A Supporting Appendix for “Nail in the Coffin or Lifeline?
Evaluating the Electoral Impact of COVID-19 on President Trump in the 2020 Election”

Contents

A.1 Assessing the Aggregate Model in Congressional Elections 2
A.2 Aggregate Mode Control Variables Coding Scheme 8
A.3 Sensitivity Analysis Assessing Aggregate Model Robustness 10
A.4 Specification Plots Assessing Aggregate Model Sensitivity 16
A.5 Manuscript Aggregate Model Tables & Robustness Checks 24
A.6 Voter Study Group Models Control Variable Coding Scheme 37
A.7 Voter Study Group Manuscript Model Tables & U.S. House Robustness Checks . 39
A.1 Assessing the Aggregate Model in Congressional Elections

While it is clear that President Trump electorally gained on the basis of COVID-19 deaths rather than cases, did these gains spillover to his down-ballot Republican allies? We turn to investigating the potential of these spillover effects by assessing our models within the context of the U.S. House and U.S. Senate. We collect data to evaluate our models at the down-ballot context. For electoral return data from the previous time a given Senate seat was up for election, which mostly occurred in 2014 for Class II Senate seats, we collect certified county-level data from the OurCampaigns.com, an election data repository. In the context of the Class II Senate seats contested in 2020, the outcome variable measure is the Δ change in margin between the Senate Republican and Democratic candidate between the 2020 elections and 2014 elections. The key exception here are the 2020 U.S. Senate races in Arizona, Georgia, Minnesota and Mississippi. Since these races in Arizona and Georgia were special elections caused by vacancies in mid-term due to the death of Sen. John McCain (R-AZ) and resignation of Sen. Jonny Isaakson (R-GA), we use lagged 2016 vote share since that was the last time these Class I seats were up for election. In the case of the 2020 races in Minnesota and Mississippi, we used 2018 lagged vote-share given that Senators Tina Smith (D-MN) and Cindy Hyde-Smith (R-MS) were elected to their seats in special elections that year. We omit the Arkansas Class II Senate seat held by freshman GOP Sen. Tom Cotton, which was the only Senate seat left uncontested by either major party in 2020. In the context of the U.S. House, we collect 2020 district-level data from the Cook Political Report and the previous 2018 election data was provided by the Massachusetts Institute of Technology Election Data & Science Lab. In the House context, our dependent variable takes the form of the Δ change in relative margin between the House Republican and Democratic candidate between the 2020 and 2018 elections. Δ shows a spatial distribution of this dependent variable in the presidential and U.S. House context. House Republican candidates enjoyed a reversal of electoral fortunes compared to their performance during the 2018 Democratic wave, with a mean gain of 5.16% in relative performance in 2020 compared to 2018.\footnote{This statistic is derived from the 364 congressional districts contested by both majority parties in 2018 & 2020. Given that specification of our dependent variable measures changes in relative electoral support, we only consider districts that were contested by both major parties in 2020 and the previous 2018 election cycle. Note that we omit districts in North Carolina given discongruence in district lines from 2018 to 2020 due to court-mandated redistricting taking place in 2019.} In all, there is rich variation in the geographic distribution of relative changes in electoral performance for Republican candidates across the ballot.

For measuring COVID severity at the congressional district level, we rely on data provided by the Harvard Center for Population and Development Studies’ COVID-19 Metrics for United States Congressional Districts Project. This dataset aggregates case and death data to the congressional district level, a salient geographic unit of interest, for the entirety of the COVID-19 pandemic. We specify our key independent variables of interest using data on deaths and cases in these two respective datasets. To measure COVID-19 severity in a given county, we calculate the overall cumulative deaths and cases within a county from the beginning of the pandemic on January 21st until Election Day on November 3rd in the same fashion as the manuscript county-level models. Figures 1 shows the spatial distribution of our outcome variables of interest measuring change in Republican electoral support for House and Senate Republicans, while Figure 2 shows the spatial distribution of our independent variable of interest articulating COVID-19 severity at the
congressional district level. In terms of evaluating our models, Figure 3 presents the results of our aggregate models within the context of the U.S. Senate and House. As shown in Figure 3, there is largely inconsistent evidence that the gains enjoyed by Donald Trump on the basis of COVID-19 death severity spilled over to the electoral benefit of his Republican allies running for the U.S. Senate across differing models.

By contrast, there is strong evidence that his co-partisans running for the U.S. House benefited on the basis of severity in COVID-19 cases and deaths. As Figure 3A shows, there is strong evidence that House Republican candidates gained relative electoral support during the 2020 elections in districts that were both more severely impacted by COVID-19 cases and deaths across all model specifications. Across each model specification, an increase in district COVID-19 severity (cases and deaths) the week prior to the election, and in cumulative terms, correlates with increased electoral gains for House Republican candidates. In a district experiencing the mean number of cumulative COVID-19 cases (i.e., CA-41 & OK-04) the fixed effects estimate shows that House Republicans gained about 5.53% (2764.4×0.002) in relative support. In a district experiencing the mean number of cumulative COVID-19 deaths (i.e., TX-14 & GA-04) the fixed effects estimate shows that House Republicans gained about 2.67% (55.689.4×0.048) in relative support. Congruently, there is evidence to suggest House Republicans also gained support in districts experiencing a short-term Δ increase in COVID-19 cases and deaths the week prior to election day. Taking the fixed-effects estimate for the weekly trend in COVID-19 cases, in a district experiencing the average increase in cases (i.e., CO-02 & CA-15) House Republicans gained an average of 1.04% (27.363×0.038) in relative support. In the fixed-effects estimate for trend in deaths, in a district with the mean trend in deaths (i.e., AL-03 & IA-03) House Republicans gained an average of 1.39%(0.2561×5.227) in relative support. Taken together, there is comprehensive evidence across statistical specifications that House Republicans improved on their 2018 electoral performance during the 2020 elections across short-term and long-term COVID cases and death dynamics.

In terms of the U.S. Senate, there is relatively weaker evidence that Republican Senate candidates benefited in counties with more pronounced COVID-19 cases and death incidences. While two of the four statistical estimators show that Republican Senate candidates gained on the basis of cumulative COVID-19 cases and deaths, respectively, there is no evidence that they were helped by a short-term spike in severity a week prior to election day. This is in stark contrast to President Trump and House Republican candidates, which enjoyed greater support in constituencies experiencing a spike in the COVID-19 death count trend the week prior to election day. The results evaluating whether greater COVID-19 severity is correlated with greater electoral gains by Senate Republican candidates suggests perhaps that electoral institutional variation may have blunted any potential gains. Indeed, while all House seats are contested every election cycle, only about a third of the Senate is contested. Moreover, the Class II Senate seats up for election is decidedly more conservative and Republican leaning than either the Class I or Class II seats (Algara, 2019; Sievert & McKee, 2019).

Taken together, there is only consistent evidence in the U.S. House that President Trump’s Republican allies gained from severity in COVID-19 deaths in a similar manner as he did. This suggests that House Republican gains and President Trump’s over-performance of electoral prognostications could be partly due to increased electoral gains on the basis of greater COVID-19 deaths. Indeed, it appears that the COVID-19 rally around the flag circumstance that may have shored up gains for President Trump only spilled over to his Republican colleagues seeking election to the House of Representatives and not the U.S. Senate. Taken together, there is no evidence to
suggest that President Trump or any of his Republican allies seeking election to the Congress suffered an electoral penalty due to pronounced severity in COVID-19 cases or deaths apparent across county and district constituencies. Within the context of the U.S. House, we find congruent results as the presidential context presented in the manuscript, that House Republicans gained in congressional districts hardest hit by COVID-19. We note that the manuscript’s individual-level mechanism positing that Republicans gained among voters that believed restrictions would not be lifted quickly enough holds within Voter Survey models predicting support for House Republican candidates in the 2020 election. Indeed, these results can be found in Tables 22A of this appendix, suggesting that during the nationalized era of congressional elections COVID-19 dynamics manifested themselves in a similar fashion at multiple levels of partisan competition.
Figure 1: COVID-19 Severity Across U.S. Congressional Districts

(a) Cumulative Deaths

(b) Weekly Deaths Trend Prior to Election

(c) Cumulative Cases

(d) Weekly Cases Trend Prior to Election
Figure 2: Change in Electoral Support for Republican Candidates During the 2020 Election

(a) \(\Delta \) District-Level Support for House Republican Candidates

(b) \(\Delta \) County-Level Support for U.S. Senate Republican Candidates

Figure articulates the \(\Delta \) change in district support for House Republican candidates shows only congressional districts contested by both parties in the 2018 & 2020 election cycles and also omits congressional districts in North Carolina due to mid-decade redistricting in 2019. Figure shows only two-party contested U.S. Senate races for the 2020 election cycle. The concurrent special election for the Georgia Senate Class III seat is omitted from the figure given that Georgia had two Senate elections in 2020.
Estimates articulating the relationship between county COVID-19 severity and change in electoral support for congressional Republican candidates in Figure are derived from full models specified with demographic and partisan control covariates. Coefficients significant at the 95% confidence level labelled.
A.2 Aggregate Mode Control Variables Coding Scheme

Unemployment Rate: The rate of unemployment, not seasonally adjusted, from September 2019-October 2020 in a given county, or district, provided by the U.S. Bureau of Labor Statistics.

Population Density: The population per squared mile measured from calculating the squared area in miles of counties (or congressional districts) from U.S. Census shape files and dividing by the total population as measured by the 2015-2019 American Community Survey. At the county-level, this variable ranges from Loving County, Texas with 0.14 people per square mile to San Francisco County, California with 18,465.31 people per square mile.

Educational Attainment: The education of a given county (or congressional district) is measured with two variables measuring the percentage of the population with a high school degree and the percentage of the population with a Bachelor’s degree or higher. These variables are taken from the 2015-2019 American Community Survey estimates.

Racial Composition of the Constituency: Following the lead of the county-level models specified by Chyzh & Urbatsch (2020), we measure racial composition at the county or congressional district-level through a series of variables indicating the percentage of the population Black, Multiracial, Hispanic, and Foreign-Born. These variables are taken from the 2015-2019 American Community Survey estimates.

Median Income: The median income (i.e., wealth) of a given county or congressional district is measured in raw household dollars and taken from the 2015-2019 American Community Survey estimates. At the county-level, this measure ranges from $21,504 in Holmes County, Mississippi to $142,299 in Loudoun County, Virginia in the Washington, DC suburbs.

Median Age: The median age of the population within a given county or congressional district.

Percent 62+: The proportion of a given county’s or congressional district’s population that is aged 62 or older.

Constituency Lagged Partisanship: This variable is a lagged partisanship indicating the percentage of the two-party vote won by: (1) President Donald Trump in the 2016 election for the specification of the presidential-level models; (2) the Republican U.S. Senate candidate in the last seat-class election in the specification of the Senate-level models; (3) the Republican U.S. House candidate in the 2018 elections for the specification of the House-level models, (3) the Republican gubernatorial candidate in the last gubernatorial election in the specification of the gubernatorial-level models, and (4) the Republican statewide candidate in the last election for the lower-level statewide office model specifications. These variables were specified using data from *The New York Times* for the presidential context, Gary Jacobson for the U.S. House context, and *Our Campaigns* for the gubernatorial and other statewide office contexts.

Democratic Governor: This variable is a dichotomous variable coded 1 if the Governor is
a Democratic partisan and 0 if the Governor is a Republican partisan. As articulated in the manuscript, we use this variable to control for potential differences in COVID-19 policy responses depending on which party controls the Governor’s mansion.
A.3 Sensitivity Analysis Assessing Aggregate Model Robustness

In any analysis, scholars recognize concerns that unobserved confounders or unmeasured variables may impact model estimates and their significance. This concern is present in any observational analysis as many potential confounders cannot be measured.

Applicably, given the unprecedented nature of the 2020 election, scholars may suggest that the relationship between COVID-19 and the change in Republican electoral support may be explained by the presence of a confounder omitted from our analyses. For example, Trump voters may be more likely than Biden voters to be risk-seeking, less likely to wear a mask, or believe COVID-19 is a hoax. As a result, some may argue that the presence of these unobserved confounders explains the relationship between COVID-19 and changes in Republican electoral support. However, these variables are unmeasured in our data and potentially unmeasurable in any data set. Yet, concerns about how these confounders affect estimates persist.

To address these concerns, we employ a sensitivity analysis Cinelli & Hazlett (2020). Sensitivity analysis measures to what extent an unobserved confounder may change the strength and/or significance of a treatment variable on an outcome variable in a regression model. Specifically, their work allows us to address two key questions: (1) how strong an unobserved confounder(s) needs to be to overturn our results, and (2) how strong a confounder needs to be relative to an observed variable in our model.

To address the first question, we conduct a sensitivity analysis of our significant coefficients in the presidential and House analysis, focusing on a fixed effects (Hazlett & Mildenberger, 2020) and a random effects model. The sensitivity analysis provides statistics measuring the percentage of the residual variance that an unobserved confounder must explain in both the treatment and outcome to bring the estimate to a range where it is no longer statistically significant ($\rho < 0.05$).

To address the second question, we follow Cinelli & Hazlett (2020) and measure how an unobserved confounder one, two, and three times the size of an observed coefficient in our model changes our results. This observed variable is called a “benchmark coefficient.” Using a benchmark coefficient helps us “determine how severe confounding would have to be to have meaningfully altered our conclusions” (Hazlett & Mildenberger, 2020, p. 1363). For the presidential models, we use the October unemployment rate as the benchmark coefficient. We use the unemployment rate as a benchmark for both its empirical and theoretical significance in our presidential model. In addition to being a significant predictor of the change in Republican electoral support, it is also heuristic for retrospective voting evaluations (Fiorina, 1978). The argument being that citizens who vote based on retrospective economic evaluation should punish the incumbent party for the economic downturn during COVID-19 pandemic and their poor performance in redressing it. For the House models, we use Republican incumbency as the benchmark coefficient. Like unemployment, incumbency is both useful empirically and theoretically. In addition to being a significant predictor of change in Republican support, its measures the incumbency advantage (Jacobson & Carson, 2019). Therefore, we use these two benchmark coefficients, both with empirical and theoretical importance, to define the threshold an unobserved confounder must meet to change the significance of our results.

