Projectability of stable, partially free \mathcal{H}-surfaces in the non-perpendicular case

by

Frank Müller

SM-UDE-785 2015
Projectability of stable, partially free H-surfaces in the non-perpendicular case

Frank Müller

January 6, 2015

Abstract

A projectability result is proved for surfaces of prescribed mean curvature (shortly called H-surfaces) spanned in a partially free boundary configuration. Hereby, the H-surface is allowed to meet the support surface along its free trace non-perpendicularly. The main result generalizes known theorems due to Hildebrandt-Sauvigny and the author himself and is in the spirit of the well known projectability theorems due to Radó and Kneser. A uniqueness and an existence result are included as corollaries.

Mathematics Subject Classification 2000: 53A10, 35C20, 35R35, 49Q05

1 Introduction

Let us write $B^+ := \{ w = (u,v) = u + iv : |w| < 1, \ v > 0 \}$ for the upper unit half disc in the plane. Its boundary is divided into
\[\partial B^+ = I \cup J, \quad I := (-1,1), \quad J := \partial B^+ \setminus I = \{ w \in \overline{B^+} : |w| = 1 \}. \]
In the present paper, a surface of prescribed mean curvature $H = H(p) \in C^0(\mathbb{R}^3, \mathbb{R})$ or, shortly, an H-surface is a mapping $x = x(w) : B^+ \to \mathbb{R}^3 \in C^2(B^+, \mathbb{R}^3)$, which solves the system
\[
\Delta x = 2H(x)x_u \wedge x_v \quad \text{in } B^+, \\
|x_u| = |x_v|, \quad x_u \cdot x_v = 0 \quad \text{in } B^+.
\] (1.1)
Here, $y \wedge z$ and $y \cdot z$ denote the cross product and the standard scalar product in \mathbb{R}^3, respectively.

Observe that an H-surface is not supposed to be a regular surface, that means, it may possess branch points $w_0 \in B^+$ with $x_u \wedge x_v(w_0) = 0$.

We consider H-surfaces spanned in a projectable, partially free boundary configuration, which means the following:

Definition 1. (Projectable boundary configuration)

Let $S = \Sigma \times \mathbb{R} \subset \mathbb{R}^3$ be an embedded cylinder surface over the planar closed Jordan arc $\Sigma = \pi(S)$ of class C^3; here π denotes the orthogonal projection onto
the x^1, x^2-plane. Furthermore, let $\Gamma \subset \mathbb{R}^3$ be a closed Jordan arc which can be represented as a C^3-graph over the planar closed C^3-Jordan arc $\Gamma = \pi(\Gamma)$. Finally, assume $\Gamma \cap \Sigma = \{\pi_1, \pi_2\}$, where π_1, π_2 are the distinct end points of Γ as well as Σ, and Γ and Σ meet with a positive angle at the respective points $p_1, p_2 \in \Gamma \cap \Sigma$ correlated by $\pi_j = \pi(p_j)$, $j = 1, 2$. Then we call $\{\Gamma, \Sigma\}$ a projectable (partially free) boundary configuration.

To be precise, in Definition 1, the phrase "Γ and Σ meet with a positive angle at the respective points $p_1, p_2 \in \Gamma \cap \Sigma$" means that the tangentional vector of Γ is not an element of the tangential plane of Σ at these points. A partially free \mathcal{H}-surface is a solution $x \in C^2(B^+, \mathbb{R}^3) \cap C^0(\overline{B^+}, \mathbb{R}^3)$ of (1.1), which satisfies the boundary conditions

$$
x(w) \in S \quad \text{for all } w \in I,
$$
$$
x|_{J}: J \to \Gamma \text{ strictly monotonic},
$$
$$
x(-1) = p_1, \ x(+1) = p_2
$$

for a given projectable boundary configuration $\{\Gamma, \Sigma\}$. Roughly speaking, we aim to show that any such partially free \mathcal{H}-surface is itself projectable. This is in the spirit of the famous projectability result for minimal surfaces by Radó and Kneser and will be proved under additional assumptions on the \mathcal{H}-surface and the configuration $\{\Gamma, \Sigma\}$, namely: The boundary configuration shall be R-admissible in the sense of Definition 2 below and the \mathcal{H}-surface shall be Hölder-continuous on $\overline{B^+}$, stationary w.r.t. some energy functional E_Q and stable w.r.t. the corresponding generalized area functional A_Q. Here Q is a given vector field which satisfies a natural smallness condition and which possesses a suitable normal component w.r.t. Σ as well as the divergence $\text{div} \ Q = 2H$; see Section 2 for details.

The first results of this type were given by Hildebrandt-Sauvigny [HS1]-[HS3]. They considered the special case of minimal surfaces; a generalization to F-minimal surfaces can be found in [MW]. Concerning partially free \mathcal{H}-surfaces the only projectability result known to the author was proved in [M3]. There, the above mentioned vector field Q was supposed to be tangential along the support surface Σ, which forces the corresponding stationary \mathcal{H}-surface to meet Σ perpendicularly along its free trace $x|_{J}$. This condition was essential at many points of the proof in [M3], in particular, while deriving the second variation formula for A_Q and establishing a boundary condition for the third component of the surface normal of our \mathcal{H}-surface. One motivation for writing the present paper was to drop this restriction and to study \mathcal{H}-surfaces which meet Σ non-perpendicularly.

Methodically, we orientate on [M3] which in turn is based on the work of Hildebrandt and Sauvigny in [HS3] and on Sauvigny’s paper [S1], where a corresponding projectability result for stable \mathcal{H}-surfaces subject to Plateau type boundary conditions has been proven.

The paper is organized as follows: In Section 2 we fix notations, specify our assumptions and state the main projectability result, Theorem 1, as well as some preliminary results on the \mathcal{H}-surface and its normal. The consequential unique solvability of the studied partially free problem is captured in Corollary 1. In Section 3 we derive the second variation formula for the functional A_Q allowing boundary perturbations on the free trace $x|_{J}$. Then, Section 4 contains the
crucial boundary condition for the third component of the surface normal and the proof of Theorem 1. We close with an exemplary application of Theorem 1 to the existence question for a mixed boundary value problem for the non-parametric H-surface equation, Corollary 2.

2 Notations and main result

We start by specifying our additional assumptions on the boundary configuration: Let $\{\Gamma, S\}$ be a projectable boundary configuration in the sense of Definition 1. Let $\sigma = \sigma(s), s \in [0, s_0]$, parametrize $\Sigma = \pi(S)$ by arc length, that is,

$$\sigma \in C^3([0, s_0], \mathbb{R}^2), \quad |\sigma'| \equiv 1 \text{ on } [0, s_0], \quad \text{and } s_0 = \text{length}(\Sigma) > 0.$$

Setting $e_3 := (0, 0, 1)$ we define C^2-unit tangent and normal vector fields t, n on S as follows:

$$t(p) := (\sigma'(s), 0), \quad n(p) := t(p) \wedge e_3 \quad \text{for } p \in \{\sigma(s)\} \cap \mathbb{R}, \quad s \in [0, s_0]. \quad (2.1)$$

Furthermore, we can write $\Gamma = \{(x^1, x^2, \gamma(x^1, x^2)) \in \mathbb{R}^3 : (x^1, x^2) \in \Gamma\}$, where $\Gamma = \pi(\Gamma)$ is a closed C^3-Jordan arc and $\gamma \in C^3(\Gamma)$ is the height function. For the end points p_1, p_2 of Γ we assume to have representations

$$p_1 = (\sigma(0), \gamma(\sigma(0))), \quad p_2 = (\sigma(s_0), \gamma(\sigma(s_0))).$$

The set $\Gamma \cup \Sigma$ bounds a simply connected domain $G \subset \mathbb{R}^2$, that is, $\partial G = \Gamma \cup \Sigma$, and we have $\Gamma \cap \Sigma = \{\pi_1, \pi_2\}$ with $\pi_j = \pi(p_j), j = 1, 2$. With $\alpha_j \in (0, \pi)$ we denote the interior angle between Γ and Σ at π_j w.r.t. G ($j = 1, 2$). Finally, we assume that Σ is parametrized such that $\nu := \pi(n)$ points to the exterior of G along Σ.

Definition 2. A projectable boundary configuration $\{\Gamma, S\}$ is called R-admissible, if the following hold:

(i) $\Gamma \cup S \subset Z := \{(p^1, p^2, p^3) \in \mathbb{R}^3 : |(p^1, p^2)| < R\}$ for some $R > 0$.

(ii) G is $\frac{1}{R}$-convex, i.e., for any point $\xi \in \partial G$ there is an open disc $D_\xi \subset \mathbb{R}^2$ of radius R such that $G \subset D_\xi$ and $\xi \in \partial D_\xi$.

For a given R-admissible boundary configuration $\{\Gamma, S\}$, we define the class $C(\Gamma, S; Z)$ of mappings $x \in H^2_2(B^+, Z)$, which satisfy the boundary conditions (1.2) weakly, i.e.,

$$x(w) \in S \quad \text{for a.a. } w \in I,$$

$$x|_J : J \to \Gamma \text{ continuously and weakly monotonic}, \quad (2.2)$$

$$x(-1) = p_1, \quad x(+1) = p_2.$$

For arbitrary $\mu \in [0, 1)$, we additionally define its subsets

$$C_\mu(\Gamma, S; Z) := \left\{ x \in C(\Gamma, S; Z) : \begin{array}{l} x \in C^\mu(B^+, Z), \\ x|_J : J \to \Gamma \text{ strictly monotonic} \end{array} \right\}. \quad (2.3)$$
Now let $Q = Q(p) \in C^1(\mathbb{Z}, \mathbb{R}^3)$ be a vector field satisfying
\begin{equation}
\sup_{p \in \mathbb{Z}} |Q(p)| < 1, \quad \text{div} \ Q(p) = 2H(p) \quad \text{for all} \ p \in \mathbb{Z}.
\end{equation}
Here the function $H = H(p)$ belongs to $C^{1,\alpha}(\mathbb{Z})$ for some $\alpha \in (0,1)$ and fulfills
\begin{equation}
\sup_{p \in \mathbb{Z}} |H(p)| \leq \frac{1}{2R}.
\end{equation}
We introduce the functional
\[E_Q(x) := \int_{B^+} \left\{ \frac{1}{2} |\nabla x(w)|^2 + Q(x) \cdot x_u \wedge x_v\right\} du \ dv, \quad x \in H^1(B^+; \mathbb{Z}), \tag{2.6} \]
and consider the variational problem
\[E_Q(x) \to \min, \quad x \in C(\Gamma; \mathbb{Z}). \tag{2.7} \]

The following lemma collects some well known results concerning the existence and regularity of solutions of (2.7) as well as stationary points of E_Q.

