Cellular immunotherapy using irradiated lung cancer cell vaccine co-expressing GM-CSF and IL-18 can induce significant antitumor effects

Hongwei Tian†, Gang Shi†, Guoyou Yang, Junfeng Zhang, Yiming Li, Tao Du, Jianzhou Wang, Fan Xu, Lin Cheng, Xiaomei Zhang, Lei Dai, Xiaolei Chen, Shuang Zhang, Yang Yang, Dechao Yu, Yuquan Wei and Hongxin Deng*

Abstract

Background: Although the whole tumor cell vaccine can provide the best source of immunizing antigens, there is still a limitation that most tumors are not naturally immunogenic. Tumor cells genetically modified to secrete immune activating cytokines have been proved to be more immunogenic. IL-18 could augment proliferation of T cells and cytotoxicity of NK cells. GM-CSF could stimulate dendritic cells, macrophages and enhance presentation of tumor antigens. In our study, we used mouse GM-CSF combined with IL-18 to modify Lewis lung cancer LL/2, then investigated whether vaccination could suppress tumor growth and promote survival.

Methods: The Lewis lung cancer LL/2 was transfected with co-expressing mouse GM-CSF and IL-18 plasmid by cationic liposome, then irradiated with a sublethal dose X ray (100 Gy) to prepare vaccines. Mice were subcutaneously immunized with this inactivated vaccine and then inoculated with autologous LL/2 to estimate the antitumor efficacy.

Results: The studies reported here showed that LL/2 tumor cell vaccine modified by a co-expressing mouse GM-CSF and IL-18 plasmid could significantly inhibit tumor growth and increased survival of the mice bearing LL/2 tumor whether prophylactic or adoptive immunotherapy in vivo. A significant reduction of proliferation and increase of apoptosis were also observed in the tumor treated with vaccine of co-expressing GM-CSF and IL-18. The potent antitumor effect correlated with higher secretion levels of pro-inflammatory cytokines such as IL-18, GM-CSF, interferon-γ in serum, the proliferation of CD4+ IFN-γ+, CD8+ IFN-γ+ T lymphocytes in spleen and the infiltration of CD4+, CD8+ T in tumor. Furthermore, the mechanism of tumor-specific immune response was further proved by 51Cr cytotoxicity assay in vitro and depletion of CD4, CD8, NK immune cell subsets in vivo. The results suggested that the antitumor mechanism was mainly depended on CD4+, CD8+ T lymphocytes.

Conclusions: These results provide a new insight into therapeutic mechanisms of IL-18 plus GM-CSF modified tumor cell vaccine and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.

Keywords: Cancer immunotherapy, IL-18, GM-CSF, Cell vaccine, Apoptosis

Background

Lung cancer is the major cause of cancer-related mortality in patients worldwide [1] in which non-small cell lung cancer (NSCLC) accounts for 85%. Last few decades immunotherapy has become an important part in oncology treatment. Immunotherapy has a major advantage to specifically target tumor cell relative to normal cell, thereby minimizing nonspecific toxicities [2]. Cancer vaccines as the best choice of immunotherapy are available for clinical trials in recent years, ranging from single peptide and recombinant viral vector vaccinations to whole cell therapies [3-6]. However, evidence from preclinical models suggests that the immune system often fails to reject spontaneously arising tumors for the absence of sufficiently immunogenic tumor specific antigens (TSA) [7]. In this case, the whole tumor cell represents the best source of immunizing antigens without knowledge of any specific antigen targets. Unfortunately, studies aimed
at dissecting antitumor immune responses have confirmed that most tumors are not naturally immunogenic due to immune-editing [8], a process that allows tumor to evolve during continuous interactions with the host immune system and eventually escape from immune surveillance. Therefore, improving the immunogenic of tumor cell became very important. In fact, researchers have found that genetically modified tumor cell with secreted immune activating cytokines has the ability to enhance the immunogenic and induce systemic antitumor immune responses [9].

IL-18, IFN-γ-inducing factor, is secreted mainly by activated macrophages and DCs [10]. It could induce the proliferation and enhance the cytotoxicity of both T and NK cells [11]. IL-18 has shown to have anti-tumor effects in several murine tumor models when transferred into tumor cells, alone [12-14] or in combination with IL-12 [15] or IL-23 [16]. Similar with IL-12, IL-18 also has the ability to inhibit tumor angiogenesis and growth [17,18]. Moreover, combination of IL-12 and IL-18 can play an important role in progression and metastasis of gastric cancer [19].

GM-CSF is a potent cytokine activator of APCs and plays an important part in breaking tolerance and the development of antitumor immune responses [20]. Therefore, GM-CSF was often evaluated as cancer vaccine adjuvants. GM-CSF genetically modified the irradiated whole tumor cells (GVAX) is very effective when used to trigger immune responses. In mouse models, prophylactic vaccines using GM-CSF modified tumor cells can engender protective immunity to delay tumor growth [21]. Similarly, in cancer patients, GM-CSF secreting allogeneic tumor vaccines have also been developed for clinical testing and evaluated in prostate cancer, breast cancer, and hormone-resistant prostate cancer [22-24]. More encouragingly, the FDA has approved a therapeutic prostate cancer vaccine, Sipuleucel-T, modified by fusion protein that combines recombinant prostate acid phosphatase (PAP) with recombinant GM-CSF called Sipuleucel-T in April 2010.

