Dual role for *Drosophila* epidermal growth factor receptor signaling in early wing disc development

Shu-Huei Wang,1 Amanda Simcox,1,3,4 and Gerard Campbell2–4

1Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210, USA; 2Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Cell fate decisions in the early *Drosophila* wing disc assign cells to compartments (anterior or posterior and dorsal or ventral) and distinguish the future wing from the body wall (notum). Here we show that EGFR-receptor (EGFR) signaling stimulated by its ligand, Vein, has a fundamental role in regulating two of these cell fate choices: (1) Vn/EGFR signaling directs cells to become notum by antagonizing wing development and by activating notum-specifying genes; (2) Vn/EGFR signaling directs cells to become part of the dorsal compartment by induction of *apterous*, the dorsal selector gene, and consequently also controls wing development, which depends on an interaction between dorsal and ventral cells.

Received June 12, 2000; revised version accepted July 26, 2000.

The wing imaginal disc of *Drosophila*, which gives rise to the mesothoracic body wall and its appendage the wing, has been an important system for revealing the genetic mechanisms that lead to the establishment of specific cell fates. In the early wing disc, cells make three fate choices to initiate programs for future pattern formation: to be anterior (A) or posterior (P) compartment; to be dorsal (D) or ventral (V) compartment; and to be wing or body wall (notum) (Garcia-Bellido et al. 1973; Dahmann and Basler 1999). The A/P and D/V restrictions result in the establishment of organizers at the compartment boundaries that govern overall growth and patterning (Lawrence and Struhl 1996). The third choice determines whether cells ultimately differentiate wing- or notum-specific structures.

Many genes required for wing development, including those involved in both initial specification and subsequent outgrowth, have been characterized. In particular, *wingless* (*wg*), which encodes a Wnt-secreted signaling molecule, has been implicated as having a role in specifying the wing primordium in the second instar (Williams et al. 1993; Ng et al. 1996; Klein and Martinez-Arias 1998). In *wg* mutants, the wing is lost and an extra notum forms (Fig. 1A–D; Sharma and Chopra 1976; Morata and Lawrence 1978).

In contrast, little is known about initial development of the notum and whether it is specified by an active gene program or results from a default pathway that operates when the wing is not specified. A candidate molecule for establishing the notum is Vein, a secreted neuropilin-like molecule that activates EGFR-receptor (EGFR) signaling (Schnepp et al. 1996, 1998; Yarnitzky et al. 1997). *vn* is expressed in the presumptive notum in second instar wing discs and hypomorphic *vn* mutants lack the notum (Simcox et al. 1996). However, the role of *vn* is not limited to the notum as the wing primordium also fails to grow in *vn* null alleles and in some *Egfr* alleles (Clifford and Schüpbach 1989; Simcox et al. 1996).

We investigated the role of Vn/EGFR signaling in wing disc development, and present evidence that the pathway is directly required for development of the notum by activating notum-specifying genes and indirectly controls wing outgrowth through regulation of *apterous*.

Results and Discussion

Complementary roles for Vn and Wg in notum and wing development

To determine when Vn/EGFR signaling is required for notum development, we used the temperature-sensitive alleles, *Egfr^{tsla} and *vn^{tsb240}*. Inactivating Vn/EGFR activity during the second instar (a 24 hr period) caused loss of the notum (Fig. 1E,F, and inset). The wing developed but showed pattern abnormalities characteristic of *vn* hypomorphs (Fig. 1E; Simcox et al. 1996). Later shifts during the third instar did not cause loss of the notum [data not shown]. This demonstrates Vn/EGFR activity is required for notum development in the second instar when *wg* is required to specify the wing (Ng et al. 1996). Thus, Vn and Wg appear to have complementary roles and we examined this relationship by following their expression in mutants.

