Parallel multiple selection
by regular sampling *

Krzysztof Nowicki
Institute of Computer Science
University of Wroclaw
Wroclaw, Poland
Email: krz.nowicki@gmail.com

Abstract. In this paper we present a deterministic parallel algorithm solving the multiple selection problem in congested clique model. In this problem for given set of elements \(S \) and a set of ranks \(K = \{k_1, k_2, ..., k_r\} \) we are asking for the \(k_i \)-th smallest element of \(S \) for \(1 \leq i \leq r \).

The presented algorithm is deterministic, time optimal, and needs \(O(\log^* r + 1 + (n)) \) communication rounds, where \(n \) is the size of the input set, and \(r \) is the size of the rank set. This algorithm may be of theoretical interest, as for \(r = 1 \) (classic selection problem) it gives an improvement in the asymptotic synchronization cost over previous \(O(\log \log p) \) communication rounds solution, where \(p \) is size of clique.

1 Introduction

Parallel algorithms are one of the answers to the question of what to do with the large amount of data encountered in today’s systems. In this paper we will present another deterministic algorithm solving the multiple selection problem designed for parallel architectures similar to synchronous message passing model. In such models, each processor has some private memory and computations is performed in rounds consisting of alternating phases of local computation and communication.

1.1 Complexity measurements

We will analyse two kinds of computational complexity:

- round complexity
- time complexity

The round complexity is the number of rounds required to finish execution of an algorithm. The time complexity of one round is the minimal number of operations after each computational unit finishes local computation in this round.

*This work was supported by the Polish National Science Centre grant DEC-2012/07/B/ST6/01534
The time complexity of an algorithm is simply sum of time complexities over all rounds.

We will consider an algorithm solving some given problem time optimal if its time complexity is $O(\frac{OPT}{p})$, where OPT is time complexity of an optimal algorithm solving this problem on a sequential RAM machine.

1.2 About multiple selection problem

In the multiple selection problem (S, K) for given set of elements S of size n and a set of ranks $K = \{k_1, k_2, ..., k_r\}$ we are asking for the k_i-th smallest element of S for $1 \leq i \leq r$.

The multiple selection problem has direct application in statistics, more specifically we solve this problem to find quantiles. Apart of that, for $r = n$ it is classic sorting problem and for $r = 1$ the selection problem, which are among basic problems of computer science.

The multiple selection as generalization of sorting and selection might be also interesting in context of parallel architectures with local memory, from purely theoretical point of view. The sorting problem has a deterministic time optimal solution requiring $O(1)$ communication rounds. For selection problem we do not know such solutions nor any non trivial $\omega(1)$ lower bounds on required number of communication rounds. Known algorithms are either randomised, non time optimal or require $\omega(1)$ communication rounds.

2 Previous and related results

2.1 PRAM model

The multiple selection problem in PRAM architecture has a solution matching given lower bound. Proposed algorithm works in $O(\log n)$ steps on $\frac{n}{\log n}$ processors [1]. The best known multiple selection algorithm needed $O(\frac{n}{p} \log(r + 1))$ steps [2]. However, algorithm proposed in that paper seems to work only for $p \in o(\frac{n}{\log n})$, thus for $r = 1$, algorithm had optimal cost $O(\frac{n}{p})$ per processor, but required $\omega(\log n)$ steps of computation.

2.2 BSP model

For BSP model the simple selection problem was investigated more often than the multiple selection version. There are two deterministic solution we would like to mention. The first is more or less parallel implementation of median of medians algorithm working in optimal time and $\min(\log p, \log \log n)$ synchronization rounds, where p is a number of computational units and n is the size of given set [3].

In 2010 Alexander Tiskin proposed a time optimal algorithm solving the selection problem using regular sampling [4], which required $O(\log \log p)$ communication rounds.
If we allow randomization, constant communication round solution, given by Alexandros V. Gerbessiotis and Constantinos J. Siniolakis, is known for quite long time [5].

The algorithm presented in this paper, also using regular sampling, needs only $O\left(\log^* (r+1) n\right)$ communication rounds, thus for $r = 1$ it gives time optimal selection algorithm with round complexity $O(\log^* n)$, which is improvement over the previous result.

