COL3A1, COL6A3, and SERPINH1 Are Related to Glucocorticoid-Induced Osteoporosis Occurrence According to Integrated Bioinformatics Analysis

Authors:
- Liuxun Li (Department of Spine Surgery, Zhujiang Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, P.R. China)
- Meiling Yang (Department of Oncology, Guangzhou University of Chinese Medicine Shenzhen Hospital, Shenzhen, Guangdong, P.R. China)
- Anmin Jin (Corresponding Author, e-mail: jinanmin2008@163.com)

Source of support:
This work was partially funded by grants of the National Natural Science Foundation of China (No. 81625015)

Background:
Glucocorticoid-induced osteoporosis (GIOP) represents the most frequently seen type of secondary osteoporosis, a systemic skeleton disorder. Numerous factors are associated with GIOP occurrence, but there are no specific diagnostic and therapeutic biomarkers for GIOP so far.

Material/Methods:
In this work, gene modules related to GIOP were screened through weighted gene coexpression network analysis. Moreover, protein-protein interaction (PPI) networks and gene set enrichment analysis (GSEA) were carried out for hub genes. In addition, microarray GSE30159 dataset was used as a training set to analyze gene expression within bone biopsy samples from patients with endogenous Cushing’s syndrome with GIOP and from normal controls. GSE129228 was used as the test set for investigating the hub gene involvement within GIOP.

Results:
According to our results, the turquoise module showed clinical significance, and 10 genes (COL3A1, POSTN, COL6A3, COL14A1, SERPINH1, ASPN, OGN, THY1, NID2, and TNMD) were discovered to be the “real” hub genes within coexpression as well as PPI networks. GSEA showed that the interaction of extracellular matrix receptors together with the focal adhesion pathway had significant enrichment within samples with high COL3A1 and COL6A3 expression. After the results from both test and training sets were overlapped, SERPINH1 was also significantly altered between GIOP and normal control samples.

Conclusions:
COL3A1, COL6A3, and SERPINH1 were identified to be the candidate biomarkers for GIOP.

MeSH Keywords:
- Biological Markers
- Gene Expression Profiling
- Glucocorticoids
- Osteoporosis

Full-text PDF:
https://www.medscimonit.com/abstract/index/idArt/925474
Background

Glucocorticoids are potent anti-inflammatory agents frequently used to treat syndromes related to inflammation. Nonetheless, these widely used agents also lead to serious adverse side effects, including glucocorticoid-induced osteoporosis (GIOP), which shows an increasing incidence over the past few decades, along with a younger trend [1,2]. Compared with treatment for degenerative osteoporosis, GIOP treatment is mainly centered on the molecular biological mechanism and drug efficacy, which are closely associated with the promotion of bone remodeling and skeletal metabolism [3,4]. However, bisphosphonates, calcium supplementation, and additional typical anti-osteoporosis treatments do not yield satisfactory results among patients dependent on steroid agents. Further, there have been no large-scale clinical studies of sufficient duration to prove which drug treatment plan is most effective for GIOP. It is difficult to develop uniform guidelines to manage GIOP because diagnosis and treatment methods differ across diverse countries. At present, bisphosphonate treatment has been utilized as the standard for GIOP care; however, these agents have an undetermined therapeutic effect among patients receiving glucocorticoid treatment for longer than 2 years [5]. Consequently, understanding the precise molecular mechanism of GIOP pathogenesis is necessary for identifying more potent treatments to control osteoporosis occurrence and development. Although many factors, such as osteoclastogenesis [6], apoptosis [7], osteoblast autophagy [8], Wnt/β-catenin signaling pathway [9], and altered intestinal microbiota composition [10], have been found to be associated with GIOP, specific diagnostic and therapeutic biomarkers for GIOP have not yet been identified. As a result, further investigations are warranted to develop more diagnostic and prognostic biomarkers for GIOP.

Bioinformatics analysis is extensively used in screening and analyzing genes linked with the progression of diverse disorders, helping to overcome the limits of experimentation. Numerous gene profiles have been acquired based on public databases, such as Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), expanding our knowledge of diseases. Due to different microarray platforms of datasets, sample sizes, and heterogeneities of species and tissues, limitations and inconsistent results may still exist, but integrated bioinformatics approaches may overcome these limitations. Weighted gene coexpression network analysis (WGCNA) has been developed as a novel approach to these criteria were excluded from our analysis. The data of study was “expression profiling by array,” and the entry geo/ on June 30, 2020. The terms “corticosteroids” and “osteoporosis” were searched alone or in combination. The type of study was “expression profiling by array,” and the entry type was “datasets.” We included studies conforming to the following criteria in our analysis: (a) studies in which the datasets for gene expression covered the microarray chip technique, and (b) studies that compared gene expression profiles between non-GIOP and GIOP status. Articles not conforming to these criteria were excluded from our analysis. The database search was independently carried out by 2 researchers. Establishment of coexpression network and analysis of module functions

