Antioxidant Activity Test and Determination Of Total Flavonoids Levels of Kedondong Laut (Nothopanax fruticosum (L.) Miq) Leaf Extract

Virsa Handayani1, Andi Amaliah Dahlia2, Nurul Hasanah1, Aulia Nur Siti Nur Aisyah Amin2

1Division of Botany, Faculty of Pharmacy-Universitas Muslim Indonesia, Makassar, Indonesia
2Division of Pharmacognosy, Faculty of Pharmacy-Universitas Muslim Indonesia, Makassar, Indonesia

Article History:
Received on: 22 Oct 2019
Revised on: 05 Jan 2020
Accepted on: 06 Jan 2020

ABSTRACT
Kedondong laut (Nothopanax fruticosum (L.) Miq.) is a plant from the family Araliaceae. Leaves of kedondong laut useful for diuretics, analgesics, as an antidiarrheal and arthritis. The characteristics of sea kedondong are shrubs, yellowish green, the size of small flowers are green and the fruit is greenish purple and the height of the tree reaches up to 3 meters. Extracted by stratified extraction using solvents n-Hexane, ethyl acetate, and 96% ethanol with a percent render for n-Hexane solvent 1.504% ethyl acetate 2.784%, ethanol 3.698%. The results showed that each extract of kedondong laut leaves (Nothopanax fruticosum (L.) Miq) has antioxidant activity with IC50 value of n-hexane extract of 33.839 g/mL, ethyl acetate extract of 12.604 g/mL and ethanol extract of 2.222 g/mL. Kedondong laut leaves (Nothopanax fruticosum (L.) Miq) has higher antioxidant power than n-hexane extract and ethyl acetate, the total flavonoid compound content is 0.09902 gQE/g extract or 9.902%, ethyl acetate extract is equal to 0.13253 gQE/g extract or 13.253%, and 96% ethanol extract at 0.09345 gQE/g extract or 9.345%, ethyl acetate extract has a greater flavonoid content than n-hexane extract and 96% ethanol.

INTRODUCTION
Degenerative disease is a disease caused by a decrease in body cell function (Hasanah et al., 2017), generally caused by free radicals (Banjarnahor and Artanti, 2015). This situation will cause oxidative stress which is closely related to the causes of degenerative diseases such as osteoarthritis, cancer, diabetes, cardiovascular disease (Banjarnahor and Artanti, 2015). Antioxidants are compounds that have the ability to inhibit reactive oxygen species (ROS), reactive nitrogen species (RNS), and free radicals such as \(\text{H}_2\text{O}_2 \) (Handayani et al., 2014). Many studies mention that antioxidants have important roles in preventing the occurrence of degenerative diseases (Jatmika et al., 2015). One of the antioxidant compounds that is often studied is flavonoids, (Banjarnahor and Artanti, 2015) and plants that contain flavonoids have the efficacy of treating various degenerative diseases such as stroke, rheumatism, heart disease, and cancer (Handayani et al., 2016). The use of plants in the treatment of degenerative diseases is increasing in popularity. Kedondong laut leaves (Nothopanax fruticosum (L.) Miq) is one of a variety of plants that has this potential. Kedondong laut leaves (Nothopanax fruticosum (L.) Miq) contain flavonoid compounds, and identification results
show that the crystals resulting from isolation from the leaves of kedondong laut (*Nothopanax fruticosum* (L.) Miq) are flavonoid compounds (*Handayani et al.*, 2016). Flavonoids that have antioxidant activity include flavones, flavonoids, isoflavones, catechins, and chalcons (*Handayani et al.*, 2016).

The magnitude of the potential of kedondong laut of plants (*Nothopanax fruticosum* (L.) Miq) to be utilized properly and to add scientific data to these plants, research needs to be carried out to determine the antioxidant activity and levels of flavonoid kedondong laut leaves extract (*Nothopanax fruticosum* (L.) Miq)

RESEARCH METHOD

Sampling

The research sample is kedondong laut leaves (*Nothopanax fruticosum* (L.) Miq) obtained from Wajo District, South Sulawesi.

Samples of kedondong laut leaves (*Nothopanax fruticosum* (L.) Miq) collected, then wet-sorted by washing to remove impurities that are still attached to the sample. Then dry-sorted and reshaped by cutting the sample into small pieces. After that, the sample is dried in a drying cabinet with temperature of ± 50°C. Then it is pollinated and ready for extraction (*Handayani et al.*, 2016).

Extraction

The dried samples of kedondong laut leaves (*Nothopanax fruticosum* (L.) Miq) were weighed as much as 300 grams and put into maceration containers and added as much as 2200 mL solvent until the simplicia was soaked. Extraction was done by soaking the sample with n-hexane, ethyl acetate, and ethanol 96% extracts 10 mg each and dissolved with methanol p.a while stirred and homogenized then added to 10 mL. Then each stock solution was diluted by pipetting 0.05 mL; 0.1 mL; 0.15 mL ; 0.2 mL dan 0.25 mL to make 10 ppm, 20 ppm, 30 ppm, 40 ppm, dan 50 ppm then added with Methanol p.a up to 5 mL final volume (*Brand-Williams et al.*, 1995).

