NOTE ON THE PRIME NUMBER THEOREM

YONG-CHEOL KIM

ABSTRACT. We survey the classical results on the prime number theorem.

In this chapter, we are very interested in the asymptotic behavior of a single number theoretic function $\pi(n)$ which counts all prime numbers between 1 and n, or $\pi(x)$ which is extended to \mathbb{R} and defined by

$$\pi(x) = \sum_{p \leq x} 1.$$

It is well-known that Euclid showed that

$$\lim_{x \to \infty} \pi(x) = \infty;$$

that is, there exist infinitely many prime numbers.

Proposition 5.1. There exists a constant $c > 0$ such that

$$\pi(x) \geq c \cdot \ln \ln x.$$

Proof. First of all, we prove that if p_n is the nth prime number then we have that

$$p_n \leq 2^{2^n - 1}.$$

Since there must be some p_{n+1} dividing the number $p_1 p_2 \cdots p_n - 1$ and not exceeding it, it follows from the induction step that

$$p_{n+1} \leq 2^{2^n} \cdot 2^{2^{n+1}} \cdot \cdots \cdot 2^{2^n} = 2^{2^n + 2^{n+1} + \cdots + 2^n} \leq 2^{2^n}.$$

If $x \geq 2$ is some real number, then we select the largest natural number n satisfying $2^{2^n - 1} \leq x$, so that we have that $2^{2^n} > x$. Hence we conclude that

$$\pi(x) \geq n \geq \frac{1}{\ln 2} \cdot \ln \left(\frac{\ln x}{\ln 2} \right) \geq \frac{1}{\ln 2} \cdot \ln \ln x. \quad \square$$
Proposition 5.2. There exists a constant $c > 0$ such that

$$\pi(x) \geq c \cdot \ln x$$

for all sufficiently large x.

Proof. Since each square-free integer $n \leq x$ can be only be divided by $p_1, p_2, \cdots, p_{\pi(x)}$, n can be written uniquely as

$$n = \prod_{k=1}^{\pi(x)} p_k^{\alpha_k}$$

where α_k takes only the values 0 or 1. Thus there are at most $2^{\pi(x)}$ square-free integers $n \leq x$. From Corollary 4.2.21, we see that the density of the square-free integers tends to $6/\pi^2$; that is, the number of square-free numbers $n \leq x$ grows asymptotically to $6x/\pi^2$. This implies that there is some constant $c_0 < 6/\pi^2$ such that

$$c_0 \cdot x \leq 2^{\pi(x)}$$

for all sufficiently large x. Hence we complete the proof. □

Neither of Proposition 5.1 and Proposition 5.2 describes the asymptotic behavior of $\pi(x)$ quite well. Long time ago, Legendre and Gauss conjectured that

$$\pi(x) \sim x \ln x.$$

The truth of this assertion is the core of the prime number theorem. For more delicate description of $\pi(x)$, we consider the integral logarithm function $\text{li} x$ defined as the Cauchy principal value integral

$$\text{li} x = \int_0^x \frac{1}{\ln t} dt = \lim_{\varepsilon \to 0} \left(\int_0^{1-\varepsilon} \frac{1}{\ln t} dt + \int_{1+\varepsilon}^x \frac{1}{\ln t} dt \right).$$

It follows from de l’Hospital’s rule that

$$\lim_{x \to \infty} \frac{\text{li} x}{\ln x} = \lim_{x \to \infty} \frac{1}{\ln x - \frac{1}{\ln^2 x}} = 1.$$

Thus we obtain the asymptotic behavior of $\text{li} x$ as follows:

$$\text{li} x \sim x / \ln x.$$

Hence the asymptotic relation $\pi(x) \sim \text{li} x$ is called the prime number theorem. In fact, Gauss conjectured that $\text{li} x$ describes $\pi(x)$ even better than $x/\ln x$.

Lemma 5.3. (a) $\sum_{n \leq x} \Lambda(n) \left\lfloor \frac{x}{n} \right\rfloor = x \ln x - x + O(\ln x)$.

(b) $\sum_{n \leq x} \Lambda(n) \left(\left\lfloor \frac{x}{n} \right\rfloor - 2 \left\lfloor \frac{x}{2n} \right\rfloor \right) = x \ln 2 + O(\ln x)$.

Proof. (a) By the definition of the Mangoldt function, we have that

$$\sum_{n \leq x} \ln n = \sum_{n \leq x} \sum_{m \mid n} \Lambda(m) = \sum_{m \leq x} \Lambda(m) \sum_{n \leq x, m \mid n} 1 = \sum_{m \leq x} \Lambda(m) \left\lfloor \frac{x}{m} \right\rfloor.$$
Thus it follows from Proposition 4.2.3 [the Euler’s sum formula] that
\[\sum_{n \leq x} \Lambda(n) \left[\frac{x}{n} \right] = \sum_{n \leq x} \ln n = \int_1^x \ln t \, dt + O(\ln x) = x \ln x - x + O(\ln x). \]

(b) By applying (a) and the fact that \(\sum_{x/2 < n \leq x} \Lambda(n) \left[\frac{x}{2n} \right] = 0 \), we obtain that
\[\sum_{n \leq x} \Lambda(n) \left(\left[\frac{x}{n} \right] - 2 \left[\frac{x}{2n} \right] \right) = \sum_{n \leq x} \Lambda(n) \left[\frac{x}{n} \right] - 2 \sum_{n \leq x/2} \Lambda(n) \left[\frac{x}{2n} \right] - 2 \sum_{x/2 < n \leq x} \Lambda(n) \left[\frac{x}{n} \right] \]
\[= x \ln x - x - 2 \left(x \ln \frac{x}{2} - \frac{x}{2} \right) + O(\ln x) \]
\[= x \ln 2 + O(\ln x). \]

Hence we complete the proof. \(\square \)

Theorem 5.4 [Chebyshev’s Theorem]. There exist two constants \(c_1 > 0 \) and \(c_2 > 0 \) such that
\[c_1 \cdot \frac{x}{\ln x} \leq \pi(x) \leq c_2 \cdot \frac{x}{\ln x} \]
for all sufficiently large \(x \).

Proof. Since \(\alpha - 2 \left[\frac{\alpha}{2} \right] \) is always an integer and satisfies the following inequality
\[-1 = \alpha - 1 - 2 \frac{\alpha}{2} < \alpha - 2 \left[\frac{\alpha}{2} \right] < \alpha - 2 \left(\frac{\alpha}{2} - 1 \right) = 2, \]
we see that
\[0 \leq \alpha - 2 \left[\frac{\alpha}{2} \right] \leq 1. \]

Thus by (5.1) and (b) of Lemma 5.3 we have that
\[x \ln 2 + O(\ln x) = \sum_{n \leq x} \Lambda(n) \left(\left[\frac{x}{n} \right] - 2 \left[\frac{x}{2n} \right] \right) \]
\[\leq \sum_{n \leq x} \Lambda(n) = \sum_{p \leq x} \left[\frac{\ln x}{\ln p} \right] \ln p \]
\[\leq \ln x \sum_{p \leq x} 1 = \pi(x) \ln x, \]
and so we can get the first inequality by dividing by $\ln x$. For the second inequality, we observe that

$$
\pi(x) \ln x - \pi \left(\frac{x}{2} \right) \ln \frac{x}{2} = \ln \frac{x}{2} \left(\pi(x) - \pi \left(\frac{x}{2} \right) \right) + \pi(x) \ln 2
$$

$$
= \ln \frac{x}{2} \left(\pi(x) - \pi \left(\frac{x}{2} \right) \right) + O(x)
$$

$$
= O \left(\sum_{x/2 < p \leq x} \ln p + x \right)
$$

$$
= O \left(\sum_{x/2 < n \leq x} \Lambda(n) \cdot (1 - 0) + x \right)
$$

$$
= O \left(\sum_{x/2 < n \leq x} \Lambda(n) \left(\left\lfloor \frac{x}{n} \right\rfloor - 2 \left\lfloor \frac{x}{2n} \right\rfloor + x \right) \right)
$$

$$
= O \left(\sum_{n \leq x} \Lambda(n) \left(\left\lfloor \frac{x}{n} \right\rfloor - 2 \left\lfloor \frac{x}{2n} \right\rfloor + x \right) \right)
$$

$$
= O(x).
$$

From this, we have more generally the following estimate

$$
\pi \left(\frac{x}{2^k} \right) \ln \frac{x}{2^k} - \pi \left(\frac{x}{2^{k+1}} \right) \ln \frac{x}{2^{k+1}} = O \left(\frac{x}{2^k} \right), \quad k \in \mathbb{N}.
$$

