Road Traffic Injuries and Fatalities among Drivers Distracted by Mobile Devices

Natasa Zatezalo, Mete Erdogan¹, Robert S. Green¹,²
Department of Medicine, Dalhousie University, ¹Trauma Nova Scotia, Nova Scotia Department of Health and Wellness, ²Department of Critical Care, Dalhousie University, Halifax, Nova Scotia, Canada

Abstract

Context: With increasing ownership of mobile devices (i.e., cell phones and smartphones), it is important to better understand the role of these devices in motor vehicle collision (MVC)-related trauma. **Aims:** The primary objective was to synthesize evidence on the proportion of drivers injured or killed in an MVC attributed to driver distraction by a mobile device. As a secondary objective, we assessed for associations between injury risk and mobile device use while driving. **Settings and Design:** This study was a systematic review. **Subjects and Methods:** We searched five electronic databases (PubMed, Embase, CINAHL, TRIS, and Web of Science) and the gray literature to identify reports of drivers injured (regardless of the severity) or killed in MVCs attributed to mobile device-related distraction by the driver. We evaluated study and driver characteristics, as well as associations between injury risk and mobile device use by drivers. **Statistical Analysis Used:** Descriptive statistics were used to report study characteristics. The proportion of injuries related to driver distraction by mobile devices was calculated for each study. **Results:** Overall, 4907 articles were screened, of which 13 met eligibility criteria. The median proportion of distracted-driving-related trauma was 3.4% (range: 0.04% to 44.7%). Three studies evaluated the association between mobile device use and road traffic injury; all found use of a mobile device while driving significantly increased crash risk. **Conclusions:** The proportion of road traffic injuries and fatalities attributed to driver distraction by a mobile device ranges from 0.04% to 44.7%. Studies were subject to limitations in the collection of reliable data on distraction-related MVCs.

Keywords: Distraction, driving, injury, phone, trauma

Introduction

Distracted driving is a global public health concern that is largely preventable.¹² As ownership of mobile devices (i.e. cell phones and smartphones) has increased, so has the use of these devices while operating a motor vehicle. The prevalence of distracted driving related to mobile devices use has been reported to range between 1.3% and 31.4%.³⁴ Early systematic reviews have examined the association between driving performance and secondary tasks,¹⁰⁻¹² and strategies to prevent motor vehicle injuries.¹³ Our objective was to synthesize evidence regarding the proportion of drivers injured or killed in motor vehicle collisions (MVCs) that were attributable to driver distraction by a mobile device.

Subjects and Methods

This review was conducted in accordance with the Preferred Reporting Items for Systemic Reviews and Meta-analyses Guidelines.¹⁴ The study protocol was registered with PROSPERO (PROSPERO 2016: CRD42016040088).

A search strategy was developed in collaboration with an experienced librarian and modified to search five electronic databases: PubMed, Embase, CINAHL, Web of Science, and the Transportation Research Information Services database. Searches were performed on June 7, 2016, and updated on September 15, 2017. Each database was searched from inception to the present day. The search strategy included a combination of MeSH terms, Emtree terms, and variations of keywords including “driver,” “motor vehicle,” “automobile,” “distraction,” “crash,” “collision,” “accident,” “mobile,”

Access this article online

Quick Response Code:

Website: www.onlinejets.org

DOI: 10.4103/JETS.JETS_24_18

Address for correspondence: Dr. Robert S. Green, Room 377, Bethune Building, 1276 South Park Street, Halifax, Nova Scotia B3H 2Y9, Canada. E-mail: greenrs@dal.ca

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Zatezalo N, Erdogan M, Green RS. Road traffic injuries and fatalities among drivers distracted by mobile devices. J Emerg Trauma Shock 2018;11:175-82.

Received: 16.03.18. Accepted: 19.05.18.
A standardized data extraction form was created and used to collect data including study location, publication date, information sources, the definition of distracted driving, vehicle type, the total number of MVCs, the total number of injuries, and severity of injuries. We also extracted the following data if available: age, gender, type of mobile device, type of behavior (e.g., eating/drinking, talking, and texting), secondary outcomes (hospital admission, ICU admission, length of hospital stay), and any association between injury risk and mobile device use. Study authors were contacted directly if there was any uncertainty about their methodology or results.

