Impact of cholesterol on disease progression

Chun-Jung Lina,b,†, Cheng-Kuo Laia,b,†, Min-Chuan Kaob,†, Lii-Tzu Wub, U-Ging Loa, Li-Chiu Lina,*, Yu-An Chenb, Ho Lina,*, Jer-Tsong Hsiehd,**, Chih-Ho Laia,b,f,***, Chia-Der Linb,****

aDepartment of Urology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
bGraduate Institute of Clinical and Basic Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan
cDepartment of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
dGraduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
eDepartment of Microbiology and Immunology, Chang Gung University, Taoyuan 333, Taiwan
fDepartment of Nursing, Asia University, Taichung 413, Taiwan
gDepartment of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung 404, Taiwan

Received 9th of April 2015 Accepted 30th of April 2015
© Author(s) 2015. This article is published with open access by China Medical University

Keywords: Cancer development; Cholesterol; HMG-CoA reductase; Infectious disease; Lipid rafts

ABSTRACT

Cholesterol-rich microdomains (also called lipid rafts), where platforms for signaling are provided and thought to be associated with microbe-induced pathogenesis and lead to cancer progression. After treatment of cells with cholesterol disrupting or usurping agents, raft-associated proteins and lipids can be dissociated, and this renders the cell structure nonfunctional and therefore mitigates disease severity. This review focuses on the role of cholesterol in disease progression including cancer development and infectious diseases. Understanding the molecular mechanisms of cholesterol in these diseases may provide insight into the development of novel strategies for controlling these diseases in clinical scenarios.

1. Metabolism of cholesterol

1.1. Biosynthesis of cholesterol

Cholesterol is an extremely important biological molecule as it is a precursor for the synthesis of steroid hormones, bile acids, and vitamin D [1]. The human body manufactures around 1 g of cholesterol each day and approximately 20-25% of total daily cholesterol production occurs in the liver [2]. Synthesis of cholesterol is a series process and starts with acetyl CoA and acetoacetyl-CoA, which are hydrated to form 3-hydroxy-3-methylglutaryl CoA (HMG-CoA). This molecule is subsequently reduced to mevalonate by the enzyme HMG-CoA reductase [3]. This is the regulated, rate-limiting, and irreversible step in cholesterol biosynthesis and is the target of action for statin drugs (HMG-CoA reductase competitive inhibitors) [4].

1.2. Association of abnormal cholesterol levels with diseases

Both dietary cholesterol and synthesized \textit{de novo} are transported by lipoprotein particles through the circulatory system. The four major types of lipoproteins are chylomicron, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL). Chylomicrons and VLDL deliver triacylglycerol to cells in the body, whereas LDL delivers cholesterol to cells in the body. Meanwhile, HDL is involved in reverse cholesterol transport. The synthesis and utilization of cholesterol must be tightly regulated in order to prevent over-accumulation and abnormal depositing within the body. There are two manifestations of cholesterol disorders, hyperlipidemia and hypolipidemia. The reasons for cholesterol disorders include dietary issues, genetic disorders, and other diseases [5-7]. For example, due to a genetic disorder caused by a defect on chromosome 19, cholesterol continues to be produced despite there already being an excess of cholesterol in the blood (lack of uptake by LDL receptor), and this may cause familial hypercholesterolemia [8]. In contrast, hypo-cholesterol level may result from liver disease, hypothyroidism, and genetic disorders such as familial hypobetalipoproteinemia and Smith-Lemli-Opitz syndrome (7-dehydrocholesterol reductase deficiency) [9].
The level of cholesterol in the body being too high or too low may cause various symptoms, syndromes, or diseases. Excessive cholesterol is associated with several cardiovascular diseases and such levels are easily attained with an unhealthy diet. In fact, it should be noted that it is not essential for cholesterol to be obtained from one’s diet as it is easily synthesized in the body. Whereas, low cholesterol is associated with mental disorders, neuropsychiatric diseases, and mortality in elderly [10]. Some critical diseases related to cholesterol levels are listed in Table 1.

