Oxytropis shennongjiaensis (Fabaceae), a new species from Hubei, Central China

Jun-Tong Chen¹.²*, Dai-Gui Zhang³*, Zhen-Yu Lv⁴, Xian-Han Huang¹, Peng-Ju Liu¹, Jia-Ning Yang³, Jing-Yuan Yang⁵, Komiljon Tojibaev⁶, Tao Deng¹, Hang Sun¹

¹ CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China ² University of Chinese Academy of Sciences, Beijing 100049, China ³ Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, Jishou 416000, Hunan, China ⁴ School of Life Sciences, Yunnan Normal University, Kunming 650092, Yunnan, China ⁵ Administration of Shennongjia National Park, Shennongjia 442421, Hubei, China ⁶ Central Herbarium of Uzbekistan, Institute of Botany, Academy Sciences of Uzbekistan, Tashkent 100025, Uzbekistan

Corresponding author: Tao Deng (dengtao@mail.kib.ac.cn); Hang Sun (sunhang@mail.kib.ac.cn)

Citation: Chen J-T, Zhang D-G, Lv Z-Y, Huang X-H, Liu P-J, Yang J-N, Yang J-Y, Tojibaev K, Deng T, Sun H (2020) Oxytropis shennongjiaensis (Fabaceae), a new species from Hubei, Central China. PhytoKeys 149: 117–128. https://doi.org/10.3897/phytokeys.149.49533

Abstract
Here we describe Oxytropis shennongjiaensis, a new species of Fabaceae from Central China (Hubei Province). Morphologically, O. shennongjiaensis is closely similar to O. sitaipaiensis, O. melanocalyx and O. kansuensis, but differs in stem characters, with less conspicuous internodes; persistent herbaceous stipules; pale yellow to white corolla; and stipitate legumes, 3–5 mm with a long beak. Phylogenetic analysis, based on the internal transcribed spacers (ITS) and two chloroplast markers (trnL–F and psbA–trnH), also identified O. shennongjiaensis as a new species, which is consistent with our morphological analyses. Considering the morphological data and phylogenetic data presented here, we believe that this evidence satisfies the required diagnostic criteria to identify O. shennongjiaensis as a new species.

Keywords
Shennongjia National Park, phylogeny, new species, Oxytropis shennongjiaensis

* Contributed equally as the first authors.
Introduction

About 310 species of *Oxytropis* DC. have been described, mainly distributed in East and Central Asia, as well as Europe, Africa and North America (Zhu et al. 2010). Zhang (1998) recorded 146 species of *Oxytropis* (incorporating 12 varieties) as native to China. However, in the Flora of China, Zhu et al. (2010) only recognised 133 species of *Oxytropis* after having eliminated taxa of uncertain taxonomic status and those based on specimen misidentifications. *Oxytropis* in China is mainly distributed in Xinjiang, Tibet, Qinghai, northwest Yunnan, western Sichuan, Gansu, Inner Mongolia, Shaanxi, Shanxi, Henan, Hebei, Liaoning, Jilin and Heilongjiang Provinces.

China has a vast territory with a wide range of complex and diverse topographies and soils and covering several climate zones, which contribute to the wealth of Chinese botanical diversity (Chen et al. 2018a). The Shennongjia National Park in Hubei Province is a world-famous natural heritage site for biodiversity richness and, in recent years, many new species have been described from the region (Chen et al. 2018b; Deng et al. 2018). In 2016, during a comprehensive collecting expedition within this Park, we discovered a species of *Oxytropis* that was very unusual in its morphological characters. After consulting local floras (Fu 1979; Qian 1990; Yang et al. 2009; Li and Liu 2010) and newly published species (Zhu and Ohashi 2000; Zhu et al. 2002; Zhu 2003), especially from the vicinity of the Park (Hubei, Anhui, Jiangxi, Hunan, Guizhou and Chongqing), we were unable to find any record of *Oxytropis* in these regions. However, there are eight species of *Oxytropis* recorded in the neighbouring Henan Province (Ding and Wang 1988). Additionally, in the neighbouring Shaanxi Province, which has the closest geographical connection, nine species and two varieties of *Oxytropis* are recorded in Flora Tsinlingensis (Northwest Institute of Botany, Chinese Academy of Sciences 1981).

