Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma

Zeribe Chike Nwosu, Dominik Andre Megger, Seddik Hammad, Barbara Sitek, Stephanie Roessler, Matthias Philip Ebert, Christoph Meyer, and Steven Dooley

1Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; 2Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; 3Medizinisches Proteom-Center, Department of Clinical Proteomics, Ruhr-Universität Bochum, Bochum, Germany; 4Institute of Virology, University Hospital, University Duisburg-Essen, Essen, Germany; 5Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt; 6Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany

SUMMARY

We have identified metabolic targets that are consistently altered in human hepatocellular carcinoma, and are of potential clinical significance. This study exposes profound genomic dysregulation that could shed new light on how metabolism influences hepatocellular carcinogenesis.

BACKGROUND & AIMS: Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC).

METHODS: We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers (ECM2 and MMP9) (Pearson correlation $P < .05$) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues.

RESULTS: We identified 634 consistent metabolic genes, ~60% of which are not yet described in HCC. The down-regulated genes ($n = 350$) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes ($n = 284$) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes ($n = 434$) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile.

CONCLUSIONS: We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts. (Cell Mol Gastroenterol Hepatol 2017;4:303–323; http://dx.doi.org/10.1016/j.jcmgh.2017.05.004)

Keywords: Liver Cancer; HCC; Tumor Metabolism.
Metabolism is an indispensable process in normal and cancer cells. In the early 20th century, Otto Warburg discovered an alteration in tumor metabolic phenotype. He observed that cancer cells highly depend on aerobic glycolysis for energy production even when oxygen is abundantly available. In line with epigenetic factors, and signaling molecules all prominently monocarboxylate transporters), transcriptional regulators, fumarate), deregulated nutrient transporters (eg, glucose and monocarboxylate transporters), transcriptional regulators, epigenetic factors, and signaling molecules all prominently contribute to altered cancer metabolism. In line with the rapidly evolving insights on tumor metabolism, a recent review has grouped the emerging alterations into 6 hallmark, among which are deregulated uptake of glucose and amino acids, increased demand for nitrogen, and altered gene regulation caused by buildup of metabolites such as acetyl coenzyme A and 2-hydroxyglyceraldehyde. Several molecular mediators of aberrant metabolism (eg, carnitine palmitoyltransferase 1, hexokinases, glucose transporter 1, glutaminase, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, and iso-citrate dehydrogenases) have been studied in pre-clinical and clinical trials as potential cancer drug targets. However, the extent and relevance of altered metabolism in cancer cells is still unclear. This is partly due to the complex regulation of biochemical pathways as well as molecular heterogeneity within and across tumor entities. In addition, many studies have so far focused on the Warburg effect, thus narrowing the opportunities to identify novel and perhaps more relevant biochemical changes in cancer. Thus, as concluded by Pavlova and Thompson, a detailed understanding of tumor metabolic features, especially for individual tumor types, will assist in better tumor classification and improve the prospects of exploiting metabolism in cancer therapy.

Liver cancer poses a global health challenge due to its rising incidence coupled with a low survival rate, especially in the developing world. Hepatocellular carcinoma (HCC) accounts for over 80% of liver cancer cases, and is highly malignant, recurrent, drug resistant, and often diagnosed at the advanced stage. For these reasons, the need to identify molecular features that uniquely define or contribute to HCC progression remains clinically urgent. To exploit metabolic alterations in HCC as diagnostic and prognostic indicators or as therapeutic targets, the alterations that distinguish cancerous liver cells from functionally normal hepatocytes must be known. Therapeutic interventions also need to consider that the liver is responsible for systemic metabolism and detoxification—functions that must not be compromised in an attempt to modulate pathways in adjoining cancerous liver.

It is known that metabolic gene networks are heterogeneous in cancer (HCC inclusive). Nevertheless, there are strong evidences that metabolic alterations have translational relevance in HCC. For instance, differences in acetate utilization have been reported as a possible phenotype for stratifying HCC patients. Low betaine and propionylcarnitine have been proposed as combinatorial serum biomarkers in HCC. Several metabolic targets are detectable by proteomic methods, and thus could serve as biomarkers in HCC. Furthermore, all liver function parameters currently in clinical use reflect changes in either metabolic activities or enzymes. One notable liver function enzyme, aspartate transaminase, has also recently been shown to predict future risk of HCC development from primary biliary cirrhosis. Therefore, identification of the consistently deregulated metabolic genes in HCC will accelerate future mechanistic studies aimed at exploiting specific candidates or pathways in diagnostic, prognostic or therapeutic contexts. In this study, we zoomed into the genomic landscape of human HCC with the aim of exposing consistently altered metabolic genes (hereafter also called targets) of potential clinical relevance. Across 8 datasets published in the last decade, we found that many metabolic genes are consistently deregulated regardless of the etiological background of the different patient cohorts. Many metabolic genes correlated with known markers of cancer progression, predicted survival outcome, and were similarly up- or down-regulated at the protein level in our analysis and other prior studies. We have revealed robust changes in metabolic gene expression in HCC to the extent that, to our knowledge, has not been previously acknowledged.

Methods

Collection of Liver Cancer Microarray Datasets, Processing and Identification of Consistently Altered Metabolic Genes

Eight liver cancer microarray datasets that have accompanying scientific publications (Table 1) were assembled via online databases, namely ArrayExpress and the Gene Expression Omnibus (GEO) of the National Center for Biotechnology Information (NCBI). To eliminate analytical bias that might arise from data reprocessing, the NCBI GEO2R tool was used to directly determine the differentially expressed genes between healthy or adjacent liver tissue control samples and HCC samples in each dataset. In total, 521 human HCC gene expression profiles

Abbreviations used in this paper: EMT, epithelial to mesenchymal transition; FA, fatty acid; HCC, hepatocellular carcinoma; logFC, log of fold change; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; NB, nucleotide biosynthesis; OXPHOS, oxidative phosphorylation; PPP, pentose phosphate pathway; TCA, tricarboxylic acid; TCGA, The Cancer Genome Atlas; XM, xenobiotics metabolism.

Most current article

© 2017 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
were compared with 420 control liver samples (Table 1). Thereafter, the GEO2R outputs were downloaded, and all genes differentially regulated at \(P < .05 \) were selected. Next, a previously published list of 2,752 metabolism-annotated genes was updated with 9 additional genes (Supplementary Table 1), and used to extract only the deregulated metabolic genes in each of the 8 datasets (Table 2). For this, the COUNTIF function was applied in Microsoft Excel (Microsoft Corp, Redmond, WA), followed by the removal of duplicate probes (eg, whereby a gene has 4 up-regulated probes, the one with the highest expression value was retained). Furthermore, the average log of fold change (logFC) of all differentially expressed genes as determined by GEO2R was calculated, and used as reference to set cutoff threshold values for each dataset. This step ensured the exclusion of metabolic gene probes with very small expression changes—also including duplicate probes of genes that in the same dataset are already among the top differentially regulated. For onward analyses, metabolic genes with \(+\logFC\) at or above the cutoff value in the respective datasets were selected as up-regulated, whereas those with \(-\logFC\) at or below cutoff value were selected as down-regulated. Few genes that had 2 probes with strongly opposite expression patterns in the same dataset (ie, one probe is up-regulated and the other down-regulated) were left in the gene list and used to test for consistent alteration across datasets. Following these prior steps, a metabolic gene was identified as consistently altered if it has the same

Table 1. Microarray Data Analyzed to Identify Altered Metabolic Targets in HCC Patients

Accession number	Data compared	Control	HCC	Main etiology reported	Reference
GSE14520	Paired NT vs HCC	220	225	HBV	[24]
GSE39791	Matched NT vs HCC	72	72	HBV	[25]
GSE57957	Adjacent NT vs HCC	39	39	HBV	[26]
GSE36376	AJCC Stage 3: Adjacent NT vs HCC	32	38	HBV	[27]
GSE60502	Adjacent NT vs HCC	18	18	NA	[28]
GSE14323	Normal liver vs HCC	19	38	HCV	[29]
GSE6764	Normal liver vs very advanced HCC	10	10	HCV	[30]
GSE62232	Normal liver vs HCC	10	81	Mixed: alcohol, HBV, HCV, etc.	[31]
Total arrays		420	521		

HBV/HCV, hepatitis B/C virus; HCC, hepatocellular carcinoma; NA, detail could not be accessed; NT, nontumor.

