New reaction rates for the destruction of 7Be during big bang nucleosynthesis measured at CERN/n_TOF and their implications on the cosmological lithium problem

A. Mengoni1,2, L.A. Damone3,4, M. Barbagallo5,6, O. Aberle5, V. Alcayne6, S. Amaducci7,8, J. Andrzejkiewicz9, L. Audouin10, V. Babiano-Suarez11, M. Bacak3,12,13, S. Bennett14, E. Berthoumieux13, D. Bosnar15, A.S. Brown16, M. Busso17,18, M. Caamaño19, L. Caballero11, M. Calviani7, F. Calviño20, D. Cano-Ott6, A. Casanovas20, F. Cerutti2, E. Chiaveri21,2,5, N. Colonna3, G.P. Cortés29, M.A. Cortés-Giraldo21, L. COSINT20, S. Cristalio17,22, P.J. Davies14, M. Diakaki23, M. Dietz24, C. Domingo-Pardo31, R. Dressler25, Q. Ducasse26, E. Dupont13, I. Durán19, Z. Eleme27, B. Fernández-Domínguez19, A. Ferrari3, I. Ferro-Gonzàlvex28, P. Finocchiaro7, V. Furman29, R. Garg34, A. Gawlik9, S. Gilardoni5, K. Göbel30, E. González-Romero9, C. Guerrero21, F. Gunsing13, S. Heinritz25, J. Heyse34, D.G. Jenkins16, E. Jericha12, U. Jiri25, A. Junghans32, Y. Kadi5, F. Käppeler33, A. Kimura35, I. Knapov35, M. Kokkori33, Y. Kopatch29, M. Krtiˇcka35, D. Kurtulgil30, I. Ladarescu11, C. Lederer-Woods24, J. Lerendegui-Marco21, S.-J. Lonsdale24, D. Macina3, A. Manna2,36, T. Martínez26, A. Masi5, C. Massimi2,36, P.F. Mastinu17, M. Mastromarco5,14, E. Maugeri25, A. Mazzone3,8, E. Mendoza36, V. Míchalopoulou5,23, P.M. Milazzo39, M.A. Millán-Callado21, F. Mingrone5, J. Moreno-Soto13, A. Musumarras8, A. Negret20, F. Ogállali41, A. Oprea40, N. Patronis27, A. Pavičić22, J. Perkowski9, C. Petrone40, L. Pierantoni17,22, E. Pirovano26, I. Porràs41, A. Praena41, J.M. Quésada21, D. Ramos-Durañona10, R. Reifarth30, D. Rochman25, C. Rubbia3, M. Sabaté-Gilarte21,5, A. Saxena33, P. Schillebeeckx31, D. Schummann25, A. Sekhar14, A.G. Smith14, N. Sonnino14, P. Sprung25, A. Stamatopoulos23, G. Tagliente3, J.L. Tain11, A.E. Tarifeño-Saldívar30, J.L. Tassin-Gou25,13,10, B. Thomas30, P. Torres-Sánchez41, A. Tsinganis5, S. Urlaß5,32, S. Valenta13, G. Vannini2,36, V. Variale3, P. Vaz28, A. Ventura3, D. Vescovi1,44, V. Vlachoudis5, R. Vlastou32, A. Wallner45, P.J. Woods24, T.J. Wright14, and P. Żugec15

1Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico
2Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
3Istituto Nazionale di Fisica Nucleare, Bari, Italy
4European Organization for Nuclear Research (CERN), Switzerland
5Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
6INFN Laboratori Nazionali del Sud, Catania, Italy
7Dipartimento di Fisica e Geologia, Università di Perugia, Perugia, Italy
8University of Lodz, Poland
9IPN, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
10Istituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
11Technische Universität Wien, Austria
12CEA Saclay, Irfu, Université Paris-Saclay, Gif-sur-Yvette, France
13University of Manchester, United Kingdom
14Department of Physics, Faculty of Science, University of Zagreb, Croatia
15University of York, United Kingdom
16Istituto Nazionale di Fisica Nucleare, Perugia, Italy
17Dipartimento di Fisica e Geologia, Università di Perugia, Italy
18University of Santiago de Compostela, Spain
19University of Lódz, Poland
20IPN, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
21Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain
22National Technical University of Athens, Greece
23School of Physics and Astronomy, University of Edinburgh, United Kingdom
24Paul Scherrer Institut (PSI), Villigen, Switzerland
25Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
26University of Ioannina, Greece
27Instituto Superior Técnico, Lisbon, Portugal
28Joint Institute for Nuclear Research (JINR), Dubna, Russia
29Goethe University Frankfurt, Germany
30European Commission, Joint Research Centre, Geel, Belgium
31Helmholtz-Zentrum Dresden-Rossendorf, Germany

https://doi.org/10.1051/epjconf/202023907001
Abstract. New measurements of the 7Be(n,α)4He and 7Be(n,p)7Li reaction cross sections from thermal to keV neutron energies have been recently performed at CERN/n_TOF. Based on the new experimental results, astrophysical reaction rates have been derived for both reactions, including a proper evaluation of their uncertainties in the thermal energy range of interest for big bang nucleosynthesis studies. The new estimate of the 7Be destruction rate, based on these new results, yields a decrease of the predicted cosmological 7Li abundance insufficient to provide a viable solution to the cosmological lithium problem.

1 Introduction

A few neutron-induced reactions are important in the processes leading to the formation of the first elements at the very beginning of our universe, during the so-called big bang nucleosynthesis (BBN) era, spanning from a few seconds to a few minutes time duration and thermal energies from ~ 100 keV down to a few keV. Amongst these, the (n,p) and (n,α) reactions on 7Be play a key role, in particular for the determination of the abundance of primordial lithium. Considering that over 95% of the lithium resulting from the BBN is the product of the electron-capture decay of 7Be, the production and destruction mechanisms of this isotope are key elements in the determination of the primordial 7Li abundance. Over-produced by BBN models by a factor 2-3 (the cosmological lithium problem, CLiP), the destruction of 7Be at BBN temperatures.

2 Experiments

Both cross section measurements were performed at the second experimental area of the n_TOF facility at CERN [3]. High purity material was produced at the Paul Scherrer Institute (PSI), extracting 200 GBq of 7Be from the water cooling system of the SINQ spallation source [5].

For the 7Be(n,α)4He measurement, two samples with \approx 18 GBq of activity each (1.4 μg of 7Be) were produced. They were sandwiched with 3x3 cm2 active area and 140 μm thickness silicon detectors and inserted directly into the n_TOF neutron beam for irradiation. Strong rejection of background events was possible because of the time-of-flight technique coupled to the low duty-cycle of the primary beam of the n_TOF facility. Coincidence signals for protons from the (n,p) channel, γ-rays from 7Be activity and α’s from the n+7Li \rightarrow 8Li (β^+, 840 ms) \rightarrow 8Be* \rightarrow 2α reaction were excluded in the data analysis.

For the 7Be(n,p)7Li experiment, the 7Be material has been implanted on suited backing at CERN/ISOLDE-GPS separator and RILIS facilities using a 30 keV (≈45 nA) 7Be beam. A silicon telescope, with 20 and 300 mm, 5x5 cm2 strip devices for ΔE and E detection respectively, was used in the measurement [6]. The procedure adopted demonstrated for the first time the feasibility of neutron measurements on samples produced at radioactive ion beam facilities.

3 Results and implications

All the results of the measurement are reported in the references [1, 2]. Model interpretation, evaluation procedures and numerical tables (including uncertainties) of the measured cross sections are available online on the n_TOF Collaboration twiki website [4]. The published data of both measurements are already available in the EXFOR database as well.

