Phylogenetic analyses of the severe acute respiratory syndrome coronavirus 2 reflected the several routes of introduction to Taiwan, the United States, and Japan

Tomoko Matsuda, Hikoyu Suzuki, Norichika Ogata

Abstract—Worldwide Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is disrupting in the economy and anxiety of people. The public anxiety has increased the psychological burden on government and healthcare professionals, resulting in a government worker suicide in Japan. The terrified people are asking the government for border measures. However, are border measures possible for this virus? By analysing 48 almost complete virus genome sequences, we found out that the viruses that invaded Taiwan, the United States, and Japan were introduced independently. We identified thirteen parsimony-informative sites and three groups (CTC, TCC, and TCT). Viruses found outside China did not form a monophyletic clade, opposite to previous study. These results suggest the difficulty of implementing effective border measures against this virus.

Keywords—Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, 2019 novel coronavirus, 2019-nCoV, phylogenetic tree, border measures

I. INTRODUCTION

The outbreak of a new coronavirus (SARS-CoV-2) [1] has had a significant impact on neighbouring countries with transportation to and from China due to the spread of SARS-CoV-2. It is reasonable to think that restricting human movement is effective in managing viruses, as human movement accelerates the spread of the virus. A total ban on traffic could have helped control virus transmission [2]. Movement of people across the sea by plane or ship is considered necessary in the movement of viruses [3]. Several governments announced strengthened border measures to prevent viral border invasion [4, 5]. The various restrictions associated with the pandemic hurt not only the economy [6], but also the mental health [7, 8]. The fear of the virus has resulted in discrimination and excessive demands on the government. A 37-year-old government worker who worked on antivirus committed suicide in Japan [7]. With the availability of viral genome sequences, research is being conducted into many different aspects [9-13]. An analysis of previously collected viral genomes indicated that viruses outside China formed a monophyletic clade, suggesting the effectiveness of border measures [14]. Recently, more complete viral genome sequences have been published, providing more resources to discuss virus transmission [15]. Although several phylogenetic trees of the virus have been published, many analyzes including fragment sequences did not provide accurate phylogenetic information. Therefore, we scrutinized the available viral sequences and collected only full-length viral genomic sequences for phylogenetic analysis.

II. MATERIALS AND METHODS

Data Mining

The genome sequences of SARS-CoV-2 isolated from human and “BatCoV RaTG13” (Accession No. GWHABKP000000000), which is most closely related to SATS-CoV-2 [9], were obtained from 2019 Novel Coronavirus Resource [15] (Accessed 22 Feb, 2020). We choose 51 longer sequences. The shortest one is 26,973 bps and the longest one is 29,903 bps. One of the longest sequences, “Wuhan-Hu-1” (Accession No. MN908947), was used as the reference genome. We also obtained the genome sequence of “Bat SARS-like coronavirus” (Accession No. MG772933) from GenBank as the outgroup according to the previous study [9]. In total, we used 49 SARS-CoV-2 sequences (Table 1) and 2 bat coronavirus sequences (Table 2).

Isolation of open reading frames

The open reading frames (ORF) information of the reference genome were obtained from GenBank. We used the translated ORF amino acid sequences as the queries, and searched other SARS-CoV-2 genomes for ORF by using FATE [16] with TBLASTN engine and other default parameters. The ORF sequences were cut out from the genome sequences based on the results of FATE by using BEDTools [17].
Figure 1. Parsimony-informative sites found from SARS-CoV-2 ORF sequences
There were 13 parsimony-informative sites in 29,145 bps alignment of sequences from 47 samples isolated from human. Dots indicate the same as the reference base on the top of the alignment. A, C, G or T indicate the difference in the reference base. Blue, green, and yellow highlight indicate group TCT, TCC, and CTC respectively. Group TCT was defined by T8782, C28144 and T29095. Group TCC was defined by T8782, C28144 and C29095. Group CTC was defined by C8782, T28144 and C29095. All sites including gaps were removed from the analysis. Bases of the same sites on the 2 coronavirus genomes isolated from bat were shown in bottom and 2nd line from the bottom of the alignment, respectively.

Codon-based multiple sequence alignment and extraction of variable/parsimony-informative sites
Isolated ORF sequences were aligned for each gene based on codons by using DIALIGN-TX [18]. The largest gene “orf1ab” was divided into upstream and downstream regions and aligned respectively because this gene has the ribosomal slippage site. We removed three samples, “Human·UnitedStates·Illinois·Chicago” (Accession No. MN988713), ‘Human·Finland·Lapland’ (Accession No. MT020781), and “Human·China·HubeiProvince·WuhanCity” (Accession No. NMDC60013002-05) from the analysis because their sequences include mixed bases. Then, we extracted variable/parsimony-informative sites based on the multiple sequence alignment by using in-house Perl script.

