Research Article

Antidisturbance Control for Helicopter Stochastic Systems

Dongping Li¹ and Yankai Li²

¹School of Sciences, Xi’an Technological University, Xi’an 710021, China
²Institute of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

Correspondence should be addressed to Yankai Li; liyankai@xaut.edu.cn

Received 25 August 2021; Revised 6 October 2021; Accepted 15 October 2021; Published 16 November 2021

Academic Editor: Akif Akgul

Copyright © 2021 Dongping Li and Yankai Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, an antidisturbance controller is presented for helicopter stochastic systems under disturbances. To enhance the antidisturbance abilities, the nonlinear disturbance observer method is applied to reject the time-varying disturbances. Then, the antidisturbance nonlinear controller is designed by combining the backstepping control scheme. And the stochastic theory is used to guarantee that the closed-loop system is asymptotically bounded in mean square while the proposed control method is shown via some traditional nonlinear control techniques, which still show some common issues such as “dimension explosion” or others. The result of this paper can be regarded as a typical case of the nonlinear control method to help and promote the generation of advanced methods.

1. Introduction

For actual systems, the nonlinearities of the model are probably one of the most noticeable characteristics, which are issued from the physical laws, material science, mathematical derivation, and so on. Hence, nonlinear systems are typical research models in various control fields and can be used to describe the dynamics of the system states. In order to handle nonlinear control problems, many classical control methods were proposed based on the nonlinear control theory [1–3], such as the backstepping control method, feedback linearization technique, and nonlinear disturbance observer-based control scheme. Based on these nonlinear control theories, a number of advanced control techniques were proposed for various control systems. In [4], a class of nonlinear systems was studied via the event-triggered robust adaptive fuzzy control method. In [5], the adaptive neural control scheme was adopted for the nonlinear multiple output systems under the time-varying output constraints. Combining the nonlinear disturbance observer control with sliding-mode fuzzy neural network methods, a new control scheme was presented to deal with the nonlinear systems with disturbances in [6]. In [7, 8], the issue of adaptive fuzzy tracking control was discussed for a class of strict-feedback nonlinear systems. In [9], the periodic event-triggered control method was used to design the controller for nonlinear networked control systems. In [10], the robust adaptive control problem was investigated for state-constrained nonlinear systems under the input saturation and unknown control direction. The observer-based $H_\infty$ control was used for discrete-time T-S fuzzy systems in [11]. In [12], the switched-observer-based adaptive output-feedback control scheme was designed for pure-feedback switched nonlinear systems with unknown gains. The model-based adaptive event-triggered control method was discussed for nonlinear continuous-time systems in [13]. From the above discussion, the nonlinear control methods and theories are effective for disposing many troublesome nonlinear control problems. Therefore, the nonlinear control system theories are useful approaches to solve the issues of flight control for helicopters.

The flight control is a crucial issue of helicopters. An excellent flight controller guarantees the well flight performances of flying helicopters and prevents the crash, breakdown, and so on. In many books involving helicopters [14, 15], linear control methods were used for designing the helicopter flight controller and obtained expected control performances while, in fact, helicopter models are
complicated nonlinear systems, which are constructed according to the relationships of the components of helicopters. In some outstanding results, the helicopter flight controllers are designed by using the linear models, which are evolved from the nonlinear helicopter models under the linearization techniques. In [16], the tracking control issue was discussed for small-scale unmanned helicopter linear systems. In [17], the flight controller was designed for helicopters via the probabilistic robust linear parameter-varying control method using the iterative scenario approach. In [18], the model reference resilient control methods were designed for linear helicopter systems with time-varying disturbances. In [19], tracking control issues were discussed for linear unmanned helicopter systems under external disturbances. In [20], the adaptive trajectory tracking control approach was proposed for model-scaled nonlinear unmanned helicopter systems. The trajectory tracking control problems were discussed for small-scale nonlinear unmanned helicopters under model uncertainties in [21]. In [22], the composite block backstepping trajectory tracking control scheme was presented for disturbed nonlinear unmanned helicopter systems. In [23], the fixed-time autonomous shipboard landing control issues were studied for nonlinear helicopter systems under external disturbances. The finite-time control issue was discussed for small-scale nonlinear unmanned helicopters with disturbances in [24]. In [25], the sliding-mode control and extended disturbance observer control scheme are used to establish the nonlinear flight controller. Due to the characteristics of underactuation, strong nonlinearity, and high-order of helicopter stochastic system models, the phenomenon of “dimension explosion” is inevitable for nonlinear controller designed, and the controller solved steps are presented in this paper. Our results present an approach to design the strong robust flight controller.

The organization of this paper is standard. The problem statement is stated in Section 2. The position loop control issues are discussed in Section 3. The attitude loop control problems are studied in Section 4. The stability analysis of the main result is given in Section 5. The conclusions are presented in Section 6.

2. Problem Statement

Consider the following helicopter dynamic system:

\[
\begin{align*}
dp &= v dt,

dv &= \left( -ge_3 + \frac{1}{m} R f \right) dt + \delta_1 dt + G_1 d\beta_1, \\
dR &= Rw^* dt,

d\delta &= J dw = (-w^* f w + \tau) dt + \delta_2 dt + G_2 d\beta_2,
\end{align*}
\]

where \( p \) and \( v \) denote the position and velocity in inertial frame, respectively, \( g \) is the gravitational acceleration, \( e_3 = (0 \ 0 \ 1)^T \) is a unit vector, and \( R \) is the rotation matrix from body frame to inertial frame and defined by

\[
R = \begin{pmatrix}
C\theta C\psi & S\theta S\psi & C\phi S\theta C\psi + S\phi S\psi \\
C\theta S\psi & S\theta C\psi & C\phi S\theta S\psi - S\phi C\psi \\
-S\theta & S\phi & C\phi C\theta
\end{pmatrix}
\]

where \( C \) and \( S \) denote \( \cos(\cdot) \) and \( \sin(\cdot) \) with respective variables, \( \phi(t), \theta(t), \) and \( \psi(t) \) are roll, pitch, and yaw angles in body frame, respectively. \( w = (p(t) \ q(t) \ r(t)) \) is the angular velocity. \( p, q, \) and \( r \) are the roll, pitch, and yaw angular rates, respectively. \( f \) is the inertia matrix and denoted by \( f = \text{diag} \{ f_{xx} \ f_{yy} \ f_{zz} \} \). \( f \) and \( \tau \) are the sum of the external forces and moments. Consider the characteristics of these forces and moments, which are denoted as follows:

In this paper, in order to enhance the control precision and robustness of the helicopter models, the random disturbances are considered to construct the flight controller. The helicopter stochastic systems are better to describe the flying dynamics states of the helicopter. While with the random disturbances introducing in the models, many advanced control methods, such as dynamic surface control, fuzzy control, and other intelligent control methods, cannot be used to design the flight controller directly because many control variables will lose some good characteristics, such as the continuity and derivability, under the random disturbances. Therefore, in this manuscript, the backstepping control method and nonlinear disturbance observer control scheme are used to establish the nonlinear flight controller.
with $Q_m = C_m^T T_m + D_h$, $C_m$, $L_x$, $H_x$, $L_y$, $L_z$, $H_z$, and $D_h$ are known constants. $\beta_1$ and $\beta_2$ are independent one-dimensional standard Wiener processes, and $\xi$ and $\xi_2$ are independent one-dimensional stochastic noise. $G_1\xi$ and $G_2\xi_2$ are the stochastic accelerated velocity and stochastic angular acceleration generated by the stochastic force and stochastic moment, $G_1$ and $G_2$ are known and bounded weight parameters, and $\delta_1$ and $\delta_2$ are disturbances with bounded derivatives, which are $\|\delta_1\| \leq \mu_1$ and $\|\delta_2\| \leq \mu_2$.

The following definitions and lemmas are crucial important to further analyze the main results of this paper. In order to state these definitions and lemmas, consider the following system:

$$dx = f(t,x)dt + g(t,x)d\beta,$$  \hspace{1cm} (4)

where $x$ is the system state, $f \in \mathcal{L}_1(\mathbb{R}^n;\mathbb{R}^n)$ and $g \in \mathcal{L}_2(\mathbb{R}^n;\mathbb{R}^{n\times m})$ are known functions, and $\beta$ is the one-dimensional standard Wiener process.

For $V(t,x) \in C^{2,1}(\mathbb{R}^n;\mathbb{R}_+)$, the infinitesimal generator along (4) is defined by

$$\mathcal{L}V(t,x) = V_t(t,x) + V_x(t,x)f(t,x) + \frac{1}{2} \text{Tr} \left[ g^T(t,x)V_{xx}(t,x)g(t,x) \right],$$  \hspace{1cm} (5)

where $\text{Tr}$ is the trace of a matrix, and

$$V_t(t,x) = \frac{\partial V(t,x)}{\partial t},$$

$$V_x(t,x) = \left( \frac{\partial V(t,x)}{\partial \theta_1}, \ldots, \frac{\partial V(t,x)}{\partial \theta_n} \right),$$

$$V_{xx}(t,x) = \left( \frac{\partial^2 V(t,x)}{\partial \theta_i \partial \theta_j} \right)_{i,j=1}^n.$$  \hspace{1cm} (6)

**Definition 1** (see [28]). Let $p > 0$. System (4) is said to be asymptotically bounded in $p$-th moment if there is a positive constant $H$ such that

$$\lim_{t \to \infty} \sup_{x(t_0)} E[x(t; x_0)]^p \leq H,$$  \hspace{1cm} (7)

for all $(t_0, x_0) \in \mathbb{R}_+ \times \mathbb{R}^n$. When $p = 2$, we say system (4) is asymptotically bounded in mean square.

**Lemma 1.** For system (4), assume that there exists a function $V \in C^{2,1}(\mathbb{R}^n;\mathbb{R}_+)$, positive constants $k_i, k'_i, p, p_i, c, d_c$, such that

$$\sum_{i=1}^n k_i |x_i|^p \leq V(x(t),t) \leq \sum_{i=1}^n k'_i |x_i|^p,$$  \hspace{1cm} (8)

$$\mathcal{L}V(x(t),t) \leq -\lambda V(x(t),t) + d_c.$$  \hspace{1cm} (9)

Then, there exists a unique strong solution $x(t) = x(t; x_0, t_0)$ of system (4) for each $x(t_0) = x_0 \in \mathbb{R}^n$, and system (4) is $p$-th moment exponentially practically stable, where $p = \min\{p_1, \ldots, p_n\}$.

**Lemma 2.** For any vectors $x, y \in \mathbb{R}^n$ and any scalars $e > 0, p > 1$, there holds $x^T y \leq (e^p/p)|x|^p + (1/qe^p)|y|^q$, where $q = (p/(p-1))$.

### 3. Position Loop Control

In this section, the DOBC method and backstepping method are used to construct the flight controller for helicopters under stochastic disturbances. We first build disturbance observers to estimate the common disturbances $\delta_1$ and $\delta_2$.

#### 3.1. Disturbance Observer Designed for Position Control

In what follows, the disturbance observer is designed to estimate the disturbance $\delta_1$.

$$\ddot{\delta}_1 = \sigma_1 + \rho_1(v),$$

$$(10)$$

$$d\sigma_1 = -\frac{\partial \rho_1}{\partial v} \left( -ge + \frac{1}{m} f \right) dt + \dot{\delta}_1 dt + \sigma_1 dt,$$

where $\sigma_1$ is an auxiliary variable, $\sigma_{11}$ is an auxiliary function to be designed, and $\rho_1(v)$ is a nonlinear function to be designed.

