Research article

An Improved RSP Method to Detect HpaI Polymorphism in the Apolipoprotein C-I Gene Promoter

Li Gao, Curt Gabriel, Tera Lavoie and Shui Qing Ye*

Address: Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
E-mail: Li Gao - lgao2@jhmi.edu; Curt Gabriel - cgabrie1@jhu.edu; Tera Lavoie - tlavoiel@jhmi.edu; Shui Ye* - syq@mail.jhmi.edu
*Corresponding author

Abstract

Background: An apolipoprotein C1 gene promoter polymorphism (CGTT insertion at position -317) is associated with familial dysbetalipoproteinaemia, cardiovascular diseases, and Alzheimer’s disease. Restriction site polymorphism (RSP) assays were previously established to detect this polymorphism. In this study, we introduce an improved RSP assay to detect this polymorphism.

Methods: This method included newly designed primers and only one round of PCR amplification which yields one short and specific APOC1 fragment followed by HpaI digestion. Briefly, It consists of three steps: 1) one round of PCR amplification of DNA sample, 2) HpaI enzyme digestion of PCR products, and 3) electrophoresis on an agarose gel to visualize the genotypes. This improved RSP method was applied to genotype 92 human samples collected from The Johns Hopkins Hospital.

Results: The observed allele frequencies for H1 and H2 from 92 genotyped human subjects were 0.707 and 0.293 respectively. The H2 allele frequency in the black subjects (0.350) was significantly (p = 0.024) higher than that in the white subjects (0.177). This method was more economical and convenient than the methods previously reported to detect this mutation in the APOC1 gene.

Conclusions: This assay will be readily applied to screen large sample sizes for population studies in a simple and cost effective way.

Background

Coronary artery disease (CAD) is the leading cause of death in the western world. High concentrations of blood cholesterol or triglycerides and low high density lipoprotein (HDL) are among independent risk factors to CAD [1]. DNA sequence variations at several genes (APOE, APOB and APOC3) have been implicated as genetic determinants of plasma lipid levels [2]. APOC1 is a constituent of triglyceride-rich lipoproteins and HDL. The APOC1 gene lies in a gene cluster containing APOE and APOC2 on chromosome 19. The presence of the HpaI I restriction site (CGTT insertion at position -317) in the APOC1 promoter has a significant effect on APOC1 transcription [3,4]. In one population-based genetic association study, this polymorphism was associated with lipoprotein metabolism disorder [5]. Recently the association of APOC1 gene polymorphism with both late-onset Alzheimer’s disease [6] and age-associated memory impairment [7] has been reported. Protection from obesity and insulin resistance also has been found in mice over expressing human APOC1 [8].

Nillesen et al [9] first designed one step PCR method followed by HpaI digestion genotyped this polymorphism.
However, 22 to 24 nucleotides out of 26 nucleotides in the 5′-upstream primer (5′-TTTGAGCTCGGCTCTTGA-GACAGGAA-3′) were identical to at least 9 different sequences from 9 different chromosomes, it yielded some non-specifically amplified fragments by PCR, thus made it difficult for the allele-calling. Later a two-step nested PCR followed by Hpa I digestion was developed to detect this polymorphism [4]. However, these two rounds of PCR amplification consume more reagents and need more time and labor to perform, thus exacting higher cost compared to one round of PCR amplification as reported here. In this study, we designed a pair of new oligoes using the computer to amplify a shorter and a unique fragment (195 bp) of APOC1 gene promoter. Only one round of PCR is needed to efficiently generate the enough and specific PCR product for the genotyping. Our new protocol consists of only three steps: one PCR amplification, Hpa I digestion and agarose gel electrophoresis. It’s much simpler, less costly and more suitable for clinical diagnostic tests. This improved RSP method was applied to genotype 92 human samples collected from the John Hopkins hospital. Two alleles, H1 (APOC-I HpaI-negative) and H2 (APOC-I HpaI-positive), were typed. Our genotype results, that the H1-allele frequency is 0.707 and the H2-allele frequency is 0.293, are in good agreement with the findings of Xu et al [4] and Hubacek et al [2]. This new RSP assay should facilitate the screening of this mutation in large populations and contribute to the understanding of the molecular mechanism underlying the association of this mutation with a number of diseased conditions.

