Study on End-of-Life Tires (ELTs) Recycling Strategy and Applications

To cite this article: Habiba Afrin et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1200 012009

View the article online for updates and enhancements.

You may also like

- A new class of magnetorheological elastomers based on waste tire rubber and the characterization of their properties Ubaidillah, Fitrian Imdaduddin, Yancheng Li et al.
- Microwave Assisted Pyrolysis of Waste Tires: Study and Design of Half-Cells SOFCs with Low Environmental Impact Maurizio Passaponti, Luca Rosi, Marco Frediani et al.
- Conversion of Waste Tire Rubber into High-Value-Added Carbon Supports for Electrocatalysis Zachary D. Hood, Xuan Yang, Yunchao Li et al.
Study on End-of-Life Tires (ELTs) Recycling Strategy and Applications

Habiba Afrin¹, Nazmul Huda¹ and Rouzbeh Abbasi ¹

¹ School of Engineering, Macquarie University, Sydney, Australia
Corresponding author email: habiba.afrin@students.mq.edu.au

Abstract. Due to modernization and urbanization, the number of vehicles on the road has been increased. Around 3 billion tires have been sold, and an equivalent number of tires have been discarded each year. Even though the lifetime of the tires has been increased but according to the Australian Bureau of Statistics, the number of end-of-life tires is going to rise approximately 5 billion in a year. Its complex composition, make it the most tricky and difficult waste in the world to handle. Because it creates significant health and environmental problem by emitting harmful chemicals in the environment, working as a birthplace for pests, and prone to fire hazards. Recycling waste tires can add economical value also creating a sustainable way to dispose of them. This paper presents different recycling strategies and civil engineering applications of end-of-life tires. Reduction, reuse, recovery, and recycling have been applied. Application of waste tire as reinforcing layers in landfill, road pavement, drainage system, fuel source in the kiln, playground surface makes it an ideal material for affordable, medium-density, low-rise buildings that are highly valued worldwide. Moreover, the sound insulation and absorption with enhanced seismic resilience properties of the end-of-life tire can provide novel and effective engineering solutions.

1. Introduction
The tire is a unique material that facilitates everyone’s life. But despite its many valuable application to make our life faster, tire creates various pollution during different stages of its life cycle. It has durable, non-compostable, and resilient properties which make tires difficult to recycle. A large amount of non-biodegradable end-of-life tires causes critical environmental impacts, particularly by occupying a large landfill area. It is also dangerous for human health because of styrene, which is a strong toxic chemical [1]. In Australia, end-of-life tires are considered hazardous materials [2]. According to the data provided by the Australian Bureau of Statistics, for general use, the average lifespan of a passenger tire is approximately four years [2]. Because of the increasing use of vehicles and their short life span, a large number of tires accumulate [3][4]. Researchers have developed different ways for reducing environmental impacts and collecting valuable resources to contribute economically from the end-of-life tire [5]. Nowadays, sustainable awareness has raised pressure on sustainable waste management and alternative applications by adding value to the economy. One efficient alternative is to follow a circular economy by closing the materials loop by recycling, reusing, or reducing materials [6]. Feasible applications and markets for recycled end-of-life tires need to be developed and maintained worldwide. This research aims to find the feasibility of using ELTs reducing pressure on raw material use, energy consumption, water requirement, and environmental impact (reuse, recycling, recovery, regrooving, material recovery, and energy recovery) and study different recycling strategies and civil engineering applications of end-of-life tires. The study adopted
a mixed-methods to observe ELT management practice worldwide. This included a range of data gathering techniques, combining both qualitative and quantitative methods. The qualitative and quantitative data were gathered from tire stewardship Australia (TSA) and official reports, legal documents, and scientific literature.

In 2016 the global market value of recycling tires was USD 0.95 billion, and it is growing by 2.1% per year [1]. According to tire stewardship Australia, it is estimated to use up to 30,000 tonnes of crumb rubber in the pavement as a modifier and over 12000 tonnes in asphalt by 2026, making road construction sustainable [1][7]. In figure 1, It shows the disposal of end-of-life tire in Australia and USA.

