UNIFORMIZATION OF SIMPLY CONNECTED FINITE TYPE LOG-RIEMANN SURFACES

KINGSHOOK BISWAS AND RICARDO PEREZ-MARCO

ABSTRACT. We consider simply connected log-Riemann surfaces with a finite number of infinite order ramification points. We prove that these surfaces are parabolic with uniformizations given by entire functions of the form $F(z) = \int Q(z)e^{P(z)} \, dz$ where P, Q are polynomials of degrees equal to the number of infinite and finite order ramification points respectively.

Contents

1. Introduction 1
2. Cell decompositions of log-Riemann surfaces 3
2.1. Decomposition into stars 3
2.2. The skeleton and fundamental group 4
2.3. Truncation and approximation by finite sheeted surfaces 6
2.4. Compactness for uniformly finite type log-Riemann surfaces 8
2.5. Decomposition into Kobayashi-Nevanlinna cells 9
2.6. Kobayashi-Nevanlinna parabolicity criterion 9
3. Uniformization theorems 11
References 12

1. Introduction

In [BPM10a] we defined the notion of log-Riemann surface, as a Riemann surface S equipped with a local diffeomorphism $\pi : S \rightarrow \mathbb{C}$ such that the set of points \mathcal{R} added in the completion $S^\times = S \sqcup \mathcal{R}$ of S with respect to the flat metric on S induced by π is discrete. The mapping π extends to the points $p \in \mathcal{R}$, and is a covering of a punctured neighbourhood of p onto a punctured disk in \mathbb{C}; the point p is called a ramification point of S of order equal to the degree of the covering π near p. The finite order ramification points may be added to S to give a Riemann surface S^\times, called the finite completion of S. In this article we are interested in log-Riemann surfaces of finite type, i.e. those with finitely many ramification points and finitely generated fundamental group, in particular simply connected log-Riemann surfaces of finite type. We prove the following:

Theorem 1.1. Let S be a log-Riemann surface with $d_1 < +\infty$ infinite order ramification points and $d_2 < +\infty$ finite order ramification points (counted with multiplicity), such that the finite completion S^\times is simply connected. Then S is biholomorphic to \mathbb{C} and the uniformization $\tilde{F} : \mathbb{C} \rightarrow S^\times$ is given by an entire function.
$F = \pi \circ \tilde{F}$ of the form $F(z) = \int Q(z)e^{P(z)}dz$ where P, Q are polynomials of degrees d_1, d_2 respectively.

Conversely we have:

Theorem 1.2. Let $P, Q \in \mathbb{C}[z]$ be polynomials of degrees d_1, d_2 and F an entire function of the form $F(z) = \int Q(z)e^{P(z)}dz$. Then there exists a log-Riemann surface S with d_1 infinite order ramification points and d_2 finite order ramification points (counted with multiplicity) such that F lifts to a biholomorphism $\tilde{F} : \mathbb{C} \to S^\times$.

The entire functions of the above form were first studied by Nevanlinna [Nev32], who essentially proved Theorem 1.1, although his proof is in the classical language. The uniformization theorem was also rediscovered by M. Taniguchi [Tan01] in the form of a representation theorem for a class of entire functions defined by him called "structurally finite entire functions". The techniques we use are very different and adapted to the more general context of log-Riemann surfaces. In a forthcoming article [BPM10b] we use these techniques to generalize the above theorems to a correspondence between higher genus finite type log-Riemann surfaces and holomorphic differentials on punctured Riemann surfaces with isolated singularities of "exponential type" at the punctures (locally of the form $ge^h dz$ where g, h are germs meromorphic at the puncture).

The proof of Theorem 1.1 proceeds in outline as follows: we approximate S by simply connected log-Riemann surfaces S_n^\times with finitely many ramification points of finite orders such that d_1 ramification points of S_n^\times converge to infinite order ramification points. The surfaces S_n converge to S in the sense of Caratheodory (as defined in [BPM10a]) and by the Caratheodory convergence theorem proved in [BPM10a], the uniformizations \tilde{F}_n of S_n converge to the uniformization \tilde{F} of S. The uniformizations \tilde{F}_n are the lifts of polynomials $F_n = \pi_n \circ \tilde{F}_n$, such that the nonlinearities $G_n = F_n''/F_n'$ are rational functions of uniformly bounded degree with simple poles at the critical points of F_n. As these critical points go to infinity as $n \to \infty$, the nonlinearity of the function $F = \pi \circ \tilde{F}$ is a polynomial, from which it follows that F is of the form $\int Q(z)e^{P(z)}dz$.

To prove Theorem 1.2 we use the converse of Caratheodory convergence theorem: we approximate $F = \int Q(z)e^{P(z)}dz$ by polynomials $F_n = \int Q(z)(1 + \frac{P(z)}{n})^n dz$. The polynomials F_n define log-Riemann surfaces S_n which then converge in the sense of Caratheodory to a log-Riemann surface S defined by F, and a study of the log-Riemann surfaces S_n shows that the log-Riemann surface S has d_1 infinite order ramification points and d_2 finite order ramification points (counted with multiplicity).

We develop the tools necessary for the proofs in the following sections. We first describe a "cell decomposition" for log-Riemann surfaces, which allows one to approximate finite type log-Riemann surfaces by log-Riemann surfaces with finitely many ramification points of finite order. The cell decomposition allows us to read the fundamental group of a log-Riemann surface from an associated graph, and to prove a parabolicity criterion for simply connected log-Riemann surfaces which in particular implies that the log-Riemann surfaces S and S_n considered in the proof of Theorem 1.1 are parabolic.
2. Cell decompositions of log-Riemann surfaces

We recall that a log-Riemann surface (\mathcal{S}, π) comes equipped with a path metric d induced by the flat metric $|d\pi|$. Any simple arc $(\gamma(t))_{t \in I}$ in \mathcal{S} which is the lift of a straight line segment in \mathbb{C} is a geodesic segment in \mathcal{S}; we call such an arc unbroken geodesic segments. Note that an unbroken geodesic segment is maximal if and only if, as t tends to an endpoint of I not in I, either $\gamma(t)$ tends to infinity, or $\gamma(t) \to p \in \mathcal{R}$.

