Cosmological applications in Kaluza–Klein theory

M. I. Wanasa)(c)(d), Gamal G. L. Nashed(b)(c)(d)†, and A. A. Nowayae)

a)Astronomy Department, Faculty of Science, Cairo University, Giza, Egypt
b)Mathematics Department, Faculty of Science, King Faisal University, P.O. Box 380 Al-Ahsaa 31982, the Kingdom of Saudi Arabia
c)Mathematics Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
d)Center for Theoretical Physics, British University of Egypt Sherouk City 11837, P.O. Box 43, Egypt
e)Egyptian Relativity Group (ERG), Physics Department, Faculty of Science, Monofia University, Monofia, Egypt

(Received 28 September 2011; revised manuscript received 26 October 2011)

The field equations of Kaluza–Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor’s expansion of cosmological function, $A(t)$, up to the first order of the time t. The cosmological parameters are calculated and some cosmological problems are discussed.

Keywords: Kaluza–Klein theory, cosmology, Taylor’s expansion of cosmological function

PACS: 98.80.–K, 98.80.JK, 04.50.Cd

DOI: 10.1088/1674-1056/21/4/049801

1. Introduction

Recent observation of distant supernovae type Ia indicated that the universe is presently accelerating.[1–4] Cosmic acceleration is attributed to the presence of an unknown form of energy violating the strong energy conditions $\rho + 3p > 0$ where ρ and p are energy density and pressure of dark energy, respectively. Different candidates for dark energy[5,6] have attempted to yield accelerating cosmologies at a late times. The cosmological constant Λ and phantom fields[7–19] violating weak energy conditions $\rho + p > 0$ are the most popular ones.

Kaluza’s[20] has shown that the five-dimensional general relativity contains both Einstein’s 4-dimensional theory of gravity and Maxwell’s theory of electromagnetism. He however imposed a somewhat artificial restriction (the cylindrical condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s[21] contribution was to make this restriction less artificial by suggesting a plausible physical basis for it in the compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in 1980 to the current favorite contenders for a possible theory of everything, ten-dimensional superstrings.

Most existing astrophysical work on the cosmological term, operate on the assumption that Λ is a constant. However, quantum field theorists and others treat the cosmological term as a dynamical quantity (cf. Refs. [22–29]). Anything which contributes to the energy density ρ of the vacuum behaves like a cosmological term via $\Lambda = 8\Pi G \rho$. Many potential sources of fluctuating vacuum energy have now been identified, including scalar fields[31–39] tensor fields[40–44] nonlocal effects[45,46] wormholes[47,48] inflationary mechanisms[49] and even cosmological perturbations[50]. Each of these has been claimed to give rise to a negative energy density which grows with time, tending to cancel out any pre-existing positive cosmological term and drive the net value of Λ toward zero. Processes of this kind are among the most promising ways to resolve the longstanding cosmological constant problem[31] (see Ref. [50] for review).

It is the aim of the present work to solve the gravitational field equations of Kaluza–Klein (KK) theory in the domain of cosmology considering the gravitational and cosmological constants as a function of time t. Then, we assume that $A(t) = e^{R(t)^{-2}}$, where $R(t)$ is the scale factor used to calculate the cosmological...
parameters. In Section 2, the field equations of KK are applied to the FRW metric. In Section 3, we give the solution of the field equation and calculate the corresponding cosmological parameters. In Section 4, we give the solution of the field equation for a closed universe and also calculate the cosmological parameters associated with this model. The final section is devoted a conclusion.

