TRANSVERSELY PRODUCT SINGULARITIES OF FOLIATIONS IN PROJECTIVE SPACES

RUDY ROSAS

Abstract. We prove that a transversely product component of the singular set of a holomorphic foliation on \mathbb{P}^n is necessarily a Kupka component.

1. Introduction

Let U be an open set of a complex manifold M and let $k \in \mathbb{N}$. Let η be a holomorphic k-form on U and let $\text{Sing} \eta = \{p \in U : \eta(p) = 0\}$ denote the singular set of η. We say that η is integrable if each point $p \in U \setminus \text{Sing} \eta$ has a neighborhood V supporting holomorphic 1-forms η_1, \ldots, η_k with $\eta|_V = \eta_1 \wedge \cdots \wedge \eta_k$, such that $d\eta_j \wedge \eta = 0$ for each $j = 1, \ldots, k$. In this case the distribution

$$D_\eta: D_\eta(p) = \{v \in T_pM : i_v \eta(p) = 0\}, \quad p \in U \setminus \text{Sing} \eta$$

defines a holomorphic foliation of codimension k on $U \setminus \text{Sing} \eta$. A singular holomorphic foliation \mathcal{F} of codimension k on M can be defined by an open covering $(U_j)_{j \in J}$ of M and a collection of integrable k-forms $\eta_j \in \Omega^k(U_j)$ such that $\eta_j = g_{ij} \eta_i$ for some $g_{ij} \in \mathcal{O}^*(U_i \cap U_j)$ whenever $U_i \cap U_j \neq \emptyset$. The singular set $\text{Sing} \mathcal{F}$ is the proper analytic subset of M given by the union of the sets $\text{Sing} \eta_j$. From now on we only consider foliations \mathcal{F} such that $\text{Sing} \mathcal{F}$ has no component of codimension one.

Given a singular holomorphic foliation \mathcal{F} of codimension k on M as above, the Kupka singular set of \mathcal{F}, denoted by $K(\mathcal{F})$, is the union of the sets

$$K(\eta_j) = \{p \in U_j : \eta_j(p) = 0, d\eta_j(p) \neq 0\}.$$

This set does not depend on the collection (η_j) of k-forms used to define \mathcal{F}. It is well known that, given $p \in K(\mathcal{F})$, the germ of \mathcal{F} at p is holomorphically equivalent to the product of a one-dimensional foliation with an isolated singularity by a regular foliation of dimension $(\dim \mathcal{F} - 1)$. More precisely, if $\dim M = k + m + 1$, there exist a holomorphic vector field $X = X_1 \partial_{x_1} + \cdots + X_{k+1} \partial_{x_{k+1}}$ on \mathbb{D}^{k+1} with a unique singularity at the origin, a neighborhood V of p in M and a biholomorphism $\psi: V \to \mathbb{D}^{k+1} \times \mathbb{D}^m$, $\psi(p) = 0$, which conjugates \mathcal{F} with the foliation \mathcal{F}_X of $\mathbb{D}^{k+1} \times \mathbb{D}^m$ generated by the commuting vector fields $X, \partial_{y_1}, \ldots, \partial_{y_m}$, where $y = (y_1, \ldots, y_m)$ are the coordinates in \mathbb{D}^m. If $\mu = dx_1 \wedge \cdots \wedge dx_{k+1}$, the foliation \mathcal{F}_X is also defined by the k-form $\omega = i_X \mu$ and the Kupka condition $d\omega(0) \neq 0$ is equivalent to the inequality $\text{div} X(0) \neq 0$.

Following [7], we say that \mathcal{F} is a transversely product at $p \in \text{Sing} \mathcal{F}$ if as above there exist a holomorphic vector field X and a biholomorphism $\psi: V \to \mathbb{D}^{k+1} \times \mathbb{D}^m$ conjugating \mathcal{F} with \mathcal{F}_X, except that it is not assumed that $\text{div} X(0) \neq 0$. We say that Γ is a local transversely product component of $\text{Sing} \mathcal{F}$ if Γ is a compact irreducible component of $\text{Sing} \mathcal{F}$ and \mathcal{F} is a transversely product at each $p \in \Gamma$. In particular, if $\Gamma \subset K(\mathcal{F})$ we say that Γ is a Kupka component — for more
information about Kupka singularities and Kupka components we refer the reader to \[8, 6, 1, 2, 3, 4, 5\]. If Γ is a transversely product component of Sing \mathcal{F}, we can cover Γ by finitely many normal coordinates like ψ, with the same vector field X; that is, there exist a holomorphic vector field X on \mathbb{D}^{k+1} with a unique singularity at the origin and a covering of Γ by open sets $(V_\alpha)_{\alpha \in A}$ such that each V_α supports a biholomorphism $\psi_\alpha: V_\alpha \to \mathbb{D}^{k+1} \times \mathbb{D}^m$ that maps $\Gamma \cap V_\alpha$ onto $\{0\} \times \mathbb{D}^m$ and conjugates \mathcal{F} with the foliation \mathcal{F}_X. The sets (V_α) can be chosen arbitrarily close to Γ.