1.3. The cholesterol lowering agents

The most important drugs for the treatment of dyslipidemia are statins which have been shown in multiple clinical trials to reduce cardiovascular events and mortality [25]. Statins can inhibit HMG-CoA reductase and design to subsequently inhibit enzyme activity in the liver [26]. Inhibition of cholesterol synthesis further decreases circulating LDL, which reduces levels of cholesterol in the hepatocyte and therefore lead to up-regulated expressions of LDL receptors. Some other drugs have been developed to treat dyslipidemia in specific subsets of patients. For instance, fibrates, which bind to the nuclear receptor PPAR-alpha, can increase HDL levels and decrease triglyceride levels [27]. Fibrates were originally used to address the primary problem of high levels of triglycerides. Another example is niacin (nicotinic acid), which increases HDL levels and decreases triglyceride and LDL levels at high doses (much higher than required for its role as a vitamin) [28, 29]. And there is ezetimibe, which inhibits cholesterol absorption in the small intestine and effectively lowers LDL cholesterol [30].

2. Role of cholesterol in cancer progression

2.1. Cholesterol and cancer development

Cholesterol is known as a main component of lipid rafts and has been documented to regulate cell membrane proteins, receptor trafficking, signal transduction, as well as influence cell membrane fluidity [31]. Moreover, cholesterol and other lipid-components participate in the production of hormones [32] and energy [33]. However, when large concentrations of cholesterol accumulate in the human body, especially in the organs and blood stream, the risk of various diseases increases (Table 2). Notably, studies have revealed that an increased cholesterol level participates in cancer cell malignancy, and the dysfunction of cholesterol metabolism may also influence cancer progression [34-36]. For example, mevalonate, a cholesterol synthesis precursor, promotes breast cancer cell proliferation in vivo and in vitro [37, 38]. Additionally, 27-hydroxycholesterol, which is a metabolite from cholesterol, is expressed much higher in the estrogen receptor-positive breast cancer patient site, when compared with both normal breast tissue.
3. Association of cholesterol with pathogen infections

While a patient’s cancer-free region control [39, 40]. In oral cancer, cholesterol was found to be significantly increased in tumor tissue compared to normal tissue [41]. Moreover, previous studies have reported that elevated cholesterol in the circulatory system promotes Akt signaling, decreases apoptosis activity in LNCap prostate cell line, and enhances tumor aggressiveness in a xenograft animal model [42, 43]. Further, it has been reported that serum cholesterol is a positive factor in colon cancer development [44, 45]. Other cancers, including female reproductive organ cancers, lung cancer, and melanoma are also documented to correlate with high levels of cholesterol [46].

2.2. Reducing cholesterol inhibits cancer progression

In addition to the correlation between cholesterol and cancer progression, disruption of cell membrane lipid rafts or cholesterol components and interference of cholesterol synthesis are considered as treating prospects toward cancer treatment [64, 65]. Therefore, clinical use of cholesterol-controlling medicines has been implied to possess chemoprotective effects [66]. Statins, HMG-CoA reductase inhibitors, are cholesterol-lowering agents [67], and the total consumption of statins has been increasing in recent years [46]. Statins are documented to decrease the proliferation of cancer cells [49, 63], reduce the risk of cancer incidence [61], and even influence the mortality rate in cancer patients [68]. However, the findings of statins use in the treatment of cancer have revealed inconsistencies. Some reports have even claimed that the use of statin may increase the risk of cancer [51, 57], or have no correlation in the treatment of cancer [50, 69]. Therefore, the benefits of the cholesterol-controlling aspect of the treatments of lipid rafts-related cancers, animal models, and the details of their underlying mechanisms may need further investigations.

