Deep Imitation Learning of Sequential Fabric Smoothing Policies

Daniel Seita¹, Aditya Ganapathi¹, Ryan Hoque¹, Minho Hwang¹, Edward Cen¹, Ajay Kumar Tanwani¹, Ashwin Balakrishna¹, Brijen Thananjeyan¹, Jeffrey Ichnowski¹, Nawid Jamali², Katsu Yamane², Soshi Iba², John Canny¹, Ken Goldberg¹

Abstract—Sequential pulling policies to flatten and smooth fabrics have applications from surgery to manufacturing to home tasks such as bed making and folding clothes. Due to the complexity of fabric states and dynamics, we apply deep imitation learning to learn policies that, given color or depth images of a rectangular fabric sample, estimate pick points and pull vectors to spread the fabric to maximize coverage. To generate data, we develop a fabric simulator and an algorithmic demonstrator that has access to complete state information. We train policies in simulation using domain randomization and dataset aggregation (DAgger) on three tiers of difficulty in the initial randomized configuration. We present results comparing five baseline policies to learned policies and report systematic comparisons of color vs. depth images as inputs. In simulation, learned policies achieve comparable or superior performance to analytic baselines. In 120 physical experiments with the da Vinci Research Kit (dVRK) surgical robot, policies trained in simulation attain 86% and 69% final coverage for color and depth inputs, respectively, suggesting the feasibility of learning fabric smoothing policies from simulation. Supplementary material is available at https://sites.google.com/view/fabric-smoothing/

I. INTRODUCTION

Robot manipulation of fabric has applications in senior care and dressing assistance [11], [12], [13], sewing [41], ironing [21], laundry folding [22], [27], [44], [54], fabric upholstery manufacturing [32], [50], and handling gauze in robotic surgery [48]. However, fabric manipulation is challenging due to its infinite dimensional configuration space and unknown dynamics.

We consider the task of transforming fabric from a rumpled and highly disordered starting configuration to a smooth configuration via a series of grasp and pull actions. We explore a deep imitation learning approach based on a Finite Element Method (FEM) fabric simulator with an algorithmic demonstrator and use DAgger [38] to train policies. Using color and camera domain randomization [39], [49], learned policies are evaluated in simulation and in physical experiments with the da Vinci Research Kit (dVRK) surgical robot [15]. Figure 1 shows examples of learned trajectories in simulation and the physical robot.

This paper contributes: (1) a novel formulation of fabric smoothing in terms of a sequence of pick and pull actions, (2) a simulation environment for data generation and evaluation of fabric smoothing with three difficulty tiers of initial state complexity in terms of coverage and visible corners, and (3) deep imitation learning of fabric smoothing policies which transfer to physical experiments on a da Vinci surgical robot when considering coverage performance across all tiers using color or depth input images.

II. RELATED WORK

Well-known research on robotic fabric manipulation [5], [40] uses bilateral robots and gravity to expose corners. Otsawa et al. [31] proposed a method of iteratively re-grasping the lowest hanging point of a fabric to flatten and classify fabrics. Subsequently, Kita et al. [17], [18] used a deformable object model to simulate fabric suspended in the air, allowing the second gripper to grasp at a desired point. Follow-up work generalized to a wider variety of initial configurations of new fabrics. In particular, Maitin-Shepard et al. [25], Cusumano-Towner et al. [7], and Doumanoglou et al. [9] identified and tensioned corners to fold laundry or to bring clothing to desired positions. These methods rely on gravity to reveal corners of the fabric. We consider the setting where a single armed robot adjusts a fabric strewn across a surface without lifting it entirely in midair, which is better suited for larger fabrics or when robots have a limited range of motion.

Reinforcement Learning (RL) [47] has potential for manipulating deformable objects. In folding, Matas et al. [26] assumed that fabric is flat, and Balaguer et al. [2] began with fabric gripped in midair to loosen wrinkles. In contrast, we consider the problem of bringing fabric from a highly rumpled configuration to a flat configuration. Using model-based RL, Ebert et al. [10] were able to train robots to
fold pants and fabric. This approach, however, requires executing a physical robot for many thousands of actions and then training a video prediction model. In surgical robotics, Thananjeyan et al. [48] used RL to learn a tensioning policy to cut gauze, with one arm pinching at a pick point to let the other arm cut. We focus on cases where the initial fabric state may be highly rumpled and disordered.

