Badanie ultrasonograficzne nadgarstka – technika badania oraz anatomia ultrasonograficzna. Część I. Strona grzbietowa nadgarstka

Wrist ultrasound examination – scanning technique and ultrasound anatomy. Part 1: Dorsal wrist

Cyprian Olchowy, Mateusz Łasecki, Urszula Zaleska-Dorobisz

Division of General and Pediatric Radiology, Department of Radiology, Medical University of Wroclaw, Poland
Correspondence: Cyprian Olchowy, MD, M. Curie-Skłodowskiej 68, 50-369 Wrocław, e-mail: cyprian.olchowy@gmail.com

DOI: 10.15557/JoU.2015.0015

Streszczenie

Badanie ultrasonograficzne układu mięśniowo-szkieletowego w wielu aspektach przeżywsza inne metody obrazowania, tj. w zakresie wieloplanszczynowośc Yao obrazowania, możliwości oceny dynamicznej, precyzyjnej oceny tkank miękkich. Ponadto jest metodą bezpieczną, stosunkowo tanią, szeroko dostępna oraz dobrze tolerowana przez pacjentów. Poprawnie wykonane badanie ultrasonograficzne nadgarstka dostarcza szczegółowych informacji o stanie ścięgien mięśni, więzadł, nerwów i naczyń. Jednak warunek dobrej diagnozy ultrasonograficznej, w tym nadgarstka, stanowi znajomość anatomiczna. Badanie USG nadgarstka jest jednym z najczęstszych badań USG wykonywanych w diagnostyce pacjentów z chorobami reumatologicznymi. Objawy ultrasonograficzne zależą od stopnia zauwajowania choroby. Równie często badanie przeprowadza się u pacjentów z bólem lub obrzękiem nadgarstka z przyczyn nie雷umatologicznych. Celem tej publikacji jest zaprezentowanie obrazów ultrasonograficznych oraz korespondujących z nimi schematów anatomicznych. Omówiono prawidłową technikę badania ultrasonograficznego grzbietowej części nadgarstka wraz z praktycznymi wskazówkami ułatwiającymi uzyskanie wysoce dygnostycznych obrazów. W trakcie badania grzbietowej strony nadgarstka należy uwidocznić następujące struktury anatomiczne: staw promieniowo-lokciowy dalszy, staw promieniowo-nadgarstkowy, staw śródnadgarstkowy, stawy śródroczno-nadgarstkowe, więzadło promieniowo-nadgarstkowe grzbietowe, przedziały ścięgien mięśni prostowników, tętnica promieniowa, żyła odpromieniowa oraz dwie małe gałki nerwu promieniowego: powierzchowna i głęboka, niektóre więzadła śródnadgarstkowe, zwłaszcza więzadło łódeczątkowo-księżycowate oraz więzadło księżykowato-trójdżangiaste.

Praca została wyróżniona w 2014 roku jako „plakat miesiąca” (numerator plakatu C-1896) podczas sesji plakatowej Europejskiego Kongresu Radiologicznego w Wiedniu.

 Polski Ultrasound Society. Published by Medical Communications Sp. z o.o. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives license [CC BY-NC-ND]. Reproduction is permitted for personal, educational, non-commercial use, provided that the original article is in whole, unmodified, and properly cited.
Badanie ultrasonograficzne (USG) ręki, w tym nadgarstka, powinno być wykonywane z użyciem głowicy liniowej o wysokiej częstotliwości (>12 MHz). Pacjent siedzi naprzeciw badającego z ręką podpartą na stole, ewentualnie na swoim kolanie. Badanie obejmuje ocenę części grzbietowej i części dłoniowej nadgarstka. W trakcie oceny strony grzbietowej należy uwidocznić następujące struktury anatomiczne (tab. 1)(1–5):

- staw promieniowo-lokciowy dalszy;
- staw promieniowo-nadgarstekowy, staw śródręczno-nadgarstekowy, więzadło promieniowo-nadgarstekowe grzbietowe;
- przedziały ścięgien mięśni prostowników;
- ponadto dobrze widoczne są w badaniu USG: tętnica promieniowa, żyła odpromieniowa oraz dwie małe gałązki nerwu promieniowego: powierzchniowa i głęboka;
- dobrze widoczne są także niektóre więzadła śródręczno-nadgarstekowe, zwłaszcza więzadło łódeczkowato-księżycowate oraz więzadło księżycomowato-trójgraniaste.

An ultrasound (US) examination of the hand, including the wrist, should be conducted with the use of a linear transducer of a high frequency (>12 MHz). The patient should sit down opposite the examiner with the hand resting on a table or on the patient’s knee. The examination involves the evaluation of its dorsal and palmar (ventral) side. The dorsal wrist assessment should include imaging of the following anatomical structures (Tab. 1)(1–5):

- distal radioulnar joint;
- radiocarpal joint, midcarpal joint, carpometacarpal joints, dorsal radiocarpal ligament;
- compartments of extensor tendons;
- additionally, the following structures are also visible: radial artery, cephalic vein and two small branches of the radial nerve: superficial and deep;
- certain midcarpal ligaments are also visible, in particular the scapholunate ligament and lunotriquetral ligament.

Tab. 1. Struktury anatomiczne oceniane podczas badania ultrasonograficznego grzbietowej części nadgarstka

Tab. 1. Anatomical structures evaluated during ultrasound examination of the dorsal wrist

![Wrist ultrasound examination – scanning technique and ultrasound anatomy. Part 1: Dorsal wrist](image-url)
Staw promieniowo-lokciowy dalszy

Staw promieniowo-lokciowy dalszy ocenia się, przykłada-jąc głowicę poprzecznie i podłużnie na wysokości szpary stawu promieniowo-lokciowego. W badaniu poszukuje się cech zmian zapalnych w jamie stawu, tj. wysięku, patologii błony maziowej.

Staw promieniowo-nadgarstkowy, staw śródnadgarstkowy, stawy nadgarstkowo-śródręczne, więzadło promieniowo-nadgarstkowe grzbietowe

Panewkę stawu promieniowo-nadgarstkowego tworzy powierzchnia nadgarstkowa kości promieniowej oraz krą-żek śródstawowy (oddzielający od nadgarstka dystalną część kości lokciowej). Głowicę stanowią trzy z czterech kości sze-regu bliższego nadgarstka: łódzkowata, księżyłowata i trój-graniasta. Głowica w trakcie badania jest ustawiona podłużnie – w osi długiej kończyny (ryc. 1; obraz USG uzyskany w tym przyłożeniu zaprezentowano na ryc. 2); następnie przesuwana w kierunku dolokciowym i dopromieniowym, nad kolejnymi kośćmi nadgarstka tworzącymi ten staw.