*Description of the data compared as documented in the National Center for Biotechnology Information Gene Expression Omnibus. Differential expression was analyzed with GEO2R tool. The overall design for each dataset can be found at https://www.ncbi.nlm.nih.gov/geo/.

Data platform analyzed was GPL3921.

Data platform analyzed was GPL571.

*Includes unknown etiology, hemochromatosis, metabolic syndrome and combinations of alcohol with the other etiologic factors.

Table 2. Selection of Metabolic Targets From the List of Deregulated Gene Probes in Each HCC Dataset Used in This Study

HCC microarrays	logFC generated via NCBI GEO2R (\(P < .05 \))	Number of metabolic genes selected	
	Mean SD	Up-regulated (\(\geq + T \))	Down-regulated (\(\leq - T \))
GSE14520	0.0295 0.598	542	654
GSE39791	0.0102 0.3772	551	653
GSE57957	0.0225 0.415	623	650
GSE36376	0.275 0.484	934	404
GSE60502	0.000321 0.976	340	597
GSE14323	-0.015 0.563	473	683
GSE6764	0.0196 1.00129	437	628
GSE62232	0.0104 0.6383	552	814

Mean and SD were calculated from all probe sets with logFC values at \(P < .05 \) (including metabolic and other genes). Metabolic genes with \(+\logFC \) at and above threshold (\(T \)) were selected as up-regulated targets; those with \(-\logFC \) at or below \(T \) selected as down-regulated targets.

HCC, hepatocellular carcinoma; logFC, log of fold change; NCBI, National Center for Biotechnology Information.
expression pattern (ie, exclusively in the up-regulated or down-regulated category) in at least 6 of the 8 HCC datasets.

Selection of Progression Markers

Known markers of tumor invasion or metastasis, specifically extracellular matrix proteins and matrix metalloproteinases as well as epithelial-to-mesenchymal (EMT) markers (eg, SNAILs, TWIST, ZEBs, cadherins, vimentin) were manually curated from literature.34,35 The expression of these genes was compared across 8 liver cancer microarrays in Oncomine—an online repository of curated cancer transcriptomics data.36 In the Oncomine platform, parameters were set as follows—Analysis type: Liver Cancer vs Normal Analysis, Threshold by: \(P = .05 \), Fold Change = All, and Gene Rank = All. Of the markers mentioned earlier, \(ECM2, CDH1, VIM \), and \(MMP9 \) were the most consistently deregulated. Differential regulation of \(ECM2, MMP9, CDH1 \), and \(VIM \) as observed in Oncomine was also confirmed in the GEO2R output from the HCC datasets used to identify the metabolic targets. Besides GSE6764 and GSE14323, the microarrays in Oncomine include The Cancer Genome Atlas (TCGA) and GSE14520 liver cancer data used in this study for correlation with progression markers and overall survival analyses, respectively. Based on their consistent expression, \(ECM2, MMP9, CDH1 \), and \(VIM \) were selected as progression markers for correlation analyses with the metabolic genes.

Correlation of Metabolic Genes With Progression Markers

Liver cancer gene expression data from TCGA was used as a reference for the correlation of metabolic genes with the selected progression markers (ie, \(ECM2, MMP9, CDH1 \), and \(VIM \)). The messenger RNA expression data for each metabolic gene and the progression markers were obtained for the completed tumor analysis (n = 190 patients) via the cBioPortal platform (http://www.cbioportal.org). The data were log transformed and each metabolic gene was correlated with each of the progression markers found to be down-regulated in HCC (ie, \(ECM2 \) and \(CDH1 \)) and those that are up-regulated (ie, \(MMP9 \) and \(VIM \)). To be included for further analysis, up-regulated metabolic genes were expected to correlate inversely with down-regulated progression markers, and directly with those up-regulated—the reverse being the case for down-regulated metabolic genes. Subsequently, a metabolic gene was selected if its Pearson correlation with at least \(ECM2 \) and \(MMP9 \) was statistically significant \((P < .05) \).

Kaplan-Meier Overall Survival Analyses

For each metabolic gene that correlated with the progression markers \((n = 434) \), Kaplan-Meier overall survival analysis was performed with log-rank (Mantel-Cox) test in GraphPad Prism. The dataset GSE14520, which is the largest of the cohorts analyzed (Table 1), is available with published clinical data, and so was used for the survival analysis. Prior to the analysis, the expression pattern of a given gene was confirmed to be the same in GSE14520 as generally described (ie, whether also up- or down-regulated in GSE14520 as in the other datasets). Only 6 genes were excluded from the survival analysis due to 1) lack of expression data (\(CAD \) and \(CES3 \)), 2) duplicate probes that were strongly regulated in opposite directions (\(SLC16A3 \) and \(SMOX \)), 3) expression pattern that is not as generally described (\(BCAT1 \)), or 4) probe identification issue (eg, \(CYP4A22 \) was excluded because the probe, 217319.x_at, is identified as \(LOC654164//CYP4A22//CYP4A11 \)). For all other genes, the range of their expression from patients with the lowest to those with highest values varied markedly, and was very narrow for some genes. Specifically, for some genes, several patients had expression values that were the same or different by a slight margin, especially in intermediate range, and yet had different survival outcomes. Therefore, to ensure that the analyzed overall survival can be attributed to a difference in the expression of a given gene, its expression values were used to rank the patients into lower, intermediate, and higher groups. Subsequently, patients with lower \((n = 75) \) and higher \((n = 75) \) expression values for a given gene were adopted as a uniform inclusion criterion for survival prediction. Based on this criterion, overall survival was assessed using a total of 150 patients for each gene separately analyzed, and a statistical significance was accepted at \(P < .05 \).

Proteomics Analysis

To assess protein level alterations, our recently published proteomics data were reanalyzed focusing on the candidates corresponding to the consistent metabolic genes. The data contained 2736 proteins derived from mass spectrometric analyses of 19 fresh-frozen HCC samples and adjacent liver tissue samples. For the current analyses, paired comparisons of tumor and liver tissue samples were conducted irrespective of tumor stage and grade \((n = 19) \), or according to the tumor stages \(T1 \) \((n = 11) \) and \(T2-3 \) \((n = 8) \) as well as the histological gradings \(G1 \) \((n = 5) \), \(G2 \) \((n = 8) \), and \(G3 \) \((n = 6) \). Statistical evaluation was performed as recently described using a 1-way analysis of variance. Further details regarding patient characteristics, sample preparation, mass spectrometry, and proteomic data analysis have been extensively described in our prior publications.37,38

Pathway Analysis

The Database for Annotation, Visualization and Integrated Discovery39 was used to perform functional annotation analysis of the top differentially expressed genes (in metabolism and other processes) for each of the 8 datasets. For this analysis, the gene lists from each dataset were first ranked by logFC. Thereafter, the top 1,500 up-regulated and down-regulated genes per dataset were used for a functional annotation with reference to pathway database of the Kyoto Encyclopedia of Genes and Genome.

Other Analyses

GraphPad Prism version 6.0 (GraphPad Software, La Jolla, CA) was used for Pearson correlation, overall survival analysis, and analyzing the expression of the genes relative...
to tumor size. For the latter, a multiple t test, 1 per row, was used. $P < .05$ was accepted as statistical significance throughout the study. Targets were highlighted as novel based on results from searching PubMed database for each of the consistent metabolic gene (total n = 634). The search terms used were official gene symbol plus HCC or Liver cancer or Cancer. All authors had access to the study data and had reviewed and approved the final manuscript.

