SUPPLEMENTARY MATERIAL

Sesquiterpenes from the fruits of *Illicium simonsii* Maxim

Hang Liu*a#, Minghua Chen*b#, Yongjun Lang*c, Xiaoxia Wang*d*, Pengyu Zhuang*d*

a. Department of Pharmacy, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
b. Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
c. Fengdu People's Hospital, Fengdu 408200, Chongqing, China
d. North China University of Science and Technology, Tangshan 063210, Hebei Province, China

ABSTRACT

A new allo-cedrane sesquiterpene glycoside (1) and nine known compounds (2–10) were isolated from the ethanol extract of the fruit of *Illicium simonsii* Maxim. Their structures were elucidated by spectroscopic methods, including 1D-, 2D-NMR, and HRESIMS. The absolute configuration of compound 1 was confirmed by CD experiments. Among them, compounds 1, 4, 5, and 7 displayed moderate anti-inflammatory activities by use of an in vitro bioassay.

*aThese authors are contributed equally to this work.
*bCorresponding authors.
E-mail addresses: wangxx198666@163.com (X. Wang) and zhuangpengyu@163.com (P. Zhuang)
Indexes

S1. 1H NMR Spectrum (500 MHz, MeOD) of compound 1
S2. 13C NMR Spectrum (125 MHz, MeOD) of compound 1
S3. HSQC Spectrum of compound 1
S4. HMBC Spectrum of compound 1
S5. NOESY Spectrum of compound 1
S6. The CD Spectrum of compound 1 in MeOH
S7. HRESIMS spectrum of compound 1
S8. Key HMBC and NOESY correlations of compound 1
S9. 1H and 13C NMR data of compound 1 in CD$_3$OD
S1. 1H NMR Spectrum (500 MHz, MeOD) of compound 1

S2. 13C NMR Spectrum (125 MHz, MeOD) of compound 1
S3. HSQC Spectrum of compound 1

S4. HMBC Spectrum of compound 1
S5. NOESY Spectrum of compound 1

S6. The CD Spectrum of compound 1 in MeOH
S7. HRESIMS spectrum of compound 1

[Image of HRESIMS spectrum]

S8. Key HMBC and NOESY correlations of compound 1

[Diagram showing key HMBC and NOESY correlations]
S9. 1H and 13C NMR data of compound I in CD$_3$ODa

Position	δ_C	δ_H (J in Hz)
1	46.1	1.78 (m)
2	75.4	4.26 (m)
3	35.0	Ha 1.77 (m)
		Hb 1.71 (m)
4	46.4	3.06 (dd, 11.5, 7.5)
5	51.8	
6	49.0b	
7	29.1	Ha 2.63 (m)
		Hb 1.28 (m)
8	30.6	Ha 1.84 (m)
		Hb 1.43 (m)
9	45.5	
10	48.1	Ha 2.34 (d, 19.5)
		Hb 2.05 (d, 19.5)
11	216.6	
12	15.3	0.97 (s, 3H)
13	175.4	
14	17.9	1.05 (s, 3H)
15	9.9	0.94 (d, 7.5, 3H)
1$'$	96.3	5.54 (d, 8.0)
2$'$	74.0	3.37 (m)
3$'$	78.4	3.41 (m)
4$'$	71.0	3.38 (m)
5$'$	78.9	3.38 (m)
6$'$	62.3	Ha 3.84 (br d, 12.5)
		Hb 3.69 (br d, 12.5)

a. 1H NMR data (δ) were measured at 500 MHz, and 13C NMR data (δ) were measured at 125 MHz.
b. Signal overlapped by solvent peaks.