2.1. Decomposition into stars. Let $w_0 \in \mathcal{S}$. Given an angle $\theta \in \mathbb{R}/2\pi\mathbb{Z}$, for some $0 < \rho(w_0, \theta) \leq +\infty$, there is a unique maximal unbroken geodesic segment $\gamma(w_0, \theta) : [0, \rho(w_0, \theta)) \to \mathcal{S}$ starting at w_0 which is the lift of the line segment $\{\pi(w_0) + te^{i\theta} : 0 \leq t < \rho(w_0, \theta)\}$, such that $\gamma(w_0, \theta)(t) \to w^* \in \mathcal{R}$ if $\rho(w_0, \theta) < +\infty$.

Definition 2.1. The star of $w_0 \in \mathcal{S}$ is the union of all maximal unbroken geodesics starting at w_0,

$$V(w_0) := \bigcup_{\theta \in \mathbb{R}/2\pi\mathbb{Z}} \gamma(w_0, \theta).$$

Similarly we also define for a ramification point w^* of order $n \leq +\infty$ the star $V(w^*)$ as the union of all maximal unbroken geodesics $\gamma(w^*, \theta)$ starting from w^*, where the angle $\theta \in [-n\pi, n\pi]$:

$$V(w^*) := \{\gamma(w^*, \theta)(t) : 0 \leq t < \rho(w^*, \theta), -n\pi \leq \theta \leq n\pi\}.$$

Proposition 2.2. For $w_0 \in \mathcal{S}$ the star $V(w_0)$ is a simply connected open subset of \mathcal{S}. The boundary $\partial V(w_0) \subset \mathcal{S}$ is a disjoint union of maximal unbroken geodesic segments in \mathcal{S}.

Proof: Since \mathcal{R} is closed, the function $\rho(w_0, \theta)$ is upper semi-continuous in θ, from which it follows easily that $V(w_0)$ is open. Moreover π is injective on each $\gamma(w_0, \theta)$, hence is a diffeomorphism from $V(w_0)$ onto its image $\mathbb{C} - F$, where F is the disjoint union of closed line segments $\{\pi(w_0) + te^{i\theta} : \rho(w_0, \theta) < +\infty, t \geq \rho(w_0, \theta)\}$; clearly $\mathbb{C} - F$ is simply connected. By continuity of π, each component C of $\partial V(w_0)$ is contained in $\pi^{-1}(\gamma)$ for some segment γ in F, hence is an unbroken geodesic segment $(\alpha(t))_{t \in I}$. Since C is closed in \mathcal{S}, C must be maximal. \(\Box\)

The set of ramification points \mathcal{R} is discrete, hence countable. Let $L \supset \pi(\mathcal{R})$ be the union in \mathbb{C} of all straight lines joining points of $\pi(\mathcal{R})$. Then $\mathbb{C} - L$ is dense in \mathbb{C}. By a generic fiber we mean a fiber $\pi^{-1}(z_0) = \{w_i\}$ of π such that $z_0 \in \mathbb{C} - L$.

Proposition 2.3. Let $\{w_i\}$ be a generic fiber. Then:

1. The stars $\{V(w_i)\}$ are disjoint.
2. The connected components of the stars $\partial V(w_i)$ are geodesic rays $\gamma : (0, +\infty) \to \mathcal{S}$ such that $\gamma(t) \to w^* \in \mathcal{R}$ as $t \to 0$, $\gamma(t) \to \infty$ as $t \to \infty$.
3. The union of the stars is dense in \mathcal{S}:

$$\mathcal{S} = \bigcup_i V(w_i) = \bigcup_i V(w_i).$$
Proof: (1): If \(w \in V(w_i) \cap V(w_j) \) then the geodesic segments from \(w \) to \(w_i, w_j \) are lifts of \(\{w, z_0\} \), so by uniqueness of lifts (\(\pi \) is a local diffeomorphism) \(w_i = w_j \).

(2): By the previous Proposition, each component of \(\partial V(w_i) \) is a maximal unbroken geodesic segment \(\gamma : (0, r) \to S \) with \(\lim_{t \to 0} \gamma(t) = w^* \in \mathcal{R} \) where \(w^* \) is a ramification point such that \(\pi(\gamma) \) is a straight line segment contained in the straight line through \(\pi(w_i) \) and \(\pi(w^*) \). If \(r < +\infty \) then \(\gamma(t) \to w^*_i \in \mathcal{R} \) as \(t \to r \), so \(\pi(w_i) \) must lie on the straight line through \(\pi(w^*_i), \pi(w^*_i) \), contradicting the fact that \(\{w_i\} \) is a generic fiber. Hence \(r = +\infty \).

(3): Given \(p \in S \), if \(\pi(p) \neq z_0 \), take a path \((p(t))_{0 < t < \epsilon} \subset S \) converging to \(p \) as \(t \to 0 \) such that the line segments \([\pi(p(t)), z_0] \) make distinct angles at \(z_0 \), then the discreteness of \(\mathcal{R} \) implies that for \(t \) small enough these line segments admit lifts; again by discreteness of \(\mathcal{R} \) for some \(i \) we have \(p(t) \in V(w_i) \) for all \(t \) small, and \(p \in V(w_i) \).

