Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
REVIEW

Severe acute respiratory syndrome coronavirus 2-related multisystem inflammatory syndrome in children mimicking Kawasaki disease

Syndrome multi-systémique inflammatoire lié au SARS-CoV-2 chez l’enfant mimant un syndrome de Kawasaki

Jean-Christophe Mercier a, b, *, Naim Ouldali c, Isabelle Melki c, d, Romain Basmaci e, f, Michael Levy g, Luigi Titomanlio h, Constance Beyler i, Ulrich Meinzer c, j

a Université de Paris, 75006 Paris, France
b AP—HP et ARS Île de France, 93200 Saint-Denis, France
c Service de Pédiatrie Générale, Hôpital Robert Debré, 75019 Paris, France
d Centre de Référence pour les Maladies Rhumatologiques Auto-Immunes et Systémiques (RAISE), Institut IMAGINE, 75015 Paris, France
e Service de Pédiatrie-Urgences, Hôpital Louis-Mourier, AP—HP, 92700 Colombes, France
f Université de Paris, Inserm, Infection-Antimicrobials-Modelling-Evolution (IAME), UMR-1137, Université de Paris, Hôpital Bichat, 75018 Paris, France
g Service de Médecine Intensive-Réanimation Pédiatriques, Hôpital Robert-Debré, 75019 Paris, France
h Service des Urgences Pédiatriques, Hôpital Robert-Debré, 75019 Paris, France
i Service de Cardiologie Pédiatrique, Hôpital Robert-Debré, 75019 Paris, France
j Centre de Recherche sur l’Inflammation, Inserm UMR-1149, 75018 Paris, France

Received 11 March 2021; received in revised form 30 March 2021; accepted 1st April 2021
Available online 24 May 2021

Abbreviations: CI, confidence interval; COVID-19, coronavirus disease 2019; ECMO, extracorporeal membrane oxygenation; IL, interleukin; IQR, interquartile range; IVIG, intravenous immunoglobulin; KD, Kawasaki disease; KDSS, Kawasaki disease shock syndrome; MIS-C, multisystem inflammatory syndrome in children; PCR, polymerase chain reaction; PICU, paediatric intensive care unit; PIMS-TS, paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TSS, toxic shock syndrome.

* Corresponding author at: 47, rue Copernic, 75116 Paris, France.
E-mail address: jean-christophe.mercier@sfr.fr (J.-C. Mercier).

https://doi.org/10.1016/j.acvd.2021.04.005
1875-2136/© 2021 Elsevier Masson SAS. All rights reserved.
Background

While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic was spreading worldwide, with more than 130 million people infected by April 2021 and a death toll of more than 2.7 million people, children accounted for only a small fraction (0.2%) of infected patients [1]. Most of the time these children presented with mild symptoms of viral upper and/or lower respiratory tract infection, including short-lasting fever, dry cough, fatigue, myalgias and/or cephalalgia requiring, in the worst cases, low-flow oxygen therapy and a few days of hospitalization [2]. Mortality rates were low, ranging from 0.02% in 5015 children with mild disease to 2% in 319 children with severe disease and/or underlying chronic diseases, including obesity [3].

However, clusters of children developing “cardiogenic shock” (i.e. shock associated with low left ventricular ejection fraction and elevated cardiac biomarkers) together with unusually low diastolic pressure suggestive of associated “toxic shock” [4] and other features similar to Kawasaki disease (KD) (high fever, cutaneous rash and conjunctival injection) were described in England, Italy, France and the USA. Two facts were particularly striking: (1) this new syndrome—called either “paediatric inflammatory multi-system syndrome temporarily associated with SARS-CoV-2” (PIMS-TS) in the UK or “multisystem inflammatory syndrome
in children’’ (MIS-C) in the USA—occurred 2 to 4 weeks after an episode of SARS-CoV-2 infection; and (2) the syndrome included high levels of inflammatory markers, such as C-reactive protein, ferritin and D-dimers, highly suggestive of ‘‘cytokine storming’’ [5]. Although inotropes or vasopressors were initially prescribed in most cases, hypotension was often responsive to fluid resuscitation. Furthermore, cardiac function improved rapidly after intravenous immunoglobulins (IGIVs) and often steroids and sometimes biotherapies. Lastly, unlike adults, cardiac function normalized rapidly within a few days. However, coronary artery wall ultrasound brightness and sometimes dilation of its proximal part, as seen in KD, were noticed, justifying long-term follow-up.

