EVIDENCE THAT Lyb-2 IS CRITICAL TO SPECIFIC
ACTIVATION OF B CELLS BEFORE THEY BECOME
RESPONSIVE TO T CELL AND OTHER SIGNALS*

BY HIDETAKA YAKURA, FUNG-WIN SHEN, ELAINE BOURCET, AND
EDWARD A. BOYSE‡

From the Memorial Sloan-Kettering Cancer Center, New York 10021

That part of B cell differentiation which begins in the reaction of antigen with
surface immunoglobulin (sIg) receptors and ends in the production of antibody-
secreting cells comprises a complex train of discrete events (1, 2). An important aspect
of this process concerns the chemical signals, positive and negative, and their corre-
sponding receptors, whereby the steps in this process are regulated. In this report, we
present further evidence for the participation of Lyb-2, a cell surface component
expressed only in the B cell lineage, in the mechanism of B cell activation.

We have already shown that monoclonal Lyb-2 alloantibody (mc-α-Lyb-2) inhibits
the generation of antibody-forming cells (AFC) to sheep erythrocytes (SRBC) but not
to the T-independent antigens trinitrophenylated (TNP)-Ficoll and TNP-Brucella
abortus. This inhibition cannot be ascribed to a change in the kinetics of AFC
generation nor to any known variety of suppression (3). Because mc-α-Lyb-2.1 did
not inhibit generation of AFC from Lyb-2.1/Lyb-2.2 heterozygous cells, we inferred
that Lyb-2 antibody causes inhibition by blocking rather than by providing a negative
or suppressive signal (3).

To define the function of Lyb-2 more closely, we have now tested the ability of mc-
α-Lyb-2.1 to block the ability of B cells to receive signals that are known to be
required for differentiation of B cells to AFC. These data signify that Lyb-2 is not
concerned in the reception of soluble factors contained in mixed lymphocyte culture
(MLC) or macrophage (Mφ) culture supernatants (SN), but is involved in an early
phase of activation before B cells become overtly receptive to such differentiative
signals.

Materials and Methods

Mice. Except for C57BL/6 mice (purchased from The Jackson Laboratory, Bar Harbor,
ME), all were obtained from colonies at Memorial Sloan-Kettering Cancer Center.

Antigens. SRBC and horse erythrocytes (HRBC) were purchased from Gibco Diagnostics
Laboratories, Madison, WI, and Colorado Serum Co., Denver, CO, respectively.

Antibody. Monoclonal α-Lyb-2.1 antibody (clone 9-6.1) is described elsewhere (3).

* Supported in part by grants CA-22131 and AI-00329 from the National Institutes of Health.
‡ American Cancer Society research professor of cell surface immunogenetics.

Abbreviations used in this paper: α, anti; AFC, antibody-forming cells; C, complement; FBS, fetal bovine
serum; HRBC, horse erythrocytes; IL-1, IL-2, interleukin 1, 2; LPS, lipopolysaccharide; mc, monoclonal;
MDM, Mishell-Dutton medium; Mφ, macrophages; MLC, mixed lymphocyte culture; PFC, plaque-
forming cells; sIg, surface immunoglobulin; SN, supernatant; SRBC, sheep erythrocytes; TCGF, T cell
growth factor; TNP, trinitrophenylated.
Cell Preparations

T-DEPLETED SPLEEN CELLS. T cells were eliminated by exposure of spleen cells (3 × 10⁷/ml) to mc-α-Thy-1.2 (1:100) and then, after washing, to selected rabbit serum (complement [C] 1:9). The cycle was then repeated with mc-α-Lyt-1.2 (1:25) plus mc-α-Lyt-2.2 (1:25) in place of α-Thy-1.2. The two treatments were needed because spleen cells subjected to only the first treatment did generate substantial numbers of α-SRBC PFC when exposed to mitogenic quantities of concanavalin A (4 µg/ml), whereas twice-treated cells did not. The fact that the two treatments reduced α-SRBC PFC generation by 95% in the presence of purified T cell growth factor (TCGF; kindly provided by Dr. Steven Gillis, Fred Hutchinson Cancer Research Center, Seattle, WA) further emphasizes the efficacy of the dual procedure in eliminating residual T cells.

