ON THE EXISTENCE OF p-ADIC ROOTS

YOUNG-HEE KIM* AND JONGSUNG CHOI**

Abstract. In this paper, we give the condition for the existence of the q-th roots of p-adic numbers in \mathbb{Q}_p with an integer $q \geq 2$ and $(p, q) = 1$. We have the conditions for the existence of the fifth root and the seventh root of p-adic numbers in \mathbb{Q}_p, respectively.

1. Introduction

Let p be a prime and \mathbb{Q}_p be the field of p-adic numbers. The p-adic numbers were introduced by Hensel([2]). The theory of the field of p-adic numbers has been related to several areas of mathematics and physics, and so the research of this field has been very important([3]).

Computing the q-th roots of a p-adic number is useful in the field of computer science and cryptography, specially when q is a prime. It is necessary to confirm the existence of the q-th root of a p-adic number in \mathbb{Q}_p before computing them([4], [5]). There are some results of the existence of square roots of p-adic numbers and the q-th roots of unity([1-2]). In [4], the authors gave the conditions for the existence of the cubic root of a p-adic number, and then applied the secant method to compute the cubic root.

In this paper, we give the condition for the existence of the q-th roots of p-adic numbers in \mathbb{Q}_p with an integer $q \geq 2$ and $(p, q) = 1$. We have the conditions for the fifth root and the seventh root of p-adic numbers, respectively, including the case $p = q$.

Received September 03, 2014; Accepted January 19, 2015.
2010 Mathematics Subject Classification: Primary 11E95, Secondary 26E30.
Key words and phrases: p-adic roots.
Correspondence should be addressed to Jongsung Choi, jeschoi@kw.ac.kr.
The present research has been conducted by the Research Grant of Kwangwoon University in 2014.
2. Preliminaries

The following definitions and theorems are necessary for our discussion. See [1] and [2] for details.

Let \(p \in \mathbb{N} \) be a prime number and \(x \in \mathbb{Q} \) with \(x \neq 0 \). The \(p \)-adic order of \(x \), \(\text{ord}_p x \), is defined by

\[
\text{ord}_p x = \begin{cases}
\text{the highest power of } p \text{ which divides } x, & \text{if } x \in \mathbb{Z}, \\
\text{ord}_p a - \text{ord}_p b, & \text{if } x = \frac{a}{b}, \ a, b \in \mathbb{Z}, \ b \neq 0.
\end{cases}
\]

The \(p \)-adic norm \(| \cdot |_p : \mathbb{Q} \to \mathbb{R}^+ \) of \(x \) is defined by

\[
|x|_p = \begin{cases}
p^{-\text{ord}_p x}, & \text{if } x \neq 0, \\
0, & \text{if } x = 0.
\end{cases}
\]

The field of \(p \)-adic numbers \(\mathbb{Q}_p \) is the completion of \(\mathbb{Q} \) with respect to the \(p \)-adic norm \(| \cdot |_p \). The elements of \(\mathbb{Q}_p \) are equivalence classes of Cauchy sequences in \(\mathbb{Q} \) with respect to the extension of the \(p \)-adic norm defined by

\[
|a|_p = \lim_{n \to \infty} |a_n|_p,
\]

where \(\{a_n\} \) is a Cauchy sequence in \(\mathbb{Q} \) representing \(a \in \mathbb{Q}_p \).

Theorem 2.1. Every equivalence class \(a \) in \(\mathbb{Q}_p \) satisfying \(|a|_p \leq 1 \) has exactly one representative Cauchy sequence \(\{a_i\} \) such that

1. \(a_i \in \mathbb{Z} \), \(0 \leq a_i < p^i \) for \(i = 1, 2, \ldots \),
2. \(a_i \equiv a_{i+1} \pmod{p^i} \) for \(i = 1, 2, \ldots \).

Hence every \(p \)-adic number \(a \in \mathbb{Q}_p \) has a unique representation

\[
a = \sum_{n=-m}^{\infty} a_np^n,
\]

where \(a_{-m} \neq 0 \) and \(a_n \in \{0, 1, 2, \ldots, p-1\} \) for \(n \geq -m \), and represent the given \(p \)-adic number \(a \) as a fraction in the base \(p \) as follows:

\[
a = \ldots a_{-1} a_{0} a_1 a_2 \ldots a_m,
\]

which is called the canonical \(p \)-adic expansion of \(a \).

