Running head: *OsMADS26*, a multiple hormone regulator

Corresponding Author

Name: Gynheung An

Address: Department of Life Science and Functional Genomic Center, Pohang University of Science and Technology, Pohang 790-784, Korea

Tel: 82-54-279-2176

Fax: 82-54-279-0659

E-mail: genean@postech.ac.kr

Category: Development and Hormone Action
Further characterization of a rice AGL12-group MADS-box gene, OsMADS26

Shinyoung Lee, Young-Min Woo, Sung-Il Ryu, Young-Duck Shin, Woo Taek Kim, Ky Young Park, In-Jung Lee, and Gynheung An

Department of Life Science and National Research Laboratory of Plant Functional Genomics, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea,
Footnotes

1This work was supported, in part, by grants from the Crop Functional Genomic Center, the 21st Century Frontier Program (CG1111); from the Biogreen 21 Program, Rural Development Administration (20070401-034-001-007-03-00); and from the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory Program funded by the Ministry of Science and Technology (M10600000270-06J0000-27010).

2Department of Biology, College of Science, Yonsei University, Seoul 120-749, Republic of Korea,
3Department of Biology, Sunchon National University, Sunchon 540-742, Republic of Korea
4Division of Plant Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 702-701, Korea

* Corresponding author; e-mail genean@postech.ac.kr; fax 82-54-279-0659
Plant MADS-box genes can be divided into 11 groups. Genetic analysis has revealed that most of them function in flowering-time control, reproductive organ development, and vegetative growth. Here, we elucidated the role of OsMADS26, a member of the AGL12 group. Transcript levels of OsMADS26 were increased, in an age-dependent manner, in the shoots and roots. Transgenic plants of both rice and Arabidopsis over-expressing this gene manifested phenotypes related to stress responses, such as chlorosis, cell death, pigment accumulation, and defective root/shoot growth. In addition, apical hook development was significantly suppressed in Arabidopsis. Plants transformed with the OsMADS26-glucocorticoid receptor (GR) fusion construct displayed those stress-related phenotypes when treated with dexamethasone (DEX). Microarray analyses using this inducible system showed that biosynthesis genes for jasmonate, ethylene, and reactive oxygen species as well as putative downstream targets involved in the stress-related process were up-regulated in OsMADS26-overexpressing plants. These results suggest that OsMADS26 induces multiple responses that are related to various stresses.
The MADS-box gene family encodes transcription factors with a conserved DNA-binding domain, called the MADS-box. These genes, ubiquitous in living organisms, have a wide range of functions. Plant MADS-box genes can be grouped into two evolutionary lineages (Types I and II) (Alvarez-Buylla et al., 2000; Becker and Theissen, 2003). When restricted to the putative functional MADS-box genes, this list includes about 100 and 70 genes in *Arabidopsis* and rice, respectively (Nam et al., 2004). Approximately 40 Type II MADS-box genes each have been identified in *Arabidopsis* (Kofuji et al., 2003; Parenicova et al., 2003) and rice (Lee et al., 2003); these can be divided into 11 groups (Becker and Theissen, 2003; Lee et al., 2003; Arora et al., 2007).

Detailed genetic analyses have shown that, whereas some MADS-box genes are involved in reproductive organ development (being preferentially expressed in the floral organs), others are expressed in the vegetative organs, where they perform various roles in flowering-time control, vegetative growth, and root development (Becker and Theissen, 2003). Becker and Theissen (2003) have speculated that AGL12 group genes originated before the gymnosperm–angiosperm split about 300 million years ago. In northern blot analyses, *AGL12*, the sole MADS-box gene from the AGL12 group in *Arabidopsis*, shows root-specific expression (Rounsley et al., 1995). Recently, *AGL12* overexpression analyses of suspension cells from *Catharanthus roseus* have demonstrated that this gene promotes the organization of those cells into globular parenchyma-like aggregates (Montiel et al., 2007). Loss-of-function analyses have elucidated that *AGL12* regulates root meristem cell proliferation and flowering transition (Tapia-Lopez et al., 2008). In addition, *in situ* hybridization analyses have shown that this gene is also detected in leaves and floral meristems. In rice, the AGL12-group *OsMADS26* is expressed not only in the roots but also in the shoots and panicles (Shinozuka et al., 1999). Pelucci et al. (2002) have also observed that *OsMADS26* is highly expressed in the leaves and inflorescences. Furthermore, Arora et al. (2007) have shown the expression of this gene in panicles and seeds. These results imply that this gene functions in a broad
range of rice organs.

Some MADS-box genes are active in aging-related processes. For example, transgenic plants expressing sense AGAMOUS-like 15 (AGL15) inhibit senescence programs in the perianth organs and developing fruits (Fernandez et al., 2000; Fang and Fernandez, 2002). FRUITFULL (FUL), SHATTERPROOF1 (SHF1), and SHATTERPROOF2 (SHF2) are involved in differentiation within the fruit dehiscence zone (Gu et al., 1998; Liljegren et al., 2000). When a tomato MADS-box gene that is most homologous to Short Vegetative Phase (SVP) is mutated, plants fail to develop abscission zones on their pedicels (Mao et al., 2000). Mutation in another tomato MADS-box gene, LeMADS-RIN, causes failure of fruit ripening (Vrebalov et al., 2002). Recently, the roles of rice SVP-group MADS-box genes in senescence responses have been reported as well (Lee et al., 2008). Here, we report the functional roles of OsMADS26 that is up-regulated in older tissues, and causes stress-related abnormalities when ectopically expressed.

RESULTS

Expression patterns of OsMADS26

We used semi-quantitative RT-PCR to study the expression patterns of OsMADS26 at various developmental stages (Fig. 1). In 5-day-old seedlings, this gene was more strongly expressed in the roots than in the shoots. Transcript levels rose as the plants aged (Fig. 1A). In the roots, transcription reached a maximum at Day 10 and remained at that level in older plants. However, in the leaves, transcripts continued to increase as the plants matured. Detailed analyses at broader developmental stages showed a dramatic rise in OsMADS26 transcripts in the roots between Days 6
and 9 (Fig. 1B). In contrast, transcript levels continuously increased in leaves up to Day 70 (Fig. 1C). Within individual plants, expression was much stronger in the mature leaves than in young, still-developing leaves (Fig. 1D). Therefore, these results indicate that *OsMADS26* is more active in older tissues.

Phenotypes of *ubi:OsMADS26S* plants

To elucidate *in vivo* functioning, we regenerated transgenic rice plants that expressed either sense or anti-sense constructs of the full-length *OsMADS26* cDNA. Plants that ectopically expressed the anti-sense *OsMADS26* showed no visible phenotypic changes (data not shown). We previously identified an *OsMADS26* knockout (KO) line (1A-16632) from a T-DNA tagging population via reverse-screening (Lee et al., 2003; Ryu et al., 2004). In that line, T-DNA is inserted into the first intron and the *OsMADS26* transcript is not present. As observed with our antisense plants in the current study, the T-DNA insertional knockout plants exhibited no abnormality in their growth habit (Supplementary Fig. 1).

In contrast, primary T1 transgenic plants expressing the sense *OsMADS26* transcript (*ubi:OsMADS26S* plants) showed several abnormal phenotypes (Fig. 2). Among our 50 regenerated plants, 40 died at the young stage, after they manifested such traits as defective root/shoot growth (Fig. 2A, B), chlorosis and cell death (Fig. 2A, B), screw-like root curling (Fig. 2C, D), and pigment accumulation in their roots (Fig. 2B, D). The remaining 10 plants showed less severe phenotypes and survived to maturity, with the adults displaying semi-dwarfism (Fig. 2E), pale-green coloration (Fig. 2E), spotted leaves (Fig. 2F), and shrunken seeds (Fig. 2G). Except for three lines, most of the plants were sterile. The T2 seedlings from those fertile lines had phenotypes similar to those observed from the primary transgenic plants, including retarded root/shoot growth, screw-like root...
curling, and pigment accumulation (Fig. 2H).