Staw śródnadgarstkowy tworzy pierwszy oraz drugi sze-reg kości nadgarstka. Posiada on rozległą torebkę stawową, a jego przestrzeń ma kształt poziomej litery „S”. W tym stawie odbywają się ruchy zginania oraz prostowania nadgarstka.

Stawy nadgarstkowo-śródręczne znajdują się pomiędzy powierzchniami stawowymi kości dalszego szeregu nadgarstka a powierzchniami stawowymi nasad bliższych kości śródręczna. Poza stawem nadgarstkowym śródręcznym pierwszej kości śródręczna mają bardzo ograniczoną ruchomość.

Przedziały ściegienia mięśni prostowników

W trakcie badania należy ocenić przedziały ściegienia mięśni prostowników, w tym zawartość pochewek oraz stan ścięgień (ryc. 3). Każdy z przedziałów posiada własny troczek. Poszczególne ściegna powinno się uwidocznić i zidentyfikować w przekroju poprzecznym, a następnie prześledzić ich przebieg w kierunku dystalnym, aż do miejsca przy- czepu, oraz w kierunku proksymalnym, by zobrazować również strukturę brzuśca mięśnia.

Distal radioulnar joint

The distal radioulnar joint is assessed by positioning the transducer transversely and longitudinally at the level of the radioulnar joint space. The aim of the test is to find signs of inflammation in the joint, such as effusion or syno-vial pathology.

Radiocarpal joint, midcarpal joint, carpometacarpal joints, dorsal radiocarpal ligament

The joint cavity of the radiocarpal joint consists of the carpal surface of the radial bone and the articular disk (that separates the wrist from the distal ulnar bone). The head is composed of three out of four bones of the proximal row of the wrist: scaphoid, lunate and triquetral bones. During the examination, the transducer should be placed longitudinally in the long axis of the limb (Fig. 1; a US image obtained at this localization is presented in Fig. 2). Subsequently, the transducer is moved towards the elbow and radial bone, above the subsequent carpal bones.

The midcarpal joint is composed of the proximal and distal rows of carpal bones. It has an extensive capsule and its shape resembles a horizontal letter “S.” It permits flexion and extension movements of the wrist.

The carpometacarpal joints are localized between the articular surfaces of the distal row bones and articular surfaces of the proximal bases of the metacarpal bones. Apart from the carpometacarpal joint of the first metacarpal bone, the joints are of limited mobility.

Compartments of extensor tendons

During the examination, one should assess the compart-ments of extensor tendons, including the content of the sheaths and the condition of the tendons (Fig. 3). Each compartment has its own retinaculum. It is important to visualize and identify individual tendons on the trans-verse view, and then follow them distally, up to their insertion, and proximally, to observe the structure of the muscle belly.

Ryc. 1. Przyłożenie głowicy do oceny stawu promieniowo-nadgarstkowego oraz stawów śródnadgarstkowych. Obraz USG uzyskany w tym przyłożeniu zaprezentowano na ryc. 2

Fig. 1. Probe position to evaluate the radiocarpal and midcarpal joints. Ultrasound image obtained in this position is presented in Fig. 2
Wrist ultrasound examination – scanning technique and ultrasound anatomy. Part 1: Dorsal wrist

Ryc. 2. Staw promieniowo-nadgarstkowy oraz stawy śródnadgarstkowe (grzbietowa część nadgarstka). Sposób przyłożenia głowicy zaprezentowano na ryc. 1

Fig. 2. Radiocarpal and midcarpal joints (dorsal wrist). The manner of probe position is presented in Fig. 1

Ryc. 3. Przedziały ścieżek mięśni prostowników: I) ścieżko odwodziciela długiego kciuka, ścieżko prostownika krótkiego kciuka (abductor pollicis longus tendon, APL; extensor pollicis brevis tendon, EPB); II) ścieżko prostownika promieniowego długiego nadgarstka, ścieżko prostownika promieniowego krótkiego nadgarstka (extensor carpi radialis longus tendon, ECRL; extensor carpi radialis brevis tendon, ECRB); III) ścieżko prostownika długiego kciuka (extensor pollicis longus tendon, EPL); IV) ścieżko wspólnie prostowników palców oraz ścieżko własne prostownika palca wskaźującego (extensor digitorum communis, ED); extensor indicis proprius tendons, EIP); V) ścieżko prostownika palca piątego (extensor digiti quinti proprius tendon, EDQ); VI) ścieżko prostownika łokciowego nadgarstka (extensor carpi ulnaris tendon, ECU)

Fig. 3. Compartments of extensor tendons: I) abductor pollicis longus tendon, APL; extensor pollicis brevis tendon, EPB; II) extensor carpi radialis longus tendon, ECRL; extensor carpi radialis brevis tendon, ECRB; III) extensor pollicis longus tendon, EPL; IV) extensor digitorum communis tendon, ED; extensor indicis proprius tendon, EIP; V) extensor digiti quinti proprius tendon, EDQ; VI) extensor carpi ulnaris tendon, ECU
Przedział I

Pierwszy przedział ścięgien mięśni prostowników, położony po stronie promieniowej grzbietowej części nadgarstka, zawiera: ścięgno mięśnie odwodziciela długiego kciuka (abductor pollicis longus, APL) oraz ścięgno mięśnia prostownika krótkiego kciuka (extensor pollicis brevis, EPB). Dłoń pacjenta w trakcie oceny tego przedziału leży swobodnie lub, w przypadku braku dobrego dostępu, jest uniesiona od strony promieniowej. Miejsca kolejnych przyłożeń głowy oraz korespondujące obrazy ultrasonograficzne przedstawiono na ryc. 4 i 5.

Należy zwrócić uwagę na możliwość przejęcia pomiędzy ścięgienami EBP i APL, dzielącą przedział na dwa mniejsze kompartmenty, której obecność predysponuje do wystąpienia choroby de Quervaina. Niedojrątkowo obserwowane są także mnogie ścięgna przedziału I, co również sprzyja ciasnocie i konfliktom.