However, no previous studies, to our knowledge, have examined the strategy that using combination of IL-18 and IL-12-CSF to modify tumor cell vaccine in a single tumor model. In the present study, we utilized the mouse IL-18 combined with GM-CSF to modify the poorly immunogenic Lewis lung cancer LL/2 [25]. It is critical for our study to establish the generality of an immunostimulatory effect of a tumor vaccine product modified with combined immune stimulating factors. Compared with LL/2 blank or LL/2 irradiated vaccine group, the results showed that vaccine co-expressing IL-18 and GM-CSF group markedly delayed tumor growth and prolonged the overall survival either in prophylactic or adoptive experiments in vivo. We also found that this vaccine induced greater infiltration of spleen cells and higher production of IFN-γ in vitro. The antitumor response is also tumor specificity by 51Cr CTL assay in vitro and mainly dependent on CD4+, CD8+ T lymphocyte by depletion in vivo. The findings from our study suggest that the combination of GM-CSF and IL-18 gene should be very promising for improving the immunogenic of tumor vaccine in a synergetic manner.

Methods
Ethics
Experimental research that is reported in the manuscript have been performed with the approval of the Animal Care and Welfare Committee of the CAM S-PUMC (approval date: 20 June 2009; approval number: 20120002). All the experimental research on animals followed the National Institutes of Health Guide for the Care and Use of Laboratory Animals (publication no. 85–23, revised 1985).

Mice
Female 5-week-old C57BL/6 mice (the laboratory Animal Center of Sichuan University, Chengdu, China) were kept under specific pathogen-free conditions in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University.

Cell culture and transfection
Mouse Lewis lung cancer cell line LL/2 (ATCC), hybridoma cell lines CD4 (PK136, ATCC), CD8 (Clone2.43, ATCC) were cultured in DMEM medium with 10% FBS (Gibco-BRL, Gaithersburg, MD. USA). All mediums were supplemented with 20 mM L-glutamine, 100 U/ml of penicillin and 100 μg/ml of streptomycin. All tumor cells were maintained at 37°C in a humidified atmosphere containing 5% CO2. Cell transfection was carried out using Cationic liposome DOTAP-Chol according to the manufacturer's standard procedure [26].

Generation of pIRES-double MCS eukaryotic expression vector
Eukaryotic expression vector pIRES-double MCS was reformed with pIRES empty plasmid and pEGFP-N1 plasmid. First, multiple cloning sites (MCS) sequence from pIRES empty plasmid was synthetized into pUC57 empty vector (GenScript Co, Ltd. Nanjing, China), and Nhel, NotI restriction enzyme cutting sites were introduced into MCS sequence, we then cut pUC57 vector and pEGFP-N1 plasmid with Nhel, NotI restriction Enzymes, respectively, restriction fragments were recycled using Gel Extraction Kit and connected with T4 ligase. The reconstructive vector was named pIRES-DMCS,
abbreviated for MCS. All Endotoxin-free plasmids were prepared using the Qiagen Endo-free Giga kit (Qiagen, Hilden, Germany).

Construction of co-expressing IL-18 and GM-CSF plasmid
To generate an eukaryotic co-expression IL-18 and GM-CSF vector, an pIRES-DMCS vector with double cloning sites has been reformed in our lab (State Key Laboratory of Biotherapy, Chengdu, Sichuan, China). It is abbreviated as MCS. Mouse GM-CSF gene (GenBank:NM_008360.1) was first cloned and inserted into MCS between the restriction sites SacI and SacII, abbreviated as MCS-mGM-CSF. To clone mIL-18 into MCS-mGM-CSF, the newly constructed MCS-mGM-CSF vector was then linearized with EcoRI and XbaI digestion. Mouse IL-18 (GenBank:NM_008360.1) was inserted into the linearized vector and abbreviated as MCS-mGM-CSF + IL-18. Meanwhile, we also inserted mIL-18 into MCS by the restriction sites EcoRI and XbaI control group, abbreviated as MCS-mIL-18. Plasmids were extracted using Endo Free Plasmid Giga kits (Qiagen, Hilden, Germany) from DH5α Escherichia coli transformants and stored at −20°C before use. The concentration was determined by measuring A260/A280 ratio using UV spectrophotometry.

Vaccine preparation
LL/2 tumor cells were respectively transfected with MCS, MCS-mGM-CSF, MCS-mIL-18 and MCS-mGM-CSF + IL-18 plasmids by Cationic liposome (DOTAP-Chol: DNA = 6:1). For 48 hours, the tumor cells were extensively digested and washed three times then suspended in 1 ml serum free DMEM medium. The cell resuspension in each group was irradiated with a sub-lethal dose X-ray (100 Gy) [27] by irradiator (RS-2000 bio-medical products company, Tianjin, China) according to the manufacturer’s standard procedure after the third immunization. Splenic lymphocytes of all groups were isolated by lymphocyte separation fluid (Tianjin Chuanye biochemical products company, Tianjin, China) and 1 × 10^6 cells per mouse) subcutaneously 3 days ago. Adoptive immunotherapy of splenic lymphocytes was repeated every 2 days for 5 times. About one week, tumors could be measured every three days and each mouse was taken for measurements. We measured for six times in Prophylactic immunotherapy. Tumor volume was calculated using the formula volume = length × width^2/2. The survival curve could also be surveyed.

Adoptive immunotherapy in vivo
As the method described in prophylactic immunotherapy, splenic lymphocytes of all groups were isolated by lymphocyte separation fluid (Tianjin Chuanye biochemical products company, Tianjin, China) according to the manufacturer's standard procedure after the third immunization. Splenic lymphocytes were then counted and injected i.v (1 × 10^7 cells per mouse) into mice which were inoculated LL/2 tumor cells (1 × 10^6 cells per mouse) subcutaneously 3 days ago. Adoptive immunotherapy of splenic lymphocytes was repeated every 2 days for 5 times. About one week, tumors could be measured every 3 days and calculated using the formula volume = length × width^2/2. We measured for six times in adoptive immunotherapy. The survival curve could also be surveyed.

