Editorial

A Call to Action: “Low-Dose Radiation May Help Cure COVID-19…” [taps mic]
“…Is This Thing On?”

Mohammad K Khan MD PhD*, Clayton B. Hess MD MPH

1-Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
2-Department of Microbiology and Immunology, Emory University, Atlanta, GA

*Corresponding Author:
Mohammad K Khan, MD PhD FACRO
Associate Professor, Radiation Oncology
Winship Cancer Institute
Emory University Hospital
1365 Clifton Road NE
Atlanta GA 30345
drkhurram2000@gmail.com

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
“The oldest habit in the world for resisting change is to complain that unless the remedy to the disease should be universally applied it should not be applied at all. But you must start somewhere.”

-Winston Churchill

In this issue of *JNCI Cancer Spectrum*, Venkatesulu, et al.\(^1\) provide a concise review and much-needed status update of low dose-radiotherapy (LD-RT) treatment for coronavirus disease 2019 (COVID-19). The authors step through the logic behind LD-RT and its promises and pitfalls. LD-RT can counter inflammation by various mechanisms demonstrated in preclinical models: adhesion and kinetics of peripheral blood mononuclear cells,\(^2\) lowered E-selectin,\(^3,4\) increased TGF-β1,\(^5,6\) downregulated CCL20 release,\(^7\) reduced TNF-α production through apoptosis induction of peripheral blood mononuclear cells,\(^3,8\) reduced IL-1 production,\(^9\) reduced L-selectin expression,\(^4\) modulated MAP kinases and protein kinase B,\(^10\) reduced NF-κB,\(^11\) increased IL-10 production, and M1 to M2 phenotype conversion through iNOS pathway suppression.\(^12,14\)

While many investigational drugs may target one or more of these pathways,\(^15,16\) LD-RT may target multiple or all of them at once.\(^17,18\) The authors include mechanistic counterarguments: that LD-RT may activate and primate macrophages, which could worsen anti-viral response, and reduce lymphocyte population with uncertain effect -- detrimental or not.\(^19,20\)

Where We Stand and Why
Currently, the only therapy that extends survival in COVID-19 is dexamethasone and still the death toll continues to climb. Additional therapeutics are needed. Parallel efforts to pursue new therapeutics and/or vaccines do not negate each other. If anything, arguing that drug development efforts render the study of LD-RT futile \(^{21,22}\) reveals only naiveté for the urgency of life-and-death dramas that have played out over 200,000 times within our own borders and a million times globally. The argument to not study LD-RT in humans also reveals a first-world-centric lack of awareness about global barriers to care where LD-RT may be a more accessible and cost-effective alternative compared to newer targeted drugs, likely to remain fiscally inaccessible across the world. Based on our RESCUE 1-19 experiences, a treatment capable of altering the course of COVID-19 that is already available in many global regions may be resting in our hands. Some have argued to let the opportunity pass, deferring to conventional drug therapies that may or may not materialize \(^{21,22}\). Sure, we could pass by on the other side, but another will have to play Samaritan if we find ourselves standing at the plate and opt to not even swing the bat.

Asking the right question

We last editorialized about LD-RT for COVID-19 in a May 2020 ASCO Post, drawing World War II-to-COVID era parallels and recalling that sulfathiazole saved Winston Churchill from streptococcus pneumonia.\(^23\) Together with the horrific memory of nuclear weapons, the dawn of the antibiotic era may have left infectious diseases -- as an entire categorical entity – unexplored and forgotten as a potential therapeutic target for LD-RT. COVID-19 has now reinvigorated this debate. In what might be further pioneering work,
we can think of nothing more relevant to add to the discussion at this time than insights into what it has been like to engage SARS-CoV-2 up-close in personal combat these last months. Operationalizing the first trial of LD-RT for COVID-19-related ARDS has given us a lens from the front-line that has convinced us (and our team of more than 130 volunteer staff and collaborating faculty) of the merits of this scientific pursuit. In this editorial, we aim not just to defend our clinical trial decisions, but to boldly and swiftly turn the tide of academic opinion by persuasive argument and reproducible data. We aim to re-focus the entire Radiation Oncology community away from asking the question, “Should we be pursuing LD-RT to treat COVID-19?” and instead, sound a clarion call to action. Let us ask instead, “who among us will rise to the occasion?” to speed the evaluation and validation of LD-RT as a COVID-19 treatment option with considerable global potential.

