Multipartite quantum correlations and local recoverability

Mark M. Wilde

Hearne Institute for Theoretical Physics, Center for Computation and Technology, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

Received: 6 December 2014
Accepted: 12 March 2015

Characterizing genuine multipartite quantum correlations in quantum physical systems has historically been a challenging problem in quantum information theory. More recently, however, the total correlation or multipartite information measure has been helpful in accomplishing this goal, especially with the multipartite symmetric quantum (MSQ) discord (Piani et al. 2008 Phys. Rev. Lett. 100 090502. (doi:10.1103/PhysRevLett.100.090502)) and the conditional entanglement of multipartite information (CEMI) (Yang et al. 2008 Phys. Rev. Lett. 101 140501. (doi:10.1103/PhysRevLett.101.140501)). Here, we apply a recent and significant improvement of strong subadditivity of quantum entropy (Fawzi & Renner 2014 (http://arxiv.org/abs/1410.0664)) in order to develop these quantities further. In particular, we prove that the MSQ discord is nearly equal to zero if and only if the multipartite state for which it is evaluated is approximately locally recoverable after performing measurements on each of its systems. Furthermore, we prove that the CEMI is a faithful entanglement measure, i.e. it vanishes if and only if the multipartite state for which it is evaluated is a fully separable state. Along the way, we provide an operational interpretation of the MSQ discord in terms of the partial state distribution protocol, which in turn, as a special case, gives an interpretation for the original discord quantity. Finally, we prove an inequality that could potentially improve upon the Fawzi–Renner inequality in the multipartite context, but it remains an open question to determine whether this is so.

1. Introduction

The quantification and characterization of correlations in multiple physical systems has a long history, with...
some of the first proposals for information measures being the works of McGill [1] and Watanabe [2]. Of particular interest for us here is the total correlation measure proposed by Watanabe [2], which is defined for a set of random variables \(X_1, \ldots, X_i\) as the sum of the individual entropies less the joint entropy

\[
I(X_1 : \cdots : X_i) \equiv H(X_1) + \cdots + H(X_i) - H(X_1 \cdots X_i),
\]

where \(H(\cdot)\) is the Shannon entropy. The total correlation has the salient properties of being non-negative and monotone non-increasing under local operations, meaning that it does not increase under the local discarding of information, i.e. for random variables \(X_1, X'_1, \ldots, X_i, X'_i\), the following inequality holds:

\[
I(X_1X'_1 : \cdots : X_iX'_i) \geq I(X'_1 : \cdots : X'_i).
\]

The generalization of the total correlation to quantum physical systems is straightforward, given simply by replacing Shannon entropies with von Neumann entropies [3]. In the quantum information theory literature, the quantity is known as the multipartite information. Specifically, let \(\rho_{A_1A_2\cdots A_i}\) be a multipartite density operator representing the state of systems \(A_1, \ldots, A_i\) (i.e. \(\rho_{A_1A_2\cdots A_i}\) is a trace one, positive semi-definite operator acting on the tensor-product Hilbert space \(\mathcal{H}_{A_1} \otimes \cdots \otimes \mathcal{H}_{A_i}\)). The multipartite information of this state is defined as

\[
I(A_1 : \cdots : A_i)_{\rho} \equiv H(A_1)_{\rho} + \cdots + H(A_i)_{\rho} - H(A_1 \cdots A_i)_{\rho},
\]

with the von Neumann entropy of a density operator \(\sigma\) on system \(S\) defined in terms of the natural logarithm as \(H(S)_{\sigma} \equiv H(\sigma) \equiv -\text{Tr}[\sigma \log \sigma]\) and the marginal entropies \(H(A_i)_{\rho}\) are defined with respect to the reduced density operator

\[
\rho_{A_i} = \text{Tr}_{A_1A_2\cdots A_{i-1}}[\rho_{A_1\cdots A_i}].
\]

The quantity in (1.3) is also non-negative and monotone non-increasing under the local discarding of information, i.e. the following inequality holds for a multipartite density operator \(\rho_{A_1A_2\cdots A_i}\):

\[
I(A_1A'_1 : \cdots : A_iA'_i)_{\rho} \geq I(A'_1 : \cdots : A'_i)_{\rho}.
\]

The above inequality follows because the multipartite information can be written in terms of the relative entropy \(D(\rho || \sigma) \equiv \text{Tr}[\rho (\log \rho - \log \sigma)]\) [4] as

\[
I(A_1 : \cdots : A_i)_{\rho} = D(\rho_{A_1\cdots A_i} || \rho_{A_1} \otimes \cdots \otimes \rho_{A_i}),
\]

and the relative entropy is monotone non-increasing under quantum operations [5], i.e. \(D(\rho || \sigma) \geq D(N(\rho) || N(\sigma))\) for any states \(\rho\) and \(\sigma\) and quantum channel \(N\) (recall that a quantum channel is a completely positive trace preserving (CPTP) linear map).

Given the inequality in (1.5), we are left to wonder whether one could refine it in a non-trivial way by finding a state-dependent remainder term. This kind of question has been the driving force behind several recent investigations in quantum information theory [6–13], culminating in the following breakthrough inequality of Fawzi & Renner [14]:

\[
I(A; B| C)_{\rho} \geq -\log F(\rho_{ABC}, R_{C\rightarrow AC}(\rho_{BC}))
\]

\[
\geq \frac{1}{2} \| \rho_{ABC} - R_{C\rightarrow AC}(\rho_{BC}) \|^2_1,
\]

where \(I(A; B| C)_{\rho}\) is the conditional quantum mutual information of a tripartite state \(\rho_{ABC}\), defined as

\[
I(A; B| C)_{\rho} \equiv H(AC)_{\rho} + H(BC)_{\rho} - H(C)_{\rho} - H(ABC)_{\rho},
\]

and \(R_{C\rightarrow AC}\) is a particular CPTP ‘recovery map’ which acts on system \(C\) alone in an attempt to recover the ‘lost’ system \(A\). The quantity \(F(\omega, \tau) \equiv \| \sqrt{\omega} \sqrt{\tau} \|^2_1\) is the quantum fidelity between states \(\omega\) and \(\tau\) [15], with \(\| A \|_1 \equiv \text{Tr}[\sqrt{A^* A}]\) the Schatten \(\ell_1\) norm. The trace distance between two density operators \(\omega\) and \(\tau\) is defined in terms of the trace norm as \(\| \omega - \tau \|_1\) and characterizes how well one can distinguish the states \(\omega\) and \(\tau\) in any physical experiment. The Fawzi-Renner
inequality gives a state-dependent improvement to strong subadditivity (i.e. \(I(A;B|C) \geq 0 \)) [16,17] and has even been improved upon in recent work of Brandao et al. [18]. One can also see the recent work [19] for a simpler proof of (1.7).

The difference of the two multipartite informations in (1.5) is the basis for two distinct measures of quantum correlations: the multipartite symmetric quantum (MSQ) discord [20] and the conditional entanglement of multipartite information (CEMI) [21], which were inspired by the quantum discord [22,23] and the squashed entanglement [24], respectively. We briefly motivate these quantities here and give formal definitions later in the paper. We begin by describing the MSQ discord. Let \(A_1 \cdots A_l \) be quantum systems held by spatially separated parties and suppose that each party measures their local system, leading to classical systems \(X_1 \cdots X_l \). We could then compute the non-negative information gap \(I(A_1 : \cdots : A_l) - I(X_1 : \cdots : X_l) \) and optimize it with respect to all local measurements. Suppose that the state is classical to begin with, meaning that it can be written as

\[
\sum_{x_1,\ldots,x_l} p(x_1,\ldots,x_l) |x_1\rangle \langle x_1|_{A_1} \otimes \cdots \otimes |x_l\rangle \langle x_l|_{A_l},
\]

for some joint probability distribution \(p(x_1,\ldots,x_l) \) and orthonormal bases \(\{|x_i\rangle_{A_i}\} \) for \(i \in \{1,\ldots,l\} \). Then there are local measurements that do not change the state at all after they are performed, and the MSQ discord is equal to zero. If the state cannot be written as above, then it cannot be understood in a classical way, such that there does not exist a set of local measurements that would leave the state undisturbed. In this sense, the MSQ discord is a measure of multipartite quantum correlations between the different parties and it is known that it is a faithful measure [20], meaning that it is zero if and only if the state is multipartite classical as written in (1.10). Other desirable properties for a discord-like measure are described in [25, §2.1].

The CEMI is motivated by the concept of the monogamy of quantum entanglement [21], that if two or more systems are highly entangled then any other systems cannot be too entangled with them. On the other hand, states which are close to being unentangled are highly shareable [26] or extendible [27], such that there could be many other systems sharing the same correlations with them. To define the CEMI, we begin with a multipartite state on the systems \(A_1 \cdots A_l \) and try to find a global state on these systems and some others \(A_1' \cdots A_l' \) that is consistent with the original state, meaning that we recover the original state when tracing over \(A_1' \cdots A_l' \). Based on the aforementioned ideas, any classical correlations can be shared with the extension systems \(A_1' \cdots A_l' \), while entanglement cannot be shared. The information gap \(I(A_1 A_1' : \cdots : A_l A_l') - I(A_1' : \cdots : A_l') \) attempts to subtract out the multipartite classical correlations that are shareable, so that what is left is a measure of multipartite quantum entanglement. One then optimizes this quantity by taking an infimum over all extension states. The work of Yang et al. [21] fully justified this approach, proving that the CEMI is a proper entanglement measure, bearing many properties which are desirable for such a measure. What was left open was to prove that the CEMI is a faithful entanglement measure, meaning that it is equal to zero if and only if the state on \(A_1 \cdots A_l \) is a fully separable (unentangled) state [28] of the following form:

\[
\sum_z p(z) \sigma^z_{A_1} \otimes \cdots \otimes \sigma^z_{A_l'},
\]

where \(p(z) \) is a probability distribution and \(\sigma^z_{A_i} \) is a quantum state on system \(A_i \).

