Bulk autophagy induction and life extension is achieved when iron is the only limited nutrient in *Saccharomyces cerevisiae*

Sandra Montella-Manuel, Nuria Pujol-Carrion, Mónica A. Mechoud and Maria Angeles de la Torre-Ruiz.

1Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, 25198, Lleida, Spain.

Corresponding autor: Maria Angeles de la Torre-Ruiz: mariaangeles.delatorre@udl.cat
Tel. +34973702410
Abstract
We have investigated the effects that iron limitation provokes in *Saccharomyces cerevisiae* exponential cultures. We have demonstrated that one primary response is the induction of bulk autophagy mediated by TORC1. Coherently, Atg13 became dephosphorylated whereas Atg1 appeared phosphorylated. The signal of iron deprivation requires Tor2/Ypk1 activity and the inactivation of Tor1 leading to Atg13 dephosphorylation, thus triggering the autophagy process. Iron replenishment in its turn, reduces autophagy flux through the AMPK Snf1 and the subsequent activity of the iron responsive transcription factor, Aft1. This signalling converges in Atg13 phosphorylation mediated by Tor1. Iron limitation promotes accumulation of trehalose and the increase in stress resistance leading to a quiescent state in cells. All these effects contribute to the extension of the chronological life, in a manner totally dependent on autophagy activation.

Introduction
Iron is an essential metal for the majority of cellular types. It is required for a number of metabolic processes such as respiration, proteins, lipids or ribosome metabolism, DNA biosynthesis and repair and others [1, 2]. Since iron can be potentially toxic for cells, mechanisms tightly controlling its homeostasis are required. In budding yeast, Yap5, Aft1 and Aft2 are the classical iron regulators. Yap5 is a transcriptional factor responding to high levels of cytosolic iron [3] whereas Aft1 and its paralogue Aft2 mediate the responses to iron starvation [4, 5, 6]. Aft1 localization is determinant for its transcriptional function being localized in the nucleus when iron is scarce and translocate to the cytoplasm when iron is replenished [7]. Iron depletion causes health problems in humans such as cardiovascular diseases or anaemia. Some researchers have described the activation of autophagy in response to iron deprivation as a positive mechanism to recirculate iron [8, 9]. Sensing and transducing the signal of the iron status to different cellular targets is essential to achieve a correct cellular homeostasis, hence, Hog1, Snf1, Ras2/PKA and Pkc1 signalling pathways have been directly or indirectly related to iron homeostasis (reviewed in [10]. The stress-activated protein kinase (SAPK) Hog1 (p38 in humans) phosphorylates and regulate Aft1 activity [10]. The kinase Snf1 belongs to the AMPK family, it has been demonstrated its participation
in the regulation of the iron regulon during diauxia through Aft1 [11] and also a role for Snf1 in iron resistance has been reported [12]. Our group has demonstrated that Slt2 the MAP kinase of the PKC1-MAPK pathway, also regulates Aft1 under iron deprivation conditions (submitted). Mitochondria and vacuole are both organelles in which iron is accumulated; this localisation probably contributes to the cellular sensing of iron. TOR is a known regulator of cellular metabolism and proliferation in all the known eukaryotic models.

Nutrient starvation provokes changes in the metabolism and cell cycle and under certain circumstances causes a G1 arrest and entrance in a long-lived quiescent state [13, 14]. When cells are deprived of several biomolecules autophagy activation contributes to recycle nutrients (reviewed in: [15, 16]). Many autophagy mutants exhibit a reduction in their chronological life span [17]. These findings have led to several studies demonstrating that autophagy can play a positive role in longevity (for reviews: [18, 19, 20]).

TORC2 exerts a control in mitochondrial respiratory function, affecting calcineurin [21]. During amino acid starvation, TORC2 positively regulates autophagy by inhibiting the activity of the calcium-regulated phosphatase calcineurin and activating the general amino acid control (GAAC) [22]. In addition, TORC2, controls ATG8 expression upon repression of the heterodimer Zinc-finger transcription factors Msn2 and Msn4 [23] (Vlahakis et al., 2017b).

TORC1 is down regulated in conditions of iron limitation [24]. The inactivation of the complex retards aging in Saccharomyces cerevisiae [25]; interestingly this mechanism has been demonstrated to be evolutionary conserved in many eukaryotic models and human cells (for a review [26]). TOR plays a crucial role in regulating autophagy in all eukaryotic models [27]. TORC1 is a negative regulator of autophagy [28]. Mild inactivation of TORC1 stimulates macroautophagy and extends life span [17]. TORC1 activity is registered through its multiple downstream effectors [29]. Sfp1, one of the downstream effectors of TORC1, is a transcriptional factor that regulates both RP and RiBi genes [30, 31]. When TORC1 is active, Sfp1 has a nuclear localisation whereas in conditions of TORC1 inactivation, Sfp1 is translocated to the cytoplasm. Non starved cells sequester Msn2/Msn4 in the cytoplasm upon their hyperphosphorylation mediated by TORC1 and cAMP-PKA. Nutritional starvation causes inactivation of both pathways leading to Msn2/Msn4 dephosphorylation and nuclear translocation, leading to the induction of the expression of a wide number of genes by the heterodimer transcription....
factor [32, 33]. Rtg1 is a basic helix–loop–helix/Zip transcription factor that along with Rtg3 and Rtg2 integrates the pathway termed retrograde regulation [34, 35]. Rtg1 is localized to the cytoplasm when cells grow in the presence of all the required nutrients in logarithmic phase. Several stimuli such as TORC1 inactivation, nutrient deprivation or mitochondrial dysfunction provoke Rtg1 translocation to the nucleus (reviewed in [36]). When active, TORC1 hyperphosphorylates Atg13, thus inhibiting autophagy [28]. TORC1 inactivation leads to Atg13 dephosphorylation that triggers Atg1 kinase activity then leading to the formation of the complex Atg13/Atg1/Atg17/Atg29/Atg31 activating the autophagy process [37, 38].

In this study, we demonstrate that iron deprivation activates macroautophagy in growth conditions in which iron is the only limiting nutrient. Tor2-Ypk1 is required to detect and transmit the signal of iron deprivation allowing Tor1 to dephosphorylate Atg13 and induce the autophagy mechanism. Snf1 and Aft1 participate in detecting the signal of iron repletion leading to Tor1 induction and the consequent repression of autophagy. Iron limitation causes an early entrance in quiescence and extension of chronological life, conditioned to the simultaneous activation of the autophagy machinery. The results presented here suggest a coordinate linkage between nutritional signalling pathways, iron homeostasis and autophagy that favours life extension.

Materials and methods

Yeast strains and plasmids

Saccharomyces cerevisiae strains are listed in Table 1. All the strains named GSL are derivatives of the CML128 background. New null mutants described in this study were obtained by a one-step disruption method that uses the NatMx4 or KanMx4 cassettes [51]. Strains GSL199, 226, 297, 313, 325, 352, 374 and 382 were constructed upon integration of plasmid pGFP-Atg8 (original name: pHab142), previously digested with Stu1, in the *URA2* locus. Strains, GSL395, 398, 399 and 401 were constructed upon integration of plasmid pAtg1-HA previously digested with BstEII. The plasmid pAtg1-HA was obtained upon Atg1 cloning into the Pme1 and PstI sites of the integrative vector pMM351 [48].

Plasmid descriptions are listed in Table 2. Each particular ORF was amplified by PCR from genomic DNA to be directionally cloned in the specific plasmid.
Media, growth conditions and reagents

Yeasts were grown at 30ºC in SD medium (2% glucose, 0.67% yeast nitrogen base that lacked the corresponding amino acids for plasmid maintenance) plus amino acids [52]. Iron depletion conditions (-Fe) consisted on SD medium whose nitrogen base component was free of iron plus the addition of 80 µM of 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid (BPS) (Sigma,146617) [42]. Iron was added as ammonium iron (III) sulphate hexacahydrate [NH₄Fe(SO₄)₂•6H₂O] (+Fe; F1543; Sigma) at a final concentration of 10mM.

We present a list of reagents detailing final concentrations in culture media and from which company they were purchased: Cycloheximide 150mg/ml (SIGMA, C4859); Rapid alkaline phosphatase (Roche, 105677520001). N-acetylcisteine: NAC 5 mM (Sigma, A9165); FM464 30 µg/µL (Invitrogen, T-3166); Rapamycin 200 ng/ml (Sigma, R0395); CaCl₂·2H₂O 100 mM (SERVA 15587); H₂O₂ 0.5 mM (Sigma, H1009); Sorbitol 0.8 M (Sigma, S6021); Dihydroethidium DHE 50 µM (Sigma, D7008); DAPI 2 mg/mL (Sigma, D9541); Erythromycin 0.5 mM (Sigma, E6376); Glycerol 3% (Fisher scientific, 800689). Cell cultures were exponentially grown at 600 nm [O.D₆₀₀] of 0.6.

Calcineurin activity

To determine calcineurin activity we used a calcineurin-dependent response element (CDRE) lacZ reporter described in [53] and β-galactosidase assay was determined according to the protocol previously publish by our group in [42].

Vacuole and dihydroethidium staining

For vacuole visualization, cells were stained with FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenylhexatrienyl) pyridinium dibromide, and to determine cellular oxidation we used dihydroethidium. Both protocols were previously described by our group in [41].

Glucose and trehalose determinations

We followed the directions detailed in [54].

