Uniformly positive correlations in the dimer model and phase transition in lattice permutations in \mathbb{Z}^d, $d > 2$, via reflection positivity

Lorenzo Taggi*

November 25, 2019

Abstract

Our first main result is that correlations between monomers in the dimer model in \mathbb{Z}^d do not decay to zero when $d > 2$. This is the first rigorous result about correlations in the dimer model in dimensions greater than two and shows that the model behaves drastically differently than in two dimensions, in which case it is integrable and correlations are known to decay to zero polynomially. Such a result is implied by our more general, second main result, which states the occurrence of a phase transition in the model of lattice permutations, which is related to the quantum Bose gas. More precisely, we consider a self-avoiding walk interacting with lattice permutations and we prove that, in the regime of fully-packed loops, such a walk is ‘long’ and the distance between its end-points grows linearly with the diameter of the box. These results follow from the derivation of a version of the infrared bound from a new general probabilistic settings, with coloured loops and walks interacting at sites and walks entering into the system from some ‘virtual’ vertices.

Keywords and phrases. Dimer model, Spatial permutations, quantum Bose gas, self-avoiding walks, loop O(N) model, reflection positivity, infrared bound, phase transitions.

1 Introduction

This paper considers two models related to each other, the dimer model and lattice permutations. The dimer model is a classical statistical mechanics model whose configurations are perfect matchings of a graph, namely subsets of edges which cover every vertex precisely once. The model attracts interest from a wide range of perspectives, which include combinatorics, statistical mechanics, and algorithm complexity studies. Its rigorous mathematical study achieved a breakthrough with the works of Kasteleyn, Temperley and Fisher, [24, 37, 48] in 1961, who showed that on planar graphs the dimer problem is exactly solvable. By then, various aspects of the dimer model have been explored: For example its close relation to the critical Ising model [2, 37], a characterisation of the model’s correlations [25], the arctic circle phenomenon [15], their continuous limits and the emergence of conformal symmetry [33, 39, 40].

Despite so much progress on planar graphs, the rigorous mathematical understanding of the dimer model in higher dimensional graphs is still very poor. Indeed, as it was formalised by Hammersley et al. [38], the method of Kasteleyn, Temperley and Fisher, which consists of reducing the problem of enumerating the number of dimer covers to the problem of computing the Pfaffian of the so-called Kasteleyn matrix, cannot be naturally extended to \mathbb{Z}^d, $d > 2$, in which case it was shown [36] that the dimer model is computationally intractable.

*Weierstrass Institute for Applied Analysis and Stochastics, Berlin, DE; taggi@wias-berlin.de
This paper presents the first result about correlations in the dimer model in \mathbb{Z}^d, when $d > 2$. More precisely, we consider the monomer-monomer correlation, i.e, the ratio between the number of dimer covers with two monomers and the number of dimer covers with no monomers, which is a central quantity in the study of this model. In dimensions $d = 2$, it was shown that it decays to zero polynomially with the distance between the two monomers [16, 25]. Our first main result, Theorem 2.1 below, states that such a function does not decay to zero with the distance when $d > 2$. This is in agreement with physicists predictions [35] based on heuristic arguments. As a by-product of our technique we also deduce that, in the infinite volume limit, the correlation between monomers along the cartesian axis equals $\frac{1}{d^2}$ up to non-positive corrections term of order $O(\frac{1}{d^2})$, which are uniform with respect to the distance between such monomers.

Our first main result is implied by our more general main result about the model of lattice permutations, which, in the form as we define it, can be viewed as a generalisation of the double dimer model [17, 41]. The configuration space of the model can be viewed as the set of directed multi-graphs whose vertex set are the vertices of a box in \mathbb{Z}^d and such that any connected component is either a ‘monomer’ (a single vertex with no edges which are incident to it), a ‘double edge’ (a connected component consisting of two vertices and two parallel edges pointing opposite directions), or a directed self-avoiding loop. A measure which assigns to each such graph a weight which depends on two parameters, $\rho \in [0, \infty)$, the monomer activity, and $N \in [0, \infty)$, the number of colours, is introduced. The parameter ρ rewards the number of monomers, while the parameter N rewards the number of loops and double edges.

The study of lattice permutations has been proposed in [12, 4, 31, 34] in view of their connections to Bose-Einstein condensation [23], which is an important unsolved statistical mechanics problem. Contrary to these papers, where jumps of arbitrary length are allowed and penalised according to a Gaussian weight (and no multiplicity factor for the number of loops and double edges is considered), here we only allow jumps of length one or zero; this feature gives the model a combinatorial flavour and allows the connection with the dimer model. The relevance of lattice permutations for the study of Bose-Einstein condensation is that, contrary to other spatial random permutation models which were studied before (for example [5, 7, 9, 10, 8, 21, 1]) and similarly to the interacting quantum Bose gas, a spatial interaction which depends on the mutual distance of the loops takes place (loops interact by mutual exclusion). This feature makes the techniques which have been employed in such previous works ineffective for the rigorous analysis of lattice permutations and the model interesting and challenging. The central question for the quantum Bose gas is whether Bose-Einstein condensation

Figure 1: A realisation $\pi \in \Omega$ on the torus.
takes place. In [50] it is shown that, in a random loop model which is related to lattice permutations, the two-point function, namely the ratio of the partition functions of a system with a forced ‘open’ cycle and one without, can be used to detect Bose-Einstein condensation: If this ratio stays positive uniformly in the volume and in the spatial separation of the two endpoints of the forced cycle, this is equivalent to the presence of off-diagonal long range order [44], which itself is equivalent to Bose-Einstein condensation. This paper (our Theorem 2.3 below) provides a rigorous proof of this fact in the model of lattice permutations.

The relevance of lattice permutations goes even beyond their connection to the dimer model and Bose-Einstein condensation, which holds when \(N = 2 \). Indeed, they are an intriguing mathematical object for any value of \(N \in [0, \infty) \) and can be viewed as a version of the loop \(O(N) \) model, which is in turn related to spin systems with continuous symmetry for integer values of \(N \) (see [45] for an overview). The difference between our setting and the model considered in [45] is that we also allow double edges and that the loop containing the origin is ‘open’, namely it is a self-avoiding walk which starts from the origin and ends at an arbitrary vertex of the box. One of the most important questions for this class of models is the identification of regions of the phase diagram where the loop length does not admit exponential decay. This was recently accomplished for the loop \(O(N) \) model on the hexagonal lattice using various techniques, for example parafermionic observables, planar spin representations, and Russo-Welsh estimates [20, 32], see also further references in [45]. Although very powerful, these techniques are specific for planar graphs and cannot be naturally extended to \(\mathbb{Z}^d, d > 2 \), in which case only results stating exponential decay have been derived [14, 47] and techniques are missing.

Our Theorem 2.2 below states that, in any dimension \(d > 2 \), in the regime of fully-packed loops, the length of the self-avoiding walk in lattice permutations grows unboundedly with the size of the box and the distance between its two end-points is of the same order of magnitude as the diameter of the box. Hence, not only we rule out exponential decay in any dimension \(d > 2 \), but we also identify the correct scaling of the distance between the end-points of the self-avoiding walk.

Our proof method is of independent interest and can be viewed as reformulation of the famous approach of Fröhlich, Simon and Spencer in [28] in the space of paths. In [28], the property of reflection positivity of a system of spins with continuous symmetry, known as spin \(O(N) \) model, was employed for the derivation of the so-called infrared bound, which implies that correlations do not decay in such a spin system. Such an approach was further developed in [29, 30] and implemented in several other research works in the framework of quantum and classical spin systems. Here we implement such an approach in a completely different setting which does not involve spins, but a general probabilistic model of interacting coloured loops and walks. Our framework includes the (loop representation of) the spin \(O(N) \) model as a special case, and other random loop models for which no spin representation exists or is easy to derive, for example lattice permutations (see also Remark 3.2 below). Hence, our method can be viewed as an extension of [28, 29, 30].

2 Definitions and main results

We now provide a precise definition of the dimer model and of lattice permutations and we state our main results formally. This section is divided into three paragraphs with each paragraph stating a main theorem. Our third theorem, Theorem 2.3 below, involves lattice permutations and it can be viewed as a reformulation of our Theorem 2.2 and as a generalisation of Theorem 2.1, which involves the dimer model.

The Dimer model. A dimer cover of the graph \(G = (\mathcal{V}, \mathcal{E}) \) is a spanning sub-graph\(^\dagger\) of \(G \) such that every vertex has degree one. Let \((T_L, E_L)\) be a graph with vertex set \(T_L := \{(x_1, \ldots, x_d) \in \mathbb{Z}^d : x_i \in (-L, L] \} \) and edges connecting nearest-neighbour vertices and boundary vertices so that \((T_L, E_L)\) can be identified with the torus \(\mathbb{Z}^d / L \mathbb{Z}^d \), where \(L \in \mathbb{N}_{>0} \). For any set of sites \(M \subset T_L \), let

\(^\dagger\)A spanning sub-graph of a graph \(G = (\mathcal{V}, \mathcal{E}) \) is a sub-graph of \(G \) whose vertex set is \(\mathcal{V} \).
\[\mathcal{D}(M) \text{ be the (possibly empty) set of dimer covers of the graph which is obtained from } (T_L, E_L) \text{ by removing all the sites which are in } M \text{ and from } E_L \text{ all the edges which are incident to at least one vertex in } M. \]

The monomer-monomer correlation is a fundamental quantity for the analysis of the dimer model and it corresponds to the ratio between the number of dimer covers with two monomers and the number of dimer covers with no monomer,

\[\forall x \in T_L \quad \Xi_L(x) := \frac{|D\{\{o, x\}\}|}{|D(\emptyset)|}, \quad (2.1) \]

where \(o \) is used to denote the origin, \(o = (0, \ldots, 0) \). See also Figure 2. This function equals zero if \(L \in 2\mathbb{N} \) and \(x \) belongs to the even sub-lattice of \(T_L^e \subset T_L \), which is now defined together with the odd sub-lattice,

\[T_L^e := \{ x \in T_L : d(o, x) \in 2\mathbb{N} \}, \quad T_L^o := \{ x \in T_L : d(o, x) \in 2\mathbb{N} + 1 \}, \quad (2.2) \]

where \(d(o, x) \) is the graph distance in \((T_L, E_L) \). Let \(N_+ = \sum_{n>0} \mathbb{1}\{S_n = o\} \) be the number of returns to the origin of a simple random walk, \(S_n \), in \(\mathbb{Z}^d \), whose probability measure and expectation are denoted by \(P^d \) and \(E^d \) respectively, define \(r_d := E^d(N_+) \), the expected number of returns to the origin. We use \(e_i \in \mathbb{R}^d \) to denote the cartesian vectors, where \(i \in \{1, \ldots, d\} \).

Theorem 2.1. Suppose that \(d > 2 \). Then,

\[\liminf_{L \to \infty} \frac{1}{|T_L^o|} \sum_{x \in T_L^o} \Xi_L(x) \geq \frac{1}{2d} \left(1 - \frac{r_d}{2} \right). \quad (2.3) \]

Moreover, for any \(\varphi \in \left(0, \frac{1}{2d} \left(1 - \frac{r_d}{2} \right)\right)\), there exists an (explicit) constant \(c_1 = c_1(\varphi, d) \in (0, \frac{1}{2}) \) such that for any large enough \(L \in 2\mathbb{N} \) and any odd integer \(n \in (0, c_1 L) \),

\[\Xi_L(n e_1) \geq \varphi. \quad (2.4) \]

An exact computation made by Watson [52] shows that \(0.51 < r_d < 0.52 \) when \(d = 3 \) and from the Rayleigh monotonicity principle [46] we deduce that \(r_d \) is non-increasing with \(d \). Thus, the Cesáro sum in (2.3) is bounded away from zero uniformly for large \(L \) for any \(d > 2 \). Contrary to this, when \(d = 2 \) such a sum converges to zero with the system size \(L \) [16]. From the general site-monotonicity properties which were derived in [43, Remark 2.5] we deduce that,

\[\forall L \in 2\mathbb{N}, \quad \forall x \in T_L, \quad \Xi_L(x) \leq \frac{1}{2d}. \quad (2.5) \]

Since \(r_d = O(\frac{1}{d}) \), our lower bound in (2.3) gets closer to the point-wise upper bound (2.5) as the dimension increases. Hence, the larger is the dimension, the more uniform is the correlation between

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig2.png}
\caption{Left: A dimer cover in \(\mathcal{D}(\emptyset) \). Centre: A dimer cover in \(\mathcal{D}\{o, z\}\). Right: superposition of the dimer cover on the left and the dimer cover in the centre.}
\end{figure}
monomers across the odd sites of the torus. For \(x \in \mathbb{Z}^d \), define now \(\Xi(x) := \liminf_{L \to \infty} \Xi_{2L}(x) \). Our bound (2.4) and the point-wise upper bound (2.5) imply that, when \(d > 2 \), for any integer \(n \in 2\mathbb{Z} + 1 \),

\[
\frac{1}{2d}(1 - \frac{r_d}{2}) \leq \Xi(n e_i) \leq \frac{1}{2d},
\]

where \(e_i \) is any cartesian vector. Contrary to (2.6), \(\Xi(n e_i) \) was shown by Fisher and Stephenson [25] to decay like \(n^{-\frac{d}{2}} \) when \(d = 2 \). From (2.6) we deduce the asymptotic behaviour of the monomer-monomer correlation in the limit of large dimension, i.e., for any odd integer \(n \),

\[
\Xi(n e_i) = \frac{1}{2d} + O\left(\frac{1}{d^2}\right),
\]

where the error term in the right-hand side is uniform in \(n \).

Lattice permutations. We now introduce the model of lattice permutations. Recall that \((\mathbb{T}_L, \mathbb{E}_L)\) denotes the torus, with edges connecting nearest neighbour vertices. To begin, for any pair of sites \(x, y \in \mathbb{T}_L \) such that \(x \neq y \), let \(\Omega_{x,y} \) be the set of directed multi-graphs \(\pi = (\mathbb{T}_L, \mathbb{E}_\pi) \) such that: (i) the edges of \(\mathbb{E}_\pi \) connect nearest-neighbour vertices in the torus, (ii) the in- and the out-degree of every vertex in \(\mathbb{T}_L \setminus \{x, y\} \) are equal and their value is either zero or to one, (iii) the out-degree of \(x \) is one and its in-degree is zero, the out-degree of \(y \) is zero and its in-degree is one. This implies that the connected component of the graph \((\mathbb{T}_L, \mathbb{E}_\pi)\) which contains \(x \) is a walk which starts at \(x \) and ends at \(y \) and that any other connected component is either a monomer, a double edge or a loop, which we now define: a walk is a sub-graph which is isomorphic to a simple open curve in \(\mathbb{R}^d \) and it is directed (and self-avoiding), a monomer is a connected component consisting of a single vertex with no edges incident to it, a double edge is a connected component corresponding to a pair of nearest neighbour vertices, \(z, w \in \mathbb{T}_L \), with an edge directed from \(z \) to \(w \) and an edge directed from \(w \) to \(z \); a loop is a sub-graph which is isomorphic to a simple closed curve in \(\mathbb{R}^d \) and it is directed (and self-avoiding).

See also Figure 1 for an example. When \(x = y \), we define \(\Omega_{x,y} \) as the set of directed multi-graphs \(\pi = (\mathbb{T}_L, \mathbb{E}_\pi) \) such that: (i) the edges of \(\mathbb{E}_\pi \) connect nearest-neighbour vertices in the torus, (ii) the in- and the out-degree of every vertex in \(\mathbb{T}_L \setminus \{x\} \) are equal and their value is either zero or one, (iii) the vertex \(x = y \) is a monomer (i.e., the walk is ‘degenerate’, namely it consists of just one vertex and no edges). We define the configuration space \(\Omega := \cup_{x \in \mathbb{T}_L} \Omega_{x,x} \). Each such \(\pi \in \Omega \) can be viewed as a system of monomers, loops and double edges with a walk which starts from the origin and ends at one unspecified vertex of the torus and all these objects are mutually disjoint. For any \(\pi \in \Omega \), let \(\mathcal{M}(\pi) \) be the number of monomers of \(\pi \). Furthermore, for any \(\pi \in \Omega \), let \(\mathcal{L}(\pi) \) be the number of loops and double edges in \(\pi \). We introduce the probability measure \(\mathbb{P}_{L,N,\rho} \) in \(\Omega \), which depends on two parameters \(\rho \in [0, \infty) \), the monomer activity, and \(N \in [0, \infty) \), the number of colours, as follows:

\[
\forall \pi \in \Omega \quad \mathbb{P}_{L,N,\rho}(\pi) := \frac{\rho^{\mathcal{M}(\pi)} (\frac{N}{\tau})^{\mathcal{L}(\pi)}}{Z_{L,N,\rho}},
\]

where \(Z_{L,N,\rho} \) is a normalisation constant. Let \(X : \Omega \to \mathbb{T}_L \) be the end-point of the walk, which we call target point. More precisely, for any \(\pi \in \Omega \), we define \(X(\pi) \in \mathbb{T}_L \) as the unique vertex such that \(\pi \in \Omega_{x,X(\pi)} \). It is known that, if the monomer activity is is large enough, the length of the walk admits uniformly bounded exponential moments [6, 47]. This implies that the distance between the target point and the origin does not grow unboundedly with the size of the system. Our Theorem 2.2 below states that, contrary to the case of high monomer activity, when the monomer activity is zero, the distance between the target point and the origin grows with the size of the system and scales linearly with the diameter of the box. In other words, a phase transition takes place at a finite, possibly zero value of the monomer activity. Recall that \(r_d \) is the expected number of returns of a simple random walk in \(\mathbb{Z}^d \) and recall also the properties of \(r_d \) which were stated above.

Theorem 2.2. Suppose that \(d > 2 \) and that \(N \) is an integer in \((0, \frac{1}{r_d})\). There exists an (explicit) constant \(c_2 = c_2(N, d) \in (0, \infty) \) such that for any large enough \(L \in 2\mathbb{N} \),

\[
\forall A \subset \mathbb{T}_L, \quad \mathbb{P}_{L,N,0}(X \in A) \leq c_2 \frac{|A|}{L^d}.
\]
For example, by choosing $A = T_{[\epsilon L]}$ for a small enough ϵ, we see that with uniformly positive probability the target point is at a distance at least ϵL from the origin. The restriction of our result to not-too-large values of N is not a limitation of our technique: It was shown by Chayes et al. [14] that, in any dimension $d \geq 2$, if N is a large enough integer, the loop length admits uniformly bounded exponential moments for any value $\rho \in [0, \infty)$ (in [14] a different setting than ours is considered, with only loops, which are allowed to overlap a bounded number of times, and no walk; the proof of [14] can be adapted to our setting implying that length of the self-avoiding walk does not grow unboundedly with the size of the system and admits uniformly bounded exponential moments). Hence, not only we prove the occurrence of a phase transition with respect to the variation of ρ with the size of the system and admits uniformly bounded exponential moments). Hence, not only do we prove the occurrence of a phase transition with respect to the variation of ρ for integer values $N \in (0, \frac{1}{r_d})$, but we also prove the occurrence of a phase transition with respect to the variation of N when we fix $\rho = 0$.