3.1 7Be(n,α)4He

The reaction process, induced by low-energy s-wave neutrons, is dominated by the 2 state located only a few keV above the neutron separation energy in 8Be, at $E_\nu \approx 19$ MeV (see Figure 1). A direct 2α-breakup of this state is not allowed and, at these excitation energies, the reaction mechanism is dominated by the (n,γα) process.

The cross section for the α’s emitted from the doublet 2 states at ≈16.8 MeV in 7Be, following the capture γ-ray transitions, was derived from the measurement.
mechanisms, mostly going through the 3H (the destruction of 7Be at BBN temperatures. In sections [1, 2], the main reaction mechanisms, leading to Paul Scherrer Institute (PSI), extracting 200 GBq of 7Be. CERN [3]. High purity material was produced at the second experimental area of the n_TOF facility at Both cross section measurements were performed at these, the (n,p) and (n, α) reactions, is dominated by the 2

Figure 1. Energy levels of ⁷Be in the energy range of interest for the present work.

The 1/ν behaviour of the cross section can be interpreted as a direct radiative capture process as well as a compound resonance reaction mechanisms. For the first case, a model prediction can be made for all the allowed (n,γα) E1 transitions and, therefore, the total (n,α) cross section can be derived. The resulting total (n, α) cross section, complemented with data from time-reversal and other reaction channels in the higher energy region above E_n ≈ 50 keV [4], can be integrated over the energy range of interest for BBN network calculations in a proper temperature grid. The results can be represented accurately by the following expression of the reaction rate

\[N_x(\sigma v) = a_0(1 + a_1 T_{79}^{1/2} + a_2 T_{79} + a_3 T_{79}^{3/2} + a_4 T_{79}^2 + a_5 T_{79}^{5/2} + a_6 T_{79}^3 + a_7 T_{79}^{7/2} + a_8 T_{79}^4 + a_9 T_{79}^{9/2} + a_{10} T_{79}) \]

in units of cm³/s/mole when \(a_0 = 4.810 \times 10^3 \), \(a_1 = -0.226 \), \(a_2 = 5.301 \), \(a_3 = 11.249 \), \(a_4 = -18.940 \), \(a_5 = 13.539 \), \(a_6 = -0.133 \), \(a_7 = -0.591 \), \(a_8 = -1.144 \), \(a_9 = 0.731 \) and \(a_{10} = -0.094^1 \).

3.2 ⁷Be(n,p)⁶Li

The measured cross section turned out to be higher than previously known, in particular at low neutron energies, up to \(\approx 35 \) keV. The ⁷Be(n,p)⁶Li measured cross section, complemented with data from the time-reversal channel ⁷Li(p,n)⁷Be, has been fitted using single-level Breit-Wigner formalism with nine states above the neutron separation energy of ⁷Be, in order to fully cover the energy range of interest for BBN calculations. The resulting cross section has been integrated over the entire energy range to produce a reaction rate valid in the proper temperature range of interest for BBN network calculations

\[N_x(\sigma v) = a_0(1 + a_1 T_{79}^{1/2} + a_2 T_{79} + a_3 T_{79}^{3/2} + a_4 T_{79}^2 + a_5 T_{79}^{5/2} + a_6(1 + 13.076 T_{79})^{3/2} + a_7 T_{79}^{-3/2} e^{-b_0/T_{79}}) \]

in units of cm³/s/mole when \(a_0 = 6.809 \times 10^3 \), \(a_1 = 1.971 \), \(a_2 = 2.082 \), \(a_3 = -0.032 \), \(a_4 = 0.271 \), \(a_5 = 1.961 \times 10^5 \), \(a_7 = 2.890 \times 10^7 \) and \(b_0 = 0.281 \).

Figure 2. ⁷Be(n,α)⁴He rate is shown in comparison with the previously adopted rate of Wagoner [7]. The uncertainty associated with the presently determined rate is shown by the corresponding grey band. The temperature range of interest for the BBN is indicated by the vertical band.

