Correcting for Cryptic Relatedness in Genome-Wide Association Studies

Bonnie Kirkpatrick1,* and Alexandre Bouchard-Côté2

1 Intrepid Net Computing, bbkirk@intrepidnetcomputing.com, 406-998-0179, Montana, US, *corresponding author,
2 University of British Columbia, Statistics, bouchard@stat.ubc.ca, 605-822-1669, 3182 Earth Sciences Building, 2207 Main Mall, Vancouver, BC, Canada V6T 1Z4.

Abstract. While the individuals chosen for a genome-wide association study (GWAS) may not be closely related to each other, there can be distant (cryptic) relationships that confound the evidence of disease association. These cryptic relationships violate the GWAS assumption regarding the independence of the subjects’ genomes, and failure to account for these relationships results in both false positives and false negatives. This paper presents a method to correct for these cryptic relationships. We accurately detect distant relationships using an expectation maximization (EM) algorithm for finding the identity coefficients from genotype data with known prior knowledge of relationships. From the identity coefficients we compute the kinship coefficients and employ a kinship-corrected association test.

We assess the accuracy of our EM kinship estimation algorithm. We show that on genomes simulated from a Wright-Fisher pedigree, our method converges quickly and requires only a relatively small number of sites to be accurate. We also demonstrate that our kinship coefficient estimates outperform state-of-the-art covariance-based approaches and PLINK’s kinship estimate.

To assess the kinship-corrected association test, we simulated individuals from deep pedigrees and drew one site to recessively determine the disease status. We applied our EM algorithm to estimate the kinship coefficients and ran a kinship-adjusted association test. Our approach compares favorably with the state-of-the-art and far out-performs a naive association test.

We advocate use of our method to detect cryptic relationships and for correcting association tests. Not only is our model easy to interpret due to the use of identity states as latent variables, but also inference provides state-of-the-art accuracy.

Keywords: cryptic relatedness, identity states, kinship coefficients, expectation maximization

1 Introduction

Accuracy in disease association studies is heavily influenced by cryptic relatedness and population substructure. Astrle and Balding (2009). Both false positives
and false negatives result from these influences, because of false assumptions of independence between individuals that are actually related. Disease associations are primarily detected using the genome-wide association study (GWAS) which is typically a case-control or cohort association study implemented using a test for correlation between the disease and the genotypes, Risch and Merikangas (1996). While GWAS typically assumes independence between the individuals, a growing number of methods are designed to detect relationships in the form of statistical dependence between the genomes of individuals and correct the correlation calculation for these dependencies. This paper presents a novel method for detecting relationships and correcting the association analysis.

Methods exist that correct association test for relationships that are either known or unknown. These methods often use a two-step approach. First, pair-wise relationships in the form of identity states or kinship coefficients must be inferred either from a known pedigree structure, Thompson (1985), or from data, Purcell et al. (2007); Browning and Browning (2011); Milligan (2003); Sun and Dimitromanolakis (2014). Second, the inferred relationships are used to correct the test for association, Yu et al. (2005); Thornton and McPeek (2007); Rakowski and Stram (2009); Kang et al. (2010); Eu-ahsunthornwattana et al. (2014).

In this work, we focus on inferring pair-wise relationships, for which existing methods can be split into four categories. First, there are exact methods that compute the kinship coefficients from pedigree structures in quadratic time in the number of individuals in the pedigree, Kirkpatrick (2016); Abney (2009); Thompson (1985); Karigl (1981). Second, there are ways to estimate the probabilities of the condensed identity coefficients, Jacquard (1972), from data using a maximum likelihood estimator, Milligan (2003). Third, there are ways to estimate the probabilities of the outbred condensed identity coefficients, Purcell et al. (2007); Browning and Browning (2011)\(^3\), but such methods work only for outbred pedigrees and fail to capture more complicated relationships, as we see later in this paper. Fourth, there has been work on inferring kinship coefficients from admixed individuals, Thornton et al. (2012).

Our EM method has a running time, for a pair of individuals, that is linear in the number of sites. To estimate a kinship coefficient matrix for \(n\) individuals, our method is quadratic in \(n\), due to the number of pairs of individual. Our method avoids the assumption of having a known pedigree, taking only the genotypes as an input. We introduce one latent variable for each pair of individuals and each site, which encodes our uncertainty on the identity by descent states. The distribution over these states for each pair of individuals is learned using a simple expectation maximization (EM) algorithm and provides an informative, yet concise and learnable, summary of the relationship of each pair of individuals.

We show that this EM algorithm quickly converges to an accurate estimate. We assess the accuracy in two ways. First, we measure the accuracy of the re-

\(^3\) The probabilities of having zero, one, or two alleles identical-by-descent (IBD) are considered.
constructed latent variables using simulated pedigree data (the true value of the latent variable can be computed efficiently from the held-out pedigree structure). We assess the kinship estimates compared with PLINK and with a covariance-based estimate. Second, we demonstrate that our method can be used to correct GWAS for cryptic relatedness without assuming the knowledge of the pedigree structure.

