Detecting socially interacting groups using f-formation: A survey of taxonomy, methods, datasets, applications, challenges, and future research directions

HRISHAV BAKUL BARUA, Robotics & Autonomous Systems, TCS Research, India
THEINT HAYTHI MG, Myanmar Institute of Information Technology, Myanmar
PRADIP PRAMANICK, Robotics & Autonomous Systems, TCS Research, India
CHAYAN SARKAR, Robotics & Autonomous Systems, TCS Research, India

Robots in our daily surroundings are increasing day by day. Their usability and acceptability largely depend on their explicit and implicit interaction capability with fellow human beings. As a result, social behavior is one of the most sought-after qualities that a robot can possess. However, there is no specific aspect and/or feature that defines socially acceptable behavior and it largely depends on the situation, application, and society. In this article, we investigate one such social behavior for collocated robots. Imagine a group of people is interacting with each other and we want to join the group. We as human beings do it in a socially acceptable manner, i.e., within the group, we do position ourselves in such a way that we can participate in the group activity without disturbing/obstructing anybody. To possess such a quality, first, a robot needs to determine the formation of the group and then determine a position for itself, which we humans do implicitly. The theory of f-formation can be utilized for this purpose. As the types of formations can be very diverse, detecting the social groups is not a trivial task. In this article, we provide a comprehensive survey of the existing work on social interaction and group detection using f-formation for robotics and other applications. We also put forward a novel holistic survey framework combining all the possible concerns and modules relevant to this problem. We define taxonomies based on methods, camera views, datasets, detection capabilities and scale, evaluation approaches, and application areas. We discuss certain open challenges and limitations in current literature along with possible future research directions based on this framework. In particular, we discuss the existing methods/techniques and their relative merits and demerits, applications, and provide a set of unsolved but relevant problems in this domain.

CCS Concepts:
• General and reference → Surveys and overviews; • Computing methodologies → Machine learning; Learning paradigms; Supervised learning; Unsupervised learning; Reinforcement learning; Machine learning approaches; Vision for robotics; Activity recognition and understanding; Scene understanding; Visual inspection; Computer vision; Computer vision tasks; Artificial intelligence; Machine learning algorithms.

Additional Key Words and Phrases: F-formation, social robotics, group detection, interaction detection, machine learning, deep learning, artificial intelligence, robotics, telepresence, teleoperation, computer vision, scene monitoring

ACM Reference Format:
Hrishav Bakul Barua, Theint Haythi Mg, Pradip Pramanick, and Chayan Sarkar. 2018. Detecting socially interacting groups using f-formation: A survey of taxonomy, methods, datasets, applications, challenges, and future research directions. 1, 1 (August 2018), 34 pages. https://doi.org/10.1145/1122445.1122456
1 INTRODUCTION

Human group [116] and activity detection [1] has been a hot topic for computer/machine vision (CV/MV), Artificial Intelligence (AI), and robotics research. When humans interact with each other in a group (two or more people), they use common sense to position themselves concerning each other which facilitates easy interaction in the situation. The same thing is also applied when a new person wants to join a group. That person also assesses (implicitly) which place is best for joining so that people in the group do not face any inconvenience. The person also considers her role in that group according to the organization they are in right now to position herself [40]. Nowadays, robots are widely used in our daily surroundings for many purposes. One such popular application is to use a robot to attend meetings/conferences/discussions remotely as a telepresence medium. In such scenarios, the robot has to join a group of people. For the robot to fluidly participate in groups, they must need to know how the groups are formed, how they are shaped, and how they have evolved [57]. There can be many kinds of groups that defer in dimension, situation, organization, etc., and they are generally referred to as “f-formation”.

F-formation (facing formation) is defined as the set of patterns that are formed during social interactions of two or more people. A robot can join an existing group or go to a single person and form a new group [42, 46]. There are three social spaces related to f-formation, which are: O-space, P-space, and R-space. O-space is known as the joint transaction space which is the interaction space between participants. P-space is the space where active participants are standing. R-space is the area that surrounds the participants and is outside the interaction radius as shown in Fig. 1 (details in Section 2). According to social science, Kendon (1990) proposed four formations as standard formations. They are vis-a-vis/face-to-face, side-by-side, L-shaped, and circular. Apart from these, there are also many other kinds of formations such as semi-circular, rectangle, triangular, v-shaped, and spooning [125], [72]. By categorizing a formation to any of these formation types, a robot can understand how people are standing in the discussion, and decide a position for itself to join the group accordingly. In joining, the robot should take care of the fact that already standing people are not disturbed and obstructed by itself. In detecting groups, several methods exist such as determining the position and orientation of people, Graph-cuts methods, Hough-voting system, etc. One major problem in f-formation detection is occlusion [41]. People in a group may stand in such positions that some of them may occlude the others, or the viewing camera angle is placed in such a location that the complete group is not visible. In such cases, a robot will not know the formation as it may not be able to detect the bodies of some people. So, in this kind of situation, we have to think about what kind of formation we will assume for the robot to continue its work.

Motivation and Research Objective. Social group and interaction detection is a non-trivial task in computer vision and is of paramount importance to the robotics research community. Many research groups across the globe have concentrated their studies in this area. The idea of social groups and interactions was first proposed in 1990 by Kendon [70]. However, the first mention of human proxemics dates back to 1963 [55]. But, back then no one knew that after a few decades these concepts of f-formation and proxemic behaviors of humans will be a basis for interaction detection in a group of people or robots or both. The research has gained pace since 2010 (see table 3), delivering many rule-based and learning-based methods and techniques for detecting interaction and f-formation in social setups for various applications, mostly robotics and vision. But not many surveys, reviews, or tutorials have been found in this domain which provides a good overall impression of the research, the state of the art, and future opportunities. This survey article is a 360° view into the problem of social group and interaction detection using f-formation covering almost all the concerns and aspects comprehensively. The aim is to demystify the domain and facilitate the scientists, researchers, and computer engineers to get a fair idea of the area and conduct fruitful research in the future. We also put forward a few related surveys in Table 1 and have compared them with our work based on various concern areas of our survey framework (discussed in Section 3 and Fig. 4).
Uniqueness of the survey. To the best of our knowledge, this survey is the first of its kind in this subject area. Our survey puts forward the idea of social groups with the perspective of f-formation with some comprehensive details. We also discuss the optimum joining position for a robot to enable human-robot interaction, after successful detection of the formation using computer vision techniques. Additionally, we propose a holistic framework to signify the various concern areas in the detection and prediction of social groups. Various taxonomies, regarding camera view of the environment for collecting scenes for detection, datasets for training machine/deep learning (ML/DL) models, detection capability, and scale and evaluation methods are discussed. We discuss and categorize all the detection methods, particularly rule-based and machine learning-based. Furthermore, we also deliberate the application areas of such detection and recognition giving primary focus to robotics. We also detailed the challenges, limitations, and future research directions in this area.

Organization of the survey. This survey article is organized into the following sections. Section 2 puts forward a comprehensive idea about social spaces involved in group interaction. The questions like the meaning of f-formation, types of f-formation, and evolution of f-formation from one type to another when a new member joins a group have been answered along with pictorial depiction for readers’ understanding. In Section 3, we propose a generic and holistic framework for group and interaction detection using formations which also becomes the basis of categorization of the literature in the survey based on the various concern areas and modules. Then we present a year-wise compilation of research performed in this domain with analysis in Section 4. Section 5 discusses the various input methods for detection such as cameras and other sensors. It also puts focus on the various camera views and positions. Section 6 summarizes the methods, techniques, and algorithms for detection focusing on both rule-based static Artificial Intelligence (AI) methods and learning-based (data-driven) methods. Then we talk about detection capabilities and scale in Section 7. In this section, we also discuss briefly the various datasets available for training and testing purposes. Section 8 presents the various evaluation strategy and methodology from the perspective of algorithmic computational complexity and application areas like robotics and vision. The various application areas are stated in Section 9. Finally, we discuss the limitations and challenges in existing state-of-the-art literature and methods as well as propose some future research directions and prospects in each of the modules (of the survey framework) in Section 10. We conclude the survey in Section 11.

Existing Surveys and Reviews	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Tăpus, Adriana, et al. [122]	✗✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓										
Setti, Francesco, et al. [116]	✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓										
Pathi, Sai Krishna, et al. [96]	✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓										
This survey	✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓										

✗→ signifies no treatment in the paper, ✓→ signifies some mention exists and ✓✓→ means comprehensive treatment of the concern area. (1) Comprehensive F-formation list and tutorial on social spaces, (2) Camera views and sensors, (3) Datasets, (4) Detection capability/scale, (5) Evaluation methodology, (6) Feature selection, (7) Rule-based AI methods/techniques, (8) Machine Learning based AI methods/techniques, (9) Applications, (10) Limitations, Challenges and Future directions, (11) Generic survey framework for group and interaction detection.

2 SOCIAL SPACES IN GROUP INTERACTION

In this section, we describe the theory of f-formation, leveraging the theory to study the groups of interacting people, and how a robot can utilize this to imitate social behavior while interaction with a group of people.
2.1 What is f-formation?

