Inference with causal independence in the CPSC network†

Nevin Lianwen Zhang

Technical Report HKUST-CS95-06
February 22, 1995

†Department of Computer Science
The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

†UAI’95 submission.
Abstract

This paper reports experiments with the causal independence inference algorithm proposed by Zhang and Poole (1994b) on the CPSC network created by Pradhan et al (1994). It is found that the algorithm is able to answer 420 of the 422 possible zero-observation queries, 94 of 100 randomly generated five-observation queries, 87 of 100 randomly generated ten-observation queries, and 69 of 100 randomly generated twenty-observation queries.
1 Introduction

The CPSC network is a multilevel, multivalued medical Bayesian network (BN). It was created by Pradhan et al (1994) based on the Computer-based Patient Case Simulation system (CPSC-PM) developed by Parker and Miller.

The CPSC network is one of the largest BNs in use at the present time. To the best of my knowledge, none of the existing implementations of BN are able to make inference with the network.

The CPSC network contains abundant causal independencies. This makes it a good test case for the inference algorithm proposed by Zhang and Poole (1994b), the theme of which is to exploit causal independencies for efficiency gains. Experiments have been performed. It is found that the algorithm is able to answer 420 of the 422 possible zero-observation queries, 94 of 100 randomly generated five-observation queries, 87 of 100 randomly generated ten-observation queries, and 69 of 100 randomly generated twenty-observation queries. This paper gives a concise review of the algorithm and reports the experiment results.

2 Causal independence

Causal independence refers to the situation where several causes (or variables) c_1, c_2, \ldots, c_m contribute independently to an effect (or variable) e. The contribution ξ_i by c_i probabilistically depends on c_i itself and is independent of all other causes given c_i. The total contribution that e receives is an combina-
tion \(\varepsilon = \xi_1 \times \xi_2 \times \ldots \times \xi_m \) of the individual contributions, where \(\times \) is a certain associative and commutative binary operator. When it is the case, we call the variable \(\varepsilon \) a convergent variable since it is where independent contributions from different sources are collected and combined. The operator \(\times \) is called a base combination operator of \(\varepsilon \).

The noisy-OR gate (Good 1961, Pearl 1988) is an example of causal independence where all the variables are binary and the logic OR operator “\(\lor \)” is used to combine individual contributions. Pradhan et al. (1994) introduce a generalization of the noisy-OR gate model called the noisy-MAX gate and use it extensively in the CPSC network. The noisy-MAX gate is another example of causal independence where the possible values of \(\varepsilon \) are ordered and the base combination operator is the “MAX” operator induced by the ordering. Other examples of causal independence include noisy-AND gates and noisy-adders.

In a causal independence model, the conditional probability \(P(\varepsilon|c_1, c_2, \ldots, c_m) \) can be obtained from the conditional probabilities \(P(\varepsilon|c_i) \). To see this, let us first define a function \(f_i(\varepsilon, c_i) \) for each \(i \) as follows: \(f_i(\varepsilon=\alpha, c_i=\beta) = \delta_{\varepsilon, f_i} P(\xi_i=\alpha|c_i=\beta) \) for any value \(\alpha \) of \(\varepsilon \) and any value \(\beta \) of \(c_i \).

We also need to define an operator to combine the \(f_i \)'s. Let \(f(\varepsilon, A, B) \) and \(g(\varepsilon, A, C) \) be two functions, where \(A, B, \) and \(C \) are three lists of variables and \(B \) and \(C \) do not intersect. The combination \(f \otimes g \) of \(f \) and \(g \) as follows: for
any particular value α of e,

$$f \otimes_* g(e=\alpha, A, B, C) =_{df} \sum_{\alpha_1 \alpha_2 = \alpha} f(e=\alpha_1, A, B) \ g(e=\alpha_2, A, C). \quad (1)$$

We shall refer \otimes_* as the *induced combination operator* of e. It is important to notice that $*$ combines values of e, while \otimes_* combines functions of e. One can easily verify that the induced operator \otimes_* is also commutative and associative.

