Extremal graphs for α-index

Eber Lenes*, Henry García, Ariel Figueroa, Fabian Mercado B.

Universidad del Sinú, Básicas Exactas, Cartagena, Colombia.
Grupo de investigación Deartica.

Abstract. Let $N(G)$ be the number of vertices of the graph G. Let $P_l(B_i)$ be the tree obtained from the path P_l and the trees $B_1, B_2, ..., B_l$ by identifying the root vertex of B_i with the i-th vertex of P_l. Let $V_m^l = \{ P_l(B_i) : N(P_l(B_i)) = n; N(B_i) \geq 2; l \geq m \}$. In this paper, we determine the tree that has the largest α-index among all the trees in V_m^l.

Keywords: Caterpillar, diameter, distance, index, tree.

MSC2010: 05C50, 05C76, 15A18, 05C12, 05C75.

Grafos extremales para α-índice

Resumen. Sea $N(G)$ el número de vértices del grafo G. Sean $P_l(B_i)$ los árboles obtenidos del camino P_l y los árboles $B_1, B_2, ..., B_l$, identificando el vértice raíz de B_i con el i-th vértice de P_l. Sea $V_m^l = \{ P_l(B_i) : N(P_l(B_i)) = n; N(B_i) \geq 2; l \geq m \}$. En este artículo determinamos el árbol que tiene el α-índice más grande entre todos los árboles en V_m^l.

Palabras clave: Oruga, diámetro, distancia, índice, árbol.

1. Introduction

Let G be a simple undirected graph with vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex $v \in V(G)$ is $d(v)$ or simply d_v. We denote by $N(G)$ the number of vertices of the graph G. A graph G is bipartite if there exists a partitioning of $V(G)$ into disjoint, nonempty sets V_1 and V_2 such that the end vertices of each edge in G are in distinct sets V_1 and V_2. In this case V_1, V_2 are referred as a bipartition of G. A graph G is a complete bipartite graph if G is bipartite with bipartition V_1 and V_2, where each vertex in V_1 is connected to all the vertices in V_2. If G is a complete bipartite graph and $N(V_1) = p$ and $N(V_2) = q$, the graph G is written as $K_{p,q}$. The Laplacian matrix of G is the $n \times n$ matrix $L(G) = D(G) - A(G)$, where $A(G)$ and $D(G)$ are the matrices adjacency and diagonal of vertex degrees of G [7], [8], and [12], respectively. It is well known that $L(G)$ is a positive semi-definite matrix and that $(0, e)$ is an eigenpair of $L(G)$ where e is the
all ones vector. The matrix \(Q(G) = A(G) + D(G) \) is called the signless Laplacian matrix of \(G \) (see \cite{4}, \cite{5}, and \cite{6}). The eigenvalues of \(A(G) \), \(L(G) \) and \(Q(G) \) are called the eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues of \(G \), respectively. The matrices \(Q(G) \) and \(L(G) \) are positive semidefinite. (see \cite{21}). The spectra of \(L(G) \) and \(Q(G) \) coincide if and only if \(G \) is a bipartite graph, (see \cite{2}, \cite{4}, \cite{7}, and \cite{8}). The largest eigenvalue \(\mu_1 \) of \(L(G) \) is the Laplacian index of \(G \), the largest eigenvalue \(q_1(G) \) of \(Q(G) \) is known as the signless Laplacian index of \(G \) and the largest eigenvalue \(\lambda_1(G) \) of \(A(G) \) is the adjacency index or index of \(G \) \cite{3}.

In \cite{13}, it was proposed to study the family of matrices \(A_\alpha(G) \) defined for any real number \(\alpha \in [0, 1] \) as

\[
A_\alpha(G) = \alpha D(G) + (1 - \alpha) A(G).
\]

Since \(A_0(G) = A(G) \) and \(2A_{1/2}(G) = Q(G) \), the matrices \(A_\alpha(G) \) can underpin a unified theory of \(A(G) \) and \(Q(G) \). In this paper, the eigenvalues of the matrices \(A_\alpha(G) \) are called the \(\alpha \)-eigenvalues of \(G \). We write \(\rho_\alpha(G) \) for the spectral radii of the matrices \(A_\alpha(G) \) and are called the \(\alpha \)-indices of \(G \). The \(\alpha \)-eigenvalue set of \(G \) is called \(\alpha \)-spectrum of \(G \). The spectrum of a matrix \(M \) will be denoted by \(\text{Sp}(M) \).

Let \([l] \) denote the set \(\{1, 2, ..., l\} \). Given a rooted graph, define the level of a vertex to be equal to its distance to the root vertex increased by one. A generalized Bethe tree is a rooted tree in which vertices at the same level have the same degree. Throughout this paper \(\{B_i : i \in [l]\} \) is a set of generalized Bethe trees. Let \(P_l \) be a path of \(l \) vertices.

In this paper, we study the tree \(P_l\{B_i : i \in [l]\} \) obtained from \(P_l \) and \(B_1, B_2, ..., B_l \), by identifying the root vertex of \(B_i \) with the \(i \)-th vertex of \(P_l \) where each \(B_i \) has order greater than or equal to 2. For brevity, we write \(P_l(B_i) \) instead of \(P_l\{B_i : i \in [l]\} \). Let

\[
\mathcal{V}_n^m = \{P_l(B_i) : \text{N}(P_l(B_i)) = n; \text{N}(B_i) \geq 2; l \geq m\}.
\]

![Figure 1. The complete caterpillar \(P_5(K_{1,2}, K_{1,1}, K_{1,3}, K_{1,2}) \).](image)

In a graph, a vertex of degree at least 2 is called an internal vertex, a vertex of degree 1 is a pendant vertex and any vertex adjacent to a pendant vertex is a quasi-pendant vertex. We recall that a caterpillar is a tree in which the removal of all pendant vertices and incident edges results in a path. We define a complete caterpillar as a caterpillar in which each internal vertex is a quasi-pendant vertex.

A complete caterpillar \(P_l(K_{1,p_i}) \) is a graph obtained from the path \(P_l \) and the stars \(K_{1,p_1}, ..., K_{1,p_l} \) by identifying the root of \(K_{1,p_i} \) with the \(i \)-th vertex of \(P_l \) where \(p_i \geq 1 \) for all \(i \in [l] \) (see Fig. 1 for an example). Let \(q \in [l] \). Let \(A_q \) be the complete caterpillar \(P_l(K_{1,p_q}) \), where \(p_q = n - 2l + 1 \) and \(p_i = 1 \) for all \(i \neq q \).

Let \(T_{n,d} \) be the class of all trees on \(n \) vertices and diameter \(d \). Let \(P_m \) be a path on \(m \) vertices and \(K_{1,p} \) be a star on \(p + 1 \) vertices.

