\textbf{N}_2\textbf{H}^+ \text{ and } \textbf{N}^{15}\textbf{NH}^+ \text{ towards the prestellar core 16293E in L1689N}

F. Daniel, A. Fauré, L. Paganini, F. Lique, M. Gérin, D. Lis, P. Hily-Blant, A. Bacmann, E. Rouet

1. Introduction

Molecular isotopic ratios are invaluable tools for studying the origin of solar system materials and their possible link with interstellar chemistry. After hydrogen, the largest isotopic variations in the solar system are observed for nitrogen. The $^{14}\text{N}/^{15}\text{N}$ ratio varies by a factor of ~ 9, from the protosolar nebula (PSN) value of ~ 440 to the “hotspots” in meteorites where ratios as low as ~ 50 have been reported (see Furi & Marty 2015 and references therein). Enrichment in ^{15}N with respect to the PSN value is observed in most objects of the solar system, except Jupiter. The reference value for cosmochemists is that of Earth with a $^{14}\text{N}/^{15}\text{N}$ ratio of 272 (measured in atmospheric N_2). In comets, the $^{14}\text{N}/^{15}\text{N}$ ratio has been measured in the three species: CN, HCN and NH$_2$, and the measurements were shown to cluster near $^{14}\text{N}/^{15}\text{N} \sim 150$ (see Rousselot et al. 2014, and references therein).

Several hypotheses have been proposed to explain $^{14}\text{N}/^{15}\text{N}$ enrichments in the solar system, which fall into two main categories. The first category concerns specific isotopic effects associated with the N_2 photodissociation by UV light from the protosun or from nearby stars, such as self-shielding (Lyons et al. 2009, e.g.). In the second category, ^{15}N enrichment is caused by chemical fractionation through ion-molecule reactions in the cold and dense interstellar medium (ISM), or in the cold regions of the protosolar disk.

In the dense ISM, direct observation of the nitrogen reservoir (presumably N or \textit{N}_2) is not possible and the $^{14}\text{N}/^{15}\text{N}$ ratio has been obtained so far from the trace species N_2H^+, NH_3, NH_2D, CN, HCN, and HNC. In the local ISM, ^{15}N enrichments ($^{14}\text{N}/^{15}\text{N} < 300$) have been measured in CN, HCN and HNC (Ikeda et al. 2002; Adande & Zijlstra 2012; Hily-Blant et al. 2013; Wampfler et al. 2014), but not in the ammonia isotopologues for which the $^{14}\text{N}/^{15}\text{N}$ ratio is close to the PSN value or larger (Gerin et al. 2002; Lis et al. 2010; Daniel et al. 2013). The case of N_2H^+ is the most intriguing, with values ranging from ~ 180 to ~ 300 (Bizzocchi et al. 2013; Daniel et al. 2013; Fontani et al. 2013). The observational situation has thus significantly improved in the last five years, since
a number of new 14N/15N estimates have been made available. The results, however, are still puzzling. In fact, the large spread in molecular 14N/15N ratios reflects, at least partly, the difficulty of the measurements due to opacity and excitation effects, or the resort to the double isotope method. In addition, a gradient of 14N/15N with the galactocentric distance has been measured in CN and HNC by Adande & Ziurys (2012), as predicted by galactic chemical evolution models. The unambiguous observation of 15N chemical fractionation in the ISM thus remains a challenging task. We also note that recently, the 14N/15N ratio has been determined for the first time in a protoplanetary disk (Guzmán et al. 2015). A ratio of 200±100 was inferred from HCN, which is compatible with the measurements previously reported in dark clouds and comets.

Turning to theory, the pioneering model of Terzieva & Herbst (2000) predicted that chemical fractionation in 15N should only be modest (~25%) and hardly detectable in the ISM. Subsequently, a fractionation mechanism based on CO depletion was suggested, predicting that two different pathways can drive the 15N-fractionation: a slow one to ammonia and a rapid one to HCN and other nitriles (Charnley & Rodgers 2002; Rodgers & Charnley 2004, 2008). A chemical origin of the differential 15N enrichment between hydrides and nitriles was also proposed by Hily-Blant et al. (2013a,b). In addition, by considering nuclear-spin effects in ion molecule reactions involving the ortho and para forms of H$_2$, Wirstöm et al. (2012) have shown that the 15N enrichments of nitriles do not correlate with deuterium (D) enrichments, as observed in meteorites. On the other hand, a recent re-investigation of gas-phase chemical processes including D, 13C and 15N species has suggested that the main 15N-fractionation routes are in fact inefficient (Roueff et al. 2015). Hence, though theory has improved, no model is currently able to reproduce the whole set of observational data. It is generally believed that important routes of nitrogen fractionation are still missing in the models (see, e.g., Fontani et al. 2015).

