Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
The cortex is the largest part of the human brain, associated with higher brain functions, such as perception, thought, and action. Brain cortical thickness (CTh), cortical surface area (CSA), and cortical volume (CV) are morphological markers of cortical structure obtained from magnetic resonance imaging (MRI). These measures change with age1–3 and are linked to cognitive functioning4,5. The human cortex is also vulnerable to a wide range of disease or pathologies, ranging from developmental disorders and early onset psychiatric and neurological diseases to neurodegenerative conditions manifesting late in life. Abnormalities in global or regional CTh, CSA, and CV have been observed in neurological and psychiatric disorders, such as Alzheimer’s disease5, Parkinson’s disease6, multiple sclerosis7, schizophrenia8, bipolar disorder9, depression10, and autism11. The best method to study human cortical structure during life is using brain MRI. Hence, understanding the genetic determinants of the most robust MRI cortical markers in apparently normal adults could identify pathological pathways relevant to brain development, aging, and various diseases. Neurons in the neocortex are organized in columns which run perpendicular to the surface of the cerebral cortex12; and, according to the radial unit hypothesis, CTh is determined by the number of cells within the columns and CSA is determined by the number of columns13.

Thus, CTh and CSA reflect different mechanisms in cortical development13,14 and are likely influenced by different genetic factors15–18. CV, which is the product of CTh and CSA, is determined by a combination of these two measures, but the relative contribution of CTh and CSA to CV may vary across brain regions. CTh, CSA, and CV are all strongly heritable traits15–21, with estimated heritability of 0.69–0.81 for global CTh, and from 0.42 to 0.90 for global CSA15,16,18. Across different cortical regions, however, there is substantial regional variation in heritability of CTh, CSA, and CV15–21.

Since CTh, CSA, and CV are differentially heritable and genetically heterogeneous, we explore the genetics of each of these imaging markers using genome-wide association analyses (GWAS) in large population-based samples. We study CTh, CSA, and CV in the whole cortex and in 34 cortical regions in 22,824 individuals from 21 discovery cohorts and replicate the strongest associations in 22,363 persons from the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium. Our analyses reveal 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β, and sonic hedgehog pathways. We observe genetic heterogeneity between cortical measures and brain regions and find enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease, and psychiatric conditions.

Results

Genome-wide association analysis. The analyses of global CTh, CSA, and CV included 22,163, 18,617, and 22,824 individuals, respectively. After correction for multiple testing ($p_{\text{Discovery}} < 1.09 \times 10^{-5}$), we identified no significant associations with global CTh. However, we identified 12 independent loci associated with global CSA ($n = 6$) and CV ($n = 6$). These are displayed in Supplementary Data 1 and Supplementary Figs. 1 and 2. Five of the 6 CSA loci were replicated in an external (ENIGMA consortium) sample.22 The ENIGMA consortium only analyzed CSA and CTh.

GWAS of CTh, CSA, and CV in 34 cortical regions of interest (ROIs) identified 148 significant associations. There were 16 independent loci across 8 chromosomes determining CTh of 9 regions (Supplementary Data 2), 54 loci across 16 chromosomes associated with CSA of 21 regions (Supplementary Data 3), and 78 loci across 17 chromosomes determining CV of 23 cortical regions (Supplementary Data 4). We replicated 57 out of 64 regional CTh and CSA loci that were available in the ENIGMA consortium sample22 using a conservative replication threshold of $p_{\text{Replication}} = 3.1 \times 10^{-4}$, 0.05/160. Region-specific variants with the strongest association at each genomic locus are shown in Tables 1–3. Chromosomal ideograms showing genome-wide significant associations with global and regional cortical measures in the discovery stage are presented in Fig. 1.

If we had used a more stringent threshold of $p_{\text{Discovery}} < 4.76 \times 10^{-10} = 5 \times 10^{-5}/105$, correcting for all the 105 GWAS analyses performed, we would have identified 142 significant associations (Supplementary Data 1–4).

The strongest associations with CTh and CV were observed for rs2033939 at 15q14 ($p_{\text{Discovery, CTh}} = 1.17 \times 10^{-73}$ and $p_{\text{Discovery, CV}} = 4.34 \times 10^{-133}$) in the postcentral (primary somatosensory) cortex, and for CSA with rs1080066 at 15q14 ($p_{\text{Discovery, CSA}} = 8.45 \times 10^{-199}$) in the prescentral (primary motor) cortex. Figure 2 shows the lowest p-value of each cortical region. The postcentral cortex was also the region with the largest number of independent associations, mainly at a locus on 15q14. The corresponding regional association plots are presented in Supplementary Fig. 3.

Quantile-quantile plots of all meta-analyses are presented in Supplementary Figs. 4–7 and the corresponding genomic inflation factors (λ_{GC}), LD score regression (LDSR) intercepts, and ratios are shown in Supplementary Data 5. Although we observe inflated test statistics for some traits with λ_{GC} between 1.02 and 1.11, LDSR intercepts between 0.98 and 1.02 indicate that the inflation is mainly due to polygenicity. For traits with $\lambda_{\text{GC}} > 1.05$, the LDSR ratios range between 0.00 and 0.15 which means that a maximum of 15% of the inflation is due to other causes.

Associations across cortical measures and with other traits.

Supplementary Data 6 presents variants that are associated with the CSA or CV across multiple regions. We observed 25 single nucleotide polymorphisms (SNPs) that determined CTh and CV of the same region, but no SNPs that determined both the CTh and CSA of any given region (Supplementary Data 6). We replicated 57 out of 64 SNP loci that were available in the ENIGMA consortium sample using a conservative replication threshold of $p_{\text{Discovery}} < 4.76 \times 10^{-10} = 5 \times 10^{-5}/105$, correcting for all the 105 GWAS analyses performed, we would have identified 142 significant associations (Supplementary Data 1–4).

For CTh, we observed the maximum phenotypic variance explained by the PRS (p_{PRS}^2) in the global cortex ($p_{\text{PRS}}^2 = 0.015$, $p_{\text{PRS}} = 1.05 \times 10^{-29}$), and for CSA and CV in the pericalcarine cortex ($p_{\text{PRS}}^2 = 0.029$, $p_{\text{PRS,CSA}} = 1.29 \times 10^{-50}$, $p_{\text{PRS,CV}}^2 = 0.032$, $p_{\text{PRS,CV}} = 5.30 \times 10^{-56}$). When assessing genetic overlap with other traits, we observed that SNPs determining these cortical measures have been previously associated with anthropometric (height), neurologic (Parkinson’s disease, corticobasal degeneration, and Alzheimer’s disease), psychiatric (neuroticism and schizophrenia) and cognitive performance traits as well as with total intracranial volume (TIV) on brain MRI (Supplementary Data 10–12).

Gene identification. Positional mapping based on ANNOVAR showed that most of the lead SNPs were intergenic and intronic
Table 1 Genome-wide significant associations ($P_{\text{discovery}} < 1.109 \times 10^{-9}$) of regional CTh.

