The performance of institutional of dairy cattle farmers and their effects on financial, technological, and physical resources

Soetriono1) and Amam*1,2)

1) Department of Agribusiness, Faculty of Agriculture, Universitas Jember, Jember, Jawa Timur, 68121, Indonesia
2) Department of Animal Husbandry, Faculty of Agriculture, Universitas Jember, Bondowoso, Jawa Timur, 68251, Indonesia

Submitted: 24 September 2019, Accepted: 5 March 2020

ABSTRACT: The Performance of Institutional give influences to the development of livestock business, and influenced by farmers' access to various resources. The purpose of this study is to examine the institutional performance of dairy farmers and analyze their effects on resources. The study was conducted in May to September 2019 in Pujon Subdistrict, Malang Regency, East Java Province. Respondents are all breeders of Tirtasari Kresna Gemilang KUB (Joint Business Group) of 174 people. The method of collecting data uses FGD (Focus Group Discussion), observation, and survey. The survey was conducted by interview and questionnaire. The variables of research consisted of institutional performance (X), financial resources (Y1), technological resources (Y2), and physical resources (Y3). Data were analyzed using the PLS (Partial Least Square) method. The results showed that institutional performance affected financial, technological, and physical resources, respectively 0.414, 0.367, and 0.289. The conclusion of the research is the institutional performance of dairy farmers with a positive and significant effect on financial resources, technological resources, and physical resources.

Keywords: Group dynamics; Livestock groups, resources; Livestock businesses

*Corresponding Author: amam.faperta@unej.ac.id
INTRODUCTION

Government Regulation Number 6 of 2013 concerning Farmer Empowerment defines farmer empowerment as an effort made by the government, provincial government, district/city government, and stakeholders in the field of animal husbandry and animal health to increase independence, provide convenience, and business progress, and increase power competitiveness and welfare of farmers.

One of the efforts to empower farmers is through the institution of farmers. Farmer Institution is an organization of farmers in conducting livestock farming business activities in agribusiness, from upstream to downstream, as well as building relationships with various stakeholders. The role of institutions is significant to realize cooperation and network relations with stakeholders as an effort to build and strengthen institutions (Amam et al., 2020). These efforts aim to encourage the growth of livestock farming businesses that are more efficient, effective, and sustainable.

Hasdi et al. (2015) states that the institutional aspect is one dimension of the sustainability of livestock farming business in addition to the technological, environmental, economical, and cultural dimensions.

Good and bad performance of farmer institutions is expressed as an institutional performance. Amam and Harsita (2019) state that institutional performance has a positive and significant effect on the quality of human resources (Farmers). It means that the existence of farmer institutions as a forum for empowerment of farmers is something that supports the improvement of the quality of farmers HR. Sutanto and Hendraningsih (2011) revealed that the institutional role of dairy farmers is still lacking by farmers, particularly the institutional role in extension activities, banking access, microfinance, and the level of member involvement in the group. The farmer institutional performance has a positive effect on the development of livestock businesses and negatively affects business risk aspects (Amam and Soetriono). Other sources state that livestock farming business development is influenced by resources (Amam et al., 2019) so that the accessibility of farmers to resources plays an important role in the development of livestock farming businesses (Amam et al., 2019). These resources include financial resources, technological resources, and physical resources (Amam et al., 2019). Andarwati et al. (2017) revealed that the combination of the use of financial assets, physical assets and natural resources is one of the most dominant strategies chosen by dairy farmers. This study aims to examine the institutional performance of dairy farmers and analyze their effects on resources. The resources referred to in this study are financial resources, technological resources, and physical resources (Amam et al., 2019). The study was conducted at the institutional dairy farmers, namely KUB (Joint Business Group) Tirtasari Kresna Gemilang. KUB Tirtasari Kresna Gemilang is an institutional dairy farmer that is legally registered and has a legal entity number 0010084-AH.01.07.