3 Congested clique model

In this paper we will focus on congested clique model. Congested clique is a variant of the congest model, where each two nodes are directly connected. Apart from the bandwidth size parameter and the number of rounds we will also take into account the time complexity of an algorithm, as without this additional limitation, we could simply sort set S and K using a constant round number algorithm [6], which would allow us pick elements with ranks in K in some constant number of additional rounds.

Congested clique is a set of computational units V which from clique - any two nodes can send message to each other. Each node of this clique has unique id from set $\{1, 2, ..., |V|\}$. Sometimes we will use v or 'node' to address some element of set V, and we will denote id of v by v_{id}. The selection of k-th element from set S in this model is defined as follows:

- each node has up to $\frac{|S|}{|V|} + 1$ elements of S in local memory as input
- S is not too big, $|S| \in \Theta(|V|^2)$
- each node knows value of k
- at the end some node must know value of k-th element of set S

4 Median of median in parallel

In the RAM model to solve the selection problem we use the classical median of median algorithm. Basically it exploits the fact, that if we split a set into some pieces of size 5, select a median for each piece and then select a median of those medians, it split the original set into linearly large fractions. In parallel we could do similar thing, however instead of 5-element groups we will use elements stored in local memory of each node v to form one group, thus the number of groups is equal to $|V|$ instead of $\frac{n}{5}$.

In \parallel algorithm and its analysis we will use additional denotations:

- S is a variable denoting set of elements, initially input set
- S_v is a variable denoting part of S, stored in node v
- c_i are some constant value
- n is the size of the input set
- S_i is a value of S at the beginning of phase i
- $S_{(v,i)}$ is a value of S_v at the beginning of phase i
Also at the beginning of each iteration of while loop (phase), we would like to have preserved the following invariant

\[\forall u, v \in V \; |S(v,i)| - |S(u,i)| \leq 1 \]

Algorithm 1 Median of medians

1: while \(|S| > c_0\) do
2: \hspace{1em} each unit \(v\) selects \(y_v\) median of \(S_v\)
3: \hspace{1em} each unit broadcasts it to other units
4: \hspace{1em} each unit calculates \(y\), median of received medians
5: \hspace{1em} each unit calculates \(x\), number of local elements smaller than \(y\)
6: each unit broadcasts \(x_v\) to other units
7: each unit calculates \(x\), the number of smaller than \(y\) elements in \(S\)
8: if \(k > x\) then
9: \hspace{2em} for each unit \(v\), \(S_v \leftarrow \{z \in S_v \mid z > y\}\)
10: \hspace{2em} \(k \leftarrow k - x\)
11: else
12: \hspace{2em} for each unit \(v\), \(S_v \leftarrow \{z \in S_v \mid z \leq y\}\)
13: \hspace{2em} end if
14: \hspace{1em} redistribute elements to ensure, that for each \(v\), \(S_v\) are of the same size \(\triangleright\) with accuracy of additive constant
15: end while

4.1 Number of rounds

In \(i\)-th phase \(y\) provides division of \(S_i\) such that in \(\{z \in S_i \mid z > y\}\) and in \(\{z \in S_i \mid z \leq y\}\) we have at least \(\frac{|S_i|}{4}\) elements. Thus, in each of them we have no more than \(\frac{3|S_i|}{4}\). Therefore, number of rounds, for \(m\) elements is expressed as:

\[R(m) \leq R\left(\frac{3m}{4}\right) + c_1 \]

for some constant \(c_1\). Thus, we can limit the size of \(S_i\).

Lemma 1. In \(i\)-th phase of algorithm, we have subproblem of size \(|S_i| \in O\left(n\left(\frac{3}{4}\right)^i\right)\).

As a simple consequence we have, that \(S_{c_2 \log n} \in O(1)\) for some constant \(c_2\), therefore Algorithm 1 requires \(O(\log n)\) communication rounds.