Region	Locus	Lead SNP	Nearest gene	Annotation	Position	Replication	Discovery	Pooled Meta-analysis
Superior	16q24.2	rs4843227	WNT3	Intronic	87225139	2.45E-12	2.31E-05	5.76E-05
Middle	17q21.31	rs199504	KIAA0586	Intronic	44861003	1.17E-10	1.30E-10	1.17E-10
Inferior	14q23.1	rs160458	LOC101928708	Intergenic	59074878	6.45E-08	6.45E-08	6.45E-08
Superior	1q41	rs10494988	Parietal	Intergenic	215141570	3.66E-08	3.66E-08	3.66E-08
Superior	15q14	rs2033939	Postcentral	Intergenic	39633904	5.18E-07	5.18E-07	5.18E-07
Superior	14q23.1	rs4901904	SALL1	Intronic	59624317	1.38E-04	1.38E-04	1.38E-04
Superior	14q23.1	rs4901904	LPAR1	Intronic	59624317	1.46E-13	1.46E-13	1.46E-13
Superior	14q23.1	rs3715003	CHRNA3	Intergenic	4901904	2.62E-02	2.62E-02	2.62E-02
Superior	14q23.1	rs4901904	C1orf122	Intergenic	4901904	1.45E-04	1.45E-04	1.45E-04

Pathway analysis. MAGMA gene set analyses identified 7 pathways for CTh, 3 pathways for CSA and 9 pathways for CV (Supplementary Data 20). Among them are the gene ontology (GO) sets hindbrain morphogenesis (strongest association with thickness of middle temporal cortex), forebrain generation of neurons (with surface area of precentral cortex), and central nervous system neuron development (with volume of transverse temporal cortex). However, after Bonferroni correction only one significant pathway ($p < 1.02 \times 10^{-7}$) remained: regulation of catabolic process for CTh of the inferior temporal cortex. InnateDB pathway analyses of genes mapped to independent lead SNPs by FUMA showed a significant overlap between CTh and CSA genes and the Wnt signaling pathway (Supplementary Figs. 8 and 9) as well as a significant overlap between CV genes and the basal cell carcinoma pathway (Supplementary Fig. 10).

Heritability. Heritability estimates (h^2) of global CTh were 0.64 (standard error (se) = 0.12; $p_{\text{SOLAR}} = 3 \times 10^{-7}$) in the ASPS-Fam study and 0.45 (se = 0.08; $p_{\text{GCTA}} = 2.5 \times 10^{-7}$) in the Rotterdam study (RS). For CSA, h^2 was 0.84 (se = 0.12; $p_{\text{SOLAR}} = 2.63 \times 10^{-11}$) in ASPS-Fam and 0.33 (se = 0.08; $p_{\text{GCTA}} = 1 \times 10^{-4}$) in RS, and for CV, h^2 was 0.80 (se = 0.11; $p_{\text{SOLAR}} = 1.10 \times 10^{-9}$) in ASPS-Fam and 0.32 (se = 0.08; $p_{\text{GCTA}} = 1 \times 10^{-4}$) in RS. There was a large range in heritability estimates of regional CTh, CSA, and CV (Supplementary Data 21).

Heritability based on common SNPs as estimated with LDSR was 0.25 (se = 0.03) for global CTh, 0.29 (se = 0.04) for global CSA and 0.30 (se = 0.03) for global CV. LDSR heritability estimates of regional CTh, CSA, and CV are presented in Supplementary Data 21 and Supplementary Fig. 11. For the regional analyses, the estimated heritability ranged from 0.05 to 0.18 for CTh, from 0.07 to 0.36 for CSA and from 0.06 to 0.32 for CV. Superior temporal cortex ($h^2_{\text{CTh}} = 0.18$, $h^2_{\text{CSA}} = 0.30$, $h^2_{\text{CV}} = 0.26$), precuneus ($h^2_{\text{CTh}} = 0.16$, $h^2_{\text{CSA}} = 0.29$, $h^2_{\text{CV}} = 0.28$) and pericarotidine ($h^2_{\text{CTh}} = 0.15$, $h^2_{\text{CSA}} = 0.36$, $h^2_{\text{CV}} = 0.32$) are among the most genetically determined regions.

The results of partitioned heritability analyses for global and regional CTh, CSA, and CV with functional annotation and additionally with cell-type-specific annotation are presented in (Fig. 3). One variant, rs2279829, which was associated with both CSA and CV of the pars triangularis, postcentral and supramarginal cortices, is located in the 3′UTR of ZIC4 at 3q24. We also found an exonic variant, rs10283100, in gene ENPP2 at 8q24.12 associated with CV of the insula.

We used multiple strategies beyond positional annotation to identify specific genes implicated by the various GWAS associated SNPs. FUMA identified 232 genes whose expression was determined by these variants (eQTL) and these and other genes implicated by chromatin interaction mapping are shown in Supplementary Data 13–15. MAGMA gene-based association analyses revealed 70 significantly associated ($p < 5.87 \times 10^{-8}$) genes (Supplementary Data 16–18). For global CSA and CV, 7 of 9 genes associated with each measure overlapped, but there was no overlap with global CTh. For regional CSA and CV, we found 28 genes across 13 cortical regions that determined both measures in the same region. Figure 4 summarizes the results of GTEx eQTL, chromatin interaction, positional annotation, and gene-based mapping strategies for all regions. While there are overlapping genes identified using different approaches, only DAAM1 gene (Chr14q23.1) is identified by all types of gene mapping for CV of insula. eQTL associations of our independent lead SNPs in the Religious Orders Study Memory and Aging Project (ROSMAP) dorsolateral frontal cortex gene expression dataset are presented in Supplementary Data 19.
Lobe	Region	Locus	Position	Lead SNP	Nearest gene	Annotion	N	P (Dis)	P (Rep)	P (Pooled)
	Global									
	Frontal									
	Superior frontal									
	Caudal middle frontal									
	Pars opercularis									
	Pars triangularis									
	Precentral									
	Temporal									
	Superior temporal									
	Middle temporal									
	Banksts									
	Fusiform									
	Transverse temporal									
	Parietal									
	Superior parietal									
	Inferior parietal									
	Supramarginal									
	Postcentral									
	Precuneus									
	Occipital									
	Lateral occipital									
	Lingual									
	Cuneus									
	Pericarinate									
	Posterior cingulate									
	Insula									

- **N** number of individuals in meta-analysis, *P* (Dis) two-sided p-value of discovery GWAS meta-analysis in CHARGE, *P* (Rep) two-sided p-value of replication meta-analysis in ENIGMA, *P* (Pooled) two-sided p-value of pooled discovery and replication meta-analysis. p-values are not adjusted for multiple comparisons. Banksts banks of the superior temporal sulcus.

NA, SNP or region not available in the ENIGMA sample.