Figure 3. Comparison of the reaction rates for the ⁷Be(n,p)⁶Li reaction of the present work with some of the commonly adopted rates ([8–11]). The uncertainty associated with the presently determined rate is shown by the corresponding grey band. The temperature range of interest for BBN is indicated by the vertical band.

The new estimate of the ⁷Be destruction rates, based on the new n_TOF experimental results, can be used in BBN network calculations to estimate their impact on the lithium yield. Details on these calculations are provided in the references [1, 2, 4]. The BBN calculations have been performed adopting a neutron average life-time of

1 with respect to the rate published in [1], this expression includes additional terms in the expansion, making it valid up to \(T_9 = 10 \).
Table 1. Results of the BBN network calculation for the relevant main observables. Present rates refers only to the two rates evaluated in the present work. All the other network rates are adopted as described in [4].

	Y_p	D/H [10^{-5}]	^4He/H [10^{-5}]	^7Li/H [10^{-10}]
with standard rates	0.246	2.43	1.08	5.46
using present rates (η_{10} = 6.09)	0.246	2.43	1.08	5.26
using present rates (5.8 ≤ η_{10} ≤ 6.6)	0.246	2.43	1.08	4.73 - 6.23
observations [15]	0.245±0.003	2.569±0.027	-	1.6 ± 0.3

\[\tau_n = 880.2 \text{ s} \text{ and } N_\nu = 3 \text{ neutrino species.} \]

The baryon-to-photon number density ratio in units of 10^{-10}, η_{10}, has been allowed to vary within the range established by the concordance of observation of primordial ^4He and deuterium as evaluated in the review of the most recent Particle Data Group publication [15]. The results of the BBN calculation for the main observables are shown in the Table 1.

A decrease of the predicted cosmological lithium abundance (relative to H), from 5.46 to 5.26 in units of 10^{-10} is predicted when using the new rates shown above. This is insufficient to provide a viable solution to the CLiP, leaving all alternative physics and astronomical scenarios open.

Figure 4. ^7Li(p,n)^7Be cross section, near the 1.88 MeV threshold, because the (n,p) channel has no threshold and the cross section has been measured in our experiment for neutron energies as low as meV. The results are shown in figure 4. In spite of the limited counting rates that causes fluctuations for neutron energies above 20 keV, this result is particularly relevant for all applications of the ^7Li(p,n)^7Be reaction as neutron source.

References

[1] M. Barbagallo et al. (The n_TOF Collaboration), Phys. Rev. Lett. 117, 152701, 2016
[2] L.A. Damone et al. (The n_TOF Collaboration), Phys. Rev. Lett. 121, 042701, 2018
[3] C. Weiss et al. (The n_TOF Collaboration), Nucl. Instr. Meth. Phys. Res. A 799, 2015, 90
[4] The twiki public pages of the n_TOF Collaboration: http://twiki.cern.ch/NTOFPublic.
[5] E.A. Maugeri et al. (The n_TOF Collaboration), Nucl. Instr. Meth. Phys. Res. A 889, 138, 2018
[6] M. Barbagallo et al. (The n_TOF Collaboration), Nucl. Instr. Meth. Phys. Res. A 887, 27, 2018
[7] R.V. Wagoner, ApJS, 18, 247, 1969
[8] M.S. Smith, L. Kawano, and L.H. Malaney, ApJ 85, 219, 1993
[9] P. Descouvemont et al., Atomic Data and Nuclear Data Tables 88, 203, 2004
[10] R.H. Cyburt, Phys. Rev. D 70, 023505, 2004
[11] P.D. Serpico et al., Journal of Cosmology and Astroparticle Physics 12, 10, 2004
[12] J.H. Gibbons and R.L. Macklin, Phys. Rev. 114, 571, 1959
[13] K.K. Sekharan et al., Nucl. Instr. Meth. Phys. Res. 133, 253, 1976
[14] A. Hermanne et al., Nuclear Data Sheets 148, 338, 2018
[15] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001, 2016