Spectrum of Strongly Regular Graphs under Graph Operators

Jeepamol J. Palathingal *
Department of Mathematics
PM Government College, Chalakudy-680722
Kerala, India.

Aparna Lakshmanan S.†
Department of Mathematics
Cochin University of Science and Technology
Cochin-682022, Kerala, India.

Abstract

The spectrum of a graph G is the collection of all eigen values of the adjacency matrix of G. A graph G is strongly regular with parameters (n, k, a, c) if G is neither complete nor empty, any two adjacent vertices of G have a common neighbours and any two non-adjacent vertices of G have c common neighbours. An edge-regular graph with parameters (n, k, a) is a graph on n vertices which is regular of degree k and any two adjacent vertices have exactly a common neighbours. In this paper, we show that if G is strongly regular then the Gallai graph $\Gamma(G)$ and the anti-Gallai graph $\Delta(G)$ of G are edge-regular. Also we find the adjacency spectrum of Gallai and anti-Gallai graph of some strongly regular graphs.

Keywords: Gallai Graph, Anti-Gallai Graph, Strongly Regular Graph, Edge-regular Graph, Adjacency Spectrum

AMS classification: 05C50, 05C76.

*Email : jeepamoljp@gmail.com
†E-mail : aparnaren@gmail.com, aparnals@cusat.ac.in
1 Introduction

Let G be a simple graph on p vertices $\{1, 2, ..., p\}$ with an adjacency matrix $A(G) = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1, & \text{if the vertex } i \text{ is adjacent to the vertex } j \\ 0, & \text{otherwise} \end{cases}$$

Then $A(G)$ is a real symmetric matrix with zero as the diagonal entries. The polynomial $\det(\lambda I - A) = 0$ is called the characteristic polynomial of A or G and is denoted by $P_G(\lambda)$. The eigen values of A, which are zeros of $|\lambda I - A| = 0$ are called the eigen values of G and form its spectrum denoted by $\text{spec}(G)$ \[8\]. If the distinct eigen values of G are $\lambda_1, \lambda_2, ..., \lambda_m$ with multiplicities $t_1, t_2, ..., t_m$ respectively then $\text{spec}(G)$ is denoted by $[\lambda_1^{t_1}, \lambda_2^{t_2}, ..., \lambda_m^{t_m}]$. Since the adjacency matrix is a real symmetric matrix the eigen values can be ordered as $\lambda_1 \geq \lambda_2, ..., \geq \lambda_n$ \[7\].

The line graph $L(G)$ of a graph \[14\] G has the edges of G as its vertices and two distinct edges of G are adjacent in $L(G)$ if they are adjacent in G. The adjacency spectrum of line graph of many classes of graphs has been studied in \[7, 8\] and \[12\]. The Gallai graph $\Gamma(G)$ of a graph G \[15\] has the edges of G as its vertices and two distinct edges are adjacent in $\Gamma(G)$ if they are adjacent in G, but do not lie on a common triangle in G. The anti-Gallai graph $\Delta(G)$ \[15\] of a graph G has the edges of G as its vertices and two distinct edges of G are adjacent in $\Delta(G)$, if they lie on a common triangle in G. Clearly, the Gallai graph and the anti-Gallai graph are spanning subgraphs of the line graph \[15\]. Though the line graphs are extensively studied in literature, there are only a handful of papers in Gallai and anti-Gallai graphs. Some of the interesting papers on the Gallai and anti- Gallai graphs are \[2, 3, 9, 15\] and \[16\].

Let G be a k- regular graph with n vertices. The graph G is said to be strongly regular \[5\] with parameters (n, k, a, c) if the following conditions hold:

1. G is neither complete nor empty;
2. any two adjacent vertices of G have 'a' common neighbours;
3. any two non-adjacent vertices of G have 'c' common neighbours.