Estimate error is defined as $\bar{\delta}_1 = \delta_1 - \hat{\delta}_1$. Then, the dynamic of the estimate error is given by

$$d\bar{\delta}_1 = -\frac{\partial \rho_1}{\partial v} (\delta_1 dt + G_1 d\beta_1) - \dot{\delta}_1 dt + \sigma_{11} dt.$$  \hspace{1cm} (11)

The disturbance observer gain is selected as $(\partial \rho_1(v)/\partial v) = L_1$, with $L_1 = -\text{diag}\{l_1, l_1, l_1\}$, where $l_1 > 0$. Choose the Lyapunov function as follows:
\[ V_{01} = \frac{1}{4} \left( \delta_1^T \sigma_1 \right)^2. \] (12)

Then, the infinitesimal generator of \( V_{01} \) along with (11) is shown as follows:

\[ \mathcal{L}V_{01} = -L_1 \left( \delta_1^T \sigma_1 \right)^2 - \delta_1^T \delta_1 \delta_1^T \delta_1 + \delta_1^T \delta_1 \delta_1^T \sigma_{11} + \frac{1}{2} \text{Tr} \left( G_1^T L_1 \left( 2 \delta_1 \sigma_1^T + \delta_1 \sigma_1 I \right) L_1 G_1 \right). \] (13)

From Lemma 2, there exist parameters \( \varepsilon_{01} > 0 \) and \( \varepsilon_{02} > 0 \) such that

\[ \frac{3}{4} \left( \delta_1^T \sigma_1 \right)^2 + \frac{1}{4} \| \delta_1 \|^4, \] (14)

Design \( \sigma_{11} \) as

\[ \sigma_{11} = \left( \frac{3 \varepsilon_{01}^4}{4} \right) \left( \delta_1^T \delta_1 \right)^2 + \frac{1}{4} \| \mu_1 \|^4 + \frac{3}{4} \| \delta_1 \|^4, \] (15)

where \( \sigma_{12} \) is introduced in the following steps. Hence, from (15) and \( \| \delta_1 \| \leq \mu_1 \), we have

\[ \mathcal{L}V_{01} \leq -L_1 \left( \delta_1^T \sigma_1 \right)^2 + \frac{1}{4} \| \mu_1 \|^4 + \frac{3}{4} \| \delta_1 \|^4. \] (16)

where

\[ H_{01} = \frac{1}{4} \| \mu_1 \|^4 + \frac{3}{4} \| \delta_1 \|^4. \] (17)

3.2. Position Loop Controller Designed. Consider the position loop system as follows:

\[ R_{sc} = \frac{m}{T_m} u_1, \] (21)

\[ T_m = m \left[ g e_3 + \dot{p}_r - \ddot{\delta}_1 - k_1 \tanh(n_1 e_p + n_2 e_v) - k_2 \tanh(n_2 e_v) \right]. \]

Then, the closed-loop position loop system is written as

\[ \text{de}_p = e_p \, dt, \] (22)

\[ \text{de}_v = \left( -k_1 \tanh(n_1 e_p + n_2 e_v) \right) dt + G_1 \, d\beta_1. \] (23)
Remark 1. In fact, the helicopter should not be overturn under controller (21), for the continuity of \(\cos \phi \cos \theta\). So that, we guarantee \(\cos \phi \cos \theta > 0\) to ensure that the helicopter will not be overturn. Meanwhile, the defined signal \(R_{33c}\) should also satisfy \(R_{33c} > 0\). Thus, the parameters \(k_1\) and \(k_2\) are designed to satisfy \(g + \dot{z}_1 + \bar{\delta}_1 e - k_1 - k_2 > 0\). In fact, the acceleration of disturbance in \(z\) axis is far less than acceleration of gravity.

Consider \(\|R_3\| = 1\), \(R_{3e} = R_3 - R_{3c}\), \(\bar{R}_3 = \begin{pmatrix} R_{13} \\ R_{23} \\ R_{33} \end{pmatrix}\), and \(R_{3c} = \begin{pmatrix} R_{13c} \\ R_{23c} \\ R_{33c} \end{pmatrix}\). Thus,

\[
R_3 = \begin{pmatrix} R_{13} \\ R_{23} \\ R_{33} \end{pmatrix} = \begin{pmatrix} R_{13} \\ R_{23} \\ \sqrt{1 - R_{13}^2 - R_{23}^2} \end{pmatrix},
\]

\[
R_{3e} = \begin{pmatrix} R_{13e} \\ R_{23e} \\ R_{33e} \end{pmatrix} = \begin{pmatrix} R_{13e} \\ R_{23e} \\ \sqrt{1 - R_{13e}^2 - R_{23e}^2} \end{pmatrix}.
\]

Due to \(R_{33} > 0\) and \(R_{33c} > 0\), we have

\[
\sqrt{1 - R_{13}^2 - R_{23}^2} - \sqrt{1 - R_{13c}^2 - R_{23c}^2} = \frac{\alpha_1 \bar{R}_{3c}}{\sqrt{1 - R_{13}^2 - R_{23}^2 + \sqrt{1 - R_{13c}^2 - R_{23c}^2}}}.
\]

where \(\alpha_1 = -(R_{13} + R_{13e}, R_{23} + R_{23e})\). Hence,

\[
R_{3e} = \begin{pmatrix} \bar{R}_{3e} \\ \alpha_1 \bar{R}_{3e} \\ \sqrt{1 - R_{13}^2 - R_{23}^2 + \sqrt{1 - R_{13c}^2 - R_{23c}^2}} \end{pmatrix} = \begin{pmatrix} I_2 \\ \alpha_1 \sqrt{1 - R_{13}^2 - R_{23}^2 + \sqrt{1 - R_{13c}^2 - R_{23c}^2}} \end{pmatrix} \bar{R}_{3e} = \alpha \bar{R}_{3e} = \alpha (R_3 - R_{3c}),
\]

where \(\alpha = \left(\alpha_1 / (\sqrt{1 - R_{13}^2 - R_{23}^2 + \sqrt{1 - R_{13c}^2 - R_{23c}^2}})\right)\).

The velocity tracking error equation (23) can be rewritten as

\[
de_v = \left(-k_1 \tanh(n_1 e_v + n_2 e_v) - k_2 \tanh(n_2 e_v) + \frac{T_m}{m} \alpha \bar{R}_{3e} + \bar{\delta}_1 \right) dt + G_1 d\beta_1.
\]

Choose Lyapunov function \(V_{11}(t)\) as follows:

\[
V_{11}(t) = k_1 \int_0^n e_v^2 + n_2 e_v^2 \tanh(\mu) d\mu + k_2 \int_0^n e_v^2 \tanh(\mu) d\mu + \frac{n_1}{2} e_v^2.
\]

Then, the infinitesimal generator of \(V_{11}\) is represented as
\[
\mathcal{L}V_{11}(t) = -n_2(k_1 \tanh(n_1e_p + n_2e_v) + k_2 \tanh(n_2e_v)) + F(t)^T \left( \frac{T_m}{m} \alpha R_{ec} + \delta_1 \right) + H_{11} \\
\times \left( k_1 \tanh(n_1e_p + n_2e_v) + k_2 \tanh(n_2e_v) \right) - n_1 k_2 e_v^T \tanh(n_2e_v) \\
+ F(t)^T \left( \frac{T_m}{m} \alpha R_{ec} + \delta_1 \right) + \frac{1}{2} \text{Tr} \left( \begin{pmatrix} 0 & \frac{\partial^2 V_{11}}{\partial e_p^2} \\ \frac{\partial^2 V_{11}}{\partial e_p \partial e_v} & \frac{\partial^2 V_{11}}{\partial e_v^2} \end{pmatrix} \begin{pmatrix} 0 \\ G_1 \end{pmatrix} \right) 
\]

where

\[
F(t) = n_1 e_v + n_2 k_1 \tanh(n_1e_p + n_2e_v) + n_2 k_2 \tanh(n_2e_v), \\
\frac{\partial^2 V_{11}}{\partial e_p^2} = \text{diag}\{n_1^2 k_1 (1 + \tanh^2(n_1e_p + n_2e_v)), n_1^2 k_1 (1 + \tanh^2(n_1e_p + n_2e_v)), \}
\]

\[
\frac{\partial^2 V_{11}}{\partial e_p \partial e_v} = \text{diag}\{n_1 n_2 k_1 (1 + \tanh^2(n_1e_p + n_2e_v)), n_1 n_2 k_1 (1 + \tanh^2(n_1e_p + n_2e_v)), n_1 n_2 k_1 (1 + \tanh^2(n_1e_p + n_2e_v))\},
\]

\[
\frac{\partial^2 V_{11}}{\partial e_v^2} = \text{diag}\{n_1^2 k_1 (1 + \tanh^2(n_1e_p + n_2e_v)) + n_2^2 k_2 (1 + \tanh^2(n_2e_v)), n_1^2 k_1 (1 + \tanh^2(n_1e_p + n_2e_v)) + n_2^2 k_2 (1 + \tanh^2(n_2e_v)) + \text{diag}(1, 1, 1). \]

For the function \(\|\tanh(.)\| \leq 1\) and the bounded parameter \(G_1\), there exists a parameter \(H_{11} > 0\), such that

\[
\frac{1}{2} \text{Tr} \left( \begin{pmatrix} 0 & \frac{\partial^2 V_{11}}{\partial e_p^2} \\ \frac{\partial^2 V_{11}}{\partial e_p \partial e_v} & \frac{\partial^2 V_{11}}{\partial e_v^2} \end{pmatrix} \begin{pmatrix} 0 \\ G_1 \end{pmatrix} \right) \leq H_{11}. \quad (31) 
\]

Notice that \(-n_1 k_2 e_v^T \tanh(n_2e_v) \leq -(n_1/n_2) k_2 \tanh(n_2e_v)^T \tanh(n_2e_v).\) Then, we have

\[
\mathcal{L}V_{11}(t) \leq -n_2(k_1 \tanh(n_1e_p + n_2e_v) + k_2 \tanh(n_2e_v))^T \left( k_1 \tanh(n_1e_p + n_2e_v) + k_2 \tanh(n_2e_v) \right) \\
+ \frac{\partial^2 V_{11}}{\partial e_p^2} + \frac{\partial^2 V_{11}}{\partial e_v^2} + \frac{\partial^2 V_{11}}{\partial e_p \partial e_v} + \frac{\partial^2 V_{11}}{\partial e_v^2} + H_{11} \\
+ F(t)^T \left( \frac{T_m}{m} \alpha R_{ec} + \delta_1 \right) + \frac{1}{2} \text{Tr} \left( \begin{pmatrix} 0 & \frac{\partial^2 V_{11}}{\partial e_p^2} \\ \frac{\partial^2 V_{11}}{\partial e_p \partial e_v} & \frac{\partial^2 V_{11}}{\partial e_v^2} \end{pmatrix} \begin{pmatrix} 0 \\ G_1 \end{pmatrix} \right) \leq H_{11}. \quad (32) 
\]

\[
\mathcal{L}V_{11}(t) \leq -n_2(k_1 \tanh(n_1e_p + n_2e_v) + k_2 \tanh(n_2e_v)^T \left( k_1 \tanh(n_1e_p + n_2e_v) + k_2 \tanh(n_2e_v) \right) \\
+ \frac{\partial^2 V_{11}}{\partial e_p^2} + \frac{\partial^2 V_{11}}{\partial e_v^2} + \frac{\partial^2 V_{11}}{\partial e_p \partial e_v} + \frac{\partial^2 V_{11}}{\partial e_v^2} + H_{11} \\
+ F(t)^T \left( \frac{T_m}{m} \alpha R_{ec} + \delta_1 \right) + \frac{1}{2} \text{Tr} \left( \begin{pmatrix} 0 & \frac{\partial^2 V_{11}}{\partial e_p^2} \\ \frac{\partial^2 V_{11}}{\partial e_p \partial e_v} & \frac{\partial^2 V_{11}}{\partial e_v^2} \end{pmatrix} \begin{pmatrix} 0 \\ G_1 \end{pmatrix} \right) \leq H_{11}. \quad (32) 
\]
In fact, according to Lemma 2, there exist parameters $\varepsilon_{11} > 0$ and $\varepsilon_{12} > 0$, such that

\[
F(t)^T \delta_1 \leq \frac{\varepsilon_{11} T^2}{3} \delta_1^T \delta_1^T \|F(t)\|^2 F(t) + \frac{2}{3 \varepsilon_{11}},
\]

\[
F(t)^T \frac{T_m}{m} \delta_1 \delta_1^T \leq \frac{\varepsilon_{12} T^3}{3m^3} \|F(t)\|^2 \delta_1^T \delta_1^T \delta_1^T \delta_1^T \delta_1^T F(t) + \frac{2}{3 \varepsilon_{12}}.
\]

(33)

Let $k_3 = \min \left\{ \text{eig} \left( \begin{array}{ccc}
\varepsilon_{11} k_1^2 & \varepsilon_{11} k_2^2 \\
\varepsilon_{11} k_1 k_2 & \varepsilon_{11} k_2^2 + (\varepsilon_{11}/k_1) k_2 \\
\end{array} \right) \right\}$, we obtain

\[
\mathcal{L} V_{11} (t) \leq -k_3 \left( \begin{array}{c}
\tanh(n_1 e_p + n_2 e_v) \\
\tanh(n_2 e_v) \\
\end{array} \right)^T \left( \begin{array}{c}
\tanh(n_1 e_p + n_2 e_v) \\
\tanh(n_2 e_v) \\
\end{array} \right) + \frac{\varepsilon_{12} T^3}{3m^3} \|F(t)\|^2 \delta_1^T \delta_1^T \delta_1^T \delta_1^T \delta_1^T F(t) + \frac{2}{3 \varepsilon_{11}} + \frac{2}{3 \varepsilon_{12}} + H_{11}.
\]

(34)

Since $h(x) = (\tanh(x)/x)$ is a continuous function, for any $x > 0$, there exists a positive number $\beta(x)$ such that $\beta \|x\| \leq \|\tanh(x)\| \leq \|x\|$. Thus,

\[
-\tanh(n_1 e_p + n_2 e_v)^T \tanh(n_1 e_p + n_2 e_v) \leq -\beta^2(n_1 e_p + n_2 e_v)^T(n_1 e_p + n_2 e_v),
\]

\[
-\tanh(n_2 e_v)^T \tanh(n_2 e_v) \leq -\beta^2 n_2^2 e_v^T e_v.
\]

(35)

Define Lyapunov function as follows:

\[
V_1 (t) = V_{01} (t) + V_{11} (t).
\]