Methods

Subjects

Umbilical cord blood was obtained from 92 subjects consisting of 53 males and 39 females, who were born at The Johns Hopkins Hospital. Among them, 30 were white Caucasians, 60 were African Americans, and 2 were other races. The samples were collected for The Johns Hopkins Study on the Fetal Origin of Atherosclerosis directed by Dr. Peter O Kwitterovich. Informed consents were obtained from the parents of each subject.

DNA preparation

DNA was isolated from cord white blood cells by using Easy-DNA Kit (Cat. No. K1800-01, Invitrogen, Carlsband, CA) by following the manufacture’s instruction. The amount of DNA in each sample was determined by measuring the optical density at 260-nm wavelength using a spectrophotometer (DU-640, Beckman Instrument, Inc., Fullerton, CA). DNA samples were stored at -80°C.

Genotyping

One third of the PCR product was digested with 5 U HpaI digestion and agarose gel electrophoresis. It’s much simpler, less costly and more suitable for clinical diagnostic tests. This improved RSP method was applied to genotype 92 human samples collected from the John Hopkins hospital. Two alleles, H1 (APOC-I HpaI-negative) and H2 (APOC-I HpaI-positive), were typed. Our genotype results, that the H1-allele frequency is 0.707 and the H2-allele frequency is 0.293, are in good agreement with the findings of Xu et al [4] and Hubacek et al [2]. This new RSP assay should facilitate the screening of this mutation in large populations and contribute to the understanding of the molecular mechanism underlying the association of this mutation with a number of diseased conditions.

Design and synthesis of PCR primers

The primers were designed using Primer 3 software (Primer 3, Ver.3, Whitehead Institute/MIT Center for Genome Research) based on the published human apoC1 genomic DNA sequence flanking the promoter region (GenBank accession: M20902). The primer sequences are as follows: 5′-sense, 5′-ATC GAT CAC GAC CCT CTC-3′, which corresponds to the nucleotide positions 38 to 55 (at -455 relative to the APOC1 gene start site); 3′ antisense, 5′-TCC CCC ACT CAG AAT GTA GC-3′, which corresponds the nucleotide positions 233 to 214 (at -260 relative to the APOC1 gene start site). The 5′ sense primer was the shortened version of the upstream internal primer published by Xu et al [4]. The primers were synthesized on an Applied Biosystems model 381A synthesizer in the DNA Synthesis and Analysis Core Facility, The Johns Hopkins University School of Medicine.

PCR amplification

PCR was carried out in 25 µl total volume containing 50 ng genomic DNA, 5 pmol of each primer, 0.2 mM of each dATP, dTTP, dCTP and dGTP, 1.5 mM MgCl2, and 1.25 U of Taq DNA polymerase (Cat. No. N808-0160, Perkin-Elmer, Foster City, CA). Thermal cycling was done in a Perkin-Elmer GeneAmp PCR System 9600 Thermal Cycler with an initial 2 min denaturation at 94°C followed by 35 cycles of denaturing at 94°C for 30 sec., annealing at 60°C for 30 sec., extending at 72°C for 1 min, and a final extension of 5 min at 72°C.

DNA was isolated from cord white blood cells by using Easy-DNA Kit (Cat. No. K1800-01, Invitrogen, Carlsband, CA) by following the manufacture’s instruction. The amount of DNA in each sample was determined by measuring the optical density at 260-nm wavelength using a spectrophotometer (DU-640, Beckman Instrument, Inc., Fullerton, CA). DNA samples were stored at -80°C.

