Myeloid sarcoma of the colon as initial presentation in acute promyelocytic leukemia: A case report and review of the literature

Lei Wang, Da-Li Cai, Na Lin

ORCID number: Lei Wang 0000-0003-1075-0086; Da-Li Cai 0000-0003-2441-223X; Na Lin 0000-0002-6725-1205.

Author contributions: Wang L and Cai DL guided the diagnosis and treatment of this case; Wang L and Lin N reviewed all the related literature and analyzed the clinical data; Wang L drafted the manuscript; Lin N critically revised the manuscript; all authors read and approved the final manuscript.

Supported by the National Natural Science Foundation of China (General Program), No. 81170519.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest to report.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external

Abstract

BACKGROUND
Myeloid sarcoma (MS) rarely occurs in acute promyelocytic leukemia (APL) at onset, but it can develop in relapse cases, especially after APL treated with all-trans retinoic acid (ATRA). Therefore little is known about the clinical features and suitable treatment for APL related MS due to the rarity of the disease, although this may be different from the treatment and prognosis of MS in the relapse stage. To our best knowledge, this is the second case report of APL initial presentation as colon MS.

CASE SUMMARY
A 77-year-old woman complained of intermittent right lower abdominal pain, black stool, and difficult defecation for 2 mo. Physical examination showed diffuse tenderness during deep palpation and an anemic appearance. Laboratory findings showed positivity for fecal occult blood testing; white blood cell count: 3.84 × 10^9/L; hemoglobin: 105 g/L; platelet count: 174 × 10^9/L; and negativity for tumor markers. Abdominal enhanced computed tomography showed a space occupying lesion in the colon (1.9 cm). Fibrocolonoscopy revealed a polypoid and ulcerated mass measuring 2.5 cm. The tumor was removed. To our surprise, MS was confirmed by immunohistochemistry. *PML/RARα* fusion gene was detected in colon specimens by fluorescent in situ hybridization and real-time reverse transcription polymerase chain reaction, which was consistent with the bone marrow. She was diagnosed as having APL related MS. A smooth and unobstructed intestinal wall was found by fibrocolonoscopy, and continuous molecular remission was confirmed in both the bone marrow and colon after four courses of ATRA + arsenic trioxide (ATO). ATRA + ATO showed a favorable therapeutic response for both APL and MS.

CONCLUSION
Early use of ATRA can benefit APL patients, regardless of whether MS is the first or recurrent manifestation.
Myeloid sarcoma (MS) may exist as an independent tumor, or as an extramedullary disease (EMD) developing in patients with acute myeloid leukemia (AML)\[1\], especially M2, M4, and M5 subtypes. MS is an extramedullary tumor consisting of immature myeloid cells. It can occur in any part of the body, in particular the skin, bone, lymph nodes, soft tissue, testis, and gastrointestinal tract. MS may develop de novo or even concurrently with 3%-8% of AML patients. It may be the only initial manifestation of relapse in AML patients regardless of the examination results of blood and bone marrow. MS rarely occurs in acute promyelocytic leukemia (APL) at onset\[2-4\], but it can develop in relapse cases, especially after APL treated with all trans retinoic acid (ATRA)\[5\]. de Botton et al\[3\] have reported the association between treatment with ATRA and extramedullary relapses. What’s more, de novo MS as the first manifestation of APL is really a rare event, which occurs in less than 1% of EMD cases\[6,7\]. Therefore, little is known about the clinical features and suitable treatment for APL related MS due to the rarity of the disease, although these may be different from those of MS in the relapse stage. To our best known, this is the second case of APL with colon MS as the initial presentation.

CASE PRESENTATION

Chief complaints
A 77-year-old woman complained of intermittent right lower abdominal pain, black stool, and difficult defecation for 2 mo.

History of present illness
The patient’s uncomfortable symptoms started 2 mo ago, which had worsened over the last week.

History of past illness
The patient’s medical history included diabetes and hypertension for 3 years.

Personal and family history
The patient’s mother had a history of hypertension.
Physical examination
The patient’s body temperature was 36.9 °C, tachycardia was 101 bpm, respiratory rate was 20 breaths/min, and blood pressure was 145/75 mmHg. Physical examination showed muscle tension, Murphy’s sign and voiced mobility was negative, but diffuse tenderness during deep palpation and bowel sounds were observed 3 times per minute, together with an anemic appearance.