In bold, significant replication (e.g. Replication < 3.1 × 10^-3) and p-values < 0.05.
Lobe	Region	Locus	Position	Lead SNP	Nearest gene	Annotation	N
Global		6q22.32	126792095	rs11759026	MIR588	Intergenic	22,410
		17q21.31	44790203	169201	NSF	Intergenic	22,784
		17q21.32	43549608	149366495	PLEKHM1	Intergenic	22,099
		12q14.3	66358347	1042725	HMG2A	3'UTR	22,784
		12q23.2	102921296	11111293	IGFI	Intergenic	22,784
		6q22	109002042	49548516	FOXO3	3'UTR	22,784
Frontal	Superior frontal	5q14.3	92186429	8888814	NR2F1-A51	Intergenic	22,692
Rostral	Caudal anterior cingulate	5q14	39636227	17694989	C15orf54	Intergenic	22,793
middle frontal		15q14	39636227	17694989	C15orf54	Intergenic	22,793
Caudal	Caudal middle frontal	2q12.1	105460333	745249	LINCO1158	ncRNA_intronic	22,726
		6q22.32	127068983	853974	RSP03	Intergenic	22,351
Paras	Paras opercularis	5q23.3	128734008	12187568	ADAMTS19	Intergenic	20,753
	Paras triangularis	3q24	147106319	2279829	ZIC4	UTR3	22,759
	Lateral orbitofrontal	14q22.2	54769839	65572946	CDKN3	Intergenic	22,801
Precentral	Precentral	15q14	39634222	1080066	C15orf54	Intergenic	22,699
Temporal	Superior temporal	10q25.3	118648841	3781566	SHTN1	Intergenic	22,699
	Inferior parietal	20q13.2	5248936	6097618	SUMO1P1	Intergenic	22,701
	Supramarginal	12q14.3	65797096	2336713	MSRB3	Intergenic	22,701
	Supramarginal	3q13.11	104724634	971551	ALCAM	Intergenic	22,701
	Supramarginal	14q22.1	59627631	71471500	THBS1	Intergenic	22,645
	Postcentral	15q14	39633904	2033939	C15orf54	Intergenic	22,723
	Postcentral	16q24.2	87225319	4843227	LOC101928708	Intergenic	22,723
	Postcentral	19p13.2	13109763	68175985	NFIX	Intergenic	21,777
	Precuneus	1q23.1	59628609	74826997	DAAM1	Intergenic	22,803
	Precuneus	3q28	19066355	35055419	OSTN	Intergenic	22,428
	Occipital	2p22.2	37818236	2215055	CDC4EP3	Intergenic	22,803
	Occipital	3q13.11	104713881	12495603	ALCAM	Intergenic	22,803
	Pericalcarine	14q22.1	59625997	73313052	DAAM1	Intergenic	22,805
	Pericalcarine	11p13.5	12072213	1102231	DKK3	Intergenic	22,799
	Pericalcarine	13q31.1	80192236	9545156	LINCO1068	Intergenic	22,799
	Caudal anterior cingulate	1q4.3	82852578	309588	VCAN	Intergenic	22,748
	Caudal anterior cingulate	11q23.1	110949402	3321403	C15orf53	Intergenic	22,543
	Caudal anterior cingulate	8q24.12	120596023	10283100	ENPP2	Exonic	21,481

Table 3 Genome-wide significant associations (\(p_{\text{Discovery}} < 1.0 \times 10^{-9}\) of global and regional CV.}
Supplementary Data 22 and 23. For global CTh, we found enrichment for super-enhancers, introns and histone marks. Repressors and histone marks were enriched for global CSA, and introns, super-enhancers, and repressors for global CV. For regional CSA and CV the highest enrichment scores (>18) were observed for conserved regions.

Genetic correlation. We found high genetic correlation (r_g) between global CSA, and global CV ($r_g = 0.81, P_{LDSSR} = 1.2 \times 10^{-186}$) and between global CTh and global CV ($r_g = 0.46, P_{LDSSR} = 1.4 \times 10^{-14}$), but not between global CTh and global CSA ($r_g = -0.02, P_{LDSSR} = 0.82$). Whereas the genetic correlation between CSA and CV was strong ($r_g > 0.7$) in most of the regions (Supplementary Data 24 and Supplementary Fig. 12), it was generally weak between CSA and CTh with $r_g < 0.3$, and ranged from 0.09 to 0.69 between CTh and CV. The postcentral and lingual cortices were the two regions with the highest genetic correlations between both CTh and CV, as well as CTh and CSA.

Genetic correlation across the various brain regions for CTh (Supplementary Fig. 13, Supplementary Data 25), CSA (Supplementary Fig. 14, Supplementary Data 26), and CV (Supplementary Fig. 15, Supplementary Data 27) showed a greater number of correlated regions for CTh and greater inter-regional variation for CSA and CV. Supplementary Data 28–30 and Supplementary Figs. 16–18 show genome-wide genetic correlations between the cortical measures and anthropometric, neurological and psychiatric, and cerebral structural traits.

Discussion

In our genome-wide association study of up to 22,824 individuals for MRI determined cortical measures of global and regional thickness, surface area, and volume, we identified 160 genome-wide significant associations across 19 chromosomes. Heritability was generally higher for cortical surface area and volume than for thickness, suggesting a greater susceptibility of cortical thickness to environmental influences. We observed strong genetic correlations between surface area and volume, but weak genetic correlation between surface area and thickness. We identified the largest number of novel genetic associations with cortical volumes, perhaps due to our larger sample size for this phenotype, which was assessed in all 21 discovery samples.
It is beyond the scope of our study to discuss each of the 160 associations identified. A large number of the corresponding genes are involved in pathways that regulate morphogenesis of neurons, neuronal cell differentiation, and cell growth, as well as cell migration and organogenesis during embryonic development. At a molecular level, the wnt/β-catenin, TGF-β, and sonic hedgehog pathways are strongly implicated. Gene-set-enrichment analyses revealed biological processes related to brain morphology and neuronal development.

Broad patterns emerged showing that genes determining cortical structure are also often implicated in development of the cerebellum and brainstem (KIAA0586, ZIC4, ENPP2) as well as the neural tube (one carbon metabolism genes DHFR and MSRBB3, the latter also associated with hippocampal volumes25). These genes determine development of not only neurons but also astroglia (THBS1) and microglia (SALL1). They determine susceptibility or resistance to a range of insults: inflammatory, vascular (THBS1, ANXA1, ARRDC3-AS1)26) and neurodegenerative (C15orf53, ZIC4, ANXA1), and have been associated with pediatric and adult psychiatric conditions (THBS1).

There is a wealth of information in the supplementary tables that can be mined for a better understanding of brain development, connectivity, function and pathology. We highlight this potential by discussing in additional detail, the possible
immune-inflammatory conditions. Nitric oxide signaling, which plays a role in several cancers and astrocyte induced synaptogenesis, and regulates chain migration stream to the olfactory bulb. Moreover, thickness, surface area, and volume of the middle temporal regions at low 6q22.32, 17q21.31, and 3q24, associate with multiple brain regions across six other regions in the frontal and parietal lobes. Lead SNPs at this locus were either intergenic between C15orf53 and C15orf54, or intergenic between C15orf54 and THBS1 (Thrombospondin-1). C15orf53 has been associated with an autosomal recessive form of spastic paraplegia showing intellectual disability and thinning of the corpus callosum (hereditary spastic paraparesis 11, or Nakamura Osame syndrome). Variants of THBS1 were reported to be related to autism and schizophrenia. The protein product of THBS1 is involved in astrocyte induced synaptogenesis, and regulates chain migration of interneuron precursors migrating in the postnatal radial migration stream to the olfactory bulb. Moreover, THBS1 is an activator of TGFβ signaling, and an inhibitor of pro-angiogenic nitric oxide signaling, which plays a role in several cancers and immune-inflammatory conditions.

