BMJ Open

Effect of ambient air pollution on the incidence of colorectal cancer among a diabetic population: a nationwide nested case–control study in Taiwan

Jen-Wen Ma, Ting-Ju Lai, Sung-Yuan Hu, Tzu-Chieh Lin, Wen-Chao Ho, Yu-Tse Tsan

ABSTRACT

Objectives An increasing number of studies had shown that air pollution exposure may aggravate blood glucose control in patients with diabetes, an independent risk factor for colorectal cancer (CRC) proposed by some researchers. This study aimed to investigate the impact of exposure to ambient particulate matter with aerodynamic diameters ≤2.5 μm (PM_{2.5}) on the incidence of CRC among a diabetic population.

Design A nested case–control study.

Setting A subset data retrieved from the Taiwan’s National Health Insurance Research Database.

Participants We identified patients with newly diagnosed diabetes (n=1 164 962) during 1999–2013. Participants who had subsequently developed an incident of CRC were placed into the case group, while controls were matched to the cases at a 4:1 ratio by age, gender, date of diabetes diagnosis and the index date of CRC diagnosis.

Methods and outcome measures All variables associated with the risk of CRC entered into a multinomial logistic regression model. The dose–response relationship between various average concentrations of PM_{2.5} exposure and the incidence of CRC was estimated by logistic regression.

Results The study included a total of 7719 incident CRC cases matched with 30 876 controls of random sampling. The mean annual concentration of PM_{2.5} was 35.3 μg/m^3. After adjusting for potential confounders, a dose–response relationship was observed between the CRC risks and each interquartile increase of PM_{2.5} concentration (Q1–Q2: 1.04–1.11). Moreover, a faster growing adapted Diabetes Complications Severity Index score was noticed in CRC group compared with the controls, which also showed a significant association in our multivariate analysis (adjusted OR=1.28, 95% CI 1.18 to 1.38). A two-pollutant analysis in addition to PM_{2.5} alone was employed to examine the joint effects of co-pollutants.

Conclusions Long-term exposure to high concentrations of PM_{2.5} may contribute to an increased incidence of CRC among diabetic populations.

INTRODUCTION

Air pollution has been identified as the world’s single largest environmental health risk by WHO and is estimated to have caused 4.2 million premature deaths worldwide in 2016 due to ischaemic heart disease and stroke. The International Agency for Research on Cancer classifies ambient particulate pollutants as a group 1 carcinogen related to lung cancer.1 Robust evidence from both experimental and epidemiological studies has demonstrated that long-term exposure to air pollution (AP) such as particulate matter (PM), nitrogen dioxide (NO₂) and ozone (O₃) is a major risk factor for cardiovascular and cardiopulmonary disease and potentially cancer.2-5

Some reports have linked PM with gastrointestinal diseases, including an increased risk of appendicitis,6 Crohn’s disease in younger individuals7 and increased hospitalisation of patients with inflammatory bowel disease,8 implying an association between PM exposure and inflammatory diseases of the GI tract. However, there remains a lack of epidemiological evidence connecting exposure to...
ambient air pollutants with the risk of colorectal cancer (CRC).9,10 Patients with diabetes are reportedly a vulnerable group susceptible to both oncogenesis11–13 and the deleterious effects of AP.14,15 Documents accrued over the years suggest that diabetes is associated with an increased risk for several malignancies, such as cancer of the breast,16 pancreas,17 and liver18 and may also increase the risk of all-cause mortality among people with cancer.13 In addition, diabetes has been suggested as an independent risk factor of CRC.19 A meta-analysis involving 15 studies concluded that individuals with diabetes mellitus (DM) had an 30% increased risk of CRC.20 DM and CRC share similar risk factors, including physical inactivity, poor diet, excess alcohol consumption, obesity and cigarette smoking.21,22

Fine particulate matter is adversely associated with metabolic syndrome-related outcomes such as type 2 diabetes mellitus (T2DM), insulin resistance, hypertension and obesity.23–25 Insulin resistance and associated hyperglycaemic, hyperinsulinaemia, oxidative stress and chronic inflammation are the potential mechanisms contributing to the development of diabetes-associated CRC.19,22,26 Hyperinsulinaemia mediates CRC development through insulin, a growth factor for both normal and cancerous colon cells, and insulin-like growth factor-1 (IGF-1), which may inhibit apoptosis, push forward the cell cycle and promote angiogenesis.27,28 Observational studies have demonstrated a linkage between elevated IGF levels and the risks of adenomatous polyps or CRC.29–31

In Taiwan, we had an average PM$_{2.5}$ concentration of 20.5 µg/m3 in 2017, higher than the WHO standard value.32 CRC has carried the highest incidence rate among all malignancies since 2007 for both genders combined and has contributed to the third most cancer-related deaths.33 Diabetes, with an estimated prevalence of approximately 11.46% among adult Taiwanese during 2013–2016, was ranked as the fifth leading cause of all deaths.34 Both diseases affect a growing proportion of the general population and bring a heavy burden to the healthcare system in Taiwan.

