Peril in the market-classification and dosage of species used as anti-diabetics in Lima, Peru

Rainer W Bussmann1*, Narel Paniagua-Zambrana2, Marinoli Rivas Chamorro3, Natalia Molina Moreira4, María Luisa del Rosario Cuadros Negri5 and Jose Olivera6

Abstract

Background: Peru is what Peruvian anthropologist Lupe Camino calls the “health axis” of the old Central Andean culture area stretching from Ecuador to Bolivia. In particular in the North of the country the traditional use of medicinal dates back as far as the first millennium B.C. Both healers, and the wider population, often buy their medicinal plants in local markets, but there is very little comparative information available about which plants are sold under which vernacular name at any given time, for which indication, and which dosage information and information about side effects is given by vendors. For this study we used two traditionally used species groups “Hercampuri” *Gentianella* spec. (Gentianaceae) and “Pasuchaca” *Geranium* spec. (Geraniaceae), found in the Mercado Aviación in Lima, as small, clearly circumscribed plant group frequently used to treat symptoms of diabetes as a test case to study the taxonomy, indications, dosage, indicated side effects, and additional species used as admixtures and hypothesized that: 1. A wide variety of different species is sold under the same common name, and often several common names exist for one species. 2. There is no consistency in the dosage, or a relationship between dosage and species marketed under one name. 3. However, there is consistency in the knowledge about usage and side effects.

Methods: Surveys focusing on medicinal plants sold and their properties were conducted at the Mercado Aviación in Lima in December 2012. Vouchers of all specimens were deposited at the National Herbarium of Peru.

Results and conclusions: Our surveys in Mercado Aviación in Lima yielded four species of *Gentianella*, two of *Geranium*, and three additional species from three genera used as common additives that were sold as anti-diabetic. These results indicate that even in case of only a few plant species, used for a very clearly circumscribed application, patients run a considerable risk when purchasing their remedies in the market. The possible side effects in this case are the more serious because diabetes has to be treated long term, and as such the patients are ingesting possible toxic remedies over a long period of time. Much more control, and a much more stringent identification of the material sold in public markets, and entering the global supply chain via internet sales, would be needed.

Keywords: Medicinal plants, Taxonomy, Systematics, Falsification, Efficacy, *Gentianella*, *Geranium*, Gentianaceae, Geraniaceae, Andes
Background
Northern Peru is what Peruvian anthropologist Lupe Camino calls the “health axis” of the old Central Andean culture area stretching from Ecuador to Bolivia [1]. In particular in the North of the country the traditional use of medicinal dates back as far as the first millennium B.C. (north coastal Cupisnique culture) or at least to the Moche period (100–800 AD), with healing scenes and healers frequently depicted in ceramics [2]. The extraordinary diversity of plant use in the region has always attracted scientific study. Early ethno botanically oriented studies focused mainly on the famous “magical” and “mind altering” flora of Peru. The first study on “cimora” -another vernacular name for the San Pedro cactus (Echinopsis pachanoi) dates back to the 1940’s [3]. The first detailed study on a hallucinogen in Peru focused also on San Pedro, and Tree Datura (Brugmansia spp.) [4-8]. Coca (Erythroxylum coca) also attracted early scientific attention [9-13], as did the Amazonian Ayahuasca (Banisteriopsis caapi) [14-16]. Chiappe et. al [17] were the first to attempt an overview on the use of hallucinogens in shamanistic practices in Peru. General ethno botanical studies in Peru and Bolivia focused mostly on Quechua herbalism of the Cusco area [18-22], the border region of Peru and Bolivia around Lake Titicaca [23-26] and the Amazon [27-29]. Northern Peru, and especially its large medicinal plant markets, was studied more recently [30-38].

Both healers, and the wider population, often buy their medicinal plants in local markets. Information on the composition of the market flora, the origin of the plant material, and the quantities of plant material sold exists to some extent [37,39-41], and some studies focus on the interface between traditional and allopathic medicine [42,43]. Peru occupies a middle rank (125 of 223 countries surveyed) in diabetes prevalence (5–6% of the population) [44], and the allopathic concept of diabetes is well known. Previous studies [33,34,42,43] indicate that patients regularly receive their diagnosis from allopathic doctors, and then go to the markets to buy traditional remedies. Vendors also followed the allopathic concept. Initial bioassays indicate that at least for antibacterial applications the efficacy of parts of the medicinal flora can be proven [45-52], and preliminary data on plant toxicity exist [53]. However, there is very little comparative information available about which plants are
sold under which vernacular name at any given time, for which indication, and which dosage information, and what kind of information about side effects vendors give.