Variants at Chr14q23.1 were associated with cortical surface area and volume of all regions in the occipital lobe, as well as with thickness, surface area, and volume of the middle temporal cortex, banks of the superior temporal sulcus, fusiform, supramarginal and precuneus regions, areas associated with discrimination and recognition of language or visual form. These variants are either intergenic between KIAA0586, the product of which is a conserved centrosomal protein essential for ciliogenesis, sonic hedgehog signaling and intracellular organization, and DACT1, the product of which is a target for SIRT1 and acts on the wnt/β-catenin pathway. KIAA0586 has been associated with Joubert syndrome, another condition associated with abnormal cerebellar development. Other variants are intergenic between DACT1 and DAAM1 or intergenic in DAAM1. DAAM1 has been associated with occipital lobe volume in a previous GWAS. Locus 6q22.32 contains various SNPs associated with cortical surface area and volume globally, and also within some frontal, temporal and occipital regions. The SNPs are intergenic between RSPO3 and CENPW. RSPO3 and CENPW have been previously associated with intracranial32,33 and occipital lobe volumes. RSPO3 is an activator of the canonical Wnt signaling pathway and a regulator of angiogenesis.

Chr17q21.31 variants were associated with global cortical surface area and volume and with regions in temporal lobe. These variants are intronic in the genes PLEKHM1, CRHR1, NSF, and WNT3. In previous GWAS analyses, these genes have been associated with general cognitive function and neuroticism. Variants at Chr17q21.31 were associated with cortical surface area and volume globally, and also within some frontal, temporal and occipital regions. The SNPs are intergenic between RSPO3 and CENPW. RSPO3 and CENPW have been previously associated with intracranial32,33 and occipital lobe volumes. RSPO3 is an activator of the canonical Wnt signaling pathway and a regulator of angiogenesis.

Chr17q21.31 variants were associated with global cortical surface area and volume and with regions in temporal lobe. These variants are intronic in the genes PLEKHM1, CRHR1, NSF, and WNT3. In previous GWAS analyses, these genes have been associated with general cognitive function and neuroticism. Variants at Chr17q21.31 were associated with cortical surface area and volume globally, and also within some frontal, temporal and occipital regions. The SNPs are intergenic between RSPO3 and CENPW. RSPO3 and CENPW have been previously associated with intracranial32,33 and occipital lobe volumes. RSPO3 is an activator of the canonical Wnt signaling pathway and a regulator of angiogenesis.

The protein product of the gene ZIC4 is a C2H2 zinc finger transcription factor that has an intraneuronal, non-synaptic expression and auto-antibodies to this protein have been associated with subacute sensory neuronopathy, limbic encephalitis, and seizures in patients with breast, small cell lung or ovarian cancers. ZIC4 null mice have abnormal development of the visual pathway and heterozygous deletion of the gene has also been associated with a congenital cerebellar (Dandy-Walker) malformation, thus implicating it widely in brain development as well as in neurodegeneration. C2H2ZF transcription factors are the most widely expressed transcription factors in eukaryotes and show associations with responses to abiotic (environmental) stressors. Another transcription factor, FOXC1, also associated with Dandy-Walker syndrome has been previously shown to be associated with risk of all types of ischemic stroke and with stroke

Fig. 3 Functional annotation categories for global and regional CTh, CSA, and CV. Proportion of functional annotation categories for global and regional cortical thickness (blue), surface area (light green), and volume (yellow) assigned by ANNOVAR.

Fig. 4 Number of overlapping genes between gene mapping methods. Number of overlapping genes between FUMA eQTL mapping, FUMA chromatin interaction mapping, ANNOVAR chromosome positional mapping, and MAGMA gene-based analysis for all cortical regions combined for cortical surface area (a), thickness (b) and volume (c).
severity. Thus, ZIC4 might be a biological target worth pursuing to ameliorate neurodegenerative disorders.

We found an exonic SNP within the gene ENPP2 (Autotaxin) at 8q24.12 to be associated with insular cortical volume. This gene is differentially expressed in the frontal cortex of Alzheimer patients and in mouse models of Alzheimer disease, such as the senescence-accelerated mouse prone 8 strain (SAMP8) mouse. Autotaxin is a dual-function ectoenzyme, which is the primary source of the signaling lipid, lysophosphatidic acid. Besides Alzheimer disease, changes in autotaxin/lysophosphatic acid signaling have also been shown in diverse brain-related conditions, such as intractable pain, pruritus, glioblastoma, multiple sclerosis, and schizophrenia. In the SAMP8 mouse, improvements in cognition noted after administration of LW-AFC, a putative Alzheimer remedy derived from the traditional Chinese medicinal prescription ‘Liwei Dihuang’ decoction, are correlated with restored expression of four genes in the hippocampus, one of which is ENPP2.

Among the other genetic regions identified, many have been linked to neurological and psychiatric disorders, cognitive functioning, cortical development, and cerebral structure (detailed listing in Supplementary Data 31).

Heredity estimates are, as expected, generally higher in the family-based Austrian Stroke Prevention-Family study (ASPS-Fam) than in the Rotterdam Study (RS) for CTh (average $h^2_{ASPS-Fam} = 0.52$; $h^2_{RS} = 0.26$), CSA (0.62 and 0.30) and CV (0.57 and 0.23). This discrepancy is explained by the different heritability estimation methods: pedigree-based heritability in ASPS-Fam versus heritability based on common SNPs that are in LD with causal variants in RS.

Average heritability over regions is also higher for surface area and volume, than for thickness. The observed greater heritability of CSA compared to CTh is consistent with the previously articulated hypothesis, albeit based on much smaller numbers, that CSA is developmentally determined to a greater extent with smaller subsequent decline after young adulthood, whereas CTh changes over the lifespan as aging, neurodegeneration and vascular injuries accrue. It is also interesting that brain regions more susceptible to early amyloid deposition (e.g., superior temporal cortex and precuneus) have a higher heritability.

We found no or weak genetic correlation between CTh and CSA, globally and regionally, and no common lead SNPs, which indicates that these two morphological measures are genetically independent, a finding consistent with prior reports. In contrast, we found strong genetic correlation between CSA and CV and identified common lead SNPs for CSA and CV globally, and in 12 cortical regions. Similar findings have been reported in a previous publication. The genetic correlation between CTh and CV ranged between 0.09 and 0.77, implying a common genetic background in some regions (such as the primary sensory postcentral and lingual cortices), but not in others. For CTh, we observed genetic correlations between multiple regions within each of the lobes, whereas for CSA and CV, we found genetic correlations mainly between different regions of the occipital lobe. Chen et al. have also reported strong genetic correlation for CSA within the occipital lobe. There were also a few genetic correlations observed for regions from different lobes, suggesting similarities in cortical development transcended traditional lobar boundaries.

A limitation of our study is the heterogeneity of the MR phenotypes between cohorts due to different scanners, field strengths, MR protocols and MRI analysis software. This heterogeneity as well as the different age ranges in the participating cohorts may have caused different effects over the cohorts. We nevertheless combined the data of the individual cohorts to maximize the sample size as it has been done in previous CHARGE GWAS analyses. To account for the heterogeneity we used a sample-size weighted meta-analysis that does not provide overall effect estimates. This method has lower power to detect associations compared to inverse-variance weighted meta-analysis and we therefore may have found less associations.

