Comparision of central corneal thickness in pseudoexfoliation syndrome and pseudoexfoliation glaucoma

Biradavolu Asritha1, Shaik Gohar Firdous1,*, Sri Roopa Kaveripakam1, Abdul Sulaiman Kadher1

1Dept. of Ophthalmology, Narayana Medical College, Nellore, Andhra Pradesh, India

1. Introduction

Pseudoexfoliation syndrome is a microfibrillopathy, with strong genetic component. Single nucleotide polymorphism (SNP) of lysyl oxidase 1 gene (LOXL1) located on chromosome 15 is responsible for pseudoexfoliation syndrome and glaucoma.1 It is characterized by the production and accumulation of extracellular fibrillar material in different tissues of the body. Characteristic whitish flake material is deposited over several ocular structures including corneal endothelium, pupillary margin, anterior lens capsule, zonules, ciliary body, trabecular meshwork. It is the most common identifiable cause for secondary open angle glaucoma.2 Other systemic conditions associated with PXF are cardiovascular disease, cerebrovascular disease, sensorineural hearing loss, Alzheimers disease.3

The goldstandard for the measurement of intraocular pressure is Goldmann applanation tonometer. Thinner corneas underestimate the IOP and thicker corneas overestimate the IOP, thus a correction factor must be added to the measured IOP, when CCT deviates from the mean.4–7 In case of deviation of CCT from the mean of 520 μm, 0.7mmHg should be added for every 10 μm.7 Thus it can lead to underestimation of IOP in cases of pseudoexfoliation syndrome with thin corneas. Pseudoexfoliation glaucoma constitute about 30% cases of pseudoexfoliation syndrome and we may overlook early glaucomatous changes. PXG has a more rapid progression and worse prognosis compared to POAG.

The study aims to measure the CCT in patients with pseudoexfoliation syndrome(PXS) and pseudoexfoliation glaucoma(PXG) using ultrasonic pachymetry and compare the two.

2. Materials and Methods

This is a cross-sectional comparative study conducted over a period of 12 months from April 2018 to April 2019, on 210 patients attending the Department of Ophthalmology, Narayana Medical College, Nellore. The study was...
Central corneal thickness of patients in Group 1 is 525 ± 21.22 μm, Group 2 is 515 ± 22.94 μm, Group 3 is 528 ± 23.35 μm. Patients in Group 2 have thinner corneas compared to those with Group 1 and Group 3, the difference being statistically significant (p<0.05). Patients in Group 1 had thinner corneas compared to Group 3, the difference being statistically insignificant (p=0.432).

4. Discussion

According to our study, the corneas are significantly thinner in patients with pseudoexfoliative glaucoma compared to pseudoexfoliation syndrome and controls. Pseudoexfoliation syndrome patients have thinner corneas than that of controls with no statistical significance.

Similar results are shown by several studies. Kitsos and colleagues conducted a study to evaluate the CCT in patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma using ultrasound pachymetry. They concluded that the corneas are significantly thinner in patients with pseudoexfoliation glaucoma (526±34.30 μm) compared to individuals with pseudoexfoliation syndrome (550.64±39 μm) and controls (547.36±33.1 μm) p<0.05.

In another study conducted by Inoue and colleagues, patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma and controls were included and central corneal thickness was measured in all the cases. The study concluded that the corneas are thinner in PXS (529±31 μm) compared to controls (547±28 μm) with p = 0.03. No significant difference was found between the cases of PXS with and without glaucoma.

In the study conducted by Shah and colleagues, the central corneal thickness was measured in normal individuals and pseudoexfoliation glaucoma. The study concluded that the cornea is thinner in pseudoexfoliation glaucoma patients (530.7μm) compared to the normal individuals(553.9μm), with P<0.001.

Bechmann and colleagues conducted a study to evaluate the CCT in different types of glaucoma using OCT. The study concluded that patients with pseudoexfolia tion glaucoma havethinner corneas(493±33 μm) compared to healthy individuals(530±32μm) with p<0.0001. Another study conducted by Sobothka and colleagues where CCT was measured using OCT in different types of glaucoma, concluded that the CCT was less in pseudoexfoliation glaucoma (507±25 μm) compared to normal individuals (524±25 μm), but was not statistically significant. Yagci and colleagues conducted a study to evaluate the relation between CCT and IOP among glaucomatous eyes and normals, where CCT was measured using ultrasound pachymetry. CCT was lower in pseudoexfoliation glaucoma cases(526.28±31.73 μm) compared to normals (533.96±29.25 μm), the difference being statistically in significant. In another study conducted by Aghaian and colleagues comparing CCT using ultrasonic pachymetry...
Table 1: Age and gender distribution

Group	Number	Males	Females	Mean Age (yrs)
Group 1 (PXS)	70	40	30	63.23 ± 6.54
Group 2 (PXG)	70	37	33	65.46 ± 7.63
Group 3 (CNT)	70	39	31	61.42 ± 7.34

Table 2: Central corneal thickness

Group	Number of cases	CCT (µm)	F value	Overall P value
Group 1 (PXS)	70	525 ± 21.22		
Group 2 (PXG)	70	515 ± 22.94	6.439	0.002
Group 3 (CNT)	70	528 ± 23.35		

Table 3: Comparison of CCT among three groups

Groups	P value
Group 1 vs Group 2 (PXS vs PXG)	0.008*
Group 1 vs Group 3 (PXS vs CNT)	0.432
Group 2 vs Group 3 (PXG vs CNT)	0.001*

*Statistically Significant Difference (p value < 0.05)

among glaucoma patients, concluded that patients with PXG have significantly thinner corneas compared to healthy individuals.

