SKEW-SYMMETRIC OPERATORS AND REFLEXIVITY

CHAFIQ BENHIDA*, KAMILA KLIŚ-GARLICKA**, AND MAREK PTAK**,***

Abstract. In contrast to the subspaces of all C-symmetric operators, we show that the subspaces of all skew-C symmetric operators are reflexive and even hyperreflexive with the constant $\kappa(C^*) \leq 3$.

1. Introduction and Preliminaries

Let \mathcal{H} be a complex Hilbert space with an inner product $\langle \cdot, \cdot \rangle$ and let $B(\mathcal{H})$ be the Banach algebra of all bounded linear operators on \mathcal{H}.

Recall that the space of trace class operators τ_c is predual to $B(\mathcal{H})$ with the dual action $\langle T, f \rangle = \text{tr}(Tf)$, for $T \in B(\mathcal{H})$ and $f \in \tau_c$. The trace norm in τ_c will be denoted by $\| \cdot \|_1$. By F_k we denote the set of all operators of rank at most k. Often rank-one operators are written as $x \otimes y$, for $x, y \in \mathcal{H}$, and $(x \otimes y)z = \langle z, y \rangle x$ for $z \in \mathcal{H}$. Moreover, $\text{tr}(T(x \otimes y)) = \langle Tx, y \rangle$. Let $S \subset B(\mathcal{H})$ be a closed subspace. Denote by S_\perp the preanihilator of S, i.e., $S_\perp = \{ t \in \tau_c : \text{tr}(St) = 0 \text{ for all } S \in S \}$. A weak* closed subspace S is k-reflexive iff rank-k operators are linearly dense in S_\perp, i.e., $S_\perp = [S_\perp \cap F_k]$ (see [5]). k-hyperreflexivity introduced in [1, 6] is a stronger property than k-reflexivity, i.e., each k-hyperreflexive subspace is k-reflexive. A subspace S is called k-hyperreflexive if there is a constant $c > 0$ such that

$$\text{dist}(T, S) \leq c \cdot \sup \{ \| \text{tr}(Tt) \| : t \in F_k \cap S_\perp, \| t \|_1 \leq 1 \},$$

for all $T \in B(\mathcal{H})$. Note that $\text{dist}(T, S)$ is the infinum distance. The supremum on the right hand side of (1) will be denoted by $\alpha_k(T, S)$. The smallest constant for which inequality (1) is satisfied is called the k-hyperreflexivity constant and is denoted $\kappa_k(S)$. If $k = 1$, the letter k will be omitted.

Recall that C is a conjugation on \mathcal{H} if $C : \mathcal{H} \rightarrow \mathcal{H}$ is an antilinear, isometric involution, i.e., $(Cx, Cy) = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$ and $C^2 = I$. An operator T in $B(\mathcal{H})$ is said to be C–symmetric if $CTC = T^*$. C–symmetric operators have been intensively studied by many authors in the last decade (see [2, 3, 4,

2010 Mathematics Subject Classification. Primary 47A15, Secondary 47L05.

Key words and phrases. skew–C symmetry, C–symmetry, reflexivity, hyperreflexivity.

The first named author was partially supported by Labex CEMPI (ANR-11-LABX-0007-01). The research of the second and the third author was financed by the Ministry of Science and Higher Education of the Republic of Poland.
It is a wide class of operators including Jordan blocks, truncated Toeplitz operators and Hankel operators.

Recently, in [5], the authors considered the problem of reflexivity and hyperreflexivity of the subspace $\mathcal{C} = \{ T \in B(\mathcal{H}) : CTC = T^* \}$. They have shown that \mathcal{C} is transitive and 2-hyperreflexive. Recall that $T \in B(\mathcal{H})$ is a skew-C symmetric iff $CTC = -T^*$. In this paper, $\mathcal{C}^s = \{ T \in B(\mathcal{H}) : CTC = -T^* \}$ – the subspace of all skew-C symmetric operators will be investigated from the reflexivity and hyperreflexivity point of view. It follows directly from the definition that \mathcal{C} and \mathcal{C}^s are weak* closed.

