LETTER TO THE EDITOR

Deregulated expression of a longevity gene, *Klotho*, in the C9orf72 deletion mice with impaired synaptic plasticity and adult hippocampal neurogenesis

Wan Yun Ho¹, Sheeja Navakkode¹,², Fujia Liu¹, Tuck Wah Soong¹,³ and Shuo-Chien Ling¹,³,⁴,⁵*

Abstract

Hexanucleotide repeat expansion of C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Synergies between loss of C9ORF72 functions and gain of toxicities from the repeat expansions contribute to C9ORF72-mediated pathogenesis. However, how loss of C9orf72 impacts neuronal and synaptic functions remains undetermined. Here, we showed that long-term potentiation at the dentate granule cells and long-term depression at the Schaffer collateral/commissural synapses at the area CA1 were reduced in the hippocampus of C9orf72 knockout mice. Using unbiased transcriptomic analysis, we identified that *Klotho*, a longevity gene, was selectively dysregulated in an age-dependent manner. Specifically, *Klotho* protein expression in the hippocampus of C9orf72 knockout mice was incorrectly enriched in the dendritic regions of CA1 with concomitant reduction in granule cell layer of dentate gyrus at 3-month of age followed by an accelerating decline during aging. Furthermore, adult hippocampal neurogenesis was reduced in C9orf72 knockout mice. Taken together, our data suggest that C9ORF72 is required for synaptic plasticity and adult neurogenesis in the hippocampus and Klotho deregulations may be part of C9ORF72-mediated toxicity.

Keywords: Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), C9ORF72, Klotho, Longevity, Dentate gyrus, adult neurogenesis, Long-term potentiation (LTP), Long-term depression (LTD)

Hexanucleotide repeat expansion of C9ORF72 is the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) [10, 33]. Although loss of C9orf72 does not cause neurodegeneration per se [5, 18, 21, 31], reduced *C9orf72* expression exacerbates the gain of toxicities inflicted by the repeat expansion [36, 37, 43]. Specifically, loss of *C9orf72* triggers systemic and neuronal inflammation [5, 18, 31], in part, through altering gut microbiota [6]. Moleculaarily, C9ORF72 acts as GDP/GTP exchange factors (GEFs) for several small RAB GTPases that are potentially involved in membrane trafficking [1, 35, 40, 41]. Furthermore, we and others have showed that C9ORF72 associates with ULK1-autophagy initiation complex to regulate autophagy [17, 19, 35, 38–41] and C9ORF72 is required for neuronal and dendritic morphogenesis via ULK1-mediated autophagy [17]. In addition, increased C9ORF72 expression due to intermediate repeat expansion disrupts autophagy and is associated with corticobasal degeneration [7], suggesting that varying C9ORF72 levels may evoke different pathogenic pathways. However, how C9ORF72 may contribute to neuronal and synaptic dysfunction remains to be defined.
Accumulating evidence indicate that synaptic impairment is a common and early event in major neurodegenerative diseases [16, 27, 32]. To investigate whether C9orf72 knockout mice develop synaptic deficits, we measured the long-term potentiation (LTP) and long-term depression (LTD) in the CA1 and dentate gyrus (DG) of the hippocampus (see below). LTP and LTD, which measure the enduring changes in synaptic strength, has been used as the cellular models of synaptic plasticity for learning and memory [20, 30]. Furthermore, LTP and LTD dysfunctions typically correlate and may underlie the cognitive deficit often observed in a broad spectrum of neurological disorders [11, 27].

C9orf72 knockout (c9orf72−/−) mice, where exon 2–6 were replaced with a neomycin and lacZ cassette, were described previously (Additional file 1: Supplemental Figure 1a) [17, 18]. C9orf72 knockout mice showed premature lethality (Additional file 1: Supplemental Figure 1b). The shortened lifespan of C9orf72 knockout mice has been attributed to systemic inflammation [5, 18, 31]. Consistent with these previous reports, the C9orf72 knockout mice in our colony also have enlarged spleens (splenomegaly) (Additional file 1: Supplemental Figure 2). Thus, it is likely these mice die of auto-immune disease. Furthermore, the survival curve was similar to the Harvard group’s mice [5], but appeared to accelerate when compared with the UCSD group’s mice [18], potentially due to environmental factors [6]. Since the C9orf72 knockout mice began to die after 100 days of age, we focused our analysis on a 3-month timepoint, where C9orf72 knockout mice showed normal locomotor activities in the open field assay (Additional file 1: Supplemental Figure 1c).

