Absence of Common Somatic Alterations in Genes on 1p and 19q in Oligodendrogliomas

Linda B. Bralten1, Stephan Nouwens2, Christel Kockx3, Lale Erdem1, Casper C. Hoogenraad4, Johan M. Kros5, Michael J. Moorhouse2, Peter A. Sillevis Smitt1, Peter van der Spek2, Wilfred van Ijcken3, Andrew Stubb3, Pim J. French1*

1 Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands, 2 Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands, 3 Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands, 4 Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands, 5 Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands

Abstract

A common and histologically well defined subtype of glioma are the oligodendroglial brain tumors. Approximately 70% of all oligodendrogliomas have a combined loss of the entire 1p and 19q chromosomal arms. This remarkably high frequency suggests the remaining arms harbor yet to be identified tumor suppressor genes. Identification of these causal genetic changes in oligodendrogliomas is important because they form direct targets for treatment. In this study we therefore performed targeted resequencing of all exons, microRNAs, splice sites and promoter regions residing on 1p and 19q on 7 oligodendrogliomas and 4 matched controls. Only one missense mutation was identified in a single sample in the ARHGEF16 gene. This mutation lies within- and disrupts the conserved PDZ binding domain. No similar ARHGEF16 mutations or deletions were found in a larger set of oligodendrogliomas. The absence of common somatic changes within genes located on 1p and 19q in three out of four samples indicates that no additional “second hit” is required to drive oncogenic transformation on either chromosomal arm.

Introduction

A common and histologically well defined subtype of glioma are the oligodendroglial brain tumors. Oligodendrogliomas differ from the other glioma subtypes in clinical behavior with respect to overall prognosis (median survival 3 years versus less than one year) and a relatively better and longer lived response to chemotherapy and radiotherapy [1–3]. Oligodendrogliomas have clearly distinct gene expression profiles [4–6] and are also cytogenetically distinct: approximately 70% of all oligodendrogliomas have a combined loss of the entire short arm of chromosome 1 (1p) and loss of the entire long arm of chromosome 19 (19q) [1,3–5,7]. Loss of these chromosomal arms in oligodendrogliomas is highly correlated with chemosensitivity; approximately 80–90% of oligodendrogial tumors with LOH (loss of heterozygosity) on 1p and 19q respond to chemotherapy [1,2,8]. Conversely only 25–30% of tumors that have retained the short arm of chromosome 1p are sensitive to chemotherapy. In summary, oligodendrogliomas are a clinically, histologically, cytogenetically and molecularly distinct and well defined subgroup of glioma.

In spite of these clearly distinct clinical, histological and molecular features, little is known on the genetic changes that drive these tumors. Thusfar, IDH1/IDH2 (70%) and, to a much lesser extent, TP53 (15–25%) and PIK3CA (10–15%) are the only genes that are mutated at significant frequency in this tumor type [9–15]. The remarkably high frequency of LOH of 1p and 19q suggests the remaining arms harbor yet to be identified tumor suppressor genes (Knudson two-hit hypothesis [16]). Identification of the causal genetic changes is important because they form direct targets for treatment: Tumor growth depends on these acquired-somatic- changes both in oncogenes (“oncogene addiction” [17]) and in tumor suppressor genes [18,19]. In this study we therefore aimed to identify genetic changes in all exons, microRNAs, splice sites and promoter regions on 1p or 19q using array capture and Next Generation Sequencing. Experiments were performed on 7 oligodendrogliomas and 4 had matched control DNA samples.

Materials and Methods

Glioma samples were collected from the Erasmus MC tumor archive. Samples were collected immediately after surgical resection, snap frozen, and stored at −80°C. The use of patient material was approved of by the Institutional Review Board of the Erasmus MC, Rotterdam, the Netherlands (nr MEC 221.520/2002/262; date of approval July 22, 2003, and MEC-2005-057, date of approval February 14, 2005). For this use, patients gave written informed consent according to institutional and national guidelines.

