Association of anesthesia type with prolonged postoperative intubation in neonates undergoing inguinal hernia repair

Abdulraouf Lamoshi1 · Jerrold Lerman1,2 · Jad Dughayli1,2 · Valerie Elberson3 · Lorin Towle-Miller4 · Gregory E Wilding4 · David H Rothstein1,5

Received: 15 January 2020 / Revised: 6 May 2020 / Accepted: 22 May 2020 / Published online: 4 June 2020
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020

Abstract
Purpose The purpose of this study is to determine factors associated with prolonged intubation after inguinal herniorrhaphy in neonates.
Methods Retrospective, single institution review of neonates undergoing inguinal herniorrhaphy between 2010 and 2018. Variables recorded included demographics, comorbidities, ventilation status at time of hernia repair, and anesthetic technique.
Results We identified 97 neonates (median corrected gestational age 39.9 weeks, IQR 6.6). The majority (87.6%) received general anesthesia (GA); the remainder received caudal anesthesia (CA). Among the GA subjects, 25.8% remained intubated for at least 6 h after surgery, whereas none of the CA patients required intubation postoperatively ($p = 0.03$). Two risk factors associated with prolonged postoperative intubation: a history of intubation before surgery ($p = 0.04$) and a diagnosis of bronchopulmonary dysplasia ($p = 0.03$).
Conclusions Neonates undergoing inguinal herniorrhaphy under GA have a greater rate of prolonged postoperative intubation compared with those undergoing CA. A history of previous intubation and bronchopulmonary dysplasia were significant risk factors for prolonged postoperative intubation.

Introduction
Inguinal hernia is the most common medical condition requiring surgery in preterm infants who survived the neonatal period [1]. Twenty to thirty percent of ex-premature infants who undergo hernia surgery under general anesthesia (GA) experience postoperative apneic episodes [1]. Concerns also exist about the short- and long-term neurological sequelae of prolonged anesthetic exposure in young children [2]. Regional anesthesia (RA) is an alternative to GA that is associated with decreased risks of postoperative apnea, periodic breathing, and desaturation, all of which may occur after GA in pre-term infants [3].

Previously, it was suggested that certain patient factors may increase the risk of developing apnea, neurodevelopmental change, and respiratory and circulatory complications after GA [4, 5]. These factors included gestational age at birth, post-conceptional age at the time of surgery, size for gestational age, and anemia [4]. However, previous studies have not explored an association between the preoperative comorbidities and the duration of postoperative intubation.

Neuromuscular blocker drugs (NMBDs) play an important role in facilitating tracheal intubation and mechanical ventilation in neonates and infants. However, if the neuromuscular blockade is not antagonized, the effects of NMBDs may increase the duration of postoperative intubation. Effects of NMBDs including pulmonary complications may extend beyond the completion of surgery in as many as 88% of infants [6]. Alternately, agents that antagonize the effects of NMBDs, such neostigmine, can
to 6 h after surgery. We reviewed the charts of 97 neonates (85% male, median corrected gestational age 39.9 weeks, interquartile range 6.6). A total of 85 neonates (87.6%) received GA; the remainder received CA. The type of anesthesia was chosen by the pediatric anesthesiologist in concert with the attending pediatric surgeon. The airways in all neonates who received GA were intubated for surgery. In 18 cases (18.5%), CA was the practitioner’s first choice, although one-third (6/18) of the CA cases were converted to GA to complete the surgery. CA comprised 1% lidocaine with epinephrine or 3% 2-chloroprocaine. The main reasons for the conversion from CA to GA were hypoxemia, bradycardia, disruptive movement during surgery, or dural puncture during placement of the CA.

Demographic data, comorbidities, length of stay, and pre-op or postop FiO2 concentrations in the two groups were similar (Table 1). Among those who received GA, 32.9% (28/85) remained intubated for at least 6 h after surgery, whereas 0% of those who received CA required intubation at any time ($p = 0.03$). Missing data were limited to some postoperative variables in 15 patients (15.5%). Fisher’s exact test yielded two risk factors that were significantly associated with prolonged postoperative intubation: a history of tracheal intubation before surgery ($p = 0.04$) and a diagnosis of BPD ($p = 0.03$). The frequency of postoperative hernia-specific complications was similar in the two groups.

