Influence of Aggregate Type on Properties of Geopolymer Concrete

N A Eroshkina¹, M O Korovkin¹

¹Department «Technology of building materials and wood processing», Penza State University of Architecture and Construction, 28 German Titova Street, Penza, 440028, Russia

E-mail: n_eroshkina@mail.ru

Abstract. The results of comparative studies of geopolymer concrete strength made with coarse aggregate based on granite, limestone, concrete scrap were given. It is found that the use of granite aggregate instead of limestone and concrete scrap reduces the strength flexural 2-2.5 times, as on impact - 2.5-3.5 times; the compressive strength decreases by 10-30%. It concluded that the main item that reduces the strength of the investigated geopolymer concrete when using granite aggregate, its low creep is observed, which, with high autogenous shrinkage of the geopolymer binder, leads to concrete cracking. The established features of the influence of the type of aggregate on the properties of concrete substantiate the use of crushed limestone and concrete scrap as a coarse aggregate of geopolymer concrete.

1. Introduction

Geopolymer concretes are considered as an environmentally friendly alternative to Portland cement concretes [1, 2]. Thus the development and study of properties of this new kind of concrete occurs in comparison with the achievements of the science Portland cement concrete.

For a long time the influence of coarse aggregate on the properties of concrete was considered as an insignificant factor. This is due to the fact that the strength and durability of the coarse aggregate is much higher than the properties of hardened cement paste, therefore, the properties of concrete are much more dependent on the characteristics of hardened cement paste.

The development of concrete technology has ensured that its strength is comparable to the strength of rocks, which are used as a material for an aggregate. Besides high strength concrete [3], and geopolymer concrete are characterized [4-7] by high values of autogenous shrinkage and it increases the risk of cracking in the early stages of hardening. In this regard in recent years the studies of the influence of coarse aggregate on various properties of concrete have been activated [8-12].

Shrinkage deformations in concrete lead to internal stresses, which can cause cracking [5-7]. Cracking is influenced not only by the degree of shrinkage, but also by the creep of the hardened geopolymer paste, its ability to relax stresses, as well as the creep of the coarse aggregate.

The mechanism of autogenous shrinkage of geopolymer concretes is poorly studied, which does not allow its reliable prediction [7, 13-15]. Autogenous shrinkage is of great importance for concrete structure formation at the macro level. It determines the strength and durability of geopolymer concrete. Many works study the influence of a binder composition and curing conditions on shrinkage and concrete cracking [14-16]. At the same time, the properties of the aggregate, primarily its...
deformability, surface topography, adhesion of geopolymer paste hardening can have a significant effect on concrete cracking [2, 17, 18].

In this paper, we studied the effect of three types of coarse aggregates and their consumption on the flexural strength and compression, impact resistance of concrete.

2. Materials and research methods
Concretes produced with 3 kinds of aggregates: granite, limestone and scrap concrete structures were investigated. The properties of the aggregates are shown in table 1. All the investigated coarse aggregates have particle size 5-10 mm.

Type of coarse aggregate	Strength grade according to GOST 8267-93	Density (kg/m³)	Bulk density (kg/m³)	Water absorption (%)
Granite	1400	2692	1444	0.2
Limestone	1000	2359	1270	3.4
Concrete scrap	600	2263	1154	6.9

To prepare the binder, we used granulated blast-furnace slag with a specific surface area 3800 cm²/g and grinding granite with a specific surface area 3500 cm²/g. Sodium water glass with a silicate modulus of 2.54 and a density of 1.48 g / cm³ and sodium hydroxide (NaOH) were used as activator of hardening.

In all investigated concretes, the ratio of fine aggregate, binder components, hardening activator and water was constant. During the experiment, the ratio between the coarse aggregate and the geopolymer paste was changed. This ratio (α) was expressed by the ratio of the volume of the mortar component of concrete to the volume of the intergranular space of the coarse aggregate.

\[\alpha = \frac{V_m}{V_{isa}}. \]

where \(V_m \) – the volume of the mortar component of concrete, m³;

\(V_{isa} \) – volume of intergranular space of coarse aggregate, m³.

The consumption of coarse aggregate in the investigated concrete compositions was calculated by the formula [19]

\[CA = \frac{1}{(\alpha \Pi_{ca}/\rho_b + 1/\rho)} \]

where \(\Pi_{ca} \) – voidness of coarse aggregate = 1 – \(\rho_b / \rho \);

\(\rho_b \) – bulk density of coarse aggregate, kg/m³;

\(\rho \) – density of coarse aggregate, kg/m³.

Designing concrete compositions, which are shown in table 2, the coefficient \(\alpha \) changed from 1.32 to 1.5. While the bulk concentration of a coarse aggregate of granite, limestone, concrete scrap depends not only on the coefficient \(\alpha \), but also on rock density of coarse aggregate and bulk density ratio.

