DEFORMATIONS OF LEGENDRIAN CURVES

MARCO SILVA MENDES AND ORLANDO NETO

Abstract. We construct versal and equimultiple versal deformations of the parametrization of a Legendrian curve.

1. Contact Geometry

Let (X, \mathcal{O}_X) be a complex manifold of dimension 3. A differential form ω of degree 1 is said to be a contact form if $\omega \wedge d\omega$ never vanishes. Let ω be a contact form. By Darboux’s theorem for contact forms there is locally a system of coordinates (x, y, p) such that $\omega = dy - pdx$. If ω is a contact form and f is a holomorphic function that never vanishes, $f\omega$ is also a contact form. We say that a locally free subsheaf L of Ω^1_X is a contact structure on X if L is locally generated by a contact form. If L is a contact structure on X the pair (X, L) is called a contact manifold. Let (X_1, L_1) and (X_2, L_2) be contact manifolds. Let $\chi : X_1 \to X_2$ be a holomorphic map. We say that χ is a contact transformation if $\chi^*\omega$ is a local generator of L_1 whenever ω is a local generator of L_2.

Let $\theta = \xi dx + \eta dy$ denote the canonical 1-form of $T^*\mathbb{C}^2 = \mathbb{C}^2 \times \mathbb{C}^2$. Let $\pi : \mathbb{P}^*\mathbb{C}^2 = \mathbb{C}^2 \times \mathbb{P}^1 \to \mathbb{C}^2$ be the projective cotangent bundle of \mathbb{C}^2, where $\pi(x, y; \xi : \eta) = (x, y)$. Let $U [V]$ be the open subset of $\mathbb{P}^*\mathbb{C}^2$ defined by $\eta \neq 0 [\xi \neq 0]$. Then $\theta/\eta [\theta/\xi]$ defines a contact form $dy - pdx$ on U, where $p = -\xi/\eta [q = -\eta/\xi]$. Moreover, $dy - pdx$ and $dx - qdy$ define a structure of contact manifold on $\mathbb{P}^*\mathbb{C}^2$.

If $\Phi(x, y) = (a(x, y), b(x, y))$ with $a, b \in \mathbb{C}\{x, y}\}$ is an automorphism of $(\mathbb{C}^2, (0, 0))$, we associate to Φ the germ of contact transformation

$$\chi : (\mathbb{P}^*\mathbb{C}^2, (0, 0; 0 : 1)) \to (\mathbb{P}^*\mathbb{C}^2, (0, 0; -\partial_x b(0, 0) : \partial_x a(0, 0)))$$

defined by

$$\chi(x, y; \xi : \eta) = (a(x, y), b(x, y); \partial_y b\xi - \partial_x b\eta : -\partial_y a\xi + \partial_x a\eta).$$

If $D\Phi_{(0, 0)}$ leaves invariant $\{y = 0\}$, then $\partial_x b(0, 0) = 0$, $\partial_x a(0, 0) \neq 0$ and $\chi(0, 0; 0 : 1) = (0, 0; 0 : 1)$. Moreover,

$$\chi(x, y, p) = (a(x, y), b(x, y), (\partial_y bp + \partial_x b)/(\partial_y ap + \partial_x a)).$$

Let (X, L) be a contact manifold. A curve L in X is called Legendrian if $\omega|_L = 0$ for each section ω of L.

Date: June 24, 2018.
Let \(Z \) be the germ at \((0, 0)\) of an irreducible plane curve parametrized by
\begin{equation}
\varphi(t) = (x(t), y(t)).
\end{equation}
We define the conormal of \(Z \) as the curve parametrized by
\begin{equation}
\psi(t) = (x(t), y(t) ; -y'(t) : x'(t)).
\end{equation}

The conormal of \(Z \) is the germ of a Legendrian curve of \(\mathbb{P}^* \mathbb{C}^2 \).

We will denote the conormal of \(Z \) by \(\mathbb{P}^* _{} Z \mathbb{C}^2 \) and the parametrization (1.3) by \(\text{Con} \varphi \).

Assume that the tangent cone \(C(Z) \) is defined by the equation \(ax + by = 0 \), with \((a, b) \neq (0, 0) \). Then \(\mathbb{P}^* _{} Z \mathbb{C}^2 \) is a germ of a Legendrian curve at \((0, 0; a : b)\).

Let \(f \in \mathbb{C} \{ t \} \). We say the \(f \) has order \(k \) and write \(\text{ord} f = k \) or \(\text{ord}_t f = k \) if \(f/t^k \) is a unit of \(\mathbb{C} \{ t \} \).

Remark 1.1. Let \(Z \) be the plane curve parametrized by (1.2). Let \(L = \mathbb{P}^* _{} Z \mathbb{C}^2 \).

Then:
(i) \(C(Z) = \{ y = 0 \} \) if and only if \(\text{ord} y > \text{ord} x \). If \(C(Z) = \{ y = 0 \} \), \(L \) admits the parametrization
\[
\psi(t) = (x(t), y(t), y'(t)/x'(t))
\]
on the chart \((x, y, p)\).
(ii) \(C(Z) = \{ y = 0 \} \) and \(C(L) = \{ x = y = 0 \} \) if and only if \(\text{ord} x < \text{ord} y < 2\text{ord} x \).
(iii) \(C(Z) = \{ y = 0 \} \) and \(\{ x = y = 0 \} \nsubseteq C(L) \subseteq \{ y = 0 \} \) if and only if \(\text{ord} y \geq 2\text{ord} x \).
(iv) \(C(L) = \{ y = p = 0 \} \) if and only if \(\text{ord} y > 2\text{ord} x \).
(v) \(\text{mult} L \leq \text{mult} Z \). Moreover, \(\text{mult} L = \text{mult} Z \) if and only if \(\text{ord} y \geq 2\text{ord} x \).

If \(L \) is the germ of a Legendrian curve at \((0, 0; a : b)\), \(\pi(L) \) is a germ of a plane curve of \((\mathbb{C}^2, (0, 0))\). Notice that all branches of \(\pi(L) \) have the same tangent cone.

If \(Z \) is the germ of a plane curve with irreducible tangent cone, the union \(L \) of the conormals of the branches of \(Z \) is a germ of a Legendrian curve. We call \(L \) the conormal of \(Z \).

If \(C(Z) \) has several components, the union of the conormals of the branches of \(Z \) is a union of several germs of Legendrian curves.

If \(L \) is a germ of Legendrian curve, \(L \) is the conormal of \(\pi(L) \).

Consider in the vector space \(\mathbb{C}^2 \), with coordinates \(x, p \), the symplectic form \(dp \land dx \). We associate to each symplectic linear automorphism
\[
(p, x) \mapsto (\alpha p + \beta x, \gamma p + \delta x)
\]
of \(\mathbb{C}^2 \) the contact transformation
\begin{equation}
(x, y) = (\gamma p + \delta x, y + \frac{1}{2} \alpha \gamma p^2 + \beta \gamma x p + \frac{1}{2} \beta \delta x^2, \alpha p + \beta x).
\end{equation}
We call (1.4) a paraboloidal contact transformation.
In the case \(\alpha = \delta = 0 \) and \(\gamma = -\beta = 1 \) we get the so called Legendre transformation
\[
\Psi(x, y, p) = (p, y - px, -x).
\]

We say that a germ of a Legendrian curve \(L \) of \((\mathbb{P}^*\mathbb{C}^2, (0, 0; a : b)) \) is in generic position if \(C(L) \not\supset \pi^{-1}(0, 0) \).

Remark 1.2. Let \(L \) be the germ of a Legendrian curve on a contact manifold \((X, \mathcal{L})\) at a point \(o \). By the Darboux’s theorem for contact forms there is a germ of a contact transformation \(\chi : (X, o) \to (U, (0, 0, 0)) \), where \(U = \{ \eta \neq 0 \} \) is the open subset of \(\mathbb{P}^*\mathbb{C}^2 \) considered above. Hence \(C(\pi(\chi(L))) = \{ y = 0 \} \). Applying a paraboloidal transformation to \(\chi(L) \) we can assume that \(\chi(L) \) is in generic position. If \(C(L) \) is irreducible, we can assume \(C(\chi(L)) = \{ y = p = 0 \} \).

Following the above remark, from now on we will always assume that every Legendrian curve germ is embedded in \((\mathbb{C}^3(x,y,p), \omega)\), where \(\omega = dy - pdx \).

Example 1.3.

(1) The plane curve \(Z = \{ y^2 - x^3 = 0 \} \) admits a parametrization \(\varphi(t) = (t^2, t^3) \). The conormal \(L \) of \(Z \) admits the parametrization \(\psi(t) = (t^2, t^3, \frac{3}{2}t) \). Hence \(C(L) = \pi^{-1}(0, 0) \) and \(L \) is not in generic position. If \(\chi \) is the Legendre transformation, \(C(\chi(L)) = \{ y = p = 0 \} \) and \(L \) is in generic position. Moreover, \(\pi(\chi(L)) \) is a smooth curve.

(2) The plane curve \(Z = \{(y^2 - x^3)(y^2 - x^5) = 0\} \) admits a parametrization given by
\[
\varphi_1(t_1) = (t_1^2, t_1^3), \quad \varphi_2(t_2) = (t_2^2, t_2^5).
\]
The conormal \(L \) of \(Z \) admits the parametrization given by
\[
\psi_1(t_1) = (t_1^2, t_1^3, \frac{3}{2}t_1), \quad \psi_2(t_2) = (t_2^2, t_2^5, \frac{5}{2}t_2^3).
\]
Hence \(C(L_1) = \pi^{-1}(0, 0) \) and \(L \) is not in generic position. If \(\chi \) is the paraboloidal contact transformation
\[
\chi : (x, y, p) \mapsto (x + p, y + \frac{1}{2}p^2, p),
\]
then \(\chi(L) \) has branches with parametrization given by
\[
\chi(\psi_1)(t_1) = (t_1^2 + \frac{3}{2}t_1, t_1^3 + \frac{9}{8}t_1^2, \frac{3}{2}t_1),
\]
\[
\chi(\psi_2)(t_2) = (t_2^2 + \frac{5}{2}t_2^3, t_2^5 + \frac{25}{8}t_2^6, \frac{5}{2}t_2^3).
\]
Then
\[
C(\chi(L_1)) = \{ y = p - x = 0 \}, \quad C(\chi(L_2)) = \{ y = p = 0 \}
\]
and \(L \) is in generic position.