2. Summary of results

The Fawzi–Renner inequality in (1.7) has a number of implications for entanglement theory and more general quantum correlations: it gives an alternative method [6,29] from [30] for establishing the faithfulness of the squashed entanglement measure [24] and it allows for characterizing quantum states with discord [22,23] nearly equal to zero as being approximate fixed points of entanglement breaking (EB) channels [13, Proposition 29].
The main objective of this paper is to pursue extensions of these ideas for multipartite quantum states and correlation measures. In particular, we first demonstrate that the following ‘local recoverability’ inequality is a consequence of the inequality in (1.7):

\[
I(A_1 A'_1 : \cdots : A_l A'_l) - I(A'_1 : \cdots : A'_l) \geq \frac{1}{2l} \| \rho_{A_1 A'_1 : \cdots : A_l A'_l} - (R_{A'_1}^1 \otimes \cdots \otimes R_{A'_l}^l)(\rho_{A'_1 \cdots A'_l}) \|_1^2,
\]

where \(R_{A'_1}^1, \ldots, R_{A'_l}^l \) are local recovery maps. The implication of the above inequality is that if the gap \(I(A_1 A'_1 : \cdots : A_l A'_l) - I(A'_1 : \cdots : A'_l) \) is nearly equal to zero, then the full state \(\rho_{A_1 A'_1 : \cdots : A_l A'_l} \) is ‘locally recoverable’, i.e. one can approximately recover it by performing the local recovery maps \(R_{A'_1}^1 \otimes \cdots \otimes R_{A'_l}^l \). The converse of this statement is a direct consequence of the Alicki–Fannes inequality [31], with a proof proceeding similarly to the steps in (4.8)–(4.12) and a dimension dependence only on the systems \(A_1, \ldots, A_l \). It might be possible to improve upon the inequality in (2.1), i.e. to have the \(l \)-independent inequality:

\[
I(A_1 A'_1 : \cdots : A_l A'_l) - I(A'_1 : \cdots : A'_l) \geq - \log F(\rho_{A_1 A'_1 : \cdots : A_l A'_l}, (R_{A'_1}^1 \otimes \cdots \otimes R_{A'_l}^l)(\rho_{A'_1 \cdots A'_l})).
\]

We elaborate more on this possibility in §7.

Regardless of whether the conjectured inequality in (2.2) holds, we can already establish two consequences of the inequality in (2.1).

1. The MSQ discord from [20] is nearly equal to zero if and only if the multipartite state \(\rho_{A_1 \cdots A_l} \) is locally recoverable after performing measurements on each of the systems \(A_1, \ldots, A_l \). Equivalently, such a state has MSQ discord nearly equal to zero if and only if it is an approximate fixed point of a tensor product of EB channels. Recall that any EB channel can be written as a composition of a measurement channel followed by a preparation channel [32]. We detail this result in §4.
2. The CEMI from [21] is faithful, i.e. it vanishes if and only if a multipartite state \(\rho_{A_1 \cdots A_l} \) is fully separable. We detail this result in §5.

Additional contributions of this paper are to show explicitly in §5a that the CEMI is an upper bound on the multipartite squashed entanglement from [33,34] and in §6b to give an operational interpretation of the MSQ discord in terms of the partial state distribution protocol from [21]. We conclude in §8 with a summary of results and directions for future work.

3. Local recoverability

In this section, we give a proof of the local recoverability inequality in (2.1). We start with an explicit proof of the following lemma, which is implicit in the partial state distribution protocol of Yang et al. [21].

Lemma 3.1. Let \(\rho_{A_1 A'_1 : \cdots : A_l A'_l} \) be a multipartite quantum state. Then we have the following identity:

\[
I(A_1 A'_1 : \cdots : A_l A'_l) - I(A'_1 : \cdots : A'_l) = \sum_{i=1}^l I(A_i : A_{i-1}' A_{i} \cdots A_1') (A_{i} A_{i-1}' \cdots A_1'),
\]

where \(A_{i-1}' \equiv A_{i-1} : \cdots : A_1 \) (interpreted to be empty if \(i = 1 \)) and \(A_{i} A_{i-1}' \cdots A_1' \) is a shorthand indicating all of the \(A' \) systems except for \(A_i' \). In addition, the expansion on the right-hand side can proceed in any order.
Proof. Consider that
\[
I(A_1 A_1' \cdots : A_l A'_l)_\rho - I(A_1' \cdots : A_l' A_l)_\rho
\]
\[= \sum_{i=1}^{l} H(A_i A_i')_\rho - H(A_1 A_1' A_2 A_2' \cdots A_l A_l')_\rho - \left[\sum_{i=1}^{l} H(A_i')_\rho - H(A_1' A_2' \cdots A_l')_\rho \right] \quad (3.2)
\]
\[= \sum_{i=1}^{l} H(A_i | A_i')_\rho - H(A_1 A_2 \cdots A_l | A_1' A_2' \cdots A_l')_\rho \quad (3.3)
\]
\[= \sum_{i=1}^{l} H(A_i | A_i')_\rho - \sum_{i=1}^{l} H(A_i | A_1^{-1} A_2 A_2' \cdots A_l')_\rho \quad (3.4)
\]
\[= \sum_{i=1}^{l} \left[H(A_i | A_i')_\rho - H(A_i | A_1^{-1} A_1' A_2' \cdots A_l')_\rho \right] \quad (3.5)
\]
\[= \sum_{i=1}^{l} I(A_i : A_1^{-1} A_1' | \{i\} |_i | A_i'). \quad (3.6)
\]

The first equality is an expansion following from definitions. The second equality uses the chain rule for conditional entropy, i.e. \(H(A|B) = H(AB) - H(B)\). The third equality follows from an inductive application of the chain rule for conditional entropy. The final equality follows from an expansion for conditional mutual information as \(I(A; B|C) = H(A|C) - H(A|CB)\). The statement about expanding in an arbitrary order follows because the expansion in the third equality can proceed in any order.

Proof of (2.1). We can now easily prove the inequality in (2.1). From lemma 3.1, we can conclude that
\[
I(A_1 A_1' \cdots : A_l A'_l)_\rho - I(A_1' \cdots : A_l' A_l)_\rho \geq I(A_i; A_1 | i | i') (3.7)
\]
for all \(i \in \{1, 2, \ldots, l\}\) because (a) the expansion there can proceed in any order and (b) the conditional mutual information is non-negative [16, 17]. From the inequality in (1.7), we can then conclude that there exists a recovery map \(R_{A_i | A_i'}^i\) such that
\[
I(A_1 A_1' \cdots : A_l A'_l)_\rho - I(A_1' \cdots : A_l' A_l)_\rho \geq I(A_i; A_1 | i | i') \geq I(A_i; A_1 | i | i') (3.8)
\]
\[\geq \frac{1}{2} \| \rho_{A_1 A_1' \cdots A_l A_l'} - R_{A_i | A_i'}^i (\rho_{A_l A_1 | i | i'}) \|_1^2, \quad (3.9)
\]
which is equivalent to
\[
2\sqrt{I(A_1 A_1' \cdots : A_l A_l')_\rho - I(A_1' \cdots : A_l' A_l)_\rho} \geq \| \rho_{A_1 A_1' \cdots A_l A_l'} - R_{A_i | A_i'}^i (\rho_{A_l A_1 | i | i'}) \|_1 \quad (3.10)
\]
\[= \| \rho_{A_1 A_1' \cdots A_l A_l'} - (R_{A_i | A_i'}^i \circ Tr_A) (\rho_{A_l A_1 | i | i'}) \|_1. \quad (3.11)
\]
Using the triangle inequality \(l\) times and monotonicity of the trace distance under quantum operations (i.e. that \(\| \omega - \tau \|_1 \geq \| \mathcal{N}(\omega) - \mathcal{N}(\tau) \|_1 \) for density operators \(\omega\) and \(\tau\) and a quantum channel \(\mathcal{N}\)), we can then conclude that
\[
2l\sqrt{I(A_1 A_1' \cdots : A_l A_l')_\rho - I(A_1' \cdots : A_l' A_l)_\rho}
\]
\[\geq \| \rho_{A_1 A_1' \cdots A_l A_l'} - (R_{A_i | A_i'}^i \otimes \cdots \otimes R_{A_i | A_i'}^i) (\rho_{A_l A_1 | i | i'}) \|_1, \quad (3.12)
\]
which is equivalent to (2.1).
Remark 3.2. The above proof demonstrates that there are in fact \(2^l\) inequalities that hold, depending on whether one chooses to apply the trace-out-and-recovery maps or not. The inequality then takes on the following form:

\[
I(A_1 A'_1 : \cdots : A_l A'_l) - I(A'_1 : \cdots : A'_l) \geq \frac{1}{2^l} \|\rho_{A_1 A'_1 \cdots A_l A'_l} - (\mathcal{R}^1_{A_1 \rightarrow A_1 A'_1} \circ \text{Tr}_{A_1})^{j_1} \otimes \cdots \otimes (\mathcal{R}^l_{A_l \rightarrow A_l A'_l} \circ \text{Tr}_{A_l})^{j_l} (\rho_{A_1 A'_1 \cdots A_l A'_l})\|_1^2,
\]

(3.13)

where \(j \equiv j_1 \cdots j_l\) is a binary string indicating which recovery maps are applied and \(|j|\) is the number of ones in \(j\) if \(j\) is not the all-zeros bit string, with \(|j|\) otherwise being equal to one.