Facing formation (f-formation) happens when two or more people sustain a spatial and orientational relationship and they have equal, direct, and exclusive access to the space between them [61]. Fig. 1 depicts such a social space where a group of people are interacting. An f-formation is the proper organization of three social spaces: O-space, P-space, and R-space [116]. They are situated like three circles surrounding each other. O-space, the innermost circle, is a convex empty space that is normally surrounded by the people in the group and the participants generally look inward into the O-space. P-space, the second circle, is a narrow space where active participants are standing. The R-space, the outermost circle, is a space where an inactive participant (listener) or an outsider who is not a part of the conversation stands.

![Diagram of three social spaces](image)

Fig. 1. The three social spaces corresponding to human proxemics.

2.2 Different f-formations possible during interaction

Although both the theory of f-formation and appropriate methods to detect them have been well-analyzed in the literature, a comprehensive list of all the possible f-formations during different kinds of interactions is yet to be brought out. The most common ones are side-by-side, viz-a-viz, L-shaped and triangular, defined for groups of two to three persons. Some others include circular, square, rectangular and semi-circular, which are more flexible and can contain a varying number of persons. We list down and categorize a complete collection of all the known f-formations below (see Fig. 2 for a pictorial representation).

(a) Side-by-side: The side-by-side formation is formed when two people stand close to each other facing in the same direction. Both faces either right or left or center. A minimum of 2 people is required for such a formation [61].

(b) Vis-a-vis or face-to-face: This formation comes into existence when two people are facing each other. Only 2 people are required for such a formation [61].

(c) L-shape: The L-shape is formed when two people face each other perpendicularly and are situated on the two ends of the letter “L” – one person facing the center and the other facing right or left [61].

(d) Reserved L-shaped: This is formed when two people are in a position of L-shape, but they are facing in different directions [72].

(e) Wide V-shaped. Two people are facing in the same direction like side by side but they tilt their bodies slightly to face each other a little. Minimum 2 people required for this formation [72].

(f) Spooning: This formation has two people with one person facing forward and the other look over from the back in the same direction [72].

(g) Z-shaped: This is formed when two people are standing side-by-side but facing in opposite directions [72].
(h) Line formation: In this formation, all are standing in side-by-side fashion as a straight line and a minimum of 2 people are required [135].

(i) Column formation: In this formation, all are standing in a fashion where one is behind the other in a straight line and a minimum of 2 people are required [136].
Fig. 3. Comprehensive list of f-formations and their corresponding changed formations after a person/robot joins it. Also, the relevant possible trajectories a robot/person should take in each of the case.
Detecting socially interacting groups using f-formation: A survey

Table 2. Comprehensive list of formations before and after a robot/human has joined. The ** denotes that the number is the minimum requirement for that particular formation.

No.	Formation (before)	No. of people	Formation (After joining)	
a	Side-by-Side	2	Side-by-side, Side-by-side with one outsider, Triangle	
b	Vis-a-vis	2	Triangle	
c	L-shaped	2	Triangle, Reverse Semi-circular	
d	Reserved L-shaped	2	Semi-circular	
e	Wide V shaped	2	Triangle, Semi-circular	
f	Spooning	2	Side-by-side with headliner, Side-by-side with outsider	
g	Z-shaped	2	Triangle	
h	Line	3	Line	
i	Column	3	Column	
j	Diagonal	3	Diagonal, V-shaped	
k	S-by-s with one headliner	3	S-by-s with one headliner	
l	S-by-s with outsider	3	Semi-circular	
m	V-shaped	3	Triangle	
n	Horseshoe	5	Pentagon	
o	Semi-circular	4	Circular	
p	Semi-circular with one leader in the middle	5	Circle	
q	Square	4	Circular, Horseshoe	
r	Triangle	6	Circle, Semi-circular	
s	Circle	8	Circle with outsider	
t	Circle with outsider	9	Circle with outsider	
u	Geese	2	S-by-s with outsider	
v	Lone wolf	1	Vis-a-vis, S-by-s, L-shaped	

(j) Diagonal (Echelon): In this formation, people stand diagonally and face in the same direction. A minimum of 2 people is required [137].

(k) Side-by-side with one headliner: In this formation, one person stands in the front and others stand side-by-side at the back. A minimum of 3 people are required and they all face in the same direction [40].

(l) Side-by-side with outsider: In this formation, one participant occupying an outer position of the side-by-side formation in the r-space, who usually does not play an active role in the conversation. A minimum of 3 people is required [79].

(m) V-shaped: In this formation, all people stand in a V-shaped fashion and face the same direction. A minimum of 3 people is required [138].

(n) Horseshoe: The group of people stands in the shape of "U" and a minimum of 5 people are required [116].

(o) Semi-circular: The semi-circular formation is where three or more people are focusing on the same task while interacting with each other [96].

(p) Semi-circular with one leader in the middle: In this formation, people stand in semi-circular shape and there is one person in the center who is facing to the group of people in the semi-circle. A minimum of 4 people is required [79].

(q) Square (Infantry square): Four people stand in the square shaped fashion [139].

(r) Triangle: As the name suggests, three people stand in a triangular shape in this formation [96].

(s) Circle: As the name suggests, a group of people stands in a circular shape in this formation [94].

(t) Circular arrangement with outsiders: In this formation, some people stand in a circular fashion and one/two additional people stand at the back of the circular formation [40].

(u) Geese formation: In this formation, there are two or more people where one person is leading the path and the others are following that person but may or may not be looking in the same direction. A minimum of 2 people is required [42].

(v) Lone wolves: This is not really a formation (yet). There is only one person ready to be joined by others before an interaction [42].
2.3 Best position for a robot to join in a group

As social robotics is one of the most important application areas of group and interaction detection using computer vision, we put forward a list of positions where a robot can join a formation (here f-formation) after successfully detecting it. But joining a group requires a socially aware [28] or human-aware [74] navigation protocol embedded into the robot. In other words, the robot should imitate human-like natural behavior while approaching a group (considering correct direction and angle) for interaction and discussion without incurring any discomfort to the existing members of the group. However, this part of the story is out of the scope of our survey and we limit our work to detection and prediction of group and interaction only. But, as it seems necessary to at least briefly mention this side of the coin, we put forward the possible joining locations and natural joining path or approach direction/angle (robot trajectory) in this section (also discussed briefly in Sections 8 and 10). Researchers can think of presenting and publishing a systematic survey on the navigation and joining aspect of a robot/autonomous agent after successful detection/prediction of the group interaction and f-formation.

Table 2 summarizes a list of formations with the number of people and correspondingly the new formations after a person/robot joins it. The pictorial summary of the same is presented in Fig. 3.

3 GENERIC SURVEY FRAMEWORK WITH POSSIBLE CONCERN AREAS

This survey aims to facilitate the concerned researchers with a comprehensive overview of this domain of group and interaction detection. The idea of group/interaction detection is not new and is around for more than a decade. Researchers are trying to design and develop new methods, techniques, algorithms, and architectures for various application areas ranging from computer vision and robotics to social environment analysis.

The problem of a group and/or interaction detection is a non-trivial problem of computer vision. The existing research approaches follow both classical AI algorithms like rule-based methods, geometric reasoning, etc., and neural network-based methods. Moreover, learning paradigms like supervised, semi-supervised and unsupervised are also used. Proper categorization of these methods is necessary for future research directions. We have proposed a holistic framework that corresponds to the concern areas of f-formation research and can also be considered as a generic architecture for a typical group/interaction detection task using f-formation. Fig. 4 puts forward a possible framework with different modules of such a detection task. The various concern areas of this domain can be characterized by - sensors used, camera view/position for capturing the group interaction, datasets used for training/testing the method in case of learning-based approaches (indoor or outdoor), feature selection method & criteria, detection capabilities (static/dynamic scenes) & scale (single or multi-group scenario), evaluation methodology (efficiency/accuracy and/or simulation study and human experience study), and application areas. The mentioned modules are used as the basis of categorization of the literature in our survey and are attended to in the upcoming sections one by one (as mentioned in Fig. 4). Finally, we conclude the survey by discussing the limitations, challenges, and future directions/prospects (Section 10) in each of the concerned modules.

4 RESEARCH CHRONOLOGY

In 1990, Kendon [70] proposed the f-formation theory for group interaction by participating people on the basis of proxemics behavior. A computer system to detect human proxemics behavior was first studied by Hall almost six decades ago [55, 56]. This section is a survey on the literature collected on f-formation, using static and learning-based AI approaches. Fig. 5 shows the various specified distance ranges for different designated interaction types on the basis of intimacy level between the participating people. The distance ranges specified in green colored boxes are relevant to group/interaction and f-formation detection perspective. The blue-colored boxes signify distance ranges that are not generally seen in any f-formation. After the early studies by Hall, it was until 2009 when computer vision-based approaches using static AI...
methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.

methods or ML/DL techniques have emerged. From 2010, the research in this field started gaining pace. From 2013 to 2017, the research in this domain reached its peak with multiple methods, algorithms, and techniques being proposed. From 2010 to 2013, rule-based fixed AI methods were prevalent. Learning-based or data-driven methods like DL and RL have gained prominence in 2014, and gaining pace with each passing year. These methods have attained popularity in 2019. The years from 2014 to 2018 have seen equal contributions in both fixed rule-based methods and learning-based methods. So, there is a transition from traditional AI-based methods to machine learning and data-driven techniques like almost any domain of AI. Table 3 can be referred to for the complete list of references (year-wise). The table also consists of the keywords (methods, focus areas, and technologies) for most of the references for a better perception of the readers.
Table 3. Year wise compilation of methods and techniques for group/interaction/f-formation detection and other relevant literatures.