To explore the role of AP exposure in the risks of diabetes-related malignancies, we conducted the epidemiological study that focus on whether long-term exposure to higher levels of ambient PM$_{2.5}$ may impair glucose metabolism and therefore influence the incidence of CRC in the diabetic population.

METHOD

Data source

The dataset stem from the Taiwanese National Health Insurance Research Database (NHIRD). The NHI programme, implemented on 1 March 1995, provides compulsory universal health insurance, which covers all forms of healthcare services for 98% of the island’s population. We retrieved admission and outpatient records, including information on patient characteristics and up to five discharge diagnoses or three outpatient diagnoses (the International Classification of Diseases, Ninth Revision (ICD-9)). The database had previously been used for epidemiological research and provided information regarding patient prescriptions, diagnoses and hospitalisations.35,36 Strict confidentiality guidelines were closely followed in accordance with personal electronic data protection regulations; the National Health Research Institute of Taiwan anonymises and maintains the NHI reimbursement data as files suitable for research.

Identification of study sample

In the study, we used a subset data from the NHIRD, the Longitudinal Cohort of Diabetes Patients, to identify adult patients with newly diagnosed T2DM (ICD-9 code 250 and A-code A181) during the follow-up period between 1 January 1999 and 31 December 2013. Subject enrolment was restricted to patients with diabetes diagnosis codes from at least one hospital admission or more than three outpatient visits within 1 year. We set up exclusion criteria for the T2DM cohort, including those with incomplete data, unavailable data of AP exposure, age under 18 years, diagnosis of diabetes before 1 January 1999 and previous medical records showing any malignancies before the diagnosis of diabetes (figure 1).

Case–control patient selection from the incident T2DM cohort

Within the T2DM cohort, patients who developed incident CRC (ICD-9-CM:153 and 154) during the follow-up period were identified. A case–control study was then conducted, comparing the T2DM cohort to a control group with no cancer diagnosis during the follow-up period. A 1:1 matched case–control study was performed using patient ID number as the matching criterion. The final analysis included 1,046 participants with a total of 52 CRC cases.

![Figure 1](image-url) **Figure 1** Study architecture and flow chart. CRC, colorectal cancer; NHIRD, National Health Insurance Research Database; T2DM, type 2 diabetes mellitus.
period were placed into the case group, with the date of CRC diagnosis established as the index date. Only patients who had been admitted with a diagnosis of CRC were enrolled in order to strengthen the validity. In consideration of potential reverse causality, patients who were diagnosed with CRC, dead or lost within the first year of diabetes diagnosis were excluded. Under the setting of a nested case–control study, subjects in the control group were identified through a random sampling at a ratio of 4:1 to the case group after matching for age, gender, date of T2DM diagnosis and the follow-up time or index date of CRC diagnosis.

Exposure assessment for residential PM$_{2.5}$

Hourly concentrations of ambient air pollutants including PM$_{2.5}$, particulate matter with aerodynamic diameters ≤10 µm (PM$_{10}$), sulfur dioxide (SO$_2$), nitric oxide (NO), NO$_2$, carbon monoxide (CO) and O$_3$ were measured at 76 monitoring stations, operated by the Taiwan Environmental Protection Administration (EPA) and located throughout the main Taiwan island. The official data of the annual average PM$_{2.5}$ concentrations between 1999 and 2013 from the EPA was collected and sorted (see online supplemental file 1). Kriging, a method of spatial interpolation, was used to approximate the actual PM$_{2.5}$ level at each participant’s residential address using data from the nearest monitoring station. Kriging is a credible method that has been applied in previous studies for estimating ambient PM concentrations at residential addresses.35–38

Potential confounders

All potentially confounding factors related to CRC were identified systematically between 1 January 1999 and the index date of CRC diagnosis. Confounders with sociodemographic characteristics such as age, gender, income and level of urbanisation were taken into consideration. Urbanisation levels in Taiwan are divided into four strata and level of urbanisation were taken into consideration. In addition to the main analysis (model 1), sensitivity analysis (table 3) was conducted. The correlation coefficients of average concentrations between air pollutants were also estimated with the data provided in online supplemental file 3.

Sensitivity and subgroup analysis

In addition to the main analysis (model 1), sensitivity analyses were conducted by adding the presence of different comorbidities and drug use (table 4).

All the above analyses were conducted using the SAS V.9.4 software package. All p values were two tailed, and a p value <0.05 was considered significant.

