An extension of Thomassen’s result on choosability

Lingxi Li Tao Wang*

Center for Applied Mathematics
Henan University, Kaifeng, 475004, P. R. China

Abstract

Thomassen proved that all planar graphs are 5-choosable. Škrekovski strengthened the result by showing that all K_5-minor-free graphs are 5-choosable. Dvořák and Postle pointed out that all planar graphs are DP-5-colorable. In this note, we first improve these results by showing that every K_5-minor-free or $K_{3,3}$-minor-free graph is DP-5-colorable. In the final section, we further improve these results under the term strictly f-degenerate transversal.

1 Introduction

Thomassen \cite{6} proved that all planar graphs are 5-choosable. Škrekovski \cite{9} (see also \cite{3, 11}) extended the result to the class of K_5-minor-free graphs. Dvořák and Postle \cite{2} gave a generalization of list coloring, under the name correspondence coloring, which was called DP-coloring by Bernshteyn, Kostochka, and Pron \cite{1}. Let G be a graph and L be a list assignment for G. For each vertex $v \in V(G)$, we associate it with a set $L_v = \{v\} \times L(v)$; for each edge $uv \in E(G)$, we associate it with a matching \mathcal{M}_{uv} between L_u and L_v. Let $\mathcal{M} = \bigcup_{uv \in E(G)} \mathcal{M}_{uv}$, and we call \mathcal{M} the matching assignment over L. The matching assignment \mathcal{M} is called a k-matching assignment if $L(v) = \{1, 2, \ldots, k\}$ for every $v \in V(G)$. A cover of G is a graph $H_{L, \mathcal{M}}$ (simply write H) meeting two conditions:

- the vertex set of H is the disjoint union of L_v for all $v \in V(G)$; and
- the edge set of H is the matching assignment \mathcal{M}.

Let G be a graph and H be a cover of G over a list assignment L. An (L, \mathcal{M})-coloring of G is an independent set I of H such that $|I \cap L_v| = 1$ for each $v \in V(G)$. A graph G is DP-k-colorable if for any list assignment $L(v) \supseteq \{1, 2, \ldots, k\}$ and any matching assignment \mathcal{M}, it admits an (L, \mathcal{M})-coloring. Note that every DP-k-colorable graph is k-choosable.

Dvořák and Postle \cite{2} have pointed out that all planar graphs are DP-5-colorable. We improve the result to the following Theorem 1.1, and we also extend the result for planar graphs to the class of $K_{3,3}$-minor-free graphs.

Theorem 1.1. All K_5-minor-free graphs are DP-5-colorable.

Theorem 1.2. All $K_{3,3}$-minor-free graphs are DP-5-colorable.

Let H be a cover of G, and let f be a function from $V(H)$ to $\{0, 1, 2, \ldots\}$. A subset $T \subseteq V(H)$ is called a transversal if $|T \cap L_v| = 1$ for each $v \in V(G)$. A transversal T of a cover H is strictly f-degenerate if every nonempty subgraph Γ in $H[T]$ contains a vertex x with $\deg_{\Gamma}(x) < f(x)$. In other words, all the vertices of $H[T]$ can be ordered as x_1, x_2, \ldots, x_n such that each vertex x_i has less than $f(x_i)$ neighbors on the right.

*wangtao@henu.edu.cn; https://orcid.org/0000-0001-9732-1617
hand side. Such an order is an f-removing order, and the reverse order $x_n, x_{n-1}, \ldots, x_1$ is an f-coloring order.

By definition, a vertex x can never be chosen in a strictly f-degenerate transversal if $f(x) = 0$. Hence, we can add some vertices into L_v and define the value of f to be zero on these new vertices, so that all the L_v have the same cardinality. On the other hand, it doesn’t matter what the labels of the vertices are, so we may assume that $L_v = \{v\} \times [s]$, where s is an integer. A cover H together with a function f is called a valued-cover.

In Section 3, we strengthen Theorems 1.1 and 1.2 to Theorem 1.3. In order to demonstrate how Thomassen’s technique in [6] is extended, we first give a proof for Theorem 1.1 in Section 2, and then give one for Theorem 1.3, even though Theorems 1.1 and 1.2 are special cases of Theorem 1.3. For a function f, we use R_f to denote the range of f.

