ECAT11/L1td1 is enriched in ESCs and rapidly activated during iPSC generation, but it is dispensable for the maintenance and induction of pluripotency.

Iwabuchi, Kumiko A; Yamakawa, Tatsuya; Sato, Yoshiko; Ichisaka, Tomoko; Takahashi, Kazutoshi; Okita, Keisuke; Yamanaka, Shinya

Iwabuchi, Kumiko A ... [et al]. ECAT11/L1td1 is enriched in ESCs and rapidly activated during iPSC generation, but it is dispensable for the maintenance and induction of pluripotency., PloS one 2011, 6(5): e20461.

ISSUE DATE:
2011-05-26

URL:
http://hdl.handle.net/2433/160141

RIGHT:
© 2011 Iwabuchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated During iPSC Generation, but It Is Dispensable for the Maintenance and Induction of Pluripotency

Kumiko A. Iwabuchi1,2, Tatsuya Yamakawa1,2, Yoshiko Sato1, Tomoko Ichisaka1, Kazutoshi Takahashi1, Keisuke Okita1, Shinya Yamanaka1,2,3,4,*

1 Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan, 2 Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan, 3 Yamanaka iPS Cell Special Project, Japan Science and Technology Agency, Kawaguchi, Japan, 4 Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America

Abstract

The principal factors that lead to proliferation and pluripotency in embryonic stem cells (ESCs) have been vigorously investigated. However, the global network of factors and their full signaling cascade is still unclear. In this study, we found that ECAT11 (L1td1) is one of the ESC-associated transcripts harboring a truncated fragment of ORF-1, a component of the L1 retrotransposable element. We generated an ECAT11 knock-in mouse by replacing its coding region with green fluorescent protein. In the early stage of development, the fluorescence was observed at the inner cell mass of blastocysts and epiblasts. Despite this specific expression, ECAT11-null mice grow normally and are fertile. In addition, ECAT11 was dispensable for both the proliferation and pluripotency of ESCs. We found rapid and robust activation of ECAT11 in fibroblasts after the forced expression of transcription factors that can give rise to pluripotency in somatic cells. However, iPSC cells could be established from ECAT11-null fibroblasts. Our data demonstrate the dispensability of ECAT11/L1td1 in pluripotency, despite its specific expression.

Introduction

Embryonic stem cells (ESCs) have been established from mammalian blastocysts [1,2,3]. ESCs have the ability to proliferate vigorously and differentiate into various cell types. Therefore, they are attractive sources for cell transplantation therapy and basic research. ESCs have been used for functional analyses of numerous genes and differentiation processes. Recently, induced pluripotent stem cells (iPSCs) were derived from mouse and human somatic cells that have similar differentiation potential to ESCs, and can overcome the ethical problems and immune rejection associated with ESCs [4,5,6].

The molecular mechanisms and pathways underlying the pluripotency and proliferation of ESCs and iPSCs are still unclear. In mouse ESCs, pluripotency can be maintained by leukemia inhibitory factor (LIF) and several transcription factors. LIF activates Stat3 signaling and its downstream cascades [7] that are involved in pluripotency. Oct4 [8], Sox2 [9] and Nanog [10,11] are also pivotal regulators, and maintain the undifferentiated state of ESCs. Klf4 [12] is also an important factor for the maintenance of ESCs. The Krüppel-like factor (Klf) family, involving Klf4, Klf2 and Klf5, regulates the self-renewal of ESCs [12]. Therefore, pluripotency is maintained by the regulatory networks of many transcription and other factors.

To identify new genes involved in the molecular network of pluripotency, we have previously performed a digital differential display analysis (DDD) of the expressed sequence tag libraries among various mouse tissues and cell lines [10,13,14,15,16,17]. Candidates were selected based on their specific expression in ESCs, and included many well-known pluripotency related genes, such as Oct4 and Nanog, as well as a variety of novel genes which we designated the “ECATs” for ES cell-associated transcripts. We have shown that ECAT1 encodes the transcription factor Nanog, which plays critical roles in pluripotency [10], whereas ECAT5 encodes Eras, which promotes the proliferation of mouse ESCs [14].

