Besides entanglement in multipartite systems, it is the evolution of phases and the superposition principle which distinguishes a quantum from a classical system. Phase evolutions can be monitored in many ways, e.g., by correlation functions \(I \). A quantity which has gained interest in the last decade is fidelity \(F \), defined as the overlap of two wavefunctions subjected to slightly different temporal evolutions. The temporal evolution of this quantum fidelity crucially depends on evolving relative phases. For many-particle systems, fidelity can be viewed as a Hilbert space measure to study quantum phase transitions \(T \) and the regular-to-chaotic transition in complex quantum systems \(U \). For single-particle evolutions fidelity was measured in electromagnetic wave \(W \) and matter wave \(M \) billiards, and with two different methods for periodically kicked cold atoms \(W, M \).

The latter system is a realization of the quantum kicked rotor (QKR), the standard model for low-dimensional quantum chaos and the occurrence of dynamical localization \(L \). Great interest in the QKR has reemerged in the study of its quantum resonant motion \(T, I, U \) and related accelerator modes \(W, M \). These two regimes are far from the classical limit of the QKR and, therefore, governed by distinct quantum effects. Nevertheless, close to quantum resonance the system can be described (pseudo-)classically with a new Planck’s constant, which is the detuning from the exact resonant value of the kicking period \(T, I, U \). For the quantum resonances, the underlying pseudo-classical model is completely integrable and corresponds in good approximation to the dynamics of a classical pendulum \(T, I, U \).

In this paper we apply well-known semiclassical methods to describe the behavior of fidelity close to the lowest-order quantum resonances of the QKR. We extend previous analytical results at exact resonance \(T, I, U \) to a broader parameter regime, recently measured in experiments performed by Wu and co-workers \(W, M \). The behavior of classical \(W \) and quantum fidelity \(W, M \), in the case when classical motion is integrable, has mainly been addressed numerically so far, while our approach is both numerical and analytical. Also, the recurrences of fidelity found in \(W, M \) for the near-integrable regime of the kicked rotor are just predicted for perturbative variations around small kicking strengths. Our results are more general, allowing, e.g., for strong changes of the fidelity parameter as long as the motion remains nearly resonant. As expected, in the nearly-resonant regime, the temporal behavior of fidelity follows the behavior at exact resonance the longer, the smaller the detuning from resonance.

Indeed, we show that the exactly resonant result, predicted in \(T, I, U \) by quantum calculations, is retrieved by pseudo-classical analysis. At large times, however, the exactly resonant fidelity and the nearly resonant one differ, as the latter displays recurrent revivals, while the former steadily decays. Such revivals are approximately periodic. Their period depends on the detuning from resonance and diverges as exact resonance is approached, so this noteworthy phenomenon is unrelated to quantum resonant dynamics. On the other hand, it is quite unexpected on classical grounds because the system is chaotic in the proper classical limit. Revivals of fidelity are thus a quantum effect and yet are explained by a (pseudo-)classical analysis that relates them to periodic motion inside pseudo-classical resonant islands. Experimental possibilities to verify our predictions are discussed at the end of the paper.

The dynamics of kicked atoms moving along a line in position space is described, in dimensionless units, by the Hamiltonian \(T, I, U \):

\[
\mathcal{H}(t) = \frac{\tau}{2} p^2 + k \cos(x) \sum_{t'=-\infty}^{+\infty} \delta(t-t'),
\]

where \(x \) is the position coordinate and \(p \) its conjugate momentum. We use units in which \(\hbar = 1 \) so the parameter \(\tau \) plays the role of an effective Planck’s constant; \(t \) is a continuous time variable, and \(t' \) is an integer which counts the number of kicks. The evolution of the atomic wave function \(\psi(x) \) from immediately after one kick to immediately after the next is ruled by the one-period Floquet operator \(\hat{U}_k = \exp(-ik\cos(x)) \exp(-i\tau p^2/2) \).