Among the 25 neonates who remained intubated ≥6 h postoperatively, 3 (12%) were extubated between 6 and 12 h, 11 (44%) between 12 and 24 h, and 11 (44%) after more than 24 h. After excluding missing data, 81.9% (59/72) of the GA group received NMDBs, 22% (13/59) of whom received agents to antagonize the blockade postoperatively. Only 2 of these 13 (15.4%) remained intubated for ≥6 h. The use of agents to antagonize NMDBs was inversely related to prolonged intubation (odds ratio = 0.20, $p = 0.05$). Prolonged postoperative intubation time was significantly associated with the preoperative and postoperative FiO2 ($p < 0.001$) (Table 2).
Table 1 Demographics and preoperative comorbidities of GA and CA groups.

Variable	GA	CA	p
Adjusted age at time of surgery	42.3 Weeks	39.1 Weeks	0.76
Weight at time of surgery	3.2 kg	2.5 kg	0.07
PHT	10 (11.8%)	1 (8.3%)	1.00
BPD	55 (64.7%)	7 (58.3%)	0.75
RDS	61 (73.5%)	7 (58.3%)	0.31
ORD	58 (68.2%)	7 (58.3%)	0.52
Major CHD	7 (8.2%)	0 (0%)	0.59
Minor CHD	67 (78.8%)	7 (58.3%)	0.15
Prior intubation	67 (79.8%)	9 (75%)	0.71
Muscle relaxants use	13 (17.8%)	0 (0%)	0.35
Opioid use	74 (87.1%)	10 (83.3%)	0.66
Neonatal apnea	59 (69.4%)	6 (50%)	0.20
Ongoing apnea	58 (68.2%)	6 (50%)	0.33
Anemia	78 (91.8%)	12 (100%)	0.59
Steroids use	62 (72.9%)	8 (66.7%)	0.73
Renal problems	43 (50.6%)	5 (41.7%)	0.76
Liver problems	65 (76.5%)	11 (91.7%)	0.45

rch bronchopulmonary dysplasia, CA caudal anesthesia, CHD congenital heart disease, GA general anesthesia, ORD other respiratory disorders, PHT pulmonary hypertension, RDS respiratory distress syndrome.

Table 2 Demographics and preoperative comorbidities of PIG and SNIG groups.

Variable	PIG	SNIG	p
Adjusted age at time of surgery	41.8 Weeks	42.0 Weeks	0.53
Weight at time of surgery	3.2 kg	3.1 kg	0.08
PHT	6 (21.4%)	4 (7.0%)	0.07
BPD	23 (82.1%)	32 (56.1%)	0.03
RDS	22 (84.6%)	39 (68.4%)	0.18
ORP	23 (82.1%)	35 (61.4%)	0.08
Major CHD	4 (14.3%)	3 (5.3%)	0.21
Minor CHD	23 (82.1%)	44 (77.2%)	0.78
Prior intubation	26 (92.9%)	41 (73.2%)	0.04
Muscle relaxants use	2 (7.7%)	11 (23.4%)	0.12
Opioid use	27 (96.4%)	47 (82.5%)	0.09
Neonatal apnea	20 (71.4%)	39 (68.4%)	1.00
Ongoing apnea	19 (67.9%)	39 (68.4%)	1.00
Anemia	28 (100%)	50 (87.7%)	0.09
Steroids use	22 (78.6%)	40 (70.2%)	0.45
Renal problems	18 (64.3%)	25 (43.9%)	0.11
Liver problems	24 (85.7%)	41 (71.9%)	0.19
Preoperative FiO2	51.0	29.2	<0.001
Postoperative FiO2	36.9	30.7	<0.001

BPD bronchopulmonary dysplasia, CHD congenital heart disease, ORD other respiratory disorders, PHT pulmonary hypertension, PIG prolonged intubation group, RDS respiratory distress syndrome, SNIG short-no intubation group, p-values in bold indicate statistically significant results.

Intent-to-treat analysis demonstrated no significant difference in preoperative comorbidities between the 18 neonates selected for CA and the 79 neonates selected for GA. Compared with the immediate extubation group (n = 59), those whose airways were intubated for more than one day (11) postoperatively required significantly greater levels of FiO2 both pre- and postoperatively, an average of 26 vs. 42 (p = 0.004).

