules, which are mostly round, two types can be distinguished: large ones (0.4-0.5 μm in diameter) with a pale, very homogenous matrix and small ones (0.15-0.3 μm in diameter) with a more electron-dense content. These morphological differences are reasonably clear, as illustrated by the high-magnification details shown in Fig. 2. However, peroxidase-negative granules with intermediate appearance, i.e., profiles with moderate electron density which are >0.3 μm in diameter, are also seen. Sections of bovine eosinophils, the major contaminants of the purified neutrophil preparations, contain peroxidase-positive granule profiles only. These granules are 0.55-0.8 μm in diameter. Their sedimentation velocity, which is directly proportional to
Three small peroxidase-negative granules are indicated by arrow heads. N-acetyl-β-glucosaminidase has the same modal density as peroxidase, but a somewhat broader equilibration profile. The peroxidase profile, on the other hand, is tailing towards higher density with respect to those of the specific granules and in the C-particles (9, 10), shows an asymmetrical peak, not dissociated from the starting zone and partly overlapping with peroxidase.

While none of the known granule markers was found in the outer half of the gradient, the cloudy appearance of the fractions collected and the distribution of protein suggested that an important portion of the particulate material, possibly consisting of the pale large granules, was recovered in this zone.

Subcellular Fractionation

Postnuclear supernates were used as the starting material for zonal differential sedimentation and isopycnic equilibration experiments. The specific activities or contents of the constituents measured are given in Table I. Since in most cases substrate concentration and pH conditions were different, no direct comparison with the corresponding values of human neutrophils (10) can be made. However, we assayed peroxidase in both systems under identical conditions. In bovine neutrophils we found the specific activity to be 15–20% of that of human cells.

Fig. 3 shows the biochemical distribution profiles that were obtained in a zonal differential sedimentation experiment run under conditions assuring the recovery of the large peroxidase-negative granules in the outer half of the gradient. The position of the starting zone is indicated by the profile of the cytosol marker, lactate dehydrogenase. α-Naphthyl acetate esterase has virtually the same distribution. As in rabbit neutrophils (M. Baggioiini, unpublished observations), this nonspecific esterase appears to be a soluble enzyme. Alkaline phosphatase, which is associated with membrane fragments (10) or other light structures (30) in human neutrophils, is slightly resolved from the cytosol enzymes. It is recovered as a sharp peak at the boundary between sample zone and the gradient. The distribution of the Mg²⁺- and the Ca²⁺-dependent ATPases was almost identical (not shown). Peroxidase, which we used to identify the azurophil granules in sections stained cytochemically (Figs. 1 and 2), sediments as a symmetrical peak in the inner half of the gradient. A similar distribution is shown by neutral proteinase activity. In some experiments, significant amounts of peroxidase were recovered against the cushion, most probably reflecting the presence of contaminating eosinophil granules. Vitamin B₁₂-binding protein was assayed as a putative marker of the specific granules since it is an exclusive constituent of these organelles in human neutrophils (31). Its distribution is complex. About one-third of the total is retained in the sample zone and probably represents binding protein released from damaged granules, while the remainder is recovered in a broad peak overlapping with peroxidase. N-acetyl-β-glucosaminidase has the same modal density as peroxidase, but a somewhat higher modal density (1.18–1.19 g/ml). It is spread over the starting zone. Peroxidase has a somewhat lower modal density (1.19–1.20 g/ml). The remainder, probably released from damaged granules (see comments on sedimentation experiments), is spread over the starting zone. Peroxidase has a somewhat lower modal density (1.18–1.19 g/ml). It is slightly but clearly resolved from the vitamin B₁₂-binding protein and peroxidase which overlap considerably. As shown in Fig. 4, most of the vitamin B₁₂-binding protein equilibrates in a symmetrical, narrow peak with modal density 1.19–1.20 g/ml. The remainder, probably released from damaged granules (see comments on sedimentation experiments), is spread over the starting zone. Peroxidase has a somewhat lower modal density (1.18–1.19 g/ml). It is slightly but clearly resolved from the vitamin B₁₂-binding protein as indicated by the arrow heads. N-acetyl-β-glucosaminidase has the same modal density as peroxidase, but a somewhat broader equilibration profile. The peroxidase profile, on the other hand, is tailing towards higher densities, probably because of contamination by some eosinophil granules. Of particular interest is the distribution of protein. The soluble protein is retained in the starting zone together with the cytosol marker lactate dehydrogenase, while the particulate protein equilibrates as a well-defined peak with modal density >1.20 g/ml. As illustrated in Fig. 4, this protein peak is displaced towards higher density with respect to those of the
TABLE I
Specific Activities or Contents of Enzymes and Nonenzymic Constituents in Postnuclear Supernates of Bovine Neutrophils