4.2 Redistribution of elements

To preserve our invariant concerning even distribution of \(S\) among nodes, we may have to redistribute elements of \(S\). It can be done in two communication rounds. In the first each node announces to all other nodes value \(x_v\), the number
of elements S_v. Let $y_v = \sum_{u \mid u.id < v.id} x_u$. Let assume, that node v has in local memory set of elements $\{a_1, a_2, ..., a_x\}$. In the second round each node v sends element a_i, to node with id $(i + y_v) \mod p$. Each node has no more than $|V|$ numbers, therefore there would be at most one outgoing message per link. Also, whole set would be partitioned into subsets satisfying our invariant.

4.3 Time

Computation time $T(i)$ of the i-th phase is $O(\text{max}_v |S_{(v,i)}|)$. Together with invariant that S is evenly distributed among nodes and Lemma 1 gives us $T(i) \in O\left(\frac{|S|}{p}\right) = O\left(\frac{n}{p} \left(\frac{3}{4}\right)^i\right)$. Thus overall time complexity is equal to

$$\sum_{i=1}^{R(n)} c_3 \left| \frac{S}{p} \right| \in O\left(\frac{n}{p}\right)$$

Summarizing, this algorithm provides optimal time, but require quite large number of communication rounds.

5 Further parallelization

In 2010 Alexander Tiskin proposed [4] algorithm exploiting fact, that in the later phases of computation we could select regular sample instead of median in each node.

A regular sample of size h for set S is a subset S' of size h with such property: if we consider S and S' in order, then between each two consecutive elements of S' there are $O\left(\frac{|S|}{h}\right)$ elements of set S.

If we have a regular sample H we can calculate rank of each element of H. Therefore, we can find two consecutive elements $x, y \in H$ such that $\text{rank}(x) \leq k \leq \text{rank}(y)$ thus we can reduce our problem to $(x, y) \cap S$ with $k' = k - \text{rank}(x)$. With sufficiently large regular sample, the size of set S decreases significantly faster.

Alexander Tiskin proposed such sample sizes, that required number of communication rounds of his algorithm is $O(\log \log p)$, still maintaining optimal time complexity $O\left(\frac{|S|}{p}\right)$. In our result we describe how to select the size of samples slightly better to get an algorithm with even smaller number of rounds. Also, we analyze trade-off between time and round complexity. However, in the first place we must calculate how large regular sample can we compute in a constant number of rounds and time $O\left(\frac{n}{p}\right)$.

5.1 Distributed selection of regular sample

Lemma 2. Let H_v be a sample of set S_v of size h. If we want to select sample H of size h for whole set $S = \bigcup_v S_v$, we can select sample H_v of size h for each of sets S_v and then select sample of size h of set $H' = \bigcup_v H_v$.

Proof. To prove this theorem we will give some upper bound on number of elements of set \(S \) between two consecutive elements \(x, y \in H \).

Let us focus for a while on one node \(v \). Between two consecutive elements of \(H \) there are at most \(c_1 \frac{|S|}{ph} \) elements of \(S \). For \(m \) elements of \(H \) in interval \((x, y)\) we have at most \((m + 1)c_1\frac{|S|}{ph} \) elements of \(S \) in this interval. Note, that it is correct also for \(m = 0 \).

Thus, if some element of \(H \) is in interval \((x, y)\) it contributes no more than \(2c_1 \frac{|S|}{ph} \) elements of \(S \) to this interval. If there are no elements of \(H \) in interval \((x, y)\), \(S \) has no more than \(c_1 \frac{|S|}{ph} \) elements in interval \((x, y)\).

By definition we know, that for some \(c \) there are at most \(cph \) elements of \(H' \) in interval \((x, y)\). Thus, we have at most \(cp \left(2c_1 \frac{|S|}{ph} \right) \) elements from elements of \(H' \) falling into \((x, y)\) and at most \(pc_1 \frac{|S|}{ph} \) elements from nodes \(v \) such that none of \(H \) is in \((x, y)\).