Phylogenetic analysis
Maximum-likelihood phylogenetic analyses based on the multiple sequence alignment of ORF were
performed under the seven conditions below, (1) DNA-based no separate, (2) separating 1st/2nd and 3rd codon position, (3) separating each codon position, (4) separating each gene, (5) separating each gene and also 1st/2nd and 3rd codon position, (6) separating each gene and each codon position, and (7) protein-based separating each gene. For each condition, the best evolutionary models were estimated by using ModelTest-NG [19] with default parameters, followed by estimating the phylogenies of SARS-CoV-2 by using RAxML-NG [20] with ‘-all’ option and the best Bayesian information criterion (BIC)-supported evolutionary models. Under any conditions, the outgroup was set to ‘Bat SARS-like coronavirus’ and the number of bootstraps replicates was set to 1000. Obtained phylogenies were colored by using MEGA X [21]. All analyses data and in-house scripts are available [22].

III. RESULTS AND DISCUSSION

60 variable sites were found from 29,145 bps alignment of SARS-CoV-2 ORF sequences from 47 samples isolated from human (Figure S1). There were 13 parsimony-informative sites (614, 2662, 5084, 8782, 18060, 24034, 24325, 26144, 26729, 28077, 28144, 28854 and 29095-th nucleotide of referential SARS-CoV-2 genome (MN908947)), of which 7 were non-synonymous (Table 3). There were 3 important parsimony-informative sites. The first important parsimony-informative site was 8782-nd nucleotide of referential SARS-CoV-2 genome (MN908947). Referential nucleotide is C and alternative nucleotide is T. The second important parsimony-informative site was 28144-th nucleotide of referential SARS-CoV-2 genome (MN908947). Referential nucleotide is T and alternative nucleotide is C. This substitution results in changes in amino acids 84 of ORF8, a previously indicated polypeptide involved in promoting virus transition from bat to human [24, 25]. The third important parsimony-informative site was 29095-th nucleotide of referential SARS-CoV-2 genome (MN908947). Referential nucleotide is C and alternative nucleotide is T. Therefore, we named 3 groups, TCC, TCT and others (CTC) (Figure 1). Viruses found outside China did not form a single group, opposite to previous study [14]. This result suggests that the viral were introduced to each country several times.

Phylogenies of SARS-CoV-2 were constructed based on the ORF sequences (Figure 2 and Figure S2). DNA-based phylogeny under the separating each codon position condition (Figure 2) showed the highest final log-likelihood and 2nd-lowest AIC score among DNA-based phylogenetic trees. On the other hand, protein-based phylogenetic tree (Figure S2F) might not be reliable because the tree was constructed based on less informative sites except for the synonymous substitution sites. According to our phylogeny, the group CTC formed a monophyletic clade, including all samples isolated from Chinese in Wuhan except for ‘CNA0007335-Human-China-HubeiProvince-WuhanCity’.

Samples of the group TCC and TCT were paraphyletic for group CTC and located near the root of the tree. Our phylogenies suggest that the ‘Bat-SARS-like coronavirus’ (MG772933) and “BatCoV RaTG13” are more closely related to samples included in the group TCC and TCT than samples included in the group CTC. Some of the phylogenies constructed under other conditions suggest the different phylogenetic position of group TCC and TCT, however, support the monophyly and the same phylogenetic position of group CTC (Figure S2). These results indicate that SARS-CoV-2 widely spread in Wuhan is different from that of other areas. In areas other than Wuhan, where virus invasion has been observed, the damage has not seemed to be as severe as Wuhan, however the spread of group CTC might increase the damage in the near future. From the perspective of virus control, sequencing should be performed since viruses have multiple properties that is hard to be distinguished by qPCR.

The viral genome sequences “MT0398890-Human-South-Korea” and “GWHABKG0000000-Human-China-HubeiProvince-Wuhan-City” have many sample-specific substitutions in their sequence. The viral genome sequence “MN988713-Human-USA-Illinois-Chicago” has several ambiguous bases in parsimony-informative sites, discovered in this study. Interestingly, the ambiguous bases can be explained by the mixture of group TCC and CTC (Table 4). This fact suggests that “MN988713-Human-USA-Illinois-Chicago” contains at least two different viral genomes. We could corroborate this hypothesis after next generation sequence data release.

