The Hess–Appelrot System and Its Nonholonomic Analogs

I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev

Received April 25, 2016

Abstract—This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of the phase space) is discussed.

DOI: 10.1134/S0081543816060171

1. INTRODUCTION

The Suslov problem is one of the model problems in nonholonomic mechanics, which describes the motion of a rigid body with a fixed point for which the projection of the angular velocity onto the body-fixed axis is zero (left-invariant nonholonomic constraint).

In [4, 31, 49, 23, 50, 11], a qualitative analysis of the dynamics of the Suslov problem is performed. In particular, cases of the existence of an invariant measure and additional first integrals are presented and the topological type of integral manifolds is investigated. We note that in integrable cases the two-dimensional integral manifolds can be different from tori (which are described by the Euler–Jacobi theorem and occur, for example, in the Chaplygin problem of the rolling motion of a dynamically asymmetric ball [31]).

The Suslov problem is closely related to another nonholonomic system, a Chaplygin sleigh [14]. The latter can be obtained from the Suslov problem by contracting the group SO(3) to the group E(3) [33]. Thus, the Suslov problem is a compact version of the Chaplygin sleigh problem. Of interest is the dynamics of the Suslov–Chaplygin system on the group SO(2, 1), which can obviously have compact and noncompact trajectories.

The equations of motion in the Suslov problem with a nonzero gravitational field are nonholonomic analogs of the Euler–Poisson equations, which in the general case possess no smooth invariant measure but, depending on the system parameters, can admit both regular and chaotic behavior. Chaotic dynamics and reversal phenomena in the Suslov problem are examined in [4].

In this paper we consider the case in which the system is not integrable by quadratures by the Euler–Jacobi theorem, but its behavior is regular. In this case, the system admits \(n - 2 \) first integrals (\(n \) being the dimension of the phase space), which can be used to reduce the problem to the analysis of a flow on a two-dimensional manifold.

In Subsection 2.4, we show an isomorphism between the case of regular dynamics in the Suslov problem, which was found in [4], and the classical Hess system in the Euler–Poisson equations. In the Appendix we present the best-known facts about the Hess case and a critical analysis of the recent publications [39, 40, 2].

The analogy between the Suslov problem and the Hess case is closely related to the fact that the dynamics on an invariant manifold is “dissipative”; i.e., it can possess attracting sets (see [31]). We note that both problems reduce to solving the Riccati equation (for the Hess case, this result was...
obtained by P.A. Nekrasov [44], and for the Suslov problem, by V.V. Vagner [50]). The analysis of this equation in the Suslov problem without a gravitational field yielded the formula [22] for the scattering angle. It turned out that if there is an additional first integral, the rotation axis of the body reverses direction. In Subsection 2.2, we note that this result is natural and perform a more detailed analysis of the scattering problem. This analysis is closely related to the existence of smooth or analytic integrals [27].

We also discuss the problem of the existence of an invariant measure with singular density (i.e., a measure having singularities at some points of the phase space, see also [35, 6]). Such a measure can considerably influence the system dynamics, i.e., determine some singularities of the asymptotic dynamics and the related scattering problem. In Section 3 we discuss a combination of the Suslov problem and the Chaplygin ball rolling problem. We present a dynamical interpretation of this problem. In this case, the closed system of equations for angular velocities does not decouple, but nevertheless the system possesses an invariant measure with singular density. We formulate an open problem on the dynamics of this system.

In recent studies the classical Hess case is called the Hess–Appelrot system. In fact, G. Appelrot did not find this case due to errors in his calculations. The history of this issue is described in detail in the Appendix, which is concerned with the analysis of the Hess case.

A singular measure and invariant manifolds. We show that if the dynamical system

$$\dot{x} = v(x)$$

admits an invariant measure that is smooth almost everywhere, then the points at which the measure has singularities form invariant sets of the system (see [35, § 5]).

Proposition 1. Suppose that system (1.1) possesses a (smooth) invariant measure $\mu = \rho(x) \, dx_1 \ldots dx_n$ whose density can vanish. Then the submanifold

$$\mathcal{M}_0 = \{ x \mid \rho(x) = 0 \}$$

is an invariant submanifold of the system.

Proof. Write the Liouville equation for the density of the invariant measure in the form

$$\text{div} \, \rho \, v = \dot{\rho} + \rho \, \text{div} \, v = 0, \quad \dot{\rho} = \sum_i \frac{\partial \rho}{\partial x_i} \, v_i(x).$$

(1.2)

It can be seen that on the submanifold \mathcal{M}_0 the derivative $\dot{\rho}$ vanishes; hence, this submanifold is invariant. □

The following proposition is proved in a similar way.

Proposition 2. Suppose that the density of the invariant measure in system (1.1) can go to infinity in such a way that at these points the function $g(x) = 1/\rho(x)$ turns out to be smooth. Then the submanifold

$$\mathcal{M}_s = \{ x \mid g(x) = 0 \}$$

is also invariant.

Proof. Rewrite the Liouville equation (1.2) in terms of the function $g(x)$:

$$\dot{g} - g \, \text{div} \, v = 0.$$
2. THE SUSLOV PROBLEM WITH A NONZERO GRAVITATIONAL FIELD

2.1. Equations of motion. Consider the motion of a rigid body with a fixed point subject to the nonholonomic constraint

\[(\boldsymbol{\omega}, \boldsymbol{e}) = 0,\]

where \(\boldsymbol{\omega}\) is the angular velocity of the body and \(\boldsymbol{e}\) is the body-fixed unit vector. The constraint (2.1) was proposed by G.K. Suslov in [48, p. 593] (for the realization of this constraint, see [11]).

To parameterize the configuration space, we choose a matrix of the direction cosines \(\boldsymbol{Q} \in \text{SO}(3)\) whose columns are the unit vectors of a fixed coordinate system that are referred to a moving coordinate system \(Ox_1x_2x_3\) rigidly attached to the body:

\[
\boldsymbol{Q} = \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix} \in \text{SO}(3).
\]

The equations of motion in the moving coordinate system in the case of potential external forces have the form

\[
\begin{align*}
\dot{\boldsymbol{I}}\boldsymbol{\omega} &= \boldsymbol{I}\boldsymbol{\omega} \times \boldsymbol{\omega} + \lambda \boldsymbol{e} + \alpha \times \frac{\partial U}{\partial \alpha} + \beta \times \frac{\partial U}{\partial \beta} + \gamma \times \frac{\partial U}{\partial \gamma}, \\
\lambda &= -\frac{(\boldsymbol{I}^{-1}\boldsymbol{e}, \boldsymbol{I}\boldsymbol{\omega} \times \boldsymbol{\omega} + \alpha \times \frac{\partial U}{\partial \alpha} + \beta \times \frac{\partial U}{\partial \beta} + \gamma \times \frac{\partial U}{\partial \gamma})}{(\boldsymbol{I}^{-1}\boldsymbol{e}, \boldsymbol{e})}, \\
\dot{\alpha} &= \alpha \times \boldsymbol{\omega}, \quad \dot{\beta} = \beta \times \boldsymbol{\omega}, \quad \dot{\gamma} = \gamma \times \boldsymbol{\omega},
\end{align*}
\]

where \(\alpha = (\alpha_1, \alpha_2, \alpha_3)\), \(\beta = (\beta_1, \beta_2, \beta_3)\), \(\gamma = (\gamma_1, \gamma_2, \gamma_3)\), and \(U\) is the potential energy of the external forces.

Let us choose the moving body-fixed coordinate system \(Ox_1x_2x_3\) in such a way that \(Ox_3 \parallel \boldsymbol{e}\) and the axes \(Ox_1\) and \(Ox_2\) are directed so that one of the components of the inertia tensor of the body vanishes: \(I_{12} = 0\). In this case, the constraint equation (2.1) and the tensor of inertia \(\boldsymbol{I}\) of the rigid body can be represented as

\[
\omega_3 = 0, \quad \boldsymbol{I} = \begin{pmatrix} I_{11} & 0 & I_{13} \\ 0 & I_{22} & I_{23} \\ I_{13} & I_{23} & I_{33} \end{pmatrix}.
\]

We shall also assume that the body moves in a gravitational field, so that the potential energy is

\[U = (\boldsymbol{b}, \gamma), \quad \boldsymbol{b} = -m\mathbf{g}\mathbf{r},\]

where \(\mathbf{r}\) is the body-fixed radius vector of the center of mass, \(m\) is the mass of the body, and \(\mathbf{g}\) is the free-fall acceleration. In this case, in system (2.2) the equations governing the evolution of \(\boldsymbol{\omega}\) and \(\gamma\) decouple. Using the constraint (2.3), we can represent this system as

\[
\begin{align*}
I_{11}\dot{\omega}_1 &= -\omega_2(I_{13}\omega_1 + I_{23}\omega_2) + b_3\gamma_2 - b_2\gamma_3, \\
I_{22}\dot{\omega}_2 &= \omega_1(I_{13}\omega_1 + I_{23}\omega_2) + b_1\gamma_3 - b_3\gamma_1, \\
\dot{\gamma}_1 &= -\gamma_3\omega_2, \quad \dot{\gamma}_2 = \gamma_3\omega_1, \quad \dot{\gamma}_3 = \gamma_1\omega_2 - \gamma_2\omega_1.
\end{align*}
\]

System (2.4) possesses an energy integral and a geometrical integral:

\[
E = \frac{1}{2}(I_{11}\omega_1^2 + I_{22}\omega_2^2) + (\boldsymbol{b}, \gamma), \quad F_1 = \gamma^2 = 1.
\]
In the general case, for system (2.4) to be integrable by the Euler–Jacobi theorem, one needs an additional integral F_2 and a smooth invariant measure $[31, 7]$.

