Equine fetal gender determination in mid- and advanced gestation by transabdominal approach - comparative study using 2D B-Mode ultrasound, Doppler sonography, 3D B-Mode and following tomographic ultrasound imaging

Bollwein, Heiner; Pricking, Sebastian; Spilker, Kim; Martinsson, Gunila; Rau, Janina; Toenissen, Anna; Sieme, Hartmut

Abstract: Gender determination of the equine fetus is of big interest for the owner of a mare, particularly when planning the breeding purposes or due to economic reasons. This study aims to evaluate the feasibility of transabdominal 3D tomographic ultrasound imaging (TUI) as an additional diagnostic tool for gender determination. Special reference should be given to the hands-on experience of the examiner in the non-invasive transabdominal approach. Pregnancy checks were performed on 669 mares on various Thoroughbred stud farms in the mid-west of Germany in 2015 and 2016. Fetal sex was determined by 2D B-Mode ultrasound, 2D Doppler sonography and 3D imaging. Fetal gender was determined in a serial examination; time for each mare was limited to a maximum of 3 minutes. Predicted gender in 2015 and 2016 was compared to the gender at birth to determine accuracy of the methods. Transabdominal sonography was performed on 386 pregnant mares in 2015 and 283 mares in 2016. The gender of the fetus could be determined in 297 (77%, year 2015) and 184 cases (65%, year 2016) respectively, within the three-minute examination time frame. 3D imaging was realized in 118 (40%, year 2015) and 94 cases (51% year 2016) respectively. Combined transabdominal examination with B-Mode, Doppler and 3D TUI analysis led to high accuracies of correct gender diagnosis (94% (2015) and 96% (2016)). 3D TUI imaging allowed a gender diagnosis in 18 cases where B-Mode and Doppler sonography showed doubtful results (2015). 3D TUI of the fetal gonads was shown to be useful to increase the accuracy of gender determination in mares during mid- and advanced-gestation

DOI: https://doi.org/10.21836/PEM0Pricking

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-158936
Journal Article
Published Version

Originally published at:
Bollwein, Heiner; Pricking, Sebastian; Spilker, Kim; Martinsson, Gunila; Rau, Janina; Toenissen, Anna; Sieme, Hartmut (2019). Equine fetal gender determination in mid- and advanced gestation by transab-
dominal approach - comparative study using 2D B-Mode ultrasound, Doppler sonography, 3D B-Mode and following tomographic ultrasound imaging. Pferdeheilkunde, 35(1):11-19.
DOI: https://doi.org/10.21836/PEM0Pricking
Equine fetal gender determination in mid- and advanced-gestation by transabdominal approach – comparative study using 2D B-Mode ultrasound, Doppler sonography, 3D B-Mode and following tomographic ultrasound imaging

Sebastian Pricking1,2, Kim Spilker1,2, Gunilla Martinsson1,2, Janina Rau1, Anna Tönißen1, Heiner Bollwein2 und Hartmut Sieme1

Summary: Gender determination of the equine fetus is of big interest for the owner of a mare, particularly when planning the breeding purposes or due to economic reasons. This study aims to evaluate the feasibility of transabdominal 3D tomographic ultrasound imaging (TUI) as an additional diagnostic tool for gender determination. Special reference should be given to the hands-on experience of the examiner in the non-invasive transabdominal approach. Pregnancy checks were performed on 669 mares on various Thoroughbred stud farms in the mid-west of Germany in 2015 and 2016. Fetal sex was determined by 2D B-Mode ultrasound; 2D Doppler sonography and 3D imaging. Fetal gender was determined in a serial examination; time for each mare was limited to a maximum of 3 minutes. Predicted gender in 2015 and 2016 was compared to the gender at birth to determine accuracy of the methods. Transabdominal sonography was performed on 386 pregnant mares in 2015 and 283 mares in 2016. The gender of the fetus could be determined in 297 (~77%, year 2015) and 184 cases (~65%, year 2016) respectively, within the three-minute examination time frame. 3D imaging was realized in 118 (~40%, year 2015) and 94 cases (~51% year 2016) respectively. Combined transabdominal examination with B-Mode, Doppler and 3D TUI analysis led to high accuracies of correct gender diagnosis (~94% (2015) and ~96% (2016)). 3D TUI imaging allowed a gender diagnosis in 18 cases where B-Mode and Doppler sonography showed doubtful results (2015). 3D TUI of the fetal gonads was shown to be useful to increase the accuracy of gender determination in mares during mid- and advanced-gestation.

Keywords: mare, fetal gender determination, transabdominal sonography, fetal gonads, 3D ultrasound

Introduction

Gender diagnosis in the equine fetus has become more relevant in recent years mainly due to economic reasons (sale of a pregnant mare with a fetus of preferred sex; preferred sex in certain equestrian sport disciplines, future breeding purpose of a broodmare) (Avrich & Schneider 2014; Bucca 2011).

