Venus flytrap (*Dionaea muscipula* Solander ex Ellis) contains powerful compounds that prevent and cure cancer

François Gaascht1, Mario Dicato1 and Marc Diederich2 *

1 Laboratory for Molecular and Cellular Biology of Cancer (LBMC), Hôpital Kirchberg, Luxembourg, Luxembourg
2 Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, South Korea

INTRODUCTION

Natural products derived from plants, animals, and microorganisms have traditionally been the main source of active medicinal compounds without a deep understanding of their mechanism of action. Emergence of resistance in different already known pathologies (cancer, bacterial infections) (1, 2), but also the emergence of other, yet incurable diseases (Alzheimer’s disease, Parkinson’s disease, AIDS ...) (3), call for the discovery of novel therapeutic compounds and the improvement of efficiency of already known molecules (4, 5).

The term “secondary metabolites” refers to molecules, which are not directly involved in essential processes like development, growth, and reproduction compared to the primary metabolism. Synthesized by all living kingdoms (Archaean, Bacteria, Protistsae, Plantae, Fungi, and Animalia), these non-essential metabolites are different depending on the species and are classified according to their method of synthesis. Structurally highly diversified and complex and present in very small quantities, secondary metabolites account for often less than 1% of the total mass of organic carbon in the organism. Their level of synthesis can also depend on the physiological and the developmental stage of the organism but also environmental factors like the soil, climate, or weather. Synthesis of secondary metabolites can be induced after stimulation by stressors from diverse origins. Originally isolated from plants, recent researches have shown that some secondary metabolites are synthesized by symbiotic organisms like bacteria and not by the host organisms themselves and that other have symbiotic origins. The role of secondary metabolites is to ensure the survival of the organism in its environment. Some allow organisms to protect themselves against predators or herbivores, insects, pathogens but also to kill preys like snake and arthropod venoms or against other organisms for access to resources (light, water, and nutrients). Other metabolites can help to resist environmental stress (drought, nutrient deficiencies), attract pollinating insects (by color and odor), or to ensure symbiosis with other organisms. To date, more than 200,000 different secondary metabolites have been discovered and described. Some have been diverted from their original use by human and are now used in commercial preparations such as dyes, drugs, or insecticides (6–12).

"NON-FOOD” PLANTS ARE ALSO AN ATTRACTIVE SOURCE OF MOLECULES WITH POTENTIAL CHEMOPREVENTIVE INTEREST

Various chemopreventive and therapeutic compounds have been isolated from food plants. We can notably mention, flavonoids (carrots) including chalcones, isothiocyanates (cabbage), lycopene (tomatoes), indoles, organosulfides (garlic), and polyphenols (curcumin) (13–19).

Many compounds can also be found in food preparations made with fruits or vegetables like resveratrol from red wine (20–22) or catechins and procyanidins and polyphenols from cocoa (23, 24) or quercetin and kaempferol from honey (25).

However, many “non-food” plants from all around the World are also attractive sources for molecules with potential chemopreventive interests (26–29).

The underwater world is also rich in bioactive molecules with chemopreventive and anti-tumor potential. Among these secondary metabolites discovered in animal, fungi, micro-organism, or marine plants we can mention, for example heteronemin and hemisterlin (sponges), kahalalide F. (sea slug), amphidinolides (echinoderm), didemnin B (tunicate), and naphthopyrones (algae) (12, 18, 30–34).

THE VENUS FLYTRAP (*DIONAEA MUSCIPULA* SOLANDER EX ELLIS)

Different populations used carnivorous plants for hundreds of years in traditional medicine all around the World. In Europe...
and North America, butterworts (Pinguicula vulgaris, Pinguicula alpina) were used for the treatment of wounds. Decoctions of butterworts and sundew (Drosera rotundifolia) were administered for their expectorant and antitussive properties to people with respiratory diseases like pertussis, bronchitis, and asthma but also to treat stomach pain and tuberculosis. Magic properties of sundews were also used for their aphrodisiac effects and their ability to promote delivery. Today this type of plant is used by the modern pharmaceutical industry in the preparation of syrups to treat coughs. The fresh juice secreted by the leaves of sundew is used for local application on warts or bunions (35–38).

In North America, roots and leaves of the purple pitcher plant Sarracenia purpurea were used by the endogenous population for its diuretic and laxative properties and also to treat fever, cough, and diabetes. The plant was also used to treat other infectious diseases like scarlet fever, smallpox, and measles. Plant decoctions were also prescribed to pregnant women to ease labor, to prevent sickness after childbirth and to treat absence of menstrual cycle (35–37, 39, 40).

In South-East Asia and in India, natives from local tribes used the pitcher plant Nepenthes khasiana as medical plant. They used juice of young flowers and of unopened pitchers or crushed pitcher powder to treat stomach pain and eye troubles (pain, cataract, night blindness), urinary troubles but also skin diseases. Preparations were also given to malaria, leprosy, and cholera patients (41–46).

The Venus flytrap (D. muscipula Solander ex Ellis), the only species of the genus Dionaea, is a carnivorous plant that grows in marshy areas of North and South Carolina states of the United States (Figure 1). To survive in these environments that are poor in nutrients, it has developed active traps to catch small prey (insects, spiders) that serve as an additional source of nutrients. The plant catches its prey with nectar produced by glands localized at the inner side of the trap and exposing an UV pattern. When the animal touches a sensitive trigger hair, a movement of ions is generated, producing an osmotic gradient that changes the size and shape of specialized cells of the trap that result in trap closure (47–49). Once the trap closes on the prey, other glands, also localized at the inner part of the trap, secrete a digestive acid liquid containing a number of enzymes (proteases, nucleases, phosphatases, and amylases) for digestion of the prey (50). Nutrients are released and then reabsorbed by the plant through both digestive glands and by endocytosis (51–53).

SECONDARY METABOLITES OF DIONAEA MUSCIPULA

Dionaea muscipula was also the subject of modern biomedical research. The analysis of the various different secondary metabolites (naphthoquinones, flavonoids, phenolic acids) isolated from the plant and identified (Table 1; Figure 2) revealed that they possess different interesting therapeutic properties (54–58).

NAPHTHOQUINONES

These pigment molecules are widespread in plants, lichens, fungi, and microorganisms and these molecules derive from the phenol synthesis pathway. In plants, they act as bactericide, insecticide, fungicide, and allelopathic agents (substances that promote or impede the growth of surrounding organisms) (70, 135, 136).

Plumbagin

Plumbagin (Figure 2) is a yellow naphthoquinone with antibacterial, anti-fungal, anti-inflammatory, and anti-cancer properties. This molecule gets its name from the plant in which it was discovered, Plumbago zeylanica (59) but is very common and is present in others plants like Limonium axillare or walnut trees (Juglans sp.) (60–63) but also in other carnivorous plants like N. khasiana, Nepenthes gracilis, or Drosera binata (64, 137, 138). The roots of P. zeylanica were already used for centuries in Indian traditional medicine for their cardio tonic, neuroprotective, and hepatoprotective properties (139). In the Venus flytrap, plumbagin provides a protective role against predators and parasites (58).

Capable to generate reactive oxygen species (ROS) and to induce DNA cleavage, plumbagin inhibits topoisomerase II in HL-60 cells (65). It also has a cytotoxic effect on A549 cells and is described as being able to disrupt the microtubular network by interacting directly with tubulin (66). This particular naphthoquinone is known to be an inhibitor of the activated NF-κB (Nuclear Factor kappa B) signaling pathway induced by carcinogens, inflammatory stimuli and TNF-α (Tumor Necrosis Factor alpha). It blocks the expression of anti-apoptotic genes...
Table 1 | Listing of molecules present in *Dionaea muscipula* Solander ex Ellis.

Chemical class	Compound	Source other than *Dionaea muscipula*	Biological properties	Reference
Naphthoquinones	Plumbagin	Drosera sp., Juglans sp., Limonium axillare, Nepenthes gracilis, Nepenthes khasiana, Plumbago zeylanica	Anti-bacterial, anti-fungal, anti-parasitic agent, ROS generator, apoptotic agent, cell cycle blocker, Akt, NFκB pathway inhibitor, Akt, JNK and p38 pathway activator, angiogenesis inhibitor, microtubule inhibitor	Hsieh et al. (59), Bashir et al. (60), Binder et al. (61), Hedin et al. (62), Raj et al. (63), Aung et al. (64), Kawiak et al. (65), Achariya et al. (66), Hsu et al. (67), Sandur et al. (68), Li et al. (69)
		Drosophyllum lusitanicum, Plumbago zeylanica	Anti-microbial agent, cytotoxic agent	Pakulski and Budzianowski (57), Gu et al. (70), Lin et al. (71), Whitson et al. (72)
		Drosophyllum lusitanicum, Plumbago zeylanica	n.d.	Kreher et al. (14), Budzianowski et al. (73), Bringmann et al. (74), Sidhu and Sankaram (75)
		Drosophyllum lusitanicum, Plumbago zeylanica	n.d.	Miyoshi et al. (77), Salae et al. (78)
		Drosophyllum lusitanicum, Plumbago zeylanica	n.d.	Kreher et al. (14), Budzianowski et al. (73)
Phenolic acids	Ellagic acid, 3-O-methyl ellagic acid, 3,3-di-O-methyl ellagic acid, 4-O-glucoside, 3,3-di-O-methyl ellagic acid, 4,4′-di-O-glucoside, 1-O-galloyl-β-glucose	Drosophyllum lusitanicum, Punica granatum, Terminalia chebula (fruit), Berries, Vitis rotundifolia	Apoptotic agent, MAPK, PI3/Akt, NFκB pathway inhibitor, angiogenesis inhibitor, ABC transporter inhibitor	Pakulski and Budzianowski (57), Aguilera-Carbo et al. (79), Cardona et al. (80), Huang et al. (81), Pellati et al. (82), Edderkaoui et al. (83), Malik et al. (84), Li et al. (85), Tan et al. (86)
		Terminalia chebula, Citrus aurantium, Rhodomyrtus tomentosa, Rubus niveus, Vitis sp., Carrot	Apoptotic agent, Anti-inflammatory agent, cell cycle blocker, kinase inhibitor	Kovacik et al. (54), Pellati et al. (82), Karimi et al. (88), Lai et al. (87), Sultana et al. (88), Verma et al. (89), Weidner (90) #120, Chandramohan Reddy et al. (91), Leon-González et al. (92)
		Ficus microcarpa, Vanilla planifolia	Growth inhibitor, apoptotic agent, matrix metalloproteinase inhibitor, PI3/Akt, NFκB pathway inhibitor, angiogenesis inhibitor	Kovacik et al. (54), Ao et al. (83), Cottle and Kolattukudy (94), Lirdprapamongkol et al. (95), Lirdprapamongkol et al. (96), Lirdprapamongkol et al. (97), Shahidi and Perera (98)
		Small fruit seeds, potato,	Growth inhibitor, apoptotic agent, matrix metalloproteinase inhibitor, PI3/Akt, NFκB pathway inhibitor, angiogenesis inhibitor	Kovacik et al. (54), Ao et al. (83), Cottle and Kolattukudy (94), Lirdprapamongkol et al. (95), Lirdprapamongkol et al. (96), Lirdprapamongkol et al. (97), Shahidi and Perera (98)
		Vanilla planifolia	Growth inhibitor, apoptotic agent, matrix metalloproteinase inhibitor, PI3/Akt, NFκB pathway inhibitor, angiogenesis inhibitor	Kovacik et al. (54), Ao et al. (83), Cottle and Kolattukudy (94), Lirdprapamongkol et al. (95), Lirdprapamongkol et al. (96), Lirdprapamongkol et al. (97), Shahidi and Perera (98)
		Brown rice, small fruit seeds	Cytotoxic agent	Kovacik et al. (54), Hudson et al. (99), Shahidi and Perera (98)

