Dilation operators in Besov spaces over local fields

Salman Ashraf\(^1\) · Qaiser Jahan\(^1\)

Received: 22 July 2022 / Accepted: 18 February 2023 / Published online: 9 March 2023
© Tusi Mathematical Research Group (TMRG) 2023

Abstract

We consider a dilation operator on Besov spaces \(B^{s}_{r,t}(K)\) over local fields and estimate an operator norm on such a field for \(s > \sigma_{r} = \max\left(\frac{1}{r} - 1, 0\right)\) which depends on the constant \(k\) unlike the case of Euclidean spaces. In \(\mathbb{R}^n\), it is independent of constant \(k\), the constant appears for limiting case \(s = 0\) and \(s = \sigma_{r}\). In local fields, the limiting case is still open.

Keywords Local fields · Besov spaces · Dilation operators

Mathematics Subject Classification 11F85 · 30H25 · 47A20

1 Introduction

Besov spaces \(B^{s}_{pq}(\mathbb{R}^n)\) and Triebel–Lizorkin spaces \(F^{s}_{pq}(\mathbb{R}^n)\) with \(s \in \mathbb{R}, 0 < p \leq \infty (p < \infty \text{ for the F-type spaces}), 0 < q \leq \infty\) on the Euclidean spaces \(\mathbb{R}^n\) are usually considered to be two very general scales of function spaces. These two spaces \(B^{s}_{pq}(\mathbb{R}^n)\) and \(F^{s}_{pq}(\mathbb{R}^n)\) contain well-known classical function spaces as special cases, such as Lebesgue spaces \(L_p = F^{0}_{p,q}(\mathbb{R}^n)\) (with \(1 < p < \infty\)), Sobolev spaces \(W^m_p = \leftarrow \text{ and } \rightarrow \text{ are special cases.}\) These function spaces have been extensively studied by Triebel, we refer to [21, 22] for more details. The theory of partial differential equation is one of the main applications of these two spaces. Dilation operator has been investigated on many function spaces, including the Besov spaces. We state the following results summarizing the behavior of dilation operator on Besov spaces.

\(^{1}\) School of Mathematical and Statistical Sciences, Indian Institute of Technology Mandi, Kamand, HP 175005, India

Communicated by Evgenij Troitsky.
In [21, 3.4], Triebel considered the dilation operators of the form
\[(T_k f)(x) = f(2^k x), \quad x \in \mathbb{R}^n, \quad k \in \mathbb{N}, \quad (1.1)\]
and showed that for \(0 < p, q \leq \infty\), and \(\infty > s > \sigma_p = \max(n\left(\frac{1}{p} - 1\right), 0)\), \(T_k\) represent bounded operators from \(B^s_{pq}(\mathbb{R}^n)\) into itself and in this case we have
\[
\|T_k f\|_{B^s_{pq}(\mathbb{R}^n)} \leq c 2^{k(s-n/p)} \|f\|_{B^s_{pq}(\mathbb{R}^n)}.
\]

Boundedness of \(T_k\) for the limiting case \(s = 0\) and \(s = \sigma_p\) remained open until Vybíral in [26] and Schneider in [15], respectively, gave the final answer and showed that the additional constant \(k\) will appear in the calculation of the norm of dilation operator \(T_k\). The norm calculated by Vybíral in [26] is as follows.

For \(0 < q \leq \infty\),
\[
\|T_k \| \mathcal{L}(B^0_{pq}(\mathbb{R}^n)) \sim 2^{-k \frac{n}{p}} \begin{cases} \frac{1}{k^\frac{1}{q}} & \text{if } 1 < p < \infty, \\ \frac{1}{k^\frac{1}{p}} & \text{if } p = 1 \text{ or } p = \infty, \end{cases}
\]
and by Schneider [15] is given by,
\[
\|T_k \| \mathcal{L}(B^\sigma_{pq}(\mathbb{R}^n)) \sim 2^{k(\sigma - \frac{n}{p})} \frac{1}{k^\frac{1}{q}}, \quad \text{for } 0 < p \leq 1 \text{ and } 0 < q \leq \infty,
\]
where \(\|T_k \| \mathcal{L}(B^s_{pq}(\mathbb{R}^n))\) denotes the norm of the operator \(T_k\) from \(B^s_{pq}(\mathbb{R}^n)\) into itself.

The boundedness of the dilation operators are studied not only for theoretical aspect, but it also has major applications to several classical problems in analysis. For instance, they appear in the localization of \(B^s_{pq}\) and \(F^s_{pq}\) spaces and Hölder inequalities and sharp embeddings of \(B^s_{pq}\) and \(F^s_{pq}\) spaces (see [7, chap 2], [16, 23]).

