Light Meson decays at BESIII

Benhou Xiang
(for the BESIII Collaboration)
Institute of High Energy Physics, Beijing, China

the 42nd International Conference on High Energy Physics
Outline

➢ Light meson physics

➢ BESIII: a light meson factory

➢ η/η' decays at BESIII
 • Decay mechanisms
 • Form factors

➢ Summary
Light Meson Physics

- Light mesons
 - Important roles in particle physics, e.g. strong interactions, Quark Model, CP violation …

- Rich physics
 - Test ChPT predictions
 - EM Form factors
 - Test fundamental symmetries
 - Probe new physics beyond the SM
The BESIII detector records symmetric e^+e^- collisions provided by the BEPCII storage ring.

The facility is used for studies of τ-charm physics.

Collected 10 billion J/ψ Events!

$J/\psi \rightarrow \gamma P, VP, ...$
Decay list of light meson in BESIII

Decay channel	Physics	Publication
\(\eta' \rightarrow \rho \pi \)	First Observation, BR	PRL118, 012001 (2017)
\(\eta' \rightarrow \gamma \gamma \pi^0 \)	BR, B Boson	PRD96, 012005 (2017)
\(\eta' \rightarrow \gamma \pi^+ \pi^- \)	BR, Box anomaly	PRL120, 242003 (2018)
\(\eta' \rightarrow \pi^+ \pi^- \eta, \eta' \rightarrow \pi^0 \pi^0 \eta \)	Matrix elements, Cusp effect	PRD97, 012003 (2018)
\(P \rightarrow \gamma \gamma \)	BRs, Chiral anomaly	PRD97, 072014 (2018)
\(\eta' \rightarrow \gamma \gamma \eta \)	UL	PRD100, 052015 (2019)
Absolute BR of \(\eta' \) decays	BRs	PRD122, 142002 (2019)
\(\eta' \rightarrow 4\pi^0 \)	CP violation, UL	PRD101, 032001 (2020)
Absolute BR of \(\eta \) decays	BRs	PRD104, 092004 (2021)
\(\eta' \rightarrow \pi^+ \pi^- e^+ e^- \)	BR, CP violation asymmetry	PRD103, 092005 (2021)
\(\eta \rightarrow \pi^+ \pi^- \mu^+ \mu^- \)	BR, Decay dynamics	PRD103, 072006 (2021)
\(\eta' \rightarrow e^+ e^- e^+ e^- \)	BR	PRD.105.112010(2022)
\(\eta' \rightarrow \pi^0 \pi^0 \eta \)	Cusp effect	PRL130, 081901 (2023)
\(\eta \rightarrow \pi^+ \pi^- \pi^0, 3\pi^0 \)	Matrix elements, \(m_u - m_d \)	PRD107, 092007 (2023)
\(\eta' \rightarrow 4\pi \)	Amplitude analysis	PRD109, 032006 (2024)
\(\eta'/\eta \rightarrow \gamma e^+ e^- \)	Form factor	PRD109, 072001 (2024)
\(\eta' \rightarrow \pi^+ \pi^- l^+ l^- \)	Form factor, CP violation	JHEP07, 135(2024)

BESIII: an important role in \(\eta/\eta' \) decays

- Decay mechanisms
- Form factors
Decay mechanisms

- Evidence of the cusp effect in $\eta' \to \pi^0\pi^0\eta$
 PRL130, 081901 (2023)

- Improved measurement of the decays $\eta' \to \pi^+\pi^-\pi^+(0)\pi^-(0)$ and search for the rare decay $\eta' \to 4\pi^0$
 PRD109, 032006 (2024)
$\eta' \rightarrow \pi^0 \pi^0 \eta$

high term of $\pi\pi$ rescattering

EPJC 62, 511 (2009)
\eta' \rightarrow \pi^0 \pi^0 \eta

A2 Collaboration
PRD 98, 012001 (2018)

PRD 97, 012003 (2018)
\[\eta' \rightarrow \pi^0 \pi^0 \eta \]

- Non-relativistic effective field theory
- Evidence of the cusp effect around \(3.5\sigma\).