(Continued)
Chemical class	Compound	Source other than Dionaea muscipula	Biological properties	Reference
Protocatechuic acid	Protocatechuic acid	*Alpinia oxyphylla, Hibiscus sabdariffa, Rhizoma halamolena, Spatholobus subresectus*	Apoptotic agent, NFkB pathway inhibitor, Matrix metalloproteinase inhibitor	Kovacik et al. (54), Chen et al. (100), Lin et al. (101), Qing et al. (102), Tang et al. (103), Lin et al. (104), Anter et al. (105)
Caffeic acid	Caffeic acid	*Vitis sp., Bellis perennis, coffee beans, Punica granatum, Hyssopus officinalis*	ROS generator, apoptotic agent, Anti-inflammatory agent, NFkB pathway inhibitor, Cell cycle blocker	Kovacik et al. (54), Weidner et al. (90), Soognamiglio et al. (106), Rajendra Prasad et al. (107), Moon et al. (109), Jaganathan (109)
Chlorogenic acid	Chlorogenic acid	Coffee beans, Prunus domestica, Lonicera japonica	Genotoxic agent, ROS generator, apoptotic agent	Kovacik et al. (54), Weidner et al. (90), Huang et al. (69), Shahidi and Perera (98), Graf (114)
Ferulic acid	Ferulic acid	Brown rice, small fruit seeds, pineapple, Vitis sp.	Anti-oxidant agent	Kovacik et al. (54), Weidner et al. (90), Hudson et al. (69), Shahidi and Perera (98), YANG et al. (113)
Salicylic acid	Salicylic acid	*Salix sp.*	Anti-metabolism agent, anti-inflammatory agent, apoptotic agent	Kovacik et al. (54), Hayat et al. (115), Zita et al. (116), Spitz et al. (117)
Syringic acid	Syringic acid	*Tamarix aucheriana, white sorghum*	Cell cycle blocker, apoptotic agent, angiogenesis inhibitor, NFkB pathway inhibitor, Proteasome inhibitor	Kovacik et al. (54), Afify Ael et al. (118), Abaza et al. (119)
p-hydroxybenzoic acid	p-hydroxybenzoic acid	White sorghum, carrot	n.d.,	Kovacik et al. (54), Afify Ael et al. (118), León-González et al. (82)
Sinapic acid	Sinapic acid	Brown rice, small fruit seeds	Proliferation inhibitor, ABC transporter inhibitor	Kovacik et al. (54), Kampa et al. (120), Hudson et al. (69), Shahidi and Perera (98)
p-coumaric acid	p-coumaric acid	Brown rice, small fruit seeds, white sorghum	Proliferation inhibitory	Kovacik et al. (54), Hudson et al. (69), Shahidi and Perera (98), Tan et al. (85)
Flavonoids	Quercetin, Quercetin 3-O-glucoside, Quercetin 3-O-2′″-O-galloylglucoside, Quercetin 3-O-galactoside, Quercetin 3-O(2′″-O-galloyl)galactoside	*Drosera peltata, Ginkgo biloba, Nepenthes gracilis, Sarracenia purpurea*	ROS generator, Cell cycle blocker, NFkB, Wnt pathway inhibitor, Apoptotic agent, kinase inhibitor	Aung et al. (64), Muhammed et al. (121), Park et al. (122), Shan et al. (123), Vidya Priyadarshini et al. (124), Bishayee et al. (125), Kang et al. (126), Li et al. (69), Pakulski and Budzianowski (127)
	Myricetin	*Chamaecyparis obtusa, Jatropha curcas, Berries*	Genotoxic agent, Cell cycle blocker, Apoptotic agent, Akt pathway inhibitor, Matrix metalloproteinase inhibitor	Hakkinen et al. (128), Oskoueian et al. (129), Zvolak et al. (130), Sun et al. (131)
	Kaempferol, kaempferol 3-O-galactoside, kaempferol 3-O-glucoside	*Drosera peltata, Ginkgo biloba, Gynera medica, Nepenthes gracilis, Ptenedium aquilinum*	Apoptotic agent, angiogenesis inhibitor, topoisomerase inhibitor, proteasome inhibitor	Aung et al. (64), Calderon-Montano et al. (132), Kang et al. (126), Luo et al. (133), Luo et al. (134), Li et al. (69), Pakulski and Budzianowski (127)

n.d., non-defined.
including Bcl-2, Bcl-xl, and surviving and genes regulating cell proliferation (cyclin D1) and angiogenesis like Matrix metalloproteinase 9 (MMP-9) or Vascular endothelial growth factor (VEGF). It thus leads to cell cycle arrest at the G2/M phase transition and an increase of the TNF-induced apoptosis (67, 68). In H460 lung cancer cells, plumbagin increases the expression of p53 and p21, which leads to cell cycle arrest in G2/M and triggers death by apoptosis. In addition, the authors showed that naphthoquinone activates both JNK and p38 but at the same time inhibits the activity of Akt (141). However in another study, plumbagin has been shown to activate both Akt and ERK 1/2 in healthy pre-adipocyte 3T3-L1 mouse cells (143).

In vivo experiments performed on mice have shown that plumbagin inhibits the growth of tumors and the number of metastasis by an inhibition of the expression of several markers like MMP-9, 2, and VEGF in ovarian and prostate-cancer cells (144, 145). Due to its structure, plumbagin is also known as a ROS generator. In MCF-7 cells, increased ROS accompanies a decrease of cell viability. Analysis of the mechanism triggered by ROS suggests that plumbagin inhibits 1, 4-phosphatidylinositol 5-kinase (PI5K) expression. In K562 cells, naphthoquinone up-regulates the membrane level of death receptors (DRs) DR4 and DR5, which results in a higher sensitivity to TRAIL (TNF-related apoptosis-inducing ligand) and a reduction of cell viability. Results obtained by molecular docking showed that plumbagin docks into the receptor ligand site of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-DR 5 complex that contributes to explain triggering of apoptosis via the extrinsic pathway (146–149). Plumbagin is also known to act as an inhibitor of multidrug resistance-linked ATP-binding cassette drug transporter ABCG2, a protein responsible for the drug efflux in cancer cells (150). Ex vivo and in vitro experiments showed that plumbagin inhibits microtubule polymerization by direct binding to tubulin at the colchicine binding site (66).

Pharmacokinetic studies have shown that plumbagin has an oral
bioavailability of about 40% in conscious freely moving rat models and that plumbagin is detected in a micromolar range 1 h after administration (151).

Plumbagin derivatives

Some others plumbagin derived molecules have also been isolated from *D. muscipula* by several groups. A plumbagin-dimer, 8,8′-biplumbagin also called maritinone (Figure 2) have also been isolated from the carnivorous plant (57) but also from other plants like *P. zeylanica* or Malaysian persimmon (*Diospyros maritima*) (71, 72). Tested for its potent anti-tumoral effect on KB, LNCaP, Lu1, K562, Raji, Jurkat, Vero, Calu-1, HeLa, and Wish cancer cell lines, maritinone has shown strong effects on the proliferation of these cells (70, 71). Identified in other plants than *D. muscipula* like Malaysian persimmon (*Diospyros maritima*) and carnivorous plants *Nepenthes* sp., and *Drosophyllum lusitanicum* (73, 76, 137, 152) and isolated by Kreher et al. drosorone (Figure 2), 3-chloroplumbagin (Figure 2), and hydroplumbagin 4-0-β-glucopyranoside (Figure 2) (14) have not yet been studied for their biological effects. Miyoshi et al. reported the isolation of two other naphthoquinones, diomsucinone (Figure 2), and diomsucipitone (Figure 2) together with plumbagin from roots of Venus flytrap (77). Recently, diomsucinone has been isolated from *Diospyros wallichii* (78) but none of these three compounds have been tested to elucidate their biological effects out of the plant.

PHENOLIC ACIDS

The term “phenolic” or “polyphenol” is chemically defined as a molecule, which possesses at least one aromatic ring (phenol) or several (polyphenol) hydroxyl substituents. They have many roles in plants like UV sunscreens, messengers, pigments, plant growth factors and protection against fungi, bacteria, insects, and nematodes (153).