Results

Metabolic Genes Are Consistently Altered in Human HCC

To gain a holistic insight on metabolic gene alterations in clinical HCC (Figure 1A, Tables 1 and 2), we assessed the expression pattern of almost all known human metabolic genes and transporters previously compiled by Possemato et al.\(^7\) In the HCC patient cohorts, the main reported etiologies were hepatitis B and C, alcohol, metabolic syndrome, mixed etiologies, or unknown (Table 1). With the exception of GSE62232, none of the other cohorts included data on metabolic syndrome, which is associated with nonalcoholic fatty liver disease (NAFLD) that predisposes to HCC. We reasoned that regardless of etiology, the expression of certain metabolic genes could be a consistent feature of liver cancer. Accordingly, we identified 634 metabolic genes that were deregulated in 6 or more datasets investigated (Supplementary Table 1). A total of 350 of the genes were down-regulated, of which 107, 158, and 85 were present in 8, 7, and 6 datasets, respectively. Assortment of the genes by their associated biochemical pathways revealed a predominant suppression of candidates involved in gluconeogenesis, urea cycle, ketogenesis, and xenobiotic, glutathione, amino acid, and fatty acid (FA) metabolism (Figure 1B). Several of these pathways also emerged in functional annotation analyses of topmost down-regulated genes (involved in metabolism and other processes) in each of the 8 datasets (Figure 2). Similarly, we found 284 consistently up-regulated metabolic genes comprising of 53, 120, and 111 hits in 8, 7, and 6 datasets, respectively. The up-regulated metabolic genes in HCC notably belonged to processes such as glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, glycan metabolism, nucleotide biosynthesis (NB), membrane lipid biochemistry, and several transporters (Figure 1B). NB and valine, leucine, and isoleucine biosynthesis were the metabolic processes that emerged in the functional annotation analysis of topmost up-regulated genes in each of the datasets.

We observed that with the exception of few pathways (eg, proton transport, ketogenesis, gluconeogenesis, urea cycle), most others had a mixture of both consistently up-regulated as well as down-regulated genes (Figure 1B). To further highlight the consistency of metabolic gene alterations, we sought to identify the genes ranked in the top or bottom 25 in at least 6 datasets. Consequently, we found that the topmost down-regulated genes in HCC were SLC01B3, an organic anion transporter of bilirubin; CYP1A2, CYP2A6, CYP2C8, and CYP3A4 all of which are involved in xenobiotics metabolism (XM); FBP1 and PCK1 involved in gluconeogenesis, GLS2, among others (Figure 1C). On the other hand, aldo-keto reductase family 1 member B10, AKR1B10, emerged as the topmost up-regulated metabolic gene, ranking first in all but 1 dataset (GSE60502). Other topmost up-regulated genes were TKT, SGLT1, ALCY, LYZ, TTYMS, TXRAD, ACSL4, NQ01, FADS1, PLCB1, and muscle isoform of PKM (Figure 1C). Of the 8 datasets analyzed, GSE14323 showed a slightly divergent gene expression pattern (Figure 1C). In this dataset, SGLT1 and TKT were not differentially expressed (ie, $P > .05$); FADS1 was down-regulated, whereas CYP3A4, CYP2A6, and GLS2 were all up-regulated instead of being suppressed as in other datasets (Figure 1C). Gene enrichment analysis also identified XM and drug metabolism in the up-regulated gene category only in the GSE14323 dataset (Figure 3). Nevertheless, topmost deregulated targets, including AKR1B10, ACSL4, NNMT, and SLC01B3 were also top hits in GSE14323 and were expressed in the same direction as in the other datasets (Figure 1C). Altogether, independent datasets reveal a strong deregulation of several metabolic genes in human HCC, and show that these alterations are broadly consistent across clinical cohorts.

Altered Metabolic Genes Show Similar Expression Patterns at Protein Level

We assessed the expression of metabolic genes at protein level in 19 human HCC tissue samples. A considerable number of the targets (n = 350), corresponding to 55% of the consistent metabolic genes, could be detected and quantified in the proteomics data (Figure 1A, Supplementary Table 2). Of those quantified, more than 90% (n = 252) were significantly expressed in the same direction as found at the gene level. For instance, of 207 down-regulated proteins, 167 were significantly decreased. Of these, 99% were also down-regulated at gene level with the exemption of BPGM and ATP5H, both of which are up-regulated in gene datasets. On the other hand, 143 targets were elevated at protein level—85 being significantly up. Of these, 79 (93%) were also consistently up-regulated at the gene level, with the exemption of PRG2, ST6GAL1, ACX3, DHODH, TF, ABCD3 whose corresponding genes are consistently down-regulated in HCC. Next, based on common knowledge of biochemical pathways, we attempted to map the portrait of liver cancer metabolism using the consistently altered genes or their corresponding proteins where detected in our analysis. The snapshot clearly depicted the suppression of serine biosynthetic pathway, urea cycle, and transamination as striking features of HCC (Figure 4). Also represented were up-regulated targets in TCA cycle and mainly in NB, most of which were detected at protein level. In glycolysis, we found the novel hexokinase isoform, HKDC1 to be up-regulated at gene and protein levels. Consistently, most other glycolytic targets were similarly expressed at gene and protein level, and have been identified and or mechanistically investigated in previous HCC studies (Supplementary Table 1). We show that notable genes that encode enzymes at the initial and terminal steps in commonly studied biochemical pathways are deregulated in HCC, and most reflected in our proteomics analysis. These include HK2 and
Figure 1. Summary of the study strategy used to identify the consistently altered metabolic targets in human HCC. (A) Flowchart of the steps adopted to identify metabolic targets of clinical relevance. Progression markers used are ECM2, MMP9, CDH1, and VIM. Genes considered to correlate with progression markers are only those that had significant Pearson correlation with at least ECM2 and MMP9 using The Cancer Genome Atlas liver cancer data as reference. "In the accompanying clinical data from GSE14520. Statistical significance were accepted at $P < 0.05$. See Supplementary Tables 1 and 2 for the metabolic genes and proteomics data, respectively. (B) Number of genes in each metabolic process that were consistently altered in 6 or more datasets. "Amino acid processes besides those already displayed in the graph (eg, glutamine). "Others" are mostly metabolic genes with other general functions beyond those displayed (see Supplementary Table 1). (C) Heatmap showing genes consistently among topmost 50 metabolic targets in 6 or more datasets. Blank means genes are not expressed at $P < 0.05$ or not expressed within the top 25 (up or down). ABC, adenosine triphosphate–binding cassette; HCC, hepatocellular carcinoma; NAD, nicotinamide adenine dinucleotide; NCBI GEO, National Center for Biotechnology Information Gene Expression Omnibus; OXPHOS, oxidative phosphorylation; PPP, pentose phosphate pathway; REDOX, reduction–oxidation reaction; S.M., small molecule; TCA, tricarboxylic acid.
Figure 2. Functional annotation of the top 1500 down-regulated genes (whether in metabolic or other processes) in each hepatocellular carcinoma dataset. FA, fatty acid metabolism; PPAR, peroxisome proliferator-activated receptor; XM, xenobiotics metabolism.
Figure 3. Functional annotation of the top 1500 up-regulated genes (whether in metabolic or other processes) in each hepatocellular carcinoma dataset. *Enriched among pathway annotations derived with down-regulated genes in the other datasets (see Figure 2). ECM, extracellular matrix; XM, xenobiotics metabolism.
PKM (in glycolysis), GLS and GLUD1 (in glutaminolysis), CPS1 and ASL (in urea cycle), ACACA and FASN (in lipogenesis), HMGS2 and SQLE (in cholesterogenesis), and PCK1 and FBPI in gluconeogenesis (Figure 4, Supplementary Tables 1 and 2). Furthermore, we uncovered about 40 family of metabolic targets (mostly paralogues), whose members are frequently expressed in the opposite direction in HCC (Table 3). Examples include ALDO1 and ALDO3, ENO1 and ENO3, and ACACA and ACACB, which were also detected at protein level. Besides strongly overlapping with genomic data, the protein level expression of several metabolic targets varied significantly with tumor stage and grade (Supplementary Table 2). Taken together, metabolic gene expression changes in HCC reflect at the protein level, and putting them in the contexts of biochemical pathways could enhance the understanding of their functional relevance.

