A band-gap database for semiconducting inorganic materials calculated with hybrid functional

Sangtae Kim1,3, Miso Lee1,3, Changho Hong1, Youngchae Yoon1, Hyungmin An1, Dongheon Lee1, Wonseok Jeong1, Dongsun Yoo1, Youngho Kang2, Yong Youn1,4✉ & Seungwu Han1,4✉

Semiconducting inorganic materials with band gaps ranging between 0 and 5 eV constitute major components in electronic, optoelectronic and photovoltaic devices. Since the band gap is a primary material property that affects the device performance, large band-gap databases are useful in selecting optimal materials in each application. While there exist several band-gap databases that are theoretically compiled by density-functional-theory calculations, they suffer from computational limitations such as band-gap underestimation and metastable magnetism. In this data descriptor, we present a computational database of band gaps for 10,481 materials compiled by applying a hybrid functional and considering the stable magnetic ordering. For benchmark materials, the root-mean-square error in reference to experimental data is 0.36 eV, significantly smaller than 0.75–1.05 eV in the existing databases. Furthermore, we identify many small-gap materials that are misclassified as metals in other databases. By providing accurate band gaps, the present database will be useful in screening materials in diverse applications.

Background & Summary

The band gap (E_g) is a fundamental quantity that directly relates to usability of materials in optical, electronic, and energy applications. For instance, in photovoltaic devices, materials with a direct E_g of ~ 1.3 eV1,2, corresponding to the Shockley-Queisser limit, are favored as photo-absorbers that maximize the solar-cell efficiency. In power electronics, semiconductors with $E_g \geq 3$ eV are employed to sustain high electric fields3. To increase the figure of merit in thermoelectric devices, materials with E_g of $10 k_B T_{op}$ where k_B and T_{op} are the Boltzmann constant and operating temperature, respectively, are selected4. Given the central role of E_g, a database of E_g over a wide range of materials can expedite the material selection in specific applications by factoring out suboptimal candidates rapidly. Currently, popular material databases such as the Materials Project5, the Automatic Flow of Materials Discovery Library (AFLOW)6, the Open Quantum Materials Database (OQMD)7, and the Joint Automated Repository for Various Integrated Simulations (JARVIS)8 provide theoretical E_g for up to one million inorganic materials. However, most of them were obtained by semilocal functionals with a generalized gradient approximation (GGA), which underestimates E_g by typically 30–40%9. (MatDB10 provides accurate quasi-particle band gaps, but the number of data is limited to hundreds.) To compensate for this, AFLOW provides adjusted E_g using a linear fit to experimental data11. However, such a universal correction may not address element-dependent band gap fluctuations. We note that JARVIS provides E_g based on meta-GGA12, which significantly improves the accuracy. As a related issue, many small-gap semiconductors such as Ge, InAs, PdO, Zn$_3$As$_2$, and Ag$_2$O are misclassified as metals, which can affect selection of narrow-gap semiconductors in IR sensors13, for instance. (In JARVIS, some of these errors are resolved by meta-GGA.) Besides the underestimation of E_g, all the databases consider only the ferromagnetic ordering for spin-polarized systems due to computational convenience, which can cause significant errors in E_g of antiferromagnetic materials. For instance, the antiferromagnetic NiO has an experimental E_g of 4.3 eV14, but the computational E_g ranges over 2.2–2.6 eV in the ferromagnetic ordering and GGA functional15–17 while the correct antiferromagnetic ordering produces 4.5 eV within the hybrid functional.
Addressing limitations in the existing material databases, we herein report a theoretical dataset of fundamental and optical E_g computed by employing a hybrid functional and identifying the stable magnetic ordering, thus providing more accurate E_g than the existing databases. For the high-throughput computational workflow, we employ ‘Automated Ab initio Modeling of Materials Property Package’ (AMP)\(^2\), which is a fully automated package for density functional theory (DFT) calculations of crystalline properties. AMP\(^2\) addresses the band-gap underestimation in semilocal functionals with the help of a hybrid functional, thereby producing a more accurate E_g, even if the material is incorrectly metallic within the semilocal functional. Furthermore, the package finds the antiferromagnetic ground state based on an effective Ising model. The present database focuses on materials with $0 \text{ eV} < E_g < 5 \text{ eV}$, which covers most semiconducting materials. The target materials are selected from Inorganic Crystal Structure Database (ICSD)\(^16\) and partly filtered by information from the Materials Project database. In total, the database collects E_g for 10,481 materials that encompass most inorganic solids with E_g ranging between 0 and 5 eV. For 116 benchmark materials, the root-mean-square error (RMSE) with respect to experimental data is 0.36 eV, significantly smaller than $0.75–1.05 \text{ eV}$ in the existing databases. The resulting data are available online at figshare\(^17\) or SNUMAT\(^18\).