The index of respiratory competence (IRC) and mitochondria mutation frequency assay
The IRC value was calculated as the ratio between the number of colony-forming units (CFUs) observed on plates containing a non-fermentable medium YPEG (glycerol) vs a fermentable medium YPD (glucose). Mitochondria mutation frequency assay was determined as the ratio between the CFUs counted on YPEG plates plus erythromycin vs the number of CFUs counted in YPD plates. Both protocols were carried out according to [55].

Cell survival and chronological life span

To assay cell viability cells were grown to mid log phase O.D\textsubscript{600}: 0.6 in SD medium supplemented with the required amino acids. Viability was registered through serial dilutions and plated by triplicate onto YPD plates.

We measured the chronological life span (CLS) in the different strains based on the survival of populations of non-dividing yeast cells according to [42]. The viability was scored by counting the number of cells able to form colonies, CFU (colony-forming units). Cultures were started at an O.D\textsubscript{600}: 0.6. The same number of cells collected from each culture were plated in triplicated into YPD plates and allowed to grow at 30ºC for 3-4 days. CLS curves were plotted with the corresponding averages and standard deviations from three independent experiments.

Protein extraction and immunoblot analyses

Total yeast protein extracts were prepared as previously described in [42]. The antibodies for western blotting were as follows: anti-HA 3F10 (no. 12158167001; Roche Applied Science), was used at a dilution of 1:2,000 in 0.25% non-fat milk and the corresponding secondary was goat anti-rat IgG horseradish peroxidase conjugate (no. AP136P, Millipore). Anti-GFP (no. 632381; Living Colours) was used at a dilution of 1:2,000 and anti-Phospho-glycerate kinase (459250, Invitrogen) used at a dilution 1:1,200, both with the secondary antibody anti-Mouse (LNA931v/AG, GE Healthcare). Anti-Phospho-eIF2α (Ser51) (3597S, Cell Signalling) at a dilution 1:1,000 and anti-Phospho-AMPKα (Thr172) (167253S, Cell Signalling) at a dilution of 1:1,000 both with the secondary antibody anti-Rabbit (LNA934v/AG, GE Healthcare). They were used as indicated by the manufacturers.

The protein-antibody complexes were visualized by enhanced chemiluminescence, using the Supersignal substrate (Pierce) in a Chemidoc (Roche Applied Science).
Autophagy activity
For monitoring autophagy, we used the protocol described by [56] and modified by [43].

Results
Iron deprivation activates autophagy flux in conditions in which the only limiting nutrient is iron.

Iron is an essential element for eukaryotic cells. In a previous study we have demonstrated that iron deprivation provoked a descent in TORC1 activity [24], therefore we wondered whether iron availability also determined the onset of autophagy, in conditions in which iron is the only nutritional restriction imposed during exponential phase.

We decided to analyse autophagy progression through the immunological detection of free GFP from GFP-Atg8 genomic fusion [57]. GFP accumulation was only clearly detected in wt cells depleted for iron in exponential conditions; however, the free GFP band was undetectable in atg7 and atg1 mutants (Fig 1A). As expected, GFP moiety was undetectable in cells growing exponentially in control SD medium not depleted for iron in all the strains tested (Fig 1A). The increase in autophagy flux [58] detected in iron depletion conditions (Fig 1B) was indicative of induction of bulk autophagy. Moreover, total Atg8 also experienced an increase in wt cells growing in iron depletion conditions (Fig 1C). These results were confirmed upon observation in the fluorescence microscope of GFP accumulation in vacuoles (the dye FM4-64 accumulates in the vacuolar membranes) in wt cells growing exponentially in iron starved medium (Fig 1D), as opposed to atg7 and atg1 mutants in which GFP-Atg8 showed a disperse localisation through the cytoplasm and occasionally a punctated localisation to the PAS (Fig 1D and E). In order to discard that this would be a specific effect of the background we used different backgrounds and observed that in all of them iron deprivation induced autophagy flux in exponentially growing cells (not shown). We also observed the appearance of PAS (preautophagosome sites) detected upon GFPAtg8 (Fig 1D white arrows and E) and Atg13GFP (Fig 1F) microscopic observation, indicative of activation of autophagy flux. We ruled out the contribution of specialized autophagy in the vacuolar accumulation of GFP derived from GFP-Atg8 by analysing atg11 and atg32 mutants (Supplementary Material)
We used the enzymatic pho8Δ60 assay [59, 56] to quantify autophagy and confirmed that iron deprivation provoked an increment of autophagy in cultures not limited for nutrients other than iron, as compared to SD control cultures (Fig 1G).

Tor1 and Tor2 regulate autophagy in response to iron availability during exponential phase.

To elucidate whether the signal of iron deprivation flows from TORC1 inhibition to the different read-outs and to the machinery of autophagy we have analysed several TORC1 substrates in wt and atg7 mutant deficient in autophagy (since we observed the same results in atg7 and in atg1 mutants we do not show the results corresponding to the later): Msn2/4 [47, 60, 32, 33], Rtg1 [34, 35] Sfp1 [30, 31] GCN2/eIF2α [61, 62]. Under optimal growth conditions Rtg1 and Msn2/Msn4 are localized to the cytoplasm, whereas Sfp1 is located in the nucleus. Iron starvation provoked Rtg1 translocation to the nucleus and Sfp1 localisation to the cytoplasm (Fig 2A), however Msn2 was not affected by the scarcity of this metal in neither wt nor atg7 strains and remained localized in the cytoplasm (Fig 2A). Rtg1 localisation upon iron deprivation was not a consequence of mitochondrial dysfunction leading to oxidative stress since treatment with the antioxidant N-Acetyl cysteine was unable to induce the translocation of the transcription factor from the cytoplasm to the nucleus (Fig 2B). TORC1 and a variety of stresses cause an increased abundance of uncharged tRNAs that activate the kinase Gcn2, which in turns phosphorylates eIF2α to globally attenuate the protein synthesis. Our data indicate that TORC1 inactivation caused by iron depletion did not provoke eIF2α phosphorylation when no other nutrient was limiting (Fig 2C).

Atg13 phosphorylation by TORC1 inhibits autophagy [63]. TORC1 inactivation leads to Atg13 dephosphorylation which provokes detachment and activation of Atg1 by phosphorylation with the subsequent activation of autophagy. We observed Atg13 dephosphorylated whereas Atg1 became phosphorylated upon iron depletion in wt cells and also in the autophagy mutants atg1 and atg7 (Fig 2D), suggesting that in conditions of iron depletion with no other nutrient limitation, TORC1 is correctly inactivated and this inactivation is an event previous to the transmission of the signal to Atg13 and Atg1 proteins to activate the autophagy machinery. Consequently, in the absence of either Atg1 or Atg7, even when TORC1 is inactivated and Atg13 dephosphorylated the autophagy does not take place.
With the aim of completely inactivate TORC1 complex we treated control cultures growing exponentially with rapamycin and provoked both TORC1 inactivation and bulk autophagy and autophagy flux induction. However, in iron depleted cultures rapamycin did not cause any significant additional change taking into consideration that the starvation for this nutrient had previously caused the inactivation of TORC1 (Fig 2E). The autophagy analysis of *pho8Δ60* delivery to the vacuole confirmed our conclusions since rapamycin provoked an expected induction of autophagy in control conditions, but was unable to alter the already induced autophagy in iron starved conditions (Fig 2F). Our results support the hypothesis that iron deprivation leads to TORC1 inactivation during logarithmic phase, however this signal flows only to specific read-outs.

We decided to test other possible signalling pathways related to nutritional responses that could be related to detection and transduction of the iron starvation signalling, these are, TOR2/Ypk1, Ras2, Gcn2 and Snf1. TOR2 signals to the mitochondrial function to positively regulate autophagy [50]. Ypk1 is the most relevant target of TORC2 for this mechanism, therefore we deleted *YPK1* as a surrogate for TORC2 disruption, as wisely indicated in [50]. We could observe that the absence of Ypk1 abrogated the autophagy flux induced by iron starvation in exponentially growing cells (Fig 3A and B). In addition, from the observation of TORC1 substrates upon iron deprivation, we concluded that in *ypk1* strain Tor1 activity was reduced only for some substrates, Rtg1 and Sfp1 (Fig 3C) but contrary to that observed in wild type cells, neither Atg1 became phosphorylated nor Atg13 became dephosphorylated (Fig 3D). We ruled out the possibility that iron deprivation would be provoking mitochondrial damage since in both a *rho0* strain and upon antymicine treatment (not shown) activation of the autophagy flux was clearly detected (Fig 3E and F). Consequently, we do not believe that the absence of autophagy activity detected in *ypk1* mutant upon iron deprivation is due to mitochondrial damage. Consequently, our results are consistent with the absence of autophagy flux observed in *ypk1* mutant (Fig 3A) and indicate that in the absence of TOR2/Ypk1 the iron starvation signal cannot be transmitted to Atg13 and Atg1 to activate the autophagy machinery through Tor1. We added rapamycin to both wt and *ypk1* cultures to fully inactivate TORC1 complex in both wt and *ypk1* strains. Upon TORC1 inactivation with rapamycin, we observed autophagy activation in *ypk1* strain, both in conditions of iron deprivation or not. In accordance with these observations Atg13 became dephosphorylated and Atg1 phosphorylated in all the samples treated with rapamycin (Fig 4A). These results suggest that in conditions of iron deprivation,
TORC1 is active for specific substrates in the absence of Ypk1, nevertheless, TORC1 is inhibible upon treatment with the macrolide rapamycin which functions independently of iron signalling. Concerning TORC1 read-outs, we observed that Rtg1 was localized in the cytoplasm and Sfp1 was localized to the nucleus in 100% of the cells of both strains, indicating that TORC1 complex was completely inactivated (Fig 4B). Taking altogether our results we can conclude that Ypk1 is required to transmit the iron starvation signalling to the autophagy machinery through Tor1.