In \[7\], the author proves that a local transversely product component of a codimension one foliation on \mathbb{P}^n is necessarily a Kupka component. The goal of the present paper is to generalize this theorem to foliations of any codimension.

Theorem 1. Let \mathcal{F} a holomorphic foliation of dimension ≥ 2 and codimension ≥ 1 on \mathbb{P}^n. Let Γ be a transversely product component of Sing \mathcal{F}. Then Γ is a Kupka component.

This theorem is a corollary of the following result.

Theorem 2. Let \mathcal{F} a holomorphic foliation of dimension ≥ 2 and codimension $k \geq 1$ on a complex manifold M. Suppose that \mathcal{F} is defined by an open covering $(U_j)_{j \in J}$ of M and a collection of k-forms $\eta_j \in \Omega^k(U_j)$. Let L be the line bundle defined by the cocycle (g_{ij}) such that $\eta_1 = g_{ij} \eta_j$, $g_{ij} \in \mathcal{O}^*(U_i \cap U_j)$. Let Γ be a transversely product component of Sing \mathcal{F} that is not a Kupka component. Then, if V is a tubular neighborhood of Γ, we have that $c_1(L|_V) = 0$.

2. Proof of the results

Proof of Theorem 2. Let V be a tubular neighborhood of Γ. Then the map

$$\Theta \in H^2_{\text{dR}}(V) \mapsto \Theta|_\Gamma \in H^2_{\text{dR}}(\Gamma)$$

is an isomorphism and so it suffices to prove that $c_1(L|_\Gamma) = 0$. Let $\dim M = k + m + 1$. As explained in the introduction, there exist a holomorphic vector field X on \mathbb{D}^{k+1} with a unique singularity at the origin and a covering of Γ by open sets $(V_\alpha)_{\alpha \in A}$ such that each V_α is contained in V and supports a biholomorphism $\psi_\alpha: V_\alpha \to \mathbb{D}^{k+1} \times \mathbb{D}^m$ that maps $\Gamma \cap V_\alpha$ onto $\{0\} \times \mathbb{D}^m$ and conjugates \mathcal{F} with the foliation \mathcal{F}_X generated by the commuting vector fields $X, \partial_{y_1}, \ldots, \partial_{y_m}$. Notice that $\text{div}(X)(0) = 0$, because Γ is not a Kupka component. Since \mathcal{F}_X is defined by the k-form $\omega = i_X \mu$, where $\mu = dx_1 \wedge \cdots \wedge dx_{k+1}$, we have that $\mathcal{F}|_{V_\alpha}$ is defined by the k-form $\psi_\alpha^*(\omega)$. If $V_\alpha \cap V_\beta \neq \emptyset$, there exists $\theta_{\alpha \beta} \in \mathcal{O}^*(V_\alpha \cap V_\beta)$ such that

$$\psi_\alpha^*(\omega) = \theta_{\alpha \beta} \psi_\beta^*(\omega).$$

We can assume that the k-forms $\psi_\alpha^*(\omega)$ belong to the family of k-forms $(\eta_j)_{j \in J}$ defining \mathcal{F}. Therefore the cocycle $(\theta_{\alpha \beta})$ define the line bundle L restricted to some neighborhood of Γ. Thus, in order to prove that $c_1(L|_\Gamma) = 0$ it is enough to show that each $\theta_{\alpha \beta}|_{\Gamma}$ is locally constant. Fix some $\alpha, \beta \in A$ such that $V_\alpha \cap V_\beta \neq \emptyset$. If we set $\psi = \psi_\alpha \circ \psi_\beta^{-1}$ and $\theta = \theta_{\alpha \beta} \circ \psi_\beta^{-1}$, from (2.1) we have that $\psi^*(\omega) = \theta \omega$, which means that ψ preserves the foliation \mathcal{F}_X. It suffices to prove that the derivatives $\partial_{y_1}(p), \ldots, \partial_{y_m}(p)$ vanish if $p \in \{0\} \times \mathbb{D}^m$. Since ∂_{y_1} is tangent to \mathcal{F}_X, then the vector field $\psi_\alpha(\partial_{y_1})$ is tangent to \mathcal{F}_X and so we can express

