New provincial CO₂ emission inventories in China based on apparent energy consumption data and updated emission factors

Yuli Shan a, Jianghua Liu b,*, Zhu Liu c, Xinwanghao Xu d, Shuai Shao b, Peng Wang e, Dabo Guan a,b,f,*

a Tyndall Centre for Climate Change Research, School of International Development, University of East Anglia, Norwich NR4 7TJ, UK
b Institute of Finance and Economics Research, School of Urban and Regional Science, Shanghai University of Finance and Economics, Shanghai 200433, China
c Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA 91125, USA
d State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
e Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
f Ministry of Education Key Laboratory for Earth System Modelling, Centre for Earth System Science, Tsinghua University, Beijing 100084, China

HIGHLIGHTS
- We calculate the provincial CO₂ emissions in China from 2000 to 2012 based on the “apparent energy consumption”.
- During 2000 to 2012, Shandong province contributed most to national emissions accumulatively.
- Provinces located in the northwest and north had higher per capita CO₂ emissions and emission intensities.

ABSTRACT
This study employs “apparent energy consumption” approach and updated emissions factors to re-calculate Chinese provincial CO₂ emissions during 2000–2012 to reduce the uncertainty in Chinese CO₂ emission estimates for the first time. The study presents the changing emission-socioeconomic features of each provinces as well. The results indicate that Chinese provincial aggregated CO₂ emissions calculated by the apparent energy consumption and updated emissions factors are coincident with the national emissions estimated by the same approach, which are 12.69% smaller than the one calculated by the traditional approach and IPCC default emission factors. The provincial aggregated CO₂ emissions increased from 3160 million tonnes in 2000 to 8583 million tonnes in 2012. During the period, Shandong province contributed most to national emissions accumulatively (with an average percentage of 10.35%), followed by Liaoning (6.69%), Hebei (6.69%) and Shanxi provinces (6.25%). Most of the CO₂ emissions were from raw coal, which is primarily burned in the thermal power sector. The analyses of per capita emissions and emission intensity in 2012 indicates that provinces located in the northwest and north had higher per capita CO₂ emissions and emission intensities than the central and southeast coastal regions. Understanding the emissions and emission-socioeconomic characteristics of different provinces is critical for developing mitigation strategies.

1. Introduction
China’s economy has developed rapidly since joining the WTO in 2001. The nation’s economy in 2014 was almost 4 times of the size of in 2000. According to the latest energy consumption revision by Chinese Statistics Bureau, China’s total energy consumption also increased quickly, from 1470 million metric tonnes coal equivalent (tce) in 2000 to 4260 million metric tce in 2014. The huge amount of energy consumption has led to rapid increase CO₂ emissions recent years (shown in Fig. 1).

As the World’s largest CO₂ emitter, China plays an important role in global climate change mitigation. The global emissions decreased slightly by 2015 for the first time, one of the important reasons behind it is Chinese coal consumption decreasing [1]. Contributing to the global climate change mitigation, China has recently pledged to peak its greenhouse gas emissions ahead of
China’s national mitigation targets are expected to be allocated to the sub-administrative region. Therefore, it is of great importance to develop accurate and up-to-date regional CO2 emission inventories for China. However, emissions estimated by previous researches are generally estimated rather than measured directly. In many circumstances, emissions estimates are relatively uncertain. This uncertainty may originate from the accounting scopes, basic energy statistics, the carbon content of fuel, and other potential sources. These uncertainties have led to a wide range of CO2 emission estimations by different world energy research institutions. In 2011, the lowest estimate was 7452 million tonnes of CO2 by the IEA, and the highest estimate was 9229 million tonnes by the U.S. Energy Information Administration (EIA); the difference between these estimates, 1777 million tonnes (23.9%), is nearly equal to the total CO2 emissions of India or Russia.

The uncertainty of China’s CO2 emission estimates mainly comes from two sources. The first is the uncertainty of energy statistics. Previous research on China’s CO2 emissions accounting collected energy consumption data from China’s national statistics bureau. However, there was a 20% gap between the aggregated energy consumption from 30 provinces and national consumption. Guan et al. reported a gap of 1.4 gigatonnes between CO2 emissions calculated on the basis of two publicly available official energy datasets for 2010. The gap may be caused by the application of different statistical standards and misuse of units for different provinces and the whole nation. The second source of uncertainty is the difference of emission factors. We reviewed 2368 research articles about China’s carbon emissions on the Web of Science published during 2004–2014. We found that most of the previous researches have collected emission factors from the IPCC or China’s National Development and Reform Commission (NDRC), whereas fewer than ten studies (less than 1% of total studies) have adopted emission factors based on experiments and field measurements. The study showed that emission factors from different sources can differ by as much as 40%.