Patient and public involvement

Patients or public were not involved in the research, including development of the research question, outcome measures, design, data collection, analysis, or interpretation.
Open access

Among the incident T2DM cohort (n=1164962) during the follow-up period between 1999 and 2013, a total of 7719 patients with a recent diagnosis of CRC were identified in the case group. Under the nested case–control setting, a random sampling at a ratio of 4:1 to the case group was conducted, which obtained 30876 subjects in the control group after matching by age, gender, date of T2DM diagnosis and follow-up time or index date of CRC diagnosis.

The baseline demographic and clinical characteristics are outlined in Table 1. Matching variables including age, gender and follow-up period were distributed evenly between the case and control patients. The mean follow-up period was 5.17 years. Male patients were dominant (53.70%) over females. The mean age at diagnosis was 61.36 years, with most cases falling into the age group of 55–65 years. Compared with the control group, the CRC case patients had prevalent comorbidities including Crohn’s disease, ulcerative colitis, constipation, colon polyps, hypertension, alcohol-related disease, chronic kidney disease (CKD), coronary artery disease (CAD) and AF. The two groups displayed no differences in their measures, study design, recruitment and conduct of the study.

RESULTS

Among the incident T2DM cohort (n=1164962) during the follow-up period between 1999 and 2013, a total of 7719 patients with a recent diagnosis of CRC were identified in the case group. Under the nested case–control setting, a random sampling at a ratio of 4:1 to the case group was conducted, which obtained 30876 subjects in the control group after matching by age, gender, date of T2DM diagnosis and follow-up time or index date of CRC diagnosis.

The baseline demographic and clinical characteristics are outlined in Table 1. Matching variables including age, gender and follow-up period were distributed evenly between the case and control patients. The mean follow-up period was 5.17 years. Male patients were dominant (53.70%) over females. The mean age at diagnosis was 61.36 years, with most cases falling into the age group of 55–65 years. Compared with the control group, the CRC case patients had prevalent comorbidities including Crohn’s disease, ulcerative colitis, constipation, colon polyps, hypertension, alcohol-related disease, chronic kidney disease (CKD), coronary artery disease (CAD) and AF. The two groups displayed no differences in their...
aDCSI scores at onset, but a significantly increasing aDCSI score was observed in the case group (*aDCSI/time: 0.21 vs 0.17, p<0.001), with a higher aDCSI score at the end of follow-up (1.88 vs 1.73, p<0.001).

Annual average concentrations of PM$_{2.5}$ in Taiwan during the period of 1999–2013 are illustrated in figure 2, showing that the mean annual level of PM$_{2.5}$ was 35.3 µg/m3, with the median level at 33.82 µg/m3 and an IQR of 11.41 µg/m3.

Table 2 lists the crude and adjusted ORs of CRC occurrence after exposure to PM$_{2.5}$ of various concentrations. When divided into four groups determined by the distribution of PM$_{2.5}$ concentrations (≤Q1: 29.49–33.82 µg/m3, Q1–Q2: 33.82–40.90 µg/m3 and ≥Q3: 40.90–55.00 µg/m3), the crude OR (95% CI) comparing the group ≤Q1 exhibit a dose–response relationship (Q1–Q2: 1.03 (0.96 to 1.11), Q2–Q3: 1.05 (0.98 to 1.13) and ≥Q3: 1.18 (1.09 to 1.27)). In both model 1 (adjusting for gender, age, income and urbanisation) and model 2 (adjusting for comorbidities, drug use and change of aDCSI score per year), the dose–response relationship of adjusted OR remained significant.

DISCUSSION

In this national-based, nested case–control study (ratio 1:4), we examined 7719 patients with incident CRC and 30,876 random controls matched by age, gender, index date of CRC diagnosis and date of T2DM diagnosis among 1,164,962 patients with T2DM during the long follow-up period between 1999–2013. Our study observed the mean annual PM$_{2.5}$ of 35.3 µg/m3 and the median level of 33.82 µg/m3, higher than threefold of the WHO standard, 10 µg/m3. When analysed with IQR of PM$_{2.5}$ concentrations in table 2, a dose–response relationship between the incidents of CRC and ambient concentrations of PM$_{2.5}$ exposure was observed with the crude OR (95% CI) of Q1–Q2: 1.03 (0.96 to 1.11), Q2–Q3: 1.05 (0.98 to 1.13), ≥Q3: 1.18 (1.09 to 1.27) compared with the

Ma J-W, et al. BMJ Open 2020;10:e036955. doi:10.1136/bmjopen-2020-036955
After adjusting for potential confounders, the dose–response relationship remained robust in both model 1 and model 2. For each increase of 10 µg/m³ in PM₂.₅ concentration in table 3, the CRC risk increased by 8%. To the best of our knowledge, our study is the first research that investigates the AP effects on the incidence of CRC in the Taiwanese diabetic population. There is scarce evidence in the literature to make a significant linkage between ambient AP exposure and the risk of CRC in general population, partly due to the long latency required from exposure to oncogenesis in most areas with relatively low concentrations of air pollutants. Our

