Technological approaches to increase the quality of lightweight concrete based on hybrid binders

L.F. Kazanskaya¹, O.M. Smirnova²
¹ Emperor Alexander I St. Petersburg State Transport University, Russia, 190031, Saint-Petersburg, Moskovskij, 9
² Saint-Petersburg Mining University, Russia, 199106, Saint-Petersburg, 21-st Line V.O., 2

E-mail: yalifa@inbox.ru

Abstract. The processes of structure formation of hardening compositions based on hybrid binders as well as the controlled change of these processes allow obtaining concretes with increased strength and durability, for example, lightweight structural concretes on porous aggregates. Control of the structure formation of such concretes allows improving the quality and operational reliability of buildings and structures, saving binders, expanding the kinds of raw materials and solving environmental and economic issues. The results of the experiments have showed that the fineness of the hybrid binder effect the properties of the contact zone between the expanded clay aggregates and the cement matrix including the formation of calcium hydrosilicates on the surface of expanded clay gravel, which increases the adhesive strength. This leads to the increase of the quality of lightweight concrete based on expanded clay gravel.

Keywords. Lightweight concrete, hybrid binder, porous aggregates, quality indicators, structure formation

Introduction

The processes of structure formation of hardening compositions based on hybrid binders as well as the controlled change of these processes allow obtaining concretes of increased strength and durability, for example, lightweight structural concretes on porous aggregates [1-5]. Control of the structure formation of such concretes allows improving the quality and operational reliability of buildings and structures [6-10], saving binders [11-14], expanding the raw materials and solving environmental and economic issues [15-18].

The change of the fineness of mineral particles of binders leads to the increase of the degree of binder hydration and improves the properties of lightweight concrete [1,2,4]. However, the published data on the effect of the fineness of hybrid binders based on slag and sulfate component as well as degree of hydration of hybrid binders on the properties of lightweight concrete based on expanded clay aggregates is not enough. The authors of the study previously state the working hypothesis according to which the use of a hybrid binder based on finely ground slag and sulfate component instead of ordinary Portland cement will have significant influence on the processes of structure formation of lightweight concrete based on expanded clay aggregates.

The aim of the paper is the scientific and practical justification of technological approaches to the regulation of the structure formation of lightweight concrete with hybrid binder to improve the quality of lightweight concrete based on expanded clay aggregates. Mixture of slag, sulfate component and hardening activator was used to develop and evaluate the properties of the hybrid binders.

Materials and methods
Expanded clay gravel of two types was used as coarse aggregate in the compositions of lightweight concrete. Gravel tests were carried out according to the standard 9758-2012 "Porous inorganic aggregates for construction. Test methods". Expanded clay sand was used as fine aggregate. Tests of sand were carried out according to the standard 8736-2014 "Sand for construction. Technical conditions".

Hybrid binder was obtained by mixing ground granulated blast furnace slag (ggbfs), sulfate component - phosphogypsum (fg) and alkaline activator - cement kiln dust (ckd). Characterization of binders was performed according to standard 30744 "Cements. Test methods using polyfractional sand".

The characteristics of all components according to the test results are given in Table 1.

Table 1. Characteristics of the components of lightweight concrete

Components	Characteristics
Coarse aggregate	1. Expanded clay gravel
	— Bulk density — 480 kg/m³
	— Strength when compressed in the cylinder - 2,32MPa
	— Grain composition of expanded clay:
	5-10 mm - 40%
	10-20 mm - 60%
	2. Expanded clay gravel
	— Bulk density - 465 kg/m³
	— Strength when compressed in the cylinder -2,32MPa
	— Grain composition of expanded clay:
	5-10 mm - 30%
	10-20 mm - 70%
Fine aggregate	— Expanded clay sand
	— Water demand – 9,2%
	— Density — 2600 kg/m³
	— Finess modulus =1,7
Hybrid binder	— Composition: 80%ggbfs+20%fg +10%ckd
	— Specific surface (S_{sp}) - 3500 cm²/g u 6000 cm²/g
	— Standard consistency — 30%
	— Setting time - beginning 2 h 40 min
	— Activity at the age of 28 days - $R_{ck}=40$ MPa
Mixing liquid	Drinking tap water

Features of structure formation of lightweight concrete based on hybrid binder

Samples of lightweight concrete were made on hybrid binders with $S_{sp}=3500$ cm²/g and $S_{sp}=6000$ cm²/g at the water-to-binder ratio of W/B=0.55. The tests were performed on beam samples of size 4×4×16 cm at t=20°C. Also, previously obtained data [19] that both steaming and heating of the fresh mixture over 60°C do not increase the strength characteristics of the concrete on these hybrid binders were confirmed by our experiments. It is stated that more intensive hydration of CaOfree and its binding in hydration products is observed in cement matrix based on hybrid binder with $S_{sp}=6000$ cm²/g as shown in Table 2.