Children are indeed less susceptible to SARS-CoV-2

Several explanations have been proposed to account for the apparent paradox between the frequent viral respiratory diseases observed in children all year round, but particularly during winter, e.g. human rhinoviruses (Groups A, B and C, > 100 serotypes), respiratory syncytial viruses (A & B), influenza viruses (A & B, several subtypes), parainfluenza viruses (type 3 being most common), human metapneumoviruses (subgroups A & B), adenoviruses (> 50 serotypes), enteroviruses (echo & coxsackie) and common coronaviruses (OC43, 229E, NL63 and HKU1) [6], and the new SARS-CoV-2. One explanation lies in the fact that SARS-CoV-2 infects epithelial respiratory cells through angiotensin converting enzyme-2 receptors, which are less numerous and mature in children than in adults [7].

The extent to which children and adolescents are infected by and transmit SARS-CoV-2 is unclear. The role of children and adolescents in the transmission of SARS-CoV-2 depends on susceptibility, symptoms, viral load, social contact patterns and behaviour. To systematically review the susceptibility to and transmission of SARS-CoV-2 among children and adolescents compared with adults, a total of 13,926 studies were identified through PubMed or medRxiv up to 28 July 2020 [8]. A total of 32 studies comprising 41,640 children and adolescents and 168,945 adults met the inclusion criteria, including 18 contact-tracing studies and 14 population-screening studies. The pooled odds ratio of being an infected contact in children compared with adults was 0.56 (95% confidence interval (CI) 0.37–0.95), with substantial heterogeneity (I² = 94.6%). Three school-based contact-tracing studies found minimal transmission from child cases, although seroprevalence in adolescents appeared similar to adults. The recent diffusion of SARS-CoV-2 new variants in the community, such as B1.1.7, which is more contagious, did not result in an appreciably different clinical course to the original strain in children and young people [9].

MIS-C

Mid-April 2020, the South Thames Retrieval Service, London, referred eight children with shock associated with elevated cardiac biomarkers (i.e. troponin and B-type natriuretic peptide) and inflammatory markers (e.g. C-reactive protein, ferritin and D-dimers) over just 10 days, compared with the usual 1–2 monthly cases of KD [10]. Remarkable were both the clinical features (e.g. high fever lasting >4 days, diarrhoea, cutaneous rash and conjunctivitis), similar to KD, and the unusually low diastolic pressure as seen in toxic shock syndrome (TSS), caused by TSS toxin 1 released by methicillin-resistant *Staphylococcus aureus* or Group A Streptococcus [4]. Six of these children were of Afro-Caribbean descent, and four were obese (body mass index >25 kg/m²). Although there was no primary respiratory failure, most children were intubated and mechanically ventilated because of shock. Most required vasopressors (e.g. norepinephrine and/or milrinone), and one ultimately required extracorporeal membrane oxygenation (ECMO) support. All children tested negative for SARS-CoV-2 in either nasopharyngeal swabs or bronchoalveolar lavage, but four had known parental exposure. All children were given IGIVs (2 g/kg) within the first 24 hours and antibiotic coverage, including ceftriaxone and clindamycin. Subsequently, six children were given oral aspirin (50 mg/kg/day). A common echocardiographic finding was echo-bright coronary vessels, which progressed to giant coronary aneurysms in one patient, 1 week after hospital discharge. All the children, except the one on ECMO who died from a brain haemorrhage, were actually discharged from the paediatric intensive care unit (PICU) after 4 to 6 days.