To check whether the phenotypes were induced by OsMADS26, we performed RNA-gel blot analysis of four representative lines: one that survived to maturity (Fig. 2E), two that developed roots and shoots but died at the seedling stage (Fig. 2B), and one that manifested more serious growth defects (Fig. 2A). In both roots and shoots, the levels of transgene expression were correlated with the severity of the phenotype (Fig. 2I), thereby suggesting that the phenotypes were due to OsMADS26 expression.

Because ubi:OsMADS26S plants developed phenotypes of severe growth retardation that is associated with various stresses, we tested whether this gene is regulated by signaling mediators. Wild-type (WT) plants were treated with 1 µM ACC, 10 µM MJ, or 1 mM H2O2 beginning at the germination stage; their shoots and roots were sampled 9 d after germination. Expression levels of OsMADS26 mRNA were not significantly changed (Supplementary Fig. 2). Moreover, no alterations were noted when 10-d-old rice seedlings were exposed to these molecules for 1, 3, or 24 h. Therefore, our results suggest that this gene is not regulated by such signaling molecules at the transcriptional level.

Furthermore, we examined behavior of the OsMADS26 knockout plants under various stresses. When 3-week-old plants were grown under water-deficit or high-salt (200 mM NaCl) conditions, they showed a degree of stress response similar to that of our WT controls (data not shown). We also investigated but found no visible phenotypic changes after treatment with 1 µM ACC, 1 mM H2O2, or 10 µM MJ (Supplementary Fig. 3).

Phenotypes of plants expressing the OsMADS26 - GR fusion protein

The phenotypes displayed by the ubi:OsMADS26 plants suggested that this gene might be involved...
in various stress-related processes. However, some of those characteristics may have been due to indirect effects caused by ectopic overexpression at the regeneration stage. To observe the more direct effects, we generated transgenic plants carrying the OsMADS26-GR fusion construct (ubi:OsMADS26GR plants).

Among the 32 T1 primary transgenics, 11 independent lines were examined to test whether this inducible system would be successful when plants were treated with dexamethasone (DEX). Six lines clearly showed abnormal phenotypes (Supplementary Fig. 4). For example, Line #33 developed curled and shorter roots while Line #17 had severe growth retardation. The six confirmed lines were followed through the next generations and genotyped to obtain homozygous (HO) plants from each line. For genotyping, at least 50 T2 seedlings were tested for hygromycin resistance. If all plants survived, the lines were regarded as HO; if all died, they were considered to be of the WT.

For further study, Line #33 was selected and its seedlings were treated with DEX in a dose-dependent manner to determine the effective concentration. In the WT segregants, DEX did not induce growth defects at up to 1 μM (Fig. 3A) while the transgenic plants showed growth limitations at the lowest concentration (10 nM) and severe retardation at 1 μM (Fig. 3B). Their shoots and roots were significantly shorter (Fig. 3A, 3B; Supplementary Fig. 5A, B), and purple pigments were accumulated in the transgenic roots (Fig. 3B, inset). We obtained the same results with Line #17 (data not shown). To understand the nature of these shortened roots, we sectioned their maturation zones. Histological analysis showed that cell elongation was significantly inhibited in the DEX-treated plants (Fig. 3E, F).

The numbers of emerged roots and leaves were also reduced in DEX-treated transgenic plants in both line #33 and #17. For example, by Day 9, WT segregants of Line #33 had developed their 4th leaves and had an average total of 8 to 10 roots (seminal plus nodal roots; Table I). When
HO plants of Line #33 were treated with DEX, root numbers were reduced at the lowest concentration (10 nM) while leaf numbers were reduced in response to 100 nM DEX. However, by Day 12, both WT and HO plants grown at 100 nM DEX had developed a similar number of leaves (about 4) and roots (about 10). These results suggest that the production of fewer roots and leaves associated with OsMADS26 overexpression was caused by a slower growth rate rather than because of defective primordia development.

To see the direct effects of this overexpression, we applied 1 µM DEX to six-day-old seedlings. When treated for three consecutive days, the transgenics manifested phenotypes of retarded growth, pigment accumulation by their roots, and wilting, chlorosis, and senescence in their shoots (Fig. 3C). To further understand the role of this gene in these processes, we measured chlorophyll amounts after DEX treatment. Whereas WT control plants did not exhibit any difference, HO plants showed a 41% decrease in chlorophyll a and a 12% decrease in chlorophyll b (Fig. 3G). We examined expression levels of two previously reported senescence-related genes, Osl2 (aminotransferase) and Osl55 (β-methylcrotonyl-CoA carboxylase) (Lee et al., 2001). Our ubi:OsMADS26GR plants treated with DEX expressed higher levels of these genes, suggesting that the senescence process had been triggered (Fig. 3H, I).

To study the role of OsMADS26 in mature plants, we treated 80-day-old ubi:OsMADS26GR glasshouse-grown plants with 10 µM DEX. After 7 d of treatment, abnormal phenotypes were revealed only in the transgenic plants, and included curled leaves, lesions, and chlorosis (Fig. 3D). In comparison, those transgenics treated with 1 µM DEX did not show any significant abnormality. Therefore, we can conclude that the phenotypes observed in the ubi:OsMADS26 plants were clearly re-enacted in our GR-inducible system, suggesting that OsMADS26 may causes plant stress.
Identification of putative *OsMADS26* downstream genes

To identify the *OsMADS26* downstream genes, we compared genome-wide RNA expression levels between the *ubi:OsMADS26GR* plants and their WT segregants, using a 60 K-oligo chip. Total RNAs were prepared from the roots of 7-day-old seedlings treated with 1 µM DEX for 3 or 9 h. Two independent lines (#17 and #33) were tested, which entailed four sets of microarray analyses: #17 (3 h), #17 (9 h), #33 (3 h), and #33 (9 h).

Supplementary Table I list the genes that were up- (146) or down-regulated (155) at least once and by a minimum of 1.5-fold in the *ubi:OsMADS26GR* plants. Pearson correlation co-efficiencies between the two replicates for these 301 selected target genes were 0.745, 0.735, 0.928, and 0.923 for #33 (3 h), #33 (9 h), #17 (3 h), and #17 (9 h), respectively (Supplementary Fig. 6), indicating that Line #17 generated more consistent results. When we applied a 2-fold difference as our cut-off criterion, 48 genes were identified, with respective Pearson correlation co-efficiencies of 0.806, 0.880, 0.937, and 0.861 for #33 (3 h), #33 (9 h), #17 (3 h), and #17 (9 h). Interestingly, this standard allowed us to identify only 13 down-regulated genes compared with the isolation of 35 up-regulated genes, which implies that results fluctuated more with the former type. Our KMC clustering analyses showed global expression patterns for these 48 genes (Fig. 4). All were induced or suppressed more strongly at 9 h than at 3 h. Moreover, 5 were induced dramatically at both 3 and 9 h (Fig. 4A) while 30 were weakly induced (Fig. 4B). Among the up-regulated genes, *OsMADS26* was the most highly expressed (Supplementary Table II and Fig. 4A).

