Abelian Ideals and the Variety of Lagrangian Subalgebras

Sam Evens and Yu Li

Abstract

For a semisimple algebraic group G of adjoint type with Lie algebra g over the complex numbers, we establish a bijection between the set of closed orbits of the group $G \ltimes g^*$ acting on the variety of Lagrangian subalgebras of $g \ltimes g^*$ and the set of abelian ideals of a fixed Borel subalgebra of g. In particular, the number of such orbits equals $2^{r_{k\theta}}$ by Peterson's theorem on abelian ideals.

Contents

1 Introduction 1
2 Notation and Preliminaries 3
3 The Variety of Lagrangian Subalgebras 4
4 Closed Orbits 5

1 Introduction

In the 1990’s, Dale Peterson proved the remarkable and surprising assertion that the number of abelian ideals of a Borel subalgebra of a semisimple Lie algebra is 2^l, where l is the rank of the Lie algebra. Although Peterson never published his result, his argument was widely popularized by Kostant, who further developed the theory in [11], and the theory was further developed by many others, including in [1, 2, 3, 12, 13, 14]. In this paper, we find a new connection between the theory of abelian ideals and the variety of Lagrangian subalgebras, which is a variety that arises naturally in Poisson geometry.

Throughout this paper, we work over the complex numbers \mathbb{C}. Let G be a semisimple algebraic group of adjoint type with Lie algebra g. There is a bi-vector field π_{st}, known as the standard Poisson bi-vector field, on G, making it a Poisson Lie group. Infinitesimal information of (G, π_{st}) near the identity element of the group G is captured by the Manin triple $(g \oplus g, g_{st}, g_{st})$ (c.f. [7, 8]). Here, the symbol g_Δ stands for the diagonal Lie subalgebra of $g \oplus g$ and g_{st} is defined to be the Lie subalgebra of dimension $\dim g$ equipped with a symmetric nondegenerate invariant bilinear form $\langle \ , \ \rangle$. A Lie subalgebra l of $g \oplus g$ such that $\langle l, l \rangle = 0$ is called a Lagrangian subalgebra of $g \oplus g$. The variety $L(g \oplus g)$ of Lagrangian subalgebras of $g \oplus g$ has been extensively studied in algebraic and Poisson geometry:

- In [7, 8], the first author and Lu discussed a $(G \times G)$-action on $L(g \oplus g)$ and described explicitly the $(G \times G)$-orbits and their closures in $L(g \oplus g)$. Orbits of many subgroups of $G \times G$, for example the diagonal subgroup G_Δ, are also explicitly described.
• It follows directly from the fundamental work of De Concini and Procesi [4] (see [6, 8]) that there is an embedding of G into $L(g \oplus g)$ (as a single $(G \times G)$-orbit) so that the closure of the image of this embedding is isomorphic to the wonderful compactification of G.

• The variety $L(g \oplus g)$ can be thought of as a ‘universal Poisson homogeneous space’ for the Poisson Lie group (G, π_{sl}) as well as its Poisson dual group ([5, 7, 8]).

The zero bi-vector field on G makes G into a Poisson Lie group. The corresponding Manin triple is $(g \ltimes g^*, g, g^*)$. Following the construction from Section 2 of [7], we consider the variety $L = L(g \ltimes g^*)$, called the variety of Lagrangian subalgebras of $g \ltimes g^*$. We note that the construction of $L(g \ltimes g^*)$ is the analogue of the construction of $L(g \oplus g)$ when we substitute the Manin triple $(g \ltimes g^*, g, g^*)$ in place of $(g \oplus g, g^\Delta, g^\Delta_\ast)$. We view g^* as an additive algebraic group and let D denote the semidirect product $G \ltimes g^*$, viewed as an algebraic group. There is an action of D on L analogous to the $(G \times G)$-action on $L(g \oplus g)$, and the purpose of this paper is to classify closed D-orbits in L.

A Lie ideal \mathfrak{a} of a Borel subalgebra of g such that $[\mathfrak{a}, g] = 0$ is called an abelian ideal of the Borel subalgebra. The main result of this paper is the following

Theorem 1.1. There is a bijection between the set of closed D-orbits in L and the set of abelian ideals of a fixed Borel subalgebra of g.

We will make this bijection explicit after introducing some notation. Along the way, we will see that the geometry of L is much harder to understand than that of $L(g \oplus g)$. The subgroup $G \cong G \times \{0\}$ of D is an analogue of the subgroup G_Δ of $G \times G$. We will see that a complete understanding of the orbits of G in L contains as a subquestion the question of classifying all finite dimensional Lie algebras. So our current situation is quite different than that of [7, 8]. It is for this reason that we restricted our attention to closed D-orbits in L. In a subsequent publication, we will study more general D-orbits and orbits of certain subgroups of D, using a degeneration of $L(g \oplus g)$ into L.