Constituent	Temperature °C	pH	Substrate concentration mM	Specific activity* or content
Peroxidase	20-22	5.5	0.08	678 ± 63 (8)
N-Acetyl-β-glucosaminidase	20-22	5.0	5.0	7.7 ± 1.4 (6)
Alkaline phosphatase	20-22	9.75	1.25	65.8 ± 12.6 (7)
Acid 4-nitrophenyl phosphatase	37	5.3	5.0	41.7 ± 9.5 (4)
Lactate dehydrogenase	25	7.5	0.4	563 ± 62 (8)
Neutral proteinase	37	7.5	0.275	13.7 ± 3.1 (4)
Ca²⁺ ATPase	37	7.0	0.5	4.9 ± 1.5 (4)
Mg²⁺ ATPase	37	7.0	1.0	11.0 ± 2.4 (6)
a-Naphthyl acetate esterase	37	7.0	1.0	24.6 ± 5.1 (3)
Vitamin B₁₂-binding capacity	20-22	7.5	--	35.4 ± 4.1 (8)§
Lactoferrin	20-22	7.5	--	23.8 and 27.2 (2)§

* Except for neutral proteinase, the specific activity is expressed in mU/mg of protein. 1 U of activity is the amount of enzyme which metabolizes 1 µmol of substrate in 1 min. Neutral proteinase activity is expressed as µg of [³⁵S]acetyl casein hydrolyzed to acid-soluble peptides in 1 min. Number of preparations in parentheses.

§ ng of vitamin B₁₂ bound per milligram of protein.

FIGURE 4 Isopycnic equilibration of subcellular components of bovine neutrophils. The histograms are constructed as in Fig. 6. The average density of each fraction is given by the ascending curve in the protein pannel. The black and white arrowheads indicate the peak of peroxidase and vitamin B₁₂-binding protein, respectively. Percentage recoveries were 108 for protein, 91 for vitamin B₁₂-binding protein, 101 for peroxidase, 97 for lactate dehydrogenase, 153 for alkaline phosphatase, and 91 for N-acetyl-β-glucosaminidase.

FIGURE 3 Fractionation of subcellular components of bovine neutrophils by zonal sedimentation at 8,500 rpm for 15 min. The graphs are normalized distribution histograms as a function of the volume collected. The radial distance increases from left to right. The ordinate is the concentration in the fraction relative to the concentration that corresponds to uniform distribution throughout the gradient. Percentage recoveries were 88 for protein, 94 for lactate dehydrogenase, 91 for a-naphthyl acetate esterase, 77 for alkaline phosphatase, 82 for N-acetyl-β-glucosaminidase, 94 for vitamin B₁₂-binding protein, 174 for neutral proteolytic activity, and 103 for peroxidase.

