Comparison of Salivary Electrolytes Profile in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma

Juan Aitken-Saavedra1,2, Diogo La Rosa Novo3, Marcia Foster Mesko3, Ana Carolina Uchoa Vasconcellos4, Karine Duarte da Silva5, Gabriel Rojas Zuñiga1, Ricardo Fernandez-Ramires6*, Sandra Beatriz Chaves Tarquinio4*

Abstract

Objectives: to determine salivary electrolyte concentration of oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) patients. A related systematic review was performed. Methods: Observational study. Unstimulated saliva from 18 patients with OSCC, 18 with OPMD, and 18 without oral lesions was collected. A biochemical analysis was performed to evaluate the salivary concentrations of potassium (K), phosphorus (P), sodium (Na), calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), and iron (Fe). Kruskal–Wallis test was performed, and p < 0.05 was interpreted as statistically significant. The literature search for the systematic review retrieved 9 studies that associated salivary electrolyte levels with presence and progression of OSCC. Results: A highly significant increase was found in the salivary Mg levels in the OPMD group (5.41 µg/mL) in comparison with the OSCC (3.71 µg/mL) and control group (3.51 µg/mL) (p = 0.041). No differences were observed in other salivary levels elements. The results of the systematic review revealed that one article indicated a decrease, and three papers reported an increase in salivary Na levels in patients with OPMD and OSCC. Two articles indicated a decrease in salivary K levels in OSCC, and the other two reported high Mg levels in OPMD and OSCC. Conclusion: High salivary Mg levels can be a potential biomarker indicating the presence of OPMD, however, the evidence is still contradictory and more studies are required.

Keywords: Trace elements- cancer- oral- precancerous condition- electrolytes- saliva
OSCC can present and those that can be detected in saliva, and their potential use as possible predictors of OSCC (Dziewulska et al., 2013), this study aimed to evaluate the salivary concentrations of potassium (K), phosphorus (P), sodium (Na), calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu) and iron (Fe) simultaneously in these patients. In addition, obtained data were compared with those obtained in a related systematic literature review.

Materials and Methods

This study comprised two phases. Phase 1 is involved in a systematic review whose main outcome was the use of salivary electrolytes as biomarkers of OSCC progression. Phase 2 is involved in a case-control study whose aim was to characterize the saliva of patients with OPMD, and with OSCC and without oral lesions.

Phase 1: Systematic Review

Protocols and sources of information

This systematic review was conducted according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins et al., 2011), following the four-phase flow diagram of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement (Moher et al., 2015). The literature search was carried out by two reviewers (J.P.A.S and A.C.U.V) in January 2020. The following databases were screened: PubMed (National Library of Medicine), Scopus (Elsevier), and Web of Science (Thomson Reuters). In addition, the reference lists of the selected articles were searched manually for any missed articles.

Electronic searches

The search strategy is described in Supplementary Appendix 1. The main outcome was case-control studies that considered the use of salivary electrolytes as predictive biomarkers of OPMD progression. The study characteristics were independently extracted by J.P.A.S and A.C.U.V. Any disagreement between the two reviewers was resolved through discussion and consensus. In cases of disagreement, a third reviewer (S.B.C.T) decided whether the article/s should be included. All article titles and abstracts were analyzed and selected in accordance with the eligibility criteria. If the titles/abstracts were unavailable or did not provide sufficient information to decide whether to include or exclude the articles, full-text versions were retrieved. Full-text articles, without language or date restrictions, were then obtained, and the same eligibility criteria as described above were applied. Duplicated articles were excluded.

Data extraction and synthesis

The following information was extracted from each included article: author/s and year of publication, the country where the study was undertaken, gender and mean age of participants, relevant habits (tobacco and alcohol), site of the lesion, and main findings related to salivary electrolyte levels. Due to the high degree of heterogeneity in terms of different studies and methodologies, conducting a meta-analysis was considered inappropriate.