Peterson proved the remarkable result that the number of abelian ideals of a fixed Borel subalgebra of g equals 2^{hk_g}. As a consequence of Theorem 1.1 and Peterson’s result, we have the following

Theorem 1.2. The number of closed D-orbits in L is exactly 2^{hk_g}.

Denote by $(G, 0)$ the Poisson Lie group G equipped with the zero Poisson bi-vector field. We note that the Poisson dual group of $(G, 0)$ is (g^*, π_{KK}), where π_{KK} stands for the Kirillov-Kostant Poisson bi-vector field on g^*. In our context, the Poisson Lie groups $(G, 0)$ and (g^*, π_{KK}) play a similar role as that of (G, π_{sl}) and its Poisson dual group in [7, 8]. The theory of abelian ideals of Borel subalgebras has been initiated by Kostant in [11], and it is a well developed theory by now, c.f. [1, 2, 3, 12, 13, 14]. However, the proofs of several key results of this theory are combinatorial in nature. We hope that Poisson geometry may provide an alternative understanding of these results.

In the paper [9], a Poisson structure π is introduced on G for which the symplectic leaves are related to conjugacy classes and the Bruhat decomposition. In a rough sense, it is reasonable to regard (g^*, π_{KK}), resp. L, as an additive analogue of (G, π), resp. $L(g \oplus g)$. Since many important geometric objects associated to G can be realized as closed subvarieties of $L(g \oplus g)$, c.f. [6, 7, 8], one can define these objects in the additive setting as well. For example, one can study the geometry of the ‘wonderful compactification’ of g^*, the closure of a single D-orbit in L, and of a Cartan subalgebra of g. The latter is a counterpart of the wonderful compactification of a Cartan subgroup of G and potentially leads to a theory of additive toric varieties. These topics will be discussed in a separate paper.

This paper is organized as follows. In Section 2 we introduce notation and define various basic objects. In Section 3, we construct the variety L of Lagrangian subalgebras of $g \ltimes g^*$. We recall the algebraic parametrization of points of L due to Karolinsky and Stolin [10]. In Section 4 we prove Theorem 1.1. Our proof is based on the Karolinsky-Stolin parametrization.

Acknowledgements. The authors are grateful to Victor Ginzburg and Jiang-Hua Lu for many stimulating discussions. We also thank Eugene Karolinsky for useful discussions. The first author was supported in part by the Simons Foundation Travel Grant 359424.
2 Notation and Preliminaries

Let G be a semisimple algebraic group of adjoint type with Lie algebra \mathfrak{g}. By \mathfrak{g}^* we mean the dual space of \mathfrak{g}. In what follows, \mathfrak{g}^* will also be viewed as an algebraic group and an abelian Lie algebra, where the group operation is the usual addition in \mathfrak{g}^*. The adjoint (resp. coadjoint) action of \mathfrak{g} on \mathfrak{g} (resp. \mathfrak{g}^*) will be denoted by Ad (resp. Ad^*). The adjoint (resp. coadjoint) action of \mathfrak{g} on \mathfrak{g} (resp. \mathfrak{g}^*) will be denoted by ad (resp. ad^*). Elements of \mathfrak{g} will be denoted by Roman letters x, y, \ldots and elements of \mathfrak{g}^* will be denoted by Greek letters α, β, \ldots.

We consider the semidirect product algebraic group $D := G \ltimes \mathfrak{g}^*$, which has the following structure. As a set, D is the Cartesian product $G \times \mathfrak{g}^*$. Multiplication and inversion in D are given by:

\begin{equation}
(g, \alpha)(g', \alpha') := (gg', \text{Ad}_{g'}^{-1}\alpha + \alpha') \quad \text{for all } g, g' \in G \text{ and } \alpha, \alpha' \in \mathfrak{g}^*
\end{equation}

\begin{equation}
(g, \alpha)^{-1} := (g^{-1}, -\text{Ad}_g^*\alpha) \quad \text{for all } g \in G \text{ and } \alpha \in \mathfrak{g}^*.
\end{equation}

The identity element of D is $(e, 0)$, where e stands for the identity element of G. It is easy to verify that the homomorphism of algebraic groups $G \to D$ (resp. $\mathfrak{g}^* \to D$) given by $g \mapsto (g, 0)$ (resp. $\alpha \mapsto (e, \alpha)$) is an embedding of G (resp. \mathfrak{g}^*) into D. In what follows, we will view G (resp. \mathfrak{g}^*) as an algebraic subgroup of D via this homomorphism.

