On the second smallest and the largest normalized Laplacian eigenvalues of a graph *

Xiaoguo Tian, Ligong Wang and Yong Lu
Department of Applied Mathematics, School of Science, Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, People’s Republic of China.
E-mails: xiaoguotianwycm@163.com; lgwangmath@163.com; luyong.gougou@163.com

Abstract

Let G be a simple connected graph with order n. Let $L(G)$ be the normalized Laplacian matrix of G. Let $\lambda_k(G)$ be the k-th smallest normalized Laplacian eigenvalue of G. Denote $\rho(A)$ the spectral radius of the matrix A. In this paper, we study the behaviors of $\lambda_2(G)$ and $\rho(L(G))$ when the graph is perturbed by three operations.

Key Words: second smallest normalized Laplacian eigenvalue, normalized Laplacian spectral radius.

AMS Subject Classification (1991): 05C50, 15A18.

1 Introduction

Let A be a matrix with order $n \times n$, and $\rho(A)$ be the spectral radius of A. Let G be a simple connected graph. Let $V(G)$ and $E(G)$ be the vertex set and the edge set of G, respectively. Its order is $|V(G)|$, and its size is $|E(G)|$. For $v \in V(G)$, let $d(v)$ be the degree of v, $N_G(v)$ be the set of neighbours of a vertex v in G. We use the notation I for the identity matrix, e for the vector consisting of all ones, S_n for the star of order n, C_n for the cycle of length n, P_n for the path of length $n - 1$ and $Vol(G)$ for the sum of the degrees of all vertices in G. Meanwhile, we use the notation $S(G)$ to denote the subdivision graph of G, which is the graph obtained from G by inserting some new vertices to some edges of G.

Let $A(G)$ and $D(G)$ be the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively. The Laplacian and normalized Laplacian matrices of G are defined as $L(G) = D(G) - A(G)$ and $\mathcal{L}(G) = D^{-\frac{1}{2}}(G)L(G)D^{-\frac{1}{2}}(G)$, respectively. When only one graph G is under consideration, we sometimes use A, D, L and \mathcal{L} instead of $A(G)$, $D(G)$, $L(G)$ and $\mathcal{L}(G)$ respectively. It is easy to see that $\mathcal{L}(G)$ is a symmetric positive semidefinite matrix and $D^{\frac{1}{2}}(G)e$ is an eigenvector of $\mathcal{L}(G)$ with eigenvalue 0. Thus, the eigenvalues $\lambda_i(G)$ of $\mathcal{L}(G)$ satisfy

$$\lambda_n(G) \geq \cdots \geq \lambda_2(G) \geq \lambda_1(G) = 0.$$

*Supported by the National Natural Science Foundation of China (No.11171273)
Some of them maybe repeated according to their multiplicities. \(\lambda_k(G) \) is the \(k \)-th smallest normalized Laplacian eigenvalue of \(G \). Thus \(\rho(\mathcal{L}(G)) = \lambda_2(G) \). When only one graph is under consideration, we may use \(\lambda_1 \) and \(\rho(\mathcal{L}) \) instead of \(\lambda_k(G) \) and \(\rho(\mathcal{L}(G)) \), respectively.

In terms of \(\lambda_2(G) \), Chung [1] showed that \(\lambda_2(G) \) is 0 if and only if \(G \) is disconnected. This result is closely related to the second smallest eigenvalue of its Laplacian matrix [2]. H.H. Li et al. [3, 4] studied the behavior of \(\lambda_2 \) when the graph is perturbed by grafting an edge and a pendant path, respectively. Recently, J.X. Li et al. [5] studied the behavior of \(\lambda_2 \) when the graph is perturbed by separating an edge. They determined all trees and unicyclic graphs with \(\lambda_2(G) \geq 1 - \frac{\sqrt{5}}{2} \). Guo et al. [7] studied the behavior of \(\rho(\mathcal{L}) \) when the graph is perturbed by removing pendant edges from one vertex to another. The non-bipartite unicyclic graph with fixed order and girth which has the largest \(\rho(\mathcal{L}) \) was also determined.

In this paper, we further study the behaviors of \(\lambda_2 \) and \(\rho(\mathcal{L}) \) when the graph is perturbed by three operations.

2 Preliminaries

In this section we recall some properties of the eigenvalues and eigenfunctions of the normalized Laplacian matrix of a graph \(G \). Let \(g \) be a vector such that \(g \neq 0 \). Then we can view \(g \) as a function which assigns to each vertex \(v \) of \(G \) a real value \(g(v) \), the coordinate of \(g \) according to \(v \) (All the vectors in this paper are dealt in this way). By letting \(g = D^{1/2} f \), we have

\[
\frac{g^T \mathcal{L} g}{g^T g} = \frac{f^T D^{1/2} \mathcal{L} D^{1/2} f}{(D^{1/2} f)^T D^{1/2} f} = \frac{f^T \mathcal{L} f}{f^T D f} = \frac{\sum_{u,v \in E(G)} (f(u) - f(v))^2}{\sum_{v \in V(G)} d(v)(f(v))^2}.
\]

Thus, we can obtain the following formulas for \(\lambda_2 \) and \(\rho(\mathcal{L}) \).

\[
\lambda_2 = \inf_{f \in \mathcal{I} \cap De} \frac{f^T \mathcal{L} f}{f^T D f} = \inf_{f \in \mathcal{I} \cap De} \frac{\sum_{u,v \in E(G)} (f(u) - f(v))^2}{\sum_{v \in V(G)} d(v)(f(v))^2}. \tag{1}
\]

\[
\rho(\mathcal{L}) = \sup_{f \in \mathcal{I} \cap De} \frac{f^T \mathcal{L} f}{f^T D f} = \sup_{f \in \mathcal{I} \cap De} \frac{\sum_{u,v \in E(G)} (f(u) - f(v))^2}{\sum_{v \in V(G)} d(v)(f(v))^2}. \tag{2}
\]

A nonzero vector that satisfies equality in (1) or (2) is called a harmonic eigenfunction associated with \(\lambda_2(G) \) or \(\rho(\mathcal{L}(G)) \).