The dyazenilium ion (N_2H^+) is an interesting target for several reasons. First, chemically, it is a direct daughter product of N$_2$, one of the two main nitrogen reservoirs with atomic nitrogen, through the proton transfer reaction $\text{N}_2 + \text{H}_2 \rightarrow \text{N}_2\text{H}^+ + \text{H}_2$. Second, the 14N/15N ratio in N$_2$H$^+$ can be determined without recourse to the double isotope method, a method commonly used for carbon bearing species (see, e.g., Adande & Ziurys 2012; Hily-Blant et al. 2013a,b). Third, accurate collisional rate coefficients for N$_2$H$^+$–H$_2$ have recently been made available (see Lique et al. 2013, and below). Finally, observations of N$_2$H$^+$ show the largest variations in the 14N/15N ratio among all the nitrogen carriers. In the prestellar core L1544, this ratio was estimated as ~1000 ± 200 (Bizzocchi et al. 2013) with 15NH$^+$ and 15NNH$^+$ having nearly equal abundances. In the B1b molecular cloud, the 14N/15N ratio was estimated as 400–1000 in 13N$^+$ (Daniel et al. 2013). The low signal-to-noise ratio achieved for the observations of 15NNH$^+$ isotopologue led to a lower limit of 600 for this isotopologue. Finally, in high-mass star forming cores, the 14N/15N ratio was estimated in the range 180–1300 (Fontani et al. 2015).

In the present work, we provide a new measurement of the 14N/15N ratio derived from observations of two isotopologues of dyazenilium, N$_2$H$^+$ and N$_3$NH$^+$, towards the low-mass prestellar core 16293E in L1689N. Note that contrary to the L1544 prestellar core, this source is not isolated and is influenced by the close–by Class 0 protostar IRAS 16293-2422. Towards this region, previous observations of some of the N$_2$H$^+$ isotopologues were reported by Castets et al. (2001) for N$_2$H$^+$ and Gerin et al. (2001) for N$_3$D$^+$. In Section 2, we give details on the observations used in this study. Section 3 describes the calculations performed for the N$_3$NH$^+$–H$_2$ rate coefficients. Section 4 deals with the molecular excitation calculations and our conclusions are given in Section 5.

2. Observations

In the current study, we used the N$_2$H$^+$ J=1-0 SEST 15m telescope observations reported in Castets et al. (2001). We discovered, however, that these data suffered from observational artifacts, by comparing the observed spectra with spectra of the same line observed more recently at the IRAM 30m Telescope. This problem is further detailed below.

IRAM 30m observations of N$_2$H$^+$ were performed in early 2015 (17th of February and 2nd of April). Weather was bad, cloudy and unstable in February but excellent (1–2 mm precipitable water vapor) in April. Saturn, only a few degrees away from the source, was used for pointing and focusing of the telescope during both runs. Pointing was good with an uncertainty below 5\'. Observations were done with the EMIR receivers in frequency switch mode with both the autocorrelator (VESPA) at 9.8 kHz (~31.4 m s$^{-1}$) sampling and the fast fourier transform spectrometer (FFTS) at 48.8 kHz (~157 m s$^{-1}$) sampling. The rest frequency of the line for the main hyperfine component is 93173.764 MHz, following Pagani et al. (2003). Tsys was typically 100 K (Tc scale) with the source elevation ranging from 18.5\' to 28.5\'. Each integration lasted one minute and both polarisations were averaged and then folded. The typical noise is 70 mK (after subtracting a second or third order baseline). The FWHM beam size is 26.5\' and the sampling was every 15\'. The discrepant 15N/H$^+$ ratio was estimated in the range 18.5\' to 28.5\'. Each integration lasted one minute and both polarisations were averaged and then folded. The typical noise is 70 mK (after subtracting a second or third order baseline). The FWHM beam size is 26.5\' and the sampling was every 15\'. The main beam efficiency (0.80) is interpolated from an IRAM table (0.81 at 86 GHz and 0.78 at 115 GHz). These data will be presented and analysed in detail in a forthcoming paper (Pagani et al., in prep.) along with other observations.

