Adoption of Climate Smart Agricultural Practices by Rice Farmers in Akwa Ibom State, Nigeria

Nsikak-Abasi A. Etim,1 Nyaudoh U. Ndaeyo2

1Department of Agricultural Economics and Extension, University of Uyo, P.M.B 1017, Uyo, Nigeria
2Department of Crop Science, University of Uyo, P.M.B 1017, Uyo, Nigeria

*Corresponding Author: Nsikak-Abasi A. Etim
Email: etimbobo@gmail.com

Article Info
Article history:
Received 4 August 2020
Received in revised form 18 August 2020
Accepted 25 August 2020

Keywords:
Adoption
Climate
Farmers
Production
Probit

Abstract
The rise in population amidst climate change has exerted undue pressure on food production and security. Rice production has also been adversely affected by rising temperature and varying rainfall resulting in reduced productivity. In order to cope with the negative impact of climate change events on rice production, farmers need strengthen and improve their adaptive capacity. Therefore, a study was conducted to empirically estimate the factors affecting the adoption of Climate Smart Agricultural (CSA) practices in rice production. Multistage sampling procedure was employed to select the representative rice farmers for the study. With the aid of oral interview and questionnaires, information were elicited from 90 farmers. Data were analyzed using descriptive statistical tools and univariate probit model. Results revealed that majority (62.5 percent) of rice farmers were women, 75 percent were married, 67.5 percent were within economically active age and 85 percent had post primary education. Findings further showed that education level of farmers, family size, farm income and access to information on climate change were positively and directly related to rice farmers willingness to adopt climate smart agricultural practices at 1 percent and 5 percent levels of significance respectively. Result also showed that about 55.85 percent of rice farmers in the study location received information on climate change from village meetings, friends, relatives and other farmers. Agricultural policies that aimed at increasing incomes of rice farmers and creating awareness on climate change will be rational decision.

Introduction
Climate change has been an issue of global concern among researchers, development practitioner sand policy makers. It is no longer news that changes in rainfall patterns and increasing temperatures have negatively impacted agricultural production and food systems (Etim et al., 2019). Despite this, the agricultural sector still remains the main stay of rural livelihood in Nigeria (Etim et al., 2019; Etim and Etim, 2020).

A number of substitute technologies to tackle this challenge have been proposed by (Teklewold et al., 2017; Tran et al., 2019). Earlier empirical studies by Etim et al., (2019) also suggested the development of sustainable farming systems that are resilient to effects of climate change through the adoption of climate smart agricultural (CSA) practices. However, several factors including farmers knowledge and educational level, cultural differences, resource availability, social and economic status have influenced the willingness of farmers to adopt new agricultural technologies.

ISSN 2721-1304 (Print), ISSN 2721-1207 (online)
Copyright © 2020, Journal La Lifesci, Under the license CC BY-SA 4.0
To guide policy makers in formulating policies and programs on appropriate climate smart agricultural (CSA) practices that will mitigate the adverse impact of climate change on rice production, an understanding of factors affecting the adoption of CSA practices is required. Etim et al., (2019) and Etim and Etim (2020) agreed that knowledge of CSA practices would strengthen and improve the adaptive capacity of farmers to cope with climate change events. Also, United Nations Development Program (2016) posited that mitigating climate change is the focal point of Sustainable Development Goals. Regrettably, there is paucity of information regarding the determinants of adoption of climate smart agricultural practices by rice farmers in Akwa Ibom State.

This study was therefore conducted to fill this lacuna by empirically estimating factors affecting the willingness of rice farmers to adopt climate smart agricultural practices in Akwa Ibom State, Nigeria. The underlying economic theory on factors that affect the decision to adopt climate smart agricultural (CSA) practices is hinged on the assumption that rice farmers are motivated by utility maximization (Adesina & Zinnah, 1993). Although not directly observed, the utility (uij) for a given farmer (i) to use a particular practice (j) can be defined as a farm-specific function of a vector of explanatory variables (x), and an error term with zero mean (eij). This function can be represented as

\[U_{ij} = \beta_j X_i + e_{ij} \]

Where \(j = 1 \) represents technology adoption and \(j=0 \) represents non-adoption. Thus, the ith farmer adopts \((j=1) \) if \(U_{i1} > U_{i0} \).