Theorem 1.3. Assume that G is a K_5-minor-free or $K_{3,3}$-minor-free graph, and (H, f) is a valued-cover with $R_f \subseteq \{0, 1, 2\}$. Then H contains a strictly f-degenerate transversal.

Assume that G is a plane graph and C is a cycle in it. We will use Int(C) (resp. Ext(C)) to denote the subgraph induced by $V(C)$ and the vertices inside (resp. outside) of C. The cycle C is a separating cycle of G if both the interior and the exterior of C have at least one vertex.

2 DP-5-coloring

A plane triangulation is an embedded plane graph such that each of its faces is bounded by a cycle of length three. A near-triangulation is an embedded plane graph such that each bounded face is bounded by a triangle and the unbounded face (outer face) is bounded by a cycle. An ℓ-sum of two graphs G' and G'' is the graph G such that $G = G' \cup G''$ and $G' \cap G'' = K_\ell$.

The Wagner graph is a 3-regular graph with 8 vertices and 12 edges, see Fig. 1. Note that the Wagner graph is non-planar, thus the Wagner graph cannot be a subgraph of a planar graph.

![Wagner graph](image)

Fig. 1: Wagner graph.

Wagner [10] gave the following characterization of planar graphs in terms of graph minors.

Theorem 2.1 (Wagner [10]). A graph is planar if and only if it does not contain K_5 or $K_{3,3}$ as a minor.

By Wagner’s Theorem, the class of K_5-minor-free graphs and the class of $K_{3,3}$-minor-free graphs are two superclasses of planar graphs.

A graph G is maximal K_5-minor-free if it does not contain K_5 as a minor, but $G + xy$ contains a K_5-minor for every pair nonadjacent vertices x and y in G. Wagner [10] also gave the following characterization of maximal K_5-minor-free graphs.

Theorem 2.2 (Wagner [10]). Every maximal K_5-minor-free graph can be obtained from the Wagner graph and plane triangulations by recursively 2-sums or 3-sums.

The following theorem and its proof are very similar to that in [6], but for completeness we give a complete proof here.

Theorem 2.3. Assume that G is a near-triangulation such that the outer face is bounded by a cycle $O = v_1v_2 \ldots v_pv_1$. Let L be a list assignment of G such that $|L(v)| \geq 3$ for each $v \in V(O)$ and $|L(v)| \geq 5$ for each $v \notin V(O)$. If M is a matching assignment for G and R_0 is an (L,M)-coloring of $G'[\{v_1, v_2\}]$, then G admits an (L, M)-coloring such that its restriction on $G'[\{v_1, v_2\}]$ is R_0.

2
Theorem 2.5

Proof. The assertion is proved by induction on $|V(G)|$. When G has only three vertices, $G = \emptyset = K_3$ and the assertion is obvious. So we can assume that $|V(G)| \geq 4$ and the assertion is true for smaller graphs. Suppose that \mathcal{O} has a chord v_iv_j. It follows that v_iv_j lies in two cycles C_1 and C_2 of $O + v_iv_j$. Let v_1v_2 lie in C_1. Applying the induction hypothesis to $\text{Int}(C_1)$, R_0 can be extended to an (L,\mathcal{M})-coloring of $\text{Int}(C_1)$. After v_1 and v_2 are colored, it can be further extended to an (L,\mathcal{M})-coloring of $\text{Int}(C_2)$. This yields a desired (L,\mathcal{M})-coloring of G.

So we can assume that \mathcal{O} has no chord. Let $v_1, u_1, u_2, \ldots, u_m, v_{p_1}$ be the neighbors of v_p in a natural cyclic order around v_p. Since all the bounded faces of G are bounded by triangles and \mathcal{O} has no chord, $P = v_1u_1u_2 \ldots u_mv_{p_1}$ is a path and $\mathcal{O}' = P \cup (\mathcal{O} - v_p)$ is a cycle. Let j and ℓ be two distinct elements in $(L(v_p))$ which do not conflict with the color of v_1 under the matching $\mathcal{M}_{v_1v_p}$. Now define $L'(v) = L(v)$ for every $v \notin \{u_1, u_2, \ldots, u_m, v_p\}$, for $1 \leq i \leq m$, define $L'(u_i)$ from $L(u_i)$ by deleting the neighbors of $j, \ell \in L(v_p)$ under the matching $\mathcal{M}_{v_1u_i}$. It is easy to check that $|L'(v)| \geq 3$ for all $v \in \mathcal{O}'$ and $|L'(v)| \geq 5$ for all $V(G) - \{v_p\} - V(\mathcal{O}')$. Applying the induction hypothesis to \mathcal{O}' and its interior and the new list L', we have an (L',\mathcal{M})-coloring for $G - v_p$. There is at least one color in $\{j, \ell\} \subset L(v_p)$ which do not conflict with the color of v_{p_1} under $\mathcal{M}_{v_{p_1}v_p}$, so we can assign it to the vertex v_p. This completes the proof.