In France, 35 children with shock associated with severe left ventricular dysfunction and marked inflammatory syndrome were identified retrospectively in 14 French PICUs over 2 months [11]. The median age at admission was 10 years (range 2–16 years). Co-morbidities were present in 28%, including asthma and being overweight. Gastrointestinal symptoms were predominant at the early stage, associated with clinical signs suggestive of KD, i.e. skin rash, conjunctivitis and red and cracked lips. Left ventricular ejection fraction was <30% in one third of the cases; 80% required inotropic support and 28% went on ECMO. Inflammatory markers were suggestive of cytokine storm [median interleukin (IL)-6 135 pg/mL; interquartile range (IQR) 87–115 pg/mL] and macrophage activation (D-dimers 5284 mg/L; IQR 4069–9095 mg/mL). B-type natriuretic peptide was markedly elevated (5743 pg/mL; IQR 2648–11,909 pg/mL), as was high-sensitivity troponin (347 ng/L; IQR 186–1267 ng/L). Thirty-one of 35 patients (88%) tested positive for SARS-CoV-2 infection by polymerase chain reaction (PCR) of nasopharyngeal swabs or serology. All patients received IGIV, and one third received adjunctive steroid therapy. No patient died, and all patients supported by ECMO were successfully weaned off. The median time to full recovery was rather short (2 days; IQR 2–5 days), as found in another case series of acute myocarditis and MIS‐C where the patients recovered fully without the need for ECMO [12].

A time-series analysis at Robert Debré Hospital in the Paris area, a French epicentre of the coronavirus disease 2019 (COVID-19) first wave outbreak, recorded the number of hospital admissions to the Paediatric Emergency Department for KD over the past 15 years [13]. Between 01 Dec 2005 and 20 May 2020, 230 patients were diagnosed as having KD, which was estimated by the quasi-Poisson model as 1.2 per month (IQR 1.1–1.3). In April 2020, a rapid increase of KD related to SARS-CoV-2 was identified [six cases per
Table 1 Clinical and laboratory features of multisystem inflammatory syndrome in children [16], Kawasaki disease [15], Kawasaki disease shock syndrome [4] and toxic shock syndrome [16].

	MIS-C	KD	KDSS	TSS
Age	> 8 years	< 5 years	At least four among:	Any age
Fever	> 5 days	> 5 days	exanthem;	> 39 °C
Suggestive signs	At least one among:	At least four among:	conjunctival injection;	At least one among:
	exanthem;	exanthem;	cracked lips;	diffuse erythromelias;
	conjunctival hyperaemia;	conjunctival injection;	cervical adenopathy;	desquamation of
	cracked lips;	cracked lips;	peeling extremities	extremities;
	cervical adenopathy	Acute myocarditis;	Acute myocarditis;	conjunctival hyperaemia
		hypotension	shock	HypotA (diastolic)
Cardiac dysfunction	Acute myocarditis;	10%	Diarrhoea; vomiting	None
	hypoT A (diastolic)			
Coronary dilation	Diarrhoea; vomiting	10%	Diarrhoea; vomiting	
Gastrointestinal	Elevated CRP; lymphopenia;	Elevated CRP; arthralgias		
Musculoskeletal	elevated D-dimers;	Elevated CRP; lymphocytosis;		
Inflammatory markers	hypoalbuminaemia	thrombocytosis;		
	Elevated BNP; troponin	hypoalbuminaemia		
Cardiac biomarkers	SARS-CoV-2 PCR or serum	So far none	So far none	Blood cultures:
Aetiology				Group A Streptococcus
Treatment	Inotropes + fluids; IVIGs + steroids	Antiplatelets;	Inotropes;	Staphylococcus aureus
		IVIGs ± steroids	IVIGs ± steroids	(TSS-1)
				Inotropes + fluids; IV
				Antibiotics (ceftriaxon
				+ clindamycin)

BNP: B-type natriuretic peptide; CRP: C-reactive protein; hypoT A: hypotension; IV: intravenous; IVIG: intravenous immunoglobulin; KD: Kawasaki disease; KDSS: Kawasaki disease shock syndrome; MIS-C: multisystem inflammatory syndrome in children; PCR: polymerase chain reaction; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TSS: toxic shock syndrome; TSS-1: toxic shock syndrome toxin-1.

month; 497% increase (95% CI 72—1082); P = 0.0011), starting 2 weeks after the peak of the pandemic. SARS-CoV-2 was actually the only virus circulating during the period, and was found in eight of 10 patients (80%) with KD, with positive PCR or serology. A second peak of hospital admissions as a result of KD was also observed in December 2009 [six cases per month; 365% increase (95% CI 31—719); P = 0.0053], concomitant with the influenza A H1N1 pandemic.