This system is a nonholonomic analog of the classical Euler–Poisson equations describing the dynamics of a rigid body with a fixed point in a gravitational field (see [13] and references therein). As is well known (see [13]), the Euler–Poisson equations possess an area integral, a standard invariant measure, and a Poisson structure (given by the algebra $e(3)$). In the general case, these objects are absent for system (2.4) but can exist under certain restrictions on the parameters. Other examples of nonholonomic systems exhibiting chaotic behavior are given in [10, 9].

A special feature of system (2.4) is that there can exist not only an invariant measure with everywhere smooth positive density, but also a singular measure whose density has singularities on some invariant manifolds of the system. For system (2.4) we first list cases where there exists an area integral and a regular or singular invariant measure. Note that in the space of system parameters these cases define, generally speaking, different regions that have a nonempty intersection.

1. The case where there is no external field, $b = 0$ (i.e., a balanced rigid body). This case is a generalization of the well-known Euler case in the Euler–Poisson equations. In this case, system (2.4) possesses a (singular) invariant measure

$$\mu = (I_{13}\omega_1 + I_{23}\omega_2)^{-1} d\omega_1 d\omega_2 d\gamma_1 d\gamma_2 d\gamma_3$$

(see [11]).

2. The case where the vector e defining the constraint (2.1) is directed along the principal axis of inertia of the body and system (2.4) admits a standard invariant measure

$$\mu = d\omega_1 d\omega_2 d\gamma_1 d\gamma_2 d\gamma_3$$

(see [31]).

3. The case where the constraint vector e is perpendicular to the circular section of the ellipsoid of inertia. In this case the area integral $F_2 = (\gamma, I\omega)$ exists and the parameters of system (2.4) satisfy the relations

$$I_{13} = 0, \quad I_{23}^2 - I_{22}(I_{11} - I_{22}) = 0, \quad b_1 = 0, \quad I_{22}b_2 + I_{23}b_3 = 0$$

(see [4]). We note that for $F_2 = 0$ the distribution given by this integral and by the constraint (2.3) is integrable and the system itself is holonomic. This fact was first established in [31].

In the general case (when there are no tensor invariants) the behavior of system (2.4) is typical of dissipative and nonholonomic systems; i.e., the system exhibits multistability and strange attractors [4]. Let us consider all the three cases in more detail.

2.2. Case $b = 0$. The equations governing the evolution of the angular velocities ω_1 and ω_2 decouple in system (2.4):

$$I_{11}\dot{\omega}_1 = -\omega_2(I_{13}\omega_1 + I_{23}\omega_2), \quad I_{22}\dot{\omega}_2 = \omega_1(I_{13}\omega_1 + I_{23}\omega_2).$$

They admit the energy integral

$$E = \frac{1}{2}(I_{11}\omega_1^2 + I_{22}\omega_2^2).$$

In this case, according to (2.4), on the plane $\mathbb{R}^2 = \{(\omega_1, \omega_2)\}$ we have the straight line

$$I_{13}\omega_1 + I_{23}\omega_2 = 0,$$
which is filled with fixed points. Thus, in subsystem (2.6) each fixed level set \(E = h \) with \(h \neq 0 \) of the energy integral consists of four trajectories: one stable fixed point, one unstable fixed point, and a pair of ellipse arcs joining them (see Fig. 1).

In this case, its general solution (different from the fixed points) is expressed explicitly in terms of exponential functions of time:

\[
\begin{align*}
\omega_1 &= \omega_0 \frac{I_{22} I_{23} \sqrt[I_{11}]{} - \sqrt[I_{11}]{} I_{23} (e^u - e^{-u})}{I_{22} I_{13}^2 + I_{11} I_{23}^2} e^u + e^{-u}, \\
\omega_2 &= \omega_0 \frac{I_{11} I_{22} \sqrt[I_{11}]{} + \sqrt[I_{11}]{} I_{23} (e^u - e^{-u})}{I_{22} I_{13}^2 + I_{11} I_{23}^2} e^u + e^{-u},
\end{align*}
\]

where \(\omega_0 \) is some constant that satisfies the relation

\[
\omega_0^2 = \frac{2(I_{22} I_{13}^2 + I_{11} I_{23}^2)}{I_{11}^2 I_{22}^2} h
\]
on the level set of the energy integral \(E = h \).

The fixed points of subsystem (2.6) in system (2.4) correspond to limit cycles (stable and unstable, respectively). Their projections onto the Poisson sphere lie in the planes perpendicular to the same vector

\[
\xi = \left(\frac{I_{23}}{\sqrt[I_{23}^2 + I_{23}^2} I_{13}}, -\frac{I_{13}}{\sqrt[I_{13}^2 + I_{13}^2} I_{23}}, 0 \right).
\]

So, on each level set of the energy integral \(E = h \) we have two families of periodic solutions: one of them, \(S_+ \), corresponds to a stable point of system (2.4), and the other, \(S_- \), corresponds to an unstable point. Each of the families is parameterized by

\[
\Gamma = (\xi, \gamma) \in (-1, 1).
\]

The values \(\Gamma = \pm 1 \) correspond to the fixed points of system (2.4), which on the level set of the energy integral \(E = h \) are given by

\[
\begin{align*}
\omega_1^{(\pm)} &= \pm \sqrt{\frac{2h}{I_{11} I_{23}^2 + I_{22} I_{13}^2}} I_{23}, \\
\omega_2^{(\pm)} &= \pm \sqrt{\frac{2h}{I_{11} I_{23}^2 + I_{22} I_{13}^2}} I_{13}, \\
\gamma^{(\pm)} &= \pm \xi.
\end{align*}
\]

All the other trajectories of system (2.4) are asymptotic (see Fig. 2): as \(t \to -\infty \) and \(t \to +\infty \), they tend to one of the periodic solutions of the families \(S_- \) and \(S_+ \), respectively (or to the fixed points \(\Gamma = \pm 1 \)).
In [11], cases were found where system (2.4) (with zero potential) admits another first integral, and the elements of the inertia tensor satisfy the relations

\[I_{13} = 0, \quad I_{11}I_{22} = I_{22}^2 + k^2I_{23}^2 \] \hspace{1cm} (2.8)

or

\[I_{23} = 0, \quad I_{11}I_{22} = I_{11}^2 + k^2I_{13}^2, \] \hspace{1cm} (2.9)

where \(k = 2n - 1, \ n \in \mathbb{N} \). Note that (2.9) is obtained from (2.8) by interchanging the subscripts 1 and 2. Therefore, we consider only the former case.

The additional integral turns out to be a homogeneous polynomial in \(\omega \) and \(\gamma \) of degree 1 in \(\gamma \) and of degree \(k \) in \(\omega \). In particular, for \(n = 1 \), the integral has the form

\[F_2 = (\gamma, I\omega) = I_{11}\gamma_1\omega_1 + (I_{22}\gamma_2 + I_{23}\gamma_3)\omega_2, \]

and for \(n = 2 \), the form

\[F_2 = I_{11}^2\omega_1^2((I_{22}^2 + I_{23}^2)\gamma_1\omega_1 + I_{22}(I_{22}\gamma_2 + I_{23}\gamma_3)\omega_2) \]

\[+ I_{22}\omega_2^2(I_{22}(I_{22}^2 + 5I_{23}^2)\gamma_2\omega_2 + (I_{22}^2 - 3I_{23}^2)(I_{11}\gamma_1\omega_1 + I_{23}\gamma_3\omega_2)). \]

For arbitrary \(k \), a recurrent formula for the integral is presented in [11] (see also [22]).