Based on the description, this research hypothesizes that the institutional performance of dairy farmers has a positive effect on financial resources, technological resources, and physical resources. The novelty of this study is to examine the institutional role of dairy farmers to the accessibility of farmers in various resources. Amam et al. (2019) states that resources have an important role in the development of livestock farming businesses.

MATERIALS AND METHODS

This research model uses the ex post facto research approach. The study was conducted in May to September 2019 in Malang Regency, East Java Province. Malang Regency is one of the National Dairy Farm Areas (KPSPN) following the Decree of the Minister of Agriculture of the Republic of Indonesia Year 2015 Number 43/Kpts/PD.010/1/2015 concerning the...
Establishment of Beef Cattle, Buffalo, Goat, Dairy Cattle, Sheep, and National Pork. This study conducted at KUB (Kelompok Usaha Bersama as Joint Business Group) Tirtasari Kresna Gemilang. KUB Tirtasari Kresna Gemilang was used as a research sample because the institution was legally registered and has a legal entity number 0010084-AH.01.07, so the sample selection was determined by purposive sampling. Respondents were all breeders of KUB Tirtasari Kresna Gemilang. The total number of respondents was 174 dairy farmers (total sampling). Data is collected using the FGD (Focus Group Discussion), observation, and survey methods.

Table 1. Research variables and indicators
Variable
Institutional performance (X)
Financial resources (Y1)
Technological resources (Y2)
Physical resources (Y3)
The survey method was carried out by interviewing and filling in the questionnaire. The questionnaire used was Likert scale +1 to +5. This study consists of four main variables, namely institutional performance (X), financial resources (Y_1), technological resources (Y_2), and physical resources (Y_3).

Indicators of each variable are described in Table 1. Based on the description of variables and indicators in Table 1, the variable relationship model is presented in Figure 1. Based on the description of the variables and indicators in the table, as well as the Variable Relationship Model in Figure 1, the form of the mathematical equation is as follows.

Figure 1: Variable Relationship Model

Latent Variable endogenous/reflective (X)

X_{1.1} = (λ_1 ξ_1) + δ_1
X_{1.4} = (λ_4 ξ_1) + δ_4
X_{1.2} = (λ_2 ξ_1) + δ_2
X_{1.5} = (λ_5 ξ_1) + δ_5
X_{1.3} = (λ_3 ξ_1) + δ_3
X_{1.6} = (λ_6 ξ_1) + δ_6

Latent Variable endogenous/reflective (Y_1)

Y_{1.1} = (λ_7 η_1) + ε_1
Y_{1.6} = (λ_12 η_1) + ε_6
Y_{1.11} = (λ_{17} η_1) + ε_{11}
Y_{1.2} = (λ_8 η_1) + ε_2
Y_{1.7} = (λ_{13} η_1) + ε_7
Y_{1.12} = (λ_{18} η_1) + ε_{12}
Y_{1.3} = (λ_9 η_1) + ε_3
Y_{1.8} = (λ_{14} η_1) + ε_8
Y_{1.13} = (λ_{19} η_1) + ε_{13}
Y_{1.4} = (λ_{10} η_1) + ε_4
Y_{1.9} = (λ_{15} η_1) + ε_9
Y_{1.14} = (λ_{20} η_1) + ε_{14}
Y_{1.5} = (λ_{11} η_1) + ε_5
Y_{1.10} = (λ_{16} η_1) + ε_{10}

Latent Variable endogenous/reflective (Y_2)