Przedział I prostopników: Anatomia
Przedział I
Anatomia
EPB – mięśń prostownik krótki kciuka
Przyczep bliższy: bliższa kość promieniowa i błona międzykostna**
Przyczep dalszy: paliczek bliszyszy kciuka**
Unaczynienie: tętnica międzykostna tylna**
Funkcja: prostowanie i odwodzenie kciuka w stawie śródręczno-palczkowym**
Wskazówki: Wariant anatomiczny – brak EPB. Wtedy obserwuje się połączenie ze ścięgami mięśnia prostownika długiego kciuka (przedsiębiorst III).**
EPB – extensor pollicis brevis
Origin: proximal radius and interosseous membrane**
Insertion: proximal phalanx of the thumb**
Blood supply: posterior interosseous artery**
Nerve: posterior interosseous nerve**
Actions: extension and abduction of thumb at metacarpophalangeal joint**
Tips and tricks: Anatomical variant – absence of EPB. Then fusion with tendon of extensor pollicis longus (third compartment) can be observed.**
APL – mięśń odwodziciel długi kciuka
Przyczep bliższy: kość lokciowa, promieniowa i błona międzykośnata**
Przyczep dalszy: a) część dystalna powierzchowna: część promieniowa podstawy pierwszej kośći śródręczca
b) część proksymalna, głęboka: kość zworoboczna większa, torebka stawu lub brzusiec mięśnia odwodziciela krótkiego kciuka**
Unaczynienie: tętnica międzykostna tylna**
Funkcja: odwodzenie i prostowanie kciuka**
Wskazówki: U ok. 80% osób występuje dodatkowe ścięgno mięśnia odwodziciela długiego kciuka (czasem obserwuje się nawet dodatkowy brzusiec tego mięśnia).**

Tab. 2. Przedział I prostopników: Anatomia

First compartment

The first compartment of extensor tendons is localized on the radial, dorsal surface of the wrist and includes the tendons of: the abductor pollicis longus (APL) and extensor pollicis brevis (EPB). During its examination, the patient’s hand should rest freely or, if a good access cannot be obtained, it should be raised from the radial side. The transducer positions and their corresponding ultrasound images are presented in Fig. 4 and 5.

Attention should be paid to the presence of a possible septum between the EPB and APL tendons that divides the compartment into two smaller ones. Its presence predisposes to De Quervain syndrome. Moreover, multiple tendons of the first compartment are also observed quite frequently, which favors compression and irritation.

First compartment: Anatomy review
EPB – extensor pollicis brevis
Origin: proximal radius and interosseous membrane**
Insertion: proximal phalanx of the thumb**
Blood supply: posterior interosseous artery**
Nerve: posterior interosseous nerve**
Actions: extension and abduction of thumb at metacarpophalangeal joint**
Tips and tricks: Anatomical variant – absence of EPB. Then fusion with tendon of extensor pollicis longus (third compartment) can be observed.**
APL – abductor pollicis longus
Origin: ulna, radius and interosseous membrane**
Insertion: a) distal, superficial part: radial side of the base of metacarpal bone
b) proximal, deep part: variable – trapezium, joint capsule or belly of abductor pollicis brevis**
Blood supply: posterior interosseous artery**
Nerve: posterior interosseous nerve**
Actions: abduction and extension of thumb**
Tips and tricks: In about 80% of people accessory abductor pollicis longus tendon is present (in some of them even accessory belly of this muscle can be identified).**

Tab. 2. First compartment: Anatomy review
Czynnikiem inicjującym chorobę de Quervaina jest przeciążenie ścięgien przedziału I prostowników konfliktujących z troczkiem w wyniku powtarzalnych ruchów nadgarstka. W pierwszej kolejności prowadzi to do zapalenia pochewki ścięgien przedziału I (tenosynovitis) oraz mikrouszkodzeń z następnym procesem zapalno-naprawczym troczka tego przedziału. Wtedy może dojść do zapalenia pochewkowego, a nawet pochewkowo-ścięgienista ścięgień EBP i APL. Na skutek odczynu zapalno-naprawczego troczka przedziału I prostowników dochodzi do jego włóknienia oraz pogrubienia, co nasila konflikt między przemieszczającymi się pod nim ścięgienami/pochewkami i troczkiem, a ostatecznie może prowadzić do blokowania się ruchu ścięgien(6).

The factor initiating De Quervain syndrome is overuse of the first compartment tendons that enter into a conflict with the retinaculum due to repetitive movements of the wrist. This initially leads to tenosynovitis of the first compartment tendons and to microinjuries with subsequent inflammatory-repair processes of the retinaculum. It can also cause secondary inflammation of the sheath and even sheath and tendon of the EBP and APL. Fibrosis and thickening of the retinaculum of the first compartment result from the inflammatory-repair reaction. These conditions exacerbate the conflict between the tendons/sheaths and the pulley that move beneath it, and can ultimately lead to the blockage of tendon movement(6).

Ryc. 4. Przedział I ścięgien prostowników. Schemat przyłożenia głośicy. Obrazy ultrasonograficzne uzyskane we wskazanych przyłożeniach głośicy zostały zaprezentowane na ryc. 5

Fig. 4. First compartment. Scanning technique. Images obtained in these positions of the probe are shown in Fig. 5

Ryc. 5. Przedział I ścięgien prostowników (grzbietowa strona nadgarstka). Ścięgno mięśnia odwodziciela długiego kciuka (abductor pollicis longus, APL) oraz mięśnia prostownika krótkiego kciuka (extensor pollicis brevis, EPB). Gałąź powierzchowna nerwu promieniowego (żółta strzałka) przebiega ponad ścięgieniami APL i EPL, podczas gdy głowica przeszczepiona jest dystalnie

Fig. 5. First compartment (dorsal wrist). The image shows the abductor pollicis longus (APL) and extensor pollicis brevis tendons (EPB). The superficial branch of the radial nerve (yellow arrow) crosses above the tendons of the APL and EPL as the probe is moved distally.
Przedział II

Do przedziału II ścięgien mięśni prostowników, położonego po stronie łokciowej przedziału I, należą: ścięgno mięśnia prostownika promieniowego długiego nadgarstka (extensor carpi radialis longus, ECRL) i ścięgno mięśnia prostownika promieniowego krótkiego nadgarstka (extensor carpi radialis brevis, ECRB). Miejsca przyłożenia głowicy oraz korespondujące obrazy ultrasonograficzne przedstawiono na ryc. 6 i 7. Technika badania przedziału II obejmuje dokładną ocenę miejsca skrzyżowania z mięśniami przedziału I, znajdującego się około 4 cm proksymalnie od gузka grzbietowego kości promieniowej (ryc. 7). W tym miejscu w przypadku określonych powtarzanych ruchów nadgarstka może dochodzić do konfliktu pomiędzy krzyżującymi się przedziałami I i II, prowadzącego do zapalenia mniejącej się tam kaletki. Jest to tzw. zespół skrzyżowania, który dotyczy wioślarzy, ciężarowców, narciarzy oraz osób wykonujących powtarzające się ruchy zgięcia i prostowania nadgarstka podczas wykonywanej pracy zawodowej(7).