Methods

High-throughput methodology: AMP\(^2\). The present database is constructed by employing AMP\(^2\) which is an automation script operating VASP\(^19–21\). Starting only with the initial crystalline structure, AMP\(^2\) provides band structure, E_g, effective mass, density of states (DOS) and dielectric constants of the crystal by automatically pipelining computational procedures. To summarize computational settings relevant in the present work, we employ GGA developed by Perdew-Burke-Ernzerhof (PBE)\(^22\) for the exchange-correlation functional for structural relaxation and identifying band edges. The E_g is obtained by ‘one-shot’ hybrid functional (specifically, HSE06\(^23\) (simply HSE hereafter)) calculations in which the package estimates E_g close to the full hybrid calculations. If the material is identified as a metal within PBE, AMP\(^2\) inspects DOS, and if DOS at the Fermi level normalized by the valence band (D_F/D_{Vg}) is less than a threshold, the package further tests a possible gap-opening by the one-shot hybrid calculation. The PBE+U method is applied on 3d orbitals\(^26\) only when the material has a finite E_g. About pseudopotentials, we mostly employ those without any tags in the VASP database, which tends to reduce the number of valence electrons. For further details, we refer to the original publication\(^25\).

Computational parameters used in the present work follow the default setting of AMP\(^2\) except that the package applies the PBE+U method on Ce 4f levels with the U value of 4 eV\(^27\). (The pseudopotentials for La and Ce treat f levels as valence.) Furthermore, for compounds including Ti, Pb, and Bi, E_g is recalculated by including the spin-orbit coupling (SOC) when the default E_g without SOC is smaller than 1 eV. (The band edges are also reslouged with SOC.) This is because typical SOC corrections of $\sim 0.5 \text{ eV}$ would be critical in these cases.

In identifying the stable collinear magnetic ordering, AMP\(^2\) applies a genetic algorithm to the Ising model\(^28\). This approach finds the stable magnetic ordering correctly for many compounds. However, the original formulation requires a large supercell to isolate exchange interactions from periodic images, which costs significant computational resources and also suffers from ill-convergence in electronic iterations. To resolve this, we here develop an alternative method in obtaining exchange parameters. First, we choose a minimal supercell under the following two conditions: (i) A magnetic site α and its periodic images in other supercells are apart more than 5 Å (cutoff range for magnetic interactions). (ii) If two magnetic sites α and β (not necessarily belong to the same supercell) are within 5 Å, then the distance between α and β', a periodic image of β ($\beta' \neq \beta$) is longer than 5 Å except when α-\(\beta\) and α-\(\beta'\) are symmetrically equivalent. Within the Ising model, the total energy of the supercell (E) can be expressed as follows:

$$E = E_0 + \sum I_i (N_i P - N_i A),$$

where E_0 is the base energy excluding the magnetic interaction, and I is the index for independent exchange interactions (total m interactions) with the maximum range of 5 Å and the exchange parameter of J_i. In Eq. (1), N_i, P, and A are the numbers of parallel and antiparallel spin pairs within the supercell corresponding to the interaction I, respectively. Then, based on the ferromagnetic configuration (all spin-up), diverse spin configurations are sampled by spin-flipping a magnetic pair (both atoms) or a certain magnetic site. The number of resulting equations is larger than m and an optimal E_{mp} can be obtained by the pseudoinverse method. We find that this approach produces essentially the same parameters as the original scheme but is more reliable and efficient.

