Evaluation of Multi-Drug Resistant Tuberculosis
Predictor Index in Surakarta, Central Java

Putri Pamungkas1), Setyo Sri Rahardjo2), Bhisma Murti 1)

1) Masters Program in Public Health, Universitas Sebelas Maret
2) Faculty of Medicine, Universitas Sebelas Maret

ABSTRACT

Background: Tuberculosis (TB) remains a global public health problem. New cases of lung Tuberculosis in 2015 were 10.4 million worldwide. One of the challenging in TB control to be addressed is the development of Multi Drug Resistant Tuberculosis (MDR-TB). There were an estimated 15,380 TB cases in Indonesia by 2015 with 1,860 positive TB cases and 1,566 cases successfully treated. This study aimed to determine the predictor index for MDR-TB.

Subjects and Method: This was an analytic observational study with a case-control design. The study was conducted at Dr. Moewardi Hospital, Surakarta, Central Java, from August to November 2017. The study subjects were selected by fixed disease sampling including 75 MDR-TB patients and 75 TB patients. The dependent variable was MDR-TB. The independent variables were medical history, co-morbidity (Diabetes Mellitus), drug side effect, drug-taking supervisor, and regularity of treatment. The data were collected by questionnaire and medical record. The data were analyzed by a multiple logistic regression.

Results: MDR-TB Occurrence Index increased with drug-taking supervisor (b = 2.33; 95% CI= 3.83 to 27.91; p<0.001), drug-side effect (b = 0.73; 95% CI= 0.58 to 7.45; p=0.026), medical history (b = 2.35; 95% CI= 3.80 to 29.38; p<0.001). MDR-TB Occurrence Index decreased by absence of type 2 Diabetes Mellitus (b = -0.56; 95% CI= 0.18 to 1.78; p= 0.033), regular treatment (b = -1.73; 95% CI= 0.06 to 0.46; p<0.001).

Conclusion: MDR-TB Occurrence Index is determined by drug-taking supervisor, drug-side effect, medical history, Type 2 Diabetes Mellitus, and regular treatment.

Keywords: MDR-TB Occurrence Index, medical history, drug-taking supervisor, drug-side effect, Type 2 Diabetes Mellitus, regular treatment

Correspondence:
Putri Pamungkas. Masters Program in Public Health, Universitas Sebelas Maret. Jl. Ir. Sutami No. 36 A, 57126, Surakarta, Central Java. Email: pamungkasputri95@gmail.com.
masalah kesehatan yang harus dihentikan terutama pada negara berkembang seperti Indonesia (Ginandjar et al., 2016). Banyak faktor yang menyebabkan tingginya kejadian tuberkulosis yaitu faktor eksternal dan faktor internal. Faktor eksternal yang mempengaruhi seperti jarak pelayanan kesehatan serta lingkungan yang mendukung pengobatan pada penderita tuberkulosis. Pada faktor internal dapat dipengaruhi dari pengobatan yang dilakukan penderita (Abouyannis et al., 2014). Kepatuhan pasien dalam pengobatan mengambil peranan penting dalam keberhasilan pengobatan tuberkulosis karena dapat menyebabkan resistensi pada kuman tuberkulosis sehingga obat anti tuberkulosis (OAT) sudah tidak bisa mencegah penyebaran kuman tuberkulosis atau disebut dengan Multi Drug Resistant Tuberculosis (MDR-TB) (Liu et al., 2015).

Multi Drug Resistant Tuberculosis terjadi jika kuman tuberkulosis resistensi terhadap berbagai OAT lini pertama, minimal dua obat yaitu isoniazid dan rifampisin (McClintock et al., 2017). WHO memperkirakan prevalensi MDR-TB sekitar 440,000 kasus setiap tahunnya di dunia dengan angka kematian sekitar 150,000. Sekitar 8.5% yang telah ditemukan dan diobati. Di Indonesia yang masuk kedalam katagori High Burden Countries dengan menempati peringkat 12 penderita tuberkulosis tertinggi di dunia, terdapat sebesar 8,900 kasus TB. 2% kasus TB MDR diperkirakan berasal dari kasus TB baru dan 14.7% dari kasus TB yang mendapatkan pengobatan ulang (WHO, 2016). MDR-TB di Indonesia tahun 2015 yaitu 15,380 kasus, 1,860 kasus terkonfirmasi, dan 1,566 yang diobati (Infodatin, 2015).

Indonesia menduduki peringkat ke 9 dengan kejadian tuberkulosis tahun 2015 di Indonesia dan menjadi peringkat 12 pada tahun 2016 (World Health Organization, 2016). Deteksi dini penting untuk dilakukan guna mencegah meluasnya kejadian MDR-TB. Hasil Drug Resistant Survey (DRS), menunjukkan bahwa di Jawa Tengah 1.8% MDR-TB ditemukan pada TB kasus baru dan 17.1% ditemukan pada kasus TB yang pernah mendapatkan pengobatan (DRS, 2016). Berdasarkan studi pendahuluan di RSUD Moewardi, diketahui tahun 2015 pasien MDR-TB yang berobat mencapai 1839 kunjungan, pada tahun 2016 mencapai 1,793 kunjungan dan tahun 2017 sebanyak 1,466 periode bulan Januari sampai dengan Mei. Resistensi dapat terjadi oleh berbagai faktor yaitu pemberian terapi atau pengobatan yang tidak adekuat (Bradley et al., 2015). Resistensi Obat Tuberkulosis (OAT) berhubungan kuat dengan riwayat pengobatan yang pernah dialami. Walaupun dalam beberapa kasus ditemukan resistensi primer namun prevalensi tertinggi penyebab MDR-TB masih menunjukkan jika penderita yang pernah melakukan pengobatan sebelumnya beresiko tinggi terjadinya MDR-TB. Penderita dengan riwayat pengobatan sebelumnya memiliki kemungkinan resisten 4 kali lebih besar terjadinya resisten dan untuk MDR-TB memiliki 10 kali lebih besar dari pada penderita yang belum pernah mendapatkan pengobatan (Nagu et al., 2015). Panjangnya pengobatan TB menjadikan penderita jenuh untuk menjalankan pengobatannya, kemudian disanalah peran penting pendamping minum obat untuk mengawasi sekaligus mengingatkan dalam pengobatan. Resistensi akan mudah terjadi jika pengobatan tersebut sudah tidak teratur dan banyaknya jadwal pengobatan yang terlewat (Tola et al., 2016).