(36)

Based on (16) and (34), we obtain

\[
\mathcal{L} V_1 (t) \leq -k_3 \beta^2 (n_1 e_p + n_2 e_v)^T (n_1 e_p + n_2 e_v) - k_3 \beta^2 n_2^2 e_v^T e_v
\]

\[
+ \frac{\varepsilon_{12} T^3}{3m^3} \|F(t)\|^2 \delta_1^T \delta_1^T \delta_1^T \delta_1^T \delta_1^T F(t) + \frac{\varepsilon_{11} T^2}{3} \delta_1^T \delta_1^T F(t) + \frac{2}{3 \varepsilon_{11}} + \frac{2}{3 \varepsilon_{12}} + H_{11} - L_1 \left( \frac{\bar{\sigma}_{12}}{\delta_1} \right)^2 \frac{\bar{\sigma}_{12}}{\delta_1} + H_{01}.
\]

(37)

Hence, $\sigma_{12}$ is designed as

\[
\sigma_{12} = -\frac{\varepsilon_{11}}{3} \|F(t)\|^2 F(t).
\]

(38)

Then,
\[ \mathcal{L} V_1(t) \leq -l_1 \left( \frac{\bar{\theta}^T}{\bar{\delta}_1} \right)^2 - k_4 e_p^T e_p - k_4 e_v^T e_v + \frac{\epsilon_1 T_m^2 \|a\|_2^2 \|F(t)\|^2}{3 m^3 R_{sc}^0 R_{sc}^2 a^T F(t) + H_1}, \] (39)

where \( k_4 = \min \left\{ \epsilon \left( \begin{pmatrix} k_3^2 \rho_1^2 & k_3 \rho_1 \rho_2 \\ k_3 \rho_1 \rho_2 & 2 k_3^2 \rho_2^2 \end{pmatrix} \right) \right\} > 0 \) and \( H_1 = H_{11} + H_{10} + (2/3 \epsilon_{11}^{(1/2)}) + (2/3 \epsilon_{12}^{(1/2)}) \).

Moreover, the error dynamic of disturbance \( \delta_1 \) can be rewritten as

\[ \ddot{\delta}_1 = - \left( L_1 + \frac{3 \epsilon_{01}^{(4/3)}}{4} + \frac{3 \epsilon_{02}^2}{4} \|L_1 G_1\|^2_F \right) \delta_1 + L_1 G_1 d\beta_1 - \dot{\delta}_1 - \frac{\epsilon_1}{3} \|F(t)\|^2 F(t) dt. \] (40)

The error dynamics of disturbance (42) can be rewritten as

\[ \ddot{\delta}_2 = - \left( l_2 + \frac{3 \epsilon_{03}^{(4/3)}}{4} + \frac{3 \epsilon_{04}^2}{4} \|L_2 G_2\|^2_F \right) \delta_2 - \dot{\delta}_2 dt - L_2 G_2 d\beta_2. \] (47)

4. Attitude Loop Control

In this section, the DOBC method and backsteppping method are used to construct the flight controller for helicopters. We first build disturbance observers to estimate the common disturbances \( \delta_1 \) and \( \delta_2 \).

4.1. Disturbance Observer Designed for Attitude Control.

In order to estimate the disturbance \( \delta_2 \), we design the following disturbance observers:

\[ \ddot{\hat{\delta}}_2 = \sigma_2 + J \rho_2(w), \]
\[ d\sigma_2 = -\frac{\partial \rho_2(w)}{\partial w} \left( (-w^T J w + r) dt + \hat{\delta}_2 dt \right) + \sigma_{02} dt, \]

where \( \sigma_2 \) is an auxiliary variable, \( \sigma_{02} \) is an auxiliary function to be designed, and \( \rho_2(v) \) is a nonlinear function to be designed.

Define estimate error as \( \bar{\delta}_2 = \hat{\delta}_2 - \delta_2 \). Then, the dynamic of the estimate error can be shown as

\[ \ddot{\bar{\delta}}_2 = -\frac{\partial \rho_2(w)}{\partial w} \left( \bar{\delta}_2 dt + G_2 d\beta_2 \right) - \bar{\delta}_2 dt + \sigma_{02} dt. \] (42)

The disturbance observer gain is selected as \( (\partial \rho_2(w)/\partial w) = L_2 \), with \( L_2 = -\text{diag}\{l_1, l_2, l_2\} \), where \( l_2 > 0 \).

Choose Lyapunov function as follows:

\[ V_{02} = \frac{1}{4} \left( \frac{\bar{\theta}^T}{\bar{\delta}_2} \right)^2. \] (43)

Similarly with \( V_{01} \), for \( V_{02} \), there exist \( \epsilon_{03} > 0 \) and \( \epsilon_{04} > 0 \), such that

\[ \mathcal{L} V_{02} \leq -l_2 \left( \frac{\bar{\theta}^T}{\bar{\delta}_2} \right)^2 + H_{02}, \] (44)

where

\[ H_{02} = \frac{1}{4 \epsilon_{03}} \|\mu\|^2_F + \frac{3}{4 \epsilon_{04}}. \] (45)

Design the auxiliary variable \( \sigma_{02} \) as follows:

\[ \sigma_{02} = -\left( \frac{3 \epsilon_{03}^{(4/3)}}{4} + \frac{3 \epsilon_{04}^2}{4} \|L_2 G_2\|^2_F \right) \bar{\delta}_2. \] (46)

4.2. Attitude Loop Controller Designed. The predefined tracking signals are position and yaw angle, which are denoted by \( p, \psi \). After designing the position loop control, the reasonable attitude tracking signals are obtained, which are given as \( \ddot{R}_{sc} \) and \( \psi \). Moreover, defining \( y = (\ddot{R}_{sc} \psi) \) and \( \gamma = (\theta \phi \psi) \), we can confirm that \( \|\delta y/\delta y\| = \cos \theta \neq 0 \), for \( |\theta| < (\pi/2) \). Hence, the mapping from \( y \) to \( \gamma \) is a local topological homeomorphism, which means that the dynamic of \( y \) can represent the dynamic of \( \gamma \) for \( |\theta| < (\pi/2) \).

The error dynamic of \( \gamma \) is given by

\[ d\ddot{R}_{sc} = \ddot{\gamma}_2 \] (48)

\[ de = \left( \frac{\sin \phi}{\cos \theta} p + \frac{\cos \phi}{\cos \theta} q \right) dt - d\psi, \] (49)

where \( w_1 = (p \ q)^T \) and \( \ddot{\gamma}_2 = \left( \begin{pmatrix} R_{12} \\ R_{13} \end{pmatrix} \begin{pmatrix} -R_{22} \\ R_{21} \end{pmatrix} \right). \)

For (48), \( d\ddot{R}_{sc} \) can be written as

\[ d\ddot{R}_{sc} = d \left( \frac{u_1}{u_1 u_4} \right) = \frac{1}{u_1 u_4} \left( I_3 - \frac{u_4 u_1}{u_1 u_4} \right) du_4. \] (50)

For \( du_4 \), we have

\[ du_4 = d\ddot{p}_r - d\ddot{\delta}_1 - k_1 dtanh(n_1 e_p + n_2 e_v) - k_1 dtanh(n_2 e_v). \] (51)

From (10), \( \ddot{\delta}_1 \) is written as follows:

\[ d\ddot{\delta}_1 = -l_1 \ddot{\delta}_1 dt - L_1 G_1 d\beta_1 - \frac{\epsilon_1}{3} \|F(t)\|^2 F(t) dt, \] (52)

where \( l_1 = l_1 + (3 \epsilon_{01}^{(4/3)})/4 + (3 \epsilon_{02}^2/4) \|L_1 G_1\|^2_F. \)

Hence, we get

\[ du_4 = \Delta_{01}(t) dt + \Delta_{02}(t) \ddot{\delta}_1 dt + \Delta_{03}(t) d\beta_1, \] (53)
for \( x = (x_1, x_2, x_3) \), \( \Tanh^2(x) = \text{diag}\{\tanh^2(x_1), \tanh^2(x_2), \tanh^2(x_3)\} \), where

\[
\Delta_{01}(t) = \bar{p}_r - k_1n_1(I + \Tanh^2(n_1e_r + n_2e_r))e_r - (k_2n_2(I + \Tanh^2(n_2e_r)) + k_1n_2(I + \Tanh^2(n_1e_r + n_2e_r)))e_r - k_1\tanh(n_1e_r + n_2e_r) - k_2\tanh(n_2e_r) - \frac{\mu}{m}aR_{sc},
\]

\[
\Delta_{02}(t) = I_3I_{11} - (k_2n_2(I + \Tanh^2(n_2e_r)) + k_1n_2(I + \Tanh^2(n_1e_r + n_2e_r))).
\]

\[
\Delta_{03}(t) = L_1G_1 - (k_2n_2(I + \Tanh^2(n_2e_r)) + k_1n_2(I + \Tanh^2(n_1e_r + n_2e_r)))G_1.
\]

From (50),

\[
dR_{sc} = \frac{1}{\|u_1\|^2} \left( \Delta_{101}(t) + \Delta_{102}(t)e_r + \Delta_{103}(t)\Delta_{104}(t) + \frac{\varepsilon_{11}}{3}F(t)\|F(t)\|^2F(t) \right)dt
\]

\[
+ \frac{1}{\|u_1\|^2} \Delta_{12}(t)\tilde{\delta} t + \frac{1}{\|u_1\|^2} \Delta_{13}(t)d\beta_1,
\]

where

\[
\Delta_{101}(t) = \left( I_3 - \frac{u_1u_1^T}{u_1^Tu_1} \right)p_r,
\]

\[
\Delta_{102}(t) = -k_2\left( I_3 - \frac{u_1u_1^T}{u_1^Tu_1} \right)(I + \Tanh^2(e_r)),
\]

\[
\Delta_{103}(t) = -\left( I_3 - \frac{u_1u_1^T}{u_1^Tu_1} \right)(k_2(I + \Tanh^2(e_r)) + k_1(I + \Tanh^2(e_r + e_r))).
\]

\[
\Delta_{104}(t) = -k_1\tanh(e_r + e_r) - k_2\tanh(e_r) + \frac{\mu}{m}aR_{sc},
\]

\[
\Delta_{12}(t) = \left( I_3 - \frac{u_1u_1^T}{u_1^Tu_1} \right)(I_{11}I_1 - (k_2(I + \Tanh^2(e_r)) + k_1(I + \Tanh^2(e_r + e_r)))).
\]

\[
\Delta_{13}(t) = \left( I_3 - \frac{u_1u_1^T}{u_1^Tu_1} \right)(L_1G_1_{11} - (k_2(I + \Tanh^2(e_r)) + k_1(I + \Tanh^2(e_r + e_r)))).
\]

For \( \|u_1u_1^T\|_P \leq \|u_1\|_P\|u_1^T\|_P = \|u_1\|^2 \), one has
The infinitesimal generator of $V_{21}$ along with (60) is shown as

$$
\mathcal{L}V_{21} (t) = \bar{R}_3 e w_1 + \bar{R}_3 w_{1c} \epsilon - \epsilon_{21} \frac{1}{\| u_1 \|} \| F(t) \|^2 F(t) - \epsilon_{12} \frac{1}{\| u_1 \|} \| F(t) \|^2 F(t) - \epsilon_{13} \frac{1}{\| u_1 \|} \| F(t) \|^2 F(t) - \epsilon_{23} \frac{1}{\| u_1 \|} \| F(t) \|^2 F(t) - \epsilon_{24} \frac{1}{\| u_1 \|} \| F(t) \|^2 F(t) - \epsilon_{25} \frac{1}{\| u_1 \|} \| F(t) \|^2 F(t)
$$

From Lemma 2, there exist parameters $\epsilon_{21} > 0, \epsilon_{22} > 0, \epsilon_{231} > 0, \epsilon_{232} > 0, \epsilon_{24} > 0, \epsilon_{25} > 0$, such that
\[
\begin{align*}
R_s^T R_s e_w^T R_s e_w & \leq \frac{3}{4e_{21}^{(1/3)}} (R_s^T R_s)^2 + \frac{\epsilon_{22}}{4} || R_s^T e_w^T e_w ||^2,
\end{align*}
\]
\[
- R_s^T R_s e_w^T E_0 \frac{1}{|| u_1 ||} \Delta_{101} (t) \leq \frac{3e_{22}^{(1/3)}}{4 || u_1 ||} (R_s^T R_s)^2 + \frac{1}{4e_{22}} || E_0 ||^4 || \Delta_{101} (t) ||^4,
\]
\[
- R_s^T R_s R_s^T R_s^T E_0 \frac{1}{|| u_1 ||} \Delta_{102} (t) e_v \leq \frac{\epsilon_{21}}{2} (R_s^T R_s^T)^2 + \frac{\epsilon_{22}}{2 || u_1 ||} (R_s^T R_s^T) (e_v^T e_v)^2 + \frac{1}{4e_{22}} || E_0 ||^4 || \Delta_{102} (t) ||^4,
\]
\[
- R_s^T R_s R_s R_s^T E_0 \frac{1}{|| u_1 ||} \Delta_{12} (t) \delta_1 \leq \frac{3\epsilon_{24}}{4 || u_1 ||} (R_s^T R_s)^2 + \frac{1}{4e_{24}} || E_0 ||^4 || \Delta_{12} (t) ||^4 (\delta_1^T \delta_1)^2,
\]
\[
\frac{1}{2 || u_1 ||} Tr (\Delta_{13}^T (t) E_0 (2R_s e_w^T R_s + R_s R_s^T R_s^T) E_0 \Delta_{13} (t)) \leq \frac{3e_{25}}{4 || u_1 ||} (R_s^T R_s)^2 + \frac{1}{2e_{25}} || E_0 ||^4 || \Delta_{13} (t) ||^4.
\]

