Propelinear structure of \mathbb{Z}_{2k}-linear codes

J. Borges, C. Fernández-Córdoba and J. Rifà
Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
(e-mail: \{jborges, cfernandez, jrifa\}@deic.uab.cat)

July 30, 2009

Abstract

Let C be an additive subgroup of \mathbb{Z}_{2k}^n for any $k \geq 1$. We define a Gray map $\Phi: \mathbb{Z}_{2k}^n \rightarrow \mathbb{Z}_2^{kn}$ such that $\Phi(C)$ is a binary propelinear code and, hence, a Hamming-compatible group code. Moreover, Φ is the unique Gray map such that $\Phi(C)$ is Hamming-compatible group code. Using this Gray map we discuss about the nonexistence of 1-perfect binary mixed group code.

1 Introduction

Since the famous paper [3] on \mathbb{Z}_4-linear codes, a large number of articles about \mathbb{Z}_4-linear and \mathbb{Z}_k-modulo codes have appeared. In more recent papers the Gray map, binary interpretation and concepts introduced in [3] have been generalized, as in [2] for example.

In [4], it is shown that linear and \mathbb{Z}_4-linear codes are subclasses of the more general class of translation invariant propelinear codes. In this paper we prove that any \mathbb{Z}_{2k}-modulo code is a binary propelinear code, but not translation invariant for $k > 2$.

The paper is organized as follows. In Section 2 we give the preliminary concepts on distance compatibility, propelinear codes and translation invariant propelinear codes. In Section 3 we show the correspondence between \mathbb{Z}_{2k}-modulo codes and binary propelinear codes. In section 4 we define mixed group codes and we generalize the above correspondence for these codes to study which of them can be perfect. Finally, in Section 5 we point out some remarks and conclusions.

2 Propelinear codes

Let \mathbb{F}^n be the n-dimensional binary vector space. We denote by 0 the all-zero vector. As usual, the (Hamming) distance between two vectors $x, y \in \mathbb{F}^n$ is the number of coordinates in which they differ and denoted by $d(x, y)$. The weight of a vector $x \in \mathbb{F}^n$ is the number of its nonzero entries $\text{wt}(x) = d(0, x)$.

The concept of (Hamming) distance-compatible operation in \mathbb{F}^n is defined in [3] and [1]. If $*: \mathbb{F}^n \times \mathbb{F}^n \rightarrow \mathbb{F}^n$ is such an operation, then for all $v \in \mathbb{F}^n$ it should verify:
\((i) \ d(v, v \ast e) = 1 \ \forall e \in \mathbb{F}^n \) with \(\text{wt}(e) = 1; \)

\((ii) \ v \ast 0 = 0 \ast v = v; \)

\((iii) \ v \ast e = w \ast e \) if and only if \(v = w, \) for all \(e \in \mathbb{F}^n \) with \(\text{wt}(e) = 1. \)

If \((\mathbb{F}^n, \ast)\) is a group, then the operation \(\ast \) is distance-compatible if and only if \(d(v, v \ast u) = \text{wt}(u) \) for all vectors \(u, v \in \mathbb{F}^n. \) The ‘if’ part is trivial and the ‘only if’ part is shown in [1, Proposition 14]. A binary code \(C \) of length \(n \) is a subset of \(\mathbb{F}^n. \) If this subset is a linear subspace of \(\mathbb{F}^n, \) then \(C \) will be a linear code.

We denote by \((C, \ast)\) a code in \(\mathbb{F}^n \) with a group structure defined by \(\ast. \) This operation could be nondefined in the whole space \(\mathbb{F}^n, \) but it could induce an action \(\ast : C \times \mathbb{F}^n \rightarrow \mathbb{F}^n. \)

Definition 1 Let \((C, \ast)\) a code in \(\mathbb{F}^n \) and assume the operation \(\ast \) induces an action \(\ast : C \times \mathbb{F}^n \rightarrow \mathbb{F}^n. \) The action \(\ast \) is Hamming-compatible if \(d(x, x \ast v) = \text{wt}(v) \) for all \(x \in C \) and for all \(v \in \mathbb{F}^n. \)

Definition 2 A binary code \((C, \ast)\) of length \(n \) is a Hamming-compatible group code if \((C, \ast)\) is a group and it is possible to extend \(\ast : C \times \mathbb{F}^n \rightarrow \mathbb{F}^n \) to a Hamming-compatible action.