Cytokine analysis
In vitro the supernatants of irradiated groups transfected with plasmids as described previously were collected on 48 h, and the concentration of IL-18, GM-CSF were analyzed using ELISA kits (eBioscience Inc, San Diego, CA, USA). Meanwhile the expression of IL-18, GM-CSF in the supernatants of non-irradiated groups were also detected. For in vivo cytokine analysis, mice were immunized with various tumor cell vaccines subcutaneously. Serum from each group including non-immunized group was collected through caudal vein on 2 day, 4 day, 6 day and 8 day after the third immunization respectively. IL-18, GM-CSF and Th1/Th2 cytokines such as INF-γ, TNF-α, TGF-β, IL-10 were analyzed by ELISA kits (eBioscience Inc, San Diego, CA, USA).

Prophylactic immunotherapy in vivo
To assess the efficacy of LL/2 tumor cell vaccines in vivo, C57BL/6 mice (6–6 weeks) were divided into different vaccine groups and immunized subcutaneously with irradiated vaccines (1 × 10^6 cells per mouse) on the left at 1, 3, 4 week respectively [29,30]. Non-immunized group as control was injected with serum free medium alone. All mice were then subcutaneously challenged with 1 × 10^6 LL/2 cells on the right after 7 days at the third immunization. About one week, tumor volume could be measured every three days and each mouse was taken for measurements. We measured for six times in Prophylactic immunotherapy. Tumor volume was calculated using the formula volume = length × width^2/2. The survival curve could also be surveyed.

Cell proliferation assays
The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used to determine the proliferation rate of the cells as described previously [28]. After irradiation, cells were immediately plated in 96-well plates. At time points of 0, 24, 48 and 72 h, the absorbance was recorded using a 96-well spectrophotometer at wavelength of 570 nm. For analysis of cell viability, values from wells with no cells were subtracted for background correction and the data determined as a percent of the untreated control samples. Each assay was performed in three replicates. Normal LL/2 tumor cell was used as control group.

51 Cr cytotoxic assay in vitro
The cytolytic activity of tumor-specific CTL was evaluated by 51Cr-release assay. As described in prophylactic immunotherapy, spleen cells from the immunized mice and control group (non-immunized mice) were prepared
as effector cells, LL/2 tumor cells were used as target cells. Splenocytes as effector cells were then co-cultured with 51Cr-labeled LL/2 cells as target cells at 80:1, 40:1, 20:1, 10:1 E:T ratios for 4 h under 37°C, 5% CO2. Thereafter, the supernatant was obtained and 51Cr release was assessed. The percentage of specific lysis was calculated by the following formula:
\[
\frac{\text{c.p.m}	ext{.maximum release-c.p.m. spontaneous release}}{\text{c.p.m}	ext{.maximum release}} \times 100
\]
Spontaneous release was determined by incubation of the labeled target cells without effector cells. For maximum release, labeled target cells were treated with detergent.

Depletion of immune cell subsets in vivo
Immune cell subsets could be depleted as described previously [31,32]. As described in prophylactic immunotherapy, mice immunized were injected intraperitoneally with 500 μg anti-CD4 (GK1.5), anti-CD8 (clone2.43), anti-NK (PK136) monoclonal antibody (mAb) produced in hybridoma cell and isotype control rat IgG at 1 day before every immunization and three days later for 6 times, respectively. Mice were then challenged with LL/2 tumor cell after 7 days at the last depletion. Tumor growth in different subsets was estimated. The depletion of CD4, CD8 T lymphocytes and NK cells was consistently greater than 98% determined by flow cytometry [31].

Flow cytometry and antibodies
The following anti-mouse monoclonal antibodies (mAbs) were used for flow cytometry: anti-CD4-PE, anti-CD8-PE, anti-IFN-γ-FITC (BD Bioscience, USA). Flow cytometry was performed using a flow cytometer (Epics X L; Beckman Coulter Inc., Brea, CA, USA) equipped with EXPO32 software (Beckman Coulter) under the standard procedure.

T lymphocyte infiltration in tumor tissue
After the last measurement of tumor volume in prophylactic immunotherapy, mice were resected and frozen sections were used for analysis of T lymphocyte infiltration by immunofluorescence. The following anti-mouse primary antibodies (mAbs) were used rat anti-mouse CD8, rat anti-mouse CD4, rat anti-mouse NK and the secondary antibodies were goat anti-rat IgG-TR and goat anti-rat IgG-FITC (Abcam, USA), respectively.

Immunohistochemistry
Thirty days after the last measurement of tumor volume in prophylactic immunotherapy, mice were sacrificed and paraffin-embedded tumor tissue sections were used for the examination of PCNA, activated-caspase-3 (Abcam, Cambridge, UK) and tunnel (Promega, Madison, WI). Sections were scored under light microscopy (X200) by three independent pathologists, who analyzed three different fields per section.

Statistical analysis
Statistical significance of difference between the two groups was determined by the Student paired-test. The Kaplan-Meier plot for survival was assessed for significance using the log-rank test (SPSS software; version 16.0; SPSS Inc, Chicago, IL, USA). P < 0.05 was considered significant.