Electron Microscopy of Granule Fractions

We employed random-sampling electron microscopy (26) in three sedimentation experiments to examine the ultrastructure of the different types of granules. The results of one such experiment are shown in Figs. 5-10. Fig. 5 represents the azurophil and specific granule markers, suggesting again the presence of a major subcellular particle population (most likely consisting of the large granules) that accounts for more protein than the azurophil and specific granules together.
oxidase. The protein histogram shows two shallow peaks, one corresponding to peroxidase and the other to the zone where mixed with some soluble protein from the sample zone which peroxidase-positive, are also seen in fair numbers. In the lower various size. Small granulelike structures, some of which are positive granules. As clearly seen at high magnification (Fig. 9), the peroxidase-positive, i.e., the azurophil granules, are and tend to break up during preparation for electron microscopy. This we observed in the azurophil granule fractions from human neutrophils (10). The peroxidase that is released from broken azurophil granules appears to adhere to the specific granules of other neutrophils. That the surface peroxidase is not their genuine constituent is obvious from the morphology of intact cells where no oxidized diaminobenzidine is characteristic in whole cells.

Electrophoretic Analysis of Subcellular Fractions

A better characterization of the large granules was obtained by this technique which had already proved very useful in the study of the neutral proteinases of human neutrophils (23). A postnuclear supernate was fractionated by zonal sedimentation as shown in Fig. 11. We know from the results already presented that virtually all azurophil and specific granules are found in the zone covered by the main peak of peroxidase (peroxidase zone), and that the large granules sediment mainly into the outer third of the gradient (large granule zone). The granules present in single fractions were pelleted at high speed and their contents were extracted and separated by gel electrophoresis. Extracts from postnuclear supernates of human and bovine neutrophils were also included for comparison.

A gel stained for protein is shown in Fig. 12. The patterns obtained in the peroxidase zone differ in many respects from those of the large granule zone. In the upper part of the gels, three groups of proteins (A–C) are detectable in both zones. A clear difference is apparent in region B. In the peroxidase zone several poorly resolved bands are seen, while in the large granule zone a cluster of heavy bands is separated from a sharp small band with higher mobility. In region C, a faint band migrates ahead of a major one in the peroxidase zone only. The major difference concerns the most cationic proteins which are only present in the large granule zone. Based on electrophoretic mobility, three groups can be differentiated: D, apparently a doublet; E, a group of at least 3 bands; and F, a prominent single band moving in front.

Gels stained for neutral proteinase activity are represented in Figs. 13–16. Several small molecular weight substrates were used to show different specificities. In accordance with the distributions obtained biochemically (Fig. 3), all the neutral proteinases revealed on the gels are present in the peroxidase (i.e., azurophil granule) zone. An overall picture is obtained with naphthol AS-D acetate (Fig. 13). As the comparison shows, bovine neutrophils contain much fewer proteinase bands than their human counterparts. Staining with more selective substrates, however, clearly indicates that all three types of neutral serine proteinases that are found in human neutrophils (23) are also present in bovine cells. N-acetyl-D,L-alanine α-naphthyl ester reveals one band corresponding to elastase (Fig. 14), its phenylalanine analogue detects cathepsin G (Fig. 15), while α-naphthyl acetate (Fig. 16) reveals in addition a third type of proteinase in the upper part of the gel, resembling the proteinase 3 of human neutrophils (32). As in human neutrophils, this proteinase, in contrast to elastase and cathepsin G, is also found in slowly sedimenting organelles which are smaller than azurophil granules. This is shown by the electrophoretic patterns of material from fractions 3 and 5.

Oxygen-independent Antibacterial Activity

Since the large granules were found to contain several highly cationic proteins (Fig. 12), we looked next at the subcellular distribution of lactoferrin, and of oxygen-independent (i.e., respiratory burst-independent) antibacterial activity using E. coli and S. aureus as test organisms. The results are shown in Fig. 17. The profiles of neutral proteinase and vitamin B₁₂-binding protein indicate the heavily overlapping distributions of azurophil and specific granules in the upper half of the gradient, a situation similar to that presented in Fig. 3. Lactoferrin has a bimodal distribution with about half of its content coinciding with the above markers and the remainder accumulating in the outer half of the gradient where the large granules are found. On the right-hand side of Fig. 17, profiles of bactericidal activity against E. coli and S. aureus are pre-
Survey electron micrographs of filtration samples from fractions 3 (Fig. 6), 6 (Fig. 7), and 13 (Fig. 8) obtained by zonal sedimentation as shown in Fig. 5. The filter face of the pellicles is at the bottom. Bars, 1 μm. x 7,200.