Lemma 1. (Heinz, Hildebrandt, Tomi)

Let $\{\Gamma, S\}$ be an R-admissible boundary configuration $\{\Gamma, S\}$ and assume $Q \in C^1(\mathbb{Z}, \mathbb{R}^3)$, $H \in C^{1,\alpha}(\mathbb{Z})$ to satisfy (2.4) and (2.5). Then there exists a solution $x = x(w)$ of (2.7), x belongs to the class $C_0(\Gamma, S; \mathbb{Z}) \cap C^{3,\alpha}(\mathbb{R}^+; \mathbb{Z})$ for some $\alpha \in (0,1)$ and satisfies the system (1.1), i.e., x is a partially free H-surface.

More generally, any stationary point $x \in C_0(\Gamma, S; \mathbb{Z})$ of E_Q solves (1.1) and belongs to the class $C^{3,\alpha}(\mathbb{R}^+; \mathbb{Z})$. Here, stationarity means
\[\lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon} \{E_Q(x_{\varepsilon}) - E_Q(x)\} \geq 0 \]
for all inner and outer variations $x_{\varepsilon} \in C_0(\Gamma, S; \mathbb{Z})$, $\varepsilon \in [0,\varepsilon_0)$ with sufficiently small $\varepsilon_0 > 0$; see Definition 2 in [DHT] Section 5.4 for the definition of inner and outer variations.

We also associate the *generalized area functional* to Q:
\[A_Q(x) := \int_{B^+} \left\{ |x_u \wedge x_v| + Q(x) \cdot x_u \wedge x_v\right\} du \ dv, \quad x \in H^1(B^+; \mathbb{Z}). \tag{2.8} \]
A stationary, partially free H-surface $x \in C_0(\Gamma, S; \mathbb{Z})$ is called *stable*, if it is stable w.r.t. A_Q, that means, the second variation $\frac{d^2}{d\varepsilon^2} A_Q(\bar{x}(\cdot,\varepsilon)) \big|_{\varepsilon=0}$ of A_Q is nonnegative for all outer variations $\bar{x}(\cdot,\varepsilon) \in C_0(\Gamma, S; \mathbb{Z})$, $\varepsilon \in (-\varepsilon_0,\varepsilon_0)$, for which this quantity exists; note that x has its image $x(B^+)$ in \mathbb{Z}, according to Lemma 1. Since the first variation of A_Q w.r.t. such variations \bar{x} vanishes for stationary x, any relative minimizer of A_Q in $C_0(\Gamma, S; \mathbb{Z})$ is stable. In Definition 4 below, we give an exact definition of stability, which is used in the present paper and which is somewhat less stringent than the above mentioned requirement.

We are now in a position to state our main result:
Theorem 1. Let \(\{ \Gamma, S \} \) be an admissible boundary configuration and let \(Q \in C^{1,\alpha}(\mathbb{Z}, \mathbb{R}^3) \) be chosen such that (2.4) is fulfilled with some \(H \in C^{1,\alpha}(\mathbb{Z}) \), \(\alpha \in (0,1) \), satisfying (2.5). In addition, we assume
\[
\frac{\partial}{\partial p^3} H(p) \geq 0 \quad \text{for all } p \in \mathbb{Z}
\] (2.9)
as well as
\[
(Q \cdot n)(p) = (Q \cdot n)(p^1, p^2, 0) \quad \text{for all } p = (p^1, p^2, p^3) \in S,
\]
\[
\|Q \cdot n(p_j)\| < \cos \alpha_j, \quad j = 1, 2. \] (2.10)

Then any stable \(H \)-surface \(x \in C_\mu(\Gamma, S; \mathbb{Z}) \), \(\mu \in (0,1) \), possesses a graph representation over \(\mathcal{G} \). More precisely, \(x \) is immersed and can be represented as the graph of some function \(\zeta : \mathcal{G} \to \mathbb{R} \in C^{3,\alpha}(\mathcal{G}) \cap C^{2,\alpha}(\mathcal{G} \setminus \{\pi_1, \pi_2\}) \cap C^0(\mathcal{G}) \), which satisfies the mixed boundary value problem
\[
\text{div} \left(\frac{\nabla \zeta}{\sqrt{1 + |\nabla \zeta|^2}} \right) = 2H(\cdot, \zeta) \quad \text{in } G, \quad (2.11)
\]
\[
\frac{\nabla \zeta \cdot \nu}{\sqrt{1 + |\nabla \zeta|^2}} = \psi \quad \text{on } \Sigma \setminus \{\pi_1, \pi_2\}, \quad \zeta = \gamma \quad \text{on } \Gamma. \quad (2.12)
\]
Here \(\nu = \pi(n) \) denotes the exterior unit normal on \(\Sigma \) w.r.t. \(G \) and we defined \(\psi := Q \cdot n|_{\Sigma} \in C^1(\Sigma) \).

As a consequence of Theorem 1 we obtain the following

Corollary 1. Let the assumptions of Theorem 1 be satisfied. Then, apart from reparametrization, there exists exactly one stable \(H \)-surface \(x \in C_\mu(\Gamma, S; \mathbb{Z}) \) with some \(\mu \in (0,1) \).

Proof. The existence of a stable \(H \)-surface \(x \in C_\mu(\Gamma, S; \mathbb{Z}) \) for some \(\mu \in (0,1) \) is assured by Lemma 1. According to Theorem 1, we can represent \(x \) as a graph over \(G \), and the height function \(\zeta \) solves the boundary value problem (2.11), (2.12).

If there would exist another stable \(H \)-surface \(\tilde{x} \in C_\mu(\Gamma, S; \mathbb{Z}) \) with some \(\tilde{\mu} \in (0,1) \) and if \(\tilde{\zeta} \) denotes the height function of its graph representation, which also solves (2.11), (2.12) by Theorem 1, we consider the difference function
\[
f := \zeta_1 - \zeta_2. \]
As is well known, \(f \) solves an elliptic differential equation in \(G \), which is subject to the maximum principle according to assumption (2.9); cf. [S2] Chap. VI, §2. Consequently, \(f \) assumes its maximum and minimum on \(\partial G = \Sigma \cup \Gamma \).

Assume that \(f \) has a positive maximum at \(p_0 \in \Sigma \setminus \{\pi_1, \pi_2\} \). Then Hopf’s boundary point lemma implies
\[
\nabla f(p_0) = (\nabla f(p_0) \cdot \nu(p_0)) \nu(p_0) \quad \text{with } \nabla f(p_0) \cdot \nu(p_0) > 0.
\]
On the other hand, the first boundary condition in (2.12) yields (\(M(p_0)\nabla f(p_0) \cdot \nu(p_0) = 0 \), where we have abbreviated
\[
M(p) := \int_0^1 Dh(t\nabla \zeta_1(p) + (1-t)\nabla \zeta_2(p)) \, dt, \quad p \in \Sigma,
\]
Let the assumptions of Theorem 1 be satisfied and let \(\mathbf{x} \). Due to Lemma 1, \(\nabla \mathbf{x} \) gives towards the projectability of our analytical and geometrical regularity results and first important informations we deduce that \(f \geq 0 \) on \(\mathcal{G} \). Hence, we conclude \(f \geq 0 \) on \(\mathcal{G} \). This gives \(\mathbf{x} \equiv \xi, \zeta \) on \(\mathcal{G} \), which yields \(\mathbf{x} = \mathbf{x} \circ \omega \) with some positively oriented parameter transformation \(\omega : \mathcal{B}^+ \to \mathcal{B}^+ \). This proves the corollary.

We complete this section with a preparatory lemma, which collects some analytical and geometrical regularity results and first important informations towards the projectability of our \(\mathcal{H} \)-surfaces:

Lemma 2. Let the assumptions of Theorem 1 be satisfied and let \(\mathbf{x} = \mathbf{x}(w) \in C_\mu(\Gamma, S; \mathcal{Z}) \) be an \(\mathcal{H} \)-surface which is stationary w.r.t. \(E_\mathcal{Q} \). Then there follow:

(i) \(\mathbf{x} \in C^{3,\alpha}(B^+, \mathcal{Z}) \cap C^{2,\alpha}(\mathcal{B}^+ \setminus [-1, +1], \mathcal{Z}) \), and there holds

\[
(x_0 + Q(x) \land x_w)(w) \perp T_{x(w)}S \quad \text{for all } w \in I, \tag{2.13}
\]

where \(T_pS \) denotes the tangential plane of \(S \) at the point \(p \in S \).

(ii) \(f(\mathcal{B}^+) \subset \mathcal{G} \) for the projection mapping \(f := \pi(x) \).

(iii) \(\nabla \mathbf{x}(w) \neq 0 \) for all \(w \in \partial B^+ \setminus [-1, +1] \), and \(\nabla \mathbf{x} = 0 \) for at most finitely many points in \(B^+ \).