The data were descriptively analyzed.

Study types

Studies were excluded for the following reasons: A) studies that used other biological media, such as blood or other body fluids instead of saliva; B) reviews, personal communications, book chapters, and conference summaries; C) in vitro studies or in vivo animal studies; D) studies with insufficient information on the criteria for the diagnosis of OSCC; E) studies that did not use a histological diagnosis of epithelial dysplasia for OPMD.

Risk of bias assessment

The first two authors systematically assessed the quality of the individual studies by using the JBI Meta-Analysis of Statistics Assessment and Review Instrument (JBI-MASIARI). The questionnaire consists of 10 questions are answered with yes, no, unclear, or not applicable. The studies were classified as follows: high methodological quality (>5 “yes” responses), moderate methodological quality (3–4 “yes” responses), or low methodological quality (0–2 “yes” responses) (Moola et al., 2017).

Phase 2: Case-control study

Study design, sampling, and setting

The present study was approved by the Research Ethics Committee of the National Research Ethics Commission (approval code: No. 2.262.681) and conducted following the guidelines of the Declaration of Helsinki. A total of 54 adults, of both sexes, who were referred to the Diagnostic Center for Oral Diseases (DCOD) of the School of Dentistry - Federal University of Pelotas, from 2016 to 2018, were selected. The sample was divided into 3 groups: 1) 18 patients with histological diagnoses of OSCC, 2) 18 patients with oral lesions and a histopathological diagnosis of epithelial dysplasia (and a clinical diagnosis of OPMD); and 3) 18 patients without oral lesions. Before being included, all volunteers were evaluated by an oral pathology specialist. To be included in the experimental group, the patients must have had an indication for biopsy for clinical appearing lesions probably compatible with a histological diagnosis of epithelial dysplasia or OSCC. To be part of the control group, the patients could not have any evidence of oral lesions. The exclusion criteria for all groups were: a history of radiation therapy to the head and neck region; chronic thyroid disease; known Sjogren’s disease; those who had prior surgery on the salivary glands; contact allergies; pregnant women; and individuals who currently use antibiotics, corticosteroids, or antifungals.

The final histopathological diagnoses were confirmed by a professional with experience in oral pathology (S.B.C.T). OPMD was histologically classified according to the binary classification system of oral epithelial dysplasia (Kujan et al., 2013). The OSCC staging was performed considering the following three criteria: T (size of the primary tumor), N (spread of the disease to regional lymph nodes), and M (presence of metastasis). Data related to disease and systemic disorders and drug use were obtained from questionnaires. The Eleventh Revision of
Salivary collection

Saliva was collected before the biopsy from patients who gave written informed consent, and salivary electrolyte evaluation was performed only after confirming the histological diagnoses of OSCC, OPMD, and the normal tissues. Previously trained dentists collected unstimulated saliva from patients in a 50 mL pre-weighed Falcon® centrifuge tube. Unstimulated saliva was collected from patients who have not eaten, smoked, or undertaken any oral hygiene 90 min before the procedure (Navazesh et al., 1992). Saliva collection was performed between 9 am and 11 am for 5 min. Subsequently, the tubes with saliva were kept in a container at 5°C for transport to the laboratory of DCOD/UFPel. Each tube was later weighed through gravimetry. A specific weight of 1.005 g/mL was assigned to the fluid, and the calculated total volume was expressed in milliliter per minute to determine the unstimulated saliva flow rate (uSFR). The saliva was centrifuged at 2,500 rpm for 10 min at −5°C, and the supernatants were stored frozen at −80°C until the biochemical analysis. All saliva samples were only used for this investigation. After laboratory analysis, the samples were discarded according to resolution CNS 441 of 2011 (Marodin, Salgueiro, Motta and Santos, 2013).