To address synaptic dysfunctions that may be associated with loss of C9orf72 functions, we first examined synaptic plasticity in corticohippocampal connections, where the inputs from entorhinal cortex project via the perforant path to the granule cells of dentate gyrus (DG) (Fig. 1a). We used a theta burst stimulation (TBS) protocol to induce LTP in DG by stimulating the medial perforant path as described previously [9]. After a stable baseline of 30 min in synaptic inputs S1, theta burst stimulation was applied to S1 which resulted in a stable late-LTP which lasted for the recorded time period of 3 h in wild type mice (Fig. 1b, Additional file 1: Supplemental Table 1–2). In contrast, the perforant path mediated-LTP at DG (thereafter abbreviated as DG-LTP) was reduced in C9orf72 knockout mice (p < 0.05, Fig. 1c, Additional file 1: Supplemental Table 1–2).

For assessing synaptic plasticity of the CA1 area, we used an established long-term potentiation (LTP) paradigm by stimulating Schaffer collateral fibers that send input to the CA1 dendritic regions. After recording a stable baseline, strong tetanus stimulation (STET) was given via the stimulating electrode S1, whereas the stimulating electrode S2 served as a control for the input specificity of LTP (Fig. 1d) [34]. Under this condition, LTP was induced and maintained for more than 3 h in both wild type and C9orf72 knockout mice at 3-month of age (Fig. 1e, f, Additional file 1: Supplemental Table 1–2). The control input S2 remained stable throughout the time of recording (Fig. 1e, f). The data indicates that LTP at the area CA1 (thereafter abbreviated as CA1-LTP) was normal in C9orf72 knockout mice at 3 months of age.

Next, we determined whether the induction and maintenance of long-term depression (LTD) is affected in the CA1 synapses. To do so, a strong low frequency stimulation (SLFS) was delivered to the S1 input in the CA1 of hippocampus, whereas S2 served as a control (Fig. 1g). A significant depression (thereafter abbreviated as CA1-LTD) was observed and remained stable throughout the time period of recording in the wild type mice (Fig. 1h, Additional file 1: Supplemental Table 1–2). In contrast, this CA1-LTD was abolished in the C9orf72 knockout mice (p < 0.01, Additional file 1: Supplemental Table 1–2), while the response to the control input S2 remained stable throughout the time period of recording (Fig. 1i). Collectively, these electrophysiological data suggest that there are deficits in the synaptic plasticity in DG and CA1 regions of hippocampus in the C9orf72 knockout mice, where DG-LTP and CA1-LTD, but not CA1-LTP, is reduced.

To investigate how loss of C9orf72 may be required for regulating synaptic plasticity, we performed transcriptomic analysis on the hippocampi isolated from C9orf72 knockout mice and their wild type littermate controls at 3 months of age using Affymetrix GeneChip mouse microarray that covers coding and noncoding RNAs (Fig. 2a). Using a 2-fold-change cut-off, there are 48 up-regulated genes and 12 down-regulated genes. 14 of 48 (29.1%) up- and 7 of 12 (58.3%) down-regulated genes belong to the noncoding RNAs (Fig. 2b). Gene ontology (GO) analysis of these differentially expressed genes (DEGs) revealed that they are enriched with secreted proteins and glycoproteins (Fig. 2c). The most down-regulated genes, including C9orf72 itself, Gm7120 and Zfp932, and the most up-regulated genes, including Htr2c, Kl, Enpp2, Clic6, Kcnj, and Ttr, were further validated using qRT-PCR (Additional file 1: Supplemental Figure 3).

Among these DEGs, Kl (encodes Klotho) is of particular interest. KLOTHO has been proposed to be a longevity gene, where whole body deletion of Klotho in mice causes accelerated aging and premature death [23] and systemic over-expressing Klotho enhances cognition and extend lifespan [12, 24]. Mouse Kl can be alternatively spliced.
to give rise to a membrane bound form (isoform 1, Kl-L) and secreted form (isoform 2, Kl-S) (Fig. 2d). Using primers that are specific to isoform 1 and isoform 2, we further confirmed that both Kl isoforms were increased to 6- ($p<0.05$) and 3.5-fold ($p<0.05$), respectively, in the hippocampi of C9orf72 knockout mice when compared with the wild type mice at 3 months of age (Fig. 2di). Intriguingly, the Klotho mRNA expressions of both isoforms became comparable at 6 months of age (Fig. 2dii) and reduced by 80% (isoform 1, $p<0.0001$) and 60%...
The hippocampus. New born neurons provide additional DG-LTP and CA1-LTD as well as adult neurogenesis in C9orf72 knockout mice in an age-dependent manner. was performed. The Klotho expression within the dentritic region of CA1 was increased (Fig. 2ei). In contrast, the Klotho expression within the granule cell layer of DG was reduced at 3 months of age (Fig. 2ii). Thus, although total Klotho expression was elevated in 3-month-old C9orf72 knockout mice, the pattern of Klotho expression was altered. Consistent with the qRT-PCR data, Klotho levels were comparable between WT and C9orf72 knockout mice at 6 months of age (Additional file 1: Supplemental Figure 4).