Uniform positivity. Our third main theorem, Theorem 2.3 below, can be viewed as a generalisation of Theorem 2.1 and states that the two point function of lattice permutations is bounded away from zero point-wise when the points lie along the same cartesian axis and ‘on average’ across all points, uniformly with respect to the system size. To define the two-point function we need to introduce the set of multi-graphs Ω^ℓ, whose connected components are loops, double edges or monomers and no walk is present. Thus, let Ω^ℓ be the set of directed multi-graphs $\pi = (\mathbb{T}_L, E_\pi)$ such that: (i) the edges connect nearest-neighbour vertices in the torus and, (ii) the in- and the out-degree of every vertex in \mathbb{T}_L are equal and their value is either zero or one.\(^2\) It follows from this definition that every connected component of the graph $\pi \in \Omega^\ell$ is either a monomer, a loop or a double edge, which we defined before. We extend the definition of the number of monomers, $\mathcal{M}(\pi)$, and of the number of loops and double edges, $\mathcal{L}(\pi)$, which were provided before, to the graphs $\pi \in \Omega^\ell$. For any $L \in \mathbb{N}$, $\rho, N \in [0, \infty)$, we define the loop partition function,

$$Z_{L,N,\rho}^\ell := \sum_{\pi \in \Omega^\ell} \rho^{\mathcal{M}(\pi)} \left(\frac{N}{2}\right)^{\mathcal{L}(\pi)},$$

and, for any $x, y \in \mathbb{T}_L$, we define the directed partition function,

$$Z_{L,N,\rho}(x, y) := \sum_{\pi \in \Omega_{x,y}} \rho^{\mathcal{M}(\pi)} \left(\frac{N}{2}\right)^{\mathcal{L}(\pi)},$$

Finally, we define the two point function,

$$G_{L,N,\rho}(x, y) := \frac{Z_{L,N,\rho}(x, y)}{Z_{L,N,\rho}^2},$$

and we define $G_{L,N,\rho}(x) := G_{L,N,\rho}(o, x)$. In the special case of $N = 2$ and $\rho = 0$, the two-point function of lattice permutations corresponds to the monomer-monomer correlation function of the dimer model,

$$\forall x \in \mathbb{T}_L \quad G_{L,2,0}(x) = \Xi_L(x).$$

Indeed, as we prove in (3.11) below, the set of configurations which are obtained by superimposing two independent dimer covers, like in Figure 2, are in a one-to-one correspondence with the set of fully-packed lattice permutations and this leads to (2.12). In light of (2.12), our Theorem 2.3 below, which holds for arbitrary (not necessarily equal to 2) integers N, can be viewed as a generalisation of Theorem 2.1.

Theorem 2.3. Suppose that $d > 2$ and that N is an integer in $(0, \frac{4}{r_d})$. Then,

$$\liminf_{L \to \infty} \frac{1}{|T_L|^2} \sum_{x \in \mathbb{T}_L} G_{L,2,0}(x) \geq \frac{1}{2d} \left(\frac{2}{N} - \frac{r_d}{2}\right).$$

\(^2\)Alternatively, Ω^ℓ could be defined as the set of permutations of the elements of \mathbb{T}_L such that every vertex is mapped either to itself or to a nearest neighbour, the same as in [6]. Here we keep the name ‘permutations’, but we define the realisations as multi-graphs.
Moreover, for any $\varphi \in \left(0, \frac{1}{2N}\left(\frac{2}{N} - \frac{r_d}{d}\right)\right)$, there exists an (explicit) constant $c_3 = c_3(\varphi, d, N) \in (0, \frac{1}{2})$ such that for any large enough $L \in 2^N$ and any odd integer $n \in (0, c_3 L)$,
\begin{equation}
G_{L,N,0}(n e_1) \geq \varphi. \tag{2.14}
\end{equation}

Similarly to the case of the dimer model, from the site-monotonicity properties which were derived in [43] we deduce that, for any integer $N \in \mathbb{N}_{>0}$ and any $\rho \in [0, \infty)$,
\begin{equation}
\forall x \in T_L \quad G_{L,N,\rho}(x) \leq \frac{1}{dN}. \tag{2.15}
\end{equation}

Since $r_d = O(\frac{1}{d})$, our uniform lower bound on the average (2.13) and the uniform point-wise upper bound (2.15) on the two-point function get closer to each other as d is larger. From this we deduce that, the larger is the dimension, the more uniform is the distribution of the target point across the sites of the torus.

3 Proof description

Most of the paper is devoted to the proof of (2.13), from which all our main results follow. The proof of (2.13) is divided into two main parts. The first part is devoted to the derivation of the Key Inequality, Theorem 3.1 below, from the analysis of a general soup of loops and walks, to which we refer as random path model. The random path model was introduced in [43] and it is a generalisation of the random wire model [3], which, in turn, can be viewed as a reformulation of the random walk representation of the spin $O(N)$ model [13]. In [43] it was shown that the random path model satisfies the important property of reflection positivity (which will be stated later). The property of reflection positivity for random loop models was used also in [14, 42, 51]. However, in such works the additional structures which allow the derivation of the Key Inequality directly from the space of loops and walks (i.e., without employing any spin representation) have not been introduced. The most important technical novelty of this paper is the introduction of such structures. This allows the extension of the method of [28, 30] to random loop models for which no spin representation exists or is easy to derive, for example lattice permutations (and, consequently, the dimer model). More precisely, our analysis involves the study of the random path model with appropriate weights in an ‘extended’ graph, which is obtained from the original torus by adding ‘virtual’ vertices on the ‘top’ of each vertex of the ‘original’ torus; such virtual vertices serve as a source for the walks, and the walks get a different weight depending on where they start from; the whole setting is designed in such a way that the reflection positivity property, which was proved to hold true in the torus [43], is preserved.

The second part is devoted to the derivation of a version of the so-called infrared bound from such a Key Inequality. Here we use Fourier transforms similarly to the case of spin systems with continuous symmetry [28, 29, 30], in which case the two point function corresponds to the correlation between two spins. Our analysis differs from such a classical case for some non-trivial aspects. The most important difference is that, in our case, the two-point function vanishes at any even site as $\rho \to 0$. In other words, the model exhibits a sort of anti-ferromagnetic ordering, similarly to [22]. This introduces some difficulties which are overcome by exploiting the different symmetry properties of the Fourier odd and even two point functions (which will be introduced later) with respect to appropriate translations in the (Fourier) dual torus.

We now describe the two parts of the proof in greater detail and state Theorem 3.1 and Lemma 3.3. In the third and last subsection, we present the (short) proof of Theorem 2.1 given Theorem 2.3.

3.1 Description of part I: Derivation of the Key Inequality

The first part of the proof, which is presented in Section 4, is devoted to the derivation of Theorem 3.1, which is stated below. For an arbitrary vector of real numbers, $v = (v_z)_{z \in T_L}$, define the discrete
Laplacian of \(v \),
\[
\forall x \in \mathbb{T}_L \quad (\Delta v)_x := \sum_{y \sim x} (v_y - v_x).
\] (3.1)

Theorem 3.1 (Key Inequality). For any \(N \in \mathbb{N}_{>0} \), \(\rho \in \mathbb{R}_{\geq 0} \), \(L \in 2\mathbb{N}_{>0} \), any real-valued vector \(v = (v_z)_{z \in \mathbb{T}_L} \), we have that,
\[
\sum_{x,y \in \mathbb{T}_L} \mathbb{G}_{L,N,\rho}(x,y)(\Delta v)_x (\Delta v)_y \leq \sum_{\{x,y\} \in \mathbb{E}_L} (v_y - v_x)^2.
\] (3.2)

The proof of Theorem 3.1 uses several ingredients which we now describe informally. We deal with the random path model, namely a probabilistic model of coloured closed and open paths, which interact at sites through a weight function, which will be denoted by \(U \). The model depends on an edge parameter \(\lambda \in [0,\infty) \) which, informally, has the effect of increasing the typical length of the paths as \(\lambda \) is larger.

We introduce a new setting which is reminiscent of the random current representation of the Ising model [18]. Such a setting involves the random path model on a graph \((\mathbb{T}_L, \mathbb{E}_L)\), which is obtained from the torus \((\mathbb{T}_L, \mathbb{E}_L)\) by adding a new vertex (which will be referred to as virtual) on the top of each vertex in \(\mathbb{T}_L \) and by connecting such a new vertex to the one which is below it by an edge, like in Figure 3. We refer to such a new graph \((\mathbb{T}_L, \mathbb{E}_L)\) as extended torus and to the graph \((\mathbb{T}_L, \mathbb{E}_L) \subset (\mathbb{T}_L, \mathbb{E}_L)\), which was defined previously, as original torus. Virtual vertices play the role of sources for open paths and closed paths are not allowed to ‘touch’ any virtual vertex. Such a setting is designed in such a way that the measure associated to the random path model on such a graph satisfies two fundamental properties at the same time. The first fundamental property is reflection positivity. The second fundamental property involves a central quantity, \(Z_{L,N,\lambda,U}(v) \), where \(v = (v_z)_{z \in \mathbb{T}_L} \) is an array of real numbers, with each number being associated to a vertex of the original torus. The quantity \(Z_{L,N,\lambda,U}(v) \) is defined as the average of a function which assigns a multiplicative weight \(v_z \) every time that a walk starts (or ends) at a vertex of the original torus \(z \in \mathbb{T}_L \) and a multiplicative weight \(-2dv_z \) every time that a walk starts (or ends) at the virtual vertex which is ‘on the top’ of \(z \in \mathbb{T}_L \).

A fundamental property is stated in (3.3) below and involves the infinitesimal variation of the function \(Z_{L,N,\lambda,U}(v) \) around the point \(v = 0 \) when a specific choice of the weight function, \(U = H \), is made. More precisely, for an arbitrary choice of \(v \in \mathbb{R}^{\mathbb{T}_L} \) and \(\varphi \in \mathbb{R} \), in the limit as \(\varphi \to 0 \)
\[
Z_{L,N,\lambda,H}(\varphi v) = \lambda^{|\mathbb{T}_L|} Z_{L,N,1/\lambda}^\ell - \varphi^2 \frac{\lambda N}{2} \lambda^{|\mathbb{T}_L|} Z_{L,N,1/\lambda}^\ell \sum_{\{x,y\} \in \mathbb{E}_L} (v_y - v_x)^2
\]
\[
+ \varphi^2 \frac{\lambda N}{2} \lambda^{|\mathbb{T}_L|} \sum_{x,y \in \mathbb{T}_L} Z_{L,N,1/\lambda}^{\ell}(x,y)(\Delta v)_x (\Delta v)_y + o(\varphi^2).
\] (3.3)

To derive (3.3) we introduce a map which maps configurations of the random path model to configurations of lattice permutations and compare their weights. Here we use in an essential way the structure of the extended torus: the walks which enter into the original torus from a virtual vertex are weighted differently than the walks which start from the vertex of the original torus and the weights are chosen appropriately so that we get the discrete Laplacians and the sum involving factors \((v_y - v_x)^2 \) in (3.3). Also the properties of the random path model and of the weight function \(H \), which allows the walk to be vertex-self-avoiding at every vertex except for its end-points, are used in an essential way. We refer to this central step of the proof as Polynomial expansion. The reason why the expansion (3.3) is so important is that it is possible to deduce the Key Inequality by showing that, for any vector \(v \in \mathbb{R}^{\mathbb{T}_L} \), the term of order \(O(\varphi^2) \) in (3.3) is non-positive. Indeed, the reader can verify that, from the non-positivity of the term of order \(O(\varphi^2) \) and from the definition of two-point function, (2.11), Theorem 3.1 follows immediately after dividing the whole expression by \(\frac{\lambda N}{2} \lambda^{|\mathbb{T}_L|} Z_{L,N,1/\lambda}^{\ell} \).

It is for the proof of such a concavity property of the function \(Z_{L,N,\lambda,H}(v) \) that we use reflection positivity. More precisely, such a concavity property follows from an iterative use of reflections, which
leads by reflection positivity to the Chessboard estimate,
\[
Z_{L,N,\lambda,U}(v) \leq \left(\prod_{x \in T_L} Z_{L,N,\lambda,U}(v^x) \right)^{1/|T_L|},
\]
(3.4)
where \(v^x = (v^x_z)_{z \in T_L}\) is a vector which is obtained from \(v := (v_z)_{z \in T_L}\) by copying the value \(v_x\) at each original vertex. Since for each \(x \in T_L\), the term of order \(O(\varphi^2)\) is zero when we look at the vectors \(v^x\), i.e,
\[
Z_{L,N,\lambda,H}(\varphi v^x) = \lambda^{\frac{|T_L|}{2}} Z_{L,N,\lambda_1} + o(\varphi^2),
\]
(3.5)
we deduce from (3.3), (3.4), and (3.5) and from a Taylor expansion of the root in (3.4) that the term of order \(O(\varphi^2)\) in (3.3) is non-positive. This is the desired concavity property.

Remark 3.2. The random path model, which depends on an arbitrary weight function \(U\), is related by the expansion (3.3) to lattice permutations when a specific choice for \(U\) is made. Our method can be adapted to any weight function \(U\) satisfying the general assumptions in Definitions 4.1 and 4.2 below. For example, there exists a special choice of the weight function \(U\) which satisfies such assumptions such that the random path model is a representation of the spin \(O(N)\) model [3, 43] and our method can be used to derive the famous result of Fröhlich, Simon and Spencer [28], which involves the spin \(O(N)\) model, directly from its representation as a random loop model. Our method can also be adapted to random path models with weight function \(U\) for which no spin representation is known, for example lattice permutations and the dimer model, and it can thus be viewed as an extension of [28].

3.2 Description of part II: Derivation of a version of the Infrared bound

We now give a brief overview to the second part of the proof, which is presented in Section 5 and uses Fourier transforms. To begin, we define the dual torus,
\[
T_L^* := \left\{ \frac{2\pi}{L} (n_1, \ldots, n_d) \in \mathbb{R}^d : n_i \in (-\frac{L}{2}, \frac{L}{2}] \cap \mathbb{Z} \right\}.
\]
We denote the elements of \(T_L^*\) by \(k = (k_1, \ldots, k_d)\) and we keep using the notation \(o\) for \((0, \ldots, 0) \in T_L\) or \((0, \ldots, 0) \in T_L^*\). Given a function \(f \in l^2(T_L)\), we define its Fourier transform,
\[
\forall k \in T_L^*, \quad \hat{f}(k) := \sum_{x \in T_L} e^{-ik \cdot x} f(x).
\]
(3.6)
It follows from this definition that,
\[
\forall x \in T_L, \quad f(x) = \frac{1}{|T_L|} \sum_{k \in T_L^*} e^{ik \cdot x} \hat{f}(k).
\]
(3.7)
The next lemma, which will be proved in the appendix of this paper and which is an immediate consequence of (3.6) and of (3.7), allows us to explain the strategy of the proof.

Lemma 3.3. Define the Fourier mode \(p := (\pi, \pi, \ldots, \pi) \in \mathbb{T}_L^\ast \). We have that, for any \(L \in \mathbb{N}_{>0} \), \(\rho, N \in [0, \infty) \),

\[
\frac{2}{|T_L|} \sum_{x \in T_L} G_{L,N,\rho}(x) = G_{L,N,\rho}(e_1) - \frac{1}{|T_L|} \sum_{k \in T_L \setminus \{o,p\}} e^{ik \cdot e_1} \hat{G}_{L,N,\rho}(k). \tag{3.8}
\]

The goal is to bound away from zero uniformly in \(L \) the quantity in the left-hand side of (3.8), obtaining (2.13). This quantity corresponds to the difference between the \((0, \ldots, 0) \) and the \((\pi, \ldots, \pi) \) Fourier mode of the two point function (note that the sum involves only odd vertices). When \(\rho = 0 \), the first term in the right-hand side of (3.8) satisfies

\[
G_{L,N,0}(e_1) = \frac{1}{dN}, \tag{3.9}
\]

for any even \(L \), as we prove in Section 6 (and it is easy to show). Section 5 is devoted to showing that, uniformly in \(L \),

\[
\limsup_{L \to \infty} \frac{1}{|T_L|} \sum_{k \in T_L \setminus \{o,p\}} e^{ik \cdot e_1} \hat{G}_{L,N,0}(k) \leq \frac{r_d}{4d}. \tag{3.10}
\]

This is the point where we use the Key Inequality under specific choices of the vector \(v \), and the symmetry properties of the Fourier even and odd two-point functions (which will be defined below) and we make use of the assumption \(\rho = 0 \) in a crucial way. By replacing (3.9) and (3.10) in (3.8) we obtain the desired uniform lower bound for the Cesàro sum, (2.13). Fortunately for us the numerical value of the quantity \(r_d \), which was computed exactly and rigorously by Watson [52] when \(d = 3 \), is small enough to imply by monotonicity non-trivial results for any \(d \geq 3 \). Indeed, contrary to the spin systems case, where a factor \(\frac{1}{\beta} \) in the right-hand side of ‘the analogous of’ (3.10) makes the bound better and better as one takes the inverse temperature parameter \(\beta \) (which appears in the definition of such spin systems) larger, in our case the bound does not improve arbitrarily by taking \(\rho \) arbitrarily close to zero (and there is no reason to expect it should be the case), hence there is no way to ensure a priori that the method will lead to non-trivial results until one derives the optimal constant \(\frac{r_d}{4d} \) and proves that such a constant is strictly less than (3.9) for a non-empty range of strictly positive integers \(N \) in any dimension \(d \geq 3 \). We refer to Remark 5.2 for further general comments on this part of the proof and for a comparison with the classical case of spin systems with continuous symmetry.

3.3 From lattice permutations to dimers: proof of Theorem 2.1 given Theorem 2.3

We now prove (2.12) formally. This will be the last time the dimer model appears in this paper, since our main result on the dimer model follows from its representation as a ‘fully-packed’ lattice permutation model in the special case \(N = 2 \), and the next sections are devoted to the study of lattice permutations. In such a special case, lattice permutations can be viewed as a different formulation of the double dimer model [17, 41]). Here, by ‘fully-packed’ \(\pi \) we mean that \(\pi \) is such that \(M(\pi) = 0 \).