Laboratory examinations
Laboratory findings showed positivity for fecal occult blood testing; serum amylase: 29 U/L; serum lipase: 14.8 U/L; white blood cell (WBC) count: 3.84 × 10^9/L; hemoglobin: 105 g/L; platelet count: 174 × 10^9/L; and negativity for tumor markers.

Imaging examinations
Hepatomegaly and splenomegaly were not found by Doppler ultrasound of the abdomen. Abdominal enhanced computed tomography showed a space occupying lesion in the colon (1.9 cm), with obvious enhancement. Fibrocolonoscopy revealed a polypoid and ulcerated mass measuring 2.5 cm, with hyperemia and erosion of the ileocecal mucosa, irregular ulcer, uneven bottom, annular lesions in the mucosa, and moderate to severe inflammatory cell infiltration. Part of the tumor was removed for biopsy.

FINAL DIAGNOSIS
To our surprise, MS was confirmed by immunohistochemistry using a panel of myeloid cell surface marker antibodies, which revealed CK+, CD68+, CgA+, CD117+, and MPO+. The Ki67 index was 65%, and B-cell and T cell lymphomas were excluded by negative staining for CD20 and CD3. Subsequently, bone marrow aspiration revealed 68% of blasts, and the patient was diagnosed with APL based on the morphology (Figure 1A) and immunohistochemistry (CD33+, CD117+, CD13+, CD64+, MPO+, CD9+, CD34-, CD10-, and cCD79a-) (Figure 1B). Cytogenetics revealed a karyotype with t (15; 17) (q22; q21) (Figure 1C), and a real-time reverse transcription polymerase chain reaction assay showed a typical PML/RARα fusion, which further confirmed the diagnosis. Fluorescence in situ hybridization (FISH) using a PML/RARα dual-color, dual-fusion probe showed PML/RARα fusion signals (Figure 1D). PML/RARα fusion gene was also detected in colon specimens by FISH and real-time reverse transcription polymerase chain reaction (PCR), which was consistent with the bone marrow (Figure 1E). The final diagnosis was APL related MS (MS/APL).

TREATMENT
After two courses of ATRA + arsenic trioxide (ATO) treatment, the patient’s symptoms improved, and laboratory examination showed improvement of anemia. PCR analysis for PML/RARα transcription and FISH using a PML/RARα dual-color, dual-fusion probe on bone marrow cells confirmed molecular remission. Meanwhile, colon ulcerative lesions improved significantly, as revealed by fibrocolonoscopy.

OUTCOME AND FOLLOW-UP
Continuous molecular remission was confirmed in both the bone marrow and colon. A smooth and unobstructed intestinal wall was found by fibrocolonoscopy without ulcer or polypoid masses after four courses of ATRA + ATO. ATRA + ATO showed a favorable therapeutic response for both APL and MS.

DISCUSSION
MS as an initial presentation of APL is an extremely rare event, and more than 95% of cases occur at the time of relapse, especially after ATRA treatment[8]. High WBC count is suggested as a risk factor[7]. ATRA enhances the migration and adhesion of
Figure 1 Laboratory examination results of this patient. A: Bone marrow morphology revealed 68% of abnormal promyelocyte cells (100 ×); B: Flow cytometric analysis of bone marrow cells showed a population of abnormal cells (P3: 69.6%); C: Karyotype of this patient: 46, XX, t (15; 17) (q22; q21); D: Fluorescence in situ hybridization (FISH) results in bone marrow cells at diagnosis showed PML/RARα fusion; E: FISH results in intestinal tissue cells at diagnosis showed PML/RARα fusion.