The main aim of the present paper is to study dilation operators in the framework of Besov spaces on local fields. In particular, we extend the results obtained by Triebel in [21, 3.4]. A local field \(K\) is a locally compact, totally disconnected, non-Archimedean norm valued and non-discrete topological field, we refer [20] to basic Fourier analysis on local fields. The local fields are essentially of two types (excluding the connected local fields \(\mathbb{R}\) and \(\mathbb{C}\)) namely characteristic zero and of positive characteristic. The characteristic zero local fields include the \(p\)-adic field \(\mathbb{Q}_p\) and the examples of positive characteristic are the Cantor dyadic groups, Vilenkin \(p\)-groups and \(p\)-series fields.

Besov spaces \(B^s_{pq}(K)\) and Triebel–Lizorkin spaces \(F^s_{pq}(K)\) on local fields were introduced and studied by Onneweer and Weiyi [13]. In [17], Su, introduced, “\(p\)-type smoothness” of the functions defined on local fields. To complete the theoretical base of the Function spaces on local fields and to broaden the range of its applications, a series of studies have been carried out such as the construction theory of functions on local fields [19], the Weierstrass functions, Cantor functions and their \(p\)-adic derivatives on local fields, the Lipschitz classes on local fields etc. (see [18]). Operator theory on local fields, is quite new and lots of new topics are worth to study. Boundedness of some
fundamental operators in Harmonic analysis, like Hardy operator, Hausdorff operator, maximal operator and singular integral operator on function spaces over local fields have been studied by many researchers (see [1, 6, 8, 9, 12, 14, 24, 25]).

Wavelet theory on local fields has also been developed widely. Jiang, Li and Jin [10] have introduced the concept of multiresolution analysis and wavelet frames on local fields [11]. Later, Behera and Jahan have developed the theory of wavelets on such a field in a series of papers [2–4]. We refer [5] for more details of wavelets on local fields.

This article is organized as follows. In Sect. 2, we provide a brief introduction to local fields and test function class and distribution on such a field. We have also provided the definition of Besov spaces $B^s_{rt}(K)$ on local fields. In Sect. 3, we study the dilation operators

$$ (T_k f)(x) = f(p^{-k} x), \quad x \in K, \quad k \in \mathbb{N}, $$

in the framework of Besov spaces $B^s_{rt}(K)$ and more precisely, we shall prove the following result:

Theorem 1.1 Let $0 < r, t \leq \infty, s > \sigma_r = \max \left(\frac{1}{t} - 1, 0 \right)$. For $k \in \mathbb{N}$, T_k is defined by (1.2). Then

$$ \| T_k f \|_{B^s_{rt}(K)} \leq (c_2 + c_1 k^{1/t}) q^{k(s-\frac{1}{r})} \| f \|_{B^s_{rt}(K)}, $$

for some c_1, c_2 which are independent of k and for all $f \in B^s_{rt}(K)$.

Note that, in the case of $B^s_{rt}(K)$ (with $s > \sigma_r$), Besov norm of operators T_k (defined by (1.2)) depends on k, whereas in the case of $B^s_{pq}(\mathbb{R}^n)$, Besov norm of operators T_k (defined by (1.1)) is independent of the constant k for $s > \sigma_r$, see [21], in the case of Euclidean spaces it depends on k in the limiting case $s = 0$ and $s = \sigma_p$, see [23] for more details. For local fields, the limiting case is still open.

2 Preliminaries

2.1 Local fields

Let K be a field and a topological space. If the additive group K^+ and multiplicative group K^* of K both are locally compact Abelian group, then K is called locally compact topological field, or local field.

If K is any field and is endowed with the discrete topology, then K is a local field. Further, if K is connected, then K is either \mathbb{R} or \mathbb{C}. If K is not connected, then it is totally disconnected. So, here local fields means a field K which is locally compact, non-discrete and totally disconnected. If K is of characteristic zero, then K is either a p-adic field for some prime number p or a finite algebraic extension of such a field. If K is of positive characteristic, then K is either a field of formal Laurent series over a finite field of characteristic p or an algebraic extension of such a field.
Let K be a local field. Since K^+ is a locally compact Abelian group, we choose a Haar measure dx for K^+. If $\alpha \neq 0$, $\alpha \in K$, then $d(\alpha x)$ is also a Haar measure and by the uniqueness of Haar measure we have $d(\alpha x) = |\alpha|dx$. We call $|\alpha|$ the absolute value or valuation of α which is, in fact, a natural non-Archimedean norm on K. A mapping $| \cdot | : K \to \mathbb{R}$ satisfies:

(a) $|x| = 0$ if and only if $x = 0$;
(b) $|xy| = |x||y|$ for all $x, y \in K$;
(c) $|x + y| \leq \max\{|x|, |y|\}$, for all $x, y \in K$.

The property (c) is called the ultrametric inequality. It follows that

$$|x + y| = \max\{|x|, |y|\} \text{ if } |x| \neq |y|.$$

The set $\mathcal{O} = \{x \in K : |x| \leq 1\}$ is called the ring of integers in K. It is the unique maximal compact subring of K. The set $\mathfrak{P} = \{x \in K : |x| < 1\}$ is called the prime ideal in K. It is the unique maximal ideal in \mathcal{O}. It can be proved that \mathcal{O} is compact and open and hence \mathfrak{P} is also compact and open. Therefore, the residue space \mathcal{O}/\mathfrak{P} is isomorphic to a finite field $GF(q)$, where $q = p^c$ for some prime number p and $c \in \mathbb{N}$.