It is easy to see that for \(w_i \neq w_j \), the components of \(\partial V(w_i), \partial V(w_j) \) are either disjoint or equal, and each component can belong to at most two such stars. The above Propositions hence give a cell decomposition of \(S \) into cells \(V(w_i) \) glued along boundary arcs \(\gamma \subset \partial V(w_i), \partial V(w_j) \).

2.2. The skeleton and fundamental group. Let \(\pi^{-1}(z_0) = \{w_i\} \) be a generic fiber. The 1-skeleton of the cell decomposition into stars gives an associated graph:

Definition 2.4. The skeleton \(\Gamma(S, z_0) \) is the graph with vertices given by the stars \(V(w_i) \), and an edge between \(V(w_i) \) and \(V(w_j) \) for each connected component \(\gamma \) of \(\partial V(w_i) \cap \partial V(w_j) \). Each edge corresponds to a geodesic ray \(\gamma : (0, +\infty) \to S \) starting at a ramification point. This gives us a map from edges to ramification points, \(\text{foot} : \gamma \mapsto \text{foot}(\gamma) := \lim_{t \to 0} \gamma(t) \in \mathcal{V}(w_i) \cap \mathcal{V}(w_j) \).

For \(w^* \in \mathcal{R} \) we let \(C(w^*) = \{\gamma : \text{foot}(\gamma) = w^*\} \).

We omit the proof of the following proposition which is straightforward:

Proposition 2.5. If \(w^* \) is of finite order \(n \) then \(C(w^*) = (\gamma_i)_{1 \leq i \leq n} \) is a cycle of edges in \(\Gamma \) of length \(n \). If \(w^* \) is of infinite order then \(C(w^*) = (\gamma_i)_{i \in \mathbb{Z}} \) is a bi-infinite path of edges in \(\Gamma \).

We can compute the fundamental group of a log-Riemann surface from its skeleton:

Proposition 2.6. The log-Riemann surface \(S \) deformation retracts onto \(\Gamma(S, z_0) \). In particular \(\pi_1(S) = \pi_1(\Gamma(S, z_0)) \).

Proof: Let \(\partial V(w_i) = \bigcup_{j \in J_i} \gamma_{ik} \) be the decomposition of \(\partial V(w_i) \) into its connected components. Choose points \(v_{ik} \in \gamma_{ik} \), satisfying \(v_{ik} = v_{jk} \) if \(\gamma_{ik} = \gamma_{kj} \). Choose simple arcs \(\alpha_{ik}, k \in J_i \), joining \(w_i \) to \(v_{ik} \) within \(V(w_i) \), with \(\alpha_{ik} \cap \alpha_{ik'} = \{w_i\} \). Then \(V(w_i) \) deformation retracts onto the union of the arcs \(\alpha_{ik} \); moreover for \(i, j \in I \) we can choose the retractions compatibly on arcs \(\gamma \subset \partial V(w_i) \cap \partial V(w_j) \), giving a retraction of \(S \) onto the union of all arcs \(\alpha_{ik}, i \in I, k \in J_k \), which is homeomorphic to \(\Gamma(S, z_0) \). \(\diamond \)
The relation of \(\Gamma(S, z_0) \) to the finitely completed log-Riemann surface \(S^\times \) is as follows:

Definition 2.7. The finitely completed skeleton \(\Gamma^\times(S, z_0) \) is the graph obtained from \(\Gamma(S, z_0) \) as follows: for each finite order ramification point \(w^* \), add a vertex \(v = v(w^*) \) to \(\Gamma(S, z_0) \), remove all edges in the cycle \(C(w^*) \) and add an edge from \(v_i \) to \(v \) for each vertex \(v_i \) in the cycle \(C(w^*) \).

Then as above we have:

Proposition 2.8. The finitely completed log-Riemann surface \(S^\times \) deformation retracts onto the finitely completed skeleton \(\Gamma^\times(S, z_0) \).

Proof: Let \(w^* \) be a finite order ramification point. Observe that in the proof of the previous Proposition, for \(\gamma = \gamma_{ik} \) an edge in \(C(w^*) \), in the finitely completed log-Riemann surface the arc \(\alpha_{ik} \) can be be homotoped to an arc \(\tilde{\alpha}_{ik} \) from \(w_i \) to \(w^* \). Then \(S^\times \) deformation retracts onto the union of the arcs \(\alpha_{ik}, \tilde{\alpha}_{ik} \) which is homeomorphic to \(\Gamma^\times(S, z_0) \).

Given a graph \(\Gamma \) satisfying certain compatibility conditions along with the information of the locations of the ramification points, we can also construct an associated log-Riemann surface \(S \) with skeleton \(\Gamma \):

Proposition 2.9. Let \(\Gamma = (V, E) \) be a connected graph with countable vertex and edge sets and a map \(\text{foot}: E \to \mathbb{C} \). For each vertex \(v \) let \(E_v \) be the set of edges with a vertex at \(v \) and let \(R_v = \text{foot}(E_v) \). Assume that the following hold:

1. The image \(\text{foot}(E) \subset \mathbb{C} \) is discrete.
2. For all vertices \(v \) and points \(z \in R_v \), the intersection \(\text{foot}^{-1}(z) \cap E_v \) has exactly two edges, labelled \(\{e_z(v, +), e_z(v, -)\} \).
3. For an edge \(e \) between vertices \(v, v' \) with \(\text{foot}(e) = z \), either \(e = e_z(v, +) = e_z(v', -) \) or \(e = e_z(v, -) = e_z(v', +) \).

Then there exists a log-Riemann surface \(S \) with skeleton \(\Gamma(S, z_0) = \Gamma \) for some \(z_0 \in \mathbb{C} \).