After three years of observations of wild living plants, herbarium specimens and laboratory studies, we determined that the morphological characters of this entity were stable and did not match with any other species of *Oxytropis* known to us. Accordingly, combined with a molecular phylogenetic analysis, based on the internal transcribed spacers (ITS) and two chloroplast markers *trnL–F* and *psbA–trnH*, we determined that this entity was indeed a species new to science and, therefore, we describe it below as *O. shennongjiaensis* D.G. Zhang, J.T. Chen, T. Deng & H. Sun, sp. nov. As *Oxytropis* was first discovered in the mountains of Central China (Hubei Province), this new species is particularly valuable for further study of the origins, dispersal and current geographical distribution of the genus.

Materials and methods

Morphology

The specimens of *Oxytropis shennongjiaensis* were collected from Shennongjia National Park in Hubei Province. Morphological characters, recorded for the new species, were
Oxytropis shennongjiaensis (Fabaceae), a new species from Hubei, Central China

Morphological comparisons of *Oxytropis shennongjiaensis* with related species.

Characters	*O. shennongjiaensis*	*O. sitaipaiensis*	*O. melanocalyx*	*O. kansuensis*
Plant height	10–15 cm tall	10–13 cm tall	5–17 cm tall	12–40(–60) cm tall
Branches	Stems with less conspicuous internodes, 3–15 cm long.	Stems with 2 or more conspicuous internodes.	Stems with (0 or)1–4 conspicuous internodes.	Stems with (3 or)4 or 5 conspicuous internodes.
Stipules	Stipules ovate, 7–10 mm long, herbaceous and margin scarious.	Stipules narrowly triangular, 3–5 mm long, membranous.	Stipules ovate-triangular, herbaceous.	Stipules narrowly triangular, 5 mm long, herbaceous.
Leaves	Leaves with sparsely subapressed white trichomes.	Leaves with sparsely white trichomes.	Leaves with sparse yellow, white and black long trichomes.	Leaves with glabrescent or sparsely spreading white villous.
Racemes	Racemes rather lax, 3–6-flowered; peduncle 2.5–4.5 cm long.	Racemes rather lax, 3–5-flowered; peduncle 5–6 cm long.	Racemes compact, 3–10(–15)-flowered; peduncle 5.5–14 cm long.	Racemes compact, 3–15-flowered; peduncle 7–21(–30) cm long.
Bracts	Bracts ovate, 6–8 mm long, membranous.	Bracts subulate, ca. 2 mm long, membranous.	Bracts longer than pedicels, membranous.	Bracts triangular, 6–7 mm long, membranous.
Calyx	Calyx 9–11 × 2–4 mm; lobes subulate, 4–5 mm long.	Calyx ca. 4 × 3 mm; lobes linear, 2–3 mm long.	Calyx ca. 4–9 × 2–3.5 mm; lobes lanceolate-linear, 2.5–4.7 mm long.	Calyx 6.5–11.5 × 2–4 mm, lobes subulate, 2–8 mm long.
Flowers	Corolla pale yellow to white; standard 16–18 mm long, lamina broadly ovate, 12–13 × 10–11 mm, apex emarginate to 2-lobed, margin lightly undulate entire or with irregular repand teeth; wings 12–15 mm long, lamina obovate; keel 15 mm long, beak 3 mm long.	Corolla purplish; standard ca. 11 × 3 mm, lamina elliptic; wings ca. 10 mm long, lamina oblong; keel ca. 9.5 mm long, beak ca. 1.5 mm long.	Corolla blue; standard 10 × 14 mm, lamina broadly ovate, apex rounded to 2-lobed; wings 7–11 mm long, apex rounded to emarginate; keel ca. 7–11 mm long, beak ca. 0.2–1.1 mm long.	Corolla yellow or pale yellow; standard 10–17 mm long, lamina ovate, apex emarginate; wings 8–15 mm long, lamina obovate; keel 8–13 mm long, beak 0.2–1 mm long.
Legume	Legume stipitate; stipe 5–7 mm long; body 20–25 × 5–7 mm, erect, inflated and slightly flattened, sparsely white trichomes; beak 3–5 mm long.	Legume stipitate; stipe ca. 7 mm; body ca. 23 × 4 mm, inflated and slightly flattened, with dense white short trichomes; beak 3 mm long.	Legume sessile or with a stipe; body 15–20 × 7–12 mm, pendulous, inflated, with long trichomes.	Legume shortly stipitate; stipe 1–1.5 mm; body 8–12 × 3–10.5 mm, inflated.
Distribution	Hubei (Shennongjia National Park)	Shaanxi	Gansu, Qinghai, Shaanxi, Sichuan, Xinjiang, Xizang, Yunnan.	Gansu, Qinghai, Sichuan, Xizang.