2 Background

A pedigree is an annotated directed acyclic graph where the nodes are diploid individuals and the edges are directed from parent to child (Figure 1A). The graph is acyclic, because no individual can be their own ancestor. The pedigree graph is typically annotated with the gender (male or female), affection status, and the genotype status of the individuals. The gender is used to enforce on the graph the marriage constraint that each individual with parents in the graph has at most one parent of each gender. The founders are the individuals who do not have parents in the pedigree while non-founders are all the individuals having parent(s) in the pedigree graph. The affection status indicates whether an individual has a disease or phenotype. The genotype status indicates whether the individual has available genotypes.

The pedigree graph depicts familial relationships between individuals. Each diploid individual inherits one copy of each chromosome from each parent, and at different sites (loci) in the genome, an individual may inherit from different copies of the parent’s chromosome. In representing inheritance, we consider a single site in the genome and the binary inheritance decision made along each parent-child edge in the pedigree graph. We represent this with an inheritance path (Figure 1B). For a particular genomic site, the nodes of the inheritance path represent the alleles in all the individuals in the pedigree graph (i.e. for individual a the allele nodes are a_1 and a_2). The edges of the inheritance path graph proceed from a parent allele to a child allele and indicate that the parent allele is copied with fidelity (i.e. without mutation) to the child allele. For each pedigree graph with n edges there are 2^n possible inheritance path graphs.

In an inheritance path, if two alleles are in the same connected component, we say those alleles are identical by descent (IBD). For example, the paternal alleles from two siblings are IBD if and only if the two children inherit from the same allele of the father’s two alleles. The two alleles from the same individual whose parents are related to each other may appear in the same connected component due to inbreeding.

When we focus on two individuals, a and b, who are genotyped, a natural question is: which subsets of the four alleles of those two individuals are IBD? For a given inheritance path, the identity state captures the answer to this question (Figure 1C). The identity state is a graph with four nodes, one for each of the four alleles \{a_1, a_2, b_1, b_2\}, and with an edge between two alleles if and only if these two alleles are IBD. Therefore, there is an edge between two alleles in the
identity state if and only if they appear in the same connected component of the inheritance path graph.

The identity state is related to the genotype data in the following way. Each of these two individuals may be either heterozygous (two different alleles, i.e. \(a_1 \neq a_2 \)) or homozygous (two copies of the same allele, \(a_1 = a_2 \)) at each site assayed. Certainly if alleles \(x, y \) appear together in a connected component of the identity state, they are IBD and must be identical alleles. However, if alleles \(x, y \) appear in different connected components of the identity state, then they are not IBD and they may or may not be identical alleles.

For any given pedigree, there are 15 possible identity states, \cite{Jacquard1972}. For a pedigree with \(n \) edges and a pair of individuals \(a \) and \(b \), the identity state is a random variable, \(S \), having a corresponding distribution called the identity coefficients, \(P[S = s] \), which is the fraction of the \(2^n \) inheritance paths for the pedigree that exhibit identity state \(s \).

While the identity state describes the possible IBD between two genotyped individuals, the condensed identity state, \cite{Jacquard1972}, more directly relates the IBD to the genotype data. In the identity state the two alleles of one individual are distinguishable, however in the genotype, due to our inability to measure which allele is on which chromosome, the alleles are exchangeable. The condensed identity states are a grouping or partition of the identity states such that two identity states appearing in the same group are isomorphic when the labels on the nodes belonging to individual \(a \) are permuted and the labels on the nodes belonging to the individual \(b \) are permuted (any valid permutation is permitted, including the permutation that does not change the node labels of the individual). According to this definition, there are nine condensed identity states. Let \(c_i \) be the number of condensed identity states which contain \(i \) distinct identity states. Then the 9 condensed identity states group the 15 identity states into groups \(c_1 = 5, c_2 = 3, c_3 = 0, c_4 = 1 \) (see Figure 2 for drawings of all the identity state graphs grouped into the condensed identity states). Similar to the identity coefficient, each of these condensed identity states has a corresponding condensed identity coefficient which is the fraction of the \(2^n \) inheritance paths for the pedigree with \(n \) edges that exhibit the condensed identity state.

We need one last concept, still defined with respect to a pair of individuals in a pedigree. The kinship coefficient for that pair of individuals is defined as the probability of IBD when choosing one allele from each individual uniformly at random. The exact kinship coefficients for every pair of individuals are typically computed from known relationships—a pedigree graph—using a recursive computation, \cite{Kirkpatrick2016, Abney2009, Karigl1981, Thompson1985}.