We emphasize that the notion of skew symmetry is linked to many problems in physics and that any operator $T \in B(\mathcal{H})$ can be written as a sum of a C–symmetric operator and a skew–C symmetric operator. Indeed, $T = A + B$, where $A = \frac{1}{2}(T + CT^*C)$ and $B = \frac{1}{2}(T - CT^*C)$.

The aim of this paper is to show that \mathcal{C}^s is reflexive and even hyperreflexive.

2. Preanihilator

Easy calculations show the following.

Lemma 2.1. Let C be a conjugation in a complex Hilbert space \mathcal{H} and $h, g \in \mathcal{H}$. Then

1. $C(h \otimes g)C = Ch \otimes Cg$,
2. $h \otimes g - Cg \otimes Ch \in \mathcal{C}^s$.

In [2, Lemma 2] it was shown that

$$\mathcal{C} \cap F_1 = \{ \alpha \cdot h \otimes Ch : h \in \mathcal{H}, \alpha \in \mathbb{C} \}.$$

We will show that it is also a description of the rank-one operators in the pre-anihilator of \mathcal{C}^s.

Proposition 2.2. Let C be a conjugation in a complex Hilbert space \mathcal{H}. Then

$$\mathcal{C}_1^s \cap F_1 = \mathcal{C} \cap F_1 = \{ \alpha \cdot h \otimes Ch : h \in \mathcal{H}, \alpha \in \mathbb{C} \}.$$

Proof. To prove ”\supset” let us take $T \in \mathcal{C}^s$ and $h \otimes Ch \in \mathcal{C} \cap F_1$. Then

$$\langle T, h \otimes Ch \rangle = \langle Th, Ch \rangle = \langle h, CTh \rangle = \langle h, -T^*Ch \rangle = -\langle Th, Ch \rangle = -\langle T, h \otimes Ch \rangle.$$

Hence $\langle T, h \otimes Ch \rangle = 0$ and $h \otimes Ch \in \mathcal{C}_1^s \cap F_1$.

For the converse inclusion let us take a rank-one operator $h \otimes Cg \in \mathcal{C}_1^s$. Since $Cg \otimes h - Ch \otimes g \in \mathcal{C}^s$, by Lemma 2.1 we have

$$0 = \langle Cg \otimes h - Ch \otimes g, h \otimes Cg \rangle = \langle (Cg \otimes h)h, Cg \rangle - \langle (Ch \otimes g)h, Cg \rangle = \|h\|^2 \cdot \|Cg\|^2 - \langle h, g \rangle \langle Ch, Cg \rangle = \|h\|^2 \cdot \|g\|^2 - |\langle h, g \rangle|^2.$$
Hence \(|\langle h, g \rangle| = \|h\| \|g\|\), i.e., there is equality in Cauchy-Schwartz inequality. Thus \(h, g\) are linearly dependent and the proof is finished. \(\square\)

Lemma 2.3. Let \(C\) be a conjugation in a complex Hilbert space \(\mathcal{H}\). Then
\[
\mathcal{C}_1^* \cap \mathcal{F}_2 \supset \{h \otimes g + Cg \otimes C^*: h, g \in \mathcal{H}\}.
\]

Example 2.4. Note that for different conjugations we obtain different subspaces. Let \(C_1(x_1, x_2, x_3) = (\bar{x}_3, \bar{x}_2, \bar{x}_1)\) be a conjugation on \(\mathbb{C}^3\). Then
\[
C_1^* = \left\{ \begin{pmatrix} a & b & 0 \\ c & 0 & -b \\ 0 & -c & -a \end{pmatrix} : a, b, c \in \mathbb{C} \right\}
\]
and
\[
C_1 = \left\{ \begin{pmatrix} a & b * \\ c & * b \\ * c & a \end{pmatrix} : a, b, c \in \mathbb{C} \right\}.
\]

Rank-one operators in \(C_1\) and in \((C_1^*)_\perp\) are of the form \(\alpha(x_1, x_2, x_3) \otimes (\bar{x}_3, \bar{x}_2, \bar{x}_1)\) for \(\alpha \in \mathbb{C}\).