Genotyping

One third of the PCR product was digested with 5 U HpaI digestion and agarose gel electrophoresis. It’s much simpler, less costly and more suitable for clinical diagnostic tests. This improved RSP method was applied to genotype 92 human samples collected from the John Hopkins hospital. Two alleles, H1 (APOC-I HpaI-negative) and H2 (APOC-I HpaI-positive), were typed. Our genotype results, that the H1-allele frequency is 0.707 and the H2-allele frequency is 0.293, are in good agreement with the findings of Xu et al [4] and Hubacek et al [2]. This new RSP assay should facilitate the screening of this mutation in large populations and contribute to the understanding of the molecular mechanism underlying the association of this mutation with a number of diseased conditions.

Design and synthesis of PCR primers

The primers were designed using Primer 3 software (Primer 3, Ver.3, Whitehead Institute/MIT Center for Genome Research) based on the published human apoC1 genomic DNA sequence flanking the promoter region (GenBank accession: M20902). The primer sequences are as follows: 5′-sense, 5′-ATC GAT CAC GAC CCT CTC-3′, which corresponds to the nucleotide positions 38 to 55 (at -455 relative to the APOC1 gene start site); 3′ antisense, 5′-TCC CCC ACT CAG AAT GTA GC-3′, which corresponds the nucleotide positions 233 to 214 (at -260 relative to the APOC1 gene start site). The 5′ sense primer was the shortened version of the upstream internal primer published by Xu et al [4]. The primers were synthesized on an Applied Biosystems model 381A synthesizer in the DNA Synthesis and Analysis Core Facility, The Johns Hopkins University School of Medicine.

PCR amplification

PCR was carried out in 25 µl total volume containing 50 ng genomic DNA, 5 pmol of each primer, 0.2 mM of each dATP, dTTP, dCTP and dGTP, 1.5 mM MgCl2, and 1.25 U of Taq DNA polymerase (Cat. No. N808-0160, Perkin-Elmer, Foster City, CA). Thermal cycling was done in a Perkin-Elmer GeneAmp PCR System 9600 Thermal Cycler with an initial 2 min denaturation at 94°C followed by 35 cycles of denaturing at 94°C for 30 sec., annealing at 60°C for 30 sec., extending at 72°C for 1 min, and a final extension of 5 min at 72°C.

DNA was isolated from cord white blood cells by using Easy-DNA Kit (Cat. No. K1800-01, Invitrogen, Carlsband, CA) by following the manufacture’s instruction. The amount of DNA in each sample was determined by measuring the optical density at 260-nm wavelength using a spectrophotometer (DU-640, Beckman Instrument, Inc., Fullerton, CA). DNA samples were stored at -80°C.
separation on a 2% agarose gel electrophoresis for 1 to 1.5 hours at constant voltage of 110 V. The gels were stained by 0.5 ug/ml of ethidium bromide. The image was captured on the thermal paper using the Eagle Eye II Still Video System (Stratagene, La Jolla, CA). The typical gel patterns of \(HpaI\) polymorphism are shown in Fig. 1. Lane 1 shows the homozygous H1/H1 genotype, lane 2 is the heterozygous H1/H2, and lane 3 is the homozygous H2/H2. Lane 4 is X174 DNA-haeIII Digest DNA ladder (Cat. No. 302-6S, Beverly, MA).

Statistical analysis

Statistical analysis with the Chi-square test was done using SigmaStat (ver2.03, SPSS, Inc., Chicago, IL, USA). Yates correction for continuity was used in calculating the test. \(P < 0.05\) was set to be significantly different.

Results

HpaI polymorphism in APOC1 gene promoter

An example of the gel pattern of each genotype is presented in Fig. 1. In the homozygous genotype H1/H1, where HpaI recognition sites are absent, no digestion of the PCR products occurs, and only one 195 bp band appears (lane 1). In homozygous genotype H2/H2, where HpaI recognition sites are present, the PCR products were completely digested into two small fragments: 137 and 58 bp, respectively (lane 3). In heterozygous genotype H1/H2, where the HpaI recognition site of one allele (H1) is absent and the HpaI recognition site of another allele (H2) is present, one allele was not digested and another allele was completely digested, so that all three possible fragments appear: 195, 137 and 58 bp, respectively (lane 2). This new protocol produces clear-cut results for genotypes.

