A Review on the Role of Small Nucleolar RNA Host Gene 6 Long Non-coding RNAs in the Carcinogenic Processes

Soudeh Ghafouri-Fard1, Tayyebeh Khoshbakht2, Mohammad Taheri3* and Seyedpouzhia Shojaei4*

1 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 2 Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 3 Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 4 Department of Critical Care Medicine, Imam Hossein Medical and Educational Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Being located on 17q25.1, small nucleolar RNA host gene 6 (SNHG16) is a member of SNHG family of long non-coding RNAs (lncRNA) with 4 exons and 13 splice variants. This lncRNA serves as a sponge for a variety of miRNAs, namely miR-520a-3p, miR-4500, miR-146a miR-16–5p, miR-98, let-7a-5p, hsa-miR-93, miR-17-5p, miR-186, miR-302a-3p, miR-605-3p, miR-140-5p, miR-195, let-7b-5p, miR-16, miR-340, miR-1301, miR-205, miR-488, miR-1285-3p, miR-146a-5p, and miR-124-3p. This lncRNA can affect activity of TGF-β1/SMAD5, mTOR, NF-κB, Wnt, RAS/RAF/MEK/ERK and PI3K/AKT pathways. Almost all studies have reported oncogenic effect of SNHG16 in diverse cell types. Here, we explain the results of studies about the oncogenic role of SNHG16 according to three distinct sets of evidence, i.e., in vitro, animal, and clinical evidence.

Keywords: SNHG6, lncRNA, cancer, biomarker, expression

INTRODUCTION

Small nucleolar RNA host gene 6 (SNHG16) is a member of SNHG family of non-coding RNAs. Long non-coding RNAs (lncRNAs) are a class of transcripts that have sizes longer than 200 nt. These transcripts serve as scaffolds for establishment of different complexes of biomolecules. Moreover, the can serve as enhancers, modulators of chromatin structure and decoys for several molecules, particularly miRNAs [Zhang, 2019 #481]. Bioinformatics tools have facilitated identification of several classes of lncRNAs among them is SNHG group of lncRNAs [Li, 2020 #482].

Being annotated as NC_000017.11, SNHG16 gene is located on 17q25.1 and has 4 exons. Based on the Ensembl database1, 13 splice variants have been identified for this SNHG16 with one of them having a retained intron (ENST00000587743.1) and the rest being categorized as long non-coding RNAs (lncRNAs). These transcripts have sizes ranging from 556 nt (SNHG16-208) to 3607 nt (SNHG16-201). No protein has been recognized for any of these variants. It has been shown to be ubiquitously expressed in ovary, skin and several other tissues. This lncRNA has fundamental roles in the carcinogenesis in numerous types of tissues. Here, we summarize the results of these studies based on three distinct categories of evidence, i.e., in vitro, animal and clinical evidence.

1 http://asia.ensembl.org/
CELL LINE STUDIES

Small nucleolar RNA host gene 6 has been demonstrated to be up-regulated in lung cancer cell lines, where it acts as a sponge for miR-520a-3p. Through decreasing the availability of this miRNA, SNHG16 increases expression of EphA2. SNHG16 silencing has suppressed proliferation, migratory potential and invasiveness of these cells, while stimulating cell apoptosis. Further experiments have shown the prominence of SNHG16/miR-520a-3p/EphA2 axis in the regulation of oncogenicity in lung cancer (Yu et al., 2020). Being transcriptionally regulated by YY1, SNHG16 also sequesters miR-4500 to modulate expression of the deubiquitinase USP21. USP21 can further increase expression of SNHG16 (Xu P. et al., 2020). Another experiment in lung cancer cells has identified miR-146a as the target of SNHG16, through its sequestering SNHG16 enhances proliferation, migration and invasiveness of lung cancer cells. The sponging effect of SNHG16 on this miRNA leads to over-expression of MUC5AC, a protein which accelerates metastasis and recurrence of lung cancer cells (Han et al., 2019). Figure 1 depicts the roles of SNHG16 in lung cancer which are exerted via sponging miR-520a-3p, miR-4500 and miR-146a.

