On the \((n, d)^{th}\) \(f\)-Ideals *

Jin Guo† Tongsuo Wu‡

Department of Mathematics, Shanghai Jiaotong University

Abstract. A square-free monomial ideal \(I\) is called an \(f\)-ideal, if both
\(\delta_F(I)\) and \(\delta_N(I)\) have the same \(f\)-vector, where \(\delta_F(I)\) (\(\delta_N(I)\), respectively) is the facet (Stanley-Reisner, respectively) complex related to \(I\).

In this paper, we introduce the concepts of perfect set containing \(k\) and
perfect set without \(k\). We study the \((n, d)^{th}\) perfect sets and show that
\(V(n, d) \neq \emptyset\) for \(d \geq 2\) and \(n \geq d + 2\). Then we give some algorithms
to construct \((n, d)^{th}\) \(f\)-ideals and show an upper bound of the \((n, d)^{th}\)
perfect number.

Key Words and phrases: perfect set containing \(k\); perfect set
without \(k\); \(f\)-ideal; unmixed \(f\)-ideal; perfect number

2010 Mathematics Subject Classification: 13P10, 13F20,
13C14, 05A18.

1 Introduction

Throughout the paper, for a set \(A\), we use \(A_d\) to denote the set of the subsets of \(A\) with
cardinality \(d\). For a monomial ideal \(I\) of \(S\), let \(sm(I)\) be the set of square-free monomials
in \(I\). As we know, there is a natural bijection between \(sm(S)\) and \(2^n\), denoted by
\[
\sigma : x_{i_1}x_{i_2} \cdots x_{i_k} \mapsto \{i_1, i_2, \ldots, i_k\},
\]
where \([n] = \{1, 2, \ldots, n\}\) for a positive integer \(n\). A square-free monomial \(u\) is called
covered by a square-free monomial \(v\), if \(u | v\) holds. For other concepts and notations, see
references [2, 5, 7, 8, 10, 11].

*This research is supported by the National Natural Science Foundation of China (Grant No. 11271250).
†Corresponding author. guojinech@163.com
‡tswu@sjtu.edu.cn
Constructing free resolutions of a monomial ideal is one of the core problems in commutative algebra. A main approach to the problem is by taking advantage of the properties of a simplicial complex, so it is important to have a research on the properties of the complex corresponding to the related ideals, see for example, references [4] [6] [9] [12]. There is an important class of ideals called \(f \)-ideals, whose facet complex \(\delta_F(I) \) and Stanley-Reisner complex \(\delta_N(I) \) have the same \(f \)-vector, where \(\delta_F(I) \) is generated by the set \(\sigma(G(I)) \), and \(\delta_N(I) = \{ \sigma(g) | g \in \text{sm}(S) \setminus \text{sm}(I) \} \). Note that the \(f \)-vector of a complex \(\delta_N(I) \), which is not easy to calculate in general, is essential in the computation of the Hilbert series of \(S/I \). Since the correspondence of the complex \(\delta_F(I) \) and the ideal \(I \) is direct and clear, it is more easier to calculate the \(f \)-vector of \(\delta_F(I) \). So, it is convenient to calculate the Hilbert series and study other corresponding properties of \(S/I \) while \(I \) is an \(f \)-ideal.

The formal definition of an \(f \)-ideal first appeared in [1], and it was then studied in [3]. In [7], the authors characterized the \(f \)-ideals of degree \(d \), as well as the \(f \)-ideals in general case. They introduced a bijection between square-free monomial ideals of degree \(2 \) and simple graphs, and showed that \(V(n, 2) \neq \emptyset \) for any \(n \geq 4 \), where \(V(n, d) \) is the set of \(f \)-ideals of degree \(d \) in \(S = K[x_1, \ldots, x_n] \). The structure of \(V(n, 2) \) was determined, and the characterization of the unmixed \(f \)-ideals is also studied in [7].

In this paper, we give another characterization of unmixed \(f \)-ideals in part two. In part three, we generalize the aforementioned result of [7] by showing that \(V(n, d) \neq \emptyset \) for general \(d \geq 3 \) and \(n \geq d + 2 \). In part four, we introduce some algorithms to construct \((n, d)^{th}\) \(f \)-ideals, and we show an upper bound of the \((n, d)^{th}\) perfect number in part five. In part six, we show some examples of nonhomogeneous \(f \)-ideals, which is still open in [7].

The following propositions are needed in this paper.

Proposition 1.1. ([7] Theorem 2.4) Let \(S = K[x_1, \ldots, x_n] \), and let \(I \) be a square-free monomial ideal of \(S \) of degree \(d \) with the minimal generating set \(G(I) \). Then \(I \) is an \(f \)-ideal if and only if \(G(I) \) is \((n, d)^{th}\) perfect and \(|G(I)| = \frac{1}{2}C_n^d \) holds true.

Proposition 1.2. ([7] Proposition 3.3) \(V(n, 2) \neq \emptyset \) if and only if \(n = 4k \) or \(n = 4k + 1 \) for some positive integer \(k \).