2. The FRW model and KK theory

The FRW line element in five-dimensional spacetime has the form[52]

\[
\mathrm{d}s^2 = \mathrm{d}t^2 - R^2(t) \left[\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 (\mathrm{d}\theta^2 + \sin^2 \theta \mathrm{d}\phi^2) \right] + (1 - kr^2) \mathrm{d}\psi^2, \tag{1}
\]

where \(R(t) \) is the scale factor, \(k \) is the curvature parameter (\(k = +1, 0, -1 \)) corresponding to closed flat and open universe respectively. The Einstein field equations are given by

\[
R_{\mu\nu} - g_{\mu\nu} \frac{R}{2} = g_{\mu\nu} \Lambda - 8\pi G T_{\mu\nu} = 8\pi G T_{\mu\nu}' \tag{2}
\]

where \(R_{\mu\nu}, R, g_{\mu\nu}, \Lambda = \Lambda(t), G = G(t) \) are Ricci tensor, Ricci scalar, metric tensor, cosmological function, and gravitational function, respectively.

Assuming that matter filling the universe is in the form of a perfect fluid, then

\[
\begin{align*}
T_0^0 &= \rho + \frac{\Lambda}{8\pi G}, \\
T_1^1 &= T_2^2 = T_3^3 = T_4^4 = -P + \frac{\Lambda}{8\pi G},
\end{align*}
\tag{3}
\]

where \(\rho = \rho(t) \) is the density and \(P = P(t) \) is the pressure. Applying Eq. (2) to metric given by Eq. (1) and using Eq. (3) we obtain the following set of differential equations

\[
\begin{align*}
8\pi G \rho + \Lambda &= 6 \left(\frac{\dot{R}}{R} \right)^2 + \frac{k}{R^2}, \tag{4} \\
8\pi G P - \Lambda &= -3 \left(\frac{\dot{R}}{R} \right)^2 + \frac{k}{R^2}. \tag{5}
\end{align*}
\]

Now we have two differential equations in five unknown functions \(R(t), \rho(t), P(t), \Lambda(t), \) and \(G(t) \). Therefore we need some extra conditions to be able to solve Eqs. (4) and (5), for each value of \(k \). One of these conditions is usually provided by an equation of state characterizing the fluid filling the model. Here we take the equation of state in the form

\[
P = (\omega - 1)\rho, \tag{6}\]

where \(\omega \in [0, 2] \). When \(\omega = 0 \), then \(P = -\rho \) (dark energy case), when \(\omega = 1 \), then \(P = 0 \) (dust case), when \(\omega = 4/3 \) then \(P = \rho/3 \) (radiation case), and when \(\omega = 2 \) then \(P = \rho \) (stiff matter case). The conservation equation has the form \(T^\mu{}_{\nu} \; \nu = 0 \). This will gives rise to the relation,

\[
\dot{\rho} + \frac{4}{R(t)} \frac{\dot{R}}{R(t)} (\rho + P) + \frac{\Lambda}{8\pi G} \left(\frac{\dot{A}}{A} - \frac{\dot{G}}{G} \right) = 0, \tag{7}
\]

Equations (4), (5), and (6) are three nonlinear differential equations in the five unknown functions. Therefore, we split Eq. (7), for simplicity, into the two equations

\[
\dot{\rho} + \frac{4}{R(t)} \frac{\dot{R}}{R(t)} (\rho + P) = 0, \tag{8}
\]

and

\[
\frac{\dot{A}}{A} - \frac{\dot{G}}{G} = 0, \tag{9}
\]

in order to impose two further additional conditions on the unknown function. Now, we have five differential equations (4), (5), (6), (8), and (9) in the five unknown functions \(R(t), \rho(t), P(t), \Lambda(t), \) and \(G(t) \).

Equation (9) shows that \(A \) is constant whenever \(G \) is constant and vice versa. Solving Eq. (8), we obtain

\[
\rho(t) = \frac{c_1}{R(t)^{2\omega}}, \tag{10}
\]

where equation (6) has been used and \(c_1 \) is a constant of integration. The constant \(c_1 \) can be determined by using \(\omega = \omega_0 \) and \(\rho = \rho_0 \) (critical density) at time \(t = t_0 \), where the subscript 0 refers to the present value. We are going to use the following definitions of some cosmological parameters:

\[
\begin{align*}
\text{the Hubble’s parameter} & \quad H_0 = \frac{\dot{R}(t_0)}{R(t_0)} = \frac{\dot{R}_0}{R_0}, \\
\text{the Hubble’s time} & \quad \tau_0 \overset{\text{def}}{=} \frac{1}{H_0}, \\
\text{the deceleration parameter} & \quad q_0 \overset{\text{def}}{=} -\frac{\ddot{R}_0}{R_0} H_0^{-2} = -1 - \frac{\ddot{H}_0}{H_0^2}, \\
\text{the density parameter} & \quad \sigma_0 \overset{\text{def}}{=} \frac{\rho_0}{\rho_c},
\end{align*}
\]

where \(\rho_c \) is the critical density defined by

\[
\rho_c \overset{\text{def}}{=} \frac{3 H_0^2}{8\pi G}. \tag{11}
\]
3. Solution for \(k = 0 \)

We are going to solve the field equations\(^1\) (4) and (5), and then we evaluate the cosmological parameters. Here we assume\(^2\)
\[
\Lambda(t) \simeq \epsilon_0 + \epsilon_1 t + \cdots, \quad (12)
\]
where \(\epsilon_0 \) and \(\epsilon_1 \cdots \) are arbitrary constants. From Eq. (9) we obtain
\[
G(t) = c_2(\epsilon_0 + \epsilon_1 t), \quad (13)
\]
where \(c_2 \) is another constant of integration.

Equations (4) and (5), in the case \(k = 0 \), take the forms
\[
8\pi G \rho + \Lambda = 6 \left(\frac{\dot{R}(t)}{R(t)} \right)^2, \\
8\pi G P - \Lambda = -3 \left[\frac{\dot{R}(t)}{R(t)} + \frac{\ddot{R}(t)}{R(t)} \right]^2. \quad (14)
\]
From Eq. (14) we obtain
\[
3 \frac{\dot{R}(t)}{R(t)} - 3 \left(\frac{\dot{R}(t)}{R(t)} \right)^2 + \omega \left[6 \frac{\ddot{R}(t)}{R^2(t)} - \Lambda \right] = 0.
\]

\(R(t) = \sqrt{\frac{c_3 A(\Lambda(t)/A_{00}) - c_4 B(\Lambda(t)/B_{00})}{A_0 [A(1, \Lambda(t)/A_{00}) B(\Lambda(t)/A_{00}) - B(1, \Lambda(t)/A_{00}) A(\Lambda(t)/A_{00})]}} \quad (17)
\]

(i) **Dust case** \((\omega = 1) \)

The integration of Eq. (15) has the form
\[
H(t) = B_0 = \frac{c_3 A(1, A(t)/A_{00}) - c_4 B(1, A(t)/B_{00})}{c_5 A(1, A(t)/B_{00}) - c_6 B(1, A(t)/B_{00})}, \quad B_0 = \left(\frac{\epsilon_1^3}{16} \right)^{1/3}, \quad B_{00} = \left(\frac{27 \epsilon_1^2}{32} \right)^{1/3} \quad (18)
\]
where \(c_5 \) and \(c_6 \) are constants of integration. From Eq. (18) we obtain the scale factor in the form
\[
R(t) = \left\{ \frac{c_3 A(\Lambda(t)/B_{00}) - c_6 B(\Lambda(t)/B_{00})}{B_0 [A(1, \Lambda(t)/B_{00}) B(\Lambda(t)/B_{00}) - B(1, \Lambda(t)/B_{00}) A(\Lambda(t)/B_{00})]} \right\}^{3/8}. \quad (19)
\]

(ii) **Radiation case** \((\omega = 4/3) \)

