Cross-sectional study of cognitive stress appraisal and related factors among workers in metropolitan areas of Japan

Natsuka Tohmiya,1 Etsuko Tadaka,2 Azusa Arimoto2

ABSTRACT

Objective Stress has major socioeconomic implications for all spheres of employment. It is a trigger for depression, and affects absenteeism, turnover, productivity, morale and suicide. Positive or negative cognitive stress appraisal can be a self-care strategy that affects workers’ ability to cope with stress. This study examined cognitive stress appraisal among workers and identified related individual and environmental factors.

Design Cross-sectional study using self-administered postal questionnaires.

Setting Companies located in two metropolitan areas of Japan (Tokyo and Kanagawa prefectures).

Participants 2311 employees of 48 companies in metropolitan areas in Japan. In total, 341 questionnaires were returned (response rate: 14.8%), 337 of which were suitable for analysis (effective response rate: 98.8%).

Primary measures Cognitive stress appraisal was assessed using the Japanese version of the Perceived Stress Scale (PSS). Potential variables related to stress appraisal included demographic, individual and environmental factors. Multiple regression analysis was used to identify factors related to cognitive stress appraisal.

Results Participants’ mean±SD age was 42.8±11.7 years, and two-thirds were male. The mean±SD PSS score was 25.8±6.2. The multiple regression analysis controlled for age, sex and depression showed that those with poorer economic status (β=0.171, p<0.001), lower electronic health (eHealth) literacy (β=−0.113, p=0.012), higher traditional organisational climate (β=0.131, p=0.004) and lower perceived social support (β=−0.205, p<0.001) experienced significantly higher levels of negatively perceived stress.

Conclusions The results show individual and environmental factors related to cognitive stress appraisal among workers. An effective strategy to improve mental health among workers may involve an interprofessional approach by public health nurses and health practitioners that includes enhanced self-coping skills using individual workers’ eHealth literacy, improvement of organisational climates in workplaces and community-based social support.

INTRODUCTION

Depression is a common psychiatric disorder, affecting about 350 million people worldwide and is a major contributor to the overall global burden of disease.1 In Japan, depression is estimated to have affected up to 1.116 million people in 2015.2 Depression is different from usual mood fluctuations and short-lived emotional responses to challenges in everyday life. Especially when long lasting and with moderate or severe intensity, depression may become a serious health condition. In particular, depression caused by occupational stress result in increasing rates of long-term illness and absence from work among workers.3 WHO’s Comprehensive Mental Health Action Plan 2013–2020 adopted by the 66th World Health Assembly4 argues that determinants of mental health and psychiatric disorders include individual attributes and social, cultural, economic, political and environmental factors for protecting workers’ health.5 Mental illnesses are associated with a substantial deterioration in individual quality of life, and economic loss in the community and workplace.6,7 Therefore, primary prevention of depressive disorders is important nationally and internationally, as well as for individuals.

Stress has major socioeconomic implications for all spheres of employment. It is a trigger for depression and affects absenteeism, turnover, productivity, morale and suicide.2–4 In Japan, the number of employees who applied for industrial accident compensation insurance for mental disorders because of stress has increased in recent
years. There was 1515 applications in 2015, which was up from 1272 in 2011. The proportion of workers experiencing anxiety, distress and work stress has progressively increased since 1982, and is now estimated at 60%. In this context, the Japanese government launched ‘The Stress Check Program’ in 2015, a new occupational health policy to screen for workers experiencing high psychosocial stress. The law mandates use of the Stress Check Program and its guidelines at least once each year in all workplaces in Japan with 50 or more employees. The programme and guidelines recommend individual checks for perceived stress, and sets out four principles of care in the workplace: (1) self-care, (2) line-care, (3) health practitioners’ care in the workplace and (4) health practitioners’ care in the community.