Results
Preparation of irradiated LL/2 tumor cell vaccine co-expression IL-18 and GM-CSF
Three eukaryotic expression plasmids expressing IL-18 alone, GM-CSF alone, or IL-18 and GM-CSF were generated as described in Methods (see workflow in Additional file 1: Figure S1). LL/2 tumor cells were then transfected with MCS-GM-CSF, MCS-IL-18, MSC-GM-CSF + IL-18 and the empty MCS, respectively. Forty-eight hours later, these cells were harvested, and irradiated under a sublethal dose X-ray (100 Gy). The efficiency of transfection was detected by GFP plasmid transfected under a sublethal dose X-ray (100 Gy). To further investigate whether IL-18 and GM-CSF expression could be affected by irradiation. Culture supernatants were also obtained 48 h after irradiation and determined by ELISA. Secretion of cytokines was reduced a little after irradiation, but there was no significantly statistical difference (Figure 1C).

To further investigate whether IL-18 and GM-CSF expression could be affected by irradiation. Culture supernatants were also obtained 48 h after irradiation and determined by ELISA. Secretion of cytokines was reduced a little after irradiation, but there was no significantly statistical difference (Figure 1C). The expression of GM-CSF from MCS-GM-CSF and MCS-GM-CSF + IL-18 vaccines were 1327 ± 178 pg/ml (p = 0.111), 1314 ± 147 pg/ml (p = 0.115) compared with before irradiation, respectively. IL-18 from MCS-IL-18 and MCS-GM-CSF + IL-18 vaccines were 1362 ± 111 pg/ml (p = 0.457), 1401 ± 94 pg/ml (p = 0.191), respectively. Meanwhile mRNA was also extracted and analyzed by RT-PCR. We found that the expression level of mRNA had no markedly change between irradiation and non-irradiation cells (see results in Additional file 1: Figure S2). These results indicated that irradiation had no significantly influences on the expression of IL-18 and GM-CSF.
Enhanced antitumor effect of tumor vaccine co-expression IL-18 and GM-CSF in prophylactic immunotherapy in vivo

To ascertain whether tumor cell vaccine co-expression IL-18 and GM-CSF induced tumor growth inhibition in syngeneic mice, we formulated a schedule (Figure 2A), and strictly immunized mice, inoculated LL/2 tumor cells, measured tumor volume and dissected as previously described in methods of prophylactic immunotherapy. MCS-GM-CSF + IL-18, MCS-IL-18 and MCS-GM-CSF vaccines showed an average tumor volume of 180.6 ± 34.2 mm3 (p < 0.01), 818.6 ± 87.9 mm3 (p = 0.042) and 785.3 ± 91.8 mm3 (p = 0.041), respectively, showing 84.8% (MCS-GM-CSF + IL-18), 31.3% (MCS-IL-18) and 34.1% (MCS-GM-CSF) tumor growth inhibition compared with LL/2 control group (1191.7 ± 173.7 mm3) (Figure 2B). Furthermore, MCS-GM-CSF + IL-18-treated mice showed higher survival rates compared with either MCS-GM-CSF or MCS-IL-18 (P < 0.01). All animals treated with MCS-GM-CSF + IL-18 vaccine remained alive 65 days after the beginning of inoculation, whereas only 40% of those treated with MCS-GM-CSF and 0% of those treated with MCS-IL-18 survived for the same period of time (Figure 2C). Mice in LL/2 control group all died at 45 days after the beginning of inoculation. The tumor weight in MCS-GM-CSF + IL-18 vaccine group also showed a significant difference compared with either MCS-GM-CSF (p = 0.034) or MCS-IL-18 (p = 0.017) (Figure 2D). Taken together, these results suggest that MCS-GM-CSF + IL-18 vaccine significantly enhanced antitumor efficacy and prolonged survival compared with either MCS-GM-CSF, MCS-IL-18 or LL/2 control group in the LL/2 mouse Lewis lung cancer model.

Tumor-specific antitumor effect in adoptive immunotherapy in vivo

To determine whether prophylactic immunotherapy produced tumor-specific antitumor effect in vivo, C57BL/6 mice were immunized as described in prophylactic immunotherapy and splenocytes were isolated 3 days following the last immunization. We then conducted adoptive immunotherapy under the planned scheme (Figure 3A). As expected, adoptive immunotherapy also achieved striking tumor-specific antitumor effect. MCS-GM-CSF + IL-18, MCS-IL-18 and MCS-GM-CSF vaccines showed an average tumor volume of 622.4 ± 472.9 mm3 (p < 0.01), 1617.8 ± 308.7 mm3 (p = 0.017) and 1614.1 ± 512.7 mm3 (p = 0.011), respectively, showing 80.3% (MCS-GM-CSF + IL-18), 48.7% (MCS-IL-18) and 48.8% (MCS-GM-CSF) tumor growth inhibition compared with LL/2 control group (3153.7 ± 411.1 mm3) (Figure 3B). MCS-GM-CSF + IL-18 group showed a significant difference compared with either MCS-GM-CSF or MCS-IL-18 (p = 0.032) and MCS-GM-CSF (p = 0.049). The survival rate of MCS-GM-CSF + IL-18 group was markedly prolonged when compared with either MCS-GM-CSF, MCS-IL-18 or control group (p < 0.01).
These results suggested that adoptive immunotherapy induced tumor-specific antitumor effect.