Based on fresh flowering and fruiting material. Morphological comparisons of *O. shennongjiaensis*, with related taxa *O. sitaipaiensis* T. P. Wang ex C. W. Chang, *O. melanocalyx* Bunge and *O. kansuensis* Bunge, are provided in Table 1.

Molecular analyses

Molecular analysis was performed, based on 35 samples from 34 species (incorporating one variety) belonging to 11 sections of *Oxytropis* and, as such, represents the most comprehensive phylogeny of Chinese *Oxytropis* undertaken to date. *Astragalus daenensis daenensis* Boissier and *A. penetratus* Maassoumi were chosen as outgroups, following Shahi-Shavvon et al. (2017). Sequences for 34 related *Oxytropis* taxa and the two outgroup taxa were obtained from the NCBI GenBank. The GenBank accession numbers are listed in Appendix I. DNA of *O. shennongjiaensis* was isolated.
using a Plant Genomic DNA Kit DP305 (Beijing, China), for use as template in subsequent Polymerase Chain Reactions. Based on earlier studies, we chose ITS and two chloroplast DNA sequences (trnL–F and psbA–trnH) to perform the phylogenetic analysis (Shahi Shavvon et al. 2017; Lu et al. 2010; Li et al. 2011). Sequences were assembled and a multiple alignment was initially performed using MAFFT in Geneious version 9.0.2 (Kearse et al. 2012), followed by minor manual corrections. Gaps were treated as missing data.

Phylogenetic relationships were assessed using Bayesian Inference (BI) analyses, maximum parsimony (MP) and maximum likelihood (ML). A MP phylogenetic tree was constructed using PAUP* version 4.0a (Swofford 2002). The heuristic search was selected using 1000 replicates of random addition sequence and tree bisection-reconnection (TBR). Branch support was evaluated by 1000 bootstrap values. The ML phylogenetic tree was conducted in the IQ-TREE webserver (Trifinopoulos et al. 2016, http://iqtree.cibiv.univie.ac.at). Substitution model options were set to Auto and analysis, followed by 1,000 replicates. BI analyses were calculated in MrBayes version 3.2.7 (Ronquist and Huelsenbeck 2003). Models of sequence evolution for each partition were determined following the Akaike Information Criterion (AIC), as implemented in jModelTest, version 2.1.6 (Posada 2008). The results showed that the TIM3ef+I model was identified as the best-fit for ITS, the TIM1+I model for psbA–trnH and the TIM2+I model for trnL–F. These models cannot be found in MrBayes and GTR+I was thus selected as a replacement. Bayesian analyses were done using the settings: Bayesian trees were started from random trees; four Markov Chain Monte Carlo (MCMC) simulations were run simultaneously and sampled every 1,000 generations for a total of 10 million generations; and the first 20% of trees were discarded as burn-in.

