On a Property of Nilpotent Matrices over an Algebraically Closed Field

P. V. Danchev

Suppose F is an algebraically closed field. We prove that the ring $\prod_{n=1}^{\infty} M_n(F)$ has a special property which is, somewhat, in sharp parallel with (and slightly better than) a property established by Šter (LAA, 2018) for the rings $\prod_{n=1}^{\infty} M_n(\mathbb{Z}_2)$ and $\prod_{n=1}^{\infty} M_n(\mathbb{Z}_4)$, where \mathbb{Z}_2 is the finite simple field of two elements and \mathbb{Z}_4 is the finite indecomposable ring of four elements.

Keywords: nilpotent matrices, idempotent matrices, Jordan canonical form, algebraically closed fields.

Bibliography: 4 titles.
All rings R are assumed here to be associative, containing the identity element 1 which differs from the zero element 0 of R. Recall that a ring R is *nil-clean* provided that each its element is a sum of a nilpotent and an idempotent, is *π-regular* provided that for every element $r \in R$ there is $n \in \mathbb{N}$ such that $r^n = r^n R r^n$, and is *strongly π-regular* provided that $r^n \in r^{n+1} R$.

In his seminal paper [4], Ster showed that the ring $\prod_{n=1}^{\infty} M_n(\mathbb{Z}_2)$ is nil-clean but not strongly π-regular, whereas the ring $\prod_{n=1}^{\infty} M_n(\mathbb{Z}_4)$ is nil-clean but not π-regular. He utilizes an innovation of the method used in [1]. Specifically, for any $n \in \mathbb{N}$, it was proved there that, for every $n \times n$ matrix A over the finite field \mathbb{Z}_2, there exists an idempotent matrix E such that $(A - E)^4 = 0$, while the index of nilpotence over the finite ring \mathbb{Z}_4 is precisely 8. As usual, the symbol I will stand in the sequel the standard matrix identity. Thereby, $A = N + E$ for some $N^4 = 0$ and hence $(I - E)A = (I - E)N$, but it is not clear at all whether $[(I - E)A]^4 = 0$ will hold eventually.

On the other side, in [2] we have examined rings R having the property that, for each $a \in R$, there is an idempotent $e \in aR$ such that $(1 - e)a$ is nilpotent. We shall be here even rather more precise by considering an existing idempotent $e \in aRa$ with $[(1 - e)a]^2 = 0$.

It is well known that finite fields are, surely, *not* algebraically closed. So, the purpose of this very short note is to show that some (although little) improvement is possible by a strengthening of the technique utilized in [2] in the case of algebraically closed fields.

Before proceed by proving our chief result, we need the next two technical statements.

Lemma 1. Let R be a unital ring, $n \geq 2$, and $A = \sum_{i=1}^{n-1} E_{i, i+1} \in M_n(R)$, where the $E_{i, j}$ denote matrix units. Then there exists an idempotent $B \in AM_n(R)A$ such that $((I - B)A)^2 = 0$.

Proof. First, suppose that $n = 2$. Then

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

and hence, taking $B = 0 \in AM_n(R)A$, we have $((I - B)A)^2 = A^2 = 0$. Let us therefore assume that $n \geq 3$, and let

$$B = A \left(\sum_{i=1}^{n-2} E_{i+2, i} \right) A = \left(\sum_{i=2}^{n-1} E_{i, i-1} \right) A = \sum_{i=2}^{n-1} E_{i, i}.$$

Then $B \in AM_n(R)A$, B is clearly an idempotent, and

$$((I - B)A)^2 = ((E_{1, 1} + E_{n, n})A)^2 = E_{1, 2}^2 = 0,$$

as desired. \square

Lemma 2. Let F be a field, $n \geq 1$, and $A \in M_n(R)$ a matrix in Jordan canonical form. Then there exists an idempotent $B \in AM_n(R)A$ such that $((I - B)A)^2 = 0$.

Proof. Write

$$A = \begin{pmatrix} A_1 & 0 & \ldots & 0 \\ 0 & A_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & A_m \end{pmatrix},$$

For citation:
P. V. Danchev, 2019, “On a Property of Nilpotent Matrices over an Algebraically Closed Field”, *Chebyshevskii sbornik*, vol. 20, no. 3, pp. 401–404.
where each A_i is a Jordan block of size $n_i \times n_i$. For each A_i we shall define a block B_i of the same size, such that $B_i \in A_iM_{n_i}(F)A_i$ is idempotent.