Furthermore, for \( T_m = m || u_1 || \), there exist parameters \( \epsilon_{26} > 0 \) and \( \epsilon_{27} > 0 \), such that
\[
- R_s^T R_s e_w^T E_0 \frac{1}{|| u_1 ||} \Delta_{103} (t) \Delta_{104} (t) \leq \frac{3e_{26}}{4 || u_1 ||} (R_s^T R_s)^2 + \frac{1}{4e_{26}} || E_0 ||^4 || \Delta_{103} (t) ||^4 \left( \| k_1 \tanh (e_v + e_v) \| + \| k_2 \tanh (e_v) \| \right) \]
\[
+ \frac{3e_{27}}{4} || E_0 ||^4 || \Delta_{103} (t) ||^4 (R_s^T R_s)^2 + \frac{1}{4e_{27}} || E_0 ||^4 (R_s^T R_s)^2.
\]

Then, \( \mathcal{L} V_{21} (t) \) satisfies
\[
\mathcal{L} V_{21} (t) \leq \left( H_{25} + \frac{H_{24}}{4 || u_1 ||} \right) \left( R_s^T R_s \right)^2 + \frac{3e_{25}}{4 || u_1 ||} || \alpha ||^4 + \frac{1}{4e_{27}} || \alpha ||^4 \left( R_s^T R_s \right)^2 + R_s^T R_s R_s^T R_s^T e_w^T + H_{23} (\delta_1^T \delta_1)^2
\]
\[
- \frac{\epsilon_{21}}{2} || \overline{F} || (t)^2 + \frac{\epsilon_{22}}{2 || u_1 ||} (R_s^T R_s)^2 (e_v^T e_v)^2 + \frac{\epsilon_{23}}{4} || R_s^T e_v^T e_v ||^4 \left( e_v^T e_v \right)^2 + H_{21},
\]

where
According to (39) and (64), we have

\[ H_{21} = \frac{1}{2\epsilon_{25}} \| E_0 \|_F^2 \left( (\sqrt{3} + 1) \left( \| L_1 G_1 \| + 2\sqrt{3} (k_1 + k_2) \| G_1 \| \right) \right)^2 + \frac{1}{4\epsilon_{25}} \| E_0 \|_F^4 (9 + 1)^{1/4} \| R_3 \|^{1/4} \]

\[ + \frac{1}{4\epsilon_{26}} \| E_0 \|_F^4 (6 + 2\sqrt{3}) (k_1 + k_2)^4 (k_1 + k_2)^4 + \| E_0 \|_F^4 \| k_2 (3\sqrt{2} + \sqrt{6}) \|_4^4 \]

\[ = \frac{1}{4\epsilon_{23}} \| E_0 \|_F^4 \| k_2 (3\sqrt{2} + \sqrt{6}) \|_4^2, \]

\[ H_{22} = \frac{1}{4\epsilon_{24}} \| E_0 \|_F^4 \| k_2 (3\sqrt{2} + \sqrt{6}) \|_4^2, \]

\[ H_{23} = \frac{1}{4\epsilon_{24}} \left( (\sqrt{3} + 1) \left( \| I \|_F + 2\sqrt{3} (k_1 + k_2) \right) \right)^4, \]

\[ H_{24} = 3\epsilon_{22}^{(1/3)} + 3\epsilon_{24}^{(1/3)} + 3\epsilon_{26}^{(1/3)}, \]

\[ H_{25} = \frac{3}{4\epsilon_{23}} \| E_0 \|_F^4 \left( (6 + 2\sqrt{3}) (k_1 + k_2)^{4/3} + \epsilon_{231} \right) \]

Define \( V_2(t) = V_1 + V_{21} \). Based on the above discussion and according to (39) and (64), we have

\[ \mathcal{L} V_2(t) \leq - (L_1 - H_{23}) \left( \delta_1^T \delta_1 \right)^2 - k_4 e^T_p e_p - k_4 e^T e_v + \frac{\epsilon_{21}}{4} \| R_3 \|^4 \| e^T \| \| e_v \| e \| e_v \| e \| + \frac{\epsilon_{21}}{4} \| R_3 \| \| R_3 \| \| e \| e \| e \}

\[ + \left( H_{25} + \frac{H_{24}}{4 \| u_1 \|^{(4/3)}} + \frac{3\epsilon_{25}}{4 \| u_1 \|^{(4/3)}} + \frac{1}{4\epsilon_{27}} \| \alpha \|_F^4 \right) \| R_3 \| \| R_3 \| \| e \| e \| e \| e \| e \]

\[ + \frac{\epsilon_{22}}{2 \| u_1 \|^{(4/3)}} \| R_3 \| \| R_3 \| \| e \| e \| e \| e \| e \]

where \( H_1 = H_{21} + H_{23} \). Hence, we design the virtual control law \( w_{1c} \) as

\[ w_{1c} = - \left( k_5 + H_{25} + \frac{H_{24}}{4 \| u_1 \|^{(4/3)}} + \frac{3\epsilon_{25}}{4 \| u_1 \|^{(4/3)}} + \frac{1}{4\epsilon_{27}} \| \alpha \|_F^4 \right) \| R_3 \| \| R_3 \| \| e \| e \| e \| e \| e \]

\[ - \frac{\epsilon_{22}}{2 \| u_1 \|^{(4/3)}} \| e \| e \| e \| e \| e \]

where \( k_5 > 0 \). Then, we obtain

\[ \mathcal{L} V_2(t) \leq - (L_1 - H_{23}) \left( \delta_1^T \delta_1 \right)^2 - k_4 e^T_p e_p - k_4 e^T e_v - k_5 \left( R_3^T R_3 \right)^2 + \frac{\epsilon_{21}}{4} \| R_3 \|^4 \| e^T \| \| e_v \| e \| e \| e \| e \]

From (61), the dynamic of \( R_3 \) can be rewritten as
\[
\begin{align*}
\dot{\mathbf{R}}_{3c} &= \mathbf{R}_{3c1} (t) \, dt + \mathbf{R}_{3c2} (t) \, \delta_1 \, dt + \mathbf{R}_{3c3} (t) \, d\beta_1, \\
\end{align*}
\]

where
\[
\begin{align*}
\mathbf{R}_{3c1} (t) &= \mathbf{R}_3 e_{\omega_1} - \left( k_5 + H_25 + \frac{H_{23}}{4\|\mathbf{u}_1\|} \right) + \frac{3\epsilon_{25}}{4\|\mathbf{u}_1\|} + \frac{\epsilon_{12} T_m^3 \|\mathbf{a}\|^2 \|F(t)\|^2}{3m^4} \mathbf{R}_{3c} - \epsilon_{233} e^T \mathbf{R}_3^{-1} \mathbf{R}_{3c} - \frac{E_0}{\|\mathbf{u}_1\|} \Delta_{12} (t), \\
\mathbf{R}_{3c2} (t) &= \frac{E_0}{\|\mathbf{u}_1\|} \Delta_{12} (t), \\
\mathbf{R}_{3c3} (t) &= \frac{E_0}{\|\mathbf{u}_1\|} \Delta_{13} (t). \\
\end{align*}
\]

For (37), we have
\[
\dot{e}_\psi = \left( E_{11} w_1 + \frac{\cos \phi}{\cos \theta} e_r + \frac{\cos \phi}{\cos \theta} e_r \right) \, dt,
\]

where \( E_{11} = (0 \sin \phi / \cos \theta) \) and \( r_c \) is the virtual control law to be designed.

Choose Lyapunov function \( V_{31} \) as
\[
V_{31} = \frac{1}{4} e^4.
\]

The derivative of \( V_{31} (t) \) along with (71) is derived as follows:
\[
\dot{V}_{31} (t) = e^4 \left( E_{11} w_1 + \frac{\cos \phi}{\cos \theta} e_r + \frac{\cos \phi}{\cos \theta} e_r - \psi_r \right).
\]

Then, the virtual control law \( r_c \) is designed as
\[
r_c = \frac{\cos \theta}{\cos \phi} \left( E_{11} w_{1c} - \psi_r + k_3 e_{\psi} \right).
\]

At this point, the dynamic of \( e_\psi \) can be written as
\[
\dot{e}_\psi = \left( -k_6 e_\psi + E_{11} w_1 + \frac{\cos \phi}{\cos \theta} e_r \right) \, dt = \left( -k_6 e_\psi + E_{11} w_1 \right) \, dt,
\]

where \( E_{i1} = (0 \sin \phi / \cos \theta) \) (cos \( \phi / \cos \theta \)) and \( e_w = (p, q, r)^T - (p_{i1}, q, r)^T \). Thus, based on Lemma 2, there exists \( \epsilon_{28} > 0 \), such that
\[
\begin{align*}
\dot{V}_{31} (t) &= e^4 \left( -k_6 e_\psi + E_{11} w_1 \right) - k_6 e^4_\psi + E_{11} w_1 \leq - \left( k_6 - \frac{3 \epsilon_{28}}{4} \right) e^4_\psi + \frac{1}{4 \epsilon_{28}} \| E_{i1} \|^4 \left( e^T w_1 \right)^2. \\
\end{align*}
\]

Define \( V_{31} = V_2 (t) + V_{31} (t) \); combining (68) and (76) yields
\[
\begin{align*}
\mathcal{L} V_3 (t) &\leq - (l_1 - H_{23}) \left( \mathbf{R}_3 e_{\omega_1} \right)^2 - k_4 e^T e_r - k_5 e^T e_r - k_5 \left( \mathbf{R}_3 e_{\omega_1} \right)^2 + \frac{\epsilon_{21}^2 \| \mathbf{R}_3 \|^2 \| E_{i1} \|^4 \left( e^T w_1 \right)^2}{4} + H_2 \\
&= \left( k_6 - \frac{3 \epsilon_{28}}{4} \right) e^4_\psi + \frac{1}{4 \epsilon_{28}} \| E_{i1} \|^4 \left( e^T w_1 \right)^2.
\end{align*}
\]

In what follows, consider the dynamic of angular velocity:
\[
J d\omega = \left( -w^T J w + A (T_m) \rho + B(T_m) + \delta_2 \right) d\tau + G_1 d\beta_2.
\]
Defining $\rho = A(T_m)^{-1}(u_2 - B(T_m) + w^*Jw - \bar{\delta}_2)$, the error dynamic of $e_w$ is

$$Jde_w = (u_2 + \bar{\delta}_2)dt + G_2db_2 - dw_2,$$  \hfill (79)

which implies that

$$\frac{d}{dt}(Jde_w) = (J^{-1}u_2 - J^{-1}W_{c1}(t) - J^{-1}W_{c2}(t)\bar{\delta}_1 - J^{-1}W_{c20}(t, \bar{\delta}_1) + J^{-1}W_{c3}(t)db_2 + J^{-1}G_2db_2).$$  \hfill (80)

Choose Lyapunov function as follows:

$$V_{41}(t) = \frac{1}{4}(e_w^Te_w)^2.$$  \hfill (82)

