Integrable and superintegrable systems with higher order integrals of motion: master function formalism

Z. Alizadeh *, H. Panahi †

Department of Physics, University of Guilan, Rasht 51335-1914, Iran.

March 13, 2022

Abstract

In this article, we construct two-dimensional integrable and superintegrable systems in terms of the master function formalism and relate them to Mielnik’s and Marquette’s construction in supersymmetric quantum mechanics. For two different cases of the master functions, we obtain two different two-dimensional superintegrable systems with higher order integrals of motion.

Keywords: Supersymmetric quantum mechanics, Master function formalism, Integrable and superintegrable systems

*(E-mail:zeinabalizadeh@phd.guilan.ac.ir)
†Corresponding author (E-mail:t-panahi@guilan.ac.ir)
1 Introduction

It is known from classical and quantum mechanics that a system with \(N \) degrees of freedom is called completely integrable if it allows \(N \) functionally independent constants of the motion\[1\]. From the mathematical and physical point of view, these systems play a fundamental role in description of physical systems due to their many interesting properties. A system is superintegrable if one could obtain more than \(N \) constants of the motion and if there exist \(2N-1 \) constants of the motion, the system is maximally superintegrable or just superintegrable provided that the commutator of operators as constants of the motion be zero with Hamiltonian of the system\[2-8\]. Recently the study of superintegrable systems has been considered for different potentials and many researches have been studied for calculating of the spectrum of these systems by different methods. In Refs.[9,10], the spectrum of these systems has been calculated by an algebraic method using the realization of some Lie groups.

For a two-dimensional quantum integrable system with Hamiltonian \(H \), there is always one operator like \(A_1 \) which can be commutated with Hamiltonian of the system i.e. \([H, A_1] = 0\). For a quantum superintegrable system, one should define another operator such as \(A_2 \) which commutates with the Hamiltonian of system i.e. \([H, A_2] = 0\), but \([A_1, A_2] \neq 0\). In other words, for a two-dimensional superintegrable system, there are two integrals of the motion \((A_1, A_2)\) in addition to the Hamiltonian. The superintegrability with the second and third order integrals was the object of a series of articles \[11-17\]. The systems studied have second and third order integrals. Although superintegrability and supersymmetric quantum mechanics (SUSYQM) are two separated fields, many quantum systems such as the harmonic oscillator, the Hydrogen atom and the Smorodinsky-Winternits potential, have both supersymmetry and superintegrable conditions\[18-23\]. These articles show that superintegrability is accurately connected with supersymmetry. For example, in Ref. \[24\], Marquette used the results obtained by Mielnik \[25\] and generated new superintegrable systems. Mielnik
has shown that the factorization of second order operators is not essentially unique. He has considered the Hamiltonian of the harmonic oscillator in one dimension as the simplest case:

\[H = -\frac{1}{2} \frac{d^2}{dx^2} + \frac{1}{2} x^2, \]

(1)

where can be factorized by two-type of the first order operators of creation and annihilation as follows:

\[a_\pm = \frac{1}{\sqrt{2}} (\mp \frac{d}{dx} + x), \quad b_\pm = \frac{1}{\sqrt{2}} (\mp \frac{d}{dx} + \beta(x)). \]

(2)

For two superpartner Hamiltonians \(H_1 \) and \(H_2 \) where \(a_+a_- = H - \frac{1}{2} = H_1 \) and \(a_-a_+ = H + \frac{1}{2} = H_2 \), he has demanded that \(H_2 = b_-b_+ \) and obtained the inverted product \(b_+b_- \) as a certain new Hamiltonian:

\[H' = b_+b_- = -\frac{1}{2} \frac{d^2}{dx^2} + \frac{x^2}{2} - \varphi'(x), \]