Fifty-eight children [median age 9 years; IQR 5.7—14.0 years; 33 (57%) girls; 40 (60%) of African or Asian descent] from eight hospitals in England were admitted between 23 March and 16 May 2020 with persistent fever and laboratory evidence of inflammation, meeting the published definition of PIMS-TS [14]. All children presented with persistent fever for 3 to 19 days and a variable combination of vomiting [26/58 (45%)], abdominal pain [31/58 (53%)] and diarrhoea [30/58 (52%)]. Rash was present in 30 of 58 (52%) cases, and conjunctival injection in 26 of 58 (45%) cases. Laboratory evaluation was consistent with marked inflammation, with median C-reactive protein 229 mg/L (IQR 156—338 mg/L) and ferritin 610 μg/L (IQR 359—1280 μg/L). Of the 58 children, 29 developed shock that required inotropic support and fluid resuscitation, including 23/29 (79%) who received mechanical ventilation. Thirteen children met the American Heart Association definition of KD [15]; 23 had fever and inflammation without features of shock and KD. Comparison of PIMS-TS (n = 58) with other cohorts of KD (n = 1132), KD shock syndrome (KDSS) (n = 45) and TSS (n = 37) showed differences in clinical and laboratory features that suggest that this new disorder differs from other paediatric inflammatory entities (Table 1). PIMS-TS generally occurred in children older than those with KD and KDSS, and with different laboratory features (Fig. 1).

Similar cases, this time quoted as MIS-C, were described in 53 paediatric health centres across the USA [16]. Case definition included six criteria: age < 21 years, fever that lasted for at least 24 hours, laboratory evidence of inflammation, evidence of infection with SARS-CoV-2 based on reverse transcription PCR, antibody testing or exposure to persons with COVID-19 in the past month, multisystem organ involvement and serious illness leading to hospitalization (Table 1). From 15 March to 20 May 2020, 186 children with MIS-C were identified: 115 (62%) patients were male; 135 (73%) were previously healthy; and 131 (70%) were positive for
SARS-CoV-2 by reverse transcription PCR or antibody testing. Most patients had elevations in at least four markers of inflammation. Organ-system involvement included the gastrointestinal system in 171 patients (92%), cardiovascular in 149 (80%), haematological in 142 (76%), mucocutaneous in 137 (74%) and respiratory in 131 (70%). The median duration of hospitalization was 7 days (IQR 4–10 days); 148 (80%) patients were admitted to the PICU, 37 (20%) were mechanically ventilated, 90 (48%) received vasoactive support and four (2%) died. KD-like features were documented
in 74 (40%) patients, and coronary artery aneurysms (z scores ≥ 2.5) in 15 (8%). The use of immunomodulating therapies was common: IVIG in 144 (77%), glucocorticoids in 91 (49%) and IL-6 or IL-1Ra inhibitors in 38 (20%). Remarkably, MIS-C peaked about 1 month after the nadir of the first wave of the pandemic in the USA.

To address the burden of MIS-C in France, a nationwide prospective surveillance of children hospitalized with SARS-CoV-2 infection was supported by "Santé Publique France" and the French Paediatric Society [17]. Likewise, a sharp increase in the incidence of MIS-C cases occurred about 3 to 4 weeks after the first and second waves of the SARS-CoV-2 pandemic in France (Fig. 2) [18]. Taking advantage of this national database that included 181 children with suspected MIS-C, treatment with IVIG and methylprednisolone versus IVIG alone was associated with a lower risk of treatment failure (odds ratio 0.25, 95% CI 0.09–0.70; P = 0.008) and a lower risk of use of second-line therapy (odds ratio 0.21, 95% CI 0.06–0.61; P = 0.004), haemodynamic support, acute left ventricular dysfunction and median duration of stay in the PICU (4 vs. 6 days) [19].

