Rapid three-dimensional structuring of transparent SiO$_2$ glass using interparticle photo-cross-linkable suspensions

Ryoya Arita1, Motoyuki Iijima2, Yoko Fujishiro1, Seitaro Morita3, Taichi Furukawa4, Junichi Tatami2 & Shoji Maruo4

Photo-curable suspensions are important materials for shaping complex-structured ceramic and glass components. However, most systems undergo slow debinding and sintering so to avoid structural collapse by rapid gas generation from polymers. Here, we propose a new strategy to fabricate interparticle photo-cross-linkable suspensions for rapid three-dimensional structuring with short debinding and sintering times. SiO$_2$ particles modified with polyethyleneimine complexed with oleic acid (PEI-OA) are dispersed into a refractive-index-tuned solvent, where a photo-radical initiator and a lower-than-typical amount of multifunctional acrylates (MAs) were dissolved. The SiO$_2$ suspension is cured by the photo-radical polymerization of MA and the Michael additive reaction between polymerized MA and amino groups of PEI-OA on SiO$_2$ particles. These photo-curable suspensions can be employed in various shaping processes, from micro-scale stereolithography to centimeter-scale silicone molding. The SiO$_2$ green compacts with complex structures are also debinded and sintered into transparent glass components by rapid heating.
photo-curable suspensions have attracted extensive research attention as indispensable for designing complex-structured ceramics and glass components through additive manufacturing (e.g., digital light processing1–8, laser-based stereolithography9–10, mask projection stereolithography11–14, suspension-enclosing projection stereolithography15–17, and ultraviolet-assisted direct-write18), in-situ solidification19–22, subtractive manufacturing23, three-dimensional micro-template replication24, fiber production25, and stop-flow lithography26. Thus far, various photo-curable suspensions have been designed up to date. While the simplest process involves direct dispersion of inorganic fine particles in photo-curable monomers with photo-radical initiators6,9–11,9–13,17–22, many researches have also focused on multi-component mixtures containing solvents to control suspension viscosities1–5,10–12 and to form porosity in photo-cured green compacts which was favorable to debind polymers in a controlled manner18. Many further attempts have also made, such as by designing monomer mixtures to tune the number of reactive functional groups for controlling the photocuring rates23; selecting monomers/solvents to achieve a transparent suspension and avoid light scattering17–19,26, which realizes high-resolution three-dimensional printing by micro-stereolithography14; and adding light absorbers and/or radical initiators to optimize the printing resolution2,3,17,24. Based on these techniques, various ceramic/glass (SiO2,9,17–22, Al2O3,3,10,11,15,16,21, ZrO2,4,5,12, Si3N4,8, Ca2P2O7,23, Pb(Zr,Ti)O3,14, BaTiO3,25, wollastonite (CaO-SiO2),6, diopside (CaO-MgO-2SiO2),6, and Ca10(PO4)6(OH)2)7 parts with complex structures have been successfully prepared through additive manufacturing and/or molding with these designed photo-curable suspensions. However, all systems undergo very slow and complex-programmed de-binding/sintering (Supplementary Fig. 1) to avoid crack formation/structural collapse due to rapid gas generation caused by large content of monomers in the suspension. For instance, de-binding and sintering of SiO2 green parts fabricated from conventional photo-curable SiO2 suspensions can take up to 48 h1,9,17,19,22, which is unfavorable to improve the manufacturing efficiency. As well as photo-curable suspensions, the usage of photo-curable preceramic polymers is also an effective route for three-dimensional structuring of ceramic/glass parts. Various pre-ceramic polymers, such as based on polysiloxanes27–29, polycarbo silanes30, polycarbosilazanes31, and metal alkoxides complexed with acrylic acids32 have printed through stereolithographic process as well, and successfully pyrolysed to form SiOC27,28, SiO2 29, SiC30, SiCN31, and ZrOC32 components. Recent study also showed that three-dimensionally structured, nanoporous, and multicomponent transparent glass can be printed using multicomponent pre-ceramic polymers which were designed to induce phase separations during photo-polymerization33. However, three-dimensional structur ing based on polymer derived ceramic process also suffer from slow heating profiles (heating rates typically reported to be 0.4–2.0 °C min−1) for pyrolysis.