Figure 1. (a) Disposal of ELTs in Australia in 2017–18 [8] (b) Disposal of ELTs in USA [9]

Figure 2. (a) Recovery rate of ELTs worldwide in 2019 [10], (b) Australian tires reaching ELTs by material in 2015–16 [11]

Around 16% of end-of-life tires are dumped in landfills and while others are being recycled in the USA. Around 6% to 8% of the waste tire are used as civil engineering materials in the USA and EU countries, but only around 0.4% of waste tires are being recycled in Australia [1]. In figure 2 shows the utilization of end-of-life tires worldwide and Australian tires reaching end-of-life in 2015-16. Figure 3 provides an inside view of the composition of a tire. Depending upon the manufacturers, their locations (i.e. locally or internationally), and type of vehicles (passengers and trucks), the composition of tires varies [12][13]. Manufacturing truck tires require a higher proportion of natural rubber, whereas passenger vehicle tires require a higher synthetic rubber. As natural rubber prices are gone up, the use of synthetic rubber has increased [7]. Table 1 shows the general components of passenger and truck tires.
Figure 3. Different sections of a tire [8, 10].

Table 1. Components of truck and passenger vehicle tires

Material	Australia	United Kingdom	USA		
	Passenger cars	Truck/buses	Passenger cars	Truck/buses	Components of passenger and truck tires in the USA is roughly the same
Rubber	16% Natural	29% Natural	17% Natural	28% Natural	14–27% Natural
	29% Synthetic	13% Synthetic	31% Synthetic	15% Synthetic	14–27% Synthetic
Carbon black	23%	24%	22%	21%	28%
Metal	16%	25%	15%	27%	
Textile	6%	–	5%	–	14%-15%
Additives	8% (Additives)	2% (Zinc oxide 1%)	8% (Additives)	6% (Additives)	16–17% (Processing Oils)
	1% (Zinc oxide) 1% (Sulphur)	1% (Zinc oxide) 1% (Sulphur)	1% (Zinc oxide) 1% (Sulphur)	2% (Zinc oxide) 1% (Sulphur)	

References [11] [14][15] [16]

2. Recycling strategy of end-of-life tire

Recycling end-of-life tire is an environmental concern as it takes around 80-90 years to degrade naturally. So it has a long life in the environment [17]. To alleviate the environmental impacts of end-of-life tires, reusing, retreading, regeneration, co-processing, pyrolysis, and landfills are the most common practice [10][11].

2.1. Reuse

Reusing is finding a new alternative to adopt usable tires for other applications. It can be used as a whole or cut into smaller pieces. This procedure creates an opportunity to produce other valuable materials. It presents a new strategy to cope with environmental issues associated with end-of-life tires [18]. The tire can be used in roadside barriers, parks and playgrounds, structures, channels, artificial reefs, and biogas drainage [19, 20]. Figure 4 shows the different stages of tire recovery.
2.2. Reforming

Reforming is an essential process for end-of-life tire reclamation since it comes up with savings in raw resources and gets rid of the difficulties related to the discarding of end-of-life tires [22][23], and is also economical. Reforming is often done three to four times in the truck tire [24][25]. Manufacturing a new tire, energy can cost around 2.3 times higher than retreading [25][26]. As a thermosetting material, so it does not melt in temperature. But while heating up, it degrades, loses its elastic properties, and eventually burns and release energy [27]. In the reforming process, raw rubber is needed to mix and vulcanize them to develop the properties of a new tire. Reforming of end of life tires can be done by recapping, retreading, and remolding. Recapping is the process of replacing the tread, retreading replaces both the tread and its shoulder, and remolding, also known as bead-to-bead retreading, involves replacing the tread, shoulder, and entire sidewall surface. But reformed tires should be as safe as new tires [28].