In this study we adopt the “apparent energy consumption” and updated emission factors to re-calculate the China’s provincial CO2 emissions from 2000 to 2012 in this study. The new provincial CO2 emission inventories will help reduce the uncertainty of China’s provincial CO2 emissions and present a clear emission-socioeconomic features of each province. Figuring out the emissions and emission-socioeconomic characteristics of Chinese provinces provide a foundation for both China and global carbon emissions control and industry transfer policy support.

The remaining sections of this paper are structured as follows: Section 2 describes the method and underlying database used in this study. Section 3 presents the results of provincial CO2 estimation and analyses provincial emission-socioeconomic characteristics. Policy implications and conclusions are given in Section 4.

2. Method and data source

In this study, we calculate Chinese provincial CO2 emissions based on “apparent energy consumption” and updated emission factors. The inventory includes all the fossil fuel related CO2 emissions induced within the regional boundary.

2.1. CO2 emissions calculation

In this study, we estimate fossil fuel-related CO2 emissions by energy types based on the mass balance of carbon. See Eq. (1),

$$CE_i = AD_i \times EF_i$$

where CE_i are CO2 emissions from different energy types, AD_i (activity data) are the fossil fuels combusted within the province boundary measured in physical units (metric tonnes of fuel expressed as t), and EF_i are the emission factors for the relevant fossil fuels.

By summarizing the emissions from different energy types together, we obtain the total CO2 emissions for one province in Eq. (2),

$$CE = \sum CE_i$$

2.2. Data collection

2.2.1. Energy flows and apparent consumption calculations

In general, the energy consumption of one region can be directly calculated as the final consumption plus input usage of transformation, named “final and input/output consumption”. Otherwise, it can also be estimated based on the mass balance of...
energy, the so-called “apparent energy consumption” estimation [22,31,51]. The apparent energy consumption is the mass balance of fuels produced domestically for energy production, trade, international fuelling and change in stock, see Eq. (3).

\[
\text{Apparent fossil fuel consumption} = \text{indigenous production} + \text{imports} - \text{exports} + \text{moving in from other provinces} - \text{stock change} - \text{non-energy use} - \text{loss}
\]

(3)

Technically, we will get the equal number of energy consumption via “final and input/output consumption” and “apparent energy consumption” approaches. However, due to statistic error and poor quality in China’s energy statistic, there are around 5% difference between the two consumption [52]. Energy consumption calculated from production-side (apparent energy consumption) is approved to be more accurate than the one calculated from consumption-side (final and input/output consumption) [31]. There are two reasons. First of all, the apparent energy consumption is calculated based on production and trade statistics. The statistics of fuel production and trade are more reliable and consistent than data of final energy consumption. Especially, coal production and trade data is consistently released earlier than coal consumption data. In addition, the apparent consumption approach considers only three primary fuel types (raw coal, crude oil and natural gas) in order to avoid accounting errors due to energy transformation between primary and second energy types (e.g., coal washing, coking, and power generation).

Taking the national energy utilization in 2012 as an example (Fig. 2). Raw coal, crude oil and natural gas are presented as grey, orange and green lines, respectively. In general, there are two primary energy sources: indigenous production (shown as the yellow module) and imports (shown as the blue module). Excluding exports, stock decreases, losses and non-energy use, we obtain the apparent fossil fuel consumption.

The red module in Fig. 2 is the apparent energy consumption, which totalled 3361 million metric tonnes coal equivalent (tce) in 2012. Raw coal was the largest primary energy type used in China (75.9%), followed by crude oil (19.7%) and natural gas (4.3%). Only a small amount of primary fossil fuels was used by the final consumption sectors (the purple module in Fig. 2, 633 million metric tce). Most primary fossil fuels were transformed into secondary energy types (the aqua module in Fig. 2, 2728 million metric tce), such as electricity, heat, cleaned coal, coke and gasoline. Therefore, the apparent primary fossil fuel consumption includes all energy types consumed within one regional boundary.

Here, we adopt the “apparent energy consumption” to account Chinese provincial CO₂ emissions. The raw data were collected from each province’s energy balance table [53].

2.2.2. Updated emission factors

Both the IPCC and NDRC (for year 1994 and 2005) provide default emission factors for the three primary fossil fuels [50,54]. However, based on measurements of 602 coal samples from the 100 largest coal-mining areas in China [31], the emission factors recommended by the IPCC and NDRC are frequently higher than the real emissions factors in 2012 (see Table 1). In this study, we adopted the updated emission factors, which we assume to be more accurate than the IPCC and NDRC default values.