B CELLS. To remove Mφ, spleen cells (~18 × 10⁷) were passed over a Sephadex G-10 column (bed volume, 30 ml; Pharmacia Fine Chemicals, Div. of Pharmacia Inc., Piscataway, NJ) and eluted with ~30 ml of RPMI 1640 (Grand Island Biological Co. Grand Island, NY) containing 20% fetal bovine serum (FBS) streptomycin (100 µg/ml) and penicillin (100 U/ml) (4). Recovery was consistently 50-60% of the starting population. This treatment did not change the proportion of T and B cells significantly, but reduced the esterase-positive cells from 5-9% to <0.5% (5). Efficacy of this procedure was further confirmed by functional assays (see Results). The eluted cells were treated with mc-α-Thy-l.2 plus mc-α-Lyt-1.2 and mc-α-Lyt-2.2, and C, to eliminate T cells (see above).

Mφ. Spleen cells (5 × 10⁷) in 15 ml of RPMI 1640 plus 20% FBS were plated in each 100-mm plastic culture dish and incubated at 37°C in a humidified atmosphere of 10% CO₂ and 90% air for 2 h. Nonadherent cells were then washed away, and adherent cells detached with a rubber policeman. The adherent cells were treated with mc-α-Thy-1.2 plus C and irradiated (1,500 rad). In the following text, these adherent Thy-1⁺ and radioresistant cells are referred to as Mφ.

Mishell-Dutton Culture. Spleen cells, T depleted or purified (as above), were cultured in RPMI 1640 supplemented with 10% FBS, L-glutamine (2 mM), 2-mercaptoethanol (5 × 10⁻⁵ M), sodium pyruvate (1 mM), streptomycin (100 µg/ml), penicillin (100 U/ml), and Hepes buffer (10 mM) in 16-mm flat-bottomed Linbro plates (Linbro Chemical Co., Hamden, CT) with SRBC (5 × 10⁶) at 37°C in a humidified atmosphere of 10% CO₂ and 90% air with daily feeding as described elsewhere (3).

Plaque-forming Cell (PFC) Assay. Direct α-SRBC or α-HRBC PFC counts were determined on day 5 by the slide version (6) of the Jerne plaque assay. Results are expressed as mean PFC counts per culture ± SEM or a percentage of the standard control PFC response (100 [PFC experiment]/[PFC control]).

Preparation of Factors

MLC-SN. 5 × 10⁶ B6 spleen cells were stimulated with 5 × 10⁶ irradiated DBA/2 spleen cells (2,000 rad) in 1 ml of Mishell-Dutton medium (MDM) in a Linbro well. 24 h later, the supernatant was centrifuged, passed through 0.45-µm filter (Millipore Corp., Bedford, MA), and stored at −20°C. This preparation showed a low but significant level of interleukin 2 (IL-2) activity determined by TCGF assay, and may contain a factor similar to late-acting T cell-replacing factor. The B cell helper activity of Mφ-derived factors (e.g., IL-1) was minimized by reducing the concentration of MLC-SN (see Results).

SUPERNATANT FROM P388D.1 CELLS (MF-SN). As a source of Mφ-derived factors, 2 × 10⁶ P388D.1 cells (a DBA/2 Mφ cell line kindly provided by Dr. Peter Ralph, Memorial Sloan-Kettering Cancer Center) were cultured in 1 ml of MDM with 0.01 µg/ml Escherichia coli lipopolysaccharide (LPS; 055:B5, Difco Laboratories, Detroit, MI) in a Linbro well for 4 d (7). The cell-free SN was dialyzed against 100 vol of RPMI 1640 for 24 h, filtrated, stored at −20°C, and used at a concentration of 0.5%.

Results

Properties of the MLC-SN and MF-SN Preparations Used, and Relative Homogeneity of the Selected Cell Population Tested (Data in Table I). Without MLC-SN, no PFC were
Properties of the MLC-SN and Mφ-SN Preparations Used, and Relative Homogeneity of the Selected Cell Populations Tested

Soluble factors	Spleen cells				
Concentration of MLC-SN (added on day 2)	Mφ-SN (0.5%)	B + Mφ (T depleated: 3 x 10^6)	B (T) and Mφ depleted: 5 x 10^5	Mφ (× 10^-4)	α-SRBC PFC per culture
%					
First experiment					
30	+	-	-	8605 ± 429	
	-	+	-	3924 ± 331 (54 %§)	
20	+	-	-	4185 ± 94	
	-	+	-	798 ± 27 (81 %§)	
	-	-	+	2	1401 ± 85
	-	+	4	3822 ± 370	
	-	-	8	4141 ± 254	
	-	8	0 ± 0		
10	+	-	-	1800 ± 102	
none	+	-	-	96 ± 13 (95 %§)	
	-	+	-	0 ± 0	
	-	-	8	0 ± 0	
Second experiment					
15	-	-	+	479 ± 19	
+ (day 0)	-	+	-	4070 ± 461	
+ (day 1)	-	+	-	330 ± 20	
	+ (day 0)	-	+	-	160 ± 10
none	+ (day 1)	-	+	-	0 ± 0

* Two of several similar experiments are shown.
† See Materials and Methods.
§ Percent reduction caused by removal of Mφ = 100 (1 - a/b), where a = response for B cells alone, and b = response for B + Mφ.

