Development of alternative splicing signature in lung squamous cell carcinoma

Jia-qing Yan
Cancer Hospital Chinese Academy of Medical Sciences

Min Liu
Cancer Hospital Chinese Academy of Medical Sciences

Yin-lin Ma
Cancer Hospital Chinese Academy of Medical Sciences

Kai-di Le
Cancer Hospital Chinese Academy of Medical Sciences

Bin Dong
Cancer Hospital Chinese Academy of Medical Sciences

Guo-hui Li (lg0603@cicams.ac.cn)
Cancer Hospital Chinese Academy of Medical Sciences https://orcid.org/0000-0003-0391-744X

Research Article

Keywords: lung squamous cell carcinoma, alternative splicing, splicing factor, LASSO, signature

DOI: https://doi.org/10.21203/rs.3.rs-221344/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Increasing evidence demonstrated that alternative splicing (AS) played a vital role in tumorigenesis and clinical outcome of patient. However, systematically analysis of AS in lung squamous cell carcinoma (LUSC) is lacking and greatly necessary. Thus, this study was to systematically estimate the function of AS events served as prognostic indicators in LUSC. Among 31,345 mRNA AS events in 9,633 genes, we detected 1,996 AS in 1,409 genes which have significantly connection with overall survival (OS) of LUSC patients. Then, prognostic model based on seven types of AS events were established and we further constructed a combined prognostic model. The Kaplan-Meier curve results suggested that seven types of AS signatures and the combined prognostic model could exhibit robust performance in predicting prognosis. Patients in the high risk group had significantly shorter OS than those in the low risk group. The ROC showed all prognostic models had high accuracy and powerful predictive performance with different AUC ranging from 0.837 to 0.978. Moreover, the combined prognostic model had highest performance in risk stratification and predictive accuracy than single prognostic models. Finally, a significant correlation network between survival-related AS genes and prognostic splicing factors (SFs) was established. In conclusion, our study provided several potential prognostic AS models and constructed splicing network between AS and SFs in LUSC, which could be used as potential indicators and treatment targets for LUSC patients.

1. Introduction

Lung cancer is one of the common human malignancies and is the leading cause of cancer-associated deaths worldwide, resulting in approximately 1.7 million deaths (18.4%) worldwide in 2018 [1] and about 140,000 deaths per year in United States 2019 and 2020 [2,3]. The non-small cell lung cancer (NSCLC) mainly included lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and large cell lung carcinoma (LCLC) [4]. LUSC accounts for approximately 30% of all lung cancer cases [4]. Unfortunately, Patients tend to be older, typically diagnosed at advanced stage and lack of effective molecular targeted drugs [5]. Thus, they have a poor prognosis with five-year survival rate of <15% [6]. Currently, the pathogenesis and progressive mechanisms of LUSC remain unclear. Though great progress has been made in diagnosis and targeted treatment of lung cancer, its clinical outcome is still unsatisfactory [7-9]. Therefore, it is necessary to further systematically understand the biological mechanisms in LUSC, which could facilitate the development of target therapy and prognostic biomarkers of LUSC patients.

Alternative splicing (AS) is the process of removing introns from most human multi-exon genes and alternatively including or excluding specific exons. AS of pre-mRNA is one of the most extensive and sophisticated mechanisms to interpret proteome diversity and produce mature mRNAs and protein variants structurally and functionally [10]. In addition to protein diversity, the translation of mRNA isomer was also downregulated by AS events through resulting in degradation of premature stop codon [11]. Hence, AS was an indispensable procedure and alterations in splicing patterns had a close relationship with protein functions. In the past few years, extensive genomic and functional investigations had found that initiation of specific isoforms and splicing defects were driving factors for cancer [12,13]. For the
past few years, accumulating evidence has illustrated that unusual AS events could exert a straight role in the process of biogenesis and deterioration of cancers by involving in cell proliferation, migration, immune escape and other process [14].

Recently, many studies have described the perturbation of AS events in various cancer, including lung cancer. For example, Kong-Beltran et al observed met exon 14 in lung cancer which could contribute to protein regions’ deletion that restricts its kinase catalytic activity [15]. More recently, analyses of AS have also shown prognostic value for a variety of cancer types, including non-small cell lung cancer [7], ovarian cancer [16], breast cancer [17] and so on. Currently, several studies have mainly concentrated on identifying different AS events between cancer tissues and normal controls or prognostic AS events [18,19]. Nevertheless, few articles systematically reported the LUSC-specific AS events associated with survival of patients.