Fidelity of the quantum evolution of a state \(\psi \) with respect to a change of the parameter \(k \) from a value \(k_1 \) to a value \(k_2 \) is the function of time \(t \) which for all integer \(t \) is defined by:

\[
F(k_1, k_2, t) = |\langle \hat{U}_k^t \psi | \hat{U}_{k_2}^t \psi \rangle|^2.
\]
Periodicity in space of the kicking potential enforces conservation of quasi-momentum β, which is just the fractional part of p thanks to $\hbar = 1$. The atomic wave function decomposes into Bloch waves \cite{10, 18}, which are eigenfunctions of quasi-momentum, $\psi(x) = \int_0^1 d\beta \ e^{i\beta x} \sqrt{\rho(\beta)} \Psi_\beta(\theta)$, where $\theta = x \mod (2\pi)$ and the factor $\rho(\beta)$ is introduced in order to normalize Ψ_β (it weights the initial population in the Brillouin zone of width one in our units). The dynamics at any fixed value of β is formally that of a rotor on a circle, parameterized by the angle coordinate θ and described by the wave function Ψ_β. The Floquet propagator for the rotor is given by $\hat{U}_{\beta,k} = \exp(-i k \cos(\theta)) \exp(-i\tau (N + \beta)^2/2)$, where $N = -i \frac{d}{d\theta}$. Fidelity \cite{2} may then be written

$$F(k_1, k_2, t) = \left| \int_0^1 d\beta \ \rho(\beta) |\hat{U}_{\beta,k_1} \Psi_\beta | \hat{U}_{\beta,k_2} \Psi_\beta \right|^2,$$ \hspace{1cm} \text{(3)}

so it results from averaging the scalar product under the integral sign over β with the weight $\rho(\beta)$. Note that the rotor’s fidelity is the squared modulus of this quantity, so it results from averaging the scalar product under the integral sign over β with the weight $\rho(\beta)$.

The sum is over all trajectories (labeled by the index i) which start with $I = 0$ at time $t = 0$ and reach position θ at time t. $\theta' = \theta_i$ are their initial positions, and the function whose derivative is taken in the pre-factor yields θ at time t as a function of position θ' at time 0, given that the initial momentum $J' = 0$. Finally, the function $\Phi_s(\theta, t) = I(\theta, \theta', t)$ is the action of the s-th trajectory and ν_s is the Morse-Maslov index \cite{27}. We restrict ourselves to librational motion inside the stable island.

For t fixed and $\epsilon \to 0$ we use $\theta'(\theta, t) \sim \theta - \beta t$ in this equation, so $\Phi(\theta, t) \sim \frac{1}{2} \beta^2 t + \frac{\kappa}{2} \int_0^t dt' \cos(\theta - \beta t') = \frac{\kappa}{2} \beta^2 t + \frac{\kappa}{2} \sin(\frac{\beta}{2} t) \cos(\theta - \frac{\beta}{2} t)$. Replacing all this in eq. (3), we find for the rotor’s fidelity in the limit when $\epsilon \to 0$ at constant t:

$$\left| \langle \hat{U}_{\beta,k_1,\theta_i} | \Psi_\beta | \hat{U}_{\beta,k_2,\theta_i} \rangle \right|^2 \sim \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{iB(\beta,t) \cos(\theta - \frac{\beta}{2} t)} \left| J_0^2(B(\beta, t)) \right|^2,$$ \hspace{1cm} \text{(8)}

where $B(\beta, t) = 2\frac{\kappa}{\pi} \sin(\frac{\beta}{2} t)$. Since $B(\beta, t) \approx |W_i|$ in eq. (4) for $t = 2\pi\ell$ and $\beta \approx \frac{1}{2}$, we see that the pseudo-classical approximation along with the pendulum approximation well reproduce the exact quantum calculation (3) when $\epsilon \to 0$ at fixed t. In the final step of integrating over quasi-momenta to find the fidelity for atoms (as distinct from fidelity for rotors), the pseudo-classical approximation plays no role since the particle’s dynamics, unlike the rotor’s, does not turn pseudo-classical in the limit $\epsilon \to 0$ \cite{15}. Replacing (4) in eq. (3) and computing the integral with a uniform distribution of β in $[0, 1)$ shows that the complete fidelity (3) saturates to a non-zero value in the course of time \cite{11}.