If we have a set of elements of size \(n \) and we want to select \(h \) elements of known ranks we need \(\Omega(n \log h) \) operations. Also with slightly modified quick sort algorithm it is possible to select those elements in time \(O(n \log h) \). Thus \(\Theta(n \log h) \) time is sufficient and required to perform local sample selection.

If we solve equation \(\frac{|S_i|}{p} \log h = \frac{n}{p} \) for \(h \), we will get \(h = 2^{\left(\frac{n}{p \log n} \right)} \). Thus, in \(i \)-th round we can select local sample of size \(2^{\left(\frac{n}{p \log n} \right)} \) and we will still hold our limit of \(O(\frac{n}{p}) \) time for each node in each round.

5.2 Inefficient solution

Presented algorithm in each \textbf{while} loop iteration reduces the size of problem. It is done, as mentioned before, by calculating ranks of elements in regular sample and finding interval containing \(k \)-th element. Such interval will be called \textit{active}.

Analysis of Algorithm

\textbf{Lemma 3.} \textit{Size of sample is} \(O\left(\frac{n}{p \log n} \right) \)

\textbf{Proof.} By contradiction. If sample would be of size \(\omega\left(\frac{n}{p \log n} \right) \), that would mean \(2^{\left(\frac{n}{p \log n} \right)} > \frac{n}{p \log n} \). Thus \(|S_i| < \frac{n}{\log(\frac{n}{p \log n})} \), thus \(S_i \) would be too small to allow another execution of \textbf{while} loop. Therefore, \textbf{Lemma 3} is correct.

\textbf{Lemma 4.} \textit{Each iteration of while loop takes} \(O\left(\frac{n}{p} \right) \) \textit{time.}

\textbf{Proof.}
Algorithm 2 Selection by regular sampling

1: while $|S| > c \frac{n}{\log n}$ do
2: each unit v selects regular sample Y_v of size $2^\left\lceil \frac{n}{8|S|} \right\rceil$ from S_v
3: sort $Y' = \bigcup_{v \in V} Y_v$ using distributed algorithm
4: \hspace{1em} \triangleright sorting requires constant number of rounds $[6]$\[\]
5: calculate Y, regular sample for set Y' of size $2^\left\lceil \frac{n}{8|S|} \right\rceil$
6: \hspace{1em} \triangleright which is also regular sample of S
7: each unit with some element from Y in local memory broadcast it to all other nodes
8: \hspace{1em} \triangleright all nodes have Y in local memory
9: each unit v calculates values $x_{(v,j)}$, number of S_v elements in j-th interval induced by Y
10: \hspace{1em} \triangleright by intervals induced by Y we understand intervals with bounds in two consecutive elements of Y
11: each unit v sends $x_{(v,j)}$ to node with $id = j$, for each j
12: each node aggregates received values and broadcasts sum it to all nodes
13: \hspace{1em} \triangleright each unit knows X, the set numbers of elements of S in each interval induced by Y
14: each unit calculates active interval $\langle x, y \rangle$
15: for each unit v $S_v \leftarrow \{z \mid z \in S_v \wedge x \leq z < y\}$
16: recalculate value of k with respect to active interval
17: redistribute elements to ensure, that for each v S_v are of the same size
18: \hspace{1em} \triangleright with accuracy of additive constant
19: end while
20: sort S
21: \hspace{1em} \triangleright again - sorting requires constant number of rounds $[6]$
we used the size of sample resulting in exactly $\Theta(\frac{n}{p})$ required time for local sample selection

• calculating number of elements of $S_{(v,i)}$ in each interval induced by Y require up to $\Theta(\frac{|S_i|}{n_p} \log 2^{\frac{n}{|S_i|}}) = \Theta(\frac{n}{p})$ time, as we must execute binary search on sample of size $2^{\frac{n}{|S_i|}}$ for $|S_{(v,i)}|$ elements.

• sorting Y' takes $\Theta(\frac{n}{p})$, as by Lemma 3 one local sample is of size $O(\frac{n}{p} \log n)$, thus $|Y'| \in O(\frac{n}{\log n})$.

• other operations plainly are executable in $O(\frac{n}{p})$ time.