To determine whether viral sequences have novel mutations acquired during spreading the infection or just reflect the diversity of the place of origin, various SARS-CoV-2 genome sequences should be collected in the place of origin.
Figure 2. Topological phylogeny of SARS-CoV-2 estimated with maximum-likelihood

A maximum-likelihood phylogenetic analysis based on the multiple sequence alignment of ORF were performed under the condition of separating each codon position. Blue, green, and yellow branches indicate group TCT, TCC, and CTC respectively. Substitutions on the parsimony-informative sites were mapped to the corresponding branches. SARS-CoV-2 isolated from human formed a monophyletic clade with 100% bootstrap value. Group CTC formed a monophyletic clade with 74% bootstrap value. Group TCC was paraphyletic respect to the group CTC. Group TCT was paraphyletic respect to the clade consists of group CTC and TCT. Final log-likelihood was -55794.362675. AIC score was 112649.332493. Branch length was meaningless.
REFERENCES

1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020. doi: 10.1038/s41586-020-2008-3. PubMed PMID: 32015508.

2. Jin G, Yu J, Han L, Duan S. The impact of traffic isolation in Wuhan on the spread of 2019-nCoV. medRxiv. 2020. doi: 10.1101/2020.02.04.20020438.

3. Zhao X, Liu X, Li X. Tracking the spread of novel coronavirus (2019-nCoV) based on big data. medRxiv. 2020. doi: 10.1101/2020.02.07.20021196.

4. Novel coronavirus, China (2019-nCoV) - Border Advisory (5) - 2 February 2020. https://www.health.govt.nz/system/files/documents/pages/novel_coronavirus_-_border_advisory_2_february_2020.pdf

5. Wilson ME. What goes on board aircraft? Passengers include Aedes, Anopheles, 2019-nCoV, dengue, Salmonella, Zika, et al. Travel Med Infect Dis. 2020;101572. doi: 10.1016/j.tmaid.2020.101572. PubMed PMID: 32035269.

6. Ayittey FK, Ayittey MK, Chiwero NB, Kamasah JS, Dzuvo C. Economic Impacts of Wuhan 2019-nCoV on China and the World. Journal of Medical Virology. 2020. doi: 10.1002/jmv.25706.

7. Shimizu K. 2019-nCoV, fake news, and racism. Lancet. 2020. doi: 10.1016/S0140-6736(20)30357-3. PubMed PMID: 32059801.

8. Bao Y, Sun Y, Meng S, Shi J, Lu L. 2019-nCoV epidemic: address mental health care to empower society. Lancet. 2020. doi: 10.1016/S0140-6736(20)30309-3. PubMed PMID: 32043982.

9. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79:104212. doi: 10.1016/j.meegid.2020.104212. PubMed PMID: 3204758.

10. Cui H, Gao Z, Liu M, Lu S, Mo S, Mkandawire W, et al. Structural genomics and interactomics of 2019 Wuhan novel coronavirus, 2019-nCoV, indicate evolutionary conserved functional regions of viral proteins. bioRxiv. 2020. doi: 10.1101/2020.02.10.942136.

11. Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol. 2020. doi: 10.1002/jmv.25700. PubMed PMID: 32027036.

12. Dong N, Yang X, Ye L, Chen K, Chan EW-C, Yang M, et al. Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. bioRxiv. 2020. doi: 10.1101/2020.01.20.913368.

13. Xiong C, Jiang L, Chen Y, Jiang Q. Evolution and variation of 2019-novel coronavirus. bioRxiv. 2020. doi: 10.1101/2020.01.30.926477.

14. Benvenuto D, Giovanetti M, Salemi M, Prosperi M, De Flora C, Junior Alcantara LC, et al. The global spread of 2019-nCoV: a molecular evolutionary analysis. Pathog Glob Health. 2020;1-4. doi: 10.1080/20477724.2020.1725339. PubMed PMID: 32048560.

15. 2019 Novel Coronavirus Resource [Internet]. [cited 16 Feb 2020]. Available from: https://bigd.big.ac.cn/ncov/.

16. Suzuki H. FATE. https://github.com/Hikoyu/FATE

17. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-2. doi: 10.1093/bioinformatics/btq033. PubMed PMID: 2110278; PubMed Central PMCID: PMCPMC2832824.