Second compartment

The second compartment of extensor tendons, localized on the ulnar side of the first compartment, includes: the tendon of the extensor carpi radialis longus (ECRL) and extensor carpi radialis brevis (ECRB). The transducer positions and their corresponding ultrasound images are presented in Fig. 6 and 7. The scanning technique of the second compartment involves detailed assessment of the site in which it intersects with the muscles of the first compartment. It is localized about 4 cm proximally from the dorsal tubercle of the radial bone (Fig. 7). Specific, repetitive wrist movements may lead to a conflict in this localization between the intersecting first and second compartments, and thus bursitis can develop. This is so-called “intersection syndrome” which can develop in canoeists, weight lifters, skiers and people who perform repetitive activity, continuously flexing and extending the wrist during professional work(7).

Bursitis in further stages of an untreated conflict leads to secondary tenosynovitis in both compartments.

Tab. 3. Przedział II prostowników. Anatomia

Przedział II	Second compartment
Anatomia	**Anatomy review**
ECRL – mięsień prostownik promieniowy długi nadgarstka	**ECRB – mięsień prostownik promieniowy krótki nadgarstka**
Przyczep bliższy: grzebień nadkłykciowy boczny kości ramiennej	**Przyczep bliższy:** nadkłykcie boczne kości ramiennej, więzadło poboczne promieniowe stawu łokciowego
Przyczep dalszy: promieniowa powierzchnia podstawy II kości śródręczna	**Przyczep dalszy:** podstawa III kości śródręczna
Unaczynienie: tętnica promieniowa	**Unaczynienie:** tętnica promieniowa
Unerwienie: nerw promieniowy	**Unerwienie:** gałąz głęboka nerwu promieniowego
Funkcja: prostowanie nadgarstka, odwodzenie dłoni w stawie nadgarstka	**Funkcja:** prostowanie nadgarstka, odwodzenie dłoni w stawie nadgarstka

Wskazówki: Ścięgno ECRL jest bardzo długie, rozpoczyna się w bliżej części przedramienia. **Wskazówki:** W środkowej części grzbietowej powierzchni drugiej kości śródręczna można umieścić niewiele włókien.

Tab. 3. Second compartment. Anatomy review

Second compartment	**Anatomy review**
ECRL – extensor carpi radialis longus	**ECRB – extensor carpi radialis brevis**
Origin: lateral supracondylar ridge of the humerus	**Origin:** lateral epicondyle of the humerus, radial collateral ligament of elbow joint
Insertion: radial side of the base of 2nd metacarpal	**Insertion:** base of the 3rd metacarpal
Blood supply: radial artery	**Blood supply:** radial artery
Nerve: radial nerve	**Nerve:** deep branch of the radial nerve
Actions: extensions of the wrist, abduction of the hand at the wrist	**Actions:** extension of the wrist, abduction of the hand at the wrist
Tips and tricks: A very long tendon of ECRL, starting at proximal third of the forearm.	**Tips and tricks:** Few fibres can be inserted into middle part of the dorsal surface of the second metacarpal bone.
Zapalenie kaletki konfliktujących ścięgien w dalszych etapach nieleczonego konfliktu prowadzi do wtórnego zajęcia przez proces zapalny pochwek oraz ścięgien obu przedziałów. Obraz ultrasonograficzny zespołu skrzypowania charakteryzuje się wówczas wysiękiem i pogrubieniem błony maziowej pochwek ścięgien, a w zaawansowanych stadium obecnością zmian w obrębie samych ścięgien, tj. pogrubienia, zatarcia włókienowej struktury, unaczy- nionych blizn(6). U pacjentów z długim wywiadem obec- ność bezechowych stref w obrębie ścięgien przy braku cech ich wzmogonego unaczynienia odpowiada najpew- niej ubogokomórkowym zbliżnowaceniom(6).

In such a situation, a US image of intersection syndrome reveals effusion and thickening of the synovial sheaths. In advanced stages, a US image shows changes within the tendons themselves, i.e. thickening, blurred fibrillar structure or vascularized scars(6). The presence of anechoic zones within the tendons, without increased vascularity in patients with a long history, probably indicates hypocellular scarring(6).

Ryc. 6. Przedział II ścięgien prostowników (grzbietowa strona nadgarstka). Technika przyłożenia głowicy. Obrazy uzyskane we wskazanych przyłożeniach głowicy zostały zaprezentowane na ryc. 6

Fig. 6. Second compartment. Scanning technique. Images obtained in these positions of the probe are shown in Fig. 7

Ryc. 7. Przedział II ścięgien prostowników (grzbietowa strona nadgarstka). Głowica ustawiona jest poprzecznie (ryc. 6). ścięgno prostownika promieniowego długiego nadgarstka, ECRL; ścięgno prostownika promieniowego krótkiego nadgarstka (extensor carpi radialis longus tendon, ECRL; extensor carpi radialis brevis tendon, ECRB). Podczas gdy głowica przestawana jest w kierunku proksymalnym wzdłuż ścięgien przedziału II (z pozycji A do pozycji D na ryc. 4), widoczne są mięśnie przedziału I prostowników (prostownik krótki kciuka, odwodziciel długiej kciuki – extensor pollicis brevis, EPB; abductor pollicis longus, APL). Należy zwrócić uwagę, jak mięśnie przedziału I prostowników przechodzą powierzchownie od ścięgien ERCL i ERCB (II) ze strony promieniowej na łokciową