In second instar wild-type wing discs, *wg* is expressed distally in a wedge of anterior ventral cells (Couso et al. 1993; Williams et al. 1993; Ng et al. 1996) and *vn* is expressed proximally (Simcox et al. 1996, Fig. 1G). In *vn* null mutants, the initiation of *wg* expression was normal as was expression of its target gene *optomotor-blind* (*omb*) (Grimm and Pflugfelder 1996; Fig. 1H; data not shown). In *wg* mutants, however, there was a dramatic and early expansion of *vn* expression to include distal cells (Fig. 1I), presaging the development of these cells as an extra notum.

Together these results suggest that Vn has an early role in establishing the notum and that Wg signaling is required to define a distal domain that is reduced in EGFR activity to allow wing development.
Vn/EGFR signaling is required for expression of vn and the Iroquois complex genes

To test the role of Vn/EGFR signaling in specifying notum we examined whether the Iroquois complex [Iro-C] genes, ara and cap [Gomez-Skarmeta et al. 1996] are targets of the pathway. The Iro-C genes have been implicated in specifying notum cell fate because loss of function causes a transformation of notum to hinge [Diez del Corral et al. 1999]. Furthermore, we found misexpression of ara caused loss of the wing and a duplication of notum [Fig. 2A,B]. Ectopic expression of an activated form of the receptor, EGFR\textsuperscript{A\textsubscript{1BC1D4}} [Quenan et al. 1997] greatly reduced the size of the wing and a small ectopic notum formed [Fig. 2C]. vn is expressed in the presumptive notum in early second instar discs [Fig. 1G] and Caup/Ara are expressed in the presumptive notum at the end of the second instar (Gomez-Skarmeta et al. 1996; Diez del Corral et al. 1999). In early third instar wing discs, Caup/Ara are expressed in a domain that overlaps with vn [Fig. 2D]. In vn mutants, this expression of Caup/Ara is lost [Fig. 2E] and loss of EGFR signaling, in EGFR\textsuperscript{A1BC1D4} clones, in the medial notum resulted in a loss of Caup/Ara expression [Fig. 2G]. However, clones in the lateral notum continued to express Caup/Ara [Fig. 2G], suggesting other

Figure 1. Wg and Vn have complementary roles in development of the wing and notum. Late third instar wing discs [B,D,F] stained for Nubbin [Nub, wing pouch, red] and Teashirt [Tsh, notum, hinge, and ventral pleura, green]. [A] Wild-type fly and [B] wing disc with a normal notum [n] and wing [w]. [C] wg\textsuperscript{L/CX4} fly and [D] wing disc with normal [n] and ectopic notum [n']. The wing is lost. [E] Efg\textsuperscript{A1BC1D4} fly and [F] wing disc shifted to the restrictive temperature during the second instar. The notum is lost; the wings are present but have pattern abnormalities and restricted temperature during the second instar. The notum is null (Simcox et al. 1996). (I) are expressed in the presumptive notum at the end of the third period. [G–I] Second instar wing discs stained for β-galactosidase [β-gal] activity, wg–lacZ [blue, G,H] or vn RNA by in situ hybridization [purple, G,I]. [G] In wild type, wg [blue] and vn [purple] are expressed in complementary patterns in the presumptive wing and notum, respectively. [H] vg expression is not affected in a vn\textsuperscript{L/CX4} mutant, which is a known molecular null [Simcox et al. 1996]. (I) vn expression spreads distally in a wg\textsuperscript{L/CX4} mutant.