Convolving the IRAM data to the SEST resolution, we find a relatively good correspondence in peak intensity, but not in the line profile. Consequently, the integrated intensity of the SEST data (16.4 ± 0.04 K km s$^{-1}$) is somewhat higher than the one from IRAM (14.1 ± 0.003 K km s$^{-1}$), i.e., +16%. The discrepancy is much larger than the systematic uncertainties. The SEST data (Castets et al. 2001) were obtained with an acousto-optical spectrometer which was the cause of an undue widening of the lines and line shape change, which cannot be reproduced by simply smoothing the IRAM data. To use the SEST data, we therefore multiplied them by 0.86 and introduced an ad–hoc convolution in frequency, as described in the next section.

Single-dish observations of the 1 mm molecular transitions presented here were carried out in 2013 May–June, using the 10.4 m Leighton Telescope of the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. We used the wide-band 230 GHz facility SIS receiver and the FFTS backend that covers the full 4 GHz intermediate frequency (IF) range with a 270 kHz channel spacing (0.37 km s$^{-1}$ at 220 GHz). Pointing of the telescope was checked by performing five-point continuum scans of planets and strong dust continuum sources. The CSO main-beam efficiency at 230 GHz at the time of the observations was determined from total-power observations of planets to be ~65%. The absolute calibration uncertainty is ~15% and the FWHM CSO beam size is ~35\' at 220 GHz.

The N$_3$NH$^+$ J=1-0 observations were performed in August 2014 with the IRAM-30m Telescope during average weather conditions (2–4 mm of precipitable water vapor). The Eight Mixer Receiver (EMIR) receiver was tuned to 92.0 GHz. We
used the FFTS backend with 49.8 kHz (~160 m s\(^{-1}\)) spectral resolution, leading to an instantaneous bandpass of 1.8 GHz and a velocity resolution of 0.16 kms\(^{-1}\). The J=1-0 transition of \(^{15}\text{NH}_3\), around 90.25 GHz, was not covered with the chosen setup, which aimed at detecting other species. The system temperature was about 140 K and the source elevation varied between 18\(^\circ\) and 28\(^\circ\). The observations were performed in position switching, with the reference position set 300\(^\circ\) west of the source. The nearby planets Mars and Saturn were used for checking the telescope pointing and the focus. The data were reduced with CLASS and the noise level is 19 mK after removal of linear base lines.

3. \(\text{N}_2\text{H}^+\) and \(\text{N}^{15}\text{NH}^+\) collisional rate coefficients

Collisional rate coefficients for the \(\text{N}_2\text{H}^+\cdot\text{H}_2\) (J=0\(^\leftrightarrow\)) system have been published recently by [Lique et al. 2015]. Hyperfine-structure-resolved excitation rate coefficients, based on a new potential energy surface (PES) obtained from highly correlated \(\text{ab initio}\) calculations [Spießfeldt et al. 2015], were calculated for temperatures ranging from 5 K to 70 K. The new rate coefficients are significantly larger than the \(\text{N}_2\text{H}^+\cdot\text{He}\) rate coefficients previously published [Daniel et al. 2005]. In addition, the differences cannot be reproduced by a simple scaling relationship.

As a first approximation, these new rate coefficients could be used to analyse \(^{15}\text{NH}_3^+\) emission spectra since both \(\text{N}_2\text{H}^+\) and \(\text{N}^{15}\text{NH}^+\) share the same molecular properties (when the hyperfine splitting induced by the internal nitrogen is neglected). Recent studies, however, have shown that isotopic effects in inelastic collisions can be important [Scibano et al. 2011, Dumouchel et al. 2012], even in the case of \(^{14}\text{N}\rightarrow^{15}\text{N}\) substitution [Flower & Lique 2015]. Hence, we have decided to compute specific \(^{15}\text{NH}_3^+\cdot\text{H}_2\) (J=0\(^\leftrightarrow\)) rate coefficients.

