Symmetry is at the heart of both high-energy and condensed matter physics. Symmetry breaking underlies not only mass in our universe, but also superconductivity in metals. Symmetry classifies topological materials [1]. Symmetry protects topological order, such as the Haldane phase in a spin-1 chain with time-reversal, parity, and translation symmetries [2].

Time-reversal symmetry (TRS) and topological phenomena associated with it are hot topics in condensed matter physics. Sato et al. have shown the bulk-edge correspondence between the zero-energy Andreev bound states on [110] surfaces of a high-Tc cuprate superconductor and a topological invariant protected by TRS [3]. The Andreev bound states are understood as arising from the sign-changing property of the d-wave superconductor, a 1D topological invariant as a function of momentum along the [110] surface can be defined, through which TRS provides topological protection of the Andreev bound states [3].

Gapless surface states can become gapped when the corresponding symmetry is broken. The surface states in a topological insulator acquire a gap as a result of spontaneous or nonspontaneous breaking of TRS [8,9]. An example of spontaneous TRS breaking is the anomalous Hall effect in tetradymite semiconductors, where the ferromagnetic order parameter induced by the Van Vleck type spin susceptibility results in the gapped surface states [9]. Splitting of the Andreev bound states due to spontaneously induced surface currents, i.e., spontaneous TRS breaking has been discussed by assuming the existence of a subdominant order parameter with relative phase $\pi/2$, which is stabilized on the [110] surface of a d-wave superconductor [5,10–12]. This has been a controversial topic in the past two decades owing to contradictory experimental results on high-Tc cuprates [13,14]. A recent experiment, however, has clearly detected a full gap in the excitation spectrum that is consistent with spontaneously broken TRS in a nanoscale YBa$_2$Cu$_3$O$_{7-\delta}$ island [13]. By introducing an intrinsic s-wave pairing interaction and controlling its strength in terms of the ratio of the bare bulk transition temperature to that of the d-wave order, Black-Schaffer et al. [15] have found that the resulting $d+is$ symmetry is consistent with the experimental findings of Ref. [13]. Vorontsov has proposed that films of a d-wave superconductor at low temperatures can exhibit unusual superconducting phases due to transverse confinement, with TRS or continuous translational symmetry broken spontaneously [16]. Recently, a theoretical study of d-wave superconducting nanoislands within the quasiclassical Eilenberger framework with no subdominant pairing channel has predicted spontaneous breaking of TRS at low temperatures, where staggered fractional vortices are formed along the surfaces, each containing the zero-energy Andreev bound states at its center [14]. The quasiclassical formulation, however, is limited in that it cannot resolve individual quasiparticle excitations and it is not a good approximation for high-Tc cuprates as it requires the coherence length to be much larger than $1/k_F$.

In this paper, by solving the Bogoliubov-de Gennes (BdG) equations self-consistently for the d-wave order parameter in nanoscale d-wave systems with [110] surfaces and show that spontaneous time-reversal symmetry (TRS) breaking occurs at low temperatures due to a spontaneously induced complex order parameter of extended s-wave symmetry. The Andreev surface bound states, which are protected by a one-dimensional (1D) topological invariant in the presence of TRS, are gapped by the emergence of this new order parameter. The extended s-wave order parameter is localized within a narrow region near the surfaces, which is consistent with the fact that topological protection of the gapless Andreev surface states is characterized by the 1D topological invariant. In this TRS-breaking phase, not only is the complex order parameter induced, but also the d-wave order parameter itself becomes complex. Furthermore, the disappearance of topological protection brings about novel vortex phenomena near the surfaces. We show that vortex-antivortex pairs are formed in the extended s-wave order parameter along the surfaces if the side length of a nanoisland or the width of an infinitely long nanoribbon is relatively large.

DOI: 10.1103/PhysRevB.96.060503
induced ferromagnetic order [9]. We find that the phase transition is of second order, similarly to the transition to the TRS-breaking phase occurs, the order parameter is localized within a narrow region along the surfaces: This is compatible with the fact that the topological order parameter is gapless surface states. Furthermore, the disappearance of the spontaneous order parameter being behind the breaking of the symmetry that would otherwise protect the gapless surface states. We also find that when the phase transition to this TRS-breaking phase occurs, the order parameter itself becomes complex.