Proof: Let \(L \subset \mathbb{C} \) be the union of all straight lines through pairs of points in \(\text{foot}(E) \), and let \(z_0 \in \mathbb{C} - L \). For each vertex \(v \) of \(\Gamma \), let \(L_v \) be the union of the half-lines \(l_z \) starting at points \(z \in R_v \) with direction \(z - z_0 \). By assumption (1) this collection of half-lines is locally finite. Let \(U_v \) be the domain \(\mathbb{C} - L_v \). Equip \(U_v \) with the path metric \(d(a, b) = \inf_\beta \int_a^b |dz| \) (infimum taken over all rectifiable paths \(\beta \) joining \(a \) and \(b \)). Then the metric completion \(U_v^* \) of \(U_v \) is given by adjoining for each \(z \in R_v \) two copies of \(l_z \) (the two 'sides' of the slit \(l_z \)) intersecting at a point \(z_v \), which we denote by

\[U_v^* = U_v \bigcup_{z \in R_v} (l_z(v, +) \cup l_z(v, -)) \]

where we take \(l_z(v, +) \) to be the 'upper side' and \(l_z(v, -) \) the 'lower' side (so \(z \to l_z(v, +) \) if \(z \to l_z \) in \(U_v \) with \(\arg(z - z_0) \) increasing and \(z \to l_z(v, -) \) if \(z \to l_z \) in \(U_v \) with \(\arg(z - z_0) \) decreasing). The inclusion of \(U_v \) in \(\mathbb{C} \) extends to a local isometry \(\pi_v: U_v^* \to \mathbb{C} \) with \(\pi_v(l_z(v, +)) = \pi_v(l_z(v, -)) = l_z \).
Let S^* be

$$S^* = \bigsqcup_{v \in V} U^*_v / \sim$$

with the following identifications: for each edge e with vertices v, v' and foot(γ) = z, if $e = e_z(v, +) = e_z(v', -)$ we paste isometrically the half-lines $l_z(v, +), l_z(v', -)$, otherwise we paste isometrically $l_z(v, -), l_z(v', +)$. The identifications are compatible with the maps π_v, giving a a map $\pi : S^* \to \mathbb{C}$. We let $R \subset S^*$ be the subset corresponding to the points \{z_0\} and $\bar{S} = S^* - R$.

Since $\pi(R) = \text{foot}(E)$ is discrete, the set R is discrete. Moreover π restricted to S is a local isometry, and the completion of S with respect to the induced path metric is precisely S^*, hence S is a log-Riemann surface. The fiber $\pi^{-1}(z_0)$ is generic since $z_0 \in \mathbb{C} - L$. The stars with respect to this fiber are precisely the open subsets $U_v \subset S$. For any star U_v its closure in S^* is the image of $U_v^* \subset S$.

For vertices v, v', according to the above identifications between U^*_v, U^*_v in S^*, each component of $\partial U_v \cap \partial U_{v'}$ (if non-empty) is a half-line l arising from an edge e between v_1, v_2, of either the form $l = l_z(v, +) = l_z(v', -)$ or $l = l_z(v, -) = l_z(v', +)$.

It follows that $\Gamma(S, z_0) = \Gamma$. \(\diamond\)

2.3. Truncation and approximation by finite sheeted surfaces. We can use the decomposition into stars to approximate any log-Riemann surface by finite sheeted log-Riemann surfaces by “truncating” infinite order ramification points to finite order ramification points. More precisely we have:

Theorem 2.10. Let (S, p) be a pointed log-Riemann surface. Then:

1. There exists a sequence of pointed log-Riemann surfaces (S_n, p_n) converging to (S, p) in the Caratheodory topology such that each S_n has only finitely many ramification points all of finite order.

2. If S^* is simply connected then all the surfaces S^*_n are simply connected.

We recall the definition of convergence of log-Riemann surfaces in the Caratheodory topology from [BPM10]: $(S_n, p_n) \to (S, p)$ if for any compact $K \subset S$ containing p there exists $N = N(K) \geq 1$ such that for all $n \geq N$ there is an isometric embedding $\iota_{n,K}$ of K into S_n, mapping p to p_n which is a translation in the charts π, π_n on S, S_n.

Proof of Theorem 2.10 (1): Since the generic fibers are dense in S we may assume without loss of generality that $p = w_0$ lies in a generic fiber $\{w_i\} = \pi^{-1}(z_0)$. Let $V_i = V(w_i)$ be the corresponding stars and $\Gamma = \Gamma(S, z_0)$ the associated skeleton, equipped with the graph metric d_Γ (where each edge has length 1). For any star V_i and $R > 0$, the set $V_i \cap B(w_i, R)$ is compact, so it contains at most finitely many ramification points. It follows that the collection of edges

$$E(V_i, R) := \{ \gamma : \gamma \text{ is an edge with a vertex at } V_i, \text{foot}(\gamma) \in \overline{B(w_i, R)} \}$$

is finite, and hence so is the corresponding collection of vertices

$$V(V_i, R) := \{ V_j : \gamma \in E(V_i, R) \text{ is an edge between } V_i, V_j \}.$$

For $n \geq 1$ we define collections of edges and vertices $(E_{n,k})_{1 \leq k \leq n}, (V_{n,k})_{1 \leq k \leq n}$ as follows:
We let \(E_{n,1} = E(V_0, n), V_{n,1} = V(V_0, n) \) and for \(1 < k \leq n, \)
\[
E_{n,k} := \bigcup_{V_i \in V_{n,k-1}} E(V_i, n) \\
V_{n,k} := \bigcup_{V_i \in V_{n,k-1}} V(V_i, n)
\]

This gives us finite connected subgraphs \(\Gamma_n = (V_{n,n}, E_{n,n}) \) of \(\Gamma \). Let
\[
\tilde{S}_n = \bigcup_{V \in V_{n,n}} V \subset S^+
\]
be the corresponding union of stars in \(S^+ \). It is a Riemann surface with boundary, each boundary component being an edge \(\gamma \) of \(\Gamma_n \). We paste appropriate boundary components isometrically to obtain a Riemann surface without boundary \(S_n = S_n/\sim \) as follows:

We let \(R_n \) be the set of ramification points \(\{ \text{foot}(\gamma) : \gamma \in E_{n,n} \} \). For \(w^* \in R_n \) we let \(\Gamma_n(w^*) \) be the subgraph of \(\Gamma_n \) consisting of vertices \(V_i \) and edges \(\gamma \) such that \(w^* = \text{foot}(\gamma) \in V_i \). Two cases arise:

(i) The ramification point \(w^* \) is of finite order: Then there are finitely many stars \(V_i \) such that \(w^* \in V_i \). If \(\Gamma_n(w^*) \) does not contain all of them, then the union of stars \(\bigcup_{V_i \in \Gamma_n(w^*)} V_i \) has two boundary components, both of which are lifts of a half-line in \(\mathbb{C} \) starting at \(\pi(w^*) \); in this case we can paste the two components by an isometry which is the identity in charts.

(ii) The ramification point \(w^* \) is of infinite order: Then the union of stars \(\bigcup_{V_i \in \Gamma_n(w^*)} V_i \) always has two boundary components, both of which are lifts of a half-line in \(\mathbb{C} \) starting at \(\pi(w^*) \); we paste the two components by an isometry which is the identity in charts.

Let \(q_n : \tilde{S}_n \to S_n/\sim \) denote the quotient of \(\tilde{S}_n \) under the identifications made in (i), (ii). The subset \(S_n := (\tilde{S}_n/\sim) - q_n(R_n) \) is a Riemann surface without boundary. Since the identifications are compatible with the map \(\pi, \pi \) induces a map \(\pi_n : S_n \to \mathbb{C} \) which is a local diffeomorphism. The completion of \(S_n \) with respect to the flat metric induced by \(\pi_n \) is isometric to \(\tilde{S}_n/\sim \), so that \(S_n \) is a log-Riemann surface with finite ramification set \(q_n(R_n) \); it is clear from the construction in (i), (ii) above that these ramification points are all of finite order. We let \(p_n = q_n(p) \).

Any compact \(K \subset S \) containing \(p \) can only intersect finitely many stars \(V_i \) and hence \(K \subset \tilde{S}_n \) for \(n \) large enough. Moreover for \(n \) large \(K \) does not intersect the boundary of \(\tilde{S}_n \) (which is contained in stars going to infinity in \(\Gamma \) as \(n \) goes to infinity), hence the quotient map \(q_n \) isometrically embeds \(K \) in \(S_n \). Thus \((S_n, p_n) \) converges to \((S, p) \) as required.

(2): The graph \(\Gamma(S_n, z_0) \) can be obtained by adding edges to the finite graph \(\Gamma_n \) between certain vertices corresponding to edges in the sets \(C(w^*), w^* \in R_n \), to give cycles \(C(q_n(w^*)) \) in \(\Gamma(S_n, z_0) \). If \(S^+ \) is simply connected then by Proposition 2.8 the graph \(\Gamma^+(S, z_0) \) is a tree. It follows from the construction of \(\Gamma^+(S, z_0) \) that \(\pi_1(\Gamma(S, z_0)) \) is generated by cycles corresponding to finite order ramification points.
and hence \(\pi_1(\Gamma(S_n, z_0)) \) is generated by the cycles \(C(q_n(w^*)) \). In constructing \(\Gamma^\times(S_n, z_0) \) from \(\Gamma(S_n, z_0) \) these cycles become trivial so \(\pi_1(\Gamma^\times(S_n, z_0)) \) is trivial. \(\diamond \)

2.4. Compactness for uniformly finite type log-Riemann surfaces. The family of finite type log-Riemann surfaces with a given uniform bound on the number of ramification points is compact, in the following sense:

Theorem 2.11. Let \((S_n, p_n) \) be a sequence of pointed log-Riemann surfaces with ramification sets \(\mathcal{R}_n \). If for some \(M, \epsilon > 0 \) we have \(\# \mathcal{R}_n \leq M, d(p_n, \mathcal{R}_n) > \epsilon \) for all \(n \) then there is a pointed log-Riemann surface \((S, p) \) with ramification set \(\mathcal{R} \) such that \(\# \mathcal{R} \leq M \) and \((S_n, p_n) \) converges to \((S, p) \) along a subsequence.

Proof: Composing \(\pi_n \) with a translation if necessary we may assume \(\pi_n(p_n) = 0 \) for all \(n \). Since \(d(p_n, \mathcal{R}_n) > \epsilon \) we can change \(p_n \) slightly (within the ball \(B(p_n, \epsilon) \)) to assume without loss of generality that the fiber \(\pi_n^{-1}(0) \) containing \(p_n \) is generic. Let \(\Gamma_n \) be the corresponding skeleton and \(v_{n,0} \) the vertex containing \(p_n \). Passing to a subsequence we may assume the projections \(\pi_n(\mathcal{R}_n) \) converge (in the Hausdorff topology) to a finite set \(\{ w_1^*, \ldots, w_N^* \} \cup \{ \infty \} \subset C - B(0, \epsilon) \) (where \(N \leq M \)), and for all \(n \) lie in small disjoint neighbourhoods \(B_{1, \ldots, B_N} \) and \(B \) of the points of \(R = \{ w_1^*, \ldots, w_N^* \} \) and \(\infty \) respectively.

Let \(\gamma_1, \ldots, \gamma_N \) be generators for the group \(G = \pi_1(C - R) \) where each \(\gamma_i \) is a simple closed curve in \(C - (B \cup_i B_i) \) starting at the origin with winding number one around \(B_i \) and zero around \(B_j, j \neq i \). There is a natural action of \(G \) on the vertices of \(\Gamma_n \): given a vertex \(v \), let \(w \) be the point of the fiber \(\pi_n^{-1}(0) \) in \(v \). Then any \(g \in G \) has a unique lift \(\tilde{g} \) to \(S_n \) starting at \(w \). Let \(g \cdot v \) be the vertex of \(\Gamma_n \) containing the endpoint of \(\tilde{g} \).

