Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats

Joe L. Webb
Iowa State University

Amanda E. Bries
Iowa State University, aebries@iastate.edu

Brooke Vogel
Iowa State University

Claudia Carrillo
Iowa State University, claudiac@iastate.edu

Lily Harvison
Iowa State University, lilyh@iastate.edu

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/fshn_hs_pubs
Part of the [Dietetics and Clinical Nutrition Commons](https://lib.dr.iastate.edu/fshn_hs_pubs), [Endocrinology, Diabetes, and Metabolism Commons](https://lib.dr.iastate.edu/fshn_hs_pubs), [Exercise Science Commons](https://lib.dr.iastate.edu/fshn_hs_pubs), [Food Chemistry Commons](https://lib.dr.iastate.edu/fshn_hs_pubs), [Human and Clinical Nutrition Commons](https://lib.dr.iastate.edu/fshn_hs_pubs), and the [Molecular, Genetic, and Biochemical Nutrition Commons](https://lib.dr.iastate.edu/fshn_hs_pubs)

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/fshn_hs_pubs/38. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats

Abstract
Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and diet. Since eggs are a nutrient dense food containing bioactive ingredients that modify gene expression, our goal was to examine the role of whole egg consumption on the transcriptome during T2DM. We analyzed whether whole egg consumption in Zucker Diabetic Fatty (ZDF) rats alters microRNA and mRNA expression across the adipose, liver, kidney, and prefrontal cortex tissue. Male ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+) (n = 12) were obtained at 6 wk of age. Rats had ad libitum access to water and were randomly assigned to a modified semi-purified AIN93G casein-based diet or a whole egg-based diet, both providing 20% protein (w/w). TotalRNA libraries were prepared using QuantSeq 3’ mRNA-Seq and Lexogen smallRNA library prep kits and were further sequenced on an Illumina HighSeq3000. Differential gene expression was conducted using DESeq2 in R and Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%. We identified 9 microRNAs and 583 genes that were differentially expressed in response to 8 wk of consuming whole egg-based diets. Kyto Encyclopedia of Genes and Genomes/Gene ontology pathway analyses demonstrated that 12 genes in the glutathione metabolism pathway were upregulated in the liver and kidney of ZDF rats fed whole egg. Whole egg consumption primarily altered glutathione pathways such as conjugation, methylation, glucuronidation, and detoxification of reactive oxygen species. These pathways are often negatively affected during T2DM, therefore this data provides unique insight into the nutrigenomic response of dietary whole egg consumption during the progression of T2DM.

Disciplines
Dietetics and Clinical Nutrition | Endocrinology, Diabetes, and Metabolism | Exercise Science | Food Chemistry | Human and Clinical Nutrition | Molecular, Genetic, and Biochemical Nutrition

Comments
Webb JL, Bries AE, Vogel B, Carrillo C, Harvison L, Day TA, et al. (2020) Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats. PLoS ONE 15(11): e0240885. doi:10.1371/journal.pone.0240885.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Authors
Joe L. Webb, Amanda E. Bries, Brooke Vogel, Claudia Carrillo, Lily Harvison, Timothy A. Day, Michael J. Kimber, Rudy J. Valentine, Matthew J. Rowling, Stephanie Clark, Elizabeth M. McNiell, and Kevin L. Schalinske

This article is available at Iowa State University Digital Repository: https://lib.dr.iastate.edu/fshn_hs_pubs/38
Whole egg consumption increases gene expression within the glutathione pathway in the liver of Zucker Diabetic Fatty rats

Joe L. Webb1,2*, Amanda E. Bries1,2*, Brooke Vogel1, Claudia Carrillo1, Lily Harvison1, Timothy A. Day3, Michael J. Kimber1,2, Rudy J. Valentine4, Matthew J. Rowling1,2, Stephanie Clark1, Elizabeth M. McNeill1,2,5, Kevin L. Schalinske1,2*

1 Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States of America, 2 Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States of America, 3 Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States of America, 4 Department of Kinesiology, Iowa State University, Ames, IA, United States of America, 5 Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States of America.

* These authors contributed equally to this work.
+ kschalina@iastate.edu

Abstract

Nutrigenomic evidence supports the idea that Type 2 Diabetes Mellitus (T2DM) arises due to the interactions between the transcriptome, individual genetic profiles, lifestyle, and diet. Since eggs are a nutrient dense food containing bioactive ingredients that modify gene expression, our goal was to examine the role of whole egg consumption on the transcriptome during T2DM. We analyzed whether whole egg consumption in Zucker Diabetic Fatty (ZDF) rats alters microRNA and mRNA expression across the adipose, liver, kidney, and prefrontal cortex tissue. Male ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+), (n = 12) were obtained at 6 wk of age. Rats had ad libitum access to water and were randomly assigned to a modified semi-purified AIN93G casein-based diet or a whole egg-based diet, both providing 20% protein (w/w). TotalRNA libraries were prepared using QuantSeq 3’ mRNA-Seq and Lexogen smallRNA library prep kits and were further sequenced on an Illumina HighSeq3000. Differential gene expression was conducted using DESeq2 in R and Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%. We identified 9 microRNAs and 583 genes that were differentially expressed in response to 8 wk of consuming whole egg. Kyto Encyclopedia of Genes and Genomes/Gene ontology pathway analyses demonstrated that 12 genes in the glutathione metabolism pathway were upregulated in the liver and kidney of ZDF rats fed whole egg. Whole egg consumption primarily altered glutathione pathways such as conjugation, methylation, glucuronidation, and detoxification of reactive oxygen species. These pathways are often negatively affected during T2DM, therefore this data provides unique insight into the nutrigenomic response of dietary whole egg consumption during the progression of T2DM.
Introduction

Type 2 Diabetes Mellitus (T2DM) is an insulin independent metabolic disease characterized by chronic hyperglycemia and concomitant insulin resistance and it is estimated that greater than 415 million adults worldwide have T2DM [1]. Oxidative stress is a potential key mediator in the pathogenesis of T2DM and may underlie the progressive development of hyperglycemia and insulin resistance [2]. More specifically, reports demonstrate that glutathione (a major intracellular antioxidant) enzymes are diminished in the liver and brain of T2DM animal models [3]. Sekhar and colleagues examined the ability of patients with uncontrolled and controlled T2DM to synthesize glutathione via measuring isotopically labelled glycine [4]. They reported that patients with uncontrolled T2DM were severely deficient in the ability to maintain glutathione metabolism in cardiac tissue [5], which may be, in part, due to hyperglycemia decreasing L-cysteine concentrations [6] and the reduced flux of methionine to cysteine [7]. Because of the deleterious effects of hyperglycemia on organ function, it is important to consider the global transcriptomic effects of T2DM. Similar to humans, the Zucker Diabetic Fatty (ZDF) rat model of T2DM also displays increased oxidative stress [8], whereby endogenous protective antioxidants like glutathione are similarly downregulated in ZDF rats [9]. The gene expression profiles in animal models of T2DM, such as the ZDF rat, is consistent with gene expression profiles of humans with T2DM [8], making this a suitable model to explore the global gene expression effects of diet in the ZDF rat.

Dietary treatments with bioactive foods such as cocoa or Shenyuan granules [9, 10] in ZDF rats have been shown to reduce oxidative stress or attenuate renal injury in the presence of T2DM-related nephropathy [11]. Consumption of eggs as a bioactive food during T2DM in humans remains controversial [12–15], but eggs have been shown to display antioxidative properties, which may be beneficial during the progression of T2DM [16]. Additionally, our laboratory has consistently reported that long-term whole egg (WE) consumption improves metabolic parameters during T2DM such as the maintenance of circulating vitamin D concentrations, decreased weight gain, and nephroprotection via reduced proteinuria in male ZDF rats [17, 18]. These are important findings, as vitamin D deficiency, increased adiposity, and kidney failure have collectively been suggested to exacerbate oxidative stress during T2DM [19].

While the literature surrounding the effects of dietary WE on insulin resistance during T2DM is inconclusive in both rodent [20] and human population studies [21], there are no studies to date examining the molecular mechanisms underlying how WE consumption affects the transcriptome across multiple tissues. Longitudinal, prospective, and comprehensive meta-analyses have been performed to assess the independent risk factors of increased dietary egg consumption on chronic diseases [22, 23]. Because of the highly controversial science of whole egg consumption on increased cardiovascular disease in patients with T2DM, it is important to examine the possible underlying molecular targets and drivers of whole egg consumption on disease. Ultimately, analyzing the transcriptomic impact of egg consumption would provide us with a better understanding of the nutrigenomic actions that dietary egg consumption contributes to T2DM, and bridge the gap in our understanding of how whole eggs may affect the physiological progression of T2DM. Therefore, the objective of this study was to determine the influence of WE consumption on gene and microRNA expression profiles in a ZDF rat model of progressive T2DM.

We examined the transcriptomes from the adipose, liver, kidney, and prefrontal cortex (PFC) tissues to determine how WE consumption alters gene expression and examined whether these changes correspond to altered microRNA expression profiles in T2DM.

Results and discussion

Whole eggs have predominantly been criticized for their associated risk of developing chronic diseases [24], yet the benefits of WE consumption have also been reported [13]. For instance,
several groups have suggested that WE provide antioxidant properties [13, 25], either through antioxidant peptides in the egg yolk [11] or other reactive oxygen species-reducing nutrients [26]. Other studies examining the role of quail egg consumption in rat models of T2DM have demonstrated upregulation of glutathione metabolism in alloxan-induced T2DM in Wistar rats [25] and improved oxidative stress profiles in streptozotocin-injected rats [27]. Raza and colleagues [27] identified that in diabetic rat liver glutathione content and glutathione S-transferase (GST) activity were decreased 65% while also observing that brain glutathione and GST activity were increased two-fold as a result of a T2DM phenotype.

Total RNASeq differential expression

When comparing the WE versus casein (CAS) in ZDF rats and their lean controls, differential expression analyses of the mRNAseq data resulted in 583 differentially expressed genes (DEGs) across four tissues in both genotypes (Table 1). S1 Table contains the results from DESeq2 with the results for each gene across all four tissues with data on individual genes. S2 Table contains raw mRNA read counts for each tissue and rat across both genotypes. Among the lean controls, 13 genes were differentially expressed in the adipose tissue, 32 in the liver, and 6 in the kidney. Notably, none of the genes were differentially expressed in the PFC between dietary treatments in the lean rats. In the ZDF rats, dietary WE consumption resulted in 532 total DEGs across all tissues where 50 genes were differentially expressed in adipose tissue, 474 in the liver, 6 in the kidney and 2 genes in the PFC following multiple testing correction using the false discovery rate (FDR) threshold of 5%. We demonstrated that consuming WE-based diets for 8 wk resulted in significant alterations in oxidative stress pathways, as well as glutathione metabolism pathways. While there were tissue-specific changes in gene expression, glutathione metabolism was altered in the kidney and liver among ZDF rats, and in the kidney of lean controls were significantly upregulated. Overall, these data highlight how consumption of WE-based diets can provide beneficial effects through modifying gene expression of oxidative reduction targets.

We previously demonstrated that WE consumption for 8 wk is effective at improving serum vitamin D status and providing nephroprotective benefits [17, 18]; however, despite our gene expression findings in this study we still have yet to elucidate the mechanism underlying how WE consumption leads to decreased weight gain [28, 29]. We also identified that ZDF rats fed WE upregulated 11 genes involved in glutathione metabolism in the liver and kidney. In the PFC, WE consumption had differing effects whereby in the lean PFC, WE consumption did not change the transcriptome, whereas in the ZDF rats WE consumption strongly downregulated the expression of 2, AY172581 exon transcripts. These exon transcripts have yet to be characterized and future proteomic studies may reveal their biological importance. Across both genotypes, the most significantly altered genes were involved in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of: glutathione metabolism, metabolic pathways, steroid biosynthesis, and cholesterol metabolism. After controlling for the genetic background differences of our ZDF rats, a combined analysis indicated that 428 unique genes were differentially expressed across these tissues as a product of WE consumption. Moreover, 13 different glutathione metabolism genes were significantly upregulated across the liver and kidney in both genotypes suggesting that increased whole egg consumption, may increase glutathione metabolism independent of T2DM, and attenuate the decreased glutathione metabolism during diabetes.

