Temperature dependence of isotopic fractionation in the CO₂-O₂ isotope exchange reaction

Getachew Agmuas Adnew¹ | Evelyn Workman¹ | Christof Janssen² | Thomas Röckmann¹

¹Institute for Marine and Atmospheric Research Utrecht (IMAU), Physics Department, Utrecht University, Utrecht, The Netherlands
²Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA), Sorbonne Université, Observatoire de Paris, Université PSL, Paris, France

Correspondence
G. A. Adnew, Institute for Marine and Atmospheric Research Utrecht (IMAU), Physics Department, Utrecht University, Princetonplein 5, Utrecht 3584CC, The Netherlands.
Email: g.a.adnew@uu.nl

Funding information
Wageningen University; Dutch Science Foundation NWO, Grant/Award Number: ALWP.2016.013; EU Horizon 2020 ERC-ASICA, Grant/Award Number: 64908; Hebrew University of Jerusalem

Rationale: Oxygen isotope exchange between O₂ and CO₂ in the presence of heated platinum (Pt) is an established technique for determining the δ¹⁷O value of CO₂. However, there is not yet a consensus on the associated fractionation factors at the steady state.

Methods: We determined experimentally the steady-state α¹⁷ and α¹⁸ fractionation factors for Pt-catalyzed CO₂-O₂ oxygen isotope exchange at temperatures ranging from 500 to 1200°C. For comparison, the theoretical α¹⁸ equilibrium exchange values reported by Richet et al. (1997) have been updated using the direct sum method for CO₂ and the corresponding α¹⁷ values were determined. Finally, we examined whether the steady-state fractionation factors depend on the isotopic composition of the reactants, by using CO₂ and O₂ differing in δ¹⁸O value from −66 ‰ to +4 ‰.

Results: The experimentally determined steady-state fractionation factors α¹⁷ and α¹⁸ are lower than those obtained from the updated theoretical calculations (of CO₂-O₂ isotope exchange under equilibrium conditions) by 0.0024 ± 0.0001 and 0.0048 ± 0.0002, respectively. The offset is not due to scale incompatibilities between isotope measurements of O₂ and CO₂ nor to the neglect of non-Born-Oppenheimer effects in the calculations. There is a crossover temperature at which enrichment in the minor isotopes switches from CO₂ to O₂. The direct sum evaluation yields a θ value of −0.54, i.e. higher than the canonical range maximum for a mass-dependent fractionation process.

Conclusions: Updated theoretical values of α¹⁸ for equilibrium isotope exchange are lower than those derived from previous work by Richet et al. (1997). The direct sum evaluation for CO₂ yields θ values higher than the canonical range maximum for mass-dependent fractionation processes. This demonstrates the need to include anharmonic effects in the calculation and definition of mass-dependent fractionation processes for poly-atomic molecules. The discrepancy between the theory and the experimental α¹⁷ and α¹⁸ values may be due to thermal diffusion associated with the temperature gradient in the reactor.
1 | INTRODUCTION

Measurements of $\Delta^{17}\text{O}$ (defined in Equation 1) of oxygen-containing molecules can provide insight into, for example, the carbon cycle and its link to the hydrological cycle1-10 and are also used to reconstruct paleoclimate.10-14 The $\Delta^{17}\text{O}$ of CO\(_2\) is a promising tracer to study the CO\(_2\) exchange flux between the biosphere/hydrosphere and the atmosphere.3,5,6,15 However, due to the mass interference of $^{13}\text{C}^{16}\text{O}^{16}\text{O}$ and $^{12}\text{C}^{17}\text{O}^{16}\text{O}$, it is difficult to measure $\Delta^{17}\text{O}$ directly from CO\(_2\) with isotopic ratio mass spectrometers, because the required mass resolving power of about 55,000 (Am/m) is a challenge for even the highest resolution instruments.16 High precision and accuracy are needed for measurements of both $\delta^{18}\text{O}$ and $\delta^{17}\text{O}$ in order to capture the small, but non-zero deviations to use $\Delta^{17}\text{O}$ as a tracer. Since the measurement of $\delta^{17}\text{O}$ directly from CO\(_2\) with isotopic ratio mass spectrometry (IRMS) is impossible due to the interference of ^{13}C, except from the fragment ions formed in the ion source,16 indirect methods have been developed that enable the measurement of $\delta^{17}\text{O}$ of CO\(_2\). These techniques are either based on isotope exchange or chemical conversion of CO\(_2\) and are described in more detail in Adnew et al.16 and Hofmann and Pack.17

$$\Delta^{17}\text{O} = \ln(\delta^{17}\text{O} + 1) - 0.528\ln(\delta^{18}\text{O} + 1)$$ \hspace{1cm} (1)

The CO\(_2\)-O\(_2\) exchange method was first developed by Mahata et al.18 and has been established in several laboratories, including our own.11,12,16,19 Recently, the method has been extended to measure the $\Delta^{17}\text{O}$ of water.20 The CO\(_2\)-O\(_2\) exchange method to measure $\Delta^{17}\text{O}$ of CO\(_2\) is less labor-intensive compared with other conversion/exchange methods and is capable of an impressive precision of < 0.01 \%. Such precision allows the subtle seasonal $\Delta^{17}\text{O}$ variability of tropospheric CO\(_2\) to be quantified, with reported seasonal amplitudes between 0.02 \% and 0.13 \%.2,6,21

The CO\(_2\)-O\(_2\) exchange method is based on facilitating complete oxygen isotope exchange between CO\(_2\) and O\(_2\) at high temperature in the presence of a platinum catalyst. This way, the oxygen isotopic composition of the CO\(_2\) is imprinted on O\(_2\) and the ^{17}O content of the CO\(_2\) sample can be calculated from measurement of the isotopic composition of O\(_2\) before and after the isotope exchange. Important parameters in the calculation of the $\Delta^{17}\text{O}$ of CO\(_2\) are the molar ratio of CO\(_2\) and O\(_2\) and the isotopic fractionation factors (α).

$$\alpha' = \frac{\langle R \rangle_{\text{CO}_2}}{\langle R \rangle_{\text{O}_2}} = \frac{\langle \delta^{17}\text{O} + 1 \rangle_{\text{CO}_2}}{\langle \delta^{17}\text{O} + 1 \rangle_{\text{O}_2}}$$ \hspace{1cm} (2)

The index I is a placeholder for either 17 or 18. The fractionation factors $\alpha^{17}(\text{CO}_2/\text{O}_2)$ and $\alpha^{18}(\text{CO}_2/\text{O}_2)$ determine the distribution of the heavy isotopes between O\(_2\) and CO\(_2\) at isotopic steady state.

The CO\(_2\)-O\(_2\) exchange technique has been used in different laboratories to study the carbon cycle1-4,6,22,23 and precise measurement of $\Delta^{17}\text{O}$ is used to correct for biases in clumped isotope measurements of CO\(_2\).24-27 However, the fractionation factor in CO\(_2\)-O\(_2\) isotope exchange is not well established, and different values have been reported by different laboratories.

One explanation for these differences may be variations in the effective isotope exchange temperature, as the fractionation factor is expected to be temperature dependent. Furthermore, the mechanism of the CO\(_2\)-O\(_2\) isotope exchange in the presence of a platinum catalyst is unknown.16,18,19,26,28,29 In this study we determined $\alpha^{17}(\text{CO}_2/\text{O}_2)$ and $\alpha^{18}(\text{CO}_2/\text{O}_2)$ for the CO\(_2\)-O\(_2\) exchange method over a temperature range from 500°C to 1200°C. We investigated whether there is a dependency on the initial oxygen isotopic composition of CO\(_2\) and O\(_2\). This also addresses a potential effect of an isotope scale difference between CO\(_2\) and O\(_2\). We revisit and update theoretical calculations of the isotope equilibrium by Richet et al. (1997)30 and calculated the three-isotope exponent (θ) of the CO\(_2\)-O\(_2\) equilibrium isotope exchange for a temperature range of 0°C to 1200°C.