Despite arising number of reports that support the claim that the use of statin significantly reduces the incidence of cancer, not all of the statistical results are consistent with such a claim [48, 70]. Research into cholesterol-related cancer progression and the use of cholesterol-lowering drugs are mostly of the database analysis variety. However, the results may differ according to participant sample selection, sample size, and related confounding factors. Therefore, additional studies with cellular or animal models, long-term vs. short-term statin users follow-up, and even studies consisting of large sample sizes with multiple confounders would help further elucidate this issue.

3.1. Lipid rafts serve as platforms for bacterial pathogens

In order to promote their internalization into host, bacterial pathogens may utilize host cells to enhance their own adherence and survival abilities [83, 84]. Adhesion to host cells by pathogens is the first step in their invasion process and may be associated with lipid rafts. The most commonly described cellular target of intestinal pathogens is Campylobacter jejuni, which attach to host epithelial cells via membrane cholesterol [85-87]. In addition, the major virulence factor expressed by C. jejuni is cytolethal distending toxin (CDT) [74], which also can be produced by various common Gram-negative bacteria, including Aggregatibacter actinomycetemcomitans [88], Escherichia coli [89], Haemophilus ducreyi [76], Helicobacter hepaticus [90], and Shigella dysenteriae [91]. It has been reported that C. jejuni CDT-induced pathogenesis of host cells is dependent on membrane cholesterol levels. By using cholesterol-depleting agents such as methyl-β-cyclodextrin (MβCD) which markedly decreased the intoxication of cells [74, 92]. Further evidence of the role of lipid rafts in both C. jejuni and A. actinomycetemcomitans CDT-induced genotoxicity of host cells have been demonstrated through the cholesterol recognition/interaction amino acid consensus (CRAC) region of the CdtC subunit [71, 75]. These findings indicate that membrane cholesterol provides an essential component for CDT binding to the cell membrane and also serves as a portal for CdtB delivery into host cells for the induction of cell intoxication. Moreover, in this case, the virulence protein cytotoxin-associated gene A (CagA) of Helicobacter pylori, is delivered into the target cells by the type IV secretion system [93] and utilizes membrane cholesterol to lead to the activation of pro-inflammatory signaling pathways within gastric cells [75, 78, 94, 95]. Furthermore, a dramatic demonstration of the dissociation of infectivity and pathology is H. pylori within encoding glucosyltransferase, which is indispensable for cholesterol glucosylation and promotes H. pylori-induced phagocytosis escape and subsequent immune responses [77, 96]. Similar to C. jejuni and H. pylori, the recent description of the combination of apoE-deficiency and a high cholesterol diet in mice facilitated Anaplasma phagocytophilum infection in vivo and induced proinflammatory responses [73]. However, not all pathogens require lipid rafts to gain entry into host cells. Recently, it has been shown that cholesterol-mediated cholesterol is the most important component of lipid rafts in eukaryotic cells. Lipid rafts are also considered a critical factor in host-pathogen interaction and colonization of hosts by several pathogens including bacteria, viruses, as well as prions. Most of the studies we refer to here describe a few examples of the role of cholesterol in promoting pathogenic infections (Table 3).

Table 3 – Functions of cholesterol-rich microdomains in pathogen infection.

Pathogen	Function	References
Aggregatibacter actinomycetemcomitans	CDT holotoxin entry into host cells	[71, 72]
Anaplasma phagocytophilum	A. phagocytophilum infection	[73]
Campylobacter jejuni	CDT holotoxin entry into host cells	[74, 75]
Haemophilus ducreyi	CDT holotoxin entry into host cells	[76]
Helicobacter pylori	CagA translocation and VacA function	[77-80]
HIV	Facilitate HIV infection	[81]
Prion	Promote the conversion of PrP\(^\circ\) into the isoform PrP\(^\Delta\)	[82]