Small nucleolar RNA host gene 6 has also important impacts on the modulation of tumor microenvironment through influencing function of γδ immunosuppressive T cells. Mechanistically, SNHG16 works as a sponge for miR-16-5p, thus augmenting expression of SMAD5 and potentiating the TGF-β1/SMAD5 pathway to increase expression of CD73 in γδ T cells (Ni et al., 2020). In addition, SNHG16 can enhance migratory potential of breast cancer cells via sequestering miR-98 and releasing E2F5 from its inhibitory effects (Cai et al., 2017). In prostate cancer cells, siRNA-mediated silencing of SNHG16 results in down-regulation of GLUT-1, reduction of glucose uptake and inhibition of proliferation of cancerous cells without affecting normal prostate cells (Shao et al., 2020). Figure 2 shows the oncogenic roles of SNHG6 in breast and prostate cancers.

In hepatocellular carcinoma (HCC), SNHG16 has diverse oncogenic as well as tumor suppressor roles (Figures 3, 4). SNHG16 has been shown to accelerate proliferation, migratory aptitude and invasiveness of HCC cells through sequestering miR-186 and enhancing expression of ROCK1 (Chen et al., 2019). Moreover, miR-4500 is another sponged miRNA by SNHG16 through which this lncRNA promotes development of HCC (Lin et al., 2019). In this type of cancer, SNHG16 also interacts with miR-302a-3p to increase expression of FGF19 and enhance cell proliferation (Li W. et al., 2019). Metastatic ability of HCC cells can be regulated by SNHG16 through sequestering miR-605-3p. This miRNA can suppress epithelial-mesenchymal transition (EMT) and metastatic ability of HCC via directly suppressing TRAF6 expression and further modulating NF-κB signaling. Being up-regulated by SNHG16, TRAF6 can in turn increase activity of SNHG16 promoter through activation of NF-κB, thus constructing a positive feedback loop in favor of HCC progression (Hu et al., 2020).

Contrary to the mentioned studies which reported the oncogenic effects of SNHG16 in the development of HCC, a single study has revealed down-regulation of SNHG16 in HCC cell lines. Ectopic virus-mediated over-expression of SNHG16 has repressed proliferation of HCC cells and
Ghafouri-Fard et al. SNHG16 lncRNA and Cancer

FIGURE 2 | Oncogenic roles of SNHG6 in breast and prostate cancers.

FIGURE 3 | Oncogenic roles of SNHG16 in hepatocellular carcinoma via sponging miR-17-5p, miR-186, miR-4500, miR-302a-3p, and miR-605-3p.

Attenuated their resistance to 5-FU through sponging hsa-miR-93 (Xu et al., 2018).

In osteosarcoma, sponging impact of SNHG16 on miR-98-5p has an essential impact on proliferation, migration and invasive aptitude of cancer cell. Simultaneously, it can enhance cell cycle progression and decrease cell apoptosis (Liao et al., 2019). Meanwhile, through sponging miR-16 and up-regulating ATG4B levels, SNHG16 can induce resistance to cisplatin in these cells (Liu Y. et al., 2019). SNHG16 can also promote proliferation of osteosarcoma cells through sponging miR-205 and enhancing expression of ZEB1 (Zhu C. et al., 2018). Finally, SNHG16 can facilitate EMT of osteosarcoma cells through miR-488/ITGA6.
In hepatocellular carcinoma, while SNHG16 exerts oncogenic effect via sponging miR-140-5p, miR-195, and let-7b-5p, it can have tumor suppressor effect via sponging has-miR-93.

Small nucleolar RNA host gene 6/miR-124-3p/MCP-1 has an important role in induction of cell proliferation and EMT in colorectal cancer (Chen et al., 2020). The sponging effect of SNHG16 on miR-200a-3p (Li Y. et al., 2019), miR-132-3p (He et al., 2020), and miR-302a-3p (Ke et al., 2019), also promotes tumorigenicity of colorectal cancer.

In cervical cancer cells, SNHG16 has been found to recruit transcriptional factor SPI1 to increase expression of PARP9,
thus promoting malignant behaviors of cells (Tao et al., 2020). Moreover, through sponging miR-216-5p, SNHG16 can increase expression of ZEB1, therefore increasing both cell proliferation and EMT process (Zhu H. et al., 2018). Finally, through sponging miR-128, it affects activity Wnt/β-catenin pathway (Wu et al., 2020). Figure 6 summarizes the role of SNHG16 in colorectal and cervical cancers.

In neuroblastoma cells, SNHG16 has been revealed to sequester miR-542-3p (Deng et al., 2020), miR-128-3p (Bao et al., 2020) and miR-338-3p (Xu Z. et al., 2020), thus increasing expressions of HNF4α, HOXA7, and PLK4, respectively (Figure 7).