4. Approximate faithfulness of the multipartite symmetric quantum discord

In this section, we provide a generalization of the approximate faithfulness of quantum discord [13, Proposition 29] to the multipartite case. In particular, recall the MSQ discord from [20]:

\[
D(\bar{A}_1 : \cdots : \bar{A}_l) \equiv I(A_1 : \cdots : A_l) - \sup_{\{\mathcal{M}_{A_1 \rightarrow X_1}, \ldots, \mathcal{M}_{A_l \rightarrow X_l}\}} I(X_1 : \cdots : X_l)_{\omega},
\]

(4.1)

where \(\rho_{A_1 \cdots A_l}\) is a multipartite quantum state and \(\omega_{X_1 \cdots X_l}\) is the state resulting from local measurements of \(\rho_{A_1 \cdots A_l}\) according to the measurement maps \(\mathcal{M}_{A_1 \rightarrow X_1}^{j_1}, \ldots, \mathcal{M}_{A_l \rightarrow X_l}^{j_l}\):

\[
\omega_{X_1 \cdots X_l} \equiv (\mathcal{M}_{A_1 \rightarrow X_1}^{j_1} \otimes \cdots \otimes \mathcal{M}_{A_l \rightarrow X_l}^{j_l}) (\rho_{A_1 \cdots A_l}).
\]

(4.2)

The measurement map \(\mathcal{M}_{A_i \rightarrow X_i}^{j_i}\) is defined as

\[
\mathcal{M}_{A_i \rightarrow X_i}^{j_i} (\sigma_{A_i}) \equiv \sum_x \text{Tr}[A_{A_i}^x \sigma_{A_i}] |x\rangle \langle x|_{A_i}
\]

(4.3)

for some positive semi-definite operators \(A_{A_i}^x\) which sum to the identity and where \(|x\rangle_{A_i}\) is an orthonormal basis for the system \(A_i\).

Proposition 4.1 (Approximate faithfulness). The MSQ discord is nearly equal to zero if and only if \(\rho_{A_1 \cdots A_l}\) is an approximate fixed point of a tensor product of EB channels \(\mathcal{E}_{A_1}^{j_1}, \ldots, \mathcal{E}_{A_l}^{j_l}\). That is, suppose that there exist EB channels \(\mathcal{E}_{A_1}^{j_1}, \ldots, \mathcal{E}_{A_l}^{j_l}\) such that

\[
\|\rho_{A_1 \cdots A_l} - (\mathcal{E}_{A_1}^{j_1} \otimes \cdots \otimes \mathcal{E}_{A_l}^{j_l})(\rho_{A_1 \cdots A_l})\|_1 \leq \varepsilon
\]

(4.4)

for some \(\varepsilon \in [0, 1]\). Then

\[
D(\bar{A}_1 : \cdots : \bar{A}_l) \leq (l + 1) h_2 \left(\frac{\varepsilon}{2}\right) + \varepsilon \sum_{i=1}^l \log(|A_i|),
\]

(4.5)

where \(h_2(\varepsilon)\) is the binary entropy with the property that \(\lim_\varepsilon \downarrow 0 h_2(\varepsilon) = 0\). Conversely, suppose that

\[
D(\bar{A}_1 : \cdots : \bar{A}_l) \leq \varepsilon
\]

(4.6)

for some \(\varepsilon > 0\). Then there exist EB channels \(\mathcal{E}_{A_1}^{j_1}, \ldots, \mathcal{E}_{A_l}^{j_l}\) such that

\[
\|\rho_{A_1 \cdots A_l} - (\mathcal{E}_{A_1}^{j_1} \otimes \cdots \otimes \mathcal{E}_{A_l}^{j_l})(\rho_{A_1 \cdots A_l})\|_1 \leq 2l \sqrt{\varepsilon}.
\]

(4.7)
Proof. The proof of the inequality in (4.5) proceeds exactly as in the proof of [13, Proposition 29]. Consider that every EB channel can be written as a composition of a measurement map and a preparation [32], i.e. \(E_{A_i}^j = R_{X_i \rightarrow A_i}^{j} \circ M_{A_i \rightarrow X_i}^j \). Then

\[
D(\hat{A}_1 : \cdots : \hat{A}_l) = I(A_1 : \cdots : A_l) - \sup_{(M_{A_i \rightarrow X_i}^j)} I(X_1 : \cdots : X_l)
\]

(4.8)

\[
\leq I(A_1 : \cdots : A_l) - I(X_1 : \cdots : X_l)_{\otimes l}(\rho_{A_1 \cdots A_l})
\]

(4.9)

\[
\leq I(A_1 : \cdots : A_l) - I(A_1 : \cdots : A_l)_{\otimes l}(\rho_{A_1 \cdots A_l})
\]

(4.10)

\[
= I(A_1 : \cdots : A_l) - I(A_1 : \cdots : A_l)_{\otimes l}(E_{A_i}^j(\rho))
\]

(4.11)

\[
\leq (l + 1)\epsilon_2(\frac{l}{2}) + \epsilon \sum_{i=1}^{l} \log(||A_i||).
\]

(4.12)

The first inequality follows by choosing the measurement maps not to be the optimal ones, but instead the ones making up the first part of the EB channels \(\{E_{A_i}^j\} \). The second inequality follows from the fact that the multipartite information is monotone under local operations (here being the processing of the measured systems according to the preparation maps). The last inequality is a consequence of the Fannes–Audenaert inequality [35], which states that

\[
|H(\rho) - H(\sigma)| \leq T \log(d - 1) + h_2(T),
\]

(4.13)

with \(T = \frac{1}{2}||\rho - \sigma||_1 \) and \(d \) the dimension of the density operators \(\rho \) and \(\sigma \).

After recalling that any quantum channel (including measurement maps) can be understood as an isometric embedding of the input in a tensor-product Hilbert space followed by a partial trace [36], we can see that (4.7) is a consequence of the inequality in (2.1). Specifically, for a particular set of measurements, we can write

\[
I(A_1 : \cdots : A_l)_{\otimes l}(\rho_{A_1 \cdots A_l}) \geq I(A_1 : \cdots : A_l)_{\otimes l}(\rho_{A_1 \cdots A_l}) - I(X_1 : \cdots : X_l)_{\otimes l}(\rho_{A_1 \cdots A_l}),
\]

(4.14)

where

\[
\omega_{X_1E_1 \cdots X_lE_l} \equiv (U_{A_1 \rightarrow X_1E_1}^{M_1} \otimes \cdots \otimes U_{A_l \rightarrow X_lE_l}^{M_l})(\rho_{A_1 \cdots A_l})
\]

(4.15)

and \(U_{A_i \rightarrow X_iE_i}^{M_i} \) is an isometric CPTP map, so that

\[
U_{A_i \rightarrow X_iE_i}^{M_i} : U_{A_i \rightarrow X_iE_i}^{M_i} \equiv U_{A_i \rightarrow X_iE_i}^{M_i} (\cdot)[U_{A_i \rightarrow X_iE_i}^{M_i}]^\dagger,
\]

(4.16)

where \(U_{A_i \rightarrow X_iE_i}^{M_i} \) is an isometric extension of the measurement map \(M_{A_i \rightarrow X_i}^j \). Then (4.14) follows because the multipartite information is invariant under local isometries, as one can see from its definition in (1.3) and invariance of quantum entropy under isometries. The inequality (4.7) then follows because there exist recovery maps \(R_{X_1 \rightarrow X_1E_1}^1, \ldots, R_{X_l \rightarrow X_lE_l}^l \) such that

\[
I(X_1E_1 : \cdots : X_lE_l)_{\otimes l} = I(X_1 \cdots : X_l)_{\otimes l}
\]

(4.17)

\[
\geq \left[\frac{1}{2^l} \|\omega_{X_1E_1 \cdots X_lE_l} - (R_{X_1 \rightarrow X_1E_1}^1 \otimes \cdots \otimes R_{X_l \rightarrow X_lE_l}^l)(\omega_{X_1 \cdots X_l})\|_1 \right]^2
\]

(4.18)

\[
= \left[\frac{1}{2^l} \|\rho_{A_1 \cdots A_l} - (P_{X_1 \rightarrow A_1}^1 \otimes \cdots \otimes P_{X_l \rightarrow A_l}(\omega_{X_1 \cdots X_l})\|_1 \right]^2
\]

(4.19)

The first inequality is a consequence of (2.1). We define the following CPTP maps:

\[
T_{X_1E_1 \rightarrow A_1}^{\rho_{X_1E_1}}(Y_{X_1E_1}) \equiv [U_{A_1 \rightarrow X_1E_1}^{M_1}]^\dagger \gamma_{X_1E_1}U_{A_1 \rightarrow X_1E_1}^{M_1} + \text{Tr}((I_{X_1E_1} - U_{A_1 \rightarrow X_1E_1}^{M_1}[U_{A_1 \rightarrow X_1E_1}^{M_1}]^\dagger)\gamma_{X_1E_1})\sigma_{A_1}^j
\]

(4.20)
where \(\sigma_{A_i} \) is some state on system \(A_i \). Observe that

\[
(T_{X_1E_1 \to A_1}^i \otimes \cdots \otimes T_{X_iE_i \to A_i}^i)(\omega_{X_1E_1 \cdots E_i}) = \rho_{A_1 \cdots A_i}.
\]

Then the second inequality above follows by defining the preparation maps \(P_{A_1 \to A_i}^i \) as

\[
P_{A_1 \to A_i}^i \equiv T_{X_iE_i \to A_i}^i \circ R_{X_i(E_i)}^i,
\]

and noting that the trace distance does not increase under the CPTP map \(T_{X_iE_i \to A_i}^i \otimes \cdots \otimes T_{X_iE_i \to A_i}^i \). (The maps \(P_{A_1 \to A_i}^i \) are preparations because they act on classical registers.) The last equality follows from the definition of \(\omega_{X_1 \cdots X_i} \) in (4.2) and the fact that any composition of a measurement map followed by a preparation map is EB [32].

\[\square\]

5. Faithfulness of the conditional entanglement of multipartite information

The CEMI is an entanglement measure defined in [21]. It bears some similarities with the squashed entanglement [24] and its multipartite version [33,34]. In [21,37], the CEMI was shown to be non-negative, monotone under local operations and classical communication, convex, additive, asymptotically continuous and equal to zero for separable states. It is not known to be monogamous. Given a multipartite state \(\rho_{A_1 \cdots A_i} \), the CEMI is defined as follows:

\[
E_i(A_1 : \cdots : A_i)_\rho \equiv \frac{1}{2} \inf_{\rho_{A_1A_1' \cdots A_iA_i'}} I(A_1 A_1' : \cdots : A_i A_i')_\rho - I(A_1' : \cdots : A_i')_\rho,
\]

where the infimum is over all extensions \(\rho_{A_1A_1' \cdots A_iA_i'} \) of \(\rho_{A_1 \cdots A_i} \), i.e.

\[
\rho_{A_1 \cdots A_i} = \text{Tr}_{A_1 A_1' \cdots A_i A_i'}[\rho_{A_1 A_1' \cdots A_i A_i'}].
\]