2 | MATERIALS AND METHODS

2.1 | Theoretical calculations of CO\(_2\)-O\(_2\) isotope exchange at equilibrium

Fractionation factors α^{17} and α^{18} for the CO\(_2\)-O\(_2\) isotope exchange can be calculated from statistically corrected equilibrium constants of O-atom exchange reactions with CO\(_2\) and O\(_2\), respectively. The latter are conveniently designated as β-factors and were originally introduced as fractionation factors between the fully substituted molecule and O-atom ($\langle \beta \rangle = \langle [\text{O}]/[^{16}\text{O}] \rangle_{\beta} / \langle [\text{O}]/[^{16}\text{O}] \rangle_{\text{Atomic-O}}$), where A is either CO\(_2\) or O\(_2\).30-33 Since in the measurements of the equilibrium constants multi-substituted species have been neglected, we define quantities α and β slightly differently:

$$\alpha' = \frac{Q(\text{C}^{16}\text{O}' \text{O}')}{Q(\text{C}^{16}\text{O}')}Q(\text{C}^{16}\text{O}')}\frac{Q(\text{C}^{16}\text{O}')}Q(\text{C}^{16}\text{O}')}Q(\text{C}^{16}\text{O}')Q(\text{C}^{16}\text{O}')} = \frac{\langle \beta \rangle_{\text{CO}_2}}{\langle \beta \rangle_{\text{O}_2}}$$ \hspace{1cm} (3)

where Q are the total partition functions. For the calculation of these exchange equilibria, molecular partition functions were divided into internal and translational parts. Total internal partition functions and ratios of diatomic molecules were calculated using the formalism of Urey24 and Bigeleisen and Mayer,25 including anharmonic corrections and zero-point energy expressions based on Dunham's26 expression of energy levels (see Richet et al. (1997)30). Molecular constants of the $^{16}\text{O}_2$ species were taken from Huber and Herzberg27 in combination with recent atomic masses38 and those of the isotopic variants were calculated using the standard mass dependence of Dunham coefficients. This choice of molecular constants is compatible with a recent recommendation29 and an agreement to...
better than five significant digits is obtained across the temperature range. However, our current results are slightly different from a previously published parametrization\(^{30}\) – the less than 0.2 \(\%\) difference being mainly due to the identification and removal of an error in the calculation of a correction term.

Unfortunately, application of Dunham’s approach to larger molecules is not straightforward, because the isotope scaling of anharmonic vibrational constants is neither theoretically well constrained nor experimentally known, and the constant zero-point energy offset \(G_0\) is not known either.\(^{30}\) We have therefore calculated the total internal partition functions of the \(^{16}\)O, \(^{17}\)O-, and \(^{18}\)O-containing isotopologues of \(^1\)O\(^{12}\)C\(^{16}\)O as direct sums of overall energy levels obtained from the spectroscopically adjusted ab-initio line list calculations of Huang et al.\(^{41,42}\) (see Prokhorov et al.\(^{43}\) for more details).

Our new calculations were verified by comparing atom-diatom isotope exchange equilibria (\(\beta\)-values) with the tables of Richet et al.\(^{30}\) using several isotopes and diatomic molecules (\(^{13}\)C exchange in CO and CS, \(^{15}\)N exchange in N\(_2\), and \(^{18}\)O exchange in CO and O\(_2\)). These results agreed across the temperature range between 0\(\,\)\(^\circ\)C and 1200\(\,\)\(^\circ\)C, to better than 0.7 \(\%\) for all molecules except for O\(_2\), where our values were higher by 4 \(\%\) at 0\(\,\)\(^\circ\)C and 1 \(\%\) at 1200\(\,\)\(^\circ\)C (see Table S1, supporting information). We have discovered a subtle difference in the molecular constants used in this study and that of Richet et al.\(^{30}\) but such slight differences cannot account for the observed discrepancy. Interestingly, Richet et al.\(^{30}\) report the same 4 \(\%\) discrepancy when comparing their 25\(\,\)\(^\circ\)C results with the calculations of Urey\(^{32}\) (see Table 16 in Richet et al.\(^{30}\)), while the \(\beta\)-values for O\(_2\), C\(_2\), or N-exchange with other diatomic molecules always agree with the work of Urey to within 1 \(\%\). It needs be pointed out that the discrepancy is not due to our slightly different definition of \(\beta\) and our neglect of excess factors, since it even increases if we calculate \(\beta\)-values from doubly substituted O\(_2\). This indicates that an error must have occurred in the \(\alpha\)\(_2\) calculations of Richet et al.\(^{30}\).

When comparing our atom-CO\(_2\) exchange equilibria with Richet et al.\(^{30}\) the agreement is better, but still worse compared with diatomic gases when O\(_2\) is excluded from the comparison. For the \(^{18}\)O exchange, our \(\beta\)-values are 2 \(\%\) higher at 0\(\,\)\(^\circ\)C and less than 1 \(\%\) for relevant temperatures above 400\(\,\)\(^\circ\)C (see supporting information). For \(^{13}\)C exchange, our values at 0\(\,\)\(^\circ\)C are 1.3 \(\%\) higher and the discrepancy becomes already smaller than 1 \(\%\) at temperatures above 100\(\,\)\(^\circ\)C.

The comparison of \(\alpha^{18}(\text{CO}_2/\text{O}_2)\) between our calculation and that of Richet et al.\(^{30}\) for the temperature range between 0\(\,\)\(^\circ\)C and 1200\(\,\)\(^\circ\)C is also shown in Table S2 (supporting information). Our \(\alpha^{18}(\text{CO}_2/\text{O}_2)\) value agrees with that reported by Richet et al.\(^{30}\) to within 1 \(\%\), for temperatures higher than 450\(\,\)\(^\circ\)C. However, at low temperature the difference is higher than 1 \(\%\) (for instance 2.2 \(\%\) at 0\(\,\)\(^\circ\)C; see Table S2, supporting information). This is because our \(\beta\)-factors for both O\(_2\) and CO\(_2\) are different from the values reported by Richet et al.\(^{30}\) the difference being largest in O\(_2\), where we suspect the calculation of Richet et al.\(^{30}\) is erroneous (see Table S1, supporting information).