Antioxidant Test

Qualitative Test

n-Hexane, ethyl acetate, and ethanol extract were diluted using methanol, then dotted on F254 silica gel plate then eluted with mobile phase n-Hexane:ethyl acetate 8:2. The plate then was sprayed with 1,1- diphenyl-2-picrylhydrazyl (DPPH) and allowed to dry until dried and it was showing spot changing colour to yellow with purple background (*Syarif et al.*, 2016).

Quantitative Test

The making of 1,1- diphenyl-2-picrylhydrazyl (DPPH)

5 mg of DPPH was diluted with 100 mL of Methanol Pro Analysis in a volumetric flask to obtain 500 ppm of DPPH solution (*Handayani et al.*, 2016).

The Making of Sample Solution

1000 ppm stock solution was made by weighing 10 mg of Quercetin and dissolved with Methanol p.a while stirred and homogenized then add the volume up to 10 mL. Then each stock solution was diluted by pipetting 0.2 mL; 0.4 mL; 0.6 mL; 0.8 mL and 1.0 mL to make 2 ppm, 4 ppm, 6 ppm, 8 ppm, and 10 ppm then added with Methanol p.a up to 5 mL final volume (*Brand-Williams et al.*, 1995).

Maximum Wavelength Determination

DPPH stock solution 50 ppm was pipetted 4 mL then measured its absorbance at 516 nm wavelength (*Handayani et al.*, 2016).

Antioxidant Activity Measurement

2 mL sample solution was pipetted from each concentration, then add 2 mL of DPPH 50 ppm, incubated for 30 minutes at 37ºC, measure its absorbance at 516 nm wavelength. The same measurement was done to Quercetin as standard (*Handayani, Malik & Rumata 2016, h. 161). The percentage of DPPH inhibition was calculated by the equation (*Maisuthisakul et al.*, 2008).

Quantitative Flavonoid Test

Determination of the maximum wavelength (λ max) quercetin

Determination of the maximum wavelength of quercetin was carried out by running quercetin solutions in the wavelength range of 400-800 nm. The maximum absorbance obtained at a given wavelength is the maximum wavelength of quercetin (*Fawwaz et al.*, 2017).

Making a standard quercetin solution

Weighed as much as 10 mg of standard quercetin standard and dissolved in 10 mL p.a ethanol for 1000 ppm. From the standard solution of quarsetin 1000 ppm, pipetted as much as 1 mL and sufficient volume to 10 mL with p.a ethanol for 100 ppm.
a standard solution of 100 ppm quercetin, several concentrations were made, namely 6 ppm, 8 ppm, 10 ppm, 12 ppm, 14 ppm, and 16 ppm. From each concentration of the standard quercetin solution was added 3 mL ethanol, 0.2 mL AlCl₃, 0.2 mL potassium acetate 1 M, and mixed with aquabidestillate to 10 mL. Then incubated for 30 minutes at room temperature and absorbance was measured with a UV-Visible spectrophotometer at a wavelength of 429 nm (Dahlia et al., 2016).

Determination of total flavonoid levels

Determination of total flavonoid levels refers to the procedure of Chang et al. (2002) using quercetin as a standard. Weighed kedondong laut leaf extract (Notopanax fruticosum (L.) Miq.) As much as 10 mg and dissolved in 10 mL ethanol p.a. The solution was piped as much as 1 mL and added 3 mL ethanol, 0.2 mL AlCl₃, 0.2 mL potassium acetate 1 M, and 5.6 mL aquabidestillata. Then incubated for 30 minutes at room temperature and absorbance was measured with a UV-Visible spectrophotometer at a wavelength of 429 nm. Sample solutions were made in three replications (Dahlia et al., 2016).

RESULTS AND DISCUSSION

Making of kedondong laut leaves (Notopanax fruticosum (L.) Miq) extract was done by using the maceration method. The selection of extraction methods in this study was based on the sensitivity of antioxidant compounds to high temperatures, therefore the maceration method was chosen, where the extraction method was carried out without heating and carried out at room temperature (Pratiwi et al., 2016). The results obtained from extracting kedondong laut (Notopanax fruticosum (L.) Miq). Table 1 shows,

Based on the results of the research conducted qualitatively, it was shown that n-hexane extract, ethyl acetate, and 96% ethanol contained flavonoids, phenolics, and saponins. Based on the Handayani study, (2016) the same results were obtained because the three solvents had been able to attract compounds that have good antioxidant activity.

