Choquet order and hyperrigidity for function systems

Kenneth R. Davidson

University of Waterloo

Haifa, June 2017

joint work with Matthew Kennedy
\[1 \in S = S^* \subset C(X) \text{ is a function system.} \]

\[K = \{ \varphi \in S^* : \varphi \geq 0, \varphi(1) = 1 \} \text{ state space, compact, convex,} \]

and \(x \in X \longrightarrow \varepsilon_x \in K \), where \(\varepsilon_x(f) = f(x) \) for \(f \in S \).
$1 \in S = S^* \subset C(X)$ is a function system.

$K = \{ \varphi \in S^* : \varphi \geq 0, \varphi(1) = 1 \}$ state space, compact, convex, and $x \in X \rightarrow \varepsilon_x \in K$, where $\varepsilon_x(f) = f(x)$ for $f \in S$.

Theorem (Kadison 1951)

$S \xrightarrow{\text{iso}} A(K) \subset C(K)$ isometric isomorphism to affine functions.
$1 \in S = S^* \subset C(X)$ is a function system.

$K = \{ \varphi \in S^* : \varphi \geq 0, \varphi(1) = 1 \}$ state space, compact, convex, and $x \in X \mapsto \varepsilon_x \in K$, where $\varepsilon_x(f) = f(x)$ for $f \in S$.

Theorem (Kadison 1951)

$S \xrightarrow{\text{iso}} A(K) \subset C(K)$ isometric isomorphism to affine functions.

$\partial S := \partial K$ extreme points is Choquet boundary of S.

$f \in S$ affine on K, so $S \rightarrow C(\partial K)$ completely isometric.

$\overline{\partial K}$ is the Shilov boundary of S.
By Hahn-Banach and Riesz Representation Theorems, for $\varphi \in K$ there exists $\mu \in M_+(\partial K)$ representing measure $\varphi(f) = \int f \, d\mu$ for $f \in S$.
By Hahn-Banach and Riesz Representation Theorems, for \(\varphi \in K \) there exists \(\mu \in M_+(\partial K) \) representing measure
\[
\varphi(f) = \int f \, d\mu \quad \text{for } f \in S.
\]

Choquet theory yields \(\mu \in M_+(\partial K) \).

- important in applications
- nonmetrizable case: \(\partial K \) may not be Borel; so need technical definition of support.
By Hahn-Banach and Riesz Representation Theorems, for $\varphi \in K$ there exists $\mu \in M_+(\partial K)$ representing measure

$$\varphi(f) = \int f \, d\mu$$

for $f \in S$.

Choquet theory yields $\mu \in M_+(\partial K)$.

- Important in applications
- Nonmetrizable case: ∂K may not be Borel; so need technical definition of support.

Definition

Choquet order: $\mu \prec_c \nu$ in $M_+(K)$ if $\int f \, d\mu \leq \int f \, d\nu$ for f convex.

This implies that $\int f \, d\mu = \int f \, d\nu$ for $f \in S$, so represent same φ.
Theorem (Choquet, Mokobodski)

K metrizable.

$\mu \in M_+(K)$ is maximal in $\prec_c \iff \text{supp} \mu \subset \partial K$.
Theorem (Choquet, Mokobodski)

K metrizable.
$\mu \in M_+(K)$ is maximal in $\prec_c \iff \text{supp} \mu \subset \partial K$.

Theorem (Bishop-De Leuuw)

K arbitrary.
μ is maximal in $\prec_c \implies \mu(A) = 0$ if A Baire s.t. $A \cap \partial K = \emptyset$.
Theorem (Choquet, Mokobodski)

K metrizable.

$\mu \in M_+(K)$ is maximal in $\prec_c \iff \text{supp } \mu \subset \partial K$.

Theorem (Bishop-De Leuuw)

K arbitrary.

μ is maximal in $\prec_c \implies \mu(A) = 0$ if A Baire s.t. $A \cap \partial K = \emptyset$.

Mokobodski: this does not characterize maximality.