To visualize the global differences in the transcriptomes based on dietary treatment, we performed principal component analysis (PCA) and generated volcano plots for genes that exhibited ≥1.5-fold change, respectively. Fig 1 displays the samples in a three-dimensional principal
Genotype	Tissue	Ensembl_ID (ENSRNO)	Symbol	Gene Name	L2FC	P-value
ZDF	Adipose	G00000011039	Gch1	GTP cyclohydrolase 1	-2.71	2.1E-05
	Downregulated					
		G000000040108	RGD1565355	similar to fatty acid translocase/CD36	-2.65	2.7E-07
		G00000011024	Zdhc20	zinc finger DHHC-type palmitoyltransferase 20	-2.49	1.2E-04
		G00000006946	Arhgap9	Rho GTPase activating protein 9	-2.49	2.6E-06
		G0000006715	Ccr1	C-C motif chemokine receptor 1	-2.39	7.4E-06
		G00000032546	Dot1l	DOT1 like histone lysine methyltransferase	-2.12	1.9E-06
		G00000034230	Fcrl1	Fc receptor-like 1	-2.09	6.9E-05
		G00000019283	P2ry2	purinergic receptor P2Y2	-2.07	1.2E-04
		G00000022975	Nfam1	NFAT activating protein with ITAM motif 1	-1.92	3.1E-04
		G00000013917	Igsf10	immunoglobulin superfamily, member 10	-1.91	2.4E-05
		G00000049115	Ccr5	C-C motif chemokine receptor 5	-1.89	4.3E-07
		G00000015895	B4galnt6	beta-1,4-galactosyltransferase 6	-1.84	5.1E-05
		G00000020479	Pik3c2a	phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha	-1.83	2.2E-04
		G00000061379	C7	complement C7	-1.82	1.8E-04
		G00000011927	Sdc3	syndecan 3	-1.82	2.3E-04
		G00000026644	Glipr1	GLI pathogenesis-related 1	-1.77	6.4E-05
		G00000011946	Ptn	pleiotrophin	-1.74	4.8E-05
		G00000013922	Dok2	docking protein 2	-1.61	2.7E-04
		G00000013526	Rasf4	Ras association domain family member 4	-1.60	3.1E-06
		G00000001989	Alcam	activated leukocyte cell adhesion molecule	-1.57	1.5E-05
		G00000016643	Lpcat2	lysophosphatidylcholine acyltransferase 2	-1.52	2.9E-04
		G00000003835	Slc43a2	solute carrier family 43 member 2	-1.52	1.6E-04
		G00000009077	Lipa	lipase A, lysosomal acid type	-1.51	3.8E-05
		G000000099347	Arhgap25	Rho GTPase activating protein 25	-1.49	2.1E-04
		G00000000257	Smpd3	sphingomyelin phosphodiesterase 3	-1.47	2.8E-04
		G000000012616	Ppt1	palmitoyl-protein thioesterase 1	-1.41	2.7E-04
		G000000099331	Hck	HCK proto-oncogene, Src family tyrosine kinase	-1.30	4.6E-05
		G000000010183	Gask1b	golgi associated kinase 1B	-1.26	2.7E-04
		G000000017022	Cerk	ceramide kinase	-1.25	3.2E-04
		G000000088465	Tmem176b	transmembrane protein 176B	-1.23	2.4E-04
		G000000010208	Timp1	TIMP metallopeptidase inhibitor 1	-1.20	1.8E-04
		G000000015072	Ptgr1	prostaiglandin reductase 1	1.15	2.2E-04
		G000000010389	Ndr2	NDRG family member 2	1.30	2.0E-04
		G000000037446	Pxmp2	peroxisomal membrane protein 2	1.30	2.3E-04
		G00000002896	Prdx6	peroxiredoxin 6	1.37	3.1E-04
		G000000019328	Phgdh	phosphoglycerate dehydrogenase	1.45	3.4E-04
		G000000021316	Tmem98	transmembrane protein 98	1.48	2.1E-04
		G000000046858	MGC109340	similar to Microsomal signal peptidase 23 kDa subunit (SPase 22 kDa subunit) (SPC22/23)	1.52	9.7E-05
		G000000017012	Coq7	coenzyme Q7, hydroxylase	1.56	4.5E-05
		G000000021524	Marp	melanocortin 2 receptor accessory protein	1.69	1.6E-04
		G000000017226	Slc2a4	solute carrier family 2 member 4	1.87	1.8E-04
		G00000002579	Parm1	prostate androgen-regulated mucin-like protein 1	1.89	7.0E-06

(Continued)
Table 1. (Continued)

Lean Adipose Downregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G000000016700	Tcf21	transcription factor 21	-2.82	3.2E-06	
Lean Adipose Upregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G00000013733	Ppp4r1	protein phosphatase 4, regulatory subunit 1	2.68	2.4E-05	
Lean Kidney Downregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G00000033932	AY172581.22−201	tyrosine 3-monooxygenase/tryptophan S-monooxygenase activation protein, eta	-5.21	1.1E-05	
Lean Kidney Upregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
None	None	None	None	None	None
ZDF Kidney Downregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G000000020204	Srp19	signal recognition particle 19	-1.72	3.3E-05	
ZDF Kidney Upregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G00000018237	Gstp1	glutathione S-transferase pi 1	2.04	5.2E-07	
G00000018940	Cnt1	solute carrier family 28 member 1	1.65	7.8E-05	

(Continued)
Table 1. (Continued)

Lean Kidney Downregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G00000020151	Cdh1	cadherin 1	-1.08	1.4E-05	
G00000013062	Cyp24a1	cytochrome P450, family 24, subfamily a, polypeptide 1	-1.30	4.3E-06	
G00000012956	Tgm2	transglutaminase 2	-1.34	3.5E-05	
G00000004019	Phlda1	pleckstrin homology-like domain, family A, member 1	-2.30	2.7E-08	

Lean Kidney Upregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G00000029726	Gstm1	glutathione S-transferase mu 1	1.40	1.5E-05	
G00000053811	Arg2	arginase 2	1.51	3.5E-05	
G00000000576	Anapc16	anaphase promoting complex subunit 16	2.11	3.3E-05	

ZDF Liver Downregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G00000014320	Inhba	inhibin subunit beta A	-4.77	3.2E-12	
G00000007923	Cgref1	cell growth regulator with EF hand domain 1	-3.74	4.4E-09	
G00000004307	Tor3a	torin family 3	-3.55	6.1E-18	
G00000034190	Ighm	immunoglobulin heavy constant mu	-3.38	1.4E-16	
G00000003802	Pttg1	PTTG1 regulator of sister chromatid separation	-3.35	1.2E-05	
G00000007060	Plin2	perilipin 2	-3.31	6.8E-28	
G00000045549	Fasn	fatty acid synthase	-3.31	1.5E-10	
G000000022556	Cxcl10	C-X-C motif chemokine ligand 10	-3.30	4.4E-04	
G00000009019	Slc6a6	solute carrier family 6 member 6	-3.09	6.0E-11	
G000000025691	Pla2g7	phospholipase A2 group VII	-3.03	4.5E-06	
G000000020035	Cyp17a1	cytochrome P450	-3.00	2.1E-09	
G00000004080	Fads1	fatty acid desaturase 1	-3.35	1.2E-05	
G00000000658	Acacb	acetyl-CoA carboxylase beta	-3.31	4.0E-18	
G000000030154	Cyp4a2	cytochrome P450	-2.88	5.0E-04	
G000000021802	Isl15	ISG15 ubiquitin-like modifier	-2.72	2.4E-03	
G000000010152	Slc25a30	solute carrier family 25	-2.58	1.8E-09	
G00000001963	Mx2	MX dynamin like GTPase 2	-2.56	2.1E-03	
G000000040151	Sdr16c6	short chain dehydrogenase/reductase family 16C	-2.55	6.3E-04	
G000000017914	Cavin3	caveola associated protein 3	-3.25	1.4E-14	
G00000006889	Insig1	insulin induced gene 1	-2.50	3.4E-13	
G00000006204	Slc30a3	solute carrier family 30 member 3	-2.47	3.0E-07	
G000000016353	Nim1k	NIM1 serine/threonine protein kinase	-2.40	3.6E-08	
G000000016011	Plekhd1	pleckstrin homology and RhoGEF domain containing G1	-2.40	7.8E-05	
G000000028137	Mkig7	marker of proliferation Ki-67	-2.38	1.5E-04	
G000000014476	Evl	Enah/Vasp-like	-2.37	3.4E-04	
G000000008022	Apaf1	apoptotic peptidase activating factor 1	-2.36	7.1E-05	
G000000053891	Phf11	PHD finger protein 11	-2.34	6.4E-08	
G000000010819	Hspa4l	heat shock protein family A (Hsp70) member 4 like	-2.32	6.9E-06	
G000000021150	Pch3	phospholipase C beta 3	-2.31	3.1E-05	
G000000014141	Serpine1	serpin family E member 1	-2.27	1.2E-04	
G000000016924	Acly	ATP citrate lyase	-2.25	5.5E-17	
G000000045560	Gvin1	GTPase	-2.25	2.1E-06	
G000000020503	Cbln3	cerebellin 3 precursor	-2.22	1.4E-06	
G000000052444	Samd9	sterile alpha motif domain containing 9	-2.22	3.3E-04	
G00000005209	Sprd1	sprouty-related	-2.21	1.7E-05	
G00000010888	Ankrd33b	ankyrin repeat domain 33B	-2.20	2.1E-06	

(Continued)
Gene ID	Description	Log2 Ratio	P-Value
G000000047218	Clic5 chloride intracellular channel 5	-2.20	1.7E-03
G00000009481	Ddhd1 DDHD domain containing 1	-2.19	2.0E-04
G00000022242	Cxcl9 C-X-C motif chemokine ligand 9	-2.16	1.3E-05
G0000008807	Rp1	-2.08	4.7E-05
G0000014426	Lox lysyl oxidase	-2.07	1.9E-03
G0000015498	Il17rb interleukin 17 receptor B	-2.07	2.3E-04
G0000015965	Smad4 SMAD family member 4	-2.07	8.7E-04
G0000017512	Aldh3b1 aldehyde dehydrogenase 3 family	-2.05	1.0E-04
G0000057092	Sfln4 schlafen family member 4	-2.05	6.2E-06
G0000012685	Adck1 aarF domain containing kinase 1	-2.04	1.8E-03
G0000011268	Chd5 chromodomain helicase DNA binding protein 5	-2.02	2.3E-03
G0000032374	Paq9 progesterin and adipocyte receptor family member 9	-2.01	3.3E-14
G0000020272	Elap1 endosome-lysosome associated apoptosis and autophagy regulator 1	-1.97	1.0E-04
G0000061118	LOC102551095 uncharacterized LOC102551095	-1.96	9.6E-05
G0000061527	Gck glucokinase	-1.93	4.4E-07
G0000053460	Acot3 acyl-CoA thioesterase 3	-1.91	1.4E-04
G0000055043	Cpeb2 cytoplasmic polyadenylation element binding protein 2	-1.91	2.0E-03
G0000017332	Dapk2 death-associated protein kinase 2	-1.87	3.8E-04
G0000034013	Acaca acetyl-CoA carboxylase alpha	-1.86	4.5E-05
G0000017611	Tnp1 transition protein 1	-1.86	2.0E-03
G0000012603	Sestd1 SEC14 and spectrin domain containing 1	-1.85	1.2E-03
G0000025558	Palm2 paralentin 2	-1.84	5.7E-06
G0000018461	Pdgfrb platelet derived growth factor receptor beta	-1.82	1.0E-03
G0000016123	Rnf144b ring finger protein 144B	-1.80	5.5E-17
G0000013111	Metl3 methyltransferase-like 3	-1.78	6.7E-04
G0000045679	Apoa1 apolipoprotein A1	-1.78	1.1E-11
G000001926	Cldn1 claudin 1	-1.78	1.8E-06
G000005600	Nrra2 nuclear receptor subfamily 4	-1.77	4.2E-04
G0000012148	Trio trio Rho guanine nucleotide exchange factor	-1.76	7.0E-04
G0000004626	Scl3a2 solute carrier family 34 member 2	-1.76	8.7E-05
G0000009360	Sh3bp1 SH3-domain binding protein 1	-1.74	2.2E-03
G0000010890	Bmp1 bone morphogenetic protein 1	-1.71	1.8E-07
G0000011820	Acp3 acid phosphatase 3	-1.69	1.1E-04
G0000007591	Scl45a3 solute carrier family 45	-1.68	8.9E-05
G0000006170	Bach2 BTB domain and CNC homolog 2	-1.68	1.2E-03
G00000028895	Rtp4 receptor (chemosensory) transporter protein 4	-1.66	5.3E-05
G0000002773	Rgs4 regulator of G-protein signaling 4	-1.65	5.0E-04
G0000007234	Cyp51 cytochrome P450	-1.64	1.2E-09
G0000020918	Ccdn1 cyclin D1	-1.64	7.0E-09
G00000028941	Zbed3 zinc finger	-1.63	8.4E-06
G0000012681	Lgals9 galectin 9	-1.63	2.8E-13
G0000001640	Tomm70 translocase of outer mitochondrial membrane 70	-1.63	2.6E-03
G0000009117	Otub2 OTU deubiquitinase	-1.62	1.9E-04
G0000005726	Pclo piccolo (presynaptic cytomatrix protein)	-1.62	6.2E-04
G00000051171	G6pc glucose-6-phosphatase	-1.61	1.6E-04
G0000016552	Hmgcs1 3-hydroxy-3-methylglutaryl-CoA synthase 1	-1.60	4.4E-15
G0000004577	Fer2 fasciculation and elongation protein zeta 2	-1.60	1.9E-04
G0000000547	Tspyl4 TSPY-like 4	-1.59	5.0E-04