Within the Born-Oppenheimer approximation, the full electronic ground state potential is identical for the \(\text{N}_2\text{H}^+\cdot\text{H}_2\) and \(\text{N}^{15}\text{NH}^+\cdot\text{H}_2\) systems and depends only on the mutual distances of the five atoms involved. Then, we used for the scattering calculations the \(\text{N}_2\text{H}^+\cdot\text{H}_2\) PES of [Spießfeldt et al. 2015] and the “adiabatic-hindered-rotor” treatment, which allows para-\(\text{H}_2\) (J=0\(^\leftrightarrow\)) to be treated as if it was spherical. Zero-point vibrational effects are different in \(\text{N}_2\text{H}^+\) and \(\text{N}^{15}\text{NH}^+\), but these effects are expected to be moderate and are hence neglected in the present calculations. The only difference between the \(\text{N}_2\text{H}^+\cdot\text{H}_2\) and \(\text{N}^{15}\text{NH}^+\cdot\text{H}_2\) PES is thus the position of the center of mass taken for the origin of the Jacobi coordinates, an effect which has been taken into account in our calculations.

Since the \(^{14}\text{N}\) and \(^{15}\text{N}\) nitrogen atoms possess a non-zero nuclear spin (I=1 and I=1/2, respectively), the \(\text{N}_2\text{H}^+\) and \(\text{N}^{15}\text{NH}^+\) rotational energy levels are split into hyperfine levels. In the astronomical observations, however, the hyperfine structure due to \(^{15}\text{N}\) is not resolved. The hyperfine levels of the \(\text{N}^{15}\text{NH}^+\) molecules are thus characterized by the two quantum numbers \(J\) and \(F\). Here, \(F\) results from the coupling of \(J\) with \(I\) (I being the nuclear spin of the external \(^{14}\text{N}\) atom).

The hyperfine splitting in the \(\text{N}_2\text{H}^+\) isotopologues is very small. Assuming that the hyperfine levels are degenerate, it is possible to simplify the hyperfine scattering problem using recoupling techniques as described in [Daniel et al. 2004, 2005] and in Faure & Lique (2012). Hence, we performed Close-Coupling calculations for the pure rotational excitation cross-sections using the MOLSCAT program [Hutson & Green 1994], as in [Lique et al. 2015] for the main isotopologue. The \(\text{N}^{15}\text{NH}^+\) rotational energy levels were computed using the rotational constants of [Dore et al. 2009]. Calculations were carried out for total energies up to 500 cm\(^{-1}\). Parameters of the integrator were tested and adjusted to ensure a typical precision to within 0.05 Å\(^2\) for the inelastic cross sections. At each energy, channels with J up to 28 were included in the rotational basis to converge the calculations for all the transitions between \(\text{N}^{15}\text{NH}^+\) levels up to \(J=7\). Using the recoupling technique and the stored S-matrix elements, the hyperfine-state-resolved cross-sections were obtained for all hyperfine levels up to \(J=7\).

From the calculated cross-sections, one can obtain the corresponding thermal rate coefficients at temperature \(T\) by an average over the collision energy \(E_c\):

\[
k_{\alpha\rightarrow\beta}(T) = \frac{8}{\pi m k_B T^3} \times \int_0^\infty \sigma_{\alpha\rightarrow\beta}(E_c) \frac{E_c}{e^{E_c/k_B T} - 1} dE_c
\]

where \(\sigma_{\alpha\rightarrow\beta}\) is the cross-section from initial level \(\alpha\) to final level \(\beta\), \(m\) is the reduced mass of the system, and \(k_B\) is Boltzmann’s constant. Using the computational scheme described above, we have obtained \(\text{N}^{15}\text{NH}^+\cdot\text{H}_2\) (J=0\(^\leftrightarrow\)) rate coefficients for temperatures up to 70 K. These coefficients should have an accuracy similar to those computed for the main isotopologue by [Lique et al. 2015]. The main source of uncertainty is thus the use of the adiabatic-hindered-rotor approximation, which was shown to introduce errors below 5–10% [Lique et al. 2015, Spießfeldt et al. 2015]. A typical accuracy of 10% is thus expected for the rate coefficients of the \(\text{N}_2\text{H}^+\) isotopologues. The complete set of (de)excitation rate coefficients with \(J, J' \leq 7\) will be made available through the LAMDA (Schoier et al. 2009) and BASECOL (Dubernet et al. 2013) databases.