Ypk1 function has been associated to Gcn2 activation with the subsequent induction of autophagy in conditions of amino acids starvation [50]. We could determine that autophagy regulation upon iron deprivation when amino acids are not limiting does not involve Gcn2 activity since no eIF2α phosphorylation was detected (Fig 4C). Ypk1 signalling regulates autophagy by repressing the activity of calcineurin and thus inducing Gcn2 activity [50]. Calcineurin activity was measured using a CDRE-driven lacZ reporter, as described previously [53, 50]. Calcineurin activity was not reduced in iron starvation conditions, moreover, it was even higher than the activity quantified in SD control conditions, although much lower than that determined in ypk1 mutant cells (Fig 4D). Moreover, gcn2 mutant did not present any defect in autophagy activation in iron limiting conditions (Fig 4E). Taking into consideration that Msn2 is not translocate to the nucleus upon iron starvation (Fig 2A), we discard the possibility that neither Msn2/Msn4 [23] nor calcineurin/Gcn2 could be the Tor2 targets that govern autophagy induction when iron is limited in the cultures. Our results suggest that Tor2 activity is required in order to transmit the signal to the autophagy machinery through Tor1 when iron is limiting, suggesting that Tor1 inactivation as a consequence of iron depletion does not activate bulk autophagy without Tor2 activity. The absence of Ras2 kinase also presented results related to GFP accumulation from GFPAtg8 and Atg13 and Atg1 phosphorylation similar to those observed in wt cells (Fig 4E). A certain level of autophagy was already detected in the mutant tor1 growing in control SD medium that was significantly increased when cultures were grown in iron starvation conditions (Fig 4E). In addition, the absence of Snf1 caused a significant increase in Atg8 expression upon iron deprivation (Fig 4E) suggesting that the AMPK is playing a negative role with respect to the synthesis of Atg8.

Aft1 is the transcriptional factor involved in regulating iron homeostasis [5]. We observed that aft1 deletion did not substantially differ from those results obtained with the wt strain with respect to the autophagy activation in response to iron depletion, since
autophagy flux, GFP accumulation in the vacuoles, Atg13 and Atg1 phosphorylation patterns were similar to that detected in wt cells upon iron starvation (Fig 4F). However, upon iron depletion the levels of total protein Atg8 suffered a significant increase in the absence of Aft1, suggesting that under this nutritional circumstances Aft1 negatively affects Atg8 synthesis (Fig 4F).

Taken altogether these results we conclude that when iron is the only scarce nutrient in the culture medium Tor2 activity is required in order to induce bulk autophagy through Tor1 inactivation.

Snf1 through Aft1 are both involved in signal detection of iron availability to down regulate autophagy through Tor1

Iron replenishment to exponential growing cultures previously grown without iron, caused a remarkable and gradual reduction in the autophagy and autophagy flux, evidenced upon identification of Pho8 activity (Fig 5A), GFP accumulation from GFP-Atg8 (Fig 5B), GFP-Atg8 localisation (Fig 5C), and both Atg13HA and Atg1HA phosphorylation (Fig 5D). Moreover, iron addition to wt cultures caused the activation of TORC1 through the induction of Atg13 phosphorylation (Fig 5D) and the delocalisation of Sfp1 to the nucleus (Fig 5E). In addition, when we tested mutants in several signalling pathways related to nutritional sensing tor1, snf1, ypk1, ras2, gcn2 and (not shown), only tor1 and snf1 showed a clear impairment in signalling the autophagy down regulation upon iron refeeding given that we did not observe the descent in the autophagy flux, GFP-Atg8 translocation to the cytoplasm nor Atg13 phosphorylation as it did occurred in wt cultures (Fig 5B to E).

Given that Aft1 is involved in iron homeostasis and that is responsive to iron availability, we decided to investigate the potential contribution of the transcription factor in the detection and transmission of the iron availability and the transmission to the autophagy machinery. The absence of Aft1 prevented the down regulation of autophagy when iron was added to the culture medium (Fig 5B to E). These results suggest that Snf1, Aft1 and Tor1 are involved in the down regulation of autophagy upon iron refeeding.

We rule out the possibility that Snf1 or Aft1 act as Tor1 functional regulators upon iron refeeding since Sfp1 translocated to the nucleus in both snf1 and aft1 mutant as occurred in wt cells (Fig 5E), suggesting that the signal of iron repletion flows from Snf1 to Aft1 and Tor1 only to specific substrates such is the case of Atg13.
In order to ascertain whether Snf1 kinase activity is responsive to iron signalling, we chose wt and aft1 posdiauxic cultures because upon 2 days of growth in SD minimum medium, glucose levels are undetectable (data not shown). At the same time, Snf1 reached a maximum kinase activity (Fig 5F). Addition of iron to the culture medium provoked a fast inhibition of autophagy flux in wt cells growing in the presence or absence of Fe (Fig 5G). However, neither snf1 nor aft1 mutants experienced any reduction in autophagy flux neither in SD nor in SD-Fe media (Fig 5G), on despite that the Snf1 kinase activity was high and equivalent in both aft1 or wt cultures growing in SD (Fig 5F and G). As expected, iron repletion did not repress Snf1 activity neither in wt nor in aft1 cultures (Fig 5F). In conclusion, since in a situation in which Snf1 is active, iron addition is not capable to inactivate autophagy in the absence of Aft1, we speculate that Snf1 might signal to Aft1 to inhibit autophagy upon Atg13 phosphorylation through Tor1.

Taking together our results we conclude that iron excess actively represses autophagy through Snf1, Aft1 and Tor1-Atg13 signalling. Iron availability is a determinant factor to regulate autophagy and autophagy flux in optimal nutrient conditions when cells are not exposed to any other nutritional stress.

Iron scarcity promotes trehalose accumulation and resistance to several stresses resembling a quiescent state that is independent of bulk autophagy.

Iron deprivation caused an early entrance in diauxic shift and stationary phase (Fig 6A) already reported by [64]. Our data are in agreement with these observations but, in addition, we also observed a cell cycle blockade in G0, as evidenced by the accumulation of unbudded rounded and big cells, suggestive of quiescence (Fig 6B). To check this we determined in cells depleted or not for iron, both the accumulation of trehalose (Fig 6C) and the resistance to different stresses in stationary cells (Fig 6D) since quiescent cells are more resistant to different environmental stresses [65]. Iron deprivation induced trehalose accumulation and certain increase in the resistance to oxidative stress, high temperature and osmolarity during stationary phase (Fig 6C and D). The mutants atg7 and atg17 also accumulated trehalose as a response to iron deprivation during exponential phase, (Fig 6C). Calculation of the index of respiratory competence (IRC) indicated that iron deprivation did not reduce the respiratory capacity of the cells during exponential or stationary phase (Fig 6E). In addition,
mitochondria mutation frequency was null in cells growing in iron depleted media during 15 days of observation. However in control cultures growing in SD minimum medium, non-depleted for iron upon 6 days of growth some colonies erythromycin resistant were detected, and the number was sequentially increasing until the end of the experiment, indicating that mitochondrial mutations accumulate during aging when iron is not limited in the growth medium (Fig 6F). Taking altogether these results, our hypothesis is that iron depletion causes a premature entrance into a quiescent like state that has a positive effect in the mitochondrial function.

Iron depletion contributes to extend life conditioned to autophagy flux activation whereas iron overload shortens CLS

In view of the clear involvement that autophagy flux and activation of quiescence have in the response to iron depletion, we decided to analyse the possible biological role that iron starvation and the concomitant activation of autophagy flux could be playing in the chronological life span. First, we carried out experiments of chronological life span (CLS) up to 15 days in 3 different wt backgrounds (Fig 7A). Iron depletion caused a significant life extension in the three backgrounds tested as compared to their corresponding control cultures not starved for iron (Fig 7A). This result demonstrates that iron starvation causes a genuine effect expanding chronological life. We observed that cells starved for iron presented a clear tendency to become rounded unbudded and presented a healthier aspect during all the CLS experiment than wt cells growing in SD medium, consequence of the entrance in quiescent state, as described in the previous section (Fig 6B). Iron deprivation did not preclude mitochondrial function since cell survival was equivalent in glucose and in glycerol during the CLS experiment (Fig 7B). Mutants in different stages of autophagy: atg7, atg13 and atg17 already experienced a significant reduction in their CLS as previously reported for atg7 in [17]. Interestingly, iron deprivation cultures experienced an additional reduction in their CLSs (Fig 7C). In conclusion, our results demonstrate that in S. cerevisiae, iron homeostasis is particularly relevant in aging associated and conditioned to the regulation of autophagy and autophagy flux.