Table 2. Effect of the specific surface of binder on the hydration processes in lightweight concrete

S_{sp}, cm²/g	t, C	In cement matrix of hybrid binder	In lightweight concrete	Volumetric expansion after heat-steaming, %			
		CaO total hydrated, %	CaO bound in the hydration products, %	CaO total hydrated, %	CaO bound in the hydration products, %	In cement matrix of hybrid binder	In lightweight concrete
3500	20	54.9	29.0	61.6	19.1	16…18	14…16
6000	20	88.2	35.6	90.1	50.7	6…8	1.5…2.5
Significant absorption of calcium oxide from the liquid phase of the cement matrix based on the binder with higher specific surface area leads to the decrease of the concentration of calcium ions in the liquid phase and thus creates favourable conditions for subsequent hydration of free non-hydrated calcium oxide contained in the binder [20]. As a result, the degree of hydration of calcium oxide increases after increasing the specific surface area of the binder.

The presence of fine fraction of expanded clay sand does not reduce the concrete strength and contributes to increased strength in case of use of the binder with higher specific surface as shown in Table 3. Increase of the ratio R_{pt}/R_{comp} is characteristic of structure improvement, reduction of defects [21].

Lime binding by slag in the process of hardening of hybrid binders provides a high uniformity of the structure that is necessary for high technical properties of concrete [21]. The maximum binding of lime contained in the composition of hybrid slag binder is the necessary condition for improving the quality of lightweight concrete, which is achieved, as studies have shown, with the increase of specific surface of binder.

The features of the structure and properties of lightweight concrete on porous aggregates and the role of various technological methods to improve concrete quality are revealed taking into account modern theoretical concepts. In this case the great importance should be given to the state of the contact zone between expanded clay aggregate and cement matrix based on hybrid cement [22].

Table 3. Mechanical properties of concrete based on different binders

Concrete strength class	B15	B25		
Concrete class according to average density	D1300	D1500		
Binder	Hybrid binder	CEM32.5	Hybrid binder	CEM32.5
R_{pt}/R_{comp}	0.27	0.25	0.24	0.22
Strength, MPa				
Bending strength		4.2	6.9	6.1
tensile strength	4.9			
R_{pt}/R_{comp}	0.30	0.26	0.26	0.22
Cubic, R_{cub}	17.0	16.6	29	27.0
R_{pt}/R_{comp}	17.0	16.6	29	27.0

Note.
1. Above the line – values for concrete with binder $S_{sp}=3500$ cm2/g, under the line - with $S_{sp}=6000$ cm2/g
2. The averaged values were obtained by testing of 25 series of concrete samples of each class (coefficient of variation within 4.5-6.5%)

Improving the structure of lightweight concrete based on hybrid binder is caused by changes in the conditions of structure formation. Reducing the paste viscosity due to the increase of specific surface of binder allows reducing the viscosity of fresh concrete and promotes better colmatation of open pores of coarse expanded clay aggregate. Under such conditions the contact surface of the cement matrix with aggregate increases, which contributes to the intensification of the processes of contact interactions.

The composition of hybrid binder namely the lime-gypsum medium intensifies the reactivity of the expanded clay aggregate. As a result the binding process of free lime and gypsum with aluminite phases of slag and aluminosilicate phases of expanded clay aggregate is forced. The contact zone on the aggregate surface, where the presence of hydrosilicates is stated, is formed more intensively during the contact reactions of the hydrating
hybrid binder with the expanded clay aggregate. These hydration products provide the adhesive strength increase of aggregate with cement matrix. Fine expanded clay fractions of sand contribute to the growth of hydration products in the contact zone. The intensification of contact interactions at the boundary with the expanded clay aggregate is accompanied by simultaneous change in the pore structure of hybrid cement matrix.

The change of the pore structure can be explained by the acceleration of the processes of binder hydration as a result of a more intense interaction of free lime and the amorphous phase of slag with the formation of ettringite, which in this case plays a reinforcing role. X-ray phase analysis [23] indicates a more complete binding of free lime in concrete based on hybrid binder with greater S_sp. There are no lines of diffraction reflections of Ca(OH)₂ in the mortar part of the concrete and the intensity of quartz lines increases. Complete binding of free lime and the above-stated composition of hydration products determine the increase of physical and mechanical properties of the studied concrete. The combination of these processes is contributed to a purposeful change in the concrete structure, which leads to the increase of mechanical properties and improvement of deformation characteristics as shown in Tables 3-4.