extramedullary tissues by increasing the adhesion molecules of leukemia cells in vitro, which explains why the number of patients with extramedullary relapse is increasing [9]. However, the risk of EMD after treatment with ATRA is not increased compared with chemotherapy alone in a large cohort study [10]. MS has the tendency to develop into AML, and most of the untreated MS cases transformed into acute leukemia within 6 mo. So comprehensive and careful examination of the bone marrow smear and biopsy is important for patients with MS in order to rule out bone marrow involvement [11,12]. However, PML/RARα fusion gene or characteristic chromosome translocation of MS could be detected in patients with a normal result of bone marrow smear and blood routine test. Once bone marrow is involved, it should be treated according to the workup of APL. For MS, surgical resection, radiotherapy, systemic chemotherapy, and hematopoietic stem cell transplantation are the main treatment methods [13]. For MS/APL, early use of ATRA can improve the prognosis, regardless of whether MS is the first or recurrent manifestation. A misdiagnosis of lymphoma may occur and diagnostic distinction can be difficult [14,15] in the isolated presentation of MS without any signs of leukemia. Tissue examination plays a very important role in
the diagnosis of MS, because some patients have no bone marrow involvement at the time of onset. When fresh tissue samples cannot be obtained, the cytogenetic abnormalities of fixed section and paraffin embedded section can be detected by FISH [16]. Once PML/RARα fusion gene is found in de novo MS, it is recommended to use ATRA treatment and pay attention to monitoring the condition of peripheral blood and bone marrow.

De novo MS/APL is a very rare disease. Its clinical features and prognosis may be different from those of EMD, and the disease free survival may be shorter than MS occurring in APL relapse. To date, a total of 28 cases of APL with MS as the initial presentation have been reported worldwide (Table 1)[17-41]. The average age of onset was 35 (1-77) years, and sex-bias phenomenon (only 8 female) was difficult to explain due to the limited number of patients. The sites of de novo MS were widely distributed, and the most common sites were vertebra (6 cases) and extradural (6 cases), followed by the intestine, tongue, pelvis, skull, pleura, hip, mandible, spinal, humerus, tibia, femur, sternum, skin, mediastinal, thymus, cerebellum, and testicle. A single site was involved in most cases (16/28), and multiple site MS occurred in a few APL patients. Only one patient carried a complex karyotype, and PML/RARα was detected in de novo MS/APL in 22 patients. Bone marrow involvement was found in most patients (18/28), and 6 of the remainders developed bone marrow involvement within 1-16 mo. Increased/decreased WBC count was only seen in nine cases, the remainders’ (19/28) WBC count was normal at the time of onset. In addition, the coagulation dysfunction characteristic was observed in only six patients. The optimum therapy for MS/APL is also unclear. Twenty de novo MS/APL patients received ATRA with chemotherapy; 16 achieved complete remission (CR), two achieved PR, and the other two died of sepsis and cerebral hemorrhage, respectively. On the other hand, eight patients were treated only with chemotherapy without ATRA or ATO; two achieved CR, one achieved PR, and the remaining five died. The longest follow-up until now was 96 mo, and in this case, the patient was treated with radiotherapy + ATRA + chemotherapy, although radiotherapy or tumor resection together with ATRA and chemotherapy may improve the prognosis of MS/APL. MS/APL is a kind of disease with diverse clinical manifestations, molecular biology, and cytogenetics, is easily confused with stromal tumor, lymphoma, and carcinoma, and is therefore associated with a high misdiagnosis rate, poor prognosis, and high recurrence rate. Our patient complained of intermittent right lower abdominal pain, black stool, and difficult defecation, which reminded us of the possibility of gastrointestinal tumor. MS occurring in the gastrointestinal tract is relatively rare when MS occurs as the first presentation in acute promyelocytic leukemia, and only four cases have been described in the literature (Table 1, cases 25-27 and current case). Abdominal pain, change in bowel habit, and small bowel obstruction were the most common clinical presentation. In conclusion, gastrointestinal bleeding may result from coagulopathy disorders or serious thrombocytopenia caused by leukaemia, especially in APL patients, but the bleeding can also be the consequence of gastrointestinal MS. Therefore, gastrointestinal MS must be considered in those who present with black or bloody stool. However, prospective and large sample clinical trials are needed to determine the optimal treatment for MS/APL. Early recognition of this rare disease with timely treatment may improve the outcomes of patients.