The Probit model is suitable for analyzing adoption decisions that have dichotomous values, but if the adoption choice has a continuous value range censored from below (and/or above) then the Tobit model is more appropriate. In this paper, focus is in analyzing only the binary adoption choice. Probit model is therefore operationalised.

Methods

Study Area

The study was carried out in Ini Local Government Area of Akwa Ibom State. Ini is circumscribed to the North, East and West by Abia State and to the South by Obot Akara, Ikono and Ibiono Ibom Local Government Areas of Akwa Ibom State. The it comprises 5 clans viz: Ikpe, Ikono, Iwerre, Itu Mbon Uso and Nkari. The people of Ini are of the Ibibio ethnicity. Ini is regarded as the food basket of the state with most inhabitants predominantly farmers. According to National Population Commission 2006, it has an estimated population of 99,196 with 52,644 males and 46,552 females. There are 2 distinct seasons namely: the short dry season and rainy season. Ini is situated in the tropical rainforest belt. The area is also characterized by heavy rains with annual precipitation ranging between 2000-3000 mm.

Sampling and Data Collection Procedure

The study utilized multistage sampling procedure in selecting the representative rice farmers. The first stage involved the purposive selection of 2 out of 5 clans in Ini. The second stage sampling was the selection of 5 villages per clan to make up 10. Lastly, 8 rice farmers were selected randomly per village to make a total of 80 farmers.

Theoretical Model

The univariate Probit regression model was employed to empirically establish vital factors most likely to affect the decision of farmers to adopt CSA practices. Studies by Rahm and...
Huffman, (1984); Hailu (1990); Etim and Benson (2016); Etim and Udoh (2018) have previously employed this model. The model is expressed mathematically as

$$
\Phi(\beta x) - \int_{-\infty}^{\beta x} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{t^2}{2} \right) dt
$$

Where $$- \infty (\beta x)$$ is normally distributed and represents the probability that the ith farmer will adopt in a given activity, $$\beta$$ is a vector of unknown coefficients; $$X_i$$ is a vector of characteristics of the ith farmer; t is a random variable distributed as a standard normal deviate, exp. is the exponential function. The probability of adopting CSA practices is the area under the standard normal distribution curve lying between $$- \infty$$ and $$\beta x_i$$. The larger the value of $$\beta x_i$$, the more likely a farmer is willing to adopt CSA practices.

Empirical Model Specification

The study employed the univariate PROBIT model to describe crucial factors likely to affect farmers’ willingness to adopt CSA practices in rice production. Identifying these factors as reported by farmers to affect their decision to adopt CSA practices would be a useful guide for the formulation of programs by policy makers.

The empirical model for willingness to adopt CSA practice in rice production is specified as

$$
Y_i^* = P(Y_i = 1) = \beta x_i + \epsilon_i
$$

Where $$Y_i$$ is the “Willingness to Adopt” (WTA) in rice production; $$Y_i^*$$ is the estimated value of $$Y_i$$ ($$Y_i^* = 1$$) if $$Y_i > 0$$, and $$\epsilon_i$$ is the error term which follows a normal distribution (mean $$\mu = 0$$, variance $$\sigma = 1$$). $$P$$ is the probability function, $$\beta$$ is the vector of parameters to be estimated. $$X_i$$ is the matrix of explanatory variables that affects the ith farmer’s willingness to adopt CSA practice in rice production.

The dependent variable $$Y_i$$ or WTA takes a value of 1 for farmers who are willing to adopt CSA practice in rice farming and 0 otherwise.

Table 1. Summary Statistics of Some Explanatory Variables

Dependent WTA	Willingness to Adopt CSA practice in Rice Production (1=Yes, 0=No)
Sex	Sex of the farmer (Dummy = 1 male, 0 if female)
Farming Experience Age	Experience of farmer in rice production (years)
Marital Status	Marital status of the farmer (1 = married, 0 if otherwise)
Education	Number of years of formal education
Family Size	Number of family members
Extension contact CSA information	Access of extension contact (Dummy = 1 if yes, 0 if otherwise)
Farm Income	Amount of Income to household in naira
Social Organization	Membership of social organization (Dummy = 1 if yes, 0 if otherwise)

Results and Discussion

Socio-economic Characteristics of Farmers

Figure 1 shows the sex of the farmers. Majority (62.5 percent) of the farmers were female whereas only 37.5 percent were male.
Figure 1. Sex of Rice Farmers

The age distribution of rice farmers shows a varied picture. Figure 2 revealed that majority (37.5 percent) of rice farmers were within the age range of 41-60 years whereas 30 percent were within the age range of 21-40 years. Only 10 percent were above 60 years. Result suggest that most of the women were within economically active age.

