Stereotactic body radiotherapy versus surgery for early-stage non-small cell lung cancer: an updated meta-analysis involving 29,511 patients included in comparative studies

Gustavo Arruda Viani1, André Guimarães Gouveia2, Michael Yan3, Fernando Konjo Matsuura1, Fabio Ynoe Moraes4

ABSTRACT

Objective: To evaluate the efficacy of stereotactic body radiotherapy (SBRT) versus surgery for early-stage non-small cell lung cancer (NSCLC) by means of a meta-analysis of comparative studies. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Meta-analysis of Observational Studies in Epidemiology guidelines, searches were performed on PubMed, MEDLINE, Embase, and Cochrane Library for eligible studies. The meta-analysis compared the hazard ratios (HR) for overall survival (OS), cancer-specific survival (CSS), and local control (LC). Results: Thirty studies involving 29,511 patients were included (surgery group: 17,146 patients and SBRT group: 12,365 patients). There was a significant difference in favor of surgery vs. SBRT in the 3-year OS (HR = 1.35; 95% CI: 1.22-1.44; I² = 66%) and 3-year CSS (HR = 1.23; 95% CI: 1.09-1.37; I² = 17%), but not in the 3-year LC (HR = 0.97; 95% CI: 0.93-1.08; I² = 19%). In the subgroup analysis for OS, no significant difference between surgery and SBRT groups was observed in the T1N0M0 subgroup (HR = 1.26; 95% CI: 0.95-1.68; I² = 0%). In subgroup analysis for CSS, no significant difference was detected between the sublobar resection subgroup and the SBRT group (HR = 1.21; 95% CI: 0.96-1.53; I² = 16%). Conclusions: Surgery generally resulted in better 3-year OS and CSS than did SBRT; however, publication bias and heterogeneity may have influenced these findings. In contrast, SBRT produced LC results similar to those of surgery regardless of the extent of surgical resection. These findings may have important clinical implications for patients with comorbidities, advanced age, poor pulmonary reserve, and other factors that may contraindicate surgery.

Keywords: Carcinoma, Non-Small-Cell Lung/surgery; Radiosurgery; Meta-analysis.

INTRODUCTION

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death in the world, with 2,206,771 new cases and 1,796,144 deaths in 2020.1 NSCLC represents nearly 87% of lung cancer diagnoses, and only 15% of patients present with early-stage disease.2 The introduction of lung cancer screening into clinical practice, however, will result in more patients being diagnosed with early-stage disease.3 In the National Lung Screening Trial, approximately 70% of lung cancer patients diagnosed by CT screening have stage I NSCLC.4

Currently, surgery is the standard of care for patients with operable early-stage (stages I or II) NSCLC.5 However, NSCLC usually affects elderly patients. In one study with 27,844 NSCLC patients submitted to surgery, the median age was 67.2 years. In addition, in this population, the incidence of major complications was 9.1%.6 Older age (< 0.001) and diseases associated with smoking, such as coronary artery disease (p = 0.011) and peripheral vascular disease (p = 0.001), were predictors of morbidity and mortality after surgery.5

In the last years, encouraging outcomes with stereotactic body radiotherapy (SBRT) in inoperable NSCLC patients have driven the interest in a direct comparison between surgery and SBRT in medically operable patients.6 A standard SBRT course for stage I NSCLC consists of 1-5 treatments over 1 to 2 weeks with a dose per fraction of 10-34 Gy.7,8 The ablative dose per fraction used with SBRT increases patient convenience due to reduced treatment duration, while translating into a higher biologically effective dose (BED), which is likely to produce a better local tumor control rate.9
Early randomized trials comparing surgery and SBRT closed prematurely because of low patient accrual. Consequently, several studies and meta-analyses comparing both modalities have been published. However, previously published studies lacked methodological rigor, and some key clinical aspects were missing. Therefore, the present study aimed to perform a meta-analysis of studies comparing surgery and SBRT in early-stage NSCLC patients to explore clinical aspects and identify potential differences for guiding future relevant studies.

METHODS

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines, electronic searches were performed in PubMed, Embase, SciELO, and Cochrane Library for eligible studies published before January 1, 2020. The following keywords or medical terms were used: (“non-small cell lung carcinoma” OR “non-small cell lung cancer”) OR “lung adenocarcinoma” OR “lung squamous cell carcinoma” OR “large cell lung cancer” (AND (“surgery” OR “lobectomy” OR “sublobar resection” OR “limited resection” OR “sublobectomy” OR “segmentectomy” OR “wedge resection”) AND (“stereotactic ablative radiotherapy” OR “stereotactic body radiotherapy” OR “SBRT” OR “SABR”). Only articles in English were included, and reference lists of relevant studies were manually searched for potentially eligible articles.