In among the most relevant prior on fabric smoothing, Willimon et al. [53] present an algorithm that pulls at eight fixed angles, and then uses a six-step stage to identify corners from depth images using the Harris Corner Detector [14]. They present experiments on three simulated trials and one physical robot trial. Sun et al. [45] followed up by attempting to explicitly detect and then pull at wrinkles. They measure wrinkledness as the average absolute deviation in a local pixel region for each point in a depth map of the fabric [37] and apply a force perpendicular to the largest wrinkle. Sun et al. evaluate on eight fixed, near-flat fabric starting configurations in simulation. In subsequent work, Sun et al. [46] improved the detection of wrinkles by using a shape classifier as proposed in Koenderink and van Doorn [19]. Each point in the depth map is classified as one of nine shapes, and they use contiguous segments of certain shapes to define a wrinkle. While Sun et al. were able to generalize the method beyond a set of hard-coded starting states, it was only tested on nearly flat fabrics in contrast to the highly rumpled configurations we explore.

This paper extends prior work by Seita et al. [42] that only estimated a pick point and pre-defined the pull vector. In contrast, we learn the pull vector and pick point simultaneously. Second, by developing a simulator, we generate far more training data, and perform systematic experiments comparing depth and color image inputs.

III. PROBLEM STATEMENT

Given a deformable fabric and a flat fabric plane, each with the same rectangular dimensions, we consider the task of manipulating the fabric from a start state to a state that maximally covers the fabric plane.

Concretely, let \(\xi_t \) be the full state of the fabric at time \(t \) with positions of all its points (see Section IV). Let \(\alpha_t \in O \) represent the image observation of the fabric at time \(t \), where \(O = \mathbb{R}^{H \times W \times c} \) as an image with \(H \times W \) pixels, and \(c = 1 \) channels for depth images, or \(c = 3 \) for color images. Let \(A \) be the set of actions the robot may take (see Section IV-A). The objective is coverage \(C(\xi_t) \), the percentage of the fabric plane covered by \(\xi_t \).

We frame this as imitation learning [1], [30], where a demonstrator provides data in the form of paired observations and actions \(D = \{(\alpha_i, a_i)\}_{i=1}^N \). From \(D \), the robot’s goal is to learn a policy \(\pi : O \to A \) that maps an observation to an action, and executes sequentially until a coverage threshold or iteration termination threshold is reached.

IV. FABRIC AND ROBOT SIMULATOR

We implemented a Finite Element Method (FEM) [4] fabric simulator and interface with an OpenAI gym environment design [6]. The fabric (Figure 2) is represented as a grid of \(25 \times 25 \) point masses, connected by three types of springs [36]:

- **Structural**: between a point mass and the point masses to its left and above it.
- **Shear**: between a point mass and the point masses to its diagonal upper left and diagonal upper right.
- **Flexion**: between a point mass and the point masses two away to its left and two above it.

Each point mass is acted upon by both an external gravitational force which is calculated using Newton’s Second Law and a spring correction force

\[
F_s = k_s \cdot (\|q_a - q_b\|_2 - \ell),
\]

for each of the springs representing the constraints above, where \(k_s \) is a spring constant, \(q_a \in \mathbb{R}^3 \) and \(q_b \in \mathbb{R}^3 \) are positions of any two point masses connected by a spring, and \(\ell \) is the default spring length. We update the point mass positions using Verlet integration [51]. Verlet integration computes a point mass’s new position at time \(t + \Delta_t \), denoted with \(p_{t+\Delta_t} \), as:

\[
p_{t+\Delta_t} = p_t + v_t \Delta_t + a_t \Delta_t^2,
\]

where \(p_t \in \mathbb{R}^3 \) is the position, \(v_t \in \mathbb{R}^3 \) is the velocity, \(a_t \in \mathbb{R}^3 \) is the acceleration from all forces, and \(\Delta_t \in \mathbb{R} \) is a timestep. Verlet integration approximates \(v_t \Delta_t = p_t - p_{t-\Delta_t} \), where \(p_{t-\Delta_t} \) is the position at the last time step, resulting in

\[
p_{t+\Delta_t} = 2p_t - p_{t-\Delta_t} + a_t \Delta_t^2
\]

The simulator adds damping to simulate loss of energy due to friction, and scales down \(v_t \), leading to the final update:

\[
p_{t+\Delta_t} = p_t + (1 - d)(p_t - p_{t-\Delta_t}) + a_t \Delta_t^2
\]

where \(d \in [0, 1] \) is a damping term, which we tuned to 0.02 based on visually inspecting the simulator.

We apply a constraint from Provot [36] by correcting point mass positions so that spring lengths are at most 10% greater than \(\ell \) at any time. We also implement fabric-fabric collisions following [3] by adding a force to “separate” two points if they are too close.

The simulator provides access to the full fabric state \(\xi_t \), which contains the exact positions of all \(25 \times 25 \) points,
the fabric at the pick point. If there is no fabric at the pick point coordinates \(p \), the grasp misses the fabric. After grasping, the simulator pulls the picked point upwards and towards direction \(\Delta x_t, \Delta y_t \), deltas in the \(x \) and \(y \) direction of the fabric plane. In summary, actions \(a_t \in A \) are defined as:

\[
 a_t = (x_t, y_t, \Delta x_t, \Delta y_t)
\]

representing the pick point coordinates \((x_t, y_t) \) and the pull vector \((\Delta x_t, \Delta y_t) \) relative to the pick point.