Figure 2. Age of Farmers

The marital status of farmers is shown in figure 3. Most (75 percent) of the farmers were married whereas 25 percent were single.
Figure 3. Marital Status of Rice Farmers
The highest educational level of farmers is revealed in figure 4. Result reveals that 52 percent of farmers had senior education, 32.5 percent had tertiary education whereas 15 percent had primary education. Results suggest that most of the farmers were literate.

Figure 4. Educational level of Farmers
Figure 5 shows the years of rice farming experience. About 27.5 percent, 35 percent and 37.5 percent had less than 10 years, 11-20 years and 21-30 years of experience respectively.
Figure 5. Years of Farming Experience

The farm size is shown in figure 6. About 50 percent cropped farmlands less than 1 hectare, whereas 40 percent cropped farms between 1 to 2 hectares. Only 10 percent of the farmers cultivated more 2 hectare of land. This result is in conformity with earlier empirical findings by Etim et al. (2017) (2019)

Figure 6. Size of Farmland

Figure 8 showed the different sources of information on climate change. Results show that 43.75 percent of the rice farmers received information on climate change from friends, relatives and other farmers, 25 percent obtained information via radio, 18.75 percent received information in village meetings while 12.50 percent of the rice farmers received information on climate change from extension personnel.
Determinants of the Willingness of Adopt CSA Practices in Rice Production

The result of the Probit estimates of the factors affecting rice farmers’ willingness to adopt CSA practices is presented in table 2. Results revealed from the Akaike information criterion (AIC) indicate that the model has a good fit. Studies by Etim and Udoh, 2018; Etim et al., 2019; Etim and Etim have documented that age could either have a positive or negative effect on the decision of farmers to adopt agricultural innovation.

The result in this study however, revealed that age with a coefficient of 0.3180 and is positively significantly positive effect (p<0.10) on farmers willingness to adopt CSA practices. This may not be unconnected to the fact that as the farmers grow older, there is more consciousness of the relevance of agricultural production with age based on experience. With a marginal effect of 0.0812, a unit increase in age of the farmer, will result in 8.12 percent rise in the probability of adopting CSA practices in rice production. The result of this study is synonymous with earlier empirical finding of Nnadi and Akwiwu (2005) (2008).

The variable education with a coefficient of 0.0772 is positive and significant (p<0.01). This is an indication that farmers who have reached some level of education are more likely to adopt CSA practices in rice production faster than the ones who are less educated. (Madukwe, 1995; Ayannale and Bamire, 1996; Lapar and Pandey (1999) in Philippines; Nkamleu and Adesina (2000) in Cameroon; Chianu and Tsuji (2004) in Nigeria; Chirwa (2005) in Malawi; Abdulai and Huffman (2005) in Tanzania; Etim et al., 2013; Etim and Benson, 2016; Etim and Udoh, 2018) obtained similar empirical results from their respective studies. Finding of this study is an indication that education is a valuable asset for technology adoption decisions. Studies by Weir and Knight, 2006; Martins et al., 2010, Etim and Udoh, 2018; Matthews-Njoku, 2005 support the fact that education stimulates the timeliness and willingness to adopt agricultural innovations.

The coefficient of family size is positive and significant (p<0.01) suggesting that farmers with larger family members are more likely to adopt innovations in rice production and vice versa. The marginal effect of 0.0281 imply that a unit increase in family members will cause a rise in the probability to adopt CSA practices in rice production by 2.81 percent. Larger family members indicates the availability of labour for participation in rice production. Finding is however, contrary to recent empirical result of Etim and Udoh (2018).
Farm income has a coefficient of 0.3191 and is positively significant (p<0.01). This means that farmers with higher income from farming were more likely to adopt CSA techniques in rice production. The marginal effect of farm income of 0.0116 indicates that a naira rise in farm income of will result in 1.16 percent increase in the probability to adopt CSA practice in rice production. Finding conform with earlier empirical results of Etim and Benson (2016); Etim and Udoh (2018).