Results

Taxonomic treatment

Oxytropis shennongjiaensis D.G. Zhang, J.T. Chen, T. Deng & H. Sun, sp. nov.

urn:lsid:ipni.org:names:77209856-1

Figures 1–3

Type. China. Hubei: Shennongjia National Park, 31°26'39.96"N, 110°16'00.34"E, 2880 m elev., 9 June 2019, _D.G. Zhang_& _Q. Liu_ 19060901 (holo: KUN barcode 1347953!; iso: JIU!).

Diagnosis. Compared with the published species of _Oxytropis_ in China, _O. shennongjiaensis_ appears to be closely similar to _O. sitaipaiensis_, from which it can be distinguished by its stems with less conspicuous internodes and 5–15 mm internodes (stems with two or more conspicuous internodes in _O. sitaipaiensis_); stipules ovate,
Figure 1. Photograph of the holotype of *Oxytropis shennongjiaensis* D.G. Zhang, J.T. Chen, T. Deng & H. Sun (KUN barcode 1347953).
Figure 2. *Oxytropis shennongjiaensis* D.G. Zhang, J.T. Chen, T. Deng & H. Sun A, B plant showing flowering branch and leaves C bract D calyx E–F wing G–H standard (view from inside) I keel J ovary K legume L stipules. (Drawn based on the holotype of D.G. Zhang & Q. Liu 19060901 by J. N. Yang).

7–10 mm long, herbaceous (stipules narrowly triangular, 3–5 mm long, membranous in *O. sitaipaiensis*); bracts ovate, 6–8 mm long (bracts subulate, ca. 2 mm long in *O. sitaipaiensis*); calyx 9–11 × 2–4 mm (calyx ca. 4 × 3 mm in *O. sitaipaiensis*); pale yellow to white corolla; beak 3 mm long (purplish corolla; beak ca. 1.5 mm long in *O. sitaipaiensis*). Table 1 provides detailed morphological comparisons with similar species.

Description. Perennial herbs, 10–15 cm tall. Yellowish-brown, cylindrical roots, up to 25 cm long, with lateral roots. Caulescent from a multi-headed caudex, slightly
Oxytropis shennongjiaensis (Fabaceae), a new species from Hubei, Central China

subterranean sometimes rhizomatous. Stems sprawling, 3–15 cm long, basally with persistent stipules; nodes of stems slightly swollen; internodes 5–15 mm long, invested with sparse, white trichomes. Leaves (4–) 6–9 (–11) cm long, 13–17 (–19)-foliolate; leaflets ovate, 5–11 × 2–4 mm, apex acuminate, with sparse, subappressed white trichomes, abaxially mid-vein slightly raised (obvious after drying), with denser trichomes along vein; dark purplish-red or green rachis, with sparse white trichomes; stipules ovate, 7–10 × 3–4 mm, herbaceous, basally connate, apex acuminate, abaxially sparsely hairy with white trichomes, adaxially glabrous, margins scarious, ciliate with black and white trichomes. Racemes rather lax, 3–6-flowered; peduncles 2.5–4.5 cm long, erect, villous, with white trichomes, sparsely intermixed with black trichomes below, with densely black trichomes above. Bracts ovate, 6–8 × 2–3 mm, membranous, with sparse, dark brown trichomes intermixed with white trichomes abaxially. Calyx campanulate, 9–11 × 2–4 mm, with dark brown trichomes sparsely intermixed with white trichomes outside; lobes subulate, 4–5 mm long, as long as or sometimes slightly shorter than tube. Pale yellow to white corolla; standard 16–18 mm long, lamina broadly ovate, 12–13 × 10–11 mm, apex emarginate to 2-lobed, margins slightly undulated entire or with irregular repand teeth; wings 12–15 mm, lamina obovate, 7 × 4 mm long, apex obtuse, claw 4–5 mm long; keel 15 mm long, beak 3 mm long. Ovary linear, with dense white trichomes. Legumes stipitate (stipe 5–7 mm long), oblong-ellipsoid, 20–25 × 5–7 mm, erect, inflated and slightly flattened, with sparsely white trichomes, beak 3–5 mm long.
Phenology. Flowering from May–June and fruiting from July–August.