Consider the Lie algebra \mathfrak{d} of D, which is the semidirect sum $\mathfrak{d} = \mathfrak{g} \ltimes \mathfrak{g}^*$. As a vector space, it is the Cartesian product $\mathfrak{g} \times \mathfrak{g}^*$. The Lie bracket in \mathfrak{d} is given by:

\[[(x, \alpha), (y, \beta)] := ([x, y], \text{ad}_x^*\beta - \text{ad}_y^*\alpha) \quad \text{for all } x, y \in \mathfrak{g} \text{ and } \alpha, \beta \in \mathfrak{g}^*. \]

As above, \mathfrak{g} (resp. \mathfrak{g}^*) will be viewed as a Lie subalgebra of \mathfrak{d} via the homomorphism $\mathfrak{g} \to \mathfrak{d}$ (resp. $\mathfrak{g}^* \to \mathfrak{d}$) given by $x \mapsto (x, 0)$ (resp. $\alpha \mapsto (0, \alpha)$). The exponential map $\text{Exp} : \mathfrak{d} \to D$ is given by:

\begin{equation}
(x, \alpha) \mapsto (\text{exp}(x), \alpha),
\end{equation}

where $\text{exp} : \mathfrak{g} \to G$ stands for the exponential map for G.

By abuse of notation, the adjoint action of D on \mathfrak{d} will also be denoted by Ad. Using formulas (1) and (2), one easily verifies that:

\[\text{Ad}_{(g, \alpha)}(x, \beta) = (\text{Ad}_g x, -\text{Ad}_g^*\text{ad}_x^*\alpha + \text{Ad}_g^*\beta) \quad \text{for all } g \in G, x \in \mathfrak{g} \text{ and } \alpha, \beta \in \mathfrak{g}^*. \]

In particular, for $g \in G, x \in \mathfrak{g}$ and $\alpha, \beta \in \mathfrak{g}^*$, we have:

\begin{equation}
\text{Ad}_g(x, \beta) = (\text{Ad}_g x, \text{Ad}_g^*\beta) \\
\text{Ad}_\alpha(x, \beta) = (x, -\text{ad}_x^*\alpha + \beta).
\end{equation}

Define a bilinear form $(\ , \) : \mathfrak{d} \otimes \mathfrak{d} \to \mathbb{C}$ by:

\[((x, \alpha), (y, \beta)) := \alpha(y) + \beta(x), \]

for all $x, y \in \mathfrak{g}$ and $\alpha, \beta \in \mathfrak{g}^*$. It is easily verified that $(\ , \)$ is symmetric, nondegenerate and D-invariant. Here, D-invariance means:

\begin{equation}
(\text{Ad}_{(g, x)}(y, \beta), \text{Ad}_{(g, x)}(z, \gamma)) = ((y, \beta), (z, \gamma)),
\end{equation}

for all $g \in G, x, y, z \in \mathfrak{g}$ and $\beta, \gamma \in \mathfrak{g}^*$.

Recall that for a vector space V equipped with a symmetric nondegenerate bilinear form $(\ , \)$, a vector subspace W of V is called isotropic if $\langle w, w' \rangle = 0$ for all $w, w' \in W$. An isotropic subspace W of V is called Lagrangian if W is maximal, with respect to inclusion, among all isotropic subspaces of V. When V is even dimensional, an isotropic subspace W of V is Lagrangian if and only if $\dim W = \frac{1}{2} \dim V$.

A Lie subalgebra \mathfrak{l} of \mathfrak{d} is called a Lagrangian subalgebra if \mathfrak{l} is a Lagrangian vector subspace of \mathfrak{d} with respect to the bilinear form on \mathfrak{d} introduced above. Although we will not use it in this paper, it is worth pointing out that $(\mathfrak{d}, \mathfrak{g}, \mathfrak{g}^*)$, together with the bilinear form $(\ , \)$ on \mathfrak{d}, is a Manin triple. This amounts to saying that \mathfrak{g} and \mathfrak{g}^* are Lagrangian subalgebras of \mathfrak{d} and \mathfrak{d} is the direct sum of \mathfrak{g} and \mathfrak{g}^* as vector spaces, c.f. [5, 7, 8] for details.
3 The Variety of Lagrangian Subalgebras

Let a be a Lie subalgebra of g and a^* its dual space. We write $Z_{CE}^1(a, a^*)$ for the vector space of Chevalley-Eilenberg 1-cocycles on a with coefficients in a^*, where a acts on a^* by the coadjoint action. Specifically, $Z_{CE}^1(a, a^*)$ consists of linear maps $f : a \to a^*$ such that

$$\text{ad}_x^* f(y) - \text{ad}_y^* f(x) - f([x, y]) = 0$$

for all $x, y \in a$. \hspace{1cm} (5)

We say that $f \in Z_{CE}^1(a, a^*)$ is skew if

$$f(x)(y) + f(y)(x) = 0$$

for all $x, y \in a$. \hspace{1cm} (6)

Definition 3.1. Let a be a Lie subalgebra of g and $f \in Z_{CE}^1(a, a^*)$ a skew element. We define

$$l(a, f) := \{ (x, \alpha) \in \mathfrak{d} : x \in a, f(x) = \alpha|_a \},$$

where $\alpha|_a$ stands for the restriction of α to a.