The infinitesimal generator of $V_{41}$ along with (81) is obtained as follows:

$$\mathcal{L}V_{41}(t) = e_w^Te_w^TJ^{-1}u_2 - e_w^Te_w^TJ^{-1}W_{c1}(t) - e_w^Te_w^TJ^{-1}W_{c2}(t)\bar{\delta}_1 - e_w^Te_w^TJ^{-1}W_{c20}(t, \bar{\delta}_1)$$

$$+ e_w^Te_w^TJ^{-1}\bar{\delta}_2 + \frac{1}{2}\text{Tr}(W_{c1}^T(t)J^{-1}(2e_w^Te_w^T + e_w^Te_w^T)J^{-1}W_{c2}(t))$$

$$+ \frac{1}{2}\text{Tr}(G_2^TJ^{-1}(2e_w^Te_w^T + e_w^Te_w^T)J^{-1}G_2).$$

$$\leq \frac{3}{4\epsilon_{31}}\|w_{c1}(t)\|^4_{F} \|\epsilon_w^Te_w^T\|^2 + \frac{\epsilon_{31}}{4}\|\bar{\delta}_1^T\bar{\delta}_1\|^2,$$

$$\leq \frac{3}{4\epsilon_{32}}\|w_{c2}(t)\|^4_{F} \|\epsilon_w^Te_w^T\|^2 + \frac{\epsilon_{32}}{4}\|\bar{\delta}_2^T\bar{\delta}_2\|^2,$$

$$\leq \frac{3\epsilon_{33}}{4}\|w_{c3}(t)\|^4_{F} \|\epsilon_w^Te_w^T\|^2 + \frac{3}{4\epsilon_{33}},$$

$$\leq \frac{3\epsilon_{34}}{4}\|G_2\|^4_{F} \|\epsilon_w^Te_w^T\|^2 + \frac{3}{4\epsilon_{34}},$$

$$\leq \frac{3\epsilon_{35}}{2}\|\Pi\| \|\epsilon_w^Te_w^T\|^2 + \frac{\epsilon_{35}}{2}\|\bar{\delta}_1^T\bar{\delta}_1\|^2,$$

where

$$\Pi = \|J^{-1}\|_{F} \|w_{c1}(t)\|^4_{F} \|\Delta_{502}(t)\|^4_{F} \|\epsilon_{31}\|^4_{F} \|w_{c2}(t)\|^4_{F} \|\Delta_{512}(t)\|^4_{F} \|\epsilon_{32}\|^4_{F} \|w_{c3}(t)\|^4_{F} \|\Delta_{512}(t)\|^4_{F} \|\epsilon_{33}\|^4_{F} \|G_2\|^4_{F} \|\epsilon_{34}\|^4_{F} \Pi\| \|\Pi\|^{4}_{F} \Pi\| \Pi\|^{4}_{F}$$

Hence, based on (83), we get
\[
\mathcal{L}V_{41}(t) \leq e^{T}_w e_w J^{-1} u_2 - e^{T}_w e_w T J^{-1} e_w W_{e1}(t) + \frac{3}{4\varepsilon_{31}} \| J^{-1}_F \|_F^{(4/3)} \| W_{e2}(t) \|_F^{(4/3)} (e^{T}_w e_w)^2 + \frac{\varepsilon_{31}}{4} (\tilde{\delta}_1 \tilde{\delta}_1)^2 + \frac{3}{4\varepsilon_{32}} \| J^{-1}_F \|_F^{(4/3)} (e^{T}_w e_w)^2 + \frac{\varepsilon_{32}}{4} (\tilde{\delta}_2 \tilde{\delta}_2)^2 + \frac{3}{4\varepsilon_{33}} \| J^{-1}_F \|_F^{(4/3)} \| W_{e3}(t) \|_F^{(4/3)} (e^{T}_w e_w)^2 + \frac{3}{4\varepsilon_{33}} (\tilde{\delta}_1 \tilde{\delta}_1)^2.
\]

Design the controller \(u_2\) as

\[
u_2 = \left( k_7 + \frac{3}{4\varepsilon_{31}} \| J^{-1}_F \|_F^{(4/3)} \| W_{e2}(t) \|_F^{(4/3)} + \frac{3}{4\varepsilon_{32}} \| J^{-1}_F \|_F^{(4/3)} + \frac{3}{4\varepsilon_{33}} \| J^{-1}_F \|_F^{(4/3)} \| W_{e3}(t) \|_F^{(4/3)} \right) e_w + W_{e1}(t) + u_3,
\]

where \(u_3\) is designed in the following steps.

\[
\mathcal{L}V_{41}(t) \leq -k_7(e^{T}_w e_w)^2 + \left( \frac{\varepsilon_{31}}{4} + \frac{\varepsilon_{32}}{4} + \frac{\varepsilon_{33}}{4} \right) (\tilde{\delta}_1 \tilde{\delta}_1)^2 + \frac{\varepsilon_{32}}{4} (\tilde{\delta}_2 \tilde{\delta}_2)^2 + e^{T}_w e_w e^{T}_w W_{e2}(t) + e^{T}_w e_w e^{T}_w J^{-1} u_2 + \frac{3}{4\varepsilon_{33}} + \frac{3}{4\varepsilon_{34}}.
\]

Define Lyapunov function as follows:

\[
V(t) = V_{o2}(t) + V_{e1}(t) + V_{41}.
\]

Combining (44), (77), and (87), the infinitesimal generator of (88) is represented as

\[
\mathcal{L}V(t) \leq -\left( I_1 - H_{23} \right) - \frac{\varepsilon_{31}}{4} (\tilde{\delta}_1 \tilde{\delta}_1)^2 - \left( I_2 - \frac{\varepsilon_{32}}{4} \right) (\tilde{\delta}_2 \tilde{\delta}_2)^2 - k_7 e^{T}_w e_w - k_4 e^{T}_w e_w
\]

\[
- k_5 \left( \tilde{R}_c R_{3c} \right)^2 - \left( k_6 - \frac{3\varepsilon_{28}}{4} \right) \psi^2 - k_7 (e^{T}_w e_w)^2 + e^{T}_w e_w e^{T}_w J^{-1} u_3
\]

\[
+ \frac{\varepsilon_{31}}{4} \| \tilde{R}_c \|_F^4 \| E_{01} \|_F^4 (e^{T}_w e_w)^2 + \frac{1}{4\varepsilon_{28}} \| E_{11} \|_F^4 (e^{T}_w e_w)^2 + H_3.
\]

where

\[
H_3 = H_2 + \frac{3}{4\varepsilon_{33}} + \frac{3}{4\varepsilon_{34}} + H_{o2}.
\]

Recalling that \(e^{T}_w e_w \leq e^{T}_w e_w\), \(u_3\) is designed as

\[
\mathcal{L}V(t) \leq -\left( I_1 - H_{23} \right) - \frac{\varepsilon_{31}}{4} (\tilde{\delta}_1 \tilde{\delta}_1)^2 - \left( I_2 - \frac{\varepsilon_{32}}{4} \right) (\tilde{\delta}_2 \tilde{\delta}_2)^2 - k_7 e^{T}_w e_w
\]

\[
- k_4 e^{T}_w e_w - k_5 \left( \tilde{R}_c R_{3c} \right)^2 - \left( k_6 - \frac{3\varepsilon_{28}}{4} \right) \psi^2 - k_7 (e^{T}_w e_w)^2 + H_3.
\]
Based on (86) and (91), (81) can be written as

\[ J\delta e_w = - \left( k_7 + \frac{3}{4\varepsilon_{11}^{(4/3)}} J^{-1}_F \| W_{\epsilon_2} (t) \|_F^{4/3} \right) \delta_1 e_w + \frac{3}{4\varepsilon_{12}^{(4/3)}} J^{-1}_F \| W_{\epsilon_3} (t) \|_F^{4/3} + \frac{3\varepsilon_{33}}{4} J^{-1}_F \| W_{\epsilon_3} (t) \|_F^4 + \frac{3\varepsilon_{34}}{4} J^{-1}_F \| G_2 \|_F^4 \]

\[ + \frac{3}{4\varepsilon_{35}^{(4/3)}} \Pi e_w dt - \left( \frac{\varepsilon_{41}}{4} \left\| \bar{R}_3 \|_F^4 E_0 \right\|_F + \frac{1}{4\varepsilon_{28}} \| E_1 \|_F^4 \right) J\delta e_w dt - W_{\epsilon_{20}} (t, \delta_1) dt + \delta_2 dt \]

By using (40), (41), (22), (27), (68), (75), and (93), we get

\[ d\delta_1 = - \left( L_1 + \left( \frac{3\varepsilon_{11}^{(4/3)}}{4} + \frac{3\varepsilon_{12}^2}{4} \| L_1 G_1 \|_F^4 \right) \right) \delta_1 \delta_1 dt - L_1 G_1 d\beta_1 - \delta_1 dt - \frac{\varepsilon_{41}}{3} F(t)^2 F(t)^T dt, \]

\[ d\delta_2 = - \left( L_2 + \frac{3\varepsilon_{12}^{(4/3)}}{4} + \frac{3\varepsilon_{42}^2}{4} \| L_2 G_2 \|_F^4 \right) \delta_1 \delta_1 dt - L_2 G_1 d\beta_2, \]

\[ de_p = e_p dt, \]

\[ de_v = \left( -k_2 \tanh(e_p + e_v) - k_2 \tanh(e_p) + \frac{T_w}{m_0} \alpha R_{\omega_1} \delta_1 \right) dt + G_1 d\beta_1, \]

\[ de_{\omega} = \left( -k_2 e_{\omega} + E_1 e_w \right) dt, \]

\[ dR_{\omega_1} = R_{\omega_1} (t) dt + R_{\omega_1} (t) \delta_1 + R_{\omega_1} (t) d\beta_1, \]

\[ J\delta e_w = - \left( k_7 + \frac{3}{4\varepsilon_{11}^{(4/3)}} J^{-1}_F \| W_{\epsilon_2} (t) \|_F^{4/3} \right) \delta_1 e_w + \frac{3}{4\varepsilon_{12}^{(4/3)}} J^{-1}_F \| W_{\epsilon_3} (t) \|_F^{4/3} + \frac{3\varepsilon_{33}}{4} J^{-1}_F \| W_{\epsilon_3} (t) \|_F^4 + \frac{3\varepsilon_{34}}{4} J^{-1}_F \| G_2 \|_F^4 \]

\[ + \frac{3}{4\varepsilon_{35}^{(4/3)}} \Pi e_w dt - \left( \frac{\varepsilon_{41}}{4} \left\| \bar{R}_3 \|_F^4 E_0 \right\|_F + \frac{1}{4\varepsilon_{28}} \| E_1 \|_F^4 \right) J\delta e_w dt - W_{\epsilon_{20}} (t, \delta_1) dt + \delta_2 dt \]

Remark 2. In this paper, the dynamics of the helicopter are modeled as the stochastic systems due to the disturbances including the random disturbances. Many control variables of the helicopter stochastic systems are discontinuous. Hence, some advanced control methods cannot be used to design the flight controller directly, such as the dynamic surface control, fuzzy control, and other control methods. In order to construct the ant-disturbance flight controller for the helicopter stochastic systems, the disturbance observer method and backstepping control scheme are applied in our paper.

Remark 3. The control method proposed in this paper shows some weaknesses, such as the complicated controller structure and tedious mathematical derivation while the helicopter stochastic system models are first discussed in this paper and the nonlinear control method is feasible in theory. In the future, we will construct the more advanced ant-disturbance flight controller with the simple structure based on the proposed control scheme of this paper.

Remark 4. The structure block diagram of the ant-disturbance control scheme is shown in Figure 1. The noises from inside and outside of the helicopter are considered to construct the helicopter models and divided as to different parts: the random disturbances and other times-varying disturbances. Then, the stochastic control theory is applied to analyze the stability of the closed-loop systems. And the stochastic ant-disturbance flight controller is constructed.
5. Stability Analysis

In this section, the asymptotic boundedness in mean square of the composite closed-loop system (94) is guaranteed under the controllers $u_1$ and $u_2$.

**Theorem 1.** Considering helicopter system (1) with disturbances, design the disturbance observers as (10) and (41) and the controllers as (20) and (86). The composite closed-loop system (94) is asymptotically bounded in mean square. If there exist parameters $k_1 > 0$, $k_2 > 0$, $k_3 > 0$, $k_4 > 0$, $k_5 > 0$, $k_6 > 0$, $k_7 > 0$, $k_8 > 0$, $k_9 > 0$, $l_1 > 0$, $l_2 > 0$, $\xi_{01} > 0$, $\xi_{02} > 0$, $\xi_{03} > 0$, $\xi_{04} > 0$, $\xi_{11} > 0$, $\xi_{12} > 0$, $\xi_{21} > 0$, $\xi_{22} > 0$, $\xi_{23} > 0$, $\xi_{23} > 0$, $\xi_{24} > 0$, $\xi_{25} > 0$, $\xi_{26} > 0$, $\xi_{27} > 0$, $\xi_{28} > 0$, $\xi_{31} > 0$, $\xi_{32} > 0$, $\xi_{33} > 0$, $\xi_{34} > 0$, and $\xi_{35} > 0$, such that $l_1 - H_{23} - (\xi_{31}/4) - (\xi_{35}/4) > 0$, $l_1 - (\xi_{32}/4) > 0$, $k_4 - H_{22} > 0$, $k_6 - (3\varepsilon_{28}^{(1/3)}/4) > 0$ hold.

**Proof.** Consider the Lyapunov function $V(t)$ as follows:

$$V(t) = V_{01}(t) + V_{11}(t) + V_{11}(t)$$

$$= \frac{1}{4} \left( \frac{2}{\delta_1} \right)^2 + \frac{1}{4} \left( \frac{2}{\delta_2} \right)^2 + k_1 \int_0^\varepsilon \tanh(\mu) d\mu + k_2 \int_0^\varepsilon \tanh(\mu) d\mu$$

$$+ \frac{1}{2} e_r^T e_r + \frac{1}{2} \left( \frac{R_{3e}^T R_{3e}}{2} \right)^2 + \frac{1}{2} e_v^T e_v + \frac{1}{4} e_u^T e_u.$$

where $k_4 = \max \left\{ \frac{1}{2} \right\}$.

