I-Semiprime Submodules

Adwia J. Abdul-AlKhalik
Republic of Iraq, Ministry of Education, Directorate General of Education In Diyala, Diyala, Iraq.

Abstract
Let R be a commutative ring with identity and I a fixed ideal of R and M be an unitary R-module. We say that a proper submodule N of M is I-semi prime submodule if $a \in R$, $x \in M$ with $a^2x \in N - IN$ implies that $ax \in N$. In this paper, we investigate some properties of this class of submodules. Also, some characterizations of I-semiprime submodules will be given, and we show that under some assumptions I-semiprime submodules and semiprime submodules are coincided.

Keywords: Prime submodules, weakly semiprime submodules, semiprime submodules, I-semiprime submodules.
1. Main result

Definition (1.1):
(i) Let I be an ideal of R and M an R-module. A proper submodule N of M is called an I-semiprime submodule of M, if $a^2x \in N - IN$ for all $a \in R, x \in M$ implies that $x \in N$.

(ii) An ideal A is called I-semiprime ideal iff for every $a \in R$ and any ideal I, $(a^2) \subseteq A - IA$ implies $(a) \subseteq A$.

Now, it is clear that every semiprime submodule N of M is an I-semiprime submodule of M. But the converse need not be true. For example, consider Z-module $M = Z_{24}$ and N = (8). Then if $I = [N: M]N = [(8); Z_{24}] = (8)$. So N is an I-semiprime submodule of M. But N is not semiprime in M, since $2^2 \cdot (2) = 8 \notin N$, but 2.2 $\notin N$.

Proposition (1.2):
1. Let N, K are two submodules of an R-module M. If $N \subseteq K$ and N is I-semiprime submodule of M, then N is I-semiprime submodule of K.

2. If $I_1 \subseteq I_2$. Then if N is I_1-semiprime implies N is I_2-semi prime.

3. If N is semi prime then N is I-semiprime.

Proof: 1, 2 and 3 are trivial.

The following theorem gives a useful characterization for I-semiprime submodules.

Theorem (1.3): Let N a proper submodule of an R-module M. Then N is I-semiprime submodule of M in M if and only if for any ideal A of R and submodule K of M such that $A^2K \subseteq N - IN$, we have AK $\subseteq N$.

Proof: Suppose that N is I-semi prime submodule of M, and $A^2K \subseteq N - IN$ for A is an ideal of R and submodule K of M. If $AK \subseteq N$, so there exist $x \in K$ and $a \in A$ such that $ax \notin N$. Now, $a^2x \in A^2K \subseteq N - IN$. We claim that $a^2x \in IN$, because if $a^2x \notin IN$, we get $ax \notin N$ which is a contradiction. Thus $a^2x \in IN$. Since $a^2K \subseteq N - IN$, there exists $m \in K$ such that $a^2m \in a^2K \subseteq N - IN$. This implies $am \in N$. On the other hand $a^2x + a^2m = a^2(x + m) \in N - IN$. This implies $a(x + m) \in N$; that is $ax + am \in N$. But $am \in N$, so $ax \in N$ which is a contradiction. Therefore $AK \subseteq N$.

Conversely suppose that $a^2m \in N - IN$ for $a \in R$ and $m \in M$. Then $(a^2)(m) \subseteq N - IN$. So by assumption, $(a)(m) \subseteq N$. Therefore $am \in N$. Thus N is an I-semiprime submodule of M.

Corollary (1.4): Let N a proper submodule of an R-module M. Then N is I-semiprime submodule in M if and only if for any ideal A of R such that $A^2M \subseteq N - IN$, we have AM $\subseteq N$.

Remark (1.5): If I-semiprime submodule of an R-module M, then it is not necessarily that $[N: M] I$-semiprime ideal, for example: Suppose that $N = (0)$ of the Z-module Z_{4}, then N is I-semiprime. But $[N: M] = (0); Z_{4} = 4Z$ is not an I-semiprime ideal of Z where $I = [N: M]$, since $2^2 \in [N: M] - I[N: M]$, but $2 \notin (0); Z_{4} = 4Z$.