3 Methods

We focus on estimating the identity coefficients.\footnote{One could re-express our method in terms of the condensed identity coefficients (since the data do not provide information to distinguish between identity states} We do not directly estimate the kinship coefficients from the genotypes, because we have no model by which the
Fig. 1. Example pedigree, inheritance path, and identity state. A) An example of a pedigree dag is shown at the left with the edges directed implicitly downwards, the circles representing females, and the boxes representing males. The two individuals with known genotypes are labeled a and b. B) An example of an inheritance path graph for this pedigree is shown in the center with the dots being nodes representing alleles. Although the allele nodes are unlabeled, here, for each individual the inheritance path edges are confined to the options permitted by the pedigree graph. Notice that while there are cycles in graph (A), the inheritance path graph, which has alleles (dots) as nodes, has no cycles (such a graph is called a forest, as it is not connected in general). There are three trees in this inheritance path forest. C) An example of an identity state is shown on the right. This identity state is the one produced from the connected components of the inheritance path graph in the center (B).

kinship coefficients can generate the genotypes. On the other hand, if we know the identity states, their coefficients, and the allele frequencies in the founders, there is a generative model for producing the genotype. Since the kinship coefficients can be expressed as an expectation with respect to the identity coefficients, they contain a degenerate version of the information contained in the identity coefficients and do not provide a convenient generative model for the genotype.

The estimated identity coefficients are then transformed into estimates of the kinship using equations developed by [Kirkpatrick 2012, 2016], which we repeat for convenience. For an identity state, let $t \in \{aa, ab, bb\}$ denote an edge type, for example, ab indicates any edge between the alleles in two different individuals a and b (i.e., an edge between one of the nodes $\{a_1, a_2\}$ and one of the nodes that fall in the same condensed identity states), but the presentation is simpler in the non-condensed setting.
Outbred	Founder Alleles	Identity States
Yes	4	$a_1 \bullet \bullet a_2$
Yes	3	$b_1 \bullet \bullet b_2$
No	3	$\bullet \bullet \bullet$
No	3	$\bullet \bullet \bullet$
Yes	2	$\bullet \bullet \bullet \bullet$
No	2	$\bullet \bullet \bullet \bullet$
No	2	$\bullet \bullet \bullet \bullet$
No	1	$\bullet \bullet \bullet \bullet$

Fig. 2. Identity States. The 15 identity states are grouped so that each row corresponds to one of the 9 condensed identity states. The number of founder alleles for each identity state is listed, along with whether the identity state is outbred.

$\{b_1, b_2\}$. Let S be the set of all the identity states for a pedigree and pair of individuals. Let $e(s, t)$ for $s \in S$ be an indicator function that is one if and only if the identity state has an edge of type t. Equations (1) and (2) give the kinship in terms of the identity state distribution.

$$
\Phi_{a,b} = \sum_{s \in S} \frac{e(s, ab)}{4} \mathbb{P}[S = s],
$$

(1)

where s is the identity state. Rather than the kinship coefficient for the diagonal, we consider the inbreeding coefficient (see Kirkpatrick (2016) for details of how these quantities are related):

$$
\Phi_{a,a} = \sum_{s \in S} \frac{e(s, aa)}{4} \mathbb{P}[S = s],
$$

(2)
where \(e(s, aa) \) indicates whether the single possible edge between nodes \(a_1 \) and \(a_2 \) exists.

In this section, we first introduce a model with the identity states as latent variables. Second, we discuss our EM algorithm for doing inference with this model. Accuracy discussions appear in the Results section.

3.1 Model

Let the identity states for the \(m \) sites be represented as \(S = (S_1, \ldots, S_m) \). Let the pair genotype data be represented as \(G = (G_1, \ldots, G_m) \) where each \(G_j \) is a tuple of two genotypes \(G_j = (G_j^1, G_j^2) \), one genotype for each individual of interest. For each genotype, the values \(G_j^i \) takes values in \{0, 1, 2\}, the count of the minor allele. The vector \(p = (p_1, \ldots, p_m) \) contains the founder allele frequencies for each site.

In our model, the likelihood is a function of the allele frequencies and is defined as a marginal probability where the identity states are marginalized out

\[
P[G = g | p] = \sum_{s \in S} P[G = g, S = s | p].
\]

The joint probability of the data and the identity states is defined as the product of independent sites:

\[
P[G = g, S = s | p] = \prod_j P[G_j = g_j, S_j = s_j | p_j] = \prod_j P[G_j = g_j | S_j = s_j, p_j] P[S_j = s_j]. \tag{3}
\]

Since all of the inheritance paths are drawn from the same pedigree, the distribution on the identity states is the same for all sites: \(P[S_j = s] = P[S_{j'} = s] \) for all \(s \). We denote the parameters of this shared categorical distribution by \((d_s : s \in S) \), i.e. \(d_s = P[S_j = s] \).