Of course, given a code \(C \subset \mathbb{F}^n \) among all the different group structures, we are interested in those being Hamming-compatible (assuming we are working with the Hamming metric). A very general class of such codes are the propelinear ones, defined in [6]:

Definition 3 Let \(S_n \) be the symmetric group of permutations on \(n \) elements. A (binary) code \(C \) of length \(n \) is said to be propelinear if for any codeword \(x \in C \) there is a coordinate permutation \(\pi_x \in S_n \) verifying the properties:

1. \(x + \pi_x(y) \in C \) if \(y \in C. \)
2. \(\pi_x \circ \pi_y = \pi_z \ \forall y \in C, \) where \(z = x + \pi_x(y). \)

Now, we can define the binary operation \(\ast : C \times \mathbb{F}^n \rightarrow \mathbb{F}^n \) such that

\[x \ast y = x + \pi_x(y) \ \forall x \in C \ \forall y \in \mathbb{F}^n. \]

This operation is clearly associative and closed in \(C. \) Since, for any codeword \(x \in C, \) \(x \ast y = x \ast z \) implies \(y = z, \) we have that \(x \ast y \in C \) if and only if \(y \in C. \) Thus, there must be a codeword \(e \) such that \(x \ast e = x. \) It follows that \(e = 0 \) is a codeword and, from 2, we deduce that \(\pi_0 \) is the identity permutation. Hence, \((C, \ast)\) is a group, which is not Abelian in general; \(0 \) is the identity element in \(C \) and \(x^{-1} = \pi_x^{-1}(x), \) for all \(x \in C. \) Note that \(\Pi = \{ \pi_x \mid x \in C \} \) is a subgroup of \(S_n \) with the usual composition of permutations.

Lemma 1 Let \((C, \ast)\) be a propelinear code, then

\[d(x \ast u, x \ast v) = d(u, v) \ \forall x \in C \ \forall u, v \in \mathbb{F}^n. \]

Proof: The claim is trivial and can be found in [6] or [1]. \(\square \)
Lemma 2 A binary propelinear code is a Hamming-compatible group code.

Proof: Let (C, \star) be such a code. We only have to prove that the action $\star : C \times F^n \to F^n$ is Hamming-compatible. But this is clearly true because for any $x \in C$ and any $v \in F^n$ we have
$$d(x, x \star v) = d(x \star 0, x \star v) = d(0, v) = wt(v)$$
applying Lemma 1. □

A propelinear code (C, \star) is said to be a translation invariant code [4] if
$$d(x, y) = d(x \star u, y \star u) \quad \forall x, y \in C \quad \forall u \in F^n.$$

As can be seen in [4] the class of translation invariant propelinear codes includes linear and Z_4-linear codes. In fact, any translation invariant propelinear code of length n can be viewed as a group isomorphic to a subgroup of $Z_{k_1}^\perp \oplus Z_{k_2}^\perp \oplus Q_{k_3}$; where $k_1 + 2k_2 + 4k_3 = n$ and Q_8 is the quaternion group on eight elements. Clearly, the class of propelinear codes is more general than the class of linear codes, being in this case $\pi_x = Id$ for any codeword. We can find other examples of propelinear structure, for instance, in [3] the are examples of Z_4-linear codes (Goethals, Preparata like,...) and in [4] we can find the propelinear structure of the standard Preparata code which is not Z_4-linear code.

3 Z_{2k}-codes as propelinear codes

There are different ways of giving a generalization of a Gray map. For instance, Carlet gives in [2] a generalization to Z_{2k}. In this paper we will give one preserving the basic property that the distance between the images of two consecutive elements is exactly one (see [3]).