Theorem 2.4. Assume that G is a maximal K_5-minor-free graph. If K is a subgraph of G isomorphic to K_2 or K_3, then every DP-5-coloring φ of K can be extended to a DP-5-coloring of G.

Proof. Suppose to the contrary that G is a counterexample with $|V(G)|$ as small as possible.

Assume that G is a plane triangulation and K is a separating 3-cycle of G. Note that $\text{Int}(K)$ and $\text{Ext}(K)$ are both plane triangulations and maximal K_5-minor-free graphs. By minimality, every DP-5-coloring φ of K can be extended to a DP-5-coloring φ_1 of $\text{Int}(K)$ and a DP-5-coloring φ_2 of $\text{Ext}(K)$. Combining φ_1 and φ_2 yields a DP-5-coloring of G, a contradiction.

Assume that G is a plane triangulation and $K = [x_1x_2x_3]$ bounds a 3-face. Note that G has at least four vertices. We can redraw the plane triangulation such that K is the boundary of the outer face. Note that $G - x_3$ is a near-triangulation. Since x_3 on K is precolored, every uncolored vertex incident with the outer face of $G - x_3$ has at least four admissible colors other than $\varphi(x_3)$. Applying Theorem 2.3 to $G - x_3$, we obtain a DP-5-coloring of G whose restriction on K is the precoloring φ.

Assume that G is a plane triangulation and $K = y_1y_2$. We can further assume that y_1y_2 is incident with a 3-face $[y_1y_2y_3]$. Clearly, the precoloring of K can be extended to a DP-5-coloring of $G[y_1, y_2, y_3]$ and we can reduce the problem to the previous case.

If G is the Wagner graph, then we can greedily extend the precoloring of K to a DP-5-coloring of G since G is 3-regular.

By Theorem 2.2, we can assume that G is a 2-sum or 3-sum of two maximal K_5-minor-free graphs G_1 and G_2 with $K \subset G_1$. By minimality, the precoloring φ of K can be extended to a DP-5-coloring φ_1 of G_1. By minimality once again, we can extended the restriction of φ_1 on $G_1 \cap G_2$ to G_2. This yields a DP-5-coloring of G whose restriction on K is the precoloring φ.

Now, we can easily prove Theorem 1.1.

Theorem 1.1. All K_5-minor-free graphs are DP-5-colorable.

Proof. Since every K_5-minor-free graph is a spanning subgraph of a maximal K_5-minor-free graph, it suffices to prove the result for maximal K_5-minor-free graphs. We can first color two adjacent vertices in G, and extend the coloring to the whole graph according to Theorem 2.4.

Wagner [10] also gave a characterization of maximal $K_{3,3}$-minor-free graphs by 2-sums.

Theorem 2.5 (Wagner [10]). Every maximal $K_{3,3}$-minor-free graph can be obtained from the complete graph K_5 and plane triangulations by recursively 2-sums.
Since the proof of the following result is similar to that in Theorem 2.4, we leave it as an exercise to the readers.

Theorem 2.6. Assume that G is a maximal $K_{3,3}$-minor-free graph. If K is a subgraph of G isomorphic to K_2, then every DP-5-coloring of K can be extended to a DP-5-coloring of G.

Theorem 1.2. All $K_{3,3}$-minor-free graphs are DP-5-colorable.

Proof. Since each $K_{3,3}$-minor-free graph is a spanning subgraph of a maximal $K_{3,3}$-minor-free graph, it suffices to show the result for maximal $K_{3,3}$-minor-free graphs. We can first color two adjacent vertices in G, and further extend the precoloring to the whole graph according to Theorem 2.6.

3 \textbf{Strictly f-degenerate transversal}

In this section, we extend the results on DP-5-coloring to particular strictly f-degenerate transversal. The following two lemmas were presented by Nakprasit and Nakprasit [5, Lemma 2.3] with a different term.

