THE A-MÖBIUS FUNCTION OF A FINITE GROUP

FRANCESCA DALLA VOLTA AND ANDREA LUCCHINI

Abstract. The Möbius function of the subgroup lattice of a finite group G has
been introduced by Hall and applied to investigate several different questions.
We propose the following generalization. Let A be a subgroup of the automorphism
group $\text{Aut}(G)$ of a finite group G and denote by $C_A(G)$ the set of
A-conjugacy classes of subgroups of G. For $H \leq G$ let $[H]_A = \{ H^a \mid a \in A \}$
be the element of $C_A(G)$ containing H. We may define an ordering in $C_A(G)$
in the following way: $[H]_A \leq [K]_A$ if $H^a \leq K$ for some $a \in A$. We consider
the Möbius function μ_A of the corresponding poset and analyse its properties
and possible applications.

1. Introduction

The Möbius function of a finite partially ordered set (poset) P is the map
$\mu_P : P \times P \to \mathbb{Z}$ satisfying $\mu_P(x, y) = 0$ unless $x \leq y$, in which case it is
defined inductively by the equations $\mu_P(x, x) = 1$ and $\sum_{x \leq z \leq y} \mu_P(x, z) = 0$ for
$x < y$.

In a celebrated paper [7], P. Hall used for the first time the Möbius function
μ of the subgroup lattice of a finite group G to investigate some properties of
G, in particular to compute the number of generating t-tuples of G. A detailed
investigation of the properties of the function μ associated to a finite group G is
given by T. Hawkes, I. M. Isaacs and M. Özaydın in [8]. In that paper, the authors
also consider the Möbius function λ of the poset of conjugacy classes of subgroups
of G, where $[H] \leq [K]$ if $H \leq K^g$ for some $g \in G$ (see [8, Section 7]). In particular,
they propose the interesting and intriguing question of comparing the values of μ
and λ.

In this paper we aim to generalize the definitions and main properties of the func-
tions μ and λ to a more general contest. Let G and A be a finite group and a sub-
group of the automorphism group $\text{Aut}(G)$ of G, respectively. Denote by $C_A(G)$ the
set of A-conjugacy classes of subgroups of G. For $H \leq G$ let $[H]_A = \{ H^a \mid a \in A \}$
be the element of $C_A(G)$ containing H. We may define an ordering in $C_A(G)$ in
the following way: $[H]_A \leq [K]_A$ if $H^a \leq K$ for some $a \in A$; we consider
the Möbius function μ_A of the corresponding poset. We will write $\mu_A(H, K)$ in place of
$\mu_A([H]_A, [K]_A)$. When $A = \text{Inn}(G)$, we write $\mathcal{C}(G)$ and $[H]$, in place of $C_{\text{Inn}(G)}(G)$
and $[H]_{\text{Inn}(G)}$. When $A = 1$, $\mu_A = \mu$ is the Möbius function in the subgroup
lattice of G, introduced by P. Hall. In the case when $A = \text{Inn}(G)$ is the group of the inner
automorphism, then $\mu_{\text{Inn}(G)} = \lambda$. Note that for any subgroup A of $\text{Aut}(G)$, we get
$[G]_A = \{ G \}$.

In Section 2 we prove some general properties of μ_A. In particular we prove the
following result:
Proposition 1. Let G be a finite solvable group. If $G' \leq K \leq G$ and A is the subgroup of $\text{Inn}(G)$ obtained by considering the conjugation with the elements of K, then $\lambda(H, G) = \mu_A(H, G)$ for any $H \leq G$.

To illustrate the meaning of the previous proposition, consider the following example. Let $G = A_4$ be the alternating group of degree 4 and A the subgroup of $\text{Inn}(G)$ induced by conjugation with the elements of $G' \cong C_2 \times C_2$. The posets $\mathcal{C}(G)$ and $\mathcal{C}_A(G)$ are different. For example there are three subgroups of G of order 2, which are conjugated in G, but not A-conjugated. However $\lambda(H, G) = \mu_A(H, G)$ for any $H \leq G$.

In Section 3 we generalize some result given by Hall in [7], about the cardinality $\phi(G, t)$ of the set $\Phi(G, t)$ of t-tuples (g_1, \ldots, g_t) of group elements g_i such that $G = \langle g_1, \ldots, g_t \rangle$. As observed by P. Hall, using the Möbius inversion formula, it can be proved that

$$\phi(G, t) = \sum_{H \leq G} \mu(H, G)|H|^t.$$

We generalize this formula, showing that $\phi(G, t)$ can be computed with a formula involving μ_A for any possible choice of A.

Theorem 2. For any finite group G and any subgroup A of $\text{Aut}(G)$,

$$\phi(G, t) = \sum_{[H, A] \in \mathcal{C}_A(G)} \mu_A(H, G)|\cup_{a \in A} (H^a)|^t.$$

If G is not cyclic, then $\phi(G, 1) = 0$, so we obtain the following equality, involving the values of μ_A.

Corollary 3. If G is not cyclic, then

$$0 = \sum_{[H, A] \in \mathcal{C}_A(G)} \mu_A(H, G)|\cup_{a \in A} H^a|.$$

Further generalizations are given in Section 4 where we consider the function $\phi^*(G, t)$, which is an analogue of $\phi(G, t)$: actually, $\phi^*(G, t)$ denotes the cardinality of the set of of t-tuples (H_1, \ldots, H_t) of subgroups of G such that $G = \langle H_1, \ldots, H_t \rangle$. As a corollary of our formula for computing $\phi^*(G, t)$, we obtain we following unexpected result.