In this study, we evaluated the expression and function of another ECAT, ECAT11, also known as L1td1. We generated ECAT11 knock-out mice and ESCs by inserting the enhanced green fluorescent gene (EGFP) cDNA into the ECAT11 locus. Our study showed that ECAT11 is dispensable for the development and maintenance of pluripotency, despite its specific expression pattern. We also found that ECAT11 is rapidly activated by Oct3/4, Sox2 and Klf4 in fibroblasts, but is dispensable for the generation of iPSCs.
Figure 1. Protein structure and expression of ECAT11. (A) Amino acid sequences of ECAT11 from various species. The boxes indicate the conserved Transposase_22 motif. Double asterisks indicate equivalent regions of arginine residues responsible for the RNA binding activity of L1ORF1. Black letters on a white background; non-similar residues, blue letters on a cyan background; consensus residues derived from a block of similar
arginine residues (R297 and R298) of the L1 TFspa ORF1, which
excludes dog ECAT11, which lacks this region. However, two
protein. The identity of the first ORF1-like domain is 43.4%,
second ORF1-like domain showed 45.8% identity with the mouse
Transposase_22, with an identity of 30% (Figure 1A motif1).

identity of the protein sequence in this region was 33% (Figure 1A
terminus of the ORF of L1 TFspa, a subtype of L1 [23]. The
terminus of ECAT11, we found high homology with the C-
mainly localized in the cytoplasm as an RNA-protein particle,
together with ORF2, and supportive the L1 transition [22]. In the C-
terminal of ECAT11, we found high homology with the C-
terminus of the ORF of L1 T_Fsp1, a subtype of L1 [23]. The
identity of the protein sequence in this region was 33% (Figure 1A
proteins to mouse ECAT11 is relatively low (~23.1%), but the
second ORF1-like domain showed 45.8% identity with the mouse
protein. The identity of the first ORF1-like domain is 43.4%,
excluding dog ECAT11, which lacks this region. However, two
arginine residues (R297 and R298) of the L1 T_Fsp1 ORF1, which
are critical for its RNA binding and chaperone activity [24], are
not conserved in ECAT11. Therefore, it was unclear whether
ECAT11 had RNA binding and chaperone activity.

An RT-PCR analysis confirmed that ECAT11 is abundantly
expressed in mouse ESCs and is suppressed upon differentiation
induced by retinoic acid (Figure 1B). The expression was
undetectable in most of adult somatic tissues, however, weak
expression was observed in the testes, ovaries, and brain. In
humans, ECAT11 transcripts were identified in ESCs, an
embryonic tumor cell line, testes, ovaries, spleen, and placenta
(Figure 1A). As a result, the expression pattern of ECAT11 seems
to be similar between mice and humans.

Generation of ECAT11-EGFP knock-in mice and ESCs
To elucidate the effect of ECAT11 disruption and pursue its
expression, we generated an ECAT11-EGFP knock-in construct
on a bacterial artificial chromosome (BAC) vector. We first
replaced the protein coding region of ECAT11 with anEGFP-IREs-Puro cassettesby enzyme-mediated recombination
(Figure 2A). The manipulated BAC was then introduced
into ESCs by electroporation. After drug selection, we obtained
750 drug resistant colonies. We first screened for the
recombination by genomic PCR and then confirmed the
recombination by Southern hybridization, in which the wild-
type and targeted locus gave rise to bands of 17.2 kbp and
14.5 kbp, respectively (Figure 2B). We found that one out of the
750 clones had the correct homologous recombination. The
ECAT11WT/EGFP ESCs were positive for GFP fluorescence, but
became negative when differentiation was induced by retinoic
acid treatment (Figure 2C), thus suggesting that our reporter
recapitulated the endogenous expression. By introducing the
ESC clone into blastocysts, we established chimeric, and
subsequently ECAT11 knock-in, heterozygous mice.

