Metabolic Abnormality and Sleep Disturbance are Associated with Clinical Severity of Patients with Schizophrenia

Chung-Chieh Hung a,b, Chin-Chih Liao c, Po-Lun Wu a,b, Shin-Da Lee c,d Hsien-Yuan Lane a,b*

1. Introduction

Schizophrenia, a psychiatric disorder causing deterioration of cognitive and daily function, is associated with obesity and metabolic syndrome, rendering patients vulnerable to morbidity and mortality[1]. Biological factors, lifestyle, and antipsychotics all contribute to obesity of patients[2], [3], which influences their sleep quality[4]. Prevalence of poor sleepers among schizophrenics is around 45%, related to adverse events of medication and accompanying depression and psychological distress[5], [6]. Metabolic abnormality and sleep disturbance seem correlated. Consequently, these patients reportedly have poor life quality; correlation between clinical symptoms and sleep quality remains unclear. We hypothesize patients with severe clinical symptoms as more likely to have metabolic abnormality and sleep disturbance.

2. Methods

Study was approved by China Medical University Hospital Institutional Review Board (IRB). All participants gave written informed consent.

2.1. Participants

We recruited 17 schizophrenic patients from the Rehabilitation Center of the China Medical University Hospital Psychiatric Department. All met criteria of schizophrenia, paranoid type, according to DSM-IV-TR[7]. We rated the subjects by Positive and Negative Syndrome Scale (PANSS) [8], with respective items scored from 1(absent) to 7(extreme severity). We rated their depressive symptoms by Abnormal Involuntary Movement (AIMS) [11], Simpson-Angus (SAS) [12], and Barnes Extrapyramidal symptoms were rated by Abnormal Involuntary Scale[9], and quality of life by Quality of Life Scale (QLS) [10]. We rated their depressive symptoms by Hamilton Depression Rating Scale[13]. Patients' weight and height, body mass index (BMI), neck circumference, waist circumference, waist-hip ratio (WHR) were recorded. Body fat was assessed by Omron body fat scale. Daily antipsychotic doses were recorded as chlorpromazine equivalents [14], and daily benzodiazepine doses as diazepam equivalents [15].

Inclusion criteria included (1) schizophrenic patients stable under current antipsychotics and benzodiazepine for at least three months; (2) engaged in regular rehabilitation program for at least three months; (3) aged between 20 and 50; (4) Han Taiwanese who speak Chinese fluently and understand this study well

Exclusion criteria included histories of (1) cerebrovascular, cardiovascular, and metabolic disorders (stroke, hypertension, diabetes mellitus); (2) neurologic disorders like epilepsy and traumatic brain injury; (3) physical disability (eg, fractures); (4) current DSM-IV-TR diagnosis of substance dependence (such as nicotine); (5) a DSM-IV-TR diagnosis of mental retardation, and (6) acute suicide or aggressive behaviors and (7) regular exercise.

2.2. Cognitive performance testing

Schizophrenic patients show impaired cognitive function [16], [17]. Our study included trail making, semantic association of verbal fluency, maze, verbal and non-verbal working memory, instant word list, instant and, delayed visual reproduction, and digit symbol coding, as conducted by well-trained psychologists.

2.3. Cardiometabolic parameters and physical fitness

Patients' weight and height, body mass index (BMI), neck circumference (NC), waist circumference, hip circumference, and waist-hip ratio (WHR) were recorded. Body fat was assessed by Omron body fat scale. Physical fitness was gauged according to a profile distributed by Bureau of Health Promotion, Department of Health, Taiwan. First, we checked sit-up frequency in one minute. Second, they underwent three-minute 35-centimeter-ladder climbing. We checked post-exercise heart rate.
We drew parameters from sleep polysomnography, including time in bed staging and arousal detection, as well as 2- or 5-minute respiratory data. were scored manually on a small monitor, using 30-second epochs for and C3 (referenced to A2) and F4 and C4 (referenced to A1). PSG data efficiency (TST/TIB).

The presence of metabolic syndrome was recorded as defined by National Cholesterol Education Program (NCEP) guidelines: waist circumference ≥ 102 cm (male) and ≥ 88 cm (female), triglyceride (TG) ≥ 150 mg/dl, HDL-cholesterol < 40 mg/dl (male) and < 50 mg/dl (female), blood pressure ≥ 130/85 mmHg, and fasting glucose ≥ 110 mg/dl [9]. Metabolic syndrome index was summed by the above criteria.