Proposition 4. Let $\sigma(X)$ denote the number of subgroups of a finite group X. For any finite group G, the following equality holds:

$$1 = \sum_{H \leq G} \mu(H, G)\sigma(H).$$

Finally, in Section 5 we consider one question originated from a result given by Hawkes, Isaacs and Özyaydin in [8]: they proved that the equality

$$\mu(1, G) = |G'| \lambda(1, G)$$

holds for any finite solvable group G; later Pahlings [10] generalized the result proving that

$$\mu(H, G) = |N_{G'}(H) : G' \cap H| \cdot \lambda(H, G)$$
 holds for any \(H \leq G \) whenever \(G \) is finite and solvable. Following [5], we say that \(G \) satisfies the \((\mu, \lambda)\)-property if [2] holds for any \(H \leq G \). Several classes of non-solvable groups satisfy the \((\mu, \lambda)\)-property, for example all the minimal non-solvable groups (see [5]). However it is known that the \((\mu, \lambda)\)-property does not hold for every finite group. For instance, it does not hold for the following finite almost simple groups: \(A_9, S_9, A_{10}, S_{10}, A_{11}, S_{11}, A_{12}, S_{12}, A_{13}, S_{13}, J_2, PSU(3,3), PSU(5,2), M_{12}, M_{23}, M_{24}, PSL(3,11), HS, Aut(HS), He, Aut(He), McL, PSL(5,2), G_2(4), Co_3, PSU^-\(8,2\), PSU^+(8,2). It is somehow intriguing to notice that although the \((\mu, \lambda)\)-property fails for the sporadic groups \(M_{12}, J_2, McL \), it holds for their automorphism groups.

We prove the following generalization of Pahlings’s result.

Theorem 5. Let \(N \) be a solvable normal subgroup of a finite group \(G \). If \(G/N \) satisfies the \((\mu, \lambda)\)-property, then \(G \) also satisfies the \((\mu, \lambda)\)-property.

An almost immediate consequence of the previous theorem is the following.

Corollary 6. \(PSU(3,3) \) is the smallest group which does not satisfy the \((\mu, \lambda)\) property.

In the last part of Section 5 we use Theorem 2 to deduce some consequences of the \((\mu, \lambda)\)-property. In particular we prove the following theorem.

Theorem 7. Suppose that a finite group \(G \) satisfies the \((\mu, \lambda)\)-property. Then, for every positive integer \(t \), the following equality is satisfied:

\[
\sum_{[H] \in C(G)} \lambda(H,G) \left(\frac{|H^{t-1}|G|G'H|}{|G'N_G(H)|} - |\cup_{a \in A(H')} (H'^t)| \right) = 0.
\]

Some open questions are proposed along the paper.

2. **Applying some general properties of the Möbius function**

Given a poset \(P \), a closure on \(P \) is a function \(: P \to P \) satisfying the following three conditions:

a) if \(x, y \in P \) with \(x \leq y \), then \(\bar{x} \leq \bar{y} \);

b) \(\bar{\bar{x}} = \bar{x} \) for all \(x \in P \).

If \(\bar{\cdot} \) is a closure map on \(P \), then \(\bar{P} = \{ x \in P | \bar{x} = x \} \) is a poset with order induced by the order on \(P \). We have:

Theorem 8 (The closure theorem of Crapo [3]). Let \(P \) be a finite poset and let \(: P \to P \) be a closure map. Fix \(x, y \in P \) such that \(y \in \bar{P} \). Then

\[
\mu_P(x, z) = \begin{cases}
\mu_P(x, y) & \text{if } x = \bar{x} \\
0 & \text{otherwise}.
\end{cases}
\]

In [7], P. Hall proved that if \(H < G \), then \(\mu(H, G) \neq 0 \) only if \(H \) is an intersection of maximal subgroups of \(G \). Using the previous theorem, the following more general statement can be obtained.

Proposition 9. If \(H < G \) and \(\mu_A(H, G) \neq 0 \), then \(H \) can be obtained as intersection of maximal subgroups of \(G \).
Proof. Let H be a proper subgroup of G and let \mathcal{P} be the intersection of the maximal subgroups of G containing H. The map $[H]_A \mapsto [\mathcal{P}]_A$ is a well defined closure map on $\mathcal{C}_A(G)$, so the conclusion follows immediately from Theorem \ref{thm:main}. \hfill \Box

An element a of a poset \mathcal{P} is called conjunctive if the pair $\{a, x\}$ has a least upper bound, written $a \lor x$, for each $x \in \mathcal{P}$.

Lemma 10. \cite{[G]} Lemma 2.7] Let \mathcal{P} be a poset with a least element 0, and let $a > 0$ be a conjunctive element of \mathcal{P}. Then, for each $b > a$, we have

$$\sum_{a \lor x = b} \mu(x) = 0.$$

From the above Lemma \ref{lem:conjunctive} it follows easily the following Lemma \ref{lem:conjunctive2}, which, together with Lemma \ref{lem:conjunctive3} and Lemma \ref{lem:conjunctive4} allow us to prove Proposition \ref{prop:main}.

Lemma 11. Let N be an A-invariant normal subgroup of G and $H \leq G$. If $H < HN < G$, then

$$\mu_A(H, G) = -\sum_{|Y|_A \in \mathcal{S}_A(H, N)} \mu_A(H, Y),$$

with $\mathcal{S}_A(H, N) = \{|Y|_A \in \mathcal{C}_A(G) \mid [H]_A \leq |Y|_A < |G|_A \text{ and } YN = G\}$.