Ellagic acid

Ellagic acid (Figure 2) is a polyphenolic molecule synthesized by Venus flytrap and many other plants such as pomegranate (*Punica granatum*), *Terminalia chebula* fruit (yellow myrobalan), berry fruits (blueberry, blackberry, and strawberry), *Vitis rotundifolia* (Muscadine grapevine), or black walnut (*Juglans nigra*). Ellagic acid has been tested to elucidate their biological effects out of the plant. Ellagic acid induces cell death by apoptosis in K562 cells (84). Ellagic acid decreases human prostate carcinoma PC3 cell growth and viability in a dose-dependent manner in nude BALB/c mice. Immunohisto-blot analysis performed on mice prostate tissues revealed decreased cdc2, Cdk2, Cdk4, and Cdk6 expression as well as a reduction of the proteins cyclin B1 and E (166). Two human osteosarcoma cell lines U-2OS and MNNG/HOS treated with gallic acid showed inhibition of prostate-cancer growth and progression. Western-blot analysis performed on mice prostate tissues revealed decreased p38 and ERK 1/2 activation and decreases of JNK. Moreover, pre-treatment with a p38 inhibitor prevents gallic acid-induced growth inhibition but not ERK 1/2 and JNK inhibitors that promotes proliferation. Inhibition of tumor growth is confirmed by *in vivo* experiments in a dose-dependent manner in nude BALB/c mice. Immunohistochemistry shows a decrease of PCNA (Proliferating Cell Nuclear Antigen) and CD31 expression in MNNG/HOS tumor tissues (167). Pharmacokinetic studies have shown that gallic acid is rapidly absorbed by the organism, metabolized in different forms after 2 h, and are detected at a micromolar range in plasma, a rat models with inducible colon cancer have shown that ellagic acid reduces expression of NF-κB, COX-2 (Cyclooxygenase-2), iNOS (inducible nitric oxide synthase), TNF-α, and IL-6 (158). Using human breast cancer MDA-MB-231 cells and human umbilical vein endothelial cells (HUVEC), Wang et al. have shown that ellagic acid inhibits proliferation, migration, and endothelial cell tube formation. Inhibiting VEGFR-2 tyrosine kinase activity and the downstream signaling pathways including MAPK (Mitogen-activated protein kinase) and PI3K (Phosphatidylinositol-3-kinases)/Akt, ellagic acid decreases MDA-MB-231 breast cancer xenograft growth and p-VEGFR-2 expression. Further *in silico* molecular docking simulations showed that ellagic acid could bind within the ATP-binding region of the VEGFR-2 kinase unit (159).

Gallic acid

Gallic acid (Figure 2) has been isolated from bitter orange tree flowers (*Citrus aurantium*), *Marrubium persicum*, yellow myrobalan fruit (*T. chebula*), *Acalypha australis*, *Pleurostoma* sp., *Vitis* sp. seeds, rose myrtle (*Rhodomyrtus tomentosa*), Mysore raspberry (*Rubus niveus*), white sorghum, or carrot (82, 86–88, 90, 118, 160–162).

This tannin that can be released by the aerial parts of the plant is a nematicide but possesses other anti-bacterial and anti-fungal properties (88, 163, 164).

Described in many papers as an anti-cancer agent that can affect many cellular targets (89), gallic acid induces cell cycle arrest in G0/G1 in human leukemia K562 cells by down-regulating cyclin D and E levels. Gallic acid induces cell death by apoptosis in K562 leading to PARP-1 cleavage, cytochrome c release, and caspase activation. Expression of COX-2, a molecule involved in cancer-related inflammation and progression, is also reduced by gallic acid treatment. Furthermore, this phenolic acid inhibits BCR/ABL tyrosine kinase and NF-κB pathway activity (91). Moreover, this vegetable tannin blocks Akt/small GTPase and NF-κB pathway activity in human gastric carcinoma AGS cell line and inhibits cellular migration via the expression of RhoB. Results have been confirmed in nude mice models where gallic acid treatment leads to decreased development of metastasis (165). In *vivo* experiments using a mouse prostate TRAMP model fed with gallic acid showed inhibition of prostate-cancer growth and progression. Western-blot analysis performed on mice prostate tissues revealed decreased cdc2, Cdk2, Cdk4, and Cdk6 expression as well as a reduction of the proteins cyclin B1 and E (166). Two human osteosarcoma cell lines U-2OS and MNNG/HOS treated with gallic acid allowed demonstrating inhibition of cell proliferation and induction of apoptotic cell death. Results show that gallic acid increases p38 and ERK 1/2 activation and decreases of JNK. Moreover, pre-treatment with a p38 inhibitor prevents gallic acid-induced growth inhibition but not ERK 1/2 and JNK inhibitors that promotes proliferation. Inhibition of tumor growth is confirmed by *in vivo* experiments in a dose-dependent manner in nude BALB/c mice. Immunohistochemistry shows a decrease of PCNA (Proliferating Cell Nuclear Antigen) and CD31 expression in MNNG/HOS tumor tissues (167). Pharmacokinetic studies have shown that gallic acid is rapidly absorbed by the organism, metabolized in different forms after 2 h, and are detected at a micromolar range in plasma, a
concentration lower than the concentration used for several biological studies. A study conducted on black tea drinkers showed that after 3 h, the organism eliminates nine different metabolized forms of gallic acid via the urinary tract (168, 169).

Vanillin
Vanillin (Figure 2) is probably one of the most famous flavor molecules and the most used widely used by food, chemical and perfume industries. Isolated in 1858 by Gobley as the main flavor constituent of vanilla (Vanilla planifolia), but also present in other plants (potatoes, Ficus microcarpa) (83, 93, 94), vanillin is today mainly synthesized or produced by chemical or biotechnological methods using fungi or bacteria (170–173). In addition to being a flavor molecule, vanillin exerts anti-fungal, and anti-bacterial properties (174, 175).

At non-toxic concentrations, vanillin inhibits growth of mammary adenocarcinoma cell line 4T1 but also decreases MMP-9 activity and thus reduces cell migration and invasion. In vivo experiments performed on 4T1 mammary adenocarcinoma cells injected in BALB/c mice have shown that vanillin strongly reduces the number of lung metastasis colonies. Similar experiments performed with vanillic acid were not conclusive (95). Further experiments performed by the same group have shown that vanillin pre-treatment of Hela cells blocks TRAIL – induced phosphorylation of subunit p65 and transcriptional activity of NF-κB pathway and stimulates TRAIL-induced cell death through the extrinsic apoptosis pathway (96). Vanillin also inhibits cell migration of human liver cancer cells induced by hepatocyte growth factor (HGF). It prevents Akt phosphorylation but has no effect on Met and ERK phosphorylation and inhibits phosphatidylinositol 3-kinase (PI3K). Chick choorioallantoic membrane assays showed that vanillin inhibits also angiogenesis (97). Vanillin induces apoptosis in HT-29 human colorectal cancer cell line and NIH/3T3 normal cell lines with a concentration of 400 and 1000 µg/mL, respectively. Flow cytometry analysis showed that a low concentration of vanillin induce cell cycle arrest in G0/G1 phase whereas a high concentration stops cells in G2/M phase (176). Pharmacokinetic studies on rat models demonstrated that vanillin has a relatively good bioavailability (7.6%). Others studies have revealed that 24 h after ingestion, vanillin is mainly metabolized as glucuronide and sulfate conjugates and that after 48 h, 94% of the initial dose of vanillin is found under different forms, including vanillin itself (7%) (177, 178).

Protocatechuic acid
Described by many articles as therapeutic molecules active against several diseases, protocatechuic acid (Figure 2) was identified in plants like True roselle (Hibiscus sabdariffa), Rhizoma homalome- nae, Spatholobus suberectus, and Alpinia oxyphylla (100–103, 179).

Protocatechuic acid inhibits AGS (human stomach adenocarcinoma) cell migration and proliferation at non-toxic concentrations. It can also inhibit the NF-κB pathway and both MMP-2 expression and activity by modulating Rhob/protein kinase Cs (PKCs) and Ras/Akt cascade pathways. Using in vivo mice models (B16/F10 melanoma cells), anti-metastasis proliferation of protocatechuic acid has been confirmed (104). Phenolic acid induces cell death of HepG2 hepatocellular carcinoma cells and stimulates c-Jun N-terminal kinase (JNK) and p38. Further experiments have shown that pre-treatment of HepG2 with N-acetyl-l-cysteine (NAC) blocks the cytotoxic effect of protocatechuic acid (180). Protocatechuic acid doesn’t exert genotoxic effects toward Drosophila melanogaster wing spot assay. However it shows antigenotoxic effects against hydrogen peroxide inhibits tumori- dinal activity and moreover triggers cell death by apoptosis in HL-60 leukemia cells (105).

Caffeic acid
Present in Vitis sp. seeds, pomegranate (P. granatum), coffee beans, honey, common daisy (Bellis perennis), and hyssop (Hyssopus officinalis), caffeic acid (Figure 2) is a secondary metabolite that exerts anti-bacterial and anti-fungal properties (90, 106, 181, 182).

Caffeic acid is a ROS generator inducing oxidative DNA damage and alters mitochondrial membrane potential in HT-1080 human fibrosarcoma cells. It stimulates lipid peroxidation and decreases activities of enzymatic anti-oxidants superoxide dismutase (SOD), catalase (CAT), as well as glutathione peroxidase (GPx), and glutathione (GSH) levels. Observations by fluorescence microscopy showed that caffeic acid induces cell death by apoptosis (107). This molecule is known to act as an inhibitor of DNA methylation due to its ability to inhibit human DNA methyltransferase 1 (DNMT1) and to partially inhibit retinoic acid receptor (RAR) b promoter in MCF-7 and MAD-MB-231 cells (183). Caffeic acid is an anti-inflammatory agent by decreasing expression of IL-8 and NF-κB pathway activity by triggering TNF-alpha-induced IkB degradation that lead to a reduction of NF-κB target genes expression which are regularly involved into carcinogenesis (108). Caffeic acid decreases HCT 15 colon cancer cells in a time dependent manner. It induces cell cycle arrest that leads to accumulation of cells in sub-G1. Inducing also ROS production and reduction of the mitochondrial membrane potential, flow cytometry analysis confirmed cell death by apoptosis (109). Among several small phenolic acids tested for their anti-proliferative effect on T47D human breast cancer cells, caffeic acid exerts most potent. Further experiments showed that all compounds induce apoptosis via the Fas/Fasl pathway and that caffeic acid is able to inhibit aryl hydrocarbon receptor-induced CYP1A1 gene expression (120). However it is important to underline that chlorogenic acid (Figure 2), a caffeic acid analog and a Venus flytrap secondary metabolite, can be hydrolyzed to caffeic acid in the intestine and can be well absorbed by intestinal cells. In vitro and in vivo studies showed that in Caco-2 cells, caffeic acid exerts stronger anti-oxidant properties compared to chlorogenic acid. This differential efficiency can be explained by the fact that caffeic acid uptake is superior to chlorogenic acid uptake. Caffeic acid is a molecule known to be metabolized by intestinal bacteria, however studies have shown that caffeic acid can be detected in rat blood 6 h after ingestion together with different other metabolites. Another study demonstrated that 95% of caffeic acid is absorbed and that 11% of the ingested caffeic acid was excreted in urine (182, 184–187).

Chlorogenic acid
Chlorogenic acid (Figure 2) has been isolated from a huge diversity of plants like prune (Prunus domestica), japanese honeysuckle.
In plants, chlorogenic acid is a secondary metabolite involved in plant defense against pests, herbivores, fungi, or virus (191–194).