3. Results

Fig. 3 presents the CO₂ emissions of 30 provinces. Total national emissions increased by 171.6% over the period, from 3160 to 8583 million tonnes. Among the 30 provinces, Shandong emitted the most CO₂ cumulatively, 7471 million tonnes (10.35%). The three provinces with the highest cumulative emissions were Liaoning, Hebei and Shanxi, which emitted 4833 (6.69%), 4816 (6.67%) and 4511 (6.25%) million tonnes CO₂, respectively. The data on emissions for all 30 provinces over 2000–2012 are presented in Table 2.

Our estimation by apparent energy consumption and updated emission factors could be more accurate and coincident with the national emissions compared with the traditional calculation approach. Taking the year 2012 as an example, we compare the CO₂ emissions estimated by different approaches and emission factors in Table 3 and Fig. 4. Our estimation of provincial aggregate CO₂ emissions (8583 Mt) is similar to that of CDIAC (8518) and
7.96% lower than the highest estimation (EDGAR, 9266 million tonnes), and are coincident with the national emissions estimated by the same approach [31]. The newly calculated CO₂ emissions in this study reduced the 20% gap between national and provincial aggregate CO₂ emissions [55], and improved the accuracy in Chinese CO₂ emission accounts.

Our estimation of provincial aggregate emissions are 12.69% smaller than the one estimated by “Final and input/output consumption” approach and IPCC emission factors (see Table 3 and Fig. 4). The gap comes from two parts: 6.94% from the emission factors and 5.75% from activity data with reasons are discussed above.

In order to have a deep understanding of Chinese provinces’ emission and emission-socioeconomic characteristics, we discuss emissions by different fossil fuel types and sectors, and calculate the per capita emissions and emission intensity in the following parts.

3.1. Emissions by fossil fuel types and sectors

The energy utilization structure in China has been very stable over the past 13 years. Based on natural resource endowments, raw coal contributed the most to the total fossil fuel CO₂ emissions in China, representing an average of 79.6% over the period. Due to increasing imports, the emissions share from imported coal as a portion of total raw coal increased from 0.1% in 2000 to 7.8% in 2012. Crude oil’s contribution to total fossil fuel CO₂ emissions decreased from 20.7% to 16.7%, whereas the share of emissions from natural gas increased from 1.7% to 3.9% between 2000 and 2012.

Several provinces that contributed most to emissions of each fossil fuel type in 2012 are presented in Fig. 5. Shanxi, Shandong, Inner Mongolia and Hebei contributed the most to raw coal-related CO₂ emissions. These provinces are either coal bases or manufacturing provinces. Most of the imported coal was consumed in Guangdong and Fujian, which are located on the southeast coast, where it is cheaper to import coal from abroad rather than transport it from coal sources in the interior. Coastal Guangdong, Shandong and Liaoning also have more developed shipping industries for similar reasons. Most of the raw coal are consumed in fire power plant to generate electricity [56]. More crude oil was consumed in these provinces, resulting in increased CO₂ emissions. Sichuan, Jiangsu, Xinjiang and Beijing consumed high levels of natural gas in 2012; Sichuan and Xinjiang are the locations of the main natural gas fields in China. Jiangsu and Beijing are the most developed provinces in China and are exploring cleaner energy utilization pathways. As natural gas is a cleaner fossil fuel than raw coal and crude oil, increased the proportion of natural gas consumption would help control CO₂ emissions.

Similar to energy utilization, fossil fuel CO₂ emissions can be divided into 16 sectors (see Fig. 6). The first eight sectors belong to “input & output of transformation” sectors, and the last eight sectors are “final consumption” sectors. Most CO₂ emissions are produced by thermal power, industry final consumption, petroleum refineries and coal washing.

3.2. Provincial emission-socioeconomic characteristics in 2012

To analyse the emission characteristics of different provinces, we calculated the per capita CO₂ emissions and CO₂ emissions intensity for 2012 (see Fig. 7). The calculations and data sources are presented in Table 4.

3.2.1. Per capita CO₂ emissions

The national average CO₂ emissions per capita in 2012 were 6.38 metric tonnes. The emissions per capita varied among provinces due to differences in development stage and development pathways. Only 13 of 30 provinces had emissions per capita above the national level.

The top three provinces were Inner Mongolia, Ningxia and Shanxi. All three provinces are primary coal producers, with many large coal mines, and the coal usage per capita is much higher here as compared with the national average level. Mongolia and Ningxia host the China Shenhua Energy Company Limited (the nation’s largest energy company), and Shanxi is the base of the China National Coal Group Corporation (the second largest energy company). The two enterprises are the only two energy enterprises in China among the 112 central enterprises (i.e., firms under government control) updated in 2015 [57]. Central enterprises are normally pillars of economic growth, with high output and added value. In addition, coal is a high-emission fossil fuel compared with crude
oil and natural gas because it emits more CO\(_2\) to produce the same unit of heat compared with other energy types [43]. Thus, these three provinces have the highest CO\(_2\) emissions per capita.