First, expression profiles of differentially expressed genes (DEGs) were examined for screening the appropriate genes and samples. Second, a coexpression network of DEGs was established using ‘WGCNA’ package in R language [23,24]. Afterwards, each pair-wise gene was functioned using Pearson’s correlation coefficient. In recent years, some collagen gene mutations are detected from probands with genetic disorders. Some of them show phenotypes that are difficult to distinguish from common diseases. For example, collagen type III alpha 1 chain (COL3A1) mutations are related to numerous human disorders, including osteoporosis [17], osteoarthritis [18], and aortic aneurysms [19]. The collagen alpha-3 (VI) chain, encoded by gene COL6A3, is a microfibrillar part of the extracellular matrix (ECM) [20]. Serpin family H member 1 (SERPINH1) has been reported to facilitate type I procollagen molecular stability, which exerts a vital role in maintaining normal bone mass level and quality and avoiding contracture and fracture [21]. To our knowledge, a functional link between the above 3 genes and GIOP has not been reported so far. Therefore, in this study, we used an integrated analysis of bioinformatics, which included the protein-protein interaction (PPI) network, WGCNA, and gene set enrichment analysis (GSEA), to analyze core genes and pathways involved in the pathogenesis of GIOP in endogenous Cushing syndrome (CS). The present results revealed that COL3A1, COL6A3, and SERPINH1 could serve as potential critical biomarkers associated with GIOP. As far as we know, this work is the first to reveal that COL1A3, COL6A3, and SERPINH1 are upregulated in endogenous CS patients with GIOP. Our current findings provide insights into the pathogenesis of GIOP and identify novel targets for the treatment of GIOP. The study design is shown in the flow chart in Figure 1.

Material and Methods

Search strategy and eligibility criteria

The mRNA expression data of patients with GIOP were downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/) on June 30, 2020. The terms “corticosteroids” and “osteoporosis” were searched alone or in combination. The type of study was “expression profiling by array,” and the entry type was “datasets.” We included studies conforming to the following criteria in our analysis: (a) studies in which the datasets for gene expression covered the microarray chip technique, and (b) studies that compared gene expression profiles between non-GIOP and GIOP status. Articles not conforming to these criteria were excluded from our analysis. The database search was independently carried out by 2 researchers.
matrix. Third, the power function \(a_{mn} = |c_{mn}|^b \) (Pearson’s correlation between gene m and gene n; \(a_{mn} \) = adjacency between gene m and gene n) was applied to create a weighted adjacency matrix, while \(\beta \) was the soft threshold factor adopted to stress the strong associations across genes and to penalize the weak relationships. Fourth, topological overlap matrix (TOM) adjacency was converted to measure the gene network connectivity, which was deemed to be the total value of the adjacency to the remaining genes in generating the network. Mean linkage hierarchical clustering was created by the dissimilarity measure based on TOM, and the minimal size (gene group) was set at 50 for the gene dendrogram. Thereafter, genes that had similar expression patterns were clustered within the same gene module. Lastly, the module eigengene dissimilarity was determined. Then, the gene modules were used to perform functional enrichment analyses to identify the related modules affecting GIOP in endogenous CS patients.

Identification of GIOP status hub module

For identifying modules showing significant associations with illness state traits (GIOP vs. non-GIOP), module eigengenes (which represent the first principal component in a module) [22] were associated with the external traits to identify correlations with the highest significance. Meanwhile, module membership (MM) indicated the relationship between gene expression patterns and module eigengenes. At the same time, gene significance (GS) measure was indicative of absolute value relationships of genes with the external traits. In this study, genes that showed the greatest GS and MM values in the modules of interest were identified as the natural candidates in later analysis [23–26].

Hub genes validation

A hub gene is substantially related to other genes within the module, which is suggested in previous studies to display functional significance. This study screened hub genes within the coexpression network from the GIOP phenotype-related module. Subsequently, each hub gene within the module was imported to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [27], and confidence \(>0.4 \) was chosen for creating the PPI network. Later, Cytoscape software (www.cytoscape.org/) [28] was used to visualize the PPI network. Nodes that had a great degree of connectivity were more important to maintaining the network stability. The Cytoscape plug-in CytoHubba was used for calculating every protein node degree. Any gene within the PPI network with a connectivity of \(\geq 5 \) (node/edge) was screened to be a hub gene. Later, the common hub genes within the coexpression and PPI networks were deemed as “real” hub genes, and they were screened in later analysis. The Venn diagram was constructed using Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/index.html) for visualizing the common hub genes in the PPI and coexpression networks. Then, both the training and test sets were used for validation. For training set GSE30159 dataset and test set GSE129228 dataset, the real hub genes were compared between GIOP and normal controls. The paired-sample t-test was used for statistical analysis, and a difference of \(P<0.05 \) indicated statistical significance. Figures were plotted using GraphPad Prism (version, 8.0; GraphPad Software, Inc., La Jolla, Ca, USA).