Co-expression IL-18 and GM-CSF vaccine increased expression of IL-18, GM-CSF and IFN-γ in vivo

To determine the amount of IL-18 and GM-CSF produced in experimental groups, serum samples were harvested at 2, 4, 6, and 8 days following the last immunization through tail vein respectively. Mice immunized with MCS-IL-18 or MCS-GM-CSF + IL-18 showed peak concentrations of IL-18 at 6 day (157.1 ± 20.1 pg/ml for MCS-IL-18 and 156.09 ± 27.3 pg/ml for MCS-GM-CSF + IL-18) and reached significant differences (p = 0.003 for MCS-IL-18 and p = 0.004 for MCS-GM-CSF + IL-18) compared with control group (Figure 4A). Similarly, MCS-GM-CSF or MCS-GM-CSF + IL-18 produced significantly higher levels of GM-CSF at 6 day (167.3 ± 6.3 pg/ml for MCS-GM-CSF and 151.1 ± 8.1 pg/ml for MCS-GM-CSF + IL-18) and reached significant differences (p = 0.002 for MCS-GM-CSF and p = 0.005 for MCS-GM-CSF + IL-18) compared with control (Figure 4B). Given the biological effects of IL-18 and GM-CSF, we examined several Th1 or Th2 cytokine levels, including INF-γ, TGF-β, TNF-α and IL-10. In comparison, high levels of INF-γ (176.7 ± 58.6 pg/ml, p = 0.001) was showed in MCS-GM-CSF + IL-18-treated mice compared with control group at 6 day (Figure 4C). Interestingly, TNF-α was elevated 6 day in control groups (Figure 4E), IL-10 was also reached at peak 6 day in MCS-GM-CSF + IL-18 group (Figure 4F). Th2 cytokines, TGF-β (Figure 4D) showed irregular expression but no significant difference between MCS-GM-CSF + IL-18 and control groups (p > 0.05). These data suggested co-expression IL-18 and GM-CSF vaccine produced significantly higher amounts of IL-18, GM-CSF and INF-γ than other groups, enhancing Th1 cytokine and suppressing Th2 cytokine in the tumor microenvironment.

Co-expression IL-18 and GM-CSF vaccine increased the frequencies of CD4^+INF-γ^+ T, CD8^+INF-γ^+ T in spleen and infiltration of CD4^+ T, CD8^+ T in tumors

To further explore possible mechanism of antitumor activity in mice immunized with MCS-GM-CSF + IL-18...
vaccine, we isolated T lymphocytes and proceeded with CD4+IFN-γ+ and CD8+IFN-γ+ double staining. As expected, there was a significant increase in the percentage of CD4+IFN-γ+ (0.36%), CD8+IFN-γ+ (0.32%), CD4+ (28.06%), and CD8+ (16.32%) T lymphocytes compared with LL/2 control group (0.02%, 0.02%, 2.87%, 2.62%, respectively. p < 0.01) (Figure 5A). To obtain more insight into the molecular mechanisms of cytokine-mediated inhibition of tumor growth, we performed immunohistological analysis. Frozen section studies analyzed the tumor-infiltrating immune cells such as CD4+T, CD8+T and NK within tumor microenvironment. Histological evaluation of tumor sections revealed that large areas of tumors treated with MCS-GM-CSF + IL-18 vaccine were necrotic. In particular, tumors treated with MCS-GM-CSF + IL-18 vaccine were extensively infiltrated with higher numbers of CD4+T, CD8+T immune cells compared with LL/2 control (p < 0.01), whereas tumors showed sparse NK infiltration (p > 0.05) (Figure 5B). Moreover, denser immune cell infiltration was observed not only around, but also inside the remaining tumor tissues treated with MCS-GM-CSF + IL-18 vaccine. These findings suggested that co-expression IL-18 and GM-CSF vaccine enhanced proliferation of CD4+INF-γ+ T, CD8+INF-γ+ T and infiltration of CD4+T, CD8+T cells.

Co-expression IL-18 and GM-CSF vaccine effectively inhibited proliferation and promoted apoptosis in vivo

Tumors were collected for analysis of proliferation and apoptosis after the last tumor volume measurement. Tumor cell proliferation was evaluated by using PCNA staining. The expression of PCNA was dramatically reduced in the co-expression IL-18 and GM-CSF vaccine-treated group compared with other groups (Figure 6A, P < 0.05, n = 7). Cleaved caspase-3 and TUNEL assay immunostaining were carried out to detect apoptosis within the tumors. Apoptosis cells were widely distributed in co-expression IL-18 and GM-CSF vaccine-treated tumor tissue versus control groups (Figure 6B and C, P < 0.05, n = 7). Moreover, an apparent increase in the number of apoptotic cells was observed within the tumors from MCS-IL-18 vaccine-treated group. The results showed that co-expression IL-18 and GM-CSF vaccine-treated was clearly more potent in suppressing proliferation and inducing tumor cell apoptosis relative to mono-immunotherapy groups.

Generation of a tumor-specific immune response by 51Cr in vitro and function of immune cell subsets in antitumor activity in vivo

To further delineate the tumor-specific immune response in vitro, a 51Cr-release assay was carried out. Splenocytes
obtained from MCS-GM-CSF + IL-18-treated mice showed the most potent LL/2-specific lytic activity on 4 hours after exposure. The ratio of effector cells: target cells were 10:1, 20:1, 40:1 and 80:1. A significant CTL killing of splenocytes from mice treated with MCS-GM-CSF + IL-18 or MCS-IL-18 was 51.3 ± 2.2 and 42.5 ± 3.1 compared with LL/2 control (15.6 ± 1.0), respectively, at an effector-to-target (E:T) ratio of 80:1 (Figure 7A, P < 0.01). To explore the roles of immune cell subsets in antitumor activity elicited by MCS-GM-CSF + IL-18 vaccine, we depleted CD4 or CD8 T lymphocytes or NK cells through injection of the corresponding blocking antibodies. Mice treated with mAb against CD4 (Figure 7B) or CD8 T (Figure 7C) cells failed to abrogate the antitumor activity (P > 0.05). In contrast, depleted of NK (Figure 7D) or injected with isotype control rat IgG (Figure 7E) still showed strongly antitumor activity compared with control group (p < 0.01). These results further illustrated the mechanism of antitumor activity mainly depend on CD4+ and CD8+ T lymphocytes, not NK immune cells.