The integration of Eq. (15) has the form
\[
H(t) = C_0 = \frac{c_7 A(1, \Lambda(t)/C_{00}) - c_8 B(1, \Lambda(t)/C_{00})}{c_5 A(\Lambda(t)/C_{00}) + B(\Lambda(t)/C_{00})}, \quad C_0 = \left(\frac{\epsilon_1^3}{24} \right)^{1/3}, \quad C_{00} = \left(\frac{3 \epsilon_1^2}{8} \right)^{1/3} \quad (20)
\]
where \(c_7 \) and \(c_8 \) are constants of integration. From Eq. (20) we obtain the scale factor in the form
\[
R(t) = \left\{ \frac{c_7 A(\Lambda(t)/C_{00}) - c_8 B(\Lambda(t)/C_{00})}{C_{00} [A(1, \Lambda(t)/C_{00}) B(\Lambda(t)/C_{00}) - B(1, \Lambda(t)/C_{00}) A(\Lambda(t)/C_{00})]} \right\}^{1/4}. \quad (21)
\]

\(^1\) In Ref. [52] a solution of the field equations (4) and (5) has been obtained for the case \(k = 0 \), \(\Lambda(t) \simeq \epsilon H^2(t) \) and the relevant cosmological parameters are also calculated. The continuity equation given in this case, is the same as Eq. (8), and not like Eq. (7), which does not include the variation of \(\Lambda(t) \) and \(G(t) \).

\(^2\) In these calculations we will take Taylor’s expansion, of \(\Lambda(t) \), up to the first order in \(t \) and we will neglect the higher orders.

\(^3\) AiryAi and AiryBi(z) are linearly independent solutions for \(w \) in the equation \(w'' - zw = 0 \). Specifically AiryAi(z) = \(C_1 F_1(2/3; z^3/9) - C_2 F_1(4/3; z^3/9) \) and AiryBi(z) = \(\sqrt{3} \left[C^{*1}_1 F_1(2/3; z^3/9) + C^{*2}_2 F_1(4/3; z^3/9) \right] \) where \(C^{*1}_1 = \text{AiryAi}(0) \) and \(C^{*2}_2 = \text{AiryAi}'(0) \) and \(F_1 \) is the generalized hypergeometric function. Also \(\text{AiryAi}(1, x) \) is the first derivative of \(\text{AiryAi}(x) \).
4. Physical properties of the models obtained

4.1. Red shift

Consider an observer O, located at the origin of space coordinate and a galaxy S at an arbitrary point with spatial coordinates \((r, \theta, \phi, \psi)\). According to Eq. (1), the velocity of a radial ray of light \((ds=0, d\theta=0, d\phi=0, d\psi=0)\) is given by

\[
\frac{dr}{dt} = \pm \sqrt{1 - kr^2}. \tag{22}
\]

Hence if a light pulse is emitted by the galaxy S at the instant \(t_1\), is received by O at the instant \(t_0\), \((t_0 > t_1)\) we obtain from Eq. (22)

\[
f(r_1) = \int_{t_1}^{t_0} \frac{dt}{R(t)} = \begin{cases} \sin^{-1} r_1, & k = +1, \\ r_1, & k = 0, \\ \sin^{-1} r_1, & k = -1. \end{cases} \tag{23}
\]

The value of the red-shift \(Z\) in all obtained models can be proved to have the form

\[
Z = \frac{\delta \lambda}{\lambda} = \frac{R_0}{R_1} - 1. \tag{24}
\]

4.2. Particle horizons

One of the important questions in cosmological theory is to find out, according to a certain model, the answer of the following questions: How much of our universe can be observed at a given instant? To answer this question we consider, as mentioned above, a galaxy S at the point \((r, \theta, \phi, \psi)\) and an observer O, located at the origin space coordinates. Then consider a light signal emitted by S at the instant \(t_1\) and received by O at the instant \(t_0\). Light signal moves along null geodesic whose equation gives rise to

\[
\frac{dr}{dt} = \frac{\sqrt{1 - kr^2}}{R(t)} \Rightarrow \frac{dr}{\sqrt{1 - kr^2}} = \frac{dt}{R(t)} = f(r_1). \tag{25}
\]