It can be shown that the conditional probability $P(e|c_1, c_2, \ldots, c_m)$ of the convergent variable e can be expressed as the combination of the f_i's, i.e.

$$P(e|c_1, \ldots, c_m) = f_1(e, c_1) \otimes_\cdot \ldots \otimes_\cdot f_m(e, c_m). \quad (2)$$

The right hand of the equation makes sense because \otimes_* is commutative and associative. Again, the base combination operator determines how contributions from different sources are combined, while the induced combination operator is the reflection of the base operator in terms of conditional probability.

It is interesting to notice the similarity between equation (2) and the following property of conditional independence: if a variable x is independent of another variable z given a third variable y, then there exist non-negative functions $f(x, y)$ and $g(y, z)$ such that

$$P(x, y, z) = f(x, y)g(y,z). \quad (3)$$
In equation (3) conditional independence allows us to factorize a joint probability into factors that involve less variables, while in equation (2) causal independence allows us to factorize a conditional probability into factors that involve less variables. The only difference lies in the way the factors are combined.

Conditional independence has been used to reduce inference complexity in Bayesian networks. The rest of this paper investigates how to use causal independence for the same purpose.

3 Heterogeneous factorization of joint probabilities

This section discusses factorization of joint probabilities and introduces the concept of heterogeneous factorization (HIF).

A fundamental assumption under the theory of probabilistic reasoning is that a joint probability is adequate for capturing experts’ knowledge and beliefs relevant to a reasoning task. Factorization and Bayesian networks come into play because joint probability is difficult, if not impossible, to directly assess, store, and reason with.

Let $P(x_1, x_2, \ldots, x_n)$ be a joint probability over variables x_1, x_2, \ldots, x_n. By the chain rule of probabilities, we have

$$P(x_1, x_2, \ldots, x_n)$$
\[P(x_1|x_1) \cdot P(x_2|x_1) \cdots P(x_n|x_1, \ldots, x_{n-1}). \]

(4)

For any \(i \), there might be a subset \(\pi_i \subseteq \{x_1, \ldots, x_{i-1}\} \) such that \(x_i \) is conditionally independent of all the other variables in \(\{x_1, \ldots, x_{i-1}\} \) given variables in \(\pi_i \), i.e. \(P(x_i|x_1, \ldots, x_{i-1}) = P(x_i|\pi_i) \). Equation (4) can hence be rewritten as

\[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\pi_i). \]

(5)

Equation (5) factorizes the joint probability \(P(x_1, x_2, \ldots, x_n) \) into a multiplication of factors \(P(x_i|\pi_i) \). While the joint probability involves all the \(n \) variables, each of the factors might involve only a small number of variables. This fact implies savings in assessing, storing, and reasoning with probabilities.

A **Bayesian network** is constructed from the factorization as follows: build a directed graph with nodes \(x_1, x_2, \ldots, x_n \) such that there is an arc from \(x_j \) to \(x_i \) if and only if \(x_j \in \pi_i \), and associate the conditional probability \(P(x_i|\pi_i) \) with the node \(x_i \). \(P(x_1, \ldots, x_n) \) is said to be the joint probability of the Bayesian network. Also nodes in \(\pi_i \) are called *parents* of \(x_i \). The term node will be use interchangeably with the term variable in the rest of the paper.

The factorization given by equation (5) is *homogeneous* in the sense that all the factors are combined in the same way, i.e. by multiplication.

Let \(x_{i1}, \ldots, x_{im_i} \) be the parents of \(x_i \). If \(x_i \) is a convergent variable, then
the conditional probability $P(x_i | \pi_i)$ can be further factorized into

$$P(x_i | \pi_i) = f_{i1}(x_i; x_{i1}) \otimes_i \ldots \otimes_i f_{imi}(x_i; x_{imi}), \quad (6)$$

where \otimes_i is the induced combination operator of x_i. The fact that \otimes_i might be other than multiplication leads to the concept of heterogeneous factorization of a joint probability. The word heterogeneous reflects the fact that different factors might be combined in different manners.