The second group includes eight provinces: Xinjiang, Liaoning, Tianjin, Shanxi, Heilongjiang, Shandong, Qinghai and Jilin. These are either primary energy suppliers (such as Xinjiang, Shanxi, Heilongjiang and Qinghai) or bases for heavy industry (such as Liaoning, Tianjin, Shandong and Jilin). The third group includes six provinces: Hebei, Shanghai, Guizhou, Jiangsu, Zhejiang and Gansu. The CO\(_2\) emissions per capita of these provinces were near the national average. The remaining 13 provinces belong to the last group. Some of these provinces are located in the central and southwest parts of China, with primary industry as their pillar economy; others are among the most developed provinces with

Province	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Beijing	64.08	61.96	62.29	65.98	49.91	91.67	75.73	76.21	84.58	85.46	83.48	81.56	82.94
Tianjin	69.79	68.47	67.60	69.78	79.12	82.33	85.53	86.33	83.18	86.32	115.56	126.87	123.02
Hebei	262.70	266.75	271.78	296.39	341.33	354.87	364.31	409.05	404.04	419.43	441.14	477.14	506.94
Shanxi	90.80	93.53	126.91	293.68	310.72	264.53	288.97	219.91	412.36	506.95	540.20	608.96	684.23
Inner Mongolia	117.49	122.11	196.51	203.00	203.26	266.51	288.97	307.60	373.11	402.34	459.35	596.51	656.67
Liaoning	296.56	275.76	297.28	315.34	358.70	364.86	394.45	392.08	387.40	403.74	430.74	443.05	474.30
Jilin	98.94	104.11	101.09	110.96	119.82	130.87	151.07	124.85	128.14	124.87	137.51	148.36	166.04
Heilongjiang	180.09	168.45	161.87	167.97	193.13	209.78	218.95	180.09	168.45	161.87	167.97	193.13	209.78
Shanghai	104.94	109.63	109.44	122.51	136.17	130.77	130.86	104.94	109.63	109.44	122.51	136.17	130.77
Jiangsu	214.86	211.15	211.48	241.05	291.88	223.14	260.99	214.86	211.15	211.48	241.05	291.88	223.14
Zhejiang	91.79	139.67	144.87	161.27	211.83	223.14	260.99	91.79	139.67	144.87	161.27	211.83	223.14
Anhui	52.38	50.59	55.91	66.46	79.93	83.96	97.33	52.38	50.59	55.91	66.46	79.93	83.96
Fujian	50.07	50.22	49.65	39.15	74.55	73.22	84.35	50.07	50.22	49.65	39.15	74.55	73.22
Jiangxi	258.06	297.32	318.94	386.49	483.76	570.80	663.51	258.06	297.32	318.94	386.49	483.76	570.80
Shandong	138.59	149.83	147.46	212.04	221.83	223.14	260.99	138.59	149.83	147.46	212.04	221.83	223.14
Hebei	73.49	78.00	85.78	93.52	105.49	143.88	163.22	73.49	78.00	85.78	93.52	105.49	143.88
Shandong	173.40	175.17	183.00	203.74	235.68	231.80	270.30	173.40	175.17	183.00	203.74	235.68	231.80
Guangdong	44.02	40.69	33.91	40.75	59.83	66.46	66.40	44.02	40.69	33.91	40.75	59.83	66.46
Shanghai	6.06	6.22	0.00	7.99	5.82	12.53	12.53	6.06	6.22	0.00	7.99	5.82	12.53
Inner Mongolia	96.39	95.28	103.12	134.66	157.36	136.33	147.58	96.39	95.28	103.12	134.66	157.36	136.33
Guangxi	64.19	55.56	64.22	74.78	53.48	106.18	123.65	64.19	55.56	64.22	74.78	53.48	106.18
Jilin	71.49	68.60	68.80	87.17	112.64	194.71	173.95	71.49	68.60	68.80	87.17	112.64	194.71
Zhejiang	54.13	57.81	57.42	74.78	53.48	106.18	123.65	54.13	57.81	57.42	74.78	53.48	106.18
Qinghai	129.99	156.77	156.87	174.67	185.96	192.64	226.64	129.99	156.77	156.87	174.67	185.96	192.64
Guangdong	90.48	93.72	89.73	98.95	119.60	122.26	142.99	90.48	93.72	89.73	98.95	119.60	122.26

Table 2
Provincial CO\(_2\) emissions, million tonnes, 2000–2012.
highly developed service industries (such as Beijing and Guangdong), Jiangxi and Sichuan had the lowest CO₂ emissions per capita, 2.55 and 2.59 metric tonnes, respectively.