ECAT11-EGFP localization in mouse embryos
To study the expression of ECAT11 during mouse development,
we observed the developmental process from egg to embryonic day (E) 15.5 embryos using ECAT11-EGFP expression
(Figure 2D). While EGFP fluorescence was not observed until
thermorula stage, an obvious expression was noted in the whole
blastocyst from the blastula stage (Figure 2D (i–ii)). The expression was conspicuous in both embryonic and extraembryonic
tissue on E7.5 (Figure 2D (iii)). GFP fluorescence gradually
decreased until E9.5, and had completely disappeared by E10.5
(Figure 2D (iv–vi)). The signal of ECAT11-EGFP appeared
again at E13.5 in interdigitations and lower jaw (Figure 2D
(vi)). ECAT11-EGFP expression was also observed in the testes
and ovaries (Figure 2D (vii)). The fluorescence in the lower jaw
and inter-digit regions was detectable until E15.5 (Figure 2D
(viii)).

The effects of ECAT11 disruption in the entire mouse and
ESCs
To elucidate the effects of ECAT11 disruption, we compared the
ECAT11EGFP/EGFP and WT mice. The interbred ECAT11WT/EGFP
mice yield F1 pups, including ECAT11 null mice, according to the
Mendelian rule (Wild-type:ECAT11WT/EGFP, ECAT11EGFP/EGFP =
43:74:46). ECAT11-null mutant mice were normal in gross
appearance and by the X-ray analyses (Figure S1), and were found
to be fertile. Therefore, ECAT11EGFP/EGFP is dispensable in mouse
development and fertilization.

To investigate the functions of ECAT11 in ESCs, we obtained
25 blastocysts from intercrosses of ECAT11WT/EGFP hetero-
ygous mice and established 14 ESC lines. Among them, two
lines were wild type, nine were ECAT11WT/EGFP, and 3 were
ECAT11EGFP/EGFP. We used one wild type line (#6202), two
ECAT11WT/EGFP lines (#7491 and #7061), and three
ECAT11EGFP/EGFP lines (#6206, #7571 and #7572), as well as
the RF8 parental ESC line, in the subsequent analyses. A Western
blot analysis confirmed the absence of ECAT11 expression
in the ECAT11EGFP/EGFP ESC lines (Figure 3A). Immunostaining
also confirmed the absence of the ECAT11 protein in
ECAT11EGFP/EGFP ESC lines (Figure 3B). In wild-type ES cells,
immunofluorescent microscopy using an anti-ECAT11 antibody
detected ECAT11 in the cytoplasm in a spotty pattern, which is similar
to that of the L1orf1 protein (Figure 3B) [22]. No such signal
was detected in the ECAT11EGFP/EGFP ESC lines (Figure 3B).

ECAT11EGFP/EGFP ESCs showed normal morphology and
proliferation (Figure 3C). They also showed similar global gene
expression profiles as the wild-type ESCs as determined by a
microarray analysis (Figure 3D). ECAT11EGFP/EGFP ESCs did not
exhibit significant change in comparison with wild-type ESCs
(>2-fold, p<0.05). When subcutaneously transplanted into
Dispensability of ECAT11/Lt1td1 for Pluripotency

A

WT

BAC

DT-A

Targeted

17.2 kbp

14.5 kbp

B

C

Undifferentiated

Differentiated (RA+)

Phase

EGFP

Phase

EGFP

D

(i)

EGFP

WT

(ii)

EGFP

WT

(iii)

EGFP

WT

(iv)

EGFP

WT

(v)

EGFP

WT

(vi)

WT

WT

(vii)

EGFP

WT

(viii)

EGFP

WT

(ix)

EGFP

WT

(x)

EGFP

WT

(xi)

EGFP

WT

(xii)

EGFP

WT

(xiii)

Phase

EGFP

Phase

EGFP
immunodeficient mice, ECAT11\(^{EGFP/EGFP}\) ESCs formed teratomas, which consisted of various tissues of all three germ layers, such as neuronal cells, epithelium, and cartilage (Figure 3E). Therefore, ECAT11 is also dispensable for the self-renewal of pluripotent ESCs.