Main model*	≤Q1	Q1–Q2	Q2–Q3	≥Q3
OR	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.19 (1.11 to 1.29)
Medical diseases				
Crohn’s disease	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
Ulcerative colitis	1.0	1.03 (0.96 to 1.12)	1.08 (1.00 to 1.16)	1.19 (1.11 to 1.29)
Constipation	1.0	1.03 (0.96 to 1.12)	1.07 (0.99 to 1.15)	1.19 (1.10 to 1.28)
Colon polyps	1.0	1.03 (0.96 to 1.11)	1.07 (0.99 to 1.16)	1.20 (1.11 to 1.29)
Hyperlipidaemia	1.0	1.03 (0.96 to 1.11)	1.07 (1.00 to 1.16)	1.19 (1.11 to 1.29)
Hypertension	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
Alcohol-related disease	1.0	1.03 (0.96 to 1.12)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
Obesity	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.19 (1.11 to 1.29)
CKD	1.0	1.03 (0.96 to 1.11)	1.07 (0.99 to 1.16)	1.19 (1.11 to 1.28)
COPD	1.0	1.03 (0.96 to 1.12)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
CAD	1.0	1.04 (0.96 to 1.12)	1.08 (1.00 to 1.16)	1.20 (1.12 to 1.29)
AF	1.0	1.03 (0.96 to 1.12)	1.08 (1.00 to 1.16)	1.20 (1.12 to 1.29)
Medication†				
Statin	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.19 (1.10 to 1.29)
Antihypertensive drugs	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.19 (1.11 to 1.29)
Diuretic	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
Beta-blocker	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
CCB	1.0	1.03 (0.96 to 1.11)	1.07 (0.99 to 1.16)	1.19 (1.11 to 1.28)
ACEi	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.19 (1.11 to 1.29)
ARB	1.0	1.03 (0.96 to 1.12)	1.08 (1.00 to 1.17)	1.20 (1.12 to 1.29)
Antihyperglycaemic drugs	1.0	1.03 (0.96 to 1.11)	1.07 (0.99 to 1.15)	1.18 (1.10 to 1.27)
Biguanide	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.19 (1.11 to 1.29)
Sulfonylurea	1.0	1.03 (0.96 to 1.11)	1.07 (0.99 to 1.16)	1.19 (1.10 to 1.29)
Alpha-GI	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.12 to 1.29)
Thiazolidinedione	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
Meglitinide	1.0	1.03 (0.96 to 1.12)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
Antihyperlipidaemic drugs	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
Non-statin lipid-lowering drug	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.11)	1.20 (1.12 to 1.29)
Triglyceride-lowering drug	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
Aspirin	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.20 (1.11 to 1.29)
NSAIDs	1.0	1.03 (0.96 to 1.11)	1.08 (1.00 to 1.16)	1.19 (1.10 to 1.29)

*Models adjusted gender, age, income and urbanisation.
†Drug use is defined as ≥28 cumulative defined daily doses (cDDDs) for taking.
ACEi, ACE inhibitor; AF, atrial fibrillation; Alpha-GI, alpha-glucosidase inhibitor; ARB, angiotensin II receptor blocker; CAD, coronary artery disease; CCB, calcium-channel blocker; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRC, colorectal cancer; NSAIDs, non-steroidal anti-inflammatory drugs; PM₂.₅, particulate matter (diameter less than or equal to 2.5 µm).
results with statistical significance may benefit from the advantages of an extended follow-up period, detrimental high-level of AP concentrations and a large diabetic population, a group reportedly susceptible to both malignancies and AP.44,45

The associations among the three entities, diabetes, AP and CRC, are complicated. Epidemiological studies have revealed the adverse impact of air pollutants on the risks of metabolic syndrome, along with its individual components of fasting blood glucose and hypertriglyceridaemia.40–42 Aside from DM incidence, some authors also found that AP may worsen blood glucose control and further aggravate diabetic complications. glycated haemoglobin (HbA1c) was one of the mostly used biomarkers to represent the status of sugar control. For example, a prospective analysis in Europe showed that an increase in HbA1c of 1% was associated with a 33% increase in CRC risks in multivariate models.43 Another study suggested that PM2.5 and NO2 exposure were related to increased HbA1c levels, with a stronger association in diabetic than non-diabetic American participants.44 which is consistent with the reported susceptibility of DM to AP.45 In our study, the aDCSI score grew faster in the CRC group compared with non-CRC, which support the association between poor glycaemic control and the CRC risks. Nevertheless, few studies applied the aDCSI score as a measure of glycaemic status. The aDCSI scoring system was designed to quantify the severity of long-term diabetic complications, corresponding to our study objective of investigating the cumulative effects of AP on diabetic populations.46–47