(3)

where \(\varphi(x) \) is a function obtained from the general solution of Riccati equation considering \(\beta = x + \varphi(x) \). The creation and annihilation operators of the third order for \(H' \) are described by expressions \(s_+ = b_+a_+b_- \), \(s_- = b_+a_-b_- \), that \(a_+ \) and \(a_- \) are the creation and annihilation operators for \(H_2 \). Marquette [24] has taken the Hamiltonian \(H_2 \) in the \(x \)-axis and its superpartner \(H' \) given by Eq.(3) in the \(y \)-axis. Hence he has obtained a two-dimensional superintegrable system as \(H_s = H_x + H_y \), where can be separated in Cartesian coordinates with creation and annihilation operators \(a_+(x) \), \(a_-(x) \), \(s_+(y) \) and \(s_-(y) \). Also, he has shown that the Hamiltonian \(H_s \) possesses the following integrals of motion

\[\mathcal{K} = H_x - H_y, \]

\[\mathcal{A}_1 = a_+(x)s_-(y) - a_-(x)s_+(y), \]

\[\mathcal{A}_2 = a_-(x)s_+(y) + a_+(x)s_-(y), \]

(4)

where these integrals are of order 2, 3 and 4 for shape invariant potentials[24].

On the other hand, in Refs. [26,27], the authors have shown that the second-order differential equations and their associated differential equations in mathematical physics have the
shape invariant property of supersymmetry quantum mechanics. They have shown that by using a polynomial of a degree not exceeding two, called the master function, the associated differential equations can be factorized into the product of rising and lowering operators. The master function formalism has been used in relativistic quantum mechanics for solving the Dirac equation [28,29].

As Mielnik’s- Marquette’s method for generating superintegrable systems can be applied to other systems obtained in the context of supersymmetric quantum mechanics hence in this paper, we show that the supersymmetry method for obtaining the integrable and superintegrable systems can be related to master function formalism. In fact, we use the master function approach for 1-dimensional shape invariant potentials and generate 2-dimensional integrable systems. Also for a particular class of shape invariant systems, we generate 2-dimensional supperintegrable systems. This class contains the harmonic oscillator, the singular harmonic oscillator and their supersymmetric isospectral deformations.

The paper is presented as follows: in section 2, we review how one can generate integrals of motion for two-dimensional superintegrable system from the creation and annihilation operators. In section 3, we consider a particular quantum system for applying the Mielnik-s- Marquette-s method and obtain a superintegrable potential separable in cartesian coordinates. In section 4, we briefly review the master function formalism and then in section 5, we use this approach to obtain integrable systems and particular cases of the superintegrable systems that satisfy the oscillator-like (Heisenberg) algebra with higher order integrals of motion in terms of the master function and weight function. In section 6, we give two examples to show how this method works in constructing oscillator-like two-dimensional superintegrable systems. Paper ends with a brief conclusion in section 7.
2 Two-dimensional superintegrable system and its integrals of motion

According to Refs. [24,30,31], for a two-dimensional Hamiltonian separable in Cartesian coordinates as:

\[H(x, y, p_x, p_y) = H_x(x, p_x) + H_y(y, p_y), \]

(5)

where the creation and annihilation operators (polynomial in momenta) \(A_+(x), A_-(x), A_+(y) \) and \(A_-(y) \) satisfy the following equations

\[[H_x, A_-(x)] = -\lambda_x A_-(x), \quad [H_y, A_-(y)] = -\lambda_y A_-(y), \]

\[[H_x, A_+(x)] = \lambda_x A_+(x), \quad [H_y, A_+(y)] = \lambda_y A_+(y), \]

(6)

one can show that the operators \(f_1 = A_+^m(x)A_-^n(y) \) and \(f_2 = A_-^m(x)A_+^n(y) \) commute with the Hamiltonian \(H \), that is

\[[H, f_1] = [H, f_2] = 0, \]

(7)

if

\[m\lambda_x - n\lambda_y = 0, \quad m, n \in \mathbb{Z}^+. \]

(8)

Also the following sums of \(f_1 \) and \(f_2 \) commute with the Hamiltonian

\[I_1 = A_+^m(x)A_-^n(y) - A_-^m(x)A_+^n(y), \quad I_2 = A_+^m(x)A_-^n(y) + A_-^m(x)A_+^n(y), \]

(9)

that is, \(I_1 \) and \(I_2 \) are the integrals of motion. The order of these integrals of motion depends on the order of the creation and annihilation operators. On the other hand, the Hamiltonian \(H \) possesses a second order integral as \(K = H_x - H_y \), such that the integral \(I_2 \) is the commutator of \(I_1 \) and \(K \). Thus the Hamiltonian \(H \) is a superintegrable system and \(H, I_1 \) and \(K \) are its integrals of motion.
3 Mielnik- Marquette method and superintegrable model obtained from shifted oscillator Hamiltonian