Proposition 1.3. ([7] Proposition 5.3) Let \(S = K[x_1, \ldots, x_n] \). If \(I \) is an \(f \)-ideal of \(S \) of degree \(d \), then \(I \) is unmixed if and only if \(\text{sm}(S)_d \setminus G(I) \) is lower perfect.

In [7], a method for finding an \((n, 2)^{th}\) perfect set with the smallest cardinality is provided, namely, first, decompose the set \([n]\) into a disjoint union of two subsets \(B \) and \(C \) uniformly, i.e., \(||B| - |C|| \leq 1 \) holds; then set \(A = \{ x_i x_j | i, j \in B, \text{or} \ i, j \in C \} \). Finally, \(A \) is an \((n, 2)^{th}\) perfect set whose cardinality is equal to the \((n, 2)^{th}\) perfect number \(N_{(n, 2)} \), where

\[
N_{(n, 2)} = \begin{cases}
 k^2 - k, & \text{if } n = 2k; \\
 k^2, & \text{if } n = 2k + 1.
\end{cases}
\]
Note that any set D with $A \subseteq D \subseteq sm(S)_2$ is also an $(n, 2)^{th}$ perfect set.

2 $(n, d)^{th}$ unmixed f-ideals

For a positive integer d greater than 2, an $(n, d)^{th}$ f-ideal may be not unmixed, see Example 5.1 of [7] for a counterexample. So, it is interesting to characterize the unmixed f-ideals. In this section, we show a characterization of unmixed f-ideals by the corresponding simplicial complex, by taking advantage of the bijection σ between square-free monomial ideals and simplicial complexes.

Recall that a simplicial complex is a d-flag complex if all of its minimal non-faces contain d elements. Recall that Δ^\vee denotes the Alexander dual of a simplicial complex Δ, see [8] for details.

Proposition 2.1. Let $S = K[x_1, \ldots, x_n]$, and let I be a square-free monomial ideal of S of degree d. I is an $(n, d)^{th}$ unmixed f-ideal if and only if the followings hold:

1. $|G(I)| = C_n^d/2$;
2. $\dim \delta_F(I)^\vee = n - d - 1$;
3. $\langle \sigma(u) \mid u \in sm(S)_d \setminus G(I) \rangle$ is a d-flag complex.

Proof. We claim that the following two results hold true: First, the condition (2) holds if and only if $G(I)$ is lower perfect. Second, the condition (3) holds if and only if $G(I)$ is upper perfect and $sm(S)_d \setminus G(I)$ is lower perfect. If the above two results hold true, then it is easy to see that the conclusion holds by Proposition 1.2 and Proposition 1.3.

For the first claim, if $G(I)$ is lower perfect, then for each minimal non-face F of $\delta_F(I)$, $|F| \geq d$ holds. By the definition of the Alexander dual, G is a face of $\delta_F(I)^\vee$ if and only if $[n] \setminus G$ is a non-face of $\delta_F(I)$. So, for each facet L of $\delta_F(I)^\vee$, $|L| \leq n - d$. Since $|G(I)| \neq C_n^d$, there exists some non-face of $\delta_F(I)$ with cardinality d, so there exists some facet of $\delta_F(I)^\vee$ with cardinality $n - d$. Thus $\dim(\delta_F(I)^\vee) = n - d - 1$.

Conversely, assume $\dim(\delta_F(I)^\vee) = n - d - 1$. By a similar argument, one can see that the smallest cardinality of non-faces of $\delta_F(I)$ is d, hence $G(I)$ is lower perfect.

For the second claim, if $sm(S)_d \setminus G(I)$ is lower perfect, then for the complex $\Delta = \langle \sigma(u) \mid u \in sm(S)_d \setminus G(I) \rangle$, the cardinality of a non-face is not less than d. Since $G(I)$ is upper perfect, for each non-face F of Δ, there exists $v \in G(I)$ such that $\sigma(v) \subseteq F$. Note that $\sigma(v)$ is a non-face of Δ, so all the minimal non-faces of Δ have cardinality d. Hence Δ is a d-flag complex.

Conversely, assume that $\Delta = \langle \sigma(u) \mid u \in sm(S)_d \setminus G(I) \rangle$ is a d-flag complex. In a similar way, one can see that $G(I)$ is upper perfect and $sm(S)_d \setminus G(I)$ is lower perfect. □
3 Existence of $(n, d)^{th}$ f-ideals

For a subset M of $sm(S)_d$, denote $M' = \{ \sigma^{-1}(A) \mid A = [n] \setminus \sigma(u) \text{ for some } u \in M \}$. The following lemma is essential in the proof of our main result in this section.

Lemma 3.1. M is a perfect subset of $sm(S)_d$ if and only if M' is a perfect subset of $sm(S)_{n-d}$.