In this section, we prove that the CEMI is faithful, i.e. equal to zero if and only if the state \(\rho_{A_1 \cdots A_i} \) is separable. Before doing so, it may be helpful to review the if-part of this theorem from [21]. If \(\rho_{A_1 \cdots A_i} \) is separable, then it has a decomposition of the following form [28]:

\[
\rho_{A_1 \cdots A_i} \equiv \sum_x p_X(x) \sigma_{A_1}^{L_x} \otimes \cdots \otimes \sigma_{A_i}^{L_x},
\]

for a probability distribution \(p_X \) and states \(\{\sigma_{A_1}^{L_x}\}, \ldots, \{\sigma_{A_i}^{L_x}\} \). In this case, one particular extension of this state has the following form:

\[
\sum_x p_X(x) \sigma_{A_1}^{L_x} \otimes |x\rangle \langle x|_{A_1} \otimes \cdots \otimes \sigma_{A_i}^{L_x} \otimes |x\rangle \langle x|_{A_i}.
\]

It is then clear for this particular extension that

\[
I(A_1' : \cdots : A_i') \geq I(A_1 A_1' : \cdots : A_i A_i'),
\]

because one can produce the systems \(A_1, \ldots, A_i \) by local preparation maps of the form

\[
(\cdot) \rightarrow \sum_x |x\rangle \langle x|_{A_1}(\cdot) |x\rangle \langle x|_{A_i} \otimes \sigma_{A_i}^{L_x}.
\]

Combined with the inequality in (1.5) and the definition of \(E_i \) in (5.1), we find that \(E_i \) is equal to zero if the state is separable.

We now establish the only-if part of faithfulness of CEMI, which is a consequence of the following proposition.

Proposition 5.1. The CEMI of a multipartite state \(\rho_{A_1 \cdots A_i} \) obeys the following bound:

\[
E_i(A_1 : \cdots : A_i)_\rho \geq \frac{1}{16 \cdot (l + 1)^4} \left(\sum_{i=2}^l |A_i|^2 \right)^{-2} \| \rho_{A_1 \cdots A_i} - \text{SEP}(A_1 : \cdots : A_i) \|_1,
\]

where \(\| \rho_{A_1 \cdots A_i} - \text{SEP}(A_1 : \cdots : A_i) \|_1 \) is the trace distance from \(\rho_{A_1 \cdots A_i} \) to the set of multipartite separable states.
Proof. The proof of this proposition proceeds along the lines outlined in [6,29], an analysis which is repeated in both [13,14]. Let \(\varepsilon_\rho \) denote the value of the following quantity for a particular extension \(\rho_{A_1A_1'...A_iA_i'} \):

\[
\varepsilon_\rho = I(A_1A_1' : \cdots : A_iA_i')_\rho - I(A_1' : \cdots : A_i')_\rho.
\]

(5.8)

From remark 3.2, we know that there exist recovery maps \(R^1_{A_1'\rightarrow A_1A_1'} , \ldots , R^l_{A_1'\rightarrow A_1A_1'} \) such that the following inequalities hold:

\[
\varepsilon_\rho \geq \frac{1}{2l} \left\| \rho_{A_1A_1'...A_iA_i'} - (R^1_{A_1'\rightarrow A_1A_1'} \circ \text{Tr}_{A_1})^j_1 \otimes \cdots \otimes (R^l_{A_1'\rightarrow A_1A_1'} \circ \text{Tr}_{A_1})^j_l \right\|_1^2,
\]

(5.9)

where \(j^l \equiv j_1 \cdots j_l \) is a binary string indicating which recovery maps are applied. Setting

\[
\delta_\rho \equiv 2\sqrt{\varepsilon_\rho},
\]

(5.10)

these inequalities are then equivalent to the following ones:

\[
l \cdot \delta_\rho \geq \left\| \rho_{A_1A_1'...A_iA_i'} - (R^1_{A_1'\rightarrow A_1A_1'} \circ \text{Tr}_{A_1})^j_1 \otimes \cdots \otimes (R^l_{A_1'\rightarrow A_1A_1'} \circ \text{Tr}_{A_1})^j_l \right\|_1.
\]

(5.11)

Let \(A^k_i \equiv A_i, \ldots A_{i+k} \) for \(j \in \{1, \ldots , l\} \), and let \(\Omega^k_{A_1'...A_i'} \) denote the following state, which results from many repeated attempts at local recovery:

\[
\Omega^k_{A_1'...A_i'} \equiv \left((R^1_{A_1'\rightarrow A_1A_1'} \circ \text{Tr}_{A_1})^j_1 \otimes \cdots \otimes (R^l_{A_1'\rightarrow A_1A_1'} \circ \text{Tr}_{A_1})^j_l \right) (\rho_{A_1A_1'...A_iA_i'}). \]

(5.12)

From (5.11), the triangle inequality, monotonicity of the trace distance under quantum operations, and the fact that the recovery maps \(R^1_{A_1'\rightarrow A_1A_1'} , \ldots , R^l_{A_1'\rightarrow A_1A_1'} \) commute with each other because they act on different systems, we can conclude that all of the following inequalities hold:

\[
\left\| \rho_{A_1...A_i} - \Omega_{A_1A_1'...A_iA_i'} \right\|_1 \leq l k \cdot \delta_\rho
\]

(5.13)

for all tuples \((x_1,...,x_l) \), where \(x_i \in \{1, \ldots , k\} \) and \(i \in \{1, \ldots , l\} \). We can then symmetrize the systems \(A^k_i \) according to the random permutation

\[
\tilde{A}^k_i \equiv \frac{1}{k!} \sum_{\pi \in S_k} W^\pi_{A_1A_1'...A_iA_i'} (W^\pi_{A_1A_1'...A_iA_i'})^\dagger,
\]

(5.14)

where \(W^\pi_{A_1A_1'...A_iA_i'} \) is a unitary representation of the permutation \(\pi \) which acts on the \(k \)-partite space \(\mathcal{H}_{A_1} \otimes \cdots \otimes \mathcal{H}_{A_i} \) as

\[
W^\pi_{A_1A_1'...A_iA_i'} |m_1\rangle_{A_1} \otimes \cdots \otimes |m_k\rangle_{A_i} = |m_{\pi^{-1}(1)}\rangle_{A_1} \otimes \cdots \otimes |m_{\pi^{-1}(k)}\rangle_{A_i}.
\]

(5.15)

This leads to the multiparticle extension state

\[
\tilde{\Omega}_{A_1'...A_i'} \equiv \left(\tilde{A}^k_1 \otimes \cdots \otimes \tilde{A}^k_l \otimes \text{Tr}_{A_1...A_i} \right) (\Omega_{A_1'...A_i'}). \]

(5.16)

Combining convexity of the trace norm with the inequalities in (5.13) gives the following inequality:

\[
\left\| \rho_{A_1...A_l} - \tilde{\Omega}_{A_1A_2...A_l} \right\|_1 \leq l k \cdot \delta_\rho,
\]

(5.17)

quantifying the distance between \(\rho_{A_1...A_l} \) and the set of multiparticle \(k \)-extendible states [26,27]. By applying proposition A.2 in the appendix, we know that

\[
\left\| \tilde{\Omega}_{A_1A_2...A_l} - \text{SEP}(A_1 : \cdots : A_l) \right\|_1 \leq \frac{2}{k} \left(\sum_{i=2}^{l} |A_i|^2 \right).
\]

(5.18)

By choosing

\[
k = \left[\frac{2}{\delta_\rho} \left(\sum_{i=2}^{l} |A_i|^2 \right) \right]^{1/2}
\]

(5.19)
and combining (5.17) and (5.18) with the triangle inequality, we find that

\[\| \rho_{A_1 \cdots A_l} - \text{SEP}(A_1 : \cdots : A_l) \|_1 \leq (l + 1) \left(\sum_{i=2}^{l} |A_i|^2 \right)^{1/2} \sqrt{2\delta_\rho} \]
\[= 2(l + 1) \left(\sum_{i=2}^{l} |A_i|^2 \right)^{1/2} \sqrt{\varepsilon_\rho}. \]
(5.20)

As the inequality holds independently of the particular extension \(\rho_{A_1', A_2', \cdots, A_l'} \), we can rearrange it and take an infimum over all such extensions to find that

\[E(I(A_1 : \cdots : A_l)_{\rho}) \geq \frac{1}{16 \cdot (l + 1)^4} \left(\sum_{i=2}^{l} |A_i|^2 \right)^{-2} \| \rho_{A_1 \cdots A_l} - \text{SEP}(A_1 : \cdots : A_l) \|_1^4. \]
(5.22)

Remark 5.2. The above approach follows that given by Li & Winter in [6, 29]. The appendix of Li & Winter [29] sketches an approach for the multipartite squashed entanglement (the definition of which is recalled in the next section) but remarked that there were difficulties in completing the proof because in this case the local recovery map acts on the same extension system and it is not clear whether inequalities like those in (5.13) would hold. This difficulty is removed in our setting here (for the CEMI) because the local recovery maps act on different subsystems of the extension system. It still remains an open question to establish faithfulness of the multipartite squashed entanglement.

(a) Conditional entanglement of multipartite information is an upper bound on multipartite squashed entanglement

The conditional multipartite information of \(\sigma_{A_1 \cdots A_l E} \) is defined as

\[I(A_1 : \cdots : A_l | E)_\sigma \equiv H(A_1 | E)_\sigma + \cdots + H(A_l | E)_\sigma - H(A_1 \cdots A_l | E)_\sigma. \]
(5.23)

From this, one can define the multipartite squashed entanglement of a state \(\rho_{A_1 \cdots A_l} \) as \([33, 34]\)

\[E_{\text{sq}}(A_1 : \cdots : A_l)_{\rho} \equiv \frac{1}{4} \inf_{\rho_{A_1 \cdots A_l E}} I(A_1 : \cdots : A_l | E)_{\rho}, \]
(5.24)

where the infimum is over all extensions \(\rho_{A_1 \cdots A_l E} \) of \(\rho_{A_1 \cdots A_l} \). The following proposition generalizes Proposition 3 of [37, p. 4] to the multipartite setting but is however implicit in their concluding statement ‘All conclusions for the bipartite case can be similarly deduced’. (Nevertheless, it seems worthwhile to produce a short explicit proof.)