The 301 genes with at least 1.5-fold differences in expression were classified according to their functioning via the Clusters of Orthologous Groups (COG; http://www.ncbi.nlm.nih.gov/COG/) analysis (Table II). Major up-regulated or down-regulated genes included those involved in defense mechanisms, signal-transduction, post-translational
modification/protein turnover/chaperones, carbohydrate transport/metabolism, and secondary metabolite transport/metabolism. Genes belonging to three groups were changed more frequently, i.e., defense mechanisms (2.40%), inorganic ion transport and metabolism (1.02%), and secondary metabolite transport/metabolism (1.08%). Genes related to secondary metabolites were more abundant in the up-regulated group whereas those involved in defense were more abundant in the down-regulated group.

Transcript analyses of putative OsMADS26 downstream genes

We chose eight genes to examine the reliability of our microarray data (Table III). Four iron/ascorbate family oxidoreductase genes were found in the up-regulated group, and could be divided into two groups: 1-aminocyclopropane-1-carboxylate (ACC) oxidase genes involved in ethylene biosynthesis (A09021902 and A05041211), and putative flavanone 3-hydroxylase genes (A05011009 and B10022103). From these, we selected one ACC oxidase gene (A09021902) and one flavanone 3-hydroxylase gene (A05011009) for further confirmation. The A05011009 protein showed high homology to gibberellin β-hydroxylase. We also identified a lipoxygenase gene (A09032318), an NADPH oxidase gene (B03011909), and the S-adenosylmethionine decarboxylase (SAMDC) gene (A10031622), which function in the biosyntheses of JA, reactive oxygen species (ROS), and polyamine, respectively. In addition, a MAP kinase gene (A05011217) involved in hormone signaling/biosynthesis and two harpin-induced protein genes (B05032110 and A03011404) were examined.

For semi-quantitative RT-PCR analyses of these eight selected genes, seven-day-old OsMADS26GR plants and their WT segregants were treated with 1 µM DEX for up to 9 h, and RNAs were prepared from their roots. The OsMADS26 and actin genes were included as controls.
As expected, OsMADS26 transcript was highly expressed in the transgenic roots, with that level increasing after DEX treatment (Fig. 5). Transcripts of these eight genes were induced post-treatment, and showed expression patterns similar to those obtained from the microarray analyses. Therefore, these data support the reliability of the microarray results.

The relationship between OsMADS26 and biosynthesis genes associated with stress responses

The phenotypes observed in our ubi:OsMADS26 and ubi:OsMADS26GR plants were broadly correlated with stress responses. Microarray analyses demonstrated the up-regulation of several genes for the biosynthesis of stress-inducing molecules such as ET, JA, ROS, and polyamine (Supplementary Table II).

In ET biosynthesis, ACC synthase and oxidase are the most important genes in mediating the final two steps. While none of ACC synthase genes was changed significantly, four ACC oxidase genes were up-regulated in three experimental sets. The JA biosynthesis genes include lipoxygenase, allene oxide synthase (AOS), allene oxide cyclase (AOC), oxo-phytodienoic acid reductase (OPR), and JA carboxyl methyltransferase (JMT) (Agrawal et al., 2004). Our microarray analyses showed that the following JA biosynthesis genes were up-regulated: OsLOX3, OsAOS1, OsAOS4, OsAOS5, OsOPR2, OsOPR12, and OsOPR13. Among the genes involved in ROS production, NADPH oxidase mRNA was clearly up-regulated, while a gene homologous to aldehyde oxidase was down-regulated. Regarding polyamine biosynthesis, only SAM decarboxylase was up-regulated while genes encoding ornithine decarboxylase, arginine decarboxylase, and spermidine synthase were not changed.

Phenotypes of 35S:OsMADS26 Arabidopsis plants
To further elucidate the role of OsMADS26, we utilized the Arabidopsis system, in which expression is under the control of the CaMV35S promoter. Of our 105 kanamycin-resistant T1 transgenic plants (35S:OsMADS26 plants), 11 developed severe dwarfism, chlorosis, and tilted leaves (Fig. 6A). Their growth was halted and they eventually died without developing reproductive organs. The rest of the T1 plants, which produced fertile seeds, were used for further analyses.

T2 segregants of these transgenic lines were analyzed phenotypically. Among the 11 independent lines examined, those from Lines #1, #8, and #11 displayed a wide range of abnormal phenotypes (Fig. 6B, C). Generally, their plants were smaller but had more lateral roots. Furthermore, Line 1 accumulated red pigments while Lines 8 and 11 developed twisted leaves. Plants from Line #11 were only about one-third as large as the WT, and they showed a delayed rate of leaf emergence. OsMADS26 transcripts were detected in all the plants with abnormal phenotypes.

To determine whether the abnormal phenotypes were induced by JA, we checked the expression levels of AtMyc2, VSP, and PDF1.2 (Bell and Mullet, 1993; Benedetti et al., 1995; Boter et al., 2004; Lorenzo et al., 2004; Penninckx et al., 1998) whose expressions generally are induced by that compound. Our analysis showed that transcript levels for VSP were increased in the transgenic plants with medium or strong phenotypes (Supplementary Fig. 7). In contrast, PDF1.2 transcripts were down-regulated in the transgenic plants in proportion to their phenotypic severity, whereas AtMyc2 expression was unaffected. Therefore, these results suggest that OsMADS26 controls the subsets of JA-inducible genes.

Inhibition of apical hook development in 35S:OsMADS26 Arabidopsis plants.

Ellis and Turner (2001) have reported that methyl jasmonate blocks apical hook development in a
dose-dependent manner while ethylene promotes such formations. Therefore, we employed this physiology to study any possible relationship between OsMADS26 and those hormones. As previously reported, MJ induced shorter roots and hypocotyls, and inhibited apical hooks, while ACC induced exaggerated development of the latter tissue (Fig. 7A). Proper hooks are defined as those where the angle between hypocotyl and cotyledon is <90°. When homozygous plants were grown in the dark, 86% of the transgenics did not have properly formed hooks (Fig. 7B). Moreover, when treated with 1 µM MJ, all transgenic plants failed to develop apical hooks; ACC also did not induce drastic apical hook development. Therefore, these results suggest that some of the phenotypes observed in our OsMADS26-overproducing Arabidopsis plants are associated with MJ.

Discussion

OsMADS26 transcript is more abundant in old tissues

OsMADS26 was the first of four rice genes identified in the AGL12 group. Its expression patterns have now been elucidated, with transcripts being detected in the roots, shoots, panicles, and inflorescences throughout all developmental stages (Shinozuka et al., 1999, Pelucchi et al., 2002). In this study, we showed that the OsMADS26 transcript level was elevated in older leaves and roots, implying that this gene may be involved in senescence or maturation processes.

Suppression of OsMADS26 expression does not cause phenotype alterations

Transgenic plants over-expressing the anti-sense OsMADS26 or T-DNA insertional mutant showed
no visible alterations in their phenotypes. We examined the KO plants under various stress conditions such as drought, high salt, and stress mediators such as ACC, MJ, and H$_2$O$_2$; however, there were no differences between KO and segregant WT plants. This indicates that the gene may function under specific conditions. Alternatively, other MADS-box genes may complement the loss of its functioning. The rice genome contains three AGL12-group proteins that are closely related to OsMADS26: OsMADS33, OsMADS35, and OsMADS36 – these share 52 to 53% overall amino acid identity with OsMADS26 (Lee et al., 2003). Potentially, OsMADS33 can be the candidate because it is expressed in a similar pattern to OsMADS26 (Lee et al., 2003). Interestingly, whereas four AGL12-group MADS-box genes have now been isolated from rice, only one from this group has been identified in other species, such as Arabidopsis, tomato, and Magnolia praecocissima. The loss-of-function mutant in Arabidopsis agl12 showed defects in root meristem development on vertical plates as well as a phenotype of late flowering under long days (Tapia-Lopez et al., 2008). This suggests that the rice AGL12-group genes are functionally redundant.