Keterlambatan diagnosis dapat diduga menyebabkan semakin tersebarnya galur resistensi obat yang semakin me-manjangan. Pelaksanaan yang salah tentang
pengobatan TB dapat dilakukan oleh penderita, terutama dalam kepatuhan konsumsi OAT. Penghentian pengobatan dini sering dijumpai dikarenakan penderita sering menyatakan jika sudah merasa tidak perlu untuk dikonsumsi, sehingga tidak disadarkannya penghentian obat dini dapat menyebabkan resistensi. Salah satu yang dapat dilakukan untuk mendeteksi dini kejadian MDR-TB yaitu dengan membuat suatu prediktor yang dapat digunakan dalam melihat faktor yang tergolong risiko tinggi untuk terjadinya resisten terhadap kuman tuberculosis (Denkinger, Pai and Dowdy, 2014).

Pengobatan tuberkulosis di Indonesia masih menunjukkan angka dibawah 85%, terutama di provinsi jawa tengah masih menduduki angka 75% dengan keberhasilan pengobatan tuberkulosis. salah satu keberhasilan pengobatan tuberkulosis yaitu tidak terjadi resistensi. Sehingga peneliti tertarik untuk membuat suatu prediktor guna sebagai alat pencegahan terjadinya MDR-TB berupa Indeks Kejadian MDR-TB.

SUBJEK DAN METODE
Desain studi dengan kasus kontrol. Populasi sasarannya seluruh pasien tuberkulosis dan MDR-TB. Lokasi penelitian di RSUD Dr. Moewardi, Surakarta pada bulan Agustus- November 2017. Populasi adalah pasien MDR-TB yang pernah berobat di RSUD Dr. Moewardi. Sedangkan populasi kontrolnya adalah pasien tuberkulosis yang pernah berobat di RSUD Dr. Moewardi. Kriteria inklusinya adalah pasien mampu menyelesaikan proses pengambilan mampu menjawab dengan baik/ tidak ada gangguan kejiwaan. Sedangkan kriteria ekslusi yaitu Semua pasien yang TB sembuh dan MDR-TB berusia dibawah 15 tahun.

Teknik pengambilan sampel dengan simple random sampling dengan besar sampel 150 subjek penelitian yang menggunakan perbandingan 1:1. Jumlah sampel kasus yaitu sebanyak 75 pasien MDR-TB dan sampel kontrol sebanyak 75 pasien tuberkulosis. Variabel independen adalah penyakit penyerta (Diabetes Mellitus), efek samping obat (ESO), pengawas menelan obat (PMO), jarak pelayanan kesehatan, riwayat pengobatan sebelumnya, perilaku kesehatan, riwayat kontak, dan karakteristik subjek penelitian (umur, jenis kelamin, pendidikan, pekerjaan) serta variabel dependen adalah MDR-TB.

Definisi operasional MDR-TB adalah penderita TB yang mengalami resistensi berdasarkan hasil pemeriksaan tes cepat molekuler yang tercatat di RSUD Moewardi.

PMO adalah keberadaan pengawas menelan obat selama pengobatan. Penyakit penyerta (Diabetes Mellitus) adalah keberadaan penyakit DM yang menyertai penderita pada saat selama menjalankan pengobatan TB Paru.

Efek Samping Obat (ESO) adalah efek yang ditimbulkan dari obat TB yang diminum oleh responden selama menjalankan pengobatan TB.

Riwayat pengobatan sebelumnya adalah hasil akhir pengobatan responden dari menjalankan pengobatan TB Paru.

Etika penelitian antara lain dengan persetujuan penelitian, tanpa nama, kerahasiaan dan persetujuan Etik. Ethical clearance dalam penelitian ini dilakukan di RSUD Dr. Moewardi.
Teknik pengumpulan data dengan data rekam medis dan kuesioner. Kemudian melakukan wawancara langsung terhadap responden untuk pengambilan data kualitatif. Langkah-langkah dalam melakukan analisis data dengan menggunakan analisis pengaruh antar variabel independen terhadap variabel dependent digunakan analisis bivariat dan multivariat. Analisis bivariat digunakan untuk mengetahui tingkat signifikansi pengaruh variabel independent dan dependent dengan menggunakan uji Chi Square. Uji Chi square bertujuan untuk mengetahui variabel yang memenuhi syarat dan tidak memenuhi syarat untuk dapat dilanjutkan pada analisis multivariat.

HASIL

1. **Karakteristik Subjek Penelitian**

Karakteristik subjek dalam penelitian ini dapat dilihat pada tabel 1.

No	Karakteristik	Kasus	Kontrol		
		N	%	n	%
1.	Jenis Kelamin				
	Laki-laki	50	29.1	122	70.9
	Perempuan	26	19.7	106	80.3
2.	Pendidikan				
	Pendidikan Rendah	43	28.7	107	71.3
	Pendidikan Tinggi	33	21.4	121	78.6
3.	Pekerjaan				
	Tidak Bekerja	13	19.4	54	80.6
	Bekerja	63	26.6	174	73.4
4.	Status				
	Belum Menikah	11	21.6	40	78.4
	Sudah Menikah	65	25.7	188	74.3
5.	Merokok				
	Merokok	52	36.4	91	63.6
	Tidak Merokok	24	14.9	137	85.1
6.	Alkhohol				
	Alkhohol	22	40.0	33	60.0
	Tidak Alkhohol	54	21.7	195	78.3
7.	Kontak				
	Kontak	18	43.9	23	56.1
	Tidak Kontak	58	22.1	205	77.9

Tabel 1 menunjukkan bahwa sebagian besar subjek penelitian dengan jenis kelamin laki-laki yaitu sebanyak 44 subjek penelitian atau sebesar 58.7% pada kelompok kasus. Hal ini serupa dengan kelompok kontrol yang sebagian besar dari subjek penelitiannya memiliki jenis kelamin laki-laki yaitu sebanyak 45 subjek atau sebesar 60%.