Human adenocarcinoma Caco-2 cells treated with chlorogenic acid present a reduced proliferation rate and light microscopy observation reveals an abnormal morphology compared to untreated cells (195). Chlorogenic acid induces apoptosis by inducing ROS generation and reduces the mitochondrial membrane potential in U937 human leukemia cells. Further results obtained by Western-Blot show that chlorogenic acid promotes caspase-3 activity and expression of caspase-3, 7, 8, and 9 in U937 cells (113). Chlorogenic acid can induce DNA damage in both normal lung MRC5 fibroblasts and A549 lung cancer cells and increases the levels of topoisomerase I- and topoisomerase II-DNA complexes in cells although cancer cells were the most sensitive to chlorogenic acid treatment (196). This compound also acts as an anti-oxidant reducing free radical DNA damages like DNA-single strand breaks (110, 197).

Chlorogenic acid has a very low bioavailability but is always present in the small intestine. It can only be detected in rat plasma with other metabolites in trace amounts 6 h after absorption. Another study has given the same result, chlorogenic acid has a rate of absorption of 33% and is detected only in trace amounts in rat urine. Studies showed that chlorogenic acid is not well absorbed by the organism to structurally related caffeic acid. Caffeic acid metabolism produces caffeic and ferulic acid, two other secondary metabolites of D. muscipula (184–186).

Ferulic acid

Ferulic acid (Figure 2) has been identified mainly in seeds like Vitis sp. seeds brown rice, but also wheat flour, pineapple, creosote bush (Larrea divaricata). Ferulic acid is an allelopathic agent that acts as seed germination inhibitor (98, 99, 90, 198–202, 222).

Ferulic acid pre-treatment protects against γ-radiation-induced DNA damage in hepatocytes and significantly increases anti-oxidant enzymes, GSH, vitamins A, E, and C (203). In vivo studies have shown that mammary carcinogenesis induced in Sprague-Dawley rats fed with ferulic acid prevent tumor development in 80% of animals. It can only be detected in rat plasma with other metabolites in trace amounts 6 h after absorption. Another study has given the same result, chlorogenic acid has a rate of absorption of 33% and is detected only in trace amounts in rat urine. Studies showed that chlorogenic acid is not well absorbed by the organism to structurally related caffeic acid. Caffeic acid metabolism produces caffeic and ferulic acid, two other secondary metabolites of D. muscipula (184–186).

Salicylic acid

Already used by the Greeks and the Egyptians to treat aches and pains, this compound was initially isolated from willow tree bark by Buchner (Figure 2) in 1898. The isolated active principle was named from the Latin word “Salix” which means willow tree. Salicylic acid has been identified as the main metabolite of acetyl-salicylic acid, the active principle of aspirin. Salicylic acid is a phytohormone that plays important roles in plant immune system, thermogenesis (heat production), root nodule formation but also more essential process like metabolism, flowering, and seed germination. Due to its important role, salicylic acid is found in almost all plants (115, 209–213).

Salicylic acid has no effect on CaCo-2 (colon carcinoma cells) proliferation under normoxic conditions but increases caspase-3/7 activities and increases phosphorylation of ERK 1/2 under hypoxic conditions: salicylic acid increases caspase-3/7 activities but also decreases cell proliferation but has no effect on ERK 1/2 phosphorylation (116). In vitro assays have shown that salicylic acid reversibly inhibits 6-phosphofructo-1-kinase, an enzyme responsible for the glycolysis. It dissociates the quaternary structure of the enzyme into inactive dimers. Tested on MCF-7 cells, salicylic acid inhibits 6-phosphofructo-1-kinase that leads to a decreased cellular glucose consumption and viability (117). Anacardic acid, a derivative of salicylic acid and an inhibitor of histone acetyltransferase, is an anti-inflammatory compound like its precursor. It blocks the NF-kB pathway by abrogation of phosphorylation and degradation of IkBα and by inhibiting acetylation and nuclear translocation of its p65 subunit. Inhibition of the NF-kB pathway leads to down-regulation of target genes involved in cell proliferation (cyclin D1, COX-2), survival (Bcl-2, Bcl-xL), and invasion (MMP-9) (213, 214). Several clinical trials analyzed the effect of salicylic acid on colorectal cancer patients. Results show that a dose of 75 mg of aspirin per day during several years reduces colorectal cancer incidence and mortality (215).

FLAVONOIDs

Flavonoids are secondary metabolites of the polyphenol family with a backbone composed of 15 carbon atoms organized into a common phenyl benzopyrone structure (C6-C3-C6). This group of molecules is divided into several sub-groups according to their chemical formulations including flavonols (quercetin, myricetin, and kaempferol), flavones, flavanones, flavanols, anthocyanins, dihydroflavonols, isoflavones, and chalcones. Their roles within plants are very diverse. Some have a protective role against UV, but also toward parasites, pathogens (insecticides, fungicides, vermicides) and herbivores. Other molecules act as signal molecules or help the plant to survive under stress conditions (drought period, nutrient-poor environment) (216).

Quercetin

Quercetin (Figure 2) is a molecule with anti-bacterial properties present in bitter orange tree flowers (Citrus aurantium), Epilobium species, Nepentes gracilis, Leucaena leucocephala, S. purpurea,
caper (*Capparis spinosa*), and chili peppers (*Capsicum sp.*) (64, 86, 121, 217–221). In plants, quercetin acts as a host defense molecule and a growth stimulatory agent, it is a nematode repellent, an anti-microbial agent, a root nodules inducer, an allelopathic agent, and a hyphal branching attractor for symbiotic fungus (223).

Concerning its biological properties as anti-cancer agent, quercetin has been the object of many studies (224). For example, this flavonol has been described as an anti-proliferative agent by inducing cell cycle arrest in G2/M and as an apoptotic agent due to its ability to inhibit the transcriptional activity of the Wingless pathway (Wnt) by reducing the amount of transcriptional co-activator β-catenin in the nucleus in SW480 colon cancer cells and by reducing the level of cyclin B1 and surviving (122, 123). In *in vitro* experiments have shown that a concentration of 2 µM of quercetin is sufficient to decrease 80% of the activity of 16 kinases, which are mostly involved in the control of mitotic processes (225). This secondary metabolite is also responsible for the induction of cell death by apoptosis of hepatocellular carcinoma cells after activation of caspases 3 and 9 (226). Quercetin used in combination with 5-fluorouracil (5-FU) on EC9706 and Eca109 esophageal cancer cells increased the cytotoxic effect and the percentage of apoptotic cells compared to quercetin or 5-FU alone. These combined effects were explained by a decrease of p-IκBα expression induced by quercetin treatment (227). Quercetin is also known to induce cell cycle arrest in G2/M and to induce cell death in human HeLa cervical cancer cells by mitochondrial apoptosis through a p53-dependent mechanism. These results also showed that quercetin can inhibit the NF-κB pathway by modulating the expression of NF-κB p50 and p65, IKKβ, p-IκBα, and ubiquitin. Other results obtained by Western-blot have shown an increase of pro-apoptotic Bcl-2 family proteins (Bax, Bak, and Bad), an up-regulation of Apaf-1 and cytoplasmic cytochrome c and a down-regulation of anti-apoptotic Bcl-2 family proteins (Bcl-2, Mcl-1) (124). Moreover Spagnuolo and collaborators demonstrated in addition, in U937 cells, a down-regulation of Mcl-1 by quercetin acting directly or indirectly on its mRNA stability and protein degradation (228). A study performed on HeLa cells showed that quercetin has the ability to interact with DNA and to generate ROS. This flavonol triggers a cell arrest in G2/M, followed by mitochondrial membrane depolarization, externalization of phosphatidylin-serine, release of cytochrome c into the cytoplasm, decrease of Akt and Bcl-2 expression and cell death by apoptosis (125). A large Swedish population-based case-control study has shown that quercetin uptake decreases the risk to develop gastric adenocarcinoma. This protective effect was very strong for female smokers (229). Quercetin has been tested in several clinical trials on cancer patients. It has been tested in a chemoprevention purpose on 130 colon cancer patients treated with quercetin, rutin, or with sulindac (NCT00003365). Phase I clinical trials have shown that quercetin inhibits protein tyrosine phosphorylation in patient lymphocytes, is able to decrease CA-125 (Carbohydrate antigen 125) level in patients with ovarian cancer refractory to cisplatin and serum alpha-fetoprotein (AFP) levels in hepatocellular carcinoma patients (230). Quercetin is also actually undergoing clinical trials with genistean to evaluate their effects on prostate-specific antigen level on prostate-cancer patients (NCT01538316). Pharmacokinetic analysis performed on humans and rats have shown that quercetin has a very low bioavailability. In human, after an ingestion of about 87 mg of quercetin, average plasma concentration is 344 nM after 3 h. Results have also shown that quercetin is no longer present in the aglycone, free form but is metabolized, and can only be detected as conjugated derivatives like quercetin glucuronides or quercetin 3-O-sulfate. However after further analysis Manach et al. showed that these quercetin derivatives maintain anti-oxidant activity although their effect were reduced to half of the quercetin (231–233). Sesink et al. showed that breast cancer resistance ABCG2 and the multidrug resistance-associated protein 2 (Mrp2), two ATP-binding cassette (ABC) transporters involved in drug cancer resistance are able to pump both quercetin aglycone and quercetin conjugated derivatives out of the cells and thus explain the low bioavailability of quercetin (234).

Myricetin

Myricetin (**Figure 2**) is a quercetin analog present in many plants as for example *Limonia axillare*, *Jatropha curcas*, Japanese cypress (*Chamaecyparis obtusa*), *Leucaena leucocephala*, and many berries (60, 128, 129, 218, 235). In plants, myricetin acts as a host defense molecule, is released by roots and acts as a nematode repellent and an inducer of root nodules in several cases (223).

This is a flavonol that exerts anti-bacterial (217) and anti-cancer properties which is able to inhibit mutagenesis induced by carcinogens such as benzo(a)pyrene (236). Myricetin is able to induce apoptosis of pancreatic cancer cells via the activation of caspase-3 and 9 (130). It induces apoptosis of human bladder carcinoma cell line T-24 with activation of caspase-3 after DNA cleavage and cell cycle arrest in G2/M phase by a down-regulation of cyclin B1 and cdc2. It inhibits the phosphorylation of Akt but increases the phosphorylation of p38 and decreases MMP-9 expression. In *in vivo* experiments have shown a growth inhibition of T-24 xenografts on mice models (131). Myricetin is also able to induce apoptosis in HL-60 (human promyelocytic leukemia cells) through an ROS-independent cell death pathway (237). In *in vitro* experiments have shown an inhibition of mammalian DNA polymerases and human DNA topoisomerase II by myricetin. Further experiments have revealed that it also inhibits proliferation of HCT-116 human colon carcinoma cells and trigger apoptosis after a cell cycle arrest in G2/M cell cycle transition (238). Recent studies have shown that a non-toxic dose of myricetin decreases PI3 kinase activity in pancreatic cancers cells MIA PaCa-2, Panc-1, or S2-013 and triggers cell death by apoptosis. In *in vivo* experiments performed on mice have shown a regression of tumor growth and a decrease of metastasis (239). In rat models, myricetin is able to inhibit cytochrome P450 (CYP) activity in liver or intestine and thus to increase bioavailability of tamoxifen, a drug used to treat breast cancer. Similar results were observed for doxorubicin (240, 241).