In literature, by weakening the above definition we have the definition of an edge- regular graph. An edge-regular graph \[17\] with parameters (n, k, a) is a graph on n vertices which is regular of degree k and any two adjacent vertices have exactly a common neighbours.
The anti-Gallai graph find its application in linguistics to identify the polysemous words [1], which motivated us to examine its spectra. The spectrum of some classes of Gallai and anti-Gallai graphs are studied in [10] and [11]. If G is regular then $L(G)$ is also regular and this property was helpful in studying the spectrum of line graphs. Unfortunately, this nice behaviour is not there for the Gallai and the anti-Gallai graphs. But we observed that $\Gamma(G)$ and $\Delta(G)$ of a strongly regular graph G is regular. So in this paper we focus on the Gallai and the anti-Gallai graphs of strongly regular graphs.

1.1 Standard Definitions

Definition 1.1. The fan graph denoted by F_n is n copies K_3’s with a common vertex. Note that F_n is a planar undirected graph with $2n + 1$ vertices and $3n$ edges [13].

Definition 1.2. Two triangles sharing a common edge i.e; $K_4 - e$, is called a diamond [9].

Definition 1.3. The semi total point graph $R(G)$ of a graph G is obtained from G by adding a new vertex corresponding to every edge of G, then joining each new vertex to the end vertices of the corresponding edge i.e; each edge of G is replaced by a triangle [18].

Definition 1.4. Let G_1 and G_2 be vertex-disjoint graphs. The join, $G_1 \vee G_2$, of G_1 and G_2 is the supergraph of $G_1 + G_2$ in which each vertex of G_1 is adjacent to every vertex of G_2 [4].

All graph theoretic notations and terminology not mentioned here are from [7] and [4].

2 Strongly regular Graphs

If $G = (n, k, a, c)$ is a connected strongly regular graph then, we have the following direct observations.

Observation 1: $c \geq 1$.

Observation 2: An edge $e = uv$ and a vertex w must belong to cycle C_n of length at most 5.
Observation 3: Every pair of edges must belong to a cycle of length at most 6.

Observation 4: If $c > 1$ then every pair of non-adjacent vertices must belong to at least one cycle of length 4.

Observation 5: If $c = 1$ then diamonds and C_4’s are forbidden in G.

Observation 6: A strongly regular graph is 2-connected.

Observation 7: If $a = 1$ then diamonds and K_4’s are forbidden in G.

Lemma 2.1. Let $G = (n, k, a, c)$ be a connected strongly regular graph with $a = 1$ then every vertex together with its neighbours form a $k/2$-fan.

Proof. Consider an arbitrary vertex u in G. Since G is connected, there exists an edge incident on u and by hypothesis that edge belongs to a K_3. $G \neq K_3$ and regular implies that there exists another edge incident on u. But by Observation 7, diamonds are forbidden in G and hence that edge also belongs to another K_3. Proceeding like this we get u together with its neighbours form a $k/2$-fan.\square

Lemma 2.2. Let $G = (n, k, a, c)$ be a connected strongly graph with $a = 2$ then every vertex is a central vertex of at least one wheel.

Proof. Consider $u \in V(G)$. As in the above proof an edge e_1 incident on u will be a central edge of a diamond. Let e_2 and e_3 be the other edges of the diamond which are incident on u. Since $a = 2$ there exists a diamond with e_2 as the central edge. The same argument holds for e_3 also. Proceeding like this, the process will terminate only when u together with these edges form a wheel. It may happen that there exists another edge incident on u which is not in the above wheel. In this case by the same argument we can find another wheel with u as the central vertex.\square

The following theorem is useful for us.

Theorem 2.3. [5][8] The distinct eigenvalues of a connected strongly regular graph $G = (n, k, a, c)$ are $k, \frac{1}{2}[(a - c) + \sqrt{(a - c)^2 + 4(k - c)}]$ and $k, \frac{1}{2}[(a - c) + \sqrt{(a - c)^2 - 4(k - c)}].$
Theorem 2.4. If $G = (n, k, a, c)$ be a strongly regular graph then $\Gamma(G)$ and $\Delta(G)$ are regular graphs.

Proof. Consider an arbitrary vertex x of $\Gamma(G)$. Let uv be the edge corresponding to this vertex in G. Then by the definition of $\Gamma(G)$, the degree of a vertex x is $d_{\Gamma(G)}(x) = d_G(u) + d_G(v) - 2|N(u) \cap N(v)| - 2$, where $d_{\Gamma(G)}(x)$ denotes the degree of x in $\Gamma(G)$ and $d_G(u), d_G(v)$ denote the degrees of u, v in G. Hence $\Gamma(G)$ is $2(k - a - 1)$-regular.