Karakteristik pendidikan, pada kelompok kasus dapat diinterpretasikan bahwa sebagian besar subjek penelitian berpendidikan rendah yaitu sebanyak 39 subjek penelitian atau sebesar 52.0%. Sedangkan pada kelompok kontrol sebagian besar berpendidikan tinggi yaitu sebanyak 40 subjek penelitian atau sebesar 53.3% dari jumlah subjek penelitian.

Dapat diinterpretasikan bahwa sebagian besar dari kelompok kasus penelitian yaitu sebanyak 48 subjek atau sebesar (64.0%) mempunyai usia ≥41 tahun. Pada kelompok kontrol menunjukkan sebanyak 47 subjek atau sebesar (62.7%) mempunyai usia > 41 tahun.

Hampir seluruhnya dari subjek penelitian pada kelompok kasus bekerja yaitu sebanyak 53 subjek atau sebesar.
70.7% dan sebagian besar subjek penelitian bekerja pada kelompok kontrol yaitu sebanyak 52 subjek penelitian atau sebesar 69.3%.

2. Analisis Multivariat
Hasil analisis multivariat ditunjukkan pada gambar 2. Dari 12 variabel yang merupakan kandidat pemodelan, terdapat 7 variabel yang tidak masuk dalam pemodelan. Variabel tersebut tidak masuk ke dalam pemodelan karena tingkat signifikansi lebih dari 0.05 yaitu jenis kelamin, pendidikan, jarak pelayanan, riwayat BCG, pekerjaan, merokok, dan umur.

Tabel 2. Hasil analisis regresi logistik faktor-faktor yang berhubungan dengan MDR-TB

Variabel	Koefisien Regresi	CI 95%	p
Tidak ada diabetes millitus	-0.56	0.18 - 1.78	0.033
Tidak ada pengawas menelan obat	2.33	3.83 - 27.91	0.000
Tidak ada efek samping	-0.73	0.58 - 7.45	0.026
Tidak pernah lupa	-1.73	0.06 - 0.46	0.000
Gagal pengobatan / drop out	2.35	3.80 - 29.38	0.000
Jenis kelamin perempuan	-0.03	0.30 - 3.01	0.949
Pendidikan ≥SMA	-0.32	0.28 - 1.81	0.490
Jarak pelayanan ≥15 Menit	-0.52	0.23 - 1.51	0.275
Tidak ada riwayat BCG	1.06	0.80 - 10.44	0.102
Tidak bekerja	-0.31	0.41 - 4.55	0.603
Merokok	1.18	1.26 - 8.44	0.143
Umur ≥45 tahun	-0.25	0.30 - 3.01	0.618

Terdapat pengaruh negatif antara umur terhadap resiko terjadinya MDR-TB (b = -0.25; CI 95% = 0.30 hingga 3.01; p = 0.618).

Terdapat pengaruh negatif antara jenis kelamin terhadap resiko terjadinya MDR-TB (b = -0.03; CI 95% = 0.30 hingga 3.01; p = 0.949).

Terdapat pengaruh negatif antara pendidikan terhadap resiko terjadinya MDR-TB (b = -0.32; CI 95% = 0.28 hingga 1.81; p = 0.490).

Terdapat pengaruh positif antara pekerjaan terhadap resiko terjadinya MDR-TB (b = 0.31; CI 95% = 0.41 hingga 4.55; p = 0.603).

Terdapat pengaruh positif antara riwayat BCG terhadap resiko terjadinya MDR-TB (b = 1.06; CI 95% = 0.80 hingga 10.44; p = 0.102).

Terdapat pengaruh positif antara jarak pelayanan kesehatan terhadap resiko terjadinya MDR-TB (b = -0.52; CI 95% = 0.23 hingga 1.51; p = 0.275).

Terdapat pengaruh positif antara merokok terhadap resiko terjadinya MDR-TB (b = 1.18; CI 95% = 1.26 hingga 8.44; p = 0.143).

Terdapat pengaruh negatif antara penyakit Diabetes Millitus terhadap resiko terjadinya MDR-TB secara statistik signifikan (b = -0.56; CI 95% = 0.18 hingga 1.78; p = 0.033).

Terdapat pengaruh positif antara PMO terhadap resiko terjadinya MDR-TB (b = 2.33; CI 95% = 3.83 hingga 27.91; p < 0.001).

Terdapat pengaruh positif antara efek samping obat terhadap resiko terjadinya MDR-TB (b = 0.73; CI 95% = 0.58 hingga 7.45; p = 0.026).

Terdapat pengaruh negatif antara keteraturan pengobatan terhadap resiko terjadinya MDR-TB (b = -1.73; CI 95% = 0.06 hingga 0.46; p < 0.001).
Terdapat pengaruh positif antara pengobatan sebelumnya terhadap resiko terjadinya MDR-TB \((b = 2.35; CI 95\% = 3.80\text{ hingga }29.38; p<0.001)\).

3. **Indeks Kejadian MDR-TB**

Variabel dengan signifikansi di bawah 0.05 selanjutnya dimasukkan dalam model regresi logistik. Dari hasil analisis di dapat indeks kejadian TB-MDR, yaitu:

\[
\text{Indeks} = -3.67 + 1.73 \times \text{(Keteraturan Pengobatan)} + 2.33 \times \text{(Pengawas Menelan Obat)} + 0.73 \times \text{(Efek Samping Obat)} + 0.56 \times \text{(Diabetes Mellitus)} + 2.35 \times \text{(Pengobatan sebelumnya)}.
\]

PEMBAHASAN

1. **Umur**

Adanya pengaruh umur antara kelompok MDR-TB maupun kelompok non MDR-TB. Hal ini sejalan dengan penelitian yang dilakukan oleh (Lin et al., 2016) yang menyatakan bahwa ada hubungan antara umur dengan kejadian MDR-TB. Hasil dari penelitian ini sejalan dengan Soerdiawan (2015) bahwa kelompok umur terbanyak pasien MDR-TB adalah pada umur lebih dari 40 tahun.