For a vertex subset K of $V(G)$, or a subgraph K of G, we use H_K to denote the cover restricted on K, i.e., $H_K := H[\bigcup_{v \in K} L_v]$.

Lemma 3.1. Assume that G is a graph and K is a subgraph of G. Let (H, f) be a valued cover, and T be a transversal of H_K such that $H[T]$ has no edges and $f(x) = 1$ for each $x \in T$. If T can be extended to a strictly f-degenerate transversal T' of H, then there exists an f-removing order of T' such that the vertices in T are on the rightest of the order.

Proof. Let S' be an f-removing order of T'. Since $f(x) = 1$ for each $x \in T$, every vertex in T has no neighbor on the right of the order S', so we can move all the vertices in T to the rightest of the order. In other words, we can delete all the vertices in T from the order S' and put the vertices in T on the right side of all the other vertices of S'. Observe that the resulting order satisfies the desired condition.

Lemma 3.2. Assume that $G = G_1 \cup G_2$, $V(G_1 \cap G_2) = K$ and G_1 is an induced subgraph of G. Let (H, f) be a valued cover of G, and H_i be the restriction of H on G_i for $i \in \{1, 2\}$. If R is a strictly f-degenerate transversal of H_1, and $R \cap H_K$ can be extended to a strictly f^*-degenerate transversal R^* of H^*, where H^* is obtained from H_2 by deleting all the edges in H_K, and f^* is obtained from f by defining $f^*(x) = 1$ for each $x \in R \cap H_K$, then $R \cup R^*$ must be a strictly f-degenerate transversal of H.

Proof. It suffices to give an f-removing order of $H[R \cup R^*]$. By Lemma 3.1, there exists an f^*-removing order of R^* such that the vertices in $R \cap H_K$ are on the rightest of the order. Then we list all the vertices of $R^* \setminus (R \cap H_K)$ according to the f^*-removing order and then list the vertices of R according to an f-removing order. It is easy to check that the resulting order is an f-removing order for $H[R \cup R^*]$.

We first extend Theorem 2.3 to the following result. Note that Theorem 3.1 was first proved in [5, Theorem 1.6], but the following proof is a little bit different from that one.

Theorem 3.1. Assume that G is a near-triangulation such that the outer face is bounded by a cycle $O = v_1v_2 \ldots v_p v_1$. Let (H, f) be a valued cover of G with $R_f \subseteq \{0, 1, 2\}$ such that

\[f(v, 1) + \cdots + f(v, s) \geq 3 \text{ for every } v \in V(O) \]

and

\[f(v, 1) + \cdots + f(v, s) \geq 5 \text{ for every } v \notin V(O). \]

If R_0 is a strictly f-degenerate transversal of $H[L_{v_1} \cup L_{v_2}]$, then R_0 can be extended to a strictly f-degenerate transversal of H.

4
Proof. We prove the assertion by induction on \(|V(G)|\). When \(G\) has exactly three vertices, \(G = \mathcal{O} = K_3\) and the assertion is obvious. Then \(|V(G)| \geq 4\) and the assertion is true for smaller graphs. Suppose that \(\mathcal{O}\) has a chord \(uv\). It follows that \(uv\) lies in two cycles \(C_1\) and \(C_2\) of \(\mathcal{O} + uv\) with \(v_1 v_2\) in \(C_1\). Let \(G_1 := \text{Int}(C_1)\) and \(G_2 := \text{Int}(C_2)\). Applying the induction hypothesis to \(G_1, R_0\) can be extended to a strictly \(f\)-degenerate transversal \(R\) of \(H_1\), and then \(R \cap H[L_u \cup L_w]\) can be extended to a strictly \(f^*\)-degenerate transversal \(R^*\) of \(H^*\) as in Lemma 3.2. Therefore, \(R^* \cup R\) is a desired strictly \(f\)-degenerate transversal of \(H\).

