A Quantitative Study of Inhibitory Interneurons in Laminae I-III of the Mouse Spinal Dorsal Horn

Erika Polgár, Camille Durrieux, David I. Hughes, Andrew J. Todd

Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom

Abstract

Laminae I-III of the spinal dorsal horn contain many inhibitory interneurons that use GABA and/or glycine as a neurotransmitter. Distinct neurochemical populations can be recognised among these cells, and these populations are likely to have differing roles in inhibiting pain or itch. Quantitative studies in rat have shown that inhibitory interneurons account for 25-40% of all neurons in this region. The sst2A receptor is expressed by around half the inhibitory interneurons in laminae I-II, and is associated with particular neurochemically-defined populations. Although much of the work on spinal pain mechanisms has been performed on rat, the mouse is now increasingly used as a model, due to the availability of genetically altered lines. However, quantitative information on the arrangement of interneurons is lacking in the mouse, and it is possible that there are significant species differences in neuronal organisation. In this study, we show that as in the rat, nearly all neurons in laminae I-III that are enriched with glycine also contain GABA, which suggests that GABAAergic, with some also using glycine as a co-transmitter [1–3]. Most of these cells give rise to axons that form axodendritic and axosomatic synapses and generate postsynaptic inhibition, however, axons of some GABAergic neurons form axoaxonic synapses that presynaptically inhibit primary afferents [4,5]. Several distinct anti-nociceptive and anti-pruritic roles have been suggested for the inhibitory interneurons [6–8], and it is likely that these are performed by different functional populations. There have therefore been many attempts to classify inhibitory interneurons in laminae I-III, based on developmental, morphological, electrophysiological or neurochemical criteria [2,9–14].

The somatostatin receptor sst2A is expressed at high levels in the superficial dorsal horn of the rat, and is present on 13-15% of neurons in laminae I-II [15–18]. We have provided both anatomical and electrophysiological evidence that the receptor is restricted to GABAergic cells [16,19], and we therefore estimate that it is expressed by ~50% of the inhibitory interneurons in this region [20]. Studies in the rat have indicated that four non-overlapping neurochemical populations can be identified among the inhibitory interneurons in these laminae, based on the expression of galanin, neuronal nitric oxide synthase (nNOS), neuropeptide Y (NPY) and parvalbumin [21–23]. Interestingly, the sst2A receptor is present on virtually all of those that express galanin or nNOS, but few of those that contain NPY and none of the parvalbumin cells [20]. This indicates that the receptor is associated with specific types of inhibitory interneuron in the superficial dorsal horn.

Quantitative information concerning interneurons is important, as it allows the sizes of different populations to be determined. It also provides baseline data for studies of pathological states in which interneurons may have been lost [8,24,25]. Although we have quantitative data concerning interneuron numbers in the rat [1,16,20,22] there is little corresponding information for the mouse, which is increasingly used in pain research, because of the availability of genetically altered lines. Significant differences between rat and mouse have been reported, for example in the pattern of expression of the TRPV1 receptor on nociceptive primary afferents [26], and it is therefore not safe to assume that the organisation of interneuron populations is the same in both species. The first aim of this study was to determine whether the proportions of neurons that are GABAergic in laminae I-III of the mouse are the same as those previously reported for the rat [1] and
whether, as in the rat, cells with high levels of glycine are also GABA-immunoreactive [1,3]. We also tested whether the expression pattern of sst2A is similar in the two species. Since the distribution of neurokinin 1 receptor (NK1r) was used to define the border between laminae I and II [27–29], we determined the proportion of neurons that expressed NK1r, in order to allow comparison with data from the rat, in which nearly half of the neurons in lamina I are NK1r+ [16]. Finally, the stereological method that we used allowed us to estimate the total number of neurons in each of these laminae in the L4 segment of the mouse, and compare this with corresponding data for the rat.

Materials and Methods

Ethics statement

All experiments were approved by the Ethical Review Process Applications Panel of the University of Glasgow and were performed in accordance with the UK Animals (Scientific Procedures) Act 1986.

Animals and tissue processing

Eleven adult male C57Bl/6 mice of either sex, weighing 18–30 g were deeply anaesthetised with pentobarbital (20 mg i.p.) and perfused through the left ventricle with fixative. This consisted of 1% formaldehyde/2.5% glutaraldehyde for 4 mice, 4% formaldehyde/0.2% glutaraldehyde for 3 mice and 4% formaldehyde for the remaining 4 animals. In all cases the formaldehyde was prepared from paraformaldehyde immediately before use. Following perfusion fixation, the L4 segments were removed from all animals and cut into 60 μm thick sections with a Vibratome. Transverse sections were used for all parts of the study.

