Utility of X-ray and indocyanine green fluorescence imaging in detecting hepatocellular carcinoma dissemination on laparoscopic surgery: A case report

SHU SASKI¹, MAKOTO TAKAHASHI¹, TATSUYA HAYASHI¹, YASUHIRO MORITA¹, SHIN NAMIKI² and SHINGO ITAGAKI³

Departments of ¹Surgery, ²Gastroenterology and Hepatology and ³Pathology, Tokyo Metropolitan Tama Medical Center, Fuchū-shi, Tokyo 183-8524, Japan

Received July 3, 2021; Accepted September 2, 2021

DOI: 10.3892/mco.2021.2421

Abstract. Indocyanine green (ICG) fluorescence imaging is useful for the intraoperative detection of the peritoneal dissemination of hepatocellular carcinoma (HCC). However, in laparoscopic surgery, disseminations cannot be accurately identified unless the camera lens is positioned close to the lesion. The present study describes a case of HCC dissemination in which the lesions were accurately identified by combining intraoperative fluoroscopy with ICG fluorescence imaging.

Case report

A 76-year-old male was diagnosed with HCC dissemination. Computed tomography revealed a 9-mm disseminated nodule near the gallbladder. Although transarterial chemoembolization had also been used to treat this lesion, chemoembolization was technically difficult to perform. Therefore, a coil was placed around the lesion to serve as an intraoperative landmark for later laparoscopic resection. Given the potential difficulty of detecting the lesion during laparoscopic surgery, ICG fluorescence imaging was used to determine the approximate location of the dissemination. The lesion exhibited strong fluorescence, which facilitated its complete resection.

Introduction

Indocyanine green (ICG) fluorescence imaging is used intraoperatively to detect the disseminated recurrences of hepatocellular carcinoma (HCC) (1). However, as the tissue penetration of near-infrared light is limited, detecting tumors in deeper sites using this approach is difficult. At our department, a case of minor peritoneal dissemination of HCC was encountered, in which the lesions were able to be accurately identified and located by combining intraoperative fluoroscopy with ICG fluorescence imaging during laparoscopic surgery.
small lesions on the right diaphragm (Fig. 3C and D) and one small lesion on the liver surface were also detected by fluorography and all were resected. The patient's postoperative course was uneventful and he was discharged on postoperative day 4. Pathologically, all four lesions were diagnosed as HCC disseminations (Fig. 4). At the time of writing this case study, 10 months had passed since the operation and the patient has been alive without any recurrence.

Discussion

Molecular targeted drug therapy is the standard treatment for advanced HCC with extrahepatic lesions (2,3). However, if intrahepatic lesions are absent or well-controlled, resection of the disseminations may be beneficial. A previous study reported that the cumulative 1-, 3- and 5-year overall survival rates after resection of thoracoabdominal implants were 71, 44 and 39%, respectively, with a median survival time of 34.5 months (4).

ICG fluorescence imaging has been used in various fields of surgery. In breast cancer surgery, the identification of sentinel lymph nodes using ICG fluorescence imaging has been standardized (5). ICG fluorescence imaging is also used to determine the excision range of non-occlusive mesenteric ischemia (6-8) and evaluate the blood flow at the anastomotic site in colorectal cancer surgery (9). In the field of lung surgery, thoracoscopic lung segment resection using ICG fluorescence imaging has also been performed (10). Nishino et al (11) reported that ICG fluorescence imaging is useful for evaluating arterial blood flow to the stomach in distal pancreatectomy with celiac axis resection. In HCC surgery, ICG fluorescence imaging provides anatomical information during laparotomy and laparoscopic surgery (12,13). Previous studies have reported that ICG fluorescence imaging is a convenient method for intraoperatively detecting extrahepatic HCC metastases (14,15). The uptake of ICG by HCC cells in extrahepatic metastases is similar to that observed in hepatocytes and intrahepatic HCC cells (16). According to Satou et al (1), of the 33 lesions (lung, adrenal gland, lymph node and peritoneum)
suspected to be extrahepatic metastases of HCC, 26 exhibited fluorescence on ICG and all were metastases of HCC. Of the seven lesions that did not exhibit any fluorescence, one was a metastasis of HCC and six were benign (1).