Now, we give characterizations of I-semiprime submodule. But first, we need the following definitions.

[Recall that an R-module M is called a multiplication module if every submodule N of M has the form IM for some ideal I of R, [5]. And an R-module M is called faithful if it has zero annihilator, [6].]

Theorem (1.6): Let N a proper submodule of a finitely generated faithful multiplication R-module M with $I[N: M] = [IN: M]$. If N is I-semiprime submodule in M if and only if $I[IN: M]$ is an I-semi prime ideal of R.

Proof: Suppose that N is I-semi prime submodule in M. Let $a \in R$ with $a^2 \in [N: M] - I[N: M]$. Then $a^2M \subseteq N$. If $a^2M \subseteq IN$. Then $a^2 \in [IN: M] = I[N: M]$ which is contradiction. Assume $a^2M \subseteq N - IN$. Then $a^2M \subseteq N - IN$. But N is I-semi prime submodule. So $am \subseteq N$, thus $a \in [N: M]$. Hence $[N: M]$ is an I-semi prime ideal of R.

Remark (1.7): Let N a proper submodule of a finitely generated faithful multiplication R-module M with $I[N: M] = [IN: M]$. If N is I-semi prime submodule in M if and only if $I[IN: M]$ is an I-semi prime ideal of R.
primary submodule if \(rx \in N - IN \) for all \(r \in R, x \in M \) implies that either \(r \in \sqrt{[N:M]} \) or \(x \in N \), [8]. And recall that an ideal \(I \) is called radical if \(I = \sqrt{I} \), [9].

By using these concepts we can give the following proposition.

Proposition (1.7): Let \(N \) a proper submodule of an \(R \)-module \(M \). If \(N \) is \(I \)-prime then \(N \) is \(I \)-semiprime.

Proof: Let \(N \) is \(I \)-prime submodule of an \(R \)-module \(M \). Assume that \(a^2m \in N - IN \), where \(a \in R, m \in M \). Since \(a^2m = a(am) \in N - IN \) and \(N \) is \(I \)-prime submodule of \(M \), then either \(am \in N \) or \(a \in [N:M] \). In any case, we have \(am \in N \). Therefore \(N \) is \(I \)-semi prime submodule of \(M \).

Proposition(1.8): Let \(N \) a proper submodule of an \(R \)-module \(M \) such that \([N:M]\) is radical ideal. If \(N \) is \(I \)-primary submodule in \(M \), then \(N \) is an \(I \)-prime (and hence \(I \)-semi prime) submodule of \(M \).

Proof: Let \(N \) is \(I \)-primary submodule and \([N:M]\) is radical ideal. Assume that \(a^2m \in N - IN \), where \(a \in R, m \in M, m \notin N \). Since \(N \) is \(I \)-primary submodule of \(M \) and \(m \notin N \), then \(a \in \sqrt{[N:M]} \).

But \([N:M]\) is radical, so \(a \in [N:M] \). Therefore \(N \) is \(I \)-prime (and hence \(I \)-semi prime) submodule of \(M \).

From proposition (1.8) we get the following:

Corollary (1.9): Let \(N \) a proper submodule of an \(R \)-module \(M \) such that \([N:M]\) is semi prime ideal of \(R \). If \(N \) is \(I \)-primary submodule in \(M \), then \(N \) is an \(I \)-prime (and hence \(I \)-semi prime) submodule of \(M \).

Proposition (1.10): Let \(M \) be an \(R \)-module. Let \(N \) be an \(I \)-semiprime submodule of \(M \). If \((r + [N:M])^2m \notin IN \) for all \(r \in R - [N:M] \), then \(N \) is a semiprime submodule of \(M \).