Let a and f be as in Definition 3.1. It follows from (5) (resp. (6)) that $l(a, f)$ is a Lie subalgebra (resp. isotropic vector subspace) of \mathfrak{d}. It is clear that $\dim l(a, f) = \frac{1}{2} \dim \mathfrak{d}$. Therefore, $l(a, f)$ is a Lagrangian subalgebra of \mathfrak{d}.

The following result of Karolinsky and Stolin establishes a bijection between points of L and pairs (a, f) as in Definition 3.1.

Theorem 3.1. [10] The Lagrangian subalgebras of \mathfrak{d} are exactly the Lagrangian subalgebras $l(a, f)$, for (a, f) as in Definition 3.1.

Let (a, f) and (a', f') be as in Definition 3.1. It is easily verified that $l(a, f) = l(a', f')$ if and only if $a = a'$ and $f = f'$.

Let $Gr(n, \mathfrak{d})$ be the Grassmannian of n-dimensional vector subspaces of \mathfrak{d}, where $n := \dim g = \frac{1}{2} \dim \mathfrak{d}$. For an n-dimensional vector subspace of \mathfrak{d}, the property of being a Lie subalgebra, resp. being an isotropic vector subspace, of \mathfrak{d} is a closed condition. Therefore, the set of Lagrangian subalgebras of \mathfrak{d} has a natural structure of a reduced closed subvariety of $Gr(n, \mathfrak{d})$, to be denoted by L. Since $Gr(n, \mathfrak{d})$ is a projective variety, the variety L is projective as well. We will call L the variety of Lagrangian subalgebras of \mathfrak{d}.

Let S be a subset of \mathfrak{d}. For any $d \in D$, we write $Ad_d S$ for the set $\{ Ad_d s : s \in S \}$. Since the D-action on \mathfrak{d} preserves the symmetric form (\cdot, \cdot), it follows that if l is a Lagrangian subalgebra of \mathfrak{d}, then so is $Ad_d l$ for any $d \in D$. Therefore, we obtain an action, still denoted by Ad, of D on L.

We deduce some formulas for the action of D on L. Let a be a Lie subalgebra of g and $f \in Z_{CE}^1(a, a^*)$ a skew element. For $g \in G$, we define a linear map $g.f : Ad_g a \to (Ad_g a)^*$ by

$$(g.f)(x)(y) := f(Ad_{g^{-1}} x)(Ad_{g^{-1}} y)$$

for all $x, y \in Ad_g a$. A simple computation shows that $g.f$ is a skew element of $Z_{CE}^1(Ad_g a, (Ad_g a)^*)$.

For $\alpha \in g^*$, we define a linear map $f_\alpha : a \to a^*$ by

$$f_\alpha(x) := - \text{ad}_x^*(\alpha|_a)$$

for all $x \in a$. Another simple computation shows that f_α is a skew element of $Z_{CE}^1(a, a^*)$.

Lemma 3.2. Let a be a Lie subalgebra of g and $f \in Z_{CE}^1(a, a^*)$ a skew element. Then,

1. For any $g \in G$, we have

$$Ad_g l(a, f) = l(Ad_g a, g.f).$$

2. For any $\alpha \in g^*$, we have

$$Ad_\alpha l(a, f) = l(a, f + f_\alpha).$$

Proof. We only prove the first statement. The proof of the second statement is analogous.

Note that $\text{Ad}_g l(a, f)$ and $l(\text{Ad}_g a, g, f)$ are n-dimensional vector subspaces of \mathfrak{a}, hence it suffices to show that $\text{Ad}_g l(a, f) \subseteq l(\text{Ad}_g a, g, f)$. Let $(x, \beta) \in l(a, f)$. Then we have

$$\text{Ad}_g(x, \beta) = (\text{Ad}_g x, \text{Ad}_g^\ast \beta)$$

by formula (3). For any $y \in \mathfrak{a}$, we have

$$(g.f)(\text{Ad}_g x)(\text{Ad}_g y) = f(x)(y) = \beta(y) = (\text{Ad}_g^\ast \beta)(\text{Ad}_g y).$$

Hence, we have

$$(g.f)(\text{Ad}_g x) = (\text{Ad}_g^\ast \beta)|_{\text{Ad}_g \mathfrak{a}},$$

i.e., $(\text{Ad}_g x, \text{Ad}_g^\ast \beta) \in l(\text{Ad}_g a, g, f)$, proving the desired inclusion. \qed