Discussion
Results shown here indicate that iron depletion is itself a signal to activate autophagy when it is the only limiting nutrient in the culture medium. The observation that this response also occurs in rho0 strain suggest that the reservoir of iron in the mitochondria is not the source of the main signal to activate the autophagy machinery. Some authors have reported that activation of the autophagy when iron is scarce could be a response to overcome the deleterious effects in the cells in human cells, however the molecular mechanism is poorly understood [8, 66]. According to the elegant studies of [21, 22, 23, 57] our results could indicate that an intact TOR2 function might be required to maintain a correct mitochondrial function in order to activate autophagy flux when iron is the only limiting nutrient. Or alternatively that Tor2 would induce autophagy through Msn2/Msn4 [50, 21, 23]. However, the observation that a rho0 mutant induced autophagy upon iron starvation suggested that mitochondrial function turned out to be dispensable for this response in the conditions established in this study. In addition, the observation that Msn2 did not translocate to the nucleus in response to iron deprivation also ruled out the possibility that Ypk1 would be signalling to the activation of this transcription factor. Iron scarcity reveals the requirement for a TOR2 activity as a positive regulator of autophagy through YPK1 when any other nutrient is limiting. Our results suggest that iron starvation induces TOR1 inactivation to dephosphorylate Atg13 and consequently to induce the autophagy machinery only when TOR2/YPK1 is active, meaning that these proteins are relevant to sense iron scarcity and to transmit the signal to the autophagy machinery for the adaptive response to iron deprivation specifically (Fig 8). Iron deficient cells exhibit alterations in the properties and functions of membranes [67]. A recent review by [68] updates the evidences that connect TOR2 to membrane homeostasis. Therefore we could speculate that TOR2 might play a role as membrane vigilant when iron is scarce and that one of the mechanisms to overcome this deficiency would be the activation of autophagy, although this hypothesis requires further research. Intriguingly, the transmission of the signal of iron deficiently from Ypk1 to TORC1 only occurs to certain substrates such is the case of Atg13 and Atg1. At the same time, the signal of iron deprivation influences TORC1 regulation on Sfp1 and Rtg1 substrates independently of Tor2/Ypk1 (Fig 8). Further investigation in this mechanism will be required. Nevertheless, other nutritional limitations such as nitrogen [69] or even metals such as zinc [70] have been reported to also provoke the inactivation of TORC1. Nitrogen starvation, in particular signals only to specific TORC1 substrates, such as
Sfp1 coincidentally, leading to autophagy activation. An elevated autophagy flux ensures iron availability for essential functions such as mitochondrial functioning and synthesis of iron-sulphur clusters, DNA repair, amino acid synthesis and others. In line with this, our results suggest that in conditions of serious iron limitation the requirements for a high autophagy flux to efficiently recycle the metal will preserve life extension.

Respiratory function is essential for standard CLS [71]. Iron depletion not only did not curtail CLS but notably extended it, respiration capacity was not negatively affected by low iron levels, meaning that mitochondrial function was potentially optimal. In accordance with other authors, our results support the hypothesis that iron limitation during aging requires an optimal mitochondrial function that is relevant for the modulation of autophagy flux [58] and life extension [72].

Iron hormesis is another possible explanation to the notable increase in life extension that cells experience in conditions of iron deprivation since the beginning of the experiment. This limitation forces cells to recycle iron from cellular components through autophagy and, in addition, it avoids an excess of iron circulation in the cell, provided that unnecessary vacuolar accumulation of the metal as a result of Aft1 and Aft2 activation, would be prone to cause oxidative stress.

Several studies have shown that quiescence [14] and autophagy contribute to life extension [74, 19, 73]. Cells deprived of iron presented quiescent characteristics such as an increase in stress resistance, increase in the percentage of unbudded cells and trehalose accumulation. Some studies have demonstrated that trehalose accumulation as a consequence of nitrogen limitation was related to autophagy induction [75, 76], we do not rule out this possibility in the case of iron limitation. It has been recently published that iron starvation, in conditions of glucose limitation is associated to trehalose accumulation and life extension in a manner dependent on the autophagy [77]. Here we report that iron deprivation can induce trehalose production even in the presence of high glucose concentrations. Under these nutritional conditions and in accordance to [77], our results support the hypothesis that activation of the quiescent program is not sufficient to prolong life without the participation of the autophagy machinery. Iron limitation is another example of treatment intervention to extend life that requires the autophagy machinery since the CLS of *atg1* and *atg7* mutants were severely impaired, as compared to cultures not starved for iron, on despite of having activated the quiescent program.
The observation that iron refeeding can provoke a dramatic descent in CLS and autophagy flux reinforce the idea that the entry in this quiescent state accompanied of autophagy flux induction is essential to extend life when iron is scarce, being any additional metabolic activity detrimental.

In our study we observed that iron limitation caused a mild shift in Snf1 kinase activity as reported in rat esqueletal muscle [78] apparently because in this metabolic condition there is a higher dependence on the glucose metabolism [67]. However, Snf1 is not directly involved in signalling autophagy induction, on the opposite its role is involved in down regulating autophagy flux once iron is refeeded and it does so through Aft1 (Fig 8). The Aft1 transcription factor, whose known function is to regulate iron homeostasis in S. cerevisiae is not required to induce autophagy in conditions of iron deficiency, as previously reported by [64]. However, and interestingly, Aft1 participates in the transmission of the iron repletion signal to inactivate autophagy through Tor1 and Atg13 phosphorylation (Fig 8). This is not the first time in which an association between Snf1 and Aft1 has been reported [11] already described that both proteins were related in order to induce certain genes from the iron regulon during diauxic shift. Although autophagy is important for maintaining cellular viability during nutrient stress, excessive autophagy can be deleterious to cells and lead to apoptosis or necrosis [79]. As such, autophagy paradoxically serves as a mechanism for the suppression as well as the proliferation and survival of tumour cells [80]. Iron limitation in the time requires a fine tuning in nutrient recycling and metabolism and signalling activation, a further increase in any of these mechanisms disables the hormetic mechanism leading to early aging and cell death.
Acknowledgements

We want to thank Dr D. Abeliovitch (The Hebrew University of Jerusalem Cell Biology, Freiburg, Germany) for kindly sending us the plasmid pGFP-Atg8 and to Dr T. Powers (Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis, USA) for sending us the plasmid pAMS363 and to Dr M. Cyerts (Department of Biology, Stanford, California, USA) for her permission. We want to acknowledge Ms Inmaculada Montoliu for her technical support. The research described in this publication was partly supported by the Plan Nacional de I+D+I of the Spanish Ministry of Economy, Industry and Competitiveness (BIO2017-87828-C2-2-P). Sandra Montella is funded by a fellowship from the Catalan Government (Spain).

Conflict of Interests

The authors declare no conflict of interests

Data Availability Statement:

Data sharing is not applicable since supporting data is included within the main article or supplementary material.

Our article does not contain information nor results that require any of the mandatory datasets listed below:

- Structural/crystallographic data for both macromolecular structures and small molecules
- Protein and nucleic acid sequence data (this includes RNA Seq data)
- Functional genomics and molecular interactions/proteomics/metabolomics data
- Computational models
- Genetics data (genetic polymorphisms; genotype data)
References

1. Mühlenhoff, U. and Lill, R. (2000) Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta. 1459, 370-382 https://doi.org/10.1016/s0005-2728(00)00174-2

2. Lill R. (2009) Function and biogenesis of iron-sulphur proteins. Nature. 460, 831-838 https://doi.org/10.1038/nature08301

3. Li L., Jia X., Ward D.M. and Kaplan J. (2011) Yap5 protein-regulated transcription of the TYW1 gene protects yeast from high iron toxicity. J Biol Chem. 286, 38488-38497 https://doi.org/10.1074/jbc.M111.286666

4. Philpott C.C. and Protchenko O. (2008) Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell. 7, 20-27 https://doi.org/10.1128/EC.00354-07

5. Kaplan C.D. and Kaplan J. (2009) Iron acquisition and transcriptional regulation. Chem Rev. 109, 4536-52 https://doi.org/10.1021/cr9001676

6. Yamaguchi-Iwai Y., Stearman R., Dancis A. and Klausner R.D. (1996) Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. The EMBO Journal 15, 3377-3384 https://doi.org/10.1002/j.1460-2075.1996.tb00703.x

7. Ueta R., Fujiwara N., Iwai K. and Yamaguchi-Iwai Y. (2007) Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol. Biol. Cell. 18, 2980-2990 https://doi.org/10.1091/mbc.e06-11-1054

8. Inoue H., Kobayashi K., Ndong M., et al. (2015) Activation of Nrf2/Keap1 signaling and autophagy induction against oxidative stress in heart in iron deficiency. Biosci Biotechnol Biochem. 79, 1366-1368 https://doi.org/10.1080/09168451.2015.1018125

9. Inoue H., Hanawa N., Katsumata S.I., Katsumata-Tsuboi R., Takahashi N. and Uehara M. (2017) Iron deficiency induces autophagy and activates Nrf2 signal through modulating p62/SQSTM. Biomed Res. 38, 343-350 https://doi.org/10.2220/biomedres.38.343