In \cite{20} the authors prove that the tree in \(T_{n,d} \) having the largest index is the caterpillar \(P_{d,n-d} \) obtained from \(P_{d+1} \) on the vertices 1, 2, ..., \(d + 1 \) and the star \(K_{1,n-d-1} \) identifying the root of \(K_{1,n-d-1} \) with the vertex \(\lceil \frac{d+1}{2} \rceil \) of \(P_{d+1} \). In \cite{10}, for \(3 \leq d \leq n - 4 \), the first
of a particular, it is shown that if spectral radius among all connected graphs with diameter d.

As applications, we determine the unique graph with maximum A_α-spectral radius among all connected graphs with diameter d, and determine the unique graph with minimum A_α-spectral radius among all connected graphs with given clique number.

In [14] the authors gives several results about the spectral radius of graphs on n vertices.

In [16] the authors determine the unique complete caterpillars that minimize and maximize the α-index among all complete caterpillars on n vertices.

Numerical experiments suggest us that the complete caterpillars were initially studied in [18] and [19]. In particular, in [18] the authors determine the unique complete caterpillars that minimize and maximize the algebraic connectivity (second smallest Laplacian eigenvalue) among all complete caterpillars on n vertices and diameter $m+1$. Below we summarize the result corresponding to the caterpillar attaining the largest algebraic connectivity.

Theorem 1.1 ([18] Theorems 3.3 and 3.6.). Among all caterpillars on n vertices and diameter $m+1$, the largest algebraic connectivity is attained by the caterpillar $A_{\frac{m+1}{n}}$.

Theorem 1.2 (Abreu, Lenes, Rojo [1]). Let $\alpha = 0, 1/2$. Let G be a complete caterpillar on n vertices and diameter $m+1$. Then,

$$\rho_\alpha(G) \leq \rho_\alpha(A_{\frac{m+1}{n}}),$$

with equality if, and only if, $G \cong A_{\frac{m+1}{n}}$.

Numerical experiments suggest us that $A_{\frac{m+1}{n}}$ is also the tree attaining the largest α-index in the class V^m_n. In this paper we prove that this conjecture is true; we come up with a bound for the whole family $A_\alpha(G)$, which implies the result of Abreu, Lenes, and Rojo. This is organized as follows. In Section 2, we introduce trees obtained of the path P_l and the trees $B_1, B_2, ..., B_l$ by identifying the root vertex of B_i with the i-th vertex of P_l and give a reduction procedure for calculating their α-spectra, thereby extending the main results of [16]. In the Section 3, we determine the graph that maximize the α-index in V^m_n. We finish the section maximizing the α-index among all the unicyclic connected graphs on n vertices.

2. The α-eigenvalues of $P_l(B_i)$

Given a generalized Bethe tree B_i with k_i levels and an integer $j \in [k_i]$, we write n_{i,k_i-j+1} for the number of vertices at level j and d_{i,k_i-j+1} for their degree. In particular, $d_{i,1} = 1$ and $n_{i,k_i} = 1$. Further, for any $j \in [k_i-1]$, let $m_{i,j} = n_{i,j}/n_{i,j+1}$. Then, for any $j \in [k_i-2]$, we see that

$$n_{i,j} = (d_{i,j+1} - 1)n_{i,j+1},$$

and, in particular,

$$n_{i,k_i} = d_{i,k_i} = m_{i,k_i-1}.$$
Figure 2. Labelling the tree $P_{l}(B_i)$.

For $i \in [l]$, it is worth pointing out that $m_{i,1}, \ldots, m_{i,k_{i}-1}$ are always positive integers, and that $n_{i,1} \geq n_{i,2} \geq \cdots \geq n_{i,k_{i}}$. We label the vertices of $P_{l}(B_i)$ as in [16]. (See figure 2).

Recall that the Kronecker product $C \otimes E$ of two matrices $C = (c_{i,j})$ and $E = (e_{i,j})$ of sizes $m \times m$ and $n \times n$, is an $mn \times mn$ matrix defined as

$$(C \otimes E)(F \otimes H) = (CF \otimes EH),$$

and

$$(C \otimes E)^{T} = C^{T} \otimes E^{T},$$

which hold for any matrices of appropriate sizes.

We write I_{l} for the identity matrix of order l and j_{l} for the column l-vector of ones. For $i \in [l]$, let $s_{i} = \sum_{j=1}^{k_{i}-2} n_{i,j}$ and D_{i} be the matrix of order $s_{i} \times l$ defined by

$$D_{i}(p, q) = \begin{cases} 1, & \text{if } q = i \text{ and } s_{i} + 1 \leq p \leq s_{i} + n_{i,k_{i}-1}, \\ 0, & \text{elsewhere.} \end{cases}$$

Let $\beta = 1 - \alpha$, and assume that $P_{l}(B_i)$ is a tree labeled as described above. It is not hard to see that the matrix $A_{\alpha}(P_{l}(B_i))$ can be represented as a symmetric block tridiagonal matrix

$$\begin{bmatrix} X_{1} & 0 & \cdots & 0 & \beta D_{1} \\ 0 & X_{2} & \ddots & \beta D_{2} \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & 0 & X_{l} & \beta D_{l} \\ \beta D_{1}^{T} & \beta D_{2}^{T} & \cdots & \beta D_{l}^{T} & X_{l+1} \end{bmatrix},$$

where, for $i \in [l]$, the matrix X_{i} is the block tridiagonal matrix:

$$\begin{bmatrix} \gamma_{i,1} I_{n_{i,1}} & \beta I_{n_{i,2}} \otimes j_{m_{i,1}} \\ \beta I_{n_{i,2}} \otimes j_{m_{i,1}}^{T} & \gamma_{i,2} I_{n_{i,2}} & \beta I_{n_{i,3}} \otimes j_{m_{i,2}} \\ & \ddots & \ddots & \ddots \\ & & \ddots & \gamma_{i,k_{i}-2} I_{n_{i,k_{i}-1}} & \beta I_{n_{i,k_{i}-2}} \otimes j_{m_{i,k_{i}-2}} \\ & & & \beta I_{n_{i,k_{i}-1}} \otimes j_{m_{i,k_{i}-2}}^{T} & \gamma_{i,k_{i}-1} I_{n_{i,k_{i}-1}} \end{bmatrix}. \]
Extremal graphs for α-index

and

$$X_{l+1} = \begin{bmatrix}
\gamma_{1,k_1} + \alpha & \beta & & & \\
\beta & \gamma_{2,k_2} + 2\alpha & \beta & & \\
& \ddots & \ddots & \ddots & \\
& & \beta & \gamma_{l-1,k_{l-1}} + 2\alpha & \beta \\
& & & \beta & \gamma_{l,k_l} + \alpha
\end{bmatrix},$$

where

$$\gamma_{i,j} = \alpha d_{i,j}.$$

Let’s define the polynomials $P_0(\lambda), P_1(\lambda), ..., P_l(\lambda)$ and $P_{i,j}(\lambda)$ for $i \in [l]$ and $j \in [k_i]$ as follows:

Definition 2.1. For $i \in [l]$ and $j \in [k_i]$, let

$$\gamma_{i,j} = \alpha d_{i,j}.$$

For $i \in [l]$, let

$$P_{i,0}(\lambda) = 1, P_{i,1}(\lambda) = \lambda - \alpha,$$

and for $i \in [l]$ and $j = 2, 3, ..., k_i - 1$, let

$$P_{i,j}(\lambda) = (\lambda - \gamma_{i,j})P_{i,j-1}(\lambda) - \beta^2 m_{i,j-1}P_{i,j-2}(\lambda).$$ \hfill (1)

Moreover, let

$$P_1(\lambda) = (\lambda - \gamma_{1,k_1} - \alpha)P_{1,k_1-1}(\lambda) - \beta^2 n_{1,k_1-1}P_{1,k_1-2}(\lambda),$$

$$P_l(\lambda) = (\lambda - \gamma_{l,k_l} - \alpha)P_{l,k_l-1}(\lambda) - \beta^2 n_{l,k_l-1}P_{l,k_l-2}(\lambda),$$

and

$$P_i(\lambda) = (\lambda - \gamma_{i,k_i} - 2\alpha)P_{i,k_i-1}(\lambda) - \beta^2 n_{i,k_i-1}P_{i,k_i-2}(\lambda),$$ \hfill (2)

for $i = 2, 3, ..., l - 1$.

Theorem 2.2. The characteristic polynomial $\phi(\lambda)$ of $A_\alpha(P_i(B_i))$ satisfies

$$\phi(\lambda) = P(\lambda) \prod_{i=1}^{m} \prod_{j=1}^{k_i-1} P_{i,j}^{n_{i,j-1}} P_{i,j}^{n_{i,j+1}}(\lambda),$$ \hfill (3)

where

$$P(\lambda) = \begin{bmatrix}
P_1(\lambda) & -\beta P_{1,k_1-1}(\lambda) \\
-\beta P_{2,k_2-1}(\lambda) & \ddots & \ddots \\
& \ddots & \ddots & -\beta P_{l-1,k_{l-1}-1}(\lambda) \\
& & -\beta P_{l,k_l-1}(\lambda) & P(\lambda)
\end{bmatrix}.$$
Proof. Write \(|A|\) for the determinant of a square matrix \(A\). To prove 3, we shall reduce \(\phi(\lambda) = |I - A_0(P_l(B_l))|\) to the determinant of an upper triangular matrix. For a start, note that

\[
\phi(\lambda) = \begin{vmatrix}
X_1(\lambda) & 0 & \cdots & 0 & -\beta D_1 \\
0 & X_2(\lambda) & \cdots & -\beta D_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & X_l(\lambda) & -\beta D_l \\
-\beta D_1^T & -\beta D_2^T & \cdots & -\beta D_l^T & X_{l+1}(\lambda)
\end{vmatrix},
\]

where, for \(i \in [l]\), the matrix \(X_i(\lambda)\) given by,

\[
P_{i,1}(\lambda)I_{m_1} - \beta I_{n_2} \otimes \mathbf{j}_{m_1} \\
-\beta I_{n_2} \otimes \mathbf{j}_{m_1}^T \quad (\lambda - \gamma_{i,2})I_{n_1} - \beta I_{n_3} \otimes \mathbf{j}_{m_2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-\beta I_{n_{k_i-1}} \otimes \mathbf{j}_{m_{k_i-2}} \quad (\lambda - \gamma_{i,k_i-1})I_{n_{k_i-1}}
\]

and

\[
X_{l+1}(\lambda) = \begin{vmatrix}
\lambda - \gamma_{1,k_1} - \alpha & -\beta \\
-\beta & \lambda - \gamma_{2,k_2} - 2\alpha & -\beta \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\lambda - \gamma_{l-1,k_{l-1}} - 2\alpha & -\beta \\
-\beta & \lambda - \gamma_{l,k_l} - \alpha
\end{vmatrix}.
\]

Let \(\lambda \in \mathbb{R}\) be such that \(P_{i,j}(\lambda) \neq 0\) for any \(i \in [l]\) and \(j \in [k_i - 1]\); set \(P_{i,j} = P_{i,j}(\lambda)\). For each \(i \in [l]\) and for all \(j \in [k_i - 2]\), multiplying the \(j\)-th row of \(X_i(\lambda)\) inserted in \(\phi(\lambda)\) by \(\frac{\beta P_{i,j}}{P_{i,j}} \otimes \mathbf{j}_{m_j}\) and add it to the next row. Since

\[
\lambda - \gamma_{i,j+1} - \frac{\beta m_{i,j} P_{i,j-1}}{P_{i,j}} = \frac{(\lambda - \gamma_{i,j+1}) P_{i,j} - \beta^2 m_{i,j} P_{i,j-1}}{P_{i,j}} = \frac{P_{i,j+1}}{P_{i,j}} P_{i,j},
\]

we obtain,

\[
\phi(\lambda) = \begin{vmatrix}
Y_1(\lambda) & 0 & \cdots & 0 & -\beta D_1 \\
0 & Y_2(\lambda) & \cdots & -\beta D_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & Y_l(\lambda) & -\beta D_l \\
0 & 0 & \cdots & 0 & Y_{l+1}(\lambda)
\end{vmatrix},
\]

where, for \(i \in [l]\), the matrix \(Y_i(\lambda)\) is given by

\[
P_{i,1}I_{n_1} - \beta I_{n_2} \otimes \mathbf{j}_{m_1} \\
\frac{P_{i,2}}{P_{i,1}} I_{n_2} - \beta I_{n_3} \otimes \mathbf{j}_{m_2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-\beta I_{n_{k_i-1}} \otimes \mathbf{j}_{m_{k_i-2}} \\
-\frac{P_{i,k_i-1}}{P_{i,k_i-2}} I_{n_{k_i-1}}
\]

Revista Integración, temas de matemáticas
and
\[
Y_{l+1}(\lambda) = \begin{bmatrix}
\frac{p_1}{P_{1,k_1-1}} & -\beta & & & & \\
-\beta & \frac{p_2}{P_{2,k_2-1}} & -\beta & & & \\
& \ddots & \ddots & \ddots & & \\
& & & \frac{p_{l-1}}{P_{l-1,k_{l-1}-1}} & -\beta & \\
& & & & \frac{p_l}{P_{l,k_l-1}} &
\end{bmatrix}.
\]