If we now consider another conjugation \(C_2(x_1, x_2, x_3) = (\bar{x}_2, \bar{x}_1, \bar{x}_3)\) on \(\mathbb{C}^3\), then
\[
C_2^* = \left\{ \begin{pmatrix} a & 0 & b \\ 0 & -a & c \\ -c & -b & 0 \end{pmatrix} : a, b, c \in \mathbb{C} \right\},
\]
and
\[
C_2 = \left\{ \begin{pmatrix} a & * & b \\ * & a & c \\ c & b & * \end{pmatrix} : a, b, c \in \mathbb{C} \right\}.
\]

Similarly, rank-one operators in \(C_2\) and in \((C_2^*)_\perp\) are of the form \(\alpha(x_1, x_2, x_3) \otimes (\bar{x}_2, \bar{x}_1, \bar{x}_3)\).

Example 2.5. Let \(C\) be a conjugation in \(\mathcal{H}\). Consider \(\tilde{C} = \begin{pmatrix} 0 & C \\ C & 0 \end{pmatrix}\) the conjugation in \(\mathcal{H} \oplus \mathcal{H}\) (see [7]). An operator \(T \in B(\mathcal{H} \oplus \mathcal{H})\) is skew-\(\tilde{C}\) symmetric, if and only if \(T = \begin{pmatrix} A & B \\ D & -CA^*C \end{pmatrix}\), where \(A, B, D \in B(\mathcal{H})\) and \(B, D\) are skew-\(C\) symmetric. Moreover, rank-one operators in \(\tilde{C}_1^*\) are of the form \(\alpha(f \oplus g) \otimes (Cg \oplus Cf)\) for \(f, g \in \mathcal{H}\) and \(\alpha \in \mathbb{C}\).

Example 2.6. Let us consider the classical Hardy space \(H^2\) and let \(\alpha\) be a nonconstant inner function. Define \(K_{\alpha}^2 = H^2 \oplus \alpha H^2\) and \(C_\alpha h(z) = \alpha \overline{h(z)}\). Then \(C_{\alpha}\) is a conjugation on \(K_{\alpha}^2\). By \(S_\alpha\) and \(S_{\alpha}^*\) denote the compressions of the unilateral shift \(S\) and the backward shift \(S^*\) to \(K_{\alpha}^2\), respectively. Recall after [9] that the kernel functions in \(K_{\alpha}^2\) for \(\lambda \in \mathbb{C}\) are projections of appropriate kernel
functions k_λ onto K_2^α, namely $k_\lambda^\alpha = k_\lambda - \alpha(\lambda)\alpha k_\lambda$. Denote by $k_\lambda^{\alpha} = C_\alpha k_\lambda^\alpha$. Since S_α and S_α^* are C_α–symmetric (see [2]), for a skew–C_α symmetric operator $A \in B(K_2^\alpha)$ we have

$$\langle AS_\alpha^n k_\lambda^\alpha, (S_\alpha^n)^m k_\lambda^{\alpha} \rangle = \langle C_\alpha (S_\alpha^n)^m k_\lambda^\alpha, C_\alpha AS_\alpha^m k_\lambda^\alpha \rangle = -\langle S_\alpha^m C_\alpha k_\lambda^{\alpha}, A^* C_\alpha S_\alpha^n k_\lambda^\alpha \rangle = -(AS_\alpha^n k_\lambda^\alpha, (S_\alpha^n)^m k_\lambda^{\alpha}),$$

(2)

for all $n, m \in \mathbb{N}$. Note that if $n = m$, then

$$\langle AS_\alpha^n k_\lambda^\alpha, (S_\alpha^n)^n k_\lambda^{\alpha} \rangle = 0.$$

(3)

In particular, we may consider the special case $\alpha = z^k, k > 1$. Then the equality (3) implies that a skew–C_α symmetric operator $A \in B(K_2^\alpha)$ has the matrix representation in the canonical basis with 0 on the diagonal orthogonal to the main diagonal. Indeed, let $A \in B(K_2^\alpha)$ have the matrix $(a_{ij})_{i,j=0,...,k-1}$ with respect to the canonical basis. Note that $C_z f = z^{k-1} f$, $k_0 = 1$, $k^{k-1} = z^{k-1}$. Hence for $0 \leq n \leq k-1$ we have

$$0 = \langle AS_\alpha^1, (S_\alpha^n)^z^{k-1} \rangle = \langle A z^n, z^{k-n-1} \rangle = a_{n,k-n-1}.$$

Moreover, from the equality (2) we can obtain that

$$\langle A z^n, z^{k-m-1} \rangle = -\langle A z^m, z^{k-n-1} \rangle,$$

which implies that $a_{n,k-m-1} = -a_{m,k-n-1}$ for $0 \leq m, n \leq k-1$.