We define a graph \(\Gamma'_n = (V_n, E_n) \) as follows: the vertex set \(V_n \) is the orbit of \(v_{n,0} \) under \(G \). We put an edge \(e \) between distinct vertices \(v, v' \) of \(\Gamma'_n \) for each generator \(\gamma \in \{ \gamma_1^\pm, i = 1, \ldots, N \} \) such that \(v' = \gamma \cdot v \). We define foot \(n(e) = w_i^* \) if the edge \(e \) corresponds to either of the generators \(\gamma_i, \gamma_i^{-1} \). This defines a map \(\text{foot}_n : E_n \to R \subset C \).

For \(v \in V_n \) let \(E_v \) be the set of edges with a vertex at \(v \) and \(R_v = \text{foot}_n(E_v) \subset R \). Since \(\gamma_i \cdot v = v \) if and only if \(\gamma_i^{-1} \cdot v = v \), it follows that for \(z = w_i^* \in R_v \), the intersection \(\text{foot}_n^{-1}(z) \cap E_v \) consists of precisely the two edges corresponding to the generators \(\gamma_i, \gamma_i^{-1} \); we label these edges as \(e_z(v, +), e_z(v, -) \).

It is easy to see that the graphs \(\Gamma'_n \) satisfy the hypotheses of Proposition 2.8. Since each vertex has valence at most \(2N \), the balls \(B(v_n,0,k) \) are finite, so we can pass to a subsequence such that the pointed graphs \(\Gamma'_n, v_{n,0} \) converge to a limit pointed graph \(\Gamma = (V, E, v_0) \), in the sense that for any \(k \geq 1 \), for all \(n \) large enough there is an isomorphism \(i_n \) of the ball \(B(v_0, k) \) with \(B(v_{n,0}, k) \) taking \(v_0 \) to \(v_{n,0} \). We may also assume that the isomorphisms \(i_n \) for different \(n \) are compatible with the mappings \(\text{foot}_n \) and the labeled edges \(e_z(v, +), e_z(v, -) \), thus inducing a corresponding mapping foot : \(E \to R \subset C \) and a labeling of the edges of \(\Gamma \). Then the limit graph \(\Gamma \) satisfies the hypotheses of Proposition 2.8 and we obtain a corresponding pointed log-Riemann surface \((S, p) \) ramified over the points of \(R \) such that \(\Gamma(S,0) = \Gamma \), with \(p \) in a generic fiber \(\pi^{-1}(0) \), and the star containing \(p \).
corresponding to the vertex \(v_0 \) of \(\Gamma \). Moreover \(S \) has at most \(N \) ramification points. It is easy to see that any compact \(K \subset S \) containing \(p \) embeds isometrically in all the log-Riemann surfaces \(S_n \) via an isometry \(\iota_n \) such that \(\iota_n(p) = p_n, \iota'_n(p) = 1 \), hence \((S_n, p_n)\) converges to \((S, p)\). ♣

2.5. Decomposition into Kobayashi-Nevanlinna cells. Let \(S \) be a log-Riemann surface with \(R \neq \emptyset \). We define a cellular decomposition of \(S \) due to Kobayashi \([\text{Kob35}]\) and Nevanlinna \([\text{Nev53}]\) which is useful in determining the type (parabolic or hyperbolic) of simply connected log-Riemann surfaces.

Definition 2.12. Let \(w^* \in R \). The Kobayashi-Nevanlinna cell of \(w^* \) is defined to be the set
\[
W(w^*) := \{ w \in S^* | d(w, w^*) < d(w, R - \{w^*\}) \}
\]

Proposition 2.13. The Kobayashi-Nevanlinna cells satisfy:
1. Any \(w \in W(w^*) \) lies on an unbroken geodesic \([w^*, w] \subset W(w^*)\). In particular \(W(w^*) \subset V(w^*) \) is open and path-connected.
2. The boundary of \(W(w^*) \) is a locally finite union of geodesic segments.
3. \(S = \bigcup_{w^* \in R} W(w^*) \)

Proof: (1): For any \(w \in W(w^*), w \neq w^* \), since \(R \neq \emptyset \) there is a maximal unbroken geodesic \(\gamma(w, \theta) \) converging to a point of \(R \) at one end, and since \(w^* \) is the point in \(R \) closest to \(w \), there must be such a geodesic \([w, w^*] \) converging to \(w^* \). Moreover for any \(w' \in [w, w^*], w'_i \in R - \{w^*\} \), we have
\[
d(w^*, w') = d(w^*, w) - d(w, w') < d(w_i^*, w) - d(w, w') \leq d(w_i^*, w')
\]
hence \([w, w^*] \subset W(w^*)\).

(2): Let \(w \in \partial W(w^*) \). By discreteness of \(R \) there are finitely many ramification points \(w^* = w^*_1, \ldots, w^*_n \) at minimal distance \(r > 0 \) from \(w \), and \(n \geq 2 \). The disc \(B(w, r) \) is a euclidean disk, with the points \(w^*_i \) lying on its boundary; the angular bisectors of the sectors formed by \([w, w^*_i], [w, w^*_{i+1}]\) then are equidistant from \(w^*_i, w^*_{i+1} \) and lie in \(\partial W(w^*_i) \cap \partial W(w^*_{i+1}) \), while all other points in the disk lie in \(W(w^*_i) \) for some \(i \). Hence a neighbourhood of \(w \) in \(\partial W(w^*) \) is given either by a geodesic segment passing through \(w \) (if \(n = 2 \)) or by two geodesic segments meeting at \(w \) (if \(n > 2 \)).