Overexpression of OsMADS26 causes multiple stress responses in rice and Arabidopsis

To elucidate the role of OsMADS26, we regenerated transgenic rice plants over-expressing that gene. Various phenotypes were displayed, such as defective growth, chlorosis, cell death, pigment accumulation, spotted leaves, and senescence. These were almost re-enacted in OsMADS26 over-expressing Arabidopsis plants, demonstrating the conserved role of this MADS-box gene in both model systems. We think that these phenotypes reflect the actual function of OsMADS26 because we employed an inducible system that showed the similar phenotypes to be independent of developmental stage. Therefore, the induced phenotypes are likely related to the action of OsMADS26. If the abnormalities had, instead, been artifacts due to disturbing the action of other
proteins, we would have expected the influence to be linked with a particular growth stage. A
number of overexpression analyses have been conducted previously to study gene function,
especially when loss-of-function mutants do not provide any clues.

The phenotypes observed from the transgenics were similar to those previously reported for
plants exposed to various stresses. In Arabidopsis, stresses mediated by heavy metals, nutrient
deficiencies, and hypoxia induce the development of characteristic traits that include diminished
leaf, shoot, and root elongation, as well as enhanced formation of lateral roots (see review by
Potters et al., 2007). Similar abnormalities, e.g., chlorosis and cell death, are commonly observed in
rice grown under extremely harsh conditions. Pigments are also accumulated in stressed plants
(Harvaux and Kloppstech, 2001; Jordan et al., 1998). Although genes related to cell death and
pigment accumulation were identified in our microarray analyses, no gene directly associated with
chlorosis was detected. Therefore, the chlorosis phenotype seems to be more of an indirect effect
compared with other abnormalities.

OsMADS26 may generate various stress mediators

Because stress phenomena are connected with various factors, including phytohormones and ROS,
the OsMADS26-mediated response described here might be related to hormonal activity. We
speculated that jasmonate is the most probable candidate because the phenotypes observed from our
transformants were similar to ones from plants that over-express JA-inducible genes. Using a
genetics screening system to isolate mutants that constitutively express the thionin (Thi) 2.1 gene,
Hilpert et al. (2001) have identified at least five different constitutive expression of thionin (cet)
mutants. These show phenotypes of retarded growth, whitish rosettes, downward-bending leaves,
and spontaneous lesions. Two other mutants, constant expression of JA inducible (cex) 1 and
constitutive expression of VSP (cev) 1, also manifest slower growth and the accumulation of anthocyanin (Ellis et al., 2002; Xu et al., 2001)

Our microarray analyses revealed that OsMADS26 overexpression indeed induced JA biosynthesis genes, such as lipoxygenase (A09032318), OsLOX3, OsAOS1, OsAOS4, OsAOS5, OsOPR2, OsOPR12, OsOPR13, and OsJMT4. Except for OsAOS1, OsAOS5, OsACO2, and OsJMT4, at least one CArG box existed within the 2-kb promoter regions of the putative target genes (data not shown), which furthers the possibility that OsMADS26 directly binds to these promoters. Furthermore, MJ-treated rice seedlings partially resembled those with OsMADS26-induced abnormal phenotypes, including reduced root/shoot growth and pigment accumulation in the roots (Supplementary Fig. 8A, 8B). The suppression of apical hook development seen in our 35S:OsMADS26 Arabidopsis plants also supports the idea that OsMADS26 activates JA-signaling.

However, treatments with JA-biosynthesis inhibitors (10 µM ibuprofen, 1 mM SA, or 100 µM diethylthiocarbamic acid (DIECA)) did not recover the abnormal phenotypes induced earlier by DEX treatment (data not shown). DIECA inhibits the octadecanoid pathway by reducing the intermediate 13-S-hydroperoxylinolenic acid to 13-hydroxylinolenic acid (Farmer et al., 1994). Ibuprofen and acetylsalicylic acid work as lipoxygenase inhibitors (Doares et al., 1995; Nojiri et al., 1996). This might be because total oxylipin contents were increased. Recently, Vellosillo et al. (2007) have reported on the diverse roles of oxylipin compounds formed by the oxygenation of fatty acids. These molecules prompt not only JA-induced development overall, but also are associated with root waving and the loss of apical dominance. Actually, 35S:OsMADS26 Arabidopsis plants show both a general retardation of growth and no apical dominance. Therefore, it is possible that OsMADS26 induces complex phenotypes by elevating oxylipin contents. Alternatively, OsMADS26 may regulate JA, SA, and ethylene pathways simultaneously. While antagonistic interactions between SA and ET/JA signalings have been documented, overlap in gene
induction among JA, SA, and ethylene treatments also has been reported (Cheong et al., 2003; Sasaki et al., 2004). For example, BWMK1, up-regulated in our microarray analyses, was increased in response to SA, JA, and ethephon. Therefore, OsMADS26 may act as a common positive regulator for a subset of genes that respond to these hormones.

Ethylene is another possible candidate because some of our phenotypes were similar to those from plants treated with ET, in which four ACC oxidase genes were up-regulated. However, ACC synthase transcript levels did not change here. Because ACC synthesis is the rate-limiting step in ET production, the effect of OsMADS26 in the ET-mediated response is restricted to the regions where ACC synthase activity is high. In the apical hook, ET-mediated signaling seemed not to be activated because we did not find any ET-induced exaggeration of a hook. However, the leaf-curling phenotype observed in the 35S:OsMADS26 seedlings was similar to that of WT plants treated with ET.

Finally, the third candidate is ROS – this may be possible based on our data showing that NADPH oxidase transcript levels were up-regulated in the OsMADS26-overexpressing plants. ROS induces morphogenic responses that include defective growth and a relatively large number of lateral roots (Olmos et al., 2006). Enhanced ROS production is associated with a broad range of biotic and abiotic stresses, e.g., heat, UV-radiation, heavy metal, anoxia, and pathogen attacks (Apel and Hirt, 2004). Unexpectedly, a gene with high homology to gibberellin β-hydroxylase was up-regulated. However, we did not study a relationship between gibberellin and OsMADS26 because this hormone is rarely involved in stress-related responses observed in the OsMADS26-overexpressing plants.

OsMADS26 may directly bind to the promoter regions of these biosynthesis genes. Alternatively, it might regulate these genes via cross talk between stress-mediators or by positive feedback mechanisms (Sasaki et al., 2001; Zhong and Burns, 2003; Chung and Choi, 2007). For
example, three JA biosynthesis genes -- \textit{OsAOS1}, \textit{OsAOC1}, and \textit{OsOPR1} -- are induced not only by JA itself but also by treatment with ET, abscisic acid, salicylic acid (SA), or hydrogen peroxide (Agrawal et al., 2002, 2003a, b). Likewise, \textit{OsACO2} transcript levels are elevated in IAA-treated etiolated rice seedlings whereas \textit{OsACO3} mRNA is greatly accumulated following ET exposure (Chae et al., 2000).

\textit{OsMADS26} regulates various stress-induced genes

Microarray analyses have produced a global spectrum for the genes regulated by JA, ET, and ROS. MJ differentially controls the transcription of genes involved in oxidative bursts and programmed cell death, such as those for catalase, glutathione S-transferase, and cysteine protease (Schenk et al., 2000). Numerous genes associated with cell rescue, disease, and defense mechanisms have been identified as early ET-regulated genes (de Paepe et al., 2004). Extensive comparisons have demonstrated redundant and specific roles for ROS in connection with stresses (Gadjev et al., 2006). Furthermore, considerable cross talk occurs among these signaling pathways. Schenk et al. (2000) have reported that 50\% of the genes induced by ET are also induced by MJ. Transcriptome analysis of Col;35S: \textit{ERF1} transgenic plants and ET/JA-treated WT plants has further revealed a large number of genes responsive to both ET and JA (Lorenzo et al., 2003). In the \textit{flu} mutant, which over-produces 1O\textsubscript{2}, the ethylene-responsive element-binding proteins are highly induced, indicating cross talk between 1O\textsubscript{2} and ethylene-signaling (Gadjev et al., 2006).