3.2.2. CO₂ emissions intensity

The national average CO₂ emission intensity in 2012 was 0.15 million tonnes/billion yuan. One half (15) of the provinces had an emission intensity above the national level. As shown in Fig. 7, the distribution of CO₂ emission intensity is similar to that of CO₂ emissions per capita. The provinces in the north and northwest had higher emission intensities, whereas the provinces in the central and southeast areas had lower intensities. The differences in emission intensities among these provinces reflect differences in their natural resource endowments. As mentioned above, the provinces in north and northwest have more coal mines (such as Shanxi and Inner Mongolia) and oil fields (such as Xinjiang). Therefore, the industries of energy production and transformation are the pillar industries of the local economy, including coal mining and dressing, coking and petroleum processing. These industries are all high energy intensity, and huge amounts of primary fossil fuels are consumed in these provinces for energy transformation and final consumption. As CO₂ emissions were calculated here using the apparent scope energy consumption approach, all of the primary energy transformed into the second energy was included in the energy consumption of the province. Hence, the CO₂ emission intensity of the energy-producing provinces is much higher.

By contrast, the more developed provinces have lower CO₂ emission intensities, such as Beijing (0.05), Shanghai (0.08) and Guangdong (0.08). These more developed provinces have greater service industry, which is less energy dependent.

Table 3
Comparison of provincial emissions, million tonnes.

Province	Final + input/output consumption, IPCC EF	Final + input/output consumption, Liu’s EF	Apparent energy consumption, Liu’s EF			
	Total emissions	# Raw coal	Total emissions	# Raw coal	Total emissions	# Raw coal
Beijing	89.21	39.08	86.29	36.16	82.94	33.74
Tianjin	136.00	83.11	129.78	76.89	123.02	70.75
Hebei	582.80	528.17	543.29	488.66	506.94	452.80
Shanxi	811.81	803.73	751.68	743.61	684.23	677.39
Inner Mongolia	740.25	727.87	685.80	673.42	636.67	645.79
Liaoning	511.17	290.52	489.44	268.79	474.30	253.16
Jilin	246.96	212.83	231.04	196.91	213.63	180.18
Heilongjiang	366.19	299.47	343.78	277.06	326.03	256.60
Shanghai	160.61	81.67	154.50	75.56	154.59	76.25
Jiangsu	339.60	247.34	321.10	228.83	314.57	223.73
Zhejiang	312.72	294.70	290.67	272.66	266.08	248.88
Anhui	180.79	139.51	170.35	129.08	203.03	162.94
Fujian	120.45	103.34	112.72	95.61	114.79	97.90
Jiangxi	590.34	544.10	549.64	503.40	414.84	372.44
Shandong	269.77	234.99	252.19	217.41	234.02	200.16
Henan	236.01	204.33	220.73	189.04	207.34	176.20
Hunan	438.32	286.42	416.89	265.00	478.47	328.76
Guangxi	158.41	113.53	149.92	105.04	158.55	113.69
Hainan	48.15	16.50	46.92	15.26	43.66	15.66
Chongqing	128.79	113.66	120.29	105.16	109.00	96.07
Sichuan	240.32	202.38	225.18	187.24	208.94	173.50
Guizhou	250.11	249.59	231.44	230.92	218.75	218.31
Yunnan	165.87	165.65	153.48	153.26	140.22	140.03
Shaanxi	363.89	281.43	342.84	260.38	323.27	246.41
Gansu	157.53	108.55	149.41	100.43	140.75	92.09
Qinghai	52.51	42.21	49.36	39.05	45.38	35.84
Ningxia	177.76	161.56	165.68	149.47	151.99	136.30
Xinjiang	309.33	213.00	293.39	219.06	276.96	179.67
Aggregation	9671.39	7960.48	9075.89	7364.98	8582.70	6904.90

Fig. 4. National CO₂ emission comparison of different sources, 2012, million tonnes. Data sources: emission estimates by Liu’s research [31], emission estimates by British petroleum [29], emission estimates by EDGAR [28], and emission estimates by CDIAC [26].
4. Policy implications and conclusions

Climate policy discussions have made great process in the 2015 at the United Nations Climate Change Conference held in Paris, where the participated 195 counties agreed to reduce their carbon output as soon as possible and to do their best to keep global warming to well below 2°C compared with the pre-industrial level. China is the most important participant as the biggest CO₂ emitter and should also take the responsibility.

First of all, it is of great significance to account China’s CO₂ emissions as accurate as possible both at national level and provincial level. We re-estimated the CO₂ emission inventories of 30 Chinese provinces over the last 13 years. We included emissions from three primary fossil fuels in eight input & output transformation sectors and eight final consumption sectors. The CO₂ emissions were calculated based on “apparent energy consumption” approach along with updated emission factors. The new accounting method can be applied to further research on multi-scale carbon emission accounts, such as city-level and industrial process. Our results of accurate national and provincial CO₂ emissions could help policy makers develop strategies and policies for emission reductions and track the process of those policies.