Fig. 7. Second compartment. The probe is placed transversally as it is shown in Fig. 6. The tendons of the second compartment can be identified (tendon of extensor carpi radialis longus; ECRL, tendon of extensor carpi radialis brevis, ECRB). As the probe is moved proximally along the tendons of the second compartment (from position A to position D in Fig. 4), the muscles of the first compartment can be seen (abductor pollicis longus, APL; extensor pollicis brevis, EPB). Note how the muscles of the first compartment encroach superficially to the ECRL and ECRB (II).
Przedział III

W przedziale III ścięgienia mięśni prostowników znajduje się ścięgno mięśnia prostownika długiego kciuka (extensor pollicis longus, EPL). Przy poprzecznym ustawieniu głowicy (ryc. 8 A) ścięgno EPL widoczne jest po lokciowej stronie guzka grzbietowego kości promieniowej (guzek Listera), który ze względu na łatwą lokalizację zarówno w bada- niu USG, jak i badaniu palpacyjnym stanowi kostny punkt orientacyjny (ryc. 10). Oddziela on ścięgna przedziału II i III prostowników. Miejsca przyłożenia głowicy oraz korespondujące obrazy ultrasonograficzne przedstawiono na ryc. 8 i 9. Szczególną uwagę należy poświęcić ocenie miejsca, w którym EPL krzyży się ze ścięgnami mięśni przedziału II i III prostowników. U osób po przebytym nieprzemieszczonym złamaniu dystalnej części kości promieniowej, częściej niż u pacjentów z przemieszczeniem odłamów złamania, dochodzić może do opóźnionego zerwania ścięgna EPL. Opisywane zjawisko ma związek z uciskiem na ścięgno i jego następnie niedokrwieniem oraz tarczem o struktury kostne. Do zerwania EPL dochodzi wówczas po kilku tygo- dniach od złamania dystalnej części kości promieniowej²⁸⁻⁹.

Tab. 4. Przedział III prostowników. anatomia

Przedział III	Anatomia
EPL – mięśń prostownik długiego kciuka	
Przyczep bliższy: blona międzykości, środkowa część kości łokciowej (powierzchnia tylna)	
Przyczep dalszy: podstawa paliczka dalszego kciuka	
Unaczynienie: głównie tętnica międzykości tylna	
Unerwienie: nerw międzykości tylny (gałąź głęboka nerwu promieniowego)	
Funkcja: prostowanie kciuka w stawach śródręcznopaliczkowych i międzypaliczkowych	
Wskazówki:	
1. Latwy do zidentyfikowania na przekroju poprzecznym: pojedyncze ścięgno po stronie łokciowej guzka Listera, który stanowi idealny kostny punkt orientacyjny.	
2. Przerwanie ciągłości ścięgna mięśnia EPL częściej jest związane z przebytym nieprzemieszczonym złamaniem dystalnej części kości promieniowej w porównaniu ze złamaniem z przemieszczeniem. Powód: niedokrwienie. Do zerwania ścięgna zwykle dochodzi po 3 tygodniach do 3 miesięcy od urazu (mniej niż 3% przypadków złamań dystalnej części kości promieniowej).	

Third compartment

The third compartment of extensor tendons includes the extensor pollicis longus tendon (EPL). When the probe is placed transversally (Fig. 8 A), the EPL tendon is visible on the ulnar side of the dorsal tubercle of the radial bone (Lister tubercle), which serves as a bony landmark due to its simple localization both in a US examination and on palpation (Fig. 10). It separates the extensor tendons of the second and third compartments. The transducer positions and their corresponding ultrasound images are presented in Fig. 8 and 9. Particular attention should be paid to the site in which the EPL crosses with the extensor tendons of the second compartment. In patients with a history of undisplaced distal radius fractures, delayed EPL tendon rupture can occur more frequently than in patients with displaced bone fragments. The phenomenon described is associated with compression on the tendon and its consequent ischemia and friction against bony structures. EPL rupture occurs after several weeks of distal radius fracture²⁸⁻⁹.

Tab. 4. Third compartment. Anatomy review

Third compartment	Anatomy review
EPL – extensor pollicis longus	
Origin: interosseous membrane, middle third of ulna (posterior surface)	
Insertion: the base of the distal phalanx of the thumb	
Blood supply: mostly posterior interosseous artery	
Nerve: posterior interosseous nerve (deep branch of the radial nerve)	
Actions: extension of the thumb in metacarpophalangeal and interphalangeal joints	
Tips and tricks:	
1. Easy to identify on transverse view: single tendon on the ulnar side of the Listher tubercle of the radius which is perfect bony landmark.	
2. Rupture of the EPL tendon is more commonly associated with undisplaced fractures of the distal radius rather than with displaced fractures. Reason: ischaemic rupture. Rupture usually occurs 3 weeks to 3 months after injury (in less than 3% cases of distal radius fractures).	
Fig. 8. Third compartment. Scanning technique. Images obtained in these positions of the probe are shown in Fig. 9

Fig. 9. Third compartment (dorsal wrist) with the extensor pollicis longus tendon (EPL). The probe is placed transversally as it is shown in Fig. 8, point A. It is subsequently moved distally up to the EPL insertion. A – the “starting position”: the EPL tendon is situated on the ulnar side of the Lister tubercle. B and C show the EPL tendon encroaching superficially from the tendons of the second compartment (tendon of the extensor carpi radialis longus; ECRL, tendon of the extensor carpi radialis brevis, ECRB) to the tendon of the extensor digitorum communis which belongs to the fourth compartment.

Fig. 10. Tabakiera anatomiczna. LT – guzek Listera; EPL – extensor pollicis longus, prostownik długi kciuka (przedział III), EPB – extensor pollicis brevis, prostownik krótki kciuka (przedział I)

The probe is placed transversally as it is shown in Fig. 8, point A. It is subsequently moved distally up to the EPL insertion. A – the “starting position”: the EPL tendon is situated on the ulnar side of the Lister tubercle. B and C show the EPL tendon encroaching superficially from the tendons of the second compartment (tendon of the extensor carpi radialis longus; ECRL, tendon of the extensor carpi radialis brevis, ECRB) to the tendon of the extensor digitorum communis which belongs to the fourth compartment.
Przedział IV

W przedziale IV ściegien mięśni prostowników znajdują się ściegna prostownika palców II–V (extensor digitorum, ED) oraz ściegno własne prostownika palca wskazującego (extensor indicis proprius, EIP). Palec wskaziciel posiada zatem dwa ściegna prostownik. Przedział IV zawiera dwie pochewki ściegien: jedną dla wszystkich ściegien prostownika palców II–V, drugą dla biegnącego głębiej ściegna prostownika wskaziciela. Ten przedział prostowników zawiera najwięcej ściegien, stąd ma najgrubszy troczek. W promieniowej części tego przedziału, pod ściegienmi, widoczna jest gałązka głęboka nerwu promieniowego (posterior interosseus nerve, PIN) z towarzyszącą tętnicą międzykostną tylną. Miejsce przyłożenia głowicy oraz uzyskiwany w nim obraz zaprezentowane zostały na ryc. 11 i 12.