From compositions listed in table 2, samples of size 40 × 40 × 160 mm were prepared, which after curing at normal temperature for 12 hours hardened at heat treatment in the regime: 3 hours temperature rise, 12 hours isothermal curing at 80 °C and 6 hours cooling.
Table 2. Concrete compositions (kg/m³).

Compositions	1	2	3	4	5	6	7	8	9	10	11	12
Granite	1257	1227	1199	1172	–	–	–	–	–	–	–	–
Limestone	–	–	–	–	1106	1080	1055	1032	–	–	–	–
Concrete scrap	–	–	–	–	–	–	–	1106	1080	1055	1032	–
Slag	114	116	118	120	113	116	118	120	119	122	124	126
Grinding granite	266	272	277	282	265	271	276	281	279	285	290	295
Sand	569	581	592	603	567	579	591	601	598	609	620	631
Water glass	106	109	111	113	106	108	110	112	112	114	116	118
NaOH	9.47	9.67	9.86	10.04	9.44	9.64	9.83	10.01	9.94	10.14	10.32	10.50
Water	101	103	105	107	101	103	105	107	106	108	110	112
α	1.32	1.38	1.44	1.5	1.32	1.38	1.44	1.5	1.32	1.38	1.44	1.5
Coarse aggregate, %	46.7	45.6	44.5	43.5	46.9	44.7	45.8	43.7	44.1	41.9	43.0	40.9

Flexural strength, compressive strength, as well as strength on impact were investigated.

The flexural strength was determined as the arithmetic mean of the tests of 4 samples, and the compressive strength was determined as the average value of 8 samples. Small beams size 40 × 40 × 160 mm were cut into 4 sample 38 mm long, for which the strength was determined on the impact tester (figure 1).

![Figure 1. Impact tester.](image)

Impact resistance \((R_f) \) was determined by the destruction energy, which was calculated by the formula

\[
R_f = m \cdot g \cdot (1+2+3+\ldots+n) \cdot 10^{-2}/S,
\]

где \(m \) – the mass of the moving part of impact testing machine (2 kg);

\(g \) – free fall acceleration, (9.81 m/s²);
3. Results and their discussion
The analysis of the dependences of flexural strength, compressive strength and impact force from the volume content of coarse aggregate in concrete (figure 2 and 3) indicates that this characteristic of concrete has a significant influence on these properties.

Figure 2. The influence of coarse aggregate volume on flexural strength (a), compressive strength (b) (1 – granite, 2 – limestone, 3 – concrete scrap).

Figure 3. The influence of coarse aggregate volume on fracture energy (1 – granite, 2 – limestone, 3 – concrete scrap).

The properties of coarse aggregate have even greater influence on the strength. Calculations show that replacement of the limestone aggregate by granite aggregate (despite the fact that the strength of the granite is higher than strength of limestone and concrete scrap (table 1)), reduces the flexural strength in 2-2.5 times and at impact in 2.5-3.5 times. At the same time, the decrease in the strength of concrete at compression is much less significant - only 10-30 %. Replacement of crushed limestone by coarse aggregate from concrete scrap does not lead to a significant decrease of strength, despite the fact that the strength of concrete scrap is much less than the strength of limestone.
Various authors noted [8, 20] that the use of limestone aggregate allows to obtain a higher concrete strength in comparison with other aggregates. As reasons for increasing the strength are higher roughness of limestone and adhesion cement and geopolymer to limestone surface [8, 11]. We can state [2, 8, 9, 10] that the dimensions, shape and structure of aggregates surface affect the strength, shrinkage, stiffness, creep, density, permeability and durability of concrete.

Besides the concrete strength increase may be caused by water absorption of the aggregate. When the geopolymer paste is in a plastic state, water is adsorbed by porous of aggregate. At the stage of hardening, the adsorbed water transforms into geopolymer stone (the effect of internal care, by analogy with cement concrete).

Higher creep of this rock in comparison with granite can influence increase of strength using limestone, its it is evidences by a higher creep of different types of concrete made with limestone aggregate [17, 20]. High creep provides a decrease of stress concentration in the contact area caused by shrinkage deformation of hardened geopolymer paste. In favor of this hypothesis we can the indicate absence of cracks in the specimens, manufactured using limestone coarse aggregate or concrete scrap, while on granite aggregate samples shrinkage cracks up to 0.2 mm were stated (figure 4).

Figure 4. Cracks on the surface of geopolymer concrete made using coarse granite aggregate.

Shrinkage cracks in samples with granite aggregate explain the significant decrease in flexural and impact strength. At the same time, as seen in figure 3, the compressive strength decreases significantly less, which indicates that the main reason for the decrease in strength when using coarse granite aggregate is the formation of cracks in the geopolymer, but not the low adhesion of the coarse aggregate with this component of concrete. The effect of the form of coarse aggregate on its adhesion to the hardened geopolymer paste, and water absorption of the porous aggregate and the value of these factors for concrete properties such as: durability, cracking and durability requires extensive experimental study.