Let \(\mathbb{Z}_p \) be the set of \(p \)-adic integers and \(\mathbb{Z}_p^\times \) be the set of \(p \)-adic units. It follows that \(\mathbb{Z}_p = \{a \in \mathbb{Q}_p | |a|_p \leq 1\} \) and \(\mathbb{Z}_p^\times = \{a \in \mathbb{Q}_p | |a|_p = 1\} \).

From this, the next theorem follows.

Theorem 2.2. Let \(a \) be a \(p \)-adic number of norm \(p^{-n} \). Then \(a = p^n u \) for some \(u \in \mathbb{Z}_p^\times \).
3. p-Adic roots

Let q be an integer such that $q \geq 2$. A p-adic number $x \in \mathbb{Q}_p$ is said to be a q-th root of $a \in \mathbb{Q}_p$ of order $k \in \mathbb{N}$ if and only if $x^q \equiv a \pmod{p^k}$. Specially, the q-th root of $a \in \mathbb{Q}_p$ is called the fifth root of a when $q = 5$, and the seventh root of a when $q = 7$.

In this section, we provide the condition for the existence of the q-th root of p-adic numbers a in \mathbb{Q}_p when $(p, q) = 1$. We also have the conditions for the existence of the fifth root and the seventh root of p-adic numbers, respectively.

The following lemma is essential for our discussion([1]).

Lemma 3.1. Let $a, b \in \mathbb{Q}_p$. Then a and b are congruent modulo p^k and write $a \equiv b \pmod{p^k}$ if and only if $|a - b|_p \leq 1/p^k$.

The next theorem is the basis for existing p-adic roots([2]).

Theorem 3.2. (Hensel’s lemma) Let $F(x) = c_0 + c_1 x + \cdots + c_n x^n$ be a polynomial whose coefficients are p-adic integers. Let $F'(x) = c_1 + 2c_2 x + 3c_3 x^2 + \cdots + nc_n x^n$ be the derivative of $F(x)$. Let a_0 be a p-adic integer such that $F(a_0) \equiv 0 \pmod{p}$ and $F'(a_0) \not\equiv 0 \pmod{p}$. Then there exists a unique p-adic integer a such that

$$F(a) = 0 \quad \text{and} \quad a \equiv a_0 \pmod{p}.$$

The following theorem follows from Theorem 3.2, and provides the condition between p-adic numbers and congruence([1]).

Theorem 3.3. A polynomial with integer coefficients has a root in \mathbb{Z}_p if and only if it has an integer root modulo p^k for any $k \geq 1$.

Some results of the existence of square roots of p-adic numbers are obtained from Theorem 3.3([1]). In [4], the authors gave the condition for the existence of cubic roots in \mathbb{Q}_p. We generalize the result to the q-th root, and we have the condition for the existence of a q-th root of p-adic numbers in \mathbb{Q}_p when $q \geq 2$ and $(p, q) = 1$.

Theorem 3.4. Let $(p, q) = 1$. Then a rational integer a not divisible by p has a q-th root in \mathbb{Z}_p ($p \neq q$) if and only if a is a q-th residue modulo p.

Proof. Consider the p-adic continuous function $f(x) = x^q - a$ and its derivative $f'(x) = qx^{q-1}$. If a is not a q-th residue modulo p, then it has no q-th roots in \mathbb{Z}_p by Theorem 3.3.
Conversely, if \(a \) is a \(q \)-th residue modulo \(p \), then \(a \equiv a_0^q \pmod p \) for \(a_0 \in \{1, 2, \ldots, p-1\} \). Hence \(f(a_0) \equiv 0 \pmod p \) and \(f'(a_0) = qa_0^{q-1} \not\equiv 0 \pmod p \), because \(p \neq q \) and \(a_0 \neq 0 \). From Hensel’s lemma, the solution is in \(\mathbb{Z}_p \), and so \(a \) has a \(q \)-th root in \(\mathbb{Z}_p \).

From Theorem 3.4, we have the conditions for the existence of the fifth root of a \(p \)-adic number in \(\mathbb{Q}_p \) including \(p = q \).

Theorem 3.5. Let \(p \) be a prime number. Then we have:

1. If \(p \neq 5 \), then \(a = p^{\text{ord}_p a}u \in \mathbb{Q}_p \) for some \(u \in \mathbb{Z}_p^* \) has a fifth root in \(\mathbb{Q}_p \) if and only if \(\text{ord}_p a = 5m \) for \(m \in \mathbb{Z} \) and \(u = v^5 \) for some unit \(v \in \mathbb{Z}_p^* \).