We have to distinguish between two different distances, the radial coordinate distance defined by

\[
r \overset{\text{def}}{=} \int_{t_1}^{t_0} \frac{dt}{R(t)}, \tag{26}
\]

and the proper distance \(s\) defined by

\[
s \overset{\text{def}}{=} R(t_0)r. \tag{27}
\]

Recalling the red-shift as given by Eq. (24), one can always express the proper distance \(s\) in terms of the redshift \(Z\). Then if \(s \to \infty\) as \(Z \to \infty\), we can say that the model is free from particle horizons, i.e., isotropic observers can communicate by sending and receiving signals. But if \(s\) attains a finite value as \(Z \to \infty\) we say that the model contains particle horizons.

For example we are going to explore the existence of particle horizons in one of the models discussed above. For the dust model \((\omega = 1, k = 0, A(t) = \epsilon_0 + \epsilon_1 t)\), given by Eq. (17), we have

\[
f(r_1) = r_1 = \int_{t_1}^{t_0} \frac{dt}{R(t)} = \int_{t_1}^{t_0} \frac{dt}{\sqrt{c_3 A(A(t)/A_{00}) - c_4 B(A(t)/A_{00})}} \frac{dt}{A_0 [A(1, A(t)/A_{00})B(A(t)/A_{00}) - B(1, A(t)/A_{00})A(A(t)/A_{00})]}
\]

Taking Taylor’s expansion of the above equation, up to the first order in \(t\), we obtain

\[
r_1 = \int_{t_1}^{t_0} \sqrt{-\frac{c_3 \Gamma[\frac{1}{3}]}{2\sqrt{3}} + \frac{c_4 \sqrt{3} \Gamma[\frac{1}{3}]}{2} + \frac{t}{4\sqrt{3} \sqrt{-\frac{c_3 \Gamma[\frac{1}{3}]}{2} + \frac{c_4 \sqrt{3} \Gamma[\frac{1}{3}]}{2}}}} \frac{dt}{4\sqrt{3} \sqrt{-\frac{c_3 \Gamma[\frac{1}{3}]}{2} + \frac{c_4 \sqrt{3} \Gamma[\frac{1}{3}]}{2}}}.
\]

which can be integrated to give,

\[
\Rightarrow \quad r_1 = \frac{2\sqrt{-\frac{c_3 \Gamma[\frac{1}{3}]}{2}} + \frac{c_4 \sqrt{3} \Gamma[\frac{1}{3}] \ln \left\{ \left[-2\sqrt{3} c_4 \Gamma[\frac{1}{3}] + 2c_4 \sqrt{3} \Gamma[\frac{1}{3}] \right] + t_0 \left[\sqrt{3} c_3 + 3c_4 \Gamma[\frac{2}{3}] \right] \right\} \right\} + \frac{c_4 \sqrt{3} \Gamma[\frac{1}{3}] \ln \left\{ \left[-2\sqrt{3} c_3 \Gamma[\frac{1}{3}] + 2c_4 \sqrt{3} \Gamma[\frac{1}{3}] \right] + t_1 \left[\sqrt{3} c_3 + 3c_4 \Gamma[\frac{2}{3}] \right] \right\} \right\}}{\sqrt{3} c_3 + 3c_4 \Gamma[\frac{2}{3}]},
\]
where \(\Gamma \) is the gamma function. Then from Eq. (26) we have,

\[
s = R_0 r_1 = \ln \left[-2 \sqrt{3} c_3 \Gamma \left(\frac{1}{3} \right) + 2 c_4 \sqrt{3} \Gamma \left(\frac{1}{3} \right) + 4 \left(\sqrt{3} c_3 + 3 c_4 \right) \right] \ln \left(1 + Z \right) .
\]

From Eq. (27) we see that there is no particle horizon since when \(Z \to \infty \) the proper distance \(s \) tends to infinity as well.