Let p be a fixed element of maximum absolute value in \mathfrak{P} and it is called a prime element of K. For a measurable subset E of K, let $|E| = \int_K 1_E(x)dx$, where 1 is the indicator function of E and dx is the Haar measure of K normalized so that $|\mathcal{O}| = 1$. Then it is easy to prove that $|\mathfrak{P}| = q^{-1} = |p| = p^{-1}$ (see [20]).

Let $\mathcal{U} = \{a_i\}_{i=0}^{r-1}$ be any fixed full set of coset representative of \mathfrak{P} in \mathcal{O} then each $x \in K$ can be written uniquely as $x = \sum_{i=k}^{\infty} c_i p^i$, where $c_i \in \mathcal{U}$. If $x(\neq 0) \in K$ then $|x| = q^k$ for some $k \in \mathbb{Z}$.

Let $\mathcal{O}^* = \mathcal{O} \setminus \mathfrak{P} = \{x \in \mathcal{O} : |x| = 1\}; \mathcal{O}^*$ is the group of units in K^*. If $x \neq 0$, we can write as $x = p^k x', x' \in \mathcal{O}^*$. Let $\mathfrak{P}^k = p^k \mathcal{P} = \{x \in K : |x| \leq q^{-k}\}, k \in \mathbb{Z}$. These are called fractional ideals.

The set $\{\mathfrak{P}^k \subset K : k \in \mathbb{Z}\}$ satisfies the following:

(i) $\{\mathfrak{P}^k \subset K : k \in \mathbb{Z}\}$ is a base for neighborhood system of identity in K, and $\mathfrak{P}^{k+1} \subset \mathfrak{P}^k, k \in \mathbb{Z}$;
(ii) $\mathfrak{P}^k, k \in \mathbb{Z},$ is open, closed and compact in K;
(iii) $K = \bigcup_{k=-\infty}^{+\infty} \mathfrak{P}^k$ and $\{0\} = \bigcap_{k=+\infty}^{-\infty} \mathfrak{P}^k$.

Let Γ be the character group of the additive group K^+. There is a nontrivial character $\chi \in \Gamma$ which is trivial on \mathcal{O} but is non-trivial on \mathfrak{P}^{-1}. Let χ be a non-trivial character on K^+, then the corresponding relationship $\lambda \in K \longleftrightarrow \chi_\lambda \in \Gamma$ is determined by $\chi_\lambda(x) = \chi(\lambda x)$, and the topological isomorphism is established for K and Γ, moreover, we have $\Gamma = \{\chi_\lambda : \lambda \in K\}$.

For $k \in \mathbb{Z}$, let Γ^k be the annihilator of \mathfrak{P}^k, that is,

$$\Gamma^k = \{\chi \in \Gamma : \forall x \in \mathfrak{P}^k \implies \chi(x) = 1\},$$

subset in the character group Γ.

© Birkhäuser
For $k \in \mathbb{Z}$, let $\chi \in \Gamma^k \subset \Gamma$ which implies that $\chi \in \Gamma$ and therefore $\chi = \chi_\lambda$ for some $\lambda \in K$. For all $x \in \mathbb{P}^k$, we have $\chi_\lambda(x) = 1$, i.e., $\chi(\lambda x) = 1$, since a character χ is trivial on \mathcal{O}, this implies $\lambda x \in \mathcal{O}$ and hence $|\lambda| \leq q^k$, i.e., $\lambda \in \mathbb{P}^{-k}$. Therefore, every $\chi \in \Gamma^k$ is of the form χ_λ with $|\lambda| \leq q^k$. Conversely, if we take any $\chi_\lambda \in \Gamma$ with $|\lambda| \leq q^k$ then $\chi_\lambda(x) = \chi(\lambda x) = 1$, $\forall x \in \mathbb{P}^k$ which implies that $\chi_\lambda \in \Gamma^k$. Hence, we can write

$$\Gamma^k = \{\chi_\lambda \in \Gamma : |\lambda| \leq q^k\}, \quad k \in \mathbb{Z}.$$

For the Haar measure dx of K^+, let $d\xi$ be the Haar measure on Γ, chosen such that

$$|\Gamma^0| = 1, \quad \text{and} \quad |\Gamma^k| = q^k.$$

We refer to [18, 20] for details of local fields and proof of statements discussed in this section.

Test function class $S(K)$: It is the linear space in which functions have the form

$$\phi(x) = \sum_{j=1}^{n} c_j \Phi_{\mathbb{P}^j}(x - h_j), \quad c_j \in \mathbb{C}, h_j \in K, j \in \mathbb{Z}, n \in \mathbb{N},$$

where $\Phi_{\mathbb{P}^j}$ is the characteristic function of \mathbb{P}^j. The space $S(K)$ is an algebra of continuous functions with compact support that separates points. Consequently, $S(K)$ is dense in $C_0(K)$ as well as $L^r(K)$, $1 \leq r < \infty$. Similarly, the test function class $S(\Gamma)$ on Γ can be defined. However, since K is isomorphic to Γ, so $S(K)$ and $S(\Gamma)$ can be regarded as equivalent with respect to absolute value or valuation.