Cognitive stress appraisal is a self-care strategy based on individuals’ evaluation of how they perceive stressors. In primary appraisal, an individual’s evaluations are divided into ‘threat’ and ‘challenge’; threat describes anticipated harm/loss, and challenge describes a threat that can be met or overcome. The cognitive appraisal of something as a ‘threat’ or ‘challenge’ can affect mental health. The stress response and stress coping following cognitive appraisal differ among individuals, even in response to the same stressors. For example, people making a positive cognitive appraisal may perceive stress as a challenging health issue to be resolved, and set themselves challenging goals. Those making a negative cognitive appraisal may view the same issue as a health threat, and believe that resolving the issue is beyond their abilities. Positive or negative cognitive stress appraisal can therefore be an important mental health concept to improve stress-coping skills and control stress among workers. For individuals, positive cognitive appraisal contributes to prevention of depression, thereby improving quality of life. At the societal level, this is important in controlling the escalation of medical costs and increasing corporate and community-wide productivity.

The Perceived Stress Scale (PSS) measures the degree to which situations are cognitively appraised as stressful. Cohen explained the PSS as a measure of the degree to which situations in one’s life are appraised as stressful. PSS items were designed to capture how unpredictable, uncontrollable and overloaded respondents perceive their lives. These issues have been repeatedly found to be central components of the experience of stress. In addition, stressful life events influence disease risk through an individual’s perceptions of stress and negative affect. Cohen also noted that the PSS can be used to determine whether ‘appraised’ stress is an aetiological (or risk) factor in behavioural disorders or disease. Therefore, we considered that the PSS can continuously measure negative cognitive stress appraisal. Previous studies have measured cognitive stress appraisal using the PSS and investigated related factors with students, medical professionals and patients with chronic diseases. However, the scale has not previously been used with healthy adult workers in a range of employment types. Previous studies clarified various individual factors related to the PSS, but these varied for different participants. Some studies examined the physical and psychological health conditions among students or conditions in particular populations (eg, adults with a disease or pregnant women). Other studies examined lifestyle factors among students, pregnant women and medical professionals, job stress among medical professionals, stressors and coping in adult survivors of suicide and pregnant women, and health literacy in African-American adults. However, there is limited information about the relationship between cognitive stress appraisal and individual and environmental factors (eg, work environment and available social support) among adult workers.

This study aimed to examine cognitive stress appraisal among workers and identify associated individual and environmental factors. The findings may contribute to minimizing the effect of factors associated with an increased risk for depression, and contribute to promoting individual self-care and improving workplace environments to promote mental health among workers. Furthermore, the findings may be useful for public health nurses and health practitioners at worksites engaged in primary prevention of mental health disorders among workers.

METHODS
Participants and sampling
Study participants were employees of companies located in metropolitan areas of Japan. The inclusion criterion was employees aged 18–64 years. The age of 64 years is the upper limit for consideration of retirement and re-employment under the Japanese Law Concerning Stabilization of Employment of Older Persons, and 18 years is the youngest age for employment immediately after graduating high school in Japan.

This study used a cross-sectional design with self-administered postal questionnaires. Data were collected from employees of companies registered in the Japan Company Handbook 2016 across two metropolitan areas of Japan (Tokyo and Kanagawa prefectures). We stratified companies by size and type of industry, and selected companies randomly within that stratification; 361 of a total 2026 companies were selected (17.8%). The questionnaire did not collect details about company name, number of employees and type of industry to safeguard participant anonymity.

Data collection
Out of 361, 48 companies agreed to participate in this study. Before sending the questionnaires to each company, we identified the relevant sample size from company administrators. In total, 2311 questionnaires were mailed to the 48 companies. Of these, 341 questionnaires were returned (response rate: 14.8%). Potential participants (all employees of the participating companies) were invited to complete the questionnaire anonymously on a voluntary basis, between 1 October 2016 and
Tohmiya N, BMJ Open 2018;8:e019404. doi:10.1136/bmjopen-2017-019404

9 December 2016. Participant anonymity was maintained throughout data collection as the questionnaires did not collecting any identifying information. In addition, participants returned completed questionnaires by mail to the researchers themselves. Returning a completed questionnaire was considered to indicate provision of informed consent.

