Superconducting properties of $Y_xLu_{1-x}Ni_2B_2C$ and $La_3Ni_2B_2N_{3-\delta}$: A comparison between experiment and Eliashberg theory

S. Manalo, H. Michor, M. El-Hagary, and G. Hilscher
Institut für Experimentalphysik, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria

E. Schachinger
Institut für Theoretische Physik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria

Specific heat and resistivity measurements were performed on polycrystalline samples of the solid-solution $Y_xLu_{1-x}Ni_2B_2C$ in order to determine thermodynamic properties such as the specific-heat difference ΔC, the thermodynamic critical field $H_c(T)$, as well as the upper critical field $H_{c2}(T)$. These properties were analyzed within the Eliashberg theory including anisotropy effects, yielding electron-phonon coupling anisotropy parameters $\langle a^2_k \rangle$ ranging between 0.02 and 0.03 for the whole series, and Fermi velocity anisotropy parameters $\langle b^2_k \rangle = 0.245-0.3$. Excellent agreement between theory and experiment was achieved for these parameters, the Sommerfeld constant γ and model phonon spectra determined from specific heat measurements. An analysis of the previously investigated boronitride $La_3Ni_2B_2N_{3-\delta}$ for comparison revealed the electron-phonon anisotropy to be of great significance in describing its thermodynamic properties and the calculations yielded $\langle a^2_k \rangle \approx 0.08$ and $\langle b^2_k \rangle \approx 0.245$. The T_c-behavior within the series $Y_xLu_{1-x}Ni_2B_2C$ is discussed in terms of the density of states at the Fermi level $N(0)$.

I. INTRODUCTION

The transition-metal borocarbide superconductors RNi_2B_2C with transition temperatures comparable to those of the A-15 compounds (e.g. $R = Lu$ with $T_c \approx 16.5\,\text{K}$, Nb_2Ge with $T_c \approx 23\,\text{K}$) are a subject of broad interest for research on intermetallic superconductors. Siegrist et al. reported the crystal structure of the RNi_2B_2C superconductors to be a filled version of the ThCr$_2$Si$_2$-type structure stabilized by the incorporation of carbon, where Ni_2B_2 layers are separated by RC layers. In the related compound $La_3Ni_2B_2N_{3-\delta}$, three LaN-planes separate the Ni_2B_2 layers. Despite of the layered structure reminiscent of the cuprate superconductors, the electronic structure of the single RC-layer borocarbides as well as the triple LaN-layer boronitride is three-dimensional. Nickel-site substitutions on both the borocarbides and the boronitride revealed similar electronic properties of the bands related to the $3d$-electrons.

At a first glance, the thermodynamic properties of $La_3Ni_2B_2N_{3-\delta}$ seem to be close to the weak coupling BCS-predictions but standard single-band BCS-theory cannot explain the pronounced upward curvature of the upper critical field $H_{c2}(T)$ close to T_c. If applied to the borocarbides, it fails to describe both the thermodynamic properties and the upper critical field obtained from experiment. Shulga et al. analyzed the upper critical field $H_{c2}(T)$ of $LuNi_2B_2C$ and YNi_2B_2C in terms of the Eliashberg-theory using an isotropic two-band model. An isotropic single band model cannot reproduce the positive curvature near T_c apparently, because of the dominant role of anisotropy effects in this system. Recently, Dugdale et al. presented an experimental investigation on the Fermi surface of $LuNi_2B_2C$, revealing that it consists of three sheets.

Freundenberg et al. studied the solid solution $Y_xLu_{1-x}Ni_2B_2C$ and showed, that T_c exhibits a minimum at about $x \approx 0.5$ with a T_c-depression of about 1K. They pointed out, that this feature cannot be described alone by disorder effects with the residual resistivity ratio as a measure, and tentatively supposed the electron phonon coupling strength λ to be the origin of this behavior.

We present in this paper investigations of the thermodynamic properties and of the upper critical field $H_{c2}(T)$ of the series $Y_xLu_{1-x}Ni_2B_2C$ and the boronitride $La_3Ni_2B_2N_{3-\delta}$. The critical temperature, the specific heat, and the temperature dependence of the upper critical magnetic field were measured for all samples of the series $Y_xLu_{1-x}Ni_2B_2C$ and the results, including previous measurements of $La_3Ni_2B_2N_{3-\delta}$ (Ref. 1), were analyzed using an anisotropic model of the s-wave Eliashberg-formalism. Considering the change in mass from Y to Lu in the series and different lattice properties of both systems, we used model phonon spectra calculated from the phonon contribution to the specific heat and found these to be sufficient in describing both the thermodynamic properties and the upper critical field of $La_3Ni_2B_2N_{3-\delta}$ and $Y_xLu_{1-x}Ni_2B_2C$. An analysis of the coupling strength and electronic density of states in $Y_xLu_{1-x}Ni_2B_2C$ gives an insight on the origin of the dip in $T_c(x)$. Sec. II presents details of sample preparation and measuring techniques and Sec. III shows the theoretical background used for the analysis. In Sec. IV, an analysis of the experimental data in terms of the anisotropic...
II. EXPERIMENTAL

Polycrystalline samples of $Y_xLu_{1-x}Ni_2B_2C$ were synthesized on a water-cooled copper grove by high frequency induction melting under argon atmosphere. The starting materials are rare earth ingots ($R = Y$, Lu) (Strem chemicals, USA: 99.9%), Ni ingots (Strem chemicals, USA: 99.9%), crystalline boron (Starck, Germany: 99.5%) and carbon ingots (Starck, Germany: 99.99%). A good homogeneity was obtained by performing the following three steps of sample preparation: (i) Nickel and boron were melted two times. (ii) Rare-earth and carbon ingots were alloyed together while compensating the carbon loss (1-2%) during the remelting stage. (iii) The two precursor alloys NiB and RC were melted together. The buttons were broken and remelted for at least 12 times, and finally annealed at 1020°C for at least one week in evacuated quartz tubes. The phase purity of the samples was checked at room temperature by applying X-ray diffraction (XRD) in a Guinier-Huber camera using germanium as an internal standard. The X-ray photographs of the samples, indexed on the basis of the tetragonal crystal structure of LuNi$_2$B$_2$C (space group I4/mmm), show that the samples of the solid solution $Y_xLu_{1-x}Ni_2B_2C$ are almost single phase with traces of $Y_1_xLu_{2-x}B_2C_2$ and $Y_{1-x}Lu_xNi_4B$. According to the x-ray line intensities and optical micrograph investigations the total amount of these secondary phases is about 2-5% in all samples investigated.

Specific heat measurements in the temperature range 1.5 K-160 K and magnetic fields up to 9 T were carried out on 1-2 g samples employing a quasi-adiabatic step-heating technique. The sample holder consists of a thin sapphire disc ($m \sim 0.2$ g) with a strain gauge heater and a CERNOX temperature sensor. The field calibration of the latter has been performed against two GaAlAs resistivity thermometers and a capacitive SrTiO$_3$ sensor. Four point resistivity measurements were performed in fields up to 9 T in order to determine $H_{c2}(T)$ by means of a midpoint criterion. The transition widths according to a 10% and 90% criterion are indicated by error bars in the figures containing the upper critical field obtained from the experiment.