Year of Publication	Study, Methods and Techniques	Total
2004	Geometric reasoning on sonar data [19].	1
2006	Wizard-of-Oz (WoZ) study on spatial distances related to f-formations [61].	1
2009	Clustering trajectories tracked by static laser range finders [67], trajectory classification by SVM [112].	2
2010	Probabilistic generative model on IR tracking data [54], WoZ study of robot’s body movement [75], SVM classification using kinematic features [144].	3
2011	Analysis of different f-formations for information seeking [79], Hough-transform based voting [57], graph clustering [60], a study on transitions between f-formations on interaction cues [82], a computational model of interaction space for virtual humans extending f-formation theory [88], a study of physical distancing from a robot [85], utilizing geometric properties of a simulated environment [86], a study to relate f-formations with conversation initiation [117], Gaussian clustering on camera-tracked trajectories [38].	9
2012	Application of f-formations in collaborative cooking [71], Kinect-based tracking with rules [78], WoZ study on social interaction in nursing facilities [71], a study of robot gaze behaviors in group conversations [145], velocity models (while walking) [84], SVM with motion features [106], Hidden Markov Model (HMM) [19].	7
2013	Spatial geometric analysis on Kinect data [44, 46], analysis of f-formation in blended reality [41], a comparison of [37] and [60] [114], exemplar based approach [77], multi-scale detection [115], Bag-of-Visual-Words (BoVW) based classifier [126], Inter-Relation Pattern Matrix [25], HMM classifiers [81], O-space based path planning [52].	10
2014	Hough Voting (HVVF), Graph-cuts (GCFF) [109], game theory based approach [128], correlation clustering algorithm [11], reasoning on proximity and visual orientation data [42], effects of cultural differences [65], HMM to classify accelerometer data [59], iterative augmentation algorithm [51], adaptive weights learning methods [102], estimating lower-body pose from head pose and facial orientation [142], search-based method [45], study on group-approaching behavior [69], spatial activity analysis in a multiplayer game [66].	12
2015	Robust Tracking Algorithm using TLD [9], CCFT based approach [116], Correlation Clustering algorithm [10], multimodal data fusion [8], spatial analysis in collaborative cooking [90], GIZ (Group Interaction Zone) detection method [90], study on influencing formations by a tour guide robot [68], joint inference of pose and f-formations [121], participation state model [118], SALSa dataset for evaluating social behavior [7], multi-level tracking based algorithm [131], Structural SVM (SSVM) using Dynamic Time Warping (DTW) loss [119], Long Short-Term Memory (LSTM) network [3], influence of approach behavior on comfort [15].	14
2016	F-formation applied to mobile collaborative activities [125], subjective annotations of f-formation [145], game-theoretic clustering [129], study of display angles in museum [62], mobile co-location analysis using f-formation [113], proxemics analysis algorithm [104], review of human group detection approaches [123], LSTM based detection in ego-view [1].	8
2017	Haar cascade face detector based algorithm [73, 94], weakly-supervised learning [127], temporal segmentation of social activities [35], omnidirectional mobility in f-formations [141], review of multimodal social scene analysis [6], 3D group motion prediction from video [54], survey on social navigation of robots [28], a study on robot’s approaching behavior [16], heuristic calculation of robot’s stopping distance [109], a study on human perception of robot’s gaze [130], computational models of spatial orientation in VR [97].	12
2018	Optical-flow based algorithm in ego-view [105], meta-classifier learning using accelerometer data [50], human-friendly approach planner [111], discussion on improved teleoperation using f-formation [92], effect of spatial arrangement in conversation workload [80], study of f-formation dynamics in a vast area [49].	6
2019	Study on teleoperators following f-formations [96], discussion on conversational unit prediction using f-formation [103], empirical comparison of data-driven approaches [57], LSTM networks applied on multimodal data [107], robot’s optimal pose estimation in social groups [95], review of robot and human group interaction [140], Staged Social Behavior Learning (SSBL) [47], Euclidean distance based calculation after 2D pose estimation [93], Robot-Centric Group Estimation Model (RoboGEM) [124].	9
2020	Difference in spatial group configurations between physically and virtually present agents [58], Conditional Random Field (CRF) with SVM for jointly detecting group membership, f-formation and approach angle [18].	2

5 CAMERAS AND SENSORS FOR SCENE CAPTURE

This section summarizes the input methods in the group/interaction detection framework (Fig. 4). The main input methods are cameras and sensors. There are different types of cameras used in the literature such as omnidirectional camera, helmet camera, robot camera, fisheye camera, and webcams. The camera sensor may be equipped with depth perception
or provide only RGB images. The other main sensors found in the surveyed literature are audio sensors, blind sensors, and RFID (Radio-frequency identification) sensors, etc. These are chosen based on the application areas and the working environment.

5.1 Camera Views

There are two different types of camera positioning used – ego-vision/ego-view (ego-centric) camera for robotics and exo-vision/exo-view (exo-centric) or global view cameras (fixed in walls and ceiling) in indoor environments or outdoor environments (see Fig. 6). Cameras are used for drone surveillance, robotic vision, and scene monitoring. In these cases, we work with the ego/exo views of the scene to detect group interactions.

Ego-centric view. Ego-centric refers to the first-person perspective; for example, images or videos captured by a wearable camera or robot camera. The captured data is focused on the part where the target objects are placed. In [105], the robot’s camera is used for capturing scenes which is also referred a robot-centric view. In [45], the authors use first-person view cameras for estimating the location and orientation of the people in a group. In [2], the authors use low temporal resolution wearable camera for capturing groups’ images.

Exo-centric view. The exo-centric view is concerned with the third-person perspective or the top view; for example, images or videos which are captured by surveillance/monitoring cameras. There can be one or many social interaction groups in a scene that can be captured simultaneously from the top view. In [102], the authors use 4 cameras for detecting groups at large scale. The method also detects changes in the target groups when it moves closer or further from the cameras. In [60], experiments are done by capturing a video with a camera from approximately 15 meters overhead. In [38], the images are captured by using a fisheye camera and it is mounted 7 meters above the floor.

5.2 Other Sensors

Sensors play a vital role to find the relative distance of the people in a group, which helps accurate prediction of the type of f-formation. Researchers used different types of sensors such as depth sensor, laser sensor, audio or speech sensor, RFID, and UWB sensor in the literature. There are some cases where both cameras and other types of sensors are used simultaneously for detection. In [130] the authors use the UWB (Ultra-wideband) localization beacons, Kinect and an audio sensor for detecting people and other entities, and RGB cameras for monitoring. The data for scenes are captured in the form of images and/or videos depending on the method that uses the input for scene detection. Some instances of WiFi-based tracking [51] of humans are also visible in the literature.

Fig. 7 shows a taxonomy of cameras/vision sensors and other sensors used in the literature for scene capture. Table 4 gives a categorization of the surveyed literature on the basis of camera views and sensors. In the table, readers may see the number of cameras used in each of the cited papers specified. The table also specifies the various cameras and sensors used in each paper.

6 CATEGORIZATION OF METHODS/TECHNIQUES

There are many f-formation detection methods proposed in the literature. In this article, we broadly categorize these methods into two classes – (a) rule-based methods (fixed rules, assumptions, and geometric reasoning) like the conventional image processing and vision techniques, and (b) learning-based method (or data driven approach). With the Big data revolution at its bloom, learning-based methods have come to prominence in the recent past. Multimedia and visual analytics [99] from big data remains a lucrative tool for the future of this domain.

Manuscript submitted to ACM
Fig. 6. Different camera views of the same group/interaction in an indoor environment. In the left side a robot is having a ego-view camera and in the right side an exo-view or global view camera is fixed in a wall. These images are produced in webot robotic simulator [39].

Camera and sensor (Section 5)
- Ego-vision (Section 5.1)
 - Depth/RGB/Omni-directional/Helmet/Robot/Fish eye/Web cameras
- Exo-vision/Global view (Section 5.1)
 - Same as Ego-vision list
- Sensor (Section 5.2)
 - Audio/Blind/UWB/Band radios/Laser/RFID sensors

Fig. 7. Taxonomy for cameras and sensors for scene capture. The leaf nodes give examples in each category.

