Comparison Scent Compound Emitted from Flowers of Damask Rose and Persian Musk Rose

Akbar Karami* and Samira Jandoust
Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran

Abstract
Rose emits a great group of scent that is functional in their communication with their instantaneous environment. In this study, the chemical compositions of floral scent from Damask and Musk roses flowers were isolated at full bloom stage by using headspace extraction. The main floral headspace components in Damask rose were Phenylethyl alcohol (2-phenylethanol), β-citronellol, α-Pinene and Geranyl acetate however the main components in Musk rose were Phenylethyl alcohol, 1-Nonadecene, Heneicosane and n-Nonadecane. In the both of species, the relative percentage of Phenyl ethyl alcohol was main scent compound. β-citronellol, α-Pinene and Geranyl acetate were highest and a major component in the Damask rose however these components (except α-Pinene) were not detected in Musk rose. The results of this study indicated that a number of factors, including particular rose species and the genetic triggers for releasing fragrance, determine the amount of fragrance.

Keywords: Rosa sp.; Floral scent; Genotypes; Headspace

Introduction
The genus Rosa has involved about 200 species, which only a few species among hundreds in the genus Rosa are scented, which involve Rosa damascena Mill., R. gallica Linn., R. centifolia Linn., R. moschata Herrm., R. bourboniana Desportes., R. chinensis Jacq., and R. alba Linn. Rosa has sixteen wild species in Iran of which R. moschata with the common names of Persian Musk rose, Nastrane Shiraz and Rose Anbar is distributed in many local regions of the Iran [1-8]. In addition, the Damask rose (R. damascena) is the most important species used to produce rose water, attar of rose, and essential oils in the perfume industry [6,9]. In Iranian traditional medicine, water rose of Damask rose and Persian Musk rose have been used to sedative, strengthen heart muscles, stomach, liver, spleen, nerves and intelligence [4,6]. This study aimed to evaluate and compare the floral scent headspace compounds and their content in Persian Musk rose vs. Damask rose as well as to provide useful information regarding the elucidation of biosynthetic pathways.

Materials and Methods
Plant materials
Flowers of Damask rose and Persian Musk rose were harvested from plants grown in Eram Botanical Garden (Shiraz – 57° 32’ E, 29° 37’ N, Altitude 1486 m).

The headspace volatiles extraction
The headspace proceeded on the Combi PAL System that was provided with headspace auto-sampler, heater and agitator. The vial was heated to 45°C and retained for 20 min while being agitated; the temperature of the sampling needle and transmission line was 85°C.

Volatile oil analysis procedure
GC analysis was done using an Agilent gas chromatograph series 7890-A with a flame ionization detector (FID). GC-MS analysis was completed by using Agilent gas chromatograph, equipped with fused silica capillary HP-5MS column (30 m × 0.25 mm i.d.; film thickness 0.25 m) and coupled with 5975-C mass spectrometer. The constituents of the VOCs were identified by calculation of their retention indices under temperature-programmed conditions for n-alkanes (C8-C25) and the volatile oil on a HP-5 column under the same chromatographic conditions.

Results and Discussion
The chemical compositions of the volatile oils isolated from two species of Rosa including R. damascena and R. moschata var. nastarana flowers by using headspace extraction are presented in Table 1. The applied headspace GC-MS metabolite profiling resulted in the identification of a total of 31 and 21 compounds in Damask rose and Persian Musk rose respectively. The relative percentage of Phenylethyl alcohol was as main compound in the both of rose species. The relative percentage of Phenylethyl alcohol was significantly increased to peak (54.15 ± 1.34%) at the full bloom stage of Persian Musk rose, but the highest quantity of this compound was 36.6 ± 2.05% in Damask rose. These results were in agreement with previous studies, who found a similar evolution of phenyl ethyl alcohol in the flower of R. hybrid and other genotypes of R. damascena [1,2,5,6,9,10]. In the same way, Phenyl ethyl alcohol (2-Phenylethanol) is a prominent scent compound released from flowers of Damask rose and some hybrid roses such as Rosa ‘Hoh-Jun’ and Rosa ‘Yves Piaget’ [1,4.5]. In the wild roses, from which R. hybrida is resulting, floral scent are notice to be chemical signals between the plant and insects, the second including both pollinators and predators [9]. In previously study, it was show that the petal aroma such as Phenyl ethyl alcohols, which are known insect attractants for seed formation and dispersers [2,6].

The percentages of β-citronellol (35.53 ± 1.82%) were observed as second major component of Damask rose volatile oils by headspace methods; however this compound was not detected in Persian Musk rose. α-Pinene was the representative monoterpene hydrocarbons detected in the floral volatile and accumulated in Damask rose (14.15 ± 1.02%),
however a trace amount (0.56 ± 0.15%) of this compound was found in Persian Musk rose. Acetate esters such as geranyl acetate are important contributors to the aroma of different rose flowers. The highest geranyl acetate (4.9 ± 0.83%) was detected in Damask rose. No quantity of this compound was detected in Persian Musk rose. During flower opening, the level of emission of acetate esters (geranyl acetate) reached to maximal levels at full bloom stage, and decreased in the last stages [6].

