Interaction of Octopus–like Cobalt(II) Phthalocyaninate with Fullerene C\textsubscript{70} Studied by ESR Spectroscopy

Alexander G. Martynov,a,@ Irina V. Nefedova,b Nikolay N. Efimov,b Elena A. Ugolkova,b Vadim V. Minin,b Yulia G. Gorbunova,a,b and Aslan Yu. Tsivadzea,b

aA.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
bN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
@Corresponding author E-mail: Martynov.Alexandre@gmail.com

This work reports on synthesis and characterizations of cobalt(II) complex 1Co with octopus-like phthalocyanine ligand bearing eight peripheral O-benzyl-diethyleneglycol substituents. Concentration-dependent investigation of UV-Vis spectra of 1Co in chloroform evidenced of its aggregation at high concentrations (0.3 mM) with the formation of dimers with dimerization constant $(4.8\pm0.2)\times10^3$ M-1. Supramolecular assembling of 1Co with fullerene C\textsubscript{70} was studied by UV-Vis titration and by ESR spectroscopy. Both methods suggest the absence of notable interactions between electronic systems of 1Co and C\textsubscript{70} in ground state, the formation of the assembly 1Co•C\textsubscript{70} occurs via noncovalent interactions.

Keywords: Phthalocyanine, cobalt, fullerene, electronic spin resonance, supramolecular assembling.

Исследование взаимодействия осьминогоподобного фталоцианината кобальта(II) с фуллереном C\textsubscript{70} методом спектроскопии ЭПР

А. Г. Мартьнов,a,@ И. В. Нефедова,b Н. Н. Ефимов,b Е. А. Уголькова,b В. В. Минин,b Ю. Г. Горбунова,a,b А. Ю. Цивадзеa,b

aИнститут физической химии и электрохимии им. А.Н. Фрумкина РАН, 119071 Москва, Россия
bИнститут общей и неорганической химии им. Н.С. Курнакова РАН, 119991 Москва, Россия
@E-mail: Martynov.Alexandre@gmail.com

Синтезирован фталоцианинат кобальта(II) 1Co, содержащий восемь фрагментов O-бензилдиэтиленгликоля. Методом ЭПР изучена агрегация комплекса в концентрированных растворах (до 0.3 М в хлороформе). С использованием регрессионного анализа установлено, что в концентрированных растворах происходит димеризация молекул 1Co, константа димеризации составляет $(4.8\pm0.2)\times10^3$ M-1. Взаимодействие 1Co с фуллереном C\textsubscript{70} исследовалось с использованием методов спектрофотометрического титрования и спектроскопии ЭПР. Показано, что образование супрамолекулярного ансамбля 1Co•C\textsubscript{70} происходит за счет нековалентных взаимодействий и не сопровождается заметным взаимодействием между электронными системами 1Co и C\textsubscript{70}.

Ключевые слова: Фталоцианин, кобальт, фуллерен, ЭПР, супрамолекулярная сборка.
Introduction

Donor-acceptor assemblies based on tetrapyrrolic macrocycles and nanocarbon materials – fullerenes, graphene, nanotubes, etc., are promising conductive materials and photoactive components of photovoltaic devices.[1–7] Such hybrid materials can be formed either by covalent bonding of tetrapyroles to nanocarbons, or by their supramolecular assembling. The former method results in transformation of sp^2-carbon atoms in intact nanocarbons into sp^3-C, which cannot participate in electronic conjugation. Supramolecular approach does not have this disadvantage, it is widely used to form co-crystals of fullerenes with porphyrins and phthalocyanines,[8–11] however assembling of fullerenes with tetrapyroles in solution requires accurate design of receptor groups providing efficient and controllable binding and selectivity.[12–15]

Previously, we have synthesized new fullerene-binding receptors – zinc and magnesium phthalocyanines bearing eight peripheral O-benzylethylene glycol substituents starting from [2′-(2′′-benzylethoxy)ethoxy]phthalonitrile[16] (Figure 1). These molecules resemble octopuses, which 2-carbon atoms in intact nanocarbons into bonding of tetrapyrroles to nanocarbons, or by their supramolecular interactions. Using UV-Vis and fluorescence spectroscopy we demonstrated high affinity of receptors for C_{60} and C_{70} with selectivity to C_{70}: binding constants for C_{60} were almost two times higher than for C_{70}. This result was rationalized using semi-empirical calculations at PM6-DH2 level.

