The Use of Moodle-based Learning Management System (LMS) on MATE (Media Ajar Teori Evolusi)

Y Syara¹, BS Anggoro¹, A Handoko¹*, N B Haka¹, A D Kesumawardani¹, N Hidayah¹

¹Universitas Islam Negeri Raden Intan Lampung, Lampung, Indonesia

*akbar.handoko@radenintan.ac.id

Abstract. The goal of this research is to identify students' responses and see the feasibility of MATE (Media Ajar Teori Evolusi). This research is Research and Development. The subjects of the research were students of the sixth semester of Biology Education Department in the academic year of 2019. The ADDIE model (analysis, design, development, implements, and evaluation) was used as the design of the research. The developed product is declared as feasible because of its efficiency, light-weight, and compatibility. The students can construct their ideas. The developed product facilitates knowledge construction through the interactive online instrument. This is the first developed Moodle-based learning management system (LMS) on MATE (Media Ajar Teori Evolusi). It can help the lecturers to be more structured in teaching to achieve the goals of learning. Based on the validation conduction by experts, the overall result is 85,5% and students response in the trial to get an 88% percent-rate average. Judging from the overall result, the learning media is declared as feasible and appropriate to be used.

1. Introduction

Education-based on information, technology, and communication is one of the means to be utilized by lecturers and educational personnel to help students increase their effectiveness, quality, producibility, and accessibility in the world of education to support the development of the younger generation[1-3].

Advances in technology have encouraged development is new learning experiences for students [4] especially in the study of biology on the subject of evolution [5]. The biology learning process refers to the essence of science which covers the process (scientific process), products (scientific products), attitude (scientific attitudes), and technologies [6]. Technology is an important aspect of biological medicine. In the learning process, the media should be designed to solve the issues at hand [7, 8]. One of the uses of computer technology and the internet is the electronics learning system or often called E-learning [9]. E-learning is evolutionary and is always assimilated into the world of education [10]. E-learning is a form of technology and information that can be accepted in online education [11]. Using e-learning is an appropriate transformation of the learning process to be used in schools or digitally managed colleges [12, 13]. Technology solves the limitations of the traditional process of learning [14]. So, the learning process can be done anywhere in a controlled manner [15].

E-learning can open a new prospect for learning development [16]. The good use of E-learning creates an optimum learning process [17]. There are some benefits of E-learning, namely 1) shorten the learning process, 2) make the learning process more productive and efficient, 3) easier information
sharing and access more learning materials, 4) the scientific process not only happens inside the classroom, 5) versatility of place and time, 6) a lot of money can be saved, and 7) the students can take control of each learning process which means they are given the freedom to decide when to begin and finish [18-20].

According to the preliminary study, most students failed to take notes on the learning material and make the difficult to remember the material that the lecturer had described in previous meetings. The relatively short college hours make the process of material understanding to be slow. This research tries to provide an alternative by developing a Moodle-based learning system. The students can use the internet facilities as one of the sources.

Through this LMS, the students can build a process of learning at their own pace from various learning sources by not considering the lecturers as the only source of knowledge. This The developed media is a moodle-based learning management system (LMS) on MATE (Media Ajar Teori Evolusi). This can help the lecturers to achieve the goals of learning.

Moodle stands for Modular Object-Oriented Dynamic Learning Environment [21]. It is a web-based LMS meant to support teaching activities [22]. It is an open-source LMS and free to be downloaded or modified by anyone using a GNU (General Public License) [23, 24]. It can be used to develop an E-learning and distance learning system [25]. Through this concept, the teaching system is infinite in terms of time and space [26]. Moodle can be initialized online or offline. The system needed so the Moodle can run both offline and online is Apache Web Server, PHP, database MySQL or PostgreSQL [27]. All three can be obtained by downloading Xampp, a Moodle centralized online requires hosting, domain, and Moodle files [28].

2. Method
This research was conducted on May 21-23, 2019 to the sixth-semester students of Biology Education Department. There were 20 students involved in the small-scale trial and 60 students involved in the field trial. The research method used was Research and Development (R&D) with the ADDIE model which consists of 5 stages, namely analysis, design, development, implementation, and evaluation. The development stages are described as follow:

2.1 Analysis
At this stage, the analysis was carried out to determine the problem and the solution.

2.1.1 Performance analysis
Based on observations, questionnaires, and interviews with the students and lecturers, information was obtained. It was found that the learning duration was inadequate, students had difficulty in understanding important terms, and the students needed new learning media based on information and communication technology to simplify the learning process.

2.1.2 Need Analysis
At this stage, the specification of the learning media needed by students in the Biology Education Department was analyzed.

2.2 Design
At this stage, an initial product was developed in the form of materials that would be uploaded and hosted on Moodle. After hosting the materials, the next stage was to create a site address domain on the Internet.