Figure 2. Vn/EGFR signaling is required for notum development by regulating expression of vn and the Iro-C genes. (A–C) Scanning electron micrograph of adult lateral thorax. [A] Wild type. [B] Ectopic expression of ara [omb–Gal4, UAS–ara, 29°C] causes loss of the wing and formation of an extra notum [arrow]. (C) Ectopic expression of activated EGFR [omb–Gal4, EGFR\textsuperscript{A1BC1D4}, 25°C] causes reduction of the wing and transformation of the ventral pleura to notum [arrow]. The phenotype of omb–Gal4, EGFR\textsuperscript{A1BC1D4} flies could not be examined at 29°C as the increased activity of Gal4 caused lethality. At 25°C, omb–Gal4, EGFR\textsuperscript{A1BC1D4} and omb–Gal4, UAS–ara and flies show a similar reduction of the wing. [D] Wild-type early third instar wing disc stained for vn–lacZ [β-gal, red] and Caup/Ara [green]. Expression of vn and Caup/Ara partially overlap in the presumptive notum. Individual stains are shown on the right. [E] Expression of Caup/Ara is lost in a vn\textsuperscript{L/CX4} early third instar mutant wing disc. [F] Expression of vn–lacZ [X-gal, blue] is lost in a vn\textsuperscript{L/CX4} early third instar mutant wing disc. [G] Wing disc stained for Caup/Ara [green, left panel] and anti-β-gal [red, middle panel]. The merge is shown in right-hand panel. Caup/Ara expression is lost in clones in the medial notum [arrows] lacking EGFR activity [EGFR\textsuperscript{A1BC1D4} the clones are marked by loss of β-Gal staining]. Clones in the lateral notum continue to express Caup/Ara [arrowheads].

Downloaded from genesdev.cshlp.org on July 22, 2018 - Published by Cold Spring Harbor Laboratory Press
factors regulate Iro-C gene expression in these cells at this stage.

Activation of Iro-C genes could account for the requirement for EGFR activity to specify the notum at the end of the second instar as this correlates with when these genes are first expressed. However, loss of EGFR signaling at a slightly earlier time (mid-first instar to mid-second instar, see below), prior to activation of the Iro-C genes, also results in loss of the notum. A possible explanation for this comes from the finding that vn expression is lost in vn mutants (Fig. 2F). This suggests EGFR activity must be sustained, via a positive feedback loop involving transcriptional activation of vn, during the second instar, to activate the Iro-C genes and hence specify notum at the end of this period. Interestingly, the vn gene is also a target of EGFR signaling in the embryo (Golembio et al. 1999; Wessells et al. 1999).

**Antagonism between Wg and Vn/EGFR signaling**

We suggest the mechanisms by which wg and vn specify alternate cell fates in the early wing disc, wing, or notum are antagonistic. This is based on the observation that loss of Wg results in the spread of vn expression and the supposition that the resulting ectopic EGFR activity causes loss of the wing and a double notum phenotype (Fig. 1C, I). Further evidence that Vn/EGFR signaling represses wing development comes from the results of misexpressing a constitutive receptor, EGFR$^{A_{top4,2}}$, in the presumptive wing. In these flies, the wing was reduced to a stump covered with sensilla characteristic of the proximal wing (hinge) region and expression of the wing specific gene vestigial (vg) (Kim et al. 1996) was repressed (Fig. 3A–D). Ectopic notal structures also formed from the ventral pleura (Fig. 2C). The ability of ectopic EGFR signaling to suppress wing development is cell autonomous because clones of cells expressing EGFR$^{A_{top4,2}}$ lacked vg expression (Fig. 3E). In adult wings these clones produced outgrowths lacking wing characteristics but were otherwise difficult to characterize (Fig. 3F).

Although vn expression expanded in wg mutants, we did not observe a reciprocal spread of wg expression in vn mutants that would have been indicative of a double wing phenotype (Fig. 1H). However, when Vn/EGFR signaling was inhibited in the notum by expressing a ligand antagonist (Vn::Aos–EGF) (Schnepp et al. 1998) under the control of ptc–Gal4 (similar misexpression of a dominant negative form of EGFR was embryonic lethal.) The ectopic wings appear below the normal wings in mirror symmetry and are composed mainly of posterior structures despite the fact the inhibitor was expressed in anterior cells with Ptc–Gal4. Ptc–Gal4 is expressed along the AP boundary and as the inhibitor is soluble, it could be secreted across the boundary to affect posterior cells. The ectopic wings do include some anterior wing tissue (arrow) that can be recognized as such by margin bristles (top inset) and sensilla characteristic of the third wing vein, which is anterior (data not shown). The basis for the relatively small amount of anterior tissue is not currently understood. Lower inset shows omb–lacZ expression in ptc–Gal4, UAS–vn::aos second instar wing disc. Ectopic activation of omb–lacZ in the disc indicates an ectopic wing has formed (arrow).