In this section, for reviewing of the Mielnik-Marquette method, we consider shifted oscillator Hamiltonian as

$$H = -\frac{d^2}{dx^2} + \frac{1}{4}\omega^2(x - \frac{2b}{\omega})^2 - \frac{\omega}{2}.$$ \hspace{1cm} (10)

We introduce the following first order operators

$$a_- = \frac{d}{dx} + \frac{1}{2}\omega x - b, \quad a_+ = -\frac{d}{dx} + \frac{1}{2}\omega x - b,$$ \hspace{1cm} (11)

where the supersymmetric partner Hamiltonians are calculated as

$$H_1 = a_-a_+ = H + \omega, \quad H_2 = a_+a_- = H.$$ \hspace{1cm} (12)

It is obvious that H_1 and H_2 have the shape invariant properties. Now, according to Eq.(2), we define the new operators b_- and b_+ such that

$$H_1 = H + \omega = b_-b_+.$$ \hspace{1cm} (13)

The above equation gives the following Riccati equation

$$\beta^2 + \beta' = \frac{1}{4}\omega^2x^2 - b\omega x + b^2 + \frac{\omega}{2},$$ \hspace{1cm} (14)

where a particular solution is

$$\beta(x) = \beta_0(x) = \frac{1}{2}\omega x - b.$$ \hspace{1cm} (15)

Now, if we consider

$$\beta(x) = \beta_0(x) + \varphi(x),$$ \hspace{1cm} (16)

then we can obtain the following first order linear inhomogeneous equation

$$z' + (-2\beta_0)z = 1,$$ \hspace{1cm} (17)
where $z = \frac{1}{\varphi(x)}$. After solving the above equation, we get

$$
\varphi(x) = \frac{1}{z(x)} = \frac{e^{-\omega x^2 + 2bx}}{\sqrt{\frac{\pi}{2w}} \operatorname{Erf}(\sqrt{\frac{\omega}{2}}(x - \frac{2b}{\omega}) + C)},
$$

(18)

where C is the constant of integration. Using the function $\varphi(x)$, we obtain

$$
H' = b_+ b_- = H_1 - \varphi'(x),
$$

(19)

where its creation and annihilation operators are given by following expressions

$$
s_+ = b_+ a_+ b_-, \quad s_- = b_+ a_- b_-.
$$

(20)

According to Marquette method, we take the x axis for Hamiltonian H_1 and the y axis for its superpartner H' and we have the following two-dimensional superintegrable system

$$
H_s = H_x + H_y
= H_1 + H' = -\frac{d^2}{dx^2} - \frac{d^2}{dy^2} + \frac{1}{4} \frac{\omega^2}{\omega} (x - \frac{2b}{\omega})^2 + \frac{1}{4} \frac{\omega^2}{\omega} (y - \frac{2b}{\omega})^2 - \frac{\omega}{2} - \frac{d\varphi}{dy}.
$$

(21)

This Hamiltonian possesses the integral of motion given by Eq.(4), which are of order 2, 3 and 4.

4 The Master function formalism

According to Refs. [26,27], the general form of the differential equation in master function approach is written as:

$$
A(x)\Phi''_n + \frac{(A(x)w(x))'}{w(x)}\Phi'_n(x) - \left(n\left(A(x)w(x)\right)' + \frac{n(n-1)}{2}A''(x)\right)\Phi_n(x) = 0,
$$

(22)