To summarize, spontaneous disappearance of topological protection occurs in a d_{s\text{-}wave} nanosiland with [110] surfaces as a second-order phase transition, leading to the gapped surface excitation originating from the formation of extended s-wave Cooper pairs near the surfaces. This is an example of a spontaneously induced order parameter being behind the breaking of the symmetry that would otherwise protect the gapless surface states. Furthermore, the disappearance of topological protection brings about novel vortex phenomena.

FIG. 1. (a) Temperature dependence of the order parameters in the d-wave nanoisland. The system size is L_x \times L_y = 96 \times 96 and the critical temperature is T_c = 0.085t. (b) Schematic illustration of the eigenvalues around zero energy. The zero-energy Andreev bound states on the [110] surface are gapped because of spontaneous time-reversal symmetry breaking. The gap size is characterized by the extended s-wave order parameter that is induced along the surfaces.

zero-energy surface states due to spontaneous TRS breaking can be understood in terms of the fundamental group [19] for homogeneous systems with spin-singlet pairing. The fundamental group corresponding to the ground-state manifold changes from \(\pi_1(S^3) = \mathbb{Z} \) to \(\pi_1(S^3) = 0 \) as the TRS-breaking order emerges [18,20].

We consider the tight-binding model Hamiltonian \(\mathcal{H} = \mathcal{H}_{\text{BCS}} + \mathcal{H}_{\text{int}} \). Here the generalized Bardeen-Cooper-Schrieffer (BCS) Hamiltonian for d-wave superconductivity is \(\mathcal{H}_{\text{BCS}} = \sum_{ij,\sigma} (-t_{ij} - \mu) c_{i\sigma}^\dag c_{j\sigma} + \sum_{ij} \Delta_{ij} c_{i-\sigma}^\dag c_{j+\sigma} + \text{H.c.} \), where \(\Delta_{ij} \) creates the electron with spin \(\sigma \) at site \(i \) and \(\mu \) denotes the chemical potential. The hopping is restricted within nearest-neighbor sites for simplicity. We use the unit system with \(\hbar = \mu = 1 \). The Hamiltonian for the fabrication potential \(\mathcal{H}_{\text{int}} \) is written as \(\mathcal{H}_{\text{int}} = \sum_{ij} V_{ij} c_{i\sigma}^\dag c_{j\sigma} \), where the potential \(V_i = 0 \) (500t) inside (outside) the nanosiland. One can diagonalize \(\mathcal{H} \) to solve the BdG equations as

\[
\sum_j \left[\hat{H}^N_{ij} \right] \left[\hat{\Delta}_{ij} \right] \left[-\hat{H}^{V\dag N}_{ij} \right] \left(u_{\nu}(r_j) \right) = \epsilon_{\nu}(r_j) \left(v_{\nu}(r_j) \right) .
\]

Here \(\hat{H}^N_{ij} = -t_{ij} - (\mu - V_i) \delta_{ij} \) and \(\hat{\Delta}_{ij} = V_{ij} \sum_{\gamma=1}^N u_{\gamma}(r_j) v_{\gamma}(r_j) f(\epsilon_{\gamma}) \), where \(N \) is the number of lattice sites, \(V_{ij} \) denotes the pairing interaction, and \(f(x) \) is the Fermi-Dirac distribution function. For the results presented below, the chemical potential is fixed to be \(\mu = -1.5t \) and the pairing interaction is nonzero only between nearest-neighbor sites, \(V_{ij} \equiv U = -2t \), so that the resulting order parameter is purely of the d_{s\text{-}wave} symmetry. The order parameter at site \(i \) is given in terms of the d-wave mean fields by

\[
\Delta_{d,i} = (\Delta_{+i} + \Delta_{-i})/4
\]

\[
\Delta_{\pm i} = \Delta(r_i, r_j \mp \hat{x}, \hat{y}) , \text{ where } \hat{x} \text{ and } \hat{y} \text{ denote the unit vectors in the square lattice.}
\]

Considering two-dimensional systems, we assume that the field penetration depth \(\lambda \) is infinity.

We use pure d-wave mean fields with randomly-distributed phases as the initial guess for our self-consistent calculation.