(Continued)
Gene ID	Symbol	Description	Z-score	P-value
Abhd2		abhydrolase domain containing 2	-1.59	1.9E-07
Tgif1		TGFB-induced factor homeobox 1	-1.56	1.1E-03
Irf1		interferon regulatory factor 1	-1.54	2.4E-06
Trib3		tribbles pseudokinase 3	-1.54	8.5E-06
Mitd1		microtubule interacting and trafficking domain containing 1	-1.52	1.9E-03
Dgkd		diacylglycerol kinase	-1.52	1.2E-05
Dhc7		7-dehydrocholesterol reductase	-1.51	1.1E-05
Gpd2		glycerol-3-phosphate dehydrogenase 2	-1.51	5.5E-04
Adora1		adenosine A1 receptor	-1.50	2.3E-06
Abhd1		abhydrolase domain containing 1	-1.50	2.1E-07
Dapk1		death associated protein kinase 1	-1.48	5.3E-04
Wdc21		WAP four-disulfide core domain 21	-1.45	1.6E-04
Pcsk9		proprotein convertase subtilisin/kexin type 9	-1.44	4.7E-07
Trim47		tripartite motif-containing 47	-1.44	1.3E-04
Map4k4		mitogen-activated protein kinase kinase kinase 4	-1.43	1.1E-05
Plekha1		pleckstrin homology domain containing B1	-1.43	8.9E-05
Tmcc3		transmembrane and coiled-coil domain family 3	-1.43	2.6E-05
Ptd1		pentatripeptide repeat domain 1	-1.43	1.0E-03
Elov12		ELOVL fatty acid elongase 2	-1.43	2.8E-11
Gbp11I		GC-rich promoter binding protein 1-like 1	-1.41	2.3E-04
Agpat3		1-acetylglcerol-3-phosphate O-acyltransferase 3	-1.41	3.8E-09
Sh3g3		SH3 domain containing GRB2 like 3	-1.40	4.1E-05
Mmp15		matrix metalloproteinase 15	-1.40	1.9E-03
Agxt		alanine—glyoxylate and serine—pyruvate aminotransferase	-1.39	7.5E-11
Bg4		BCL2-associated athanogene 4	-1.38	1.2E-03
Dcaf1		DDB1 and CUL4 associated factor 1	-1.38	2.1E-03
Dnajc18		DnaJ heat shock protein family (Hsp40) member C18	-1.37	2.4E-04
S100a10		S100 calcium binding protein A10	-1.35	2.2E-04
Ifih1		interferon induced with helicase C domain 1	-1.35	7.5E-04
Pde8a		phosphodiesterase 8A	-1.34	1.5E-03
Prnp		prion protein	-1.33	1.7E-03
Apoa4		apolipoprotein A4	-1.33	2.6E-10
Abcb4		ATP binding cassette subfamily B member 4	-1.33	4.1E-10
Cyp2c7		cytochrome P450	-1.32	1.0E-08
Lpl		lipoprotein lipase	-1.31	5.3E-05
AABR07062570		AABR07062570	-1.30	2.5E-03
Tmem135		transmembrane protein 135	-1.29	4.1E-05
Egr1		early growth response 1	-1.29	1.1E-05
Aabr07024870		Aabr07024870	-1.29	1.4E-03
Znfx1		zinc finger	-1.28	5.5E-04
Tipal		alpha tocopherol transfer protein like	-1.27	1.7E-03
Lys2		lysozyme 2	-1.26	2.7E-05
Polg		DNA polymerase gamma	-1.26	2.9E-04
Aldh1H2		aldehyde dehydrogenase 1 family	-1.26	3.5E-04
Fabp4		fatty acid binding protein 4	-1.25	2.5E-03
Mab21I3		mab-21 like 3	-1.25	1.0E-04
Psmb9		proteasome 20S subunit beta 9	-1.25	7.4E-04

(Continued)
Gene ID	Description	Log2 Fold Change	P-value	
G00000015124	Gpam	glycerol-3-phosphate acyltransferase	-1.25	1.4E-03
G00000020871	Ltbp4	latent transforming growth factor beta binding protein 4	-1.22	2.1E-03
G00000016516	Mbp	myelin basic protein	-1.22	1.2E-04
G00000007324	Plxna2	plexin A2	-1.22	2.4E-07
G00000018211	Adipoq	adiponectin	-1.21	2.9E-03
G00000020573	Efna1	ephrin A1	-1.19	1.7E-04
G00000046061	Meis1	Meis homeobox 1	-1.19	8.3E-04
G00000016471	Ets2	ETS proto-oncogene 2	-1.17	9.1E-09
G00000059043	Itch	itchy E3 ubiquitin protein ligase	-1.17	1.4E-03
G00000067871	Dhcr24	24-dehydrocholesterol reductase	-1.16	1.9E-12
G00000151211	N4bp1	Nedd4 binding protein 1	-1.15	3.0E-04
G00000042771	Apol3	apolipoprotein L	-1.14	7.6E-08
G00000023664	Lepr	leptin receptor	-1.12	2.5E-03
G00000004511	RT1-Ba	RT1 class II	-1.12	1.1E-03
G00000127821	Cemip2	cell migration inducing hyaluronidase 2	-1.11	1.0E-05
G00000147663	Galt	galactose-1-phosphate uridylyltransferase	-1.11	1.7E-05
G00000147181	Acsl3	acyl-CoA synthetase long-chain family member 3	-1.11	1.4E-03
G00000174281	Map1b	microtubule-associated protein 1B	-1.10	1.7E-03
G00000181571	Trim21	tripartite motif-containing 21	-1.09	2.0E-03
G00000014261	Prkripl1	PRK antibody-related protein 1	-1.09	2.2E-03
G000000284481	Elov1	ELOVL fatty acid elongase 1	-1.08	2.2E-03
G00000056951	Mgp	matrix Gla protein	-1.07	1.2E-03
G00000175581	Tubb2a	tubulin	-1.07	7.2E-04
G00000128761	Sk6a13	solute carrier family 6 member 13	-1.07	7.1E-05
G00000189601	Syne1	spectrin repeat containing nuclear envelope protein 1	-1.07	7.3E-05
G00000179931	Abch10	ATP binding cassette subfamily B member 10	-1.05	8.6E-05
G00000075451	Angpt4	angiopoietin-4	-1.04	4.1E-07
G00000079901	Adipor2	adiponectin receptor 2	-1.04	1.1E-04
G000000201341	Upt1	UPF1	-1.03	5.1E-04
G000000274341	Pitm2	fat storage-inducing transmembrane protein 2	-1.02	1.7E-05
G00000483151	Eif2ak2	eukaryotic translation initiation factor 2-alpha kinase 2	-1.02	6.7E-05
G00000056421	Frs2	fibroblast growth factor receptor substrate 2	-1.02	7.7E-04
G00000146041	Sigmar1	sigma non-opioid intracellular receptor 1	-1.01	4.9E-09
G00000021751	Clock	clock circadian regulator	-1.01	2.4E-04
G000000427851	Sesn2	sestrin 2	-1.00	1.7E-05
G000000234631	Parp9	poly (ADP-ribose) polymerase family	-0.99	3.5E-04
G000000433771	Fdps	farnesyl diphosphate synthase	-0.99	1.6E-03
G00000005931	Rev3l	REV3 like	-0.98	2.0E-03
G00000192831	P2ry2	purinergic receptor P2Y2	-0.98	1.0E-03
G000000240611	Rarb	retinoic acid receptor	-0.98	2.7E-03
G00000172201	Tcirg1	T-cell immune regulator 1	-0.98	3.3E-04
G000000210321	Sphk2	sphingosine kinase 2	-0.97	2.3E-05
G00000015851	Nrip1	nuclear receptor interacting protein 1	-0.97	1.1E-03
G000000388821	Cep350	centrosomal protein 350	-0.96	5.2E-04
G00000052921	Trip11	thyroid hormone receptor interactor 11	-0.96	2.4E-06
G000000468891	Dbi	diazepam binding inhibitor	-0.96	2.3E-05
G00000066641	Tpsd2	tyrosylprotein sulfotransferase 2	-0.95	2.1E-03
G00000049001	Crem	cAMP responsive element modulator	-0.95	2.0E-03
Table 1. (Continued)

Accession	Gene Symbol	Description	Fold Change	P-Value
G00000024115	C6	complement C6	-0.93	2.9E-04
G00000030225	Clpx	caseinolytic mitochondrial matrix peptidase chaperone subunit X	-0.92	3.8E-05
G00000038012	Commd6	COMM domain containing 6	-0.91	1.8E-04
G00000073002	Fbn1	fibrillin 1	-0.91	1.4E-03
G00000018420	Slc2a7	solute carrier family 22 member 7	-0.90	4.1E-04
G00000026265	Dedi	Dedi homolog	-0.89	1.6E-06
G0000007728	Gsdmd	gasdermin D	-0.89	2.3E-03
G00000026942	RGD131195	similar to KIAA2026 protein	-0.88	2.9E-05
G00000030466	Hspa8	heat shock protein family A (Hsp70) member 8	-0.87	3.0E-04
G00000019372	Pc	pyruvate carboxylase	-0.87	8.5E-06
G00000000177	Plpp2	phospholipid phosphatase 2	-0.87	9.6E-04
G00000056703	Atrx	ATRX	-0.86	2.0E-04
G00000016219	Vnn1	vanin 1	-0.86	1.5E-04
G00000014338	Slc25a25	solute carrier family 25 member 25	-0.86	6.6E-04
G0000013393	Sorbs2	sorbin and SH3 domain containing 2	-0.84	9.9E-06
G00000016692	Hsd12	hydroxysteroid dehydrogenase like 2	-0.83	1.3E-04
G00000024145	Trim65	tripartite motif-containing 65	-0.83	5.9E-05
G00000010947	Mmp14	matrix metallopeptidase 14	-0.83	1.7E-03
G00000018584	Ptma	prothymosin alpha	-0.83	1.5E-05
G0000008274	Xpc	XPC complex subunit	-0.83	3.6E-04
G00000112616	Tct14	tetrafunctional repeat domain 14	-0.83	2.7E-03
G00000047386	Smg1	SMG1	-0.82	2.7E-03
G00000074000	Sreb2	sterol regulatory element binding transcription factor 2	-0.82	4.0E-04
G00000028800	Gsap	gamma-secretase activating protein	-0.82	2.1E-03
G00000007700	Inhbc	inhibin subunit beta C	-0.81	5.3E-04
G00000013178	Cmip	c-Maf-inducing protein	-0.81	6.6E-04
G00000002394	Tyma	thymidine phosphorylase	-0.80	5.0E-04
G00000031709	Ppflb1	PPFIA binding protein 1	-0.79	6.6E-04
G00000030200	Slc25a47	solute carrier family 25	-0.79	1.5E-03
G00000010947	Gta	gamma-secretase activating protein	-0.78	1.6E-03
G000000010497	RGD1305807	hypothetical LOC298077	-0.77	1.7E-05
G000000010814	Tmprss6	transmembrane serine protease 6	-0.75	3.7E-04
G00000004709	Foxn3	forkhead box N3	-0.73	2.2E-04
G00000007681	Vdr	vitamin D receptor	-0.72	2.1E-03
G00000033593	Osbp9	oxysterol binding protein-like 9	-0.72	7.9E-04
G00000002212	Hsd17b13	hydroxysteroid (17-beta) dehydrogenase 13	-0.70	5.2E-06
G000000053550	Itga1	integrin subunit alpha 1	-0.68	1.6E-03
G000000030700	COX3	cytochrome c oxidase subunit 3	-0.67	2.8E-04
G000000020425	Stim1	stromal interaction molecule 1	-0.66	1.0E-03
G00000057814	Nsdh	NAD(P) dependent steroid dehydrogenase-like	-0.66	2.0E-05
G00000056371	Pik3ca	phosphatidylinositol-4-	-0.66	1.5E-03
G000000016266	Mphosphi10	M-phase phosphoprotein 10	-0.65	2.2E-03
G000000015441	Il4r	interleukin 4 receptor	-0.65	1.8E-03
G0000009102	Fermt2	fermitin family member 2	-0.62	2.2E-03
G00000040518	Rabep1	rabaptin	-0.62	1.8E-03
G00000020151	Cdh1	cadherin 1	-0.60	2.4E-03
G00000013135	Ptpn12	protein tyrosine phosphatase	-0.58	2.7E-04
G00000057623	Copb1	COPI coat complex subunit beta 1	-0.53	4.7E-04