For this study we used two traditionally used species groups “Hercampuri” Gentianella spec. (Gentianaceae) and “Pasuchaca” Geranium spec. (Geraniaceae), found in the Mercado Aviación in Lima, as small, clearly circumscribed plant group frequently used to treat symptoms of diabetes as a test case to study the taxonomy, indications, dosage, indicated side effects, and additional species used as admixtures and hypothesized that:

1. A wide variety of different species is sold under the same common name, and often several common names exist for one species.
2. There is no consistency in the dosage, or a relationship between dosage and species marketed under the same vernacular name.
3. There is consistency in knowledge on usage and side effects.

Materials and methods

Surveys

Surveys focusing on plants sold under the traditional species concepts “Hercampuri” (Gentianella sp.) and “Pasuchaca” (Geranium sp.) to treat diabetes, as well as species used as additives were conducted at the Mercado Aviación in Lima in December 2012. Researchers would approach the vendors and explain the premise for the study. From those who gave their prior informed consent, information was collected regarding their inventory of “Hercampuri” and “Pasuchaca”, as well as of additive species. The vendors were asked about other vernacular names, medicinal indications the plants were used for, dosage, side effects, admixtures to these species, and provenance and seasonality of the material.

Voucher collection

The specimens are registered under the collection series “RBU,” “MRCH,” “MONA,” “JOG”. Vouchers of all specimens were deposited at the National Herbarium of Peru in the Museo de Historia Natural San Marcos (USM). In order to recognize Peru’s rights under the Convention on Biological Diversity, especially with regard to the conservation of genetic resources in the framework of a study on medicinal plants, the identification of the plant material was conducted entirely in Peru. No plant material was exported in any form whatsoever.

Species identification and nomenclature

The nomenclature of plant families, genera, and species follows the Catalogue of the Flowering Plants and Gymnosperms of Peru [54]. The nomenclature was compared to the TROPICOS database (www.tropicos.org). Species were identified using the available volumes of the Flora of Peru [55], as well as [56-58], and reference material in the National Herbarium of Peru (USM). Species and author names for all species encountered are given in Additional file 1.

Results and discussion

Our surveys in Mercado Aviación in Lima yielded four species of Gentianella sold as “Hercampuri”, two of Geranium sold as “Pasuchaca”, and three additional species from three genera used as common additives that were sold as anti-diabetic. Gentianella nitida (Grieseb.) Fabris and Gentianella thyrsoida (Hook.) Fabris were the most commonly sold Gentianaceae, whereas only small samples of Gentianella incurva (Hook.) Fabris and Gentianella tristicha (Gillg.) J.S. Pringle could be found. All these species were sold as “Hercampuri”. Interestingly, not a single sample of Gentianella alborosea (Gilg) Fabris, more commonly mentioned in literature as “Hercampuri” was encountered. Geranium sessiliflorum Cav. and Geranium crassipes Hook. ex. Grey were both sold as “Pasuchaca”, and again, Geranium dielsianum Kunth., the only species mentioned in the phytomedical literature, was not encountered. Argyrochosma nivea (Poir.) Desv. and Cheilanthes bonariensis (Willd.) Proctor (both Pteridaceae) were interchangeably sold as “Cuti Cuti), and together with Morus alba L. (Moraceae) were used as admixtures in preparations to treat diabetes (Figure 1).

The species used, their indications, and the vernacular names under which they were sold, greatly differed not only from literature on similar markets in other parts of the country, but also from previous studies conducted in Lima (Additional file 1).