In other types of cancers, including retinoblastoma, oral squamous cell carcinoma, nasopharyngeal carcinoma, SNHG16...
sequesters a number of miRNAs, namely miR-140-5p, miR-182-5p, miR-128-3p, miR-183-5p, miR-17-5p, and miR-520a-3p (Figure 8). In pancreatic cancer, SNHG16 acts in favor of tumor progression through sponging miR-302b-3p and subsequently increasing expression of SLC2A4 (Xu et al., 2021). Moreover, it can contribute in this process through sponging miR-218-5p (Liu S. et al., 2019). Finally, SNHG16-mediated enhancement of lipogenesis through affecting expression of SREBP2 facilitates progression of pancreatic cancer (Yu et al., 2019b).
Tumor type	Interactions	Cell line	Function	References
Non–small cell lung cancer (NSCLC)	mir-520a-3p, EphA2	16HBE, A549, NCI-H292, NCI-H460, NCI-H1703	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion, ↑ apoptosis	Yu et al., 2020
	mir-4500, USP21, YY1	A549, H1299, NCI-H460, and NCI-H520	\(\Delta \) USP21: ↓ proliferation, ↓ migration, ↓ invasion	Xu P. et al., 2020
	mir-146a, MUC5AC	A549, NCI-H292, NCI-H460, NCI-H1703, 16HBE	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion ↑ SNHG16: ↑ proliferation, ↑ migration	Han et al., 2019
Breast cancer	mir-16–5p, SMAD5, TGF-β1/SMAD5 pathway, CD73	MCF-10A, MCF-7, T-47D, MDA-MB-231, HEK293T	\(\Delta \) SNHG16: ↓ migration, did not affect proliferation ↑ SNHG16: ↑ migration, did not affect proliferation	Cai et al., 2017
	mir-98, E2F5	MDA-MB-231, MCF-7, MDA-MB468 and HEK293T	\(\Delta \) SNHG16: ↓ proliferation	Zhong et al., 2019
	let-7a-5p, RRM2	MCF-7	\(\Delta \) SNHG16: ↓ proliferation	Shao et al., 2020
Prostate carcinoma	GLUT1	22Rv1, HPrEC	\(\Delta \) SNHG16: ↓ proliferation, ↓ glucose uptake ↑ SNHG16: ↓ proliferation, ↓ 5-FU chemoresistance	Xu et al., 2018
Hepatocellular carcinoma (HCC)	hsa-miR-93	Hep3B, HuH7, SNU398, SNU423, SNU429, Hep3B, HepG2, p53, PK-1, and PLC/PRF/5	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion ↑ SNHG16: ↑ proliferation, ↑ migration, ↑ invasion, ↑ cell cycle progression, ↓ apoptosis	Zhong et al., 2020
	mir-17-5p, p62, mTOR pathway, NF-κB pathway	Huh-7 and HepG2	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion ↑ SNHG16: ↑ proliferation, ↑ migration, ↑ invasion, ↓ cell cycle progression, ↓ apoptosis	Li W. et al., 2019
	mir-186	Hep-3B, HuH7, Ske-hep-1, SMMC-7721, PLCL, HL-7702	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion	Chen et al., 2019
	mir-4500, STAT3	SMMC-7721, L02, MHCC-97H, HepG2	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion, ↑ apoptosis	Lin et al., 2019
	mir-302a-3p, FGFl9	Huh7, HepG2, SMMC7721, SK-Hep1 and Hep 3B, L02	\(\Delta \) SNHG16: ↓ proliferation	Li W. et al., 2019
	mir-605-3p, NF-κB pathway	HCCM3, MHCC97L, MHCC-97H, L02, Hep3B and HepG2	\(\Delta \) SNHG16: ↓ metastasis, ↓ EMT process	Hu et al., 2020
	mir-140-5p	HepG2, SK-hep1, HuH7, and HCCM3, L02, HepG2/SOR	\(\Delta \) SNHG16: ↓ sorafenib resistance	Ye et al., 2019
	mir-195	HepG2, SMMC7721, Hep3B, Bel7402, HuH7, L02	\(\Delta \) SNHG16: ↓ proliferation, ↓ invasion	Xie et al., 2019
	let-7b-5p, CDC25B, HMG2	HL-7702, SK-Hep-1, Huh7, Hep3B, HepG2	\(\Delta \) SNHG16: ↓ G2/M cell cycle arrest, ↓ cisplatin resistance, ↓ apoptosis ↑ SNHG16: ↑ cell cycle progression, ↓ EMT process	Li S. et al., 2020
Osteosarcoma	mir-98-5p	U2OS, Saos-2, HOS, MG-63, hFOB 1.19	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion ↑ cell cycle arrest, ↑ apoptosis	Liao et al., 2019
	mir-16, ATG4B	SAOS2, U2OS, OB3, 293T	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion ↑ autophagy, ↓ chemoresistance	Liu Y. et al., 2019
	mir-340	hFOB1.19, U2OS, SaOS2	\(\Delta \) SNHG16: ↓ viability, ↓ apoptosis, ↑ caspase 3/7 activity	Su et al., 2019
	mir-1301, BCL9	U2OS, MG-63	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion	Wang et al., 2019a
	mir-205, ZEB1	MG-63, U2OS, SAOS2, HOS, OB3	\(\Delta \) SNHG16: ↓ proliferation	Zhu C. et al., 2018
	mir-488, ITGA6	U2OS, HOS	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ EMT process	Bu et al., 2021
	mir-1285-3p, cleaved-caspase-3, Bax, pro-caspase-3, Bcl-2	U2OS, MNNG/HOS, 143b, SJSA, MG63, 293, hFOB 1.19	\(\Delta \) SNHG16: ↓ proliferation, ↓ migration, ↓ invasion, ↑ cell cycle arrest, ↑ apoptosis	Xiao et al., 2021
	mir-146a-5p, NOVA1	hFOB1.19, MG63, U2OS, 143B, MNNG/HOS	↑ SNHG16: ↑ proliferation, ↑ migration	Zheng et al., 2019
Colorectal cancer (CRC)	mir-124-3p, MCP-1	HEK293T, FHC, SW480, HCT116, DLD-1, LOVO	\(\Delta \) SNHG16: ↓ proliferation, ↓ invasion, ↓ EMT process	Chen et al., 2020
TABLE 1 | (Continued)