Study inclusion

We included comparative studies of SBRT and surgery (lobectomy, segmentectomy, or wedge resection) in patients with early-stage (T1-3N0M0) NSCLC. Only studies using an SBRT schedule with a median BED ≥ 100 Gy10 were included in the final meta-analysis. Randomized and observational studies using propensity score analysis or other statistical adjustment methods to reduce bias were included in the meta-analysis. Meta-analyses previously published were additionally included in the quantitative synthesis. Studies without comparisons between SBRT/stereotactic ablative radiotherapy and surgery, case reports, and reviews were excluded.

Outcomes

The outcomes studied in the meta-analysis were 3-year overall survival (OS), cancer-specific survival (CSS), and local control (LC). Studies combining treatments in one of the comparative arms or studies with no data regarding 3-year OS, CSS, and LC were also excluded.

Data collection and quality assessment

Two reviewers (GAV and AGG) independently screened studies and extracted study data using a standardized method, discrepancies being settled by a third reviewer (FKM). The following information was collected: author, year of publication, study design, staging, SBRT dose, fractionation SBRT regimen, clinical characteristics (sex, age, histology, and follow-up), and clinical outcomes.

Statistical analysis

Meta-analysis of the outcomes was performed using ProMeta. Hazard ratios (HRs) and respective 95% CIs were used to analyze dichotomous data. Data from survival curves were extracted according to the methods described by Tierney et al. When calculations were not possible or not available, HRs were estimated using the Kaplan-Meier method. We used the iterative algorithm proposed by Guyot et al. to find numeric solutions to the inverted Kaplan-Meier equations. Heterogeneity was estimated using the I² index and Cochran’s Q statistic. In the presence of heterogeneity using the fixed-effect model, the random-effects model was selected to estimate the outcomes. Sensitivity analysis was conducted by stepwise removal of each included study. Subgroup analysis was performed by separating the studies by type of surgery (lobectomy, sublobar resection, or mixed surgical resection), T staging (T1N0M0, T1-2N0M0, or T1-3N0M0), surgical technique (video-assisted thoracic surgery [VATS] or mixed surgical technique), and use of propensity score matching (yes or no). Meta-regression analysis was performed to determine the effect of different publication years, proportion of chemotherapy use, and proportion of pathological lymph node involvement on CSS and OS. These variables were treated as continuous variables. Publication bias was evaluated using Egger test, and a p-value < 0.05 was considered significant.

RESULTS

A total of 3,632 studies were initially identified. After excluding duplicates and irrelevant publications, 30 studies were selected for the meta-analysis (Figure S1). Three studies had different control groups (lobectomy or sublobar resection); these groups were counted twice as separate cohorts, generating a total of 33 cohorts for quantitative synthesis. Overall, there were 26 retrospective studies with propensity score matching, 1 randomized clinical trial, 1 retrospective study with adjustment for prognostic covariates, and 2 retrospective studies without adjustment for covariates.

In total, 29,511 patients with early-stage NSCLC were included, 17,146 undergoing surgery and 12,365 being treated with SBRT. Lobectomy, mixed surgical resection, and sublobar resection were compared with SBRT in 11, 10, and 6 studies, respectively. In addition, 3 studies separately compared lobectomy and sublobar resection with SBRT. VATS was employed exclusively in 4 studies; in the remaining studies, both open thoracotomy and VATS were used (Table 1). The SBRT dose ranged from 45 to 60 Gy, in 3 to 12
fractions. Details of study design, number of patients, clinical characteristics, treatment characteristics, and outcomes in the studies included are described in Table S1. Table S2 shows a summary of the characteristics of the previous meta-analyses\(^{(10-14)}\) in the literature and of the present meta-analysis.

Considering the studies using propensity score matching to improve treatment group balance, we found that 16 covariates were utilized to generate propensity score models. Age, sex, and educational status were the most common covariates used, whereas tumor staging, tumor location, histology, and PET were the least common (Figure S2). In total, 2 studies used more than 10 covariates in the propensity score model, whereas 9 studies used less than 8 covariates (Figure S3).

Table 1. Summary of the characteristics of all studies included in the meta-analysis.