Here, we propose a new concept for preparing a photo-curable suspension that only requires small amounts of organic additives to enable rapid de-binding and sintering of the obtained photo-cured green compacts. Completely different from the conventional process which involves polymerization of monomers used as a solvent/matrix, the proposed process is designed to have photo-initiated interparticle network formation reaction by small amount of monomers in well stabilized non-aqueous suspensions (Fig. 1a). The manufacturing process of transparent SiO2 glass from SiO2 suspensions is selected as a model system to prove our concept. In addition to reducing the organic content in the photo-curable suspension, the proposed suspension system is also designed to simultaneously achieve improved suspension transparency and a highly dispersed state of particles under concentrated conditions to realize the applicability of the suspension to shaping processes in a wide range of scales (from micro-scale stereolithography to centimeter-scale in-situ solidification) and to achieve densified transparent SiO2 glass after atmospheric pressure sintering of the green compacts.

Briefly, SiO2 fine particles are dispersed in a mixed solvent of a-terpineol and tetrahydrofuran (THF) with assistance from polyethyleneimine partially complexed with oleic acid (PEI-OA). PEI-OA is designed to serve as a universal functional polymer dispersant that could be attached onto various series of particles16–19. The content of OA segment in PEI-OA is varied to tune the dispersion stability of SiO2 fine particles in the solvent while the remaining un-complexed amino groups in PEI-OA were expected to act as cross-linking reaction sites. The ratio of a-terpineol and tetrahydrofuran (THF) is also varied so as to match the refractive index of the solvent with that of the SiO2 fine particles for improving the transparency of the suspension. Then, the photo-radical initiators and a small amount of multifunctional acrylates (MA, only 5 wt%, based on SiO2 particles) are dissolved into the prepared suspension. By UV light irradiation on this suspension, we expect MA to be polymerized by an exothermic reaction. Further, the generated polymerization heat will aid the Michael additive reaction between the polymerized MA and the residual amine groups of PEI-OA on the SiO2 fine particles, thereby resulting in site-selective suspension solidification by inter-particle network formation. We will demonstrate that the proposed photo-curable suspension can be applied to various shaping processes, including micro-scale stereolithography and centimeter-scale in-situ solidification, and can be further processed into transparent SiO2 glass materials through rapid de-binding/sintering even under non-vacuumed atmospheric conditions. The total duration time of de-binding/sintering profiles will be reduced at least half a day (at least 77% reduction in time) compared to the case of SiO2 green compacts prepared by conventional photo-curable suspensions (Supplementary Fig. 1b).

Results and discussion

Design of interparticle photo-cross-linkable suspensions. The visual appearances of the designed photo-curable suspensions with different mixing volume ratios of a-terpineol: THF and their in-line transmittances are shown in Fig. 1b and Supplementary Fig. 2, respectively. In these figures, the mono-solvent suspensions (a-terpineol: THF = 100:0 and 0:100) exhibit strong turbidity, whereas the mixed-solvent suspensions of a-terpineol and THF exhibit improved in-line transmittance. It is demonstrated that the matching of refractive indices (n) of the mixed solvent (nα-terpineol = 1.4831 (λ = 589.3 nm, T = 293.15 K)38, nα-THF = 1.4070 (λ = 589.3 nm, T = 293.15 K)39) with that of the SiO2 particles (nSiO2 = 1.4584 (λ = 589.3 nm, T = 293.15 K)40) reduces the light scattering in the suspension. With respect to the wavelength region (365, 405 nm) that is used for shaping in this study, an α-terpineol: THF mixing ratio of 55:45 was found to be optimal to increase the in-line transmittance of the suspension (Supplementary Fig. 2). Figures 1c and d presents the effect of UV (365 nm) energy dose on the curing depth of the designed suspension and visual examples of the photo-cured suspension, respectively. The curing depth was analyzed by a molding based macroscopic method which UV light was irradiated from the bottom of the glass tube filled with the suspension. The designed suspension was photo-curable even when the additive content of the photo-responsive monomers is extremely low (only 4.5–23 % compared to previous reports9,17–19,21). The increase in the transparency of the suspension by control of the solvent
composition successfully increased the curing depth in centimeter region, which will be favorable to photo-cure relatively large (centimeter-scale) components. On the other hand, Fig. 1e shows the effect of UV (405 nm) energy dose on the micro-scaled curing depth of the designed suspension which was characterized using the laser-based stereolithographic apparatus. Smaller curing depths were achieved at lower energy dose conditions when the transparency of the suspension was increased. This is because of the reduction of light scattering in the transparent suspension, which will be favorable to photo-cure micro-meter scale components.