Fetal sexing in veterinary practice is mainly performed by ultrasound of the fetus, either transrectally at approximately 2 months or transabdominally as early as Day 90–100 of gestation with an optimal diagnostic window between Day 120 and 210. (Curran & Ginther 1989; Renaudin et al. 1997; Bucca 2005; Tönissen et al. 2015). Transrectal approach aims to identify the genital tubercle in early gestation, which is the forerunner of penis and clitoris. Previously published studies indicate that the genital tubercle can be best visualized between Day 59 and 68 of gestation. Major disadvantages of transrectal gender determination are the necessity of an experienced examiner and a restricted time frame for successful gender determination (Renaudin et al. 1997). Katooyori et al. (2010; 2012) showed that 3D ultrasound allows identification of the genital tubercle between Day 63 and 76 as well as imaging of the external genitalia organs between Day 90 and 150 of gestation. The authors hypothesized that in the near future, 3D transrectal ultrasound would be more objective than conventional 2D ultrasound for diagnosing fetal gender.

Sex determination in mid and advanced gestation by identifying fetal primary sex organs is the preferable technique for gender diagnosis because of a larger diagnostic window (Bucca 2005). The fetus is staged in posterior presentation and a combined transrectal and transabdominal examination may be preferable to increase accuracy of gender determination between Day 90 and 150 (Bucca et al. 2005). Reaching the fetal hindquarters transrectally is almost impossible after 150 days of gestation and a transabdominal approach of gender determination is mandatory. Though transcutaneous transabdominal imaging is possible as early as Day 90–100 with an optimal diagnostic window of Day 120–210. Transabdominal ultrasound can be performed up to the end of pregnancy (Bucca 2005; Schönborn et al. 2015). The ultrasound beam is orientated towards the caudal fetal abdomen. Gonads can be visualized within the fetal caudal abdomen.
close to the kidney and the bladder. The structure of the gonads is evaluated, male gonads appear uniformly echodense, while differentiation of cortex and medulla (echodense core, hyperechogenic cycle) is possible in the female gonads (Bucca 2011). In male gonads homogenous echogenicity and a typical hyperechogenic line (representing mediastinum testis) along the longitudinal axis are characteristic (Renaudin et al. 1997). Typical B-Mode features can be even better visualized by using color Doppler ultrasonography (Tönissen et al. 2016). Doppler sonography shows an intense blood flow signal along the central line in the male fetus (representing blood flow in mediastinum testis), while a strong circular signal in the outer layer is typical for females (Resende et al. 2014). In some male gonads a blood flow signal on the lateral contour represents the pampiniform plexus. Equine fetal genitalia do not change in form from the fifth month of gestation, though they change in size (Bucca 2011). Gender determination in advanced gestation can also be performed by identification of external genitalia (Holder 2011; Bucca 2011).

Various applications for 3D ultrasound exist in human medicine. It has been used for biopsy and staging of rectal cancer, breast examination and diagnosis of fetal and gynecological anomalies (Hünerbein 2003; Correa et al. 2006; Gemmeke & Ruiter 2007). 3D ultrasound has been recently established in veterinary medicine for pregnancy monitoring in dogs and cats, evaluation of gastric affections in dogs, bladder disease diagnosis and kidney ultrasound (Hildebrandt et al. 2009; Pal et al. 2015; Dinesh et al. 2015; Dehmewal et al. 2016). Tomographic ultrasound imaging (TUI) is the sonographic equivalent of computed tomography scanning. Static or dynamic 3D volume datasets are scanned with a 3D ultrasound device and an infinite number of 2D planes of a volume are acquired. TUI allows division of a 3D volume into an individual number of slices with particular slice sickness. The process of division is similar to 3D computed tomography scanning (CT) and magnetic resonance imaging (MRI) and allows a simultaneous visualization of parallel planes in a single screen. TUI studies in human medicine were performed among others for evaluation of the normal fetal heart, as well as for evaluation of fetal cardiac defects (Virials et al. 2003; Jeanty et al. 2007; Ahmed 2014). Color Doppler can be used in TUI to visualize blood flow in several slices. Screening exams of TUI images can be performed offline on a workstation using external software programs (Nelson & Pretorius 1998).

Fetal gender determination in the equine by experienced veterinarians achieved varying results of accuracy previously published (65%, >90%, 100%), when determining fetal sex by different approaches (Mari et al. 2002; Resende et al. 2014; Tönissen 2016). This study aims to determine accuracy of evaluation of combined sonographic techniques – B-Mode, Doppler-, and 3D TUI mode – to determine fetal sex in mares during mid- to advanced-gestation by transabdominal scanning.

Materials and methods

Animals

Transabdominal pregnancy diagnosis and gender determination was performed in fall 2015 and 2016 on 669 mares on various Thoroughbred stud farms in the mid-west of Germany during the annual late pregnancy check-ups of the German Thoroughbred Owners’ and Breeders’ Association. All mares were Thoroughbreds and the age of the animals varied between 3 and 24 years (2015: 11.2 ± 4.1 years, 2016: 9.9 ± 4.6 years). Pregnancy was progressed between 85 and 231 days (2015: 160 ± 33 days; 2016 165 ± 31 days) of gestation, which was calculated from breeding records.