2.4 Sleep measurement
Sleep rating scales were self-recorded by all subjects preceding polysomnography examination: Pittsburgh Sleep Quality Index (PSQI) [20], Insomnia Severity Index (ISI) [21], Epworth Sleepiness Scale (ESS) [22], and Pre-Sleep Arousal Scale (PSAS) [23]. Polysomnography (PSG) followed standardized techniques: digital electroencephalography (EEG), electromyography, and electrooculography signals acquired with Alice 4 system. PSG electrode montage was utilized, composed of EEG sites F3 and C3 (referenced to A2) and F4 and C4 (referenced to A1). PSG data were scored manually on a small monitor, using 30-second epochs for staging and arousal detection, as well as 2- or 5-minute respiratory data. We drew parameters from sleep polysomnography, including time in bed (TIB), total sleep time (TST), sleep latency, waking time, sleep efficiency (TST/TIB).

Sleep architecture was assessed for each 30-second epoch coded as Wake, Stage 1, Stage 2, Stage 3+4 (slow wave sleep, SWS), and Rapid Eye-Movement (REM) sleep according to criteria made by Rechtschaffen and Kales [24]. Arousal were identified according to criteria of the American Sleep Disorders Association (ASDA) 1992 [25].

We identified apnea and hypopnea as flat air flow lower than 20% and 70% of the baseline, respectively, whose amplitude was measured during the nearest preceding period of regular breathing with stable oxygen saturation. We identified Apnea-hypopnea index as total apnea and hypopnea divided by total sleep time.

3. Data analysis
We divided participants into two groups according to severity of clinical manifestation Cut-off value was median number of the PANSS total scores. Student'-T test compared all variables between the two groups.

4. Results
Age and gender between groups were similar, as was duration of education and age at illness onset. Duration of illness of the H-PANSS group was longer. Clinical Global Impression (CGI) [11] tallied higher and Quality of Life Scale (QLS) lower in the H-PANSS group, depressive symptoms rated by Hamilton Depression Scale similar between groups (Table 1). Current medications calculated by chlorpromazine and Diazepam equivalents were also similar. There were no differences between the two groups in severity of EPS rated by Abnormal Involuntary Movement Scale, Barnes Akathisia Rating Scale, and Simpson-Angus Scale (Table 1).

Table 1. Demographic and clinical characteristics

Demographic characteristics	L-PANSS (n=8)	H-PANSS (n=9)	P value
Age (years)	35 ± 9.3	37 ± 9.6	0.801
Male/Female (male percentage)	2/6 (25%)	4/5 (44%)	0.434
Duration of education (years)	13.0 ± 3.3	11.6 ± 3.6	0.405
Duration of illness (months)	101.5 ± 71.8	186.7 ± 63.8	0.021 *

Clinical psychiatric condition rating scales

Clinical Global Impression (CGI)	2.9 ± 0.4	3.7 ± 0.5	0.002 **
Quality of life scale (QLS)	63.3 ± 11.4	35.4 ± 14.0	<0.001 **
Hamilton Depression Rating scale	8.1 ± 5.2	12.7 ± 8.4	0.207

Medication amount

Chlorpromazine equivalents	212.5 ± 64.1	237.2 ± 91.0	0.532
Diazepam equivalents	12.5 ± 16.9	5.0 ± 6.1	0.232
Abnormal Involuntary Movement scale	4.1 ± 6.3	5.1 ± 4.5	0.712
Barnes Akathisia Rating scale	0.6 ± 1.2	2.1 ± 2.6	0.162
Simpson-Angus scale	5.8 ± 4.7	7.3 ± 3.5	0.440

All data were expressed as mean value ± standard deviation, except gender.

Low-PANSS (L-PANSS) group included schizophrenics with Positive and Negative Syndrome Scale (PANSS) total score below 65 (median of PANSS total scores of all 17 subjects); High-PANSS (H-PANSS) group included those with PANSS total scores 65 or higher.

*:P<0.05 and **:P<0.01, significance between groups.

Cognitive performances between groups were similar. (Table 2)

Table 2. Cognition tests measured in two groups of patients

Parameters	L-PANSS (n=8)	H-PANSS (n=9)	P value
Trail making task	1.6 ± 0.9	2.0 ± 1.0	0.435
Digit symbol coding	4.9 ± 2.0	4.6 ± 3.1	0.807
Verbal association of verbal fluency	0.6 ± 0.5	0.4 ± 0.5	0.488
Maze	3.8 ± 1.6	4.2 ± 4.6	0.787
Non-verbal working memory	7.6 ± 3.9	8.7 ± 3.9	0.590
Instant word list	4.5 ± 3.1	5.6 ± 3.1	0.491
Delay word list	5.6 ± 2.8	5.1 ± 3.0	0.719
Instant visual reproduction	4.9 ± 2.2	4.8 ± 2.3	0.931
Delay visual reproduction	6.4 ± 2.6	5.1 ± 2.2	0.291

Data were expressed as mean value ± standard deviation.