Remark. Let \mathfrak{a} be a Lie subalgebra of \mathfrak{g}. For any element $g \in G$, by Lemma 3.2, we have

$$\text{Ad}_g l(a, 0) = l(\text{Ad}_g a, 0).$$

Thus the G-orbit through $l(a, 0)$ is

$$\{l(\text{Ad}_g a, 0) : g \in G\}.$$

It follows from this and the observation that $l(a, f) = l(a', f')$ if and only if $a = a'$ and $f = f'$, that for any Lie subalgebras $\mathfrak{a}, \mathfrak{a'}$ of \mathfrak{g}, the Lagrangian subalgebras $l(a, 0)$ and $l(a', 0)$ are in the same G-orbit if and only if \mathfrak{a} and $\mathfrak{a'}$ are conjugate by an element of G. Consequently, if we would like to classify all G-orbits in \mathcal{L}, we have to first classify Lie subalgebras of \mathfrak{g} up to conjugation by elements of G. By Ado’s theorem, every finite dimensional Lie algebra is isomorphic to a Lie subalgebra of $\mathfrak{g}(N)$ for some $N \in \mathbb{N}$. So, if we were able to classify G-orbits in \mathcal{L} in the case where G is of type A, we would (more or less) be able to classify all finite dimensional Lie algebras. This shows that any classification of G-orbits in \mathcal{L} is likely very complicated. In contrast, the classification of G_Δ-orbits in $\mathcal{L}(\mathfrak{g} \oplus \mathfrak{g})$ is given in Theorem 3.7 of [8].

4 Closed Orbits

Below, we use the notation $N_G(\mathfrak{a})$ (resp. $N_\mathfrak{g}(\mathfrak{a})$) for the normalizer in G (resp. \mathfrak{g}) of a Lie subalgebra \mathfrak{a} of \mathfrak{g}.

We first prove

Proposition 4.1. Let \mathfrak{a} be an abelian ideal of a Borel subalgebra \mathfrak{b} of \mathfrak{g}. Then the D-orbit $\text{Ad}_D l(a, 0)$ through $l(a, 0)$ is closed.

Proof. For any $\alpha \in \mathfrak{g}^\ast$, by Lemma 3.2, we have

$$\text{Ad}_\alpha l(a, 0) = l(a, f_\alpha).$$

Since \mathfrak{a} is an abelian Lie algebra, for any $x, y \in \mathfrak{a}$, we have

$$f_\alpha(x)(y) = (-\text{ad}_\alpha^\ast(y))(x) = \alpha([x, y]) = \alpha(0) = 0.$$

Thus, we see that $f_\alpha = 0$, so that

$$\text{Ad}_\alpha l(a, 0) = l(a, 0).$$

It follows from (1) that, for any $(g, \alpha) \in D$, we have $(g, \alpha) = (g, 0)(e, \alpha)$, so

$$\text{Ad}_{(g,\alpha)} l(a, 0) = \text{Ad}_g \text{Ad}_\alpha l(a, 0) = \text{Ad}_g l(a, 0) = l(\text{Ad}_g a, 0),$$

again by Lemma 3.2. Since $l(\text{Ad}_g a, 0) = l(a, 0)$ if and only if $\text{Ad}_g a = a$, i.e., $g \in N_G(\mathfrak{a})$, the D-orbit $\text{Ad}_D l(a, 0)$ is isomorphic to $G/N_G(\mathfrak{a})$ as a variety. Since \mathfrak{a} is an ideal of \mathfrak{b}, the normalizer $N_G(\mathfrak{a})$ contains the Borel subgroup of G corresponding to \mathfrak{b}. Hence $N_G(\mathfrak{a})$ is a parabolic subgroup of G and, therefore, $G/N_G(\mathfrak{a})$ is a projective variety. It follows that the orbit $\text{Ad}_D l(a, 0)$ is closed. \qed
For the converse we need a simple lemma. Let \(g = n \oplus \mathfrak{h} \oplus n^- \) be a triangular decomposition of \(g \).

Write \(\Phi = \Phi^+ \cup \Phi^- \) for the root system of \((g, \mathfrak{h})\) so that roots in \(\Phi^+ \) correspond to \(n \) and roots in \(\Phi^- \) correspond to \(n^- \). For \(\lambda \in \Phi \), the \(\lambda \)-root space is denoted by \(g_\lambda \). Let \(p \) be a parabolic subalgebra of \(g \) containing \(n \oplus \mathfrak{h} \) and \(i \) a Lie ideal of \(p \). Define \(i_0 \) to be \(i \cap \mathfrak{h} \). Since \(i \) is an ideal of \(p \), \(p \) acts on \(i \) by the adjoint action. In particular, the Lie subalgebra \(\mathfrak{h} \) of \(p \) acts on \(i \) by the adjoint action. Hence \(i \) decomposes into a direct sum of \(\mathfrak{h} \)-weight spaces. Since an \(\mathfrak{h} \)-weight on \(g \) is either 0 or a root, we have proved the following

Lemma 4.1. With the above notation, we have
\[
i = i_0 \oplus \bigoplus_{\lambda \in \Lambda} \mathfrak{h}_\lambda,
\]
where \(\Lambda \) is some subset of \(\Phi \).