GABA and glycine immunoreactivity in laminae I-III

Sections from the 4 mice fixed with 1% formaldehyde/2.5% glutaraldehyde were processed for post-embedding immunocytochemistry [1]. The sections were treated for 30 mins with 1% sodium borohydrate to reduce free aldehyde groups. They were then osmicated (1% OsO4 for 20 mins), dehydrated in acetone and flat-embedded in Durcupan resin. From each of the 4 mice, 2 Vibratome sections were mounted onto blocks of cured resin and trimmed such that the block face contained the whole of laminae I-III on both sides. A series of 16 semithin sections, each 0.5 mm trimmed such that the block face contained the whole of laminae I-III on both sides. A series of 16 semithin sections, each 0.5 mm thick were cut and the 1st, 4th, 9th and 16th of these were stained with toluidene blue. Three of the sections were processed for immunocytochemical detection of GABA (6th section) or glial fibrillary acidic protein (GFAP, 7th and 9th sections) [1,30]. They were then examined for GABA immunoreactivity. The 12th section (also stained with toluidene blue) was then examined to rule out the possibility that two different nuclei in the same position on reference and look-up sections were mistakenly counted as one [1]. In this way, all neurons for which the bottom surface of the nucleus appeared between the reference and look-up sections was included in the sample. These were then identified on the section reacted for GABA, and the presence or absence of immunostaining was recorded.

In order to test the hypothesis that glycinergic neurons in laminae I-III were also immunoreactive for GABA [1,3], we reacted pairs of serial semithin sections with GABA and glycine antibodies, as described above. One pair from each mouse was photographed, and the resulting digital images were overlaid. Glycinergic-immunoreactive cells in laminae I-III were identified and then examined for GABA immunoreactivity.

Sst2A and NK1r expression by neurons in laminae I-III

Sections from the 4 mice fixed with 4% formaldehyde were incubated for 3 days at 4°C in a cocktail of primary antibodies against sst2A, NeuN and NK1r and these were revealed by overnight incubation at 4°C in species-specific fluorescent secondary antibodies raised in donkey and conjugated to Alexa 488 (Invitrogen, Paisley, UK) or to Rhodamine Red or DyLight 649 (Jackson Immunoresearch). Secondary antibodies were used at 1:500 (Alexa 488 or DyLight 649 conjugates) or 1:100 (Rhodamine Red conjugate). The sections were then incubated in DAPI, to reveal cell nuclei. All antibodies used in this part of the study were diluted in phosphate buffered saline containing 0.3 M sodium chloride and 0.3% Triton-X100.

Two sections from each mouse were scanned with a Zeiss LSM710 confocal microscope with Argon multi-line, 405 nm diode, 561 nm solid state and 633 nm HeNe lasers. Images stacks

Table 1. Primary antibodies used in this study.

Antibody	Species	Dilution	Source, catalogue number
GABA	Rabbit	1:10,000*	Sigma, A-2052
Glycine	Rabbit	1:50,000*	DV Pow
GFAP	Rabbit	1:1000	DAKO, Z0334
sst2A	Guinea pig	1:2000	Gramsch, SS-870
NeuN	Mouse	1:1000	Millipore, MAB377
NK1r	Rabbit	1:10,000	Sigma, S8305
PKCγ	Rabbit	1:1000	Santa Cruz sc211

*dilutions used for post-embedding method doi:10.1371/journal.pone.0078309.001
with a z-spacing of 1 μm were acquired through a 40× oil-immersion lens, (numerical aperture 1.3) with the pinhole set to 1 Airy unit. Overlapping fields were scanned in order to cover the whole of laminae I-III of the dorsal horn on one side. The image stacks were viewed with Neurolucida for Confocal software (MicroBrightField, Colchester, VT, USA) and analysed by using a modification [34] of the optical disector technique [31,32,35–37]. The outline of the grey matter was initially drawn, and the locations of the boundaries between laminae I, II and III were identified based on the distribution of immunoreactivity for NK1r (which stains a dense plexus of dendrites in lamina I) and sst2A (which stains dendrites throughout laminae I and II, see below). The ventral border of lamina III was located as described above. The 5th and 20th optical sections in the z-series were designated as the reference and look-up sections. The NeuN and DAPI channels were initially viewed for all optical sections in the z-stack, and neuronal nuclei were identified by the presence of staining for NeuN and DAPI. The locations of all neuronal nuclei that were present on the reference section, or appeared in subsequent sections, but had disappeared by the look-up section, were plotted. The channels representing sst2A and NK1r were then switched on, and the presence or absence of each type of immunostaining in the neurons that were included in the disector sample was recorded. Although the primary purpose of this part of the study was to identify sst2A-expressing cells, we also counted those that possessed the NK1r.

In the conventional disector method, the look-up and reference sections are placed close together, so that none of the structures being examined can fall between them. Because we carefully examined all intervening optical sections to identify nuclei that lay entirely between the reference and look-up sections, we were able to place these sections further apart, and therefore obtain a larger sample. We also used these results to calculate the neuronal packing density per 100 μm length of spinal cord for laminae I, II and III. Since there was a variable degree of tissue shrinkage during the processing of the Vibratome sections, the actual depth of tissue analysed with the optical disector (15 μm) was equivalent to a greater tissue depth from the original piece of fixed spinal cord. To compensate for this, we multiplied the number of cells observed within the 15 μm disector by a correction factor (the measured thickness of the section in micrometres, obtained by scanning the full thickness with the confocal microscope, divided by 60 μm) [34]. To estimate the number of cells in each lamina within the entire L4 segment, we measured the lengths of L4 in the 4 mice that were used in this part of the analysis, as described previously [34].