Proposition 5.3. The multipartite squashed entanglement \(E_{\text{sq}}(A_1 : \cdots : A_l)_{\rho} \) is never larger than the CEMI \(E(I(A_1 : \cdots : A_l)_{\rho}) \) :

\[E_{\text{sq}}(A_1 : \cdots : A_l)_{\rho} \leq E(I(A_1 : \cdots : A_l)_{\rho}). \]
(5.25)

Proof. Consider that \([33]\)

\[I(A_1 : \cdots : A_l | E)_{\rho} = \sum_{i=1}^{l} I(A_i; A_i^{-1} | E). \]
(5.26)
While, from lemma 3.1, an additional application of the chain rule and strong subadditivity, we have that

\[I(A_1A_1' : \cdots : A_iA_i')_\rho - I(A_1' : \cdots : A_i')_\rho = \sum_{i=1}^l I(A_i; A_i'|i\{i\}_{i'}) + I(A_i; A_i'|i') \]

\[= \sum_{i=1}^l I(A_i; A_i'|i\{i\}_{i'}) + I(A_i; A_i'|i') \]

\[\geq \sum_{i=1}^l I(A_i; A_i'|A_1' \cdots A_i') \]

\[= I(A_1 : \cdots : A_i|A_1' \cdots A_i')_\rho \]

\[\geq E_{\text{sq}}(A_1 : \cdots : A_i)_\rho. \]

As the above chain holds independently of the particular extension, this establishes (5.25).

6. Partial state distribution and operational interpretations

In this section, we review the partial state distribution protocol from [21] and discuss how it gives an operational interpretation for the MSQ discord (Yang et al. [21] already observed that the protocol gives an operational interpretation of the CEMI). The review in this section also serves to prepare for the result and discussion given in §7. Along the way, we also establish optimality for the total quantum communication rate of the partial state distribution protocol.

The core protocol underlying partial state distribution is point-to-point quantum state redistribution (QSR) [38,39], so we begin by briefly reviewing that. Recall that the QSR protocol applies to many copies of a four-party pure state \(\psi_{JKLM} \), and that \(\psi_{JKLM} \) is half the conditional mutual information evaluated with respect to a single copy of \(\psi \). That is, the main result of [38,39] is that there exists a sequence of encodings \(E_{KL^nX_n}^{\otimes n} \) and decodings \(D_{G_nY_nM^n}^{\otimes n} \) such that

\[\lim_{n \to \infty} \| (D_{G_nY_nM^n}^{\otimes n} \circ E_{KL^nX_n}^{\otimes n}) (\psi_{JKLM}^{\otimes n} \otimes \Phi_{X_nY_n}) - \psi_{JKLM}^{\otimes n} \|_1 = 0, \]

where \(\Phi_{X_nY_n} \) is a maximally entangled state and

\[\lim_{n \to \infty} \frac{1}{n \log \dim(G_n)} = \frac{1}{2} I(K; J|M)_\psi. \]
before communication begins. The partial state distribution protocol gives an operational interpretation of the information quantity

$$I(A_1A'_1 : A_2A'_2 : A_3A'_3)_{\rho} - I(A'_1 : A'_2 : A'_3)_{\rho}$$

(6.3)

as twice the total rate of quantum communication needed by the central sender in order to transfer the system A_1 to Receiver 1, A_2 to Receiver 2 and A_3 to Receiver 3. In order to see this, consider that lemma 3.1 gives the following expansion:

$$I(A_1A'_1 : A_2A'_2 : A_3A'_3)_{\rho} - I(A'_1 : A'_2 : A'_3)_{\rho}$$

$$= I(A_3 : A_1A'_1A'_2|A'_3)_{\rho} + I(A_2 : A_1A'_1A'_3|A'_2)_{\rho} + I(A_1 : A_2A'_2A'_3|A'_1)_{\rho}.$$

(6.4)

This suggests that we can perform the QSR protocol three times. Indeed, the partial state distribution protocol proceeds as follows and as depicted in figure 1:

1. The first round corresponds to the term $I(A_1 : A'_2A'_3|A'_1)_{\rho}$. The central sender begins with systems $RA_1A_2A_3$. Receiver 1 has system A'_1 and the other receivers have systems $A'_2A'_3$ (which play the role of reference systems in the point-to-point QSR protocol). The central sender acts with an encoding $E^1_{R^*A_1'A_2A_3} : X_1 \to R^*A_1'A_2G^1_n$ and transmits system G^1_n to the receiver. Receiver 1 then performs a decoding $D^1_{G^1_nY^1_nA_1'} \to A'_1A_1'$ to recover the A'_1 systems.

2. The second round corresponds to $I(A_2 : A_1A'_1A'_3|A'_2)_{\rho}$. The central sender begins with systems RA_2A_3. Receiver 2 has system A'_2 and the other receivers have systems $A_1A'_1A'_3$ (these systems now play the role of reference systems in the point-to-point QSR protocol). The central sender acts with an encoding $E^2_{R^*A_2'A_3} : X_2 \to R^*A_2'A_3G^2_n$ and transmits system G^2_n to the receiver. Receiver 2 then performs a decoding $D^2_{G^2_nY^2_nA_2'} \to A'_2A_2'$ to recover the A'_2 systems.

3. The third round corresponds to $I(A_3 : A_1A_2A_1'A_3|A'_3)_{\rho}$. The central sender begins with systems RA_3. Receiver 3 has system A'_3 and the other receivers have systems $A_1A_2A_1'$ (these now playing the role of reference systems in the point-to-point QSR protocol). The central sender acts with an encoding $E^3_{R^*A_3} : X_3 \to R^*G^3_n$ and transmits system G^3_n to Receiver 3. Receiver 3 then performs a decoding $D^3_{G^3_nYA'_3} \to A'_3A_3'$ to recover the A'_3 systems.
As all three protocols perform perfectly in the asymptotic limit, by exploiting the triangle inequality with (6.1) three times, we find that

\[
\lim_{n \to \infty} \left\| (D_n^3 \circ \mathcal{E}_n^3 \circ D_n^2 \circ \mathcal{E}_n^2 \circ D_n^1 \circ \mathcal{E}_n^1) \left(\phi_{A_1 A'_1 A_2 A'_2 A_3 A'_3} \otimes \bigotimes_{i=1}^{3} \Phi_{X_i Y_i} \right) - \phi_{A_1 A'_1 A_2 A'_2 A_3 A'_3} \right\|_1 = 0, \tag{6.5}
\]

with

\[
2 \lim_{n \to \infty} \frac{1}{n} \log(\dim(G_n^1) \dim(G_n^2) \dim(G_n^3)) = I(A_3 : A_1 A'_2 A'_3 | A'_3)_\rho + I(A_2 : A_1 A'_1 A'_3 | A'_3)_\rho + I(A_1 : A'_2 A'_3 | A'_3)_\rho. \tag{6.6}
\]

Due to the nature of this protocol, observe that we can commute all of the decoding maps to the end and each of these decodings commute with each other as they act on different spaces. That is, we have that

\[
\lim_{n \to \infty} \left\| (D_n^3 \otimes D_n^2 \otimes D_n^1) \circ \mathcal{E}_n^3 \circ \mathcal{E}_n^2 \circ \mathcal{E}_n^1 \right\|
\times \left(\phi_{A_1 A'_1 A_2 A'_2 A_3 A'_3} \otimes \bigotimes_{i=1}^{3} \Phi_{X_i Y_i} \right) - \phi_{A_1 A'_1 A_2 A'_2 A_3 A'_3} \right\|_1 = 0. \tag{6.7}
\]

(We cannot however commute the encodings with each other.)

An interesting observation from [21] is that the information quantity in (6.4) is conservative, corresponding to the different expansions in lemma 3.1 and, operationally, to the fact that we can perform the partial state distribution protocol in any order (we would however require different encodings and decodings in order to do so). Also, Yang et al. [21] interpreted the CEMI in terms of the partial state distribution protocol as the total rate of quantum communication needed to transfer the systems A_1 through A_3 to independent receivers who possess the best possible quantum side information in the form of extension systems A'_1, A'_2 and A'_3, generalizing the squashed entanglement interpretation from [40] to the multipartite setting.

(a) Optimality

The optimality of the total quantum communication rate in partial state distribution was not discussed in [21], but it follows from a simple argument that exploits the structure of any protocol for partial state distribution and a few salient properties of the multipartite information. A proof proceeds similarly to [41, theorem 13]. Indeed, any general protocol for partial state distribution has the form given in figure 1, with the exception that the encoder can be taken as just one CPTP linear map from the input systems $R_n A_1^n A_2^n A_3^n X_1^n X_2^n X_3^n$ to the systems $R_n C_1^n C_2^n C_3^n$. Let σ denote the global state after the encoder acts. A protocol for partial state distribution has a final state ω after the local decodings which is ϵ-close in trace distance to the ideal i.i.d. state $\phi_{A_1 A'_1 A_2 A'_2 A_3 A'_3}$. So we proceed with the following chain of inequalities

\[
nI(A_1 A'_1 : A_2 A'_2 : A_3 A'_3)_\phi = I(A_1^n A_1^n : A_2^n A_2^n : A_3^n A_3^n)_{\phi} \tag{6.8}
\]

\[
\leq I(A_1^n A_1^n : A_2^n A_2^n : A_3^n A_3^n)_{\omega} + f(\epsilon). \tag{6.9}
\]

The first equality is from the additivity of the multipartite information on tensor-power states and the inequality follows from the assumption that ω is ϵ-close to the ideal state and by applying the Fannes–Audenaert inequality [35] with $f(\epsilon)$ a function with the property that
This analysis clearly extends to any finite number of parties.