Variable	Studies, n	Patients, n	Median (range)
Trials and comparative studies			
Randomized trial	1	58	
Retrospective, propensity score matching	26	24,917	
Retrospective, adjustment for prognostic covariates	1	340	
Retrospective, other	2	4,196	
Total	29,511	12,365	17,146
SBRT			
Surgery			
Patients			
Age			
SBRT	73	73 (66-82)	
Surgery	72	72 (65-82)	
Female sex, %			
SBRT	42	42 (3-65)	
Surgery	40	40 (3-62)	
Histology, %			
Adenocarcinoma			
SBRT	47	47 (9-100)	
Surgery	53	53 (14-100)	
Squamous cell carcinoma			
SBRT	30	30 (0-46)	
Surgery	31	31 (0-43)	
SBRT Total dose, Gy		48 (45-60)	
Fraction, n		4 (3-12)	
Dose per fraction, Gy		14 (5-20)	
Median BED > 100		30	
Follow-up period, months		31 (18-58)	
SBRT		43 (16-58)	
Surgery			
Clinical stage			
T1N0	4	3,334	
T1-2N0	21	24,757	
T1-3N0	4	620	
Stage I	1	800	
Type of surgery*			
Mixed	10	772	
Lobectomy	14	6,242	
Sublobar resection	9	10,132	
Surgical technique			
Mixed	26	16,951	
VATS only	4	195	
Chemotherapy, %			
SBRT	1	1 (0-16)	
Surgery	8	8 (0-15)	
Positive lymph node involvement			
SBRT	6.5	6.5 (1.0-75.7)	
Surgery	11.0	11.0 (4.0-37.8)	

SBRT: stereotactic body radiotherapy; BED: biologically effective dose; and VATS: video-assisted thoracic surgery.

*Three studies reported using both lobectomy and sublobar resection.
OS

Thirty studies, with a total of 29,511 patients, compared surgery with SBRT and reported the OS. After quantitative synthesis, the pooled 3-year OS was significantly higher in the surgery group than in the SBRT group (HR = 1.35; 95% CI: 1.22-1.44; I² = 66%); however, there was significant heterogeneity in the studies. When we pooled the data stratified by the extent of surgical resection, the 3-year OS remained higher in the surgery group in comparison with the SBRT group for all subgroups. Significant heterogeneity was noted in the lobectomy subgroup (I² = 66%; HR = 1.47; 95% CI: 1.28-1.69), but not in the mixed surgical resection (I² = 0%; HR = 1.28; 95% CI: 1.07-1.53) and sublobar resection subgroups (I² = 38%; HR = 1.24; 95% CI: 1.06-1.46; Figure 1).

Table 2 presents the results of further subgroup analyses. When we compared VATS and non-VATS procedures or studies that used and did not use propensity score matching, surgery was associated with significantly higher 3-year OS. However, when we stratified patients by T staging, the subgroup of studies including only T1N0M0 patients showed no significant difference in 3-year OS between surgery and SBRT groups (HR = 1.26; 95% CI: 0.95-1.68; I² = 0%), with no heterogeneity noted among the studies included. Moreover, in the meta-regression analysis, publication year, proportion of chemotherapy use, and proportion of pathological lymph node involvement had no significant associations with OS (Table 2).

CSS

Sixteen studies involving 11,387 patients reported the CSS at 3 years as an outcome. When compared with SBRT, surgery was associated with higher 3-year CSS (HR = 1.23; 95% CI: 1.09-1.37; I² = 17%), and no significant heterogeneity was detected (Figure 2). In a subgroup analysis stratified by the extent of surgical resection, only lobectomy alone was found to be significantly associated with improved CSS when compared with SBRT (Figure 2 and Table 3). When we assessed sublobar resection, there was no significant difference when compared with SBRT and no significant heterogeneity (HR = 1.21; 95% CI: 0.96-1.53; I² = 16%; Figure 2 and Table 3). In additional subgroup analyses, comparison between studies using VATS and no VATS, as well between studies using and not using propensity score matching showed significant benefits of surgery over SBRT regarding 3-year CSS (Table 3). However, in studies including T1N0M0 patients only, no significant differences between surgery and SBRT were observed (HR = 1.12; 95% CI: 0.86-1.46; I² = 0%), and there was no heterogeneity. In the meta-regression analysis, publication year, proportion of chemotherapy use, and proportion of pathological lymph node involvement had no relationship with 3-year CSS (Table 3).

LC

Nine studies involving 912 patients reported data on 3-year LC. Surgery and SBRT showed equivalent LC at 3 years (HR = 0.97; 95% CI: 0.93-1.08; I² = 19%) and no heterogeneity (Figure 3).