Moreover, several studies have shown that alteration in splicing factors might facilitate to activate oncogenes and tumor pathways or alternatively destruct the effect of tumor suppressors [20,21]. Hence, it is imperative to draw a comprehensive regulatory network of SFs [22,23]. Considering the close connection between AS and SFs and the fact that they are only superficially understood, it is imperative to investigate their prognostic property, as well as the regulatory mechanism in LUSC.

The Cancer Genome Atlas (TCGA) project provides an abundant resources, such as Exon, splice and transcript isoform expression levels, to investigate AS patterns of cancers [24]. We systematically profiled the genome-wide LUSC-specific alternative splicing events from TCGA. The purpose of this study is to explore the roles of alternative splicing events could be considered as prognostic biomarkers in LUSC. Findings in this study would contribute to exploit novel and appropriate therapeutic treatments for LUSC.

2. Material And Methods

2.1 Data curation process

SpliceSeq data of TCGA-LUSC and corresponding clinical information were downloaded from the TCGA data portal (https://portal.gdc.cancer.gov/) [24]. SpliceSeq tool, a java-based application, was usually used to unambiguously quantify the mRNA splicing levels of samples in TCGA. A novel value could be calculated by SpliceSeq based on seven types of AS events about each protein-coding gene provided from Ensemble gene database [16,25]. For the following seven kinds of AS events, the Percent Spliced In (PSI) value was calculated, quantifying splicing event levels are ranging from 0 to 1.

2.2. Establishment of prognostic model

A total of 487 LUSC patients were included in this study (Table S1). The PSI value of AS events in samples were collected and subjected to univariate Cox analysis. All the AS events were screen out which P value was < 0.05, and these events was considered as a candidate prognosis-related event. We performed the least absolute shrinkage and selection operator (LASSO) Cox regression model using
"glmnet R" package to select the most valuable and concise AS events in all AS events filtered in univariate Cox analysis ($P<0.05$) and then constructed predictive models based on survival-related AS events by multivariate Cox analysis. Then, based on the coefficient of each above AS event, each patients’ risk score could be calculated by the signature, respectively. Meanwhile, all patients were divided into distinct subgroups based on the median value of risk scores.

2.3 Survival analysis

The Kaplan-Meier curve was performed to analyze differential survival. The receiver operating characteristic curves (ROC) were conducted to explore sensitivity and specificity of prognostic signatures using "survivalROC" R package (https://www.r-project.org/, v3.5.3). Univariate and multivariate Cox regression analysis were performed to investigate the prognostic independence of AS signature and clinical characteristics using forest plot R package.

2.4 UpSet plot and Splicing factor regulated network establishment

Developed the Upset intersective plot, a more scalable visualizing diagrams to Venn, used to explore the interactive sets of those AS events and use "UpSet" R package to visualize their potential interrelationship. Expression data of the Splicing factors (SFs) was extracted from TCGA-LUSC mRNA-seq data. All SF genes were subjected to univariate Cox analysis and when their $P < 0.05$, these SFs were considered as the survival-associated splicing factors. The relationship closeness between SFs expression value and AS's PSI value were calculated by spearman test. Meanwhile, a network of the interaction between these SFs and prognostic AS events was illustrated by Cytoscape 3.7.0 (https://cytoscape.org/).

3. Results

3.1 Overview of AS events in TCGA-LUSC

Integrated AS events were analyzed in 487 TCGA-LUSC data set (Figure 1A). A total of 31,345 AS events from 9,633 genes were detected including 12,416 ES in 5,554 genes, 6,073 AP in 3369 genes, 5,579 AT in 3,167 genes, 2,675 AA in 1,996 genes, 2,323 AD in 1,722 genes, 2,129 RI in 1,474 genes, 150 ME in 144 genes (Figure 1B). Among them, ES events was the most common type, accounting for more than one-third of all events, followed by AP and AT events, while ME was the least. Notably, the amount of AS events far exceeded the number of genes. Furthermore, a subset of overlapping AS events among the seven types of AS in LUSC were illustrated by UpSet plot diagram (Figure 1C).

3.2 Identification of prognosis-related AS events in LUSC

First of all, we conducted a univariate Cox analysis of the 31,345 AS events in 487 LUSC patients to evaluate the relationship between AS events and overall survival (OS) status in LUSC. Consequently, 1,996 AS events within 1,409 genes were obviously related to overall survival of LUSC patients (Figure 2A). As shown in Figure 2B-H, the top 20 AS events were significantly related to OS among seven types of
AS events. Interestingly, some of survival associated AS gens underwent multiple types of AS events. For example, AA, AD, RI and ES of ATXN2L and AA, AP, RI of NPIPB4 were conspicuously related to OS of LUSC patients.