3
Set \(x = (x_1, \ldots, x_n) \) and \(z = (z_1, \ldots, z_m) \). Let \(I \) be an ideal of the ring \(\mathbb{C}\{z\} \). Let \(\tilde{I} \) be the ideal of \(\mathbb{C}\{x, z\} \) generated by \(I \).

Lemma 2.1. (a) Let \(f \in \mathbb{C}\{x, z\} \). Then \(f \in \tilde{I} \) if and only if \(a_\alpha \in I \) for each \(\alpha \).
(b) If \(f \in \tilde{I} \), then \(\partial_x f \in \tilde{I} \) for \(1 \leq i \leq n \).
(c) Let \(a_1, \ldots, a_{n-1} \in \mathbb{C}\{x, z\} \). Let \(b, \beta_0 \in \tilde{I} \). Assume that \(\partial_x \beta_0 = 0 \). If \(\beta \) is the solution of the Cauchy problem

\[
\partial_x \beta - \sum_{i=1}^{n-1} a_i \partial_{x_i} \beta = b, \quad \beta - \beta_0 \in \mathbb{C}\{x, z\} x_n, \tag{2.1}
\]

then \(\beta \in \tilde{I} \).

Proof. There are \(g_1, \ldots, g_\ell \in \mathbb{C}\{z\} \) such that \(I = (g_1, \ldots, g_\ell) \). If \(a_\alpha \in I \) for each \(\alpha \), then \(h_{i,\alpha} \in \mathbb{C}\{z\} \) such that \(a_\alpha = \sum_{i=1}^\ell h_{i,\alpha} g_i \). Hence \(f = \sum_{i=1}^\ell (\sum_{\alpha} h_{i,\alpha} x^\alpha) g_i \in \tilde{I} \).

If \(f \in \tilde{I} \), then \(H_i \in \mathbb{C}\{x, z\} \) such that \(f = \sum_{i=1}^\ell H_i g_i \). There are \(b_{i,\alpha} \in \mathbb{C}\{z\} \) such that \(H_i = \sum_{\alpha} b_{i,\alpha} x^\alpha \). Therefore \(a_\alpha = \sum_{i=1}^\ell b_{i,\alpha} g_i \in I \).

We can perform a change of variables that rectifies the vector field \(\partial_x - \sum_{i=1}^{n-1} a_i \partial_{x_i} \), reducing the Cauchy problem (2.1) to the Cauchy problem

\[
\partial_x \beta = b, \quad \beta - \beta_0 \in \mathbb{C}\{x, z\} x_n, \tag{2.2}
\]

Hence statements (b) and (c) follow from (a). \(\square \)

Let \(J \) be an ideal of \(\mathbb{C}\{z\} \) contained in \(I \). Let \(X, S \) and \(T \) be analytic spaces with local rings \(\mathbb{C}\{x\}, \mathbb{C}\{z\}/I \) and \(\mathbb{C}\{z\}/J \). Hence \(X \times S \) and \(X \times T \) have local rings \(\mathcal{O} := \mathbb{C}\{x, z\}/I \) and \(\mathcal{O} := \mathbb{C}\{x, z\}/J \). Let \(a_1, \ldots, a_{n-1}, b \in \mathcal{O} \) and \(g \in \mathcal{O}/x_n \mathcal{O} \). Let \(a_i, b \in \mathcal{O} \) and \(g \in \mathcal{O}/x_n \mathcal{O} \) be representatives of \(a_i, b \) and \(g \). Consider the Cauchy problems

\[
\partial_x f + \sum_{i=1}^{n-1} a_i \partial_{x_i} f = b, \quad f + x_n \mathcal{O} = g \tag{2.2}
\]

and

\[
\partial_x f + \sum_{i=1}^{n-1} a_i \partial_{x_i} f = b, \quad f + x_n \mathcal{O} = g \tag{2.3}
\]

Theorem 2.2. (a) There is one and only one solution of the Cauchy problem (2.2).
(b) If \(f \) is a solution of (2.2), \(f = f + \tilde{I} \) is a solution of (2.3).
(c) If \(f \) is a solution of (2.3) there is a representative \(\tilde{f} \) of \(f \) that is a solution of (2.2).
Proof. By Lemma 2.1, \(\partial_{x_i} \tilde{I} = \tilde{I} \). Hence (b) holds.

Assume \(J = (0) \). The existence and uniqueness of the solution of (2.2) is a special case of the classical Cauchy-Kowalevski Theorem. There is one and only one formal solution of (2.2). Its convergence follows from the majorant method.

The existence of a solution of (2.3) follows from (b).

Let \(f_1, f_2 \) be two solutions of (2.3). Let \(f_j \) be a representative of \(f_j \) for \(j = 1, 2 \). Then \(\partial_{x_n} (f_2 - f_1) + \sum_{i=1}^{n-1} a_i \partial_{x_i} (f_2 - f_1) \in \tilde{I} \) and \(f_2 - f_1 + x_n \tilde{O} \in \tilde{I} + x_n \tilde{O} \). By Lemma 2.1, \(f_2 - f_1 \in \tilde{I} \). Therefore \(f_1 = f_2 \). This ends the proof of statement (a). Statement (c) follows from statements (a) and (b).

\[\square \]

Set \(\Omega^1_{X|S} = \bigoplus_{i=1}^n \mathcal{O}dx_i \). We call the elements of \(\Omega^1_{X|S} \) germs of relative differential forms on \(X \times S \). The map \(d : \mathcal{O} \to \Omega^1_{X|S} \) given by \(df = \sum_{i=1}^n \partial_{x_i} f dx_i \) is called the relative differential of \(f \).

Assume that \(\dim X = 3 \) and let \(\mathcal{L} \) be a contact structure on \(X \). Let \(\rho : X \times S \to X \) be the first projection. Let \(\omega \) be a generator of \(\mathcal{L} \). We will denote by \(\mathcal{L}_S \) the sub \(\mathcal{O} \)-module of \(\Omega^1_{X|S} \) generated by \(\rho^* \omega \). We call \(\mathcal{L}_S \) a relative contact structure of \(X \times S \). We call \((X \times S, \mathcal{L}_S) \) a relative contact manifold. We say that an isomorphism of analytic spaces

\[(2.4) \]

\[\chi : X \times S \to X \times S \]

is a relative contact transformation if \(\chi(0, s) = (0, s) \), \(\chi^* \omega \in \mathcal{L}_S \) for each \(\omega \in \mathcal{L}_S \) and the diagram

\[(2.5) \]

\[
\begin{array}{ccc}
X & \xrightarrow{id_X} & X \\
\downarrow & & \downarrow \\
X \times S & \xrightarrow{\chi} & X \times S \\
\downarrow & & \downarrow \\
S & \xrightarrow{id_S} & S
\end{array}
\]

commutes.

The demand of the commutativeness of diagram (2.5) is a very restrictive condition but these are the only relative contact transformations we will need. We can and will assume that the local ring of \(X \) equals \(\mathbb{C}\{x,y,p\} \) and that \(\mathcal{L} \) is generated by \(dy - pdx \).

Set \(\mathcal{O} = \mathbb{C}\{x,y,p,z\}/I \) and \(\mathcal{O} = \mathbb{C}\{x,y,p,z\}/J \). Let \(m_X \) be the maximal ideal of \(\mathbb{C}\{x,y,p\} \). Let \(m_{\mathcal{O}} \) be the maximal ideal of \(\mathbb{C}\{z\}/I[\mathbb{C}\{z\}/J] \). Let \(n_\mathcal{O} \) be the ideal of \(\mathcal{O}[\mathcal{O}] \) generated by \(m_X m_{\mathcal{O}} [m_X m_{\mathcal{O}}] \).
Remark 2.3. If (2.4) is a relative contact transformation, there are \(\alpha, \beta, \gamma \in \mathfrak{n} \) such that \(\partial_x \beta \in \mathfrak{n} \) and
\[
(2.6) \quad \chi(x, y, p, z) = (x + \alpha, y + \beta, p + \gamma, z).
\]

Theorem 2.4. (a) Let \(\chi : X \times S \to X \times S \) be a relative contact transformation. There is \(\beta_0 \in \mathfrak{n} \) such that \(\partial_p \beta_0 = 0 \), \(\partial_x \beta_0 \in \mathfrak{n} \), \(\beta \) is the solution of the Cauchy problem
\[
(2.7) \quad \left(1 + \frac{\partial \alpha}{\partial x} + p \frac{\partial \alpha}{\partial y}\right) \frac{\partial \beta}{\partial p} - \left(p \frac{\partial \alpha}{\partial y} - \frac{\partial \alpha}{\partial x} \frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial p} \frac{\partial \beta}{\partial y}\right) = \frac{\partial \alpha}{\partial p}, \quad \beta - \beta_0 \in p\mathcal{O}
\]
and
\[
(2.8) \quad \gamma = \left(1 + \frac{\partial \alpha}{\partial x} + p \frac{\partial \alpha}{\partial y}\right)^{-1} \left(\frac{\partial \beta}{\partial x} + p \left(\frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial x} \frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial p} \frac{\partial \beta}{\partial y}\right)\right).
\]
(b) Given \(\alpha, \beta_0 \in \mathfrak{n} \) such that \(\partial_p \beta_0 = 0 \) and \(\partial_x \beta_0 \in \mathfrak{n} \), there is a unique contact transformation \(\chi \) verifying the conditions of statement (a). We will denote \(\chi \) by \(\chi_{\alpha, \beta_0} \).
(c) Given a relative contact transformation \(\tilde{\chi} : X \times T \to X \times T \) there is one and only one contact transformation \(\chi : X \times S \to X \times S \) such that the diagram
\[
\begin{array}{ccc}
X \times S & \xrightarrow{\chi} & X \times S \\
\uparrow & & \uparrow \\
X \times T & \xrightarrow{\tilde{\chi}} & X \times T
\end{array}
\]
commutes.
(d) Given \(\alpha, \beta_0 \in \mathfrak{n} \) and \(\tilde{\alpha}, \tilde{\beta}_0 \in \tilde{\mathfrak{n}} \) such that \(\partial_p \beta_0 = 0 \), \(\partial_p \tilde{\beta}_0 = 0 \), \(\partial_x \beta_0 \in \mathfrak{n} \), \(\partial_x \tilde{\beta}_0 \in \tilde{\mathfrak{n}} \) and \(\tilde{\alpha}, \tilde{\beta}_0 \) are representatives of \(\alpha, \beta_0 \), set \(\chi = \chi_{\alpha, \beta_0}, \tilde{\chi} = \chi_{\tilde{\alpha}, \tilde{\beta}_0} \).
Then diagram (2.9) commutes.