Tumor type	Interactions	Cell line	Function	References
Cervical cancer	PARP9, SP1	SiHa, CaSiK, C33A, ME180, HeLa, HcErEpic	↑ SNHG16: proliferation, ↑ migration, ↓ invasion	Tao et al., 2020
Neuroblastoma (NB)	–	SH-SY5Y	↑ SNHG16: proliferation, ↑ migration, ↓ invasion, ↓ EMT process	Yu et al., 2019a
Retinoblastoma (RB)	miR-140-5p	ARPE-19, WERI-Rb1, SO-RB-50, Y79, SO-Rb50	↑ SNHG16: proliferation, ↓ colony formation, ↑ apoptosis	Xu et al., 2019
Oral squamous cell carcinoma (OSCC)	c-Myc, E-cadherin, N-cadherin, Snail, MMP-2, MMP-9, PCNA	ARPE-19 and human RB cell lines Y-79, WERI-Rb1, 67BR and SO-Rb50	↑ SNHG16: proliferation, ↓ migration, ↓ invasion, ↑ apoptosis	Li S. et al., 2019
Nasopharyngeal carcinoma (NPC)		NOK, CAL27, TCA8113, OEC-M1, TW2.6	↑ SNHG16: proliferation, ↑ apoptosis	Wang et al., 2021
Pancreatic cancer (PC)		HPY-5, BxPC3, Panc-1, MIA Paca-2, SW1990	↑ SNHG16: proliferation, ↓ migration, ↓ invasion, ↑ apoptosis	Xu et al., 2021
Papillary thyroid cancer (PTC)			↑ SNHG16: proliferation, ↓ colonization formation, ↓ migration, ↓ invasion	Liu S. et al., 2019
			↑ SNHG16: proliferation, ↓ migration, ↓ invasion, ↓ lipogenesis	Wu et al., 2019
			↑ SNHG16: proliferation, ↓ metastasis	Wang et al., 2021
			↑ SNHG16: proliferation, ↓ invasion	Pang et al., 2019
			↑ SNHG16: proliferation, ↓ invasion	Wang et al., 2019b
			↑ SNHG16: proliferation, ↓ apoptosis	Wen et al., 2019
			↑ SNHG16: proliferation, ↓ apoptosis	Cao et al., 2018
			↑ SNHG16: proliferation, ↓ viability, ↓ EMT process, ↑ apoptosis	Peng and Li, 2019
Ovarian cancer	P-AKT, MMP9	SKOV-3, ES2, HO8910, OMC685, OSE-29	↑ SNHG16: proliferation, ↓ migration, ↓ invasion	Yang et al., 2018

(Continued)
Small nucleolar RNA host gene 6 participates in the progression of gastric cancer via sequestering miR-628-3p and consequently decreasing expression of NRP1 (Pang et al., 2019). Animal studies have consistently shown that SNHG16 silencing decreases malignant feature of the grafted cancer cells (Fig. 9).