Using the same method we can show that radiation and stiff matter models \((\omega = 4/3, k = 0, \Lambda(t) = \epsilon_0 + \epsilon_1 t)\) and \((\omega = 2, k = 0, \Lambda(t) = \epsilon_0 + \epsilon_1 t)\), respectively, are free from particle horizons.

5. Main results and discussion

In the present work, we consider the cosmological application in the domain of KK theory, taking the Newtonian and the cosmological constants, \(G \) and \(\Lambda \), to be functions of time \(t \). Assuming homogeneity and isotropy, the field equations of KK theory give two differential equations. We have added to them an equation of state and two further conditions related to conservation. This is done in order to gain the five unknown functions \(R(t), P(t), \rho(t), \Lambda(t), \) and \(G(t) \).

One of these equations shows, in a clear way, that the relation between \(\Lambda(t) \) and \(G(t) \) indicates that \(\Lambda(t) \) is constant whenever \(G(t) \) is constant and vice versa. We study the flat space, i.e., \(k = 0 \), and assume a Taylor expansion of \(\Lambda(t) \) keeping up to the first order of \(t \), i.e., \(O(t) \). We can see from Eqs. (12), (17), (19), and (21) that the values of \(A(t) \) and the scale factor \(R(t) \) are finite while, when \(t \to 0 \) the values of \(A(t) \) and the scale factor \(R(t) \) are unbounded when \(t \to \infty \).

A summary of the results obtained are compared below in the following table.

\(t \)	\(x \)	\(y \)	\(z \)
0.0	0.25	0.05	0.2
0.2	0.50	0.10	0.4
0.4	0.75	0.15	0.6
0.6	1.00	0.20	0.8
0.8	1.25	0.25	1.0
1.0	1.50	0.30	1.2

Different figures (Figs. 1–5) related to this summary are given. From these figures we can conclude as follows.

Fig. 1. The scale factor \(R(t) \) of different cases for \(\epsilon_0 = 1, \epsilon_1 = 1, c_3 = 1, c_4 = 1, c_5 = 1, c_6 = 1, c_7 = 1, \) and \(c_8 = 1 \).

Fig. 2. The Hubble parameter \(H(t) \) of different cases for \(\epsilon_0 = 1, \epsilon_1 = 1, c_3 = 1, c_4 = 1, c_5 = 1, c_6 = 1, c_7 = 1, \) and \(c_8 = 1 \).

Fig. 3. The density \(\rho(t) \) of different cases for \(\epsilon_0 = 1, \epsilon_1 = 1, c_3 = 1, c_4 = 1, c_5 = 1, c_6 = 1, c_7 = 1, \) and \(c_8 = 1 \).
(I) The models resulting from the three studied cases, i.e., dust, radiation, and stiff matter have no singularity unless when $A_0 = (\epsilon_1/12)^{1/3}$, $B_0 = (\epsilon_1^3/16)^{1/3}$ and $C^* = (\epsilon_1/24)^{1/3}$ vanish, which contradicts our assumption that $A(t) = \epsilon_0 + \epsilon_1 t$ is a function of t. In other words the models are singular when $A(t)$ is constant.

(II) The resulting models are accelerating which is consistent with most recent observation.\^[1-3]

(III) Figure 3 shows that density in the three models are decreasing with time which ensures that our universe is expanding.

(IV) The three models are free from particle horizons, which is consistent with the previous result.\^[53]

(V) We have considered the cosmological term to contribute to the material-energy contents of the universe.

(VI) Equation (7) satisfies the conservation law when $G(t)$ and $A(t)$ are functions of time in contradiction with the result obtained before (Eq. (8)).\^[52]

Table 1. Comparison between the results of scale factors $R(t)$, Hubble parameters $H(t)$, density $\rho(t)$, and deceleration parameters $q(t)$ for $A(t) = \epsilon_0 + \epsilon_1 t$.