CONCLUSION

To our knowledge, this is the second case report of APL with colon MS the initial presentation. De novo MS/APL is a very rare disease. Its clinical features and prognosis may be different from those of EMD in APL relapse. Once PML/RARα fusion gene is found in de novo MS, it is recommended to use ATRA treatment and pay attention to monitoring the condition of peripheral blood and bone marrow. Early use of ATRA can benefit the APL patients, and radiotherapy or tumor resection together with ATRA and chemotherapy may improve the prognosis of MS/APL, regardless of whether MS is the first or recurrent manifestation.
Case	Age/sex	Location	Single or multiple sites	Chromosome	Gene	BM involvement	Progression to APL	Coagulation abnormality	WBC	Treatment	Prognosis	Ref.
1	55/M	Vertebra, extradural	Multiple	-	PML/RARα	No	No	No	Normal	ATRA, chemotherapy, radiation	CR (15 mo, ongoing)	Fiegl et al [17]
2	26/M	Vertebra, extradural	Multiple	t (15; 17)	PML/RARα	Yes	-	No	Low	ATRA, chemotherapy	CR (22 wk, ongoing)	Specchia et al [10]
3	61/F	Vertebra	Single	-	PML/RARα	No	No	-	Normal	ATRA, chemotherapy	CR (96 mo, ongoing)	Pišán et al [18]
4	52/F	Vertebra	Multiple	t (15; 17)	PML/RARα	Yes	-	No	Normal	ATRA, chemotherapy	CR (54 mo, ongoing)	Cornfield et al [19]
5	56/M	Vertebra	Single	t (15;17)	PML/RARα	Yes	-	No	Normal	ATRA, chemotherapy, ASCT, ATO	CR (44 mo, ongoing)	Shah et al [20]
6	50/F	Vertebra	Single	t (15; 17)	PML/RARα	Yes	-	-	Low	ATRA, ATO, chemotherapy	CR (293 d, ongoing)	Morig et al [21]
7	31/M	Extradural	Multiple	-	-	No	Yes (32 d)	Yes	Normal	Radiotherapy, ASCT	PR (23 mo, ongoing)	Zuiable et al [22]
8	53/M	Extradural	Single	t (15; 17)	PML/RARα	Yes	-	Yes	Normal	Radiotherapy, ATRA, chemotherapy	No improvement, died of sepsis	Bittencourt et al [23]
9	18/M	Extradural	Multiple	t (15; 17)	-	No	Yes (10 mo)	No	Normal	Chemotherapy	CR (11mo, ongoing)	Savranlar et al [24]
10	27/M	Extradural	Single	t (15; 17)	PML/RARα	Yes	-	Yes	Normal	Tumor removed, ATRA, chemotherapy, radiotherapy	CR (293 d, ongoing)	Tosi et al [25]
11	4/M	Pelvis	Single	-	-	Yes	-	Yes	High	Chemotherapy	CR (14 mo, ongoing)	Belasco et al [26]
12	-/M	Skull, pleura, hip	Multiple	t (15; 17)	PML/RARα	No	No	-	Normal	ATRA, chemotherapy	CR (13 mo, ongoing)	Bobbio-Pallavicini et al [27]
13	16/F	Humerus, tibia, femur	Multiple	t (15; 17)	PML/RARα	Yes	-	No	Normal	ATRA, chemotherapy	CR (ongoing)	Fiegl et al [17]
14	1/M	Mandible	Single	-	PML/RARα	Yes	No	-	ATRA, chemotherapy	CR (12 mo, ongoing)	Yamashita et al [28]	
15	50/M	Spinal	Multiple	(47, XY, +8, der (11; 22) (q10; q10), add (14) (q32), der (15) t (15; 17) (q22; q12), ider (17) (q10) t (15; 17))	PML/RARα	No	Yes (10 mo)	No	Normal	Chemotherapy	Died of a brain hemorrhage (40 mo)	Yamashita et al [29]
---	---	---	---	---	---	---	---	---				
16	19/M	Sternum	Single	t (15; 17)	PML/ RARα	No	No	No	Normal	Tumor removed, ATRA, chemotherapy	CR (24 wk, ongoing)	Thomas et al.[30]
17	45/M	Tongue	Single	t (15; 17)	PML/ RARα	Yes	-	-	High	ATRA, chemotherapy	CR (12 mo, ongoing)	Mohamedbhai et al.[31]
18	35/M	Tongue	Single	t (15; 17)	PML/ RARα	Yes	-	No	High	ATRA, chemotherapy	CR (ongoing)	Ignacio-Cconchoy et al.[32]
19	34/M	Skin	Multiple	-	-	Yes	-	Yes	High	Chemotherapy	Died (1 mo)	Uematsu et al.[33]
20	23/M	Mediastinal	Single	-	-	No	Yes (2 mo)	No	Normal	Radiotherapy, chemotherapy	Died of heart failure (14 mo)	Kubonishi et al.[34]
21	21/M	Thymus	Multiple	-	-	Yes	-	No	High	Chemotherapy	Died (8 mo)	Ajarim et al.[35]
22	27/m	Testicle	Multiple	-	PML/ RARα	No	Yes (16 mo)	No	Normal	Radiotherapy, ATRA, chemotherapy	PR (16 mo, ongoing)	Gopal et al.[36]
23	39/F	Cerebellum	Single	t (15; 17)	PML/ RARα	Yes	-	Yes	High	Chemotherapy	Die of cerebral hemorrhage	Fukushima et al.[37]
24	26/F	Ovary	Single	-	PML/ RARα	No	Yes	No	Normal	Chemotherapy, ATRA	PR (43 mo, ongoing)	Wang et al.[38]
25	17/F	Rectum	Single	t (15; 17)	PML/ RARα	Yes	-	-	Normal	ATRA, chemotherapy	CR (48 mo, ongoing)	Berjazia et al.[39]
26	66/M	Small intestine	Single	t (15; 17)	PML/ RARα	Yes	-	No	Normal	ATRA, chemotherapy	Died of cerebral hemorrhage	Takeh et al.[40]
27	29/M	Colon	Multiple	t (15; 17)	PML/ RARα	Yes	-	No	Low	ATRA, chemotherapy	CR (2 mo, ongoing)	Damodar et al.[41]
Current case	77/F	Colon	Single	t (15; 17)	PML/ RARα	Yes	-	No	Normal	Tumor removed, ATRA, ATO	CR (6 mo, ongoing)	