Table 1 summarizes the results of in vitro studies regarding the role of SNHG16 in carcinogenesis.

ANIMAL STUDIES

Animal studies have consistently shown that SNHG16 silencing decreases malignant feature of the grafted cancer cells (Table 2). The only exception has been reported in HCC where SNHG16 over-expression has significantly suppressed the in vivo expansion of grafted HuH7 cells (Xu et al., 2018). Another study in HCC xenograft model has shown that SNHG16 silencing enhances response of HepG2/SOR cells to cytotoxic effect of sorafenib and attenuates tumor growth (Ye et al., 2019). In xenograft models of retinoblastoma, up-regulation SNHG16 (Xu et al., 2019) or its downstream target NRAS (Sun et al., 2019) can increase tumor growth. Finally, in gastric cancer where SNHG16 sponges miR-628, in vivo studies have shown that up-regulation of miR-628 can decrease tumor expansion (Pang et al., 2019).

CLINICAL STUDIES

Except for a single study which demonstrated down-regulation of SNHG16 in HCC samples versus nearby non-malignant hepatic tissues (Xu et al., 2018), other studies have indicated up-regulation of SNHG16 in malignant tissues of different origins compared with non-neoplastic samples (Supplementary Table 1). Consistent with these findings, up-regulation of SNHG16 has been revealed to predict poor survival of patients. Moreover, its expression has been related with greater chance of
distant metastasis, lymph node involvement and low
differentiation of tumor cells.

DISCUSSION

Small nucleolar RNA host gene 6 has been regarded as an oncogenic lncRNA in almost all tissues. This lncRNA affect carcinogenesis through multifaceted mechanisms including mechanisms related to both tumor cells and their niche. In fact, it can both affect cellular functions and processes, particularly those related with proliferation, survival and apoptosis as well as microenvironmental aspects of cancer progression.

More than 20 miRNAs have been found to interact with SNHG16. The sponging effects of SNHG16 on miRNAs have been well studied. miR-520a-3p, miR-4500, miR-146a miR-16–5p, miR-98, let-7a-5p, hsa-miR-93, miR-17-5p, miR-186, miR-302a-3p, miR-605-3p, miR-1301, miR-140-5p, miR-195, let-7b-5p, miR-16, miR-340, miR-1301, miR-205, miR-488, miR-1285-3p, miR-302a-3p, miR-605-3p, miR-140-5p, miR-195, let-7b-5p, miR-16, miR-340, miR-1301, miR-205, miR-488, miR-1285-3p, miR-146a-5p, and miR-124-3p are examples of miRNAs sponged by this lncRNA in different types of cancers. Verification of interaction between this lncRNA and a number of miRNAs such as miR-98 in different tissues raises the possibility of independence of such interactions from the tissue type. TGF-β1/SMAD5, mTOR, NF-κB, RAS/RAF/MEK/ERK, PI3K/AKT, and Wnt/β-catenin pathways are among cancer-related pathways.

TABLE 2 | Outline of studies which judged function of SNHG16 in animal models (Δ, knock-down or deletion; VM, vasculogenic mimicry).