The characterization of the polycrystalline $Y_xLu_{1-x}Ni_2B_2C$ samples with respect to their residual resistance ρ_0 and the room temperature residual resistance ratio (RRR) turned out to be rather problematic, because our well annealed samples are rather brittle and partly textured. Thus, we had difficulties to obtain reproducible and reliable values of the RRR ranging between 7 and 41. We obtained a very high RRR value of 41 for LuNi$_2$B$_2$C (twice as large as typical single crystal values, see e.g. Ref. [1] but a much lower value of just 12 for YNi$_2$B$_2$C although its thermodynamic mean transition temperature $T_c = 15.56$ K (see below) is even slightly higher than $T_c = 15.4$ K of a high quality YNi$_2$B$_2$C single crystal$^{[1]}$ with RRR= 37. The upper critical fields $H_{c2}(T)$ match to each other despite of the different RRR values (compare Fig. 11 of this work with Fig. 4 of Ref. [1]). In the latter paper Nohara et al.$^{[14]}$ reported that the Sommerfeld value γ of clean limit YNi$_2$B$_2$C and LuNi$_2$B$_2$C exhibits a \sqrt{H} dependence which changes to a linear relation $\gamma \propto H$ in the dirty limit. We note, that we found an approximate $\gamma \propto \sqrt{H}$ dependence in all our samples including La$_3$Ni$_2$B$_2$N$_{3-t}$, although the RRR shown in Ref. [1] is only 3, similar to the "dirty" Y(Ni$_{0.8}$Pt$_{0.2}$)$_2$B$_2$C for which $\gamma \propto H$ was reported. It is obvious that the grain boundaries of the polycrystalline samples strongly reduce the RRR value especially in Lu$_3$Ni$_2$B$_2$N$_{3-t}$. Further arguments for the extrinsic origin of the large residual resistance ρ_0 of La$_3$Ni$_2$B$_2$N$_{3-t}$ will be given in context with analysis of the experimental data in terms of the anisotropic Eliashberg theory (see Sec. VI E).

III. THEORETICAL BACKGROUND

Anisotropy effects have to be considered in the description of the experimental results for $H_{c2}(T)$ in order to obtain a satisfactory agreement between theory and experiment. Daams and Carbott$^{[11]}$ applied the separable model introduced by Markovitz and Kadanoff$^{[12]}$ to describe an anisotropic electron-phonon interaction spectral function within Eliashberg theory:

$$[\alpha^2 F(\omega)]_{k,k'} = (1 + a_k)\alpha^2 F(\omega)/(1 + a_{k'})$$

where \mathbf{k} and $\mathbf{k'}$ are the incoming and outgoing quasiparticle momentum vectors in the electron-phonon scattering process and a_k is an anisotropy function describing the deviation of the anisotropic spectral function, $[\alpha^2 F(\omega)]_{k,k'}$, from the isotropic one, $\alpha^2 F(\omega)$, in the direction of \mathbf{k}. It has the important feature that its Fermi surface average $\langle a_k \rangle = 0$ and as anisotropy effects are rather small it is sufficient to keep only the mean-square anisotropy $\langle a_k^2 \rangle$ as the important anisotropy parameter.

The theory of $H_{c2}(T)$ for anisotropic polycrystalline superconductors in a separable model scheme was developed by Prohammer and Schachinger$^{[13]}$. It employs the separable ansatz for the anisotropy of the electron-phonon interaction and the ansatz

$$v_F, k = (1 + b_k)\langle v_F \rangle$$

which describes the anisotropy of the Fermi velocity: b_k is an anisotropy function defined the same way as a_k. The upper critical field is then described by the set of equations (27-30 in Ref. [3]) and thermodynamic properties of the borocarbides were calculated using Eqs. (33-37) of Ref. [4]. N-band models have been extensively studied...
as a tool to describe anisotropic features of superconductors. Shulga et al. applied the two-band model H_{c2} equations to their experimental results and were able to describe the experimental data with the corresponding equations. Thus, the separable model employed in this work can be described in its simplest form by a Fermi surface split into two half-spheres of equal weight

$$P(a) = \delta(-a)/2 + \delta(a)/2,$$

with radii $r \pm a$, if r is the radius of the equivalent isotropic Fermi sphere. Using the Fermi surface harmonics (FSH) notation introduced by Allen et al., Daams observed that this separable model was equivalently described by a restriction to zeroth-order FSH in each of the two subregions of the Fermi surface. According to her work, the separable model applied in our analysis corresponds to a two-band model in which the two Fermi surface regions have equal weight. It is of course possible to define different weights for the two regions, thus changing the distribution function, but Daams demonstrated that in the case of weak anisotropy the influence of different weights in a separable model is of negligible significance for the thermodynamics of anisotropic superconductors.

In the case of the upper critical field any deviation from the equal weight configuration causes $H_{c2}(T)$ to approach the isotropic case as is demonstrated in Fig. 1. The deviation function in the insert of Fig. 4

$$D_{H_{c2}}(T/T_c) = D_{H_{c2}}(t) = \frac{H_{c2,a}(t)}{H_{c2,i}(t)} - 1$$

(4)

demonstrates the deviation of the upper critical field of an anisotropic system $H_{c2,a}(T)$ from the upper critical field of an isotropic, equivalent system $H_{c2,i}(T)$. The numerical result for equal weights (1:1) was fitted to the upper critical field of LuNi$_2$B$_2$C to fix the parameters (a^2_k, b^2_k) and (v_F). The mean Fermi velocity (v_F) and its anisotropy parameter (b^2_k) were used to fit the experimental data near T_c, and (a^2_k) was changed to describe $H_{c2}(T)$ at lower temperatures. With these parameters, we calculated the upper critical field for different weights of the Fermi sheets $(1:0)$ to investigate the change in the behavior of H_{c2}. Obviously, $H_{c2,a}$ approaches $H_{c2,i}$ as one of the two sheets becomes dominant in weight and this is indicated by a flattening of $D_{H_{c2}}(t)$.

The relative signs of a_k and b_k in the same Fermi-surface sheet is also of importance to the analysis of H_{c2}. With same signs of a_k and b_k in same sheets, $H_{c2,a}(T)$ is reduced compared to $H_{c2,i}(T)$ (Fig. 4). Opposite signs within same sheets give rise to an enhancement of $H_{c2,a}$ over $H_{c2,i}$. In this case, the reduction of $H_{c2,a}(T)$ due to the influence of (b^2_k) is compensated by the electron-phonon interaction anisotropy. Bandstructure calculations can give a good estimate for the weight and the relative signs of a_k and b_k in the corresponding regions of the Fermi surface. Dugdale et al. were able to show that the Fermi surface of LuNi$_2$B$_2$C consists of three sheets without giving the weights belonging to the Fermi surface regions. The third one is a small electron pocket centered at Γ, which compared to the other two sheets can be regarded to have a negligible effect on H_{c2} if considered in the theoretical calculations.

With the knowledge of the Fermi surface consisting of two dominant sheets and the shape of the experimental upper critical field favouring opposite signs of a_k and b_k within the same sheets, we used equal weights for the two Fermi surface regions and opposite signs of a_k and b_k in the following analysis. Numerical results for $H_{c2}(T)$ showed that in the case of both anisotropy functions having the same signs, the mean Fermi velocity (v_F) needed to fit the experimental data deviates significantly from the value determined from the plasma frequency. The same effect on (v_F) is observed with different weights of the Fermi surface regions.