Access to information on climate change has a coefficient of 0.4203 and is positively significant (p<0.05). implying that farmers with access to information about climate change were more likely to adopt CSA practices earlier and faster than farmers with less access to climate change information. Result support fact that farmers with access to environmental information have a higher probability to adopt knowledge, skills and processes that would lead to transformed behaviour in support of an ecologically sustainable environment. Earlier empirical studies by Haklay, (1999); Schwarte et al., (2008) and Thompson et al., (2020) confirmed that environmental decision making and technology adoption could be enhanced if the communities are given information on environmental management and climate change.

Table 2: Probit Model Estimates of the determinants of willingness to adopt climate smart agricultural practices in rice production

Variable	Coefficient	Standard Error	z-test	P-value
Constant	0.0381	0.0326	1.1687	0.0807
Sex	0.0996	0.0625	1.5936	0.0021
Age	0.3180	0.1218	2.6108	0.0081**
Education	0.0772	0.0158	4.8861	0.0663***
Family size	0.1366	0.0343	3.9825	0.0281***
Marital status	0.6210	0.4002	1.5517	0.1400
Access to Information	0.4203	0.2107	1.9948	0.0922**
Farm Income	0.3191	0.0820	3.8915	0.0116***
Membership of Social Organization	0.0087	0.0233	0.3734	0.0022
Diagnostic Analysis				
Log-likelihood	-5.1630	Akaike		18.8143
Schwarz criterion	26.6050	Hannan-Quinn		22.5172

Note, *, **, *** represent significance at 10%, 5% and 1%.

Conclusion

The results, the majority of rice farmers (62.5%) are women and 75% are married. 67.5% have a business age and 85% have a primary education. The results show that farmers' climate-dependent farmland was reduced by 1% and 5%, respectively. Family size It is also a good result for farmers' income and the desire of rice farmers to access climate change. Show that it is a good relationship. As a result, an estimated 55.85% of the paddy farmers in the study area attended village meetings; Friends No one can comment on climate change from relatives, and agricultural policies increase rice farmers' incomes and respond to climate change. Awareness-raising decisions were made.

References
Abdulai, A., & Huffman, W. E. (2005). The diffusion of new agricultural technologies: The case of crossbred-cow technology in Tanzania. American Journal of Agricultural Economics, 87(3), 645-659.

Ayannale A. B. & Bamire A. S. (1996). Cost and returns in alternative poultry keeping systems in southern Nigeria: A comparative analysis. The Indian Journal of Economics. LXXXVI:47-59.

Chianu J. N. & Tsujii H. (2004). Determinants of Farmers Decision to adopt or not adopt inorganic fertilizer in the savannas of northern Nigeria. Nutrient Cycling in Agro-ecosystems. 70(3), 1293-301.

Chirwa, E. W. (2005). Adoption of fertiliser and hybrid seeds by smallholder maize farmers in Southern Malawi. Development Southern Africa, 22(1), 1-12.

Thompson, D., Etim, N.A., & Etim, N. N. (2020). Environmental Management and Higher Education: Are they Closely Related? Journal of Environmental Design (Forthcoming).

Etim, N. A. & Benson., D. N. (2016). Willingness to Pay for Organic Fertilizer by Resource Poor Vegetable Farmers in the Humid Tropic. Journal of Agriculture and Ecology Research International 6(2), 1-11.

Etim, N. A. & Edet, G. E. (2014). Efficiency of resource utilization in dry season waterleaf Talinum triangulate Jacq. wild production by women in southern Nigeria. Asian Journal of Agriculture Extension, economic and sociology, 3(2), 138-146.

Etim, N. A. & Udoh, E. J. (2018). Willingness of youths to participate in agricultural activities: Implication for poverty Reduction American Journal of Social Sciences 6 (1): 1-5.

Etim, N. A., S. Okon., & I. Akpabio (2011). Labour and Poverty: Empirical Relationship using House Data from South Nigeria. International Journal of Agricultural Management and Development 1(2), 53-59.

Etim, N. A. D., Thompson., & Onyenweaku, C. E. (2013). Measuring Efficiency of Yam (Dioscoreasp). Production among Resource Poor Farmers in Uyo, Nigeria. Discourse Journal of Agricultural and Food Sciences 1(3), 42-47.