(Continued)
ZDF Liver Upregulated	Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G00000003119	Gc	GC	peroxiredoxin like 2A	0.45	1.1E-03
G00000000610	Cisd1	CDGSH iron sulfur domain 1	0.46	7.7E-04	
G00000019629	Lamp1	lysosomal-associated membrane protein 1	0.50	8.8E-05	
G00000000701	Jscu	iron-sulfur cluster assembly enzyme	0.51	4.0E-05	
G00000037850	Mtarc2	mitochondrial amidoxime reducing component 2	0.51	6.0E-04	
G00000019048	Sod2	superoxide dismutase 2	0.54	2.8E-04	
G00000007967	Sdhb	succinate dehydrogenase complex iron sulfur subunit B	0.54	1.8E-03	
G00000013928	Dsp	desmplakin	0.54	1.5E-03	
G00000016794	Phyhd1	phytanoyl-CoA dioxygenase domain containing 1	0.55	2.0E-03	
G00000019626	Slc27a5	solute carrier family 27 member 5	0.55	8.8E-05	
G00000028368	Etnk2	ethanolamine kinase 2	0.55	1.4E-03	
G00000011535	Gcsdh	glycine cleavage system protein H	0.56	9.9E-04	
G00000008921	Dynll2	dynein light chain LC8-type 2	0.56	1.3E-03	
G00000003494	Gsta4	glutathione S-transferase alpha 4	0.56	1.1E-03	
G00000018604	Tufm	Tu translation elongation factor	0.59	2.2E-03	
G00000017672	Akr1c14	aldo-keto reductase family 1	0.59	3.1E-04	
G00000020994	Slc25a39	solute carrier family 25	0.59	7.3E-04	
G000000047708	Gsta1	glutathione S-transferase zeta 1	0.59	1.1E-04	
G00000013704	Cps1	carbamoyl-phosphate synthase 1	0.60	5.4E-04	
G00000043404	Uroc1	uracanate hydratase 1	0.60	1.6E-05	
G00000007395	Baat	bile acid-CoA:amino acid N-acyltransferase	0.60	5.3E-04	
G000000017577	Bphl	biphenyl hydrolase like	0.60	6.8E-04	
G00000007069	Adhfe1	alcohol dehydrogenase	0.62	4.9E-04	
G000000023538	Aldh5a1	aldehyde dehydrogenase 5 family	0.62	4.9E-04	
G00000006653	Slc38a4	solute carrier family 38	0.62	1.2E-04	
G00000001333	A2gg1	alpha-2-glycoprotein 1	0.62	8.6E-06	
G000000016339	Uox	urate oxidase	0.63	2.8E-05	
G000000061876	Tas1r2	taste 1 receptor member 2	0.63	2.4E-04	
G00000006916	Sardh	sarcosine dehydrogenase	0.63	8.6E-05	
G000000029549	Eci3	enoyl-Coenzyme A delta isomerase 3	0.63	8.9E-04	
G000000048723	Pros1	protein S	0.64	4.9E-04	
G00000008205	Slco2a1	solute carrier organic anion transporter family	0.64	2.7E-05	
G00000007839	Slc16a7	solute carrier family 16 member 7	0.64	8.2E-04	
G000000010389	Ndrg2	NDRG family member 2	0.65	5.7E-04	
G000000014165	Ssr1	signal sequence receptor subunit 1	0.65	1.0E-04	
G000000029735	Pid1	phosphorylserine interaction domain containing 1	0.65	1.9E-03	
G00000003466	Apon	apolipoprotein N	0.65	1.1E-03	
G000000000518	Cdo1	cysteine dioxygenase type 1	0.65	6.6E-06	
G00000008364	Cat	catalase	0.67	1.1E-03	
G000000061883	Aqp9	aquaporin 9	0.68	1.3E-03	

(Continued)
Table 1. (Continued)

GeneID	Description	Fold Change	q-value
G00000021916	Slc16a12 solute carrier family 16	0.68	2.5E-03
G00000007743	Mgst1 microsomal glutathione S-transferase 1	0.68	1.8E-05
G00000003653	Fh fumarate hydratase	0.68	1.6E-03
G00000013223	Fah fumarylactoacetate hydrolase	0.69	2.4E-04
G00000014700	Ttc36 tetratricopeptide repeat domain 36	0.69	8.4E-05
G00000030862	Atp6v1h ATPase V1 subunit H	0.69	4.9E-04
G00000003667	Ppm1b protein phosphatase	0.71	4.7E-06
G00000004139	Ndel1 nudE neurodevelopment protein 1-like 1	0.72	3.8E-05
G00000007927	Mettl7b methyltransferase like 7B	0.72	5.0E-05
G00000004147	Abca8a ATP-binding cassette	0.73	1.4E-03
G00000029726	Gstm1 glutathione S-transferase mu 1	0.74	1.3E-03
G0000003370	Otc ornithine carbamoyltransferase	0.74	6.8E-06
G00000013039	Add1 adducin 1	0.74	4.2E-04
G00000014727	Fahd1 fumarylactoacetate hydrolase domain containing 1	0.75	4.2E-04
G00000059463	Slc39a1 solute carrier family 39 member 1	0.76	1.6E-03
G00000004302	Pah phenylalanine hydroxylase	0.76	3.4E-07
G00000029651	Rdh16 retinol dehydrogenase 16	0.76	8.2E-04
G00000028746	Gsto1 glutathione S-transferase omega 1	0.77	3.2E-04
G00000018426	NEWGENE_2134 apolipoprotein C1	0.77	1.3E-06
G00000001053	Tmed2 transmembrane p24 trafficking protein 2	0.77	6.7E-04
G00000016173	Cyp1a2 cytochrome P450	0.77	6.7E-04
G00000004089	Enpp2 ectonucleotide pyrophosphatase/phosphodiesterase 2	0.78	3.5E-04
G00000042274	Fbxo31 F-box protein 31	0.78	2.3E-03
G00000000186	Tst thiosulfate sulfurtransferase	0.78	8.6E-05
G000000048812	Gpx1 glutathione peroxidase 1	0.79	5.0E-04
G000000047986	Sult2a1 sulfotransferase family 2A member 1	0.79	2.5E-03
G00000006345	Sec61b SEC61 translocon subunit beta	0.79	6.2E-04
G00000009779	Krt8 keratin 8	0.79	2.2E-03
G00000006623	Cd302 CD302 molecule	0.80	1.5E-04
G00000005987	Suox sulfite oxidase	0.81	1.1E-03
G000000061890	Ust5r integral membrane transport protein UST5r	0.81	2.3E-04
G000000020879	Nags N-acetylglutamate synthase	0.81	3.3E-04
G000000008902	Pon1 paraoxonase 1	0.82	9.7E-07
G00000018904	Dtymk deoxynucleotide kinase	0.82	2.1E-03
G000000023116	Agmo alkylglycerol monoxygenase	0.82	4.0E-05
G000000047816	Ccs copper chaperone for superoxide dismutase	0.84	1.3E-04
G000000012142	Glyat glycine-N-acetyltransferase	0.84	5.6E-07
G000000021206	Plaat3 phospholipase A and acyltransferase 3	0.84	7.5E-04
G000000012962	Nudt16 nudix hydrolase 16	0.85	1.9E-04
G000000050315	Dcxr dicarboxyl and L-xylulose reductase	0.86	2.9E-06
G00000000024	Hebp1 heme binding protein 1	0.86	2.7E-04
G00000000386	Pbd1 phenazine biosynthesis-like protein domain containing 1	0.87	1.3E-05
G00000007378	Accox2 acyl-CoA oxidase 2	0.87	7.0E-05
G00000003307	Gcdh glutaryl-CoA dehydrogenase	0.87	2.2E-08
G00000002205	Ociad1 OCIA domain containing 1	0.87	1.4E-03
G000000014645	Aldh7a1 aldehyde dehydrogenase 7 family	0.88	8.2E-08
G00000008638	Angptl3 angiopoietin-like 3	0.88	2.9E-09
G00000011351	Mat1a methionine adenosyltransferase 1A	0.89	3.6E-05

(Continued)
Gene ID	Gene Symbol	Description	Log2 Fold Change	P-Value
G00000009421	Ivd	isovaleryl-CoA dehydrogenase	0.89	1.9E-09
G00000036894	Cisd3	CDGSH iron sulfur domain 3	0.89	4.0E-04
G00000014128	Ecsit	ECST signaling integrator	0.90	1.6E-03
G00000017619	Aldh1a1	aldehyde dehydrogenase 1 family	0.90	3.1E-05
G00000018662	Amacr	alpha-methylacyl-CoA racemase	0.90	3.9E-07
G00000020000	Tmem219	transmembrane protein 219	0.90	5.2E-04
G0000001957	Sult1e1	sulfotransferase family 1E member 1	0.90	2.8E-06
G00000018680	Rnase4	ribonuclease A family member 4	0.91	1.3E-09
G00000014160	Tcp1	t-complex 1	0.91	2.2E-04
G00000048114	Echdc3	enoyl-CoA hydratase domain containing 3	0.91	2.7E-07
G00000032391	Creg1	cellular repressor of E1A-stimulated genes 1	0.92	1.3E-07
G00000008837	Ass1	argininosuccinate synthase 1	0.92	7.7E-04
G00000018159	Anxa4	annexin A4	0.92	2.3E-04
G00000010993	Dpm1	dolichyl-phosphate mannosyltransferase subunit 1	0.92	9.1E-04
G00000019982	Eth1	ETHE1	0.92	2.4E-05
G00000031717	Esrp2	epithelial splicing regulatory protein 2	0.93	9.8E-07
G00000013409	Gdm	glutamate cysteine ligase	0.93	3.0E-04
G00000018060	Fetub	fetuin B	0.93	2.9E-04
G00000017291	Sord	sorbitol dehydrogenase	0.94	7.2E-09
G00000053362	Gabarap1	GABA type A receptor associated protein like 1	0.94	1.4E-07
G00000021174	Macrod1	mono-ADP ribosylhydrolase 1	0.95	7.1E-05
G00000014268	Abca2	ATP binding cassette subfamily A member 2	0.95	9.8E-04
G00000049771	Gst1	glutathione S-transferase theta 1	0.96	8.4E-05
G00000011226	Timm8a1	translocase of inner mitochondrial membrane 8A1	0.96	4.5E-06
G00000005175	Sgpp1	sphingosine-1-phosphate phosphatase 1	0.97	2.0E-03
G00000049464	Cyp2c13	cytochrome P450	0.97	6.0E-10
G00000002210	Hsd17b11	hydroxysteroid (17-beta) dehydrogenase 11	0.97	4.4E-10
G00000012786	Pgrmc1	progestosterone receptor membrane component 1	0.99	1.2E-07
G00000004327	Ddc	dops decarboxylase	0.99	4.8E-05
G000000046357	Adh5	alcohol dehydrogenase 5 (class III)	0.99	1.2E-11
G00000050409	Prelid2	PRELI domain containing 2	0.99	7.6E-04
G00000004442	Dgucy	D-glutamate cyclase	0.99	1.6E-03
G00000004876	Lpin2	lipin 2	1.00	3.9E-04
G00000012911	Erlin1	ER lipid raft associated 1	1.00	6.8E-04
G00000053314	Msrb1	methionine sulfoxide reductase B1	1.00	1.1E-07
G00000006619	Dnacj9	DnaJ heat shock protein family (Hsp40) member C9	1.01	6.5E-04
G00000018937	Gstm7	glutathione S-transferase	1.01	1.6E-04
G00000027016	Cobbl1	cordon-bleu WH2 repeat protein-like 1	1.01	1.4E-04
G00000046007	Clbn3	claudin 3	1.02	2.8E-04
G00000036009	Irf1	iroquois homeobox 1	1.02	2.0E-03
G00000017777	Ahcy	adenosylhomocysteinase	1.02	1.5E-05
G00000019180	Acsl4	acyl-CoA synthetase long-chain family member 4	1.02	1.0E-08
G00000022932	Serh2	serine hydrolase-like 2	1.03	1.5E-04
G00000016484	Gstk1	glutathione S-transferase kappa 1	1.03	1.5E-07
G00000003620	Fmo3	flavin containing dimethylaminoline monooxygenase 3	1.04	1.7E-05
G00000032895	Cyp4f4	cytochrome P450	1.04	5.0E-08
G00000032737	F7	coagulation factor VII	1.05	2.1E-04
G00000023816	Aph1a	aph-1 homolog A	1.05	1.6E-03