Proof of (2.12). We claim that there exist two bijections,

\[
\Pi^1 : \mathcal{D}(\emptyset) \times \mathcal{D}(\{o,z\}) \mapsto \{ \pi \in \Omega_{o,z} : \mathcal{M}(\pi) = 0 \}
\]

\[
\Pi^2 : \mathcal{D}(\emptyset) \times \mathcal{D}(\emptyset) \mapsto \{ \pi \in \Omega^\ell : \mathcal{M}(\pi) = 0 \}.
\]

Indeed, note the following: If we superimpose two dimer covers, \(\eta^1 \in \mathcal{D}(\emptyset) \), \(\eta^2 \in \mathcal{D}(\{o,z\}) \), which we call blue and red respectively, we obtain a system of mutually-disjoint self-avoiding loops, double dimers and a self-avoiding walk from \(o \) to \(z \), like in Figure 2, where the double dimer corresponds
two bijections, we deduce that

\[\forall z \in \mathbb{T}_L \quad G_{L,2,0}(o,z) = \frac{|\{ \pi \in \Omega_{o,z} : \mathcal{M}(\pi) = 0 \}|}{|\{ \pi \in \Omega : \mathcal{M}(\pi) = 0 \}|} = \frac{|\mathcal{D}(\{o,z\})||\mathcal{D}(\emptyset)|}{|\mathcal{D}(\emptyset)|^2} = \Xi_L(z), \quad (3.11) \]

This leads to our claim. \(\square \)

Proof of Theorem 2.1 given Theorem 2.3. Apply Theorem 2.3 when \(N = 2 \). By (2.12), we deduce Theorem 2.1. \(\square \)

Notation

- \(e \)
- \(G = (V, E) \)
- \(e \in E \) or \(\{x, y\} \in \mathcal{E} \)
- \((x, y) \in \mathcal{E} \)
- \((\mathbb{T}_L, \mathbb{E}_L) \)
- \((\mathbb{T}_L^{(2)}, \mathbb{E}_L) \)
- \(\mathbb{T}_L^{(2)} \subset \mathbb{T}_L \)
- \(\mathbb{T}_L \)
- \(o \in \mathbb{T}_L, o \in \mathbb{T}_L \) or \(o \in \mathbb{T}_L \)
- \(x \sim y \)
- \(N \in \mathbb{N}_{>0}, \lambda, \rho \in \mathbb{R}_{\geq 0} \)
- \(U = (U_x)_{x \in V} \)
- \(m = (m_e)_{e \in \mathcal{E}} \)
- \(c = (c_e)_{e \in \mathcal{E}} \)
- \(\gamma = (\gamma_x)_{x \in V} \)
- \(\mathcal{W}_G \)
- \(n_x \)
- \(u_x \)
- \(\mathcal{Z}_{L,N,\rho} \)
- \(\mathcal{W}_L^{(2)} \)
- \(\mathcal{Y}_{L,N,\rho}(x,y) \)
- \(\mathcal{Y}_{L,N,\lambda}(x,y) \)
- \(\mathcal{Y}_{L,N}(x,y) \)
- \(\mathbb{G}_{L,N,\rho}(x) \)
- \(\mathbb{G}_{L,N,\lambda}(x) \)
- \(\hat{\mathbb{G}}_{L,N,\rho}(k) \)
- \(v = (v_x)_{x \in \mathbb{T}_L} \)
- \(h = (h_x)_{x \in \mathbb{T}_L} \)
- \(Z_{L,N,\lambda,U}(h) \)
- \(Z_{L,N,\lambda,U}^{(2)}(h) \)

- \(e_i \) cartesian vector, with \(i \in \{1, \ldots d\} \) or \(i \in \{1, \ldots d + 1\} \)
- an undirected, simple, finite graph
- undirected edges
- edge directed from \(x \) to \(y \)
- graph corresponding to the torus \(\mathbb{Z}^d / L \mathbb{Z}^d \)
- extended torus, with original and virtual vertices
- set of virtual vertices
- Fourier dual torus
- origin
- pair of vertices in \(\mathbb{T}_L \) which are connected by an edge in \(\mathbb{E}_L \)
- respectively number of colours, edge-parameter, and monomer activity
- weight function
- link cardinalities, with \(m_e \) corresponding number of links on the edge \(e \)
- link colourings, with \(c_e : \{1, \ldots, m_e\} \rightarrow \{1, \ldots, N\} \)
- pairings, with \(\gamma_x \) pairing the links touching the vertex \(x \)
- the set of configurations in \(\mathcal{G} \), with \(w = (m, c, \gamma) \in \mathcal{W}_G \)
- number of pairings at \(x \)
- number of links touching \(x \) which are unpaired at \(x \)
- loop partition function
- loop partition function times an appropriate constant
- directed partition function
- directed partition function times an appropriate constant
- two-point function
- equivalent to \(\hat{\mathbb{G}}_{L,N,\rho}(o,x) \)
- Fourier transform of \(\mathbb{G}_{L,N,\rho}(x) \)
- real-valued vector, with coordinates associated to \(\mathbb{T}_L \)
- vector of real numbers, with coordinates associated to \(\mathbb{T}_L \)
- partition function with links unpaired at \(x \) receiving a multiplicative weight \(h_x \)
- second term of the polynomial expansion
Figure 4: A configuration \(w = (m, c, \gamma) \in \mathcal{W}_G \), where \(G \) corresponds to the graph \(\{1, 2, 3\} \times \{1, 2, 3\} \) with edges connecting nearest neighbours and the lowest leftmost vertex corresponds to \((1,1)\). On every edge \(e \), the links are ordered and receive a label from 1 to \(m_e \). In the figure, the numbers 1, 2, ... are used for the identification of the links and the letters \(b \) and \(r \) are used for the colours which are assigned to the links by \(c \) (we assume that \(N = 2 \) and that each link might be either blue or red). Paired links are connected by a dotted line. For example, the first link on the edge connecting the vertices \((1,1), (2,1)\) is coloured by red and it is paired at \((1,1)\) with the third link on the same edge and it is unpaired at \((2,1)\). Moreover, both links touching the vertex \((3,3)\) are red and they are unpaired at \((3,3)\). Finally, no link is on the edge which connects the vertices \((1,2), (2,2)\).

4 Derivation of the Key Inequality

This section is devoted to the proof of Theorem 3.1. Before starting, it will be convenient introducing a different parametrisation of the partition functions. More precisely, let \(x,y \in \mathbb{T}_L \) be arbitrary vertices, for any \(\pi \in \Omega^\ell \) or \(\pi \in \Omega_{x,y} \), define \(\mathcal{H}(\pi) := |E_\pi| \), the number of directed edges in the graph \(\pi = (\mathbb{T}_L, E_\pi) \). Define the edge parameter \(\lambda \geq 0 \) and define the partition functions parametrised by \(\lambda \),

\[
Y_{\ell,L,N,\lambda} := \sum_{\pi \in \Omega^\ell} \lambda^{|\mathcal{H}(\pi)|} \left(\frac{N}{2} \right)^{|\mathcal{C}(\pi)|}, \quad Y_{L,N,\lambda}(x,y) := \sum_{\pi \in \Omega_{x,y}} \lambda^{|\mathcal{H}(\pi)|} \left(\frac{N}{2} \right)^{|\mathcal{C}(\pi)|},
\]

which for any \(\lambda \in (0, \infty) \) and \(L \in 2\mathbb{N} \) are related to the partition functions (2.9) and (2.10) by

\[
Y_{\ell,L,N,\lambda} = \lambda^{\mathbb{Z}_{L,N,\lambda}} \mathcal{Z}_{L,N,\lambda}, \quad Y_{L,N,\lambda}(x,y) = \lambda^{\mathbb{Z}_{L,N,\lambda} - 1} \mathcal{Z}_{L,N,\lambda}(x,y),
\]

(for this, we use that \(\mathcal{H}(\pi) + \mathcal{M}(\pi) = |\mathbb{T}_L| \) if \(\pi \in \Omega^\ell \) and that \(\mathcal{H}(\pi) + \mathcal{M}(\pi) = |\mathbb{T}_L| - 1 \) if \(\pi \in \Omega \)) and thus satisfy for any \(\lambda \in (0, \infty) \),

\[
\mathbb{G}_{L,N,\lambda}(x,y) = \frac{\lambda Y_{L,N,\lambda}(x,y)}{Y_{\ell,L,N,\lambda}}.
\]

The edge parameter \(\lambda \) will play a similar role to the inverse temperature in spin systems.

4.1 The random path model

In this section we introduce the random path model in an arbitrary graph (this section is similar to Section 2.1 in [43]). Let \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \) be an undirected, simple, finite graph, and assume that \(N \in \mathbb{N}_{>0} \). We refer to \(N \) as the number of colours. A realisation of the random path model can be viewed as a collection of undirected paths (which might be closed or open).
Links, colourings, pairings. To define a realisation we need to introduce links, colourings and pairings. We represent a link configuration by \(m \in M_G := \mathbb{N}^E \). More specifically
\[
m = (m_e)_{e \in E},
\]
where \(m_e \in \mathbb{N} \) represents the number of links on the edge \(e \). Intuitively, a link represents a ‘visit’ at the edge from a path. The links are ordered and receive a label between 1 and \(m_e \). See also Figure 4. No constraint concerning the parity of \(m_e \) is introduced. If a link is on the edge \(e = \{x, y\} \), then we say that it touches \(x \) and \(y \).

Given a link configuration \(m \in M_G \), a colouring \(c \in C_G(m) := \{1, \ldots, N\}^m \) is a realisation which assigns an integer in \(\{1, \ldots, N\} \) to each link, which will be called its colour. More precisely,
\[
c = (c_e)_{e \in E},
\]
is such that \(c_e \in \{1, \ldots, N\}^{m_e} \), where \(c_e(p) \in \{1, \ldots, N\} \) is the colour of the \(p \)-th link which on the edge \(e \in E \), with \(p \in \{1, \ldots, m_e\} \). See Figure 4 for an example, where \(N = 2 \) and the colors are represented by a label in \(\{r, b\} \).

Given a link configuration, \(m \in M_G \), and a colouring \(c \in C_G(m) \), a pairing \(\gamma = (\gamma_x)_{x \in V} \) for \(m \) and \(c \) pairs links touching \(x \) in such a way that, if two links are paired, then they have the same colour. A link touching \(x \) can be paired to at most another link touching \(x \), and it is not necessarily the case that all links touching \(x \) are paired to another link at \(x \). If a link touching \(x \) is paired at \(x \) to no other link touching \(x \), then we say that the link is unpaired at \(x \). Given two links, if there exists a vertex \(x \) such that such links are paired at \(x \), then we say that such links are paired. It follows from these definitions that a link can be paired to at most two other links. We remark that, by definition, a link cannot be paired to itself. We denote by \(P_G(m, c) \) the set of all such pairings for \(m \in M_G, c \in C_G(m) \).

A configuration of the random path model is an element \(w = (m, c, \gamma) \) such that \(m \in M_G, c \in C_G(m), \gamma \in P_G(m, c) \). We let \(W_G \) be the set of such configurations. It follows from these definitions that any \(w \in W_G \) can be viewed as a collection of closed and open paths. These will be defined in Section 4.4 formally, and will be divided into four classes: \(\ell \)-loops, double links, \(\ell \)-walks, and segments.

For any \(w = (m, c, \gamma) \in W_G \), we use the notation \(m_e(w) \) for the random variable corresponding to the number of links on the edge \(e \), i.e., the element of the vector \(m = (m_e)_{e \in E} \) such that \(e = e \). For any \(x \in V \), let \(u_x : W_G \mapsto \mathbb{N} \) be the number of links touching \(x \) which are unpaired at \(x \). Moreover, let \(n_x : W_G \mapsto \mathbb{N} \) be the number of pairings at \(x \), namely
\[
n_x(w) := \frac{1}{2} \sum_{(y, z) \in E : y = x} m_{(y, z)}(w) - \frac{u_x(w)}{2}. \tag{4.3}
\]
which corresponds to the number of pairings at \(x \) (i.e., the number of links touching \(x \) and paired at \(x \) to another link divided by two).

Domains, restrictions, measure. We now introduce the notion of domain and restriction and, after that, we introduce reflections. Intuitively, a function with domain \(D \subset V \) is a function which depends only on how \(w \in W_G \) looks in \(D \) or in a subset of \(D \). More precisely, the function might only depend on how many links are emanated from the vertices of \(D \), on the direction in which they are emanated, on which colour they have and on the pairings on vertices in \(D \). A function \(f : W_G \mapsto \mathbb{R} \) has domain \(D \subset V \) if, for any pair of configurations \(w = (m, c, \gamma), w' = (m', c', \gamma') \in W_G \) such that
\[
\forall e \in E : e \cap D \neq \emptyset, \quad \forall z \in D, \quad m_e = m'_e, \quad c_e = c'_e, \quad \gamma_z = \gamma'_z.
\]
one has that \(f(w) = f(w') \). Moreover, for any \(w = (m, c, \gamma) \in W_G \) define the restriction of \(w \) to \(D \subset V \), \(w_D = (m_D, c_D, \gamma_D) \) with \(c_D \in C_G(m_D) \), \(\gamma_D \in P_G(m_D, c_D) \), by
\[
\text{i) } (m_D)_e^t = m_e^t \text{ for any edge } e \in E \text{ which has at least one end-point in } D \text{ and } (m_D)_e^t = 0 \text{ otherwise},
\]
ii) \((c_D)_e = c_e\) for any edge \(e\) which has at least one end-point in \(D\) and \((c_D)_e = \emptyset\) otherwise,

iii) \((\gamma_D)_x = \gamma_x\) for any \(x \in D\), and for \(x \in \mathcal{V} \setminus D\) we set \((\gamma_D)_x\) as the pairing which leaves all links touching \(x\) unpaired (if any).

We now introduce a measure on \(\mathcal{W}_G\).

Definition 4.1. Let \(N \in \mathbb{N}_{>0}\), let \(U = (U_x)_{x \in \mathcal{V}}\) be a sequence of real-valued functions such that, for any \(x \in \mathcal{T}_L\), \(U_x\) has domain \(\{x\}\). We refer to \(U\) as weight function. We introduce the (non-normalised, possibly signed) measure of the random path model on \(\mathcal{W}_G\), which depends on the parameter \(\lambda \in [0, \infty)\) and on the weight function \(U\),

\[
\forall w = (m, c, \gamma) \in \mathcal{W}_G \quad \mu_{G,N,\lambda, U}(w) := \prod_{e \in \mathcal{E}} \left(\frac{\lambda_{m_e}}{m_e!}\right) \prod_{x \in \mathcal{V}} \left(U_x(w)\right)
\]

(4.4)

Given a function \(f : \mathcal{W}_G \rightarrow \mathbb{R}\), we represent its average by \(\mu_{G,N,\lambda, U}(f) = \sum_{w \in \mathcal{W}_G} \mu_{G,N,\lambda, U}(w)f(w)\).

We always assume that the choice of the weight function \(U\) is such that the measure \(\mu_{N,\lambda, U}\) has finite mass. The role played by the normalisation factor \(\frac{1}{m_e!}\) in (4.4) will be explained at the beginning of Section 4.4.1.

4.2 Reflection positivity and virtual vertices

In this section we introduce the extended torus, a graph which is embedded in \(\mathbb{R}^{d+1}\) and contains the torus \((\mathcal{T}_L, \mathcal{E}_L)\), which is embedded in \(\mathbb{R}^d\), and the important notion of reflection positivity. From now on we consider the random path model on such a graph.

Extended torus, virtual and original vertices. Recall that \((\mathcal{T}_L, \mathcal{E}_L)\) was defined as the graph corresponding to a \(d\)-dimensional torus with edges connecting nearest neighbour vertices. We will now view \((\mathcal{T}_L, \mathcal{E}_L)\) as the sub-graph of a larger graph embedded in \(\mathbb{R}^{d+1}\), which will be denoted by \((\mathcal{T}_L, \mathcal{E}_L)\) and will be referred to as extended torus. The extended torus is obtained from the \(d\)-dimensional torus by duplicating the vertex-set and by adding an edge between every vertex in \(\mathcal{T}_L\) and its copy. More precisely, we define the vertex set of the extended torus as,

\[
\mathcal{T}_L := \{ (x_1, \ldots, x_{d+1}) \in \mathbb{Z}^{d+1} : x_i \in (-\frac{L}{2}, \frac{L}{2}] \text{ for every } i \in \{1, \ldots, d\}, \text{ and } x_{d+1} \in \{1, 2\} \},
\]

where \(\mathcal{T}_L = \{ (x_1, \ldots, x_{d+1}) \in \mathcal{T}_L : x_{d+1} = 1 \} \subset \mathcal{T}_L\), and \(\mathcal{T}_L^{(2)} := \mathcal{T}_L \setminus \mathcal{T}_L\). Recall that \(\mathcal{E}_L\) is defined as the set of edges connecting pairs of nearest neighbour vertices and boundary vertices in \(\mathcal{T}_L\) so that the \((\mathcal{T}_L, \mathcal{E}_L)\) can be identified with the \(d\)-dimensional torus and define the edge-set,

\[
\mathcal{E}_L := \mathcal{E}_L \cup \{ \{x, y\} \subset \mathbb{Z}^{d+1} : x \in \mathcal{T}_L, y = x + (0, \ldots, 0, 1) \}.
\]

This defines the extended torus \((\mathcal{T}_L, \mathcal{E}_L)\). We will refer to the vertices in \(\mathcal{T}_L \subset \mathcal{T}_L\) as original and to the vertices in \(\mathcal{T}_L^{(2)} \subset \mathcal{T}_L\) as virtual. From now on, we take \(\mathcal{G} = (\mathcal{T}_L, \mathcal{E}_L)\), for \(L \in \mathbb{N}_{>0}\), and omit the sub-script \(\mathcal{G}\) in all the quantities which were defined above or replace it by \(L\) when appropriate. In this setting we will keep referring to \(o\), corresponding to the vertex \((0, \ldots, 0) \in \mathcal{T}_L \subset \mathcal{T}_L \subset \mathbb{Z}^{d+1}\), as the origin. From now on the current section is an adaptation of [43][Section 3] to the extended torus.

Reflection through edges. Recall that the graph \((\mathcal{T}_L, \mathcal{E}_L)\) is embedded in \(\mathbb{R}^{d+1}\). We say that the plane \(R\) is through the edges of \((\mathcal{T}_L, \mathcal{E}_L)\) if it is orthogonal to one of the cartesian vectors \(\mathbf{e}_i\) for \(i \in \{1, \ldots, d\}\) (and not \(i = d + 1\)) and it intersects the midpoint of \(L^{d-1}\) edges of the graph \((\mathcal{T}_L, \mathcal{E}_L)\), i.e. \(R = \{ z \in \mathbb{R}^{d+1} : z \cdot \mathbf{e}_i = u \}\), for some \(u\) such that \(u - 1/2 \in \mathbb{Z} \cap (-\frac{L}{2}, \frac{L}{2}]\) and \(i \in \{1, \ldots, d\}\). See
Figure 3 for an example. Given such a plane R, we denote by $\Theta : T_L \to T_L$ the reflection operator which reflects the vertices of T_L with respect to R, i.e. for any $x = (x_1, x_2, \ldots, x_{d+1}) \in T_L$,

$$\Theta(x)_k := \begin{cases} x_k & \text{if } k \neq i, \\ 2m - x_k \mod L & \text{if } k = i. \end{cases} \quad (4.5)$$

Let $T_L^+, T_L^- \subset T_L$ be the corresponding partition of the extended torus into two disjoint halves such that $\Theta(T_L^+ \cup T_L^-) = T_L^+ \cup T_L^-$ as in Figure 3. Let $E_L^+, E_L^- \subset E_L$, be the set of edges $\{x, y\}$ with at least one of x, y in T_L^+ respectively T_L^-. Moreover, let $E_L^\pm := E_L^+ \cap E_L^-$. Note that this set contains $2L^{d-1}$ edges, half of them intersecting the plane R, and all of them belonging to E_L^-. Further, let $\Theta : W \to W$ denote the reflection operator reflecting the configuration $w = (m, c, \gamma)$ with respect to R (we commit an abuse of notation by using the same letter). More precisely we define $\Theta w = (\Theta m, \Theta c, \Theta \gamma)$ where $\Theta m = m_{\{x,y\}}, (\Theta c)_{\{x,y\}} = c_{\{x,y\}}, (\Theta \gamma)_{x} = \gamma_{\theta x}$. Given a function $f : W \to \mathbb{R}$, we also use the letter Θ to denote the reflection operator Θ which acts on f as $\Theta f(w) := f(\Theta w)$. We denote by A^\pm the set of functions with domain T_L^\pm and denote by W^\pm the set of configurations $w \in W$ that are obtained as a restriction of some $w' \in W$ to T_L^\pm.

We remark that, although the graph (T_L, E_L) is embedded in \mathbb{R}^{d+1}, we will only consider reflections with respect to reflection planes which are orthogonal to one of the cartesian vectors e_i for $i \in \{1, \ldots, d\}$ (and not $i = d + 1$).

Definition 4.2. The weight function $U = (U_x)_{x \in T_L}$, which was defined in Definition 4.1, is **invariant under reflections** if for any reflection plane R through edges (which is orthogonal to one of the cartesian vectors e_i for $i \in \{1, \ldots, d\}$), it holds that,

$$\forall x \in T_L, \quad \Theta(U_x) = U_{\Theta(x)},$$

where Θ is the reflection operator associated to the reflection plane R.

The next proposition introduces an important tool. The proposition states that the random path model with weight function U satisfying the assumptions in Definition 4.1 and which is invariant under reflections, as defined in Definition 4.2, is reflection positive.

Theorem 4.3 (Reflection positivity). Consider the torus (T_L, E_L) for $L \in 2\mathbb{N}$. Let R be a reflection plane through edges, which is orthogonal to one of the cartesian vectors e_i, $i \in \{1, \ldots, d\}$, let Θ be the corresponding reflection operator. Consider the random path model with $N \in \mathbb{N}_0$, $\lambda \in \mathbb{R}_0$, and weight function U invariant under reflections. For any pair of functions $f, g \in A^+$, we have that,

1. $\mu_{L,N,\lambda,U}(f \Theta g) = \mu_{L,N,\lambda,U}(g \Theta f)$,
2. $\mu_{L,N,\lambda,U}(f \Theta g) \geq 0$.