The space $S(K)$ is equipped with a topology as a topological vector space as follows: Define a null sequence in $S(K)$ as a sequence $\{\phi_n\}$ of functions on $S(K)$ in such a way that each ϕ_n is constant on cosets of \mathbb{P}^l and is supported on \mathbb{P}^k for a fixed pair of integers k and l and the sequence converges to zero uniformly. The space $S(K)$ is complete and separable and is called the space of testing function.

Since $S(K)$ is dense in $L^1(K)$, thus the Fourier transformation of $\phi(x) \in S(K)$ is defined by

$$\hat{\phi}(\xi) \equiv (\mathcal{F}\phi)(\xi) = \int_{K} \phi(x) \overline{\chi_\xi(x)} dx, \quad \xi \in \Gamma,$$

and the inverse Fourier transformation of $\phi \in S(K)$ is defined by the formula

$$\tilde{\phi}(x) \equiv (\mathcal{F}^{-1}\phi)(x) = \int_{\Gamma} \phi(\xi) \chi_\xi(\xi) d\xi, \quad x \in K.$$

$S'(K)$, the space of distributions, is a collection of continuous linear functional on $S(K)$. $S'(K)$ is also a complete topological linear space. The action of f in $S'(K)$ on an element ϕ in $S(K)$ is denoted by $\langle f, \phi \rangle$. The distribution space $S'(K)$ is given the
weak* topology. Convergence in $S'(K)$ is defined in the following way: f_k converges to f in $S'(K)$ if (f_k, ϕ) converges to (f, ϕ) for any $\phi \in S(K)$.

The Fourier transformation \hat{f} of a distribution $f \in S'(K)$ is defined by

$$\langle \hat{f}, \phi \rangle = \langle f, \hat{\phi} \rangle \quad \text{for all } \phi \in S(K),$$

the inverse Fourier transformation \check{g} is defined by

$$\langle \check{g}, \psi \rangle = \langle g, \check{\psi} \rangle \quad \text{for all } \psi \in S(K).$$

2.2 Function spaces on local fields

Definition 2.1 Let $\{\phi_j\}_{j=0}^\infty = \{\Phi_{\Gamma^0}, \Phi_{\Gamma \backslash \Gamma_{j-1}}\}_{j=1}^\infty$, we define the operators Δ_j as follows

$$\Delta_j f = F^{-1}(\phi_j F f), \quad j \in \mathbb{N}_0, \quad f \in S'(K).$$

Then we obtain the Littlewood–Paley decomposition,

$$f = \sum_{j=0}^\infty \Delta_j f,$$

of all $f \in S'(K)$.

Note that $\Delta_j f \in S'(K)$ for any $f \in S'(K)$.

We are providing the proof of convergence of Littlewood–Paley decomposition on local fields.

Proposition 2.1 Let u be in $S'(K)$. Then, we have $u = \sum_{j=0}^\infty \Delta_j u$, in the sense of the convergence in the space $S'(K)$.

Proof Let $u \in S'(K)$ and

$$S_n u = \sum_{j=0}^n \Delta_j u,$$

we have

$$\langle (I - S_n)u, f \rangle = \langle u, (I - S_n) f \rangle, \quad \text{for all } f \in S(K).$$

Thus, it is enough to prove

$$f = \lim_{n \to \infty} S_n f, \quad \text{for all } f \in S(K).$$
For all $\xi \in K$, we have

$$
\mathcal{F}(S_n f - f)(\xi) = \mathcal{F}\left(\sum_{j=0}^{n} \Delta_j f - f \right)(\xi) = \sum_{j=0}^{n} \phi_j \mathcal{F}(f)(\xi) - \mathcal{F}(f)(\xi).
$$

Since $\sum_{j=0}^{\infty} \phi_j = 1$, hence

$$
\lim_{n \to \infty} \mathcal{F}(S_n f - f)(\xi) = 0,
$$

and therefore,

$$
f = \lim_{n \to \infty} S_n f.
$$

\hfill \Box

Definition 2.2 (*B-type space*) For $0 < r \leq +\infty$, $0 < t \leq +\infty$, $s \in \mathbb{R}$, we define B-type spaces or Besov spaces on local fields K as

$$
B_{rt}^s(K) = \{ f \in S'(K) : \| f \|_{B_{rt}^s(K)} < \infty \},
$$

with norm

$$
\| f \|_{B_{rt}^s(K)} = \| q^{sjs} \Delta_j f \|_{\ell_t(L_r(K))} = \left\{ \sum_{j=0}^{\infty} q^{sjs} \left\{ \int_K |\Delta_j f|^r \, dx \right\}^{\frac{t}{r}} \right\}^{\frac{1}{t}}.
$$

Remark 2.1 The spaces $B_{rt}^s(K)$ are quasi-Banach spaces (Banach spaces for $r, t \geq 1$), and $S(K) \subset B_{rt}^s(K) \subset S'(K)$, where the first embedding is dense if $r < \infty$ and $t < \infty$. The theory of the spaces $B_{rt}^s(K)$ has been developed in [18].