Moreover,

$$k_1 \int_0^\varepsilon \tanh(\mu) d\mu + k_2 \int_0^\varepsilon \tanh(\mu) d\mu \leq k_6 e_r^T e_r + k_6 e_v^T e_v,$$

where $k_6 = \min \left\{ \frac{1}{2} \right\}$.

Then, we have

$$\frac{1}{4} \left( \frac{2}{\delta_1} \right)^2 + \frac{1}{4} \left( \frac{2}{\delta_2} \right)^2 + k_4 e_r^T e_r + \left( k_8 + \frac{1}{2} \right) e_v^T e_v + \frac{1}{4} e_u^T e_u.$$

which satisfies (8) in Lemma 1 with $p = 2$. From the discussion in Sections 3 and 4, we have

$$\mathcal{L} V(t) \leq \left( l_1 - H_{23} - \frac{\xi_{31}}{4} - \frac{\xi_{35}}{4} \right) \left( \frac{2}{\delta_1} \right)^2 - \left( l_2 - \frac{\xi_{32}}{4} \right) \left( \frac{2}{\delta_2} \right)^2 - k_4 e_r^T e_r$$

$$- k_6 e_v^T e_v - k_5 \left( \frac{R_{3e}^T R_{3e}}{2} \right)^2 - \left( k_6 - \frac{3\varepsilon_{28}^{(1/3)}/4} \right) e_v^T e_v - k_5 \left( e_u^T e_u \right)^2 + H_3 \leq - \lambda V(t) + H_3,$$
Consider d\(A\). The calculation of control approach is adopted for nonlinear helicopter methods and stochastic control theory, and the backstepping rejected via the nonlinear disturbance observer control varying disturbances. These disturbances are attenuated and helicopter systems under stochastic disturbances and time-

6. Conclusion

This paper studies the tracking control issue for nonlinear helicopter systems under stochastic disturbances and time-varying disturbances. These disturbances are attenuated and rejected via the nonlinear disturbance observer control method and stochastic control theory, and the backstepping control approach is adopted for nonlinear helicopter systems. The problems of “dimension explosion” are analyzed for complicated nonlinear control systems.

Since the helicopter systems are modeled as the stochastic systems, many advanced nonlinear control methods can be directly used. The phenomenon of “dimension explosion” is inevitable in nonlinear controller constructing process. In the future, we will combine some advanced nonlinear control methods and stochastic control theory and propose the more advanced antidisturbance flight control scheme with simple structure.

Appendix

From (67), d\(\omega_1\) can be written by

\[
d\omega_1 = -d\left(k_5 + H_{25} + \frac{H_{24}}{4\|u_1\|^{(4/3)}} + \frac{3\epsilon_{25}}{4\|u_1\|^2} \|\alpha\|^p + \frac{1}{4\epsilon_{27}}\|\alpha\|^p \right) R_3^{-1} R_{3e} \\
- d\left(\frac{\epsilon_{12}\|u_1\|\|\alpha\|\|F(t)\|^2}{3} R_3^{-1} \alpha F(t)\right) \\
- d\left(\frac{\epsilon_{32}}{2\|u_1\|} (\epsilon^{-T} e) R_3^{-1} R_{3e}\right) + d\left(\frac{\epsilon_{11}\|F(t)\|^2}{3\|u_1\|} R_3^{-1} E_0 F(t)\right).
\]

A. The Calculation of d\((k_5 + H_{25} + \frac{H_{24}}{4\|u_1\|^{(4/3)}} + \frac{3\epsilon_{25}}{4\|u_1\|^2} \|\alpha\|^p + \frac{1}{4\epsilon_{27}}\|\alpha\|^p \right) R_3^{-1} R_{3e}\)

Consider

\[
d\left(k_5 + H_{25} + \frac{H_{24}}{4\|u_1\|^{(4/3)}} + \frac{3\epsilon_{25}}{4\|u_1\|^2} \|\alpha\|^p + \frac{1}{4\epsilon_{27}}\|\alpha\|^p \right) R_3^{-1} R_{3e} \\
= d\left(k_5 + H_{25} + \frac{H_{24}}{4\|u_1\|^{(4/3)}} + \frac{3\epsilon_{25}}{4\|u_1\|^2} \|\alpha\|^p + \frac{1}{4\epsilon_{27}}\|\alpha\|^p \right) R_3^{-1} R_{3e} \\
= d\left(k_5 + H_{25} + \frac{H_{24}}{4\|u_1\|^{(4/3)}} + \frac{3\epsilon_{25}}{4\|u_1\|^2} \|\alpha\|^p + \frac{1}{4\epsilon_{27}}\|\alpha\|^p \right) R_3^{-1} R_{3e} \, dR_{3e}. \tag{A.2}
\]

For d\(u_1\), we deduce

where

\[\lambda = \min \left\{ 4\left( I_1 - H_{23} - \frac{\epsilon_{31}}{4} - \frac{\epsilon_{35}}{4} \right), 4\left( I_1 - \frac{\epsilon_{35}}{4} \right), \frac{k_4}{k_9}, \frac{k_4}{k_9 + (1/2)^{3} k_5}, 4\left( k_6 - \frac{3\epsilon_{28}}{4} \right), 4k_7 \right\}, \quad (100)\]
\[
d\|u_1\| = -\frac{du_1^T \cdot u_1 + u_1^T du_1}{2 \sqrt{u_1^T u_1}} = -\frac{u_1^T}{\|u_1\|} \left( \Delta_{01}(t) dt + \Delta_{02}(t) \delta_1 dt + \Delta_{03}(t) d\beta_1 \right),
\]

which means that

\[
d \frac{H_{24}}{4\|u_1\|^{(4/3)}} = -\frac{H_{24}}{3\|u_1\|^{(7/3)}} d\|u_1\| = -\frac{H_{24} u_1^T}{3\|u_1\|^{(10/3)}} \left( \Delta_{01}(t) dt + \Delta_{02}(t) \delta_1 dt + \Delta_{03}(t) d\beta_1 \right),
\]

\[
d \frac{3\varepsilon_{25}}{4\|u_1\|^2} = -\frac{3\varepsilon_{25} u_1^T}{2\|u_1\|^2} \left( \Delta_{01}(t) dt + \Delta_{02}(t) \delta_1 dt + \Delta_{03}(t) d\beta_1 \right).
\]

For \(\|\alpha\|_F\), one has

\[
\alpha^T \alpha = \begin{pmatrix} 1 & 0 & -R_{13} - R_{13c} \\ 0 & 1 & -R_{23} - R_{33c} \\ 0 & 1 & -R_{23} - R_{33c} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 + \frac{(R_{13} + R_{13c})}{(R_{33} + R_{33c})} \\ R_{33} + R_{33c} \\ R_{33} + R_{33c} \end{pmatrix} \begin{pmatrix} (R_{13} + R_{13c})u_1^T (R_{23} + R_{33c})^2 \\ (R_{33} + R_{33c})^2 \\ (R_{33} + R_{33c})^2 \end{pmatrix}.
\]

Hence,

\[
\|\alpha\|_F = (\text{Tr}(\alpha^T \alpha))^{(1/2)} = (\text{Tr}(\alpha^T \alpha))^{(1/2)} = 2 + \frac{(R_{13} + R_{13c})^2 + (R_{23} + R_{23c})^2}{(R_{33} + R_{33c})^2},
\]

\[
d\|\alpha\|_F = \Delta_{21}(t) dR_3 + \Delta_{21}(t) \frac{1}{\sqrt{u_1^T u_1}} \left( I_3 - \frac{u_1 u_1^T}{u_1^T u_1} \right) \Delta_{01}(t) dt + \Delta_{21}(t) \frac{1}{\sqrt{u_1^T u_1}} \left( I_3 - \frac{u_1 u_1^T}{u_1^T u_1} \right) \Delta_{02}(t) \delta_1 dt + \Delta_{21}(t) \frac{1}{\sqrt{u_1^T u_1}} \left( I_3 - \frac{u_1 u_1^T}{u_1^T u_1} \right) \Delta_{03}(t) d\beta_1,
\]

where

\[
\Delta_{21}(t) = \left( \frac{2(R_{13} + R_{13c})}{(R_{33} + R_{33c})^2} \right) \frac{2(R_{23} + R_{23c})}{(R_{33} + R_{33c})^2} \frac{2(R_{13} + R_{13c})^2 + (R_{23} + R_{23c})^2}{(R_{33} + R_{33c})^2}.
\]

From the above discussion,

\[
d \left( k_5 + H_{25} + \frac{H_{24}}{4\|u_1\|^{(4/3)}} + \frac{3\varepsilon_{25}}{4\|u_1\|^2} \frac{\|\alpha\|_F^2}{4} \right) = \Delta_{31}(t) dt + \Delta_{32}(t) \delta_1 dt + \Delta_{33}(t) d\beta_1,
\]
where

\[
\Delta_{31}(t) = \frac{H_{24}u_T^T}{3\|u_T\|^{(10/3)}} \Delta_{01}(t) + \frac{3\varepsilon_{25}u_T^T}{4\|u_T\|^2} \Delta_{01}(t) + \frac{1}{\varepsilon_{27}} \|\alpha\|_{L^4}^3 \Delta_{22}(t),
\]

\[
\Delta_{32}(t) = \frac{H_{24}u_T^T}{3\|u_T\|^{(10/3)}} \Delta_{02}(t) + \frac{3\varepsilon_{25}u_T^T}{4\|u_T\|^2} \Delta_{02}(t) + \frac{1}{\varepsilon_{27}} \|\alpha\|_{L^4}^3 \Delta_{23}(t),
\]

\[
\Delta_{33}(t) = \frac{H_{24}u_T^T}{3\|u_T\|^{(10/3)}} \Delta_{03}(t) + \frac{3\varepsilon_{25}u_T^T}{4\|u_T\|^2} \Delta_{03}(t) + \frac{1}{\varepsilon_{27}} \|\alpha\|_{L^4}^3 \Delta_{24}(t).
\]

Note that

\[
\tilde{R}_3^{-1} = \begin{pmatrix}
R_{22} & -R_{11} \\
R_{21} & -R_{12}
\end{pmatrix} = \frac{1}{\cos \phi \cos \theta} \begin{pmatrix}
R_{22} & -R_{11} \\
R_{21} & -R_{12}
\end{pmatrix}
= \frac{1}{R_{33}} \begin{pmatrix}
R_{22} & -R_{11} \\
R_{21} & -R_{12}
\end{pmatrix},
\]

then we have

\[
d\tilde{R}_3^{-1} = -\frac{dR_{33}}{R_{33}^2} \begin{pmatrix}
R_{22} & -R_{11} \\
R_{21} & -R_{12}
\end{pmatrix} + \frac{1}{R_{33}} \begin{pmatrix}
dR_{22} & -dR_{11} \\
dR_{21} & -dR_{12}
\end{pmatrix}.
\]

In fact, \(dR = R \times \omega dt\), which is

\[
dR_{11} \quad dR_{12} \quad dR_{13} = \begin{pmatrix}
R_{11} & R_{12} & R_{13}
\end{pmatrix} \begin{pmatrix}
0 & -r & q \\
r & 0 & -p \\
-q & p & 0
\end{pmatrix}.
\]

Thus, \(d\tilde{R}_3^{-1}\) can be obtained for the controller \(u_2\). Moreover, we can easily get that

\[
d \left( \left( k_5 + H_{25} + \frac{H_{24}}{4\|u_T\|^{(10/3)}} + \frac{3\varepsilon_{25}}{4\|u_T\|^2} + \frac{1}{4\varepsilon_{27}} \|\alpha\|_{L^4}^4 \right) \tilde{R}_3^{-1} \tilde{R}_3 \right) = \Delta_{41}(t)dt + \Delta_{42}(t)d\theta + \Delta_{43}(t)d\beta_1,
\]
\[ \text{B. The Calculation of } d \left( \frac{\epsilon_{12} \| \mu_1 \|^2}{3} \| \alpha \|^2 \| F(t) \|^2 \right) \]

Consider

\[
d \left( \frac{\epsilon_{12} \| \mu_1 \|^2}{3} \| \alpha \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t) \right) = \epsilon_{12} \| \mu_1 \|^2 \| \alpha \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t) + \frac{2\epsilon_{12}}{3} \| \mu_1 \|^2 \| \alpha \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t)
\]

\[
\hspace{1cm} + \frac{2\epsilon_{12}}{3} \| \mu_1 \|^2 \| \alpha \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t) + \frac{\epsilon_{12}}{3} \| \mu_1 \|^2 \| \alpha \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t)
\]

Hence,

\[
\epsilon_{12} \| \mu_1 \|^2 \| \alpha \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t) + \frac{2\epsilon_{12}}{3} \| \mu_1 \|^2 \| \alpha \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t) + \frac{\epsilon_{12}}{3} \| \mu_1 \|^2 \| \alpha \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t)
\]