$$\psi_\alpha(\partial_{y_1}) = \lambda X + \lambda_1 \partial_{y_1} + \cdots + \lambda_m \partial_{y_m},$$
where \(\lambda, \lambda_1, \ldots, \lambda_m \) are holomorphic. Then
\[
\mathcal{L}_{\psi_* (\partial_{\psi})} \omega = \mathcal{L}_{\mathcal{X}} \omega = \lambda \mathcal{L}_{\mathcal{X}} \omega + d \lambda \wedge i_{\mathcal{X}} \omega = \lambda \mathcal{L}_{\mathcal{X}} \omega = \lambda \text{div}(\mathcal{X}) \omega,
\]
where the last equality follows from the identity \(\omega = i_{\mathcal{X}} \mu \). Thus, since
\[
\psi^* \left(\mathcal{L}_{\psi_* (\partial_{\psi})} \omega \right) = \mathcal{L}_{\partial_{\psi_1}} \psi^* \omega = \mathcal{L}_{\partial_{\psi_1}} (\theta \omega) = \theta \psi_1 \omega,
\]
we obtain that
\[
\theta \psi_1 \omega = \psi^* (\lambda \text{div}(\mathcal{X}) \omega) = \lambda (\psi) \text{div}(\mathcal{X})(\psi) \theta \omega
\]
and therefore \(\theta \psi_1 (p) = 0 \) if \(p \in \{0\} \times \mathbb{D}^m \), because \(\text{div}(\mathcal{X}) \) vanishes along \(\{0\} \times \mathbb{D}^m \). In the same way we prove that \(\theta \psi_2 (p) = \cdots = \theta \psi_m (p) = 0 \) if \(p \in \{0\} \times \mathbb{D}^m \), which finishes the proof.

\[\square \]

Proof of Theorem 1. Suppose that \(\Gamma \) is not a Kupka component. Let \(L \) be the line bundle associated to \(\mathcal{F} \) as in the statement of Theorem 2. We notice that \(c_1(L) \neq 0 \), otherwise \(\mathcal{F} \) will be defined by a global \(k \)-form on \(\mathbb{P}^n \), which is impossible. Then, if we take an algebraic curve \(C \subset \Gamma \), we have \(c_1(L) \cdot C \neq 0 \). Therefore, if \(\Omega \) is a 2-form on \(\mathbb{P}^n \) in the class \(c_1(L) \) and \(V \) is a tubular neighborhood of \(\Gamma \),
\[
c_1(L|_V) \cdot C = \int_C \Omega|_V = \int_C \Omega = c_1(L) \cdot C \neq 0,
\]
which contradicts Theorem 2.

\[\square \]

References

[1] M. Brunella, Sur les feuilletages de l’espace projectif ayant une composante de Kupka. L’enseignement mathématique (2) 55 (2009), 1-8.

[2] O. Calvo–Andrade, Foliations with a Kupka component on Algebraic Manifolds, Bol. Soc. Brasil. Mat. 30 (1999), No. 2, 183-197.

[3] O. Calvo–Andrade, Foliations of codimension greater than one with a Kupka component, Qual. Theory Dyn. Syst. 8 (2009), No. 2, 241–253.

[4] O. Calvo–Andrade, Foliations with a radial Kupka set on projective spaces, Bull. Braz. Math. Soc. (N.S.) 47 (2016), No. 4, 1071–1083.

[5] M. Corrêa Jr., O. Calvo-Andrade and A. Fernández-Pérez, Higher codimensional foliations with Kupka singularities, International Journal of Mathematics Vol. 28 (2017), No. 3, Doi: 10.1142/S0129167X17500197

[6] D. Cerveau and A. Lins Neto, Codimension-one foliations in \(\mathbb{CP}^n \), \(n \geq 3 \), with Kupka components, Astérisque 222 (1994), 93-132.

[7] A. Lins Neto, Local transversely product singularities, Annales Henri Lebesgue 4 (2021), pp. 485 - 502.

[8] I. Kupka, The singularities of integrable structurally stable pfaffian forms, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 1431-1432.