2.3 Development
The development stage was carried out based on the development procedure. The developed media was then validated by experts and lecturers. The validation process was carried out by the validator
using previously-made instruments. Validation is an activity to assess whether the design of the products can be categorized as effective media by seeing its feasibility.

2.4 Application
The test subjects in this study were 6th-semester students of classes A, B, D, H which consisted of 60 students.

2.5 Evaluation
The feasibility evaluation was carried out using observations, interview sheets, student and lecturer questionnaire sheets, and assessment sheets for media experts, material experts, and language experts. Data analysis was performed to determine the feasibility of the learning media. The results obtained were used as a consideration in improving the developed product [29, 30].

The data obtained were qualitative and quantitative data. Quantitative data were analyzed descriptively. This quantitative result can determine the level of feasibility of the product. The qualitative data analysis was done by consulting the quantitative scale in table 1.

Table 1 Qualitative Data Scores
Category

Excellent
Good
Moderate
Bad
Poor

The scores for each statement are all averaged and expressed as a percentage using the formula:

\[x_i = \frac{\sum S}{S_{max}} \times 100\% \]

Description:
Smax = Maximum score
\(\sum S = \text{Total score} \)

The quantitative data obtained in this study were analyzed using the percentage method taken from each aspect as shown in table 2.

Table 2 Criteria for Media Feasibility Assessment
Percentage

0 - 20%
20,01% - 40%
40,1% - 60%
60,1% - 80%
80,01% - 100%

3. Results and Discussion
This research produces a product in the form of a Moodle-based learning management system on MATE (Materi Ajar Teori Evolusi). The development process was carried out using the ADDIE model as follows:
Students need learning media that can provide freedom of time in learning without having to meet in class and follow technological advancements.

• The media used were only powerpoints, learning videos, pocket books.

The level of students lack of interest in learning, especially evolution subjects is quite high.

• The groups presentation using PowerPoints to discuss the material, questions sessions were held to build mastery of the material. In addition, evaluation questions in the form of a posttest were also given.

3.1 Analysis
Problem analysis can be obtained from the results of interview sheets by the students and lecturers. The results can be seen in Figure 1.

3.2 Design
This stage consisted of 5 steps: 1) hosting, 2) creating a domain, 3) making teaching materials, 4) making a course, 5) uploading the learning materials.

3.3 Development
This process was carried out by validating the developed media. The steps taken in this stage were 1) media experts validation to analyze and assess the display, 2) material expert validation to analyze and assess the material, 3) language expert validation to analyze the writing in the material.
Figure 3. Login and Home Site Display

Figure 4. Material Display

Figure 5. Activities and Resources Display
The validation process was carried out by experts. The expert team consisted of one material expert, one media expert, and one language expert. The following are the results of validations.

3.4 Media Expert Validation
The results of validation by media expert are presented in the following table:

No.	Assessment aspects	Average	Category
1	Quality aspects	93%	Highly Feasible
2	The effectiveness aspect	96%	Highly Feasible
3	Graphic aspect	93%	Highly Feasible
4	Presentation aspects	95%	Highly Feasible
	Overall Average	94%	Highly Feasible

3.5 Material Expert Validation
The results of validation by the material expert are presented in the following table:

No.	Assessment aspects	Average	Category
1	Content aspect	74%	Feasible
2	Linguistic aspects	67%	Feasible
	Overall Average	72%	Feasible

No.	Assessment aspects	Average	Category
1	Content aspect	83%	Highly Feasible
2	Linguistic aspects	80%	Feasible
	Overall Average	82%	Highly Feasible

3.6 Language Expert Validation
The results of validation by language expert are presented in the following table:

No.	Assessment aspects	Average	Category
1	Aspects of language and communication	73%	Feasible
2	Ethical aspects	80%	Feasible
	Overall Average	76%	Feasible

Table 3. Results of Media Expert Validation

Table 4. Results of expert validation on stage 1 material

Table 5. Results of material expert validation in Stage 2

Table 6. Results of Language Expert Validation on Stage 1
Table 7. Results of Language Expert Validation on Stage 2

No.	Assessment aspects	Average	Category
1	Aspects of language and communication	90%	Highly Feasible
2	Ethical aspects	92%	Highly Feasible
	Overall Average	**91%**	**Very decent**

3.7 Application

The implementation stage was carried out in 3 stages, namely the lecturer assessment, the small-group trial with 20 students, and a field trial with 60 students. Students gave an assessment of responses to the developed media using a Likert scale questionnaire. The following are the results of the lecturer students' responses:

Table 8. Lecturer Assessment Results

No.	Assessment aspects	Average	Category
1	Learning Aspects	82%	Highly Feasible
2	Linguistic Aspects	88%	Highly Feasible
3	Presentation Aspects	95%	Highly Feasible
4	Visual communication aspects	88%	Highly Feasible
	Overall Average	**87%**	**Highly Feasible**