Proof: Suppose that \((r + [N:M])^2m \notin IN \), we show that \(N \) is a semiprime. Let \(a \in R \) and \(m \in M \) such that \(a^2m \in N \). If \(a^2m \notin IN \), then \(N \) is a semiprime gives \(am \in N \). So assume that \(a^2m \in IN \). First suppose that \(a^2 \notin IN \), say \(a^2m \notin IN \) where \(n \in N \). Then \(a^2(m+n) \in N - IN \), so \(a(m+n) \in N \). Hence \(am \in N \). So we can assume that \(a^2 \subseteq IN \). Next, suppose that \((a+b)^2m \notin IN \) for some \(b \in [N:M] \). Therefore \((a+b)^2m \notin IN \) and \((a+b)m \in N \). Hence \(am \in N \). So we can assume that \((a + [N:M])^2m \subseteq IN \). Since \((a + [N:M])^2m \subseteq IN \) there exists \(r \in [N:M] \) and \(x \in N \) such that \((a + r)^2x \notin IN \). Then \((a + r)^2(m + x) \in N - IN \). So \((a + r)(m + x) \in N \). Hence \(am \in N \). So \(N \) is a semiprime submodule of \(M \).

Proposition (1.11): Let \(M \) be an \(R \)-module. Let \(N \) be an \(I \)-semiprime submodule of \(M \). If \((r^2)^2N \notin IN \) for some \(r \in [N:M] \), then \(N \) is a semiprime submodule of \(M \).

Proof: Let \(a \in R \) and \(m \in M \) such that \(a^2m \in N \). Suppose \(a^2N \subseteq IN \). If \(a^2m \notin IN \), then \(a^2m \in N - IN \), and \(N \) is an \(I \)-semiprime gives \(am \in N \). Suppose that \(r^2m \notin IN \). Therefore \((a+r)^2m = (a^2 + r^2)m \notin IN \) and \((a+r)m \in N \). So \(am \in N \). Now, we can assume that \(r^2m \in IN \). But \((r^2)^2N \subseteq N \), so there exists \(x \in N \) such that \(r^2x \notin IN \). Then \((a+r)^2(m + x) = (a^2 + r^2)(m + x) \in N - IN \) and \((a+r)(m+x) \in N \). So \(am \in N \). Then \(N \) is a semiprime submodule of \(M \).

Recall that a proper submodule \(N \) of \(M \) is called an irreducible submodule if for each \(K \), \(K \) be two submodules of \(M \) such that \(L \cap K = N \), then either \(L = N \) or \(K = N \).

Theorem (1.12): Let \(N \) be an irreducible submodule of an \(R \)-module \(M \). Then \(N \) is an \(I \)-prime if and only if \(I \)-semiprime submodule of \(M \).

Proof: Suppose that \(N \) is \(I \)-prime submodule irreducible submodule in \(M \). Assume that \(N \) is not \(I \)-prime, so there exists \(a \in R; a \notin [N:M]; m \notin N \) such that \(am \in N - IN \). Since \(a \notin [N:M] \), so there exists \(x \in M \) such that \(ax \notin N \). Claim that \(L \cap K = N \) where \(K = N + (ax) \), \(L = N + (m) \). Now, let \(b \in L \cap K \), so \(b \in N + (ax) \), and \(b \in N + (m) \), then there exists \(n, w \in N \) and \(r, s \in R \) such that \(b = w + sax \in N + r \), then \(sax-n+w \in N \) and \(s \in N - IN \). Therefore \(sa^2x \in N - IN \). But \(N \) is \(I \)-prime, then \(sax \notin N \) and so \(b \notin N \). Thus, \(L \cap K \subseteq N \) and it is clear that \(N \subseteq L \cap K \). Therefore the claim \(L \cap K = N \) is true. But \(N \) is an irreducible submodule of \(M \).