Note that members of $B_{rt}^s(K)$ are tempered distributions and which can only be interpreted as regular distributions for sufficiently high smoothness. More precisely, we have

$$
B_{rt}^s(K) \subset L_{1}^{hc}(K) \quad \text{if and only if} \quad s > \sigma_r \text{ for } 0 < r \leq \infty, \ 0 < t \leq \infty,
$$

see [18, Theorem 4.1.3]. Since, for $0 < s < \sigma_r$, the δ-distribution belongs to $B_{rt}^s(K)$, which is a singular distribution, so, in general one cannot interpret $f \in B_{rt}^s(K)$ as a regular distribution.
Definition 2.3 Let Ω be a compact subset of Γ and $0 < r \leq \infty$, then we define

$$S^\Omega(K) = \{ \phi : \phi \in S(K), \supp \mathcal{F}\phi \subset \Omega \}$$

$$L_r^\Omega(K) = \{ \psi : \psi \in S'(K), \supp \mathcal{F}\psi \subset \Omega, \| \psi \|_{L_r(K)} < \infty \}.$$

If σ is a real number, then

$$H_2^\sigma = \{ f : f \in S'(K), \| f \|_{H_2^\sigma} = \| \langle \cdot \rangle^\sigma \mathcal{F}f \|_{L_2(K)} < \infty \}.$$

By the well-known fact that \mathcal{F} is a unitary operator on L_2, we have

$$\| f \|_{H_2^\sigma} = \| \mathcal{F}^{-1} \langle \cdot \rangle^\sigma \mathcal{F}f \|_{L_2(K)}.$$

We will be using the following theorem in further sections. We refer [27, Theorem 1.1.5] to the proof of the theorem.

Theorem 2.4 Let Ω be a compact subset of K and $0 < r \leq \infty$. If $\sigma > \left(\frac{1}{\min(r, 1)} - \frac{1}{2} \right)$ then there exists a constant c such that

$$\| \mathcal{F}^{-1} M \mathcal{F}h \|_{L_r(K)} \leq c \| M \|_{H_2^\sigma} \| h \|_{L_r(K)},$$

holds for all $h \in L_r^\Omega(K)$ and all $M \in H_2^\sigma$.

3 Dilation operator

Our main result is the following.

Theorem 3.1 Let $0 < r, t \leq \infty$, $s > \sigma_r = \max \left(\frac{1}{r} - 1, 0 \right)$. For $k \in \mathbb{N}$, T_k is defined by (1.2). Then

$$\| T_k f \|_{B_r^s(K)} \leq (c_2 + c_1 k^{1/t}) q^{k(s-\frac{1}{t})} \| f \|_{B_r^s(K)},$$

for some c_1, c_2 which are independent of k and for all $f \in B_r^s(K)$.

Proof Recall from Definition 2.1,

$$\{ \phi_j \}_{j=0}^{+\infty} = \{ \Phi_1^0, \Phi_{\Gamma_j \setminus \Gamma_{j-1}} \}_{j=1}^{+\infty},$$

the non-homogeneous unit decomposition on Γ. We may assume that

$$\phi_j(\xi) = \phi_1(p^{j-1} \xi), \quad j \in \mathbb{N}.$$
We have

\[
(\mathcal{F} f(p^{-k} \cdot)) (\xi) = \int_K f(p^{-k} x) \bar{\chi}_\xi(x) \, dx \\
= \int_K f(t) \bar{\chi}_\xi(p^{k} t) q^{-k} \, dt \\
= q^{-k}(\mathcal{F} f)(p^{k} \xi).
\]

Also

\[
\mathcal{F}^{-1}\{\phi_j(\xi)(\mathcal{F} f(p^{-k} \cdot))(\xi)\}(x) = q^{-k} \mathcal{F}^{-1}\{\phi_j(\xi)(\mathcal{F} f)(p^{k} \xi)\}(x) \\
= q^{-k} \int_\Gamma \phi_j(\xi)(\mathcal{F} f)(p^{k} \xi) \chi_x(\xi) \, d\xi \\
= q^{-k} \int_\Gamma \phi_j(p^{-k} \xi)(\mathcal{F} f)(\xi) \chi_x(p^{-k} \xi) q^{k} \, d\xi \\
= q^{-k} q^{k} \int_\Gamma \phi_j(p^{-k} \xi)(\mathcal{F} f)(\xi) \chi_{p^{-k} x}(\xi) \, d\xi \\
= \mathcal{F}^{-1}\{\phi_j(p^{-k} \xi)(\mathcal{F} f)(\xi)\}(p^{-k} x). \tag{3.2}
\]