Equipment, surroundings and preparation of the mare

Examination gloves, at least 70% alcohol-containing disinfectant, a sponge for moisturizing the ventral abdomen and a nose twitch were used as basic equipment. Examinations of the mares were performed in their box, while they were fixed by an assisting person using a halter. If mares were uncooperative and did not tolerate examination, a nose twitch was used for restraintment. The examiner’s right shoulder was positioned close to the left flank and the ultrasound probe was held with the right hand. Examiner’s viewing direction was up to the mare’s head, allowing the veterinarian to be in a comfortable position for examination. The ultrasound device was held by an assisting person, close enough to be accessible to operate, yet far enough to be out of the mare’s range. A dark surrounding was ensured to allow optimal diagnostic conditions. Mares were examined in a routine screening program for the German Thoroughbred Association. Therefore, time for examination and pregnancy checks/gender diagnosis was limited to a maximum of 3 minutes for each mare. Sedation was not necessary in any case.

Examinations were carried out with a portable 3D ultrasound device. A Voluson i® (GE Healthcare®, Wauwatosa, WI) was used in this study. As probes, the RealTime-4D-convex-transducers RAB4–8-RS® or RAB2–8 (GE Healthcare®, Wauwatosa, WI) with 2–8 MHz and a penetration depth of 10–30 cm were used. Alcohol containing disinfectant was applied with a sponge to the ventral abdomen between udder and xiphoid, as well as to the probe. Clipping was not performed because examinations were carried out in late summer or fall, even though clipping may be necessary in winter to allow accurate imaging.

Scanning technique

Scanning started in front of the udder and continued along the ventral abdomen. If fetal parts were identified, orientation of the fetus was established. Profound knowledge of fetal anatomy as well as of fetal anatomy ultrasound presentation were needed.

Criteria for gender determination in advanced gestation

Gender determination in our study was based on fetal gonadal structure, specific structure of blood flow in the gonad and external genitalia. As an additional feature, 3D imaging of the fetal gonad was performed and analyzed with software. Gender diagnoses performed in 2015 and 2016...
were compared to the gender at birth in 2016 and 2017 respectively and accuracy of correct gender determination was calculated.

A fetus was diagnosed as male, if the gonads were located close to the bladder and appeared longitudinally oval in shape and homogenously echodense in B-Mode scanning. Sometimes a hyperechogenic line (representing mediastinum testis) along the longitudinal axis could be displayed. Doppler sonography showed intense blood flow along the central line, representing the blood flow in the mediastinum testis. In some male gonads a blood flow signal on the lateral contour represented the pampiniform plexus (figure 2).

The fetus was diagnosed as female if gonads were located close to the kidneys and if a differentiation between cortex and medulla (echodense core, hyperechogenic cycle) was visible in B-Mode ultrasound. A strong circular Doppler signal was visible in the outer layer representing blood flow in the cortex (figure 4). In some female gonads a strong blood flow signal on the edge of the gonad represented vascularization of the ovarian artery.

B-Mode ultrasound video of a mare at 186 days of gestation. The fetal gonad is marked with red dots. The gonad is of homogenous structure and longitudinal-oval form, representing a male fetus. The gonad is positioned close to the bladder (red arrow).

Doppler ultrasound image of male gonads at 211 days of gestation of a mare. The Doppler signal shows an intense central blood flow representing the testicular vein. Furthermore, blood flow can be detected on the surface of the gonad.

B-Mode image of a fetus at 183 days of gestation of a mare. The hypoechogenic stomach can be seen in the thoracic cavity (red arrow), fetal gonads are of bizoned echogenicity. Cortex of the gonad is marked with red dots.

Doppler ultrasound of a female fetal gonad at 183 days of gestation of a mare. Intense blood flow can be diagnosed in the cortex, whereas no blood flow can be detected in the center of the gonad. Blood flow on the outer surface on the right top represents blood flow in the ovarian artery.

The fetus was diagnosed as female if gonads were located close to the kidneys and if a differentiation between cortex and medulla (echodense core, hyperechogenic cycle) was visible in B-Mode ultrasound. A strong circular Doppler signal was visible in the outer layer representing blood flow in the cortex (figure 4). In some female gonads a strong blood flow signal on the edge of the gonad represented vascularization of the ovarian artery.
volume data was obtained. Therefore, the fetal gonads were determined as regions of interest and pictures were stored to the internal storage. Obtaining good quality pictures for further analysis was sometimes time consuming and patience of the mare was necessary. The mare had to be stand still for a few seconds to guarantee usable pictures for further analysis. Fetal and mare’s movements caused blurred images that were not appropriate for further analysis. Various pictures were stored for each gonad to allow later analysis. Evaluation of the pictures was either made with the on-board software or with the 4D-View® software (GE Medical Systems Kretztechnik, Zipf, Austria) on an external workstation. The 3D image volumes were analyzed using Tomographic Ultrasound Imaging (TUI) (4D View® Version 10.x, GE Healthcare, Austria). The gonads were cut into slices of defined thickness and slices were evaluated due to the anatomical structure.