3.3 Establishment of prognostic AS signatures for LUSC patients

The important prognostic related AS events in all AS events in univariate Cox analysis were selected as candidates to select the most significant AS events by LASSO Cox regression model analysis (Figure 3). Further, several prediction signatures based on the prognostic associated AS events were constructed by multivariate Cox analyses. Eventually, a combined prognostic model was built integrated from different types of AS events (Table S2). As shown in Figure 4A-H, Kaplan–Meier curves showed that LUSC patients in high-risk group had appreciably shorter OS than patients in low-risk group, demonstrated that these AS signatures could be powerful biomarkers to distinguish patients' prognosis. Obviously, the combined prognostic indicator showed better performance than single type of AS events (Figure 4H). Then, ROC curve was performed to appraise the prognostic efficiency of prognostic AS models. The results showed that all signatures had a robust predictive property with AUC values from 0.837 to 0.978 (Figure 4I). Conceivably, the combined model with all types of AS events had highest efficiency with 0.978 (AUC) than single prognostic models. The distribution of patients' risk score, survival status and expression profiles of all AS models were shown in Figure 5.

3.4 A network of prognosis-related AS genes and SFs

More importantly, extensive dysregulated AS events in many types of cancers are easily programmed by some specific SFs. Hence, an important issue is that whether several key SFs could potentially regulate these prognosis-associated AS events in LUSC. To determine those specific SFs which had closely connection with the prognosis-associated AS events in LUSC, univariate Cox analysis of SFs were implemented according to gene expression level of LUSC patients. Consequently, there were 25 SFs obviously related to OS of LUSC patients shown in Table S3. Furthermore, correlations between SFs and prognostic AS events were tested in LUSC using Spearman's test (Figure 6A). In correlation networks, 22 SFs (purple dots) were obviously related to 546 prognosis-related AS events, including 202 favorable AS events (green dots) and 344 adverse AS events (red dots). Interestingly, there was a positive correlation (red lines) between majority of poor prognostic AS events (red dots) and SFs (purple dots), while there was a negative correlation (green lines) between majority of favorable prognostic AS events (green dots) and SFs. For example, splicing factors SNRNP48 and DDX39B had adverse survival for LUSC patients (Figures 6B-C). ES of NADSYN1 and AP of TMEM25 were adverse factors, whereas AT of TNFRSF1A and AT of FBXL12 were related to favorable prognosis. Correlation between SNRNP48 and AT of TNFRSF1A or AP of TMEM25 were shown in dot plots, suggesting high expression of SNRNP48 had positive association with poor overall survival (Figure 6D-E). Similarly, correlation between DDX39B and ES of NADSYN1 or AT of FBXL12 were shown in dot plots, implicating high expression of DDX39B had negative association with favorable prognosis (Figure 6F-G).
4. Discussion

Alternative splicing (AS) is an important process by which a single pre-mRNA precursor generates a large number of mature mRNAs and protein isoforms structurally and functionally [26,27]. Accumulated evidence revealed that the plasticity of AS participated in cell metastasis, apoptosis, invasion, proliferation, immune evasion and drug reliance of tumors by promoting cancer cells to produce isoform conversion [28-30]. So far, majority of studies focused on the exploration of AS events as biomarker for cancers have demonstrated that several AS events and spliced variants could be indicators to diagnose and predict cancers. For example, Kelley et al revealed that the aberrant splicing expression of GSN gene had an obviously higher expression in tumor tissues than in adjacent tissues and regulated the HNSCC's cell proliferation process [31]. Recently, a report suggested that KRAS-4A and KRAS-4B (KRAS isoforms) had significantly related to poor survival of CRC patients, especially microsatellite stable primary CRC [32]. Many studies demonstrated that CD44 could present multiple isoforms through variable mRNA splicing and CD44 isoforms play critical roles in tumor initiation and be considered as potentially treatment target in CRC compared with CD44 [33,34].

Currently, a lot of studies have also reported abnormal AS events exerted crucial functions in lung cancer by promoting the initiation and progression of lung cancer. For example, a microarray study found differential splicing of MACF1, VEGFA, NUMB and APP between NSCLC and control tissues in 29 patients [8]. In addition, AS variants were also related to drug sensitivity of lung cancer. It is previously reported that patients with lung adenocarcinoma with carcinogenic mutations at MET exon 14 RNA splice acceptor and donor sites could benefit from treatment with MET inhibitors crizotinib and cabozantinib, identifying a novel therapeutic target for lung adenocarcinoma [9]. Although some researchers have identified several prognostic alternative splicing events in LUAD and LUSC [7], with the development of high-throughput sequencing technique, novel prognosis-related AS events and potentially therapeutic targets needed to further be explored.