Next we address the asymptotic regime where $\epsilon \to 0$ and $t^{1/2} \sim \text{const}$. To this end, the exact solution of the pendulum dynamics is needed in order to compute actions; however, some major features of fidelity are accessible by exploiting the harmonic approximation of the pendulum Hamiltonian. We replace the pendulum Hamiltonian $H(I, \theta) = \frac{1}{2}(I + \beta)^2 + \frac{\kappa}{2} \theta^2$, where
$\omega = \sqrt{k}$ and a shift of θ by π is understood. Except at exact multiples of the period, there is one harmonic oscillator trajectory in the sum in (9); moreover, Maslov indices do not depend on the trajectory. Straightforward calculations yield $\theta'(\theta, t) = \sec(\omega t) (\theta - \beta \omega^{-1} \sin(\omega t))$ and $\Phi(\theta, t) = \beta \theta (\sec(\omega t) - 1) - (\omega^{-1} \beta^2 + \omega \theta^2) \tan(\omega t)/2$, and so:

$$\langle \hat{\Psi}^{t}_{\beta}, \hat{\Psi}^{t}_{\beta} \rangle \sim \frac{e^{i\theta(t)}}{2\pi \sqrt{\cos(\omega t) \cos(\omega t)}} \int_{-\pi}^{\pi} d\theta e^{-\frac{i}{2\pi} \Lambda_{1}(\theta, \epsilon, t)} \int_{-r_{b}}^{r_{b}} d\beta e^{-\frac{i}{2\pi} \Lambda_{2}(\beta, \theta, \epsilon, t)} (A(t) \theta^{2} + C(t) \beta^{2} - 2\beta B(t) + B(t) C(t)), \quad (9)$$

where $A(t) = \omega_{2} \tan(\omega_{2} t) - \omega_{1} \tan(\omega_{1} t)$, $B(t) = \sec(\omega_{2} t) - \sec(\omega_{1} t)$ and $C(t) = \omega_{2}^{-1} \tan(\omega_{2} t) - \omega_{1}^{-1} \tan(\omega_{1} t)$. $\lambda(t)$ is a phase factor accumulated by the Maslov indices and it just depends on time, rendering it irrelevant for our present purposes. We next insert eq. (9) in eq. (3) and choose for $\rho(\beta)$ a uniform distribution in some interval $[\frac{1}{2} - b, \frac{1}{2} + b]$, with $0 \leq b \leq 1/2$. It is necessary to assume that b is smaller than the halfwidth of the pseudoclassical resonant island, because the harmonic approximation we have used is valid only inside that island. Then

$$F(k_{1}, k_{2}, t) \sim \frac{1}{16\pi^{2} b^{2} \pi^{2} | \cos(\omega_{1} t) \cos(\omega_{2} t) |} \times \int_{-\pi}^{\pi} d\theta e^{-\frac{i}{2\pi} \Lambda_{1}(\theta, \epsilon, t)} \int_{-r_{b}}^{r_{b}} d\beta e^{-\frac{i}{2\pi} \Lambda_{2}(\beta, \theta, \epsilon, t)} (A(t) \theta^{2} + C(t) \beta^{2} - 2\beta B(t) + B(t) C(t)), \quad (10)$$

where $\Lambda_{1}(\theta, \epsilon, t) = (A(t) - B^{2}(t) C(t)^{-1}) \theta^{2}$ and $\Lambda_{2}(\beta, \theta, \epsilon, t) = (\beta \sqrt{C(t)} - B(t) C(t)^{-1/2})^{2}$. As $\Lambda_{2} \sim \epsilon^{-1/2}$ in the limit when $\epsilon \to 0$ and $t \sqrt{\epsilon} \sim \text{const.,}$ the limits in the β-integral in (10) may be taken to $\pm \infty$:

$$\int_{-r_{b}}^{r_{b}} d\beta e^{-\frac{i}{2\pi} \Lambda_{2}(\beta, \theta, \epsilon, t)} \sim (2\pi)^{1/2} \epsilon^{1/2} C^{-1/2} \epsilon^{-1/2} e^{-i\pi/4}.$$