Now we are ready to prove

Proposition 4.2. Let \(a \) be a Lie subalgebra of \(g \) and \(f \in Z_{CE}^1(a, a^*) \) a skew element. If the \(D \)-orbit \(\text{Ad}_D l(a, f) \) is closed, then \(a \) is an abelian ideal of some Borel subalgebra of \(g \) and \(f = 0 \).

Proof. Write \(k \) for the dimension of \(a \). Consider the first projection map \(\text{pr}_1 : \mathfrak{d} \to g \) sending \((x, \alpha)\) to \(x \). For any \((g, \alpha) \in D\), by Lemma 3.2 and formula (1), we have
\[
\text{Ad}_{(g, \alpha)} l(a, f) = \text{Ad}_g \text{Ad}_\alpha l(a, f) = \text{Ad}_g l(a, f + f_\alpha) = l(\text{Ad}_g a, g.(f + f_\alpha)).
\]

It follows that \(\text{pr}_1(\text{Ad}_{(g, \alpha)} l(a, f)) = \text{Ad}_g a \). Let \(\text{Gr}(k, g) \) be the Grassmannian of \(k \)-dimensional vector subspaces of \(g \). From the computation above, we see that \(\text{pr}_1 \) induces a morphism of varieties \(p : \text{Ad}_D l(a, f) \to \text{Gr}(k, g) \), sending \(\text{Ad}_{(g, \alpha)} l(a, f) \) to \(\text{Ad}_g a \).

By hypothesis, the orbit \(\text{Ad}_D l(a, f) \) is closed in the projective variety \(\mathcal{L} \). Hence \(\text{Ad}_D l(a, f) \) is itself a projective variety. In particular, \(\text{Ad}_D l(a, f) \) is complete. So, the image \(p(\text{Ad}_D l(a, f)) \) of \(\text{Ad}_D l(a, f) \) must also be complete. But, by the analysis of the previous paragraph, the image \(p(\text{Ad}_D l(a, f)) \) is isomorphic as a variety to \(G/\text{N}_G(a) \). Hence \(\text{N}_G(a) \) is a parabolic subgroup of \(G \).

The fiber of \(p \) over \(a \in \text{Gr}(k, g) \) is easily seen to be
\[
\{l(a, g.(f + f_\alpha)) : g \in \text{N}_G(a), \alpha \in g^*\}.
\]

Write \(f' \) for \(g.(f + f_\alpha) \) \((g \in \text{N}_G(a), \alpha \in g^*)\). Choose a basis \(\{v_1, \cdots, v_k\} \) of \(a \) and extend it to a basis \(\{v_1, \cdots, v_k, v_{k+1}, \cdots, v_n\} \) of \(g \). Let \(\{v_1^*, \cdots, v_n^*\} \) be the dual basis of \(g^* \). For all \(1 \leq i \leq k \), we write
\[
f'(v_i) = \sum_{j=1}^{k} a_{ij} (v_j^*|a),
\]
for some \(a_{ij} \in \mathbb{C} \). Hence, by definition, we see that \(l(a, g.(f + f_\alpha)) \) is spanned by \((v_1, \sum_{j=1}^{k} a_{1j} v_j^*), \cdots, (v_k, \sum_{j=1}^{k} a_{kj} v_j^*), (0, v_{k+1}^*), \cdots, (0, v_n^*)\).

Recall that, for any basis \(\{w_1, \cdots, w_{2n}\} \) of \(\mathfrak{d} \), the set
\[
\{\text{Span}(w_1 + \sum_{j=n+1}^{2n} b_{1j} w_j, \cdots, w_n + \sum_{j=n+1}^{2n} b_{nj} w_j) : b_{ij} \in \mathbb{C}\}
\]
is an affine chart on \(\text{Gr}(n, \mathfrak{d}) \). We consider the affine open set given by the basis \(\{w_1, \cdots, w_{2n}\} \) with
\[
\{w_1, \cdots, w_n\} := \{v_1, \cdots, v_k, v_{k+1}^*, \cdots, v_n^*\}, \{w_{n+1}, \cdots, w_{2n}\} := \{v_{k+1}, \cdots, v_n, v_1^*, \cdots, v_k^*\},
\]
and note that the fiber of \(p \) over \(a \) is contained in the corresponding affine open set. But this fiber is closed in \(L \), hence it is a projective variety. Therefore, the fiber of \(p \) over \(a \) must be a finite set. In particular,