From the definition of Besov spaces with \(f(p^{-k} x) \) in place of \(f(x) \) and using (3.2) along with \(\|g(p^{-k} \cdot) \mid L_r(K)\| = q^{-k/r} \|g \mid L_r(K)\| \), we obtain

\[
\|f(p^{-k} x) \mid B^s_{r,t}(K)\| = \left(\sum_{j=0}^{\infty} q^{sjt} \|\mathcal{F}^{-1}\{\phi_j(\xi)(\mathcal{F} f(p^{-k} \cdot))(\xi)\}(x) \mid L_r(K)\|^t \right)^{1/t} \\
= \left(\sum_{j=0}^{\infty} q^{sjt} \|\mathcal{F}^{-1}\{\phi_j(p^{-k} \xi)(\mathcal{F} f)(\xi)\}(p^{-k} x) \mid L_r(K)\|^t \right)^{1/t} \\
= q^{-k/r} \left(\sum_{j=0}^{\infty} q^{sjt} \|\mathcal{F}^{-1}\phi_j(p^{-k} \cdot)\mathcal{F} f \mid L_r(K)\|^t \right)^{1/t} \tag{3.3}
\]

If \(j \geq k + 1 \), then \(\phi_j(p^{-k} \xi) = \phi_1(p^{j-k-1} \xi) = \phi_{j-k}(\xi) \). This gives

\[
q^{-k/r} \left(\sum_{j=k+1}^{\infty} q^{sjt} \|\mathcal{F}^{-1}\phi_j(p^{-k} \cdot)\mathcal{F} f \mid L_r(K)\|^t \right)^{1/t} \\
= q^{-k/r} \left(\sum_{j=k+1}^{\infty} q^{(j-k)t} q^{skt} \|\mathcal{F}^{-1}\phi_{j-k}\mathcal{F} f \mid L_r(K)\|^t \right)^{1/t} \\
= q^{-k/r} q^{sk} \left(\sum_{l=1}^{\infty} q^{slt} \|\mathcal{F}^{-1}\phi_l\mathcal{F} f \mid L_r(K)\|^t \right)^{1/t}
\]
Using this fact we have
\[\phi \]
where
\[\sigma \]
which gives that
\[M = j \]
For the remaining terms, \(j = 0, 1, \ldots, k \) we will use Theorem 2.4. Since \(\phi_j (p^{-k} \xi) = 1 \) when \(p^{-k} \xi \in \Gamma^j \setminus \Gamma^{j-1} \), otherwise it is zero, so
\[p^{-k} \xi \in \Gamma^j \setminus \Gamma^{j-1} \implies |p^{-k} \xi| = q^j \]
\[|\xi| = q^{j-k} \leq 1 \quad (\because j \leq k) \]
which gives that \(\xi \in \Gamma^0 \) and hence \(\phi_0 (\xi) = 1 \), therefore \(\phi_j (p^{-k} \xi) \phi_0 (\xi) = \phi_j (p^{-k} \xi) \).
Using this fact we have
\[\mathcal{F}^{-1} \phi_j (p^{-k} \cdot) \mathcal{F} f = \mathcal{F}^{-1} \phi_j (p^{-k} \cdot) \phi_0 \mathcal{F} f = \mathcal{F}^{-1} \phi_j (p^{-k} \cdot) (\mathcal{F}^{-1} \phi_0 \mathcal{F} f). \]
(3.5)

We put \(h = \mathcal{F}^{-1} \phi_0 \mathcal{F} f \), where \(\text{supp} \mathcal{F} h \subset \text{supp} \phi_0 = \Gamma^0 \). If \(j = 0 \), we take \(M = \phi_0 (p^{-k} \cdot) \) and calculate
\[q^{-k/r} \| \mathcal{F}^{-1} \phi_0 (p^{-k} \cdot) \mathcal{F} f \| L_r (K) \| \leq c q^{-k/r} \| \phi_0 (p^{-k} \cdot) \| H^s_2 \| \| \mathcal{F}^{-1} \phi_0 \mathcal{F} f \| L_r (K) \|, \]
(3.6)

where \(\sigma \) is an arbitrary number with \(\sigma > \left(\frac{1}{\min(r, 1)} - \frac{1}{2} \right) \). It is easy to see that
\[\| \phi_0 (p^{-k} \cdot) \| H^s_2 \| = \| (\xi)^{\sigma} (\mathcal{F} \phi_0 (p^{-k} \cdot)) (\xi) \| L_2 (K) \| \]
\[= q^{-k} \| (\xi)^{\sigma} (\mathcal{F} \phi_0) (p^k \xi) \| L_2 (K) \| \]
\[= q^{-k} q^{k/2} \| (p^{-k} \xi)^{\sigma} (\mathcal{F} \phi_0) (\xi) \| L_2 (K) \| \]
\[= q^{-k/2} q^{k \sigma} \| (\mathcal{F} \phi_0) (\xi) \| L_2 (K) \| \]
\[= q^{-k/2} q^{k \sigma} \| \phi_0 \| L_2 (K) \| \]
\[= q^{k (\sigma - 1/2)}. \]