The graphs show the numbers of bacteria still forming colonies after a 30-min incubation with the contents of the particles collected in the gradient fractions (see upper graph for the amount of protein used per assay). The contents of the large granules have a marked antibacterial effect, as indicated by the decrease in the number of viable bacteria by two to three orders of magnitude in the outer half of the gradient. The lower anti-\textit{S. aureus} activity of the last fraction presumably...
reflects the contamination with proteins from eosinophil granules and aggregated material. By comparison, the activity detected in other gradient zones is very low. The fact that those fractions which are richest in azurophil and specific granules are virtually inactive indicates that the oxygen-independent antibacterial action of bovine neutrophils is fully associated with the large granules. In particular, this action does not appear to depend on lactoferrin, a constituent of the large granules, which, however, also occurs in fractions containing azurophil and specific granules.

Granule Discharge

We studied release of azurophil and specific granule contents in normal and cytochalasin B-treated cells that were challenged with soluble stimuli or opsonized particles. The results are presented in Fig. 18. In all cases we observed a massive release of the specific granule marker vitamin B₁₂-binding protein. 70–80% of its cellular content were recovered in the incubation medium within 60 min. Release from normal cells which were challenged with PMA or which phagocytosed zymosan increased gradually with time. Pretreatment of the cells with cytochalasin B markedly accelerated this process which was nearly complete within 5 min. By contrast, exocytosis of two constituent of the azurophil granules, N-acetyl-β-glucosaminidase and neutral proteinase, was minimal. The percent released into the cell-free media was similar to that of lactate dehydrogenase which was assayed as a measure of cell damage. In another set of experiments (data not shown) up to 50% of the vitamin B₁₂-binding protein was released in 30 min by 1 μM A 23187 or during phagocytosis of opsonized S. aureus, while release of myeloperoxidase and of neutral proteinase was <5%. These results show that azurophil and specific granules are discharged by independent mechanisms, as has been reported earlier for human neutrophils (33, 34). In addition this differential release provides further evidence that azurophil and specific granules, which could not be resolved satisfactorily by centrifugation, are separate entities.

Since no selective biochemical marker could be found for the large granules, we determined their discharge by analyzing the cell-free media for the presence of the characteristic highly cationic proteins revealed by electrophoresis and of antibacterial activity. As shown in Fig. 19, the cationic proteins of the large granules become detectable in the media following exposure of the cells to A 23187, PMA, or opsonized zymosan. In another set of experiments, the material actively released by cells that were stimulated with PMA or treated with cytochalasin B and then exposed to opsonized zymosan showed marked antibacterial effects (Table II). Large granule discharge upon phagocytosis was also assessed by morphometry using the test system shown in Fig. 20, which consists of bars and points (circles around left end of bars). The relative numerical density of the large granules was estimated by the ratio between numbers of bars falling on peroxidase-negative granules and numbers of points falling within the cells. Only bars fully enclosed in granule profiles including those touching the granule membrane with their right-hand end were counted. This system was adopted because visual differentiation between the specific granules and the large granules is not possible. Since the specific granules, as shown by their sedimentation behavior, are considerably smaller, they are very unlikely to enclose a bar of the testing system. This system underestimates the relative number of the large granules, but is adequate to quantify changes induced experimentally in comparable samples. The results presented in Table III show that the relative size of the large granule compartment decreased with increasing phagocytic uptake, as estimated by the relative volume density of internalized zymosan. The decrease of the large granule compartment was considerably faster when the cells were pretreated with cytochalasin B, which allows particle attachment but prevents uptake. In this case, the value obtained after 15-min incubation was similar to that following a 60-min phagocytosis period with normal cells.