To confirm the laminar location of sst2A immunoreactivity, sections from each of the 4 mice were incubated overnight in antibodies against sst2A and PKCγ, and then for 4 hours in secondary antibodies conjugated to Alexa 488 or Rhodamine Red. The PKCγ antibody stains a plexus of dendrites that delineates the inner half of lamina II in the rat [38]. These sections were then scanned, together with a transmitted light image obtained with dark-field illumination to reveal lamina II, which can be recognised by its dark appearance, resulting from the lack of myelin [39,40].

GABA and sst2A immunoreactivity

The relationship between GABA and sst2A immunostaining was examined in sections from mice fixed with 0.2% glutaraldehyde/4% formaldehyde, since glutaraldehyde fixation is required for optimal retention of GABA [30,41]. Sections were treated for 30 mins with 1% sodium borohydride, and then incubated overnight in antibodies against GABA and sst2A, which were revealed with fluorescent secondary antibodies as described above. Four dorsal horns were scanned with the confocal microscope through the 40× oil-immersion lens from each of the 3 mice. Because penetration of GABA immunostaining into Vibratome sections is extremely limited [20,22,42,43], a very short z-series that included the top surface of the section was scanned. Again, overlapping scans were performed to include the whole of laminae I-III for each dorsal horn.

Scans were analysed with Neurolucida for Confocal. The sst2A channel was initially viewed and the outline of the dorsal horn, together with the lamina II-III border were drawn, as described above. The locations of all sst2A-immunoreactive cells that had somata appearing on the upper cut surface of the Vibratome section were plotted [20,22,42]. The GABA channel was then viewed, and the presence or absence of GABA immunoreactivity in each of the sst2A+ cells was noted.

Antibody characterisation

The GABA and glycine antibodies have been shown not to cross-react with the other amino acid, or with aspartate, glutamate, taurine or β-alanine [44,45]. The GFAP antibody, which was raised against GFAP extracted from cow spinal cord, detects a single protein band of the appropriate size [46] and does not label cells other than astrocytes [47]. The sst2A antibody was raised against the C terminal 15 amino acids of the mouse receptor, conjugated to keyhole limpet haemocyanin (KLH), and staining is abolished by pre-incubation of this peptide (manufacturer’s specification). The NeuN antibody was raised against cell nuclei obtained from mouse brain [48] and we have shown that it labels all neurons, but no glial cells, in rat spinal cord [16]. The NK1r antibody was raised against amino acids 393–407 of the rat receptor coupled to KLH, and staining is absent in the brains of mice lacking the NK1r [49]. The PKCγ antibody is directed against the C-terminus of the mouse protein. We have reported that it stains identical structures to a well-characterised guinea-pig antibody [22], and staining with the latter antibody is absent from the brains of PKCγ knock-out mice [50].

Results

GABA and glycine immunoreactivity in laminae I-III

The distribution of GABA immunoreactivity was very similar to that reported in the rat [1,3]. Numerous immunoreactive cell bodies were distributed throughout this region, and were also seen in lower numbers in deeper laminae (Fig. 1a). Non-immunoreactive cells could be readily distinguished by their uniform pale appearance. The neuropil showed a relatively high level of immunostaining, corresponding to dendrites of local interneurons and GABAergic axons. Quantitative analysis of the disector sample showed that in laminae I, II and III the proportions of neurons that were GABA-immunoreactive were 31%, 24% and 38%, respectively (Table 2).

The pattern of glycine immunoreactivity was also very similar to that reported in the rat [1,3]. In laminae I and II relatively few cells were immunoreactive, but immunoreactive cells were numerous in lamina III and in deeper parts of the grey matter (Fig. 1c). However, unlike the situation with GABA immunostaining, it was sometimes difficult to distinguish between weakly positive and negative cells. This could be because unlike GABA, which is only used as a neurotransmitter, glycine also has other roles, and the metabolic pool of glycine may vary between neurons. For this reason we did not attempt to quantify glycine-immunoreactive cells. However, we found that the great majority

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e78309

Inhibitory Interneurons in Mouse Dorsal Horn
of cells in laminae I-III that had unequivocal glycine immunoreactivity were also GABA-immunoreactive (Fig 1b,c). Altogether, we examined 110 glycine-immunoreactive cells in laminae I-II (19–33/mouse, n = 4) and 203 cells in lamina III (33–62/mouse), and found that 109 (99%) of those in laminae I-II and 195 (96%) of those in lamina III were also GABA-immunoreactive. In addition, there are cells that are GABA- but not glycine-immunoreactive (two marked with arrowheads). Scale bars = 100 μm.

doi:10.1371/journal.pone.0078309.g001

Sst2A and NK1r immunoreactivity in laminae I-III

The distribution of staining for sst2A was very similar to that reported in the rat [15,16], with a dense band of immunoreactive cell bodies and dendrites occupying laminae I and II (Figs 2, 3). Staining was much weaker elsewhere in the dorsal horn, although a few immunoreactive cells were found in lamina III and occasionally in deeper laminae. Comparison of immunoreactivity for sst2A and PKCγ showed that the ventral edge of the band of intense sst2A staining corresponded to the ventral limit of the dense plexus of PKCγ, and this also matched the ventral border of lamina II, as defined with dark-field microscopy [38,40]. Quantitative analysis with the optical disector method showed that sst2A-immunoreactive cells accounted for 17.3%, 12.8% and 6.5% of the neurons in laminae I, II and III, respectively (Table 3).