Y_{2.1} = (λ_{21} η_2) + ε_{15}
Y_{2.6} = (λ_{26} η_2) + ε_{20}
Y_{2.2} = (λ_{22} η_2) + ε_{16}
Y_{2.7} = (λ_{27} η_2) + ε_{21}
Y_{2.3} = (λ_{23} η_2) + ε_{17}
Y_{2.8} = (λ_{28} η_2) + ε_{22}
Y_{2.4} = (λ_{24} η_2) + ε_{18}
Y_{2.9} = (λ_{29} η_2) + ε_{23}
Y_{2.5} = (λ_{25} η_2) + ε_{19}
Y_{2.10} = (λ_{30} η_2) + ε_{24}
Latent Variable endogen/reflective (Y₃)

\[
\begin{align*}
Y_{3.1} &= (\lambda_{27}\eta_3) + \varepsilon_{21} \\
Y_{3.2} &= (\lambda_{28}\eta_3) + \varepsilon_{22} \\
Y_{3.3} &= (\lambda_{29}\eta_3) + \varepsilon_{23} \\
Y_{3.4} &= (\lambda_{30}\eta_3) + \varepsilon_{24} \\
Y_{3.5} &= (\lambda_{31}\eta_3) + \varepsilon_{25} \\
Y_{3.6} &= (\lambda_{32}\eta_3) + \varepsilon_{26} \\
Y_{3.7} &= (\lambda_{33}\eta_3) + \varepsilon_{27} \\
Y_{3.8} &= (\lambda_{34}\eta_3) + \varepsilon_{28} \\
Y_{3.9} &= (\lambda_{35}\eta_3) + \varepsilon_{29} \\
Y_{3.10} &= (\lambda_{36}\eta_3) + \varepsilon_{30}
\end{align*}
\]

Latent Variable exogen/formative

\[
\begin{align*}
Y_1 &= (\eta_1\gamma_1) + \varepsilon \\
Y_2 &= (\eta_2\gamma_2) + \varepsilon \\
Y_3 &= (\eta_3\gamma_3) + \varepsilon
\end{align*}
\]

RESULTS AND DISCUSSION

Outer Model

The PLS (Partial Least Square) method is used to test the indicators of each variable. The indicator test results are called outer loading values. Outer loading value that meets the requirements and is considered valid is >0.500, if the outer loading value <0.500, then the indicator is declared invalid and does not meet the requirements. The results of testing of various indicators are described in Table 2.

Testing the outer model produces various criteria consisting of the Average Variance Extracted (AVE) value, the Cronbach’s Alpha (CA) value, and the R Square value (R²). The results of these criteria tests are described in Table 3.

Inner model

The influence test on the structural test model in the PLS (Partial Least Square) method consists of the coefficient of determination, t-statistic value, and parameter coefficient values. The results of testing the inner model are described in Table 4.

The Effect of Institutional Performance on Financial Resources

The financial resources of dairy farmers are influenced by the institutional performance of dairy farmers by 41.6%. Institutional performance affects financial resources positively and significantly by 0.414 (3.668 > 1.653). This means that the institutional dairy farmers at KUB (Joint Business Group) Tirtasari Kresna Gemilang have a positive impact to the financial resources of dairy farmers. The higher the institutional performance, the greater the farmer’s access to financial resources. Farmer access to financial resources at KUB Tirtasari Kresna Gamilang which is influenced by institutional performance consists of main income, income from dairy cattle business, income from businesses other than livestock, income from other livestock businesses, total income for daily necessities, total savings, ownership of calves, ownership of heifers, ownership of pregnant cows, ownership of production cows, and total population of cows that are kept (Amam et al., 2019).

Riszqina et al., (2014) states that business scale is very influential on livestock productivity and Asmara et al., (2017) productivity and profitability of large scale livestock businesses are higher when compared to small scale livestock businesses. Amam and Harsita (2019) state that one of the efforts to reduce the vulnerability aspects of livestock farming business is by developing livestock farming businesses. Livestock farming business development is influenced by various resources, one of which is financial resources (Amam et al., 2019).

The Effect of Institutional Performance on Technological Resources

The technological resources of dairy farmers are influenced by the institutional performance of dairy farmers by 40.5%. Institutional performance affects technological resources positively and significantly by 0.367 (3.425 > 1.653). This means that the institutional dairy farmers at KUB (Joint Business Group) Tirtasari Kresna Gemilang have a positive impact on the technological resources of dairy farmers.
The higher the institutional performance, the greater the farmer's access to technological resources.

