Zeeman-type spin splitting in non-magnetic three-dimensional compounds: Materials prediction and electrical control

Carlos Mera Acosta1,2,*, Adalberto Fazzio1,2, and Gustavo M. Dalpian1

1Center of Natural and Human Sciences, Federal University of ABC, 09210-580, Santo André, SP, Brazil
2Brazilian Nanotechnology National Laboratory, CP 6192, 13083-970, Campinas, SP, Brazil
*acosta@if.usp.br

ABSTRACT

Despite its potential for device application, the non-magnetic Zeeman effect has only been predicted and observed in two-dimensional compounds. We demonstrate that non-centrosymmetric three-dimensional compounds can also exhibit a Zeeman-type spin splitting, allowing the splitting control by changing the growth direction of slabs formed by these compounds. We determine the required conditions for this effect: \textit{i}) non-centrosymmetric including polar and non-polar point groups, \textit{ii}) valence band maximum or conduction band minimum in a generic \(i\)-point, i.e., non-time-reversal-invariant momentum, and \textit{iii}) zero magnetic moment. Using these conditions as filters, we perform a material screening to systematically search for these systems in the allow-ICSD database. We find 20 material candidates featuring the Zeeman-type effect. We also found that the spin-splitting in confined systems can be controlled by an external electric field, which in turns can induce a metal-insulator transition. We believe that the Zeeman-type effect in three-dimensional compounds can potentially be used for spin-filtering devices.

The manipulation of inversion and time-reversal (TR) symmetries have been the cornerstone of novel phenomena allowing the generation and control of spin-polarized states in crystalline materials, the principal goal of spintronics1–4. The TR-symmetry breaking, which is usually induced by external magnetic fields or the intrinsic magnetic order, can lead to a separation in energy of bands with opposite spin, i.e., Zeeman spin splitting5–7. In non-magnetic compounds, the combination of the atomic-site polarity and bulk point group results in all possible structural configurations leading to intrinsic spin-polarized states8–10. For instance, in bulk inversion asymmetry (IA) materials, the spin-polarization is always accompanied by a spin splitting typically referred to as either Dresselhaus11 or Rashba effect12,13 according to the spin-texture orientation (see Fig. 1a). The band-dispersion curves related to these effects, which are represented in Fig. 1b, have been characterized by spectroscopic measurements for many surfaces and interfaces15–18, and can be described by a simplified Hamiltonian model,

\[
\mathcal{H} = \mathcal{H}_0 + \mathbf{Ω}(\mathbf{k}) \cdot \mathbf{σ} \quad (1)
\]

where \(\mathcal{H}_0 = \frac{\hbar^2 \mathbf{k}^2}{2m^*} \mathbf{I}\), \(\mathbf{Ω}(\mathbf{k})\) is the spin-orbit coupling (SOC) field, and \(σ_i\) are the Pauli matrices. Here, \(k_\parallel = k_x^2 + k_y^2\), \(m^*\) is the effective mass of electrons, and \(\mathbf{I}\) is the \(2 \times 2\) unitary matrix. The specific form of \(\mathbf{Ω}(\mathbf{k})\) depends on the material symmetry19,20. For instance, in a two-dimensional system with \(\mathcal{C}_3\) point group, the Rashba and Dresselhaus fields are written as \(\mathbf{Ω}_R = \lambda_R (-k_y, k_x, 0)\) and \(\mathbf{Ω}_D = \lambda_D (k_x, k_y, 0)\), respectively. The strength of the Rashba (Dresselhaus) field is given by the parameter \(\lambda_R\) (\(\lambda_D\)). The parameter \(\lambda_R\) is different from zero in systems featuring a non-zero electric dipole21, which can be intrinsic or, as originally proposed by Rashba, induced by interfacing semiconductors or external electric fields. The Rashba effect is typically used for the electrical control of the spin-polarization2,4,22. For these reasons, IA materials have historically been the most promissory candidates for spintronic devices.