Salivary biochemical analytical examination

Salivary electrolyte concentration was determined using an inductively coupled plasma optical emission spectrometer (Spectro CIROS CCD, Spectro Analytical Instruments, Kleve, Germany) equipped with a cross-flow nebulizer coupled to a double-pass Scott-type spray chamber. Instrumental performance was optimized following the instructions of the manufacturer and previous work published in the literature (Pereira, Crizel, Novo, Santos and Mesko, 2019). The equipment was externally calibrated using K, P, Na, Ca, Mg, Zn, Cu, and Fe (1.0–10000 μg L⁻¹) reference solutions, which were prepared by diluting a stock solution (1,000 mg L⁻¹, Merck) in 5% HNO₃. The same stock solution was used in the recovery tests for evaluating the accuracy of the determination step. Argon 99.996% (White Martins, São Paulo, Brazil) was used for plasma generation, nebulization, and as an auxiliary gas. For the elemental determination, 100 μL of saliva supernatant was diluted 80 times before the sample introduction into the equipment. This dilution factor was previously optimized to minimize interference during the determination step. The wavelengths selected in the determination step were 589,592 nm for Ca, 766,490 nm for K, 317,933 nm for Na, 589,592 nm for Ca, 324,752 nm for Cu, 238,204 nm for Fe, 285,213 nm for Mg, 213,857 nm for Zn, and 214,914 nm for P. The results were relatively expressed as μg of the element per mL of saliva. The limit of quantification was calculated from the mean of the curve blank values plus 10 times the standard deviation obtained for 10 replicates of the curve blank.

Data analysis

Descriptive and quantitative data analyses were performed using the Statistical Package for the Social Sciences for Windows 22.0 (SPSS, Inc., Chicago, IL, USA). To determine whether the variables had a normal distribution, the Shapiro-Wilk test was applied. The Kruskal–Wallis test was conducted for comparisons of salivary electrolyte concentrations and uSFR among the groups and between the sex and habits subgroups in each group. A p < 0.05 was interpreted as statistically significant.

Results

Phase 1

A total of 881 references were identified in the three electronic databases. Two references were identified through a manual search. After the removal of 51 duplicates, 832 titles/abstracts were evaluated. From those primarily selected, 26 articles agreed the eligibility criteria and were selected for further analysis. After a thorough reading of these articles and the exclusion of those that did not meet the eligibility criteria, 9 full texts were finally included in the final analysis. The flow chart of the study selection is presented in Figure 1.

All articles were published in English between 2002 and 2018. A total of 260 OSCC, 310 OPMD, and 260 control cases were evaluated. All articles evaluated salivary electrolytes in patients with OSCC compared with a control group without oral lesions. Six articles also included patients with OPMD. According to the articles that specified the sex of patients, from 108 OSCC cases, 76 were men (70.4%) and 32 were women (29.6%); from 35 OPMD cases, 24 were men (68.6%) and 11 were women (31.4%); from the 75 control cases, 47 were men (62.7%) and 28 were women (37.3%). The average age established according to the articles indicating this parameter was 60.3 (35–72) for OSCC, 50.2 (23–64) for OPMD, and 48.5 (37–70) for control patients. Four articles specified the site of the lesions and the site most affected by OSCC was the tongue with 42 (43%) cases. Five articles considered the habits of tobacco and/or alcohol consumption and the percentages of patients with these habits varied between 12.5% and 76.5% for tobacco and between 0% and 13.5% for alcohol among OSCC patients. The only article that referred to habits in patients with OPMD indicated that 100% smoked and nobody (0%) drank.

Eight different salivary electrolyte levels were evaluated. One article indicated a decrease and three an increase in the Na index in patients with OSCC and OPMD (when compared with control group). Two articles presented high salivary Mg levels in patients with OSCC, and one indicated low Mg levels in patients with OSCC and OPMD. One article reported low Zn salivary levels in patients with OPMD and OSCC. Another revealed such levels are higher in patients with OPMD and OSCC than in control group. All information about the characteristics of the included studies is presented in Table 1.