Figure 1. Study flow diagram.

DEGs – differentially expressed genes; WGCNA – weighted gene coexpression network analysis; PPI – protein–protein interaction; GSEA – gene set enrichment analysis; GO – gene ontology; KEGG – Kyoto Encyclopedia of Genes and Genomes.
Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses

Gene Ontology (GO) functional annotation has been developed as an efficient way to carry out functional enrichment in a large scale. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) is an extensively applied database that preserves extensive data on drugs, chemical substances, diseases, biological pathways, and genomes. The current work employed the Metascape software (http://metascape.org) [29] in GO as well as KEGG analysis on the DEGs. *P*<0.05 indicated statistical significance.

Gene set enrichment analysis

To further determine functions of the candidate hub genes, we conducted GSEA (https://software.broadinstitute.org/gsea/index.jsp) [30] to investigate the enrichment of previously determined biological processes within the DEGs-derived gene rank. Terms enriched in each gene were recognized with the thresholds for false discovery rate (FDR) q-value <0.25 along with nominal *P*-value <0.05.

Results

Included study characteristics

After a careful review, 2 microarray datasets (GSE30159 and GSE129228) were selected from the GEO database [31–33]. GSE30159 was based on platform GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, and the GSE129228 dataset was based on platform GPL21103 Illumina HiSeq 4000 (Mus musculus). The present study utilized the GSE30159 dataset as the training set for constructing the PPI and coexpression networks for identifying “real” hub genes as well as related pathways. This dataset was obtained from bone biopsies from 18 patients with endogenous CS prior to surgery and at 3 months after surgery. In the study related to the GSE129228 dataset, high-dose dexamethasone was used to establish a mouse steroid-induced osteoporosis model. This dataset contained samples from 6 groups, including 2 normal samples, 2 experimental groups receiving 10 μM dexamethasone alone samples, and 2 GIOP model samples. The GSE129228 dataset was used as the test set for result validation in the current study.

DEGs identification

We utilized R language ‘limma’ package to identify DEGs within the GSE30159 microarrays. Using |logFC| ≥1 and *P*<0.05 as thresholds, 628 DEGs were detected, which included 303 upregulated genes and 325 downregulated genes.

Construction of the weighted coexpression network and identification of hub modules

Gene coexpression networks were constructed using R language ‘WGCNA’ package. Then, altogether 23,321 genes were obtained. At first, the leading 5000 genes in terms of standard deviation (SD) values were chosen to perform the sample clustering based on phenotype by the use of the average linkage (Figure 3A). It was observed that 18 samples could be basically classified as 2 clusters. In addition, the Pearson’s correlation was also carried out. Power β=9 was chosen for guaranteeing a scale-free network (Figure 3B, 3C). Eight modules in total were mined, and the red, brown, and turquoise modules were the most tightly related to GIOP in endogenous CS patients (Figure 4A, 4B). Thereafter, the interactions among these 8 modules were also examined, followed by the plotting of a network heatmap (Figure 5A). According to these findings, every module served as an independent validation for one another, demonstrating the high level of independence across various modules, as well as the relative gene expression independence for every module. For purposes of exploring coexpression similarity among these 8 modules, eigengene connectivity was assessed, and then consensus correlation was subjected
Figure 3. Sample clustering and soft-threshold power determination. (A) Hierarchical clustering dendrogram and the microarray sample trait. GIOP and non-GIOP samples can be classified. (B) Scale-free fit index analyses to determine different soft threshold powers (β). (C) Mean connectivity analyses to determine different soft threshold powers. GIOP – glucocorticoid-induced osteoporosis; WGCNA – weighted gene coexpression network analysis.
Figure 4. Hub module selection. (A) Dendrogram of all DEGs clustered according to a dissimilarity measure (1-TOM). (B) Heatmap of the relationships of module with the disease traits. In the module, the greater mean gene relevance stands for the greater relationship of this module with the traits of interest. The horizontal and vertical axes stand for clinical factors and modules, respectively. The color gradient from red to green represents the shift from positive to negative correlation. The numbers in grids represent correlation coefficients. Values in parenthesis are the P-values for the association test. The red, brown, and turquoise gene modules are positively related to GIOP status, values in the figure indicate the correlation coefficient between modules and clinical traits. TOM – topological overlap matrix; DEGs – differentially expressed genes; Me – module; GIOP – glucocorticoid-induced osteoporosis.
Figure 5. Identification of GIOP status hub genes within the hub module. (A) Correlations among the coexpression genes. On both vertical and horizontal axes, the diverse colors indicate diverse modules. In diverse modules, the yellow brightness at the center represents the connectivity degree. Differences in the relationships across diverse modules are not significant, illustrating that the above modules are highly independent from each other. (B) Dendrogram showing the eigengenes in the consensus module acquired based on WGCNA regarding consensus correlations. (C) Heat map showing the module adjacency. The blue color indicates low adjacency (inverse relationship), while the red color stands for close adjacency (positive relationship). (D) Scatter plot showing the module eigengenes in the turquoise module. GIOP – glucocorticoid-induced osteoporosis; WGCNA – weighted gene coexpression network analysis.
DATABASE ANALYSIS