where $A(x)$ as master function is at most a second order polynomial and $w(x)$ is the non-negative weight function in interval (a, b). By differentiating Eq. (22) m times and then multiplying it by $(-1)^m A^\bar{m}(x)$, we get the following associated second-order differential
equation in terms of the master function and weight function
\[A(x)\Phi'' + \left(\frac{A(x)w(x)'}{w(x)}\right)\Phi' + \left[-\frac{1}{2}(n^2 + n - m^2)A'' + (m - n)\left(\frac{A(x)w'(x)}{w(x)}\right)\right] = 0, \tag{23} \]
where
\[\Phi_{n,m}(x) = (-1)^m A^m \frac{d^m}{dx^m} \Phi_n(x). \tag{24} \]
Changing the variable \(\frac{dx}{dr} = \sqrt{A(x)}\), and defining the new function \(\Psi^m_n(r) = A^{\frac{3}{2}}(x)w^{\frac{1}{2}}(x)\phi_{n,m}(x)\), one can obtain the Schrodinger equation as:
\[-\frac{d^2}{dr^2} \Psi^m_n(r) + v_m(x(r))\Psi^m_n(r) = E(n, m)\Psi^m_n(r), \quad m = 0, 1, 2, ..., \tag{25} \]
where the most general shape invariant potential is:
\[v_m(x(r)) = -\frac{1}{2}\left(\frac{A(x)w'(x)}{w(x)}\right)' - \frac{2m - 1}{4}A''(x) + \frac{m A'(x)w'(x)}{2w(x)} + \frac{4m^2 - 1}{16}A^2(x), \tag{26} \]
and the energy spectrum \(E(n, m)\) is as:
\[E(n, m) = -(n - m + 1)\left[\left(\frac{A(x)w'(x)}{w(x)}\right)' + \frac{1}{2}(n + m)A''(x)\right]. \tag{27} \]
According to Refs. [26,27] the first-order deferential operators are written as:
\[A_\pm = \mp\frac{d}{dr} + W_m(x(r)), \tag{28} \]
where the superpotential \(W_m(x(r))\) is expressed in terms of the master function \(A(x)\) and weigh function \(w(x)\) as:
\[W_m(x(r)) = -\frac{A(x)w'(x)/2w(x) + ((2m - 1)/4)A'(x)}{\sqrt{A(x)}}. \tag{29} \]
The Hamiltonian \(H_1\) and \(H_2\) called the superpartner Hamiltonians are written as
\[H_1 = A_- A_+ = -\frac{d^2}{dr^2} + W_m^2(r) + W_m'(r) = -\frac{d^2}{dr^2} + v_1(r), \]
\[H_2 = A_+ A_- = -\frac{d^2}{dr^2} + W_m^2(r) - W_m'(r) = -\frac{d^2}{dr^2} + v_2(r), \tag{30} \]
where \(v_1(r) \) and \(v_2(r) \) are called the partner potentials in the concept of supersymmetry in nonrelativistic quantum mechanics. Furthermore, if the partner potentials have the same shape and differ only in parameters, then potentials \(v_1(r) \) and \(v_2(r) \) are called the shape invariant potentials that satisfy in

\[
v_1(r, a_0) = v_2(r, a_1) + R(a_1),
\]

(31)

where \(R(a_1) \) is independent of any dynamical variable and \(a_1 \) is a function of \(a_0 \). Potentials which satisfy in this condition are exactly solvable, although shape invariance is not the most general integrability or superintegrability condition.

5 Integrable and superintegrable systems obtained from the master function formalism

In this section, we try to relate the Mielnik-Marquette method to the master function approach. Hence we define the following new operators:

\[
B_\pm = \mp \frac{d}{dr} + \omega(r),
\]

(32)

where \(\omega(r) \) as the new superpotential must be related to the general form of the master function superpotential \(W_m(x(r)) \). Their product yields to Hamiltonians as:

\[
B_- B_+ = -\frac{d^2}{dr^2} + \omega^2(r) + \omega'(r),
\]

\[
B_+ B_- = -\frac{d^2}{dr^2} + \omega^2(r) - \omega'(r).
\]

(33)

Now if we demand \(A_- A_+ = B_- B_+ \) then we can obtain the following Riccati equation in terms of master function:

\[
\omega^2(r) + \omega'(r) = W_m^2(r) + W_m'(r),
\]

(34)
where a particular solution is \(\omega(r) = W_m(r) \). The general solution can be obtained like:

\[
\omega(r) = W_m(r) + \lambda(r),
\]

which yields:

\[
\lambda^2(r) + 2W_m(r)\lambda(r) + \lambda'(r) = 0. \tag{36}
\]

We consider the transformation \(f(r) = \frac{1}{\lambda(r)} \) and obtain a first order linear inhomogeneous differential equation as:

\[
f'(r) - 2W_m(r)f(r) = 1, \tag{37}
\]

which the general solution is:

\[
f(r) = \exp \left[2 \int W_m(r) \, dr \right] \left(C + \int \exp \left[2 \int W_m(r') \, dr' \right] \, dr \right), \tag{38}
\]

where \(C \) is constant. Hence:

\[
\omega(r) = W_m(r) + \frac{e^{-\int 2W_m(r) \, dr}}{C + \int e^{\int 2W_m(r') \, dr'} \, dr}. \tag{39}
\]