Uumur tidak dapat dimasukan dalam Indeks kejadian MDR-TB dikarenakan pada pengujian multivariat tingkat signifikansi lebih dari 0.005. Umur dapat berpengaruh pada MDR-TB tapi tidak signifikan dapat memprediksikan apakah seseorang yang usia lebih tua dapat memiliki resiko lebih banyak dari usia muda untuk terkena MDR-TB. Hal ini sejalan dengan Jia et al., (2014) bahwa usia muda atau tua memiliki resiko terjadinya MDR-TB dikarenakan pada usia muda penderita TB memiliki usia produktif untuk bekerja sehingga sering lupa dalam mengkonsumsi obat dan akhirnya \textit{Drop out} dalam pengobatan. Sedangkan pada usia tua organ fital mengalami penurunan fungsi sehingga memiliki resiko yang sama dalam terjadinya MDR-TB.

2. **Jenis Kelamin**

Jumlah responden pada penelitian ini lebih banyak pada jenis kelamin laki-laki daripada perempuan baik pada MDR-TB dan non MDR-TB. Hasil penelitian ini menunjukkan bahwa ada pengaruh jenis kelamin antara kelompok MDR-TB maupun kelompok non MDR-TB. Hasil penelitian sejalan dengan (Outhred et al., 2017), bahwa sebagian besar jenis kelamin responden pada kelompok MDR-TB dan kelompok non MDR-TB. Suwanpimolkul et al., (2017) juga mengemukakan bahwa sebagian besar penderita MDR-TB adalah berjenis kelamin laki – laki.

Penderita TB-MDR didominasi oleh laki – laki dikarenakan oleh banyak faktor, diantaranya karena laki – laki cenderung tidak patuh pada saat pengobatan dengan menggunakan OAT. Ketidakpatuhan ini yang bisa menyebabkan resisten terhadap OAT (Bello, 2010).

Walaupun mayoritas penderita TB-MDR adalah laki – laki, namun tidak menutup kemungkinan bahwa perempuan tetap beresiko menderita TB-MDR. Hal ini bisa terjadi karena permasalahan ketimpangan gender yang mana perempuan memiliki keterbatasan akses ke tempat pelayanan kesehatan (World Health Organization, 2013).

3. **Pendidikan**

Terdapat hubungan signifikan antara MDR-TB dengan pendidikan. Penelitian lain yang dilakukan oleh Mediana (2002) menghasilkan hal yang sama yaitu bahwa tingkat pendidikan mempunyai hubungan dengan kejadian drop out pada pasien TB. Tingkat pendidikan yang tinggi dapat mempengaruhi tingkat kepatuhan pasien TB dalam menjalani pengobatan dengan OAT. Semakin tinggi tingkat pendidikan seseorang, maka kecenderungan untuk
patuh dalam masa pengobatan dengan OAT semakin tinggi. Sebaliknya, semakin rendah tingkat pengetahuan seseorang, maka semakin rendah pula kecenderungan penderita TB untuk patuh dalam menjalankan pengobatan dengan OAT. Hal ini dikarenakan semakin tinggi tingkat pendidikan penderita TB maka diasumsikan semakin tinggi pula tingkat pemahaman responden tersebut tentang penyakitnya serta pemahaman tentang instruksi yang diberikan oleh para ahli medis terkait dengan konsumsi OAT.

Walaupun mayoritas penderita MDR-TB adalah Pendidikan rendah, namun tidak menutup kemungkinan bahwa pendidikan yang tinggi memiliki pengetahuan yang cukup terhadap kejadian MDR-TB (Efsen et al., 2018).

4. Pekerjaan

Terdapat hubungan signifikan antara MDR-TB dengan pekerjaan. Pekerjaan akan mempengaruhi pengobatan penderita TB dikarenakan kepatuhan pengobatan selama 6 bulan, terkadang para pekerja sibuk bekerja dan melupakan jadwal konsumsi obat. Satu kali melewati jadwal konsumsi obat beresiko gagal dalam pengobatan (Fox et al., 2017). Hal ini sejalan dengan penelitian (Mohd, Azhar and Kamaludin, 2015), bahwa orang yang bekerja pasti mempunyai mobilitas dan kesiaban yang tinggi, sehingga pasien cenderung tidak patuh dalam menjalankan pengobatan dengan menggunakan OAT (Yates et al., 2016).

Walaupun mayoritas penderita MDR-TB adalah penderita yang bekerja, namun demikian juga bagi penderita TB paru yang tidak bekerja juga akan sibuk mencari pekerjaan atau sibuk dengan pekerjaan rumahnya untuk menghidupi penghidupan rumah, sehingga tidak ada perbedaan dalam status pekerjaan antara penderita TB paru yang bekerja dan tidak bekerja (Mediana, 2002).

5. Penyakit Penyerta Diabetes Mellitus

Terdapat hubungan antara MDR-TB dengan Diabetes Mellitus. Penderita TB yang mempunyai riwayat diabetes mellitus mempunyai risiko lebih besar untuk menjadi MDR-TB daripada penderita TB yang tidak mempunyai riwayat diabetes mellitus. Hal ini sejalan dengan hasil penelitian yang dilakukan oleh (Arockiaraj et al., 2018) yang menyatakan bahwa terjadinya MDR-TB pada penderita TB dengan diabetes mellitus adalah 11.3 kali lebih besar daripada penderita TB tanpa diabetes mellitus.

Kondisi kadar glukosa darah yang tinggi dapat mempengaruhi pencapaian obat pada jaringan dan juga bisa mengganggu fungsi sel makrofag alveolar (Bashar et al., 2016). Terganggunya fungsi sel makrofag alveolar akan menyebabkan sistem kekebalan tubuh menurun. Menurunnya sistem kekebalan tubuh menyebabkan kuman TB dalam paru resisten terhadap obat. Pasien TB dengan diabetes mellitus dimungkinkan menderita kerusakan pada saluran pencernaan yang mempengaruhi absorbsi OAT yaitu rifampicin sehingga konsentrasinya pada pasien TB dengan DM tidak bisa maksimum dan hal inilah yang memberikan outcome yang buruk terhadap pengobatan TB dan dapat menyebabkan resistensi obat (Matteelli et al., 2017).