\[\{ l(a, f + f_a) : \alpha \in \mathfrak{g}^* \} \]

is a finite set. Suppose \(f_\alpha \neq 0 \) for some \(\alpha \in \mathfrak{g}^* \). Then we have \(f \neq f + f_\alpha \), so \(l(a, f) \neq l(a, f + f_\alpha) \). We deduce that the subset \(\{ l(a, f + f_\alpha) : s \in \mathbb{C} \} \) is a curve connecting the distinct points \(l(a, f) \) and \(l(a, f + f_\alpha) \), a contradiction. Therefore, we have \(f_\alpha = 0 \) for all \(\alpha \in \mathfrak{g}^* \). Then, by the definition of \(f_\alpha \), we have \(\alpha([x, y]) = 0 \) for all \(\alpha \in \mathfrak{g}^* \) and \(x, y \in a \). It follows that \([x, y] = 0 \) for all \(x, y \in a \), i.e., \(a \) is an abelian Lie algebra.

Since \(N_G(a) \) is a parabolic subgroup of \(G \), we see that \(N_G(a) \) is a parabolic Lie subalgebra of \(\mathfrak{g} \) which contains \(a \) as a Lie ideal. Choose a triangular decomposition \(\mathfrak{g} = n \oplus \mathfrak{h} \oplus n^- \) of \(\mathfrak{g} \) such that \(n \oplus \mathfrak{h} \subseteq N_G(a) \). Then, by Lemma 4.1, we have

\[a = a_0 \oplus \bigoplus_{\lambda \in \Lambda} \mathfrak{g}_\lambda \]

for some subset \(\Lambda \) of the set \(\Phi = \Phi^+ \cup \Phi^- \) of roots for \((\mathfrak{g}, \mathfrak{h}) \). Suppose that there exists \(\lambda \in \Phi^+ \) such that \(-\lambda \in \Lambda \). Choose an \(\mathfrak{sl}_2 \)-triple \(\{ e_\lambda, f_\lambda, h_\lambda \} \) such that \(e_\lambda \in \mathfrak{g}_\lambda, f_\lambda \in \mathfrak{g}_{-\lambda} \subseteq a \) and \(h_\lambda \in \mathfrak{h} \). Since \(a \) is a Lie ideal of \(N_G(a) \) and \(n \subseteq N_G(a) \), we have \(h_\lambda = [e_\lambda, f_\lambda] \in a \). But then \([h_\lambda, f_\lambda] = -2f_\lambda \neq 0 \), contradicting the fact that \(a \) is an abelian Lie algebra. From this it follows that \(a \subseteq n \oplus \mathfrak{h} \). Since \(a \) is a Lie ideal of \(N_G(a) \) and \(n \oplus \mathfrak{h} \subseteq N_G(a) \), we conclude that \(a \) is a Lie ideal of the Borel subalgebra \(n \oplus \mathfrak{h} \) of \(\mathfrak{g} \). It is now well-known and very easy to prove that \(a \subseteq n \) [11].

Let \(H \) be the Cartan subgroup of \(G \) corresponding to \(\mathfrak{h} \). It is clear that \(H \) normalizes \(a \), hence is contained in \(N_G(a) \). Therefore, the subset

\[\{ l(a, t, f) : t \in H \} \]

of the fiber of the morphism \(p \) over \(a \) must be discrete. For any \(\lambda, \mu \in \Phi^+ \) such that \(\mathfrak{g}_\lambda, \mathfrak{g}_\mu \subseteq a \), choose nonzero elements \(e_\lambda \in \mathfrak{g}_\lambda \) and \(e_\mu \in \mathfrak{g}_\mu \). Then we have

\[(\exp(s, h), f)(e_\lambda)(e_\mu) = e^{-s(\lambda(h) + \mu(h))}f(e_\lambda)(e_\mu) \]

for all \(s \in \mathbb{C} \) and \(h \in \mathfrak{h} \). From this we see that, for any \(h \in \mathfrak{h} \) with \((\lambda + \mu)(h) \neq 0\), the subset \(\{ l(a, \exp(s, h), f) : s \in \mathbb{C} \} \) is a curve connecting distinct points unless \(f = 0 \). Thus \(f = 0 \), as desired.

From Proposition 4.1 and Proposition 4.2 we obtain

Theorem 4.2. Let \(a \) be a Lie subalgebra of \(\mathfrak{g} \) and \(f \in Z^1_{CE}(a, a^*) \) a skew element. Then the D-orbit \(\text{Ad}_D \{ l(a, f) \} \) is closed if and only if \(a \) is an abelian ideal of some Borel subalgebra of \(\mathfrak{g} \) and \(f = 0 \).

Fix a Borel subalgebra \(\mathfrak{b} \) of \(\mathfrak{g} \).