(iv) Set \(W := \{x_0 \land x_w\}, B' := \{w \in B^+ : W(w) > 0\} \), and define the surface normal \(N(w) := W^{-1}x_0 \land x_w \) as well the Gaussian curvature \(K = K(w) \) of \(\mathbf{x} \) for points \(w \in B' \). Then \(N \) and \(KW \) can be extended to mappings

\[
N \in C^{2,\alpha}(B^+, \mathbb{R}^3) \cap C^{1,\alpha}(\mathcal{B}^+ \setminus [-1, +1], \mathbb{R}^3) \cap C^0(\mathcal{B}^+, \mathbb{R}^3),
\]

\[
KW \in C^{1,\alpha}(B^+),
\]

and \(N \) satisfies the differential equation

\[
\Delta N + 2(2H(x)^2 - K - \langle \nabla H(x) \cdot N \rangle)W N = -2W \nabla H(x) \quad \text{in } B^+. \tag{2.14}
\]

Proof. (ii) Due to Lemma 1, \(\mathbf{x} \) is a stationary, partially free \(\mathcal{H} \)-surface of class \(C^{3,\alpha}(B^+, \mathcal{Z}) \). In addition, we have \(f(\partial B^+) = \partial G \) due to the geometry of our boundary configuration. An inspection of the proof of Hilfssatz 4 of [S1] shows, that this boundary condition, the smallness condition (2.5) and the \(\frac{1}{2} \)-convexity of \(G \) imply \(f(\mathcal{B}^+) \subset \mathcal{G} \).

(i), (iii) A well known regularity result according to E. Heinz [He] implies \(\mathbf{x} \in C^{2,\alpha}(B^+ \cup J, \mathcal{Z}) \). And from Theorem 1 in [M6] we obtain \(\mathbf{x} \in C^{1,\frac{1}{2}}(B^+ \cup I, \mathcal{Z}) \). Setting

\[
I' := \{w \in I : f(w) = (\pi \circ \mathbf{x})(w) \notin \{\pi_1, \pi_2\}\},
\]

with \(h(z) := \frac{z}{\sqrt{1 + |z|^2}}, z \in \mathbb{R}^2 \). If we finally note

\[
(Dh(z)) \cdot \xi = \frac{\xi^3}{(1 + |z|^2)^{\frac{3}{2}}} > 0, \quad \xi \in \mathbb{R}^2 \setminus \{0\}, \quad z \in \mathbb{R}^2,
\]

we deduce that \(M \) is positive definite on \(\Sigma \) and arrive at the contradiction
the stationarity yields the natural boundary condition (2.13) on \(I' \).

Due to (ii), the arguments from Satz 2 in [S1] yield \(\nabla x(w) \neq 0 \) for all \(w \in J \). Assume that \(w_0 \in I \) is a branch point of \(x \) and set \(B^*_+ (w_0) := \{ w \in B^+ : |w-w_0| < \delta \} \). Then the asymptotic expansion from Theorem 2 in [M6] imply that \(x|_{B^*_+ (w_0)} \), \(0 < \delta \ll 1 \), looks like a whole perturbed disc.

Consequently, the projection \(f|_{B^*_+ (w_0)} \) would meet the complement of \(\overline{G} \), in contrast to \(f(B) \subset \overline{G} \). Indeed, for \(w_0 \in I' \) this effects from the natural boundary condition (2.13), which can be rewritten as \((Q \cdot n)(x) = -N \cdot n(x) \) on \(I' \); see Remark 1 below. And for \(w_0 \in I \setminus I' \), i.e. \(f(w_0) \notin \{ \pi_1, \pi_2 \} \), this is trivial by geometry. Consequently, we have a contradiction and \(\nabla x(w) \neq 0 \) for \(w \in I \) follows; this completes the proof of the first part of (iii).

Next we show \(I' = I \), i.e. \(f(I) = \Sigma \setminus \{ \pi_1, \pi_2 \} \). From [HJ] or [M5] we then obtain \(x \in C^{2,\alpha}(B^+ \cup I, Z) \) and (2.13) holds on \(I \); this will complete the proof of (i).

Assume there exists \(w^* \in I \) with \(f(w^*) = \pi_1 \). Then there would be a maximal point \(w_0 \in I \) with \(f(w_0) = \pi_1 \) and \(f(w) \in \Sigma \setminus \{ \pi_1, \pi_2 \} \) for \(w \in (w_0, w_0+\varepsilon) \subset I \), \(0 < \varepsilon \ll 1 \). Consequently, the boundary condition (2.13) holds on \((w_0, w_0+\varepsilon) \) and, in particular, we get

\[(x_0 + Q(x) \wedge x_a) \cdot t(x) = 0 \quad \text{on} \quad (w_0, w_0+\varepsilon). \]

(2.15)

By continuity, (2.15) remains valid for \(w = w_0 \). In addition, the geometry of \(S \) yields \(x_a = \pm |x_a|e_3 \). This and the relation \(n = t \wedge e_3 \) on \(S \) imply

\[x_a \cdot t(x) = \pm |x_a| (Q(x) \cdot n(x)) \quad \text{in} \quad w_0. \]

(2.16)

According to the conformality relations and \(\nabla x \neq 0 \) on \(I \), we have \(|x_a| = |x_a| \neq 0 \) in \(w_0 \). Denote the angle between \(x_a(w_0) \) and \(t(x(w_0)) \) by \(\beta_1 \). Then (2.16) and condition (2.10) imply

\[|\cos \beta_1| = |(Q(x(w_0)) \cdot n(x(w_0)))| < \cos \alpha_1 \quad \text{or} \quad \beta_1 \in (\alpha_1, \pi - \alpha_1), \]

where \(\alpha_1 \in (0, \frac{\pi}{2}) \) denotes the interior angle between \(\Gamma \) and \(\Sigma \) at \(\pi_1 \) w.r.t. \(G \). A simple application of the mean-value theorem then yields a contradiction to the inclusion \(f(B^+) \subset \overline{G} \). Analogously, one shows that there cannot exist \(w^{**} \in I \) with \(f(w^{**}) = \pi_2 \). In conclusion, we have \(I' = I \) and (i) is proved.

We finally show the finiteness of branch points in \(B^+ \), completing the proof of (iii): Hildebrandt’s asymptotic expansions at interior branch points [Hi] imply the isolated character of these points. By \(\nabla x \neq 0 \) on \(I \cup J \), the only points where branch points could accumulate are the corner points \(w = \pm 1 \). But this is impossible, too, according to the asymptotic expansions near these points proven in [M4] Theorem 2.2; see Corollary 7.1 there. We emphasize that the cited result is applicable, since \(\Gamma \) and \(S \) meet with positive angles \(\gamma_j \in (0, \alpha_j) \) at \(p_j \) by Definition 1, and since we assume

\[|Q(p_j) \cdot n(p_j)| < \cos \alpha_j \leq \cos \gamma_j, \quad j = 1, 2. \]

(Note that a simple reflection of \(S \) can be used to assure \(\{ \Gamma, S \} \) and \(x \) to fulfill the assumptions of [M4] Corollary 7.1.)
(iv) The interior regularity \(N \in C^{2,\alpha}(B^+,\mathbb{R}^3) \), \(KW \in C^{1,\alpha}(B^+) \) as well as equation (2.14) were proven by F. Sauvigny in [S1] Satz 1. The global regularity \(N \in C^{1,\alpha}(\overline{B^+} \setminus \{-1,1\},\mathbb{R}^3) \) follows from (i) and (iii). Finally, the continuity of \(N \) up to the corner points \(w = \pm 1 \) was proven in [M4] Theorem 5.4; see the remarks above concerning the applicability of this result.

\[\square \]

Remark 1. By taking the cross product with \(x_u \in T_x S \), the natural boundary condition (2.13) can be written in the form

\[Q(x) \cdot n(x) = -N \cdot n(x) \quad \text{on } I. \tag{2.17} \]

This relation describes the well-known fact that the normal component of \(Q \) w.r.t. to \(S \) prescribes the contact angle between a stationary \(\mathcal{H} \)-surface and the support surface \(S \).

3 The second variation of \(A_Q \), stable \(\mathcal{H} \)-surfaces

Let us choose an \(\mathcal{H} \)-surface \(x \in C_\mu(\Gamma,S;Z) \), \(\mu \in (0,1) \), which is stationary w.r.t. \(E_Q \) (and thus belongs to \(C^{3,\alpha}(B^+,Z) \cap C^2(\overline{B^+} \setminus \{-1,1\},Z) \) according to Lemma 2 (i)). Consider a one-parameter family \(\tilde{x} = \tilde{x}(w,\varepsilon) \), which belongs to the class \(C^\mu(\Gamma,S;Z) \cap C^2(\overline{B^+} \setminus \{-1,1\},\mathbb{R}^3) \) for any fixed \(\varepsilon \in (-\varepsilon_0,\varepsilon_0) \) and which depends smoothly on \(\varepsilon \) together with its first and second derivatives w.r.t. \(u,v \). We call \(\tilde{x} \) an **admissible perturbation** of \(x \), if we have:

(i) \(\tilde{x}(w,0) = x(w) \) for all \(w \in \overline{B^+} \),

(ii) \(\text{supp}(\tilde{x}(\cdot,\varepsilon) - x) \subset B^+ \cup I \) for all \(\varepsilon \in (-\varepsilon_0,\varepsilon_0) \),

(iii) \(y := \frac{\partial}{\partial \varepsilon} \tilde{x}(\cdot,\varepsilon) \big|_{\varepsilon=0} \in C^2(B^+ \cup I,\mathbb{R}^3) \), \(z := \frac{\partial^2}{\partial \varepsilon^2} \tilde{x}(\cdot,\varepsilon) \big|_{\varepsilon=0} \in C^1(B^+ \cup I,\mathbb{R}^3) \).

The direction \(y = \frac{\partial}{\partial \varepsilon} \tilde{x}(\cdot,\varepsilon) \big|_{\varepsilon=0} \) of an admissible perturbation \(\tilde{x} \) satisfies

\[y(w) \in T_{x(w)} S \quad \text{for all } w \in I. \quad \quad \tag{3.1} \]

On the other hand, choosing an arbitrary vector-field \(y \in C^2_c(B^+ \cup I,\mathbb{R}^3) \) with the property (3.1), one may construct an admissible perturbation \(\tilde{x} \) as described above by using a flow argument (compare, e.g., [DHT] pp. 32–33).