(Continued)
Gene Symbol	Description	Ratio	p-value
Cyb5a	cytochrome b5 type A	1.06	9.6E-07
Ugp2	UDP-glucose pyrophosphorylase 2	1.06	4.1E-08
Cnn3	calponin 3	1.07	5.6E-05
Gsta1	glutathione S-transferase alpha-1	1.07	4.2E-10
Mup5	major urinary protein 5	1.07	1.5E-04
Pmpca	peptidase	1.08	3.9E-04
Hpd	4-hydroxyphenylpyruvate dioxygenase	1.08	7.7E-06
Ripk4	receptor-interacting serine-threonine kinase 4	1.09	2.3E-03
Ubd	ubiquitin D	1.10	2.4E-05
Lrtm2	leucine-rich repeats and transmembrane domains 2	1.10	1.8E-08
Chchd7	coiled-helix-coiled-helix domain containing 7	1.10	4.4E-04
Cyp2c23	cytochrome P450	1.10	4.4E-07
Cyp27a1	cytochrome P450	1.11	1.7E-08
Fam126b	family with sequence similarity 126	1.13	4.7E-04
Crym	crystallin	1.14	2.1E-04
Mccx2	methylcrotonoyl-CoA carboxylase 2	1.16	1.8E-05
Pdlim1	PDZ and LIM domain 1	1.16	7.7E-07
Ca3	carbonic anhydrase 3	1.17	4.7E-10
Polg2	DNA polymerase gamma 2	1.17	6.2E-04
Rpl13a	ribosomal protein L13A	1.19	2.6E-03
Prlbp	pyridoxal phosphate binding protein	1.19	2.3E-06
Por	cytochrome P450 oxidoreductase	1.19	1.2E-09
Ecd	ecdysoneless cell cycle regulator	1.20	6.0E-04
Per2	period circadian regulator 2	1.20	3.1E-04
Rgn	regucalcin	1.21	8.8E-08
Qdpr	quinoid dihydropteridine reductase	1.21	3.4E-09
Ephx1	epoxide hydrolase 1	1.22	7.9E-07
Gch1	GTP cyclohydrolase 1	1.23	2.8E-07
Bco2	beta-carotene oxygenase 2	1.24	6.3E-07
Hsd11b1	hydroxysteroid 11-beta dehydrogenase 1	1.24	4.3E-09
Slc16a10	solute carrier family 16 member 10	1.24	1.6E-05
AsrGl1	asparaginase and isoaspartyl peptidase 1	1.25	2.7E-03
Mtrr	5-methyltetrahydrofolate-homocysteine methyltransferase reductase	1.26	1.6E-03
Bud23	BUD23	1.27	1.7E-03
Prodh1	proline dehydrogenase 1	1.28	2.1E-11
Acsn2	acyl-CoA synthetase medium-chain family member 2	1.30	3.4E-09
Zfp189	zinc finger protein 189	1.30	1.5E-03
Tsku	tsukushi	1.32	7.2E-04
Glyat2	glycine-N-acetyltransferase-like 2	1.33	7.3E-07
Sat2	spermidine/spermine N1-acetyltransferase family member 2	1.33	6.9E-05
Rup2	urinary protein 2	1.34	7.8E-04
Cyp2c22	cytochrome P450	1.35	9.3E-08
Ppp1r3c	protein phosphatase 1	1.36	4.1E-11
Pbx1	PBX homeobox 1	1.36	1.4E-03
Snx8	sorting nexin 8	1.37	2.0E-04
Rnd2	Rho family GTPase 2	1.37	6.0E-05
G00000051227		1.38	6.2E-04

(Continued)
Table 1. (Continued)

Gene ID	Gene Symbol	Description	Fold Change	p-value
G00000052810	Cyp2c11	cytochrome P450	1.39	2.0E-11
G00000012436	Adh6	alcohol dehydrogenase 6 (class V)	1.41	4.4E-15
G00000015936	Gng5	G protein subunit gamma 5	1.41	2.6E-03
G00000018413	Per3	period circadian regulator 3	1.42	1.6E-04
G00000016967	Hfe	homeostatic iron regulator	1.42	2.9E-07
G0000001376	Mettl7a	methyltransferase like 7A	1.43	3.1E-04
G00000056940	Cited2	Cbp/p300-interacting transactivator	1.44	1.5E-11
G00000015002	Abhd15	abhydrolase domain containing 15	1.44	1.5E-04
G00000032959	Adh7	alcohol dehydrogenase 7 (class IV)	1.45	7.6E-09
G00000050232	LOC680406	similar to Urinary protein 2 precursor (RUP-2)	1.46	1.5E-09
G00000020700	Rnaseh2c	ribonuclease H2	1.48	7.7E-04
G00000011635	Ces2e	carboxylesterase 2E	1.49	2.9E-08
G00000015354	Aox1	aldehyde oxidase 1	1.54	2.6E-12
G00000061450	Homer2	homer scaffold protein 2	1.54	2.5E-05
G00000009629	Car2	carbonic anhydrase 2	1.55	2.9E-05
G00000042111	Sult1c2a	sulfotransferase family	1.55	2.3E-03
G00000057072	Slc12a3	solute carrier family 12 member 3	1.55	3.1E-04
G00000040099	Xpupеп2	X-prolyl aminopeptidase 2	1.57	1.1E-08
G00000013313	Ncch1	neutral cholesterol ester hydrolyase 1	1.57	8.8E-07
G00000015438	LOC501233	LRRG70080	1.58	1.2E-13
G00000015076	Cyp26b1	cytochrome P450	1.62	6.3E-04
G00000016456	Il33	interleukin 33	1.65	4.2E-18
G00000017166	Tfrc	transferrin receptor	1.67	1.1E-04
G00000011718	C1r1	complement C1r subcomponent like	1.68	1.2E-06
G00000013949	Idh2	isocitrate dehydrogenase (NADP(+)) 2	1.68	2.3E-16
G00000018740	Ugt1a6	UDP glucuronosyltransferase family 1 member A6	1.69	6.1E-14
G00000016807	Oat	ornithine aminotransferase	1.72	1.2E-05
G00000025418	Armc9	armadillo repeat containing 9	1.74	4.5E-04
G00000023778	Gcnt2	glucosaminyl (N-acetyl) transferase 2 (II blood group)	1.77	6.8E-05
G00000056596	Alas1	5'-aminolevulinate synthase 1	1.80	2.3E-15
G00000046664	Cyp3a9	cytochrome P450	1.82	5.3E-04
G00000032360	Nr1i3	nuclear receptor subfamily 1	1.84	6.4E-05
G00000011158	Abcg1	ATP binding cassette subfamily G member 1	1.86	3.0E-05
G00000020250	Pcgf6	polycomb group ring finger 6	1.88	9.2E-04
G00000006420	Rbm38	RNA binding motif protein 38	1.89	2.0E-04
G00000012458	Cyp2c1	cytochrome P450	1.91	1.3E-19
G00000022258	Tmem150c	transmembrane protein 150C	1.94	9.3E-05
G00000013982	Hsd17b2	hydroxysteroid (17-beta) dehydrogenase 2	1.94	5.1E-04
G00000021027	Dbp	D-box binding PAR bZIP transcription factor	1.94	3.2E-05
G00000044337	Map2k6	mitogen-activated protein kinase kinase 6	2.07	1.1E-08
G00000032246	Acsm3	acyl-CoA synthetase medium-chain family member 3	2.19	2.3E-16
G00000014490	Bdh2	3-hydroxybutyrate dehydrogenase 2	2.21	2.5E-14
G00000036687	Alyref	Aly/REF export factor	2.23	8.9E-04
G00000015519	Ces1d	carboxylesterase 1D	2.24	6.9E-32
G0000009598	Ncaph2	non-SMC condensin II complex	2.41	3.8E-05
G00000043131	LOC100360095	urinary protein 1-like	2.43	4.9E-19
G00000034191	Fmo1	flavin containing dimethyline monooxygenase 1	2.46	2.8E-25
G00000005985	Kcnma1	potassium calcium-activated channel subfamily M alpha 1	2.82	1.6E-04
Table 1. (Continued)

Lean Liver Downregulated Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G00000029668	Wdfc21	WAP four-disulfide core domain 21	-2.72	1.3E-04
G00000020480	Fads1	fatty acid desaturase 1	-2.53	4.0E-08
G0000006889	Insig1	insulin induced gene 1	-2.32	3.2E-05
G00000057557	Prlr	prolactin receptor	-2.27	2.3E-04
G00000055909	Apoa4	apolipoprotein A4	-1.93	2.3E-04
G00000030151	Cyp4a2	cytochrome P450	-1.75	2.2E-08
G00000019776	Sh3gl3	SH3 domain containing GRB2 like 3	-1.62	8.9E-05
G00000046889	Dbi	diazepam binding inhibitor	-1.61	1.1E-05
G00000014702	Elov2	ELOVL fatty acid elongase 2	-1.60	1.8E-05
G00000032297	Msno1	methylsterol monoxygenase 1	-1.56	3.6E-05
G00000072341	Cyp51	cytochrome P450	-1.56	4.9E-05
G00000020989	Tm7sf2	transmembrane 7 superfamily member 2	-1.45	6.6E-05

Lean Liver Upregulated Ensembl_ID (ENSRNO)	Gene Symbol	Gene Name	L2FC	P-value
G0000001376	Mettl7a	methyltransferase like 7A	1.16	1.7E-04
G00000048114	Echdc3	enoyl CoA hydratase domain containing 3	1.17	1.2E-04
G00000023116	Agmo	alkylglycerol monoxygenase	1.21	1.7E-04
G00000002643	Ugdh	UDP-glucose 6-dehydrogenase	1.29	7.6E-05
G00000015354	Aox1	aldehyde oxidase 1	1.33	1.2E-04
G00000004089	Enpp2	ectonucleotide pyrophosphatase/phosphodiesterase 2	1.34	9.6E-05
G00000034191	Fmo1	flavin containing dimethylenine monoxygenase 1	1.37	1.7E-04
G00000013291	Cyp2c23	cytochrome P450	1.47	1.1E-04
G00000003809	Sat1	spermidine/spermine N1-acetyl transferase 1	1.58	3.9E-05
G00000018740	Ugt1a6	UDP glucuronosyltransferase family 1 member A6	1.80	2.6E-05
G00000015519	Ces1d	carboxylesterase 1D	1.94	5.6E-10
G00000033570	Arhgap8	Rho GTPase activating protein 8	2.03	1.5E-04
G00000051912	Acnat2	acyl-coenzyme A amino acid N-acyltransferase 2	2.05	1.1E-04
G00000001158	Abcg1	ATP binding cassette subfamily G member 1	2.21	1.1E-04
G00000001388	Sds	serine dehydratase	2.29	8.0E-06
G000000047613	AABR07048463.1	AABR07048463.1	2.34	1.4E-06
G00000013552	Scd	stearoyl-CoA desaturase	2.36	4.8E-06
G00000001242	Gst3	glutathione S-transferase	2.93	1.4E-09
G00000021924	Cyp2c22	cytochrome P450	3.22	5.2E-15
G00000009488	Cyp7a1	cytochrome P450 family 7 subfamily A member 1	3.36	1.5E-09

1 All genes were analyzed using DESeq2 for differential analysis.
2 Abbreviations used: ZDF, Zucker Diabetic Fatty; L2FC, log2 fold change; PFC, prefrontal cortex.
3 Benjamini–Hochberg adjusted P-values controlling for false discovery rate at 5%, where P < 0.05 was considered significant.

https://doi.org/10.1371/journal.pone.0240885.t001
component space, whereby samples are colored in red or black to distinguish either WE or CAS, respectively. In the mRNA samples, rats on the same dietary treatment (i.e. black or red) clustered together, while animals belonging to different dietary treatments separated, indicating distinctly different patterns across global mRNA expression. These results were further visualized using volcano plots for each tissue as presented in Fig 2. These volcano plots demonstrate the degree to which genes were upregulated or downregulated across each tissue. For instance, volcano plots indicate a relatively equal number of upregulated and downregulated genes in the lean PFC following WE consumption, whereas WE consumption primarily resulted in downregulated gene expression in the ZDF PFC.

During T2DM, reports indicate that genes within the oxidative stress-related pathways upregulated [26]. Evans et al. suggested that oxidative stress was driven by the hyperglycemic environment concomitant with increased concentrations of free fatty acids in the plasma [26]. Corbett et al. [30] reported that protective antioxidant genes such as glutathione peroxidase are downregulated during T2DM, and both glutathione s-transferases (GSTs) and glutathione-dependent enzymes are important in the regulation of pathophysiological alterations in numerous chronic diseases, especially T2DM [30]. Previous work has shown that dietary intervention with direct glutathione supplementation was protective against diabetic nephropathy in an insulin dependent streptozotocin-induced T1DM model [27]. This current study provides new transcriptomic evidence supporting our previous report demonstrating that WE consumption protects against diabetic nephropathy, where WE consumption leads to altered gene expression in the kidney. In this study, we noted that the strongest alterations in glutathione metabolism were in the liver, potentially because hepatic glutathione is produced at much higher concentrations (10 mM), whereas intracellular glutathione concentrations are approximately 1–2 mM [31]. This body of previous work is important in relation to our findings that
several GSTs and glutathione-dependent enzymes are significantly altered during WE consumption in lean controls and during diabetes in the kidneys and livers across both genotypes. Future mechanistic studies identifying the beneficial impact of these two enzymes in chronic diseases like T2DM are warranted.

Outside of the glutathione pathways, we also observed that there were significant differences in early growth response-1 (Egr-1) gene expression following WE consumption. Egr-1 has been implicated in the onset of insulin-resistance, as previous studies in insulin-resistant T2DM mice identified that loss of function in Egr-1 restores insulin sensitivity via increased phosphorylation of the insulin receptor substrate-1 tyrosine kinase [32]. Notably, we observed a 30% decrease in hepatic Egr-1 expression in the ZDF rats fed WE. This is an interesting finding as research by Garnett et al. [33] determined that exposing beta cells to hyperglycemic conditions resulted in a temporal and dose-dependent increase in Egr-1 transcription and translation. Furthermore, Egr-1 null mice are known for their inability of displaying diabetic and obese phenotypes [34] owing to their increased energy expenditure. These data suggest that consumption of WE may lead to altered Egr-1 expression which may play a key role in regulating energy expenditure.