A key component of our model is the conditional probability \(P[G_j = g | S_j = s, p_j] \). To write an expression for this conditional probability, we introduce the allele assignment which must be consistent with both the genotype and the identity state. Recall that an identity state \(s \) has vertices \(V = \{a_1, a_2, b_1, b_2\} \). Let an allele assignment be given by a map \(a : V \to \{0, 1\} \). We say that an allele assignment \(a \) with 1 as the minor allele is consistent with the genotypes for two individuals \(g = (g_1^1, g_2^2) \) if and only if \(a(a_1) + a(a_2) = g_1^1 \) and \(a(b_1) + a(b_2) = g_2^2 \). Indicate this genotype consistency by the indicator function \(C \) (i.e., \(C(a, g) = 1 \), otherwise \(C(a, g) = 0 \)). Further let \(CC(s) \) be the partition of \(V \) into connected components extracted from the identity state graph of \(s \). Then we say that an

5 In practice, sites are clearly dependent because of recombination, but we assume sites have been sufficiently subsampled to approximate independence. We show in the next section that our method requires relatively few sites, so this is a reasonable approximation in practice.
allele assignment \(a \) is legal with respect to the identity state if and only if the function \(a \) is constant on each connected component (i.e., for each connected component \(c \in CC(s) \), \(a(x) = a(y) \) whenever \(x, y \in c \)). We represent a legal allele assignment with the indicator \(L(a, s) = 1 \) and \(L(a, s) = 0 \) otherwise. Now, let
\[
A(s, g) = \{ a | C(a, g) = 1 \text{ and } L(a, s) = 1 \}
\]
be the set of legal and consistent assignments of the genotype alleles to the allele nodes of the identity state.

We can now write an expression for the conditional probability \(P[G_j = g | S_j = s, p_j] \) which is:
\[
P[G_j = g | S_j = s, p_j] \propto \sum_{a \in A(s, g)} p_j^{n_0(a)} (1 - p_j)^{N_{cc} - n_0(a)},
\]
where \(A(s, g) \) is the set of legal assignments of the genotype alleles to the allele nodes of the identity state, \(N_{cc} \) is the number of connected components in the identity state, \(n_0(a) \) is the number of connected components of the identity state that are labeled with the minor allele by assignment \(a \).

3.2 Inference

For inference, we use the EM algorithm below. This algorithm takes as input an estimate of the allele frequencies \(\hat{p} \) together with the genotypes for a pair of individuals and predicts the identity state coefficients for those individuals. First, we will describe a method to estimate \(\hat{p} \) from many genotypes, and second, we will give the details of the EM estimator.

For simplicity and computational efficiency, we estimate the allele frequencies \(\hat{p} \) using the Laplace estimator based on the genotypes of independent individuals. Since our simulations produce pairs of related individuals, we consider the genotypes of one individual per simulated pair, but pool the data from many pairs. Later, in our simulations, this same allele frequency estimate \(\hat{p} \) is then given to all the methods that infer kinship, ours and others.

To estimate the identity state coefficient, we use an EM algorithm that iteratively produces successive estimates \(d_s^{(t)} \) of the probability distribution \(P[S_j = s] \) from above. These estimates are obtained using simple and efficient update rules. For the E-step we update our estimate of \(N_s^{(t)} \), which is the expected number of times that identity state \(s \) occurred
\[
N_s^{(t)} = \sum_j \frac{d_s^{(t-1)}}{\sum_{s'} d_{s'}^{(t-1)} \times P[G_j = g_j | S_j = s', \hat{p}]} \times P[G_j = g_j | S_j = s, \hat{p}]
\]
while the M-step consists of updating our estimate of the identity coefficients
\[
d_s^{(t)} = \frac{N_s^{(t)}}{m}.
\]

\(^6\) Smoothing of \(\hat{p} \) is required to avoid degeneracies where our method fails due to divisions by zero in Equation (5).
Iterative application of the E-step and M-step yields a sequence of estimates:

\[(N_s^{(t)}, d_s^{(t)}) \text{ for } t = 1, 2, \ldots.\]

As we show in the Supplement, this algorithm is efficient, requiring a small number of iterations before convergence.

Inferred relationships can be used to correct association tests for cryptic relatedness thereby reducing spurious, or false-positive, associations. This combined algorithm of our estimates of kinship coefficients informing MQLS, we call *pedigree-free MQLS (PFMQLS)*.

4 Results

There are two categories of results, estimate accuracy and corrections for spurious associations, and simulations that go along with each category. We simulated pedigree replicates from the Wright-Fisher (WF) model with parameters: \(N\), the number of male and the number of female individuals per generation (meaning there are \(2N\) individuals per generation), and \(G\), the number of generations.

The data was simulated by holding the pedigree fixed, and drawing an inheritance path for each site from the uniform distribution over inheritance paths. For each site and inheritance path, the allelic data was drawn using the parameter, \(p\)—the vector of minor allele frequencies, one for each site. The founder alleles for site \(j\), with possible values in \(\{0, 1\}\), were each drawn from the Bernoulli distribution with parameter \(p_j\). Once the founder alleles were selected, they were copied along the inheritance path without mutation, so that a descendant inherited a copy of a founding allele from their founding ancestor if there was an undirected path in the inheritance path graph between the descendant and the founder allele. This simulated data consisted of haplotypes, since it is known which allele was inherited from each parent.