Suppose that in this case the corresponding two-dimensional integral submanifold of the system is

\[\mathcal{M}_{h,f}^2 = \{(\omega, \gamma) \mid E = h, \ F_1 = 1, \ F_2 = f \}. \]

If we assume that the value of \(f \) is not equal to the values of the integral \(F_2 \) at the fixed points (2.7),

\[F_2(\omega^{(+)}, \gamma^{(+)}) = f^+, \quad F_2(\omega^{(-)}, \gamma^{(-)}) = f^-, \]

then the restriction of the vector field of the system to \(\mathcal{M}_{h,f}^2 \) vanishes nowhere. Consequently, when \(f \neq f^+ \) and \(f \neq f^- \), the submanifold \(\mathcal{M}_{h,f}^2 \) (in the general case, each connected component of \(\mathcal{M}_{h,f}^2 \)) is diffeomorphic to the two-dimensional torus.
On each torus $M_{h,f}^2$, in turn, there are two limit cycles
\[C_{h,f}^+ = \{ (\omega, \gamma) | \omega = \omega^+, \gamma^2 = 1, F_2(\omega^+, \gamma) = f \}, \]
\[C_{h,f}^- = \{ (\omega, \gamma) | \omega = \omega^-, \gamma^2 = 1, F_2(\omega^-, \gamma) = f \}, \]
where ω^+ and ω^- are given by (2.7). As $t \to -\infty$, all other trajectories tend to the unstable cycle $C_{h,f}^-$, while as $t \to +\infty$, they tend to the stable cycle $C_{h,f}^+$.

Let us take some unstable cycle C_\ast^- in the family S_- and consider a set of trajectories \mathcal{M}_\ast^- that tend to it as $t \to -\infty$. In the case where the system has an additional integral $F_2(\omega, \gamma)$, this set \mathcal{M}_\ast^- possesses the following natural property.

Proposition 3. If $\partial F_2/\partial \gamma \neq 0$, then, as $t \to +\infty$, all trajectories from \mathcal{M}_\ast^- tend to the same stable cycle C_\ast^+.

then, as $t \to +\infty$, we have $\omega \to \omega^{(+)}$; hence, all trajectories tend to the curve

$$C^+_s = \{ (\omega, \gamma) \mid \omega = \omega^{(+)}, \gamma^2 = 1, F_2(\omega^{(+)}, \gamma) = f_s \}. \quad \square$$

As numerical experiments show (see Fig. 3), when conditions (2.8) are not satisfied, different trajectories from the set $M_{s}^{(-)}$ tend to different limit cycles as $t \to +\infty$; hence, when $U = 0$, system (2.4) generally possesses no additional (analytical) integral.

If we start a family of trajectories with different initial azimuth angles (phases) φ_0 in a neighborhood of the same unstable cycle specified on the Poisson sphere by the angle $\theta^-=\arccos \Gamma^{(-)}$, then, as $t \to +\infty$, we obtain a dependence of the angles $\theta^+(\varphi_0) = \arccos \Gamma^{(+)}$ for those limit cycles to which the corresponding trajectories tend (see Fig. 4).

2.3. Case $I_{13} = I_{23} = 0$.

We now consider the case in which the vector e is directed along the principal axis of the inertia tensor, i.e., $I_{13} = I_{23} = 0$:

$$I_{11} \dot{\omega}_1 = b_3 \gamma_2 - b_2 \gamma_3, \quad I_{22} \dot{\omega}_2 = b_1 \gamma_3 - b_3 \gamma_1,$$

$$\dot{\gamma}_1 = -\gamma_3 \omega_2, \quad \dot{\gamma}_2 = \gamma_3 \omega_1, \quad \dot{\gamma}_3 = \gamma_1 \omega_2 - \gamma_2 \omega_1.$$ \hfill (2.10)

As stated above, in this case system (2.4) possesses a standard invariant measure.

Nevertheless, in the general case the system is Hamiltonian only after rescaling time.

Theorem 1. System (2.4) can be represented in the conformally Hamiltonian form

$$\dot{x}_i = \gamma_3 \{x_i, E(x)\}, \quad E(x) = \frac{1}{2} (I_{11} \omega_1^2 + I_{22} \omega_2^2) + b_1 \gamma_1 + b_2 \gamma_2 + b_3 \gamma_3,$$

where $x = (\omega_1, \omega_2, \gamma_1, \gamma_2, \gamma_3)$ and the nonzero Poisson brackets have the form

$$\{\omega_1, \gamma_2\} = -\frac{1}{I_{11}}, \quad \{\omega_2, \gamma_1\} = \frac{1}{I_{22}}, \quad \{\omega_1, \gamma_3\} = \frac{1}{I_{11}} \gamma_2, \quad \{\omega_2, \gamma_3\} = -\frac{1}{I_{22}} \gamma_1.$$ \hfill (2.11)

The rank of the Poisson structure (2.11) is equal to 4, and the geometrical integral

$$F_1 = \gamma_1^2 + \gamma_2^2 + \gamma_3^2.$$
is a Casimir function of this structure. In addition, this conformally Hamiltonian representation is seen to have a singularity when $\gamma_3 = 0$.

For system (2.10) one can point out two more particular cases. One of them can be trivially integrated (it was found by E.I. Kharlamova-Zabelina [26]), and the other generally admits chaotic behavior (see [31]):

- $b_3 = 0$, i.e., the radius vector of the center of mass lies in the plane orthogonal to the constraint vector e;
- $b_1 = b_2 = 0$, i.e., the radius vector of the center of mass is collinear with the constraint vector.

Let us consider them successively.

\textbf{Case $b_3 = 0$.} In this case, equations (2.10) turn out to be invariant under the transformation

$$\gamma_3 \rightarrow -\gamma_3, \quad t \rightarrow -t.$$

This yields the following natural result.

\textbf{Proposition 4.} Let $x(t) = (\omega_1(t), \omega_2(t), \gamma_1(t), \gamma_2(t), \gamma_3(t))$ be a solution of system (2.10) for $b_3 = 0$. Then $\bar{x}(t) = (\omega_1(-t), \omega_2(-t), \gamma_1(-t), \gamma_2(-t), \gamma_3(-t))$ is also a solution of this system.

This observation allows us to divide all trajectories of the system into three types:

- trajectories that never reach the equator ($\gamma_3 = 0$) on the Poisson sphere (each of them corresponds to the mirror image trajectory $\gamma_3 \rightarrow -\gamma_3$, which is passed in the opposite direction);
- trajectories that transversally cross the equator ($\gamma_3 = 0$) and that are periodic by virtue of the proposition;
- fixed points lying on the equator ($\gamma_3 = 0$).

It follows that to analyze the behavior of the system trajectories, it suffices to consider only one half of the Poisson sphere. For definiteness, we choose $\gamma_3 > 0$, make a change of variables, and rescale time:

$$q_1 = \sqrt{I_{11}}\gamma_2, \quad q_2 = -\sqrt{I_{22}}\gamma_1, \quad p_1 = \sqrt{I_{11}}\omega_1, \quad p_2 = \sqrt{I_{22}}\omega_2, \quad \gamma_3 \, dt = d\tau.$$

As a result, we obtain an integrable canonical Hamiltonian system with two degrees of freedom (for more details on the Hamiltonization of nonholonomic systems, see [7]):

$$\frac{dq_i}{d\tau} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{d\tau} = -\frac{\partial H}{\partial q_i}, \quad i = 1, 2,$$

$$H = \frac{1}{2}(p_1^2 + p_2^2) - \frac{b_2}{\sqrt{I_{11}}}q_1 + \frac{b_1}{\sqrt{I_{22}}}q_2,$$

which is defined inside the domain

$$\frac{q_1^2}{I_{11}} + \frac{q_2^2}{I_{22}} \leq 1.$$

System (2.12) describes the motion of a material point on the plane under the action of a potential force. The trajectories of the point are straight lines. Since the trajectory reaching the boundaries of (2.13) is a half of the periodic trajectory (whose second half is symmetrically reflected to the hemisphere $\gamma_3 < 0$), we find that in this case all trajectories (except for fixed points) are periodic. The case of a quadratic potential is examined in [31].

\textbf{Remark 1.} This construction can obviously be generalized to the case of an arbitrary potential field whose potential U depends only on γ_1 and γ_2, in which case we obtain a natural Hamiltonian system in the domain (2.12) with the Hamiltonian

$$H = \frac{1}{2}(p_1^2 + p_2^2) + V(q_1, q_2), \quad V(q_1, q_2) = U\left(-\frac{q_2}{\sqrt{I_{22}}}, \frac{q_1}{\sqrt{I_{11}}}\right).$$

\textbf{PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 294 2016}
In particular, this implies that the integrable potentials on the plane have their own integrable analogs in the Suslov problem. The quadratic integrals \([45, 49]\), as well as integrals of higher degrees on the plane \([24]\), can be carried over to the Suslov problem. However, when carried over to the Suslov problem, these cases must be topologically modified (in view of the passage through the equator).