18. Subramanian AR, Kaufmann M, Morgenstern B. DIALIGN-TX; greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol Biol. 2008;3:6. doi: 10.1186/1748-7188-3-6. PubMed PMID: 18505568; PubMed Central PMCID: PMCPMC2430965.

19. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol Biol Evol. 2020;37(1):291-4. doi: 10.1093/molbev/msz189. PubMed PMID: 31432070; PubMed Central PMCID: PMCPMC6984357.

20. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35(21):4453-5. doi: 10.1093/bioinformatics/btz305. PubMed PMID: 31070718; PubMed Central PMCID: PMCPMC6821337.

21. Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol. 2020. doi: 10.1093/molbev/msz312. PubMed PMID: 31904846.

22. Suzuki H. https://github.com/Hikoyu/SARS-CoV-2.

23. Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15(11):524. doi: 10.1186/s13059-014-0524-x. PubMed PMID: 25410596; PubMed Central PMCID: PMCPMC4262987.

24. Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 2020. doi: 10.1038/s41422-020-0290-0. PubMed PMID: 32071427.

25. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1):221-36. doi: 10.1002/22221751.2020.1719902. PubMed PMID: 31987001.
Table 1. Names and Length of SARS-CoV-2 genome sequences used in this study.

#	Genome Sequences	Length (nt)	Database	Acc. Number
1	CNA0007332_Human_China_Hubei_Province_Wuhan_City	29866	CNGBdb	NMDC60013002
2	CNA0007334_Human_China_Hubei_Province_Wuhan_City	29868	CNGBdb	NMDC60013002
3	CNA0007335_Human_China_Hubei_Province_Wuhan_City	29872	CNGBdb	NMDC60013002
4	GHWABKF0000000000_Human_China_Hubei_Province_Wuhan_City	29899	Genome Warehouse	GHWABKF0000000000
5	GHWABKG0000000000_Human_China_Hubei_Province_Wuhan_City	29899	Genome Warehouse	GHWABKG0000000000
6	GHWABKH0000000000_Human_China_Hubei_Province_Wuhan_City	29899	Genome Warehouse	GHWABKH0000000000
7	GHWABKJ0000000000_Human_China_Hubei_Province_Wuhan_City	29890	Genome Warehouse	GHWABKJ0000000000
8	GHWABKK0000000000_Human_China_Hubei_Wuhan	29825	Genome Warehouse	GHWABKK0000000000
9	GHWABKL0000000000_Human_China_Hubei_Wuhan	29891	Genome Warehouse	GHWABKL0000000000
10	GHWABKM0000000000_Human_China_Hubei_Wuhan	29852	Genome Warehouse	GHWABKM0000000000
11	GHWABKN0000000000_Human_China_Hubei_Wuhan	29854	Genome Warehouse	GHWABKN0000000000
12	GHWABKO0000000000_Human_China_Wuhan	29857	Genome Warehouse	GHWABKO0000000000
13	GHWABKS0000000000_Human_China_Zhejiang_Hangzhou	29833	Genome Warehouse	GHWABKS0000000000
14	LC521925_Human_Japan_Aichi	29848	GenBank	LC521925
15	LC522972_Human_Japan_Kyoto	29878	GenBank	LC522972
16	LC522973_Human_Japan_Tokyo	29878	GenBank	LC522973
17	LC522974_Human_Japan_Tokyo	29878	GenBank	LC522974
18	LC522975_Human_Japan_Tokyo	29878	GenBank	LC522975
19	MN908947_Human_China_Hubei_Province_Wuhan_City	29893	GenBank	MN908947
20	MN938384_Human_China_Guangdong_Shenzhen	29838	GenBank	MN938384
21	MN975262_Human_China_Guangdong_Shenzhen	29891	GenBank	MN975262
22	MN985325_Human_USA_Washington_Snohomish_County	29882	GenBank	MN985325
23	MN988668_Human_China_Hubei_Wuhan	29881	GenBank	MN988668
24	MN988669_Human_China_Hubei_Wuhan	29881	GenBank	MN988669
25	MN988713_Human_USA_Illinois_Chicago	29882	GenBank	MN988713
26	MN994467_Human_USA_California_Los_Angeles	29882	GenBank	MN994467
27	MN994468_Human_USA_California_Orange_County	29883	GenBank	MN994468
28	MN997409_Human_USA_Arizona_Phoenix	29882	GenBank	MN997409
29	MT007544_Human_Australia_Victoria_Clayton	29893	GenBank	MT007544
30	MT020781_Human_Finland_Lapland	29847	GenBank	MT020781
31	MT020880_Human_USA_Washington	29882	GenBank	MT020880
32	MT020881_Human_USA_Washington	29882	GenBank	MT020881
33	MT020762_Human_USA_California	29882	GenBank	MT020762
34	MT020763_Human_USA_California	29882	GenBank	MT020763
35	MT020764_Human_USA_California	29882	GenBank	MT020764
36	MT039887_Human_USA_Wisconsin	29879	GenBank	MT039887
37	MT039890_Human_South_Korea	29903	GenBank	MT039890
38	MT044257_Human_USA_Illinois	29882	GenBank	MT044257
39	MT044258_Human_USA_California	29858	GenBank	MT044258
40	MT049951_Human_China	29903	GenBank	MT049951
41	MT066175_Human_China_Taiwan_Taipei	29870	GenBank	MT066175
42	MT066176_Human_China_Taiwan_Taipei	29870	GenBank	MT066176
43	NMDC60013002-06_Human_China_Hubei_Province_Wuhan_City	29891	NMDC	NMDC60013002-06
44	NMDC60013002-07_Human_China_Hubei_Province_Wuhan_City	29890	NMDC	NMDC60013002-07
45	NMDC60013002-08_Human_China_Hubei_Province_Wuhan_City	29891	NMDC	NMDC60013002-08
46	NMDC60013002-09_Human_China_Hubei_Province_Wuhan_City	29896	NMDC	NMDC60013002-09
47	NMDC60013002-10_Human_China_Hubei_Province_Wuhan_City	29891	NMDC	NMDC60013002-10
48	NMDC60013002-05_Human_China_Hubei_Province_Wuhan_City	26973	NMDC	NMDC60013002-05
Table 2. Names and Length of bat coronavirus genome sequences used in this study.