Besides the Rashba and Dresselhaus effects, another kind of spin splitting in non-magnetic IA compounds, whose spin texture is similar to the one observed in the magnetic Zeeman effect, is the so-called Zeeman-type spin splitting (See Fig. 1a). Despite its potential for device application, this non-magnetic effect has only been predicted and observed in the two-dimensional \(\text{WSe}_2\) and \(\text{MoS}_2\)23–25. Unlike the Rashba and Dresselhaus splitting, the Zeeman-type splitting does not have a band crossing (See Fig. 1a) and has been related to the effect of an electric dipole or an external electric field23. This suggests that this effect can only be induced in two-dimensional systems. Indeed, it has not been explored in three-dimensional compounds.

Here, we demonstrate that IA three-dimensional compounds can also exhibit a Zeeman-type spin splitting, allowing the splitting control by changing the growth direction of slabs formed by these compounds. For this purpose, we first establish
Figure 1. (a) Schematic representation of the band structure and spin-texture of systems featuring the Rashba, Dresselhaus, and non-magnetic Zeeman effects. The arrows stand for the spin-polarization orientation. In the Rashba and Dresselhaus effects, the bands (green and purple) cross each other at the origin of the BZ (Γ is a TR-invariant point). (b) Filters used in the materials prediction for each spin-polarization phenomenon. The band structure without SOC is represented in black. After considering the SOC, for IA compounds, the bands split. The up and down spins are represented in blue and red, respectively. For compounds with IS, we have also represented each band separately to make evident the different spin components.

Design principles and materials screening

Based on the space group and chemical composition analyzes, we determine the conditions that a material should meet to exhibit the Zeeman-type effect. Design principles are typically used as filters to predict or select compounds from the materials databases, e.g., AFLOW and materials project. By combining the materials screening with high-throughput density functional theory calculations (See section Methods), we have an efficient approach to predict novel Zeeman-type semiconductors.

The Zeeman-type effect is the spin discrimination as a consequence of the inversion-symmetry (IS) breaking at non-TR invariant k-points, rather than the effect of an intrinsic electric dipole, as we discuss below. We then define the conditions that a material should satisfy to exhibit the Zeeman-type effect: i) inversion-assymetry (IA) and TR symmetry (non-centrosymmetric bulk and non-magnetic moment), ii) a total electric dipole is not needed (polar and non-polar point groups), and iii) the VBM and CBM must take place at a non-TR-invariant k-point. These conditions are summarized in Fig. 1b. Specifically, the Zeeman-type splitting is related to non-centrosymmetric non-magnetic materials, i.e., only compounds with bulk point groups C_n, C_{nv}, D_n (with n = 2, 3, 4, and 6), S_4, D_{2h}, C_{3h}, D_{3h}, T, T_d, and O could feature the non-magnetic Zeeman effect. When the VBM or CBM take place at a TR-invariant k-point, the compounds are classified as a Rashba or Dresselhaus semiconductors (See Fig. 1b). Additionally, compounds in other symmetries could feature the hidden-spin-polarization, as represented in Fig. 1b.
Table 1. For each non-magnetic Zeeman-type semiconductor we show the spin splitting for the Zeeman-type effect in the CBM (ΔZ_2) and VBM (ΔY_2) (See Fig. 1b), formation energy per atom (E_f), energy above the convex Hull per atom (E_{AH}), band gap (E_g), space group, references for the experimental realizations and previous theoretical predictions, and ICSD code. The calculated electronic properties are in agreement with the results reported in the material project29,30 and AFLOW-ICSD26,27 repositories.