Methods

Study population. The sample of this study consists of up to 22,824 participants from 20 population-based cohort studies collaborating in the Cohorts of Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKBB). All the individuals were stroke- and dementia free, aged between 20 and 100 years, and of European ancestry, except for ARIC AA with African ancestry. Supplementary Data 32 provides population characteristics of each cohort and Supplementary Methods provide a short description of each cohort. Each study secured approval from institutional review boards or equivalent organizations, and all participants provided written informed consent. Our results were replicated using summary GWAS findings of 22,635 individuals from the ENIGMA consortium.

Genotyping and imputation. Genotyping was conducted using various commercially available genotyping arrays across the study cohorts. Prior to imputation, extensive quality control was performed in each cohort. Genotype data were imputed to the 1000 Genomes reference panel (mainly phase 1, version 3) using validated software. Details on genotyping, quality control and imputation can be found in Supplementary Data 33.

Phenotype definition. This study investigated CTh, CSA, and CV globally in the whole cortex and in 34 cortical regions. Global and regional CTh was defined as the mean thickness of the left and the right hemisphere in millimeter (mm). Global CSA was defined as the total surface area of the left and the right hemisphere in mm², while regional CSA was defined as the mean surface area of the left and the right hemisphere in mm². Global and regional CV was defined as the mean volume of the left and the right hemisphere in mm³. The 34 cortical regions are listed in the Supplementary Methods. High resolution brain magnetic resonance imaging (MRI) data was obtained in each cohort using a range of MRI scanners, field strengths and protocols. CTh, CSA, and CV were generated using the Freesurfer software package in all cohorts except for FHScar, where an in-house segmentation method was used. MRI protocols of each cohort can be found in Supplementary Data 35 and descriptive statistics of CTh, CSA, and CV can be found in Supplementary Data 36–38.

Genome-wide association analysis. Based on a predefined analysis plan, each study fitted linear regression models to determine the association between global and regional CTh, CSA, and CV and allele dosages of SNPs. Additive genetic effects were assumed and the models were adjusted for sex, age, age², and if needed for study site and for principal components to correct for population stratification. Cohorts including related individuals calculated linear mixed models to account for family structure. Details on association software and covariates for each cohort are shown in Supplementary Data 33. Models investigating regional CTh, CSA, and CV were additionally adjusted for global CTh, global CSA and global CV, respectively. Quality control of the summary statistics shared by each cohort was performed using EasyQC. Genetic variants with a minor allele frequency (MAF) <0.05, low imputation quality ($R^2 < 0.4$), and which were available in less than 10,000 individuals were removed from the analyses. Details on quality control are provided in the Supplementary Methods.

We then used METAL to perform meta-analyses using the z-scores method, based on p-values, sample size, and direction of effect, with genomic control correction. To estimate the number of independent tests for the p-value threshold correction, we used a non-parametric permutation testing procedure in the
combined Rotterdam Study cohort (N = 4442) and UK Biobank (N = 8213). First, we generated a random independent variable, to insure that there is no true relationship between the measurements and this variable. Second, we ran linear regression analyses between this variable and all brain measurements one-by-one in each of the cohorts separately (104 regressions in total per cohort). Third, we saved the minimum p-value obtained from those 104 regressions. Then, as suggested in literature, we repeated this procedure 10,000 times. Therefore, at the end we have 10,000 minimum p-values per cohort. The minimum p-value distribution follows a Beta distribution Beta(m,n), where m = 1 and n is the degree of freedom, which represents the number of independent tests in case of permutation testing. Using python statistical library we fitted the Beta function with the minimum p-values, and found m for Rotterdam Study and UK Biobank identically equal to 46. Based on the permutation test results, the genome-wide significance threshold was set a priori at 1.99 × 10^{-15} (5 × 10^{-9/46}). We used the clumping function in PLINK (linkage disequilibrium (LD) threshold: 0.2, distance: 300 kb) to identify the most significant SNP in each LD block. We used LDRS to calculate genomic inflation factors (λEC), LDRS intercepts and LDRS ratios for each meta-analysis. The LDRS intercept was estimated to differentiate between inflation due to a polygenic signal and inflation due to population stratification. The LDR ratio represents the amount of inflation that is due to other causes than polygenicity such as population stratification or cryptic relatedness.

For replication of our genome-wide significant CTs and CSA associations, we used GWAS meta-analysis results from the ENIGMA consortium for all SNPs that were associated at a p-value <5 × 10^{-8} and performed a pooled meta-analysis. The p-value threshold for replication was set to 3.1 × 10^{-4} (0.05/160: nominal significance threshold divided by total number of lead SNPs). CV was not available in the ENIGMA results, PRS analysis was performed for 7800 out of sample subjects (not included in the current GWAS) from UK Biobank cohort using the PSiSeq-2 software with standard settings. The significance threshold for the association between the PRS and the phenotype was set to 4.76 × 10^{-3} (0.05/105: nominal significance threshold divided by number of CVAS phenotypes). The NHGRI-EBI Catalog of Single-Nucleotide Variants (dbSNP) was searched for the significant SNP-trait associations at a p-value of 5 × 10^{-8} of lead SNPs. Regional association plots were generated with LocusZoom, and the chromosomal ideogram with PHENOGRAM (http:// visualization.ritchielab.org/phenogram/plots).

Annotation of genome-wide significant variants was performed using the ANNOVAR software package and the FUMA web application. FUMA eQTL mapping uses information from three data repositories (GTEx, Blood eQTL browser, and BIOS QTTL browser) and maps SNPs to genes based on a significant eQTL association. We used a false discovery rate threshold (FDR) of 0.05 divided by number of tests (46) to define significant eQTL associations. Gene-based analyses, to combine the effects of SNPs assigned to a gene, and gene set analyses, to find out if genes assigned to significant SNPs were involved in biological pathways, were performed using MAGMA as implemented in FUMA. The significance threshold set to 5.87 × 10^{-8} (0.05/1852274: FDR threshold divided by number of genes and independent tests) for gene-based analyses and to 1.02 × 10^{-7} (0.05/10651: FDR threshold divided by the number of gene sets) for the gene set analyses. Additionally, FUMA was used to investigate a significant chromatin interaction between a genomic region in a risk locus and promoter regions of genes (250 bp upstream and 500 bp downstream of a TSS). We used an FDR of 1 × 10^{-4} to define significant interactions.

We investigated cis (≤1 MB) and trans (>1 MB or on a different chromosome) expression quantitative trait loci (eQTL) for genome-wide significant SNPs in 724 post-mortem brains from ROSMAP stored in the AMP-AD database. The significance threshold was set to 0.001 (0.05/46: FDR threshold divided by the number of independent tests). For additional pathway analyses of genes that were mapped to independent lead SNPs by FUMA, we searched the InnateDB database. The STRING database was used for visualizing protein–protein interactions. Only those protein subnetworks with five or more nodes are shown.