From this we obtain that,$$
\mu_{L,N,\lambda,U}(f \Theta g) \leq \mu_{L,N,\lambda,U}(f \Theta f)^{\frac{1}{2}} \mu_{L,N,\lambda,U}(g \Theta g)^{\frac{1}{2}}. \quad (4.6)
$$

Proof of Theorem 4.3. This proof is similar to the proof of Proposition 3.2 in [43], the difference is that here we deal with an extended torus in place of the graph (T_L, E_L). To begin we introduce the notion of projection. We denote by W^R the set of configurations $w = (m, c, \gamma)$ such that $m_e = 0$ whenever $e \notin E_L^R$ and, for all $x \in T_L$, γ_x leaves all links touching x unpaired. We also denote by $P_R : W \to W^R$ the projection such that, for any $w = (m, c, \gamma) \in W$, $P_R(w) = (m^R, c^R, \gamma^R)$ is defined as the configuration such that $m_e^R = \mathbb{1}_{\{e \in E_L^R\}} m_e$ and $c_e^R = c_e$ if $e \in E_L^R$ and $c_e^R = 0$ otherwise, and all links are unpaired at every vertex. The following remark will be useful.
Remark 4.4. Recall the definition of restriction which was provided in Section 4.1. Given a triplet of configurations \(w' \in W^R, w_1 \in W^+, w_2 \in W^- \) such that \(P_R(w_1) = P_R(w_2) = w' \), there exists a unique configuration \(w \in W \) such that
\[
w_{T_n^+} = w_1, \quad w_{T_n^-} = w_2, \quad P_R(w) = w'.
\]
This configuration is formed by concatenating \(w_1 \) and \(w_2 \) (concatenation includes the pairing structures of each \(w_j \)).

Through the proof we write \(\mu = \mu_{L,N,\lambda,U} \). To begin, we note that (4.6) follows in the standard way as properties (1) and (2) show that we have a positive semi-definite, symmetric bilinear form. To prove (1) we note that, by Definition 4.1 and due to the symmetries of the torus and the fact that \(U \) is invariant under reflections, \(\mu(w) = \mu(\Theta w) \) for any \(w \in W \). Hence
\[
\mu(f \Theta g) = \sum_{w \in W} f(w) \Theta g(w) \mu(w) = \sum_{\Theta w \in W} f(\Theta w) \Theta g(\Theta w) \mu(w) = \sum_{\Theta w \in W} g(w) \Theta f(\Theta w) \mu(w) = \mu(g \Theta f).
\]
(4.7)

For (2) we condition on the number of links in \(w \) crossing the reflection plane and on their colours. We write
\[
\mu(f \Theta f) = \sum_{w \in W^R} \mu(f; w),
\]
(4.8)
where, for any \(w' \in W^R \),
\[
\mu(f; w') := \sum_{w \in W \atop P_R(w) = w'} f(w) \Theta f(w') \mu(w) = \left(\prod_{e \in E_L^R} \frac{m_e(w')}{{\lambda}_e(m_e(w'))} \right) \sum_{w \in W \atop P_R(w) = w'} f(w) \left(\prod_{e \in E_L^+} \frac{{\lambda}_e(w)}{m_e(w)} \right) \left(\prod_{x \in T_n^+} U_x(w) \right) \Theta f(w) \left(\prod_{e \in E_L^-} \frac{{\lambda}_e(w)}{m_e(w)} \right) \left(\prod_{x \in T_n^-} U_x(w) \right).
\]
(4.9)

Now, any \(w \in W \) such that \(P_R(w) = w' \) uniquely defines \(w_{T_n^\pm} \), the restriction of \(w \) to \(T_n^\pm \). Thus, from Remark 4.4 we deduce that we can split the sum over \(w \in W \) with \(P_R(w) = w' \) as the product of two independent sums and continue:
\[
\mu(f; w') = \left(\prod_{e \in E_L^R} \frac{m_e(w')}{{\lambda}_e(m_e(w'))} \right) \left(\sum_{w_1 \in W^+ \atop P_R(w_1) = w'} f(w_1) \left(\prod_{e \in E_L^+} \frac{{\lambda}_e(w_1)}{m_e(w_1)} \right) \left(\prod_{x \in T_n^+} U_x(w_1) \right) \right)
\] \[
\left(\sum_{w_2 \in W^- \atop P_R(w_2) = w'} \Theta f(w_2) \left(\prod_{e \in E_L^-} \frac{{\lambda}_e(w_2)}{m_e(w_2)} \right) \left(\prod_{x \in T_n^-} U_x(w_2) \right) \right) \]
\[
= \left(\prod_{e \in E_L^R} \frac{m_e(w')}{{\lambda}_e(m_e(w'))} \right) \left(\sum_{w_1 \in W^+ \atop P_R(w_1) = w'} f(w_1) \left(\prod_{e \in E_L^+} \frac{{\lambda}_e(w_1)}{m_e(w_1)} \right) \left(\prod_{x \in T_n^+} U_x(w_1) \right) \right)^2.
\]
(4.10)
The last equality holds true by the symmetry of the extended torus. Since the last expression is non-negative, from (4.8) we conclude the proof of (2) and, thus, the proof of the proposition. \(\square \)
4.3 Chessboard estimate

We now introduce the notion of support. Contrary to the notion of domain, which was introduced in Section 4.2, the notion of support is defined only for subsets of the original torus. We say that the function \(f : W \rightarrow \mathbb{R} \) has support in \(D \subset T_L \) if it has domain in \(D \cup D^{(2)} \), where \(D^{(2)} \) is defined as the set of sites which are ‘on top’ of those in \(D \).

Fix an arbitrary site \(t \in T_L \) and let \(t_0 = o, t_1, ..., t_k = t \) be a self-avoiding nearest-neighbour path from \(o \) to \(t \), and for any \(i \in \{1, ..., k\} \), let \(\Theta_i \) be the reflection with respect to the plane going through the edge \(\{t_{i-1}, t_i\} \). Let \(f \) be a function having support in \(\{o\} \) and define

\[
f^{[t]} := \Theta_k \circ \Theta_{k-1} \circ ... \circ \Theta_1 (f).
\]

Observe that the function \(f^{[t]} \) does not depend on the chosen path (a glance at Figure 5 might be useful).

Proposition 4.5 (Chessboard estimate). Let \(f = (f_t)_{t \in T_L} \) be a sequence of real-valued functions with support \(\{o\} \) each and which are either all bounded or all non-negative. Under the same assumptions as in Theorem 4.3, we have that,

\[
\mu_{L,N,\lambda,U} \left(\prod_{t \in T_L} f^{[t]}_t \right) \leq \left(\prod_{t \in T_L} \mu_{L,N,\lambda,U} \left(\prod_{s \in T_L} f^{[t]}_s \right) \right)^{\frac{1}{|T_L|}}.
\]

The proof of Proposition 4.5 for a measure \(\mu \) satisfying (4.6) is classical and was first presented in [27]. Since we only use reflections with respect to reflection planes which are orthogonal to the cartesian vectors \(e_i, i \in \{1, ..., d\} \) (not \(i = d + 1 \)), virtual vertices play no role in the proof and thus the same proof of [27] applies to our case directly. For the proof of Proposition 4.5 we refer to the original paper [27] or to the overviews [11, Theorem 5.8] or [26, Theorem 10.11]. We now introduce a central quantity.

Definition 4.6 (Central quantity). For any \(L \in \mathbb{N}, \lambda \in \mathbb{R}_{\geq 0}, N \in \mathbb{N}_{>0}, \) any \(U \) as in Definition 4.1, any vector of real numbers \(h = (h_x)_{x \in T_L} \), we define

\[
Z_{L,N,\lambda,U}(h) := \mu_{L,N,\lambda,U} \left(\prod_{x \in T_L} h_x^{u_x} \right)
\]

(4.11)

In other words, the function \(h_x^{u_x} \) in Definition 4.6 assigns a multiplicative factor \(h_x \) to each link touching \(x \) which is unpaired at \(x \). We assume that the weight function \(U \) is such that the quantity (4.11) is finite for any vector \(h \) as in Definition 4.6 and for any \(L \in 2\mathbb{N} \). The next proposition is an immediate consequence of Proposition 4.5.
Proposition 4.7. Fix arbitrary $L \in 2\mathbb{N}$, $\lambda \geq 0$, $N \in \mathbb{N}_{>0}$. Suppose that the weight function U is invariant under reflections. Let $h = (h_z)_{z \in \mathcal{T}_L}$ be a real-valued vector such that $|h_z| \leq 1$ for every $z \in \mathcal{T}_L$. For any $x \in \mathcal{T}_L$ define the new real-valued vector $h^x = (h^x_z)_{z \in \mathcal{T}_L}$ which is obtained from h by copying the value h_x at each original vertex and the value $h_{x+e_{d+1}}$ at each virtual vertex, namely

$$\forall z \in \mathcal{T}_L \quad h^x_z := \begin{cases} h_x & \text{if } z \in \mathcal{T}_L \\ h_{x+e_{d+1}} & \text{if } z \in \mathcal{T}_L^{(2)}. \end{cases}$$

We have that,

$$Z_{L,N,\lambda,U}(h) \leq \left(\prod_{x \in \mathcal{T}_L} Z_{L,N,\lambda,U}(h^x) \right)^{L}. \quad (4.1)$$

Proof. The proof follows from an immediate application of Proposition 4.5. Define,

$$\forall x \in \mathcal{T}_L \quad f_{h,x} := (h_x)^{u_o} (h_{x+e_{d+1}})^{u_{e+e_{d+1}}},$$

note that this function has support $\{o\}$ and which is bounded. Moreover, note that for any $x \in \mathcal{T}_L$,

$$f^{[x]}_{h,x} = (h_x)^{u_x} (h_{x+e_{d+1}})^{u_{x+e_{d+1}}}, \quad (4.12)$$

which has support $\{x\}$. From this we deduce that,

$$Z_{L,N,\lambda,U}(h) = \mu_{L,N,\lambda,U} \left(\prod_{x \in \mathcal{T}_L} f^{[x]}_{h,x} \right)$$

and that, for any $x \in \mathcal{T}_L$,

$$Z_{L,N,\lambda,U}(h^x) = \mu_{L,N,\lambda,U} \left(\prod_{z \in \mathcal{T}_L} f^{[z]}_{h,x} \right)$$

The claim now follows from a direct application of Proposition 4.5. \hfill \square

4.4 Polynomial expansion

This sub-section presents an important step of the proof of the Key Inequality, namely Proposition 4.9 below, which states a relation between the values of any vector h, the partition function $Z(\varphi h)$ in the limit $\varphi \to 0$, where $\varphi \in \mathbb{R}$, and the partition functions which were defined in (4.1). To make this connection we choose an appropriate weight function, which is denoted by H and is introduced in the next definition, and expand $Z_{L,N,\lambda,H}(\varphi h)$ as a polynomial in φ. Recall that n_x denotes the number of pairings at x (i.e. one half the number of links touching x which are paired at x to another link touching x).

Definition 4.8. We define the weight functions, $H = (H_x)_{x \in \mathcal{T}_L}$, as follows:

$$\forall x \in \mathcal{T}_L \quad H_x := \begin{cases} 1 & \text{if } n_x \leq 1, u_x \leq 2, \text{ and no link on } \{x, x + e_{d+1}\} \text{ is unpaired at } x, \\ \frac{1}{2} & \text{if } n_x \leq 1, u_x \leq 2, \text{ and precisely one link on } \{x, x + e_{d+1}\} \text{ is unpaired at } x, \\ 0 & \text{otherwise.} \end{cases} \quad (4.13)$$

$$\forall x \in \mathcal{T}_L^{(2)} \quad H_x := 1_{\{n_x = 0\}} \quad (4.14)$$

Moreover, we define \mathcal{W}^1, the set of configurations $w \in \mathcal{W}$ such that $\prod_{x \in \mathcal{T}_L} H_x(w) > 0$.

Each configuration $w \notin \mathcal{W}^1$ has weight zero under $\mu_{L,N,\lambda,H}$ and thus ignoring it costs nothing. See Figure 6 for an example of two realisations w which are not in \mathcal{W}^1. The upper bound $u_x \leq 2$ in Definition 4.8 is only necessary to guarantee that $|\mathcal{W}^1| < \infty$ and 2 might be replaced by any other
integer greater than two with no effect on the next pages. From the boundedness of \(|W^1|\) we deduce that \(Z_{L,N,\lambda,H}(h) < \infty\) for any \(L \in \mathbb{N}, N, \lambda \in [0, \infty)\), and \(h \in \mathbb{R}^{T_L}\). Note also that \(H_x\) has domain \(\{x\}\) and that \(H = (H_x)_{x \in T_L}\) is invariant under reflections, thus all the results stated in Sections 4.2 and 4.3 apply to \(\mu_{L,N,\lambda,U}\) under the choice of \(U = H\). As we will explain in Section 4.4.1, the choice of \(H\) is such that any closed path in \(w\) lies entirely in the original torus and is vertex-self-avoiding, moreover closed paths are mutually vertex-disjoint (paths will be defined later, but the reader might already try to have an intuition of what they are). Contrary to closed paths, open paths are not entirely vertex-self-avoiding, since they are allowed to touch themselves or other paths at their end-points. The open paths might start (or end) at virtual vertices or at original vertices and they are allowed to touch the virtual vertices only at their end-points. These details and further technical aspects are fundamental for the validity of the next proposition and will be discussed in Section 4.4.1. For the statement of the next proposition recall the definition of the partition functions (4.1).

Proposition 4.9 (Polynomial expansion). For any fixed \(L \in 2\mathbb{N}, N \in \mathbb{N}_{>0}, \lambda \in \mathbb{R}_{>0}\), any vector of real numbers \(h = (h_x)_{x \in T_L}\), and \(\varphi \in \mathbb{R}\), we have that,

\[
Z_{L,N,\lambda,H}(\varphi h) = \mathcal{Y}_{L,N,\lambda} + \varphi^2 Z_{L,N,\lambda,H}^{(2)}(h) + o(\varphi^2),
\]

in the limit as \(\varphi \to 0\), where

\[
Z_{L,N,\lambda,H}^{(2)}(h) := N \lambda \mathcal{Y}_{L,N,\lambda} \left(\left(\sum_{\{x,y\} \in E_L} h_x h_y \right) + \frac{1}{2} \sum_{x \in \mathbb{Z}_L} h_x h_{x+e_1} \right) + N \lambda^2 \frac{1}{2} \sum_{x,y \in \mathbb{Z}_L} \mathcal{Y}_{L,N,\lambda}(x,y) \left(\sum_{q \in T_L : \{x,q\} \in E_L} h_q \right) \left(\sum_{r \in T_L : \{y,r\} \in E_L} h_r \right)
\]

The Key Inequality will follow from a concavity property of the central quantity at \(h = 0\), namely the term of order \(O(\varphi^2)\) in the polynomial expansion is non-positive for a large class of choices of \(h\). Such a concavity property will follow from reflection positivity. Note that the terms in the expansion are slightly different than in (3.3), since here we use the partition functions parametrised by \(\lambda\), which were defined in (4.1), and the entries of the vector \(h\) are associated to the vertices of the extended torus (later we will relate the vector \(h\) to a vector \(v\), whose entries are associated to the vertices of the original torus, obtaining an expression which is similar to (3.3)). The remainder of the current subsection is devoted to the proof of Proposition 4.9. Before presenting the proof, we will provide some definitions and state a preparatory lemma. All the definitions below are functional to the proof of Proposition 4.9. Section 4.5, which contains the proof of Theorem 3.1, can be read independently from what follows below in the current subsection.

Paths. Given \(w \in \mathcal{W}\), we use \(\{(x,y),p\}\) to denote the \(p\)-th link of \(w\) which is on the edge \(\{x,y\}\), with \(p \in \{1, \ldots, m_{(x,y)}(w)\}\). We say that a set of links \(S\) in \(w\),

\[
S = \{\{(x_1,y_1),p_1\}, \{(x_2,y_2),p_2\}, \ldots, \{(x_\ell,y_\ell),p_\ell\}\},
\]
is pairing-connected in \(w \) if, for any pair of links, \((\{x, y\}, p), (\{x', y'\}, p') \in S \), there exists an ordered sequence of links in \(S \), \((\{x_1', y_1'\}, p_1'), (\{x_2', y_2'\}, p_2'), \ldots (\{x_k', y_k'\}, p_k') \) \(\subseteq S \) such that the following two conditions hold at the same time:

(i) \((\{x, y\}, p) = (\{x_1', y_1'\}, p_1') \), and \((\{x', y'\}, p') = (\{x_k', y_k'\}, p_k') \);

(ii) for any \(i \in \{1, \ldots, k - 1\} \), \(y_i' = x_{i+1}' \) and \((\{x_i', y_i'\}, p_i') \) is paired to \((\{x_{i+1}', y_{i+1}'\}, p_{i+1}') \) at \(y_i' = x_{i+1}' \).

Paths are maximal pairing-connected sets. More precisely, a set of links \(S \) of \(w \) is a path in \(w \) if it is pairing-connected and there exists no pairing-connected set of links in \(w, S' \), which is such that \(S' \supset S \) and \(S' \neq S \). It is necessarily the case that all links belonging to the same path have the same colour. For example, the configuration represented in Figure 4 contains seven paths, two of them are coloured by blue and five by red.

\(\ell \)-loops, double links, \(\ell \)-walks, segments, extremal links. We will now distinguish between different types of paths. A path \(S \) of \(w \) is called loop of links, or just \(\ell \)-loop, if it is such that any link \((\{x, y\}, p) \in S \) is paired to another link at both its end-points and \(|S| > 2 \). A path \(S \) of \(w \) is called double link, if it is such that any link \((\{x, y\}, p) \in S \) is paired at both its end-points and \(|S| = 2 \). It is necessarily the case that both links belonging to the double link are on the same edge. A path \(S \) of \(w \) is called walk of links, or just \(\ell \)-walk, if \(|S| > 1 \) and there exist precisely two distinct links in \(S \) such that each of them is unpaired at one end-point and paired at the other end-point. Such two links will be called extremal links for the \(\ell \)-walk or extremal links for \(w \). A path \(S \) of \(w \) is called segment if \(|S| = 1 \). If \(S \) is a segment, then the unique link which belongs to \(S \) is unpaired at both its end points. From these definitions it follows that any path is either a \(\ell \)-loop, a double link, a \(\ell \)-walk, or a segment. There are no other possibilities. For example, the configuration \(w \) in Figure 4 is composed of one \(\ell \)-loop, two double links, three segments, and one \(\ell \)-walk which is composed of two links. The two links belonging to such \(\ell \)-walk are the only two extremal links of the configuration in Figure 4.

Subsets of \(\mathcal{W}^1 \). We now define several subsets of \(\mathcal{W}^1 \subset \mathcal{W} \), where the set \(\mathcal{W}^1 \) was defined in Definition 4.8.

- Let \(\mathcal{A}^\ell \) be the set of realisations \(w \in \mathcal{W}^1 \) such that no path of \(w \) is a \(\ell \)-walk or a segment. In other words, each link of \(w \) is paired at both its end-points. This also means that each path of \(w \in \mathcal{A}^\ell \) is either a \(\ell \)-loop or a double link and, by definition of \(H \), that no link of \(w \in \mathcal{A}^\ell \) is allowed to touch a virtual vertex.

- For any \(\{x, y\} \in \mathcal{E}_L \), let \(\mathcal{A}^s(\{x, y\}) \) be the set of realisations \(w \in \mathcal{W}^1 \) such that one (and not more than one) path of \(w \) is a segment, such a segment is composed of a link which is on the edge \(\{x, y\} \), and no connected component of \(w \) is \(\ell \)-walk. In other words, each link of \(w \) except for the one which belongs to the segment is paired at both its end-points. A realisation \(w \in \mathcal{A}^s(\{x, y\}) \) is represented in Figure 7-left.

- For any pair of (directed, not necessarily distinct) edges \((x, q), (y, r) \in \mathcal{E}_L \), let \(\mathcal{A}^w((x, q), (y, r)) \) be the set of realisations \(w \in \mathcal{W}^1 \) such that the following three conditions hold true at the same time: (1) there exists a unique \(\ell \)-walk in \(w \) (2) the two extremal links of such a walk are on the edges \(\{x, q\}, \{y, r\} \) respectively, one of them is unpaired at \(q \) and the other one is unpaired at \(r \), (3) no path of \(w \) is a segment. These three conditions and the definition of \(H \) imply that the following properties hold for any \(w \in \mathcal{A}^w((x, q), (y, r)) \):

(i) The unique \(\ell \)-walk in \(w \) has end-points \(q \) and \(r \), where \(q \) and \(r \) might coincide (see some examples in Figure 7-right, Figure 8, Figure 9, where \(x \) is taken to be the origin and \(d = 1 \)),

(ii) There are precisely two extremal links, which are on the edges \(\{x, q\} \) and \(\{y, r\} \) respectively (it is possible that \(\{x, q\} = \{y, r\} \)), and all the remaining links are paired at both their end-points.