As (i) varying Klotho levels affect adult neurogenesis in the hippocampus [25], and (ii) Klotho expression within DG is reduced in the C9orf72 knockout mice, we hypothesized that adult hippocampal neurogenesis may be affected in the C9orf72 knockout mice. To test this, we determined the rate of adult neurogenesis by performing an EdU-pulse chase experiment (Fig. 2f). EdU, a thymidine analogue that is incorporated into DNA during replication, was used to label new born cells for two constitutive days and then chased for 12 days, until the new born progenitor cells had matured into neurons [15]. The degree of neurogenesis was quantified by co-labeling EdU-positive cells with doublecortin (DCX), an immature neuronal marker (Fig. 2f, g). The total numbers of EdU-positive cells were comparable between the control and the C9orf72 knockout mice (Fig. 2h). However, we observed a 30% of reduction (p < 0.05) of EdU/DCX double positive cells in the DG region (Fig. 2i), indicating the adult hippocampal neurogenesis is reduced in the C9orf72 knockout mice.

In this study, we showed the loss of C9orf72 impairs DG-LTP and CA1-LTD as well as adult neurogenesis in the hippocampus. New born neurons provide additional plasticity to the brain and are involved in spatial memory, pattern separation and stress resilience [4, 14]. Furthermore, adult hippocampal neurogenesis appears to be reduced dramatically in patients with Alzheimer’s disease [29], highlighting the potential role of impaired adult neurogenesis in the pathogenesis of neurodegenerative diseases. Thus, our results suggest that defective synaptic functions and adult neurogenesis may contribute to C9ORF72-mediated pathogenesis. We further identified that a longevity gene, Klotho, is mis-regulated in the hippocampus of C9orf72 knockout mice. In particular, Klotho levels are reduced in the DG, where adult neurogenesis occurs, followed by an accelerated reduction in the hippocampus at 12 months of age. Klotho is a pleiotropic protein and involved in regulating the homeostasis of phosphate, calcium, and vitamin D [22]. Although the exact function of Klotho in the central nervous system (CNS) is not known, it has been shown to enhance N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic activity [12] and oligodendrocyte maturation [8]. Furthermore, Klotho has been shown to regulate hippocampal synaptic plasticity [12, 26, 28]. Thus, it is conceivable that ablation of C9orf72 alters the Klotho expression and affects Klotho-mediated regulation on synaptic plasticity. Importantly, polymorphisms in the KLOTHO gene (known as KL-VS variant) have been identified to associate with a longer lifespan [2], better cognition in human [12], and is protective for the APOE4 carriers in Alzheimer’s disease [3, 13]. In the context of ALS, overexpressing Klotho was beneficial in protecting neuronal loss in a SOD1 mouse model [42]. In conclusion, our results highlight that (1) C9ORF72 is required for synaptic plasticity and adult neurogenesis in the hippocampus, and (2) the expression of longevity gene, Klotho, may be one of the downstream effectors of C9ORF72 and could have implications in ALS-FTD spectrum diseases.
Additional file 1: Supplementary information, including detailed materials and methods and supplementary figures.

Acknowledgements
We thank Dr. Edward Lee for comments on the earlier draft of the manuscript, Dr. Yi-Chun Yen and Dr. Peiyan Wong for their assistance on open field test, Dr. Ira Agrawal for the assistance on statistics: We thank all of the Ling laboratory members for support, discussion, and suggestions. This work was supported by grants to S.C. Ling from the Swee Liew-Wadsworth Endowment Fund, National University of Singapore (NUS), National Medical Research Council (NMRC/OFIRG/0001/2016 and NMRC/OFIRG/0042/2017) and Ministry of Education (MOE2016-T2-1-024), Singapore.