Other studies have elucidated the positive associations between AP exposure and insulin resistance. Brook et al.48 noted that subacute exposure to ambient PM2.5, even at low levels for approximately 5 days, was associated with an increase in the homeostasis model assessment of insulin resistance (HOMA-IR), implying a reduction in insulin sensitivity. In a meta-analysis involving 35 studies, higher levels of fasting glucose, fasting insulin, the HOMA-IR, HbA1c and C-peptide were all valid predictors for CRC risk.49

There are both pathophysiological and molecular processes underlying the association between glucose metabolism and colorectal carcinogenesis. Insulin resistance, with its associated hyperglycaemic and hyperinsulinaemia, may induce colorectal carcinogenesis via inflammatory, oxidative stress and proliferative pathways.50 Insulin possesses proproliferative properties and can reduce apoptosis while promoting the growth of CRC cell lines.51 Insulin or IGF-I signalling pathways either enhance proliferation, or inhibit apoptosis of colon epithelial cells, leading to carcinogenesis.29,32,53 In epidemiological studies, higher circulating concentrations of insulin, C-peptide and IGF-I have been demonstrated to increase the risk of CRC.30,54–59 Additionally, a significant increase in the risks of CRC with insulin therapy was also supported by growing evidence.60

Experimental studies on diet-induced obese rats have shown subsequent insulin resistance, adiposity and visceral inflammation after PM2.5 exposure.61–64 Inhaled small pollutant particles may penetrate the alveoli and enter systemic circulation, leading to low-grade chronic inflammation, as reflected by elevated systemic proinflammatory biomarkers.66–68 PM2.5-exposed mice demonstrated impaired insulin signalling through Akt in their skeletal muscles and adipose tissues.63,64 PM2.5 exposure also triggers inflammation pathways mediated through JNK-AP1, NF-kB and TLR4, while suppressing insulin receptor substrate 1-mediated insulin signalling through Akt and subsequent glycogen synthesis in the liver, which in turn leads to a non-alcoholic steatohepatitis-like phenotype with impaired hepatic glucose metabolism.69

Significant differences in other variables were also observed between the two groups (table 1), including prevalence of comorbidities, deserving more discussions. A notably higher proportion of colon polyps exists among CRC subjects with undesirable sugar control reflected by rapidly raised aDCSI scores, in line with previous reports that poor glycaemic control in diabetes predicts higher tendency to develop colonic adenomatous polyps.70,71 Patients with inflammatory bowel disease are reportedly 2–6 times more likely to develop CRC than general population.72,73 Intestinal dysbiosis was well documented to have far-reaching effects on local immunity associated with the pathogenesis of inflammatory bowel disease and CRC and systemic diseases like obesity, diabetes and atherosclerosis.74 As for constipation, a delayed stool transit time in patients with diabetes may alter the concentration of bile acids contributing to DNA damage and partly account for the incidence of CRC.75 After a literary review, we found meta-analysis and cohort studies sharing the conclusion that patients with CKD have an increased risk of CRC compared with general population, matching with our results.76,77 Alcohol intake has been proposed to be associated with an increased risk of CRC, particularly remarkable with heavy drinking.78,79 A meta-analysis of 27 cohort and 34 case-control studies provide
evidence for a dose–response association between alcohol drinking and CRC risks, with stronger associations for heavy Asian drinkers.\(^8\) Obesity might interact with alcohol on CRC risks. As reported by a Canadian study, alcohol consumption by people with a body mass index (BMI) <30 had an overall CRC OR of 0.8 (95% CI 0.60 to 1.10), whereas those drinking alcohol with a BMI >30, a group with prevailing hyperglycaemia similar to our cohort, had an overall CRC OR of 2.2 (95% CI 1.20 to 4.00, \(p\) trend<0.05).\(^8\) Central obesity and dyslipidaemia, components of metabolic syndrome in addition to hyperglycaemia and hypertension, were also linked with colorectal adenoma in some research.\(^8\) The reason for insignificant differences in coexisting hyperlipidaemia and obesity between our two groups is not well understood, most likely because of the increasing trend in the prescribing of statins and other lipid-lowering drugs for diabetic dyslipidaemia in Taiwan,\(^8\) while the statins had been found to provide a significant chemopreventive effect against colon cancer.\(^8\) AF and CAD also account for greater prevalence in the CRC group, presumably due to shared risk factors.