To understand the dispersion stability and photo-curing behavior of the designed suspension, the effects of the particle concentrations and the OA content in PEI-OA on the suspension flow curves and storage modulus (G') are shown in Fig. 2a-d. The suspension designed using PEI-OA (15 mol% OA in PEI-OA) exhibits flow curves without hysteresis during increasing and decreasing shear rates (Fig. 2a) even under higher particle concentrations (~42 vol%). This indicates that no strong aggregates collapse by shear were present, and that the suspension was well-stabilized before UV light irradiation. The content of OA in PEI-OA also affected the flow curves of the suspension (Fig. 2b); although no strong aggregates were present (i.e., no strong hysteresis properties were found in the flow curves), the suspension viscosity gradually increased with increasing OA content in PEI-OA. The surface affinity between the particle surface and the α-terpineol/THF mixed solvent was presumed to have been reduced with increasing OA content in PEI-OA.

The real-time photo-curing properties of these well-dispersed suspensions with different particle concentrations and OA contents in PEI-OA were further characterized by monitoring the changes in G' using a rheometer under UV irradiation. For all cases, a remarkable increase in G' was observed just after UV light irradiation. Interestingly, the changes in G' before and after UV irradiation became greater and the response time of G' was significantly increased during UV light irradiation when MA was in presence (Supplementary Methods, Supplementary Fig. 3), it can be suggested that MA polymerization heat was generated and aided the Michael additive reaction. Owing to network formation among the PEI-OA-modified SiO2 particle surface by the UV light-induced photo-polymerization of MA and the Michael additive reaction between polymerized MA and amino groups of PEI-OA through the Michael additive reaction was key to achieving effective photo-responsivity. Based on the above-mentioned findings, the increase in the solidification degree and shortening of solidification response time with increasing particle UV light irradiation (after 15 s and 30 s) were collected from the suspension and analyzed by FTIR and TGA after washing using THF to detach unreacted molecules from the particles. From the FTIR spectra shown in Fig. 2e, signals attributed to vibrations of the interior siloxane bonds (1866 cm$^{-1}$) and OH bending vibrations (1630 cm$^{-1}$) of the surface-bound water1 were found in the raw powder sample. For the SiO2 particles before UV irradiation, bands correspond to CH2 scissoring (1462 cm$^{-1}$) were further detected, which originated from OA42 and PEI45. A small absorbance of the C=O stretching vibration (1732 cm$^{-1}$) from MA46 was also detected, suggesting the occurrence of the Michael additive reaction between MA and amino groups of PEI-OA bound on the particle surface, at room temperature in slight degree. A small weight loss was observed in the TGA curves from SiO2 particles collected before UV irradiation, which further supports the presence of PEI-OA and a small amount of MA (Fig. 2f). After UV irradiation, bands related to the C=O stretching vibration (1732 cm$^{-1}$) and -CH=CH2 scissoring (1406 cm$^{-1}$)47 originating from MA significantly increased in the FTIR spectra. Furthermore, increased weight loss was detected in the TGA with increasing UV irradiation time. These results suggest that larger amounts of MA have fixed on the PEI-OA-modified SiO2 particle surface by the UV light-induced photo-polymerization of MA and the Michael additive reaction between polymerized MA and amino groups of PEI-OA bound on particle surface. Considering that suspension temperature rapidly increased during UV light irradiation when MA was in presence, the effect of UV (405 nm) energy dose on the micro-scaled curing depth of the designed suspension which was characterized using the laser-based stereolithographic apparatus.