Compound	ΔZ_2 (meV)	ΔY_2 (meV)	E_f (eV)	E_{AH} (eV)	E_g (eV)	Space group	Exp.	Theory	ICSD code
Ge$_3$As$_4$	13	–	0.005	0.05	0.155	P43m	–	34	163833
SnS	49	–	-0.495	0.28	0.166	F43m	32	29	43409
OsC	332	340	0.772	0.772	0.279	P2$_1$3	–	33	168277
Mn$_2$Ge	192	141	0.137	0.253	0.132	F43m	34	–	184947
RuGe	97	101	-0.281	0.013	0.185	P2$_1$3	35	–	637744
OsSi	346	202	-0.367	0.012	0.512	P2$_1$3	36	–	647777
FeSi	70	17	-0.511	0	0.181	P2$_1$3	37–39	–	635452
RuSi	85	81	-0.647	0	0.261	P2$_1$3	40–42	–	85209
WSi$_2$	–	38	-0.277	0.066	0.034	P6$_2$2	43,44	–	652549
WN$_2$	433	125	-0.521	1.070	0	P6m2	–	45	290433
Bi$_2$O$_3$	–	81	-1.562	0.092	2.416	R3m	–	46	168810
MoS$_2$	187	–	-1.303	0.003	1.422	R3m	47–49	–	43560
WS$_2$	510	–	-1.26	0.004	1.841	R3m	50,51	–	202367
Ir$_2$Ge$_5$	16	–	-0.34	0	0.128	P4c2	52–54	–	42909
Ti$_2$Te$_3$	156	197	-0.167	0.024	0.445	Cc	55	–	26282
Ge$_2$O$_2$	7	–	-0.533	1.561	0.985	P3$_1$21	56	–	53869
SnTe	491	–	-0.034	0.252	0.240	F43m	28	–	53956
Bi$_2$O$_3$	15	–	-1.486	0.168	0.149	P4m2	–	46	168808
In$_2$Te$_5$	–	31	-0.233	0	1.041	Cc	57,58	–	640615
Cs$_2$Te$_3$	53	209	-0.755	0	0.637	Cmc2$_1$	59,60	–	53245

We use the previously established conditions as filters for a systematic search of non-magnetic Zeeman materials. We perform a materials screening in the AFLOW-ICSD database26,27, which contains information of approximately 59000 fabricated materials. After eliminating compounds with the same formula, space group, and the number of atoms in the unit cell, we obtain 32553 entries. There are 8360 binary compounds, which in turn can be divided into 1326 IA and 7034 IS materials. Among the IA compounds, we find 587 non-magnetic gaped and 739 gapless magnetic materials. Finally, only 20 non-magnetic IA compounds exhibit either the CBM or the VBM at non-TR-invariant k-points. Detailed information of the predicted Zeeman-type materials is presented in Table 1.

Some materials in the ICSD-database have been fabricated under specific conditions of pressure and temperature, therefore, these compounds could be above the boundary of the convex-Hull, i.e., the phase diagram representing the set of lowest possible potential energy states obtained from both single materials and mixtures of those materials. Remarkably, in the selected compounds, we find systems forming the boundary of the convex-Hull ($E_{AH} = 0$), suggesting that they are in the most stable structural configuration, such as, WN$_2$ and RuSi, FeSi, Ir$_2$Ge$_5$, In$_2$Te$_5$, and Cs$_2$Te$_3$ in the space groups P6m2, P2$_1$3, P2$_1$3, P4c2, Cc, and Cmc2$_1$, respectively. We find that for RuGe, OsSi, MoS$_2$, WS$_2$, and Ti$_2$Te$_3$ the energy above the convex Hull is less than 30 meV/atom, which means that these materials could be easily synthesized.

For WS$_2$ and MoS$_2$ (space group $P6_3/mmc$), the bulk is centrosymmetric and the site point group D_{3h} and C_{3v} of the Mo and S atoms are non-centrosymmetric, which results in a hidden Dresselhaus spin-polarization22,23. However, in the non-centrosymmetric space group $R3m$, the VBM of these materials has a giant Zeeman-type splitting about 510 and 187 meV, as shown in Table 1. We also find that compounds with the same formula but with different structure could exhibit different splitting values. For instance, Bi$_2$O$_3$ (space group $R3m$) has a splitting of 81 meV in the CBM, whereas the VBM of this compound in the $P4m2$ space group has a splitting of 15 meV. This is expected since the on-site SOC is not the unique property related to the spin splitting21. Indeed, systems formed by atoms with a relatively weak SOC could also have large splitting values, e.g., $\Delta Z_2 = 192$ meV in Mn$_2$Ge.