Discussion

Numerous lines of evidence indicate that most tumors can escape immune detection or elimination [33]. This phenomenon is mainly caused by activation of immunosuppressive cells as well as down-regulation of effective antigens and MHC expression which could dampen the vigor of immune responses or induce apoptosis of immune effector cells [34]. Some of these reasons can be reversed by cytokines.

Recently, studies in mouse tumor models and in patients have shown the importance of cytokine combinations in
Figure 5. Increased proliferation of CD4+INF-γ+ T, CD8+INF-γ+ T in spleen and infiltration of CD4+ T, CD8+ T in tumors. Spleen lymphocytes were isolated and stained for CD4, CD8 and INF-γ double staining antibodies by flow cytometry; Tumor tissue was obtained 3 days after the last measurement of tumor volume, frozen sections were used for analysis of CD4, CD8 T and NK cell infiltration. (A) The proportion of CD4+INF-γ+ T, CD8+ INF-γ+ T in co-expression IL-18 and GM-CSF-treated mice was significantly higher than control groups (P < 0.01, n = 7). Experiments were performed in triplicate and repeated three times. (B) Immunofluorescence staining of tumor tissue with CD4, CD8 and NK antibody showed that CD4+, CD8+ T cell infiltrations was significant enhanced in co-expression IL-18 and GM-CSF-treated group as compared with control groups (P < 0.01, n = 7) (original magnification, ×200).
the development of optimal immune responses. For example, a clear synergy between interleukin-2 (IL-2) and IL-12 was first described in a poorly immunogenic tumor (MCA205) after i.t. administration using adenoviral vectors [35]. The combination of IL-12 and IL-18 used to modify autologous tumor cell vaccine by means of the EBV/Lipoplex or oncolytic adenovirus could synergistically induce significant antitumor effects [15,29]. These results showed a prospect of combining two potentially synergistic cytokines to modify tumor cell vaccine, thereby improving the immunogenicity and tumor-specific immunity.

In our current study, we choose the IL-18 and GM-CSF to genetically modify the Lewis lung cancer cell. IL-18 induces the proliferation and enhances the cytotoxicity of both T and NK cells [11]. GM-CSF may play an important role in the maturation or function of antigen presenting cells. In multiple murine models, Vaccination with irradiated tumor cells engineered to secrete GM-CSF involves enhanced tumor antigen presentation by recruited dendritic cells (DCs) and macrophages [36]. After irradiation with a sublethal dose X-ray (100 Gy), we have succeeded in generating an effective LL/2 tumor cell vaccine co-expressing mouse IL-18 and GM-CSF. The vaccine has the ability to secreting cytokines, but has no tumorigenicity (Figure 1B-C). In animal study, we found the vaccine could significantly inhibit the tumor growth and prolong the survival both in prophylactic immunotherapy (Figure 2A-D) and in adoptive immunotherapy (Figure 3A-C). The antitumor immunity is specific response proved in adoptive immunotherapy. Due to the pleiotropy of vaccine, the possible mechanism is that localized expression of GM-CSF by tumor cell vaccine co-expression GM-CSF and IL-18 might specifically recruit dendritic cells (DCs) or macrophages and enhance whole tumor-antigen presentation, IL-18 secreted by vaccine could further promote the proliferation and cytotoxicity of T or NK cells which received tumor antigens presented by activated host antigen presenting cells.

To show the mechanism underlying the enhanced antitumor effect mediated by vaccine co-expression IL-18 and GM-CSF, we next detected the expression of Th1 or Th2 cytokine in serum. Our data showed that Th1 cytokines, including IL-18, GM-CSF and INF-γ, were markedly elevated in vaccine co-expression IL-18 and GM-CSF-treated mice (Figure 4A-C). The results indicated that vaccine co-expression IL-18 and GM-CSF

Figure 6 Effects of co-expression IL-18 and GM-CSF vaccine on cell apoptosis and proliferation in vivo. (A) Tumor tissues were stained with PCNA. The number of cancer cell nuclei that were strongly PCNA positive was counted as a ratio of immunoreactive-positive cells to the total number of cells counted (original magnification, ×200, *P < 0.05, **P < 0.01). (B) Tumor tissues were stained with caspase-3. Caspase-3 labeling index was estimated as the percentage of neoplastic cells with positive nuclear staining. The total number of neoplastic cells counted (original magnification, ×200, *P < 0.05, **P < 0.01). (C) Induction of apoptosis was indicated by TUNEL assay. The TUNEL-positive cells display dark green nuclei and are observed under a fluorescence microscope, and the percentage of apoptotic cells was determined as described in the Methods (original magnification, ×200, *P < 0.05, **P < 0.01). Columns, mean; bars, s.d.
mainly promoted the activation of Th1 cells which could secrete pro-inflammatory cytokine. Interestingly, we found that tumor necrosis factor (TNF-α) showed higher expression level at 6 day in control groups (Figure 4E). The inflammatory cytokine TNF-α could bind to its receptors and induce a signaling cascade that induces transcriptional regulation of mediators which are key to cell survival, invasion, angiogenesis, and impairment of immune surveillance in tumor biology [37,38]. The reason why TNF-α was elevated in control group may be that its tumor-promoting role which has been recently demonstrated in mouse cancer models [39,40]. In these models and in human cancers, TNF-α is produced by malignant or host cells within the tumor microenvironment. The mechanisms of action of TNF-α in the tumor microenvironment could be via induction of a pro-angiogenic phenotype in recruited monocytes [41], impairment of immune surveillance through T cell suppression [42]. Moreover, we also found immunosuppressive factor IL-10 was elevated and reached a peak on the day 6 in combined vaccine group (Figure 4F). Previous study has suggested that IL-10 contributes to an immune suppressive tumor microenvironment. It can inhibit the expression of MHC molecules and co-stimulatory molecules at several levels [43]. It has also been demonstrated that IL-10 can impair secondary CD8⁺ T cell responses [44], whereas viral and tumor clearance can be enhanced in the absence of IL-10 [45,46]. Recent study proved that IL-10 is required for efficient immune surveillance against the incidence and progression of endogenously arising skin tumors. It induces the expression of MHCI and the production of cytotoxic enzymes, IFN-γ in tumor-infiltrating CD8⁺ T cells in tumors [47].
studies could well explain the reason why expression of IL-10 was induced in combined vaccine group. TGF-β was no obvious difference in all groups (Figure 4D). In agreement with previous findings, We also found the proportion of CD4+INF-γ+ T, CD8+ INF-γ+ T in spleen was also higher in vaccine co-expression IL-18 and GM-CSF treated than other groups (Figure 5A).