Finally, impurities are treated in Born’s limit, which assumes the impurities to be randomly distributed and to be of dilute concentration. In such a limit impurities are characterized by a scattering rate t^+ which is proportional to the impurities’ concentration. Their main effect is the smearing out of the electron-phonon interaction anisotropy resulting in a slight reduction of T_c, an enhancement of H_{c2} at low temperatures, and a reduction of the high temperature upward curvature of H_{c2} as was demonstrated by Weber et al. for Nb.

IV. RESULTS & DISCUSSION

A. Results of the specific heat measurements

The low-temperature specific heat of Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C with $x = 0, 0.1, 0.5, 0.8$, and 1 is presented in Figs. 6. An external field of 9 T was applied to suppress superconductivity in order to determine the normal state heat capacity $C_n = C_e + C_{ph} = \gamma T + \beta T^3$, where γ is the Sommerfeld parameter and β is related to the low-temperature value of the Debye temperature. From the specific heat data in the normal and superconducting state (Figs. 6 and 7) we obtained the specific heat difference $\Delta C = C_s - C_n$ and used it to calculate further quantities as the thermodynamic critical field $H_c(T)$ and its deviation function $D(T)$ (Eqs. 1-3), which are compared to numerical results obtained with Eliashberg theory as discussed below. The extrapolation of the normal state specific heat to $T \rightarrow 0$ shown in Fig. 3 with the range of extrapolation starting at ~ 30 K2 revealed the Sommerfeld constants of the series Y_xLu$_{1-x}$Ni$_2$B$_2$C ranging from $\gamma = 18.5(2)$ mJ/molK2 for $x = 0$ to $20.6(2)$ mJ/molK2 for $x = 0$. The values for the other compounds within the series are $19.7(3)$ mJ/molK2 ($x = 0.1$), $18.7(3)$ mJ/molK2 ($x = 0.5$), and $19.7(2)$ mJ/molK2 ($x = 1$). A comparison of the Sommerfeld constants of the border phases ($x = 0, 1$) with those of Ref. 24 reveals about ~ 1 mJ/molK2.
higher values of \(\gamma \) in this work, with about the same \(T_c \) for LuNi\(_2\)B\(_2\)C but a higher one for YNi\(_2\)B\(_2\)C compared to previous results. The difference in these properties may be explained by the homogeneity range achieved by different methods used to prepare polycrystalline materials.\(^{[2]}\)

B. Spectral function and coupling strength

The large mass difference between Y and Lu causes a significant change of the low energy phonon frequencies in Y\(_x\)Lu\(_{1-x}\)Ni\(_2\)B\(_2\)C. High energy phonon modes are hardly affected by the rare earth substitution. The latter was shown by inelastic neutron spectroscopy (INS) results on Y- and LuNi\(_2\)B\(_2\)C reported by Gompf et al.\(^{[2]}\) Similar conclusions were also obtained from the lattice heat capacity of RNi\(_2\)B\(_2\)C (\(R = \text{La, Lu and Y} \)) analyzed by means of a model phonon density of states (PDOS) in a previous paper.\(^{[3]}\) The low energy part of our model spectra were well confirmed by INS while the high energy part is, of course, just a crude description which does not give the real details. Nevertheless, the moments of these spectra are in remarkable agreement with those calculated from the INS results. As the following discussion of superconducting properties in terms of the Eliashberg formalism requires primarily details of the low energy PDOS we evaluated the variation of the low energy phonon modes within the series Y\(_x\)Lu\(_{1-x}\)Ni\(_2\)B\(_2\)C by a similar procedure as explained in Ref.\(^{[2]}\) namely by fitting the normal state specific heat measured from 2 to 160 K with a model PDOS, \(F(\omega) \), which is of the form

\[
F(\omega) = 3R \left(\frac{3\omega^2}{\Omega_D^2} \theta(\omega)\theta(\Omega_D - \omega) \right) + \sum_{i=0}^{3} g_i R \left(\frac{1}{\sqrt{2\pi\sigma_i^2}} \exp \left[-\frac{(\omega - \Omega_{E_i})^2}{2\sigma_i^2} \right] \right) \Theta(\omega - \omega_0) \Theta(\Omega_{E_3} - \omega) ,
\]

\(i = 0 \) to \(i = 3 \) in this formula \(\theta(\omega) \) is the well-known step function; \(\omega_0 = 4.3 \text{ meV} \) in order to avoid a finite spectral density at zero energy; \(\sigma_i \) are the widths of the Gaussians and \(g_i \) are the weights of these contributions (i.e. the number of the contributing phonon branches). The Debye spectrum \((\propto \omega^2) \) represents the spectral weight of the three acoustic branches and the Gaussian contributions account for the 15 optical branches. The free parameters are the Debye cut-off \(\Omega_D \) and the Gaussian peak positions \(\Omega_{E_i} \), respectively. In order to fix a high energy limit of the model spectrum, the Gaussian contribution with the highest energy \((\Omega_{E_3}) \) was cut off at the peak position and \(g_3 \) is accordingly doubled in equation \((5) \). The parameters applied in Eq. \((5) \) are summarized in Table \(I \). The only difference with respect to the model spectra shown in Ref.\(^{[2]}\) is the splitting up of \(\Omega_{E_1} \) with \(g_1 = 1.2 \) into two parts \(\Omega_{E_0} \) and \(\Omega_{E_1} \) with \(g_0 = 0.3 \) and \(g_1 = 1.2 \), respectively, which was motivated by the shape of \(F(\omega) \) obtained by INS on YNi\(_2\)B\(_2\)C (see Ref.\(^{[2]}\)). On the other hand, we now fixed \(\Omega_{E_0} \) to 103.4 meV (equivalent to 1300 K\(\times k_B \)) in order to keep the number of parameters small. Only for Y\(_{0.5}\)Lu\(_{0.5}\)Ni\(_2\)B\(_2\)C we applied a slightly modified spectrum with \(g_0 = 0.7 \) and \(g_1 = 0.8 \) compared to 0.3 and 1.2 given in Table \(I \), because of the fifty to fifty ratio of Y and Lu in this sample.

Adjusting the model spectra to the lattice heat capacity via

\[
C_{\text{ph}}(T) = R \int_0^\infty d\omega F(\omega) \frac{\omega^2}{\sinh^2(\frac{\omega}{2T})} ,
\]

\(\omega = 0 \) we obtained the model spectra shown in Fig. \(\text{I} \). This procedure provides a satisfactory description of the \(C_P(T) \) data from 2 K up to 160 K (up to 300 K for the borocarbides).