Figure 1 presents the temperature variation of the \(\text{N}_2\text{H}^+\cdot\text{H}_2\) (J=0\(^\leftrightarrow\)) and \(\text{N}^{15}\text{NH}^+\cdot\text{H}_2\) (J=0\(^\leftrightarrow\)) rate coefficients for a few hyperfine transitions associated with the \(J=3\rightarrow2\) and \(2\rightarrow1\) rotational transitions. To enable a direct comparison, we summed the \(\text{N}_2\text{H}^+\cdot\text{H}_2\) (J=0\(^\leftrightarrow\)) rate coefficients over the hyperfine structure associated with the internal nitrogen nucleus. As one can see, the differences between the \(\text{N}_2\text{H}^+\) and \(\text{N}^{15}\text{NH}^+\) rate coefficients are moderate. The two sets of data differ by less than 20 percent over the whole temperature range. We find, however, that the largest deviations occur at temperatures typical of cold molecular clouds (\(T=5–20\) K) and we observe that the \(\text{N}_2\text{H}^+\) over \(\text{N}^{15}\text{NH}^+\) rate coefficients ratios tend to increase with decreasing temperature. The differences are due to both the centre-of-mass shift in the interaction potential and the use of a specific description of the isotopologue energy levels. In conclusion, we found that the isotopologue specific results differed from each other to an extent that they may be significant for analyses of observations of the hyperfine transitions of these species, at least for cold dark cloud conditions. Modeling \(\text{N}^{15}\text{NH}^+\) with \(\text{N}_2\text{H}^+\) rate coefficients will typically induce errors in the \(\text{N}^{15}\text{NH}^+\) column density estimate of the same order of magnitude as the differences found in rate coefficients. Hence, we can expect that earlier studies that resorted to the same set of rates for both isotopologues would not suffer from errors larger than 20%. In particular, we expect this conclusion to remain true in the case where He is the collisional partner [Daniel et al. 2005].
4. Radiative transfer modeling

To obtain an accurate estimate of the $^{14}\text{N}/^{15}\text{N}$ ratio in N_2H^+, we obtained the column densities of the two isotopologues by solving the molecular excitation problem. The methodology used is similar to the approach described in Daniel et al. (2013), where the $^{14}\text{N}/^{15}\text{N}$ ratio was estimated for various molecules towards B1b. In the present case, our analysis deals with the 16293E prestellar core. To perform the analysis, we have used the physical structure of 16293E described in Bacmann et al. (2016). In that study, variations of the H_2 density and dust/gas temperature throughout the core were derived using continuum observations at wavelengths ranging from 160 μm to 1.3 mm. The core center was then fixed at an intermediate distance between the maxima of the 850 μm and 1.3 mm maps. More precisely, its coordinates are fixed at $\alpha = 16^h32^m28.8^s$, $\delta = -24^\circ29'4''$ (J2000). In what follows, the offsets indicated in the figures are given according to this reference position.

The N_2H^+ spectroscopy is taken from Caselli et al. (1995) and Pagani et al. (2009). For the main N_2H^+ isotopologue, the $\text{N}_2\text{H}^+\text{-H}_2$ rate coefficients are taken from Lique et al. (2015). For the rare $^{15}\text{N}^1\text{H}^+$ isotopologue, the rate coefficients were described in the previous section and the spectroscopy is taken from Dore et al. (2009). Finally, the molecular excitation and radiative transfer are solved with the 1Dart code described in Daniel & Cernichard (2008), which takes into account the line overlap between hyperfine lines.