The results indicate that Chinese provincial aggregated CO₂ emissions calculated by the apparent energy consumption and updated emissions factors are coincident with the national emissions estimated by the same approach, which are 12.69% smaller than the one calculated by the traditional approach. Chinese provincial aggregate CO₂ emissions increased from 3160 million tonnes in 2000 to 8583 million tonnes in 2012. Our estimates for 2012 are similar to that of CDIAC (8518) and 7.96% lower than the highest estimation (EDGAR, 9266 million tonnes). Of the 30 provinces, Shandong contributed the most to national cumulative CO₂ emissions of the last 13 years (7471 million tonnes), with an average of 10.35% over 13 years. The following three provinces

Fig. 5. Provincial CO₂ emissions by fossil fuel types, million tonnes.

Fig. 6. Provincial CO₂ emissions by sectors, million tonnes.
were Liaoning, Hebei and Shanxi, with cumulative emissions of 4833 (6.69%), 4816 (6.67%) and 4511 (6.25%) million tonnes CO₂, respectively.

From the perspective of fossil fuel types, the paper confirms that raw coal combustion contributes most to provincial CO₂ emissions, especially for Shanxi, Shandong and Inner Mongolia provinces. Whilst for Guangdong and Fujian province, the main source of CO₂ emissions is imported coal. Differentiated policies should be made corresponding to different emitting sources. For Shanxi, Shandong and Inner Mongolia, policies such as increasing coal mining efficiency, obtaining higher percentage of coal recovery could be used. For Guangdong and Fujian, policies regarding replacing coal with oil and natural gas could be encouraged. Several policy instruments could be used to support gas replacement like feed-in tariff (FIT) policies, capacity payment, price-setting policies, quantity setting policies, renewable portfolio standard, etc.

If we divide the total CO₂ emissions into final consumption and energy transformation sectors, we can see that the thermal power sector emits the most CO₂, followed by the industrial final consumption, petroleum refinery and coal washing sector. Therefore, it is of great significance to increase the efficiency of thermal power generator through promotion of the most advanced technologies, such as supercritical generator, combined heat and power and IGCC (Integrated Gasification Combined Cycle) technology.

In additional, policy makers should also take the different socioeconomic characteristics of each province into account when

Table 4

Province	CO₂ emissions (million tonnes)	GDP (million yuan)	Population (10⁴)	Land area (10⁴ km²)	Emissions per capita (tonnes)	Emissions intensity (million tonnes/10⁴ yuan)	Emissions per area (10³ tonnes/km²)
Beijing	82.94	1,787,940	2069	1.70	4.01	0.46	4.88
Tianjin	123.02	1,289,388	1413	1.20	8.71	0.95	10.25
Hebei	506.94	2,657,301	7288	19.00	6.96	1.91	2.67
Shanxi	498.23	1,211,283	3611	16.00	18.95	4.65	4.28
Inner Mongolia	656.67	1,588,058	2490	118.00	26.37	4.14	0.56
Liaoning	474.30	2,484,643	4389	15.00	10.81	0.91	1.91
Jilin	213.63	1,193,924	2750	19.00	7.77	1.79	1.12
Heilongjiang	326.03	1,369,158	3834	46.00	8.50	2.38	0.71
Shanghai	34.01	2,017,182	2380	6.03	6.49	0.77	24.38
Jiangsu	493.63	5,405,822	5404	17.00	2.55	0.89	0.68
Shandong	296.13	5,001,324	9685	16.00	8.43	1.63	5.10
Henan	414.84	2,959,931	9406	17.00	4.41	1.40	2.44
Hubei	234.02	2,225,040	5779	19.00	4.05	1.05	1.23
Hunan	207.34	2,215,423	6639	21.00	3.12	0.94	0.99
Guangdong	274.47	5,706,792	10,594	19.00	4.52	0.84	2.52
Guangxi	158.55	1,303,150	4682	24.00	3.39	1.22	0.66
Hainan	43.66	285,554	887	3.40	4.93	1.53	1.28
Chongqing	224.00	2,104,960	2945	8.20	3.70	0.96	1.33
Sichuan	208.94	2,387,380	8076	49.00	2.59	0.88	0.43
Guizhou	218.75	685,220	3484	18.00	6.28	3.19	1.22
Yunnan	140.22	1,030,947	4659	39.00	3.01	1.36	0.36
Shaanxi	323.27	1,445,368	3753	21.00	8.61	2.24	1.54
Gansu	140.75	565,020	2578	43.00	5.46	2.49	0.33
Qinghai	45.38	189,354	573	72.00	7.92	2.40	0.06
Ningxia	151.99	234,129	647	6.60	23.48	6.49	2.30
Xinjiang	276.96	750,531	2233	166.00	12.40	3.69	0.17
Aggregation/Average	8582.70	57,585,081	134,481	841.73	6.38	1.49	1.02

Fig. 7. Emission-socioeconomic nexus of China’s 30 provinces, 2012.