Our microarray analyses showed that genes inducible by JA, ET, or ROS were up-regulated in transgenic plants over-expressing \textit{OsMADS26}. These include not only the biosynthesis genes already discussed here, but also many putative downstream genes, such as \textit{cysteine proteinase}, \textit{S-adenosylmethionine decarboxylase}, \textit{protease inhibitor}, \textit{peroxidase}, and \textit{MAP-kinase} genes.
Expression profiles for 22 rice *peroxidase* genes have revealed that many of them respond to disease, wounding, SA, JA, and ACC (Sasaki et al., 2004). A *MAP kinase* gene (A05011217), designated as *BWMK1* (Genbank Accession Number AF177392), is induced not only by blast, wounding, and H$_2$O$_2$, but also by the phytohormones SA, JA, and ethephon (Cheong et al., 2003; He et al., 1999). The two putative *flavanone 3-hydroxylase* genes found from our microarrays may also cause pigment accumulation. In other species, MJ induces the accumulation of anthocyanin in soybean and *Arabidopsis* (Franceschi and Grimes, 1991; Jung, 2004). Furthermore, transcripts involved in anthocyanin production are co-regulated in response to O$_2^-$, whereas H$_2$O$_2$ negatively impinges on their expression (Gadjev et al., 2006).

Our analyses also showed the activity of HR-related genes that encode a harpin-induced protein or a cell death-associated protein. Harpin from *Erwinia amylovora* causes the HR response (Wei et al., 1992). A putative cell death-associated gene has close homology with *hsr203J*, which is expressed in the leaves of *Nicotiana tabacum* cv. Samsun NN infected with *Ralstonia solanacearum* 8107 (Kiba et al., 2003). An *aldo/keto reductase* family gene also was induced here. Members of the *aldo/keto reductase* superfamily can detoxify a major lipid peroxide degradation product, 4-hydroxynon-2enal (HNE) (Vander Jagt et al., 1995), and the rice *aldo/keto reductase* gene is induced in vegetative tissues in response to PEG-mediated water stress and salinity (Karuna Sree et al., 2000).

Three members belonging to the protease inhibitor family were down-regulated, suggesting their negative roles in stress-related responses. These proteins contain a domain commonly found in trypsin-alpha amylase inhibitors, seed storage proteins, and lipid transfer proteins (Rico et al., 1996). Some peroxidase genes were also down-regulated, perhaps causing the cell death signal to be amplified by reducing H$_2$O$_2$ scavenging. Down-regulation of peroxidase
genes by ethylene has previously been reported (de Paepe et al., 2004). Altogether, our results indicate that OsMADS26 controls various stress responses.

Materials and Methods

Plant materials and chemical treatments

Oryza sativa var. japonica cv. Dongjin and the Columbia ecotype of *Arabidopsis thaliana* were used. Rice seeds were surface-sterilized and seedlings were grown at 28°C on gauze embedded in sterile Murashige and Skoog (MS) media containing 0.2% agar, 3% sucrose, and 0.01% myo-inositol. Plants were grown to maturity in a greenhouse supplemented with artificial lighting during the winter period. DEXamethasone was dissolved in 95% alcohol at 1 mM and an appropriate amount was added to the growth media to arrive at the desired final concentration. Methyl jasmonate and aminocyclopropane-1-carboxylate (ACC) were dissolved in 95% alcohol and sterilized water, respectively, at 10 mM, before a suitable amount was added to MS solid media containing 0.2% agar, 3% sucrose, and 0.01% myo-inositol. For *Arabidopsis*, MJ and ACC were added to a 1/2 Gamborg B5 agar (0.8%) medium supplemented with 1% sucrose.

For the treatments with JA-biosynthesis inhibitors, plants were grown for 7 d in DEX-free MS solid media. Healthy plants were selected and incubated in tap water for 1 d. Ibuprofen, salicylic acid, and DIECA were added at their final concentrations of 10 µM, 1 mM, and 100 µM, respectively. After 1 h, 1 µM DEX was added and phenotypes were observed for 3 consecutive days.

Vector construction
The full-length cDNA clone of *OsMADS26* (GenBank Accession Number AB003326) was isolated by nested PCR, using the following four primers: forward 1, 5’-atcaagcttgagctatcgatcatcaagc-3’; forward 2, 5’-atcaagcttgagacttatcttgatcgatgg-3’; reverse 1, 5’-ttgggtaccaataaggtacatcagaatgec-3’; and reverse 2, 5’-ttgggtaccgtagaaggaatagccatctcc-3’. These primers contained the Hind III and Asp718 restriction enzyme sites for subsequent cloning. The PCR product was first cloned into pBluescript SK- (Stratagene, La Jolla, CA). Afterward, the cDNA was sub-cloned into the pGA1611 binary vector between the maize *ubi* promoter and the *nos* terminator for the sense construct (Lee et al., 1999; Kim et al., 2003). For the anti-sense construct, we used the region between 404 and 900 of *OsMADS26*. For the DEX-inducible system, the *OsMADS26* stop codon was changed to the Asp718 site by using the reverse primer (5’-ttgggtaccgaaggaatagccatctcc-3’). The rat *GR* gene (AY066016) was inserted into that Asp718 site, generating an in-frame fusion between the two molecules. For *Arabidopsis* transformation, the pGA1535 binary vector with the *CaMV35S* promoter and a kanamycin selectable marker was used to sub-clone *OsMADS26*, with Hind III and Asp718.

Transformation

Rice transformation was performed according to the *Agrobacterium*-mediated methods described by Jeon et al. (1999) and Lee et al. (1999). All transgenic plants were grown in glass tubes, and then transferred to a confined paddy field. The Columbia ecotype was used for *Arabidopsis* transformation using floral dip method (Clough and Bent, 1998).

Microarray analyses

23
Microarray analyses were conducted as described previously (Jung et al., 2005). Total RNAs (100 mg) were prepared from two independent lines of the *ubi:OsMADS26GR* plants and WT segregants. KMC clustering analyses were performed with TIGR MeV software (Saeed et al., 2003).

RT-PCR, real time PCR and northern blot analysis

Total RNAs were isolated from fresh tissues with an RNA isolation kit (Tri Reagent; MRC Inc., Cincinnati, OH). First-strand cDNA was synthesized from 4 µg of total RNAs, using M-MLV reverse transcriptase (Promega, Madison, WI). Synthesized cDNAs were used for semi-quantitative RT-PCR and real-time PCR. The latter was performed with Roche Lightcyler II. *Actin* primers, GCACAGGAAATGGCTTCTAATTCTT and AATCACAAGTGAGAACCACAGGTA, were used for normalizing the cDNA quantity. The primers used in real-time PCR experiments were CTGATCATGTGAAGCAAAATTTTCTC and ACGCTAAGAACACGCTTATTAC for *Osl2* (AF251073), and AAGCATCAGCATCATTACGAGCA and CTAATTTCACACAGATGAACC for *Osl55* (AF251074). For RT-PCR, the primers for the *actin* genes were designed as reported previously (Takakura et al., 2000). Gene-specific primers were designed for each target gene (Supplementary Table III). After PCR-amplification, the products were separated on a 1.2% agarose gel and photographed. In some cases, PCR products were blotted onto a nylon membrane, and hybridized with a 32P-labeled probe. For northern blot analyses, total RNAs were fractionated on a 1.3% agarose gel, blotted onto a nylon membrane, and hybridized with a 32P-labeled probe. PCR primers F and R indicated in Supplementary Fig 1 were used to generate the probe.
Chlorophyll content measurement

Five d-old seedlings were treated with 1μM DEX for 3 days. Shoots were harvested, weighed, and ground into fine powder in liquid nitrogen. Chlorophylls were extracted in 80% acetone and diluted to 1/100 for spectrophotometer measurements. Chlorophyll a and b concentrations were determined according to the method of Lichtenthaler (1987).