Surfaces and electrical control
Since surfaces and two-dimensional confinement affect the symmetry and the total electric dipole, we here explore the spin splitting in the surfaces of Zeeman-type semiconductors and its possible electrical control. For illustrative purposes, we will
Figure 2. (a) Crystal structure and (b) BZ of SnTe in the ZB structure. In (a) and (b), the crystallographic planes corresponding to slabs growth directions (10\overline{1}), (110), and (111) are presented by the green, blue, and purple planes, respectively. The top view and side view of the real space and band structure for the (10\overline{1}), (110), and (111) surfaces are shown in (c), (d), and (e), respectively. For illustrative purposes, we only show slabs formed by eight atomic layers. The red arrows stand for the spin splitting, which is zero for the (10\overline{1}) surface.

present here the results for the SnTe (one of the materials with the largest splitting). We consider three growth directions corresponding to planes parallel, oblique, and perpendicular to the Sn-Te bonding along the axis normal to the surface (111) (See Fig. 2a), i.e., planes at the crystallographic directions (10\overline{1}), (110), and (111), respectively. We find that the spin splitting change according to the growth direction of the slab. Specifically, the splitting is near zero for the plane (10\overline{1}) and increases as the angle between the plane and the bonding increases. Thus, the (110) and (111) planes exhibit a splitting of 50 and 491 meV (See Fig. 2c-e). Consequently, the slab (10\overline{1}) is an insulator, whereas the (110) and (111) surfaces are metallic. This insulator-metal transition are a remarkable effect arising from large spin splittings in non-magnetic Zeeman semiconductors. If the spin splitting in the VBM is greater than the bandgap, the highest energy band can cross the Fermi energy, leading to majority spin channels, as shown for SnTe in Fig. 2c-e. This transition can be induced and controlled in a specific slab by manipulating the Zeeman splitting, which can be used for application in spintronics, e.g., spin filtering. For instance, a perpendicular external electric field $E = E_z$ could modify the electric dipole induced by the surface. For SnTe slab along the (111) surface, an applied electric field $E = E_z$ decreases the spin splitting, leading to a metal-insulator transition for $E_z = 0.12$ eV/Å. By increasing the electric field, the bandgap opens again due to the change on the electric dipole orientation, resulting in an insulator-metal transition for $E_z = 0.145$ eV/Å.

Discussion

The Zeeman-type splitting in the so far proposed layered materials has been interpreted in terms of a non-zero intrinsic dipole. This interpretation, based on the common understanding of the Rashba effect, implies that compounds in which the atomic dipoles add up to zero, e.g., ZB GaAs, cannot exhibit this splitting, which is not necessarily correct, as we discuss below. A historical example of Dresselhaus semiconductors is the GaAs (space group F\overline{4}3m). In this IA compound, the dipoles add up to zero due to the tetrahedral chemical environment imposed by the crystal symmetry, as represented in Fig. 3a. Thus, although...
the Rashba terms do not contribute to the Hamiltonian describing the GaAs band structure, the spin splitting reaches high values ($\approx 120\text{meV}$) at the high symmetry point W (See Fig. 3b), as early reported in Ref. 62. On the other hand, for ZB binary semiconductors, the position of the CBM and VBM can change according to the chemical composition (AB)63: GaAs and Germanium have a direct band gap at Γ, but in Silicon and GaP, the CBM is at the X point. Here, we find that the VBM can take place at the W point (highest spin splitting in GaAs) for A=Sn and B=Te, as represented in Fig. 3c. Naturally, SnTe has also a zero internal dipole, but a giant spin Zeeman-type splitting of 491 meV (See Table 1). States exhibiting large spin-splitting can be brought up to the Fermi energy by changing the atomic composition, as evident from the predicted compounds. This can be a different route to find this kind of materials, which typically exhibit splittings larger than the the observed in the Rashba and Dresselhaus effects, as we demonstrate below.