In the present section, we compute the second variation \(\frac{\partial^2}{\partial \varepsilon^2} A_Q(\tilde{x}(\cdot,\varepsilon)) \big|_{\varepsilon=0} \) for admissible perturbations. To this end, we have to examine the quantity

\[\frac{\partial^2}{\partial \varepsilon^2} \left(|\tilde{x}_u \wedge \tilde{x}_v| + Q(\tilde{x}) \cdot \tilde{x}_u \wedge \tilde{x}_v \right) \bigg|_{\varepsilon=0} = \frac{\partial^2}{\partial \varepsilon^2} \left(|\tilde{x}_u \wedge \tilde{x}_v| \right) \bigg|_{\varepsilon=0} + \frac{\partial^2}{\partial \varepsilon^2} \left(Q(\tilde{x}) \cdot \tilde{x}_u \wedge \tilde{x}_v \right) \bigg|_{\varepsilon=0} \tag{3.2} \]

We first compute (3.2) on \(B^+ \cup I \) with

\[B^+ = \{ w \in B^+ : W(w) > 0 \}, \quad W = |x_u \wedge x_v| = |x_u|^2 = |x_v|^2, \]

and then observe that the resulting formula can be extended continuously to \(B^+ \cup I \). We start with the first addend on the right-hand side of (3.2):
Proposition 1. Let \tilde{x} be an admissible perturbation of a stationary H-surface $x \in C_0(\Gamma, S, \mathbb{Z})$ as described above. Define $\varphi := y \cdot N \in C^2(B \cup I, \mathbb{R}^3)$. Then there holds

$$\frac{\partial^2}{\partial \varepsilon^2} (|\tilde{x}_u \wedge \tilde{x}_v|) = |\nabla \varphi|^2 + 2KW\varphi^2 - 2H(x)y \cdot (y_u \wedge x_v + x_u \wedge y_v)$$

$$+ 2H(x)[\varphi(x_u \cdot y_u) + \varphi(x_v \cdot y_v) + (x_u \cdot y)\varphi_u + (x_v \cdot y)\varphi_v]$$

$$- [\varphi(N_u + 2H(x)x_u) \cdot y]_u - [\varphi(N_v + 2H(x)x_v) \cdot y]_v$$

$$+ [N \cdot (y \wedge y_v)]_u + [N \cdot (y_u \wedge y)]_v$$

$$- 2H(x)z \cdot (x_u \wedge x_v) + (z \cdot x_u)_u + (z \cdot x_v)_v \quad \text{on } B',$$

where K denotes the Gaussian curvature of x.

Proof. 1. We start by noting the relation

$$\frac{\partial^2}{\partial \varepsilon^2} (|\tilde{x}_u \wedge \tilde{x}_v|)_{|\varepsilon=0} = \frac{1}{2W} \frac{\partial^2}{\partial \varepsilon^2} (|\tilde{x}_u \wedge \tilde{x}_v|^2)_{|\varepsilon=0} - \frac{1}{4W^2} \left(\frac{\partial}{\partial \varepsilon} (|\tilde{x}_u \wedge \tilde{x}_v|^2) \right)^2_{|\varepsilon=0}$$

on B'. Expanding \tilde{x} w.r.t. ε, we infer

$$\tilde{x} (\cdot, \varepsilon) = x + \varepsilon y + \frac{\varepsilon^2}{2} z + o(\varepsilon^2) \quad \text{on } B^+$$

and, consequently,

$$\tilde{x}_u \wedge \tilde{x}_v = W N + \varepsilon (x_u \wedge y_v + y_u \wedge x_v) + \varepsilon^2 y_u \wedge y_v + \frac{\varepsilon^2}{2} (x_u \wedge z_v + z_u \wedge x_v) + o(\varepsilon^2) \quad \text{on } B'$$

as well as

$$|\tilde{x}_u \wedge \tilde{x}_v|^2 = W^2 + 2\varepsilon W N \cdot (x_u \wedge y_v + y_u \wedge x_v)$$

$$+ \varepsilon^2 |x_u \wedge y_v + y_u \wedge x_v|^2 + 2\varepsilon^2 W N \cdot (y_u \wedge y_v)$$

$$+ \varepsilon^2 W N \cdot (x_u \wedge z_v + z_u \wedge x_v) + o(\varepsilon^2).$$

Combining (3.3) with (3.6) gives

$$\frac{\partial^2}{\partial \varepsilon^2} (|\tilde{x}_u \wedge \tilde{x}_v|)_{|\varepsilon=0} = W^{-1} |x_u \wedge y_v + y_u \wedge x_v|^2 + 2N \cdot (y_u \wedge y_v)$$

$$+ N \cdot (x_u \wedge z_v + z_u \wedge x_v)$$

$$- W^{-1} \left[N \cdot (x_u \wedge y_v + y_u \wedge x_v) \right]^2$$

$$= (y_u \cdot N)^2 + (y_v \cdot N)^2 + 2N \cdot (y_u \wedge y_v)$$

$$+ N \cdot (x_u \wedge z_v + z_u \wedge x_v).$$

And since x is a conformally parametrized H-surface, we have

$$N \cdot (x_u \wedge z_v + z_u \wedge x_v) = z_v \cdot x_u + z_u \cdot x_v$$

$$= (z \cdot x_u)_u + (z \cdot x_v)_v - 2H(x)Wz \cdot N \quad \text{on } B'.$$
arriving at
\[
\frac{\partial^2}{\partial \varepsilon^2} ((\mathbf{x}_u \wedge \mathbf{x}_v)) \bigg|_{\varepsilon=0} = (\mathbf{y}_u \cdot \mathbf{N})^2 + (\mathbf{y}_v \cdot \mathbf{N})^2 + 2\mathbf{N} \cdot (\mathbf{y}_u \wedge \mathbf{y}_v) + (z \cdot x_u)_u + (z \cdot x_u)_v - 2\mathcal{H}(x)Wz \cdot \mathbf{N} \quad \text{on } B'.
\] (3.7)

2. In the following, we sometimes write \(u^1 := u, u^2 := v \) and use Einstein's convention summing up tacitly over sub- and superscript latin indices from 1 to 2. Furthermore, we set \(\lambda^j := W^{-1}x_{u^j} \cdot y \) for \(j = 1, 2 \) obtaining \(y = \lambda^j x_{u^j} + \varphi \mathbf{N} \quad \text{on } B' \).

Writing \(g_{jk} := x_{u^j} \cdot x_{u^k}, g_{jk}, \Gamma^l_{jk} \), and \(h_{jk} := x_{u^j} \cdot \mathbf{N} = -x_{u^j} \cdot \mathbf{N} \) for the coefficients of the first fundamental form, its inverse and Christoffel symbols, and the coefficients of the second fundamental form, respectively, we then infer
\[
y_{u^k} = (\lambda^j_{u^k} + \lambda^l \Gamma^j_{lk} - \varphi h_{kl}g^{lj})x_{u^j} + (\lambda^1 h_{jk} + \varphi_{u^k})\mathbf{N} \quad \text{on } B'.
\] (3.8)

Due to the conformal parametrization of the \(\mathcal{H} \)-surface \(x \), we have
\[
g_{jk} = W\delta_{jk}, \quad g_{jk} = \frac{\delta_{jk}}{W},
\]
\[
\Gamma^1_{11} = -\Gamma^1_{22} = \Gamma^2_{12} = \Gamma^2_{21} = \frac{W_u}{2W},
\]
\[
\Gamma^2_{22} = -\Gamma^1_{11} = \Gamma^1_{21} = \Gamma^1_{12} = \frac{W_v}{2W},
\]
\[
h_{11} + h_{22} = 2W\mathcal{H}(x), \quad h_{11}h_{22} - (h_{12})^2 = W^2K \quad \text{on } B',
\]
where \(\delta_{jk} = \delta^{jk} \) denotes the Kronecker delta.

3. We now evaluate the first line of the right-hand side in (3.7): Using (3.8) and (3.9), the first two terms can be written as
\[
(\mathbf{y}_u \cdot \mathbf{N})^2 + (\mathbf{y}_v \cdot \mathbf{N})^2 = (\lambda^1 h_{11} + \lambda^2 h_{12} + \varphi_u)^2 + (\lambda^1 h_{12} + \lambda^2 h_{22} + \varphi_v)^2
\]
\[
= |\nabla \varphi|^2 + [(\lambda^1)^2 + (\lambda^2)^2](h_{12})^2 + (\lambda^1)^2(h_{11})^2 + (\lambda^2)^2(h_{22})^2
\]
\[
+4\lambda^1\lambda^2 h_{12} W\mathcal{H}(x) + 4(\lambda^1 \varphi_u + \lambda^2 \varphi_v) W\mathcal{H}(x)
\]
\[
+2(\lambda^2 h_{12} - \lambda^1 h_{22}) \varphi_u + 2(\lambda^1 h_{12} - \lambda^2 h_{11}) \varphi_v \quad \text{on } B'.
\] (3.10)

We next write the third term on the right-hand side of (3.7) as
\[
2\mathbf{N} \cdot (\mathbf{y}_u \wedge \mathbf{y}_v) = [\mathbf{N} \cdot (\mathbf{y} \wedge \mathbf{y}_v)]_u + [\mathbf{N} \cdot (\mathbf{y}_u \wedge \mathbf{y})]_v
\]
\[
- \mathbf{N}_u \cdot (\mathbf{y} \wedge \mathbf{y}_v) - \mathbf{N}_v \cdot (\mathbf{y}_u \wedge \mathbf{y}) \quad \text{on } B'.
\] (3.11)