Lemma 2.1 [1] Let \(G \) be a simple connected graph and \(f \) be a harmonic eigenfunction associated with \(\lambda_2(G) \). Then for any \(v \in V(G) \), we have

\[
\frac{1}{d(v)} \sum_{u \in V(G)} (f(v) - f(u)) = \lambda_2(G) f(v).
\]

From Lemma 2.1, we have the following result.

Corollary 2.2 Let \(G \) be a simple connected graph and \(f \) be a harmonic eigenfunction associated with \(\lambda_2(G) \). If \(\lambda_2(G) = 1 \), then for any \(v \in V(G) \), we have

\[
\sum_{u \in V(G)} f(u) = 0.
\]
If f is a harmonic eigenfunction associated with $\rho(\mathcal{L}(G))$, the similar results about Lemma 2.1 and Corollary 2.2 are obtained.

From Corollary 2.2, we have the following result.

Corollary 2.3 Let v be the center of the star S_n, f is a harmonic eigenfunction associated with $\lambda_2(S_n)$. Then $f(v) = 0$.

Proof Through a simple calculation, we can obtain $\lambda_2(S_n) = 1$. Combining the Corollary 2.2, the result is clear. □

Lemma 2.4 For a graph which is not a complete graph, we have $\lambda_2 \leq 1$.

Next we will define three operations:

Operation I. G' is obtained by inserting a new vertex w to an edge uv of G. That is to say $G' = G - uv + uw + wv$.

Operation II. Let G_1 and G_2 be two simple connected graphs, $u \in V(G_1), v \in V(G_2)$. Let G be a graph obtained from G_1 and G_2 by identifying u with v (see Figure 1).

Operation III. Let u, v be two vertices of the simple connected graph G. Suppose that v_1, v_2, \ldots, v_s ($1 \leq s \leq d(v)$) are some vertices of $N_G(v) \setminus N_G(u)$ and v_1, v_2, \ldots, v_s are different from u. Let G' be the graph obtained from G by deleting the edges vv_i and adding the edges uw. That is to say $G' = G - vv_1 - vv_2 - \cdots - vv_s + uv_1 + uv_2 + \cdots + uv_s$.

![Figure 1: Operation II](image)

3 The effects on the $\lambda_2(G)$ of a graph by three operations

In this section we study the behavior of λ_2 when the graph is perturbed by three operations.

The following theorem studies the behavior of λ_2 when the graph is perturbed by Operation I.

Theorem 3.1 Let G be a simple connected graph of order n, $uv \in E(G)$ and $G' = G - uw + uv + wv$. Then $\lambda_2(G) \geq \lambda_2(G')$, and the inequality is strict if $f(u)f(v) \neq 0$, where f is a harmonic eigenfunction associated with $\lambda_2(G)$.

Proof Let $V(G) = \{u, v, u_1, u_2, \ldots, u_{n-2}\}$ and $V(G') = \{u, v, u_1, u_2, \ldots, u_{n-2}, w\}$. Let $d(x)$ and $d'(x)$ be the degrees of x in G and G', respectively. Let D and D' be the diagonal degree matrices of G and G', respectively. Let L and L' be the Laplacian matrices of G and G', respectively. Let e and e' be the vectors consisting of all ones, where $e \in \mathbb{R}^n$ and $e' \in \mathbb{R}^{n+1}$. Then $d'(w) = 2$, $d'(x) = d(x)$, $x \in V(G)$. Since f is a harmonic eigenfunction associated with $\lambda_2(G)$. Then $f \neq 0$ and $f \perp De$. Let us distinguish two cases.

Case 1 $f(u)f(v) \leq 0$. Let h be a vector such that $h(w) = 0$, $h(x) = f(x)$, where $x \in V(G)$. Then

$$h^T D' e' = \sum_{x \in V(G')} h(x) d'(x) = \sum_{x \in V(G)} h(x) d'(x) + h(w) d'(w)$$
\[
\sum_{x \in V(G)} f(x)d(x) = f^TD e = 0.
\]

Thus \(h \perp D'e' \). Note that \(h \neq 0 \). Then, we have
\[
\frac{h^T L'h}{h^TD'h} \geq \lambda_2(G').
\]

Moreover
\[
h^T D'h = \sum_{x \in V(G')} d'(x)h^2(x) = \sum_{x \in V(G)} d'(x)h^2(x) + d'(w)h^2(w) = \sum_{x \in V(G)} d(x)f^2(x) = f^TDf,
\]
and
\[
h^T L'h = \sum_{xy \in E(G')} (h(x) - h(y))^2
\]
\[
= \sum_{xy \in E(G') \setminus \{uw, wv\}} (h(x) - h(y))^2 + (h(u) - h(w))^2 + (h(w) - h(v))^2
\]
\[
= \sum_{xy \in E(G) \setminus \{uv\}} (f(x) - f(y))^2 + f^2(u) + f^2(v)
\]
\[
= \sum_{xy \in E(G)} (f(x) - f(y))^2 + 2f(u)f(v) = f^T Lf + 2f(u)f(v)
\]
\[
\leq f^T Lf.
\]

Thus, from Formula (11), we have
\[
\lambda_2(G) = \frac{f^T Lf}{f^TDf} \geq \frac{h^T L'h}{h^TD'h} \geq \lambda_2(G').
\]

If \(f(u)f(v) < 0 \), then \(f^T Lf > h^T L'h \). Thus, \(\lambda_2(G) > \lambda_2(G') \).