Farmer access to technological resources at KUB Tirtasari Kresna Gamilang, which is influenced by institutional performance, consists of selection of breeders (breeding), housing, milk marketing, and technology to increase milk production (Amam et al., 2019). Ali and Muwakhid (2014); Amam and Harsita (2019) stated that the knowledge and skills of beef cattle breeders from the aspect of intensive fattening production and management include the use of feeders, feeding strategies, housing techniques and maintenance management, and the mating system with Artificial Insemination (AI).

Zailzar et al. (2011) states that the factors causing the low productivity of ruminants in Indonesia are generally classified into breed, climate, feed, and maintenance management factors. Ramadan et al. (2015) added that problems that threaten the sustainability of dairy cattle businesses are limited forage, a decrease in the number of dairy farmers, low quality of milk, health and livestock diseases, and limited agribusiness facilities and infrastructure.

Table 2. Outer Loading Values

Indicator	X	Y\(_1\)	Y\(_2\)	Y\(_3\)	Results
X\(_1.1\)	0.912				valid
X\(_1.2\)	0.756				valid
X\(_1.3\)	0.884				valid
X\(_1.4\)	0.526				valid
X\(_1.5\)	0.714				valid
X\(_1.6\)	0.845				valid
Y\(_1.1\)		0.622			valid
Y\(_1.2\)		0.906			valid
Y\(_1.3\)		0.546			valid
Y\(_1.4\)		0.732			valid
Y\(_1.5\)		0.515			valid
Y\(_1.6\)		0.628			valid
Y\(_1.9\)		0.824			valid
Y\(_1.10\)		0.639			valid
Y\(_1.11\)		0.565			valid
Y\(_1.12\)		0.968			valid
Y\(_1.14\)		0.833			valid
Y\(_2.1\)			0.714		valid
Y\(_2.4\)			0.677		valid
Y\(_2.5\)			0.865		valid
Y\(_2.6\)				0.741	valid
Y\(_3.2\)				0.885	valid
Y\(_3.3\)				0.623	valid
Y\(_3.4\)				0.725	valid
Y\(_3.5\)				0.526	valid
Y\(_3.7\)				0.644	valid
Y\(_3.8\)				0.836	valid
Y\(_3.9\)				0.784	valid
Y\(_3.10\)				0.868	valid

Note: value of outer loading after removing invalid indicator
Table 3. The Results of Outer Model Test

Variable	Notation	AVE	CA	R²
Institutional performance	X	0.848	0.895	
Financial resources	Y₁	0.879	0.864	0.416
Technological resources	Y₂	0.732	0.756	0.405
Physical resources	Y₃	0.906	0.821	0.347

Table 4. Inner model

Coefficient of determination (R²)	Value
a. Economic resources	0.416
b. Environmental resources	0.405
c. Social resources	0.347

t-statistic	
a. X → Y₁	3.668
b. X → Y₂	3.425
c. X → Y₃	2.234

Parameter coefficient	
a. X → Y₁	0.414
b. X → Y₂	0.367
c. X → Y₃	0.289

Effect of Institutional Performance on Physical Resources

The physical resources of dairy farmers are influenced to the institutional performance of 34.7% dairy farmers. Institutional performance affects physical resources positively and significantly by 36.7 (2,234> 1.653). This means that the institutional dairy farmers at KUB (Joint Business Group) Tirtasari Kresna Gemilang have a positive impact to the physical resources of dairy farmers. The higher of institutional performance, the greater farmer's access to physical resources.