Identification of GIOP status hub genes within hub modules

Subsequently, the DEGs-associated PPI network was used to identify 31 hub genes at the thresholds of connectivity ≥2 and confidence >0.4. The stricter factors were used in additional analyses, including module connectivity determined through absolute Pearson’s correlation coefficient (cor.geneModuleMembership >0.8), together with relationships of clinical characteristics determined based on absolute Pearson’s correlation coefficient (cor.geneTraitSignificance >0.2). There were 262 highly connected genes identified in the turquoise module, of which, COL3A1, POSTN, COL6A3, COL14A1, SERPINH1, ASPN, OGN, THY1, NID2, and TNMD were detected in both the coexpression and PPI networks (Figure 6A). According to our results, each hub gene within endogenous CS patients with GIOP was upregulated. Therefore, the above 10 genes were identified to be real hub genes indicating GIOP status and were screened in later analyses (Figure 6B).

Validation of hub genes

To investigate hub genes in endogenous CS with GIOP, the expression levels of COL3A1, POSTN, COL6A3, COL14A1, SERPINH1, ASPN, OGN, THY1, NID2, and TNMD were detected using the training set GSE30159 dataset and the test set GSE129228 dataset, respectively. In the training set, we found all hub genes except POSTN had statistically significant differences in endogenous CS (Figure 7A–7J). In the test set, SERPINH1 and POSTN were significantly upregulated in the GIOP model groups in comparison with the non-GIOP groups, which included CG (normal) and DEX (dexamethasone alone) as control groups (Figure 8A–8H). However, the expression levels of COL14A1 and TNMD were not found in the test set. After overlapping the results from the training set and test set, we found SERPINH1 was altered in the comparison between the GIOP and normal control samples.

GO annotation and KEGG pathway enrichment analyses

For better understanding of the gene functions within the turquoise module, Metascape software was used to perform GO
enrichment analyses. Based on our results, “extracellular matrix” was the gene set with the highest significance (Figure 9A). The analysis also showed that GIOP was associated with blood vessel development, metalloproteinase activity, integrin binding, connective tissue development, regulation of neuron differentiation, response to growth factor, tissue regeneration, regulation of cell morphogenesis, negative regulation of cell migration, regulation of animal organ morphogenesis, syncytium formation by plasma membrane fusion, positive regulation of Ras protein signal transduction, intrinsic component of extracellular matrix, ossification, metallocarboxypeptidase activity, negative regulation of cell differentiation, external side of plasma membrane, and regulation of the Wnt signaling pathway, cellular response to vitamin, cell-matrix adhesion, basement membrane, and regulation of the Wnt signaling pathway, planar cell polarity (Figure 9B). Meanwhile, based on KEGG analyses, DEGs were mostly enriched in the pathways in apoptosis, protein digestion and absorption, Rap1 signaling pathway, protein processing in endoplasmic reticulum, and adrenergic signaling in cardiomyocytes (Figure 9C).

Gene set enrichment analysis

For better elucidating the functions of possible hub genes, we carried out GSEA. The training set was divided into 2 groups according to the label GIOP vs. NON-GIOP. In the GSEA software, normalized enrichment score (NES) is used as a measure of the degree of enrichment, and P-value and FDR are used as measures of statistical significance. The degree of enrichment is scored. If it is positive, the pathway tends to be enriched in genes that are upregulated, and if it is negative, the pathway tends to be enriched in genes that are downregulated. Based on our observations, both gene sets showed correlations with GIOP, and “ECM receptor interaction” and “focal adhesion” were enriched (Figure 10A). Moreover, up-regulation of both COL1A3 and COL6A3 was significantly associated with ECM receptor interaction (Table 1) and focal adhesion (Table 2).

