DOMINANCE COMPLEX AND VERTEX COVER NUMBER

TAKAHIRO MATSUSHITA

Abstract. The dominance complex \(D(G) \) of a simple graph \(G = (V, E) \) is the simplicial complex consisting of subsets of \(V \) whose complements are dominating. We show that the connectivity of \(D(G) \) plus 2 is a lower bound for the vertex cover number \(\tau(G) \).

1. Introduction

For a simple graph \(G = (V, E) \), a subset \(S \) of \(V \) is a dominating set in \(G \) if every vertex \(v \) in \(G \) belongs to \(S \) or is adjacent to an element in \(S \). The dominance complex \(D(G) \) is the simplicial complex consisting of the subsets of \(V \) whose complements are dominating.

Dominance complex was considered in Ehrenborg and Hetyei [1], and there are few classes of graphs such that the homotopy types of their dominance complexes are determined. However, the known examples seem to suggest that there is a certain relationship between the topology of \(D(G) \) and the vertex cover number \(\tau(G) \). In fact, Ehrenborg and Hetyei showed that the dominance complex of a forest is homotopy equivalent to a sphere, and Marietti and Testa [4] in fact showed \(S^{\tau(G)-1} \simeq D(G) \) when \(G \) is a forest. Taylan [7] generalize this result to chordal graphs. Taylan [7] also determined the homotopy types of the \(P_3 \)-devoid complexes of cycles, which coincide with the dominance complexes of cycles. Namely, she showed

\[
D(C_4 t) \simeq S^{2t-1} \vee S^{2t-1} \vee S^{2t-1}, \quad D(C_{4t+i}) \simeq S^{2t+i-2} \quad (i = 1, 2, 3).
\]

Note that the vertex cover number of \(C_n \) is \(\lceil n/2 \rceil \).

These results seem to suggest that there is a relationship between the connectivity of \(D(G) \) and \(\tau(G) \), and the purpose in this note is to show that a certain homotopy invariant of \(D(G) \) gives a lower bound for the vertex cover number \(\tau(G) \).

For a topological space \(X \), let \(\text{conn}_{\mathbb{Z}_2}(X) \) be the largest number \(n \) such that \(i \leq n \) implies \(\tilde{H}_i(X; \mathbb{Z}_2) = 0 \), and call it the \(\mathbb{Z}_2 \)-homological connectivity of \(X \). Note that Hurewicz theorem implies \(\text{conn}(X) \leq \text{conn}_{\mathbb{Z}_2}(X) \), where \(\text{conn}(X) \) is the connectivity of \(X \). Then our main result is formulated as follows:

Theorem 1. For every simple graph \(G \), the following inequality holds:

\[
\text{conn}_{\mathbb{Z}_2}(D(G)) + 2 \leq \tau(G)
\]
Corollary 2. For every simple graph G, the dominance complex $D(G)$ is not contractible.

Note that in the cases mentioned above, the equality $\text{conn}_{\mathbb{Z}_2}(D(G)) + 2 = \tau(G)$ holds except for the case $G = C_{4t+1}$. In this exceptional case, these numbers differ by 1.

In the proof, we show that the suspension of the Alexander dual of $D(G)$ has a free \mathbb{Z}_2-action, and it contains $S^{\alpha(G)-1}$ as a \mathbb{Z}_2-subspace. Here $\alpha(G) = |V| - \tau(G)$ is the size of a maximum independent set.

Acknowledgement. The author is supported by JSPS KAKENHI 19K14536.

2. Proofs

We start with describing the dominance complex as an independence complex of a hypergraph. A hypergraph $\mathcal{H} = (X, H)$ is a pair consisting of a set X with a multi-set H on X. We consider that every hypergraph is finite, i.e. X and H are finite. A subset σ of X is independent if there is no element in H containing σ. Then the independent sets of \mathcal{H} form an (abstract) simplicial complex $I(\mathcal{H})$, and we call it the independence complex of \mathcal{H}.