Farmers' access to physical resources at KUB Tirtasari Kresna Gemilang, which is influenced by institutional performance (Amam and Soetiriono, 2020; Amam and Harsita, 2019), consists of cattle pens, transportation facilities, communication facilities, information facilities, land tenure, land use, availability of water sources, and availability of food sources (Amam et al., 2019). Hilmi et al. (2016) explained that the main obstacle in providing forage for animals is that production is not constant throughout the year. Feed shortages and year-round availability of feed are the main limiting factors in the low productivity of livestock (Mansyur et al., 2012; Harsita and Amam, 2019). One possible effort is to carry out a system of integration of plants with livestock. Kariyasa (2005) states that the main principle of integration of livestock plants is the existence of a mutually beneficial (synergistic) relationship between plants and livestock. Farmers use livestock manure as organic fertilizer for plants and utilize agricultural waste for animal feed.

CONCLUSION

The farmers access to financial, technological, and physical resources is affected by institutional performance of 0.414, 0.367, and 0.289, respectively. The conclusion of the study shows that institutional performance has a positive and significant effect on farmers' access to financial, technological and physical resources.

REFERENCES

Amam, A., Fanani, Z., Hartono, B., & Nugroho, B. A. (2019). Broiler livestock business based on partnership cooperation in Indonesia:
The assessment of opportunities and business development. *International Journal of Entrepreneurship*, 23(4), 1-10.
Amam, A., Fanani, Z., Hartono, B., & Nugroho, B. A. (2019). Identification on resources in the system of broiler farming business. *Jurnal Ilmu Ternak Dan Veteriner*, 24(3), 135-142. http://dx.doi.org/10.14334/jitv.v24.3.1927
Amam, A., Fanani, Z., Hartono, B., & Nugroho, B. A. (2019). Pengembangan usaha ternak ayam pedaging sistem kemitraan bagi hasil berdasarkan aksesibilitas peternak terhadap sumber daya. *Jurnal Ilmu Dan Teknologi Peternakan Tropis*, 6(2), 146–153. https://doi.org/10.33772/JITRO.V6I2.5578
Amam, A., Fanani, Z., Hartono, B., & Nugroho, B. A. (2019). The power of resources in independent livestock farming business in Malang District, Indonesia. *IOP Conferences Series: Earth And Environmental Science*, 372, 1-10. http://doi.org/10.1088/1755-1315/372/1/012055
Amam, A., Fanani, Z., Hartono, B., & Nugroho, B. A. (2019). Usaha ternak ayam pedaging sistem kemitraan pola dagang umum: pemetaan sumber daya dan model pengembangan. *Sains Peternakan*, 17(2), 5–11. https://doi.org/10.20961/sainspet.v17i2.26892
Amam, A., & Harsita, P. A. (2019). Aspek kerentanan usaha ternak sapi perah di Kabupaten Malang. *AGRIMOR*, 4(2), 26–28. https://doi.org/10.32938/ag.v4i2.663
Amam, A., & Harsita, P. A. (2019). Efek domino performa kelembagaan, aspek risiko, dan pengembangan usaha terhadap SDM peternak sapi perah. *Sains Peternakan*, 17(1), 5–11. https://doi.org/10.20961/sainspet.v17i1.24266
Amam, A., & Harsita, P. A. (2019). Pengembangan usaha ternak sapi perah: evaluasi konteks kerentanan dan dinamika kelompok. *Jurnal Ilmiah Ilmu Ilmu Peternakan*, 22(1), 23-34. https://doi.org/10.22437/jiiip.v22i1.7831
Amam, A., & Harsita, P. A. (2019). Tiga pilar usaha ternak sapi perah: Breeding, feeding, and management. *Jurnal Sain Peternakan Indonesia*, 14(4), 431-439. https://doi.org/10.31186/jspi.id.14.4.431-439
Amam, A., Jadmiko, M. W., Harsita, P. A., & Poerwoko, M. S. (2019). Model pengembangan usaha ternak sapi perah berdasarkan faktor aksesibilitas sumber daya. *Jurnal Sain Peternakan Indonesia*, 14(1), 61–69. https://doi.org/10.31186/jspi.id.14.1.61-69
Amam, A., Jadmiko, M. W., Harsita, P. A., Widodo, N., & Poerwoko, M. S. (2019). Sumber daya internal peternak sapi perah dan pengaruhnya terhadap dinamika kelompok dan konteks kerentanan. *Jurnal Ilmiah Peternakan Terpadu*, 7(1), 192–200. https://doi.org/10.23960/jipt.v7i1.p192-200
Amam, A., Jadmiko, M. W., Harsita, P. A., & Yulianto, R. (2019). Internal resources of dairy cattle farming business and their effect on institutional performance and business development. *Journal of Animal Production*, 21(3), 157-166. http://doi.org/10.20884/1.jap.2019.21.3.738
Amam, A., Jadmiko, M. W., Harsita, P. A., Yulianto, R., Widodo, N., Soetriono, & Poerwoko, M. S. (2020). Usaha ternak sapi perah di Kelompok Usaha Bersama (KUB) Tirtasari Kreisna Gemilang: Identifikasi sumber daya dan kajian aspek kerentanan. *Jurnal Ilmu Peternakan Dan Veteriner Tropis*, 10(1), 77-86. https://doi.org/10.30862/jipv.v10i1
Amam, A., Jadmiko, M. W., Harsita, P. A., & Soetriono, S. (2019). Evaluasi performa kelembagaan peternak sapi perah berdasarkan aspek risiko bisnis dan pengembangan usaha. *Jurnal Ilmu
Amam, A., & Soetriono, S. (2020). Peranan sumber daya dan pengaruhnya terhadap SDM peternak dan pengembangan usaha ternak di Kawasan Peternakan Sapi Perah Nasional (KPSPN). Jurnal Peternakan Indonesia, 22(1), 1-10. https://doi.org/10.25077/jpi.22.1.1-10.2020