Heritability. Additive genetic heritability (h^2) of CTs, CSA, and CV was estimated in two studies: the Australian Stroke Prevention Family Study (ASPF-Fam; n = 365) and the Rotterdam Study (RS, n = 4472). In the population-based family study ASPF-Fam, the ratio of the genotypic variance to the phenotypic variance was calculated using variance components models in SOLAR. In case of non-normal phenotype data were inverse-normal transformed. In RS, SNP-based heritability was computed with GCTA. These heritability analyses were adjusted for age and sex.

Heritability and partitioned heritability based on GWAS summary statistics was calculated from GWAS summary statistics using LDRS implemented in the LDSC tool. Partitioned heritability analysis splits genome-wide SNP heritability into 53 functional annotation classes (e.g., coding, 3’UTR, promoter, transcription factor binding sites, conserved regions etc.) and additionally to 10 cell-type specific classes (e.g., central nervous system, cardiovascular, liver, skeletal muscle, etc.) as defined by Finucane et al. to evaluate the contribution to heritability. The signif. independent level was set to 2.05 × 10^{-6} (0.05/53*10^6: nominal significance divided by number of functional annotation classes and number of independent tests) for heritability partitioned on annotation classes and cell types.

Genetic correlation. LDRS genetic correlation between CTs, CSA, and CV was estimated globally and within each cortical region. The significance threshold was set to 7.35 × 10^{-4} (nominal threshold (0.05) divided by number of regions (34) and by number of correlations (CSA and CV, CSA and CTs). Genetic correlation was also estimated between all 34 cortical regions for CTs, CSA, and CV, with the significance threshold set to 8.91 × 10^{-5} (nominal threshold (0.05) divided by number of regions (34) times the number of regions −1 (33) divided by 2 (half of the matrix)). Additionally, the amount of genetic correlation was quantified between CTs, CSA, and physical traits (height, body mass index), neurological and psychiatric diseases (e.g., Alzheimer’s disease, Parkinson’s disease), cognitive traits and MRI volumes (p-value threshold (0.05/64/number of GWAS traits). As recommended by the LDSC tool developers, only HapMap3 variants were included in these analyses, as these tend to be well-imputed across cohorts.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The genome-wide summary statistics that support the findings of this study are available via the CHARGE Summary Results portal at the NCBi dbGaP website https://www. omicstudio.com/dataset/dbgap/phs000930 upon publication, or from the corresponding authors R.S. and S.S. upon reasonable request. The summary statistics may be used for all scientific purposes except for the study of potentially sensitive and potentially stigmatizing phenotypes such as intelligence and addiction, since this is proscribed by the consent terms for the NHSLBI cohorts. Individual level data or study-specific summary results are only available through controlled access. Data for the Framingham Study are available through dbGaP, where qualified researchers can apply for authorization to access (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607. v30.p1). Individual level data for the ARIC and CHS studies are also available through dbGaP. Data of European and Australian cohorts are available upon request, in keeping with data sharing guidelines in the EU General Data Protection Regulation. Data from UK Biobank can be accessed at http://www.ukbiobank.ac.uk and for the ENIGMA consortium from medlandse@gmail.com. Individual level data for VETAS is not available due to consent restrictions.

Received: 4 March 2020; Accepted: 20 August 2020; Published online: 22 September 2020

References

1. Storsve, A. B. et al. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J. Neurosci. 34, 8488–8498 (2014).
2. Hoptrope, L. J., Westbye, L. T., Wahlov, K. B. & Fjell, A. M. The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyriﬁcation. Cereb. Cortex 23, 2521–2530 (2013).
3. Fjell, A. M. et al. Development and aging of cortical thickness correspond to genetic organization patterns. Proc. Natl Acad. Sci. USA 112, 15462–15467 (2015).
4. Vuoksimaa, E. et al. The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cereb. Cortex 25, 2127–2137 (2015).
5. Vuoksimaa, E. et al. Is bigger always better? The importance of cortical decelerating change. Cereb. Cortex 23, 8488–8498 (2013).
6. Lerch, J. P. et al. Focal decline of cortical thickness in Alzheimer’s disease identiﬁed by computational neuroanatomy. Cereb. Cortex 15, 995–1001 (2005).
7. Uribe, C. et al. Patterns of cortical thinning in nondemented Parkinson’s disease patients. Mov. Disord. 31, 699–706 (2016).
8. Stoks, M. D. et al. Multiple sclerosis are non-random and clinically relevant. Brain 139, 115–126 (2016).
9. Rimol, L. M. et al. Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol. Psychiatry 71, 552–560 (2012).
10. Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).
11. van Rooij, D. et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals.
across the lifespan: results from the ENIGMA ASD Working Group. Am. J. Psychiatry 175, 359–369 (2018).
12. Mountcastle, V. B. The columnar organization of the neocortex. Brain 120(Pt 4), 701–722 (1997).
13. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).
14. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).
15. Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).
16. Winkler, A. M. et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53, 1135–1146 (2010).
17. Rimol, L. M. et al. Cortical thickness is influenced by regionally specific genetic factors. Biol. psychiatry 67, 493–499 (2010).
18. Eyler, L. T. et al. Genetic and environmental contributions to regional cortical surface area in humans: a magnetic resonance imaging twin study. Cereb. Cortex 21, 2313–2321 (2011).
19. Kremen, W. S. et al. Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study. Neuroimage 49, 1213–1223 (2010).
20. Joshi, A. A. et al. The contribution of genes to cortical thickness and volume. Nat. Rev. Neurosci. 19, 701–723 (2018).
21. Wen, W. et al. Distinct genetic influences on cortical and subcortical brain structures. Sci. Rep. 6, 23276 (2016).
22. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science. https://doi.org/10.1126/science.aay6990 (2020).
23. Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).
24. Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51, 1637–1644 (2019).
25. Hibar, D. P. et al. Novel genetic loci associated with hippocampal volume. Nat. Commun. 8, 13624 (2017).
26. Irvin, M. R. et al. Genome-wide meta-analysis of SNP-by-ACE/ARB and SNP-by-hisdrize diuretic and effect on serum potassium in cohorts of European and African ancestry. Pharmacogenomics J. https://doi.org/10.1038/s41397-018-0021-9 (2018).
27. Lu, L. et al. Common and rare variants of the THBS1 gene associated with the risk for autism. Psychiatr. Genet. 24, 235–240 (2014).
28. Park, H. J., Kim, S. K., Kim, J. W., Kang, W. S. & Chung, J. H. Association of thrombospondin 1 gene with schizophrenia in Korean population. Mol. Biol. Rep. 39, 6875–6880 (2012).
29. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).
30. Blake, S. M. et al. Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J. 27, 3069–3080 (2008).
31. van der Lee, S. J. et al. A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Commun. Biol. 2, 285 (2019).
32. Ikram, M. A. et al. Common variants at 6q22 and 17q21 are associated with cervical spine MRI findings in high-dimensional genomic data. IEEE/ACM Trans. Comput. Biol. Inform. 15, 599–612 (2018).
33. Albertson, B. A. V., Nicholas, T. E., Gambia, H. R. & Winkler, A. M. Multiple testing correction over contrasts for brain imaging. Neuroimage. https://doi.org/10.1016/j.neuroimage.2020.116760 (2020).
34. Churchill, G. A. & Doerge, R. W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).
35. Chang, C. C. et al. Second-generation PRSice: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
36. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
37. Chen, X. W. & O’Reilly, P. F. PRISice-2: Polygenic Risk Score software for biobank-scale data. GigaScience https://doi.org/10.1093/gigascience/giz082 (2019).
38. MacArthur, J. et al. The new NHHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D986–D991 (2017).
39. Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).
40. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
41. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
42. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
43. Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. Overview and findings from the religious orders study. Curr. Alzheimer Res. 8, 628–645 (2012).
44. Bennett, D. A. et al. Overview and findings from the rush Memory and Aging Project. Curr. Alzheimer Res. 9, 646–663 (2012).
45. Breuer, K. & I. KinnunenDB: systems biology of innate immunity and beyond-recent updates and continuing curation. Nucleic acids Res. 41, D1228–D1233 (2013).
46. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein association networks, made broadly accessible. Nucleic acids Res. 45, D362–D368 (2017).
47. Ahmava, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998).
48. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
49. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
50. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