ACKNOWLEDGEMENTS

We thank Jeong Sik Kim and Hong-Gyu Kang for their help in the Arabidopsis research. We also thank Seonghoe Jang and Sung-Hoon Jun for experimental guidance and Priscilla Licht for critical reading of the manuscript. We further thank Arabidopsis Biological Resource Center for the donation of Arabidopsis seeds.

LITERATURE CITED

Agrawal GK, Rakwal R, Jwa N-S, Han K-S, Agrawal VP (2002) Molecular cloning and mRNA expression analysis of the first rice jasmonate biosynthetic pathway gene allene oxide synthase. Plant Physiol Biochem 40: 771-782

Agrawal GK, Jwa N-S, Agrawal SK, Tamogami S, Iwahashi H, Rakwal R (2003a) Cloning of novel rice allene oxide cyclase (OsAOC): mRNA expression and comparative analysis with allene oxide synthase (OsAOS) gene provides insight into the transcriptional regulation of octadecanoid
pathway biosynthetic genes in rice. Plant Sci **164**: 979-992

Agrawal GK, Jwa NS, Shibato J, Han O, Iwahashi H, Rakwal R (2003b) Diverse environmental cues transiently regulate OsOPR1 of the "octadecanoid pathway" revealing its importance in rice defense/stress and development. Biochem Biophys Res Commun **310**: 1073-1082

Agrawal GK, Tamogami S, Han O, Iwahashi H, Rakwal R (2004) Rice octadecanoid pathway. Biochem Biophys Res Commun **317**: 1-15

Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J **24**: 457-466

Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol **55**: 373-399

Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

Baldwin IT, Schmelz EA, Ohnmeiss TE (1994) Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in *Nicotiana sylvestris*. J Chem Ecol **20**: 2139-2157

Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol **29**: 464-489

Bell E, Mullet JE (1993) Characterization of an *Arabidopsis* lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol **103**: 1133-1137

Benedetti CE, Xie D, Turner JG (1995) COII-dependent expression of an *Arabidopsis* vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate. Plant Physiol **109**: 567-572
Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines and inhibits shoot formation in tobacco thin layers. J Exp Bot 52: 231-242

Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes & Dev 18: 1577-1591

Chae HS, Cho YG, Park MY, Lee MC, Eun MY, Kang BG, Kim WT (2000) Hormonal cross-talk between auxin and ethylene differentially regulates the expression of two members of the 1-aminocyclopropane-1-carboxylate oxidase gene family in rice (Oryza sativa L). Plant Cell Physiol 41: 354-362

Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC, et al. (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132: 1961-1972

Cheong JJ, Choi YD (2007) Signaling pathways for the biosynthesis and action of jasmonates. J Plant Biol 50: 122-131

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

de Paepe A, Vuylsteke M, van Hummelen P, Zabeau M, van der Straeten D (2004) Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J 39: 537-559

Doares SH, Narváez-Vásques J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108: 1741-1746

Ellis C, Turner JG (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and
ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025-1033

Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14: 1557-1566

Fang SC, Fernandez DE (2002) Effect of regulated overexpression of the MADS domain factor AGL15 on flower senescence and fruit maturation. Plant Physiol 130: 78-89

Farmer EE, Caldelari D, Pearce G, Walker-Simmons MK, Ryan CA (1994)
Diethylthiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiol 106: 337-342

Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang SC (2000) The embryo MADS domain factor AGL15 acts postembryonicallyInhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12: 183-198

Franceschi VR, Grimes HD (1991) Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc Natl Acad Sci USA 88: 6745-6749

Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141: 436-445

Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125: 1509-1517

Harvaux M, Kloppstech K (2001) The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta 213: 953-966

He C, Fong SH, Yang D, Wang GL (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact 12: 1064-1073
Hilpert B, Bohlmann H, op den Camp RO, Przybyla D, Miersch O, Buchala A, Apel K (2001)
Isolation and characterization of signal transduction mutants of Arabidopsis thaliana that
constitutively activate the octadecanoid pathway and form necrotic microlesions. Plant J 26: 435-446

Jeon JS, Chung YY, Lee S, Yi GH, Oh BG, An G (1999) Isolation and characterization of an
anther-specific gene, RA8, from rice (Oryza sativa L). Plant Mol Biol 39: 35-44

Jordan BR, James PE, S AH-M (1998) Factors affecting UV-B-induced changes in Arabidopsis
thaliana L gene expression: the role of development, protective pigments and the chloroplast signal.
Plant Cell Physiol 39: 769-778

Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005)
Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell 17:
2705-2722

Jung S (2004) Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or
norflurazon on antioxidant systems. Plant Physiol Biochem 42: 225-231

Kang D-J, Seo Y-J, Lee J-D, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee I-J (2005)
Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-
tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191: 273 -282

Karuna Sree B, Rajendrakumar CS, Reddy AR (2000) Aldose reductase in rice (Oryza sativa L):
stress response and developmental specificity. Plant Sci 160: 149-157

Kiba A, Tomiyama H, Takahashi H, Hamada H, Ohnishi K, Okuno T, Hikichi Y (2003)
Induction of resistance and expression of defense-related genes in tobacco leaves infiltrated with
Ralstonia solanacearum. Plant Cell Physiol 44: 287-295

Kim SR, Lee S, Kang HG, Jeon JS, Kim KM, An GH (2003) A complete sequence of the
pGA1611 binary vector. J Plant Biol 46: 211-214
Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M (2003) Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20: 1963-1977

Lee RH, Wang CH, Huang LT, Chen SC (2001) Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52: 1117-1121.

Lee S, Choi SC, An G. (2008) Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J (in press).

Lee S, Jeon JS, Jung KH, An G (1999) Binary vector for efficient transformation of rice. J Plant Biol 42: 310-316

Lee S, Kim J, Son JS, Nam J, Jeong DH, Lee K, Jang S, Yoo J, Lee J, Lee DY, et al. (2003) Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol 44: 1403-1411

Li H, Hansen JL, Liu Y, Zemetra RS, Berger PH (2004) Using real-time PCR to determine transgene copy number in wheat. Plant Mol Biol Rep 22: 179-188

Lichtenthaler, HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148: 350-382

Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404: 766-770

Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a myc transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16: 1938-1950

Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165-178
Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406: 910-913

Montiel G, Breton C, Thiersault M, Burlat V, Jay-Allemand C, Gantet P (2007) Transcription factor Agamous-like 12 from Arabidopsis promotes tissue-like organization and alkaloid biosynthesis in Catharanthus roseus suspension cells. Metabol Engr 9: 125-132

Mueller MJ, Brodschelm W (1994) Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization mass spectrometry. Anal Biochem 218: 425-435

Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci USA 101: 1910-1915

Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110: 387-392

Olmos E, Kiddle G, Pellny T, Kumar S, Foyer C (2006) Modulation of plant morphology, root architecture and cell structure by low vitamin C in Arabidopsis thaliana. J Exp Bot 57: 1645-1655

Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551

Pelucci N, Fornara F, Favalli C, Masiero S, Lago C, Colombo L, Kater MM (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15: 113-122

Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant
activation of jasmonate and ethylene response pathways is required for induction of a plant
defensin gene in *Arabidopsis*. Plant Cell **10**: 2103-2113

Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic
responses: growing out of trouble? Trends Plant Sci **12**: 98-105

Rico M, Bruix M, González C, Monsalve RI, Rodríguez R (1996) 1H NMR assignment and
global fold of napin Bnlb, a representative 2S albumin seed protein. Biochemistry **35**: 15672-
15682.