DISCUSSION

Our study shows that bovine neutrophils contain a novel type of subcellular storage granule. Owing to their large size and high density, these organelles could be resolved from the other subcellular elements by fractionating postnuclear supernates either by sedimentation or isopycnic equilibration. They were differentiated from azurophil and specific granules by biochemical and electrophoretic analysis and by testing for bactericidal activity. The novel granules contain a number of highly cationic proteins that are not found in other subcellular compartments, are the exclusive stores of powerful oxygen-independent bactericidal agents, and lack the enzymes and other constituents usually found in azurophil or specific granules except for lactoferrin. In peroxidase-stained sections of bovine neutrophils, the novel granules may be mistaken for specific granules which also lack peroxidase. The latter, however, sediment much more slowly in sucrose gradients, which allows to establish safe criteria for a discrimination on the basis of profile size. Peroxidase-negative profiles that are >0.35 μm in diameter can be assumed to belong to the novel type. Such profiles are very numerous, indicating that the novel granules constitute the largest storage compartment of bovine neutrophils. A similar conclusion can be drawn from the fractionation experiments where comparatively large proportions of particle-
associated protein were recovered in the gradient zone containing the novel organelles.

After having established their identity, it was important to study the fate of the large granules following cell stimulation, and to compare it with that of the azurophil and specific granules. By three independent criteria, the detection of cationic proteins, the assessment of oxygen-independent antibacterial activity, and morphometry, it was firmly established that exocytosis from the large granules occurs during phagocytosis but also following stimulation with PMA and A 23187. Under the same conditions, large proportions of specific granule contents were also released. The similar behavior of the large...
granules and the specific granules was further underlined by the finding that their discharge was markedly accelerated when the cells were pretreated with cytochalasin B. By contrast, release of azurophil granule contents was minimal even from cytochalasin B-treated cells. It thus appears that the large granules are readily mobilized and that their function is not solely related to phagocytosis. The differential discharge of specific and azurophil granules as observed in this study is well documented by results obtained with neutrophils from other species (33, 34).

Subcellular fractionation and biochemical analysis of rabbit heterophil leukocytes (9, 35, 36) and human neutrophils (10, 37, 38) have helped to characterize the azurophil and the specific granules as two storage organelles which, in biochemical terms, differ almost totally from each other (39). Numerous ultrastructural studies combined with cytochemical staining for myeloperoxidase, which selectively reveals the azurophil granules (40, 41), have provided evidence for the presence of two sets of granules as a general feature of neutrophil leukocytes (39, 41). The existence of more than two populations of granules has, however, been proposed repeatedly. Small, phosphatase-positive structures were described as tertiary granules in rabbit heterophils (42, 43), and in human neutrophils a novel storage organelle containing gelatinase has recently been found (44). These structures, however, are much smaller than the common granules and have so far not been identified morphologically. They apparently represent a minor subcellular com-

Figure 17 Subcellular distribution of oxygen-independent bactericidal activities and lactoferrin in bovine neutrophils. Fractionation by zonal sedimentation at 8,500 rpm for 15 min was performed as described in the legend of Fig. 3. Percentage recoveries were 98 for vitamin B₁₂-binding protein, 142 for neutral proteolytic activity, and 74 for lactoferrin. The two lower graphs on the right-hand side show the profiles of bactericidal activity. The number of bacteria remaining viable after 30-min incubation with extracts of the particulate material from equivalent portions of the gradient fractions are presented. The amount of protein added to each bactericidal assay is given in the upper graph. Control values, i.e., bacterial counts (log numbers) obtained after incubation with 100 μg of bovine serum albumin instead of neutrophil material, were 6.8 for E. coli and 6.74 for S. aureus.

Figure 18 Release of vitamin B₁₂-binding protein (▲), neutral proteinase (▲), N-acetyl-β-glucosaminidase (■), and lactate dehydrogenase (○) by stimulated bovine neutrophils. Samples of 5 x 10⁶ cells in 2 ml of PBS were exposed to opsonized zymosan (2.5 mg/ml) or PMA (10 ng/ml) or were pretreated with cytochalasin B (CB, 5 μg/ml) and then exposed to opsonized zymosan (2.5 mg/ml). See Materials and Methods for details.