In group discussions, people stand in a position where the conversation can happen effectively. Kendon [70] proposed a formal structure of group proxemics among the interacting people in a formation (described in Section 2), where Hough-voting strategy is used for finding the O-space [100]. In [115], the authors use the Hough-voting approach with a two-step algorithm – 1) fixed cardinality group detection, and 2) groups merging. Using these two steps, they detect the type of f-formation. In [46], the experiment uses a heat map-based method for recognizing human activity and the best view camera selection method. In [100], the (GCFF) graph cut f-formation is used for detecting f-formations in static images with the graph-cuts algorithms via clustering graphs. Yasuharu Den [40] says that formations are also dependent on the social organization and environment. He explains formation with outsiders where people stand based on their position. In this paper [96], there are three constraint-based formations namely triangle, rectangle, and semi-circular formation. They use a game-theoretic model for the position and orientational information of people to detect groups in the scene. For checking the formation, they use an algorithm proposed by Vascon et al. [128, 129] that generates the 2D frustum of the position and orientation of people in the group. In [94], the authors use the Haar cascade face detector algorithm to detect the faces and eyes of people. Based on the face and eye detection, the method decides how many frontal, right, and/or left faces are there and then decides the formations. In [73], the Haar cascade classifier is used with quadrant methodology. The paper differentiates the person’s facing direction by looking where the eye is located and in which quadrant. In [46], the authors use a new method to find the dominant sets and then compares with modularity cut. But this method is applicable only when everyone is standing. In [103], the method uses speaking turns for indicating the existence of distinct conversation floors and gets the estimation of the presence of voice. But this method cannot detect the silent (inactive) participants. In [107], proximity and acceleration data are used and pairwise representations are used with LSTM (Long short-term memory) network. They are used for identifying the presence of interaction and the roles of participants in the interaction. However, using a fixed threshold for identifying speakers can create mislabel in some instances. In [10], structural SVM
Table 4. Classification based on camera view and other sensors for group/interaction and f-formation detection.

Classification	Application areas/Details	References
Ego-centric (First person view or Robot view) [Section 5.1]	• Robotics and Human-robot interaction	
• Robot vision in telepresence		
• Drone/Robot surveillance	[58], [93], [97], [98], 2 Hamlet cameras and 1 robot camera[99], [111], [11], [105], [73], [94], multi [64], [13], [62], [125], [12], [118], [68], [9], multi [90], multi [45], multi [142], [91], [69], multi [42], [11], [51], depth camera, RGB camera[49], an omni-directional camera[143], multi [91], [68], [73], 4 [54], [57], robot camera [61], 2 [12], [10], [67], [18]	
Exo-centric (Global view) [Section 5.1]	• Social scene monitoring	
• Covid-19 social distancing monitoring		
• Human interaction detection and analysis	[96], multi [50], multi [92], [16], [141], multi [6], multi [64], [28], [190], multi [127], 8 [109], [62], multi [123], multi [129], [104], [214], multi [149], [131], multi [7], multi [121], [16], [70], multi [116], multi [8], multi [90], [66], [168], 4 [102], a single monocular camera[128], 3 overhead fish-eye camera used for training classifier [59], multi [142], multi [45], [131], [23], multi [44], [8], [115], [77], [116], multi [144], [46], [4], [71], [108], [278], 1 [29], multi [91], [18], [82], multi [37], [155], [60], multi [144], 4+2 [54], 4 webcams [61], an omnidirectional camera [12], [100], [146]	
Using other Sensors [Section 5.2]	Audio, sociometric badges, Blind sensor, prime sensor, prime-based tracking, depth sensor, band radios, touch receptors, RFID sensors, smart phones, UWB beacon	[7], [42], Kinect depth sensor [44], [51], [49], [82], [123], speakers [105], wearable sensors [107], [25], [109], ultra wide-band localization beacons (UWB), Kinect [130], [67], [12], [115], RFID tag [214], [74], [44], [66], Asus Xtion Pro sensor [93], ZED sensors [105], single worn accelerometer [50], Kinect sensor [111], Microsoft Speech SDK [97], speaker, Asus Xtion Pro live RGB-D sensor [16], Kinect [84], motion tracker [109], sociometric badges[6], RGB-D sensor [141], tablets [125], tablets [113], mobile sensors [123], microphone, infrared(IR) beam and detector, bluetooth detector, accelerometer [7], touch sensor [88], range sensor [143], laser sensors [84], Wi-fi based tracking, Laser-based tracking [51], PrimeSensor, Microsoft Kinect, microphone [51], RFID sensors [41], blind sensor, location beacon [42], single worn accelerometer [59], [80], gaze animation controller [97], [117], grid world environment [86], ethnography method [79]
Others relevant literatures	-	[55], [65], [52], [41], [70], [72], [60]

(support vector machine) is used for learning how to treat the distance and pose information, and correlation clustering algorithm is used to predict group compositions. Furthermore, TLD (Tracking learning detection) tracker is used for blur detection for ego-vision images. But the trackers cannot perform detection when the target is moving out of the camera field of view. In [105], the method uses ego-centric pedestrian detection. The pedestrian detector generates bounding boxes. It uses optical flow for estimating motion between consecutive image frames. For detecting groups, they used joint pedestrian proximity and motion estimation. In [145], the method detects the group with a group detector first then uses the trained classifier to differentiate the people involved in the group. Some researchers use pedestrians, vision-based algorithms, pose-estimation algorithm to detect [127] groups. In the article [127], authors use body-pose for handling f-formation detection and finding the joint estimation of f-formation and target’s head and body orientation. They also use multiple occlusion-adaptive classifiers. There are many more methods scientists use but each of them has its own strengths and weaknesses. Fig. 8 presents a taxonomy of different methods/techniques/approaches surveyed in this article that are used for group/interaction/formation detection.

![Fig. 8. Taxonomy for methods and approaches used for group and interaction detection.](image-url)
6.1 Rule based method

We categorize methods as rule-based that include pre-defined rules, geometric assumptions, and reasoning. Rule-based methods are designed around well-known social behaviors and geometric properties and are often intuitive. In the absence of any learning paradigm, the algorithms are purely based on a static set of rules that are assumed to be true for a particular group situation (see Fig. 9).

![Diagram of rule-based method](image)

Fig. 9. Generic framework for a rule based AI method of detecting group interactions and formations.

In the following, we list down the most popular rule-based methods that report a decent accuracy in detecting human groups.

Voting based approach (2013). This approach is used for detecting and localizing groups by finding the matches based on exemplars. The authors in [77] suggest, this method works on agents so it is very flexible for different multi-agent scenarios. The results show that this method is effective for groups of up to four agents. The results are evaluated with people only without robots. The computational complexity of this method is low, hence it is real-time in nature and accuracy is very good.

Graph cuts for f-formation (GCFF) (2015) [116]. GCFF approach firstly finds the o-space and gives the individual position to identify the orientational formation. This method is tested on a synthetic scenario and compared with other methods such as Inter-Relation Pattern Matrix (IRPM), Dominant Sets (DS), Interacting Group Discovery(IGD), Game-Theory for Conversational Groups (CTCG), Hough Voting for f-formation (HVFF), etc. This approach improves over other approaches not only in terms of precision but also in recall scores. It performs better in detecting people and orientation with no errors. The results are evaluated with people only.

Head and body pose estimation (HBPE) (2015) [121]. This method uses a joint learning framework for estimating head and body orientations that in turn is used for estimating f-formations. This method is evaluated with people in a scene without any robots. For evaluating, authors use the mean angular error for head, body pose estimation (HBPE) and use F1-score for f-formation estimation (FFE). This method is compared with Hough Voting for f-formation (HVFF) method. Though the results are more or less similar, this method is slightly more accurate and has a higher F1 score.

GROUP (2015) [131]. The GROUP algorithm detects f-formations based on lower-body orientation distributions of people from the scene and gives a set of free-standing conversational groups on each time step. Firstly, it analyzes the maximum description length (MDL) parameter. The higher the MDL parameter, the higher is the radius of grouping people together. This method can also detect non-interacting people as outliers. It is evaluated with people only without any robots in the scene. The computational complexity of this method has been compared with state-of-the-art methods.

Approach Planner (2018) [111]. The Approach Planner (AP) enables a robot to navigates/plan based on the natural approaching behavior of humans toward the target person. This method can replicate human behavior/tendencies when approaching. The evaluation is based on the parameters derived from the skeletal information.
Game-theoretic model (2019) [96]. The approach gives a 2D frustum for each virtual agent and robot by giving the position and orientation of them. Then it computes the affinity matrix. The method is evaluated both quantitatively and qualitatively. It is efficient in serving teleoperated robots who follow f-formations while joining groups automatically. The method also takes care of the fact that the formation is modified when new people/robots join the old group. The evaluation is made in a simulation environment.

6.2 Machine learning based method

Machine learning-based methods are generally data-driven models where different algorithms are explored by researchers. Generally, we have special case of Deep learning methods under Machine learning. The primary learning paradigms used are – Supervised, Unsupervised, Semi-supervised and Reinforcement learning. However, a generic system that uses a machine learning algorithm to detect f-formation is shown Fig. 10. In the following, we describe the various ML based approaches.

IR tracking method with SVM (2010) [54]. With the help of IR tracking, social interactions can be classified as either existing or non-existing by using geometric social signals. The authors train and test with many classifiers such as Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Naive Bayes classifier. IR tracking with an SVM classifier has been shown to achieve better accuracy than other classifiers.

Graph-based clustering method (2011) [60], (2013) [126]. In [60], authors use the “socially motivated estimate of focus orientation” (SMEFO) feature to estimate body orientation that in turn estimates f-formation. This method has been compared with a modularity cut method. The evaluation process is done on the basis of computation complexity. The limitation of this approach can be seen in scenarios where people are moving within the group and/or people are joining/leaving the group.