Theorem 4.3. The assignment \(F : a \mapsto \text{Ad}_D \{ l(a, 0) \} \) provides a bijection between the set of abelian ideals of \(\mathfrak{b} \) and the set of closed D-orbits in \(L \). In particular, the number of closed D-orbits in \(L \) is exactly \(2^{\text{rk} \mathfrak{g}} \).

Proof. Let \(a' \) be an abelian ideal of some Borel subalgebra \(\mathfrak{b}' \) of \(\mathfrak{g} \). Since all Borel subalgebras of \(\mathfrak{g} \) are conjugate, there exists \(g \in G \) such that \(\text{Ad}_g \mathfrak{b}' = \mathfrak{b} \). Then \(a := \text{Ad}_g a' \) is an abelian ideal of \(\mathfrak{b} \). It follows from Lemma 3.2 that

\[\text{Ad}_g \{ l(a', 0) \} = \{ l(a, 0) \}. \]
Hence, we have
\[\text{Ad}_D l(a', 0) = \text{Ad}_D l(a, 0) = F(a). \]
This, together with Theorem 4.2, proves that F is surjective.

Let a_1, a_2 be abelian ideals of b. Assume that $F(a_1) = F(a_2)$. Again by Lemma 3.2, we can find $g \in G$ such that $\text{Ad}_g l(a_1, 0) = l(a_2, 0)$, i.e., $l(\text{Ad}_g a_1, 0) = l(a_2, 0)$. It follows that $\text{Ad}_g a_1 = a_2$. Define P_i to be the normalizer of a_i in G, for $i = 1, 2$. It is easy to see that $gP_1g^{-1} = P_2$. For $i = 1, 2$, since a_i is a Lie ideal of b, we see that P_i contains the Borel subgroup B corresponding to b. But any parabolic subgroup of G is conjugate to a unique parabolic subgroup containing B, hence we have $P_1 = P_2$. Since the normalizer of a parabolic subgroup is itself, we deduce from $gP_1g^{-1} = P_2 = P_1$ that $g \in P_1$. It follows that $a_1 = \text{Ad}_g a_1 = a_2$. This proves that F is injective.

By Peterson’s theorem on abelian ideals, the cardinality of the set of abelian ideals of b is $2^{rk g}$ (see [1, 2, 3, 11, 12, 13, 14]). Now the second statement follows easily.

References

[1] P. Cellini and P. Papi. Ad-nilpotent ideals of a Borel subalgebra. J. Algebra. 2000; 225(1): 130 - 141.
[2] P. Cellini and P. Papi. Ad-nilpotent ideals of a Borel subalgebra II. J. Algebra. 2002; 258(1): 112 - 121.
[3] P. Cellini and P. Papi. Abelian ideals of Borel subalgebras and affine Weyl groups. Adv. Math. 2004; 187(2): 320 -361.
[4] C. De Concini and C. Procesi. Complete symmetric varieties, in F. Gherardelli (ed.) Invariant Theory. Springer. 1983; 1 - 44.
[5] V. Drinfeld. On Poisson homogeneous spaces of Poisson-Lie groups. Theoret. and Math. Phys. 1993; 95(2): 524 - 525.
[6] S. Evens and B. F. Jones. On the wonderful compactification. arXiv: 0801.0456.
[7] S. Evens and J.-H. Lu. On the variety of Lagrangian subalgebras, I. Ann. Sci. Éc. Norm. Supér. (4). 2001; 34(5): 631 - 668.
[8] S. Evens and J.-H. Lu. On the variety of Lagrangian subalgebras, II. Ann. Sci. Éc. Norm. Supér. (4). 2006; 39(2): 347 - 379.
[9] S. Evens and J.-H. Lu. Poisson geometry of the Grothendieck resolution. Mosc. Math. J. 2007; 7: 613 - 642.
[10] E. Karolinsky and A. Stolin. Classical dynamical r-matrices, Poisson homogeneous spaces, and Lagrangian subalgebras. Lett. Math. Phys. 2002; 60: 257 - 274.
[11] B. Kostant. The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations. Int. Math. Res. Not. IMRN. 1998; 5: 225 - 252.
[12] D. Panyushev. Abelian ideals of a Borel subalgebra and long positive roots. Int. Math. Res. Not. IMRN. 2003; 35: 1889 - 1913.
[13] D. Panyushev and G. Röhrle. Spherical orbits and abelian ideals. Adv. Math. 2001; 159(2): 229 - 246.
[14] R. Suter. *Abelian ideals in a Borel subalgebra of a complex simple Lie algebra*. Invent. Math. 2004; 156(1): 175 - 221.

Sam Evens: Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556. Email: sevens@nd.edu

Yu Li: Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL 60637. Email: liyu@math.uchicago.edu