Etymology. The specific epithet refers to the Shennongjia National Park to which the species is endemic. The Chinese name is 神农架棘豆, shén nóng jiā jí dòu in Chinese phonetic transcription.

Distribution and habitat. The new species is currently known only from the Shennongjia National Park (Figure 4), Hubei, China, at an elevation of 2,880 m. It grows in barren rock crevices at the top of a mountain together with Polygonum macrophyllum D.Don (Polygonaceae), Primula sp. (Primulaceae), Carex sp. (Cyperaceae), Chrysanthemum oreastrum Hance (Asteraceae), Dracocephalum rupestre Hance (Lamiaceae) and Meconopsis quintuplinervia Regel (Papaveraceae) etc.

Conservation status. The new species was only discovered in Jinsiyanya, Shennongjia National Park, from our expeditions during the past few years. About 300 individuals were observed and the extent of occurrence is ca. 50,000 m². The precise conservation status of the population(s) has not been determined, so further explorations are needed to assess its conservation status. Based on available data, the new species is assigned to the category ‘Data Deficient’ (DD) of International Union for Conservation of Nature (IUCN 2019).

Molecular phylogenetic analysis. Based on the combined datasets (ITS, trnL–F and psbA–trnH), BI, MP and ML trees were reconstructed and their topologies are quite similar. The ML tree is presented in Figure 5 and shows the posterior probability (PP), ML bootstrap support (ML BS) and MP bootstrap support (MP BS) values. Our
Figure 5. Maximum likelihood consensus tree of *Oxytropis shennongjiaensis* and related taxa. Numbers above branches indicate Bayesian posterior probability [PP], numbers below branches represent maximum likelihood bootstrap support [ML/BS] and maximum parsimony bootstrap support [MP/BS] values. Only bootstrap values > 50% are shown. The new species is shown in bold.

Phylogenetic analyses show *Oxytropis shennongjiaensis* to be nested within a polyphyletic Sect. *Mesogaea* Bunge. *O. melanocalyx* (Sect. *Mesogaea* Bunge) and *O. latibracteata* (Sect. *Oxytropis* Bunge) are shown to be sister to *O. shennongjiaensis*, with relatively high support (ML/BS = 75). This new species is shown to be separated from other species and, to some extent, it can be identified as a new species.

Discussion

These above-detailed characters indicate that, according to Zhang (1998), this new species belongs to *Oxytropis* sect. *Oxytropis* with 19 other species (incorporating one variety) and, according to Zhu et al. (2010), it belongs to the *Oxytropis* sect. *Mesogaea* Bunge with 32 other species (incorporating three varieties). It can be distinguished from all other species of these two sections in branches, leaves, racemes, flowers and legumes characters, as described above. Morphologically, the new species shows some similarities with *Oxytropis sitaipaiensis*, *O. melanocalyx* and *O. kansuensis* and we also examined the specimens of these species (Zhu et al. 2000), but they are also easily distinguished (Table 1). Additionally, there is no previous record of this genus in Hubei Province.
Phylogenetic analyses, based on 35 samples from 34 species (incorporating one variety), show that their topologies of the BI, MP and ML trees were quite similar and were consistent with previous studies (Shahi-Shavvon et al. 2017). *Oxytropis* is a monophyletic group. However, partial PP and BS of the tree were relatively low, which might be caused by the rapid radiation of *Oxytropis* (Shahi-Shavvon et al. 2017) and phylogenetic relationships of the new species and *Oxytropis* require further study. *O. melanocalyx* and *O. latibracteata* were shown to be sister to *O. shennongjiaensis*. These species share some morphological similarities. However, morphologically, *O. latibracteata* also shows the greatest differences in the following characters: acaulescent; racemes rather dense, 5–13-flowered or more; bluish-purple to pale purple corolla; standard 21–27 mm, lamina narrowly elliptic; wings 17–19 mm; keel 16–17 mm, beak 1–1.5 mm; legume sessile.