Instruments

Dependent variable: cognitive stress appraisal

The dependent variable was cognitive stress appraisal, which was determined using the Japanese version of the PSS. The PSS comprises 14 items and includes questions such as, ‘In the last month, how often have you been upset because of something that happened unexpectedly?’ and ‘In the last month, how often have you felt that you were unable to control the important things in your life?’ Responses were coded for scoring as never=0, almost never=1, sometimes=2, fairly often=3 and very often=4. Possible total scores ranged from 0 to 56, with higher scores indicating higher levels of negative cognitive stress appraisal. All 14 items in the Japanese version of the scale are highly intercorrelated (Cronbach’s alpha=0.74).

Demographic characteristics

Participants’ demographic characteristics included age, sex (male=1, female=2), marital status (unmarried and divorced/widowed=1, married=2), household membership (live alone=1, spouse=2, spouse and children=3, parents=4, others=5), educational status (junior high school/high school=1, vocational college/Junior college=2, college or university/graduate school=3), employment status (fulltime=1, part time=2, others=3), economic status (sufficient=1, slightly sufficient=2, slightly insufficient=3, insufficient=4) and depression. Items were based on standard questions generally used in previous studies involving workers and items used in a recent national survey for workers.

Depression was measured using the Japanese version of the Center for Epidemiologic Studies Depression Scale (CES-D), which comprises 20 items. Each item is measured on a four-point Likert-type scale. Total scores range from 0 to 60, with higher scores indicating greater levels of depression. CES-D scores above 16 indicate a depressive state. The CES-D was developed for use in epidemiological studies of depressive symptomatology in the general population. A specific group with a higher mean score may be interpreted to be at risk for a depressive state or in need of intervention. Cognitive stress appraisal is affected by participants’ mental condition at that particular time, which includes depression. The psychometric properties of the CES-D have been investigated, and the scale showed high internal consistency, acceptable test–retest stability, excellent concurrent validity for clinical and self-report criteria and substantial evidence of construct validity. When the CES-D was designed, the internal consistency was high in the general population (0.77–0.87) and higher in the patient sample (0.85–0.92), and test–retest correlations were in the moderate range (0.45–0.70). In addition, the CES-D showed moderate correlations with the Hamilton Clinician’s Rating scale and the Raskin Rating scale (0.44–0.54) at admission.

Independent variables

The conceptual framework of this study was to examine cognitive stress appraisal and identify related individual and environmental factors. According to Lazarus’s theory, individual and environmental factors mutually affect the cognitive stress appraisal process. Therefore, we considered both individual and environmental factors to be important. Independent variables were selected based on previous studies.

Individual factors included any disease currently under treatment (eg, cancer, diabetes), body mass index (BMI), self-rated health, physical complaints, physical demands, lifestyle, perceived health competence and electronic health (eHealth) literacy. BMI was calculated from self-reported weight and height. Self-rated health was measured on a four-point Likert-type scale from 1 (very poor) to 4 (very good).

Physical complaints were measured using the Brief Job Stress Questionnaire (BJSQ). The BJSQ is used in the Japan Stress Check Test by the Ministry of Health, Labour and Welfare, and can be easily used in the workplace. It comprises 57 items on 19 subscales, from which we drew 11 items (eg, ‘I have felt dizzy’ and ‘I have experienced joint pains’). Each item was measured on a four-point Likert-type scale. Total scores ranged from 11 to 44, with higher scores indicating more frequent physical complaints. Physical demands were measured using the Job Content Questionnaire (JCQ), which comprises 45 items on 6 subscales. We used three items for physical exertion and two for isometric load. Items were measured on a five-point Likert-type scale. Total scores for physical exertion ranged from 3 to 15, and for isometric load from 2 to 10, with higher scores indicating stronger physical demands/isometric load. The JCQ was developed based on the job demands–control model, and has been nationally standardised by occupation in several countries.