Acknowledgements
We provide all investigator and study-specific acknowledgements in Supplementary Note 1.
Author contributions
Dr. Dale is a founder of and holds equity in CorTechs Labs, Inc, and serves on its Scientific Advisory Board. He is a member of the Scientific Advisory Board. W. Niessen is a founder and shareholder of Quantib BV. H. Brodaty is an advisory board member of Nutricia. The other authors declare no competing interests.

Competing interests

Additional information

Supplementary information

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18367-y

Edith Hofer1,2,229, Gennady V. Roshchupkin3,4,5,229, Hieab H. Adams3,5,229, Maria J. Knol5, Honghuang Lin6, Shuo Li7, Habil Zare8,9, Shahzad Ahmad9,5, Nicola J. Armstrong10, Claudia L. Satizabal8,11, Manon Bernard12, Joshua C. Bis13, Nathan A. Gillespie14,15, Michelle Luciano16,17, Aniket Mishra18, Markus Scholz19,20, Alexander Teumer21, Rui Xia22, Xueqiu Jian22, Thomas H. Mosley23, Yasaman Saba24, Lukas Pirpamer25,26, James T. Becker27, Owen Carmichael28, Jerome I. Rotter29, Bruce M. Psaty13, Oscar L. Lopez27, Najaf Amin5, Sven J. van der Lee5, Qiong Yang3,7, Jayandra J. Himali7, Pauline Maillard25,26, Alexis S. Beiser7,11, Charles DeCarli25,26, Sherif Karama30, Lindsay Lewis30, Mat Harris16,31,32,33, Mark E. Bastin16,31,32,33, Ian J. Deary16,17, A. Veronica Witte34,35, Franke Beyer34,35, Markus Loeffler19,20, Karen A. Matthijs36,37, Peter R. Schofield37,38, Anupamal Thalamuthu36, John B. Kwok38,39, Margaret J. Wright40,41, David Ames42,43, Julian Trollor36,44, Jiying Jiang3,6, Henry Brodaty45,36, Wei Wen36, Meike W. Vernooij3,5, Albert Hofman46,5, André G. Uitterlinden5, Wiro J. Niessen47,3, Katharina Wittfeld48,49, Robin Bülow50, Uwe Völker51, Zdenka Pausova12,52, Michael J. Lyons60, Matthew S. Panizzon59, Ole A. Andreassen61, Anders M. Dale62, Mark Logue63,64, Katrina L. Grabe65, Neda Jahanshad66, Jodie N. Painter65, Lucía Colodro-Conde65, Janita Bralten67,68, Derrek P. Hilz66,69, Penelope A. Lind65, Fabrizio Pizzagalli66, Jason L. Stein70, Paul M. Thompson66, Sarah E. Medland65, ENIGMA consortium*, Perminder S. Sachdev36,71, William S. Kremen59, Joanna M. Wardlaw16,31,32,33, Arno Villringer34,72, Cornelia M. van Duijn5,73, Hans J. Grabe68,49, William T. Longstreth Jr74, Myriam Fornage22, Tomas Paus75,76, Stephanie Debette11,18,77, M. Arfan Ikram3,5,78, Helena Schmidt24, Reinhold Schmidt1,230,8,11,230 & Sudha Seshadri8,11,230

1Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria. 2Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria. 3Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands. 4Department of Medical Informatics, Erasmus MC, Rotterdam, The Netherlands. 5Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands. 6Section of Computational Biomedicine, Department of Medicine, Boston University School of
Medicine, Boston, MA, USA. 7 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA. 8 Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, USA. 9 Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA. 10 Mathematics and Statistics, Murdoch University, Perth, Australia. 11 Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA. 12 Hospital for Sick Children, Toronto, ON, Canada. 13 Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA. 14 Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA. 15 QIMR Berghofer Medical Research Institute, Herston, QLD, Australia. 16 Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK. 17 Department of Psychology, University of Edinburgh, Edinburgh, UK. 18 University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, Bordeaux, France. 19 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany. 20 LIFE Research Center for Civilizations Diseases, University of Leipzig, Leipzig, Germany. 21 Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany. 22 Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA. 23 Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA. 24 Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria. 25 Imaging of Dementia and Aging (IDEA) Laboratory, Department of Neurology, University of California-Davis, Davis, CA, USA. 26 Department of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA, USA. 27 Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA. 28 Pennington Biomedical Research Center, Baton Rouge, LA, USA. 29 Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center, Torrance, CA, USA. 30 McGill University, Montreal Neurological Institute, Montreal, QC, Canada. 31 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. 32 Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK. 33 Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK. 34 Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. 35 Faculty of Medicine, CRC 1052 Obesity Mechanisms, University of Leipzig, Leipzig, Germany. 36 Centre for Healthy Brain Ageing, School of Psychology, University of New South Wales, Sydney, Australia. 37 Neuroscience Research Australia, Sydney, Australia. 38 School of Medical Sciences, University of New South Wales, Sydney, Australia. 39 Brain and Mind Centre - The University of Sydney, Camperdown, NSW, Australia. 40 Queen's University Belfast, The Department of Neurosciences, Queen's University Belfast, Belfast, UK. 41 Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia. 42 National Ageing Research Institute, Royal Melbourne Hospital, Parkville, VIC, Australia. 43 Academic Unit for Psychiatry of Older Age, University of Manchester, Manchester, UK. 44 Department of Neuroradiology, St George's Hospital, London, UK. 45 Department of Radiology, University of Chicago, Chicago, IL, USA. 46 Department of Psychiatry, Harvard Medical School, Boston, MA, USA. 47 Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands. 48 German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany. 49 Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany. 50 Institute for Diagnostic Radiology and Neuroimaging, University Medicine Greifswald, Greifswald, Germany. 51 Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany. 52 Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada. 53 Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada. 54 Institut des Maladies Neurodégénératives UMR5293, CEA, CNRS, University of Bordeaux, Bordeaux, France. 55 Pole de santé publique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France. 56 Centre Hospitalier Universitaire de Bordeaux, France; Inserm U1167, Lille, France. 57 Department of Epilepsy and Public Health, Pasteur Institute of Lille, Lille, France. 58 Department of Public Health, Lille University Hospital, Lille, France. 59 Department of Psychiatry, University of California San Diego, San Diego, CA, USA. 60 Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA. 61 NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. 62 Departments of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA. 63 National Center for PTSD at Boston VA Healthcare System, Boston, MA, USA. 64 Department of Psychiatry and Department of Medicine-Biomedical Genetics Section, Boston University School of Medicine, Boston, MA, USA. 65 Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. 66 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA. 67 Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands. 68 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands. 69 Neuroscience Biomarkers, Janssen Research and Development, LLC, San Diego, CA, USA. 70 Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 71 Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia. 72 Day Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany. 73 Nuffield Department of Population Health, University of Oxford, Oxford, UK. 74 Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA. 75 Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada. 76 Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada. 77 CHU de Bordeaux, Department of Neurology, F-33000 Bordeaux, France. 78 Department of Neurology, Erasmus MC, Rotterdam, The Netherlands. 79 These authors contributed equally: Edith Hofer, Gennady V. Roshchupkin, Hieab H.H. Adams. 20 These authors jointly supervised this work: Reinhold Schmidt, Sudha Seshadri. *A list of authors and their affiliations appears at the end of the paper. 21 Email: reinhold.schmidt@medunigraz.at; sueshad@bu.edu

