The sero-epidemiology of infectious mononucleosis in Neyshabur, Northeast Iran during 2010–2014

Mohammad Salehi1,2, Mahtab Vafaei3, Abolmajed Ghashim4, Sayyed Karli Shakuhi Mostafaei4*

1Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture and Research, Khorasan Razavi Branch, Mashhad, Iran
2Medical Diagnostic Laboratory of Neyshabur, Center of Medical, Pathological and Genetic Diagnostic Services, Iranian Academic Center for Education, Culture and Research, Mashhad Branch, Mashhad, Iran
3Department of Virology Laboratory Sciences, Keyvan Virology Laboratory, Tehran, Iran
4Department of Microbiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran

ARTICLE INFO

Objective: To detect infectious mononucleosis (IM) prevalence in Neyshabur, Northeast Iran during 2010–2014.

Methods: This cross-sectional descriptive epidemiological survey was performed to reveal the prevalence of IM in Neyshabur between 2010 and 2014. A total of 114 individuals were studied. Briefly, individuals with positive test for specific immunoglobulin G and immunoglobulin M in the agglutination test were determined as positive cases. Results: The overall prevalence of IM was 14%. Mean ± SD of age for IM test was 18.96 ± 15.79. The age groups of 0–10 and 21–30 were the most positive cases in this period. In addition, 31–40 and over 50 years were not positive cases. Male individuals were significantly more positive and likewise, it was observed that there were significantly higher positive cases of IM in spring and summer. Conclusions: Among the five years of this study, it was a decreasing status from 2010 (23.1%) to 2014 (9.1%), though a slight fluctuation had occurred. The prevalence of IM was low in Neyshabur City. Moreover, children and male individuals had relatively higher prevalence of the disease. Furthermore, it was observed a higher rate of IM in spring and summer.

Keywords:
Epstein-Barr virus
Infectious mononucleosis
Neyshabur City
Iran

1. Introduction

Epstein-Barr virus (EBV) is the herpesvirus infecting more than 90% of the world’s population[1]. Although the disease is benign and asymptomatic for the most cases, EBV can cause many nonmalignant and malignant disorders of lymphoid and epithelial origins[2]. EBV infection is mostly asymptomatic in children. However, first exposure during this era and an adolescence may develop itself as an infectious mononucleosis (IM) in 30% to 70% of cases[3,4]. Some individuals are more vulnerable than others to develop clinical symptoms from delayed infection, while there is no reason[5,6]. CD8+ T cells play a key protective role for the control of latent EBV infection. However, they are recognized to be the main mediators of the disease during IM[7,8]. Furthermore, observations suggest that other immune mediators are possibly important for the control and prevention of acute symptomatic EBV infection[9]. Results from a recent Phase II clinical trial revealed that the induction of neutralizing antibodies is effective in the prevention of symptomatic acute IM after primary infection[10]. In spite of these effective results,
very little emphasis is noted upon the investigation of humoral immunity during primary infection and defects in antibody level could contribute to the severity of the disease burden during acute IM\[11\]. The virus can persistently shed in saliva for duration of 6 months\[12\]. The study in Southern Iran showed that the prevalence of EBV among acute lymphoblastic leukemia individuals was high\[13\]. Another survey indicated a relationship between EBV and breast cancer among women in Iran\[14\].

2. Materials and methods

2.1. Patients and population

This cross-sectional descriptive epidemiological survey was performed to reveal the prevalence of IM in Neyshabur during 2010–2014.

A total of 131 individuals were studied. Travelers (n = 16) and migrants (n = 11) were excluded in this study. Thus, 114 subjects from all age groups were included. The sample size was considered as 5 years of study. The individuals were healthy and no clinical sign was observed. None of subjects had fever, rash, stomach pain and headache symptoms.

2.2. Sample collection

Briefly, blood samples were collected from individuals and the sera samples were prepared. In addition, the examination of white blood cells showed that total lymphocyte count was 4 700. The agglutination test was used with equal amount of serum and reagent. Any individuals with positive test for specific immunoglobulin G and immunoglobulin M (heterophile antibodies) were determined as positive cases\[15\]. The Oxoid IM kit (Oxoid Ltd, Hampshire, UK) was employed for antibodies detection. Components of the kit included DR0681M test latex that consisted of latex particles sensitised with purified bovine antigen where the kit contained sufficient reagent for 50 tests, DR0682M positive control serum that consisted of rabbit antiserum containing specific antibody reactive with the sufficient test reagent for 15 tests and DR0683M negative control serum that consisted of rabbit antiserum tested for the absence of specific heterophile antibodies with the sufficient reagent for 15 tests.

Bilirubin level of serum was also measured but transaminase and alkaline phosphatase levels were not tested.

2.3. Ethical approve

Approval for this study was obtained from the Research and Technology Deputy of Iranian Academic Center for Education, Culture and Research, Mashhad Branch. Informed written consent was obtained from Research Center of HIV and AIDS, Mashhad, Iran.