Results

Transabdominal pregnancy examinations were performed on Thoroughbred mares pregnant from day 85 to 231 (2015: 160 ± 33 days; 2016: 165 ± 31 days).

Transabdominal gender diagnosis was performed on 386 pregnant mares in September 2015. Gender of the fetus could be determined in 297 cases (~77%) in a three-minute examination time frame (second + third month of gestation: 51%, forth month of gestation: 71%, fifth month of gestation: 88%, sixth month of gestation: 80%, seventh month of gestation: 67%). The 3D imaging was possible in 118 cases (~40%). 2D B-Mode videos and Doppler videos were analyzed according to the criteria stated in the chapter ‘Materials and Methods’. The obtained 3D volume images were analyzed with TUI and equine fetal gonads were evaluated for their structure, form and location in the fetal abdominal captivity. Male fetal gonads showed a homogenous echostructure, a longitudinal oval form and sometimes the pampiniform plexus could be visualized in 3D TUI (figure 7 + 8). A hypoechogenic line representing the testicular vein could be seen centrally in some cases, if the ultrasound beam did hit the longitudinal plane (figure 7).

Female gonads were kidney-shaped in transverse section and the longitudinal section showed a longitudinal-oval form (figure 5 + 6). Echotexture of the female gonads was of bizoned echogenicity, representing cortex and medulla of the fetal gonads. Sometimes the ovarian artery could be visualized (figure 5).

Figures 5–8 show TUI of a female and male gonad. The 3D TUI confirmed gender diagnosis made by 2D B-Mode and Doppler function in 100 cases. 3D TUI imaging allowed a gender diagnosis in 18 cases where B-Mode and Doppler sonography showed no clear results.

Fig. 5 TUI (tomographic ultrasound imaging) cross section of a female gonad at 183 days of gestation. The 3D volume is cut into 15 slices of 1.7 mm thickness. Process of division is displayed in the sonographic picture in the figure on top on the left. Exemplarily 5 sections are displayed (–7, –6, –3, –2, 2). The ovarian artery can be seen in slices –7 and –6 as hypoechogenic branches (red arrows). The gonad is kidney-shaped and shows bizoned echogenicity.

Tomographische Ultraschallbildgebung (TUI) einer weiblichen Gonade am 183. Trächtigkeitstag. Das 3D Bild wurde in 15 Schnittebenen von 1,7 mm Schichtdicke geteilt. Exemplarisch sind 5 Schnittebenen dargestellt (−7, −6, −3, −2, 2). Die A. ovarica ist in den Schnittebenen −7 und −6 sichtbar (rote Pfeile). Die Gonade ist nierenförmig und zeigt eine zweizonige Echotextur.
Gender predictions were compared to foaling data obtained in summer 2016 to determine the accuracy of gender determination. The postnatal gender of the foal was unknown in 28 cases due to missing feedback of mare’s owners or abortion prior to full gestation. This resulted in 269 evaluable cases. The gender of the foal was diagnosed correctly in 254 cases (= ~94 %) in 2015 (second + third month of gestation: 93 %, forth month of gestation: 93 %; fifth month of gestation 93 %; sixth month of gestation 97 %; seventh month of gestation 100 %).

The transabdominal approach was performed on 283 mares in autumn 2016. Gender determination was possible in 184 cases (~65 %), no gender could be determined in 99 cases. Gender determination could be performed on highest rates in the fifth month of gestation (84 %) followed by sixth (75 %) and seventh month (64 %). Lowest rates were found in the second and third month of gestation (11 %) as well as in the fourth month of gestation (50 %). 3D imaging was possible in 94 cases (~51 %).

Gender predictions of the examination year 2016 were also compared to foaling data obtained in summer 2017. The postnatal gender of the foal was unknown in 28 cases due to missing feedback of mare’s owners or abortion prior to full gestation, which though resulted in 156 evaluable cases. The gender of the foal was diagnosed correctly in 149 cases (= ~96 %) in 2016 (second + third month of gestation: 66 %, forth month of gestation: 96 %; fifth month of gestation 98 %; sixth month of gestation 95 %; seventh month of gestation 100 %).
Equine fetal gender determination in mid- and advanced-gestation by transabdominal approach

The results obtained in 2015 and 2016 are shown in Table 1.

Capturing 3D image volumes of the fetal gonads takes a few seconds. Thus repeated recordings of 3D volumes may be required to obtain images that are suitable for further analysis. Movements of either the mare or the fetus may complicate image obtainment. The duration needed for examination decreased with experience of the examiner in handling the 3D ultrasound device, as well as with increasing experience in identifying fetal structures. Reviewing 3D data and performing tomographic ultrasound analysis can take up to 5 minutes for each obtained 3D picture. Reviewing includes identifying the best planes for analysis of the fetal gonad as well as modifying image parameters to obtain high quality images.

Figures 1 and 3 show image sections derived from 2D B-Mode ultrasound videos. Figures 2 and 4 show Doppler ultrasound performed on the equine fetal gonad.