Using the relations \(\mathbf{N} \wedge \mathbf{x}_u = \mathbf{x}_v, \mathbf{N} \wedge \mathbf{x}_v = -\mathbf{x}_u \), we get from (3.8):
\[
\mathbf{y} \wedge \mathbf{y}_{u^k} = -\varphi(\lambda^1_{u^k} + \lambda^1 \Gamma^1_{1k} + \lambda^2 \Gamma^2_{2k} - \varphi h_{k2}W^{-1})\mathbf{x}_u
\]
\[
+ \varphi(\lambda^1_{u^k} + \lambda^1 \Gamma^1_{1k} + \lambda^2 \Gamma^2_{2k} - \varphi h_{k1}W^{-1})\mathbf{x}_v
\]
\[
+ \lambda^2(\lambda^1 h_{1k} + \lambda^2 h_{2k} + \varphi_{u^k})\mathbf{x}_u
\]
\[
- \lambda^1(\lambda^1 h_{1k} + \lambda^2 h_{2k} + \varphi_{u^k})\mathbf{x}_v + (\ldots)\mathbf{N} \quad \text{on } B',
\]
where \((\ldots)\mathbf{N}\) denotes the normal part of \(\mathbf{y} \wedge \mathbf{y}_\nu\). This identity, formula (3.9), and the Weingarten equations \(\mathbf{N}_\nu = -h_{jk}g^{kl}\mathbf{x}_\nu\) on \(B'\) yield
\[-\mathbf{N}_u \cdot (\mathbf{y} \wedge \mathbf{y}_u) - \mathbf{N}_v \cdot (\mathbf{y}_u \wedge \mathbf{y}) = W^{-1}\left[(h_{11}\mathbf{x}_u + h_{12}\mathbf{x}_u) \cdot (\mathbf{y} \wedge \mathbf{y}_v) - (h_{21}\mathbf{x}_u + h_{22}\mathbf{x}_u) \cdot (\mathbf{y} \wedge \mathbf{y}_u)\right]
\]
\[= 2(\varphi)^2WK + (\lambda_1^1h_{22} - \lambda^2h_{12})\varphi_u - (\lambda^1h_{11} - \lambda_2h_{11})\varphi_v,
\]
\[+ \varphi[\lambda_1^1h_{12} - \lambda^1h_{22} - \lambda^1W_u\mathbf{H}(\mathbf{x})] - \varphi[\lambda_2^1h_{11} - \lambda_2^2h_{12} + \lambda^2W_v\mathbf{H}(\mathbf{x})]
\]
\[+ [(\lambda_1)^2 + (\lambda_2)^2][h_{11}h_{22} - (h_{12})^2]\quad\text{on } B'.
\]
According to the Codazzi-Mainardi equations
\[h_{21,u} - h_{22,u} + W_u\mathbf{H} = 0, \quad h_{11,u} - h_{12,u} - W_v\mathbf{H} = 0,
\]
we infer
\[
\begin{align*}
\lambda_1^1h_{12} - \lambda^1h_{22} &= \lambda^1W_u\mathbf{H}(\mathbf{x}) = (\lambda^1h_{12})_v - (\lambda^1h_{22})_u, \\
\lambda_2^2h_{11} - \lambda_2^2h_{12} &= \lambda^2W_v\mathbf{H}(\mathbf{x}) = (\lambda^2h_{11})_v - (\lambda^2h_{12})_u \quad\text{on } B'.
\end{align*}
\]
Inserting these identities into (3.12) and the resulting relation into (3.11), we arrive at
\[2\mathbf{N} \cdot (\mathbf{y}_u \wedge \mathbf{y}_v) = [\mathbf{N} \cdot (\mathbf{y} \wedge \mathbf{y}_v)]_u + [\mathbf{N} \cdot (\mathbf{y}_u \wedge \mathbf{y})]_v
\]
\[+ 2(\varphi)^2WK + (\lambda_1^1h_{22} - \lambda^2h_{12})\varphi_u - (\lambda^1h_{11} - \lambda_2h_{11})\varphi_v
\]
\[- \varphi(\lambda_1^1h_{22} - \lambda^2h_{12})_u + \varphi(\lambda^1h_{11} - \lambda^2h_{11})_v
\]
\[+ [(\lambda_1)^2 + (\lambda_2)^2][h_{11}h_{22} - (h_{12})^2]\quad\text{on } B'.
\]
Adding (3.10) and (3.13) we now find
\[\mathbf{y}_u \cdot \mathbf{N}^2 + (\mathbf{y}_u \cdot \mathbf{N})^2 + 2\mathbf{N} \cdot (\mathbf{y}_u \wedge \mathbf{y}_v)
\]
\[= [\nabla\varphi]^2 + 2(\varphi)^2KW + [\mathbf{N} \cdot (\mathbf{y} \wedge \mathbf{y}_v)]_u + [\mathbf{N} \cdot (\mathbf{y}_u \wedge \mathbf{y})]_v
\]
\[- [\varphi(\lambda^1h_{22} - \lambda^2h_{12})]_u + [\varphi(\lambda^1h_{11} - \lambda^2h_{11})]_v
\]
\[+ 2W\mathbf{H}(\mathbf{x})[(\lambda_1)^2h_{11} + (\lambda_2)^2h_{22} + 2\lambda^1\lambda^2h_{12} + 2(\lambda^1\varphi_u + \lambda^2h_{22})]
\]
(3.14)
on \(B'\). Finally, we calculate via the Weingarten equations and (3.9)
\[
\begin{align*}
\lambda^1h_{22} - \lambda^2h_{12} &= W^{-1}(h_{22}\mathbf{x}_u - h_{12}\mathbf{x}_u) \cdot \mathbf{y} = (\mathbf{N}_u + 2\mathbf{H}(\mathbf{x})\mathbf{x}_u) \cdot \mathbf{y}, \\
\lambda^1h_{12} - \lambda^2h_{11} &= W^{-1}(h_{12}\mathbf{x}_u - h_{11}\mathbf{x}_u) \cdot \mathbf{y} = -(\mathbf{N}_v + 2\mathbf{H}(\mathbf{x})\mathbf{x}_u) \cdot \mathbf{y}
\end{align*}
\]
as well as
\[
(\lambda^1)^2 h_{11} + (\lambda^2)^2 h_{22} + 2\lambda^1 \lambda^2 h_{12} + 2(\lambda^1 \varphi_u + \lambda^2 \varphi_v)
\]
\[
= \lambda^1(\lambda^1 h_{11} + \lambda^2 h_{12}) + \lambda^2(\lambda^1 h_{12} + \lambda^2 h_{22}) + 2(\lambda^1 \varphi_u + \lambda^2 \varphi_v)
\]
\[
= -\lambda^1(N_u \cdot y - \lambda^2(N_v \cdot y) + 2(\lambda^1 \varphi_u + \lambda^2 \varphi_v)
\]
\[
= W^{-1}[(x_u \cdot y)(N \cdot y_u) + (x_v \cdot y)(N \cdot y_v)] + (\lambda^1 \varphi_u + \lambda^2 \varphi_v)
\]
\[
= W^{-1}[(\varphi(x_u \cdot y_u) + \varphi(x_v \cdot x_v) + (x_u \cdot y)\varphi_u + (x_v \cdot y)\varphi_v]
\]
\[
- W^{-1}[y \cdot (y_u \wedge x_u) + y \cdot (x_u \wedge y_u)].
\]
(3.16)

Inserting (3.15) and (3.16) into (3.14), the asserted identity follows from the resulting relation and formula (3.7).

Proof. Using (2.4) and the general relation
\[
[Ma] \cdot (b \wedge c) + a \cdot ([Mb] \wedge c) + a \cdot (b \wedge [Mc]) = (\text{tr} M)[a \cdot (b \wedge c)]
\]
(3.17)
for arbitrary vectors \(a, b, c \in \mathbb{R}^3\) and matrices \(M \in \mathbb{R}^{3 \times 3}\) with trace \(\text{tr} M\), we first compute
\[
\partial^2 \|Q(\tilde{x}) \cdot (\tilde{x}_u \wedge \tilde{x}_v)\|_{\varepsilon=0}
\]
\[
= 2W\varphi^2[\nabla H(x) \cdot N - 2H(x)^2] + 2H(x)y \cdot (x_u \wedge y_u + y_u \wedge x_u)
\]
\[
- 2H(x)[\varphi(x_u \cdot y_u) + \varphi(x_v \cdot y_v) + (x_u \cdot y)\varphi_u + (x_v \cdot y)\varphi_v]
\]
\[
+ 2[\varphi H(x)(x_u \cdot y)_v] + 2[\varphi H(x)(x_v \cdot y)]_v + 2H(x)z \cdot (x_u \wedge x_v)
\]
\[
+ [(DQ(x)y) \cdot (y \wedge x_v)]_v + [Q(x) \cdot (x_u \wedge y)]_v + [Q(x) \cdot (y \wedge y)]_v
\]
on \(B'\).