10. Martins T.S., Costa V. and Pereira C. (2018) Signaling pathways governing iron homeostasis in budding yeast. Mol Microbiol. 109, 422-432 https://doi.org/10.1111/mmi.14009
11 Haurie V., Boucherie H. and Sagliocco F. (2003) The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae. J Biol Chem. 278, 45391-45396 https://doi.org/10.1074/jbc.M307447200
12 Li L., Kaplan J. and Ward D.M. (2017) The glucose sensor Snf1 and the transcription factors Msn2 and Msn4 regulate transcription of the vacuolar iron importer gene CCC1 and iron resistance in yeast. J Biol Chem. 292, 15577-15586 https://doi.org/10.1074/jbc.M117.802504
13 An Z., Tassa A., Thomas C., et al. (2014) Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy. 10, 1702-1711 https://doi.org/10.4161/auto.32122
14 Sagot I. and Laporte D. (2019) The cell biology of quiescent yeast - a diversity of individual scenarios. J Cell Sci. 132, jcs213025 https://doi.org/10.1242/jcs.213025
15 Wen X. and Klionsky D.J. (2016) An overview of macroautophagy in yeast. J Mol Biol. 428, 1681-1699 https://doi.org/10.1016/j.jmb.2016.02.021
16 Gross A.S. and Graef M. (2020) Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol. 432, 28-52 https://doi.org/10.1016/j.jmb.2019.09.005
17 Alvers A.L., Wood M.S., Hu D., Kaywell A.C., Dunn W.A. Jr. and Aris J.P. (2009) Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy. 5, 847-849 https://doi.org/10.4161/auto.8824
18 Rubinsztein D.C., Mariño G. and Kroemer G. (2011) Autophagy and aging. Cell. 146, 682-695 https://doi.org/10.1016/j.cell.2011.07.030
19 Madeo F., Zimmermann A., Maiuri M.C. and Kroemer G. (2015) Essential role for autophagy in life span extension. J Clin Invest. 125, 85–93 https://doi.org/10.1172/JCI73946
20 Luo L. and Qin Z.H. (2019) Autophagy, Aging, and Longevity. Adv Exp Med Biol. 1206, 509-525 https://doi.org/10.1007/978-981-15-0602-4_24
21 Vlahakis A., Lopez Muniozguren N. and Powers T. (2016) Calcium channel regulator Mid1 links TORC2-mediated changes in mitochondrial respiration to autophagy. J Cell Biol. 215, 779–788 https://doi.org/10.1083/jcb.201605030
22 Vlahakis A., Lopez Muniozguren N. and Powers T. (2017) Mitochondrial respiration links TOR complex 2 signaling to calcium regulation and autophagy. Autophagy. 13, 1256-1257 https://doi.org/10.1080/15548627.2017.1299314
23 Vlahakis A., Lopez Muniozguren N. and Powers T. (2017b) Stress-response transcription factors Msn2 and Msn4 couple TORC2-Ypk1 signaling and mitochondrial respiration to ATG8 gene expression and autophagy. Autophagy. 13, 1804-1812 https://doi.org/10.1080/15548627.2017.1356949
24 Romero A.M., Ramos-Alonso L., Montellá-Manuel S., García-Martínez J., de la Torre-Ruiz M.A., Pérez-Ortí J.E., Martínez-Pastor M.T. and Puig S. (2019) A genome-wide transcriptional study reveals that iron deficiency inhibits the yeast TORC1 pathway. Biochim Biophys Acta Gene Regul Mech. 1862, 194414 https://doi.org/10.1016/j.bbagrm.2019.194414
25 Powers R.W. 3rd, Kaeberlein M., Caldwell S.D., Kennedy B.K. and Fields S. (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174-84 https://doi.org/10.1101/gad.1381406
26 Weichhart T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. (2018) Gerontology. 64, 127-134 https://doi.org/10.1159/000484629
27 Kim Y.C. and Guan K.L. (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 125, 25-32 https://doi.org/10.1172/JCI73939
28 Kamada Y., Funakoshi T., Shintani T., Nagano K., Ohsumi M. and Ohsumi Y. (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150, 1507–1513 https://doi.org/10.1083/jcb.150.6.1507
29 Hughes Hallett J.E., Luo X. and Capaldi A.P. (2014) State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae. Genetics. 198, 773-786 https://doi.org/10.1534/genetics.114.168369
30 Marion R.M., Regev A., Segal E., Barash Y., Koller D., Friedman N. and O'Shea E.K. (2004) Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci U S A 101, 14315-22 https://doi.org/10.1073/pnas.0405353101
31 Lempiainen H., Uotila A., Urban J., Dohnal I., Ammerer G., Loewith R. And Shore D. (2009) Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol Cell 33, 704-16 https://doi.org/10.1016/j.molcel.2009.01.034
32 Gorner W., Durchschlag E., Wolf J., Brown E.L., Ammerer G., Ruis H. and Schuller C. (2002) Acute glucose starvation activates the nuclear localization
signal of a stress-specific yeast transcription factor. EMBO J. 21, 135-144 https://doi.org/10.1093/emboj/21.1.135

De Wever V., Reiter W., Ballarini A., Ammerer G. and Brocard C. (2005) A dual role for PP1 in shaping the Msn2-dependent transcriptional response to glucose starvation. EMBO J. 24, 4115-4123 https://doi.org/10.1038/sj.emboj.7600871

Liao X. and Butow R.A. (1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72, 61–71 https://doi.org/10.1016/0092-8674(93)90050-z

Crespo J.L., Powers T., Fowler B. and Michael N. Hall. (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A. 99, 6784–6789 https://doi.org/10.1073/pnas.102687599

Guaragnella N., Coyne L.P., Chen X.J. and Giannattasio S. (2018) Mitochondria–cytosol–nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Research. 18 https://doi.org/10.1093/femsyr/foy088

Fujioka Y., Suzuki S.W., Yamamoto H., et al. (2014) Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol. 21, 513-521 https://doi.org/10.1038/nsmb.2822

Yamamoto H., Fujioka Y., Suzuki S.W., et al. (2016) The Intrinsically Disordered Protein Atg13 Mediates Supramolecular Assembly of Autophagy Initiation Complexes. Dev Cell. 38, 86-99 https://doi.org/10.1016/j.devcel.2016.06.015

Gallego C., Garí E., Colomina N., Herrero E. and Aldea M. (1997) The Cln3 Cyclin Is Down-Regulated by Translational Repression and Degradation during the G1 Arrest Caused by Nitrogen Deprivation in Budding Yeast. The EMBO Journal 16, 7196–7206 https://doi.org/10.1093/emboj/16.23.7196

Petkova M.I., Pujol-Carrion N. and De La Torre-Ruiz M.A. (2010) Signal Flow between CWI/TOR and CWI/RAS in Budding Yeast under Conditions of Oxidative Stress and Glucose Starvation. Communicative & Integrative Biology 3, 555–57 https://doi.org/10.4161/cib.3.6.12974

Pujol-Carrion N., Petkova M.I., Serrano L. and De La Torre-Ruiz M.A. (2013) The MAP kinase Slt2 is involved in vacuolar function and actin remodeling in...
Saccharomyces cerevisiae mutants affected by endogenous oxidative stress. Appl. Environ. Microbiol. 79, 6459–6471 http://doi.org/10.1128/AEM.01692-13

Mechoud M.A., Pujol-Carrion N., Montella-Manuel S. and De La Torre-Ruiz M.A. (2020) Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway. Appl. Environ. Microbiol. 86, e00221-20 http://doi.org/10.1128/AEM.00221-20

Guedes A., Ludovico P. and Sampaio-Marques B. (2016) Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy. Mech. Ageing. Dev. 161, 270-276 http://dx.doi.org/10.1016/j.mad.2016.04.006

Mayordomo I., Estruch F. and Sanz P. (2002) Convergence of the Target of Rapamycin and the Snf1 Protein Kinase Pathways in the Regulation of the Subcellular Localization of Msn2, a Transcriptional Activator of STRE (Stress Response Element)-Regulated Genes. J. Biol. Chem. 277, 35650–56 https://doi.org/10.1074/jbc.M204198200

Kanki T. and Klionsky D.J. (2008) Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283, 32386-93 https://doi.org/10.1074/jbc.M802403200

Nitai E., Mor A., Journo D. and Abeliovich H. (2010) Deprivation Is Distinct from Nitrogen Starvation-Induced Macroautophagy Induction of Autophagic Flux by Amino Acid Deprivation Is Distinct from Nitrogen Starvation-Induced Macroautophagy. Autophagy. 6, 879-90. https://doi.org/10.4161/auto.6.7.12753

Gorner W., Durchschlag E., Martinez-Pastor M.T., Estruch F., Ammerer G., Hamilton B., Ruis H. and Schuller C. (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12, 586-597 http://doi.org/10.1101/gad.12.4.586

Pujol-Carrion N., Belli G., Herrero E., Nogues A. and De La Torre-Ruiz M.A. (2006) Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell. Sci. 119, 4554-4564 http://doi.org/10.1242/jcs.03229

Komeili A., Wedaman K.P., O’Shea E.K. and Powers T. (2000) Mechanism of Metabolic Control: Target of Rapamycin Signaling Links Nitrogen Quality to the Activity of the Rtg1 and Rtg3 Transcription Factors. J. Cell Biol. 151, 863–78 https://doi.org/10.1083/jcb.151.4.863
50 Vlahakis A., Graef M., Nunnari J. and Powers T. (2014) TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc. Natl. Acad. Sci. U S A. 111, 10586–10591 http://doi.org/10.1073/pnas.1406305111

51 Wach M.P., Brachat A., Pohlmann R. and Philippsen P. (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 10, 1793–1808 http://doi.org/10.1002/yea.320101310.