Thereby,
\[
\phi(\lambda) = \prod_{i=1}^{l+1} |Y_i(\lambda)| = |Y_{l+1}(\lambda)| \prod_{i=1}^{l} P_{i,1}^n \left(\frac{P_{i,2}}{P_{i,1}} \right)^{n_{i,2}} \left(\frac{P_{i,3}}{P_{i,2}} \right)^{n_{i,3}} \cdots \left(\frac{P_{i,k_i-2}}{P_{i,k_i-3}} \right)^{n_{i,k_i-2}} \left(\frac{P_{i,k_i-1}}{P_{i,k_i-2}} \right)^{n_{i,k_i-1}}.
\]

where
\[
|Y_{l+1}(\lambda)| = \frac{1}{\prod_{i=1}^{l+1} P_{i,k_i-1}} \begin{vmatrix}
P_1 & -\beta P_{1,k_1-1} & & & \\
-\beta P_{2,k_2-1} & P_2 & -\beta P_{2,k_2-1} & & \\
& \ddots & \ddots & \ddots & \\
& & -\beta P_{l-1,k_{l-1}-1} & P_{l-1} & -\beta P_{l-1,k_{l-1}-1} \\
& & & -\beta P_{l,k_l-1} & P_l
\end{vmatrix}.
\]

Hence
\[
|\lambda - A_{\alpha}(P_i(B_i))| = P(\lambda) \prod_{i=1}^{l} \prod_{j=1}^{n_{i,k_i-1}} P_{i,j}^{n_{i,j} - n_{i,j+1}}(\lambda).
\]

Thus, the equality (3) is proved whenever \(P_i(\lambda) \neq 0\) for any \(i \in [l]\) and \(j \in [k_i - 1]\). Since for any \(i \in [l]\) and \(j \in [k_i - 1]\) the polynomials \(P_{i,j}(\lambda)\) have finitely many roots, the equality (3) is verified for infinitely many value of \(\lambda\). The proof is complete.

Definition 2.3. For \(i \in [l]\) and \(j \in [k_i - 1]\), let \(T_{i,j}\) be the \(j \times j\) leading principal submatrix of the \(k_i \times k_i\) symmetric tridiagonal matrix
\[
T_i = \begin{bmatrix}
\alpha d_{i,1} & \beta \sqrt{d_{i,2} - 1} \\
\beta \sqrt{d_{i,2} - 1} & \alpha d_{i,2} \\
\beta \sqrt{d_{i,k_i-1} - 1} & \alpha d_{i,k_i-1} \\
\beta \sqrt{d_{i,k_i-1} - 1} & \alpha d_{i,k_i-1} \\
\beta \sqrt{d_{i,k_i} - 1} & \alpha d_{i,k_i} \\
\beta \sqrt{d_{i,k_i} - 1} & \alpha d_{i,k_i} \\
\end{bmatrix},
\]
where \(\beta = 1 - \alpha, c = 2\) for \(i \in [l - 1]\) and \(c = 1\) for \(i = 1\) and \(i = l\).
Since $d_s > 1$ for all $s = 2, ..., j$, each matrix T_j has nonzero codiagonal entries and it is known that its eigenvalues are simple. Using the well known three-term recursion formula for the characteristic polynomials of the leading principal submatrices of a symmetric tridiagonal matrix and the formulas (1) and (2), one can easily prove the following assertion:

Lemma 2.4. Let $\alpha \in [0, 1)$. Then

$$|\lambda I - T_{ij}| = P_{i,j}(\lambda)$$

and

$$|\lambda I - T_i| = P_i(\lambda),$$

for any $i \in [l]$ and $j \in [k_i - 1]$.

Let \tilde{A} be the matrix obtained from a matrix A by deleting its last row and last column. Moreover, for $i, j \in [r]$, let $E_{i,j}$ be the $k_i \times k_j$ matrix with $E_{i,j}(k_i, k_j) = 1$ and zeroes elsewhere. We recall the following Lemma.

Lemma 2.5 ([17]). For $i, j \in [r]$, let C_i be a matrix of order $k_i \times k_i$ and $\mu_{i,j}$ be arbitrary scalars. Then,

$$
\begin{pmatrix}
C_1 & \mu_{1,2}E_{1,2} & \cdots & \mu_{1,r-1}E_{1,r-1} & \mu_{1,r}E_{1,r} \\
\mu_{2,1}E_{2,1}^T & C_2 & \cdots & \cdots & \mu_{2,r}E_{2,r} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\mu_{r,1}E_{r,1}^T & \mu_{r,2}E_{r,2} & \cdots & \mu_{r,r-1}E_{r,r-1} & \mu_{r,r}E_{r,r}
\end{pmatrix} =
\begin{pmatrix}
|C_1| & \mu_{1,2}C_2 & \cdots & \mu_{1,r-1}C_{r-1} & \mu_{1,r}C_r \\
\mu_{2,1}C_1 & |C_2| & \cdots & \cdots & \mu_{2,r}C_r \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\mu_{r,1}C_1 & \mu_{r,2}C_2 & \cdots & \mu_{r,r-1}C_{r-1} & \mu_{r,r}C_r
\end{pmatrix}
$$

From now on, for $i \in [l - 1]$, by F_i we denote the matrix of order $k_i \times k_{i+1}$ whose entries are 0, except for the entry $F_i(k_i, k_{i+1}) = 1$.

Lemma 2.6. Let $r = \sum_{i=1}^{l} k_i$. Let $M(P_i(B_i))$ be the symmetric matrix of order $n \times n$ defined by

$$
\begin{pmatrix}
T_1 & \beta F_1 \\
\beta F_1^T & T_2 & \ddots \\
\vdots & \ddots & \ddots & \beta F_{l-1} \\
\beta F_{l-1}^T & \cdots & \beta F_{l-1} & T_l
\end{pmatrix}.
$$

Then,

$$|\lambda - M(P_i(B_i))| = P(\lambda).$$
The characteristic polynomial of the matrix $M(P_l(B_i))$ is given by
\[
\begin{vmatrix}
\lambda - T_1 & -\beta F_1 \\
-\beta F_1^T & \lambda - T_2 \\
& \ddots \\
& & -\beta F_{l-1} \\
& & & \lambda - T_l
\end{vmatrix}.
\]

From Lemma 2.5, we have that $|\lambda I - M(P_l(B_i))|$ is given by
\[
\begin{vmatrix}
|\lambda - T_1| & -\beta |\lambda - T_1| \\
-\beta |\lambda - T_2| & |\lambda - T_2| \\
& \ddots \\
& & -\beta |\lambda - T_{l-1}| \\
& & & |\lambda - T_l|
\end{vmatrix}.
\]

Since $\lambda I - T_i = \lambda - T_{i,k_i-1}$ for $i \in [l]$, by Lemma 2.4, the proof is complete.

Theorem 2.2, Lemma 2.4, Lemma 2.6, and the interlacing property for the eigenvalues of hermitian matrices yield the following summary statement:

Theorem 2.7. Let $\alpha \in [0,1)$. Then:

1. The α-spectrum of $P_l(B_i)$ is
 \[
 \bigcup_{i=1}^{l} \bigcup_{j=1}^{k_i-1} Sp(T_{i,j}) \cup Sp(M(P_l(B_i))); \]

2. The multiplicity of each eigenvalue of $T_{i,j}$ as an α-eigenvalue of $P_l(B_i)$ is $n_{i,j} - n_{i,j+1}$, if $i \in [l]$ and $j \in [k_i - 1]$, and is 1 if $i \in [l]$ and $j = k_i$;

3. $\rho_\alpha(P_l(B_i))$ is the largest eigenvalue of $M(P_l(B_i))$;

4. $\rho_\alpha(P_l(B_i)) > \alpha$.