As described previously in mouse [51–54] and rat [27–29,55–57], NK1r-immunoreactivity was concentrated in lamina I, and present at lower levels throughout the deep dorsal horn (laminae III-VI), with very little in lamina II. NK1r-immunoreactivity was detected on 19.3%, 4.8% and 5.9% of neurons in laminae I, II and III, respectively (Table 3). Comparison of NK1r and sst2A immunoreactivity in these sections showed that the NK1r antibody labelled a population of neurons that was almost entirely separate from those that were sst2A-immunoreactive (Fig 4). Altogether, 4 neurons that were double-labelled for both receptors were observed (2 in lamina I, 1 each in laminae II and III), and these represented 1.3% of the sst2A⁺ and 1.9% of the NK1r⁺ cells in this region.

Neuronal packing density and numbers of neurons in each lamina

The packing densities of neurons in each lamina were determined from the numbers of neurons included in each

Table 2. Results of the quantitative analysis of GABA immunoreactivity.

Lamina	Number of neurons sampled	Percent GABA-immunoreactive
I	46.5 (33–64)	30.5 (24.2–32.8)
II	126.3 (100–148)	24.2 (19.6–28.6)
III	116 (110–121)	37.6 (32.2–42.6)

Mean values are shown with ranges in brackets (n = 4).

doi:10.1371/journal.pone.0078309.t002
disector (15 μm length) after correction for tissue shrinkage, and are shown in Table 3. The mean length of the L4 segment in the 4 mice used for this part of the study was 1.45 mm (range 1.39 – 1.54 mm), and from this we estimate that the total numbers of neurons in laminae I, II and III in this segment are 4466, 13,630 and 10,614, respectively (Table 3). These are between 50 and 60% of the sizes of the neuronal populations in these laminae in the rat L4 segment (7497, 27,465 and 21,928, respectively [34]).

Expression of sst2A by GABA-immunoreactive neurons in laminae I-III

The total number of sst2A-immunoreactive neurons in laminae I-II identified at the top surface of the sections from the mice fixed with 0.2% glutaraldehyde/4% formaldehyde was 177 (range 51–75, n = 3), and all of these were GABA-immunoreactive (Fig 5). Thirty-seven sst2A+ lamina III cells were seen in these sections (range 11–14), and most of these (mean 92%, range 75–100%) were also GABA-immunoreactive.

Discussion

The main findings of this study are that 24–38% of the neurons in laminae I–III of mouse spinal cord are GABA-immunoreactive, with some also showing glycine immunoreactivity, and that (as in the rat) sst2A is restricted to inhibitory interneurons in laminae I–II. However, although the laminar distribution of NK1r immunoreactivity is similar in both species, the number of immunoreactive cells is considerably lower in the mouse, with many fewer lamina I neurons showing NK1r-immunoreactivity.

Inhibitory interneurons in laminae I–III

Inhibitory interneurons in the dorsal horn can use GABA and/or glycine as neurotransmitters [58–62], and we have previously reported that in the rat virtually all of the cells in laminae I–III that
have high levels of glycine (and are therefore likely to use glycine as a transmitter) are also GABA-immunoreactive [1,3]. Although we did not quantify glycine-immunoreactive cells in this study, we found that nearly all of the cells in laminae I–III that were clearly glycine-immunoreactive were also GABA-positive. This suggests that, as in the rat, GABA is present in the great majority of inhibitory interneurons in these laminae, with some of these (particularly in lamina III) using glycine as a co-transmitter.

Expression of the neuronal glycine transporter GlyT2 is required for glycinergic neurotransmission, and GlyT2 immunoreactivity is thought to be a reliable marker for glycinergic axons. However, the transporter is not present at detectable levels in neuronal cell bodies, and glycinergic neurons therefore cannot be identified by using immunocytochemistry with antibodies against GlyT2. Zeilhofer et al. [62] generated a bacterial artificial chromosome transgenic mouse in which enhanced green fluorescent protein (EGFP) is expressed under control of the GlyT2 promotor, and used this to examine the distribution of glycinergic neurons throughout the CNS. Although EGFP and glycine were generally co-localised in cell bodies in regions known to contain glycinergic neurons, there was a significant mismatch in the spinal dorsal horn. In particular, laminae I and II contained very few EGFP-positive cells, but several that were glycine-immunoreactive and EGFP-negative. Since the Allen Brain Atlas shows some cells with GlyT2 mRNA in laminae I-II of the mouse spinal cord, the discrepancy between glycine and EGFP reported by Zeilhofer et al. [62] may have resulted from lack of EGFP expression in glycinergic neurons in this region. However, it is also possible that some neurons that are not glycinergic have high levels of (metabolic) glycine, and caution is therefore needed when interpreting the results of glycine immunostaining.