ATRA: All-trans retinoic acid; ATO: Arsenic trioxide; ASCT: Autologous stem cell transplantation; CR: Complete remission; PR: Partial remission.

REFERENCES

1 Polyatskin II, Artemyeva AS, Krivolapov YA. [Revised WHO classification of tumors of hematopoietic and lymphoid tissues, 2017 (4th edition): lymphoid tumors]. Arkh Patol 2019; 81: 59-65 [PMID: 31317932 DOI: 10.17116/patol20198103159]

2 Wiernik PH, De Bellis R, Muxi P, Dutcher JP. Extramedullary acute promyelocytic leukemia. Cancer 1996; 78: 2510-2514 [PMID: 8952559 DOI: 10.1002/(sici)1097-0142(19961215)78:12<2510::aid-cncr10>3.0.co;2-z]

3 de Botton S, Sanz MA, Chevret S, Dombret H, Martin G, Thomas X, Mediavilla JD, Recher C, Ades L, Quensel B, Brauli P, Fey M, Wandt H, Machover D, Guerci A, Maloisel F, Stoppa AM, Rayon C, Ribera JM, Chomienne C, Degos L, Fenaux P; European APL Group; PETHEMA Group.
Extramedullary relapse in acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. *Leukemia*. 2006; 20: 35–41 [PMID: 16307026 DOi: 10.1038/sj.leu.2404006]

Weiss MA, Warrell RP Jr. Two cases of extramedullary acute promyelocytic leukemia. Cytogenetics, molecular biology, and phenotypic and clinical studies. Cancer 1994; 74: 1882-1886 [PMID: 8082994 DOi: 10.1002/1097-0142(19941001)74:7<1882::aid-cncr2820740709>3.0.co;2-w]

Ganzel C, Douver D. Extramedullary disease in APL: a real phenomenon to contend with or not? *Best Pract Res Clin Haematol*. 2014; 27: 63-68 [PMID: 24907018 DOi: 10.1016/j.beha.2014.04.001]

Liso V, Specchia G, Pagliani EM, Palumbo G, Minimi D, Rossi V, Teruzzi E, Mestice A, Coppi MR, Bondi A. Extramedulitary involvement in patients with acute promyelocytic leukemia: a report of seven cases. *Cancer*. 1998; 83: 1522-1528 [PMID: 9781945 DOi: 10.1002/(SICI)1097-0142(19981015)83:8<1522::AID-CNCR6>3.0.CO;2-4]