MIS-C and KD: Similar or different pathophyslogies?

The epidemiology, putative pathophysiology, clinical and biological features and current treatment protocols for MIS-C associated with SARS-CoV-2 have been reviewed recently [20]. Key messages are as follows: (1) although SARS-CoV-2 infections in children are generally mild and non-fatal, there is a growing recognition of a paediatric inflammatory multisystem syndrome temporarily associated with SARS-CoV-2 (PIMS-TS), also known as multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19, which can lead to serious illness and long-term side-effects; (2) clinical and laboratory features of MIS-C (Fig. 3) are similar to those of KD, KDSS and TSS, but this syndrome has distinct features and needs a clear clinical and pathophysiological definition; (3) MIS-C might be distinct from KD, with features including age at onset > 7 years, a higher proportion of African or Hispanic children affected and diffuse cardiovascular involvement, suggestive of a generalized immune-mediated disease; (4) the pathophysiology of MIS-C is still unclear, and possible mechanisms include antibody or T-cell recognition of self-antigen (viral mimicry of the host), resulting in autoantibodies, antibody or T-cell recognition of viral antigens expressed on infected cells, formation of immune complexes that activate inflammation and viral superantigen sequences that activate host immune cells; (5) most cases of MIS-C associated with COVID-19 were managed using the standard protocols for KD, with inotropic and vasoactive agents often required in patients with cardiac dysfunction and hypotension, and with anticoagulation also used frequently (clinical research is required to prove the effectiveness and safety of these treatments); and (6) the medium- to long-term outcomes of MIS-C, such as the sequelae of coronary artery aneurysm formation, remain unknown, and close follow-up is important [21].

For almost half a century, the aetiology of KD has remained elusive. Interestingly, a prospective population survey was carried out in the UK and Ireland from 2013 to 2015 [22]. Five hundred and fifty-three cases were notified: 389 had complete KD, 46 had atypical KD and 116 had incomplete KD. Presentation was highest in January and in rural areas. Most children were white (64%), but Chinese and Japanese Asians were over-represented, as were black African or African Asian mixed-race children. Many of these features are also seen in studies from other countries, including the majority of cases being < 5 years of age, seasonal occurrence (with more cases in winter and spring), a higher proportion of cases living in rural areas relative to the population distribution and increased proportions of Asians and Africans, suggesting a genetic background. Recently, Rowley et al. isolated peripheral blood plasmablasts from children with KD 1–3 weeks after onset, and prepared 60 monoclonal antibodies [23]. Thirty-two monoclonal antibodies from nine of 11 patients recognized antigens within intracytoplasmic inclusion bodies in ciliated epithelial cells of fatal cases. Five of these monoclonal antibodies, from three patients
with coronary artery aneurysms, recognized a specific peptide that blocks binding to inclusion bodies. Sera from five of eight patients with KD, day ≥ 8 after illness onset, compared with none of seven infant controls (P < 0.01) recognized the KD peptide antigen. Whether the protein epitope derives from a previously unidentified virus remains to be determined. However, monoclonal antibodies recognized related peptides of hepacivirus C NS4A using protein phase array. Thus, many lines of evidence now support a ubiquitous viral agent as the cause of KD in genetically susceptible children.

The immunology of MIS-C with COVID-19 has been recently assessed by analyses of blood immune cells, cytokines and autoantibodies in healthy children, children with KD disease enrolled before COVID-19, children infected with SARS-CoV-2 and children presenting with MIS-C [24]. The inflammatory response in MIS-C differs from the cytokine storm of severe acute SARS-CoV-2, shares several features with KD, but also differs from this condition with respect to T-cell subsets, IL-17A and biomarkers associated with arterial damage. Finally, autoantibody profiling suggests multiple autoantibodies, and identified endoglin—a glycoprotein expressed by endothelial cells and necessary for structural integrity of arteries—as possibly being involved in the pathogenesis of MIS-C.