We have compared partition function ratios \(Q(\text{CO}_2)/Q(\text{CO}_2)^{12}\) of \(^{16}\)O- and \(^{18}\)O-containing isotopologues also with results from path integral Monte Carlo calculations of Webb and Miller\(^{44}\) over the 300 to 600 K range and found deviations of less than 0.5 \(\%\) and 0.3 \(\%\) at 300 K and 600 K, respectively. This confirms that CO\(_2\)-related uncertainties of \(\Delta^\alpha\) should be smaller than 0.3 \(\%\) for most of the temperatures in this study. Higher electronic states of both molecules have been neglected in the calculations. At transition energies of 5.7 eV (\(^{1}\)\(\text{A}\)\(_g\) CO\(_2\)) and 0.98 eV (\(^{1}\)\(\text{A}\)\(_g\) O\(_2\)), the population of electronically excited CO\(_2\) is completely negligible and the O\(_2\)(\(^1\)\(\text{A}\)\(_g\)) ground state is only marginally populated (by less than 8 parts in 10\(^5\)), even at the highest temperature. The effect on isotope ratios is much smaller because geometric changes in excited oxygen isotopes are small, and vibrational and rotational constants of the excited state are similar to the ground state values (changing by 7 \(\%\) at most).\(^{30}\)

2.2 \(\text{CO}_2\)-O\(_2\) exchange system

An overview description of the CO\(_2\)-O\(_2\) exchange method established at Utrecht University is given elsewhere.\(^{1,16}\) In brief, equal amounts of CO\(_2\) and O\(_2\) were allowed to equilibrate in a quartz reactor in the presence of platinum sponge as a catalyst (purity \(\geq 99.9 \%\), Sigma Aldrich, USA) at the bottom of the reactor. The CO\(_2\)-O\(_2\) exchange experiments were performed at temperatures between 500 and 1200\(\,\)\(^\circ\)C. The temporal evolution of the isotope exchange was determined at 650\(\,\)\(^\circ\)C, 750\(\,\)\(^\circ\)C, and 850\(\,\)\(^\circ\)C by varying the duration of the CO\(_2\)-O\(_2\) exchange. After the exchange reaction, CO\(_2\) and O\(_2\) were separated cryogenically and the O\(_2\) collected at liquid nitrogen temperature on molecular sieve 5 Å pellets (3 pellets, 5 mm long, 1.8 mm o.d., Sigma Aldrich, USA). The isotope measurements were performed on a Delta V Plus isotope ratio mass spectrometer (Thermo Scientific, Germany) in dual inlet mode. A schematic of the exchange reactor is shown in Figure 1. For comparison, the reactor that was used in Adnew et al.\(^{16}\) is shown in Figure S1 (supporting information). The main difference between the current setup and the one used in the previous study\(^{16}\) is an electropolished stainless steel extension.

2.3 \(\text{Samples}\)

Three commercial O\(_2\) gases with different isotope compositions were used for the measurements (Table 1). The working reference gas (GO\(_2\)-1) has \(\delta^{17}\text{O} = 9.235 \pm 0.011 \%\) and \(\delta^{18}\text{O} = 18.514 \pm 0.011 \%\) (Table 1), determined by Eugeni Barkan, Hebrew University of Jerusalem. For CO\(_2\) we used two gases from high-pressure cylinders (GCO\(_2\)-3 and GCO\(_2\)-4) and two additional gases (GCO\(_2\)-1 and GCO\(_2\)-2) that were prepared by combusting a graphite rod with two isotopically different O\(_2\) gases\(^{16,46-49}\) (GO\(_2\)-1 and GO\(_2\)-2,
respectively). The isotopic compositions of the CO₂ and O₂ used in this study are shown in Table 1. The experimental procedure for the combustion experiment is described in detail elsewhere. In summary, the graphite rod (99.9995% purity, 3.05 mm × 20 mm, Alfa Aesar, Part No: 40765, Thermo Fisher Scientific) was wrapped in a sheet of platinum foil and platinum wire and placed inside a quartz reactor. The combustion with O₂ was performed at 800°C. Before starting the experiment, the graphite rod was cleaned for more than 24 h by heating at 1000°C in high vacuum. After each conversion experiment, the graphite rod was again cleaned by heating at 1000°C for at least 1 h.

RESULTS

The differences in isotopic composition of the two working standards (GCO₂-3 and GCO₂-4) are 4.440 ± 0.015 ‰ for δ¹³C and 21.556 ± 0.007 ‰ for δ¹⁸O, respectively (Table 1). In our laboratory, we measured relative differences of 4.479 ± 0.003 ‰ for δ¹³C and 21.948 ± 0.001 ‰ for δ¹⁸O, respectively, from six replicates. For each measurement new gas was introduced to the bellows. Similarly, for GO₂-1 and GO₂-2, the relative difference was −29.690 (−29.746) ‰ for δ¹⁷O and −55.456 (−55.432) ‰ for δ¹⁸O, respectively. The values in parentheses are the assigned differences based on the

![FIGURE 1](geometry_and_dimensions_of_the_CO₂-O₂_reactor.png)

TABLE 1 Overview of names, suppliers, and isotopic compositions of the CO₂ and O₂ working standards used in this study. All the CO₂ gases used had a purity of > 99.995% except for the ones that were produced in the laboratory by combustion of a graphite rod. O₂ gases had a purity of > 99.998%. All isotopic values are given in ‰, relative to VPDB for δ¹³C and relative to VSMOW for δ¹⁷O and δ¹⁸O. The errors are reported as one standard deviation (σ).

CO₂ gases used in this study	Name	Source/supplier	δ¹³C	δ¹⁸O	Δ¹⁷O
GCO₂-1	Combustion	−26.160 ± 0.030	17.921 ± 0.042	−0.465 ± 0.018	
GCO₂-2	Combustion	−26.154 ± 0.059	−38.205 ± 0.051	−0.518 ± 0.016	
GCO₂-3	Linde Gas, The Netherlands	−31.665 ± 0.005	34.655 ± 0.011	−0.242 ± 0.003	
GCO₂-4	Air Products, Germany	−10.332 ± 0.005	30.082 ± 0.011	−0.169 ± 0.002	

O₂ gases used in this study	Name	Source/supplier	δ¹⁷O	δ¹⁸O	Δ¹⁷O
GO₂-1	Air Products, The Netherlands	9.235 ± 0.011	18.514 ± 0.011	−0.494 ± 0.011	
GO₂-2	Air Liquide, The Netherlands	−20.734 ± 0.017	−37.862 ± 0.012	−0.573 ± 0.017	
GO₂-3	Linde Gas, The Netherlands	7.040 ± 0.021	14.095 ± 0.011	−0.375 ± 0.020	

FIGURE 1 Geometry and dimensions of the CO₂-O₂ reactor.
measurements at Hebrew University (E. Barkan). Overall, the assigned and measured values agree well.

3.1 | CO2-O2 isotope steady state

Figure 2 shows the temporal evolution of the CO2-O2 isotope exchange for temperatures of 650°C, 750°C, and 850°C. The exchange proceeds faster at higher temperatures, as expected.

The data sets at each of the three reaction temperatures are fitted to an exponential curve of the form \(y = A + B \times e^{-kt} \), where \(y \) is the isotopic composition (\(\delta^{17}O \) or \(\delta^{18}O \)) of O2 at time \(t \), \(A \) is the isotopic composition at long time scales (Figure 2), \(A + B \) is the isotopic composition of O2 at \(t = 0 \), \(k \) is the rate constant of the reaction, and \(t \) is the reaction time. In our experiments we defined steady state as having been achieved when \(k \) determined from the fit for each temperature \(e^{-kt} < 10^{-6} \), i.e. \(t = 13.816/k \). From these fits, the respective steady state values of \(\delta^{17}O \) and \(\delta^{18}O \) of the O2 are 2.684‰ and 5.032‰ at 650°C; 3.018‰ and 5.648‰ at 750°C; and 3.278‰ and 6.100‰ at 850°C. The enrichments of \(^{17}O \) and \(^{18}O \) in the O2 at steady state increase with reaction temperature (Figures 2 and 3A).