Vega-Ruiz A, Faderl S, Estrov Z, Pierce S, Cortes J, Kantarjian H, Ravandi F. Incidence of extramedullary disease in patients with acute promyelocytic leukaemia: a single-institution experience. *Int J Hematol*. 2009; 89: 489-496 [PMID: 19340529 DOi: 10.1007/s12185-009-0291-8]

Kyaw TZ, Maniam JA, Bee PC, Chin EF, Nadarajan VS, Shamgunug H, Kadir KA. Myeloid sarcoma: an unusual presentation of acute promyelocytic leukemia causing spinal cord compression. *Turk J Haematol*. 2012; 29: 278-282 [PMID: 224744674 DOi: 10.5505/tjh.2012.94809]

Cunha De Santos G, Tamarozzi MB, Sousa RB, Moreno SE, Secco D, Garcia AB, Lima AS, Faccioli LH, Falcão RP, Cunha FQ, Rego EM. Adhesion molecules and Differentiation Syndrome: phenotypic and functional analysis of the effect of ATRA, As2O3, phenylbutyrate, and G-CSF in acute promyelocytic leukemia. *Haematologica*. 2007; 92: 1615-1622 [PMID: 18053984 DOi: 10.3324/haematol.10607]

Specchia G, Lo Coco F, Vignetti M, Avvisati G, Fazi P, Albano F, Di Raimondo F, Martino B, Ferrara F, Selleri C, Liso V, Mandelli F. Extramedulillary involvement at relapse in acute promyelocytic leukaemia patients treated or not with all-trans retinoic acid: a report by the Gruppo Italiano Malattie Ematologiche dell’Adulto. *J Clin Oncol* 2001; 19: 4023-4028 [PMID: 11660063 DOi: 10.1200/JCO.2001.19.20.4023]

Tsimeridou AM, Kantarjian HM, Estey E, Cortes JE, Verstovsek S, Faderl S, Thomas DA, Garcia-Manero G, Ferrajoli A, Manning JT, Keating MJ, Albitar M, O’Brien S, Giles FJ. Outcome in patients with nonleukemic granulocytic sarcoma treated with chemotherapy with or without radiotherapy. *Leukemia*. 2003; 17: 1100-1103 [PMID: 12764375 DOi: 10.1038/sj.leu.2402958]

Avni B, Rund D, Levin M, Grisariu S, Ben-Yehuda D, Bar-Cohen S, Paltiel O. Clinical implications of acute myeloid leukaemia presenting as myeloid sarcoma. *Hematol Oncol*. 2012; 30: 34-40 [PMID: 21638303 DOi: 10.1002/hon.994]

Shimizu H, Saitoh T, Tanaka M, Mori T, Sakaka S, Kawai N, Kanda Y, Nakaseco C, Yano S, Fujita H, Fujisawa S, Miyawaki S, Kanamori H, Okamoto S. Allogeneic hematopoietic stem cell transplantation for adult AML patients with granulocytic sarcoma. *Leukemia*. 2012; 26: 2469-2473 [PMID: 22699453 DOi: 10.1038/leu.2012.156]

Worche J, Ritter J, Fröhwald MC. Presentation of acute promyelocytic leukemia as granulocytic sarcoma. *Pediatr Blood Cancer*. 2008; 50: 657-660 [PMID: 17437290 DOi: 10.1002/pbc.21190]

Menasse CP, Banerjee SS, Beckett E, Harris M. Extra-medullary myeloid tumour (granulocytic sarcoma): is often misdiagnosed: a study of 26 cases. *Histopathology* 1999; 34: 391-398 [PMID: 10231412 DOi: 10.1046/j.1365-2559.1999.00561.x]

Pileri SA, Ascani S, Cox MC, Campidelli C, Bacci F, Piccioli M, Piccaluga PP, Agostinelli C, Asioli S, Novero D, Baccarani M, Pantano G, Gentile A, Rinaldi F, Franco V, Vincenti D, Pileri A Jr, Gasbarra R, Falini B, Zinzani PL. Myeloid sarcoma: clinicopathologic, phenotypic and cytogenetic analysis of 92 adult patients. *Leukemia*. 2007; 21: 340-350 [PMID: 17170724 DOi: 10.1038/sj.leu.2404491]