Low-PANSS (L-PANSS) group included schizophrenics with Positive and Negative Syndrome Scale (PANSS) total score below 65 (median of PANSS total scores of all 17 subjects); High-PANSS (H-PANSS) group comprised those with PANSS total scores 65 or higher. No significance appeared between groups.

Body weight and neck circumference (NC) in the H-PANSS group were higher than those in the L-PANSS group. Body height, BMI, waist circumference, hip circumference, WHR and body fat between groups were similar, as was physical fitness measured by sit-up and climbing (Table 3). Both systolic and diastolic blood pressures in the H-PANSS group were higher. Metabolic index, heart rate, fasting sugar, insulin,
Homa-IR, cortisol, cholesterol, triglyceride, high-density lipoprotein, and low-density lipoprotein between groups were similar (Table 3).

Table 3. Cardiometabolic parameters and physical fitness

Physical parameters	L-PANSS (n=8)	H-PANSS (n=9)	P value
Body weight (BW) (kg)	65.4 ± 9.6	78.3 ± 9.2	0.013*
Body height (BH) (cm)	144.9 ± 12.5	161.1 ± 15.3	0.031*
Body mass index (BMI) (kg/m2)	31.5 ± 5.5	30.5 ± 4.1	0.653
Neck circumference (NC) (cm)	35.0 ± 2.6	38.6 ± 2.1	0.007**
Waist circumference (cm)	91.5 ± 10.5	95.8 ± 9.2	0.386
Hip circumference (cm)	104.4 ± 9.1	106.8 ± 6.5	0.537
Waist-hip ratio (WHR)	0.89 ± 0.07	0.87 ± 0.05	0.652
Body fat (%)	33.8 ± 5.1	32.1 ± 6.7	0.564

Physical fitness

Physical fitness	L-PANSS	H-PANSS	P value
Sit-up (/min)	14.5 ± 12.7	14.2 ± 9.4	0.959
Stair-climbing PEHR 1 (/min)	52.9 ± 10.4	51.3 ± 8.7	0.960
PEHR 2 (/min)	48.4 ± 9.6	47.9 ± 8.5	0.913
PEHR 3 (/min)	47.0 ± 8.2	45.8 ± 8.3	0.765
Climbing time (s)	114.8 ± 57.4	133.3 ± 39.2	0.443

Cardiometabolic parameters

Cardiometabolic parameters	L-PANSS	H-PANSS	P value
Heart rate (minute)	83.3 ± 16.8	85.9 ± 6.9	0.671
Systolic blood pressure (mmHg)	107.8 ± 8.2	122.7 ± 6.3	<0.001**
Diastolic blood pressure (mmHg)	65.8 ± 7.1	77.8 ± 10.2	0.014*
Fasting sugar (mg/dL)	91.1 ± 9.6	100.7 ± 17.7	0.196
Insulin (uIU/mL)	9.6 ± 10.4	30.1 ± 54.06	0.322
Homa-IR	2.21 ± 1.01	8.48 ± 17.04	0.316
Cortisol (ug/dL)	13.4 ± 2.4	11.4 ± 4.9	0.309
Total cholesterol (mg/dL)	202.6 ± 35.0	215.1 ± 44.3	0.532
Triglyceride (mg/dL)	228.5 ± 164.3	144.6 ± 77.5	0.190
High-density lipoprotein (mg/dL)	43.9 ± 16.0	41.2 ± 7.2	0.661
Low-density lipoprotein (mg/dL)	115.0 ± 27.9	142.4 ± 37.4	0.111
Metabolic syndrome index	1.4 ± 1.1	1.8 ± 1.6	0.549

All data were expressed as mean value ± standard deviation.

Low-PANSS (L-PANSS) group included schizophrenics with Positive and Negative Syndrome Scale (PANSS) total score below 65 (median of PANSS total scores of all 17 subjects); High-PANSS (H-PANSS) group included those with PANSS total scores 65 or higher. NREM: non-rapid eye movement, REM: rapid eye movement, SpO2: saturation of peripheral oxygen, ALM: arousal and limb movement. NREM S3+S4 (SWS) in the H-PANSS group was lower. Intergroup NREM S1, S2 and REM sleep were similar (Table 4). Mean SpO2 in the H-PANSS group was lower. Apnea-hypopnea index, Arousal and Limb Movement, and leg movement between groups were similar (Table 4). *:P<0.05 and **:P<0.01, significance between groups.