Definition 4 The Lee weight of an element $x \in Z_k$, $w_L(x)$, is defined as the minimum absolute value of any representative of its class in Z_k. The Lee distance between $x, y \in Z_k$ is $d_L(x, y) = w_L(x - y)$. Clearly, $w_L(x) = d_L(x, 0)$.

Definition 5 A Gray map is an application $\varphi : Z_r \to Z_2^m$ such that

(i) φ is one-to-one,

(ii) $d(\varphi(i), \varphi(i + 1)) = 1$, $\forall i \in Z_r$.

Lemma 3 Let $\varphi : Z_r \to Z_2^m$ a Gray map, then r is even.

Proof: Let $\psi : Z_r \to Z_2$ defined as $\psi(i) = \text{wt}(\varphi(i)) \text{ mod } 2$. Clearly, we can write $\psi(i) = \psi(0) + i \text{ mod } 2$. By definition of Gray map we have $d(\varphi(r - 1), \varphi(0)) = 1$ but, if r is odd, $\psi(r - 1) = \psi(0) + r - 1 = \psi(0) \text{ mod } 2$ which is a contradiction. □

Definition 6 Let $\varphi : Z_{2k} \to Z_2^m$ be a Gray map. φ is distance-preserving if $d(\varphi(i), \varphi(j)) = d_L(i, j)$ and it is weight-preserving if $\text{wt}(\varphi(i)) = w_L(i)$.

Definition 7 Let $\varphi : \mathbb{Z}_{2k} \rightarrow \mathbb{Z}_2^n$ a Gray map and let $+$ the usual operation in \mathbb{Z}_{2k}. We define the operation \cdot in $\varphi(\mathbb{Z}_{2k})$ as:

$$\varphi(i) \cdot \varphi(j) = \varphi(i + j) \quad (1)$$

for all $i, j \in \mathbb{Z}_{2k}$.

Lemma 4 Let $\varphi : (\mathbb{Z}_{2k}, +) \rightarrow (\mathbb{Z}_2^n, \cdot)$ a Gray map such that $(\varphi(\mathbb{Z}_{2k}), \cdot)$ is a Hamming-compatible code. Then φ is distance-preserving if and only if φ is weight-preserving.

Proof: Clearly, if φ is distance-preserving then is weight-preserving by definition of wt and w_L.

Suppose φ is weight-preserving, then

$$d(\varphi(i), \varphi(j)) = d(\varphi(i), \varphi(i) \varphi(j - i)) = \text{wt}(\varphi(j - i)) = w_L(j - i) = d_L(i, j)$$

\square

Lemma 5 Let $\varphi : \mathbb{Z}_{2k} \rightarrow \mathbb{Z}_2^n$ be a Gray map such that $(\varphi(\mathbb{Z}_{2k}), \cdot)$ is a Hamming-compatible code, then $\varphi(0) = 0$.

Proof: Let $a \in \mathbb{Z}_{2k}$. We know $(\varphi(\mathbb{Z}_{2k}), \cdot)$ is Hamming-compatible so,

$$0 = d(\varphi(a), \varphi(a + 0)) = d(\varphi(a), \varphi(a) \cdot \varphi(0)) = \text{wt}(\varphi(0))$$

Now, by definition of $\text{wt}()$, we have $\varphi(0) = 0$. \square

Theorem 1 Let $\varphi : \mathbb{Z}_{2k} \rightarrow \mathbb{Z}_2^n$ be a Gray map. If $(\varphi(\mathbb{Z}_{2k}), \cdot)$ is a Hamming-compatible code, then φ is distance-preserving.

Proof: By the lemma, we only must proof that φ is weight-preserving. Clearly, $\varphi(0) = 0$, $\varphi(1) = e_{i_1}$ and $\varphi(2) = e_{i_1} + e_{i_2}$ where $e_{i_1}, e_{i_2} \in \mathbb{Z}_2^n$ is the vector with 1 in the coordinate i_1 and 0 elsewhere. Let $j \in \mathbb{Z}_{2k}$ such that $\varphi(t) = e_{i_1} + \cdots + e_{i_t} \forall t \leq j$ and $\text{wt}(\varphi(j + 1)) = j - 1$ (j exists because $\varphi(2k - 1) = 1$).