Characteristics of included studies and drivers are reported using simple descriptive statistics. The proportion of distracted driving-related trauma was defined as the ratio of drivers injured or killed in mobile device-related MVCs to the total number of drivers injured or killed in MVCs. Associations between distracted driving and crash risk are reported descriptively. All analyses were performed using Microsoft® Excel (Microsoft Corp., Redmond, WA) and the R Statistical software package (V3.0.1; R Foundation for Statistical Computing, Vienna, Austria). Due to considerable variation among studies concerning their design, geography, inclusion criteria, and methods for determining that MVCs were related to distracted driving, it was not possible to perform a meta-analysis.

Results

Thirteen studies met all inclusion criteria. A total of 4907 articles were identified in our literature search, and an additional ten articles were found via bibliographic review and manual search of the gray literature [Figure 1]. Following removal of duplicates, the remaining 3494 articles were independently screened by two reviewers. Eighty-five articles were deemed relevant based on title and abstract screening, and underwent full-text screening by two reviewers; 72 were excluded due to ineligibility ($\kappa = 0.32$; fair agreement). The search strategy for PubMed can be found in Appendix 1.
Table 1 shows characteristics of the 13 included studies. Studies were published between 1998 and 2017, with sample sizes ranging from 74 to 1,080,637. Five studies were performed in the United States,[16-20] three in Australia,[21-23] one in Canada,[24] one in Qatar,[25] one in the United Arab Emirates,[26] one in Iran,[27] and one in England and Wales.[28] In addition to mobile device use, other types of behavior evaluated including smoking,[23,25-27] eating/drinking,[25,26] as well as various internal[16,19,22-25,27,28] and external[16,22-26] distractions. Studies determined the involvement of driver distraction through examination of data collected from police reports,[16-20,22,23,28] interviews,[21,22,24-27] phone records,[19,21] medical records,[21,22,26] coroner reports,[19,22] and investigation of the scene and vehicle.[22]

Table 2 describes injuries related to driver distraction by mobile devices. Overall, the proportion of distracted driving-related trauma ranged from 0.04% (192/449,560) to 44.7% (162/358), with a median of 3.4%. Nonfatal MVC injuries related to mobile device use was specifically reported in six studies[16,17,21,24,25,27] and ranged from 0.04% (190/443,077) to 25.4% (104/409) with a median of 9.6%. MVC fatalities attributed to mobile device use was reported in five studies,[16,17,19,20,28] ranging from 0% (0/1) to 44.7% (162/358), with a median of 0.05%. Six studies reported on both injuries and fatalities,[16-18,22,23,26] three of these studies combined injuries and fatalities in their reporting.[18,22,23] Three studies only reported on fatalities due to distracted driving.[19,20,28] Injury severity was undefined in three studies.[18,23,27]

Some studies stratified distraction-related injuries by age group. Limrick et al. found that involvement of mobile devices in fatal/injury crashes in California between 2003 and 2011 was the most common in drivers aged 21–30 years.[18] Violanti reported a total of five MVC fatalities attributed to mobile device use by drivers in Oklahoma between 1992 and 1995, of which two were aged 21–29 years and three were aged >50 years.[20] Finally, Lam observed that most injuries/deaths related to handheld phone use were seen in the 25–29 years age group.[23] There was limited evidence reported regarding the gender of drivers involved in distraction-related MVCs. Violanti observed that a greater number of males...
were killed in MVCs related to mobile device use (four males and one female).\(^\text{[20]}\) Limrick et al. also reported that males accounted for the majority of drivers involved in fatal/injury crashes attributable to mobile device use.\(^\text{[18]}\)

Periods of data collection for individual studies spanned nearly three decades between 1985 and 2013 (Figure 2). In the four studies that investigated MVCs occurring before 2000, the proportions of distracted driving-related trauma were 0.04% (192/449,560),\(^\text{[17]}\) 0.05% (3/5,740),\(^\text{[28]}\) 0.05% (30/63,779),\(^\text{[23]}\) and 0.3% (5/1,548).\(^\text{[20]}\) Studies of data on MVCs from 2000 or later observed proportions of distracted driving-related trauma between 0.9% (3/340) and 44.7% (162/388), with a median of 9.55%. We also assessed included studies for any association between injury risk and driver distraction by a mobile device [Table 3].