Proof. Let \mathcal{P} be the interval $\{[K]_A \in \mathcal{C}_G(A) \mid [H]_A \leq [K]_A \leq [G]_A\}$. Notice that $[HN]_A$ is a conjunctive element of \mathcal{P}. Indeed $[HN]_A \lor [K]_A = [KN]_A$ for every $[K]_A \in \mathcal{P}$. So the conclusion follows immediately from Lemma \ref{lem:conjunctive} \hfill \Box

Lemma 12. Let K and A be a subgroup of G and the subgroup of $\text{Inn}(G)$ induced by the conjugation with the elements of K, respectively. Assume that N is an abelian minimal normal subgroup of G contained in K and $H < HN \leq G$. Then

$$\mu_A(H, G) = -\mu_A(HN, G)\gamma_A(N, H),$$

where $\gamma_A(N, H)$ is the number of A-conjugacy classes of complements of N in G containing H.

Proof. If $HN = G$, then H is a maximal subgroup of G, hence $\mu_A(H, G) = -1$, while $\mu_A(HN, G) = \mu_A(G, G) = 1$ and $\gamma_A(N, H) = 1$, so the statement is true. So we may assume $HN < G$ and apply Lemma \ref{lem:conjunctive}. Suppose $|Y|_A \in \mathcal{S}_A(H, N)$. Let

$\mathcal{C} = \{J \leq G \mid H \leq J \leq Y\}$, \hspace{1cm} $\mathcal{D} = \{L \leq G \mid HN \leq L\}$

$\mathcal{C}_A = \{|J|_A \in \mathcal{C}_A(G) \mid [H]_A \leq |J|_A \leq |Y|_A\}$, \hspace{1cm} $\mathcal{D}_A = \{|L|_A \in \mathcal{C}_A(G) \mid [HN]_A \leq |L|_A\}$.

The map $\eta : \mathcal{C} \to \mathcal{D}$ sending J to JN is an order preserving bijection. Clearly, if $J_2 = J_1^x$ for some $x \in K$, then $\gamma(J_2) = N J_2 = N J_1^x = (N J_1)^x = (\gamma(J_1))^x$. Conversely assume $\gamma(J_2) = (\gamma(J_1))^x$ with $x \in K$. Since $YN = G$, $x = y n$ with $n \in N$ and $y \in Y \cap K$. Thus $J_2 N = (J_1 N)^y = (J_1 N)^y$ and consequently $J_2 = J_2 N \cap Y = (J_1 N)^y \cap Y = (J_1 N \cap Y)^y = J_1^y$. It follows that η induces an order preserving bijection from \mathcal{C}_A to \mathcal{D}_A, but then $\mu_A(H, Y) = \mu_A(HN, YN) = \mu_A(HN, G)$. \hfill \Box

The statement of the previous lemma leads to the following open question.

Question 13. Let G be a finite group, $A \leq \text{Aut}(G)$ and N an A-invariant normal subgroup of G. Does $\mu_A(HN, G)$ divide $\mu_A(H, G)$ for every $H \leq G$?

The following lemma is straightforward.
Lemma 14. Let A be a subgroup of $\text{Aut}(G)$ and N an A-invariant normal subgroup of G. Every $a \in A$ induces an automorphism \overline{a} of G/N. Let $\overline{A} = \{ \overline{a} | a \in A \}$. Then, for any $H \leq G$, $\mu_A(HN,G) = \mu_{\overline{A}}(HN/N,G/N)$.

Proof of Proposition 7. We work by induction on $|G| \cdot |G : H|$. The statement is true if G is abelian. Assume that G' contains a minimal normal subgroup, say N, of G. If $N \leq H$, then, by Lemma 14

$$\lambda(H,G) = \lambda(H/N,G/N) = \mu_{\overline{A}}(H/N,G/N) = \mu_A(H,G).$$

So we may assume $N \not\leq H$. If H is not an intersection of maximal subgroups of G, then $\lambda(H,G) = \mu_A(H,G) = 0$. Suppose $H = M_1 \cap \ldots \cap M_i$ where M_1, \ldots, M_i are maximal subgroups of G. In particular N is not contained in M_i for some i, so M_i is a complement of N in G containing H and $N \cap H = 1$. By Lemma 12 we have

$$\lambda(H,G) = -\lambda(HN,G)\gamma(N,H), \quad \mu_A(H,G) = -\mu_A(HN,G)\gamma_A(N,H),$$

where $\gamma(N,H)$ is the number of conjugacy classes of complements of N in G containing H and $\gamma_A(N,H)$ is the number of A-conjugacy classes of these complements. Suppose that K_1, K_2 are two conjugated complements if N in G containing H. Then $K_2 = K_1^n$ for some $n \in N_N(H)$. Since $N \leq G' \leq K$, it follows $\gamma(N,H) = \gamma_A(N,H)$. Moreover, by induction, $\lambda(HN,G) = \mu_A(HN,G)$, hence we conclude $\lambda(H,G) = \mu_A(H,G)$. \hfill \Box

3. Generalizing a formula of Philip Hall

We begin with introducing the functions $\Psi_A(H,t)$ and $\psi_A(H,t)$, analogue of $\Phi(H,t)$ and $\phi(H,t)$ in the general case of any possible subgroup A of $\text{Aut}(G)$.