2.4. Data analysis

Data were analyzed using SPSS version 20 (IBM SPSS Statistics for Windows, Version 20) and the Chi-square test. P < 0.05 were considered statistically significant.

3. Results

Mean ± SD of age for IM test was 18.96 ± 15.79. The age range of individuals was 8 months–63 years. As shown in Table 1, the overall prevalence of IM among 5 years was 14%. The age groups of 0–10 and 21–30 were the most positive cases in this period. In addition, 31–40 and over 50 years were not positive cases.

Table 1
The age, sex and seasonal distribution of positive cases of mononucleosis.

Demographic features	No.	Positive cases (%)	Odds ratio	95% confidence interval	P
Age					
0–10	48	6 (12.5) Baseline			
11–20	18	0 (0.0)	0.875	0.786–0.974	0.116
21–30	28	6 (21.4)	1.909	0.550–6.621	0.303
31–40	10	0 (0.0)			
41–50	6	2 (33.3)	3.500	0.523–23.418	0.176
> 51	4	0 (0.0)			
Sex					
Male	54	10 (18.5)	3.182	0.935–10.831	0.054
Female	60	4 (6.7)			
Season					
Spring and summer	52	10 (19.2)	0.290	0.085–0.987	0.038
Fall and winter	62	4 (6.5)			

Not determined.

Male individuals were significantly more positive and likewise, it was observed that there were significantly higher positive cases of mononucleosis in spring and summer (Table 1 and Figures 1-3).
Males were significantly more infected with IM. There was a significant higher positive results in spring and fall ($P = 0.038$). In 2010 and 2011, there were higher positive cases of IM, while in 2012, no positive IM case was detected.

Table 2

Year	NO.	Positive cases (%)
2010	26	6 (23.1)
2011	28	4 (14.3)
2012	14	0 (0.0)
2013	24	2 (8.3)
2014	22	2 (9.1)
Total	114	14 (12.3)

4. Discussion

In this study, mean ± SD of age of subjects was 18.96 ± 15.79 (8 months–63 years). We observed that the age groups of 0–10 and 21–30 were the most positive cases in this period. The presence of the disease in children has been reported in several previous studies with different disorders and indications, such as enhanced cytotoxicity of specific T-cells, rash following amoxicillin treatment and presence of soluble human leukocyte antigen-G in serum of children[16-18]. In addition, individuals with 31–40 and over 50 years were all negative for the test. Several previous surveys have suggested the lymphocyte count as a valid diagnostic screen test in adults infected with mononucleosis in different results[19,20]. In this study, male individuals were significantly more positive and likewise, it was observed that there were significantly higher positive cases of mononucleosis in spring and summer. Similarly, Ramagopalan et al. revealed that males were more frequently infected with IM for all age groups apart from age ranges of 10–14 (false match rate 1.50 and 95% confidence interval)[21]. Regarding differences between genders for infection susceptibility of EBV, there have been several hypotheses, such as different social behaviors and thus interpersonal contact and exposure[22]. Visser et al. determined no evidence of relation between seasons and EBV infection in children[23].
fluctuations, sun radiation and vitamin D affect the immune system against EBV and several studies have similarly shown this effect[24,25]. On the other hand, we observed that among the 5 years of this study, it was a decreasing status from 2010 (23.1%) to 2014 (9.1%), though a slight fluctuation was occurred. The limitations of this study were no molecular test for detection and characterization of EBV and subtypes, a limited area of study (Neyshabur city), a low number of subjects and no exact detection of liver enzymes levels among subjects.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

This study was supported by Medical Diagnostic Laboratory of Neyshabur, Center of Medical, Pathological and Genetic Diagnostic Services, Iranian Academic Center for Education, Culture and Research, Mashhad, Iran (Grant No. 1349536/4743, 2014).

References

[1] Kong QL, Hu LJ, Cao JY, Huang YJ, Xu LH, Liang Y, et al. Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog 2010; 6(6): e1000940.

[2] Jenson HB. Epstein-Barr virus. Pediatr Rev 2011; 32: 375-84.

[3] Balfour HH Jr, Sifakis F, Silman JA, Knight JA, Schmeling DO, Thomas W. Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6–19 years in the United States and factors affecting its acquisition. J Infect Dis 2013; 208(8): 1286-93.

[4] Lorenzetti MA, Gantz M, Altcheh J, De Matteo E, Chabay PA, Preciado MV. Distinctive Epstein-Barr virus variants associated with benign and malignant pediatric pathologies: LMP1 sequence characterization and linkage with other viral gene polymorphisms. J Clin Microbiol 2012; 50(3): 609-18.

[5] Oztek SM, Oztek A, Yavuz MS. Detection of human cytomegalovirus and Epstein-Barr virus in symptomatic and asymptomatic acquired periodontitis lesions by real-time PCR. Med Oral Patol Oral Cir Bucal 2013; 18(5): e811-6.