(iii) Any link of \(w \) which is not extremal is on edges in \(\mathcal{E}_L \).
Lemma 4.10. Under the same assumptions as in Proposition 4.9, for any \(x,y\) represents an edge directed from \(x\) to \(y\), while \(\{x,y\}\) represents a undirected edge.

Proof of Proposition 4.9 given Lemma 4.10. Fix \(L \in 2\mathbb{N}\), \(N \in \mathbb{N}_{>0}\), \(\lambda > 0\) and a vector of real numbers \(h = (h_x)_{x \in \mathcal{T}_2}\). We have that,

\[
Z_{L,N,\lambda,H}(\varphi h) = \sum_{i=0}^{\infty} \varphi^i C_{L,N,\lambda,H}^{(i)}(h),
\]

where

\[
C_{L,N,\lambda,H}^{(i)}(h) := \mu_{L,N,\lambda,H}\left(1_{\{M=i\}}\left(\prod_{z \in \mathcal{T}_L} h_{u_z}\right)\right)
\]

and \(M := \sum_{z \in \mathcal{T}_L} u_z\) is the number of end-points of links which are unpaired in the whole graph. First of all, note that

\[
\forall i \in 2\mathbb{N} + 1 \quad C_{L,N,\lambda,H}^{(i)}(h) = 0.
\]

since any path has either no link with unpaired end-points, or two links with precisely one unpaired end-point each, or one link with two unpaired end-points. Thus, \(M(w)\) is even for any \(w \in \mathcal{W}^1\). Moreover, note that,

\[
C_{L,N,\lambda,H}^{(0)}(h) = \mu_{L,N,\lambda,H}\left(\mathcal{A}^\ell\right) = \lambda L_{L,N,\lambda}^\ell,
\]

where the first identity holds true since \(w \in \{M = 0\}\) if and only if each path of \(w\) is a \(\ell\)-loop or a double link and the second identity follows from Lemma 4.10. Furthermore, note that \(w \in \{M = 2\} \cap \mathcal{W}^1\) if and only if precisely one path of \(w\) is a a segment or a \(\ell\)-walk and all the remaining paths of \(w\) are \(\ell\)-loops or double links. In the next expression, the first term in the right-hand side corresponds to a sum over all possible edges on which the segment might be located, the second term in the right-hand side corresponds to a sum over all (directed) edges on which the extremal links might be located (recall the definitions provided before the statement of Lemma 4.10),

\[
C_{L,N,\lambda,H}^{(2)}(h) = \sum_{\{x,y\} \in \mathcal{E}_L} \mu_{L,N,\lambda,H}(\mathcal{A}^\ell(\{x,y\})) h_x h_y + \sum_{\{(x,q),(y,r)\} \subset \mathcal{E}_L} \mu_{L,N,\lambda,H}(\mathcal{A}^w((x,q),(y,r))) h_q h_r.
\]

Note that the second sum in the right-hand side is over all unordered pairs of (not necessarily distinct) directed edges. Now we apply Lemma 4.10 and we re-write the second term in the right-hand side of
4.4.1 Proof of Lemma 4.10

In this section we prove Lemma 4.10, which is a fundamental step in the proof of the Polynomial expansion. The proof of (4.16) is the easiest. Indeed, our choice of the weight function H imposes that any configuration in the set A^ℓ consists of mutually-vertex-disjoint ℓ-loops and double links which lie entirely in the original torus and these can be identified with loops and double edges of the configurations in Ω^ℓ taking the same positions. The proofs of (4.17) and (4.18) are more elaborate. The proof requires defining a map which maps sets of configurations in Ω^ℓ to sets of configurations in Ω^ℓ and sets of configurations in $A^w((\{x, q\}, (y, r)))$ to sets of configurations in $\Omega_{x,y}$ and consists of a comparison of the weights taken by such sets. Informally the map works as follows: For the proof of (4.17), we take any configuration in $A^\ell(\{x, y\})$ and ‘remove’ the link which is unpaired at both its end-points. Such a removal has a cost λ (whose corresponding factor appears in the right-hand side of (4.17)) and leads to a configuration in A^ℓ. After that, we compare the sets of configurations A^ℓ obtained after such a ‘removal’ with sets of configurations in Ω^ℓ similarly to the previous case. For the proof of (4.18) we ‘remove’ from any configuration in $A^w((\{x, q\}, (y, r)))$ the two extremal links (which, by definition, are on $\{x, q\}$ and on $\{y, r\}$ respectively and are unpaired at q and r respectively) paying a cost λ^2 (which appears in the right-hand side of (4.18)) and obtain a configuration with a ℓ-walk having end-points x and y and possibly double links and ℓ-loops, with all such objects being vertex-self-avoiding, mutually-vertex-self-avoiding and lying entirely in the original torus by our choice $U = H$. Such objects (ℓ-walk, double links and ℓ-loops) can be identified with corresponding objects of the configurations in $\Omega_{x,y}$ (walk, double edges and loops respectively) taking the same positions. Such an identification allows comparing the weights of the set $A^w((\{x, q\}, (y, r)))$ under μ and the weights taken by the configurations in $\Omega_{x,y}$ in partition function $Y_{L,N,\lambda}(x, y)$. It is important for such a comparison to ensure that the ‘removal’ of the links does not leave a ‘hole’: For this reason the definition of the weight function H which we provided implies that the ℓ-walk is not entirely vertex-self-avoiding, namely at the vertices where its two extremal links are unpaired, q and r, it might ‘touch’ itself or other paths. Here by ‘no hole’ we mean that, when the two extremal links are ‘removed’, one obtains configurations whose paths are ‘free’ to use the vertices which are touched by the links which get removed. A further technical aspect in the proofs of (4.17) and (4.17) is that such a ‘removal’ is a many-to-one map, since the links which gets ‘removed’ might occupy different positions on the same edge and the ‘removal’ maps several input configurations with different positions of such links to the same output. For this reason we need to compute the factor corresponding to the number of such possible positions, which also depends on the pairing of the other links on that edge.

where the factor one-half in the first two terms is a multiplicity factor due to the fact that we sum over ordered pairs of sites. By replacing (4.23) with the second term in right-hand side of (4.22), applying Lemma 4.10 for the first term in the right-hand side of (4.22), using (4.20) and (4.21), we conclude the proof of the proposition. \qed
Fortunately for us, the factor $\frac{1}{n_d}$ in the definition of the measure $\mu_{L,N,\lambda,U}$ assigns a higher weight to the configuration obtained after the ‘removal’ and such a energy gain matches the corresponding entropy loss perfectly, giving a total factor which equals precisely one.

Proof of Lemma 4.10. For the formal proof it will be convenient dealing with undirected sub-graphs of the torus and for this reason we introduce the set Σ, which can be viewed as an ‘intermediate object’ between the sets \mathcal{W}^1 and $\Omega \cup \Omega^4$, whose respective subsets must be compared.

Definition of the set Σ. Let Σ be the set of spanning sub-graphs of $(\mathbb{T}_L, \mathbb{E}_L)$ such that every vertex has degree zero, one or two. Any connected component of $\sigma \in \Sigma$ is called monomer if it consists of a single vertex, isolated edge if it consists of two vertices connected by one edge, loop if the set of its edges is isomorphic to a simple closed curve in \mathbb{R}^d, walk if the set of its edges is isomorphic to an open simple curve in \mathbb{R}^d. Thus, an isolated edge is also a walk. For $x \neq y$, let $\Sigma_{x,y}$ be defined as the set of graphs $\sigma \in \Sigma$ such that there exists a walk with end-points x and y and any other connected component is a monomer, an isolated edge or a loop, let Σ' be defined as the set of graphs $\sigma \in \Sigma$ such that any connected component is a monomer, a isolated edge or a loop, let $\Sigma_{o,x}$ be the set of graphs $\sigma \in \Sigma'$ such that x is monomer. For any $\sigma \in \Sigma$, let $\mathcal{L}(\sigma)$ be the number of connected components in σ which are not monomers (by a slight abuse of notation, since we already defined the related quantity $\mathcal{L}(\pi)$ in the introduction) let $\mathcal{D}(\sigma)$ be the number of isolated edges in σ let $\mathcal{D}'(\sigma)$ be the number of isolated edges in σ which do not contain the origin, let $|\sigma|$ be the number of edges in σ. Recall the definitions of the partition functions (4.1) parametrised by λ. We have that, for any $y \in \mathbb{T}_L \setminus \{o\}$,

$$Y'_{L,N,\lambda} = \sum_{\sigma \in \Sigma} \lambda^{|\sigma|} N \mathcal{L}(\sigma) \left(\frac{\lambda}{2} \right)^{\mathcal{D}(\sigma)}, \quad (4.24)$$

$$N Y_{L,N,\lambda}(o,y) = \sum_{\sigma \in \Sigma_{o,y}} \lambda^{|\sigma|} N \mathcal{L}(\sigma) \left(\frac{\lambda}{2} \right)^{\mathcal{D}'(\sigma)} \quad (4.25)$$

$$Y_{L,N,\lambda}(o,o) = \sum_{\sigma \in \Sigma_{o,x}} \lambda^{|\sigma|} N \mathcal{L}(\sigma) \left(\frac{\lambda}{2} \right)^{\mathcal{D}'(\sigma)}. \quad (4.26)$$

To see why the previous relations hold true, note that there is an obvious correspondence between the elements $\pi \in \Omega^d$ and the elements $\sigma \in \Sigma'$ and between the elements $\pi \in \Omega_{o,x}$ and the elements $\sigma \in \Sigma_{o,x}$. Indeed, for each π, we obtain a unique element σ which is associated to π by replacing any double edge, directed loop or directed walk by a isolated edge, undirected loop or undirected walk respectively which is composed of the same edges and sites. We deduce (4.24) and (4.25) from the definitions (4.1) considering that directed loops have two possible orientations and that double edges in π consist of two (directed) edges while the isolated edges in σ just of one edge. Note that the factor N in the left-hand side of (4.24) is due to the fact that $\mathcal{L}(\pi)$, which was defined in Section 2, does not count the walk, while $\mathcal{L}(\sigma)$ counts the number of connected components which are not monomers and thus also the walk. Finally, note that in (4.26) and (4.26) we have \mathcal{D}' in place of \mathcal{D} since, if the walk consists of just one edge, we don’t want assign to it a factor $\frac{\lambda}{2}$. Now that the partition functions have been defined in terms of sums over elements of Σ, we can proceed with the comparison between the elements of \mathcal{W}^1 and the elements of Σ. This comparison will require introducing a map between such sets and studying its multiplicity properties.

Below we will keep adopting the following terminology: double links, ℓ-loops, ℓ-walks, and segments for the paths of the realisations $w \in \mathcal{W}^1$: isolated edges, loops, walks and monomers for the connected components of the realisation $\sigma \in \Sigma$. Moreover, we write that $(x,y) \in \sigma$ if (x,y) belongs to the edge set of $\sigma \in \Sigma$.

Definition and properties of the map $Q : \mathcal{W}^1 \mapsto \Sigma$. For any $w \in \mathcal{W}^1$, let $Q(w)$ be the set of edges $(x,y) \in \mathbb{E}_L$ such that there exists a link on (x,y) in w which is paired both at x and y. We define a map Q which associates to each realisation $w \in \mathcal{W}^1$ the realisation $Q(w) := (\mathbb{T}_L, Q(w))$. To begin note that,

$$\forall w \in \mathcal{W}^1, \quad Q(w) \in \Sigma. \quad (4.27)$$
This holds true since, by definition of \mathcal{W}^1, for each realisation $w \in \mathcal{W}^1$, each vertex of $Q(w)$ has degree zero, one or two. For any $\sigma \in \Sigma$, define the set $Q^{-1}(\sigma) := \{ w \in \mathcal{W}^1 : Q(w) = \sigma \}$. From the definition of the map Q we deduce that, for any pair of graphs $\sigma_1, \sigma_2 \in \Sigma$,

$$\sigma_1 \neq \sigma_2 \implies Q^{-1}(\sigma_1) \cap Q^{-1}(\sigma_2) = \emptyset. \quad (4.28)$$

Note that for any $w \in \mathcal{W}^1$, a loop is present in $Q(w)$ if and only if a ℓ-loop with precisely one link located on each edge of the loop is present in w. Moreover, note that an isolated edge is present in $Q(w)$ if and only if a double loop whose two links are on the same path is present in w. Moreover, suppose that $x \neq y$. Note that for any $w \in \mathcal{W}^1$, a walk with end-points x and y is present in $Q(w)$ if and only if a ℓ-walk with extremal links (x, q), (y, r) for some $q, r \in \mathcal{T}_L$ and with precisely a non-extremal link on each edge that walk is present in w. Finally, suppose that $x = y$. Note that, by definition of H, for any $w \in \mathcal{W}^1$, a ℓ-walk with extremal links (x, q), (x, r) can only consist of two links which are paired to each other at x and which are both extremal in w. Thus, $Q(w)$ has a monomer at $x = y$ if and only if either a ℓ-walk composed of just two links paired at x and on the edges $\{x, q\}$, $\{x, r\}$ for some $q, r \in \mathcal{T}_L$ (with possibly $q = r$) is present in w or if no link of w is paired at $x = y$. See also Figures 7, 8, 9 for examples. From all these considerations we deduce that,

$$\forall w \in \mathcal{A}^\ell, \quad Q(w) \in \Sigma^\ell, \quad (4.29)$$

$$\forall \{x, y\} \in \mathcal{E}_L \quad \forall w \in \mathcal{A}^w(\{x, y\}), \quad Q(w) \in \Sigma^w, \quad (4.30)$$

$$\forall (x, q), (y, r) \in \mathcal{E}_L : x, y \in \mathcal{T}_L, \quad \forall w \in \mathcal{A}^w((x, q), (y, r)), \quad Q(w) \in \Sigma_{x,y}. \quad (4.31)$$

Moreover, by definition of \mathcal{W}^1 we also have that,

$$\forall (x, q), (y, r) \in \mathcal{E}_L : \{x, y\} \cap \mathcal{T}^{(2)}_L \neq \emptyset, \quad \mathcal{A}^w((x, q), (y, r)) = \emptyset. \quad (4.32)$$

We will now prove all the claims in the statement of Lemma 4.10 one by one using such properties.

Proof of (4.16). From (4.29) and from the considerations made in the paragraph before (4.29) we deduce that,

$$\forall \sigma \in \Sigma^\ell, \quad \mu_{L,N,\lambda,H}(\mathcal{A}^\ell \cap \{Q(w) = \sigma\}) = \frac{1}{2}^{|D(\sigma)|} \lambda^{\sigma |D(\sigma)|} \mathcal{N}^{L(\sigma)}. \quad (4.33)$$

The factor $\mathcal{N}^{L(\sigma)}$ above takes into account for the fact that if w' is obtained from w by changing the colour of all the links belonging to the same path, then $Q(w) = Q(w')$, the term $|\sigma| + D(\sigma)$ corresponds to the number of links in each configuration $w \in \mathcal{A}^\ell$ such that $Q(w) = \sigma$, and the factor $(1/2)^{|D(\sigma)|}$ comes from the term $\frac{1}{m_w}$ in the definition (4.4). Now note that,

$$\mu_{L,N,\lambda,H}(\mathcal{A}^\ell) = \sum_{\sigma \in \Sigma^\ell} \mu_{L,N,\lambda,H}(\mathcal{A}^\ell \cap \{Q(w) = \sigma\})$$

$$= \sum_{\sigma \in \Sigma^\ell} \left(\frac{1}{2}\right)^{|D(\sigma)|} \lambda^{\sigma |D(\sigma)|} \mathcal{N}^{L(\sigma)}. \quad (4.34)$$

For the first identity we used (4.28) and (4.29), for the second identity we used (4.24). This concludes the proof of (4.16).

Proof of (4.17). Recall that, if $\{x, y\}$ belongs to the edge set of $\sigma \in \Sigma$, we write $\{x, y\} \in \sigma$. In the whole proof we fix an arbitrary undirected edge $\{x, y\} \in \mathcal{E}_L$. To begin, we claim that for any $\sigma \in \Sigma^\ell$,

$$\left| \{ w \in \mathcal{A}^w(\{x, y\}) : Q(w) = \sigma \} \right| = \begin{cases} 3 \mathcal{N}^{L(\sigma)} + 1 & \text{if } \sigma \text{ has an isolated edge at } \{x, y\} \text{ and } \{x, y\} \in \mathcal{E}_L \\ 2 \mathcal{N}^{L(\sigma)} + 1 & \text{if } \{x, y\} \text{ belongs to a loop of } \sigma \text{ and } \{x, y\} \in \mathcal{E}_L \\ 1 \mathcal{N}^{L(\sigma)} + 1 & \text{if } \{x, y\} \notin \sigma \\ 0 & \text{otherwise.} \end{cases} \quad (4.34)$$
Figure 7: Two copies of the vertex set of the graph \((T_L, \mathcal{E}_L)\) when \(d = 1\), with \(T_L = \{-2, \ldots, 3\} \times \{1, 2\}\). On each copy a realisation \(w \in \mathcal{W}^L\) is represented, each link has two possible colours, red or blue, and a dotted line connects end-points of paired links. \textit{Left}: A realisation in \(w \in \mathcal{A}^a(\{x, y\})\), such that \(Q(w) \in \Sigma\) consists of three isolated edges and six monomers. \textit{Right}: A realisation \(w \in \mathcal{A}^w((o, q), (y, r))\) such that \(Q(w) \in \Sigma\) consists of one walk composed of two edges and eight monomers.

We now explain prove (4.34), starting from the \textit{fourth case} of (4.34) (‘otherwise’), which is when \(\{x, y\} \in \mathcal{E}_L \setminus \mathcal{E}_L\) and \(\{x, y\}\) belongs to a loop or an isolated edge of \(\sigma\). In this case \(\mathcal{A}^w(\{x, y\}) \cap \{Q(w) = \sigma\} = \emptyset\), since for any \(w \in \mathcal{W}^L\), no double link or \(\ell\)-loop is allowed to touch a virtual vertex. This explains why we get zero in the fourth case of (4.34).