In the present work we have synthesized cobalt(II) complex 1Co with octopus-like phthalocyanine ligand, investigated aggregation of 1Co in chloroform and studied its interaction with C_{70} by spectrophotometric titration. Due to the presence of one unpaired electron in Co$^{2+}$ ion with d^7-configuration this interaction could be studied by ESR spectroscopy. It let us draw a conclusion about assembling of 1Co and C_{70} molecules via noncovalent dipole-dipole interactions.

![Figure 1. Octopus-like fullerene receptors 1M. M=Zn and Mg (Ref.[16]), Co (this work).](image)

Experimental

[2′-(2′′-Benzyloxy)ethoxy]phthalonitrile 2 was synthesized according to previously reported procedures.[17,18] Cobalt acetate tetrahydrate (Aldrich) was dried at 90 °C in vacuum to obtain anhydrous salt. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, Merck) was distilled over CaH$_2$ in vacuum and stored under argon. Isoamyl alcohol (Sigma-Aldrich) was distilled over sodium for chromatography. Other reagents and solvents were purchased from commercial suppliers and were used without additional purification.

UV-Vis spectra were recorded at room temperature on Cary-100 and Thermo Evolution 210 spectrophotometers in 0.1-1 cm pathlength cuvettes. MALDI TOF mass-spectra were measured on Ultraflex spectrometer (Bruker Daltonics) with 2,5-dihydroxybenzoic acid (DHB), used as a matrix.

X-Band ESR spectra were measured at 9.8 GHz microwave frequency on Bruker Elexsys E-680X radiospectrometer in the temperature range of 300-100 K. Since low-spin cobalt(II) complexes tend to form adducts with molecular oxygen, we paid particular attention to sample preparation. Samples of 1Co were dissolved under vacuum in solvents, which were previously deoxygenated by repeated freeze-pump-thaw cycles. Resulting solutions were transferred into cells for ESR measurements. The spectra were measured below the melting points of solvents.

Resulting ESR spectra were described using rhombic spin Hamiltonian with $S=1/2$ spin, Zeeman and hyperfine interactions:

$$H_{\text{gsum}} = g_x H_x S_x + g_y H_y S_y + g_z H_z S_z + A_1 I_x S_x + B_1 I_y S_y + C_1 I_z S_z + \text{Θ}$$

Here g_x, g_y, g_z, A_1, B_1, C_1 – components of g-tensor, A_1, B_1, C_1 – components of HFS tensor, I_x, I_y, I_z – projections of nuclear spin operator onto coordination axes, Θ–theoretical values of intensity.

The parameters of ESR spectra were found using best approximation method, which minimizes the error function

$$F = \sum (Y - Y^0)^2 / N$$

Here Y^0 – the array of the observed intensities of ESR signals at different values of magnetic field, Y – theoretical values of intensities at the same values of magnetic field, N – number of points. Theoretical spectra were plotted according to the previously reported procedure.[19] Line shapes were described using Gaussian and Lorentzian functions.[20] The line widths were parameterized using relaxation theory:[21]

$$\sigma_k = \alpha_k + \beta_k m_i + \gamma_k m_i^2$$

Here m_i – projection of nuclear spin on the magnetic field direction, $k=x, y, z$, α, β, γ – broadening parameters in corresponding orientations. Minimization of error function (Eq. 2) implied variation of g-factors, HFS constants, line widths and shapes.

Cobalt(II) 2,3,9,10,16,17,23,24-octakis(2′-benzylethoxy)ethoxyphthalocyaninate (1Co). The mixture of phthalonitrile 2 (118 mg, 0.23 mmol), Co(OAc)$_2$ (21 mg, 0.12 mmol) and DBU (35 mg, 0.23 mmol) in 3 mL of isooamyl alcohol was refluxed under argon for 24 h. After cooling to room temperature the dark-green reaction mixture was diluted with hexane, the formed precipitate was filtered, the filtrate was discarded and the solid was washed off the filter with chloroform. After column chromatography on neutral alumina (elution with CHCl$_3$+(0–5)%vol.% MeOH) followed by size-exclusion chromatography (Bio-Beads S-X1, elution with CHCl$_3$+2.5vol.% MeOH) the complex 1Co was isolated as a dark-green sticky solid (33 mg; yield 27 %). m/z (MALDI-TOF found 2124.8 [M]+, calculated for $C_{129}H_{128}CoN_8O_{24}$ 2125.0). UV-Vis (CHCl$_3$) λ (lg ε nm): 297 (4.87), 606 (4.39), 670 (5.04).
Results and Discussion