B. Starting State Distributions

The performance of a smoothing policy depends heavily on the distribution of starting fabric states. We randomize the starting state to generate three difficulty tiers, with initial coverage based on 2000 simulations:

- **Tier 1**, 78.3 ± 6.9% Coverage (High): starting from a flat fabric, we make two short, random pulls to slightly perturb the fabric. All fabric corners remain visible.
- **Tier 2**, 57.6 ± 6.1% Coverage (Medium): we let the fabric drop from midair on one side of the fabric plane, perform one random grasp and pull across the plane, and then do a second grasp and pull to cover one of the two fabric corners furthest from its plane target.
- **Tier 3**, 41.1 ± 3.4% Coverage (Low): starting from a flat fabric, we grip at a random pick point and pull high in the air, drag in a random direction, and then drop, usually resulting in one or two corners hidden.

Figure 3 shows examples of color and depth images of fabric initial states in simulation and real physical settings for all three tiers of difficulty. The supplementary material contains additional examples.

V. Baseline Policies

We propose five baseline policies for fabric smoothing.

1) **Random**: As a naive baseline, we test a random policy that uniformly selects random pick points and pull directions.

2) **Highest (Max z)**: This policy, tested in Seita et al. [42], grasps the highest point on the fabric. We get the pick point by determining \(p \), the highest of the \(25^2 = 625 \) points from \(\xi_t \). To compute the pull vector, we obtain the target coordinates by considering where \(p \)’s coordinates would be if the fabric is perfectly flat. The pull vector is then the vector from \(p \)’s current position to that target.

3) **Wrinkle**: Sun et al. [45] propose a two-stage algorithm to first identify wrinkles and then to derive a force parallel to the fabric plane to flatten the largest wrinkle. The process repeats for subsequent wrinkles. We implement this method by finding the point in the fabric of largest local height variance. Then, we find the neighboring point with the next largest height variance, treat the vector between the two points as the wrinkle, and pull perpendicular to it.

4) **Oracle**: This policy uses complete state information from \(\xi_t \) to find the fabric corner furthest from its fabric plane target, and pulls it towards that target. When a corner is occluded and underneath a fabric layer, this policy will grasp the point directly above it on the uppermost fabric layer, and the resulting pull usually decreases coverage.

5) **Oracle-Expose**: When a fabric corner is occluded, and other fabric corners are not at their targets, this policy picks above the hidden corner, but pulls away from the fabric plane target to reveal the corner for a subsequent action.

VI. Simulation Results for Baseline Policies

We evaluate baseline fabric smoothing policies by running each for 2000 trajectories in simulation. Each trajectory draws a randomized fabric starting state from one of three difficulty tiers (Section IV-B), and lasts for a maximum of 10 actions. Trajectories can terminate earlier under two conditions: (1) if a pre-defined coverage threshold is obtained, or (2) the fabric is out of bounds over a certain threshold. For
Table I: Results from the five baseline policies discussed in Section V. We report final coverage and the number of actions per trajectory. All statistics are from 2000 trajectories, with tier-specific starting states. Both oracle policies (in bold) perform the best.

Tier	Method	Coverage	Actions
1	Random	25.0 +/- 14.6	8.3 +/- 2.2
1	Highest	66.2 +/- 25.1	8.21 +/- 3.2
1	Wrinkle	91.3 +/- 7.1	5.40 +/- 3.7
1	Oracle	95.7 +/- 2.1	1.76 +/- 0.8
1	Oracle-Expose	95.7 +/- 2.2	1.77 +/- 0.8
2	Random	22.3 +/- 12.7	3.00 +/- 2.5
2	Highest	57.3 +/- 13.0	9.97 +/- 0.3
2	Wrinkle	87.0 +/- 10.8	7.64 +/- 2.8
2	Oracle	94.5 +/- 5.4	4.01 +/- 2.0
2	Oracle-Expose	94.6 +/- 5.0	4.07 +/- 2.2
3	Random	20.6 +/- 12.3	3.78 +/- 2.8
3	Highest	36.3 +/- 16.3	7.89 +/- 3.2
3	Wrinkle	73.6 +/- 19.0	8.94 +/- 2.0
3	Oracle	95.1 +/- 2.3	4.63 +/- 1.1
3	Oracle-Expose	95.1 +/- 2.2	4.70 +/- 1.1

(1) we use 92% as the threshold, which produces visually smooth fabric (e.g., see the last image in Figure 4) and avoids demonstrator data being dominated by taking actions of short magnitudes at the end of trajectories. For (2) we define a fabric as out of bounds if it has any point which lies at least 25% beyond the fabric plane relative to the full distance of the edge of the plane. This threshold allows the fabric to go slightly off the fabric plane, though we do not allow a pick point to lie outside the fabric plane.