Selection of materials. Figure 1 schematizes the workflow of constructing the database. Starting from the ICSD, we only consider compounds consisting of elements with atomic number (Z) < 84. Among the lanthanides, we limit the elements to La and Ce. We remove structural duplicates and structures with partially occupied sites, and also omit large primitive cells that contain more than 40 atoms. For unary and binary compounds, all the structures are calculated with AMP\(^2\). For ternary and higher compounds, we utilize information on E_g and DOS in the Materials Project database (calculated by PBE) to filter out materials that are likely to be metallic or large-gap insulators. To be specific, we exclude materials with E_g bigger than 3 eV since they are likely to have E_{HSE} larger than 5 eV. (Compiling data of 4,421 compounds from the previous screening studies\(^24–27\), we find
that 99.7% of materials with $E_{\text{g}}^{\text{HSE}} < 5 \text{ eV}$ have $E_{\text{g}}^{\text{GGA}} < 3 \text{ eV}$.) We also include metallic materials with $D_f/D_{\text{VB}} < 0.8$ for possible gap opening (see above; a larger threshold is used because of low-resolution DOS in the Materials Project). If a Materials Project data has incomplete entries for E_{g} or DOS, the material is included in the computation list. In this way, we could factor out 5,059 materials from the list of ternary and higher compounds. Finally, we calculate 21,353 materials with AMP\(^2\). After computation, we collect 10,481 materials with finite E_{g} (unary: 63, binary: 1,919, ternary: 5,074, quaternary: 2,804, quinary: 573, and higher: 48).

Data Records

All the calculated properties for 10,481 compounds can be downloaded from the Figshare Repository\(^17\). The whole data including metals are also uploaded to SNUMAT (www.snumat.com), which provides easy search and visualization of materials through its own interactive interface. SNUMAT also supports REST API\(^32\) for users to search the materials with authorization. The authorization token expires 24 hours after they are issued.

File format.

The data are stored in the JSON format. The name of the file is X_ICSD#.json, where X is chemical formula and ICSD# is the ICSD collection code of the initial structure used for calculation. Each JSON file includes final relaxation structure information, $E_{\text{g}}^{\text{GGA}}$, $E_{\text{g}}^{\text{HSE}}$, and DOS. Table 1 summarizes keys for metadata.

Graphical representation of the data.

In Fig. 2, we present the distribution of $E_{\text{g}}^{\text{GGA}}$ and $E_{\text{g}}^{\text{HSE}}$ for 10,481 materials. Most materials with $E_{\text{g}}^{\text{HSE}} > 5 \text{ eV}$ (663 cases) are unary or binary compounds for which AMP\(^2\) is applied to the whole structure dataset from ICSD.

Technical Validation

Comparison to experimental measurements and other databases. In Fig. 3a, we compare experimental and theoretical values for 116 benchmark materials with experimental E_{g} between 0 and 5 eV. The list of compounds is shown in Online-only Table 1. For comparison, theoretical results from other databases are also shown in Fig. 3b–d. The RMSE values are 0.36 eV (present work), 1.05 eV (Materials Project), 0.93 eV (AFLOW), 0.75 eV (AFLOW fitted), 1.02 eV (OQMD), and 0.85 eV (JARVIS). (The meta-GGA values of 19 materials, mostly with small E_{g}, are missing in JARVIS.) This confirms that the present database provides more accurate E_{g} than the existing databases on average. In particular, we correctly identify the semiconducting nature for small-gap semiconductors such as AgSbTe\(_2\), CdO, CoP\(_3\), Cu\(_3\)AsSe\(_4\), Cu\(_2\)SbS\(_3\), Cu\(_2\)SbSe\(_4\), CuFeS\(_2\), Ge, Mg\(_2\)Sn, RhSb\(_3\), and ZnSnSb\(_2\), which are mostly misreported as metals in other databases. In addition, other databases exhibit pronounced errors for every antiferromagnetic material (CuFeS\(_2\), CuO, FeS\(_2\), MnO, MnTe, and NiO) because these

Table 1. Description of metadata keys in JSON file.