Synthesis and Spectral Characterization of 1Co

Synthesis of complex 1Co was performed starting from the previously reported phthalonitrile 2 using its DBU-promoted template condensation in the presence of anhydrous Co(OAc)$_2$ in refluxing isooamyl alcohol (Scheme 1).

![Scheme 1](image)

The synthesized complex was characterized by MALDI-TOF mass-spectrometry and UV-Vis spectroscopy. The presence of paramagnetic Co$^{2+}$ ion in the molecule precluded application of NMR spectroscopy for characterization because of strong broadening and shifting of resonance signals in spectra.

The investigation of concentration-dependent UV-Vis spectra of 1Co in CHCl$_3$ evidenced that the increase of the complex concentration resulted in decrease of the efficient extinction coefficient (ε_{eff}) with simultaneous broadening of the Q-band and its vibrational satellite. For example, $\lg \varepsilon_{\text{eff}}$ changed from 5.04 to 4.87 upon increase of C_{1Co} from 4×10^{-6} M to 3×10^{-4} M (Figures 2, 3). This spectral behavior evidenced of phthalocyanine aggregating in solution.$^{[22]}$

Analysis of nonlinear ranges of plots in Figure 3 was performed using approach, proposed by Mataga,$^{[23]}$ which was widely used for the analysis of phthalocyanine aggregation.$^{[24–26]}$ In accordance with this approach, the solution with total concentration of dissolved chromophore C_0 is characterized by efficient extinction coefficient $\varepsilon_{\text{eff}} = A^{1/n} C_0^{-1}$, which is different from extinction of monomeric compound ε_M in the case if the molecules of chromophor are aggregating. Putting n as an aggregation number in the equilibrium $nM \leftrightarrow M_n$ and K as a constant of this equilibrium, the following relation between all these values was proposed:

$$\lg \left[C_0 \cdot \left(1 - \frac{\varepsilon_{\text{eff}}}{\varepsilon_M} \right) \right] = \lg (n \cdot K) + n \cdot \lg \left[\frac{C_0}{\varepsilon_{\text{eff}}/\varepsilon_M} \right]$$

(4)

Thus, plotting $\lg[C_0(1-\varepsilon_{\text{eff}}/\varepsilon_M)]$ vs. $\lg[C_0(\varepsilon_{\text{eff}}/\varepsilon_M)]$ should give a straight line with the slope, equal to n. Indeed, plotting the corresponding values for 1Co gave linear dependency with the slope $n=1.7$ (Figure 4), suggesting that mainly dimerization of phthalocyanine molecules occurs upon aggregation.

![Figure 3](image)

Figure 3. Dependence of efficient extinction coefficient $\varepsilon_{\text{eff}} = A^{1/n} C_0^{-1}$ at 670 nm on concentration for 1Co in CHCl$_3$.

![Figure 2](image)

Figure 2. UV-Vis spectra of 1Co in CHCl$_3$ at different concentrations.

The equilibrium between the monomer M and the dimer D is described by the dimerization constant K_d (Eq. 5) and the material balance (Eq. 6):

$$K_d = \frac{[D]}{[M]}$$

(5)

$$C_0 = [M] + 2[D]$$

(6)
These equations can be used to evaluate the equilibrium concentration of the monomer:

$$[M] = \frac{1}{4K_d} \left(\frac{1}{4} + 8C_M^2K_d \right)^{-1}$$

(7)

The optical density at certain wavelength is an additive value, which is determined by absorptions of both monomer and dimer depending on their equilibrium concentrations and characteristic extinction coefficients. Taking into account the equation of material balance (Eq. 6), it can be expressed in the following way:

$$A = \varepsilon_M \cdot [M] + \varepsilon_D \cdot [D] = \left(\varepsilon_M - \frac{\varepsilon_D}{2} \right) \cdot [M] + \frac{C_D \cdot \varepsilon_D}{2}$$