2Cinelli & Hazlett (2020) provide useful intuition, empirical tests, and an R package, sensemakr, that allows scholars to examine how unobserved confounders may affect their results.

3Hazlett & Mildenberger (2020) use a fixed effects model with cluster standard errors in the main text and a fixed effects model for the sensitivity analysis. We follow their lead.
Note, however, we recognize that sensitivity analysis is not a silver bullet. Instead, we hope that answers to these two questions will stimulate and focus discussion by defining a threshold where an unobserved confounder may change our models’ results.

Beginning with the presidential models, our fixed effects results find that as the cumulative number of COVID-19 deaths and the average number of COVID-19 deaths 1 week before Election Day increases, the change in Republican electoral support increases as well. Across the cumulative number of deaths and weekly trend in deaths models, the sensitivity analysis reports that an unobserved confounder must explain 6.29% and 1.33% of the residual variance in both our independent and dependent variables, respectively, to make the COVID-19 coefficients insignificant in their respective models. Figure 1A reports the adjusted estimates and standard errors (95% confidence intervals) of each of our COVID-19 coefficients, given a confounding variable one, two, and three times stronger than the benchmark coefficient. If the estimate’s confidence interval crosses the dotted line, it is considered statistically insignificant ($\rho < 0.05$).

Figure 1A shows that an if unobserved confounder was more than three times as strong as the unemployment coefficient (in explaining the residual variation in the independent and dependent variable) in the cumulative COVID-19 death and weekly trend in deaths models, then it still would not be large enough to bring the COVID-19 coefficients down to a range where they would be statistically insignificant.

Our random effects results from the presidency analysis in the main text report that as the cumulative number of cases, deaths, and the weekly trend in deaths before Election Day increases, the change in Republican presidential electoral support between 2016 and 2020 increases as well. Across the cumulative number of cases, deaths, and weekly trend in deaths models, the sensitivity analysis reports that an unobserved confounder must explain 1.26%, 6.25%, and 1.56% of the residual variance both our independent and dependent variables, respectively, to make the COVID-19 coefficient insignificant in their respective models. Following Cinelli & Hazlett (2020), Figure 2A shows that if an unobserved confounder is more than three times as strong as
the unemployment coefficient in the cumulative COVID-19 death and weekly trend in deaths models, then it still would not be large enough to bring the COVID-19 coefficients down to a range where they would be statistically insignificant. These sensitivity results mirror the results in the fixed effects model.

Figure 2A: Sensitivity Analysis From Random Effects Model In Presidency Analysis

Turning to the House models. We begin with the sensitivity analysis of the fixed effects models. These models in the main text report that the weekly trend in cases and deaths before Election Day and the cumulative number of cases and deaths has a positive and significant effect on the change in Republican House candidates’ electoral support between 2018 and 2020. Across the cumulative number of cases and deaths, and the weekly trend in cases and deaths models, the sensitivity analysis reports that an unobserved confounder must explain 9.82%, 16.42%, 0.46% ($\rho < 0.1$), and 5.51% of the residual variance both our independent and dependent variables, respectively, to make the COVID-19 coefficients insignificant in their respective models. Figure 3A reports the results of the sensitivity analysis on the House fixed effects models. It shows that an unobserved confounder can be three times as strong as the observed incumbency covariate, and the cumulative COVID-19 cases and deaths coefficient would still be statistically significant. With respect to the weekly trend in the COVID-19 cases, the coefficient is significant when $\rho < 0.1$ and continues to be significant at that level even with a confounder three times as strong as incumbency. Lastly, an unobserved confounder needs to be two times as strong as the incumbency covariate to make the weekly trend in deaths coefficient insignificant.
Finally, we run the sensitivity analysis on the random effects models in the House. These models in the main text report that the weekly trend in cases and deaths before Election Day and the cumulative number of cases and deaths have a positive and significant effect on the change in Republican House candidates’ electoral support between 2018 and 2020. Across the cumulative number of cases and deaths, and the weekly trend in cases and deaths models, the sensitivity analysis reports that an unobserved confounder must explain 9.14%, 10.36%, 4.66%, and 7.66% of the residual variance both our independent and dependent variables, respectively, to make the COVID-19 coefficients insignificant in their respective models. Figure 4A reports the results of the sensitivity analysis on the House fixed effects models. The figure shows that an unobserved confounder can be three times as strong as the observed incumbency covariate and the cumulative COVID-19 cases, deaths and weekly trend in COVID-19 cases coefficient would still be statistically significant. With respect to the weekly trend in COVID-19 deaths, a confounder needs to be more than two times as strong as incumbency to bring the coefficient back into a range where it is statistically insignificant.
In sum, the sensitivity analysis provides the thresholds necessary for an unobserved/unaccounted confounder to change the significance of our results. We hope this analysis offers scholars useful information on the threshold an unobserved covariate must meet to alter our estimates and their significance in our models.
Sensitivity Statistics for President Fixed Effects Models

| Treatment | Est | SE | T-value | $R^2_{Y\sim D|X}$ | $RV_{q=1}$ | $RV_{q=1,\alpha=0.05}$ | $R^2_{Y\sim Z|D,X}$ | $R^2_{D\sim Z|X}$ |
|-----------------------------------|-------|-------|---------|-------------------|------------|------------------------|----------------------|-------------------|
| Cumulative COVID-19 Deaths | 0.072 | 0.013 | 5.54 | 1% | 9.558% | 6.288% | 0.32% | 0.38% |
| Weekly Trend COVID-19 Deaths | 1.2286| 0.4555| 2.7 | 0.24% | 4.771% | 1.325% | 0.14% | 0.48% |

Sensitivity Statistics for President Random Effects Models

| Treatment | Est | SE | T-value | $R^2_{Y\sim D|X}$ | $RV_{q=1}$ | $RV_{q=1,\alpha=0.05}$ | $R^2_{Y\sim Z|D,X}$ | $R^2_{D\sim Z|X}$ |
|-----------------------------------|-------|-------|---------|-------------------|------------|------------------------|----------------------|-------------------|
| Cumulative COVID-19 Cases | 0.0014| 0.0005| 2.67 | 0.23% | 4.683% | 1.26% | 0.17% | 0.61% |
| Cumulative COVID-19 Deaths | 0.0716| 0.0129| 5.55 | 0.99% | 9.498% | 6.25% | 0.26% | 0.5% |
| Weekly Trend COVID-19 Deaths | 1.2891| 0.455 | 2.83 | 0.26% | 4.97% | 1.557% | 0.21% | 0.61% |

Sensitivity Statistics for House Fixed Effects Models

| Treatment | Est | SE | T-value | $R^2_{Y\sim D|X}$ | $RV_{q=1}$ | $RV_{q=1,\alpha=0.05}$ | $R^2_{Y\sim Z|D,X}$ | $R^2_{D\sim Z|X}$ |
|-----------------------------------|-------|-------|---------|-------------------|------------|------------------------|----------------------|-------------------|
| Cumulative COVID-19 Cases | 0.0018| 0.0005| 3.77 | 4.49% | 19.457% | 9.817% | 0.15% | 15.42% |
| Weekly Trend COVID-19 Cases | 0.0379| 0.0219| 1.73 | 0.98% | 9.485% | 0.459%1 | 0.02% | 14.34% |
| Cumulative COVID-19 Deaths | 0.0484| 0.0095| 5.09 | 7.91% | 25.324% | 16.422% | 0.28% | 16.58% |
| Weekly Trend COVID-19 Deaths | 5.2268| 1.7682| 2.96 | 2.81% | 15.625% | 5.509% | 1.79% | 16.57% |

Note: $^1 RV_{q=1,\alpha=0.1}$
A.4 Specification Plots Assessing Aggregate Model Sensitivity

In addition to the sensitivity analysis assessing the robustness of our models finding a significant relationship between COVID-19 severity and relative Republican electoral gains, we also present specification plots assessing how sensitive these models are to the inclusion of our model covariates. This exercise helps assess to what degree our effects of interest, COVID-19 severity, is a positive significant predictor of 2020 relative Republican electoral gains across all possible model specifications (Simonsohn, Simmons & Nelson, 2020). This procedure also fulfills the model transparency exercise advocated by Lenz & Sahn (2020) by assessing whether our models convey control-variable-induced increases in estimated effect sizes. To that end, we begin with specification plots assessing the relationship between county-level COVID-19 deaths, measured in cumulative and short-trend terms, within the context of the presidential election. We present these specification plots within the context of our fixed-effects and random-effects models, given that the computational demands of running thousands of geographical spatial dependence models (i.e., spatial error & spatial lag models) makes such analysis unattainable. However, we note the very high similarity between our fixed-effects, random-effects, and spatial dependence model estimates in the manuscripts. As such, we believe assessing our fixed-effects and random-effects models provides a clear articulation over how sensitive our model inferences are to the inclusion of various theoretically relevant covariates. Note that we focus on models within the presidential and U.S. House context given the fact we find largely inconsistent results in the U.S. Senate. Specifically, we evaluate the robustness of our models with respect to our COVID-19 death measures within the presidential and U.S. House context.

As one can see in Figure 5A, there is strong evidence that the positive significant relationship between county-level COVID-19 deaths and 2016-2020 relative electoral gains by President Trump hold across modeling choices within the state-fixed effects and state-random effects frameworks. On the x-axis we present the P-value of our COVID-19 county-level death coefficient and on the y-axis we present the magnitude of the COVID-19 county-level death coefficient. As one can see, out of 8,192 possible model specifications given our covariates, 75.9% (91.2%) of the state-fixed effects models show a significant and positive coefficient for the effect of county-level COVID-19

Sensitivity Statistics for House Random Effects Models

| Treatment | Est | SE | T-value | $R^2_{Y \sim D|X}$ | $RV_{q=1}$ | $RV_{q=1, \alpha=0.05}$ | $R^2_{Y \sim Z|X.D}$ | $R^2_{D \sim Z|X}$ |
|-----------------------------------|-------|-------|---------|---------------------|------------|--------------------------|----------------------|--------------------|
| Cumulative COVID-19 Cases | 0.0014| 0.0004| 3.75 | 3.91% | 18.245% | 9.14% | 0.11% | 15.19% |
| Weekly Trend COVID-19 Cases | 0.0453| 0.0159| 2.86 | 2.31% | 14.231% | 4.665% | 0% | 14.25% |
| Cumulative COVID-19 Deaths | 0.0344| 0.0086| 4.01 | 4.43% | 19.341% | 10.364% | 0.38% | 15.99% |
| Weekly Trend COVID-19 Deaths | 5.0678| 1.4676| 3.45 | 3.33% | 16.92% | 7.663% | 1.33% | 16.24% |

cumulative deaths on Trump’s 2016-2020 relative electoral gains at the $\rho < 0.05$ ($\rho < 0.10$) significance level. By contrast, we find a significant relationship between county-level short-term trends in COVID-19 deaths (measured as the running average of COVID-19 deaths within a county a week prior to the election) and Trump’s electoral gains for all 8,192 possible state-fixed effects model combinations at the $\rho < 0.05$ significance level. Taken together, across 16,384 possible state-fixed effects models assessing county-level COVID-19 death severity and Trump’s electoral gains for our two measures, we find that 14,641 (16,052) of these models—or 89.4% (98.0%) of all possible models—return a positive and significant relationship at the $\rho < 0.05$ ($\rho < 0.10$) significance level. Lastly, in the state-random effects framework, we find that all 8,192 possible model specifications return a positive significant relationship between county-level cumulative COVID-19 deaths and relative electoral gains for President Trump. In terms of the county-level weekly death trends measure, the specification plot shows that 93.2% (7638) and 98.4% (8054) of all possible models yield a positive signification relationship at the $\rho < 0.05$ and $\rho < 0.10$ confidence levels, respectively. Across all 16,384 random-effects models assessing the relationship of COVID-19 deaths and President Trump’s electoral gains, 15,830 (16,052) models yield a positive and significant result consistent with the full models presented in the manuscript at the $\rho < 0.05$ ($\rho < 0.10$) significance level. On the whole, this specification plot analysis shows robust evidence that our models are not sensitive to control-variable-induced increases in estimated effect sizes or statistical significance. The tables below show the proportion of times a given covariate was present in the non-significant presidential fixed-effects and random-effects models yielding an insignificant relationship between COVID-19 deaths and electoral gains by President Trump.

Proportion of Specifications With Given Covariates in Presidential Non-Significant Fixed-Effects Models

Covariates	Proportion
Unemployment Rate	0.369
Population Density	0.547
Percent HS Educated	1.000
Percent BA+ Educated	0.489
Percent African-American	0.575
Percent Multi-Race	0.542
Percent Hispanic	0.000
Percent Foreign Born	0.667
Median Income	0.564
Median Age	0.486
Percent 62+ Population	0.500
2016 GOP Vote Share	0.119
Democratic Governor	0.500

Insignificant Models $N = 720/16,384$

As one can see, all insignificant models in the state fixed-effects and state random-effects specifications omit the critical covariate measuring the percentage of the county of Hispanic descent. This is a critical variable since, as the full model results table shows, the covariate
measuring the percentage of the county of Hispanic is a highly significant, and relatively large, predictor of Trump’s electoral gains in 2020. Moreover, this is salient in popular media narrative highlighting Trump’s 2020 electoral gains among Hispanics and in largely Hispanic geographic areas. As such, these models yielding insignificant relationships of interest are suffering from misspecification due to the omission of the Hispanic percentage variable. Moreover, all random-effects insignificant models and 36.9% of fixed-effects insignificant models omit a county’s given unemployment rate, which is a pronounced omitted variable given the economic crisis brought forth by the COVID-19 pandemic and traditional theories positing presidential accountability centered on retrospective economic unemployment conditions.