Fourth compartment

The fourth compartment of extensor tendons includes the tendons of extensor digitorum (ED) of the 2nd–5th fingers and the tendon of extensor indicis proprius (EIP). Note that the index finger has two extensor tendons. The fourth compartment includes two tendon sheaths: one that is common for all extensor tendons of the 2nd–5th fingers, and the other for the tendon of the index finger. This compartment contains the greatest number of tendons and therefore its retinaculum is the thickest. In the radial part of this compartment, a deep branch of the radial nerve (posterior interosseous nerve, PIN), together with the posterior interosseous artery, can be seen under the tendons. The place of transducer application and the images are presented in Fig. 11 and 12.
Przedział V

W przedziale V znajduje się małe ścięgno prostownika palca małego (extensor digiti quinti proprius, EDQ). Zazwyczaj szybko ulega ono podziałowi na dwa osobne ścięgna. Miejsce przyłożenia głowicy oraz uzyskiwany w nim obraz zaprezentowano na ryc. 11 i 12. Poruszanie palcami w badaniu dynamicznym pozwala na identyfikację ścięgien prostowników poszczególnych palców.

Fifth compartment

The fifth compartment includes a small tendon of the extensor digiti quinti proprius (EDQ). It usually quickly divides into two separate tendons. The site of transducer application and the image obtained is presented in Fig. 11 and 12. Finger movements in a dynamic examination allow the extensor tendons of individual fingers to be identified.
Sixth compartment

The sixth compartment of extensor tendons includes the extensor carpi ulnaris tendon (ECU). The site of transducer application and the image obtained is presented in Fig. 13 and 14. During the examination, attention should be paid to the osseofibrous ring created by the groove of the ulna and sixth compartment retinaculum (subsheath), which maintain the correct position of the ECU tendon. A dynamic examination upon a change of the hand position enables the visualization of the instability and ECU tendon slipping from its groove as a result of stretching (e.g. in an inflammatory or rheumatic process) or rupture of the retinaculum. This takes place due to repetitive microinjuries or a single trauma during supination or flexion of the ulnar wrist. In this position, the greatest load is placed upon the pulley. The greatest number of

Przedział VI

W przedziale VI ścięgno mięśni prostowników znajduje się ścięgno mięśnia prostownik lokciowego nadgarstka (extensor carpi ulnaris tendon, ECU). Miejsce przyłożenia głowicy oraz uzyskiwany w nim obraz przedstawiają ryc. 13 i 14. W trakcie badania należy zwrócić uwagę na pierścien kostno-włóknistą utworzony przez zagłębień w kości lokciowej oraz troczek przedziału VI (subsheath), które utrzymują ścięgno ECU we właściwej pozycji. Badanie dynamiczne przy zmianie pozycji dłoni pozwala na uwidocznienie niestabilności i wyślizgania się ścięgna ECU z jego rowka w wyniku rozciągnięcia (np. w procesie zapalnym, reumatycznym) albo zerwania troczka. Dochodzi do tego na skutek powtarzających się mikrourazów lub pojedynczego urazu podczas supinacji i zgęcia lokciowego nadgarstka. W tych pozycjach na troczek oddziałują największe siły.

Przedział V	Anatomia
EDQ – mięsień prostownik palca małego	
Przyczep bliższy: nadkłykcie boczny kości ramiennej, ścięgno wspólne prostowników	
Przyczep dalszy: rozcięgno grzbietowe, po stronie grzbietowej podstawy paliczka bliższego palca V.	
Unaczynienie: tętnica międzykostna tylna	
Unerwienie: n. promieniowy	
Funkcja: podstawnie nadgarstka i palca małego (we wszystkich stawach)	

Wskazówki:
Szczegóły dotyczące anatomic: ścięgno wspólne prostowników – łączy się z bocznym nadkłykiem kości ramiennej i stanowi przyczep bliższy następujących mięśni (niewielkich z nich jedynie częściowo):
1. Mięsień prostownik promieniowy krótki nadgarstka (II);
2. Mięsień prostownik palców (IV);
3. Mięsień prostownik palca małego (V);
4. Mięsień prostownik lokciowy nadgarstka (VI).

Tab. 6. Przedzial V prostowników. Anatomia

Fifth compartment	Anatomy review
EDQ – extensor digiti quinti proprius (extensor digiti minimi)	
Origin: lateral epicondyle of humerus, common extensor tendon	
Insertion: extensor expansion at the dorsal side of the base of the proximal phalanx of 5th finger	
Blood supply: posterior interosseus artery	
Nerve: radial nerve	
Actions: extension of the wrist and of the little finger (at all joints)	
Tips and tricks:	
Anatomy details: common extensor tendon – attaches to the lateral epicondyle of the humerus and serves as the origin for following muscles (some of them partially):	
1. Extensor carpi radialis brevis (II)	
2. Extensor digitorum (IV)	
3. Extensor digiti quinti proprius (V)	
4. Extensor carpi ulnaris (VI)	

Tab. 6. Fifth compartment. Anatomy review
Najwięcej przypadków uszkodzenia troczka przedziału VI odnotowuje się u tenisistów oraz golfistów\(^{(11-13)}\).

Table 7. Przedział VI prostowników. Anatomia

Przedział VI
Anatomia
ECU – mięsień prostownik łokciowy nadgarstka
Przyczep bliższy: nadkłydek boczny kości ramiennej, ściegno wspólne prostowników, kość łokciowa
Przyczep dalszy: podstawa V kości śródręcza.
Unaczynienie: tętnica łokciowa
Unerwienie: nerw promieniowy
Funkcja: prostowanie nadgarstka, delikatne zgięcie grzbietowe ręki.
Wskazówki: Ścięgno to należy badać w osi długiej i krótkiej. Należy śledzić jego przebieg aż do przyczepu dalszego u podstawy V kości śródręcza.