In ZB semiconductors, the spin-polarized states near the Γ point are described by the Eq. 1 with $\mathcal{H}_0(k) = \frac{k^2}{2m} \mathbf{1}$ and the effective Rashba and Dresselhaus fields given by $\mathbf{\Omega}_R(k) = \lambda_R (\mathbf{n} \times k)$ and $\mathbf{\Omega}_D(k) = \lambda_D (k_x (k_y^2 - k_z^2), k_y (k_z^2 - k_x^2), k_z (k_x^2 - k_y^2))$, respectively. Here, \mathbf{n} is a unitary vector along the direction of the electric dipole. Accordingly, the spin-splitting generated by these odd-in-k effective magnetic fields is

$$\Delta(k) = \varepsilon^\uparrow(k) - \varepsilon^\downarrow(k) = |\mathbf{\Omega}_R(k)| + |\mathbf{\Omega}_D(k)|,$$

where $\varepsilon^\uparrow(k)$ and $\varepsilon^\downarrow(k)$ are the eigenvalues of the Hamiltonian \mathcal{H}. In order to show that the Zeeman splitting is typically larger than the Rashba and Dresselhaus splitting, we consider an illustrative case: $\lambda_D = 0$ and $\mathbf{n} = \hat{\mathbf{z}}$. Thus, the spin-splitting becomes $\Delta(k) = \lambda_R |k_\parallel|$. In the Rashba effect, the momentum offset k_R usually reaches small values between 10^{-2}Å^{-1} and 10^{-1}Å^{-1} (See Fig. 1b)3. Therefore, although the parameter may be large ($\lambda_R \approx 1\text{eVÅ}$), the splitting values are always limited to some meV3,15–18. This is also valid in compounds in which the atomic dipoles add up to zero, where $\lambda_R = 0$ and $\Delta(k) = |\mathbf{\Omega}_D(k)|$. Since the non-TR-invariant high symmetry k-points are at the boundary of the BZ, Zeeman-type splitting are always larger than Rashba and Dresselhaus splitting. Additionally, due to the spin splitting position in the BZ, the Zeeman-type effect offers alternative mechanisms for spin polarization control.

Along the X-W symmetry line, the spin-texture of the SnTe band structure is dominated by S_x spin components. This can be verified form the Hamiltonian \mathcal{H} for $\lambda_R = 0$. Because along such direction $k_z = 0$ and $k_y^2 \approx 0$, the Dresselhaus field can be written as $\mathbf{\Omega}_D(k) \approx (k_x k_y^2, 0, 0)$. Therefore, the splitting can be controlled by changing the growth direction of slabs. For instance, when the systems are confined along the (101), we can write $(k_z) = 0$. Consequently, the Zeeman spin splitting at the W-point (S-point in the equivalent two-dimensional BZ, as shown in Fig. 2b) vanishes.
Different from the Rashba and Dresselhaus splitting at TR-invariant k-points, the non-magnetic Zeeman effect does not allow the spin-polarization electrical control, but the spin-filtering effect mediated by the electrical control of the splitting size. Specifically, an external electric field does not change the spin-polarization, but the splitting size. The electric field can then bring states with a specific spin to the Fermi energy. This control mechanism is different from the recently reported in the magnetic-Zeeman splitting. As previously discussed, the electrical control of the spin splitting can also be achieved in these materials according to the growth direction of the slab.

In conclusion, we demonstrate that IA three-dimensional non-magnetic compounds can exhibit a Zeeman-type spin splitting, providing the possibility to grow slabs in which the electrical dipole is perpendicular to the surface and hence, allowing the electrical control of the spin splitting. The required conditions for this effect are: valence band maximum or conduction band minimum in a non-time-reversal-invariant k-point, inversion asymmetry, and zero magnetic moment. Using these conditions as filters, we perform a material screening and high-throughput ab-initio calculations to systematically search for these materials in the aflow-ICSD database. We find 20 candidates featuring this splitting. Our calculated spin splittings can be as large as 433, 510, and 491 meV for the compounds WN$_2$ (P6m1), WS$_2$ (R3m), and SnTe (F43m), respectively. We also demonstrate that the spin splitting in slabs of these compounds depends on the growth direction and can be controlled by an external electric field. We believe that this work will open the way for the discovery of novel fundamental effect related to the spin-polarization control.

