Note on Sunflowers

Tolson Bell†, Suchakree Chueluecha‡ and Lutz Warnke

September 19, 2020

Abstract

A sunflower with p petals consists of p sets whose pairwise intersections are identical. Building upon a breakthrough of Alweiss, Lovett, Wu, and Zhang from 2019, Rao proved that any family of $(Cp\log(pk))^k$ distinct k-element sets contains a sunflower with p petals, where $C > 0$ is a constant; this bound was reproved by Tao. In this note we record that, by a minor variant of their probabilistic arguments, any family of $(Cp\log k)^k$ distinct k-element sets contains a sunflower with p petals, where $C > 0$ is a constant.

1 Introduction

A sunflower with p petals is a family of p sets whose pairwise intersections are identical (the intersections may be empty). Let $\text{Sun}(p,k)$ denote the smallest natural number s with the property that any family of at least s distinct k-element sets contains a sunflower with p petals. In 1960, Erdős and Rado [2] proved that $(p−1)^k < \text{Sun}(p,k) \leq (p−1)^k! + 1 = O((pk)^k)$, and conjectured that for any $p \geq 2$ there is a constant $C_p > 0$ such that $\text{Sun}(p,k) \leq C_p^k$ for all $k \geq 2$. This well-known conjecture remains open, but there was a breakthrough in 2019: using iterative encoding arguments, Alweiss, Lovett, Wu, and Zhang [1] proved that $\text{Sun}(p,k) \leq (Cp^3 \log k \log \log k)^k$ for some constant $C > 0$. Using Shannon’s noiseless coding theorem, Rao [3] simplified the proof and obtained a slightly better bound. Frankston, Kahn, Narayanan, and Park [4] refined some key arguments from [1], and their ideas were utilized by Rao [5] to prove that $\text{Sun}(p,k) \leq (Cp\log(pk))^k$ for some constant $C > 0$, which in turn was reproved by Tao [7] using Shannon entropy arguments.

The aim of this note is to record, for the convenience of other researchers, that a minor variant of (the probabilistic part of) the arguments from [6,7] gives $\text{Sun}(p,k) \leq (Cp\log k)^k$ for some constant $C > 0$.

Theorem 1. There is a constant $C \geq 4$ such that $\text{Sun}(p,k) \leq (Cp\log k)^k$ for all integers $p,k \geq 2$.

Setting $r(p,k) = Cp\log k + \mathbb{1}_{\{k = 1\}}p$, we shall in fact prove $\text{Sun}(p,k) \leq r(p,k)^k$ for all integers $p \geq 2$ and $k \geq 1$. Similar to [1,6,7], this upper bound follows easily by induction on $k \geq 1$ from Lemma 2 below, where a family \mathcal{S} of k-element sets is called r-spread if there are at most $r^{k−|\mathcal{T}|}$ sets of \mathcal{S} that contain any non-empty set \mathcal{T}. (Indeed, the base case $k = 1$ is trivial due to $r(p,1) = p$, and the induction step $k \geq 2$ uses a simple case distinction: if S is $r(p,k)$-spread, then Lemma 2 guarantees a sunflower with p petals; otherwise there is a non-empty set \mathcal{T} such that more than $r(p,k)^{k−|\mathcal{T}|} \geq r(p,k−|\mathcal{T}|)^{k−|\mathcal{T}|}$ sets of \mathcal{S} contain \mathcal{T}, and among this family of sets we easily find a sunflower with p petals using induction.)

Lemma 2. There is a constant $C \geq 4$ such that, setting $r(p,k) = Cp\log k$, the following holds for all integers $p,k \geq 2$. If a family \mathcal{S} with $|\mathcal{S}| \geq r(p,k)^k$ sets of size k is $r(p,k)$-spread, then \mathcal{S} contains p disjoint sets.