Thus for any $K \in \mathbb{N}$ we obtain that

$$
\pi(x) \ln x - \pi \left(\frac{x}{2^K+1} \right) \ln \frac{x}{2^K+1} = \sum_{k=0}^{K} \pi \left(\frac{x}{2^k} \right) \ln \frac{x}{2^k} - \pi \left(\frac{x}{2^{k+1}} \right) \ln \frac{x}{2^{k+1}}
$$

$$
= O \left(\sum_{k=0}^{K} \frac{x}{2^k} \right) = O(x).
$$

This implies that $\pi(x) = O \left(\frac{x}{\ln x} \right)$. \hfill \Box

Proposition 5.5. The following asymptotic equation

$$
\pi(x) \sim \frac{x}{\ln x}
$$

is equivalent to the asymptotic equation $\psi(x) \sim x$ where the ψ-function is defined by

$$
\psi(x) = \sum_{n \leq x} \Lambda(n) = \sum_{p, \nu \geq 1, p^\nu \leq x} \ln p.
$$

(Here the function ψ is introduced by Chebyshev.)

Proof. From the definition of the function ψ, we have that

$$
\psi(x) = \sum_{p \leq x} \left\lfloor \frac{\ln x}{\ln p} \right\rfloor \ln p \leq \ln x \sum_{p \leq x} 1 = \pi(x) \ln x.
$$

(5.2)
On the other hand, we note that for any \(y\) with \(1 < y < x\),
\[
\pi(x) = \pi(y) + \sum_{1 \leq \pi(y) + \sum_{y < p \leq x} \frac{\ln p}{\ln y}} \leq c_2 \cdot \frac{y}{\ln y} + \frac{\psi(x)}{\ln y}.
\]
Thus, multiplying by the factor \(\ln x/x\), the above inequality becomes
\[
\pi(x) \cdot \frac{\ln x}{x} \leq c_2 \cdot \frac{\ln x}{x \ln y} + \frac{\psi(x)}{x \ln y},
\]
If we set \(y = x/\ln x\) in (5.3), then we have that
\[
\pi(x) \cdot \frac{\ln x}{x} \leq \frac{c_2 \psi(x)}{\ln x - \ln \ln x} + \frac{1}{1 - \frac{\ln \ln x}{\ln x}}.
\]
Hence we complete the proof from (5.2) and (5.4).

Theorem 5.6[Mertens’ Theorem]. If \(p\) runs through all prime numbers, then we have the following asymptotic approximations;
\[
(a) \sum_{p \leq x} \frac{\ln p}{p} = \ln x + O(1), \quad (b) \sum_{p \leq x} \frac{1}{p} = \ln \ln x + c_3 + O \left(\frac{1}{\ln x} \right),
\]
\[
(c) \prod_{p \leq x} \left(1 - \frac{1}{p} \right) = \frac{c_4}{\ln x} \left(1 + O \left(\frac{1}{\ln x} \right) \right),
\]
where \(c_3 > 0\) and \(c_4 > 0\) are some constants.

Proof. (a) From (a) of Lemma 5.3 and Theorem 5.4, we have that
\[
x \ln x - x + O(\ln x) = \sum_{n \leq x} \Lambda(n) \left(\frac{x}{n} \right)
\]
\[
= \sum_{p \leq x} \left(\frac{x}{p} \right) \ln p + \sum_{p \leq \sqrt{x}, \nu \geq 2: p^\nu \leq x} \left(\frac{x}{p^\nu} \right) \ln p
\]
\[
= \sum_{p \leq x} \frac{\ln p}{p} \cdot x - \sum_{p \leq \sqrt{x}} \left(\frac{x}{p} \right) \ln p + O \left(\sum_{p \leq \sqrt{x}} \sum_{2 \leq \nu \leq \ln x/p} \frac{x}{p^\nu} \ln p \right)
\]
\[
= x \sum_{p \leq x} \frac{\ln p}{p} + O \left(\sum_{p \leq x} \ln p \right) + O \left(x \sum_{n=1}^{\infty} \frac{\ln n}{n^2} \right)
\]
\[
= x \sum_{p \leq x} \frac{\ln p}{p} + O \left(\ln x \cdot c_2 \cdot \frac{x}{\ln x} \right) + O \left(x \sum_{n=1}^{\infty} \frac{\ln n}{n^2} \right)
\]
\[
= x \sum_{p \leq x} \frac{\ln p}{p} + O(x).
\]
This implies the first one.
(b) It follows from Proposition 4.2.2”[Abel transformation] that
\[
\sum_{p \leq x} \frac{1}{p} = \sum_{p \leq x} \frac{\ln p}{p} \cdot \frac{1}{\ln p} \\
= \frac{1}{\ln x} \sum_{p \leq x} \frac{\ln p}{p} + \int_2^x \sum_{p \leq t} \frac{\ln p}{p} \cdot \frac{1}{t \ln^2 t} dt \\
= 1 + O\left(\frac{1}{\ln x}\right) + \int_2^x \frac{1}{t \ln t} dt + \int_2^x \left(\sum_{p \leq t} \frac{\ln p}{p} - \ln t\right) \frac{1}{t \ln^2 t} dt.
\]

Since \(a(t) = \sum_{p \leq t} \frac{\ln p}{p} - \ln t\) is bounded by (a), the following integral
\[
\int_2^\infty \frac{a(t)}{t \ln^2 t} dt
\]
converges, and moreover we have that
\[
\int_2^\infty \frac{1}{t \ln t} dt = \ln \ln t - \ln 2.
\]

Therefore we conclude that
\[
\sum_{p \leq x} \frac{1}{p} = \ln \ln x + \left(1 - \ln 2 + \int_2^\infty \frac{a(t)}{t \ln^2 t} dt\right) + O\left(\frac{1}{\ln x} + \int_x^\infty \frac{|a(t)|}{t \ln^2 t} dt\right)
\]
\[
= \ln \ln x + c_3 + O\left(\frac{1}{\ln x}\right).
\]

(c) If we define the constant \(c_5\) by
\[
c_5 = \sum_{n=2}^\infty \frac{1}{n} \sum_{p \leq x} \frac{1}{p^n},
\]
then it follows from simple calculation that
\[
\ln \left(\prod_{p \leq x} \left(1 - \frac{1}{p}\right)\right) = \sum_{p \leq x} \ln \left(1 - \frac{1}{p}\right) = -\sum_{p \leq x} \sum_{n=1}^\infty \frac{p^{-n}}{n}
\]
\[
= -\sum_{p \leq x} \frac{1}{p} - \sum_{n=2}^\infty \frac{1}{n} \sum_{p \leq x} \frac{1}{p^n}
\]
\[
= -\sum_{p \leq x} \frac{1}{p} - c_5 + O\left(\sum_{n=2}^\infty \frac{1}{n} \sum_{p \leq x} \frac{1}{p^n}\right)
\]
\[
= -\sum_{p \leq x} \frac{1}{p} - c_5 + O\left(\sum_{n=2}^\infty \sum_{m > x} \frac{1}{m^n}\right)
\]
\[
= -\sum_{p \leq x} \frac{1}{p} - c_5 + O\left(\sum_{n=2}^\infty \frac{1}{n} \cdot \frac{1}{(n-1)x^{n-1}}\right)
\]
\[
= -\sum_{p \leq x} \frac{1}{p} - c_5 + O\left(\frac{1}{x}\right).
\]

Hence this implies the required result. \(\square\)
Lemma 5.7 [Tauberian Theorem of Ingham and Newman].
Let $F(t)$ be a bounded complex-valued function defined on $(0, \infty)$ and integrable over every compact subset of $(0, \infty)$, and let $G(z)$ be an analytic function defined on a domain containing the closed half-plane $\Pi = \{ z \in \mathbb{C} : \text{Re}(z) \geq 0 \}$. If $G(z)$ agrees with the Laplace transformation of $F(t)$ for all $z \in \Pi$, i.e.
\[
G(z) = \int_0^\infty F(t) e^{-zt} \, dt, \quad \text{Re}(z) > 0,
\]
then the improper integral
\[
\int_0^\infty F(t) \, dt
\]
converges.