Competing interests
The authors declare that they have no conflict of interest.

References
1. Aoki Y, Manzano R, Lee Y, Dafinca R, Aoki M, Douglas AGL, Varella MA, Sathyaprakash C, Scaber J, Barbagallo P, Vader P, Mager I, Ezett K, Turner MR, Ito N, Gasco O, Ohbayashi N, El Andaloussi S, Takeda S, Fukuda M, Talbot K, Wood MJ (2017) C9orf72 and RASL7 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 140:887–897. https://doi.org/10.1093/brain/awx024
2. Arking DE, Krebsova A, Macek M, Macek M, Arking A, Mian IS, Fried L, Hamosh A, Dey S, McTosh I, Dietz HC (2002) Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA 99:856–861. https://doi.org/10.1073/pnas.022484299
3. Belloy ME, Napolitano V, Han SS, Le Guen Y, Greicus MD, For the Alzheimer’s Disease Neuroimaging Initiative (2020) Association of Klotho-VS heterozygosity with risk of Alzheimer disease in individuals who carry APOE4. JAMA Neurol 77:849–862. https://doi.org/10.1001/jamaneurol.2020.0414
4. Bond AM, Ming G, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Stem Cell 17:385–395. https://doi.org/10.1002/stem.2015.09.003
5. Burberry A, Suzuki N, Wang J-Y, Moccia R, Mordes DA, Stewart MH, Suzuki-Uematsu S, Ghosh S, Singh A, Merkler FT, Koszka K, Li Q-Z, Zon L, Rossi DJ, Trowbridge JJ, Notarangelo LD, Egkan K (2016) Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci Transl Med 8:347ra49. https://doi.org/10.1126/scitranslmed.aaf6038
6. Burberry A, Wells MF, Limone F, Couto A, Smith KS, Keaney J, Gillett G, van Gestel N, Wang J-Y, Pientlainer Q, Qian M, Egkan P, Cantrell C, Mok J, Kadiu I, Scadden DT, Egkan K (2020) C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature 582:89–94. https://doi.org/10.1038/d41586-020-2288-7
7. Cali CP, Patino M, Tai YK, Ho WY, McLean CA, Morris CM, Seeley WW, Miller BL, Gaig C, Vonsattel JP, White CL, Roeber S, Kretzschmar H, Troncoso JC, Troakes C, Gearing M, Ghetti B, Van Deerlin VM, Lee VM-Y, Trojanowski JQ, Mok KY, Ling H, Dickson DW, Schellenberg GD, Ling S-C, Lee EB (2019) C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathol 138:795–811. https://doi.org/10.1007/s00401-019-02045-5
8. Chen C-D, Sloane JA, Li H, Aytan N, Giannaris EL, Zeldich E, Hinman JD, Dedeoglu A, Rosene DL, Bansal R, Luebke J, Kuro-o M, Abraham CR (2013) The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci 33:1927–1939. https://doi.org/10.1523/JNEUROSCI.2080-12.2013
9. Chew B, Ryu JR, Ng T, Ma D, Dasgupta A, Neo SH, Zhao J, Zhong Z, Bichler Z, Saikumar S, Goh ELK (2015) Lenti viral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity. Front Behav Neurosci 9:1–12. https://doi.org/10.3389/fnbeh.2015.00158
10. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Gilmer HF, Adamson J, Kouri N, Wojtas A, Sengp P, Huang G-YR, Kanydas A, Seeley WN, Josephs KA, Coppola G, Geschwind DH, Wozolek ZK, Feldman H, Knopman D, Petersen R, Miller BL, Dickson D, Boylan K, Graff-Radford N, Radermakers R (2011) Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neurology 72:245–256. https://doi.org/10.1212/WNL.0b013e318219f6b9
11. Dong Z, Han H, Li H, Bai Y, Wang W, Tu M, Peng Y, Zhou L, He W, Wu X, Tan T, Liu M, Wu X, Zhou J, Jin W, Zhang S, Sacktor TC, Li T, Song W, Wang YT (2015) Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest 125:234–247. https://doi.org/10.1172/JCI77888
12. Dubal DB, Yokoyama JS, Zhu L, Breolet L, Worden K, Wang D, Strum VE, Kim D, Klein E, Yu G-Q, Ho K, Ellerton KE, Yu L, Kuro-o M, De Jager PL, Coppola G, Small GW, Bennett DA, Kramer JH, Abraham CR, Miller BL, Mucke L (2014) Life extension factor klotho enhances cognition. Cell Rep 7:1065–1076. https://doi.org/10.1016/j.celrep.2014.03.076