Table 4. Sleep parameter measurement

Sleep parameter	L-PANSS (n=8)	H-PANSS (n=9)	P value
Sleep continuity			
Awakening time	7.0 ± 0.9	7.2 ± 0.4	0.673
Bed time	22.7 ± 1.8	20.9 ± 1.6	0.052
Sleep efficiency (%)	84.0 ± 12.0	63.0 ± 28.3	0.071
Sleep latency	30.9 ± 20.2	24.3 ± 19.4	0.505
Total sleep time	7.5 ± 0.7	8.4 ± 1.1	0.067
Sleep questionnaires			
Epworth Sleepiness Scale	9.0 ± 5.2	8.0 ± 4.0	0.663
Insomnia Severity Index	9.1 ± 3.7	8.3 ± 3.2	0.646
Pre-Sleep Arousal Scale	32.9 ± 16.6	26.4 ± 11.5	0.363
Pittsburgh Sleep Quality Index	13.8 ± 7.1	14.3 ± 7.5	0.872
Sleep architecture			
NREM S1 (%)	12.5 ± 14.6	29.3 ± 3.5	0.190
NREM S2 (%)	62.8 ± 19.0	47.0 ± 21.3	0.129
NREM S3+S4 (%)	8.0 ± 9.1	11.2 ± 2.9	0.047*
REM sleep (%)	16.6 ± 5.5	22.7 ± 16.6	0.337
Sleep obstruction parameters			
Apnea-hypopnea index	6.2 ± 8.8	8.8 ± 9.4	0.560
Mean SpO2 (%)	96.6 ± 1.5	95.0 ± 1.5	0.046*
ALM (events/hour)	88 ± 8.1	194 ± 19.0	0.164
Leg movement	53.1 ± 100.2	11.6 ± 34.7	0.295

All data were expressed as mean value ± standard deviation.

The mean scores of respective sleep questionnaires, including ESS, ISI, PAS, and PSQI, were similar between L-PANSS and H-PANSS groups (Table 4). Parameters of sleep continuity measured by PSG, including awakening time, bed time, sleep efficiency, sleep latency, and total sleep time between groups were all similar. Marginal difference between the two groups were noted in the ratio of stage 3 and 4 sleep (slow wave sleep) and oxygen saturation rates.
4. Discussion

To our knowledge, this is the first study to suggest that severe clinical symptoms are associated with metabolic and sleep disturbance in patients with schizophrenia. In more detail, this study demonstrates that schizophrenia patients with severe symptomatology may have more metabolic abnormalities including heavier body weight, wider neck circumference, and elevated systolic/diastolic blood pressure. We found no intergroup statistical significance in terms of blood sugar, insulin, cortisol, and lipid profiles. This is the first study to suggest that schizophrenic patients with more severe symptoms might have decreased oxygen saturation. It also demonstrated that patients with more severe symptoms had reduced SWS when their sleep efficiency and total sleep time were similar to the low PANSS group. Results concurred with prior studies: positive symptoms of schizophrenia increased REM sleep eye movement density, short REM latency, reduced sleep efficiency and prolonged sleep latency [26], [27], [28], [29]. Conversely, negative symptoms relate to short REM latency and SWS deficit [30], [31]. Cognitive symptoms to SWS deficit [28], [29]. Sarkar et al. [32] found significant difference in SWS parameters (including increased Stage 3 and decreased Stage 4 latency between patients and controls.

The strength of this study is control over two groups of patients similar in basic demographic data, cognitive function performance, and physical fitness. Limitations of the study included small sample size and cross-section design. In sum, this study suggests clinical symptoms as linked with heavier body weight, wider neck circumference, elevated blood pressure, and shorter SWS in schizophrenic patients. Further studies must confirm preliminary findings and elucidate the underlying mechanism.

Acknowledgments

This study is supported in part by Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH103-TD-B-111-004).

Open Access This article is distributed under terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided original author(s) and source are credited.

REFERENCES

[1] McEvoy JP, Meyer JM, Goft DC, Nasrallah HA, Davis SM, Sullivan L, et al. Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr Res. 2005; 80: 19-32.

[2] Green AI, Patel JK, Goisman RM, Allison DB, Blackburn G. Weight gain from novel antipsychotic drugs: need for action. Gen Hosp Psychiatry. 2000; 22: 224-35.