Proof. Statements (a) and (b) are a relative version of Theorem 3.2 of [1]. In [1] we assume \(S = \{0\} \). The proof works as long \(S \) is smooth. The proof in the singular case depends on the singular variant of the Cauchy-Kowalevski Theorem introduced in [2]. Statement (c) follows from statement (b) of Theorem 2.2. Statement (d) follows from statement (c) of Theorem 2.2. \(\square \)

Remark 2.5. (1) The inclusion \(S \hookrightarrow T \) is said to be a small extension if the surjective map \(\mathcal{O}_T \to \mathcal{O}_S \) has one dimensional kernel. If the kernel is generated by \(\varepsilon \), we have that, as complex vector spaces, \(\mathcal{O}_T = \mathcal{O}_S \oplus \varepsilon \mathbb{C} \).
Every extension of Artinian local rings factors through small extensions.

Theorem 2.6. Let \(S \hookrightarrow T \) be a small extension such that
\[
\mathcal{O}_S \cong \mathbb{C}\{z\},
\]
\[
\mathcal{O}_T \cong \mathbb{C}\{z, \varepsilon\}/(\varepsilon^2, \varepsilon z_1, \ldots, \varepsilon z_m) = \mathbb{C}\{z\} \oplus \mathbb{C}\varepsilon.
\]
Assume $\chi : X \times S \rightarrow X \times S$ is a relative contact transformation given at the ring level by

$$(x, y, p) \mapsto (H_1, H_2, H_3),$$

$\alpha, \beta_0 \in m_X$, such that $\partial_p \beta_0 = 0$ and $\beta_0 \in (x^2, y)$. Then, there are uniquely determined $\beta, \gamma \in m_X$ such that $\beta - \beta_0 \in pO_X$ and $\tilde{\chi} : X \times T \rightarrow X \times T$, given by

$$\tilde{\chi}(x, y, p, z, \varepsilon) = (H_1 + \varepsilon \alpha, H_2 + \varepsilon \beta, H_3 + \varepsilon \gamma, z, \varepsilon),$$

is a relative contact transformation extending χ (diagram (2.9) commutes). Moreover, the Cauchy problem (2.7) for $\tilde{\chi}$ takes the simplified form

$$(2.10) \quad \frac{\partial \beta}{\partial p} = p \frac{\partial \alpha}{\partial p}, \quad \beta - \beta_0 \in \mathbb{C}\{x, y, p\}p$$

and

$$(2.11) \quad \gamma = \frac{\partial \beta}{\partial x} + p \left(\frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial x} \right) - p^2 \frac{\partial \alpha}{\partial y}.$$

Proof. We have that $\tilde{\chi}$ is a relative contact transformation if and only if there is $f = f' + \varepsilon f'' \in O_T\{x, y, p\}$ with $f \notin (x, y, p)O_T\{x, y, p\}$, $f' \in O_S\{x, y, p\}$, $f'' \in \mathbb{C}\{x, y, p\} = O_X$ such that

$$(2.12) \quad d(H_2 + \varepsilon \beta) - (H_3 + \varepsilon \gamma)d(H_1 + \varepsilon \alpha) = f(dy - pdx).$$

Since χ is a relative contact transformation we can suppose that

$$dH_2 - H_3dH_1 = f'(dy - pdx).$$

Using the fact that $\varepsilon \mathfrak{m}_{O_T}$, we see that (2.12) is equivalent to

$$\begin{cases}
\frac{\partial \beta}{\partial p} = p \frac{\partial \alpha}{\partial p}, \\
\gamma = \frac{\partial \beta}{\partial x} + p \left(\frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial x} \right) - p^2 \frac{\partial \alpha}{\partial y}, \\
f'' = \frac{\partial \beta}{\partial y} - p \frac{\partial \alpha}{\partial y}.
\end{cases}$$

As $\beta - \beta_0 \in (p)\mathbb{C}\{x, y, p\}$ we have that β, and consequently γ, are completely determined by α and β_0. \qed

Remark 2.7. Set $\alpha = \sum_k \alpha_k p^k$, $\beta = \sum_k \beta_k p^k$, $\gamma = \sum_k \gamma_k p^k$, where $\alpha_k, \beta_k, \gamma_k \in \mathbb{C}\{x, y\}$ for each $k \geq 0$ and $\beta_0 \in (x^2, y)$. Under the assumptions of Theorem 2.6,

(i) $\beta_k = \frac{k-1}{k} \alpha_{k-1}, \quad k \geq 1$.

(ii) Moreover,

$$\gamma_0 = \frac{\partial \beta_0}{\partial x}, \quad \gamma_1 = \frac{\partial \beta_0}{\partial y} - \frac{\partial \alpha_0}{\partial x}, \quad \gamma_k = -\frac{1}{k} \frac{\partial \alpha_{k-1}}{\partial x} - \frac{1}{k-1} \frac{\partial \alpha_{k-2}}{\partial y}, \quad k \geq 2.$$

Since,

$$\frac{\partial}{\partial y} \gamma_0 = \frac{\partial}{\partial x} \left(\frac{\partial \alpha_0}{\partial x} + \gamma_1 \right),$$

β_0 is the solution of the Cauchy problem

$$\frac{\partial \beta_0}{\partial x} = \gamma_0, \quad \frac{\partial \beta_0}{\partial y} = \frac{\partial \alpha_0}{\partial x} + \gamma_1, \quad \beta_0 \in (x^2, y).$$
A category \(C \) is called a groupoid if all morphisms of \(C \) are isomorphisms.

Let \(p : F \rightarrow C \) be a functor.

Let \(S \) be an object of \(C \). We will denote by \(F(S) \) the subcategory of \(F \) given by the following conditions:

- \(\Psi \) is an object of \(F(S) \) if \(p(\Psi) = S \).
- \(\chi \) is a morphism of \(F(S) \) if \(p(\chi) = \text{id}_S \).

Let \(\chi : \Psi \rightarrow \Psi \) be a morphism [an object] of \(F \) over \(f : S' \rightarrow S \). We say that \(\chi \) is a morphism [an object] of \(F \) over \(f \) if \(p(\chi) = f [p(\Psi) = S] \).

A morphism \(\chi' : \Psi' \rightarrow \Psi \) of \(F \) over \(f \) is cartesian if for each morphism \(\chi'' : \Psi'' \rightarrow \Psi \) of \(F \) over \(f \) there is exactly one morphism \(\chi : \Psi'' \rightarrow \Psi' \) over \(\text{id}_S \) such that \(\chi'' \circ \chi = \chi' \).

If the morphism \(\chi' : \Psi' \rightarrow \Psi \) is cartesian, \(\Psi' \) is well defined up to a unique isomorphism. We will denote \(\Psi' \) by \(f^* \Psi \) or \(\Psi \times S S' \).

A fibered groupoid is a fibered category such that \(F(S) \) is a groupoid for each \(S \in C \).

Lemma 3.1. If \(p : F \rightarrow C \) satisfies (1) and \(F(S) \) is a groupoid for each object \(S \) of \(C \), then \(F \) is a fibered groupoid over \(C \).

Proof. Let \(\chi : \Phi \rightarrow \Psi \) be an arbitrary morphism of \(F \). It is enough to show that \(\chi \) is cartesian. Set \(f = p(\chi) \). Let \(\chi' : \Phi' \rightarrow \Psi \) be another morphism over \(f \). Let \(f^* \Psi \rightarrow \Psi \) be a cartesian morphism over \(f \). There are morphisms \(\alpha : \Phi' \rightarrow f^* \Psi, \beta : \Phi \rightarrow f^* \Psi \) such that the solid diagram

\[
\begin{array}{ccc}
\Phi' & \xrightarrow{\alpha} & f^* \Psi \\
\downarrow{\chi'} & & \downarrow{\chi} \\
\Phi & \xrightarrow{\beta} & \Psi
\end{array}
\]

commutes. Hence \(\beta^{-1} \circ \alpha \) is the only morphism over \(f \) such that diagram (3.1) commutes.

Let \(\mathbb{A} \) be the category of analytic complex space germs. Let 0 denote the complex vector space of dimension 0.

Definition 3.2. Let \(T \) be an analytic complex space germ. Let \(\psi \) be an object of \(\mathbb{A}(0) \) [\(\mathbb{A}(T) \)]. We say that \(\Psi \) is a versal deformation of \(\psi \) if given

- a closed embedding \(f : T'' \rightarrow T' \),
• a morphism of complex analytic space germs $g : T'' \to T$,
• an object Ψ' of $\mathcal{F}(T')$ such that $f^*\Psi' \cong g^*\Psi$,

there is a morphism of complex analytic space germs $h : T' \to T$ such that

$$h \circ f = g \quad \text{and} \quad h^*\Psi \cong \Psi'.$$

If Ψ is versal and for each Ψ' the tangent map $T(h) : T' \to T_T$ is determined by Ψ', Ψ is called a \textit{semuniversal deformation} of ψ.

Let T be a germ of a complex analytic space. Let A be the local ring of T and let \mathfrak{m} be the maximal ideal of A. Let T_n be the complex analytic space with local ring A/\mathfrak{m}^n for each positive integer n. The canonical morphisms

$$A \to A/\mathfrak{m}^n \quad \text{and} \quad A/\mathfrak{m}^n \to A/\mathfrak{m}^{n+1}$$

induce morphisms $\alpha_n : T_n \to T$ and $\beta_n : T_{n+1} \to T_n$.

A morphism $f : T'' \to T'$ induces morphisms $f_n : T''_n \to T'_n$ such that the diagram

$$
\begin{array}{ccc}
T'' & \xrightarrow{f} & T' \\
\downarrow{\alpha_n''} & & \downarrow{\alpha'_n} \\
T''_n & \xrightarrow{f_n} & T'_n \\
\downarrow{\beta_n''} & & \downarrow{\beta'_n} \\
T''_{n+1} & \xrightarrow{f_{n+1}} & T'_{n+1}
\end{array}
$$

commutes.

\textbf{Definition 3.3.} We will follow the terminology of Definition 3.2. Let $g_n = g \circ \alpha_n''$. We say that Ψ is a \textit{formally versal deformation} of ψ if there are morphisms $h_n : T'_n \to T$ such that

$$h_n \circ f_n = g_n, \quad h_n \circ \beta_n' = h_{n+1} \quad \text{and} \quad h_n^*\Psi \cong \alpha'_n^*\Psi'.$$

If Ψ is formally versal and for each Ψ' the tangent maps $T(h_n) : T'_{T_n} \to T_T$ are determined by $\alpha'_n^*\Psi'$, Ψ is called a \textit{formally semiuniversal deformation} of ψ.