3. The α-index of graphs

In Theorem 2.7, we characterize the α-eigenvalues of the trees $P_l(B_i)$ obtained from path P_l and the generalized Bethe trees $B_1, B_2, ..., B_l$ obtained identifying the root vertex of B_i with the i-th vertex of P_l. This is the case for the caterpillars $P_l(K_{1,p_i})$ in which the path is P_l and each star K_{1,p_i} is a generalized Bethe tree of 2 levels. From Theorem 2.7, we get
Lemma 3.1. Let $\alpha \in [0, 1)$. Then:

1. the α-spectrum of $P_l(K_{1, p_1})$ is formed by α with multiplicity $\sum_{i=1}^l p_i - l$, and the eigenvalues of the $2l \times 2l$ irreducible nonnegative matrix

$$M(P_l(K_{1, p_1})) = \begin{bmatrix} T(p_1) & \beta E \\ \beta E & S(p_2) & \beta E \\ & \ddots & \ddots \\ & & \ddots & S(p_{l-1}) & \beta E \\ & & & \beta E & T(p_l) \end{bmatrix},$$

where

$$T(x) = \begin{bmatrix} \alpha & \beta \sqrt{x} \\ \beta \sqrt{x} & \alpha(x+1) \end{bmatrix}, E = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} ; S(x) = T(x) + \alpha E,$$

2. $\rho_{\alpha}(P_l(K_{1, p_1}))$ is the largest eigenvalue of $M(P_l(K_{1, p_1}))$;

3. $\rho_{\alpha}(P_l(K_{1, p_1})) > \alpha$.

Let $t(\lambda, x)$ and $s(\lambda, x)$ be the characteristic polynomials of the matrices $T(x)$ and $S(x)$, respectively. That is,

$$t(\lambda, x) = \lambda^2 - \alpha(x+2)\lambda + \alpha^2(x+1) - \beta^2 x$$

and

$$s(\lambda, x) = \lambda^2 - \alpha(x+3)\lambda + \alpha^2(x+2) - \beta^2 x.$$

Then,

$$s(\lambda, x) - t(\lambda, x) = \alpha(\alpha - \lambda).$$

The notation $|A|$ will be used to denote the determinant of the matrix A of order $l \times l$. The next result is an immediate consequence of the Lemma 2.5.

Lemma 3.2. The characteristic polynomial of $M(P_l(K_{1, p_1}))$ is

$$| t(\lambda, p_1) \beta(\alpha - \lambda) \\ \beta(\alpha - \lambda) s(\lambda, p_2) \beta(\alpha - \lambda) \\ & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & \ddots & s(\lambda, p_{l-1}) \beta(\alpha - \lambda) & \beta(\alpha - \lambda) t(\lambda, p_l) |.$$

For $q \in [l]$, let A_q be the complete caterpillar $P_l(K_{1, p_q})$, where $p_1 = n - 2l + 1$ and $p_i = 1$ for all $i \neq q$. We define

$$r_0(\lambda) = 1, r_1(\lambda) = t(\lambda, 1)$$

and, for $2 \leq q \leq \lfloor \frac{l+1}{2} \rfloor$, we define

$$r_q(\lambda) = \begin{bmatrix} s(\lambda, 1) & \beta(\alpha - \lambda) \\ \beta(\alpha - \lambda) & s(\lambda, 1) & \beta(\alpha - \lambda) \\ & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & \ddots & s(\lambda, 1) \beta(\alpha - \lambda) & \beta(\alpha - \lambda) t(\lambda, 1) \end{bmatrix}.$$
Let \(\phi_q(\lambda) \) be the characteristic polynomial of \(M(A_q) \), then,
\[
\phi_q(\lambda) = |\lambda I - M(A_q)|.
\]

Lemma 3.3. Let \(\alpha \in [0,1) \). Then
\[
\phi_q(\lambda) - \phi_{q+1}(\lambda) = (a-1)(\alpha\lambda - 2\alpha + 1)(\beta(\lambda - \alpha))^{2q-1}[\alpha r_{m-2q}(\lambda) + \beta(\lambda - \alpha)r_{l-2q-1}(\lambda)]
\]
for all \(q \in \left[\left\lfloor \frac{l+1}{2} \right\rfloor - 1 \right] \), where \(l \geq 3 \).

Proof. By Lemma 3.2, the \((q, q)\)-entry of \(\phi_q(\lambda) = |\lambda I - M(A_q)| \) is \(t(\lambda, a) \) if \(q = 1 \) and \(s(\lambda, a) \) if \(q \neq 1 \). Let \(E_i \cong P_i(K_{1,p_i}) \), where \(p_i = 1 \) for all \(i \in [l] \). Let \(\varphi_s(\lambda) = |\lambda I - M(E_s)| \). From Lemma 3.2, we have
\[
\varphi_s(\lambda) = \begin{vmatrix}
 \beta(\alpha - \lambda) & s(\lambda, 1) & \beta(\alpha - \lambda) \\
 s(\lambda, 1) & \beta(\alpha - \lambda) & \ddots \\
 \ddots & \ddots & \ddots & \ddots
\end{vmatrix}.
\]
Since
\[
r_0(\lambda) = 1, r_1(\lambda) = t(\lambda, 1)
\]
and
\[
r_q(\lambda) = \begin{vmatrix}
 s(\lambda, 1) & \beta(\alpha - \lambda) \\
 \beta(\alpha - \lambda) & s(\lambda, 1) & \beta(\alpha - \lambda) \\
 \ddots & \ddots & \ddots & \ddots
\end{vmatrix},
\]
for \(q = 2, \ldots, \left\lfloor \frac{l+1}{2} \right\rfloor \); then, expanding along the first row, we obtain
\[
r_q(\lambda) = s(\lambda, 1)r_{q-1}(\lambda) - \beta(\lambda - \alpha)^2r_{q-2}(\lambda).
\] \hspace{1cm} (4)
Since \(s(\lambda, x) = t(\lambda, x) + \alpha(\alpha - \lambda) \), by linearity on the first column, we have
\[
r_q(\lambda) = \begin{vmatrix}
 t(\lambda, 1) & \beta(\alpha - \lambda) \\
 \beta(\alpha - \lambda) & s(\lambda, 1) & \beta(\alpha - \lambda) \\
 \ddots & \ddots & \ddots
\end{vmatrix} + \alpha(\alpha - \lambda)r_{q-1}(\lambda).
\]
Then,
\[
r_q(\lambda) = \varphi_q(\lambda) + \alpha(\alpha - \lambda)r_{q-1}(\lambda).
\]
Let \(q \in \left[\left\lfloor \frac{l+1}{2} \right\rfloor - 1 \right] \). We search for the difference \(\phi_q(\lambda) - \phi_{q+1}(\lambda) \). We recall that \((q, q)\)-entry of \(\phi_q(\lambda) = |\lambda I - M(A_q)| \) is \(t(\lambda, a) \) if \(q = 1 \) and \(s(\lambda, a) \) if \(q \neq 1 \). Since
By repeated applications of this process, we conclude that