We also demonstrated that WE consumption resulted in tissue-specific alterations in gene expression and that there were distinct transcriptomic differences between genotypes. WE consumption did not influence gene expression in the PFC of lean animals, while 2 genes were significantly altered in the ZDF PFC. There were more stark differences when comparing the liver tissues between the two genotypes, where more than 400 genes were altered in ZDF livers that were not altered in the liver of lean controls. It has been shown that T2DM impacts a variety of tissues [1] but previous studies have provided very little evidence of how T2DM alters the nutrigenomic responses to foods in specific tissues. It is still unknown which specific egg components lead to phenotypic differences in gene expression and future studies should focus on identifying the specific egg constituents that mediate these gene expression differences.

https://doi.org/10.1371/journal.pone.0240885.g002

Fig 2. Volcano plots. Genes upregulated (green) or downregulated (red) by WE consumption, correspond to a 1.5 decrease or increase in log fold changes. Each panel corresponds to a tissue in a given genotype: A) lean adipose; B) lean PFC; C) lean kidney; D) lean liver; E) ZDF adipose; F) ZDF PFC; G) ZDF kidney; and H) ZDF liver.
These collective findings are likely mediated through the alteration of several genes; therefore, we aimed to further examine microRNA changes involved in the underlying progression of T2DM during WE consumption.

MicroRNA sequencing differential expression

We examined if endogenously expressed microRNA profiles in the adipose, liver, kidney, and prefrontal cortex tissues would be altered following 8 wk consumption of dietary WE. Differential expression analyses of the ZDF microRNA data resulted in 1 differentially expressed microRNA in the adipose tissue, none in the liver, none in the kidney and 2 in the PFC that surpassed multiple testing correction. Among the lean rats, there were 2 marginally differentially expressed microRNAs in the adipose tissue, 4 in the liver, none in the kidney and none in the PFC that survived multiple testing correction. Table 2 presents the differentially expressed microRNAs in the adipose, liver, kidney, and PFC tissues across both genotypes. S3 Table contains results from DESeq2 with the results for each microRNA across all four tissues and raw microRNA read counts are contained in S4 Table.

Based on the microRNA sequencing analysis, 9 microRNAs were differentially expressed following multiple testing correction. Several of these microRNAs have been previously correlated with gestational diabetes or show to be altered in the plasma of individuals with diabetes. Very few studies to date have examined the tissue-specific changes of endogenous microRNA expression in response to dietary patterns and this is the first study to demonstrate that endogenous microRNA expression in the liver, adipose, and PFC can be altered following 8 wks of WE consumption. Future studies should focus on identifying if similar foods such as quail eggs alter microRNA expression in these tissues and determine the smallest effective dosage of egg required to recapitulate these changes in microRNAs.

Mapping between microRNAs and target genes

Next, we sought to determine if these significantly altered microRNAs were responsible for the tissue-specific differential expression of their predicted target genes. MicroRNA mapping analyses of the differentially expressed microRNAs and their target genes demonstrates that in each of the tissues with differentially expressed microRNAs, key target genes of these microRNAs were altered. For instance, in the lean liver microRNA-181a-3p was upregulated and two of its

Genotype	Tissue	MicroRNA	L2FC	Non adjusted p-value	P-value3
ZDF	Adipose Downregulated	rno-miR-221-3p	-1.60	9.53E-05	0.007
ZDF	PFC Upregulated	rno-miR-29a-3p	0.59	0.0001	0.022
ZDF	PFC Upregulated	rno-miR-151-5p	0.89	0.0005	0.036
Lean	Adipose Downregulated	rno-miR-125a-5p	-1.48	0.0022	0.069
Lean	Adipose Downregulated	rno-miR-125b-5p	-1.78	0.0029	0.069
Lean	Liver Upregulated	rno-miR-9a-5p	1.89	9.08E-05	0.0063
Lean	Liver Upregulated	rno-miR-181a-5p	1.10	0.0007	0.024
Lean	Liver Upregulated	rno-miR-10b-5p	1.37	0.0011	0.024
Lean	Liver Downregulated	rno-miR-192-5p	-0.57	0.0013	0.024

1All miRNAs were analyzed using DESeq2 for differential analysis.

2Abbreviations used: ZDF, Zucker Diabetic Fatty; WE, whole egg; CAS, casein; L2FC, log2 fold change; and PFC, prefrontal cortex.

3Benjamini-Hochberg adjusted P-values controlling for false discovery rate at 5%, where P< 0.05 was considered significant.

https://doi.org/10.1371/journal.pone.0240885.1002
mRNA target genes were differentially expressed, Cytochrome P450 Family 7 Subfamily A Member 1 (Cyp7a1) and stearoyl-CoA desaturase (Scd). Similarly, in the lean adipose, microRNA-125b-5p was downregulated while its target gene phosphoglycolate phosphatase (Pgp) was upregulated. The microRNAs in the PFC and kidney tissue did not map to any differentially expressed genes. Table 3 summarizes the mapping between microRNAs and their gene targets.

While examining the relationship between significantly altered microRNAs and their target genes, we identified that in the livers of lean rats fed WE, the upregulated microRNA-181a-5p affected target genes involved in steroid hormone biosynthesis such as Cyp7a1 and Scd. Notably, only Cyp7a1 was upregulated in the liver of ZDF rats fed the WE-based diet while both Scd and Cyp7a1 were upregulated in the livers of lean control rats. In rodent models of diabetes, liver expression of Cyp7a1 has been shown to be decreased and thought to play a key role in regulating whole body energy homeostasis [35]. Similarly, transgenic mice overexpressing Cyp7a1 were shown to become resistant to weight gain and fatty liver disease [35]. Experiments examining the role of Scd in rat hepatocytes has demonstrated that Scd expression regulating hepatic insulin resistance during diabetes [36], but very few studies have determined the expression of Scd genes in the context of dietary consumption. Based on the data, WE consumption more strongly upregulated hepatic expression of Cyp7a1 in ZDF animals than in the lean controls and this might suggest that WE consumption can prevent or reverse the loss of hepatic Cyp7a1 expression due to diabetes.

In our lean rats, we also identified that microRNA-125b-5p was downregulated in adipose tissue where its gene target Pgp was strongly upregulated. Pgp is known to hydrolyze glycerol-3-phosphate into glycerol, and overexpression experiments in rodents showed that upregulation of Pgp leads to a reduction in body weight gain and improves hepatic glucose regulation [37]. Additionally, we observed the upregulation of liver microRNA-9a-5p, which has been correlated with gestational diabetes in humans [38]. While the gene targets of microRNA-9a-5p were not differentially expressed in the liver, future studies should look into whether endogenous microRNA expression fluctuates in response to consuming other eggs, such as quail eggs, or egg yolk alone.

KEGG and GO functional enrichment analysis

To further examine the molecular function of the identified DEGs, KEGG pathway analysis indicated that the most prevalent pathways influenced by dietary WE across multiple tissues in
the ZDF rats were: glutathione metabolism; oxidation-reduction; metabolism of xenobiotics; steroid hormone biosynthesis; and fatty acid synthesis pathways. In the livers of lean control rats, the most significantly expressed pathways included metabolic pathways and retinol metabolism. All the differentially expressed genes that map to KEGG and gene ontology (GO) pathways analyses are presented in S5 Table.

To further investigate the specific genes involved in the glutathione metabolism pathways, genes were categorized into the corresponding reactions identified by Reactome.org in Fig 3. Glutathione metabolism functions in antioxidant defense, signal transduction, cytokine production, and other cellular processes such as detoxification. The role of GST, GSTK, GSTO dimers, and GPX1 which function in glutathione conjugation, glucuronidation, methylation, and detoxification of reactive oxygen species, respectively, are detailed within Fig 3. These reactions within glutathione metabolism are essential for recycling of glutathione disulfide or the conjugation of GSH that can be utilized in redox reactions.

KEGG pathway analysis highlighted that in addition to an upregulation of glutathione metabolism pathways, several of the same gene products mediate metabolism of xenobiotics, a pathway upregulated in our rats fed WE-based diets. Xenobiotic metabolism has previously been shown to be downregulated during insulin dependent T1DM [27], where in this study these pathways were upregulated in response to feeding WE-based diets. These observed effects appear to be tissue specific, as these alterations were the most prominent in ZDF liver, whereas one gene, glutathione s-transferase p (Gstp1), was differentially upregulated in the kidney of ZDF rats while glutathione s-transferase mu 1 (Gstm1) was upregulated in the lean kidney. These findings support the previous observation that WE consumption affects obese phenotypes differently than a lean phenotype [17], in part, due to the different transcriptomic

![Detoxification of Reactive Oxygen Species](image1)

![Methylation](image2)

![Glutathione Conjugation](image3)

![Glucuronidation](image4)

Fig 3. Differentially expressed genes involved in glutathione metabolism. This figure was adapted from D’Eustachio, P., and Jassal, B. from the Reactome [39]. Glutathione metabolism reactions can be categorized into glutathione conjugation, glucuronidation, methylation, or detoxification of reactive oxygen species. All genes are listed within each reaction category followed by their corresponding log2Fold change in parentheses for each given tissue. Abbreviations used: ZDF, Zucker Diabetic fatty rat; GSSG, glutathione disulfide; GSH, glutathione; AS3MT, arsenite 3-methyltransferase; AdoMet, S-adenosyl methionine; AdoHcy, S-adenosyl homocysteine; CDNB, 1-chloro-2, 4-dinitrobenzene; DNPSG, S-(2,4-dinitrophenyl)glutathione; glu, glutamate; cys, cysteine; gly, glycine; gGluCys, gamma-glutamyl-L-cysteine; GST, glutathione s-transferase; and GPX, glutathione peroxidase.

https://doi.org/10.1371/journal.pone.0240885.g003
responses to dietary WE. We previously hypothesized that these differences in response to WE consumption were not due to satiety, because there was increased food intake in the WE group [18]; the present study identifies a potential molecular response to egg partially explaining these previous findings. Other suggested mechanisms that might explain differences between obese and lean genotypes include thermogenesis [40], altered methylation patterns [41], intestinal microbiome alterations [42], and changes in energy expenditure [43]. While there have been numerous studies highlighting differences in the microbiota between obese and lean phenotypes in rats [42] and humans [40], one recent study examining WE consumption concluded that it did not influence the intestinal microbiome in postmenopausal women [44]. Taken together, these observations support the idea that phenotypic alterations during T2DM may depend strongly on obesity status and energy expenditures on a molecular level, potentially in response to changes in the transcriptome.

qPCR analyses

Finally, we examined the relationship between our qPCR data for several genes to validate the results from the Quantseq analysis. Confirmatory analysis with qPCR demonstrated that across the genes selected, the qPCR data highly correlates with the mRNA Quantseq results \(R^2 = 0.72; \) S1 Fig indicating strong similarities between these two methods.

Strengths and limitations

The strengths and limitations of this study should be addressed to better understand how these results fit into the larger context of the current literature. It is estimated that in 2019, people in the United States consumed on average, 5.6 eggs per week [45]. The dose of egg used in this study would equate to roughly 14 eggs per day for a human. While our study demonstrated that consuming a large dose of WE may alter gene expression of various metabolic pathways, particularly during T2DM, this quantity of egg would not be a standard dietary practice in humans. We do recognize that our whole egg dosage was high, but the goal was to examine whether there was a transcriptomic response from consuming dietary whole egg in a T2DM model. It is worth noting that our laboratory has previously reported in ZDF rats that even smaller dosages, such as the human equivalent of <2 eggs/day, significantly reduced weight gain in the ZDF rat and therefore may be effective in identifying oxidative stress outcomes from long-term dietary whole egg consumption [18]. After the examination of the transcriptome following our high WE-based diet, it is warranted to examine these specific genes in a follow-up intervention study. Future studies will focus on titrating down the egg dosages to discern the smallest dosage to elicit similar transcriptomic responses to egg consumption that will be more translatable to human consumption patterns. Overall, our findings are significant as we are the first to report that whole hen egg consumption promotes glutathione metabolism expression during T2DM and alters the transcriptome of multiple tissues using next-generation sequencing. Additionally, we provide evidence supporting the idea that egg consumption modifies endogenous microRNA expression in a tissue-specific manner.

In summary, we examined whether feeding WE modifies expression of microRNAs or gene expression profiles across multiple tissues in a diabetic versus a lean rat model. Across all tissues examined with next generation sequencing, we identified that 9 microRNAs were differentially expressed in response to consuming WE. Additionally, we have shown that these microRNAs were related to tissue-specific changes in gene expression, and that 8 wk of consuming diets high in whole egg modified 583 genes across the PFC, kidney, liver, and adipose tissue. KEGG/GO analyses identified that glutathione metabolism was highly upregulated in response to feeding WE and qPCR results validated the sequencing results. These data suggest
that high WE consumption may provide beneficial effects during T2DM by improving glutathione metabolism gene expression across multiple tissues and decreasing gene expression in oxidative stress pathways.

Materials and methods

The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus [46] and are accessible through GEO Series accession number GSE157491 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157491). All protocols used within this study have been made publicly available at protocols.io. Protocols have been zipped into one file and can be accessed at dx.doi.org/10.17504/protocols.io.bjgakjse.

Animal housing and experimental design

This animal study was approved by the Institutional Animal Care and Use Committee (IACUC) at Iowa State University. All animal care was performed according to Laboratory Animal Resources Guidelines at Iowa State University. Male ZDF (fa/fa) rats (n = 12) and their lean controls (fa/+; n = 12) were obtained at 6-wk of age (Charles River, Wilmington, MA). Rats were dual-caged and acclimated for 72 h in conventional cages in a temperature-controlled room (25˚C) with a 12-h light-dark cycle. Rats were randomly assigned to an experimental diet (Table 4) consisting of either a casein (CAS)-based diet, or a WE-based diet containing dried WE powder (Rose Acre Farms).

