Supplementary Information

Modulation of the doping level of PEDOT:PSS film by treatment with hydrazine to improve the Seebeck coefficient

Temesgen Atnafu Yemata, a, b, d Zheng Yun a, Aung Ko Ko Kyaw, a, c Xizu Wang, a Song Jing a, Wee Shong Chin b* and Jian Wei Xu a, b*

a Institute of Materials Research and Engineering; Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore

b Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

c Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China

d Chemical Engineering Department, Bahirdar University, Bahirdar P.O.Box 26, Ethiopia

*Corresponding author: jw-xu@imre.a-star.edu.sg, chmcws@nus.edu.sg
Figure S1. (a) Average σ and S and (b) PF of the PEDOT:PSS films treated with different concentrations of formic acid with error bars. The formic acid concentration at 0 refers to the films without formic acid treatment i.e. pristine film. TE properties of the EG treated PEDOT:PSS films as a function of hydrazine weight concentration (c) S and σ, and (d) PF. The hydrazine concentration at 0 refer to the films without hydrazine treatment, i.e. treated by EG only.
Figure S2. AFM height images: (a) pristine, (b) formic acid/0.2 wt% hydrazine treated and (c) formic acid/1 wt% hydrazine treated. AFM Phase images: (d) pristine, (e) formic acid/0.2 wt% hydrazine treated and (f) formic acid/1 wt% hydrazine treated. All images captured with an area of 1×1 μm².
Figure S3. XPS spectra of (a) 0.05 wt% hydrazine, (b) 0.1 wt% hydrazine and (c) 0.2 wt% hydrazine treated PEDOT:PSS films.
Figure S4. SEM images: (a) pristine, (b) formic acid 1 time treated (c) formic acid three times treated (d) formic acid-0.15wt% hydrazine pristine, (e) formic acid/ 2 wt % HZ treated and (f) EG/ 0.15 wt % HZ treated. All images captured an area of 1×1 μm².

Figure S5. (a) The pristine and (b) treated PEDOT:PSS films normalized thermal reflectance signals. The films coated with 100 nm-thick-Al after the nanosecond-pulse heating. The solid red lines represent the fitted temperature response curve that is used to extract the thermal effusivity of the PEDOT:PSS films and (c) The front heating, front detecting configuration used in the measurement text of the article should appear here with headings as appropriate.
Table S1. Treatment methods of some of PEDOT:PSS TE materials and their corresponding TE properties reported in the literature.

Reference	Treatment methods	σ (S/cm)	S (µV/K)	PF (µW/mK²)	k (W/mK)	ZT
1	Post-treatment with DMSO/EG mixture	952.8	19.0	37.1	0.17	0.065
2	Dipping post-treatment H2SO4	1,167	12.1	17.0	-	-
3	N,N-Dimethylformamide solution of Zinc chloride post treatment	1400	26.1	98.2	-	-
4	D-sorbitol addition , then vapor posttreatment with TDAE	295	27.5	22.3		0.01
5	Urea addition	63.1	20.7	2.7	-	-
6	Formic acid post treatment	1,900	20.6	80.6	-	-
7	Treated with hydrazine	578	67.0	112.0	0.37	0.093
This work	Treated with formic acid and hydrazine	513	42.7	93.5	0.30	0.10

References

1. S. Liu, H. Deng, Y. Zhao, S. Ren and Q. Fu, RSC Advances, 2015, 5, 1910-1917.
2. J. Kim, J. G. Jang, J.-I. Hong, S. H. Kim, and J. Kwak, Journal of Materials Science: Materials in Electronics, 2016, 27, 6122-6127.
3. Z. Fan, D. Du, Z. Yu, P. Li, Y. Xia and J. Ouyang, ACS Appl. Mater. Interfaces, 2016, 8, 23204-23211.
4. E. Yang, J. Kim, B. J. Jung, and J. Kwak, Journal of Materials Science: Materials in Electronics, 2015, 26, 2838-2843.
5. F.-F. Kong, C.-C. Liu, J.-K. Xu, F.-X. Jiang, B.-Y. Lu, R.-R. Yue, G.-D. Liu and J.-M. Wang, Chinese Physics Letters, 2011, 28, 037201.
6. D. A. Mengistie, C.-H. Chen, K. M. Boopathi, F. W. Pranoto, L.-J. Li and C.-W. Chu, ACS Appl. Mater. Interfaces, 2015, 7, 94-100.
7. H. Park, S. H. Lee, F. S. Kim, H. H. Choi, I. W. Cheong, and J. H. Kim, J. Mater. Chem. A, 2014, 2, 6532-6539.