\[t(\lambda, a) = t(\lambda, 1) + (1 - a)(\alpha \lambda - 2\alpha + 1) \] and \(s(\lambda, a) = s(\lambda, 1) + (1 - a)(\alpha \lambda - 2\alpha + 1) \), by linearity on the \(q \)-th column, we have

\[
\phi_q(\lambda) = \begin{vmatrix}
 t(\lambda, 1) & \beta(\alpha - \lambda) \\
\beta(\alpha - \lambda) & s(\lambda, 1) & \beta(\alpha - \lambda) \\
\vdots & \ddots & \ddots & \ddots \\
\vdots & \ddots & s(\lambda, 1) & \beta(\alpha - \lambda) \\
\beta(\alpha - \lambda) & t(\lambda, 1) & \beta(\alpha - \lambda) & 0 \\
\end{vmatrix}_{l}
\]

(5)

Applying the recurrence formula (4) to \(r \)

\[
\phi_q(\lambda) = \begin{vmatrix}
 r_{q-1}(\lambda) & 0 \\
0 & r_{l-q}(\lambda) \\
\end{vmatrix}_{l}.
\]

The \((q + 1, q + 1)\)-entry of the determinant of order \(l \) on the second right hand of (5) is \(s(\lambda, 1) \), and since \(s(\lambda, 1) = s(\lambda, a) + (a - 1)(\lambda \alpha - 2\alpha + 1) \), by linearity on the \((q + 1)\)-th column, we obtain

\[
\phi_q(\lambda) = \begin{vmatrix}
 t(\lambda, 1) & \beta(\alpha - \lambda) \\
\beta(\alpha - \lambda) & s(\lambda, 1) & \beta(\alpha - \lambda) \\
\vdots & \ddots & \ddots & \ddots \\
\vdots & \ddots & s(\lambda, 1) & \beta(\alpha - \lambda) \\
\beta(\alpha - \lambda) & t(\lambda, 1) & \beta(\alpha - \lambda) & 0 \\
\end{vmatrix}_{l} + (1 - a)(\alpha \lambda - 2\alpha + 1)
\]

\[
\begin{vmatrix}
 r_{q-1}(\lambda) & 0 \\
0 & r_{l-q}(\lambda) \\
\end{vmatrix}_{l}.
\]

Thereby,

\[
\phi_q(\lambda) - \phi_{q+1}(\lambda) =
\]

\[
(1 - a)(\alpha \lambda - 2\alpha + 1)
\]

\[
\begin{vmatrix}
 r_{q-1}(\lambda) & 0 \\
0 & r_{l-q}(\lambda) \\
\end{vmatrix}_{l} + (a - 1)(\alpha \lambda - 2\alpha + 1)
\]

\[
\begin{vmatrix}
 r_{q}(\lambda) & 0 \\
0 & r_{l-q-1}(\lambda) \\
\end{vmatrix}_{l}.
\]

Thus,

\[
\phi_q(\lambda) - \phi_{q+1}(\lambda) = (a - 1)(\alpha \lambda - 2\alpha + 1)[r_q(\lambda)r_{m-q-1}(\lambda) - r_{q-1}(\lambda)r_{m-q}(\lambda)].
\]

Applying the recurrence formula (4) to \(r_q(\lambda) \) and \(r_{l-q}(\lambda) \), we obtain

\[
r_q(\lambda)r_{l-q-1}(\lambda) - r_{q-1}(\lambda)r_{l-q}(\lambda) = [s(\lambda, 1)r_{q-1}(\lambda) - \beta^2(\lambda - \alpha)^2r_{q-2}(\lambda)]r_{l-q-1}(\lambda)
\]

\[
- r_{q-1}(\lambda)[s(\lambda, 1)r_{l-q-1}(\lambda) - \beta^2(\lambda - \alpha)^2r_{l-q-2}(\lambda)].
\]

Then,

\[
r_q(\lambda)r_{l-q-1}(\lambda) - r_{q-1}(\lambda)r_{l-q}(\lambda) = \beta^2(\lambda - \alpha)^2[r_q(\lambda)r_{l-q-2}(\lambda) - r_{q-2}(\lambda)r_{l-q-1}(\lambda)].
\]

By repeated applications of this process, we conclude that

\[
r_q(\lambda)r_{l-q-1}(\lambda) - r_{q-1}(\lambda)r_{l-q}(\lambda) = [\beta(\lambda - \alpha)]^{2(q-1)}[r_1(\lambda)r_{l-2q}(\lambda) - r_{l-2q+1}(\lambda)].
\]

Revista Integración, temas de matemáticas
Hence,
\[
 r_q(\lambda)r_{l-q-1}(\lambda) - r_{q-1}(\lambda)r_{l-q}(\lambda) = 0
\]
\[
 = [\beta(\lambda - \alpha)^{2(q-1)}]t(\lambda, 1)r_{l-2q}(\lambda) + \beta^2(\lambda - \alpha)^2r_{l-2q-1}(\lambda)
\]
\[
 = [\beta(\lambda - \alpha)^{2(q-1)}][\alpha(\lambda - \alpha)r_{l-2q}(\lambda) + \beta^2(\lambda - \alpha)^2r_{l-2q-1}(\lambda)]
\]
\[
 = [\beta(\lambda - \alpha)]^{2q-1}[\alpha r_{l-2q}(\lambda) + \beta^2(\lambda - \alpha)r_{l-2q-1}(\lambda)].
\]

Thus,
\[
 \phi_q(\lambda) - \phi_{q+1}(\lambda) = (a - 1)(\alpha \lambda - 2\alpha + 1)[\beta(\lambda - \alpha)]^{2q-1}[\alpha r_{l-2q}(\lambda) + \beta^2(\lambda - \alpha)r_{l-2q-1}(\lambda)].
\]

Let \(\rho(A)\) be the spectral radius of the square matrix \(A\). From Perron-Frobenius’s Theory for nonnegative matrices [23], if \(A\) is a nonnegative irreducible matrix then \(A\) has a unique eigenvalue equal to its spectral radius and it increases whenever any entry of it increases. Hence, we have the next result.

Lemma 3.4 (22). If \(A\) is a nonnegative irreducible matrix and \(B\) is any principal submatrix of \(A\), then \(\rho(B) < \rho(A)\).