Proof. For the necessary part, if M is a subset of $sm(S)_d$, then it follows from definition that M' is a subset of $sm(S)_{n-d}$. In order to check that M' is upper perfect, we will show for each monomial $u \in sm(S)_{n-d+1}$ that $u \in \cup(M')$ holds. This is equivalent to showing that there exists some $v \in M'$, such that $\sigma(v) \subseteq \sigma(u)$ holds. In fact, since M is lower perfect, for the monomial $u' = \sigma^{-1}([n] \setminus \sigma(u)) \in sm(S)_{d-1}$, there exists some $w \in M$ such that $u' | w$ holds. Hence $\sigma(u') \subseteq \sigma(w)$ holds. Now let $v = \sigma^{-1}([n] \setminus \sigma(w))$ and then it is easy to see that $\sigma(v) = [n] \setminus \sigma(w) \subseteq [n] \setminus \sigma(u') = \sigma(u)$ hold. This shows that M' is upper perfect. In a similar way, one can prove that M' is lower perfect.

The sufficient part is similar to prove, and we omit the details. □

By the proof of the above lemma, one can see that M is an upper (lower, respectively) perfect subset of $sm(S)_d$ if and only if M' is a lower (upper, respectively) perfect subset of $sm(S)_{n-d}$.

Corollary 3.2. If I is a square-free monomial ideal of S of degree d, then I is an $(n, d)^{th}$ f-ideal if and only if $|G(I)| = C_n^d/2$ and $G(I)'$ is a perfect subset of $sm(S)_{n-d}$.

Denote $sm(S\{\hat{k}\})_d = \{ u \in sm(S)_d \mid x_k \upharpoonright u \}$, and $sm(S\{k\})_d = \{ u \in sm(S)_d \mid x_k | u \}$. For a subset $X = \{i_1, \ldots, i_j\}$ of $[n]$, denote

$$sm(S\{X\})_d = \{ u \in sm(S)_d \mid x_k \upharpoonright u \text{ for every } k \in X \},$$

and let $sm(S\{X\})_d = \{ u \in sm(S)_d \mid x_k \uparrow u \text{ for every } k \in X \}$.

Definition 3.3. For a subset M of $sm(S\{\hat{k}\})_d$, if $sm(S\{\hat{k}\})_{d+1} \subseteq \uplus(M)$ holds, then M is called *upper perfect without k*. Dually, a subset M of $sm(S\{\hat{k}\})_d$ is called *lower perfect without k*, if $sm(S\{\hat{k}\})_{d-1} \subseteq \cap(M)$ holds. A subset M of $sm(S\{k\})_d$ is called *upper perfect containing k*, if $sm(S\{k\})_{d+1} \subseteq \uplus(M)$ holds; a subset M of $sm(S\{k\})_d$ is called *lower perfect containing k*, if $sm(S\{k\})_{d-1} \subseteq \cap(M)$ holds. If M is not only upper but also lower perfect without k, then M is called *perfect without $k*$. Similarly, if M is both upper and lower perfect containing k, then M is called *perfect containing $k*.

For a subset X of $[n]$, we can define the upper perfect (lower perfect, perfect, respectively) set without X (containing X) similarly. For a subset A of $sm(S)_d$, let $A\{\hat{X}\} = A \cap sm(S\{\hat{X}\})_d$, and let $A\{X\} = A \cap sm(S\{X\})_d$.

Proposition 3.4. Let A be a subset of $sm(S)_d$, and let $X = \{i_1, \ldots, i_j\}$ be a subset of $[n]$. Then the following statements hold:

1. $A\{\bar{X}\} = A\{\bar{i}_1\}\{\bar{i}_2\} \ldots \{\bar{i}_j\},$ and $A\{X\} = A\{i_1\}\{i_2\} \ldots \{i_j\},$
2. If A is upper perfect, then $A\{\bar{X}\}$ is upper perfect without X;
3. If A is lower perfect, then $A\{X\}$ is lower perfect containing X;
4. If A is upper (lower, respectively) perfect without X, then A' is lower (upper, respectively) perfect containing X. Furthermore, the converse also holds true.

Proof. (1) and (2) are easy to see by the corresponding definitions.

In order to prove (3), it is sufficient to show that $A\{k\}$ is a lower perfect set containing k for each $k \in [n]$. In fact, since A is lower perfect, for each monomial $u \in sm(S\{k\})_{d-1}$, there exists a monomial v in A such that $u \mid v$. Note that $x_k \mid u$ holds, so $x_k \mid v$ also holds, which implies that $v \in sm(S\{k\})_d$ holds. Hence $A\{k\}$ is a lower perfect set containing k.

For (4), we only show that A' is lower perfect containing k when A is upper perfect without k, and the remaining implications are similar to prove. In fact, for each monomial $u \in sm(S\{k\})_{n-d-1} \subseteq sm(S)_{n-d-1}$, $u' \in sm(S)_{d+1}$, note that $x_k \mid u$ implies $x_k \mid u'$ holds true, hence $u' \in sm(S\{\bar{k}\})_{d+1}$ also hold. Since A is upper perfect without k, there exists a monomial $v \in A$ such that $v \mid u'$ holds, hence $u \mid v'$ holds, where $v' \in A'$. This completes the proof. \square

Remark 3.5. For a perfect subset A of $sm(S)_d$, $A\{\bar{X}\}$ needs not to be a lower perfect set without X, and $A\{X\}$ needs not to be an upper perfect set containing X, see the following for counter-examples:

Example 3.6. Let $S = K[x_1, \ldots, x_6]$, let

$A = \{x_1x_2x_3, x_1x_2x_4, x_1x_2x_5, x_3x_4x_5, x_1x_2x_6, x_1x_3x_6, x_2x_3x_6, x_4x_5x_6\},$

and let $B = A \setminus \{x_1x_2x_6\}$. It is easy to see

$A\{6\} = B\{\bar{6}\} = \{x_1x_2x_3, x_1x_2x_4, x_1x_2x_5, x_3x_4x_5\},$

$A\{6\} = \{x_1x_2x_6, x_1x_3x_6, x_2x_3x_6, x_4x_5x_6\},$ and $B\{\bar{6}\} = \{x_1x_3x_6, x_2x_3x_6, x_4x_5x_6\}$. Also, it is direct to check that both A and B are perfect sets, and that both $A\{6\}$ and $B\{\bar{6}\}$ are perfect sets without 6. Note that $A\{6\}$ is a perfect set containing 6, but $B\{\bar{6}\}$ is not upper perfect.

By Proposition 3.4, we have the following example by mapping A, B to A', B' respectively.

Example 3.7. Let $S = K[x_1, \ldots, x_6]$, and let

$A' = \{x_1x_2x_3, x_1x_4x_5, x_2x_4x_5, x_3x_4x_5, x_1x_2x_6, x_3x_4x_6, x_3x_5x_6, x_4x_5x_6\},$
and \(B' = A' \setminus \{x_3x_4x_5\} \). It is easy to see that

\[
A'\{6\} = \{x_1x_2x_3, x_1x_4x_5, x_2x_4x_5, x_3x_4x_5\}, \quad B'\{6\} = \{x_1x_2x_3, x_1x_4x_5, x_2x_4x_5\},
\]

and \(A'\{6\} = B'\{6\} = \{x_1x_2x_6, x_3x_4x_6, x_3x_5x_6, x_4x_5x_6\} \). It is direct to check that both \(A' \) and \(B' \) are perfect sets, and that both \(A'\{6\} \) and \(A'\{6\} \) are perfect sets containing 6. Note that \(A'\{6\} \) is a perfect set without 6, but \(B'\{6\} \) is not lower perfect.

In order to obtain the main result of this section, we need a further fact and we omit the verification.

Lemma 3.8. Let \(S = K[x_1, \ldots, x_n] \), and let \(A \) be a subset of \(\text{sm}(S)_d \). If \(A\{k\} \) is a perfect subset of \(\text{sm}(S\{k\})_d \) without \(k \), and \(A\{k\} \) is a perfect subset of \(\text{sm}(S\{k\})_d \) containing \(k \) for some \(k \in [n] \), then \(A \) is a perfect subset of \(\text{sm}(S)_d \).

Theorem 3.9. For any integer \(d \geq 2 \) and any integer \(n \geq d + 2 \), there exists an \((n, d)\)th perfect set with cardinality less than or equal to \(C^d_n / 2 \).

Proof. We prove the result by induction on \(d \).

If \(d = 2 \), the conclusion holds true for any integer \(n \geq 4 \) by Proposition 1.2. In the following, assume \(d > 2 \).

Assume that the conclusion holds true for any integer less than \(d \). For \(d \), we claim that the conclusion holds true for any integer \(n \geq d + 2 \). We will show the result by induction on \(n \).

If \(n = d + 2 \), then \(C^d_n = C^2_n \). Note that for any integer \(n \geq 4 \), there exists an \((n, 2)\)th perfect set \(M \), such that \(|M| \leq C^2_n / 2 \). By Lemma 3.1, \(M' \) is an \((n, d)\)th perfect set. Note that \(|M'| = |M| \leq C^2_n / 2 = C^d_n / 2 \) holds.

Now assume that the conclusion holds true for any integer less than \(n \). Then by Lemma 3.8, it will suffice to show that there is a perfect subset \(A \) of \(\text{sm}(S\{\hat{n}\})_d \) without \(n \) and a perfect subset \(B \) of \(\text{sm}(S\{n\})_d \) containing \(n \), such that \(|A| \leq |\text{sm}(S\{n\})_d| / 2 = C^d_{n-1} / 2 \) and \(|B| \leq |\text{sm}(S\{n\})_d| / 2 = C^d_{n-1} / 2 \) hold.

Let \(L = K[x_1, \ldots, x_{n-1}] \). Then clearly, \(\text{sm}(S\{\hat{n}\})_d = \text{sm}(L)_d \) holds. By induction on \(n \), there exists an \((n-1, d-1)\)th perfect subset \(A \) of \(\text{sm}(L)_d \), such that \(|A| \leq C^d_{n-1} / 2 \). It is easy to see that \(A \) is a perfect subset of \(\text{sm}(S\{\hat{n}\})_d \) without \(n \). By induction on \(d \), there exists an \((n-1, d-1)\)th perfect subset \(B_1 \) of \(\text{sm}(L)_{d-1} \), such that \(|B_1| \leq C^d_{n-1} / 2 \) holds. Let \(B = \{\sigma^{-1}(D) \mid D \in \sigma(u) \cup \{n\} \text{ for some } u \in B_1 \} \). It is easy to see that \(B \) is a perfect subset of \(\text{sm}(S\{n\})_d \) containing \(n \), and \(|B| = |B_1| \leq C^d_{n-1} / 2 \).