As a first step of our analysis, we constrained the abundance of the main N_2H^+ isotopologue throughout the core. To that purpose, we made use of the $J=1-0$ and $J=3-2$ maps, respectively observed at the SEST and CSO telescopes. Additionally, we used a spectrum of the $J=1-0$ line, observed at the IRAM 30m Telescope towards a position offset by ~17" from the core center. The comparison between the IRAM and SEST observations made by degrading the IRAM data to the SEST resolution show that the spectra obtained at the SEST telescope have broader linewidths (see Section 2). To explain these differences, we assumed that the SEST observations suffered from systematic uncertainties and we thus only took into account the relative variations of the spectra from one map position to another. Additionally, to reproduce the observational artifact linked to the SEST observations, we performed a spectral convolution of the synthetic spectra, with a spectral response given by a Gaussian. The associated width was adjusted so that a model that would fit the IRAM 30m $J=1-0$ spectra would give an equally good fit for the closest SEST observation. The corresponding point of the SEST map is 8.7" from the core center and the IRAM 30m and SEST $J=1-0$ observations are distant by ~10" from each other. The result of this procedure corresponds to the observations plotted in the bottom and middle panels of Fig. 2.
As previously said, the modeling is performed using the physical structure (i.e., H2 density, gas and dust temperatures, ...) described in Bacmann et al. (2016). As a reminder, the density is constant at \(\sim 1.4 \times 10^7 \) cm\(^{-3} \) within a radius of 4" and then decreases outward. The temperature at the core center is 11 K and increases outwards up to 16 K. The only free parameters of the current modeling are thus linked to the N\(_2\)H\(^+\) abundance profile. To fit the observations, we introduced radial zones within which the N\(_2\)H\(^+\) abundance is kept constant. We started with the simplest model, i.e., with a constant abundance throughout the cloud (i.e. one free parameter). We then increased the number of radial zones, i.e., the number of free parameters, until we obtained a reasonable fit to the observations, the quality of the fit being gauged by eye. Doing so, a satisfactory fit is obtained with only three radial regions. The fit of the J=1-0 and 3-2 lines obtained at positions close to the core center are shown in Fig.5 and the SEST and CSO maps are shown in Fig.6 and Fig.7.

As can be seen in these Figures, some discrepancies exist between the model and observations at some particular positions. We estimate, however, that the overall agreement is satisfactory given the non-sphericity of the 16293E core (see the molecular emission maps in, e.g., Castets et al. 2001, Lis et al. 2002). The N\(_2\)H\(^+\) abundance that corresponds to these observations is reported in Fig.5. In each region of the abundance profile, we determined error bars by varying the N\(_2\)H\(^+\) abundance so that the resulting spectra did not depart significantly from the best model. The corresponding variations from our best estimate correspond to the grey zones in Fig.2. The column density inferred from this model towards the center of the sphere is N(N\(_2\)H\(^+\)) = 4.6\(^{+0.6}_{-1.2}\) \times 10\(^{13}\) cm\(^{-2}\).

To model the spectrum of the N\(^{15}\)NH\(^+\) J=1-0 line observed at ~15" from the core center, we assumed that the abundance profile is similar to that of the main isotopologue. The observed spectrum is then reproduced by introducing an overall scaling factor to the abundance. The observations are correctly reproduced with an abundance ratio N\(_2\)H\(^+\) / N\(^{15}\)NH\(^+\) \sim 330\(^{+170}_{-100}\) and the comparison between the model and observations is shown in Fig.6. In this Figure, the grey area corresponds to the error bars of the ratio.

As in Daniel et al. (2013), we can calculate a mean excitation temperature \(T_{ex} \), from the source model. For the N\(_2\)H\(^+\) and N\(^{15}\)NH\(^+\) J=1-0 lines, we respectively derive values of 9.4\(^{+2.0}_{-1.1}\) K and 9.48\(^{+0.01}_{-0.01}\) K, where the sub- and superscripts indicate the spread of values over all the hyperfine components. The larger spread of values for the main isotopologue is a consequence of larger line opacities which is accompanied by a departure from a single excitation temperature (Daniel et al. 2006). The opacities summed over all the components are respectively ~17.3 and 0.06 for the N\(_2\)H\(^+\) and N\(^{15}\)NH\(^+\) isotopologues. Note that despite the higher opacity of the N\(_2\)H\(^+\) J=1-0 line, \(T_{ex} \) is not enhanced by line trapping effects for this isotopologue. In fact, in the current case, the increase in \(T_{ex} \) due to line trapping is counter-balanced by the increase of the N\(^{15}\)NH\(^+\)-H\(^+\) rate coefficients. Indeed, in the model of B1b, Daniel et al. (2013) found that the \(T_{ex} \) of N\(_2\)H\(^+\) was enhanced by ~17% with respect to the N\(^{15}\)NH\(^+\)\(T_{ex} \), the two calculations being performed with the same set of rate coefficients. Hence, in the current case, the assumption of a similar \(T_{ex} \) to describe the two isotopologues would apply.