If $j = k$ then $\text{wt}(\varphi(i)) = i = w_L(i) \forall i \leq k$ and $\text{wt}(\varphi(k + i)) = d(\varphi(k), \varphi(2k + i)) = d(\varphi(k), \varphi(i)) = d(\varphi(k), \varphi(k) \cdot \varphi(k - i)) = \text{wt}(\varphi(k - i)) = k - i = w_L(k + i) \forall i \leq k$. So, if $j = k$, the proof is finished.

Suppose $j < k$. There exists $r \geq 1$ such that $\text{wt}(\varphi(j + i)) = \text{wt}(\varphi(j + i - 1)) - 1 \forall i \leq r$ and $\text{wt}(\varphi(j + r + 1)) = \text{wt}(\varphi(j + r)) + 1$. As we know, $d(\varphi(i), \varphi(j + i)) = \text{wt}(\varphi(j)) = j$, therefore $\text{wt}(\varphi(j + i)) = j - i \forall i < r$. If $r = j$ then $\text{wt}(\varphi(j + r)) = 0$ which is not possible because of the one-to-one condition of the Gray map. Then $r < j$ and $\text{wt}(\varphi(j + r)) > 1$.

In the same way, there exists $s \geq 1$ such that $\text{wt}(\varphi(j + r + i)) = \text{wt}(\varphi(j + r + i - 1)) + 1 \forall i \leq s$ and $\text{wt}(\varphi(j + r + s + 1)) = \text{wt}(\varphi(j + r + s)) - 1$. As we know, $d(\varphi(i), \varphi(j + r + i)) = \text{wt}(\varphi(j)) = j - r$, therefore $\text{wt}(\varphi(j + r + i)) = \text{wt}(\varphi(j + r)) + i = j - r + i$. If $s = r$ then $\varphi(j + r + s) = \varphi(j)$ which is not possible, so $s < r$.

4
We can use the same argument starting from \(j + r + s \) and we always obtain images in \(\mathbb{Z}_2^m \) with weights \(w \) such that \(1 > w > j \). This is a contradiction with the fact that \(\text{wt}(\varphi(2k - 1)) = 1 \). □

Let \(C \) be a subgroup of \((\mathbb{Z}_2^k, +)\) for some \(k, n \geq 1 \), where + is the usual addition in \(\mathbb{Z}_2^k \) coordinatewisely extended. We say that \(C \) is a \(\mathbb{Z}_2^k \)-modulo code or, briefly, a \(\mathbb{Z}_2^k \)-code. We will see a binary representation of any such code as a propelinear code.

Let \(0^{(i)} \) be the all-zero vector of length \(i \) and let \(1^{(j)} \) be the all-one vector of length \(j \). We denote by \(| \) the concatenation, i.e. if \(x = (x_1, \ldots, x_r) \) and \(y = (y_1, \ldots, y_s) \), then \((x | y) = (x_1, \ldots, x_r, y_1, \ldots, y_s) \).

Define the Gray map \(\varphi : \mathbb{Z}_2^k \rightarrow \mathbb{Z}_2^k \) such that:

\[
(i) \quad \varphi(i) = (0^{(k-i)} | 1^{(i)}) \quad \forall i = 0, \ldots, k-1, \text{and}
(ii) \quad \varphi(i + k) = \varphi(i) + 1^{(k)} \quad \forall i = 0, \ldots, k-1. \tag{2}
\]

Define also the associated permutation on \(k \) coordinates

\[
\sigma_j = (1, k, k-1, \ldots, 2)^j \tag{3}
\]

(i.e. \(j \) left shifts) for all vector \(\varphi(j), j = 0, \ldots, 2k - 1 \).

Note that this Gray map \(\varphi \) is distance-preserving and weight-preserving.