Proportion of Specifications With Given Covariates in Presidential Non-Significant Random-Effects Models

Covariates	Proportion
Unemployment Rate	0.000
Population Density	0.500
Percent HS Educated	1.000
Percent BA+ Educated	0.500
Percent African-American	0.500
Percent Multi-Race	0.500
Percent Hispanic	0.000
Percent Foreign Born	0.000
Median Income	1.000
Median Age	0.500
Percent 62+ Population	0.500
2016 GOP Vote Share	0.000
Democratic Governor	0.500

Insignificant Models $N = 128/16,052$

Within the context of district-level deaths in the U.S. House, the specification plots find a similar results in the presidential showing a robust positive significant relationship between district-level COVID-19 deaths and 2018-2020 relative electoral gains by House Republican candidates, consistent with the finding of the full models in the appendix. As shown in Figure 6A, in the state-fixed effects models assessing the relationship of cumulative district-level COVID-19 deaths and House Republican relative electoral gains, 14,868 (15,968) out of 16,384 possible model specifications at the $\rho < 0.05$ ($\rho < 0.10$). In terms of district-level weekly trend deaths measure we find that 9,314 (11,252) out of 16,384 possible replicate the positive significant relationship in the manuscript at the at the $\rho < 0.05$ ($\rho < 0.10$) significance level in the fixed-effects framework. Indeed, 73.9% (83.2%) of all possible state fixed-effects model combinations find a significant positive relationship between district-level deaths and electoral gains for House Republican candidates at the $\rho < 0.05$ ($\rho < 0.10$) significance level.

4See: The New York Times (4/2/2021): "Trump’s Latino Support Was More Widespread Than Thought, Report Finds."
In the random-effects framework, we find even more robust evidence that the relationship between district-level deaths and House Republican electoral gains is not sensitive to the inclusion of specific control covariates. In terms of cumulative deaths, 13,344 (14,872) models out of 16,384 possible model combinations replicate the significant relationship between cumulative deaths and House Republican electoral gains at the \(\rho < 0.05 \) (\(\rho < 0.10 \)) significant level. In terms of the district-level weekly trend in COVID-19 deaths prior to election day, 14,582 (16,248) out of 16,384 possible models replicate the significant relationship between deaths and electoral gains at the \(\rho < 0.05 \) (\(\rho < 0.10 \)) significant level. Taken together, across all 32,728 possible random-effects models assessing district-level deaths and House Republican electoral gains, 27,926 (31,120) hold at the \(\rho < 0.05 \) (\(\rho < 0.10 \)) significance level. Lastly, assessment of the variables omitted in the insignificant model results show that only 6% of the insignificant models include a covariate measuring lagged Republican district partisanship in the fixed-effects context. This is perhaps the most salient variable to include in a model assessing electoral swings at the congressional districts, suggesting that most insignificant models omit this key variable. In the random-effects context, no clear pattern emerges with respect to a salient omitted variable driving many of the insignificant results.

Covariates	Proportion
Unemployment Rate	0.454
Population Density	0.513
Percent HS Educated	0.680
Percent BA+ Educated	0.469
Percent African-American	0.516
Percent Multi-Race	0.493
Percent Hispanic	0.538
Percent Foreign Born	0.431
Median Income	0.607
Median Age	0.485
Percent 62+ Population	0.571
2018 GOP Vote Share	0.058
GOP Incumbent	0.407

Insignificant Models \(N = 5,548/32,728 \)

Lastly, while not the focus of the paper, we do find a significant relationship between cumulative and trend COVID-19 cases and relative electoral gains by Republican House candidates. Figure 7A articulates whether these findings are sensitive to model specification. Note that, by contrast, we do not find that President Trump’s relative electoral gains in 2020 were fueled by the severity of COVID-19 cases at the county-level. As one can see, only about half of all possible state-fixed effects model combinations replicate the significant relationship between district-level cumulative COVID-19 cases and House Republicans gains (8,452/16,384) at the \(\rho < 0.10 \) significance level. For the weekly trend in COVID-19 cases the week prior to the election, about 68.2% of all possible
Proportion of Specifications Including Given Covariates in U.S. House Non-Significant Random-Effects Models

Covariates	Proportion
Unemployment Rate	0.355
Population Density	0.570
Percent HS Educated	0.664
Percent BA+ Educated	0.125
Percent African-American	0.243
Percent Multi-Race	0.289
Percent Hispanic	0.533
Percent Foreign Born	0.761
Median Income	0.442
Median Age	0.572
Percent 62+ Population	0.773
2018 GOP Vote Share	0.372
GOP Incumbent	0.396

Insignificant Models $N = 1,648/32,728$

state-fixed effects model combinations replicate the significant relationship between district-level trend COVID-19 cases and House Republicans gains (11,180/16,384) at the $\rho < 0.10$ significance level. In terms of random-effects, all 16,384 possible model combinations replicate the significant relationship between COVID-19 weekly trend in cases and House Republican electoral gains at the $\rho < 0.05$.

20
Figure 5A: Specification Plots Assessing COVID-19 Deaths & Trump Electoral Gains

(a) State Fixed-Effects & Clustered Standard Errors Models

Specification Plots of State-Fixed Effects Models Predicting Presidential 2016-2020 Relative Electoral Gains
N = 8,192 Possible Model Combinations Per Measure

Cumulative Deaths Measure
Models p < 0.05: 6216/8192 (75.9%) Models p < 0.10: 7472/8192 (91.2%) Models p > 0.10: 720/8192 (8.8%)

Weekly Trend Deaths Measure
Models p < 0.05: 8192/8192 (100.0%) Models p < 0.10: 8192/8192 (100%) Models p > 0.10: 0/8192 (0%)

(b) State Random-Effects Models

Specification Plots of State-Random Effects Models Predicting Presidential 2016-2020 Relative Electoral Gains
N = 8,192 Possible Model Combinations Per Measure

Cumulative Deaths Measure
Models p < 0.05: 8192/8192 (100%) Models p < 0.10: 8192/8192 (100%) Models p > 0.10: 0/8192 (0%)

Weekly Trend Deaths Measure
Models p < 0.05: 7638/8192 (93.2%) Models p < 0.10: 8064/8192 (98.4%) Models p > 0.10: 128/8192 (2.6%)
Figure 6A: Specification Plots Assessing COVID-19 Deaths & House GOP Electoral Gains

(a) State Fixed-Effects & Clustered Standard Errors Models

Specification Plots of State-Fixed Effects Models Predicting House 2016-2020 Relative Electoral Gains
N = 16,384 Possible Model Combinations Per Measure

Cumulative Deaths Measure

Weekly Trend Deaths Measure

(b) State Random-Effects Models

Specification Plots of State-Random Effects Models Predicting House 2016-2020 Relative Electoral Gains
N = 16,384 Possible Model Combinations Per Measure

Total rate of significant relations across specifications: 24,182/32,728 (74.2%) at p < 0.05 & 27,220/32,728 (83.2%) at p < 0.10.
Figure 7A: Specification Plots Assessing COVID-19 Cases & House GOP Electoral Gains

(a) State Fixed-Effects & Clustered Standard Errors Models

Specification Plots of State-Fixed Effects Models Predicting House 2016-2020 Relative Electoral Gains
N = 16,384 Possible Model Combinations Per Measure

(b) State Random-Effects Models

Specification Plots of State-Random Effects Models Predicting House 2016-2020 Relative Electoral Gains
N = 16,384 Possible Model Combinations Per Measure

Total rate of significant relations across specifications: 14,424/32,728 (44.1%) at p < 0.05 & 19,632/32,728 (60.0%) at p < 0.10.
A.5 Manuscript Aggregate Model Tables & Robustness Checks

- In the forthcoming section articulating the results of our aggregate models, note that Table 1A (regression results for presidential analysis using total cumulative COVID cases per 10,000 residents), Table 2A (regression results for presidential analysis using weekly trend in COVID cases per 10,000 residents), Table 3A (regression results for presidential analysis using total cumulative COVID deaths per 10,000 residents), and Table 4A (regression results for presidential analysis using weekly trend in COVID deaths per 10,000 residents) convey the full model results of the point estimates shown in Figure 3 of the manuscript.

- Figures 5A through Figures 8A replicate the above county-level presidential election analysis presented in the manuscript at the U.S. House congressional district level. The results of this robustness check replicates the presidential-level finding within the context of the U.S. House by showing that COVID-19 death severity (in both weekly trend and cumulative terms) correlated with electoral gains for House Republican candidate dates. Lastly, Tables 9A through Tables 12A replicate the above county-level presidential election analysis presented in the manuscript at the U.S. Senate county-level. Given the staggered nature of Senate elections and the fact that only a third of all Senate seats were up for election, our results do not hold within this context. These tables correspond to the model results of the first section of this appendix (specifically Figure 3 of this appendix). Taken together, our aggregate level models replicate in the presidential and House context at two different levels of geographic analysis, suggesting that COVID-19 death severity correlated with electoral gains for President Trump and his House Republican counterparts running further down the ballot.
| Dependent Variable: 2020 Δ Change in GOP Electoral Support | State FE and State Clustered SE | Random Effects | Spatial Error | Spatial Lag |
|--|---------------------------------|---------------|--------------|------------|
| | (1) | (2) | (3) | (4) |
| Total Covid Cases (10K) | 0.001 (0.001) | 0.001** (0.001) | 0.002*** (0.0005) | 0.002*** (0.0004) |
| Oct. Unemployment Rate | 0.189 (0.145) | 0.211*** (0.049) | 0.177*** (0.045) | 0.095*** (0.033) |
| Population Density | 0.0004** (0.0002) | 0.0004*** (0.0001) | 0.0002** (0.0001) | 0.0004*** (0.0001) |
| Percent High School Degree | 0.342*** (0.034) | 0.340*** (0.016) | 0.292*** (0.015) | 0.258*** (0.012) |
| Percent Bachelor’s Degree | 0.035 (0.047) | 0.041 (0.034) | 0.030 (0.033) | 0.073*** (0.025) |
| Percent Black | 0.010 (0.028) | 0.010 (0.012) | −0.015 (0.012) | 0.004 (0.009) |
| Percent Multiracial | 0.080*** (0.024) | 0.076*** (0.010) | 0.045*** (0.010) | 0.032*** (0.008) |
| Percent Hispanic | 0.181*** (0.052) | 0.178*** (0.010) | 0.110*** (0.011) | 0.088*** (0.007) |
| Percent Foreign-Born | −0.038 (0.056) | −0.035 (0.023) | 0.012 (0.024) | 0.027 (0.019) |
| Median Income | −0.0001*** (0.00002) | −0.0001*** (0.00001) | −0.0001*** (0.00001) | −0.0001*** (0.00001) |
| Median Age | 0.042 (0.060) | 0.037 (0.038) | 0.094*** (0.035) | 0.064* (0.034) |
| Percent 62 and Older | 0.041 (0.075) | 0.045 (0.040) | 0.008 (0.037) | 0.007 (0.034) |
| 2016 GOP Vote Share | −0.115*** (0.017) | −0.110*** (0.008) | −0.089*** (0.009) | −0.061*** (0.006) |
| Governor’s Party: Republican | 1.795** (0.765) | 2.155*** (0.700) | 1.252*** (0.259) | 0.617*** (0.140) |
| Constant | −14.880*** (2.198) | −16.345*** (1.454) | −12.811*** (1.319) | −11.344*** (1.167) |
| Observations | 3105 | 3105 | N/A | 3105 |
| Adj. R Squared | 0.539 | 0.6’ | N/A | N/A |
| RMSE | 3.458 | 0.991 | 3.147 | 3.225 |

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01

'Conditional R-squared

'Random Effects, Marginal R-squared = 0.423
Table 2A: Regression Results for Presidential Analysis using Weekly Trend Covid Cases (10K)

Dependent Variable: 2020 Δ Change in GOP Electoral Support	State FE and State Clustered SE	Random Effects	Spatial Error	Spatial Lag
Weekly Trend Covid Cases (10K)	0.021 (0.032)	0.027 (0.022)	0.007 (0.020)	0.074*** (0.017)
Oct. Unemployment Rate	0.187 (0.145)	0.207*** (0.049)	0.171*** (0.046)	0.090*** (0.034)
Population Density	0.0004** (0.0002)	0.0004*** (0.0001)	0.0002** (0.0001)	0.0004*** (0.0001)
Percent High School Degree	0.342*** (0.033)	0.340*** (0.016)	0.294*** (0.015)	0.258*** (0.012)
Percent Bachelor’s Degree	0.030 (0.049)	0.036 (0.035)	0.028 (0.033)	0.066*** (0.026)
Percent Black	0.012 (0.029)	0.013 (0.012)	−0.014 (0.012)	0.014 (0.009)
Percent Multiracial	0.078*** (0.025)	0.074*** (0.010)	0.042*** (0.010)	0.028*** (0.008)
Percent Hispanic	0.184*** (0.051)	0.181*** (0.010)	0.113*** (0.011)	0.088*** (0.007)
Percent Foreign-Born	−0.033 (0.057)	−0.029 (0.023)	0.019 (0.024)	0.045** (0.019)
Median Income	−0.0001*** (0.00002)	−0.0001*** (0.0001)	−0.0001*** (0.0001)	−0.0001*** (0.0001)
Median Age	0.040 (0.060)	0.034 (0.038)	0.089** (0.035)	0.065* (0.034)
Percent 62 and Older	0.036 (0.078)	0.040 (0.040)	0.003 (0.037)	−0.007 (0.034)
2016 GOP Vote Share	−0.114*** (0.018)	−0.108*** (0.008)	−0.088*** (0.009)	−0.058*** (0.006)
Governor’s Party: Republican	1.777** (0.754)	2.244*** (0.713)	1.327*** (0.260)	0.708*** (0.139)
Constant	−14.190*** (2.188)	−15.756*** (1.437)	−11.871*** (1.299)	−10.502*** (1.154)

Observations 3105 3105 3105 3105
Adj. R Squared 0.538 0.605’ 0.00001 0.00001
RMSE 3.46 0.991 3.148 3.232

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01

’Conditional R-squared

’Random Effects, Marginal R-squared = 0.422
Table 3A: Regression Results for Presidential Analysis using Total Covid Deaths (10K)