In two-pollutant analysis while PM\(_{2.5}\) combined with another pollutant except PM\(_{10}\), the results appeared unaffected (table 3). Because only PM\(_{10}\), among other co-pollutants showed high correlation with PM\(_{2.5}\) by estimating correlation coefficients, it was excluded for two-pollutant analysis to avoid multicollinearity. Some papers coincide with our finding of higher correlation between PM\(_{10}\) and PM\(_{2.5}\), as PM\(_{10}\) comprise major proportion of PM\(_{10}\) fraction.\(^8\) Compared with PM\(_{10}\), smaller particles like PM\(_{4.3}\) may permeate lung alveoli and enter into the bloodstream, posing greater harm for systemic cardiovascular effects.\(^8\) In addition, particulate matter has been shown to be stronger activators of innate immunity in comparison with gaseous pollutants.\(^9\)

A number of strengths in our study deserve to be mentioned. First, we analysed a total of 38 595 patients with diabetes for a prolonged follow-up period during 1999–2013, based on a nationally representative database, thus allowing for the results to be generalised for a large population. Second, apart from AP, we enrolled multiple variables including demographics, comorbidities, medications and changes in annual aDCSI score for adjusting in multivariate model to assess other confounding effects. Third, we applied the Kriging method, a spatial interpolation model, to obtain township-level estimates of PM\(_{2.5}\) levels that approximate to individual exposure. Fourth, we conducted two-pollutant analysis to evaluate if co-pollutants cause any influence, since other pollutants had reportedly been associated with insulin resistance and T2DM prevalence.\(^9\)\(^2\)\(^3\)\(^4\)

Nevertheless, several potential limitations should also be acknowledged. First, the NHIRD provides limited personal information regarding smoking habits, alcohol consumption, BMI, family history of T2DM or CRC, diet and physical activity. Thus, we used some comorbidities as surrogates to address those risk factors, such as COPD for smoking, alcohol-related illness for alcohol consumption and obesity for high BMI. Second, similar to most epidemiological studies about AP exposure, residential exposure level may not fully reflect individual cumulative effects. Third, participants in the control group had not all been verified with colonoscopy, so potential odds of misclassification might exist.

CONCLUSION

Global data revealed that the highest prevalence of cardiometabolic conditions and most cardiovascular events are among developing countries.\(^9\)\(^5\)\(^6\) Nonetheless, even low levels of AP have been associated with an excess of cardiometabolic disorders.\(^9\)\(^4\)\(^\)\(^7\) Our study suggests that long-term exposure to high PM\(_{2.5}\) concentrations may play a promoting role in the growing prevalence of diabetes, as well as an increased incidence of CRC among diabetic populations through the biological mechanisms of systemic inflammation, oxidative stress and elevated insulin resistance. In addition, undesirable control of blood sugar can increase the risk of CRC, as reflected by a raised aDCSI score in this article, warranting an earlier and intensive screening policy for CRC in this group. Considering the widespread prevalence of AP and diabetes, even modest contributions to malignancy risk could cause a substantial effect on public health. As with global urbanisation, ageing and overweight populations with sedentary lifestyles, the harmful influence of ambient AP on the metabolic epidemic might be underestimated and pose an enormous health burden deserving of more attention.

Correction notice The article has been corrected since it is published. The grant numbers have been updated in the Funding section.

Acknowledgements The authors would like to thank Wei-Cheng Chan for statistical analysis.

Contributors Y-TT and W-OH contributed equally to this study. Y-TT and W-OH conceived of the study and supervised all aspects of its implementation. J-WM and T-JL completed the analyses and drafted the content. S-YH and T-DL assisted with the study design and revised the content. T-JL and J-WM assisted with the statistical analysis and revised the content. All authors helped to conceptualise ideas, interpret findings and review drafts of the manuscript.

Funding This work was supported by grants from the China Medical University, Taiwan (grant numbers CMU105-S-48, CMU106-S-34, CMU107-Z-04), and from the Taichung Veterans General Hospital, Taiwan (grant numbers TCVGH-1087202C).

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study was approved by the Research Ethics Committee of the China Medical University Hospital in Taiwan.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. No additional data are available.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
REFERENCES

1. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Outdoor air pollution. IARC Monogr Eval Carcinog Risks Hum 2016;109:3–444.

2. Brook RD, Newby DE, Rajagopalan S. The global threat of outdoor ambient air pollution to cardiovascular health: time for InterventionThreat of outdoor air pollution to cardiovascular health threat of outdoor air pollution to cardiovascular health. JAMA Cardiology 2017;2:353–4.

3. Brook RD, Rajagopalan S, Pope CA et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American heart association. Circulation 2010;121:2331–78.

4. Hoek G, Krishnan RM, Beelen R et al. Long-term air pollution exposure and cardiovascular mortality: a review. Environ Health 2013;12:43.

5. Lee B-J, Kim B, Lee K. Air pollution exposure and cardiovascular disease. Toxicol Res 2014;30:71–5.

6. Kaplan GG, Dixon E, Panaccione R et al. Effect of ambient air pollution on the incidence of appendicitis. CMAJ 2009;181:591–7.

7. Kaplan GG, Hubbard J, Korzenik J et al. The inflammatory bowel diseases and ambient air pollution: a novel association. Am J Gastroenterol 2010;105:2412–9.

8. Ananthakrishnan AN, McGinley EL, Binion DG et al. Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer. J Natl Cancer Inst 2002;94:972–80.