Case 2 \(f(u)f(v) > 0 \). Let \(h \) be a vector such that \(h(w) = f(u), h(x) = f(x) \), where \(x \in V(G) \). Then
\[
h^T L'h = \sum_{xy \in E(G')} (h(x) - h(y))^2
\]
\[
= \sum_{xy \in E(G') \setminus \{uw, wv\}} (h(x) - h(y))^2 + (h(u) - h(w))^2 + (h(w) - h(v))^2
\]
\[
= \sum_{xy \in E(G) \setminus \{uv\}} (f(x) - f(y))^2 + (f(u) - f(v))^2
\]
\[
= \sum_{xy \in E(G)} (f(x) - f(y))^2 = f^T Lf,
\]
and
Thus, from Formula (1), we have

\[\sum_{x \in V(G')} h(x)d'(x) = \sum_{x \in V(G)} h(x)d'(x) + h(w)d'(w) \]

\[= \sum_{x \in V(G)} f(x)d(x) + 2f(u) = f^TDe + 2f(u) = 2f(u). \]

Let \(p = h + ce' \), where \(c = -\frac{2f(u)}{Vol(G)+2} \). Then

\[p^T D' e' = (h + ce')^T D' e' = h^T D' e' + ce'^T D' e' = 2f(u) + c(Vol(G) + 2) = 0. \]

Thus \(p \perp D' e' \). Note that \(p \neq 0 \). Then, we have

\[\frac{p^T L' p}{p^T D' p} \geq \lambda_2(G'). \]

It is clear that

\[p^T L' p = h^T L' h = f^T Lf, \]

and

\[p^T D' p = \sum_{x \in V(G')} d'(x)p^2(x) = \sum_{x \in V(G')} d'(x)(h(x) + c)^2 \]

\[= \sum_{x \in V(G)} d(x)(f(x) + c)^2 + 2f(u)c + c^2 \]

\[= f^T Df + 2cf^T De + c^2 Vol(G) + 2f(u)c^2 \]

\[= f^T Df + \frac{2f^2(u)Vol(G)(2 + Vol(G))}{(2 + Vol(G))^2} \]

\[> f^T Df. \]

Thus, from Formula (11), we have

\[\lambda_2(G) = \frac{f^T Lf}{f^T Df} > \frac{p^T L' p}{p^T D' p} \geq \lambda_2(G'). \]

Combining Cases 1 and 2, the result follows. \(\square \)

From Theorem 3.1, we have the following result.

Corollary 3.2 Let \(G \) be a simple connected graph and \(S(G) \) be the subdivision graph of \(G \). Then \(\lambda_2(G) \geq \lambda_2(S(G)) \).

The following theorem studies the behavior of \(\lambda_2 \) when the graph is perturbed by Operation II.

Theorem 3.3 Let \(G_1 \) and \(G_2 \) be two simple connected graphs of orders \(m \) and \(n \), respectively. Let \(u \in V(G_1) \) and \(v \in V(G_2) \). Let \(G \) be a graph obtained from \(G_1 \) and \(G_2 \) by identifying \(u \) with \(v \). Then \(\lambda_2(G) \leq \lambda_2(G_1) \), and the inequality is strict if \(f_1(u) \neq 0 \), where \(f_1 \) is a harmonic eigenfunction associated with \(\lambda_2(G_1) \).

Proof Let \(V(G_1) = \{x_1, x_2, \ldots, x_{m-1}, u\} \), \(V(G_2) = \{y_1, y_2, \ldots, y_{n-1}, v\} \), and \(V(G) = \{x_1, x_2, \ldots, x_{m-1}, u, y_1, y_2, \ldots, y_{n-1}\} \). Let \(d(x), d_1(x) \) and \(d_2(x) \) be the degree of \(x \) in \(G \), the
degree of x in G_1, and the degree of x in G_2, respectively. Let D and D_1 be the diagonal degree matrices of G and G_1, respectively. Let L and L_1 be the Laplacian matrices of G and G_1, respectively. Let e and e_1 be the vectors consisting of all ones, where $e \in \mathbb{R}^{m+n-1}$ and $e_1 \in \mathbb{R}^m$. Then $d(x_i) = d_1(x_i), i = 1, 2, \ldots, m - 1, d(y_j) = d_2(y_j), j = 1, 2, \ldots, n - 1$, and $d(u) = d_1(u) + d_2(v)$. Since f_1 is a harmonic eigenfunction associated with $\lambda_2(G_1)$. Then $f_1 \neq 0$ and $f_1 \perp D_1 e_1$.