[3] Newcomer JW. Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS drugs 2005; 19 Suppl 1: 1-93.

[4] Palme T, DeGeorge PC, Ratliff JC, Srikant VH, Wexler BE, Krystal AD, et al. Insomnia is frequent in schizophrenia and associated with night eating and obesity. Schizophr Res. 2011; 133: 238-43.

[5] Ritsner M, Kurs R, Ponizovsky A, Hadjoe J. Perceived quality of life in schizophrenia: relationships to sleep quality. Qual Life Res 2004; 13: 783-91.

[6] Ritsner M, Modai I, Ponizovsky A. Assessing psychological distress in psychiatric patients: validation of the Talbith Brief Distress Inventory. Compr Psychiatry. 2002; 43: 229-34.

[7] Association AP. Diagnostic and Statistical Manual of Mental Disorders. 4 ed: American Psychiatric Association, Washington, DC.; 1994.

[8] Kay SR, Fiszbein A, Oppler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987; 13: 261-76.

[9] Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960; 23: 56-62.

[10] Heinrichs DW, Hanlon TE, Carpenter WT, Jr. The Quality of Life Scale: an instrument for rating the schizophrenic deficit syndrome. Schizophr Bull. 1984; 10: 388-98.

[11] Rockville M, Guy W. ECDEU Assessment Manual for Psychopharmacology: Revised (DH EW publication number ADM 76-338). US: Department of Health, Education and Welfare, Public Health Service, Alcohol, Drug Abuse and Mental Health Administration, NIMH Psychopharmacology Research Branch, Division of Extramural Research Programs; 1976.

[12] Simpson GM, Angus JW. A rating scale for extrapyramidal side effects. Acta Psychiatr Scand Suppl. 1970; 212: 11-19.

[13] Barnes TR. A rating scale for drug-induced akathisia. Br J Psychiatry. 1989; 154: 672-76.

[14] Woods SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry. 2003; 64: 663-67.

[15] Ashton H. The diagnosis and management of benzodiazepine dependence. Curr Opin Psychiatry. 2005; 18: 249-55.

[16] Kern RS, Nuechterlein KH, Green MF, Baade LE, Fenton WS, Gold JM, et al. The MATRICS Consensus Cognitive Battery, part 2: co-norming and standardization. Am J Psychiatry. 2008; 165: 214-20.

[17] Nuechterlein KH, Green MF, Kern RS, Baade LE, Barch DM, Cohen JD, et al. The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. Am J Psychiatry. 2008; 165: 203-13.

[18] Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-19.

[19] Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001; 285: 2486-97.

[20] Buyssse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989; 28: 193-213.

[21] CM. M. Insomnia: psychological assessment and management.: New York: Guilford Press; 1993.

[22] Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991; 14: 540-45.

[23] Nicassio PM, Mendlowitz DR, Fussell JJ, Petras L. The phenomenology of the pre-sleep state: the development of the pre-sleep arousal scale. Behav Res Ther. 1985; 23: 263-71.

[24] Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Washington, DC: Government Printing Office; NIH Publication; 1968.

[25] EEG arousals: scoring rules and examples: a preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep
[26] Zarcone VP, Benson KL. BPRS symptom factors and sleep variables in schizophrenia. Psychiatry Res. 1997; 66: 111-20.

[27] Poulin J, Daoust AM, Forest G, Stip E, Godbout R. Sleep architecture and its clinical correlates in first episode and neuroleptic-naive patients with schizophrenia. Schizophr Res. 2003; 62: 147-53.

[28] Monti JM, Monti D. Sleep in schizophrenia patients and the effects of antipsychotic drugs. Sleep Med Rev. 2004; 8: 133-48.

[29] Yang C, Winkelman JW. Clinical significance of sleep EEG abnormalities in chronic schizophrenia. Schizophr Res 2006; 82: 251-60.

[30] Tandon R, Shipley JE, Eiser AS, Greden JF. Association between abnormal REM sleep and negative symptoms in schizophrenia. Psychiatry Res. 1989; 27: 359-61.

[31] Keshavan MS, Miewald J, Haas G, Sweeney J, Ganguli R, Reynolds CF. Slow-wave sleep and symptomatology in schizophrenia and related psychotic disorders. J Psychiatr Res. 1995; 29: 303-14.

[32] Sarkar S, Katshu MZ, Nizamie SH, Praharaj SK. Slow wave sleep deficits as a trait marker in patients with schizophrenia. Schizophr Res. 2010; 124: 127-33.