(3): Any \(w \in S \) belongs to \(\overline{W(w^*)} \) for any ramification point \(w^* \) at minimal distance from \(w \). ♣

2.6. Kobayashi-Nevanlinna parabolicity criterion. We consider a log-Riemann surface \(S \) such that the finite completion \(S^\infty \) is simply connected. We will use the following theorem of Nevanlinna \([\text{Nev53}]\) p. 317:
Theorem 2.14. Let $F \subset S^\times$ be a discrete set and $U : S^\times - F \to [0, +\infty)$ be a continuous function such that:

1. U is C^1 except on at most a family of locally finite piecewise smooth curves.
2. U has isolated critical points.
3. $U \to +\infty$ as $z \to F$ or as $z \to \infty$.

For $\rho > 0$ let Γ_ρ be the union of the curves where $U = \rho$, and let

$$L(\rho) = \int_{\Gamma_\rho} |\text{grad}_z U||dz|.$$

where $|\text{grad}_z U||dz|$ is the conformally invariant differential given by $\sqrt{(\frac{\partial U}{\partial x})^2 + (\frac{\partial U}{\partial y})^2} |dz|$ for a local coordinate $z = x + iy$. If the integral

$$\int_0^\infty \frac{d\rho}{L(\rho)}$$

is divergent then the surface S^\times is parabolic.

We now define a function U on S as follows:

Let ω be the continuous differential $\omega := |d\arg(w - w^*)|$, where for each $w \in S$, w^* is a ramification point such that $w \in \bar{W}(w^*)$. Fix a base point $w_0 \in S$ and define $\tau : S \to [0, +\infty)$ by

$$\tau(w) := \inf \int_{w_0}^{w} \omega$$

where the infimum is taken over all paths from w_0 to w. We define another non-negative continuous function $\sigma : S \to [0, +\infty)$ by

$$\sigma(w) := |\log|w - w^*||$$

where as before for each $w \in S$ the point w^* is a ramification point such that $w \in \bar{W}(w^*)$.

Then the sum $U = \tau + \sigma : S \to \mathbb{R}$ is a function satisfying the conditions (1)-(3) of the above theorem. The map $t = \sigma + i\tau$ gives a local holomorphic coordinate away from the boundaries of the Kobayashi-Nevanlinna cells, for which we have $|\text{grad}_z U||dt| = \sqrt{2} |dt|$. On a level set $\Gamma_\rho = \{U = \rho\}$ we have $0 \leq \tau \leq \rho, t = (\rho - \tau) + i\tau$, so $|\text{grad}_z U||dt| = \sqrt{2} |dt| = 2 |d\tau|$. For a given $\theta > 0$, the connected components of the level set $\{\tau(w) = \theta\}$ are Euclidean line segments which are half-lines or intervals; let $0 \leq n(\theta) \leq \infty$ denote the number of such line segments. Each such segment intersects Γ_ρ in at most one point; hence we obtain

$$L(\rho) = \int_{\Gamma_\rho} |\text{grad}_z U||dt| = 2 \int_{\Gamma_\rho} |d\tau| \leq \int_0^\rho n(\theta)d\theta$$

Using Theorem 2.14 above, we obtain the following:

Theorem 2.15. Let S be a log-Riemann surface such that S^\times is simply connected. For $\theta > 0$ let $0 \leq n(\theta) \leq \infty$ denote the number of connected components of the level set $\{\tau(w) = \theta\}$. If the integral

$$\int_0^\infty \frac{d\rho}{\int_0^\rho n(\theta)d\theta}$$

is divergent then S^\times is biholomorphic to \mathbb{C}.
This implies:

Corollary 2.16. Let S be a log-Riemann surface with a finite number of ramification points such that S^\times is simply connected. Then S is biholomorphic to \mathbb{C}.

Proof: In this case the function $n(\theta)$ is bounded above by twice the number of ramification points of S, so $\int_0^\rho n(\theta)d\theta \leq C\rho$ and hence the integral in Theorem 2.15 diverges. \diamond

3. Uniformization theorems

We can now prove Theorem 1.1 as follows:

Proof of Theorem 1.1 Let $p \in S$. Let D_1, D_2 be the numbers of infinite and finite order ramification points respectively of S. By Corollary 2.16 the log-Riemann surface S^\times is biholomorphic to \mathbb{C}. The approximating finitely completed log-Riemann surfaces S_n^\times given by Theorem 2.10 are also biholomorphic to \mathbb{C} and for n large all have $D_1 + D_2$ ramification points. Let $\tilde{F} : \mathbb{C} \to S^\times$ and $\tilde{F}_n : \mathbb{C} \to S_n^\times$ be corresponding normalized uniformizations such that $\tilde{F}(0) = p, \tilde{F}_n(0) = p_n, \tilde{F}'_n(0) = 1$, with inverses $G = \tilde{F}^{-1}, G_n = \tilde{F}_n^{-1}$. By Theorem 1.2 of [BPM10a] the entire functions $F_n = \pi_n \circ \tilde{F}_n$ converge uniformly on compacts to the entire function $F = \pi \circ \tilde{F}$. Since $\pi_n : S_n^\times \to \mathbb{C}$ is finite to one, the entire function F_n has a pole at ∞ of order equal to the degree of π_n, and is hence a polynomial. The nonlinearities $R_n = F''_n/F'_n$ are rational functions whose poles are simple poles with integer residues at the critical points of F_n, which are images of the ramification points of S_n under G_n. Thus the rational functions R_n are all of degree $D_1 + D_2$, converging normally to F''/F', so $R = F''/F'$ is a rational function of degree at most D.