As an example, consider the Bayesian network in Figure 1. The network says that $P(a, b, c, e_1, e_2, e_3, y)$ can be factorized into a multiplication of $P(a)$, $P(b)$, $P(c)$, $P(e_1|a, b)$, $P(e_2|a, b, c)$, $P(e_3|e_1, e_2)$, and $P(y|e_3)$.

If the e_i’s are convergent variables, then the conditional probabilities of the e_i’s can be further factorized as follows:

$$P(e_1|a, b) = f_{11}(e_1, a) \otimes_1 f_{12}(e_1, b)$$
$$P(e_2|a, b, c) = f_{21}(e_2, a) \otimes_2 f_{22}(e_2, b) \otimes_2 f_{23}(e_2, c)$$
\[P(e_3|e_1, e_2) = f_{31}(e_3, e_1) \otimes_3 f_{32}(e_3, e_1) \]

where the factor \(f_{11}(e_1, a) \), for instance, captures the contribution of \(a \) to \(e_1 \), and where the \(\otimes_i \) is the induced combination operator of the \(e_i \).

The factorization of \(P(a, b, c, e_1, e_2, e_3, y) \) into the factors: \(P(a) \), \(P(b) \), \(P(c) \), \(P(y|e_3) \), \(f_{11}(e_1, a) \), \(f_{12}(e_1, b) \), \(f_{21}(e_2, a) \), \(f_{22}(e_2, b) \), \(f_{23}(e_2, c) \), \(f_{31}(e_3, e_1) \), and \(f_{32}(e_3, e_2) \) is called a heterogeneous factorization (HF). We shall call the \(f_{ij} \)'s heterogeneous factors since they might be combined with other factors by operators other than multiplication. In contrast, we shall say that the factors \(P(a) \), \(P(b) \), \(P(c) \), and \(P(y|e_3) \) are homogeneous.

4 Exploiting causal independencies in inference

The question is how to make use of causal independencies in inference. This section reviews the approach proposed by Zhang and Poole (1994b). Minor modifications are introduced.

Let us consider queries of the form \(P(X, Y=Y_0) \), where \(X \) is a list of interesting variables, \(Y \) is a list of observed variables, and \(Y_0 \) is the corresponding list of observed values. It suffices to only consider such queries because the posterior probability \(P(X|Y=Y_0) \) can be readily obtained from \(P(X, Y=Y_0) \) and \(P(Y=Y_0) \).
4.1 Irrelevance

There might be variables in a BN that are irrelevant to a query (Geiger et al 1988, Lauritzen et al 1990). The paper assumes that all the irrelevant variables have been pruned.

Portions of a factor might also be irrelevant to a query. More specifically, if a factor $f(y, Z)$ involves variable y and y is observed to be y_0, then the values $f(y \neq y_0, Z)$ of the factor are irrelevant. We assume irrelevant portions of all the factors have been pruned and treat the observed variables as special variables with only one possible value. Pruning irrelevant portions of factors is especially important when there is a large number of observations.

4.2 A difference between homogeneous and heterogeneous factorizations

One way to compute $P(X, Y=Y_0)$ is to sum out the variables outside X one by one. With a homogeneous factorization, summing out one variable z is easy. One can simply remove all the factors that involve z from the list of factors; combine them by multiplication; sum out z from the combination; and put the resulting factor onto the list of factors (Zhang and Poole 1994a). This is essentially what happens in the well known clique tree propagation algorithm (Lauritzen and Spiegelhalter 1988 and Jensen et al 1990).

Unlike in a homogeneous factorization, factors can not be combined in arbitrary order in a heterogeneous factorization. In our example, summing
out a requires combining \(f_{11}(e_1, a) \) and \(f_{21}(e_2, a) \). But by definition \(f_{11} \) needs to be combined with \(f_{12} \) before being combined with any other factors. Thus, we need more flexibility in the order by which heterogeneous factors can be combined.

Zhang and Poole (1994b) achieve such flexibility through a general combination operator, the concept of deputation, and a constraint on the order by which variables are summed out.