For any $H \in \mathcal{C}_A(G)$ and any positive integer t, let

1. $\Omega_A(H,t) = \bigcup_{a \in A} (H^a)^t$;
2. $\omega_A(H,t) = |\Omega_A(H,t)|$;
3. $\Psi_A(H,t) = \{ (g_1, \ldots, g_i) \in G^t : (g_1, \ldots, g_i) = H^a \text{ for some } a \in A \}$;
4. $\psi_A(H,t) = |\Psi_A(H,t)|$.

If $(x_1, \ldots, x_t) \in \Omega_A(H,t)$, then $(x_1, \ldots, x_t) \leq H^a$ for some $a \in A$, hence $(x_1, \ldots, x_t) = K$ for some $K \leq G$ with $|K|_A \leq |H|_A$. Thus

$$\sum_{|K|_{\leq A} |H|} \psi_A(K,t) = \omega_A(H,t)$$

and therefore, by the Möbius inversion formula,

$$\sum_{|H| \in \mathcal{C}_A(G)} \mu_A(H,G)\omega_A(H,t) = \psi_A(G,t).$$

On the other hand $\psi_A(G,t) = \phi(G,t)$ so we have proved the following formula.

Theorem 15. For any finite group G and any subgroup A of $\text{Aut}(G)$,

$$\phi(G,t) = \sum_{|H| \in \mathcal{C}_A(G)} \mu_A(H,G)\omega_A(H,t).$$

Notice that if $A = 1$, then $\omega_A(H,t) = |H|^t$, so that the result by Hall given in (1.1) is a particular case of the previous theorem.
Corollary 16. If G is not cyclic, then

$$0 = \phi(G, 1) = \sum_{[H] \in C_A(G)} \mu_A(H, G) \omega_A(H, 1).$$

Taking $A = \text{Inn}(G)$, we deduce in particular that if G is not cyclic, then

$$\sum_{H \in C(H)} \lambda(H, G) \omega_{\text{Inn}(G)}(H, 1) = \sum_{H \in C(H)} \lambda(H, G) | \cup_g H^g | = 0.$$

For example, if $G = S_4$, then the values of $\lambda(H, G)$ and $| \cup_g H^g |$ are as in the following table and $24 - 12 - 16 - 15 + 4 + 9 + 7 - 1 = 0$.

| H | $\lambda(H, G)$ | $| \cup_g H^g |$ |
|------------|-----------------|----------------|
| S_4 | 1 | 24 |
| A_4 | -1 | 12 |
| D_4 | -1 | 16 |
| S_3 | -1 | 15 |
| K | 1 | 4 |
| $\langle (1, 2, 3, 4) \rangle$ | 0 | 10 |
| $\langle (1, 2, 3) \rangle$ | 1 | 9 |
| $\langle (1, 2) \rangle$ | 1 | 7 |
| $\langle (1, 2)(3, 4) \rangle$ | 0 | 4 |
| 1 | -1 | 1 |

If $G = A_5$, then the values of $\lambda(H, G)$, $\omega_{\text{Inn}(G)}(H, 1) = | \cup_g H^g |$, $\omega_{\text{Inn}(G)}(H, 2) = | \cup_g (H^g)^2 |$ (taking only the subgroups H with $\lambda(H, G) \neq 0$) are as in the following table and $60 - 36 - 36 - 40 + 21 + 32 - 1 = 0$.

| H | $\lambda(H, G)$ | $| \cup_g H^g |$ | $| \cup_g (H^g)^2 |$ |
|------------|-----------------|----------------|----------------|
| A_5 | 1 | 60 | 3600 |
| A_4 | -1 | 36 | 636 |
| S_3 | -1 | 36 | 306 |
| D_5 | -1 | 40 | 550 |
| $\langle (1, 2, 3) \rangle$ | 1 | 21 | 81 |
| $\langle (1, 2)(3, 4) \rangle$ | 2 | 16 | 46 |
| 1 | -1 | 1 | 1 |

Moreover

$$3600 - 636 - 306 - 550 + 81 + 2 \cdot 46 - 1 = 2280 = \frac{19}{30} \cdot 3600 = \phi(A_5, 2).$$

If $G = D_p = \langle a, b \mid a^p = 1, b^2 = 1, ab = a^{-1} \rangle$ and p is an odd prime, then the behaviour of the subgroups in $C(G)$ is described by the following table.

| H | $\lambda(H, G)$ | $| \cup_g H^g |$ |
|------------|-----------------|----------------|
| D_p | 1 | $2p$ |
| $\langle a \rangle$ | -1 | p |
| $\langle b \rangle$ | -1 | $p + 1$ |
| 1 | -1 | 1 |
Another interesting example is given by considering $G = C_p^n$ and $A = \text{Aut}(G)$. Let $H \cong C_p^{n-1}$ be a maximal subgroup of G. Then, for $K \leq G$, $\mu_A(K, G) \neq 0$ if and only if either $[K]_A = [G]_A$ or $[H]_A = [H]_A$. Clearly $\cup_{\omega \in \text{Aut}(G)}H^\omega = G$ so $\mu_A(G, G)\omega_A(G, 1) - \mu_A(H, G)\omega_A(H, 1) = |G| - |G| = 0$. More in general $\Omega_A(H, t)$ is the set of t-tuples (x_1, \ldots, x_t) such that $(x_1, \ldots, x_t) \in K^t$ for some maximal subgroup K of G, so $\mu_A(G, G)\omega_A(G, t) - \mu_A(H, G)\omega_A(H, t) = |G|^t - \omega_A(H, t)$ is the number of generating t-tuples of G.