In [126], authors find a graph representation from the 3D trajectories of people and head poses. Using a graph-clustering algorithm they discover social interaction groups. They use a Support Vector Machine (SVM) classifier for learning and classifying the group activities. The evaluation shows that it is better than the previous methods. Human experience study is also performed with robotic scenarios. This approach not only recognizes or detects particular group activity but also predicts a direct link between each person from that group.

Novel framework (2013)[23]. This approach uses the Subjective View Frustum (SVF) as the main feature which encodes the visual field of a person in a 3D environment and the Inter-Relation Pattern Matrix (IRPM) as a tool for evaluation.
For the tracking part, Hybrid Joint-Separable (HJS) filter is used. The tracker gives the position of the head and feet of each person. Computational result based evaluation is done with the other counterparts in terms of accuracy/efficiency.

GIZ detection (2015) [30]. This method detects groups based on proxemics. Group Interaction Energy (GIE) feature, Attraction and Repulsion Features (ARF), Granger Causality Test (GCT), and Additional Features (AF) are proposed in this method. Tests are also conducted by combining these features. This method allows people to be connected loosely. The evaluation is done on the basis of computational accuracy and efficiency.

3D skeleton reconstruction using patch trajectory (2017) [64]. This algorithm works in two stages. First, it takes images from different views as input and produces 3D body skeletal proposals for people using 2D pose detection. Secondly, it refines those using a 3D patch trajectory stream and provides temporally stable 3D skeletons. Authors evaluate the method quantitatively and qualitatively yielding an accuracy of 99%. The limitation of this method lies in its dependency on 2D pose detection and the computation time complexity.

Learning methods for HPE (head pose estimation) and BPE (Body pose estimation) (2017) [127]. This method uses a jointly learning framework for estimating the head, body orientations of targets, and f-formations for conversational groups. The evaluation matrices used are – HP (head pose) error, BP (body pose) error, and FF (f-formation) F1 score. This method is compared with Inter-Relation Pattern Matrix (IRPM), Interacting Group Discovery (IGD), Hough transforms-based (HVFF), Graph Cut (GC), and Game-Theoretic methods, and the results are not very different in percentage accuracy.

Method using GAMUT (Group based Meta-classifier learning using local neighborhood Training) (2018) [50]. This method aims at estimating the f-formation of each pair of people in a group as a pairwise relationship in the scene. This method works in two steps: Prepossessing and GAMUT. In the prepossessing stage, raw tri-axial acceleration signals are converted to pairwise feature representations and these are used as samples in GAMUT. In the GAMUT stage, the same size of the local neighborhood is used per window size. The results are computationally evaluated in terms of accuracy and efficiency of detection.

Method based on pedestrian motion estimation (2018) [105]. This method works in three parts – ego-centric pedestrian detection, pedestrian motion estimation, and group detection using joint motion and proximity estimation. The pedestrian detectors result in bounding boxes (BB) with two features – a position of pedestrians and size of the BB. An optical feature is used for motion estimation. Then, joint pedestrian proximity and motion estimation are used for detecting groups while considering the depth data. The evaluation is done in terms of real-life human experience study using robots and humans.

Method based on Multi-Person 2D pose estimation (2019) [93]. This method firstly estimates the position of the human skeletal characteristic points in the image plane and calculates the Euclidean distance between those points. Then Part Affinity Fields (PAFs) feature is applied to find the distance based on the Euclidean distance. A curve-fitting approach is used for validation purposes. No need for prior information about camera parameters/features of the scene is needed. The evaluation is performed on the basis of human experience study in real-life scenes using robots and humans.

Bagged tree (2019) [57]. The proposed algorithm works in three steps – data-set deconstruction, pairwise classification, and reconstruction. Authors evaluate this algorithm with three ML classification models – weighted KNN, bagged trees, and logistic regression, where bagged tree model achieve better result in pairwise accuracy, precision, recall, and F1-score. But this method still needs to be trained on larger datasets and also on richer features. The evaluation is done with human experience study with robots.

RoboGEM (2019) [124]. RoboGEM is an unsupervised algorithm that detects groups from an ego-centric view. This method works using three main modules – pedestrian detection module "P", pedestrian motion estimation module "V", and group detection module "G". In the first module, an off-the-shelf pedestrian detector (YOLO) is used that provides bounding
boxes for each person in the image. In the second module, V is estimated using optical flow. In the last module, the human group detection is performed using joint motion and proximity estimation. The authors compared this method with existing approaches using Intersection-over-Union (IoU), false positives per image (FPPI), and depth threshold matrices. The evaluation is done with human experience with robots.

Table 5 lists down the surveyed papers on the basis of rule-based and learning-based AI approaches. From the algorithmic trends, it is evident that learning-based approaches are slightly more predominant in recent years. However, both the methods are equally explored over the years and in recent pasts. Learning-based methods tend to be more accurate than their rule-based counterparts. Examples of such methods are: [60], [81], [64], [105], [57], and [124]. Table 6 lists down the accuracy and efficiency of the different approaches. This signifies the detection quality of the methods and techniques. From the survey, it can be established that mostly unsatisfactory accuracy can be seen in rule-based approaches more than learning-based models. And, as expected the main reason in general for low accuracy lies in the inability of the methods to detect dynamic groups as well as multiple groups in the scene accurately. But one interesting observation is that accuracy is largely impacted by the camera vision as well. Basically, low accuracy can be seen in exo-vision input methods and datasets. Similarly, real-timefulness is another issue with methods dealing with dynamic and multiple groups. There is no prominent impact of camera views, datasets, and method types in this case. Readers may refer to the online Appendix which contains the detailed comparison of methods and techniques under rule-based static AI approaches in Table 1 and machine learning-based approaches in Table 2.

![Table 5. Classification based on approach/method for group and f-formation detection.](image_url)
Table 6. Comprehensive list of AI methods (Rule based and Learning based) for group/interaction/f-formation detection and their Detection Quality: Accuracy (Excellent/Very good/Good/Average/Poor) and Efficiency (Real-time/Near real-time/ Non real-time) comparison. **Pink** color cells highlight dissatisfying accuracy and **Red** color cells highlight real-time issues. Full forms: SVM (Support Vector Machine), HMM (Hidden Markov Model), HFF (Hough for f-formations), DSFF (Dominant-sets for f-formations), GCFF (Graph-Cuts for f-formation), HBPE (Head and body pose estimation), CC (Correlation Clustering), LSTM (Long-Short Term Memory), RNN (Recurrent Neural Network) LBFGS (Limited memory Broydon-Fletcher-Goldfarb-Shanno), SGD (Stochastic Gradient Descent), MC-HBPE (Matrix Completion for HBPE), GAMUT (Group based Meta-classifier learning Using local neighbourhood Training), SSBL (Staged Social Behavior Learning), CRF (Conditional Random Field), DT (Decision Tree).

Method	Accuracy	Efficiency
Classical Rule based AI methods (Section 6.1)		
Approach behavior (2009) [112] (SVM)	average	real time
Sociologically principled method (2011) [37] (DT)	good (precision 75%)	real time
A proposed model (2011) [117] (DT)	good	real time
Museum guide robotic system (2012) [143]	very good	real time
Extended f-formation system with temporal encoded IS (2013) [46] (DT)	excellent	real time
Multi-scale Hough voting approach (2013) [113] (DT)	good	real time
HFF (Hough for f-formations) (2013) [114]	performed better using people’s position and orientation	
DSFF (Dominant-sets for f-formations) (2013) [114]	performed better when only position information is available	
Wi-fi based tracking, Laser-based tracking, Vision-based tracking (2013) [51]	good	
Heat map based f-formation representation (2013) [44] (DT)	(Temporal encoded IS gives a precision of 99.9% and IS gives 80%)	
Estimating positions and the orientations of lower bodies (2014) [142]	(face detection works for one face but Human regions and upper parts can be extracted from a range of images)	
(2014) [128]	very good (most over 80% and for one dataset 100%)	real time
Group tracking and behavior recognition (2014) [48]	good	real time
Search based method (2014) [45]		
Euclidean distance-based NN classifier, ARCO (array-of-co-variance) head pose classifier, WD (weighted classifier, Multi-view SVM [102]	--	--
Graph-Cuts for F-formation (GCFF) (2015) [116]	very good (0.97, 0.94, 0.84, 0.85, 0.92, 0.89)	real time
Head and body pose estimation (HBPE) (2015) [121] (DT)	good (0.79, 0.82 for different dataset)	real time
GROUP (2015) [131] (DT)	excellent (93%)	real time
Link Method (2016) [104]		real time (2.5 ms)
Interpersonal Synchrony Method (2016) [104]		real time (10ms)
F-formation as dominant set model (2016) [145]	good (71% F-measure)	real time
Matrix completion for head and body pose estimation (MC-HBPE) (2017) [6]	average (49.8°HP 51.6°BP error)	real time
Haar cascade face detector algorithm (2017) [73] (DT)	good	real time
Haar cascade face detector algorithm (2017) [94] (DT)	good	real time
Meta-classifier [50]		
Measuring Workload Method (2018) [60]		
F-formation as dominant set model (2018) [146]	good (71% F-measure)	real time
(2019) [95] (DT)		
Machine Learning based AI methods (Section 6.2)		
IR tracking technique with SVM (2010) [53]	good (77.81%)	real time
Extraversion, neuroticism (SVM) (2010) [144]	(66%, 75%)	real time
Graph-based clustering method (2011) [60]	excellent (all singletons precision 95%, limitation: only for standing)	real time