Source: China Statistical Yearbook, 2013 [24].
making climate policies [58]. The study shows that provinces located in the northwest and north had higher per capita CO₂ emissions and emission intensities than the central and southeast coastal regions. Understanding emissions and the associated socioeconomic characteristics of different provinces provides a basis for carbon emission control policy and goal in China.

Acknowledgments

This work was supported by the UK Economic and Social Research Council (ESRC) funded project “Dynamics of Green Growth in European and Chinese Cities” (ES/L016028/1); and Natural Environment Research Council funded project “Integraded assessment of the emission-health-socioeconomics nexus and air pollution mitigation strategies and interventions in Beijing (NE/N00714X/1); National Natural Science Foundation of China (71503156, 41501605), National Social Science Foundation of China (15CJY058), Shanghai Philosophy and Social Science Fund Project (2015EJ001), the China Scholarship Council (201406485011, award to Jianghua Liu for 1 year’s academic visit at University of East Anglia).

References

[1] Le Quéré C et al. Global carbon budget 2015. Earth Syst Sci Data 2015;7:349–96.
[2] U.S.-China. U.S.-China joint announcement on climate change. Available from: <http://www.whitehouse.gov/the-press-office/2014/11/11/us-china-joint-announcement-climate-change>; 2014 [cited 2015 February].
[3] Liu Z et al. Energy policy: a low-carbon road map for China. Nature 2013;500 (7461):143–5.
[4] Liu Z et al. Climate policy: steps to China’s carbon peak. Nature 2015;522 (7556):279–81.
[5] Peters GF, Hertwich EG. Post-Kyoto greenhouse gas inventories: production versus consumption. Clim Change 2008;86(1–2):51–66.
[6] Peters GF. From production-based to consumption-based national emission inventories. Ecol Econ 2008;65(1):13–23.
[7] Wiedmann T. A review of recent multi-region input–output models used for national greenhouse gas inventories. Ecol Econ 2009;69 (2):211–22.
[8] Davis SJ, Caldeira K. Consumption-based accounting of CO₂ emissions. Proc Natl Acad Sci 2010;107(12):5687–92.
[9] Boitier B. CO₂ emissions production-based accounting vs. consumption: insights from the WIOD databases. In: WIOD conference paper; April 2012.
[10] Chang CC. A multivariable causality test of carbon dioxide emissions, energy consumption and economic growth in China. Appl Energy 2010;87 (11):3532–7.
[11] Piao HT, Fu HC, Tseng CL. Forecasting of CO₂ emissions, energy consumption and economic growth in China using an improved grey model. Energy 2012;40 (1):409–9.
[12] Wang ZH et al. An empirical research on the influencing factors of regional CO₂ emissions: evidence from Beijing city, China. Appl Energy 2012;100:277–84.
[13] Wang Y et al. Efficiency measurement with carbon dioxide emissions: the case of China. Appl Energy 2012;99(1):161–6.
[14] Wang SS et al. CO₂ emissions, energy consumption and economic growth in China: a panel data analysis. Energy Policy 2011;39(9):4870–5.
[15] Ou X et al. Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China. Appl Energy 2009;86(Suppl. 1):S197–208.
[16] Yang H et al. Emission factors for provincial greenhouse gas inventories; 2011 [Chinese document].
[17] Liu Z et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015;522(7565):335–8.
[18] Geng Y et al. Quantification of provincial-level carbon emissions from energy consumption in China. Renew Sustain Energy Rev 2011;15(8):3658–68.
[19] Shan Y, Liu Z, Guan D. CO₂ emissions from China’s lime industry. Appl Energy 2016;166:245–52.
[20] Bai B et al. Evaluating CO₂ emission performance in China’s cement industry: an enterprise perspective. Appl Energy 2016;166:191–200.
[21] Zhi GR et al. Emission characteristics of carbonaceous particles from various energy chains in China. Appl Energy 2014;114:290 (1):218–24.
[22] Tu Y et al. The optimal energy input-output model to evaluate embodied energy and life cycle emissions for China’s economy. J Ind Econ 2014;18(2):201–11.
[23] Guan D et al. The gigatonne gap in China’s carbon dioxide inventories. Nat Clim Change 2012;2(9):572–5.
[24] Pan K et al. Estimation of coal-related CO₂ emissions: the case of China. Energy Environ 2013;24(7–8):1309–21.
[25] Chen YJ et al. Measurements of black and organic carbon emission factors for Chinese coal combustion. Environ Sci Technol 2008;42(19):6868–73.