Another generalization of (1.1), essentially due to Gaschütz, has been described by Brown in [7, Section 2.2]. Let N be a normal subgroup of G and suppose that G/N admits t generators for some integer t. Let $y = (y_1, \ldots, y_t)$ be a generating t-tuple of G/N and denote by $P(G, N, t)$ the probability that a random lift of y to a t-tuple of G generates G. Then $P(G, N, t) = \phi(G, N, t)|N|^t$, where $\phi(G, N, t)$ is the number of generating t-tuples of G lying over y. Using again the Möbius inversion formula it can be proved:

$$\phi(G, N, t) = \sum_{H \leq G, HN = G} \mu(H, G)|H \cap N|^t.$$

This formula can be generalized in our contest in the following way:

Theorem 17. Let N be an A-invariant normal subgroup of G and fix $g_1, \ldots, g_t \in G$ with the property that $G = \langle g_1, \ldots, g_t \rangle N$. Define

- $\Omega_A(H, N, t) = \{ (n_1, \ldots, n_t) \mid \langle g_1n_1, \ldots, g_tn_t \rangle \leq H^a \text{ for some } a \in A \}$;
- $\omega_A(H, N) = |\Omega_A(H, N, t)|$

and let $\mathcal{C}_A(G, N) = \{ [H]_A \in \mathcal{C}_A(G) \mid HN = G \}$. Then

$$\phi(G, N, t) = \sum_{[H]_A \in \mathcal{C}_A(G, N)} \mu_A(H, G)\omega_A(H, N, t).$$

Proof. Fix $g_1, \ldots, g_t \in G$ with the property that $G = \langle g_1, \ldots, g_t \rangle N$. Then $\phi(G, N, t)$ is the cardinality of the set

$$\Phi(G, N, g_1, \ldots, g_t) = \{ (n_1, \ldots, n_t) \in N^t \mid \langle g_1n_1, \ldots, g_n n_t \rangle = G \}.$$

Set:

$$\Psi_A(H, N, g_1, \ldots, g_t) = \{ (n_1, \ldots, n_t) \in N^t \mid \langle g_1n_1, \ldots, g_n n_t \rangle = H^a \text{ for some } a \in A \};$$

$$\psi_A(H, N, t) = |\Psi_A(H, N, g_1, \ldots, g_t)|.$$

Notice that $\omega_A(H, N, t) \neq 0$ if and only if $[H]_A \in \mathcal{C}_A(G, N)$. If $(n_1, \ldots, n_t) \in \Omega_A(H, N, t)$, then $\langle g_1n_1, \ldots, g_n n_t \rangle \leq H^a$ for some $a \in A$, and $\langle g_1n_1, \ldots, g_n n_t \rangle = K$ for some $K \leq G$ with $[K]_A \leq [H]_A$. Thus

$$\sum_{[K]_A \leq [H]_A} \psi_A(K, N, t) = \omega_A(H, N, t)$$

and therefore, by the Möbius inversion formula

$$\sum_{[H] \in \mathcal{C}_A(G, N)} \mu_A(H, G)\omega_A(H, N, t) = \psi_A(G, N, t) = \phi(G, N, t) \quad \square$$
4. Another application of Möbius inversion formula

Denote by $\Phi^*(G, t)$ the set of t-tuples (H_1, \ldots, H_t) of subgroups of G such that $G = \langle H_1, \ldots, H_t \rangle$ and by $\phi^*(G, t)$ the cardinality of this set. For any $H \in C_A(G)$ and any positive integer t, let

1. $\Sigma_A(H, t) = \{(H_1, \ldots, H_t) \mid \langle H_1, \ldots, H_t \rangle \leq H^a \text{ for some } a \in A\}$;
2. $\sigma_A(H, t) = |\Sigma_A(H, t)|$;
3. $\Gamma_A(H, t) = \{(H_1, \ldots, H_t) \mid \langle H_1, \ldots, H_t \rangle = H^a \text{ for some } a \in A\}$;
4. $\gamma_A(H, t) = |\Gamma_A(H, t)|$.

Theorem 18.

$$\phi^*(G, t) = \sum_{[H] \in C_A(G)} \mu_A(H, G) \sigma_A(H, t).$$

Proof. If $(H_1, \ldots, H_t) \in \Sigma_A(H, t)$, then $\langle H_1, \ldots, H_t \rangle = K$ for some $K \leq G$ with $[K]_A \leq [H]_A$. Thus

$$\sum_{[K] \leq [H]} \gamma_A(K, t) = \sigma_A(H, t)$$

and therefore, by the Möbius inversion formula,

$$\sum_{[H] \in C_A(G)} \mu_A(H, G) \sigma_A(H, t) = \gamma_A(G, t) = \phi^*(G, t). \quad \Box$$

In the particular case when $A = 1$, $\sigma_A(H, t) = \sigma(H)^t$, denoting with $\sigma(H)$ the number of subgroups of H. So we obtain the following corollary:

Corollary 19.

$$\phi^*(G, t) = \sum_{H \leq G} \mu(H, G) \sigma(H)^t.$$

Clearly $\Sigma^*(G, t) = \{G\}$, so $\phi^*(G, 1) = 1$ and therefore it follows:

Corollary 20.

$$1 = \sum_{H \in H_A} \mu_A(H, G) \sigma_A(H, 1).$$

In particular:

Corollary 21.

$$1 = \sum_{H \leq G} \mu(H, G) \sigma(H).$$

For example, if $G = A_5$ then the subgroups of G with $\mu(H, G) \neq 0$ are listed in the following table (where $\kappa(H, G)$ denote the numbers of conjugate of H in G).