Table 7. Sixth compartment. Anatomy review

Sixth compartment
Anatomy review
ECU – extensor carpi ulnaris
Origin: lateral epicondyle of humerus, common extensor tendon, ulna
Insertion: the base of the 5th metacarpal
Blood supply: ulnar artery
Nerve: radial nerve
Actions: extension of the wrist, slight ulnar flexion of the hand
Tips and tricks: Images of this tendon should be obtained in short and in long axis. Follow the tendon towards its insertion at the base of the 5th metacarpal.

Fig. 13. Sixth compartment (dorsal wrist). Scanning technique. Images obtained in this position of the probe are shown in Fig. 14

\begin{align*}
 \text{ulna} & \quad \text{styloid process of the ulna} \\
 \text{ulna} & \quad \text{styloid process of the ulna}
\end{align*}

Fig. 14. Sixth compartment (extensor carpi ulnaris tendon, ECU)

Przedział VI ściegien prostowników (grzbietowa strona nadgarstka). Technika przyłożenia głowicy. Obrazy uzyskane we wskazanych przyłożeniach głowicy zostały zaprezentowane na ryc. 14
Nerw promieniowy, tętnica promieniowa, żyła odpromieniowa

Nerw promieniowy na wysokości nadkłucia bocznej kości ramiennej dzieli się na dwie galęzie końcowe: galąż powierzchowną nerwu promieniowego oraz nerw mięjszynostny tylny (posterior interosseous nerve, PIN). Na wysokości nadgarstka galąż głęboka nerwu promieniowego (PIN) znajduje się pod ścięgnami przedziału IV prostowników, natomiast galąż powierzchowna jest widoczna powierzchownie na poziomie tabakierki anatomicznej, nad pierwszym przedziałem prostowników. Razem z tą galęzją, ale pod ścięgnami przedziału I, biegnie tętnica promieniowa.

Przebieg nerwu oraz odpowiednie przyłożenia głowicy widoczne są na ryc. 4 i 5. W przypadku podrażnienia lub uszkodzenia tego nerwu dochodzi do wystąpienia objawów tzw. choroby Wartenberga, objawiającej się bólem, drętwieniem i parastezjami w obrębie dalszej części przedramienia po stronie promieniowej oraz nadgarstka i kciuka. U osób z takimi objawami należy ocenić echostrukturę nerwu na całym jego przebiegu w przekrojach poprzecznych i podłużnych, zwracając uwagę na takie jego cechy jak obrzęk, prze- rwanie ciągłości czy istotne zmiany tkanek otaczających, np. w zakrzepicy żyły odpromieniowej[6]. Identyfikacja galąz- zek nerwu promieniowego i naczyń jest istotna przed ka- dym zabiegiem, np. odbarczaniu ganglionu wychodzącego ze stawu nadgarstka, w celu precyzyjnego nakłucia, bez podrażnienia czy uszkodzenia tych struktur.

Wiêzadlo lîodgekîawato-kiêzycowate oraz wiêzadlo kiêzycowato-trôjgraniaste

Do wiêzadlê wewnêtrznê nadgarstka, zapewnianych stabilnoê poêciaêmi pomiêdzy poszczególnymi koêcîmi szeregu bêszêgo i dalszego, naleê: wiêzadlo lîodgekîawato-kiêzycowate, kiêzycowato-trôjgraniaste, trapezio-trapezoid, trapezocapitate i capitohamate ligaments (wiêzadlo pomiêdzy koêcîm czworo- boczną mniejszą, wiêzadlo pomiêdzy koêcîm czworo- boczną mniejszą i koêcîm glówkowatą oraz wiêzadlo glówkowat-koêcîwy-koêcîwy). Podczas standardowego badania USG nadgarstka ocenia siê wiêzadlo lîodgekîawato-kiêzycowate oraz wiêzadlo kiêzycowato-trôjgraniaste[14].

Wiêzadlo lîodgekîawato-kiêzycowate skладa siê z trzech ceêsci: grzbietowej (najbêszêjniej), proksymalnej i dniêowej, które ocenia siê w badaniu artro-MRI. W badaniu USG jest dobrze widoczna grzbietowa ceêść wiêzadła lîodgekîawato-kiêzycowatego oraz dniêowa ceêść wiêzadła kiêzycowato-trôjgraniastego[15].

Głowice naleê przyłożyć poprzecznie, tak by widoczny był guzek Listera. Nastêpnê przesuwa siê ją dystalnie aê do uwidoczniения wiêzadła lîodgekîawato-kiêzycowatego (ryc. 15, 16). Aby uwidoczniê wiêzadlo kiêzycowato-trôjgraniaste, głowice naleê przesunąć w kierunku doloêciowym. W badaniu USG ocenia siê wêêkienkowê ocho- strukturê opisywanych wiêzadê w ich osi długiej, która nie rôni siê w warunkach prawidêlowych oraz w situacji Radial nerve, radial artery and cephalic vein

The radial nerve at the level of the lateral epicondyle of the humerus divides into two terminal branches: the superficial branch of the radial nerve and the posterior interosseous nerve (PIN). At the level of the wrist, the deep branch of the radial nerve (PIN) is situated under the tendons of the fourth compartment, and the superficial branch is visible at the level of the anatomical snuff box, above the first compartment of extensor tendons. The radial artery runs together with this branch but under the tendons of the first compartment.

The nerve and appropriate probe placement can be seen in Fig. 4 and 5. In the case of irritation or injury of this nerve, so-called Wartenberg’s disease can develop, the symptoms of which include pain, numbness and pares-thesia of the distal radial forearm as well as wrist and thumb. In patients with these symptoms, the nerve echo-structure must be assessed along its entire length on transverse and longitudinal views, with particular attention paid to edema, rupture or significant changes in adjacent tissues (e.g. thrombosis in the cephalic vein)[6]. The identification of the radial nerve branches and vessels is important before each intervention, e.g. decompression of a ganglion cyst arising from the carpal joint or for a precise puncture, without irritating or damaging these structures.

Scapholunate ligament and lunotriquetral ligament

Internal carpal ligaments, which stabilize the connection between individual bones of the proximal and distal rows, are: scapholunate ligament, lunotriquetral ligament, trapezio-trapezoid ligament (between the trapezium and trapezoid bone), trapezocapitate ligament (between the trapezoid and the capitate bone) and capitohamate ligament (between the hamate and capi- tate bone). During a standard US examination of the wrist, the scapholunate and lunotriquetral ligaments are assessed[14].