Next we recall the Alexander dual of independence complexes of hypergraphs. Let K be an (abstract) simplicial complex with underlying set X. Then the combinatorial Alexander dual K^\vee is the simplicial complex consisting of the subsets of K whose complement is a non-face of K. Then a simplex of the Alexander dual $I^\vee(\mathcal{H})$ of the independence complex $I(\mathcal{H})$ is a subset σ of X such that $\sigma \cap \tau = \emptyset$ for some $\sigma \in H$. Recall that a subset of X which intersects every hyperedge of \mathcal{H} is said to be transversal. Thus $I^\vee(\mathcal{H})$ is the simplicial complex consisting of non-transversal sets.

Let $B_{\mathcal{H}}$ be the associated bipartite graph of the hypergraph \mathcal{H}. Namely, the vertex set of $B_{\mathcal{H}}$ is the disjoint union $V \sqcup H$ of V and H, and $v \in V$ and $h \in H$ are adjacent if and only if $v \in h$. Then Nagel and Reiner [8] actually showed the following homotopy equivalence:

Theorem 3 (Proposition 6.2 of [8]). For every hypergraph \mathcal{H}, there is a following homotopy equivalence:

$$\Sigma(I^\vee(\mathcal{H})) \simeq I(B_{\mathcal{H}})$$

Here Σ denotes the suspension.

We consider the case of dominance complex. As Ehrenborg and Hetyei noted in [11], the dominance complex $D(G)$ of a simple graph G is simply described as the independence complex of some hypergraph \mathcal{D}_G defined as follows: The underlying set of \mathcal{D}_G is the vertex set $V(G)$ of G, and the set of hyperedges of \mathcal{D}_G is the multi-set $\{N[v] \mid v \in V(G)\}$. Here $N[v]$ denotes the set $\{v\} \cup \{w \in V \mid \{v, w\} \in E(G)\}$. Then it is easy to see $D(G) = I(\mathcal{D}_G)$.

Next we describe the associated hypergraph of D_G. Define the graph G^{∞} as follows: The vertex set of G^{∞} is $\{+, -\} \times V(G)$, and the set of edges of G^{∞} is

$$E(G^{\infty}) = \{(+(v), (-, w)) \mid v \in N[w]\}.$$

Clearly, G^{∞} is the associated bipartite graph of D_G, and Theorem 3 implies the following:

Corollary 4. There is a following homotopy equivalence:

$$\Sigma(D^\gamma(G)) \simeq I(G^{\infty})$$

Note that G^{∞} has a natural involution exchanging $(+, v)$ and $(-, v)$, and we write γ to indicate it. Then γ induces a \mathbb{Z}_2-action of $I(G^{\infty})$.

Lemma 5. The \mathbb{Z}_2-action of $I(G^{\infty})$ is free.

Proof. Let σ be a simplex of $I(G^{\infty})$. It suffices to show $\sigma \cap \gamma \sigma = \emptyset$. Suppose $\sigma \cap \gamma \sigma \neq \emptyset$ and let $(\varepsilon, v) \in \sigma \cap \gamma \sigma$. Thus $(\varepsilon, v) \in \gamma \sigma$ implies $(-\varepsilon, v) \in \sigma$. This means $(+, v), (-, v) \in \sigma$. Since σ is an independent set in G^{∞}, this is a contradiction. \hfill \square

For a free \mathbb{Z}_2-space X, the coindex $\coind(X)$ of X is the largest integer n such that there is a continuous \mathbb{Z}_2-map from S^n to X. Here we consider the involution of S^n as the antipodal map. Recall that $\alpha(G)$ denotes the size of a maximum independent set of a simple graph G.

Lemma 6. The complex $I(G^{\infty})$ has a \mathbb{Z}_2-subcomplex which is \mathbb{Z}_2-homeomorphic to $S^{\alpha(G) - 1}$. In particular, we have $\alpha(G) - 1 \leq \coind(I(G^{\infty}))$.

Proof. Let A_n be the boundary of $(n + 1)$-dimensional cross polytope. Namely, the vertex set of A_n is $\{\pm 1, \ldots, \pm (n + 1)\}$ and a subset σ of it is a simplex if and only if there is no i with $\{\pm i\} \subset \sigma$. Then $|A_n|$ is homeomorphic to S^n.