Cholesterol is the most important component of lipid rafts in eukaryotic cells. Lipid rafts are also considered a critical factor in host-pathogen interaction and colonization of hosts by several pathogens including bacteria, viruses, as well as prions. Most of the studies we refer to here describe a few examples of the role of cholesterol in promoting pathogenic infections (Table 3).
conformation to a pathological isoform (PrPSc) is well known to cause acquired immunodeficiency syndrome (AIDS) in humans [98]. The cellular prion protein (PrPC) is called a normal cell surface glycoprotein by means of a glycosylphosphatidylinositol (GPI)-anchor. GPI-anchored PrPSc is presented in lipid rafts where are microdomains enriched in cholesterol [99]. It is widely known that PrPC is found in membrane cholesterol and plays a crucial role in the development of prion-related diseases by changing its conformation to a pathological isoform (PrPSc) [82]. PrPSc is an essential part of the prion, causing fatal and transmissible neurodegenerative prion diseases [82]. Several lines of evidence suggest that lipid rafts are highly essential for the transport of PrPSc and the toxicity of PrPSc in neuronal cells [100, 101]. Altogether, these studies indicate the critical role of lipid rafts, which maintain the cell surface localization of GPI-anchor attachment of PrPSc and are involved in prion conversion and neurotoxicity.

3.2. Conversion of prions is associated with lipid rafts

Neurodegenerative disorders caused by prions have been linked to the variant Creutzfeldt-Jakob Disease (vCJD) in humans [98]. The cellular prion protein (PrPSc) is called a normal cell surface glycoprotein by means of a glycosylphosphatidylinositol (GPI)-anchor. GPI-anchored PrPSc is presented in lipid rafts where are microdomains enriched in cholesterol [99]. It is widely known that PrPSc is found in membrane cholesterol and plays a crucial role in the development of prion-related diseases by changing its conformation to a pathological isoform (PrPSc) [82]. PrPSc is an essential part of the prion, causing fatal and transmissible neurodegenerative prion diseases [82]. Several lines of evidence suggest that lipid rafts are highly essential for the transport of PrPSc and the toxicity of PrPSc in neuronal cells [100, 101]. Altogether, these studies indicate the critical role of lipid rafts, which maintain the cell surface localization of GPI-anchor attachment of PrPSc and are involved in prion conversion and neurotoxicity.

3.3. Lipid rafts facilitate virus infection

Human immunodeficiency virus (HIV) is the retrovirus that is well known to cause acquired immunodeficiency syndrome (AIDS) [102]. Previous clinical evidence indicated that the level of cholesterol may be a potential factor for controlling the spread or fusion of many viruses [103, 104] which are involved in HIV production and infectivity [81]. It has been reported that the negative effector (Nef) protein from HIV can enhance cholesterol uptake and biosynthesis by activating the transcription of the sterol-responsive element binding factor 2 (SREBF-2) and SREBF-2-regulated genes [105]. In addition, the Nef inhibits the activity of the cellular cholesterol transporter ATP-binding cassette A1 (ABCA1) [106], which in response binds to cholesterol and delivers it to the lipid rafts. Conversely, reduction of cellular cholesterol by ABCA1 activation has been shown to potently inhibit HIV replication [107, 108]. Taken together, these results reveal that HIV requires cholesterol for its egress from and entry into cells.

4. Conclusions and perspectives

Cholesterol-enriched microdomains, which provide platforms for signaling, are thought to be associated with the development of various types of cancers. It has also been clear that the role of cholesterol in pathogen-host interactions contributes to further ensure the pathogens’ survival and virulence delivery into host. These findings indicate that an adequate regulation of cholesterol may prevent cancer progression as well as mitigate microbe-induced the pathogenesis of hosts. Fully unveiling the role of cholesterol in diseases’ manifestations may shed light on the possibility to develop a novel approach to the retardation or possible prevention of cancer development and the treatment of infectious diseases.

Acknowledgments

The authors would like to thank Dr. Ming-Chieh Maa and Chang-Mei Lin for their valuable suggestions and editorial assistance. This work was funded by the Ministry of Science and Technology (103-2633-B-039-001 and 103-2991-I-005-507), China Medical University (CMU103-S-15 and CMU103-S-18), and the Tomorrow Medicine Foundation.