Discussion

Gender determination of the equine fetus has become of bigger interest for the owners of a mare, particularly in regard to breeding purposes. Transabdominal pregnancy diagnosis and gender determination are less invasive than the transrectal approach and can be performed in a substantially bigger time frame (Bucca et al. 2011, Schönborn et al. 2015, Tönissen et al. 2015). The well-being of the fetus can be monitored almost throughout the complete advanced gestation by transabdominal ultrasound. Factors indicating fetal well-being include heart beat rate, movement, aortic diameter and fetal size (Bucca et al. 2005). Fetal fluids can be visualized and evaluated for their consistency and echogenicity and the combined thickness of uterus and placenta (CTUP) can be measured (Reef et al. 1995). Our study indicates that transabdominal pregnancy diagnosis can be performed as early as around day 80 of gestation and thence can be performed to term. Ultrasound devices and probes that guarantee large penetration depth may be helpful in mid gestation due to fetal positioning in the pelvic cavity. Transabdominal gender determination has recently been the focus of studies for practicability and repeatability (Tönissen et al. 2016). Videotapes of transabdominal pregnancy check-ups were shown to various vets.

Tab. 1: Results obtained in 2015 and 2016

Year of examination	2015	2016
Total number of transabdominal pregnancy ultrasound	386	283
Gender diagnosis possible	77%	65%
3D imaging possible	40%	51%
Gender of the fetus diagnosed correctly	94%	96%
and participants were asked to determine fetal gender based on B-Mode and Doppler ultrasound. Tönissen et al. (2016) showed that the level of veterinarians’ experience in equine reproduction did not correlate with the number of correct gender determinations. They showed that Doppler sonography might facilitate gender determination additionally to B-Mode ultrasound. Nevertheless, this study concluded that the high level of error shown was mainly based on inexperienced raters that were not familiar with the technique of transabdominal ultrasound (Tönissen et al. 2016).

Fetal gender determination by experienced veterinarians achieved varying results of accuracy previously published (50%, 65%, >90%, 100%), when determining fetal sex by different approaches (Mari et al. 2002; Resende et al. 2014; Tönissen et al. 2016). Our study shows that a combination of B-Mode ultrasound, Doppler sonography and 3D TUI leads to high accuracies (~92–96%) of a correct gender diagnosis. The fetal gonads can be scanned in 3D volumes if the fetus is staged in a good position and the mare is stationary. In our studies, 3D volumes and TUI could be performed in ~40% of all conducted gender determinations in 2015 and in ~51% of the examinations in 2016. Determination of the equine gender can be best performed between the 4th–5th month of gestation (Tönissen et al. 2015, 2016); nevertheless, repeated examination of younger and older fetuses may also allow an accurate gender determination. Our study emphasizes with the results shown by Tönissen et al. (2016). Highest rates of gender determinations were also shown in the fourth to sixth month of gestation in our study (50–88%). Lower rates of gender determination rates were shown in the second–third as well as in the seventh month of gestation (11–67%). Reasons for lower rate in second–third month include the small size and the intra pelvic position of the fetus. Scanning the fetus, positioned high in the abdominal cavity close to the pelvis, is often challenging. Ultrasound scanning of early advanced pregnant mares includes positioning the probe in regions of the knee fold or close to the udder. Mares tend to show defensive movement when being scanned in those regions, complicating suitable image obtainment for further analysis.

Low rates of gender determinations in advanced pregnancy (seventh month) include fetal positioning or acoustical shadows that may impair presentation. Fetal reproductive organs do not change in shape from 150 days to term, though the size changes and visibility of the structures varies. The determination of external genitalia gets more difficult in advanced gestation because of fetal growth and acoustic shadows caused by bones or the umbilical cord. With increasing size of the gonads, their visualization gets easier and characteristic vascularization can be shown in Doppler sonography.

For the 2015 examination period, 3D TUI confirmed gender diagnosis made by 2D B-Mode ultrasound and Doppler sonography in 100 cases. 3D TUI imaging allowed a gender diagnosis in 18 cases in which B-Mode and Doppler measurement showed no clear results. TUI of the gonads helps to analyze internal structures of the gonad to identify anatomical features. Female gonads were easier to identify due to their bizoned echogenicity. One always has to consider that data was obtained in a large screening and time for examination was limited to three minutes. To avoid motion artifacts in generated 3D volumes, because of fetal or maternal movement, repeated recordings of 3D images are required. This is a clear disadvantage in 3D imaging. It includes capturing a perfectly focused fetal structure in a single view to complete the examination in a short interval (Kotyori et al. 2010; Kotyori et al. 2012). Transrectal 3D ultrasound imaging was published as an additional feature for evaluation of fetal structures and well-being. Kotyori and coworkers showed that 3D imaging in the first half of gestation may help to find an accurate gender determination in the equine fetus (Kotyori et al. 2010; Kotyori et al. 2012). Our study indicates that transabdominal 3D imaging of the horse fetus as additional diagnostic feature to 2D B-Mode and Doppler ultrasound can lead to high values of a correct gender determination. The duration needed for examination is always dependent on the experience of the examiner and the resistance each mare might show. Transabdominal fetal gender determination can be performed within minutes if the mare is cooperative and the fetus is appropriately positioned. In a study performed by Merkt et al. (1999) time for examination varied between 4.3 ± 1.2 and 5.5 ± 3.0 minutes for the transrectal approach of gender determination between day 50 and 90 of gestation. (Curran & Ginther 1991) showed that time needed for accurate gender determination varied between 16 seconds and 3 minutes 55 seconds for transrectal ultrasound identification of the genital tubercle between 50 and 99 days of gestation. Livini (2010) showed that average time for gender determination lowers with increasing experience of the examiner. The author showed that with increasing experience the time for examination lowered from around one minute to 30–45 seconds for the transrectal approach (Livini 2010). Examinations in our study were limited to a maximum of 3 minutes. Within these 3 minutes, we performed a 2D B-Mode ultrasound to identify fetal structures, Doppler velocity measurements to show blood flow within the gonad and obtained 3D image volumes of the fetal reproductive organs. We did not measure time needed for each mare, but time for examination lowered with increasing experience over the two years. As shown in our study, accurate gender determination can be performed within a short time frame even though additional analysis on external workstations can take additional time.