Intubation time analysis (raw times)

Given that the sample size is a little small for this group, we applied basic tests. For the continuous covariates, we generated a spearman correlation and corresponding p-values to determine whether there was a relationship between the covariate and intubation time. We found that only birth weight and weight at the time of surgery were significantly associated with prolonged intubation (P = 0.04 and p = 0.02) respectively, i.e., as the weight of the neonates increased the duration of intubation decreased (r = −0.42 and r = −0.5), respectively. We also generated the mean intubation time across the categorical covariates and corresponding Wilcoxon signed-rank test for differences, but none of those were significant.

Power analysis

Typically, a power analysis would be done prior to data collection to determine a general sample size, but our study was limited from the start to the data that already have access to, a power analysis would not necessarily be suited here. With a sample size of 85 and 12, estimated proportions corresponding to dichotomous variables could have a maximum standard error of 0.114 and 0.054, respectively. Of the GA subjects, 25 subjects had long intubation and 60 did not have long intubation. The estimated proportions corresponding to dichotomous variables within the 25 prolonged intubated neonates vs. the 60 immediate intubated groups could have a maximum SE of 0.096 and 0.054, respectively.

Discussion

In a large cohort of neonates undergoing inguinal herniorrhaphy surgery, we found a predictably larger fraction of postoperative tracheal intubation in the GA group when compared with those undergoing CA. A history of previous intubation and BPD significantly predicted prolonged postoperative intubation, whereas agents that antagonize NMGBs abbreviated the duration of postoperative intubation. These results are significant in highlighting the importance of the mode of anesthesia and preoperative...
comorbidities on the duration of postoperative tracheal intubation in neonates undergoing inguinal hernia surgery.

There is a paucity of published data regarding outcomes after hernia repair in neonatal patients in terms of their need for mechanical ventilation support based on their preoperative status. Previous studies reported a number of factors that contribute to postoperative apnea. For example, premature infants less than 44 weeks post-conceptional age and those who are anemic are at increased risk for post-anesthetic apnea compared with infants older than 44 weeks post-conceptional age [7, 8].

Interestingly, there was no significant difference between the immediate and prolonged intubation groups with the intent to treat analysis. However, as there is no clear guidelines/indications for which neonates would receive CA vs. GA, we believe that these six patients were most appropriately analyzed in the GA group.

This study has several limitations, which may limit its generalizability. First, missing data is a major hurdle with any retrospective study. Second, the sample size particularly

Concern has been expressed previously that the use of NMBDs in neonates can lead to residual neuromuscular effects that may include postanesthesia hypoxia, airway obstruction, the need for reintubation, impaired respiratory response to hypoxia, and decreased forced vital capacity [6, 15]. Residual neuromuscular blockade may result from any of several possible reasons including the dose of NMBDs during surgery in relation to the duration of the surgery and the lack of neuromuscular blockade monitoring and the failure to antagonize the neuromuscular blockade at the conclusion of surgery [16]. Although the use of agents to antagonize the neuromuscular blockade varied inversely with the duration of prolonged intubation and are recommended to ensure the integrity of the neuromuscular junction before tracheal extubation [15, 17], only 15% of the neonates in whom neuromuscular blockade was used received an anticholinesterase, neostigmine. Sugammadex is a distinctive neuromuscular reversal agent that belongs to a new selective relaxant class; it reverses the aminosteroid non-depolarizing muscle relaxants (rocuronium and vecuronium) [18]. With the introduction of Sugammadex into clinical practice, complete antagonism of steroidal neuromuscular blocking drugs such as rocuronium may be achieved even after large doses of rocuronium during relative brief surgery in neonates and children [18, 19]. Although not approved by the Food and Drug Administration for use in neonates, the available experience suggests that Sugammadex will completely antagonize neuromuscular blockade in neonates, despite the immature development of the neuromuscular junction in this age group [20]. A large case-controlled study concluded that antagonizing the NMBD effects could effectively reduce the morbidity and mortality after anesthesia and we posit this may be extended to neonates [21].