Tumor Type	Animal models	Results	References
Non–small cell lung cancer (NSCLC)	male Athymic BALB/c mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight, ↓ tumor growth	Yu et al., 2020
	female BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight	Han et al., 2019
Hepatocellular carcinoma (HCC)	athymic nude mice	↑ SNHG16: ↑ tumor size, ↑ tumor growth	Xu et al., 2018
	female BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight, ↑ SNHG16: ↑ tumor size, ↑ tumor weight	Zhong et al., 2020
	nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight, ↓ tumor growth	Chen et al., 2019
	Male Athymic nu/nu nude mice	Δ SNHG16: ↓ tumor size, ↓ tumor weight, ↓ tumor growth, ↓ sorafenib resistance	Ye et al., 2019
Osteosarcoma	male BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor growth	Xie et al., 2019
	BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight, ↓ metastatic	Li S. et al., 2020
Colorectal cancer (CRC)	male BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor growth, ↓ metastatic	Bu et al., 2021
	nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight	Xiao et al., 2021
	male BALB/c nude mice	Δ SNHG16: ↓ tumor size, ↓ tumor weight, ↓ metastasis	Chen et al., 2020
	male BALB/c nude mice	↑ SNHG16: ↑ tumor size	Li Y. et al., 2019
Cervical cancer	specific-pathogen-free	Δ SNHG16: ↓ tumor growth	He et al., 2020
Neuroblastoma (NB)	BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight	Tao et al., 2020
Retinoblastoma (RB)	athymic BALB/c mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight	Deng et al., 2020; Bao et al., 2020; Wen et al., 2020
	male BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight	Xu Z. et al., 2020
	female BALB/c nude mice	Δ NRAS: ↓ tumor volume, ↓ tumor weight	Sun et al., 2019
	BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight	Li S. et al., 2019
Oral squamous cell carcinoma	male athymic BALB/c nude mice	Δ SNHG16: ↓ tumor growth ↑ SNHG16: ↑ tumor growth	Wang et al., 2021
Pancreatic cancer	male BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor growth	Sun et al., 2019
Nasopharyngeal carcinoma (NPC)	male BALB/C nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight	Liu S. et al., 2019
Gastric cancer	female BALB/c nude mice	↑ mir-628: ↓ tumor volume, ↓ tumor weight	Wu et al., 2021
Acute lymphoblastic leukemia (ALL)	null mice	Δ SNHG16: ↓ tumor volume, ↓ ALL tumor transplants	Pang et al., 2019
Large B–cell lymphoma (DLBCL)	male NOD/SCID mice	Δ SNHG16: ↓ tumor growth	Yang T. et al., 2019
Glioma	athymic BALB/c nude mice	Δ SNHG16: ↓ tumor volume, ↓ number of VMs, ↑ survival period	Zhu et al., 2019
Endometrial carcinoma	male nude BALB/c mice	Δ SNHG16: ↓ tumor volume, ↓ tumor growth	Wang et al., 2019
Laryngeal squamous cell carcinoma (LSCC)	female nude mice	Δ SNHG16: ↓ tumor volume, ↓ tumor weight	Zhang G. et al., 2019
Esophageal cancer	female BALB/c athymic nude mice	Δ SNHG16: ↓ tumor growth	Han et al., 2018
being affected by this lncRNA. Moreover, SNHG16 has been shown to affect expression of a number of EMT-associated transcription factors and enhance this process. SNHG16 has also been found to affect response of cancer cells to 5-FU and sorafenib.

Based on the results of functional studies that confirmed the ability of siRNA-mediated SNHG16 silencing in reduction of cancer cell proliferation and invasiveness, this strategy can be proposed as a therapeutic strategy for cancer. In vivo studies have also confirmed applicability of these methods; however no clinical study has applied these methods yet. Antisense oligonucleotides as a promising strategy for suppression of expression of SNHG16 should be appraised in clinical settings considering the bioavailability and safety issues.

Although over-expression of SNHG16 has been verified in tissue samples of different types of tumors, application of this lncRNA as a circulatory marker for early detection of cancer has not been assessed. Since clinical studies have revealed correlation between expression amounts of SNHG16 and malignant features, one can suppose that SNHG16 can be used as both diagnostic and prognostic marker. However, this speculation should be verified in future.

AUTHOR CONTRIBUTIONS

MT and SG-F wrote the draft and revised it. TK and SS collected the data and designed the tables and figures. All authors read and approved submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2021.741684/full#supplementary-material
Wu, Q., Zhao, Y., Shi, R., and Wang, T. (2021). LncRNA SNHG16 facilitates nasopharyngeal carcinoma progression by acting as a ceRNA to sponge miR-520a-3p and upregulating MAPK1 expression. Cancer Manag. Ther. 13:4103. doi: 10.2147/cmar.s30544

Wu, W., Guo, L., Liang, Z., Liu, Y., and Yao, Z. (2020). Lnc-SNHG16/miR-128 axis modulates malignant phenotype through WNT/beta-catenin pathway in cervical cancer cells. J. Cancer 11:2201. doi: 10.7150/jca.40319

Xiao, J., Jiang, G., Zhang, S., Hu, S., Fan, Y., Li, G., et al. (2021). LncRNA SNHG16 contributes to osteosarcoma progression by acting as a ceRNA of miR-1285-3p. BMC Cancer 21:355.