[26] Tan F, Lu Z. Current status and future choices of regional sectors-energy–economic coupling: a case study in China. Energy Policy 2013;66:236–42.
[27] International Energy Agency (IEA). CO₂ emissions from fuel combustion; 2013.
[28] Peters GP, Hertwich EG. Post-Kyoto greenhouse gas inventories: production versus consumption. Clim Change 2008;86(1–2):51–66.
[29] British Petroleum (BP). BP statistical review of world energy; 2014.
[30] Anonymous. Energy Information Administration. International energy statistics. Available from: <http://www.eia.gov/energy Balance/ieo/index.cfm?tid=908&pid=448aid=8&cid=regions&y=1980&eyid=2012&unit=MTCMCD>; 2015 [cited 2015 February].
[31] Liu Z et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015;522(7565):335–8.
[32] Geng Y et al. Quantification of provincial-level carbon emissions from energy consumption in China. Renew Sustain Energy Rev 2011;15(8):3658–68.
[33] Shan Y, Liu Z, Guan D. CO₂ emissions from China’s lime industry. Appl Energy 2016;166:245–52.
[34] Bai B et al. Evaluating CO₂ emission performance in China’s cement industry: an enterprise perspective. Appl Energy 2016;166:191–200.
[35] Zhi GR et al. Emission characteristics of carbonaceous particles from various energy chains in China. Appl Energy 2014;114:290 (1):218–24.
[36] Tu Y et al. The optimal energy input-output model to evaluate embodied energy and life cycle emissions for China’s economy. J Ind Econ 2014;18(2):201–11.
[37] Guan D et al. The gigatonne gap in China’s carbon dioxide inventories. Nat Clim Change 2012;2(9):572–5.
[38] Pan K et al. Estimation of coal-related CO₂ emissions: the case of China. Energy Environ 2013;24(7–8):1309–21.
[39] Chen YJ et al. Measurements of black and organic carbon emission factors for Chinese coal combustion. Environ Sci Technol 2008;42(19):6868–73.
[40] Tan F, Lu Z. Current status and future choices of regional sectors-energy–economic coupling: a case study in China. Energy Policy 2013;66:236–42.
[41] International Energy Agency (IEA). CO₂ emissions from fuel combustion; 2013.
[42] Peters GP, Hertwich EG. Post-Kyoto greenhouse gas inventories: production versus consumption. Clim Change 2008;86(1–2):51–66.
[43] British Petroleum (BP). BP statistical review of world energy; 2014.
[44] Anonymous. Energy Information Administration. International energy statistics. Available from: <http://www.eia.gov/energy Balance/ieo/index.cfm?tid=908&pid=448aid=8&cid=regions&y=1980&eyid=2012&unit=MTCMCD>; 2015 [cited 2015 February].
[45] Liu Z et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015;522(7565):335–8.
[46] Geng Y et al. Quantification of provincial-level carbon emissions from energy consumption in China. Renew Sustain Energy Rev 2011;15(8):3658–68.
[47] Shan Y, Liu Z, Guan D. CO₂ emissions from China’s lime industry. Appl Energy 2016;166:245–52.
[48] Bai B et al. Evaluating CO₂ emission performance in China’s cement industry: an enterprise perspective. Appl Energy 2016;166:191–200.
[49] Zhi GR et al. Emission characteristics of carbonaceous particles from various energy chains in China. Appl Energy 2014;114:290 (1):218–24.
[50] Tu Y et al. The optimal energy input-output model to evaluate embodied energy and life cycle emissions for China’s economy. J Ind Econ 2014;18(2):201–11.
[51] Guan D et al. The gigatonne gap in China’s carbon dioxide inventories. Nat Clim Change 2012;2(9):572–5.
[52] Pan K et al. Estimation of coal-related CO₂ emissions: the case of China. Energy Environ 2013;24(7–8):1309–21.
[53] Chen YJ et al. Measurements of black and organic carbon emission factors for Chinese coal combustion. Environ Sci Technol 2008;42(19):6868–73.
[54] Tan F, Lu Z. Current status and future choices of regional sectors-energy–economic coupling: a case study in China. Energy Policy 2013;66:236–42.
[55] International Energy Agency (IEA). CO₂ emissions from fuel combustion; 2013.
[56] Peters GP, Hertwich EG. Post-Kyoto greenhouse gas inventories: production versus consumption. Clim Change 2008;86(1–2):51–66.
[57] British Petroleum (BP). BP statistical review of world energy; 2014.
[58] Anonymous. Energy Information Administration. International energy statistics. Available from: <http://www.eia.gov/energy Balance/ieo/index.cfm?tid=908&pid=448aid=8&cid=regions&y=1980&eyid=2012&unit=MTCMCD>; 2015 [cited 2015 February].