Asian Pacific Journal of Cancer Prevention, Vol 23
The risk of bias analysis revealed that the main concern regarding the included studies was the identification and handling of the confounding factors among cases and controls to interpret the results. Seven studies were classified as of high methodological quality, and two as of moderate methodological quality. Exposure measures and their form of assessment have presented a low risk of bias. Supplementary Appendix A2 presents the risk of bias of the selected studies by the JBI-MAStARI.

Phase 2

Sociodemographic data

Fifty-four patients participated in this study, 27 men (50%) and 27 women (50%). The participants age varied between 31 and 89 years. The mean age was 56.3 years (±14.6); 42.2 (±16.6) in control group, 58.2 (±13.9) in the OPMD group, and 60.1 (±12.6) in OSCC group. Twenty-four (44.4%) were smokers: four (22.2%) from the control group, 6 (33%) from OPMD group, and 14 (77%) from OSCC group. Twenty-two (40.7%) were social drinkers: 9 (50%) from control group, 7 (39%) from OPMD group, and 14 (77%) from OSCC group. Four (44.4%) were drinkers: four (22.2%) from the control group, 2 (11.1%) from OPMD group, and 8 (44.4%) from OSCC group. The risk of bias analysis revealed that the main concern regarding the included studies was the identification and handling of the confounding factors among cases and controls to interpret the results. Seven studies were classified as of high methodological quality, and two as of moderate methodological quality. Exposure measures and their form of assessment have presented a low risk of bias. Supplementary Appendix A2 presents the risk of bias of the selected studies by the JBI-MAStARI.

Study	Method and Patient	Sex	Age	Site	Habit	higher levels	lower levels
Girja KP et al., 2002	1) 15 Control	Male: Female	10:05	(40−65)	N/S	0 (0%)	N/S
- India	2) 15 OPMD		9:06	(40−64)	N/S	15 (100%)	Na and K in OSCC and OPMD
	3) 15 OSCC		12:03	(45−65)	N/S	15 (100%)	
Shipizter T et al., 2007	1) 25 Control	Male: Female	Median 68 ± 17	(30−86)	N/S	2 (8%)	Na, Ca, P, and Mg in OSCC
- Israel	2) 25 OSCC		Median (50 ± 15)		N/S	0 (0%)	K in OSCC
Fuchs PN et al., 2011	1) 24 OSCC	Male: Female	20:04	(60 ± 2.5)	Tongue: 4 (16.7%)	21 (12.5%)	N/S
- Croatia	2) 24 Control		9:15	(24 ± 3.7)	Sublingual area: 1 (66.6%)	9 (37.5%)	N/S
- India	3) 34 OSCC		22:00	(42 ± 9)	Tongue: 9 (16.7%)	14 (25.4%)	N/S
- Romania	3) 24 Control		9:15	(23 ± 3.7)	Tongue: 10 (17.6%)	5 (8.3%)	N/S
- India	3) 115 OPMD		15:00	(35−72)	Tongue: 22 (39%)	15 (25.4%)	N/S
- India	3) 40 OSCC		12:00	(35−70)	Tongue: 31 (52%)	10 (16.7%)	N/S

OSCC, oral squamous cell carcinoma; OPMD, oral potentially malignant disorders; oral submucous fibrosis; OLP, oral lichen planus; OL, oral leukoplaikia; K, potassium; P, phosphorus, Na, sodium; Ca, calcium; Mg, magnesium; Zn, zinc; Cu, copper; Fe, iron; Cl, Chloride; >: higher salivary element levels with statistically significant differences than control group or than group indicated group; <: lower salivary element levels with statistically significant differences than control group or than indicated group. N/S, Not specified.
Table 2. Baseline Characterization of the Study Population