Kaempferol

Kaempferol (**Figure 2**) is a flavonol identified in many plants like *Nepenthes gracilis*, chili peppers, *Gynura medica*, Bracken (*Pteridium aquilinum*), *Ginkgo biloba* (64, 126, 132, 219, 242, 243).

Involved into plant defense, kaempferol has been described as a nematode repellent, nematode egg hatching inhibitor, and allelopathic agent (223).
From a therapeutic point of view, anti-cancer properties of kaempferol have been underlined by many papers (132, 244). A concentration of 40 μM of kaempferol is sufficient to inhibit proliferation of oral cancer cell lines (SCC-1483, SCC-25, and SCC-QLL1). Analysis has shown PARP-cleavage and caspases-3-dependent apoptosis (126). Kaempferol inhibits ovarian cancer cells and induces cell death via apoptosis in a dose-dependent manner. Luo et al. observed caspase-3 and 7 cleavage that was abrogated by caspase 9 inhibitor that confirmed the extrinsic caspase-dependent cell death mechanism. Western-Blot analysis showed an up-regulation of pro-apoptotic proteins Bax and Bad and a down-regulation of anti-apoptotic protein Bcl-xl (133). The same team analyzed effects of kaempferol on VEGF expression in ovarian cancer cells. Results show that this flavonol inhibits time-dependently VEGF secretion and angiogenesis. It also down-regulates phospho-ERK concomitant with c-myc and NF-κB expression through ERK signaling pathway (134). They also developed different kaempferol nanoparticles and have tested their efficiency on cancerous and normal ovarian cells. PEO [poly(ethylene oxide)], PPO [poly(propylene oxide)], PEO poly(ethylene oxide) decreases both ovarian cancer and healthy cell viability. On the opposite (PLGA) [Poly(DL-lactic acid-co-glycolic acid)] exerts selective cytotoxic effect on cancer cells only. However, all kaempferol nanoparticle formulations were able to reduce cancer cell viability better than kaempferol alone (245). Pharmacokinetic in vivo studies performed on human and rats have revealed that kaempferol is mainly absorbed in the small intestine and is metabolized to glucuron and sulfo-conjugated forms in the liver. Results have shown that kaempferol has a very poor bioavailability (2%) and that after ingestion of several mg of kaempferol, it is only detected at nanomolar levels in plasma and it should be emphasized that most in vitro studies were conducted at micromolar concentrations (132, 231, 246). Results have shown that kaempferol can be converted into its analog, quercetin (Figure 2) by the enzyme CYP1A1 in rats (247). Although cancer cells are able to eliminate compounds like quercetin, it has been shown by Sesink et al. that kaempferol blocks Bcrp-mediated quercetin efflux by competitive inhibition (234, 248). Based on this discovery, it has been shown that kaempferol enhances the effect of cisplatin in ovarian cancer cells and of etoposide in rat models (249, 250).

CONCLUSION

This review has presented the different known chemopreventive and therapeutic agents isolated from *D. muscipula*. At the present time, more than 15 compounds (Figure 2) have been isolated from *D. muscipula*, mostly flavonoids, and phenolic compounds. Most of these secondary metabolites are also present in other plants and up to now, only one *D. muscipula*-specific molecule with therapeutic potential has been isolated from Venus flytrap, diomuscipulone (Figure 2). But this naphthoquinone has not yet been tested for its biological properties like several others compounds as diomuscinone, droserone, 3-chloroplumbagin, and hydroplumbagin 4-O-β-glucopyranoside or p-coumaric acid (Figure 2) which are also present in other plants. Many of these anti-cancer compounds present in *D. muscipula* have been described as NF-κB pathway modulators like plumbagin, ellagic acid, or salicylic acid. The reason is that the NF-κB pathway is an interesting anti-cancer drug target due to its involvement into the development and the progression of many cancers (251–253). However it’s important to keep in mind that the NF-κB pathway is not responsible for all types of cancer and that there are many other pathways and phenomena involved in cancer development and progression that can be the targets for drugs of natural origins (18, 19, 28, 251, 254, 255).

Currently only several compounds like quercetin, salicylic acid, and kaempferol have moved to pharmacokinetic studies and clinical trials (Table 2). All results have shown that these compounds have a very poor bioavailability that can be explained by several reasons. Plant secondary metabolites are often recognized as xenobiotics by the organism and are rapidly detoxified by gut flora or enzymes and eliminated from the organism. Intestinal bacteria are known to metabolize drugs before their absorption by the organism. Some drugs can be directly metabolized by the organism or can be conjugated and transformed into an inactive molecule before reaching their target. However several studies have shown that it is possible that this defense mechanism can lead to the conversion of an inactive molecule into another one.

Table 2 | Clinical trials involving natural compounds present in *Dionaea muscipula* Solander ex Ellis.

Chemical class	Compound	Trial name	Disease	Status	Identifier
Phenolic acids	Ellagic acid	Dietary intervention in follicular lymphoma	Follicular lymphoma	Unknown	NCT00455416
Caffeic acid		FLAX FX, A research study of the effects of flaxseed lignans on colon health	Colon cancer	Recruiting	NCT01619020
Ferulic acid		FLAX FX, A research study of the effects of flaxseed lignans on colon health	Colon cancer	Recruiting	NCT01619020
Flavonoid	Quercetin	Prostate-cancer prevention trial with quercetin and genistein (QUERGEN)	Prostate cancer	Recruiting	NCT01538316
		Sulindac and Plant compounds in preventing colon cancer	Colon cancer	Terminated	NCT00003365

The table was generated by using data available from the website http://clinicaltrials.gov
REFERENCES

1. Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol (2010) 46: 308–16. doi:10.1007/s12033-010-9321-2
2. Liu FS. Mechanisms of chemotherapeutic drug resistance in cancer therapy – a quick review. Taiwan J Obstet Gynecol (2009) 48:239–44. doi:10.1016/S1028-6459(09)60296-5
3. Morens DM, Fauci AS. Emerging infectious diseases in 2012: 20 years after the institute of medicine report. Mbio (2012) 3: doi:10.1128/mbio.00494-12
4. Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochem Biophys Acta (2013), 1830:3670–95. doi:10.1016/j.bbadgen.2013.02.008
5. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod (2012) 75:311–35. doi:10.1021/np200906s
6. Bourguad F, Gravit A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci (2001) 161:839–51. doi:10.1016/S0168-9452(01)00490-3
7. Czak DJ. Host-defense activities of cyclotides. Toxins (2012) 4:1–59–56. doi:10.3390/toxins4020139
8. Hartmann T. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry (2007) 68:2831–46. doi:10.1016/j.phytochem.2007.09.017
9. Heinem TE, da Veiga AR. Arthropod venoms and cancer. Toxicon (2011) 57:497–511. doi:10.1016/j.toxicon.2011.01.002
10. Jain D, Kumar S. Snake venom: a potent anticancer agent. Asian Pac J Cancer Prev (2012) 13:4855–60. doi:10.7314/APJCP.2012.13.10.4855
11. Namdeo A. (2007). Plant cell elicitation for production of secondary metabolites: a review. Phug Rev (2007) 1:69–79.
12. Schmidt EW, Donia MS, McIntosh JA, Fricke WF, Ravel J. Origin and variation of tunicae secondary metabolites. J Nat Prod (2012) 75:295–304. doi:10.1021/np300665k
13. Amin AR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol (2009) 27: 2712–25. doi:10.1200/JCO.2008.20.6235
14. Kreher B, Nezumnely A, Wagner H. Naphthoquinones from Dionaea muscipula. Phytochemistry (1990) 29:605–6. doi:10.1016/0031-9422(90)85125-Y
15. Gaascht F, Teiten MH, Schumacher M, Dicato M, Diederich M. Approche végétale dans le traitement des leucémies. Curr Opin Onco-Hématol (2010) 17:102–8.
16. Gullette NR, Rubul Amin AR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, et al. Cancer prevention with natural compounds. Semin Oncol (2010) 37:258–81. doi:10.1053/j.seminoncol.2010.06.014
17. Surh YI. Cancer chemoprevention with dietary phytochemicals. Nut Rev Cancer (2003) 3:768–80. doi:10.1038/nrc1189
18. Schumacher M, Kelkel M, Dicato M, Diederich M. Gold from the sea: marine compounds as inhibitors of the hallmarks of cancer. Biotechnol Adv (2011) 29:531–47. doi:10.1016/j.biotechadv.2011.02.002

ACKNOWLEDGMENTS

François Gaascht was supported by a fellowship from the European Union (ITN “RedCat” 215009, Interreg IVa project “Corena”). Research at LBMC is financially supported by the Foundation de Recherche Cancer et Sang, the Recherches Scientifiques Luxembourg association, the Een Haerz fir kriibskrank Kanner association, the Action Lions Vaincre le Cancer association, the European Union (ITN “RedCat” 215009, interreg IVa project “Corena”), and the Télévie Luxembourg. MDie is supported by the National Research Foundation (NRF) by the MEST of Korea for Tumor Microenvironment Global Core Research Center (GCRC) grant [grant number 2012-0001184]; by the Seoul National University Research grant and by the Research Settlement Fund for the new faculty of SNU.

www.frontiersin.org August 2013 | Volume 3 | Article 202 | 11
Cancer therapy, Trends Mol Med (2007) 13:353–61. doi:10.1016/j.molmed.2007.07.001.

30. Fomler M, Jaspars M, Dicato M, Diederich M. Marine natural products as targeted modulators of the transcription factor NF-κB. Biochem Pharma col (2008) 75:603–17. doi:10.1016/j. bpc.2007.07.044.

31. Seneviratne M, Kim SK. Utilization of seaweed processing by-products: medicinal applications. Adv Food Nutr Res (2012) 65:495–512. doi:10.1016/B978-0-12-416003-0.0032-9.

32. Zhou ZF, Guo YWW. Bioactive natural products from Chinese marine flora and fauna. Acta Pharmacol Sin (2012) 33:1139–69. doi:10.1038/aps.2012.110.