4.3 A general combination operator

Suppose \(e_1, \ldots, e_k \) are convergent variables with base combination operator \(*_1, \ldots, *_k\). Let \(f(e_1, \ldots, e_k, A, B) \) and \(g(e_1, \ldots, e_k, A, C) \) be two functions, where the \(A \) is a list of normal variables and \(B \) and \(C \) do not intersect (they can contain convergent as well as normal variables). Then, the *combination* \(f \otimes g \) of \(f \) and \(g \) is defined as follows: for any particular value \(\alpha_i \) of \(e_i \),

\[
f \otimes g(e_1=\alpha_1, \ldots, e_k=\alpha_k, A, B, C) = \sum_{a_{11} \alpha_1 \cap a_{12} = a_1} \cdots \sum_{a_{k1} \alpha_k \cap a_{k2} = a_2} f(e_1=\alpha_{11}, \ldots, e_k=\alpha_{k1}, A, B) g(e_1=\alpha_{12}, \ldots, e_k=\alpha_{k2}, A, C). \tag{7}
\]

A few notes are in order. First, fixing a list of convergent variables and their base combination operators, one can use the operator \(\otimes \) to combined two arbitrary functions. In the following, we shall work with a given BN, which has a fixed list of convergent variables. Consequently, we shall refer to \(\otimes \) as
the general combination operator. Second, when \(k = 1 \) equation (7) reduces to equation (1). Third, since the base combination operators are commutative and associative, the operator \(\otimes \) is also commutative and associative. Finally when \(k = 0 \), \(f \otimes g \) is simply the multiplication of \(f \) and \(g \).

4.4 Deputation

Let \(e \) be a convergent node in a BN. To depute \(e \) is to make a copy \(e' \) of \(e \), make the children of \(e \) to be children of \(e' \), make \(e' \) a child of \(e \), and set the conditional probability \(P(e'|e) \) to be as follows:

\[
P(e'|e) = \begin{cases}
1 & \text{if } e = e' \\
0 & \text{otherwise}
\end{cases}
\]

(8)

We shall call \(e' \) the deputy of \(e \). We shall also call \(P(e'|e) \) the deputing function and sometimes write it as \(I(e,e') \) since \(P(e'|e) \) ensures that \(e \) and \(e' \) be the same.

The BN in Figure 1 becomes the one in Figure 2 after the deputation of all the convergent variables. It is called the deputation of the BN in Figure 1.

In a BN, variables that are not convergent are called normal variables. Deputy variables are one kind of normal variables. The heterogeneous factorization of the deputation of a BN can be obtained from that of the BN itself by replacing all the appearances of the convergent variables in the homogeneous factors with their deputies and add the deputing functions to the list of
Figure 2: The BN in Figure 1 after the deputation of convergent variables.

homogeneous factors.

4.5 A constraint on elimination ordering

In the heterogeneous factorization of a deputation BN, a variable z can be summed out as follows: remove from the list of heterogeneous factors all the factors that involve z, combine them by the general combination operator resulting in, say, f; remove from the list of homogeneous factor all the factors that involve z, combine them by multiplication resulting in, say, g; combine f and g by multiplication; sum out z from the product; and put the resulting factor onto the list of heterogeneous factors.

An ordering by which variables outside X is summed out is usually referred to as an elimination ordering. To ensure correctness, a deputy variable needs be summed out after its corresponding convergent variable. The reasons are given in Zhang and Poole (1994b). Thus we define a legitimate elimination ordering
to be one where convergent variables always appear before their deputies.

The legitimacy constraint on elimination ordering can be enforced in two steps. First, replace the convergent variables in X with their deputies, resulting in a new list of variables X'. It is evident that $P(X', Y=Y_0)$ is the same as $P(X, Y=Y_0)$.

Second, find a legitimate ordering of variables outside X'. Such an ordering can be found by using, with minor adaptations, the maximum cardinality search heuristic (Tarjan and Yannakakis 1984) or the minimum deficiency heuristic (Bertelè and Brioschi 1972).

The first step is necessary, because otherwise we will not be able to sum out the deputies of the convergent variables in X due to the legitimacy constraint.

4.6 An algorithm

Given a legitimate elimination ordering ρ and the heterogeneous factorization of the deputation BN under discussion, $P(X', Y=Y_0)$ can be computed by using the ICI (Inference with Causal independence) algorithm given in the following.