Table I indicates that both oracle policies attain nearly identical performance and have the highest coverage among the baseline policies, with about 95% across all tiers. The wrinkles policy is the next best policy in simulation, with 91.3%, 87.0%, and 73.6% final coverage for the three respective tiers, but requires substantially more actions per trajectory.

One reason why the oracle policy still performs well with occluded corners is that the resulting pulls can move those corners closer to their fabric plane targets, making it easier for subsequent actions to increase coverage. Figure 5 shows an example trajectory from the oracle policy on a tier 3 starting state. The second action pulls at the top layer of the fabric above the corner, but the resulting action still moves the occluded corner closer to its target.

VII. Imitation Learning with DAgger

We use the oracle (not oracle-expose) policy to generate demonstrations and corrective labels. For each tier, we generate 2000 trajectories from the demonstrator and use that as offline data. We train a fabric smoothing policy in simulation using imitation learning on synthetic images. When behavior cloning [33, 34] on demonstrator data, the robot’s policy will learn the demonstrator’s actions on states in the training data, but generalize poorly outside the data distribution [20]. To address this, we use Dataset Aggregation (DAgger) [38], which requests the demonstrator to label the states the robot encounters when running its learned policy. A limitation of DAgger is the need for continued access to the demonstrator’s policy, rather than just offline data. The oracle corner-pulling demonstrator is cheap to query, so in practice this does not cause problems.

A. Policy Training Procedure

The imitation learning code uses OpenAI baselines [8] to make use of its parallel environment support. We run the fabric simulator in ten parallel environments, which helps to alleviate the major time bottleneck when training, and pool together samples in a shared dataset.

We use domain randomization [49] during training. For color images, we randomize the fabric color by selecting RGB values uniformly at random across intervals that include shades of blue, purple, pink, red, and gray. We also vary the shading of the fabric plane. For both color and depth images, we randomize the image brightness with gamma corrections [35], and randomize the camera pose with independent Gaussian distributions for each of the position and orientation components.

We first train with a “behavior cloning (BC) phase” where we minimized the L_2 error on the offline demonstrator data, and then use a “DAgger phase” which rolls out the agent’s policy and applies DAgger. We used 500 epochs of behavior cloning based on when the network’s L_2 error roughly converged on a held-out validation dataset. Further training details are in the supplementary material.

B. Simulation Experiments

For all simulated training runs, we evaluate on 50 new tier-specific starting states that were not seen during training. Figure 4 shows results across all tiers, suggesting that after behavior cloning, DAgger improves final coverage performance by 6.1% (averaging over six runs). In addition, color policies attain better coverage in simulation than depth policies with gains of 10.8%, 8.3%, and 10.9% across respective
tiers, which may be due to high color contrast between the fabric and fabric plane in the color images, as opposed to the depth images (see Figure 5).

In all difficulty tiers, the color policies get higher final coverage performance than the wrinkles policy (from Table I): 94.8% over 91.3%, 89.6% over 87.0%, and 91.2% over 73.6%, respectively, and gets close to the corner pulling demonstrator despite only having access to image observations. The depth policies outperform the wrinkles policy only on tier 3, with 80.3% versus 73.6% coverage.

VIII. PHYSICAL EXPERIMENTS

The da Vinci Research Kit (dVRK) surgical robot [15] is a cable-driven surgical robot with imprecision as reviewed in prior work [24], [43]. We use a single arm with an end effector that can be opened to 75° prior work [24], [43]. We use a single arm with an end effector that can be opened to 75°, which begins right after the last behavior cloning epoch. Results, from top to bottom, are for tier 1, 2, and 3 starting states. We additionally annotate with dashed lines the average starting coverage and the demonstrator’s average final coverage.

A. Physical Experiment Protocol

We manually create starting fabric states similar to those in simulation for all tiers. Given a starting fabric, we randomly run one of the color or depth policies for one trajectory for at most 10 steps (as in simulation). Then, to make comparisons fair, we “reset” the fabric to be close to its starting state, and ran the other policy.

During preliminary trials, the dVRK gripper would sometimes miss the fabric by 1-2 mm, which is within the calibration error. To counter this, we measure structural similarity [52] of the image before and after an action to check if the robot moved the fabric. If it did not, the next action is adjusted to be closer to the center of the fabric plane, and the process repeats until the robot touches fabric.

B. Physical Experiment Results

We run 20 trajectories for each combination of input modality (color or depth) and tiers, resulting in 120 total as shown in Table II. We report starting coverage, ending coverage, maximum coverage across the trajectory after the initial state, and the number of actions. The maximum coverage allows for a more nuanced understanding of performance, because policies can take strong initial actions that achieve high coverage (e.g., above 80%) but a single counterproductive action at the end can substantially lower coverage.