It is known that the tensile bending strength of concrete (Rₜₘₙ) and the ratio of Rₜₘₙ/Rₜₐₘₙ are more sensitive to the substitution of the binder and to changes of technological factors in concrete production. The increase of this ratio corresponds to the reduction of defects in the concrete structure [24]. The replacement of Ordinary Portland cement CEM32.5 with hybrid binder of greater specific surface in studied lightweight concrete has led to the increase of Rₜₘₙ up to 20% and ratio of Rₜₘₙ/Rₜₐₘₙ as shown in Table 3. This indicates the increase of the crack resistance of obtained concrete.

The increase in the deformability of lightweight concrete is achieved while increasing the compressive strength and is due to the following factors:

- increase of more finely dispersed components in the mortar part of concrete and, accordingly, the creation of more deformative contact layers on surface of expanded clay aggregate characterized by amount of hydrosilicate phases [26-28];
- change of concrete pore structure characterized by uniform distribution of conditionally closed pores performing in this case the role of dampers.

Table 4. Ratio of strength and deformation characteristics of lightweight concrete on hybrid binder and CEM 32.5

Strength Average density	Rₜₘₙ¹/Rₜₘₙ²	Modulus of elasticity Eₐ¹/10³, MPA	Eₐ¹/Eₐ²	Rₜₘₙ¹/Eₐ¹	Rₜₘₙ²/Eₐ²				
B 15	1,21	0,2 Rₜₘₙ	0,3 Rₜₘₙ	0,4 Rₜₘₙ	0,2 Rₜₘₙ	0,5 Rₜₘₙ	1,04	1,07	1,17
D1300									
B 25	1,19	220	192,5	166,8	1,06	1,08	1,13		
D1500									

Note: Index 1 refers to concrete based on hybrid binder with S_sp=6000 cm²/g; Index 2 refers to concrete based on CEM 32.5.

The uniform pore distribution in concrete structure improves its deformative properties and increases the resistance of the structure to internal pressure [25,34,35]. It was found that the modulus of elasticity of lightweight concrete based on hybrid binders (Eₐ) is slightly higher than the same value of lightweight concrete based on CEM 32.5. The ratio Rₜₘₙ/Eₐ indirectly characterizing the fracture toughness of concrete increases in 1.13-1.17 times as a result of use of hybrid binders as shown in Table 4.

The presence of elastic-viscous inclusions in concrete structure—low-modulus additives of damping action as internal stress relaxers and energy crack dampers—provides the increase of strength, crack resistance and frost resistance of concrete [29-33].

Heat conductivity of wall stones based on lightweight concrete
The required value of concrete density is achieved due to the maximum degree of filling its volume with expanded clay aggregate. Satisfactory performance of the structural quality of concrete due to the use of hybrid binder as a result of its grinding with optimization of concrete pore structure to improve the thermal characteristics of lightweight concrete [36,37]. The coefficient of heat conductivity is decreased by 10-12% as shown in Table 5.

Table 5. Heat conductivity of wall stones based on lightweight concrete

Concrete	Heat conductivity W/(m·°C) at average density (kg/m³) for conditions A/B					
	750	900	1050	1200	1350	1450
Lightweight concrete on fine and coarse expanded clay aggregate	0.28/	0.37/	0.38/	0.43/	0.49/	—
Lightweight concrete on coarse expanded clay aggregate and quartz sand	—	0.35/	0.41/	0.46/	0.54/	0.65/
	0.39	0.45	0.51	0.58	0.69	

Note: A - normal humidity mode of operation; B - wet mode.

Conclusions

The studies have shown that the use of hybrid slag binders with alkaline and sulphate activation as well as increased fineness of binder up to 6000 cm²/g in the presence of fine fraction of expanded clay sand provides production of lightweight concrete with guaranteed quality due to the controlled structure formation. Improving the structure of lightweight concrete is caused by changes in the conditions of its formation, namely, the decrease of suspension viscosity. This can be contributed to better colmatation of open pores of expanded clay gravel.