Proof. Without loss of generality, we may assume that $|F(t)| \leq 1$ for all $t > 0$. For $\lambda > 0$, we set
\[
G_\lambda(z) = \int_0^\lambda F(t) e^{-zt} \, dt.
\]
Then we see that $G_\lambda(z)$ is analytic on \mathbb{C}. Thus it suffices to show that
\[
\lim_{\lambda \to \infty} G_\lambda(0) = \lim_{\lambda \to \infty} \int_0^\lambda F(t) \, dt = G(0).
\]
Fix $\varepsilon > 0$. Then there are $\delta = \delta(\varepsilon) > 0$ and $R > 0$ such that $1/R < \varepsilon/3$ and $G(z)$ is analytic on the compact region
\[
\Omega_{\delta,R} = \{ z \in \mathbb{C} : \text{Re}(z) \geq \delta, |z| \leq R \}
\]
with boundary $\partial\Omega_{\delta,R} = \gamma$ which is a simple closed contour oriented counterclockwise. By Cauchy integral formula, we have that
\[
G(0) - G_\lambda(0) = \frac{1}{2\pi i} \int_\gamma \frac{G(z) - G_\lambda(z)}{z} \, dz.
\]
We observe that for $x = \text{Re}(z) > 0$,
\[
|G(z) - G_\lambda(z)| = \left| \int_\lambda^\infty F(t) e^{-zt} \, dt \right| \leq \int_\lambda^\infty e^{-xt} \, dt = \frac{e^{-\lambda x}}{x},
\]
and for $x = \text{Re}(z) < 0$,
\[
|G_\lambda(z)| = \int_0^\lambda F(t) e^{-zt} \, dt \leq \int_0^\lambda e^{-xt} \, dt = \frac{e^{-\lambda x}}{|x|}.
\]
With technical reasons given in (5.6) and (5.7), the relation (5.5) can be written again as
\[
G(0) - G_\lambda(0) = \frac{1}{2\pi i} \int_\gamma |G(z) - G_\lambda(z)| e^{\lambda z} \left(\frac{1}{z} + \frac{z}{R^2} \right) \, dz.
\]
If we denote by γ_+ the part of γ lying in $\text{Re}(z) > 0$, then we see that
\[
\frac{1}{z} + \frac{z}{R^2} = \frac{2x}{R^2}
\]
on \(\gamma_+ \), and thus it follows from (5.6) and (5.8) that

\[
|G(0) - G_\lambda(0)| \leq \frac{1}{2\pi} \int_{\gamma_+} \left| [G(z) - G_\lambda(z)] e^{\lambda z} \left(\frac{1}{z} + \frac{z}{R^2} \right) \right| dz \leq \frac{1}{2\pi} e^{-\lambda x} \cdot e^{\lambda x} \cdot \frac{2x}{R^2} \cdot \pi R = \frac{1}{R} < \frac{\varepsilon}{3}. \tag{5.9}
\]

If we denote by \(\gamma_- \) the part of \(\gamma \) lying in \(\text{Re}(z) < 0 \), then we have that

\[
\frac{1}{2\pi i} \int_{\gamma_-} G_\lambda(z) e^{\lambda z} \left(\frac{1}{z} + \frac{z}{R^2} \right) dz = \frac{1}{2\pi i} \int_{|z|=R} G_\lambda(z) e^{\lambda z} \left(\frac{1}{z} + \frac{z}{R^2} \right) dz
\]

since \(G_\lambda(z) \) is analytic on \(\mathbb{C} \). Thus similarly to (5.9) we obtain that

\[
\left| \frac{1}{2\pi i} \int_{\gamma_-} G_\lambda(z) e^{\lambda z} \left(\frac{1}{z} + \frac{z}{R^2} \right) dz \right| \leq \frac{1}{R} < \frac{\varepsilon}{3}. \tag{5.10}
\]

Since the function \(G(z) \left(\frac{1}{z} + \frac{z}{R^2} \right) \) is analytic on \(\gamma_- \), there is a constant \(M = M(\delta, R) = M(\varepsilon) > 0 \) such that

\[
\left| G(z) e^{\lambda z} \left(\frac{1}{z} + \frac{z}{R^2} \right) \right| \leq M e^{\lambda \text{Re}(z)}
\]

for each \(z \in \gamma_- \). Since \(\text{Re}(z) < 0 \) for \(z \in \gamma_- \), the integral

\[
\frac{1}{2\pi i} \int_{\gamma_-} G(z) e^{\lambda z} \left(\frac{1}{z} + \frac{z}{R^2} \right) dz
\]

tends to zero as \(\lambda \to \infty \), and so there is a constant \(N > 0 \) such that

\[
\left| \frac{1}{2\pi i} \int_{\gamma_-} G(z) e^{\lambda z} \left(\frac{1}{z} + \frac{z}{R^2} \right) dz \right| < \frac{\varepsilon}{3}
\]

whenever \(\lambda > N \). Thus if \(\lambda > N \), then it follows from (5.9), (5.10), and (5.11) that

\[
|G(0) - G_\lambda(0)| < \varepsilon.
\]

Therefore we are done. \(\square \)

Corollary 5.8 [Simplified Version of the Theorem of Weiner and Ikehara].

Let \(f(x) \) be a monotone nondecreasing function defined for \(x \geq 1 \) with \(f(x) = O(x) \). Suppose that \(g(z) \) is analytic in some region containing the closed half-plane \(\text{Re}(z) \geq 1 \) except for a simple pole at \(z = 1 \) with residue \(\alpha \) and, for any \(z \) with \(\text{Re}(z) > 1 \), \(g(z) \) coincides with the Mellin transform of \(f(x) \), i.e.

\[
g(z) = z \int_1^\infty f(x) x^{-z-1} dx, \ \text{Re}(z) > 1.
\]

Then we have that \(f(x) \sim \alpha x \).

Proof. We note that the function \(F(t) \) defined by

\[
F(t) = e^{-t} f(e^t) - \alpha
\]
is bounded on \((0, \infty)\) and integrable on each compact subset of \((0, \infty)\). Also its Laplace transform

\[
G(z) = \int_0^\infty [e^{-t} f(e^t) - \alpha] e^{-zt} \, dt = \int_1^\infty f(x) x^{-z-2} \, dx - \frac{\alpha}{z} = \frac{1}{z+1} g(z+1) - \frac{\alpha}{z}
\]

is well-defined in \(\text{Re}(z) > 0\). By the assumption, the right-hand side of (5.12) is analytic in some region containing the closed half-plane \(\text{Re}(z) \geq 0\). Thus it follows from Lemma 5.7 [Tauberian Theorem of Ingham and Newman] that the improper integral

\[
\int_0^\infty [e^{-t} f(e^t) - \alpha] \, dt = \int_1^\infty \frac{f(x) - \alpha x}{x^2} \, dx
\]

converges. Now we shall prove that \(f(x) \sim \alpha x\) by using the nondecreasing monotonicity of \(f\).