Publication bias

Publication bias was assessed using the method by Egger et al. Statistical significance for publication bias for OS at 3 years was detected in favor of surgery (p = 0.027; Figure S4).

PROPENSITY SCORE MATCHING

When stratifying the studies by use of propensity score matching, we surprisingly found high heterogeneity (I² = 61%). The covariates used for model generation in propensity score matching showed substantial variability among the studies (Figure S2). Several studies did not incorporate clinically essential confounders such as tumor stage, tumor size, clinical performance status, and histology within the propensity score model (only 10% of the studies; Figure S2). Furthermore, the number of covariates used within the generation of the propensity score model was variable. Only 2 studies used more than 10 covariates, whereas 9 used less than 8 parameters (Figure S3). Although propensity score matching can minimize known confounding factors and improve the balance between two groups, it cannot truly ever eliminate them or replicate the results of a randomized study.

DISCUSSION

The present study is the largest meta-analysis examining oncologic outcomes of SBRT versus surgery in early-stage NSCLC. First, our analysis confirmed that surgery improved 3-year OS in comparison with SBRT, with a low degree of heterogeneity. The lobectomy subgroup also showed improved OS compared with the SBRT group; however, there was a high degree of heterogeneity in the pooled result. Second, when we stratified by the type of surgery (VATS or non-VATS), the 3-year OS was better than that in the SBRT group. There was no heterogeneity in the VATS subgroup, indicating that VATS did not compromise the treatment outcome. Third, studies that included only patients with T1N0M0 staging showed no significant differences in OS between surgery and SBRT groups, with no heterogeneity among the pooled studies. These findings failed to show a difference between the two treatments for patients in this population.

CSS is less sensitive to external variables than is OS. Our analysis shows that lobectomy is superior to SBRT for CSS in propensity score matching adjusted and unadjusted studies (neither subgroup showed significant heterogeneity). For patients staged as T1N0M0, there was no significant difference in CSS when comparing SBRT and lobectomy. Similarly, there was no difference in CSS when comparing SBRT and sublobar resection or mixed surgical resection. These findings may have important clinical implications for patients with comorbidities, advanced age, poor
Analyses of 3-year (3y) overall survival comparing lobectomy, mixed surgical resection, and sublobar resection subgroups with the stereotactic body radiotherapy (SBRT) group. The 3y overall survival was significantly higher in all of the surgery subgroups (HR = 1.35; 95% CI: 1.22-1.44; I² = 66%).

The American Society of Radiation Oncology has recently published a guideline that does not recommend SBRT outside of a clinical trial for patients who are at a low risk for lobectomy.\(^{(48)}\) Our findings corroborate this recommendation. Both treatments, even when considering the publication bias in favor of surgery, favor surgery with hazard ratio of 1.63 (1.12-2.43) for the lobectomy subgroup.

The table below provides the HR (95% CI) for each study included in the analysis:

Studies	SBRT	Surgery
Lobectomy subgroup		
Albano et al.\(^{(43)}\)	48	64
Boyer et al.\(^{(23)}\)	468	468
Bryant et al.\(^{(42)}\)	449	2986
Chang et al.\(^{(56)}\)	31	31
Cornwell et al.\(^{(44)}\)	37	37
Eba et al.\(^{(38)}\)	21	21
Hamaji et al.\(^{(21)}\)	41	41
Lin et al.\(^{(60)}\)	45	45
Mokles et al.\(^{(24)}\)	73	73
Rosen et al.\(^{(48)}\)	1781	1781
Shirvani et al.\(^{(31)}\)	99	99
Shirvani et al.\(^{(28)}\)	251	251
Smith et al.\(^{(34)}\)	300	300
Verstegen et al.\(^{(24)}\)	64	64
Total subgroup	3706	6241
Mixed subgroup		
Crabtree et al.\(^{(20)}\)	57	57
Crabtree et al.\(^{(28)}\)	56	56
Dong et al.\(^{(46)}\)	66	66
Kastelijn et al.\(^{(32)}\)	53	53
Miyazaki et al.\(^{(42)}\)	27	27
Palma et al.\(^{(21)}\)	60	60
Robison et al.\(^{(24)}\)	76	76
Van der Berg et al.\(^{(24)}\)	197	197
Varlotto et al.\(^{(20)}\)	77	77
Wang et al.\(^{(23)}\)	35	35
Total subgroup	704	704
Sublobar subgroup		
Bryant et al.\(^{(42)}\)	243	243
Ezer et al.\(^{(23)}\)	362	362
Grills et al.\(^{(38)}\)	55	55
Matsuo et al.\(^{(23)}\)	53	53
Paul et al.\(^{(38)}\)	201	201
Puri et al.\(^{(25)}\)	5355	5355
Shirvani et al.\(^{(20)}\)	112	112
Smith et al.\(^{(35)}\)	243	243
Shirvani et al.\(^{(22)}\)	1584	1584
Total subgroup	8206	8206