2.3. Ground Tire Rubber (GTR)

As an elastomeric material, tires require special care. Because of steel's presence, it hampers mechanical grinding and creates a complex molding process [29]. For grinding, it requires an ambient temperature. This recycled ground tire rubber can be done by ultrasound, or cryogenically to make small pieces of rubber [30][31]. Vulcanized rubber goes through a grinding process to become 7–10 cm particles. After that, grinder and processed at ambient temperature to make smaller particles, removing steel (by magnetism) and fibers (using vibratory) sieves and screens. Depending on the required size, additional grinding (tertiary) can be done to produce smaller particle sizes [31][32]. Ground tire rubber is mostly used in asphalt pavement as a modifier besides playgrounds, and other surfaces to landfill liners, molded rubber products [27]. Figure 5 shows the different stages of tire recovery.
2.4. *Regeneration of tire rubber*

Regeneration is a new technology for recycling rubber. Rubber regeneration is a kind of renewal or restoration process of tire rubber. In this process, the rubber tire goes through a chemical reaction without going through permanent chemical change. This process requires heat, chemical products, and mechanical energy. Regeneration rubber is capable to replace virgin rubber with fewer technical requirements. It recovers its flow capacity as virgin rubber and the characteristics of a new one. It becomes more plastic, malleable, less viscous, and processable, with properties like new rubber. For achieving this property the chemical reaction need to be breaking of covalent carbon-carbon (C-C), carbon-sulfur (C-S), and sulfur-sulfur (S-S) bonds [23]. The quality of recovered regenerated rubber varies according to the source of the tire (different kinds of tire bus or truck and different companies) and the selectivity of the methods used in terms of the type and number of bonds to be broken. Regenerated rubber can be used in carpets, furniture, asphalt mixtures, glues, and adhesives [35]. In table 2 shows different sizes of material-derived products from end-of-life tires.
Table 2. Material Sizes of End-of-life Tire Derived Products (TDPs) [4].

Material	Size	Application
Cuts	>300 mm	Playground, Footpath, Animal farm as a slip resistance
Shred	50-300 mm	Rubber modified concrete
Chips	10-50 mm	Soil Moisturizer, fuel
Granulate (Crumbs)	1-10 mm	Size reduced rubber for insulation products: lumber and other construction product
Powder	<1 mm	As a replacement for cement
Fine powder	<500μm	As a replacement for cement or binding materials
Buffing’s	0-40 mm	To assemble construction machines and transport technology
Reclaim	Dependent on input	In tires as inner tubes, tire lining, tire repair, rethreading, general molding, belting, adhesives, mastics, footwear, sheeting, matting, belting, cable bedding compound, and sound reduction
Regenerated rubber	Depend as require	Carpets, furniture, asphalt mixtures, glues, and adhesives
Devulcanisate	Depend on use	As a sheet
Pyrolytic char	<10 mm	Reprocess the tires into fuel gas, oils, solid residue, and low-grade carbon black
Carbon products	<500μm	Replacing coal or coke in steel manufacturing

2.5. Co-processing in cement production kilns
In this process, end-of-life tires at a cement production kiln go through material and thermal recovery. Due to the high temperature in cement kilns, often waste material is used as an alternative of fuel to dispose effectively and saving natural sources of fuel, and also cost-effective. Whole or ground tires can be burned in a cement kiln to produce clinker, an intermediate product in cement production [30]. The tire gives instantaneous, complete, and smokeless combustion burning in high gas temperatures (1000–1600 °C). The high temperatures (1500–1600°C) and oxidizing atmosphere in the cement production kiln provides total ignition of the tire and volatile material [19][22]. The iron content of steel-belted tires is beneficial for manufacturing cement [16].

2.6. Co-processing in thermoelectric power stations
In this process, ground tires are used with coal in the combustion reactor section to produce electrical energy and thermal energy. Tires generate 25–30% more energy than traditional power stations. Moreover, CO₂ emissions are also reduced by around 23% [30][36][37][38]. Traditionally, coal, oil, and gas provide 80% of the global energy demand [39][40]. So, alternative use of tires as a fuel can provide a good source of energy with less burden on disposal.

2.7. Pyrolysis of tire rubber
Pyrolysis is a process to recycle tire rubber in a high-temperature chemical process inside a chemical reactor to produce oil, gas, and carbon black by utilizing whole or shredded tires. The oxygen-free reactor is commonly produced around temperature (400–700°C) and pressure (0.01–0.04 MPa) to
degrade the composition of tire rubber. The procedure consists of: gaseous (hydrogen, methane, and carbonic oxides), liquid (water and oils), and residual solids (metals and dust) \[30\][41]. The rubber polymers break down into smaller molecules in this process. The tire pyrolysis process is one of the most used clean procedures to produce negligible emissions or waste \[20\]. In table 3 shows the different applications of end-of-life tires in civil engineering and geotechnical engineering.

