Does aspirin save lives in patients with COVID-19?

Dinesh Voruganti,1 Pier Paolo Bassareo,2 Giuseppe Calcaterra,3 J L Mehta 1

‘An aspirin a day keeps the heart attack away’, is this also true in the prevention of thrombotic events associated with COVID-19? The rising COVID-19 pandemic has led to much work in the understanding of the pathophysiology of the disease. COVID-19 infection is thought to be an endothelial disease. Supporting this concept, it has been suggested that infection with SARS-CoV-2, the aetiological agent for COVID-19 infection, leads to a state mimicking Virchow’s triad, that is, vascular endothelial injury, blood stasis and clotting in concert with systemic inflammation resulting in systemic thrombosis.

In keeping with this concept, moderately and critically ill patients with COVID-19 have been found to have thrombotic and thromboembolic events during the acute and convalescent stage. Accordingly, there has been much interest in treating patients with COVID-19 with anticoagulants. In an analysis of several large series of critically ill patients in multiple studies (534 therapeutic anticoagulation, 564 usual care thromboprophylaxis), therapeutic anticoagulation did not improve survival or the number of days free of cardiovascular or respiratory organ support. On the other hand, among 2244 noncritically ill patients (1190 therapeutic anticoagulation, 1054 thromboembolic prophylaxis), therapeutic anticoagulation improved rates of hospital survival and reduced the use of cardiorespiratory organ support.

Since there is intense platelet activation secondary to endothelial injury and inflammation, there is also interest in the use of antiplatelet drugs in patients with COVID-19. Currently, recommendations for antiplatelet agents to treat or prevent COVID-19-related thrombotic events are lacking due to absence of data from prospective clinical trials. With multiple mechanisms of tissue protection besides inhibition of platelet aggregation, aspirin may have unexplored potential to treat/prevent COVID-19 complications.

To evaluate the benefit of antiplatelet therapy, Santoro et al2 selected 7824 patients from the HOPE-COVID-19 registry; 730 (9.3%) received at least one antiplatelet agent (645 aspirin, 33 clopidogrel, 1 ticlopidine and 1 ticagrelor; 35 aspirin and clopidogrel, 10 aspirin and ticagrelor, 5 aspirin and prasugrel). Among 730 patients, 68% were males, 80% had a history of hypertension, 16% had cancer and 68% had an elevation of D-dimer, and in-hospital concomitant anticoagulation was administered in 66% of patients. The multivariate analysis revealed a lower mortality risk (relative risk 0.39, 95%CI 0.32 to 0.48, p<0.01) in patients receiving antiplatelet agents—principally aspirin. No difference was identified for in-hospital mortality or the use of invasive ventilation or bleeding whether patients were given antiplatelet drugs or not.

Several other investigators have evaluated the role of antiplatelet agents in patients with COVID-19 (table 1). Viecca et al3 and Liu et al4 demonstrated potential benefits in terms of patient mortality and severity of ventilation abnormality. The clinical outcomes measured in each of these studies varied considerably. Viecca et al measured A-a O2 gradient and Liu et al measured concentrations of D-dimer and blood cell counts, hospital discharge rate and mechanical ventilation use to conclude that patients who received aspirin had improved outcomes. Extreme caution should be maintained while extrapolating these results to improved mortality. Russo et al5 observed an insignificant decrease in mortality or risk of developing acute respiratory distress syndrome in patients given antiplatelet drugs. Sivaloganathan et al6 identified no benefit in terms of mortality in patients with COVID-19, and Pan et al7 observed no benefit in terms of disease severity of antplatelet drug therapy based on the Modified Ordinal Scale (MOS). It is of note that the value of these studies is limited by small sample size, retrospective cohorts and lack of homogeneity in the outcomes measured and antiplatelet agent/s used. Furthermore, a study (preprint) by the RECOVERY collaborative group (Horby et al) randomised 14892 patients with COVID-19 (7351 aspirin and 7541 usual care).7 This is the only randomised controlled study on aspirin use in patients with COVID-19, which observed that aspirin did not reduce 28-day mortality or the risk of progressing to invasive mechanical ventilation or death. There was a small increase in the rate of being discharged alive within 28 days, bleeding risk and slight reduction in the thrombotic events and duration of hospitalisation among the aspirin group.

The findings of Santoro et al reported in this issue of the journal is the largest retrospective study on aspirin use among patients with COVID-19. However, there are some limitations of the study. Whether or not to give antiplatelet agent and the choice of antiplatelet agent (aspirin, clopidogrel, ticlopidine, prasugrel, ticagrelor, either with single or dual antiplatelet therapy) was at the discretion of the treating physician, and the mention of major bleeding episode relied on the diagnosis codes. All this brings in the issue of bias. The patients who are admitted are usually elderly with significant comorbidities. Administering aspirin to these patients is subjected to bias, that is, ‘confounding by indication’, where the real benefits or risks of aspirin may not be truly representative of the whole population.