Consistently Altered Metabolic Genes Correlate With Progression Markers and Predict Survival Outcome in HCC Patients

Correlation of metabolic targets with mediators of other cancer hallmarks can help uncover a mutual relationship. Through such analysis, Hu et al. observed a high mutual relationship between hypoxia inducible factor 1A and oxidative phosphorylation (OXPHOS) in cancer. Invasion or metastasis and EMT are crucial processes in tumor progression. Whether metabolic alterations have
association with tumor progression is largely unexplored in HCC. To reveal metabolic targets that may play a role in HCC progression, we correlated each of the 634 identified metabolic genes with 4 consistent progression markers, namely ECM2 and MMP9, which are related to invasion or metastasis, and CDH1 and VIM, which are related to EMT processes (Figure 5A). We selected metabolic targets that correlated at least with ECM2 and MMP9, leading to the identification of 285 consistently down-regulated genes, and 149 hits in the up-regulated category (Pearson correlation

Table 3. Family of Metabolic Targets Consistently Expressed in the Opposite Direction in HCC

Metabolic processes	Up-regulated	Down-regulated
ABC transporters	ABC4, ABC5, ABC10	ABC6, ABC9
Cholesterol trafficking	NPC1, NPC2	NPC1L1
Fatty acid biosynthesis	ACACA^a	ACACB^a
	ACSL3^c, ACSL4^c	ACSL1^c, ACSL5^c
	ELOVL5	ELOVL6
Fatty acid/phospholipids	PLA2G4C, PLA2G7	PLA2G16
Folate metabolism	MTHFR	MTHFD1^c, MTHFS^c
Glutaminolysis	GLS	GLS2^c
Glutathione metabolism	GSTA4	GSTA1, GSTA3, GSTZ1
Glycerophospholipid biosynthesis	ABHD4	ABHD2, ABHD6, ABHD10
Glycogenesis	G6PC3	G6PC
	GYG1^a	GYG2
Glycolysis	ALDOA^a	ALDOB^a
	ENO1^a	ENO3^a
	PFKP	PFKFB1
Glycolysis-TCA cycle junction	MPC2	MPC1
Glycoprotein/glycolipids Metabolism	B4GALT3, B4GALT7	B4GALT1
Glycosaminoglycan metabolism	B3GAT3	B3GAT1
	NDST1	NDST3
	PAPSS1	PAPSS2^a
Lyposphosphatic acid synthesis	ENPP2, ENPP4	ENPP1
Oxidative stress	PON2	PON1^a, PON3^a
Phospholipid	AGPAT1	AGPAT2
Purine biosynthesis	NUDT1, NUDT2	NUDT7
S-adenosylmethionine	MAT1A^a	MAT2A
Sphingolipid metabolism	PPAP2A	PPAP2B
Steroid biosynthesis	ACBD3^c	ACBD4
Second messenger molecule synthesis	PDE6D	PDE2A, PDE7B
	PLCG1	PLCG2
Xenobiotics	NAT9, NAT10	NAT2
	SULT1C2	SULT1A1^c, SULT1A2, SULT2A1^c
Transporters	SLC16A3	SLC16A2, SLC16A10, SLC16A4
	SLC22A5	SLC22A1
	SLC25A6^d, SLC25A3^d	SLC25A15, SLC25A16, SLC25A20^d, SLC25A37
Glucose transporters	SLC2A5, SLC2A6	SLC2A2
Transporters	SLC38A1, SLC38A6	SLC38A2, SLC38A4
	SLC39A1, SLC39A6	SLC39A14, SLC39A8
	SLC4A2, SLC4A7	SLC4A4
	SLC6A8	SLC6A12, SLC6A13, SLC6A16
	SLC7A1, SLC7A6, SLC7A11	SLC7A2, SLC7A8
Organic anion transport	SLCO2A1	SLCO2B1
Lipid binding/unclear	STAR7	STAR5

ABC, adenosine triphosphate–binding cassette; HCC, hepatocellular carcinoma; TCA, tricarboxylic acid.

^aAlso detected to be significantly deregulated at protein level in our analysis.
Genes that performed best in the correlation analysis were those in gluconeogenesis, metabolism of glutamine and other amino acids, ketogenesis, urea cycle, adenosine triphosphate–binding cassette transporters, PPP and XM (Figure 5B), suggesting metabolic processes most likely associated with cancer progression.

On the other hand, fewer genes in proton transport and OXPHOS correlated with the progression markers. Next, we wondered whether genes that correlated with the progression markers could also predict overall survival of liver cancer patients. We searched for currently available literature on each correlated gene, and found that although many of the genes are not yet described in HCC, about 20 candidates were previously reported to

Figure 5. The proportion of genes that correlated with the progression markers, predicted overall survival, and varied with tumor size in the respective metabolic processes or pathways. (A, top) Expression of the progression markers in HCC datasets as observed in Oncomine database (https://www.oncomine.org/). “Hepatocellular carcinoma vs Normal” were compared in Oncomine. Mas, Roessler 2, and Wurmbach are represented in our analysis by GSE14323, GSE14520, and GSE6764, respectively. (A, bottom) Expression of the progression marker in the datasets used for identifying altered metabolic targets. (B) The proportion of consistent metabolic genes that correlated with ECM2 and MMP9 in The Cancer Genome Atlas liver cancer data, and were selected for subsequent analysis. (C) The proportion of selected targets that predicted survival outcome and varied with tumor size in the clinical data associated with GSE14520. *Amino acid processes besides those listed. ABC, adenosine triphosphate–binding cassette; NAD, nicotinamide adenine dinucleotide; PPP, pentose phosphate pathway; S.M., small molecule; TCA, tricarboxylic acid.

$P < .05$ (Figure 1A, Supplementary Table 1). Genes that performed best in the correlation analysis were those in gluconeogenesis, metabolism of glutamine and other amino acids, ketogenesis, urea cycle, adenosine triphosphate–binding cassette transporters, PPP and XM (Figure 5B), suggesting metabolic processes most likely associated with cancer progression. On the other hand, fewer genes in proton transport and OXPHOS correlated with the progression markers. Next, we wondered whether genes that correlated with the progression markers could also predict overall survival of liver cancer patients. We searched for currently available literature on each correlated gene, and found that although many of the genes are not yet described in HCC, about 20 candidates were previously reported to
predict prognostic outcome (Supplementary Table 1). We analyzed patient overall survival data from 1 of the HCC cohorts, and identified 201 genes whose expression predicted survival outcome (Tables 4 and 5). Of these genes, 61% were also among those whose expression significantly varied with tumor size (n = 186), implying that consistently altered metabolic genes are strongly associated with clinicopathological variables. In terms of the genes associated with overall survival and tumor size, fewer targets in OXPHOS, glycan metabolism as well as adenosine triphosphate–binding cassette transporters were statistically significant—none were significant among proton transport genes (ATPSSL, ATP6V1E1, ATP5E, ATP5G2, ATP6AP1, ATP6V0B, and ATP6V1F) (Figure 5C, Supplementary Table 1). In contrast, the metabolic processes with the best-performing candidates were notably gluconeogenesis, urea cycle, detoxification, amino acid metabolism, FA metabolism, PPP, and small molecule transport (Figure 5C, Supplementary Table 1). Taken together, our study reveals that altered expression of metabolic genes are broadly consistent in HCC, correlate with clinical parameters, and hold yet untapped prospects in liver cancer research.

Discussion

Identification of the consistently altered metabolic targets is an indispensable step toward exploiting metabolism in basic, translational, and clinical cancer studies. We have exposed for the first time, metabolic genes that are consistently deregulated in human HCC. The metabolic genes, when put in the context of their associated biochemical pathways, reveal the suppression of well-known hepatocyte metabolic functions (eg, XM), and the up-regulation of energy-yielding processes (eg, glycolysis), as consistent features of HCC. XM genes are among the topmost down-regulated candidates in HCC and prominently emerged in pathway annotation analysis that took into account non-metabolic genes in each dataset. Previous genomic study reported down-regulation of XM genes across 22 cancers, HCC inclusive, and suggested it may be associated with sensitivity to chemotherapies. Therapeutic resistance is currently an intractable problem in cancer, and has contributed to the failure of several drug trials in HCC. Although it is still unclear how down-regulated XM genes may influence drug sensitivity, studies suggest they are induced by therapy and cause a depletion of the systemic drug level. One example is cytotoxic P450 3A4 (CYP3A4), which is down-regulated in HCC. In non–small cell lung cancer, it has been suggested that to ensure bioavailability, Erlotinib should not be used in combination with inducers of CYP3A4. In a xenograft model of HCC, treatment with Sorafenib caused the induction of CYP3A4, which coincided with reduced systemic level of the drug and the onset of resistance. Thus, our study could help in further identification of targets in XM or other metabolic processes that are down-regulated, but are prone to be re-expressed to mediate resistance.