Proposition 2. Under the assumptions of Proposition 1, there holds
\[
\frac{\partial^2}{\partial \varepsilon^2} [Q(\tilde{x}) \cdot (\tilde{x}_u \wedge \tilde{x}_v)]_{\varepsilon=0}
\]
\[
= 2W\varphi^2[\nabla H(x) \cdot N - 2H(x)^2] + 2H(x)y \cdot (x_u \wedge y_u + y_u \wedge x_u)
\]
\[
+ 2H(x)y \cdot (x_u \wedge y_v + y_v \wedge x_u)
\]
\[
- 2H(x)[\varphi(x_u \cdot y_u) + \varphi(x_v \cdot y_v) + (x_u \cdot y)\varphi_u + (x_v \cdot y)\varphi_v]
\]
\[
+ 2[\varphi H(x)(x_u \cdot y)_v] + 2[\varphi H(x)(x_v \cdot y)]_v + 2H(x)z \cdot (x_u \wedge x_v)
\]
\[
+ [(DQ(x)y) \cdot (y \wedge x_v)]_v + [Q(x) \cdot (x_u \wedge y)]_v + [Q(x) \cdot (y \wedge y)]_v
\]
on \(B'\).
Writing again $y = \lambda' x_{ij} + \varphi N$ on B' with $\lambda' = W^{-1} x_{ij} \cdot y$ and employing (1.1), the assertion follows from (3.18) and the identity

$$2[\nabla H(x) \cdot y] y \cdot (x_u \wedge x_v)$$

$$= 2W \varphi^2 \nabla H(x) \cdot N + 2\varphi \lambda' W H(x)_{uv}$$

$$= 2W \varphi^2 \nabla H(x) \cdot N + 2[\varphi H(x)(x_u \cdot y)]_u + 2[\varphi H(x)(x_v \cdot y)]_v$$

$$- 2H(x)[\varphi(x_u \cdot y_u) + \varphi(x_v \cdot y_v) + (x_u \cdot y)\varphi_u + (x_v \cdot y)\varphi_v]$$

$$- 4W \varphi^2 H(x)^2.$$

As already announced, the right-hand sides in the results of Propositions 1 and 2 can be extended continuously onto $B^+ \cup I$, according to Lemma 2. Hence we can compute the second variation via the divergence theorem for any admissible one-parameter family $\tilde{x}(\cdot, \varepsilon)$ with direction $y \in C^2_0(B^+ \cup I, \mathbb{R}^3)$ satisfying (3.1). Nevertheless, we concentrate on directions of the form

$$y(w) := \frac{\varphi(w)}{1 + Q(x(w)) \cdot N(w)} [Q(x(w)) + N(w)], \quad (3.19)$$

with some function $\varphi \in C^2_0(B^+ \cup I)$. Note that y is well-defined according to assumption (2.4), belongs to $C^2_0(B^+ \cup I, \mathbb{R}^3)$, and satisfies $y \cdot N \equiv \varphi$ as well as (3.1); for the latter, see Remark 1.

Definition 3. For given $\varphi \in C^2_0(B^+ \cup I)$ we define $y \in C^2_0(B^+ \cup I, \mathbb{R}^3)$ by (3.19) and consider the admissible perturbation $\tilde{x}(\cdot, \varepsilon)$ with direction y. Then we set

$$\delta^2 A_Q(x, \varphi) := \left. \frac{d^2}{d\varepsilon^2} A_Q(\tilde{x}(\cdot, \varepsilon)) \right|_{\varepsilon = 0}$$

for the second variation of $A_Q(x)$ with dilation φ.

In order to compute $\delta^2 A_Q(x, \varphi)$, we introduce the curvature of the cylindrical support surface S defined by

$$\kappa(p) := -(a''(s), 0) \cdot n(p) \quad \text{for } p \in \{a(s)\} \times \mathbb{R}, \ s \in [0, s_0], \quad (3.20)$$

compare Section 2. Note that, due to the cylindrical structure of S, we have the relation

$$[Dn(p)\zeta_1] \cdot \zeta_2 = \kappa(p) [\zeta_1 \cdot t(p)] [\zeta_2 \cdot t(p)] \text{ for all } \zeta_1, \zeta_2 \in T_p S, \ p \in S, \quad (3.21)$$

interpreting Dn as the Weingarten map of S.

Lemma 3. Let $x \in C_\mu(\Gamma, S; \mathbb{Z})$, $\mu \in (0, 1)$, be a stationary \mathcal{H}-surface w.r.t. E_Q and let $\varphi \in C^2_0(B^+ \cup I)$ be chosen. Setting

$$q(w) := [2H(x(w))^2 - K(w) - \nabla H(x(w)) \cdot N(w)] W(w), \quad w \in B^+ \cup I, \quad (3.22)$$
we then have
\[
\delta^2 A_Q(x, \varphi) = \int_{B^+} \left\{ \frac{\partial}{\partial \varepsilon^2} \left[(\tilde{x}_u \wedge \tilde{x}_v) + Q(\tilde{x}) \cdot \tilde{x}_u \wedge \tilde{x}_v \right] \right\}_{\varepsilon=0} \, dv \, du
+ \int_{B^+} \left\{ \frac{\partial}{\partial \varepsilon} \left[(\tilde{x}_u \wedge \tilde{x}_v) + Q(\tilde{x}) \cdot \tilde{x}_u \wedge \tilde{x}_v \right] \right\}_{\varepsilon=0} \, dv \, du
\]
\[
+ \int_I \left\{ \frac{\partial}{\partial \varepsilon} \left[(\tilde{x}_u \wedge \tilde{x}_v) + Q(\tilde{x}) \cdot \tilde{x}_u \wedge \tilde{x}_v \right] \right\}_{\varepsilon=0} \, dv \, du
\]
\[
+ \int_I \left\{ \left[\frac{\partial^2}{\partial x^2} (\tilde{x}_u \wedge \tilde{x}_v) + Q(\tilde{x}) \cdot (\tilde{x}_u \wedge \tilde{x}_v) \right] \right\}_{\varepsilon=0} \, dv \, du.
\]
(3.23)

Proof. We add the results of Propositions 1 and 2 obtaining
\[
\delta^2 A_Q(x, \varphi) = \int_{B^+} \left\{ \frac{\partial}{\partial \varepsilon} \left[(\tilde{x}_u \wedge \tilde{x}_v) + Q(\tilde{x}) \cdot \tilde{x}_u \wedge \tilde{x}_v \right] \right\}_{\varepsilon=0} \, dv \, du
+ \int_I \left\{ \frac{\partial}{\partial \varepsilon} \left[(\tilde{x}_u \wedge \tilde{x}_v) + Q(\tilde{x}) \cdot \tilde{x}_u \wedge \tilde{x}_v \right] \right\}_{\varepsilon=0} \, dv \, du
\]
\[
+ \int_I \left\{ \left[\frac{\partial^2}{\partial x^2} (\tilde{x}_u \wedge \tilde{x}_v) + Q(\tilde{x}) \cdot (\tilde{x}_u \wedge \tilde{x}_v) \right] \right\}_{\varepsilon=0} \, dv \, du.
\]
(3.24)

Due to the special choice (3.19) of \(y \), the first three terms on the right-hand side of (3.24) are identical with those in the announced relation (3.23). In order to identify the fourth terms of (3.23) and (3.24), we recall Lemma 2 (i) and deduce
\[
z \cdot (x_v + Q(x) \wedge x_u) = (z \cdot n(x)) \left[(x_v + Q(x) \wedge x_u) \cdot n(x) \right] \quad \text{on } I.
\]
(3.25)

Similar to [HS3] p. 431, we compute \(z \cdot n(x) \) on \(I \): Since \(\tilde{x}(w, \varepsilon) \in S \) holds for all \(w \in I \) and \(\varepsilon \in (-\varepsilon_0, \varepsilon_0) \), we have \(\frac{\partial}{\partial \varepsilon} \tilde{x}(w, \varepsilon) \cdot n(\tilde{x}(w, \varepsilon)) = 0 \) and, consequently,
\[
\frac{\partial^2}{\partial x^2} \tilde{x}(w, \varepsilon) \cdot n(\tilde{x}(w, \varepsilon)) + \frac{\partial}{\partial \varepsilon} \tilde{x}(w, \varepsilon) \cdot [Dn(\tilde{x}(w, \varepsilon)) \frac{\partial}{\partial \varepsilon} \tilde{x}(w, \varepsilon)] = 0
\]
for \(w \in I \) and \(\varepsilon \in (-\varepsilon_0, \varepsilon_0) \). For \(\varepsilon = 0 \) we employ (3.21) and infer
\[
z \cdot n(x) = -\kappa(x) [y \cdot t(x)]^2 \quad \text{on } I.
\]
Together with (3.25), we arrive at
\[
z \cdot (x_v + Q(x) \wedge x_u) = -\kappa(x) [(x_v + Q(x) \wedge x_u) \cdot n(x)] [y \cdot t(x)]^2 \quad \text{on } I.
\]
Putting this relation into (3.24), proves the assertion. □
By a standard approximation argument, dilations $\varphi \in H^1_2(B^+) \cap C_0^\infty(B^+ \cup I)$ are admissible in the second variation $\delta^2 A_Q(x, \varphi)$ due to formula (3.23).

Definition 4. A partially free H-surface $x \in C_0(\Gamma, S; \mathbb{Z})$ with $\delta^2 A_Q(x, \varphi) \geq 0$ for any dilation $\varphi \in H^1_2(B^+) \cap C_0^\infty(B^+)$ is called stable.

4 Boundary condition for the surface normal and proof of the theorem

In order to deduce the crucial relation $N^3 > 0$ on $\overline{B^+}$ for the third component of the surface normal of our stable H-surface, we will combine formula (3.23) with the following boundary condition:

Lemma 4. Let the assumptions of Theorem 1 be satisfied and let a stationary H-surface $x \in C_0(\Gamma, S; \mathbb{Z})$, $\mu \in (0, 1)$, be given. Then, the third component N^3 of the surface normal of x fulfills the boundary condition

$$N^3_u = \left\{ \frac{N_u \cdot Q(x)}{1 + Q(x) \cdot N} + \frac{[DQ(x)(Q(x) + N)] \cdot [x_u + Q(x) \wedge x_u]}{(1 + Q(x) \cdot N)^2} + \kappa(x) \frac{[(x_u + Q(x) \wedge x_u) \cdot n(x)] \cdot [(Q(x) + N) \cdot t(x)]^2}{(1 + Q(x) \cdot N)^2} \right\} N^3 \quad \text{on } I,$$

(4.1)

where t, n, and κ were defined in (2.1), (3.20).

Proof.