Evidence That Lyb-2 Antibody Acts on B Cells and Not on Mφ (Table II).

Thus, the Mφ depletion procedure is evidently adequate. At high concentration, the MLC-SN preparation used has appreciable Mφ-replacing activity (possibly of Mφ origin, e.g., IL-1), but this activity is negligible at the selected concentration of 10-15% MLC-SN. Therefore, under the conditions described, the helper actions of MLC-SN and Mφ-SN can be ascribed to T cells and Mφ, respectively, and both are required for maximal PFC response.
Table II

Lyb-2 Antibody Acts on B Cells, Not on Mφ

Composition of culture	α-SRBC per culture		
	With mc-α-Lyb-2.1 (A)	Without mc-α-Lyb-2.1 (B)	Percent response (100A/B)
B6-Lyb-2.1 (8)	226 ± 23	2288 ± 169	10
B6-Lyb-2.1 (4)	432 ± 58	1636 ± 86	26
B6	2693 ± 113	3126 ± 276	86
B6	1283 ± 73	1649 ± 177	78
B6-Lyb-2.1 (8)	745 ± 95	3064 ± 177	19
B6-Lyb-2.1 (4)	452 ± 70	1356 ± 88	29
B6	2999 ± 110	2780 ± 216	108
B6	1516 ± 67	1397 ± 129	109

Combinations of B cells and Mφ, as indicated, were cultured with SRBC in the presence or absence of 2% mc-α-Lyb-2.1. On day 2, 15% MLC-SN was added to each culture, and α-SRBC PFC were assayed on day 5.

* PFC responses of B cells with neither Mφ nor MLC-SN were nil for B6-Lyb-2.1 and B6 cells. Responses of B cells with MLC-SN but without Mφ were 183 ± 15 for B6-Lyb-2.1 cells and 250 ± 30 for B6 cells.

† PFC responses of Mφ with and without MLC-SN were nil.

Lyb-2 Antibody Does Not Block Reception of Helper Factors Present in MLC-SN or Mφ-SN (Table III). The fact that Lyb-2 antibody blocked generation of PFC to T-dependent but not to T-independent antigen (3) could mean that Lyb-2 antibody interferes with a reaction between T and B cells, one such reaction being the reception of T helper factors by B cells. Accordingly, having shown that the background helper activity attributable to Mφ factors in 15% MLC-SN is negligible (Table I), we tested the possibility that Lyb-2 molecules serve as receptors for T helper factors. For this purpose, we used T-depleted spleen cell (B + Mφ) as responder cells, and MLC-SN (15%), added at 44 h, as a source of T helper factors. Representative data are given in Table III (experiment 1). The rationale for these experiments was that if Lyb-2 antibody acted simply by blocking the receptor sites for T helper factors, then Lyb-2 antibody added at 44 h, the time of adding MLC-SN, should effectively block the response. In the event, when antibody was added at the initiation of culture, there was maximal PFC reduction, but when antibody was added at 44 h there was no reduction. These results indicate that Lyb-2 is not involved in the reception of T helper factors present in MLC-SN, and imply that Lyb-2 functions at some point in a process that occupies about 44 h after stimulation by antigen and precedes the operation of T helper factors. This places the time of action of Lyb-2 antibody within

...
Lyb-2 Antibody Does Not Block Reception of Helper Factors Present in MLC-SN or Mφ-SN

Experiment	Responding cells (5 × 10⁶)	Time of addition of:	MLC-SN (15%) at 44 h	Cell donor: PFC response on day 5
	mc-α-Lyb-2.1 (1:100)	Mφ-SN (0.5%)		B6-Lyb-2.1 B6 (control)
1* B + Mφ (T depleted)	—	+	100	100
—	—	—	0	0
0 h	+	13	92	
20 h	+	50	93	
44 h	+	113	101	
0 h	0 h	+	24	90
20 h	0 h	+	40	107
44 h	0 h	+	91	121
0 h	44 h	+	17	95
20 h	44 h	+	55	98
44 h	44 h	+	89	110

* One of four similar experiments.
† Standard responses (without antibody) per culture: B6-Lyb-2.1, 5545 ± 974 (experiment 1), 3190 ± 442 (experiment 2), and 2634 ± 298 (experiment 3); and B6, 3980 ± 291 (experiment 1), 4070 ± 461 (experiment 2), and 2257 ± 80 (experiment 3).
§ One of two similar experiments.