Declaration of interest

The authors declare no conflicts of interest for this work.

REFERENCES

[1] Russell DW, Setchell KD. Bile acid biosynthesis. Biochemistry 1992; 31: 4737-49.
[2] Lewis GF. Determinants of plasma HDL concentrations and reverse cholesterol transport. Curr Opin Cardiol 2006; 21: 345-52.
[3] Hampton R, Dimster-Denk D, Rine J. The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 1996; 21: 140-5.
[4] Barrios-Gonzalez J, Miranda RU. Biotechnological production and applications of statins. Appl Microbiol Biotechnol 2010; 85: 869-83.
[5] Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 2011; 52: 6-34.
[6] Khosla P, Hayes KC. Dietary palmitic acid raises plasma LDL cholesterol relative to oleic acid only at a high intake of cholesterol. Biochim Biophys Acta 1993; 1210: 1210: 13-22.
[7] Pollin TI, Quartuccio M. What We Know About Diet, Genes, and Dyslipidemia: Is There Potential for Translation? Curr Nutr Rep 2013; 2: 236-42.
[8] Varghese MJ. Familial hypercholesterolemia: a review. Ann Pediatr Cardiol 2014; 7: 107-17.
[9] Jira P. Cholesterol metabolism deficiency. Handb Clin Neurol 2013; 113: 1845-50.
[10] Martinez-Carpio PA, Barba J, Bedoya-Del Campillo A. Relation between cholesterol levels and neuropsychiatric disorders. Rev Neurol 2009; 48: 261-4.
[11] Feig JE, Hewing B, Smith JD, Hazen SL, Fisher EA. High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ Res 2014; 114: 205-13.
[12] Lisak M, Demario V, Trkanjec Z, Basic-Kes V. Hypertriglyceridemia as a possible independent risk factor for stroke. Acta Clin Croat 2013; 52: 458-63.
[13] Kratzer A, Giral H, Landmesser U. High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res 2014.
[14] Sibley C, Stone NJ. Familial hypercholesterolemia: a challenge of diagnosis and therapy. Cleve Clin J Med 2006; 73: 57-64.
serum LDL cholesterol levels are associated with elevated mortality from liver cancer in Japan: the Ibaraki Prefectural health study. Tohoku J Exp Med 2013; 229: 203-11.

[56] Jagtap D, Rosenberg CA, Martin LW, Pettinger M, Khandekar J, Lane D, et al. Prospective analysis of association between use of statins and melanoma risk in the Women’s Health Initiative. Cancer 2012; 118: 5124-31.

[57] Mascitelli L, Pezzetta F, Goldstein MR. The epidemic of nonmela- noma skin cancer and the widespread use of statins: Is there a con- nection? Dermatooendoeril 2010; 2: 37-8.

[58] Chawda JG, Jain SS, Patel HR, Chaduvula N, Patel K. The relation- ship between serum lipid levels and the risk of oral cancer. Indian J Med Paediatr Oncol 2011; 32: 34-37.

[59] Lohe VK, Degwekar SS, Bhowate RR, Kadu RP, Dangore SB. Evaluation of correlation of serum lipid profile in patients with oral cancer and precancer and its association with tobacco abuse. J Oral Pathol Med 2010; 39: 141-8.

[60] Srinivas GV, Namala S, Ananthaneni A, Puneeth HK, Devi BS. Evaluation and correlation of serum lipid profile in oral and gastro- intestinal cancer patients. J Int Oral Health 2013; 5: 72-7.

[61] Jacobs EJ, Rodriguez C, Bain EB, Wang Y, Thun MJ, Calle EE. Serum LDL cholesterol levels are associated with elevated mortality from liver cancer in Japan: the Ibaraki Prefectural health study. Tohoku J Exp Med 2013; 229: 203-11.