If A_i is invertible as a matrix of $M_{n_i}(F)$, then the identity element I_{n_i} of $M_{n_i}(F)$ is in $A_iM_{n_i}(F)A_i$, and we set $B_i = I_{n_i}$. If A_i is not invertible, then either $n_i = 1$ and $A_i = (0)$, or $n_i \geq 2$ and $A_i = \sum_{j=1}^{n_i-1} E_{jj+1}$. In the first case, we let $B_i = (0)$, and in the second case, we take B_i as in Lemma 1. Then, clearly, in each case, $B_i \in A_iM_{n_i}(F)A_i$ is idempotent, and it is easy to see that $((I_{n_i} - B_i)A_i)^2 = 0$ for each i.

It follows immediately that

$$
B = \begin{pmatrix}
B_1 & 0 & \ldots & 0 \\
0 & B_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & B_m
\end{pmatrix}
$$

has the desired properties. □

Proposition 1. Let F be an algebraically closed field, and let $R = \prod_{n=1}^{\infty} M_n(F)$. Then for each $A \in R$ there is an idempotent $B \in ARA$ such that $((I - B)A)^2 = 0$.

Proof. For each n let A_n denote the projection of A onto the component $M_n(F)$ in R. Since F is algebraically closed, for each n we can find an invertible matrix $C_n \in M_n(F)$ such that $D_n = C_nA_nC_n^{-1}$ is in Jordan canonical form. By Lemma 2, for each n we can find an idempotent matrix $G_n \in D_nM_n(F)D_n$ such that $((I_n - G_n)D_n)^2 = 0$. Now, for each n let $B_n = C_n^{-1}G_nC_n$, and let $B = (B_1, B_2, \ldots) \in R$. Since each G_n is idempotent, the same holds for each B_n, and hence also for B. Also, since $G_n \in D_nM_n(F)D_n$ and C_n is invertible, we have for each n that

$$
B_n = C_n^{-1}G_nC_n \in C_n^{-1}D_nM_n(F)D_nC_n = A_nC_n^{-1}M_n(F)C_nA_n = A_nM_n(F)A_n,
$$

and hence $B \in ARA$. Finally, since $((I_n - G_n)D_n)^2 = 0$, for each n we have

$$
((I_n - G_n)A_n)^2 = ((I_n - C_n^{-1}G_nC_n)A_n)^2 = (C_n^{-1}(I_n - G_n)C_nA_n)^2
$$

$$
= (C_n^{-1}(I_n - G_n)D_nC_n)^2 = C_n^{-1}((I_n - G_n)D_n)^2C_n = 0,
$$

from which it follows that $((I - B)A)^2 = 0$, as required. □

We end our work with the following challenging query:

Problem 1. Extend the considered above property for any field F which is not necessarily algebraically closed.

An intuitive idea could be the following one: It is enough to establish the claim for a given $M_n(F)$ with the index of the nilpotent $(1 - e)a$ bounded independent of n. Since every matrix is the direct sum of a unit and a nilpotent (we do not need the field F to be algebraically closed for this), it is enough to do the assertion for units and for nilpotents. For a unit a, we take $e = 1$. Now suppose a is nilpotent. It is enough to do the statement for the Weyr canonical form of a—for more details the interested reader can see [3]. Thus assume a has Weyr structure (n_1, n_2, \ldots, n_r). The idea is to get an idempotent e in aRa that is diagonal, has 0s in the first n_1 places and the last n_r, and such that $(1 - e)a$ has zero blocks (relative to the partition n_1, \ldots, n_r) except in the $(1, 2)$ block. Then index of the nilpotent $(1 - e)a$ is exactly 2.

We will illustrate in the case of a homogeneous structure $(3, 3, 3, 3)$ but the argument in the nonhomogeneous case is similar although a little trickier. Thus, in terms of 3×3 blocks and $I = I_3$, we will have that
\[
a = \begin{pmatrix}
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

Let us now

\[
r = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
I & 0 & 0 & 0 \\
0 & I & 0 & 0
\end{pmatrix},
\]

and

\[
e = ara = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

Then, one finds that

\[
(1 - e)a = \begin{pmatrix}
0 & I & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

is nilpotent of index 2, as expected.

Acknowledgments. The author owes his sincere thanks to Professor Zachary Mesyan from the University of Colorado, Colorado Springs, and to Professor Kevin O’Meara, for their valuable communication on the present object.

REFERENCES

1. S. Breaz, G. Călugăreanu, P. Danchev and T. Micu, *Nil-clean matrix rings*, Lin. Alg. & Appl. **439** (2013), 3115–3119.

2. P.V. Danchev, *A generalization of \(\pi \)-regular rings*, Turk. J. Math. **43** (2019), 702–711.

3. K.C. O’Meara, J. Clark and C.I. Vinsonhaler, Advanced Topics in Linear Algebra: weaving matrix problems through the Weyr form, Oxford Univ. Press, 2011.

4. J. Šter, *On expressing matrices over \(\mathbb{Z}_2 \) as the sum of an idempotent and a nilpotent*, Lin. Alg. & Appl. **544** (2018), 339–349.