Using the NOS, we assessed the risk of bias for all included studies [Table 4]. A low NOS score reflects poor study quality. Overall, three studies had a total score of five,\(^\text{[24,25,27]}\) eight had a score of six,\(^\text{[16-19,22,23,26,28]}\) one had a score of seven,\(^\text{[21]}\) and one had a score of eight.\(^\text{[20]}\) Inter-rater agreement between the two reviewers was substantial ($\kappa = 0.73$).

Discussion

Our review of the literature identified 13 studies that reported on drivers injured or killed in MVCs that were attributable to driver distraction by a mobile device. Considering all injury severities from minor to fatal, the proportion of distracted driving-related trauma ranged from 0.04% to 44.7% (median 3.4%). Due to challenges with the collection of accurate data on distraction-related MVCs, these findings are likely to underestimate the actual prevalence of road traffic injuries related to mobile device use. Furthermore, increasing rates of cell phone ownership and on-going advances in technology make it difficult to compare the prevalence of distracted driving-related trauma over time. Despite these limitations, the evidence synthesized in this review highlights the danger posed by the use of a mobile device while driving, both to individual drivers and to the public at large.

With the dramatic increase in mobile device ownership over the past few decades, it is hard to compare earlier studies with those performed more recently. This is especially true since the functionality of these devices has evolved from performing a few simple actions to performing countless other applications. One of the main challenges in investigating distraction-related MVCs is that researchers are often left to rely on police reports to determine if mobile device use was a contributing factor, since most jurisdictions prohibit the dissemination of data on phone use to third parties without the customer’s consent. Unfortunately, the data available in police reports is known to be unreliable.\(^\text{[29]}\) Without witnesses or an admission of guilt by a distracted driver, it is challenging for police officers to determine if the primary cause of an MVC was distraction by a mobile device, especially if the driver did not survive the collision. Research from the United Kingdom suggests that information stored in iPhone’s CurrentPowerlog, powerlog and Android’s buffer logs can show a driver’s direct or passive activity on their mobile device, which can be used to provide an explanation.
for the events leading up to a crash.30 Although numerous laws and regulations have been enacted worldwide to address the use of mobile devices while driving, enforcement remains a challenge.1,31 Another challenge is in determining culpability for a crash. Researchers in Canada have shown that use of a mobile device by drivers increases the odds of a culpable crash by 70\% compared to drivers who did not use a mobile device.132 Recent observational studies of driver distraction by mobile devices have observed rates as low as 1.3\% in Spain8 and as high as 33\% in the United States.14 Survey data suggest the prevalence may be closer to 47\% in India,33 52\% in Canada,14 and 69\% in the United States.35 Millennials (18–34 years of age) are more likely to be mobile device users compared with those aged 35 years and older,8-10 and research has consistently shown that younger drivers (<30 years) engage in distracting activities more often than older drivers.4-6,8,9 Similarly, the findings of our review suggest that distracted driving-related trauma is most common among relatively