If \(\limsup_{x \to \infty} \frac{f(x)}{x} > \alpha\), then there exists some \(\delta > 0\) so that \(f(y) > (\alpha + 2\delta)y\) for infinitely many and arbitrarily large \(y\). Thus \(f(x) > (\alpha + 2\delta)y > (\alpha + \delta)x\) for all \(x\) with \(y < x < \left(\frac{\alpha + 2\delta}{\alpha + \delta}\right) y\), and

\[
\int_y^{\left(\frac{\alpha + 2\delta}{\alpha + \delta}\right) y} f(x) - \alpha x \, dx > \int_y^{\left(\frac{\alpha + 2\delta}{\alpha + \delta}\right) y} \frac{\delta}{x} \, dx = \delta \cdot \ln \left(\frac{\alpha + 2\delta}{\alpha + \delta}\right) > 0.
\]

This gives a contradiction. So we conclude that

\[
\limsup_{x \to \infty} \frac{f(x)}{x} \leq \alpha.
\]

If \(\liminf_{x \to \infty} \frac{f(x)}{x} < \alpha\), then there exists some \(\delta > 0\) with \(\delta < \alpha/2\) so that \(f(y) < (\alpha - 2\delta)y\) for infinitely many and arbitrarily large \(y\). Thus \(f(x) < (\alpha - 2\delta)y < (\alpha - \delta)x\) for all \(x\) with \(y < x < \left(\frac{\alpha - 2\delta}{\alpha - \delta}\right) y\), and

\[
\int_y^{\left(\frac{\alpha - 2\delta}{\alpha - \delta}\right) y} f(x) - \alpha x \, dx < \int_y^{\left(\frac{\alpha - 2\delta}{\alpha - \delta}\right) y} \frac{-\delta}{x} \, dx = -\delta \cdot \ln \left(\frac{\alpha - \delta}{\alpha - 2\delta}\right) < 0.
\]

This gives a contradiction. So we conclude that

\[
\liminf_{x \to \infty} \frac{f(x)}{x} \geq \alpha.
\]

Therefore we complete the proof from (5.13) and (5.14). □

Lemma 5.9 [Mertens]. \(\zeta(z) \neq 0\) for any \(z\) with \(\text{Re}(z) = 1\) and \(z \neq 1\).

Proof. We observe that \(3 + 4 \cos \theta + \cos(2\theta) = 2(1 + \cos \theta)^2 \geq 0\) for any \(\theta \in \mathbb{R}\). If \(\zeta(1 + it) = 0\) for some \(t \neq 0\), then the equation

\[
\Theta(s) = \zeta(s)^3 \cdot \zeta(s + it)^4 \cdot \zeta(s + 2it)
\]

has a zero at \(s = 1\). Thus we have that

\[
\lim_{s \to 1} \ln |\Theta(s)| = -\infty.
\]
Now it follows from Theorem 4.3.11 that for any $s = \sigma > 1$,

\[
\ln |\zeta(\sigma + it)| = -\text{Re} \left(\sum_p \ln(1 - p^{-\sigma - it}) \right)
\]

\[
= \text{Re} \left(\sum_p \left(p^{-\sigma - it} + \frac{1}{2}(p^2)^{-\sigma - it} + \frac{1}{3}(p^3)^{-\sigma - it} + \cdots \right) \right)
\]

\[
= \text{Re} \left(\sum_{n=1}^{\infty} b_n n^{-\sigma - it} \right)
\]

where b_n’s are certain nonnegative constants. This leads to the following inequalities

\[
\ln |\Theta(\sigma)| = \text{Re} \left(\sum_{n=1}^{\infty} b_n n^{-\sigma}(3 + 4n^{-it} + n^{-2it}) \right)
\]

\[
= \sum_{n=1}^{\infty} b_n n^{-\sigma}(3 + 4\cos(t \ln n) + \cos(2t \ln n)) \geq 0,
\]

which contradict to (5.15). Hence we complete the proof. □

Theorem 5.10 [Prime Number Theorem].

If $\pi(x)$ denotes the number of prime numbers $p \leq x$, then we have that $\pi(x) \sim \frac{x}{\ln x}$.

Proof. First of all, by Theorem 5.4 [Chebyshev’s Theorem] we observe that

\[
\psi(x) = \sum_{p \leq x} \left[\frac{\ln x}{\ln p} \right] \ln p \leq \ln x \sum_{p \leq x} 1
\]

\[
= \pi(x) \ln x = \mathcal{O}(x).
\]

By Proposition 5.5, it suffices to show that

\[
\psi(x) \sim x.
\]

By Theorem 4.3.18, the Mellin transform of $\psi(x)$ is

\[
-\frac{\zeta'(z)}{\zeta(z)} = z \int_{1}^{\infty} \frac{\psi(x)}{x^{z+1}} dx, \quad \text{Re}(z) > 1.
\]

In order to apply Corollary 5.8, we shall show that the function

\[
-\frac{\zeta'(z)}{\zeta(z)} \frac{1}{z-1}
\]

is analytic in some region containing the closed half-plane $\text{Re}(z) \geq 1$. By Proposition 4.3.16, there is some $\delta > 0$ so that

\[
\zeta(z) = \frac{1}{z-1}(1 + h(z))
\]

where $h(z)$ is analytic in $B(1; \delta)$ and $|h(z)| < 1$ there. Thus this implies that the function

\[
-\frac{\zeta'(z)}{\zeta(z)} \frac{1}{z-1} = -\frac{h'(z)}{1 + h(z)}
\]

is analytic at $z = 1$. Finally, it follows from Proposition 4.3.16 and Lemma 5.9 that the function

\[
-\frac{\zeta'(z)}{\zeta(z)} \frac{1}{z-1}
\]

is analytic at any other points z with $\text{Re}(z) = 1$. Hence are are done. □
Corollary 5.11. Let $f(x)$ be a number theoretic function with nonnegative values and with
\[\sum_{n \leq x} f(n) = O(x), \]
and let the Dirichlet series
\[F(z) = \sum_{n=1}^{\infty} \frac{f(n)}{n^z} \]
be analytic in $\text{Re}(z) > 1$ in the sense that the function
\[F(z) - \frac{\alpha}{z - 1} \quad (\alpha \text{ is some fixed constant}) \]
is analytic in some region containing the closed half-plane $\text{Re}(z) \geq 1$. Then we have that
\[\sum_{n \leq x} f(n) \sim \alpha x. \]

Proof. It easily follows from Corollary 5.8 and the following integral representation
\[F(z) = z \int_{1}^{\infty} \left(\sum_{n \leq x} f(n) \right) x^{-z-1} \, dx. \]

Corollary 5.12. Let $f(n)$ and $g(n)$ be two number theoretic functions satisfying that $f(n) \geq 0$, $g(n) = O(f(n))$, and $\sum_{n \leq x} f(n) = O(x)$. If two Dirichlet series
\[F(z) = \sum_{n=1}^{\infty} \frac{f(n)}{n^z} \quad \text{and} \quad G(z) = \sum_{n=1}^{\infty} \frac{g(n)}{n^z} \]
are analytic in $\text{Re}(z) > 1$ in the sense that the functions
\[F(z) - \frac{\alpha}{z - 1}, \quad G(z) - \frac{\beta}{z - 1} \quad (\alpha \text{ and } \beta \text{ are some fixed constants}) \]
are analytic in some region containing the closed half-plane $\text{Re}(z) \geq 1$, then we have that
\[\sum_{n \leq x} g(n) \sim \gamma x. \]

Proof. First, we assume that $g(n)$ is real-valued. Let us choose some constant $K > 0$ so large that $|g(n)| \leq Kf(n)$ for all $n \in \mathbb{N}$. We now apply Corollary 5.11 to the Dirichlet series generated by the number theoretic function $h(n) = Kf(n) + g(n)$, given by
\[H(z) = \sum_{n=1}^{\infty} \frac{h(n)}{n^z} = KF(z) + G(z). \]

By Corollary 5.11, we have that
\[\sum_{n \leq x} h(n) = K \sum_{n \leq x} f(n) + \sum_{n \leq x} g(n) \sim K\alpha x + \sum_{n \leq x} g(n) \]
\[\sum_{n \leq x} h(n) \sim K\alpha x + \beta x. \]

This implies the conclusion.