Group	Gender	Age (± SD)	Site	Dysplasia classification	Habit	Alcohol	uSFR* (Average, SD) (mL/min)
Control (n = 18)	6:12	49.2 (± 16.6)	N/A	N/A	4	8	0.645 (± 0.31)
OPMD (n = 18)	7:11	58.2 (± 13.9)	Buccal mucosa: 9, Tongue: 5	Low risk: 10	6	7	0.514 (± 0.12)
			Alveolar ridge Mucosa: 2	High risk: 8			
			Palate: 2				
			Tongue: 9				
OSCC (n = 18)	14:04	60.1 (± 12.6)	Soft palate: 4, Retromolar trigone: 3	Low risk: 10	14	7	0.541 (± 0.29)
			Floor of the mouth: 2	High risk: 8			

OSCC, oral squamous cell carcinoma; OPMD, oral potentially malignant disorders; uSFR*, unstimulated salivary flow rate; N/A, Not applicable

16 (88.9%) were clinically leukoplakias and 2 (11.1%) were erythroleukoplakias. Ten (55.6%) were classified as low-risk dysplasia and 8 (44.4%) as high-risk dysplasia.

Considering the OSCC cases, according to the TNM classification, 5 (27.7%) patients were classified as T1N0, 8 (44.4%) as T2N0, one (5.6%) as T1N1, one (5.6%) as T2N1, one (5.6%) as T2N2, and 2 (11.2%) as T4N2.

The baseline characterization of the study population is summarized in Table 2. The uSFR averages were 0.645 mL/min for the control group, 0.514 mL/min for OPMD and 0.541 mL/min for OSCC, without significant statistical differences (p > 0.05).

Salivary electrolytes

A highly significant increase was found in the salivary Mg levels in the OPMD group (5.41 µg/mL) in comparison with the OSCC (3.71 µg/mL) and control group (3.51 µg/mL) (p = 0.041). Details of the mean, SD, and median of all evaluated salivary electrolyte levels are shown in Table 3 and Figure 2. No differences were observed for the levels of any electrolyte among the three groups or according to their sex or habits (p > 0.05).

Figure 1. Search Flowchart According to the PRISMA Statement
Discussion

Several metabolic disorders, oral precancerous conditions, and oral cancers are accompanied by alterations in the concentration of one or more salivary trace elements. Their identification is helpful in establishing an early diagnosis, which leads to early initiation of treatment, and also in the prognostication and in tracking the disease progression (Hosthor et al., 2014). K, Na, Ca, Cl, and P are the most concentrated biochemical elements in saliva due to their importance in the electrolytic balance of this fluid. According to sociodemographic and habits characteristics of the sample, the present study agrees with previous studies that there would be no differences according to sex (Rutherfurd-Markwick et al., 2017) or smoking and alcohol habits (Avşar et al., 2009). The differences in electrolytes salivary levels could be determined by other factors, such as oral health. Mg was the only electrolyte that showed different salivary levels among the studied groups. Its salivary concentration in the OPMD group was higher than in the other groups. Mg is a mineral required for a wide variety of physiological functions and biological activities, such as activation or inhibition of enzymes and regulation of cellular proliferation, progression, and differentiation (Al Alawiet al., 2018).

Currently, attention is being directed to the role of Mg in tumor biology because of its involvement in processes such as proliferation, cell death, de-differentiation, invasion, and neoangiogenesis (Wolf et al., 2007). In the evaluation of Mg concentration and its relationship with different types of cancer, factors such as the presence of this electrolyte in foods in the daily diet should be considered. In this regard, studies have generally demonstrated beneficial effects of Mg intake and cancer, such as an inverse relationship between high Mg levels in drinking water and less chance of dying because of

Table 3. Mean and Standard Deviation of Salivary Electrolyte Levels in Patients without Oral Lesions, with OPMD, and with OSCC