Thus every operation inside while loop iteration takes $O(\frac{n}{p})$ time and Lemma 4 is correct. □

Now let us calculate the number of rounds of this algorithm. In the i-th round we select sample of size $2^{\frac{n}{|S_i|}}$. We can locally select such sample thus, by Lemma 2 we can do it for whole S_i. To make analysis slightly easier, let us define sequence $g_i = \frac{n}{|S_i|}$. Now we must find k, such that $g_k \in \Theta(n)$. Such k would imply, that $|S_k|$ is $O(1)$, thus we reduced problem to a subproblem of the constant size and it is possible to solve it locally on one machine.

As we mentioned in i-th phase we select regular sample of size 2^{g_i}. Thus $|S_{i+1}| \in \Theta(\frac{S_i}{2^{g_i}}) \Rightarrow 2^{g_i} \in O(\frac{S_i}{2^{g_{i+1}}}) \Rightarrow O(\frac{n}{g_{i+1}}) \Rightarrow 2^{g_i} \leq g_{i+1}$, as g_i is larger than c behind big O notation. Let us consider another sequence f_i defined as follows:

$$f_0 = 1; \quad f_i = 2f_{i-1} \text{ for } i > 0$$

Sequence g_i grows not slower than f_i, thus if we would have $f_k > n$ that would imply $g_k > n$. This simple analysis shows us, that with sample size for i-th phase equal to 2^{g_i} we would have $|S_{\log^* n}| \in O(1)$.

Summarizing, such sample sizes give us deterministic $O(\log^* n)$ round algorithm. With linear time complexity per round this algorithm unfortunately requires $\Theta(\frac{n}{p} \log^* \frac{n}{p})$ time, thus it is not an algorithm.

5.3 Preprocessing and time optimal solution

There are two possible ways to improve presented algorithm. We can either modify slightly function g_i to get linear time solution or provide preprocessing reducing the size of problem to $\frac{n}{\log^* n}$. First solution requires analyzing some quite complicated equations, so we will present second one - provide preprocessing and use presented inefficient algorithm as a black-box.

Theorem 1. It is possible to solve the selection problem in $O(\log^* n)$ communication rounds with deterministic, time optimal algorithm.

Proof. Sufficient algorithm for our preprocessing was almost presented at the beginning. Only difference is, that we run our while loop $\Theta(\log \log^* n)$ times. By Lemma 4 we will decrease the size of S to required $O(\frac{n}{\log^* n})$. This preprocessing will requires $\Theta(\log \log^* n) \lesssim O(\log^* n)$ communication rounds and $O(\frac{n}{p})$
time. Inefficient black-box algorithm requires \(O(\log^* \frac{n}{\log^* n}) \subseteq O(\log^* n)\) communication rounds and \(O(\frac{\log^*(\frac{n}{\log^* n})}{p}) \subseteq O(\frac{n}{p})\) time. As both part require \(O(\log^* n)\) communication rounds and \(O(\frac{n}{p})\) time, whole algorithm does, thus Theorem 1 is correct.

5.4 Time - number of rounds - trade-off

Provided algorithm is time optimal but unfortunately does not work in constant round number. It seems to be natural to calculate how inefficient must be our algorithm to perform calculations in some constant number of steps. Let us define \(\phi_A\), an inefficiency factor of algorithm \(A\) as \(\phi = \frac{T_A}{n} \Rightarrow \phi n = pT_A\). Now let us repeat whole analysis from 5.2 with limit for our work set to \(pT_A\) instead of \(n\). In each round we can select sample of size \(2^{\phi n}\) instead of \(2^n\). Thus, function \(g_i\) is larger than \(f'_i\) defined as follows:

\[
f'_0 = 1; f'_i = (2^\phi)^{f'_{i-1}} \text{ for } i > 0
\]

This lower bound on value of \(g_i\) give us round complexity \(O(\log^* \frac{n}{\log^* n})\). Therefore if we choose an inefficiency factor \(\phi\) such that \(\log^* \frac{n}{\log^* n} \in O(1)\) we will get a constant round number solution.