Methods

The *ab initio* calculations were performed within the density functional theory (DFT) using Perdew-Burke-Ernzenhof generalized gradient approximation (PBE) exchange-correlation functional and the Hubbard on-site term as implemented in the Vienna Ab-initio Simulation Package (VASP). All the specific settings of the calculations without spin-orbit coupling (e.g. cutoff energies, k-point sampling, effective U parameters, atomic configurations) were the same as to those used on the AFLOW database. We have then included the spin-orbit interaction keeping the zero magnetic moment.

References

1. Jansen, R. Silicon spintronics. *Nat Mater* **11**, 400–408 (2012). URL http://dx.doi.org/10.1038/nmat3293. DOI 10.1038/nmat3293.

2. Maekawa, S., Valenzuela, S. O., Saitoh, E. & Kimura, T. *Spin Current* (Series on Semiconductor Science and Technology 17, Oxford University Press, 2012).

3. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for rashba spin-orbit coupling. *Nat Mater* **14**, 871–882 (2015). URL http://dx.doi.org/10.1038/nmat4360.

4. Bercioux, D. & Lucignano, P. Quantum transport in rashba spin–orbit materials: a review. *Reports on Prog. Phys.* **78**, 106001 (2015). URL http://stacks.iop.org/0034-4885/78/i=10/a=106001.

5. Zeeman, P. The effect of magnetisation on the nature of light emitted by a substance. *Nat.* **55**, 347 EP – (1897). URL http://dx.doi.org/10.1038/055347a0.

6. Preston, T. Radiation phenomena in the magnetic field. *Nat.* **59**, 224 EP – (1899). URL http://dx.doi.org/10.1038/059224c0.

7. Li, Y. *et al.* Valley splitting and polarization by the zeeman effect in monolayer mose$_2$. *Phys. Rev. Lett.* **113**, 266804 (2014). URL https://link.aps.org/doi/10.1103/PhysRevLett.113.266804. DOI 10.1103/PhysRevLett.113.266804.

8. Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. *Nat. Phys.* **10**, 387 EP – (2014). URL http://dx.doi.org/10.1038/npjphys2933.

9. Ryoo, J. H. & Park, C.-H. Hidden orbital polarization in diamond, silicon, germanium, gallium arsenide and layered materials. *Npg Asia Mater.* **9**, e382 EP – (2017). URL http://dx.doi.org/10.1038/am.2017.67.

10. Ramírez-Ruiz, J., Boutin, S. & Garate, I. Nmr in an electric field: A bulk probe of the hidden spin and orbital polarizations. *Phys. Rev. B* **96**, 235201 (2017). URL https://link.aps.org/doi/10.1103/PhysRevB.96.235201. DOI 10.1103/PhysRevB.96.235201.

11. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. *Phys. Rev.* **100**, 580–586 (1955). URL https://link.aps.org/doi/10.1103/PhysRev.100.580. DOI 10.1103/PhysRev.100.580.