Finally, by Lemma 3.8, \(A \cup B \) is a perfect subset of \(\text{sm}(S)_d \), and \(|A \cup B| = |A| + |B| \leq C^d_{n-1} / 2 + C^d_{n-1} / 2 = C^d_n / 2 \). This completes the proof. \(\square \)

By Proposition 1.1 and Theorem 3.9, the following corollary is clear.

Corollary 3.10. For any integer \(d \geq 2 \) and any integer \(n \geq d + 2 \), \(V(n, d) \neq \emptyset \) if and only if \(2 \mid C^d_n \).
4 Algorithms for constructing examples of \((n, d)^{th}\) \(f\)-ideals

In this section, we will show some algorithms to construct \((n, d)^{th}\) \(f\)-ideals. We discuss the following cases:

Case 1: \(d = 2\). An \((n, 2)^{th}\) \(f\)-ideal is easy to construct by [7]. For readers convenience, we repeat it as the following: Decompose the set \([n]\) into a disjoint union of two subsets \(B\) and \(C\) uniformly, namely, \(|B| - |C| \leq 1\). Then set \(A = \{x_i x_j \mid i, j \in B, \text{ or } i, j \in C\}\) to obtain an \((n, 2)^{th}\) perfect set. Note that \(|A| = N_{(n, 2)} \leq C_n^2 / 2\), choose a subset \(D\) of \(sm(S)_2 \setminus A\) randomly, such that \(|D| = C_n^2 / 2 - N_{(n, 2)}\) holds. It is easy to see that \(A \cup D\) is still a perfect set, and \(|A \cup D| = C_n^2 / 2\). By Proposition [11] the ideal generated by \(A \cup D\) is an \((n, 2)^{th}\) \(f\)-ideal. Note that each \((n, 2)^{th}\) \(f\)-ideal can be obtained in this way except \(C_5\) by [7].

Case 2: \(d > 2\) and \(n = d + 2\).

Algorithm 4.1. In order to build an \(f\)-ideal \(I \in V(d+2, d)\), we obey the following steps:

Step 1: Calculate \(C_{d+2}^d / 2\). Note that \(C_{d+2}^d / 2 = C_{d+2}^d / 2\).

Step 2: As in the case 1, find a perfect subset \(B\) of \(sm(S)_2\) such that \(|B| \leq C_{d+2}^d / 2\), where \(S = K[x_1, \ldots, x_{d+2}]\).

Step 3: Let \(A = B'\). Then \(A\) is a perfect subset of \(sm(S)_d\) by Lemma [3.1] and \(|A| = |B| \leq C_{d+2}^d / 2 = C_{d+2}^d / 2\).

Step 4: Choose a subset \(D\) of \(sm(S)_d \setminus A\) randomly, such that \(|D| = C_{d+2}^d / 2 - |A|\) holds. It is easy to see that \(M = A \cup D\) is still a perfect set, and \(|A \cup D| = C_{d+2}^d / 2\).

Step 5: Let \(I\) be the ideal generated by \(A \cup D\). By Proposition [12] again, \(I\) is an \((d + 2, d)^{th}\) \(f\)-ideal.

Note that in this way, we constructed almost all \((d + 2, d)^{th}\) \(f\)-ideals.

Example 4.2. Show an \(f\)-ideal \(I \in V(8, 6)\).

Note that \(8 = 6 + 2\), we obey the Algorithm [4.1]

Note that \(C_8^6 / 2 = 14\). Find a perfect subset \(B\) of \(sm(S)_2\) such that \(|B| \leq C_8^6 / 2 = 14\), where \(S = K[x_1, \ldots, x_8]\). It is easy to see that

\[
B = \{x_1 x_2, x_1 x_3, x_1 x_4, x_2 x_3, x_2 x_4, x_3 x_4, x_5 x_6, x_5 x_7, x_5 x_8, x_6 x_7, x_6 x_8, x_7 x_8\}
\]

is a perfect subset of \(sm(S)_2\), with \(|B| = 12\). Let

\[
A = B' = \{x_3 x_4 x_5 x_6 x_7 x_8, x_2 x_4 x_5 x_6 x_7 x_8, x_2 x_3 x_5 x_6 x_7 x_8, x_1 x_4 x_5 x_6 x_7 x_8, \\
x_1 x_3 x_5 x_6 x_7 x_8, x_1 x_2 x_5 x_6 x_7 x_8, x_1 x_2 x_3 x_4 x_7 x_8, x_1 x_2 x_3 x_4 x_6 x_8, \\
x_1 x_2 x_3 x_4 x_6 x_7, x_1 x_2 x_3 x_4 x_5 x_8, x_1 x_2 x_3 x_4 x_5 x_7, x_1 x_2 x_3 x_4 x_5 x_6\}
\]

is a perfect subset of \(sm(S)_6\). Choose \(D = \{x_1 x_2 x_3 x_5 x_6 x_7, x_1 x_2 x_4 x_5 x_6 x_8\}\), then the ideal \(I\) generated by \(A \cup D\) is an \((8, 6)^{th}\) \(f\)-ideal.
Case 3: \(d > 2 \) and \(n > d + 2 \). Let \(S^{[k]} = K[x_1, \ldots, x_k] \), and let \(S = S^{[n]} = K[x_1, \ldots, x_n] \).