Discussion

In the present study in which an integrated bioinformatical study on GIOP was performed, an overlap method was employed to combine WGCNA, PPI network, and GSEA to identify pathway-related genes. As suggested by our results, the turquoise module was recognized to be of clinical significance by WGCNA. In later analyses, 10 genes (COL3A1, POSTN, COL6A3, COL14A1, SERPINH1, ASPN, OGN, THY1, NID2, and TNMD) between coexpression and PPI networks were identified to be the real hub genes. Subsequently, to investigate hub genes in GIOP, the expression levels of the 10 genes were detected using a training set and a test set, respectively. In the training
Figure 7. Hub gene validation based on training set (GSE30159). The mRNA level of 10 hub genes was validated in GIOP samples compared with normal samples. All hub genes except POSTN revealed statistically significant differences in GIOP. (A) COL3A1, (B) POSTN, (C) COL6A3, (D) COL14A1, (E) SERPINH1, (F) ASPN, (G) OGN, (H) THY1. (I) NID2, (J) TNMD. * P<0.05, ** P<0.01, *** P<0.001, NS – not significant. GIOP – glucocorticoid-induced osteoporosis; NON-GIOP – control group; COL3A1 – collagen type III alpha 1 chain; POSTN – periostin; COL6A3 – collagen type VI alpha 3 chain; COL14A1 – collagen type XIV alpha 1 chain; SERPINH1 – serpin family H member 1; ASPN – asporin; OGN – osteoglycin; THY1 – Thy-1 cell surface antigen; NID2 – nidogen 2; TNMD – tenomodulin.

set, we found that all hub genes except POSTN had statistically significant differences in GIOP. However, in the test set, there was no significant difference in the expression of COL3A1 and COL6A3 among the validation groups. We believe the reason for the inconsistent results was due to different microarray platforms of the 2 datasets, different sample sizes, and heterogeneities between the species and tissues. Consequently, to further identify the potential function of the hub genes in GIOP, GSEA was conducted to search KEGG pathways enriched in the highly expressed samples, as previously reported [34,35]. In our results, the focal adhesion and the ECM receptor interaction pathways notably showed significant
Figure 8. Hub gene validation based on test set (GSE129228). The mRNA level of 10 hub genes was validated in GIOP model samples compared with normal samples. SERPINH1 and POSTN were significantly upregulated in GIOP model groups in comparison to non-GIOP groups. (A) SERPINH1, (B) COL3A1, (C) POSTN, (D) COL6A3, (E) ASPN, (F) OGN, (G) THY1, (H) NID2. * P < 0.05, ** P < 0.01; NS – not significant; CG – control group; DEX – dexamethasone; GIOP – glucocorticoid-induced osteoporosis; SERPINH1 – serpin family H member 1; POSTN – periostin; COL3A1 – collagen type III alpha 1 chain; COL6A3 – collagen type VI alpha 3 chain; ASPN – asporin; OGN – osteoglycin; THY1 – Thy-1 cell surface antigen; NID2 – nidogen 2.
Figure 9. Functional enrichment and pathway analysis of DEGs by Metascape analysis. (A) Top 20 clusters functional enrichment of DEGs. (B) Interconnections between these top 20 clusters functional enrichment terms illustrated with network analysis. Nodes of the same color are representative of same cluster. (C) KEGG pathways of DEGs. KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
enrichment within samples showing high COL1A3 and COL6A3 expression levels. Consistent with our findings, previous studies identified COL3A1 and COL6A3 as being significantly associated with osteoporosis [17,18,36,37]. Overall, we determined that COL3A1, COL6A3, and SERPINH1 exhibited a high correlation via the integrated analysis among the 10 hub genes, indicating the potentially vital roles of such genes during GIOP occurrence or development.

Over the last several years, several GIOP-related genes or gene pathways alterations have been discovered, and these have shed more light on endogenous CS with regard to its
pathogenesis. Nonetheless, a large number of articles are single cohort studies, which report diverse findings. Lekva et al. [31] used global gene expression profiles based on bone biopsies of CS cases and identified a gene that coded the GC-induced leucine zipper (GILZ) as an extensively modulated gene within CS. In addition, the mRNA level of COL1A2 and circulating osteocalcin were also found to be related to GIOP. In subsequent experiments, Lekva et al. [32] used the same gene expression profiling and found another gene that encoded TXNIP to be an extensively modulated gene associated with GIOP treatment. In one recent study, Lu et al. [33] applied an RNA sequencing (RNA-seq) technique in combination with bioinformatic analysis and discovered that endothelial progenitor cell extracellular vesicles avoided GIOP in mice through inhibition of the ferroptotic pathway within osteoblasts. To better understand the pathogenesis of GIOP, potential biomarkers were identified using an integrated bioinformatics analysis combined with gene expression profile analysis in the present study.