Xie, X., Xu, X., Sun, C., and Yu, Z. (2019). Long intergenic noncoding RNA SNHG16 interacts with miR-195 to promote proliferation, invasion and tumorigenesis in hepatocellular carcinoma. Exp. Cell Res. 383:111501. doi: 10.1016/j.yexcr.2019.111501

Xu, C., Hu, C., Wang, Y., and Liu, S. (2019). Long noncoding RNA SNHG16 promotes human retinoblastoma progression via splicing miR-140-5p. Biomed. Pharmacother. 117:109153. doi: 10.1016/j.biopha.2019.109153

Xu, F., Zha, G., Wu, Y., Cai, W., and Ao, J. (2018). Overexpressing lncRNA SNHG16 inhibited HCC proliferation and chemoresistance by functionally sponging hsa-miR-93. Onco Targets Ther. 11:8855. doi: 10.2147/ott.2005

Xu, H., Miao, X., Li, X., Chen, H., Zhang, B., and Zhou, W. (2021). LncRNA SNHG16 contributes to tumor progression via the miR-302b-3p/SILC2A4 axis in pancreatic adenocarcinoma. Cancer Cell Int. 21:51.

Xu, P., Xiao, H., Yang, Q., Hu, R., Jiang, L., Bi, R., et al. (2020). The USP21/YY1/SNHG16 axis contributes to tumor proliferation, migration, and invasion of non-small-cell lung cancer. Exp. Mol. Med. 52, 41–55. doi: 10.1038/s41419-020-0256-6

Xu, Z., Sun, Y., Wang, D., Sun, H., and Liu, X. (2020). SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells. Cancer Cell Int. 20:236.

Yang, L., Zhang, L., Lu, L., and Wang, Y. (2019). Long noncoding RNA SNHG16 sponges miR-182-5p and miR-128-3p to promote retinoblastoma cell migration and invasion by targeting LASP1. Onco Targets Ther. 12:8653. doi: 10.2147/ott.s212352

Yang, R., Ma, D., Wu, Y., Zhang, Y., and Zhang, L. (2020). LncRNA SNHG16 regulates the progress of acute myeloid leukemia through miR183-5p–FOXO1 regulatory network. OncoTargets Ther. 12:10703. doi: 10.2147/ott.s232470.

Ye, J., Dong, J.-T., He, B., Zou, Y.-F., Li, X.-S., Xi, C.-H., et al. (2019). LncRNA SNHG16 promotes esophagus cancer cell proliferation, migration and EMT formation via PTEN/PI3K/AKT axis. J. Biosci. 46:4.

Ye, J., Zhang, R., Du, X., Chai, W., and Zhou, Q. (2019). Long noncoding RNA SNHG16 sponging miR-140-5p. Mol. Ther. Nucleic Acids 17:265. doi: 10.1016/j.omtn.2018.12.017

Yu, L., Chen, D., and Song, J. (2020). LncRNA SNHG16 promotes non-small cell lung cancer development through sponging miR-17-5p. Mol. Ther. 28, 170–175. doi: 10.1038/s41392-018-0142-3

Yu, Y., Chen, F., Yang, Y., Jin, Y., Shi, J., Han, S., et al. (2019). LncRNA SNHG16 promotes cell growth and metastasis in ovarian cancer. Eur. Rev. Med. Pharmacol. Sci. 22, 616–622.

Yu, Y., Dong, J.-T., He, B., Zou, Y.-F., Li, X.-S., Xi, C.-H., et al. (2019). LncRNA SNHG16 induces soroferm resistance in hepatocellular carcinoma cells through sponging miR-140-5p. Onco Targets Ther. 12:415. doi: 10.2147/ott.s175176

Zhang, G., Ma, A., Jin, Y., Pan, G., and Wang, C. (2019). LncRNA SNHG16 induced HCC proliferation and chemoresistance by functionally sponging hsa-miR-93. Onco Targets Ther. 11:2201. doi: 10.2147/ott.s186923

Zhang, S., Du, L., Wang, L., Jiang, X., Zhan, Y., Li, J., et al. (2019). Evaluation of serum exosomal Lnc RNA-based biomarker panel for diagnosis and recurrence of osteosarcoma. Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 October 2021 | Volume 9 | Article 741684

Zhang, B., Li, Y., Pan, G., and Wang, C. (2019). LncRNA SNHG16 has tumor suppressing effect in acute lymphoblastic leukemia by inverse interaction on hsa-miR-124-3p. IUBMB Life 71, 134–142. doi: 10.1002/iub.1947

Zhang, X., Huang, H., Wang, X., Liu, H., Liu, H., and Lin, Z. (2020). Knockdown of LncRNA SNHG16 suppresses multiple myeloma cell proliferation by sponging miR-342-3p. Cancer Cell Int. 20:38.