Fig. 1 Design of transparent photo-curable SiO2 suspensions with suppressed organic additives. a Schematic illustration for the concept of the photo-curable suspension design. b Visual appearance of the SiO2 suspension (42 vol%) with various mixing volume ratios of α-terpineol to THF. c Cure depth of photo-curable SiO2 suspension characterized by a molding based macroscopic approach. d Photo-cured suspension after UV irradiation (18,420 mJ cm$^{-2}$). e Cure depth of photo-curable SiO2 suspension characterized by a stereo-lithography based microscopic approach.
concentration (Fig. 2c) can be explained by the effective inter-particle network formation realized by the decrease in the inter-particle surface distances. Furthermore, the suppression of solidification behavior with increasing OA content (Fig. 2d) can be explained by the reduction of the remaining amino groups in PEI-OA, which was a reaction site for network formation with the polymerized MA.

Three-dimensional structuring of transparent SiO2 glass. Using the 42 vol% SiO2 suspension stabilized with PEI-OA containing 15 mol% OA in a mixed solvent of THF and α-terpineol as the standard photo-curable suspension, our newly designed photo-curable suspensions could be applied toward shaping centimeter-scaled green compacts by photo-curing in a mold (Fig. 2i), as well as toward micro-meter-scaled stereolithography (Fig. 2j). Owing to the formation of the photo-induced polymer network among the particles, 1.28% linear shrinkage was observed during photo-curing in a disk-shaped mold. Furthermore, the photo-cured green compacts could be dried without inducing collapse and cracking by simply leaving the sample in a 100 °C oven (for at least 180 min, Supplementary Fig. 4). This process was considerably rapid compared to drying during the general in-situ solidification, which required more than 12 h. In addition, the three-point bending strength and the Vickers hardness was 84 MPa (SD 11) and 9.66 GPa (SD 0.70), respectively (n = 10, Supplementary Fig. 7). Owing to the realization of highly particle-packed suspensions and the heating rates of the corresponding photo-cured compacts on the appearance of the sintered material are shown in Fig. 3a. The size of the photo-cured green compacts before sintering was 20 mm in diameter and 3.9 mm in thickness. The MA content was varied between 5 and 20 wt% to the particles, which is low compared to the monomer content in conventional photo-responsive suspensions. From TGA analysis, overall weight loss from the green compact to the sintered material, including PEI-OA, were 7 wt%, 12 wt%, and 24 wt% to the particles when MA content was 5 wt%, 10 wt%, and 20 wt% to the particles, respectively (Supplementary Fig. 6). Note also that the heating rate was varied from 5 to 20 °C min⁻¹, which is higher than that in existing additive manufacturing/in-situ solidification (c.a. 0.1 to 1.6 °C min⁻¹) using photo-curable suspension.

When the heating rate was 5 °C min⁻¹, transparent (Fig. 3b) and densified (2.19 g cm⁻³ by the Archimedes method) sintered SiO2 glass was successfully obtained, without forming crystal phases (Fig. 3c), even when sintering the green compacts at ambient pressure for all MA additive conditions. Considering the full density of fused silica glass (2.20 g cm⁻³), there might be slight number of defects remained in the sintered materials which can be improved by vacuum sintering. The overall linear shrinkage after sintering were 24.7% in width and in height. The three-point bending strength and the Vickers hardness was 84 MPa (SD 11) and 9.66 GPa (SD 0.70), respectively (n = 10, Supplementary Fig. 7). Owing to the realization of highly particle-packed suspensions.