Conclusion

In general, the present investigation showed that the flowers of Damask rose differed in fragrance characteristics compared to Persian Musk rose. In addition, it was shown that in both of rose species, petal aromas are dominated by Phenyl ethyl alcohols, which are known insect attractants for seed formation and dispersers. In conclusion, the genetic factors affect volatile oil composition in rose. Consequently, there was high variation in floral scent levels in the different rose genotypes suggesting a key role of the genotype in the biosynthesis of secondary metabolites.

References

1. Baldermann S, Yang Z, Sakai M, Fleischmann P, Watanabe N (2009) Volatile constituents in the scent of roses. Floricul Ornament Biotech 3: 89-97.
2. Dobson HEM, Danielson EM, Wesep IDW (1999) Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Sp Biol. 14: 153-166.
3. Farhi M, Lavie O, Masci T, Hendel-Rahmanim K, Weiss D, et al. (2010) Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Mol Biol 72: 235-245.
4. Hirata H, Ohnishi T, Watanabe N (2016) Biosynthesis of floral scent 2-phenylethanol in rose flowers. Biosci Biotechnol Biochem.
5. Honarvar M, Javidnia K, Khosh-Khui M (2011) Essential oil composition of fresh and dried flowers of Rosa moschata from iran. Chem Nat Compounds 47: 826-828.
6. Karami A, Khosh-Khui M, Salehi H, Saharkhiz MJ (2013) Headspace analysis of floral scent from two distinct genotypes of Iranian Damask Rose (Rosa damascena Mill.). J Essent Oil Bear Plants 16: 489-488.
7. Khosh-Khui M (2014) Biotechnology of scented roses: a review. Inter J Hort Sci Tech 1: 1-20.
8. Mozaffarian V (2013) Identification of Medicinal and Aromatic Plants of Iran. Farhang Moaser Publishing, IR.
9. Rusanov K, Kovacheva N, Rusanov M, Atanassov I (2011) Traditional Rosa damascena flower harvesting practices evaluated through GC-MS metabolite profiling of flower volatiles. Food Chem 129: 1851-1859.
10. Shalit M, Guterman I, Volpin H, Bar E, Tamari T, et al. (2004) Volatile ester formation in roses: Identification of an acetyl-coenzyme A. Geranial/Citronellol acetyltransferase in developing rose petals. Plant Physiol 131: 1868-1876.

Compound	RI†	% GC peak area
Hexanol	861	0.05 ± 0.00
α-Pinene	931	14.15 ± 0.028
-	963	0.00 ± 0.015
Benzaldehyde	957	0.146 ± 0.081
Sabinene	970	0.34 ± 0.155
β-Pinene	974	0.916 ± 0.71
β-Mycene	988	0.833 ± 0.434
α-Terpinene	1014	0.113 ± 0.07
α-Pinene	1022	0.113 ± 0.07
Limonene	1025	0.19 ± 0.113
Benzyl alcohol	1026	0.186 ± 0.075
Benzene acetaldehyde	1041	0.103 ± 0.091
α-Terpineol	1055	0.223 ± 0.152
α-Terpinene	1086	0.06 ± 0.71
Linalool	1097	0.09 ± 0.014
Phenyl ethyl Alcohol	1110	36.6 ± 0.025
trans-Rose oxide	1124	0.2 ± 0.096
Terpinene-4-ol	1174	0.07 ± 0.15
β-Citronellol	1225	35.53 ± 0.82
Neral	1238	0.615 ± 0.304
Geranyl acetate	1254	4.906 ± 0.83
2-Phenyl ethyl acetate	1261	0.05 ± 0.54
Geranial	1267	0.345 ± 0.403
Eugenol	1354	1.151 ± 0.088
n-Tetradecane	1401	0.29 ± 0.00
Methyl eugenol	1404	0.185 ± 0.077
dihydrol-β-ionone	1435	0.181 ± 0.314
E-(β)-Farnesene	1459	0.64 ± 0.00
E-(β)-ionone	1482	1.431 ± 0.252
2-Phenyl propyl butanoate	1484	0.105 ± 0.182
Geranyl propanoate	1496	0.64 ± 0.00
n-Pentadecane	1496	0.37 ± 0.042
α-Selinene	1498	1.58 ± 0.675
1-Methylthethyl ester	1670	0.18 ± 0.00
1-Heptadecene	1672	1.261 ± 0.152
n-Heptadecane	1695	0.646 ± 0.611
1-Nonadecene	1865	15.576 ± 1.708
Hexadecen-1-ol	1866	0.18 ± 0.00
n-Nonadecane	1891	2.35 ± 0.385
n-Octadecanol	2072	0.491 ± 0.45
Heneicosane	2098	0.21 ± 0.008
1-Tricosene	2285	1.972 ± 0.416
n-Tricosane	2297	1.196 ± 0.071
Hexacosane	2574	0.21 ± 0.00
Total	97.057 ± 0.347	99.556 ± 0.561

†RI: Retention indices determined on HP-5MS capillary column

Table 1: Chemical compositions of floral scent of two Roses.