Case \(b_1 = b_2 = 0\). System \((2.10)\) also reduces to the problem of the motion of a material point in a potential force field \([31]\). Indeed, we first fix the energy \(E = h\) and express \(\gamma_3\) as follows:

\[
\gamma_3 = \frac{h}{2b_3} - \frac{I_{11}\omega_1^2 + I_{22}\omega_2^2}{2b_3}.
\]

Now, using this equation, we eliminate \(\gamma_3\) in \((2.10)\) and make a change of variables (time rescaling is not required)

\[
p_1 = \gamma_1, \quad p_2 = \gamma_2, \quad q_1 = \frac{I_{22}}{b_3}\omega_2, \quad q_2 = -\frac{I_{11}}{b_3}\omega_1.
\]

As a result, we obtain a natural system with two degrees of freedom with the canonical Poisson bracket \((\{p_i, q_k\} = \delta_{ik})\) and the Hamiltonian

\[
H = \frac{1}{2}(p_1^2 + p_2^2) + \frac{1}{2}\left(\frac{h}{b_3} - \frac{1}{2}\left(\frac{q_1^2}{I_{22}} + \frac{q_2^2}{I_{11}}\right)\right)^2.
\]

System \((2.15)\) turns out to be integrable \([31, 41]\) only in the case

\[
I_{11} = I_{22}.
\]

2.4. The existence of an area integral and isomorphism with the classical Hess case. In Subsection 2.1, it was shown that when \(U = 0\), system \((2.2)\) admits a countable family of cases where there exists an additional first integral. It turns out that the simplest of these cases (when \(k = 1\)) admits a natural generalization in the presence of a gravitational field. This case is isomorphic to the classical Hess case, which is treated in the Appendix. We recall the geometric meaning of the corresponding restrictions on the parameters, assuming that all principal moments of inertia are different:

- make a transformation from the angular velocities to the angular momenta:
 \[
 M = I\omega;
 \]

- in the three-dimensional space of angular momenta, consider the level surface of the kinetic energy, the *gyration ellipsoid*
 \[
 (M, I^{-1}M) = \text{const};
 \]

- draw a pair of circular sections passing through the middle axis of the gyration ellipsoid. In the Hess case the center of mass lies on the perpendicular to the circular section of the gyration ellipsoid (see Fig. 5).

Now let us rewrite the constraint equation \((2.1)\) as

\[
(I\omega, a) = 0, \quad a = I^{-1}e.
\]

It can be shown that if \(Ox_1\) is the middle axis of inertia, then the condition for the vector \(n\) to be perpendicular to the circular section of the corresponding gyration ellipsoid coincides exactly with the conditions for the existence of an integral with \(U = 0\) and \(k = 1\):

\[
I_{13} = 0, \quad I_{11}I_{22} = I_{22}^2 + I_{23}^2.
\]

\(2.16)\)
Fig. 5. Gyration ellipsoid and the location of the center of mass for the Hess case.

In addition, we now assume that the center of mass of the body is also located on the normal to the same circular section in the chosen coordinate system. This is equivalent to the conditions

\[b_1 = 0, \quad I_{22}b_2 + I_{23}b_3 = 0. \tag{2.17} \]

We find that in this case system (2.2) also admits the integral

\[F = (I\omega, \gamma). \]

Now we introduce the dimensionless parameters

\[a = \frac{I_{23}}{I_{22}}, \quad b = -\frac{mgb_3}{\sqrt{I_{22}^2 + I_{23}^2}} \]

and define the new variables \(x = (w_1, w_2, n_1, n_2, n_3) \):

\[w_1 = \omega_1, \quad w_2 = \frac{\omega_1}{\sqrt{1 + a^2}}, \quad n_1 = \gamma_1, \quad n_2 = \frac{\gamma_2 + a\gamma_3}{\sqrt{1 + a^2}}, \quad n_3 = \frac{a\gamma_2 - \gamma_3}{\sqrt{1 + a^2}}. \tag{2.18} \]

The transformation (2.18) is a rotation of the coordinate system \(Ox_1x_2x_3 \) about the axis \(Ox_1 \) through the angle \(\arctan a \). As a result, the coordinates of the center of mass take the form

\[\left(b_1, \frac{I_{22}b_2 + I_{23}b_3}{\sqrt{I_{22}^2 + I_{23}^2}}, \frac{I_{22}b_3 - I_{23}b_2}{\sqrt{I_{22}^2 + I_{23}^2}} \right). \]

Thus, in the new coordinate system, in view of (2.17), the center of mass has been displaced only along the third axis.

The equations of motion (2.4) in terms of the new variables become

\[
\begin{align*}
\dot{w}_1 &= -aw_2^2 - bn_2, \\
\dot{w}_2 &= aw_1w_2 + bn_1, \\
\dot{n}_1 &= -(an_2 + n_3)w_2, \\
\dot{n}_2 &= aw_2n_1 + w_1n_3, \\
\dot{n}_3 &= n_1w_2 - n_2w_1.
\end{align*}
\tag{2.19}
\]

Remark 2. System (2.19) is isomorphic up to a change of parameters to the Euler–Poisson equations on the invariant Hess relation (see the Appendix).

Remark 3. In the case \(b = 0 \) system (2.19) possesses the particular solution

\[
\begin{align*}
w_1 &= \text{const}, \quad w_2 = 0, \\
n_1 &= \cos \theta_0, \quad n_2 = \sin(w_1t + \varphi_0) \sin \theta_0, \\
n_3 &= \cos(w_1t + \varphi_0) \sin \theta_0, \quad \theta_0 = \text{const}, \quad \varphi_0 = \text{const}.
\end{align*}
\]
The first integrals of system (2.19) can be represented as

\[E = \frac{1}{2}(w_1^2 + w_2^2) - bn_3, \quad F_2 = w_1n_1 + w_2n_2, \quad F_1 = n_1^2 + n_2^2 + n_3^2 = 1. \]

(2.20)

Remark 4. We note that equations (2.20) are also integrals of the vector field \(u \) (related to a rotation about the symmetry axis):

\[u = -w_2 \frac{\partial}{\partial w_1} + w_1 \frac{\partial}{\partial w_2} - n_2 \frac{\partial}{\partial n_1} + n_1 \frac{\partial}{\partial n_2} \]

(see [15]). Nevertheless, \(u \) is not a symmetry field of system (2.19). Indeed, if we denote the vector field of system (2.19) by \(v \), we obtain

\[[u, v] = aw_1u. \]

Let us examine in more detail the dynamics on the two-dimensional integral manifolds

\[\mathcal{M}_{h,f}^2 = \{ x \mid E(x) = h, F_1(x) = 1, F_2(x) = f \}. \]

To do this, we parameterize them using the coordinates \((n_3, \varphi)\), where \(\varphi \) is the angle variable:

\[w_1 = \sqrt{2(h + bn_3)} \sin \varphi, \quad w_2 = \sqrt{2(h + bn_3)} \cos \varphi. \]

Without loss of generality we set \(b = 1 \). Further, using (2.19), we obtain the equations of motion in the form

\[\dot{n}_3^2 = 2(h + n_3)(1 - n_3^2) - f^2, \quad \dot{\varphi} = -\frac{f}{2(h + n_3)} - a \cos \varphi \sqrt{2(h + n_3)}. \]

(2.21)

As can be seen, the gyroscopic function (defined by the equation for \(n_3 \)) coincides with the gyroscopic function for a spherical pendulum. Thus, we arrive at the well-known result for the Hess case.

Proposition 5. The integrals of system (2.19) become dependent if their values lie

1. on the curve given by the equations

\[h = \frac{(1 - 3n_3^2)}{2n_3}, \quad f = \pm \frac{1 - n_3^2}{\sqrt{n_3}}, \quad n_3 \in (0, 1); \]

(2.22)

2. at the points

\[f = 0, \quad h = 1 \quad \text{and} \quad f = 0, \quad h = -1. \]

(2.23)

The resulting bifurcation diagram is presented in Fig. 6. It can be shown that for values of the first integrals \(h \) and \(f \) that do not satisfy (2.22) and (2.23), the level surface of the first integrals of system (2.19) is diffeomorphic to the two-dimensional torus \(T^2 \) whose vector field is described by system (2.21). This system exhibits limit cycles, which is in good agreement with the results of [30, 52].

Remark 5. On the zero level set of the area integral \(f = 0 \), at the points (2.23) system (2.21) has singularities. Hence, this case requires separate consideration.