Table 3: Association between injury risk and mobile device use while driving

Author (year)	OR/RR	Explanatory variables
Lam, 2002	RR of injury or death in a car crash for 25-29 years age group who used a hand held phone was 2.4 times higher compared to crashed drivers without any distraction (RR=2.37, 95\% CI: 1.31-4.27). No significant increase in risk of injury/death was observed with hand held phone use in any other age group compared with control intervals; similar increase in likelihood for phone use during and up to 5 min before crash (OR=3.6, 95\% CI: 1.8-7.0)*; risk of crash was increased irrespective of phone type (hand held [OR=4.9, 95\% CI: 1.6-15.5, \(P=0.003 \)) vs. hands-free [OR=3.8, 95\% CI: 1.8-8.0]*	NR
McEvoy, 2005	Mobile phone use in hazard interval during and up to 10 min before estimated time of crash was associated in increased likelihood of crashing (OR=4.1, 95\% CI: 2.2-7.7)* compared with phone use by same driver during control intervals; similar increase in likelihood for phone use during and up to 5 min before crash (OR=3.6, 95\% CI: 1.8-7.0)*; risk of crash was increased irrespective of phone type (hand held [OR=4.9, 95\% CI: 1.6-15.5, \(P=0.003 \)) vs. hands-free [OR=3.8, 95\% CI: 1.8-8.0]*	Hazard interval compared with control intervals2
Violanti, 1998	Risk of fatal collision was significantly associated with presence of a phone (AOR=2.11, 95\% CI: 1.64-2.71)1 and use of a phone (AOR=9.29, 95\% CI: 3.70-23.14); with phone in use, risk of fatal collision was significantly associated with being male (AOR=1.64, 95\% CI: 1.61-2.74)1, increasing age (AOR=2.23, 95\% CI: 1.12-6.37)1, alcohol/drug involvement (AOR=2.83, 95\% CI 1.28-6.17)1, and driving left of center (AOR=14.35, 95\% CI: 8.49-23.79); interaction models showed significantly increased risk of fatal collision when phone use was combined with covariates of being male (AOR=1.84, 95\% CI: 1.13-16.4)1, speeding (AOR=5.73, 95\% CI: 4.48-54.5)1, inattention (AOR=2.01, 95\% CI: 1.04-3.81)1, and driving left of center (AOR=36.50, 95\% CI: 3.31-330.1)1	Age, gender, mobile phone, alcohol/drug involvement, speeding, inattention, driving left of center

*Significant at \(P<0.001 \). 1Significant at \(P<0.05 \). 2Control intervals were same time and duration 24 h, 72 h, and 7 days before crash when drivers confirmed they had been driving. RR: Relative risk, OR: Odds ratio AOR: Adjusted OR, CI: Confidence interval, NR: None reported
inexperienced drivers, with the greatest proportion of road traffic injuries and deaths seen in the 20–30 years age group. Furthermore, Lam found the relative risk (RR) of injury or death in crashed drivers who were using a handheld phone (compared to crashed drivers with no distraction) was significantly higher in drivers aged 25–29 years (RR = 2.37), but not in any other age group.[23] It is important to note that our search strategy was designed to identify articles which addressed our primary objective and not necessarily our secondary objective; thus, we excluded studies which evaluated crash risk associated with mobile device use but did not investigate injuries or deaths. In one such study, Neyens and Boyle examined the influence of distracted driving on the severity of injuries in teenage drivers and their passengers; being distracted by a mobile device increased the likelihood of severe injury in drivers (adjusted odds ratio [AOR] = 1.27), female drivers (AOR = 1.43), and occupants (AOR = 4.69).[17] Although younger drivers are more likely to be using their phones while driving, older drivers who use mobile devices while driving are also at considerable risk of collision due to age-related degradation in reaction time, perception, cognition, and ability to handle competing activities. An analysis of distracted drivers and nondistracted drivers from the same age groups and found the likelihood of severe injury in younger drivers (<25 years) was highest when talking on a cell phone (OR = 1.33), while the likelihood of severe injury in older drivers (≥65 years) was the highest when dialing or texting on a cell phone (OR = 4.78).[38]

Research has consistently shown that the crash risk in drivers who text is higher than that of drivers who talk on a phone. Not surprisingly, the highest proportion of distracted driving-related trauma we found (44.7%) was from the only study that focused on text messaging among drivers involved in MVCs.[19] There is evidence that texting while driving has contributed to a significant increase in the number of deaths from MVCs. Wilson and Stimpson determined that upward trends of texting in the United States resulted in an estimated 16,141 additional fatalities from distracted driving between 2001 and 2007.[39] In their meta-analysis on the impact of typing and reading text messages on driving performance, Caird et al. found that the largest effect sizes were for eye movements during typing alone, followed by typing and reading.[19] Although drivers who texted appeared to go slower and increase the distance between themselves and vehicles ahead, these behaviors did not compensate for the visual, cognitive, and physical distractions associated with prolonged and repeated glances to read and type text messages. Texting reduced the ability of drivers to respond to traffic events, direct adequate attention to the road, and control their vehicle in a lane and with respect to other vehicles. In another meta-analysis, Simmons et al. compared the risk of a safety-critical event (SCE) between the tasks of talking, dialing, locating/answering, or texting/browsing with a mobile device while driving.[19] Risk of a SCE was increased for texting/browsing (OR = 10.30), dialing (OR = 4.04), and locating/answering a mobile device (OR = 3.57); however, talking on a mobile device while driving was associated with a statistically insignificant OR of 0.89. These differences in risk may be explained in part by the amount of time drivers need to remove their eyes from the road to perform these tasks. Additional research is required to better understand the prevalence of road traffic injuries and fatalities due to driver behaviors that require prolonged and repetitive distraction from the roadway such as texting, E-mailing, and browsing.