A measurement corresponds to a loss of information, and one way to represent this is with isometric extensions of the measurement process, so that the full state is
\[
\omega_{RX_1 \cdots X_l} \equiv (\mathcal{M}_{A_1 \rightarrow X_1} \otimes \cdots \otimes \mathcal{M}_{A_l \rightarrow X_l})(\phi_{R A_1 \cdots A_l}).
\]

A measurement corresponds to a loss of information, and one way to represent this is with isometric extensions of the measurement process, so that the full state is
\[
\omega_{RX_1 \cdots X_l} \equiv (\mathcal{M}_{A_1 \rightarrow X_1} \otimes \cdots \otimes \mathcal{M}_{A_l \rightarrow X_l})(\phi_{R A_1 \cdots A_l}).
\]

and \(\mathcal{M}_{A_i \rightarrow X_i} \) is an isometric extension of the measurement map \(\mathcal{M}_{A_i \rightarrow X_i} \). As the systems \(E_1, \ldots, E_l \) are lost to the environment after the measurement process, it becomes the case that the environment possesses the systems \(R, E_1, \ldots, E_l \), and each of the local parties possesses one of the measurement outcomes.

With this set-up, we can now see that the (unoptimized) MSQ discord
\[
I(A_1 : \cdots : A_l)_\rho - I(X_1 : \cdots : X_l)_\omega = I(X_1 E_1 : \cdots : X_l E_l)_\rho - I(X_1 : \cdots : X_l)_\omega
\]
is equal to the twice the total rate of quantum communication needed for the environment to send the systems \(E_1, \ldots, E_l \) back to each of the local parties in order to restore the coherence lost in the

where the first inequality follows from quantum data processing (the local decoders can only decrease the multipartite information). The second inequality follows from

\[
\frac{1}{2} [I(A_1 A_1' : A_2 A_2' : A_3 A_3')_\phi - I(A_1' : A_2' : A_3')_\phi] \leq \frac{1}{n} \log(\|G_1^n\| \|G_2^n\| \|G_3^n\|) + \frac{1}{n} f(\epsilon).
\]

The final equality is again additivity. Putting everything together we find that

\[
\lim_{\epsilon \to 0} \lim_{n \to \infty} (1/n)f(\epsilon) = 0.\]

Continuing, we have that

\[
I(A_1 A_1' : A_2 A_2' : A_3 A_3') \leq I(A_1 A_1' Y_1 : A_2 A_2' Y_2 : A_3 A_3' Y_3)
\]
\[
\leq I(A_1 Y_1 : A_2 Y_2 : A_3 Y_3) + 2 \log(\|G_1^n\| \|G_2^n\| \|G_3^n\|)
\]
\[
= I(A_1 : A_2 : A_3) + 2 \log(\|G_1^n\| \|G_2^n\| \|G_3^n\|),
\]

\[
(6.10)
\]

\[
(6.11)
\]

\[
(6.12)
\]

\[
(6.13)
\]

\[
(6.14)
\]

\[
(6.15)
\]

\[
(6.16)
\]

\[
(6.17)
\]

The second inequality follows from \(\lim_{n \to \infty} (1/n)f(\epsilon) = 0 \) then establishes the information gap in (6.3) as twice the minimum total rate of quantum communication needed in any partial state distribution protocol. This analysis clearly extends to any finite number of parties.

(b) Operational interpretation of the multipartite symmetric quantum discord

The partial state distribution protocol gives a compelling operational interpretation of the MSQ discord, different from and arguably simpler than those considered in previous contexts [42,43]. Suppose that we have a multipartite state \(\rho_{A_1 \cdots A_l} \) shared by \(l \) local parties, each of whom possesses system \(A_i \), where \(i \in \{1, \ldots, l\} \). Let \(\phi_{R A_1 \cdots A_l} \) be a state which purifies \(\rho_{A_1 \cdots A_l} \), where \(R \) is an environment system inaccessible to the local parties. Suppose now that a measurement occurs on each of the systems, according to the measurement maps \(\mathcal{M}_{A_i \rightarrow X_i} \), producing the state \(\omega_{RX_1 \cdots X_l} \):

\[
\omega_{RX_1 \cdots X_l} \equiv (\mathcal{M}_{A_1 \rightarrow X_1} \otimes \cdots \otimes \mathcal{M}_{A_l \rightarrow X_l})(\phi_{R A_1 \cdots A_l}).
\]

\[
(6.18)
\]

\[
(6.19)
\]

\[
(6.20)
\]
measurement processes. Due to the fact that the QSR protocol is dual under time reversal \([38,39]\),
the unoptimized MSQ discord is also equal to the twice the total rate of quantum communication
needed by the local parties to transmit the systems \(E_1, \ldots, E_i\) back to the environment, thus
additionally characterizing the rate at which coherence is lost in the measurement process.

The (optimized) MSQ discord simply includes a further optimization over the measurements
themselves in order to minimize the total quantum communication cost.\(^1\)

(c) Operational interpretation of the quantum discord

We remark that this approach in terms of partial state distribution gives as a special case a
compelling operational interpretation of the original quantum discord, again different from and
arguably simpler than those considered previously \([42,43]\). Indeed, consider a bipartite state \(\rho_{AB}\)
and a measurement map \(\mathcal{M}_{A\to X}\). The unoptimized quantum discord is defined as

\[
I(A;B)_\rho - I(X;B)_{\mathcal{M}(\rho)} = I(XE_i;B)_{\mathcal{U}(\rho)} - I(X;B)_{\mathcal{U}(\rho)}
\]

\[= I(E;B|X)_{\mathcal{U}(\rho)}, \tag{6.22}\]

where the first equality follows because every measurement map has an isometric extension
\(\mathcal{U}_{A\to X}^{\mathcal{M}}\) and the mutual information is invariant under local isometries. The second equality
is a consequence of the chain rule (this rewriting of discord in terms of conditional mutual
information was first explicitly given in \([44]\)). Purifying the original state with a reference system
\(R\), we have a pure state on systems \(REXB\). After the measurement occurs, it is natural to associate
the system \(E\) as being ‘lost’ and thus given to the other environment system \(R\). That is, after
the measurement occurs, the systems \(R\) and \(E\) are with the environment, the system \(X\) is with a party
who has the measurement outcome, and the system \(B\) is with another party who plays no role
in the protocol. We can then readily see from the QSR protocol that \(I(E;B|X)_{\mathcal{U}(\rho)}\) is twice the rate
of quantum communication needed in order to transmit the system \(E\) to the party possessing \(X\)
(assuming that the \(B\) system is with a different party who does not play a role in this transfer).

We can thus interpret \(I(E;B|X)_{\mathcal{U}(\rho)}\) as twice the quantum communication cost needed to restore
the coherence that was lost in the measurement process. After this transfer occurs, \(I(E;B|X)_{\mathcal{U}(\rho)}\)
is also equal to twice the quantum communication rate needed to send the system \(E\) back to the
environment (this is because state redistribution is dual under time reversal \([38,39]\)). The quantity
thus also characterizes the amount of quantum information lost in the measurement process.
Optimizing over all measurements gives the optimized discord (keeping in mind that one could
potentially optimize over collective measurements and get a regularized discord).

7. Potential improvement of the local recoverability inequality

It might be possible to improve upon the local recoverability inequality given in (2.1). Here, we
provide what might be a first step, which follows an approach recently given in \([18]\).

Proposition 7.1. Let \(\rho_{A_1A_1' \cdots A_iA_i'}\) be a multipartite quantum state. Then the following inequality holds:

\[
I(A_1A_1' \cdots A_iA_i')_\rho - I(A_1' \cdots A_i')_\rho \geq \lim_{n\to\infty} \min_{R_1, \ldots, R_i} \frac{1}{n} D(\rho_{\otimes^n}^{A_1A_1' \cdots A_iA_i'} || R_1^{A_1 \to A_1'} A_1'' \otimes \cdots \otimes R_i^{A_i \to A_i'} A_i'' (\rho_{\otimes^n}^{A_1A_1' \cdots A_iA_i'})), \tag{7.1}\]

where \(R_1^{A_1 \to A_1'} A_1'', \ldots, R_i^{A_i \to A_i'} A_i''\) are a sequence of local recovery maps.

Proof. The proof of this lemma is very similar to the proof of Proposition 3 of \([18]\), except that
we invoke the partial state redistribution protocol reviewed in §6. Picking up from the notation

\(^1\)A subtle point here is that one could more generally include an optimization over collective quantum measurements acting
on many copies of the state, which would result in a regularized MSQ discord being equal to the total quantum communication cost.
there, and specializing to a state on systems $A_1 A_2 A_3 A_4$, let

$$
\varphi_{R^n G^n G^n Y^n Y^n Y^n A^n A^n A^n A^n} \equiv \left(\sum_{i=1}^{3^n} \Phi_{R^n A_i^n X_i^n} \rightarrow R^{3^n} G^n \right) \left(\sum_{i=1}^{2^n} \Phi_{R^n A_i^n X_i^n} \rightarrow R^{2^n} A^n \right)
$$

\[(7.2) \]

denote the state after the encodings. Tracing over R^n and applying the operator inequality $\sigma_{CD} \leq [\dim(D)]^2 \sigma_C \otimes \rho_D$ three times, we find that

$$
\varphi_{C^n G^n G^n Y^n Y^n Y^n A^n A^n A^n A^n} \leq [\dim(G^n_1)]^2 [\dim(G^n_2)]^2 [\dim(G^n_3)]^2 \tau_{C^n} \otimes \tau_{G^n_2} \otimes \tau_{G^n_3} \otimes \tau_{Y^n_2} \otimes \tau_{Y^n_3} \otimes \rho_{A^n_1 A^n_2 A^n_3}.
$$

\[(7.3) \]

