A Rare Liver Tumor: Case Report and Literature Review

Choi Chin Wa1*, Leong Chin Wan1, Iao Kin Sang2, Chu Man Leng3, Jose Costa-Maia3, Pang Heong Keong1

1Department of General Surgery; 2Departments of Neurosurgery; 3Departments of Pathology
Centro Hospitalar Conde de São Januário, Macau, China

ABSTRACT

The incidence of distant metastasis from meningioma is reported to be rare. Only about 0.1% of meningiomas metastasize outside the central nervous system (1), with 11 cases of liver metastasis reported in PubMed. A consensus about screening programs and treatment plan for metastatic meningioma is still lacking. Surgical resection remains the first option for the treatment and should be performed in Centers with adequate experience. We report a case of metastatic liver tumor from an atypical meningioma and reviewed similar previously published cases, summarizing potential risk factors for liver metastasis and screening recommendations.

Key words: metastatic meningioma, liver metastasis, locally recurrent meningioma, ultrasound, Somatostatin Receptor Scintigraphy

INTRODUCTION

Meningiomas are the most frequent primary brain tumors. They arise from the meningothelial cells of the arachnoid membrane and are more common in women and in the sixth decade of life (1). Most are benign, but a minority are atypical or malignant (3). Surgery and radiotherapy are the main therapeutic options for primary meningioma.

Distant metastasis from meningioma are rare. Extracranial metastases of atypical meningiomas have an estimated incidence of 1–5 out of 1000 cases, most commonly to the lung, liver, lymph nodes, bone, pleura and mediastinum (1). The proposed dissemination pathways for hepatic metastasis are the spread through the vertebral venous system to the liver (4). Without an established screening strategy, metastases are easily overlooked because most patients remain asymptomatic until an advanced stage. Therefore, regular follow-up examination appears necessary.

CASE PRESENTATION AND LITERATURE REVIEW

A 48-year-old female was diagnosed with meningioma in 2000 and underwent complete surgical resection with pathology indicating a fibrous meningioma.
In 2008, the patient presented with blurred vision and right-sided weakness with poor coordination. Cranial computed tomography (CT) showed tumor relapse, and the patient underwent a second complete surgical resection. Pathology revealed atypical meningioma and she received post-operative radiotherapy, with regular neurosurgical follow-up.

In January 2020, the patient complained of frequent loose stools and weight loss for 6 months. Physical examination was relevant for a 5cm, hard, non-tender, hepatomegaly. Abdominal ultrasound found a large solid-cystic liver mass with internal vascularity. Differential diagnosis at the time included primary or metastatic liver neoplasm. Laboratory tests revealed normal liver function and coagulation time, negative hepatitis serology, normal tumor markers. Abdominal magnetic resonance imaging (MRI) revealed a 12 cm x 16 cm x 20 cm cystic-solid mass in the liver predominantly on the right lobe. The mass exhibited long T1 T2 signal with restricted diffusion and heterogeneous enhancement after contrast administration (figure 1). Cerebral MRI showed no evidence to suggest residual tumor or local recurrence.

Biopsy was proposed, but patient refused and underwent right hemihepatectomy on January, 2020. She was discharged on the seventh post-operative day after an uneventful recovery. Pathology revealed an atypical spindle cell tumor. Considering the previous patient history and previous diagnosis, metastatic meningioma was suggested. The performed immunohistochemical stains showed PR+, EMA+, SSTR2 focally +, Claudin1-. The recurrent brain tumor showed PR+, EMA+, SSTR2-, Claudin1- (figure 2).

With a 12-month follow-up, the patient remains with no evidence of disease recurrence.

We have performed a literature review of 11 previously published liver metastatic cases of meningioma (table 1), and associated the present case for analysis.

According to the World Health Organization (WHO)
A Rare Liver Tumor: Case Report and Literature Review

classification (5), five of the total 12 cases, (42%) were grade 1, with two (including present case) subsequently recurring intracranially to WHO grade 2.

Ten cases (83%) had 1 or more episodes of intracranial recurrence. The time from first cranial recurrence to the diagnosis of liver metastasis ranged from 0 to 180 months (average 59.5 months). In two patients, liver metastases were synchronous with the primary tumor, and in one, preceded the intracranial recurrence diagnosis by 12 months.

Six out of 12 cases (50%), were either asymptomatic or presented symptoms unrelated to the liver lesions.

Five patients (42%), were alive, 4 of them with no recurrence after liver resection (14 days-6 years) and one with stable disease (5 years). Six patients were deceased, 2 from the cranial lesions, 1 from the liver lesion, and, in 3, the cause of death was not specified. Vital status was not mentioned in one patient.

DISCUSSION

The most important predictive factor for recurrence and metastasis in meningioma is the tumor grade, according to the WHO criteria (6). Although the rate of malignant change in meningioma is reported to be under 7% (7), metastasis may also occur in grade 1 meningioma without transformation. In fact, any histologically benign meningioma has the potential to metastasize (6), although this tends to occur following one or more episodes of resection for local recurrence.