If our assumption that nearly all glycinergic neurons in laminae I-III are also GABA-immunoreactive is correct, then based on the total numbers of neurons in each of these laminae (Table 3), and the percentages that are GABA-immunoreactive, we can estimate the proportion of neurons in this region that are inhibitory. According to this estimate, inhibitory interneurons account for 30.1% of all neurons in laminae I-III, and 25.8% of those in the superficial dorsal horn (laminae I-II). For comparison, the corresponding values for the rat are 33.9% for the whole of laminae I-III, and 29.9% for laminae I-II [1,34].

This quantitative data for inhibitory interneurons will allow the proportion of these cells that belong to different sub-populations to be determined. For example, we have found that in the rat, GABAergic cells that contain nNOS, galanin or NPY account for over half of all the inhibitory interneurons in laminae I-II [22]. These neurochemical classes differ both in their responses to noxious stimulation [20] and also in their post-synaptic targets, with at least some of the nNOS- and NPY-containing cells being presynaptic to specific classes of projection neuron in laminae I and III, respectively [39,63,64]. It has recently been shown in the mouse that the parvalbumin-containing inhibitory neurons are involved in presynaptic inhibition of low-threshold mechanoreceptive primary sensory neurons [65].

Lamina	Number of neurons sampled	% sst2A	% NK1r	Neuronal packing density (per 100 μm)	Estimated total number of neurons in L4
I	111	17.3	19.3	308	4466
	(88–139)	(13.6–19.8)	(14.4–25.5)	(255–346)	
II	334	12.8	4.8	940	13,630
	(314–370)	(11.9–14.3)	(2.4–8)	(875–1000)	
III	258	6.5	5.9	732	10,614
	(236–283)	(5–7.2)	(2.5–9.2)	(588–825)	

Mean values are shown with ranges in brackets (n = 4). The estimated total number of neurons in L4 is based on the average length of the segment (1.45 mm) in these 4 mice.

doi:10.1371/journal.pone.0078309.t003

Figure 4. NK1r and sst2A in superficial dorsal horn. Confocal image showing a single optical section through part of laminae I and Il, scanned to reveal NK1r (green) and sst2A (magenta). a. Two NK1r-immunoreactive cell bodies (arrows) are visible in lamina I, surrounded by aplexus of labelled dendrites. b. Several sst2A-immunoreactive cells are visible in the same field (two shown with arrowheads). c. The merged image shows that none of these cells is labelled with both antibodies. Scale bar = 50 μm.
doi:10.1371/journal.pone.0078309.g004
immunoreactive cells are all immunostained for GABA, but that several GABA cell bodies that are not GABA-immunoreactive are also present, and two are marked with asterisks.

There are several mouse lines in which discrete populations of inhibitory interneurons can be identified by expression of EGFP [12,65–68], and the results of this study will make it possible to determine directly the proportion of inhibitory interneurons that are included in each of these populations. They will also allow an accurate assessment of any neuronal loss that results from pathological conditions such as spinal cord or peripheral nerve injury [24,25,69], or from genetic alterations. For example, Ross et al. [6] have reported that exaggerated itching in mice lacking the transcription factor Bhlhb5 results from loss of inhibitory interneurons in laminae I-II of the dorsal horn. In contrast, Wang et al. [70] observed abnormal pain behaviours in mice in which the testicular orphan nuclear receptor TR4 had been deleted, and this was attributed to selective loss of excitatory interneurons from the superficial dorsal horn, which would presumably result in an abnormally high proportion of GABAergic neurons in this region.

Sst2A receptor expression

As in the rat, we found that all sst2A+ neurons in laminae I-II were GABA-immunoreactive [16]. From the relative numbers of neurons in these laminae, we estimate that 13.9% of all superficial dorsal horn neurons are sst2A-immunoreactive, and therefore that ~54% of the inhibitory interneurons in this region express the receptor in the mouse. This is slightly higher than the corresponding estimate for the rat (48%) [20].

There has been controversy concerning the actions of somatostatin at the spinal level, with both pro- and anti-nociceptive effects being reported [71–76]. Anti-nociceptive effects have generally been seen with relatively high doses, which can cause significant neurotoxicity, possibly by reducing local blood flow [75–77]. In contrast, lower doses (up to 20 μg i.t. in rats) have resulted in signs that were interpreted as resulting from a pro-nociceptive action [71–73].