The BdG equations (1) are solved self-consistently along with the d-wave gap equation with the use of the reduced-shifted-conjugate-gradient (RSCG) method [21]. The mean field \(\langle c_{i} c_{j} \rangle \) can be expressed as \(\langle c_{i} c_{j} \rangle = T \sum_{\nu=0}^{N-1} \left[e_i(j)^T x(i, \omega_{\nu}) \right] \), where \(\{ e(i) \} \nu = \delta_{ij} \) and \(\nu_{s} \) is the cutoff parameter for the Matsubara frequencies, \(\omega_{\nu} = (2n + 1)\pi T \). The 2N-dimensional vector \(x(i, \omega_{\nu}) \) is obtained by solving the linear equations defined by \((\omega_{\nu} I - \hat{H}_{\text{BCS}}) x(i, \omega_{\nu}) = h(i) \), with \(\{ h(i) \} \nu = \delta_{i,0} \) and the BdG matrix \(\hat{H}_{\text{BCS}} \) on the left-hand side (LHS) of Eq. (1). These linear equations with different frequencies can be solved simultaneously by the RSCG method [21]. We use the maximum Matsubara frequency \(\omega_{\nu} = 240\pi = \pi T(2n_0 + 1) \). A criterion for the residual is set to 0.1, which is small enough to obtain accurate Green’s functions [21].

To find the true ground state on the mean-field level, once self-consistency has been achieved, we calculate the thermodynamic potential given as [22,23]

\[
\Omega_s = -T \sum_{\nu=1}^{2N} \ln \left[1 + \exp \left(\frac{E_{\nu}}{T} \right) \right] - \sum_{ij} \frac{[\hat{\Delta}_{ij}]^2}{U} .
\]
We obtain all the eigenvalues $E_γ$ by means of the Sakurai-Sugiura (SS) method [24] after the self-consistent calculation [18]. The SS method allows us to extract the eigenpairs whose eigenvalues are located in a given domain on the complex parameter defined by [28]. This localized s'-wave order parameter becomes complex, as it can be induced by a scatterer such as a nonmagnetic impurity in a d-wave superconductor [28]. This localized s'-wave order parameter becomes global at temperature T_{cs}, i.e., nonzero all along the surfaces [18]. Below T_{cs} the d-wave order parameter also becomes complex, while the BdG equations converge to a real d-wave order parameter above T_{cs} despite the complex initial guess. In terms of topology, a 1D order parameter should be induced at the TRS-breaking temperature T_{cs}, since the topology of nodal time-reversal-invariant superconductors is characterized by a 1D topological invariant [18]. The s'-wave order parameter is 1D in the sense that it is induced within a narrow region along the surfaces. This second-order phase transition can be probed by various kinds of surface-sensitive experiments such as scanning tunneling microscopy or point contact spectroscopy.

Figure 3 shows the eigenvalue distributions below and above T_{cs}. One can see that the spectrum is gapped below T_{cs}. In the zero-temperature limit, the thermodynamic potential reduces to

$$\Omega_γ \sim - \sum_{\gamma=1}^{2N} E_γ \theta(E_γ) - \sum_{ij} \frac{|\Delta_{ij}|^2}{U},$$

which is equivalent to the internal energy. Here $\theta(x)$ is the Heaviside step function. Equation (5) clearly shows that the zero-energy eigenvalues of the Andreev bound states do not contribute to the minimization of the internal energy. The first term in Eq. (5) decreases when the flat band in a superconductor is gapped. The second term is usually small since the system satisfies the relation $|\Delta_{ij}|^2/U < |\Delta_{ij}|$.

![FIG. 2. d-wave and extended s-wave order parameters below and above T_{cs}. The system size is $L_x \times L_y = 96 \times 96$. To clearly present the spatial variation, $\arg(\Delta_s)$ has been shifted by $\pi/2$.](image)

![FIG. 3. Eigenvalue distribution below and above the time-reversal-symmetry breaking temperature T_{cs}. The parameters are the same as for Fig. 1.](image)
Thus, the gapped phase can become the ground state. In a d-wave nanoisland, the flat band is spontaneously split as the extended s'-wave order parameter emerges globally along the surfaces below T_{cs}. We propose that our findings are rather universal and that an unconventional superconductor with gapless surface states such as p_x-p_y superconductors [3] can have a new symmetry-breaking phase with a second order phase transition.