The scapholunate ligament consists of three parts: dorsal (the strongest one) as well as proximal and ventral, which are assessed in MR arthrography. The US examination enables good visualization of the dorsal part of the scapholunate ligament and the ventral part of the lunotriqu- etral ligament[15].

The transducer should be placed transversely to visual- ize the Lister’s tubercle. Subsequently, it is moved distally until the scapholunate ligament is seen (Fig. 15, 16). In order to visualize the lunotriquetral ligament, the probe should be moved towards the ulna. The US assessment involves the fibrillar echostructure of these ligaments in the long axis, which does not differ in normal conditions and in cases of partial or complete injuries from the image of other ligaments[6].

Cyprian Olchowy, Mateusz łasecki, Urszula Zaleska-Dorobisz
In asymptomatic individuals the dorsal part of the scapholunate ligament can be fully visualized in 97% of patients, but the dorsal part of the lunotriquetral ligament can be seen in 61% of patients\(^{17}\).

An ultrasound examination of the wrist is one of the most common US examinations conducted in patients with rheumatological diseases. Ultrasonographic signs depend on the advancement of the disease. Initially, only effusion and synovial thickening of the cavities, sheaths and bursae are observed. In the subsequent stage, enhanced vascularity of the synovial membrane can be seen. The stage and duration of a rheumatic condition can be determined by the presence of geodes and erosions\(^{18}\). The examination is equally frequently conducted in patients with pain or swelling of the wrist due to non-rheumatological

Fig. 15. Scapholunate ligament (dorsal portion) – scanning technique. The probe should be placed transversally on the level of the Lister tubercle and then swept distally. The curved arrow demonstrates the ulnar deviation of the wrist – it is useful in the evaluation of the echostructure and integrity of the dorsal part of the scapholunate ligament.
światłocy obecność geod i nadżerek(18). Równie często bada-
nie jest wykonywane u pacjentów z bólem lub obrzękiem
nadgarstka z przyczyn nireumatologicznych. Objały mogą
wynikać z obecności ganglionów, zmian pourazowych ścię-
gien i stawów albo aparatu więzadłowego, neuropatii o róż-
nym charakterze, a nawet guzów(19–22).

Konflikt interesów

Brak konfliktu interesów.

Piśmiennictwo / References

1. Beggs I, Bianchi S, Bueno A, Cohen M, Court-Payen M, Grainger A et al.: Musculoskeletal Ultrasound Technical Guidelines. European Society of MusculoSkeletal Radiology.
2. Bianchi S, Martinoli C. Ultrasound of the Musculoskeletal System. Springer-Verlag, Berlin – Heidelberg 2007.
3. Van Holsbeeck M, Introcaso J (eds.): Musculoskeletal Ultrasound. Mosby, St Louis 2000.
4. McNally E: Practical Musculoskeletal Ultrasound. Elsevier, Philadelphia 2004.
5. Bradley M, O’Donnell P: Atlas of Musculoskeletal Ultrasound Anatomy. Cambridge University Press 2002.
6. Dębek A, Czyrny Z, Nowicki P: Sonography of pathological changes in the hand. J Ultrason 2014; 14: 74–88.
7. de Lima JE, Kim HJ, Albertotti F, Resnick D: Intersection syndrome: MR imaging with anatomic comparison of the distal forearm. Skeletal Radiol 2004; 33: 627–631.
8. Helal B, Chen SC, Iwegbu G: Rupture of the extensor pollicis longus tendon in undisplaced Colles’ type of fracture. The Hand 1982; 14: 41–47.
9. Roth KM, Blazar PE, Earp BE, Han R, Leung A: Incidence of extensor pollicis longus tendon rupture after nondisplaced distal radius fractures. J Hand Surg Am 2012; 37: 942–947.
10. Inoue G, Tamura Y: Recurrent dislocation of the extensor carpi ulnaris tendon. Br J Sports Med 1998; 32:172–174.
11. Rettig AC, Patel DV: Epidemiology of elbow, forearm, and wrist injuries in the athlete. Clin Sports Med 1995; 14: 289–297.
12. Montalvan B, Parier J, Brassier JL, Le Viet D, Drape JL: Extensor carpi ulnaris injuries in tennis players: a study of 28 cases. Br J Sports Med 2006; 40: 424–429.
13. Campbell D, Campbell R, O’Connor P, Hawkes R: Sports-related extensor carpi ulnaris pathology: a review of functional anatomy, sports injury and management. Br J Sports Med 2013; 47: 1105–1111.
14. Taljanovic MS, Goldberg MR, Sheppard JE, Rogers LF: US of the intrinsic and extrinsic wrist ligaments and triangular fibrocartilage complex – normal anatomy and imaging technique. Radiographics 2011; 31: e44.
15. Berger RA: The ligaments of the wrist: a current overview of anatomy with considerations of their potential functions. Hand Clin 1997; 13: 63–82.
16. Taljanovic MS, Sheppard JE, Jones MD, Switlick DN, Hunter TB, Rogers LF: Sonography and sonoarthrography of the scapholunate and lunotriquetral ligaments and triangular fibrocartilage disk: initial experience and correlation with arthrography and magnetic resonance arthrography. J Ultrason Med 2008; 27: 179–191.
17. Boutry N, Lapegue F, Masi L, Claret A, Demondion X, Cotten A: Ultrasonographic evaluation of normal extrinsic and intrinsic carpal ligaments: preliminary experience. Skeletal Radiol 2005; 34: 513–521.
18. Zaniewicz-Kaniewska K, Sudol-Szopińska I: Usefulness of sonography in the diagnosis of rheumatoid hand. J Ultrason 2013; 13: 329–336.
19. Teh J, Whiteley G: MRI of soft tissue masses of the hand and wrist. Br J Radiol 2007; 80: 47–63.
20. Teh J: Ultrasound of soft tissue masses of the hand. Br J Radiol 2012; 12: 381–401.
21. Kowalska B, Sudol-Szopińska I: Ultrasound assessment on selected peripheral nerve pathologies. Part I: Entrapment neuropathies of the upper limb – excluding carpal tunnel syndrome. J Ultrason 2012; 12: 307–318.
22. Kowalska B, Sudol-Szopińska I: Ultrasound assessment on selected peripheral nerve pathologies. Part III: Injuries and postoperative evaluation. J Ultrason 2013; 13: 82–92.

Conflict of interest

None.