Due to this approximation, (11) below is valid in the asymptotic regime where ϵ is small compared to $b \omega$. The remaining θ-integral is dealt with similarly, because the pre-factor of θ^{2} in Λ_{1} is $\sim \epsilon^{-1/2}$. Thus finally

$$F(k_{1}, k_{2}, t) \sim \frac{\epsilon^{2}}{16\pi^{2} b^{2} |C(t) A(t) - B(t) t^{2}|| \cos(\omega_{1} t) \cos(\omega_{2} t) |^{2}} \frac{\epsilon^{2} \omega_{1} \omega_{2}}{8\pi^{2} b^{2} |k_{1} \omega_{2} - \omega_{1}^{2} \cos(\omega_{1} t) - \omega_{2}^{2} \cos(\omega_{2} t) |^{2}, \quad (11)$$

where $\omega_{\pm} = \omega_{1} \pm \omega_{2}$. Singularities of this expression are artifacts of the approximations used in evaluating the integrals in (10), which indeed break down when the divisor in (11) is small compared to ϵ. However, they account for the periodic “revivals” that are observed in the fidelity at large times, with the beating period $T_{12} = 2\pi/|\omega_{-}|$ (Fig. 2 (a)). With a quite narrow distribution of β, however, fidelity is at long times dominated by the “resonant” rotors ($\beta = 0$ or $\beta = 1/2$ respectively), and then revivals occur with the period $T_{12}/2$ (Fig. 1). Indeed, with the purely resonant β, eq. (10) yields:

$$F(k_{1}, k_{2}, t) = F_{\text{res}}(k_{1}, k_{2}, t) \sim \frac{1}{2\pi |\omega_{2} \cos(\omega_{1} t) \sin(\omega_{2} t) - \omega_{1} \cos(\omega_{2} t) \sin(\omega_{1} t) |}, \quad (12)$$

which has singularities in time with the mentioned periodicity of $T_{12}/2$. This behavior of resonant rotors has a simple qualitative explanation. As the initial state of the rotor corresponds to momentum $I = 0$, at that value of quasi-momentum ($\beta = \frac{1}{2}$) the stationary-phase trajectories of the two harmonic oscillators, which were started at $I = 0$, exactly return to $I = 0$ whenever time is a multiple of the half-period $T_{12}/2$, and so fully contribute to fidelity, in spite of their angles being different by π in the case of odd multiples. At $\beta \neq 0$ this symmetry is lost. Comparing numerical data (obtained by repeated application of the Floquet operator to the initial wavefunction) with the analytical predictions we find excellent agreement. We observe the expected peak structure of the revivals in Fig. 1 and the loss of intermediate revival peaks at $T_{12}/2$ in Fig. 2 (a). The time scale on which the revivals occur is proportional to $\epsilon^{-1/2}$ and of crucial impact to experimental measurements: conservation of coherence has been shown for ϵ up to 150 kicks (see 10) with cold atoms, making an observation of the revivals for reasonable $\epsilon \lesssim 0.01$ possible. Earlier realizations of the QKR were implemented using cold atoms 7, 12, 14 with broad distributions in quasi-momentum. Nowadays, much better control of quasi-momentum is provided by using Bose-Einstein condensates (see 13, 16), which allows for a restriction in β up to 0.2 % (as achieved in 16) of the Brillouin zone. This would allow to verify our results by conveniently reducing the intervals in quasi-momentum and thus retracing the revivals with period $T_{12}/2$ to the exactly resonant and the revivals with period T_{12} to the...
The phase space induced by (5), and (b) $\Delta \beta = 1$, covering the full phase space, compared with the smoothed (see caption of Fig. 1) version of eq. (11) (solid black lines). In (a) the intermediate revival peaks observed in Fig. 1 disappear as predicted by (11). The dashed line in (a) reproduces the smoothed analytic formula from Fig. 1. For β distributed over the full Brillouin zone in (b), the revivals are barely visible since the average includes many nonresonant rotors performing rotational motion in phase space, which is not described by our theory valid just for the librational island motion.