Mutation frequency in the study group

92 USA subjects were genotyped (Table 1). The H1-allele frequency is 0.707 and the H2-allele frequency is 0.293. The observed heterozygosity was 0.370. The H1-allele frequency in the white subjects is 0.823 and the H2-allele frequency is 0.177. The H1-allele frequency in the black subjects is 0.650 and the H2-allele frequency is 0.350. The H2 allele frequency in the black subjects (0.350) was significantly \((p = 0.024)\) higher than that in the white subjects (0.177).

Discussion

An \(HpaI\) restriction fragment length polymorphism (RFLP) in the APOE-C1-C2 gene cluster on chromosome 19 was found to be strongly associated with familial dysbetalipoproteinaemia (type III hyperlipoproteinemia). Smit \textit{M et al} first localized the polymorphic \(HpaI\) site of \(APOC1\) gene promoter by using Southern blot analysis [10]. The exact localization was determined by building a restriction map of the APOE-C1-C2 gene cluster for the enzymes EcoRI, BamHI, HindIII and SalI, then subcloning and sequencing the \(SacI\) fragment, which contains the \(HpaI\) site. The \(HpaI\) site variably present at -317 relative to the \(APOC1\) gene is produced by a 4-bp CGTT insertion [3]. This Southern blot method was valuable for the identification of the \(HpaI\) polymorphism, but is not convenient for a routine diagnostic purpose. One step PCR method designed by Nillesen et al [9] in 1990 for genotyping \(APOC1\) \(HpaI\) polymorphism was not a convenient method because the 5'-upstream primer in its PCR reaction was highly homologous to several other gene sequences and generated some non-specifically amplified fragments, thus made it difficult for the allele-calling. Later a two-step nested PCR developed by Xu et al [4] exacted more reagents, more time and labor to perform. In this study, we designed a pair of oligos to amplify a shorter and a unique fragment (195 bp) of \(APOC1\) gene promoter. Only one round of PCR is needed to efficiently generate the enough and specific PCR product for the genotyping. Our new protocol consists of only three steps: one PCR amplification, \(HpaI\) digestion and agarose gel electrophoresis. It's much simpler, less costly and more suitable for clinical diagnostic tests. This type of RSP methods has been previously reported by our lab to detect other restriction site polymorphisms in genes related to cardiovascular and inflammation diseases [11–13].

Table 1: APOC1 Gene Allele Frequency in 92 Human Subjects

	Na	H1-allele	H2-allele	Total allelesb
Total	92	130 (0.707)	54 (0.293)	184 (1.000)
White	30	51 (0.823)	11 (0.177)	62 (1.000)
Black	60	78 (0.650)	42 (0.350)	120 (1.000)
P				\(= 0.024\)

a In the study group, 53 males, 39 females; 30 white Caucasians, 60 African Americans, 2 are other races whose allele frequencies were not calculated separately. b There are 48 people with the H1/H1 genotype: 26 are the black, 21 are the white and 1 is other race; 34 with H1/H2: 26 are the black, 7 are the white and 1 is other race; and 10 with H2/H2: 8 are the black and 2 are the white. The observed heterozygosity was 0.370 (34/92). c Black vs White.
We have applied this new RSP to detect the APOC1 HpaI polymorphism in 92 human subjects (Table 1) derived from The Johns Hopkins Study on the Fetal Origin of Atherosclerosis. Our findings that the H1-allele frequency is 0.707 and the H2-allele frequency is 0.293 are consistent with the previous reports by Xu et al.[4] who reported that in their population the allele frequencies for H1- and H2-allele were 0.72 and 0.27, respectively, and by Hubacek et al.[2] who found that the allele frequencies of their population for H1- and H2-allele were 0.75 and 0.25, respectively. We found that the H2 allele frequency in the black subjects (0.350) was significantly (p = 0.024) higher than that in the white subjects (0.177). Xu et al.[4] also reported that the H2 allele frequency in the black subjects (0.31) was higher than that in the white subjects (0.24). The larger and more population studies are needed to validate these observations.