The large time frame for transabdominal gender determination allows repeated examinations if fetal gonads cannot be displayed on first hand. Storing videos into the internal storage helps to review videos and may help to increase accuracies of gender determination. If gender determination cannot be accomplished because of high activity of the fetus or fetal position, examinations can be postponed due to a large examination window.

Transabdominal examination shows high acceptance in mares with lower stress levels (Schönborn et al. 2015). It bears no risk of rectal perforation and sedation is not necessary in most of the cases because mares tend to accept the examination after a couple of minutes. Movement of mare and fetus can be easily compensated and positioning the veterinarian at the left flank guarantees a safe working position. Transabdominal approach allows gender diagnosis even in very small horses where transrectal approach of gender determination is limited because of the size of the animal.
Conclusion

In conclusion, to our knowledge, this is the first transabdominal 3D TUI analysis for equine fetal gender determination. The 3D TUI for transabdominal approach was shown as a useful additional criterion for detailed structural analysis of the fetal gonad during advanced gestation. TUI allows the examiner to evaluate the gonad’s inner structure similarly to computed tomography or magnetic resonance imaging. High rates of correct gender determinations can be achieved with an experienced examiner and a combined analysis of B-Mode videos, Doppler sonography and 3D images. 3D TUI may help to allow gender determination even in cases, where B-Mode and Doppler imaging show no clear results. This may furthermore increase correctness of diagnosis. Highest rates of possible gender determinations were shown in the fourth to sixth month of gestation indicating the best time frame for transabdominal ultrasound imaging. We assume that obtaining 3D volumes may be challenging in mares that do not tolerate examination and if fetal activity and movements impair image obtaining. Nevertheless, examinations can be postponed to a later date to perform 3D volume scanning again.