The phonon contribution to the specific heat yields information on \(F(\omega) \) rather than on \(\alpha^2 F(\omega) \). Therefore, one is led to introduce an assumption on the form of the electron-phonon coupling function \(\alpha^2(\omega) \). Junod et al.\(^{[2]}\) suggested a function \(\alpha^2(\omega) \sim \omega^6 \) in a first approximation and found the exponent to be \(s = -1/2 \) for a large number of A15 compounds by comparing the experimentally determined moments of \(\alpha^2 F(\omega) \) with tunneling data. We calculated the thermodynamic properties of the borocarbides using \(s = 0, -1/2, \) and \(-1\), and found the exponent \(s = -1/2 \) to be the best choice for the theoretical analysis as in the case of the A15 compounds. It was impossible to describe the experimental data using \(s = 0 \) because the theoretical deviation function \(D(t) \) already lies below the the experiment for an isotropic system, as a consequence of the large gaussian contribution above the low temperature Debye frequency \(\Omega_D^2 \), and is expected to get more negative for an anisotropic system. In the case of \(s = -1 \) the calculated deviation function is significantly larger than the experimental one and a consistent description of the thermodynamic properties and \(H_c2 \) is impossible because of the large anisotropy parameter \((a_k^2) \) necessary to describe the thermodynamic properties.

The spectra were cut off at the local minimum of the model phonon spectra at \(\omega \sim 68 \text{ meV} \). Starting at this energy, the phonon spectra determined by Gompf et al.\(^{[2]}\) using inelastic neutron-scattering techniques have a wide interval, where the PDOS is zero. The next optical contributions to \(F(\omega) \) start at \(\sim 100 \text{ meV} \), and it is not very likely that electrons still considerably couple to phonons at these energies.

With the coupling function having the form \(\alpha^2(\omega) = a \omega^{-1/2} \), the model spectra shown in Fig. \(\text{I} \) were weighed with a function \(\omega^{-1/2} \) and were rescaled with a constant \(a \) to give the corresponding critical temperatures \(T_c \) of the samples for a fixed pseudopotential of \(\mu^* = 0.13 \). The model spectral functions give electron-phonon interaction mass enhancement factors

\[
\lambda = 2 \int_0^\infty d\omega \frac{\alpha^2 F(\omega)}{\omega} ,
\]
between 1.02 \((x = 1)\) and 1.22 \((x = 0)\). \(\lambda\) does not behave as the critical temperature and descends monotonically from LuNi2B2C to YNi2B2C as a function of \(x\), without showing a minimum, which indicates that it cannot account alone, if at all, for the depression of \(T_c\) within the series.

C. Thermodynamic properties and \(H_{c2}(T)\)

With the set of parameters given in Table 1, the thermodynamic properties were calculated for all samples. The number of atoms in a volume of 1 cm\(^3\), \(n_A\), was calculated from lattice parameters \(a\) and \(c\) of the tetragonal structure. The Sommerfeld constants obtained from the experiment, \(\gamma_{exp}\), are slightly greater than the theoretical values, \(\gamma_c\), needed to fit the experimental results for the thermodynamic critical field \(H_c(T)\). The latter is calculated from the experimental data by integrating the difference between the zero-field and 9 T measurement, i.e. any normal state contribution to the zero-field heat capacity cancels out in \(\Delta C = C(T) - C_n(T)\) which is used in the analysis below. Nevertheless, a normal state contribution, which is eliminated in \(\Delta C\), will strongly influence the experimental result for the temperature dependence of the electronic specific heat in the superconducting state \(C_{es}(T)\), obtained by subtracting the phonon contribution from the zero-field data. We note, that the \(\gamma\)-value due to a small amount of impurity phase obtained by extrapolating the zero field data in a \(C/T\) vs. \(T^2\) plot to \(T \to 0\) yields e.g. for YNi2B2C \(\gamma_{imp} \simeq 0.4(2)\ mJ/molK^2\) which is significantly smaller than \(\gamma_{exp} - \gamma_c \sim 1.1\ mJ/molK^2\). For all other samples, \(\gamma_{imp}\) is found to be even closer to zero, but \(\gamma_{exp} - \gamma_c\) is still about 1 mJ/molK\(^2\) (see Fig. 6). Thus, the average difference of about 5% may be attributed to an intrinsic effect, namely to the contribution of the small electron pocket, for which de Haas-van Alphen measurements performed by Terashima et al. revealed the superconducting gap to be much smaller than on other parts of the Fermi surface. For a further discussion of the temperature dependence of \(C_{es}(T)\) see below (Sec. IV F).

In the description of the thermodynamics and the upper critical field of \(Y_{2-x}Lu_{1-x}Ni_2B_2C\) the model spectra of Fig. 3 were used in the numerical solution of the Eliashberg equations in the clean limit (impurity scattering rate \(t^+ = 0\)). This is of course only a rough approximation and the corresponding scattering rate \(t^+\) should be determined from a \(T_c\) reduction with increasing concentrations of Born limit momentum scattering impurities. As it was not possible to perform this type of experiment with the present samples we investigated the influence of impurity concentration theoretically and realized that in order to stay within the constraints of the known experimental data \(t^+\) had to be rather small and therefore we regarded the clean limit to be an acceptable approximation. As the coherence length is rather short in these materials the clean limit is always a good approximation. The results of our theoretical study of different spectral functions \(\alpha^2 F(\omega)\) and of the influence of impurities on the thermodynamics as well as on \(H_{c2}\) will be the topic of a separate, forthcoming publication.

Fig. 8 depicts the comparison between experimental results and theoretical predictions for LuNi2B2C. The top frame shows the specific heat difference between superconducting and normal state \(\Delta C(T) = C_e(T) - C_n(T)\). Theoretical calculations were done for an isotropic ((\(a_x^2\)) = 0) and an anisotropic case ((\(a_x^2\) = 0.03), and results with anisotropy parameters between these values lie in between the numerical results of Fig. 7(a-c). Considering impurity scattering would bring the results of an anisotropical calculation closer to the isotropic case.

The thermodynamic critical field \(H_c(T)\) is calculated from the free energy difference \(\Delta F\)

\[
H_c(T) = \sqrt{2\Delta F/\mu_0},
\]

and the specific heat difference \(\Delta C\) is related to \(\Delta F\) through

\[
\Delta C(T) = -T\frac{\partial^2 \Delta F(T)}{\partial T^2}.
\]

Strong coupling and anisotropy effects can be observed in the deviation function of the thermodynamic critical field

\[
D(T) = \frac{H_c(T)}{H_c(0)} - \left[1 - \left(\frac{T}{T_c}\right)^2\right].
\]

Error bars of the experimental deviation function result from experimental error bars of the specific heat data and primarily from the extrapolation of \(H_c(T)\) to \(T \to 0\). Anisotropy effects push the deviation function towards the weak coupling regime as shown in Fig. 8(c). Even with the large error bar attached to the experimental data, it becomes obvious that the BCS result is far off with its minimum at about \(-3.7\%\).

The upper critical field \(H_{c2}(T)\) was fit to the experimental data by describing the positive curvature at \(T_c\) with the Fermi velocity anisotropy parameter \(\langle a_k^2\rangle\) at a fixed mean Fermi velocity \(\langle v_F\rangle\), and by changing the anisotropy parameter \(\langle a_k^2\rangle\) of the electron phonon coupling strength to describe the behavior of the experimental curve at lower temperatures. The value of \(\langle v_F\rangle\) was taken from the experimental result for the plasma frequency \(\hbar \omega_{pl} = \sqrt{4\pi e^2 N(0)/3} = 4.0\ eV\) (see Ref. 3) which results in a mean Fermi velocity \(\langle v_F\rangle\) of \(\approx 0.28 \times 10^6 \text{m/s}\) for LuNi2B2C. A reasonable fit of the experimental data with this value is achieved with \(\langle a_k^2\rangle = 0.02\) and \(\langle b_k^2\rangle = 0.25\). According to the thermodynamic properties, it would as well be possible to apply a higher anisotropy parameter, i.e. \(\langle a_k^2\rangle = 0.03\). Error bars of the plasma frequency were not given in Ref. 3, and a change of 0.01 \(\times 10^6 \text{m/s}\) in \(\langle v_F\rangle\) is likely to be
within the experimental error range. For an anisotropy parameter of \(\langle a^2_k \rangle = 0.03 \), one has to reduce \(\langle b^2_k \rangle \) and enhance \(\langle v_F \rangle \) to compensate the change as depicted in the bottom frame of Fig. 8. The error bars of the experimental upper critical field result from the width of the transition in the resistivity data.