(8)

Combination of Eqs. (7) and (8) gives nonlinear equation (9), which expresses optical density as a function of concentration of dissolved compound. Other terms of this equation, namely equilibrium constant K_d as well as extinction coefficients of monomer and dimer (ε_M and ε_D, respectively) are unknown, but they can be found by nonlinear regression analysis, therefore, we can reveal the UV-Vis spectra of monomer and dimer. Since changes in UV-Vis spectra caused by aggregation depend on mutual arrangement of chromophores within the dimer, its architecture can be proposed.

$$A = \left(\varepsilon_M - \frac{\varepsilon_D}{2} \right) \frac{1}{4K_d} \left(\frac{1}{4} + 8C_M^2K_d \right)^{-1} + \frac{C_D \cdot \varepsilon_D}{2}$$

(9)

To perform this analysis, we have used the Q-band region. The array of UV-Vis data for 35 wavelengths (from 550 to 720 nm with 5 nm step) was chosen. The data was taken for 11 solutions with concentrations in the range of $4\cdot10^{-4} + 3\cdot10^{-4}$ M (altogether $35\times11=385$ data points). The values of ε_M for 670 nm was fixed at the value of $1.10\cdot10^4$ L·M⁻¹·cm⁻¹ and all other parameters were varied until convergence was achieved. The value of found equilibrium constant K_d was $(4.8\pm0.2)\cdot10^3$ M⁻¹. The calculated UV-Vis spectra of both monomer and dimer are given in Figure 5. In accordance with the excitonic model of chromophore interaction, the blue-shifted maximum of the aggregate Q-band suggests significant overlap of stacked phthalocyanine \(\pi\)-systems (H-dimer).[27]

Figure 5. Calculated UV-Vis spectra of monomeric and dimeric forms of ICo in CHCl₃.

Studies of Interaction between ICo and C₇₀

The interaction of C₇₀ with the ICo was studied by UV-Vis titration of its solution in CHCl₃ with the solution of fullerene in toluene. This titration did not result in any notable shift of the Pcs Q-band (Figure 6) suggesting the absence of significant ground state interaction between molecular orbitals of ICo and C₇₀.

Figure 6. Spectrophotometric titration of solution of ICo in CHCl₃ ($C_{ICo}=1.5\cdot10^{-3}$ M) with the solution of C₇₀ in toluene ($C_{C70}=8.9\cdot10^{-3}$ M). Each step corresponds to addition of 0.2 equivalents of fullerene.

The interaction of ICo with C₇₀ could be studied by ESR due to the presence of one unpaired electron in low-spin Co²⁺ ion. Figure 7 shows the spectrum of ICo solution in CHCl₃ deoxygenated by repeated freeze-pump-thaw cycles. The complex was ESR silent at room temperature; therefore, its spectrum was measured at 100 K.

The components of hyperfine splitting are superimposed with the broad band, which cannot be compensated by the correction of the baseline. We suppose that this line originates from the aggregation of ICo in the solution at the applied concentration (~10^{-3} M), which is needed for acquisition of informative spectrum. Moreover, we expected that the spectrum would have axial symmetry; however, good match between the experimental and calculated spectra could be obtained only in rhombic approximation. This might be due to some deformation of the macrocycle because of the flexibility of bulky substituents.[28] The ESR spectrum of ICo reveals well resolved hyperfine structure containing eight lines in parallel orientation of g-tensor and poorly resolved structure in perpendicular orientation, which arises from magnetic interaction between unpaired electron spin and nuclear spin ($I=7/2$) of Co²⁺ ion. The spin Hamiltonian parameters are listed in Table 1.

To show the sensitivity of ESR spectra of ICo to rearrangement of spin density, we have also measured ESR spectrum of ICo in aerobic conditions. To enhance interaction of ICo with molecular oxygen pyridine was added to the sample which coordinates to cobalt ion in trans-position to O_2 molecule.[29,30] The appearance of spectrum is given in Figure 8, and the spin Hamiltonian parameters of the resulting spectrum are given in the Table 1. These
parameters evidence that in the formed adduct of 1Co with molecular oxygen almost 80% of spin density is localized on the dioxygen group and it can be formally described as \(\text{PcCo(III)O}_2^- \). This experiment evidences of high sensitivity of low-spin cobalt complex with one electron at \(d_{z^2} \) orbital to addition of molecules with uncompensated spin density.