Procedure ICI

1. **While** ρ is not empty,

 - Remove the first variable z from ρ.
 - Remove from the list of heterogeneous factors all the factors f_1, \ldots, f_k that involve z, and set
Let B be the set of all the variables that appear in f.

- Remove from the list of homogeneous factors all the factors g_1, \ldots, g_m that involve z, and set

$$g = \text{def } \prod_{j=1}^{m} g_j.$$

Let C be the set of all the variables that appear in g.

- **If** $k=0$, define a function h by

$$h(C - \{z\}) = \text{def } \sum_{z} g(C),$$

Put h onto the homogeneous factor list,

- **Else if** $m=0$, define a function h by

$$h(B - \{z\}) = \text{def } \sum_{z} f(B),$$

Put h onto the heterogeneous factor list,

- **Else** define a function h by

$$f = \text{def } \otimes_{i=1}^{k} f_i.$$
\[h(B \cup C - \{z\}) = \sum_{z} \prod \{B, C \} f(B) g(C), \]

Put \(h \) onto the heterogeneous factor list. \textbf{Endwhile}

2. Combine all the heterogeneous factors by \(\otimes \) resulting in, say, \(f \).

3. Combine all the homogeneous factors by multiplication resulting in, say, \(g \).

4. Multiply \(f \) and \(g \) and return the resulting factor.

Note that in the ICI algorithm, summing out a variable requires combining only the factors that involve the variable. This is why ICI lead to efficiency gains when causal independencies are present. More specifically, if causal independencies were ignored, summing out one variable would require combining all the conditional probabilities that involve the variable. With ICI, we combine only all the factors that involve the variable. There are efficiency gains because the factors might contain less variables than the conditional probabilities.

In Figure 1, for instance, summing out \(a \) would require combining \(P(e_1|a, b) \) and \(P(e_2|a, b, c) \) when causal independencies were ignored. Five variables participate in the process. By using ICI, on the other hand, we need to combine only \(f_{11}(e_1, a) \) and \(f_{21}(e_2, a) \). There are only three variables involved in the
5 Experiments

Experiments have been performed on the CPSC network (the version released in August 1994) to answer the following two questions: How much efficiency gains one can expect by making use of causal independencies? How effective the ICI algorithm is in answering queried posed to the CPSC network?

5.1 Efficiency gains due to causal independence

To answer the first question, we consider the task of computing the marginal probability for each variable in the CPSC network, and compare the computational costs incurred by the ICI algorithm and those incurred by clique tree propagation.

The size of a factor is defined to be the multiplication of the numbers of possible values of all the variables in the factor. A factor containing three binary variables, for instance, has a size of 8.

When computing the marginal probability of a variable, many factors will be created. The maximum factor size is said to the cost of the computing the marginal probability of the variable, or simply the cost of the variable. If the inference algorithm used is ICI, we call it the ICI cost of the variable. On the other hand, if the inference algorithm used is clique tree propagation we call it the CTP cost of the variable.
Table 1 shows the distribution of variables according to their ICI costs. The “cost”-columns show ICI costs, while the “CNV” columns show the numbers of variables with ICI costs no larger than the ICI costs in the same rows. CNV is a shorthand for Cumulative Number of Variables. Table 2 shows the distribution of variables according to their CTP costs. Those statistics were computed from elimination orderings generated by the maximum cardinality search heuristic.

Table 1: Distribution of variables according to their ICI costs

size	CNV	size	CNV	size	CNV	size	CNV
8	124	768	330	6144	392	196608	414
96	255	1536	383	12288	397	786432	417
192	285	1920	384	36864	400	1179648	418
384	301	2048	385	49152	401	3145728	420
512	318	3072	388	98304	412	12582912	422

Table 2: Distribution of variables according to their CTP costs

size	CNV	size	CNV	size	CNV	size	CNV
8	123	256	202	1179648	370	268435456	412
24	156	576	210	9437184	387	805306368	417
32	158	1024	211	12582912	390	1073741824	418
64	187	49152	227	67108864	407	1610612736	422
128	200	786432	270	100663296	410		

We see that the CTP costs of the variables are much larger than their ICI
costs. For example, there are 194 variables with ICI costs in the range (8, 512],
while there are only 87 variables whose CTP costs are in the range (8, 576].
There are 293 variables with ICI costs in the range (8, 786432], while there are
only 144 variables whose CTP costs are in the same range. The number of
variables with ICI costs no larger than 8 is roughly the same as the number of
variables with CTP costs in the same range. Those variables are trivial in the
sense that the portions of CPSC relevant to them are inverted trees.