Tumor microenvironment has been shown to establish immune-suppressive cytokine networks that favor the suppression of an antitumor immune response and eventually generate tumor proliferation, angiogenesis and metastasis. Therefore, it is critical for activated tumor-specific T effector cell and NK cell to infiltrate and generate antitumor immunity effectively within the tumor microenvironment. Immunohistochemical results showed immense necrotic regions as well as infiltration of CD4+ T and CD8+ T cells into the tumor tissues of vaccine co-expression IL-18 and GM-CSF treated mice compared with other groups, however, infiltration of NK was not obvious in all groups (Figure 5B). To our knowledge for the first time, low dosing of IL-18 could mediate immunosuppression on the NK cell arm of immunity. Importantly, IL-18 could drive the expression of PD-1 on mature NK cells, whereas PD-1 receptors were often highly expressed on tumors [48]. It may induce apoptosis and no infiltration of NK cells. Certainly, further studies will be needed to clarify this question. To further prove specificity of antitumor immunity and analyze tumor-specific immune cells, we showed that mice immunized with vaccine co-expression IL-18 and GM-CSF had enhanced CTL activity at 80:1 compared with control group (Figure 7A). Depletion of CD4 or CD8 T lymphocytes were not protected from tumor challenge, in contrast, depletion of NK still possessed strong anti-tumor activity compared with control group (Figure 7B-F). These results further support the question of infiltration of immune cells in tumor and are in accord with previous results.

Conclusion

Taken together, we showed that vaccination with irradiated, autogenous Lewis lung cancer cell LL/2 engineered by combination of IL-18 and GM-CSF improved the immunogenicity. Immunization with this vaccine induced an antitumor immune response, especially of tumor-specific CTLs, and prolonged the overall survival of tumor-bearing mice. Our data also demonstrate that the finding provides a novel underlying mechanism of combination therapies via IL-18 and GM-CSF that promoted tumor antigen presentation and induced proliferation of tumor-specific T cells. These results also provide a potential clinical cancer immunotherapeutic agent for the generation of improved antitumor immunity.

Additional file

Additional file 1: Construction of pIRES-double MCS vector and Verification of pIRES-mGM-CSF + IL-18 plasmid. In order to reform an eukaryotic expression vector with characteristics of double cloning sites, easy transfection and resistance selection. We synthesized multiple cloning sites (MCS) sequence from pIRES empty plasmid and introduced NheI, NotI restriction enzyme cutting sites into MCS sequence. Then pEGFP-N1 and pCMV-mCSF sequence were cut with NheI, NotI enzymes, respectively. The pIRES-double MCS vector was then constructed through gel purification experiments. Mouse IL-18 and GM-CSF were then cloned into pIRES-mGM-CSF using EcoRI, XbaI and SacI, Sacl restriction Enzymes, respectively. (B) The pIRES-mGM-CSF, pIRES-mIL-18 and pIRES-mGM-CSF + IL-18 plasmids were validated. The results were showed in DNA electrophoresis. **Figure S2.** The mRNA expression of IL-18 and GM-CSF between irradiation and non-irradiation cells.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HW T, DC Y, QW Y and XM Z conceived and designed the experiments and carried out the molecular genetic studies and participated in the immunoassays. All authors read and approved the final manuscript.

Acknowledgments
This work was supported by the National Key Basic Research Program of China (2011CB917104) and Program for New Century Excellent Talents in University of China (NCET-11-0342).