Let \(C_{n,l}\) be the class of all complete caterpillars on \(n\) vertices and diameter \(l + 1\). A special subclass of \(C_{n,l}\) is \(A_{n,l} = \{A_1, A_2, ..., A_l\}\), where \(A_q \cong P_l(K_{1, p_q}) \in C_{n,l}\), with \(p_i = 1\) for \(i \neq q\) and \(p_q = n - 2l + 1\). Since \(A_q\) and \(A_{l-q+1}\) are isomorphic caterpillars for all \(q \in \lceil \frac{l+1}{2} \rceil\), the next theorem gives a total ordering in \(A_{n,l}\) by the \(\alpha\)-index.

Theorem 3.5. Let \(\alpha \in [0, 1)\). Then
\[
 \rho_\alpha(A_q) < \rho_\alpha(A_{q+1})
\]
for all \(q \in \lceil \frac{l+1}{2} \rceil - 1\), where \(l \geq 3\).

Proof. Let \(l \geq 3\). Let \(q \in \lceil \frac{l+1}{2} \rceil - 1\). Let \(\phi_q(\lambda)\) and \(\phi_{q+1}(\lambda)\) be the characteristic polynomials of degrees \(2l\) of the matrices \(M(A_q)\) and \(M(A_{q+1})\), respectively. The matrices \(M(A_q)\) and \(M(A_{q+1})\) are nonnegative irreducible matrices, then its spectral radii are simple eigenvalues.

Let
\[
 \rho_\alpha(A_q) = \mu_1 > \mu_2 \geq \cdots \geq \mu_{2l}
\]
and
\[
 \rho_\alpha(A_{q+1}) = \gamma_1 > \gamma_2 \geq \cdots \geq \gamma_{2l}
\]
be the eigenvalues of the matrices \(M(A_q)\) and \(M(A_{q+1})\), respectively.

By Lemma 3.3, we have
\[
 \phi_q(\lambda) - \phi_{q+1}(\lambda) = \prod_{j=1}^{2l}(\lambda - \mu_j) - \prod_{j=1}^{2l}(\lambda - \gamma_j)
\]
\[
 = (a - 1)(\alpha \lambda - 2\alpha + 1)(\beta(\lambda - \alpha))^{2q-1}
\]
*
\[
 [\alpha r_{l-2q}(\lambda) + \beta^2(\lambda - \alpha)r_{l-2q-1}(\lambda)].
\]

Vol. 38, No. 1, 2020
We recall that \(r_{l-2q}(\lambda) \) and \(r_{l-2q-1}(\lambda) \) are the characteristic polynomials of the matrices \(\widetilde{M}(E_{l-2q+1}) \) and \(M(E_{l-2q}) \) whose spectral radii are \(\rho(\widetilde{M}(E_{l-2q+1})) \) and \(\rho(M(E_{l-2q})) \), respectively. The matrices \(\widetilde{M}(E_{l-2q+1}) \) and \(M(E_{l-2q}) \) are principal submatrices of \(M(A_q) \).

By Lemma 3.4, \(\rho(\widetilde{M}(E_{l-2q+1})) < \rho_A(A_q) \) and \(\rho(M(E_{l-2q})) < \rho_A(A_q) \).

Hence, \(r_{l-2q}(\rho_A(A_q)) > 0 \) and \(r_{l-2q-1}(\rho_A(A_q)) > 0 \). We claim that \(\rho_A(A_q) < \rho_A(A_{q+1}) \).

Suppose \(\rho_A(A_q) \geq \rho_A(A_{q+1}) \). Then \(\rho_A(A_q) \geq \gamma_j \) for all \(j \). Taking \(\lambda = \rho_A(A_q) \) in (6), we obtain

\[
-\phi_{q+1}(\rho_A(A_q)) = -\prod_{j=1}^{2q}(\rho_A(A_q) - \gamma_j)
\]

\[
= (a - \alpha)(\rho_A(A_q) - 2\alpha + 1)(\beta(\rho_A(A_q) - \alpha))^{2q-1}
\]

\[
* \left[\alpha r_{l-2q}(\rho_A(A_q)) + \beta^2(\rho_A(A_q) - \alpha)r_{l-2q-1}(\rho_A(A_q)) \right].
\]

By Lemma 3.1, \(\rho_A(A_q) > \alpha \). Then \(\alpha \rho_A(A_q) - 2\alpha + 1 > 0 \). Thus,

\[
0 \geq -\prod_{j=1}^{2q}(\rho_A(A_q) - \gamma_j)
\]

\[
= (a - \alpha)(\rho_A(A_q) - 2\alpha + 1)(\beta(\rho_A(A_q) - \alpha))^{2q-1}
\]

\[
* \left[\alpha r_{l-2q}(\rho_A(A_q)) + \beta^2(\rho_A(A_q) - \alpha)r_{l-2q-1}(\rho_A(A_q)) \right]
\]

\[
> 0.
\]

which is a contradiction. The proof is complete.

\[\square\]

Lemma 3.6 ([11]). Let \(A \) be a nonnegative symmetric matrix and \(x \) be a unit vector of \(\mathbb{R}^n \). If \(\rho(A) = x^T A x \), then \(A x = \rho(A) x \).
Let $N_G(v)$ be the vertex set adjacent to v in G.

Lemma 3.7 ([24]). Let $\alpha \in [0, 1)$. Let G be a connected graph and $\rho_\alpha(G)$ be the α-index of G. Let u, v be two vertices of G. Suppose v_1, v_2, \ldots, v_s, are some vertices of $N_G(v) - (N_G(u) \cup \{u\})$ and $x = (x_1, x_2, \ldots, x_n)$ is the Perron’s vector of $A_\alpha(G)$, where x_i corresponds to the vertex v_i for $i \in [s]$. Let

$$G_u \equiv G - vv_1 - \cdots - vv_n + uv_1 + \cdots + uv_s$$

(as shown in Fig. 3). If $x_u \geq x_v$, then $\rho_\alpha(G) < \rho_\alpha(G_u)$.

An immediate consequence of Lemma 3.7 is

Theorem 3.8. Let $T \in \mathcal{V}_n^m$. Then

$$\rho_\alpha(T) \leq \rho_\alpha(A_{\lceil \frac{m+1}{2} \rceil}),$$ \hspace{1cm} (7)

where $A_{\lceil \frac{m+1}{2} \rceil} \in \mathcal{A}_{n,m}$. For $\alpha \in [0, 1)$, the bound (7) is attained if, and only if, $T \cong A_{\lceil \frac{m+1}{2} \rceil}$. For $\alpha = 1$, the bound (7) is attained if, and only if, $T \cong A_k$, where $k = 2, \ldots, \lfloor \frac{m}{2} \rfloor$ and $m \geq 3$ or $T \cong A_{\lceil \frac{m+1}{2} \rceil}$, where $m = 2$.