\textbf{Theorem 3.4.} (\cite{4}, Theorem 5.2). Let $\mathfrak{F} \to \mathcal{C}$ be a fibered groupoid. Let $\psi \in \mathfrak{F}(0)$. If there is a versal deformation of ψ, every formally versal \textit{[semiuniversal deformation of ψ]} is versal \textit{[semiuniversal]}.

Let Z be a curve of \mathbb{C}^n with irreducible components Z_1, \ldots, Z_r. Set $\bar{C} = \bigsqcup_{i=1}^r C_i$ where each C_i is a copy of \mathbb{C}. Let φ_i be a parametrization of Z_i, $1 \leq i \leq r$. Let $\varphi : \bar{C} \to \mathbb{C}^n$ be the map such that $\varphi |_{C_i} = \varphi_i$, $1 \leq i \leq r$. We call φ the \textit{parametrization} of Z.

9
Let T be an analytic space. A morphism of analytic spaces $\Phi : \bar{C} \times T \rightarrow \mathbb{C}^n \times T$ is called a deformation of φ over T if the diagram

\[
\begin{array}{ccc}
\bar{C} & \xrightarrow{\varphi} & \mathbb{C}^n \\
\downarrow & & \downarrow \\
\bar{C} \times T & \xrightarrow{\Phi} & \mathbb{C}^n \times T \\
\downarrow & & \downarrow \\
T & \xrightarrow{id_T} & T
\end{array}
\]

commutes. The analytic space T is called the base space of the deformation.

We will denote by Φ_i the composition

\[
\bar{C}_i \times T \hookrightarrow \bar{C} \times T \xrightarrow{\Phi} \mathbb{C}^n \times T \rightarrow \mathbb{n}, \quad 1 \leq i \leq r.
\]

The maps Φ_i, $1 \leq i \leq r$, determine Φ.

Let Φ be a deformation of φ over T. Let $f : T' \rightarrow T$ be a morphism of analytic spaces. We will denote by $f^*\Phi$ the deformation of φ over T' given by

\[
(f^*\Phi)_i = \Phi_i \circ (id_{\bar{C}_i} \times f).
\]

We call $f^*\Phi$ the pullback of Φ by f.

Let $\Phi' : \bar{C} \times T \rightarrow \mathbb{C}^n \times T$ be another deformation of φ over T. A morphism from Φ' into Φ is a pair (χ, ξ) where $\chi : \mathbb{C}^n \times T \rightarrow \mathbb{C}^n \times T$ and $\xi : \bar{C} \times T \rightarrow \bar{C} \times T$ are isomorphisms of analytic spaces such that the diagram

\[
\begin{array}{ccc}
T & \xleftarrow{\text{id}_T} & \bar{C} \times T & \xrightarrow{\Phi} & \mathbb{C}^n \times T & \xrightarrow{\text{id}_T} & T \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
T & \xleftarrow{\text{id}_T} & \bar{C} \times T & \xrightarrow{\Phi'} & \mathbb{C}^n \times T & \xrightarrow{\text{id}_T} & T
\end{array}
\]

commutes.

Let Φ' be a deformation of φ over S and $f : S \rightarrow T$ a morphism of analytic spaces. A morphism of Φ' into Φ over f is a morphism from Φ' into $f^*\Phi$. There is a functor p that associates T to a deformation Ψ over T and f to a morphism of deformations over f.

Given $t \in T$ let Z_t be the curve parametrized by the composition

\[
\bar{C} \times \{t\} \hookrightarrow \bar{C} \times T \xrightarrow{\Phi} \mathbb{C}^n \times T \rightarrow \mathbb{C}^n.
\]

We call Z_t the fiber of the deformation Φ at the point t.

10
Let $\varphi : \mathbb{C} \to \mathbb{C}^2$ be the parametrization of a plane curve Z. We will denote by $\text{Def}_\varphi[\text{Def}_\varphi^{\text{em}}]$ the category of deformations [equimultiple deformations] Φ of (the parametrization φ of) the plane curve Z.

Consider in \mathbb{C}^3 the contact structure given by the differential form $dy - p\,dx$. Let $\psi : \mathbb{C} \to \mathbb{C}^3$ be the parametrization of a Legendrian curve L. We say that a deformation Ψ of ψ is a Legendrian deformation of ψ if all of its fibers are Legendrian. We say that (χ, ξ) is an isomorphism of Legendrian deformations if $\chi : X \times T \to X \times T$ is a relative contact transformation.

We will denote by $\tilde{\text{Def}}_\psi[\text{Def}_\psi^{\text{em}}]$ the category of Legendrian [equimultiple Legendrian] deformations of ψ. All deformations are assumed to have trivial sections (see [3]).

Assume that $\psi = \text{Con}\varphi$ parametrizes a germ of a Legendrian curve L, in generic position, in $(\mathbb{C}^3(x,y,p),\omega)$. If $\Phi \in \text{Def}_\varphi$ is given by

$$\Phi_i(t_i,s) = (X_i(t_i,s), Y_i(t_i,s)), \quad 1 \leq i \leq r,$$

such that $P_i(t_i,s) := \partial_t Y_i(t_i,s)/\partial_t X_i(t_i,s) \in \mathbb{C}\{t_i,s\}$ for $1 \leq i \leq r$, then

$$\Psi_i(t_i,s) = (X_i(t_i,s), Y_i(t_i,s), P_i(t_i,s)).$$

defines a deformation Ψ of ψ which we call conormal of Φ. Notice that in this case all fibers of Φ have the same tangent space $\{y = 0\}$. We will denote Ψ by $\text{Con}\Phi$. If $\Psi \in \tilde{\text{Def}}_\psi$ is given by (3.3), we call plane projection of Ψ to the deformation Φ of φ given by (3.2). We will denote Φ by Ψ^π.

Let us consider the full subcategory $\rightarrow \text{Def}_\varphi$ of the deformations $\Phi \in \text{Def}_\varphi^{\text{em}}$ such that all fibers of Φ have the same tangent space $\{y = 0\}$.

Remark 3.5. We see immediately that if $\Phi \in \tilde{\text{Def}}_\varphi$ then $\text{Con}\Phi$ exists. However, it should be noted that there are more deformations for which the conormal is defined:

Let Φ be the deformation of $\varphi = (t^3, t^{10})$ given by

$$X(t,s) = st + t^3; \quad Y(t,s) = \frac{5}{12}st^8 + t^{10}.$$

Then $\text{Con}\Phi$ exists, but Φ is not equimultiple.

We define in this way the functors

$$\text{Con} : \tilde{\text{Def}}_\varphi \to \tilde{\text{Def}}_\psi, \quad \pi : \tilde{\text{Def}}_\psi \to \text{Def}_\varphi.$$

Notice that the conormal of the plane projection of a Legendrian deformation always exists and we have that $\text{Con}(\Psi^\pi) = \Psi$ for each $\Psi \in \tilde{\text{Def}}_\psi$ and $(\text{Con}\Phi)^\pi = \Phi$ where $\Phi \in \tilde{\text{Def}}_\varphi$.

Let us denote by Def_φ the subcategory of equimultiple deformations Φ of φ such that all fibers of Φ have fixed tangent space $\{y = 0\}$ with conormal in generic position. Then $\text{Def}_\varphi \subset \text{Def}_\varphi$ and if $\Phi \in \text{Def}_\varphi$ is given by 3.2
then $\Phi \in \overline{\text{Def}}_{\varphi}$ iff

$$\text{ord}_i Y_i \geq 2 \text{ord}_i X_i, \quad 1 \leq i \leq r.$$

Because we demand that Φ is equimultiple and all branches have tangent space $\{y = 0\}$, (3.4) is equivalent to

$$\text{ord}_i Y_i \geq 2 m_i, \quad 1 \leq i \leq r,$$

where m_i is the multiplicity of the component Z_i of Z.

Lemma 3.6. Under the assumptions above,

$$\text{Con}(\overline{\text{Def}}_{\varphi}) \subset \overline{\text{Def}}_{\varphi}^\text{em} \quad \text{and} \quad (\overline{\text{Def}}_{\varphi}^\text{em})^\pi \subset \overline{\text{Def}}_{\varphi}.$$

Proof. Let m_i be the multiplicity of the component Z_i of Z. Let $Z_{i,s}[L_{i,s}]$ be the fiber of $\Phi[\Psi]$ (given by 3.2). If $\Phi \in \overline{\text{Def}}_{\varphi}$, $C(L_{i,s}) \not\supset \pi^{-1}(0,0)$ for each s, so $\text{ord}_i Y_i \geq 2 \text{ord}_i X_i = 2 m_i$. Hence $\text{ord}_i P_i \geq m_i$ and Ψ is equimultiple.

If $\Psi \in \overline{\text{Def}}_{\varphi}^\text{em}$, $\text{ord}_i P_i \geq \text{ord}_i X_i$ and we get that $C(L_{i,s}) \not\supset \pi^{-1}(0,0)$ for each s. Each component $L_{i,s}$ has multiplicity m_i for each s. Hence $\text{mult} Z_{i,s} \geq m_i$ for each s. Since multiplicity is semicontinuous, $\text{mult} Z_{i,s} = m_i$ for each s and Φ is equimultiple.

Lemma 3.7. If \mathcal{E} is one of the categories $\overline{\text{Def}}_{\varphi}$, $\overline{\text{Def}}_{\varphi}^\text{em}$, $p : \mathcal{E} \to \mathfrak{An}$ is a fibered groupoid.

Proof. Let $f : S \to T$ be a morphism of \mathfrak{An}. Let Ψ be a deformation over T. Then, $(\overline{\chi}, \overline{\xi}) : f^*\Psi \to \Psi$ is cartesian, with

$$\overline{\xi}(t_i, s) = (t_i, s), \quad \overline{\chi}(x, y, p, s) = (x, y, p, s).$$

This is because if $(\chi, \xi) : \Psi' \to \Psi$ is a morphism over f, then by definition of morphism of deformations over different base spaces, (χ, ξ) is a morphism from Ψ' into $f^*\Psi$ over id_S.

4. Equimultiple Versal Deformations

For Sophus Lie a contact transformation was a transformation that takes curves into curves, instead of points into points. We can recover the initial point of view. Given a plane curve Z at the origin, with tangent cone $\{y = 0\}$, and a contact transformation χ from a neighbourhood of $(0; dy)$ into itself, χ acts on Z in the following way: $\chi \cdot Z$ is the plane projection of the image by χ of the conormal of Z. We can define in a similar way the action of a relative contact transformation on a deformation of a plane curve Z, obtaining another deformation of Z.