Results suggest that, despite not being trained on real images, the learned policies can smooth fabric in the physical world. All policies improve over the starting coverage across all tiers, for both color and depth policies. Final coverage averaged across all tiers is 86.3% and 69.0% for color and depth, respectively, with net coverage gains of 25.2% and 7.8% over starting coverage. In addition, the color policy deployed on tier 1 starting states was able to hit the 92% coverage threshold 20 out of 20 times.

Qualitatively, the color-trained policy is effective at “fine-tuning” by taking several short pulls to trigger at least 92% coverage. For example, Figure 6 shows a trajectory taken by a color policy trained on tier 3 starting states, where it is able to smooth the highly wrinkled fabric in seven actions.

The depth policies do not perform as well, but this is in large part because the depth policy sometimes takes counterproductive actions after several reasonable actions. Depth policies may have lower performance due to uneven texture on the fabric we use, which is difficult to replicate in simulation.

C. Experiments With Yellow Fabrics

To further test color versus depth policies, we used the same two policies trained on tier 1 starting states and deployed them on yellow fabric. The color distribution
Fig. 6: An example trajectory (reproduced from Figure 1) taken by a learned policy trained on color images from tier 3 starting states. (Images are taken from the camera view used to record videos.) The leftmost image shows the starting state of the fabric, set to be highly wrinkled with at least the bottom right fabric corner hidden. The policy takes seven actions in this episode, with pick points and pull vectors indicated by the overlaid black arrows. Despite the highly wrinkled starting state, the policy is able to smooth fabric to get above 92% coverage as shown at the rightmost image.

Fig. 7: An example trajectory taken by a tier 1, color-trained policy on yellow fabric. The first action (left image) picks to the upper left and pulls the fabric away from the plane (black arrow). The process repeats for several actions and, as shown in the last image, the fabric barely covers the plane.

TABLE III: Physical experiments for 5 trajectories with yellow fabric. We report the same statistics as in Table II for the two same policies (T1 C and T1 D) trained on tier 1 starting states.

	(1) Start	(2) Final	(3) Max	(4) Actions
T1 C	81.5 +/- 3.6	71.7 +/- 25.2	89.6 +/- 6.2	7.6 +/- 2.9
T1 D	83.1 +/- 2.9	85.9 +/- 15.3	91.9 +/- 5.3	4.6 +/- 4.4

"covered" by domain randomization included shades of blue, purple, pink, red, and gray, but not yellow. We recreated five starting fabric conditions where, with a blue fabric, the color policy attained at least 92% coverage in just one action.

Results in Table III indicate poor performance from the color policy, as coverage decreases from 81.5% to 71.7%. Only two out of five trajectories resulted in at least 92% coverage. We observed behavior shown in Figure 7 where the policy fails to pick at a corner or to pull in the correct direction. The depth policy is invariant to colors, and is able to achieve higher ending coverage of 85.9%. This is higher than the 78.8% coverage reported in Table II due to relatively easier starting states.

D. Failure Cases

The policies, particularly those trained with depth images, are susceptible to pulling near the center of the fabric for fabrics that are already nearly smooth, as shown in Figure 8. This results in poor coverage and may lead to cascading errors (as in Figure 7). One cause may be that there are several fabric corners that are equally far from their targets, which creates ambiguity in which corner should be pulled. It may be worthwhile to formulate corner picking with a mixture model to resolve this ambiguity.

IX. CONCLUSION AND FUTURE WORK

We investigate baseline and learned policies for fabric smoothing. Using a low fidelity fabric simulator and a custom environment, we train policies in simulation using DAgger with a corner pulling demonstrator. We use domain randomization to transfer policies to a surgical robot. When testing on fabric of similar color to that used in training, color-based policies achieve higher coverage than depth-based policies, but depth could be more valuable in practice for unseen colors.

In future work, we will test on fabric shapes and configurations where corner pulling policies may get poor coverage. We plan to apply deep reinforcement learning, using the simulation environment for color and depth images with DDPG [23] and other state-of-the-art RL methods to potentially learn richer policies that can explicitly reason over multiple time steps and varying geometries. We will utilize higher-fidelity fabric simulators such as ARCSim [28]. Finally, we would like to extend the method beyond fabric coverage to tasks such as folding and wrapping, and will apply it to ropes, strings, and other deformable objects.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in affiliation with Honda Research Institute USA, the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS “People and Robots” (CPAR) Initiative, and by the Scalable Collaborative Human-Robot Learning (SCHooL) Project, NSF National Robotics Initiative Award 1734633. The authors were supported in part by Siemens, Google, Amazon Robotics, Toyota Research Institute, Autodesk, ABB, Samsung, Knapp, Loccioni, Intel, Comcast, Cisco, Hewlett-Packard, PhotoNeo, NVidia, and Intuitive Surgical. Daniel Seita is supported by a National Physical Science Consortium Fellowship. We thank Jackson Chui, Michael Danielczuk, Shivin Devgon, and Mark Theis.
[46] L. Sun, G. Aragon-Camarasa, S. Rogers, and J. P. Siebert, “Accurate Garment Surface Analysis using an Active Stereo Robot Head with Application to Dual-Arm Flattening,” in IEEE International Conference on Robotics and Automation (ICRA), 2015.