H	$\mu(H, G)$	$\kappa(H, G)$	$\sigma(H)$
A_5	1	1	59
A_4	-1	5	10
S_5	-1	10	6
D_5	-1	6	8
$\langle(1, 2, 3)\rangle$	2	10	2
$\langle(1, 2)(3, 4)\rangle$	4	15	2
1	-60	1	1
According with Corollary [21] 1 = 59 – 5 · 10 – 10 · 6 – 6 · 8 + 2 · 10 · 2 + 4 · 15 · 2 – 60.

For a finite group G, denote by $P(G, t)$ and $P^*(G, t)$ the probability of generating G with, respectively, t elements or t subgroups. It can be easily seen that $P(G, t) = P(G/\text{Frat}(G), t)$, but in general $P^*(G, t) \neq P^*(G/\text{Frat}(G), t)$. For example, if $G \cong C_{p^a}$, then G and $H \cong C_{p^{a-1}}$ are the unique subgroups of G with non trivial Möbius number and therefore

$$P(G, t) = \frac{|G|^t - |H|^t}{|G|^t} = 1 - \frac{1}{p^t},$$

$$P^*(G, t) = \frac{\sigma(G)^t - \sigma(H)^t}{\sigma(G)^t} = 1 - \frac{a^t}{(a + 1)^t}.$$

So $P(G, t)$ is independent on a, while $P^*(G, t)$ tends to 0 when a tends to infinity.

5. The (μ, λ)-property

Proof of Theorem [3]. Working by induction on the order of G, it suffices to prove the statement in the particular case when N is an abelian minimal normal subgroup of G. Let H be a subgroup of G. If $N \leq H$, then

$$\mu(H, G) = \mu(H/N, G/N) = \lambda(H/N, G/N)|N_{G', N/N}(H/N) : H/N \cap G'N/N|$$

$$\lambda(H, G)|N_{G', N}(H) : H \cap G'| = \lambda(H, G)|N_{N_{G'}(H)} : N(H \cap G')|$$

$$= \lambda(H, G)|N_{G'}(H) : H \cap G'| = \lambda(H, G)|N_{G'}(H) : H \cap G'|$$

$$\lambda(H, G)|N_{G'}(H) : H \cap G'|.$$

So we may assume $N \not\subseteq H$. If H is not an intersection of maximal subgroups of G, then $\mu(G, H) = \lambda(G, H) = 0$. So we may assume $H = M_1 \cap \cdots \cap M_i$, where M_1, \ldots, M_i are maximal subgroups of G. Since N is not contained in H, then N is not contained in M_i for some i, but then M_i is a complement of N in G containing H and $N \cap H = 1$. If $g \in N_G(HN)$, then $g = x\delta$ with $x \in M_i$ and $\delta \in N$. In particular $H^\delta \leq HN \cap M_i = H(N \cap M_i) = H$, so $N_{G'}(HN) = N_{G'}(H)N$. By Lemma [12] we have

$$\mu(H, G) = \mu(H/N, G/N) \lambda(H, G),$$

$$\lambda(H, G) = \lambda(H/N, G/N)\delta = |N_{G', N}(HN) : HN \cap G'N|^{\kappa/\delta} = |N_{N_{G'}(H)} : HN \cap G'|^{\kappa/\delta}$$

where k is the number of complements of N in G containing H and δ is the number of conjugacy classes of these complements. First assume that $N \leq Z(G)$. Then $\kappa = \delta$, $G' = M_i \leq M_i$, $N \cap G' = 1$ and

$$\mu(H, G) = |N_{N_{G'}(H)} : HN \cap G'|^{\kappa/\delta} = |N_{N_{G'}(H)} : HN \cap G'|^{\kappa/\delta}$$

$$= |N_{G'}(H) : H \cap G'|.$$

Finally assume $N \not\subseteq Z(G)$. Then $N \leq G'$, $\kappa/\delta = |N_N(H)|$ and

$$\mu(H, G) = |N_{N_{G'}(H)} : HN \cap G'|^{\kappa/\delta} = |N_{N_{G'}(H)} : HN \cap G'|^{\kappa/\delta}$$

$$= \frac{|N_{N_{G'}(H)}|}{|N_N(H)|} \frac{|N_N(H)|}{|N_{N_{G'}(H)}|} = |N_{G'}(H) : H \cap G'|. \quad \Box$$
Proof of Corollary 6. Suppose that G has minimal order with respect to the property that G does not satisfy the (μ, λ) property. By the previous proposition, G contains no abelian minimal normal subgroup and therefore $\text{soc}(G) = S_1 \times \cdots \times S_t$ is a direct product of nonabelian finite simple groups. If $|G| \leq |PSU(3, 3)| = 6048$, then either $t = 1$ or $G = \text{soc}(G) = A_5 \times A_5$. So it suffices to check that $A_5 \times A_5$ and any almost simple group of order at most 6048 satisfies the (μ, λ) property. Since, for every $H \leq G$, $\lambda(H, G)$ and $\mu(H, G)$ can be computed from the table of marks of G (see [10, Proposition 1]), this task can be easily completed using the library of table of marks available in GAP [4]. □

We may use Theorem 15 to deduce some consequences of the (μ, λ)-property.