33. Mayer AM, Gustafson KR. Marine pharmacology in 2005–2006: anti-tumour and cytotoxic compounds. Eur J Cancer (2004) 40:2357–87. doi:10.1016/j.ejca.2004.07.001.

34. Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov (2009) 8:69–85. doi:10.1038/nrd2487.

35. Ellingwood F, Lloyd JL. American Materia Media, Therapeutics and Pharmacognosy: Developing the Latest Acquired Knowledge of Drugs, and Especially of the Direct Action of Single Drugs Upon Entire Conditions of Disease, with Special Reference to the Therapeutics of the Plant Drugs of the Americas. Chicago: Ellingwood’s therapist (1919). 542 p.

36. Lloyd J, Felter H. King’s American Dispensatory. 18th ed. Sandy, OR: Eclectic Medical Publications (1896).

37. Moerman DE. The Medicinal Plants of Native American Conditions of Disease, with Espe- cially the Latest Acquired Knowledge of Plants. Portland: Portland Scientific Publishers (2002). 212 p.

38. Remington JP. The Dispensatory of the United States of America. Philadelphia: Lippincott (1918). 2010 p.

39. Muhammad A, Guerrero-Analco A, Martineau EC, Muscariello V, Nokrek BF. Induction of naphthalene catabolism in Drosera capensis. Plant J (2012) 69:55–64. doi:10.1111/j.1365-313X.2012.05759.x.

40. Renshaw CJ. Treatment of small-cell lung cancer: a review of the latest clinical developments. Cancer Treat Rev (2013) 39:204–16. doi:10.1016/j.ctrv.2013.02.002.

41. Kovacik J, Kleidus B, Rep- ca kova K. Phytomedicinal and aromatic plants in carnivorous plants: inter-specific comparison and physiological studies. Plant Phys Biochem (2002) 37:271–3. doi:10.1016/S0981-9429(02)80044-6.

42. Nakata T, Ehrudska Y. Medicinal and Aromatic Plants XII. Dordrecht: Springer (2002). 348 p.

43. Pakulska G, Budzianowski J, Ellagic acid derivatives and naphthoquinones of Dioscorea muscipula from in vitro cultures. Phytochemistry (1996) 41:775–8. doi:10.1016/0031-1872(95)00328-7.

44. Tokunaga T, Kakada U, Neda M. Mechanism of antifeedant activity of plumago, a compound concentrating the chemical defense in carnivorous plant, Tetrahedron Lett (2004) 45:7115–9. doi:10.1016/j.tetlet.2004.07.094.

45. Hsieh Y-J, Lin L-C, Tsai T-H. Induction of naphthalene catabolism in Drosera capensis. Plant J (2013) 69:55–64. doi:10.1111/j.1365-313X.2012.05759.x.

46. Bush E, Plachno B, Adamiec L, Stolarz M, Dzubinska H, Trebacz K. Quite a few reasons for call- ing carnivores ‘the most wonder- ful plants in the world.’ Ann Bot (Lond) (2012) 109:467–64. doi:10.1093/aob/mcs249.

47. Scala J, Iott K, Schwab DW, Semester SK. Digestive secretion of Dioscorea muscipula (Venus’s Fly- trap), Plant Physiol (1969) 44:367– 71. doi:10.1104/pp.44.3.367.

48. Kovacik J, Kleidus B, Rep- cakova K. Phytomedicinal and aromatic plants in carnivorous plants: inter-specific comparison and physiological studies. Plant Phys Biochem (2002) 37:271–3. doi:10.1016/S0981-9429(02)80044-6.
Food Chem (1980) 28:340–2. doi:10.1016/f02028a126

6. Raj G, Kurug R, Hussain AA, Baby S. Distribution of naphthoquinones, plumbagin, dicroserone, and 5-O-methyl dicroserone in chitin-induced and uninhibited Nepenthes khasiana: molecular events in prey capture. J Exp Bot (2011) 62:5429–36. doi:10.1039/jxberr219

8. Aung HH, Chia LS, Goh NK, Chia T, Ahmed AA, Pare PW, et al. Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis. Fitoterapia (2002) 73:445–7. doi:10.1016/S0367-326X(02)00113-2

10. Kawiak A, Piosik J, Stasoloc G, Gwiezdek-Wisniewska A, Marczak L, Stobiecki M, et al. Induction of apoptosis by plumbagin through reactive oxygen species-mediated inhibition of topoiso- merase II. Toxicon Appl Pharmocol (2007) 225:276–70. doi:10.1016/j.tiap.2007.05.018

12. Acharya BR, Bhattacharyya B, Chakraborti G. The natural naph- thoquinone plumbagin exhibits antiproliferative activity and disrupts the mitochodrial network through tubulin binding. Biochem- istry (2008) 47:7838–45. doi:10.1021/bi800730q

14. Huang YT, Lin CC. Plumbagin, an antimicrobial constituent of Plumbago zeylanica, exhibits antiproliferative activity and downregulates expression of COX-2, inhibition of BCR/ABL kinase and NF-kappaB activation. Toxicol In Vitro (2012) 26:396–405. doi:10.1016/j.tiv.2011.12.018

16. León-González AJ, Truchado M, Tomás-Beranía FA, López-Lázaro M, Barradas MCD, Martín-Cordero C. Phenolic acids, flavonoids and anthocyanins in Corema uliginosum (L.) Don berries. J Food Compost Anal (2013) 29:58–63. doi:10.1016/j.jfca.2012.10.003

18. Cottle W, Kolatukudy PE. Biosynthesis, deposition, and partial char- acterization of potato suberin phenolics. Plant Physiol (1982) 69:393–7. doi:10.1093/tp.69.3.393

20. Lirdprapamongkol K, Sakurai H, Kawasaki N, Choo MK, Saitoh Y, Suzuki S, Koizumi K, Prangsaeng KM, Gupta G, Achari C, et al. Influence of ellagic acid on human leukemia K562 cell: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-kappaB inactivation. Toxicology (2012) 320:210–6. doi:10.1016/j.tox.2011.09.007

22. Weidner S, Rybarcyzyk A, Karamac M, Krol A, Mostek A, Greboz I, et al. Differences in the pheno- lic composition and antioxidant properties between Vitis coignetiae and Vitis vinifera seeds extracts. Molecules (2013) 18:3410–26. doi:10.3390/molecules18033410

24. Chandramohan Reddy T, Bharat Reddy D, Aparna A, Arunasee KM, Gupta A, Chari C, et al. Anti-cancer effects of flavonoids on human leukemia K562 cells: induction of apoptosis and downregulation of COX-2, caspase-3 and Fas ligand (BCRP/ABCG2). J Exp Bot (2013) 147:277–85. doi:10.1038/jep.2013.02.025

26. Edderkaoui M, Odinokova I, Othman I, Gukovsky I, Go VL, Pandol SJ, et al. Ellagic acid induces apoptosis and inhibition of nuclear factor kappa B in pancreatic cancer cells. World J Gastroenterol (2004) 3:4356–70. doi:10.3748/wjg.10.4362

28. Malik A, Afzal S, Shahid M, Akhtar K, Assiri A. Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pac J Trop Med (2011) 4:550–5. doi:10.1016/S1995-7645(11)60144-2

30. Tan KW, Li Y, Paxton JW, Birch NF, Szepeens A. Identification of novel dietary phytoche- micals inhibiting the efflux transport breast cancer resistance protein (BCRP/ABCG2), Food Funct (2013) 138:2267–74. doi:10.1016/j.jfodchem.2012.12.021

32. Karimi E, Oskoueian E, Hendra TD, Tomás-Barberán FA, López-Lázaro M, Barradas MCD, Martín-Cordero C. Phenolic acids, flavonoids and anthocyanins in Corema uliginosum (L.) Don berries. J Food Compost Anal (2013) 29:58–63. doi:10.1016/j.jfca.2012.10.003

34. León-González AJ, Truchado M, Tomás-Beranía FA, López-Lázaro M, Barradas MCD, Martín-Cordero C. Phenolic acids, flavonoids and anthocyanins in Corema uliginosum (L.) Don berries. J Food Compost Anal (2013) 29:58–63. doi:10.1016/j.jfca.2012.10.003

36. Cottle W, Kolatukudy PE. Biosynthesis, deposition, and partial char- acterization of potato suberin phenolics. Plant Physiol (1982) 69:393–7. doi:10.1093/tp.69.3.393

38. Lirdprapamongkol K, Sakurai H, Kawasaki N, Choo MK, Saitoh Y, Aozuka Y, et al. Vanillin improves in vitro invasiveness and in vivo metastasis of mouse breast cancer cells. Eur J Pharm Sci (2005) 25:57–65. doi:10.1016/j.ejps.2005.01.015

40. Lirdprapamongkol K, Sakurai H, Suzuki S, Koizumi K, Prangseng- tong O, Vinayaroj A, et al. Vanillin enhances TRAIL-induced apo- ptosis in cancer cells through inhibition of NF-kappaB activation. In vivo (2010) 24:501–6.

42. Lirdprapamongkol K, Kramb JP, Suthiphamkhong T, Surarat R, Sri- somap C, Danzahrd G, et al. Vanillin suppresses metastatic po- tential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J Agric Food Chem (2009) 57:3055– 63. doi:10.1021/jf900336f