Figure 3A shows the steady state isotopic composition \(\delta^{18}O(\text{O}_2) \) and \(\delta^{18}O(\text{CO}_2) \) for reaction temperatures ranging from 500 to 1200°C. In Figure 3B the fractionation factors \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{18}(\text{CO}_2/\text{O}_2) \) derived from these steady state enrichments are shown. As can be seen, \(\alpha^{17} \) and \(\alpha^{18} \) decrease with increasing reaction temperature. The exchange reactions were carried out using gases GC02-4 \((\delta^{18}O = 30.082\text{‰}) \) and GO2-3 \((\delta^{18}O = 14.095\text{‰}) \), see Table 1. Figure 3 shows that below 810°C, \(\delta^{18}O(\text{CO}_2) > \delta^{18}O(\text{O}_2) \) and \(\alpha^{18}(\text{CO}_2/\text{O}_2) > 1 \); thus there is a slight preference for the CO2 to be relatively enriched in \(^{17}O \) and \(^{18}O \). At higher temperatures, this preference is reversed, with \(\alpha^{18} < 1 \), i.e. \(\delta^{18}O(\text{CO}_2) < \delta^{18}O(\text{O}_2) \).

3.2 | Dependence of \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{18}(\text{CO}_2/\text{O}_2) \) on the relative difference between the initial oxygen isotopic compositions of CO2 and O2

The isotopic steady state should be a property of the reaction system and independent of the isotopic composition of the initial reagents. To confirm this, we used O2 and CO2 with a wide range of isotopic compositions, with a \(\delta^{18}O \) difference of the initial O2 and CO2 by up to \(-65.96 \)‰ in exchange experiments at 650°C, 750°C, and 850°C.

Figure 4 demonstrates that the same values for \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{18}(\text{CO}_2/\text{O}_2) \) are reached in experiments where the isotopic composition of the starting gases is very different, confirming that \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{18}(\text{CO}_2/\text{O}_2) \) values are independent of the initial isotopic composition of CO2 and O2.
Comparison with theoretical calculations

Figure 5A shows that $\alpha_{17}(\text{CO}_2/\text{O}_2)$ and $\alpha_{18}(\text{CO}_2/\text{O}_2)$ depend on temperature. This holds for both the experimental steady state results and the theoretically calculated thermodynamic equilibrium values, with the shapes of the temperature dependence being similar between theory and experiment. Interestingly, the calculated results are higher than the experimental data. As shown in Figure 6, the offset between the experimental values and theoretical equilibrium calculation is not constant but has a slight temperature dependence.

The average offset between the theoretically calculated and the experimental values is 0.0024 ± 0.001 and 0.0048 ± 0.002 for $\alpha_{17}(\text{CO}_2/\text{O}_2)$ and $\alpha_{18}(\text{CO}_2/\text{O}_2)$, respectively. This offset is very close to mass-dependent fractionation with a triple oxygen isotope fractionation (θ) value of 0.5. For the CO$_2$-O$_2$ exchange experiment, θ is calculated as shown in Equation 4.

$$\theta(\text{CO}_2/\text{O}_2) = \frac{\ln(\alpha_{17}(\text{CO}_2/\text{O}_2))}{\ln(\alpha_{18}(\text{CO}_2/\text{O}_2))}$$ \hspace{1cm} (4)

In Figure 5B we have shifted the theoretical $\alpha_{17}(\text{CO}_2/\text{O}_2)$ and $\alpha_{18}(\text{CO}_2/\text{O}_2)$ by the average offset from the experimental value, which results in a very good agreement with the experimentally determined values. The difference between the theoretical and measured $\alpha_{17}(\text{CO}_2/\text{O}_2)$ and $\alpha_{18}(\text{CO}_2/\text{O}_2)$ values show a slight increase with temperature (Figure 6). This trend diminishes at temperatures above 800°C.
According to the theoretical calculations, the fractionation at higher temperatures should approach unity. However, as mentioned above, experimentally we observe a fractionation of less than unity at higher temperatures, where the $\delta^{18}O$ of the exchanged O$_2$ is higher than the $\delta^{18}O$ of CO$_2$ (Figures 3 and 4).

3.3.1 Scale difference between O$_2$ and CO$_2$

To check if the discrepancy of $\alpha^{17}(\text{CO}_2/\text{O}_2)$ and $\alpha^{18}(\text{CO}_2/\text{O}_2)$ between the experimental results and theoretical equilibrium estimates is due to the scale difference between the CO$_2$ and O$_2$, we used CO$_2$ formed from combustion of a graphite rod as described in section 2.3. The difference in $\delta^{18}O$ between GO$_2$-3 and GO$_2$-1 was -55.335‰. After combustion of the graphite rod with both GO$_2$-1 and GO$_2$-2, the relative difference between the produced GCO$_2$-1 and GCO$_2$-2 was -55.169‰. A potential scale difference is thus of the order 0.2‰, but these small differences between $\delta^{18}O$ of the oxygen used for combustion and the $\delta^{18}O$ of the resulting CO$_2$ might also be due to incomplete combustion and/or CO formation. After assessing the potential scale discrepancies, we performed the same equilibration experiments with these gases at a reaction temperature of 750°C. As shown in Figure 4, the discrepancy between the theoretically estimated equilibrium fractionation in $\delta^{17}O$ and $\delta^{18}O$, and the experimental results after isotopic exchange between CO$_2$ and O$_2$ at steady state, is similar for all combinations of CO$_2$ and O$_2$, including the gases where scale discrepancies were specifically assessed. This provides evidence that the offset is not due to scale differences between the O$_2$ and CO$_2$ isotope scales.

3.4 Dependence of $\theta (\text{CO}_2/\text{O}_2)$ on CO$_2$-O$_2$ equilibration temperature

As shown in Figure 7, $\theta (\text{CO}_2/\text{O}_2)$ is dependent on the CO$_2$-O$_2$ equilibration temperature. $\theta (\text{CO}_2/\text{O}_2)$ takes on extreme values close to the crossover ($-\infty$ to ∞). In addition, for α values close to 1, small experimental errors will lead to large variability in $\theta (\text{CO}_2/\text{O}_2)$. The theoretical calculation does not show any crossover temperature, unlike the experimental values. Due to the crossover in the experiments between 750 and 800°C, α values are largely outside the canonical range between 0.5 and 0.5305. In contrast, the calculated $\theta (\text{CO}_2/\text{O}_2)$ value systematically exceeds the canonical upper limit $\theta_{\text{HTL}} = 0.5305$ and remains close to 0.54 across the
temperature range between 0°C and 1200°C. We suspect that the drop in θ (CO2/O2) at temperatures >1250°C in Figure 7 is an artefact, likely to be due to not including some high-energy states in the calculations.43,54,55 This concerns mostly the rarest (17O containing) isotopologue, on which the least experimental information is available.

4 | DISCUSSION

4.1 | Reaction rate constant of the CO2-O2 isotope exchange reaction

The rate for the CO2-O2 isotope exchange reaction in the presence of a platinum catalyst depends on the exchange temperature. As shown in Figure 2, isotope steady state between CO2 and O2 was reached in less than 1 h at reaction temperatures of 650°C, 750°C, and 850°C. However, at 500°C, the results indicated that the isotopic steady state was not reached within 2 h (a^{18}(CO2/O2) = 1.0010 and a^{18}(CO2/O2) = 1.0187), see Table S3 (supporting information). Mahata and co-authors18 also reported an increase in the δ^{18}O value of oxygen with temperature which they attributed to an enhancement in the catalytic activity of the platinum. Our data on the temperature dependence of a^{18}(CO2/O2) show (after accounting for an offset, discussed later) very good agreement with the theoretical equilibrium calculations over the entire temperature range of 500 to 1200°C. This demonstrates that the increase in the δ^{18}O value of the oxygen is not due to the efficiency of the catalyst but reflects the thermodynamically expected behavior. However, we did observe a decrease in the efficiency of the platinum sponge catalyst after it was exposed to a higher temperature. For example, after exposure to 1200°C, it took a long time to reach isotopic steady state at a lower temperature (e.g. at 650°C), which most likely indicates some kind of sintering of the platinum sponge, leading to a reduction in active surfaces and thus a decrease in catalytic efficiency. The efficiency of the catalyst only affects the duration required to attain CO2-O2 isotope exchange, not the final isotopic composition.