**Figure 3.** Misregulation of Vn/EGFR signaling alters patterning in primordia of the wing and notum. Third instar wing discs (B, D) were examined for expression of Vg (red) and green fluorescent protein (GFP, green) (individual images are shown in panels to the right). (A) Wild-type wing and (B) wing disc. Expression of omb (omb–Gal4, UAS–GFP) and Vg overlap in the wing pouch (yellow in the merged image, B). (C) Wing and (D) wing disc following misexpression of constitutively active EGFR in the presumptive wing (omb–Gal4/UAS–EGFR$^{A_{top4,2}}$, UAS–GFP). The wing is small (cf. A) and partially transformed to hinge as evident from groups of ectopic sensilla characteristic of the hinge (arrow, shown at higher magnification in inset, C). Vg expression is reduced in the wing pouch [D]. (E) Wing disc stained for Vg (green, left panel) and β-gal [red, middle panel]. The merged images are shown in right-hand panel. Vg expression is reduced in a clone (arrow) expressing an activated form of EGFR (EGFR$^{A_{top4,2}}$)I n th e a u d wing, EGFR$^{A_{top4,2}}$ clones form outgrowths or vesicles (data not shown) that differentiate structures lacking wing characteristics and that sometimes include bristles (arrow, shown at higher magnification in inset). (G) Thorax of a wild-type fly. Inset, second instar wing disc showing expression of omb–lacZ in a ventral anterior domain which includes cells of the presumptive wing. (H) Four-winged fly resulting from inhibition of EGFR signaling by expression of a ligand antagonist (UAS–vn::aos–EGF) under the control of ptc–Gal4. (Similar misexpression of a dominant negative form of EGFR was embryonic lethal.) The ectopic wings appear below the normal wings in mirror symmetry and are composed mainly of posterior structures despite the fact the inhibitor was expressed in anterior cells with Ptc–Gal4. Ptc–Gal4 is expressed along the AP boundary and as the inhibitor is soluble, it could be secreted across the boundary to affect posterior cells. The ectopic wings do include some anterior wing tissue (arrow) that can be recognized as such by margin bristles (top inset) and sensilla characteristic of the third wing vein, which is anterior (data not shown). The basis for the relatively small amount of anterior tissue is not currently understood. Lower inset shows omb–lacZ expression in ptc–Gal4, UAS–vn::aos second instar wing disc. Ectopic activation of omb–lacZ in the disc indicates an ectopic wing has formed (arrow).
notum (as in a vn mutant). As described in the next section, this may reflect the indirect requirement for EGFR activity to also promote wing development.

Vn/EGFR signaling regulates expression of apterous

The loss of notum phenotype is characteristic of vn hypomorphs but in null vn alleles and some Egfr alleles both the wing and notum primordia fail to develop and the wing discs remain tiny (Clifford and Schüpbach 1989; Simcox et al. 1996). Thus, although ectopic activity of EGFR in the distal disc represses wing development, the pathway is nevertheless normally required for wing development. Using the temperature-sensitive Egfrtsla allele we found that this requirement is restricted to the period from mid-first to mid-second instar (Fig. 4A,B). Key genes involved in wing development that are active at this time include wg and apterous (ap). ap encodes a LIM-homeodomain protein (Cohen et al. 1992) that is expressed in dorsal cells and acts as a selector gene to divide the disc into dorsal and ventral compartments (Diaz-Benjumea and Cohen 1993; Blair et al. 1994). Regulation of Notch ligands by compartments (Diaz-Benjumea and Cohen 1993; Williams et al. 1995) and we noted that in ap mutants, it seemed unlikely that wg and apterous (ap) expression normally restricts wing development by repressing the presumptive wing region but suggests that this relationship exists only transiently in early wing development. First, ap expression partially overlaps that of vn in the second instar (Fig. 4I). Second, ap can be induced ectopically in ventral clones misexpressing an activated form of the receptor, EGFRtop4.2 (Fig. 4I). Third, Egfrtsla mutant clones generated in the first instar show autonomous loss of ap expression (Fig. 4K), whereas clones generated in the second instar express ap normally (data not shown). Finally, loss of EGFR activity in whole discs from mid-first to mid-second instar results in complete loss of ap expression, whereas ap is still expressed in discs from larvae given a temperature shift slightly later during the second instar (Fig. 4L–N).
EGFR signaling activity whilst ap expression and subsequent wing development requires lower signaling activity (Fig. 5).