6. HIV/AIDS

Penelitian yang dilakukan oleh Suchindran et al. (2009) mengatakan bahwa terdapat hubungan antara HIV dengan kejadian MDR-TB. Adanya hubungan antara HIV/AIDS dengan kasus resistensi obat pada pasien TB juga dimungkinkan karena status imunitas dari pasien TB yang bisa menurunkan efektivitas pengobatan
menggunakan OAT dan oleh karenanya kemungkinan untuk timbul resistensi obat lebih besar (Sight 2010).

7. Pengawas Minum Obat (PMO)

Terdapat hubungan signifikan antara MDR-TB dengan pengawas menelan obat. Hal ini sejalan dengan penelitian Soebarko (2017), bahwa terdapat pengaruh PMO terhadap kejadian MDR-TB. Penderita TB yang tidak mempunyai PMO mempunyai risiko 19 kali lebih besar daripada penderita TB yang tidak mempunyai PMO. Pengobatan TB membutuhkan waktu yang lama dan harus dilakukan setiap hari. Selain itu, pengobatan TB juga akan menimbulkan efek samping bagi yang mengkonsumsinya dan akan menimbulkan rasa bosan serta jenuh. Rasa bosan dan jenuh inilah yang akan menyebabkan penderita TB akan menghentikan pengobatannya yang akan memberikan kemungkinan yang lebih besar untuk menjadi MDR-TB.

PMO adalah salah satu faktor keberhasilan program DOTS dan keberhasilan terapi karena akan mempengaruhi kepatuhan penderita TB dalam minum OAT sehingga penderita rajin dan termotivasi untuk minum obat. PMO sangat dibutuhkan untuk memastikan apakah obat tersebut benar – benar diminum atau tidak (Burner, 2017).

8. Jarak Pelayanan Kesehatan

Terdapat hubungan signifikan antara MDR-TB dengan jarak pelayanan kesehatan. Walaupun secara statistik waktu tempuh tidak berpengaruh terhadap kejadian MDR-TB, namun lokasi tempat tinggal penderita TB terhadap tempat pelayanan kesehatan akan mempengaruhi keteraturan penderita TB dalam proses pengobatan. Tempat tinggal penderita TB yang jauh dari pusat pelayanan akan membuat penderita lebih sulit mengambil obat setiap bulannya. Waktu tempuh responden yang lama mengindikasikan bahwa akses menuju ke pelayanan kesehatan juga jauh dan membutuhkan waktu yang lebih lama. Hasil penelitian ini sejalan dengan penelitian yang dilakukan oleh Sondakh (2014), yang mengatakan bahwa jarak ke pelayanan kesehatan mempunyai hubungan dengan kejadian MDR-TB. Waktu tempuh yang semakin lama dapat dianggap sebagai salah satu penyebab penderita tuberkulosis untuk tidak melakukan pengobatan rutin di pusat pelayanan kesehatan terdekat (Pedriacan, 2017).

9. Perilaku kesehatan konsumsi alkohol

Tidak terdapatnya pengaruh kebiasaan minum alkohol terhadap kejadian MDR-TB disebabkan karena tidak ada perbedaan antara kebiasaan minum alkohol pada kelompok MDR-TB maupun yang non TBM-DR. Hal ini dimungkinkan karena masyarakat Indonesia khususnya Kota Solo menganggap minum alkohol adalah hal yang dilarang oleh agama.

Hasil penelitian sepandat dengan Fauziah (2003) bahwa tidak terdapat hubungan antara konsumsi alkohol dengan kejadian MDR-TB. Berbeda dengan hasil penelitian yang dilakukan oleh Trinna-woottipong (2012), di Thailand bahwa penderita TB yang mempunyai kebiasaan minum alkohol mempunyai risiko 5.1 kali lebih besar untuk menjadi MDR-TB.

10. Merokok

Terdapat hubungan signifikan antara MDR-TB dengan merokok. Penelitian dari Barroso et al. (2003), yang mengatakan bahwa terdapat pengaruh antara perilaku merokok dengan kejadian MDR-TB dan merokok merupakan salah satu faktor risiko MDR-TB. Perilaku merokok yang dilakukan secara terus – menerus akan berakibat pada terganggunya sistem pertahanan paru yang berdampak pada rusaknya makrofag alveolar sehingga sistem kekebalan tubuh menurun. Menu-
runnya sistem kekebalan tubuh menyebabkan kuman TB dalam paru resisten terhadap obat.

Faktor pelaksanaan pengobatan (acquired drug resistency) menyebabkan kerusakan organ yang terjadi bukan disebabkan karena merokok. Untuk memastikan merokok merupakan faktor risiko terjadinya MDR-TB pada penderita TB diperlukan data mengenai usia mulai merokok dan lama riwayat merokok (jumlah rokok per hari, kandungan dari rokok yang dihisap dan jenis rokok) (Riza, 2015).

11. Riwayat BCG
Terdapat hubungan signifikan antara MDR-TB dengan riwayat BCG. Hal ini tidak sejalan dengan hasil penelitian yang dilakukan oleh Sondakh (2014), yang menyatakan bahwa tidak terdapat pengaruh status imunisasi BCG yang ditandai dengan adanya scar terhadap kejadian MDR-TB. Imunisasi BCG efektif untuk mencegah TB milier, meningitis TB dan spondylitis TB pada anak. Imunisasi BCG diberikan untuk memberi perlindungan terhadap penyakit tuberculosis. Imunisasi BCG menyebabkan kekebalan tubuh aktif sehingga dapat mencegah berkembangnya kuman TB pada saat terjadi infeksi (Risksdas, 2010).

Imunisasi BCG hanya memberikan proteksi terhadap infeksi kuman tuberculosis saja, tetapi tidak untuk kuman tuberculosis yang sudah resisten terhadap obat karena faktor salah dalam pelaksanaan pengobatan. Beberapa penyebab terjadinya TB-MDR yaitu karena penggunaan obat yang tidak adekuat dan pengobatan yang tidak teratur (Hermina, 2013).