Table 3. Application of End-of-life Tire Products [4].

Industry	Application	Properties
Concrete Freeze/Thaw Protection	• To increase ductility	
• To achieve greater durability		
Flowable Concrete fill	• To reduce the density,	
• To minimize the overburden pressure of materials.		
• To replicate well-compacted soils.		
Replacement Material in Bitumen and Asphalt	• To replace sand at 20%	
• To limit permanent deformation		
Railway Maintenance	• To use as subbase materials	
• To reduce vibration and sound absorption		
High-Strength Concrete	• To utilize 0–12.5% as aggregate substitution can achieve up to 60 MPa after a cure time of 90 days	
Playgrounds and Sporting Surfaces	• Rubber chip products may be used as flexible coverage	
Soil Stabilisation	• As a good reinforcement substitute in deep foundations and raft foundations \[44\]	
Unbound Pavements	• To use as a replacement material in sands used in unbound pavements \[45\]	
Use in Sub-Ballast Layers	• To replace conventional granular sub-ballast with recycled crumb rubber,	
• To reduce the demand on finite resources, transportation cost of raw materials, maintenance costs, and		
• To improve the bearing capacities and impermeability.		
Seismic Isolation Systems	• To provide effective seismic isolation	
• To decrease horizontal ground acceleration by 60–70 % and vertical ground acceleration by 80–90 % \[46\]		
Whole-Tire Embankments	• As a gravity retention system	
• As a replacement for energy-intensive brick and concrete structures.
• To provide effective drainage properties
• To reduce the embodied energy and costs associated with soil retention. | |
2.8. Landfill disposal

Even though an increasing number of wastes are getting reused or recycled, an average of 20 million tonnes of waste in Australia makes its way to hundreds of landfill sites each year. This is 40% of the total waste generated each year in Australia. Landfill disposal is simply the disposal of the tire without any treatment. Some nations completely suspended landfilled like Europe, according to directive 2000/53/EU [47]. Discarded tire takes a long time to degrade and emit toxic chemical in the environment. Due to their large volume and 75% void space, discarded tires are a convenient birthplace for pests [48, 49] and prone to fire hazards.

3. Conclusion

As a non-biodegradable material, extra care is required to eliminate the environmental impacts associated with the tires. Utilising tires in pavements presence of synthetic and natural rubber often makes it difficult to adopt. It is important to understand the application of using synthetic rubber and its performance as a road construction material and fuel. In Australia, the recovery rate is quite low compare to other developed countries. Public participation is also necessary to create societal acceptance of recycling, recovery, and reuse activities of end-of-life tires. End-of-life tires can be a good source of energy in cement power plants or cement kilns by lessening the demand for raw materials also sending fewer tires in the landfill.