Albán [59], Lima, reported Gentianella alborosea (Gilg.) Fabris (Hircampuri, Hercampuri) as used for gastric secretion stimulant, anti-inflammatory (liver), blood purification, Gentianella graminea (H.B.K.) Fabris (Corpus huay, Chinchimali) for the stimulation of bile secretion, anti-inflammatory (liver), and blood purification, Gentianella thyrsoida (Hook.) Fabris (Huallpa pachaqui, Japanchachara, Tucumia) for the stimulation of bile secretion, anti-inflammatory (liver), anti-diabetic and Morus nigra L. (Mora) as anthelmintic. Brack Egg [60], whole of Peru, mentions Cheilanthes bonariensis (Willd.) Proctor (Cuti Cuti) as febrifuge, Gentiana sedifolia HBK (Hercampure) as aphrodisiac; Gentianella alborosea (Gilg) Fabris (Hercampuri) for diabetes, as diuretic and to lower cholesterol; Gentianella bicolor (Wedd.) Pringle (Corpus huay, Chinchimali), Gentianella thyrsoida (Hook.) Fabris (Corpus huay, Chinchimali) Geranium dielsianum Kunth (Pasuchaca) as anti-dietetics. Our own previous studies [33,61-70] all from Northern Peru, list Pellaea ternifolia C. Chr. (Cuti Cuti, Cute Cute, Cuticuti, Cute-Cute Amarillo, Cuti Cuti Amarillo) as used for diabetes and liver,
*Gentianella alborosea* (Grimes) Pringle (Hercampuri) for diabetes; *Gentianella bicolor* (Wedd.) J. Pringle (Corpus Way, Corposhuar, Horamo Leon) for arthritis, diabetes, bone pain, cholesterol, gastritis, liver, blood, rheumatism; *Gentianella bruneotincta* (Gilg.) J.S. Pringle. (Anga Macha) for Infections of the uterus, after giving birth; *Gentianella crassicaulis* J.S. Pringle (Violeta Genciana, Hojas de Violeta) for gastritis, “special” diabetes and dizziness; *Gentianella dianthoides* (H.B.K.) Fabris (Genciana, Egenciana, Amargon, Campanilla) for liver, kidneys, blood, as purgative to loosen the stomach, diabetes, cleansing, blood irrigation, blood problems, liver Infection; *Gentianella graminea* (H.B.K.) Fabris (Sumaran, Chinchimali, Corpshuay) for diabetes, liver, blood, burn fat, Intestinal fever, cough, fever, infection, allergies of the blood, varicose veins; *Geranium ayavacense* Willd ex H.B.K., *Geranium sessiliflorum* Cavanilles (Puli Punchi, Pasuchaca, Pachuchaca, Miscamisca) and *Morus alba* L. (Morera) for diabetes; *Notholaena nivea* (Poir.) Desv. (Doradilla) and *Pellaea ternifolia* C. Chr. (Cuti Cuti, Cuti Cuti amarillo) against diabetes. All of the *Gentianella* species were used for psychosomatic disorders [71].

The present study confirms our initial hypothesis that at least in case of *Gentianella* and *Geranium* various species are sold under the same common names in Mercado Aviación in Lima, and in other parts of the country. The different fresh *Gentianella* species are readily identifiable botanically, but neither the collectors nor the vendors do make a direct distinction between species. However, at least half of the surveyed vendors in Mercado Aviación sell *Gentianella* (Hercampuri) in finely powdered form, which makes the morphological identification of the species in the market impossible, and greatly increases the risk for the buyer. In case of *Geranium* (Pasuchaca) this is slightly less perilous, since none of the species appear to be toxic. However, they
are mostly sold as dried rhizomes with few leaf fragments, and a morphological identification in the market is difficult even for trained botanists. The best way to ensure correct identification would be DNA bar-coding. The necessary technical infrastructure was however not available locally. The use of DNA bar-coding as quality control tool to verify species composition of samples on a large scale would require to carefully sample every batch of plant material sold in the market. The volatility of the markets make this an impossible logistical task. We also confirmed that all of the species encountered, and the same or closely related species mentioned in literature sell under wide variety of common names. Worse, one species might be sold e.g. as “Hercampuri” in one location or market stand, while selling under a different name at a neighboring stand. As expected we did not find any consistency in the dosage of “Hercampuri” (ranging from 20–50 g/preparation) in Mercado Aviación, nor in the maximum number of days the preparation was to be taken (unlimited to a maximum of 15), nor in vendors agreeing on possible side effects. This is the more perilous as this stretched across species, i.e. Gentianella thyrsoidae, which clearly has toxic compounds, was often classified as benign, while other species of Gentianella were sold with clear warnings and vice versa. In case of “Pasuchaca” dosages were much more consistent, while the fern mixtures again varied wildly in dosage. The same holds true when comparing dosages with the use of the same or similar species mentioned in literature (Additional file 1). We also confirmed that the vendors in general knew what a plant was used for, that the material had to be boiled as tea, and which other ethnospesies were supposed to be included in a preparation, however, as indicated above, knowledge about side effects was sketchy.