52 Kaiser C., Michaelis S. and Mitchell A. (1994) Methods in yeast genetics. NewYork Cold Spring Harbor Laboratory Press Ltd. 1994, pp.107–121 ISBN:0-87969-451-3

53 Stathopoulos A.M. and Cyert M.S. (1997) Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. a. Genes Dev. 11, 3432–3444. http://dx.doi.org/10.1101/gad.11.24.3432

54 Hernandez-Lopez M., Prieto J. and Randez-Gil F. (2003) Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker’s yeast strains. Antonie van Leeuwenhoek. 84, 125–34 http://doi.org/10.1023/a:1025413520192

55 Parrella, E. and Longo, V. D. (2008) The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease. Methods. 46, 256–262 http://doi.org/10.1016/j.ymeth.2008.10.004

56 Noda T. and Klionsky D.J. (2008) The Quantitative Pho8D60 Assay of Nonspecific Autophagy. Methods in Enzymology, 451, 33-42 http://doi.org/10.1016/S0076-6879(08)03203-5

57 Shintani T. and Klionsky D.J. (2004) Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279, 29889-94 http://doi.org/10.1074/jbc.M404399200

58 Graef M. and Nunnari J. (2011) Mitochondria regulate autophagy by conserved signalling pathways. EMBO J. 30, 2101-14 http://doi.org/10.1038/emboj.2011.104

59 Noda T., Matsuura A., Wada Y. and Ohsumi, Y. (1995). Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 210, 126–132 http://doi.org/10.1006/bbrc.1995.1636
60 Beck T. and Hall M.N. (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature. 402, 689-692 http://doi.org/10.1038/45287

61 Cherkasova V.A. and Hinnebusch A.G. (2003) Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev. 17, 859-872 http://doi.org/10.1101/gad.1069003

62 Kubota H., Obata T., Ota K., Sasaki T. and Ito T. (2003) Rapamycin induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J. Biol. Chem. 278, 20457-20460 http://doi.org/10.1074/jcb.C300133200

63 Kamada Y., Yoshino K., Kondo C., et al. (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol. Cell. Biol. 30, 1049-1058 http://doi.org/10.1128/MCB.01344-09

64 Horie T., Kawamata T., Matsunami M. and Ohsumi Y. (2017) Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth. J. Biol. Chem. 292, 8533-8543 http://doi.org/10.1074/jbc.M116.762963

65 Goldberg A.A., Bourque S.D., Kyryakov P., Gregg C., Boukh-Viner T., Beach A., Burstein M.T., Machkalyan G., Richard V., Rampersad S., Cyr D., Milijevic S. and Titorenko V.I. (2009) Effect of calorie restriction on the metabolic history of chronologically aging yeast. Exp. Gerontol. 44, 555-71. http://doi.org/10.1016/j.exger.2009.06.001

66 Krishan S., Jansson P.J., Gutierrez E., Lane D.J., Richardson D. and Sahni S. (2015) Iron metabolism and autophagy: a poorly explored relationship that has important consequences for health and disease. Nagoya. J. Med. Sci. 77, 1-6

67 Shakoury-Elizeh M., Protchenko O., Berger A., et al. (2010) Metabolic response to iron deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 285, 14823-14833 http://doi.org/10.1074/jbc.M109.091710

68 Riggi M., Niewola-Staszewska K., Chiaruttini N., Colom A., Kusmider B., Mercier V., Soleimanpour S., Stahl M., Matile S., Roux A. and Loewith R. (2018) Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat. Cell. Biol. 20, 1043-1051 http://doi.org/10.1038/s41556-018-0150-z
69 Shin C.S. and Huh W.K. (2011) Bidirectional regulation between TORC1 and autophagy in Saccharomyces cerevisiae. Autophagy. 7, 854-862 http://doi.org/10.4161/auto.7.8.15696
70 Kawamata T., Horie T., Matsunami M., Sasaki M. and Ohsumi Y. (2017) Zinc starvation induces autophagy in yeast. J. Biol. Chem. 292, 8520-8530 http://doi.org/10.1074/jbc.M116.762948
71 Ocampo A., Liu J., Schroeder E.A., Shadel G.S. and Barrientos A. (2012) Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab. 16, 55-67 http://doi.org/10.1016/j.cmet.2012.05.013
72 Fabrizio P., Liou L.L., Moy V.N., Diaspro A., Valentine J.S., Gralla E.B. and Longo V.D. (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics. 163, 35-46
73 Tyler J.K., Johnson J.E. (2019). The role of autophagy in the regulation of yeast life span. Ann. N. Y. Acad. Sci. 1418, 31–43 http://doi.org/10.1111/nyas.13549
74 Eisenberg T., Knauer H., Schauer A., Büttnier S., Ruckenstuhl C., Carmona-Gutierrez D., Ring J., Schroeder S., Magnes C., Antonacci L., Fussi H., Deszcz L., Hartl R., Schraml E., Criollo A., Megalou E., Weiskopf D., Laun P., Heeren G., Breitenbach M., Grubeck-Loebenstein B., Herker E., Fahrenkrog B., Fröhlich K.U., Sinner F., Tavernarakis N., Minois N., Kroemer G. and Madeo F. (2009) Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 http://doi.org/10.1038/ncb1975
75 An Z., Tassa A, Thomas C, Zhong R., Xiao G., Fotedar R., Tu B.P., Klionsky D.J., Levine B. (2014). Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy. 10, 1702-11. http://doi: 10.4161/auto.32122.
76 Kim B, Lee Y, Choi H, Huh WK. (2020). The trehalose-6-phosphate phosphatase Tps2 regulates ATG8 transcription and autophagy in Saccharomyces cerevisiae. Autophagy. 2, 1-15. http://doi: 10.1080/15548627.2020.1746592.
77 Schothorst J., Zeebroeck G.V., Thevelein J.M. (2017). Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA
pathway in *Saccharomyces cerevisiae*. Microb Cell. 4:74-89. http://doi: 10.15698/mic2017.03.561.

78 Merrill J.F., Thomson D.M., Hardman S.E., Hepworth S.D., Willie S. and Hancock C.R. (2012) Iron deficiency causes a shift in AMP-activated protein kinase (AMPK) subunit composition in rat skeletal muscle. Nutr. Metab. (Lond). 9, 104. http://doi.org/10.1186/1743-7075-9-104

79 Maiuri M.C., Zalckvar E., Kimchi A. and Kroemer G. (2007) Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell. Biol. 8, 741–752 http://doi.org/10.1038/nrm2239

80 Yang Z.J., Chee C.E., Huang S. and Sinicrope F.A. (2011) The role of autophagy in cancer: Therapeutic implications. Mol. Cancer Ther. 10, 1533–1541 http://doi.org/10.1158/1535-7163:MCT-11-0047
Legends to Figures

Figure 1. Iron deprivation as the only nutrient restriction induces bulk autophagy and increases the accumulation of both Atg8 and Atg13 foci. A) wt, atg7 and atg1 cultures in which the fusion protein GFP-Atg8 was integrated (strains GSL197, 226 and 325, respectively), were grown to log phase (OD₆₀₀: 0.6) in SD and SD-Fe medium at 30°C. Aliquots were collected for total protein extraction and western blot. GFP-Atg8 was monitored using an anti-GFP antibody. As loading control we used anti-Pgk1 to detect Pgk1. B) Autophagic flux was calculated as the ratio between free GFP and total GFP-Atg8 detected in A. Total GFP-Atg8 was determined as the addition of the high mobility band corresponding to the form GFP-Atg8 and the slow mobility band corresponding to GFP, as a result of Atg8 vacuolar degradation. C) Total Atg8 was determined as the ratio between total GFP-Atg8 and Pgk1 expression. D) In vivo observation in the fluorescence microscope of a sample obtained from the experiment described in A. E) Percentage of Atg8 foci quantified in the experiment described in D was calculated upon microscopic observation of 1,000 cells. F) wt, atg7 and atg1 strains were transformed with plasmid pATG13-GFP. Culture conditions were identical as those described in A. Atg13 foci were counted from a total of 1,000 cells observed in the fluorescence microscopy. G) Autophagy activity was measured in exponential cultures limited or nor for iron by using the alkaline phosphatase assay in the strain BY471Δpho8Δ expressing a plasmid with the inactive Pho8 proenzyme targeted to the cytosol.

For all the figures: We used anti-Pgk1 to detect Pgk1, selected as a loading control in all the western blots shown in this study. For western blot and microscopy images in this paper, we have selected representative samples. Error bars in the histograms represent the standard deviation (SD) calculated from 3 independent experiments. Significance of the data was determined by P-values from a Student unpaired t-test denoted as follows: *0.05>P>0.01; **0.01>P>0.001; ***0.001>P>0.0001; ****P>0.0001

Figure 2. Tor1 inhibition to specific substrates mediates the induction of bulk autophagy in response to iron deprivation. A) Strains wt and atg7 were each transformed with the plasmids Sfp1GFP, Rtg1GFP or Msn2GFP, respectively, to be subsequently exponentially grown at 30°C in SD and SD-Fe media. Aliquots were collected for in vivo observation in the fluorescence microscope. Histograms represent percentages of
in vivo nuclear or cytoplasmic localization out of 1000 cells. B) Cultures of wt and atg7 strains were transformed with a plasmid bearing Rtg1GFP to be subsequently grown at 30°C to log phase in both SD and SD-Fe media, cultures were treated with N-Acetyl cysteine (NAC) 5mM for 2 hours. C) Strains wt and atg7 were exponentially grown in both SD and SD-Fe and samples were collected for total protein extraction and western blot analysis. The phosphorylated form of eIF2α was detected using anti-eIF2α-P antibody. A 2 days culture of wt strain in SD medium, was included as a control to detect eIF2α phosphorylation. Histogram represents the values of phosphorylated eIF2α normalized with respect to values determined with the loading control. D) wt, atg7 and atg1 strains were transformed with plasmids bearing Atg13HA or Atg1HA, respectively. Cultures were exponentially grown in either SD or SD-Fe. Values of Atg13 or Atg1 proteins were determined upon western blot analysis by adding anti-HA antibody. Samples were collected and each of them was split into two parts, one part was treated 1h at 37°C with alkaline phosphatase and the other remained untreated. E) wt and atg7 bearing GFP-Atg8 were exponentially grown at 30°C in SD and SD-Fe media. Rapamycin was added to the cultures at 200 ng/ml and samples were collected upon 2 hours of exposure to the drug for total protein extraction and western blot. GFP-Atg8 monitoring in microscope images and histograms were performed as described in Fig 1F. F) Autophagic activity was determined through the alkaline phosphatase assay as in Fig 1G. Rapamycin treatment conditions were as described in Fig 2E.