Table 9. Small-Scale Trial Results

Assessment aspects	Average	Category
Feasibility Aspects and Usage Aspects	87%	Highly Feasible
Overall Average	**87%**	**Highly Feasible**

Table 10. Field Trial Results

No.	Assessment aspects	Average	Category
1	Feasibility Aspects and Usage Aspects	89%	Highly Feasible
	Overall Average	**89%**	**Highly Feasible**

3.8 Evaluation

The evaluation stage was carried out to improve the product's quality. The evaluation process was based on overall advice from material experts, media experts, language experts, and the results of lecturers and students' responses. Furthermore, after the evaluation, the developed media was declared as feasible without any further revision.

The media developed in this study is a Moodle-based learning management systems. It was developed by following the ADDIE procedures (analysis, design, development, implementation, evaluation)[31,32]. According to and (2015), a media is said to be good if it meets an aspect of quality, among other things, are the validity, practicality, and effectiveness [33]. Validation is a requirement before the implementation. Students' responses in this study show positive results. The students' responses are based on certain criteria. Permata (2016) states that the responses are meant to show
students’ support, excitement, and interest toward component and activity in learning [11]. If the students’ positive response toward the media is equal to 85% of the overall subjects, based on the media feasibility criteria in table 2, then the media deemed feasible to be used as a learning media.

The results of validation obtained from the experts are as follows: 1) in the first steps, the score obtained from the material expert was 72% but after the revision, the score obtained was 82%. 2) The validation score by media experts was 94%. 3) The validation score by the language expert was 76% percentage and after the revision, the score was 91%. The overall percentage was 87%. The next scores come from the small-scale trials with a total percentage of 87% and a field trial with a total percentage of 89%. Based on the analysis, it can be said that the developed media has met the quality of good media.

According to the student's activity data, it shows that the students have been using some of the media features to download materials, activities, assignments, forums, and chatrooms. However, some parts of the media haven't been accessed by the students such as the glossary dan database. This is because of some reasons: 1) the tools and infrastructure that the students have are limited to access the media optimally and 2) the students are still not used to E-learning.

Improving student's attitudes toward the evolution theory necessary because it affects achieving the objective of learning. This is reinforced by the opinion of Arisandy (2016) that one of the keys to science learning is the students’ positive attitude toward science because it can motivate students to study science. Understanding the students’ attitude is crucial in supporting achievement and interest in certain disciplines [34].

Based on the analysis, it can be said that the developed media meets the quality of good media since it is practical and flexible to be used in learning. However, this development research still has a limitation since the product is only applied to the subject/course. Thus, the researcher suggests applying the developed media into another subject/course.

4. Conclusions
It can be concluded that the developed media is worthy to be used as an additional learning media in the Biology Education Department. The media is efficient, light-weight, and compatible with many browsers. The media is easy to use and supports a variety of languages including Indonesian. It is also has a special management site to make full adjustments to the module. The user management and course management can help the lecturers to achieve the goals of learning. Based on the conclusions above, the suggestions from the researchers are as follows: The lecturers can utilize the developed learning media on the evolution topics in the classroom or outside of the classroom as a tool in delivering material without time limitation due to the availability of the internet network. For further researchers, the developed media should be disseminated to reach a wider range of the target, as well as other subjects besides evolution.