Continued on next page
Region-based approach with level set method (2012) [71]	average in real environment, good in simulated environment	--
Method with o-space and without o-space (SVM) (2012) [108]	good (based on casual, normal, and abnormal behaviour)	real time
Hidden Markov Model(HMM) (2012) [49] (Haar-feature classifier, 3-layer artificial neural network (ANN))	good (66%)	real time
Three-dimensional IRPM (Inter-Relation Pattern Matrix) (2013) [25]	very good (89%) (11% false)	non real time (people need to be in same interaction for at least 10 second)
Voting based approach (2013) [77] (SVM)	very good	real time
Hidden Markov Models (HMMs) (2013)[81]	0.56 (physcal), 0.72 (psychophysical)	real time
Graph-based clustering algorithm (2013) [126] (SVM classifier)	very good	real time
Poselet detection model (SVM) (2014) [31]	poor	--
(2014) [11] (SVM)	very good	real time
Method with Hidden Markov Model (2014) [59]	good (64%)	near real time
Transfer Learning approach [12] (Euclidean distance-based NN classifier, ARCO head pose classifier, W classifier, Multi-view SVM)	--	--
Matrix Completion for Head and Body Pose Estimation (MC-HBPE) [6] (2015) (TSVM)	average	real-time
GIZ detection (2015) [30] (SVM)	very good (can detect even on loosely formed condition)	real-time
Model with loss function Pairwise and Mitre (2015) [119] (SVM)	both very good	real-time
Long-Short Term Memory (LSTM) with LBFSG and SGD, HVFF (2015) [2] (RNN)	very good (82%, 73%, 80%)	real-time
(2015) [7] (SVM)	good (around 70, 80)	real time
Matrix based batch learning for Long Short Term Memory (LSTM) with Limited memory BFGS (L-BFGS) and Stochastic Gradient Descent (SGD) (2016) [3]	SGD performs slightly better than LBFSG (78%) good	real time
Method uses HMM (Hidden Markov Model) model and SVM combined (2017) [35]	very good (85.56)	real-time
Learning Methods for HPE (Head-pose estimation) and BPE (Body pose estimation) (2017) [127]	very good (0.87,0.84,0.66 on different dataset)	real time
Human aware motion planner (2017) [28]	--	--
3D skeleton reconstruction using patch trajectory (2017) [64]	excellent (99 percentage)	real time
GAMUT (Group based Meta-classifier learning Using local neighborhood Training) (2018) [56]	very good	near real time
Group detection method (2018) [109]	--	--
Multi-Person 2D pose estimation (2019) [93]	very good	real-time
Long Short Term Memory (LSTM) network/recurrent neural network [107]	confusion matrix (0.92)	near real-time
Staged Social Behavior Learning (SSBL) (2019) [47]	--	non real time
(2019) [57]	--	real time
RoboGEM (2019) (SVM) [124]	excellent	real time
Skeletal key point detection (2020) (SVM, CRF) [18]	excellent	real time

7 CATEGORIZATION OF DETECTION CAPABILITIES AND SCALE

This section puts forward a categorization of the surveyed literature on the basis of group/interaction detection capabilities and scale for a method. After surveying the literature and the methods, it is evident that detection of groups in scenes is a non-trivial task and many factors are to be considered in the process as well. In real-life scenes, there can be both static groups of people interacting without much movement and there can also be groups with constant movement. There can be cases like group members leaving a group or new members joining a group. Group dynamics also is an important factor...
to be considered. People may sway or move their bodies occasionally too. Apart from these, methods also need to consider a single group or multiple existing groups in a scene. Outliers to one group can be a part of another group or can be noise at the global level. Fig. 11 depicts a taxonomy of group detection in interaction scenarios in real-life cases.

7.1 Detection capability
Methods need to attend to both static and dynamic groups in interactions and formations. Here, we do categorization of this aspect.

Static group scene. A static scene means people in the scene are not moving. The people interacting in a group or formation do not change groups or new people do not join a group while interaction is in progress. The people within the group do not sway or change head/body pose and orientation that can affect formation detection. In such cases, it is easier to detect groups and formations. No temporal aspect in the scene is to be considered and the method can work on a single image. In [31] and [93], single image is used from a single egocentric camera for detection. Mostly indoor scenes like conferences, group discussions, coffee breaks, and meetings, such static groups can be found.

Dynamic group scene. In the case of a dynamic scene, people tend to move in groups, also referred group dynamics. New people can join a group and/or existing people can leave a group. Also, some people participating in an interaction may temporarily change their head/body pose and orientation a bit; this necessarily does not mean that the formation has changed. In such cases, it becomes very difficult for an algorithm to detect the group or formation in the interaction scenario. As a result, the methods need to consider the temporal information of the scene utilizing a sequence of images over a window. A sequence of image/image stream is taken over a particular period of time. In [38], the video data is used which is 10 frames per second for detecting dynamic groups and interactions. In [29], the surveillance videos are used for experiment purposes. Similarly, [115] utilizes video feed from a cocktail party [133] for its experiments, which is one frame in 5 seconds. Fig. 12 depicts the dynamic scene and group scenario. The EGO-GROUP dataset [4] has a video of an indoor laboratory setup. The video consists of 395 image frames. The specialty of this video is that the people in the scene are not static in one position and they change position/orientation and location with time. On the right-hand side of the figure, we put forward four instances of the image sequence where four different types of groups/interactions and formations are visible for the same four people in the scene. This type of dynamism should be handled by the detection methods with efficiency considering temporal aspects of the scenes. In outdoor scenes such as waiting rooms, stations, airports, restaurants, theatres, and lobbies, dynamic groups are mostly encountered. Table 7 summarizes the references into two detection capability types found in the literature.

7.2 Detection scale
Since we need different methods depending on how many groups are there in a captured image or video, the detection scale plays an important role.
Detecting socially interacting groups using f-formation: A survey

Fig. 12. Dynamic behaviour of groups/people in a video/image sequence from EGO-GROUP [4].

Table 7. Classification based on group/interaction and formation detection capability.

Classification	References
Static scene detection	[93], [50], [92], [109], [145], [129], [108], [116], [44], [114], [100], [128], [33], [102], [69], [47]
Dynamic scene detection	[124], [58], [103], [107], [105], [50], [111], [92], [80], [40], [130], [16], [64], [6], [141], [35], [94], [127], [73], [125], [62], [113], [104], [1], [9], [8], [90], [68], [116], [121], [118], [7], [131], [119], [2], [54], [75], [144], [60], [82], [85], [117], [38], [79], [61], [12], [29], [91], [78], [71], [143], [84], [108], [49], [77], [115], [95], [51], [126], [23], [46], [41], [128], [11], [59], [48], [142], [45], [67], [112], [66], [140], [30], [15], [37], [18], [146]

Single group detection. When a sensor/camera detects only one interacting group in the scene, the work is easily done. The stream of images sequence can have multiple groups as well. But all the methods do not have the capability to detect multiple groups simultaneously. In some cases, single group detection is useful when a robot needs to detect a single group of interest in a scene or environment and join the group for interaction/discussion. The datasets used for this kind of detection are mostly captured indoor (for example office and panoptic studio [33]) or outdoor (mostly private datasets). Other publicly available datasets are BEHAVE [89] and YouTube videos which can also be used for such purposes. In the case of ego-view camera-based detection methods, single group detection is the primary focus.

Multiple group detection. When there is more than one interacting group or formation in a scene, the detection methods need special attention. Sometimes there is only one interacting group in the scene along with some additional people who are not actively involved in the interaction. Those cases can also be considered under the same umbrella and are quite challenging too. This kind of detection is useful for finding how many groups are there or finding a particular group in a diverse scene in surveillance/monitoring applications. There exists some datasets comprising of such scenarios – coffee break dataset [36], EGO-GROUP [4], SALSA [134], cocktail party [133], GDet [19], Synthetic [43], Idiap Poster Data [63], and FriendsMeet2 (GM2) [20, 22]. Beyond these, some researchers have used their own (private) datasets. In [38] and [115], the authors experimented with such datasets where there is more than one group in the scene (the party data). Similarly, in [29], the surveillance videos are used as data where there can be more than one group in the captured video. Table 8 classifies the literature on the basis of group/interaction detection scale. The multiple group detection scenario normally comes in exo-view based methods. Fig. 14 depicts three scenarios from a renowned dataset, EGO-GROUP [4]. Fig. 14a shows a single triangular formation with one outlier in an indoor environment. Fig. 14b depicts a viz-a-viz formation in an outdoor situation. Fig. 14c shows two groups, one triangular and one L-shaped formation in an indoor situation.

Table 9 comprehensively lists all the surveyed datasets in the literature. A total of 70 datasets have been mentioned out of which only 14 are publicly available, 51 are private to the authors/researchers and 5 are not known. 15 of the datasets
have outdoor scenes (mostly from public area captures), 41 have indoor scenes, and only 5 of them have both types of scenes. 36 out of the list have multiple group scenarios in the scenes and 19 have single group scenes and 15 are not known. Ego-vision scenes of groups and interactions are seen in 20 datasets, whereas 38 datasets have exo-vision or global view images of groups, 1 dataset has both of them, and camera-view is not known for 11 datasets. Fig. 13 gives a comprehensive idea about the taxonomy of datasets (training/testing) generally used in group/interaction and formation detection tasks.