Information on the possible efficacy of all the species researched is scarce. Karato et al. [72] report on some glucosidase inhibition in Geranium dielsianum, which might explain the use of Geranium in diabetes. However, Geranium dielsianum was hardly sold in Mercado Aviación. Some phytochemical analysis has been done on Gentianella alborosea [73], and the plant was shown to have free radical scavenging properties [74]. However, Gentianella alborosea again was not common in the market. Gentianella nitida has been a little better studied from a phytochemical perspective [75-77] and is also known for its antimicrobial and free radical scavenging activity [78]. None of these studies however confirm efficacy as anti-diabetic. Even worse, the botanical information of the species mentioned above is not free of doubt.

The only species in anti-diabetic mixtures encountered that actually has proven activity is the introduced Morus alba [79-93] This species is well known in Chinese Traditional Medicine, and also used other pharmacopoeiae, e.g. [94]. These results indicate that even in case of only a few plant species, used for a very clearly circumscribed application, patients run a considerable risk when purchasing their remedies in the market. The possible side effects in this case are the more serious because diabetes has to be treated long term, and as such the patients are ingesting possible toxic remedies over a long period of time. Much more control, and a much more stringent identification of the material sold in public markets, and entering the global supply chain via Internet sales, would be needed.

Additional file

Additional file 1: Medicinal species found in the present study compared to literature.

Competing interest
The authors declare that they have no competing interest.

Authors’ contributions
All authors participated in the fieldwork and literature research for this study. RB and NPZ analyzed the data and prepared the manuscript. All authors provided revisions to the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We gratefully thank the vendors in Mercado Aviación for their cooperation, and the Herbando Nacional de Peru at Museo de Historia Natural San Marcos, and in particular it’s Director Dr. Betty Millán for untiring support.

Author details
1William L. Brown Center, Missouri Botanical Garden, PO Box 299, Saint Louis, MO 63166-0299, USA. 2Herbario Nacional de Bolivia, Instituto de Ecología-UMSA, Campus Universitario, Cota Cota Calle 27, Apdo. correo central, La Paz, Postal 10077, Bolivia. 3Museo de Historia Natural-UNMSM, Av Arenales 1236, Jesús María, Lima, Peru. 4UEES (Universidad de Especialidades Espíritu Santo), Km 2.5 via Samborondon, Guayas, Ecuador. 5Ministerio del Interior-Sanidad Policía Nacional, Hospital Geriátrico. Jr. Ramon Castillo Cuadra 5, Distrito de San Miguel, Lima, Perú. 6ICBIN, Facultad de Medicina San Fernando-UNMSM, Av Grau 755, Lima, Perú.