Considering the morphological data and phylogenetic results, we believe that this evidence satisfies the required diagnostic criteria to identify *O. shennongjiaensis* as a new species.

Acknowledgements

We are grateful to Ms. Song Min-Shu for her valuable experimental guidance, to Dr. Bruce Maslin and Dr. Zhang Jian-Wen for revising the manuscript. This study was supported by grants from the Major Program on Technology Innovation of Hubei Province (2018ACA132), Hubei Key Laboratory of Shennongjia Snub-nosed Monkey Conservation Fund (2018SNJ0009), National Natural Science Foundation of China (31670206), National Natural Science Foundation of China-Yunnan joint fund to support key projects (U1802232), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20050203), National Key R & D Program of China (2017YFC0505200), Major Program of the National Natural Science Foundation of China (31590823), National Natural Science Foundation of China (31700165), Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019382), Young Academic and Technical Leader Raising Foundation of Yunnan Province (2019HB039) and the Chinese Academy of Sciences “Light of West China” Program. We thank TopEdit (www.topeditsci.com) for its linguistic assistance during the preparation of this manuscript.

References

Chen JT, Zhong J, Shi XJ, Zhang QX, Sun M (2018a) *Chrysanthemum yantaiense*, a rare new species of the Asteraceae from China. Phytotaxa 374(1): 92–96. https://doi.org/10.11646/phytotaxa.374.1.9

Chen YS, Deng T, Zhou Z, Sun H (2018b) Is the east Asian flora ancient or not? National Science Review 5(6): 142–154. https://doi.org/10.1093/nsr/nwx156

Deng T, Zhang DG, Sun H (2018) Flora of Shennongjia (Vol. 2). China Forestry Publishing House, Beijing, 301–304. [in Chinese]
Oxytropis shennongjiaensis (Fabaceae), a new species from Hubei, Central China

Ding BZ, Wang SY (1988) Flora Henanensis (Vol. 2). Henan Science and Technology Press, Zhengzhou, 374–379. [in Chinese]

Fu SX (1979) Flora Hubeiensis (Vol. 2). Hubei Science and Technology Press, Wuhan, 234–237. [in Chinese]

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Li BG, Liu LH (2010) Flora of Hunan (Vol. 3). Hunan Science & Technology Publishing House, Changsha, 607–610. [in Chinese]

Li YX, Lan FR, Chang CY, Guo ZK (2011) Molecular phylogeny of Oxytropis DC. of Qinghai-Tibetan Plateau by ITS and trnL-F sequences. Journal of Northwest A & F University (Nat. Sci. Ed.) 39(11): 187–193.

Lu P, Gao J, Wang JN, Enhebayaer. (2010) Molecular phylogenetic analysis of several Oxytropis DC. species in Inner Mongolia based on 5.8SrDNA/ITS sequences. Xibei Zhiwu Xuebao 31(12): 2420–2428.

Northwest Institute of Botany, Chinese Academy of Sciences (1981) Flora Tsinlingensis (Vol. 1(3)). Science Press, Beijing, 62–69. [in Chinese]

Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25(7): 1253–1256. https://doi.org/10.1093/molbev/msn083

Qian XH (1990) Flora Anhweiensis (Vol. 3). China Prospect Publishing House, Beijing, 97–101. [in Chinese]

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Shahi-Shavvon R, Kazempour-Osaloo S, Maassoumii AA, Moharrek F, Karaman-Erkul S, Lemmon AR, Lemmon EM, Michalak I (2017) Increasing phylogenetic support for explosively radiating taxa: the promise of high-throughput sequencing for Oxytropis (Fabaceae). Journal of Systematics and Evolution 55(4): 385–404. https://doi.org/10.1111/jse.12269

IUCN (2019) Guidelines for Using the IUCN Red List Categories and Criteria. version 13. Prepared by the Standards and Petitions Subcommittee of the IUCN Species Survival Commission, 113 pp. http://cmsdocs.s3.amazonaws.com/RedListGuidelines.pdf

Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland.