For \( (2\epsilon_{12}/3) \| \mu_1 \|^2 \| \alpha \|^2 \| F(t) \|^2 \| F(t) \|^2 \frac{1}{\tilde{R}_3} \alpha^T F(t) \), we first calculate the \( dF(t) \):

\[
\Delta_{401} (t) = \frac{\left( k_1 + k_2 + 1 \right) I + k_1 \text{Tanh}^2 \left( e_p + e_v \right) + k_2 \left( \text{Tanh}^2 \left( e_v \right) \right)}{-k_1 \text{Tanh} \left( e_p + e_v \right) - k_2 \text{Tanh} \left( e_v \right) + \frac{T_m}{m} \alpha \tilde{R}_3}
\]

\[
+ k_1 \left( I + \text{Tanh}^2 \left( e_p + e_v \right) \right) e_v,
\]

\[
\Delta_{402} (t) = \frac{\left( k_1 + k_2 + 1 \right) I + k_1 \text{Tanh}^2 \left( e_p + e_v \right) + k_2 \left( \text{Tanh}^2 \left( e_v \right) \right)}{G_1}
\]

Thus, we obtain

\[
d\| F(t) \|^2 = -\frac{dF(t)^T . F(t) + F(t)^T dF(t)}{2 F(t)^T F(t)} = \frac{dF(t)^T}{\| F(t) \|^2} \left( \Delta_{401} (t) dt + \Delta_{402} (t) \tilde{\delta}_1 dt + \Delta_{403} (t) d\beta_1 \right).
\]

Then, we drive
\[
\frac{2e_{12}}{3} \| u_i \|^3 \| a \|^2 \| F(t) \| \| F(t) \| \bar{R}_3^{-1} a^T F(t) \\
= -\frac{2e_{12}}{3} \| u_i \|^3 \| a \|^2 \| F(t) \| \bar{R}_3^{-1} a^T F(t) \left( \frac{F(t)^T}{\| F(t) \|} \left( \Delta_{401} (t) dt + \Delta_{402} (t) \tilde{\delta}_1 dt + \Delta_{403} (t) d\beta_1 \right) \right). 
\]

In order to calculate \( \left( e_{12}/3 \right) \| u_i \|^3 \| a \|^2 \| F(t) \|^2 \bar{R}_3^{-1} da^T F(t) \), we first give the derivative of \( da \) as follows:

\[
d\alpha = \begin{pmatrix}
0 & 0 \\
0 & 0 \\
\frac{- (R_{33} + R_{33c}) dR_{13} + (R_{13} + R_{13c}) dR_{33c}}{(R_{33} + R_{33c})^2} & \frac{- (R_{33} + R_{33c}) dR_{23} + (R_{23} + R_{23c}) dR_{33c}}{(R_{33} + R_{33c})^2} \\
\frac{- (R_{33} + R_{33c}) dR_{13} + (R_{13} + R_{13c}) dR_{33c}}{(R_{33} + R_{33c})^2} & \frac{- (R_{33} + R_{33c}) dR_{23} + (R_{23} + R_{23c}) dR_{33c}}{(R_{33} + R_{33c})^2}
\end{pmatrix}
\]

Due to

\[
\frac{- (R_{33} + R_{33c}) dR_{13} + (R_{13} + R_{13c}) dR_{33c}}{(R_{33} + R_{33c})^2} = \Delta_{501} (t) + \Delta_{502} (t) \tilde{\delta}_1 + \Delta_{503} (t) d\beta_1,
\]

\[
\frac{- (R_{33} + R_{33c}) dR_{23} + (R_{23} + R_{23c}) dR_{33c}}{(R_{33} + R_{33c})^2} = \Delta_{511} (t) + \Delta_{512} (t) \tilde{\delta}_1 + \Delta_{513} (t) d\beta_1,
\]

where

\[
\Delta_{501} (t) = \frac{1}{(R_{33} + R_{33c})^2} \left( R_{33} + R_{33c} 0 - (R_{13} + R_{13c}) \right) \Delta_{01} (t),
\]

\[
\Delta_{502} (t) = \frac{1}{(R_{33} + R_{33c})^2} \left( R_{33} + R_{33c} 0 - (R_{13} + R_{13c}) \right) \Delta_{02} (t),
\]

\[
\Delta_{503} (t) = \frac{1}{(R_{33} + R_{33c})^2} \left( R_{33} + R_{33c} 0 - (R_{13} + R_{13c}) \right) \Delta_{03} (t),
\]

\[
\Delta_{511} (t) = \frac{1}{(R_{33} + R_{33c})^2} \left( R_{33} + R_{33c} 0 - (R_{23} + R_{23c}) \right) \Delta_{01} (t),
\]

\[
\Delta_{512} (t) = \frac{1}{(R_{33} + R_{33c})^2} \left( R_{33} + R_{33c} 0 - (R_{23} + R_{23c}) \right) \Delta_{02} (t),
\]

\[
\Delta_{513} (t) = \frac{1}{(R_{33} + R_{33c})^2} \left( R_{33} + R_{33c} 0 - (R_{23} + R_{23c}) \right) \Delta_{03} (t).
\]
Then, $d\alpha$ is represented as

$$
d\alpha = \Delta_{51}(t) + \Delta_{52}(t, \bar{\delta}_1) + \Delta_{53}(t)d\beta_1, \quad \text{(B.10)}
$$

where

$$
\begin{align*}
\alpha_2 &= \begin{pmatrix}
0 & 0 \\
0 & 0 \\
\frac{- (R_{33} + R_{33c}) dR_{13} + (R_{13} + R_{13c}) dR_{33}}{(R_{33} + R_{33c})^2} & \frac{- (R_{33} + R_{33c}) dR_{23} + (R_{23} + R_{23c}) dR_{33}}{(R_{33} + R_{33c})^2}
\end{pmatrix}, \\
\alpha_3 &= \begin{pmatrix}
0 & 0 \\
0 & 0 \\
1 & 0
\end{pmatrix}, \\
\Delta_{51} &= \alpha_2 + \alpha_{31} \Delta_{501}(t) + \alpha_{32} \Delta_{511}(t), \\
\Delta_{52}(t, \bar{\delta}_1) &= \Delta_{502}(t) \bar{\delta}_1 \alpha_{31} + \Delta_{512}(t) \bar{\delta}_1 \alpha_{32}, \\
\Delta_{53} &= \alpha_{31} \Delta_{503}(t) + \alpha_{32} \Delta_{513}(t).
\end{align*}
$$

Hence, we can obtain that

$$
\frac{\epsilon_{12}}{3} ||u_1||^3 ||\alpha||^2 ||F(t)||^2 \bar{R}_5^{-1} d\alpha^T F(t) = \frac{\epsilon_{12}}{3} ||u_1||^3 ||\alpha||^2 ||F(t)||^2 \bar{R}_3^{-1} \left( \Delta_{51}(t) + \Delta_{52}(t, \bar{\delta}_1) + \Delta_{53}(t)d\beta_1 \right)^T F(t). \quad \text{(B.12)}
$$

For the part of $(\epsilon_{12}/3) ||u_1||^3 ||\alpha||^2 ||F(t)||^2 \bar{R}_5^{-1} \alpha^T dF(t)$, we have

$$
\frac{\epsilon_{12}}{3} ||u_1||^3 ||\alpha||^2 ||F(t)||^2 \bar{R}_5^{-1} \alpha^T dF(t) = \frac{\epsilon_{12}}{3} ||u_1||^3 ||\alpha||^2 ||F(t)||^2 \bar{R}_3^{-1} \alpha^T (\Delta_{401}(t) dt + \Delta_{402}(t) d\bar{\delta}_1 + \Delta_{403}(t)d\beta_1). \quad \text{(B.13)}
$$

Hence,

$$
da \left( \frac{\epsilon_{12}}{3} ||u_1||^3 ||\alpha||^2 ||F(t)||^2 \bar{R}_5^{-1} \alpha^T F(t) \right) = \Delta_{61}(t) dt + \Delta_{621}(t) \bar{\delta}_1 dt + \Delta_{622}(t, \bar{\delta}_1) dt + \Delta_{63}(t)d\beta_1, \quad \text{(B.14)}
$$

where
\[ \Delta_{61}(t) = -\varepsilon_{12} \| u_1 \|_2 \| \tilde{F}(t) \|_2 \tilde{R}_3^{-1} \alpha^T F(t) u_1^T \Delta_{61}(t) + \frac{2 \varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \| F(t) \|_2 \tilde{R}_3^{-1} \alpha^T F(t) \Delta_{22}(t) \\
- \frac{2 \varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \tilde{R}_3^{-1} \alpha^T F(t) F(t)^T \Delta_{401}(t) + \frac{\varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \tilde{R}_3^{-1} \alpha^T F(t) \\
+ \frac{\varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \tilde{R}_3^{-1} \Delta_{61}(t) \alpha^T F(t) + \frac{\varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \tilde{R}_3^{-1} \alpha^T \Delta_{401}(t), \]

\[ \Delta_{621}(t) = -\varepsilon_{12} \| u_1 \|_2 \| \tilde{F}(t) \|_2 \tilde{R}_3^{-1} \alpha^T F(t) u_1^T \Delta_{62}(t) + \frac{2 \varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \| F(t) \|_2 \tilde{R}_3^{-1} \alpha^T F(t) \Delta_{23}(t) \\
- \frac{2 \varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \tilde{R}_3^{-1} \alpha^T F(t) F(t)^T \Delta_{402}(t), \]

\[ \Delta_{63}(t) = -\varepsilon_{12} \| u_1 \|_2 \| \tilde{F}(t) \|_2 \tilde{R}_3^{-1} \alpha^T F(t) u_1^T \Delta_{63}(t) + \frac{2 \varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \| F(t) \|_2 \tilde{R}_3^{-1} \alpha^T F(t) \Delta_{24}(t) \\
- \frac{2 \varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \tilde{R}_3^{-1} \alpha^T F(t) F(t)^T \Delta_{403}(t) + \frac{\varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \tilde{R}_3^{-1} \Delta_{63}(t) \alpha^T F(t) \\
+ \frac{\varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \tilde{R}_3^{-1} \alpha^T \Delta_{403}(t), \]

\[ \Delta_{622}(t, \delta_1) = \frac{\varepsilon_{12}}{3} \| u_1 \|_2^3 \| \alpha \|_2 \| F(t) \|_2 \tilde{R}_3^{-1} \Delta_{62}(t, \delta_1)^T F(t). \]

### C. The Calculation of \( d \left( \left( e_{323}^T / 2 \| u_1 \|_2 \right)^2 \tilde{R}_3^{-1} \tilde{R}_{3e} \right) \)

Consider

\[ d \left( \frac{e_{323}}{2 \| u_1 \|} \left( e_{c_1}^T e_{c_1} \right) \tilde{R}_3^{-1} \tilde{R}_{3e} \right) = d \frac{e_{323}}{2 \| u_1 \|} \left( e_{c_1}^T e_{c_1} \right) \tilde{R}_3^{-1} \tilde{R}_{3e} + \frac{e_{323}}{2 \| u_1 \|}^2 d \left( e_{c_1}^T e_{c_1} \right) \tilde{R}_3^{-1} \tilde{R}_{3e} + \frac{e_{323}}{2 \| u_1 \|} \left( e_{c_1}^T e_{c_1} \right) \tilde{R}_3^{-1} \tilde{R}_{3e} \tilde{R}_{3e} \tilde{R}_{3e} d \tilde{R}_{3e}. \] (C.1)

For the derivatives of those terms, we have

\[ d \frac{e_{323}}{2 \| u_1 \|} \left( e_{c_1}^T e_{c_1} \right) \tilde{R}_3^{-1} \tilde{R}_{3e} = \frac{4 e_{323}}{2 \| u_1 \|} \left( e_{c_1}^T e_{c_1} \right) \tilde{R}_3^{-1} \tilde{R}_{3e} u_1^T \Delta_{61}(t) \delta_1 + \Delta_{62}(t) \delta_1 \delta_1 dt + \Delta_{63}(t) \delta_1 dt. \] (C.1)

\[ \frac{e_{323}}{2 \| u_1 \|} d \left( e_{c_1}^T e_{c_1} \right) \tilde{R}_3^{-1} \tilde{R}_{3e} = \frac{4 e_{323}}{2 \| u_1 \|} \tilde{R}_3^{-1} \tilde{R}_{3e} e_{c_1} e_{c_1}^T ( -k_1 \tanh(e_{c_1}) + k_2 \tanh(e_{c_1}) + \frac{T_m}{m} \alpha \tilde{R}_{3e} + \delta_1 + G_1 \delta_1 dt + \tilde{R}_{3e} \tilde{R}_{3e} (t) dt \delta_1 + \tilde{R}_{3e} \tilde{R}_{3e} (t) dt \delta_1 dt. \] (C.2)