9. Chang CK, Ulrich CM. Hyperinsulinemia and hyperglycaemia: possible risk factors of colorectal cancer among diabetic patients. Diabetologia 2003;46:595–607.

10. Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr 2001;131:3109S–20.

11. Rennert GH, Zawahien M, Minic D et al. Insulin-like growth factor (IGF-I), IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 2004;363:1346–53.

12. Schoen RE, Weisfuss JL, Kuller LH et al. Insulin-like growth factor-I and insulin are associated with the presence and advancement of adenomatous polyps. Gastroenterology 2005;129:464–75.

13. Davies M, Gupta S, Goldspink G et al. The insulin-like growth factor system and colorectal cancer: clinical and experimental evidence. Int J Colorectal Dis 2006;21:201–8.

14. The Environmental Protection Protection Administration. Air pollution statistics: 1–3 concentration of air pollutants. Available: https://www.epa.gov.

15. Rafii MH, Jiang J, Chen P et al. Population-based case-control study of Chinese herbal products containing aristolochic acid and urinary tract cancer risk. J Natl Cancer Inst 2010;102:79–86.

16. Wang WG, Chen HJ, Chen PC et al. Prenatal air pollution exposure and occurrence of atopic dermatitis. Br J Dermatol 2015;173:981–8.

17. Wang W, Ying Y, Wu Q et al. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China. Respi Med 2015;109:372–8.

18. Liao D, Pequeut DJ et al. GIS approaches for the estimation of residential-level ambient PM concentrations. Environ Health Perspect 2006;114:1374–80.

19. Kim S-Y, Sheppard L, Kim H. Health effects of long-term air pollution: influence of exposure prediction methods. Epidemiology 2008;20:442–50.

20. Chang H-Y, Weiner JP, Richards TM et al. Validating the adapted diabetes complications severity index in claims data. Am J Manag Care 2012;18:721–6.

21. Wallwork RS, Colicino E, Zhong J et al. Ambient fine particulate matter, outdoor temperature, and risk of metabolic syndrome. Am J Epidemiol 2017;185:30–9.

22. Pearson JF, Bachreiddy C, Shyamprasad S et al. Association between fine particulate matter and diabetes prevalence in the U.S. Diabetes Care 2014;37:201–6.

23. Eze IC, Schaffner E, Fischer E et al. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ Int 2014;70:95–105.

24. Khaw K-T, Wareham N, Bingham S et al. Preliminary communication: glycated hemoglobin, diabetes, and incident colorectal cancer in men and women: a prospective analysis from the European prospective investigation into cancer and nutrition (EPIC)-Potsdam cohort. Eur J Epidemiol 2006;21:281–8.

25. Ben Q, Cai Q, Li Z et al. The relationship between new-onset diabetes mellitus and pancreatic cancer risk: a case-control study. Eur J Cancer 2011;47:248–54.

26. El-Seraag HB, Hamel MB, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol 2006;4:389–90.

27. Yuhara H, Steinmaus C, Cohen SE et al. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer? Am J Gastroenterol 2011;106:1911–21.

28. Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst 2005;97:1679–87.

29. Giovannucci E, Micha D. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. J Intern Med 2007;193:209–28.

30. Giovannucci E, Harlan DM, Archer MC et al. Diabetes and cancer: a consensus report. Diabetes Care 2010;33:1674–85.

31. Brook RD, Sun Z, Brook JR et al. Extreme air pollution conditions adversely affect blood pressure and insulin resistance: the air pollution and cardiometabolic disease study. Hypertension 2016;70:77–85.
Open access