There are also 31 variables whose CTP costs are equal to or larger than the
maximum ICI cost 12582912. Experiments have shown that a factor size of
12582812 is too large to handle (for SPARCclassic with 16MG memory). Thus
with CTP, one would not be able to compute the marginal probabilities for
those 31 variables. On the other hand, with ICI we have been able to compute
the marginal probabilities for all the variables except 2.

5.2 Effectiveness of the ICI algorithm

To determine the effectiveness of the ICI algorithm, we first attempted to
compute the marginal probability for each variable in the CPSC network. We
were able to compute the marginal probabilities for all the variables except for
2. Table 3 shows the distribution of variables according the time it took to
compute their marginal probabilities. The “time”-columns display the CPU
time consumption in seconds, and the “CNV” columns show the number of
variables whose marginal probabilities were computed in a time less than or
equal to the corresponding CPU time. Those statistics were collected on a SPARCclassic workstation, which has a clock rate of 50mhz.

Table 3: Distribution of variables according to CPU time consumption

time	CNV	time	CNV	time	CNV	time	CNV
0.012000	118	0.253323	330	0.979294	396	6.043425	416
0.108662	255	0.398984	346	1.392611	398	8.365332	417
0.169993	285	0.477648	376	2.859219	406	19.503553	418
0.199325	301	0.536979	378	3.468194	409	20.816500	419
0.238324	318	0.699639	388	4.834473	411	22.956415	420

We see the for 396 out of the 422 variables, marginal probabilities can be computed in less than 1 second CPU time. The marginal probability of the variable *abdominal-pain-exacerbated-by-meals*, whose ICI cost being 3145728, took 23 second to compute.

The variables *vomiting* and *vomiting-vomitus-normal-gastric-contents* have ICI cost 12582912. The computer ran out of memory while computing the marginal probabilities of those two variables.

To predict the performance of the ICI algorithm on real life queries, we computed the ICI costs of 100 randomly generated five-observation queries, of 100 randomly generated ten-observation queries, and of 100 randomly generated twenty-observation queries. The distributions of the queries according to their ICI costs are displayed in Tables 4, 5, and 6. The ICI cost of a query is defined in the same way as the ICI cost of a variable. Those statistics were computed from elimination orderings generated by the minimum deficiency
heuristic, which is found to be slightly better than the maximum cardinality heuristic in our case.

Table 4: Distribution of five-observation queries according to their ICI costs

size	CNV	size	CNV	size	CNV	size	CNV
96	3	4096	37	98304	75	1572864	92
256	4	8192	49	131072	76	3145728	94
512	12	12288	58	196608	81	8388608	98
1024	19	18432	62	393216	83	16777216	99
3072	34	32768	67	786432	89	25165824	100

Table 5: Distribution of ten-observation queries according to their ICI costs

size	CNV	size	CNV	size	CNV	size	CNV
384	1	24576	38	786432	71	8388608	93
1536	12	65536	44	1048576	72	12582912	96
6144	27	98304	50	2097152	80	67108864	98
8192	29	131072	51	3145728	87	100663296	99
12288	35	393216	60	4718592	89	402653184	100
Table 6: Distribution of twenty-observation queries according to their ICI costs

size	CNV	size	CNV	size	CNV	size	CNV
1536	2	294912	33	3145728	69	67108864	90
6144	6	524288	49	4718592	71	201326592	94
12288	8	786432	57	8388608	75	402653184	97
98304	24	1048576	58	12582912	80	1073741824	98
196608	30	1572864	64	18874368	82	1610612736	100

Since we were able to compute the marginal probability of the variable abdominal-pain-exacerbated-by-meals in 23 CPU seconds and the ICI cost of the variable is 3145728, we predict that the ICI algorithm is able to answer 94% of the five-observation queries, 87% of the ten-observation queries, and 69% of the twenty-observation queries.