Rounsley, SD, Ditta, GS, Yanofsky, MF (1995) Diverse roles for MADS box genes in *Arabidopsis*
development. Plant Cell **7**: 1259-1269

Ryu CH, You JH, Kang HG, Hur J, Kim YH, Han MJ, An K, Chung BC, Lee CH, An G (2004)
Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of
an insertion-site database. Plant Mol Biol **54**: 489-502

Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T,
Thiagarajan M, et al. (2003) TM4: a free, open-source system for microarray data management
and analysis. Biotechniques **34**: 374-378

Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhashi I, Miyasaka A, Iwano M, Ito H,
Matsui H, Ohashi Y (2004) Ten rice peroxidases redundantly respond to multiple stresses
including infection with rice blast fungus. Plant Cell Physiol **45**: 1442-1452

Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C,
Tsugane T, Masuda T, et al. (2001) Monitoring of methyl jasmonate-responsive genes in
Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk
with other phytohormone signaling pathways. DNA Res **8**: 153-161

Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM
(2000) Coordinated plant defense responses in *Arabidopsis* revealed by microarray analysis. Proc
Shinozuka Y, Kojima S, Shomura A, Ichimura H, Yano M, Yamamoto K, Sasaki T (1999) Isolation and characterization of rice MADS box gene homologues and their RFLP mapping. DNA Res 6: 123-129

Takakura Y, Ito T, Saito H, Inoue T, Komari T, Kuwata S (2000) Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L). Plant Mol Biol 42: 883-897

Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, Arroyo AG, Perez-Ruiz RV, Kim SH, Acevedo F, Pelaz S, Alvarez-Buylla ER (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis thaliana. Plant Physiol (in press)

Vander Jagt DL, Kolb NS, Vander Jagt TJ, Chino J, Martinez FJ, Hunsaker LA, Royer RE (1995) Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim Biophys Acta 1249: 117-126

Vellosillo T, Martinez M, Lopez MA, Vicente J, Cascon T, Dolan L, Hamberg M, Castresana C (2007) Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell 19: 831-846

Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296: 343-346

Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A, Beer SV (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88

Xu L, Liu F, Wang Z, Peng W, Huang R, Huang D, Xie D (2001) An Arabidopsis mutant cex1
exhibits constant accumulation of jasmonate-regulated AtVSP, Thi21 and PDF12. FEBS Lett 494: 161-164

Zhao KJ, Chye ML (1999) Methyl jasmonate induces expression of a novel *Brassica juncea* chitinase with two chitin-binding domains. Plant Mol Biol 40: 1009-1018

Zhong GV, Burns JK (2003) Profiling ethylene-regulated gene expression in *Arabidopsis thaliana* by microarray analysis. Plant Mol Biol 53: 117-131
Table I. Root and leaf numbers for *ubi:OsMADS26GR* plants treated with DEX.

DEX	Root number	leaf number		
	WT	HO	WT	HO
Line #33				
0 M	8.1 ± 1.8	8.0 ± 2.2	4.0 ± 0.0	4.0 ± 0.0
10 nM	7.9 ± 1.1	6.5 ± 1.9	4.0 ± 0.0	4.0 ± 0.0
100 nM	8.8 ± 1.0	5.4 ± 2.6	4.0 ± 0.0	2.0 ± 0.0
1 µM	9.2 ± 2.1	2.3 ± 3.1	4.0 ± 0.0	2.0 ± 0.0
10 µM	2.1 ± 1.2	0.0 ± 0.0	2.0 ± 0.0	2.0 ± 0.0
Line #17				
0 M	10.0 ± 1.8	8.3 ± 1.1	4.0 ± 0.0	3.8 ± 0.5
10 nM	9.2 ± 2.1	6.1 ± 0.7	3.8 ± 0.4	3.0 ± 0.0
100 nM	9.0 ± 2.0	6.2 ± 0.9	3.9 ± 0.4	3.0 ± 0.0
1 µM	10.6 ± 2.1	0.0 ± 0.0	3.9 ± 0.4	3.0 ± 0.0
Table II. Functional classification of genes that are up- or down-regulated by at least two-fold in *ubi:OsMADS26GR* plants treated with DEX. Relative numbers indicate the percentage of up- and down-regulated genes relative to the total genes within a category.

Functional category	Up	Down	Total	Relative number (%)
INFORMATION STORAGE AND PROCESSING				
Translation, ribosomal structure and biogenesis	0	0	0	0.00
RNA processing and modification	0	1	1	0.17
Transcription	4	1	5	0.34
Replication, recombination and repair	0	0	0	0.00
Chromatin structure and dynamics	0	0	0	0.00
CELLULAR PROCESSING AND SIGNALING				
Cell cycle control, cell division, chromosome partitioning	1	0	1	0.19
Nuclear structure	0	0	0	0.00
Defense mechanisms	4	7	11	2.40
Signal transduction mechanisms	16	4	20	0.58
Cell wall/membrane/envelope biogenesis	3	2	5	0.99
Cell motility	0	0	0	0.00
Cytoskeleton	1	0	1	0.34
Extracellular structure	0	0	0	0.00
Intracellular trafficking, secretion and vesicular transport	1	0	1	0.13
Posttranslational modification, protein turnover, chaperones	3	9	12	0.66
METABOLISM				
Energy production and conversion	0	3	3	0.37
Carbohydrate transport and metabolism	2	8	10	0.82
Amino acid transport and metabolism	4	2	6	0.74
Nucleotide transport and metabolism	2	0	2	0.99
Coenzyme transport and metabolism	0	0	0	0.00
Lipid transport and metabolism	4	0	4	0.41
Inorganic ion transport and metabolism	2	3	5	1.02
Secondary metabolites biosynthesis transport and metabolism	11	1	12	1.08
POORLY CHARACTERIZED				
General function prediction only	17	16	33	0.55
Function unknown	3	5	8	0.48
Unnamed protein	6	6	12	0.71
Table III. A partial list of putative target genes that are up- or down-regulated by at least 1.5-fold in *ubi:OsMADS26GR* plants treated with DEX.