Lifestyle was measured using seven items based on Breslow’s good health habits. These items covered smoking, drinking alcohol, eating breakfast every day, physical activity, eating snacks after dinner, skipping breakfast, and sleeping and resting. Responses were coded for scoring as ‘yes’ or ‘no’. Perceived health competence was measured using the Japanese version of the Perceived Health Competence Scale (PHCS). The PHCS comprises eight items measured on a five-point Likert-type scale. Total scores ranged from 8 to 40, with higher scores indicating higher perceived health competence. Perceived health competence is related to stress, and the PHCS was designed to assess efficacy and competence beliefs about personal health at an intermediate level of domain specificity.
Finally, eHealth literacy was measured using the Japanese version of the eight-item eHealth Literacy Scale (eHEALS). eHealth literacy is defined as the ability to seek, find, understand and appraise health information from electronic sources, and apply that knowledge in addressing or solving a health problem. Responses were assessed using a five-point Likert-type scale. Total scores ranged from 8 to 40, with higher scores indicating greater eHealth literacy. In Japan, internet penetration in the studied age group is over 90%. eHEALS was developed to address the need to assess eHealth literacy for a range of populations and contexts. It is designed to provide a general estimate of consumer eHealth-related skills to inform clinical decision-making and health promotion planning for individuals or specific populations.

Environmental factors: organisational climate
Organisational climate was measured using the 12-item Organisational Climate Scale, which is divided into two six-item subscales: a tradition scale and an organisational environment scale. Responses were coded for scoring as yes=2 and no=1. The total possible scores ranged from 6 to 12 for each subscale. Higher scores on the tradition scale indicate a more mandatory, injunctive and feudalistic organisational climate. Higher scores on the organisational environment scale indicate a more flexible organisational system. A previous study showed that organisational climate may affect occupational stress. This scale measures organisational properties based on the model of healthy work organisations at the National Institute for Occupational Safety and Health of US Department of Labor.

Social support
Social support was measured using the short version of the Multidimensional Scale of Perceived Social Support (MPSS) in Japanese, which comprises seven items. Responses were on a seven-point Likert-type scale, with lower scores indicating lower perceived social support. The MPSS specifically addresses the subjective assessment of social support adequacy, and was designed to assess perceptions of social support adequacy from three sources: family, friends and significant others.

Statistical analysis
Means, SDs, frequencies and percentages were calculated for demographic characteristics, positive or negative cognitive stress appraisal (PSS scores), and individual and environmental factors. Univariate analysis using Spearman’s correlation was used to examine correlations between the dependent and independent variables. A multiple regression analysis was then used to identify factors related to cognitive stress appraisal among workers, using all potentially significant predictors identified by the univariate analyses (p<0.05). Multicollinearity of independent variables was considered via the forced entry (variable reduction) method. The multiple regression model included selected independent variables and all statistical analyses. In the model, step 1 included the control variables, step 2 the demographic characteristics and step 3 the remaining predictors. Sex, age and depression were entered as control variables. A previous study reported high correlation between the PSS and the CES-D, but both scales still independently predicted symptomatology. Because the aim of this study was primary prevention of poor mental health, specifically depression, we assumed that depression was a covariate and treated it as a control variable. Of the 337 effective response, data were missing for; BMI (n=2, 0.59%), self-rated health (n=14, 4.15%), household membership (n=3, 0.89%), employment status (n=2, 0.59%) and CES-D (n=10, 3.20%), therefore, these cases were excluded from the multiple regression models. The sample size was calculated using G*Power V.3.0.10. With power of 80%, a 0.05 level of statistical significance, an effect size of 0.15 and the number of predictors as 13, the required sample size for the multiple regression model was calculated as 131. The level of significance was set at p<0.05. All analyses were performed using IBM SPSS Statistics for Windows V.22.0.

RESULTS
In total, 341 questionnaires were returned. Four questionnaires were from participants aged over 65 years or who did not provide their age. We excluded these questionnaires, which left 337 questionnaires for analysis (effective response rate: 98.8%). Participants’ background information (demographic characteristics, individual factors, environmental factors) is shown in table 1. Results are reported below as mean±SD.

Patients and/or public were not involved in developing the hypothesis, the aim, nor were they involved in developing plans for study design or implementation of the study.
The mean organisational environment scale was 8.6±1.8. The mean social support scale score was 5.4±1.2.