Figure 1. Analyses of 3-year (3y) overall survival comparing lobectomy, mixed surgical resection, and sublobar resection subgroups with the stereotactic body radiotherapy (SBRT) group. The 3y overall survival was significantly higher in all of the surgery subgroups (HR = 1.35; 95% CI: 1.22-1.44; I² = 66%). HR: hazard ratio.

pulmonary reserve, and other factors that may contraindicate surgery.

The American Society of Radiation Oncology has recently published a guideline that does not recommend SBRT outside of a clinical trial for patients who are at a low risk for lobectomy.\(^{(48)}\) Our findings corroborate this recommendation. Both treatments, even when considering the publication bias in favor of surgery, favor surgery with hazard ratio of 1.63 (1.12-2.43) for the lobectomy subgroup.
of surgery, had good OS and CSS outcomes, making the decision process complex and often dependent on patient desire.\(^{(49)}\)

When we compared our meta-analysis results with those of previously published meta-analyses, three\(^{(11,12,14)}\) of the five previous meta-analyses showed that surgery provides OS rates superior to those of SBRT. However, these analyses did not appraise publication bias or study heterogeneity. Our meta-analysis has explored study heterogeneity and publication bias, reinforcing the need for new studies with a more robust design, including clear inclusion and exclusion criteria, follow-up protocols, and statistical analyses that adjust for confounding variables, using methods such as propensity score matching and multivariable regression. Given the large sample size in the current study, it is unlikely that the inclusion of further observational studies comparing SBRT with surgery will significantly impact our findings.

Our meta-analysis does have limitations that warrant mention. Our analysis included only 1 small randomized trial, whereas the remaining 29 studies had a retrospective observational design. These are inherent limitations in the literature, although our quantitative synthesis improved the power in detecting the overall effect size. However, these results were significantly influenced by inter-study heterogeneity and publication bias, thereby presenting uncertainty to our pooled results. Similarly, a previous meta-analysis by Chen et al.\(^{(10)}\) that reported on 16 comparative studies also found significant heterogeneity and publication bias. The authors identified favorable OS outcomes with surgery in comparison with SBRT (HR = 1.48; 95% CI: 1.26-1.72; \(p < 0.001\)), but high heterogeneity (\(I^2 = 80.5\%; p < 0.001\)).\(^{(10)}\)

We also identified variations in the propensity score analysis for matching across a broad range of baseline variables, such as age, type of surgery, tumor size, histological subtype, tumor location, and others, in order to build two similar groups for comparison. Consequently, the readers must keep in mind that propensity score matching does not replicate randomized trial results, and that even after balancing, all sources of bias cannot be eliminated; unobserved confounders may exist. Lastly, we identified moderate heterogeneity in several of the quantitative syntheses by using random effects modeling.

FINAL CONSIDERATIONS

After pooling the data of 29,511 patients with early-stage NSCLC, surgery has shown to be superior to SBRT regarding OS and CSS outcomes, but no difference was found regarding LC. However, publication bias and heterogeneity may significantly have influenced these findings. Furthermore, there was no significant difference in OS between surgery and SBRT in the T1NO0M0 subgroup analysis, the same happening when comparing the sublobar resection subgroup with the SBRT group regarding CSS. SBRT and surgery had similar LC regardless of the extent of surgical resection. Our analyses suggest equivalent outcomes for SBRT in subsets of patients with early-stage NSCLC, and SBRT seems to be a viable option for inoperable

Table 2. Subgroup analyses including categorical and continuous moderator variables for three-year overall survival.