Let $f(x) = f_1(x), \forall x \in V(G_1), f(y_j) = f_1(u), j = 1, 2, \ldots, n - 1$. Then we have

$$f^T L f = \sum_{xy \in E(G)} (f(x) - f(y))^2$$

$$= \sum_{xy \in E(G_1)} (f(x) - f(y))^2 + \sum_{xy \in E(G) \setminus E(G_1)} (f(x) - f(y))^2$$

$$= \sum_{xy \in E(G_1)} (f(x) - f(y))^2 = \sum_{xy \in E(G_1)} (f_1(x) - f_1(y))^2$$

$$= f_1^T L_1 f_1,$$

and

$$f^T D e = \sum_{x \in V(G)} d(x) f(x) = \sum_{x \in V(G_1)} d(x) f(x) + \sum_{j=1}^{n-1} d(y_j) f(y_j)$$

$$= \sum_{x \in V(G_1) \setminus \{u\}} d(x) f(x) + d(u) f(u) + \sum_{j=1}^{n-1} d(y_j) f(y_j)$$

$$= \sum_{x \in V(G_1) \setminus \{u\}} d_1(x) f_1(x) + (d_1(u) + d_2(v)) f_1(u) + \sum_{j=1}^{n-1} d_2(y_j) f_1(u)$$

$$= f_1^T D_1 e_1 + d_2(v) f_1(u) + f_1(u) \sum_{j=1}^{n-1} d_2(y_j)$$

$$= f_1(u) (d_2(v) + \sum_{j=1}^{n-1} d_2(y_j)) = f_1(u) \text{Vol}(G_2).$$

Let $h = f + c e$, where $c = -\frac{f_1(u) \text{Vol}(G_2)}{\text{Vol}(G_1) + \text{Vol}(G_2)}$, Then

$$h^T D e = (f + c e)^T D e = f_1(u) \text{Vol}(G_2) + c(\text{Vol}(G_1) + \text{Vol}(G_2)) = 0.$$

Thus $h \perp D e$. Note that $h \neq 0$. Then, we have

$$\frac{h^T L h}{h^T D h} \geq \lambda_2(G).$$

Moreover

$$h^T D h = (f + c e)^T D(f + c e) = f^T D f + 2c f^T D e + c^2 e^T D e$$
From the above equation, we have

\[f^T Df = 2cf_1(u)Vol(G_2) + c^2(Vol(G_1) + Vol(G_2)) \]

\[= f^T Df - \frac{(f_1(u)Vol(G_2))^2}{Vol(G_1) + Vol(G_2)}, \]

and

\[f^T Df = \sum_{x \in V(G)} d(x)f^2(x) = \sum_{x \in V(G_1)} d(x)f^2(x) + \sum_{j=1}^{n-1} d(y_j)f^2(y_j) \]

\[= \sum_{x \in V(G_1) \setminus \{u\}} d(x)f^2(x) + d(u)f^2(u) + \sum_{j=1}^{n-1} d(y_j)f^2(y_j) \]

\[= \sum_{x \in V(G_1) \setminus \{u\}} d_1(x)f_1^2(x) + (d_1(u) + d_2(v))f_1^2(u) + \sum_{j=1}^{n-1} d(y_j)f_1^2(u) \]

\[= f_1^T D_1 f_1 + d_2(v)f_1^2(u) + f_1^2(u) \sum_{j=1}^{n-1} d(y_j) \]

\[= f_1^T D_1 f_1 + f_1^2(u)Vol(G_2). \]

From the above equation, we have

\[h^T Dh = f_1^T D_1 f_1 + \frac{f_2^2(u)Vol(G_1)Vol(G_2)}{Vol(G_1) + Vol(G_2)} \]

\[\geq f_1^T D_1 f_1 > 0. \]

Thus, from Formula (11), we have

\[\lambda_2(G_1) = \frac{f_1^T L_1 f_1}{f_1^T D_1 f_1} = \frac{h^T L h}{h^T D h} \geq \frac{h^T L h}{h^T D h} \geq \lambda_2(G). \]

If \(f_1(u) \neq 0 \), then \(h^T D h > f_1^T D_1 f_1 \). Thus, \(\lambda_2(G_1) > \lambda_2(G) \). The result follows. \(\square \)

From Theorem 3.3, the following is easily obtained.

Corollary 3.4 Let \(G_1 \) and \(G_2 \) be two simple connected graphs, \(u \in V(G_1), v \in V(G_2) \). Let \(G \) be a graph obtained from \(G_1 \) and \(G_2 \) by identifying \(u \) with \(v \). Then \(\lambda_2(G) \leq \min \{ \lambda_2(G_1), \lambda_2(G_2) \} \).

In particular, if \(T \) is a tree, then it is clear that \(T \) can be obtained from the subtree \(T_1 \) and \(T_2 \) by Operation II. Hence, by Corollary 3.4, the following is immediate.

Corollary 3.5 Let \(T \) be a tree. If \(T' \) is a subtree of \(T \), then \(\lambda_2(T) \leq \lambda_2(T') \).

The following theorem studies the behavior of \(\lambda_2 \) when the graph is perturbed by Operation III.

Theorem 3.6 Let \(u, v \) be two vertices of the simple connected graph \(G \) of order \(n \). Suppose that \(v_1, v_2, \ldots, v_s (1 \leq s \leq d(v)) \) are some vertices of \(N_G(v) \setminus N_G(u) \) and \(v_1, v_2, \ldots, v_s \) are different from \(u \). Let \(G' = G - v_1 v_2 \cdots v_s - v v_1 + w_1 + w_2 + \cdots + w_s \) and \(f \) be a harmonic eigenfunction associated with \(\lambda_2(G) \). If \(f(u) = f(v) \), Then \(\lambda_2(G) \geq \lambda_2(G') \).