Period of Action of Lyb-2 Antibody

Period of culture with mc-α-Lyb-2.1 (1:100) plus SRBC	PFC response
	% standard
2 h	79
4 h	72
20 h	23

Purified B cells (5 × 10⁶) from B6-Lyb-2.1 mice were cultured with SRBC plus mc-α-Lyb-2.1 for the period of time indicated, after which SRBC were lysed and the cells washed four times. 5 × 10⁶ of these cells were then cultured with SRBC, with addition of 0.5% Mφ-SN at 20 h and 10% MLC-SN at 44 h.

* 5 d after exposure to SRBC: 100 (PFC with antibody)/(PFC without antibody).

the phase of B cell:Mφ interaction, and focuses attention on the reception of Mφ signals by B cells or on the actual triggering of B cells by antigen.

Experiments 2 and 3 of Table III were directed to the former possibility, namely that reception of Mφ signals is impeded by Lyb-2 antibody. Purified B cells were used
as responder cells, P388D.1 supernatant as a source of Mφ-derived factors (Mφ-SN), and MLC-SN as a source of T helper factors. The rationale was again that if Lyb-2 antibody blocks reaction of Mφ-derived factors with B cells, then antibody should inhibit the PFC response when added together with Mφ-SN at 0 or 44 h. This is not the case: when Mφ-SN and antibody were added together at the initiation of culture, there was maximal PFC reduction (experiment 2), but when Mφ-SN and antibody were added together at 44 h, there was very little reduction (experiment 3). These data imply that reception of Mφ-derived factors represented in P388D.1 Mφ-SN is not blocked by Lyb-2 antibody.

Evidence That Lyb-2 Antibody Acts During the Triggering of B Cells by Antigen

Period of Action of Lyb-2 Antibody. Purified B cells were exposed to SRBC plus Lyb-2 antibody for 2–20 h, freed of SRBC, washed, and cultured with fresh SRBC. Mφ-SN (0.5%) and MLC-SN (10%) were added at 20 and 44 h, respectively. Table IV indicates that maximal reduction of PFC by Lyb-2 antibody requires the presence of this antibody for >4 and <20 h after exposure to antigen.

Only antigen-Triggered B Cells are Affected by Lyb-2 Antibody. In the experiments summarized in Table V, purified B cells were cultured with Lyb-2 antibody for 20 h, with or without SRBC, and the SRBC and excess antibody then removed. The cells were then cultured again, without antibody, with either SRBC or HRBC. Mφ-SN and MLC-SN were added at 20 and 44 h, respectively, after the first exposure to SRBC or HRBC (whichever was to assayed for PFC response). Group A of Table V shows again (as in Table IV) that exposure to SRBC plus Lyb-2 antibody (1st culture) abolished the subsequent capacity of the responding population (2nd culture) to give a maximal PFC response to SRBC in the absence of Lyb-2 antibody. Group B shows that exposure to Lyb-2 antibody alone in the absence of antigen did not affect the subsequent response to SRBC. Group C shows that the exposure to SRBC plus Lyb-2 antibody did not affect the subsequent PFC response to HRBC. Thus, Lyb-2 antibody evidently acts during the triggering process induced by reaction of antigen with B cells. Blocking by Lyb-2 antibody activity cannot be explained simply as a negative effect on all B cells regardless of their specificities.

Discussion

Of the several possible mechanisms whereby Lyb-2 antibody might block T-assisted generation of PFC, some can now be excluded. Lyb-2 antibody does not interfere
with reception of Mφ-derived factors in the supernatant of P388D.1 cells, nor with the reception of MLC-associated factors, and its time of action is previous to the acquisition of responsiveness to these signals. This places the function of Lyb-2 within the period of antigen-triggered B cell stimulation. The fact that Lyb-2 antibody blocks the generation only of PFC derived from B cells concurrently exposed to antigen (the remaining B cells responding normally to a subsequent second antigen after Lyb-2 antibody is removed) indicates that the Lyb-2 cell surface component is somehow involved in a differentiative process ('proliferative' step) initiated by binding of antigen. The Lyb-2 molecule is not the slg receptor for antigen: its structure is inappropriate (8), rabbit α-mouse Ig does not block serological absorption of α-Lyb-2 (unpublished data), and there is no known reason why blocking of the antigen receptor should affect only T-dependent antigen.