We discuss accuracy in three ways. Each accuracy measure uses variations on how the genotyped individuals are sampled from the simulation.

4.1 Improved Estimation of Kinship Coefficients

To assess the accuracy of the kinship estimates, we simulated pedigree replicates. For each pedigree, we sampled two extant individuals of interest for which to simulate allelic data. Recall that the data simulation provides haplotypes. To obtain the genotypes, the record of each allele’s parent was discarded. The genotype data of the two extant individuals, and not the pedigree, was given to the estimation algorithms.

To estimate the allele frequencies, since they vary from site to site, our method requires a set of individuals all simulated using the same allele frequencies. Therefore, our full simulation produces a number of pairs of individuals, where each pair is simulated from a single pedigree, and all the pedigrees share the same parameter \(p\). Recall that we obtain \(p\) using the Laplace estimator applied to independent individuals, one individual from each pedigree.
To assess estimation accuracy, we use a gold standard estimates that are computed during pedigree and inheritance path simulation. Once the pedigree has been drawn, we apply the algorithm for computing the exact kinship coefficients and the inbreeding coefficients, [Kirkpatrick (2016)]. Once the inheritance paths have been drawn, we can compute the empirical identity state distribution represented in the data. These quantities 1) the kinship and inbreeding coefficients and 2) the identity state distribution, are used as the gold-standard for estimates. Table 1 shows the results of two estimation methods: the EM algorithm introduced in the Methods section and the covariance-based kinship coefficient estimator introduced by [Astle and Balding (2009)]. We found that REAP, which infers kinship from admixed individuals, [Thornton et al. (2012)], does not apply to our setting even when the parameters are set for no admixture, as it found unreasonable kinship and inbreeding coefficients.

4.2 Comparison with PLINK

Essentially the worst case of population structure would be if a sample of individuals was from a family, yet they were thought to be unrelated individuals. Suppose also that the founders of the family are potentially inbred. Even if the pedigree were known, the pedigree relationships would under-represent the inbreeding since some of the inbreeding occurred chronologically before the known relationships.

In order to compare our method to PLINK, [Purcell et al. (2007)], which estimates the kinship coefficients, we simulate just such a scenario. We use the pedigree Wright-Fisher simulation to produce the founder haplotypes from an inbred population with \(N = 8 \) individuals per generation and 2, 4, 6, 8,..., 40 generations all with \(m = 500 \) sites. From the most recent generation of the Wright-Fisher pedigree, we draw 4 founders for an outbred 12-individual pedigree, see Figure 3. We simulate the recent pedigree genotypes with recombination and considered 6 of the individuals to have observed genotypes from which we estimated the kinship coefficients.

To compute the accuracy of the kinship estimates, we found the actual kinship coefficients of the 12 person pedigree. This required using a new method of computing kinship coefficients from known founder kinship coefficients, due to [Kirkpatrick (2016)]. Both methods, ours and PLINK provide estimates of the kinship coefficients. We computed the sum of the absolute value of the differences between the matrix entries of the estimates and the actual kinship coefficients. This sum is the \(L_1 \) accuracy. In all cases, our method has accuracy far superior to that of PLINK, see Figure 4.

Mathematically, we compare the outbred inference method used by PLINK, [Purcell et al. (2007)], to our identity state approach which considers both outbred and inbred identity states. Notice that PLINK’s approach is limited to considering the 7 outbred identity states which have a “Yes” in the first column of

\[\text{Unlike the kinship coefficients, the exact algorithm for obtaining the identity state distribution is exponential, so we use a Monte Carlo approximation similar to Sun et al. (2014).}\]
Table 1. Given the parameters for the Wright-Fisher (WF) simulation (\(N \)–the number of male and female individuals per generation, \(G \)–the number of generations, \(p \)–the vector of minor allele frequencies), we simulate ten WF replicates each consisting of a pedigree on two extant individuals with data. For each of these WF pedigree replicates, we simulate genotype data for one hundred independent sites. The actual kinship coefficients for the two extant individuals and the actual distribution on identity states for the one hundred sampled sites are computed and serve as the gold standard of comparison. Given just the data, we ran two estimator algorithms to obtain four estimates of either the kinship coefficients or the identity state distribution. The accuracies of these four estimates relative to the held-out values are shown in the table for several different values of the WF parameters. The two estimator algorithms are the EM algorithm introduced in this paper (which can estimate both identity states and kinship coefficients) and the covariance-based estimator introduced by Astle and Balding (Astle and Balding \(2009\) \(\text{[Astle and Balding (2009)]}\)) (which only estimates the kinship coefficients). The EM algorithm estimates the kinship coefficients as an expectation over the identity state distribution. The covariance-based kinship estimator produces two estimates, one based on the actual vector of allele frequencies \(p \) and the other for the vector of estimated allele frequencies \(\hat{p} \) obtained by empirical estimate as described in Section \(3\) \(\text{[Section 3]}\). While Astle and Balding (Astle and Balding \(2009\) \(\text{[Astle and Balding (2009)]}\)) suggested an estimator for \(\hat{p} \), in our experience the estimator was unstable and frequently did not converge. The values in the table show the mean squared error (MSE) between the gold-standard value and the estimated value with the standard deviation in parentheses. Even though the covariance estimator based on the true value of \(p \) uses more information than our method, our method still outperforms it in one of the pedigrees and achieves the same performance in another one. When the same amount of information is given to the two methods, our method systematically out-performs the covariance-based method by a large margin.