4. Conclusion
The research of geopolymer concrete strength, made using granite and limestone coarse aggregate, and aggregate based on concrete scrap has shown that the type of aggregate has a significant influence on the strength properties.

It is found that the use of granite aggregate in comparison with other investigated coarse aggregate leads to significant reduction of flexural and impact strength. At the same time, the decrease in the strength of concrete at compression is much less than at flexural and impact action. Higher strength of concrete made with limestone aggregate or concrete scrap can be explained by higher creep of these
materials and stress relaxation in the contact zone. This is confirmed by lower cracking of geopolymer concretes prepared with the use of such coarse aggregates in comparison with granite crushed stone.

The determined features of the influence of the type of aggregate on the properties of concrete justify the use of crushed limestone and concrete scrap as a coarse aggregate of geopolymer concrete.

5. References
[1] Singh N B and Middendorf B 2020 Geopolymers as an alternative to portland cement: an overview Constr. Build. Mater. 237 117455 DOI: 10.1016/j.conbuildmat.2019.117455
[2] Davidovits J Geopolymer chemistry and applications (Saint-Quentin: Geopolymer Institute) p 644
[3] Wu L, Farzadnia N, Shi C, Zhan Z and H Wang 2017 Autogenous shrinkage of high performance concrete: a review Constr. Build. Mater. 149 pp 62-75
[4] Eroshkina N A and Korovkin M O 2016 Shrinkage of geopolymer binder at different stages of its structure formation Engineering Journal of Don 2 URL: ivdon.ru /magazine/archive/n2y2016/362
[5] Yeroshkina N A and Korovkin M O 2012 The influence of parameters of mineral alkaline binder composition on the strength and shrinkage of concrete Bulletin of Volgograd State University of Architecture and Civil Eng. Series: Civil Eng. and Architecture 27 pp 78-83
[6] Li Z, Gao P and Ye G 2017 Experimental study on autogenous deformation of metakaolin based geopolymer 2nd Int. RILEM/COST Conf. on Early Age Cracking and Serviceability in Cement-based Materials and Structures - EAC2, 12–14 September 2017 (Brussels, Belgium) p 6
[7] Khan I, Xu T, Castel A, Gilbert R I and Babae M 2019 Risk of early age cracking in geopolymer concrete due to restrained shrinkage Constr. Build. Mater. 229 p 116840
[8] Mermerdas K, Manguri S, Nassani D E, Olewi S M and Olewi S M 2017 Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar Engineering Science and Technology, an Int. Journal 20 (6) pp 1642-52
[9] Shaikh F 2016 Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates Int.Journal of Sustainable Built Environment 5 (2) 277-287
[10] Ogundipea O M, Olanike A O, Nnochiri E S and Ale P O 2017 Effect of coarse aggregate size on the compressive behaviour of geopolymer concrete European Journal of Environmental and Civil Engineering DOI: 10.1080/19648189.2017.1304276
[11] Wang Q, Ding Z, Da J, Ran K, Sui Z 2011 Factors influencing bonding strength of geopolymer-aggregate interfacial transition zone Adv. Mater. Res. 224 pp 1–7
[12] Mesgari S, Akbarnezhad A and Xia J Z 2020 Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: Effects on mechanical properties Constr. Build. Mater. 236 117571
[13] Li Z, Lu T, Liang X, Dong H and G Ye 2020 Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes Cement and Concrete Research 135 DOI:10.1016/j.cemconres.2020.106107
[14] Lee N K, Jang J G and Lee H K 2014 Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages Ceram. Concrr. Compos. 53 pp 239-248
[15] Uppalapati S and Cizer O 2018 Understanding the autogenous shrinkage in alkali-activated slag/fly-ash blends Int. Conf. on alkali activated mater. geopolymers: Versatile mater. offering high performance low emissions p 27
[16] Eroshkina N and Korovkin M 2016 The Effect of the mixture composition and curing conditions on the properties of the geopolymer binder based on dust crushing of the granite Procedia Engineering 150 pp 1605-09
[17] Makani A, Vidal T, Pons G and Escadeillas G 2010 Time-dependent behaviour of high performance concrete: influence of coarse aggregate characteristics EPJ Web of Conferences 6 03002 p 8
[18] Wallah S E 2010 Creep behaviour of fly ash-based geopolymer concrete *Civil Engineering Dimension* **12** (2) pp 73-78

[19] Bazhenov Yu M 2003 Technology of concrete (Moscow: ASV) p 500

[20] Reinke G, Glidden S, Herlitzka D and Jorgenson J 2005 Laboratory investigation of HMA Performance Using Hamburg Wheel Tracking and DSR Torsional Creep *Tests Journal of ASTM Int.* **2** (10) pp 1-32