Therefore, one has
where

\[ \Delta_{21}(t) = \frac{4\epsilon_{323}}{2\|u_1\|} \left( e^T e \right) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} \left( -k_1 \tanh(e_p + e_v) - k_2 \tanh(e_v) \right) \]

\[ + \frac{T_m}{m} \delta R_{3c} + \frac{\epsilon_{323}}{2\|u_1\|} (e^T e) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} \left( e^T e \right) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} (t), \]

\[ \Delta_{22}(t) = \frac{4\epsilon_{323}}{2\|u_1\|} \left( e^T e \right) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} \left( -k_1 \tanh(e_p + e_v) - k_2 \tanh(e_v) \right) \]

\[ + \frac{T_m}{m} \delta R_{3c} + \frac{\epsilon_{323}}{2\|u_1\|} (e^T e) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} \left( e^T e \right) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} (t), \]

\[ \Delta_{31}(t) = \frac{4\epsilon_{323}}{2\|u_1\|} \left( e^T e \right) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} \left( -k_1 \tanh(e_p + e_v) - k_2 \tanh(e_v) \right) \]

\[ + \frac{T_m}{m} \delta R_{3c} + \frac{\epsilon_{323}}{2\|u_1\|} (e^T e) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} \left( e^T e \right) \tilde{R}_{3c}^{-1} \tilde{R}_{3c} (t). \]

**D. The Calculation of** \( d \left( \frac{\|F(t)\|^2}{3\|u_1\|} \tilde{R}_{3c}^{-1} E_0 F(t) \right) \)

Consider

\[ d \left( \frac{\|F(t)\|^2}{3\|u_1\|} \tilde{R}_{3c}^{-1} E_0 F(t) \right) = d \frac{\|F(t)\|^2}{3\|u_1\|} \tilde{R}_{3c}^{-1} E_0 F(t) + \frac{\|F(t)\|^2}{3\|u_1\|} d \tilde{R}_{3c}^{-1} E_0 F(t) \]

\[ + \frac{\|F(t)\|^2}{3\|u_1\|} d \tilde{R}_{3c}^{-1} E_0 F(t) + \frac{\|F(t)\|^2}{3\|u_1\|} d \tilde{R}_{3c}^{-1} E_0 F(t). \]

For the derivatives of those terms, we have

\[ d \left( \frac{\|F(t)\|^2}{3\|u_1\|} \tilde{R}_{3c}^{-1} E_0 F(t) \right) = \frac{\|F(t)\|^2}{3\|u_1\|} \tilde{R}_{3c}^{-1} E_0 F(t) \]

\[ + \frac{\|F(t)\|^2}{3\|u_1\|} d \tilde{R}_{3c}^{-1} E_0 F(t) + \frac{\|F(t)\|^2}{3\|u_1\|} d \tilde{R}_{3c}^{-1} E_0 F(t). \]
where

\[ \Delta_{a1}(t) = \frac{\varepsilon_1}{3} \frac{\|F(t)\|^2}{\|u_1\|} \Delta_{a01}(t) - \frac{2\varepsilon_1}{3} \frac{\| \tilde{R}_3 \|}{\|u_1\|} \tilde{R}_3 E_0 F(t) F(t)^T \Delta_{a01}(t) \]
\[ + \frac{\varepsilon_1}{3} \frac{\|F(t)\|^2}{\|u_1\|} \Delta_{a01}(t) + \frac{\varepsilon_1}{3} \frac{\|F(t)\|^2}{\|u_1\|} \Delta_{a01}(t) \]
\[ \Delta_{a2}(t) = \frac{\varepsilon_1}{3} \frac{\|F(t)\|^2}{\|u_1\|} \Delta_{a02}(t) - \frac{2\varepsilon_1}{3} \frac{\| \tilde{R}_3 \|}{\|u_1\|} \tilde{R}_3 E_0 F(t) F(t)^T \Delta_{a02}(t) + \frac{\varepsilon_1}{3} \frac{\|F(t)\|^2}{\|u_1\|} \Delta_{a02}(t), \]
\[ \Delta_{a3}(t) = \frac{\varepsilon_1}{3} \frac{\|F(t)\|^2}{\|u_1\|} \Delta_{a03}(t) - \frac{2\varepsilon_1}{3} \frac{\| \tilde{R}_3 \|}{\|u_1\|} \tilde{R}_3 E_0 F(t) F(t)^T \Delta_{a03}(t) + \frac{\varepsilon_1}{3} \frac{\|F(t)\|^2}{\|u_1\|} \Delta_{a03}(t). \]  

(E.4)

\section*{E. The Calculation of $dw_{1c}$}

$dw_{1c}$ can be obtained as

\[ dw_{1c} = W_{1c1}(t)dt + W_{1c2}(t)\delta_1 dt + \Delta_{622}(t, \delta_1) dt + W_{1c3}(t) d\beta_1, \]  

(E.1)

\section*{F. The Calculation of $dr_c$}

For $r_c$, we have

\[ dr_c = W_{rc1}(t)dt + W_{rc2}(t)\delta_1 dt + W_{rc20}(t, \delta_1) dt + W_{rc3}(t) d\beta_1, \]  

(F.3)

where

\[ W_{rc1}(t) = (E_2 w_{1c} - d\psi_r + k_3 e_\psi)(1 + \tan^2 \phi) d\phi - \tan \phi E_2 W_{1c1}(t) dt + \tan \phi d\psi_r - \tan \phi k_5 (-k_6 e_\psi + E_1 e_\omega), \]
\[ W_{rc2}(t) = -\tan \phi E_2 W_{1c2}(t), \]
\[ W_{rc20}(t, \delta_1) = -\tan \phi E_2 \Delta_{622}(t, \delta_1), \]
\[ W_{rc3}(t) = -\tan \phi E_2 W_{1c3}. \]  

(F.4)
G. The Calculation of $dw_c$

The derivative of $w_c$ is obtained as follows:

$$
\frac{dw_c}{dr_c} = W_{c1}(t) \frac{dt}{dr_c} + W_{c2}(t) \tilde{d}_1 + W_{c20}(t, \tilde{d}_1) + W_{c21}(t) d\beta_1. \quad (G.1)
$$

Notice that

$$
W_{c20}(t, \tilde{d}_1) = \begin{bmatrix}
\Delta_{d22}(t, \tilde{d}_1) \\
W_{r_{c20}}(t, \tilde{d}_1)
\end{bmatrix} = W_{c21}(t) \left( \Delta_{502}(t) \tilde{d}_1 a_{s1} + \Delta_{512}(t) \tilde{d}_1 a_{s2} \right)^T F(t),
$$

(G.2)

with

$$
W_{c21}(t) = \left( \frac{1}{-\tan \phi E_2} \right) \frac{\xi_{11}^2}{3} \| \alpha_1 \|^{1/2} \| \alpha_2 \|^2 \| F(t) \|^2 \delta_3^{-1}, \quad (G.3)
$$

which implies that

$$
\| W_{c20}(t, \tilde{d}_1) \| \leq \| W_{c21}(t) \| \| \Delta_{502}(t) \| \| \tilde{d}_1 \| \| \alpha_{s1} \| \| F(t) \| + \| W_{c21}(t) \| \| \Delta_{512}(t) \| \| \tilde{d}_1 \| \| \alpha_{s2} \| \| F(t) \|. \quad (G.4)
$$

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant nos. 12101481 and 62103327).

References

[1] A. Isidori, *Nonlinear Control Systems II*, Springer, London, UK, 1999.
[2] H. K. Khalil, *Nonlinear Systems*, Prentice-Hall, Hoboken, NJ, USA, Third edition, 2002.
[3] D. Comminiello and J. C. Principe, *Adaptive Learning Methods for Nonlinear System Modeling*, Butterworth-Heinemann, Oxford, UK, 2018.
[4] A. Wang, L. Liu, J. Qiu, and G. Feng, "Event-triggered robust adaptive fuzzy control for a class of nonlinear systems," *IEEE Transactions on Fuzzy Systems*, vol. 27, no. 8, pp. 1648–1658, 2019.
[5] W. Meng, Q. Yang, and Y. Sun, "Adaptive neural control of nonlinear MIMO systems with time-varying output constraints," *IEEE Transactions on Neural Networks and Learning Systems*, vol. 26, no. 5, pp. 1074–1085, 2015.
[6] Z. Zeng Lian Liu and J. Svoboda, “A new control scheme for nonlinear systems with disturbances,” *IEEE Transactions on Control Systems Technology*, vol. 14, no. 1, pp. 176–181, 2006.
[7] T. Wang, J. Wu, Y. Wang, and M. Ma, “Adaptive fuzzy tracking control for a class of strict-feedback nonlinear systems with time-varying input delay and full state constraints,” *IEEE Transactions on Fuzzy Systems*, vol. 28, no. 12, pp. 3432–3441, 2020.
[8] P. Zhou, L. Zhang, S. Zhang, and A. F. Alkhateeb, “Observer-based adaptive fuzzy finite-time control design with prescribed performance for switched pure-feedback nonlinear systems,” *IEEE Access*, vol. 9, pp. 69481–69491, 2021.
[9] W. Wang, R. Postoyan, D. Nesic, and W. P. M. H. Heemels, "Periodic event-triggered control for nonlinear networked control systems," *IEEE Transactions on Automatic Control*, vol. 65, no. 2, pp. 620–635, 2020.
[10] Y. Wu and X.-J. Xie, "Robust adaptive control for state-constrained nonlinear systems with input saturation and unknown control direction," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 51, no. 2, pp. 1192–1202, 2021.
[11] X.-H. Chang, G.-H. Yang, and H. Wang, "Observer-based Hco-control for discrete-time T-S fuzzy systems," *International Journal of Systems Science*, vol. 42, no. 10, pp. 1801–1809, 2011.
[12] Y. Chang, P. Zhou, B. Niu et al., "Switched-observer-based adaptive output-feedback control design with unknown gain for pure-feedback switched nonlinear systems via average dwell time," *International Journal of Systems Science*, vol. 52, no. 9, pp. 1731–1745, 2021.
[13] Z. Chen, B. Niu, X. Zhao, L. Zhang, and N. Xu, "Model-Based adaptive event-Triggered control of nonlinear continuous-
time systems,” *Applied Mathematics and Computation*, vol. 408, p. 126330, 2021.

[14] Y. Yang, *Helicopter Flight Control*, National Defense Industry Press, Beijing, China, 3rd edition, 2015.

[15] G. Padfield, *Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling*, Blackwell, Oxford, UK, 2007.

[16] I. A. Raptis, K. P. Valavanis, and G. J. Vachtsevanos, “Linear tracking control for small-scale unmanned helicopters,” *IEEE Transactions on Control Systems Technology*, vol. 20, no. 4, pp. 995–1010, 2012.

[17] Z. Fang, H. Tian, and P. Li, “Probabilistic robust linear parameter-varying control of a small helicopter using iterative scenario approach,” *IEEE/CAA Journal of Automatica Sinica*, vol. 2, no. 1, pp. 85–93, 2015.

[18] M. Chen and Y. Li, “Model reference resilient control for the helicopter with time-varying disturbance,” *International Journal of Robust and Nonlinear Control*, vol. 29, no. 15, pp. 5095–5117, 2019.

[19] Y. Li, M. Chen, T. Li, and H. Wang, “Tracking control for the helicopter with time-varying disturbance and input stochastic perturbation,” *Proceedings of the Institution of Mechanical Engineers - Part G: Journal of Aerospace Engineering*, vol. 234, no. 4, pp. 961–976, 2020.

[20] Y. Zou, “Adaptive trajectory tracking control approach for a model-scaled helicopter,” *Nonlinear Dynamics*, vol. 83, no. 4, pp. 2171–2181, 2016.

[21] P. Marantos, C. P. Bechlioulis, and K. J. Kyriakopoulos, “Robust trajectory tracking control for small-scale unmanned helicopters with model uncertainties,” *IEEE Transactions on Control Systems Technology*, vol. 25, no. 6, pp. 2010–2021, 2017.

[22] X. Wang, X. Yu, S. Li, and J. Liu, “Composite block backstepping trajectory tracking control for disturbed unmanned helicopters,” *Aerospace Science and Technology*, vol. 85, pp. 386–398, 2019.

[23] Y. Huang, M. Zhu, Z. Zheng, and M. Feroskhan, “Fixed-time autonomous shipboard landing control of a helicopter with external disturbances,” *Aerospace Science and Technology*, vol. 84, pp. 18–30, 2019.

[24] T. Jiang, D. Lin, and T. Song, “Finite-time control for small-scale unmanned helicopter with disturbances,” *Nonlinear Dynamics*, vol. 96, no. 3, pp. 1747–1763, 2019.

[25] I. Ullah and H. Pei, “Sliding mode tracking control for unmanned helicopter using extended disturbance observer,” *Archives of Control Sciences*, vol. 29, no. 1, pp. 169–199, 2019.

[26] R. Ma, L. Ding, and H. Wu, “Dynamic decoupling control optimization for a small-scale unmanned helicopter,” *Journal of Robotics*, vol. 2018, Article ID 9897684, 12 pages, 2018.

[27] Y. Li, M. Chen, S. S. Ge, and D. Li, “Anti-disturbance control for attitude and altitude systems of the helicopter under random disturbances,” *Aerospace Science and Technology*, vol. 96, p. 105561, 2020.

[28] X. Mao and C. Yuan, *Stochastic Differential Equations with Markovian Switching*, Imperial College Press, London, UK, 2006.