[62] Dalton WS, Liscum BE. The epidemic of nonmela- noma skin cancer and the widespread use of statins: Is there a con- nection? Dermatooendoeril 2010; 2: 37-8.

[63] Chawda JG, Jain SS, Patel HR, Chaduvula N, Patel K. The relation- ship between serum lipid levels and the risk of oral cancer. Indian J Med Paediatr Oncol 2011; 32: 34-37.

[64] Lovelock JK, Degwekar SS, Bhowate RR, Kadu RP, Dangore SB. Evaluation of correlation of serum lipid profile in patients with oral cancer and precancer and its association with tobacco abuse. J Oral Pathol Med 2010; 39: 141-8.

[65] Srinivas GV, Namala S, Ananthaneni A, Puneeth HK, Devi BS. Evaluation and correlation of serum lipid profile in oral and gastro- intestinal cancer patients. J Int Oral Health 2013; 5: 72-7.

[66] Jacobs EJ, Rodriguez C, Bain EB, Wang Y, Thun MJ, Calle EE. Serum LDL cholesterol levels are associated with elevated mortality from liver cancer in Japan: the Ibaraki Prefectural health study. Tohoku J Exp Med 2013; 229: 203-11.

[67] Dalton WS, Liscum BE. The epidemic of nonmela- noma skin cancer and the widespread use of statins: Is there a con- nection? Dermatooendoeril 2010; 2: 37-8.

[68] Chawda JG, Jain SS, Patel HR, Chaduvula N, Patel K. The relation- ship between serum lipid levels and the risk of oral cancer. Indian J Med Paediatr Oncol 2011; 32: 34-37.

[69] Lohe VK, Degwekar SS, Bhowate RR, Kadu RP, Dangore SB. Evaluation of correlation of serum lipid profile in patients with oral cancer and precancer and its association with tobacco abuse. J Oral Pathol Med 2010; 39: 141-8.

[70] Srinivas GV, Namala S, Ananthaneni A, Puneeth HK, Devi BS. Evaluation and correlation of serum lipid profile in oral and gastro- intestinal cancer patients. J Int Oral Health 2013; 5: 72-7.

[71] Jacobs EJ, Rodriguez C, Bain EB, Wang Y, Thun MJ, Calle EE. Serum LDL cholesterol levels are associated with elevated mortality from liver cancer in Japan: the Ibaraki Prefectural health study. Tohoku J Exp Med 2013; 229: 203-11.

[72] Dalton WS, Liscum BE. The epidemic of nonmela- noma skin cancer and the widespread use of statins: Is there a con- nection? Dermatooendoeril 2010; 2: 37-8.

[73] Chawda JG, Jain SS, Patel HR, Chaduvula N, Patel K. The relation- ship between serum lipid levels and the risk of oral cancer. Indian J Med Paediatr Oncol 2011; 32: 34-37.

[74] Lovelock JK, Degwekar SS, Bhowate RR, Kadu RP, Dangore SB. Evaluation of correlation of serum lipid profile in patients with oral cancer and precancer and its association with tobacco abuse. J Oral Pathol Med 2010; 39: 141-8.

[75] Srinivas GV, Namala S, Ananthaneni A, Puneeth HK, Devi BS. Evaluation and correlation of serum lipid profile in oral and gastro- intestinal cancer patients. J Int Oral Health 2013; 5: 72-7.

[76] Jacobs EJ, Rodriguez C, Bain EB, Wang Y, Thun MJ, Calle EE. Cholesterol-lowering drugs and advanced prostate cancer incidence in a large U.S. cohort. Cancer Epidemiol Biomarkers Prev 2007; 16: 2213-7.

[77] Peres SY, Marches O, Daigle F, Nougayrede JP, Herault F, Tasca C, Lemesre JY, Guyonnet F. A new cytolethal distending toxin (CDT) from liver cancer in Japan: the Ibaraki Prefectural health study. Tohoku J Exp Med 2013; 229: 203-11.