Dependent Variable: 2020 ∆ Change in GOP Electoral Support	State FE and State Clustered SE (1)	Random Effects (2)	Spatial Error (3)	Spatial Lag (4)
Total Covid Deaths (10K)	0.072*** (0.024)	0.072*** (0.013)	0.041*** (0.012)	0.052*** (0.011)
Oct. Unemployment Rate	0.170 (0.141)	0.191*** (0.049)	0.163*** (0.045)	0.064* (0.033)
Population Density	0.0004* (0.0002)	0.0004*** (0.0001)	0.0002** (0.0001)	0.0004*** (0.0001)
Percent High School Degree	0.339*** (0.034)	0.338*** (0.016)	0.292*** (0.015)	0.257*** (0.012)
Percent Bachelor’s Degree	0.037 (0.049)	0.043 (0.034)	0.032 (0.033)	0.090*** (0.025)
Percent Black	0.008 (0.028)	0.008 (0.012)	−0.018 (0.012)	−0.001 (0.009)
Percent Multiracial	0.083*** (0.025)	0.079*** (0.010)	0.044*** (0.010)	0.027*** (0.008)
Percent Hispanic	0.176*** (0.046)	0.174*** (0.010)	0.110*** (0.011)	0.084*** (0.007)
Percent Foreign-Born	−0.031 (0.055)	−0.028 (0.023)	0.017 (0.024)	0.040** (0.019)
Median Income	−0.0001*** (0.00002)	−0.0001*** (0.00001)	−0.0001*** (0.00001)	−0.0001*** (0.00001)
Median Age	0.041 (0.057)	0.035 (0.038)	0.089** (0.035)	0.054 (0.034)
Percent 62 and Older	0.029 (0.073)	0.033 (0.040)	−0.0004 (0.037)	−0.004 (0.034)
2016 GOP Vote Share	−0.115*** (0.017)	−0.110*** (0.008)	−0.089*** (0.009)	−0.059*** (0.006)
Governor’s Party: Republican	1.609** (0.795)	2.177*** (0.714)	1.290*** (0.258)	0.712*** (0.139)
Constant	−14.517*** (2.078)	−16.087*** (1.424)	−12.020*** (1.282)	−9.674*** (1.131)

Observations 3105 3105 3105 3105
Adj. R Squared 0.543 0.608* N/A N/A
RMSE 3.443 0.991 3.145 3.233

Note: Standard errors reported in parantheses.
*p<0.1; **p<0.05; ***p<0.01
*Conditional R-squared
'Random Effects, Marginal R-squared = 0.425
Table 4A: Regression Results for Presidential Analysis using Weekly Trend Covid Deaths (10K)

Dependent Variable: 2020 Δ Change in GOP Electoral Support	State FE and State Clustered SE (1)	Random Effects (2)	Spatial Error (3)	Spatial Lag (4)
Weekly Trend Covid Deaths (10K)	1.229*** (0.371)	1.289*** (0.455)	1.275*** (0.408)	1.672*** (0.404)
Oct. Unemployment Rate	0.191 (0.146)	0.210*** (0.049)	0.173*** (0.045)	0.075** (0.033)
Population Density	0.0004** (0.0002)	0.0004*** (0.0001)	0.0002** (0.0001)	0.0004*** (0.0001)
Percent High School Degree	0.342*** (0.033)	0.340*** (0.016)	0.294*** (0.015)	0.260*** (0.012)
Percent Bachelor’s Degree	0.033 (0.049)	0.039 (0.034)	0.028 (0.033)	0.088*** (0.025)
Percent Black	0.011 (0.028)	0.012 (0.012)	−0.014 (0.012)	0.008 (0.009)
Percent Multiracial	0.078*** (0.025)	0.074*** (0.010)	0.043*** (0.010)	0.025*** (0.008)
Percent Hispanic	0.184*** (0.050)	0.182*** (0.010)	0.113*** (0.011)	0.087*** (0.007)
Percent Foreign-Born	−0.033 (0.057)	−0.029 (0.023)	0.020 (0.024)	0.044** (0.019)
Median Income	−0.0001*** (0.00002)	−0.0001*** (0.00001)	−0.0001*** (0.00001)	−0.0001*** (0.00001)
Median Age	0.039 (0.059)	0.033 (0.038)	0.088** (0.035)	0.055 (0.034)
Percent 62 and Older	0.036 (0.077)	0.039 (0.040)	0.003 (0.037)	−0.004 (0.034)
2016 GOP Vote Share	−0.114*** (0.018)	−0.109*** (0.008)	−0.089*** (0.009)	−0.059*** (0.006)
Governor’s Party: Republican	1.762** (0.842)	2.267*** (0.712)	1.331*** (0.259)	0.757*** (0.138)
Constant	−14.130*** (2.108)	−15.693*** (1.426)	−11.986*** (1.282)	−9.764*** (1.132)

Observations 3105 3105 3105 3105
Adj. R Squared 0.539 0.606* N/A N/A
RMSE 3.457 0.991 3.144 3.233

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01

‘Random Effects, Marginal R-squared = 0.424
Table 5A: Regression Results for House Analysis using Total Covid Cases (100K)

Dependent Variable: 2020 ∆ Change in GOP Electoral Support	State FE and State Clustered SE	Random Effects	Spatial Error	Spatial Lag
State FE and State Clustered SE	Random Effects	Spatial Error	Spatial Lag	
Total Covid Cases (100K)	0.002*** (0.001)	0.001*** (0.0004)	0.001** (0.0004)	0.001** (0.0003)
Oct. Unemployment Rate	0.523 (1.089)	0.374 (0.533)	0.332 (0.528)	0.204 (0.491)
Population Density	0.00004 (0.00004)	0.00001 (0.0001)	-0.00002 (0.0001)	-0.00001 (0.0001)
Percent High School Degree	0.569*** (0.121)	0.523*** (0.076)	0.564*** (0.073)	0.493*** (0.067)
Percent Bachelor’s Degree	0.777*** (0.275)	0.573*** (0.205)	0.409** (0.186)	0.247 (0.167)
Percent Black	-0.201*** (0.071)	-0.203*** (0.059)	-0.202*** (0.057)	-0.172*** (0.051)
Percent Multiracial	0.084 (0.053)	0.053 (0.048)	0.042 (0.050)	0.047 (0.043)
Percent Hispanic	-0.119*** (0.042)	-0.096*** (0.034)	-0.070** (0.033)	-0.058** (0.029)
Percent Foreign-Born	0.175*** (0.061)	0.152** (0.067)	0.094 (0.072)	0.104 (0.064)
Median Income	0.00004 (0.00004)	0.00003 (0.0003)	0.00005 (0.0003)	0.00003 (0.0003)
Median Age	-0.186 (0.297)	-0.293 (0.252)	-0.397 (0.260)	-0.361 (0.248)
Percent 62 and Older	0.397 (0.302)	0.442* (0.231)	0.389 (0.240)	0.316 (0.224)
2018 GOP Vote Share	-0.417*** (0.061)	-0.382*** (0.033)	-0.378*** (0.033)	-0.341*** (0.032)
Incumbency	2.783*** (0.562)	2.904*** (0.401)	3.095*** (0.412)	3.054*** (0.420)
Governor’s Party: Republican	4.596* (2.683)	1.096 (1.109)	0.909 (0.719)	0.697 (0.612)
Constant	-20.064** (9.824)	-2.685 (7.724)	4.430 (7.778)	6.287 (6.766)
Observations	364	364	364	364
Adj. R Squared	0.539	0.606'	N/A	N/A
RMSE	3.799	0.936	4.487	4.558

Note: Standard errors reported in parenthesis.

*p<0.1; **p<0.05; ***p<0.01

'Conditional R-squared

'Random Effects, Marginal R-squared = 0.42
Table 6A: Regression Results for House Analysis using Weekly Trend Covid Cases (100K)

Dependent Variable: 2020 Δ Change in GOP Electoral Support	State FE and State Clustered SE (1)	Random Effects (2)	Spatial Error (3)	Spatial Lag (4)
Weekly Trend Covid Cases (100K)	0.038** (0.015)	0.045*** (0.016)	0.034** (0.015)	0.032** (0.013)
Oct. Unemployment Rate	0.605 (0.990)	0.302 (0.535)	0.272 (0.522)	0.178 (0.488)
Population Density	0.00002 (0.00004)	-0.00001 (0.0001)	-0.00002 (0.0001)	-0.000001 (0.0001)
Percent High School Degree	0.577*** (0.138)	0.517*** (0.076)	0.555*** (0.072)	0.490*** (0.067)
Percent Bachelor’s Degree	0.586** (0.289)	0.405* (0.208)	0.343* (0.187)	0.211 (0.169)
Percent Black	-0.111 (0.070)	-0.131** (0.054)	-0.164*** (0.054)	-0.137*** (0.047)
Percent Multiracial	0.126** (0.062)	0.070 (0.048)	0.045 (0.050)	0.049 (0.043)
Percent Hispanic	-0.073** (0.034)	-0.063* (0.032)	-0.054* (0.032)	-0.045 (0.029)
Percent Foreign-Born	0.245*** (0.082)	0.206*** (0.066)	0.131* (0.070)	0.142** (0.062)
Median Income	0.0001 (0.0005)	0.00003 (0.00003)	0.00005 (0.00003)	0.00003 (0.00003)
Median Age	-0.311 (0.361)	-0.389 (0.251)	-0.433* (0.256)	-0.393 (0.244)
Percent 62 and Older	0.480 (0.374)	0.508** (0.231)	0.443* (0.237)	0.375* (0.221)
2018 GOP Vote Share	-0.379*** (0.055)	-0.341*** (0.032)	-0.352*** (0.032)	-0.318*** (0.031)
Incumbency	2.734*** (0.554)	2.862*** (0.408)	3.021*** (0.413)	2.980*** (0.419)
Governor’s Party: Republican	1.523 (2.927)	1.482 (1.010)	1.084 (0.700)	0.886 (0.606)
Constant	-18.283* (9.516)	-1.407 (7.736)	4.126 (7.723)	5.193 (6.826)

Observations: 364 Adj. R Squared: 0.522 RMSE: 3.868

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01

‘Conditional R-squared

‘Random Effects, Marginal R-squared = 0.415
Table 7A: Regression Results for House Analysis using Total Covid Deaths (100K)

Dependent Variable: 2020 ∆ Change in GOP Electoral Support	State FE and State Clumped SE	Random Effects	Spatial Error	Spatial Lag
Total Covid Deaths (100K)	0.048*** (0.011)	0.034*** (0.009)	0.018** (0.008)	0.015** (0.007)
Oct. Unemployment Rate	0.318 (1.064)	0.046 (0.533)	0.086 (0.525)	-0.031 (0.486)
Population Density	-0.0001** (0.0004)	-0.0001 (0.0001)	-0.0001 (0.0001)	-0.0001 (0.0001)
Percent High School Degree	0.552*** (0.122)	0.486*** (0.078)	0.522*** (0.075)	0.452*** (0.070)
Percent Bachelor’s Degree	0.873*** (0.269)	0.722*** (0.211)	0.479** (0.187)	0.327* (0.169)
Percent Black	-0.162** (0.064)	-0.177*** (0.057)	-0.202*** (0.057)	-0.170*** (0.051)
Percent Multiracial	0.124* (0.067)	0.069 (0.048)	0.034 (0.051)	0.039 (0.044)
Percent Hispanic	-0.115*** (0.034)	-0.089*** (0.033)	-0.064** (0.033)	-0.056* (0.029)
Percent Foreign-Born	0.194*** (0.070)	0.172*** (0.066)	0.089 (0.073)	0.112* (0.064)
Median Income	0.00003 (0.00004)	0.00001 (0.00003)	0.00003 (0.00003)	0.00001 (0.00003)
Median Age	-0.196 (0.292)	-0.384 (0.246)	-0.451* (0.256)	-0.421* (0.243)
Percent 62 and Older	0.237 (0.284)	0.389* (0.233)	0.367 (0.242)	0.306 (0.225)
2018 GOP Vote Share	-0.405*** (0.056)	-0.366*** (0.032)	-0.364*** (0.032)	-0.328*** (0.031)
Incumbency	2.832*** (0.535)	2.951*** (0.398)	3.113*** (0.412)	3.090*** (0.422)
Governor’s Party: Republican	2.324 (2.484)	1.959* (1.172)	1.177* (0.708)	0.900 (0.607)
Constant	-13.783 (10.348)	2.811 (7.922)	10.465 (7.909)	11.981* (6.944)

Observations	364	364	364	364
Adj. R Squared	0.556	0.638’	N/A	N/A
RMSE	3.73	0.933	4.484	4.559

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01
'Conditional R-squared
Random Effects, Marginal R-squared = 0.419
Table 8A: Regression Results for House Analysis using Weekly Trend Covid Deaths (100K)

	Dependent Variable: 2020 Δ Change in GOP Electoral Support			
	State FE and State Clustered SE	Random Effects	Spatial Error	Spatial Lag
	(1)	(2)	(3)	(4)
Weekly Trend Covid Deaths (100K)	5.227*** (1.535)	5.068*** (1.468)	3.925*** (1.426)	3.750*** (1.301)
Oct. Unemployment Rate	0.727 (1.016)	0.436 (0.536)	0.381 (0.526)	0.295 (0.490)
Population Density	0.00000 (0.00005)	−0.00002 (0.0001)	−0.00002 (0.0001)	−0.00001 (0.0001)
Percent High School Degree	0.537*** (0.137)	0.492*** (0.077)	0.549*** (0.072)	0.484*** (0.067)
Percent Bachelor’s Degree	0.621** (0.285)	0.506** (0.204)	0.425** (0.184)	0.277* (0.166)
Percent Black	−0.092 (0.071)	−0.113** (0.054)	−0.152*** (0.054)	−0.124*** (0.047)
Percent Multiracial	0.138** (0.059)	0.090* (0.048)	0.064 (0.050)	0.069 (0.042)
Percent Hispanic	−0.061* (0.033)	−0.055* (0.032)	−0.057* (0.032)	−0.049* (0.029)
Percent Foreign-Born	0.249*** (0.081)	0.219*** (0.065)	0.142** (0.070)	0.152** (0.062)
Median Income	0.0001 (0.00005)	0.00004 (0.00003)	0.0001* (0.00003)	0.00004 (0.00003)
Median Age	−0.246 (0.368)	−0.380 (0.249)	−0.443* (0.255)	−0.404* (0.242)
Percent 62 and Older	0.417 (0.378)	0.471** (0.231)	0.414* (0.237)	0.345 (0.221)
2018 GOP Vote Share	−0.392*** (0.054)	−0.359*** (0.032)	−0.368*** (0.032)	−0.333*** (0.031)
Incumbency	2.886*** (0.539)	3.000*** (0.406)	3.119*** (0.411)	3.073*** (0.418)
Governor’s Party: Republican	2.077 (3.062)	1.431 (1.043)	0.944 (0.706)	0.718 (0.606)
Constant	−20.569** (9.381)	−3.568 (7.776)	2.699 (7.786)	3.795 (6.855)