We now consider the first three cases. To begin, note that the factor \(N^C(\sigma)+1\) in the first three cases takes into account for the number of possible labels of the link belonging to the segment and which edge at \(x,y\) is on \(A\). We explain this starting from the first case. In the \textit{first case}, when \(\sigma\) has an isolated edge at \(\{x, y\}\), each configuration \(w \in Q^{-1}(\sigma) \cap \mathcal{A}^a(\{x, y\})\) has three links on \(\{x, y\}\), where two of such three links are paired to each other and compose a double link, while the third link is unpaired at both its end-points. Such an unpaired link might be the first, the second or the third link on \(\{x, y\}\). This situation is represented for example on the left of Figure 7. Thus, the factor 3 takes into account for the fact that the unpaired link might have three distinct possible labels (in other words, it might occupy three distinct possible positions on \(\{x, y\}\)), with each label corresponding to a distinct configuration \(w\) such that \(Q(w) = \sigma\). In the \textit{second case}, when \(\{x, y\}\) belongs to a loop of \(\sigma\), each \(w \in Q^{-1}(\sigma) \cap \mathcal{A}^a(\{x, y\})\) has two links on \(\{x, y\}\), with one link belonging to the segment and thus being unpaired at both its end-points and the other link being paired both at \(x\) and \(y\). Thus, the factor two takes into account for the fact that there are two choices for which link on \(\{x, y\}\) belongs to the segment and which link on \(\{x, y\}\) is paired at both its end-points. Finally, in the \textit{third case} we have no entropy factor. From these considerations and from the definition of \(\mu\), which is given in Definition 4.1, and the definition of \(H\), which is given in Definition 4.8, we also deduce that, for any \(\sigma \in \Sigma^d\), for any \(w \in \mathcal{A}^a(\{x, y\})\) such that \(Q(w) = \sigma\),

\[\mu_{L,N,\lambda,H}(w) = \begin{cases} \frac{1}{\lambda} \frac{1}{2^{|D(\sigma)|}} \lambda^{\sigma} \sigma + D(\sigma) + 1 & \text{if } \sigma \text{ has an isolated edge at } \{x, y\} \text{ and } \{x, y\} \in \mathcal{E}_L, \\ \frac{1}{\lambda} \frac{1}{2^{|\sigma|}} \lambda^{\sigma} \sigma + D(\sigma) + 1 & \text{if } \{x, y\} \text{ belongs to a loop of } \sigma \text{ and } \{x, y\} \in \mathcal{E}_L, \\ \frac{1}{2^{|\sigma|}} \lambda^{\sigma} \sigma + D(\sigma) + 1 & \text{if } \{x, y\} \not\in \sigma \text{ and } \{x, y\} \in \mathcal{E}_L \setminus \mathcal{E}_L, \\ \frac{1}{2^{|\sigma|}} \lambda^{\sigma} \sigma + D(\sigma) + 1 & \text{if } \{x, y\} \not\in \sigma \text{ and } \{x, y\} \in \mathcal{E}_L. \end{cases} \tag{435}\]

In all the cases above, the last factor corresponds to the weight of the links, whose number is \(|\sigma| + D(\sigma) + 1\). The first two factors in the first two cases, the second factor in the third case and the first factor in the last case follows from the term \(\frac{1}{m+1}\) in the definition of \(\mu\), the first factor \(\frac{1}{2}\) in the third case comes from the fact that the weight function \(H_x\), \(x \in T_L\) assigns a factor \(\frac{1}{2}\) whenever it ‘sees’ a link on \(\{x, x + e_{d+1}\}\) which is unpaired at \(x\) and this can only happen when such a link is unpaired at \(x\) and at \(\{x, x + e_{d+1}\}\), thus being a segment. From (4.34) and (4.35) we deduce that, for any
We now explain (4.37). The factors \(y \) generality (by translation invariance) fix \(x \) and that the same holds true with a factor one-half in front of the two last terms when \(\{o,q\} \in Q(w) \) and such that \(Q(w) \in \Sigma_{o,q} \) consists of three isolated edges.

\[
\begin{align*}
\mu_{L,N,\lambda,H} \left(A^s(\{x,y\}) \right) &= \frac{\lambda N}{2} \left(\frac{1}{2} \right)^{D(\sigma)} N^L(\sigma) \\
&= \frac{\lambda N}{2} \left(\frac{1}{2} \right)^{D(\sigma)} N^L(\sigma) \\
&= \frac{\lambda N}{2} \left(\frac{1}{2} \right)^{D(\sigma)} N^L(\sigma) \\
&= \frac{\lambda N}{2} \left(\frac{1}{2} \right)^{D(\sigma)} N^L(\sigma)
\end{align*}
\]

From (4.28), (4.30), (4.35), and (4.36) we deduce that, when \(\{x,y\} \in E_L \),

\[
\begin{align*}
\mu_{L,N,\lambda,H} \left(A^s(\{x,y\}) \right) &= \frac{\lambda N}{2} \left(\frac{1}{2} \right)^{D(\sigma)} N^L(\sigma) \\
&= \frac{\lambda N}{2} \left(\frac{1}{2} \right)^{D(\sigma)} N^L(\sigma) \\
&= \frac{\lambda N}{2} \left(\frac{1}{2} \right)^{D(\sigma)} N^L(\sigma) \\
&= \frac{\lambda N}{2} \left(\frac{1}{2} \right)^{D(\sigma)} N^L(\sigma)
\end{align*}
\]

and that the same holds true with a factor one-half in front of the two last terms when \(\{x,y\} \in E_L \). \(\square \)

Proof of (4.18) when \(\{x,y\} \cap T_L^{(2)} \neq \emptyset \). In this case, the proof follows immediately from (4.32).

Proof of (4.18) when \(\{x,y\} \subset T_L \). Suppose that \(\{x,y\} \subset T_L \) (possibly \(x = y \)). Without loss of generality (by translation invariance) fix \(x = o \). From (4.31) and from the properties of the map \(Q \) we claim that, under these assumptions, for any \(y \in T_L \) and \(\sigma \in \Sigma_{o,y} \), we have that,

\[
\left| \left\{ w \in A^w((o,q),(y,r)) : Q(w) = \sigma \right\} \right| =
\begin{cases}
2^1 \left\{ \{o,q\} \in \sigma \right\} N^L(\sigma) & \text{if } y \neq o \text{ and } (y,r) \neq (q,o) \\
6 N^L(\sigma) & \text{if } y \neq o, (y,r) = (q,o) \text{ and } \{o,y\} \in \sigma \\
2 N^L(\sigma) & \text{if } y \neq o, (y,r) = (q,o) \text{ and } \{o,y\} \notin \sigma, \\
N^L(\sigma) + 1 & \text{if } y = o.
\end{cases}
\]

(4.37)

We now explain (4.37). The factors \(N^L(\sigma) \) and \(N^L(\sigma) + 1 \) in all the cases above take into account for the fact that if \(w' \) is obtained from \(w \) by changing the colour of all the links belonging to the same path, then \(Q(w) = Q(w') \). We now explain the remaining factors considering case by case.

- Let us explain the first case: \(y \neq o \) and \((y,r) \neq (q,o) \). Note that, from the properties of the map \(Q \), it follows that for any \(w \in A^w((o,q),(y,r)) \) such that \(Q(w) = \sigma, \{o,q\} \in \sigma \) if and only if two links of the unique \(\ell \)-walk in \(w \) are on \(\{o,q\} \), one of which is extremal. Note also that the same claim holds true if we replace \(\{o,q\} \) by \(\{y,r\} \). Thus, the factors \(2^1 \left\{ \{o,q\} \in \sigma \right\} \) and \(2^1 \left\{ \{y,r\} \in \sigma \right\} \) account for the fact that there are two possibilities for choosing which of the two link is the extremal one (the other link belongs to the \(\ell \)-walk, but it is not extremal). For example, if \(w^1 \) is the configuration in the right of Figure 7, \(\sigma \) is such that \(Q(w^1) = \sigma \), and \(w^2 \) is the configuration which is obtained from \(w^1 \) by exchanging the pairing at the vertex \(q \) in such a way that the link \(\{q,o\} \) is paired at \(q \) to the link \(\{q - e_1, q\} \) and \(\{q,o\} \) is unpaired at \(q \), then also
\[Q(w^2) = \sigma. \] From these considerations we also deduce that, if \(y \neq o \), and \((y, r) \neq (q, o)\), for any \(\sigma \in \Sigma_{o,y} \) and \(w \in A((o, q), (y, r)) \) such that \(Q(w) = \sigma \),

\[
\mu_{L,N,\lambda,H}(w) = \frac{1}{2^4} \frac{1}{2^{D'(\sigma)}} \lambda^2 \lambda^{\sigma|+D'(\sigma)}
\]

(4.38)

where the first and the second factor follows from the term \(\frac{1}{m_1^2} \) in the definition of \(\mu \), the factor \(\lambda^2 \) corresponds to the weight of the two extremal links, and the last factor corresponds to the weight of all the remaining links.

- Let us explain the second case: \(y \neq o \), \((y, r) = (q, o)\) and \(\{o, q\} \in \sigma \). In this case, any \(w \in A^w((o, q), (q, o)) \) is such that the \(\ell \)-walk consists of three links which are on \(\{o, q\} \) and there are precisely three links on \(\{o, q\} \). Thus, one link of the \(\ell \)-walk must be paired at both its end-points to the two other links of the \(\ell \)-walk, while the two remaining links are paired at one end-point and unpaired at the other end-point. An example of such configuration is represented in Figure 8 - right. The factor six in the right-hand side of (4.37) accounts for the fact that there are three distinct possibilities for choosing which of such three links is paired at both end-points and, once this has been chosen, there are two possibilities for choosing which of the two remaining links is paired at \(o \) and unpaired at \(q \). From these considerations we also deduce that, for any \(\sigma \in \Sigma_{o,q} \), such that \(\{o, q\} \in E_L \) and \(\{o, q\} \in \sigma \), for any \(w \in A^w((o, q), (q, o)) \) such that \(Q(w) = \sigma \),

\[
\mu_{L,N,\lambda,H}(w) = \frac{1}{3!} \frac{1}{2^{D'(\sigma)}} \lambda^2 \lambda^{\sigma|+D'(\sigma)}
\]

(4.39)

where the first and the second factor follows from the term \(\frac{1}{m_1^2} \) in the definition of \(\mu \), the factor \(\lambda^2 \) corresponds to the weight of the two extremal links of the \(\ell \)-walk, and the last factor corresponds to the weight of all the remaining links.

- Let us explain the third case: \(y \neq o \), \((y, r) = (q, o)\) and \(\{o, q\} \notin \sigma \). In this case, any \(w \in A^w((o, q), (q, o)) \) is such that two links are on \(\{o, q\} \), where one of them is unpaired at \(o \) and is paired to another link of the walk at \(q \), while the second one is unpaired at \(q \) and it is paired to another link of the walk at \(o \). An example of such configuration is represented in Figure 8 - left. The factor two in the right-hand side of (4.37) accounts for the fact that there are two possibilities for choosing which of the two links is paired at \(o \) and which at \(q \). From these considerations we also deduce that, for any \(\sigma \in \Sigma_{o,q} \), such that \(\{o, q\} \in E_L \) and \(\{o, q\} \in \sigma \), for any \(w \in A^w((o, q), (q, o)) \) such that \(Q(w) = \sigma \),

\[
\mu_{L,N,\lambda,H}(w) = \frac{1}{3!} \frac{1}{2^{D'(\sigma)}} \lambda^2 \lambda^{\sigma|+D'(\sigma)}
\]

(4.40)

where the first and the second factor follows from the term \(\frac{1}{m_1^2} \) in the definition of \(\mu \), the factor \(\lambda^2 \) corresponds to the weight of the two extremal links of the \(\ell \)-walk, and the last factor corresponds to the weight of all the remaining links.

- Let us explain the last case: \(y = o \). An example of configuration \(w \in A^w((o, q), (o, r)) \) is represented in the left of Figure 9 when \(q \neq r \) and in the right of Figure 9 when \(q = r \). In this case, for any \(w \in A^w((o, q), (o, r)) \) the unique \(\ell \)-walk in \(w \) consists of just two links which are paired to each other at \(o \). When \(q = r \), these links are the only two links on \(\{o, q\} = \{o, r\} \), while when \(q \neq r \), each link of the two is the unique link on \(\{o, q\} \) and \(\{o, r\} \). Since all the other paths are double links or \(\ell \)-loops, we deduce (4.37). From these considerations we also deduce that, for any \(\sigma \in \Sigma_{o,o} \), for any \(w \in A((o, q), (o, r)) \), we have that,

\[
\mu_{L,N,\lambda,H}(w) = \begin{cases}
\frac{1}{3!} \frac{1}{2^{D'(\sigma)}} \lambda^2 \lambda^{\sigma|+D'(\sigma)} & \text{if } q \neq r, \\
\frac{1}{2^4} \frac{1}{2^{D'(\sigma)}} \lambda^2 \lambda^{\sigma|+D'(\sigma)} & \text{if } q = r.
\end{cases}
\]

(4.41)
Figure 9: Same setting as in Figure 7. Left: A realisation \(w \in A^w((o,q),(o,r)) \), \(r \neq q \), such that \(Q(w) \) consists of two isolated edges and eight monomers. Right: A realisation \(w \in A^w((o,q),(o,q)) \) such that \(Q(w) \in \Sigma_{o,o} \) consists of two isolated edges and eight monomers.

Now that the multiplicity properties of the map and that the weights assigned by \(\mu \) to the configurations \(w \) in each of the four cases above have been considered, we can put all the cases together to conclude the proof of (4.18). Below, we use the general properties of the map \(Q \), (4.28) and (4.32), for the first identity, (4.37), (4.38), (4.39), (4.40), (4.41), for the three cases of the second identity, (4.25) and (4.26) for the three cases of the third and last identity, obtaining that, for any pair of directed edges \((o,q),(y,r) \in \mathcal{E}_L \),

\[
\begin{align*}
\mu_{L,N,\lambda,H}(A^w((o,q),(y,r))) &= \sum_{\sigma \in \Sigma_{o,y}} \mu_{L,N,\lambda,H}(A^w((o,q),(y,r)) \cap \{Q(w) = \sigma\}) \\
&= \begin{cases} \\
\lambda^2 \sum_{\sigma \in \Sigma_{o,y}} \left(\frac{1}{2} \right)^{D^\prime(\sigma)} \lambda|\sigma| N^{E(\sigma)} = \lambda^2 N \mathcal{V}_{L,N,\lambda}(o,y) & \text{if } y \neq o, \\
N \lambda^2 \sum_{\sigma \in \Sigma_{o,y}} \left(\frac{1}{2} \right)^{D^\prime(\sigma)} \lambda|\sigma| N^{E(\sigma)} = \lambda^2 N \mathcal{V}_{L,N,\lambda}(o,y) & \text{if } y = o, (o,q) \neq (y,r), \\
\frac{N}{2} \lambda^2 \sum_{\sigma \in \Sigma_{o,y}} \left(\frac{1}{2} \right)^{D^\prime(\sigma)} \lambda|\sigma| N^{E(\sigma)} = \frac{\lambda^2}{2} N \mathcal{V}_{L,N,\lambda}(o,y) & \text{if } y = o, (o,q) = (y,r). \\
\end{cases}
\end{align*}
\]

This concludes the proof of Lemma 4.10. \(\square \)

4.5 Proof of Theorem 3.1

All the ingredients for the proof of Theorem 3.1 have been introduced and we can now combine them to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Fix arbitrary finite integers \(L \in 2\mathbb{N}_{>0}, N \in \mathbb{N}_{>0} \), fix an edge-parameter \(\lambda \in (0,\infty) \). Recall that \(x \sim y \) denotes that \(x \) and \(y \) are nearest neighbours in \((T_L,E_L)\), and recall that \(\sum_{(x,y) \in \mathcal{E}_L} \) is the sum over directed edges while \(\sum_{(x,y) \in \mathcal{E}_L^u} \) is the sum over undirected edges. Recall also that \((T_L,E_L)\) corresponds to the torus \(\mathbb{Z}^d/L\mathbb{Z}^d \) while \((T_L,E_L)\) is the extended torus. For any real-valued vector \(v = (v_x)_{x \in T_L} \), let \(h^v = (h^v_x)_{x \in T_L} \) be obtained from \(v \) as follows:

\[
\forall x \in T_L \quad h^v_x := \begin{cases} \\
v_x & \text{if } x \in T_L, \\
-2d v_{x-e_{d+1}} & \text{if } x \in T_L^{(2)}. \\
\end{cases}
\]

Using the fact that for any real-valued vector \(v = (v_x)_{x \in T_L} \),

\[
2d \sum_{x \in T_L} v_x^2 = \sum_{\{x,y\} \in E_L} (v_x^2 + v_y^2)
\]

(4.43)
we deduce that,

\[
\sum_{(x,y) \in E_L} h_x^v h_y^v + \frac{1}{2} \sum_{x \in T_L} h_x^v h_{x+e_d+1} = \\
\sum_{(x,y) \in E_L} v_x v_y - d \sum_{x \in T_L} v_x^2 = \frac{1}{2} \sum_{(x,y) \in E_L} (2v_x v_y - v_x^2 - v_y^2) = -\frac{1}{2} \sum_{(x,y) \in E_L} (v_x - v_y)^2. \tag{4.44}
\]

Moreover,

\[
\sum_{q \in T_L: (x,q) \in E_L} h_q^v = (\Delta v)_x. \tag{4.45}
\]

From (4.44), (4.45) and from the definition in Proposition 4.9 we deduce that, for any finite strictly positive \(v\),

\[
\sum_{L,N,\lambda,H} Z_{L,N,\lambda,H}^2(h^v) = -\frac{\lambda N}{2} \sum_{(x,y) \in E_L} (v_y - v_x)^2 + \frac{\lambda^2 N}{2} \sum_{x,y \in T_L} \forall_{L,N,\lambda}(x,y)(\Delta v)_x (\Delta v)_y. \tag{4.46}
\]

Moreover, recall that, as defined in Section 4.3, for any original vertex \(x \in T_L\), \((h^v)_x^z\) is defined as the vector which is obtained from \(h^v\) by copying the value \(h^v_x = v_x\) at any original vertex and the value \(h^v_{x+e_d+1} = -2dv_x\) at any virtual vertex and deduce from this and from (4.46) that,

\[
\forall v = (v_x)_{x \in T_L}, \forall x \in T_L, \quad \sum_{L,N,\lambda,H} Z_{L,N,\lambda,H}^2((h^v)_x^z) = 0. \tag{4.47}
\]

We have that, in the limit as \(\varphi \to 0\),

\[
\sum_{L,N,\lambda,H}(\varphi h^v) = \sum_{L,N,\lambda} + \varphi^2 \sum_{L,N,\lambda,H} Z_{L,N,\lambda,H}(h^v) + o(\varphi^2)
\]

\[
\leq \left(\prod_{x \in T_L} \sum_{L,N,\lambda,H} \left((\varphi h^v)_x \right) \right)^{\frac{1}{|T_L|}}
\]

\[
= \left(\prod_{x \in T_L} \left(Y_{L,N,\lambda}^\varphi + o(\varphi^2) \right) \right)^{\frac{1}{|T_L|}}
\]

\[
= Y_{L,N,\lambda}^\varphi + o(\varphi^2),
\]

For the first step above we used Proposition 4.9, for the second step above we used Proposition 4.7, for the third step above we used Proposition 4.9 and (4.47), for the last step we perform the Taylor expansion around \(x = 0\) of the function: \((1 + x)^{-|T_L|/|T_L|} = 1 + x/|T_L| + O(x^2)\), where in our case \(x = o(\varphi^2)\). Thus we proved that, for any \(v \in \mathbb{R}^{|T_L|}\), in the limit as \(\varphi \to 0\),

\[
Y_{L,N,\lambda}^\varphi + \varphi^2 \sum_{L,N,\lambda,H} Z_{L,N,\lambda,H}(h^v) + o(\varphi^2) \leq Y_{L,N,\lambda}^\varphi + o(\varphi^2),
\]

where \(h^v\) was defined in (4.42) as a function of \(v\), and this can only hold true if

\[
\sum_{L,N,\lambda,H} Z_{L,N,\lambda,H}(h^v) \leq 0. \tag{4.48}
\]

By replacing (4.46) in the left hand-side of (4.48), dividing the whole expression by \(\frac{\lambda N}{2} Y_{L,N,\lambda}^\varphi\) and plugging in (4.2), we deduce that, for any finite strictly positive \(\lambda\),

\[
\sum_{x,y \in T_L} G_{L,N,\lambda} \frac{1}{2} (x,y)(\Delta v)_x (\Delta v)_y \leq \sum_{(x,y) \in E_L} (v_y - v_x)^2.
\]

Since the previous relation holds for any strictly positive \(\lambda\) and since for any finite \(L\), \(\lim_{\lambda \to \infty} G_{L,N,\lambda} = G_{L,N,0}\), we deduce that the same inequality holds true also with \(\frac{1}{\lambda}\) replaced by 0 and thus the proof is concluded.

\[\square\]
5 A version of the Infrared bound

The main goal of this section is to state and prove Theorem 5.1 below, which provides a uniform lower bound for the Cesàro sum of the two-point function. Recall the definition of the odd and even two-point functions, (2.2) and define the odd and even two-point functions,

\[
G_{L,N,\rho}^o(x,y) := G_{L,N,\rho}(x,y) \mathbb{1}_{\{x \in \mathbb{T}_L\}}, \quad (5.1)
\]

\[
G_{L,N,\rho}^e(x,y) := G_{L,N,\rho}(x,y) \mathbb{1}_{\{x \in \mathbb{T}_L\}}, \quad (5.2)
\]

We will use the notation

\[
G_{L,N,\rho}(x) := G_{L,N,\rho}(o,x) \quad G_{L,N,\rho}^o(x) := G_{L,N,\rho}^o(o,x) \quad G_{L,N,\rho}^e(x) := G_{L,N,\rho}^e(o,x),
\]

for any \(x \in \mathbb{T}_L\), and we will omit the sub-scripts when appropriate. Recall that \(r_d\) is the expected number of returns of a simple random walk in \(\mathbb{Z}^d\).