Besides XM, the predominant down-regulation of genes in urea cycle, glutathione, FA, amino acid, gluconeogenesis, ketogenesis, and transamination are also consistent features of HCC (Figure 2). Notably, genes in urea cycle and gluconeogenesis scored very high in their correlation with progression markers, variation with tumor size, and prediction of overall survival. Reasons for the profound down-regulation of critical biochemical pathway targets could be multifactorial, including, among others, 1) lack of key pathway substrates; 2) products that are detrimental to HCC cell proliferation or survival, hence warranting pathway inhibition; 3) diversion of substrates into other pathways of higher priority for the tumor; or 4) transcriptional and epigenetic controls, or mutations that repress gene expression. Using urea cycle as an example, the supplementation of HCC cells with recombinant arginine, which hydrolyzes arginine to produce ornithine and urea, inhibited proliferation and induced cell cycle arrest. This implies a possible availability of substrate (in this case, arginine), but a lack of the enzymatic machinery for urea production. It also offers hint that intracellular urea as a product is detrimental to HCC cells. However, detrimental products may not explain why gluconeogenesis genes are suppressed given that cancer cells rely on its end product (glucose). As such, there is currently no molecular information to sufficiently explain why the down-regulation of these genes is crucial for orchestrating the global metabolic activities of HCC. Regarding FA biosynthesis, it is known that conditions such as nonalcoholic steatohepatitis (NASH) arise from FA accumulation and can lead to HCC. In line with our finding in human HCC, the down-regulation of FA genes has been reported in mice exposed to chronic choline-deficient high-fat diet in which NASH transited to HCC. Thus, impaired FA metabolism may represent an early event in HCC development that is consistent even across species, but yet unappreciated. In amino acid metabolism, we uncovered a striking suppression of serine pathway genes (PHGDH, PSAT1, SHMT1, SHMT2, GLDC) in HCC—with the exception of PSPH. The serine pathway branches from glycolysis at the level of 3-phosphoglycerate, with PHGDH catalyzing the first step. Serine deficiency, and the down-regulation of the serine pathway genes, has been reported in patients with NAFLD. Thus, similar to FA metabolism discussed above, the down-regulation of serine pathway may also represent an early event in HCC development or progression. Suppressed serine pathway in HCC could also expose interesting contrasts when compared with breast cancer, where up-regulated serine pathway via PHGDH catalyzing the first step. Serine deficiency, and the down-regulation of the serine pathway genes, has been reported in patients with NAFLD. Thus, similar to FA metabolism discussed above, the down-regulation of serine pathway may also represent an early event in HCC development or progression. Suppressed serine pathway in HCC could also expose interesting contrasts when compared with breast cancer, where up-regulated serine pathway via PHGDH catalyzing the first step. The serine pathway genes mentioned earlier—except GLDC that was not shown—were all induced in HCC cell lines upon glucose or glutamine deprivation. Interestingly, the serine pathway genes mentioned earlier—except GLDC that was not shown—were all induced in HCC cell lines upon glucose or glutamine deprivation. Downstream of glycolysis, the down-regulation of the mitochondrial pyruvate carrier MPC1 is also notable in HCC. MPC1 has been reported to be down-regulated in NASH patients, and has been identified as a repressor of Warburg effect in cancer. MPC1 was also previously shown to be consistently down-regulated in HCC and several other cancers, and is induced upon glutamine
Table 4. Consistently Down-Regulated Genes Associated With Hepatocyte Metabolic Functions Correlate With Expression of Progression Markers and Predict Survival Outcome in HCC Patients

Metabolic process	Gene symbol	# of datasets	Expression	CDH1	VIM	Correlation^a	Predicts overall survival^b
Xenobiotics	CYP4A11	7	Down	c		<.0001	
	CYP4F3	8	Down	c		<.0007	
	CYP3A4	7	Down	c		.001	
	CYP2J2	7	Down	c		.012	
	HSD17B6	8	Down	c		.018	
	CYP2C8	8	Down	c		.022	
	SRD5A1	7	Down	c		.038	
	CYP2A6	7	Down	c		.051	
	HSD11B1	7	Down	c		.307	
	CYP2A7	6	Down	c		.0346	
	CYP3A43	7	Down	c		<.0001	
Detoxification	FMO4	6	Down	c		.011	
	EPHX2	7	Down	c		.032	
	TPMT	8	Down	c		.032	
	CAT	7	Down	c		.053	
	FMO3	6	Down	c		.065	
	OTC	7	Down	c		.055	
	ASL	6	Down	c		.074	
	CPS1	7	Down	c		.011	
Redox	FDX1	7	Down	c		.081	
	DHRS12	6	Down	c		.141	
	DHTKD1	6	Down	c		.167	
	DHRS1	7	Down	c		<.0001	
	CYB5A	8	Down	c		.026	
Glutathione	HAGH	7	Down	c		.015	
	MGST2	6	Down	c		.0493	
	ACOX2	7	Down	c		.003	
Fatty acid	ECHDC2	8	Down	c		.004	
	ACDM	7	Down	c		.007	
	ACBD4	8	Down	c		.012	
	FAAH	6	Down	c		.015	
	ACAA2	7	Down	c		.018	
	ACSM3	7	Down	c		.02	
	PECR	6	Down	c		.022	
	ETFDH	8	Down	c		.028	
	ACSM5	7	Down	c		.0104	
	EHHADH	7	Down	c		.0115	
	ACADVL	6	Down	c		.0127	
	MTTP	6	Down	c		.0134	
	ACADSB	8	Down	c		.012	
	SCP2	8	Down	c		.027	
	HADH	7	Down	c		.028	
	ACAT1	8	Down	c		.0264	
	PHYH	7	Down	c		.0302	
	ACSL3	6	Up	c		.0426	
	MYLCD	8	Down	c		<.0001	
Gluconeogenesis	G6PC	6	Down	c		.015	
	PCK1	7	Down	c		.0245	
Metabolic process	Gene symbol	# of datasets	Expression	CDH1	VIM	Correlation	Predicts overall survival
------------------	-------------	---------------	------------	------	-----	-------------	--------------------------
Ketogenesis	BDH1	7	Down			<.0001	.0013
Amino acid	GCDH	8	Down			.0005	
	PIPOX	7	Down			.0007	
	AGXT	8	Down			.0011	
	CDO1	7	Down			.0014	
	FAHD2A	8	Down			.0015	
	AASS	7	Down			.0018	
	FTD	7	Down			.002	
	ADI1	6	Down			.0029	
	DAO	6	Down			.0038	
	CTH	7	Down			.0039	
	HAAO	7	Down			.0039	
	HPD	7	Down			.0052	
	HGD	7	Down			.0052	
	BHMT	7	Down			.0057	
	SARDH	8	Down			.0079	
	BCKDHA	7	Down			.0081	
	MSRA	8	Down			.0086	
	HIBCH	7	Down			.009	
	BHMT2	6	Down			.0128	
	BCKDHB	8	Down			.0135	
	CBS	8	Down			.0141	
	MAT1A	8	Down			.0167	
	PAH	7	Down			.0205	
	THNSL1	6	Down			.0256	
	FAH	7	Down			.0444	
	SUOX	7	Down			<.0001	
	ALDH18A1	7	Up			.02	
	ASNS	7	Up			.0103	
ABC transporter	ABCA6	7	Down			.0115	
	ABCC6	8	Down			.0106	
Ion transport	KCNJ8	7	Down			.0109	
	CNAG1	7	Down			.0002	
	ATP1B3	7	Up			.0008	
	P2RX4	7	Up			.0466	
	SLC39A1	7	Up			.0235	
S.M. transport	SLC25A15	7	Down			.0001	
	SLC27A5	7	Down			.0003	
	SLC16A2	8	Down			.0007	
	SLC25A20	8	Down			.001	
	AQP7	7	Down			.013	
	SLC6A12	7	Down			.015	
	STARD5	8	Down			.023	
	SLC02B1	7	Down			.042	
	SLC46A3	8	Down			.0057	
	SLC1A1	6	Down			.0266	
Metabolic process	Gene symbol	# of datasets	Expression	Correlation^a	CDH1	VIM	Predicts overall survival^b
------------------	-------------	---------------	------------	--------------------------	------	-----	--------------------------------------
Multipurpose	SLC27A2	8	Down		c		.0421
	SLC47A1	7	Down		c		.0467
	SLC38A4	8	Down		c		.0066
	SLC28A1	6	Down		c		.0467
	AQP9	6	Down		c		.0010
	SLC2A2	7	Down		c		.0002
	SLC10A1	7	Down		c		.0005
	SLC22A7	7	Down		c	c	.0008
	SLC23A2	7	Down		c		.0096
	SLC22A1	8	Down		c		.0129
	SLC2A6	6	Up		c		.0094
	SLC36A1	7	Up		c		.0338
	SLC38A1	6	Up		c		.0047
	SLC29A2	6	Up		c		.0142
	SLC7A1	8	Up		c		.0163
Others	ADH6	7	Down		c		.0001
	GOT2	7	Down		c		.0001
	MAOB	6	Down		c	c	.0011
	ALDH7A1	6	Down		c		.0111
	CBR4	8	Down		c		.0041
	ALDH2	8	Down		c		.0062
	ALDH9A1	7	Down		c		.0477
	ADH1B	7	Down		c		.0008
	ALDH6A1	8	Down		c		.0062
	ADH1C	6	Down		c		.0071
	AKR7A3	7	Down		c		.0169
	CA12	8	Up		c		.0027
Others	SORD	7	Down		c		.0003
	MMACHC	6	Down		c		.0006
	HAO1	7	Down		c		.0009
	DCXR	7	Down		c		.0021
	QDPR	7	Down		c		.0035
	PCCB	6	Down		c		.0058
	GFOD2	7	Down		c		.0059
	AGL	8	Down		c		.0092
	GNE	8	Down		c		.0238
	MTHFD1	7	Down		c		.0254
	RBKS	7	Down		c		.0351
	ADCY1	8	Down		c		.0375
	GAMT	8	Down		c		.0386
	UGP2	7	Down		c		.0014
	ALAS1	6	Down		c		.0027
	PON3	7	Down		c		.0047
	RDH16	7	Down		c		.0089
	ABAT	8	Down		c		.0093
	HAO2	8	Down		c		.0152
	GRHPR	7	Down		c		<0.001
	MTHFS	8	Down		c		.0028
	NNT	6	Down		c		.0046
addition, we identified down-regulation of metabolic genes in HCC, but there are currently no data on its function. In colorectal cancer, sequence variants of TYMS down-regulated by nucleoside analogues in leukemia.50 (eg, uridine-cytidine kinases) modulate sensitivity to nucleoside transporters and metabolizing enzymes (eg, glycolysis, TCA, OXPHOS, NB),12 similar opportunities also exist in processes least studied in HCC (eg, NB, proton transport, membrane lipid, glycan metabolism). For instance, nucleoside transporters and metabolizing enzymes (eg, glycolysis, PPP, NB, TCA cycle, OXPHOS, proton transport, membrane lipid, glycan metabolism, and small molecule transport). Whereas the prospects of novel insights still abound in known alterations (eg, glycolysis, TCA, OXPHOS, NB),12 similar opportunities also exist in processes least studied in HCC (eg, NB, proton transport, membrane lipid, glycan metabolism). For instance, nucleoside transporters and metabolizing enzymes (eg, uridine-cytidine kinases) modulate sensitivity to nucleoside analogues in leukemia.50–53 UCK2 is up-regulated in HCC, but there are currently no data on its function. In addition, we identified other NB genes with yet unclear role in HCC (eg, TYMS [up-regulated], CDA and DPYD [both down-regulated]). In colorectal cancer, sequence variants of TYMS, CDA, and DPYD were found to be clinically relevant predictors of toxicity to fluoropyrimidine drugs (eg, 5-fluorouracil) and the prodrug capecitabine.53 Therefore, it might be interesting to investigate the role of NB targets in drug sensitivity in HCC. Similarly, the up-regulation of genes in glycan metabolism could broaden the chances of finding new drug targets, given that glycans have been considered prospective agents in cancer therapy.54 In addition, given their strategic expression on cell membranes, the proteins encoded by genes in glycan metabolism may represent important biomarkers in HCC. Altogether, the consistently up-regulated targets and their associated pathways could shed light on drug resistance mechanisms as well as the molecular mechanisms of metabolic reprogramming. Indeed, as was previously noticed in cancer,17 we observed a mixture of both up-regulated and down-regulated genes in most of the metabolic pathways. For example, although glycolytic targets are predominantly up-regulated, ALDOB, ENO3, and PFKFB1 are down-regulated, as are some glucose transporters (Figure 4). Although it is unclear if HCC actually require the down-regulation of these genes for optimal glycolysis, their suppressed expression seem to be beneficial for cancer cells. For instance, previous study show that low ALDOB expression in colorectal cancer cells.19 These evidences strongly support that HCC have a predominant down-regulation of metabolic genes involved in physiologically relevant biochemical pathways. It further offers hint that several of the down-regulated targets could be re-induced to mediate resistance or stress response when cellular homeostasis is challenged, thus highlighting novel aspects of liver cancer metabolism for further investigation.