Currently, bioinformatic analysis allows for identifying vital molecular networks based on gene expression data. In addition, integration of multiple-gene microarrays can help to identify the gene biomarkers with higher accuracy. Moreover, those integrated bioinformatic approaches contribute to overcoming hurdles in identifying GIOP-related hub genes. Consequently, the present work used the gene expression profile datasets of 2 cohorts in diverse groups in combination with bioinformatic approaches to analyze raw data and identify new disease pathogenesis as well as novel diagnostic and prognostic biomarkers. In accordance with Lekva et al. [31], GILZ was significantly downregulated in our study. Interestingly, COL1A2 was the same as the DEGs in the PPI network and was related to focal adhesion along with ECM receptor interaction based on our GSEA analysis. Consistent with our study, another GIOP-related study by Lekva et al. [32] showed that TXNIP in bone was significantly downregulated in CS patients, while osteocalcin was significantly upregulated. The current work aimed to detect genes or pathways involved in GIOP pathogenesis, thus narrowing the scope of targets and offering novel targets for later analysis. According to our results, COL3A1, COL6A3, and SERPINH1 are possible candidates and potential new therapeutic targets. In our opinion, the differences observed might be associated with the following reasons. First, sample heterogeneity in independent studies or research utilizing only a single cohort may lead to inconsistent results. Second, comparison between GIOP samples and non-GIOP samples may result in a potential bias due to disease heterogeneity. Third, different thresholds for DEGs may screen out a corresponding number of genes from microarray. Fourth, if the samples are relatively small while the number of dependent variables substantially increases, the analyses of gene microarrays may lead to “curse of dimensionality,” which results in an increase in statistical errors [38]. Fifth, different microarray platforms often lead to inconsistent results. It should be noted that a functional link between the above 3 genes and bone metabolism has not been previously shown [31–33,39].

To further investigate the effects of hub genes on modulating GIOP, we conducted a gene functional enrichment analysis. First of all, GO functional annotation and KEGG analyses were carried out. According to GO analysis, the hub genes that we identified showed significant enrichment in the ECM, which includes a complicated mixture of functional and structural macromolecules that play vital roles during organ and tissue morphogenesis, as well as in tissue and cell structural and functional maintenance. Such associations allow direct or indirect control

Table 2. Top 10 core genes related to focal adhesion in gene set enrichment analysis (GSEA) details.

Rank	Gene	Rank in gene list	Rank metric score	Running ES	Core enrichment
1	COL3A1	11	0.466370821	0.04158658	Yes
2	TNN	22	0.402014107	0.07741158	Yes
3	COL5A1	28	0.381570011	0.11161295	Yes
4	ITGB6	38	0.360972673	0.14377967	Yes
5	THBS4	45	0.338007063	0.17400703	Yes
6	COL5A2	59	0.30732277	0.20115749	Yes
7	IGFI	61	0.307254642	0.2283116	Yes
8	COL6A3	78	0.28857252	0.25415757	Yes
9	THBS2	98	0.265819869	0.277299	Yes
10	COL1A2	140	0.221685633	0.29548803	Yes

ES – enrichment score; COL3A1 – collagen type III alpha 1 chain; TNN – tenascin N; COL5A1 – collagen type V alpha 1 chain; ITGB6 – integrin subunit beta 6; THBS4 – thrombospondin 4; COL5A2 – collagen type V alpha 2 chain; IGFI – insulin like growth factor 1; COL6A3 – collagen type VI alpha 3 chain; THBS2 – thrombospondin 2; COL1A2 – collagen type I alpha 2 chain.
of cellular events, such as proliferation, differentiation, migration, adhesion, and apoptosis. Additionally, integrins play roles as mechanoreceptors, which provide a physical link for transmitting force between the cytoskeleton and the ECM. According to the results of the KEGG pathway enrichment analysis, the apoptosis-related pathway was the most significantly enriched. Consequently, the effects of COL1A3 and COL6A3 might be associated with apoptosis. GSEA was conducted to test this hypothesis. It was noticeable that the ECM receptor interaction together with the focal adhesion pathway was significantly enriched within samples showing high COL1A3 and COL6A3 levels. Consequently, COL1A3 and COL6A3 could have potential roles within the apoptosis pathway, which is functionally correlated with apoptosis. As suggested in numerous works, apoptosis plays an important role during bone metabolism through actions such as bone absorption and formation [7,40–43].