Interestingly, vertebrate EGFR and its ligands are expressed in the chick limb bud in a pattern that appears to overlap with the vertebrate ap homolog Lhx2, and these factors are required for limb outgrowth in the chick [Dealy et al. 1998; Rodriguez-Esteban et al. 1998]. In light of our present results it will be important to determine whether EGFR signaling controls Lhx2 expression and thus plays a role in regulating outgrowth of the vertebrate limb. Our results may also have implications for the evolution of insect wings. If the control of body wall development by EGFR signaling is ancestral, and comparative analysis of other arthropods will be required to assert this, then one of the first steps towards evolution of wings could have occurred when EGFR signaling assumed control of ap.

Materials and methods

Fly strains

The following alleles and transgenes were used: EGFR<sub>tsla</sub>, EGFR<sub>tsla</sub>, vg<sub>1</sub>vb<sub>260</sub>, vg<sub>1</sub>v<sub>234</sub>, vg<sub>1</sub>v<sub>234</sub>, vg<sub>1</sub>v<sub>234</sub>, vg<sub>1</sub>v<sub>234</sub>, wg<sub>2</sub>z<sub>z</sub>, wg-lacZ, ap-lacZ, cmb-lacZ, UAS-GFP, UAS-EGFR<sub>top2</sub>, UAS-vn, UAS-vn: nos, UAS-ap, UAS-ara, amb-Gal4, and ptc-Gal4. The genes are described in detail at FlyBase [http://flybase.bio.indiana.edu].

Antibodies

Antibodies against the Iro-C protein Caupolican [rat anti-Caup] were used [J. Modolell, C.S.I.C. and Universidad Autonoma de Madrid, Spain] as well as antibodies against flipase [Promega] and rabbit polyclonal anti-Vg, Vg (rabbit anti-Vg,) and Vg (rabbit anti-Vg,) from S. Kerridge, Centre Universitaire Mars failure, France; S. Carroll, [University of Wisconsin, Madison], and S. Cohen, [EMBL, Heidelberg, Germany], respectively. Monoclonal anti-fg antibodies were from Promega and rabbit polyclonal anti-β-gal antibodies were from Jackson ImmunoResearch. Immunostaining was performed according to standard protocols.

Clonal analysis

EGFR<sub>top2</sub> clones were generated by heat-shocking larvae of the genotype F<sup>1</sup> F<sub>1</sub> FLPI.22/UAS-EGFR<sub>top2</sub>, abx/Ubx-FRT 7 stop FRT-Y-Gal4-LacZ (de Celis and Bray 1997) for 10 min at 37°C 48–50 hr after egg laying. Egfr<sup>tsla</sup> mutant clones were generated by heat-shocking larvae of the genotype bsp, FRT-42 arrn-lacZ M(Bso6O/E) /FRT-42 Egfr<sup>tsla</sup> for 1 hr at 35°C during mid- to late-first or second instars and maintaining them at the restrictive temperature of 31°C. At 18°C these clones are phenotypically wild type.

Temperature shifts

To reduce EGFR activity, a temperature-sensitive allele, Egfr<sup>tsla</sup> was used; due to an additional lethal on the chromosome, this was crossed to the null allele Egfr<sup>tsla</sup>. To reduce Vn activity, a temperature-sensitive allele, vg<sub>1</sub>v<sub>260</sub> was used; this chromosome also has an additional lethal and was crossed to the null allele vg<sub>1</sub>v<sub>260</sub>. Larvae of the genotype Egfr<sup>tsla</sup>/Egfr<sup>tsla</sup> or vg<sub>1</sub>v<sub>260</sub>/vg<sub>1</sub>v<sub>260</sub> were maintained at 18°C; to reduce activity, larvae were shifted to 30–31°C for a single 24 hr period at specific times in development and then returned to 18°C.