Group	K (µg/mL)	P (µg/mL)	Na (µg/mL)	Ca (µg/mL)	Mg (µg/mL)	Zn (µg/mL)	Cu (µg/mL)	Fe (µg/mL)	P-value
Control	612.6 ±192.2	186.7 ±91.1	135.4 ±95.6	21.8 ±16.8	3.51 ±3.0	1.15 ±1.63	0.61 ±0.29	0.27 ±0.21	0.459
OPMD	661.8 ±158.9	248.3 ±82.2	183.8 ±202.8	22.9 ±14.2	5.41 ±4.1	1.11 ±1.34	0.64 ±0.27	0.26 ±0.17	0.136
OSCC	651.3 ±213.4	237.2 ±109.6	171.9 ±92.6	17.5 ±11.5	3.71 ±2.3	0.87 ±0.82	0.51 ±0.82	0.26 ±0.15	0.469

K, Potassium; P, Phosphorus; Na, Sodium; Ca, Calcium; Mg, Magnesium; ZN, Zinc; Cu, Copper; Fe, Iron; OPMD, Oral potentially malignant disorders; OSCC, Oral squamous cell carcinoma; *, Statistically significant
higher (Shetty et al., 2014) and another, lower (Shetty et al., 2015) salivary concentrations of this electrolyte in patients with OSCC and OPMD than control group. Zn is essential for regulation of the cell cycle and cell division, for DNA polymerase activity, and is particularly important for the rapid cell proliferation encountered in growing tumors (Ayinampudi and Narasimhan, 2012). However, differences in the salivary concentrations of this electrolyte were not observe. According to the systematic review, high concentrations of Na salivary levels in patients with OSCC are reported in some studies (Schipitzer et al., 2007; Fuchs et al., 2011), a finding that could reflect dehydration due to smoking and alcohol consumption; however, a different salivary levels of Na between groups was not observed.

Although an equivalence between the levels of electrolytes in the blood and saliva was indicated in the systematic review suggesting the use of saliva as a source as biomarkers (Aziz et al., 2016), it was not possible to conduct this analysis in our case-control study. That was one of the limitations of this study. Another limitation could be the sample size, which ideally should be larger, and the differences between the means of age between the study groups, a phenomenon that was explained in detail. Finally, it should be mentioned that not having considered the type and quality of diet of the patients evaluated, may be a factor that also affects the results obtained, so it should be an important element to consider in future studies. However, the higher levels of Mg found in the saliva of patients with OPMD may be of great interest. One possible hypothesis for this observation is that the increase in this electrolyte could be an initial angiogenic stimulus in the malignancy process from OPMD, but later, factors other than Mg levels could be involved in the maintenance of neovascularization in OSCC. Further study is necessary to confirm this theory and to better understand the role of this electrolyte in the progression to OSCC. In this sense, it would be highly recommended to associate Mg levels in different body fluids with the density of blood vessels in the different groups of patients studied. More research complemented with in vivo studies must be performed to correlate the local neoplastic behavior of OSCC with different concentrations of salivary electrolytes. Even though saliva represents a source of biomarkers that may reflect the progression of OSCC, and elements such as Mg may be of great interest in this regard, additional studies must be conducted.

Author Contribution Statement

All authors approved the final version of the manuscript. Conceptualization: [Juan Aitken-Saavedra]; Methodology: [Diogo La Rosa Novo, Marcia Foster Mesko]; Formal analysis and investigation: [Ricardo Fernandes Ramires, Sandra Beatriz Chaves Tarquinio]; Writing - original draft preparation: [Juan Aitken-Saavedra]; Writing - review and editing: [Juan Aitken-Saavedra, Diogo La Rosa Novo, Marcia Foster Mesko, Ana Carolina Uchoa Vasconcellos, Karine Duarte da Silva, Gabriel Rojas Zuñiga, Ricardo Fernandes Ramires, Sandra Beatriz Chaves Tarquinio] Supervision: [Sandra Beatriz Chaves Tarquinio].
Acknowledgements

The authors are grateful to fellowship OAS-GCUB, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil grant number 312843/2020-8), Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio - 573672/2008-3), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. MFM and DLRN acknowledge the Laboratório de Anályses Químicas, Industriais e Ambientais (LAQIA) at Federal University of Santa Maria for analysis support.