[6] Draborg AH, Duus K, Houen G. Epstein-Barr virus in systemic autoimmune diseases. Clin Dev Immunol 2013; 2013: 535738.

[7] Angelini DF, Serafini B, Piras E, Severa M, Coccia EM, Rosicarelli B, et al. Increased CD8 T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog 2013; 9(4): e1003220.

[8] Grywalska E, Markowicz J, Grabarczyk P, Pasiarski M, Roliński J. Epstein-Barr virus-associated lymphoproliferative disorders. Postepy Hig Med Dosw (Online) 2013; 67: 481-90.

[9] Richardson AB, Long HM, Palendra U, Münz C, Hislop AD. Cellular immune controls over Epstein-Barr virus infection: new lessons from the clinic and the laboratory. Trends Immunol 2014; 35(4): 159-69.

[10] Simon KC, O’Reilly EJ, Munger KL, Finerty S, Morgan AJ, Ascherio A. Epstein-Barr virus neutralizing antibody levels and risk of multiple sclerosis. Mult Scler 2012; 18(8): 1185-7.

[11] Nagarajan T, Marissen WE, Rupprecht CE. Monoclonal antibodies for the prevention of rashes: theory and clinical practice. Antibody Technol J 2014; 4: 1-12.

[12] Balfour HH Jr, Verghese P. Primary Epstein-Barr virus infection: impact of age at acquisition, coinfection, and viral load. J Infect Dis 2013; 207(12): 1787-9.

[13] Majjour SB, Ghaffarpasand F, Fatahi MJ, Ghaderi A, Fotouhi Ghiam A, Karimi M. Seroprevalence of human herpes simplex, hepatitis B and Epstein-Barr viruses in children with acute lymphoblastic leukemia in Southern Iran. Pathol Oncol Res 2010; 16(4): 579-82.

[14] Kadivar M, Monabati A, Joulaeae A, Hosseini N. Epstein-Barr virus and breast cancer: lack of evidence for an association in Iranian women. Pathol Oncol Res 2011; 17(3): 489-92.

[15] Luka J, Chase RC, Pearson GR. A sensitive enzyme-linked immunosorbent assay (ELISA) against the major EBV-associated antigens. I. Correlation between ELISA and immunofluorescence titers using purified antigens. J Immunol Methods 1984; 67(1): 145-56.

[16] Chiang AKS, Ning J, Chan KH. Emergence of highly functional antigen-specific T cells towards Epstein-Barr virus corresponds to viral control and enhanced cytotoxicity in children with infectious mononucleosis and primary asymptomatic infection. The 16th International Symposium on EBV and Associated Diseases; 2014 Jul 16–19; Brisbane, Australia.

[17] Chovel-Sella A, Ben Tov A, Lahav E, Mor O, Rudich H, Paret G, et al. Incidence of rash after amoxicillin treatment in children with infectious mononucleosis. Pediatrics 2013; 131(5): e1424-7.

[18] Wang HY, Tian KG, Fu M, Zheng XQ. Detection of plasma soluble HLA-G and lymphocyte subsets in peripheral blood of children with infectious mononucleosis. Chin J Nosocomiol 2012; 5: 011.

[19] Biggs TC, Hayes SM, Bird JH, Harries PG, Salib RJ. Use of the lymphocyte count as a diagnostic screen in adults with suspected Epstein-Barr virus infectious mononucleosis. Laryngoscope 2013; 123(10): 2401-4.

[20] Biggs T, Hayes S, Harries P, Salib R, Bird J. In response to “use of the lymphocyte count as a diagnostic screen in adults with suspected Epstein-Barr virus infectious mononucleosis”. Laryngoscope 2014; 124(11): E448.

[21] Ramagopalan SV, Giovannoni G, Yeates DG, Seagroatt V, Goldacre MJ. Sex ratio of infectious mononucleosis and possible relevance to multiple sclerosis. Mult Scler 2013; 19(3): 359-61.

[22] Hwang AE, Hamilton AS, Cockburn MG, Ambinder R, Zadnick J, Brown EE, et al. Evidence of genetic susceptibility to infectious mononucleosis: a twin study. Epidemiol Infect 2012; 140(11): 2089-95.

[23] Visser E, Milne D, Collacott I, McLernon D, Counsell C, Vickers M. The epidemiology of infectious mononucleosis in Northern Scotland: a decreasing incidence and winter peak. BMC Infect Dis 2014; 14: 151.

[24] Lossius A, Riise T, Pugliatti M, Björnekivik K, Casetta I, Drulovic J, et al. Season of infectious mononucleosis and risk of multiple sclerosis at different latitudes; the EnViMS Study. Multi Scler 2014; 20(6): 669-74.

[25] Crump C, Sundquist J, Sieh W, Winkleby MA, Sundquist K. Season of birth and risk of Hodgkin and non-Hodgkin lymphoma. Int J Cancer 2014; 135(11): 2735-9.