Figure 19 Electrophoretic analysis of proteins released from stimulated bovine neutrophils. The cells were incubated for 30 min in the presence of the indicated stimuli and the cell-free media were processed for electrophoresis. Gels were run at pH 4.3 as described under Materials and Methods. The following samples were used (micrograms of protein in brackets): (a) extract of total granule fraction from human neutrophils (86.4); (b) extract of total granule fraction from bovine neutrophils (63.4); (c) postnuclear supernate from bovine neutrophils (43.3); (d–f) cell-free media obtained after stimulation of the cells with 1 μM A 23187 (53.9), 2.5 mg/ml zymosan (56.8), or 10 ng/ml PMA (96.7), respectively; and (g) extract of bovine large granules purified by zonal sedimentation (115.0). The zones A–F correspond to those indicated in the electropherogram of subcellular fractions shown in Fig. 12.
partment. Spitznagel et al. (37) have reported the partial resolution of two populations of azurophil granules from human neutrophils. These data suggest that granules of somewhat different biochemical composition may form at the promyelocyte stage.

The situation in bovine neutrophils is markedly different. Like neutrophils from many other species, they are equipped with two sets of granules with the biochemical properties of azurophil and specific granules. The characteristic feature of the bovine cell, however, is the presence of a third population of granules which are both larger and more numerous than the two other types. These granules account for the largest storage compartment of the bovine neutrophil. Gel electrophoretic analysis of their contents has revealed a variety of components. Up to now we have identified lactoferrin and the antibacterial activity which from what is known from other species (45) may be associated with the most cationic granule proteins. None of the enzymes known to occur in the granules of human neutrophils, the species most thoroughly studied (39), could be detected in the new granules.

So far too little is known about the contents of the large granules to allow an assessment of their role in neutrophil function which presumably differs from that of the azurophil and specific granules. The demonstration that the novel granules contain antibacterial activity, is an important aspect of our study. Evidence from the phagocytosis and exocytosis experiments clearly indicates that the oxygen-independent antibacterial agents present in these granules could function both intracellularly and in the pericellular environment. In all past studies on bacterial killing by granule extracts, the possible contribution of enzymic systems, e.g., myeloperoxidase together with H2O2 produced by the bacteria and chloride from the medium, or lytic enzymes, had to be considered (46). The results presented in this report clearly show that the oxygen-independent antimicrobial activity is dissociated from the myeloperoxidase, acid hydrolases, and neutral proteinases, since these enzymes do not occur in the large granules. Finally, the fact that in bovine neutrophils oxygen-independent microbiocidal agents of considerable activity are stored in a distinct subcellular compartment and are released in response to various stimuli is evidence for the biological relevance of this host-defense system which does not depend on the respiratory burst.

TABLE II

Release of Antibacterial Activity by Stimulated Bovine Neutrophils

Stimulus*	Neutrophils tested	µg of released protein	No. of colonies × 10^{-6}	E. coli	S. aureus
None	4.04	3.40			
PMA	3.77 (100)	3.31 (100)			
PMA + 82	2.04 (53)	2.57 (78)			
PMA + 100	1.21 (32)	0.43 (13)			
PMA + 176	0.11 (3)	0.15 (5)			
CB	4.27 (100)	3.40 (100)			
CB + zymosan + 100*	2.30 (54)	1.28 (38)			
CB + zymosan + 100*	2.44 (57)	2.63 (77)			
CB + zymosan + 200*	1.09 (26)	0.53 (18)			

* Neutrophils were incubated for 30 min in the presence of either 10 ng/ml PMA or 2.5 mg/ml opsonized zymosan. CB, cytochalasin B-pretreated cells (5 µg/ml for 5 min).
‡ Aliquots of the cell-free media from two separate experiments tested for bactericidal activity. In some cases, the media were concentrated by ultrafiltration (see Materials and Methods).