We say that $\Phi \in \overline{\text{Def}}_{\varphi}(T)$ is trivial (relative to the action of the group of relative contact transformations over T) if there is χ such that $\chi \cdot \Phi := \pi \circ \chi \circ \text{Con} \Phi$ is the constant deformation of ϕ over T, given by

$$(t_i, s) \mapsto \varphi_i(t_i), \quad i = 1, \ldots, r.$$
Let \(Z \) be the germ of a plane curve parametrized by \(\varphi : \mathbb{C} \to \mathbb{C}^2 \). In the following we will identify each ideal of \(O_Z \) with its image by \(\varphi^* : O_Z \to O_{\mathbb{C}} \).

Hence

\[
O_Z = \mathbb{C} \left\{ \begin{bmatrix} x_1 \\ \vdots \\ x_r \\ y_1 \\ \vdots \\ y_r \end{bmatrix} \right\} \subset \bigoplus_{i=1}^r \mathbb{C} \{ t_i \} = O_{\mathbb{C}}.
\]

Set \(\dot{x} = [\dot{x}_1, \ldots, \dot{x}_r]^t \), where \(\dot{x}_i \) is the derivative of \(x_i \) in order to \(t_i \), \(1 \leq i \leq r \).

Let

\[
\dot{\varphi} := \dot{x} \frac{\partial}{\partial x} + \dot{y} \frac{\partial}{\partial y}
\]

be an element of the free \(O_{\mathbb{C}} \)-module

\[
O_{\mathbb{C}} \frac{\partial}{\partial x} \oplus O_{\mathbb{C}} \frac{\partial}{\partial y}.
\]

Notice that (4.1) has a structure of \(O_Z \)-module induced by \(\varphi^* \).

Let \(m_i \) be the multiplicity of \(Z_i \), \(1 \leq i \leq r \). Consider the \(O_{\mathbb{C}} \)-module

\[
\bigoplus_{i=1}^r t_i^{m_i} \mathbb{C}\{ t_i \} \frac{\partial}{\partial x} \oplus \bigoplus_{i=1}^r t_i^{2m_i} \mathbb{C}\{ t_i \} \frac{\partial}{\partial y}.
\]

Let \(m_{\mathbb{C}\dot{\varphi}} \) be the sub \(O_{\mathbb{C}} \)-module of (4.2) generated by

\[
(a_1, \ldots, a_r) \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right),
\]

where \(a_i \in t_i \mathbb{C}\{ t_i \}, 1 \leq i \leq r \). For \(i = 1, \ldots, r \) set \(p_i = \dot{y}_i / \dot{x}_i \). For each \(k \geq 0 \) set

\[
P^k = \begin{bmatrix} p_1^k & \ldots & p_r^k \end{bmatrix}^t.
\]

Let \(\tilde{\mathcal{I}} \) be the sub \(O_Z \)-module of (4.2) generated by

\[
P^k \frac{\partial}{\partial x} + k + 1 \frac{\partial}{\partial y}, \quad k \geq 1.
\]

Set

\[
\hat{M}_\varphi = \left(\bigoplus_{i=1}^r t_i^{m_i} \mathbb{C}\{ t_i \} \frac{\partial}{\partial x} \right) \oplus \left(\bigoplus_{i=1}^r t_i^{2m_i} \mathbb{C}\{ t_i \} \frac{\partial}{\partial y} \right) + m_{\mathbb{C}\dot{\varphi}} + (x, y) \frac{\partial}{\partial x} \oplus (x^2, y) \frac{\partial}{\partial y} + \tilde{\mathcal{I}}.
\]

Given a category \(\mathcal{C} \) we will denote by \(\mathcal{C} \) the set of isomorphism classes of elements of \(\mathcal{C} \).

Theorem 4.1. Let \(\psi \) be the parametrization of a germ of a Legendrian curve \(L \) of a contact manifold \(X \). Let \(\chi : X \to \mathbb{C}^3 \) be a contact transformation such that \(\chi(L) \) is in generic position. Let \(\varphi \) be the plane projection of \(\chi \circ \psi \).

Then there is a canonical isomorphism

\[
\hat{\text{Def}}_{\psi} (T_e) \sim \hat{M}_\varphi.
\]
Proof. Let $\Psi \in \widehat{Def}_{\phi}^{\em} (T_\varepsilon)$. By Lemma 3.6, Ψ is the conormal of its projection $\Phi \in \widehat{Def}_{\phi}(T_\varepsilon)$. Moreover, Ψ is given by

$$\Psi_i(t_i, \varepsilon) = (x_i + \varepsilon a_i, y_i + \varepsilon b_i, p_i + \varepsilon c_i),$$

where $a_i, b_i, c_i \in \mathbb{C}\{t_i\}$, odd $a_i \geq m_i$, odd $b_i \geq 2m_i$, $i = 1, \ldots, r$. The deformation Ψ is trivial if and only if Φ is trivial for the action of the relative contact transformations. Φ is trivial if and only if there are

$$\xi_i(t_i) = \tilde{t}_i = t_i + \varepsilon h_i,$$

such that χ is a relative contact transformation, ξ_i is an isomorphism, $\alpha, \beta, \gamma \in (x, y, p)\mathbb{C}\{x, y, p\}$, $h_i \in t_i\mathbb{C}\{t_i\}$, $1 \leq i \leq r$, and

$$x_i(t_i) + \varepsilon a_i(t_i) = x_i(\tilde{t}_i) + \varepsilon \alpha(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)),$$

$$y_i(t_i) + \varepsilon b_i(t_i) = y_i(\tilde{t}_i) + \varepsilon \beta(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)),$$

for $i = 1, \ldots, r$. By Taylor’s formula $x_i(\tilde{t}_i) = x_i(t_i) + \varepsilon \dot{x}_i(t_i) h_i(t_i)$, $y_i(\tilde{t}_i) = y_i(t_i) + \varepsilon \dot{y}_i(t_i) h_i(t_i)$ and

$$\varepsilon \alpha(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)) = \varepsilon \alpha(x_i(t_i), y_i(t_i), p_i(t_i)),$$

$$\varepsilon \beta(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)) = \varepsilon \beta(x_i(t_i), y_i(t_i), p_i(t_i)),$$

for $i = 1, \ldots, r$. Hence Φ is trivialized by χ if and only if

$$(4.3) \quad a_i(t_i) = \dot{x}_i(t_i) h_i(t_i) + \alpha(x_i(t_i), y_i(t_i), p_i(t_i)),$$

$$(4.4) \quad b_i(t_i) = \dot{y}_i(t_i) h_i(t_i) + \beta(x_i(t_i), y_i(t_i), p_i(t_i)),$$

for $i = 1, \ldots, r$. By Remark 2.7 (i), (4.3) and (4.4) are equivalent to the condition

$$a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y} \in m_{\mathbb{C}} \hat{\varphi} + (x, y) \frac{\partial}{\partial x} \oplus (x^2, y) \frac{\partial}{\partial y} + \hat{I}.$$

Set

$$M_{\varphi} = \left(\bigoplus_{i=1}^{r} t_i^{m_i} \mathbb{C}\{t_i\} \frac{\partial}{\partial x} \oplus \left(\bigoplus_{i=1}^{r} t_i^{m_i} \mathbb{C}\{t_i\} \frac{\partial}{\partial y} \right) \right),$$

$$M_{\varphi}^{-} = \left(\bigoplus_{i=1}^{r} t_i^{m_i} \mathbb{C}\{t_i\} \frac{\partial}{\partial x} \oplus \left(\bigoplus_{i=1}^{r} t_i^{2m_i} \mathbb{C}\{t_i\} \frac{\partial}{\partial y} \right) \right).$$

By Proposition 2.27 of [3],

$$\widehat{Def}_{\phi}^{\em}(T_\varepsilon) \cong M_{\varphi}^{-}. $$

A similar argument shows that

$$\widehat{Def}_{\phi}(T_\varepsilon) \cong M_{\varphi}.$$

We have linear maps

\[(4.5) \quad M_\varphi \xhookrightarrow{\iota} \tilde{M}_\varphi \to \hat{M}_\varphi.\]

Theorem 4.2 ([3], II Theorem 2.38 (3)). Set \(k = \dim M_\varphi\). Let \(a^j, b^i \in \bigoplus_{i=1}^r t_i^m \mathbb{C}\{t_i\}, 1 \leq j \leq k\). If

\[(4.6) \quad a^j \frac{\partial}{\partial x} + b^j \frac{\partial}{\partial y} = \begin{bmatrix} a^j_1 \\ \vdots \\ a^j_r \end{bmatrix} \frac{\partial}{\partial x} + \begin{bmatrix} b^j_1 \\ \vdots \\ b^j_r \end{bmatrix} \frac{\partial}{\partial y},\]

\(1 \leq j \leq k\), represents a basis of \(M_\varphi\), the deformation \(\Phi : \tilde{\mathbb{C}} \times \mathbb{C}^k \to \mathbb{C}^2 \times \mathbb{C}^k\) given by

\[(4.7) \quad X_i(t_i, s) = x_i(t_i) + \sum_{j=1}^k a^j_i(t_i)s_j, \quad Y_i(t_i, s) = y_i(t_i) + \sum_{j=1}^k b^j_i(t_i)s_j, \quad i = 1, \ldots, r,\]

is a semiuniversal deformation of \(\varphi\) in \(\text{Def}^{\text{em}} \varphi\).

Lemma 4.3. Set \(k = \dim \hat{M}_\varphi\). Let \(a^j \in \bigoplus_{i=1}^r t_i^m \mathbb{C}\{t_i\}, b^j \in \bigoplus_{i=1}^r t_i^{2m} \mathbb{C}\{t_i\}, 1 \leq j \leq k\). If \((4.6)\) represents a basis of \(\hat{M}_\varphi\), the deformation \(\Phi_\ast\) given by

\[(4.7) \quad X_i(t_i, s) = x_i(t_i) + \sum_{j=1}^k a^j_i(t_i)s_j, \quad Y_i(t_i, s) = y_i(t_i) + \sum_{j=1}^k b^j_i(t_i)s_j, \quad i = 1, \ldots, r,\]

is a semiuniversal deformation of \(\varphi\) in \(\text{Def}^{\text{em}} \varphi\). Moreover, \(\text{Con} \Phi_\ast\) is a versal deformation of \(\psi\) in \(\text{Def}^{\text{em}} \psi\).