Now consider an arbitrary vertex x in $\Delta(G)$. Let $e = uv$ be the corresponding edge in G. Then the degree of x in $\Delta(G)$ is $2|N(u) \cap N(v)| = 2a$. Therefore, $\Delta(G)$ is $2a$-regular.

\[\square\]

3 Gallai Graph

As per Theorem 2.4 we can see that $\Gamma(G)$ and $\Delta(G)$ of a strongly regular graph are regular graphs. But, in this section we observe that $\Gamma(G)$ of some special class of strongly regular graphs yield something more than the regularity. i.e., if G is strongly regular then the Gallai graph $\Gamma(G)$ is edge-regular.

Theorem 3.1. Let G be a connected graph. The Gallai graph $\Gamma(G)$ is disconnected if and only if there exists a partition of the edge set into $E_1, E_2, ... E_p$ where $p \geq 2$, such that $e_i \in E_i$ and $e_j \in E_j$ are incident in G implies e_i and e_j span a triangle in G.

Proof. Suppose that $\Gamma(G)$ is disconnected and let $\Gamma_1, \Gamma_2, ..., \Gamma_p$ with $p \geq 2$ be the components of $\Gamma(G)$. Let $E_i = \{ e \in G : e \text{ is an edge corresponding to a vertex } v \text{ in } \Gamma_i \}$, where $1 \leq i \leq p$. Clearly, E_i is a partition for $E(G)$. Since the connectedness of G implies the connectedness of $L(G)$, at least one edge of E_i is incident with some $e \in E_j$ for some j. But, $\Gamma(G)$ is disconnected and hence if $e_i \in E_i$ is incident with $e_j \in E_j$ then they must span a triangle in G.

For the converse part assume that such a partition exists for $E(G)$. Then for any i and j, the vertices corresponding to the edges in E_i and E_j are in different components in $\Gamma(G)$.

\[\square\]

Theorem 3.2. Let $G = (n, k, 0, c)$ be a connected strongly regular graph. Then $\Gamma(G)$ is connected and edge-regular. Also it is strongly regular if and only if the
following conditions hold:
1. If $c = 1$ then any two non-adjacent edges belong to a common C_5.
2. If $c > 1$ then any two non-adjacent edges belong to a common C_4.

Proof. Given $a = 0$ and hence G is K_3-free and $\Gamma(G) \cong L(G)$. Since G is connected and k-regular $L(G)$ is connected and $2k - 2$ regular.

Consider two adjacent vertices x and y in $L(G)$. Let e_1 and e_2 be the corresponding edges in G, then e_1 and e_2 have a common vertex in G. The number of common vertices of x and y in $L(G)$ is same as the number of edges incident on the common vertex of both e_1 and e_2. Since the graph is k-regular it is equal to $k - 2$. Hence $\Gamma(G)$ is an edge-regular graph with parameters $(nk^2, 2k - 2, k - 2)$.

Now consider two non-adjacent vertices x and y in $L(G)$. Let f_1 and f_2 be the corresponding edges in G. Then f_1 and f_2 have no common vertex in G. The number of common vertices of x and y in $L(G)$ is same as the number of edges adjacent to both f_1 and f_2.

If $c = 1$, by Observations 3 and 5, f_1 and f_2 belong to C_5 or C_6 or both. If f_1 and f_2 belong to C_5 then the number of common vertices of x and y is 1, otherwise it is 0. Since G is strongly regular by Observations 2 and 5 there exist non adjacent edges which belong to a C_5. So $L(G)$ is strongly regular if and only if any two non-adjacent edges belong to a C_5.