3. Reflexivity

The following theorem can be obtained as a corollary of Theorem [1]. However, we think that the proof presented here is also interesting.

Theorem 3.1. Let C be a conjugation in a complex Hilbert space \mathcal{H}. The subspace C^α of all skew–C symmetric operators on \mathcal{H} is reflexive.

Proof. By Proposition [2] it is necessary to show that if $(T, h \otimes Ch) = \langle Th, Ch \rangle = 0$ for any $h \in \mathcal{H}$, then $CTC = -T^\ast$.

Recall after [2] Lemma 1 that \mathcal{H} can be decomposed into its real and imaginary parts $\mathcal{H} = H_R + i H_I$. Recall also that we can write $h = h_R + i h_I \in \mathcal{H}$ with $h_R = \frac{1}{2}(I + C)h \in H_R$ and $h_I = \frac{1}{2i}(I - C)h \in H_I$. Then $Ch_R = h_R, Ch_I = h_I$ and $Ch = C(h_R + i h_I) = h_R - i h_I$.

Let $T \in B(\mathcal{H})$. The operator T can be represented as

$$\begin{bmatrix} W & X \\ Y & Z \end{bmatrix},$$

where $W: H_R \rightarrow H_R, Z: H_I \rightarrow H_I, X: H_I \rightarrow H_R, Y: H_R \rightarrow H_I$ and W, X, Y, Z are real linear. The condition $CTC = -T^\ast$ is equivalent to the following: $W = -W^\ast, Z = -Z^\ast, Y = X^\ast$.

On the other hand, the condition $\langle Th, Ch \rangle = 0$ for any $h = h_R + ih_I$ is equivalent to

$$\langle Wh_R, h_R \rangle + \langle Xh_I, h_R \rangle - \langle Yh_R, h_I \rangle - \langle Zh_I, h_I \rangle = 0$$

(4)

for any $h_R \in H_R, h_I \in H_I$. In particular, $\langle Wh_R, h_R \rangle = 0$ for any $h_R \in H_R$.

Let $h'_R, h''_R \in H_R$. Then $\langle Wh'_R, h'_R \rangle = 0$, $\langle Wh''_R, h''_R \rangle = 0$ and

$$0 = \langle W(h'_R + h''_R), h'_R + h''_R \rangle = \langle Wh'_R, h'_R \rangle + \langle Wh''_R, h''_R \rangle.$$

Hence

$$\langle Wh'_R, h''_R \rangle = \langle h'_R, -Wh''_R \rangle$$

and finally $W^* = -W$. Since, by (4), in particular $\langle Zh_I, h_I \rangle = 0$ for any $h_I \in H_I$ we can also get $Z^* = -Z$.

Because $\langle Wh_R, h_R \rangle = 0 = \langle Zh_I, h_I \rangle$ for any $h_R \in H_R, h_I \in H_I$, hence by (4) we get

$$\langle Xh_I, h_R \rangle - \langle Yh_R, h_I \rangle = 0.$$

Thus $Y = X^*$ and the proof is finished. \qed

Recall that a single operator $T \in B(H)$ is called reflexive if the weakly closed algebra generated by T and the identity is reflexive. In [7] authors characterized normal skew symmetric operators and by [10] we know that every normal operator is reflexive. Hence one may wonder, if all skew–C symmetric operators are reflexive. The following simple example shows that it is not true.

Example 3.2. Consider the space \mathbb{C}^2 and a conjugation $C(x, y) = (\bar{x}, \bar{y})$. Note that operator $T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is skew-C symmetric. The weakly closed algebra $\mathcal{A}(T)$ generated by T consists of operators of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Hence $\mathcal{A}(T)_\perp = \left\{ \begin{pmatrix} t & s \\ s & \bar{t} \end{pmatrix} : t, s \in \mathbb{C} \right\}$. It is easy to see, that $\mathcal{A}(T)_\perp \cap F_1 = \{0\}$, which implies that T is not reflexive.