Definition 8 Let \(\varphi \) be the Gray map defined in (2). For any two elements \(\varphi(i), \varphi(j) \in \varphi(\mathbb{Z}_2^k) \) define the product

\[
\varphi(i) \cdot \varphi(j) = \varphi(i) + \sigma_i(\varphi(j)) \tag{4}
\]

We are going to prove that the above product is, in fact, the one defined in (1).

Lemma 6 Let \(\varphi \) be the Gray map defined in (2). Let \(\varphi(i) \in \varphi(\mathbb{Z}_2^k) \) and the product defined in (4). Then

\[
\varphi(i) = \varphi(1)^i
\]

Proof: It is easy to verify that \(\varphi(i) = \varphi(i - 1) \cdot \varphi(1) = \varphi(1) \cdot \varphi(i - 1) \). Applying this repeatedly yields the result. □

Proposition 1 \((\varphi(\mathbb{Z}_2^k), \cdot)\) is a group, with \(\varphi \) and \(\cdot \) defined in (2) and (4) respectively.

Proof: We have that

\[
(\varphi(i) \cdot \varphi(j)) \cdot \varphi(\ell) = (\varphi(1)^i \cdot \varphi(1)^j) \cdot \varphi(1)^\ell = \varphi(1)^{i+j+\ell} = \varphi(i) \cdot (\varphi(j) \cdot \varphi(\ell)),
\]

for all \(i, j, \ell \in \mathbb{Z}_2^k \). Therefore, the operation is associative.

It is clear that \(0^{(k)} = \varphi(0) \) acts as the identity element. On the other hand, given \(\varphi(i) \in \varphi(\mathbb{Z}_2^k) \), we have that

\[
\varphi(i) \cdot \varphi(k - i) = \varphi(1)^{i+k-i} = \varphi(1)^k = \varphi(k) = \varphi(0) = 0^{(k)}.
\]

□
Corollary 1 Let ϕ defined in (2) and \cdot the operation given in (4). The map $\phi : (\mathbb{Z}_{2k}, +) \rightarrow (\phi(\mathbb{Z}_{2k}), \cdot)$ is a group homomorphism and so the operation in (4) and (7) are the same.

Proof: Given $i, j \in \mathbb{Z}_{2k}$, we have
\[
\phi(i + j) = \phi(1)^{i+j} = \phi(1)^i \cdot \phi(1)^j = \phi(i) \cdot \phi(j).
\]

\qed

Theorem 2 Let $\varphi : \mathbb{Z}_{2k} \rightarrow \mathbb{Z}_2^k$ be a Gray map. If $(\varphi(\mathbb{Z}_{2k}), \cdot)$ is a Hamming-compatible code where \cdot is the operation defined in (4), then φ is unique up to coordinate permutation.

Proof: $(\varphi(\mathbb{Z}_{2k}), \cdot)$ is a Hamming-compatible code and, by Theorem 1, φ has the following properties:

\begin{itemize}
 \item $\varphi(j) = e_{i_1} + \cdots + e_{i_j}$, for $j = 1, \ldots, k$.
 \item $\varphi(j + k) = 1^{(k)} + e_{i_1} + \cdots + e_{i_j}$, for $j = 1, \ldots, k$.
\end{itemize}

where $e_{i_1} \in \mathbb{Z}_2^k$ is the vector with 1 in the coordinate i_1 and 0 elsewhere.

For $j = 1, \ldots, k$, let μ_j be the transposition such that $\mu_j(e_{i_1}) = e_{i_{k-j+1}}$. Let μ be the permutation whose decomposition in product of transpositions is $\mu_1 \cdots \mu_k$.

Now it is easy to check that $\varphi = \mu \circ \varphi$, where φ is the map defined in (2).

\qed

Remark: If $\varphi : \mathbb{Z}_{2k} \rightarrow \mathbb{Z}_2^l$ is a Gray map, we have $l \geq k$ and, by the last theorem, if $l > k$ there are useless coordinates. Thus we can assume $l = k$.