Figure 3. TOR2/Ypk1 activity is required to transmit the iron starvation signal to the autophagy machinery. A) wt and ypk1 strains in which the fusion protein GFP-Atg8 was integrated, were grown and GFP-Atg8 or GFP were detected as in Fig 1A. Autophagy flux and total Atg8 were determined as in Fig 1B and C, respectively. B) Microscopic observation of GFP-Atg8 was carried out as in Fig 1D. C) wt and ypk1 strains were transformed with the plasmids Sfp1GFP, Rtg1GFP or Msn2GFP to be subsequently grown at 30°C in SD and SD-Fe, respectively, until OD_{600}: 0.6. Aliquots were collected to be in vivo observed in the fluorescence microscope as in Fig 2A. Histograms represent percentages of **in vivo** nuclear or cytoplasmic localization. D) Atg13HA and Atg1HA phosphorylation and treatment with alkaline phosphatase were determined in wt and ypk1 strains as described in Fig 2D. E) Autophagy determination in wt and rho0 strains was performed as in A. F) Microscope images from samples collected in E.
Figure 4. Atg13 dephosphorylation dependent of TORC1 inactivation, requires a previous signalling by TOR2/Ypk1 upon iron starvation in order to initiate bulk autophagy. A) wt and ypk1 expressing either GFP-Atg8, Atg13HA or Atg1HA were exponentially grown at 30°C in SD and SD-Fe media to OD$_{600}$: 0.6. Rapamycin was added to half of the cultures at 200ng/ml and samples were taken upon 2 hours for western blot analysis. Protein detection, autophagy flux, total Atg8 and in vivo observation in the fluorescence microscope was performed as described in Fig1A-D and 2D. B) wt and ypk1 strains transformed with the plasmids Rtg1GFP, Sfp1GFP and Msn2GFP were treated as in A. Aliquots were collected for in vivo observation in the fluorescence microscope. C) wt and ypk1 strains were exponentially grown in SD and SD-Fe media at 30°C. Samples were collected for total protein extraction and western blot to analyse the phosphorylated form of eIF2α as in Fig 2C. D) wt and ypk1 cells containing plasmid pAMS363 expressing a 2xCDRE: lacZ fusion were at 30°C. Samples were harvested at OD$_{600}$: 0.6 to determine β-galactosidase activity as described in Material and Methods. E) wt, tor1, ras2, gcn2 and snf1 strains expressing GFP-Atg8, Atg13HA or Atg1HA, respectively, were grown at 30°C in SD and SD-Fe media. Protein detection, treatment with alkaline phosphatase and in vivo observation in the fluorescence microscope was performed as described in Fig1A-D and 2D. F) wt and aft1 transformed with GFP-Atg8, Atg13HA and Atg1HA, respectively were exponentially grown at 30°C in SD and SD-Fe conditions. Protein detection, autophagy flux, total Atg8 calculations and in vivo observation in the fluorescence microscope was performed as described in Fig 1A-D and 2D.

Figure 5. Snf1, Aft1 and Tor1 are required to inactivate autophagy upon iron refeeding. A) Autophagy activity was measured by means of the alkaline phosphatase assay as explained in Fig 1G. Iron was added to wt cultures at OD$_{600}$: 0.6, and samples were taken upon 2 hours of addition. B) Strains wt, tor1, aft1 and snf1 bearing GFP-Atg8 in the genome, were grown to OD$_{600}$: 0.6 at 30°C in SD and SD-Fe media. Iron was added to the cultures as in A, and samples were collected upon 2 and 6 hours to detect GFP-Atg8 and C) cellular localization of GFP-Atg8. Autophagy flux and GFP-Atg8 total expression were determined as in Fig1. D) wt, tor1, aft1 and snf1 transformed either with Atg13HA or Atg1HA plasmids and subsequently treated as in B. Samples were processed for western blot assay by using anti-HA antibody. E) Localisation of Sfp1
was determined microscopically upon transformation of the strains wt, tor1, aft1 and snf1 with plasmid bearing the protein fused to GFP as described in the former figures. Cultures were carried out as described in B). F) wt and aft1 strains were cultured in SD and SD-Fe medium during 2 days, iron was added and samples were collected upon the times indicated in the Figure for western blot analysis. AMPK1 was detected using an anti-AMPK1-P. G) wt, aft1 and snf1 expressing the fusion protein GFP-Atg8, were cultured in SD and SD-Fe medium during 2 days. Iron was added to the cultures and aliquots were collected as indicated in the Figure for protein extraction and western blot analysis and for microscopic observation to detect GFP-Atg8 protein. Autophagic flux and total Atg8 expression were determined as determined in Fig 1.

Figure 6. Iron deprivation induces an early entrance into quiescence independent of bulk autophagy. A) wt cells were grown in each SD or SD-Fe media at 30°C for 15 days in continuous shacking. Samples were taken daily to monitor the absorbance at 600nm to build the growth curves. Average values from three independent experiments were represented along with the corresponding error bars. B) The number of budded or unbudded cells was counted in a sample of 1,000 cells collected from wt cultures grown at OD600: 0.6 in both SD or in SD-Fe. C) Trehalose concentration [µg/µL] was referred to the total protein determined in cultures from wt, atg7 and atg17 strains growing exponentially in either SD and SD-Fe media at 30°C. D) Samples from wt cultures growing exponentially in SD or SD-Fe media were collected and the same number of cells was plated onto YPD plates to be incubated at 30°C, 39°C or 41°C or alternative, cells were plated onto media containing H2O2 or sorbitol. Cell survival was determined as the ratio between the number of colonies isolated from the treatment plates and the number of colonies isolated in control YPD plates incubated at 30°C. E) The index of respiratory competence (IRC) in wt cells and F) mitochondria mutation frequency, were both determined as described in Materials and Methods.

Figure 7. Iron starvation prolongs life span in a manner dependent of the activation of bulk autophagy. Cultures were exponentially grown either in SD, SD-Fe, SGly (containing glycerol as unique carbon source) or SGly-Fe media plus amino acids at 30°C. Samples were taken at the indicated times to determine CLS, as described in Materials and Methods. Numerical data regarding maximum life span (the day when
cultures reach 10% survival) and average life span (the day at which 50% survival was recorded) for each strain is depicted.

Chronological life span curves for A) wt CML128, wt SEY6210 and wt FY250 in SD and SD-Fe media, respectively. B) wt cells growing in SD, SGly, SD-Fe and SGly-Fe media. C) wt, atg7, atg13 and atg17 strains cultured in SD and SD-Fe, respectively.

Figure 8. Working model.

Our results suggest that iron starvation induces TOR1 inactivation to dephosphorylate Atg13 and consequently to induce the autophagy machinery, only when TOR2/YPK1 is active. In addition, reduction of TOR1 activity also signals to the readouts Sfp1 and Rtg1/Rtg3, independently of Tor2/Ypk1. Once iron is refeeded, both Snf1 and Aft1 down regulate autophagy flux through Tor1 and the phosphorylation of Atg13.
Table 1. Yeast strains used in this study

Strain	Genotype	Source
CML128	MATa leu2-3,112, ura3-52, trp1, his4	[39]
GSL034	MATa tor1::KanMx4	[40]
GSL053	MATa ras2::Leu2MX5	[40]
GSL197	MATa leu2-3,112, ura3-52, trp1, his4 GFP-ATG8::URA3	This work
GSL199	MATa tor1::KanMx4 GFP-ATG8::URA3	This work
GSL201	MATa ras2::Leu2MX5 GFP-ATG8::URA3	This work
GSL218	MATa atg7::NatMx4	This work
GSL222	MATa atg13::NatMx4	This work
GSL226	MATa atg7::NatMx4 GFP-ATG8::URA3	This work
GSL238	MATa atg17::NatMx4	This work
GSL284	MATa aft1::KanMx4	[41]
GSL293	MATa atg11::NatMx4	This work
GSL297	MATa atg11::NatMx4 GFP-ATG8::URA3	This work
GSL313	MATa aft1::KanMx4 GFP-ATG8::URA3	This work
GSL324	MATa atg1::NatMx4	This work
GSL325	MATa atg1::NatMx4 GFP-ATG8::URA3	This work
GSL350	MATa gcn2::KanMx4	[42]
GSL352	MATa gcn2::KanMx4 GFP-ATG8::URA3	This work
GSL364	MATa atg32::KanMx4 GFP-ATG8::URA3	This work
GSL370	MATa rho0 GFP-ATG8::URA3	This work
GSL371	MATa atg32::KanMx4 GFP-ATG8::URA3	This work
GSL372	MATa leu2-3,112, ura3-52, trp1, his4 ATG1-HA::LEU2	This work
GSL374	MATa ypk1::KanMx4 GFP-	This work
ATG8::URA3

