Proximate, Phytochemical, and In Vitro Antimicrobial Properties of Dried Leaves from Ocimum gratissimum

Justina Y Talabi1 and Solomon Akinremi Makanjuola2

1Department of Human Nutrition and Dietetics, Afe Babalola University, Ado Ekiti 360001, Nigeria
2BloomMak Scientific Services, Lagos 234001, Nigeria

ABSTRACT: Ocimum gratissimum is a common plant in the tropics and has been used in food and medicine. Its usage in food and medicine could be attributed to its phytochemical and antimicrobial properties. In this study we investigated the proximate, phytochemical, and antimicrobial attributes of air dried leaves of O. gratissimum. The aqueous extract was found to contain phytochemicals with alkaloid and saponin present in appreciable amounts. The proximate analysis (crude protein and crude fibre content were 15.075% and 17.365%, respectively) showed that the leaf could be a good source of protein and fibre. The aqueous ethanolic extract of the leaf exhibited activity against a wider range of organisms when compared to the aqueous extract at the investigated concentrations. Aqueous ethanolic extracts of O. gratissimum leaf was active against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus and the aqueous extract of the leaf was active against P. aeruginosa.

Keywords: Ocimum gratissimum, phytochemical, proximate analysis, antimicrobial activity

INTRODUCTION

The use of plants as medicine is an ancient practice common to all societies especially the African society (1). Ocimum gratissimum grows in the tropics and sub tropics especially in tropical Africa and India (2). O. gratissimum has found usage in food and medicine. Its application in food includes the use as flavourings and nutraceuticals. In Nigeria, the leaf is used as a condiment in the preparation of dishes such as 'pepper soup', 'jollof rice', and vegetable soups. It was initially used in the preparation of these dishes to enhance their flavour. However, their usage in the preparation of these dishes is gaining increased acceptance due to the perceived nutraceutical benefit. The extract from the leaves of O. gratissimum possesses good antioxidant potential, which may be attributed to its phytochemical constituents (3). O. gratissimum is also used in traditional medicine for the treatment of several ailments such as urinary tract, wound, skin, and gastrointestinal infections, and this practice continues to exist in the developing nations (4). The steam distillation extract of the leaf has also been reported to have inhibitory effects on some selected bacteria that cause diarrhoea (5). The ethanolic extract of the leaf has been reported to inhibit the growth of Proteus mirabilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans (4). Traditionally, in Nigeria, fresh leaves are usually harvested, rinsed, and squeezed in cold water for 3 to 5 min. The squeezing in cold water is repeated three times, and the extracts are collected and served for drinking immediately. However, with increased urbanisation, access to freshly harvested leaves has decreased. Drying of the fresh leaves provides an option for preserving the leaves and making it available in the urban centers. Thus this study sought to investigate the qualitative and quantitative phytochemical, proximate and antimicrobial properties of dried leaves from O. gratissimum.

MATERIALS AND METHODS

Dry leaf preparation
The leaves were obtained from a garden in Ado Ekiti, Nigeria. Leaves were sorted and gently rinsed. The leaves were then spread on paper inside a room for 5 days to dry and then ground using a blender.

Phytochemical screening
Leave powder was soaked in water for 24 h at room temperature and then filtered. Chemicals tests were carried
out on the extract using standard procedure to identify the constituents as described by Sofowora (6), Trease and Evans (7) and Harborne (8). Phytochemicals screened were: tannin, phlobatannin, saponin, flavonoid, steroid, terpenoid, glycoside, cardenolide, alkaloids, anthraquinone, chalcones, and phenols.

Proximate analysis
Proximate analysis was assayed as described in Association of Official Analytical Chemists (AOAC) (9). The leaf powder was analysed for crude protein, crude fat, crude fibre, ash, and moisture, and carbohydrate was calculated by difference.

Phytochemical quantification
Analyses were carried out in the aqueous extract. Alkaloids were measured as described in Soetan (10). Tannins were measured using the method of AOAC (11). Saponins were determined using the method of Brunner (12). Glycosides were determined as described by Sofowora (6). Phenols were measured using the method of Mako (13) and phlobatannins were assayed as described by Salau (14).

Microbial inhibition study

Extract preparation: Fifty grams of the ground sample was soaked with 250 mL of sterile water for 24 h. The mixture was filtered with Whatman No 1 filter paper. The filtrate was concentrated to 1/10 of its original volume using a rotary evaporator. The influence of using aqueous ethanolic solvent as medium for extraction on the antimicrobial property of the leaf extract was also investigated. The same procedure as the aqueous extraction was used for the ethanolic extract, but 80% ethanol was used instead of water.