Spot_ID	CHR_Locus	Function	Fold change ± SD	3 hr	9 hr
A09021902	LOC_Os11g08380	Iron/ascorbate family oxidoreductases	1.969 ± 0.465	2.209 ± 0.376	
A05041211	LOC_Os04g10350	Iron/ascorbate family oxidoreductases	1.437 ± 0.400	2.314 ± 0.622	
A05011009	LOC_Os09g39720	Iron/ascorbate family oxidoreductases	1.379 ± 0.166	2.503 ± 0.501	
B10022103	LOC_Os10g39140	Iron/ascorbate family oxidoreductases	2.119 ± 0.998	3.426 ± 1.785	
A09032318	LOC_Os04g37430	Lipoxygenase	1.379 ± 0.166	2.503 ± 0.501	
A05011009	LOC_Os06g49430	Mitogen-activated protein kinase	1.794 ± 0.502	3.209 ± 1.329	
B04022213	LOC_Os02g04230	Mitogen-activated protein kinase	1.660 ± 0.802	2.233 ± 0.563	
B05032110	LOC_Os01g64470	A Harpin-induced protein	0.600 ± 1.126	5.256 ± 2.566	
A03011404	LOC_Os04g58850	A Harpin-induced protein	1.272 ± 0.209	2.299 ± 0.616	
A04030908	LOC_Os12g04150	Cell death associated protein	0.144 ± 1.538	3.154 ± 1.697	
A07022114	LOC_Os04g57440	Cysteine proteinase Cathepsin L	1.318 ± 0.130	2.009 ± 0.375	
A05031002	LOC_Os05g04490	Peroxidase	0.634 ± 1.117	3.912 ± 2.174	
B10321214	LOC_Os07g48020	Peroxidase	1.055 ± 1.487	2.586 ± 1.162	
A10030822	LOC_Os03g55410	Peroxidase	-2.026 ± 0.896	-2.230 ± 0.727	
B11022306	LOC_Os01g6450	Peroxidase	-1.713 ± 0.586	-2.508 ± 1.003	
B03042101	LOC_Os02g41910	Gamma-thionins family	-1.386 ± 0.286	-1.767 ± 0.123	
A12031901	LOC_Os01g62890	Protease inhibitor/seed storage/LTP family	-0.120 ± 1.503	-1.767 ± 0.282	
B09020319	LOC_Os04g33930	Protease inhibitor/seed storage/LTP family	-0.052 ± 1.492	-1.899 ± 0.289	
B01042103	LOC_Os05g06780	Protease inhibitor/seed storage/LTP family	-0.056 ± 1.438	-2.062 ± 0.267	
A02031602	LOC_Os07g07930	Protease inhibitor/seed storage/LTP family	1.514 ± 0.384	2.283 ± 0.728	

Spot_ID, oligomers selected by microarray; CHR_locus, chromosomal locus given in TIGR database; KOME, Knowledge-based *Oryza* Molecular Biological Encyclopedia Accession number; SD, standard deviation.
FIGURE LEGENDS

Figure 1. Expression patterns for OsMADS26 at various developmental stages.
A, Transcript levels in roots and leaf blades from 5-, 10-, 20-, and 40-day-old plants.
B, Transcript levels of OsMADS26 in total roots from 3-, 6-, 9-, 25-, and 50-day-old plants.
C, Transcript levels of OsMADS26 in leaf blades from 15-, 30-, 50-, 70-, and 90-day-old plants.
D, Transcript levels of OsMADS26 at 1st, 2nd, 5th, and 6th positions within 35-day-old plants, counted from newly emerging leaf.

Figure 2. Phenotypes of ubi:OsMADS26 plants.
A, Cell death phenotype (arrows). B, Defective growth, chlorosis, and accumulation of purple pigment in roots. C, Regenerating root showing screw-like curling phenotype. D, Regenerating roots accumulating purple pigments. E, Mature transgenic plant displaying pale-green and dwarf phenotypes (right), compared with wild-type (WT) control (left). F, Transgenic leaves with pigmented spots (right), compared with WT control (left). G, Shrunken transgenic seed (lower) and WT control (upper). H, T2 ubi:OsMADS26 plants displaying defective growth, cell death (arrow), and pigment accumulation. I, Northern blot analyses of T1 transgenic plants. R, roots; S, shoots.

Figure 3. Abnormal phenotypes of ubi:OsMADS26GR plants.
A and B, Effects of OsMADS26 on germinating rice seedlings. WT segregants (A) and HO plants (B) were treated with DEXamethasone. Six to nine T3 plants were analyzed after growing for 9 d in MS solid media containing various concentrations of DEX. (B, inset) Purple pigments accumulated only in roots of HO plants treated with 100 nM DEX.
C, Effects of OsMADS26 on post-germinated rice seedlings. After growth in MS liquid media for 6
d, 1 µM DEX was treated for 2 consecutive days.

D, Effects of OsMADS26 on mature rice. After growing for 80 d in glasshouse, plants were treated with 10 µM DEX for 7 d.

E and F, Longitudinal sections of the root maturation zones of a WT segregant (E) and HO plant (F).

G, Chlorophyll a/b contents per gram fresh weight. Each data point is average of 4 or 5 replicates.

H and I, Real-time PCR analyses of senescence-related genes OsI2 (H) and OsI52 (I) in ubi:OsMADS26GR plants. Y-axis represents relative values between transcript levels of target genes and actin. Each data point is average of 4 or 5 replicates.

Figure 4. KMC clustering analyses for 48 target genes showing more than 2-fold change in expression.

A, Cluster containing genes up-regulated by >4-fold on average at both 3 and 9 h. OsMADS26 is included in this cluster.

B, Cluster containing genes up-regulated by <4-fold on average at both 3 and 9 h.

C, Cluster containing down-regulated genes.

Figure 5. RT-PCR analyses to confirm microarray results. After 0, 3, or 9 h of DEX treatment, roots were sampled from wild-type and ubi:OsMADD26GR plants. gDNA controls were used to detect contamination with genomic DNA. Putative functions are indicated in right panel.

Figure 6. Phenotypes of 35S:OsMADS26 Arabidopsis. All plants were grown on ½ MS media.

A, 28-day-old T1 35S:OsMADS26 plant.

B, 10-day-old T2 35S:OsMADS26 and WT plants.

C, 20-day-old T2 35S:OsMADS26 and WT plants.
Figure 7. Apical hook development. Etiolated seedlings of WT (A) and 35S: OsMADS26 (B) were grown on ½ MS media, then treated with MJ and ACC at 0, 1, or 10 μM concentrations.
Figure 1. Expression patterns for *OsMADS26* at various developmental stages.

A, Transcript levels in roots and leaf blades from 5-, 10-, 20-, and 40-day-old plants.
B, Transcript levels of *OsMADS26* in total roots from 3-, 6-, 9-, 25-, and 50-day-old plants.
C, Transcript levels of *OsMADS26* in leaf blades from 15-, 30-, 50-, 70-, and 90-day-old plants.
D, Transcript levels of *OsMADS26* at 1st, 2nd, 5th, and 6th positions within 35-day-old plants, counted from newly emerging leaf.
Figure 2. Phenotypes of *ubi:OsMADS26* plants.

A, Cell death phenotype (arrows). B, Defective growth, chlorosis, and accumulation of purple pigment in roots. C, Regenerating root showing scrotal-like nodals from one end. D, Regenerating roots accumulating purple pigments. E, Mature transgenic plant displaying pale-green and dwarf phenotypes (right), compared with wild-type (WT) control (left). F, Transgenic leaves with pigmented spots (right), compared with WT control (left). G,
Figure 4. KMC clustering analyses for 48 target genes showing more than 2-fold change in expression.

A, Cluster containing genes up-regulated by >4-fold on average at both 3 and 9 h. OsMADS26 is included in this cluster.

B, Cluster containing genes up-regulated by <4-fold on average at both 3 and 9 h.

C, Cluster containing down-regulated genes.
Figure 5. RT-PCR analyses to confirm microarray results. After 0, 3, or 9 h of Dex treatment, roots were sampled from wild-type and *ubi:OsMADDS26GR* plants. gDNA controls were used to detect contamination with genomic DNA. Putative functions are indicated in right panel.
Figure 6. Phenotypes of 35S:OsMADS26 Arabidopsis. All plants were grown on 1/2 MS media.
A, 28-day-old T1 35S:OsMADS26 plant.
B, 10-day-old T2 35S:OsMADS26 and WT plants.
C, 20-day-old T2 35S:OsMADS26 and WT plants.
Figure 7. Apical hook development. Etiolated seedlings of WT (A) and 35S:OsMADS26 (B) were grown on 1/2 MS media, then treated with MJ and ACC at 0, 1, or 10 μM concentration.