This review has several important limitations that must be considered when interpreting the results. First and foremost, there are inherent challenges with collecting reliable data on distraction-related MVCs. Indeed, most studies acknowledged that their results were likely to underestimate the actual prevalence of injuries or deaths due to driver distraction by a mobile device. Reasons given for this potential under-reporting
included driver, passenger, or witness recall bias,[24,25,28] reporting bias by culpable drivers avoiding consequences for their actions,[18,21,24] incomplete databases records,[17,22] and misinterpretation of data by accident researchers.[28] It is also possible that injured drivers who were using a mobile device immediately before their MVC may have disproportionately chosen not to participate in an investigation of distracted driving. Most studies in this review used data from police reports which are known to be unreliable as discussed earlier. Although phone records may potentially help determine whether mobile device use contributed to an MVC, these records are difficult to obtain (only two studies collected information from phone records) and they may not contain information on all possible forms of distraction-related to mobile device use (e.g., locating the device, dialing a number). In addition, there was considerable variation in methods used to collect data on distraction-related MVCs. Importantly, advances in technology and increases in mobile device ownership make it difficult to compare rates of distracted driving-related trauma over time; thus, our reported median proportion of 3.4% should not be used to reflect what is happening on the roads today. It also bears remembering that MVCs tend to be multifactorial events; thus, it is difficult to attribute the cause of a given MVC solely to driver distraction by a mobile device since there may have been other factors that played a larger role in the collision.

Conclusion

In summary, previous investigations have determined that road traffic injuries and fatalities among drivers were attributed to distraction by mobile devices in 0.04% to 44.7% of cases (median 3.4%). These studies were subject to significant methodological limitations in the collection of reliable data and may not reflect current rates of distracted driving-related trauma. As cell phone ownership increases and technologies continue to advance, further investigation on traumatic injuries due to driver distraction by mobile devices is warranted.

Acknowledgment

We are grateful to Information Services Librarian Robin Parker (Dalhousie University, Halifax NS) for assisting with the development of the search strategy. We also thank Nelofar Kureshi for assisting with statistical analysis.

Financial support and sponsorship

This work was supported by the Faculty of Medicine Laurence and Mary Marrie Summer Research Stundentship, Dalhousie University, Halifax, Nova Scotia, Canada.

Conflicts of interest

There are no conflicts of interest.