Although the conversion rate from CA to GA in this study was large, it is consistent with rates (3.9%–23.9%) reported in prior studies [22, 23]. We routinely use CA instead of spinal anesthesia for lower abdominal surgery in this population to provide supplemental local anesthesia in the caudal block if the surgery is prolonged and to avoid the failure rate associated with spinal anesthesia [22]. The main contributing factors for the conversion from CA to GA include technical difficulties from performing the caudal block, unexpected surgical difficulties, a vigorously crying patient, surgeon preference, and repeated apnea [10, 24]. Interestingly, there was no significant difference between the immediate and prolonged intubation groups with the intent to treat analysis. However, as there is no clear guidelines/indications for which neonates would receive CA vs. GA, we believe that these six patients were most appropriately analyzed in the GA group.

This study has several limitations, which may limit its generalizability. First, missing data is a major hurdle with any retrospective study. Second, the sample size particularly
for the CA group was small, considering the commonality of the inguinal hernia. Third, a history of prior intubation could be attributed to multiple factors, rendering the practical interpretation of this finding a serious challenge. Alternately, the association of prolonged intubation with a prior history of intubation demonstrates that any underlying cause that was managed by mechanical intubation is a potential cause for postoperative prolonged intubation. In spite of these limitations, the chief strength of this study is that it considered a wide range of preoperative comorbidities, to predict the risk of postoperative prolonged intubation for neonates with inguinal hernias who undergo a herniotomy during their NICU stay. Of note, we did not categorize the cases based on the surgical approach (laparoscopic versus open), because we believe that laparoscopic hernia repair is not necessarily faster, less painful, or cosmetically superior to the open approach; at least not to that degree as described in some studies. We also have a bias to request CA for the “sicker” neonates because we believe RA impacts the cardio-pulmonary system to a lesser extent than GA. However, our statistical analysis failed to identify any significant difference between the CA and GA groups in terms of preoperative comorbidities, including BPD and a history of intubation.

Conclusion

CA is associated with a substantially decreased need for postoperative tracheal intubation when compared with GA in neonates undergoing inguinal herniorrhaphy. History of prior intubation and/or BPD may jeopardize the postoperative course for neonatal patients after herniorrhaphy by increasing the need for postoperative ventilation support. In addition, using agents that antagonize neuromuscular blockade may reduce the duration of postoperative tracheal intubation.