4.2 | a^{17}(CO2/O2) and a^{18}(CO2/O2) of the CO2-O2 isotope exchange reaction

As described in section 3.3, the experimental values for a^{17}(CO2/O2) and a^{18}(CO2/O2) are lower than the corresponding theoretical equilibrium estimates, and they cross from values above 1 to values below 1 at higher temperatures, in contrast to the theoretical equilibrium calculations. One shortcoming of the current work is that the calculations of a values involve the assumption of the Born-Oppenheimer approximation in the analysis of spectral data leading to the partition functions in Equation 2. However, this assumption is only approximate and it is possible that neglecting these effects could at least partly explain the difference between experiment and theory. Based on the work of Born and Huang,56 Zhang and Liu57 give an expression for the correction of a partition function ratio for a heavy and light isotope pair, which essentially implies that there is an additional constant shift ($\Delta E/k_B T$) in the energy levels between the heavy and the light molecules of an isotope pair, leading to an additional term $\exp(\Delta E/k_B T)$ in the calculation of the partition function ratios and the equilibrium constant (where k_B is Boltzmann’s constant).

These effects are strongly temperature dependent and vanish at high temperatures. Such behavior is not compatible with our observation of a temperature-independent offset and we consequently exclude the notation non-Born-Oppenheimer effects could explain the observed discrepancy.

Mahata and co-authors18 also reported a^{18}(CO2/O2) < 1, ranging from 0.998128 to 0.99463, even at 680°C. Table 2 shows that all recently published a^{17}(CO2/O2) and a^{18}(CO2/O2) values are lower compared with the theoretically calculated equilibrium value for

Temp. [°C]	a^{17}(CO2/O2)	a^{18}(CO2/O2)	a^{17}(CO2/O2)	a^{18}(CO2/O2)	θ (CO2/O2)	Ref.
600	1.0036	1.0067	-	1.0031-1.00785	0.229911	30
670	1.0032	1.0059	0.99977	0.9990	0.229911	29
680	1.0031	1.0058	-	0.998 to 0.995	19	
700	1.0030	1.0056	0.9997-1.00414	30		
750	1.0028	1.0052	1.00135	0.9998-1.001269	30	
			1.00125	1.0097	0.594987	20
			1.00082	1.00141	0.581657	12
			1.000666	1.00998	0.581732	13
			1.00048	1.00051	0.667445	17
				1.00051	0.941191*	
800	1.0026	1.0048	-	0.9998-1.001269	30	
	0.9990	0.9977	0.4345	28		
	1.0002065	0.999988	-17.2065	*		
CO₂-O₂ exchange temperatures of 600 °C to 800 °C. The presence of the platinum sponge, the geometry of the experimental setups, and the temperature gradient between the cold and hot zones of the reactor were postulated as possible sources of the discrepancy between the measured fractionation value and the theoretically estimated thermodynamic equilibrium value.

Based on the results of the O₂-CO₂ conversion experiments, the discrepancy between the experimental and theoretically calculated equilibrium values of \(\alpha^{18}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) is not due to an isotopic scale difference between O₂ and CO₂. In addition, \(\alpha^{18}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) values are independent of the initial oxygen isotope composition of the CO₂ and O₂ and also do not depend on the relative difference in the oxygen isotope composition between the initial CO₂ and O₂. Thus, the discrepancy must have other causes.

Oxygen isotope exchange between CO₂ or O₂ and the quartz reactor tube has been shown to be negligible in our experiments at 750 °C. We did not investigate whether it occurs at higher temperatures, but Barkan and Luz reported that isotope exchange between oxygen and quartz at temperatures of up to 950 °C is negligible. Similarly, Saeger et al reported no significant exchange between quartz and O₂ nor between quartz and CO₂ at 800 °C. The effect of oxygen isotope exchange with quartz will be higher if the \(\delta^{18} \)O value of the quartz is very different from that of the CO₂ or O₂. Quartz glass tubing is mostly made from silica sand having \(\delta^{18} \)O values ranging from 10 ‰ to 20 ‰, which is relatively close to the \(\delta^{18} \)O value of the O₂ used for characterizing the CO₂-O₂ exchange reaction in this study (GO₂-3). The potential for isotope exchange should depend on the relative difference in oxygen isotopic composition between the quartz, CO₂, and O₂. However, even if there is isotope exchange with quartz, it only affects the \(\delta^{17} \)O and \(\delta^{18} \)O values of CO₂ and O₂ after exchange, not the \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{16}(\text{CO}_2/\text{O}_2) \) values.

A possible explanation for the discrepancy between the calculation and the experimental results is isotopic separation due to thermal diffusion. In this study, one end of the reactor is positioned inside an oven at a specific temperature (500 °C to 1200 °C), whereas the other end is at room temperature (see Figure 1). The hot zone of the reactor is only 35 cm³ in volume and approximately half that is outside the oven (Figure 1). Due to thermal diffusion, the heavier isotopes will accumulate in the cold zone of the reactor compared to the hot zone. The relative separation of the isotopologues is proportional to their mass difference. The thermal diffusion factor of the heavy isotope relative to the light isotopologue is \(\alpha_2 = a_2(m_2 - m_1)/(m_1 + m_2) \) where \(m_1 \) and \(m_2 \) are the molecular masses of the light and heavy isotopologues, respectively, and \(a_2 \) is the reduced thermal diffusion factor which depends only on temperature and the intermolecular force between isotopes. A detailed description of thermal diffusion and the thermal diffusion factor is presented in the literature and references cited therein. The isotope separation between the cold and hot zones for O₂ isotopologues is higher than for CO₂ isotopologues. Thus, the O₂ in the cold zone of the reactor will be more enriched in heavy isotopes compared with CO₂, resulting in \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{16}(\text{CO}_2/\text{O}_2) \) being lower than as calculated for thermodynamic equilibrium.

The effect of thermal diffusion should depend on the geometry and the temperature gradient between the cold and hot zones of the reactor. Horizontally oriented reactors are less convective and could result in larger isotope fractionation compared to a vertically oriented reactor. Mahata and co-authors used a horizontal reactor, and in fact the results from their study show a higher discrepancy with respect to the theoretical calculations (3.4 ‰ and 6.9 ‰ for \(\alpha^{17}(\text{CO}_2/\text{O}_2) \) and \(\alpha^{18}(\text{CO}_2/\text{O}_2) \), respectively; Table 2). If thermal diffusion is indeed responsible for the discrepancies between the theoretical equilibrium values and the experimental results, the offset is also expected to depend on the relative volumes of the cold and hot zones of the reactor. Indeed, at 750 °C, Adnew et al reported a slightly higher (thus closer to the theoretical value) value of \(\alpha^{18}(\text{CO}_2/\text{O}_2) \), 1.000998 vs. 1.00051 (see Table 1), using a similar experimental setup except that in the previous study the volume of the cold zone of the reactor was smaller and without a stainless-steel extension (see Figure 1 and Figure S1, supporting information). As shown in Figure 6, the offset between theory and experiment depends on the temperature gradient between the hot and cold zones of the reactor. The cross-over temperature and the discrepancy between the theoretically calculated equilibrium and experimentally determined steady-state \(\alpha \) values might depend on the geometry of the reactor, the pressure in of the reactor, the volume of the reactor, and the proportion of the cold and hot part of the reactor.