The effects of MA contents in the photo-responsive suspensions and the heating rates of the corresponding photo-cured compacts on the appearance of the sintered material are shown in Fig. 3a. The size of the photo-cured green compacts before sintering was 20 mm in diameter and 3.9 mm in thickness. The MA content was varied between 5 and 20 wt% to the particles, which is low compared to the monomer content in conventional photo-responsive suspensions. From TGA analysis, overall weight loss from the green compact to the sintered material, including PEI-OA, were 7 wt%, 12 wt%, and 24 wt% to the particles when MA content was 5 wt%, 10 wt%, and 20 wt% to the particles, respectively (Supplementary Fig. 6). Note also that the heating rate was varied from 5 to 20 °C min⁻¹, which is higher than that in existing additive manufacturing/in-situ solidification (c.a. 0.1 to 1.6 °C min⁻¹) using photo-curable suspension. When the heating rate was 5 °C min⁻¹, transparent (Fig. 3b) and densified (2.19 g cm⁻³ by the Archimedes method) sintered SiO2 glass was successfully obtained, without forming crystal phases (Fig. 3c), even when sintering the green compacts at ambient pressure for all MA additive conditions. Considering the full density of fused silica glass (2.20 g cm⁻³), there might be slight number of defects remained in the sintered materials which can be improved by vacuum sintering. The overall linear shrinkage after sintering were 24.7% in width and in height. The three-point bending strength and the Vickers hardness was 84 MPa (SD 11) and 9.66 GPa (SD 0.70), respectively (n = 10, Supplementary Fig. 7). Owing to the realization of highly particle-packed suspensions and the heating rates of the corresponding photo-cured compacts on the appearance of the sintered material are shown in Fig. 3a.
photo-cured green compacts from the concentrated and non-aggregated suspensions, transparent sintered SiO₂ glass was obtained without employing vacuum sintering conditions. With increasing heating rates, cracks began to form for the green compacts prepared using photo-responsive suspensions containing higher contents of MA (10 wt% and 20 wt%). On the other hand, by reducing the MA additive content to 5 wt%, which was still enough to induce photo-responsive properties in the suspension (Fig. 2), a transparent sintered SiO₂ glass material was obtained even at increased heating rates. Owing to the rapid dryable, debindable, and sinterable properties of the photo-cured green compacts prepared from our newly proposed photo-responsive suspensions, the overall processing time for drying/debinding/sintering of photo-cured green compacts can be shortened to a significant extent (Supplementary Fig. 1), which should be industrially friendly and energy conserving. Here, we should note that the thickness of the photo-cured green compacts may affect to the time needed for thermal-debinding process. However, as demonstrated in Fig. 3d–g, even the green compacts photo-cured using centimeter-scaled complex-structured molds (for instance, the green compact corresponds to Fig. 3f had the side length of 22 mm in the hexagonal structure and the thickness of 12–16 mm) as well as micro-scaled green compacts fabricated through stereolithography can also be sintered into transparent glass components through the rapid heating profiles. We would like to note also that, similarly to the previous reports, the glass components can simply be functionalized by metal ions in our proposed photo-responsive suspensions. For instance, a photo-responsive suspension can be designed using PEI-OA partially complexed with metal ions such as Cu, Eu, and Ce (0.19, 0.15, and 0.15 mol%, based on the number of PEI monomer units, respectively. See Supplementary Methods for the detailed procedures.). The sintered transparent SiO₂ glass component fabricated from this photo-responsive suspension with metal-doped PEI-OA exhibited photoluminescence (Fig. 4a–c). By virtue of the realization of rapid dryable/debindable/sinterable green compacts from photo-responsive suspensions to form complex-structured transparent glass materials, we believe that the proposed photo-responsive suspension system will offer novel opportunities for the design of industry-friendly and energy/time-saving ceramic/glass fabrication processes through additive manufacturing/molding techniques.