Downregulation of COL3A1 has been reported to be associated with WNT signaling regulation, ECM component shifts, and the differentiation and proliferation of cells within the subchondral bone-articular cartilage unit in Frzb−/− mice [44]. Furthermore, Yuan et al. [45] confirmed that COL3A1 was related to the healing of fractures based on RT-PCR assay. In addition, Stéger et al. [46] identified that COL3A1 expression within ossified velvet antler was 10 to 30 times higher than that in the skeleton. These findings implicate COL3A1 as having a role in human osteoporosis. However, studies on COL3A1 in the context of GIOP are rare, and more research is needed. In a previous study on bone and mineral research, COL6A3 was found to have a significant correlation with osteooste-like cell expression [37]. Furthermore, Barik et al. [47] demonstrated that COL6A3 expression on superimposed nano-textured surfaces was related to osseointegration on implant surfaces. A previous study reported that COL6A3 participated in chondrocyte hypertrophic differentiation as well as ECM integrity in cartilage and basement membrane [48]. Additionally, Chou et al. [49] indicated that COL6A3 expression showed a statistically significant correlation with articular cartilage degeneration severity and subchondral bone structural changes. However, the influence of COL6A3 expression on GIOP remains undefined; therefore, more data are required to verify the suggested effect. These findings indicate that the effects of collagen cross-linking on osteogenesis can serve as the candidate pathogenesis within skeleton disorders. These results are consistent with our findings above.

Similar to results obtained in our analysis, a previous study reported SERPINH1 leads to telomerase deficiency by engaging in ECM, which blocked the differentiation of bone marrow stem cells to osteoblasts, finally affecting their proliferation, commitment, maturation, and matrix mineralization [50]. Furthermore, a previous study reported that the specificity of SERPINH1 expression in skeletal tissues was related to the in vitro phenotype of human mesenchymal stem cells collected from osteoporosis cases [51]. It is notable that SERPINH1 is suggested to exert a vital part in osteogenesis imperfecta, which results in low bone mineral density and brittle bones [52–55]. According to a previous study on skeletal micromorphology and osteogenesis, BAPN remarkably hindered osteogenic gene expression and altered the bone microstructure by influencing the expression of SERPINH1 [56]. As far as we know, this work first revealed that SERPINH1 was upregulated in endogenous CS patients with GIOP. However, further research is required to confirm this finding.

In total, the integrated bioinformatic research was conducted on GIOP in the current work, and an overlap method was employed to combine WGCNA, PPI network, and GSEA pathway-related genes. Subsequently, the datasets were restricted to the matched GIOP with non-GIOP samples, and then the hub genes in every dataset were analyzed using the paired-sample t-test. Since rigorous screening approaches were utilized, our findings may have a high specificity for the detection of key molecules related to GIOP. Nonetheless, certain limitations should still be noted. First, this work was conducted based on microarray data collected via the GSE30159 dataset, which had a small sample size. Therefore, if the database has samples updates, more studies are warranted in the future. Second, different hub genes and enriched functions were found in our work, but the relationships need to be examined further. Because most of our recognized genes had not been previously associated with GIOP, further studies are needed to validate such gene expression within GIOP as well as healthy control tissue samples. Also, cells isolated from GIOP tissue samples should be cultured in vitro to determine the molecular mechanisms associated with the expression of these genes. Preclinical animal models using gene knockout may also identify the functions of the genes identified and assess their role in the progression of the GIOP.

Conclusions

In conclusion, this work applied an integrated method, including WGCNA, PPI network, and GSEA, in identifying and validating hub genes related to GIOP. Our findings explained, from a bioinformatics perspective, the potential key genes (COL3A1, COL6A3, and SERPINH1) and molecular mechanisms that play an important role in the GIOP process. Similar reports are still rare. These potential biomarkers could enhance the early diagnosis and treatment of GIOP. Unfortunately, independent validation experiments were not carried out in this study. Therefore, in our future studies, we will design and conduct more rigorous experiments to verify the above findings.

Conflicts of interest

None.
References:

1. Buckley L, Gaytay G, Fink HA et al.: 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol, 2017; 69(8): 1521–37.

2. Kubo T, Ueshima K, Saito M et al.: Clinical and basic research on steroid-induced osteonecrosis of the femoral head in Japan. J Orthop Sci, 2016; 21(4): 407–13.

3. Schacht E, Dukas L, Richy F: Combined therapies in osteoporosis: Bisphosphonates and vitamin D-hormone analogs. J Musculoskelet Neuronal Interact, 2007; 7(2): 174–84.

4. Kerachian MA, Séguin C, Harvey EJ: Glucocorticoids in osteonecrosis of the femoral head: A new understanding of the mechanisms of action. J Steroid Biochem Mol Biol, 2009; 114(3–5): 121–28.

5. Teitelbaum SL: Bone: The conundrum of glucocorticoid-induced osteoporosis. Nat Rev Endocrinol, 2012; 8(8): 451–52.

6. Conaway HH, Henning P, Lie A et al.: Glucocorticoids employ the monomeric glucocorticoid receptor to potentiate vitamin D3 and parathyroid hormone-induced osteoclastogenesis. FASEB J, 2019; 33(12): 14394–409.