The study by Santoro et al is a step in the right direction to improve the outcomes of patients with COVID-19. The use of an antiplatelet agent, mainly aspirin, might improve clinical outcomes without increasing the risk of side effects such as bleeding. Aspirin is a safe, cheap, universally available and well-tolerated medication. Using this drug in patients with COVID-19 should be encouraged unless contraindicated. Further, while the most common antiplatelet drug used in these studies was aspirin, a significant number of patients received other antiplatelet agents alone or with aspirin. Thus, it is difficult to state with certainty whether the beneficial effects were related to the use of aspirin with its multiple mechanisms of action and/or the other antiplatelet

1Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
2Department of Cardiology, Mater Misericordiae University Hospital, Dublin, Ireland
3Faculty of Medicine and Surgery, University of Palermo, Palermo, Sicilia, Italy

Correspondence to Dr J L Mehta, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; aheartdoc@gmail.com

1 Voruganti D, et al. Heart Month 2021 Vol 0 No 0

Editorial

Heart: first published as 10.1136/heartjnl-2021-320255 on 16 October 2021. Downloaded from http://heart.bmj.com/ on April 11, 2022 by guest. Protected by copyright.
Table 1 Previous studies with antiplatelet drugs and outcome in patients with COVID-19

Study	Aim of the study	Population/methods	Antiplatelet agent	Results
Vieca et al⁴	Assess the effect of administration of antiplatelet therapy on arterial oxygenation and clinical outcomes in patients with severe COVID-19	5 patients received antiplatelet drugs/5 controls. Case–control study	DAPT, aspirin, ticagrelor, rivaroxaban	Decreased concentrations of D-dimer (p<0.041), increased but statistically not significant lymphocyte (p=0.112) and platelet recovery (p=0.128) in the circulation, and markedly improved clinical outcomes (mechanical ventilation 14.3% vs 11.8%; discharge rate 78.6% vs 41.2%). P value not reported.
Liu et al⁵	Assess the effect of dipyridamole or ticagrelor on mortality of patients with COVID-19	14 patients received antiplatelet drugs/7 controls. Case–control study	Dipyridamole 50 mg oral three times per day for 14 consecutive days	Corrected since it was first published: “The multivariate regression analysis showed that aspirin and ticagrelor were associated with a lower mortality in patients with COVID-19 (OR 0.39, 95% CI 0.32 to 0.48, p<0.01)”
Russo et al⁶	Investigate the association between preadmission antiplatelet therapy and occurrence of death and ARDS in patients with COVID-19	55 patients received antiplatelet drugs/137 controls. Case–control group.	Aspirin/dipyridamole therapy	No benefit in the risk of death. Unadjusted risk ratio=1.00 (95% CI 0.48 to 1.80), p=0.991. Adjusted risk ratio=0.51 (95% CI 0.21 to 1.15), p=0.110. No benefit for the risk of ARDS. Unadjusted risk ratio=0.81 (95% CI 0.54 to 1.28), p=0.530. Adjusted risk ratio=0.83 (95% CI 0.38 to 1.84), p=0.165.
Sivaloganathan et al⁷	Assess the association between preadmission antiplatelet/anticoagulant use and COVID-19 mortality.	29 patients received antiplatelet drugs/58 controls. Case–control study.	Aspirin, dipyridamole and ticagrelor	No benefit in mortality with antiplatelet drugs (p=0.516). No benefit in mortality with aspirin (p=0.62).
Pan et al⁸	Assess the association between pre-hospitalisation antiplatelet medication use and COVID-19 disease severity.	239 patients received antiplatelet drugs/534 controls	Aspirin, dipyridamole, ticagrelor	No benefit in disease severity based on MOS.

ARDS, acute respiratory distress syndrome; **DAPT**, dual antiplatelet therapy; **MOS**, Modified Ordinal Scale.

Correction notice The following sentence has been corrected since it was first published: “The multivariate analysis revealed a lower mortality risk (relative risk 0.39, 95% CI 0.32 to 0.48, p<0.01)”.

Contributors DV wrote the initial drafts. PPB, GC and JLM edited the drafts. All authors approved the final version.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research.

Patient consent for publication Not applicable.

Provenance and peer review Commissioned; externally peer reviewed.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Voruganti D, Bassareo PP, Calcaterra G, et al. Heart Epub ahead of print: [please include Day Month Year]. doi:10.1136/heartjnl-2021-320255

To view: http://dx.doi.org/10.1136/heartjnl-2021-319552

Heart 2021:0–1–2.

doi:10.1136/heartjnl-2021-320255

ORCID iD
J L Mehta http://orcid.org/0000-0003-0384-2097

REFERENCES

1. Cate Hten. Surviving Covid-19 with heparin? N Engl J Med Overseas Ed 2021;385:845–6.

2. Santoro F, Núñez-Gil JI, Vitale E, Viana MA, et al. Antipla telet therapy and outcome in COVID-19: the Health Outcome Predictive Evaluation registry. Heart 2021. doi:10.1136/heartjnl-2021-319552. [Epub ahead of print: 05 Oct 2021].

3. Vieca M, Radanovic D, Forbes GB, et al. Enhanced platelet inhibition treatment improves hypoxemia in patients with severe Covid-19 and hypercoagulability. A case control, proof of concept study. Pharmacol Res 2020;158:104950.

4. Liu X, Li Z, Liu S, et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm Sin B 2020;10:1205–15.

5. Russo L, Di Maio M, Attena E, et al. COVID-19: a multicenter observational study. Pharmacol Res 2020;158:104965.

6. Sivaloganathan H, Ladikou EE, Chevassut T. COVID-19 mortality in patients on antiocoagulants and antiplatelet agents. Br J Haematol 2020;190:1205–15.

7. Pan D, Ip A, Zhan S, et al. Pre-Hospital antiplatelet medication use on COVID-19 disease severity. Heart Lung 2021;50:618–21.

8. Heuts PV, Pessia-Armizir G, Staplin N. For the recovery group, aspirin in patients admitted to hospital with COVID-19 (recovery); a randomised, controlled, open-label, platform trial. medRxiv 2021.