Fig. 8 shows the results for the samples with \(x = 0.1, 0.5, 0.8, \) and 1. Thermodynamic properties and \(H_{c2} \) of the whole series can be described with anisotropy parameters \(\langle a^2_k \rangle \) between 0.02 and 0.03, which is relatively small compared to the Fermi velocity anisotropy \(\langle b^2_k \rangle \) ranging from 0.245 to 0.3 and is comparable to the electron-phonon anisotropy parameters of LaAl\(_2\) (Ref. 25, \(\langle a^2_k \rangle = 0.01 \)), Nb (Ref. 14, \(\langle a^2_k \rangle = 0.0335 \)) and is smaller than the anisotropy parameter of Nb\(_3\)Sn (Ref. 26, \(\langle a^2_k \rangle = 0.08 \)). The Fermi velocity anisotropy parameters of \(Y_xLu_{1-x}NiB_2C \) are obviously higher than those of LaAl\(_2\) (\(\langle b^2_k \rangle = 0.16 \)), Nb (\(\langle b^2_k \rangle = 0.118 \)), and Nb\(_3\)Sn (\(\langle b^2_k \rangle = 0.13 \)). In comparing the upper critical field of YNi\(_2\)B\(_2\)C to that of Y\(_{0.5}\)Lu\(_{0.5}\)NiB\(_2\)C it is obvious that the positive curvature of \(H_{c2} \) at \(T_c \) is rather pronounced in both samples. If the \(T_c \) reduction had been caused by impurity scattering the positive curvature of \(H_{c2} \) at \(T_c \) would have been gradually reduced with increasing impurity concentration as was demonstrated by Weber et al. in their analysis of polycrystalline Nb. Such an effect can certainly not be observed in our case.

D. \(T_c \)-reduction in the series \(Y_xLu_{1-x}NiB_2C \)

The reduction of \(T_c \) within the series cannot be described with impurity scattering in terms of Eliashberg theory because this would require randomly distributed scattering centers. A substitution of Lu with Y or vice versa produces inhomogeneities of the periodic potential only on the rare earth lattice site, so that a random distribution can only be expected with small substitutions up to \(x = 0.1 \). If the \(T_c \)-reduction should be explained by inelastic impurity scattering expressed by the scattering rate \(t^+ \), it is restricted to the condition that the electronic properties of the system, as e.g. \(N(0) \), remain unchanged, which is not the case in \(Y_xLu_{1-x}NiB_2C \) (See Fig. 13). Thus, the \(T_c \)-reduction within the series cannot be attributed to inelastic impurity scattering expressed by \(t^+ \).

The density of states \(N(0) \) (Fig. 13) was calculated using the bare Sommerfeld constant \(\gamma = \gamma/(1 + \lambda) \) and the number of atoms per cm\(^3\), \(n_A \), in the approximation \(N(0) \propto n_A \gamma^2 \). Unlike the electron-phonon coupling factor \(\lambda \), \(\gamma \) behaves like \(T_c \) as a function of \(x \), therefore accounting for a similar behavior of \(N(0) \). Hence, as \(\lambda \) decreases with decreasing Lu-content, \(N(0) \) shows a minimum between \(x = 0 \) and 1. Obviously, the behavior of \(T_c \) results from an interplay of the coupling strength of electrons to phonons and the density of states at the Fermi level. The latter is most likely due to a band broadening arising from the \(R \)-ion size mismatch which washes out the maximum of the electronic density of states at the Fermi energy. The \(N(0) \) values of the unalloyed compounds YNi\(_2\)B\(_2\)C (4.14 states/eVf.u.) and LuNi\(_2\)B\(_2\)C (3.94 states/eVf.u.) agree closely with the values of 4.31 and 4.06 states/eVf.u., respectively, reported from density functional calculations by Divis et al.

E. Thermodynamics and \(H_{c2} \) of \(La_xNi_2B_2N_{3-\delta} \)

The model spectrum of \(La_xNi_2B_2N_{3-\delta} \) (Fig. 13) was obtained in a similar manner as the spectra of the borocarbides (Ref. 20) and is cut off at the local minimum at \(\sim 50 \) meV. After applying a coupling function \(\alpha^2(\omega) \sim \omega^s \) with \(s = -1/2 \), the spectrum was rescaled with a constant factor to give the critical temperature \(T_c = 11.73 \) K and a fixed pseudopotential \(\mu^* = 0.13 \). This results in a coupling strength of \(\lambda = 1.02 \). With the Sommerfeld constant \(\gamma = 24 \) mJ/molK\(^2\), the thermodynamic properties were calculated for an isotropic and an anisotropic clean limit case with \(\langle a^2_k \rangle = 0.08 \) (Fig. 14). We note, that the clean limit approximation may, of course, be questioned because of the rather high residual resistance reported in Ref. 8 where all data used for the present analysis have been measured on one individual sample. Supposing the high \(\rho_0 \simeq 9 \mu\Omega\)cm to be intrinsic, we had to consider an impurity scattering rate \(t^+ \sim 10 \) meV which, however, did not allow to find any reasonable set of parameters describing the experimental results on the upper critical field and specific heat. In the view of the present Eliashberg approach, these data are compatible with scattering rates \(t^+ \leq 1 \) meV indicating that the high \(\rho_0 \simeq 9 \mu\Omega\)cm of \(La_xNi_2B_2N_{3-\delta} \) comes from scattering on the grain boundaries rather than from scattering inside the grains which were shown by high resolution electron microscopy to be practically defect free.