12. Riwayat pengobatan Keteraturan Pengobatan
Terdapat hubungan antara MDR-TB dengan keteraturan pengobatan. Dalam wawancara yang dilakukan terhadap penderita MDR-TB dalam penelitian ini, ketidakteraturan atau ketidakpatuhan responden dalam meminum OAT disebabkan oleh responden sering lupa dalam meminum OAT. Selain itu, beberapa responden yang mengeluhkan pelayanan petugas TB di pelayanan kesehatan yang tidak baik. Ketidakteraturan penderita TB dalam masa pengobatan sebelumnya akan mengakibatkan terjadinya mutasi genetik kuman M. tuberculosis sehingga obat anti TB tidak efektif melawan kuman TB. Ketika obat anti TB sudah tidak efektif lagi untuk melawan kuman TB, maka peluang untuk menjadi TB-MDR akan semakin besar (Sarwani, 2012).

13. Pengobatan Sebelumnya
Terdapat hubungan antara MDR-TB dengan pengobatan sebelumnya. Hal ini sejalan dengan Mulisa (2015), yang menyatakan bahwa terdapat pengaruh hasil pengobatan TB sebelumnya gagal atau drop out dengan kejadian MDR-TB. Penderita TB yang mempunyai riwayat pengobatan TB gagal atau drop out mempunyai risiko 3,5 kali lebih besar daripada penderita TB yang mempunyai riwayat hasil pengobatan sembuh. Drop out maupun gagal dari pengobatan TB merupakan salah satu penyebab terjadinya resistensi obat. Pengobatan TB dilakukan selama lebih dari dua bulan yang dapat mengakibatkan pasien drop out karena setelah melakukan pengobatan intensif biasanya pasien merasa sembuh dan menghentikan pengobatannya.

Hasil terapi sebelumnya seperti drop out dapat menunjukkan bagaimana ketidakpatuhan penderita TB dalam melaksanakan pengobatan TB, sehingga akan sangat tinggi untuk berisiko menjadi MDR-TB, sedangkan hasil pengobatan TB sebelumnya seperti sembuh dan pengobatan lengkap dapat menunjukkan kepatuhan penderita TB dalam berobat sehingga risiko
terjadinya MDR-TB lebih kecil (Pinto and Carvalho, 2017).

14. Efek Samping Obat
Terdapat hubungan signifikan antara MDR-TB dengan efek samping obat. Hasil penelitian ini sejalan dengan Lee et al., (2014) bahwa efek samping dari OAT merupakan faktor risiko terjadinya MDR-TB. Faktor yang berhubungan dengan kepatuhan berobat penderita TB paru dengan desain kasus kontrol menunjukkan adanya hubungan yang bermakna antara efek samping obat dengan kepatuhan penderita TB paru untuk berobat teratur. Penderita TB paru yang merasakan adanya efek samping obat berpeluang untuk menghentikan pengobatan.

Penderita TB yang mengalami efek samping OAT akan cenderung untuk menghentikan pengobatannya (McBryde et al., 2017), dimana kondisi seperti ini yang menyebabkan penderita TB masuk dalam kondisi putus berobat (drop out). Ketika penderita TB tidak melaksanakan pengobatan secara tuntas, maka akan terjadi mutase genetik kuman M. tuberculosis menjadi kuman M.Tb yang resisten terhadap OAT (Kigozi et al., 2017).

15. Riwayat Kontak
Berdasarkan hasil wawancara dengan responden, sebagian dari mereka mengaku tidak mempunyai kontak dengan penderita TB dan tidak mengetahui apakah orang disekitar mereka mempunyai penyakit MDR-TB atau tidak. Penelitian ini sejalan dengan penelitian yang dilakukan oleh (Fox et al., 2017), yang menunjukkan bahwa tidak terdapat hubungan antara riwayat kontak dengan kejadian MDR-TB. Riwayat kontak tidak berpengaruh dalam penelitian ini disebabkan karena semua responden pada kelompok MDR-TB memiliki riwayat sakit TB sebelumnya, dimana hasil pengobatan dari sakit TB sebelumnya adalah gagal atau drop out.

16. Model Indeks MDR-TB
Berdasarkan hasil analisis multivariat dengan menggunakan regresi logistik ganda, faktor yang paling berpengaruh terhadap kejadian MDR-TB di Kota Surakarta adalah faktor ketersediaan PMO, keteraturan dalam mengkonsumsi OAT, efek samping OAT yang dirasa mengganggu, hasil pengobatan TB sebelumnya dan penyakit penyerta diabetes mellitus. Kelima faktor tersebut merupakan indikator dalam penyusunan indeks kejadian MDR-TB. Formula indeks kejadian MDR-TB di Kota Surakarta.

Indeks prediksi ini dapat memprediksi risiko kejadian MDR-TB di Kota Surakarta dengan kepekaan alat ukur (sensitivitas) 93,4% dan spesifisitas 80,3% dengan akurasi pengukuran adalah 89,3%. Indeks prediksi ini dapat digunakan untuk memprediksi kejadian MDR-TB pada penderita TB. Bedasarkan hal tersebut maka manajemen risiko MDR-TB yang dapat dilakukan adalah dengan melakukan identifikasi terhadap variabel yang paling berisiko tersebut kepada penderita TB. Temuan dalam penelitian ini dapat diterapkan pada program pencegahan penyakit MDR-TB dengan melakukan intervensi sosialisasi faktor yang paling berpengaruh terhadap kejadian MDR-TB. Penerapan indeks kejadian MDR-TB di Kota Surakarta dapat digunakan oleh petugas baik di tingkat pelayanan kesehatan maupun dinas kesehatan dengan menggunakan algoritma indeks kejadian MDR-TB.

17. Evaluasi indeks kejadian MDR-TB
Penelitian mengevaluasi langkah-langkah dalam siklus yang terdiri atas mengkaji temuan, mengembangkan hasil penelitian, melakukan uji coba lapangan, dan melakukan revisi terhadap hasil yang diperoleh (Mohd et al., 2015).