Fieg M, Rieder C, Braas J, Haferlach T, Schmittner S, Schoch O, Hiddemann W, Ostermann H. Isolated epidural chloroma with translocation t15; 17 successfully treated with chemotherapy and all-trans-retinoic acid. *Br J Haematol*. 2003; 122: 688-689 [PMID: 12899728 DOi: 10.1046/j.1365-2141.2003.04490.x]

Pihan MA, Ardanaz MT, Guinea JM, García-Ruiz JC. Myeloid sarcoma preceding an acute promyelocytic leukaemia with neuronegial infiltration. *Ann Hematol*. 2014; 93: 339-340 [PMID: 23716188 DOi: 10.1007/s00277-013-1795-0]

Cornfield D, Gheith S, Barron L. Promyelocytic sarcoma presenting with spinal cord compression and treated successfully with surgical debulking and the PETHHEMA regimen for acute promyelocytic leukemia. *Case Rep Clin Pathol*. 2015; 2: 12-16 [DOi: 10.5430/crclp.v2i3p12]

Shah NN, Stonecypher M, Gopal P, Luger S, Bagg A, Perl A. Acute promyelocytic leukemia presenting as a paraspinal mass. *J Community Support Oncol*. 2016; 14: 126-129 [PMID: 27058871 DOi: 10.12788/jcso.0220]

Mori S, Shahram, Laloui, Lamia, Patel, Rushang D, Shen Q, Ahmed Wesam. Sternal Soft Tissue Mass as Initial Presentation in a Case of Acute Promyelocytic Leukemia (APL). *Biol Blood Marrow Transplant*. 2017; 23: S249 [DOi: 10.1016/j.bbmt.2016.12.415]

Zuible A, Aboud H, Nandi A, Powles R. Treleaven J. Extramedullary disease initially without bone marrow involvement in acute promyelocytic leukaemia. *Clin Lab Haematol*. 1989; 11: 288-289 [PMID: 2591162 DOi: 10.1111/j.1365-2257.1989.tb02233.x]

Bittencourt H, Teixeira Junior AL, Glória AB, Ribeiro AF, Fagundes EM. Acute promyelocytic leukemia presenting as an extradural mass. *Rev Bras Hematol Hemoter*. 2011; 33: 478-480 [PMID:
Wang L et al. APL in disguise of colon disease

23049367 DOI: 10.5581/1516-8484.20110126

24 Savranlar A, Üstündağ Y, Ozer T, Bayraktaroglu T, Demircan N, Ozdemir H, Borazan A. A thoracic-epidural granulocytic sarcoma case that was diagnosed preceding the onset of and that recurred co-incidental to acute promyelocytic leukaemia, which developed after surgical treatment. Acta Med Okayama 2004; 58: 251-254 [PMID: 15666994 DOI: 10.1892/AMO.32.4.251]

25 Tosi A, De Paoli A, Fava S, Luoni M, Sironi M, Tocci A, Assi A, Cassi E. Undifferentiated granulocytic sarcoma: a case with epideral onset preceding acute promyelocytic leukaemia. Haematologica 1995; 80: 44-46 [PMID: 7758990]

26 Belasco JB, Bryan JH, McMillan CW. Acute promyelocytic leukaemia presenting as a pelvic mass. Med Pediatr Oncol 1978; 4: 289-295 [PMID: 281594 DOI: 10.1002/mpo.2950040403]

27 Bobbio-Pallavicini E, Cannatelli G, Motta E, Grassi M, Bergamaschi G, Rosso R, Moroni M. Histologic diagnosis and precocious treatment in a case of isolated promyelocytic sarcoma. Leukemia 1998; 12: 2035-2036 [PMID: 9844936 DOI: 10.1038/sj.leu.2401227]

28 Yamashita Y, Isomura N, Hamasaki Y, Goto M. Case of pediatric acute promyelocytic leukaemia presenting as extraduillary tumor of the mandible. Head Neck 2013; 35: E310-E313 [PMID: 22972688 DOI: 10.1002/hed.23163]