However, if ∂K is closed, then μ is maximal $\iff \text{supp } \mu \subset \partial K$.
Classical result:

Theorem (Korovkin)

If $\Phi_n : C[a, b] \rightarrow C[a, b]$ positive maps s.t.

$$
\lim_{n \rightarrow \infty} \Phi_n(f) = f \quad \text{for} \quad f \in \{1, x, x^2\},
$$

then

$$
\lim_{n \rightarrow \infty} \Phi_n(f) = f \quad \text{for all} \quad f \in C[a, b].
$$
Classical result:

Theorem (Korovkin)

If $\Phi_n : C[a, b] \rightarrow C[a, b]$ positive maps s.t.

$$\lim_{n \rightarrow \infty} \Phi_n(f) = f \quad \text{for} \quad f \in \{1, x, x^2\},$$

then

$$\lim_{n \rightarrow \infty} \Phi_n(f) = f \quad \text{for all} \quad f \in C[a, b].$$

Modern, significant improvement:

Theorem (Arveson)

If $\pi : C[a, b] \rightarrow B(\mathcal{H})$ \ast-repn., $\Phi_n : C[a, b] \rightarrow B(\mathcal{H})$ (completely) positive maps s.t.

$$\lim_{n \rightarrow \infty} \Phi_n(f) = \pi(f) \quad \text{for} \quad f \in \{1, x, x^2\},$$

then

$$\lim_{n \rightarrow \infty} \Phi_n(f) = \pi(f) \quad \text{for all} \quad f \in C[a, b].$$
Definition

1 ∈ \(F \subset C(X) \) is a **Korovkin set** if \(\Phi_n : C(X) \rightarrow C(X) \) are positive,
\[
\lim_{n \to \infty} \Phi_n(f) = f \quad \text{for} \quad f \in F \quad \iff \quad \lim_{n \to \infty} \Phi_n(f) = f \quad \text{for} \quad f \in C(X).
\]
Definition

1 ∈ F ⊂ C(X) is a Korovkin set if \(\Phi_n : C(X) \to C(X) \) are positive,
\[\lim_{n \to \infty} \Phi_n(f) = f \text{ for } f \in F \implies \lim_{n \to \infty} \Phi_n(f) = f \text{ for } f \in C(X). \]

F is a strong Korovkin set if \(\pi : C[a, b] \to B(\mathcal{H}) \) *-repn., \(\Phi_n : C(X) \to B(\mathcal{H}) \) (completely) positive, then
\[\lim_{n \to \infty} \Phi_n(f) = \pi(f) \text{ for } f \in F \implies \lim_{n \to \infty} \Phi_n(f) = \pi(f) \text{ for } f \in C(X). \]
Definition

1 ∈ $F \subset C(X)$ is a Korovkin set if $\Phi_n : C(X) \to C(X)$ are positive,
\[
\lim_{n \to \infty} \Phi_n(f) = f \quad \text{for} \quad f \in F \iff \lim_{n \to \infty} \Phi_n(f) = f \quad \text{for} \quad f \in C(X).
\]

F is a strong Korovkin set if $\pi : C[a, b] \to B(\mathcal{H})$ *-repn.,
$\Phi_n : C(X) \to B(\mathcal{H})$ (completely) positive, then
\[
\lim_{n \to \infty} \Phi_n(f) = \pi(f) \quad \text{for} \quad f \in F \iff \lim_{n \to \infty} \Phi_n(f) = \pi(f) \quad \text{for} \quad f \in C(X).
\]

Theorem (Šaškin)

X compact metric. $1 \in F \subset C(X)$. $S = \overline{\text{span}}\{F \cup F^*\}$.
Then F is a Korovkin set $\iff \partial S = X$.
Definition

1 ∈ F ⊂ C(X) is a Korovkin set if \(\Phi_n : C(X) \to C(X) \) are positive, \[\lim_{n \to \infty} \Phi_n(f) = f \text{ for } f \in F \iff \lim_{n \to \infty} \Phi_n(f) = f \text{ for } f \in C(X). \]

F is a strong Korovkin set if \(\pi : C[a, b] \to B(\mathcal{H}) *\)-repn., \(\Phi_n : C(X) \to B(\mathcal{H}) \) (completely) positive, then \[\lim_{n \to \infty} \Phi_n(f) = \pi(f) \text{ for } f \in F \iff \lim_{n \to \infty} \Phi_n(f) = \pi(f) \text{ for } f \in C(X). \]

Theorem (Šaškin)

X compact metric. 1 ∈ F ⊂ C(X). \(S = \text{span}\{F \cup F^*\} \).