If $c > 1$, f_1 and f_2 belong to C_4, C_5 or C_6. If f_1 and f_2 belong to C_4 then the number of common vertices of x and y is 2; otherwise it is 1 or 0. Since $c > 1$, in G there are edges which belong to C_4. So $\Gamma(G)$ is strongly regular if and only if any two non-adjacent edges belong to a C_4.

\[\text{Theorem 3.3.} \quad \text{Let } G = (n, k, 0, 1) \text{ be a connected strongly regular } C_6\text{-free graph then the distinct eigenvalues of } \Gamma(G) \text{ are } 2k - 2, \frac{1}{2}[(k - 3) + \sqrt{(k - 3)^2 + 4(2k - 3)}] \text{ and } \frac{1}{2}[(k - 3) - \sqrt{(k - 3)^2 + 4(2k - 3)}].\]

Proof. Since $c = 1$ by Observations 3 and 5 any two non-adjacent edges must belong to either C_6 or C_5 or both. Since the graph is C_6-free any two edges must belong to C_5, hence by Theorem 3.2 $\Gamma(G)$ is a strongly regular graph with parameters $(\frac{nk}{2}, 2k - 2, k - 2, 1)$. Then the result follows from Theorem 2.3. \qed
Theorem 3.4. Let $G = (n, k, 0, c)$, where $c > 1$ be a connected strongly regular graph in which every pair of non-adjacent edges belong to a C_4. Then the distinct eigenvalues of $\Gamma(G)$ are $2k - 2, \frac{1}{2}[(k - 4) + \sqrt{(k - 4)^2 + 4(2k - 4)}]$ and $\frac{1}{2}[(k - 4) - \sqrt{(k - 4)^2 + 4(2k - 4)}]$.

Proof. Since $c > 1$, by Theorem 3.2, $\Gamma(G)$ is a strongly regular graph with parameters $(\frac{nk}{2}, 2k - 2, k - 2, 2)$. Then the result follows from Theorem 2.3.

Theorem 3.5. Let $G = (n, k, a, c)$, where $a = 0$ or 1 be a connected strongly regular graph then $\Gamma(G)$ is 2-connected.

Proof. We have the following cases.

Case 1: $a = 0$
Since G is K_3-free, $\Gamma(G) \cong L(G)$. When we consider any two vertices of $L(G)$, by Observation 3, the corresponding edges belong to a C_4, C_5 or C_6. So in $L(G)$ any two vertices belong to a C_4, C_5 or C_6. Hence it is 2-connected.

Case 2: $a = 1$
In order to show that $\Gamma(G)$ is 2-connected it is enough to show that any two vertices belong to a cycle. Consider two vertices x and x'. The following cases arise.

1. xx' is an edge in $\Gamma(G)$.
2. xx' is not an edge in $\Gamma(G)$.

Subcase A: xx' is an edge in $\Gamma(G)$ implies that the corresponding edges e and e' are incident in G and not belong to a K_3. By Lemma 2.1 there exists an edge l such that e and l span a K_3 in G. Similarly there exists edge l' such that e' and l' span a K_3 in G. Then the vertices corresponding to e, l, e', l' form a path P_4 in $\Gamma(G)$. Then this path together with the edge xx' form a C_4 in $\Gamma(G)$.

Subcase B: xx' not an edge in $\Gamma(G)$ means that either the corresponding edges are incident in G and belong to a K_3 or are not incident. For the first case, by Lemma 2.1 there exist at-least two edges l and l' which span a K_3 in G. Then the vertices corresponding to e, l, e', l' span a C_4 in $\Gamma(G)$. For the latter case by Observation 3, e and e' belong to a cycle C_n where $3 < n < 7$ in G. If it is an induced C_n clearly x and x' belong to a C_n in $\Gamma(G)$. If not, there are edges which belong to a K_3 in G. Consider two edges e_1 and e_2 with a common vertex u and span a K_3 in G. By Lemma 2.1 there exist another edges l and l' incident
on \(u \) which span a \(K_3 \) in \(G \). Since diamonds are forbidden in \(G \), the vertices corresponding to \(e_1, l, e_2 \) form a \(P_3 \) in \(G \). So, if two edges span a \(K_3 \) in \(G \) then by the above explanation we can find an edge such that the vertices corresponding to the edges of \(K_3 \) and the new edge form a \(P_3 \) in \(G \). Also if \(e_1, e_2, e_3 \) are three consecutive edges in \(C_n \) and if \(e_1 \) and \(e_2 \) span a \(K_3 \) in \(G \), since diamonds are forbidden in \(G \), \(e_2 \) and \(e_3 \) cannot span a \(K_3 \) in \(G \). So by the above explanation in \(\Gamma(G) \), we can find a cycle \(C_n \) of length at most 9 containing the vertices \(x \) and \(x' \). That is, in \(\Gamma(G) \) any two vertices belong to at least one \(C_n \). Hence \(\Gamma(G) \) is 2-connected.

\[\square \]

Theorem 3.6. If \(G = (n, k, 1, c) \) is a connected strongly regular then \(\Gamma(G) \) is edge-regular and is strongly regular if and only if \(c > 1 \) and any two non-adjacent edges belong to a \(C_4 \).