Here, we identified AS signatures and established regulatory network between AS events and SFs in LUSC through the analysis of TCGA program to gain systematic and comprehensive perception into RNA splicing patterns. In this study, a total of 1,996 AS events were obviously related to LUSC patients' survival. Among the seven types of AS models, AD events showed the highest predictive power in survival prediction of LUSC patients than other six types of AS models. Moreover, we constructed a combined prognostic model composed of different splicing patterns of 14 genes including PLEKHG5, FANCA, ZMYND8 and so on. The combined prognostic model had higher predictive performance than any single type in seven AS models. In recent studies, some of these genes have been reported to exert carcinogenic or suppressive roles in cancers. For example, PLEKHG5 is a novel prognostic biomarker in glioma patients and could promote glioma migration and invasion [35]. FANCA was a prognostic factor in LUAD [36].

What's more, we identified some key SFs which might exert essential roles in development and progression of cancers through modulating their corresponding AS events. With convincing results in this
study that there was a positively correlation between most of poor prognosis-related AS events and SFs, while there was a negatively correlation between most of favorable prognosis-related AS events and SFs in LUSC. It was well known that splicing factors could precisely regulate the splicing process by combining with specific genes' splice-regulatory sequence elements. This study provided an efficient approach to elucidate the underlying mechanism of AS events involved in survival of LUSC patients.

In summary, we analyzed prognosis-related AS events and established AS signatures to predict survival of LUSC patients. Besides, an interesting splicing correlation network offered novel perceptions into how abnormal AS events were potentially modulated via pivotal SFs. These prognosis-related AS events and SFs provided us many valuable therapeutic targets for future validations and ultimately clarified the underlying mechanisms of AS in LUSC tumorigenesis.

Declarations

Conflicts of interest:

There are no conflicts to declare.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018; 68: 394-424.

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for clinicians. 2019; 69: 7-34.

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer journal for clinicians. 2020; 70: 7-30.

4. Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PE, Van Meerbeeck J, Lardon F, Rolfo C, Pauwels P. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung cancer (Amsterdam, Netherlands). 2017; 107: 100-7.

5. Derman BA, Mileham KF, Bonomi PD, Batus M, Fidler MJ. Treatment of advanced squamous cell carcinoma of the lung: a review. Translational lung cancer research. 2015; 4: 524-32.

6. Chen WJ, Gan TQ, Qin H, Huang SN, Yang LH, Fang YY, Li ZY, Pan LJ, Chen G. Implication of downregulation and prospective pathway signaling of microRNA-375 in lung squamous cell carcinoma. Pathology, research and practice. 2017; 213: 364-72.

7. Li Y, Sun N, Lu Z, Sun S, Huang J, Chen Z, He J. Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Letters. 2017; 393: 40-51.

8. Misquitta-Ali CM, Cheng E, O'Hanlon D, Liu N, McGlade CJ, Tsao MS, Blencowe BJ. Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Molecular
9. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, Borsu L, Schultz N, Berger MF, Rudin CM, Ladanyi M. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. *Cancer discovery*. 2015; 5: 842-9.

10. Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. *Nature*. 2010; 463: 457-63.

11. Ge Y, Porse BT. The functional consequences of intron retention: alternative splicing coupled to NMD as a regulator of gene expression. *BioEssays: news and reviews in molecular, cellular and developmental biology*. 2014; 36: 236-43.

12. Venables JP. Aberrant and alternative splicing in cancer. *Cancer research*. 2004; 64: 7647-54.

13. Kim E, Goren A, Ast G. Insights into the connection between cancer and alternative splicing. *Trends in genetics: TIG*. 2008; 24: 7-10.

14. Qi F, Li Y, Yang X, Wu YP, Lin LJ, Liu XM. Significance of alternative splicing in cancer cells. *Chinese medical journal*. 2020; 133: 221-8.

15. Kong-Beltran M, Seshagiri S, Zha J, Zhu W, Bhave K, Mendoza N, Holcomb T, Pujara K, Stinson J, Fu L, Severin C, Rangell L, Schwall R, Amler L, Wickramasinghe D, Yauch R. Somatic mutations lead to an oncogenic deletion of met in lung cancer. *Cancer research*. 2006; 66: 283-9.

16. Zhu J, Chen Z, Yong L. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer. *Gynecologic oncology*. 2018; 148: 368-74.