Theorem (1.13): Let \(N \) a proper submodule of a faithful multiplication \(R \)-module \(M \) and \(A \) be a finitely generated faithful multiplication ideal of \(R \). Then \(N \) is \(I \)-semiprime submodule in \(AM \) if and only if \([N:A] \) is an \(I \)-semiprime in \(M \).

Proof: Suppose that \(N \) is \(I \)-semiprime submodule in \(AM \). Let \(a \in R \) and \(m \in M \) such that \(\alpha^2m \in [N:A] - [N:A] \). Then \(\alpha^2Am \subseteq N - IN \). If \(\alpha^2Am \notin IN \), so by [8, lemma 2.15]
Proposition (1.16): Let M be a R-module and let N be a proper submodule of M. Then N is I-semiprime in M if and only if $N/I\cap N$ is I-semiprime submodule of $M/I\cap N$.

Proof: Suppose that N is I-semiprime in M. Let $a \in R$, $x \in M$ such that $0 \neq a^2x + IN = a^2(x + IN) \in N/I\cap N$. Since N is I-semiprime submodule of M, so $a \in N$. Therefore $a(x + IN) \in N/I\cap N$. Hence $N/I\cap N$ is 0-semiprime submodule of $M/I\cap N$.

Conversely suppose that $(N/I)\cap N$ is 0-nearly prime in $M/I\cap N$. Let $a \in R$, $x \in M$ such that $a^2x \in N - I\cap N$. So $0 \neq a^2(x + IN) \in N/I\cap N$. But $N/I\cap N$ is 0-semiprime in $M/I\cap N$. Thus $a(x + IN) \in N/I\cap N$. Hence, $ax \in N$. Therefore N is I-semiprime submodule of M.
Proof. Let \(a^2m \in N_1 - IN_1 \) where \(a \in R, m \in M_1 \). Then \(a^2(m_1, 0) \in (N_1 \oplus N_2) - I(N_1 \oplus N_2) \). Since \((N_1 \oplus N_2) \) is an \(I \)-semi prime, then \(a(m_1, 0) \in N_1 \oplus N_2 \) and so \(am_1 \in N_1 \). Hence \(N_1 \) is \(I \)-semi prime in \(M_1 \).

similarly \(N_2 \) is an \(I \)-semi prime in \(M_2 \).

In what follows give some of characterizations for \(I \)-semi prime submodules.

Theorem (1.18): Let \(N \) be a proper submodule of \(M \), then the following are equivalent:

1. \(N \) is an \(I \)-semi prime submodule of \(M \).
2. For \(r \in R, [N:M (r^2)] = [IN:M (r^2)] \cup [N:M (r)] \).
3. For \(r \in R, [N:M (r^2)] = [IN:M (r^2)] \) or \([N:M (r^2)] = [N:M (r)] \).

Proof: (1) \(\rightarrow \) (2): Suppose that \(N \) is an \(I \)-semi prime submodule of \(M \). Let \(r \in R, m \in [N:M (r^2)] \). So \(r^2m \in N \). If \(r^2m \notin IN \), then \(rm \in N \), because \(N \) is an \(I \)-semi prime submodule of \(M \). If \(r^2m \in IN \), then \(m \in [IN:M (r^2)] \). Hence \([N:M (r^2)] \subseteq [IN:M (r)] \cup [N:M (r)] \). Since \(IN \subseteq N \), so \([IN:M (r^2)] \cup [N:M (r)] \subseteq [N:M (r^2)] \). Therefore \([N:M (r^2)] = [IN:M (r^2)] \cup [N:M (r)] \).

(2) \(\rightarrow \) (3): It is clear because \([N:r] \) is a submodule of \(M \).

(3) \(\rightarrow \) (1): Let \(r \in R \) and \(m \in M \) such that \(r^2m \in N - IN \). Then \(m \in [IN:M (r^2)] \) and \(m \notin [IN:M (r^2)] \). Then by assumption, \(m \in [N:M (r)] \). Therefore \(m \in [N:M (r)] \). Thus \(N \) is an \(I \)-semi prime submodule of \(M \).