GSL382 MATa snf1::KanMx4 GFP-ATG8::URA3 This work

GSL384 MATa ypk1::KanMx4 This work

GSL389 MATa tor1::KanMx4 ATG1-HA::LEU2 This work

GSL390 MATa aft1::KanMx4 ATG1-HA::LEU2 This work

GSL393 MATa ypk1::KanMx4 ATG1-HA::LEU2 This work

GSL394 MATa snf1::KanMx4 This work

GSL395 MATa snf1::KanMx4 ATG1-HA::LEU2 This work

GSL398 MATa atg1::NatMx4 ATG1-HA::LEU2 This work

GSL399 MATa atg7::NatMx4 ATG1-HA::LEU2 This work

GSL401 MATa gcn2::NatMx4 ATG1-HA::LEU2 This work

BY4741 pho8Δ MATa pho8 his3D1, leu2D0, met15D0, ura3D0 [43]

FY250 MATa his3-200, leu2-1, trp1-63, ura3-52 [44]

SEY6210 MATa his3-200, leu2-3, lys2-801, trp1-901, ura3-52, suc2-9 GAL [45]
Table 2. Plasmids used in this study

Plasmid	Restriction sites to clone the ORF	Marker	Promoter	Epitope	Source
pSfp1-GFP	SalI, SmaI	URA3	MET25	GFP	This work
pGFP-Atg8	EcoRI, XhoI	URA3	ATG8	GFP	[46]
pAtg13-HA	NotI, PstI	URA3	ADH1	HA	This work
pYX242-cytPho8	AvrII, MluI	LEU2	PHO8		[43]
pAdh1-Msn2-GFP	KspI, SalI	LEU2	ADH1	GFP	[47]
pAtg13-GFP	XbaI, SalI	URA3	MET25	GFP	This work
pMM351	PstI, HindIII	LEU2	ADH1	HA	[48]
pAtg1-HA	PmeI, PstI	LEU2	ADH1	HA	This work
pRtg1-GFP	XhoI, EcoRI	URA3	RTG1	GFP	[49]
pAMS363	XhoI, SalI	URA3	2xCDRE: lacZ	[50]	
Figure 1

A)

	wt	atg7	atg1
SD	S	S	S
SD-Fe	S	S	S

GFP-Atg8
GFP
anti-PGK1

B)

Autophagic flux

SD
SD-Fe

C)

Atg8 expression

SD
SD-Fe
Figure 2

A) Sfp1 subcellular localization (%)

	Nomarski	Sfp1GFP	Nomarski	Sfp1GFP
wt	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)
atg7	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)

B) Rtg1 subcellular localization (%)

	Nomarski	Rtg1GFP	Nomarski	Rtg1GFP
wt	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)
atg7	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)

C) Msn2 subcellular localization (%)

	Nomarski	Msn2GFP	Nomarski	Msn2GFP
wt	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)
atg7	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)	![Image](https://example.com)
D)

\[\begin{array}{c|cc|cc}
\text{wt} & \text{atg7} & \text{atg1} \\
\hline
- & - & - & + & + & + \\
\text{SD} & \text{SD} & \text{SD} & \text{SD} & \text{SD} & \text{SD} \\
\text{SD-Fe} & \text{SD-Fe} & \text{SD-Fe} & \text{SD-Fe} & \text{SD-Fe} & \text{SD-Fe} \\
\end{array}\]

alkaline phosphatase

- anti-HA
- anti-PGK1
- anti-HA
- anti-PGK1
- anti-HA
- anti-PGK1

E)

\[\begin{array}{c|cc|cc}
\text{SD} & \text{SD-Fe} \\
\hline
\text{wt} & \text{atg7} & \text{wt} & \text{atg7} & \text{wt} & \text{atg7} & \text{wt} & \text{atg7} \\
- & - & - & + & + & - & - & + \\
\text{Rapamycin} & \text{Rapamycin} \\
\text{GFP-Atg8} & \text{GFP-Atg8} \\
\text{GFP} & \text{GFP} \\
\text{anti-PGK1} & \text{anti-PGK1} \\
\end{array}\]
Figure 3

A)

	wt	ypk1
SD		
SD-Fe		

GFP-Atg8
GFP
anti-PGK1

B)

	SD	SD-Fe
Nomarski	wt	ypk1
	20.0 μm	20.0 μm
Nomarski		
GFP		

** Autophagic flux **

** Atg8 expression **

* SD
* SD-Fe

** SD
** SD-Fe

Downloaded from http://portlandpress.com/biochemj/article-pdf/doi/10.1042/BCJ20200849/902956/bcj-2020-0849.pdf by guest on 02 February 2021
C) **Sfp1 subcellular localization (%)**

- **wt SD**
- **wt SD-Fe**
- **ypk1 SD**
- **ypk1 SD-Fe**

- **Nucleus**
- **Cytoplasm**

- **Rig1 subcellular localization (%)**

- **wt SD**
- **wt SD-Fe**
- **ypk1 SD**
- **ypk1 SD-Fe**

- **Nucleus**
- **Cytoplasm**

D) **Msn2 subcellular localization (%)**

- **wt SD**
- **wt SD-Fe**
- **ypk1 SD**
- **ypk1 SD-Fe**

- **Nucleus**
- **Cytoplasm**

D)

	wt		**ypk1**	
	SD	**SD-Fe**	**SD**	**SD-Fe**
-	**-**	**+**	**-**	**+**
+	**+**	**-**	**+**	**-**

alkaline phosphatase

- **anti-HA**
- **anti-PGK1**

Atg13

- **anti-HA**
- **anti-PGK1**

Atg1
Figure 4

A)

	wt	ypk1
SD	-	-
SD-Fe	+	+
Rapamycin	-	+

GFP-Atg8
GFP

anti-PGK1

![Autophagic flux graph](image)

![Atg8 expression graph](image)

![Nomarski and GFP images](image)
Figure 5

A) Specific cytPho8 activity

B) GFP-Atg8

anti-PGK1

GFP

anti-PGK1

Autophagic flux

Alg8 expression

log

2h

6h

2h +Fe

6h +Fe
C) SD-Fe
	SD-Fe +Fe 6h
wt	
tor1	
aft1	
snf1	

D) wt SD-Fe
	tor1 SD-Fe
Atg13	anti-HA
	anti-PGK1
Atg1	anti-HA
	anti-PGK1
G)

	wt	aft1	snf1	
	SD	SD-Fe	SD	SD-Fe
days	0 2 2 2 3	0 2 2 3	0 2 2 2 3	0 2 2 3
hours +Fe	2 6 24	2 6 24	2 6 24	2 6 24

GFP-Atg8
GFP
anti-PGK1

Figure Legend:

- **GFP-Atg8**: Green Fluorescent Protein-Atg8
- **GFP**: Green Fluorescent Protein
- **anti-PGK1**: Anti-Phosphoglycerate Kinase 1

Graph:

- **Autophagic flux**
- **X-axis**: Days and Hours + Fe
- **Y-axis**: 0.0 to 0.9
- **Conditions**: 0 days w/o Fe, 2 days w/o Fe, 2 days 2h Fe, 2 days 6h Fe, 2 days 24h Fe
The bar graph and images illustrate the expression level of Atg8 in different strains over time with and without Fe. The bar graph shows the expression levels at 0 days, 2 days, 2 days with 2h Fe, 2 days with 6h Fe, and 2 days with 24h Fe. The images below the graph depict the microscopic view of cells under different conditions, demonstrating the GFP expression in each strain and time point.

- **wt** and **aft1**: Both strains show GFP expression at different time points with and without Fe.
- **snf1**: The strain displays GFP expression in a distinct manner compared to the other two strains, particularly at 2 days with 2h Fe and 2 days with 6h Fe.

The graphs and images together provide a comprehensive view of how iron deficiency affects Atg8 expression in these strains.
Figure 6

A) Absorbance at 600nm over time (days)

- ○ wt SD
- ● wt SD-Fe

B) % of cells

- SD
- SD-Fe

- 0 hours
- 8 hours

C) Trehalose (µg/µl) / Total protein

- SD
- SD-Fe

D) Cell Survival%

- H₂O₂
- 39°C
- 41°C
- Sorbitol

- SD
- SD-Fe

- Log
- 8 hours

Nomarski

DHE

DAPI

Merge
Figure 7

A) Cell Survival (%) vs Time (days)

Strains	Maximum lifespan	SD	Average lifespan
wt CML128 SD	18.5	±0.82	9.3
wt SEY6210 SD	19.1	±0.53	9.7
wt FY250 SD	18.1	±0.41	9.1
wt CML128 SD-Fe	23.7	±0.82	10.9
wt SEY6210 SD-Fe	24.1	±0.65	10.7
wt FY250 SD-Fe	24.4	±0.70	10.8
B)

![Graph showing cell survival over time for different strains](image)

Strains	Maximum lifespan	SD	Average lifespan
wt SD	18.3	±0.24	7.9
wt SGly	18.0	±0.36	7.2
wt SD-Fe	23.0	±0.21	11.2
wt SGly-Fe	22.8	±0.53	10.9
C) Cell Survival (%) over time for different strains:

Graph and Table:

Strains	Maximum lifespan	SD	Average lifespan
wt SD	17.5	±0.21	8.2
atg7 SD	7.0	±0.56	1.5
atg13 SD	10.0	±0.70	1.6
atg17 SD	9.0	±0.14	1.9
wt SD-Fe	22.8	±0.35	11.2
atg7 SD-Fe	5.4	±0.28	0.7
atg13 SD-Fe	6.3	±0.56	1.2
atg17 SD-Fe	7.4	±0.72	1.4
Figure 8