In system (2.21) we have \(n_3 \in \left(n_3^{(1)}, n_3^{(2)} \right) \), where \(n_3^{(1)} \) and \(n_3^{(2)} \) are solutions of the cubic equation

\[2(h + n_3)(1 - n_3^2) - f^2 = 0. \]

In order to examine the vector field of (2.21), on the torus \(T^2 \) we consider a Poincaré section formed by the intersection with the plane \(n_3 = n_3^{(1)} \), which defines a map of the circle to itself:

\[\Theta(\varphi): S^1 \rightarrow S^1. \]
3. A CHAPLYGIN BALL WITH SUSLOV’S CONSTRAINT

The paper [11] is concerned with a system that is equivalent to the problem of the motion of a Chaplygin ball with the additional Suslov constraint (2.1). Moreover, this paper proposes an implementation of this system that allows one to construct another possible nonholonomic generalization of the Euler–Poisson equations (see Fig. 8).

In this case, as in Vagner’s implementation [50], it is assumed that the rigid body B is equipped with wheels (on one axis) and enclosed in a fixed spherical shell. The condition that there be no slipping in the direction perpendicular to the plane of the wheels leads to the Suslov constraint

$$(\omega, e) = 0,$$

where ω is the angular velocity of the body and e is the body-fixed vector lying in the plane of the wheels perpendicularly to the axle supporting the wheels. Below we make use of a body-fixed
coordinate system in which
\[e = (0, 0, 1). \]

In addition, the body has a spherical cavity of radius \(R \) whose center \(O \) lies on the straight line joining the wheels. At the point \(P \) the cavity is in contact with a freely rotating homogeneous ball \(S \) whose center is fixed. At the contact point \(P \), the no-slip condition (mutual spinning is not prohibited) is satisfied:
\[R \omega \times \gamma = R_S \omega_S \times \gamma, \]
where \(\omega_S \) is the angular velocity of the ball and \(\gamma \) is the unit vector directed along the axis joining the centers of the cavity and the ball.

If in this implementation we choose the fixed ball \(S \) inside the cavity in such a way that the vector joining its center with the center of the body’s cavity is vertical (see Fig. 8), then the equations of motion of the body \(B \) in the body-fixed coordinate system take the form
\[
\hat{I} \begin{pmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \end{pmatrix} = \begin{pmatrix} -(I_{13}\omega_1 + I_{23}\omega_2)\omega_2 + b_3\gamma_2 - b_2\gamma_3 \\ (I_{13}\omega_1 + I_{23}\omega_2)\omega_1 + b_1\gamma_3 - b_3\gamma_1 \end{pmatrix}, \quad \omega_3 = 0,
\]
\[
\begin{pmatrix} \dot{\gamma}_1 \\ \dot{\gamma}_2 \\ \dot{\gamma}_3 \end{pmatrix} = \begin{pmatrix} -\gamma_3\omega_2, & \gamma_3\omega_1, & \gamma_1\omega_2 - \gamma_2\omega_1 \end{pmatrix},
\]
where \(I_S \) is the moment of inertia of the ball \(S \), \(I_{ij} \) are the components of the body’s tensor of inertia relative to the point \(O \), and the axes of the coordinate system have been chosen in such a way that \(I_{12} = 0 \).

Equations (3.1) possess obvious integrals of motion: an energy integral and a geometrical integral
\[E = \frac{1}{2} \hat{I} \hat{\omega}, \hat{\omega} + (b, \gamma), \quad F_1 = (\gamma, \gamma) = 1, \]

where \(\hat{\omega} = (\omega_1, \omega_2) \). As for the previous system (2.4), for integrability of system (3.1) by the Euler–Jacobi theorem, we need an additional integral and a smooth invariant measure.

Case \(b = 0 \). This simplest case of the system (absence of an external field) was considered in [11], where the existence of a singular invariant measure of the form
\[\mu = (I_{13}\omega_1 + I_{23}\omega_2)^{-1} d\omega_1 d\omega_2 d\gamma_1 d\gamma_2 d\gamma_3 \]
was not noticed. In this case, the energy integral (3.2) can be written as

\[E = \frac{1}{2} \left((I_{11} + D)\omega_1^2 + (I_{22} + D)\omega_2^2 \right) - \frac{1}{2} D(\omega, \gamma)^2. \]

In the general case, the common level set of the first integrals (3.2)

\[M^3_l = \{ \hat{\omega}, \gamma \mid E = h, \gamma^2 = 1 \} \]

is a three-dimensional manifold that is projected onto the plane of angular velocities \((\omega_1, \omega_2)\) into the strip bounded by two ellipses (see Fig. 9):

\[\sigma_1: \ 2h = I_{11}\omega_1^2 + I_{22}\omega_2^2, \quad \sigma_2: \ 2h = (I_{11} + mR^2)\omega_1^2 + (I_{22} + mR^2)\omega_2^2. \]

As shown in Subsection 2.2, the equation

\[I_{13}\omega_1 + I_{23}\omega_2 = 0 \]

defines an invariant submanifold \(\tilde{N} \) in the phase space of system (3.1). Since \(\tilde{I} \) is positive definite, the angular velocities \(\omega_1 \) and \(\omega_2 \) on it remain constant. As can be seen from Fig. 9, the submanifold \(\tilde{N} \) is not connected and consists of two connected components (each of which is diffeomorphic to \(S^2 \)):

\[\tilde{N} = \tilde{N}^s \cup \tilde{N}^u, \]

one of which, \(\tilde{N}^s \), is asymptotically stable and the other, \(\tilde{N}^u \), is asymptotically unstable. As shown in [11], the following result holds.

Proposition 6. Each trajectory of system (3.1) tends to \(\tilde{N}^s \) as \(t \to +\infty \) and tends to \(\tilde{N}^u \) as \(t \to -\infty \).

A typical view of the projections of the system trajectories onto the plane \((\omega_1, \omega_2)\) is shown in Fig. 10.

The invariant manifolds \(\tilde{N}^u \) and \(\tilde{N}^s \) are filled with periodic trajectories for which the vector \(\omega \) is constant and the vector \(\gamma \) traces out circles on the sphere about the axis given by the vector

\[\xi = \left(\frac{I_{23}}{\sqrt{I_{13}^2 + I_{23}^2}}, -\frac{I_{13}}{\sqrt{I_{13}^2 + I_{23}^2}}, 0 \right). \]

Thus, for each trajectory of the system \(\sigma(t) = (\omega(t), \gamma(t)) \), we have the limits \(\cos \theta_+ = \lim_{t \to +\infty} (\gamma(t), \xi) \) and \(\cos \theta_- = \lim_{t \to -\infty} (\gamma(t), \xi) \), where \(\theta_+ \) and \(\theta_- \) are some constants.

Case \(I_{13} = I_{23} = 0 \). In this case system (2.3) admits the standard invariant measure

\[\mu = d\omega_1 d\omega_2 d\gamma_1 d\gamma_2 d\gamma_3. \]

The question of the possibility of a Hamiltonian representation and integrable cases remains open.
THE HESS–APPELROT SYSTEM

\[\sigma_1 \quad \sigma_2 \quad \omega_1 \quad \omega_2 \]

\[I_{13} \omega_1 + I_{23} \omega_2 = 0 \]

Fig. 10. A typical view of projections of the trajectories onto the plane \((\omega_1, \omega_2)\) for \(I_{11} = 1, I_{22} = 1.5, I_{13} = 0.7, I_{23} = 1.2, m = 10, R = 1, \) and \(h = 10.\)

APPENDIX. THE HESS CASE IN THE EULER–POISSON EQUATIONS

This appendix is a shortened and revised version of a section of the book [13]. However, this book is available only in Russian and its results are unfortunately little known, although they would be useful to foreign researchers.

The Euler–Poisson equations describing the motion of a heavy rigid body with a fixed point have the following Hamiltonian form:

\[\dot{\mathbf{M}} = \mathbf{M} \times \frac{\partial H}{\partial \mathbf{M}} + \gamma \times \frac{\partial H}{\partial \gamma}, \quad \dot{\gamma} = \gamma \times \frac{\partial H}{\partial \mathbf{M}}, \]

(A.1)

Here the Hamiltonian \(H\) is represented as

\[H = \frac{1}{2} (\mathbf{M}, \mathbf{AM}) - \mu (\mathbf{r}, \gamma), \]

(A.2)

where \(\mathbf{M}\) is the angular momentum vector in the coordinate system attached to the body, \(\gamma\) is the unit vector of the vertical in the same system, \(\mathbf{A} = \text{diag} (a_1, a_2, a_3)\) is the inverse tensor of inertia, and \(\mathbf{r}\) is the radius vector of the center of mass of the body in the moving coordinate system.