If \(g(n) \) is complex-valued, then we set \(G^*(z) = \overline{G(z)} \) and we consider

\[G_1(z) \coloneqq \frac{1}{2} |G(z) + G^*(z)| = \sum_{n=1}^{\infty} \frac{\text{Re}(g(n))}{n^z} \]

and

\[G_2(z) \coloneqq \frac{1}{2i} |G(z) - G^*(z)| = \sum_{n=1}^{\infty} \frac{\text{Im}(g(n))}{n^z}. \]

Hence we complete the proof by applying the above argument to \(G_1(z) \) and \(G_2(z) \). \(\square \)

In what follows, we furnish three examples as a foretaste of importance of Corollary 5.12.

Corollary 5.13. If \(\mu(n) \) is the Möbius function and \(\lambda(n) \) is the Liouville function, then we have that

\[\sum_{n \leq x} \mu(n) = o(x) \quad \text{and} \quad \sum_{n \leq x} \lambda(n) = o(x). \]

Proof. By Proposition 4.3.15, we apply Corollary 5.12 to the associated Dirichlet series \(G(z) = \frac{1}{\zeta(z)} \) and \(G(z) = \frac{\zeta(2z)}{\zeta(z)} \) which are analytic in some region containing the closed half-plane \(\text{Re}(z) \geq 1 \). Since they have no singularity at \(z = 1 \), we conclude that \(\beta = 0 \). \(\square \)

As a third example, we consider the Dirichlet series

\[\zeta_i(z) = \sum_{n=1}^{\infty} \frac{r(n)}{n^z} \]

generated by the number theoretic function \(r(n) \) which counts the number of the representations of \(n \) as the sum of two squares. By Proposition 3.25 in Chapter 3, \(r(n) \) can be considered as the number of representations \(n = \omega \overline{\omega} \) where \(\omega \) runs through the ring \(\mathbb{Z}(i) \). Thus we obtain that

\[\zeta_i(z) = \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} \frac{1}{|\omega|^2} = \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} \frac{1}{|\omega|^2}, \]

which is called the \(\zeta \)-function for the number theory on the ring \(\mathbb{Z}(i) \). In order to keep track of the arguments of \(\omega \in \mathbb{Z}(i) \setminus \{0\} \), Hecke originated the following Dirichlet series

\[\Xi(h, z) = \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} \frac{1}{|\omega|^2} \cdot e^{4i h \arg(\omega)}, \quad h \in \mathbb{Z}. \]

Then it is clear that \(\Xi(0, z) = \zeta_i(z) \) and

\[\Xi(h, z) = \sum_{n=1}^{\infty} \frac{1}{n^z} \left(\sum_{|\omega|^2 = n} e^{4i h \arg(\omega)} \right), \quad \text{Re}(z) > 1. \]

Its convergence for \(\text{Re}(z) > 1 \) follows from the convergence of \(\zeta_i(z) \) for \(\text{Re}(z) > 1 \); which can be derived from the estimate

\[\sum_{x \leq n \leq y} \frac{r(n)}{n^z} = \frac{1}{y^z} \mathcal{O}(y-x) + z \int_{x}^{y} \mathcal{O}(t-x) t^{-z-1} dt = \mathcal{O} \left(\frac{1}{x^{z-1}} \right) \]

which is obtained by applying Proposition 4.2.2[Abel Transformation] and Proposition 4.2.8. The argument function \(\arg(\omega) \) in \(\Xi(h, z) \) is uniquely defined in \(-\pi < \arg(\omega) \leq \pi\).
Definition 5.14. Let f be a complex-valued function defined on $\mathbb{Z}(i)$. Then f is said to be multiplicative if $f \neq 0$ and

\begin{equation}
(5.16) \quad f(mn) = f(m)f(n)
\end{equation}

for any pair $(m,n) \in \mathbb{Z}(i) \times \mathbb{Z}(i)$ with no common prime factor. If (5.16) holds for any pair $(m,n) \in \mathbb{Z}(i) \times \mathbb{Z}(i)$, then we say that f is completely multiplicative.

For instance, for $h \in \mathbb{Z}$ we consider the function $f(\omega) = e^{4h \arg(\omega)}$. Then it is certainly completely multiplicative and satisfies that $f(u) = 1$ for unit elements $u = 1, i, -1, -i$. This is the reason why the factor 4 in the exponent was taken in $\Xi(h, z)$.

Proposition 5.15. Let f be a complex-valued function defined on $\mathbb{Z}(i)$ satisfying that $f(u) = 1$ for all units $u \in \mathbb{Z}(i)$. Suppose that the infinite series

$$F(z) = \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} f(\omega) \frac{1}{|\omega|^2z}$$

converges absolutely for $\Re(z) > \tau_0$.

(a) If f is multiplicative, then we have that for all z with $\Re(z) > 1$,

$$F(z) = 4 \prod_{p \in \mathbb{Z}_0^+(i)} \left(\sum_{\mu=1}^{\infty} \frac{f(p^\mu)}{|p|^{2\mu z}} \right)$$

where $\mathbb{Z}_0^+(i)$ is the set of all prime elements p of $\mathbb{Z}(i)$ with $0 \leq \arg(p) < \pi/2$.

(b) If f is completely multiplicative, then we have that for all z with $\Re(z) > 1$,

$$F(z) = 4 \prod_{p \in \mathbb{Z}_0^+(i)} \frac{1}{1 - \frac{f(p)}{|p|^{2z}}}.$$

(c) For $h \in \mathbb{Z}$, we have that

$$\Xi(h, z) = 4 \prod_{p \in \mathbb{Z}_0^+(i)} \frac{1}{1 - \frac{e^{4h \arg(p)}}{|p|^{2z}}}, \quad \Re(z) > 1.$$

Proof. It easily follows from the modification of Proposition 4.3.13. \qed

Definition 5.16. We consider the function Λ_i defined on $\mathbb{Z}(i)$ given by

$$\Lambda_i(\omega) = \begin{cases}
\ln |p|, & \text{if } \omega = up^\nu \text{ for a unit } u \text{ and a prime } p \\
0, & \text{if } \omega \text{ is not such a prime power},
\end{cases}$$

which is called the generalized Mangoldt function.

In Chapter 4, we saw the relation between the Mangoldt function and the quotient $\zeta'(z)/\zeta(z)$. Similarly, in what follows we study the connection between the generalized Mangoldt function and the quotient

$$\frac{\Xi'(h, z)}{\Xi(h, z)},$$

in particular, this quotient will play an important role in the Mellin transform of the function

\begin{equation}
(5.17) \quad \psi_i(x) = \sum_{\omega \in \mathbb{B}_x(i)} \Lambda_i(\omega)
\end{equation}

where $\mathbb{B}_x(i) = \{\omega \in \mathbb{Z}(i) : |\omega|^2 \leq x\}$.
Lemma 5.17. For Re\(z\) > 1 and \(h \in \mathbb{Z}\), we have that
\[
-\frac{\Xi'(h, z)}{\Xi(h, z)} = \frac{1}{2} \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} \frac{\Lambda_i(\omega)}{|\omega|^{2z}} e^{4ih\arg(\omega)}.
\]