13. Erickson CM, Schultz SA, Oh JM, Darst BF, Ma Y, Norton D, Betthauser T, Gallagher CL, Carlsson CM, Bendlin BB, Asthana S, Hermann BP, Sager MA, Blemenkow K, Zetterberg H, Engelmann CD, Christian BT, Johnson SC, Dubal DB, Onkonwo OC (2019) KLOTHO heterozygosity attenuates APOE-ε4-related amyloid burden in preclinical AD. Neurology 92:1878–1889. https://doi.org/10.1212/WNL.0000000000007323
14. Gage FH (2019) Adult neurogenesis in mammals. Science 364:827–828. https://doi.org/10.1126/science.aaw6685
15. Gonçalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus from stem cells to behavior. Cell 167:897–914. https://doi.org/10.1016/j.cell.2016.10.021
16. Henstridge CM, Pickett E, Spires-Jones TL (2016) Synaptic pathology: a shared mechanism in neurological disease. Ageing Rev 28:72–84. https://doi.org/10.1016/j.agearev.2014.06.005
17. Ho WY, Tai YK, Chang J-C, Liang J, Tyan S-H, Chen S, Guan J-L, Zhu H, Shen H-M, Koo E, Ling S-C (2019) The ALS-FTD-linked gene product, C9orf72, regulates neuronal morphogenesis via autophagy. Autophagy 15:827–842. https://doi.org/10.1080/15548627.2019.1569441
18. Jiang J, Zhu Q, Gendron TF, Saberi S, McClonies-Downes M, Seelman A, Stauffer JE, Jafar-Nejad P, Drenner K, Schulte D, Chuns D, Chuns S, Ling S-C, Myers B, Engeland H, Katz M, Baughn M, Platoshytn O, Marsala M, Watt A, Heyser CJ, Ard MC, De Muylder L, Kneighly LM, Swing DA, Tessarollo L, Jung CJ, Delpoux A, Utschneider DT, Hedrick SM, de Jong PJ, Edbauer D, Van Damme P, Petrucci L, Shaw CE, Bennett CF, Da Cruz S, Ravis J, Rigo F, Cleveland DW, Lagier-Tourenne C (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotide targeting GGGGCC-containing RNAs. Neuron 90:535–550. https://doi.org/10.1016/j.neuron.2016.04.006
19. Jung J, Nayak A, Schaerrer V, Staretz T, Kirsch AK, Muller S, Dikic I, Mittelbronn M, Behrends C (2017) Multiplex image-based autophagy RNAi
screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. Elife 6.2. https://doi.org/10.7554/elife.23063
20. Kessels HW, Malinow R (2009) Synthetic AMPA receptor plasticity and behavior. Neuron 61:340–350. https://doi.org/10.1016/j.neuron.2009.01.015
21. Koppens M, Blokhuis AM, Westeneng H-J, Terpstra ML, Zundel CAC, Vieira de Sá R, Schellevis RD, Waite AJ, Blake DJ, Veldink JH, van den Berg LH, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabe shima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. https://doi.org/10.1038/36285
22. Kuro-o M (2013) Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 9:650–660. https://doi.org/10.1038/nrne ph.2013.111
23. Kuro-o M, Matsumura Y, Azawa H, Kawa guchi H, Suga T, Utsugi T, Ohyama Y, Kurbabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabe shima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. https://doi.org/10.1038/36285
24. Laszczyk AM, Fox-Quick S, Vo HT, Nettles D, Pugh PC, Overstreet-Wadiche J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833. https://doi.org/10.1126/science.1112766
25. Li D, Ding D, Liu Z, Chen Y, Huang F, Behnisch T (2019) Enhanced expression of secreted α-Klotho in the hippocampus alters nesting behavior and age-related synaptic plasticity. Science 369:1324–1329. https://doi.org/10.1126/science.aal0164
26. Li D, Ding D, Liu Z, Chen Y, Huang F, Behnisch T (2019) Enhanced expression of secreted α-Klotho in the hippocampus alters nesting behavior and age-related synaptic plasticity. Science 369:1324–1329. https://doi.org/10.1126/science.aal0164
27. Li Q, Navakkode S, Rothe kge M, Soong TW, Sajikumar S, Korte M (2017) Metaplasticity mechanisms restore plasticity and associativity in an animal model of Alzheimer’s disease. Proc Natl Acad Sci USA 114:5527–5532. https://doi.org/10.1073/pnas.1613700114
28. Li Q, Ve HT, Wang J, Fox-Quick S, Debrunze D, Pugh PC, Overstreet-Wadiche J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833. https://doi.org/10.1126/science.1112766