4. References

[1] Siddika A, Al Mamun M A, Alyousef R, Amran Y M, Aslani F and Alabduljabbar H 2019 Properties and utilizations of waste tire rubber in concrete: A review, Construction and Building Materials 224 711-731
[2] Australia,Y.B.(2019-2020). Australian bureau of statistics. Canberra,Australia.Retrieved from "https://www.abs.gov.au/statistics/environment/environmental-management/waste-account-australia-experimental-estimates"
[3] Studdert D M, Gurrin L C, Jatkar U and Pirkis J 2010 Relationship between vehicle emissions laws and incidence of suicide by motor vehicle exhaust gas in Australia, 2001–06: an ecological analysis, PLoS medicine 7 e1000210.
[4] Oikonomou N and Mavridou S 2009 The use of waste tyre rubber in civil engineering works In Sustainability of construction materials (Sawston: Woodhead Publishing) pp. 213-238
[5] Siddique R and Naik T R 2004 Properties of concrete containing scrap-tire rubber—an overview, Waste management 24 563-569
[6] Colangelo F, Petrillo A, Cioffi R, Borrelli C and Forcina A 2018 Life cycle assessment of recycled concretes: A case study in southern Italy, Science of the Total Environment 615 1506-1517
[7] Tyre Product Stewardship Scheme, Tyre Stewardship Australia 2017 Retrieved on February 20, 2017 from "www.tyrestewardship.org.au/about-tsa/tyre-product-stewardship-scheme"
[8] Roychand R, Gravina R J, Zhuge Y, Ma X, Youssf O and Mills J E 2020 A comprehensive review on the mechanical properties of waste tire rubber concrete, Construction and Building Materials 237 117651
[9] Kempf R C, Lyon W, Trueman W C, Boyce R and Brunot C 1995 American Automobile Manufacturers Association Heavy Truck Brake Tire Test SAE Technical Paper (No. 952663)
[10] Hamdi A, Abdelaziz G and Farhan K Z 2020 Scope of using waste shredded tires in concrete and cementitious composite materials: A review, Journal of Building Engineering 35 102014
[11] Schmidt B, Quin D G and Steele W K 2018 Modelling wetland habitat preferences of Lewin's Rail'Lewinia pectoralis pectoralis' near Melbourne in southern Victoria, Australian Field Ornithology 35 136-145
[12] Kashani A, Ngo T D, Hemachandra P and Hajimohammadi A 2018 Effects of surface treatments of recycled tyre crumb on cement-rubber bonding in concrete composite foam, Construction and Building Materials 171 467-473
[13] Rao G V and Dutta R K 2006 Compressibility and strength behaviour of sand–tyre chip mixtures, Geotechnical & Geological Engineering 24 711-724

[14] Presti D L 2013 Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review, Construction and Building Materials 49 863-881

[15] Abdelrahman M 2006 Controlling Performance of Crumb Rubber–Modified Binders Through Addition of Polymer Modifiers, Transportation research record 1962(1) 64-70

[16] March F, Ghabchi R, Zaman M and Arshadi P A 2016 Use of ground tire rubber (GTR) in asphalt pavements: literature review and dot survey

[17] Fazli A and Rodrigue D 2020 Recycling waste tires into ground tire rubber (GTR)/rubber compounds: A review, Journal of Composites Science 4 103

[18] Chen T C, Shen Y H, Lee W J, Lin C C and Wan M W 2010 The study of ultrasound-assisted oxidative desulfurization process applied to the utilization of pyrolysis oil from waste tires, Journal of Cleaner Production 18 1850-1858

[19] Clauzade C, Osset P, Hugrel C, Chappert A, Durande M and Palluau M 2010 Life cycle assessment of nine recovery methods for end-of-life tyres, The International Journal of Life Cycle Assessment 15 883-892

[20] Ortiz-Rodriguez O O, Ocampo-Duque W and Duque-Salazar L I 2017 Environmental impact of end-of-life tires: Life cycle assessment comparison of three scenarios from a case study in Valle Del Cauca, Energies 10 2117

[21] Hilal A A 2011 Effect of crumb tyres rubber on some properties of foamed concrete, Anbar Journal for Engineering Sciences 4 1-17

[22] Amari T, Themelis N J and Wernick I K 1999 Resource recovery from used rubber tires, Resources Policy 25 179-188

[23] Cui X, Zhao S and Wang B 2016 Microbial desulfurization for ground tire rubber by mixed consortium-Sphingomonas sp. and Gordonia sp., Polymer Degradation and Stability 128 165-171

[24] Van Beukering P J and Janssen M A 2000 A dynamic integrated analysis of truck tires in Western Europe, Journal of Industrial Ecology 4 93-115

[25] Cooper D R and Gutowski T G 2017 The environmental impacts of reuse: a review, Journal of Industrial Ecology 21 38-56

[26] Ferrão P, Ribeiro P and Silva P 2008 A management system for end-of-life tyres: A Portuguese case study, Waste management 28 604-614

[27] Dierkes W and Saiwari S 2021 Regeneration and devulcanization Tire Waste and Recycling 97

[28] Mohajerani A, Burnett L, Smith J V, Markovski S, Rodwell G, Rahman M T and Maghool F 2020 Recycling waste rubber tyres in construction materials and associated environmental considerations: A review, Resources, Conservation and Recycling 155 104679