Each ramification point w^* of S corresponds to a ramification point w^*_n of S_n of order converging to that of w^*. We note that for n large any compact $K \subset S^\times$ containing p embeds into the approximating surfaces S_n^\times. Since the maps G_n converge to G uniformly on compacts of S^\times by Theorem 1.1 [BPM10a], the images under G_n of ramification points in S_n^\times corresponding to finite ramification points in S converge to their images under G, giving in the limit D_2 simple poles of R, with residue at each equal to the order of the corresponding finite ramification point of S minus one.

On the other hand the infinite order ramification points of S are not contained in S^\times, so the images of the corresponding ramification points in S_n^\times under G_n cannot be contained in any compact in \mathbb{C} and hence converge to infinity. The rational functions R_n have a simple zero at infinity, and have D_1 simple poles converging to infinity. Applying the Argument Principle to a small circle around infinity it follows that R has a pole of order $D_1 - 1$ at infinity.

Thus R is of the form

$$
\frac{F''}{F'} = \sum_{i=1}^{D_2} \frac{m_i - 1}{z - z_i} + P'(z)
$$
where m_1, \ldots, m_{D_1} are the orders of the finite ramification points of S and P is a polynomial of degree D_1. Integrating the above equation gives

$$F(z) = \pi(p) + \int_0^z (t - z_1)^{m_1-1} \cdots (t - z_{D_2})^{m_{D_2}-1} e^{P(t)} dt$$

as required. ∘

We can prove the converse using the above Theorem and the compactness Theorem. We need a lemma:

Lemma 3.1. Let (S_n, p_n) converge to (S, p). If all the surfaces S_n^\times are simply connected then S^\times is simply connected.

Proof: We may assume the points p_n, p belong to generic fibers. Let Γ_n, Γ denote the corresponding skeletons. Let γ be a loop in S^\times based at p. We may homotope γ away from the finite ramification points to assume that $\gamma \subset S$. By Proposition 2.4 γ corresponds to a path of edges $\alpha = \{e_1, \ldots, e_n\}$. By induction on the number of edges we may assume that α is simple. If $\text{foot}(\alpha) = \{w^*\}$ is a singleton then w^* is a finite ramification point and γ is trivial in S^\times. Otherwise there are distinct ramification points $w_1^*, w_2^* \in \text{foot}(\alpha)$. Considering the isometric embedding of γ in S_n for n large gives a path γ_n and a corresponding path of edges α_n; for n large, it follows that there are distinct ramification points in $\text{foot}_n(\alpha_n)$, hence γ_n is non-trivial in S_n^\times, a contradiction. ∘

Proof of Theorem 1.2 Given an entire function F with $F''(z) = Q(z)e^{P(z)}$ we can approximate it by polynomials F_n such that $F_n'(z) = Q(z)(1 + P(z)/n)^n$. Let $Z_n = \{P = -n\} \cup \{Q = 0\} \cup \subset \subset \mathbb{C}$ be the zeroes of F_n'. The pair $(S_n = \mathbb{C} - Z_n, \pi_n = F_n : \mathbb{C} - Z_n \to \mathbb{C})$ is a log-Riemann surface with finite ramification set \mathcal{R}_n which can be naturally identified with Z_n, the order of a ramification point being the local degree of F_n at the corresponding point of Z_n.

For n large the surfaces S_n all have the same number of ramification points $D = D_1 + D_2$ where D_1 is the degree of P and D_2 the number of distinct zeroes of Q. Moreover since F_n' converge uniformly on compacts, choosing a point z_0 such that $Q(z_0) \neq 0$, for all n large $|F_n'|$ is uniformly bounded away from 0 on a fixed neighbourhood of z_0, so $d(z_0, \mathcal{R}_n)$ is uniformly bounded away from 0. It follows from Theorem 2.11 that $(S_n, p_n = z_0)$ converge along a subsequence to a limit log-Riemann surface (S, p) with finitely many ramification points such that $\pi(p) = z_0$. Since S_n^\times is simply connected for all n, by the previous Lemma S^\times is simply connected. By Theorem 2.10 S^\times is biholomorphic to \mathbb{C}. Let $\tilde{F} : \mathbb{C} \to S^\times$ be a normalized uniformization such that $\tilde{F}(z_0) = p, \tilde{F}'(z_0) = F'(z_0)$. It follows from Theorem 1.2 of [BPM10a] that the maps F_n converge normally to $\pi \circ \tilde{F}$, so $F = \pi \circ \tilde{F}$. Thus F defines the uniformization of a simply connected log-Riemann surface with finitely many ramification points. The degrees of Q, P relate to the numbers of finite poles and poles at infinity respectively of the nonlinearity F''/F'; the relations between the degrees of Q, P and the numbers of finite and infinite order ramification points of S then follow from the previous Theorem. ∘

References

[BPM10a] K. Biswas and R. Perez-Marco. Log-riemann surfaces, caratheodory convergence and euler’s formula. preprint, 2010.
[BPM10b] K. Biswas and R. Perez-Marco. Uniformization of higher genus finite type log-riemann surfaces. preprint, 2010.

[Kob35] Z. Kobayashi. Theorems on the conformal representation of riemann surfaces. Sci. Rep. Tokyo Bunrika Daigaku, sect. A, 39, 1935.

[Nev32] R. Nevanlinna. Uber riemannsche flache mit endlich vielen windungspunk- ten. Acta Mathematica, 58, 1932.

[Nev53] R. Nevanlinna. Analytic functions. Grundlehren der Matematischen Wissenschaften in Einzeldarstellungen 162, 2nd Edition, Springer Verlag, 1953.

[Tan01] M. Tanighuchi. Explicit representation of structurally finite entire functions. Proc. Japan Acad., 77, pages 69–71, 2001.

RKM Vivekananda University, Belur Math, WB-711 202, India

CNRS, LAGA, UMR 7539, Université Paris 13, Villetaneuse, France