Proof. Since \(\log(1 - e^{4ih\arg(p) \cdot |p|^{-2z}}) = O(|p|^{-2\text{Re}(z)})\), the series
\[
H(z) \approx \log 4 - \sum_{p \in \mathbb{Z}_p^+(i)} \log \left(1 - \frac{e^{4ih\arg(p) \cdot |p|^{-2z}}}{|p|^{-2z}}\right)
\]
converges uniformly in every compact subsets inside the half-plane Re\((z) > 1\), and so \(H(z)\) is analytic in Re\((z) > 1\). We also have the relation
\[
e^{H(z)} = \Xi(h, z).
\]
Thus we obtain that
\[
H'(z) \cdot \Xi(h, z) = \Xi'(h, z).
\]
Therefore we complete the proof by calculating \(H'(z)\) as follows;
\[
H'(z) = \sum_{p \in \mathbb{Z}_p^+(i)} \frac{1}{1 - \frac{e^{4ih\arg(p) \cdot |p|^{-2z}}}{|p|^{-2z}}} \cdot \frac{e^{4ih\arg(p) \cdot |p|^{-2z}}}{|p|^{-2z}} \cdot \log |p| \cdot \sum_{\mu=0}^{\infty} \frac{e^{4ih\arg(p^\mu)}}{|p^\mu|^{-2z}}
\]
\[
= \sum_{u \in \mathfrak{U}} \sum_{p \in \mathbb{Z}_p^+(i)} \sum_{\mu=1}^{\infty} \frac{\log |up| \cdot e^{4ih\arg((up)^\mu)}}{|(up)^\mu|^{-2z}}
\]
\[
= \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} \frac{\Lambda_i(\omega)}{|\omega|^{2z}} e^{4ih\arg(\omega)},
\]
where \(\mathfrak{U}\) denotes the set of all unit elements \(u\) of \(\mathbb{Z}(i)\).

Lemma 5.18. For all \(z\) with Re\((z) > 1\), we have the integral representation
\[
-\frac{\zeta'_i(z)}{\zeta_i(z)} = \frac{z}{2} \int_1^\infty \frac{\psi_i(x)}{x^{z+1}} \, dx
\]
where \(\psi_i\) is a function defined by \(\psi_i(x) = \sum_{\omega \in \mathbb{B}_z(i)} \Lambda_i(\omega)\).

Proof. By Lemma 5.17, we have that
\[
-\frac{\zeta'_i(z)}{\zeta_i(z)} = \frac{1}{2} \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} \frac{\Lambda_i(\omega)}{|\omega|^{2z}}.
\]
It also follows from Proposition 4.2.2 [Abel Transformation] that

\[(5.18) \quad \sum_{\omega \in \mathbb{B}_x(i) \setminus \{0\}} \frac{\Lambda_i(\omega)}{|\omega|^{2\pi}} = \frac{1}{x^2} \cdot \psi_i(x) - \int_1^x \psi_i(y) \cdot \frac{-\psi_i(y)}{y^2+1} \, dy.\]

From Proposition 3.24, we observe that

\[(5.19) \quad \sum_{p \in \mathbb{Z}_p(i), |p|^2 \leq x} 1 \sim \pi(x)\]

where \(\mathbb{Z}_p(i)\) denotes the set of all prime elements of \(\mathbb{Z}(i)\). Thus by the definition of \(\psi_i(x)\) and Theorem 5.4 [Chebyshev’s theorem] we obtain that

\[(5.20) \quad \psi_i(x) = \sum_{\omega \in \mathbb{B}_x(i)} \Lambda_i(\omega) = 4 \sum_{p \in \mathbb{Z}_p(i), |p|^2 \leq x} \left[\frac{\ln x}{2 \ln |\omega|} \right] \ln |\omega| = \mathcal{O} \left(\sum_{p \in \mathbb{Z}_p(i), |p|^2 \leq x} \ln x \right) = \mathcal{O} \left(\sum_{p \in \mathbb{Z}_p(i), |p|^2 \leq x} 1 \right) = \mathcal{O}(x).\]

Taking the limit \(x \to \infty\) in (5.18), we can complete the proof. \(\square\)

Lemma 5.19. For \(h \in \mathbb{Z} \setminus \{0\}\), we have that

\[\sum_{\omega \in \mathbb{B}_x(i) \setminus \{0\}} e^{4ih \arg(\omega)} = \mathcal{O}(\sqrt{x} \ln x).\]

Proof. We write \(\omega = a + ib\) for \(a, b \in \mathbb{Z}\). Observing that \(\arg(a + ib) = \pi/2 - \arg(b + ia)\) for \(a, b \in \mathbb{N}\) and considering only the sum over non-associated elements, we have that

\[\sum_{\omega \in \mathbb{B}_x(i) \setminus \{0\}} e^{4ih \arg(\omega)} = 4 \sum_{a > 0} \sum_{b \geq \sqrt{a^2 + b^2} \leq x} e^{4ih \arg(a + ib)} \cos(4h \arg(a + ib)) + \mathcal{O}(\sqrt{x})\]

\[= 8 \sum_{a > 0} \sum_{b \geq \sqrt{a^2 + b^2} \leq x} \cos(4h \arg(a + ib)) + \mathcal{O}(\sqrt{x}).\]

Since \(\tan^{-1}\left(\frac{\sqrt{x^2 - a^2}}{a}\right) - \tan^{-1}1 = \mathcal{O}(1)\), it follows from Proposition 4.2.3 [The Euler Sum Formula] that

\[\sum_{\omega \in \mathbb{B}_x(i) \setminus \{0\}} e^{4ih \arg(\omega)}\]

\[= 8 \sum_{1 \leq a \leq \sqrt{x}} \left(\int_a^{\sqrt{x-a^2}} \cos\left(4h \tan^{-1}\left(\frac{y}{a}\right)\right) dy + \mathcal{O}\left(1 + \int_a^{\sqrt{x-a^2}} \frac{1}{a \left(1 + \frac{y^2}{a^2}\right)} \, dy\right)\right) + \mathcal{O}(\sqrt{x})\]

\[= 8 \sum_{1 \leq a \leq \sqrt{x}} \int_a^{\sqrt{x-a^2}} \cos\left(4h \tan^{-1}\left(\frac{y}{a}\right)\right) dy + \mathcal{O}(\sqrt{x})\]

\[= 8 \int_1^{\sqrt{x}} \int_t^{\sqrt{x-t^2}} \cos\left(4h \tan^{-1}\left(\frac{y}{t}\right)\right) dy \, dt\]

\[+ \mathcal{O}\left(\sqrt{x} + \int_1^{\sqrt{x}} \left|\frac{d}{dt} \int_t^{\sqrt{x-t^2}} \cos\left(4h \tan^{-1}\left(\frac{y}{t}\right)\right) dy\right| \, dt\right) + \mathcal{O}(\sqrt{x}).\]
We observe that
\[\int_0^1 \int_{\sqrt{x-t^2}} \cos \left(4h \tan^{-1} \left(\frac{y}{t} \right) \right) \, dy \, dt = O(\sqrt{x}) \]
and
\[\frac{d}{dt} \int_{\sqrt{x-t^2}} \cos \left(4h \tan^{-1} \left(\frac{y}{t} \right) \right) \, dy = \frac{1}{t^2} \int_{\sqrt{x-t^2}} \frac{4hy \sin(\tan^{-1}(\frac{y}{t}))}{1 + \frac{y^2}{t^2}} \, dy \]
\[- \frac{t}{\sqrt{x-t^2}} \cos \left(4h \tan^{-1} \left(\frac{\sqrt{x-t^2}}{t} \right) \right) - \cos(h\pi) \]
\[= O \left(\int_{\sqrt{x-t^2}} \frac{y}{t^2 + y^2} \, dy + \frac{t}{\sqrt{x-t^2}} \right) \]
\[= O \left(\ln \left(\frac{x}{2t^2} \right) + 1 \right). \]