Now for $i \in \{1, 2, 3\}$, define the perturbed decoding operations

$$
\tilde{D}^i_n \equiv (1 - 2^{-n}) D^i_n + 2^{-n} \Lambda_{\text{dep}},
$$

\[(7.4) \]

where Λ_{dep} is the completely depolarizing channel. As these are completely positive and acting on different spaces, we find that

$$
(\tilde{D}^3_n \otimes \tilde{D}^2_n \otimes \tilde{D}^1_n)(\varphi_{C^n G^n G^n Y^n Y^n Y^n A^n A^n A^n A^n})
\leq [\dim(G^n_1)]^2 [\dim(G^n_2)]^2 [\dim(G^n_3)]^2
\times (\mathcal{R}^1_{A^n_1 \rightarrow A^n_1} \otimes \mathcal{R}^2_{A^n_2 \rightarrow A^n_2} \otimes \mathcal{R}^3_{A^n_3 \rightarrow A^n_3})(\rho_{A^n_1 A^n_2 A^n_3}).
$$

\[(7.5) \]

where the recovery map $\mathcal{R}^i_{A^n_i \rightarrow A^n_i}$ for $i \in \{1, 2, 3\}$ is defined to be the map that first tensors in maximally mixed states on systems G^n_i and Y^n_i and then performs \tilde{D}^i_n. Using operator monotonicity of the logarithm, we find that

$$
D(\rho_{A_1 A_2 A_3} \otimes \rho_{A_1 A_2 A_3}) \leq D(\tilde{D}^3_n \otimes \tilde{D}^2_n \otimes \tilde{D}^1_n)(\varphi_{C^n G^n G^n Y^n Y^n Y^n A^n A^n A^n A^n}) + 2 \log(\dim(G^n_1) \dim(G^n_2) \dim(G^n_3)).
$$

\[(7.6) \]

Theorem 3 of [45] gives that

$$
\lim_{n \rightarrow \infty} \frac{1}{n} D(\rho_{A_1 A_2 A_3} \otimes \rho_{A_1 A_2 A_3})(\tilde{D}^3_n \otimes \tilde{D}^2_n \otimes \tilde{D}^1_n)(\varphi_{C^n G^n G^n Y^n Y^n Y^n A^n A^n A^n A^n}) = 0
$$

\[(7.7) \]

as a consequence of (6.7). With this, we can conclude the statement in (7.1) by combining the above with (6.6) and (6.4).

It should be clear from here how the general multiparty case proceeds. Letting the number of parties be some positive integer l, we first apply lemma 3.1. Next, we perform the partial state distribution protocol in the same fashion as above. Importantly, all of the encodings take place in a particular order, but the decodings all act on different spaces and thus commute. Finally, we apply the same reasoning at the end to conclude the general statement of the lemma.

We leave as an open question whether the following inequality holds:

$$
I(A_1 A_2 A_3 : \cdots : A_l | A_1')_{\rho} - I(A_1' : \cdots : A_l')_{\rho} \leq -\log F(\rho_{A_1 A_2 A_3 \cdots A_l}, (R^1_{A_1 \rightarrow A_1} \otimes \cdots \otimes R^l_{A_l \rightarrow A_l}))(\rho_{A_1 A_2 A_3})
$$

\[(7.8) \]

where $\rho_{A_1 A_2 A_3 \cdots A_l}$ is a multipartite quantum state and $R^1_{A_1 \rightarrow A_1}, \cdots, R^l_{A_l \rightarrow A_l}$ are some local recovery maps. At the very least, the inequality holds for classical systems as a consequence of theorem 5 of [29]. By extending the methods of Fawzi & Renner [14] and Brandao et al. [18], it might be possible to establish the above inequality.
8. Discussion

We have demonstrated how the inequality in (1.7) implies a relation between the multipartite information gap \(I(A_1A'_1; \cdots; A_lA'_l) - I(A'_1; \cdots; A'_l) \) and local recoverability. Namely, a multipartite state has a multipartite information gap nearly equal to zero if and only if the systems \(A_1, \ldots, A_l \) are locally recoverable from the respective systems \(A'_1, \ldots, A'_l \). This result in turn implies that (i) the MSQ discord of a state \(\rho_{A_1 \cdots A_l} \) is nearly equal to zero if and only if the state is locally recoverable after measurements occur on each of the systems and (ii) the CEMI is faithful. We have also given a compelling operational interpretation of the MSQ discord as the twice the total quantum communication cost needed to restore the coherence lost from a sequence of local measurements. A similar operational interpretation applies to the original quantum discord quantity as well. Finally, proposition 7.1 gives another lower bound on the multipartite information gap by generalizing an approach recently outlined in [18].

There are several open questions to consider going forward from here. First, it would be interesting if the inequality in (7.8) were true. It is true for classical systems, and to show it for quantum systems, one could consider extending the methods given in [18, Proposition 4] to this multipartite setting. Next, in light of the recent developments in [11–13], one could define a geometric CEMI as follows:

\[
E^F_A(A_1; \cdots; A_l)_{\rho} \equiv -\frac{1}{2} \log \sup_{\rho_{A_1' \cdots A_l'}, \mathcal{R}_1, \ldots, \mathcal{R}_l} F(\rho_{A_1A_1' \cdots A_lA_l'}, (\mathcal{R}_{A_1'}^{-1} \otimes \cdots \otimes \mathcal{R}_{A_l'}^{-1}))(\rho_{A_1' \cdots A_l'}), \tag{8.1}
\]

where the optimization is over all extensions of \(\rho_{A_1' \cdots A_l'} \) and all recovery maps \(\mathcal{R}_1, \ldots, \mathcal{R}_l \). One could also define a multipartite surprisal of measurement recoverability as

\[
D^F_A(A_1; \cdots; A_l)_{\rho} \equiv -\log \sup_{\mathcal{E}_{A_1}, \ldots, \mathcal{E}_{A_l}} F(\rho_{A_1 \cdots A_l}, (\mathcal{E}_{A_1} \otimes \cdots \otimes \mathcal{E}_{A_l}))(\rho_{A_1 \cdots A_l}), \tag{8.2}
\]

where the optimization is over all local EB channels. One could even consider other discord-like quantities of the above form, but involving alternate (pseudo-)distance measures such as the trace distance and relative entropy. We can already conclude that the geometric CEMI is faithful by the results given in this paper, and one could pursue further properties of these quantities in future work.

Data accessibility. This work does not have any experimental data.

Acknowledgements. I am thankful to Mario Berta, Marco Piani, Kaushik Seshadreesan and Andreas Winter for discussions related to the topic of this paper.

Funding statement. This work was supported by startup funds from the Department of Physics and Astronomy at LSU, the NSF under award no. CCF-1350397 and the DARPA Quiness Program through US Army Research Office award no. W31P4Q-12-1-0019.

Conflict of interests. I have no competing interests.

Appendix A. Multipartite de Finetti theorem

We begin by recalling Theorem II.7 of [46]:

Theorem A.1. Let \(\zeta_{EF} \) be a k-extendible state, in the sense that there is a state \(\theta_{EF_1 \cdots E_{k-1}} \) that is invariant with respect to permutations of the F systems and such that \(\text{Tr}_{F_2 \cdots F_k}(\theta_{EF_1 \cdots E_{k-1}}) = \zeta_{EF} \). Then there exists a measure \(\text{d}\mu(\sigma_F) \) on states \(\sigma_F \) on the F system and a family of states \(\{\xi_E^\sigma\} \) parametrized by \(\sigma_F \) such that

\[
\left\| \zeta_{EF} - \int \text{d}\mu(\sigma_F)\xi_E^\sigma \otimes \sigma_F \right\|_1 \leq \frac{2|F|^2}{k}. \tag{A.1}
\]

The following proposition follows directly from prior results in the literature, but we state it here and give a brief proof for readers’ convenience:
Proposition A.2. Let \(\rho_{A_1A_2...A_l} \) be a multipartite \(k \)-extendible state, i.e. there exists a state
\[
\omega_{A_1A_2A_3...A_{2k}A_1A_2...A_{2k}}
\] (A 2)
that is permutation invariant with respect to the systems \(A_j \) for each \(j \in \{2, ..., l\} \), and such that \(\rho_{A_1A_2...A_l} = \text{Tr}_{A_2A_3...A_{2k}A_1A_2...A_{2k}}(\omega) \). Then
\[
\| \rho_{A_1A_2...A_l} - \text{SEP}(A_1 : A_2 : ... : A_l) \|_1 \leq \frac{2}{k}(|A_2|^2 + ... + |A_l|^2). \quad (A 3)
\]

Proof: The idea is to proceed similar to the proof of Doherty et al. [27, Theorem 1], but here invoking theorem A.1 several times. We consider a particular example with only three parties for simplicity, and it will then be clear how the approach extends to states with more parties. So we begin with a multipartite \(k \)-extendible state \(\rho_{ABC} \) and its multipartite \(k \)-extension \(\omega_{AB_1...B_2C_1...C_k} \). We first apply theorem A.1 to \(\omega_{AB_1...B_2C} \) (where \(C = C_1 \)), setting \(E = AB_1...B_2 \) and \(F = C \). We can conclude that there exists a measure \(d\mu(\sigma_C) \) and a family of states \(\{\xi_{AB_1...B_2}^\sigma\} \) such that
\[
\left\| \omega_{AB_1...B_2C} - \int d\mu(\sigma_C) \xi_{AB_1...B_2}^\sigma \otimes \sigma_C \right\|_1 \leq \frac{2|C|^2}{k}. \quad (A 4)
\]
Due to the invariance of the state \(\omega_{AB_1...B_2C} \) under permutations of the \(B \) systems and monotonicity of the trace norm under quantum operations, we can conclude the following inequality:
\[
\left\| \omega_{AB_1...B_2C} - \int d\mu(\sigma_C) \xi_{AB_1...B_2}^\sigma \otimes \sigma_C \right\|_1 \leq \frac{2|C|^2}{k}, \quad (A 5)
\]
where \(\tilde{\xi}_{AB_1...B_2} = \tilde{\Pi}_{B^k}(\xi_{AB_1...B_2}) \), with \(\tilde{\Pi}_{B^k} \) a channel that randomly permutes the \(B \) systems (defined in (5.14)). Given that each state \(\tilde{\xi}_{AB_1...B_2} \) is permutation symmetric with respect to the \(B \) systems, we can again invoke theorem A.1 to conclude that there exists a measure \(d\mu(\tau(\sigma)) \) on states \(\tau(\sigma) \) and a family of states \(\{\chi_A^{r(\sigma)}\} \) such that
\[
\left\| \tilde{\xi}_{AB} - \int d\mu(\tau(\sigma)) \chi_A^{r(\sigma)} \otimes \tau(\sigma) \right\|_1 \leq \frac{2|B|^2}{k}. \quad (A 6)
\]
This implies that
\[
\left\| \tilde{\xi}_{AB} \otimes \sigma_C - \int d\mu(\tau(\sigma)) \chi_A^{r(\sigma)} \otimes \tau(\sigma) \otimes \sigma_C \right\|_1 \leq \frac{2|B|^2}{k} \quad (A 7)
\]
and applying convexity of the trace norm gives
\[
\left\| \int d\mu(\sigma_C) \tilde{\xi}_{AB} \otimes \sigma_C - \int d\mu(\sigma_C) d\mu(\tau(\sigma)) \chi_A^{r(\sigma)} \otimes \tau(\sigma) \otimes \sigma_C \right\|_1 \leq \frac{2|B|^2}{k}. \quad (A 8)
\]
Applying monotonicity of the trace norm under partial trace to (A 5) gives
\[
\left\| \rho_{ABC} - \int d\mu(\sigma_C) \tilde{\xi}_{AB} \otimes \sigma_C \right\|_1 \leq \frac{2|C|^2}{k}. \quad (A 9)
\]
We finally combine (A 8) and (A 9) with the triangle inequality to get
\[
\left\| \rho_{ABC} - \int d\mu(\sigma_C) d\mu(\tau(\sigma)) \chi_A^{r(\sigma)} \otimes \tau(\sigma) \otimes \sigma_C \right\|_1 \leq \frac{2}{k}(|B|^2 + |C|^2). \quad (A 10)
\]
As the state on the right is a convex combination of product states, it is fully separable, so that we can conclude
\[
\| \rho_{ABC} - \text{SEP}(A : B : C) \|_1 \leq \frac{2}{k}(|B|^2 + |C|^2). \quad (A 11)
\]
Extending this proof to more parties is done in the obvious way, so that we can conclude (A 3). ■
References