Induction of ECAT11 expression in mouse embryonic fibroblasts

We examined whether ECAT11 can be activated by pluripotency-associated transcription factors (Oct4 (O), Sox2 (S), Klf4 (K), c-Myc (M) and Nanog (N)) in mouse embryonic fibroblasts (MEFs). We introduced various combinations of the five transcription factors into MEFs established from ECAT11\(^{EGFP/EGFP}\) embryos (Figure 4). Two days after the transduction of 31 possible combinations, we examined the expression of ECAT11-EGFP by a flow cytometer. No single factor was able to induce EGFP fluorescence. However, we observed a rapid and robust (≥10%) activation by three combinations, OSK, OSKM, and OKM (Figure 4). Modest activation (~5%) was obtained by OK, OKN, and OKM. These data indicated that ECAT11 is rapidly activated by Oct3/4 and Klf4, together with Sox2.

ECAT11 is dispensable for iPSC generation

The rapid activation of ECAT11 in MEFs by OSK(M) prompted us to study whether iPSCs can be generated without ECAT11. We introduced the four reprogramming factors (OSKM) by retroviruses into ECAT11\(^{EGFP/EGFP}\) MEFs. Five days after transduction, cells were re-seeded onto SNL feeder cells and selected with puromycin. Approximately 20 days after transduction, we observed many puromycin-resistant colonies. These cells were expandable, and showed a morphology and proliferation similar to ESCs (Figure 5A). These cells expressed pluripotency-associated genes, such as Nanog, at comparable levels to those in ESCs (Figure 5B). They also formed teratomas containing various tissues representing all three germ layers (Figure 5C). These data demonstrated that ECAT11 is dispensable for mouse iPSC generation.

Discussion

In this study, we generated ECAT11-EGFP knock-in/-out mice and studied the expression and functions of ECAT11. We confirmed that ECAT11 is expressed in early mouse embryos and undifferentiated ES cells. We also found that ECAT11 is rapidly activated during iPSC generation. Despite this specific expression, ECAT11-deficient ES cells were normally self-renewed and remained pluripotent. We were able to generate iPSCs from ECAT11-null fibroblasts. These data demonstrated that ECAT11 is dispensable for the induction and maintenance of pluripotency, despite its specific expression.

It has been reported that a lot of truncated sequences derived from L1 are dispersed in the mouse genome [25], indicating that these fragments might work as complementary factors for ECAT11. Indeed, some dispersed L1 sequences are still active in several types of somatic cells [26],[27] and germ cells at various developmental stages [28]. L1 expression was also observed in the blastocyst, from which ESCs are derived [29]. The L1ORF1 protein binds to RNA in a sequence non-specific manner [30]. In addition, other putative proteins containing Transposase_22 are interspersed in the mouse genome (EMBL-EBI: IPR004244 Transposase_22: http://www.ebi.ac.uk/interpro/Entry?ac=IPR004244). Therefore, these related proteins might compensate for a loss of function of the ECAT11 protein.

The expression of ECAT11-EGFP in MEFs was effectively promoted by the forced expression of three factors, Oct4, Sox2 and Klf4. This induction was further enhanced by c-Myc. Previous reports of studies using chromatin-immunoprecipitation assays showed that the promoter region of ECAT11 is occupied by Klf4 and c-Myc in mouse ESCs [31],[32]. Oct4 and Sox2 have been shown to regulate the transcriptional activity of target genes through the interaction with their recognition sequences, octamer- and SRY-binding sites, respectively. The database analysis of transcription factor binding sites using TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.html) identified multiple octamer- and SRY-binding sites in the 5'-flanking region of the mouse ECAT11 gene. However, genome wide mapping of Sox2 and Oct4 binding sites by ChiP-seq could not detect their interaction in these regions in ESCs [32]. It therefore remains to be determined whether Oct3/4 and Sox2 directly activate the transcription of ECAT11.

In conclusion, we have herein demonstrated that ECAT11 disruption does not affect the function of ESCs, mouse development or fertility. By using a reporter mouse, we found that the ECAT11 promoter is rapidly activated by ectopic expression of Oct4, Sox2 and Klf4. Nevertheless, iPSCs can be generated from ECAT11-null fibroblasts. Therefore, ECAT11\(^{L1td1}\) is considered to be dispensable for the induction and maintenance of pluripotency, despite its specific expression.