Proof Let \(d(x) \) and \(d'(x) \) be the degree of \(x \) in \(G \) and the degree of \(x \) in \(G' \), respectively. Let \(D \) and \(D' \) be the diagonal degree matrices of \(G \) and \(G' \), respectively. Let \(L \) and \(L' \) be the Laplacian matrices of \(G \) and \(G' \), respectively. Let \(e \) be the vector consisting of all ones, where
e ∈ R^{\lvert G \rvert}. Then d'(v) = d(v) - s, d'(u) = d(u) + s, d'(x) = d(x), where x ∈ V(G) \setminus \{u, v\}. Since f is a harmonic eigenfunction associated with \lambda_2(G). Then f ≠ 0 and f ⊥ De. Let f'(u) = f(u), \forall u ∈ V(G). Then f'(u) = f(u) = f(v) = f'(v),

\[
f'^T L' f' = \sum_{xy ∈ E(G')} (f'(x) - f'(y))^2
\]

\[
= \sum_{xy ∈ E(G')} (f'(x) - f'(y))^2 + \sum_{j=1}^{s} (f'(u) - f'(v_j))^2
\]

\[
= \sum_{xy ∈ E(G')} (f(x) - f(y))^2 + \sum_{j=1}^{s} (f(v) - f(v_j))^2
\]

\[
= \sum_{xy ∈ E(G)} (f(x) - f(y))^2
\]

\[
= f'^T L f,
\]

and

\[
f'^T D' e = \sum_{x ∈ V(G')} d'(x) f'(x)
\]

\[
= \sum_{x ∈ V(G) \setminus \{u, v\}} d'(x) f'(x) + d'(u) f'(u) + d'(v) f'(v)
\]

\[
= \sum_{x ∈ V(G) \setminus \{u, v\}} d'(x) f'(x) + f'(u)(d'(u) - s) + f'(v)(d'(v) + s)
\]

\[
= \sum_{x ∈ V(G) \setminus \{u, v\}} d(x) f(x) + d(u) f(u) + d(v) f(v)
\]

\[
= \sum_{x ∈ V(G)} d(x) f(x) = f'^T D e = 0.
\]

Thus f' ⊥ D'e. Note that f' ≠ 0. Then we have

\[
\frac{f'^T L' f'}{f'^T D' f'} ≥ \lambda_2(G').
\]

It is clear that

\[
(f')^T D' f' = \sum_{x ∈ V(G')} d'(x)(f'(x))^2
\]

\[
= \sum_{x ∈ V(G') \setminus \{u, v\}} d'(x)(f'(x))^2 + d'(u)(f'(u))^2 + d'(v)(f'(v))^2
\]

\[
= \sum_{x ∈ V(G) \setminus \{u, v\}} d(x)f^2(x) + d(u)f^2(u) + d(v)f^2(v)
\]

\[
= \sum_{x ∈ V(G) \setminus \{u, v\}} d(x)f^2(x) + d(u)f^2(u) + d(v)f^2(v)
\]

\[
= \sum_{x ∈ V(G)} d(x)f^2(x) = f'^T D f.
\]
Hence, from Formula (1), we have
\[
\lambda_2(G) = \frac{f^T L f}{f^T D f} = \frac{(f')^T L' f'}{(f')^T D' f'} \geq \lambda_2(G').
\]

The result follows. □

![Graph Ga and Gb](image)

Figure 2: Graph G_a and G_b

Figure 2 shows that the condition $f(u) = f(v)$ of Theorem 3.6 is necessary. If $f(u) \neq f(v)$, then the relation between values of $\lambda_2(G)$ and $\lambda_2(G')$ is not sure. There are the following three cases. For G_a and G_b in Figure 2 (G_b is G_3 of Theorem 2.4 in [4]), the natural numbers represent the vertices and the real numbers attached to vertices in each graph are the valuations by the harmonic eigenfunction associated with $\lambda_2(G)$.

Case 1 $\lambda_2(G) < \lambda_2(G')$. Let $G = G_a$ and 4, 3, 5 stand for u, v, v_1, respectively. It is clear that $f(u) > f(v)$. Denote $G' = G - vv_1 + uv_1$. By direct calculation, we obtain $\lambda_2(G) = 0.1408 < 0.1557 = \lambda_2(G')$.

Case 2 $\lambda_2(G) = \lambda_2(G')$. Let $G = G_a$ and 1, 3, 5 stand for u, v, v_1, respectively. It is clear that $f(u) > f(v)$. Denote $G' = G - vv_1 + uv_1$. Because G is isomorphic to G', we obtain $\lambda_2(G) = \lambda_2(G') = 0.1408$.

Case 3 $\lambda_2(G) > \lambda_2(G')$. Let $G = G_b$ and 1, 2, 8 stand for u, v, v_1, respectively. It is clear that $f(u) > f(v)$. Denote $G' = G - vv_1 + uv_1$. By direct calculation, we obtain $\lambda_2(G) = 0.2290 > 0.2105 = \lambda_2(G')$.

From above, we can see that if $f(u) > f(v)$, the relation between values of $\lambda_2(G)$ and $\lambda_2(G')$ is not sure. Note that if f is a harmonic eigenfunction associated with $\lambda_2(G)$, $-f$ is also a harmonic eigenfunction associated with $\lambda_2(G)$. When $f(u) < f(v)$, the similar result is obtained.