5. Discussion

As explained in the Introduction, the large variations of the \(^{14}\)N/\(^{15}\)N ratio in the solar system are not understood. As a reminder, this ratio is ~440 in the solar wind, ~270 on Earth, and ~150 in comets. We refer the reader to Furi & Marty (2015) for a recent review of the literature. The main question is whether the \(^{15}\)N enrichments indicate interstellar inheritance, nitrogen fractionation in the protoplanetary disk phase, or both. Guzmán et al. (2015) showed recently that the average \(^{14}\)N/\(^{15}\)N ratio in HCN towards the MWC 480 disk is 200±100. This value is comparable to the ratios observed in comets and in dark clouds, but the signal-to-noise ratios of those data was not high enough to allow a pre-stellar or protoplanetary disk origin to be distinguished (see the discussion in Guzmán et al. 2015). In addition, as explained above, \(^{15}\)N enrichments derived in HCN are ambiguous due to the possible depletion of \(^{13}\)C (Roueff et al. 2015).

In the present work, we have provided a new measurement of the \(^{14}\)N/\(^{15}\)N ratio in a prestellar core by observing N\(_2\)H\(^+\) and N\(^{15}\)NH\(^+\). The derived abundance ratio N\(_2\)H\(^+\) / N\(^{15}\)NH\(^+\) \sim 330\(^{+170}_{-100}\) is comparable to the elemental isotope ratio inferred for the local ISM, which is estimated as \(^{14}\)N/\(^{15}\)N = 290±40 by Adande & Ziurys (2012), from a survey of CN and HCN rotational lines. More recently, Ritchey et al. (2015) derived a lo-
Fig. 3: Comparison between model and observations for the N_2H^+ ($J=1-0$) map observed at SEST. In each panel, the distance to the core center is indicated, in arcseconds, in the upper left side of the box. The reference coordinates of the map are $\alpha = 16^h32^m22.76^s$, $\delta = -24^\circ28'33.1''$ (J2000), as given in Castets et al. (2001), which corresponds to a position close to the 16293-2422 protostar. This protostar is at $\sim 90''$ at the North–West of the 16293E core center.

More generally, it should be noted that gas-phase models of chemical fractionation are dependent on the temperature, on the chosen elemental abundances (especially the C/O ratio) and on the ortho-to-para ratio of H$_2$ (Hily-Blant et al. 2013b; Le Gal et al. 2013; Roueff et al. 2015). It is also crucial to couple C, N and O isotopic chemistries, as emphasized by Roueff et al. (2015). As a result, small variations in chemical conditions can have a strong impact on the predicted molecular $^{14}\text{N}/^{15}\text{N}$ ratios. We note in this context that the temperature at the core center is higher in 16293E (~ 11 K), where $\text{N}_2\text{H}^+ / ^{15}\text{NH}^+ \sim 330$, than in L1544 ($\sim 6$ K), where $\text{N}_2\text{H}^+ / ^{15}\text{NH}^+ \sim 1000$. It is unclear whether such a small temperature difference can play a role but this should be investigated in detail in future dedicated studies.

The large spread observed in high-mass star forming regions reported by Fontani et al. (2015) ($\text{N}_2\text{H}^+ / ^{15}\text{NH}^+ \sim 180-1300$) could also reflect temperature or elemental abundance effects. It could also be partly due to the gradient of the $^{14}\text{N}/^{15}\text{N}$ abundance ratio with galactocentric distance (Adande & Ziurys 2012). In any case, the statistics of objects with a determination of the $^{14}\text{N}/^{15}\text{N}$ ratio in various molecules has to be enlarged if we want to answer the question of the origin of nitrogen fractionation in the solar system.
Daniel et al.: N$_2$H$^+$ in the prestellar core 16293E

Fig. 4: Comparison between model and observations for the N$_2$H$^+$(J = 3-2) map observed at CSO. In each panel, the distance to the core center is indicated, in arcseconds, in the upper left side of the box. The reference coordinates of the map is $\alpha = 16^h 32^m 28.83^s$, $\delta = -24^\circ 28' 56.9''$ (J2000), which is at $\sim 7''$ from the position we assume for the core center.

is based upon observations with the the Caltech Submillimeter Observatory, operated by the California Institute of Technology. Support for this work was provided by NASA through an award issued by JPL/Caltech. The authors thank A. Castets for providing the N$_2$H$^+$ data acquired with the SEST telescope.