We may assume that \(s > \sigma - 1/2 \). This gives
\[q^{-k/r} \| \mathcal{F}^{-1} \phi_0 (p^{-k} \cdot) \mathcal{F} f \| L_r (K) \| \leq c q^{-k/r} q^{k s} \| \mathcal{F}^{-1} \phi_0 \mathcal{F} f \| L_r (K) \| \]
\[\leq c' q^{k (s - 1/r)} \| f \| B^s_{r,t} (K) \|. \]
(3.7)
Finally, it remains to consider $1 \leq j \leq k$. This is the crucial step leading to $k^{1/t}$. In this case, $\phi_j(p^{-k}\xi) = \phi_1(p^{j-k-1}\xi)$ and

\[
\mathcal{F}^{-1} \phi_j(p^{-k}\cdot) \mathcal{F} f = \mathcal{F}^{-1} \phi_1(p^{j-k-1}\cdot) \phi_0 \mathcal{F} f = \mathcal{F}^{-1} \phi_1(p^{j-k-1}\cdot) \mathcal{F}(\mathcal{F}^{-1} \phi_0 \mathcal{F} f). \tag{3.8}
\]

We put $h = \mathcal{F}^{-1} \phi_0 \mathcal{F} f$, where supp $\mathcal{F} h \subset$ supp $\phi_0 = \Gamma^0$, and we take $M = \phi_1(p^{j-k-1}\cdot)$. This gives

\[
\| \mathcal{F}^{-1} \phi_j(p^{-k}\cdot) \mathcal{F} f \mid L_r(K) \| = \| \mathcal{F}^{-1} \phi_1(p^{j-k-1}\cdot) \mathcal{F}(\mathcal{F}^{-1} \phi_0 \mathcal{F} f) \mid L_r(K) \| \\
\leq c \| \phi_1(p^{j-k-1}\cdot) \| \cdot \| \mathcal{F}^{-1} \phi_0 \mathcal{F} f \mid L_r(K) \|, \tag{3.9}
\]

where σ is an arbitrary number with $\sigma > \left(\frac{1}{\min(r, 1)} - \frac{1}{2} \right)$ and

\[
\| \phi_1(p^{j-k-1}\cdot) \| \cdot H_2^\sigma = \| (\mathcal{F} \phi_1(p^{j-k-1}\cdot))(\xi) \mid L_2(K) \| \\
= q^{-(k-j+1)} \| (\mathcal{F} \phi_1)(p^{(k-j+1)}\xi) \mid L_2(K) \| \\
= q^{-(k-j+1)} q^{(k-j+1)/2} \| (\mathcal{F} \phi_1)(\xi) \mid L_2(K) \| \\
= q^{-(k-j+1)/2} q^{(k-j+1)\sigma} \| \phi_1 \mid L_2(K) \| \\
= (q - 1)^{1/2} q^{(k-j+1)(\sigma - 1/2)}. \tag{3.10}
\]

Using (3.9) and (3.10), we obtain

\[
q^{-k/r} \left(\sum_{j=1}^{k} q^{s_1} \| \mathcal{F}^{-1} \phi_j(p^{-k}\cdot) \mathcal{F} f \mid L_r(K) \| \right)^{1/t} \\
\leq c q^{-k/r} \left(\sum_{j=1}^{k} q^{s_1} q^{(k-j)(\sigma - 1/2)t} (q - 1)^{1/2} q^{(\sigma - 1/2)t} \| \mathcal{F}^{-1} \phi_0 \mathcal{F} f \mid L_r(K) \| \right)^{1/t} \\
\leq c q^{-k/r} \left(\sum_{j=1}^{k} q^{s_1} q^{(k-j)^s} (q - 1)^{1/2} q^{s} \| \mathcal{F}^{-1} \phi_0 \mathcal{F} f \mid L_r(K) \| \right)^{1/t} (s > \sigma - 1/2) \\
= c q^{-k/r} \left(\sum_{j=1}^{k} q^{s_1} (q - 1)^{1/2} q^{s} \| \mathcal{F}^{-1} \phi_0 \mathcal{F} f \mid L_r(K) \| \right)^{1/t} \\
= c q^{-k/r} q^{s_1} (q - 1)^{1/2} q^{s} \| \mathcal{F}^{-1} \phi_0 \mathcal{F} f \mid L_r(K) \| \left(\sum_{j=1}^{k} \right)^{1/t} \\
\leq c_1 q^{(s-1/2)} k^{1/t} \| f \mid B_{r,t}^s(K) \|. \tag{3.11}
\]
Finally, (3.11) together with (3.7), (3.4) and (3.3) gives the estimate i.e,

\[\| f(\beta^{-k}x) \|_{B_{rt}^s(K)} \leq (c+c'+c_1k^{1/t})q^{k(s-1/r)} \| f \|_{B_{rt}^s(K)}, \]

\[= (c_2+c_1k^{1/t})q^{k(s-1/r)} \| f \|_{B_{rt}^s(K)}, \]

which is the desired result. \(\square \)

Acknowledgements The authors would like to thank the reviewers for the valuable suggestions which helped them to improve the overall presentation of this article. Q. Jahan is supported by Science and Engineering Research Board, a statutory body of the Department of Science and Technology, government of India and the grant number is MTR/2020/000392.