Conclusions

Although children are generally less susceptible to SARS-CoV-2, and are less sick with very low mortality, a few may develop shock with cardiac dysfunction and diastolic hypotension that requires vasoactive agents and fluid resuscitation. The 2- to 4-week gap between the initial COVID-19 viral phase and the hyperinflammatory phase leads to speculation about the complex interplay between the host immune response, viral antigens and autoimmunity, and similarities or dissimilarities between MIS-C and KD. However, both entities share common therapeutic approaches, including IVIGs and/or corticosteroids, with sometimes a requirement for biotherapies. Nevertheless, the medium- and long-term outcomes of this new disease, particularly

Figure 3. Pooled meta-analysis of patient characteristics in multisystem inflammatory syndrome in children associated with severe acute respiratory syndrome coronavirus 2 [20] (reproduced with permission). CI: confidence interval; RT-PCR: reverse transcription polymerase chain reaction.
regarding coronary artery aneurysms, remain unknown, and close follow-up is important until adult age.

Sources of funding

None.

Disclosure of interest

The authors declare that they have no competing interest.

References

[1] Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA 2020;323:1239—42.
[2] Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med 2020;382:1663—5.
[3] Bailey LC, Razzaghi H, Burrows EK, et al. Assessment of 135794 pediatric patients tested for severe acute respiratory syndrome coronavirus 2 across the United States. JAMA Pediatr 2021;175:176—84.
[4] Lappin E, Ferguson AJ. Gram-positive toxic shock syndromes. Lancet Infect Dis 2009;9:281—90.
[5] Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020;368:473—4.
[6] Meissner HC. Viral Bronchiolitis in children. N Engl J Med 2016;374:62—72.
[7] Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA 2020;323:2427—9.
[8] Viner RM, Mytton OT, Bonell C, et al. Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: a systematic review and meta-analysis. JAMA Pediatr 2021;175:143—56.
[9] Brookman S, Cook J, Zucherman M, Broughton S, Harman K, Gupta A. Effect of the new SARS-CoV-2 variant B.1.1.7 on children and young people. Lancet Child Adolesc Health 2021;5:e9—10.
[10] Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020;395:1607—8.
[11] Belhadjer Z, Meot M, Bajolle F, et al. Acute heart failure in multisystem inflammatory syndrome in children in the context of global SARS-CoV-2 pandemic. Circulation 2020;142:429—36.
[12] Grimaud M, Starck J, Levy M, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care 2020;10:69.
[13] Ouldali N, Pouletty V, Mariani P, et al. Emergence of Kawasaki disease related to SARS-CoV-2 infection in an epicentre of the French COVID-19 epidemic: a time-series analysis. Lancet Child Adolesc Health 2020;4:662—8.
[14] Whittaker E, Bamford A, Kenny J, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA 2020;324:259—69.
[15] McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the american heart association. Circulation 2017;135:e927—99.
[16] Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. Children and adolescents. N Engl J Med 2020;383:334—46.
[17] Ouldali N, Yang DD, Madhi F, et al. Factors associated with severe SARS-CoV-2 infection. Pediatrics 2021:147.
[18] Belot A, Levy-Bruhl D. French Covid-19 pediatric inflammation consortium. Multisystem inflammatory syndrome in children in the United States. N Engl J Med 2020;383:1793—4.
[19] Ouldali N, Toubiana J, Antona D, et al. Association of intravenous immunoglobulins plus methylprednisolone vs immunoglobulins alone with course of fever in multisystem inflammatory syndrome in children. JAMA 2021;325:855—64.
[20] Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis 2020;20:e276—88.
[21] Henderson LA, Canna SW, Friedman KG, et al. American College of Rheumatology Clinical guidance for multisystem inflammatory syndrome in children associated with SARS-CoV-2 and hyperinflammation in pediatric COVID-19: version 1. Arthritis Rheumatol 2020;72:1791—805.
[22] Tulloh RMR, Mayon-White R, Harnden A, et al. Kawasaki disease: a prospective population survey in the UK and Ireland from 2013 to 2015. Arch Dis Child 2019;104:640—6.
[23] Rowley AH, Baker SC, Arrollo D, et al. A protein epitope targeted by the antibody response to Kawasaki Disease. J Infect Dis 2020;222:158—68.
[24] Consiglio CR, Cotugno N, Sardh F, et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell 2020;183:968—81, e7.