All oligodendrogliomas used (n = 7) had proven loss of 1p and 19q as assessed by SNP 6.0 or 250 k NspI arrays (both Affymetrix, Santa Clara, USA) [7] and highly similar RNA expression profiles (i.e. belong to the same molecular subgroup) [6]. Control DNA was available in 4/7 cases. The candidate variations of 4 samples...
were set lower than 100% and 50%. Stochastic effects (allele specific sequencing) these percentages expected in the tumor (because of the 1p19q LOH). To allow for tumors and normals is because only homozygous changes are or 30% (controls). The difference in variant frequency between at least 7 (tumor) or 8 (ctr), variant frequency at least 70% (tumor) expected in the tumor content can be estimated by the observed B allele frequency of SNPs using tumor samples only. For example, in case of 50% tumor, the observed B allele frequency would amount to 66.7% (in case of LOH in the tumor). In our sample cohort, the observed B allele frequency was 91.2–97.3% (except for sample 11 with an observed frequency of 83.0%, corresponding to 90.5–97.2% tumor (82.4% for sample 11). A tumor content ≥82.4% indicates that a mutant allele frequency of 70% (corresponding to a tumor percentage of 82.4%) is a suitable value as detection cutoff for the mutant allele frequency.

We then prioritized all changes identified based on their associated function into: tier 1 (coding exons, splice sites and miRNAs), tier 2 (promoters and UTRs), tier 3 (intronic regions) and tier 4 (SNPs and personal SNPs). In tiers 1, 2, 3 and 4 we identified 431, 1380, 16293 and 72466 SNVs and DIVs respectively. A high number of all variants present in tier 4 were not present in dbSNP130, and are likely to reflect personal SNPs and sequencing artefacts (see also table 3). We then performed direct sequencing on all tier 1 candidates and all candidates within promoter regions (part of tier 2). 505 of the 514 sequence reactions were successful; only 2/9 unsuccessful candidates were predicted to result in a change in the primary protein sequence (both missense mutations).

Of the 514 candidate variants 77% (n = 394) were not confirmed on tumor DNA using direct sequencing (false positive). Such variants likely represent amplification artefacts (due to e.g. whole genome amplification or the post capture PCR amplification) and/or sequencing artefacts (e.g. sequencing errors). A further 21% (n = 110) could be confirmed in the tumor samples, but the variant was also present in the matched control DNA. These variants may represent selective allele amplification and sequencing. In summary, of the 514 candidates subject to direct sequencing, one variant was validated. This variant is a missense mutation (c.2125 G>A) (figure 2a) and affects the last amino acid (p.V709M) of ARHGEF16 (RefSeq: NM_014448.3) in sample 8. It should be noted that the absence of trace wt sequence in the chromatogram confirms the high tumor percentage in this sample. The base is highly conserved (GERP conservation score 3.35 [25]). This amino acid is located on our targeted regions (range 70.4–84.8%, one outlier at 41.3%) confirming capture efficiency. The coverage of our targeted regions was at least 7 in 96.5% of our target regions (range 87.6–98.9%) (see also figure 1). Coverage of genes suggested to be involved in (oligodendro-) glioma genesis CAMTA1 [20], EMP3 [21], CHD3 [22], DIRAS3 [23] and PLAG1GIC [24] is listed in table 2.

We first calculated the tumor percentage of all samples. The tumor content can be estimated by the observed B allele frequency of SNPs using tumor samples only. For example, in case of 50% tumor, the observed B allele frequency would amount to 66.7% (in case of LOH in the tumor). In our sample cohort, the observed B allele frequency was 91.2–97.3% (except for sample 11 with an observed frequency of 83.0%, corresponding to 90.5–97.2% tumor (82.4% for sample 11). A tumor content ≥82.4% indicates that a mutant allele frequency of 70% (corresponding to a tumor percentage of 82.4%) is a suitable value as detection cutoff for the mutant allele frequency.

We then prioritized all changes identified based on their associated function into: tier 1 (coding exons, splice sites and miRNAs), tier 2 (promoters and UTRs), tier 3 (intronic regions) and tier 4 (SNPs and personal SNPs). In tiers 1, 2, 3 and 4 we identified 431, 1380, 16293 and 72466 SNVs and DIVs respectively. A high number of all variants present in tier 4 were not present in dbSNP130, and are likely to reflect personal SNPs and sequencing artefacts (see also table 3). We then performed direct sequencing on all tier 1 candidates and all candidates within promoter regions (part of tier 2). 505 of the 514 sequence reactions were successful; only 2/9 unsuccessful candidates were predicted to result in a change in the primary protein sequence (both missense mutations).