Using the function \(f(r) \) given by (38), the superpartner Hamiltonian is given by:

\[
H' = H_2 - \lambda'(r) = -\frac{d^2}{dr^2} + W_m^2(r) - W_m'(r) - \lambda'(r), \tag{40}
\]

which is the general form of Hamiltonian in terms of master function. Now if we catch \(H_r = H_2 \) and \(H_{r'} = H' \) (the Hamiltonian \(H' \) is thus given in terms of the variable \(r' \) vertical to \(r \)) then we obtain a new two-dimensional integrable Hamiltonian as:

\[
H_s = H_r + H_{r'} = -\frac{d^2}{dr^2} - \frac{d^2}{dr'^2} + W_m^2(r) - W_m^2(r') + W_m'(r) - W_m'(r') - \lambda'(r'). \tag{41}
\]

Therefore we have obtained the general form of the 2-dimensional integrable Hamiltonian in terms of master function in which can be separated in radial coordinates. This separation of variable implies the existence of a second order integral as \(K = H_r - H_{r'} \). Hence, \(H_s \) is a integrable system. Now, for generating superintegrable systems, we can obtain the creation and annihilation operators for \(H' \) from \(H_2 \) as

\[
S_+ = B_+ A_+ B_- , \quad S_- = B_+ A_- B_- . \tag{42}
\]
where A_\pm and B_\pm were given in Eqs. (28),(32). As these ladder operators satisfy the relation given by (6) only for a particular class of shape invariant systems so in general form, the 2-dimensional system H_s, obtained from a given master function, is not a superintegrable system. In fact, this class contains the harmonic oscillator, the singular harmonic oscillator and their supersymmetric iso-spectral deformations.

Hence if it exists, according to Eq. (9) we can obtain the integrals of motion for Hamiltonian (41) as

\[
\begin{align*}
K &= H_r - H_{r'}, \\
A_1 &= A^m_+(r)S^m_+(r') - A^m_-(r)S^m_+(r'), \\
A_2 &= A^m_+(r)S^m_-(r') + A^m_-(r)S^m_+(r').
\end{align*}
\]

(43)

In the next section, we apply this formalism for some particular cases of shape invariant potentials in terms of master function.

6 Examples of two-dimensional superintegrable systems as a result of master function approach

In this section, we would apply the master function formalism of the previous section for two examples and show how these results allow us to obtain 2-dimensional superintegrable systems with higher order integrals.

Example 1

Let $A(x) = 1$, then according to Ref. [26], $w(x) = e^{-\frac{\beta}{2}x^2}$ that $x = r - \frac{2\alpha}{\beta}$, $\beta > 0$ and the interval is $(-\infty, +\infty)$. Using Eq.(29), we obtain the superpotential as:

\[
W_m(r) = \frac{\beta}{2}(r - \frac{2\alpha}{\beta}).
\]

(44)

According to Eq. (27), the energy spectrum is as

\[
E = n - m + 1,
\]

(45)

11
also the ladder operators given by equation (28) related to Eq. (44), satisfy a Heisenberg algebras (6). Now, substituting expression $W_m(r)$ in Eq.(38) yields the following relation in terms of the Error function:

$$\lambda(r) = \frac{e^{\beta \frac{r^2}{2} + \alpha r}}{C + \sqrt{\frac{\pi}{23}} e^{\frac{2\alpha^2}{\beta}} E_{rf} \left(\sqrt{\frac{\beta}{2}} (r - \frac{2\alpha}{\beta})\right)}.$$ \hspace{1cm} (46)

and so

$$\omega(r) = W_m(r) + \lambda(r) = \frac{\beta}{2} (r - \frac{2\alpha}{\beta}) + \frac{e^{\beta \frac{r^2}{2} + \alpha r}}{C + \sqrt{\frac{\pi}{23}} e^{\frac{2\alpha^2}{\beta}} E_{rf} \left(\sqrt{\frac{\beta}{2}} (r - \frac{2\alpha}{\beta})\right)}.$$ \hspace{1cm} (47)