Equations (A.1) admit, in addition to the energy integral \(H\), an area integral and a geometrical integral of the form

\[F_1 = (\mathbf{M}, \gamma), \quad F_2 = \gamma^2 = 1. \]

For system (A.1) to be integrable in the sense of Liouville, we need another additional integral. There are only a few known particular cases of integrability of equations (A.1) in which this integral exists. All of them are realized under additional restrictions on the system parameters and on the initial conditions. These are the cases of Euler, Lagrange, Kovalevskaya, and Goryachev–Chaplygin (see, e.g., [13]). In the general case, equations (A.1) turn out to be nonintegrable.

In the Hess case the number of free parameters is the same (one parameter from the constants of the integrals disappears, but an additional system parameter appears) as in the cases mentioned above, and a family of particular solutions is given by the invariant relation

\[r_1 M_1 + r_2 M_3 = 0; \]

(A.3)

i.e., one has an isolated invariant manifold in the phase space.

The restrictions on the parameters in the Hess case have the form

\[r_1 \sqrt{a_3 - a_2} \pm r_3 \sqrt{a_2 - a_1} = 0, \quad r_2 = 0, \]

(A.4)

and their physical meaning is the same as described above in the Suslov problem (see Subsection 2.4).
Fig. 11. Phase portrait (section formed by the intersection with the plane \(g = \pi/2\)) in Andoyer–Deprit variables \((L/G, l)\) for the Hess case under the conditions \(I = \text{diag}(1, 0.625, 0.375), r = (3, 0, 4),\) and \(\mu = 1.995\) with constant integrals \(h = 50\) and \(f = 5\). Two stochastic layers divided by the double Hess separatrix are well visible: points from one layer do not penetrate into the other. In (b) a meandering torus arising under these conditions can also be seen (see Fig. 12).

Fig. 12. Meandering tori arising on the phase portrait in Andoyer–Deprit variables \((L/G, l)\) in the Hess case (the parameters are presented in Fig. 11).

Generally speaking, the dynamics on this invariant Hess manifold differs from the usual quasi-periodic motion, which arises when the conditions of the Liouville–Arnold theorem are satisfied. The Hess case cannot in general be integrated by quadratures on (A.3) but nevertheless can be analyzed qualitatively.

Remark A.1. In this appendix, we construct phase portraits by using the Andoyer–Deprit variables (see [13] for details).

For certain values of the energy and area integrals, the Hess relation can define a pair of double separatrices on the phase portrait (see Fig. 11) that separate two chaotic zones (which show that there exists no general integral under the Hess conditions). It is interesting to note that in the phase space a meandering torus arises for the Hess case (see Fig. 12). Such an effect is due to the loss of twisting and is encountered in Hill’s celestial mechanics problem [46, 47] and in the planar restricted three-body problem [21].

Proposition A.1. The Hess case in the Suslov problem (considered in Subsection 2.4) is equivalent to the Hess case in the Euler–Poisson equations.

Proof. We make a change of variables that reduces the Euler–Poisson equations in the Hess case to (2.19). To do this, we explicitly write the Hamiltonian in the coordinate system for which one of the axes, \(Ox_3\), coincides with the axis perpendicular to the circular section of the gyration ellipsoid:

\[
H = \frac{1}{2} \left(a_1^2 M_1^2 + M_2^2 \right) + a_3^2 M_3^2 + 2b' M_3 M_1 - \mu \gamma_3, \quad \mu = \text{const}.
\]

(A.5)

Such a coordinate system is no longer principal. The matrix of passage to new coordinates (from the system of principal axes) can be expressed in terms of the components of the matrix \(A\) by the
where \(z \) which for the angle of proper rotation \(\phi \) cannot be obtained in terms of standard quadratures. Following Nekrasov [44], one usually reduces his definition to the solution of a Riccati-type equation (or to a linear equation with doubly periodic coefficients).

Indeed, for the complex variable \(z = M_1 + iM_2 \) it is easy to obtain

\[
e^{-i\varphi} = \frac{\hat{\gamma}_3 + i\frac{f}{\sqrt{1 - \gamma_3^2}}}{K^2}z, \quad K^2 = M_1^2 + M_2^2 = 2(h - \mu \gamma_3),
\]

which for \(z \) leads to the nonlinear first-order equation

\[
\dot{z} + \frac{ia_{13}}{2}z^2 + \mu \frac{\hat{\gamma}_3 + i\frac{f}{\sqrt{1 - \gamma_3^2}}}{K^2}z + \frac{1}{2}ia_{13}K = 0.
\]

After the change of variables

\[w_1 = a'_1 M_2, \quad w_2 = a'_1 M_1, \quad n_1 = -a'_1 \gamma_2, \quad n_2 = -a'_1 \gamma_1, \quad n_3 = a'_1 \gamma_3 \]

and the change of parameters

\[\mu = b, \quad \frac{b'}{a'_1} = a, \]

system (A.8) is isomorphic to system (2.19).

To describe the motion of the rigid body in the fixed coordinate system, we introduce variables \((\gamma_3, \varphi) \),

\[
\gamma_1 = \sqrt{1 - \gamma_3^2} \sin \varphi, \quad \gamma_2 = \sqrt{1 - \gamma_3^2} \cos \varphi,
\]

for which the equations of motion take the form

\[
\dot{\gamma}_3 = \pm \sqrt{2(1 - \gamma_3^2)(h - U_*)}, \quad \dot{\varphi} = \frac{f(\gamma_3 - b\sqrt{1 - \gamma_3^2} \sin \varphi)}{1 - \gamma_3^2} \pm b \cos \varphi \sqrt{2(h - U_*)},
\]

where

\[
U_* = \frac{f^2}{2(1 - \gamma_3^2)} - \mu \gamma_3, \quad H = h, \quad F_1 = f.
\]

The equation for the precession angle \(\psi \) can be represented as

\[
\dot{\psi} = \frac{f}{1 - \gamma_3^2}.
\]
Fig. 13. Phase portrait in Andoyer–Deprit variables \((L/G, l)\) under the Hess conditions on the zero level set of the area integral for the Hamiltonian \(H \ (A.16)\), \(\bar{\mu} = h_c = 0.707\), and the following values of \(h\): (a) \(h = 0.2\), (b) \(h = 0.5\), (c) \(h = 0.6\), (d) \(h = 0.707 = h_c\), (e) \(h = 0.9\), and (f) \(h = 5\). It can easily be seen that the torus corresponding to the Hess integral at small energies is located in a regular foliation. The grey area indicates a physically impossible range of values of the variables.

In the case \(f = 0\) system (A.10) simplifies to give
\[
\dot{\gamma}_3 = \sqrt{2(1 - \gamma_3^2)(h + \mu \gamma_3)}, \quad \dot{\psi} = \pm b \cos \varphi \sqrt{2(h + \mu \gamma_3)} \quad \text{(or} \quad \dot{\theta} = -\sqrt{2(h + \mu \gamma_3)}). \quad \text{(A.13)}
\]

In [51], Zhukovsky showed that on the zero level set of the area integral the trajectory of motion of the middle axis of the gyration ellipsoid forms at each instant of time a constant angle \(\theta\) (nutation angle) with the plane of the circular section:
\[
\sin \theta = \frac{a_2}{\sqrt{a_2(a_1 + a_3) - a_1 a_3}}. \quad \text{(A.14)}
\]

Using this result, it can be shown that on the zero level set of the area integral the middle axis of inertia moves along a loxodrome. In view of this characteristic motion Zhukovsky introduced the name loxodromic pendulum (of Hess), obtained practical conditions for such a motion, and proposed a mechanical model for its observation [51].

Let us consider the case of a loxodromic pendulum \((f = 0)\) in more detail (see Fig. 13). From (A.13) we find
\[
\dot{\gamma}_3^2 = 2(h - \bar{\mu} \gamma_3)(1 - \gamma_3^2), \quad \dot{\psi} = 0, \quad \ln \left(\tan \frac{l}{2}\right) = \pm a_{13} K, \quad \text{(A.15)}
\]
Fig. 14. Phase portrait in Andoyer–Deprit variables \((L/G, l)\) under the Hess conditions on the nonzero level set of the area integral \(f = 1\) for the Hamiltonian \(H\) (A.16) and the following values of \(h\): (a) \(h = 0.2\), (b) \(h = 0.4\), (c) \(h = 0.6\), (d) \(h = 0.7\), (e) \(h = 0.9\), (f) \(h = 1.5\), (g) \(h = 2\), and (h) \(h = 5\). As above, at large \(h\) the Hess solution separates two stochastic layers, and at small \(h\) it lies in a regular foliation.

where \(M_1 = K \sin l\), \(M_2 = K \cos l\), and \(\bar{\mu} = -\mu\). Write the Hamiltonian

\[
H = \frac{1}{2} \left(M_1^2 + \frac{2}{3} M_2^2 + \frac{1}{2} M_3^2 \right) + \frac{1}{\sqrt{3}} \gamma_1 + \frac{1}{\sqrt{6}} \gamma_3. \tag{A.16}
\]

There are two qualitatively different cases (this result was first obtained in the book [13]).