In Cecilia L. Dalle Ore et al. research, 100% of metastases were identified in patients with multiply recurrent CNS disease (8). Additional predictive factors include mitotic rate, nuclear atypia, presence of necrosis, and invasion of adjacent vascular structures.

Distant metastases are, nevertheless, rare in meningioma and may easily be overlooked in clinical practice, as most patients remain asymptomatic.

There is no consensus in screening for metastasis after primary meningioma resection. Surov et al. reported that only 50.4% of patients in the literature were symptomatic at the time of diagnosis (10). Cecilia L. Dalle Ore et al. suggest that screening for metastases within the asymptomatic recurrent meningioma population can identify metastases in over 20% of patients (8). Therefore, in our opinion, intracranial meningioma recurrence should constitute a criterion for screening, independently of WHO grade and symptoms. Abdominal ultrasonography, considering its sensitivity, convenience, low cost and non-invasiveness, should be indicated after the first intracranial meningioma recurrence. In the event of any discovered focal liver lesion, 111indium (111In)-octreotide scintigraphy should be applied. Given the higher frequency and density of somatostatin receptors (SSTR) of meningioma, it has the potential to detect extra-cranial metastases (11) and to differentiate them from other etiologies.

No definite therapeutic regimen has been established for metastatic liver meningiomas. Resection seems to improve the prognosis in metastatic disease, especially if the primary tumor is a low-grade
meningioma. Disease progression or death seem to occur more often in grade II/III metastatic meningiomas. External beam radiation with its newest components such as photon-based stereotactic radiotherapy can be used for non-resectable lesions. Chemotherapy remains of limited or no proven benefit (6).

CONCLUSION

The majority of primary meningiomas are benign and liver metastasis are rare and often asymptomatic, therefore easily overlooked unless actively sought for. We propose that patients with intracranial recurrence of meningioma, even in the benign WHO grade 1, should undergo screening with annual abdominal ultrasound, followed by (111In)-octreotide scintigraphy if any lesion is found.

Disclosures

The authors have no conflict of interest.

REFERENCES

1. Lambertz N, Koehler J, Schulte DM, Kuehl H, Wohlschlaeger J, Hense J, et al. Multivisceral systemic metastases from an intracranial anaplastic meningioma: A case report and review of literature. Clin Neurol Neurosurg. 2011;113(7):592-5.

2. Rampurwala M, Pazooki M, Schauer P. Delayed Hepatic Metastasis from a benign fibroblastic meningioma thirty-one years after surgical resection of the intracranial tumor. J Clin Oncol. 2011;29(9):e214-5. Epub 2010 Dec 20.

3. Claus EB, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M, Black PM. Epidemiology of intracranial meningioma. Neurosurgery. 2005;57(6):1089-95; discussion 1089-95.

4. Forest F, Berremla SA, Gyenes C, Ginguéné C, Kassir R, Sulaiman A, et al. Metastatic meningiomas: an unusual clinical and pathological diagnosis with highly variable outcome. J Neurooncol. 2014;120(2):411-21.

5. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-20.

6. Obiorah IE, Ozdemirli M. Incidental Metastatic Meningioma Presenting as a Large Liver Mass. Hindawi Case Reports Hepatol. 2018;2018:1089394.

7. Taleb G, Campello C, Renard D, El Fertit H, Joujoux JM, Savin C, Labauge P. Multifocal extracranial meningioma metastases. Arch Neurol. 2011;68(3):388-9.

8. Dalle Ore CL, Magill ST, Yen AJ, Shahin MN, Lee DS, CHG Lucuas, et al. Meningioma metastases: incidence and proposed screening paradigm. J Neurosurg. 2019;132(5):1447-1455.

9. Kessler RA, Garzon-Muvdi T, Yang W, Weinpart J, Olivi A, Huang J, et al. Metastatic Atypical and Anaplastic Meningioma: A Case Series and Review of the Literature. World Neurosurg. 2017;101:47-56.

10. Surov A, Gottschling S, Bolt J, Kornhuber M, Altheri A, Holzhausen HJ, et al. Distant metastases in meningioma: an underestimated problem. J Neurooncol. 2013;112(3):323-7.

11. Alexandru D, Glantz MJ, Kim L, Chamberlain MC, Bota DA. Pulmonary metastases in patients with recurrent, treatment-resistant meningioma prognosis and identification by 111Indium-Octreotide imaging. Cancer. 2011;117(19):4506-11.

12. Moir JAG, Haugk B, French JJ. Hepatic Metastasis via a Ventriculo-Peritoneal Shunt from an Intracranial Meningioma: Case Report and Review of the Literature. Case Rep Gastroenterol. 2010;4(2):267-72.

13. Enam SA, Abdulrauf S, Mehta B, Malik GM, Mahmood A. Metastasis in meningioma. Acta Neurochir (Wien). 1996;138(10):1172-7.

14. Lanfranchi M, Nikpoor N. Detection of meningioma metastasis to liver and lung using somatostatin receptor scintigraphy. Clin Nucl Med. 2013;38(8):668-70.