1. From (1.1) and Lemma 2 (iv) we get the well known relations

$$N_u = N \wedge N_u - 2H(x)x_u, \quad N_v = -N \wedge N_u - 2H(x)x_v \quad \text{on } B^+ \cup I.$$

(4.2)

Writing $H = H(x)$, $Q = Q(x)$, $\kappa = \kappa(x)$ etc. and employing (4.2) as well as (2.17), we compute

$$\langle N_u \cdot Q \rangle N^3 = \left\{ [(Q + N) \cdot N]N \right\} \cdot e_3$$

$$= -\left\{(N \wedge N_v) \wedge (Q + N) - [N \cdot (Q + N)]N_v \right\} \cdot e_3$$

$$= -\left\{N_u \wedge (Q + N) + 2Hx_u \wedge (Q + N) - [1 + (Q \cdot N)]N_v \right\} \cdot e_3$$

$$= (N \wedge e_3)_u \cdot (Q + N) + [1 + (Q \cdot N)]N^3_v \quad \text{on } I.$$

Consequently, the asserted relation (4.1) is equivalent to the identity

$$\langle N \wedge e_3 \rangle_u \cdot (Q + N) = -\left\{ [DQ(Q + N)] \cdot (x_v + Q \wedge x_u)$$

$$+ \kappa[(x_u + Q \wedge x_u) \cdot n][Q + N] \cdot t]^2 \right\} \frac{N^3}{1 + Q \cdot N} \quad \text{on } I.$$

(4.3)
2. Next, we manipulate the left-hand side of (4.3): Having (2.17) in mind, we find

\[(Q + N) \wedge e_3 = (Q + N) \wedge (n \wedge t) = [(Q + N) \cdot t]n\] on \(I\).

Together with (3.21), we infer

\[\begin{align*}
[(Q + N) \wedge e_3]u \cdot (Q + N) &= [(Q + N) \cdot t] \{[(Dn)x_u] \cdot (Q + N)\} \\
&= \kappa [(Q + N) \cdot t]^2 (x_u \cdot t)\] on \(I\).
\end{align*}\]

(4.4)

On the other hand, we calculate

\[\begin{align*}
(x_u \cdot t)(1 + Q \cdot N) &= (x_u \cdot t)[N \cdot (Q + N)] \\
&= [x_u \wedge (Q + N)] \cdot (t \wedge N) - (x_u \cdot N) [t \cdot (Q + N)] \\
&= \{[x_u \wedge (Q + N)] \cdot n\} [n \cdot (t \wedge N)] \\
&= -[(x_u + Q \wedge x_u) \cdot n] N^3 \] on \(I\).
\end{align*}\]

or, equivalently,

\[x_u \cdot t = -\frac{N^3}{1 + Q \cdot N} [(x_u + Q \wedge x_u) \cdot n]\] on \(I\). (4.5)

From (4.4) and (4.5) we now deduce

\[\begin{align*}
(N \wedge e_3)u \cdot (Q + N) &= [(Q + N) \wedge e_3]u \cdot (Q + N) - (Q \wedge e_3)u \cdot (Q + N) \\
&= -\kappa [(x_u + Q \wedge x_u) \cdot n] [(Q + N) \cdot t]^2 \frac{N^3}{1 + Q \cdot N} \\
&= -(Q \wedge e_3)u \cdot (Q + N)\] on \(I\). (4.6)

By inserting (4.6) into (4.3), the claimed relation (4.1) becomes equivalent to

\[(Q \wedge e_3)u \cdot (Q + N) = [(DQ)(Q + N)] \cdot (x_u + Q \wedge x_u) \frac{N^3}{1 + Q \cdot N}\] on \(I\). (4.7)

3. In the next step, we observe that (4.7) is equivalent to the identity

\[\begin{align*}
[(DQ)x_u] \cdot [e_3 \wedge (Q + N)] + x_u \cdot \{e_3 \wedge [(DQ)(Q + N)]\} &= 0\] on \(I\). (4.8)
\end{align*}\n
Indeed, the left hand side of (4.7) can be written as

\[\begin{align*}
(Q \wedge e_3)u \cdot (Q + N) &= \{[(DQ)x_u] \wedge e_3\} \cdot (Q + N) = [(DQ)x_u] \cdot [e_3 \wedge (Q + N)],
\end{align*}\n
whereas we compute in the right hand side

\[\begin{align*}
[(DQ)(Q + N)] \cdot (x_u + Q \wedge x_u) N^3 \\
&= [(x_u + Q \wedge x_u) \wedge N] \cdot \{[(DQ)(Q + N)] \wedge e_3\} \\
&= (1 + Q \cdot N) x_u \cdot \{[(DQ)(Q + N)] \wedge e_3\}\] on \(I\).
\end{align*}\n
This proves the claimed equivalence.
4. It remains to prove (4.8). Applying the relation (3.17) with $a = x_u$, $b = e_3$, $c = Q + N$, and $M = DQ$, we obtain

$$[(DQ)x_u] \cdot [e_3 \wedge (Q + N)] + x_u \cdot [e_3 \wedge [(DQ)(Q + N)]]$$

$$= -x_u \cdot \{[(DQ)e_3] \wedge (Q + N)\} + (\text{tr} DQ) \{x_u \cdot [e_3 \wedge (Q + N)]\}$$

$$= [(DQ)e_3] \cdot [x_u \wedge (Q + N)] \text{ on } I,$$

where we also used $Q + N \parallel T_x S$. For the same reason, $x_u \wedge (Q + N)$ is normal to S along I and, as a consequence, the right hand side of the above identity vanishes. Indeed, we have

$$[DQ(p)e_3] \cdot n(p) = \left[\frac{\partial}{\partial p^3} Q(p)\right] \cdot n(p) = \frac{\partial}{\partial p^3} [Q(p) \cdot n(p)] = 0 \text{ on } S,$$

by assumption. This completes the proof of (4.8), and (4.1) is confirmed.

q.e.d.

We are now able to give the

Proof of Theorem 1. 1. According to Lemma 2 (iv), the surface normal $N = (N^1, N^2, N^3)$ of x belongs to $C^{2,\alpha}(B^+) \cap C^{1,\alpha}(\overline{B^+} \setminus \{-1, +1\}) \cap C^0(\overline{B^+})$. In addition, the inclusion $f(B) \subset \overline{C}$ and the $\frac{1}{2}$-convexity of G imply $N^3 > 0$ on $J \setminus \{-1, +1\}$ as was shown in [S1] Satz 2. The behaviour of the surface normal near the corner points ± 1 was studied in [M4] Theorem 5.4; the applicability of the cited result follows – after reflecting S and rotating appropriately in \mathbb{R}^3 – from the assumption $|(Q \cdot n)(p)| < \cos \alpha_j \leq \cos \gamma_j$ for $j = 1, 2$, where γ_j denote the angles between Γ and S at p_j ($j = 1, 2$). In particular, $N^3(\pm 1)$ cannot vanish and, by continuity, we infer $N^3(\pm 1) > 0$. Consequently, the dilation $\omega := (N^3)^{-} = \max\{0, -N^3\} \in C^0(B^+ \cup I) \cap H^1(B^+)$ is admissible in the second variation of $A_Q(x)$. Writing $\omega^2 = -\omega N^3$ and $|\nabla \omega|^2 = -\nabla \omega \cdot \nabla N^3$, we obtain from Lemmas 3 and 4:

$$\delta^2 A_Q(x, \omega) = \iint_{B^+} (|\nabla \omega|^2 - 2q\omega^3) \, du \, dv - \int_I \omega N^3 \, du$$

$$= -\iint_{B^+} \{\text{div}(\omega(\nabla N^3) + \omega(\Delta N^3 + 2q N^3))\} \, du \, dv - \int_I \omega N^3 \, du$$

$$= \iint_{B^+} (\omega(\Delta N^3 + 2q N^3)) \, du \, dv = -2 \iiint_{B^+} \omega \mathcal{H}(x) W \, du \, dv \leq 0,$$

where we have applied Gauss’ theorem, equation (2.14), and assumption (2.9) in the last line. The stability of x thus yields $\delta^2 A_Q(x, \omega) = 0$.

2. Now we choose $\xi \in C^\infty_c(B^+)$ arbitrarily. Then also $\omega + \varepsilon \xi$ is admissible in $\delta^2 A_Q(x, \cdot)$ for any $\varepsilon \in \mathbb{R}$. The function $\Xi(\varepsilon) := \delta^2 A_Q(x, \omega + \varepsilon \xi)$ depends
smoothly on $\varepsilon \in \mathbb{R}$ and satisfies $\Xi \geq 0$ as well as $\Xi(0) = 0$. Consequently, we have $\Xi'(0) = 0$, which means

$$\int_B \{\nabla \omega \cdot \nabla \xi - 2q\omega \xi\} \, du \, dv = 0 \quad \text{for any } \xi \in C^\infty_c(B^+) ,$$

due to formula (3.23). From $\omega = 0$ near J, we conclude $\omega \equiv 0$ by means of the weak Harnack inequality. Hence, we have $N^3 \geq 0$ in \overline{B}^+. Due to assumption (2.9) and equation (2.14), we further have $\Delta N^3 + 2qN^3 \leq 0$ in B^+. Therefore, Harnack’s inequality, in conjunction with $N^3 > 0$ near J, yields $N^3 > 0$ in $B^+ \cup J$. Finally, we have $N^3 > 0$ on I and hence everywhere on the closed half disc \overline{B}^+. Indeed, if $N^3(w_0) = 0$ would be true for some point $w_0 \in I$, relation (4.1) would imply $N^3(0) = 0$. But this is impossible due to Hopf’s boundary point lemma.

3. Since we have no branch points on $\partial B^+ \setminus \{-1, +1\}$ according to Lemma 2 (iii), the relation $N^3 > 0$ on ∂B^+ implies $x_4^2 x_6^2 - x_5^2 x_7^2 > 0$ on $\partial B^+ \setminus \{-1, +1\}$. Consequently, the projection $f = \pi(x) = (x^1, x^2) : \overline{B}^+ \to \mathbb{R}^2$ maps ∂B^+ topologically and positively oriented onto ∂G. As in [S1] Hilfsatz 7, an index argument now shows that $f : \overline{B}^+ \to \overline{G}$ is a homeomorphism, x has no branch points in \overline{B}^+, and $J_f > 0$ is satisfied in $\overline{B}^+ \setminus \{-1, +1\}$. By the inverse mapping theorem and the regularity of x, the mapping $f : \overline{G} \to \overline{B}^+$ belongs to $C^2(\overline{G} \setminus \{p_1, p_2\}) \cap C^0(\overline{G})$, where we abbreviated $p_j = \pi(p_j^0)$, $j = 1, 2$.