Proof. Since \(G \) is strongly regular \(\Gamma(G) \) is \(2(k - 2) \)-regular by Theorem 2.4. Now consider two adjacent vertices \(v_1 \) and \(v_2 \) in \(\Gamma(G) \). Let \(e_1 \) and \(e_2 \) be the corresponding edges in \(G \), then the number of common vertices of \(v_1 \) and \(v_2 \) is same as the number of \(K_{1,3} \)’s in which \(e_1 \) and \(e_2 \) are present. By Lemma 2.1 since the number of such induced \(K_{1,3} \) is \(k - 2 \), any two adjacent vertices have \(k - 2 \) common neighbours. Hence \(\Gamma(G) \) is an edge-regular graph with parameters \((\frac{n}{2}, 2k - 4, k - 2)\).

To prove that \(\Gamma(G) \) is strongly regular, consider two vertices \(v_1 \) and \(v_2 \) which are non-adjacent in \(\Gamma(G) \). Let \(e_1 \) and \(e_2 \) be the corresponding edges in \(G \). Then in \(G \) either \(e_1 \) and \(e_2 \) span a triangle or \(e_1 \) and \(e_2 \) are non-adjacent.

In the first case, the number of common neighbours of \(v_1 \) and \(v_2 \) is same as the number of edges which form \(K_{1,2} \) with both \(e_1 \) and \(e_2 \). By Lemma 2.1 it is same as \(k - 2 \).

In the latter case, the number of common vertices is same as the number of induced \(P_3 \)’s with end edges \(e_1 \) and \(e_2 \). To find the number of induced \(P_3 \)’s we consider the following cases.

1) \(c = 1 \)
2) \(c > 1 \)

If \(c = 1 \) by Observation 3, \(e_1 \) and \(e_2 \) may belong to a \(C_5 \) or \(C_6 \). By Observation 5, \(C_4 \)’s are forbidden in \(G \). Therefore the number of such induced \(P_3 \) is one if \(e_1 \) and \(e_2 \) belong to a \(C_5 \); otherwise it is zero. Since \(G \) contains \(C_5 \), \(\Gamma(G) \) is strongly regular if and only if \(k - 2 = 1 \) and any two non-adjacent edges belong to at least one \(C_5 \). But it is not possible since \(k \) is an even number by Lemma 2.1.
If $c > 1$, by the same argument in the above theorem $\Gamma(G)$ is strongly regular if and only if $k - 2 = 2$ and any two edges belong in a C_4. Hence $\Gamma(G)$ is strongly regular if and only if $k = 4, c > 1$ and any two non adjacent edges belong to a C_4.

Theorem 3.7. Let $G = (n, k, 1, c)$, where $c > 1$ be a connected strongly regular graph with C_4 connecting any two edges then the distinct eigenvalues of $\Gamma(G)$ are $4, \sqrt{2}$ and $-\sqrt{2}$.

Proof. If $G = (n, k, 1, c)$, where $c > 1$ be a connected strongly regular graph with C_4 connecting any two edges, by Theorem 3.6 $\Gamma(G)$ is a connected strongly regular graph with parameters $(2n, 4, 2)$. Then by Theorem 2.3 the distinct eigenvalues of $\Gamma(G)$ are $4, \sqrt{2}$ and $-\sqrt{2}$.

4 Anti-Gallai graph

Theorem 4.1. Let G be a connected graph. The anti-Gallai graph $\Delta(G)$ is disconnected if and only if there exists a partition of the edge set into $E_1, E_2, ...E_p$ where $p \geq 2$, such that if $e_i \in E_i$ and $e_j \in E_j$ are incident then e_i and e_j not belong to a K_3 and there exists at least one pair of this type.