Microbial assay: The antimicrobial activity of the ethanolic and aqueous extracts was evaluated by the agar well diffusion method (15). Inocula of test bacterial isolates were prepared by inoculating a loopful of test bacteria from a stock culture into freshly prepared nutrient both and incubated at 37°C for 24 h. Absorbance of the grown culture was read at 530 nm after adjustment with sterile distilled water to match that of 0.5 M McFarland standard solution which is equivalent to between 1.0×10^6 to 1.0×10^7 CFU/mL. One milliliter of the bacterial suspension was spread on Mueller-Hinton agar. The plates were allowed to stand for 1.5 h for the test bacterial isolates to be fully embedded and properly established in the seeded medium. With a sterile cork borer (No 4 Gallenkamp), wells of equal depth of 0.5 cm (A=5 mm diameter) were dug inside the agar. Each well was aseptically filled up with 0.5 mL of the respective extracts while avoiding splashes and overfilling. The sensitivity of the test organisms to the different extracts was indicated by clearing around each well. The halo’s diameter as an index of the degree of sensitivity was measured with a transparent plastic ruler. Isolates tested were Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus.

RESULTS
Alkaloids and saponins were present in appreciable amounts. Glycosides and phenols were present in moderate amounts while tannins, phlobatannins, and anthraquinones were present in minute quantities (Table 1). Cardenolides, steroids, terpenes, flavonoids, and chalcones were absent.

The proximate analysis indicated that the leaf powder had a high carbohydrate content 44.36% (Table 2). The crude protein and crude fibre content were 15.08% and

Table 1. Phytochemical screening of Ocimum gratissimum leaf

Parameters	% Composition
Alkaloids	+++
Saponins	+++
Tannins	+
Phlobatannins	+
Glycosides	++
Phenols	++
Anthraquinones	+
Cardenolides	–
Steroids	–
Terpenes	–
Flavonoids	–
Chalcones	–

+++ appreciable amount; ++, moderate amount; +, a minute or trace amount; −, completely absent.
Properties of Dried Leaves from Ocimum gratissimum

Table 3. Diameters of inhibition zones of aqueous and aqueous ethanolic extracts

Organisms	Inhibition zone (mm)	0.1 mg/mL	0.2 mg/mL	0.3 mg/mL	0.4 mg/mL	0.5 mg/mL
Aqueous extract						
Escherichia coli						
Pseudomonas aeruginosa						
Staphylococcus aureus						
Bacillus cereus						
Aqueous ethanolic extract						
Escherichia coli						
Pseudomonas aeruginosa						
Staphylococcus aureus						
Bacillus cereus						

Table 4. Coefficient of determination of the relationship between extract concentration and inhibition zone

Organisms	Extract	r^2	Regression equation
Escherichia coli	Aqueous ethanol	0.952	$y=8.16x + 6.39$
Pseudomonas aeruginosa	Aqueous ethanol	0.983	$y=9.41x + 8.25$
Pseudomonas aeruginosa	Aqueous ethanol	0.876	$y=8.95x + 9.86$
Staphylococcus aureus	Aqueous ethanol	0.992	$y=6.39x - 0.19$
Staphylococcus aureus	Aqueous ethanol	0.992	$y=9.21x + 5.40$
Bacillus cereus	Aqueous ethanol	0.992	$y=8.90x + 8.42$

r^2: coefficients of determination.

Inhibition zones ≥ 10 mm can be considered active (18).
This suggests that the aqueous ethanolic leaf extract was active against *E. coli*, *P. aeruginosa*, *S. aureus*, and *B. cereus* while the aqueous extract was only active against *P. aeruginosa* at the concentrations studied. The antimicrobial activity of the leaf extract could be attributed to the phytochemical content of the leaf.

P. aeruginosa has become an important cause of Gram-negative infection, especially in patients with compromised host defense mechanisms. It is the most common pathogen isolated from patients who have been hospitalised longer than one week and a frequent cause of nosocomial infection (19). Also, three of the organisms in this investigation (*E. coli*, *S. aureus*, and *B. cereus*) have been implicated in food borne diseases (20,21). According to the FDA, there are 48 million cases of foodborne illness annually, and each year, these illnesses result in an estimated 128,000 hospitalizations and 3,000 deaths (22).

This study suggests that the aqueous and aqueous ethanolic extracts of *O. gratissimum* could be potent therapeutically in treating some opportunistic infections and food borne illnesses caused by these bacteria. While the leaf extract is useful in the inactivation of pathogenic microorganisms, its usage should be balanced with respect to its effect on beneficial microorganisms in the intestinal microflora. This brings to fore the importance of dosage in the use of the leaf extract of *O. gratissimum*.