Of the 514 candidate variants 77% (n = 394) were not confirmed on tumor DNA using direct sequencing (false positive). Such variants likely represent amplification artefacts (due to e.g. whole genome amplification or the post capture PCR amplification) and/or sequencing artefacts (e.g. sequencing errors). A further 21% (n = 110) could be confirmed in the tumor samples, but the variant was also present in the matched control DNA. These variants may represent selective allele amplification and sequencing. In summary, of the 514 candidates subject to direct sequencing, one variant was validated. This variant is a missense mutation (c.2125 G>A) (figure 2a) and affects the last amino acid (p.V709M) of ARHGEF16 (RefSeq: NM_014448.3) in sample 8. It should be noted that the absence of trace wt sequence in the chromatogram confirms the high tumor percentage in this sample. The base is highly conserved (GERP conservation score 3.35 [25]). This amino acid is located

Table 1. Patient characteristics of all tumor samples.

Sample	Gender	Diagnosis	Age	KPS	Surgery	RT	CT	Alive	Surv (years)
8	F	OD III	44	100	PR	yes	no	Dead	9.82
11	M	OD III	38	100	PR	yes	no	Dead	8.92
13	M	OD III	33	90	PR			Dead	8.59
21	M	OD III	31	100	PR	yes	no	Dead	6.81
23	F	OD III	44	90	CR	yes	no	Dead	8.12
229	M	OA III	35	90	CR	yes	Adj PCV	Alive	6.8
538	F	OD II	44	80	SB			Alive	3.27

OD = oligodendroglioma, OA = oligoastrocytoma, KPS = Karnofsky performance score, PCV = procarbazine, lomustine, vincristine. F = female, M = male, OD = oligodendroglioma, OA = oligoastrocytoma, grades II or III. Age = age at diagnosis. KPS = Karnofsky performance score, PCV = procarbazine, lomustine, vincristine. Surgery types: PR = partial resection, CR = complete resection, SB = stereotactic biopsy. RT = radiotherapy, CT = Chemotherapy. doi:10.1371/journal.pone.00222000.t001
within a PDZ-binding domain (ETDV, a protein-protein interaction domain). However, it remains to be determined whether the identified mutation affects its RhoA guanine exchange function and oncogenic transformation potential [26].

None of the other 6 samples contained changes in the coding sequence of ARHGEF16. In addition, we failed to identify mutations in the last exon of ARHGEF16 in an additional 32 samples from the same molecular cluster [6] using direct sequencing. No small homozygous deletions were identified on SNP 6.0 and 250 k Nsp arrays from 23 oligodendrogliomas [7]. The ARHGEF16 promoter does show hypermethylation on Infinium Methylation arrays (Illumina, San Diego, USA), on 68 anaplastic oligodendrogliomas and oligoastrocytomas; PF, manuscript in prep) and is correlated with loss of 1p and 19q (p = 0.035, Fisher exact test). Data are listed in table 4. In addition, tumors with hypermethylated ARHGEF16 promoter have a better survival (5.62 years versus 1.31 years; p < 0.0001) (figure 2b). Promoter methylation of ARHGEF16 may therefore be involved in the formation of gliomas with loss of 1p and 19q.

Discussion

We have systematically sequenced all exons, miRNAs, splice sites and promoter regions on 1p and 19q. Of the 514 candidate variants in coding exons, miRNAs, splice sites and promoter regions, only one was validated: a missense mutation in ARHGEF16 affecting the PDZ-binding domain. ARHGEF16 lies on 1p36 a region that is commonly deleted in gliomas [20,22,27]. However, no other genetic changes were detected in the ARHGEF16 gene in a panel of 32 additional oligodendrogliomas, though the promoter is frequently hypermethylated. Future experiments should determine whether this specific mutation contributes to the pathogenesis of the disease.

In our sample cohort, only one somatic mutation in a single sample was identified among the ~10^7 bases of sequence evaluated. The overall mutation rate in oligodendrogliomas therefore is at least an order of magnitude lower than reported for many other cancer types including glioblastomas [12,28,29]. Recent reports however, have highlighted tumor types that also have a very low somatic mutation rate [30,31].

Table 2. Per base coverage of known candidate genes in oligodendrogliomas located on 1p or 19q.