29 Yamashita T, Nishijima A, Noguchi Y, Narukawa K, Oshikawa G, Takano H. Acute promyelocytic leukaemia presenting as recurrent spinal myeloid sarcomas 3 years before developing leukaemia: A case report with review of literature. Clin Case Rep 2019; 7: 316-321 [PMID: 30847197 DOI: 10.1002/ccr3.1991]

30 Thomas X, Chelghoun Y. Promyelocytic sarcoma of the sternum: a case report and review of the literature. Korean J Hematol 2011; 46: 52-56 [PMID: 21461306 DOI: 10.5045/kjh.2011.46.1.52]

31 Mohamedbhai S, Pule M, Conn B, Hopper C, Ramsay A, Khwaja A. Acute promyelocytic leukaemia presenting with a myeloid sarcoma of the tongue. Br J Haematol 2008; 141: 565 [PMID: 18373707 DOI: 10.1111/j.1365-2141.2008.07080.x]

32 Ignacio-Conechey FL, Benites-Zapata VA, Yanac-Avila RL, Vela-Velásquez CT. Myeloid sarcoma of the tongue as the first manifestation of acute promyelocytic leukaemia: A case report. Rep Pract Oncol Radiother 2020; 25: 174-177 [PMID: 32021572 DOI: 10.1016/j.rpor.2019.12.026]

33 Uematsu I, Wataya K, Kato K, Yoshimi H, Kubori S. [Case of acute promyelocytic leukaemia with leukaemia cutis]. Naika 1970; 26: 357-362 [PMID: 5270916]

34 Kubonishi I, Ohtsuki Y, Machida K, Agatsuma Y, Tokuoka H, Iwata K. Granulocytic sarcoma presenting as a mediastinal tumor. Report of a case and cytological and cytochemical studies of tumor cells in vivo and in vitro. Am J Clin Pathol 1984; 82: 730-734 [PMID: 6594928 DOI: 10.1093/ajcp/82.6.730]

35 Ajarim DS, Santosh-Kumar CR, Higgy KE, el Saghir NS, Almomen AK, Shipkey FD. Granulocytic sarcoma of the thymus in acute promyelocytic leukaemia. Clin Lab Haematol 1990; 12: 97-99 [PMID: 2344722 DOI: 10.1111/j.1365-2257.1990.tb01115.x]

36 Gopal S, Marcussen S, Dobin SM, Koss W, Donner LR. Primary myeloid sarcoma of the testicle with t(15;17). Cancer Genet Cytogenet 2005; 157: 148-150 [PMID: 15721636 DOI: 10.1016/j.cancergencyto.2004.06.010]

37 Fukushima S, Terasaki M, Tajima Y, Shigemori M. Granulocytic sarcoma: an unusual complication of acute promyelocytic leukemia causing cerebellar hemorrhage. Case report. J Neurosurg 2006; 105: 912-915 [PMID: 17402526 DOI: 10.3171/jns.2006.105.6.912]

38 Wang X, Liu H, Wu Z, Xu X, Chen X, Zhai Z, Sun Z. A case of acute promyelocytic leukaemia presenting with a nonleukemic granulocytic sarcoma of the ovari, with subsequent development of acute myeloid leukaemia associated with t(8;21). Leuk Res 2009; 33: 580-582 [PMID: 18804280 DOI: 10.1016/j.leukres.2008.08.008]

39 Benjazia E, Khalifa M, Benabdelkader A, Laatiri A, Braham A, Letaijf A, Bahri F. Granulocytic sarcoma of the rectum: Report of one case that presented with rectal bleeding. World J Gastrointest Pathophysiol 2010; 1: 144-146 [PMID: 21607155 DOI: 10.4291/wjg.v1.i4.144]

40 Takeh H, Farran M, Debaize JP. Granulocytic sarcoma (chloroma) of the small intestine. Acta Chir Belg 1999; 99: 78-81 [PMID: 10352737]

41 Damodar S, Prashantnha B, Gangoli A, Gopalakrishnan G, Jayanthi KJ. Granulocytic sarcoma of colon in a patient with acute promyelocytic leukaemia. Indian J Hematol Blood Transfus 2013; 29: 152-154 [PMID: 24426361 DOI: 10.1007/s12288-012-0152-0]