Pedigree Id. State	Kinship estimator	Covariance estimator		
N G	EM	EM	with \(p \)	with \(\hat{p} \)
3 20	0.023 (1.42E-02)	0.012 (1.06E-02)	0.31 (1.78E-02)	0.35 (1.67E-02)
10 10	0.055 (2.53E-02)	0.016 (1.15E-02)	0.024 (9.81E-03)	0.64 (8.15E-02)
20 3	0.45 (1.41E-01)	0.047 (1.80E-02)	0.0070 (3.87E-03)	0.80 (1.92E-01)
Fig. 3. Outbred Pedigree. This outbred pedigree was used to simulate genotypes from inbred founder haplotypes. The shaded individuals had genotypes that were typed and used to estimate kinship coefficients with PLINK and the EM method in this paper.

Fig. 4. Accuracy of Kinship Estimates. Comparing kinship estimates of PLINK and our EM method using the L_1 accuracy demonstrates that our method has superior accuracy to that of PLINK. Our method’s accuracy margin improves as the amount of inbreeding in the founders increases.

Figure 2. Our approach considers both inbred and outbred identity states—all states shown in Figure 2—in a structured learning setting where the identity state for each site is selected along with the frequency for that state.
From the bar plot in Figure 5, we can compute the average number of parameters for the outbreeding condensed identity states \((9/3 = 3.00)\) and for both inbreeding and outbreeding condensed identity states \((13/9 \approx 1.44)\). This shows that on average, PLINK’s outbred model will over-fit as compared with our method which selects the best model from both inbred and outbred identity states.

Fig. 5. Over-fitting. The number of founder alleles are on the x-axis, and the y-axis shows the count of the number of condensed identity states with the given number of founder alleles. The left, blue bars count only the outbred condensed identity states, while the right, red bars count all the condensed identity states (outbred and inbred). Thus, the red bars are at least the height of the blue bars. From this bar plot we can compute the average number of parameters for the outbreeding condensed identity states \((9/3 = 3.00)\) and for both inbreeding and outbreeding condensed identity states \((13/9 \approx 1.44)\).

This over-fitting by PLINK is what we see, when PLINK’s \(\hat{\pi}\) estimate of kinship nearly recapitulates the kinship computed from an outbred pedigree. This happens because PLINK explains away the excess homozygosity in the data by outbreeding which introduces many independent founder alleles—the founder alleles all appear in distinct connected components of the identity states. On the other hand our approach discovers that outbreeding explains the excess homozygosity less well than inbreeding, because the outbreeding explanation has a lower likelihood than an explanation involving inbreeding. Therefore our approach estimates, from the data, kinship coefficients that deviate from that pre-
dicted by the (outbred) pedigree structure, precisely because inbreeding among
the founders provides a better model. Indeed, under the setting with a lot of
inbreeding among the founders of a pedigree, an outbred-only model like that
used by PLINK might have a significantly lower likelihood than a model that
allows inbreeding as an explanation for the observed excess homozygosity.

4.3 Fewer Spurious Associations

Similar to the simulations in the previous section, we simulated pedigree repli-
cates from the Wright-Fisher (WF) model. Unlike the previous simulations, we
sampled \(k \) extant individuals and discard the pedigree graph. The genotypes
at site \(j \) were simulated as before by drawing the founder alleles uniformly at
random from the population distribution which is Bernoulli with parameter \(p_j \),
and then inheriting those alleles along the edges indicated by the inheritance
path. The case-control simulation then involves two pedigree replicates which
share the same founder allele frequencies. The presence of the two sets of family
relationships confounds most association tests and results in very low power.

Each site was independently taken to be the disease site, resulting in \(m \)
true positive tests per simulated pair of pedigrees. The affection status of each
individual was computed from the genotype assuming an almost recessive trait
and the minor allele to be the disease allele. Assuming the minor allele is 0,
the penetrance probabilities for the disease given the genotype of person \(i \) were
\(\mathbb{P}(D | G_i = 0) = 0.95 \) and \(\mathbb{P}(D | G_i = 1) = \mathbb{P}(D | G_i = 2) = 0.05 \). Several association
tests were applied to the simulated genotypes of the two pedigrees: the Cochran-
Armitage trend test, the ROADTRIPS RM test, \cite{Thornton2010},
and the PFMQLS test which is the MQLS test given the kinship coefficients
estimated by the EM algorithm.