Thus by applying polar coordinates \(t = r \cos \theta \) and \(y = r \sin \theta \) with \(0 < r \leq \sqrt{x} \) and \(\pi/4 \leq \theta \leq \pi/2 \), we obtain that
\[\sum_{\omega \in \mathbb{B}_r(i) \setminus \{0\}} e^{4ih \arg(\omega)} = 8 \int_0^\sqrt{x} \int_{\sqrt{x-t^2}} \cos \left(4h \tan^{-1} \left(\frac{y}{t} \right) \right) \, dy \, dt + O(\sqrt{x} \ln x) \]
\[= 8 \int_0^\sqrt{x} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos(4h\theta) \, d\theta \, dr + O(\sqrt{x} \ln x) = O(\sqrt{x} \ln x), \]
because the last integral vanishes for \(h \in \mathbb{Z} \setminus \{0\} \). Therefore we complete the proof. \(\square \)

Lemma 5.20. Let \(f(n) \) be a number theoretic function satisfying
\[\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N f(n) = \alpha. \]

For \(\text{Re}(z) > 1 \), we have the following formula
\[\sum_{n=1}^\infty \frac{f(n)}{n^z} = \alpha \cdot \zeta(z) + \sum_{n=1}^\infty \left(\frac{1}{n^z} - \frac{1}{(n+1)^z} \right) \left(\sum_{m=1}^n \frac{f(m)}{m} - n\alpha \right). \]

Proof. Applying Lemma 4.2.1 [Abel Transformation], we have that
\[\sum_{n=1}^N \left(\frac{1}{(n+1)^z} - \frac{1}{n^z} \right) \left(\sum_{m=1}^n \frac{f(m)}{m} - n\alpha \right) \]
\[= \sum_{n=1}^N \frac{1}{(n+1)^z} \left(\sum_{m=1}^{n+1} \frac{f(m)}{m} - \alpha(n+1) \right) - \left(\sum_{m=1}^n \frac{f(m)}{m} - n\alpha \right) \]
\[- \frac{1}{(N+1)^z} \left(\sum_{m=1}^{N+1} \frac{f(m)}{m} - \alpha(N+1) \right) + (f(1) - \alpha) \]
\[= \sum_{n=1}^{N+1} \frac{f(n) - \alpha}{n^z} - \frac{1}{(N+1)^z} \left(\alpha - \frac{1}{N+1} \sum_{m=1}^{N+1} f(m) \right) \]
\[= \sum_{n=1}^{N+1} \frac{f(n)}{n^z} - \alpha \sum_{n=1}^{N+1} \frac{1}{n^z} + O \left(\frac{1}{(N+1)^{\text{Re}(z)-1}} \right). \]
Since \((N+1)^{-(\Re(z)-1)}\) tends to zero as \(N \to \infty\) for \(\Re(z) > 1\), and also
\[
\left| \sum_{n=1}^{N} \left(\frac{1}{n^z} - \frac{1}{(n+1)^z} \right) \left(\sum_{m=1}^{n} f(m) - \alpha n \right) \right| = \left| \sum_{n=1}^{N} \left(\int_{n}^{n+1} \frac{1}{x^{z+1}} \, dx \right) \cdot n \left(\alpha - \frac{1}{n} \sum_{m=1}^{n} f(m) \right) \right|
= O \left(\sum_{n=1}^{N} \frac{|z|}{n^{\Re(z)}} \right)
\]
converges for \(\Re(z) > 1\), we can complete the proof by taking \(N \to \infty\). □

Lemma 5.21. For \(h \in \mathbb{Z} \setminus \{0\}\), \(\Xi(h, z)\) has an analytic continuation into the half-plane \(\Re(z) > 1/2\).
Similarly, the function
\[
\zeta_i(z) - \frac{\pi}{z - 1}
\]
has an analytic continuation into the half-plane \(\Re(z) > 1/2\) in the sense that \(\zeta_i(z)\) is analytic on \(\Re(z) > 1/2\) except for a simple pole at \(z = 1\) with residue \(\pi\).

Proof. If we set \(f(n) = \sum_{|\omega|^2=n} e^{4ih \arg(\omega)}\) for \(h \in \mathbb{Z} \setminus \{0\}\), then it follows from Lemma 5.19 that
\[
\alpha = \lim_{n \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n) = 0.
\]
By Lemma 5.20, we have that for \(h \in \mathbb{Z} \setminus \{0\}\),
\[
\Xi(h, z) = \sum_{n=1}^{\infty} \left(\frac{1}{n^z} - \frac{1}{(n+1)^z} \right) \sum_{\omega \in \mathbb{B}_n(i) \setminus \{0\}} e^{4ih \arg(\omega)}.
\]
Thus it follows from Lemma 5.19 that the following sequence
\[
\sum_{n=M}^{N} \left(\frac{1}{n^z} - \frac{1}{(n+1)^z} \right) \sum_{\omega \in \mathbb{B}_n(i) \setminus \{0\}} e^{4ih \arg(\omega)} = O \left(\frac{|z|}{\sqrt{n}} \sum_{n=M}^{N} \ln n \left| \int_{n}^{n+1} \frac{1}{x^{z+1}} \, dx \right| \right)
= O \left(\frac{|z|}{\sqrt{n}} \sum_{n=M}^{N} \frac{\ln n}{n^{\Re(z)+\frac{1}{2}}} \right)
\]
converges uniformly to zero as \(M \to \infty\) in every compact subsets of the half-plane \(\Re(z) > 1/2\). Hence this implies the analytic continuation of \(\Xi(h, z)\).

Similarly to the above, it follows from Lemma 5.20 that
\[
\zeta_i(z) = \sum_{n=1}^{\infty} \frac{r(n)}{n^z}
= \pi \cdot \zeta(z) + \sum_{n=1}^{\infty} \left(\frac{1}{n^z} - \frac{1}{(n+1)^z} \right) \left(\sum_{m=1}^{n} r(m) - n\pi \right).
\]
From Proposition 4.2.8, we see that
\[
\sum_{m=1}^{n} r(m) - n\pi = O(\sqrt{n}).
\]
Therefore we complete the proof by applying the above argument once again. □
Lemma 5.22. For $h \in \mathbb{Z} \setminus \{0\}$, $\Xi(h, z) \neq 0$ for any z with $\text{Re}(z) = 1$.

Proof. It is trivial for the case $h = 0$ and $z = 1$, because $\zeta_i(z)$ has a pole at $z = 1$. For the other cases, we use a modified version of Lemma 5.9[Mertens].

Fix $h \in \mathbb{Z} \setminus \{0\}$. If $\Xi(h, 1 + it) = 0$ for some $t \neq 0$, then the equation

$$\Theta(s) = \zeta_i(z)^3 \cdot \Xi(h, s + it)^4 \cdot \Xi(2h, s + 2it)$$

has a zero at $s = 1$. Thus this implies that

$$\lim_{s \to 1} \ln |\Theta(s)| = -\infty.$$

Now it follows from Proposition 5.15, (c) that for any $s = \sigma > 1$,

$$\ln |\Xi(h, \sigma + it)| = \ln 4 - \sum_{p \in \mathbb{Z}_p^+(i)} \ln \left| 1 - e^{4ih \arg(p)} \right|_{|p|^{2\sigma + 2\sigma}} = \ln 4 + \sum_{p \in \mathbb{Z}_p^+(i)} \sum_{n=1}^{\infty} \frac{\cos n(4h \arg(p) - 2t \ln |p|)}{|p|^{2n\sigma}}.$$

This leads to the following inequalities

$$\ln |\Xi(s)| = 8 \ln 4 + \sum_{p \in \mathbb{Z}_p^+(i)} \sum_{n=1}^{\infty} 3 + 4 \cos n(4h \arg(p) - 2t \ln |p|) + \cos n(8h \arg(p) - 4t \ln |p|) \geq 0,$$

which contradicts to (5.21). Hence we complete the proof. \(\Box\)

Proposition 5.23. \(\psi_i(x) \equiv \sum_{\omega \in \mathbb{B}_r(i)} \Lambda_i(\omega) \sim 2x.\)