Hepsen et al. concluded that the central corneal thickness in patients with pseudoexfoliation syndrome is 533±32µm and in controls is 527±42µm. Thus CCT is greater in PXS patients compared to controls, the difference being statistically significant, p=0.232. As per study conducted by Acar and colleagues, central corneal thickness is lower in pseudoexfoliation syndrome (540.8±30.2 µm) than in controls (551.5±28.3 µm). Statistical significance was not achieved p=0.315

The study conducted by Zheng and colleagues to measure cell density in different layers of cornea in eyes with pseudoexfoliation syndrome, observed the presence of pseudo exfoliative deposits in the corneal stroma and reduced number of stromal keratocytes in eyes with pseudoexfoliation syndrome compared to those without pseudoexfoliation syndrome. They concluded that the presence of pseudoexfoliative material is responsible for inducing a poptosis of stromal keratocytes, leading to weakening of extracellular matrix; thus resulting in corneal thinning.

5. Conclusion

The study concludes that the patients with pseudoexfoliation glaucoma have thinner corneas compared to those with pseudoexfoliation syndrome and healthy individuals. Thus the intraocular pressure measurement in pseudoexfoliation syndrome patients should be correlated with central corneal thickness, as underestimation of intraocular pressure in such patients may lead to overlooking glaucoma, that has rapid progression and poor prognosis.

6. Source of funding
None.

7. Conflicts of interest
None.

References

1. Thorleifsson G, Magnusson KP, Sulem P. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Sci. 2007;317(5843):1397–1400.
2. Richa R, Schlotzer-Schrehard U. Exfoliation syndrome. Surv Ophthalmol. 2001;45(4):265–315.
3. Katsi V, Pavlidis AN, Kallistratos MS. Cardiovascular Repercussions of the Pseudoexfoliation Syndrome. North Am J Med Sci. 2013;5(8):454–459.
4. Stodmeister R. Applanation tonometry and correction according to corneal thickness. Acta Ophthalmol Scand. 1998;76(3):319–324.
5. Lee M, Ahn J. Effects of central corneal stromal thickness and epithelial thickness on intraocular pressure using Goldmann applanation and non-contact tonometers. PLoS One. 2016;11(3):324–328.
6. Yagić R, Eksioglu U, Midillioglu I, Yalvac I, Altıparmak E, Duman S. Central corneal thickness in primary open angle glaucoma, pseudoexfoliative glaucoma, ocular hypertension, and normal population. Eur J Ophthalmol. 2005;15(3):324–328.
7. Ehlers N, Bramsen T, Sperling S. Applanation tonometry and central corneal thickness. Acta Ophthalmol (Copen). 1975;53(1):34–43.
8. Kitsos G, Gartzios C, Asproudis I, Bagli E. Central corneal thickness in subjects with glaucoma and in normal individuals (with or without pseudoexfoliation syndrome. Clin Ophthalmol. 2009;3(1):537–542.
9. Inoue K, Okugawa K, Oshika T, Amano S. Morphological study of corneal endothelium and corneal thickness in pseudoexfoliation syndrome. Japanese J Ophthalmol. 2003;47(3):235–239.
10. Shah S, Chatterjee A, Mathai M. Relationship between corneal thickness and measured intraocular pressure in a general ophthalmology clinic. *Ophthalmol*. 1999;106(11):2154–2160.

11. Bechmann M, Thiel MG, Roesen B. Central corneal thickness determined with optical coherence tomography in various types of glaucoma. *Br J Ophthalmol*. 2000;84:688–691.

12. Ventura ACS, Böhnke M, Mojon DS. Central corneal thickness measurements in patients with normal tension glaucoma, primary open angle glaucoma, pseudoexfoliation glaucoma, or ocular hypertension. *Br J Ophthalmol*. 2001;85(7):792–795.

13. Yagci R, Eksioglu U, Midillioglu I, Yalvac I, Altiparmak E, Duman S. Central corneal thickness in primary open angle glaucoma, pseudoexfoliative glaucoma, ocular hypertension, and normal population. *Eur J Ophthalmol*. 2005;15(3):324–328.

14. Aghaian E, Choe JE, Lin S. Central corneal thickness of Caucasians, Chinese, Hispanic, Filipinos, African Americans, and Japanese in a glaucoma clinic. *Ophthalmol*. 2004;111:2211–2219.

15. Hepsen IF, Yagci R, Keskin U. Corneal curvature and central corneal thickness in eyes with pseudoexfoliation syndrome. *Can J Ophthalmol*. 2007;42(5):677–680.

16. Arnarsson A, Damji KF, Sverrisson T, Sasaki H, Jonasson F. Pseudoexfoliation in the Reykjavik eye study: prevalence and related ophthalmological variables. *Acta Ophthalmol Scand*. 2007;85(8):822–827.

17. Acar BT, Buttanri IB, Sevim MS. Evaluation of anterior segment parameters in pseudoexfoliation syndrome patients. *Turk J Ophthalmol*. 2010;40(4):217–222.

Author biography

Biradavolu Asritha Assistant Professor
Shaik Gohar Firdous Post Graduate
Sri Roopa Kaveripakam Post Graduate
Abdul Sulaiman Kadher HOD

Cite this article: Asritha B, Firdous SG, Kaveripakam SR, Kadher AS. Comparison of central corneal thickness in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. *Int J Ocul Oncol Oculoplasty* 2019;5(4):229-232.