Algorithm 4.3. For an integer \(n > d + 2 \), we construct an \((n, d)\)\(th\) \(f\)\(-ideal\) by using the following steps:

Step 1: Let \(t = n, l = d \) and \(E = \emptyset \). Set \(\mathcal{B} = \{B(t, l, E)\} \).

Step 2: Assign \(\mathcal{C} = \mathcal{B} \), and denote \(i = |\mathcal{C}| \).

Step 3: Choose each \(B(t, l, E) \in \mathcal{C} \) one by one, deal with each one obeying the following rules:

If \(l = 2 \) or \(t = l + 2 \), don’t change anything.

If \(l \neq 2 \) and \(t > l + 2 \), then cancel \(B(t, l, E) \) from \(\mathcal{B} \), and add \(B(t - 1, l, E \cup \{t\}) \) into \(\mathcal{B} \).

After \(i \) times, i.e., when \(B(t, l, E) \) goes through all the element of \(\mathcal{C} \), make a judgement:

If \(l = 2 \) or \(t = l + 2 \) for each \(B(t, l, E) \in \mathcal{B} \), then go to step 4, else return to step 2.

Step 4: Choose \(B(t, l, E) \in \mathcal{B} \) one by one, deal with each one obeying the following rules:

If \(l = 2 \), assign \(B(t, l, E) \) a perfect subset of \(sm(S^{[l]}_d) \) as case 1.

If \(l \neq 2 \) and \(t = l + 2 \), assign \(B(t, l, E) \) a perfect subset of \(sm(S^{[l]}_d) \) as case 2.

Step 5: For each \(B(t, l, E) \in \mathcal{B} \), denote \(\mathcal{B}^{*}(t, l, E) = \{ux \in B(t, l, E)\} \), where \(x_E = \prod_{j \in E} x_j \). Denote \(\mathcal{B}^{*} = \cup_{B(t, l, E) \in \mathcal{B}} \mathcal{B}^{*}(t, l, E) \). It is direct to check that \(\mathcal{B}^{*} \) is a perfect subset of \(sm(S)_d \), and \(|\mathcal{B}^{*}| \leq C^d_n / 2 \). Choose a subset \(D \) of \(sm(S)^{c}_d \ \mathcal{B}^{*} \) randomly, such that \(|D| = C^d_n / 2 - |\mathcal{B}^{*}| \) holds.

Step 6: Let \(I \) be the ideal generated by \(\mathcal{B}^{*} \cup D \). By Proposition 1.1 again, \(I \) is an \((n, d)\)\(th\) \(f\)\(-ideal\).

Example 4.4. Show a \((6, 3)\)\(th\) \(f\)\(-ideal\).

Let \(S = K[x_1, \ldots, x_6] \). By the above algorithm, we will choose a perfect subset \(B(5, 3, \emptyset) \) of \(sm(S^3)_3 \) and a perfect subset \(B(5, 2, \{6\}) \) of \(sm(S^5)_2 \). Set \(B(5, 3, \emptyset) = \{x_3x_4x_5, x_2x_4x_5, x_1x_4x_5, x_1x_2x_3\} \), and set \(B(5, 2, \{6\}) = \{x_1x_2, x_1x_3, x_2x_3, x_4x_5\} \). Correspondingly, \(\mathcal{B}^{*}(5, 3, \emptyset) = B(5, 3, \emptyset) \) and

\[
\mathcal{B}^{*}(5, 2, \{6\}) = \{x_1x_2x_6, x_1x_3x_6, x_2x_3x_6, x_4x_5x_6\}.
\]

Hence

\[
\mathcal{B}^{*} = \{x_3x_4x_5, x_2x_4x_5, x_1x_4x_5, x_1x_2x_3, x_1x_2x_6, x_1x_3x_6, x_2x_3x_6, x_4x_5x_6\}
\]

is a perfect subset of \(sm(S)_3 \). Note that \(C^3_6/2 = 10 \), and \(|\mathcal{B}^{*}| = 8 \). Set \(D = \{x_1x_2x_4, x_1x_2x_5\} \). The ideal \(I \) generated by \(\mathcal{B}^{*} \cup D \) is a \((6, 3)\)\(th\) \(f\)\(-ideal\).