There were correlations among demographic characteristics, individual and environmental factors, and cognitive stress appraisal. Spearman’s correlation coefficients
In the multiple regression analysis, factors associated with cognitive stress appraisal, (marital status, household membership, economic status, physical activity, sleeping, isometric load, eHealth literacy, tradition and organisational environment scales, and social support) were used as independent variables, and age, sex and depression as control variables (table 2). This analysis indicated that those with poorer economic status (β=0.171, p<0.001), lower eHealth literacy (β=−0.113, p=0.012), higher traditional organisational climate (β=0.131, p=0.004) and lower perceived social support (β=−0.205, p<0.001) experienced a higher level of perceived negative stress. The adjusted R² in this analysis was 0.412.

DISCUSSION

Participants in this study were representative of healthy adult workers in a range of employment types in Japan. First, in terms of demographic characteristics (eg, age, sex) and proportion of participants, this study was similar to the reported national statistics for full-time workers in Japan. Second, the PSS scores in this study were similar to those obtained when the PSS was originally developed and those of adults in other countries. Therefore, this study can be generalised to other workers in Japan and to other developed countries.

Our study is the first to examine features of cognitive stress appraisal in workers and identify associated individual and environmental factors. This study adds to existing research evidence that both individual factors (including eHealth literacy) and environmental factors (such as organisational climate) are related to cognitive stress appraisal among workers. Therefore, this study has important practical implications in promoting stress management and primary prevention of stress-related disease and suicide among workers.

Economic status was related to cognitive stress appraisal. It is possible that poor economic status in itself is the origin of stress, and workers with poor economic status have difficulty coping with their own stress. Cognitive stress appraisal and subjective economic status are related, and self-efficacy plays an important role as a mediator between cognitive evaluation of stress and life satisfaction. Workers may be unable to appraise challenges and struggle in stressful situations because they feel that their own ability level is low and they have limited resources.

We found that lower eHealth literacy was related to negative stress appraisal. Health literacy is a cognitive and social skill that determines individuals’ motivation and ability to gain access to, understand and use information in ways that promote and maintain good health. Higher health literacy may enable an individual to actively seek support and solutions to problems. Good eHealth literacy means people can access health information resources via the internet. The internet is increasingly becoming an effective information tool for improving self-care behaviour. In addition, the internet holds a considerable amount of health information, which is helpful for positive cognitive stress appraisal. Improving eHealth literacy may empower workers to obtain, understand and act on information they need for optimal mental health.

We also found that more traditional organisational climates were related to negative cognitive stress appraisal. A traditional organisational climate is more directive and feudalistic. Higher tradition scores correspond to higher levels of depressive state, lower job satisfaction and lower levels of mental health. A traditional structure or climate implies high levels of mandatory working, a lack of respect for individual opinion and pressure from superiors. Workers in traditional organisational climates have less discretion and a more stressful environment. They may be unable to ask for help from their supervisor, or make improvements to the work environment. The relationship between organisational climate and workers’ performance may be explained using the social exchange theory. This theory is based on the assumption that social

Table 2: Cognitive stress appraisal and related factors

Factor	β	P values
Demographic characteristics		
Economic status	0.171	<0.001
(1=sufficient, 2=slightly sufficient, 3=slightly insufficient, 4=insufficient)		
Individual factors		
eHealth literacy (total score)	−0.113	0.012
Environmental factors		
Organisational climate: tradition	0.131	0.004
(total score)		
Social support (total score)	−0.205	<0.001
Adjusted R²	0.412	

Multiple regression analysis.

Controlled variables: age, sex (0=female, 1=male), depression (0=no, 1=yes).

EHealth, electronic health.
to develop better cognitive stress appraisal. Furthermore, occupational and community interventions are required to create and inform people of opportunities for cognitive stress appraisal in the workplace and the community.

Acknowledgements The authors would like to thank all the employees who agreed to participate in this study. We thank Audrey Holmes, MA, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Contributors NT, ET and AA contributed to develop the concept and design of this study. ET was responsible for acquiring the institutional review board approval of this study. NT was responsible for data collection and analysis. NT and AA were responsible for drafting and revising the manuscript. ET was responsible for study supervision and reporting of study results. All authors read and approved the final manuscript.