7. Rauch A, Seitz S, Baschant U et al.: Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab, 2010; 11(6): 517–31.

8. Lian WS, Ko KY, Chen YS et al.: Chaperonin 60 sustains osteoblast autophagy and coordinates glucocorticoid aggravation of osteoporosis by chaperonin RPTOR. Cell Death Dis, 2018; 9(10): 938.

9. Ma L, Shi C, Liu Z et al.: Hydrogen sulﬁde is a novel regulator implicated in glucocorticoid-induced bone inhibition. Aging (Albany NY), 2019; 11(18): 7537–52.

10. Schepper JD, Collins F, Rios-Arce ND et al.: Involvement of the gut microbiota and barrier function in glucocorticoid-induced osteoporosis. J Bone Miner Res, 2020; 35(4): 801–20.

11. Langfelder P, Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008; 9: 559.

12. Chuang YH, Collins F, Bronstein JM et al.: Parkinson’s disease is associated with DNA methylation levels in human blood and saliva. Genome Med, 2017; 9(18): 975.

13. Yan J, Wu L, Jia C et al.: Development of a four-gene prognostic model for osteoarthritis of the femoral head: A new understanding of the mechanisms of action. J Steroid Biochem Mol Biol, 2009; 114(3–5): 121–28.

14. Lu J, Yang J, Zheng Y et al.: Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci Rep, 2019; 9(1): 16130.

15. Ma X, Liu C, Xu X et al.: Biomarker expression analysis in different age groups revealed age was a risk factor for breast cancer. J Cell Physiol, 2020; 235(5): 4268–78.

16. Kuivanieni H, Tromp G, Prokop DJ: Mutations in collagen genes: Causes of rare and some common diseases in humans. FASEB J, 1991; 5(7): 2052–60.

17. Mullin BH, Zhu K, Xu J et al.: Expression quantitative trait locus study of mouse mineral density QWAS variants in human osteoclasts. J Bone Miner Res, 2018; 33(6): 1044–51.

18. Nanni L, Brahnam S, Lumini A: Combining multiple approaches for gene microarray classification. Bioinformatics, 2012; 28(8): 1151–57.

19. Liu J, Zhou S, Li S et al.: Eleven genes associated with progression and prognosis of endometrial cancer (EC) identified by comprehensive bioinformatics analysis. Cancer Cell Int, 2019; 19: 136.

20. Ma X, Liu C, Xu X et al.: Biomarker expression analysis in different age groups revealed age was a risk factor for breast cancer. J Cell Physiol, 2020; 235(5): 4268–78.

21. Kurimoto Y, Takeuchi S, Suzuki S et al.: Development of a four-gene prognostic model for osteoarthritis of the femoral head: A new understanding of the mechanisms of action. J Steroid Biochem Mol Biol, 2009; 114(3–5): 121–28.

22. Li L. et al.: COL3A1, COL6A3, and SERPINF1 are related to...
47. Barik A, Banerjee S, Dhara S, Chakravorty N: A reductionist approach to extract robust molecular markers from microarray data series – isolating markers to track osseointegration. J Biomed Inform, 2017; 68: 104–11
48. Lavrijsen IC, Leegwater PA, Martin AJ et al: Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers. PLoS One, 2014; 9(1): e87735
49. Chou CH, Lee CH, Lu LS et al: Direct assessment of articular cartilage and underlying subchondral bone reveals a progressive gene expression change in human osteoarthritic knees. Osteoarthr Cartil. 2013;21(3): 450-461.
50. Saeed H, Iqtedar M. Aberrant gene expression profiles, during in vitro osteoblast differentiation, of telomerase deficient mouse bone marrow Stromal stem cells (mBMSCs). J Biomed Sci, 2015; 22: 11
51. Twine NA, Chen L, Pang CN et al: Identification of differentiation-stage specific markers that define the ex vivo osteoblastic phenotype. Bone, 2014; 67: 23–32
52. Christiansen HE, Schwarze U, Pyott SM et al: Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet, 2010; 86(3): 389–98
53. Kelley BP, Malfait F, Bonafe L et al: Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res, 2011; 26(3): 666–72
54. Duran I, Nevarez L, Sarukhanov A et al: HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet, 2015; 24(7): 1918–28
55. Venturi G, Monti E, Dalle Carbonare L et al: A novel splicing mutation in FKBP10 causing osteogenesis imperfecta with a possible mineralization defect. Bone, 2012; 50(1): 343–49
56. Shen Y, Jing D, Hao J et al: The effect of β-aminopropionitrile on skeletal micromorphology and osteogenesis. Calcif Tissue Int, 2018; 103(4): 411–21