References

1. Mobile Phone Use: A Growing Problem of Driver Distraction. World Health Organization; 2011. Available from: http://www.who.int/violence_injury_prevention/publications/road_traffic/distracted_driving_en.pdf?ua=1. [Last accessed on 2018 Apr 14].
2. Overton TL, Rives TE, Hecht C, Shafl S, Gandhi RR. Distracted driving: Prevalence, problems, and prevention. Int J Inj Contr Saf Promot 2015;22:187-92.
3. Foss RD, Goodwin AH. Distracted driver behaviors and distracting conditions among adolescent drivers: Findings from a naturalistic driving study. J Adolesc Health 2014;54:S50-60.
4. Huisingsh C, Griffin R, McGwin G Jr., The prevalence of distraction among passenger vehicle drivers: A roadside observational approach. Traffic Inj Prev 2015;16:140-6.
5. Sullivan MJ, Prat F, Tasci DK. A roadside study of observable driver distractions. Traffic Inj Prev 2015;16:552-7.
6. Wilkinson ML, Brown AL, Moussa I, Day RS. Prevalence and correlates of cell phone use among Texas drivers. Prev Med Rep 2015;2:149-51.
7. Vollrath M, Huemer AK, Teller C, Likhacheva A, Fricke J. Do German drivers use their smartphones safely?-Not really! Accid Anal Prev 2016;96:29-38.
8. Prat F, Planes M, Gras ME, Sullivan MJ. An observational study of driving distractions on urban roads in Spain. Accid Anal Prev 2015;74:8-16.
9. Sullivan MJ. An observational study of driver distraction in England. Transp Res Part F2 Traffic Psychol Behav 2012;15:272-8.
10. Caird JK, Johnston KA, Willness CR, Asbridge M, Steel P. A meta-analysis of the effects of texting on driving. Accid Anal Prev 2014;71:311-8.
11. Simmons SM, Hicks A, Caird JK. Safety-critical event risk associated with cell phone tasks as measured in naturalistic driving studies: A systematic review and meta-analysis. Accid Anal Prev 2016;87:161-9.
12. Ferdinand AO, Menachemi N. Associations between driving performance and engaging in secondary tasks: A systematic review. Am J Public Health 2014;104:e39-48.
13. Rivara FP, Thompson DC, Beahller C, MacKenzie EJ. Systematic reviews of strategies to prevent motor vehicle injuries. Am J Prev Med 1999;16:1-5.
14. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann Intern Med 2009;151:264-9, W64.
15. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analysis. Ottawa Hospital Research Institute; 2014. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. [Last accessed on 2017 Oct 08].
16. Brown DB. CARE Driver Distractions Study 2009 Alabama Distracted Driving Summit; 2009. Available from: http://www.caps.ua.edu/files/2014/05/CAPS-CARE-Driver-Distractions-Study.pdf. [Last accessed on 2016 Sep 19].
17. Huang HF, Stutts JC, Hunter WW. Characteristics of Cell Phone-Related Motor Vehicle Crashes in North Carolina. In: Proceedings of Transportation Research Board 2003 Annual Meeting. Washington, DC; 2002. Available from: http://www.trc.lsu.edu/TRB_82/TRB2003-001929.pdf. [Last accessed on 2016 Sep 19].
18. Limrick K, Lambert A, Chapman E. Cellular Phone Distracted Driving: A Review of the Literature and Summary of Crash and Driver Characteristics in California. California Department of Motor Vehicles; 2014. Available from: https://www.dmv.ca.gov/portal/wcm/connect/08ae48df-b006-4f3e-a97-04f4f682a667/S7-248.pdf?MOD=AJPERES. [Last accessed on 2016 Sep 19].
19. Pakula A, Shaker A, Martin M, Skinner R. The association between high-risk behavior and central nervous system injuries: Analysis of traffic-related fatalities in a large coroner’s series. Am Surg 2013;79:1086-8.
20. Violanti JM. Cellular phones and fatal traffic collisions. Accid Anal Prev 1998;30:519-24.
21. McEvoy SP, Stevenson MR, McCart AT, Woodward M, Haworth C, Palamara P, et al. Role of mobile phones in motor vehicle crashes resulting in hospital attendance: A case-crossover study. BMJ 2005;331:428.
22. Beanland V, Fitzharris M, Young KL, Lenné MG. Driver inattention and driver distraction in serious casualty crashes: Data from the Australian national crash in-depth study. Accid Anal Prev 2013;54:99-107.
23. Lam LT. Distractions and the risk of car crash injury: The effect of drivers’ age. J Safety Res 2002;33:411-9.
24. Brubacher JR, Chan H, Purssell E, Tuyp BJ, Ting DK, Mehrnoush V,
et al. Minor injury crashes: Prevalence of driver-related risk factors and outcome. J Emerg Med 2017;52:632-8.
25. Bener A. A study on road traffic crashes and injuries in Qatar as reported by drivers. J Egypt Public Health Assoc 2012;87:85-9.
26. Eid HO, Abu-Zidan FM. Distraction-related road traffic collisions. Afr Health Sci 2017;17:491-9.
27. Vafee-Najar A, Khabbazkhoob M, Alidadi-Soltangholi H, Asgari S, Ibrahimipour H. Investigating the relative risk factors of injuries caused by accidents on roads in the Mashhad area in 2007. Iran Red Crescent Med J 2011;13:530-6.
28. Stevens A, Minton R. In-vehicle distraction and fatal accidents in England and Wales. Accid Anal Prev 2001;33:539-45.
29. National Safety Council. State of the Nation of Cell Phone-Distracted Driving. Washington, DC; National Safety Council; 2012. Available from: https://iiky.org/documents/Distracted_Driving-State_of_the_Nation_NSC.pdf. [Last accessed on 2016 Sep 24].
30. Horsman G, Conniss LR. Investigating evidence of mobile phone usage by drivers in road traffic accidents. Digit Invest 2015;12:S30-7.
31. Jacobson PD, Gostin LO. Reducing distracted driving: Regulation and education to avert traffic injuries and fatalities. JAMA 2010;303:1419-20.
32. Asbridge M, Brubacher JR, Chan H. Cell phone use and traffic crash risk: A culpability analysis. Int J Epidemiol 2013;42:259-67.
33. Distracted Driving in India: A Study on Mobile Phone Usage, Pattern & Behaviour. Save Life Foundation; 2017. Available from: http://savelifefoundation.org/wp-content/uploads/2017/04/Distracted-Driving-in-India_A-Study-on-Mobile-Phone-Usage-Pattern-and-Behaviour.pdf. [Last accessed on 2018 Apr 15].
34. Nurullah AS, Thomas J, Vakilian F. The prevalence of cell phone use while driving in a Canadian province. Transp Res Part F Traffic Psychol Behav 2013;19:52-62.
35. Centers for Disease Control and Prevention (CDC). Mobile device use while driving – United States and seven European countries, 2011. MMWR Morb Mortal Wkly Rep 2013;62:177-82.
36. Poushter J. Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies. Washington, D.C.: Pew Research Center; 2016. Available from: http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/. [Last accessed on 2016 Oct 04].
37. Neyens DM, Boyle LN. The influence of driver distraction on the severity of injuries sustained by teenage drivers and their passengers. Accid Anal Prev 2008;40:254-9.
38. Donmez B, Liu Z. Associations of distraction involvement and age with driver injury severities. J Safety Res 2015;52:23-8.
39. Wilson FA, Stimpson JP. Trends in fatalities from distracted driving in the United States, 1999 to 2008. Am J Public Health 2010;100:2213-9.