Then F is a Korovkin set \iff \(\partial S = X. \)

Question (Arveson)

Characterize strong Korovkin sets.
Definition

$1 \in S = S^* \subset \mathcal{A} = C^*(S)$ is **hyperrigid** if whenever

$\pi : \mathcal{A} \to B(\mathcal{H})$ *-repn, and $\Phi_n : \mathcal{A} \to B(\mathcal{H})$ c.p.

$$\lim_{n \to \infty} \Phi_n(s) = \pi(s) \text{ for } s \in S \implies \lim_{n \to \infty} \Phi_n(a) = \pi(a) \text{ for } a \in \mathcal{A}.$$
Definition

$1 \in S = S^* \subset \mathcal{A} = C^*(S)$ is **hyperrigid** if whenever

$\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ $*$-repn, and $\Phi_n : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ c.p.

$$\lim_{n \to \infty} \Phi_n(s) = \pi(s) \quad \text{for} \quad s \in S \quad \implies \quad \lim_{n \to \infty} \Phi_n(a) = \pi(a) \quad \text{for} \quad a \in \mathcal{A}.$$

Definition

$1 \in S = S^* \subset \mathcal{A} = C^*(S)$. $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ $*$-repn.

$\pi|_S$ has **unique extension property (u.e.p.)**

if π is the unique u.c.p. extension to \mathcal{A}.
Definition

1 \(\in \mathcal{S} = \mathcal{S}^* \subset \mathcal{A} = C^*(\mathcal{S}) \) is **hyperrigid** if whenever
\(\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H}) \) *-repn, and \(\Phi_n : \mathcal{A} \to \mathcal{B}(\mathcal{H}) \) c.p.

\[
\lim_{n \to \infty} \Phi_n(s) = \pi(s) \quad \text{for } s \in \mathcal{S} \quad \implies \quad \lim_{n \to \infty} \Phi_n(a) = \pi(a) \quad \text{for } a \in \mathcal{A}.
\]

Definition

1 \(\in \mathcal{S} = \mathcal{S}^* \subset \mathcal{A} = C^*(\mathcal{S}). \) \(\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H}) \) *-repn.

\(\pi|_{\mathcal{S}} \) has **unique extension property (u.e.p.)**

if \(\pi \) is the unique u.c.p. extension to \(\mathcal{A} \).

Theorem (Arveson)

1 \(\in \mathcal{S} = \mathcal{S}^* \subset \mathcal{A} = C^*(\mathcal{S}). \) Then

\(\mathcal{S} \) is hyperrigid \(\iff \) \(\pi|_{\mathcal{S}} \) has u.e.p. \(\forall \pi \) *-repn.
Definition

\(\pi \) \(\ast \)-repn. of \(\mathcal{A} \) is a **boundary representation for \(S \)** if
\(\pi \) is irreducible and \(\pi|_S \) has u.e.p.
Definition

\(\pi \) \(\ast \)-repn. of \(A \) is a boundary representation for \(S \) if \(\pi \) is irreducible and \(\pi|_S \) has u.e.p.

Conjecture (Arveson)

\(S \) is hyperrigid \(\iff \) every irreducible \(\ast \)-repn. is a boundary repn.
Definition

π $*$-repn. of \mathcal{A} is a boundary representation for S if

π is irreducible and $\pi|_S$ has u.e.p.

Conjecture (Arveson)

S is hyperrigid \iff every irreducible $*$-repn. is a boundary repn.

Remark

For $1 \in S = S^* \subset C(\mathcal{X})$, this asks if $\partial S = \mathcal{X}$,

is S is a strong Korovkin set in $C(\partial S)$?
Definition

Dilation order: $\mu \prec_d \nu \in M_+(K)$ if there exist \ast-repns.

\[
\pi : C(K) \to B(H), \quad \xi \in H, \quad \langle \pi(f)\xi, \xi \rangle = \int f \, d\mu \quad \forall f \in C(K)
\]

\[
\sigma : C(K) \to B(K), \quad \eta \in K, \quad \langle \pi(f)\eta, \eta \rangle = \int f \, d\nu \quad \forall f \in C(K)
\]

and isometry $J : H \to K$ s.t. $J\xi = \eta$ and $J^*\sigma(f)J = \pi(f) \quad \forall f \in S.$
Definition

Dilation order: \(\mu \prec_d \nu \in M_+(K) \) if there exist \(*\)-repns.

\[\pi : C(K) \to B(H), \quad \xi \in \mathcal{H}, \quad \langle \pi(f)\xi, \xi \rangle = \int f \, d\mu \quad \forall f \in C(K) \]

\[\sigma : C(K) \to B(K), \quad \eta \in K, \quad \langle \pi(f)\eta, \eta \rangle = \int f \, d\nu \quad \forall f \in C(K) \]

and isometry \(J : \mathcal{H} \to \mathcal{K} \) s.t. \(J\xi = \eta \) and \(J^*\sigma(f)J = \pi(f) \forall f \in S \).