The Allen Brain Atlas shows high levels of mRNA for sst2, but not for the other somatostatin receptors, in the mouse superficial dorsal horn, and this is consistent with the distribution of sst2A immunoreactivity reported in several studies in the rat [15–18,78] and with the results of the present study. Sst1 receptors are also found in the superficial laminae, but these are presumably located on the central terminals of primary afferents [see below] [18]. Although one study has reported that the other sst2 splice variant (sst2B) is present throughout the grey matter in rat spinal cord [78], this does not match the distribution of sst2 mRNA in the mouse. This could conceivably reflect a species difference, but it is more likely that sst2B is only be expressed at very low levels. Application of somatostatin to dorsal horn neurons results in hyperpolarisation [79–81], and we have shown that this effect is restricted to inhibitory interneurons in lamina II of the rat [19], consistent with our immunocytochemical findings for sst2A in this species. These observations suggest that the direct action of somatostatin on dorsal horn neurons is mediated mainly or exclusively through sst2A receptors. Somatostatin released from primary afferents or local excitatory interneurons [82–84] acting on these receptors should therefore result in disinhibition, and it is likely that this accounts for the pro-nociceptive effects that have been reported for intrathecal somatostatin [71–73]. However, both sst1 and sst2A receptors are expressed by some primary afferents [17,18], and a presynaptic action via these receptors probably contributes to the anti-nociceptive actions of somatostatin administered intrathecally or systemically [18,85].

Since sst2A is restricted to around half of the inhibitory interneurons in the superficial dorsal horn, and is differentially expressed by specific neurochemical types [29], this should allow the roles of these cells to be investigated by using intrathecal injections of saporin conjugated to somatostatin or its analogues to ablate these cells selectively [86]. Studies with other peptide conjugates of saporin have shown that while these selectively destroy populations of spinal neurons, they do not appear to damage primary afferents that express the corresponding receptors [87–89].

NK1r expression in the mouse dorsal horn

Using the same NK1r antibody and a similar counting method, we estimated that in laminae I, II and III of the rat, the proportions of neurons that expressed the receptor were 45%, 6% and 11%, respectively [16]. Although the result obtained for lamina III is somewhat lower in the mouse, the most striking difference is in lamina I, where NK1r-immunoreactive neurons account for less than 20% of all neurons in the mouse (i.e. less than half of the proportion seen in the rat). Lamina I of the rat spinal cord has been shown to contain two different types of NK1r+ cell that differ in size and receptor expression level: projection neurons and interneurons [90,91]. The projection neurons, virtually all of which belong to the spino-parabrachial tract [2], have relatively...
large cell bodies and usually show strong NK1r immunoreactivity. In contrast, the interneurons have significantly smaller cell bodies and invariably show weak or moderate NK1r immunostaining. Since virtually all NK1r+ cells in the superficial laminae lack GABA immunoreactivity [29], these interneurons are thought to be excitatory. The projection neurons are highly concentrated in lamina I, but only make up around 5% of the neuronal population, and ~80% of them are NK1r-immunoreactive [92]. We therefore estimate that 90% of the NK1r+ cells in lamina I of the rat are excitatory interneurons, and that more than half of the excitatory interneurons in this lamina possess the receptor.

There have apparently been few anatomical studies of lamina I projection neurons in the mouse, but we have found that as in the rat, many of these cells are strongly NK1r-immunoreactive (AJ Todd, unpublished observations). Wang et al. [70] recently reported that there were 100 retrogradely labelled lamina I cells per twenty 25 μm thick transverse sections from lumbar spinal cord in mice that had received large Fluorogold injections into the lateral parabulbar area on one side. Based on the length of the L4 segment in our study, this would equate to ~290 cells in the L4 segment. However, they included both contralateral and ipsilateral cells, and we have shown that in the rat, most ipsilateral spinoparabrachial cells project bilaterally, and that these account for 30% of all lamina I spinoparabrachial neurons [92]. If a similar arrangement is present in the mouse, then the number of lamina I spinoparabrachial cells on one side would be approximately 220, and since we estimate that there are ~4500 neurons in lamina I in this segment, this would correspond to 5% of the neurons in this lamina, a similar proportion to that estimated in the rat. It is therefore likely that as in the rat, most of the NK1r-immunoreactive cells in lamina I are interneurons, although the proportion of these cells with the receptor is substantially lower than in the rat.

Acknowledgments

We thank Dr DV Pow for the gift of glycine antibody, and Mr R. Kerr and Mrs C. Watt for expert technical assistance.

Author Contributions

Conceived and designed the experiments: AJT EP DIH. Performed the experiments: EP CD DIH AJT. Analyzed the data: EP CD AJT. Wrote the paper: AJT EP DIH.