[47] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[48] B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and K. Goldberg, “Multilateral Surgical Pattern Cutting in 2D Orthotropic Gauze with Deep Reinforcement Learning Policies for Tensioning,” in IEEE International Conference on Robotics and Automation (ICRA), 2017.

[49] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

[50] E. Torgerson and F. Paul, “Vision Guided Robotic Fabric Manipulation for Apparel Manufacturing,” in IEEE International Conference on Robotics and Automation (ICRA), 1987.

[51] L. Verlet, “Computer Experiments on Classical Fluids: I. Thermodynamical Properties of LennardJones Molecules,” Physics Review, vol. 159, no. 98, 1967.

[52] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” Trans. Img. Proc., Apr. 2004.

[53] B. Willimon, S. Birchfield, and I. Walker, “Model for Unfolding Laundry using Interactive Perception,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011.

[54] P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata, “Repeatable Folding Task by Humanoid Robot Worker Using Deep Learning,” in IEEE Robotics and Automation Letters (RA-L), 2017.
We structure this appendix as follows:

- Appendix I provides details on the fabric simulator.
- Appendix II discusses the baseline pick point methods from Section III.
- Appendix III explains the imitation learning pipeline, and includes discussion about the neural network architecture and the domain randomization.
- Appendix IV describes the experiment setup with the da vinci Surgical robot.

APPENDIX I FABRIC ENVIRONMENT

The fabric simulator is implemented in Python with Cython for increased speed. The simulator is low fidelity compared to more accurate simulators such as ARCSim [28], but has the advantage of being easier to adapt to the smoothing task we consider. Some relevant hyperparameters are shown in Table IV.

A. Actions

The fabric smoothing environment is implemented with a standard OpenAI gym [6] interface. Each action is broken up into six stages: (1) a grasp, (2) a pull up, (3) a pause, (4) a linear pull towards a target, (5) a second pause, and (6) a drop. Steps (2) through (6) involve some number of iterations, where each iteration changes the coordinates of "pinned" points on ξ_t and then calls one “update” method for the fabric simulator to adjust the other, non-pinned points.

1) **Grasp:** We implement a grasp by first simulating a gripper moving downwards from a height higher than the highest fabric point, which simulates grasping only the top layer of the fabric. At a given height z_t, to decide which points in ξ_t are grasped given pick point (x_t, y_t), we use a small sphere centered at (x_t, y_t, z_t) with a radius of 0.003 units, where units are scaled so 1 represents the length of a side of the fabric plane. If no points are gripped, then we lower z_t until a point is within the radius. In practice, this means usually 2-5 out of the $25 = 625$ points on the cloth are grasped for a given pick point. Once any of the fabric's points are within the gripper's radius, those points are considered fixed, or "pinned".

2) **Pull Up:** For 50 iterations, the pull adjusts the z-coordinate of any pinned point by $dz = 0.0025$ units, and keeps their x and y coordinates fixed. In practice, tuning dz is important. If it is too low, an excessive amount of fabric-fabric collisions can happen, but if it is too high, then coverage substantially decreases. In future work, we will consider dynamically adjusting the height change so that it is lower if current fabric coverage is high.

3) **First Pause:** For 80 iterations, the simulator keeps the pinned points fixed, and lets the non-pinned points settle.

4) **Linear Pull to Target:** To implement the pull, we adjust the x and y coordinates of all pinned points by a small amount each time step (leaving their z coordinates fixed), in accordance with the deltas $(\Delta x_t, \Delta y_t)$ in the action. The simulator updates the position of the non-pinned points based on the implemented physics model. This step is run for a variable amount of iterations based on the pull length.

5) **Second Pause:** For 300 iterations, the simulator keeps the pinned points fixed, and lets the non-pinned points settle. This period is longer than the first pause because normally more non-pinned points are moving after a linear pull to the target compared to a pull upwards.

6) **Drop:** Finally, the pinned points are “un-pinned” and thus are allowed to lower due to gravity. For 1000 iterations, the simulator lets the entire cloth settle and stabilize for the next action.

B. Starting State Distributions

We provide details on how we generate starting states from the three distributions we use (see Section IV-B).

- **Tier 1.** We perform a sequence of two pulls with pick point randomly chosen on the fabric, pull direction randomly chosen, and pull length constrained to be short (about 10-20% of the length of the fabric plane). If coverage remains above 90% after these two pulls we perform a third short (random) pull.