Theorem 1

Dilation order is the same as Choquet order.
Definition

Dilation order: \(\mu \prec_d \nu \in M_+(K) \) if there exist *-repns.

\[\pi : C(K) \to \mathcal{B}(\mathcal{H}), \quad \xi \in \mathcal{H}, \quad \langle \pi(f)\xi, \xi \rangle = \int f \, d\mu \quad \forall f \in C(K) \]

\[\sigma : C(K) \to \mathcal{B}(\mathcal{K}), \quad \eta \in \mathcal{K}, \quad \langle \pi(f)\eta, \eta \rangle = \int f \, d\nu \quad \forall f \in C(K) \]

and isometry \(J : \mathcal{H} \to \mathcal{K} \) s.t. \(J\xi = \eta \) and \(J^*\sigma(f)J = \pi(f) \quad \forall f \in S \).

Theorem 1

Dilation order is the same as Choquet order.

Corollary

\[\mu \prec_c \nu \iff \exists \Phi : C(K) \to L^\infty(\mu) \text{ positive s.t.} \]

1. \(\Phi(f) = f \) for all \(f \in A(K) \), and
2. \(\int \Phi(f) \, d\mu = \int f \, d\nu \) for all \(f \in C(K) \).
\[\pi_\mu : C(K) \to B(L^2(\mu)) \] by \(\pi(f) = M_f \).

Theorem 2

\[\pi_\mu \text{ has u.e.p. } \iff \mu \text{ is maximal in } \prec_d. \]
\(\pi_{\mu} : C(K) \to B(L^2(\mu)) \) by \(\pi(f) = M_f \).

Theorem 2

\(\pi_{\mu} \) has u.e.p. \(\iff \) \(\mu \) is maximal in \(\prec_d \).

Corollary (Hyperrigidity for function systems)

If \(\partial S \) *is closed, then* \(S \) *is hyperrigid in* \(C(\partial S) \).*
\(\pi_\mu : C(K) \to B(L^2(\mu)) \) by \(\pi(f) = M_f \).

Theorem 2

\(\pi_\mu \) has u.e.p. \(\iff \mu \) is maximal in \(\prec_d \).

Corollary (Hyperrigidity for function systems)

If \(\partial S \) is closed, then \(S \) is hyperrigid in \(C(\partial S) \).

Corollary

If \(X \) is metrizable, \(1 = S \subset C(X) \), \(\pi : C(X) \to B(H) \) \(*\)-repn. Then \(\pi \) has u.e.p. \(\iff \pi \) is supported on \(\partial S \).
Application to approximation theory

The following does not require metrizability, so it generalizes Šaškin’s Theorem even in the classical situation.

Corollary

1 ∈ S = \overline{\text{span}}\{F \cup F^*\} \subset C(X).

TFAE

1. ∂S = X
2. F is a Korovkin set.
3. F is a strong Korovkin set.
Application to classical Choquet theory

Theorem (Cartier)

If K is metrizable, $\mu \prec_c \nu$, then $\exists \lambda : K \rightarrow M_{+,1}(K)$ s.t.

1. $x \rightarrow \lambda_x(f)$ is Borel $\forall f \in C(K)$,
2. $\lambda_x(f) = f(x)$ $\forall f \in A(K)$, and
3. $\int f \, d\nu = \int \lambda_x(f) \, d\mu$ $\forall f \in C(K)$.
Application to classical Choquet theory

Theorem (Cartier)

If K is metrizable, $\mu \prec_c \nu$, then $\exists \lambda : K \to M_{+1}(K)$ s.t.

1. $x \to \lambda_x(f)$ is Borel $\forall f \in C(K)$,
2. $\lambda_x(f) = f(x)$ $\forall f \in A(K)$, and
3. $\int f \, d\nu = \int \lambda_x(f) \, d\mu$ $\forall f \in C(K)$.

Theorem 3

If K is compact convex, $\mu \prec_c \nu$, then $\exists \lambda : K \to M_{+1}(K)$ s.t.

1. $x \to \lambda_x(f)$ is Borel $\forall f \in C(K)$,
2. $\lambda_x(f) = f(x) \ a.e.(\mu)$ $\forall f \in A(K)$, and
3. $\int f \, d\nu = \int \lambda_x(f) \, d\mu$ $\forall f \in C(K)$.
Thank you.
The end.