12. Rashba, E. I. Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. *Sov. Phys. Solid State* **2**, 1224–1238 (1960).
32. Badachhape, S. & Goswami, A. Structure of evaporated tin sulphide. *J. Phys. Soc. Jpn. Suppl.* **B2**, 251–253 (1962).
33. Po, D. X. & Xu, W. Y. Investigation of osmium carbides with various stoichiometries: first-principles calculations. *J. Appl. Phys.* **107**, 053506–1–053506–6 (2010).
34. Luo, H. *et al.* Origin of the z-28 rule in mn2cu-based heusler alloys: A comparing study. *J. Magn. Magn. Mater.* **324**, 251–253 (2012). URL https://doi.org/10.1016/j.jmmm.2012.02.026.
35. Raub, E. & Fritzche, W. Germanium-ruthenium legierungen. *Zeitschrift fuer Met.* **53**, 779–781 (1962).
36. Goeransson, K., Engstroem, I. & Nolaeng, B. Structure refinements for some platinum metal monosilicides. *J. Alloy. Compd.* **219**, 107–110 (1995).
37. Vocadlo, L., Knight, K., Price, G. & Wood, I. Thermal expansion and crystal structure of fesi between 4 and 1173 k. *Phys. Chem. Miner.* **29**, 132–139 (2002).
38. Wood, I., David, W., Hull, S. & Price, G. A high-pressure study of epsilon-(fe si), between 0 and 8.5 gpa, by time-of-flight neutron powder diffraction. *J. Appl. Crystallogr.* **29**, 215–218 (1996).
39. Pauling, L. & Soldate, A. The nature of the bonds in the iron silicide fesi and related crystals. *Acta Crystallogr.* (1,1948-23,1967) **1**, 212–216 (1948).
40. Weitzer, F., Rogl, P. & Schuster, J. X-ray investigations in the systems ruthenium-silicon and ruthenium-silicon-nitrogen. *Zeitschrift fuer Met.* **79**, 154–156 (1988).
41. Weitzer, F., Perring, L., Gachon, J., Feschotte, P. & Schuster, J. Structure refinements of some compounds of the ru-si, ru-ge and ru-sn systems. *Electrochem. Soc. Proc.* **39**, 241–249 (1997).
42. Finnie, L. Structures and compositions of the silicides of ruthenium, osmium, rhodium, and iridium. *J. Less-Common Met.* **4**, 24–34 (1962).
43. Mattheiss, L. Calculated structural properties of crsi2,mosi2 and wsi2. *Phys. Rev. Ser. 3. B - Condens. Matter* (18,1978-) **45**, 3252–3259 (1992).
44. d’Heurle, F., Petersson, C. & Tsai, M. Observations on the hexagonal form of mo si2 and w si2 films produced by ion implantation and on related snowplow effects. *J. Appl. Phys.* **51**, 5976–5980 (1980).
45. Soto, G. Computational study of hf, ta, w, re, ir os and pt pernitrides. *Comput. Mater. Sci.* **61**, 1 – 5 (2012). URL http://www.sciencedirect.com/science/article/pii/S0927025612002030. DOI https://doi.org/10.1016/j.commatsci.2012.03.056.
46. Matsumoto, A., Koyama, Y. & Tanaka, I. Structures and energetics of bi2 o3 polymorphs in a defective fluorite family derived by systematic first-principles lattice dynamics calculations. *Phys. Rev. Ser. 3. B - Condens. Matter* (18,1978-) **81**, 094117–1–094117–11 (2010).
47. Jellinek, F., Brauer, G. & Mueller, H. Molybdenum and niobium sulphides. *Nat. (London)* **185**, 376–377 (1960).
48. Traill, R. A rhombohedral polytype of molybdenite. *Can. Mineral.* **7**, 524–526 (1962).
49. Takeuchi, Y. & Nowacki, W. Detailed crystal structure of rhombohedral mo s2 and systematic deduction of possible polytypes of molybdenite. *Schweizerische Mineral. und Petrogr. Mitteilungen* **44**, 105–120 (1964).
50. Schutte, W., de Boer, J. & Jellinek, F. Crystal structures of tungsten disulfide and diselenide. *J. Solid State Chem.* **70**, 207–209 (1987).
51. Wildervanck, J. & Jellinek, F. Preparation and crystallinity of molybdenum and tungsten sulfides. *Zeitschrift fuer Anorg. und Allgemeine Chemie* (1950) (DE) **328**, 309–318 (1964).
52. Flieher, G., Voellenkle, H. & Nowotny, H. Die kristallstruktur von ir4 ge5. *Monatshefte fuer Chemie* **99**, 877–883 (1968).
53. Bhan, S. & Schubert, K. Zum aufbau der systeme kobalt - germanium, rhodium - silizium sowie einiger verwandter legierungen. *Zeitschrift fuer Met.* **51**, 327–339 (1960).
54. Panday, P., Singh, G. & Schubert, K. Kristallstruktur von ir4 ge5. *Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie* (-144,1977) **125**, 274–285 (1967).
55. Bhan, S. & Schubert, K. Kristallstruktur von tl5 te3 und tl2 te3. *J. Less-Common Met.* **20**, 229–235 (1970).
56. Uno, R. *et al.* Powder diffractometry at the tsukuba photon factory. *Aust. J. Phys.* **41**, 133–144 (1988). URL https://doi.org/10.1071/PH880133.
57. Verkelis, J. Single crystals of indium telluride. *Mater. Res. Bull.* **9**, 1063–1065 (1974).