Key	Type	Description
SNUMAT_id	string	ID in the SNUMAT
ICSD_number	int	ICSD collection code
Band_gap_GGA	float	Calculated fundamental band gap in GGA (eV)
Band_gap_GGA_optical	float	Calculated direct band gap in GGA (eV)
Band_gap_HSE	float	Calculated fundamental band gap in HSE (eV)
Band_gap_HSE_optical	float	Calculated direct band gap in HSE (eV)
Direct_or_indirect	string	Type of band gap in GGA (direct or indirect)
Direct_or_indirect_HSE	string	Type of band gap in HSE (direct or indirect)
Structure_rlx	string	Relaxed structure information (VASP POSCAR format)
Space_group_rlx	int	Space group number of relaxed structure
Magnetic_ordering	string	Magnetic ordering of final structure
SOC	boolean	Spin-orbit coupling (True or False)

Fig. 1 The computational workflow for collecting the dataset. Numbers in the parentheses indicate material counts.
Fig. 2 Distribution of E_g^{GGA} and E_g^{HSE}. Top and right are occurrence histograms of E_g^{GGA} and E_g^{HSE}, respectively.

Fig. 3 Comparison of E_g for benchmark materials between experimental and theoretical data from (a) this work, (b) Materials Project, (c) AFLOW and (d) OQMD and JARVIS. AFLOW-fitted values are obtained from $E_g^{\text{fit}} = 1.34 E_g^{\text{GGA}} + 0.913 \text{eV}$.

Materials are considered as ferromagnetic or non-magnetic. (For non-magnetic materials in Online-only Table 1, the E_g calculated with pure PBE (without $+U$ and SOC) by AMP2 agrees well with those from Materials Project (the mean absolute error is 0.034 eV).)
In most cases, the present database provides E_g that agrees well with experiment. However, there are some materials with large errors of ≥ 0.5 eV such as AgAlTe$_2$, Cu$_3$AsSe$_4$, Cu$_2$SiSe$_2$, CuBr, CuCl, CuFeS$_2$, CuO, Ge, IrSb$_3$, LaSb$_3$, MnO, RhAs$_3$, RhSb$_2$, SnO$_3$, SrS, and ZnO. For small-gap materials such as Cu$_2$AsSe$_4$, Ge, and IrSb$_3$, E_g is sensitive to the lattice parameters that are slightly overestimated by PBE. Employing experimental lattice parameters or those relaxed within HSE significantly improves the results15. For Cu-bearing materials, it is known that HSE often exhibits substantial errors in E_g due to nonlocal screening effects in Cu, which requires GW calculations33,34. We also note that van der Waals interactions are not described by semilocal functionals, and lattice parameters can be overestimated in layered structures such transition-metal dichalcogenides35. This can significantly affect E_g, and so care is needed in referring to E_g in layered materials. The present results do not consider finite-temperature effects on E_g, which can be significant in some materials, for example, hybrid perovskites36. More generally, E_g dataset with the ultimate theoretical accuracy would be obtained by the quasiparticle approaches such as GW or Bethe-Salpeter equations37,38.

Code availability

The AMP2 package used for constructing the present database is available at https://github.com/MDIL-SNU/AMP2 and was released under a GPLv3 (GNU General Public License). The package requires pre-installation of numpy, scipy, spglib, and PyYAML modules. Detailed guidelines and examples can be found in the manual (https://amp2.readthedocs.io/en/latest/).

Received: 21 August 2020; Accepted: 6 October 2020;
Published online: 11 November 2020