With cusp effect

Parameters	Fit I	Fit II	Fit III	Fit IV
\(a\)	\(-0.075 \pm 0.003 \pm 0.001\)	\(-0.207 \pm 0.013\)	\(-0.143 \pm 0.010\)	\(-0.077 \pm 0.003 \pm 0.001\)
\(b\)	\(-0.073 \pm 0.005 \pm 0.001\)	\(-0.051 \pm 0.014\)	\(-0.038 \pm 0.006\)	\(-0.066 \pm 0.006 \pm 0.001\)
\(d\)	\(-0.066 \pm 0.003 \pm 0.001\)	\(-0.068 \pm 0.004\)	\(-0.067 \pm 0.003\)	\(-0.068 \pm 0.004 \pm 0.001\)
\(a_0 - a_2\)	-	\(0.174 \pm 0.066\)	\(0.225 \pm 0.062\)	\(0.226 \pm 0.060 \pm 0.012\)
\(a_0\)	-	\(0.497 \pm 0.094\)	-	-
\(a_2\)	-	\(0.322 \pm 0.129\)	-	-
Statistical Significance	-	\(3.4\sigma\)	\(3.7\sigma\)	\(3.6\sigma\)
Chiral anomaly: triangle anomaly, box anomaly, pentagon anomaly

\[\pi^0 \rightarrow \gamma \gamma \quad \eta' \rightarrow \gamma \pi^+ \pi^- \quad K^+ K^- \rightarrow \pi^+ \pi^- \pi^0 \]

Combination of ChPT and VMD model: (PRD 85, 014014 (2012))
First measurement:
\[\alpha = 1.22 \pm 0.33 \pm 0.04 \]

If \(\alpha = 1 \), triangle anomaly would be dominated.
\[\eta' \rightarrow \pi^+ (0) \pi^- (0) \pi^0 \pi^0 \]

\[B(\eta' \rightarrow \pi^+ \pi^- \pi^0 \pi^0) = (2.12 \pm 0.12 \pm 0.1) \times 10^{-4} \]

\[B(\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0) < 1.24 \times 10^{-5} \]
Form factors

- Improved measurements of the Dalitz decays $\eta/\eta' \rightarrow \gamma e^+e^-$
 PRD109, 072001 (2024)

- Measurement of the Electromagnetic Transition Form Factors in the decays $\eta' \rightarrow \pi^+\pi^-l^+l^-$
 JHEP07, 135(2024)
Form Factor Physics

✓ Describe the complex internal structure or intermediate processes

✓ It determines the size of hadronic quantum corrections in the calculation of the $(g - 2)_{\mu}$

$$a_{\mu} = \frac{1}{2} (g - 2)_{\mu}$$

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{hadron}$$

$$a_{\mu}^{hadron} = a_{\mu}^{HVP} + a_{\mu}^{HLbL}$$

$$a_{\mu}^{HVP} = 6845(40) \times 10^{-11}$$

Hadronic Vacuum Polarization (LO)

$$a_{\mu}^{HLbL} = 92(18) \times 10^{-11}$$

Hadronic Light-by-Light

✓ Experimental input is needed to improve the precision of predictions!
Form Factor Physics

✓ The coupling of π^0, η, and η' with photon in HLbL can be described using transition form factor (TFF).

✓ TFFs are experimentally accessible in three different processes

TFFs as experimental input!
The decay rate

\[
d\Gamma(P \rightarrow \gamma l^+ l^-) = \frac{2\alpha}{3\pi} \frac{1}{q^2} \sqrt{1 - \frac{4m_l^2}{q^2}} \left(1 + \frac{2m_l^2}{q^2}\right)^3 |F(q^2)|^2
\]

\[
= [\text{QED}(q^2)] \times |F(q^2)|^2
\]

Single-pole: \(F(q^2) = \frac{1}{1 - q^2/\Lambda^2} \)

Multi-pole: \(|F(q^2)|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - q^2)^2 + \Lambda^2 \gamma^2} \)