Note that the \((6, 3)\)\(th\) \(f\)\(-ideal\) given in the above example is not unmixed. In fact, consider the simplicial complex \(\sigma(sm(S)_3 \setminus G(I)) \), and note that \(\{1, 2\} \) is a non-face of \(\sigma(sm(S)_3 \setminus G(I)) \), which implies that \(\sigma(sm(S)_3 \setminus G(I)) \) is not a 3-flag complex. So, \(I \) is not unmixed by Proposition 2.1.
5 An upper bound of the perfect number $N_{(n,d)}$

For a positive integer k and a pair of positive integers $i \leq j$, denote by $Q_{[i,j]}^k$ the set of square-free monomials of degree k in the polynomial ring $K[x_i, x_{i+1}, \ldots, x_j]$. Note that $Q_{[i,j]}^k = \emptyset$ holds for $i > j$. For a pair of monomial subsets A and B, denote by $A \bullet B = \{uv | u \in A, v \in B\}$. If $B = \emptyset$, then assume $A \bullet B = A$. The following theorem gives an upper bound of the $(n,d)^{th}$ perfect number for $n > d + 2$.

Theorem 5.1. Given a integer $d > 2$, and a integer $n \geq d + 2$. The following statements about the perfect number $N_{(n,d)}$ hold:

1. If $n = d + 2$, then
 \[N_{(n,d)} = N_{(n,2)} = \begin{cases} k^2 - k, & \text{if } n = 2k; \\ k^2, & \text{if } n = 2k + 1. \end{cases} \tag{2} \]

2. If $n > d + 2$, then
 \[N_{(n,d)} \leq \sum_{i=5}^{n-d+2} N_{(i,2)} C_{n-i-1}^{d-3} + \sum_{j=3}^{d} N_{(j+2,2)} C_{n-j-3}^{d-j}, \tag{3} \]

where $C_0^0 = 1$.

Proof. By Lemma 3.1 and the equation 1 in the first section, (1) is clear.

In order to prove (2), it will suffice to show that there exists a perfect set with cardinality $t = \sum_{i=5}^{n-d+2} N_{(i,2)} C_{n-i-1}^{d-3} + \sum_{j=3}^{d} N_{(j+2,2)} C_{n-j-3}^{d-j}$.

Let $P_{(i,2)}$ be an $(i,2)^{th}$ perfect set with cardinality $N_{(i,2)}$ for $5 \leq i \leq n - d + 2$, and let $P_{(j+2,j)}$ be a $(j+2, j)^{th}$ perfect set with cardinality $N_{(j+2,2)}$ for $3 \leq j \leq d$. We claim that the set
\[M = (\cup_{i=5}^{n-d+2} P_{(i,2)} \bullet x_{i+1} \bullet Q_{[i+2,n]}^{d-3}) \cup (\cup_{j=3}^{d} P_{(j+2,2)} \bullet Q_{[j+4,n]}^{d-j}) \]
is an $(n,d)^{th}$ perfect set, with cardinality t. It is easy to check that the cardinality of M is t. It is only necessary to prove that M is perfect.

For each $w \in sm(S)_{d+1}$, denote by $n_k(w)$ the cardinality of the set $\{x_i | i \leq k \text{ and } x_i \mid w\}$. If $n_5(w) \geq 4$, then choose the smallest k such that $n_{k+3}(w) = n_{k+2}(w) = k + 1$. Clearly, $3 \leq k \leq d$. It is direct to check that w is divided by some monomial in $P_{(k+2,k)} \bullet Q_{[k+4,n]}^{d-k}$. If $n_5(w) \leq 3$, then choose the smallest k such that $n_k(w) = 3$ and $n_{k+1}(w) = 4$. Clearly, $5 \leq k \leq n - d + 2$. It is not hard to check that w is divided by some monomial in $P_{(k,2)} \bullet x_{k+1} \bullet Q_{[k+2,n]}^{d-3}$. Hence M is upper perfect.

For each $w \in sm(S)_{d-1}$, if $n_5(w) \geq 2$, then choose the smallest k such that $n_{k+3}(w) = n_{k+2}(w) = k - 1$. Clearly, $3 \leq k \leq d$. It is direct to check that w is covered by some monomial in $P_{(k+2,k)} \bullet Q_{[k+4,n]}^{d-k}$. If $n_5(w) \leq 1$, then choose the smallest k such that $n_k(w) = 1$ and $n_{k+1}(w) = 2$. Clearly, $5 \leq k \leq n - d + 2$ holds. It is not hard to check.
that \(w \) is covered by some monomial in \(P_{(k,2)} \cdot x_{k+1} \cdot Q_{[k+2,n]}^{d-3} \). Hence \(M \) is lower perfect.

\[\square \]

The following figure may help to interpret the above theorem intuitively.

Figure 1. Upper Bound

In this figure, there is a boundary consisting of the line \(l = 2 \) and the line \(t = l + 2 \). From the point \((d, n) \) to a point of the boundary, every directed chain \(C \) denotes a set of monomials \(M(C) \) by the following rules:

1. Every arrow of \(C \) is from \((l, t) \) to either \((l, t - 1) \) or \((l - 1, t - 1) \).
2. If the arrow is from \((l, t) \) to \((l, t - 1) \), then each monomial in \(M(C) \) is not divided by \(x_t \). Correspondingly, if it is from \((l, t) \) to \((l - 1, t - 1) \), then each monomial in \(M(C) \) is divided by \(x_t \).
3. Each point \((l, t) \) of the boundary is a \((t, l) \)-th perfect set.