References

Adande, G. R. & Ziurys, L. M. 2012, ApJ, 744, 194
Arthurs, A. M. & Dalgarno, A. 1960, Proc. R. Soc. London, Ser. A, 256, 540
Bacmann, A., Daniel, F., Caselli, P., et al. 2016, A&A, 587, A26
Bizzocchi, L., Caselli, P., Leonardo, E., & Dore, L. 2013, A&A, 555, A109
Caselli, P., Myers, P. C., & Thaddeus, P. 1995, ApJ, 455, L77
Castets, A., Ceccarelli, C., Loinard, L., Caux, E., & Lefloch, B. 2001, A&A, 375, 40
Charnley, S. B. & Rodgers, S. D. 2002, ApJ, 569, L133
Daniel, F. & Cernicharo, J. 2008, A&A, 488, 1237
Daniel, F., Cernicharo, J., & Dubernet, M.-L. 2006, ApJ, 648, 461
Daniel, F., Dubernet, M.-L., & Meuyly, M. 2004, J. Chem. Phys., 121, 4540
Daniel, F., Dubernet, M.-L., Meuyly, M., Cernicharo, J., & Pagani, L. 2005, MNRAS, 363, 1083
Daniel, F., Gérin, M., Roueff, E., et al. 2013, A&A, 560, A3
Dore, L., Bizzocchi, L., Degli Esposti, C., & Tinti, F. 2009, A&A, 496, 275
Dubernet, M.-L., Alexander, M. H., Ba, Y. A., et al. 2013, A&A, 553, A50
Dumouchel, F., Klos, J., Tobola, R., et al. 2012, J. Chem. Phys., 137, 114306
Faure, A. & Lique, F. 2012, MNRAS, 425, 740
Flower, D. R. & Lique, F. 2015, MNRAS, 446, 1750
Fontani, F., Caselli, P., Palau, A., Bizzocchi, L., & Ceccarelli, C. 2015, ApJ, 808, L46
Furi, E. & Marty, B. 2015, Nature Geoscience, 8, 515
Gerin, M., Marcelino, N., Biver, N., et al. 2009, A&A, 498, L9
Gerin, M., Pearson, J. C., Roueff, E., Falgarone, E., & Phillips, T. G. 2001, ApJ, 551, L193
Guzmán, V. V., Öberg, K. I., Loomis, R., & Qi, C. 2015, ApJ, 814, 53
Hily-Blant, P., Bonal, L., Faure, A., & Quirico, E. 2013a, Icarus, 223, 582
Hily-Blant, P., Pineau des Forêts, G., Faure, A., Le Gal, R., & Padovani, M. 2013b, A&A, 557, A65
Hutson, J. M. & Green, S. 1994, molec computer code, version 14 (1994), distributed by Collaborative Computational Project No. 6 of the Engineering and Physical Sciences Research Council (UK)
Ikeda, M., Hirota, T., & Yamamoto, S. 2002, ApJ, 575, 250
Le Gal, R., Hily-Blant, P., Faure, A., et al. 2014, A&A, 562, A83
Lique, F., Daniel, F., Pagani, L., & Feautrier, N. 2015, MNRAS, 446, 1245
Lis, D. C., Gerin, M., Phillips, T. G., & Motte, F. 2002, ApJ, 569, 322
Lis, D. C., Wootten, A., Gerin, M., & Roueff, E. 2010, ApJ, 710, L49
Lyons, J. R., Bergin, E. A., Ciesla, F. J., et al. 2009, Geochim. Cosmochim. Acta, 73, 4998
Pagani, L., Daniel, F., & Dubernet, M.-L. 2009, A&A, 494, 719
Ritchey, A. M., Federman, S. R., & Lambert, D. L. 2015, ApJ, 804, L3
Rodgers, S. D. & Charnley, S. B. 2004, MNRAS, 352, 600
Rodgers, S. D. & Charnley, S. B. 2008, ApJ, 689, 1448
Roueff, E., Loison, J. C., & Hickson, K. M. 2015, A&A, 576, A99
Rousselot, P., Pirali, O., Jehin, E., et al. 2014, ApJ, 780, L17
Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., & Black, J. H. 2005, A&A, 432, 369
Scribano, Y., Faure, A., & Wiesenfeld, L. 2010, J. Chem. Phys., 133, 231105