The upper critical magnetic field \(H_{c2}(T) \) shown in Fig. 8 was fitted with the anisotropy parameter obtained from the analysis of the thermodynamic properties, \(\langle a^2_k \rangle = 0.08 \), a mean Fermi velocity \(\langle v_F \rangle = 0.225 \times 10^6 \) m/s and its anisotropy parameter of \(\langle b^2_k \rangle = 0.245 \). A fit to the experimental data with an anisotropy parameter of \(\langle a^2_k \rangle = 0.06 \) is included for comparison. The mean Fermi velocity obtained in the analysis lies between the root mean square anisotropies \(\sqrt{\langle a^2_k \rangle} = 0.292 \times 10^6 \) m/s and \(\sqrt{\langle b^2_k \rangle} = 0.148 \times 10^6 \) m/s calculated by Singh and Pickett in contrast to the borocarbides a consistent description of the thermodynamic properties and the upper critical field can also be achieved with \(s = 0 \), which results in an electron-phonon coupling factor \(\lambda = 0.87 \), anisotropy parameters \(\langle a^2_k \rangle = 0.06 \) and \(\langle b^2_k \rangle = 0.27 \), and a mean Fermi velocity of \(\langle v_F \rangle = 0.2 \times 10^6 \) m/s. Different coupling factors \(\lambda \) are obtained with different coupling functions \(\alpha^2(\omega) \sim \omega^s \) (\(s = 0, -1/2 \)) because, after rescaling the spectral functions to obtain the critical temperature of the system and a pseudopotential
μ* = 0.13, the low-energy contributions to α^2F(ω) are enhanced with s = −1/2 compared to the case of s = 0. The coupling factor λ obtained with the coupling function α^2(ω) ∼ ω^0 is in good agreement with the estimate λ ≡ γ/γ_n = 1 + 0.85. In general, both descriptions (s = 0, −1/2) require a higher value for the anisotropy parameter (a_k^2) compared to the borocar-bides in order to describe the experimental data, because the agreement between theory and experiment improves with increasing (a_k^2) as is clearly demonstrated by the comparison with the specific-heat difference, the thermodynamic critical field, and the deviation function of LaNi_3B_2N_3−δ shown in Figs. 14. The rather large anisotropy of (a_k^2) ≈ 0.08 further explains the temperature dependence of the upper critical field and H_c2(0) of ~ 8 T comparable to that of LuNi_2B_2C, since (a_k^2) has an enhancing effect on H_c2.

F. Comparison of Y_xLu_{1−x}Ni_2B_2C and La_3Ni_2B_2N_3−δ

The most distinctive feature of the borocarbide and boronitride superconductors pointed out in previous papers is the temperature dependence of the electronic specific heat in the superconducting state: While Y- and LuNi_2B_2C exhibit an almost cubic temperature dependence of C_{eS}(T), La_3Ni_2B_2N_3−δ shows an approximately exponential behavior of C_{eS}(T) close to the BCS predictions. Thus, La_3Ni_2B_2N_3−δ was supposed to be a weak-coupling BCS superconductor, because other characteristics of the superconducting state of the boronitride like the thermodynamic ratios (e.g. ΔC/γT_c = 1.4) and the deviation function D(t) (see Fig. 14) were also found to be much closer to the BCS predictions than those of the borocar-bides. The above analysis of the thermodynamic properties and the upper critical field, however, demonstrates that the difference between the thermodynamic ratios and the deviation function of the borocar-bides and the boronitride arises from a larger anisotropy of the electron-phonon interaction in the latter rather than from a smaller coupling strength (λ ≈ 0.87 or 1.02 for La_3Ni_2B_2N_3−δ compared to λ ≈ 1.02 − 1.22 for Y_xLu_{1−x}Ni_2B_2C). The different temperature dependence of the heat capacity in the superconducting state - cubic in case of the borocar-bides - cannot be explained by our Eliashberg calculations which fit the specific heat difference ΔC = C_s − C_n, but not the absolute C_{eS}(T), of e.g. YNi_2B_2C depicted in Fig. 17 as a semilogarithmic plot of C_{eS}/γT_c versus the inverse reduced temperature T_c/T. As the gap obtained by the above calculations is free of nodes, it yields an exponential temperature dependence for C_{eS}(T) which becomes linear in the semilogarithmic representation. This is in contrast to the experimental result for YNi_2B_2C which exhibits a pronounced curvature in this plot indicative for a power law. In section IV C we noted, that a satisfactory description of the thermodynamic properties of the borocar-bides and in particular their thermodynamic critical field is only achieved when the calculations are performed with gamma values of about 5% smaller than the experimental values. By adding a linear contribution corresponding to the 5% of the normal state gamma value (1.1 mJ/mol K^2) omitted before, an improvement of the temperature dependence of the calculated C_{eS}(T) is achieved (dashed line in Fig. 13). These additional electronic contributions may be attributed to a normal state impurity phase and/or to contributions from the small electron pocket, for which Terashima et al. proposed a significantly reduced gap. The latter argument is supported by the specific heat result obtained on a single crystal YNi_2B_2C by Nohara et al. which are included in Fig. 13 for comparison. For temperatures T_c/T between 1 and 5 (i.e. T = 15.5 − 3 K) both experimental data sets are in rather good agreement, but clearly deviating from our calculations. Below about 3 K an exponential temperature dependence can be resolved from the data of Nohara et al. This may be attributed to the small gap on the electron pocket which can be identified as the third Fermi surface sheet detected by Dugdale et al. The third Fermi surface sheet was not considered in our calculations because it's contribution appeared to be negligible in C_s − C_n. The exponential low temperature behavior of C_{eS} in particular for the polycrystalline YNi_2B_2C is covered by a linear electronic contribution from small amounts of a secondary phase of about 0.4(2) mJ/mol K^2. Although this contribution is significantly reduced in the samples of the pseudquaternary system, the overall feature of the semilogarithmic plot is preserved. Accordingly the conclusions concerning the reduced gap on the third Fermi surface sheet can also be drawn for Y_xLu_{1−x}Ni_2B_2C.

V. CONCLUSIONS

Model phonon spectra obtained from specific heat measurements, rescaled to give the critical temperatures of the system and for a Coulomb-pseudopotential value of μ* = 0.13, resulted in coupling strengths λ ranging from 1.02 for YNi_2B_2C to 1.22 for LuNi_2B_2C. We were able to show that a consistent description of the thermodynamic properties and the upper critical field of the series Y_xLu_{1−x}Ni_2B_2C and the boronitride La_3Ni_2B_2N_3−δ within the Eliashberg theory is achieved only, if anisotropy effects of the electron-phonon coupling and of the Fermi velocity are included. Excellent agreement between theory and experiment was achieved in the analysis of the series Y_xLu_{1−x}Ni_2B_2C with anisotropy parameters (a_k^2) = 0.02−0.03 and (b_k^2) = 0.245−0.3. The model spectral functions for La_3Ni_2B_2N_3−δ yielded coupling factors λ = 1.02 (s = −1/2) and λ = 0.87 (s = 0) comparable to those of Y_xLu_{1−x}Ni_2B_2C. The thermodynamic properties and the upper critical field are well described with (a_k^2) = 0.08 and (b_k^2) = 0.245 (s = −1/2) or (a_k^2) = 0.06 and (b_k^2) = 0.27 (s = 0). For La_3Ni_2B_2N_3−δ
it is of importance to include anisotropy in order to describe its upper critical field and in contrast to the borocarbides - its thermodynamic properties.

Coupling and impurity effects are not capable of explaining the T_c-behavior within the series $\text{Y}_x\text{Lu}_{1-x}\text{Ni}_2\text{B}_3\text{C}$. The behavior of γ as a function of x suggests $N(0)$, aside from λ, to be the reason for the minimum in $T_c(x)$, which is confirmed by an approximate calculation of $N(0)$ from γ. The approximately cubic temperature dependence of $C_{eS}(T)$ of the borocarbides cannot be accounted for by the current Eliashberg calculations due to a small gap of the third Fermi surface sheet. This contribution, however, is suppressed in ΔC and therefore the Eliashberg calculations are in good agreement with the related experimental thermodynamic properties.

ACKNOWLEDGMENTS

We thank M. Nohara for providing the specific heat data included in Fig. [17]. This work was supported by the Austrian Science Foundation under Grant No. P 11090 and by the Kärntner Elektrizitätsgesellschaft (KELAG).