Theorem 22. Suppose that a finite group G satisfies the (μ, λ)-property. Then

\[(5.1) \quad \sum_{H \in \mathcal{C}(G)} \lambda(H, G) \left(\frac{|H|^{-1}|G||G' H|}{|G' \mathcal{N}_G(H)|} - \omega(H, t) \right) = 0.\]

Proof. By Theorem 15

\[\sum_{H \in \mathcal{C}(G)} \lambda(H, G) \omega(H, t) = \phi(G, t) = \sum_{H \leq G} \mu(H, G)|H|^t\]

\[= \sum_{H \in \mathcal{C}(G)} \mu(H, G)|H : \mathcal{N}_G(H)||H|^t\]

\[= \sum_{H \in \mathcal{C}(G)} \lambda(H, G)|\mathcal{N}_{G'}(H) : G' \cap H||G : \mathcal{N}_G(H)||H|^t\]

\[= \sum_{H \in \mathcal{C}(G)} \lambda(H, G) \frac{|H|^t|G||\mathcal{N}_{G'}(H)|}{|G' \cap H||\mathcal{N}_G(H)|} = \sum_{H \in \mathcal{C}(G)} \lambda(H, G) \frac{|H|^{-1}|G||G' H|}{|G' \mathcal{N}_G(H)|}. \square\]

A natural question is whether (5.1) is also a sufficient condition for the (μ, λ)-property. For any $H \leq G$, set $\mu^*(H, G) = |\mathcal{N}_{G'}(H) : G' \cap H| \lambda(H, G)$. The validity of (5.1) is equivalent to

\[\sum_{H \in \mathcal{C}(G)} \lambda(H, G) \omega(H, t) - \sum_{H \in \mathcal{C}(G)} \mu^*(H, G)|H|^t|G : \mathcal{N}_G(H)| = 0.\]

In any case we must have

\[\sum_{H \in \mathcal{C}(G)} \lambda(H, G) \omega(H, t) - \sum_{H \in \mathcal{C}(G)} \mu(H, G)|H|^t|G : \mathcal{N}_G(H)| = 0.\]

So (5.1) is equivalent to

\[\sum_{H \in \mathcal{C}(G)} \frac{(\mu(H, G) - \mu^*(H, G))|H|^t}{|\mathcal{N}_G(H)|} = 0.\]

Let $T = \{ [H] \in \mathcal{C}(G) \mid \mu(H, G) \neq \mu^*(H, G) \}$. Then (5.1) is true if and only if

\[(5.2) \quad \sum_{[H] \in T} \frac{(\mu(H, G) - \mu^*(H, G))|H|^t}{|\mathcal{N}_G(H)|} = 0.\]
For example, if \(G = PSU(3,3) \), then \(\mathcal{T} \) consists of four conjugacy classes of subgroups and the corresponding values are given by the following table:

| \(\mu(H,G) \) | \(\mu^*(H,G) \) | \(|H| \) | \(|N_G(H)| \) |
|----------------|----------------|-------|----------|
| -48 | 0 | 2 | 96 |
| 3 | 0 | 6 | 18 |
| 0 | -4 | 8 | 32 |
| 1 | 2 | 24 | 24 |

In this case (5.2) is equivalent to

\[
2^{t-1} - 6^{t-1} - 8^{t-1} + 24^{t-1} = 0
\]

which is true only if \(t = 1 \).

For any positive integer \(n \) let

\[
\tau(n) = \sum_{H \in \mathcal{T}, |H|=n} \frac{\mu(H,g) - \mu^*(H,G)}{|N_G(H)|}.
\]

Proposition 23. A finite group \(G \) satisfies (5.1) for any positive integer \(t \) if and only if \(\tau(n) = 0 \) for any \(n \in \mathbb{N} \).

Question 24. Does \(\tau(n) = 0 \) for any \(n \in \mathbb{N} \) implies \(\mu^*(H,G) = \mu(H,G) \) for any \(H \leq G \)?

For any \(H \leq G \), consider

\[
\alpha(H,t) = \frac{|H|^{t-1}|G'||G'H|}{|G'N_G(H)|}, \quad \beta(H,t) = \alpha(H,t) - \omega(H,t).
\]

Let \(\mathcal{C}^*(G) = \{ [H] \in \mathcal{C}(H) \mid |H| < |G| \} \) and \(\lambda(H,G) \neq 0 \}. If \(G \) satisfies the \((\lambda,\mu)\)-property, then for any \(t \in \mathbb{N} \), the vector

\[
\beta_t(G) = (\beta(H,t))_{[H] \in \mathcal{C}^*(G)}
\]

is an integer solution of the linear equation

\[
(5.3)
\]

\[
\sum_{[H] \in \mathcal{C}^*(G)} \lambda(H,G)x_H = 0.
\]

One could investigate about the dimension of the vector space generate by the vectors \(\beta_t(G) \), \(t \in \mathbb{N} \). For example, if \(G = A_5 \), then we may order the elements of \(\mathcal{C}^*(G) \) so that \(H_1 = A_4 \), \(H_2 = S_3 \), \(H_3 = D_5 \), \(H_4 = \langle (1,2,3) \rangle \), \(H_5 = \langle (1,2)(3,4) \rangle \), \(H_6 = 1 \). Then (5.3) can be written in the form

\[
\sum_{[H] \in \mathcal{C}^*(G)} \lambda(H,G)x_H = -x_{H_1} - x_{H_2} - x_{H_3} + x_{H_4} + 2x_{H_5} - x_{H_6}
\]

and

\[
\beta_1(G) = (24,24,20,39,44,59),
\]

\[
\beta_2(G) = (84,54,50,99,74,59),
\]

\[
\beta_3(G) = (264,114,110,279,134,59),
\]

\[
\beta_4(G) = (804,234,230,819,254,59),
\]

\[
\beta_5(G) = (2424,474,470,2439,494,59),
\]

\[
\beta_6(G) = (7284,954,950,7299,974,59).
\]
The first three vectors $\beta_1(G), \beta_2(G), \beta_3(G)$ are linearly independent, while $\beta_4(G), \beta_5(G)$ and $\beta_6(G)$ can be obtained as linear combinations of $\beta_1(G), \beta_2(G), \beta_3(G)$.