According to Phongpaichit et al. (2007), an antioxidant is very strong if the IC₅₀ value is less than 10 μg / mL, strong if the IC₅₀ value is between 10-50 μg / mL, medium if the IC₅₀ value ranges from 50-100 μg / mL, weak if the IC₅₀ value ranges from 100-250 μg / mL and is not active if the IC₅₀ is above 250 μg / mL.

Based on the results obtained IC₅₀ values of n-hexane extract of kedondong laut leaves (Notopanax fruticosum (L.) Miq) included in
strong antioxidants because IC₅₀ values range from 10-50 μg/mL 33.839 μg/mL, ethyl acetate extract has strong antioxidant activity with IC₅₀ value of 12.604 μg/mL, and ethanol 96% extract has very strong antioxidant activity with IC₅₀ value of 2.222 μg/mL. Whereas quercetin as the comparison standard has IC₅₀ value <10 μg/mL which is 0.965 μg/mL.

CONCLUSIONS

Based on the results of the research that has been done, it can be concluded. Antioxidant activity of kedondong laut leaves (Nothopanax fruticosum (L.) Miq) n-hexane extract has strong antioxidant activity with IC₅₀ value of 33.839 μg/mL, ethyl acetate extract has strong antioxidant activity with IC₅₀ value of 12.604 μg/mL, and 96% ethanol extract has very strong antioxidant activity with an IC₅₀ value of 2.222 μg/mL. Whereas quercetin as the comparison standard has IC₅₀ value <10 μg/mL which is 0.965 μg/mL.

A total flavonoid compound of 0.09902 gQE/g extract or 9.902%, ethyl acetate extract of 0.13253 gQE/g extract or 13.253%, and ethanol extract 96% of 0.09345 gQE/g extract or 9.345%.

REFERENCES

Banjarnahor, S. D., Artanti, N. 2015. Antioxidant properties of flavonoids. Medical Journal of Indonesia, 23(4):239–44.
Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity.
Chang, C. C., Yang, M. H., Wen, H. M., Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis, 10(3):178–182.
Dahlia, R. Y., Ahmad, A. A., Penetapan, A. R., Flavonoid, Dari, Etanolik, Mangga, B. 2016. Jurnal Fitofarmaka Indonesia, (1):1–1.
Fawwaz, M., Muljadi, D. S., Muflihunna, A. 2017. Kedelai Hitam (Glycine Soja) Terhidrolisis Sebagai Sumber Flavonoid Total. Jurnal Fitofarmaka Indonesia, 4(1):194–198.
Handayani, V., Ahmad, A. R., Sudir, M. 2014. Uji Aktivitas Antioksidan Ekstrak Metanol Bunga daun Patikala (Etingleria elatior. Jack) R.M.Sm) Menggunakan Metode DPPH. Pharmaceutical Sci-
ences and Research, 1(2):86–93.

Handayani, V., Malik, A., Rumata, N. R. 2016. Comparative Study of Antioxidant Activity of Red and Green Varieties of Grape Seed (Vitis Vinifera L.) using DPPH Reduction Method. Available Online WwW. Jocpr.Com Journal of Chemical and Pharmaceutical Research, 8(10):161–163.

Hasanah, M., Maharani, B., Munarsih, E. 2017. Daya Antioksidan Ekstrak dan Fraksi Daun Kopi Robusta (Coffea Robusta) Terhadap Pereaksi DPPH (2,2-difenil-1-pikrilhidrazil). Indonesian Journal of Pharmaceutical Science and Technology, 4(2):42–42.

Jatmika, C., Manggadani, B. P., Hayun, H., and 2015. Evaluasi Aktivitas Antioksidan Senyawa 4-[(E)-2-(4-okso-3-fenilkuinazolin-2-il)etenil]-benzensulfonamida dan Analognya. Pharmaceutical Sciences and Research, 2(3):143–151.

Maisuthisakul, P., Pasuk, S., Ritthiruangdej, P. 2008. Relationship between antioxidant properties and chemical composition of some Thai plants. Journal of Food Composition and Analysis, 21(3):229–240.

Phongpaichit, S., Nikom, J., Rungjindamai, N., Sakaryaroj, J., Hutadilok-Towatana, N., Rukachaisirikul, V., Kirtikara, K. 2007. Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunology & Medical Microbiology, 51(3):517–525.

Pratiwi, L., Fudholi, A., Martien, R., Pramono, S. 2016. Ethanol Extract, Ethyl Acetate Extract, Ethyl Acetate Fraction, and n-Heksan Fraction Mangosteen Peels (Garcinia mangostana L.) As Source of Bioactive Substance Free-Radical Scavengers. JPSCR : Journal of Pharmaceutical Science and Clinical Research, 1(2):71–71.

Syarif, R. A., Muhajir, M., Ahmad, A. R., Malik, A. 2016. Identifikasi Golongan Senyawa Antioksidan Dengan Menggunakan Metode Peredaman Radikal Dpph Ekstrak Etanol Daun Cordia myxa L. Jurnal Fitofarmaka Indonesia, 2(1).