Conclusions
Even until now, high throughput genotyping cores, which are in most cases dependent on the expensive equipments, are only available in major institutions and commercial companies. This new RSP method is readily useful in any individual lab. It will facilitate the screening of APOC1 gene promoter HpaI polymorphism in large and more populations and contribute to the understanding of the molecular mechanism underlying the association of this mutation with a number of diseased conditions.

Competing interests
None declared.

Authors’ contributions
LG carried out the PCR and HpaI digestion, and drafted the manuscript. CT and TL helped agarose electrophoresis experiments and data collection. SQY designed the RSP method and directed whole project.

Acknowledgements
This study was in part supported by Johns Hopkins Institutional Research Grant (Ye, SQ), a pilot project (Ye, SQ) in The Hopkins DK Center for the Analysis of Gene Expression (R24DK8757-01, NIDDK). We would like to thank Dr. Peter O. Kwiterovich for providing the study population, Donna Virgil for the sample coordination and Dr. Joe G.N. Garcia for his encouragement.

References
1. Wu LL: Review of risk factors for cardiovascular diseases. Ann Clin Lab Sci 1999, 29:127-133
2. Hubacek JA, Waterworth DM, Poleyde R, et al: Genetic determination of plasma lipids and insulin in the Czech population. Clin Biochem 2001, 34:113-118
3. Smit M, van der Kooijs-Meis E, Frants RR, et al: Apolipoprotein gene cluster on chromosome 19. Definite localization of the APOC2 gene and the polymorphic HpaI site associated with type III hyperlipoproteinemia. Hum Genet 1988, 78:90-93
4. Zheng F, Chevalier JA, Zhang, et al: An HphI polymorphism in the E-selectin gene is associated with premature coronary artery disease. Clin Genet 2001, 59:58-64
5. Klaren EC, Talmud P, Havekes L, Hansson G, Humphries SE, et al: A common restriction fragment length polymorphism of the human apolipoprotein E gene and its relationship to type III hyperlipidemia. Hum Genet 1987, 75:244-247
6. Kri, NS, Na DL, Kim DK, et al: Genetic association of an apolipoprotein C-I (APOC1) gene polymorphism with late-onset Alzheimer’s disease. Neurosci Lett 2002, 319:75-78
7. Bartres-Faz D, Clemente JC, Junque C, et al: APOE and APOC1 genetic polymorphisms in age-associated memory impairment. Neurogenetics 2001, 3:215-219
8. Jong MC, Yoshil PJ, Muurling M, et al: Protection from obesity and insulin resistance in mice overexpressing human apolipoprotein C-I. Diabetes 2001, 50:2779-2785
9. Nillesen WM, Smeets H, van Oost BA: Human ApoC1 HpaI restriction site polymorphism revealed by the polymerase chain reaction. Nucleic Acids Res 1990, 18:3428
10. Smit M, van der Kooijs-Meis E, Frants RR, et al: Apolipoprotein gene cluster on chromosome 19. Definite localization of the APOC2 gene and the polymorphic HpaI site associated with type III hyperlipoproteinemia. Hum Genet 1988, 78:90-93
11. Zheng F, Gabriel C, Batavia A, et al: A MnlI restriction site polymorphism in the interleukin-10 gene promoter. Biochem Genet 2001, 39:351-356
12. Zheng F, Chevalier JA, Zhang LQ, et al: An HphI polymorphism in the E-selectin gene is associated with premature coronary artery disease. Clin Genet 2001, 59:58-64
13. Ye SQ, Usher D, Virgil D, et al: A PstI polymorphism detects the mutation of serine318 to arginine in CD 42E gene – a risk factor for coronary artery disease. J Biomed Sci 1999, 6:8-21

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2350/3/13/prepub

Publish with BioMed Central and every scientist can read your work free of charge
"BioMedcentral will be the most significant development for disseminating the results of biomedical research in our lifetime."
Paul Nurse, Director-General, Imperial Cancer Research Fund

Publish with BMC and your research papers will be:
available free of charge to the entire biomedical community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours - you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/submission/
editorial@biomedcentral.com

[Page 4 of 4] (page number not for citation purposes)