4 The effects on the $\rho(\mathcal{L}(G))$ of a graph by three operations

In this section we study the behavior of $\rho(\mathcal{L})$ when the graph is perturbed by three operations.

The following theorem studies the behavior of $\rho(\mathcal{L})$ when the graph is perturbed by Operation I.

Theorem 4.1 Let G be a simple connected graph of order n, $uv \in E(G)$ and $G' = G - uv + uv + wv$. Let f be a harmonic eigenfunction associated with $\rho(\mathcal{L}(G))$. If $f(u)f(v) \geq 0$ then $\rho(\mathcal{L}(G)) \leq \rho(\mathcal{L}(G'))$, and the inequality is strict if $f(u)f(v) > 0$.

9
Thus, from Formula (2), we have

\[h(D) \]

\[\rho(G) \]

\[\rho(G') \]

Moreover, let \(e \) and \(e' \) be the vectors consisting of all ones, where \(e \in \mathbb{R}^n \) and \(e' \in \mathbb{R}^{n+1} \). Then \(d'(w) = 2, d'(x) = d(x), x \in V(G) \). Since \(f \) is a harmonic eigenfunction associated with \(\rho(\mathcal{L}(G)) \). Then \(f \neq 0 \) and \(f \perp D e \).

Let \(h \) be a vector such that \(h(w) = 0 \), \(h(x) = f(x) \), where \(x \in V(G) \). Then

\[
\begin{align*}
 h^T D' e' &= \sum_{x \in V(G')} h(x)d'(x) \\
 &= \sum_{x \in V(G)} h(x)d'(x) + h(w)d'(w) \\
 &= \sum_{x \in V(G)} f(x)d(x) = f^T D e = 0.
\end{align*}
\]

Thus \(h \perp D' e' \). Note that \(h \neq 0 \). Then, we have

\[
\frac{h^T L' h}{h^T D' h} \leq \rho(\mathcal{L}(G')).
\]

Moreover

\[
\begin{align*}
 h^T D' h &= \sum_{x \in V(G')} d'(x)h^2(x) \\
 &= \sum_{x \in V(G)} d'(x)h^2(x) + d'(w)h^2(w) \\
 &= \sum_{x \in V(G)} d(x)f^2(x) = f^T D f,
\end{align*}
\]

and

\[
\begin{align*}
 h^T L' h &= \sum_{xy \in E(G')} (h(x) - h(y))^2 \\
 &= \sum_{xy \in E(G') \setminus \{uv, uv\}} (h(x) - h(y))^2 + (h(u) - h(w))^2 + (h(w) - h(v))^2 \\
 &= \sum_{xy \in E(G) \setminus \{uv\}} (f(x) - f(y))^2 + f^2(u) + f^2(v) \\
 &= \sum_{xy \in E(G)} (f(x) - f(y))^2 + (f(u) - f(v))^2 + 2f(u)f(v) \\
 &= \sum_{xy \in E(G)} (f(x) - f(y))^2 + 2f(u)f(v) = f^T L f + f^T u f(v) \\
 &\geq f^T L f.
\end{align*}
\]

Thus, from Formula (2), we have

\[
\rho(\mathcal{L}(G)) = \frac{f^T L f}{f^T D f} \leq \frac{h^T L' h}{h^T D' h} \leq \rho(\mathcal{L}(G')).
\]
If \(f(u)f(v) > 0 \), then \(f^T L f < h^T L' h \). Thus, \(\rho(\mathcal{L}(G)) < \rho(\mathcal{L}(G')) \). □

It is clear that the proof of Theorem 4.1 is similar to the proof of Case 1 in Theorem 3.1.

Figure 3 shows that the condition \(f(u)f(v) \geq 0 \) of Theorem 4.1 is necessary. If \(f(u)f(v) < 0 \), then the relation between values of \(\rho(\mathcal{L}(G)) \) and \(\rho(\mathcal{L}(G')) \) is not sure. There are the following two cases. For \(G_c \) and \(G_d \) in Figure 3, the real numbers attached to vertices in each graph are the valuations by the harmonic eigenvector associated with \(\rho(\mathcal{L}(G)) \).

Case 1 \(\rho(\mathcal{L}(G)) < \rho(\mathcal{L}(G')) \). Let \(G = G_c \) and 5, 6 stand for \(u, v \), respectively. It is clear that \(f(u)f(v) < 0 \). Denote \(G' = G - uv + uw + vw \). By direct calculation, we obtain \(\rho(\mathcal{L}(G)) = 1.8993 < 1.9382 = \rho(\mathcal{L}(G')) \).

Case 2 \(\rho(\mathcal{L}(G)) \geq \rho(\mathcal{L}(G')) \). Let \(G = G_d \) and 1, 2 stand for \(u, v \), respectively. It is clear that \(f(u)f(v) < 0 \). Denote \(G' = G - uv + uw + vw \). By direct calculation, we obtain \(\rho(\mathcal{L}(G)) = \rho(\mathcal{L}(C_4)) = 2 > 1 - \cos \frac{\pi}{2} = \rho(\mathcal{L}(C_5)) = \rho(\mathcal{L}(G')) \).

The following theorem studies the behavior of \(\rho(\mathcal{L}) \) when the graph is perturbed by Operation II.