The contact surface of cement matrix with expanded clay gravel increases under such conditions that contribute to the intensification of the processes of contact interactions. The formation of the contact zone on the surface of expanded clay gravel is intense. The contact area is represented by hydrosilicates that increase the adhesive strength. As a result the quality of lightweight concrete increases: strength and deformation characteristics. The ongoing change of the pore structure of hardening concrete also contributes to this.

References

[1] Borziak, O., Vandolovskyi, S., Chajka, V., Perestiuk, V., & Romanenko, O. (2017). Effect of microfillers on the concrete structure formation. In MATEC Web of Conferences (Vol. 116, p. 01001). EDP Sciences.
[2] Bumanis, G., Zorica, J., Bajare, D., & Korjakins, A. (2018). Technological properties of phosphogypsum binder obtained from fertilizer production waste. Energy Procedia, 147, 301-308.
[3] Zakrevskaya, L. V., Gavrilenko, A. A., Avdeev, S. N., Gandelsman, I. A., & Kireev, A. V. (2018). Lightweight concrete based on siliceous compositions of natural origin. Magazine of Civil Engineering, 77(1), 121-129.
[4] Demirel, B., Gultekin, E., & Alyamac, K. E. (2019). Performance of Structural Lightweight Concrete containing Metakaolin after Elevated Temperature. KSCE Journal of Civil Engineering, 1-8.
[5] Gonen, T., & Yazicioglu, S. (2018). The Effect of Curing Conditions on Permeation of Self-Compacting Lightweight Concrete with Basaltic Pumice Aggregate. Arabian Journal for Science and Engineering, 43(10), 5157-5164.
[6] Vaganov, V., Popov, M., Korjakins, A., & Šahmenko, G. (2017). Effect of CNT on microstructure and mineralogical composition of lightweight concrete with granulated foam glass. Procedia Engineering, 172, 1204-1211.

[7] Belentsov, Y., Shangina, N., Larisa, M., & Kharitonov, A. (2017, October). Brickwork structure influence on reliability of structures being constructed. In IOP Conference Series: Earth and Environmental Science (Vol. 90, No. 1, p. 012086). IOP Publishing.

[8] Ermakov, B., Ermakov, S., & Salokeeva, A. (2017). Features of the metal structure formation in cryogenic equipment during long-term operation at 4.2 K doi:10.4028/www.scientific.net/KEM.743.273

[9] Gravit, M., Nedryshkin, O., & Zhuravlev, A. (2017). Negative use of finishing materials on sorerl's cement. Paper presented at the MATEC Web of Conferences, , 106 doi:10.1051/matecconf/201710603029 Retrieved from www.scopus.com

[10] Grinin, O. I., Valdatysaeva, E. A., Lasota, I. T., Pevznery, Y. B., & Somonov, V. V. (2017). Technology of selective laser melting formation of heterogeneous powder structures doi:10.4028/www.scientific.net/KEM.736.9

[11] Ivan'kova, E. M., Dobrovolskaya, I. P., Popryadukhin, P. V., Kryukov, A., Yudin, V. E., & Morganti, P. (2016). In-situ cryo-SEM investigation of porous structure formation of chitosan sponges. Polymer Testing, 52, 41-45. doi:10.1016/j.polymertestin.2016.03.018

[12] Kuzkin, V. A., Krivtsov, A. M., Jones, R. E., & Zimmerman, J. A. (2015). Material frame representation of equivalent stress tensor for discrete solids. Physical Mesomechanics, 18(1), 13-23. doi:10.1134/S1029959915010038

[13] Kharitonov, A., Ryabova, A., & Pukharenko, Y. (2016). Modified GFRC for durable underground construction. Procedia engineering, 165, 1152-1161.

[14] Šiler, P., Kolářová, I., Sehnal, T., Másilko, J., & Opravil, T. (2016). The determination of the influence of pH value of curing conditions on Portland cement hydration. Procedia Engineering, 151, 10-17.

[15] Ochkurov V.I. Effectiveness of Ultra-Fine Ground Slag in Cement Binders, International Journal of Mechanical Engineering and Technology, 10(3), 2019, pp. 539-545.

[16] Koplik, J., Kalina, L., Másilko, J., & Šoukal, F. (2016). The characterization of fixation of Ba, Pb, and Cu in alkali-activated fly ash/blast furnace slag matrix. Materials, 9(7), 533.

[17] Shangina, N., Pukharenko, Y., Kharitonov, A., & Kharitonova, T. (2017). Dry mixes for the restoration: basic principles of design. In MATEC Web of Conferences (Vol. 106, p. 03021). EDP Sciences.