Proof. We will only show the completeness of \(\Phi\) and \(\text{Con} \Phi\). Since the linear inclusion map \(\iota\) referred in \((4.5)\) is injective, the deformation \(\Phi\) is the restriction to \(\hat{M}_\varphi\) of the deformation \(\Phi\) introduced in Theorem 4.2. Let \(\Phi_0 \in \text{Def}^{\text{em}} (T)\). Since \(\Phi_0 \in \text{Def}^{\text{em}} \varphi(T)\), there is a morphism of analytic spaces \(f : T \to M_\varphi\) such that \(\Phi_0 \cong f^\ast \Phi\). Since \(\Phi_0 \in \text{Def}^{\text{em}} \varphi(T)\), \(f(T) \subset \hat{M}_\varphi\). Hence \(f^\ast \Phi = f^\ast \Phi\).

If \(\Psi \in \text{Def}^{\text{em}} \psi(T)\), \(\Psi^\ast \in \text{Def}^{\text{em}} \varphi(T)\). Hence there is \(f : T \to \hat{M}_\varphi\) such that \(\Psi^\ast \cong f^\ast \Phi\). Therefore \(\Psi = \text{Con} \Psi^\ast \cong \text{Con} f^\ast \Phi = f^\ast \text{Con} \Phi\).

Theorem 4.4. Let \(a^j \in \bigoplus_{i=1}^r t_i^m \mathbb{C}\{t_i\}, b^j \in \bigoplus_{i=1}^r t_i^{2m} \mathbb{C}\{t_i\}, 1 \leq j \leq \ell\). Assume that \((4.6)\) represents a basis \([\text{a system of generators}]\) of \(\hat{M}_\varphi\). Let \(\Phi\) be the deformation given by \((4.7)\), \(1 \leq i \leq r\). Then \(\text{Con} \Phi\) is a semiuniversal \([\text{versal}]\) deformation of \(\psi\) in \(\text{Def}^{\text{em}} \psi\).

Proof. By Theorem 3.4 and Lemma 4.3 it is enough to show that \(\text{Con} \Phi\) is formally semiuniversal \([\text{versal}]\).

Let \(i : T' \hookrightarrow T\) be a small extension. Let \(\Psi \in \text{Def}^{\text{em}} \psi(T)\). Set \(\Psi' = i^\ast \Psi\). Let \(\eta' : T' \to \mathbb{C}^\ell\) be a morphism of complex analytic spaces. Assume that
\((\chi', \xi')\) define an isomorphism
\[
\eta'^*\text{Con} \Phi \cong \Psi'.
\]
We need to find \(\eta : T \to \mathbb{C}^l\) and \(\chi, \xi\) such that \(\eta' = \eta \circ \iota\) and \(\chi, \xi\) define an isomorphism
\[
\eta^*\text{Con} \Phi \cong \Psi
\]
that extends \((\chi', \xi')\). Let \(A'[A']\) be the local ring of \(T[T']\). Let \(\delta\) be the generator of \(\text{Ker}(A \to A')\). We can assume \(A' \cong \mathbb{C}\{z\}/I\), where \(z = (z_1, \ldots, z_m)\). Set
\[
\widetilde{A}' = \mathbb{C}\{z\} \quad \text{and} \quad \widetilde{A} = \mathbb{C}\{z, \varepsilon\}/(\varepsilon^2, \varepsilon z_1, \ldots, \varepsilon z_m).
\]
Let \(m_A\) be the maximal ideal of \(A\). Since \(m_A\delta = 0\) and \(\delta \in m_A\), there is a morphism of local analytic algebras from \(\widetilde{A}\) onto \(A\) that takes \(\varepsilon\) into \(\delta\) such that the diagram
\[
(4.8) \quad \begin{array}{ccc}
\widetilde{A} & \longrightarrow & \widetilde{A}' \\
\downarrow & & \downarrow \\
A & \longrightarrow & A'
\end{array}
\]
commutes. Assume \(\widetilde{T} \supset \widetilde{T}'\) has local ring \(\widetilde{A}[\widetilde{A}']\). We also denote by \(\iota\) the morphism \(\widetilde{T}' \hookrightarrow \widetilde{T}\). We denote by \(\kappa\) the morphisms \(T \hookrightarrow \widetilde{T}\) and \(T' \hookrightarrow \widetilde{T}'\). Let \(\widetilde{\Psi} \in \hat{D}^{\text{con}}_{\Psi}(\widetilde{T})\) be a lifting of \(\Psi\).

We fix a linear map \(\sigma : A' \hookrightarrow \widetilde{A}'\) such that \(\kappa^*\sigma = \text{id}_{A'}\). Set \(\widetilde{\chi}' = \chi_{\sigma(\alpha), \sigma(\beta_0)}\), where \(\chi' = \chi_{\alpha, \beta_0}\). Define \(\widetilde{\eta}'\) by \(\widetilde{\eta}'s_i = \sigma(\eta^*s_i), i = 1, \ldots, l\). Let \(\widetilde{\xi}'\) be the lifting of \(\xi'\) determined by \(\sigma\). Then
\[
\widetilde{\Psi}' := \widetilde{\chi}'^{-1} \circ \widetilde{\eta}' \circ \text{Con} \Phi \circ \widetilde{\xi}'^{-1}
\]
is a lifting of \(\Psi'\) and
\[
(4.9) \quad \widetilde{\chi}' \circ \widetilde{\Psi}' \circ \widetilde{\xi}' = \widetilde{\eta}' \circ \text{Con} \Phi.
\]
By Theorem 2.4 it is enough to find liftings \(\widetilde{\chi}, \widetilde{\xi}, \widetilde{\eta}\) of \(\chi', \xi', \eta'\) such that
\[
\widetilde{\chi} \cdot \widetilde{\Psi} \circ \widetilde{\xi} = \widetilde{\eta} \circ \Phi
\]
in order to prove the theorem.
Consider the following commutative diagram

\[
\begin{array}{ccc}
\mathcal{C} \times \tilde{T}' & \xrightarrow{\psi'} & \mathcal{C} \times \tilde{T} & \xrightarrow{\Phi} & \mathcal{C} \times \mathcal{C}' \\
\mathcal{C}^3 \times \tilde{T}' & \xrightarrow{pr} & \mathcal{C}^3 \times \tilde{T} & \xrightarrow{\tilde{\Psi}} & \mathcal{C} \times \mathcal{C}' \\
\tilde{T}' & \xrightarrow{\tilde{\eta}'} & \tilde{T} & \xrightarrow{\tilde{\eta}} & \mathcal{C}'.
\end{array}
\]

If \(\text{Con} \Phi \) is given by

\[
X_i(t_i, s), \ Y_i(t_i, s), \ P_i(t_i, s) \in \mathbb{C}\{s, t_i\},
\]
then \(\tilde{\eta}^* \text{Con} \Phi \) is given by

\[
X_i(t_i, \tilde{\eta}^*(z)), \ Y_i(t_i, \tilde{\eta}^*(z)), \ P_i(t_i, \tilde{\eta}^*(z)) \in \tilde{A}'\{t_i\} = \mathbb{C}\{z, t_i\}
\]
for \(i = 1, \ldots, r \). Suppose that \(\tilde{\Psi}' \) is given by

\[
U_i'(t_i, z), \ V_i'(t_i, z), \ W_i'(t_i, z) \in \mathbb{C}\{z, t_i\}.
\]
Then, \(\tilde{\Psi} \) must be given by

\[
U_i = U_i' + \varepsilon u_i, \ V_i = V_i' + \varepsilon v_i, \ W_i = W_i' + \varepsilon w_i \in \tilde{A}\{t_i\} = \mathbb{C}\{z, t_i\} \oplus \varepsilon \mathbb{C}\{t_i\}
\]
with \(u_i, v_i, w_i \in \mathbb{C}\{t_i\} \) and \(i = 1, \ldots, r \). By definition of deformation we have that, for each \(i \),

\[
(U_i, V_i, W_i) = (x_i(t_i), y_i(t_i), p_i(t_i)) \mod \mathfrak{m}_{\tilde{A}}.
\]
Suppose \(\tilde{\eta} : \tilde{T}' \to \mathbb{C}' \) is given by \((\tilde{\eta}_1', \ldots, \tilde{\eta}_r') \), with \(\tilde{\eta}_i' \in \mathbb{C}\{z\} \). Then \(\tilde{\eta} \) must be given by \(\tilde{\eta} = \tilde{\eta}' + \varepsilon \tilde{\eta}^0 \) for some \(\tilde{\eta}^0 = (\tilde{\eta}_1^0, \ldots, \tilde{\eta}_r^0) \in \mathbb{C}' \). Suppose that \(\tilde{\chi}' : \mathbb{C}^3 \times \tilde{T}' \to \mathbb{C}^3 \times \tilde{T}' \) is given at the ring level by

\[
(x, y, p) \mapsto (H_1', H_2', H_3'),
\]
such that \(H' = id \mod \mathfrak{m}_{\tilde{A}'} \) with \(H_i' = (x, y, p)A'\{x, y, p\} \). Let the automorphism \(\tilde{\zeta} : \mathbb{C} \times \tilde{T}' \to \mathbb{C} \times \tilde{T}' \) be given at the ring level by

\[
t_i \mapsto h_i'
\]
such that \(h' = id \mod \mathfrak{m}_{\tilde{A}'} \) with \(h_i' \in (t_i)\mathbb{C}\{z, t_i\} \).

Then, from (4.9) follows that

\[
X_i(t_i, \tilde{\eta}') = H_1'(U_i'(h_i'), V_i'(h_i'), W_i'(h_i')),
\]
(4.10)

\[
Y_i(t_i, \tilde{\eta}') = H_2'(U_i'(h_i'), V_i'(h_i'), W_i'(h_i')),
\]

\[
P_i(t_i, \tilde{\eta}') = H_3'(U_i'(h_i'), V_i'(h_i'), W_i'(h_i')).
\]
Now, \(\eta' \) must be extended to \(\eta \) such that the first two previous equations extend as well. That is, we must have

\[
X_i(t_i, \eta) = (H'_{1i} + \epsilon \alpha)(U_i(h'_i + \epsilon h^0_i), V_i(h'_i + \epsilon h^0_i), W_i(h'_i + \epsilon h^0_i)),
\]

\[
Y_i(t_i, \eta) = (H'_{2i} + \epsilon \beta)(U_i(h'_i + \epsilon h^0_i), V_i(h'_i + \epsilon h^0_i), W_i(h'_i + \epsilon h^0_i)).
\]

with \(\alpha, \beta \in (x, y, p) \mathbb{C}\{x, y, p\} \), \(h^0_i \in (t_i) \mathbb{C}\{t_i\} \) such that

\[
(x, y, p) \mapsto (H'_1 + \epsilon \alpha, H'_2 + \epsilon \beta, H'_3 + \epsilon \gamma)
\]
gives a relative contact transformation over \(\tilde{T} \) for some \(\gamma \in (x, y, p) \mathbb{C}\{x, y, p\} \).