Proof. Suppose that $\Delta(G)$ is disconnected and let $\Delta_1, \Delta_2, ...\Delta_p$ with $p \geq 2$ be the components of $\Delta(G)$. As in the proof of Theorem 3.1 consider $E_i = \{e \in G : e$ is an edge corresponding to a vertex v in $\Delta_i\}$, where $1 \leq i \leq p$. Clearly, E_i is a partition for $E(G)$. Since the connectedness of G implies the connectedness of $L(G)$, at least one edge $e_i \in E_i$ is incident with some $e_j \in E_j$. But, $\Delta(G)$ is disconnected and hence if $e_i \in E_i$ is incident with $e_j \in E_j$ then they are not belong to a triangle in G.

For the converse part assume that such a partition exists for $E(G)$. Then for any i and j, the vertices corresponding to the edges in E_i and E_j induce different components in $\Delta(G)$.

Theorem 4.2. If $G = (n, k, 0, c)$ be a connected strongly regular graph then the spectrum of $\Delta(G)$ is $\{0, \frac{kn}{c} \}$.

Proof. Since $a = 0$, G is K_3-free. Hence $\Delta(G)$ is totally disconnected. Therefore the spectrum consists only zero value.
Theorem 4.3. If $G = (n, k, 1, c)$ be a connected strongly regular graph. Then the spectrum of $\Delta(G)$ is $(-1^{kn}, 2^{kn})$.

Proof. Since $a = 1$, every edge of G belong to exactly one K_3 and no two K_3 share a common edge. Therefore $\Delta(G)$ is the disjoint union of $\frac{kn}{6}$ triangles. Hence the spectrum of $\Delta(G)$ consists of the spectrum of K_3’s.

Theorem 4.4. $\Delta(L(K_{n,n}))$ is cospectral with $2nL(K_n)$.

Proof. $L(K_{n,n})$ contains $2n$ copies of K_n sharing common vertices, where two K_n’s have no common edges and the edges of two copies of K_n not belong to a K_3. Hence $\Delta(L(K_{n,n}))$ is the disjoint union of $\Delta(K_n)$’s ($2n$ times). Since K_n is a $K_{1,2}$-free graph, $\Delta(K_n) \cong L(K_n)$. Hence the spectrum of $\Delta(L(K_{n,n}))$ is same as the spectrum of $L(K_n)$ repeating $2n$ times.

Theorem 4.5. Let $G = (n, k, 2, c)$ is a connected strongly regular graph where each vertex belong to exactly one wheel then $\Delta(G)$ is connected and edge-regular.

Proof. Suppose $\Delta(G)$ is disconnected. Then by Theorem 4.1 there exists at least two edges $e_i \in E_i$ and $e_j \in E_j$; are incident but not belong to a K_3. Let u be the common vertex of both e_i and e_j. By assumption since the neighbouring vertices induce a wheel in G there exist edges $e_{i+1}, e_{i+2}, ..., e_{j-1}, e_j$ such that the pairs of edges $(e_i, e_{i+1}), (e_{i+1}, e_{i+2}), ..., (e_{j-1}, e_j)$ belong to a K_3 in G. Since $e_i \in E_i$, the edges $e_{i+1}, e_{i+2}, ..., e_{j-1}, e_j$ are all belong to E_i. Which is a contradiction. Hence $\Delta(G)$ is connected.

By Theorem 2.3 $\Delta(G)$ is a 4-regular graph. Since G is not K_4 any two adjacent vertices in $\Delta(G)$ has only one common neighbour. Hence $\Delta(G)$ is edge-regular with parameters $(\frac{nk}{2}, 4, 1)$.

The following lemmas are useful to prove the next theorem.

Lemma 4.6. [6] If G be a graph and H an induced subgraph. Then the eigenvalues of H interlace those of G.

Lemma 4.7. [4] Let G be a k-regular graph then the $\text{spec}(G) \in [-4, 4]$.

Lemma 4.8. [11] If $G = H \lor K_1$, where H is K_3-free then $\Delta(G)$ is the semi total point graph of H.