58. Sutherland, H., Hogg, J. & Walton, P. Indium polytelluride. *Acta Crystallogr. B* (24,1968-38,1982) **32**, 2539–2541 (1976).

59. Boettcher, P. Synthesis and crystal structure of rubidium and caesium tellurides. *J. Less-Common Met.* **70**, 263–271 (1980).

60. Chuntonov, K., Orlov, A., Yatsenko, S., Grin’, Y. & Miroshnikova, L. Synthesis of chalcogenides with the composition a2(i)b3(vi) and crystal structure of rubidium and caesium tellurides. *Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy* **18**, 1113–1116 (1982).

61. Zunger, A. Inverse design in search of materials with target functionalities. *Nat. Rev. Chem.* **2**, 0121 EP – (2018). URL http://dx.doi.org/10.1038/s41570-018-0121.

62. Luo, J.-W., Bester, G. & Zunger, A. Full-zone spin splitting for electrons and holes in bulk GaAs and GaSb. *Phys. Rev. Lett.* **102**, 056405 (2009). URL https://link.aps.org/doi/10.1103/PhysRevLett.102.056405. DOI 10.1103/PhysRevLett.102.056405.

63. Yeh, C.-Y., Wei, S.-H. & Zunger, A. Relationships between the band gaps of the zinc-blende and wurtzite modifications of semiconductors. *Phys. Rev. B* **50**, 2715–2718 (1994). URL https://link.aps.org/doi/10.1103/PhysRevB.50.2715. DOI 10.1103/PhysRevB.50.2715.

64. Marcellina, E. et al. Electrical control of the zeeman spin splitting in two-dimensional hole systems. *Phys. Rev. Lett.* **121**, 077701 (2018). URL https://link.aps.org/doi/10.1103/PhysRevLett.121.077701. DOI 10.1103/PhysRevLett.121.077701.

65. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996). URL http://link.aps.org/doi/10.1103/PhysRevLett.77.3865. DOI 10.1103/PhysRevLett.77.3865.

66. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in mott-hubbard insulators. *Phys. Rev. B* **52**, R5467–R5470 (1995). URL https://link.aps.org/doi/10.1103/PhysRevB.52.R5467. DOI 10.1103/PhysRevB.52.R5467.

67. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+u study. *Phys. Rev. B* **57**, 1505–1509 (1998). URL https://link.aps.org/doi/10.1103/PhysRevB.57.1505. DOI 10.1103/PhysRevB.57.1505.

68. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169–11186 (1996). URL http://link.aps.org/doi/10.1103/PhysRevB.54.11169. DOI 10.1103/PhysRevB.54.11169.

69. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **59**, 1758–1775 (1999). URL https://link.aps.org/doi/10.1103/PhysRevB.59.1758. DOI 10.1103/PhysRevB.59.1758.

Acknowledgements

This work was financed by FAPESP (grants 18/11856-7 and 17/02317-2), and CNPq. This work was performed using the computational infrastructure of the LNCC supercomputer center (Santos Dumont).