Data availability The authors confirm that the data supporting the findings of this study are available within the article.

References

1. Ashraf, S., Jahan, Q.: A note on boundedness of singular integral operators on function spaces over local fields. Preprint (2022)
2. Behera, B., Jahan, Q.: Wavelet packets and wavelet frame packets on local fields of positive characteristic. J. Math. Anal. Appl. 395(1), 1–14 (2012)
3. Behera, B., Jahan, Q.: Characterization of wavelets and MRA wavelets on local fields of positive characteristic. Collect. Math. 66(1), 33–53 (2015)
4. Behera, B., Jahan, Q.: Affine, quasi-affine and co-affine frames on local fields of positive characteristic. Math. Nachr. 290(14–15), 2154–2169 (2017)
5. Behera, B., Jahan, Q.: Wavelet Analysis on Local Fields of Positive Characteristic. Springer, Berlin (2021)
6. Duong, D.V., Hong, N.T.: Some new weighted estimates for \(p \)-adic multilinear Hausdorff type operator and its commutators on Morrey–Herz spaces. Adv. Oper. Theory 7(3), 1–21 (2022)
7. Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators, vol. 120. Cambridge University Press, Cambridge (1996)
8. Fu, Z.W., Wu, Q.Y., Lu, S.Z.: Sharp estimates of \(p \)-adic Hardy and Hardy–Littlewood–Pólya operators. Acta Math. Sin. Engl. Ser. 29(1), 137–150 (2013)
9. Hussain, A., Sarfraz, N.: The Hausdorff operator on weighted \(p \)-adic Morrey and Herz type spaces. p-Adic Numbers Ultrametr. Anal. Appl. 11(2), 151–162 (2019)
10. Jiang, H., Li, D., Jin, N.: Multiresolution analysis on local fields. J. Math. Anal. Appl. 294(2), 523–532 (2004)
11. Li, D., Jiang, H.: The necessary condition and sufficient conditions for wavelet frame on local fields. J. Math. Anal. Appl. 345(1), 500–510 (2008)
12. Molla, M., Behera, B.: Weighted norm inequalities for maximal operator of Fourier series. Adv. Oper. Theory 7(1), 1–18 (2022)
13. Omneweer, C., Weiyi, S.: Homogeneous Besov spaces on locally compact Vilenkin groups. Stud. Math. 93(1), 17–39 (1989)
14. Phillips, K., Taibleson, M.: Singular integrals in several variables over a local field. Pac. J. Math. 30(1), 209–231 (1969)
15. Schneider, C.: On dilation operators in Besov spaces. Rev. Mat. Complut. 22(1), 111–128 (2009)
16. Sickel, W., Triebel, H.: Hölder inequalities and sharp embeddings in function spaces of \(B_{p,q}^s \) and \(F_{p,q}^s \) type. Z. Anal. Anwend. 14(1), 105–140 (1995)
17. Su, W.: Pseudo-differential operators and derivatives on locally compact Vilenkin groups. Sci. China Ser. A 35(7), 826–836 (1992)
18. Su, W.: Harmonic Analysis and Fractal Analysis Over Local Fields and Applications. World Scientific, Singapore (2017)
19. Su, W.: Construction theory of function on local fields. Anal. Theory Appl. 31(1), 25–44 (2015)
20. Taibleson, M.H.: Fourier Analysis on Local Fields. Princeton University Press, Princeton (1975)
21. Triebel, H.: Theory of Function Spaces. Birkhauser, Basel (1983)
22. Triebel, H.: Theory of Function Spaces II. Birkhauser, Basel (1992)
23. Triebel, H.: A localization property for $B_{p,q}^s$ and $F_{p,q}^s$ spaces. Stud. Math. 109(2), 183–195 (1994)
24. Volosivets, S.S.: Hausdorff operator of special kind on p-adic field and BMO-type spaces. p-Adic Numbers Ultrametr. Anal. Appl. 3(2), 149–156 (2011)
25. Volosivets, S.S.: Multidimensional Hausdorff operator on p-adic field. p-Adic Numbers Ultrametr. Anal. Appl. 2(3), 252–259 (2010)
26. Vybíral, J.: On dilation operators and sampling numbers. J. Funct. Spaces Appl. 6(1), 17–46 (2008)
27. Zhou, G., Su, W.: Elementary aspects of $B_{p, q}^s (K^n)$ and $F_{p, q}^s (K^n)$ spaces. Approx. Theory Appl. 8(2), 11–28 (1992)