ENIGMA consortium

Katrina L. Grasby, Neda Jahanshad, Jodie N. Painter, Lucia Colodro-Conde, Janita Bralten, Derrek P. Hiber, Penelope A. Lind, Fabrizio Pizzagalli, Christopher R. K. Ching, Mary Agnes B. McMahon, Natalia Shatokhina, Leo C. P. Zsembik, Ingrid Agartz, Saud Alhusaini, Marcio A. A. Almeida, Dag Aalnaes, Inge K. Amlien, Micael Andersson, Tyler Ard, Nicola J. Armstrong, Allison Ashley-Koch, Manon Bernardo, Rachel M. Brouwer, Elizabeth E. L. Buimer, Robin Bülow, Christian Bürger, Dara M. Cannon, Mallar Chakravarty, Qiang Chen, Robin Bülow, Christian Bürger, Dara M. Cannon, Mallar Chakravarty, Qiang Chen, Joshua W. Cheung, Baptiste Couvy-Duchesne, Anders M. Dale, Shareefa Dalvie, Tânia K. de Araujo, Nicola J. Armstrong, Allison Ashley-Koch, Manon Bernardo, Rachel M. Brouwer, Elizabeth E. L. Buimer, Robin Bülow, Christian Bürger, Dara M. Cannon, Mallar Chakravarty, Qiang Chen, Joshua W. Cheung, Baptiste Couvy-Duchesne, Anders M. Dale, Shareefa Dalvie, Tânia K. de Araujo.
Chantal Depondt, Sylvane Desrivières, Gary Donohoe, Thomas Epseth, Guillén Fernández, Simon E. Fisher, Herta Flor, Andreas J. Forstner, Clyde Francks, Barbara Franke, David C. Glahn, Randy L. Gollub, Hans J. Grabe, Oliver Gruber, Asta K. Håberg, Ahmad R. Hariri, Catharina A. Hartman, Ryota Hashimoto, Andreas Heinz, Manon H. J. Hillegers, Pieter J. Hoekstra, Avram J. Holmes, L. Elliot Hong, William D. Hopkins, Hilleke E. Hulshoff Pol, Terry L. Jernigan, Erik G. Jönsson, René S. Kahn, Martin A. Kennedy, Tilo J. T. Kircher, Peter Kochunov, John B. J. Kwok, Stephanie Le Hellard, Nicholas G. Martin, Jean-Luc Martinot, Colm McDonald, Katie L. McMahon, Andreas Meyer-Lindenburg, Rajendra A. Morey, Lars Nyberg, Jaap Oosterlaan, Roel A. Ophoff, Tomáš Paus, Zdenka Pausova, Brenda W. J. H. Penninx, Tinca J. C. Polderman, Danielle Posthuma, Marcella Rietschel, Joshua L. Roffman, Laura M. Rowland, Piminder S. Sachdev, Philipp G. Sämann, Gunter Schumann, Kang Sim, Sanjay M. Sisodiya, Jordan W. Smoller, Iris E. Sommer, Beate St Pourcain, Dan J. Stein, Arthur W. Toga, Julian N. Trollor, Nic J. A. Van der Wee, Dennis van 't Ent, Henry Völzke, Henrik Walter, Bernd Weber, Daniel R. Weinberger, Margaret J. Wright, Juan Zhou, Jason L. Stein, Paul M. Thompson & Sarah E. Medland.

79Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. 80Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA. 81Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands. 82Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands. 83Neuroscience Biomarkers, Janssen Research and Development, LLC, San Diego, CA, USA. 84Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 85NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway. 86Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland. 87Department of Human Genetics and South Texas Diabetes and Obesity Institute, Rio Grande Valley School of Medicine, University of Texas, Brownsville, USA. 88Centre for Lifespan Changes in Brain and Cognition, Psychology, University of Oslo, Oslo, Norway. 89Department of Integrative Medical Biology, Umeå University, Umeå, Sweden. 90Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. 91Hospital for Sick Children, Toronto, ON, Canada. 92Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. 93Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany. 94Department of Psychiatry, University of Münster, Münster, Germany. 95Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland. 96Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada. 97Liefer Institute for Brain Development, Baltimore, MD, USA. 98Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia. 99Department of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA. 100Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa. 101Department of Medical Genetics, School of Medical Sciences, University of Campinas - UNICAMP, Campinas, Brazil. 102Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia. 103Department of Clinical Molecular Virology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 104Division of Psychological & Social Medicine and Developmental Neurosciences, Technische Universität Dresden, Dresden, Germany. 105Division of Human Genetics, Institute of Infectious Disease and Medical Biology, University of Cape Town, Cape Town, South Africa. 106Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany. 107Department of Cognitive Science, University of California San Diego, San Diego, CA, USA. 108Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK. 109San Francisco Veterans Administration Medical Center, San Francisco, CA, USA. 110Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan. 111Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. 112NORMENT - K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, NORMENT University of Bergen, Bergen, Norway. 113Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia. 114Centre for Cognitive Epidemiology and Cognitive Ageing, University of Edinburgh, Edinburgh, UK. 115Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. 116Scottish Imaging Network, A Platform for Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, UK. 117Duke UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA. 118Department of Biomedicine, University of Basel, Basel, Switzerland. 119Department of Cognitive and Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 120Research Division, Institute of Mental Health, Singapore, Singapore. 121Max Planck Institute of Psychiatry, Munich, Germany. 122Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan. 123Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany. 124Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 125Institute of Science, Technology and Brain-Inspired Intelligence, Fudan University, Shanghai, China. 126Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany. 127Department of Neuroinformatics, Araya, Inc, Tokyo, Japan. 128McGill University, Montreal Neurological Institute, Montreal, QC, Canada. 129Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK. 130Public Psychiatry Division, Massachusetts Mental Health Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. 131Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan. 132Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany. 133Department of Psychology and Neuroscience, Duke University, Durham, NC, USA. 134Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany. 135Department of Psychology, University of Edinburgh, Edinburgh, UK. 136Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, CA, USA. 137Department of Cognitive Science, University of California San Diego, San Diego, CA, USA. 138Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany. 139Department of Psychology and Neuroscience, Duke University, Durham, NC, USA. 140Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany. 141Department of Psychology, University of Edinburgh, Edinburgh, UK. 142Department of Biomedicine, University of Basel, Basel, Switzerland. 143Department of Cognitive and Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