Theorem 5.1 (Infrared-ultraviolet bound). For any \(d, N \in \mathbb{N}_{>0}, L \in 2\mathbb{N}_{>0}, \rho \in [0, \infty)\), we have that,

\[
\sum_{x \in \mathbb{T}_L} \frac{G_{L,N,\rho}^o(x)}{|\mathbb{T}_L|} \geq G_{L,N,\rho}(e_1) - \mathcal{I}_L(d) - \sum_{x \in \mathbb{T}_L} \frac{G_{L,N,\rho}^e(x)}{|\mathbb{T}_L|} + \sum_{x \in \mathbb{T}_L: x_2=\ldots=x_d=0} \Upsilon_L(x)G_{L,N,\rho}^e(x) \quad (5.3)
\]

where \((\mathcal{I}_L(d))_{L \in \mathbb{N}}\) is a sequence of real numbers, which is defined in (5.9) below, whose limit \(L \to \infty\) exists and satisfies

\[
\lim_{L \to \infty} \mathcal{I}_L(d) = \frac{r_d}{4d} \quad (5.4)
\]

and \((\Upsilon_L)_{L \in \mathbb{N}}\) is a sequence of real-valued functions, which are defined in (5.12) below, and converges point-wise with \(L\) to a finite function \(\Upsilon\).

Such a theorem will be applied under the assumption that \(\rho = 0\), in which case the last two terms in the right-hand side of (5.3) equal zero, as we will prove in Lemma 5.4 below. Although we will apply the theorem under the assumption \(\rho = 0\), in this section we will allow \(\rho\) to take positive values for the sake of generality.

Remark 5.2. A similar lower bound for the Cesàro sum of two-point functions to ours (5.3) was obtained in the framework of spin systems with continuous symmetry [28, 29, 30]. Our analysis differs from the spin systems case for some important aspects. In the spin systems case one obtains the Key Inequality with \(G_{L,N,\rho}(x,y)\) replaced by the correlation between the spins, which is typically denoted by \(<S_x.S_y>_L,\beta\), where \(N\) there represents the number of components of the spins and \(\beta\) is the inverse temperature. There, the Key Inequality leads to a uniformly positive lower bound for the Cesàro sum of two-point functions, similarly to our case. This bound is usually referred to as infrared bound, since the quantity which one bounds from below uniformly corresponds to the zero (i.e., low frequency) Fourier mode of the two-point function. The same approach as in the classical case of spin systems with continuous symmetry would work in our case if the term \(G_{L,N,\rho}(o)\) was strictly positive (and large enough) uniformly in \(L\) and in the limit of small \(\rho\). Unfortunately this is not the case, since it is shown in Lemma 5.4 below that \(G_{L,N,\rho}(o) = 0\) (more precisely, when \(\rho = 0\), the two-point function equals zero at any even site). For this reason, we proceed differently than in [28, 29, 30]: The term \(G_{L,N,\rho}(o)\) is replaced by the term \(G_{L,N,\rho}(e_1)\) and we use the symmetry properties of the Fourier odd two point function to deal with the presence of the factor \(e^{ik.e_1}\) in the right-hand side of (3.8), which is not present in [28, 29, 30]. We refer to the resulting bound as Infrared-ultraviolet bound, since the quantity which we bound from below, which is in the left-hand side of (3.8), involves not only the lowest, but also the highest frequency Fourier mode (more precisely, it equals the difference of the two).
We now start to introduce the arguments which lead to the proof of Theorem 5.1. To begin, we define the central quantity,
\[
\forall k \in \mathbb{T}^*_L, \quad \varepsilon(k) := 2 \sum_{j=1}^{d} (1 - \cos(k_j)). \tag{5.5}
\]
Recall also the definition of Fourier transform and inverse Fourier transform which were provided in Section 3.2.

Proposition 5.3 (High frequency upper bound). Under the same assumptions as in Theorem 5.1, for any \(L \in 2\mathbb{N}_{>0} \),
\[
\forall k \in \mathbb{T}^*_L \setminus \{o\}, \quad \hat{G}_{L,N,\rho}(k) = \hat{G}^o_{L,N,\rho}(k) + \hat{G}^e_{L,N,\rho}(k) \leq \frac{1}{\varepsilon(k)}. \tag{5.6}
\]

Proof. To begin, we fix an arbitrary \(k \in \mathbb{T}^*_L \setminus \{o\} \) and choose the vector \(v = (v_x)_{x \in \mathbb{T}_L} \) such that, for any \(x \in \mathbb{T}_L \), \(v_x := \cos(k \cdot x) \). We note that under this choice the following facts hold true,

(i) For any \(x \in \mathbb{T}_L \), \((\Delta v)_x = -\varepsilon(k) v_x \),

(ii) \(\sum_{(x,y) \in \mathbb{E}_L} (v_y - v_x)^2 = \varepsilon(k) \sum_{x \in \mathbb{T}_L} v_x^2 \),

(iii) \(\sum_{x,y \in \mathbb{T}_L} v_x v_y \hat{G}(x,y) = \hat{G}(k) \sum_{x \in \mathbb{T}_L} v_x^2 \).

These computations are classical and we present their proof in the appendix of this paper. The proof of Proposition 5.3 follows from Theorem 3.1 and from such computations. We first apply (i) to the left-hand side of (3.2), then we apply (ii) to the right-hand side of (3.2), thus obtaining that
\[
\varepsilon^2(k) \sum_{x,y \in \mathbb{T}_L} v_x v_y \hat{G}(x,y) \leq \varepsilon(k) \sum_{x \in \mathbb{T}_L} v_x^2.
\]

Now we apply (iii) to the left-hand side of the previous expression and we divide everything by \(\varepsilon^2(k) \sum_{x \in \mathbb{T}_L} v_x^2 \). This concludes the proof. \(\square \)

The next lemma states some properties of the two-point functions and of their Fourier transforms.

Lemma 5.4. Let \(\mathbb{U} \) be the set of vectors \(u := (u_1, \ldots, u_d) \in \mathbb{Z}^d \) such that \(|u_i| = 1 \) for any coordinate \(i \). The following properties hold for any \(u \in \mathbb{U} \),

(i) For any \(k \in \mathbb{T}^*_L \), \(\hat{G}_{L,N,\rho}(k), \hat{G}^o_{L,N,\rho}(k), \hat{G}^e_{L,N,\rho}(k) \in \mathbb{R} \).

(ii) If \(k, k + \pi u \in \mathbb{T}^*_L \), then \(\hat{G}^o_{L,N,\rho}(k + \pi u) = -\hat{G}^o_{L,N,\rho}(k) \),

(iii) If \(k, k + \pi u \in \mathbb{T}^*_L \), then \(\hat{G}^e_{L,N,\rho}(k + \pi u) = \hat{G}^e_{L,N,\rho}(k) \).

(iv) For any \(L \in 2\mathbb{N} \) and \(x \in \mathbb{T}_L \), we have that \(\hat{G}^o_{L,N,0}(o,x) = 0 \).

Proof. The first property follows from the definition of Fourier transform and the symmetries of \(\mathbb{Z}^d/\mathbb{L} \mathbb{Z}^d \). The properties (i) and (ii) follow from the definition of Fourier transform and the fact that, if \(x \in \mathbb{T}^*_L \), then \(\sum_{i=1}^{d} x_i = 2\mathbb{Z} + 1 \) and if \(x \in \mathbb{T}_L \), then \(\sum_{i=1}^{d} x_i = 2\mathbb{Z} \). The fourth property holds true since, if the walk in \(\pi \in \Omega \) ends at an even site, then it contains an odd number of sites and, since the total number of sites in \(\mathbb{T}_L \) is even and since each loop or double edge contains an even number of sites, this implies that at least one monomer is present in \(\pi \) and thus that the weight of \(\pi \) is zero since \(\rho = 0 \). \(\square \)

We now have all the ingredients we need for proving Theorem 5.1.
H and we note that there exists a bijection $\Psi : \mathbb{T}^d \to \mathbb{T}^d$. Figure 10: A representation of the dual torus \mathbb{T}^d where $u \in \mathbb{T}^d$ as required. We continue using the properties (5.8) and we apply Proposition 5.3, using the fact that $\Psi(x) := x$.

Proof of Theorem 5.1. Note that, since $\hat{G}_{L,N,0}(k)$ is real, then it follows from (3.8) that the term in the left-hand side of the next expression is real, hence we deduce that,

$$
\sum_{k \in \mathbb{T}^d \setminus \{0\}} e^{ik \cdot e_1} \hat{G}_{L,N,\rho}(k) = \sum_{k \in \mathbb{T}^d \setminus \{0\}} Re\left(e^{ik \cdot e_1} \hat{G}_{L,N,\rho}(k) \right) = \sum_{k \in \mathbb{T}^d \setminus \{0\}} \cos(k \cdot e_1) \hat{G}_{L,N,\rho}(k).
$$

Our goal is to provide an upper bound for the previous expression, which by Lemma 5.4 gives a lower bound to the Cesàro sum of the odd-two point function. For this we use the symmetry properties of the odd and even Fourier two-point functions to transform the previous sum into a sum over sites where the cosine in (5.7) takes non-negative values. This makes possible the application of Proposition 5.3 to upper bound $\hat{G}_{L,N,\rho}(k)$. More precisely, we define the subset of \mathbb{T}^d,

$$
\mathbb{H} := \{ k \in \mathbb{T}^d : k_1 \in (-\frac{\pi}{2}, \frac{\pi}{2}) \},
$$

and we note that there exists a bijection $\Psi : \mathbb{H} \setminus \{0\} \to \mathbb{T}^d \setminus (\mathbb{H} \cup \{p\})$ which is such that, for any $k \in \mathbb{H}$, the following properties hold true,

$$
\cos(k \cdot e_1) = -\cos(\Psi(k) \cdot e_1), \quad \hat{G}_{L,N,\rho}(k) = -\hat{G}_{L,N,\rho}(\Psi(k)), \quad \hat{G}_{L,N,\rho}(k) = \hat{G}_{L,N,\rho}(\Psi(k))
$$

The bijection Ψ consists of a translation of any vertex $x \in \mathbb{H}$ by an appropriate vector πu, where u is an element of \mathbb{U} which depends on x. See also Figure 10 for a representation of Ψ in the (simpler) case of $d = 2$. Thus, (5.8) follows from Lemma 3.3. More precisely, the bijection Ψ is defined as follows. To begin, we split \mathbb{T}^d into $2d+1$ disjoint sub-regions, by first defining the set of indices $\mathbb{B} := \{-1,-\frac{1}{2}, \frac{1}{2}, 1\} \times \{0,1\} \times \ldots \times \{0,1\} \subset \frac{1}{2} \mathbb{Z}^d$, and then, for any $b = (b_1, \ldots, b_d) \in \mathbb{B}$, we define

$$
\mathbb{H}^b := \{ k \in \mathbb{T}^d : k_1 \in (\pi(b_1 - \frac{1}{2}), \pi b_1), \quad k_i \in (\pi(b_i - 1), \pi b_i), \text{ for } i = 2, \ldots, d \}.
$$

Note that $\mathbb{H}^b \subset \mathbb{H}$ only if $b_1 \in \{-\frac{1}{2}, \frac{1}{2}\}$. For any $x \in \mathbb{H} \setminus \{o\}$, let b the unique element of \mathbb{B} such that $x \in \mathbb{H}^b$. Then,

$$
\Psi(x) := x + \pi u,
$$

where $u \in \mathbb{U}$ depends on b and it is defined as follows: If $b_1 = \pm \frac{1}{2}$, then $u_1 := \mp 1$. This guarantees that $\Psi(x) \in \mathbb{T}^d \setminus \mathbb{H}$. Moreover, for any $i \in \{2, \ldots, d\}$, if $b_i = 0$, then $u_i := 1$, while if $b_i = 1$, then $u_i := -1$. This defines the bijection Ψ. Note that it follows from this definition that $p \notin \Psi(\mathbb{H} \setminus \{o\})$ as required. We continue using the properties (5.8) and we apply Proposition 5.3, using the fact that
To begin, we define the set of vectors,

\[
\sum_{k \in \mathbb{H} \setminus \{0\}} \cos(k \cdot e_1) \widehat{G}_{L,N,\rho}(k) = \sum_{k \in \mathbb{H} \setminus \{0\}} \left(\cos(k \cdot e_1) \widehat{G}_{L,N,\rho}(k) + \cos(\Psi(k) \cdot e_1) \widehat{G}_{L,N,\rho}(\Psi(k)) \right)
\]

\[
= \frac{1}{2d} \sum_{k \in \mathbb{H} \setminus \{0\}} 2 \cos(k \cdot e_1) \frac{2 \cos(k \cdot e_1)}{1 - \frac{1}{d} \sum_{i=1}^{d} \cos(k \cdot e_i)} - 2 \sum_{k \in \mathbb{H} \setminus \{0\}} \cos(k \cdot e_1) \widehat{G}_{L,N,\rho}(k).
\]

Since the previous quantity corresponds to the right-hand side of (7.1), Theorem 5.1 now follows from (7.1) and from the fact that,

\[
I_L(d) := \frac{1}{2d} \frac{1}{|T_L|} \sum_{k \in \mathbb{H} \setminus \{0\}} \frac{2 \cos(k \cdot e_1)}{1 - \frac{1}{d} \sum_{i=1}^{d} \cos(k \cdot e_i)}
\]

satisfies

\[
\lim_{L \to \infty} I_L(d) = \frac{r_d}{4d}
\]

and that,

\[
\frac{2}{|T_L|} \sum_{k \in \mathbb{H} \setminus \{0\}} \cos(k \cdot e_1) \widehat{G}_{L,N,\rho}^e(k) = \frac{2}{|T_L|} \sum_{x \in T_L} \chi_L(x) - \sum_{x \in T_L} \chi_L(x) \chi_L^e(x),
\]

where

\[
\forall x \in \mathbb{Z}^d \quad \chi_L(x) := \frac{2}{|T_L|} \sum_{k \in \mathbb{H}} e^{-i k \cdot (x - e_1)}
\]

Thus, to conclude the proof of Theorem 5.1, it remains to prove (5.10) and (5.11).

Proof of (5.10). To begin, we define the set of vectors, \(N := \{ \pm \frac{e_1}{2}, \pm e_2, \ldots, \pm e_d \} \), and the function,

\[
J(k) := \frac{1}{d} \left(\cos(\frac{k_1}{2}) + \sum_{i=2}^{d} \cos(k_i) \right) = \frac{1}{2d} \sum_{e \in N} e^{i e \cdot k}.
\]

Below, we first use the fact that the sum is Riemann and after that we perform the change of variable \(k_1 = 2k_1 \) (and call again \(k_1 \) the new variable),

\[
\lim_{L \to \infty} \frac{1}{|T_L|} \sum_{k \in \mathbb{H} \setminus \{0\}} \frac{2 \cos(k_1)}{1 - \frac{1}{d} \sum_{i=1}^{d} \cos(k_i)} = \frac{1}{2} \int_{-\pi}^{\pi} dk_1 \frac{1}{2} \int_{-\pi}^{\pi} dk_2 \ldots \int_{-\pi}^{\pi} dk_d \frac{2 \cos(k_1)}{1 - \frac{1}{d} \sum_{i=1}^{d} \cos(k_i)}
\]

\[
= \frac{1}{4} \int_{-\pi}^{\pi} dk_1 \frac{1}{2} \int_{-\pi}^{\pi} dk_2 \ldots \int_{-\pi}^{\pi} dk_d \frac{2 \cos(k_1)}{1 - \frac{1}{d} \cos(k_1) - \frac{1}{d} \sum_{i=2}^{d} \cos(k_i)}
\]

\[
= \frac{1}{2} \int_{-\pi}^{\pi} dk \cos(k_1) \frac{1}{1 - J(k)}.
\]

We will now relate the previous quantity to the Green’s function of the simple random walk. For this, let \(\tilde{S}_n \) be a random walk with i.i.d. increments on \(\frac{1}{2} \mathbb{Z}^d \) with jump distribution \(\tilde{P} \) satisfying,

\[\forall x \in \frac{1}{2} \mathbb{Z}^d \quad \tilde{P}(\tilde{S}_1 = x) = \frac{1}{2d} 1_{\{x \in N\}}, \]

and denote by \(\tilde{E} \) its expectation. In other words, the simple random walk \(\tilde{S}_n \) performs half-unit jumps in the \(\pm e_1 \) directions and unit jumps in all the other directions. By independence of the simple random walk increments we deduce that,

\[
\tilde{E}(e^{i k \cdot \tilde{S}_n}) = \tilde{E}(e^{i k \cdot \tilde{S}_1})^n = J(k)^n.
\]
Using the fact that,
\[\frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} dk \, e^{ikx} = 1_{\{x=0\}}, \]
and using (5.13) we deduce that,
\[\tilde{P}(\tilde{S}_n = -\frac{e_1}{2}) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} dk \, \hat{E}[e^{ik(\tilde{S}_n + \frac{e_1}{2})}] = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} dk \, e^{ik \frac{e_1}{2}} J(k)^n. \]
Recalling that \(P \) is the distribution of a simple random walk \(S_n \) on \(\mathbb{Z}^d \), we deduce by an obvious coupling of the random walks \(S_n \) and \(\tilde{S}_n \) that,
\[\forall n \in \mathbb{N} \quad P(S_n = e_1) = \tilde{P}(\tilde{S}_n = \pm \frac{e_1}{2}). \]
From the previous two expressions we deduce that, for any arbitrary finite \(m \in \mathbb{N} \),
\[\sum_{n=0}^{m} P(S_n = e_1) = \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} dk \, \frac{\cos(\frac{e_1}{2})}{1 - J(k)^m} \frac{(1 - J(k)^m + 1)}{1 - J(k)}. \] (5.14)
Define for any \(x \in \mathbb{Z}^d \), \(N_x := \sum_{n=0}^{\infty} 1\{S_n = x\} \) and recall that \(N_+ = \sum_{n>0} 1\{S_n = o\} \). We have that the following limit exists and satisfies,
\[\lim_{m \to \infty} \sum_{n=0}^{m} P(S_n = e_1) = E[N_{e_1}] = E[N_+]. \] (5.15)
For the second identity we used the fact that, every time the simple random walk jumps from a nearest neighbour of the origin, it has a chance \(\frac{1}{2d} \) to hit the origin at the next step. Thus we deduce that \(\frac{1}{2d} E[\sum_{y \sim o} N_y] = E[N_+] \) and the claim thus follows from rotational symmetry. To conclude the proof, we need to show that we can exchange the limit \(m \to \infty \) with the integral in the right-hand side of (5.14). For this, note first that for any \(0 < \delta < \pi/2 \), we have that the integrand is positive for any \(m \in \mathbb{N} \) and any \(k \in [-\delta, \delta]^d \) and thus by monotone convergence theorem the limit can be taken inside the integral. To deal with the integral in \([-\pi, \pi]^d \setminus [-\delta, \delta]^d \), note that the integrand is uniformly bounded and converges point-wise as \(m \to \infty \) in \([-\pi, \pi]^d \setminus [-\delta, \delta]^d \), thus by dominated convergence theorem the limit can be taken inside the integral. This concludes the proof.