Received: 3 April 2013 Accepted: 24 May 2013
Published: 30 May 2013

References
1. Camino L: Ceros, plantas y lagunas poderosas: La medicina al norte del Perú. Lima: Lluvia Editores; 1992.
2. Sharon O: Shamanismo y el Cacto Sagrado-Shamanism and the Sacred Cactus. San Diego, Museum of Man: San Diego Museum Papers 37; 2000.
3. Cruz Sánchez G: Informe sobre las aplicaciones populares de la cimora en el norte del Perú. Rev Farmacol Med Exp Lima 1948, 12:253–258.
4. Cardenas M, De Rios Dobkin M: Plant hallucinogen, shamanism and Nazca ceramics. J Ethnopharm 1980, 2:233–246.
5. De Rios Dobkin M: Folk curing with a psychodelic cactus in North Coast Peru. International J Soc Psych 1969, 15:23–32.
6. De Rios Dobkin M: Plant hallucinogens and the religion of the Mochica, an ancient Peruvian people. Econ Bot 1971, 31:189–203.
7. De Rios Dobkin M: Trichocereus pachanoi: a mescaline cactus used in folk healing uses in Peru. Econ Bot 1968, 22:191–194.
8. Bristol ML: Tree Datura drugs of the Columbian Sibundoy. Bot Mus Leaf 1969, 22:165–227.
9. Martin RT: The role of coca in the history, religion, and medicine of South American Indians. Economic Botany 1970, 24:422–438.
10. Naranjo P: Social function of coca in pre-Columbian America. J Ethnopharm 1981, 3:161–172.
11. Plowman T: Amazonian coca. J Ethnopharmacol 1981, 3:195–225.
12. Plowman T: The ethnobotany of coca (Erythroxylum spp. Erythroxylaceae). Adv Econ Bot 1984, 1:22–111.
13. Plowman T: The origin, evolution, and diffusion of coca, Erythroxylum spp. in South and Central America. Pap Peabody Mus Arch Ethn 1984, 76:3:17–163.
14. Rivier L, Lindgren JE: Ayahuasca, the South American Hallucinogenic drink: an ethno botanical and chemical investigation. Econ Bot 1972, 26:101–129.
15. Schultes RE, Raffauf R: Vine of the Soul. Orlando, Arizona: Synergetic Press; 1992.
16. Bianchi A, Samorini G: Plants in Association with Ayahuasca. Jahrb Ethnobotanik 1993, 1:21–42.
17. Chippe M, Lemli M, Millones L: Alucinogenos y Shamanismo en el Peru contemporaneo. Lima: El Vinyer; 1985.
18. Larco-Herrera F: Plantas que curan y plantas que matan de la Flora del Cusco. Rev Mus Nar Lima 1940, (5):174–127.
19. De Ferreyra EC: Plantas medicinales altas-andinas. Bol Colon Suiza Peru 1978, 1:1–6.
20. De Ferreyra EC: Plantas que curan las heridas del hombre y los animales. Bol Lima 1983, 9:1–12.
21. Lisa JA: Medicina Andina Farmacopea y rituales. Cusco: Centro Bartolome de las Casas; 1985.
22. Franquemont C, Plowman T, Franquemont E, Niezgoda C, King S, Sperling C, Davis W: The Ethnobotany of Chinchero, an Andean Community in Southern Peru. Field Bot J ser 1990, 24.
23. Girault L, Kallayawa: Curanderos iluminados de los Andes. UNICEF-OPS-OMS: La Paz; 1987.
24. Bastien J: Drum and Stethoscope: Integrating Ethnomedicine and Biomedicine in Bolivia. Salt Lake City: University of Utah Press; 1992.
25. Bastien J: Healers of the Andes: Kallayawa Herbalists and Their Medicinal Plants. Salt Lake City: University of Utah Press; 1987.
26. Roersch C: Plantas Medicinales en el Sur Andino del Perú. Königstein: Koeltz Scientific Books; 1994.
27. France GT: Ethnobotanical notes from Amazonian Brazil. Econ Bot 1972, 26:221–233.
28. Rutter RA: Catálogo de plantas útiles de la Amazonía Peruana. Com Cult Peru 1990, 22:1–349.
29. Duke J: Vázquez J: Erythroxylum Amazonian Ethnobotanical Dictionary. Boca Raton: CRC Press; 1994.
30. Polia M: Las Lagunas de los Encantos-Medicina Tradicional Andina en el Perú septentrional. CePeSér: Lima; 1988.
31. De Feo V: Ethnopharmacological field study in northern Peruvian Andes with particular reference to divination practices. J Ethnopharmacol 2003, 85:243–256.
32. De Feo V: Medicinal and magical plants on northern Peruvian Andes. Fitoterapia 1992, 63:47–440.
33. Bussmann RW, Sharon D: Traditional plant use in Northern Peru: Tracking two thousand years of health culture. J Ethnobiol Ethnmed 2006, 2:47.
34. Bussmann RW, Sharon D, Vandenbroek I, Jones A, Revene Z: Health for sale: The medicinal plant markets in Trujillo and Chiclayo, Northern Peru. J Ethnobiol Ethnmed 2007, 3:37.
35. Sharon D, Bussmann RW: Avances de la etnobotánica en Trujillo, Peru: El programa MHIRT. Arnaldoa 2006, 13(2):398–406.