[78] Chawda JG, Jain SS, Patel HR, Chaduvula N, Patel K. The relation- ship between serum lipid levels and the risk of oral cancer. Indian J Med Paediatr Oncol 2011; 32: 34-37.

[79] Lovelock JK, Degwekar SS, Bhowate RR, Kadu RP, Dangore SB. Evaluation of correlation of serum lipid profile in patients with oral cancer and precancer and its association with tobacco abuse. J Oral Pathol Med 2010; 39: 141-8.

[80] Srinivas GV, Namala S, Ananthaneni A, Puneeth HK, Devi BS. Evaluation and correlation of serum lipid profile in oral and gastro- intestinal cancer patients. J Int Oral Health 2013; 5: 72-7.

[81] Jacobs EJ, Rodriguez C, Bain EB, Wang Y, Thun MJ, Calle EE. Cholesterol-lowering drugs and advanced prostate cancer incidence in a large U.S. cohort. Cancer Epidemiol Biomarkers Prev 2007; 16: 2213-7.

[82] Peres SY, Marches O, Daigle F, Nougayrede JP, Herault F, Tasca C, Lemesre JY, Guyonnet F. A new cytolethal distending toxin (CDT) from liver cancer in Japan: the Ibaraki Prefectural health study. Tohoku J Exp Med 2013; 229: 203-11.

[83] Bhavsar AP, Guttmann JA, Finlay BB. Manipulation of host-cell entry by enveloped viruses. Curr Opin Virol 2012; 2: 175-82.

[84] Duncan MJ, Shin JS, Abraham SN. Microbial entry through cave- olins. Trends Cell Biol 2012; 22: 299-305.

[85] Ricci V, Galmiche A, Doye A, Necchi V, Solcia E, Boquet P. High cell sensitivity to Helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol Microbiol 2006; 59: 1387-99.

[86] Cai HL, Grant A, Mukhamedova N, Pushkarsky T, Jennelle L, Dubrovsky L, et al. HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. J Lipid Res 2012; 53: 696-708.

[87] Prusiner SB. Prions. Proceedings of the National Academy of Sciences of the United States of America 1998; 95: 13363-83.

[88] Bhavsar AP, Guttmann JA, Finlay BB. Manipulation of host-cell pathways by bacterial pathogens. Nature 2007; 449: 827-34.

[89] Duncan MJ, Shin JS, Abraham SN. Microbial entry through cave- olins: variations on a theme. Cellular Microbiology 2002; 4: 783-91.

[90] Wooldridge KG, Williams PH, Ketley JM. Host signal transduction and endocytosis of Campylobacter jejuni. Microb Pathog 1996; 21: 299-305.

[91] Elmi A, Watson E, Sandu P, Gundogdu O, Mills DC, Inglis NF, et al. Campylobacter jejuni outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells. Infect Immun 2012; 80: 4089-98.

[92] Hu L, McDaniel JP, Kopecko DJ. Signal transduction events involved in human epithelial cell invasion by Campylobacter jejuni. BioMedicine 2012; 2: 673-6.

[93] Peres SY, Marches O, Daigle F, Nougayrede JP, Herault F, Tasca C, Lemesre JY, Guyonnet F. A new cytolethal distending toxin (CDT) from Escherichia coli producing CNF2 blocks HeLa cell division in G2/M phase. Mol Microbiol 1997; 24: 1095-107.
sequence and activity in the enterohepatic pathogen *Helicobacter hepaticus*. Infect Immun 2000; 68: 184-91.

[91] Okuda J, Kurazono H, Takeda Y. Distribution of the cytolethal distending toxin A gene (cdtA) among species of *Shigella* and *Vibrio*, and cloning and sequencing of the *cdt* gene from *Shigella dysenteriae*. Microb Pathog 1995; 18: 167-72.