The situation is completely different when $G = S_3$. We may order the elements of $C^*(G)$ so that $H_1 = \langle (1, 2, 3) \rangle$, $H_2 = \langle (1, 2) \rangle$, $H_3 = 1$. The equation (5.3) has in this case the form $x_{H_1} + x_{H_2} - x_{H_3} = 0$ and $\beta_1(G) = (0, 2, 2)$ independently on the choice of t.

Some properties of the vectors $\beta_t(G)$ are described in the following propositions.

Proposition 25. If $H \in C^*(G)$, then $\beta(H, t) \geq 0$ with equality if and only if $G' \leq H$. In particular $\beta_1(G)$ is a non-negative vector and $\beta_1(G) = 0$ if and only if G is nilpotent.

Proof. Notice that $\omega(H, t) \leq |G : N_G(H)|(|H|^t - 1) + 1$. So

$$\beta(H, t) \geq \frac{|H|^{t-1}|G| |G'| H}{|G'| N_G(H)} - |G : N_G(H)|(|H|^t - 1) - 1$$

$$= |H|^t |G : N_G(H)| \frac{|G' \cap N_G(H)|}{|G' \cap H|} - |G : N_G(H)|(|H|^t - 1) - 1 \geq 0$$

with equality if and only if $H \geq G'$.

Proposition 26. The vector $\beta_t(G)$ is independent on the choice of t if and only if G is a nilpotent group or a primitive Frobenius group, with cyclic Frobenius complement.

Proof. By the previous proposition, if G is nilpotent then $\beta_t(G)$ is the zero vector for any $t \in \mathbb{N}$, so we may assume that G is not nilpotent. Assume that $\beta_t(G)$ is independent on the choice of t. Let H be a maximal non-normal subgroup of G. Then $\alpha(H, t) = |H|^t \cdot u$ with $u = |G : H|$. Let H_1, \ldots, H_u be the conjugates of H in G. For any $J \subseteq \{1, \ldots, u\}$, let $\alpha_J = |\cap_{j \in J} H_j|$. Then

$$\beta(H, t) = \sum_{J \neq \{1, \ldots, u\}} (-1)^{|J|+1} |\alpha_J|^t.$$

We must have $\alpha_J = 1$ for every choice of J, otherwise $\lim_{t \to \infty} \beta(H, t) = \infty$. Hence H is a Frobenius complement and, since H is a maximal subgroup, the Frobenius kernel V is an irreducible H-module. Since $\beta(V, t) = |V|^t(|H'|^t - 1)$ does not depend on t, H must be abelian, and consequently cyclic. So if $\beta_t(G)$ is independent of the choice of t, then G is a primitive Frobenius group with a cyclic Frobenius complement. Conversely assume $G = V \rtimes H$, where H is cyclic and V and irreducible H-module. If $X \in C^*(G)$, then $\lambda(X, G) \neq 0$, so X is an intersection of maximal subgroups of G and therefore either $V = G' \leq X$, or X is conjugate to a subgroup of H. In the first case $\beta(H, t) = 0$. Assume $X = K^v$ for some $K \leq H$ and $v \in V$. Then $\beta(H, t) = |K|^t |V| - \omega(K, t) = |K|^t |V| - (|V|(|K|^t - 1) + 1) = |V| - 1$. □

References

1. K. S. Brown, The coset poset and probabilistic zeta function of a finite group, J. Algebra 225 (2000), no. 2, 989–1012.
2. H. Crapo, The Möbius function of a lattice, J. Combinatorial Theory 1 (1966), 126–134.
3. H. Crapo, Möbius inversion in lattices, Arch. Math. (Basel) 19 (1968) 595–607.
4. The GAP Group, Gap - groups, algorithms, and programming, version 4.11.1, 2021, https://www.gap-system.org.
5. W. Gaschütz, Zu einem von B. H. und H. Neumann gestellten Problem, Mathematische Nachrichten 14 (1955), no. 4-6, 249–252.4
6. F. Dalla Volta and G. Zini, On two Möbius functions for a finite non-solvable group, Comm. Algebra 49 (2021), no. 11, 4565–4576.
7. P. Hall, The Eulerian functions of a group, Quart. J. Math. Oxford Ser. 7 (1936), 134–151.
8. T. Hawkes, I. M. Isaacs and M. Özaydin, On the Möbius function of a finite group. Rocky Mountain J. Math. 19 (1989), no. 4, 1003–1034.
9. A. Lucchini, On the subgroups with non-trivial Möbius number, J. Group Theory 13 (2010), no. 4, 589–600.
10. H. Pahlings, On the Möbius function of a finite group, Arch. Math. (Basel) 60 (1) (1993), 7–14.

Francesca Dalla Volta, Dipartimento di Matematica e Applicazioni, University of Milano-Bicocca, Via Cozzi 55, 20126 Milano, Italy
Email address: francesca.dallavolta@unimib.it

Andrea Lucchini, Università degli Studi di Padova, Dipartimento di Matematica “Tullio Levi-Civita”, Via Trieste 63, 35121 Padova, Italy
Email address: lucchini@math.unipd.it