- **Tier 2.** For this tier only, we initialize the fabric in a vertical orientation with tiny noise in the direction perpendicular to the plane of the fabric. Thus the first action in Tier 2 initialization is a vertical drop over one of two edges of the plane (randomly chosen). We then randomly pick one of the two corners at the top of the dropped fabric and drag it approximately toward the center for about half of the length of the plane. Finally we grip a nearby point and drag it over the exposed corner in an attempt to occlude it, again pulling for about half the length of the plane.

- **Tier 3.** Initialization consists of just one high pull. We choose a random pick point, lift it about 4-5 times as high as compared to a normal action, pull in a random direction for 10-25% of the length of the plane, and let the fabric fall, which usually creates less coverage and occluded fabric corners.

The process induces a distribution over starting states, so the agent never sees the same starting fabric state. These starting state distributions do not generally produce a setting when we have a single corner fold that is visible on top of the fabric, as that case was frequently shown and reasonably approached in prior work [42].

APPENDIX II DETAILS ON BASELINE POLICIES

We describe the implementation of the analytic methods from Section V in more detail.
A. Highest (Max z)

We implement this method by using the underlying state representation of the fabric ξ_t, and not the images o_t. For each ξ_t, we iterate through all fabric point masses and obtain the one with the highest z-coordinate value. This provides the pick point. For the pull vector, we deduce it from the location of the fabric plane where it would be located if the fabric were perfectly flat.

To avoid potentially getting stuck repeatedly pulling the same point (which happens if the pull length is very short and the fabric ends up “resetting” to the prior state), we select the five highest points on the fabric, and then randomize the one to pick.

B. Wrinkles

The implementation approximates the method in Sun et al. [45]; implementing the full algorithm is difficult due to its complex, multi-stage nature and the lack of open source code. Their wrinkle detection method involves computing variance in height in small neighborhoods around each pixel in the observation image o_t. k-means clustering on the pixels with average variance above a certain threshold value, and hierarchical clustering on the clusters found by k-means to obtain the largest wrinkle. We approximate their wrinkle detection method by isolating the point of largest local variance in height using ξ_t. Empirically, this is accurate at selecting the largest wrinkle. To estimate wrinkle direction, we find the neighboring point with the next largest variance in height.

We then pull perpendicular to the wrinkle direction. Where Sun et al. [45] constrains the perpendicular angle to be one of eight cardinal directions (north, northeast, east, southeast, south, southwest, west, northwest), we find the exact perpendicular line and its two intersections with the edges of the fabric. We choose the closer of these two as the pick point and pull to the edge of the plane.

C. Oracle

For the oracle policy, we assume we can query the four corners of the fabric and know their coordinates. Since we know the four corners, we know which of the fabric plane corners (i.e., the targets) to pull to. We pick the pull based on whichever fabric corner is furthest from its target.

D. Oracle Expose

The oracle expose policy is an extension to the oracle policy. In addition to knowing the exact position of all corners, the policy is also aware of the occlusion state of all corners. The occlusion state is a 4D boolean vector which indicates a 1 if a given corner is visible to the camera from the top-down view or a 0 if it is occluded. The oracle expose policy will try to solve all visible corners in a similar manner to the oracle policy using its extended state knowledge. If all four corners are occluded, or all visible corners are within a threshold of their target positions, the oracle expose policy will perform a revealing action on an occluded corner. We implement the revealing action as a fixed length pull 180 degrees away from the angle to the target position. This process is repeated until the threshold coverage is achieved.

APPENDIX III

DETAILS ON IMITATION LEARNING

A. DAgger Pipeline

We collected demonstrations by running the oracle corner policy (not oracle expose) for 2000 trajectories for each of the three starting state tiers. We then run behavior cloning on this offline data for 500 epochs before running DAgger.

Each DAgger “iteration” rolls out 10 parallel environments for 20 steps each (hence, 200 total new samples) which are labeled by the oracle corner policy. These are added to a growing dataset of samples which includes the demonstrator’s original offline data. After 20 steps per parallel environment, we draw 240 minibatches of size 128 each for training. Then the process repeats with the agent rolling out its new policy. DAgger hyperparameters are in Table V. In practice, the L_2 regularization for the policy impacted performance significantly. We use 1e-5 and saw poor performance with 1e-3 and 1e-4. The total number of DAgger steps was limited to 50,000 due to compute and time limitations; training for substantially more steps is likely to yield further improvements.

The policy neural network architecture is similar to the one in Matas et al. [26] with four convolutional layers, each with 32 filters of size 3×3, followed by dense layers of size 256 each, for a total of 3.44 million parameters. The parameters, in more detail, are (ignoring biases for simplicity):

Hyperparameter	Value
Parallel environments	10
Stepps per env, between gradient updates	20
Gradient updates after parallel steps	240
Minibatch size	128
Demonstrator (offline) trajectories	2000
Policy learning rate	1e-4
Policy L_2 regularization parameter	1e-5
Behavior Cloning epochs	500
DAgger steps after Behavior Cloning	50000

TABLE V: Hyperparameters for the main DAgger experiments.