1 T. Siegrist, H.W. Zandbergen, R.J. Cava, J.J. Krajewski, W.F. Peck Jr., Nature (London) 367, 254 (1994); T. Siegrist, R.J. Cava, J.J. Krajewski, W.F. Peck Jr., J. Alloys and Compounds 216, 135 (1994)
2 L.F. Mattheiss, Phys. Rev. B 49, 13279 (1994)
3 D. Singh and W. Pickett, Phys. Rev. B 51, 8668 (1995)
4 H. Michor, G. Hilscher, R. Krendelsberger, P. Rogl, and F. Bourré, Phys. Rev. B 58, 15045 (1998)
5 H. Michor, R. Krendelsberger, G. Hilscher, E. Bauer, C. Dusek, R. Hauser, L. Naber, D. Werner, P. Rogl, and H.W. Zandbergen, Phys. Rev. B 54, 9408 (1996)
6 S.V. Shulga, S.-L. Drechsler, G. Fuchs, K.-H. Müller, K. Winzer, M. Heinecke, K. Krug, Phys. Rev. Lett. 80, 1730 (1998)
7 S.B. Dugdale, M.A. Alam, I. Wilkinson, R.J. Hughes, J.R. Fischer, P.C. Canfield, T. Jarlborg, and G. Santi, http://xxx.lanl.gov/cond-mat/9907180 (1999)
8 J. Freudenberger, S.-L. Drechsler, G. Fuchs, A. Kreyszig, K. Nenkov, S.V. Shulga, K.-H. Müller, L. Schulz, Physica C 306, 1 (1998)
9 K.D.D. Rathnayaka, A.K. Bhatnagar, A. Parasiris, D.G. Naugle, P.C. Canfield and B.K. Cho, Phys. Rev. B 55, 8506 (1997)
10 M. Nohara, M. Ishiiki, F. Sakai, and H. Takagi, J. Phys. Soc. Jpn. 68, 1078 (1999)
11 J.M. Daams, J.P. Carbotte, J. Low Temp. Phys. 43, 263 (1981)
12 D. Markovitz, L.P. Kadanoff, Phys. Rev. 131, 563 (1963)
13 M. Prohammer and E. Schachinger, Phys. Rev. B 36, 8353 (1987)
14 H.W. Weber, E. Seidl, C. Laa, E. Schachinger, M. Prohammer, A. Junod, D. Eckert, Phys. Rev. B 44, 7585 (1991)
15 L. Niel, N. Giesinger, H.W. Weber and E. Schachinger, Phys. Rev. B 32, 2976 (1985)
16 P.B. Allen, Phys. Rev. B 13, 1416 (1976)
17 J.M. Daams, Ph.D. thesis, McMaster University, Ontario, 1977 (unpublished)
18 F. Bommeli, L. Degiorgi, P. Wachter, B.K. Cho, P.C. Canfield, R. Chau and M.B. Maple, Phys. Rev. Lett. 78, 547 (1997)
19 V. Ambegaokar, in Superconductivity, ed.: R.D. Parks, Marcel Dekker, New York (1969), pp. 259
20 H. Michor, T. Holubar, C. Dusek and G. Hilscher, Phys. Rev. B 54, 9408 (1996)
21 H. Schmidt and H.F. Braun, Studies of High Temperature Superconductors 26, (1999)
22 F. Gompf, W. Reichardt, H. Schober, B. Renker, and M. Buchgeister, Phys. Rev. B 55, 9058 (1997)
23 A. Junod, T. Jarlborg, and J. Muller, Phys. Rev. B 27, 1568 (1983)
24 T. Terashima, C. Haworth, H. Takeya, S. Uji, H. Aoki, and K. Kadowaki, Phys. Rev. B 56, 5120 (1997)
25 B. Vleck, E. Seidl, W. Weber, E. Schachinger, and W. Pint, Physica C 167, 198 (1990)
26 E. Schachinger and M. Prohammer, Physica C 156, 701 (1988)
27 M. Divis, K. Schwarz, P. Blaha, G. Hilscher, H. Michor, and S. Khmelevsky, Phys. Rev. B in press (2000)
28 G. Hilscher and H. Michor, in Studies of High Temperature Superconductors, ed. A.V. Narlikar, (Nova Science Publishers, New York, 1999), Vol. 28, p. 241

σ_1 (meV)	τ_1	τ_2	τ_3	τ_4		
free	free	free	free	103.4 meV (fixed)		
g_1	3	0.3	1.2	8.5	25.9	5
TABLE II. Parameters used for the calculation of thermodynamic properties of Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C. The mass enhancement factor or electron-phonon coupling factor, λ, the number of atoms in a certain volume, n_A, and the Sommerfeld constant used in the theoretical description, γ_c, are compared within the series Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C.

x	T_c [K]	λ	n_A [1022/cm3]	γ_c [mJ/mol K2]
0	16.01	1.220	9.465	19.7
0.1	15.56	1.182	9.382	18.9
0.5	14.90	1.058	9.263	18.1
0.8	14.68	1.018	9.220	18.0
1	15.45	1.017	9.175	18.6

FIG. 1. Influence of different weights for the two Fermi-surface sheets on the upper critical field $H_{c2}(T)$. The numerical result in the case of equal weights (1:1) is a fit to the upper critical field of LuNi$_2$B$_2$C with $\langle a^2 \rangle = 0.02$, $\langle b^2 \rangle = 0.25$, and $\langle v_F \rangle = 0.280 \times 10^5$ m/s. $D_{Hc2}(t)$ is depicted in the small insert.

FIG. 2. Influence of different signs of a_k and b_k on the upper critical field $H_{c2}(T)$. Both Fermi-surface sheets were weighed with the same factor (1:1). The experimental result for LuNi$_2$B$_2$C is labeled with open circles.

FIG. 3. C_p/T vs. T plot for Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C at zero external field.

FIG. 4. C_p/T vs. T^2 plot for Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C at an external field of $B = 9$ T. The straight dashed lines indicate the extrapolation of the data to $T \rightarrow 0$.

FIG. 5. Normal-state contribution to the specific heat of Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C.

FIG. 6. Model phonon spectra obtained from the phonon contribution to the specific heat. The spectral densities $\alpha^2 F(\omega)$ used in the analysis of Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C were obtained by applying a coupling function $\alpha^2(\omega) \sim \omega^{-1/2}$ to the model PDOS. The three dimensional plot shows the evolution of modes vs. x of $F(\omega)$.

FIG. 7. Sommerfeld constants used in the theoretical description compared to those obtained from specific heat measurements.

FIG. 8. Specific heat difference $\Delta C(T) = C_s(T) - C_n(T)$ (a), thermodynamic critical field $H_c(T)$ (b), and deviation function $D(T)$ (c) of LuNi$_2$B$_2$C compared to theoretical calculations for an isotropic and an anisotropic case with $\langle a_k^2 \rangle = 0.03$. The upper critical field (d) is a fit to the experiment with anisotropy parameters $\langle a_k^2 \rangle = 0.02$ and 0.03.