6 Multiple selection by regular sampling

6.1 Motivation

For the sorting problem we know a deterministic time optimal constant round number solution, but for the selection problem we do not. Both problems are actually edge cases of more general multiple selection problem. In such problem for a given set \(S\) and set of ranks \(K\) we want to know elements of \(S\) with rank present in set \(K\). For \(|K| = 1\) it becomes the selection problem and for \(|K| = |S|\) it becomes the sorting problem. It seems to be interesting, what happens for \(1 < |K| < n\).

6.2 Problem

In multiple selection problem we have a set of ranks \(K\) instead of single rank \(k\). We assume that set \(K\) is small, as if \(|K| > \frac{|V|}{p}\) then we could simply sort \(S\) and \(K\) and select from \(S\) elements with rank in \(K\) and that would be constant communication round, time optimal solution. As \(K\) is small, we can also assume, that each node has it in local memory.

6.3 Algorithm

Algorithm 3 is similar to the algorithm for selection by regular sampling presented before. Main differences are, that we have more than one active interval and we are allowed to work for \(O(\frac{n}{p} \log |K|)\) time.
6.4 Preprocessing

This causes some changes in both preprocessing and main part of the algorithm. As for preprocessing part, instead using median of medians, we must use a regular sample of size $\Theta(|K|^2)$. We may have up to $|K|$ active intervals, and we want decrease the size of problem $\Theta(|K|)$-times in one phase of preprocessing, thus the sample must have size $\Theta(|K|^2)$.

As for the main part of algorithm, we are allowed to select slightly larger regular samples still having time optimal algorithm.

Algorithm 3 Multiple selection by regular sampling

```
1: while $|S| > c \frac{|S|}{\log n}$ do
2: each unit $v$ selects regular sample $Y_v$ of size $(|K|+1)\log |S_v|$ from $S_v$
3: sort $Y' = \bigcup_{v \in V} Y_v$ using distributed algorithm
4: \hspace{1em} $\triangleright$ sorting requires constant number of rounds [6]
5: calculate $Y$, regular sample for set $Y'$ of size $2^{\frac{1}{\log n}}$
6: \hspace{1em} $\triangleright$ which is also regular sample of $S$
7: each unit with some element from $Y$ in local memory broadcast it to all other nodes
8: \hspace{1em} $\triangleright$ all nodes have $Y$ in local memory
9: each unit $v$ calculates values $x_{(v,j)}$, number of $S_v$ elements in $j$-th interval induced by $Y$
10: \hspace{1em} $\triangleright$ by intervals induced by $Y$ we understand intervals with bounds in two consecutive elements of $Y$
11: each unit $v$ sends $x_{(v,j)}$ to node with id $j$, for each $j$
12: each node aggregates received values and broadcasts sum it to all nodes
13: \hspace{1em} $\triangleright$ each unit knows $X$, the set numbers of elements of $S$ in each interval induced by $Y$
14: each unit calculates the set of active intervals $I$
15: for each unit $v$ $S_v \leftarrow \{z \mid z \in S_v \land \exists (x, y) \in I. x \leq z < y\}$
16: recalculate values of $K$ with respect to active intervals
17: redistribute elements to ensure, that for each $v$ $S_v$ are of the same size
18: \hspace{1em} $\triangleright$ with accuracy of additive constant
19: end while
20: sort $S$
21: find elements with rank in $K$
22: \hspace{1em} $\triangleright$ again - sorting requires constant number of rounds [6]
```

6.5 Analysis of Algorithm 3

Analysis is quite similar as for Select by regular sampling algorithm. Difference is, that we are allowed to select sample of size $2^{\frac{1}{\log n}}\log(|K|+1)} = (|K|+1)\log n$,
as optimal sequential time is $\Theta(n \log |K|)$. Also, instead of one active interval we have up to $|K|$. Therefore, our dependency between g_i and g_{i+1} is slightly different.

$$|S_{i+1}| \in O\left(\frac{|S_i||K|}{(|K| + 1)^{i+c}}\right)$$

$$((|K| + 1)^{g_{i-1}} \in O\left(\frac{g_{i+1}}{g_i}\right)$$

$$((|K| + 1)^{g_{i-1}} \leq g_{i+1}$$

and is limited from below by f_i defined as follows.