Let $\sigma = \{v_1, \ldots, v_{\alpha(G)}\}$ be a maximum independent set of G. Define the simplicial map $f : A_{\alpha(G) - 1} \to I(G^{\infty})$ by sending $+i$ to $(+, v_i)$ and $-i$ to $(-, v_i)$. This is clearly an inclusion from $A_{\alpha(G) - 1}$ to $I(G^{\infty})$ which is a \mathbb{Z}_2-equivariant. \hfill \square

Next we observe that the coindex of a free \mathbb{Z}_2-space X gives a restriction of the homology groups of X. Let $h\text{-dim}_{\mathbb{Z}_2}(X)$ be the maximum integer n such that $\tilde{H}_n(X; \mathbb{Z}_2) \neq 0$. Then we have the following:

Lemma 7. For a finite free \mathbb{Z}_2-simplicial complex X, the following inequality holds:

$$\coind(X) \leq h\text{-dim}_{\mathbb{Z}_2}(X)$$

Proof. Suppose $n = \coind(X) > h\text{-dim}_{\mathbb{Z}_2}(X)$. Let \overline{X} denote the orbit space of X and $w_1(X)$ the 1st Stiefel-Whitney class of the double cover $X \xrightarrow{p} \overline{X}$ (see [2] or [3]). Since there is a
\(\mathbb{Z}_2\)-map \(S^n \to X\) and \(w_1(S^n)^n \neq 0\), the naturality of \(w_1\) implies \(0 \neq w_1(X)^n \in H^n(X; \mathbb{Z}_2)\). By the Gysin sequence of the double cover (see [6]), we have the following exact sequence:

\[
H^k(X; \mathbb{Z}_2) \xrightarrow{\delta} H^k(X; \mathbb{Z}_2) \xrightarrow{\cup w_1(X)} H^{k+1}(X; \mathbb{Z}_2)
\]

Since \(h:\text{dim}_{\mathbb{Z}_2}(X) < n\), we have that \(H^n(Z; \mathbb{Z}_2) = 0\) and hence the map \(H^n(X; \mathbb{Z}_2) \xrightarrow{\cup w_1(X)} H^{n+1}(X; \mathbb{Z}_2)\) is injective. Thus we have \(w_1(X)^{n+1} \neq 0\). By induction, we have that \(0 \neq w_1(X)^k \in H^k(X; \mathbb{Z}_2)\) for every \(k > n\). This is a contradiction since \(X\) is a finite complex. □

We are now ready to prove Theorem 1. Set \(k = \text{conn}_{\mathbb{Z}_2}(D(G))\). The combinatorial Alexander duality theorem (see [5]) implies \(h:\text{dim}_{\mathbb{Z}_2}(D^\vee(G)) = |V| - k - 4\). Thus we have

\[
\alpha(G) - 1 \leq \text{coind}(I(G^\infty)) \leq h:\text{dim}_{\mathbb{Z}_2}(I(G^\infty)) = h:\text{dim}_{\mathbb{Z}_2}(\Sigma D^\vee(G)) = |V| - k - 3.
\]

Here the first and second inequalities follow from Lemma 7 and Lemma 6, respectively. Thus we have

\[
\text{conn}_{\mathbb{Z}_2}(D(G)) = k + 2 \leq |V| - \alpha(G) = \tau(G)
\]

This completes the proof.

References

[1] R. Ehrenborg, G. Hetyei; The topology of independence complex, Eur. J. Comb. 27 (2006) 906-923.
[2] D.N. Kozlov; Combinatorial algebraic topology, Springer, Berlin, Algorithms and Computation in Mathematics, Vol. 21, 2008.
[3] M. Marietti, D. Testa; A uniform approach to complexes arising from forests, Electron. J. Comb. 15 (2008).
[4] M. Marietti, D. Testa; Cores of simplicial complexes, Discrete Comput. Geom. 40 (2008), 444-468.
[5] E. Miller, B. Sturmfels; Combinatorial Commutative Algebra. Graduate Texts in Mathematics. 227. New York, NY: Springer-Verlag, 2005.
[6] J.W. Milnor, J.D. Stasheff; Characteristic Classes, Princeton University Press, 1974.
[7] D. Taylan; Matching trees for simplicial complexes and homotopy type of devoid complexes of graphs, Order, 33 (2016), 459-476.
[8] U. Nagel, V. Reiner; Betti numbers of monomial ideals and shifted skew shapes, Electron. J. Comb. 16 (2009).

Department of Mathematical Sciences, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan

E-mail address: mtst@sci.u-ryukyu.ac.jp