FIG. 9. Specific heat difference $\Delta C(T) = C_s(T) - C_n(T)$, of Y$_xLu_{1-x}Ni_2B_2$C with $x = 0.1$, 0.5, 0.8, and 1 compared to theoretical calculations for an isotropic and an anisotropic case with $\langle a_k^2 \rangle = 0.03$.

FIG. 10. Thermodynamic critical field $H_c(T)$ for the samples with $x = 0.1$, 0.5, 0.8, and 1 compared to theoretical calculations for an isotropic and an anisotropic case with $\langle a_k^2 \rangle = 0.03$.

FIG. 11. Influence of different weights for the two Fermi-surface sheets on the upper critical field $H_{c2}(T)$. The numerical result in the case of equal weights (1:1) is a fit to the upper critical field of LuNi$_2$B$_2$C with $\langle a^2 \rangle = 0.02$, $\langle b^2 \rangle = 0.25$, and $\langle v_F \rangle = 0.280 \times 10^5$ m/s. $D_{Hc2}(t)$ is depicted in the small insert.

FIG. 12. Influence of different signs of a_k and b_k on the upper critical field $H_{c2}(T)$. Both Fermi-surface sheets were weighed with the same factor (1:1). The experimental result for LuNi$_2$B$_2$C is labeled with open circles.

FIG. 13. C_p/T vs. T plot for Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C at zero external field.

FIG. 14. C_p/T vs. T^2 plot for Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C at an external field of $B = 9$ T. The straight dashed lines indicate the extrapolation of the data to $T \rightarrow 0$.

FIG. 15. Normal-state contribution to the specific heat of Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C.

FIG. 16. Model phonon spectra obtained from the phonon contribution to the specific heat. The spectral densities $\alpha^2 F(\omega)$ used in the analysis of Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C were obtained by applying a coupling function $\alpha^2(\omega) \sim \omega^{-1/2}$ to the model PDOS. The three dimensional plot shows the evolution of modes vs. x of $F(\omega)$.

FIG. 17. Sommerfeld constants used in the theoretical description compared to those obtained from specific heat measurements.

FIG. 18. Specific heat difference $\Delta C(T) = C_s(T) - C_n(T)$ (a), thermodynamic critical field $H_c(T)$ (b), and deviation function $D(T)$ (c) of LuNi$_2$B$_2$C compared to theoretical calculations for an isotropic and an anisotropic case with $\langle a_k^2 \rangle = 0.03$. The upper critical field (d) is a fit to the experiment with anisotropy parameters $\langle a_k^2 \rangle = 0.02$ and 0.03.

FIG. 19. Specific heat difference $\Delta C(T) = C_s(T) - C_n(T)$, of Y$_xLu_{1-x}Ni_2B_2$C with $x = 0.1$, 0.5, 0.8, and 1 compared to theoretical calculations for an isotropic and an anisotropic case with $\langle a_k^2 \rangle = 0.03$.

FIG. 20. Thermodynamic critical field $H_c(T)$ for the samples with $x = 0.1$, 0.5, 0.8, and 1 compared to theoretical calculations for an isotropic and an anisotropic case with $\langle a_k^2 \rangle = 0.03$.

FIG. 21. Influence of different weights for the two Fermi-surface sheets on the upper critical field $H_{c2}(T)$. The numerical result in the case of equal weights (1:1) is a fit to the upper critical field of LuNi$_2$B$_2$C with $\langle a^2 \rangle = 0.02$, $\langle b^2 \rangle = 0.25$, and $\langle v_F \rangle = 0.280 \times 10^5$ m/s. $D_{Hc2}(t)$ is depicted in the small insert.
FIG. 11. Upper critical field H_{c2} of $Y_xLu_{1-x}Ni_2B_2C$ with $x = 0.1, 0.5, 0.8, \text{ and } 1$ compared to theoretical calculations for anisotropic cases with $\langle a_k^2 \rangle = 0.02$ and 0.03.

FIG. 12. Deviation function $D(T/T_c)$ of $Y_xLu_{1-x}Ni_2B_2C$ with $x = 0.1, 0.5, 0.8, \text{ and } 1$ compared to theoretical calculations for an isotropic and an anisotropic case with $\langle a_k^2 \rangle = 0.03$.

FIG. 13. The critical temperature T_c, electron-phonon coupling strength λ, Sommerfeld constant γ, and density of states $N(0)$ as a function of x for the series $Y_xLu_{1-x}Ni_2B_2C$.

FIG. 14. Specific heat difference $\Delta C(T) = C_s(T) - C_n(T)$, thermodynamic critical field $H_c(T)$, and magnetic deviation function $D(T)$ of $La_3Ni_2B_2N_3-\delta$ compared to theoretical calculations for an isotropic and an anisotropic case with $\langle a_k^2 \rangle = 0.08$. The upper critical field is a fit to the experiment with anisotropy parameters $\langle a_k^2 \rangle = 0.06 \text{ and } 0.08$.

FIG. 15. Spectral density $\alpha^2F(\omega)$ used in the analysis of $La_3Ni_2B_2N_3-\delta$ obtained from a model phonon spectrum, which was rescaled to give the critical temperature of the sample $T_c = 11.73 \text{ K}$ and for a fixed pseudopotential $\mu^* = 0.13$.

FIG. 16. Deviation functions $D(T/T_c) = D(t) \text{ vs. } t^2$ of $Y_xLu_{1-x}Ni_2B_2C$ and $La_3Ni_2B_2N_3-\delta$. The BCS-result (solid line) was added for comparison.

FIG. 17. Electronic specific heat in the superconducting state $C_{es}(T)/\gamma T_c$ vs. the inverse reduced temperature T_c/T in a semilogarithmic plot. The solid line was calculated by adding the normal state contribution γ_cT to the specific-heat difference between the superconducting and normal state ΔC obtained from the Eliashberg-equations. The data of Nohara et al. are labeled by filled triangles.
\(\langle a^2 \rangle = \langle b^2 \rangle = 0.0, \ v_F = 0.205 \)

\(\langle a^2 \rangle = 0.03; \ \langle b^2 \rangle = 0.0, \ v_F = 0.210 \)

\(\langle a^2 \rangle = 0.03, \ \langle b^2 \rangle = 0.245, \ v_F = 0.29: \)

\(\text{sgn}(a_k) = -\text{sgn}(b_k) \)

\(\text{sgn}(a_k) = \text{sgn}(b_k) \)
$Y_xLu_{1-x}Ni_2B_2C$

$(B = 0 \text{ T})$

$C_p/T \ [ext{J/mol K}^2]$

- $x=1.0$
- $x=0.8$
- $x=0.5$
- $x=0.1$
- $x=0.0$

$T [\text{K}]$
$C_p/T \ [mJ/mol K^2]$

Y$_x$Lu$_{1-x}$Ni$_2$B$_2$C

$(B = 9T)$
Y_{x}Lu_{1-x}Ni_{2}B_{2}C

- $x = 1$
- $x = 0.8$
- $x = 0.5$
- $x = 0.1$
- $x = 0$

$C_{p}/T \ [J/mol \ K^{2}]$ vs. $T \ [K]$
Experiment: $\gamma = 19.7 \text{ mJ/mol K}^2$

Eliashberg Theory:
- $\gamma_c = 18.6 \text{ mJ/mol K}^2$
- $\gamma_c + 1.2 \text{ mJ/mol K}^2$

∇ Nohara et al. single crystal