Observations	364	364	364	364
Adj. R Squared	0.531	0.572’	N/A	N/A
RMSE	3.832	0.938	4.474	4.537

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01

Conditional R-squared

Random Effects, Marginal R-squared = 0.406
Dependent Variable: 2020 Δ Change in GOP Electoral Support
Total Covid Cases (10K)
Oct. Unemployment Rate
Population Density
Percent High School Degree
Percent Bachelor’s Degree
Percent Black
Percent Multiracial
Percent Hispanic
Percent Foreign-Born
Median Income
Median Age
Percent 62 and Older
Lagged GOP Vote Share
Incumbency
Governor’s Party: Republican
Constant

Observations 2383 2383 2224 2224
Adj. R Squared 0.747 0.81' N/A N/A
RMSE 7.246 0.991 6.673 7.485

* $p < 0.1$; ** $p < 0.05$; *** $p < 0.01$

'Conditional R-squared
'Random Effects, Marginal R-squared = 0.348
Table 10A: Regression Results for Senate Analysis using Weekly Trend Covid Cases (10K)

	State FE and State Clustered SE	Random Effects	Spatial Error	Spatial Lag
Weekly Trend Covid Cases (10K)	$-0.041 (0.117)$	$-0.039 (0.051)$	$-0.097** (0.048)$	$-0.034 (0.046)$
Oct. Unemployment Rate	$0.074 (0.261)$	$0.084 (0.121)$	$0.001 (0.126)$	$0.083 (0.093)$
Population Density	$-0.001 (0.001)$	$-0.001*** (0.0003)$	$-0.001*** (0.0003)$	$0.0002 (0.0003)$
Percent High School Degree	$0.751*** (0.079)$	$0.751*** (0.036)$	$0.788*** (0.037)$	$0.610*** (0.034)$
Percent Bachelor’s Degree	$0.441*** (0.152)$	$0.432*** (0.081)$	$0.211** (0.084)$	$0.079 (0.070)$
Percent Black	$-0.285*** (0.067)$	$-0.281*** (0.028)$	$-0.269*** (0.033)$	$-0.068*** (0.024)$
Percent Multiracial	$0.168*** (0.047)$	$0.169*** (0.024)$	$0.165*** (0.027)$	$0.064*** (0.023)$
Percent Hispanic	$-0.079*** (0.029)$	$-0.078*** (0.022)$	$-0.156*** (0.030)$	$0.017 (0.017)$
Percent Foreign-Born	$-0.134* (0.069)$	$-0.138** (0.055)$	$-0.088 (0.059)$	$-0.149*** (0.054)$
Median Income	$-0.0002*** (0.00003)$	$-0.0002*** (0.00002)$	$-0.0001*** (0.00002)$	$-0.0001*** (0.00002)$
Median Age	$0.391** (0.177)$	$0.389*** (0.089)$	$0.280*** (0.084)$	$0.254*** (0.090)$
Percent 62 and Older	$-0.232 (0.199)$	$-0.233** (0.094)$	$-0.071 (0.091)$	$-0.082 (0.093)$
Lagged GOP Vote Share	$-0.447*** (0.059)$	$-0.443*** (0.019)$	$-0.447*** (0.022)$	$-0.178*** (0.015)$
Incumbency	$-19.989*** (1.221)$	$0.826 (2.487)$	$0.141 (0.521)$	$0.173 (0.224)$
Governor’s Party: Republican	$14.431*** (0.623)$	$-0.798 (4.475)$	$-3.014*** (0.915)$	$-0.139 (0.395)$
Constant	$-29.479*** (6.917)$	$-7.151 (4.409)$	$-4.941 (3.347)$	$-17.890*** (3.118)$

Observations: 2383 2383 2224 2224
Adj. R Squared: 0.747 0.81' N/A N/A
RMSE: 7.254 0.991 6.669 7.492

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01
'Conditional R-squared
Random Effects, Marginal R-squared = 0.34
State FE and State Clustered SE (1)	Random Effects (2)	Spatial Error (3)	Spatial Lag (4)	
Total Covid Deaths (10K)	0.067** (0.027)	0.067** (0.028)	−0.012 (0.028)	0.056* (0.029)
Oct. Unemployment Rate	0.061 (0.264)	0.071 (0.121)	0.008 (0.126)	0.085 (0.092)
Population Density	−0.001 (0.001)	−0.001*** (0.0003)	−0.001*** (0.0003)	0.0001 (0.0003)
Percent High School Degree	0.746*** (0.078)	0.745*** (0.036)	0.785*** (0.037)	0.601*** (0.034)
Percent Bachelor’s Degree	0.441*** (0.151)	0.432*** (0.081)	0.207** (0.084)	0.068 (0.069)
Percent Black	−0.286*** (0.068)	−0.282*** (0.028)	−0.260*** (0.033)	−0.069*** (0.024)
Percent Multiracial	0.177*** (0.048)	0.177*** (0.024)	0.169*** (0.027)	0.072*** (0.023)
Percent Hispanic	−0.086*** (0.028)	−0.085*** (0.022)	−0.157*** (0.030)	0.014 (0.017)
Percent Foreign-Born	−0.134* (0.070)	−0.138** (0.055)	−0.083 (0.059)	−0.155*** (0.054)
Median Income	−0.0002*** (0.00003)	−0.0002*** (0.00002)	−0.0001*** (0.00002)	−0.0001*** (0.00002)
Median Age	0.400** (0.171)	0.398*** (0.089)	0.289*** (0.084)	0.268*** (0.089)
Percent 62 and Older	−0.243 (0.194)	−0.244*** (0.094)	−0.072 (0.091)	−0.095 (0.093)
Lagged GOP Vote Share	−0.449*** (0.059)	−0.445*** (0.019)	−0.445*** (0.022)	−0.178*** (0.015)
Incumbency	−19.921*** (1.230)	0.856 (2.482)	0.171 (0.521)	0.158 (0.224)
Governor’s Party: Republican	14.366*** (0.619)	−0.881 (4.466)	−3.121*** (0.914)	−0.231 (0.395)
Constant	−30.437*** (6.849)	−8.240* (4.386)	−6.020* (3.307)	−18.789*** (3.029)

Observations: 2383 2383 2224 2224
Adj. R Squared: 0.747 0.81* N/A N/A
RMSE: 7.247 0.991 6.674 7.49

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01

'Conditional R-squared
Random Effects, Marginal R-squared = 0.342
Dependent Variable: 2020 Δ Change in GOP Electoral Support	State FE and State Clustered SE	Random Effects	Spatial Error	Spatial Lag
Weekly Trend Covid Deaths (10K)	0.607 (1.301)	0.602 (1.133)	−0.644 (0.971)	−0.389 (1.132)
Oct. Unemployment Rate	0.078 (0.262)	0.089 (0.121)	0.003 (0.126)	0.091 (0.092)
Population Density	−0.001 (0.001)	−0.001*** (0.0003)	−0.001*** (0.0003)	0.0002 (0.0003)
Percent High School Degree	0.750*** (0.079)	0.750*** (0.036)	0.785*** (0.037)	0.608*** (0.034)
Percent Bachelor’s Degree	0.439*** (0.151)	0.430*** (0.081)	0.208** (0.084)	0.069 (0.069)
Percent Black	−0.283*** (0.065)	−0.279*** (0.028)	−0.261*** (0.033)	−0.065*** (0.024)
Percent Multiracial	0.171*** (0.046)	0.171*** (0.024)	0.169*** (0.026)	0.066*** (0.023)
Percent Hispanic	−0.080*** (0.029)	−0.078*** (0.022)	−0.158*** (0.030)	0.018 (0.017)
Percent Foreign-Born	−0.134*** (0.068)	−0.138** (0.055)	−0.084 (0.059)	−0.150*** (0.054)
Median Income	−0.0002*** (0.00003)	−0.0002*** (0.00002)	−0.0001*** (0.00002)	−0.0001*** (0.00002)
Median Age	0.396** (0.173)	0.393*** (0.089)	0.290*** (0.084)	0.261*** (0.089)
Percent 62 and Older	−0.234 (0.197)	−0.235** (0.094)	−0.074 (0.091)	−0.086 (0.093)
Lagged GOP Vote Share	−0.448*** (0.058)	−0.444*** (0.019)	−0.445*** (0.022)	−0.177*** (0.015)
Incumbency	−20.061*** (1.242)	0.822 (2.485)	0.169 (0.521)	0.167 (0.224)
Governor’s Party: Republican	14.398*** (0.621)	−0.822 (4.472)	−3.137*** (0.913)	−0.165 (0.394)
Constant	−29.991*** (6.647)	−7.639* (4.387)	−5.992* (3.304)	−18.330*** (3.041)

Observations: 2383 2383 2224 2224
Adj. R Squared: 0.747 0.81' N/A N/A
RMSE: 7.255 0.991 6.674 7.493

Note: Standard errors reported in paranthesis.

*p<0.1; **p<0.05; ***p<0.01
'Regional R-squared
'Conditional R-squared
'Random Effects, Marginal R-squared = 0.342
A.6 Voter Study Group Models Control Variable Coding Scheme

Conservative Ideological Preferences: Standard measure of symbolic ideological preferences leveraging self-placement on the seven point ideological scale from very liberal (1) to very conservative (7).

Race Identification: Standard measure of race coded as a series of dichotomous variables coded in the following way given a respondent’s racial identification: Black respondent, Hispanic respondent, Other Race respondent, and White respondent. Note that Black respondent is the omitted reference category and this results in a series of 3 dichotomous variables measuring racial identification in the model.

Education Level: Standard measure of education coded as a series of dichotomous variables coded in the following way given a respondent’s highest level of educational attainment: less than high school, high school graduate, some college education, two-year college degree earner, four-year college degree earner, and a post-graduate degree earner. Note that less than high school is the omitted reference category and this results in a series of 4 dichotomous variables measuring educational attainment in the model.

Income Level: Standard measure of household family income on a sixteen point ordinal discrete scale provided the VoterStudy Group from (1) “less than $10,000” household family income to (16) “$500,000 or more” household family income. Note that this variable is measured in the September 2020 survey wave.

COVID-19 Infection Proximity: Ordinal variable capturing the degree of exposure to a COVID-19 infection to an individual survey respondent. This variable is the row sum of indicators measuring if the respondent indicated that: (1) a family member, (2) a work colleague, (3) a friend, or (4) themselves were “sick with COVID-19.” As such, this variable ranges from 0 if the respondent did not identify in their social network (i.e., a family member, work colleague, friend, or themselves) to be “sick with COVID-19” to 4 if the respondent indicated that their entire network were infected with COVID-19. Note that the mean value of this variable is 0.55 and 0.66 for the September and November waves, respectively, indicating that the modal respondent indicated that they were not aware of a COVID-19 infection in their network.

Retrospective Economic Evaluations: Ordinal numeric variable assessing a respondent’s retrospective assessment of the nation’s economy, coded on a 5 point scale from 1 (gotten much better) to 5 (gotten much worse), with the scale mid-point 3 taking the value of a neutral “stayed about the same” assessment of the national economy.

Female Voter: Dichotomous variable coded 0 for male voter and 1 for female voter.

Respondent Age: Standard measure of age coded as a continuous variable of self-reported age.

2016 Presidential Vote Choice Preference: Dichotomous variable coded 0 if the respondent
voted Democratic in the 2016 presidential election or 1 if the respondent voted Republican in the 2016 election. Note that this variable was measured during the 2016 wave of the Voter Study Group Panel and is incorporated into the 2016-2020 vote intention change models. This variable is incorporated in the vote switching panel models.

2016-2020 Δ Change in Partisanship: Trichotomous variable coded -2 if a respondent changed their partisan preference from 2016 Republican partisanship to 2020 Democratic partisanship, -1 if a respondent changed their partisanship preference from 2016 Republican to 2020 Independent partisanship or 2016 Independent partisanship to 2020 Democratic partisanship (thus capturing modest partisan movement in the Democratic direction) 0 if the respondent did not change their partisan preference between the 2016 and 2020 election cycles, 1 if the respondent switched their partisanship from 2016 Democratic to 2020 Independent partisanship or 2016 Independent partisanship to 2020 Republican partisanship (thus capturing modest partisan movement in the Republican direction), and lastly 2 if the respondent switched from 2016 Democratic partisanship to 2020 Republican partisanship. Note that the 2016 partisanship variable was measured during the 2016 wave of the Voter Study Group Panel and the 2020 partisanship variable was coded during the 2020 wave of the Voter Study Group Panel. This variable is incorporated in the vote switching panel models.
A.7 Voter Study Group Manuscript Model Tables & U.S. House Robustness Checks

- Note that Table 13A (models predicting Trump COVID-19 approval), Table 14A (models predicting Trump vote intention), Table 15A (models predicting 2016 Hillary Clinton-2020 Donald Trump vote switching), and Table 16A (models predicting 2016 Donald Trump-2020 Joe Biden vote switching) correspond to Figure 4 of the manuscript testing the relationship between COVID-19 public health concern and political support for President Trump.

- Note that Table 17A evaluates the relationship between COVID-19 public health concern and political support for House Republicans (i.e., House GOP vote intention). This is a robustness check of the manuscript voter-level models articulated Figure 4 and the tables confirm the same substantive additive result, that greater COVID-19 public health concern is correlated with a lower probability of stating an attention to vote for the House Republican candidate running in the district during the September and November waves. Note that vote-switching models cannot be specified for this robustness check given the lack of measured 2018 House vote preference and 2018 congressional district identifiers.