Funding This study was supported by University Center of Community (COC) program funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (http://www.mext.go.jp/en/) (PI: Etsuko Tadaka).

Competing interests None declared.

Patient consent Not required.

Ethics approval The Institutional Review Board of the Medical Department of the Yokohama City University approved this study on 9 August 2016 (Certification No.A1608008; PI: ET).

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional unpublished data from the study are available at the moment.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

1. World Health Organization [Internet]. Depression. Genève, 2016. http://www.who.int/mediacentre/factsheets/fs369/en/
2. Ministry of Health, Labor and Welfare [Internet]. Patient survey. Tokyo, 2015. http://www.mhlw.go.jp/toukei/saikin/hw/kanja14/dl/kanja.pdf
3. World Health Organization [Internet]. Protecting workers’ health. Genève, 2017. http://www.who.int/mediacentre/factsheets/fs389/en/
4. World Health Organization [Internet]. Comprehensive mental health action plan 2013–2020. Genève, 2013. http://www.who.int/mental_health/action_plan_2013/en/
5. World Health Organization [Internet]. Mental Health Action Plan 2013–2020. Genève, 2013. http://apps.who.int/iris/bitstream/10665/89966/1/9789241506021_eng.pdf?ua=
6. World Economic Forum and the Harvard School of Public Health [Internet]. The global economic burden of non-communicable diseases. Genève, 2011. http://apps.who.int/medicinedocs/documents/s18806en/s18806en.pdf
7. van den Berg Ti, Alavinya SM, Breidt FJ, et al. The influence of psychosocial factors at work and life style on health and work ability among professional workers. Int Arch Occup Environ Health 2008;81:1029–36.
8. Lee YM. Loss of productivity due to depression among Korean employees. J Occup Health 2010;52:389–94.
9. Kim SE, Kim HN, Cho J, et al. Direct and indirect effects of five factor personality and gender on depressive symptoms mediated by perceived stress. PLoS One 2016;11:e0154140.
10. Ministry of Health, Labor and Welfare [Internet]. Industrial accident compensation insurance for mental disorders. Tokyo, 2011. http://www.mhlw.go.jp/bunya/roukoudoushi/rousyaihokens04/dl/120215-01.pdf
11. Ministry of Health, Labor and Welfare [Internet]. Industrial accident compensation insurance for mental disorders. Tokyo, 2016. http://www.mhlw.go.jp/file/04-Houdouhappyou-11402000-Roudoukunjyoukuroduoushouhou-1/27_seishin.pdf
65. Lee J, Kim E, Wachholtz A. The effect of perceived stress on life satisfaction: The mediating effect of self-efficacy. Chongsonyonhak Yongu 2016;23:29–47.
66. NUTBEAM DON. Health promotion glossary. Health Promot Int 1986;1:113–27.
67. Ishikawa H, Nomura K, Sato M, et al. Developing a measure of communicative and critical health literacy: a pilot study of Japanese office workers. Health Promot Int 2008;23:269–74.
68. Ministry of Economy, Trade and Industry [Internet]. Employment status survey. Tokyo, 2012. http://www.stat.go.jp/english/data/shugyou/pdf/sum2012.pdf
69. Ritterband LM, Palermo TM. Introduction to the special issue: eHealth in pediatric psychology. J Pediatr Psychol 2009;34:453–6.
70. Mitsutake S, Shibata A, Ishii K, et al. Associations of eHealth literacy with health behavior among adult internet users. J Med Internet Res 2016;18:e192.
71. Cropanzano R, Mitchell MS. Social Exchange Theory: An Interdisciplinary Review. J Manage 2005;31:874–900.
72. Koizumi Y, Awata S, Kuriyama S, et al. Association between social support and depression status in the elderly: results of a 1-year community-based prospective cohort study in Japan. Psychiatry Clin Neurosci 2005;59:563–9.
73. Frasure-Smith N, Lespérance F, Gravel G, et al. Social support, depression, and mortality during the first year after myocardial infarction. Circulation 2000;101:1919–24.