Finally, Figure 9 shows ESR spectrum of 1Co in the presence of fullerene \(\text{C}_{70} \) measured under anaerobic conditions. The parameters of spin Hamiltonian of 1Co•C\(_{70}\) are similar to those of starting 1Co (Table 1), however, the HFS lines in parallel orientation of \(g \)-tensor almost vanish. The significant broadening of lines in parallel orientation is characterized by \(\alpha, \beta \) and \(\gamma \) values, which are found by computational modeling. They are assigned to relaxation behavior of systems – rotations, vibrations, etc. In the case of 1Co these values are equal to \(\alpha = 25.12 \text{ G}, \beta = 2.18 \text{ G}, \gamma = 3.11 \text{ G} \), while in the case of 1Co•C\(_{70}\) these values are equal to \(\alpha = 46.18 \text{ G}, \beta = 5.01 \text{ G}, \gamma = 3.82 \text{ G} \). Upon formation of the complex with fullerene, the most notable change is observed in the case of \(\alpha \) term, which characterizes the rate of molecular rotation. Therefore, it can be concluded that 1Co interacts with \(\text{C}_{70} \) via dipole-dipole interactions significant additional delocalization of spin density, which is in line with the previous studies,\(^{[31]}\) although further theoretical work is required for complete description of CoPc-C\(_{70}\) interaction which might also include \(\sigma \)-donor and \(\pi \)-acceptor interactions between the fullerene and the CoPc unit. Such type of interaction was proposed previously to describe properties of the covalent CoPor-C\(_{60}\) diad.\(^{[32]}\)

Conclusions

In the present work, we have synthesized and investigated novel octopus-like cobalt(II) phthalocyaninate 1Co, studied its aggregation in solution by concentration-dependent UV-Vis spectroscopy and investigated interaction between 1Co with \(\text{C}_{70} \) by ESR spectroscopy.

We have shown the absence of notable coupling between electronic systems of Co(II) complex and fullerene, their interaction occurs via noncovalent dipole-dipole interactions, which manifests in changes of line shapes in ESR spectra without significant alteration of spin Hamiltonian parameters.

Previous theoretical studies of complexes of CoPc with fullerene suggest that such assemblies can act as bidirectional switches with tuneable direction of electron transport which can be achieved by oxidation of reduction of CoPc molecules.\(^{[33]}\) Our study proposes the approach to con-
struction of such assemblies suggesting the perspectives of further development of octopus-like phthalocyanines and studies of their receptor properties.

Acknowledgements. This work was supported by Russian Foundation for Basic Research (grant 18-03-01003). Vadim V. Minin and Nikolay N. Efimov thank the Presidium of the Russian Academy of Sciences (Program I.36) for financial support of EPR measurements. The physical-chemical measurements were performed using equipment of Shared Facility Centres of the A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, and the N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS.