Materials and Methods

Cell culture, induction of transcription factors and reprogramming

ESCs (RF8 mouse ES cell line [33] and all other embryonic stem cell lines established in this research) were maintained in DMEM supplemented with 20% FBS (Invitrogen), 0.1 mM non-essential aminoacids (Invitrogen), 2 mM L-glutamine (Invitrogen), 50 U/ml penicillin-streptomycin (Invitrogen), 0.11 mM 2-mercaptooctanolo-[Invitrogen] and LIF on feeder layers of mitomycin C-treated SNL cells [34] or gelatin coated dishes. As a source of leukemia inhibitory factor (LIF), we used conditioned medium (1:1000 dilution) from Plat-E cell cultures that had been transduced with a LIF expression vector. ES cells were passaged every 2 days. Plat-E packaging cells, which were also used to produce retroviruses, were maintained in DMEM containing 10% FBS, 50 units/50 mg/ml penicillin/streptomycin, 1 μg/ml puromycin (Sigma), and remained pluripotent. We were able to generate iPSCs from ECAT11-null fibroblasts. Therefore, ECAT11\(^{L1td1}\) is considered to be dispensable for the induction and maintenance of pluripotency, despite its specific expression.
and 10 μg/ml of blasticidin S (Funakoshi). H9 human embryonic stem cells (WiCell) were maintained in Primate ES medium (ReproCELL, Japan) supplemented with 4 ng/ml recombinant human basic fibroblast growth factor (bFGF, WAKO, Japan). Retroviral transductions and induction of nuclear reprogramming were performed as described previously [35].

Mice
All mice used in this study were bred and sacrificed appropriately following code of ethics of animal research committee in Kyoto University. The animal care and experimental procedures of this subject were approved by the Animal Research Committee, Kyoto University and carried out according to the Regulation on Animal Experimentation at Kyoto University (approval ID: I-6-5).

Construction of targeting vectors for targeted disruption of ECAT11 in mouse ESCs
We purchased the bacterial artificial chromosome (BAC) clone RP24-326M13 containing ECAT11 from the BACPAC resources...
Dispensability of ECAT11/L1td1 for Pluripotency

A Self-archived copy in
Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp
center. By using the RED/ET recombination technique (Gene Bridges), we replaced from the translation initiation site to exon 5 that contained the ECAT11 coding region with an EGFP-IRES-Puro cassette and inserted a diphtheria toxin A cassette 8.7 kbp upstream of the 5’ arm. After linearization with BspTI, the modified targeting vectors were introduced into RF8 ESCs by electroporation. Genomic DNA isolated from puromycin-resistant colonies was screened for homologous recombination by PCR, and correct targeting was confirmed by a Southern blot analysis of BspHI-digested DNA with a specific probe. The Southern blot analysis was performed following the manufacturer’s protocols. For the sequences of the primers and probes, see Table 1.

Generation of ECAT11-deficient mice and ESCs

The ECAT11 disrupted (ECAT11^{WT/EGFP}) heterozygous ESCs were microinjected into C57BL/6 blastocysts and implanted into pseudopregnant Jcl:ICR females to obtain chimeric mice. The chimeric founders were mated with each other or C57BL/6 mice to generate heterozygous ECAT11^{WT/EGFP} mice, which were then intercrossed to produce homozygous ECAT11^{EGFP/EGFP} mice. All of the phenotype analyses were performed with littermates on a mixed 129/Sv and C57BL/6 background.