Now we consider $\zeta := x^3 \circ f^{-1} \in C^2(\overline{G} \setminus \{p_1, p_2\}) \cap C^0(\overline{G})$. Since we have $(x^1, x^2, \zeta(x^1, x^2)) = x \circ f^{-1}(x^1, x^2)$, ζ is the desired graph representation over \overline{G} satisfying the differential equation (2.11) and the second boundary condition in (2.12). In addition, we compute

$$\psi(x) = Q(x) \cdot \mathbf{n}(x) \quad \overset{(2.17)}{=} \quad -\mathbf{N} \cdot \mathbf{n}(x)$$

$$= \frac{1}{\sqrt{1 + |\nabla \zeta|^2}} (\zeta_1, \zeta_2, -1) \cdot (\nu(x), 0)$$

$$= \frac{\nabla \zeta \cdot \nu(x)}{\sqrt{1 + |\nabla \zeta|^2}} , \quad x = (x^1, x^2, \zeta(x^1, x^2)), \quad (x^1, x^2) \in \Sigma .$$

Hence, ζ is a solution of the boundary value problem (2.11), (2.12), and standard elliptic theory yields $\zeta \in C^{3, \alpha}(G) \cap C^{2, \alpha}(\overline{G} \setminus \{p_1, p_2\})$ according to the regularity assumptions on Q, \mathcal{H}, S, and Γ. This completes the proof.

We finally give an example of how to apply Theorem 1 to the existence question for the mixed boundary value problem (2.11), (2.12).

Corollary 2. Let $G \subset B_R := \{(x^1, x^2) \in \mathbb{R}^2 : |(x^1, x^2)| < R\}$ be a \(\frac{1}{2}\)-convex domain with boundary $\partial G = \Gamma \cup \Sigma$, where $\Gamma, \Sigma \in C^2$ are closed Jordan arcs, which satisfy $\Gamma \cap \Sigma = \{\pi_1, \pi_2\}$ and which meet with interior angles $\alpha_j \in (0, \frac{\pi}{2}]$ w.r.t. G at the distinct points π_j ($j = 1, 2$). In addition, assume that Σ can be written as a graph

$$\Sigma = \{(x^1, x^2) \in \mathbb{R}^2 : x^2 = g(x^1), \quad a \leq x^1 \leq b\} , \quad -R < a < b < R,$$
with some function $g \in C^3([-R, R])$. Moreover, let $\mathcal{H} \in C^{1,\alpha}(\overline{B_R})$, $\psi \in C^{1,\alpha}(\Sigma)$ and $\gamma \in C^4(\Gamma)$ be given functions and abbreviate $h_0 := \sup_{B_R} |H|$, $\psi_0 := \sup_\Sigma |\psi|$, $g_0 := \sup_{[-R, R]} |g'|$. Finally, suppose the conditions

$$4Rh_0 + \psi_0 \sqrt{1 + g_0^2} < 1, \quad |\psi(\pi_j)| < \cos \alpha_j, \quad j = 1, 2,$$

(4.9)

to be satisfied. Then, the boundary value problem (2.11), (2.12) has a unique solution $\zeta \in C^3(\Gamma, S, \overline{Z}) \cap C^2(\Gamma, S, \overline{Z} \setminus \{\pi_1, \pi_2\}) \cap C^0(\overline{Z})$.

Remark 3. Note that the prescribed mean curvature function \mathcal{H} in Corollary 2 does not depend on the height p^3. If one wants to allow such a dependence, one has to use estimates for the length of the free trace as given in [M2]; see [M3] sec. 6 for a description of the required arguments.

Proof of Corollary 2. We assume w.l.o.g. that the exterior normal ν w.r.t. G is given by $\nu(x) = (1 + (g'(x))^2)^{-\frac{1}{2}}(g'(x), -1)$ along Σ and set

$$Q_2(p^1, p^2) := 2 \int_{g(p^1)}^{p^2} H(p^1, \eta) \eta - \psi(p^1, g(p^1)) \sqrt{1 + g''(p^1)}, \quad (p^1, p^2) \in \overline{B_R}.$$

We use the notations $Z = B_R \times \mathbb{R}$, $\Gamma = \text{graph} \, \varphi$, $S = \Sigma \times \mathbb{R}$, $n = (\nu, 0, \ldots)$ from above and set $Q(p) := (0, Q_2(p^1, p^2), 0)$ for $p = (p^1, p^2, p^3) \in \overline{Z}$. Then, Q belongs to $C^{1,\alpha}(\overline{Z}, \mathbb{R}^3)$ and satisfies

$$\text{div} \, Q = Q_2, \quad \text{in} \, \overline{Z}, \quad Q \cdot n = \psi \quad \text{on} \, \Sigma.$$

In addition, Q fulfills relations (2.10) and $\sup_{\overline{Z}} |Q| < 1$, according to our assumptions (4.9). Consequently, the preconditions of Theorem 1 and Corollary 1 are satisfied. The graph representation of the existing (and unique) stable \mathcal{H}-surface $x \in C^3(\Gamma, S, \overline{Z})$ yields the desired solution of (2.11), (2.12).

\[\square\]

References

[DHT] U. Dierkes, S. Hildebrandt, A. J. Tromba: *Regularity of minimal surfaces*. Grundlehren math. Wiss. 340. Springer, Heidelberg, 2010.

[He] E. Heinz: *Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern*. Math. Z. 113, 99–105 (1970).

[Hi] S. Hildebrandt: *Einige Bemerkungen über Flächen beschränkter mittlerer Krümmung*. Math. Z. 115, 169–178 (1970).

[HJ] S. Hildebrandt, W. Jäger: *On the regularity of surfaces with prescribed mean curvature at a free boundary*. Math. Z. 118, 289–308 (1970).

[HS1] S. Hildebrandt, F. Sauvigny: *Embeddedness and uniqueness of minimal surfaces solving a partially free boundary value problem*. J. Reine Angew. Math. 422, 69–89 (1991).

[HS2] S. Hildebrandt, F. Sauvigny: *On one-to-one harmonic maps and minimal surfaces*. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl., 73–93 (1992).
S. Hildebrandt, F. Sauvigny: Uniqueness of stable minimal surfaces with partially free boundaries. J. Math. Soc. Japan 47, 423–440 (1995).

F. Müller: On the analytic continuation of H-surfaces across the free boundary. Analysis 22, 201–218 (2002).

F. Müller: A priori bounds for surfaces with prescribed mean curvature and partially free boundaries. Analysis 26, 471–489 (2006).

F. Müller: On stable surfaces of prescribed mean curvature with partially free boundaries. Calc. Var. 24, 289–308 (2005).

F. Müller: The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6, 529–559 (2007).

F. Müller: On the regularity of H-surfaces with free boundaries on a smooth support manifold. Analysis 28, 401–419 (2008).

F. Müller: On $C^{1,1/2}$-regularity of H-surfaces with a free boundary. Preprint, Universität Duisburg-Essen (2014).

F. Müller, S. Winklmann: Projectability and uniqueness of F-stable immersions with partially free boundaries. Pac. J. Math. 230, 409–426 (2007).

F. Sauvigny: Flächen vorgeschriebener mittlerer Krümmung mit eineindeutiger Projektion auf eine Ebene. Math. Z. 180, 41–67 (1982).

F. Sauvigny: Partial Differential Equations 1 - Foundations and Integral Representations. Springer, Berlin Heidelberg, 2006.
IN DER SCHRIFTENREIHE DER FAKULTÄT FÜR MATHEMATIK ZULETZT ERSCHIENENE BEITRÄGE:

Nr. 769: Mali, O., Muzalevskiy, A., Pauly, D.: Conforming and Non-Conforming Functional A Posteriori Error Estimates for Elliptic Boundary Value Problems in Exterior Domains: Theory and Numerical Tests, 2013

Nr. 770: Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div- and DevSym-DevCurl-Inequalities for Incompatible Square Tensor Fields with Mixed Boundary Conditions, 2013

Nr. 771: Pauly, D.: On the Maxwell Inequalities for Bounded and Convex Domains, 2013

Nr. 772: Pauly, D.: On Maxwell's and Poincaré's Constants, 2013

Nr. 773: Fried, M. N., Jahnke, H. N.: Otto Toeplitz's "The problem of university infinitesimal calculus courses and their demarcation from infinitesimal calculus in high schools" (1927), 2013

Nr. 774: Yurko, V.: Spectral Analysis for Differential Operators of Variable Orders on Star-type Graphs: General Case, 2014

Nr. 775: Freiling, G., Yurko, V.: Differential Operators on Hedgehog-type Graphs with General Matching Conditions, 2014

Nr. 776: Anjam, I., Pauly, D.: Functional A Posteriori Error Equalities for Conforming Mixed Approximations of Elliptic Problems, 2014

Nr. 777: Pauly, D.: On the Maxwell Constants in 3D, 2014

Nr. 778: Pozzi, P.: Computational Anisotropic Willmore Flow, 2014

Nr. 779: Buterin, S.A., Freiling, G., Yurko, V.A.: Lectures on the Theory of entire Functions, 2014

Nr. 780: Blatt, S., Reiter, Ph.: Modeling repulsive forces on fibres via knot energies, 2014

Nr. 781: Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity, 2014

Nr. 782: Neff, P., Münch, I., Martin, R.: Rediscovering G.F. Becker's early axiomatic deduction of a multiaxial nonlinear stress-strain relation based on logarithmic strain, 2014

Nr. 783: Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum, 2014

Nr. 784: Müller, F.: On $C^{1,1/2}$-regularity of H-surfaces with a free boundary, 2014

Nr. 785: Müller, F.: Projectability of stable, partially free H-surfaces in the non-perpendicular case, 2015