Proof. Let $\alpha \in [0, 1)$. Let $T \cong P_l(B_i) \in \mathcal{V}_n^m$. Let x_1, x_2, \ldots, x_l be the vertices of the path P_l in the tree T. Let B_i be a tree with k_i levels for all $i \in [l]$. Suppose T has the largest α-index in \mathcal{V}_n^m.

Suppose $k_i > 2$ for some $2 \leq i \leq l - 1$. Let u_1, \ldots, u_{s_i} be all the vertices in the second level of B_i; we can assume without loss of generality that u_1 is an internal vertex. Let w_1, \ldots, w_{r_i} be all the vertices in $N_G(u_{s_i}) - \{x_i\}$. Let

$$T_{x_i} \equiv T - u_{s_i}w_1 - \cdots - u_{s_i}w_{r_i} + x_iw_1 + \cdots + x_iw_{r_i},$$

and

$$T_{u_{s_i}} \equiv T - x_{i-1}x_i - x_{i+1}x_i - u_1x_i - \cdots - u_{s_i-1}x_i + x_{i-1}u_{s_i} + x_{i+1}u_{s_i} + u_1u_{s_i} + \cdots + u_{s_i-1}u_{s_i}.$$

By Lemma 3.7, $\rho_\alpha(T_{x_i}) > \rho_\alpha(T)$ or $\rho_\alpha(T_{u_{s_i}}) > \rho_\alpha(T)$. Moreover, $\rho_\alpha(T_{x_i}) \in \mathcal{V}_n^m$ and $\rho_\alpha(T_{u_{s_i}}) \in \mathcal{V}_n^m$, which is a contradiction. If $i = 1$ or $i = l$, we reason analogously. Then, $k_i = 2$ for all $i \in [l]$. This is, $T \cong P_l(K_{1,p_i})$.

By reasoning analogously we can verify that

$$T \in \mathcal{A}_{n,m}.$$

Let $m \geq 3$. By Theorem 3.5,

$$\rho_\alpha(A_1) < \rho_\alpha(A_2) < \cdots < \rho_\alpha(A_{\lceil \frac{m+1}{2} \rceil}).$$

Then the largest α-index is attained by $A_{\lceil \frac{m+1}{2} \rceil}$. For $m = 2$ the result is immediate.

Let $\alpha = 1$; then $A_\alpha = D$, where D is the diagonal matrix of vertex degrees. Let $T \in \mathcal{V}_n^m$. Let $m = 3$; then the maximum degree of T is less than or equal to $n - 2l + 3$. Then, $\rho_\alpha(T) \leq n - 2l + 3 \leq \rho_\alpha(A_k)$ for all $k = 2, \ldots, \lfloor \frac{m+1}{2} \rfloor$. For $m = 2$ is result is immediate. \hspace{1cm} \Box
Acknowledgments: The authors are grateful for the funding for Universidad del Sinú, to carry out research in Básicas Exactas. Eber Lenes was supported by Proyecto BASED-PD/2019-03 of the Universidad del Sinú, Cartagena, Colombia.

The authors would like to thank the referee for his/her constructive suggestions that improved the final version of this paper.

References

[1] Abreu N., Lenes E. and Rojo O., “The largest Laplacian and adjacency index of complete caterpillars of fixed diameter”, *Proyecciones* 34 (2015), No. 2, 175–190.

[2] Cardoso D.M., Cvetković D., Rowlinson P. and Simić S.K., “A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph”, *Linear Algebra Appl.* 429 (2008), No. 11-12, 2770–2780.

[3] Cvetković D., Rowlinson P. and Simić S. K., *An Introduction to the Theory of Graph Spectra*, London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge, 2010.

[4] Cvetković D., Rowlinson P. and Simić S.K., “Signless Laplacian of finite graphs ”, *Linear Algebra Appl.* 423 (2007), No. 1, 155–171.

[5] Cvetković D. and Simić S.K., “Towards a spectral theory of graphs based on the signless Laplacian I”, *Publ. Inst. Math. (Beograd)* 85(99) (2009), 19–33.

[6] Cvetković D. and Simić S.K., “Towards a spectral theory of graphs based on the signless Laplacian II”, *Linear Algebra Appl.* 432 (2010), No. 9, 2257–2272.

[7] Grone R. and Merris R., “The Laplacian spectrum of a graph II”, *SIAM J. Discrete Math.* 7 (1994), No. 2, 221–229.

[8] Grone R., Merris R. and Sunder V.S., “The Laplacian spectrum of a graph”, *SIAM J. Matrix Anal. Appl.* 11 (1990), No. 2, 218–238.

[9] Guo J.M., “On the Laplacian spectral radius of trees with fixed diameter”, *Linear Algebra Appl.* 419 (2006), No. 2–3, 618–629.

[10] Guo J.M. and Shao J.Y., “On the spectral radius of trees with fixed diameter”, *Linear Algebra Appl.* 413 (2006), No. 1, 131–147.

[11] Merris R., “Laplacian matrices of graphs: a survey”, *Linear Algebra Appl.* 197–198 (1994), 143–176.

[12] Nikiforov V., “Merging the A-and Q-spectral theories”, *Appl. Anal. Discrete Math.* 11 (2017), No. 1, 81–107.

[13] Nikiforov V., Pastén G., Rojo O. and Soto R. L., “On the A_α-spectra of trees”, *Linear Algebra Appl.* 520 (2017), 286–305.

[14] Nikiforov V. and Rojo O., “On the α-index of graphs with pendant paths”, *Linear Algebra Appl.* 550 (2018), 87–104.
Extremal graphs for α-index

[15] Rojo O. and Medina L., “Spectra of generalized Bethe trees attached to a path”, Linear Algebra Appl. 430 (2009), No. 1, 483–503.

[16] Rojo O. and Medina L., “Spectra of weighted compound graphs of generalized Bethe trees”, Electron. J. Linear Algebra 18 (2009), 30–57.

[17] Rojo O., Medina L., Abreu N. and Justel C., “Extremal algebraic connectivities of certain caterpillar classes and symmetric caterpillars”, Electron. J. Linear Algebra 20 (2010), 136–157.

[18] Rojo O., Medina L., Abreu N. and Justel C., “On the algebraic connectivity of some caterpillars: A sharp upper bound and a total ordering”, Linear Algebra Appl. 432 (2010), No. 2–3, 586–605.

[19] Simić S. K., Li Marzi E. M. and Belardo F., “On the index of caterpillars”, Discrete Math. 308 (2008), No. 2–3, 324–330.

[20] Varga R.S., Gershgorin and his Circles, Springer Series in Computational Mathematics, Springer Verlag, Berlin, 2004.

[21] Varga R.S., Matrix Iterative Analysis, Prentice-Hall Inc., 1965.

[22] Varga R.S., Matrix Iterative Analysis, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2000.

[23] Xue J., Lin H., Liu S. and Shu J., “On the A_α-spectral radius of a graph”, Linear Algebra Appl. 550 (2018), 105–120.