Definition 9 We define the extended map $\Phi : \mathbb{Z}_{2k}^n \rightarrow \mathbb{Z}_2^{kn}$ such that $\Phi(j_1, \ldots, j_n) = (\phi(j_1), \ldots, \phi(j_n))$, where ϕ is defined in (2). Finally, we define the permutations $\pi_x = (\sigma_{j_1} \cdots | \sigma_{j_n})$, for $x = \Phi(j_1, \ldots, j_n)$, where σ_i is defined in (3).

Next theorem will prove that given a \mathbb{Z}_{2k}-code of length n, there exists a propelinear code of length kn such that both codes are isomorphic. The isomorphism between them extends the usual structure in \mathbb{Z}_{2k} (\cdot) to the propelinear structure in \mathbb{Z}_2^k.

Theorem 3 If C is a \mathbb{Z}_{2k}-code, then $\Phi(C)$ is a propelinear code with associated permutation π_x for all codeword $x \in \Phi(C)$.

Proof: Let $x = \Phi(j_1, \ldots, j_n) = (\phi(j_1), \ldots, \phi(j_n))$ and $y = \Phi(i_1, \ldots, i_n) = (\phi(i_1), \ldots, \phi(i_n))$ be two codewords. Then,
\[
x + \pi_x(y) = (\phi(j_1) + \sigma_{j_1}(\phi(i_1)), \ldots, \phi(j_n) + \sigma_{j_n}(\phi(i_n)).
\]

For any coordinate, say r, we have that
\[
\phi(j_r) + \sigma_{j_r}(\phi(i_r)) = \phi(1)^{i_r} \phi(1)^{r} = \phi(1)^{i_r} = \phi(j_r + i_r).
\]

Thus,
\[
x + \pi_x(y) = (\phi(j_1 + i_1), \ldots, \phi(j_n + i_n)) = \Phi((j_1, \ldots, j_n) + (i_1, \ldots, i_n)).
\]
Therefore, it is clear that $x + \pi_x(y) \in \Phi(C)$.

On the other hand, the associated permutation of $\phi(j_r + i_r)$ is

$$\sigma_{j_r + i_r} = (1, k, k - 1, \ldots, 2)^{j_r + i_r} = \sigma_{j_r} \circ \sigma_{i_r},$$

hence, if $z = x + \pi_x(y)$, then $\pi_z = \pi_x \circ \pi_y$. \hfill \Box

Corollary 2 The map $\Phi : (C, +) \rightarrow (\Phi(C), \star)$ is a group isomorphism, where $x \star y = x + \pi_x(y)$ for all $x, y \in \Phi(C)$.

Proof: As we have seen in the previous proof, $x \star y = \Phi(\Phi^{-1}(x) + \Phi^{-1}(y))$ and, clearly, Φ is bijective. \hfill \Box

In [4] it is shown that linear and \mathbb{Z}_4-linear codes are translation invariant. Now, we show that for $k > 2$ any \mathbb{Z}_{2k}-code, viewed as a binary propelinear code, is not translation invariant according to the classification given in [4].

Proposition 2 If $k > 2$ and $C \in \mathbb{Z}_{2k}^n$, then $\Phi(C)$ is a propelinear but not translation invariant code.

Proof: Consider the vector $z = (1, 0, \ldots, 0, 1) \in \mathbb{F}^k$. Then it is easy to check that $d(0^k \star z, \phi(1) \star z) = 3 \neq d(0^k, \phi(1)) = 1$. \hfill \Box

We have seen that starting from a \mathbb{Z}_{2k}-code C, of length n, the code $\Phi(C)$ with Φ (see Definition 9) is a propelinear code of length kn and both codes are isomorphic (Theorem 3). As we defined Φ, the minimum Hamming distance in $\Phi(C)$ is exactly the minimum Lee distance in C but it is at least the minimum Hamming distance in C.