Slope parameter: \(b_{\eta'} = \frac{a|F(q^2)|}{dq^2} \bigg|_{q^2=0} \)
$\eta/\eta' \rightarrow \gamma e^+e^-$

- **Unbinned** maximum likelihood fit with $M(e^+e^-)$
 - less systematic uncertainties
 - better consideration of resolution

![Graph (a)](image1)

![Graph (b)](image2)
\[\eta/\eta' \rightarrow \gamma e^+ e^- \]

✧ **Single-pole formula is sufficient for \(\eta \)**

\[
F(q^2) = \frac{1}{1 - q^2/\Lambda^2}
\]

\[\Lambda_\eta = (0.749 \pm 0.026 \pm 0.008) \text{ GeV}/c^2 \]

✧ **Multi-pole formula for \(\eta' \)**

\[
|F(q^2)|^2 = \frac{\Lambda^2(\Lambda^2 + \gamma^2)}{(\Lambda^2 - q^2)^2 + \Lambda^2\gamma^2}
\]

\[\Lambda_{\eta'} = (0.802 \pm 0.007 \pm 0.008) \text{ GeV}/c^2 \]

\[\gamma_{\eta'} = (0.113 \pm 0.009 \pm 0.002) \text{ GeV}/c^2 \]
 Decay amplitude

\[
|A_{\eta'\rightarrow\pi^{+}\pi^{-}l^{+}l^{-}}|^{2}(s_{\pi\pi}, s_{ll}, \theta_{\pi}, \theta_{1}, \phi) = \frac{e^{2}}{8k^{2}} |M(s_{\pi\pi}, s_{ll})|^{2} \times \lambda \left(m_{\eta'}^{2}, s_{\pi\pi}, s_{ll} \right) \times [1 - \beta_{1}^{2} \sin^{2} \theta_{1} \sin^{2} \phi]s_{\pi\pi} \beta_{\pi}^{2} \sin^{2} \theta_{\pi}
\]

\[M(s_{\pi\pi}, s_{ll}) = M_{\text{mix}} \times \text{VMD}(s_{\pi\pi}, s_{ll})\] contains the information of the decaying particle and the form factor.

Within the VMD model, TFF can be parameterized into three separate parts

\[
\text{VMD}(s_{\pi\pi}, s_{ll}) = 1 - \frac{3}{4} \left(c_{1} - c_{2} + c_{3} \right) + \frac{3}{4} \left(c_{1} - c_{2} - c_{3} \right) \frac{m_{V}^{2}}{m_{V} - s_{ll} - im_{V} \Gamma(s_{ll})} + 3 \frac{c_{3}}{2} \frac{m_{V}^{2}}{m_{V}^{2} - s_{ll} - im_{V} \Gamma(s_{ll})} \frac{m_{V,\pi}^{2}}{m_{V,\pi}^{2} - s_{\pi\pi} - im_{V,\pi} \Gamma(s_{\pi\pi})}
\]

Axial anomaly

VMD contribution

VMD contribution
By adjusting the values of the c_i-parameters, we can switch between the various VMD models.

I. Hidden gauge model: $c_1 - c_2 = c_3 = 1$

II. Full VMD model: $c_1 - c_2 = \frac{1}{3}, c_3 = 1$

III. Modified VMD: $c_1 - c_2 \neq c_3$

For $\eta' \to \pi^+\pi^-e^+e^-$ decay

- ρ^0 only can not describe data well.
- $\omega \to \pi^+\pi^-$ decay is necessary!

$$\frac{m^2_{\nu,\pi}}{m^2_{\nu,\pi} - s_{\pi\pi} - im_{\nu,\pi}\Gamma(s_{\pi\pi})} + \frac{\beta e^{i\theta}m^2_\omega}{m^2_\omega - s_{\pi\pi} - im_\omega\Gamma(s_{\pi\pi})}$$
First time to study form factors with $\eta' \rightarrow \pi^+ \pi^- l^+ l^-$:

$$b_{\eta'} = 1.30 \pm 0.19 \text{ (GeV}/c^2)^{-2}$$
Summary

✧ BESIII: a Light Meson Factory!
 ✓ A unique place for light mesons
 ✓ Allow to study light meson decays with high precision