The present study was approved by the Research Ethics Committee of the National Research Ethics Commission (approval code: No. 2.262.681) and was conducted following the guidelines of the Declaration of Helsinki.

Any conflict of interest

None.

References

Al Alawi AM, Majoni SW, Falhammar H (2018). Magnesium and Human Health: Perspectives and Research Directions. Int J Endocrinol, 16, 9041694.

Allison SP, Lobo DN (2004). Fluid and electrolytes in the elderly. Curr Opin Clin Nutr Metab Care, 7, 27-33.

Avger A, Darka O, Bodrumlu EH, Bek Y (2009). Evaluation of the relationship between passive smoking and salivary electrolytes, protein, secretary IgA, sialic acid and amylase in young children. Arch Oral Biol, 54, 457–63.

Aynampudi BK, Narsimhan M (2012). Salivary copper and zinc levels in oral pre-malignant and malignant lesions. J Oral Maxillofac Pathol, 16, 178–82.

Aziz NZ, Arathi K, Prasad BG, et al (2018). Evaluation of magnesium levels in blood and saliva of oral squamous cell carcinoma and potentially malignant disorders by xylidyl blue method. J Oral Maxillofac Pathol, 22, 147.

Banai S, Haggroth L, Epstein SE, Cassells W (1990). Influence of extracellular magnesium on capillary endothelial cell proliferation and migration. Circ Res, 67, 645–50.

Carasu EM, Checherita LE, Stamatin O, Manuc D (2016). Study of Biochemical Level for Mg and Ca-Mg Imbalance in Patients with Oral Cancer and Potentially Malignant Disorder and their Prostetical and DSSS Treatment. Rev Chim, 67, 2087-90.

Chiu HF, Chang CC, Yang CY (2004). Magnesium and calcium in drinking water and risk of death from ovarian cancer. Magnes Res, 17, 28–34.

Porter MPA, Jackson K, Trscolair A, Pederson LL (2003). Control CD, Prevention. Prevalence of current cigarette smoking among adults and changes in prevalence of current and some day smoking-United States, 1996-2001. Morb Mortal Wkly Rep, 52, 303.

Dzwulska A, Janiszewska-Olszowska J, Bachanek T, Grocholewicz K (2013). Salivary mineral composition in patients with oral cancer. Magnes Res, 26, 120–24.

Ferlay J, Soerjomataram I, Dikshit R, et al (2014). Cancer incidence and mortality worldwide: Sources, methods, and major patterns in GLOBOCAN 2012. Int J Cancer, 136, 359–86.

Fuchs PN, Rogić D, Vidović-Juras D, et al (2011). Salivary analytes in patients with oral squamous cell carcinoma. Coll Antropol, 35, 359–62.

Girja KP, Sundharam BS, Krishnan PA, Devi CS (2002). Biochemical changes of saliva in tobacco chewers tobacco smokers, alcohol consumers, leukoplakia, and oral cancer patients. Indian J Dent Res, 13, 102–7.

Higgins JP, Altman DG, Gøtzsche PC, et al (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clin Research Ed), 343, d5928.

Hosthor SS, Mahesh P, Priya SA, et al (2014). Quantitative analysis of serum levels of trace elements in patients with oral submucous fibrosis and oral squamous cell carcinoma: A randomized cross-sectional study. J Oral Maxillofac Pathol, 18, 46–51.

Khanna S (2008). Immunological and biochemical markers in oral carcinogenesis: the public health perspective. Int J Environ Res Public Health, 5, 418–22.

Kujan O, Oliver RJ, Khatib A, et al (2006). Evaluation of a new binary system of grading oral epithelial dysplasia for prediction of malignant transformation. Oral Oncol, 42, 987–93.