[92] Lai CK, Su JC, Lin YH, Chang CS, Feng CL, Lin HJ, et al. Involvement of cholesterol in *Campylobacter jejuni* cytolethal distending toxin-induced pathogenesis. Future Microbiol 2015; 10: 489-501.

[93] Ramarao N, Gray-Owen SD, Buckert S, Meyer TF. *Helicobacter pylori* inhibits phagocytosis by professional phagocytes involving type IV secretion components. Mol Microbiol 2000; 37: 1389-404.

[94] Lai CH, Wang HJ, Chang YC, Hsieh WC, Lin HJ, Tang CH, et al. *Helicobacter pylori* CagA-mediated IL-8 induction in gastric epithelial cells is cholesterol-dependent and requires the C-terminal tyrosine phosphorylation-containing domain. FEMS Microbiol Lett 2011; 323: 155-63.

[95] Lu DY, Chen HC, Yang MS, Hsu YM, Lin HJ, Tang CH, et al. Ceramide and Toll-like receptor 4 are mobilized into membrane rafts in response to *Helicobacter pylori* infection in gastric epithelial cells. Infect Immun 2012; 80: 1823-33.

[96] Du SY, Wang HJ, Cheng HH, Chen SD, Wang LH, Wang WC. Cholesterol glucosylation by *Helicobacter pylori* delays internalization and arrests phagosome maturation in macrophages. J Microbiol Immunol Infect 2014.

[97] Gilk SD, Cockrell DC, Luterbach C, Hansen B, Knodler LA, Ibarra JA, et al. Bacterial colonization of host cells in the absence of cholesterol. PLoS Pathog 2013; 9: e1003107.

[98] Biasini E, Turnbaugh JA, Unterberger U, Harris DA. Prion protein at the crossroads of physiology and disease. Trends in Neurosciences 2012; 35: 92-103.

[99] Gilch S, Kehler C, Schatzl HM. The prion protein requires cholesterol for cell surface localization. Molecular and Cellular Neuroscience 2006; 31: 346-53.

[100] Gilch S, Kehler C, Schatzl HM. The prion protein requires cholesterol for cell surface localization. Mol Cell Neurosci 2006; 31: 346-53.

[101] Botto L, Cunati D, Coco S, Sesana S, Bulbarelli A, Biasini E, et al. Role of lipid rafts and GM1 in the segregation and processing of prion protein. PLoS One 2014; 9: e98344.

[102] Douek DC, Roederer M, Koup RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 2009; 60: 471-84.

[103] Daya M, Cervin M, Anderson R. Cholesterol enhances mouse hepatitis virus-mediated cell fusion. Virology 1988; 163: 276-83.

[104] Dantshi P, Chow M. Cholesterol removal by methyl-beta-cyclodextrin inhibits poliovirus entry. Journal of Virology 2004; 78: 33-41.

[105] van’t Wout AB, Swain JV, Schindler M, Rao U, Pathmajeyan MS, Mullins JI, et al. Nef induces multiple genes involved in cholesterol synthesis and uptake in human immunodeficiency virus type 1-infected T cells. Journal of Virology 2005; 79: 10053-8.

[106] Mujawar Z, Rose H, Morrow MP, Pushkarsky T, Dubrovsky L, Mukhamedova N, et al. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol 2006; 4: e365.

[107] Dubrovsky L, Van Duyne R, Senina S, Guendel I, Pushkarsky T, Sviridov D, et al. Liver X receptor agonist inhibits HIV-1 replication and prevents HIV-induced reduction of plasma HDL in humanized mouse model of HIV infection. Biochem Biophys Res Commun 2012; 419: 95-98.

[108] Jiang H, Badralmaa Y, Yang J, Lempicki R, Hazen A, Natarajan V. Retinoic acid and liver X receptor agonist synergistically inhibit HIV infection in CD4+ T cells by up-regulating ABCA1-mediated cholesterol efflux. Lipids Health Dis 2012; 11: 69.