Proof of (5.11). For the first identity we use the fact that the term in the left-hand side is real, the fact that the function \(\hat{G}_L^c(k) \) is real and the definition of Fourier transform, (3.7),
\[-2 \sum_{k \in \mathbb{H} \setminus \{o\}} \cos(k \cdot e_1) \hat{G}_L^c(k) = -2 \text{Re} \left[\sum_{x \in \mathbb{T}_L} \sum_{k \in \mathbb{H} \setminus \{o\}} G_{L,N,\rho}^c(x) e^{-ik(x-e_1)} \right] \]
\[= -2 \text{Re} \left[\sum_{x \in \mathbb{T}_L} G_{L,N,\rho}^c(x) \left(-1 + \sum_{k \in \mathbb{H}} e^{-ik(x-e_1)} \right) \right] \]
\[= 2 \sum_{x \in \mathbb{T}_L} G_{L,N,\rho}^c(x) - 2 |\mathbb{T}_L| \sum_{x \in \mathbb{Z}_L} G_{L,N,\rho}^c(x) \Upsilon_L(x). \]
An exact and standard computation shows that the function \(\Upsilon_L(x) \), which was defined in (5.12), takes non-zero (negative or positive) values only at even sites along the \(e_1 \) axis and that it converges point-wise to a function \(\Upsilon(x) \) which decays like \(|\Upsilon(x)| \sim \frac{1}{|x|} \). This concludes the proof of Theorem 5.1.

6 Proof of Theorems 2.2 and 2.3

In this section we present the proofs of Theorems 2.2 and 2.3.
Proof of (2.13) in Theorem 2.3. To begin, we claim that, for any $L \in 2\mathbb{N}$,

$$G_{L,N,0}(o,e_1) = \frac{1}{dN}. \quad (6.1)$$

To see why this is true, define the map $\Pi : \Omega_{o,e_1} \mapsto \{ \pi \in \Omega^k : (o,e_1) \in E_\pi \}$ which associates to any $\pi \in \Omega_{o,e_1}$ an element $\Pi(\pi)$ which is obtained from π by adding to π an edge directed from e_1 to o. Note that, by definition of Ω_{o,e_1}, such a directed edge cannot be already present in $\pi \in \Omega_{o,e_1}$ (but an edge directed from o to e_1 might be present!), and that this map is one-to-one. Thus, we deduce that,

$$Z_{L,N,\rho}(o,e_1) = \sum_{\pi \in \Omega_{o,e_1}} \rho^{M(\pi)} \left(\frac{N}{2} \right) \mathcal{L}(\pi) = \frac{2}{N} \sum_{\pi \in \Omega^k : (o,e_1) \in E_\pi} \rho^{M(\pi)} \left(\frac{N}{2} \right) \mathcal{L}(\pi) \quad (6.2)$$

where $\mathcal{L}(\Pi(\pi)) = \mathcal{L}(\pi) + 1$, and the last step follows from reflection and rotational symmetry. From this and (4.2) we deduce that,

$$G_{L,N,\rho}(o,e_1) = \frac{1}{dN} \frac{\sum_{\pi \in \Omega^k : \exists i \in [1,d] : (o,e_i) \in E_\pi} \rho^{M(\pi)} \left(\frac{N}{2} \right) \mathcal{L}(\pi)}{\sum_{\pi \in \Omega^k} \rho^{M(\pi)} \left(\frac{N}{2} \right) \mathcal{L}(\pi)}$$

Since for any finite $L \in 2\mathbb{N}$, the second factor equals one when $\rho = 0$ (the origin is not a monomer almost surely), the proof of (6.1) is concluded. From a direct application of our Infrared-ultraviolet bound, Theorem 5.1 above, from the point (iv) of Lemma 5.4, and from (6.1), we deduce that,

$$\frac{1}{|T_L|^2} \sum_{x \in T_L} G_{L,N,0}(x) \geq G_{L,N,0}(e_1) - I_L(d) = \frac{1}{dN} - I_L(d)$$

Since by Theorem 5.1 we have that $\lim_{L \rightarrow \infty} I_L(d) = \frac{1}{2d} \bar{\Gamma}_2$, from the previous expression we obtain (2.13) and conclude. \qed

Proof of (2.14) in Theorem 2.3. To begin, note that the monotonicity properties in [43, Theorem 2.4] imply that, for any $L \in 2\mathbb{N}$, for any $N \in \mathbb{N}_0$, for any cartesian vector e_i for any $z \in T_L$ such that $e_i \cdot z \in 2\mathbb{N} + 1 \cap (0, \frac{L}{2})$, for any odd integer $n \in (3, z \cdot e_i)$,

$$G_{L,N,0}^0(o,z) \leq G_{L,N,0}^0(o,ne_i) \leq G_{L,N,0}^0(o,(n-2)e_i) \leq G_{L,N,0}^0(o,e_i) = \frac{1}{dN}, \quad (6.3)$$

where the identity follows from (6.1). By the torus symmetry and by the fact that for any $z \in T_L^o$ there exists e_i such that $z \cdot e_i \in 2\mathbb{Z} + 1$, this implies that

$$\forall z \in T_L \quad G_{L,N,0}^0(o,z) \leq \frac{1}{dN}. \quad (6.4)$$

We now deduce the point-wise lower bound (2.14) from (2.13) and (6.4). To begin, for any $k \in \mathbb{N}$, we define the set

$$S_{k,L} := \{ z \in T_L^o : \exists i \in \{1, \ldots, d\} \text{ s.t. } |z \cdot e_i| < k \}.$$

Note that, for any $L \in 2\mathbb{N}$, and $k \in (0, L/2) \cap \mathbb{N}$,

$$|T_L^o \setminus S_{k,L}| = \frac{1}{2} (L - 2k)^d.$$

We now choose an arbitrary $\varphi \in (0, \frac{1}{2d} \left(\frac{L}{2} - \frac{L}{2} \right))$. We claim that

$$\exists c = c(d, \varphi, N) \in (0, \frac{1}{2}) : \quad \forall L \in 2\mathbb{N} \text{ large enough } \exists z_L \in T_L^o \setminus S_{c,L,L} \quad \text{s.t.} \quad G_{L,N,0}(z_L) \geq \varphi. \quad (6.5)$$
We first conclude the proof using (6.5) and then prove (6.5). Choose \(c\) as in (6.5) and deduce that, for any large enough \(L \in 2\mathbb{N}\), since \(z_L \in T^*_L\), there exists a cartesian vector \(e_i\) such that \(m_L := z_L \cdot e_i \in 2\mathbb{Z} + 1\). Moreover, since \(z_L \in T^*_L \setminus S_{e,L,L}\), we deduce that \(|m_L| \geq cL\). Thus, from the monotonicity properties (6.4) and symmetry, we deduce that, for any odd integer \(n \in (-|m_L|, |m_L|)\) and any cartesian vector \(e_i\),

\[
G_{L,N,0}(o, e_in) \geq G_{L,N,0}(o, e_im_L) > \varphi.
\]

This concludes the proof of (2.4) given (6.5).

Now we prove (6.5) by contradiction. Assume that (6.5) is false, namely that for any large enough \(L \in 2\mathbb{N}\) with \(2L\), we have that, for any \(n \in (-|m_L|, |m_L|)\) and any infinite sequence \((n_i)\) such that,

\[
\varphi := (1 - 2c)^d \in L_1\phi \quad \text{and for an infinite sequence } (L_n)_{n \in \mathbb{N}} \text{ such that,}
\]

\[
\sum_{x \in T^*_L} G^q_{L_n,N,0}(x) < \varphi \left| T^*_L \setminus S_{e,L,L} \right| + \frac{1}{dN} \left| T^*_L \setminus S_{e,L,L} \right|
\]

\[
\quad = \frac{1}{2} L_n^d \left\{ \frac{1}{dN} - (1 - 2c)^d \left(\frac{1}{dN} - \varphi \right) \right\}
\]

\[
\quad = \frac{1}{2} L_n^d \left\{ \frac{1}{dN} (1 - q) + q \varphi \right\} = \left| T^*_L \right| \left(\frac{1}{dN} (1 - q) + q \varphi \right).
\]

Since we chose \(\varphi \in (0, \frac{1}{2L} (\frac{1}{d} - \frac{d}{dN}))\), we see that the previous inequality cannot hold for any constant \(c\) and for an infinite sequence \((L_n)_{n \in \mathbb{N}}\) unless violating (2.13) (by choosing \(c\) small enough, namely \(q\) close enough to one), we bound the quantity inside the square bracket away from \(\frac{1}{2L} (\frac{1}{d} - \frac{d}{dN})\), uniformly in \(L_n\), which was proved to hold true. Thus, we obtained the desired contradiction and conclude the proof.

Proof of Theorem 2.2. Theorem 2.2 is an immediate consequence of Theorem 2.3. For any \(A \subset T_L\), we have that,

\[
\mathbb{P}_{L,N,0}(X \in A) = \sum_{x \in A} \mathbb{P}_{L,N,0}(X = x) = \sum_{x \in T_L} \mathbb{Z}_{L,N,0}(o,x) \sum_{x \in T_L} \mathbb{P}_{L,N,0}(o,x) = \sum_{x \in T_L} G_{L,N,0}(o,x),
\]

where the last identity follows after dividing the numerator and the denominator by \(\mathbb{Z}_{L,N,0}^f\). Now the claim follows from (2.13), which provides a lower bound for the denominator in the right-most term, and from (6.1), which provides an upper bound for the numerator in the right-most term. Using both bounds we obtain (2.13).

Acknowledgements

This work started as the author was affiliated at Technische Universität Darmstadt and was funded by DFG (grant number: BE 5267/1), it continued as the author was affiliated at the University of Bath and funded by EPRSC (grant number: EP/N004566/1), and it was concluded as the author was affiliated at the Weierstrass Institute for Applied Analysis and Stochastics, Berlin. The author thanks Volker Betz, Ron Peled, Thomas Spencer and Daniel Ueltschi for intriguing discussions and Volker Betz for introducing the model of random lattice permutations to him.

7 Appendix

Proof of Lemma 3.3. We omit the subscripts for convenience. To begin, note that it follows from (3.7) that

\[
\mathbb{G}(e_1) = \frac{1}{|T_L|} \hat{\mathbb{G}}(0) - \frac{1}{|T_L|} \hat{\mathbb{G}}(p) + \frac{1}{|T_L|} \sum_{k \in T^*_L \setminus \{0,p\}} e^{ik \cdot e_1} \hat{\mathbb{G}}(k).
\]
and it follows from (3.6) that \(\frac{1}{|T_L|} \hat{G}(o) = \frac{1}{|T_L|} \sum_{x \in T_L} G(x) \), and that
\[
\frac{1}{|T_L|} \hat{G}(p) = -\frac{1}{|T_L|} \sum_{x \in T_L} G'(x) + \frac{1}{|T_L|} \sum_{x \in T_L} G''(x).
\]
Combining the equations above, we conclude the proof. \(\square \)

Proof of (i), (ii) and (iii) in the proof of Proposition 5.3. These computations are classical and they can be extracted for example from the computations in [49]. We present them for the reader’s convenience. The proof of (i) consists of the following computation,
\[
(\Delta v)_x = \sum_{y \sim o} \left(\cos ((x+y) \cdot k) - v_x \right) = \sum_{y \sim o} \left(\cos (x \cdot k) \cos (y \cdot k) - \sin (x \cdot k) \sin (y \cdot k) - v_x \right)
= \sum_{y \sim o} \left(v_x \cos (y \cdot k) - v_x \right) = -\varepsilon(k) v_x.
\]
The proof of (ii) follows from the first Green identity, which states that, for any pair of real-valued vectors, \(a = (a_x)_{x \in T_L}, b = (b_x)_{x \in T_L} \), when \((T_L, E_L) \) is the torus,
\[
\sum_{\{x,y\} \subseteq E_L} (b_y - b_x) (a_y - a_x) = -\sum_{x \in T_L} a_x (\Delta b)_x.
\]
The proof of such an identity can be found for example in [26][Lemma 8.7]. Applying such an identity with \(a = b = v \) and using (i), we obtain (ii). It remains to prove (iii). For this, we use the fact that, by lattice symmetries, \(\hat{G}(k) \) is real and we obtain:
\[
\sum_{x,y \in T_L} \cos(k \cdot x) \cos(k \cdot y) G(x,y) = \sum_{x \in T_L} \left(\cos(k \cdot x) \Re \left[\sum_{y \in T_L} \cos(k \cdot y) \hat{G}(y-x) \right] \right)
= \sum_{x \in T_L} \left(\cos(k \cdot x) \Re \left[e^{ik \cdot x} \sum_{y \in T_L} e^{ik \cdot (y-x)} \hat{G}(y-x) \right] \right) = \sum_{x \in T_L} \left(\cos(k \cdot x) \Re [e^{ik \cdot x} \hat{G}_k] \right)
= \sum_{x \in T_L} \cos^2(k \cdot x) \hat{G}(k).
\]
This concludes the proof. \(\square \)

References

[1] Armendáriz I., Ferrari P. A., Yuhjtman S.: Gaussian random permutation and the boson point process. Preprint: arXiv 1906.11120 (2019).

[2] Au-Yang H., Perk J. H. H.: Ising correlations at the critical temperature. Physics Letters A, (3)104, 131-134 (1984).

[3] Benassi C., Ueltschi D.: Loop correlations in random wire models. To appear in Commun. Math. Phys. Preprint: arXiv 1807.06564 (2018).

[4] Betz V.: Random permutations of a regular lattice. J. Stat. Phys., 155, 1222-1248 (2014).

[5] Betz V. and Ueltschi D.: Spatial random permutations and infinite cycles. Commun. Math. Phys., 285, 469-501 (2009).

[6] Betz V. and Taggi L.: Scaling limit of a self-avoiding walk interacting with spatial random permutations. Electron. J. Probab. 24 (2019).
7. Betz V., Schäfer H., Taggi L.: Interacting self-avoiding polygons. To appear in: Ann. Inst. Henri Poincaré (B). Preprint: arXiv 1805.08517 (2018).

8. Bogachev L. V., Zeindler D.: Asymptotic Statistics of Cycles in Surrogate-Spatial Permutations. Commun. Math. Phys., (1)334, 39116 (2015).

9. Betz V., Ueltschi D., Velenik I.: Random permutations with cycle weights. Ann. Appl. Probab. 21, 312-331 (2011).

10. Betz V., Ueltschi D.: Spatial random permutations with small cycle weights. Probab. Theory. Rel., 149, 191-222 (2011).

11. Biskup M.: Reflection positivity and phase transitions in lattice spin models. In: R. Kotecky (ed), Methods of Contemporary Mathematical Statistical Physics, Lecture Notes in Mathematics, vol. 1970, Springer-Verlag Berlin Heidelberg, 2009, pp 1-86.

12. Biskup M. and Richthammer T.: Gibbs measures on permutations over one-dimensional discrete point sets. Ann. Appl. Probab., (2)25, 898-929 (2015).

13. Brydges D., Fröhlich J., Spencer T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys., 83, 123150 (1982).

14. Chayes L., Pryadko P., Shtengel K.: Intersecting Loop Models on Zd: Rigorous Results. Nucl. Phys. B, 570, 590-614 (2000).

15. Coln H., Elkies N., and Propp J.: Local statistics for random domino tilings of the Aztec diamond. Duke Math. J., 85, 117-166 (1996).

16. Dubédat J.: Dimers and families of Cauchy-Riemann operators I. J. Amer. Math. Soc., 28, 1063-1066 (2015).

17. Dubédat J.: Double dimers, conformal loop ensembles and isomonodromic deformations. J. Eur. Math. Soc., 21, 154 (2019).

18. Duminil-Copin H.: Random currents expansion of the Ising model. Proceedings of the 7th European Congress of Mathematicians in Berlin (2016).

19. Duminil-Copin H., Peled R., Samotij W., Spinka Y.: Exponential decay of loop lengths in the loop O(n) model with large n. Comm. Math. Phys., 349, 77781 (2017).

20. Duminil-Copin H., Glazman A., Peled R., Spinka Y.: Macroscopic loops in the loop O(n) model at Nienhuis’ critical point. To appear in J. Eur. Math. Soc. Preprint: arXiv 1707.09335 (2017).

21. Elboim D., Peled R.: Limit distributions for Euclidean random permutation. Commun. Math. Phys., 269, 45722 (2019).

22. Feldheim N. and Spinka Y.: Long-range order in the 3-state antiferromagnetic Potts model in high dimensions. J. Eur. Math. Soc., 21, (2019).

23. Feynman R. P.: Atomic theory of the λ transition in Helium. Phys. Rev. 91, 12911301 (1953).

24. Fisher M. E.: Statistical Mechanics of Dimers on a Plane Lattice. Phys. Rev., 124, 1664 (1961).

25. Fisher M. E. and Stephenson J.: Statistical Mechanics of Dimers on a Plane Lattice. II. Dimer Correlations and Monomers. Phys. Rev., 132, 1411 (1963).

26. Friedli S. and Velenik Y.: Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction. Cambridge University Press (2017).

27. Fröhlich J. and Lieb E. H.: Phase transitions in anisotropic lattice spin systems. Comm. Math. Phys., 60, 233267, (1978).
[28] Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys. (1)50, 79-95 (1976).

[29] Fröhlich J., Israel R., Lieb E. H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys., (1)62 (1978).

[30] Fröhlich J., Israel R. B., Lieb E. H., Simon B.: Phase transitions and reflection positivity. II. Lattice systems with short-range and Coulomb interactions. Commun. Math. Phys. (3)22, 297347 (1980).

[31] Gandolfo D., Ruiz J., Ueltschi D.: On a model of random cycles. J. Stat. Phys., 129, 663676 (2007).

[32] Glazman A., Manolescu I.: Uniform Lipschitz functions on the triangular lattice have logarithmic variations. Preprint: arXiv 1810.05592 (2019).

[33] Giuliani A., Mastropietro V., Toninelli F. L.: Height fluctuations in interacting dimers. Preprint: arXiv 1406.7710 (2018).

[34] Grosskinsky S., Lovisolo A., Ueltschi D.: Lattice permutations and Poisson-Dirichlet distribution of cycle lengths. J. Stat. Phys. 146, 1105-1121 (2012).

[35] Huse D. A., Krauth W., Moessner R., and Sondhi S. L.: Coulomb and Liquid Dimer Models in Three Dimensions Phys. Rev. Lett., 91, 167004, (2003).

[36] Jerrum M. R.: Two-dimensional monomer-dimer systems are computationally intractable. J. Stat. Phys., 48 121-134 (1987).

[37] Kasteleyn P. W.: The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica 27, 12091225 (1961).

[38] Hammersley J. M., Feuerverger A., Izenman A., and Makani K.: Negative Finding for the Three-Dimensional Dimer Problem. J. Math. Phys, (3)10, 443-446 (1969).

[39] Kenyon R.: Conformal invariance of domino tiling. Ann. Prob. (2)28, (2000), 759-795.

[40] Kenyon R.: Dominos and the Gaussian free field. Ann. Prob. 29 (2001).

[41] Kenyon R.: Conformal invariance of loops in the double dimer model. Commun. Math. Phys., 2 (2014).

[42] Lees B.: Existence of Néel Order in the S=1 Bilinear-Biquadratic Heisenberg Model via Random Loops. Commun. Math. Phys., (1)347, 83101 (2016).

[43] Lees B. and Taggi L.: Site monotonicity and uniform positivity for interacting random walks and the spin O(N) model with arbitrary N. Accepted for publication in Commun. Math. Phys. Preprint: arXiv 1902.07252 (2019).

[44] Penrose O., Onsager L.: Bose-Einstein condensation and liquid Helium. Phys. Rev. 104, 576 (1956).

[45] Peled R., Spinka Y.: Lectures on the Spin and Loop O(n) Models. Preprint: arXiv 1708.00058 (2015).

[46] Lyons R. and Peres Y.: Probability on Trees and Networks. Cambridge University Press, 2016.

[47] Taggi L.: Shifted critical threshold in the loop O(n) model at arbitrary small n. Electron. Commun. Probab. 23, (2018).

[48] Temperley H. N. V., Fisher M.: Dimer problem in statistical mechanics-an exact result. Phil. Mag. Series 8, (68)6, 1061-1063 (1961).
[49] D. Ueltschi: *Marseille Lectures*. Preprint: http://www.ueltschi.org/articles/13-Ua.pdf

[50] D. Ueltschi: Relation between Feynman Cycles and Off-Diagonal Long-Range Order. *Phys. Rev. Lett.* **97**, 170601 (2006).

[51] D. Ueltschi: Random loop representations for quantum spin systems *J. Math. Phys.* **54**, 083301 (2013).

[52] G.N. Watson: Three triple integrals. *Quart. J. Math.* **10**, 266 (1939).