We find the appearance of vortex-antivortex pairs in relatively large nanosheets. In a larger system with $L_x \times L_y = 144 \times 144$, the TRS-breaking temperature T_{cs} is almost the same as that in the smaller system shown in Fig. 1(a). In Fig. 4 we present (a) the zero-energy local density of states, (b) $|\Delta_{d,i}|$, (c) $|\Delta_{s',i}|$, and (d) the phase of $\Delta_{s',i}$ for the $L_x \times L_y = 144 \times 144$ nanoisland. There are zero-energy bound states on the surfaces as can be seen in Fig. 4(a). The zero-energy local density of states has been calculated using the eigenfunctions obtained by the SS method, with the Lorentzian smoothing width $\eta = 0.01 \tau$ [18]. It can be seen in Fig. 4(b) that the d-wave order parameter is similar to that in the smaller system shown in Fig. 2. Contrary to Fig. 2, however, the s'-wave order parameter in Fig. 4(c) vanishes at the positions that have zero-energy bound states. One can see in Fig. 4(d) that a phase singularity occurs in the s'-wave order parameter at each of these positions. Thus, these zero-energy bound states are the Andreev bound states in a vortex or an antivortex in the induced s'-wave order parameter. Vortices and antivortices can appear in spontaneous TRS-broken systems and in the work of Ref. [14], fractional vortex-antivortex chains along the surfaces were found in the d-wave order parameter. In contrast, our TRS-broken phase has integer vortex-antivortex pairs in the induced extended s'-wave order parameter, since its phase as shown in Fig. 4(d) winds from $-\pi$ to π or vice versa. We note that the positions of vortex-antivortex pairs depend on the initial randomly-distributed phase of the d-wave order parameter. We have confirmed that such vortex-antivortex pairs appear in a larger system for $L_x \times L_y = 192 \times 192$.

Although we have focused on the chemical potential $\mu = -1.5 \tau$ and the d-wave pairing interaction $U = -2 \tau$ in presenting our results, we have found the second-order phase transition to the spontaneous TRS-broken phase with the induced s'-wave order for a wide range of μ and U. To address the question as to whether spontaneous TRS breaking happens only in nanosheets due to quantum confinement or if it is a generic feature of the [110] surface, we have also performed self-consistent calculation for nanoribbons, which have infinitely long [110] surfaces but a finite width in the perpendicular direction. We have found that the second-order phase transition to the TRS-broken phase where the s'-wave order is induced along the surface is generic to [110] surfaces and also occurs in nanoribbons. For $\mu = -1.5 \tau$ and $U = -2 \tau$, vortex-antivortex pairs appear when the width of a nanoribbon or the side length of a nanoisland is roughly eight times or larger than the coherence length. Detailed studies of nanoribbons will be presented in a future publication.

In conclusion, we have shown by solving the BdG equations self-consistently for nanoscale d-wave systems that spontaneous emergence of new order results in gapping of the zero-energy surface states by breaking the underlying symmetry. We have found that not only is the induced order parameter complex, but also the d-wave order parameter itself becomes complex in the phase with broken TRS. The gapped surface states on [110] surfaces in the TRS-broken phase of a d-wave superconductor can be detected by surface-sensitive probes, and the Andreev bound states in vortex-antivortex pairs in the induced extended s'-wave condensate can be distinguished from the gapless surface states in the TRS-preserving phase by measuring the concurrent magnetic field with nanoscale SQUIDs [14,29].

The authors would like to acknowledge Masahiko Machida, Hiroki Isobe, and Frank Marsiglio for helpful discussions and comments. The calculations were performed on the supercomputing system SGI ICE X at the Japan Atomic Energy Agency. This study was partially supported by JSPS KAKENHI Grant No. 26800197, the Topological Materials Science (Grant No. JP16H00995) KAKENHI on Innovative Areas from JSPS of Japan, and the Natural Sciences and Engineering Research Council of Canada.