To establish ECAT11^{EGFP/EGFP} ESCs, ECAT11^{WT/EGFP} or ECAT11^{EGFP/EGFP} female mice were injected with 10 μg of tamoxifen (Sigma) and 1 mg of depo-provera (Sigma) subcutaneously on the third day after mating. Four days later, pregnant mice were sacrificed, and embryos in diapause were flushed out of the uterus by PBS supplemented with 10% FBS, 0.1 mM non-essential aminoacids, 2 mM L-glutamine, 50 U/ml penicillin-streptomycin, and 0.11 mM 2-mercaptoethanol. After 6 days, the central mass of each explant was harvested, rinsed in PBS, and placed in a drop of trypsin for 5 minutes. The cell mass was collected with a finely drawn-out Pasteur pipette preloaded with medium, ensuring minimal carryover of the trypsin. The cells were gently transferred into a fresh well with medium containing 20% FBS. The blastocysts were cultured on SNL feeder cells in four-well plates in DMEM supplemented with 10% FBS, 0.1 mM non-essential aminoacids, and 0.2% Triton X-100 for 45 min at room temperature. After 3 washes with PBS, 8 μl of primary antibody (anti-ECAT11 whole serum) was diluted in 800 μl PBS containing 1% BSA and added into blocked cells. The secondary antibody used was cyanine 3 (Cy3)-conjugated goat anti-rabbit IgG-HRP (1:2000, #7074, Cell Signaling) or anti-rabbit IgG-HRP (1:2000, #7076, Cell Signaling).

Immunocytochemistry

ESCs were fixed with PBS containing 4% parafomaldehyde for 20 min at room temperature. After washing with PBS, the cells were treated with PBS containing 5% normal goat serum (Millipore), 1% bovine serum albumin (BSA, Nacalaitesse), and 0.2% Triton X-100 for 45 min at room temperature. After 3 washed with PBS, 8 μl of primary antibody (anti-ECAT11 rabbit whole serum) was diluted in 800 μl PBS containing 1% BSA and added into blocked cells. The secondary antibody used was cyanine 3 (Cy3)-conjugated goat anti-Rabbit IgM (1:300, Millipore).

Teratoma formation

The cells were harvested by 0.25% trypsin/1 mM EDTA treatment, collected into tubes, and centrifuged, and the pellets were suspended in 10% FBS/DMEM. One million of the cells were injected subcutaneously into the dorsal flank of a nude mouse (CREA, Japan). Eight weeks after the injection, tumors were dissected, weighed, and fixed with PBS containing 4% paraformaldehyde. Paraffin-embedded tissues were sliced and stained with hematoxylin and cosin.

Cell proliferation assay

Ten thousand cells were plated in duplicate onto 60 mm gelatin coated dishes. Before counting cells, these cultured dishes were washed with 1 ml PBS and cells were dispersed with 500 μl of 0.25% trypsin. Thereafter, 2 ml of medium were added, and 100 μl of the suspension was used for counting. The number of cells was counted on days 2, 4, 6, and 8 using a Z1 Coulter Particle Counter (Beckman coulter). This procedure was repeated three times.

Microarray analysis

Total RNA from wild-type and ECAT11^{EGFP/EGFP} ESCs were labeled with Cy3, and were hybridized to oligonucleotide microarrays (Agilent) according to the manufacturer’s protocol. Hybridization was repeated with ESCs representing two independent wild-type clones and three ECAT11^{EGFP/EGFP} clones. The
Arrays were scanned with a G2565BA Microarray Scanner System (Agilent). The data were analyzed using the GeneSpringGX ver. 11.5 software program (Agilent). Each chip was normalized to the 75th percentile of the measurements. The flag settings were set as described below. Absent: Spot feature is not uniform, saturated or population outlier, Marginal: spot feature is not positive or not above background, Present: spot feature is other than those above. The genes having present flag in at least one out of the five

Figure 5. Generation of iPSCs from ECAT11EGFP/EGFP MEFs. (A) Morphology of an ECAT11EGFP/EGFP iPSC colony, which was picked on day 23 after induction of four factors (Oct4, Sox2, Klf4 and c-Myc) and cultured on feeder cells for three passages. Scale bars: 100 μm. (B) The expression levels of three pluripotency markers (Nanog, ECAT1 and Zfp42), and four transcription factors (Oct4, Sox2, Klf4 and c-Myc). Total RNA was collected from four clones of ECAT11EGFP/EGFP iPSCs (686F1, 686I5, 686L5 and 686O2) established using four factors (Oct4, Sox2, Klf4 and c-Myc), and four clones (686E1, 686H7, 686K1 and 686N1) established using three factors (Oct4, Sox2 and Klf4). The iPSCs selected with Fbx15 or the Nanog reporter (20D17), MEFs, and ES cells were also used as controls. For reprogramming factor detection, RT–PCR analyses were performed with primers that amplified endogenous transcripts only (endo) and transgene transcripts only (tg) to detect the viral vector silencing. (C) Hematoxylin and eosin staining of teratomas generated from ECAT11EGFP/EGFP iPSCs. Scale bars: 50 μm.