#	Genome Sequences	Length (nt)	Database	Acc. Number
1	GWHABKP00000000_Rhinolophusaffinis_China_Yunnan_Pu'er	29855	Genome Warehouse	GWHABKP00000000
2	MG772933.1_Bat_SARS-like_coronavirus_isolate_bat-SL-CoVZC45	29802	GenBank	MG772933

Table 3. Synonymous and non-synonymous substitution in the SARS-CoV-2 genome.

Ref. name	Ref. position	Ref. Base	Alt. Base	Ref. codon	Alt. codon	Group	Ref. AA	Alt. AA
MN908947	614	G	A	GCT	ACT	1st	Ala (A)	Thr (T)
MN908947	2662	C	T	TAC	TAT	3rd	Tyr (Y)	Tyr (Y)
MN908947	5084	A	G	ATA	GTA	1st	Ile (I)	Val (V)
MN908947	8782	C	T	AGC	AGT	3rd	Ser (S)	Ser (S)
MN908947	18060	C	T	CTG	CTT	3rd	Leu (L)	Leu (L)
MN908947	24034	C	T	AAC	AAT	3rd	Asn (N)	Asn (N)
MN908947	24325	A	G	AAA	AAG	3rd	Lys (K)	Lys (K)
MN908947	26144	G	T	GGT	GTT	2nd	Gly (G)	Val (V)
MN908947	26729	T	C	GCT	GCC	3rd	Ala (A)	Ala (A)
MN908947	28077	G	C	GTG	CTG	1st	Val (V)	Leu (L)
MN908947	28144	T	C	TTA	TCA	2nd	Leu (L)	Ser (S)
MN908947	28854	C	T	TCA	TTA	2nd	Ser (S)	Leu (L)
MN908947	29095	C	T	TTC	TTT	3rd	Phe (F)	Phe (F)

Table 4. Mixed bases in the MN988713-Human-USA-Illinois-Chicago sequence.

Genome Sequence	Nucleotides	Group
MN908947_Human_China_Hubei_Province_Wuhan_City	TCCCTGTC	CTC
MN988713_Human_USA_Illinois_Illinois	WYYYYYYY	CTC/TTCC
MN994467_Human_USA_California_Los_Angeles	TCTTCCCC	TCC
MT044257_Human_USA_Illinois	ATTTCCCC	TCC

※W means T or A, Y means C or T, S means G or C.
Variable sites found from SARS-CoV-2 ORF sequences

After alignment, the SARS-CoV-2 sequences had 60 variable sites from 29,145 bps alignment of ORF sequences from 47 samples isolated from human. Dots indicate the same as the reference base on the top of the alignment. A, C, G or T indicate the difference in the reference base. Nucleotide position numbers in the reference genome are shown above the alignment. All sites including gaps were removed from the analysis.