Life Doesn’t Randomize, It Repeats

Most of what life teaches is through reproducibility not randomization. In the 1940s, observers related what to expect after LD-RT for infectious pneumonia:

“A patient with a high fever, severe dyspnea, and cyanosis is irradiated. A few hours later, often within a period of six hours, he states that he can breathe more easily, and he takes some nourishment. After twelve to twenty-four hours the fever abates, in most cases by crisis, breathing is no longer painful, and dyspnea decreases or disappears entirely…. indeed the whole course of the disease appear to have been definitely hastened by irradiation. And as this observation was made consistently, it would seem to be an established fact.”24"
At outset, knowing COVID-19 to be a distinctly separate entity than prior infectious pneumonias, and knowing the limitations of and need for controls within the cited observational data, we aimed to assess any hour-by-hour or day-to-day clinical response to LD-RT in patients with COVID-19. On April 24th, 2020, two COVID-19 patients became the first in the modern era to receive LD-RT for an infectious indication. Both had COVID-19 related delirium and were non-verbal and dependent on oxygen. Both had been consented by proxy family members to undergo the experimental treatment based on historical and pre-clinical observations. Weeks of strategic planning had culminated in a dress rehearsal the night prior and the treatment and infection prevention workflow went off perfectly. We transported the patients to the quarantined linear accelerator, caught our first glimpse of COVID consolidations on megavoltage imaging, treated, returned each to their hospital room, and waited. At hour 24, upon entering their hospital rooms, we were surprised. Both greeted us with open eyes and smiles having weaned to room air. Both conversed about television or sports, had dramatic drops in inflammatory markers, and joyful phone calls with reuniting family members. The 1940-era prediction of a clinical response to LD-RT was undeniably reproduced and therefore deserving of further study to determine causality versus coincidence. Such was our introductory experience to the role of LD-RT for human infection in the modern era.

Transport. Treat. Repeat.

It didn’t take long after treating our first patients for us to realize that CRP levels predictably fall the morning after LD-RT and over subsequent days in all but the sickest
patients. It consistently and sometimes dramatically dropped like an inverted letter “V.” The question became, “Would it stay down?” If it did, de-escalation of oxygen requirement tended to follow. It also appears that the rapidity of decline could be dose- and disease-burden dependent, although this hypothesis requires further study. Analysis from our first 10 patients has been publicly released.\(^\text{25}\) Our experience substantiates the hour-by-hour trend for clinical improvement seen in the 1940s and that the mechanistic descriptions the authors described yield clinical results. While randomization is needed to prove a causal relationship, reproducibility of statistically significant findings is highly informative and validates one irrefutable conclusion: LD-RT merits further study. We have now treated over 40 patients and are evaluating our findings against another set of controls and a randomized trial that is part of the way through its planned accrual. Ameri et al, from Tehran, Iran, also treated 5 patients with LD-RT using 0.5 Gy and reported reductions in CRP beginning at day 1 in 4 of 5 patients, after we had released our initial data on preprint server.\(^\text{26}\) We saw the same in our first five patients treated with LD-RT.\(^\text{27}\) As more patients are treated, capacity for signal detection will only strengthen.

Mouse Models: Demanding Small Instead of Standing Tall

The authors’ preclinical and clinical rationales support human clinical trials, yet they wisely warn that trials should carefully balance risk and benefit. Some have argued instead that “lack of supporting data makes the risks of a clinical trial of radiation therapy as a treatment for COVID-19 pneumonia unacceptable.”\(^\text{21,22}\) and have demanded the prioritization of animal models over clinical trials. Lab studies are
certainly needed but must be balanced with the opportunity cost of foregoing human trials of considerable potential impact. Practical challenges and time requirements complicate the ability to generate SAR-CoV-2 mouse modes in BSL3 labs. It is also unclear if the knowledge gained from mouse model experiments will ultimately have translatability to humans, which would thereafter require clinical trials in humans anyway using a treatment we already know to be safe. Yet, armed only with a potential mechanism of adverse reaction and no substantiating data, some have called thoughtful consented study of LD-RT in humans unethical.21,22 These authors have cited outlying data points relating to second malignancy risk, which has maximized the perceived risk of LD-RT. While we stand in support of capable basic and translational colleagues, on this occasion, we were disappointed by efforts that have skewed the scientific community’s perception of the risk-to-benefit ratio of LD-RT for COVID-19 so that it resembles little of the reality we see on the front line. We need go no further than to say that the recent memory of patients who died in our care argue against these claims. No COVID patient of ours nor of the readership, staring down the barrel of an impending endotracheal tube should weigh a 1% and far distant second malignancy risk as equal to the pandemic’s approximate 50% intubated mortality and morbidity risk.