✧ Significant progresses achieved on η/η' decays
 ✓ η/η': Decay mechanisms, Form factors…

✧ More results are expected to come soon!
 ✓ $\eta' \rightarrow \pi^+\pi^-\eta$, $\eta' \rightarrow e^+e^-\omega$, ...
 ✓ Rare decays

THANKS
Backup
\(\eta' \rightarrow \pi^0 \pi^0 \eta \)

\[M = M_{\text{tree}} + M_{\text{one-loop}} + M_{\text{two-loop}} \]

- **Non-relativistic effective field theory**

 B. Kubis and S. P. Schneider, EPJC 62, 511 (2009)

- The statistical significance is found to be around \(3.5\sigma \).
\[\eta / \eta' \rightarrow \gamma e^+ e^- \]

Time-like: \[
\eta' \rightarrow \gamma l^+ l^-
\]

Space-like: \[
e^+ e^- \rightarrow e^+ e^- \eta'
\]

Theory

![Graph showing data points and theoretical predictions for \(b_\eta \) (GeV/c^2)^2]
TFF Results

\(\eta' \rightarrow \pi^+\pi^-e^+e^- \)	Model I	Model II	Model III
\(c_1 - c_2 = c_3 = 1 \)		1/3, \(c_3 = 1 \)	
\(m_V (\text{MeV}/c^2) \)	954.3 ± 82.5 ± 36.4	857.4 ± 74.3	787.5 ± 137.9
\(m_{V^*} (\text{MeV}/c^2) \)	765.3 ± 1.1 ± 20.2	765.4 ± 1.1	764.8 ± 1.3
\(\beta (10^{-3}) \)	8.5 ± 1.4	8.5 ± 1.4	8.1 ± 1.4
\(c_1 - c_2 \)	1.4 ± 0.3 ± 0.1	1.4 ± 0.3	1.4 ± 0.4
\(\chi^2/\text{ndof}(e^+e^-, \pi^+\pi^-) \)	65.3/82.0, 44.5/65.0	66.1/82.0, 44.3/65.0	66.8/82.0, 42.2/65.0
\(b_V (\text{GeV}/c^2)^{-2} \)	1.10 ± 0.19 ± 0.07	1.36 ± 0.24	1.61 ± 0.56

\(\eta' \rightarrow \pi^+\pi^-\mu^+\mu^- \)	Model I	Model II	Model III
\(c_1 - c_2 = c_3 = 1 \)		1/3, \(c_3 = 1 \)	
\(m_V (\text{MeV}/c^2) \)	649.4 ± 52.3 ± 35.6	601.6 ± 24.0	589.6 ± 24.2
\(m_{V^*} (\text{MeV}/c^2) \)	757.3 ± 22.6 ± 18.0	765.4 ± 17.6	774.4 ± 40.7
\(c_1 - c_2 \)	1/3	1/3	0.01 ± 0.42
\(c_3 \)	1	1	0.98 ± 0.38
\(\chi^2/\text{ndof}(\mu^+\mu^-, \pi^+\pi^-) \)	36.1/34.0, 30.4/46.0	36.1/34.0, 30.4/46.0	37.4/35.0, 29.9/46.0
\(b_V (\text{GeV}/c^2)^{-2} \)	2.37 ± 0.38 ± 0.27	2.76 ± 0.22	2.88 ± 0.24

→ **Large statistical uncertainty of** \(m_V \) **and** \(c_1 - c_2 \)

- A test with \(c_1 - c_2 = c_3 \) gives
 \[
 c_1 - c_2 = c_3 = 1.03 \pm 0.02
 \]
- Provide a weighted average of the slope parameter for \(\eta' \rightarrow \pi^+\pi^-e^+e^- \) and \(\eta' \rightarrow \pi^+\pi^-\mu^+\mu^- \) based on Model I.
 \[
 b_{\eta'} = 1.30 \pm 0.19 \text{ (GeV}/c^2)^{-2}\]