Sample	CAMTA	CHD5	DIRAS3	PLA2G4C	EMP3	
8	cov	200.1	264.4	107.2	32.3	57.0
	min	0	5	26	2	15
	max	896	1198	186	87	131
	% covered	96.2	99.6	100	93.1	100
11	cov	58.6	20.2	127.0	79.0	90.2
	min	0	0	12	7	33
	max	275	107	231	214	183
	% covered	93.5	82.1	100	100	100
13	cov	184.6	135.8	98.5	183.8	343.1
	min	0	0	14	24	126
	max	562	677	178	447	625
	% covered	98.2	94.0	100	100	100
21	cov	163.8	77.7	208.1	202.8	281.3
	min	0	2	24	50	95
	max	527	329	360	449	599
	% covered	96.8	98.9	100	100	100
23	cov	178.8	69.0	245.8	189.4	202.3
	min	0	0	35	21	70
	max	531	353	468	487	374
	% covered	95.9	89.9	100	100	100

Min/Max: lowest/highest coverage, % covered: the percentage of bases sequenced at least 7 times (the cutoff used for our analysis).
Table 3. Candidate genetic variations after filtering in all samples with controls.

SNVs	tier 1	tier 2	tier 3	tier 4						
sample	array	chr	exons	miRNA	spl site	prom	UTRs	introns	SNVs dbSNP	personal SNVs
8	1	1	13	0	4	9	96	97	4312	1577
2	1	33	0	3	218	38	1020	841		
11	1	19	19	0	0	6	37	23	1350	1120
1	1	14	0	2	110	5	204	1787	3400	
2	19	108	0	1	3	59	369	2703	4146	
21	1	17	0	2	4	92	891	4450	1095	
11	11	0	0	0	0	0	0	0	0	
21	1	1	0	0	1	0	0	0	0	
229	1	3	0	0	5	24	134	181	28	
2	19	25	0	1	0	0	0	0	0	

DIVs	tier 1	tier 2	tier 3	tier 4						
sample	array	chr	exons	miRNA	spl site	prom	UTRs	introns	DIVs dbSNP	personal DIVs
8	1	0	0	0	10	11	60	79	179	0
2	1	0	0	0	2	1	6	3	18	0
2	19	1	0	0	0	1	9	7	54	0
11	1	0	0	0	6	6	27	51	118	1
2	1	0	0	0	0	0	1	0	0	0
2	19	0	0	0	0	0	0	0	0	0
21	1	0	0	0	0	0	0	0	0	0
2	19	0	0	0	0	0	0	0	0	0
229	2	1	2	0	0	5	24	134	181	28
2	19	3	0	1	0	12	227	177	61	61

UTR = untranslated region, SNV = single nucleotide variation, DIV = deletion/insertion variation, chr = chromosome, array = capture array, spl site = splice site, prom = promoter.
doi:10.1371/journal.pone.0022000.t003

Figure 2. ARHGEF16 (RefSeq: NM_014448.3) mutation and promoter methylation. A: Upper lane: part of the sequence of ARHGEF16 with the missense mutation (2125G>A) in tumor sample 8. Lower lane: sequence of the same region of ARHGEF16 in the matching control DNA. B; Kaplan Meier survival curve of oligodendrogliomas (n = 39) and oligoastrocytomas (n = 11) with unmethylated ARHGEF16 (< median) (black line) or methylated ARHGEF16 (> median) (grey line). ** = p<0.01.
doi:10.1371/journal.pone.0022000.g002
One important observation by our study is the fact that in 3 out of the four samples examined no genomic second hit was found in any of the screened regions. Our data therefore indicate that no additional “second hit” is required on these chromosomal arms to drive oncogenic transformation. It is possible that a second hit is present on the remaining alleles but has escaped detection (e.g. due to a skewed distribution in sequencing of the non-neoplastic alleles derived from “contaminating” normal tissue) or is located in regions not captured or covered by our capture array. Alternatively, promoter methylation and/or haploinsufficiency of one or more genes could drive oncogenesis in oligodendrogliomas with loss of 1p and 19q. In line with this hypothesis is the high frequency of IDH1 mutations in oligodendrogliomas with 1p and 19q LOH (see e.g. [32]) and the observation that IDH1 mutations induce chromatin remodeling and promoter hypermethylation [33,34]. IDH1 mutations are associated with the CpG island hypermethylation phenotype (MvdB and PF, submitted), and promoter hypermethylation in cancer often occurs in the promoter regions of tumor suppressor genes [35,36]. Promoter hypermethylation of tumor suppressor genes in combination with somatic mutations in a limited number of genes therefore may drive oncogenesis in oligodendrogliomas with 1p and 19q LOH.