Inspired by [1, in [6,7]], probabilistic arguments are used to deduce Lemma 2 with $r(p,k) = \Theta(p\log(pk))$ from Theorem 3 below (based on the union bound or linearity of expectation, respectively). Here X_δ denotes the random subset of X where each element is included independently with probability δ.

†School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA. E-mail: tbel137@gatech.edu. Research supported by NSF Grant DMS-1851843.
‡Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA. E-mail: suc221@lehigh.edu. Research supported by Georgia Institute of Technology, College of Sciences.
§School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA. E-mail: warnke@math.gatech.edu. Research supported by NSF Grant DMS-1703516, NSF CAREER grant DMS-1945481, and a Sloan Research Fellowship.
Lemma 4. Our proof of Lemma 2 only invokes Theorem 3 with $|S| \geq r^k$, then $\mathbb{P}(\exists S \in S : S \subseteq X_3) > 1 - \epsilon$.

The core idea of [1] [6] [7] is to randomly partition the set X into $V_1 \cup \cdots \cup V_p$, by independently placing each element $x \in X$ into a randomly chosen V_i. Note that the marginal distribution of each V_i equals the distribution of X_3 with $\delta = 1/p$. Invoking Theorem 3 with $\varepsilon = 1/p$ and $r = B\delta^{-1} \log(k/\varepsilon)$, a standard union bound argument implies that, with non-zero probability, all of the random partition-classes V_i contain a set from S. Hence p disjoint sets $S_1, \ldots, S_p \in S$ must exist, which proves Lemma 2 with $r(p, k) = Bp \log(pk)$.

We prove Lemma 2 with $r(p, k) = \Theta(p \log k)$ using a minor twist: by randomly partitioning the vertex-set into more than p classes V_i, and then using linearity of expectation (instead of a union bound).

Proof of Lemma 4. Set $C = 4B$. We randomly partition the set X into $V_1 \cup \cdots \cup V_{2p}$, by independently placing each element $x \in X$ into a randomly chosen V_i. Let I_i be the indicator random variable for the event that V_i contains a set from S. Since V_i has the same distribution as X_3 with $\delta = 1/(2p)$, by invoking Theorem 3 with $\varepsilon = 1/2$ and $r = r(p, k) = 2Bp \log(k^2) \geq B\delta^{-1} \log(k/\varepsilon)$ we obtain $\mathbb{E} I_i > 1/2$. Using linearity of expectation, the expected number of partition-classes V_i with $I_i = 1$ is thus at least p. Hence there must be a partition where at least p of the V_i contain a set from S, which gives the desired p disjoint sets $S_1, \ldots, S_p \in S$.

Generalizing this idea, Theorem 3 gives $p > |1/\delta|(1 - \epsilon)$ disjoint sets $S_1, \ldots, S_p \in S$, which in the special case $|1/\delta| \varepsilon \leq 1$ (used in [1] [6] [7]) with $\delta = \epsilon = 1/p$ simplifies to $p \geq |1/\delta|$.

2 Remarks

Our proof of Lemma 2 only invokes Theorem 3 with $\varepsilon = 1/2$, i.e., does not exploit the fact that Theorem 3 has an essentially optimal dependence on ϵ (see Lemma 4 below). In particular, this implies that we could alternatively also prove Lemma 2 and thus the Sun($p, k) \leq (Cp \log k)^k$ bound of Theorem 1 using the combinatorial arguments of Frankston, Kahn, Narayanan, and Park [3] (we have verified that the proof of Theorem 1.7 can be extended to yield Theorem 3 under the stronger assumption $r \geq B\delta^{-1} \max\{\log k, \log^2(1/\epsilon)\}$, say).

We close by recording that Theorem 3 is essentially best possible with respect to the r-spread assumption, which follows from the construction in [1] Section 4).

Lemma 4. For any reals $0 < \delta, \varepsilon \leq 1/2$ and any integers $k \geq 1$, $1 \leq r \leq 0.25\delta^{-1} \log(k/\varepsilon)$, there exists a r-spread family S of k-element subsets of $X = \{1, \ldots, rk\}$ with $|S| = r^k$ and $\mathbb{P}(\exists S \in S : S \subseteq X_3) < 1 - \epsilon$.