Categorical moderator variable	Number of studies (patients)	HR (95% CI)	\(p\)	Heterogeneity \(I^2\), %	\(p\)
Type of surgery					
Lobectomy	7 (4,677)	1.47 (1.20-1.69)	<	66 (0.0001)	
Mixed	4 (390)	1.28 (1.07-1.53)	0.001	0 (0.658)	
Sublobar resection	5 (6,320)	1.24 (1.06-1.46)	0.007	38 (0.114)	
VATS					
No	26 (16,951)	1.3 (1.2-1.4)	0.001	66 (0.0001)	
Yes	4 (195)	1.7 (1.2-2.3)	0.002	0 (0.528)	
Propensity score matching					
Yes	26 (24,917)	1.37 (1.23-1.54)	0.001	61 (0.001)	
No	4 (4,594)	1.25 (1.01-1.54)	0.038	38 (0.120)	
T staging					
T1	4 (3,334)	1.26 (0.95-1.68)	0.106	0 (0.460)	
T1-2	21 (24,757)	1.33 (1.18-5.00)	0.0001	68 (0.0001)	
T1-3	4 (620)	1.3 (1.2-2.0)	0.048	0 (0.40)	

Continuous moderator variable

Number of studies (patients)	Intercept	Slope	\(p\)	
Publication year	30 (29,511)	3.8	0.01	0.916
Chemotherapy	12 (19,481)	0.75	-0.02	0.208
Pathological lymph node involvement	8 (8,969)	0.82	-0.042	0.279

HR: hazard ratio; VATS: video-assisted thoracic surgery; and T: tumor.

Figure 2. Analyses of three-year (3y) cancer-specific survival comparing lobectomy, mixed surgical resection, and sublobar resection subgroups with the stereotactic body radiotherapy (SBRT) group. The 3y cancer-specific survival was significantly higher in all of the surgery subgroups (HR = 1.23; 95% CI: 1.09-1.37; I² = 17%). HR: hazard ratio.

Table 3. Subgroup analyses including categorical and continuous moderator variables for three-year cancer-specific survival.

Categorical moderator variable	Number of studies (patients)	HR (95% CI)	p	Heterogeneity I², %	p
Type of surgery					
Lobectomy	7 (4,677)	1.34 (1.11-1.61)	0.002	45	0.09
Mixed	4 (390)	1.07 (0.84-1.38)	0.573	0	0.77
Sublobar resection	5 (6,320)	1.21 (0.96-1.53)	0.112	16	0.309
VATS					
No	4 (195)	1.26 (1.02-1.54)	0.029	48	0.06
Yes	26 (16,951)	1.24 (1.06-1.44)	0.006	61	0.001
Propensity score matching					
Yes	26 (24,917)	1.15 (1.04-1.20)	0.017	15	0.295
No	4 (4,594)	1.40 (1.18-1.67)	0.0001	0	0.670
T staging					
T1	4 (3,334)	1.12 (0.86-1.46)	0.380	0	0.902
T1-2	21 (24,757)	1.27 (1.10-1.46)	0.001	30	0.145
Continuous moderator variable					
Publication year					
2010-2019	30 (29,511)	−102	0.05	0.447	
Chemotherapy, %					
0-20%	12 (19,481)	0.54	−0.05	0.922	
Pathological lymph node involvement, %	8 (8,969)	0.5	−0.02	0.833	

HR: hazard ratio; VATS: video-assisted thoracic surgery; and T: tumor.

patients. These findings may have important clinical implications for patients with comorbidities, advanced age, poor pulmonary reserve, and other factors that may contraindicate surgery.
Stereotactic body radiotherapy versus surgery for early-stage non-small cell lung cancer: an updated meta-analysis involving 29,511 patients included in comparative studies

AUTHORITY CONTRIBUTIONS

GAV, AGG, and FYM: conception and planning of the study; interpretation of evidence; drafting and revision of preliminary and final versions; and approval of the final version. MY: interpretation of evidence; and drafting and revision of preliminary and final versions. FKM: conception and planning of the study; interpretation of evidence; and drafting and revision of preliminary and final versions.

CONFLICT OF INTEREST

None declared.