Support by the Excellence Initiative through the Global Networks Mobility Measures and the Heidelberg Graduate School of Fundamental Physics (DFG grant GSC 129/1), and by a Short Visit Grant (DAAD) is acknowledged.

[1] D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 2008).
[2] T. Gorin et al., Phys. Rep. 435, 33 (2006).
[3] P. Buonsante and A. Vezzani, Phys. Rev. Lett. 98, 110601 (2007).
[4] P. Plötz et al., preprint submitted to Europhys. Lett. (2009).
[5] C. Dembowski et al., Phys. Rev. Lett. 93, 134102 (2004); R. Höhmann et al., Phys. Rev. Lett. 100, 124101 (2008).
[6] M. F. Andersen et al., Phys. Rev. Lett. 97, 104102 (2006).
[7] S. Schlunk et al., Phys. Rev. Lett. 90, 054101 (2003).
[8] S. Wu et al., Phys. Rev. Lett. 103, 034101 (2009).
[9] F. M. Izrailev, Phys. Rep. 196, 299 (1990); S. Fishman, in Quantum Chaos, Proc. Int. School of Phys. Enrico Fermi, edited by G. Casati et al. (IOS, Amsterdam, 1993).
[10] S. Wimberger et al., Nonlinearity 16, 1381 (2003).
[11] S. Wimberger and A. Buchleitner, J. Phys. B 39, L145 (2006).
[12] W. H. Oskay et al., Opt. Commun. 179, 137 (2000); M. B. d’Arcy et al., Phys. Rev. Lett. 87, 074102 (2001); M. Sadgrove et al., Phys. Rev. E 78, 025206 (2008).
[13] G. J. Duffy et al., Phys. Rev. E 70, 056206 (2004); I. Dana et al., Phys. Rev. Lett. 100, 024103 (2008).
[14] M. Sadgrove et al., Phys. Rev. Lett. 94, 174103 (2005); S. Wimberger et al., Phys. Rev. A 71, 053404 (2005); S. Wimberger and M. Sadgrove, J. Phys. A 38, 10549 (2005).
[15] E. Lundh and M. Wallin, Phys. Rev. Lett. 94, 110603 (2005); I. Dana and D. L. Dorofeev, Phys. Rev. E 74, 045201 (2006); J. F. Kanem et al., Phys. Rev. Lett. 98, 083004 (2007); M. Lepers et al., Phys. Rev. A 77, 043628 (2008); P. L. Halkyard et al., Phys. Rev. A 78, 063401 (2008); M. Sadgrove and S. Wimberger, New J. Phys. 11, 083027 (2009).
[16] C. Ryu et al., Phys. Rev. Lett. 96, 160403 (2006).
[17] M. K. Oberthaler et al., Phys. Rev. Lett. 83, 4447 (1999).
[18] S. Fishman et al., Phys. Rev. Lett. 89, 084101 (2002); J. Stat. Phys. 110, 911 (2003).
[19] S. Schlunk et al., Phys. Rev. Lett. 90, 124102 (2003).
[20] A. Buchleitner et al., Phys. Rev. Lett. 96, 164101 (2006); I. Guarnieri and L. Rebuzzini, Phys. Rev. Lett. 100, 234103 (2008).
[21] S. Wimberger et al., Phys. Rev. Lett. 92, 084102 (2004).
[22] G. Benenti et al., Phys. Rev. E 68, 036212 (2003).
[23] R. Sankaranarayanan and A. Lakshminarayan, Phys. Rev. E 68, 036216 (2003).
[24] F. Haake, Quantum signatures of chaos (Springer, Berlin, 2000); L. S. Schulman, Techniques and applications of path integration (Wiley, New York, 1981).