Etim, N. A. A., Etim, N. N., & Udoh, E. J. (2019). Climate smart agriculture practices by rural women in Akwa Ibom State, Nigeria: Adoption choice using Multinomial Logit Approach. Mujaes

Etim, N.A. and Etim N.N. (2020). Rural Farmers’ Adaptation Decision to Climate Change in Niger Delta Region, Nigeria. In: Leal Filho W. (eds) Handbook of Climate Change Resilience. Springer, Cham, 1-15. https://doi.org/10.1007/978-3-319-71025-9_100-2

Hailu Z. (1990). The adoption of modern farm practices in African agriculture: Empirical Evidence about the impact of household characteristics and input supply systems in the Northern region of Ghana. Nyankpala Agricultural Research Report L71 Ghana. Agricultural Experimental Station, Tamale, Ghana.

Haklay, M. (1999). From Environmental Information systems to Environmental-informatics- Evolution and meaning. Centre for Advanced Spatial Analysis. Working Paper Series.

Lapar, M., & Pandey, S. (1999). Adoption of Soil Conservation: The Case of the Philippine Uplands. Journal of Agricultural Economics 21, 241-256.
Madukwe M. C. (1995). Obstacles to the adoption of yam mini sett technology by small-scale farmers of South Eastern Nigeria. **Agro Search**, 1(1), 1-5.

Martins, O. O. Gideon and S. Beatrice (2010). Determinants of the Speed of Adoption of Soil Fertility – Enhancing Technologies in Western Kenya. Contributed Paper Presented at the Joint 3rd African Association of Agricultural Economist (AAAE) and 48th Agricultural Economist Association of South Africa (AEASA) Conference, Cape Town, South Africa, September 19-23, 20.

Matthews – Njoku, E. C (2005). Farmers adoption of improved soil consideration and management practices in the rainforest zone of Nigeria. Global Appro. Exten. Practice Journal 1:24-32.

Nkamleu G. B. and Adesina A. A. (2000). Determinants of Chemical input use in peri-urban lowland systems: Bivariate probit analysis in Cameroon Agricultural Systems. 63:11-21.

Nkamleu, G. B. (2007). Modelling Farmers’ Decisions on Integrated Soil Nutrient Management in Sub-Saharan Africa: A Multinomial Logit Analysis in Cameroon. In Batino, A., Waswa, B.; Kihara, J. and Kimetu, J. (eds). Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities. Netherlands. Springer Publishers pp.891-903.

Nnadi, F. N and Akwiwu, C. D. (2005). Adoption of improved poultry production practices by rural women in Imo State. Animal production resource Adv. 1:39-44.

Nnadi, F. N. and Akwiwu, C. D. (2008). Determinants of youth participation in Rural Agriculture in Imo State, Nigeria. **Journal applied Sciences** 8(2): 328-333.

NPC (National Population Commission) (2006). Population census of the Federal Republic of Nigeria. Analytical Report at the National Population Commission, Abuja.

Rahm M. R. and Huffman W. E. (1984). The adoption of reduced tillage. The role of human capital and other variables. America Journal Agricultural Economics, 66(4), 405-413.

Schwarte, C. (2008). Access to Environmental information in Uganda Forestry and oil production. Foundation for International Environmental law (Field) and the International institute for environment and Development (IIED).

Teklewold, H., Mekonnen, A., Kohlin, G., & Di Falco, S. (2017). Does Adoption Of Multiple Climate-Smart Practices Improve Farmers’climate Resilience? Empirical Evidence From The Nile Basin Of Ethiopia. **Climate Change Economics**, 8(01), 1750001.

Tran, N. L. D., Rañola, R. F., Sander, B. O., Reiner, W., Nguyen, D. T., & Nong, N. K. N. (2019). Determinants of adoption of climate-smart agriculture technologies in rice production in Vietnam. **International Journal of Climate Change Strategies and Management**.

Udoh, E. J. (2005). Technical inefficiency in vegetable farms of humid region: An analysis of dry season farming by urban women in South-South Zone, Nigeria. **Journal of Agriculture and Social Sciences**, 1(2), 80-85.

Udoh, E. J., & Etim, N. A. (2007). Estimating technical efficiency of waterleaf production in a tropical region. **Journal of vegetable science**, 12(3), 5-13.
United Nations Development Program (2016). Sustainable Development Goals. [http://www.undp.org/content/dam/undo/library/corporate/brochure/SDGs Booklet Web En.]

Weir, S. and Knight, J. (2000). Adoption and Diffusion of Agricultural Innovations in Ethiopia: The Role of Education. Centre for the Study of African Economics (CSAE) Working Paper, CSAEWPS 2000-5. Oxford: Oxford University Press.