1. McGill W. 1954 Multivariate information transmission. *Trans. IRE Prof. Group Inform. Theory* **4**, 93–111. (doi:10.1109/TIT.1954.1057469)
2. Watanabe S. 1960 Information theoretical analysis of multivariate correlation. *IBM J. Res. Dev.* **4**, 66–82. (doi:10.1147/rd.41.0066)
3. Horodecki R. 1994 Informationally coherent quantum systems. *Phys. Lett. A* **187**, 145–150. (doi:10.1016/0375-9601(94)90052-3)
4. Umegaki H. 1962 Conditional expectations in an operator algebra IV (entropy and information). *Kodai Math. Semin. Rep.* **14**, 59–85. (doi:10.2996/kmj/1138844604)
5. Uhlmann A. 1977 Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. *Commun. Math. Phys.* **54**, 21–32. (doi:10.1007/BF01609834)
6. Winter A, Li K 2012 A stronger subadditivity relation? See http://www.maths.bris.ac.uk/~csajw/stronger_subadditivity.pdf.
7. Kim IH. 2013 Application of conditional independence to gapped quantum many-body systems. See http://www.physics.usyd.edu.au/quantum/Coogee2013. Slide 43.
8. Li K, Winter A. 2014 Relative entropy and squashed entanglement. *Commun. Math. Phys.* **326**, 63–80. (doi:10.1007/s00220-013-1871-2)
9. Carlen EA, Lieb EH. 2014 Remainder terms for some quantum entropy inequalities. *J. Math. Phys.* **55**, 042201. (doi:10.1063/1.4871575)
10. Zhang L, Wu J. 2014 A lower bound of quantum conditional mutual information. *J. Phys. A Math. Theor.* **47**, 415303. (doi:10.1088/1751-8113/47/41/415303)
11. Berta M, Seshadreesan K, Wilde MM. 2015 Rényi generalizations of the conditional quantum mutual information. *J. Math. Phys.* **56**, 022205. (doi:10.1063/1.4908102)
12. Seshadreesan KP, Berta M, Wilde MM 2014 Rényi squashed entanglement, discord, and relative entropy differences. (http://arxiv.org/abs/1410.1443)
13. Seshadreesan KP, Wilde MM. 2014 Fidelity of recovery, geometric squashed entanglement, and measurement recoverability. (http://arxiv.org/abs/1411.1441)
14. Fawzi O, Renner R. 2014 Quantum conditional mutual information and approximate Markov chains. (http://arxiv.org/abs/1410.0664).
15. Uhlmann A. 1976 The ‘transition probability’ in the state space of a *-algebra. *Rep. Math. Phys.* **9**, 273–279. (doi:10.1016/0034-4877(76)90060-4)
16. Lieb EH, Ruskai MB. 1973 A fundamental property of quantum-mechanical entropy. *Phys. Rev. Lett.* **30**, 434–436. (doi:10.1103/PhysRevLett.30.434)
17. Lieb EH, Ruskai MB. 1973 Proof of the strong subadditivity of quantum-mechanical entropy. *J. Math. Phys.* **14**, 1938–1941. (doi:10.1063/1.1666274)
18. Brandao GSL, Harrow AW, Oppenheim J, Strelchuk S. 2014 Quantum conditional mutual information, reconstructed states, and state redistribution. (http://arxiv.org/abs/1411.4921)
19. Berta M., Tomamichel M. 2015 The fidelity of recovery is multiplicative. (http://arxiv.org/abs/1502.07973)
20. Piani M, Horodecki P, Horodecki R. 2008 No-local-broadcasting theorem for multipartite quantum correlations. *Phys. Rev. Lett.* **100**, 090502. (doi:10.1103/PhysRevLett.100.090502)
21. Yang D, Horodecki M, Wang ZD. 2008 An additive and operational entanglement measure: conditional entanglement of mutual information. *Phys. Rev. Lett.* **101**, 140501. (doi:10.1103/PhysRevLett.101.140501)
22. Zurek WH. 2000 Einselection and decoherence from an information theory perspective. *Ann. Phys.* **9**, 855–864. (doi:10.1002/1521-3889(200011)9:11/12<855::AID-ANDP855>3.0.CO;2-K)
23. Ollivier H, Zurek WH. 2000 Quantum discord: a measure of the quantumness of correlations. *Phys. Rev. Lett.* **88**, 017901. (doi:10.1103/PhysRevLett.88.017901)
24. Christandl M, Winter A. 2004 ‘Squashed entanglement’: an additive entanglement measure. *J. Math. Phys.* **45**, 829–840. (doi:10.1063/1.1643788)
25. Cianciaruso M, Bromley TR, Roga W, Franco RL, Adesso G. 2014 Universality of the freezing of geometric quantum correlations. (http://arxiv.org/abs/1411.2978)
26. Werner RF. 1989 An application of Bell’s inequalities to a quantum state extension problem. *Lett. Math. Phys.* **17**, 359–363. (doi:10.1007/BF00399761)
27. Doherty AC, Parrilo PA, Spedalieri FM. 2005 Detecting multipartite entanglement. *Phys. Rev. A* **71**, 032333. (doi:10.1103/PhysRevA.71.032333)
28. Werner RF. 1989 Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. *Phys. Rev. A* **40**, 4277–4281. (doi:10.1103/PhysRevA.40.4277)
29. Li K, Winter A. 2014 Squashed entanglement, k-extendibility, quantum Markov chains, and recovery maps. (http://arxiv.org/abs/1410.4184)
30. Brandao FGSL, Christandl M, Yard J. 2011 Faithful squashed entanglement. Commun. Math. Phys. 306, 805–830. (doi:10.1007/s00220-011-1302-1)
31. Alicki R, Fannes M. 2004 Continuity of quantum conditional information. J. Phys. A Math. Gen. 37, L55–L57. (doi:10.1088/0305-4470/37/5/L01)
32. Horodecki M, Shor PW, Ruskai MB. 2003 Entanglement breaking channels. Rev. Math. Phys. 15, 629–641. (doi:10.1142/S0129055X03001709)
33. Yang D, Horodecki K, Horodecki M, Horodecki P, Oppenheim J, Song W. 2009 Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof. IEEE Trans. Inform. Theory 55, 3375–3387. (doi:10.1109/TIT.2009.2021373)
34. Avis D, Hayden P, Savov I. 2008 Distributed compression and multiparty squashed entanglement. J. Phys. A Math. Theor. 41, 115301. (doi:10.1088/1751-8113/41/11/115301)
35. Audenaert KMR. 2007 A sharp continuity estimate for the von Neumann entropy. J. Phys. A Math. Theor. 40, 8127–8136. (doi:10.1088/1751-8113/40/28/S18)
36. Stinespring WF. 1955 Positive functions on C*-algebras. Proc. Am. Math. Soc. 6, 211–216.
37. Yang D., Horodecki M., Wang ZD. 2007 Conditional entanglement. (http://arxiv.org/abs/quant-ph/0701149)
38. Devetak I, Yard J. 2008 Exact cost of redistributing multipartite quantum states. Phys. Rev. Lett. 100, 230501. (doi:10.1103/PhysRevLett.100.230501)
39. Yard J, Devetak I. 2009 Optimal quantum source coding with quantum side information at the encoder and decoder. IEEE Trans. Inform. Theory 55, 5339–5351. (doi:10.1109/TIT.2009.2030494)
40. Oppenheim J. 2008 A paradigm for entanglement theory based on quantum communication. (http://arxiv.org/abs/0801.0458)
41. Wilde MM, Datta N, Hsieh M-H, Winter A. 2013 Quantum rate-distortion coding with auxiliary resources. IEEE Trans. Inform. Theory 59, 6755–6773. (doi:10.1109/TIT.2013.2271772)
42. Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M, Winter A. 2011 Operational interpretations of quantum discord. Phys. Rev. A 83, 032324. (doi:10.1103/PhysRevA.83.032324)
43. Madhok V, Datta A. 2011 Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323. (doi:10.1103/PhysRevA.83.032323)
44. Piani M. 2012 Problem with geometric discord. Phys. Rev. A 86, 034101. (doi:10.1103/PhysRevA.86.034101)
45. Audenaert KMR, Eisert J. 2005 Continuity bounds on the quantum relative entropy. J. Math. Phys. 46, 102104. (doi:10.1063/1.2044667)
46. Christandl M, Koenig R, Mitchison G, Renner R. 2007 One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273, 473–498. (doi:10.1007/s00220-007-0189-3)