29. Moreno-Jiménez EP, Flor-García M, Terres ros-Roncal J, Rábano A, Cafi ni F, Pallas-Bazarra N, Avila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is reduced in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25:554–560. https://doi.org/10.1038/s41591-019-0375-9
30. Nabavi S, Fox R, Proulx CD, Lin JY, Tisen RV, Malinow R (2014) Enginee ring a memory with LTD and LTP. Nature 511:348–352. https://doi.org/10.1038/10073-014
31. O’Rourke JG, Bogdanik L, Yáñez A, Lall D, Wolf AJ, Muhammad AKMG, Ho R, Carmona S, Vit JJ, Zarow J, Kim KJ, Bell S, Harms MB, Miller TM, Dangler CA, Underhill DMA, Goodridge HS, Lutz CM, Baloh RH (2016) C9orf72 is required for proper macrophage and microglial function in mice. Science 351:1324–1329. https://doi.org/10.1126/science.aaf1064
32. Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 790:533–572. https://doi.org/10.1007/978-3-7091-0932-8_24
33. Renton AE, Maguire E, Waite A, Simon-Chanche J, Rollison S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Mylllyankoski L, Kallio H, Ponten A, Abramson A, Kaganovich A, Scholtz SW, Dukworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guégan J, Derricourt A, de Vos KJ (2016) C9orf72 function is required for proper macrophage and microglial function in mice. Science 351:1324–1329. https://doi.org/10.1126/science.aaf1064
34. Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 790:533–572. https://doi.org/10.1007/978-3-7091-0932-8_24
35. Sellier C, Campanari M-L, Jourieh C, Gaucherot A, Kell-Andriy Y, Herz J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tierney PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010
36. Sellier C, Campanari M-L, Jourieh C, Gaucherot A, Kell-Andriy Y, Herz J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tierney PJ, Traynor BJ (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. https://doi.org/10.1016/j.neuron.2011.09.010
37. Shi Y, Lin S, Staats KA, Li Y, Chang W-H, Hung S-T, Hendricks E, Linares GR, Wang Y, Son EY, Wen X, Kisler K, Williamson B, Menendez L, Sugawara T, Woolwine P, Huang M, Cowan MJ, Ge B, Koutsoudenis N, Sandor KP, Komberg J, Vangoor VR, Senthil Kumar K, Hennesv S, Seach C, Nelson AR, Cheng T-Y, Lee S-J, August PR, Chen JA, Wisniewski N, Hanson-Smith V, Belgard TG, Zhang A, Coba M, Gruneich C, Ward ME, van den Berg LH, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabe shima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. https://doi.org/10.1038/36285
38. Sullivan PM, Zhou X, Robins AM, Paeth A, Kim D, Smolka MB, Hu F (2016) The ALS/FTD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4:251. https://doi.org/10.1038/s41593-016-0049-0
39. Udagawa S, Sacchi N, Wang J (2016) C9orf72/SMCR8–containing complex regulates ULK1 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4:251. https://doi.org/10.1038/s41593-016-0049-0
40. Udagawa S, Sacchi N, Wang J (2016) C9orf72/SMCR8–containing complex regulates ULK1 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4:251. https://doi.org/10.1038/s41593-016-0049-0
41. Yang M, Liang C, Swaminathan K, Heitherrler S, Lai F, Shiekhattar R, Chen JF (2016) ALS/FTD-associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4:251. https://doi.org/10.1038/s41593-016-0049-0
42. Zeldich E, Chen C-D, Avila R, Medicetty S, Abraham CR (2015) The anti-agging protein klotho enhances remyelination following cuprizone-induced demyelination. J Mol Neurosci 57:185–196. https://doi.org/10.1007/s12031-015-0598-2
43. Zhou Q, Jiang L, Gendron TF, McAlonis-Dowens M, Jiang L, Taylor D, Diaz Garcia S, Ghosh Dastidar S, Rodriguez MJ, King P, Zhang Y, La Spada AR, Xu H, Petrculli L, Ravits J, Da Cruz S, Lagier-Tourenne C, Cleveland DW (2020) Reduced C9orf72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat Neurosci 23:615–624. https://doi.org/10.1038/s41593-020-0619-5

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.