Case \(h > \bar{\mu}\). The center of mass rotates in the principal circle (since \(\psi = \text{const}\)). In this case the middle axis moves along the entire loxodrome, and on the phase portrait (Figs. 13e and 13f), which also contains chaotic trajectories, the Hess solution separates two “immiscible” stochastic layers (see also Fig. 11). The actual Hess solution in this case is not implementable: due to instability the trajectory “falls down” into one of these layers.

As \(h \to \infty\) (or \(\bar{\mu} \to 0\)), everything reduces to the standard Euler case and the Hess solution tends to the separatrix of permanent rotation about the middle axis [32].
Case $h < \tilde{\mu}$. The center of mass executes flat oscillations according to the law of a physical pendulum, and the middle axis moves according to (A.14) along a segment of the loxodrome. In this case, the solution is periodic in the absolute space (i.e., like the Goryachev solution, it is a one-frequency solution). On the phase portrait (see Figs. 13a–13c) the Hess relation defines an invariant curve that is entirely filled with fixed points and is located inside a regular foliation.

For $f \neq 0$ the investigation of the motion is much more complicated and cannot be carried out analytically. Figure 14 shows a series of phase portraits illustrating the effect of divergence of the stochastic layers (as energy h decreases) near the Hess solution, which becomes stable.

In this case, the dynamics of absolute motion for small energies is three-frequency dynamics; as energy increases, the motion in one variable is asymptotic, and only two frequencies remain.

Remark A.2. As mentioned above, if one considers the perturbations of the Euler–Poisot problem under the Hess conditions, it turns out that the pair of separatrices emanating from unstable permanent rotations does not split under a perturbation \cite{32, 52, 30} (see Figs. 13f and 14h). In this case, the integral (A.3) defines a singular torus filled with doubly asymptotic trajectories approaching some unstable periodic solutions that, as $\tilde{\mu} \to 0$, turn into permanent rotations about the middle axis. Such a description of the dynamics of a reduced system does not contradict the result obtained by Zhukovsky on the quasi-periodic motion of the body’s center of mass \cite{51}, since the system describing the motion of the center of mass is obtained by eliminating not the precession angle but the angle of proper rotation about the axis perpendicular to the circular section.

Historical and critical comments. Hess obtained his integral when searching for singular solutions of his own form of the Euler–Poisson equations (1890) \cite{25}, in which the direction cosines were eliminated using the integrals of motion. The Hess case can be obtained from the analysis of the branching of the general solution on the complex plane of time. This solution was overlooked by Kovalevskaya \cite{1} and arose for the first time in Appelrot’s article of 1892 \cite{1}. However, as Appelrot himself wrote, in the original version of this article he had made an error and overlooked this case too. His oversight was pointed out by P. Nekrasov. In the 1892 paper \cite{43} Nekrasov presented both the Hess conditions and the Hess integral and reduced its integration to the Riccati equation. A more detailed analysis shows that in the Hess case the solution branches out on the complex plane of time (Appelrot, Lyapunov). The link between complex branching, separatrix splitting, and integrability was discovered by S.L. Ziglin. In this vein he explained the enigmatic appearance of this case. From the viewpoint of quasi-homogeneous systems and the Kovalevskaya exponents, the Hess case is discussed in the recent paper \cite{34}.

As mentioned above, the geometrical analysis and the modeling of the Hess top were proposed by Zhukovsky \cite{51}, and a detailed analytical memoir on an explicit solution was written by Nekrasov (1896) \cite{44}. The Hess integral, as well as the reduction to the Riccati equation, was independently rediscovered by Roger Liouville (1895) \cite{37} (by the way, his note in *Comptes Rendus* was presented by H. Poincaré). In the next paper \cite{38}, Liouville noted that the case described by him had been found earlier by Hess (it was N.E. Zhukovsky who drew his attention to this fact) and discussed the Maxwell principle, which is inapplicable in mechanics problems.

In \cite{18}, S.A. Chaplygin showed that the Hess motion can be obtained for any body under the condition that the principal central moments of inertia are different from each other. A link between the invariant Hess relations and a pair of unsplit separatrices of the perturbed Euler–Poisot problem was established by V.V. Kozlov \cite{32} (see also \cite{52}). In the Kirchhoff equations, an analog of the Hess case was noticed by Chaplygin \cite{17} (who immediately used the nonprincipal axes), and an identical case was obtained from the condition of separatrix splitting in \cite{36}. For the problem of sliding of a rigid body whose sharp edge is in contact with a smooth plane, an analog of the Hess integral was found by G.V. Kolosov \cite{29} and A.M. Lyapunov (who did not publish this result). An analog of the Hess integral for other mechanics problems was found in \cite{12, 5}. In \cite{12}, its explicit symmetry
origin is elucidated for a wide class of potential systems. Various multidimensional generalizations
of the Hess case are discussed in [19, 20].

We also mention the recent papers by P. Lubowiecki and H. Żołądek (2012) [39, 40] and
A.V. Belyaev (2015) [2]. We note that the paper [2] contains results similar to those of [39]; however,
in all probability, the author, although referring to this paper, did not try to fully understand its
implications. The paper [2] also contains very strange asymptotic expansions the meaning of which
for the dynamics is completely unclear.

The basic theorems in [39] and [2] coincide, but, in our opinion, their proofs contain gaps.
Consider the paper [39] in more detail. There are no doubts about the existence of two limit cycles
that can merge at certain values of the energy and area integrals. This fact is also pointed out in
Nekrasov’s extensive memoir [44], whose results have not been analyzed from a modern point of view
(see also [42]). The conclusion that further variation of the parameters (after a bifurcation through
the only cycle on the torus) should lead to the appearance of tori with quasi-periodic dynamics is
unjustified.

The calculation of the real rotation number using complex linear equations with doubly periodic
coefficients is not correct and does not allow one to obtain a dependence on the system parameters.
The result derived from the theorem thus “proved” concerning the existence of a continuous invariant
measure (without singularities) is also incorrect and is not confirmed by further analysis. As is well
known, the quasi-periodicity of motion on the torus is a consequence of the existence of a smooth
invariant measure and the Diophantine properties of the Poincaré rotation numbers (this constitutes
the content of the well-known Kolmogorov theorem [28]).

We note that in the above-mentioned papers [39, 2] the conclusion is drawn that at a rational
rotation number the torus is foliated by degenerate periodic trajectories. This phenomenon is typical
of Hamiltonian systems (with a smooth invariant measure). However, in the Hess case the system
has no smooth invariant measure, and it is well known that, for systems without an invariant
measure, the graph of the rotation number versus a first integral is a Cantor staircase. For the
nonholonomic problem of the rolling motion of a ball (with a displaced center of mass), this effect
was discovered in [8, 3]. Another example of a vector field on a torus (related to Hill’s equation)
for which the rotation number as a function of the system parameters is a Cantor staircase is given
in [16]. The horizontal segments of the Cantor staircase (which correspond to the rational rotation
number) correspond to tori on which there are either one or several limit cycles. Therefore, the
following problem remains open.

Open problem. Is the graph of the rotation number on a torus (corresponding to the Hess
case of the Euler–Poisson equations) versus the system parameters a Cantor staircase? Are there
any limit cycles for rational values of the rotation number?

There is some confusion in [39, 40] regarding normal hyperbolicity. In fact, the cycle is hyperbolic
on the invariant Hess manifold; on the isoenergetic surface there can be no normal hyperbolicity
due to the existence of an invariant measure (induced by the standard volume form of the Euler–
Poisson equations), and under perturbations (deviations from the Hess conditions) the invariant
surface is not preserved and the splitting of separatrices of hyperbolic points leads to the formation
of a stochastic layer.\footnote{Note that all these effects (including the main conclusions from [39, 40, 2]) were illustrated by means of a Poincaré
map in the paper [12] (as well as in the book [13]), which is not referred to in the above-mentioned studies.}

ACKNOWLEDGMENTS

The authors are grateful to V.V. Kozlov, who carefully read the manuscript and made a number
of important comments.

This work is supported by the Russian Science Foundation under grant 14-50-00005.
REFERENCES

1. H. Appelroth, “Concerning § 1 of S. Kowalevski’s memoir ‘Sur le problème de la rotation d’un corps solide autours d’un point fixe’ (Acta Mathematica. 12. 2),” Mat. Sb. 16 (3), 483–507 (1892).

2. A. V. Belyaev, “On the general solution of the problem of the motion of a heavy rigid body in the Hess case,” Mat. Sb. 206 (5), 5–34 (2015) [Sb. Math. 206, 621–649 (2015)].