REFERENCES

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660
2. Govindan R, Page N, Morgensztern D, Read W, Tierney R, Albano et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660
3. National Lung Screening Trial Research Team, Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med. 2013;368(21):1988-1991. https://doi.org/10.1056/NEJMoa1209120
4. Bertoletti L, Terzi A, Ricchetti F, Alongi F. Surgery or stereotactic ablative radiation therapy: how will be treated operable patients with early stage non small cell lung cancer in the future?: Ann Transl Med. 2015;3(2):25. https://doi.org/10.3978/j.issn.2305-5839.2015.01.06
5. Fernandez FG, Kosinski AS, Burfeind W, Park B, DeCamp MM, Seder et al. The Society of Thoracic Surgeons Lung Cancer Resection Risk Model: Higher Quality Data and Superior Outcomes [published correction appears in Ann Thorac Surg. 2017 Aug;104(2):728]. Ann Thorac Surg. 2016;102(2):370-377. https://doi.org/10.1016/j.athoracsur.2016.02.098
6. Palma D, Visser O, Lagerwaard FJ, Belderbos J, Slotman BJ, Senan et al. Impact of introducing stereotactic lung radiotherapy for elderly patients with stage I non-small-cell lung cancer: a population-based time-trend analysis. J Clin Oncol. 2010;28(35):5153-5159. https://doi.org/10.1200/JCO.2010.30.0731
7. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070-1076. https://doi.org/10.1001/jama.2010.2617
8. Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol. 2009;27(20):3290-3296. https://doi.org/10.1200/JCO.2008.21.5681
9. Chang Y, Senan S, Paul MA, Mehtran RJ, Louie AV, Balter P, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials [published correction appears in Lancet Oncol. 2015 Sep;16(9):e427]. Lancet Oncol. 2015;16(16):e630-e637. https://doi.org/10.1016/S1470-2045(15)70168-3
10. Chen H, Laba JM, Boldt RG, Goodman CD, Palma DA, Senan S, et al. Stereotactic Ablative Radiation Therapy Versus Surgery in Early Lung Cancer: A Meta-analysis of Propensity Score Studies. Int J Radiat Oncol Biol Phys. 2018;101(1):186-194. https://doi.org/10.1016/j.ijrobp.2018.01.064
11. Wen SW, Han L, Lv HL, Xu YZ, Li ZH, Wang MB, et al. A Propensity-Matched Analysis of Outcomes of Patients with Clinical Stage I Non-Small Cell Lung Cancer Treated surgically or with stereotactic radiotherapy: A Meta-analysis. J Invest Surg. 2019;32(1):27-34. https://doi.org/10.1177/089419391770519
12. Li M, Yang X, Chen Y, Yang X, Dai X, Sun F, et al. Stereotactic body radiation therapy or stereotactic ablative radiotherapy versus surgery for patients with T1-3N0M0 non-small cell lung cancer: a systematic review and meta-analysis. Onco Targets Ther. 2017;10:2885-2892. https://doi.org/10.2147/OTT.S138701
13. Zhang B, Zhu F, Ma X, Tian Y, Cao D, Luo S, et al. Matched-pair comparisons of stereotactic body radiotherapy (SBRT) versus surgery for the treatment of early stage non-small cell lung cancer: a systematic review and meta-analysis. Radiother Oncol. 2018;131:13-17. https://doi.org/10.1016/j.radonc.2017.05.037

Figure 3. Analyses of 3-year (3y) local control comparing lobectomy, mixed surgical resection, and sublobar resection subgroups with the stereotactic body radiotherapy (SBRT) group. There were no significant differences between the surgery subgroups and the SBRT group (HR = 0.97; 95% CI: 0.93-1.08; I² = 19%). HR: hazard ratio.
Shivani SM, Jiang J, Chang JY, Welsh J, Likhacheva A, Buchholz TA, et al. Lobectomy, sublobar resection, and stereotactic ablative radiotherapy for early-stage non-small cell lung cancers in the elderly. JAMA Surg. 2014;149(12):1244-1253. https://doi.org/10.1001/jamasurg.2014.556

Hamaji M, Chen F, Matsuo Y, Kagawachi A, Morita S, Ueki N, et al. Video-assisted thoracoscopic lobectomy versus stereotactic radiotherapy for stage I lung cancer. Ann Thorac Surg. 2015;99(6):1122-1129. https://doi.org/10.1016/j.athoracsur.2014.11.009

Kastelijn EA, El Sharnouby SY, Hofman FN, Van Putte BP, Moonnikhoff EM, Van Vulpen M, et al. Clinical Outcomes in Early-stage NSCLC Treated with Stereotactic Body Radiotherapy Versus Surgical Resection. Anticancer Res. 2015;35(10):5607-5614.