References

1. Espíldora E., Delgado J.L., Martín N. Isr. J. Chem. 2014, 54, 429–439.
2. Wróbel D., Graja A. Coord. Chem. Rev. 2011, 255, 2555–2577.
3. Guldi D.M. Chem. Commun. 2000, 321–327.
4. Zhu S., Xu G. Coord. Chem. Rev. 2011, 255, 2538–2549.
5. Zhuang T., Wang X.-F., Sano T., Hong Z., Yang Y., Kido J. Appl. Phys. Lett. 2013, 103, 203301.
6. Jariwala D., Sangwan V.K., Lauhon L.J., Marks T.J., Hersam M.C. Chem. Soc. Rev. 2013, 42, 2824–2860.
7. Koeppe R., Sariciftci N.S. Photochem. Photobiol. Sci. 2006, 5, 1122–1131.
8. Yudanova E.I., Konarev D.V., Gumanov L.L., Lyubovskaya R.N. Russ. Chem. Bull. 1999, 48, 718–721.
9. Konarev D.V., Neretin I.S., Slovakhotov Y.L., Yudanova E.I., Drichko N.V., Shul’ga Y.M., Tarasov B.P., Gumanov L.L., Batsanov A.S., Howard J.A.K., Lyubovskaya R.N. Chem. Eur. J. 2001, 7, 2605–2616.
10. Konarev D.V., Khasanov S.S., Saito G., Lyubovskaya R.N., Yoshida Y., Otsuba A. Chem. Eur. J. 2003, 9, 3837–3848.
11. Konarev D.V., Khasanov S.S., Lyubovskaya R.N. Coord. Chem. Rev. 2014, 262, 16–36.
12. Hosseini A., Taylor S., Accorsi G., Armaroli N., Reed C.A., Boyd P.D.W. J. Am. Chem. Soc. 2006, 128, 15903–15913.
13. Ray A., Santosh K., Chattopadhyay S., Samanta A., Bhattacharya S. J. Phys. Chem. A 2010, 114, 5544–5550.
14. Ray A., Chattopadhyay S., Bhattacharya S. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2011, 79, 1435–1442.
15. Zheng J.-Y., Tashiro K., Hirabayashi Y., Kinbara K., Saigo K., Aida T., Sakamoto S., Yamaguchi K. Angew. Chem. Int. Ed. 2001, 40, 1857–1861.
16. Nefedova I.V., Martynov A.G., Averin A.A., Kirakosyan G.A., Tsivadze A.Y., Gorbunova Y.G. Isr. J. Chem. 2016, 56, 181–187.
17. Martynov A.G., Gorbunova Y.G., Tsivadze A.Y., Sauvage J.-P. Mendeleev Commun. 2010, 20, 237–238.
18. Martynov A.G., Birin K.P., Gorbunova Y.G., Tsivadze A.Y. Macroheterocycles 2013, 6, 23–32.
19. Rakitin Y.V., Linin V.V., Minin V.V. Interpretation of ESR Spectra of Coordination Compounds. Moscow: Nauka, 1993. [Бакитин Ю.Б., Ларин Г.М., Минин В.В. Интерпретация спектров ЭПР координационных соединений. M.: Наука, 1993].
20. Lebedev V.S., Murontsev V.I. ESR and Relaxation of Stabilized Radicals. Moscow: Khimiya, 1972. [Беледев Я.С., Муромцев В.И. ЭПР и релаксация стабилизированных радикалов. М.: Химия, 1972].
21. Wilson R., Kivelson D. J. Chem. Phys. 1966, 44, 154–168.
22. Snow A.W. In: The Porphyrin Handbook (Kadish K.M., Smith K.M., Guilard R., Eds.) New York: Academic Press, 2003, Vol. 17, p. 129–176.
23. Mataga N. Bull. Chem. Soc. Jpn. 1957, 30, 375–379.
24. Martynov A.G., Panova M.V., Gorbunova Y.G., Tsivadze A.Y. Macroheterocycles 2014, 7, 47–54.
25. Managa M., Khene S., Britton J., Martynov A.G., Gorbunova Y.G., Tsivadze A.Y., Nyokong T.J. J. Porphyrins Phthalocyanines 2018, 22, 137–148.
26. Yeung Y.-O., Liu R.C.W., Lau P.-L., Jiang J., Ng D.K.P. Tetrahedron 1997, 53, 9087–9096.
27. Hare J.P., Kroto H.W., Taylor R. Chem. Phys. Lett. 2013, 589, 57–60.
28. Ozarowski A., Lee H.M., Baling A.L. J. Am. Chem. Soc. 2003, 125, 12606–12614.
29. Ogata Y., Marumo K., Kwan T. Chem. Pharm. Bull. 1969, 17, 1194–1199.
30. Chan S.I., Rollmann L.D. Inorg. Chem. 1971, 10, 1978–1982.
31. Basiuk V.A. J. Phys. Chem. A 2005, 109, 3704–3710.
32. Dannhäuser J., Donaubauer W., Hampel F., Reiter M., Le Guennic B., Corzilius B., Dinsie K.P., Hirsch A. Angew. Chem. Int. Ed. 2006, 45, 3368–3372.
33. Qi D., Zhang L., Wan L., Zhao L., Jiang J. J. Phys. Chem. A 2012, 116, 6785–6791.

A. G. Martynov et al.