3. I. A. Bizyaev, “Nonintegrability and obstructions to the Hamiltonianization of a nonholonomic Chaplygin top,” Dokl. Akad. Nauk 458 (4), 398–401 (2014) [Dokl. Math. 90 (2), 631–634 (2014)].

4. I. A. Bizyaev, A. V. Borisov, and A. O. Kazakov, “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors,” Regul. Chaotic Dyn. 20 (5), 605–626 (2015).

5. I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside,” Regul. Chaotic Dyn. 19 (2), 198–213 (2014).

6. I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “Dynamics of the Chaplygin sleigh on a cylinder,” Regul. Chaotic Dyn. 21 (1), 136–146 (2016).

7. A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds,” Regul. Chaotic Dyn. 16 (5), 443–464 (2011).

8. A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, “Rolling of a ball without spinning on a plane: The absence of an invariant measure in a system with a complete set of integrals,” Regul. Chaotic Dyn. 17 (6), 571–579 (2012).

9. A. V. Borisov, A. Yu. Jahnine, S. P. Kuznetsov, I. R. Sataev, and Ju. V. Sedova, “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback,” Regul. Chaotic Dyn. 17 (6), 512–532 (2012).

10. A. V. Borisov, A. O. Kazakov, and I. R. Sataev, “The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top,” Regul. Chaotic Dyn. 19 (6), 718–733 (2014).

11. A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “Hamiltonicity and integrability of the Suslov problem,” Regul. Chaotic Dyn. 16 (1–2), 104–116 (2011).

12. A. V. Borisov and I. S. Mamaev, “The Hess case in rigid-body dynamics,” Prikl. Mat. Mekh. 67 (2), 256–265 (2003) [J. Appl. Math. Mech. 67, 227–235 (2003)].

13. A. V. Borisov and I. S. Mamaev, Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, and Chaos (Inst. Komp’yut. Issled., Moscow, 2005) [in Russian].

14. A. V. Borisov and I. S. Mamaev, “The dynamics of a Chaplygin sleigh,” Prikl. Mat. Mekh. 73 (2), 219–225 (2009) [J. Appl. Math. Mech. 73, 156–161 (2009)].

15. A. V. Borisov and I. S. Mamaev, “Symmetries and reduction in nonholonomic mechanics,” Regul. Chaotic Dyn. 20 (5), 553–604 (2015).

16. H. Broer and C. Simó, “Hill’s equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena,” Bol. Soc. Bras. Mat. 29 (2), 253–293 (1998).

17. S. A. Chaplygin, “Some cases of motion of a rigid body in a fluid. First article,” Tr. Otd. Fiz. Nauk Obsch. Lyubitelei Estestvoznaniiya 6 (2), 20–42 (1894); reprint in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 136–193 [in Russian]; “Second article,” Mat. Sb. 20 (1), 115–170 (1897); 20 (2), 173–246 (1898); reprint in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 194–311 [in Russian].

18. S. A. Chaplygin, “Concerning Hess’s loxodromic pendulum,” Tr. Otd. Fiz. Nauk Obsch. Lyubitelei Estestvoznaniiya 7 (1), 33–34 (1894); reprint in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 133–135 [in Russian].

19. V. Dragović and B. Gajić, “Systems of Hess–Appel’rot type,” Commun. Math. Phys. 265 (2), 397–435 (2006).

20. V. Dragović and B. Gajić, “Matrix Lax polynomials, geometry of Prym varieties and systems of Hess–Appel’rot type,” Lett. Math. Phys. 76 (2–3), 163–186 (2006).

21. H. R. Dullin and J. Worthington, “The vanishing twist in the restricted three body problem,” Physica D 276, 12–20 (2014).

22. Yu. N. Fedorov, A. J. Maciejewski, and M. Przybylska, “The Poisson equations in the nonholonomic Suslov problem: Integrability, meromorphic and hypergeometric solutions,” Nonlinearity 22 (9), 2231–2259 (2009).

23. O. E. Fernandez, A. M. Bloch, and D. V. Zenkov, “The geometry and integrability of the Suslov problem,” J. Math. Phys. 55 (11), 112704 (2014).

24. B. Grammaticos, B. Dorizzi, and A. Ramani, “Hamiltonians with high-order integrals and the ‘weak-Painlevé’ concept,” J. Math. Phys. 25 (12), 3470–3473 (1984).

25. W. Hess, “Über die Euler’schen Bewegungsgleichungen und über eine neue partielle Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt,” Math. Ann. 37 (2), 153–181 (1890).

26. E. I. Kharlamova-Zabelina, “Rapid rotation of a rigid body around a fixed point in the presence of a nonholonomic constraint,” Vestn. Mosk. Univ., Ser. Mat. Mekh. Astron. Fiz. Khim., No. 6, 25–34 (1957).
27. A. Knauf and I. A. Taimanov, “On the integrability of the n-centre problem,” Math. Ann. 331 (3), 631–649 (2005).
28. A. N. Kolmogorov, “On dynamical systems with an integral invariant on the torus,” Dokl. Akad. Nauk SSSR 93 (5), 763–766 (1953).
29. G. V. Kolosov, “On a case of motion of a heavy rigid body supported at a sharp point on a smooth plane,” Tr. Otd. Fiz. Nauk Obsch. Lyubitelei Estestvoznaniya 9 (2), 11–12 (1898).
30. V. V. Kozlov, “Splitting of separatrices in the perturbed Euler–Poisson problem,” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 99–104 (1976).
31. V. V. Kozlov, “On the theory of integration of the equations of nonholonomic mechanics,” Usp. Mekh. 8 (3), 85–107 (1985).
32. V. V. Kozlov, Methods of Qualitative Analysis in the Dynamics of a Rigid Body (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2000) [in Russian].
33. V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems,” J. Dyn. Control Syst., doi: 10.1007/s10883-015-9305-4 (2015).
34. V. V. Kozlov, “Rational integrals of quasi-homogeneous dynamical systems,” Prikl. Mat. Mekh. 79 (3), 307–316 (2015) [J. Appl. Math. Mech. 79, 209–216 (2015)].
35. V. V. Kozlov and D. A. Onishchenko, “Nonintegrability of Kirchhoff’s equations,” Dokl. Akad. Nauk SSSR 266 (6), 1298–1300 (1982) [Sov. Math., Dokl. 26, 495–498 (1982)].
36. R. Liouville, “Sur la rotation des solides,” C. R. Acad. Sci. 120 (17), 903–906 (1895).
37. P. Lubowiecki and H. Żołańdek, “The Hess–Appelrot system. I: Invariant torus and its normal hyperbolicity,” J. Geom. Mech. 4 (4), 443–467 (2012).
38. P. Lubowiecki and H. Żołańdek, “The Hess–Appelrot system. II: Perturbation and limit cycles,” J. Diff. Eqns. 252 (2), 1701–1722 (2012).
39. A. J. Maciejewski and M. Przybylska, “Non-integrability of the Suslov problem,” Regul. Chaotic Dyn. 7 (1), 73–80 (2002).
40. B. K. Mlodziejski and P. A. Nekrasov, “Conditions for the existence of asymptotic periodic motions in the Hess problem,” Tr. Otd. Fiz. Nauk Obsch. Lyubitelei Estestvoznaniya 6 (1), 43–52 (1893).
41. P. A. Nekrasov, “On the problem of motion of a heavy rigid body about a fixed point,” Mat. Sb. 16 (3), 508–517 (1892).
42. G. K. Suslov, Theoretical Mechanics (Gostekhizdat, Moscow, 1946) [in Russian].
43. Ya. V. Tatarinov, “Separating variables and new topological phenomena in holonomic and nonholonomic systems,” in Tr. Semin. Vectorn. Tenzorn. Anal. Pril. Geom. Mekh. Fiz. (Mosk. Gos. Univ., Moscow, 1988), Vol. 23, pp. 160–174 [in Russian].
44. V. V. Vagner, “Geometric interpretation of the motion of nonholonomic dynamical systems,” in Tr. Semin. Vectorn. Tenzorn. Anal. Pril. Geom. Mekh. Fiz. (OGIZ, Moscow, 1941), Vol. 5, pp. 301–327 [in Russian].
45. N. E. Zhukovsky, “Hess’s loxodromic pendulum,” Tr. Otd. Fiz. Nauk Obsch. Lyubitelei Estestvoznaniya 5 (2), 37–45 (1893); reprint. in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 257–274 [in Russian].
46. S. L. Ziglin, “Splitting of separatrices, branching of solutions and nonexistence of an integral in the dynamics of a solid body,” Tr. Mosk. Mat. Obshch. 41, 287–303 (1980) [Trans. Moscow Math. Soc. 1982 (1), 283–298 (1982)].

Translated by the authors