44. Shahidi F, Pereira N. Oil and phytochemicals from small fruit seeds. In: Chi-Tang Ho CM, Shahidi F, Comts ET, editors. Nutrition, Func- tional and Sensory Properties of Cancer prevention and therapy by Dionea
105. Anter J, Romero-Jimenez M, Fernandez-Bedmar Z, Villatoro-Pulido M, Analla M, Alonso-Moraga A, et al. Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid. J Med Food (2011) 14:276–83. doi:10.1089/jmf.2010.0139
106. Scognamiglio M, Esposito A, D’Arosca B, Pacifico S, Fiumano V, Tsafantakis N, et al. Isolation, distribution and allelopathic effect of caffeic acid derivatives from Bel- lis perennis L. Biochem Syst Ecol (2012) 43:10–13. doi:10.1016/j.bse.2012.02.025
107. Rajendra Prasad N, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem (2011) 349:11–9. doi:10.1007/s11010-010-0655-7
108. Moon MK, Lee YJ, Kim JS, Kang DG, Lee HS. Effect of caffeic acid on tumor necrosis factor-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Biol Pharm Bull (2009) 32:1371–7. doi:10.1248/bpb.32.1371
109. Jaganathan SK. Growth inhibition by caffeic acid, one of the pheno- lic constituents of honey, in HCT 15 colon cancer cells. Scientific-WorldJournal (2012) 2012:372345. doi:10.1100/sciworldjournal/2012/372345
110. Bouayed J, Rammal H, Dicko A, Karthikeyan S, Reddy BV. Alpinia oxyphylla cytototoxicity, and apoptosis inhibitory effect of caffeic acid from Alpinia oxyphylla (Zingiberaceae) on human lymphoma cell lines. International Journal of Medical Science (2011) 8:620–4. doi:10.1016/j.ijms.2011.02.013
111. Zhang B, Yang, R, Liu C-Z. Microwavre-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Sep Purif Technol (2008) 62:880–3. doi:10.1016/j.seppur.2008.02.013
112. Yang J-S, Liu C-W, Ma Y-S, Weng S-W, Tang N-Y, Wu S-H, et al. Chlorogenic acid induces apoptotic cell death in U937 cells through caspase and mitochondria-dependent pathways. In vivo (2012) 26:971–8.
113. Graf E. Antioxidant potential of ferulic acid. Free Radic Biol Med (1992) 13:435–48. doi:10.1016/0891-5849(92)90184-1
114. Hayat S, Ali B, Ahmad A. Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A, editors. Salicylic Acid: A Plant Hormone. Dordrecht: Springer (2007). p. 1–14.
115. Zitta K, Meybohm P, Bein B, Huang Y, Heinrich G, Scholer J, et al. Salicylic acid induces apoptosis in colon carcinoma cells grown in vitro: influence of oxygen and salicylic acid concentration. Exp Cell Res (2011) 315:288–34. doi:10.1016/j.yexcr.2012.02.002
116. Spitz GA, Furtado CM, Sodà-Pape M, Caramelo H, Georgiou T. Salicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity. Biochem Pharmacol (2009) 77:46–53. doi:10.1016/j.bcp.2008.09.020
117. Afify AEl M, El-Belaghi HS, El-Salam AA, Omran AA. Biochemical changes in phenols, flavonoids, tannins, vitamin E, beta-carotene and antioxidant activity during soaking of three white sorghum varieties. Asian J Trop Bio- med (2012) 2:203–3. doi:10.3764/2221-1691(2012)0042-2
118. Abaza MS, Al-Aittiy R, Bhardawj A, Rabbadi M, Goyyapalla M, Afzal M. Syringic acid from Tamarix ausheriana possesses anti- togenic and chemosensitizing activities in human colorectal can- cer cells. Pharm Biol (2012). doi:10.3109/13880920.2013.781194. [Epub ahead of print]
119. Kampa M, Alexaki VI, Notas G, Nili AP, Nistiki H, Zoghoulage A, et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res (2004) 6:R63–74. doi:10.1186/bcr752
120. Muhammad A, Haddad PS, Durst T, Aronson JT. Phytochemical con- stituents of Sarracenia purpurea L. (pitcher plant). Phytochemistry (2013). doi:10.1016/j.phytochem.2013.05.015. [Epup ahead of print].
121. Park CH, Chang JY, Hahn ER, Park S, Kim HK, Yang CH. Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun (2013) 328:227–34. doi:10.1016/j.bbrc.2012.10.151
122. Shan BE, Wang MX, Li RQ. Quercetin and kaempferol inhibits invasion of cyclin D1 and survivin expression of SW480 colon cancer cells. Biochem Pharmacol (2013). doi:10.1016/j.bcp.2013.02.024.
123. Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W. Potential anti- cancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer (2012) 64:599–606. doi:10.1080/01635581.2012.665564
124. Calderon-Montano JM, Burgos- Moron E, Perez-Guzmier C, Lopez-Lazaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem (2011) 11:298–344. doi:10.2174/13895987110050553
125. Luo H, Ran GQ, Li Z, Depriest L, Chen VC. Kaempferol induces apoptosis in ovari cancer cells through activating p53 in the intrinsic pathway. Food Chem (2012) 128:513–9. doi:10.1016/j.foodchem.2011.03.073
126. Luo H, Ran GQ, Juliano L, Jiang BH, Chen YC. Kaempferol inhibits VEGF expression and in vitro angiogenesis through a novel ERK-FKappaB-Myc- p21 pathway. Food Chem.
Babula P, Adam V, Kizek R, Sladky Z, Havel L. Naphthoquinones as allelochemical triggers of programmed cell death. *Environ Exp Biol* (2009) 65:330–7. doi:10.1615/j.envexpbot.2008.11.007

Babula P, Mikoleva R, Adam V, Kizek R, Havel L, Sladky Z. Using of liquid chromatography coupled with diode array detector for determination of naphthoquinones in plants and for investigation of influence of pH of cultivation medium on content of plumbagin in *Dionaea muscipula*. *J Chromatogr B Analyt Technol Biomed Life Sci* (2006) 842:28–35. doi:10.1016/j.jchromb.2006.05.009

Eldenben H, Pinti-Cohen S, Rahamim Y, Sionov E, Segal E, Carmeli S, et al. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant *Nepenthes khasiana*. *J Exp Biol* (2010) 61:911–22. doi:10.1093/jeb/erp359

Marczak L, Kawicka A, Lójkowska E, Stobietski M. Secondary metabolites in in vitro cultured plants of the genus *Dioscorea*. *Phytochem Anal* (2005) 16:143–9. doi:10.1002/ps.833

Tilak JC, Adhikari S, Devasagayam TP. Antioxidant properties of *Plumbago zeylanica* and its active ingredient, plumbagin. *Redox Rep* (2004) 9:219–27. doi:10.1177/135502670402505976

Kuo PL, Hsu YL, Cho CY. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of the multidrug resistance protein 1 (MDR1) signaling pathway in breast cancer cells. *Mol Cancer Ther* (2012) 12:1131–38. doi:10.1158/1535-7163.MCT-12.3893

Wang CC, Chiang YM, Sung SC, Hsu YL, Chang JK, Kuo PL. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species-Jun-N-terminal kinase pathway in human melanoma A375.S2 cells. *Cancer Lett* (2008) 259:82–98. doi:10.1016/j.canlet.2007.10.005

Gomathinayagam R, Somvylakshmi S, Mardhatillah F, Kumar R, Abbara MA, Damodaran C. Anticancer activity of plumbagin, a natural compound, on non-small cell lung cancer cells. *Anti-cancer Res* (2008) 28:785–92.

Yang SJ, Chang SC, Weng HC, Chen CY, Liao JF, Chang CH. Plumbagin activates ERK1/2 and Akt via superoxide, Src and PI3-kinase in 3T3-L1 cells. *Eur J Pharmacol* (2010) 638:21–8. doi:10.1016/j.ejphar.2010.04.016

Hafeez BB, Zhong W, Fischer JW, Mustafa A, Shi X, Meske L, et al. Plumbagin, a medicinal plant (Plumbago zeylanica)-derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3-Mluccifer cells in an orthotopic xenograft mouse model. *Mol Oncol* (2013) 7:428–39. doi:10.1016/j.molonc.2012.12.001

Sinha S, Pal K, Elkhanyan A, Dutta S, Cao Y, Mondal G, et al. Plumbagin inhibits tumorigene- sis and angiogenesis of ovarian cancer cells in vivo. *Int J Cancer* (2013) 132:1201–12. doi:10.1002/ijc.27724

Thasni KA, Ratheeshkumar T, Rojini G, Sivakumar KC, Nair RS, Srivinosa G, et al. Structure activity relationship of plumbagin in BCRA1 related cancer cells. *Mol Carcinog* (2013) 52:392–403. doi:10.1002/mc.21877

Lee HJ, Yeon JH, Kim H, Roh W, Chae J, Park JH, et al. The natural anticancer agent plumbagin induces potent cytotoxicity in MCF-7 human breast cancer cells by inhibiting a PI-3 kinase for ROS generation. *PLoS ONE* (2012) 7:e45023. doi:10.1371/journal.pone.0045023

Padyhe S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH. Perspectives on medicinal properties of plumbagin and its analogs. *Med Res Rev* (2012) 32:113–58. doi:10.1002/med.201325

Sun J, McKallip RJ. Plumbagin treatment leads to apopto- sis in human K562 leukemia cells through increased ROS and elevated TRAIL receptor expression. *Leuk Res* (2011) 35:1402–8. doi:10.1016/j.leukres.2011.06.018

Shukla S, Wu CP, Nandigama K, Ambudkar SV. The naphtho- quinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance linked ATP binding cassette drug transporter ABCG2. *Mol Cancer Ther* (2007) 6:2379–86. doi:10.1158/1535-7163.MCT-07-0564

Hishe YJ, Lin LC, Tsai TH. Measurement of wild and pharmaceutical medicinal study of plumbagin in a conscious freely moving rat using liquid chromatography/tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci* (2006) 844:1–5. doi:10.1016/j.jchromb.2006.06.024

Higa M, Oghara K, Yogi S. Bioactive naphthoquinone derivatives from Diospyros maritima Blume. *Chem Pharm Bull* (1998) 46:1189–93. doi:10.1248/cpb.46.1189

Lattanzio V, Lattanzio VM, Cardina A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. *Phytochemistry* (2006) 661:23–67.

Muller-Scharer H, Schaffner U, Steinger T. Evolution in invasive plants: implications for biological control. *Trends Ecol Evol* (2004) 19:417–22.

Wang Y, Siemann E, Wheeler GS, Zhu L, Gu X, Ding J. Genetic vari- ation in anti-herbivore chemical defences in an invasive plant. *J Ecol* (2012) 100:894–904. doi:10.1111/j.1365-264x.2012.01980.x

Hancock V, Dahl M, Veijorg RM, Klemm P. Dietary plant components elicit acidic and tannic acid inhibit *Escherichia coli* biofilm formation. *J Med Microbiol* (2010) 59:496–9. doi:10.1099/jmm.0.013680-0

Quave CL, Estevez-Carriona M, Compardre CM, Hobby G, Hendrickson H, Beenhken KE, et al. Ellagic acid derivatives from *Rubus ulmifolius* inhibit Sphyllo-lococcus aureus biofilm formation and improve response to antibiotics. *PLoS ONE* (2012) 7:e28737. doi:10.1371/journal.pone.0028737

Umesalma S, Sudhandiran G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, VEGFR-2 signaling pathway in *Staphylococcus aureus*. *Antimicrob Agents Chemother* (2012) 56:82–9. doi:10.1128/aim.01690-11

Rama K, RajamaniSank S, Deep G, Singh M, Agarwal R, Agarwal C. Chemopreventive effects of oral gastric acid feeding on tumor growth and progression in TRAMP mice. *Mol Cancer Ther* (2008) 7:1258–67. doi:10.1158/1535-7163.MCT-07-2220

Liang CZ, Zhang X, Li H, Tao YQ, Tao LI, Yang ZR, et al. Ellagic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. *Cancer Biother Radiopharm* (2012) 27:701–10. doi:10.1089/cbr.2012.1245

Hodgson JM, Morton LW, Pud- drey IH, Beilin LJ, Croft KD. Gallic acid and its metabolites are markers of black tea intake in humans. *J Agric Food Chem* (2000) 48:2276– 80. doi:10.1021/jf000889p

Shahrazad S, Anyaji K, Winter A, Koyama A, Bitsch I.
Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J Nutr (2001) 131:1207–10.