The consistently up-regulated metabolic genes in HCC mostly belong to processes such as glycolysis, PPP, NB, TCA cycle, OXPHOS, proton transport, membrane lipid, glycan metabolism, and small molecule transport. Whereas the prospects of novel insights still abound in known alterations (eg, glycolysis, TCA, OXPHOS, NB),12 similar opportunities also exist in processes least studied in HCC (eg, NB, proton transport, membrane lipid, glycan metabolism). For instance, nucleoside transporters and metabolizing enzymes (eg, uridine-cytidine kinases) modulate sensitivity to nucleoside analogues in leukemia.50–53 UCK2 is up-regulated in HCC, but there are currently no data on its function. In addition, we identified other NB genes with yet unclear role in HCC (eg, TYMS [up-regulated], CDA and DPYD [both down-regulated]). In colorectal cancer, sequence variants of TYMS, CDA, and DPYD were found to be clinically relevant predictors of toxicity to fluoropyrimidine drugs (eg, 5-fluorouracil) and the prodrug capecitabine.53 Therefore, it might be interesting to investigate the role of NB targets in drug sensitivity in HCC. Similarly, the up-regulation of genes in glycan metabolism could broaden the chances of finding new drug targets, given that glycans have been considered prospective agents in cancer therapy.54 In addition, given their strategic expression on cell membranes, the proteins encoded by genes in glycan metabolism may represent important biomarkers in HCC. Altogether, the consistently up-regulated targets and their associated pathways could shed light on drug resistance mechanisms as well as the molecular mechanisms of metabolic reprogramming. Indeed, as was previously noticed in cancer,17 we observed a mixture of both up-regulated and down-regulated genes in most of the metabolic pathways. For example, although glycolytic targets are predominantly up-regulated, ALDOB, ENO3, and PFKFB1 are down-regulated, as are some glucose transporters (Figure 4). Although it is unclear if HCC actually require the down-regulation of these genes for optimal glycolysis, their suppressed expression seem to be beneficial for cancer cells. For instance, previous study show that low ALDOB expression in colorectal cancer cells.19 These evidences strongly support that HCC have a predominant down-regulation of metabolic genes involved in physiologically relevant biochemical pathways. It further offers hint that several of the down-regulated targets could be re-induced to mediate resistance or stress response when cellular homeostasis is challenged, thus highlighting novel aspects of liver cancer metabolism for further investigation.