Therefore, we stand to champion the pivoting of our collective focus away from second cancer risk and towards the merits of the intervention itself. This is not a haphazard or shortsighted application of radiation like childhood tinea capitis28 nor is it a resurgent misconception of LD-RT as a harmless cure-all as in days past.29 LD-RT carries carcinogenic risk, yes, but it appears to have a potentially large therapeutic effect against a much riskier COVID-19 when given after oxygen dependency but before
respiratory failure. So let us be clear: LD-RT may prevent intubation (10% vs 40%) and hasten clinical recovery (3-fold improvement).³⁰ “Is anyone out there listening? Is this thing on?” The need to confirm these data is strikingly urgent. So why are we conjecturing about distant cancer risk when acute mortality is killing thousands each day? Intentional or not, the fear-cultivating that now surrounds this debate has blinded many and continues to minimize the looming catastrophe that patients face. Indeed, COVID-19's intubated 30-day mortality risk far exceeds that of any cancer.

Conclusion

The debate over the role of LD-RT in infection has resurfaced ferociously and is likely only just beginning. Vast therapeutic potential remains untapped as “radiation immunology” may soon describe not only RT’s role in cancer immunology but also LD-RT’s role in benign immunopathologies. Therefore, LD-RT for COVID-19-related ARDS must be evaluated urgently, but it may just be the first of many infectious indications that await exploration. Collectively we appear next up to bat on the global stage facing the pandemic to show what good LD-RT can do; let’s plant our feet and set our eyes on a homerun or base hit – anything but the inaction of a looking strikeout.

Funding

None.

Notes
Role of the funder: Not applicable.

Disclosures: Both authors disclose a preliminary provisional patent for the
development of portable LD-RT equipment for COVID-19 treatment through commercial
relationship with CureRays Inc.

Author contributions: MK and CH contributed equally to this editorial. COI: The
authors disclose a provisional patent through Emory University, The University of
Tennessee at Knoxville, and CureRays™ Incorporated.

Data Availability
Not applicable.

References
1. Venkatesulu BP, Lester S, Hsieh C, et al. Low-dose radiation therapy for COVID-
19 – promises and pitfalls. JNCI Cancer Spectrum 2020.
2. Jeong JU, Uong TNT, Chung WK, et al. Effect of irradiation-induced intercellular
adhesion molecule-1 expression on natural killer cell-mediated cytotoxicity toward
human cancer cells. Cytotherapy 2018;20:715-27.
3. Kern PM, Keilholz L, Forster C, et al. UVB-irradiated T-cells undergoing
apoptosis lose L-selectin by metalloprotease-mediated shedding. Int J Radiat Biol
2000;76:1265-71.
4. Rodel F, Frey B, Gaipl U, et al. Modulation of inflammatory immune reactions by
low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med
Chem 2012;19:1741-50.
5. Stachowski T, Grant TD, Snell EH. Structural consequences of transforming growth factor beta-1 activation from near-therapeutic X-ray doses. J Synchrotron Radiat 2019;26:967-79.

6. Arenas M, Gil F, Gironella M, et al. Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice. Int J Radiat Oncol Biol Phys 2006;66:560-7.

7. Rodel F, Hofmann D, Auer J, et al. The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol 2008;184:41-7.

8. Christiansen H, Saile B, Neubauer-Saile K, et al. Irradiation leads to susceptibility of hepatocytes to TNF-alpha mediated apoptosis. Radiother Oncol 2004;72:291-6.

9. Araneo BA, Dowell T, Moon HB, Daynes RA. Regulation of murine lymphokine production in vivo. Ultraviolet radiation exposure depresses IL-2 and enhances IL-4 production by T cells through an IL-1-dependent mechanism. J Immunol 1989;143:1737-44.