Substituting this expression in Eqs. (40),(41), yield the family of superpartner H' and a two-dimensional superintegrable Hamiltonian respectively as:

$$H' = H_2 - \lambda'(r),$$

$$H_s = -\frac{d^2}{dr^2} - \frac{d^2}{dr'^2} + \frac{\beta^2}{4} (r - r')(r + r' - \frac{4\alpha}{\beta}) - \lambda'(r'),$$ \hspace{1cm} (48)

where

$$\lambda'(r') = \frac{(\beta r' + \alpha)e^{\frac{\beta}{2} r'^2 + \alpha r'}}{C + \sqrt{\frac{\pi}{23}} e^{\frac{2\alpha^2}{\beta}} E_{rf} \left(\sqrt{\frac{\beta}{2}} (r' - \frac{2\alpha}{\beta})\right)} - \frac{(e^{\frac{\beta}{2} r'^2 + \alpha r'}) (e^{\frac{2\alpha^2}{\beta}} e^{-\frac{\beta}{2} (r' - \frac{2\alpha}{\beta})^2})}{\left[C + \sqrt{\frac{\pi}{23}} e^{\frac{2\alpha^2}{\beta}} E_{rf} \left(\sqrt{\frac{\beta}{2}} (r' - \frac{2\alpha}{\beta})\right)\right]^2}.$$ \hspace{1cm} (49)

and

$$H_2 = -\frac{d^2}{dr'^2} + \frac{\beta^2}{4} (r - \frac{2\alpha}{\beta})^2 - \frac{\beta}{2}. \hspace{1cm} (50)$$

We can find the general form of the operators S_+ and S_- in terms of the master function for this oscillator-like potentials as follows:

$$S_+ = -\frac{d^3}{dr^3} - W_m \frac{d^2}{dr^2} + (-2\omega' - W_m + \omega^2) \frac{d}{dr} + (-\omega'' - W_m \omega - W_m \omega' + \omega \omega' + W_m \omega^2),$$

$$S_- = \frac{d^3}{dr^3} - W_m \frac{d^2}{dr^2} + (-2\omega' - W_m - \omega^2) \frac{d}{dr} + (\omega'' - W_m \omega - W_m \omega' + \omega \omega' + W_m \omega^2). \hspace{1cm} (51)$$

Thus we have obtained a 2-dimensional superintegrable system with integrals given by Eq.(43) as:

$$K = H_r - H_r', \hspace{12cm} 12$$
According to Ref. [26] for Example 2

These integrals are of order 2, 3 and 4.

\[A_1 = A_+(r) S_-(r') - A_-(r) S_+(r'), \]
\[A_2 = A_+(r) S_-(r') + A_-(r) S_+(r'), \]
(52)

where

\[K = - \frac{d^2}{dr^2} + \frac{d^2}{dr'^2} + W_m^2(r) - W_m^2(r') + W_m''(r) + W_m''(r') + \lambda(r'), \]
\[A_1 = 2W_m(r) \frac{d^3}{drdr^2} - 2W_m(r) \frac{d^3}{drdr^2} + 2W_m'(r) \frac{d^2}{drdr^2} + (2W_m'(r')\omega(r')) \]
\[+ 2W_m(r')\omega'(r') - 2\omega^2(r')W_m(r') \frac{d}{dr} + W_m(r) \]
\[(-4\omega'(r') + 2\omega^2(r')) \frac{d}{dr} W_m(r) (2\omega\omega' - 2\omega''), \]
(53)

\[A_2 = 2 \frac{d^4}{drdrdr^2} + (W_m(r') - W_m(r)) \frac{d^3}{drdr^2} + (4\omega'(r') - 2\omega^2(r')) \frac{d^2}{drdr^2} \]
\[- 2W_m(r) W_m(r') \frac{d^2}{dr^2} - 2W_m(r) W_m'(r') \frac{d}{dr} + (2\omega''(r')) \]
\[- 2\omega(r')\omega'(r') \frac{d}{dr} + W_m(r) (2\omega^2(r') \omega_m(r') \]
\[- 2W_m(r') \omega'(r') - 2W_m(r') \omega(r')). \]

These integrals are of order 2, 3 and 4.