In summary, the design of a highly dispersed photo-responsive SiO₂ suspension that could be cured using a suppressed amount of multifunctional acrylates was demonstrated by dispersing PEI-OA-modified SiO₂ particles into a mixed solvent of α-terpineol and THF with photo-radical initiators and MA. UV light irradiation on the suspension resulted in successful photo-curing by polymer network formation among SiO₂ particles, which occurred due to the photo-polymerization of MA and the Michael additive reaction between the polymerized MA and amino groups on SiO₂ particles. Tuning of the α-terpineol/THF ratio was effective in controlling the refractive index matching between the solvent and SiO₂ particles. This was beneficial to suppress the light scattering in the suspension and to increase the curing depth. The suspension could be employed in various shaping process such as micro-scale stereolithography to centimeter-scale in-situ solidification even the additive content of the photo-responsive monomers was extremely low. Owing to the limited amount of monomers in the suspension, the complex-structured SiO₂ green compacts were processable into transparent glass components through rapid debinding and sintering, which the heating profiles were reduced at least 14 h (77% reduction in
time) compared to the case of conventionally photo-cured SiO₂ green compacts.

Methods

Materials. Polyethyleneimine (PEI, average molecular weight 1800), oleic acid (OA), and tetrahydrofuran (THF; 99.5%) were purchased from FUJIFILM Wako Pure Chemical Co., Ltd., Japan, α-Terpineol (80.0%), 2,2-dimethoxy-2-phenyleth-cetophenone (DPA) as a radical initiator for in-situ solidification and 2-(5-chloro-2-benzotriazolyl)-6-tert-butyl-p-cresol as an UV absorber were purchased from Tokyo Chemical Industry Co., Ltd., Japan. Diphenyl (2,4,6-trimethylbenzophenone), phosphonitril chloride was used as a radical initiator for stereolithography was purchased from Merck KGaA, Germany. Multifunctional acrylate (MA, a mixture of di-pentaerythritol pentacrylate (40–50%) and di-pentaerythritol hexacrylate) was a gift from Toagosei Co., Ltd., Japan. SiO₂ nanoparticles (KE-530, 12.6 m² g⁻¹ analyzed by BET) were purchased from Nippon Shokubai Co., Ltd., Japan.

Preparation of photo-responsive suspensions. First, PEI–OA complexes with different OA contents (15–50 mol% of OA in PEI monomer units, calculated assuming all amines were secondary amines) in PEI were prepared in a manner similar to that in our previous report. Briefly, 0.500 g of PEI and 0.493, 0.986, and 1.642 g of OA, corresponding to 15, 30, and 50 mol% OA, respectively, were mixed with α-terpineol to prepare a 10.3 g solution. The obtained solutions were treated with ultrasonic irradiation, and then magnetically stirred for 24 h. The respective PEI–OA complexes were then dissolved into various mixed solutions of α-terpineol and THF (THF contents: 0, 30, 35, 40, 45, 50, 55, 60, and 100 vol%). SiO₂ determined to ensure their saturated adsorbed content on SiO₂ particles (Supplementary Information).

Procedure. The suspensions were stirred for 30 min under atmospheric conditions using an electric furnace before starting the measurement. Fourier-transform infrared (FT-IR) spectroscopy (FT-IR-IR 6000, JASCO Co., Ltd., Japan) and thermogravimetric analysis (TGA) (Thermo RINT 2000, Rigaku Co., Japan) was conducted (40 kV, 20 mA, CuKα, 20° min⁻¹) to verify that the crystallization of the amorphous phase, which causes devitrification, was not promoted during sintering. A UV–vis spectrophotometer was used to characterize the optical transmission spectra of the sintered body without conducting any surface polishing. Vickers hardness was measured by a hardness tester (AVK-Ci, Akashi, Japan). The applied load was 9.80 N and the loading time was 15 s. Three-point bending strength was measured by a universal testing machine (AG-X 50KN, Shimadzu Co., Japan) using a specimen having the size of 18 mm x 2 mm x 1.4 mm.

Data availability. The data supporting the findings of this study are available from the corresponding authors upon request.