Penilaian Indeks Kejadian MDR-TB
Hasil dari penelitian ini yaitu indeks kejadian MDR-TB yang dapat diprediksi apakah mempunyai risiko tinggi atau risiko rendah untuk menjadi MDR-TB. Diharapkan indeks ini dapat digunakan sebagai alat skrining dalam menentukan populasi berisiko tinggi TB-MDR.

Hasil wawancara responden Tn. H, didapatkan tidak memiliki PMO, tidak teratur pengobatan dan pernah drop out. Penilaian indeks kejadian MDR-TB ditunjukkan pada Tabel 3.

No	Hasil Pengukuran	Skor	Bobot	Bobot x Skor
1	PMO			
	a. Ada PMO	1	2.33	2.33
	b. Tidak Ada PMO			
2	Keteraturan Pengobatan			
	a. Tidak Pernah lupa	1	1.73	1.73
	b. Pernah Lupa			
3	Efek Samping Obat			
	a. Tidak Ada efek samping	0	0.73	0
	b. Ada Efek Samping			
4	Riwayat Pengobatan Sebelumnya			
	a. Sembuh atau Pengobatan lengkap	1	2.35	2.35
	b. Gagal Pengobatan / Drop Out			
5	Penyakit Penyerta Diabetes millitus			
	a. Ada DM	0	0.56	0
	b. Tidak Ada DM			
	TOTAL		**6.41**	

Skor Indeks: **-3.67 + 6.41 = 2.74**

Maka dapat diambil kesimpulan pada kasus Tn. H, memiliki Resiko yang Tinggi untuk terjadinya MDR-TB. Hal ini dapat dilihat dari nilai skor Indeks kejadian MDR-TB yang tinggi yaitu 2.74 yang lebih besar dari nilai Cut off Index -0.296. Dapat dibuktikan pula dari sudah terjadinya MDR-TB pada Tn. H, kasus pada TN. H hanya sebagai evaluasi untuk menguji keakuratan Indeks sehingga diharapkan Indeks dapat diterapkan pada penderita TB untuk mencegah atau mengurangi resiko terjadinya MDR-TB.

No	Hasil Pengukuran	Skor	Bobot	Bobot x Skor
1	PMO			
	c. Ada PMO	1	2.33	2.33
	d. Tidak Ada PMO			
2	Keteraturan Pengobatan			
	c. Tidak Pernah lupa	1	1.73	1.73
	d. Pernah Lupa			
3 Efek Samping Obat
 c. Tidak Ada efek samping
 d. Ada Efek Samping
 1 0.73

4 Riwayat Pengobatan Sebelumnya
 c. Sembuh atau Pengobatan lengkap
 d. Gagal Pengobatan / Drop Out
 0 2.35

5 Penyakit Penyerta Diabetes millitus
 c. Ada DM
 d. Tidak Ada DM
 1 0.56

No	Hasil Pengukuran	Skor	Bobot	Bobot x Skor
1	PMO			
e.	Ada PMO	1	2.33	2.33
f.	Tidak Ada PMO			
2	Keteraturan Pengobatan			
e.	Tidak Pernah lupa	1	1.73	1.73
f.	Pernah Lupa			
3	Efek Samping Obat			
e.	Tidak Ada efek samping	0	0.73	0
f.	Ada Efek Samping			
4	Riwayat Pengobatan Sebelumnya			
e.	Sembuh atau Pengobatan lengkap	1	2.35	2.35
f.	Gagal Pengobatan / Drop Out			
5	Penyakit Penyerta Diabetes millitus			
e.	Ada DM	0	0.56	0
f.	Tidak Ada DM			

| TOTAL | | | |
| Skor Indeks | | | -3.67 + 6.41 | 2.74 |

Maka dapat diambil kesimpulan pada kasus Ny. I, memiliki Resiko yang Tinggi untuk terjadinya MDR-TB. Hal ini dapat dilihat dari nilai skoring Indeks kejadian MDR-TB yang tinggi yaitu 1.68 yang lebih besar dari nilai Cut off Index -0.296.

Penerapan Indeks MDR-TB

Penerapan hasil dari penelitian ini yaitu menggunakan algoritma indeks kejadian MDR-TB yang dapat digunakan oleh semua kalangan, baik masyarakat maupun petugas kesehatan. Penggunaan algoritma indeks kejadian MDR-TB ini dapat mempermudah dalam memprediksi kejadian MDR-TB pada penderita TB, pengguna tidak perlu lagi menghitung skor indeks MDR-TB dari setiap penderita TB yang ada. Untuk memprediksi apakah seseorang penderita TB mempunyai risiko tinggi atau rendah untuk menjadi MDR-TB, pengguna algoritma ini diharuskan untuk mengikuti alur dari skema tersebut, dimulai dari aspek ketersediaan PMO, keteraturan dalam minum OAT, efek samping OAT, hasil pengobatan TB sebelumnya dan terakhir yaitu adanya penyakit diabetes mellitus.

DAFTAR PUSTAKA

Abouyannis M. et al. (2014). Drug resistance of Mycobacterium tuberculosis in Malawi: a cross-sectional...
Arockiaraj, J. et al. (2018) ‘Drug resistant Skeletal Tuberculosis in a tertiary care centre in South India’, Journal of Clinical Orthopaedics and Trauma. Operating Company Elsevier B.V., (2017). doi: 10.1016/j.jcot.2017.12.-009.

Bradley, P. et al. (2015) ‘Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis’, Nature Communications. Nature Publishing Group, 6: 1–14. doi: 10.1038/ncomms10063.

Denkinger CM, Pai M, Dowdy DW (2014) ‘Do we need to detect isoniazid resistance in addition to rifampicin resistance in diagnostic tests for tuberculosis?’, PLoS ONE, 9(1). doi: 10.1371/journal.pone.0084197.

Efsen AMW. et al. (2018) ‘Management of MDR-TB in HIV co-infected patients in Eastern Europe: Results from the TB:HIV study’, Journal of Infection, 76(1): 44–54. doi: 10.1016/j.jinf.2017.10.007.