Ezer N, Veluswamy RR, Mhang M, Rosenzweig KE, Powell CA, Wilsinjesky SY. Outcomes after Radiotherapy versus Limited Resection in Older Patients with Early Stage Lung Cancer. J Thorac Oncol. 2015;10(8):1201-1206. https://doi.org/10.1016/j.jto.2015.05.002

van den Berg LL, Klinkenberg TJ, Groen HJM, Widder J. Patterns of Recurrence and Survival after Surgery or Stereotactic Radiotherapy for Early Stage NSCLC. J Thorac Oncol. 2015;10(5):826-831. https://doi.org/10.1016/j.jto.2015.03.008

Wang P, Zhang D, Guo XG, Li XM, Du LH, Sun BJ, et al. A propensity-matched analysis of surgery and stereotactic body radiotherapy for early stage non-small cell lung cancer in the elderly. Medicine (Baltimore). 2016;95(52):e5723. https://doi.org/10.1097/MD.0000000000005723

Paul S, Lee PC, Mao J, Issacs AJ, Sedrakyan A. Long term survival with stereotactic ablative radiotherapy (SABR) versus thoracoscopic sublobar resection in elderly people: national population based study with propensity matched comparative analysis. BMJ. 2016;354:j3570. https://doi.org/10.1136/bmj.j3570

Eba J, Nakamura K, Mizusawa J, Suzuki K, Nagata Y, Koike T, et al. Stereotactic body radiotherapy versus lobectomy for operable clinical stage IA lung adenocarcinoma: comparison of survival outcomes in two clinical trials with propensity score analysis. JCOG1315-AI Jpn J Clin Oncol. 2016;46(8):749-753. https://doi.org/10.1093/jjco/hyw068

Rosen JE, Salazar MC, Wang Z, Yu JB, Decker RH, Kim AW, et al. Lobectomy versus stereotactic body radiotherapy in healthy patients with stage I lung cancer. J Thorac Cardiovasc Surg. 2016;152(1):54-61. https://doi.org/10.1016/j.jtcvs.2015.07.069

Yerokun BA, Yang CJ, Gulack BC, Li X, Mulholland MS, Gu L, et al. A national analysis of wedge resection versus stereotactic body radiation therapy for stage IA non-small cell lung cancer. J Thorac Cardiovasc Surg. 2017;154(2):675-686.e4. https://doi.org/10.1016/j.jtcvs.2017.02.065

Myazaki T, Yamazaki T, Nakamura D, Sato S, Yamashiki N, Tsuchiya T, et al. Surgery or stereotactic body radiotherapy for elderly stage I lung cancer? A propensity score matching analysis. Surg Today. 2017;47(12):1476-1483. https://doi.org/10.1007/s00595-017-1536-4

Albano D, Bilfinger T, Nemensue B, et al. 3-year survival among early stage lung cancer patients treated with lobectomy vs SBRT. Lung Cancer. 2018;116:56-61. https://doi.org/10.1016/j.lungcan.2018.09.048

Conwell LD, Echeveria AE, Samuelian J, Mayor J, Casal RF, Bakaen F, et al. Video-assisted thoracoscopic lobectomy is associated with improved recurrence-free survival versus stereotactic body radiotherapy for clinical stage I lung cancer. J Thorac Cardiovasc Surg. 2018;156(1):395-402. https://doi.org/10.1016/j.jtcvs.2017.07.065

Bryant AK, Mundt RC, Sandhu AP, Urbanic JJ, Sharabi AB, Gupta S, et al. Stereotactic Body Radiation Therapy Versus Surgery for Early Lung Cancer Among US Veterans. Ann Thorac Surg. 2018;105(2):425-431. https://doi.org/10.1016/j.athoracsur.2017.07.048

Dong B, Wang J, Xu Y, Hu X, Shao K, et al. Comparison of
the Efficacy of Stereotactic Body Radiotherapy versus Surgical Treatment for Early-Stage Non-Small Cell Lung Cancer after Propensity Score Matching. Transl Oncol. 2019;12(8):1032-1037. https://doi.org/10.1016/j.tranon.2019.04.015

47. Lin Q, Sun X, Zhou N, Wang Z, Xu Y, Wang Y. Outcomes of stereotactic body radiotherapy versus lobectomy for stage I non-small cell lung cancer: a propensity score matching analysis. BMC Pulm Med. 2019;19(1):98. https://doi.org/10.1186/s12890-019-0858-y

48. Schneider BJ, Daly ME, Kennedy EB, Antonoff MB, Broderick S, Feldman J, et al. Stereotactic Body Radiotherapy for Early-Stage Non-Small-Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American Society for Radiation Oncology Evidence-Based Guideline. J Clin Oncol. 2018;36(7):710-719. https://doi.org/10.1200/JCO.2017.74.9671

49. Tandberg DJ, Tong BC, Ackerson BG, Kelsey CR. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: A comprehensive review. Cancer. 2018;124(4):667-678. https://doi.org/10.1002/cncr.31196