References

Ahmed B.I. (2014) The new 3D/4D based spatio-temporal imaging correlation (STIC) in fetal echocardiography: a promising tool for the future. J. Matern. Fetal Neonatal Med. 27, 1163–1168
Aurich C., Schneider J. (2014) Sex determination in horses – Current status and future perspectives. Anim. Reprod. Sci. 146, 34–41
Bucca S., Fogarty U., Collins A., Small V. (2005) Assessment of feto-placental well-being in the mare from mid-gestation to term: Transrectal and transabdominal ultrasonographic features. Theriogenology 64, 542–557
Bucca S. (2005) Equine fetal gender determination from mid- to advanced-gestation by ultrasound. Theriogenology 64, 568–571
Bucca S. (2011) Fetal gender determination from mid to advanced gestation. In: McKinnon A. O., Squires E. L., Vaala W. E., Varner D. D. (eds.), Equine Reproduction 2nd Edition, Ames: Wiley-Blackwell; 2011:2094–2098
Correa F.F., Lara C., Bellver J., Remohi J., Pellicer A., Serra V. (2006) Examination of the fetal brain by transabdominal three-dimensional ultrasound: potential for routine neurosonographic studies. Ultrasound Obstet. Gynecol. 27, 503–508
Curran S., Ginther O.J. (1991) Ultrasonic determination of fetal gender in horses and cattle under farm conditions. Theriogenology 36, 809–814
Curran S, Ginther O.J. (1989) Ultrasonic diagnosis of equine fetal sex by location of the genital tubercle. J. Equine Vet. Sci. 9, 77–83
Dehmival D., Behl S.M., Singh P., Toyal R., Pal M., Chandolina R.K. (2016) Diagnosis of pathological conditions of kidney by two-dimensional and three-dimensional ultrasonographic imaging in dogs. Vet. World, 9, 693–698
Dehmival D., Behl S.M., Singh P., Toyal R., Pal M., Chandolina R.K. (2015) Diagnosis of urinary bladder diseases in dogs by using two-dimensional and three-dimensional ultrasonography. Vet. World 8, 819–822
Gemmeke H., Rüter N.V. (2007) 3D ultrasound computer tomography for medical imaging. Nuclear Instruments and Methods in Physics Research A 580, 1057–1065
Hildebrandt T.B., Drews B., Kuur J., Hermes R., Yang S., Göritz F. (2009) Pregnancy Monitoring in Dogs and Cats Using 3D and 4D Ultrasonography. Reprod. Dom. Anim. 44, 125–128
Holder R.D. (2011) Fetal sex determination in the mare between 55 and 150 days of gestation. In: McKinnon AO, Squires EL, Vaala WE, Varner DD (eds), Equine Reproduction 2nd Edition, Ames: Wiley-Blackwell, 2080–2093
Hünerbein M. (2003) Endorectal ultrasound in rectal cancer. Colorectal Disease 5, 402–405
Jeanty P., Chauvi R., Tihonenko I., Grochal F. (2007) A review of findings in fetal cardiac section drawings. part 1: The 4-chamber view. J. Ultrasound Med. 26, 1601–1610
Kotoyori Y., Yokoo N., Ito K., Murase H., Sato F., Korosue K., Nambo Y. (2012) Three-dimensional ultrasound imaging of the equine fetus. Theriogenology 77, 1480–1486
Kotoyori Y., Yokoo N., Ito K., Kimura Y., Korosue K., Ashihara N., Nambo Y. (2010) Transrectal 3-dimensional ultrasound examination of the equine fetus during the first half of gestation. Anim. Reprod. Sci. 121, 327–328
Livini, M. (2010) Determination of fetal gender by transrectal ultrasound-examination: Field’s experience. Proceedings of the Annual Convention of the AAEP; 56, 323–327
Mori G., Castagnetti C., Belluzzi S. (2002) Equine fetal sex determination using a single ultrasonic examination under farm conditions. Theriogenology 58, 1237–1243
Merkt H., de Andrade Moura J.C., Jochle W. (1999) Gender determination in equine fetuses between days 50 and 90 of pregnancy. J. Equine Vet. Sci. 19, 90–94
Nelson T.R., Pretorius D.H. (1998) Three-dimensional ultrasound imaging. Ultrasound Med. Biol. 24, 1243–1270
Pal M., Singh P., Toyal R., Dehmival D., Behl S.M., Kumar S., Chandolia R.K. (2015) A comparative study of two-dimensional and three-dimensional ultrasonography in evaluation of gastric affections in dogs. Vet. World, 8, 707–712
Reef B., Vaala E., Worth T., Hamnett B. (1995) Ultrasonographic evaluation of the fetus and intrauterine environment in healthy mares during late gestation. Vet. Radiol. Ultrasound 36, 533–541
Renaudin C. D., Gillis C. L., Tarantall A. F. (1997) Transabdominal combined with transrectal ultrasonographic determination of equine fetal gender during midgestation. Proceedings of the Annual Convention of the AAEP, 43, 251–255
Resende H. L., Carmo M. T., Ramires Neto C., Alvarenga M. A. (2014) Determination of equine fetal sex by Doppler ultrasonography of the gonads. Equine Vet J 46, 756–758
Schnöbom H., Kassens A., Hopster-Iversen C., Klewitz J., Piechotta M., Martinsson G., Klißler A., Burger D., Sieme H. (2015) Influence of transrectal and transabdominal ultrasound examination on salivary cortisol, heart rate, and heart rate variability in mares. Theriogenology 83, 749–756
Tönissen A., Martinsson G., Otzen H., Schürmann K., Schütze S., Ertmer F., Kassens A., Sielhorst J., Brehm R., Sieme H. (2010) To perform fetal gender determination in the mare by ultrasound during early and advanced gestation. Pferdeheilkunde 31, 153–158, DOI: 10.21836/PEM20150207
Tönissen A., Martinsson G., Pricking S., Otzen H., Ertmer F., Rau J., Sielhorst J., Rohn K., Sieme H. (2016) Transabdominal ultrasonographic determination of fetal gender in the horse during mid-gestation – a comparative study using randomized video images to investigate variation in diagnostic performance among raters, and the effect of month of gestation. Pferdeheilkunde 32, 29–35, DOI: 10.21836/PEM20160105
Virtals F., Pobble P., Giuliana A. (2003) Spatio-temporal image correlation (STIC): a new tool for the prenatal screening of congenital heart defects. Ultrasound Obstet. Gynecol. 22, 388–394
Transabdominale Geschlechtsbestimmung beim Pferdfetus in fortgeschrittener Trächtigkeit durch transabdominalem Ultraschall – vergleichende Untersuchung zweidimensionaler B-Mode- und Doppler-Messungen sowie der dreidimensionalen tomografischen Ultraschallbildgebung (TUI)