Both diets provided 20% protein (w/w) from either vitamin-free CAS or WE powder. To match the diets for total lipid content (18.3%), corn oil was added to the control diet. Both diets were prepared in-house weekly by mixing all ingredients into a powdered form and

Ingredient (g/kg)	CAS	WE
Casein	200	-
Whole Egg	-	435
Cornstarch	417	365
Corn Oil	183	-
Glucose Monohydrate	150	150
Mineral Mix	35	35
Vitamin Mix	10	10
Choline Bitartrate	2	2
L-methionine	3	3
Biotin (1%)	-	0.4
Macronutrients (% total kcal)\(^3\)	17	17
Protein	48	48
Carbohydrate	35	35
Fat	4,715	4,715

\(^1\) All ingredients were purchased from Envigo except for dried whole egg (Rose Acre Farms, Guthrie Center, IA), as well as L-methionine and choline bitartrate (Sigma-Aldrich). Abbreviations used: CAS, casein-based diet, WE, whole egg-based diet.

\(^2\) Total protein and lipid content provided by 435 g of dried WE was 46% (200 g) and 42% (183 g), respectively.

\(^3\) To formulate all diets such that protein was provided at 20% (w/w).
administered daily in a standard amount for both lean and ZDF rats. For the remainder of the study, rats were fed ad libitum for 8 wk and at the end of the experimental period, rats were anesthetized with a dissociative agent combination of ketamine:xylaxine (90:10 mg/kg body weight) via an intraperitoneal injection of 1μL/g body weight. Two methods of animal euthanasia were performed according to the American Veterinary Medical Association guidelines for the Euthanasia of Animals: 2020 edition [47]. Cardiac exsanguination of whole blood on the anesthetized rat was performed and serum was subsequently stored at −80˚C for downstream analysis. The second method of exsanguination was the procurement of organs. Following cardiac puncture, tissues were immediately excised, weighed, and snap frozen in liquid nitrogen for storage at −80˚C in RNALater.

RNA extraction and analysis

Tissue samples (20 mg) were rapidly thawed on ice and largeRNA and smallRNA fractions were extracted from the same isolate using the RNA SPLIT Kit (Lexogen) according to the manufacturer’s instructions. Briefly, samples were homogenized in an isolation buffer and phase separated using a phenol/chloroform extraction followed by a spin column-based purification procedure. All samples were aliquoted and stored at −80˚C for downstream analysis. Following extraction, sample concentrations for the largeRNA fraction were analyzed using a Qubit 2.0 fluorometer (Thermo Fisher) using the Qubit™ Broad Range RNA Assay Kit. RNA integrity was assessed using the Bioanalyzer 2100 (Agilent Technologies) and samples with low RNA integrity number (RIN) values <5 were discarded and re-extracted. SmallRNA concentrations were measured using a Qubit 2.0 fluorometer (Thermo Fisher) using the Qubit™ microRNA Assay Kit.

TotalRNA and smallRNA sequencing

Libraries for totalRNA were prepared using an automated protocol according to the manufacturer’s instructions for half reactions on the QuantSeq 3’ mRNA-Seq Library Prep Kit (Lexogen) using a MANTIS® Liquid Handler pipetting robot (Formulatrix). All totalRNA samples were multiplexed together across two lanes on an Illumina High-Seq 3000. SmallRNA Libraries were prepared manually using the SmallRNA-Seq Library Prep Kit (Lexogen). Briefly, 100 ng of enriched smallRNA was used as input and 3’ and 5’ adapters were ligated followed by column purifications. Subsequently, the ligation products were reverse transcribed and double stranded cDNA libraries were generated. Finally, individual sample barcodes for multiplexing were introduced via 17 cycles of PCR. All libraries were assessed on the Bioanalyzer 2100 (Agilent) to examine if adapter dimers formed during PCR. All libraries were further prepared using a bead purification module (Lexogen) and pooled into a single sample at 2 nM (20 μL reaction) for sequencing.

Sequencing quality control and adapter trimming

For both totalRNA and smallRNA samples, the resulting FASTQ files were analyzed using Fast-QC [48] and sequencing adapters were trimmed using on BBDUK [49] with an example of the trimming procedure: bbduk.sh in = reads.fq out = clean.fq maq = 10 ref = /bbmap/resources/adapters.fa. For smallRNA samples, reads were additionally trimmed using the literal flag to remove the Lexogen specific sequence “5’ –TGGAAATTTCGGGTGC CAAG-GAACTCCAGTCAC– 3’” following similar trimming procedures. Briefly, any read segments that matched Illumina Truseq or Nextera adapters, along with reads containing integrity scores <10 were trimmed out.
Alignment and read quantification

For totalRNA, reads were mapped to the Ensembl release 94 of the Rattus Norvegicus RNO_6.0 genome using RNA STAR [50]. TotalRNA read counts were generated during the read alignment using the—genecounts function in STAR. For smallRNA samples, reference fasta files from www.RNACentral.org were downloaded for microRNA, piwiRNA, snRNA, rRNA, rRNA, and tRNA. Indexes were generated using Bowtie [50] and alignment was conducted using the smallrnaseq python tool [51]. Read counts for all reference indices and Iso-miRs were generated using the smallrnaseq python tool.

Data filtering and normalization

Following read count generation, Quantsseq gene expression data was merged into a single data frame for analysis in R (version 3.6.0). Genes were discarded from the analysis if there were <3 samples without a single read for that given gene. TotalRNA data initially generated read counts for 32,883 genes and over 50% of the trimmed reads from each sample mapped to the RNO_6 version 94 genome. Prior to normalization, remaining gene counts across all four tissues contained between 8,700–12,000 genes for analysis. The microRNA data originally generated read counts for over 350 microRNAs and the formal analysis was conducted on 60–150 targets across each tissue. For totalRNA and smallRNA fractions, all samples were normalized using the Trimmed Mean of M values (TMM) method [52]. Briefly, TMM accounts for variable depth between samples by normalizing them according to the weighted trimmed mean of the log expression ratios across all samples prior to analysis.

Differential expression analysis

All differential expression analyses were conducted using R (version 3.6.0). Differential expression was conducted using DESeq2 from Bioconductor. DESeq-DataSetFromMatrix generated p-values and Benjamini-Hochberg [53] adjusted P-values controlling false discovery rate (FDR) at 5%. Significance was determined at adj P<0.05.

Heatmaps, principal component analysis, and volcano plots

Principal Component Analysis (PCA) was used to visualize sample relatedness across treatments and tissues. Subsequent hierarchical clustering grouped samples according to transcriptomic relatedness, while volcano plots were constructed to visualize samples with absolute log-fold changes >1.5. All figures were generated with Matplotlib in Python version 3.2.0rc1.

KEGG/GO pathway analysis

Biological pathways for each DEG were generated using the KEGG pathway analysis and GO analysis conducted via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.7 software tool.

qPCR validation analyses

TotalRNA from each tissue was aliquoted and frozen at -80°C, and 2 μg of total RNA was reverse-transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Catalog # 4368813). cDNA was diluted to 250 ng/μL and qPCR reactions were performed using 250 ng of total cDNA with primers at 300 nM concentration in 10 μL FastStart Sybr Green Master (Roche) according to the manufacturer’s instructions. Briefly, the thermocycling protocol followed a pre-incubation at 95°C for 10 minutes, followed by 45 cycles of 3-Step amplification: 1) denature at 95°C for 20 seconds; 2) anneal and extend at
60°C for 20 seconds; and 3) elongate at 72°C for 20 seconds. All qPCR reactions were conducted in a Roche LightCycler 96 Real-Time PCR System. Primers sequences for qPCR are as follows: Fatty Acid Synthase FWD: GCCGAGTCTATGCCACTATTC, REV: GCTGATACAGA GAACGGATGAG; Indolethylamine N-methyltransferase FWD: CTGGGAAGGAGAGGTTAG AA, REV: CCGGCAACCACGAAGTATAA; Cytochrome P450, family 2, subfamily c, polypeptide 22 FWD: AGAGAGAGAGAGAGAGAGAGAGA, REV: GAGACCCTCTGACATCCTATAAC; 18S Ribosomal Subunit FWD: AAGACGAACCAGAGCGAAAG, REV: TGCGGAACCTACGACGGTATCT; Cytochrome P450, family 51 FWD: CCTTCCAGTGGTGCTCTTATT, REV: CTAAGCCAC-TACCCAAAAGACTATAC. In all qPCR experiments, 18s RNA expression was used to normalize gene expression within each tissue sample that was processed in triplicate. All data were analyzed using the Livak Delta-Delta CT method [54].

MicroRNA bioinformatic analysis
All microRNA fastq files were processed using the smallrnaseq [51] package in python. Smallrnaseq automates standard bioinformatic processes for quantification and analysis of small non-coding RNA species such as microRNA quantification and novel microRNA prediction. Briefly, smallrnaseq uses bowtie to align fastq files to user defined reference sequences and all reference sequences were downloaded from www.RNAcentral.org (version 14). Following alignment to the Rattus Norvegicus genome and reference tRNA, rRNA, microRNA, lncRNA, and snRNA files, novel microRNA predictions are conducted using microRNADeep2. Additionally, differential expression was automated using the DEseq2 package in R.

Supporting information
S1 Fig. qPCR correlation with mRNA sequencing. Log fold change comparisons between qPCR and mRNA sequencing of several genes suggesting strong relationship between these two methods. (TIF)

S1 Table. mRNA raw read counts. Raw microRNA counts used in the analysis for comparing dietary treatment groups. (XLSX)

S2 Table. mRNA DeSEQ2 summary statistics. Summary statistics for the mRNA data from the DeSEQ2 analysis in R. (XLSX)

S3 Table. MicroRNA DeSEQ2 summary statistics. Summary statistics for the microRNA data from the DeSEQ2 analysis in R. (XLSX)

S4 Table. Raw microRNA read counts. Raw microRNA read counts used in the analyses. (XLSX)

S5 Table. KEGG/GO analysis. Gene ontology pathways that were upregulated/downregulated for each set of differentially expressed genes within each tissue using the DAVID database. (XLSX)

Acknowledgments
We would like to thank Dr. Peng Liu, Department of Statistics, for aiding in planning this project, and the ISU DNA facility staff members Kevin Calvalin, Tanya Murtha and Dr. Mike
Baker for their assistance sequencing our samples. Additionally, the authors would like to thank the undergraduate research assistants that helped conduct the experiments and work with the rats.

Author Contributions

Conceptualization: Joe L. Webb, Amanda E. Bries, Timothy A. Day, Michael J. Kimber, Rudy J. Valentine, Matthew J. Rowling, Stephanie Clark, Elizabeth M. McNeill, Kevin L. Schalinske.

Data curation: Joe L. Webb, Amanda E. Bries.

Formal analysis: Joe L. Webb, Amanda E. Bries.

Funding acquisition: Timothy A. Day, Michael J. Kimber, Rudy J. Valentine, Matthew J. Rowling, Stephanie Clark, Elizabeth M. McNeill, Kevin L. Schalinske.

Investigation: Joe L. Webb, Amanda E. Bries, Brooke Vogel, Claudia Carrillo, Lily Harvison.

Methodology: Joe L. Webb, Amanda E. Bries, Kevin L. Schalinske.

Project administration: Joe L. Webb, Amanda E. Bries, Matthew J. Rowling, Stephanie Clark, Elizabeth M. McNeill, Kevin L. Schalinske.

Resources: Kevin L. Schalinske.

Software: Joe L. Webb, Amanda E. Bries.

Validation: Elizabeth M. McNeill.

Visualization: Joe L. Webb, Amanda E. Bries, Elizabeth M. McNeill, Kevin L. Schalinske.

Writing – original draft: Joe L. Webb, Amanda E. Bries.

Writing – review & editing: Timothy A. Day, Michael J. Kimber, Rudy J. Valentine, Matthew J. Rowling, Stephanie Clark, Elizabeth M. McNeill, Kevin L. Schalinske.