TABLE III

Morphometric Evaluation of the Discharge of Large Granules during Phagocytosis

Conditions	Time	Of large granules*	Of phagosome†
	min		
No addition	15	0.59 ± 0.04	—
Zymosan	15	0.55 ± 0.04 (P < 0.2)	0.30 ± 0.02
Cytochalasin B + zymosan	15	0.39 ± 0.04 (P < 0.001)	—
No addition	60	0.55 ± 0.04	—
Zymosan	60	0.38 ± 0.04 (P < 0.001)	0.67 ± 0.04 (P < 0.001)

* Arbitrary density ratios (bar within peroxidase-negative granules over points within cytoplasm and nucleus); mean values ± SE from 30 negatives per group. Statistical comparison with appropriate control according to Student's t test, using one-tailed probability tables.
† True relative volume densities; mean values from 20 negatives. Statistical comparison between 15- and 60-min phagocytosis according to Student's t test, using one-tailed probability tables.
REFERENCES

1. Hegner, D. 1968. Isolierung und Enzymaktivität von Granula aus polymorphkernigen
Leukocyten des peripheren Rinderblutes. Hoger-Seeley's Z. Physiol. Chem. 349:544-554.
2. Borsuc, P., and T. G. Moore. 1975. Granule enzymes of polymorphonuclear leuco-
phil: a phylogenetic comparison. Blood. 46:913-919.
3. Gennaro, R., C. Schneider, G. De Nicola, F. Clan, and D. Romeo. 1979. Biochemical
properties of bovine granulocytes. Proc. Soc. Exp. Biol. Med. 157:342-347.
4. Russel, W., and R. Reiter. 1975. Phagocytic activity of bovine milk leukocytes: an
effect of caerin. J. Reitculotomol. Soc. 18:1-13.
5. Iwatsuki, M., S. Leffell, and I. K. Spitznagel. 1972. Association of lactoferrin with lysozyme in
polymorphonuclear leukocytes. J. Exp. Med. 136:837-847.
6. Loncke, G., and J. K. Kaneko. 1973. Isolation of granulocytes from bovine peripheral
blood. Proc. Soc. Exp. Biol. Med. 142:835-836.
7. Mineola, C., R. Gennaro, A. Marnell, and D. Romeo. 1980. Isolation and partial
characterization of the plasma membrane of purified bovine neutrophils. Eur. J. Biochem.
11:341-346.
8. Baggiolini, M., B. Dewald, and U. Bretz. 1978. A volume adapter for use in a B-XIV zonal
rotor. Anal. Biochem. 91:123-129.
9. Baggiolini, M., J. G. Hirsch, and C. de Duve. 1969. Resolution of granules from rabbit
hepatocyte leukocytes into distinct populations by sonication. J. Cell Biol. 40:529-
541.
10. Bretz, U., and M. Baggiolini. 1974. Biochemical and morphological characterization of
azurophil and specific granules of human neutrophilic polymorphonuclear leucocytes. J. Cell Biol.
63:251-269.
11. Dewald, B., M. Baggiolini, J. T. Cumollte, and B. M. Babior. 1979. Subcellular localization
of the superoxide-forming enzyme in human neutrophils. J. Clin. Invest. 63:21-29.
12. Bretz, U., and M. Baggiolini. 1973. Association of the alkaline phosphatase of rabbit
polymorphonuclear leukocytes with the membrane of the specific granules. J. Cell Biol.
59:697-707.
13. Miller, G. L. 1959. Protein determination for large numbers of samples. Anal. Chem.
31:964.
14. Gennaro, R., C. Selmeider, G. De Nicola, F. Clan, and D. Romeo. 1978. Biochemical
and physiologic properties of bovine granulocytes. Reticuloendothel. Soc.
18:1-13.
15. Dewald, B., M. Baggiolini, J. T. Cumollte, and B. M. Babior. 1979. Subcellular localization
of the superoxide-forming enzyme in human neutrophilic polymorphonuclear leucocytes. J. Cell Biol.