- Note that Table 18A (models predicting Trump COVID-19 approval), Table 19A (models predicting Trump vote intention), Table 20A (models predicting 2016 Hillary Clinton-2020 Donald Trump vote switching), and Table 21A (models predicting 2016 Donald Trump-2020 Joe Biden vote switching) correspond to Figure 6 of the manuscript testing the relationship between COVID-19 public health concern, COVID restriction attitudes, and political support for President Trump. These are the “full” voter-level models presented in the manuscript.

- Note that Table 22A evaluates the relationship between COVID-19 public health concern and political support for House Republicans (i.e., House GOP vote intention). This is a robustness check of the manuscript voter-level models articulated Figure 6 and the tables confirm the same substantive additive result, that greater COVID-19 public restriction attitudes (i.e., worrying that COVID-19 restrictions would not be lifted quickly enough as opposed to too quickly) is correlated with a lower probability of stating an attention to vote for the House Republican candidate running in the district during the September and November waves, even after incorporating COVID-19 public health concerns. Note that vote-switching models cannot be specified for this robustness check given the lack of measured 2018 House vote preference and 2018 congressional district identifiers. This robustness check leverages the full Voter Survey models to evaluate Figure 6 within the context of the U.S. House.

- Note that Table 23A (evaluating the relationship between local COVID-19 death severity context and the probability of COVID-19 public health concern opinion) and Table 24A (evaluating the relationship between local COVID-19 death severity context and the probability of COVID-19 restrictions attitudes) correspond to Figure 5 of the manuscript. Table 24A articulates the positive correlation between COVID-19 severity context and likelihood of COVID-19 restriction attitudes with the significant and positive coefficient on COVID-19 deaths variable.
Given the lack of measured vote preference for the U.S. Senate in the Voter Survey waves, we could not evaluate our individual-level models within the context of partisan competition of the upper chamber. At the end of this appendix section and as articulated with specificity in the above bullet points, we also replicate Figures 4 and Figures 6 evaluating manuscript models predicting political support for President Trump within the context of House Republicans. These figures articulating the voter-level robustness check at the U.S. House level are congruent with the presidential-level findings presented in the manuscript.
| | Sept. Additive Model | Sept. Interactive Model | Nov. Additive Model | Nov. Interactive Model |
|--------------------------------|----------------------|-------------------------|---------------------|------------------------|
| Lack of Covid Concern | -0.405*** (0.136) | -0.321 (0.296) | -0.635*** (0.132) | -0.750** (0.330) |
| COVID-19 Deaths (100K People) | 0.001 (0.001) | 0.001 (0.001) | 0.003** (0.002) | 0.003** (0.002) |
| Independent Partisan | 1.306*** (0.171) | 1.427*** (0.213) | 1.890*** (0.190) | 1.915*** (0.230) |
| Republican Partisan | 2.316*** (0.204) | 2.232*** (0.251) | 2.884*** (0.223) | 2.694*** (0.259) |
| Conservative | 1.067*** (0.120) | 1.062*** (0.120) | 1.430*** (0.135) | 1.423*** (0.135) |
| Latino Respondent | -0.036 (0.327) | -0.035 (0.330) | 0.448 (0.355) | 0.454 (0.358) |
| Other Race Respondent | -0.168 (0.336) | -0.187 (0.337) | 0.589 (0.368) | 0.610* (0.369) |
| White Respondent | 0.286 (0.257) | 0.284 (0.260) | 1.060*** (0.293) | 1.074*** (0.296) |
| HS Education | -0.255 (0.485) | -0.259 (0.481) | -0.286 (0.473) | -0.251 (0.478) |
| Some College Education | -0.275 (0.484) | -0.281 (0.479) | -0.105 (0.465) | -0.066 (0.469) |
| BA Education | -0.496 (0.502) | -0.490 (0.498) | -0.083 (0.473) | -0.038 (0.478) |
| Post-BA Education | -1.546*** (0.538) | -1.552*** (0.534) | -0.995** (0.504) | -0.966* (0.509) |
| Household Income | -0.002 (0.023) | -0.003 (0.023) | -0.030 (0.023) | -0.031 (0.023) |
| COVID-19 Infection | 0.026 (0.078) | 0.026 (0.079) | 0.008 (0.067) | 0.006 (0.067) |
| Economic Evaluations | 1.545*** (0.085) | 1.546*** (0.085) | 0.939*** (0.093) | 0.935*** (0.094) |
| Gender: Female | 0.329** (0.133) | 0.330** (0.133) | -0.051 (0.133) | -0.052 (0.133) |
| Age | 0.002 (0.005) | 0.002 (0.005) | 0.012*** (0.004) | 0.013*** (0.004) |
| Lack of Covid Concern x PID: Independent | -0.286 (0.353) | -0.286 (0.353) | -0.031 (0.365) | 0.458 (0.419) |
| Lack of Covid Concern x PID: Republican | 0.218 (0.397) | 0.218 (0.397) | 0.458 (0.419) | 0.458 (0.419) |
| Constant | -7.712*** (0.722) | -7.726*** (0.715) | -9.219*** (0.749) | -9.207*** (0.755) |

Observations: 3,045 3,045 2,990 2,990
Log Likelihood: -986.595 -985.429 -1,057.288 -1,055.860
Akaike Inf. Crit.: 2,009.190 2,010.859 2,150.576 2,151.720

Note: *p<0.1; **p<0.05; ***p<0.01
Robust district-clustered standard errors reported.
Table 14A: Voter Survey Logistic Regression Models Assessing President Trump Electoral Preference

	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
Lack of Covid Concern	-0.637*** (0.169)	-0.822* (0.447)	-0.733*** (0.157)	-0.955** (0.379)
COVID-19 Deaths (100K People)	0.001 (0.002)	0.001 (0.002)	0.004** (0.002)	0.003* (0.002)
Independent Partisan	2.582*** (0.236)	2.526*** (0.281)	2.185*** (0.204)	2.104*** (0.257)
Republican Partisan	4.164*** (0.296)	4.019*** (0.364)	3.813*** (0.252)	3.702*** (0.311)
Conservative	1.563*** (0.157)	1.555*** (0.155)	1.627*** (0.162)	1.623*** (0.162)
Latino Respondent	0.425 (0.418)	0.430 (0.419)	0.340 (0.461)	0.350 (0.463)
Other Race Respondent	0.896** (0.430)	0.887** (0.430)	0.877** (0.417)	0.883** (0.417)
White Respondent	1.003*** (0.331)	0.999*** (0.334)	1.245*** (0.349)	1.252*** (0.349)
HS Education	-0.525 (0.701)	-0.524 (0.703)	-0.698 (0.637)	-0.681 (0.630)
Some College Education	-0.804 (0.699)	-0.803 (0.700)	-0.584 (0.634)	-0.570 (0.629)
BA Education	-1.025 (0.686)	-1.015 (0.685)	-0.749 (0.658)	-0.729 (0.652)
Post-BA Education	-2.031*** (0.713)	-2.020*** (0.711)	-1.817** (0.707)	-1.794** (0.699)
Household Income	-0.026 (0.029)	-0.027 (0.029)	0.022 (0.027)	0.022 (0.027)
COVID-19 Infection	-0.154 (0.112)	-0.153 (0.111)	-0.118 (0.073)	-0.117 (0.073)
Economic Evaluations	1.844*** (0.115)	1.839*** (0.114)	1.102*** (0.106)	1.096*** (0.106)
Gender: Female	0.240 (0.168)	0.239 (0.168)	-0.214 (0.146)	-0.215 (0.146)
Age	-0.0002 (0.005)	-0.0002 (0.006)	0.006 (0.005)	0.006 (0.005)
Lack of Covid Concern x PID: Independent	0.169 (0.504)	0.266 (0.549)	0.319 (0.504)	0.266 (0.416)
Lack of Covid Concern x PID: Republican	0.385 (0.584)	0.385 (0.584)	0.385 (0.584)	0.385 (0.584)
Constant	-10.181*** (1.007)	-10.080*** (1.038)	-9.311*** (0.927)	-9.247*** (0.944)

Observations: 2,798 2,798 2,765 2,765
Log Likelihood: -597.456 -597.184 -781.255 -781.022
Akaike Inf. Crit.: 1,230.913 1,234.368 1,598.510 1,602.044

Note: *p<0.1; **p<0.05; ***p<0.01
Robust district-clustered standard errors reported.
Table 15A: Voter Survey Logistic Regression Models Assessing 2016-2020 Electoral Preference Change

Dependent Variable: 2016 HRC-2020 DJT Vote Switch

	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
Lack of Covid Concern	−0.815 (0.555)	−19.101	−0.506 (0.522)	−1.843* (1.116)
COVID-19 Deaths (100K People)	0.003 (0.006)	0.004 (0.005)	0.005 (0.005)	0.005 (0.005)
Independent Partisan	−0.401 (0.790)	−1.240 (0.946)	0.152 (0.671)	−0.690 (1.000)
Republican Partisan	0.994 (0.956)	−0.006 (1.194)	1.753* (0.954)	0.964 (0.873)
Conservative	0.743 (0.563)	0.612 (0.581)	1.335** (0.555)	1.324** (0.571)
Latino Respondent	−15.561*** (0.834)	−16.452**** (0.945)	0.919 (3.219)	1.122
Other Race Respondent	1.806* (1.057)	1.923* (1.105)	19.233*** (3.031)	19.166
White Respondent	1.850** (0.769)	1.944** (0.798)	19.471*** (3.143)	19.521
HS Education	15.951	17.097	16.607	16.834*** (4.803)
Some College Education	16.497	16.750	17.109	17.307*** (4.013)
BA Education	16.247	17.461	16.727	16.470*** (3.430)
Post-BA Education	14.671	16.224*** (5.494)	15.133	15.451*** (4.681)
Household Income	−0.112 (0.079)	−0.116 (0.095)	−0.101 (0.087)	−0.105 (0.081)
COVID-19 Infection	−0.199 (0.436)	−0.153 (0.437)	−0.400 (0.393)	−0.443 (0.380)
Economic Evaluations	1.861*** (0.501)	1.753*** (0.468)	0.013 (0.426)	−0.071 (0.403)
Trump Vote 2016	−22.771*** (0.971)	−23.210*** (0.793)	−21.903*** (0.772)	−21.606*** (0.701)
PID Change	2.026*** (0.713)	2.101*** (0.700)	1.339*** (0.553)	1.392** (0.556)
Gender: Female	0.892 (0.598)	0.799 (0.605)	1.030 (0.684)	1.015 (0.670)
Age	−0.034 (0.034)	−0.028 (0.032)	−0.091*** (0.031)	−0.092*** (0.033)
Lack of Covid Concern x PID: Independent	19.270*** (1.287)			
Lack of Covid Concern x PID: Republican	19.660*** (1.014)			
Constant	−24.633	−25.286*** (1.638)	−38.098	−37.849*** (3.677)

Observations | 1,900 | 1,900 | 1,884 | 1,884 |
| **Log Likelihood** | −56.858 | −53.555 | −76.360 | −73.531 |
| **Akaike Inf. Crit.** | 153.715 | 151.110 | 192.721 | 191.063 |

Note: *p<0.1; **p<0.05; ***p<0.01

Robust district-clustered standard errors reported.
Table 16A: Voter Survey Logistic Regression Models Assessing 2016-2020 Electoral Preference Change

Dependent Variable: 2016 DJT-2020 JRB Vote Switch	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
Lack of Covid Concern	-0.236 (0.520)	-1.765 (1.208)	-0.217 (0.414)	-0.563 (1.110)
COVID-19 Deaths (100K People)	-0.004 (0.005)	-0.003 (0.005)	-0.010* (0.006)	-0.011* (0.006)
Independent Partisan	-1.141* (0.667)	-1.565* (0.802)	-0.603 (0.648)	-0.835 (0.754)
Republican Partisan	-1.688** (0.750)	-2.531*** (0.970)	-0.931 (0.692)	-0.816 (0.798)
Conservative	-0.511 (0.483)	-0.716 (0.495)	-0.837* (0.449)	-0.833* (0.454)
Latino Respondent	-18.212*** (1.033)	-18.134*** (0.996)	-18.502*** (1.615)	-18.500*** (1.606)
Other Race Respondent	-2.297 (1.546)	-2.339 (1.546)	-1.094 (1.645)	-1.115 (1.631)
White Respondent	-1.168 (0.952)	-1.043 (0.874)	-1.492 (1.611)	-1.499 (1.607)
HS Education	-1.484 (1.360)	-1.449 (1.277)	16.338*** (3.704)	16.311*** (4.418)
Some College Education	-1.413 (1.353)	-1.305 (1.254)	17.150*** (3.683)	17.138*** (4.015)
BA Education	-1.640 (1.425)	-1.509 (1.349)	15.925*** (3.076)	15.848*** (3.782)
Post-BA Education	-0.373 (1.386)	-0.229 (1.295)	16.711*** (2.631)	16.679*** (4.108)
Household Income	0.025 (0.090)	0.011 (0.087)	0.097 (0.070)	0.101 (0.071)
COVID-19 Infection	0.246 (0.370)	0.316 (0.368)	-0.062 (0.204)	-0.066 (0.202)
Economic Evaluations	-1.972*** (0.458)	-2.018*** (0.446)	-1.259*** (0.297)	-1.287*** (0.309)
Trump Vote 2016	22.509*** (0.491)	22.765*** (0.786)	21.056*** (0.580)	21.012*** (0.666)
PID Change	-1.442** (0.624)	-1.242*** (0.617)	-1.142** (0.477)	-1.132** (0.484)
Gender: Female	-0.192 (0.550)	-0.226 (0.538)	0.640 (0.418)	0.608 (0.426)
Age	0.004 (0.021)	0.009 (0.023)	0.002 (0.021)	0.004 (0.023)
Lack of Covid Concern x PID: Independent	1.261 (1.380)	1.671*** (2.631)	16.711*** (2.631)	16.679*** (4.108)
Lack of Covid Concern x PID: Republican	2.411 (1.504)	2.621*** (1.380)	16.711*** (2.631)	16.679*** (4.108)
Constant	-16.767*** (2.596)	-16.193*** (2.434)	-34.665*** (3.686)	-34.574*** (4.443)

Observations 1,900 1,900 1,884 1,884
Log Likelihood -81.009 -80.076 -69.545 -70.155
Akaike Inf. Crit. 202.019 204.151 179.090 184.311