The existence of this extended relative contact transformation is guaranteed by Theorem 2.6. Moreover, again by Theorem 2.6 this extension depends only on the choices of \(\alpha \) and \(\beta_0 \). So, we need only to find \(\alpha, \beta_0, \eta^0 \) and \(h^0_i \) such that (4.11) holds. Using Taylor’s formula and \(\varepsilon^2 = 0 \) we see that

\[
X_i(t_i, \eta' + \varepsilon \eta^0) = X_i(t_i, \eta') + \varepsilon \sum_{j=1}^{\ell} \frac{\partial X_i}{\partial s_j}(t_i, \eta') \eta^0_j
\]

(4.12)

\[
(\varepsilon m_{\tilde{A}} = 0) \quad \Rightarrow \quad X_i(t_i, \eta') + \varepsilon \sum_{j=1}^{\ell} \frac{\partial X_i}{\partial s_j}(t_i, 0) \eta^0_j,
\]

\[
Y_i(t_i, \eta' + \varepsilon \eta^0) = Y_i(t_i, \eta') + \varepsilon \sum_{j=1}^{\ell} \frac{\partial Y_i}{\partial s_j}(t_i, 0) \eta^0_j.
\]

Again by Taylor’s formula and noticing that \(\varepsilon m_{\tilde{A}} = 0, \varepsilon m_{\tilde{A}'} = 0 \) in \(\tilde{A}, h' = id \mod m_{\tilde{A}'}, \) and \((U_i, V_i) = (x_i(t_i), y_i(t_i)) \mod m_{\tilde{A}} \) we see that

\[
U_i(h'_i + \epsilon h^0_i) = U_i(h'_i) + \epsilon \tilde{U}_i(h'_i) h^0_i
\]

(4.13)

\[
= U'_i(h'_i) + \epsilon (\tilde{x}_i h^0_i + u_i),
\]

\[
V_i(h'_i + \epsilon h^0_i) = V'_i(h'_i) + \epsilon (\tilde{y}_i h^0_i + v_i).
\]

Now, \(H' = id \mod m_{\tilde{A}'}, \) so

\[
\frac{\partial H'_1}{\partial x} = 1 \mod m_{\tilde{A}'}, \quad \frac{\partial H'_1}{\partial y}, \frac{\partial H'_1}{\partial p} \in m_{\tilde{A}'} \mathbb{A}'(x, y, p).
\]

In particular,

\[
\varepsilon \frac{\partial H'_1}{\partial y} = \varepsilon \frac{\partial H'_1}{\partial p} = 0.
\]

By this and arguing as in (4.12) and (4.13) we see that

\[
(H'_1 + \epsilon \alpha)(U'_i(h'_i) + \epsilon (\tilde{x}_i h^0_i + u_i), V'_i(h'_i) + \epsilon (\tilde{y}_i h^0_i + v_i), W'_i(h'_i) + \epsilon (\tilde{p}_i h^0_i + w_i))
\]

\[
= H'_1(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)) + \epsilon (\alpha(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)) + 1(\tilde{x}_i h^0_i + u_i))
\]

\[
= H'_1(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)) + \epsilon (\alpha(x_i, y_i, p_i) + \tilde{x}_i h^0_i + u_i),
\]

\[
(H'_2 + \epsilon \beta)(U'_i(h'_i) + \epsilon (\tilde{x}_i h^0_i + u_i), V'_i(h'_i) + \epsilon (\tilde{y}_i h^0_i + v_i), W'_i(h'_i) + \epsilon (\tilde{p}_i h^0_i + w_i))
\]

\[
= H'_2(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)) + \epsilon (\beta(x_i, y_i, p_i) + \tilde{y}_i h^0_i + v_i)
\]

\[
= H'_3(U'_i(h'_i), V'_i(h'_i), W'_i(h'_i)) + \epsilon (\gamma(x_i, y_i, p_i) + \tilde{w}_i h^0_i + w_i).
\]
Substituting this in (4.11) and using (4.10) and (4.12) we see that we have to find $\eta^0 = (\eta^0_1, \ldots, \eta^0_\ell) \in \mathbb{C}^\ell$, h^0_i such that

$$
(4.14) \quad (u_i(t_i), v_i(t_i)) = \sum_{j=1}^\ell \eta^0_j \left(\frac{\partial X_i}{\partial s_j}(t_i, 0), \frac{\partial Y_i}{\partial s_j}(t_i, 0) \right) - h^0_i (\dot{x}_i(t_i), \dot{y}_i(t_i)) - (\alpha(x_i(t_i), y_i(t_i), p_i(t_i)), \beta(x_i(t_i), y_i(t_i), p_i(t_i))).
$$

Note that, because of Remark 2.7 (i), $\alpha(x_i(t_i), y_i(t_i), p_i(t_i))$, $\beta(x_i(t_i), y_i(t_i), p_i(t_i)) \in \tilde{I}$ for each i. Also note that $\Psi \in \text{Def}_\psi (\tilde{T})$ means that $u_i \in t^m_i \mathbb{C}\{t_i\}, v_i \in t^m_i \mathbb{C}\{t_i\}$. Then, if the vectors

$$
\left(\frac{\partial X_1}{\partial s_j}(t_1, 0), \ldots, \frac{\partial X_r}{\partial s_j}(t_r, 0) \right) \frac{\partial}{\partial x} + \left(\frac{\partial Y_1}{\partial s_j}(t_1, 0), \ldots, \frac{\partial Y_r}{\partial s_j}(t_r, 0) \right) \frac{\partial}{\partial y} = (a^1_j(t_1), \ldots, a^r_j(t_r)) \frac{\partial}{\partial x} + (b^1_j(t_1), \ldots, b^r_j(t_r)) \frac{\partial}{\partial y}, \quad j = 1, \ldots, \ell
$$

form a basis of [generate] \widehat{M}_ρ, we can solve (4.14) with unique $\eta^0_1, \ldots, \eta^0_\ell$ [respectively, solve] for all $i = 1, \ldots, r$. This implies that the conormal of Φ is a formally semiuniversal [respectively, versal] equimultiple deformation of ψ over \mathbb{C}^ℓ.

\[5. \text{ Versal Deformations}\]

Let $f \in \mathbb{C}\{x_1, \ldots, x_n\}$. We will denote by $\int f dx_i$ the solution of the Cauchy problem

$$
\frac{\partial g}{\partial x_i} = f, \quad g \in (x_i).
$$

Let ψ be a Legendrian curve with parametrization given by

$$
(5.1) \quad t_i \mapsto (x_i(t_i), y_i(t_i), p_i(t_i)) \quad i = 1, \ldots, r.
$$

We will call fake plane projection of (5.1) to the plane curve σ with parametrization given by

$$
(5.2) \quad t_i \mapsto (x_i(t_i), p_i(t_i)) \quad i = 1, \ldots, r.
$$

We will denote σ by $\psi^{\sigma f}$.

Given a plane curve σ with parametrization (5.2), we will call fake conormal of σ to the Legendrian curve ψ with parametrization (5.1), where

$$
y_i(t_i) = \int p_i(t_i) \dot{x}_i(t_i) dt_i.
$$

We will denote ψ by $\text{Con}_f \sigma$. Applying the construction above to each fibre of a deformation we obtain functors

$$
\pi_f : \widehat{\text{Def}}_\psi \rightarrow \widehat{\text{Def}}_\sigma, \quad \text{Con}_f : \text{Def}_\sigma \rightarrow \widehat{\text{Def}}_\psi.
$$

Notice that

$$
(5.3) \quad \text{Con}_f (\Psi^{\sigma f}) = \Psi, \quad (\text{Con}_f (\Sigma))^{\sigma f} = \Sigma
$$
for each \(\Psi \in \mathcal{D}ef_{f, \psi} \) and each \(\Sigma \in \mathcal{D}ef_{f, \sigma} \).

Let \(\psi \) be the parametrization of a Legendrian curve given by (5.1). Let \(\sigma \) be the fake plane projection of \(\psi \). Set \(\hat{\sigma} := \dot{x} \frac{\partial}{\partial x} + \dot{p} \frac{\partial}{\partial p} \). Let \(I^f \) be the linear subspace of

\[
\mathfrak{m} \frac{\partial}{\partial x} \oplus \mathfrak{m} \frac{\partial}{\partial p} = \left(\bigoplus_{i=1}^{r} t_i \mathbb{C} \{ t_i \} \frac{\partial}{\partial x} \right) \oplus \left(\bigoplus_{i=1}^{r} t_i \mathbb{C} \{ t_i \} \frac{\partial}{\partial p} \right)
\]

generated by

\[
\alpha \frac{\partial}{\partial x} - \left(\frac{\partial \alpha}{\partial x} + \frac{\partial \alpha}{\partial y} \right) p \frac{\partial}{\partial p}, \quad \left(\frac{\partial \beta}{\partial x} + \frac{\partial \beta}{\partial y} \right) \frac{\partial}{\partial p},
\]

and

\[
\alpha_k p^k \frac{\partial}{\partial x} - \frac{1}{k+1} \left(\frac{\partial \alpha_k}{\partial x} p^{k+1} + \frac{\partial \alpha_k}{\partial y} p^{k+2} \right) \frac{\partial}{\partial p}, \quad k \geq 1,
\]

where \(\alpha_k \in (x, y), \beta_0 \in (x^2, y) \) for each \(k \geq 0 \). Set

\[
M^f = \frac{\mathfrak{m} \frac{\partial}{\partial x} \oplus \mathfrak{m} \frac{\partial}{\partial p}}{\mathfrak{m} \hat{\sigma} + I^f}.
\]

Theorem 5.1. Assuming the notations above, \(\mathcal{D}ef_{f, \psi}(T_\varepsilon) \cong M^f \).