Proposition (1.19): Let \(N \) be a proper submodule of \(M \). If \(N \) is an \(I \)-semi prime submodule of \(M \), then for all \(m \in M - N \),

\[\sqrt{[N:m]} = \sqrt{[IN:m]} \cup \sqrt{[N:m]} \]

Proof: Suppose that \(N \) is an \(I \)-semi prime submodule of \(M \). Let \(m \in M - N \) and \(r \in \sqrt{[N:m]} \). Hence \([N:M (r^2)] \subseteq [IN:M (r)] \cup [N:M (r)] \). Since \(IN \subseteq N \), so \([N:M (r^2)] \cup [N:M (r)] \subseteq [N:M (r^2)] \). Therefore \(\sqrt{[N:m]} = \sqrt{[IN:m]} \cup [N:m] \).

Theorem (1.20):

Let \(R = R_1 \times R_2 \) and \(M = M_1 \times M_2 \) with \((r_1, r_2)(m_1, m_2) = (r_1m_1, r_2m_2) \) be an \(R \)-module, where \(r_i \in R_i, m_i \in M_i \). Then we have:

1. If \(N_1 \) is an \(I_1 \)-semi prime submodule of \(M_1 \) such that \(IN_1 \times M_2 \subseteq \cap \{N_1 \times M_2 | \} \), then \(N_1 \times M_2 \) is an \(I \)-semi prime submodule of \(M \).

2. If \(N_2 \) is an \(I_2 \)-semi prime submodule of \(M_2 \) such that \(IN_2 \times M_1 \subseteq \cap \{N_2 \times M_1 | \} \), then \(N_1 \times M_2 \) is an \(I \)-semi prime submodule of \(M \).

Proof: Because the prove of (1) and (2) are similar, so we only prove (1). Hence suppose that \(N_1 \) is an \(I_1 \)-semi prime submodule of \(M_1 \) and \((a, b) \in R \times R \) and \((m_1, m_2) \in M \) with \((a, b)^2(m_1, m_2) = (a^2m_1, b^2m_2) \in N_1 \times M_2 - I(N_1 \times M_2) \). and \(N_1 \times M_2 - I(N_1 \times M_2) \subseteq N_1 \times M_2 - IN_1 \times M_2 = (N_1 - IN_1) \times M_2 \). We have \(a^2m_1 \in N_1 - IN_1 \) but \(N_1 \) is \(I \)-semi prime submodule of \(M_1 \). Then \(am_1 \in N_1 \). This give \((a, b)(m_1, m_2) \in N_1 \times M_2 \). Hence \(N_1 \times M_2 \) is an \(I \)-semi prime submodule of \(M_1 \times M_2 \).

Proposition (1.21): Let \(R = R_1 \times R_2, M_1 \) be an \(R \)-module \((i = 1, 2) \) with \(M = M_1 \times M_2 \). Let \(I_i \) and \(I_2 \) be ideals of \(R_i \) and \(R_2 \) respectively with \(I = I_1 \times I_2 \). Then all the following types are \(I \)-semi prime submodule of \(M_1 \times M_2 \):

1. \(N_1 \times M_2 \) where \(N_1 \) is an \(I_1 \)-semi prime submodule of \(M_1 \) and \(I_2 \times M_2 = M_2 \).

2. \(N_1 \times N_2 \) where \(N_2 \) is an \(I_2 \)-semi prime submodule of \(M_2 \) and \(I_1 \times M_1 = M_1 \).

