ALMOST COMMENSURABILITY OF 3-DIMENSIONAL ANOSOV FLOWS

PIERRE DEHORNOY

Abstract. Two flows are almost commensurable if, up to removing finitely many periodic orbits and taking finite coverings, they are topologically equivalent. We prove that all suspensions of automorphisms of the 2-dimensional torus and all geodesic flows on unit tangent bundles to hyperbolic 2-orbifolds are pairwise almost commensurable.

1. Topological equivalence for Anosov flows. A general problem in dynamical systems is to classify flows up to topological equivalence, that is, up to applying an homeomorphism of the underlying space that maps orbits onto orbits.

Of special interest are the Anosov flows which are, in some sense, the simplest chaotic systems [1, 8]. By definition, a flow is of Anosov type if there exists an invariant splitting of the tangent bundle of the underlying manifold into a direct sum of three bundles: the bundle generated by the direction of the flow, a contracting bundle along which the flow is uniformly contracting, and an expanding bundle along which the flow is uniformly expanding. In the 3-dimensional case, all three bundles have to be 1-dimensional.

There are two main examples of 3-dimensional Anosov flows, namely the vertical flow on the suspension of a hyperbolic automorphism of the torus (that is, the flow \(\frac{\partial}{\partial t} \) on \(M := T^2 \times [0,1] / (x,1) \sim (Ax,0) \) where \(A \) is an element of \(\text{SL}_2(\mathbb{Z}) \) satisfying \(\text{tr}(A) > 2 \)) and the geodesic flow on the unit tangent bundle to a hyperbolic 2-orbifold (that is, on \(T^1 \mathbb{H}^2 \) for \(G \) a Fuchsian group, the flow whose orbits are of the form \((\gamma(t), \dot{\gamma}(t)) \) for \(\gamma \) a geodesic). For these flows, the question of topological equivalence can be answered completely: a suspension and a geodesic flow are never equivalent, the suspensions of two automorphisms are equivalent if and only if the associated matrices are conjugated in \(\text{SL}_2(\mathbb{Z}) \), and two geodesic flows are equivalent if and only if the underlying 2-orbifolds are of the same type (the latter statement is not obvious, it follows from the structural stability of the geodesic flow in negative curvature and from the convexity of the space of negatively curved metrics, see Ghys’ article [6]).

2. Almost equivalence and Birkhoff sections. Suspensions and geodesic flows can be connected if one considers a weaker notion: two flows \(\phi, \phi' \) on two manifolds \(M, M' \) are almost equivalent if there exists a finite collection \(\Gamma \) (resp. \(\Gamma' \)) of periodic orbits of \(\phi \) (resp. \(\phi' \)) such that \(\phi|_{M,\Gamma} \) is topologically equivalent to \(\phi'|_{M',\Gamma'} \).

G. Birkhoff showed [2] that the geodesic flow on a hyperbolic genus \(g \) surface admits a Birkhoff section, that is, a surface whose boundary is the union of finitely many periodic orbits and whose interior is transverse to the flow and intersects every orbit in bounded time. Then D. Fried observed [5] that Birkhoff’s surface is of genus 1 and that the first return map is of Anosov type, which implies that the geodesic flow is almost equivalent to the suspension of some automorphism of
the torus. The latter was determined by É. Ghys [7] and N. Hashiguchi [9]: it corresponds to the matrix \(\begin{pmatrix} g & g+1 \\ g-1 & g \end{pmatrix}^2 \).

In the same direction, Fried also showed [5] that every transitive Anosov flow admits a Birkhoff section (with no control of the genus in general) and that the associated first return map is of pseudo-Anosov type. This implies that every transitive Anosov flow is almost equivalent to the suspension of some pseudo-Anosov homeomorphism. These observations led Fried to ask [5]

Question 1 (Fried). Does every transitive Anosov flow admit a genus one Birkhoff section?

A positive answer would imply that every transitive Anosov flow is almost equivalent to the suspension of some automorphism of the torus. Some progress about this question in the case of geodesic flows was reported in [3], but no general answer is known in general.

3. **Commensurability.** Topological equivalence can be weakened in another direction: two flows are called *commensurable* if they admit finite coverings by topologically equivalent flows.

Since every hyperbolic 2-orbifold is finitely covered by some hyperbolic surface and since any two hyperbolic surfaces are covered by surfaces of the same genus, the geodesic flows on the unit tangent bundles of any two hyperbolic 2-orbifolds are commensurable.

For suspensions of automorphisms of the torus, there is more than one commensurability class:

Proposition 1 (Sun-Wang-Wu, [10]). Two matrices \(A, B \) give rise to commensurable suspensions \(M_A, M_B \) if and only if there exist two positive integer \(i, j \) satisfying \(\text{tr}(A^i) = \text{tr}(B^j) \).