Fig. 13. Taxonomy for datasets surveyed for groups/interactions and formation detection.

![Image](https://via.placeholder.com/150)

(a) Single group with outlier (laboratory)
(b) Single group (outdoor)
(c) Multiple groups (cafeteria)

Fig. 14. Images from EGO-GROUP [4] dataset depicting indoor and outdoor scenes with single and multiple group interactions.

Table 8. Classification based on group/interaction and formation detection scale.

Classification	References
Single group detection	[58], [47], [57], [111], [92], [80], [40], [97], [130], [109], [16], [64], [35], [94], [73], [125], [62], [113], [3], [90], [68], [116], [118], [131], [2], [57], [144], [82], [88], [85], [86], [117], [79], [61], [12], [91], [78], [143], [84], [108], [49], [44], [74], [46], [41], [100], [42], [65], [45], [69], [67], [112], [66], [140], [15], [95], [18]
Multi-group detection	[124], [93], [96], [103], [107], [105], [50], [6], [127], [145], [141], [129], [104], [9], [8], [116], [121], [7], [119], [54], [60], [29], [71], [114], [77], [115], [126], [23], [81], [128], [11], [59], [31], [102], [48], [142], [30], [38], [92], [37], [146]

Table 9. Comprehensive list of datasets (training/testing) and their types, used in group/interaction and formation detection methods surveyed in the literature. The color coding is done for the readers to perceive the data easily.

Dataset	View (Ego/Exo)	Single/Multiple group(s)	Indoor/outdoor [area]	Availability (Public/Private)
TUD Stadtmitte [13]	Ego	Multi-gp	outdoor [public]	private
HumanEva II [13]	Ego	Multi-gp	indoor	private
SALSA [134]	Ego	Multi-gp	indoor	private
BEHAVE database [69]	Ego	Multi-gp	outdoor [public]	public
TUD Multiview Pedestrians [13]	Ego	Multi-gp	outdoor [public]	private

Continued on next page
Reference	Dataset Type	Description	Example Data	Notes
CHILL [29]	Exo	Multi-gp	--	--
Benfold [24]	--	--	--	--
MetroStation [29]	Exo	Multi-gp	indoor [public]	private
TownCentre [25]	Exo	Multi-gp	outdoor [public]	private
Indoor [29]	Exo	Multi-gp	indoor	private
S (Social Interactions) [31]	Exo	Multi-gp	outdoor [public]	public
Coffee-room scenario [23]	Exo	Multi-gp	indoor	private
CoffeeBreak [36]	Exo	Multi-gp	outdoor [private]	public
Collective Activity [14]	Ego	Multi-gp	outdoor/indoor	private
PETS 2007 (S07 dataset) [23]	Exo	Multi-gp	indoor [public]	private
Structured Group Dataset (SGD) [132]	Exo	Multi-gp	indoor/outdoor [public]	public
EGO-GROUP [4]	Ego	Multi-gp	indoor/outdoor	public
EGO-HPE [5]	Ego	Multi-gp	indoor/outdoor	public
Mingling [29]	Exo	Multi-gp	indoor	private
MatchNMingle [27]	Exo	Multi-gp	indoor	public
CLEAR [120]	Exo	Single-gp	indoor	private
Greece [102]	Exo	Multi-gp	indoor	private
DPOSE [101]	Exo	Multi-gp	indoor	private
BIWI Walking Pedestrians [98]	Exo	Multi-gp	outdoor [public]	private
Crowds-By-Examples (CBE) [76]	Exo	Multi-gp	outdoor [public]	private
Vittorio Emanuele II Gallery (VEIIG) [17]	Exo	Multi-gp	indoor [public]	private
UoM-3D Social interaction [34]	Ego	Single-gp	indoor	public
Cocktail Party [133]	Exo	Multi-gp	indoor	public
Social Interaction [33]	--	Single-gp	indoor	public
GDet [19]	Two monocular cameras, located on opposite angles of a room	--	indoor	public
Idiap Poster Data (IPD) [63]	Exo	Multi-gp	outdoor	public
Classroom Interaction Database [77]	Exo	Multi-gp	indoor	private
Caltech Resident-Intruder Mouse [26]	--	--	--	--
UT-Interaction [110]	Exo	Multi-gp	outdoor	private
PosterData [60]	Exo	Multi-gp	outdoor	private
Friends Meet [20, 22]	Exo	Multi-gp	outdoor	public
Discovering Groups of People in Images (DGPI) [32]	Exo	Multi-gp	indoor	private
Prima head pose image [53]	Ego	Single-gp	indoor	private
NUS-HGA [30]	--	Single-gp	indoor	private
[54]	Exo	Single-gp	indoor	private
[144]	Exo	Single-gp	indoor	private
[60]	Exo	Multi-gp	indoor	private
[38]	Exo	Multi-gp	outdoor [public]	private
[86]	Exo	--	--	--
[49]	Ego	Single-gp	indoor	private
Dataset using Narrative camera [87]	Ego	Single-gp	indoor	private
[5]	Ego	Single-gp	indoor/outdoor [public]	private

Continued on next page
8 \textbf{CATEGORIZATION OF EVALUATION METHODS}

The most important part of the formation or interaction detection framework (Fig. 4) is the evaluation methodologies. The conventional methods to compare methods and techniques in such vision tasks are accuracy and efficiency. The accuracy defines how accurately a method detects/predicts or recognizes an f-formation. The efficiency parameter relates to the real-timeliness aspect of the method. Apart from these the papers in the surveyed literature also speak about simulation-based evaluation and human experience study-based evaluations (for robotic applications specifically). Fig. 15 shows the simple taxonomy of evaluation methods for various group/interaction and formation detection methods or algorithms.

![Evaluation methods (Section 8)](image)

Simulation based evaluation. This type of evaluation is conducted using simulation tools. The simulators have different features and have the ability to simulate the real world in complex environments. A range of simulators are used.
in the surveyed literature – Gazebo [96], RoboDK [106], and Webot [39]. Nowadays researchers are also focused on using Virtual Reality (VR) or Augmented Reality (AR) technologies for evaluation purposes. The evaluations are performed mainly to access the perception of a virtual robot or an autonomous agent. The question to be answered is, how well a simulated robot (in a simulated environment) can perceive a group of simulated people involved in an interaction. Secondly, after detection, is the simulated robot joining the group naturally without discomforting the simulated people (see Section 2.3 and Fig. 3). Parameters like stopping distance for the robot, orientation, and pose based on the perceived group pose/orientation and angle of approach depending on the group’s angle and position should be considered. Extensive discussion on these factors post group/interaction detection by a robot or autonomous agent is out of the scope of this survey.

Human experience study based evaluation. This type of evaluation is based on testing the detection methods using ego-vision robots or on a real scenario with human participants as evaluators. A questionnaire is provided to the human participants to rate the quality of the method being used by the robot in real scenarios. The questions and parameters similar to simulation-based evaluation can be considered in this case as well but with a real robot perceiving human groups (who are also the evaluators) and interaction. In real-life scenarios, the groups are not static and tend to move when a member joins and leaves the group. Accordingly, the robot or the autonomous agent must detect the changes in group formation, orientation, and pose to re-adjust itself in a natural and more human-like manner without causing any comfort to other humans.

Accuracy/Efficiency evaluation without using robot or simulators. This kind of evaluation is based on the accuracy or efficiency aspects of the methods but not tested in the real environment or by using robots. Here, the focus is mainly to evaluate the computational aspects of the methods/algorithms without evaluating the usability in real-life applications like robotics. However, applications like human behavior/interaction analysis, scene monitoring, and surveillance depend entirely on such evaluation. Table 10 classifies the surveyed papers on the basis of the evaluation strategy adopted. It also shows the descriptions/names of simulators in the simulation-based category.

Classification	References
Simulation based evaluation (robotic simulators/virtual environment)	2D grid environment simulated in Greenfoot [86], simulated the process of deformation of contours using P-spaces represented by Contours of the Level Set Method [71], [45], Robot Operating System (ROS) implementation of PedSim [104], a simulated avatar embodied confederate [97], Gazebo [96], a simulator using Unity 3D game engine [47]
Human experience study based evaluation (with real robots)	[12], [61], [75], [82], [85], [117], [143], [49], [51], [126], [81], [15], [141], [94], [28], [109], [73], [130], [111], [105], [80], [93], [95], [57], [124], [18]
Accuracy/Efficiency evaluation (without robot, only computation)	[54], [144], [60], [57], [38], [79], [29], [91], [78], [71], [108], [46], [113], [114], [23], [77], [44], [45], [128], [11], [59], [31], [102], [48], [142], [45], [8], [90], [116], [121], [30], [131], [129], [104], [3], [145], [35], [127], [6], [64], [50], [107], [103], [146]

9 **APPLICATION AREAS**

Group or interaction detection has seen vast applications in many areas of computer vision. Specifically speaking, with the emergence of robotics and AI, this domain has realized its true potential. In this paper, we categorize the application landscape into two broad areas: robotic applications and other vision applications. Further, these have been broken down into five groups as summarized in Table 11. The robot vision implies the applications where the robot’s camera is placed in an ego-centric view for finding the groups only, but there is no purpose of initiation of interaction with a human. In Human-robot interaction, f-formation detection is used to detect the group in order to participate in the interaction with
fellow human beings autonomously. In telepresence, a remote person uses the robot to interact with a group of people. In such a scenario, the semi-autonomous robot can detect the group and join them while the remote human operator can control the robot to adjust its positioning.