Oxygen three-isotope phenomena due to thermal diffusion have been investigated previously using pure gases, and the experiments indicate that fractionation effects are well established in static reactors exposed to spatial temperature gradients. Due to mass balance, fractionation effects in these studies disappeared when the temperature gradient was removed after the experiment and the system was allowed to equilibrate. This is different to our situation, where cooling the reactor to room temperature implies that the O₂-CO₂ exchange shut down.

The fact that the experimental \(\alpha \) values differ from theoretically equilibrium calculated data demonstrates that dynamical effects drive the system out of thermodynamic equilibrium. While kinetic isotope fractionation might occur in processes on the surface or at the solid-gas interface, the presence of a catalytic surface alone cannot change the thermodynamic equilibrium in the gas phase, by its very definition. This implies that fractionation effects involving the catalytical substance are annihilated in forward and reverse reactions. Similar to isotope fractionation in evaporation, surface chemical kinetics can only induce fractionation between O₂ and CO₂ if rapid removal processes in the gas phase prevent equilibrium being established. The thermal gradient inducing a disequilibrium in the gas phase could possibly provide the required kinetic removal and thus potentially allow for surface kinetics to impact the O₂-CO₂ equilibration. However, without further quantitative analysis, such effects cannot be distinguished from the isotope fractionation due to thermal diffusion, which also come into play once a thermal gradient is established. Opposite to previous claims, surface-induced isotope
effects during O$_2$-CO$_2$ equilibration25 cannot be studied without considering the impact of thermal diffusion.

4.3 | θ (CO$_2$/O$_2$) of the CO$_2$-O$_2$ isotope exchange

Experimentally determined θ (CO$_2$/O$_2$) values are larger than the canonical high temperature limit ($\theta > 0.5305$), an observation already made in previous studies.12,19,70 Fosu et al.12 interpreted this as additional evidence that the CO$_2$-O$_2$ isotope exchange must be kinetically controlled. The experimentally determined θ (CO$_2$/O$_2$) takes extreme values when 18O (CO$_2$/O$_2$) is close to unity (near the crossover temperature where the sign of fractionation between CO$_2$ and O$_2$ changes, see Figure 7). These observations are a consequence of a singular behavior of θ close to the crossover, a well described anomaly in isotope equilibrium.32,71,77 Nevertheless, the experimentally determined θ values may not represent the CO$_2$-O$_2$ equilibrium exchange due to the possible thermal diffusion effect (see above) and other heterogenous process involving adsorption, desorption, and mixing.12,19,28,29 As a result, the experimentally determined θ values are steady-state values.

It is interesting to compute a little further the calculated θ (CO$_2$/O$_2$). Theoretically calculated values for 17O (CO$_2$/O$_2$) and 18O (CO$_2$/O$_2$) lead to values of $\theta = \ln(17/\alpha)/\ln(18/\alpha)$ which are outside the “canonical” range, i.e. $\theta > 0.5305$ (see Figure 7). The upper bound of this conventional range arises from the high temperature limit (HTL) of the harmonic oscillator approximation (e.g. Young et al.50 Cao and Liu.31 Dauphas and Schauble,32 Matsuhisa et al.31 Kaiser et al.76).

$$\theta_{\text{HTL}} = \frac{m_{16} - m_{17}^2}{m_{16} - m_{18}^2} = 0.5305$$ \hspace{1cm} (5)

Examples in support of the approximation usually come from considering diatomic molecules, such as CO or O$_2$, for example (Cao and Liu.31 Wang et al.54). Here, we provide evidence that this empirical rule may not hold for more complex molecules like CO$_2$. The calculated temperature dependence of the three-isotope exponents for O + O$_2$ ($\theta_{\text{O-O}_2}$) and O + CO$_2$ ($\theta_{\text{O-CO}_2}$) isotope exchange reactions is shown in Figure S2 (supporting information). The three-isotope exponent for atom-molecule exchange (κ) is calculated as shown in Equation 6 following Cao and Liu.31

$$\theta_{\text{O}-\text{XO}} = \kappa_{\text{XO}} = \ln(17/\beta_{\text{XO}})/\ln(18/\beta_{\text{XO}})$$ \hspace{1cm} (6)

where κ_{XO} or ($\theta_{\text{O-XO}}$) is the three-isotope exponent for atom-molecule exchange, which should also be restricted to the parameter range < θ_{HTL}. This is indeed the case for O$_2$, but κ_{XO} clearly exceeds the expected range. According to our calculations, it reaches a HTL of around 0.533. We suppose that some structure in the results above 800°C is likely to be due to the smallness of the isotopic signatures, as well as to the precision and potential incompleteness of excited states in the line lists. While our κ_{O_2} value further agrees with the calculation of Cao and Liu.31 to the fourth decimal place (or even better), our κ_{CO_2} value is higher by 0.0027 to 0.0035 over the full T range and it falls well above the canonical range, even at room temperature, where $\kappa_{\text{CO}_2}(25^\circ\text{C}) = 0.5317$ (see Figure S2, supporting information).

Cao and Liu.31 have shown that the three-isotope exponent (θ_{a-b}) for isotope exchange between two molecules a and b can also be calculated as a linear combination of the three-isotope exponents κ_a and κ_b of the atom-molecule exchange equilibria for molecules a and b (see Equation 6), respectively:

$$\theta_{a-b} = (1-c)\kappa_a + c\kappa_b, \text{where } c = -\ln(18/\beta_{b})/\ln(18/\beta_{a-b})$$ \hspace{1cm} (7)

Interestingly, the coefficient c in Equation 7 does not depend on 18O, it only depends on 18O via the 18O-value of molecule b and the (statistically corrected) equilibrium constant 18a-b between molecules a and b.

We can use this relationship and the well-studied H$_2$O-CO$_2$ system for an independent estimate of K_{CO_2}. The three-isotope relationship between liquid water and gaseous CO$_2$ ($\theta_{\text{H}_2\text{O}-\text{H}_2\text{O}}$) was experimentally determined to be 0.5229 at 25°C (α_{18}CO$_2$/H$_2$O) = 1.041036.77 Using $\kappa_{\text{H}_2\text{O}} = 0.5300$ calculated for water vapor by Cao and Liu.31 (a similar $\kappa_{\text{H}_2\text{O}}$ value was derived by the same authors from literature data on the gas vapor equilibrium) and 18H$_2$O = 1.1194 (this study), K_{CO_2} can be calculated using Equation (7), yielding 0.5324 at 25°C. This also is clearly larger than the canonical HTL. The result is only slightly different (+0.0003) when 18CO$_2 = 1.1171$ (from Richet et al.50) is used, in contrast to $K_{\text{CO}_2} = 0.5280$ as obtained by Cao and Liu.31 As a cautionary note, it needs to be pointed out that the $\kappa_{\text{H}_2\text{O}}$ value of Cao and Liu.31 was obtained without taking into account non-Born-Oppehener effect that seems to be important for water at room temperature.57 When we use our value of $\kappa_{\text{CO}_2}(25^\circ\text{C}) = 0.5317$ to determine $K_{\text{H}_2\text{O}}$ via Equation 7, from the measurements of α_{18}CO$_2$/H$_2$O = 1.04103477 and $\theta_{\text{H}_2\text{O}-\text{H}_2\text{O}}$ = 0.522977 and 18H$_2$O = 1.1194, we obtain $K_{\text{H}_2\text{O}} = 0.5294$. Interestingly, Barkan and Luz78 have also determined the equilibrium fractionation factors between the gaseous and liquid phases of H$_2$O, from which the three-isotope coefficient θ_{CO_2} should 0.5241 for the equilibrium fractionation of water and CO$_2$ in the gaseous phase can be derived. The corresponding α_{18}CO$_2$/H$_2$O = 1.05082 implies that $K_{\text{H}_2\text{O}} = 0.5377$ using our $K_{\text{CO}_2} = 0.5317$, or $K_{\text{H}_2\text{O}} = 0.5311$ when using the lower K_{CO_2} from Cao and Liu.31 Independently of the way of calculating K_{CO_2}, available data on the CO$_2$-H$_2$O system seem to indicate that $K_{\text{H}_2\text{O}}$ also exceeds the canonical range limit. This implies that κ values of a chemical compound in different states might not be identical.