doi:10.1371/journal.pone.0020461.g005
samples were used for the analyses. We compared wild-type and ECAT11EGFP/EGFP ESCs and analyzed the result based on unpaired t-statistics with Benjamini and Hochberg false discovery rate (>2-fold change, p < 0.05). Microarray data are available in GEO (Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/projects/geo/index.cgi) with the accession number GSE28145.

MEF establishment
MEFs were derived from ECAT11EGFP/EGFP embryos at E13.5. After removal of the head and gastrointestinal tract, the embryos were minced, and dissociated with trypsin. The cell suspensions were plated onto gelatin-coated dishes through 70 μm mesh. Five days after plating, the established MEFs were counted, and 5 × 10^6 cells were stored using freezing medium. The MEFs were thawed and used for induction assays after one passage.

FACS analysis
Cells were harvested by incubation in 0.25% trypsin/1 mM EDTA for 5 min at 37°C, and single-cell suspensions were obtained by repetitive pipetting and transfer through a 70 μm cell strainer. After washing with PBS supplemented with 3% FBS, cells were resuspended in PBS containing 1/1000 volumes of DAPI and analyzed by a FACS Aria II instrument (BD Biosciences). Dead cells were excluded by staining with DAPI. The data were analyzed with the Diva 6.1 software program (BD Biosciences).

Supporting Information
Figure S1 X-ray analysis of ECAT11EGFP/EGFP mice. X-ray evaluation of ECAT11EGFP/EGFP or WT mice (2-week-old). (TIF)

Acknowledgments
The authors thank Dr. H. Uosaki for technical advice about the FACS analysis; T. Izuka, S. Konishi and M. Ohuchi for mouse maintenance; Dr. R. Farese, Jr for RF8 ESCs; Dr. A. Umezawa for RNA samples from NCR-G3. We also thank Dr. Toshio Kitamura for the Plat-E cells and pMXs retroviral vectors, and other members of the CiRA for discussions and technical support.

Author Contributions
Conceived and designed the experiments: SY KO KT KI. Performed the experiments: KI TY YS TI. Analyzed the data: KI. Wrote the paper: KI KO SY.

References
1. Evans MJ, Kaufman MH (1981) Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature 292: 154–156.
2. Martin GR (1981) Isolation of a Pluripotent Cell-Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem-Cells. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 78: 7634–7638.
3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, et al. (1998) Embryonic stem cells derived from human blastocysts. Science 282: 1145–1147.

Table 1. PCR primers and probes list.

Subject	gene or target name	sense primer	anti-sense primer
RT-PCR	ECAT11 (mouse)	TCTCAGACCTTCACAGGCTCCGT	CCCCCTGCTTCCTCGAGTTCC
	ECAT11 (human)	CATTTTGAAGTGCACCTGTTAG	TTTCCCTCCTGCCGCTTCCAA
	NAT1 (mouse and human)	AGGCTCTTTCATGCTGATGNTG	CAACACCTTGGTGGGAAAGCC
	ECAT1 (mouse)	TGGGGCCAGACGCAAGCTGATA	ATGGGCCCGCCACAGGCTGACCA
	Zfp42 (mouse)	AGGAGTATGTGAGGGTTCTGGG	ATGAGGAGGAAGTGGCTCAG
	Oct4 endo	TCTTTGACGAGGGCCAGGCTTC	TGGGACGAGGAGGAGTTTCTT
	Sox2 endo	TGGTTCATGGGCTAGGGCGTGCT	TGGTTCATGGGCTAGGGCGTGCT
	Klfl endo	GCGAATCATCAGCCAGAGGAAACCC	TGGTTCATGGGCTAGGGCGTGCT
	c-Myc endo	TGGAGGAGGAAGTGGCTCAGG	TGGTTCATGGGCTAGGGCGTGCT
BAC modification	ECAT11 region	TTTCCCTCTGCCGAGAGCTTGAA	ATGGACCTTGGGAAATACATATAGCAG
	DTA for ECAT11	CGGTTTGACAGCTGAGGCTGAA	AAAACGTGAAATACATATAGCAG
	Recombinant allele	CACCATCTGAGGTCAGTTGCTG	ATATGACGTGAAATACATATAGCAG
	Genotyping	TCCAGGAGCAGCATCAGCAGTGACTG	ATGGACGTGAAATACATATAGCAG
Southern hybridization	ECAT11 5’ region	CTGAGGAGGAGGACAGGCTGACCTCGA	ATGGACGTGAAATACATATAGCAG