Note:
* p < 0.1; ** p < 0.05; *** p < 0.01
Robust district-clustered standard errors reported.
Missing standard errors are too high to report.
Table 17A: Voter Survey Logistic Regression Models Assessing U.S. House Vote Intention

	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
Dependent Variable: House GOP Vote Intention				
Lack of Covid Concern	−0.367* (0.190)	−0.317 (0.515)	−0.310** (0.153)	0.331 (0.321)
COVID-19 Deaths (100K People)	0.002 (0.002)	0.003 (0.002)	−0.002 (0.002)	−0.001 (0.002)
Independent Partisan	3.129*** (0.281)	3.198*** (0.316)	2.333*** (0.206)	2.757*** (0.285)
Republican Partisan	5.449*** (0.396)	5.307*** (0.439)	3.838*** (0.291)	3.945*** (0.413)
Conservative	1.938*** (0.183)	1.934*** (0.184)	1.749*** (0.145)	1.767*** (0.148)
Latino Respondent	0.728 (0.552)	0.717 (0.552)	0.597 (0.403)	0.566 (0.405)
Other Race Respondent	1.270 (0.518)	1.251** (0.518)	0.728** (0.366)	0.733** (0.369)
White Respondent	1.117** (0.442)	1.118** (0.448)	1.033*** (0.313)	1.040*** (0.315)
HS Education	−0.565 (0.535)	−0.563 (0.541)	−1.284** (0.619)	−1.301** (0.593)
Some College Education	−0.652 (0.538)	−0.653 (0.542)	−1.344** (0.613)	−1.321** (0.585)
BA Education	−0.568 (0.544)	−0.557 (0.547)	−1.497** (0.646)	−1.492** (0.623)
Post-BA Education	−1.348** (0.611)	−1.335** (0.613)	−2.591*** (0.673)	−2.615*** (0.654)
Household Income	0.047 (0.038)	0.046 (0.038)	0.086*** (0.029)	0.087*** (0.028)
COVID-19 Infection	−0.297** (0.134)	−0.295** (0.134)	−0.098 (0.082)	−0.099 (0.082)
Economic Evaluations	1.955*** (0.132)	1.953*** (0.129)	0.958*** (0.113)	0.968*** (0.115)
Gender: Female	0.341* (0.182)	0.343* (0.183)	0.021 (0.159)	0.033 (0.159)
Age	−0.007 (0.006)	−0.007 (0.006)	0.011** (0.005)	0.011** (0.005)
Lack of Covid Concern x PID: Independent	−0.174 (0.565)	−1.006*** (0.361)		
Lack of Covid Concern x PID: Republican	0.378 (0.757)		−0.281 (0.535)	
Constant	−12.743*** (0.943)	−12.759*** (1.006)	−9.389*** (0.910)	−9.764*** (0.908)

Observations: 2,715 2,715 2,680 2,680
Log Likelihood: -451.636 -451.398 -732.017 -726.512
Akaike Inf. Crit.: 939.271 942.796 1,500.034 1,493.023

Note: *p<0.1; **p<0.05; ***p<0.01
Robust district-clustered standard errors reported.
	Sept. Additive Model	Sept. Interactive Model	Nov. Additive Model	Nov. Interactive Model
	(1)	(2)	(3)	(4)
Dependent Variable:				
Trump COVID-19 Approval				
Sept. Additive Model				
Lack of Covid Concern	-0.205 (0.146)	-0.182 (0.316)	-0.381** (0.166)	-0.392 (0.360)
Lift Restrictions Too Slow	2.067*** (0.157)	1.978*** (0.337)	2.404*** (0.173)	2.338*** (0.353)
COVID-19 Deaths (100K People)	-0.0002 (0.001)	-0.0002 (0.001)	0.002 (0.002)	0.002 (0.002)
Independent Partisan	1.152*** (0.187)	1.030*** (0.280)	1.733*** (0.206)	1.586*** (0.329)
Republican Partisan	2.213*** (0.225)	2.274*** (0.327)	2.575*** (0.262)	2.807*** (0.358)
Conservative	0.780*** (0.136)	0.780*** (0.139)	1.057*** (0.157)	1.073*** (0.160)
Latino Respondent	-0.249 (0.365)	-0.251 (0.373)	0.676* (0.408)	0.666 (0.419)
Other Race Respondent	-0.292 (0.371)	-0.332 (0.376)	0.652 (0.464)	0.666 (0.475)
White Respondent	0.197 (0.277)	0.199 (0.285)	1.201*** (0.366)	1.213*** (0.374)
HS Education	0.017 (0.585)	-0.007 (0.590)	-0.216 (0.475)	-0.241 (0.490)
Some College Education	-0.037 (0.583)	-0.023 (0.589)	-0.153 (0.468)	-0.145 (0.481)
BA Education	-0.370 (0.600)	-0.326 (0.611)	-0.109 (0.494)	-0.089 (0.507)
Post-BA Education	-1.298** (0.639)	-1.251* (0.647)	-1.094** (0.540)	-1.088** (0.552)
Household Income	-0.013 (0.024)	-0.017 (0.025)	-0.041 (0.027)	-0.044 (0.028)
COVID-19 Infection	0.089 (0.083)	0.092 (0.084)	0.089 (0.085)	0.090 (0.087)
Economic Evaluations	1.266*** (0.094)	1.255*** (0.095)	0.767*** (0.112)	0.764*** (0.114)
Gender: Female	0.440*** (0.150)	0.457*** (0.151)	0.155 (0.151)	0.149 (0.154)
Age	0.008 (0.005)	0.008 (0.006)	0.016*** (0.005)	0.016*** (0.005)
Lack of Covid Concern x PID: Independent	-0.215 (0.392)	-0.124 (0.414)		
Lack of Covid Concern x PID: Republican	0.268 (0.417)	0.261 (0.456)		
Lift Restrictions Too Slow x PID: Independent	0.439 (0.385)	0.369 (0.424)		
Lift Restrictions Too Slow x PID: Republican	-0.383 (0.440)	-0.453 (0.457)		
Constant	-7.573*** (0.880)	-7.523*** (0.900)	-9.127*** (0.810)	-9.097*** (0.829)

Observations: 3,045 3,045 2,990 2,990
Log Likelihood: -850.913 -845.732 -862.051 -856.540
Akaike Inf. Crit.: 1,739.825 1,737.465 1,762.101 1,759.079

Note: *p<0.1; **p<0.05; ***p<0.01
Robust district-clustered standard errors reported.
Table 19A: Voter Survey Full Logistic Regression Models Assessing President Trump Electoral Preference

Dependent Variable: Trump Vote Intention	Sept. Additive Model	Sept. Interactive Model	Nov. Additive Model	Nov. Interactive Model
	(1)	(2)	(3)	(4)
Lack of Covid Concern	−0.420** (0.199)	−0.944* (0.502)	−0.447** (0.185)	−0.681* (0.398)
Lift Restrictions Too Slow	2.753*** (0.230)	2.787*** (0.458)	2.647*** (0.202)	1.818*** (0.418)
COVID-19 Deaths (100K People)	−0.00001 (0.002)	0.002 (0.002)	0.002 (0.002)	0.002 (0.002)
Independent Partisan	2.886*** (0.302)	2.715*** (0.393)	2.219*** (0.234)	1.498*** (0.357)
Republican Partisan	4.503*** (0.330)	4.135*** (0.453)	3.910*** (0.303)	3.556*** (0.388)
Conservative	1.259*** (0.178)	1.249*** (0.177)	1.311*** (0.184)	1.296*** (0.187)
Latino Respondent	−0.008 (0.465)	0.012 (0.467)	0.350 (0.482)	0.206 (0.477)
Other Race Respondent	0.748 (0.508)	0.742 (0.501)	0.976* (0.500)	0.848* (0.506)
White Respondent	0.695* (0.416)	0.676 (0.420)	1.292*** (0.397)	1.178*** (0.396)
HS Education	−0.137 (1.019)	−0.150 (1.049)	−1.100 (0.822)	−1.013 (0.721)
Some College Education	−0.453 (1.016)	−0.468 (1.046)	−1.004 (0.831)	−0.890 (0.726)
BA Education	−0.959 (0.987)	−0.953 (1.016)	−1.174 (0.871)	−1.070 (0.767)
Post-BA Education	−1.620 (0.996)	−1.601 (1.020)	−2.349** (0.949)	−2.248** (0.843)
Household Income	−0.044 (0.033)	−0.048 (0.033)	0.013 (0.036)	0.006 (0.036)
COVID-19 Infection	−0.090 (0.125)	−0.088 (0.124)	−0.064 (0.085)	−0.059 (0.088)
Economic Evaluations	1.525*** (0.138)	1.506*** (0.138)	0.944*** (0.131)	0.973*** (0.135)
Gender: Female	0.317 (0.207)	0.310 (0.210)	−0.129 (0.172)	−0.142 (0.179)
Age	0.007 (0.007)	0.008 (0.007)	0.009 (0.006)	0.008 (0.006)
Lack of Covid Concern x PID: Independent	0.537 (0.563)	0.368 (0.459)	0.155 (0.537)	0.493 (0.590)
Lack of Covid Concern x PID: Republican	0.951 (0.624)	0.496 (0.549)	1.473*** (0.495)	0.493 (0.590)
Lift Restrictions Too Slow x PID: Independent	−0.036 (0.496)	0.062 (0.722)	0.493 (0.590)	0.493 (0.590)
Lift Restrictions Too Slow x PID: Republican	0.062 (0.722)	0.493 (0.590)	0.493 (0.590)	0.493 (0.590)
Constant	−10.381*** (1.489)	−10.118*** (1.555)	−8.899*** (1.038)	−8.333*** (1.065)
Observations	2,798	2,798	2,765	2,765
Log Likelihood	−476.677	−474.969	−619.279	−610.823
Akaike Inf. Crit.	991.354	995.938	1,276.558	1,267.647

Note: *p<0.1; **p<0.05; ***p<0.01

Robust district-clustered standard errors reported.
Table 20A: Voter Survey Full Logistic Regression Models Assessing 2016-2020 Electoral Preference Change

Dependent Variable: 2016 HRC-2020 DJT Vote Switch	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
Lack of Covid Concern	−0.706 (0.612)	−19.111*** (0.530)	−0.518 (0.719)	−1.660 (1.296)
Lift Restrictions Too Slow	1.826** (0.780)	0.841 (1.413)	3.196*** (0.851)	2.048* (1.086)
COVID-19 Deaths (100K People)	0.002 (0.005)	0.001 (0.005)	0.003 (0.005)	0.003 (0.005)
Independent Partisan	−0.377 (0.841)	−2.711 (2.150)	0.523 (0.830)	−0.995 (1.335)
Republican Partisan	1.369 (1.022)	0.057 (1.673)	1.167 (1.017)	−2.492 (2.686)
Conservative	0.396 (0.632)	0.240 (0.694)	0.811 (0.773)	1.073 (0.969)
Latino Respondent	−15.721*** (0.804)	−16.173*** (0.911)	2.899 (1.786)	3.841*** (1.056)
Other Race Respondent	1.520 (0.985)	1.633 (1.071)	19.786*** (1.969)	20.529*** (1.069)
White Respondent	1.669** (0.769)	2.059** (0.899)	20.165*** (1.668)	21.341
HS Education	16.142*** (3.776)	17.009*** (5.697)	15.571	16.170*** (3.217)
Some College Education	16.616*** (3.823)	17.735** (6.997)	16.357	16.791*** (2.389)
BA Education	16.219*** (3.319)	17.391*** (6.236)	15.451*** (1.653)	15.669*** (3.135)
Post-BA Education	15.146*** (4.810)	16.814** (7.558)	14.463*** (1.263)	14.936*** (2.201)
Household Income	−0.141 (0.088)	−0.159 (0.103)	−0.100 (0.094)	−0.098 (0.081)
COVID-19 Infection	−0.077 (0.485)	0.050 (0.454)	−0.420 (0.574)	−0.450 (0.582)
Economic Evaluations	1.679*** (0.544)	1.579*** (0.468)	−0.099 (0.427)	−0.280 (0.425)
Trump Vote 2016	−23.651*** (0.994)	−23.738*** (0.978)	−22.666*** (0.761)	−23.292*** (1.301)
PID Change	1.930*** (0.746)	2.041** (0.896)	1.650** (0.670)	2.132** (0.836)
Gender: Female	1.025* (0.591)	0.677 (0.526)	1.264* (0.758)	1.613 (1.084)
Age	−0.017 (0.039)	−0.006 (0.037)	−0.093** (0.040)	−0.101** (0.048)
Lack of Covid Concern x PID: Independent	−24.578*** (5.414)	−25.207*** (9.068)	−37.425*** (3.657)	−38.570*** (2.205)
Lack of Covid Concern x PID: Republican	19.737*** (1.709)	20.062*** (1.070)	2.609* (1.389)	2.070 (2.173)
Lift Restrictions Too Slow x Independent	3.118 (1.958)	3.345 (1.751)	3.558 (2.368)	
Lift Restrictions Too Slow x Republican	0.345 (1.751)	0.345 (1.751)	3.558 (2.368)	
Constant	−53.289	−48.395	−56.616	−52.571
Observations	1,900	1,900	1,884	1,884
Log Likelihood	148.579	146.790	155.232	155.141

Note:
- *p<0.1; **p<0.05; ***p<0.01
- Robust district-clustered standard errors reported.
- Missing standard errors are too high to report.
Table 21A: Voter Survey Full Logistic Regression Models Assessing 2016-2020 Electoral Preference Change