Proof. It is trivial that $\psi_i(x)$ is a monotone non-decreasing function on $[0, \infty)$. By (5.20), we have $\psi_i(x) = O(x)$. Thus it follows from Lemma 5.18 and Lemma 5.21 that the function $-\zeta_i(z)/\zeta_i(z)$ given by

$$-\frac{\zeta_i'(z)}{\zeta_i(z)} = z \int_1^\infty \frac{1}{2} \psi_i(x) \frac{1}{x^{z+1}} dx$$

is analytic in $\text{Re}(z) > 1$ and the function

$$-\frac{\zeta_i'(z)}{\zeta_i(z)} = \frac{1}{z - 1}$$

has an analytic continuation into some region containing the closed half-plane $\text{Re}(z) \geq 1$. Therefore Corollary 5.11 implies the conclusion. \(\Box\)

Proposition 5.24. \(\sum_{\omega \in \mathbb{B}_r(i)} e^{4ih \arg(\omega)} \Lambda_i(\omega) = o(x) \text{ for } h \in \mathbb{Z} \setminus \{0\}.\)

Proof. We observe that $e^{4ih \arg(\omega)} \Lambda_i(\omega) = O(\Lambda_i(\omega))$ for $h \in \mathbb{Z} \setminus \{0\}$ and $\omega \in \mathbb{Z}(i) \setminus \{0\}$. From Lemma 5.17 and Lemma 5.22, two Dirichlet series

$$-\frac{\zeta_i'(z)}{\zeta_i(z)} = \frac{1}{2} \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} \frac{\Lambda_i(\omega)}{|\omega|^{2z}} \quad \text{and} \quad -\frac{\Xi'(h, z)}{\Xi(h, z)} = \frac{1}{2} \sum_{\omega \in \mathbb{Z}(i) \setminus \{0\}} \frac{\Lambda_i(\omega) e^{4ih \arg(\omega)}}{|\omega|^{2z}}, \quad h \in \mathbb{Z} \setminus \{0\},$$

are analytic in $\text{Re}(z) > 1$ and have an analytic continuation with no singularity at $z = 1$ into some region containing the closed half-plane $\text{Re}(z) \geq 1$. Therefore Corollary 5.12 and Proposition 5.23 imply the required one. \(\Box\)
Theorem 5.25 [Hecke's Prime Number Theorem for the ring \(\mathbb{Z}(i) \)].

(a) If \(\pi_i(x) \) denotes the number of all non-associated prime elements \(p \) with \(|p|^2 \leq x \), i.e. the number of all prime elements in \(\mathbb{Z}_p^+(i) \cap \mathbb{B}_x(i) \), then we have that

\[
\pi_i(x) \sim \frac{x}{\ln x}.
\]

(b) If \(\pi_i(x; \alpha, \beta) \) denotes the number of all prime elements \(p \in \mathbb{Z}_p(i) \cap \mathbb{B}_x(i) \) with \(\alpha \leq \arg(p) < \beta \) for \(0 \leq \alpha < \beta \leq 2\pi \), then we have that

\[
\pi_i(x; \alpha, \beta) \sim \frac{2}{\pi} (\beta - \alpha) \frac{x}{\ln x}.
\]

Proof. We observe the following estimate

\[
\sum_{k \geq 2} \sum_{p \in \mathbb{Z}_p^+(i): |p|^{2k} \leq x} e^{i k \arg (p)} \ln |p| = O \left(\ln x \sum_{k \geq 2} \sum_{p \in \mathbb{Z}_p^+(i): |p|^{2k} \leq x} 1 \right)
\]

\[
= O \left(\ln x \sum_{2 \leq k \leq \ln x / \ln 2} \frac{\sqrt{x}}{\ln \sqrt{x}} \right)
\]

\[
= O(\sqrt{x \ln x}).
\]

This implies that

\[
4 \sum_{p \in \mathbb{Z}_p^+(i) \cap \mathbb{B}_x(i)} e^{i \arg (p)} \ln |p| = 4 \sum_{k \geq 1} \sum_{p \in \mathbb{Z}_p^+(i): |p|^{2k} \leq x} e^{i k \arg (p)} \ln |p| + O(\sqrt{x \ln x})
\]

\[
= \sum_{\omega \in \mathbb{B}_x(i)} e^{i \arg (\omega)} \Lambda_i(\omega) + O(\sqrt{x \ln x})
\]

\[
= \begin{cases} 2x + o(x), & h = 0, \\ o(x), & h \neq 0. \end{cases}
\]

Thus it follows from the above estimate and Proposition 4.2.2 [Abel Transformation] that

\[
\sum_{p \in \mathbb{Z}_p^+(i) \cap \mathbb{B}_x(i)} e^{i \arg (p)} = \sum_{p \in \mathbb{Z}_p^+(i): 2 \leq |p|^2 \leq x} e^{i \arg (p)} \ln |p|^2 \cdot \frac{1}{\ln |p|^2}
\]

\[
= \frac{1}{\ln x} \sum_{p \in \mathbb{Z}_p^+(i): 2 \leq |p|^2 \leq x} e^{i \arg (p)} \ln |p|^2
\]

\[
- \int_2^x \frac{1}{t \ln^2 t} dt
\]

\[
= \frac{2}{\ln x} \sum_{p \in \mathbb{Z}_p^+(i) \cap \mathbb{B}_x(i)} e^{i \arg (p)} \ln |p| + O \left(\int_2^x \frac{1}{t \ln^2 t} dt \right)
\]

\[
= \begin{cases} \frac{x}{\ln x} + O (\frac{x}{\ln x}), & h = 0, \\ o (\frac{x}{\ln x}), & h \neq 0. \end{cases}
\]
(a) By (5.22) on $h = 0$, we have that
\[\pi_i(x) = \sum_{p \in \mathbb{Z}_p^+(i) \cap \mathbb{B}_x(i)} e^{4ih \arg(p)} = \frac{x}{\ln x} + o\left(\frac{x}{\ln x}\right). \]

(b) It easily follows from (5.22) on $h \neq 0$ that
\[\lim_{x \to \infty} \frac{1}{4\pi_i(x)} \sum_{p \in \mathbb{Z}_p(i) \cap \mathbb{B}_x(i)} e^{2\pi ih \left(\frac{x}{2\pi} \arg(p)\right)} = \lim_{x \to \infty} \frac{1}{\pi_i(x)} \sum_{p \in \mathbb{Z}_p^+(i) \cap \mathbb{B}_x(i)} e^{2\pi ih \left(\frac{x}{2\pi} \arg(p)\right)} \]
\[= \lim_{x \to \infty} \frac{\ln x}{x} \sum_{p \in \mathbb{Z}_p^+(i) \cap \mathbb{B}_x(i)} e^{4ih \arg(p)} = 0. \]

Thus by Theorem 2.13 [Weyl’s Criterion] we see that the sequence
\[\{\theta_{p,x} = \frac{2}{\pi} \arg(p) : p \in \mathbb{Z}_p(i) \cap \mathbb{B}_x(i), x \in \mathbb{R}_+\} \]
is uniformly distributed modulo 2π. Hence by Proposition 2.12 we have that
\[(5.23) \lim_{x \to \infty} \frac{1}{4\pi_i(x)} \sum_{p \in \mathbb{Z}_p(i) \cap \mathbb{B}_x(i)} f(\arg(p)) = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) d\theta \]
for any real-valued Riemann integrable function $f(\theta)$ on $[0, 2\pi)$. If we take $f(\theta) = \chi_{[\alpha,\beta]}(\theta)$ in (5.23), we obtain that
\[\lim_{x \to \infty} \frac{\pi_i(x; \alpha, \beta)}{4\pi_i(x)} = \lim_{x \to \infty} \frac{1}{4\pi_i(x)} \sum_{p \in \mathbb{Z}_p(i) \cap \mathbb{B}_x(i)} f(\arg(p)) = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) d\theta = \frac{1}{2\pi} (\beta - \alpha). \]

Therefore this implies the required result. □

References
1. G. M. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Science Publications.
2. Hua Loo Keng, Introduction to Number Theory, Springer-Verlag.
3. E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford Science Publications.