Example 2

According to Ref. [26] for \(A(x) = x \), we have \(w(x) = x^\alpha e^{-\beta x}, \) \(x = \frac{r^2}{4\pi}, \) \(\alpha > -1, \beta > 0 \) and the interval is \([0, +\infty)\). Now, using Eq.(29), the superpotential and the energy spectrum are as

\[W_m(r) = - \frac{1}{r} (\alpha + m - \frac{1}{2}) + \frac{\beta}{4} r, \quad E = \beta(n - m + 1). \]
(54)

This system has also the ladder operators that satisfy the form of Eq. (6) hence substituting expression \(W_m(r) \) in Eq.(38) yields the following relation in terms of Whittaker function:

\[f(r) = \frac{\beta^{-(\alpha+m)}}{(\alpha + m)} \left(\frac{r}{2} \right)^{(2\alpha+2m-1)} e^{\frac{1}{2} \beta r^2} \left[C + e^{-\frac{1}{2} \beta r^2} \left(\frac{1}{(\alpha + m + 1)} \left(\frac{\beta r^2}{4} \right)^{\frac{\alpha}{2} + \frac{m}{2}} \right) \right. \]
\[\left. + \left(\frac{\beta r^2}{4} \right)^{\frac{\alpha}{2} + \frac{m}{2} - 1} \left(\frac{1}{(\alpha + m + 1)} \left(\frac{\beta r^2}{4} \right)^{\frac{\alpha}{2} + \frac{m}{2}} \right) \right), \]
(55)
where the Whittaker function $M_{\mu,\nu}(z)$ is the solution of the following differential equation:

$$y'' + \left(-\frac{1}{4} + \mu + \frac{1}{2} \frac{\nu^2}{z^2} \right) y = 0.$$ \hfill (56)

It can be also defined in terms of the confluent hypergeometric function as:

$$M_{\mu,\nu}(z) = e^{-\frac{1}{2}z} z^{\frac{1}{2}+\nu} {}_1 F_1 \left(\frac{1}{2} + \nu - \mu, 1 + 2\nu, z \right).$$ \hfill (57)

The family of superpartner Hamiltonians H' and the two-dimensional superintegrable Hamiltonian H_s are thus calculated by Eqs. (40), (41) respectively. The creation and annihilation operators for the Hamiltonian H_2 are as

$$M_+(r) = A_+^2(r) A_-(r), \quad M_-(r) = A_+(r) A_-^2(r),$$ \hfill (58)

where $A_{\pm}(r)$ is given in Eq. (28) and from Eq. (42), we have the creation and annihilation operators of the Hamiltonian H' as:

$$R_+(r') = B_+(r') M_+(r') B_-(r'), \quad R_-(r') = B_+(r') M_-(r') B_-(r'),$$ \hfill (59)

where $B_{\pm}(r)$ is given by (32) and (39). We can also find the integrals of motion of the Hamiltonian H_s from Eq. (43) as:

$$K = H_r - H_{r'},$$

$$A_1 = M_+(r) R_-(r') - M_-(r) R_+(r'),$$

$$A_2 = M_+(r) R_-(r') + M_-(r) R_+(r'),$$ \hfill (60)

that are of the order 2, 7 and 8.

7 Conclusion

In this article, we have shown how the supersymmetric quantum mechanics gives a procedure for constructing two-dimensional integrable and superintegrable systems with higher
order integrals of motion. We have used the results obtained by Mielnik in the concept of SUSYQM and related it to master function formalism for constructing two-dimensional integrable and superintegrable systems. From this procedure, we have generated the superintegrable systems for two different cases of master functions $A(x) = 1$ and $A(x) = x$, and have shown that the higher integrals of motion are in order 2, 3, 4 and 2, 7, 8 respectively.
References

[1] V. I. Arnold, Mathematical Methods of Classical Mechanics, *Graduate Texts in Mathematics, Springer-Verlag*, 1978.

[2] E. G. Kalnins, J. M. Kress, Jr. W. Miller, P. Winternitz, Superintegrable systems in Darboux spaces, *J. Math. Phys.* **44** 5811 (2003).

[3] E. G. Kalnins, J. M. Kress, Jr. W. Miller, Second order superintegrable systems in conformally flat spaces. IV. The classical 3D St"uckel transform and 3D classification theory, *J. Math. Phys.* **47** 043514 (2006).

[4] E. G. Kalnins, Jr. W. Miller, G. S. Pogosyan, Exact and quasiexact solvability of second order superintegrable quantum systems. II. Relation to separation of variables, *J. Math. Phys.* **48** 023503 (2007).