2. If \(p = 5 \), then \(a = 5^{\text{ord}_p a}u \in \mathbb{Q}_5 \) for some \(u \in \mathbb{Z}_5^* \) has a fifth root in \(\mathbb{Q}_5 \) if and only if \(\text{ord}_p a = 5m \) for \(m \in \mathbb{Z} \) and \(u \equiv 1 \pmod{25} \) or \(u \equiv k \pmod{5} \) for some \(k \) (\(2 \leq k \leq 4 \)).

Proof. Let \(a \) and \(x \in \mathbb{Q}_p \). Then \(a = p^{\text{ord}_p a}u \) and \(x = p^{\text{ord}_p x}v \) for some \(u, v \in \mathbb{Z}_p^* \) such that

\[
u = a_0 + a_1 p + a_2 p^2 + \cdots, \quad v = x_0 + x_1 p + x_2 p^2 + \cdots \tag{3.1}\]

with \(a_0 \neq 0 \) and \(x_0 \neq 0 \). Then we have

\[
x^5 = a \iff p^{\text{ord}_p x}v^5 = p^{\text{ord}_p a}u \tag{3.2}
\]

The equation (3.2) is equivalent to the following system:

\[
\begin{cases}
5\text{ord}_p x = \text{ord}_p a \\
v^5 = u \\
x_0^5 - a_0 \equiv 0 \pmod p.
\end{cases} \tag{3.3}
\]

Let \(f(x) = x^5 - a_0 \). Then its derivative \(f'(x) = 5x^4 \) satisfies

\[
|f'(x_0)|_p = |5|_p = \begin{cases}
1, & \text{if } p \neq 5, \\
\frac{1}{5}, & \text{if } p = 5.
\end{cases}
\]

1. If \(p \neq 5 \), then the solution of \(f(x_0) = x_0^5 - a_0 \) exists by Hensel’s lemma. Thus the result follows.

2. If \(p = 5 \), then the equation (3.3) is reduced to the following system:

\[
\begin{cases}
(x_0 + 5x_1 + 5^2x_2 + \cdots)^5 = a_0 + 5a_1 + 5^2a_2 + \cdots \\
x_0^5 - a_0 \equiv 0 \pmod 5,
\end{cases} \tag{3.4}
\]

where \(x_0, a_0 \in \{1, 2, 3, 4\} \). Thus (3.4) gives

\[
(x_0 + 5x_1 + 5^2x_2 + \cdots)^5 = x_0 + 5a_1 + 5^2a_2 + \cdots \tag{3.5}
\]
On the existence of \(p \)-adic roots 199

From (3.5), we have the followings.

(i) If \(x_0 = 1 \), then

\[
u = 1 + 5a_1 + 5^2a_2 + \cdots = (1 + 5x_1 + 5^2x_2 + \cdots)^5
\]

\[= 1 + 5^2x_1 + 5^3(x_1^2 + x_2^2) + \cdots \equiv 1 \pmod{25}.
\]

In the similar manner, we have the results in the other cases.

(ii) If \(x_0 = 2 \), then

\[
u = 2 + 5 \cdot 1 + 5^2(1 + x_1) + \cdots \equiv 2 \pmod{5}.
\]

(iii) If \(x_0 = 3 \), then

\[
u = 3 + 5 \cdot 3 + 5^2(4 + x_1) + \cdots \equiv 3 \pmod{5}.
\]

(iv) If \(x_0 = 4 \), then

\[
u = 4 + 5 \cdot 4 + 5^2(x_1 + 3x_2^2) + \cdots \equiv 4 \pmod{5}.
\]

Hence the proof is completed.

We also have the condition for the existence of the seventh root of a \(p \)-adic number in \(\mathbb{Z}_p \).

Theorem 3.6. Let \(p \) be a prime number. Then we have:

(1) If \(p \neq 7 \), then \(a = p^{\text{ord}_p a} u \in \mathbb{Q}_p \) for some \(u \in \mathbb{Z}_p^\times \) has a seventh root in \(\mathbb{Q}_p \) if and only if \(\text{ord}_p a = 7m \) for some \(m \in \mathbb{Z} \) and \(u = v^7 \) for some unit \(v \in \mathbb{Z}_p^\times \).