The independently derived K_{CO_2} value of 0.5324 is somewhat higher than the value calculated directly from the experimentally improved ab-initio data from Huang et al.42 $K_{\text{CO}_2} = \ln(17/\beta_{\text{CO}_2})/\ln(18/\beta_{\text{CO}_2}) = 0.5317$, and supports our finding that K_{CO_2} (slightly) exceeds the value of 0.5305 even at room temperature. At high temperatures (~1000°C), K_{CO_2} should be even higher, by 0.01 to 0.02. This is in striking contrast to the K_{CO_2} values estimated by Cao and Liu31 which never exceed 0.5305, but their underlying
calculations of partition function ratios seem to include only a limited number of anharmonic or higher order corrections to the simple harmonic oscillator approximation. Such corrections seem to be mostly negligible in the calculation of κ for diatomic molecules, such as O$_2$, for which the κ_{O_2} values calculated in this study (κ_{O_2} at 25°C = 0.5282, for example) are in perfect agreement with the values estimated by Cao and Liu.31 Nevertheless, they appear to be important for triatomic molecules (H$_2$O, CO$_2$, etc.) and probably for more complex molecules too.

Finally, Equation 7 can be used to determine θ and that independent of our evaluation of α if it is suspected that the 17O data are less reliable than the other data, for example, or even independent of α. Using $\kappa_{CO_2}(25^\circC) \approx 0.5324$ (see previous paragraph), $\kappa_{O_2}(25^\circC) \approx 0.5282$, $\alpha = 1.0352$ (1.0372) and $\beta = 1.0813$ (1.0773), results in $\theta = 0.5419$ (0.5410). The values in parentheses are the corresponding values of Richet et al.30

For comparison, the calculation based on the direct sum method for CO$_2$ used in this study yields $\theta_{CO_2-O_2} = 0.5396$ (0.5388) at 25°C, with the value in parentheses again being from the compilation of Richet et al.30 Both routes of calculation yield values around 0.540, well beyond the “canonical range”.

According to Equation 7, the combination of both the unusually large $\kappa_{CO_2} > 0.5305$ (exceeding κ_{O_2}) and the relatively large and opposite-sign coefficients of $c \approx -2$ and $(1-c) \approx 3$ leads to the exceptionally high value of $\theta = 0.5396$. Nevertheless, the O + CO$_2$ exchange alone with $\kappa_{CO_2} \approx 0.533$ at temperatures above 300°C must be regarded as the origin of this exception since standard values of κ_{CO_2} close to κ_{O_2} would not lead to such departures, regardless of the coefficient c (in Equation 7). The solid theoretical and experimental evidence for $\kappa_{CO_2} > 0.5305$ and $\theta (CO_2/O_2) \approx 0.54$ implies that analysis of three-isotope effects in CO$_2$ needs to go beyond the simple rigid-rotor harmonic oscillator analysis. This might also apply to other non-diatomic molecules and clumped isotope effects.79 The above analysis of the CO$_2$-H$_2$O system seems to support this hypothesis concerning the oxygen isotopic fractionation of the H$_2$O molecule.

5 | CONCLUSIONS

The steady-state fractionation factors, $\alpha^{17}(CO_2/O_2)$ and $\alpha^{18}(CO_2/O_2)$, for the CO$_2$-O$_2$ isotope exchange reaction depend on temperature, largely explaining differences between previously reported values. Nevertheless, all our experimentally determined values are lower than those obtained from the updated theoretical calculations of equilibrium fractionation, and the offset is strictly mass-dependent. The discrepancy between the theoretical and experimental fractionation factors might be caused by thermal diffusion effects. While this requires further investigation, it provides an explanation for the inconsistent values reported in the literature.

We have shown that the CO$_2$-O$_2$ isotopic exchange under equilibrium conditions is characterized by unusual oxygen three-isotope behavior. Calculated θ (CO$_2$-O$_2$) values based on the direct sum method for CO$_2$, which includes anharmonic corrections, are larger than the canonical range limit for mass-dependent fractionation processes (0.5305), which possibly needs to be extended to 0.54. The result can be derived independently using the experimentally determined θ (CO$_2$/H$_2$O) and $\alpha^{18}(CO_2/H_2O)$ values, together with the theoretically calculated fractionation factor θ for oxygen exchange between CO$_2$ and atomic O. Our analysis shows that the unusual behavior is linked to the energy levels of CO$_2$ isotopologues. This could imply the need for more accurate representation of energy terms (beyond the simple Bigeleisen-Mayer model) for poly-atomic molecules.

ACKNOWLEDGEMENTS

The authors thank Eugeni Barkan and Rolf Vieten from the Hebrew University of Jerusalem for calibration of their O$_2$ and CO$_2$ working gases. GAA is supported by EU Horizon 2020 ERC-ASICA project with a research grand number 64908 and project ALWPP.2016.013 of the Dutch Science Foundation NWO. The authors thank Wouter Peters from Wageningen University for collaboration and funding through ASICA. The authors appreciate the two anonymous reviewers for their constructive feedback which improved the manuscript.

PEER REVIEW

The peer review history for this article is available at https://publons.com/publon/10.1002/rcm.9301.

DATA AVAILABILITY STATEMENT

All the data used in this study are reported in the form of Figures and Tables.

ORCID

Getachew Agmuas Adnew https://orcid.org/0000-0002-1999-5664

Evelyn Workman https://orcid.org/0000-0002-7798-1690

REFERENCES

1. Adnew GA, Pons TL, Koren G, Peters W, Rückmann T. Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ^{13O} of atmospheric CO$_2$. Biogeosciences. 2020;17(14):3903-3922. doi:10.5194/bg-17-3903-2020

2. Hofmann MEG, Horváth B, Schneider L, Peters W, Schützenmeister K, Pack A. Atmospheric measurements of Δ^{14}O in CO$_2$ in Göttingen, Germany reveal a seasonal cycle driven by biospheric uptake. Geochim Cosmochim AC. 2017;199:143-163. doi:10.1016/j.gca.2016.11.019

3. Liang M-C, Mahata S, Laskar AH, Thiemens MH, Newman S. Oxygen isotope anomaly in tropospheric CO$_2$ and implications for CO$_2$ residence time in the atmosphere and gross primary productivity. Sci Rep. 2017;7(1):13180. doi:10.1038/s41598-017-12774-w

4. Laskar AH, Mahata S, Liang M-C. Identification of anthropogenic CO$_2$ using triple oxygen and clumped isotopes. Environ Sci Technol. 2016;50(21):11806-11814. doi:10.1021/acs.est.6b02989