170. Kaur B, Chakraborty D. Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol (2013) 169:1353–72. doi:10.1007/s12010-012-0066-1

171. Lesage-Meessen L, Lomosaco A, Bonnin E, Thibault JF, Buleon A, Roller M, et al. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol (2002) 102:103–13:45, doi:10.1385/ABAB:103:6-1614

172. Walton NJ, Narbad A, Faudels C, Williamson G. Novel approaches to the biosynthesis of vanillin. Curr Opin Biotechnol (2000) 11:490–6. doi:10.1016/S0958-1669(00)01257-5

173. Walton NJ, Mayer MJ, Narbad A, Roller M, et al. A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol (2013) 169:1353–72. doi:10.1007/s12010-012-0066-1

174. Gaascht et al. Cancer prevention and therapy by Cancer Molecular Targets and Therapeutics 120. Walton NJ, Narbad A, Faulds C, Mayer MJ, Narbad A. Vanillin. Biotechnol (2010) 1669(00)00125-7 doi:10.1007/s12010-012-0066-1

175. Temis GP, Pagotto F, Bach S, Evemia GP, Koppoushi K, Nakayama M, Ito H, Higashio H, Terao J. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem (2000) 48:5496–500. doi:10.1021/jf000483s

176. Gonthier MP, Verry MA, Besson C, Remesy C, Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr (2003) 133:1853–9.

177. Yemis GP, Pagotto F, Bach S, Delaquis P. Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. J Food Prot (2011) 74:2062–9. doi:10.4315/0362-028X_JFP-11-230

178. Ho K, Yazar LS, Ismail N, Ismail M. Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol (2009) 33:153–60. doi:10.1016/j. canep.2009.06.003

179. Beaudry F, Ross A, Lema PP, Vachon P. Pharmacokinetics of vanillin and its effects on mechanical hypersensitivity in a rat model of neuropathic pain. Phytother Res (2010) 24:525–30. doi:10.1002/ptr.2975

180. Yip EC, Chan AS, Pang H, Tam YK, Wong YH. Photocatalytic activity of propylcatalytic acid induces cell death in HepG2 hepatocellular carcinoma cells through a c-Jun N-terminal kinase-dependent mechanism. Cell Biol Toxicol (2006) 22:293–302. doi:10.1007/s10565-006-0082-4

181. Aiz NH, Farag SE, Mousa LA, Abo-Zaid MA. Comparative antibacterial and antifungal effects of some phenolic compounds. Microbials (1998) 93:43–54.

182. Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, et al. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm (2011) 403:136–8. doi:10.1016/j.ijipharm.2010.09.035

183. Lee WJ, Zhu BT. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis (2006) 27:269–77. doi:10.1093/carcin/bgi206

184. Azenza K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem (2000) 48:5496–500. doi:10.1021/jf000483s

185. Gonthier MP, Verry MA, Besson C, Remesy C, Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr (2003) 133:1853–9.

186. Ohtsuki MR, Hoffmann PC, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr (2001) 131:66–71.

187. Peppercorn MA, Goldman P. Caffeic acid metabolism by bacteria of the human gastrointestinal tract. J Bacteriol (1971) 108:996–1000.

188. Hulme AC. The isolation of chlorogenic acid from the apple fruit. Biochem J (1953) 53:357–40.

189. Li H, Chen B, Yao S. Application of ultrasonic technique for extracting chlorogenic acid from Eucommia ulmoides Oliv. (E. ulmoides). Ultrason Sonochem (2005) 12:295–300. doi:10.1016/j.ultrasono.2004.01.035

190. Saucedo-Sapuntzakis M, Bowen DJ, Shinde SS, Anderson RF. Inhibition of radical-induced DNA strand breaks by water-soluble constituents of coffee; phenolics and caffeine metabolites. Prest Res Res (2013) 67:480–47. doi:10.1016/j.jnut.2013.09.002

191. Rathod MA, Patel D, Das A, Tipparaju SR, Shinde SS, Anderson RF. Inhibition of radical-induced DNA strand breaks by water-soluble constituents of coffee; phenolics and caffeine metabolites. Prest Res Res (2013) 67:480–47. doi:10.1016/j.jnut.2013.09.002

192. Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA. Phenolics and plant allelopathy. Molecules (2010) 15:8933–52. doi:10.3390/7120933

193. Palacio L, Cantojo JJ, Casido RM, Goleniowski ME. Phenolic compound production in relation to differentiation in cell and tissue cultures of Larrea divaricata (Cav.), Plant Sci (2012) 193:194–19. doi:10.1016/j.plantsci.2012.05.007

194. Rasmussen JA, Einhellig FA. Properties of ferulic acid: a review. J Food Sci (2010) 75:205–14. doi:10.1111/j.1750-3841.2009.01432.x

195. Li W, Guo J, Tang Y, Wang H, Hu Zhang M, Qian Z, et al. Pharmacokinetic comparison of ferulic acid in normal and blood deficiency rats after oral administration of Angelica sinensis, Lindernium chuanxiong and their combination. Int J Mol Sci (2012) 13:5383–97. doi:10.3390/ijms13095383

196. An C, Mou Z. Salicylic acid and its function in plant immunity. J Integ Plant Biol (2011) 53:412–28. doi:10.1111/j.1744-7991.2010.01043.x

Cancer prevention and therapy by Dionea.

Frontiers in Oncology | Cancer Molecular Targets and Therapeutics
August 2013 | Volume 3 | Article 201 | 16

Gauss et al.
Cancer prevention and therapy by Dionaea

Gaascht et al.

(2012) 83:182–91. doi:10.1016/j.
fitote.2011.10.012

247. Silva ID, Rodrigues AS, Gaspar J, Maia R, Laires A, Rueff J. Involvement of rat cytochrome P450A1 in the biotransformation of kaempferol to quercetin: relevance to the genotoxicity of kaempferol. Mutagenesis (1997) 12:835–90. doi:10.1093/mutage/12.5.383

248. An G, Gallegos J, Morris ME. Enhanced Abcg2-mediated quercetin efflux. (1997) Mutagenesis 83(6):383–90. doi:10.1093/mutage/12.5.383

249. Li C, Li X, Choi JS. Enhanced cMyc. cells through promoting apopto-

250. Delhalle S, Duvoix A, Schneeken-
burger M, Moreau E, Dicato M, Diederich M. An introduction to the molecular mechanisms of apoptosis. Ann N Y Acad Sci (2003) 1010:1–8. doi:10.1196/ annals.1299.001

251. Hanahan D, Weinberg RA. Hallmarks of cancer: the next gen-

252. DiDonato JA, Mercurio F, Karin M. Is NF-kappaB the genotoxicity of kaempferol to quercetin: relevance to the genotoxicity of kaempferol. Mutagenesis (1997) 12:835–90. doi:10.1093/mutage/12.5.383

253. Dolcet X, Llobet D, Pallares J, Matias-Guiu X, NF-kb in development and progression of human cancer. Virchows Arch (2005) 446:475–82. doi:10.1007/s00428-

254. Delhalle S, Duvoix A, Schneeken-
burger M, Moreau E, Dicato M, Diederich M. An introduction to the molecular mechanisms of apoptosis. Ann N Y Acad Sci (2003) 1010:1–8. doi:10.1196/ annals.1299.001

255. Hanahan D, Weinberg RA. Hallmarks of cancer: the next gen-

256. Gray AF, Igoli JO, Edrada-Ebel R. Natural products isolation in modern drug discovery pro-

257. Li JW, Vederas JC. Drug discover-

258. Mora C, Tittensor DP, Adl S, Simp-
stom A, Worm B. How many species are there on Earth and in the ocean? PLoS Biol (2011) 9:e1001127. doi:10.1371/journal. pbio.1001127

259. Quinn RJ. Basics and principles for building natural product–based libraries for HTS. Chem Genomics Publications (2012):87.

260. Luo H, Dadyszynsky MK, Rankin GO, Jiang BH, Chen YC. Kaempferol enhances cislutin’s effect on ovarian cancer cells through promoting apopto-

261. Lomenick B, Olsen RW, Huang J. Natural products isolation in modern drug discovery programs. In: Natural Products Isolation, Dordrecht: Springer (2012). p. 515–34.

262. Rix U, Superti-Furga G. Target screening of small molecules by chemical proteomics. Profiling of small molecules by molecular docking can do for the ‘bench-working biologists’, J Biomol Screen (2012) 17:1217–39. doi:10.2174/ 1381612799436386

263. Bodi G, Stegmaier K. Genetic and proteomics approaches to identify cancer drug targets. Br J Cancer (2012) 106:254–61. doi:10.1038/ bj.2011.543

264. Chen L, Morrow JK, Tran HT, Phatak SS, Du-Cuny L, Zhang S. From laptop to benchtop to bed-

265. Mihanas M. What in silico molecu-

266. Overington JP, Al-Lazikani B, Hop-

267. Kuhn M, Szklarczyk D, Frances-
chi A, von Mering C, Jensen LJ, Bork P, STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res (2012) 40:D34–51. doi:10.1093/nar/gkr1011

268. Beutler JA. Natural Products as Tools for Discovering New Cancer Targets. In: Natural Products and Cancer Drug Discovery. Dordrecht: Springer (2013), p. 213–37.

269. Chiaradonna F, MoreSCO RM, Airoldi C, Gaglio D, Palarini R, Nicotra F, et al. From cancer metabolism to new biomarkers and drug targets. Biotechnol Adv (2012) 30:30–51. doi:10.1016/j. biotechnoladv.2011.07.006

270. Polger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting selective drug tar-

271. Overington JP, Al-Lazikani B, Hop-

272. Patel MN, Halling-Brown MD, Tym JE, Workman P, Al-Lazikani B. Objective assessment of can-

273. Citation: Gaascht F, Dicato M and Diederich M (2013) Venus flytrap (Dionaea muscipula Solander ex Ellis) con-

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-

Acknowledgments: This work was supported by the Medical Research Council of New Zealand. SC-18234.

Received: 02 April 2013; paper pending published: 30 April 2013; accepted: 24 July 2013; published online: 20 August 2013.