[29] Karger-Kocsis J, Mészáros L and Bárány T 2013 Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers, Journal of Materials Science 48 1-38

[30] Fiksel J, Bakshi B R, Baral A, Guerra E and DeQuervain B 2011 Comparative life cycle assessment of beneficial applications for scrap tires, Clean technologies and environmental policy 13 19-35

[31] Myhre M, Saiwari S, Dierkes W and Noordermeer J 2012 Rubber recycling: chemistry, processing, and applications, Rubber chemistry and technology 85 408-449

[32] Thomas B S and Gupta R C 2016 A comprehensive review on the applications of waste tire rubber in cement concrete, Renewable and Sustainable Energy Reviews 54 1323-1333.

[33] Valente M and Sibai A 2019 Rubber/crete: Mechanical properties of scrap to reuse tire-derived rubber in concrete; A review, Journal of applied biomaterials & functional materials 17 228080019835486

[34] Siringi G, Abolmaali A and Aswath P B 2015 Properties of concrete with tire derived aggregate partially replacing coarse aggregates, The Scientific World Journal 2015 863706

[35] Pacheco E B A V, Visconte L L Y, Furtado C R G and Neto J R A 2012 Recycling of rubber: Mechano-chemical Regeneration Advances in Materials Science Research (New York: Nova Science Publishers)
[36] Liu Z, Guan D, Wei W, Davis S J, Ciais P, Bai J, ... and He K 2015 Reduced carbon emission estimates from fossil fuel combustion and cement production in China, *Nature* **524** 335-338

[37] Singh S, Nimmo W, Gibbs B M and Williams P T 2009 Waste tyre rubber as a secondary fuel for power plants *Fuel* **88** 2473-2480

[38] Webb A H and Hunter G C 1998 Power-station contributions to local concentrations of NO2 at ground level, *Environmental Pollution* **102** 283-288

[39] Muneer T, Asif M and Munawwar S 2005 Sustainable production of solar electricity with particular reference to the Indian economy, *Renewable and Sustainable Energy Reviews* **9** 444-473

[40] Feraldi R, Cashman S, Huff M and Raahauge L 2013 Comparative LCA of treatment options for US scrap tires: material recycling and tire-derived fuel combustion, *The International Journal of Life Cycle Assessment* **18** 613-625

[41] Li X, Xu H, Gao Y and Tao Y 2010 Comparison of end-of-life tire treatment technologies: A Chinese case study, *Waste management* **30** 2235-2246

[42] Zhao J, Wang X M, Chang J M, Yao Y and Cui Q 2010 Sound insulation property of wood–waste tire rubber composite, *Composites Science and Technology* **70** 2033-2038

[43] Harjana H, Sabino U, Yahya I and Kristiani R 2014 Sound insulation and absorption properties of re-claimed waste tire rubber *ICAMST2014* (Solo)

[44] Hambirao G S and Rakaraddi P G 2014 Soil stabilization using waste shredded rubber tyre chips, *IOSR Journal of Mechanical and Civil Engineering* **11** 20-27

[45] Speir R H and Witzczak M W 1996 Use of shredded rubber in unbound granular flexible pavement layers, *Transportation research record* **1547** 96-106

[46] Tsang H H, Sheikh M N and Lam N 2007 Rubber-soil cushion for earthquake protection 1-8

[47] Gomes T S, Neto G R, de Salles A C N, Visconte L L Y and Pacheco E B A V 2019 End-of-life tire destination from a life cycle assessment perspective *In New Frontiers on Life Cycle Assessment-Theory and Application* IntechOpen

[48] Liu H S, Mead J L and Stacer R G 1998 Environmental impacts of recycled rubber in light fill applications: summary & evaluation of existing literature (Massachusetts: UMass Lowell Chelsea Center for Recycling and Economic Development)

[49] Chen R, Li Q, Zhang Y, Xu X and Zhang D 2019 Pyrolysis kinetics and mechanism of typical industrial non-tyre rubber wastes by peak-differentiating analysis and multi kinetics methods, *Fuel* **235** 1224-1237