Theorem 4.2 Let \(G_1 \) and \(G_2 \) be two simple connected graphs of orders \(m \) and \(n \), respectively. Let \(u \in V(G_1) \) and \(v \in V(G_2) \). Let \(G \) be a graph obtained from \(G_1 \) and \(G_2 \) by identifying \(u \) with \(v \). Let \(f_1 \) be a harmonic eigenvector associated with \(\rho(\mathcal{L}(G_1)) \). If \(f_1(u) = 0 \), then \(\rho(\mathcal{L}(G)) \geq \rho(\mathcal{L}(G_1)) \).

Proof Let \(V(G_1) = \{x_1, x_2, \ldots, x_{m-1}, u\} \), \(V(G_2) = \{y_1, y_2, \ldots, y_{n-1}, v\} \), and \(V(G) = \{x_1, x_2, \ldots, x_{m-1}, u, y_1, y_2, \ldots, y_{n-1}\} \). Let \(d(x), d_1(x) \) and \(d_2(x) \) be the degree of \(x \) in \(G \), the degree of \(x \) in \(G_1 \), and the degree of \(x \) in \(G_2 \), respectively. Let \(D \) and \(D_1 \) be the diagonal degree matrices of \(G \) and \(G_1 \), respectively. Let \(L \) and \(L_1 \) be the Laplacian matrices of \(G \) and \(G_1 \), respectively. Let \(e \) and \(e_1 \) be the vectors consisting of all ones, where \(e \in \mathbb{R}^{m+n-1} \) and \(e_1 \in \mathbb{R}^m \). Then \(d(x_i) = d_1(x_i), i = 1, 2, \ldots, m - 1, d(y_j) = d_2(y_j), j = 1, 2, \ldots, n - 1, \) and \(d(u) = d_1(u) + d_2(v) \). Since \(f_1 \) is a harmonic eigenvector associated with \(\rho(\mathcal{L}(G_1)) \). Then \(f_1 \neq 0 \) and \(f_1 \perp D_1 e_1 \).
Let \(f(x) = f_1(x), \forall x \in V(G_1),\ f(y_j) = 0, j = 1, 2, \ldots, n - 1. \) Then we have

\[
 f^T Df = \sum_{x \in V(G)} d(x) f(x)^2 = \sum_{x \in V(G_1)} d(x) f(x)^2 + \sum_{j=1}^{n-1} d(y_j) f(y_j)^2
\]

\[
 = \sum_{x \in V(G_1) \setminus \{u\}} d(x) f(x)^2 + d(u) f(u)^2
\]

\[
 = \sum_{x \in V(G_1) \setminus \{u\}} d_1(x) f_1^2(x) + (d_1(u) + d_2(v)) f_1^2(u)
\]

\[
 = f_1^T D_1 f_1 + d_2(v) f_1^2(u) = f_1^T D_1 f_1,
\]

\[
 f^T Lf = \sum_{xy \in E(G)} (f(x) - f(y))^2
\]

\[
 = \sum_{xy \in E(G_1)} (f_1(x) - f_1(y))^2 + \sum_{xy \in E(G_1) \setminus E(G_1)} (f(x) - f(y))^2
\]

\[
 = \sum_{xy \in E(G_1)} (f_1(x) - f_1(y))^2 + \sum_{uy \in E(G)} (f(u) - f(y))^2
\]

\[
 = f_1^T L_1 f_1 + \sum_{uy \in E(G)} f^2(u)
\]

\[
 = f_1^T L_1 f_1 + d_2(v) f_1^2(u) = f_1^T L_1 f_1,
\]

and

\[
 f^T De = \sum_{x \in V(G)} d(x) f(x) = \sum_{x \in V(G_1)} d(x) f(x)
\]

\[
 = \sum_{x \in V(G_1) \setminus \{u\}} d(x) f(x) + d(u) f(u)
\]

\[
 = \sum_{x \in V(G_1) \setminus \{u\}} d_1(x) f_1(x) + (d_1(u) + d_2(v)) f_1(u)
\]

\[
 = f_1^T D_1 e_1 + d_2(v) f_1(u) = f_1^T D_1 e_1 = 0.
\]

Thus \(f \perp D e. \) Note that \(f \neq 0. \) Then, we have

\[
 \frac{f^T L f}{f^T D f} \leq \rho(L(G)).
\]

Thus, from Formula 2, we have

\[
 \rho(L(G_1)) = \frac{f_1^T L_1 f_1}{f_1^T D_1 f_1} = \frac{f^T L f}{f^T D f} \leq \rho(L(G)).
\]

The result follows. □

It is clear that the proof of Theorem 4.2 is similar to the proof of Theorem 3.3.
Figure 3 shows that the condition $f_1(u) = 0$ of Theorem 4.2 is necessary. If $f_1(u) \neq 0$, then the relation between values of $\rho(L(G_1))$ and $\rho(L(G))$ is not sure. There are the following two cases.

Case 1 $\rho(L(G_1)) < \rho(L(G))$. Let $G_1 = G_0$, 7 stand for u and $G_2 = P_2$. It is clear that $f_1(u) \neq 0$. G is obtained from G_1 and G_2 by Operation 2. By direct calculation, we obtain $\rho(L(G_1)) = 1.8993 < 1.9382 = \rho(L(G))$.