36. Sharon D, Bussmann RW: Plantas Medicinales en la Obra del Obispo Don Baltasar Jaime Martinez Compagón (Siglo XVIII). In Desde el exterior: El Peru y sus estudios. Edited by Millones L, Tato N. Nagoya, UNMSM: Tercer Congreso Internacional de Peruanistas; 2006:147–165.
37. Revene Z, Bussmann RW, Sharon D: From Sierra to Coast: Tracing the Supply of Medicinal Plants in Northern Peru-a plant collector’s tale. Ethnobot Res Appl 2008, 6:15–22.
38. Bussmann RW, Glenn A, Meyer K, Rothrock A, Townesmith A: Herbal mixtures in traditional medicine in Northern Peru. J Ethnobiol Ethnomed 2010, 6(10):1–11.
39. Bussmann RW, Sharon D, Ly J: From garden to market? The cultivation of native and introduced medicinal plant species in Cajamarca, Peru and implications habitat conservation. Ethnobot Res Appl 2008, 6:351–361.
40. Bussmann RW, Sharon D, et al: From collection to market and cure-an interdisciplinary study of traditional plant use in Northern Peru. In Recent Developments and Case Studies in Ethnobotany. Recife, Brazil: Brazilian Society of Ethnobiology and Ethnoecology (SBE); Publication Group of Ecology and Applied Ethnobotany (NUPEEA); 2010:184–207.
65. Bussmann RW, Glenn A: Traditional knowledge for modern ailments—plants used for the treatment of diabetes and cancer in Northern Peru. J Med Pl Res 2011, 5(3):6916–6930.
66. Bussmann RW, Glenn A: Medicinal plants used in Northern Peru for reproductive problems and female health. J Ethnobot Ethnomed 2010, 6(30).
67. Bussmann RW, Glenn A: Cooling the heat—Traditional remedies for malaria and fever in Northern Peru. Ethnobot Res Appl 2011, 8:125–134.
68. Bussmann RW, Glenn A: Fighting pain. Traditional Peruvian remedies for the treatment of asthma, Rheumatism, Arthritis and sore bones. Ind J Trad Kno 2011, 10(3):397–412.
69. Bussmann RW, Glenn A: Traditional medicinal plants used in Northern Peru for kidney problems and urinary infections. Amédias 2011, 18:351–10.
70. Bussmann RW, Glenn A: Traditional Peruvian medicine for the treatment of respiratory disorders. Rev Per Biol 2010, 17(2):331–346.
71. Bussmann RW, Sharon D, Glenn A: Healing the body, healing the soul. Traditional remedies for "magical" ailments, nervous system and psychosomatic disorders in Northern Peru. Afr. J Pharm Pharmacol 2010, 4(9):580–629.
72. Karato M, Yamaguchi K, Takei S, Kino T, Yazawa K: Inhibitory effects of pasuchaca (Geranium delisianum) extract on alpha-glucosidase in mouse. Biosci Biotech Biochem 2006, 70(6):1482–1484.
73. Kawahara N, Masuda K, Sekita S, Satake M: A new secoiridoid glucoside, amarontidin, from Peruvian folk medicine "Hercampuri" (Gentianella nitida). Chem Pharm Bull (Tokyo) 2001, 49(6):771–772.
74. Acero N, Linares F, Galán de Mera A, Oltra B, Muñoz-Mingarro D: Apoptotic and free radical scavenging properties of the methanolic extract of Gentianella alborosea. Fitoterapia 2006, 77(7):754–757.
75. Lacaille-Dubois MA, Galle K, Wagner H: Secoiridoids and xanthones from Gentianella nitida. Planta Med 1996, 62(4):365–368.
76. Kawahara N, Nozawa M, Flores D, Bonilla P, Sekita S, Satake M: Sesterpenoid from Gentianella alborosea. Phytochemistry 2000, 53(8):881–884.
77. Kawahara N, Nozawa M, Kuruta A, Hakamatsuka T, Sekita S, Satake M: A novel sesquiterpenoid, nitol, as a potent enhancer of IL-2 gene expression in a human T cell line, from the Peruvian folk medicine "Hercampuri" (Gentianella nitida). Chem Pharm Bull (Tokyo) 1999, 47(9):1344–1345.
78. Rojas R, Doroteo V, Bustamante B, Bauer J, Lock D: Antimicrobial and free radical scavenging activity of Gentianella nitida. Fitoterapia 2004, 75(7):754–757.
79. Lemus I, Garcia R, Delvillar E, Limpeanchob N: Potential mechanisms of hypcholesterolaemic effect of Thai spices/dietary extracts. Nat Prod Res 2011, 25(4):341–352.
80. El-Sayad HI, El-Sherbiny MA, Sobh MA, Abu-El-Naga AM, Ibrahim MA, Mousa SA: Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. Int J Bio Sci 2011, 7(6):715–728.
81. Singab AN, El-Beshbishy HA, Yonekawa M, Nomura T, Fukai T: Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J Ethnopharm 2005, 100(3):333–338.
82. Hansawasdi C, Kawabata J: Apolar fraction of Morus alba leaf extract on type II diabetic rats. Food Funct 2012, 3(11):1161–1169.
83. Lams CA: Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2006, 2:45.