Proof. Fix a partition $V_1 \cup \cdots \cup V_k$ of X into sets of equal size $|V_i| = r$. Let S be the family of all k-element sets containing exactly one element from each V_i. It is easy to check that S is r-spread, with $|S| = r^k$. Focusing on the necessary event that X_3 contains at least one element from each V_i, we obtain

$$\mathbb{P}(\exists S \in S : S \subseteq X_3) \leq (1 - (1 - \delta)^r)^k \leq e^{-(1-\delta)^r} < e^{-2r}\delta^r k \leq e^{-\sqrt{rk}} \leq 1 - \epsilon$$

by elementary considerations (since $e^{-\sqrt{k}} \leq 1 - \epsilon$ due to $0 < \epsilon \leq 1/2$).

Acknowledgements.

This research was conducted as part of the 2020 REU program at Georgia Institute of Technology.

References

[1] R. Alweiss, S. Lovett, K. Wu, and J. Zhang. Improved bounds for the Sunflower lemma. Preprint (2019). arXiv:1908.08483v1
[2] P. Erdős and R. Rado. Intersection Theorems for Systems of Sets. J. London Math. Soc. 35 (1960).
[3] K. Frankston, J. Kahn, B. Narayanan, and J. Park. Thresholds versus Fractional Expectation-thresholds. Preprint (2019). arXiv:1910.13433v2
[4] S. Janson, T. Luczak, and A. Ruciński. Random Graphs. Wiley-Interscience (2000).
[5] A. Rao. Coding for Sunflowers. Preprint (2019). arXiv:1908.04774v1
[6] A. Rao. Coding for Sunflowers. Discrete Analysis 2 (2020), 8 pp. arXiv:1909.04774v2
[7] T. Tao. The sunflower lemma via Shannon entropy. Blogpost (2020). https://terrytao.wordpress.com/2020/07/20/the-sunflower-lemma-via-shannon-entropy/
Appendix: Theorem 3

Theorem 3 follows from Tao’s proof of Proposition 5 in [7] (noting that any r-spread family S with $|S| \geq r^k$ sets of size k is also r-spread in the sense of [7]). We now record that Theorem 3 also follows from Rao’s proof of Lemma 4 in [6] (where the random subset of X is formally chosen in a slightly different way).

Proof of Theorem 3 based on [6]. Set $\gamma = \delta/2$ and $m = \lceil \gamma |X| \rceil$. Let X_i denote a set chosen uniformly at random from all i-element subsets of X. Since X_δ conditioned on containing exactly i elements has the same distribution as X_i, by the law of total probability and monotonicity it routinely follows that $P(\exists S \in S : S \subseteq X_\delta)$ is at least $P(\exists S \in S : S \subseteq X_m) \cdot P(|X_\delta| \geq m)$. The proof of Lemma 4 in [6] shows that $P(\exists S \in S : S \subseteq X_m) > 1 - \epsilon^2$ whenever $r \geq \alpha \gamma^{-1} \log(k/\epsilon)$, where $\alpha > 0$ is a sufficiently large constant. Noting $|S| \leq |X|^k$ we see that $|S| \geq r^k$ enforces $|X| \geq r$, so standard Chernoff bounds (such as [4, Theorem 2.1]) imply that $P(|X_\delta| < m) \leq P(|X_\delta| \leq |X|\delta/2)$ is at most $e^{-|X|\delta/8} \leq e^{-r\delta/8} \leq \epsilon^2$ whenever $r \geq 16\delta^{-1} \log(1/\epsilon)$. This completes the proof with $B = \max\{2\alpha, 16\}$, say (since $(1 - \epsilon^2)^2 \geq 1 - \epsilon$ due to $0 < \epsilon \leq 1/2$). \qed