References

1. Polgar E, Hughes DJ, Riddell JF, Maxwell DJ, Puskár Z, et al. (2003) Selective loss of spinal GABAergic or glycerergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 104: 229–239.
2. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11: 825–836.
3. Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycerergic transmitter phenotypes in dorsal horn interneurons. J Comp Neurol 296: 496–505.
4. Maxwell DJ, Reethely M (1987) Ultrastructure and synaptic connections of cutaneous afferent fibres in the spinal cord. Trends Neurosci 10: 117–123.
5. Ribeiro-da-Silva A, Coimbra A (1982) Two types of synaptic glomeruli and their distribution in laminae I-III of the rat spinal cord. J Comp Neurol 209: 176–186.
6. Sandkühler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89: 707–758.
7. Torsney C, MacDermott AB (2006) Disinhibition opens the gate to pathological pain signalling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 26: 1833–1843.
8. Ross SE, Mardindy AR, McCord AE, Zurawski J, Cohen S, et al. (2010) Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neurom 63: 896–908.
9. Graham BA, Brichita AM, Callister RJ (2007) Moving from an averaged to specific view of spinal cord pain processing circuits. J Neurophysiol 98: 1057–1063.
10. Grudh Tj, Perl ER (2002) Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol 549: 189–207.
11. Brodh D, Seregh M, Wende H, Horb K, Borzym I, et al. (2008) A transcriptional network coordinate tissue determination and peptidergic fate in the dorsal spinal cord. Dev Biol 322: 311–319.
12. Heinek B, Rucsdewey H, Forthuber H, Wunderaldinger G, Sandkühler J (2004) Physiological, neurochemical and morphological properties of a subgrup of GABAergic spinal lamina II neurons identified by expression of green fluorescent protein in mice. J Physiol 568: 299–306.
13. Wildner H, Das Gupta R, Brodh D, Heppenstall PA, Zeilhofer HU, et al. (2013) Genotype-wide expression analysis of Pttra- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive flexor plasticity. J Neurosci 33: 7299–7307.
14. Huang M, Huang T, Xiang Y, Xie Z, Chen Y, et al. (2008) Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory interneurons in mouse dorsal horn which possess neurokinin-1 receptors. Neuroscience 66: 597–608.
15. Bleazard I, Lloyd RG, Morris R (1994) The correlation between the distribution of the NK1 receptor and the actions of tachykinin agonists in the dorsal horn of the rat indicates that substance P does not have a functional role on substantia gelatinosa lamina II neurons. J Neurosci 14: 7653–7664.
16. Brown JL, Liu H, Maggio JE, Vigna SR, Mantyh PW, et al. (1995) Physiological, neurochemical and morphological properties of a subgroup of GABAergic spinal lamina II neurons identified by expression of green fluorescent protein in mice. J Physiol 568: 299–306.
17. Brown JL, Liu H, Maggio JE, Vigna SR, Mantyh PW, et al. (1995) Morphological characterization of substance P receptor-immunoreactive neurons in the rat spinal cord and trigeminal nucleus caudalis. J Comp Neurol 356: 327–344.
18. Littlewood NK, Todd AJ, Spike RC, Watt C, Shehagh SA (1995) The types of neuron in spinal dorsal horn which possess neurokinin-1 receptors. Neuroscience 66: 597–608.
19. Somogyi P, Hodgson AJ, Chubb IW, Penke R, Erdély A (1983) Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem 31: 240–248.
20. Grand RJ, Pokall RE (1992) A consideration of neural counting methods. Trends Neurosci 15: 9–13.
21. Galluly RW (2002) On counting and counting errors. J Comp Neurol 447: 1–7.
22. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the dissector. J Microsc 134: 127–136.
23. Polgar E, Gray S, Riddell JS, Todd AJ (2004) Lack of evidence for significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111: 144–150.
Inhibitory Interneurons in Mouse Dorsal Horn

35. Bujalski R, Sundaresan HJ (1993) Estimate of the total number of neurons and glial and endothelial cells in the rat spinal cord by means of the optical dissector. J Comp Neurol 328: 406–414.

36. Williams RW, Rakic P (1988) Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J Comp Neurol 284: 344–352.

37. West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22: 51–61.

38. Hughes DI, Scott DT, Todd AJ, Riddell JS (2003) Lack of evidence for sprouting of Aβ fibres into the superficial lamina of the spinal cord dorsal horn after nerve section. J Neurosci 23: 9491–9499.

39. Polgar E, Sardella T, Watanabe M, Todd AJ (2011) A quantitative study of NPY-expressing GABAergic neurons and axons in rat spinal dorsal horn J Comp Neurol 519: 1007–1023.

40. Woolf CB, Storm-Mathisen J (1987) Localization of aminoo acid neurotransmitters by immunocytochemistry. Trends Neurosci 10: 250–255.

41. Sardella TC, Polгар E, Garzillo F, Furata T, Kaneko T, et al. (2011) Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Pain 7: 76.

42. Shovlin RS, Ali-Alkharaiti L, Horvath KD, Mentens KA (2001) Substance P receptor expression by inhibitory interneurons of the rat hippocampus: enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. J Comp Neurol 437: 283–307.

43. Yang HW, Appenteng K, Batten TF (1997) Ultrastructural subtypes of glutamate-immunoreactive terminals on rat trigeminal motoneurones and their relationships with GABA-immunoreactive terminals. Exp Brain Res 114: 99–110.

44. Pow DV, Crock DK (1995) Extremely high titre polyclonal antiserum against small neurotransmitter molecules: rapid production, characterisation and use in light- and electron-microscopic immunocytochemistry. J Neurosci Methods 48: 51–63.