Equation of state	$\omega = 1$	$\omega = 4/3$	$\omega = 2$
Scale factor	$A_0 e^{A(t)} - C e^{B(t)}$	$A_0 e^{A(t)} - C e^{B(t)}$	$A_0 e^{A(t)} - C e^{B(t)}$
Hubble parameter	$A_0 e^{A(t)} + C e^{B(t)}$	$A_0 e^{A(t)} + C e^{B(t)}$	$A_0 e^{A(t)} + C e^{B(t)}$
Density	$\frac{c_1(A_0 e^{A(t)} - C e^{B(t)})}{c_2 e^{B(t)}}$	$\frac{c_1(A_0 e^{A(t)} - C e^{B(t)})}{c_2 e^{B(t)}}$	$\frac{c_1(A_0 e^{A(t)} - C e^{B(t)})}{c_2 e^{B(t)}}$
Deceleration	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$	$\frac{18 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{4}$	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$
Parameter	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$	$\frac{15 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{4}$	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$
	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$	$\frac{18 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{4}$	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$
	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$	$\frac{15 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{4}$	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$
	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$	$\frac{18 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{4}$	$\frac{3 \sqrt{3}+c_1 A(t) e^{A(t)} - c_2 B(t) e^{B(t)}}{2}$

\[f(t) = A(t)/A_{00}, \quad A_{00} = (3\epsilon_1^2/2)^{1/3}, \quad f'(t) = (1, A(t)/A_{00}, \quad f_1(t) = A(t)/R_{00}, \quad R_{00} = (2\epsilon_1^2/32)^{1/3}, \quad f_1'(t) = (1, A(t)/R_{00}), \quad f_2(t) = A(t)/C_{00}, \quad C_{00} = (3\epsilon_1^2/8)^{1/3}, \quad \text{and} \quad f_2'(t) = (1, A(t)/C_{00}). \]
References