Let N be the number of codewords of C; clearly, it is also the codewords number of $\Phi(C)$. Let $R = \frac{\log_2 N}{n} = \frac{\log_2 N}{n \cdot \log_2 2k} = \frac{\log_2 N}{n(1 + \log_2 k)}$ be the information rate of C, and let R' the information rate of $\Phi(C)$. We can express R' as

$$R' = \frac{\log_2 N}{kn} = \frac{1 + \log_2 k}{k} R$$

therefore R' is getting smaller than R while the value of k is raising; in fact, if $k \geq 3$ we obtain $R' < R$.

In this section we have seen that \mathbb{Z}_{2k}-codes can be represented as binary codes. We will use this representation in the next section to give some results about codes in $\mathbb{Z}_{2i_1}^{k_1} \times \cdots \times \mathbb{Z}_{2i_r}^{k_r}$, where \times denotes the direct product, and some necessary conditions to be 1-perfect codes.

4 Perfect propelinear codes

Definition 10 A general mixed group code C is an additive subgroup of $G_1 \times \cdots \times G_r$, where G_1, \ldots, G_r are finite groups. We say that a binary code C of length n is a mixed group code of type $(\mathbb{Z}_{2i_1}^{k_1}, \ldots, \mathbb{Z}_{2i_r}^{k_r})$ if $C = \Phi(C)$, where i_1, \ldots, i_r are the minimum value such that C is a subgroup of $\mathbb{Z}_{2i_1}^{k_1} \times \cdots \times \mathbb{Z}_{2i_r}^{k_r}$, and $\sum_{j=1}^r i_j k_j = n$. We denote $C \leq \mathbb{Z}_{2i_1}^{k_1} \times \cdots \times \mathbb{Z}_{2i_r}^{k_r}$.

7
Remark: If $C \leq \mathbb{Z}_{2i_1}^{k_1} \times \cdots \times \mathbb{Z}_{2i_r}^{k_r}$ then $C = C_1 \times \cdots \times C_r$, with $C_j \leq \mathbb{Z}_{2i_j}^{k_j}$. We can write $\Phi(C)$ as $(\Phi_1(C_1), \cdots, \Phi_r(C_r))$ with $\Phi_j : \mathbb{Z}_{2i_j}^{k_j} \rightarrow \mathbb{Z}_2^{i_j k_j}$ as in Definition [9]. We will denote $x \in \mathcal{C}$ as $(x_1 \cdots x_r)$ where $x_j \in \Phi_j(C_j)$. □

Theorem 4 Let \mathcal{C} be a binary mixed group code of type $(\mathbb{Z}_{2i_1}^{k_1}, \ldots, \mathbb{Z}_{2i_r}^{k_r})$ and length n. If \mathcal{C} is 1-perfect, then \mathcal{C} is of type $(\mathbb{Z}_2^k, \mathbb{Z}_4^{(n-k)/2})$ for some $k \in \mathbb{N}$.

Proof: Let \mathcal{C} be a binary mixed group code of type $(\mathbb{Z}_{2i_1}^{k_1}, \ldots, \mathbb{Z}_{2i_r}^{k_r})$. Suppose there exists $j \in \{1, \ldots, r\}$ such that $i_j > 2$. Without loss of generality we will assume $j = 1$ and $k_1 = 1$.

Let $x = (10 \cdots 01|0 \cdots 0| \cdots |0 \cdots 0) \in \mathbb{F}^n$. If \mathcal{C} is 1-perfect, then there exists $y \in \mathcal{C}$ such that $d(x, \Phi(y)) \leq 1$. As the minimum weight in \mathcal{C} is 3 and the distance of x must be at most 1, the only possibility is $i_1 = 3$ and $\Phi(y) = (111|0 \cdots 0| \cdots |0 \cdots 0)$, therefore $\mathcal{C} = G_1 \times \cdots \times G_r$ where G_1 is a subgroup of \mathbb{Z}_6 and $3 \in G_1$. The only subgroups of \mathbb{Z}_6 that contain 3 are $\{0, 3\}$ and \mathbb{Z}_6. We assume $G_1 = \mathbb{Z}_6$; otherwise, $G_1 = \{0, 3\}$ would be isomorphic to \mathbb{Z}_2. Let $u = (101100 \cdots 0)$, $v = (101010 \cdots 0) \in \mathbb{F}^n$ (where customary commas have been deleted); $u, v \notin \mathcal{C}$. The only codewords at distance 1 of u and v are, respectively, $(111100 \cdots 0)$ and $(110110 \cdots 0)$ but the distance betwen them is 2 which is not possible if \mathcal{C} is 1-perfect. □