45. Shimada IS, Borders A, Aroushatm A, Spees JI (2011) Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke. Stroke 42: 3231–3237.

46. Lyck L, Dalmui M, Chenmiti J, Finsen B, Schroder HD (2008) Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histchem Cytochem 56: 201–221.

47. Muller RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201–211.

48. Polak K, Buret H, Blancho B, Neuwies M, De Felipe C, et al. (2002) The murine neurotransmitter receptor gene contributes to the adult hypoxic facilitation of ventilation. Eur J Neurosci 16: 2245–2252.

49. Yoshida T, Fukaya M, Uchigashina M, Mura K, Kamiya H, et al. (2006) Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests a novel mechanism of glutamate receptor activation. J Neurosci 26: 1883–1898.

50. Fukaya M, Miura E, Kamiya H, et al. (2006) Rapid production, characterization and use in light- and electron-microscopic immunocytochemistry. J Neurosci Methods 48: 51–63.

51. Seybold VS, Hylton JL, Ylikoski G (1982) Intracerebroventricular somatostatin and calcium gene-related peptide synergistically modulate spinal sensory and reflex mechanisms: behavioral and electrophysiological studies in the rat. Neurosci Lett 62: 69–74.

52. Malmberg AB, Bassbaum AI (1988) Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 76: 215–222.

53. Malmberg AB, Bassbaum AI (1988) Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 76: 215–222.

54. Malmberg AB, Chen C, Tonegawa S, Bassbaum AI (1997) Preserved acute pain sensitivity in somatostatin knockout mice. J Neurosci 17: 285–292.

55. Mantyh PW, DeMaster E, Malhotra A, Ghilardi JR, Rogers SD, et al. (1995) Characterization of antibodies to the rat substance P (NK-1) receptor and to a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98: 215–222.

56. Yang HW, Appenteng K, Batten TF (1997) Ultrastructural subtypes of glutamate-immunoreactive terminals on rat trigeminal motoneurones and their relationships with GABA-immunoreactive terminals. Exp Brain Res 116: 99–110.

57. Pow DV, Crock DK (1995) Extremely high titre polyclonal antiserum against small neurotransmitter molecules: rapid production, characterisation and use in light- and electron-microscopic immunocytochemistry. J Neurosci Methods 48: 51–63.

58. Shimada IS, Borders A, Aroushatm A, Spees JI (2011) Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke. Stroke 42: 3231–3237.

59. Lyck L, Dalmui M, Chenmiti J, Finsen B, Schroder HD (2008) Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex. J Histchem Cytochem 56: 201–221.

60. Muller RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116: 201–211.

61. Polak K, Buret H, Blancho B, Neuwies M, De Felipe C, et al. (2002) The murine neurotransmitter receptor gene contributes to the adult hypoxic facilitation of ventilation. Eur J Neurosci 16: 2245–2252.

62. Yoshida T, Fukaya M, Uchigashina M, Mura K, Kamiya H, et al. (2006) Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests a novel mechanism of glutamate receptor activation. J Neurosci 26: 1883–1898.

63. Fukaya M, Miura E, Kamiya H, et al. (2006) Rapid production, characterization and use in light- and electron-microscopic immunocytochemistry. J Neurosci Methods 48: 51–63.

64. Puska´r Z, Polga´r E, Todd AJ (2001) A population of large lamina I projection neurons in the mouse spinal cord. J Comp Neurol 437: 283–307.

65. Seybold VS, Hylton JL, Ylikoski G (1982) Intracerebroventricular somatostatin and calcium gene-related peptide synergistically modulate spinal sensory and reflex mechanisms: behavioral and electrophysiological studies in the rat. Neurosci Lett 62: 69–74.

66. Malmberg AB, Bassbaum AI (1988) Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 76: 215–222.

67. Malmberg AB, Chen C, Tonegawa S, Bassbaum AI (1997) Preserved acute pain sensitivity in somatostatin knockout mice. J Neurosci 17: 285–292.

68. Malmberg AB, Chen C, Tonegawa S, Bassbaum AI (1997) Preserved acute pain sensitivity in somatostatin knockout mice. J Neurosci 17: 285–292.

69. Fukaya M, Miura E, Kamiya H, et al. (2006) Rapid production, characterization and use in light- and electron-microscopic immunocytochemistry. J Neurosci Methods 48: 51–63.
89. Wiley RG, Lemons LL, Kline RHt (2009) Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex responses to heat and formalin. Neuroscience 161: 139–147.
90. Al Ghamdi KS, Polgár E, Todd AJ (2009) Soma size distinguishes projection neurons from neurokinin 1 receptor-expressing interneurons in lamina I of the rat lumbar spinal dorsal horn. Neuroscience 164: 1794–1804.
91. Cheunsuang O, Morris R (2000) Spinal lamina I neurons that express neurokinin 1 receptors: morphological analysis. Neuroscience 97: 335–345.
92. Spike RC, Puskár Z, Andrew D, Todd AJ (2003) A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci 18: 2433–2448.