17. Bjorklund SS, Panda A, Kumar S, Seiler M, Robinson D, Gheeya J, Yao M, Alnaes GIG, Toppmeyer D, Riis M, Naume B, Borresen-Dale AL, Kristensen VN, Ganesan S, Bhanot G. Widespread alternative exon usage in clinically distinct subtypes of Invasive Ductal Carcinoma. *Scientific reports*. 2017; 7: 5568.

18. Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, Cyanam D, Nair S, Fuqua SA, Polyak K, Florea LD, Kumar R. RNA sequencing of cancer reveals novel splicing alterations. *Scientific reports*. 2013; 3: 1689.

19. Lin P, He R-q, Ma F-c, Liang L, He Y, Yang H, Dang Y-w, Chen G. Systematic Analysis of Survival-Associated Alternative Splicing Signatures in Gastrointestinal Pan-Adenocarcinomas. *EBioMedicine*. 2018; 34: 46-60.

20. Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. *Nature reviews Cancer*. 2016; 16: 413-30.

21. Salton M, Kasprzak WK, Voss T, Shapiro BA, Poulakakos PI, Misteli T. Inhibition of vemurafenib-resistant melanoma by interference with pre-mRNA splicing. *Nature communications*. 2015; 6: 7103.

22. Kedzierska H, Piekielko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. *Cancer Lett*. 2017; 396: 53-65.

23. Ratnadiwakara M, Mohenska M, Anko ML. Splicing factors as regulators of miRNA biogenesis - links to human disease. *Seminars in cell & developmental biology*. 2018; 79: 113-22.
24. Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. *Contemporary oncology (Poznan, Poland)*. 2015; 19: A68-77.

25. Ryan MC, Cleland J, Kim R, Wong WC, Weinstein JN. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. *Bioinformatics (Oxford, England)*. 2012; 28: 2385-7.

26. Black DL. Mechanisms of alternative pre-messenger RNA splicing. *Annual review of biochemistry*. 2003; 72: 291-336.

27. Jin Y, Dong H, Shi Y, Bian L. Mutually exclusive alternative splicing of pre-mRNAs. *Wiley interdisciplinary reviews RNA*. 2018; 9: e1468.

28. Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. *Oncogene*. 2014; 33: 5311-8.

29. Ghigna C, Riva S, Biamonti G. Alternative splicing of tumor suppressors and oncogenes. *Cancer treatment and research*. 2013; 158: 95-117.

30. Spaethling JM, Sanchez-Alavez M, Lee J, Xia FC, Dueck H, Wang W, Fisher SA, Sul JY, Seale P, Kim J, Bartfai T, Eberwine J. Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. *FASEB journal : official publication of the Federation of American Societies for Experimental Biology*. 2016; 30: 81-92.

31. Kelley DZ, Flam EL, Guo T, Danilova LV, Zamuner FT, Bohrson C, Considine M, Windsor EJ, Bishop JA, Zhang C, Koch WM, Sidransky D, Westra WH, Chung CH, Califano JA, Wheelan S, Favorov AV, Florea L, Fertig EJ, Gaykalova DA. Functional characterization of alternatively spliced GSN in head and neck squamous cell carcinoma. *Translational research : the journal of laboratory and clinical medicine*. 2018; 202: 109-19.

32. Eilertsen IA, Sveen A, Stromme JM, Skotheim RI, Nesbakken A, Lothe RA. Alternative splicing expands the prognostic impact of KRAS in microsatellite stable primary colorectal cancer. *International journal of cancer*. 2019; 144: 841-7.

33. Zeilstra J, Joosten SP, van Andel H, Tolg C, Bems A, Snoek M, van de Wetering M, Spaargaren M, Clevers H, Pals ST. Stem cell CD44v isoforms promote intestinal cancer formation in Apc(min) mice downstream of Wnt signaling. *Oncogene*. 2014; 33: 665-70.

34. Guo W, Frenette PS. Alternative CD44 splicing in intestinal stem cells and tumorigenesis. *Oncogene*. 2014; 33: 537-8.

35. Qian M, Chen Z, Wang S, Guo X, Zhang Z, Qiu W, Gao X, Xu J, Zhao R, Xue H, Li G. PLEKHG5 is a novel prognostic biomarker in glioma patients. *International Journal of Clinical Oncology*. 2019; 24: 1350-8.

36. Sanada H, Seki N, Mizuno K, Misono S, Uchida A, Yamada Y, Moriya S, Kikkawa N, Machida K, Kumamoto T, Suetsugu T, Inoue H. Involvement of Dual Strands of miR-143 (miR-143-5p and miR-143-3p) and Their Target Oncogenes in the Molecular Pathogenesis of Lung Adenocarcinoma. *International Journal of Molecular Sciences*. 2019; 20: 4482.