Received: 27 December 2019; Accepted: 15 April 2020;
Published online: 20 May 2020

References

1. Kim, M. et al. Three-dimensional printing of transparent fused silica glass. Nature 544, 337–339 (2017).
2. Pfaffinger, M., Hartmann, M., Schwenkwein, M. & Stampfl, J. Stabilization of tricalcium phosphate slurries against sedimentation for stereolithographic additive manufacturing and influence on the final mechanical properties. Int. J. Appl. Ceram. Technol. 14, 499–506 (2017).
3. Feilermann, R. et al. Lithography-based additive manufacturing of cellular ceramic structures. Adv. Eng. Mater. 14, 1052–1058 (2012).
4. He, R. et al. Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method. Ceram. Int. 44, 3412–3416 (2018).
5. Wang, J.-C. & Dommati, H. Fabrication of zirconia ceramic parts by using solvent-based slurgy stereo lithography and sintering. Int. J. Adv. Manuf. Technol. 98, 1537–1546 (2018).
6. Schmidt, J., Elsayed, H., Bernardo, E. & Colombo, P. Digital light processing of wollastonite-diopside glass-ceramic complex structures. J. Eur. Ceram. Soc. 38, 4580–4584 (2018).
7. Zeng, Y. et al. 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing. J. Mater. Sci. 53, 6291–6301 (2018).
8. Huang, R.-J. et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si₃N₄ powder via digital light processing based stereolithography method. Ceram. Int. 45, 5158–5162 (2019).
9. Liu, C., Qian, B., Liu, X. & Liao, L. J. Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding. RSC Adv. 8, 1634–16348 (2018).
10. Zhou, M. et al. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography—optimization of the drying and debinding processes. Ceram. Int. 42, 11598–11602 (2016).
11. An, D. et al. Additive manufacturing and characterization of complex Al₂O₃–SiO₂ parts based on a novel stereolithography method. Int. J. Appl. Ceram. Technol. 14, 836–844 (2017).
12. Lian, Q. et al. Accurate printing of a zirconia molar crown bridge using three-part auxiliary supports and ceramic mask projection stereolithography. Ceram. Int. 45, 18814–18822 (2019).
13. Provin, C., Monneret, S., Gall, H. & Corbel, S. Three-dimensional ceramic microcomponents made using microstereolithography. Adv. Mater. 15, 994–997 (2003).
14. Yang, Y. et al. Three-dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22, 414–421 (2016).
15. Brink, A. L., Fei, F., Wang, W. & Stampfl, J. Three-dimensional printing of ceramic stereolithography of complex overhanging structures based on an elastico-viscous plastic suspension feedstock. ACS Appl. Mater. Interfaces 11, 18849–18857 (2019).
16. Hazan, Y., de., Thäner, M., Trunec, M. & Misák, J. Robotic deposition of 3D nanocomposite and ceramic fiber architectures via UV curable colloidal inks. J. Eur. Ceram. Soc. 32, 1187–1198 (2012).
17. Wozniak, M., Graule, T., Hazan, Y., de., Kata, D. & Lis, J. Highly loaded UV curable nanosilica dispersions for rapid prototyping applications. J. Eur. Ceram. Soc. 29, 2259–2265 (2009).
18. Kotz, F. et al. Liquid glass: a facile soft replication method for structuring glass. Adv. Mater. 28, 4646–4650 (2016).

FT-IR and TGA analyses were prepared by centrifuging the suspension, washing the sediment with THF, and drying at 80 °C. The fractured surface of photo-cured green body was characterized by field emission-scanning electron microscope (FE-SEM, SU8010, Hitachi High-Technologies, Co., Japan). The relative density of the sintered body was measured by the Archimedes method. X-ray diffraction (XRD, RINT 2000, Rigaku Co., Japan) was conducted (40 kV, 20 mA, CuKα, 20° min⁻¹) to verify that the crystallization of the amorphous phase, which causes devitrification, was not promoted during sintering. A UV–vis spectrophotometer was used to characterize the optical transmission spectra of the sintered body without conducting any surface polishing. Vickers hardness was measured by a hardness tester (AVK-Ci, Akashi, Japan). The applied load was 9.80 N and the loading time was 15 s. Three-point bending strength was measured by a universal testing machine (AG-X 50KN, Shimadzu Co., Japan) using a specimen having the size of 18 mm x 2 mm x 1.4 mm.