The other case is that \(\mathcal{O}\) has no chord. Let \(v_1, u_1, u_2, \ldots, u_m, v_{p-1}\) be the neighbors of \(v_p\) in a natural cyclic order around \(v_p\), and let \(U = \{u_1, u_2, \ldots, u_m\}\). Since all the bounded faces of \(G\) are bounded by triangles and \(\mathcal{O}\) has no chord, we have \(P = v_1 u_1 u_2 \ldots u_m v_{p-1}\) is a path and \(\mathcal{O}' = P \cup (\mathcal{O} - v_p)\) is a cycle. For each \(x \in \{v_p\} \times [s]\), let

\[
f'((x) = \begin{cases}
\max\{0, f(x) - 1\}, & \text{if } x \text{ is adjacent to } R_0 \cap L_{v_1} \text{ under } \mathcal{M}_{v_1,v_p}; \\
\max\{0, f(x) - 1\}, & \text{if } x \in U \times [s] \text{ and } x \text{ is connected to a vertex in } X^*; \\
f(x), & \text{otherwise.}
\end{cases}
\]

Since \(R_0 \cap L_{v_1}\) has at most one neighbor in \(L_{v_p}\), we have \(f'(v_p, 1) + \cdots + f'(v_p, s) \geq 2\). Let

\[X' = \{ x \in \{v_p\} \times [s] : f'(x) > 0 \}.
\]

Case 1. \(|X'| \geq 2\).

Let \(X^*\) be a subset of \(X'\) with \(|X^*| = 2\). A new function \(f^1\) on \(H - L_{v_p}\) is defined as

\[
f^1(x) = \begin{cases}
\max\{0, f(x) - 1\}, & \text{if } x \in U \times [s] \text{ and } x \text{ is connected to a vertex in } X^*; \\
f(x), & \text{otherwise.}
\end{cases}
\]

It follows that, for each \(u \in \mathcal{O}'\), we have

\[\sum_{x \in L_u} f^1(x) \geq 3.
\]

By induction hypothesis and Lemma 3.1, \((H - L_{v_p}, f^1)\) contains a strictly \(f^1\)-degenerate transversal \(R^1\) with an \(f^1\)-removing order \(S^1\) such that the vertices in \(R_0\) are on the rightest of the order. Let \((v_p, c_p)\) be a vertex in \(X^*\) which is not adjacent to \(R^1 \cap L_{v_{p-1}}\). Therefore, we insert \((v_p, c_p)\) into \(S^1\) such that it is the reciprocal third element to obtain an \(f\)-removing order of a strictly \(f\)-degenerate transversal of \(H\).

Case 2. \(|X'| = 1\).

Without loss of generality, assume that \(X' = \{(v_p, 1)\}\). Since \(f'(v_p, 1) + \cdots + f'(v_p, s) \geq 2\) and \(R_f \subseteq \{0, 1, 2\}\), we have \(f'(v_p, 1) = 2\). Define a function \(f^1\) on \(H - L_{v_p}\) by

\[
f^1(x) = \begin{cases}
0, & \text{if } x \in U \times [s] \text{ and } x \text{ is adjacent to } (v_p, 1) \text{ in } H; \\
f(x), & \text{otherwise.}
\end{cases}
\]

Note that the range of \(f\) is a subset of \(\{0, 1, 2\}\), for each \(u \in \mathcal{O}'\),

\[\sum_{x \in L_u} f^1(x) \geq 3.
\]

By induction hypothesis, \((H - L_{v_p}, f^1)\) admits a strictly \(f^1\)-degenerate transversal \(R^1\) with an \(f^1\)-removing order \(S^1\) such that the vertices in \(R_0\) are on the rightest of the order. Let \(S\) be a sequence obtained from \(S^1\) by inserting \((v_p, 1)\) into \(S^1\) such that \((v_p, 1)\) is the immediate predecessor of \((v_{p-1}, c_{p-1})\), where \((v_{p-1}, c_{p-1}) \in L_{v_{p-1}} \cap R^1\). Recall that \(f^1(v_p, 1) = 2\), it is not hard to check that \(S\) is an \(f\)-removing order of a strictly \(f\)-degenerate transversal of \(H\).
Instead of proving Theorem 1.3, we prove the following stronger theorem for K_5-minor-free graphs, and leave the corresponding result for $K_{3,3}$-minor-free graphs to the readers.

Theorem 3.2. Assume that G is a K_5-minor-free graph, and (H, f) is a valued-cover with $R_f \subseteq \{0, 1, 2\}$. If K is a subgraph isomorphic to K_2 or K_3, and $f(v, 1) + \cdots + f(v, s) \geq 5$ for each $v \in V(G)$, then every strictly f-degenerate transversal of H_K can be extended to a strictly f-degenerate transversal of H.