Received: 29 January 2014
Accepted: 30 December 2013
Published: 29 January 2014

References
1. Jemal A, Ma J, Rosenberg PS, Siegel R, Anderson WF: Increasing lung cancer death rates among young women in Southern and Midwestern states. J Clin Oncol 2012, 30(22):2719–2724.
2. Laheru D, Biedrzycki B, Thomas AM, Jaffee EM: Development of a cytokine-modified allogeneic whole cell pancreatic cancer vaccine. Pancreatic Cancer 2005, 103:299–327. Humana Press, Columbia University.
3. Maki RG, Livingston PO, Lewis JJ, Janetzki S, Klimstra D, DeSantis D, Sinivastava PK, Brennan MF: A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 2007, 52(8):1964–1972.
4. Hsuhe EC, Esnerr R, Foshag LJ, Ollila DW, Gammon G, O’Day SJ, Boaberg PO, Stern SL, Ye X, Morton DL: Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J Clin Oncol 2002, 20(3):4549–4554.
5. Morton DL, Hsuhe EC, Esnerr R, Foshag LJ, O’Day SJ, Bilichik A, Gupta RK, Hoon DS, Ravindranath M, Nizee JA: Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg 2002, 236(4):438.
6. Copier J, Dalgeme J: Whole-cell vaccines: A failure or a success waiting to happen. Curr Opin Mol Ther 2010, 12(1):14.
7. Greten TF, Jaffee EML: Cancer vaccines. J Clin Oncol 1999, 17(3):1047–1047.
8. Schreiber RD, Old LJ, Smyth MJ: Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Sci Signal 2011, 331(6024):1565.
9. Fearon ER, Iyama T, Hunt B, Vogelstein B, Frost P: Induction in a murine tumor of immunogenic tumor variants by transfection with a foreign gene. Cancer Res 1988, 48(11):2975–2980.
10. Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H: Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol 1996, 173(2):230–235.
11. Gracie JA, Robertson SE, McInnes IB: Interleukin-18. J Leukoc Biol 2003, 73(2):213–224.
12. Nagai H, Haru I, Horikawa T, Oka M, Kamidono S, Ichihashi M: Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumor growth through inhibition of tumor vessel formation. J Invest Dermatol 2002, 119(3):541–548.

13. Tanaka F, Hashimoto W, Robbins P, Lotze M, Tahara H: Therapeutic and specific antitumor immunity induced by co-administration of immature dendritic cells and adenosine vector expressing biologically active IL-18. Gene Ther 2002, 9(11):1480–1486.

14. Yoshimura K, Hazama S, Izuka N, Yoshino S, Yamamoto K, Muraguchi M, Ohmoto Y, Noma T, Oka M: Successful immunogene therapy using colon cancer cells (colon 26) transfected with plasmid vector containing mature interleukin-18 DNA and the Iκkappa beta leader sequence. Cancer Gene Ther 2001, 8(1):99.

15. Choi J, Lee J, Zhang S, Park J, Lee K, Song C, Yoon C: Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther 2011, 18(9):989–909.

16. Wang J, Kobayashi E, Murakami T, Kobayashi Y, Sato A: Synergistic anti-tumor effect by combinatorial gene-gun therapy using IL-23 and IL-18 cDNA. J Dermatol Sci 2004, 36(1):86–92.

17. Tse BW-C, Russell PJ, Lochner M, Förster I, Power CA: IL-18 inhibits growth of murine orthotopic prostate carcinoma via both adaptive and innate immune mechanisms. PLoS One 2011, 6(9):e24241.

18. Lee H-R, Yoon SY, Song SB, Park Y, Kim TS, Kim S, Hur DY, Song HK, Park H, Cho D: Interleukin-18-mediated interferon-gamma secretion is regulated by thymosin beta 4 in human NK cells. Immunology 2011, 121(1):1055–1066.

19. Ye Z-B, Ma T, Li H, Jin XL, Xu HM: Expression and significance of intratumoral interleukin-12 and interleukin-18 in human gastric carcinoma. World J Gastroenterol 2007, 13(1):1747.

20. Ward JE, McNeil DG: GVAX: an allogeneic, whole-cell, GM-CSF-secreting cellular immunotherapy for the treatment of prostate cancer. Drug Discovery Today 2007, 7(2):1893–1902.

21. Jinushi M, Hodi FS, Dranoff G: Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cells. Immunol Rev 2008, 222(1):287–298.

22. Jaffe EM, Hruban RH, Biedrzycki B, Lahera D, Schepers K, Savel PJ, Goemann M, Coleman J, Grochow L, Donohower RC: Novel, granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immunostimulation. J Clin Oncol 2001, 19(1):145–156.

23. Michael A, Ball G, Quatant N, Wushishi F, Russell M, Wohlen J, Haikapol P, Leader D, Whelan M, Pandha H: Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clin Cancer Res 2007, 13(2):461–470.

24. Simons JW, Carducci MA, Mikhak B, Lim HW, Biedrzycki B, Borellini F, Clift SM, Mentzer S, Jaklitsch M: Intravenous liposomal delivery of the short hairpin RNAs against Plk1 decreases colon cancer in mice. Mol Ther 2007, 15(5):925–931.

25. Akatsuka T: Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumor growth through inhibition of tumor vessel formation. J Invest Dermatol 2002, 119(3):541–548.

26. Deng H, Jiang Q, Yang Y, Zhang S, Ma Y, Xie G, Chen X, Qian Z, Wen Y, Li J: Suppresses in vivo tumor growth through inhibition of tumor vessel formation. Mol Ther 2007, 15(5):532–538.

27. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, Tanabe K, Duda R, Jang Y, Knoblock TF: Blockade of tumor TNF-α in mice reduces colorectal carcinogenesis associated with cytokitin co. J Clin Invest 2008, 118(2):2560.

28. Egberts HP, Cloosters V, Naack A, Schniewind B, Thon L, Köse S, Ketterl B, Trumper J: Gene therapy of tumors with vaccine based on Xenopus encoding interferon α. Mol Ther 2001, 4(9):898–903.

29. Asada H, Kishida T, Hirai H, Satoh E, Ohashi S, Takeuchi M, Kubo T, Kita M, Hatanaka H: Significant antitumor effects obtained by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003, 21(17):3343–3350.

30. Heo DS, Park J-G, Hata K, Day R, Herberman RB, Whiteside TL: Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity. Cancer Res 1990, 50(12):3683–3690.

31. Asada H, Kishida T, Hara H, Satoh E, Ohashi S, Takeuchi M, Kubo T, Kita M, Iwakura Y, Imanishi J: Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003, 21(17):3343–3350.