Aqueous ethanolic extracts of the *O. gratissimum* leaf were active against *E. coli*, *P. aeruginosa*, *S. aureus*, and *B. cereus*, and the aqueous extract of the leaf was active against *P. aeruginosa* at the investigated concentrations. This brings to fore the role of solvent type in influencing the activity of *O. gratissimum* against microbes. Further investigation is required to understand how the phytochemical contents of *O. gratissimum* extracts could be affected by planting conditions and other processing variables such as variation in particle size, drying method, extraction temperature and extraction time.

AUTHOR DISCLOSURE STATEMENT

The authors declare no conflict of interest.

REFERENCES

1. Usman H, Osuji JC. 2007. Phytochemical and in vitro antimicrobial assay of the leaf extract of *Newbouldia laevis*. Afr J Tradit Complement Altern Med 4: 476-480.
2. Aruna K, Sivaramakrishnan VM. 1990. Plant products as protectant agents against cancer. Indian J Exp Biol 28: 1008-1011.
3. Akinmoladun AC, Ibukun EO, Afor E, Obuotor EM, Farombi EO. 2007. Phytochemical constituent and antioxidant activity of extract from the leaves of *Ocimum gratissimum*. Sci Res Essays 2: 163-166.
4. Nweze EI, Eze EE. 2009. Justification for the use of *Ocimum gratissimum* Lin in herbal medicine and its interaction with disc antibiotics. BMC Complementary Altern Med 9: 37.
5. Adebolu TT, Oladimeji SA. 2005. Antimicrobial activity of leaf extracts of *Ocimum gratissimum* on selected diarrhoea causing bacteria in southwestern Nigeria. Afr J Biotechnol 4: 682-684.
6. Sofowora A. 1993. Medicinal plants and traditional medicines in Africa. John Wiley and Sons Ltd., New York, NY, USA. p 256.
7. Trease GE, Evans WC. 1989. *Treatise on pharmcognosy*. 13th ed. Bailliere Tindall, London, UK. p 53.
8. Harborne JB. 1973. *Psychochemical methods: a guide to modern techniques of plant analysis*. Chapman and Hall, London, UK. p 279.
9. AOAC. 2005. Official methods 988.05, 2003.06, 958.06, 942.05, and 967.08. In *Official Methods of Analysis of the Association of Analytical Chemists International*. 18th ed. Gaithersburg, MD, USA.
10. Soetan KO. 2012. Comparative evaluation of phytochemicals in the raw and aqueous crude extracts from seeds of three *Lablab purpureus* varieties. Afr J Plant Sci 6: 410-415.
11. Edeogu CO, Ezeonu FC, Okaka ANC, Ekuma CE, Eliom SO. 2007. Antinutrients evaluation of staple food in Ebonyi State, South-Eastern, Nigeria. J Appl Sci 7: 2293-2229.
12. Brunner JH. 1984. Direct spectrophotometer determination of saponin. Anal Chem 34: 1314-1326.
13. Mako AA. 2013. Performance of West African Dwarf goats fed graded levels of sun-cured water hyacinth (*Eichhornia crasipes* Mart. Solms-Laubach) replacing Guinea grass. Livestock Res Rural Dev 25: 127.
14. Salau AK, Yakubu MT, Oladiji AT. 2013. Cytotoxic activity of aqueous extracts of *Anogeissus leiocarpus* and *Terminalia avicennioides* root barks against Ehrlich ascites carcinoma cells. Indian J Pharmacol 45: 381-385.
15. Nair R, Chanda SV. 2004. Antibacterial activity of some medicinal plants of Saurashtra region. J Tissue Res 4: 117-120.
16. Sulistiarini D. 1999. *Ocimum gratissimum* L. In *Plant Resources of South East Asia. No.19: Essential-Oils Plants*. Oyen LPA, Dung NX, eds. ProSea, Bogor, Indonesia. p 140-142.
17. Lahlou M. 2004. Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res 18: 435-448.
18. Usman H, Haruna AK, Akpulu IN, Ilyas M, Ahmaddu AA, Musa YM. 2005. Phytochemical and antimicrobial screenings of the leaf extracts of *Celtis integrifolia* Lam. *J Trop Biosci* 5: 72-76.
19. Friedrich M, Cunha BA, Lessnau KD, Lazo KG. *Pseudomonas aeruginosa* Infections. http://emedicine.medscape.com/article/226748-overview (accessed Apr 2017).
20. Le Loir Y, Baron F, Gautier M. 2003. *Staphylococcus aureus* and food poisoning. *Genet Mol Res* 2: 63-76.
21. Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A. 2013. Antimicrobial activities of leaf extracts of guava (*Psidium guajava* L.) on two Gram-negative and Gram-positive bacteria. *Int J Microbiol* 2013: 746165.
22. FDA. *Foodborne Illnesses: What You Need To Know*. http://www.fda.gov/Food/FoodborneIllnessContaminants/FoodborneillnessesNeedToKnow/default.htm (accessed Jun 2016).