Proof. Suppose to the contrary that (G, H, f, R_0) is a counterexample with $|V(G)|$ as small as possible, where R_0 is a strictly f-degenerate transversal of H_K. Similar to the previous results, we only need to consider the case that G is a maximal K_5-minor-free graph.

Assume that G is a plane triangulation and K is a separating triangle of G. Note that $\text{Ext}(K)$ and $\text{Int}(K)$ are both plane triangulations and maximal K_5-minor-free graphs. By minimality and Lemma 3.2, R_0 can be extended to a strictly f-degenerate transversal of H.

Assume that G is a plane triangulation and $K = [x_1x_2x_3]$ bounds a 3-face. We can redraw the plane triangulation such that K bounds the outer face. Let (x_3, c_3) be in R_0, define a function f' on $H - L_{x_3}$ by

$$f'(x) = \begin{cases} 0, & \text{if } x \in \{u\} \times \{s\} \text{ with } u \notin \{x_1, x_2\} \text{ and } x \text{ is connected to } (x_3, c_3) \text{ in } H; \\ f(x), & \text{otherwise.} \end{cases}$$

Note that the graph $G - x_3$ is a near-triangulation. Since the range of f is a subset of $\{0, 1, 2\}$, we have that, for each w on the outer face of $G - x_3$,

$$\sum_{x \in \{w\} \times \{s\}} f'(x) \geq 3.$$

By Theorem 3.1, $R_0 \setminus \{(x_3, c_3)\}$ can be extended to a strictly f'-degenerate transversal of $H \setminus L_{x_3}$ with an f'-removing order S' such that the two vertices in $R_0 \setminus \{(x_3, c_3)\}$ are on the rightest of the order. According to an f-removing order of R_0, we can insert (x_3, c_3) into S' such that the three vertices in R_0 are the three rightest elements in the order to obtain an f-removing order of a strictly f-degenerate transversal of H.

Assume that G is a plane triangulation and $K = x_1x_2$. We may assume that x_1x_2 is incident with a 3-face $[x_1x_2x_3]$. Clearly, R_0 can be extended to a strictly f-degenerate transversal of $H_{[x_1, x_2, x_3]}$, and we can reduce the problem to the previous case.

If G is the Wagner graph, then we can greedily extend R_0 to a strictly f-degenerate transversal of H since G is 3-regular.

By Theorem 2.2, assume that G is a 2-sum or 3-sum of two maximal K_5-minor-free graphs G_1 and G_2 with $K \subset G_1$. By minimality and Lemma 3.2, R_0 can be extended to a strictly f-degenerate transversal of H.

In Theorems 3.1 and 3.2, there is a restriction on f, i.e., the range of f is a subset of $\{0, 1, 2\}$. If the restriction can be dropped, the results can imply two theorems due to Thomassen. Thomassen proved that every planar graph can be partitioned into a 3-degenerate graph and an independent set [8], and every planar graph can be partitioned into a 2-degenerate graph and a forest [7]. So the second author and some others made the following conjecture in [4].

Conjecture. Assume that G is a planar graph and (H, f) is a positive-valued cover. If $s \geq 2$ and $f(v, 1) + \cdots + f(v, s) \geq 5$ for each $v \in V(G)$, then H admits a strictly f-degenerate transversal.

References

[1] A. Bernshteyn, A. V. Kostochka and S. P. Pron, On DP-coloring of graphs and multigraphs, Sib. Math. J. 58 (1) (2017) 28-36.
[2] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018) 38–54.

[3] W. He, W. Miao and Y. Shen, Another proof of the 5-choosability of K_5-minor-free graphs, Discrete Math. 308 (17) (2008) 4024–4026.

[4] F. Lu, Q. Wang and T. Wang, Cover and variable degeneracy, Discrete Math. 345 (4) (2022) 112765.

[5] K. M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (4) (2020) 1189–1201.

[6] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1) (1994) 180–181.

[7] C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin. Theory Ser. B 65 (2) (1995) 305–314.

[8] C. Thomassen, Decomposing a planar graph into an independent set and a 3-degenerate graph, J. Combin. Theory Ser. B 83 (2) (2001) 262–271.

[9] R. Škrekovski, Choosability of K_5-minor-free graphs, Discrete Math. 190 (1-3) (1998) 223–226.

[10] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1) (1937) 570–590.

[11] D. R. Wood and S. Linusson, Thomassen’s choosability argument revisited, SIAM J. Discrete Math. 24 (4) (2010) 1632–1637.