[1] Perlmutter S, Aldering G, Della Valle M, Deustua S, Ellis R S, Fabbro S, Fruchter A, Goldhaber G, Groom D E, Hook I M, Kim A G, Kim M Y, Knop R A, Lidman C, McMahon R G, Nugent P, Pain R, Panagia N, Pernicka C R, Ruiz-Lapuente P, Schaefer B and Walton N 1998 Nature 391 51
[2] Perlmutter S, Aldering G, Goldhaber G, Knop R A, Nugent P, Castro P G, Deustua S, Fabbro S, Goobar A, Groom D E, Hook I M, Kim A G, Kim M Y, Lee J C, Nunes N J, Pain R, Pernicka C R, Quimby R, Lidman C, Ellis R S, Irwin M, McMahon R G, Ruiz-Lapuente P, Walton N, Schaefer B, Boyle B J, Filipenko A V, Matheson T, Fruchter A S, Panagia N, Newberg H J M, Couch W J and The Supernova Cosmology Project 1999 Astrophys. J. 517 565
[3] Reiss A G, Filippenko A V, Challis P, Clocchiatti A, Diercks A, Garnavich P M, Gilliland R L, Hogan C J, Jha S, Kirshner R P, Leibundgut B, Phillips M M, Reiss D, Schmidt B P, Schommer R A, Smith R C, Spyromilio J, Stubbs C, Suntzeff N and Tonry J 1998 Astron. J. 116 1009
[4] Reiss A G, Strolger L G, Tonry J, Casertano S, Ferguson H C, Mohabber B, Challis P, Filippenko A V, Jha S, Li W, Chornock R, Kirshner R P, Leibundgut B, Dickinson M, Livio M, Giavalisco M, Steidel C C, Benitez T and Tsvetanov Z 2004 Astron. J. 120 665
[5] Wanas M I 2007 Int. J. Mod. Phys. A22 5709
[6] Wanas M I 2008 Proc. MGXI Part B p. 1782
[7] Sahni V 2002 Class. Quantum Grav. 19 3435
[8] Lahav O and Liddle A R 2004 Phys. Lett. B 592 1
[9] Kamenshchik A Y, Moschella U and Pasquier V 2001 Phys. Lett. B 511 265
[10] Zhu Z H and Fujimoto M K 2003 Astrophys. J. 585 52
[11] Sen S and Sen A 2003 Astrophys. J. 588 1
[12] Godlowski W, Szydlowski M and Krawiec A 2004 Astrophys. J. 605 599
[13] Godlowski W, Szydlowski M and Krawiec A 2004 Gen. Rel. Grav. 36 767
[14] Godlowski W, Stelmach J and Szydlowski M 2004 Class. Quantum Grav. 21 3953
[15] Puatzfeld D and Chen X 2004 Class. Quantum Grav. 21 2703
[16] Biesiada M, Godlowski W and Szydlowski M 2005 Astrophys. J. 622 28
[17] Caldwell R R 2002 Phys. Lett. B 554 23
[18] Carroll S M, Hoffman M and Trodden M 2003 Phys. Rev. D 68 023509
[19] Hsu S D H, Jenkins A and Wise M B 2004 Phys. Lett. B 597 270
[20] Kaluza T and Unitätsproblem Z 1921 der Physik Sitz. Preuss. Akad. Wiss. Phys. Math. K1 966
[21] Klein O 1962 Quantenmechanik und fünfdimensionale Relativitätstheorie, Zeits. Phys. 37 895
[22] Overduin J M and Wesson P S 1997 Phys. Rep. 283 303
[23] Bergmann P G 1968 Int. J. Theor. Phys. 1 25
[24] Wagoner R V 1970 Phys. Rev. D 1 3209
[25] Linde A D 1974 JETP Lett. 19 183
[26] Endô M and Fukui T 1977 Gen. Rel. Grav. 8 833
[27] Canuto V, Hsieh S H and Adams P J 1977 Phys. Rev. Lett. 39 429
[28] Kazanas D 1980 Astrophys. J. Lett. 241 L59
[29] Polyakov A M 1982 Sov. Phys. Usp. 25 187
[30] Adler S L 1982 Rev. Mod. Phys. 54 729
[31] Dolgov A D 1983 The Very Early Universe, ed. Gibbons G W, Hawking S W and Siklos S T C (Cambridge: Cambridge University Press) p. 449
[32] Abbott L F 1985 Phys. Lett. B 150 427
[33] Banks T 1985 Nucl. Phys. B 249 332
[34] Peccei R D, Solà J and Wetterich C 1987 Phys. Lett. B 195 183
[35] Barr S M 1987 Phys. Rev. D 36 1691
[36] Peebles P J E and Ratra B 1988 Astrophys. J. Lett. 325 L17
[37] Fujii Y and Nishioka T 1981 Phys. Lett. B 254 347
[38] Frieman J A, Hill C T, Stebbins A and Waga I 1995 Phys. Rev. Lett. 75 2077
[39] Moffat J W 1995 Phys. Lett. B 357 526
[40] Hawking S W 1984 Phys. Lett. B 134 403
[41] Banks T 1984 Phys. Rev. Lett. 52 1461
[42] Brown J D and Teitelboim C 1987 Phys. Lett. B 195 177
[43] Dolgov A D 1997 Phys. Rev. D 55 5881
[44] Dolgov A D 1997 9708045[astro-ph]
[45] Linde A D 1988 Phys. Lett. B 200 272
[46] Banks T 1988 Nucl. Phys. B 309 493
[47] Coleman S 1988 Nucl. Phys. B 310 643
[48] Tsamis N C and Woodard R P 1995 Ann. Phys. (NY) 238 1
[49] Brandenberger R H and Zhitnitsky A R 1997 Phys. Rev. D 55 4640
[50] Abramo L R W, Brandenberger R H and Mukhanov V F 1997 Phys. Rev. D 56 3248
[51] Carroll S M 2001 Living Rev. Relativity 4 1
[52] Sharif M 2011 Gen. Rel. Grav. 43 2885
[53] Sharif M 2011 Astrophys. Space Sci. 334 209