Fox GJ. et al. (2017) ‘Preventive therapy for latent tuberculosis infection—the promise and the challenges’, International Journal of Infectious Diseases. International Society for Infectious Diseases, 56, pp. 68–76. doi: 10.1016/j.ijid.2016.11.006.

Ginandjar P, Saraswati LD, Widjanarko, B. (2016). Profile of glycated-hemoglobin, antioxidant vitamin and cytokine levels in pulmonary tuberculosis patients: A cross sectional study at Pulmonary Diseases Center Semarang City, Indonesia’, Biomedical Journal. Elsevier Ltd, 39(5): 354–360. doi: 10.1016/j.bj.2016.01.011.

Jia, Z. et al. (2014) ‘Tuberculosis burden in China: A high prevalence of pulmonary tuberculosis in household contacts with and without symptoms’, BMC Infectious Diseases. BMC Infectious Diseases, 14(1), pp. 1–7. doi: 10.1186/1471-2334-14-64.

Kigozi, G. et al. (2017) ‘Factors influencing treatment default among tuberculosis patients in a high burden province of South Africa’, International Journal of Infectious Diseases. The Author(s), 54: 95–102. doi: 10.1016/j.ijid.-2016.11.407.

Lee, S. J. et al. (2014) ‘Risk factors for latent tuberculosis infection in close contacts of active tuberculosis patients in South Korea: A prospective cohort study’, BMC Infectious Diseases, 14(1): 1–7. doi: 10.1186/s12879-014-0566-4.

Lin CY. et al. (2016) ‘Risk factors of multidrug-resistant Acinetobacter baumannii recurrence after successful eradication in ventilated patients’, Biomedical Journal. Elsevier Ltd, 39(2): 130–138. doi: 10.1016/j.bj.-2015.07.001.

Liu X. et al. (2015) ‘Effectiveness of Electronic Reminders to Improve Medication Adherence in Tuberculosis Patients: A Cluster-Randomised Trial’, PLoS Medicine, 12(9): 1–19. doi: 10.1371/journal.pmed.1001876.

Matteelli A. et al. (2017) ‘Tuberculosis elimination and the challenge of latent tuberculosis’, Presse Medicale. Elsevier Masson SAS, 46(2): e13–e21. doi: 10.1016/j.lpm.2017.01.015.

McBryde, E. S. et al. (2017) ‘The risk of global epidemic replacement with drug-resistant Mycobacterium tuberculosis strains’, International Journal of Infectious Diseases. International Society for Infectious Diseases, 56, pp. 14–20. doi: 10.1016/j.ijid.2017.01.031.
McClintock, A. H. et al. (2017) ‘Treatment completion for latent tuberculosis infection: a retrospective cohort study comparing 9 months of isoniazid, 4 months of rifampin and 3 months of isoniazid and rifapentine’, BMC Infectious Diseases. BMC Infectious Diseases, 17(1): 146. doi: 10.1186/s12879-017-2245-8.

Mohd N, Azhar S, Kamaludin F (2015) ‘and suburban living: The risk factors of multidrug-resistant tuberculosis among Malaysians’, International Journal of Mycobacteriology. Asian African Society for Mycobacteriology, 5(1): 51–58. doi: 10.1016/j.ijmyco.2015.11.001.

Nagu, T. J. et al. (2015) ‘Multi drug and other forms of drug resistant tuberculosis are uncommon among treatment naive tuberculosis patients in Tanzania’, PLOS ONE, 10(4), pp. 1–11. doi: 10.10371/journal.pone.0118601.

Outhred AC, Britton PN, Marais BJ (2017) ‘Drug-resistant tuberculosis – primary transmission and management’, Journal of Infection. Elsevier Ltd, 74, pp. S128–S135. doi: 10.1016/S0163-4453(17)30203-7.

Pinto CMA, Carvalho ARM (2017). The HIV/TB coinfection severity in the presence of TB multi-drug resistant strains, Ecological Complexity. Elsevier Ltd, 32: 1–20. doi: 10.1016/j.ecocom.2017.08.001.

Suwanpimolkul, G. et al. (2017) ‘Utility of urine lipoarabinomannan (LAM) in diagnosing tuberculosis and predicting mortality with and without HIV: prospective TB cohort from the Thailand Big City TB Research Network’, International Journal of Infectious Diseases. International Society for Infectious Diseases, 59: 96–102. doi: 10.1016/j.ijid.2017.04-017.

Tola H. H. et al. (2016) ‘Psychological and educational intervention to improve tuberculosis treatment adherence in Ethiopia based on health belief model: A cluster randomized control trial’, PLoS ONE, 11(5), pp. 1–16. doi: 10.1371/journal.pone.0155147.

WHO (2013) Multidrug-Resistant Tuberculosis (MDR TB): 2013 Update’, Online, (March). Available at: http://www.who.int/tb/challenges/mdr/-MDR_TB_FactSheet.pdf.

Yates TA. et al. (2016) ‘The transmission of Mycobacterium tuberculosis in high burden settings’, The Lancet Infectious Diseases. Elsevier Ltd, 16(2), pp. 227–238. doi: 10.1016/S1473-3099(15):00499-5.

Drug Resistance Survey (DRS). 2016. Multiple Drugs Resistant Tuberculosis survey. Kemenkes RI. www.tb.indonesia.or.id/tb-mdr (aksess: 21 April 2017).

Infodatin (2015). Tuberkulosis. Jakarta: Pusat data dan informasi Kementerian Kesehatan RI, 2015. ISSN 2442-7659.

Bello SI, Itiola (2010) Drug Adherence amongst Tuberculosis Patient in the University of Ilorin Teaching Hospital, Ilorin, Nigeria. African Journal of Pharmacy and Pharmacology, 4(3).

Mediana (2002). Faktor yang Berhubungan dengan Terjadinya DO PADA Penderita TB Paru di Kabupaten Bandung Tahun 2001, Tesis, Universitas Indonesia, Jakarta.

Bashar M, Alchabes P, Rom W, Condos R (2001). Increase Incidence of Multi-drug-Resistant Tuberculosis in Diabetic Patients on the Bellevue Chest Service. Chest. 120(5).