[18] Plugin, A., Dedeneva, E., Kostyuk, T., Bondarenko, D., & Demina, O. (2017). Formation of structure of high-strength composites with account of interactions between liquid phase and disperse particles. In MATEC Web of Conferences (Vol. 116, p. 01010). EDP Sciences.

[19] Samchenko, S., Kozlova, I., Zemskova, O., Potaev, D., & Tsakhilova, D. (2019). Efficiency of stabilization of slag suspensions by polycarboxylate. In E3S Web of Conferences (Vol. 91, p. 02039). EDP Sciences.

[20] Smirnova, O.M. Technology of Increase of Nanoscale Pores Volume in Protective Cement Matrix, International Journal of Civil Engineering and Technology, 9(10), 2018, pp. 1991–2000.

[21] Smirnova, O.M. Rheologically active microfillers for precast concrete / International Journal of Civil Engineering and Technology, No.9, V.8, 2018, Pp. 1724-1732.

[22] Šoukal, F., Koplik, J., Ptáček, P., Opravil, T., Havlica, J., Palou, M. T., & Kalina, L. (2016). The influence of pH buffers on hydration of hydraulic phases in system CaO–Al2O3. Journal of Thermal Analysis and Calorimetry, 124(2), 629-638.

[23] Svatovskaya, L., Shershneva, M., Baydarashvily, M., Sychova, A., Sychov, M., & Gravit, M. (2015). Geoecoprotective properties of cement and concrete against heavy metal ions. Paper presented at the Procedia Engineering, , 117(1) 345-349. doi:10.1016/j.proeng.2015.08.171 Retrieved from www.scopus.com

[24] Bazhenov, Y., Kozlova, I., Nechaev, K., & Kryuchkova, A. (2019). The use of finely ground slag in portland cement with mineral additives. In E3S Web of Conferences (Vol. 91, p. 02044). EDP Sciences.
[25] Kazanskaya L. F. Influence of heat treatment on the kinetics of ettringite formation in slag systems. Collection of scientific works "Modern engineering and chemical bases of material science". – St. Petersburg, 1999. – P. 104-109.
[26] Malinin, L. A. Problems of using cements with active mineral additives in concrete // Cement. – 1981. - № 10. – P. 4-5.
[27] Shestoperov S. V. To the question of substantiation of replacement of Portland cement with slag Portland cement in concrete products // Materials of scientific and technical conference "Problems of progressive technology of building materials". – Krasnoyarsk. – 1965. – P. 27-32.
[28] Orentliher L. P. Concrete on porous aggregates in precast concrete structures. – M.: Stroyizdat, 1983. – 143 p.
[29] Kazanskaya L. F. Sulphate-slag binders and concretes on their basis (on the basis of wastes of chemical industry of the South Ural region) / dissertation for the degree of doctor of technical Sciences // St. Petersburg, 2000. – 326 p.
[30] Solomatov V. I. Elements of the General theory of composite building materials // Izvestiya vuzov. – Series "Construction and architecture", – 1980. – P. 61-70.
[31] Betekhtin V. I., Bakhtibayev A. N., Egorov E. A. et al. Concentration of micropores in cement stone and their size distribution // Cement. – 1989. - № 10. – P. 8-10.
[32] Kazanskaya, L.F., Smirnova, O.M. Supersulphated cements with technogenic raw materials // International Journal of Civil Engineering and Technology. 2018. T. 9. No. 11. pp. 3006-3012.
[33] Fernández-Jiménez, A., Garcia-Lodeiro, I., Maltseva, O., & Palomo, A. (2019). Hydration mechanisms of hybrid cements as a function of the way of addition of chemicals. Journal of the American Ceramic Society, 102(1), 427-436.
[34] Meh dizadeh, H., Kani, E. N., Sanchez, A. P., & Fernandez-Jimenez, A. (2018). Rheology of activated phosphorus slag with lime and alkaline salts. Cement and Concrete Research, 113, 121-129.
[35] Komokhov P. G., Gryzlov V. S. Structural mechanics and Thermophysics of lightweight concrete. – Vologda, Vologda scientific sector, 1992. – 318 p.
[36] Vieira, G. B., Petrichenko, M. R., Musorina, T. A., & Zaborova, D. D. (2018). Behavior of a hollowed-wood ventilated façade during temperature changes. Magazine of Civil Engineering, 79(3), 103-111. doi:10.18720/MCE.79.11
[37] Zaborova, D., Vieira, G., Musorina, T., & Butyrin, A. (2018). Experimental study of thermal stability of building materials doi:10.1007/978-3-319-70987-1_51