[1] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[2] Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order, Phys. Rev. B 80, 155131 (2009).
[3] M. Sato, Y. Tanaka, K. Yada, and T. Yokoyama, Topology of Andreev bound states with flat dispersion, Phys. Rev. B 83, 224511 (2011).
[4] C. C. Tsuei and J. R. Kirtley, Pairing symmetry in cuprate superconductors, Rev. Mod. Phys. 72, 969 (2000).
[5] S. Kashiwaya and Y. Tanaka, Tunnelling effects on surface bound states in unconventional superconductors, Rep. Prog. Phys. 63, 1641 (2000).
[6] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
[7] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75, 076501 (2012).
[8] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Massive dirac fermion on the surface of a magnetically doped topological insulator, Science 329, 659 (2010).
[9] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Quantized anomalous hall effect in magnetic topological insulators, Science 329, 61 (2010).
[10] M. Matsumoto and H. Shiba, Coexistence of different symmetry order parameters near a surface in d-Wave superconductors I, J. Phys. Soc. Jpn. 64, 3384 (1995).
[11] M. Fogelström, D. Rainer, and J. A. Sauls, Tunneling into Current-Carrying Surface States of High-Tc Superconductors, Phys. Rev. Lett. 79, 281 (1997); see also references therein.
[12] To the best of our knowledge, the only exception is the work by Y. Tanuma, Y. Tanaka, M. Ogata, and S. Kashiwaya in Phys. Rev. B 60, 9817 (1999), where the Gutzwiller approximation was applied to the t-J model and a purely imaginary extended s-wave order parameter was found to be induced near the [110] surface of a semi-infinite d-wave superconductor.
[13] D. Gustafsson, D. Golubev, M. Fogelström, T. Claeson, S. Kubatkin, T. Bauch, and F. Lombardi, Fully gapped superconductivity in a nanometresize YBa2Cu3O7-x island enhanced by a magnetic field, Nat. Nanotech. 8, 25 (2013).
[14] M. Håkansson, T. Löfwander, and M. Fogelström, Spontaneously broken time-reversal symmetry in high-temperature superconductors, Nat. Phys. 11, 755 (2015).
[15] A. M. Black-Schaffer, D. S. Golubev, T. Bauch, F. Lombardi, and M. Fogelström, Model Evidence of a Superconducting State with a Full Energy Gap in Small Cuprate Islands, Phys. Rev. Lett. 110, 197001 (2013).
[16] A. B. Vorontsov, Broken Translational and Time-Reversal Symmetry in Unconventional Superconducting Films, Phys. Rev. Lett. 102, 177001 (2009).
[17] P. G. de Gennes, Superconductivity of Metals and Alloys (Westview Press, Boulder, 1999).
[18] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.96.060503 for detailed numerical results and discussion on topology.
[19] M. Nakahara, Geometry, Topology and Physics, 2nd ed. (CRS Press, Boca Raton, London, New York, 2003).
[20] M. Sato, Bussie Kenkyu 94, 311 (2010) (in Japanese).
[21] Y. Nagai, Y. Shinohara, Y. Futamura, and T. Sakurai, Reduced-shifted conjugate-gradient method for a greens function: efficient numerical approach in a nano-structured superconductor, J. Phys. Soc. Jpn. 86, 014708 (2017).
[22] I. Kosztin, S. Kos, M. Stone, and A. J. Leggett, Free energy of an inhomogeneous superconductor: A wave-function approach, Phys. Rev. B 58, 9365 (1998).
[23] M. V. Hosseini, Inhomogeneous superconductivity in the presence of time-reversal symmetry, Euro. Phys. Lett. 110, 47010 (2015).
[24] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using numerical integration, J. Comput. Appl. Math. 159, 119 (2003).
[25] Y. Futamura, T. Sakurai, S. Furuya, and J.-I. Iwata, High Performance Computing for Computational Science VECPAR 2012, Lecture Notes in Computer Science, Vol. 7851 (Springer, Berlin, 2013), p. 226.
[26] Y. Nagai, Y. Shinohara, Y. Futamura, Y. Ota, and T. Sakurai, Numerical construction of a low-energy effective hamiltonian in a self-consistent bogoliubov-de gennes approach of superconductivity, J. Phys. Soc. Jpn. 82, 094701 (2013).
[27] There is free software called z-Pares for solving generalized eigenvalue problems with the use of the Sakurai-Sugiura method. See http://zapares.cs.tsukuba.ac.jp/.
[28] M. Franz, C. Kallin, and A. J. Berlinsky, Impurity scattering and localization in d-wave superconductors, Phys. Rev. B 54, R6897 (1996).
[29] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, M. E. Huber, and E. Zeldov, A scanning superconducting quantum interference device with single electron spin sensitivity, Nat. Nanotech. 8, 639 (2013).