Author Contributions

Conceived and designed the experiments: PASS PvdS AS CCH PJF. Performed the experiments: LBB CK LE JMK. Analyzed the data: SN LBB WvI. Contributed reagents/materials/analysis tools: JMK MJM. Wrote the paper: LBB PJF.

Table 4. Percentage methylation of two different CpG sites (cg24919884 and cg02737335) within the ARHGEF16 locus.

Sample	cg24919884	cg02737335	survival	censoring	Sample	cg24919884	cg02737335	survival	censoring
1	0.767	0.69	1.104	1	42	0.874	0.817	1.633	1
10	0.642	0.754	1.071	1	43	0.691	0.794	1.208	1
11	0.777	0.829	4.008	0	44	0.788	0.739	1.063	1
12	0.657	0.285	3.408	0	45	0.879	0.845	7.734	0
13	0.251	0.313	2.548	1	47	0.565	0.663	1.31	1
14	0.828	0.831	0.775	1	48	0.81	0.821	0.523	1
15	0.773	0.771	0.326	1	49	0.876	0.84	5.003	1
16	0.565	0.737	1.663	1	5	0.617	0.813	2.732	1
17	0.867	0.872	3.54	1	50	0.623	0.8	0.195	1
18	0.487	0.609	1.416	1	51	0.866	0.802	5.814	1
19	0.706	0.688	0.819	1	52	0.855	0.834	8.227	0
20	0.681	0.688	1.625	1	53	0.862	0.835	2.997	1
21	0.851	0.823	2.485	1	54	0.439	0.469	1.34	1
22	0.878	0.829	2.627	0	55	0.879	0.824	8.036	1
23	0.833	0.822	0.625	1	56	0.852	0.831	8.233	0
24	0.857	0.849	5.827	0	57	0.704	0.4	0.707	1
25	0.412	0.729	1.625	1	58	0.836	0.778	0.975	1
26	0.615	0.646	1.447	1	59	0.846	0.824	2.022	1
27	0.821	0.854	6.17	0	66	0.503	0.468	1.014	1
28	0.773	0.818	1.236	1	60	0.856	0.85	3.038	1
29	0.635	0.712	0.548	1	62	0.817	0.819	0.997	0
3	0.888	0.861	1.222	1	63	0.882	0.83	6.992	0
30	0.883	0.874	4.26	1	64	0.803	0.758	0.258	1
31	0.439	0.635	1.134	1	65	0.88	0.854	5.019	1
32	0.851	0.811	3.488	0	66	0.819	0.798	3.304	1
33	0.415	0.53	4.849	0	67	0.527	0.752	0.537	1
34	0.858	0.826	3.488	0	68	0.884	0.844	5.622	1
35	0.882	0.857	6.874	0	69	0.847	0.813	15.819	1
36	0.853	0.802	0.348	1	7	0.494	0.692	1.616	1
37	0.866	0.83	6.71	0	70	0.843	0.841	18.715	1
39	0.839	0.809	2.836	1	73	0.465	0.631	3.652	1
4	0.909	0.815	6.31	0	74	0.723	0.625	1.175	1
40	0.413	0.63	7.526	1	8	0.307	0.715	1.345	1
41	0.834	0.721	3.795	1	9	0.835	0.817	2.038	1

Values correspond to the fraction of methylation (scale 0–1).
doi:10.1371/journal.pone.0022000.t004
References

1. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, et al. (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90: 1473–1479.

2. Thiessen B, Maquere JA, McNeil K, Huntsman D, Martin MA, et al. (2003) Loss of heterozygosity for loci on chromosome arms 1p and 10q in oligodendrogliomas: relationship to outcome and chemosensitivity. J Neurosurg 64: 271–278.

3. van den Bent MJ, Taphorn MJ, Brandes AA, Menten J, Stupp R, et al. (2003) Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendrogial tumours: the European Organization for Research and Treatment of Cancer Brain Tumor Study Group 26971. J Clin Oncol 21: 2523–2528.

4. French PJ, Swagemakers SMA, Nagel JHA, Kouwenhoven MCM, Brouwer E, et al. (2005) Gene expression profiles associated with treatment response in oligodendrogliomas. Cancer Res 65: 11335–11344.