APPENDIX

Appendix 1:

PubMed search strategy:

((motor vehicles[mh]) OR (driv*[tiab]) OR (motor[tiab]) OR (vehicle*[tiab]) OR (traffic[tiab]) OR (automobile*[tiab]) OR (truck*[tiab]) OR (motorcycle*[tiab])) AND ((Smart phone[mh]) OR (cell phone[mh]) OR (text messaging[mh]) OR (computers, handheld[mh]) OR (distract*[tiab]) OR (cellphone*[tiab]) OR (mobile phone*[tiab]) OR (mobile device*[tiab]) OR (smartphone*[tiab]) OR (tablet*[tiab]) OR (handheld[tiab]) OR (text*[tiab]) OR (message*[tiab]) OR (calling[tiab]) OR (phone call*[tiab])) AND (accidents, traffic*[mh]) OR (Trauma centers[mh]) OR (traumatology[mh]) OR (wounds and injuries[mh]) OR (injuries[mh]) OR (hospitalization[mh]) OR (emergency service, hospital[mh]) OR (emergency medicine[mh]) OR (critical care[mh]) OR (trauma severity indices[mh]) OR (trauma*[tiab]) OR (emergency room*[tiab]) OR (ER*[tiab]) OR (EM*[tiab]) OR (injur*[tiab]) OR (fatal*[tiab]) OR (death*[tiab]) OR (mortality[tiab]) OR (hospital*[tiab]) OR (admission*[tiab]) OR (admit*[tiab]) OR (emergency*[tiab]) OR (MVC*[tiab]) OR (crash*[tiab]) OR (collision*[tiab]) OR (accident*[tiab]))