10. Suzuki K, Kodama S, Watanabe M. Extremely low-dose ionizing radiation causes activation of mitogen-activated protein kinase pathway and enhances proliferation of normal human diploid cells. Cancer Res 2001;61:5396-401.

11. McBride WH, Pajonk F, Chiang CS, Sun JR. NF-kappa B, cytokines, proteasomes, and low-dose radiation exposure. Mil Med 2002;167:66-7.

12. Deloch L, Fuchs J, Ruckert M, Fietkau R, Frey B, Gaipl US. Low-Dose Irradiation Differentially Impacts Macrophage Phenotype in Dependence of Fibroblast-Like Synoviocytes and Radiation Dose. J Immunol Res 2019;2019:3161750.
13. Hildebrandt G, Seed MP, Freemantle CN, Alam CA, Colville-Nash PR, Trott KR. Mechanisms of the anti-inflammatory activity of low-dose radiation therapy. Int J Radiat Biol 1998;74:367-78.

14. Schaue D, Jahns J, Hildebrandt G, Trott KR. Radiation treatment of acute inflammation in mice. Int J Radiat Biol 2005;81:657-67.

15. Conti P, Gallenga CE, Tete G, et al. How to reduce the likelihood of coronavirus-19 (CoV-19 or SARS-CoV-2) infection and lung inflammation mediated by IL-1. J Biol Regul Homeost Agents 2020;34:333-8.

16. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020;53:13-24.

17. Rodel F, Arenas M, Ott OJ, et al. Low-dose radiation therapy for COVID-19 pneumopathy: what is the evidence? Strahlenther Onkol 2020;196:679-82.

18. Dhawan G, Kapoor R, Dhawan R, et al. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother Oncol 2020;147:212-6.

19. Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 2013;24:589-602.

20. De Palma M, Coukos G, Hanahan D. A new twist on radiation oncology: low-dose irradiation elicits immunostimulatory macrophages that unlock barriers to tumor immunotherapy. Cancer Cell 2013;24:559-61.

21. Kirsch DG. Radiation Therapy as a Treatment for COVID-19? Int J Radiat Oncol Biol Phys 2020.
22. Kirsch DG, Diehn M, Cucinotta FA, Weichselbaum R. Lack of supporting data make the risks of a clinical trial of radiation therapy as a treatment for COVID-19 pneumonia unacceptable. Radiother Oncol 2020;147:217-20.

23. Khan MK HB. On the Shoulders of Giants. ASCO Post 2020 May 25, 2020.

24. Calabrese EJ, Dhawan G. How radiotherapy was historically used to treat pneumonia: could it be useful today? Yale J Biol Med 2013;86:555-70.

25. Hess BC BZ, Stokes W, Nasti TH, Swithenko JM, Weinbert BD, Rouphael N, Steinberg JP, Godette KD, Murphy DJ, Ahmed R, Curran WJ, Khan MK. Low-Dose Whole-Lung Radiation for COVID-19 Pneumonia. July 11, 2020. ed. MedRxiv2020.

26. Ameri A, Rahnama N, Bozorgmehr R, et al. Low-Dose Whole-Lung Irradiation for COVID-19 Pneumonia: Short Course Results. Int J Radiat Oncol Biol Phys 2020.

27. Hess BC BZ, Stokes W, Nasti TH, Swithenko JM, Weinbert BD, Rouphael N, Steinberg JP, Godette KD, Murphy DJ, Ahmed R, Curran WJ, Khan MK. Low-Dose Whole-Lung Radiation for COVID-19 Pneumonia: Planned Day-7 Interim Analysis of a Registered Clinical Trial. June 3, 2020 ed. MedRxiv2020.

28. Shore RE, Moseson M, Harley N, Pasternack BS. Tumors and other diseases following childhood x-ray treatment for ringworm of the scalp (Tinea capitis). Health Phys 2003;85:404-8.

29. Singer H. “Radium Emination”. Maryland Medical Journal 1914;57:xxiv–xxv.

30. Hess CB, Buchwald ZS, Stokes W, et al. Low-Dose Whole-Lung Radiation for COVID-19 Pneumonia. . MedRXiv (Pre-print) 2020;2020.