Zhang, X., Wang, G., and Luo, L. (2018). Long non-coding RNA SNHG16 promotes cell growth and metastasis in ovarian cancer. Eur. Rev. Med. Pharmacol. Sci. 22, 616–622.

Zhang, G., Ma, A., Jin, Y., Pan, G., and Wang, C. (2019). LncRNA SNHG16 induces soroferm resistance in hepatocellular carcinoma cells through sponging miR-140-5p. Onco Targets Ther. 12:415. doi: 10.2147/ott.s175176

Zhu, W., Yang, L., Zhu, Y., Wang, Y., and Wang, W. (2019). Long non-coding RNA SNHG16 has tumorigenicity of USF1 inhibits the vasculogenic mimicry of glioma cells via stimulating JAK2/STAT3 signal pathway in gastric cancer. J. Cancer 10:1013. doi: 10.7150/jca.29827

Zhu, W., Wang, Z., Wang, Y., and Liu, S. (2019b). LncRNA SNHG16 functions as an oncogene by sponging MiR-4518 and up-regulating PRMT5 expression in gloma. Cell. Physiol. Biochem. 45, 1975–1985. doi: 10.1159/000487974

Zhou, Q., Xu, X., Zhang, Y., Yang, Z., and Wang, X. (2018). Long non-coding RNA SNHG16 sponging miR-542-3p and upregulate MAPK1 expression. Onco Targets Ther. 11:7137. doi: 10.2147/ott.2005

Zhu, W., Wang, Z., Wang, Y., and Liu, S. (2019b). LncRNA SNHG16 functions as an oncogene by sponging MiR-4518 and up-regulating PRMT5 expression in gloma. Cell. Physiol. Biochem. 45, 1975–1985. doi: 10.1159/000487974

Zhu, W., Wang, Z., Wang, Y., and Liu, S. (2019b). LncRNA SNHG16 functions as an oncogene by sponging MiR-4518 and up-regulating PRMT5 expression in gloma. Cell. Physiol. Biochem. 45, 1975–1985. doi: 10.1159/000487974

Zhu, W., Wang, Z., Wang, Y., and Liu, S. (2019b). LncRNA SNHG16 functions as an oncogene by sponging MiR-4518 and up-regulating PRMT5 expression in gloma. Cell. Physiol. Biochem. 45, 1975–1985. doi: 10.1159/000487974
prediction of bladder cancer. J. Cell. Mol. Med. 23, 1396–1405. doi: 10.1111/jcmm.14042
Zhao, W., Fu, H., Zhang, S., Sun, S., and Liu, Y. (2018). LncRNA SNHG16 drives proliferation, migration, and invasion of hemangioma endothelial cell through modulation of miR-520d-3p/STAT3 axis. Cancer Med. 7, 3311–3320. doi: 10.1002/cam4.1562
Zheng, S., Ge, D., Tang, J., Yan, J., Qiu, J., Yin, Z., et al. (2019). LncSNHG16 promotes proliferation and migration of osteosarcoma cells by targeting microRNA-146a-5p. Eur. Rev. Med. Pharmacol. Sci. 23, 96–104.
Zhong, G., Lou, W., Yao, M., Du, C., Wei, H., and Fu, P. (2019). Identification of novel mRNA-miRNA-lncRNA competing endogenous RNA network associated with prognosis of breast cancer. Epigenomics 11, 1501–1518. doi: 10.2217/epi-2019-0209
Zhong, J. H., Xiang, X., Wang, Y. Y., Liu, X., Qi, L. N., Luo, C. P., et al. (2020). The lncRNA SNHG16 affects prognosis in hepatocellular carcinoma by regulating p62 expression. J. Cell. Physiol. 235, 1090–1102. doi: 10.1002/jcp.29023
Zhou, X.-Y., Liu, H., Ding, Z.-B., Xi, H.-P., and Wang, G.-W. (2020). LncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics 112, 1021–1029. doi: 10.1016/j.ygeno.2019.06.017
Zhu, Z., Zeng, Y., Zhou, C.-C., and Ye, W. (2018). SNHG16/miR-216-5p/ZEB1 signal pathway contributes to the tumorigenesis of cervical cancer cells. Arch. Biochem. Biophys. 637, 1–8.
Zhu, Q., Li, Y., Guo, Y., Hu, L., Xiao, Z., Liu, X., et al. (2019). Long non-coding RNA SNHG16 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma cells by targeting miR-497-5p/PIM1 axis. J. Cell. Mol. Med. 23, 7395–7405.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Ghafouri-Fard, Khoshbakht, Taheri and Shojaei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.