1-perfect binary mixed codes of type $(\mathbb{Z}_2^k, \mathbb{Z}_4^{(n-k)/2})$ are called 1-perfect additive codes and they are studied in [1].

5 Conclusions

It is well known the usual Gray map from \mathbb{Z}_4 to \mathbb{Z}_2^3 (see [2], [3] and [7]) but there are different ways of giving a generalization from \mathbb{Z}_r to \mathbb{Z}_2^m. The generalization given in this paper has the property to be distance-preserving, considering the Lee distance in \mathbb{Z}_r and the Hamming distance in \mathbb{Z}_2^m. However there could be other kind of generalizations, perhaps the most important to be considered are those where the distance in \mathbb{Z}_r is different to the Lee distance or, merely, where the distance between 0 and $r-1$ is not 1.

Let $\phi : \mathbb{Z}_r \rightarrow \mathbb{Z}_2^m$ be the Gray map, and let $(\phi(\mathbb{Z}_r), \cdot)$ (defined in [11]) be a Hamming-compatible code. We know that r is even ($r = 2k$) and, without useless coordinates, m is exactly k. We have proved that such a Gray map is, in fact, unique up to coordinate permutation and we have used this to give some results on \mathbb{Z}_{2k}-codes.

Given a \mathbb{Z}_{2k}-code of length n, there exists a binary propelinear code of length kn such that both codes are isomorphic. In this way codes in $\mathbb{Z}_{2i_1}^{k_1} \times \cdots \times \mathbb{Z}_{2i_r}^{k_r}$ (or mixed groups of type $(\mathbb{Z}_{2i_1}^{k_1}, \ldots, \mathbb{Z}_{2i_r}^{k_r})$) could be represented as binary codes. Finally we have seen that if such a code is 1-perfect then, necessarily, it is a code of type $(\mathbb{Z}_2^k, \mathbb{Z}_4^{k})$.

As we have seen at the end of the Section 3, the representation of a \mathbb{Z}_{2k}-code as a binary code is not efficient enough because the information rate which is R in the first code, become $\frac{1 + \log_2 k}{k} R$ in the second one, that is lower. From this point of view, as we have seen that the representation of a \mathbb{Z}_{2k}-code is unique,
we should look for other alternatives, apart from Gray maps, to represent a \mathbb{Z}_{2^k}-code as a binary code.

References

[1] J. Borges and J. Rifà: A characterization of 1-perfect additive codes. *IEEE Trans. Information Theory*, 45(5):1688-1697 (1999).

[2] C. Carlet, “\mathbb{Z}_{2^k}-Linear codes,” *IEEE Trans. on Information Theory*, vol. 44, pp. 1543-1547, 1998.

[3] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, “The \mathbb{Z}_4-linearity of kerdock, preparata, goethals and related codes,” *IEEE Trans. on Information Theory*, vol. 40, pp. 301-319, 1994.

[4] J. Pujol and J. Rifà, “Translation invariant propelinear codes,” *IEEE Trans. Information Theory*, vol. 43, pp. 590-598, 1997.

[5] J. Rifà: Well-ordered Steiner triple systems and 1-perfect partitions of the n-cube. *SIAM J. Discrete Mathematics*, 12(1):35-47 (1999).

[6] J. Rifà, J.M. Basart and L. Huguet, “On completely regular propelinear codes,” in *Proc. 6th International Conference, AAECC-6*. 1989, number 357 in LNCS, pp. 341-355, Springer-Verlag.

[7] Zhe-Xiam Wan, “Quaternary Codes,” World Scientific, 1997.