doi:10.1371/journal.pone.0020461.t001
20. Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM (2008) LINE-1 ORF1 protein enhances Ali SIN2 retrotransposition. Genie 419: 1–6.

21. Krouwer EN, Belancio VP, Wagstaff BJ, Roy-Engel AM (2009) The RNA Polymerase Dictates ORF1 Requirement and Timing of LINE and SINE Retrotransposition. PLoS Genetics 5.

22. Douvet AJ, Holme AE, Sahinovic E, Kulpa DA, Moldovan JR, et al. (2010) Characterization of LINE-1 Ribonuclease Protein. PLoS Genetics 6.

23. Janusz K, Li PWL, Villarreal V, Brandtfort D, Wu H, et al. (2007) Identification and solution structure of a highly conserved C-terminal domain within ORF1p required for retrotransposition of long interspersed nuclear element-1. Journal of Biological Chemistry 282: 24893–24904.

24. Martin SL, Cuceanu M, Brandtfort D, Li PWI, Kwok SC, et al. (2005) LINE-1 retrotransposition chaperone activity of the requires the nucleic acid ORF1 protein. Journal of Molecular Biology 348: 549–561.

25. Nau TP, DeBerardinis RJ, Moran JV, Osterman EM, Kingsmore SF, et al. (1998) An actively retrotransposing, novel subfamily of mouse L1 elements. Embo Journal 17: 590–597.

26. Brandtfort D, Martin SL (1994) Developmental and Cell-Type Specificity of Line-1 Expression in Mouse Tissues - Implications for Transposition. Molecular and Cellular Biology 14: 2584–2592.

27. Benhoud K, Bonardelle D, Soual-Hoebeke E, Durand-Gasselin I, Emilie D, et al. (2007) Unusual expression of LINE-1 transposable element in the MRL autoimmune lymphoproliferative syndrome-prone strain. Oncogene 26: 5593–5600.

28. Trelogan SA, Martin SL (1993) Tightly Regulated, Developmentally Specific Expression of the First Open Reading Frame from Line-1 During Mouse Embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 92: 1520–1524.

29. Packer AI, Manova K, Bachvarova RF (1993) A Discrete Line-1 Transcript in Mouse Blastocysts. Developmental Biology 157: 261–263.

30. Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Molecular and Cellular Biology 21: 467–473.

31. Zhao Q, Zhou Q, Wong WH (2009) ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 106: 21251–21256.

32. Chen X, Xu H, Yuan P, Fang F, Hsu M, et al. (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133: 1106–1117.

33. McMahon AP, Bradley A (1990) The Wnt-1 (Int-1) Protooncogene Is Required for Development of a Large Region of the Mouse-Brain. Science 247: 1073–1085.

34. Meiner VL, Cases S, Myers HM, Sandle ER, Bellota S, et al. (1996) Disruption of the acyl-CoA:cholesterolacyltransferase gene in mice: Evidence suggesting multiple cholesterol esterification enzymes in mammals. Proceedings of the National Academy of Sciences of the United States of America 93: 14041–14046.

35. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, et al. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology 26: 101–106.