4. Hyperreflexivity

Theorem 4.1. Let C be a conjugation in a complex Hilbert space \mathcal{H}. Then the subspace \mathcal{C}^* of all skew–C symmetric operators is hyperreflexive with the constant $\kappa(\mathcal{C}^*) \leq 3$ and 2-hyperreflexive with $\kappa_2(\mathcal{C}^*) = 1$.

Proof. Let $A \in B(\mathcal{H})$. Firstly, similarly as in the proof of Theorem 4.2 [5] it can be shown that $A - CA^*C \in \mathcal{C}^*$. It is also shown there that $(CAC)^* = CA^*C$.

Hence we have
\[
\|A - \frac{1}{2} (A - CA^* C)\| = \frac{1}{2} \|A + CA^* C\| \\
= \frac{1}{2} \|A^* + CAC\| = \frac{1}{2} \sup\{|\langle h, (A^* + CAC)g \rangle| : \|h\|, \|g\| \leq 1\} \\
= \frac{1}{2} \sup\{|\langle A, h \otimes g + Cg \otimes Ch \rangle| : \|h\|, \|g\| \leq 1\} \\
= \frac{1}{2} \sup\{|\langle A, h \otimes Cg + g \otimes Ch \rangle| : \|h\|, \|g\| \leq 1\} = \alpha_2(A, C^*) \\
= \frac{1}{2} \sup\{|\langle A, (h + g) \otimes C(h + g) - h \otimes Ch - g \otimes Cg \rangle| : \|h\|, \|g\| \leq 1\} \\
\leq \frac{1}{2} \sup\{|\langle A, h \otimes Ch \rangle| : \|h\| \leq 1\} + \frac{1}{2} \sup\{|\langle A, g \otimes Cg \rangle| : \|g\| \leq 1\} + \\
+ \frac{1}{2} \sup\{|\langle A, \frac{1}{2}(h + g) \otimes C(\frac{1}{2}(h + g)) \rangle| : \|h\|, \|g\| \leq 1\} \\
\leq 3 \alpha(A, C^*).
\]

We have used the characterization given in Proposition 2.2.

\[\square\]

References

[1] W. T. Arveson: Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208–233.
[2] S. R. Garcia and M. Putinar: Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285–1315.
[3] C. G. Li and S. Zhu: Skew symmetric weighted shifts, Banach J. Math. Anal. 9 no. 1 (2015), 253–272.
[4] A. I. Loginov and V. S. Shul’man: Hereditary and intermediate reflexivity of \(W^*\)-algebras, Izv. Akad. Nauk. SSSR, 39 (1975), 1260–1273; Math. USSR-Izv. 9 (1975), 1189–1201.
[5] D. Sarason: Algebraic properties of truncated Toeplitz operators, Operators and Matrices 9 no. 1 (2015), 225–232.
[6] C. G. Li and S. Zhu: Skew symmetric normal operators, Proc. Amer. Math. Soc. 141 no. 8 (2013), 2755–2762.
[7] A. I. Loginov and V. S. Shul’man: Hereditary and intermediate reflexivity of \(W^*\)-algebras, Izv. Akad. Nauk. SSSR, 39 (1975), 1260–1273; Math. USSR-Izv. 9 (1975), 1189–1201.
[8] D. Sarason: Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1 no. 4 (2007), 491–520.
[9] D. Sarason: Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 no. 3 (1966), 511–517.
[10] D. Sarason: Approximate unitary equivalence to skew symmetric operators, Complex Anal. Oper. Theory 8 no. 7 (2014), 1565–1580.

* Universite Lille 1
Laboratoire Paul Painlevé
59655 Villeneuve d’Ascq
France
E-mail address: chafiq.benhida@math.univ-lille1.fr
Department of Applied Mathematics
University of Agriculture
Balicka 253c
30-198 Krakow
Poland
E-mail address: rmklis@cyf-kr.edu.pl

Institut of Mathematics
Pedagogical University
ul. Podchorążych 2
30-084 Kraków
Poland
E-mail address: rmptak@cyf-kr.edu.pl