Proof: 1. Suppose that \(N_1 \) is an \(I_1 \)-semi prime submodule of \(M_1 \) and \(I_2 \times M_2 = M_2 \). Let \((a, b) \in R \) and \((m_1, m_2) \in M \) such that \((a^2, b^2)(m_1, m_2) = (a^2m_1, b^2m_2) \in N_1 \times M_2 - I(N_1 \times M_2) = N_1 \times M_2 - (I_1 \times M_2)(N_1 \times M_2) = (N_1 \times M_2 - I(N_1 \times M_2)(I_1 \times M_2) = (N_1 - IN_1) \times M_2 \). Then \(a^2m_1 \in N_1 - IN_1 \) and \(N_1 \) is \(I \)-semi prime submodule of \(M_1 \), so \(am_1 \in N_1 \). Therefore \((a, b)(m_1, m_2) \in N_1 \times M_2 \). So \(N_1 \times M_2 \) is an \(I \)-semi prime submodule of \(M_1 \times M_2 \).

2. The proof is similar to part (1).
Remark (1.22): Let \(R = R_1 \times R_2 \). Let \(M_i \) be an \(R_i \)-module \((i=1,2)\) with \(M = M_1 \times M_2 \). Let \(I_1 \) and \(I_2 \) be ideals of \(R_1 \) and \(R_2 \) respectively with \(I = I_1 \times I_2 \). Then all the following types are \(I \)-semiprime submodule of \(M_1 \times M_2 \).

1- \(N_1 \times N_2 \) where \(N_i \) is a proper submodule of \(M_i \) with \(I_i N_i = N_i \) for \(i = 1, 2 \).

2- \(N_1 \times M_2 \) where \(N_1 \) is a prime submodule of \(M_1 \).

3- \(M_1 \times N_2 \) where \(N_2 \) is a prime submodule of \(M_2 \).

Proof. 1. Since \(I_1 N_2 = N_1 \) and \(I_2 N_2 = N_2 \). Then \(I_1 N_1 \times I_2 N_2 = (I_1 \times I_2) (N_1 \times N_2) = I (N_1 \times N_2) = N_1 \times N_2 \). So \(N_1 \times N_2 \) is a prime submodule of \(M_1 \times M_2 \). Thus there is nothing to prove.

2. Let \(N_1 \) be a prime submodule of \(M_1 \). Then \(N_1 \times M_2 \) is a prime submodule of \(M_1 \times M_2 \) \cite{11} and hence \(I \)-prime (\(I \)-semiprime) submodule of \(M_1 \times M_2 \) by (1.6).

3. The proof is similar to the part (2).

References

1. Dauns, G. 1980. Prime module and one-sided ideals in “Ring theory and Algebra III” (Proceedings of the Third Oklahoma Conference, B. R. McDonald(editor) (Dekker, NewYork).

2. Tavallaee, H. A. and Zolfagghari, M. 2012. Some remarks on weakly Prime and weakly semiprime submodules, Journal of Advanced Research in Pure Mathematics, 1: 19-30.

3. Shireen, Dakheel, O. 2010. S-Prime submodules and some related concepts. M. Sc. Thesis, University of Baghdad, Iraq.

4. Mohammed, Baquer. H. 2010. Nearly semiprime submodules, M. Sc. Thesis, University of Baghdad, Iraq.

5. El-Bast, Z. A. and Smith, P. F. 1988. Multiplication modules, Comm. Algebra, 16 :755-779.

6. Kash, F. 1982. Modules and Rings, Acad. Press, London.

7. Akray, I. and Hussein, H. S. 2017. I-prime submodules, Acta. Math. Academic Paedagogicae Nyiregyhaziensis, 33:165-173.

8. Akray, I. and Hussein, H. S. 2016. I-primary submodules, arXiv: 1612.02476v1 [Math. AC]. Burton, D. M. 1971, Abstract and Linear Algebra, University of New Hampshire.

9. Larsen, M. D. and McCarlthy, P. J. 1971. Multiplicative theory of ideals, Academic Press, New York.

10. Khaksari, A. 2011. \(q \)-prime submodules. International journal of algebra, 29: 1443-1449.