Dependent Variable: 2016 DJT-2020 JRB Vote Switch	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
Lack of Covid Concern	-0.722 (0.526)	-2.399 (1.560)	-0.828* (0.486)	-2.345* (1.247)
Lift Restrictions Too Slow	-3.294*** (0.690)	-4.516*** (1.483)	-3.357*** (0.673)	-21.311*** (0.889)
COVID-19 Deaths (100K People)	-0.008 (0.007)	-0.006 (0.007)	-0.012** (0.006)	-0.012** (0.006)
Independent Partisan	-2.024*** (0.748)	-3.184** (1.338)	-0.303 (0.549)	-1.171* (0.688)
Republican Partisan	-2.624*** (0.795)	-3.678*** (1.395)	-1.296* (0.621)	-1.829*** (0.649)
Conservative	-0.584 (0.564)	-0.804 (0.595)	-0.451 (0.501)	-0.588 (0.549)
Latino Respondent	-18.965*** (1.312)	-19.273*** (1.450)	-17.839*** (1.538)	-17.617*** (1.791)
Other Race Respondent	-2.908* (1.534)	-3.416** (1.730)	-1.291 (1.469)	-1.166 (1.805)
White Respondent	-2.162* (1.225)	-2.470* (1.327)	-1.117 (1.316)	-0.946 (1.635)
HS Education	-1.944 (1.243)	-1.793 (1.188)	16.250	16.221
Some College Education	-1.636 (1.112)	-1.353 (1.063)	17.396*** (0.493)	17.326
BA Education	-1.596 (1.326)	-1.246 (1.276)	15.785*** (1.052)	15.524
Post-BA Education	-0.551 (1.101)	-0.201 (1.081)	16.950*** (0.851)	16.800
Household Income	0.081 (0.090)	0.060 (0.101)	0.189** (0.079)	0.209*** (0.081)
COVID-19 Infection	0.139 (0.353)	0.195 (0.400)	-0.281 (0.239)	-0.304 (0.229)
Economic Evaluations	-1.573*** (0.437)	-1.658*** (0.402)	-1.100*** (0.312)	-1.098*** (0.313)
Trump Vote 2016	24.565*** (0.871)	25.501*** (1.460)	21.926*** (0.618)	22.220*** (0.776)
PID Change	-1.271** (0.630)	-1.214** (0.582)	-1.111** (0.440)	-1.228** (0.574)
Gender: Female	-0.490 (0.574)	-0.471 (0.543)	0.275 (0.452)	0.261 (0.470)
Age	-0.007 (0.024)	-0.004 (0.027)	-0.004 (0.019)	-0.002 (0.022)
Lack of Covid Concern x PID: Independent			1.500 (1.648)	1.876 (1.479)
Lack of Covid Concern x PID: Republican			2.462 (1.858)	1.362 (1.442)
Lift Restrictions Too Slow x PID: Independent			2.220 (1.959)	18.385*** (1.066)
Lift Restrictions Too Slow x PID: Republican			-15.004*** (1.593)	18.067*** (1.340)
Constant	-15.129*** (2.841)	-14.381*** (2.903)	-35.720*** (2.176)	-35.359
Observations	1,900	1,900	1,884	1,884
Log Likelihood	-63.865	-61.547	-59.247	-58.463
Akaike Inf. Crit.	169.730	173.095	160.494	166.926

Note:

* p<0.1; ** p<0.05; *** p<0.01

Robust district-clustered standard errors reported.
Table 22A: Voter Survey Full Logistic Regression Models Assessing U.S. House Vote Intention

	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
Lack of Covid Concern	-0.088 (0.205)	-0.298 (0.523)	-0.008 (0.168)	0.567* (0.336)
Lift Restrictions Too Slow	2.306*** (0.253)	1.934*** (0.528)	2.012*** (0.175)	1.369*** (0.389)
COVID-19 Deaths (100K People)	0.003 (0.002)	0.003 (0.002)	-0.003 (0.002)	-0.003 (0.002)
Independent Partisan	3.245*** (0.330)	2.889*** (0.444)	2.143*** (0.208)	2.044*** (0.334)
Republican Partisan	5.653*** (0.418)	5.212*** (0.526)	3.683*** (0.313)	3.901*** (0.422)
Conservative	1.672*** (0.191)	1.677*** (0.190)	1.482*** (0.155)	1.528*** (0.168)
Latino Respondent	0.198 (0.560)	0.189 (0.564)	0.552 (0.379)	0.393 (0.373)
Other Race Respondent	0.979* (0.545)	0.946* (0.547)	0.719* (0.390)	0.592 (0.375)
White Respondent	0.801* (0.469)	0.774 (0.478)	1.017*** (0.330)	0.932*** (0.311)
HS Education	-0.426 (0.533)	-0.501 (0.515)	-1.450** (0.739)	-1.476** (0.672)
Some College Education	-0.363 (0.555)	-0.412 (0.528)	-1.545** (0.740)	-1.486** (0.660)
BA Education	-0.455 (0.571)	-0.480 (0.547)	-1.715** (0.769)	-1.667** (0.701)
Post-BA Education	-0.916 (0.637)	-0.933 (0.620)	-2.872*** (0.802)	-2.878*** (0.740)
Household Income	0.037 (0.043)	0.034 (0.043)	0.094*** (0.032)	0.093*** (0.033)
COVID-19 Infection	-0.251* (0.145)	-0.252* (0.145)	-0.050 (0.088)	-0.046 (0.092)
Economic Evaluations	1.591*** (0.147)	1.581*** (0.143)	0.767*** (0.126)	0.785*** (0.132)
Gender: Female	0.359* (0.209)	0.351* (0.213)	0.149 (0.172)	0.138 (0.177)
Age	-0.001 (0.007)	-0.0004 (0.008)	0.014*** (0.006)	0.013*** (0.006)
Lack of Covid Concern x PID: Independent	0.161 (0.591)		-0.938** (0.393)	
Lack of Covid Concern x PID: Republican	0.658 (0.772)		-0.403 (0.529)	
Lift Restrictions Too Slow x PID: Independent	0.551 (0.577)		1.343*** (0.464)	
Lift Restrictions Too Slow x PID: Republican	0.119 (0.833)		-0.263 (0.636)	
Constant	-12.604*** (1.004)	-12.196*** (1.050)	-9.038*** (0.991)	-9.056*** (0.978)

Note: *p<0.1; **p<0.05; ***p<0.01

Robust district-clustered standard errors reported.
	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
COVID-19 Deaths (100K People)	0.0002 (0.001)	−0.002* (0.001)	0.001 (0.001)	−0.001 (0.001)
Independent Partisan	−0.245** (0.103)	−0.423*** (0.133)	0.067 (0.115)	−0.092 (0.190)
Republican Partisan	−0.283** (0.137)	−0.566*** (0.172)	0.167 (0.153)	−0.155 (0.235)
Conservative	−0.095 (0.077)	−0.090 (0.076)	−0.243*** (0.078)	−0.240*** (0.077)
Latino Respondent	0.005 (0.183)	−0.001 (0.182)	−0.131 (0.216)	−0.139 (0.216)
Other Race Respondent	−0.435** (0.213)	−0.444** (0.214)	0.050 (0.239)	0.048 (0.240)
White Respondent	−0.083 (0.141)	−0.096 (0.141)	0.194 (0.168)	0.179 (0.168)
HS Education	0.153 (0.349)	0.101 (0.340)	−0.078 (0.341)	−0.117 (0.339)
Some College Education	0.054 (0.347)	0.008 (0.339)	0.090 (0.340)	0.054 (0.338)
BA Education	0.151 (0.351)	0.108 (0.343)	0.224 (0.351)	0.190 (0.351)
Post-BA Education	0.165 (0.367)	0.127 (0.359)	0.038 (0.364)	0.007 (0.363)
Household Income	0.030** (0.014)	0.028** (0.014)	−0.004 (0.014)	−0.005 (0.014)
COVID-19 Infection	−0.014 (0.055)	−0.012 (0.055)	−0.049 (0.046)	−0.048 (0.046)
Gender: Female	−0.180*** (0.060)	−0.180*** (0.060)	−0.032 (0.062)	−0.034 (0.062)
Age	0.058 (0.083)	0.070 (0.083)	0.174** (0.086)	0.182** (0.086)
Economic Evaluations	−0.003 (0.003)	−0.003 (0.003)	0.0002 (0.003)	0.00003 (0.003)
COVID-19 Deaths (100K People) x PID: Independent	0.003* (0.002)	0.005*** (0.002)	0.004* (0.003)	
COVID-19 Deaths (100K People) x PID: Republican	0.005*** (0.002)	0.122 (0.461)	0.286 (0.472)	
Constant	0.357 (0.433)	0.520 (0.437)	4.352 (0.437)	4.351 (0.437)

Observations: 3,100 3,100 3,035 3,035
Log Likelihood: -2,159.153 -2,156.765 -2,086.437 -2,084.145
Akaike Inf. Crit.: 4,352.307 4,351.530 4,206.874 4,206.290

Note: *p<0.1; **p<0.05; ***p<0.01

Robust district-clustered standard errors reported.
Dependent Variable: COVID Restrictions Too Slowly Concern	Sept. Additive Model (1)	Sept. Interactive Model (2)	Nov. Additive Model (3)	Nov. Interactive Model (4)
COVID-19 Deaths (100K People)	0.003*** (0.001)	0.005*** (0.002)	0.003*** (0.001)	0.004** (0.002)
Independent Partisan	0.862*** (0.145)	0.996*** (0.209)	0.858*** (0.158)	0.787*** (0.279)
Republican Partisan	1.037*** (0.191)	1.316*** (0.249)	1.257*** (0.180)	1.796*** (0.284)
Conservative	0.950*** (0.113)	0.946*** (0.113)	1.182*** (0.109)	1.187*** (0.109)
Latino Respondent	0.191 (0.282)	0.191 (0.281)	-0.310 (0.305)	-0.299 (0.304)
Other Race Respondent	-0.027 (0.276)	-0.023 (0.276)	-0.228 (0.284)	-0.239 (0.285)
White Respondent	0.025 (0.227)	0.035 (0.227)	0.024 (0.223)	0.053 (0.224)
HS Education	-0.673 (0.447)	-0.634 (0.443)	-0.261 (0.414)	-0.233 (0.412)
Some College Education	-0.480 (0.430)	-0.446 (0.427)	0.041 (0.415)	0.070 (0.413)
BA Education	-0.388 (0.438)	-0.354 (0.436)	-0.128 (0.414)	-0.095 (0.414)
Post-BA Education	-0.880* (0.452)	-0.848* (0.449)	-0.270 (0.433)	-0.242 (0.433)
Household Income	0.008 (0.019)	0.009 (0.019)	0.003 (0.019)	0.005 (0.019)
COVID-19 Infection	-0.205*** (0.073)	-0.205*** (0.073)	-0.115* (0.064)	-0.110* (0.063)
Economic Evaluations	1.108*** (0.071)	1.109*** (0.071)	0.674*** (0.077)	0.683*** (0.078)
Gender: Female	-0.107 (0.113)	-0.119 (0.114)	-0.352*** (0.113)	-0.365*** (0.113)
Age	-0.008* (0.004)	-0.008* (0.004)	-0.002 (0.003)	-0.002 (0.004)
COVID-19 Deaths (100K People) x PID: Independent				
COVID-19 Deaths (100K People) x PID: Republican				
Constant	-5.256*** (0.620)	-5.405*** (0.627)	-5.640*** (0.596)	-5.813*** (0.617)
Observations	3,100	3,100	3,035	3,035
Log Likelihood	-1,388.873	-1,387.362	-1,516.148	-1,509.371
Akaike Inf. Crit.	2,811.745	2,812.724	3,066.296	3,056.743

Note: *p<0.1; **p<0.05; ***p<0.01

Robust district-clustered standard errors reported.
The discrete marginal effects articulated in Figure specified with 90% and 95% confidence intervals from district-clustered robust standard errors. Darker shaded point estimates significant at \(p < 0.10 \). Models control for local COVID-19 context, education, race, gender, ideology, economic evaluations, COVID-19 infection proximity, and age. Figure articulates \(N = 2 \) unified baseline additive models (one for each panel wave-outcome variable interest articulated in the panel) 2 unified interactive models (one for each panel wave-outcome variable interest articulated in the panel) for a total of \(N = 4 \) models. Heterogeneous effects of attitudes across partisanship estimated from multiplicative model interacting context and partisanship.
Relationship Between Public Health Concern/Restrictions Concern & Political Support House Republicans

The discrete marginal effects articulated in Figure specified with 90% and 95% confidence intervals from district-clustered robust standard errors. Darker shaded point estimates significant at \(\rho < 0.10 \). Models control for local COVID-19 context, education, race, gender, ideology, economic evaluations, COVID-19 infection proximity, and age. Figure articulates N = 2 unified baseline additive models (one for each panel wave-outcome variable interest articulated in the panel) 2 unified interactive models (one for each panel wave-outcome variable interest articulated in the panel) for a total of N = 4 models. Heterogeneous effects of attitudes across partisanship estimated from multiplicative model interacting context and partisanship.
References

Algara, Carlos. 2019. “The conditioning role of polarization in U.S. senate election outcomes: A direct-election voter-level analysis.” *Electoral Studies* 59:1–16.

Chyzh, Olga V. & Robert Urbatsch. 2020. “Bean counters: The effect of soy tariffs on change in republican vote share between the 2016 and 2018 elections.” *Journal of Politics* 83(1).

Cinelli, Carlos & Chad Hazlett. 2020. “Making sense of sensitivity: extending omitted variable bias.” *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 82(1):39–67. _eprint:_ https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/rssb.12348. _URL:_ https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12348

Fiorina, Morris P. 1978. “Economic retrospective voting in American national elections: A micro-analysis.” *American Journal of Political Science* pp. 426–443.

Hazlett, Chad & Matto Mildenberger. 2020. “Wildfire Exposure Increases Pro-Environment Voting within Democratic but Not Republican Areas.” *American Political Science Review* 114(4):1359–1365. _URL:_ https://www.cambridge.org/core/product/identifier/S0003055420000441/type/journal_article

Jacobson, Gary C & Jamie L Carson. 2019. *The politics of congressional elections*. Rowman & Littlefield.

Lenz, Gabriel S. & Alexander Sahn. 2020. “Achieving Statistical Significance with Control Variables and Without Transparency.” *Political Analysis* pp. 1–14.

Sievert, Joel & Seth C. McKee. 2019. “Nationalization in U.S. Senate and Gubernatorial Elections.” *American Politics Research* 47(5):1055–1080.

Simonsohn, Uri, Joseph P. Simmons & Leif D. Nelson. 2020. “Specification curve analysis.” *Nature Human Behaviour* 4(11):1208–1214.