$$f_0 = |K| + 1; f_i = (|K| + 1)^{f_{i-1}-1} \text{ for } i > 0$$

Therefore $|S_{\log_2(|K| + 1)}^c| \in O(1)$ for some c, which means our algorithm requires $O(\log^c_2|K| + 1)$ communication rounds. That mean, for K satisfying inequality $(|K| + 1) \uparrow^{\uparrow} \epsilon > n$, for some $\epsilon \in O(1)$, our algorithm requires constant time of communication rounds.

7 Summary

In this paper we presented a deterministic, time optimal multiple selection algorithm using regular sampling technique. Size of sample seems to be as large as possible, without violating time restriction, which suggest, that for better result we need use some additional techniques. We still do not know whether there are deterministic, optimal time selection algorithms requiring constant number of communication rounds.

As mentioned ad the beginning, presented algorithm works also in slightly different models. Congested clique algorithms may be easily implemented in BSP. As for MapReduce, we could use result presented by James Hegeman and Sriram V. Pemmaraju, and get some robust algorithm, as solution presented in this paper is communication and memory efficient.

Actually algorithm in those other models works even if we change assumption, that $n \in \Theta(p^2)$ into $p \in \Theta(n^{1-\epsilon})$ for some constant ϵ. However, this requires some additional effort while restoring the invariant concerning the equal distribution of data among machines.

†Knuth’s up-arrow notation
Bibliography

[1] Yijie Han. Optimal parallel selection. *ACM Trans. Algorithms*, 3(4), November 2007. ISSN 1549-6325. doi: 10.1145/1290672.1290675.

[2] H. Shen. Optimal parallel multiselection on EREW PRAM. *Parallel Computing*, 188:287–298, 1997.

[3] Akihiro Fujiwara, Michiko Inoue, and Toshimitsu Masuzawa. Parallel Selection Algorithms for CGM and BSP Models with Application to Sorting. *IPSJ Journal*, 41:1500–1508, May 2000.

[4] Alexander Tiskin. Parallel selection by regular sampling. In Pasqua D’Ambra, Mario Guarracino, and Domenico Talia, editors, *Euro-Par 2010 - Parallel Processing*, volume 6272 of *Lecture Notes in Computer Science*, pages 393–399. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-15290-0. doi: 10.1007/978-3-642-15291-7_36.

[5] Alexandros V. Gerbessiotis and Constantinos J. Siniolakis. Deterministic sorting and randomized median finding on the bsp model. In *Proceedings of the Eighth Annual ACM Symposium on Parallel Algorithms and Architectures*, SPAA ’96, pages 223–232, New York, NY, USA, 1996. ACM. ISBN 0-89791-809-6. doi: 10.1145/237502.237561. URL http://doi.acm.org/10.1145/237502.237561

[6] Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In *Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing*, PODC ’13, pages 42–50, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2065-8. doi: 10.1145/2484239.2501983. URL http://doi.acm.org/10.1145/2484239.2501983

[7] Kanela Kaligosi, Kurt Mehlhorn, J.Ian Munro, and Peter Sanders. Towards optimal multiple selection. In Luis Caires, GiuseppeF. Italiano, Luis Monteiro, Catuscia Palamidessi, and Moti Yung, editors, *Automata, Languages and Programming*, volume 3580 of *Lecture Notes in Computer Science*, pages 103–114. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-27580-0. doi: 10.1007/11523468_9.

[8] James W. Hegeman and Sriram V. Pemmaraju. *Structural Information and Communication Complexity: 21st International Colloquium, SIROCCO 2014, Takayama, Japan, July 23-25, 2014. Proceedings*, chapter Lessons from the Congested Clique Applied to MapReduce, pages 149–164. Springer International Publishing, Cham, 2014. ISBN 978-3-319-09620-9. doi: 10.1007/978-3-319-09620-9_13. URL http://dx.doi.org/10.1007/978-3-319-09620-9_13