5. Hoag KJ, Still CJ, Fung IY, Boering KA. Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes. Geophys Res Lett. 2005;32(2):L02802. doi:10.1029/2004GL021011

6. Koren G, Schneider L, van der Velde IR, et al. Global 3-D simulations of the triple oxygen isotope signature Δ^{13}O in atmospheric CO$_2$. Geophys Res Lett. 2017;44(21):11806-11814. doi:10.1002/2017GL075778
45. Grebenshchikov SY. Photodissociation of carbon dioxide in singlet valence electronic states. I. Six multiply intersecting ab initio potential energy. J Chem Phys. 2013;138:224106

46. Barkan E, Luz B. Conversion of O₂ into CO₂ for high-precision oxygen isotope measurements. Anal Chem. 1996;68(19):3507-3510. doi:10.1021/ac9602938

47. Kroopnick P, Craig H. Oxygen isotope fractionation in dissolved oxygen in the deep sea. Earth Planet Sci Lett. 1976;32(2):375-388. doi:10.1016/0012-821X(76)90078-9

48. Taylor HP, Epstein S. Relationship between 18O/16O ratios in equilibrated minerals of igneous and metamorphic rocks: Part 1: Principles and experimental results. Geol Soc Am Bull. 1962;73(4):461-480. doi:10.1130/0016-7037(1962)73[461:RBORIC]2.0.CO;2

49. Taylor HP. 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks: Part 2: Experimental results. Geol Soc Am Bull. 1962;73(4):461-480. doi:10.1130/0016-7037(1962)73[461:RBORIC]2.0.CO;2

50. Young ED, Galy A, Nagahara H. Kinetic and equilibrium mass-independent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta. 2002;66(6):1095-1104. doi:10.1016/S0016-7037(01)00832-8

51. Matsushita Y, Goldsmith JR, Clayton RN. Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar. Geochim Cosmochim Acta. 1978;42(2):173-182. doi:10.1016/0016-7037(78)90130-8

52. Weston RE. Anomalous or mass-independent isotope effects. Chem Rev. 1999;99(8):2115-2136. doi:10.1021/cr980154

53. Dauphas N, Schauble EA. Mass fractionation laws, mass-independent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta. 2002;66(6):1095-1104. doi:10.1016/S0016-7037(01)00832-8

54. Wang Z, Schauble EA, Eiler JM. Equilibrium thermodynamics of oxygen isotope measurements. Rapid Commun Mass Spectrom. 2011;25(6):765-773. doi:10.1002/rcm.4912

55. Abernathey JR, Rosenberger F. Soret diffusion and convective stability in a closed vertical cylinder. Phys Fluids. 1981;24(3):377. doi:10.1063/1.863381

56. Jones RC, Furry WH. The separation of isotopes by thermal diffusion. Rev Mod Phys. 1946;18(2):151-223. doi:10.1103/RevModPhys.18.151

57. Ageev EP, Panchenko GM. The separation of oxygen isotopes by thermal diffusion. Soviet Atomic Energy. 1964;14(5):518-520. doi:10.1007/BF01121902

58. Muller G, Vasaru G. The Clusius-Dickel thermal diffusion column – 50 years after its invention. Isotopenpraxis. 1988;24(11-12):455-464. doi:10.1007/10256018808624027

59. Sun T, Bao H. Thermal-gradient-induced non-mass-dependent isotope fractionation. Rapid Commun Mass Spectrom. 2011;25(6):765-773. doi:10.1002/rcm.4912

60. Sun T, Bao H. Non-mass-dependent 17O anomalies generated by a superimposed thermal gradient on a rarefied O₂ gas in a closed system. Rapid Commun Mass Spectrom. 2011;25(1):20-24. doi:10.1002/rcm.4825

61. Hirschfelder OJ, Curtiss CF, Bird RB. Molecular theory of gases and liquids. New York: John Wiley and Sons, Inc.; 1964.

62. Olson JM, Rosenberger F. Convective instabilities in a closed vertical cylinder heated from below. Part 2. Binary gas mixtures. J Fluid Mech. 1979;92(4):609-629. doi:10.1017/S0022112079000781

63. Anav A, Friedlingstein P, Beer C, et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev Geophys. 2015;53(3):785-818. doi:10.1002/2015RG000483

64. Laird KJ, Meiser JH, Sanctuary BC. Physical Chemistry. Houghton Mifflin; 2002.

65. Mook W. Environmental isotopes in the hydrological cycle: principles and applications. Vol. 1. International Atomic Energy Agency and United Nations Educational, Scientific and Cultural Organization; 2000:39.

66. Passey BH, Levin NE. Triple oxygen isotopes in meteoric waters, carbonates, and biological apatites: Implications for continental paleoclimate reconstruction. Rev Mineral Geochem. 2021;86(1):429-462. doi:10.2138/rmg.2021.86.13

67. Etiope I, Abbot ME, Mook W. Isotopic exchange equilibria. J Chem Phys. 1978;68(23):4779-4797. doi:10.1063/1.439485

68. Deines P. A note on intra-elemental isotope effects and the interpretation of non-mass-dependent isotope variations. Chem Geol. 2003;199(1-2):179-182. doi:10.1016/S0009-2541(03)00767-7

69. Otake T, Lasaga AC, Ohmoto H. Ab initio calculations for equilibrium isotope fractionations in multiple sulfur isotope systems. Chem Geol. 2008;249(3-4):357-376. doi:10.1016/j.chemgeo.2008.01.022

70. Spindel W, Stern MJ, M Osborne. Further studies on temperature dependences of isotope effects. J Chem Phys. 1970;52(4):2022-2035. doi:10.1063/1.1673255

71. Vogel PC, Stern MJ. Temperature dependences of kinetic isotope effects. J Chem Phys. 1971;54(2):779-796. doi:10.1063/1.1674912

72. Kaiser J, Röckmann T, Brenninkmeijer CAM. Contribution of mass-dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide. J Geophys Res. 2004;109:D03305

73. Mook W. Environmental isotopes in the hydrological cycle: principles and applications. Vol. 1. International Atomic Energy Agency and United Nations Educational, Scientific and Cultural Organization; 2000:39.

74. Mook W. Environmental isotopes in meteoric waters, carbonates, and biological apatites: Implications for continental paleoclimate reconstruction. Rev Mineral Geochem. 2021;86(1):429-462. doi:10.2138/rmg.2021.86.13

75. Vogel PC, Stern MJ. Temperature dependences of kinetic isotope effects. J Chem Phys. 1971;54(2):779-796. doi:10.1063/1.1674912

76. Kaiser J, Röckmann T, Brenninkmeijer CAM. Contribution of mass-dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide. J Geophys Res. 2004;109:D03305

77. Barkan E, Luz B. High-precision measurements of 17O/16O and 18O/16O ratios in CO₂. Rapid Commun Mass Spectrom. 2012;24(23):2723-2738. doi:10.1002/rcm.6400

78. Barkan E, Luz B. High precision measurements of 17O/16O and 18O/16O ratios in CO₂. Rapid Commun Mass Spectrom. 2005;19(24):3737-3742. doi:10.1002/rcm.2250

79. Liu Q, Tossell JA, Liu Y. On the proper use of the Bigeleisen equation and corrections to it in the calculation of isotopic fractionation equilibrium constants. Geochim Cosmochim Acta. 2010;74(24):6965-6983. doi:10.1016/j.gca.2010.09.014

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.