Supporting Information for

Uncommon structural and bonding properties in Ag$_{16}$B$_4$O$_{10}$

Anton Kovalevskiy, a Congling Yin, a,b,* Jürgen Nuss, a Ulrich Wedig, a and Martin Jansen a,*

a Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany

b MOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004 P. R. China

Figure S1. Temperature dependent powder X-ray diffraction indicating Ag$_{16}$B$_4$O$_{10}$ start to decompose into elemental Ag at about 623 K.
Table S1. Crystal data, data collection and refinement details for Ag$_{16}$B$_4$O$_{10}$ at 298 K.
Empirical formula
Formula weight
Space group (no.), Z
Lattice parameters /Å,
a
c
V/Å3
ρ_{xray}/g×cm$^{-3}$
Crystal size /mm3
Diffractometer
X-ray radiation, λ/Å
Absorption correction
2θ range /°
Index ranges
Reflections collected
Data, R_{int}
No. of parameters
Transmission: t_{min}, t_{max}
Final R indices [I > 2σ(I)]
R indices (all data)
Deposition no.
Table S2. Atomic coordinates and displacement parameters $U_{eq}/10^{-4}$ Å2.

Atom	Site	x	y	z	U_{eq}
Ag1	16f	0.16299(2)	0.54868(2)	0.02757(2)	135.8(3)
Ag2	16f	0.25826(2)	0.73949(2)	0.01031(2)	136.7(3)
Ag3	16f	0.35583(2)	0.45035(2)	0.00220(2)	140.7(3)
Ag4	16f	0.10879(2)	0.69713(2)	0.25948(2)	148(3)
O1	8e	0	¾	0.0738(2)	102(2)
O2	16f	0.1208(1)	0.7899(1)	–0.1258(2)	103(2)
O3	16f	0.3371(1)	0.3329(1)	0.1788(2)	123(2)
B	16f	0.4160(2)	0.2933(2)	0.2730(3)	108(3)

Table S3. Selected interatomic distances /Å and angles /°.

Atomic contact	Distance /Å	Atomic contact	Angle /°
Ag1 — O2	2.350(2)	O1 — B — O2	106.4(2)
— O3	2.264(2)		107.6(2)
Ag2 — O2	2.280(1)	O1 — B — O3	111.9(2)
— O3	2.307(2)	O2 — B — O2	107.4(2)
Ag3 — O3	2.200(2)	O2 — B — O3	111.3(2)
Ag4 — O1	2.274(1)		111.9(2)
B — O1	1.512(3)		
— O2	1.485(3)		
— O2	1.496(3)		
— O3	1.431(3)		

Table S4. Refined atomic parameters against PXRD in space group $I 4_1/a$:2. The refined lattice parameters are $a = 13.3614(4)$ Å and $c = 8.6288(3)$ Å.

Atom	Site	x	y	z
Ag1	16f	0.1633(3)	0.5497(2)	0.0265(3)
Ag2	16f	0.2578(3)	0.7394(2)	0.0139(4)
Ag3	16f	0.3550(2)	0.4506(3)	0.0005(3)
Ag4	16f	0.1087(2)	0.6966(3)	0.2607(5)
O1	8e	0	¾	0.0738
O2	16f	0.1208	0.7899	–0.1258
O3	16f	0.3371	0.3329	0.1788
B	16f	0.4160	0.2933	0.2730
Computational details

Pseudopotentials (scalar relativistic) and basis sets

	Ag	B	O
Pseudopotential	[Ar]3d^{10}4s^{2}4p^{6}4d^{10}5s^{1}	[He] 2s^{2}2p	[He] 2s^{2}2p^{4}
core ref.	[S1]	[S2]	[S2]
	exponent coefficient	exponent coefficient	exponent coefficient
s-shell	9.088442 -1.9648132 7.540731 2.794005	1.690560 0.983666 0.256979	47.105518 -0.272208 5.911346 0.577763
	1.480158 0.653851 0.35	1.690560 0.983666 0.256979	47.105518 -0.272208 5.911346 0.577763
	-6.083378 6.4168543 0.7539735 0.2730597	5.399913 1.271217 0.361909	16.692219 3.900702 1.078253 0.284189
	0.36704 1.0	5.399913 1.271217 0.361909	16.692219 3.900702 1.078253 0.284189
sp-shell	0.18 1.0 1.0	0.12 1.0 1.0	0.12 1.0 1.0
d-shell	7.99473 -0.0163876 2.784773 1.209744	0.5 1.0	1.2 1.0
	0.505393 0.198851	0.5 1.0	1.2 1.0
	0.2730597 0.361909	0.361909	0.284189
	0.2814107 0.284189	0.284189	0.284189
	0.4863264 0.361909	0.361909	0.361909
	0.3867258 1.0	0.3867258 1.0	0.3867258 1.0
	0.12	0.12	0.12
	1.0	1.0	1.0

Tolerance parameters used in the CRYSTAL17 input:

- TOLINTEG 12 12 12 12 24
- TOLPSEUD 12
- TOLDEE 8
- BIPOLAR 128 128
Structural parameters used in the calculation

Lattice	
a / Å	13.3481
c / Å	8.6228

Site parameter	
Ag1	0.16199
	0.54868
	0.02757
Ag2	0.25826
	0.73949
	0.01031
Ag3	0.35583
	0.45035
	0.00220
Ag4	0.10879
	0.69713
	0.25948
O1	0.00000
	0.75000
	0.07380
O2	0.12081
	0.78993
	-0.12579
O3	0.33712
	0.33285
	0.17879
B	0.41600
	0.29325
	0.2730

[S1] Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted *ab initio* pseudopotentials for the second and third row transition elements. *Theor. Chim. Acta*, 1990, 77, 123-141.

[S2] Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuss, H. *Ab initio* energy-adjusted pseudopotentials for elements of groups 13–17, *Mol. Phys*. 1993, 80, 1431-1441.