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1): W232–W235. https://doi.org/10.1093/nat/gkw256

Yang CX, Xiong JH, Zhong SL (2009) Keys to vascular plants in Chongqing. Sichuan Science & Technology Publishing House, Chengdu, 339–345. [in Chinese]

Zhang ZW (1998) Fabaceae (5) Oxytropis. In: Cui HB (Eds) Flora Reipublicae Popularis Sinicae (Vol. 42(2)). Science Press, Beijing, 146 pp. [in Chinese]

Zhu XY (2003) A new species of Oxytropis (Baicalia) (Leguminosae) from Shanxi province in China. Nordic Journal of Botany 23(3): 279–281. https://doi.org/10.1111/j.1756-1051.2003.tb00394.x
Zhu XY, Ohashi H (2000) Systematics of Chinese Oxytropis DC. (Leguminosae). Cathaya 11 & 12: 1–218.
Zhu XY, Du YF, Ohashi H (2000) Catalogue of the Type Specimens of Oxytropis DC. (Leguminosae) (1). China Science & Technology Press, Beijing, 135 pp.
Zhu XY, Du YF, Ohashi H (2002) A new species of Oxytropis (Leguminosae) from Xizang (Tibet) in China. Novon 12(3): 430–432. https://doi.org/10.2307/3393094
Zhu XY, Welsh SL, Ohashi H (2010) Oxytropis. In: Wu ZY, Raven PH, Hong DY (Eds) Flora of China (Vol. 10) (Fabaceae). Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, 453–500.

Appendix 1

List of taxa used in the phylogenetic analysis of GenBank accession numbers (ITS / trnL–F / psbA–trnH).

Species	ITS Accession	trnL–F Accession	psbA–trnH Accession
Oxytropis shennongjiaensis	MT326210	MT325864	MT325865
Oxytropis aciphylla	GQ422810	JX878501	KF011559
Oxytropis ambigua		LN898539	LN898577
Oxytropis anertii	EF685971	–	–
Oxytropis avioides	LC213314	–	–
Oxytropis bicolor	HQ199317	–	–
Oxytropis caerulea	HQ199316	–	GU396771
Oxytropis chionobia	LC213335	LC213480	–
Oxytropis ciliata	HQ199323	KC936889	KF011560
Oxytropis densa	LC213347	LC213486	–
Oxytropis falcata	KJ143722	–	–
Oxytropis filiformis	HQ199321	LN898596	LN898483
Oxytropis giralldii	LC213352	LC213491	–
Oxytropis glabra	LC213354	LC213492	LT856572
Oxytropis glabra var. tenuis	GQ422805	KC936891	KF011569
Oxytropis grandiflora	HQ199315	–	–
Oxytropis hirta	LC213363	LC213496	–
Oxytropis immersa	LC213366	–	–
Oxytropis inschanica	HQ199322	JX893502	KF011571
Oxytropis kansuensis	KJ143724	–	–
Oxytropis lapponica	LC213388	–	–
Oxytropis latibracteata	LC213389	–	–
Oxytropis leptophylla	–	JX893503	KF011572
Oxytropis melanocalyx	LC213397	LC213519	–
Oxytropis merkensis	LC213398	LC213520	–
Oxytropis microphylla	KP338205	–	KP338460
Oxytropis ochrantha	GQ422819	JX893489	KF011574
Oxytropis ochrocephala	LC213409	–	–
Oxytropis pilosa	KM053396	LN898607	LN898495
Oxytropis racemosa	HQ199320	JX893508	GU396818
Oxytropis sericopetala	KJ143725	–	–
Oxytropis squamulosa	HQ199318	JX893509	KF011579
Oxytropis verticillaris	GQ422815	JX893514	KF011581
Astragalus daenensis	AB051963	–	–
Astragalus penetratus	AB231100	–	–