As input, the policy consumes images of size $(100 \times 100 \times 3)$, and produces a 4D vector with a hyperbolic tangent applied to make components within $[-1, 1]$. We optimize using Adam [16] with learning rate 10^{-4} and use L_2 regularization of 10^{-5}.

B. Domain Randomization and Simulated Images

To transfer a policy to a physical robot, we use domain randomization [49] during training. We randomize fabric
colors, the shading of the fabric plane, and camera pose. We do not randomize the simulator’s parameters as done in OpenAI et al. [29] and leave this to future work.

Figures 10 and 11 show examples of simulated images with domain randomization applied. We specifically applied the following randomization, in order:

- For color images only, we apply color randomization. The cloth background and foreground colors are set at default RGB values of [0.07, 0.30, 0.90] and [0.07, 0.05, 0.60], respectively, creating a default blue color. With domain randomization, we create a random noise vector of size three where each component is independently drawn from Unif[−0.35, 0.35] and then add it to both the background and foreground colors. Empirically, this creates images of various shades “centered” at the default blue value.

- For both color and depth images, we apply camera pose randomization, with Gaussian noise added independently to the six components of the pose (three for position using meters, three for orientation using degrees). Gaussians are drawn centered at zero with standard deviation 0.04 for positions and 0.9 for degrees.

- After Blender produces the image, we next adjust the brightness via OpenCV gamma correction[1] with separately tuned values for color and depth images, and with $\gamma = 1$ representing no brightness change. We draw $\gamma \sim \text{Unif}[0.3, 0.5]$ for depth images (to make the images darker to match physical images) and draw $\gamma \sim \text{Unif}[0.8, 1.2]$ for color images.

Only after the above are applied, do we then independently add uniform noise to each pixel. For each full image with pixel values between 0 and 255, we draw a uniform random variable $l \sim \text{Unif}[-15, 15]$ between -15 and 15. We then draw additive noise $\epsilon \sim \text{Unif}[-l, l]$ for each pixel independently.

APPENDIX IV
EXPERIMENT SETUP DETAILS

A. Image Processing Pipeline

The original color and depth images come from the mounted Zivid One Plus RGBD camera, and are processed in the following ordering:

- For depth images only, we apply in-painting to fill in missing values (represented as “NaN’s”) in depth images based on surrounding pixel values.
- Color and depth images are then cropped to be 100×100 images that allow the entire fabric plane to be visible, along with some extra background area.
- For depth images only, we clip values to be within a minimum and maximum depth range, tuned to provide depth images that looked reasonably similar to ones processed in simulation. We convert images to three channels by triplicating values across the channels. We then scale pixel values to be within $[0, 255]$ and apply the OpenCV equalize histogram function for all three channels.
- For depth and color images, we apply bilateral filtering and then de-noising, both implemented using OpenCV functions. These help smooth the uneven fabric texture without sacrificing cues from the corners.

Figures 12 and 13 show examples of real fabric images that policies take as input, after processing. These are then passed as input to the policy neural network.

B. Physical Experiment Setup and Procedures

To map from neural network output to a position with respect to the robot’s frame, we calibrate the positions by using a checkerboard on top of the fabric plane. We move the robot’s end effectors with the gripper facing down to each corner of the checkerboard and record positions. During deployment, for a given coordinate frame, we perform bilinear interpolation to figure out the robot position from the four surrounding known points. After calibration, the robot reached positions on the fabric plane to 1-2 mm of error. Figure 9 shows a visualization of the heuristic we employ to get the robot to grasp fabric when it originally misses by 1-2mm.

[1] https://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/
Fig. 10: Representative simulated color images of examples of starting fabric states drawn from the distributions specified in Section IV-B. All images are of dimension $100 \times 100 \times 3$. Top row: tier 1. Middle row: tier 2. Bottom row: tier 3. Domain randomization is applied on the fabric color, the shading of the white background plane, the camera pose, and the overall image brightness, and then we apply uniform random noise to each pixel.

Fig. 11: Representative simulated depth images of examples of starting fabric states drawn from the distributions specified in Section IV-B, shown in a similar manner as in Figure 10. Images are of dimension $(100 \times 100 \times 3)$ with the depth values repeated across the three channels. Domain randomization is applied on the camera pose and the image brightness, and then we apply uniform random noise to each pixel.
Fig. 12: Representative examples of color images from the physical camera used for the surgical robot experiments, so there is no domain randomization applied here. We manipulated fabrics so that they appeared similar to the simulated states. The color images here correspond to the depth images in Figure 13.

Fig. 13: Representative examples of depth images from the physical camera used for the surgical robot experiments, so there is no domain randomization applied here. We manipulated fabrics so that they appeared similar to the simulated states. The depth images here correspond to the color images in Figure 12.