(2) If \(p = 7 \), then \(a = 7^{\text{ord}_7 a} u \in \mathbb{Q}_7 \) for some \(u \in \mathbb{Z}_7^\times \) has a seventh root in \(\mathbb{Q}_7 \) if and only if \(\text{ord}_7 a = 7m \) for some \(m \in \mathbb{Z} \) and \(u \equiv 1 (\pmod{7}) \) or \(u \equiv k (\pmod{49}) \) for some \(k (2 \leq k \leq 6) \).

Proof. Let \(a, x \in \mathbb{Q}_p \) be \(a = p^{\text{ord}_p a} u \) and \(x = p^{\text{ord}_p x} v \), where \(u, v \in \mathbb{Z}_p^\times \) as same as in (3.1). Then we have

\[
x^7 = a \Leftrightarrow p^{\text{ord}_p x} v^7 = p^{\text{ord}_p a} u
\]

\[
\Leftrightarrow p^{\text{ord}_p x}(x_0 + x_1 p + \cdots)^7 = p^{\text{ord}_p a}(a_0 + a_1 p + \cdots).
\]

The equation (3.6) is equivalent to the following system:

\[
\begin{cases}
7\text{ord}_p x = \text{ord}_p a \\
v^7 = u \\
x_0^7 - a_0 \equiv 0 \pmod{p}.
\end{cases}
\]

(3.7)

Let \(f(x) = x^7 - a_0 \). Then its derivative \(f'(x) = 7x^6 \) satisfies

\[
|f'(x_0)|_p = |7|_p = \begin{cases} 1, & \text{if } p \neq 7, \\ \frac{1}{7}, & \text{if } p = 7. \end{cases}
\]

(1) If \(p \neq 7 \), then the solution of \(f(x_0) = x_0^7 - a_0 \) exists by Hensel’s lemma. Thus the result follows.

(2) If \(p = 7 \), then the equation (3.7) is reduced to the following system:

\[
\begin{cases}
(x_0 + 7x_1 + 7^2x_2 + \cdots)^7 = a_0 + 7a_1 + 7^2a_2 + \cdots \\
x_0^7 - a_0 \equiv 0 \pmod{7},
\end{cases}
\]

(3.8)
where \(x_0, a_0 \in \{1, 2, 3, 4, 5, 6\} \). Thus (3.8) gives
\[
(x_0 + 7x_1 + 7^2x_2 + \cdots)^7 = x_0 + 7a_1 + 7^2a_2 + \cdots
\] (3.9)
with \(x_0 = 1, 2, 3, 4, 5, 6 \). From (3.9), we have the followings.

(i) If \(x_0 = 1 \), then \(u = 1 + 7^2x_1 + 7^3(3x_1^2 + x_2^2) + \cdots \equiv 1 \pmod{49} \).

(ii) If \(x_0 = 2 \), then \(u = 2 + 7 \cdot 4 + 7^2(2 + x_1) + \cdots \equiv 2 \pmod{7} \).

(iii) If \(x_0 = 3 \), then \(u = 3 + 7 \cdot 4 + 7^2(2 + x_1) + \cdots \equiv 3 \pmod{7} \).

(iv) If \(x_0 = 4 \), then \(u = 4 + 7 \cdot 2 + 7^2(5 + x_1) + \cdots \equiv 4 \pmod{7} \).

(v) If \(x_0 = 5 \), then \(u = 5 + 7 \cdot 2 + 7^2(5 + 3x_1) + \cdots \equiv 5 \pmod{7} \).

(vi) If \(x_0 = 6 \), then \(u = 6 + 7 \cdot 6 + 7^2x_1 + \cdots \equiv 6 \pmod{7} \).

Hence the proof is completed.

\[\square \]

References

[1] S. Katok, \textit{p-Adic analysis compared with real}, American Math. Soc., 2007

[2] N. Koblitz, \textit{p-Adic numbers, p-adic analysis and zeta functions}(2nd ed.), Springer-Verlag, 1984.

[3] V. S. Vladimirov, I. V. Volvich, and E. I. Zelenov, \textit{p-Adic analysis and mathematical physics}, Nord Scientific, 1994.

[4] T. Zerzaihi and M. Kecies, \textit{Computation of the cubic root of a p-adic number}, J. Math. Research 3 (2011), no. 3, 40-47.

[5] T. Zerzaihi, M. Kecies, and M. Knapp, \textit{Hensel codes of square roots of p-adic numbers}, Appl. Anal. Discrete Math. 4 (2010), 32-44.