Proof. Let \(\Psi \in \mathcal{D}ef_{f, \psi}(T_\varepsilon) \) be given by

\[
\Psi_i(t_i, \varepsilon) = (X_i, Y_i, P_i) = (x_i + \varepsilon a_i, y_i + \varepsilon b_i, p_i + \varepsilon c_i),
\]

where \(a_i, b_i, c_i \in \mathbb{C} \{ t_i \} t_i \) and \(Y_i = \int P_i \partial t_i X_i dt_i, \ i = 1, \ldots, r \). Hence

\[
b_i = \int (\dot{x}_i c_i + \dot{a}_i p_i) dt_i, \quad i = 1, \ldots, r.
\]

By (5.3) \(\Psi \) is trivial if and only if there an isomorphism \(\xi : \mathbb{C} \times T_\varepsilon \to \mathbb{C} \times T_\varepsilon \) given by

\[
t_i \rightarrow \tilde{t}_i = t_i + \varepsilon h_i, \quad h_i \in \mathbb{C} \{ t_i \} t_i, \ i = 1, \ldots, r,
\]

and a relative contact transformation \(\chi : \mathbb{C}^3 \times T_\varepsilon \to \mathbb{C}^3 \times T_\varepsilon \) given by

\[
(x, y, p, \varepsilon) \mapsto (x + \varepsilon\alpha, y + \varepsilon\beta, p + \varepsilon\gamma, \varepsilon)
\]

such that

\[
X_i = x_i(\tilde{t}_i) + \varepsilon \alpha(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)),
\]

\[
P_i = p_i(\tilde{t}_i) + \varepsilon \beta(x_i(\tilde{t}_i), y_i(\tilde{t}_i), p_i(\tilde{t}_i)),
\]

\(i = 1, \ldots, r \). Following the argument of the proof of Theorem 4.1, \(\Psi^f \) is trivial if and only if

\[
a_i(t_i) = \dot{x}_i(t_i) h_i(t_i) + \alpha(x_i(t_i), y_i(t_i), p_i(t_i)),
\]

\[
c_i(t_i) = \dot{p}_i(t_i) h_i(t_i) + \gamma(x_i(t_i), y_i(t_i), p_i(t_i)),
\]

\(i = 1, \ldots, r \). The result follows from Remark 2.7 (ii). \(\square \)
Lemma 5.2. Let \(\psi \) be the parametrization of a Legendrian curve. Let \(\Phi \) be the semiuniversal deformation in \(\text{Def}_f \) of the fake plane projection \(\sigma \) of \(\psi \). Then \(\text{Con}_f \Phi \) is a versal deformation of \(\psi \) in \(\text{Def}_f \).

Proof. It follows the argument of Lemma 4.3.

Theorem 5.3. Let \(a^j, c^j \in m_{\mathbb{C}} \) such that

\[
(5.4) \quad a^i \frac{\partial}{\partial x} + c^j \frac{\partial \ell}{\partial p} = \begin{bmatrix} a^i_1 \\ \vdots \\ a^i_\ell \\ c^j_1 \\ \vdots \\ c^j_\ell \end{bmatrix} \frac{\partial}{\partial x} + \begin{bmatrix} c^j_1 \\ \vdots \\ c^j_\ell \end{bmatrix} \frac{\partial \ell}{\partial p},
\]

\(i = 1, \ldots, \ell \), represents a basis [a system of generators] of \(M^j_f \). Let \(\Phi \in \text{Def}_f \) be given by

\[
(5.5) \quad X_i(t, s) = x_i(t_i) + \sum_{j=1}^{\ell} a^j_i(t_i)s_j, \quad P_i(t, s) = p_i(t_i) + \sum_{j=1}^{\ell} c^j_i(t_i)s_j,
\]

\(i = 1, \ldots, r \). Then \(\text{Con}_f \Phi \) is a semiuniversal [versal] deformation of \(\psi \) in \(\text{Def}_f \).

Proof. It follows the argument of Theorem 4.4 using Remark 2.7(ii). □

6. Examples

Example 6.1. Let \(\varphi(t) = (t^3, t^{10}) \), \(\psi(t) = (t^3, t^{10}, t^7) \), \(\sigma(t) = (t^3, \frac{10}{3}t^7) \). The deformations given by

- \(X(t, s) = t^3, \quad Y(t, s) = s_1 t^4 + s_2 t^5 + s_3 t^7 + s_4 t^8 + t^{10} + s_5 t^{11} + s_6 t^{14}; \)
- \(X(t, s) = s_1 t + s_2 t^2 + t^3, \quad Y(t, s) = s_3 t + s_4 t^2 + s_5 t^4 + s_6 t^5 + s_7 t^7 + s_8 t^8 + t^{10} + s_9 t^{11} + s_{10} t^{14}; \)

are respectively

- an equimultiple semiuniversal deformation;
- a semiuniversal deformation

of \(\varphi \). The conormal of the deformation given by

\[
X(t, s) = t^3, \quad Y(t, s) = s_1 t^7 + s_2 t^8 + t^{10} + s_3 t^{11};
\]

is an equimultiple semiuniversal deformation of \(\psi \). The fake conormal of the deformation given by

\[
X(t, s) = s_1 t + s_2 t^2 + t^3, \quad P(t, s) = s_3 t + s_4 t^2 + s_5 t^4 + s_6 t^5 + \frac{10}{3} t^7 + s_7 t^8;
\]

is a semiuniversal deformation of the fake conormal of \(\sigma \). The conormal of the deformation given by

\[
X(t, s) = s_1 t + s_2 t^2 + t^3, \quad Y(t, s) = \alpha_2 t^2 + \alpha_3 t^3 + \alpha_4 t^4 + \alpha_5 t^5 + \alpha_6 t^6 + \alpha_7 t^7 + \alpha_8 t^8 + \alpha_9 t^9 + \alpha_{10} t^{10} + \alpha_{11} t^{11};
\]

\(\alpha_2, \ldots, \alpha_{11} \) being arbitrary constants.
is a semiuniversal deformation of ψ.

Example 6.2. Let $Z = \{(x, y) \in \mathbb{C}^2 : (y^3 - x^5)(y^3 - x^7) = 0\}$. Consider the parametrization φ of Z given by
\[
x_1(t_1) = t_1^2, \quad y_1(t_1) = t_1^5, \quad x_2(t_2) = t_2^2, \quad y_2(t_2) = t_2^7.
\]

Let σ be the fake projection of the conormal of φ given by
\[
x_1(t_1) = \frac{t_1^2}{2}, \quad p_1(t_1) = \frac{5}{2}t_1^3, \quad x_2(t_2) = t_2^2, \quad p_1(t_2) = \frac{7}{2}t_2^5.
\]

The deformations given by
- $X_1(t_1, s) = t_1^2$, $Y_1(t_1, s) = s_1 t_1^4 + t_1^5$,
- $X_2(t_2, s) = t_2^2$, $Y_2(t_2, s) = s_2 t_2^2 + s_3 t_2^3 + s_4 t_2^4 + s_5 t_2^5 + s_6 t_2^6 + t_2^7 + t_2^8 + s_8 t_2^{10} + s_9 t_2^{12}$,
- $X_1(t_1, s) = s_1 t_1 + t_1^2$, $Y_1(t_1, s) = s_3 t_1 + s_4 t_1^2 + t_1^5$,
- $X_2(t_2, s) = s_2 t_2 + t_2^2$, $Y_2(t_2, s) = s_5 t_2 + s_6 t_2^2 + s_7 t_2^3 + s_8 t_2^4 + s_9 t_2^5 + s_{10} t_2^6 + t_2^7 + s_{11} t_2^8 + s_{12} t_2^{10} + s_{13} t_2^{12}$,

are respectively
- an equimultiple semiuniversal deformation;
- a semiuniversal deformation

of φ. The conormal of the deformation given by
\[
x_1(t_1, s) = t_1^2, \quad Y_1(t_1, s) = t_1^5,
\]
\[
x_2(t_2, s) = t_2^2, \quad Y_2(t_2, s) = s_1 t_2^4 + s_2 t_2^5 + s_3 t_2^6 + t_2^7 + s_4 t_2^8;
\]

is an equimultiple semiuniversal deformation of the conormal of φ. The fake conormal of the deformation given by
\[
x_1(t_1, s) = s_1 t_1 + t_1^2, \quad P_1(t_1, s) = s_3 t_1 + \frac{5}{2} t_1^3,
\]
\[
x_2(t_2, s) = s_2 t_2 + t_2^2, \quad P_2(t_2, s) = s_4 t_2 + s_5 t_2^2 + s_6 t_2^3 + s_7 t_2^4 + \frac{7}{2} t_2^5 + s_8 t_2^6;
\]
is a semiuniversal deformation of the fake conormal of σ. The conormal of the deformation given by

$$
X_1(t_1, s) = s_1 t_1 + t_1^2, \quad Y_1(t_1, s) = \alpha_2 t_1^2 + \alpha_3 t_1^3 + \alpha_4 t_1^4 + t_1^5,
$$

$$
X_2(t_2, s) = s_2 t_2 + t_2^2, \quad Y_2(t_2, s) = \beta_2 t_2^2 + \beta_3 t_2^3 + \beta_4 t_2^4 + \beta_5 t_2^5 + \beta_6 t_2^6 + \beta_7 t_2^7 + \beta_8 t_2^8;
$$

with

$$
\alpha_2 = \frac{s_1 s_3}{2}, \quad \alpha_3 = \frac{2 s_3}{3}, \quad \alpha_4 = \frac{5 s_1}{8},
$$

$$
\beta_2 = \frac{s_2 s_4}{2}, \quad \beta_3 = \frac{2 s_4 + s_2 s_5}{3}, \quad \beta_4 = \frac{2 s_5 + s_2 s_6}{4},
$$

$$
\beta_5 = \frac{2 s_6 + s_2 s_7}{5}, \quad \beta_6 = \frac{4 s_7 + 7 s_2}{12}, \quad \beta_7 = 1 + \frac{s_2 s_8}{7}, \quad \beta_8 = \frac{2 s_8}{8},
$$

is a semiuniversal deformation of the conormal of φ.

References

[1] A. Araújo and O. Neto, *Moduli of Germs of Legendrian Curves*, Ann. Fac. Sci. Toulouse Math., Vol. XVIII, 4, 2009, pp. 645–657.

[2] J. Cabral and O. Neto, *Microlocal versal deformations of the plane curves $y^k = x^n$*, C. R. Acad. Sci. Paris, Ser. I 347 (2009), pp. 1409–1414.

[3] G. -M. Greuel, C. Lossen and E. Shustin, *Introduction to Singularities and Deformations*, Springer (2007).

[4] H. Flenner, *Ein Kriterium für die Offenheit der Versalität*, Math. Z. 178 (1981), pp. 449–473.