Table 4. Continued

Metabolic process	Gene symbol	# of datasets	Expression	CDH1	VIM	Predicts overall survival^b
ALDOB	7	Down	c	c		.0067
CDA	6	Down	c	c		.0002
ENO3	7	Down	c	c		.0045
NOX4	7	Down	c	c		.0009
PON1	7	Down	c	c		.0072
AACS	7	Up	c	c		.0009
NOX4	7	Up	c	c		.001
MFSD10	7	Up	c	c		.0057
LTA4H	8	Up	c	c		.0087
DDAH2	7	Up	c	c		.0267
SULT1C2	8	Up	c	c		.0064
AACS	7	Up	c	c		.0069
SMS	6	Up	c	c		.0328
SRM	7	Up	c	c		.0006
NANS	6	Up	c			.0009
DDAH2	8	Up	c			.001
MFSD10	7	Up	c			.0057
LTA4H	8	Up	c			.0087
GYG1	7	Up	c			.0267
SULT1C2	8	Up	c			.0064
AACS	7	Up	c			.0069
NOX4	7	Up	c			.0422
SMS	6	Up	c			.0328
SRM	7	Up	c			.0006

Gene expression was correlated with patient survival using Kaplan-Meier overall survival analysis by log-rank (Mantel-Cox) test. Square (■) indicates novel targets in liver cancer as determined by searching PubMed. a# number of datasets in which each gene is expressed at P < .05. bDenotes P value. cIndicates those that also correlated with CDH1 and or VIM (Pearson correlation was considered significant at P < .05). dPreviously identified as a survival predictor in hepatocellular carcinoma (HCC) (see the referenced study and other similarly described targets in Supplementary Table 1).
Table 5. Genes in Mainly Up-Regulated Pathways That Correlated With the Expression of Progression Markers and Predicted Survival Outcome in HCC Patients

Metabolic process	Gene symbol	# of datasets	Expression	CDH1	VIM	Predicts overall survival
Glycolysis	PFKFB1	6	Down	e		.0202
	ALDOB	8	Down	e	e	.0022
	ALDOA	8	Up	e		.0001
	HK2	6	Up	e		.0001
	PKM	8	Up	e		.0003
	PDK4		Down			.177
PPP	DERA	7	Down	e		.0075
	TKT	7	Up	e		.0132
	G6PD	7	Up			.0211
TCA cycle	ACO1	7	Down	e	e	.0021
	ACLY	7	Up			.054
	ME2	7	Up	e		.0257
OXPHOS	NDUF4A4L2	7	Up			.0003
Nucleotide	DPYS	7	Down	e		.0455
	XDH	7	Down	e	e	.0047
	UPB1	7	Down	e		.0053
	GMPS	7	Up			.0056
	ADSL	7	Up	e		.0183
	IMPDH2	8	Up	e		.0085
	NT5DC2	8	Up	e		.0206
	RRIM2	8	Up			.0422
	UCK2	7	Up	e		.0005
	ADA	6	Up	e		.0328
Membrane lipid	PLCB1	8	Up			.0006
	GPD1L	8	Up	e		.0029
	LPIN2	7	Down	e		.0154
	PLCE1	8	Up	e		.0459
	LPCAT1	7	Up	e		.0001
	PTDSS2	6	Up			.0005
Glycan	CTBS	8	Down			.0203
	GAL3ST1	6	Up	e		.0026
	B3GALNT1	8	Up	e		.013
	NAGPA	7	Up	e		.0325
	DDOST	7	Up			.0401
	SULF1	7	Up	e		.0291
Cholesterol	HMGCS2	7	Down	e		.0002
	LCAT	8	Down			.0165
	LBR	7	Up			.0269

Kaplan-Meier overall survival was calculated for each gene and statistical significance analyzed by log-rank (Mantel-Cox) test. Square (■) indicates novel targets in liver cancer as determined by PubMed search. #, number of datasets in which each gene is expressed at \(P < .05 \).

All listed metabolic genes correlated with ECM2 and MMP9.

\(^2\)Denotes \(P \) value.

\(^3\)Indicates those that also correlated with CDH1 and or VIM (Pearson correlation was considered significant at \(P < .05 \)).

\(^4\)Previously identified as a survival predictor in hepatocellular carcinoma (HCC) (see the referenced study and other similarly described targets in Supplementary Table 1).
predominantly down-regulated targets and vice versa cannot be overlooked. Similarly, isoforms of metabolic genes that are consistently expressed in the opposite direction (eg, GLS and GLS2, MPC1 and MPC2, MAT1A and MAT2A) (see Table 3, Supplementary Table 1) represent alterations that could be of clinical importance in liver cancer.

Conclusions

We have revealed metabolic targets that are consistently deregulated and so can be further studied as potential clinical biomarkers, therapeutic targets, or prognostic indicators in liver cancer. Several of the targets reflect at protein level, correlate with the progression markers, vary with tumor size, and predicted patient overall survival. Moreover, 54% (n = 343) (Supplementary Figure 1) were represented in the recent list of gene mutations identified in HCC by exome sequencing analysis. We believe these metabolic targets are broadly of promising clinical relevance in HCC. Consistent with this notion, most of the identified metabolic targets already described in the literature were proposed as biomarkers, therapeutic targets, or prognostic indicators in HCC. Examples include AKR1B10, CLIC1, PKM, ASNS, GLS, LPCAT1, NDUFA1L2, SLC39A6, and VDAC1, which are all up-regulated, and CYP1A2, ASS1, MAT1A, GLS2, and ALDH1L1, which are all down-regulated in HCC (see Supplementary Table 1). Hence, our findings are in agreement with several independent studies that have relied on various HCC patient cohorts. It gives strong impetus for detailed mechanistic studies on metabolic targets and their associated pathways in HCC. It is worthy to note that, a potential limitation of our work is the probability that some metabolic genes were not captured, for instance, due to gene probes not currently annotated. Also, although several targets are well known for their involvement in specific biochemical pathways, our assortment of some others to pathways should be used as a guide especially for those with yet unknown biological roles. Furthermore, due to technical limitations, we did not detect all proteins corresponding to the metabolic genes. Nevertheless, given the consistency of the genes we identified from several independent HCC datasets, and their correspondingly similar expression pattern where detected at proteomic level, this study is to date the most extensive exposition of the metabolic genes often deregulated in human HCC. Whether these alterations are specific to liver cancer or also present in other liver diseases, especially those related to metabolism such as NASH, should be an interesting subject of future investigation contingent on the accumulation of a comparable amount of genomic data for the clinical disease in question. For such study, the targets herein reported will serve as useful reference.

Our findings are also important in other aspects of liver cancer metabolism. For example, it will assist future studies in deciding on specific metabolic pathways to modulate therapeutically, and could increase the chances of identifying alternative metabolic pathways or targets that are used by HCC to evade therapy. It will also assist in identifying unique metabolic gene pattern in liver cancer compared with other cancers. In addition, the consistently altered targets represent a powerful tool for determining the in vivo or in vitro experimental HCC models that best depict the human HCC situation, especially from metabolism perspective—this knowledge is currently lacking and if obtained can help fine-tune future prospects of understanding liver cancer metabolism. In the context of personalized medicine, we hope that the consistently altered targets, including those most deregulated, as shown in Figure 1C, will be relevant for the identification of patients whose liver tumors have divergent expression patterns that might warrant individualized interventions.

References

1. Warburg O. On the origin of cancer cells. Science 1956; 123:309–314.
2. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029–1033.
3. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011;11:325–337.
4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–674.
5. DeBerardinis RJ, Mancuso A, Daikhini E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 2007; 104:19345–19350.
6. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011;43:869–874.
7. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stranks NS, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011;476:346–350.
8. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Birsoy K, Sethumadhavan S, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011;43:869–874.
9. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stranks NS, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011;476:346–350.
10. Hirschey MD, DeBerardinis RJ, Diehl AM, Drew JE, Frezza C, Green MF, Jones LW, Ko YH, Le A, Lea MA, Locasale JW, Longo VD, Lyssiotis CA, McDonnell E,
Mehmohamadi M, Michelotti G, Muralidhar V, Murphy MP, Pedersen PL, Poore B, Raffaghello L, Rathmell JC, Sivanand S, Vander Heiden MG, Wellen KE; Target Validation Team. Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 2015;35 (Suppl):S129–S150.

11. Nowicki S, Gottlieb E. Oncometabolites: tailoring our genes. FEBS J 2015;282:2796–2805.

12. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016;23:27–47.

13. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Intersections between metabolism and cancer biology. Discov 2013;12:829–837.

14. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell 2017;168:657–669.

15. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R, Wolfe C, Hamadheh RR, Moore A, Werdecker A, Gessner BD, Te Ao B, McMahon B, Karikhanli C, Yu C, Cooke GS, Schwobel DC, Carpenter DO, Pereira DM, Nash D, Kazi DS, De Leo D, Plass D, Ukwaja KN, Thurston GD, Yun Jin K, Simard EP, Mills E, Park EC, Catalá-López F, deVeber G, Gotay C, Khan G, Hosgood HD 3rd, Santos IS, Leasher JL, Singh J, Leigh J, Jonas JB, Sanabria J, Beardsley J, Jacobsen KH, Takahashi K, Franklin RC, Ronfani L, Montico M, Naldi L, Tonelli M, Geleijnse J, Petzold L, Shrime MG, Younis M, Nabousi W, Weber F, Hoffmann AC, Stephann C, Kuhlmann K, Eisenacher M, Schlaak JF, Baba HA, Meyer HE, Sitek B. Proteomic differences between hepatocellular carcinoma and nontumorous liver tissue investigated by a combined gel-based and label-free quantitative proteomics study. Mol Cell Proteomics 2013;12:2026–2033.
29. Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L, Freise CE, Olthoff KM, Ghbrial RM, McVler P, Fisher R. Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Mol Med 2009;15:85–94.

30. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S. Matrix metalloproteinases: regulators of the tumor microenvironment. Cancer Cell 2010;141:52–67.

31. Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdet T, Dylag M, Emam I, Famme A, Hastings E, Holloway E, Kurbatova N, Lukk M, Malone J, Mani R, Pilicheva E, Rustici G, Sharma A, Williams E, Adamusiak T, Brandizi M, Sklyar N, Brazma A. ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 2011;39:D1002–D1004.

32. Kessenbrock K, Plaks V, Werb Z. Tumor metastasis: moving new mutational signatures and potential therapeutic targets. Nat Genet 2015;47:505–511.

33. Robertson CL, Serova N, Davis S, Soboleva A. NCBI Exome of HCV-induced dysplasia and liver cancer by integrating clinical and genetic data. Nature Protoc 2009;41:D991–D995.

34. Cataldo VD, Gibbons DL, Perez-Soler R, Quintanilla-Caradam A. Treatment of non–small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 2011;364:947–955.

35. Kuczynski EA, Lee CR, Man S, Chen E, Kerbel RS. Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Cancer Res 2015;75:2510–2519.

36. Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM. Oncomine 3.0: genes, pathways, and biological insights into the clinic. Nat Med 2013;19:1450–1464.

37. Meyer C, Dzieran J, Liu Y, Schindler F, Munker S, Müller A, Couloaur C, Dooley S. Distinct dedifferentiation processes affect caveolin-1 expression in hepatocytes. Cell Commun Signal 2013;11:6.

38. Malinova J, Mani R, Pilicheva E, Rustici G, Sharma A, Williams E, Adamusiak T, Brandizi M, Sklyar N, Brazma A. ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 2011;39:D1002–D1004.

39. Shinde J, Soysouvanh F, Calatayud AL, Pinyol R, Calderaro J, Rebouissou S, Coughy G, Mellier C, Shinde J, Soysouvanh F, Calatayud AL, Pinyol R, Pelletier L, Balabaud C, Laurent A, Blanc JF, Mazzaferrro V, Calvo F, Villanueva A, Nault JC, Blouac-Sage P, Stratton MR, Llovet JM, Zucman-Rossi J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015;47:505–511.

40. Meyer C, Dzieran J, Liu Y, Schindler F, Munker S, Müller A, Couloaur C, Dooley S. Distinct dedifferentiation processes affect caveolin-1 expression in hepatocytes. Cell Commun Signal 2013;11:6.

41. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res 2014;20:2072–2079.

42. Zhu AX, Rosmorduc O, Evans TR, Ross PJ, Santoro A, Carrilho FJ, Bruix J, Qin S, Thuluvath PJ, Llovet JM, Leberre MA, Jensen M, Meinhardt G, Kang YK. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2015;33:559–566.

43. Cataldo VD, Gibbons DL, Perez-Soler R, Quintanilla-Caradam A. Treatment of non–small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 2011;364:947–955.

44. Kuczynski EA, Lee CR, Man S, Chen E, Kerbel RS. Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Cancer Res 2015;75:2510–2519.

45. Lam TL, Wong GK, Chong PN, Choi SC, Chow TL, Kwok SY, Poon RT, Wheatley DN, Lo WH, Leung YC. Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest. Cancer Lett 2009;277:91–100.

46. Mardanglu A, Agren R, Kampff C, Asplund A, Uhlen M, Nielsen J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 2014;5:3083.

47. Sun L, Song L, Wan Q, Wu G, Li X, Wang Y, Wang J, Liu Z, Zhong X, He X, Shen S, Pan X, Li A, Wang Y, Gao P, Tang H, Zhang H. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res 2015;25:429–444.

48. Schell JC, Olson KA, Jiang L, Hawkins AJ, Van Vranken JG, Xie J, Egnaichak RA, Earl EG, DeBerardinis RJ, Rutter J. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell 2014;56:400–413.

49. Malinova J, Mani R, Pilicheva E, Rustici G, Sharma A, Williams E, Adamusiak T, Brandizi M, Sklyar N, Brazma A. ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 2011;39:D1002–D1004.

50. Meyl C, Dzieran J, Liu Y, Schindler F, Munker S, Muller A, Couloaur C, Dooley S. Distinct dedifferentiation processes affect caveolin-1 expression in hepatocytes. Cell Commun Signal 2013;11:6.

51. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res 2014;20:2072–2079.

52. Zhu AX, Rosmorduc O, Evans TR, Ross PJ, Santoro A, Carrilho FJ, Bruix J, Qin S, Thuluvath PJ, Llovet JM, Leberre MA, Jensen M, Meinhardt G, Kang YK. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2015;33:559–566.

53. Cataldo VD, Gibbons DL, Perez-Soler R, Quintanilla-Caradam A. Treatment of non–small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 2011;364:947–955.

54. Kuczynski EA, Lee CR, Man S, Chen E, Kerbel RS. Effects of sorafenib dose on acquired reversible resistance and toxicity in hepatocellular carcinoma. Cancer Res 2015;75:2510–2519.
Kosmider O, Fontenay M, Gozzini A, Bosi A, Santini V. Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia 2014;28:621–628.

53. Loganayagam A, Arenas Hernandez M, Corrigan A, Fairbanks L, Lewis CM, Harper P, Maisey N, Ross P, Sanderson JD, Marinaki AM. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer 2013;108:2505–2515.

54. Shriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 2004;3:863–873.

55. Tao QF, Yuan SX, Yang F, Yang S, Yang Y, Yuan JH, Wang ZG, Xu QQ, Lin KY, Cai J, Yu J, Huang WL, Teng XL, Zhou CC, Wang F, Sun SH, Zhou WP. Aldolase B inhibits metastasis through Ten-Eleven Translocation 1 and serves as a prognostic biomarker in hepatocellular carcinoma. Mol Cancer 2015;14:170.

Received March 16, 2017. Accepted May 19, 2017.

Correspondence
Address correspondence to: Steven Dooley, Department of Medicine II, Molecular Hepatology Section, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3 (H42, Floor 4), 68167 Mannheim, Germany. e-mail: steven.dooley@medma.uni-heidelberg.de.

Acknowledgments
The published datasets that were analyzed in this study are freely accessible from the National Center for Biotechnology Information Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) under the Accession numbers GSE6764, GSE14323, GSE14520, GSE36376, GSE39791, GSE57957, GSE60502, and GSE62232. In addition, The Cancer Genome Atlas liver cancer data were accessed via cBioPortal database (http://www.cbioportal.org/).

Author contributions
ZCN conceived the study, performed data analyses and wrote manuscript. SH and CM performed PubMed Search for the identification of novel metabolic targets and also discussed manuscript outline. SR discussed method and presentation of data. DAM and BS performed proteomics analysis. MPE performed critical revision of the manuscript. SD provided supervisory support and corrected manuscript. All authors read the final version of the paper.

Conflicts of interest
The authors declare no conflicts.

Funding
Z.C.N. is a recipient of PhD Scholarship from the Niger Delta Development Commission, Nigeria, and appreciates the generous support from the Graduate School (HBIGS), University of Heidelberg, Germany. C.M. receives support through a grant from the Deutsche Forschungsgemeinschaft (DFG) (Me4532/1-1). S.D. is supported by funds from the DFG (Do373/13-1), the BMBF program LSyM (Grant PTJ-FKZ: 031 L0043), and the Marie Curie Actions of the European Union’s Seventh Framework Programme (FP7/2007–2013) Grant PITN-GA-2012-316549 (IT LIVER: Inhibiting TGF-beta in liver diseases). The funding bodies did not influence the content of this article.
Supplementary Figure 1. Consistently Altered Metabolic Targets Among List of Mutations in Published Exome Sequencing Analysis of Hepatocellular Carcinoma.