Acknowledgements Statistical analysis reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award Number UL1TR001412. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Craven PD, Badawi N, Henderson-Smart DJ, Obrien M. Regional (spinal, epidural, caudal) versus general anaesthesia in preterm infants undergoing inguinal herniorrhaphy in early infancy. Cochrane Database Syst. Rev. 2003. https://doi.org/10.1002/14651858.cd003669
2. Mccann ME, Soriano SG. General anesthetics in pediatric anesthesia: influences on the developing brain. Curr Drug Targets. 2012;13:944–51. https://doi.org/10.2174/138945012800675768
3. Kranie EJ, Haberkorn CM, Jacobson LE. Postoperative apnea, bradycardia, and oxygen desaturation in formerly premature infants. Anesthesia Analgesia. 1995;82:809–22. https://doi.org/10.1095/00000539-199501000-00003
4. Cote CJ, Zaslavsly A, Downes JJ, Kurth CD, Welborn LG, Warner LO, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy. Anesthesiology. 1993;82:809–22. https://doi.org/10.1095/00000539-199309000-01089
5. Tiet T, Nivoche Y, Hatton F, Desmonts J, Vourc HG. Complications related to anesthesia in infants and children. Br J Anaesth. 1988;61:263–9. https://doi.org/10.1093/bja/61.3.263
6. Zafirova Z, Dalton A. Neuromuscular blockers and reversal agents and their impact on anesthesia practice. Best Pract Res Clin Anaesthesiol. 2018;32:203–11. https://doi.org/10.1016/j.bpa.2018.06.004
7. Malviya S, Swartz J, Lerman J. Are all preterm infants younger than 60 weeks postconceptual age at risk for postanesthetic apnea? Anesthesiology. 1993;78:1076–81. https://doi.org/10.1097/00000542-199306000-00009
8. Welborn LG, Hannallah RS, Higgins T, Fink R, Luban N. A1091 Does anemia increase the risk of postoperative apnea in former preterm infants? Anesthesiology 1990;73. https://doi.org/10.1097/00000542-199009001-01089
9. Lynn A. Faculty of 1000 evaluation for apnea after awake regional and general anesthesia in infants: the general anesthesia compared to spinal anesthesia study-comparing apnea and neurodevelopmental outcomes, a randomized controlled trial. F1000 - Post-Publication Peer Review of the Biomedical Literature 2015. https://doi.org/10.3410/f.72550890.793507986
10. Gerber AC, Weiss M. Awake spinal or caudal anaesthesia in preterms for herniotomies: what is the evidence based benefit compared with general anaesthesia? Curr Opin Anaesthesiol. 2003;16:315–20. https://doi.org/10.1097/00000542-200306000-00012
11. Somri M, Gaitani L, Vaida S, Collins G, Sabo E, Mogiliner G. Postoperative outcome in high-risk infants undergoing herniorrhaphy: comparison between spinal and general anaesthesia. Anaesthesia. 1998;53:762–6. https://doi.org/10.1093/bja/61.3.263
12. Franco R. Vocal process granuloma – a result of long-term observation in 53 patients. Yearb Otolaryngol-Head Neck Surg. 2010;2010:70–1. https://doi.org/10.1016/j.yoto.2010.04.003
13. Bhardwaj N. Pediatric cuffed endotracheal tubes. J Anaesthesiol Clin Pharmaco. 2013;29:13 https://doi.org/10.4103/0970-9185.105786
14. Wei JL, Bond J. Management and prevention of endotracheal intubation injury in neonates. Curr Opin Otolaryngol Head Neck Surg. 2011;19:474–7. https://doi.org/10.1097/moo.0b013e32830636a8
15. Souza CMD, Romero FE, Tardelli MA. Assessment of neuromuscular blockade in children at the time of block reversal and the muscarinic effects on the developing brain. Curr Drug Targets. 2005;6(3):328–34. https://doi.org/10.2174/1389450053882460
16. Fortier L-P, Mckeen D, Turner K, Médicis ÉD, Warriner B, Jones PM, et al. The RECITE study. Anesthesia Analgesia. 2010;110:478–88. https://doi.org/10.1213/ane.0b013e3181f4f57f
17. Meretoja OA. Neuromuscular block and current treatment strategies for its reversal in children. Pediatr Anesthesia. 2010;20:591–604. https://doi.org/10.1111/j.1460-9592.2010.03335.x
18. Carlos RV, Torres MLA, Boer HDD. Rocuronium and sugammadex in a 3 days old neonate for draining an ovarian cyst. Neuromuscular management and review of the literature. Braz...
19. Liu G, Wang R, Yan Y, Fan L, Xue J, Wang T. The efficacy and safety of sugammadex for reversing postoperative residual neuromuscular blockade in pediatric patients: a systematic review. Scientific Reports 2017;7. https://doi.org/10.1038/s41598-017-06159-2

20. Anderson BJ, Larsson P, Lerman J. Anesthesia and ancillary drugs and the neonate. Neonatal Anesthesia 2014:67–130. https://doi.org/10.1007/978-1-4419-6041-2_3

21. McGoldrick KE. Impact of anesthesia management characteristics on severe morbidity and mortality. Surv Anesthesiol. 2005;49:140 https://doi.org/10.1097/01.sa.0000165233.61632.ab

22. Frawley G, Bell G, Disma N, Withington DE, Graff JCD, Morton NS, et al. Predictors of failure of awake regional anesthesia for neonatal hernia repair. Anesthesiology. 2015;123:55–65. https://doi.org/10.1097/aln.0000000000000708

23. Hoelzle M, Weiss M, Dillier C, Gerber A. Comparison of awake spinal with awake caudal anesthesia in preterm and ex-preterm infants for herniotomy. Pediatr Anesthesia. 2010;20:620-4. https://doi.org/10.1111/j.1460-9592.2010.03316.x

24. Maitra S, Baidya DK, Pawar DK, Arora MK, Khanna P. Epidural anesthesia and analgesia in the neonate: a review of current evidences. J Anesthesia. 2014;28:768–79. https://doi.org/10.1007/s00540-014-1796-8