Two sorts of action, not necessarily exclusive of one another, can be suggested for the function of Lyb-2. First, Lyb-2 may be involved in internal transmission of a proliferative stimulus, for example, the mitogenic component in FBS, which in our experience (unpublished results) is needed for an α-SRBC response but is not essential to demonstrable TNP-Ficoll and TNP-Brucella responses. In the same context, Lyb-2 may participate in molecular rearrangements ('cross-linking') of slg receptors required for response to T-dependent antigen.

Second, Lyb-2 molecules might be concerned in the phenotypic expression or presentation of receptors for differentiative signals from Mφ or T cells, presumably affecting their numbers, affinity, or conformation. The finding that MLC-SN is more effective on day 2 of culture than at the start (9) may be a hint that the receptor phenotype, as well as the number of responsive B cells, is important to efficient PFC generation. In this context, the report that resting or unstimulated B cells were not responsive to proliferative and differentiative signals until stimulated by LPS (10) makes us wonder whether the expression and display of signal receptors on B cells are subject to the same kinds of regulation as hormone receptors in classical endocrine system (11, 12).

Summary

The generation of plaque-forming cells (PFC) to T-dependent antigen, but not to T-independent antigen, is reduced in vitro by Lyb-2 antibody. Monoclonal Lyb-2 antibody, added to Mishell-Dutton cultures within the first 2 d, but not later, greatly reduces the generation of α-sheep erythrocyte (SRBC) PFC from T-depleted spleen cells whether help is provided in the form of intact T cells or as soluble factors contained in mixed lymphocyte culture (MLC) supernatants. Generation of α-SRBC PFC from purified B cells, assisted by soluble factors in MLC and macrophage (P388D.1 cell) supernatants, is similarly reduced by Lyb-2 antibody. The initial 2-d period, during which cultures are diminishingly sensitive to reduction of PFC generation by Lyb-2 antibody, is not affected by the time at which such soluble factors are added. Thus, Lyb-2 cell surface molecules evidently do not function as receptors for these differentiative signals.

Reduction of PFC generation by Lyb-2 antibody is antigen dependent in the sense that reduction of the PFC response to one antigen (SRBC) does not affect subsequent generation of PFC to a second antigen (horse erythrocytes) from the same cell population. These findings accord with the view that the Lyb-2 molecule participates...
in a B cell differentiative phase, probably proliferative, which begins with binding of antigen and precedes the phase in which B cells become fully receptive to signals from T and other cells.

We thank Dr. Peter Ralph for providing P388D.1 cell line, and Dr. Steven Gillis for purified TGF.

Received for publication 28 September 1981.

References
1. Schimpl, A., and E. Wecker. 1975. A third signal in B cell activation given by TRF. Transplant. Rev. 23:176.
2. Dutton, R. W. 1975. Separate signals for the initiation of proliferation and differentiation in the B cell response to antigen. Transplant. Rev. 23:66.
3. Yakura, H., F.-W. Shen, M. Kaemmer, and E. A. Boyse. 1981. Lyb-2 system of mouse B cells. Evidence for a role in the generation of antibody-forming cells. J. Exp. Med. 153:129.
4. Ly, I. A., and R. I. Mishell. 1974. Separation of mouse spleen cells by passage through columns of sephadex G-10. J. Immunol. Methods. 5:239.
5. Yam, L. T., C. Y. Li, and W. H. Crosby. 1971. Cytochemical identification of monocytes and granulocytes. Am. J. Clin. Pathol. 55:283.
6. Cunningham, A. J., and A. Szenberg. 1968. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 14:599.
7. Lachman, L. B., M. P. Hacker, G. T. Blyden, and R. E. Handschumacher. 1977. Preparation of lymphocyte-activating factor from continuous murine macrophage cell lines. Cell. Immunol. 34:416.
8. Tung, J.-S., J. Michaelson, H. Sato, E. S. Vitetta, and E. A. Boyse. 1977. Properties of the Lyb-2 molecule. Immunogenetics. 5:485.
9. Schimpl, A., and E. Wecker. 1972. Replacement of T-cell function by a T-cell product. Nature (Lond.). 237:15.
10. Howard, M., S. Kessler, T. Chused, and W. E. Paul. 1981. Long-term culture of normal mouse B lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 78:5788.
11. Sonenberg, M., and A. S. Schneider. 1977. Hormone action at the plasma membrane: biophysical approaches. In Receptors and Recognition: Series A. P. Cuatrecasas and M. F. Greaves, editors. Chapman and Hall, London. 4:1.
12. Lefkowitz, R. J. 1981. Introduction. In Receptors and Recognition: Series B. R. J. Lefkowitz, editor. Chapman and Hall, London. 13:1.