The simulations where conducted with the following parameters: \(N = 50 \)
number of male/females per generation, \(G = 25 \) number of generations, \(k =
10 \) individuals sampled, and \(m = 400 \) sites. We suggest using the Bonferroni
threshold. Overall, we find that the Bonferroni threshold can favor the PFMQLS
test, see Supplement.

We summarized the data in a receiver operating characteristic (ROC) plot.
The \((x, y)\) points for the ROC plot are the false positive rate (FPR) and true
positive rate (TPR) for a particular p-value threshold for the test. By considering
multiple thresholds, we can look across all the simulations to find the FPR for
all the non-disease site and to find the TPR for all the disease sites, see Figure 6.
While there is a slight difference between the performance of the PFMQLS and
ROADTRIPS, the number of simulations suggests that this difference may not
be significant. The performance of the Cochran-Armitage trend test (CATT)
is very poor due to many false positives. Both PFMQLS and ROADTRIPS
avoid the spurious false positives. We conclude that PFMQLS is as good as the
state-of-the-art represented by ROADTRIPS while providing an intuitive and
interpretable model of relatedness.

\footnote{Our association results are demonstrated with p-values, but our method is equally
amenable to the use of false discovery rates and the computation of q-values.}
Fig. 6. ROC plot. The x-axis is the false positive rate and the y-axis is the true positive rate. There are several tests shown: the Cochran-Armitage trend test (CATT), the pedigree-free MQLS test (PFMQLS), and the ROADTRIPS RM test. The performances of RM and PFMQLS are almost indistinguishable and far superior to that of CATT.

5 Conclusion

We present a method for inferring the kinship coefficients that relies on identity states—a more detailed description of the pedigree than used by most kinship inference methods. Our method is an EM algorithm that infers the identity state distribution without assuming a known pedigree. The accuracy of our method depends on the number of sites and is reliable with as few as 64 independent sites as input. Our results show that our kinship estimates out-perform the covariance kinship method and other recent methods for kinship estimation by a large margin. Our EM kinship estimates can also correct an association test to produce state-of-the-art accuracy.

Constructing the kinship matrix with our method requires a pair-wise comparison of individuals’ genomes. Such an approach can be computationally intensive, and future work includes a method avoiding this quadratic cost. A potential drawback of using an EM algorithm is that it finds local optima: our current results each use a single run of EM, and so random restarts could potentially improve the results.

Other areas of future work involve simulating complex diseases which produce the disease trait by interaction of multiple sites in the genome. The results presented here were for a simple nearly recessive disease which probably accounts for the high accuracy of PFMQLS and ROADTRIPS as seen in the area under the curve for the ROC plot. In addition to simulating complex diseases, future work involves tailoring a test to the setting of using kinship corrections to detect epistasis.

9 From the whole genome of correlated sites, it is feasible to extract many more than 64 independent sites for input to our method.
Author Disclosure Statement.

BK is the owner of Intrepid Net Computing.
Bibliography

Abney, M. 2009. A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients. *Bioinformatics*, 25(12):1561–1563.

Astle, W. and Balding, D. J. 2009. Population structure and cryptic relatedness in genetic association studies. *Statist. Sci.*, 24(4):451–471.

Browning, B. L. and Browning, S. R. 2011. A fast, powerful method for detecting identity by descent. *American journal of human genetics*, 88(2):173–182.

Eu-ahsunthornwattana, J., Miller, E., Fakiola, M., Consortium, W. T. C. C., Jeronimo, S., and et al. 2014. Comparison of methods to account for relatedness in genome-wide association studies with family-based data. *PLoS Genet*, 10(7):e1004445.

Jacquard, A. 1972. Genetic information given by a relative. *Biometrics*, 28(4):1101–1114.

Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S.-y., Freimer, N. B., Sabatti, C., and Eskin, E. 2010. Variance component model to account for sample structure in genome-wide association studies. *Nature Genetics*, 42(4):348–354.

Karigl, G. 1981. A recursive algorithm for the calculation of identity coefficients. *Annals of Human Genetics*, 45(3):299.

Kirkpatrick, B. 2012. Non-identifiable pedigrees and a bayesian solution. *Int. Symp. on Bioinformatics Res. and Appl. (ISBRA)*.

Kirkpatrick, B. 2016. Fast computation of the kinship coefficients. *submitted*.

Milligan, B. 2003. Maximum-likelihood estimation of relatedness. *Genetics*, 163(3):1153–67.

Purcell, S., Neale, B., Todd-Brown, K., et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. *American journal of human genetics*, 81(3):559–575.

Rakovski, C. S. and Stram, D. O. 2009. A kinship-based modification of the armitage trend test to address hidden population structure and small differential genotyping errors. *PLoS ONE*, 4(6):e5825.