Ishizawa and Saiura (17) proposed that in patients with intrahepatic HCC, ICG at a dose of 0.5 mg/kg body weight should be administered within 2 weeks prior to surgery. In addition, they advised against the administration of ICG 1 day prior to surgery to decrease the possibility of false-positive nodules. In patients with extrahepatic HCC, the currently recommended interval ranges from 1 to 5 days (1). However, the duration of ICG retention in extrahepatic HCC may be longer than expected and ICG administration immediately prior to surgery may be permissible due to the lack of uptake by the background tissue (18). In the present case, ICG 0.5 mg/kg was administered intravenously 24 h prior to surgery.

Small metastatic nodules are difficult to recognize with the naked eye or on standard laparoscopic view. For extrahepatic HCC metastases, ICG fluorescence imaging has a positive predictive value of 100% and a sensitivity of 92% (1). However, as the tissue penetration of near-infrared light is limited to 5-10 mm (19), detecting tumors in deeper sites, such as the dorsal site of adipose tissue, using this approach is difficult. To identify deep-seated lesions, a coil may be placed in the artery near the lesion and intraoperative fluoroscopy with ICG fluorescence may be used to facilitate detection. In the present case, the disseminated lesion was able to be identified laparoscopically using this method. Placing a marker, such as a coil, around a tumor may be considered if the tumor is difficult to detect with ICG fluorescence imaging alone. Furthermore, disseminated lesions that cannot be identified preoperatively may be identified using ICG fluorescence imaging.

ICG contains iodine, and there are reports of occasional anaphylactic shock due to administration (20,21). Therefore, it is necessary to be aware of the patient’s history of allergies.

In conclusion, the combination of intraoperative ICG fluorescence imaging and fluoroscopy is useful for identifying small, disseminated HCC lesions laparoscopically.

Acknowledgements
Not applicable.

Funding
No funding was received.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.
Authors’ contributions

SS drafted the manuscript. MT revised the manuscript. YM and SN contributed to preoperative checks and diagnoses. SS, MT and TH performed the surgery. YM and SN followed up the patient. SI diagnosed the disease as a pathologist. MT and SS checked and confirmed the authenticity of the raw data. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Written informed consent was obtained from the patient for publication of this case report.

Competing interests

The authors declare that they have no competing interests.