[5] P. Winternitz, I. Yurdusen, Integrable and superintegrable systems with spin, *J. Math. Phys.* **47** 103509 (2006).

[6] E. Ramos, A comment on the odd flow for the supersymmetry KdV equation, *Mod. Phys. Lett. A* **09** 3235 (1994).

[7] G. Sparano, Superintegrable systems and recursion operators, *Mod. Phys. Lett. A* **18** 2501 (2003).

[8] J. Berube, P. Winternitz, Integrable and superintegrable quantum systems in a magnetic field, *J. Math. Phys.* **45** 1959 (2004).

[9] J. A. Calzada, J. Negro, M. A. del Olmo, Dynamical Symmetries for Superintegrable Quantum Systems, *Physics of Atomic Nuclei* **70** 121 (2007).

[10] J. A. Calzada, S. Kuru, M. A. del Olmo, Intertwining Symmetry Algebras of Quantum Superintegrable Systems, *SIGMA* **5** 039 (2009).
[11] S. Gravel, P. Winternitz, Superintegrability with third-order integrals in quantum and classical mechanics, *J. Math. Phys.* **43** 5902 (2002).

[12] S. Gravel, Hamiltonians separable in Cartesian coordinates and third-order integrals of motion, *J. Math. Phys.* **45** 1003 (2004).

[13] I. Marquette, P. Winternitz, Superintegrable systems with third-order integrals of motion, *J. Phys. A: Math. Theor.* **41** 304031 (2008).

[14] I. Marquette, Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials, *J. Math. Phys.* **50** 012101 (2009).

[15] M. Visinescu, Higher order first integrals of motion in a gauge covariant Hamiltonian framework, *Mod. Phys. Lett. A* **25** 341 (2010).

[16] I. Marquette, P. Winternitz, Polynomial Poisson algebras for classical superintegrable systems with a third-order integral of motion, *J. Math. Phys.* **48** 012902 (2007).

[17] I. Marquette, Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlev transcendent potentials, *J. Math. Phys.* **50** 095202 (2009).

[18] I. Marquette, Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems, *J. Math. Phys.* **52** 042301 (2011).

[19] G. Junker, *Supersymmetric Methods in quantum and Statistical Physics*, Springer, New York 1995.

[20] W. Skiba, Dynamical Supersymmetry Breaking, *Mod. Phys. Lett. A* **12** 737 (1997).

[21] C. Quesne, Comments on dihedral and supersymmetric extensions of a family of Hamiltonians on a plane, *Mod. Phys. Lett. A* **25** 2373 (2010).
[22] A. V. Bratchikov, Gauch algebra of irreducible theories in the Sp(2)-symmetric BRSt formalism, *Mod. Phys. Lett. A* **27** 1250170 (2012).

[23] I. Marquette, An infinite family of superintegrable systems from higher order ladder operators and supersymmetry, *J. Phys. Conf. Ser.* **284** 012047 (2011).

[24] I. Marquette, Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion, *J. Math. Phys.* **50** 122102 (2009).

[25] B. Mielnik, Factorization method and new potentials with the oscillator spectrum, *J. Math. Phys.* **25** 3387 (1984).

[26] M. A. Jafarizadeh, H. Fakhri, Supersymmetry and shape invariance in differential equations of mathematical physics, *Phys. Lett. A* **230** 164 (1997).

[27] M. A. Jafarizadeh, H. Fakhri, Parasupersymmetry and shape invariance in differential equations of mathematical physics and quantum mechanics, *Ann. Phys. bf 262* 260 (1998).

[28] H. Panahi, L. Jahangiry, Rodrigues solutions of the dirac equation for shape-invariant potentials: Master function approach, *Theoretical and Mathematical Physics* **164** 1081 (2010).

[29] Z. Bakhshi, H. Panahi, Rodrigues solution of the Dirac equation for fields obtained from the master function formalism, *Phys. Scr.* **85** 025004 (2012).

[30] I. Marquette, Construction of classical superintegrable systems with higher order integrals of motion from ladder operators, *J. Math. Phys.* **51** 072903 (2010).

[31] I. Marquette, Generalized KaluzaKlein monopole, quadratic algebras and ladder operators, *J. Phys. A: Math. Gen.* **43** 235203 (2010).