Acknowledgments

We thank J. Botas, S. Campuzano, S. Cohen, J. de Celis, S. Kerridge, J. Kumar, C.-H. Lu, J. Modolell, K. Moses, D. O’Keefe, T. Schüpbach, J.

Figure 5. Model to account for the role of EGFR signaling in wing and notum development. The wing and notum are specified by the action of two secreted signaling molecules, Wg and the EGFR ligand, Vn, which are expressed in the distal and proximal regions of the early second instar wing disc, respectively. Wg represses Vn expression restricting it to the proximal region. Wg and Vn define three domains in the early disc: (1) distal, high Wg/no EGFR signaling; (2) central, low Wg/low EGFR signaling; (3) proximal, high EGFR/no Wg. High EGFR signaling activity defines the notum by activating notum specific genes; it also functions to maintain Vn expression and can repress the expression of wing specific genes. Lower EGFR activity is also sufficient to activate ap expression defining the dorsal [D] compartment. An organizer for wing patterning is established at the DV boundary; wings fail to develop in the absence of Vn/EGFR signaling because this organizer is absent.

Early subdivision of the wing disc is under the control of Vn and Wg.

The results described here suggest that division of the early wing disc into presumptve wing and body wall regions is defined by the action of two secreted signaling molecules, Wg and Vn, which are required to repress Vn expression, which at high levels antagonizes wing development. Antagonism between Wg and EGFR signaling has also been demonstrated in segmental patterning of the embryo [O’Keefe et al. 1997; Szuts et al. 1997] and in development of the head and third instar wing pouch [Amin et al. 1999; Wessells et al. 1999], suggesting such a relationship between these pathways may be a common theme in a number of cell fate choices. Finding that one of the main functions of Wg in early wing specification is to repress Vn/EGFR signaling in the distal region of the early disc raises the question as to whether this is the only role of Wg in wing specification and hence if wing-cell fate can be specified in the absence of both signals. This seems unlikely as nubbins, an early wing cell marker [Ng et al. 1996], is not misexpressed proximally in a Vn mutant, where cells would lack both signals.

Vn/EGFR signaling promotes development of the notum by maintaining its own activity through transcriptional activation of Vn itself, and also promotes expression of ap. Thus, both Vn and ap appear to be targets of EGFR signaling, but the domain of ap is clearly wider than that of Vn, indicating that ap can be activated at a lower signaling threshold than Vn. Vn is a secreted molecule and thus could generate a gradient of EGFR activity. This provides an explanation for how EGFR signaling can regulate both wing and notum development: Vn autoregulation and notum development requires high

EGFR signaling activity whilst ap expression and subsequent wing development requires lower signaling activity (Fig. 5).
Wang et al.

Thomas, and the Bloomington Stock Center for reagents, our lab colleagues and R. Carthew, H. Chamberlin, and the reviewers for comments on the manuscript. This work was supported in part by the National Science Foundation (grant 97–24078 to A.S.).

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact.

References

Amin, A., Li, Y., and Finkelstein, R. 1999. Hedgehog activates the EGF receptor pathway during Drosophila head development. Development 126: 2623–2630.

Blair, S.S., Brower, D.L., Thomas, J.B., and Zavortink, M. 1994. The role of apterous in the control of dorsoventral compartmentalization and PS integrin gene expression in the developing wing of Drosophila. Development 120: 1805–1815.

Clifford, R.T. and Schüpbach, T. 1989. Coordinately and differentially mutable activities of torpedo, the Drosophila melanogaster homolog of the vertebrate EGF receptor gene. Genetics 122: 771–787.

Cohen, B., McGuffin, M.E., Pfeifle, C., Segal, D., and Cohen, S.M. 1992. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes & Dev. 6: 715–729.