Andarwati, S., Rijanta, R., Widodo, N., & Romadhona, S. (2020). Pengaruh aspek kerentanan terhadap aksesibilitas sumber daya usaha ternak sapi potong. Livestock And Animal Research, 18(2), 97-107. https://doi.org/10.20961/lar.v18i2.42955

Asmara, A., Purnamadewi, Y. L., & Lubis, D. (2017). The relationship analysis between service performances of milk producer cooperative with the dairy farm performance of members. Media Peternakan, 40(2), 143–150. https://doi.org/10.5398/medpet.2017.40.2.143

Ramadhan, D. R., Mulatsih, S., & Amin, A. A. (2016). Keberlanjutan sistem budi daya ternak sapi perah pada peternakan rakyat di Kabupaten Bogor. Jurnal Agro Ekonomi, 33(1), 51–72. https://doi.org/10.21082/jaev.33n1.2015.51-72

Riszqina, R., Isbandi, I., Rianto, E., & Santoso, S. I. (2014). The analysis of factors affecting the performance and benefit of karapan (racing) cattle business in Madura Island, East Java, Indonesia. Journal of the Indonesian Tropical Animal Agriculture, 39(1), 65–72. https://doi.org/10.14710/jitaa.39.1.65-72
Sutanto, A., & Hendraningsih, L. (2013). Analisis keberlanjutan usaha sapi perah di Kecamatan Ngantang Kabupaten Malang. *Jurnal Gamma*, 7(1), 1–12.

Usman, A., & Muwakhid, B. (2017). Upaya pengembangan sapi potong menggunakan pakan basal jerami padi di Desa Wonokerto, Dukun, Gresik. *Jurnal Dedikasi*, 14(1), 65–72.

Zailzar, L., Sujono, Suyatno, & Yani, A. (2012). Peningkatan kualitas dan ketersediaan pakan untuk mengatasi kesulitan di musim kemarau pada kelompok peternak sapi perah. *Jurnal Dedikasi*, 8(5), 15–28. https://doi.org/10.22219/dedikasi.v8i0.692