Proof. We only prove the “if” part, and refer to Sun-Wang-Wu for the “only if” part, as we do not need it for our main result. First, it is clear that, if \(B = A^k \) holds, then \(M_B \) is a \(k \)-fold cover of \(M_A \), so that we can restrict our attention to matrices with the same trace.

Now, suppose \(\text{tr}(A) = \text{tr}(B) \). Then, the matrices \(A \) and \(B \) are conjugated in \(\text{SL}_2(\mathbb{Q}) \), so there exists a matrix \(P \) with integer coefficients (but with determinant not necessarily equal to \(\pm 1 \)) satisfying \(B = P^{-1}AP \). Let \(\Lambda_P \) be the sublattice of \(\mathbb{Z}^2 \) generated by \(P \). Then the action of \(A \) on \(\mathbb{R}^2/\mathbb{Z}^2 \) induces an action on \(\mathbb{R}^2/\Lambda_P \) which, in the basis spanned by \(P \), corresponds to the action of \(B \). Therefore the covering \(\mathbb{R}^2/\Lambda_P \to \mathbb{R}^2/\mathbb{Z}^2 \) induces a covering \(M_B \to M_A \) of index \(|\det(P)| \). Moreover, the covering preserves the vertical direction. \(\square \)

4. **Almost commensurability.** Merging the two previous weakenings of topological equivalence, one obtain a new one: two flows \(\phi, \phi' \) on two manifolds \(M, M' \) will be called *almost commensurable* if there exists a finite collection \(\Gamma \) (resp. \(\Gamma' \)) of periodic orbits of \(\phi \) (resp. \(\phi' \)) such that \(\phi|_{M\setminus\Gamma} \) is commensurable to \(\phi'|_{M'\setminus\Gamma'} \). Almost commensurability is an equivalence relation. The commensurability of geodesic flows and the construction of Birkhoff and Fried led Ghys to propose

Conjecture 1 (Ghys). Any two transitive Anosov flows are almost commensurable.

Our main observation here is that the results of [3] can be used to provide a proof in the case of geodesic flows and suspensions of the torus:

Theorem 1. All suspensions of automorphisms of the 2-torus and all geodesic flows on unit tangent bundles to hyperbolic 2-orbifolds are pairwise almost commensurable.

Proof. Let \(G_{2,3,t+4} \) be the index 2 subgroup of the group generated by the symmetries along the edges of a hyperbolic triangle with angles \(\pi/2, \pi/3, \pi/(t+4) \). Then \(\mathbb{H}^2/G_{2,3,t+4} \) is a hyperbolic orbifold that is a sphere with three conic points of order 2, 3, and \(t+4 \) respectively. Proposition C
of [3] states that the geodesic flow on $T^1\mathbb{H}^2/G_{2,3,t+4}$ admits a Birkhoff section of genus one with one boundary component (depicted on Figure 1), such that the first return map is conjugated to $\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$. By Fried’s observation, this implies that the restriction of the geodesic flow to the complement of the boundary of the Birkhoff section is topologically equivalent to the vertical flow on the complement of one periodic orbit on $M\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. By definition, this means that the geodesic flow on $T^1\mathbb{H}^2/G_{2,3,t+4}$ is almost equivalent to the vertical flow on $M\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$.

Now, Proposition 1 implies that every suspension of the torus is commensurable to the suspension of $\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$ for some t. Since any two geodesic flows are commensurable, the result follows. □

Owing to the previous result, a proof of Ghys’ conjecture would now follow from a positive answer to Fried’s question. Nevertheless, this question seems hard for Anosov flows that are not of the type considered here. It looks similar to the following open question in contact geometry: “Is every tight contact structure supported by a genus one open book?”, for which very little is known (see Etnyre and Ozbagci [4]).

References

[1] D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Mathematics 90 (1967).
[2] G. Birkhoff, Dynamical systems with two degrees of freedom, Trans. of the Amer. Math. Soc. 18 (1917), 199–300.
[3] P. Dehornoy, Genus one Birkhoff sections for geodesic flows, preprint, arXiv:1208.6405.
[4] J. Etnyre, B. Ozbagci, Invariants of contact structures from open books, Trans. Amer. Math. Soc. 260 (2008), 3133–3151.
[5] D. Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983), 299–303.
[6] É. Ghys, Flots d’Anosov sur les 3-variétés fibrées en cercles, Ergod. Th. & Dynam. Sys. 4 (1984), 67–80.
[7] É. Ghys, Sur l’invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier 37 (1987), 59–76.
[8] J. Hadamard, Les surfaces à courbures opposées et leurs lignes géodésiques, J. Math. Pures Appl. 4 (1898), 27–74.
[9] N. Hashiguchi, On the Anosov diffeomorphisms corresponding to geodesic flow on negatively curved closed surfaces, J. Fac. Sci. Univ. Tokyo 37 (1990), 485–494.
[10] H. Sun, S. Wang, J. Wu, Self-mapping degrees of torus bundles and torus semi-bundles, *Osaka J. Math.* 47 (2010), 131–155.