Die fetale Geschlechtsbestimmung beim Pferd kann auf verschiedene Weise durchgeführt werden. Das zu wählende Untersuchungsverfahren ist dabei vom Trächtigkeitstag der Stute abhängig. Die transrektale Geschlechtsbestimmung beim Fetus ist auf ein kurzes Untersuchungsfenster limitiert. Beste Ergebnisse werden zwischen 59. und 68. Trächtigkeitstag durch Darstellung des Genitaltuberkels erzielt. Zwischen dem 90. und 150. Trächtigkeitstag befindet sich der Fetus in Hinterendlage, sodass eine Kombination aus transrektaler und transabdominaler Untersuchung von Vorteil sein kann. Nach dem 150. Trächtigkeitstag sind die kaudalen Anteile des Fetus transrektal fast nicht mehr zu erreichen, sodass einzig die transabdominale Untersuchung in fortgeschrittener Trächtigkeit in Frage kommt. Die Diagnose stützt sich dabei auf die Darstellung der äußeren Geschlechtsorgane (Präputium, Euter), sowie der Struktur und Lage fetalen Gonaden. Die Gonaden werden sowohl anhand ihrer Echotextur im B-Mode Bild, als auch am Durchblutungsmuster mit Hilfe der Dopplerfunktion des Ultraschalls beurteilt. Die weibliche fetale Gonade stellt sich im B-Mode zweizonig (Mark- und Rindenschicht) dar, mit einem oft kreisrunden Durchblutungssignal in der Rindenschicht. Die männliche Gonade ist von homogener Struktur, längsovaler Form und zentral kann im Doppler-Mode ein strichförmiges Durchblutungssignal im Bereich des Zentralgefässes dargestellt werden.

Ziel dieser Studie ist die vergleichende Betrachtung der zweidimensionalen Beurteilungskriterien (B-Mode und Doppler) und die Etablierung der dreidimensionalen tomografischen Ultraschallbildgebung als zusätzliches Kriterium bei der transabdominalen Geschlechtsbestimmung in der fortgeschrittenen Trächtigkeit. Ein dreidimensionaler Ultraschall der fetalen Gonade soll die Genauigkeit der Geschlechtsbestimmung erhöhen. Bei der tomographischen Ultraschallbildgebung (TUI = tomographic ultrasound imaging) wird der 3D-Datensatz in eine frei wählbare Anzahl von Schnittebenen geteilt. TUI ermöglicht damit die Struktur der Gonade in einer Reihe von 2D-Schnittbildern, ähnlich einer computertomographischen Aufnahme, zu beurteilen.

Während der alljährlichen Herbstuntersuchung der Vollblüter in Deutschland wurden auf verschiedenen Gestüten in zwei Untersuchungsjahren insgesamt 669 Stuten (2015: 386 Stuten; 2016: 283 Stuten) transabdominal auf Trächtigkeit untersucht. Es wurden dabei sowohl 2D-B-Mode- und 2D-Dopplervideos, als auch 3D-Aufnahmen der Gonaden angefertigt. Da die Ultraschallaufnahmen im Rahmen von Reihenuntersuchungen durchgeführt wurden, war die maximale Untersuchungszeit auf 3 Minuten begrenzt. Die dreidimensionalen Volumendaten wurden im Anschluss in tomographische Schnittbilder umgewandelt. Eine Beurteilung der aufgezeichneten Ultraschalldaten erfolgte gemäß den oben genannten Kriterien. Die gestellten Geschlechtsdiagnosen wurden mit Abfolhdaten verglichen, um die Genauigkeit der Untersuchung darzustellen. Das Geschlecht des Fetus konnte in der verfügbaren Untersuchungszeit in ~77 % (2015) bzw. ~65 % (2016) der Fälle bestimmt werden. Die Anzahl der durchführbaren Geschlechtsdiagnosen war im 4–6. Trächtigkeitsmonat am größten. 3D-Aufnahmen waren in ~40 % (2015) bzw. ~51 % (2016) der Fälle möglich. Die kombinierte Untersuchung aus 2D-B-Mode, 2D-Doppler und tomographischer Ultraschallbildgebung (TUI) erlaubte eine große Anzahl korrekter Geschlechtsdiagnosen (~94 % (2015); ~96 % (2016)). Die tomographische Ultraschallbildgebung ermöglichte zudem eine Geschlechtsbestimmung in 18 Fällen, in denen durch 2D-B-Mode und 2D-Doppler nur fraghafte Diagnosen gestellt werden konnten (2015). Die tomographische Ultraschallbildgebung (TUI) der fetalen Gonade erwies sich als sinnvolle Ergänzung, um die Genauigkeit einer korrekten Geschlechtsbestimmung in der fortgeschrittenen Trächtigkeit zu erhöhen. Das Erzeugen von 3D Volumendaten kann bei unsicheren Stuten oder starken fetalen Bewegungen herausfordernd sein. Sollte die Geschlechtsbeurteilung bei der ersten Untersuchung auf Grund von Aktivität oder Lage des Fetus nicht möglich sein, kann die Untersuchung zu einem späteren Zeitpunkt erneut durchgeführt werden. Das breite Untersuchungsfenster der transabdominalen Untersuchung stellt damit einen entscheidenden Vorteil dar. Die transabdominale Untersuchung erlaubt zudem eine Geschlechtsbestimmung auch bei sehr kleinen Pferden, bei denen die transrektale Untersuchung auf Grund der Größe limitiert ist.

Schlüsselwörter: Stute, fetale Geschlechtsbestimmung, transabdominale Sonographie, Fetus, Gonaden, 3D Ultraschall