References
[1] A. Handoko, Sajidan, and Maridi 2016Pengembangan module biologi berbasis discovery learning (part of inquiry spectrum learning-wenning) pada materi bioteknologi kelas XII IPA Di SMA Negeri 1 Magelang Tahun Ajaran 2014/2015,J. Inkuiri, 5 3 144–154
[2] B. S. Anggoro2019 Penggunaan prezi untuk media pembelajaran matematika materi fungsi, 2 1 23–32.
[3] Yuberti, 2015 Dinamika teknologi pendidikan. Lampung.
[4] H. D. Herman Dwi, 2014The evaluation of a moodle based adaptive e-learning system, Int. J. Inf. Educ. Technol, 41 89–92.
[5] R. Ristasa, 2015 Sejarah perkembangan teori evolusi makhluk hidup,Pendidik. Biol, 2
[6] S. Sudarisman 2015 Memahami hakikat dan karakteristik pembelajaran biologi dalam upaya menjawab tantangan abad 21 serta optimalisasi implementasi kurikulum 2013,Florea J. Biol. dan Pembelajarannya, 2 1 29–35.
[7] F. Sukmawati 2016Berbasis android untuk bekal menghadapi uan di smp islam bakti 1
surakarta, J. Teknol. Inf., 11 3 1–7.
[8] R. Daniela, B. Noranita, and P. W. Wirawan 2013 Aplikasi pembelajaran biologi interaktif bagi siswa kelas VIII J. Informatics Technol., 2 2 59–65.
[9] M. Islamiyah and L. Widayanti 2016 Efektifitas pemanfaatan e-learning berbasis website terhadap hasil belajar mahasiswa STMIK Asia Malang Pada Mata Kuliah Fisika Dasar, 10 1 41–46.
[10] R. Shrivastava, Y. K. Jain, and A. K. Sachan 2013 Designing and developing e-learning solution: study on, 3 3 305–308.
[11] P. I. Hidayati 2016 Optimalisasi pengembangan blended learning berbasis moodle untuk mata kuliah mikrobiologi, J. Inspirasi Pendidik. Univ. Kanjurahan Malang, 62 8 90–97.
[12] R. H. Hardyanto and H. D. Surjono 2016 Developing and implementing e-learning using moodle, 6 1
[13] L. Herayanti, M. Fuaddunnazmi 2015 Pengembangan media pembelajaran berbasis moodle 1 3 205–209
[14] E. D. Bravo 2019 Audit analysis of students skills and attitudes towards e-learning at the Cagayan State University - Carig Campus: Basis for Innovating Teaching and Learning, Int. J. Sci. Res., 8 5 225–228.
[15] A. P. Sari and A. Setiawan 2018 International journal of active learning the development of internet-based economic learning media using moodle approach, 3 2 100–109.
[16] T. Muhammad, 2017Perancangan learning management system menggunakan konsep computer supported collaborative learning abstraksi this time many universities have implemented e-learning to support learning activities. However AMIK Hass Bandung The Campus where Researchers 1 1 35–63.
[17] Y. Maryeni 2013 Aplikasi e-learning sebagai model pembelajaran berbasis teknologi informasi 9 1 27–39.
[18] I. Syamsuddin and A. Min2014Assessing moodle as learning management system platform for english course based TOEFL.Int. J. Comput. Trends Technol., 18 6
[19] H. D. Surjono2007The design and implementation of an adaptive e-learning system Yogyakarta State Univ. Indones., 2 1 13–15.
[20] B. H. S. F. S. T. S. R. Riandi 2017 Development of vertebrata lecturing program based on learning object to improving students develop teaching materials skills based on ICT, Int. J. Sci. Res., 6 6 19 01–09.
[21] G. Indrawan, 2017 Moodling Your Class, 1st ed. Depok: PT Raja Grafindo Persada.
[22] S. M. Joel 2015 Learning management system success : increasing learning management system usage in higher education in sub-Saharan Africa Joel S . Mtebe,Int. J. Educ. Dev. Using Inf. Commun. Technol., 11 2 51–64.
[23] H. Hsu, 2012 The acceptance of moodle: an empirical study based on UTAUT.Creat. Educ., 3 8 44–46.
[24] V. Jasmine, G. Avila, N. G. Hembra, J. M. Mueco, and F. G. Zamora 2015 Moodle and facebook as a tool for delivering instruction and attainment of learning, LPU Laguna J. Arts Sci. Commun. Res., 221 227–250.
[25] A. Zeileis, N. Umlauf, and F. Leisch 2014 Flexible generation of E-learning exams in R: Moodle quizzes, OLAT assessments, and beyond, J. Stat. Softw., 58 11–36.
[26] D. S. Prawiradilaga 2013 Mozaik Teknologi Pendidikan e-learning, Pertama. Jakarta: Kencana.
[27] D. Chourishi 2012 Effective e-learning through moodle moodle for e-learning,Int. J. Adv. Technol. Eng. Res.
[28] S. Suppasetseeree and N. K. Dennis 2010 The use of moodle for teaching and learning english at tertiary level in Thailand, Int. J. Humanit. Annu. Rev., 86 29–46.
[29] Sugiyono, 2015 Metode Penelitian Pendidikan (Pendekatan Kuantitatif, Kualitatif, dan R&D). Bandung: Alfabeta.
[30] S. Arikunto 2012, Prosedur Penelitian. Jakarta: Bumi Aksara.
[31] N. W. Siwardani, N. Dantes, and I. G. K. A. Sunu 2015 Pengaruh model pembelajaran addie terhadap pemahaman konsep fisika dan keterampilan berpikir kritis siswa kelas X SMA Negeri 2 Mengwi Tahun Pelajaran 2014 / 2015, 61 1–10.

[32] B. K. Sari, 2016 Desain pembelajaran model ADDIE dan imeplemtasinya dengan teknik jigsaw," Pros. Semin. Nas. Pendidik. 94–96.

[33] A. A. Azis 2012 Pengembangan media e-learning berbasis lms moodle pada matakuliah anatomi fisiologi manusia 1–8.

[34] A. Ambarita, Implementation of e-learning system using the software MOODLE," Indones. J. Inf. Syst., 1 47–58.