Reference Sequence ID	Location	Nucleotide Base
GWA8BKF00000000_Human_China_HubeiProvince_HuhanCity	G	G.A.
GWA8BK00000000_Human_China_HubeiProvince_HuhanCity	A	T.A.
GWA8BK10000000_Human_China_HubeiProvince_HuhanCity	C	T.G.
GWA8BKL00000000_Human_China_HubeiProvince_HuhanCity	T	G.T.
GWA8BMH00000000_Human_China_HubeiProvince_HuhanCity	C	T.G.
GWA8BK00000000_Human_China_HubeiProvince_HuhanCity	C	T.G.
GWA8BK10000000_Human_China_HubeiProvince_HuhanCity	C	T.G.
GWA8BK00000000_Human_China_Zhejiang_Hangzhou	T	T.T.
LC521925_Human_Japan_Aichi	T	T.T.
LC52972_Human_Japan_Kyoto	T	T.T.
NH988668_Human_China_Hubei_Wuhan	T	T.T.
NH988669_Human_China_Hubei_Wuhan	T	T.T.
MT027664_Human_UnitedStates_California	T	T.T.
MT039897_Human_UnitedStates_Wisconsin	T	T.T.
MT04258_Human_UnitedStates_California	T	T.T.
MT066176_Human_China_Taiwan_Taipei	T	T.T.
NHCD6013002-07_Human_China_HubeiProvince_HuhanCity	A	G.T.
NHCD6013002-08_Human_China_HubeiProvince_HuhanCity	A	G.T.
NHCD6013002-09_Human_China_HubeiProvince_HuhanCity	A	G.T.
NHCD6013002-10_Human_China_HubeiProvince_HuhanCity	A	G.T.
GWA8BK00000000_Human_China_Hubei_Wuhan	A	G.T.
NHCD6013002-04_Human_China_HubeiProvince_HuhanCity	A	G.T.
NH99466_Human_UnitedStates_California_California	A	G.T.
MT007544_Human_Australia_Victoria_Clayton	T	T.C.
MT039890_Human_SouthKorea	T	T.C.
MT072668_Human_Nepal_Kathmandu	A	G.T.
MT027062_Human_UnitedStates_California	A	G.T.
MT027063_Human_UnitedStates_California	A	G.T.
CMA007335_Human_China_HubeiProvince_HuhanCity	A	G.T.
MT04991_Human_UnitedStates_California	T	C.C.
CMA007335_Human_China_HubeiProvince_HuhanCity	A	G.T.
MT066175_Human_China_Taiwan_Taipei	T	T.C.
NH985325_Human_UnitedStates_Washington_SnohomishCounty	T	T.C.
MT020880_Human_UnitedStates_Washington	T	T.C.
LC520881_Human_UnitedStates_Washington	T	T.C.
NH99467_Human_UnitedStates_California_LosAngeles	A	T.C.
MT004257_Human_UnitedStates_Illinois	A	T.C.
NH998384_Human_China_Guangdong_Shenzhen	A	T.C.
NH975262_Human_China_Guangdong_Shenzhen	A	T.C.
NH997409_Human_UnitedStates_Arizona_Phoenix	A	T.C.
LC522973_Human_Japan_Tokyo	A	T.C.
LC522974_Human_Japan_Tokyo	A	T.C.
LC522975_Human_Japan_Tokyo	A	T.C.

Figure S1. Variable sites found from SARS-CoV-2 ORF sequences
Figure S2. Topological phylogeny of SARS-CoV-2

Maximum-likelihood phylogenetic analyses under each condition below. (A) DNA-based no separate condition. Final log-likelihood was -58648.257750. AIC score was 117504.515500. (B) DNA-based separating 1st/2nd and 3rd codon position condition. Final log-likelihood was -56210.666246. AIC score was 111828.725349. (C) DNA-based separating each gene condition. Final log-likelihood was -59189.786542. AIC score was 118667.573085. (D) DNA-based separating each gene and also 1st/2nd and 3rd codon position condition. Final log-likelihood was -56528.571686. AIC score was 113415.143371. (E) DNA-based separating each gene and each codon position condition. Final log-likelihood was -56171.539079. AIC score was 112759.078158. (F) Protein-based separating each gene condition. Final log-likelihood was -34553.898182. AIC score was 69363.796363. Branch length was meaningless.