Case 2 $\rho(L(G_1)) \geq \rho(L(G))$. Let $G_1 = G_d = C_4$, 4 stand for u and $G_2 = C_3$. It is clear that $f_1(u) \neq 0$. G is obtained from G_1 and G_2 by Operation 2. By direct calculation, we obtain $\rho(L(G_1)) = \rho(L(C_4)) = 2 > 1.9010 = \rho(L(G))$.

The following theorem studies the behavior of $\rho(L)$ when the graph is perturbed by Operation 3.

Theorem 4.3 Let u, v be two vertices of the simple connected graph G of order n. Suppose that v_1, v_2, \ldots, v_s ($1 \leq s \leq d(v)$) are some vertices of $N_G(v) \setminus N_G(u)$ and v_1, v_2, \ldots, v_s are different from u. Let $G' = G - vv_1 - vv_2 - \cdots - vv_s + uv_1 + uv_2 + \cdots + uv_s$, and f be a harmonic eigenfunction associated with $\rho(L(G))$. If $f(u) = f(v)$, then $\rho(L(G)) \leq \rho(L(G'))$.

Proof Let $d(x)$ and $d'(x)$ be the degree of x in G and the degree of x in G', respectively. Let D and D' be the diagonal degree matrices of G and G', respectively. Let L and L' be the Laplacian matrices of G and G', respectively. Let e be the vector consisting of all ones, where $e \in R^{[G]}$. Then $d'(v) = d(v) - s$. $d'(u) = d(u) + s$, $d'(x) = d(x)$, where $x \in V(G) \setminus \{u, v\}$. Since f is a harmonic eigenfunction associated with $\rho(L(G))$. Then $f \neq 0$ and $f \perp De$. Let $f'(u) = f(u), \forall u \in V(G)$. Then $f'(u) = f(u) = f(v) = f'(v)$.

Similar to the proof of Theorem 3.6, we have

$$f'^TL'f' = f^TLe, f'^TD'f' = f^TDe = 0.$$

Thus $f' \perp D'e$. Note that $f' \neq 0$. Then we have

$$\frac{f'^TL'f'}{f'^TD'f'} \leq \rho(L(G')).$$

Thus, from Formula (2), we have

$$\rho(L(G)) = \frac{f^TLf}{f^TDf} = \frac{f'^TL'f'}{f'^TD'f'} \leq \rho(L(G')).$$

The result follows. \square

Figure 3 shows that the condition $f(u) = f(v)$ of Theorem 4.3 is necessary. If $f(u) \neq f(v)$, then the relation between values of $\rho(L(G))$ and $\rho(L(G'))$ is not sure. There are the following three cases.

Case 1 $\rho(L(G)) < \rho(L(G'))$. Let $G = G_c$ and 4, 3, 5 stand for u, v, v_1, respectively. It is clear that $f(u) > f(v)$. Denote $G' = G - vv_1 + uv_1$. By direct calculation, we obtain $\rho(L(G)) = 1.8993 < 1.9063 = \rho(L(G'))$.

Case 2 $\rho(L(G)) = \rho(L(G'))$. Let $G = G_c$ and 1, 3, 5 stand for u, v, v_1, respectively. It is clear that $f(u) > f(v)$. Denote $G' = G - vv_1 + uv_1$. Because G is isomorphic to G', we obtain $\rho(L(G)) = \rho(L(G')) = 1.8993$.

Case 3 $\rho(L(G)) > \rho(L(G'))$. Let $G = G_c$ and 2, 5, 6 stand for u, v, v_1, respectively. Considering $g = -f$ as the harmonic eigenfunction associated with $\rho(L(G))$. It is clear that $g(u) = -0.0214 > -0.3250 = g(v)$. Denote $G' = G - vv_1 + uv_1$. By direct calculation, we obtain $\rho(L(G)) = 1.8993 > 1.8243 = \rho(L(G'))$.

13
From the above, we can see that if $f(u) > f(v)$, then the relation between values of $\rho(\mathcal{L}(G))$ and $\rho(\mathcal{L}(G'))$ is not sure. Note that if f is a harmonic eigenfunction associated with $\rho(\mathcal{L}(G))$, then $-f$ is also a harmonic eigenfunction associated with $\rho(\mathcal{L}(G))$. When $f(u) < f(v)$, the similar result is obtained.

References

[1] F.R.K. Chung, Spectral Graph Theory, American Math. Soc. Providence, 1997.

[2] S. Butler, Eigenvalues and structures of graphs, Ph.D. dissertation, University of California, San Diego, 2008.

[3] H.H. Li, J.S. Li, Y.-Z. Fan, The effect on the second smallest eigenvalue of the normalized Laplacian of a graph by grafting edges, Linear Multilinear Algebra 56 (2008), 627–638.

[4] H.H. Li, J.S. Li, A note on the normalized Laplacian spectra, Taiwanese J. Math. 15 (2011), 129–139.

[5] J. Li, J.-M. Guo, W.C. Shiu, A. Chang, An edge-separating theorem on the second smallest normalized Laplacian eigenvalue of a graph and its applications, Discrete Appl. Math. 171 (2014), 104–115.

[6] J.X. Li, J.-M. Guo, W.C. Shiu, A. Chang, Six classes of trees with largest normalized algebraic connectivity, Linear Algebra Appl. 452 (2014), 318–327.

[7] J.-M. Guo, J. Li, W.C. Shiu, The Largest Normalized Laplacian Spectral Radius of Non-Bipartite Graphs, Bull. Malays. Math. Sci. Soc. 2015:DOI 10.1007/s40840-015-0241-y 1–11.