Comment on “Deep Ensemble Machine Learning Framework for the Estimation of PM$_{2.5}$ Concentrations”

Massimo Stafoggia,1© Giorgio Cattani,2 Carla Ancona,1 Antonio Gasparini,3 and Andrea Ranzi4

1Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome, Italy
2Institute for Environmental Protection and Research, Rome, Italy
3Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
4Environmental Health Reference Centre, Regional Agency for Environmental Prevention of Emilia-Romagna, Modena, Italy

https://doi.org/10.1289/EHP11385

Yu et al.1 applied an innovative methodology, deep ensemble machine learning, to estimate daily concentrations of ambient particulate matter with an aerodynamic diameter of <2.5 μm (PM$_{2.5}$) in 2015–2019 at 1-km2 spatial resolution in Italy. To do so, they trained multiple prediction models on PM$_{2.5}$ concentrations measured at 133 monitoring stations.

We recently published similar studies in Italy using alternative methods, including mixed-effects models,2 random forests,1,4 ensemble techniques,3 and Bayesian approaches.6 We believe that Yu et al.1 did not adequately consider critical questions, negatively affecting the validity and interpretation of their results.

First, the set of monitoring stations measuring fine particles in Italy during 2015–2019 is much larger than the one used by Yu et al. (Figure S2 in their appendix1). Figure 1 shows the 289 monitors measuring PM$_{2.5}$ during a slightly different period (2016–2019) that used in our recent publication.7 The comparison of the two maps shows that Yu et al. did not include stations in Southern Italy or in the two main islands, Sicily and Sardinia. These areas have unique geoclimatic conditions and source profiles of ambient PM$_{2.5}$ concentrations, with a mixture of anthropogenic emissions from large industrial plants and heavily urbanized areas, coupled with natural sources such as sea salt, desert dust from North Africa, forest fires and volcanic emissions from Mount Etna.7 Such complexity is extremely difficult to capture with any empirical predictive model.7

Second, the cross-validated coefficient of determination and root mean square errors reported by Yu et al. cannot be compared with those previously published,$^{2-6}$ because they are based on a small number of monitors selected in areas where a higher performance of spatiotemporal prediction models has been previously documented.4

Third, we are surprised not to find several key predictors of spatial (e.g., road network, impervious surfaces, industrial sites) or spatiotemporal (e.g., desert dust episodes, outputs from atmospheric dispersion models, planetary boundary layer, vegetation indices) variability of PM$_{2.5}$. Such predictors were used in previous applications$^{2-6}$ and allowed the capture, at least partially, of the geoclimatic complexity of southern regions.

In conclusion, we consider the methodological effort from Yu et al. a valid contribution to the literature. However, because their model represents only 6 of 20 regions contributing sufficient data, we question the use of their PM$_{2.5}$ estimates for later epidemiological studies using Italian data.

References

1. Yu W, Li S, Ye T, Xu R, Song J, Guo Y. 2022. Deep ensemble machine learning framework for the estimation of PM$_{2.5}$ concentrations. Environ Health Perspect 130(3):37004, PMID:35254864, https://doi.org/10.1289/EHP9752.
2. Stafoggia M, Schwartz J, Badaloni C, Bellander T, Alessandrini E, Cattani G, et al. 2017. Estimation of daily PM$_{10}$ concentrations in Italy (2006–2013) using finely resolved satellite data, land use variables and meteorology. Environ Int 99:234–244, PMID: 28017360, https://doi.org/10.1016/j.envint.2016.11.024.
3. Stafoggia M, Bellander T, Bucci S, Davoli M, de Hoogh K, De’Donato F, et al. 2019. Estimation of daily PM$_{10}$ and PM$_{2.5}$ concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ Int 124:170–179, PMID: 30654325, https://doi.org/10.1016/j.envint.2019.01.016.
4. Stafoggia M, Cattani G, Ancona A, Ranzi A. 2020. Exposure assessment of air pollution in Italy 2016–2019 for future studies on air pollution and COVID-19. [In
5. Shtein A, Kloog I, Schwartz J, Silibello C, Michelozzi P, Gariazzo C, et al. 2020. Estimating daily PM$_{2.5}$ and PM$_{10}$ over Italy using an ensemble model. Environ Sci Technol 54(1):120–128, PMID: 31749355, https://doi.org/10.1021/acs.est.9b04279.

6. Fioravanti G, Martino S, Cameletti M, Cattani G. 2021. Spatio-temporal modelling of daily concentrations in Italy using the SPDE approach. Atmos Environ 248:118192, https://doi.org/10.1016/j.atmosenv.2021.118192.

7. Sistema Nazionale per la Protezione dell’Ambiente. 2020. La Qualità dell’Aria in Italia. Edizione 2020. SNPA, Rapporti 17/2020. https://www.snpambiente.it/wp-content/uploads/2020/12/QUALITA-ARIA-ITALIA.pdf [accessed 13 April 2022].