Actually, the figure shows us a class of \((n, d) \)-th perfect sets. For each point \((l, t) \) of the boundary, if we choose the corresponding perfect set to be a \((t, l) \)-th perfect set with cardinality \(N_{(t,l)} \), then the cardinality of the \((n, d) \)-th perfect set is exactly

\[
N_{t+2} N_{j+2} \left(C_{n-j-3} \right) + \sum_{j=3}^{d} N_{j+2} \left(C_{n-j-3} \right) \]

Example 5.2. Calculation of the \((6, 3) \)-th perfect number.

Let \(A \) be a \((6, 3) \)-th perfect set. By Proposition 3.3(2), \(A\{6\} \) is an upper perfect set without 6. Hence \(|A\{6\}| \geq N_{(5,3)} = 4\). By Proposition 3.3(3), \(A\{6\} \) is a lower perfect set containing 6. Note that for the monomials of \(\{x_1, x_2, x_3, x_4, x_5\} \), each monomial in \(A\{6\} \)
covers at most two of them. So, $|A\{6\}| \geq 3$. Hence $|A| \geq |A\{6\}| + |A\{6\}| \geq 7$. Actually, as showed in Example 3.6 there exists a $(6,3)^{th}$ perfect set

$$B = \{x_1x_2x_3, x_1x_2x_4, x_1x_2x_5, x_3x_4x_5, x_1x_3x_6, x_2x_3x_6, x_4x_5x_6\}$$

with cardinality 7. Thus $N_{(6,3)} = 7$. Note that the upper bound given by Proposition 5.1(2) is 8, and is not bad for the perfect number in the case.

6 Nonhomogeneous f-ideal

In [7], a characterization of f-ideals in general case is shown, but it is still not easy to show an example of nonhomogeneous f-ideal. In fact, the interference from monomials of different degree makes the computation complicated. Anyway, we worked out the following examples:

Example 6.1. Let $S = K[x_1, x_2, x_3, x_4, x_5]$, and let

$$I = \langle x_1x_2, x_3x_4, x_1x_3x_5, x_2x_4x_5 \rangle.$$

It is direct to check that

$$\delta_F(I) = \langle \{1, 2\}, \{3, 4\}, \{1, 3, 5\}, \{2, 4, 5\} \rangle$$

and

$$\delta_N(I) = \langle \{1, 3\}, \{2, 4\}, \{1, 4, 5\}, \{2, 3, 5\} \rangle.$$

It is easy to see they have the same f-vector, and hence I is an f-ideal, which is clearly nonhomogeneous.

In fact, there are a lot of nonhomogeneous f-ideals. We will show another example to end this section.

Example 6.2. Let $S = K[x_1, x_2, x_3, x_4, x_5, x_6]$, and let

$$I = \langle x_1x_2, x_2x_3, x_1x_3, x_4x_5, x_1x_4x_6, x_1x_5x_6, x_2x_4x_6 \rangle.$$

Note that

$$\delta_N(I) = \langle \{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 4\}, \{2, 5, 6\}, \{3, 4, 6\}, \{3, 5, 6\} \rangle.$$

It is direct to check that I is also a nonhomogeneous f-ideal.
References

[1] G. Q. Abbasi, S. Ahmad, I. Anwar, W. A. Baig, f-Ideals of degree 2, Algebra Colloquium, 19(Spec1)(2012), 921 − 926.

[2] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.

[3] I. Anwar, H. Mahmood, M. A. Binyamin and M. K. Zafar, On the Characterization of f-Ideals, Comm. Algebra (accepted), see also arXiv: 1309.3765 (Sep. 15, 2013).

[4] E. Connon and S. Faridi. Chorded complexes and a necessary condition for a monomial ideal to have a linear resolution. Journal of Combinatorial Theory, Series A, 120(2013), 1714 − 1731.

[5] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry. Springer Science + Business Media, Inc, 2004.

[6] S. Faridi, The facet ideal of a simplicial complex, Manuscripta Mathematica, 109(2002), 159 − 174.

[7] J. Guo, T. S. Wu and Q. Liu, Perfect sets and f-Ideals, preprint.

[8] J. Herzog and T. Hibi, Monomial Ideals. Springer-Verlag London Limited, 2011.

[9] J. Herzog, T. Hibi, X. Zheng, Diracs theorem on chordal graphs and Alexander duality, European J. Combin. 25 (2004)949 − 960.

[10] R. H. Villarreal, Monomial Algebra. Marcel Dekker, Inc, New York, 2001.

[11] O. Zariski and P. Samuel, Commutative Algebra. Vol.1 Reprints of the 1958 − 60 edition. Springer-Verlag New York, 1979.

[12] X. Zheng, Resolutions of facet ideals, Commun. Algebra 32 (6) (2004) 2301 − 2324.