References

1. Shockley, W. & Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 32, 11, https://doi.org/10.1063/1.1736034 (1961).
2. Kang, Y., Youn, Y., Han, S., Park, J. & Oh, C.-S. Computational Screening of Indirect-Gap Semiconductors for Potential Photovoltaic Absorbers. Chem. Mater. 31, 4072–4080, https://doi.org/10.1021/acs.chemmater.9b00708 (2019).
3. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 65, 1501–1509, https://doi.org/10.11103/S11837-013-0753-4 (2013).
4. Curtarolo, S. et al. AMP2: A fully automated program for ab initio calculations of crystalline materials. Comput. Phys. Commun. 207, 805112, https://doi.org/10.1016/j.cpc.2013.10.008 (2014).
5. Setyawan, W., Gaume, R. M., Lam, S., Feigelson, R. S. & Curtarolo, S. High-Throughput Band-structure calculations for the 3d transition metal oxides in Functional Theory: The Open Quantum Materials Database (OQMD). JOM 65, 1501–1509, https://doi.org/10.11103/S11837-013-0753-4 (2013).
6. Choudhary, K. et al. Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms. Sci. Data 5, 180082, https://doi.org/10.1038/sdata.2018.82 (2018).
7. Park, S., Lee, B., Jeon, S. H. & Han, S. Hybrid functional study on structural and electronic properties of oxides. Curr. Appl. Phys. 11, S337–S340, https://doi.org/10.1016/j.cap.2011.09.008 (2011).
8. Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002, https://doi.org/10.1063/1.4812323 (2013).
9. Tran, F. & Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 102, 226401, https://doi.org/10.1103/PhysRevLett.102.226401 (2009).
10. Seiler, D. G. C. L. International conference on narrow-gap semiconductors and related materials. J. Res. Natl. Inst. Standards Technol. 95, 13, https://doi.org/10.6028/jres.095.037 (1990).
11. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. The. J. Chem. Phys. 118, 7820–7825, https://doi.org/10.1063/1.1564060 (2003).
12. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. B 54, 11169–11186, https://doi.org/10.1103/PhysRevB.54.11169 (1996).
13. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868, https://doi.org/10.1103/PhysRevLett.77.3865 (1996).
14. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. The. J. Chem. Phys. 118, 8207–8215, https://doi.org/10.1063/1.1564060 (2003).
15. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. The. J. Chem. Phys. 118, 8207–8215, https://doi.org/10.1063/1.1564060 (2003).
16. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. B 54, 11169–11186, https://doi.org/10.1103/PhysRevB.54.11169 (1996).
17. Blöchl, P. E. Projector augmented-waved method. Phys. Rev. B 50, 17993–17997, https://doi.org/10.1103/PhysRevB.50.17993 (1994).
18. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868, https://doi.org/10.1103/PhysRevLett.77.3865 (1996).
19. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. The. J. Chem. Phys. 118, 8207–8215, https://doi.org/10.1063/1.1564060 (2003).
20. Kim, K. et al. Novel high-k dielectrics for next-generation electronic devices screened by fast ab initio calculations. NPG Asia Mater. 7, e190, https://doi.org/10.1038/asiamat.2015.57 (2015).
21. Wang, L., Maxxis, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107, https://doi.org/10.1103/PhysRevB.73.195107 (2006).
22. Da Silva, J. L. F., Ganduglia-Pirovano, M. V., Sauer, J., Bayer, V. & Kresse, G. Hybrid functionals applied to rare-earth oxides: The example of ceria. Phys. Rev. B 75, 045121, https://doi.org/10.1103/PhysRevB.75.045121 (2007).
28. Lee, K., Yoon, Y. & Han, S. Identification of ground-state spin ordering in antiferromagnetic transition metal oxides using the Ising model and a genetic algorithm. *Sci. Technol. Adv. Mater.* **18**, 246–252, https://doi.org/10.1088/1468-6996/18/6/065004 (2017).

29. Yim, K. et al. Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor. *npj Comput. Mater.* **4**, 17, https://doi.org/10.1038/s41524-018-0073-z (2018).

30. Lee, M., Yoon, Y., Yim, K. & Han, S. High-throughput ab initio calculations on dielectric constant and band gap of non-oxide dielectrics. *Sci. Reports* **8**, 14794, https://doi.org/10.1038/s41598-018-26426-5 (2018).

31. Yoon, Y. et al. Large-Scale Computational Identification of p-Type Oxide Semiconductors by Hierarchical Screening. *Chem. Mater.* **31**, 5475–5483, https://doi.org/10.1021/acs.chemmater.9b00816 (2019).

32. Fielding, R. T. Principled Design of the Modern Web Architecture. *ACM Transactions on Internet Technol.* **2**, 36, https://doi.org/10.1145/514183.514185 (2002).

33. Wang, Y. et al. Electronic structures of Cu$_2$O, Cu$_4$O$_3$, and CuO: A joint experimental and theoretical study. *Phys. Rev. B* **94**, 245418, https://doi.org/10.1103/PhysRevB.94.245418 (2016).

34. van Veenendaal, M. A., Eskes, H. & Sawatzky, G. A. Strong nonlocal contributions to Cu 2p photoelectron spectroscopy. *Phys. Rev. B* **47**, 11462–11469, https://doi.org/10.1103/PhysRevB.47.11462 (1993).

35. Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. *Phys. Rev. B* **84**, 205325, https://doi.org/10.1103/PhysRevB.84.205325 (2011).

36. Wiktor, J., Rothlisberger, U. & Pasquarello, A. Predictive determination of band gaps of inorganic halide perovskites. *Phys. Chem. Lett.* **8**, 5507, https://doi.org/10.1021/acs.jpclett.7b02648 (2017).

37. Schiffgaarde, M. V., Kotani, T. & Faleev, S. Quasiparticle self-consistent GW theory. *Phys. Rev. Lett.* **96**, 226402, https://doi.org/10.1103/PhysRevLett.96.226402 (2006).

38. Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. *Phys. Rev. B* **62**, 4927, https://doi.org/10.1103/PhysRevB.62.4927 (2000).

39. CRC Handbook of Chemistry and Physics, 86th Edition Edited by David R. Lide. (CRC Press, 2005).

40. Tell, B., Shay, J. & Kasper, H. Some properties of AgAlTe$_2$, AgGaTe$_2$, and AgInTe$_2$. *Phys. Rev. B* **9**, 5203–5208, https://doi.org/10.1103/PhysRevB.9.5203 (1974).

41. Ashrafi, A. B. M. A., Kumano, H., Suemune, I., Ok, Y.-W. & Seong, T.-Y. Single-crystalline rocksalt CdO layers grown on GaAs (001) substrates by metalorganic molecular-beam epitaxy. *Appl. Phys. Lett.* **79**, 470–472, https://doi.org/10.1063/1.1387258 (2001).

42. Shay, J. L., Buehler, E. & Wernick, J. H. Electroreflectance Study of the Energy-Band Structure of CdSnP$_2$. *Phys. Rev. B* **2**, 4104–4109, https://doi.org/10.1103/PhysRevB.2.4104 (1970).

43. Robbins, M., Phillips, J. C., Lambrecht, V. G., Laboratories, B. & Hill, M. Solid solution formation in the systems CuM$_{II}$X$_2$-AgM$_{II}$X$_2$ where M$_{II}$=Al, Ga, In and X$_2$=Se, Se. *J. Phys. Chem. Solids* **34**, 5, https://doi.org/10.1016/0022-3697(73)80210-0 (1973).

44. Benchouk, K. et al. New buffer layers, large band gap ternary compounds: Cu$_{1-x}$Al$_x$Te. *The Eur. Phys. J. Appl. Phys.* **10**, 9–14, https://doi.org/10.1051/epap:20000114 (2000).

45. Rudatsan, S. I. & Tigidyanu, I. M. Defect Engineering in II–III–V$_x$I$_{1-x}$ and Related Compounds. *Jpn. J. Appl. Phys.* **32**, 5, https://doi.org/10.7567/JJAP.32S.5.3 (1993).

46. Davydov, V. Y., Ivanov, S. V. & Mudryi, A. V. Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. *Phys. Rev. Lett.* **96**, 11462–11469, https://doi.org/10.1103/PhysRevLett.96.11462 (2001).

47. Goubin, F. et al. Experimental and Theoretical Characterization of the Optical Properties of CeO$_2$, SrCeO$_3$, and Sr$_2$CeO$_4$ Containing Ce$^{3+}$ (P) Ions. *Chem. Mater.** 16**, 662–669, https://doi.org/10.1021/cm034618u (2004).

48. Forster, C. M. & White, W. B. Optical absorption edge in rare earth sesquisulfides. *Mater. Res. Bull.* **41**, 448–454, https://doi.org/10.1016/j.materresbull.2008.07.035 (2006).

Acknowledgements

This work was supported by Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF-2020M3A7C2095492) and Creative Materials Discovery Program through the NRF funded by the Ministry of Science and ICT (2017M3D1A1040689). The computations were carried out at Korea Institute of Science and Technology Information (KISTI) National Supercomputing Center (KSC-2020-CRE-0064).

Author contributions

S.K., M.L., C.H., D.L., W.J., D.Y. and Y. Yoon performed the high-throughput calculations and data collections. Y. Yoon constructed the SNUMAT site. S.K., M.L., Y.K., Y. Yoon, and S.H. analyzed the data and wrote the manuscript. S.H. coordinated the whole work. All authors reviewed and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Yong Yoon or S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.