References

1. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology. Nature Publishing Group; 2018. pp. 88–98. https://doi.org/10.1038/nrendo.2017.151 PMID: 29219149

2. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A, et al. The Role of Oxidative Stress in the Pathogenesis of Type 2 Diabetes Mellitus Micro- and Macrovascular Complications: Avenues for a Mechanistic-Based Therapeutic Approach. Curr Diabetes Rev. 2012; 7: 313–324. https://doi.org/10.2174/157339911797415585 PMID: 21838680

3. Raza H, John A, Howarth FC. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain. Cell Physiol Biochem. 2015; 35: 1241–1251. https://doi.org/10.1159/000379947 PMID: 25766534

4. Sekhar R V., Mckay S V., Patel SG, Guthikonda AP, Reddy VT, Balasubramanyan A, et al. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care. 2011; 34: 162–167. https://doi.org/10.2337/dc10-1006 PMID: 20929994

5. Raza H, John A, Howarth FC. Alterations in glutathione redox metabolism, oxidative stress, and mitochondrial function in the left ventricle of elderly zucker diabetic fatty rat heart. Int J Mol Sci. 2012; 13: 16241–16254. https://doi.org/10.3390/ijms131216241 PMID: 23203193

6. Kanikarla-Marie P, Micinski D, Jain SK. Hyperglycemia (high-glucose) decreases I-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats. Mol Cell Biochem. 2018; 459: 151–156. https://doi.org/10.1007/s11010-019-03998-z PMID: 31172396

7. Tessari P. Effects of insulin on whole-body and regional amino acid metabolism. Diabetes Metab Rev. 1994; 10: 253–285. https://doi.org/10.1002/dmr.5610100304 PMID: 7835172
8. Patel D, Rooney R, Groom S. Gene Expression Profiles for the Zucker Fatty Rat Versus Zucker Diabetic Fatty Rat are Highly Consistent with Those Observed in Human Patients. Available: www.criver.com

9. Cordero-Herrera I, Martín MÁ, Goya L, Ramos S. Cocoa intake ameliorates hepatic oxidative stress in young Zucker diabetic fatty rats. Food Res Int. 2015; 69: 194–201. https://doi.org/10.1016/j.foodres.2014.12.039

10. Zou XR, Zhan LR, Chen L, Long QH, Yuan J, Wang L, et al. Influence of the klotho/FGF23/egr1 signaling pathway on calciumphosphorus metabolism in diabetic nephropathy and the intervention of she-nyuan granules. J Biol Regul Homeost Agents. 2019; 33: 1695–1702. https://doi.org/10.23812/19-207-A PMID: 31989808

11. Your M, Howell N. Antioxidant and ACE inhibitory bioactive peptides purified from egg yolk proteins. Int J Mol Sci. 2015; 16: 29161–29178. https://doi.org/10.3390/ijms161226155 PMID: 26690134

12. Fuller NR, Caterson ID, Sainsbury A, Denyer G, Fong M, Gerofi J, et al. The effect of a high-egg diet on cardiovascular risk factors in people with type 2 diabetes: the Diabetes and Egg (DIABEGG) study—a 3-mo randomized controlled trial. Am J Clin Nutr. 2015; 101: 705–713. https://doi.org/10.3945/ajcn.114.096925 PMID: 25833969

13. Fuller NR, Sainsbury A, Caterson ID, Markovi TP. Egg consumption and human cardio-metabolic health in people with and without diabetes. Nutrients. MDPI AG; 2015. pp. 7399–7420. https://doi.org/10.3390/nut7095344 PMID: 26404366

14. Djoussé L, Khawaja OA, Gazziano JM. Egg consumption and risk of type 2 diabetes: a meta-analysis of prospective studies.1. Am J Clin Nutr. 2016; 103: 474–480. https://doi.org/10.3945/ajcn.115.119933 PMID: 26790305

15. Virtanen JK, Mursu J, Tuomainen T-P, Virtanen HE. Voutilainen S. Egg consumption and risk of incident type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2015; 101: 1086–1096. https://doi.org/10.3945/ajcn.114.104109 PMID: 25823339

16. García-Rímon M, González C, Urangá JA, López-Miranda V, López-Fandiño R, Miguel M. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats. Peterson J, editor. PLoS One. 2016; 11: e0151193. https://doi.org/10.1371/journal.pone.0151193 PMID: 26985993

17. Saande CJ, Jones SK, Rowling MJ, Schalinske KL. Whole Egg Consumption Exerts a Nephroprotective Effect in an Acute Rodent Model of Type 1 Diabetes. J Agric Food Chem. 2018; 66: 866–870. https://doi.org/10.1021/acs.jafc.7b04774 PMID: 29345464

18. Saande CJ, Webb JL, Curry PE, Rowling MJ, Schalinske KL. Dietary Whole Egg Reduces Body Weight Gain in a Dose-Dependent Manner in Zucker Diabetic Fatty Rats. J Nutr. 2018; 149: 1766–1775. https://doi.org/10.1093/jn/nxz143 PMID: 31254347

19. Dhas Y, Mishra N, Banerjee J. Vitamin D Deficiency and Oxidative Stress in Type 2 Diabetic Population of India. Cardiovasc Hematol Agents Med Chem. 2017; 14: 82–89. https://doi.org/10.2174/187152571466160426150233 PMID: 27114101

20. Saande CJ, Steffes MA, Webb JL, Valentine RJ, Rowling MJ, Schalinske KL. Whole Egg Consumption Impairs Insulin Sensitivity in a Rat Model of Obesity and Type 2 Diabetes. Curr Dev Nutr. 2019;3. 7: 121. https://doi.org/10.1093/cdn/nzz099 PMID: 32258994

21. Pouratfshar S, Akhavan NS, George KS, Foley EM, Johnson SA, Keshavarz B, et al. Egg consumption may improve factors associated with glycemic control and insulin sensitivity in adults with pre- and type II diabetes. Food Funct. 2018; 9: 4469–4479. https://doi.org/10.1039/c8fo00194d PMID: 30073224

22. Dehghan M, Mente A, Rangarajan S, Mohan V, Lear S, Swaminathan S, et al. Association of egg intake with blood lipids, cardiovascular disease, and mortality in 177,000 people in 50 countries. Am J Clin Nutr. 2020; 111: 795–803. https://doi.org/10.1093/ajcn/nqz348 PMID: 31965140

23. Geiker NRW, Lytken Larsen M, Dyerberg J, Stender S, Astrup A. Egg consumption, cardiovascular diseases and type 2 diabetes. European Journal of Clinical Nutrition. Nature Publishing Group; 2018. pp. 44–56. https://doi.org/10.1038/ejcn.2017.153 PMID: 28952608

24. Tran NL, Barraj L, Heilman J, Scrallford C. Egg consumption and cardiovascular disease among diabetic individuals: a systematic review of the literature. Diabetes, Metab Syndr Obes Targets Ther. 2014; 7: 121. https://doi.org/10.2147/DMSO.S98668 PMID: 24711708

25. Aba P, Igwebuke D, Onah J. Effects of Various Concentrations of Quail Egg Solution on Glycemia and Antioxidant Parameters of Alloxan-induced Diabetic Rats. J Adv Med Pharm Sci. 2016; 5: 1–7. https://doi.org/10.9734/jamps/2016/22723

26. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress—Activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes. American Diabetes Association; 2003. pp. 1–8. https://doi.org/10.2337/diabetes.52.1.1 PMID: 12502486
27. Raza H, Ahmed I, John A, Sharma AK. Modulation of xenobiotic metabolism and oxidative stress in chronic streptozotocin-induced diabetic rats fed with Momordica charantia extract. J Biochem Mol Toxicol. 2000; 14: 131–139. https://doi.org/10.1002/(sici)1099-0461(2000)14:3<131::aid-jbt2>3.0.co;2-q PMID: 10711628

28. Quigley JD. Effects of Spray-Dried Whole Egg and Biotin in Calf Milk Replacer. J Dairy Sci. American Dairy Science Association; 2002. https://doi.org/10.3168/jds.S0022-0302(02)74068-X PMID: 11860112

29. Chen X, Du Y, Boni GF, Liu X, Kuang J, Geng Z. Consuming egg yolk decreases body weight and increases serum HDL and brain expression of TrkB in male SD rats. J Sci Food Agric. 2019; 99: 3879–3885. https://doi.org/10.1002/jsfa.9610 PMID: 30680735

30. Corbett SW, Stern JS, Keeseey RE. Energy expenditure in rats with diet-induced obesity. Am J Clin Nutr. 1986; 44: 173–180. https://doi.org/10.1093/ajcn/44.2.173 PMID: 3728354

31. Montero D, Tachibana C, Rahn Winther J, Appenzeller-Herzog C. Intracellular glutathione pools are heterogeneously concentrated. Redox Biol. 2013; 1: 508–513. https://doi.org/10.1016/j.redox.2013.10.005 PMID: 24251119

32. Shen N, Yu X, Pan FY, Gao X, Xue B, Li CJ. An early response transcription factor, Egr-1, enhances insulin resistance in type 2 diabetes with chronic hyperinsulinism. J Biol Chem. 2011; 286: 14508–14515. https://doi.org/10.1074/jbc.M110.190165 PMID: 21321112

33. Garnett KE, Chambers JA, Waddell ID, Boam DSW. Differential gene expression between Zucker Fatty rats and Zucker Diabetic Fatty rats: A potential role for the immediate-early gene Egr-1 in regulation of beta cell proliferation. J Mol Endocrinol. 2005; 35: 13–25. https://doi.org/10.1677/jme.1.01792 PMID: 16087718

34. Zhang J, Zhang Y, Sun T, Guo F, Huang S, Chandalia M, et al. Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXO2. Sci Rep. 2013; 3: 1–10. https://doi.org/10.1038/srep01476 PMID: 23502673

35. Li Tiangang, Owsley Erika, Matozel Michelle, Hsu Peter, Chiang John Y.L.. Transgenic expression of CYP7A1 in the liver prevents high fat diet-induced obesity and insulin resistance in mice | the FASEB Journal. Pharmacol Ther. 2010 [cited 18 Jun 2020]. Available: https://www.fasebj.org/doi/abs/10.1096/fasebj.24.4_supplement.570.4

36. Gutiérrez-Juárez R, Pocal A, Mulas C, Ono H, Bhanot S, Monia BP, et al. Critical role of stearoyl-CoA desaturase—1 (SCD1) in the onset of diet-induced hepatic insulin resistance. J Clin Invest. 2006; 116: 1686–1695. https://doi.org/10.1172/JCI26991 PMID: 16741579

37. Mugabo Y, Zhao S, Seifried A, Gezzar S, Al-Mass A, Zhang D, et al. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proc Natl Acad Sci U S A. 2016; 113: E430–E439. https://doi.org/10.1073/pnas.1514375113 PMID: 26755581

38. Zhang M, Zhu X. miR-9-5p plays an important role in gestational diabetes mellitus (GDM) progression by targeting HK-2. Int J Clin Exp Med. 2018. Available: www.ijcem.com/ PMID: 29874342

39. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reactome pathway knowledge base. Nucleic Acids Res. 2020; 48. https://doi.org/10.1093/nar/gkz1031 PMID: 31691815

40. Karst H, Steiniger J, Noack R, Steglich HD. Diet-induced thermogenesis in man: Thermic effects of sinapic acid in chronic streptozotocin-induced diabetic rats fed with Momordica charantia fruit extract. J Biochem Mol Toxicol. 2000; 14: 131–139. https://doi.org/10.1002/(sici)1099-0461(2000)14:3<131::aid-jbt2>3.0.co;2-q PMID: 10711628

41. Kvaløy K, Page CM, Holmen TL. Epigenome-wide methylation differences in a group of lean and obese women–A HUNT Study. Sci Rep. 2018; 8: 1–9. https://doi.org/10.1038/s41598-017-17765-5 PMID: 29311619

42. Chen J, He X, Huang J. Diet Effects in Gut Microbiome and Obesity. J Food Sci. 2014; 79: R442–51. https://doi.org/10.1111/1750-3841.12397 PMID: 24621052

43. Corbett SW, Stern JS, Keeseey RE. Energy expenditure in rats with diet-induced obesity. Am J Clin Nutr. 1986; 44: 173–80. https://doi.org/10.1093/ajcn/44.2.173 PMID: 3728354

44. Zhu C, Sawrey-Kubiec L, Bardagjy AS, Houts H, Tang X, Sacchi R, et al. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Nutr Res. 2020 [cited 27 Apr 2020]. https://doi.org/10.1016/j.nutres.2020.04.002 PMID: 32464420

45. M. Shahbandeh, Statistica 2020. Per capita consumption of eggs in the U.S. 2020 | Statista. In: Statistica.com [Internet]. 28 Jan 2020 [cited 7 Aug 2020]. Available: https://www.statista.com/statistics/183678/per-capita-consumption-of-eggs-in-the-us-since-2000/

46. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30: 207–210. https://doi.org/10.1093/nar/30.1.207 PMID: 11752295
47. Leary S, Johnson CL. AVMA GUIDELINES FOR THE EUTHANASIA OF ANIMALS: 2020 EDITION
AVMA Guidelines for the Euthanasia of Animals: 2020 Edition* Members of the Panel on Euthanasia
AVMA Staff Consultants. 2020.

48. Andrews S. FASTQC. A quality control tool for high throughput sequence data. 2010 [cited 6 Apr 2020].
Available: https://www.bibsonomy.org/person/1f230a919c34360709aa298734d63dca3/author/0

49. Bushnell B, Rood J, Singer E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS One. 2017. https://doi.org/10.1371/journal.pone.0185056 PMID: 29073143

50. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9: 357–359.
https://doi.org/10.1038/nmeth.1923 PMID: 22388266

51. Farrell D. smallrnaseq: short non coding RNA-seq analysis with Python. Bioarxiv. 2017; 110585. https://doi.org/10.1101/110585

52. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11: R25. https://doi.org/10.1186/gb-2010-11-3-r25 PMID: 20196867

53. Benjamini, Yoav; Hochberg Y. Controlling the False Discovery Rate—a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995. pdf. J R Stat Soc Ser B. 1995. https://doi.org/10.2307/2346101

54. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001; 25: 402–408. https://doi.org/10.1006/meth.2001.1262 PMID: 11846609