Finally, we would like to remark that our implementation of the ICI algorithm is very simple. For example, we did not do any zero compression. Program tracing revealed that in the arrays representing large factors, a major of the array cells are zero. Thus the performance statistics can be much improved with zero compression.

6 Related work

The concept of causal independence given in this paper is a special case of the more general definition given by Heckerman (1993) and Heckerman and Breese.
(1994). It is also a special case of the generalized noisy-OR model proposed by Srinivas (1993).

Kim and Pearl (1983) show how causal independence can be used to gain inference efficiency in BNs which are polytrees. Heckerman (1993) describes a way for making use of causal independence in general BN inference.

With the ICI algorithm, summing out one variable requires combining only those factors that contain the variable. The same is not true for Heckerman’s approach.

7 Conclusion

This paper has described the ICI algorithm for BN inference. The algorithm exploits causal independencies to gain computational efficiency. Experiments on the CPSC network show that it is able to answer 420 of the 422 possible zero-observation queries, 94 of 100 randomly generated five-observation queries, 87 of 100 randomly generated ten-observation queries, and 69 of 100 randomly generated twenty-observation queries.

Acknowledgement

I thank Maccolm Pradhan and Gregory Provan for sharing the CPSC network with me. The paper has benefited from a course project by Jin Gu and Wei Xiong. The term convergent variable was suggested by Glenn Shafer. Research was supported by HKUST grant DAG94/95.EG14.
References

[1] U. Bertelè and F. Brioschi (1972), *Nonserial dynamic programming*, Mathematics in Science and Engineering, Vol. 91, Academic Press.

[2] D. Geiger, T. Verma, and J. Pearl (1990), d-separation: From theorems to algorithms, in *Uncertainty in Artificial Intelligence* 5, pp. 139-148.

[3] I. Good (1961), A causal calculus (I). *British Journal of Philosophy of Science*, 11, pp. 305-318

[4] D. Heckerman (1993), Causal independence for knowledge acquisition and inference, in *Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence*, pp. 122-127.

[5] D. Heckerman and J. Breese (1994), A new look at causal independence, in *Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence*, pp. 286-292.

[6] F. V. Jensen, K. G. Olesen, and K. Anderson (1990), An algebra of Bayesian belief universes for knowledge-based systems, *Networks*, 20, pp. 637 - 659.

[7] J. Kim and J. Pearl (1983), A computational model for causal and diagnostic reasoning in inference engines, in *Proceedings of the Eighth International Joint Conference on Artificial Intelligence*, Karlsruhe, Germany, pp. 190-193.
[8] S. L. Lauritzen and D. J. Spiegehalter (1988), Local computations with probabilities on graphical structures and their applications to expert systems, *Journal of Royal Statistical Society B*, 50: 2, pp. 157 - 224.

[9] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. G. Leimer (1990), Independence Properties of Directed Markov Fields, *Networks*, 20, pp. 491-506.

[10] J. Pearl (1988), *Probabilistic Reasoning in Intelligence Systems: Networks of Plausible Inference*, Morgan Kaufmann Publishers, Los Altos, CA.

[11] M. Pradhan, G. Provan, B. Middleton, and M. Henrion (1994), Knowledge engineering for large belief networks, in *Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence*, pp. 484-490.

[12] S. Srinivas (1993), A generalization of the Noisy-Or model, in *Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence*, pp. 208-215.

[13] R. E. Tarjan and M. Yannakakis (1984), Simple linear time algorithm to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, *SIAM J. Comput.*, 13, pp. 566-579.

[14] N. L. Zhang and D. Poole (1994a), A simple approach to Bayesian network computations, to appear in *Proceedings of the Tenth Canadian Conference on Artificial Intelligence*.

23
[15] N. L. Zhang and D. Poole (1994b), Intercausal independence and heterogeneous factorization, in Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pp. 606-614.