References

1. Satou S, Ishizawa T, Masuda K, Kaneko J, Aoki T, Sakamoto Y, Hasegawa K, Sugawara Y and Kokudo N: Indocyanine green fluorescence imaging for detecting extrahepatic metastasis of hepatocellular carcinoma. J Gastroenterol 48: 1136-1143, 2013.
2. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blamey JF, de Oliveira AC, Santoro A, Raoul JL, Fornier A, et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359: 378-390, 2008.
3. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, et al: Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10: 25-34, 2009.
4. Takemura N, Hasegawa K, Aoki T, Sakamoto Y, Sugawara Y, Makuchh M and Kokudo N: Surgical resection of peritoneal or thoracoabdominal wall implants from hepatocellular carcinoma. Br J Surg 101: 1017-1022, 2014.
5. Sugie T, Kinoshita T, Masuda N, Sawada T, Yamauchi A, Kuroi K, Taguchi T, Bandoh H, Yamashiro H, Lee T, et al: Evaluation of the clinical utility of the ICG fluorescence method compared with the radioisotope method for sentinel lymph node biopsy in breast cancer. Ann Surg Oncol 23: 44-50, 2016.
6. Nakagawa Y, Kobayashi K, Kuwabara S, Shibuya H and Nishimaki T: Use of indocyanine green fluorescence imaging to determine the area of bowel resection in non-occlusive mesenteric ischemia: A case report. Int J Surg Case Rep 51: 352-357, 2018.
7. Irie T, Matsatani T, Hagiwara N, Nomura T, Fujita I, Kanzawa Y, Kakinuma D and Uchida E: Successful treatment of non-occlusive mesenteric ischemia with indocyanine green fluorescence and open-abdomen management. Clin J Gastroenterol 10: 514-518, 2017.
8. Nitori N, Deguchi T, Kubota K, Yoshida M, Kato A, Kojima M, Kadomura T, Okada A, Okamura J, Kobayashi M, et al: Successful treatment of non-occlusive mesenteric ischemia (NOMI) using the HyperEye Medical System™ for intraoperative visualization of the mesenteric and bowel circulation: Report of a case. Surg Today 44: 359-362, 2014.
9. Arezzo A, Bonino MA, Ris F, Boni L, Cassinotti E, Fobo DC, Shum NF, Brolese A, Carlenghio F, Keller DS, et al: Intraoperative use of fluorescence with indocyanine green reduces anastomotic leak rates in rectal cancer surgery: An individual participant data analysis. Surg Endosc 34: 4281-4290, 2020.
10. Mun M, Okumura S, Nakao M, Matsuura Y and Nakagawa K: Indocyanine green fluorescence-navigated thoracoscopic anatomical segmentectomy. J Vis Surg 3: 80, 2017.
11. Nishino H, Takano S, Yoshitomi H, Furukawa K, Takayashiki T, Kuboki S, Suzuki D, Sakai N, Kagawa S, Nijima H, et al: Ischemic gastropathy after distal pancreatectomy with en bloc celiac axis resection versus distal pancreatectomy for pancreatic body/tail cancer. Surg Open Sci 1: 14-19, 2019.
12. Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, Hasegawa K, Beck Y, Fukuyama M and Kokudo N: Real-time identification of liver cancers by using indocyanine green fluorescence imaging. Cancer 115: 2491-2504, 2009.
13. Felli E, Ishizawa T, Cherkawaiu Z, Diana M, Tripoin S, Baurnert TF, Schuster C and Pessaux P: Laparoscopic anatomical liver resection for malignancies using positive or negative staining technique with intraoperative indocyanine green fluorescence imaging. HPB (Oxford): Jun 7, 2021 (Epub ahead of print).
14. Nanashima A, Tominaga T, Sumida Y, Tobinaga S and Nagayasu T: Indocyanine green identification for tumor infiltration or metastasis originating from hepatocellular carcinoma. Int J Surg Case Rep 46: 56-61, 2018.
15. He P, Huang T, Fang C, Su S, Tian J, Xia X and Li B: Identification of extrhepatic metastasis of hepatocellular carcinoma using indocyanine green fluorescence imaging. Photodiagn Photodyn Ther 25: 417-420, 2019.
16. Ishizawa T, Masuda K, Urano Y, Kagawuchi Y, Satou S, Kaneko J, Hasegawa K, Shibahara J, Fukuyama M, Tsuji S, et al: Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol 21: 440-448, 2014.
17. Ishizawa T, Saurma A: Fluorescence imaging for minimally invasive cancer surgery. Surg Oncol Clin N Am 28: 45-60, 2019.
18. Yamamura K, Beppu T, Sato N, Kinoshita K, Oda E, Yuki H, Motoo H, Miyamato T, Komohara Y and Akashoki S: Complete removal of adrenal metastasis in hepatocellular carcinoma using indocyanine green fluorescence imaging. Anticancer Res 40: 5823-5828, 2020.
19. Ishizawa T, Bandai Y and Kokudo N: Fluorescent cholangiography using indocyanine green for laparoscopic choledochectomy: An initial experience. Arch Surg 144: 381-382, 2009.
20. Kim M, Lee S, Park JC, Jang DM, Ha SI, Kim JU, Ahn JS and Park W: Anaphylactic shock after indocyanine green video angiography during cerebrovascular surgery. World Neurosurg 133: 74-79, 2020.
21. Chu W, Chennamsetty A, Torousian R and Lau C: Anaphylactic shock after intravenous administration of indocyanine green during robotic partial nephrectomy. Urol Case Rep 12: 37-38, 2017.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.