Risch, N. and Merikangas, K. 1996. The Future of Genetic Studies of Complex Human Diseases. *Science*, 273(5281):1516–1517.

Sun, D., Wang, Z., and Yu, S. 2014. Kinship accuracy: Comparing algorithms for large pedigrees. *Stanford Undergraduate Research Journal*, 13:97–102.

Sun, L. and Dimitromanolakis, A. 2014. PREST-plus identifies pedigree errors and cryptic relatedness in the gaw18 sample using genome-wide snp data. *BMC Proceedings*, 8(Suppl 1):S23.

Thompson, E. A. 1985. *Pedigree Analysis in Human Genetics*. Johns Hopkins University Press, Baltimore.

Thornton, T. and McPeek, M. 2007. Case-control association testing with related individuals: A more powerful quasi-likelihood score test. *American Journal of Human Genetics*, 81:321–337.
Thornton, T. and McPeek, M. 2010. ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure. *American journal of human genetics*, 86(2):172–184.

Thornton, T., Tang, H., Hoffmann, T. J., Ochs-Balcom, H. M., Caan, B. J., and Risch, N. 2012. Estimating Kinship in Admixed Populations. *Am J Hum Genet*, 91(1):122–138.

Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen, D. M., Holland, J. B., Kresovich, S., and Buckler, E. S. 2005. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. *Nature Genetics*, 38:203 – 208.
Supplement: Correcting for Cryptic Relatedness in Genome-Wide Association Studies

5.1 Reducing Spurious Associations

Inferred relationships can be used to correct association tests for cryptic relatedness thereby reducing spurious, or false-positive, associations. Notably, the MQLS, [Thornton and McPeek (2007)] test relies on kinship coefficients calculated from a known pedigree to correct for the dependencies caused by relatedness that would confound tests that assume independence, such as the χ^2 test. We propose to reduce spurious associations in data sets having an unknown pedigree by using our EM algorithm for estimating the kinship coefficients for every pair of individuals. Recall that for every pair of individuals, we obtain estimates of the inbreeding coefficients of each individual and the kinship coefficient between them. For each of the N individuals, we will have $N - 1$ estimates of the inbreeding coefficient which we average to obtain a single estimate. This leaves us with a matrix of estimates with the off-diagonals being estimates of the kinship coefficients and the diagonal being the estimates of the inbreeding coefficients.

This combined algorithm of our estimates of kinship coefficients informing MQLS, we call *pedigree-free MQLS (PFMQLS)*. While it is possible to tailor-design a test based on these EM kinship coefficients, this approach of running MQLS on our EM results allows us to judge whether the kinship coefficients estimated by the EM algorithm can successfully reduce spurious associations.

5.2 Results: Improved Estimation of Kinship Coefficients

Figure 7 shows the effect of the number of sites on the accuracy of the estimates, both in terms of the kinship coefficient estimates and of the identity state distribution estimate. The simulations were performed exactly as they were for the table (see paper) with the actual allele frequencies generated uniformly and the estimated allele frequencies being obtained empirically from independent individuals in the simulation. The estimated allele frequencies were then used to estimate the identity state distribution and the kinship coefficients. We show that it is possible to use only a few EM iterations to obtain a stable solution, Figure 8.

5.3 Results: Fewer Spurious Associations

We ran a simulation as described in the paper with $m = 400$ sites. Figure 9 shows the true positive p-values while Figure 10 shows the false positive p-values. Overall, these figures illustrate that the Bonferroni threshold can favor the PFMQLS test.

Our association results are demonstrated with p-values, but our method is equally amenable to the use of false discovery rates and the computation of q-values.
Fig. 7. The number of sites and the accuracy of the estimates. As the number of sites increase, log-scale on the x-axis, the accuracy, on the y-axis of both the kinship and the identity state estimates, improves. The maximum number of sites shown here is $2^6 = 64$.
Fig. 8. L_1 distances between the EM solutions of successive iterations. For a single pair of individuals, the figure records the L_1 distance between every pair of solutions for successive iterations. As the iterations, x-axis, increase the L_1 distances, y-axis, decrease rapidly towards zero.
Fig. 9. True positives. On the x-axis are the sites, and the y-axis the negative log of the p-value. We show here the negative log p-value for the pedigree-free MQLS test (PFMQLS), the Cochran-Armitage trend test (CATT), and the ROADTRIPS RM test. The horizontal line in the figure gives the Bonferroni-corrected threshold for a site-specific significance of 0.05. Any spikes that protrude above the line indicate sites that are significant and true positive.
Fig. 10. False positives. On the x-axis are the sites, and the y-axis the negative log of the p-value. We show here the negative log p-value for the pedigree-free MQLS test (PFMQLS), the Cochran-Armitage trend test (CATT), and the ROADTRIPS RM test. The horizontal line in the figure gives the Bonferroni-corrected threshold for a site-specific significance of 0.05. Any spikes that protrude above the line indicate sites that are significant and false positive.