5. French PJ, Peeters J, Horsman S, Duijn E, Siccama I, et al. (2007) Identification of differentially regulated splice variants and novel exons in glial brain tumors using exon expression arrays. Cancer Res 67: 3635–3642.

6. Gravendeel LA, Kouwenhoven MC, Gevaert O, de Rooi JJ, Stubbs AP, et al. (2009) Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69: 9065–9072.

7. Bralten LB, Kloosterhof NK, Gravendeel LA, Sacchetti A, Duijn EJ, et al. (2010) Integrated genomic profiling identifies candidate genes implicated in glioma-genesis and a novel LE01-SLC12A1 fusion gene. Genes Chromosomes Cancer 49: 507–517.

8. van den Bent MJ, Loorjenga LH, Langenberg K, Djinew W, Graveland W, et al. (2003) Chromosomal anomalies in oligodendrogial tumors are correlated with clinical features. Cancer 97: 1276–1284.

9. Ueki K, Nishikawa R, Nakazato Y, Hirose T, Hirato J, et al. (2002) Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendrogial tumors. Clin Cancer Res 8: 196–201.

10. Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, et al. (2004) Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res 64: 5048–5050.

11. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64: 479–489.

12. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, et al. (2011) The genetic landscape of the childhood cancer medulloblastoma. Science 331: 768–772.

13. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, et al. (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118: 469–474.

14. Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12: 83–89.

15. Gravendeel LA, Kloosterhof NK, Bralten LB, van Marion R, Dubbink HJ, et al. (2010) Segregation of non-p.R132H mutations in IDH1 in distinct molecular subtypes of glioma. Hum Mutat 31: E108–1159.

16. Knudson AG, Jr. (1971) Mutation and cancer: statistical study of retinoblas.

17. Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68: 3077–3080; discussion 3080.

18. Bykov VJ, Isaeva N, Shilov A, Hultcrantz M, Pugacheva E, et al. (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

19. Ventura A, Kirsch DG, McLaughlin ME, Tuxen DA, Grimm J, et al. (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

20. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M (2005) Allelic losses at 1p16 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p16, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res 11: 1119–1128.

21. Alarimov M, Dazavos V, Ropero S, Seien F, Paz MF, et al. (2005) EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res 65: 2565–2571.

22. Bagchi A, Papazoglou C, Wu Y, Capasso D, Broth M, et al. (2007) CHD5 is a tumor suppressor at human 1p36. Cell 128: 459–473.

23. Riemschneider MJ, Reifenberger J, Reifenberger G (2008) Frequent biallelic inactivation and transcriptional silencing of the DIRAS3 gene at 1p31 in oligodendrogial tumors with 1p loss. Int J Cancer 122: 2503–2510.

24. Teves B, Fehseberg J, Hartmann C, Kunzits, A, Hahn M, et al. (2006) Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling. Int J Cancer 119: 792–800.

25. Cooper GM, Stone EA, Aunenbos G, Green ED, Batzoglou S, et al. (2005) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15: 901–913.

26. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, et al. (2008) Tumor progression arrests in human glioblastoma multiforme. Science 321: 1807–1812.

27. Hartman C, Meyer J, Bajis, J, Capper D, Mueller W., et al. (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118: 469–474.

28. Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455: 1061–1068.

29. Greenman C, Stephens P, Smith R, Dalglish GL, Hunter C, et al. (2007) Patterns of somatic mutation in human cancer genomes. Nature 446: 153–156.

30. Choi, M, Scholl UI, Yue P, Bjorklund P, Zhao B, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331: 766–772.

31. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, et al. (2011) The genetic landscape of the childhood cancer medulloblastoma. Science 331: 435–439.

32. Bralten L, Kloosterhof N, Balvers R, Sacchetti A, Lapre L, et al. (2011) IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo. Ann Neurol 69: 455–463.

33. Figureuza ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18: 553–567.

34. Xu, W, Yang H, Liu Y, Yang Y, Wang P, et al. (2011) Oxsomatabolite 2-Hydroxylbutyrate Is a Competitive Inhibitor of alpha-Ketoglutarate-Dependent Dioxygenases. Cancer Cell 19: 17–30.

35. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358: 1148–1159.

36. Taby R, Issa JP (2010) Cancer epigenetics. CA Cancer J Clin 60: 376–392.