10
Theorem 4.9. Let $G = (n, k, 2, c)$ is a connected strongly regular graph where each vertex belong to exactly one wheel then the $\text{spec} \Delta(G) \in [-4, 4]$ and the eigen values of $R(C_k)$ interlace those of $\Delta(G)$.

Proof. By Theorem 4.5, $\Delta(G)$ is a 4-regular graph. Therefore by Lemma 4.7 the largest eigenvalue of $\Delta(G)$ is 4 and $\text{spec}(G) \in [-4, 4]$. Also by assumption each vertex belong to exactly one wheel $(C_n \lor K_1)$. For G, since $a = 2$ a vertex together with its neighbours form an induced k-wheel. Then by Lemma 4.8 it is clear that $\Delta(G)$ contains the semi total point graph $R(C_k)$ as an induced subgraph. Therefore by Lemma 4.6 the eigen values of $R(C_k)$ interlace those of $\Delta(G)$.

\[\square \]

5 Conclusion

$\Gamma(G)$ and $\Delta(G)$ are the spanning subgraphs of the well known operator $L(G)$. $L(G)$ preserves the properties like regularity and connectedness but usually $\Gamma(G)$ and $\Delta(G)$ do not preserve these properties. In this paper, we find that there are some class of strongly regular graphs for which regularity and connectedness are preserved while applying the operators $\Gamma(G)$ and $\Delta(G)$. Using the regularity property, we have obtained the spectrum of these graphs.

References

[1] Anand, P., Henry Escaudro, Ralucca Gera, Craig Martell, Triangular line graph and word sense disambiguation, Discrete Applied Mathematics 159 (2011), 1160 - 1165.

[2] Aparna Lakshmanan S., Characterization of some special classes of the Gallai and the anti-Gallai graphs, Discourse 1 (2013), 85 - 89.

[3] Aparna Lakshmanan S., S. B. Rao, A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem., 132(1) (2007), 43 - 54.

[4] Balakrishnan, R., and Ranganathan, K., A text book of graph theory, Springer (1999).

[5] R.B. Bapat, Graphs and Matrices, Springer.
[6] Cvetcovic D, Graphs and Their Spectra, (Thesis), Univ.Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 354-356 (1971), 1 - 50.

[7] Cvetcovic, D., Doob, M., and Sachs, H., Spectra of Graphs - Theory and application, academic press, New York, 1980.

[8] Cvetcovic, D., Peter Rowlinson and Slobodan Simic, An Introduction to the Theory of Graph Spectra, London Mathematical Society Students Texts 75 (2010).

[9] Jeepamol J. Palathingal, Aparna Lakshmanan S., Gallai and anti-Gallai Graph Operators, Electronic Notes in Discrete Mathematics 6.3 (2017), 447 - 453.

[10] Jeepamol J. Palathingal, Gopalapillai Indulal, Aparna Lakshmanan S., Spectrum of Gallai Graph of Some Graphs, Indian J. of Pure and Appl. Math. 51(4)(2020), 1829 - 1841.

[11] Jeepamol J. Palathingal, Gopalapillai Indulal, Aparna Lakshmanan S., Spectrum of anti-Gallai Graph of Some Graphs, Indian J. of Pure and Appl. Math., (to appear).

[12] Ivan Gutman and Irene Suriha, On the Nullity of Line Graph of Tree, Discrete Math. 232 (2001), 35 - 45.

[13] Kavitha, K., N. G. David, Dominator coloring of some classes of graphs, International Journal of Mathematical Archive, 3(11) (2012), 3954 - 3957

[14] Prisner, E., ”Graph Dynamics”, Longman, 1995.

[15] Le, V. B., Gallai graphs and Anti-Gallai Graphs, Discrete Math., 159 (1996), 179 - 189.

[16] Le, V. B., Mortality of Iterated Gallai Graphs, Period. Math. Hungar., 27(2) (1993), 105 - 124.

[17] Lowell W. Beineke, Robin J. Wilson, Peter J. Cameron, Topics in Algebraic Graph Theory: 102 (Encyclopedia of Mathematics and its Applications, Series Number 102), Cambridge University Press, 2004.

[18] Sampathkumar, E., Chikkodimath, S.B., The Semitotal graphs of a graph-II, J. Karnatak Univ. Sci, 18 (1973), 281 - 284.