63:251-269.
16. Kane, S. P., and T. J. Peters. 1975. Analytical subcellular fractionation of human
granulocytes with reference to the localization of vitamin B12-binding proteins. Clin. Sci.
Med. 49:171-182.
17. Baggiolini, M., U. Brett, and B. Dewald. 1978. Subcellular localization of granulocyte
enzymes. In Neutral Proteases of Human Polymorphonuclear Leucocytes. K. Havemann,
and A. Jaworski, editors. Urban & Schwarzenberg, Inc., Baltimore-Munich. 3-17.
18. Hennig, F. F., M. H. Ginsberg, and D. C. Morgan. 1978. Mechanisms of mediator release
by inflammatory cells. In Membrane Function. G. Poste, and G. N. Nicolson, editors.
Elsevier/North-Holland Biomedical Press, New York. 407-508.
19. Wessmann, G., H. M. Korchak, H. D. Perez, J. E. Smokes, I. M. Goldstein, and S. T.
Hoffman. 1979. Leukocytes as secretory organs of inflammation. Adv. Inflammation Res.
1:95-112.
20. Baggiolini, M., J. G. Hirsch, and C. de Duve. 1970. Further biochemical and morphological
studies of granule fractions from rabbit heterophelic leukocytes. J. Cell Biol. 45:586-597.
21. Baggiolini, M., C. de Duve, P. L. Mannon, and J. F. Heremans. 1970. Association of
lactoferrin with specific granules in rabbit heterophelic leukocytes. J. Exp. Med.
131:559-570.
22. Spitznagel, J. K., P. G. Dalldoff, M. S. Leffell, J. D. Folds, I. R. H. Welsh, M. H. Cooney,
and L. E. Martin. 1974. Character of azurophil and specific granules purified from human
polymorphonuclear leukocytes. Lab. Invest. 30:774-783.
23. Kane, S. P., and T. J. Peters. 1975. Analytical subcellular fractionation of human
granulocytes with reference to the localization of vitamin B12-binding proteins. Clin. Sci.
Med. 49:171-182.
24. Baggiolini, M. 1980. The neutrophil. In Handbook of Inflammation: The Cell Biology of
Inflammation. G. Weissmann, editor. Elsevier/North-Holland Biomedical Press, Amster-
dam. 2:163-187.
25. Bainton, D. F., and M. G. Farquhar. 1968. Differences in enzyme content of azurophil
and specific granules of polymorphonuclear leucocytes. II. Cytochemistry and electron
microscopy of bone marrow cells. J. Cell Biol. 39:299-317.
26. Bainton, D. F., J. L. Ulliyot, and M. G. Farquhar. 1971. The development of neutrophilic
polymorphonuclear leukocytes in human bone marrow. Origin and content of azurophil
and specific granules. J. Exp. Med. 134:907-934.
27. Wetzell, B. K., R. G. Herr, and S. S. Spicer. 1967. Fine structural studies on the
development of heterophelic, eosinophilic and basophilic granulocytes in rabbit. Lab.
Invest. 2:235-247.
28. Murata, F., and S. S. Spicer. 1973. Morphologic and cytochemical studies of rabbit
heterophelic leukocytes. Evidence for spherocytes. Lab. Invest. 29:65-72.
29. Dewald, B., U. Brett, and M. Baggiolini. 1982. Release of granulatn from a novel secretory
compartment of human neutrophils. J. Clin. Invest. 70:518-525.
30. Zeya, H. I., and J. K. Spitznagel. 1968. Arginase-rich proteins of polymorphonuclear
leukocyte lysosomes. Antibacterial specificity and biochemical heterogeneity. J. Exp.
Med. 127:927-941.
31. Kleinman, S. F. 1975. Antimicrobial mechanisms in neutrophilic polymorphonuclear
leukocytes. Semin. Hematol. 12:117-142.