Maier JA, Bernardini D, Rayssiguier Y, Mazur A (2004). High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta, 1689, 6–12.

Maier JA, Malpuech-Brugère C, Zimowska W, Rayssiguier Y, Mazur A (2004). Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta, 1689, 13–21.

Marodin G, Salgueiro JB, Motta M, Santos LM, et al (2013). Brazilian guidelines for biorepositories and biobanks of human biological material. Rev Assoc Med Bras, 59, 72–77.

Michaud DS, Spiegelman D, Clinton SK, et al (2000). Prospective study of dietary supplements, macronutrients, micronutrients, and risk of bladder cancer in US men. Am J Epidemiol, 152, 1145–53.

Mohr D, Shamseer L, Clarke M, et al (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev, 4, 1.

Moola S, Munn Z, Tufanaru C, et al (2017). Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z (Editors). JBI Manual for Evidence Synthesis. JBI.

Nasulewicz A, Wietrzyk J, Wolf FI, et al (2004). Magnesium deficiency inhibits primary tumor growth but favors metastasis in mice. Biochim Biophys Acta, 1739, 26-32.

Navazesh M, Multigan, RA, Kimvi S, Denny PA, Denny PC (1992). Comparison of whole saliva flow rates and mucin concentrations in healthy Caucasian young and aged adults. J Dent Res, 71, 1275–78.

Pasternak K, Przysołak W (1999). Magnesium in stomach cancer. Magnes Res, 12, 139-43.

Pereira RM, Crizel MG, Navazesh M, dos Santos CMM, Mesko MF (2019). Multitechnique determination of metals and non-metals in sports supplements after microwave-assisted digestion using diluted acid. Microchem J, 145, 235-41.

Rehak NN, Cecco SA, Csako G (2000). Biochemical composition and electrolyte balance of “unstimulated” whole human saliva. Clin Chem Lab Med, 38, 335–43.

Rutherford-Markwick K, Starck C, Dhal DK, Ali A (2017). Salivary diagnostic markers in males and females during rest and exercise. J Int Soc Sports Nutr, 14, 27.

Saunders JB, Degenhardt L, Reed GM, Poznyak V (2019). Alcohol Use Disorders in ICD-11: Past, Present, and Future. Alcohol Clin Exp Res, 43, 1617–31.

Shetty SR, Babu SG, Rao PK, et al (2014). Interdependence of antioxidants and micronutrients in oral cancer and potentially malignant oral disorders: a serum and saliva study. J Dent, 11, 696–702.

Shetty SR, Babu S, Kumari S, et al (2015). Status of trace elements in saliva of oral precancer and oral cancer patients. J Can Res Ther, 11, 146–9.
Shpitzer T, Bahar G, Feinmesser R, Nagler RM (2007). A comprehensive salivary analysis for oral cancer diagnosis. *J Cancer Res Clin Oncol*, 133, 613–17.

Van der Waal I (2009). Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. *Oral Oncol*, 45, 317–23.

Wolf FI, Maier JA, Nasulewicz A, et al (2007). Magnesium and neoplasia: from carcinogenesis to tumor growth and progression or treatment. *Arch Biochem Biophys*, 458, 24–32.

Yang CY, Chiu HF, Cheng MF, et al (2000). Calcium and magnesium in drinking water and the risk of death from breast cancer. *J Toxicol Environ Health*, 60, 231–41.

Yoshizawa JM, Schafer CA, Schafer JJ, et al (2013). Salivary biomarkers: toward future clinical and diagnostic utilities. *Clin Microbiol Rev*, 26, 781–91.

Zalewska A, Waszkiewicz N, López-Pintor RM (2019). The Use of Saliva in the Diagnosis of Oral and Systemic Diseases. *Dis Markers*, 2019, 1-2.

Zhang CZ, Cheng XQ, Li JY, et al (2016). Saliva in the diagnosis of diseases. *Int J Oral Sci*, 8, 133–7.