Couso, J.P., Bate, M., and Martinez-Arias, A. 1993. A wingless-dependent polar coordinate system in Drosophila imaginal discs. Science 259: 484–489.

Dahmann, C. and Basler, K. 1999. Compartment boundaries: At the edge of development. Trends Genet. 15: 320–326.

de Celis, J.F. and Bray, S. 1997. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124: 3241–3251.

Dealy, C.N., Scranton, V., and Cheng, H.C. 1998. Roles of transforming growth factor-α and epidermal growth factor in chick limb development. Dev. Biol. 202: 43–55.

Diaz-Benjumea, F.J. and Cohen, S.M. 1993. Interaction between dorsal and ventral cells in the imaginal disc directs wing development in Drosophila. Cell 75: 741–752.

Díez del Corral, R., Aroca, P., Gómez-Skarmeta, J.L., Cavodeassi, F., and Modolell, J. 1999. The Iroquois homeodomain proteins are required to specify body wall identity in Drosophila. Genes & Dev. 13: 1754–1761.

García-Bellido, A., Ripoll, P., and Morata, G. 1976. Specification of the wing by localized expression of wingless protein. Nature 381: 316–318.

O’Keefe, L., Dougan, S.T., Gabay, L., Raz, E., Shilo, B.Z., and DiNardo, S. 1997. Spitz and Wingless, emanating from distinct borders, cooperate to establish cell fate across the Engrailed domain in the Drosophila epidermis. Development 124: 4837–4845.

Queenan, A.M., Ghabrial, A., and Schupbach, T. 1997. Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development 124: 3871–3880.

Rodríguez-Esteban, C., Schwabe, J.W., Pena, J.D., Rincon-Limás, D.E., Magallón, J., Botas, J., and Belmonte, J.C. 1998. Lhx2, a vertebrate homologue of apterous, regulates vertebrate limb outgrowth. Development 125: 3925–3934.

Schnepp, B., Grumbling, G., Donaldson, T., and Simcox, A. 1996. Vein is a novel component in the Drosophila epidermal growth factor receptor pathway with similarity to the neuregulins. Genes & Dev. 10: 2302–2313.

Schnepp, B., Donaldson, T., Grumbling, G., Ostrowski, S., Schweitzer, R., Shilo, B.Z., and Simcox, A. 1998. EGF domain swap converts a Drosophila EGF-receptor activator into an inhibitor. Genes & Dev. 12: 908–913.

Sharma, R.P. and Chopra, V.L. 1976. Effect of the Wingless [wg1] mutation on wing and haltere development in Drosophila melanogaster. Dev. Biol. 48: 461–465.

Simcox, A.A., Grumbling, G., Schnepp, B., Bennington-Mathias, C., Herbsperger, E., and Shearn, A. 1996. Molecular, phenotypic, and expression analysis of vein, a gene required for growth of the Drosophila wing disc. Dev. Biol. 177: 475–489.

Szuts, D., Freeman, M., and Bienz, M. 1997. Antagonism between EGF and Wingless signaling in the larval cuticle of Drosophila. Development 124: 3209–3219.

Wessells, R.J., Grumbling, G., Donaldson, T., Wang, S.H., and Simcox, A. 1999. Tissue-specific regulation of vein/EGF receptor signaling in Drosophila. Dev. Biol. 216: 243–259.

Williams, J.A., Paddock, S.W., and Carroll, S.B. 1993. Pattern formation in a secondary field: A hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development 117: 571–584.

Yamitzky, T., Min, L., and Volk, T. 1997. The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment cells. Genes & Dev. 11: 2691–2700.
Dual role for *Drosophila* epidermal growth factor receptor signaling in early wing disc development

Shu-Huei Wang, Amanda Simcox and Gerard Campbell

*Genes Dev.* 2000, 14:
Access the most recent version at doi:10.1101/gad.827000

---

**References**
This article cites 31 articles, 16 of which can be accessed free at:
http://genesdev.cshlp.org/content/14/18/2271.full.html#ref-list-1

**License**

**Email Alerting Service**
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.