cancer. Eur J Endocrinol 2014;171:R173–82.
130. Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Care 2011;34:e86–92.
131. Beral V, Letellier C, Walker AM, et al. Effect of long-term exposure to air pollution on type 2 diabetes mellitus risk: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol 2014;32:283–300.
132. Chow CK, Teo KK, Ranganathan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013;310:959–68.
133. Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011;94:311–21.
134. Chen H, Burnett RT, Kwong JC, et al. Distribution of PM(2.5) and cardiovascular diseases in the elderly: an overview. Int J Environ Res Public Health 2015;12:8187–97.
135. Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes 2012;61:3037–45.
136. Brook RD, Jerrett M, Brook JR, et al. The relationship between diabetes mellitus and traffic-related air pollution. J Occup Environ Med 2008;50:32–8.
137. Wang B, Xu D, Jing Z, et al. Effect of long-term exposure to air pollution on type 2 diabetes mellitus risk: a systemic review and meta-analysis of cohort studies. Eur J Endocrinol 2014;171:R173–82.
138. Chow CK, Teo KK, Ranganathan S, et al. Prevention, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013;310:959–68.
139. Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011;94:311–21.
140. Chen H, Burnett RT, Kwong JC, et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 2014;129:562–5.
141. Chen H, Rimm EB, Colditz GA, et al. Interaction of metabolic syndrome and diabetes with risk of colorectal cancer. J Natl Cancer Inst 2013;105:1019–27.
142. Giovannucci E. Metabolic syndrome, hyperinsulinemia, and colorectal cancer. J Natl Cancer Inst 2007;99:836–42.
143. Kim BC, Shin A, Hong CW, et al. Association of colorectal adenoma with components of metabolic syndrome. Cancer Causes Control 2012;23:727–35.
144. Chiang C-W, Chi H-F, Chen C-Y, et al. Trends in the use of lipid-lowering drugs by outpatients with diabetes in Taiwan, 1997–2003. Pharmacoepidemiol Drug Saf 2008;17:62–9.
145. Liu Y-C, Yang Y-C, Chen Y-J, et al. Utilization of statins and aspirin among patients with diabetes and hyperlipidemia: Taiwan, 1998–2006. J Chin Med Assoc 2008;71:363–70.
146. Lee J-W, You N-Y, Kim Y, et al. Statin use and site-specific risk of colorectal cancer in individuals with hypercholesterolemia from the National Health insurance Service–National health screening cohort (NHIS–HEALS). Nutr Metab Cardiovasc Dis 2019;29:701–9.
147. Chen K-S, Chen L, Chan EW, et al. Statins reduce the progression of non-advanced adenomas to colorectal cancer: a postcolonoscopy study in 187 897 patients. Gut 2019;68:1979–85.
148. Mas M, Maiti SK, Mukhopadhyay U. Distribution of PM(2.5) and cardiovascular diseases in the elderly: an overview. Int J Environ Res Public Health 2015;12:8187–97.
149. Liu C, Ying Z, Harkema J, et al. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol 2013;41:361–73.
150. Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes 2012;61:3037–45.
151. Brook RD, Jerrett M, Brook JR, et al. The relationship between diabetes mellitus and traffic-related air pollution. J Occup Environ Med 2008;50:32–8.
152. Wang B, Xu D, Jing Z, et al. Effect of long-term exposure to air pollution on type 2 diabetes mellitus risk: a systemic review and meta-analysis of cohort studies. Eur J Endocrinol 2014;171:R173–82.
153. Chow CK, Teo KK, Ranganathan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013;310:959–68.
154. Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011;94:311–21.
155. Chen H, Burnett RT, Kwong JC, et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 2014;129:562–5.
156. Chen H, Rimm EB, Colditz GA, et al. Interaction of metabolic syndrome and diabetes with risk of colorectal cancer. J Natl Cancer Inst 2013;105:1019–27.
157. Giovannucci E. Metabolic syndrome, hyperinsulinemia, and colorectal cancer. J Natl Cancer Inst 2007;99:836–42.
158. Kim BC, Shin A, Hong CW, et al. Association of colorectal adenoma with components of metabolic syndrome. Cancer Causes Control 2012;23:727–35.
159. Chiang C-W, Chi H-F, Chen C-Y, et al. Trends in the use of lipid-lowering drugs by outpatients with diabetes in Taiwan, 1997–2003. Pharmacoepidemiol Drug Saf 2008;17:62–9.
160. Liu Y-C, Yang Y-C, Chen Y-J, et al. Utilization of statins and aspirin among patients with diabetes and hyperlipidemia: Taiwan, 1998–2006. J Chin Med Assoc 2008;71:363–70.
161. Lee J-W, You N-Y, Kim Y, et al. Statin use and site-specific risk of colorectal cancer in individuals with hypercholesterolemia from the National Health insurance Service–National health screening cohort (NHIS–HEALS). Nutr Metab Cardiovasc Dis 2019;29:701–9.
162. Chen K-S, Chen L, Chan EW, et al. Statins reduce the progression of non-advanced adenomas to colorectal cancer: a postcolonoscopy study in 187 897 patients. Gut 2019;68:1979–85.
163. Mas M, Maiti SK, Mukhopadhyay U. Distribution of PM(2.5) and cardiovascular diseases in the elderly: an overview. Int J Environ Res Public Health 2015;12:8187–97.
164. Liu C, Ying Z, Harkema J, et al. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol 2013;41:361–73.
165. Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes 2012;61:3037–45.
166. Brook RD, Jerrett M, Brook JR, et al. The relationship between diabetes mellitus and traffic-related air pollution. J Occup Environ Med 2008;50:32–8.
167. Wang B, Xu D, Jing Z, et al. Effect of long-term exposure to air pollution on type 2 diabetes mellitus risk: a systemic review and meta-analysis of cohort studies. Eur J Endocrinol 2014;171:R173–82.
168. Chow CK, Teo KK, Ranganathan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013;310:959–68.
169. Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011;94:311–21.
170. Chen H, Burnett RT, Kwong JC, et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 2014;129:562–5.