Scene monitoring is useful for analyzing indoor or outdoor scenes with people interacting and forming groups and formations for various activities. On the other hand, human behavior and interaction analysis refer to the behavior between humans and how they are interacting based on the situation. Furthermore, visual analytics in big data has empowered the domain beyond imagination. People are trying to use these technologies in various aspects of life. In the current scenario of the Covid-19 pandemic, we can utilize this technology in monitoring social distancing in human groups and interactions as well. As already mentioned, telepresence robotics can be utilized by doctors/nurses and other medical staff to attend to patients in remote locations without physically being present.

![Taxonomy for application areas for group/interaction and formation detection.](image)

Table 11. Classification based on targeted application areas.

Application area	References
Drone/Robotic vision	[58], [64], [6], [127], [125], [145], [129], [113], [104], [8], [116], [121], [131], [119], [7], [75], [60], [29], [79], [114], [77], [115], [25], [46], [41], [100], [129], [11], [31], [102], [49], [123], [30], [37], [18], [146]
Human-robot interaction	[124], [93], [47], [57], [109], [50], [111], [92], [80], [130], [109], [16], [141], [55], [62], [68], [118], [75], [82], [88], [85], [86], [117], [61], [12], [143], [84], [49], [74], [51], [61], [52], [65], [142], [69], [67], [112], [66], [140], [15]
Telepresence/Teleoperation technologies	[96], [92], [94], [75]
Indoor/outdoor Scene monitoring and surveillance	[58], [144], [97], [75], [82], [51], [99]
Human behaviour and interaction analysis	[103], [107], [40], [127], [104], [8], [90], [7], [54], [144], [82], [38], [79], [61], [91], [71], [108], [44], [126], [42], [50], [45], [123]

10 LIMITATIONS, CHALLENGES AND FUTURE DIRECTIONS: A DISCUSSION

The survey is treated based on a generic framework of concern areas about group/interaction detection using the theory of formation (see Section 3 and Fig. 4). It addresses various identified modules and concern areas such as camera view and availability of other sensor data, datasets, feature selection, methods/techniques, detection capabilities/scale, evaluation methodologies, and application areas.

- The existing methods have almost equal share of fixed rule-based (Fig. 9) and learning-based (Fig. 10) approaches (Tables 5 and 6; in online Appendix Tables 1 and 2). Researchers need to orient their research towards data-driven approaches using deep learning and reinforcement learning paradigms for handling complex situations. Meta-learning can also be explored on large-scale combined datasets. The complex scenarios in detection tasks can be easily solved
Detecting socially interacting groups using f-formation: A survey 27

using big data and visual analytics [99]. Apart from that, representing data in the form of a graph can solve many performance issues in terms of accuracy and efficiency. The graph neural networks (GNN) such as graph convolution networks (GCNN) can also be a potential candidate to create appropriate models. A combination of recurrent neural networks (RNN), convolution neural networks (CNN), and/or graph recurrent networks (GRNN) can also be explored for identifying more accurate and promising detection models.

• The problems like dynamism in groups (people leaving/joining the group dynamically or changing position and orientation within the group) and occlusions of people pose serious challenges and limitations to the current state-of-the-art methods in terms of accuracy and efficiency. Researchers can think about devising rules based on reasoning and geometry to detect application-specific groups and interactions. A combination of rules, geometry-based reasoning along data-driven models can also be explored to improve detection quality. Apart from detecting the group and formation alone, methods should be designed to detect the orientation and pose of the group itself (see [18]). This can facilitate a good approach direction and angle (natural and human-like) for robots to join the group.

• The major challenge with the datasets is their availability. Creating good quality (large scale) vision datasets (for training and testing) is a mammoth task in itself but has its own research/academic merit. The only 20% of the surveyed datasets are publicly available (Table 9). The researchers can publish more of their privately created datasets as benchmarks for people to experiment. Another limitation is the availability of public ego-vision datasets with only 30% of the total being ego-vision. Researchers can think of creating more first-person view datasets by merging/fusing existing datasets in a meaningful manner. As for the exo-vision datasets, accuracy is low, so the researchers can look into this direction by creating more robust datasets for global view scenes. Indoor datasets dominate the scenario currently with merely 29% of the datasets being outdoor. Researchers need to create more outdoor datasets for the sake of applications pertaining to surveillance and outdoor scene monitoring. Finally, the researches have limited their methods and datasets to only a few major formations like face-to-face, triangular/circular, side-by-side, and L-shaped. No literature or state-of-the-art methods speak about dealing with a comprehensive list of formations (as explained in Section 2.2). Researchers should concentrate on devising methods and creating datasets to solve these limitations.

• Detection capabilities need attention with respect to dynamic scenes (Fig. 12) as well as multiple groups (Fig. 14). The literature is rich in taking care of most of the aspects of detection (Tables 7 and 8). However, some more research attention is required in cases of occlusion, background clutter, and lighting conditions. Researchers can use reinforcement learning and deep learning models for these problems. Also, appropriate datasets need to be prepared at a larger scale.

• Evaluation of the methods remains a challenge in the current literature (Table 10). Mostly, computational evaluation has been performed in terms of accuracy and efficiency (Table 6). But in a problem like a group/interaction detection, human experience studies and/or simulation-based studies are important to establish the effectiveness of the method in various applications like robotics, telepresence, and social surveillance (see Section 8, Fig. 15 and Table 11). The researchers need to orient their studies in this respect as well. Apart from that, most of the methods yield good accuracy but achieving real-time solutions maintaining good accuracy is a concern. The explorers can think of designing lightweight models for real-time detection of groups and interactions for dynamic scenes.

• Feature selection/extraction plays a major role in any computer vision problem, and group detection is no exception. The existing literature lacks discussion about the use of proper features and the selection of proper approaches to extract useful and differentiating features. Apart from the visual features, researchers can also think about non-visual
features such as audio or speech as future research trends. There is also a possibility of temporal feature selection and extraction for dynamic groups.

- Applications of this domain can be widely seen in robotics, surveillance, human behavior analysis, and telepresence technologies (Table 11 and Fig. 16). However, we can also think about using this technology in Covid-19 related applications such as monitoring of social distancing norms and others.

- We also have discussed about two types of camera views: Ego and Exo-views (Fig. 6 and Table 4). Ego vision is used predominantly for robotics related applications. Methods using ego-view cameras for input are less compared to exo-view cameras. The main reason behind this roots down to the scarcity of public ego-view datasets for training the models. Researchers can also direct their research on designing detection models which can be created on a hybrid system of camera views and sensors. The visual as well as other forms of inputs combined can be used for better detection and prediction tasks. Various combinations of camera views and positions can be experimented with for better scene capture and robust dataset creation for learning models.

Fig.s 17 and 18 summarizes the limitations, challenges and future directions/opportunities for all the concern areas of this survey framework.

Fig. 17. Limitations and challenge in the various concern areas of our survey framework (see Section 3).
11 CONCLUSIONS

With the emergence of computer vision, robotics, multimedia analytics, etc., the world is changing for good with the progress of artificial intelligence. Computation systems and autonomous agents are expected to show more human-like behavior and capability. One of the most important problems in this domain persists to be group/interaction detection and prediction using f-formation. Although some research has been conducted in the last decade, much more progress is still envisioned. This survey aims at generalizing the problem of group/interaction detection via a framework, which is referred to as the theme of this survey as well. This article presents a comprehensive glance at all the concern areas of this defined framework. This includes definitions of various f-formations, input camera views and sensors, datasets, feature selection, algorithms, detection capability and scale, quality of detection, evaluation methodologies, and application areas. The article also discusses the limitations, challenges, and future scope of research in this domain. The researchers can try and solve some of the unattended problems in this domain with the help of more recent and efficient approaches in deep learning, reinforcement learning, and meta-learning paradigms. For example, the family of Graph neural networks (GNN, GCNN, GRNN, etc.) remains a very potent tool to solve the problems in this domain. A combination of different neural networks can also be explored to create efficient models in application-specific cases.
REFERENCES

[1] Jake K Aggarwal and Michael S Byon. 2011. Human activity analysis: A review. ACM Computing Surveys (CSUR) 43, 3 (2011), 1–43.

[2] Maedeh Aghaei, Mariella Dimiccoli, and Petia Radeva. 2015. Towards social interaction detection in egocentric photo-streams. In Eighth International Conference on Machine Vision (ICMV) 2015, Vol. 9875. International Society for Optics and Photonics, 987514.

[3] Maedeh Aghaei, Mariella Dimiccoli, and Petia Radeva. 2016. With whom do I interact? Detecting social interactions in egocentric photo-streams. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2959–2964.

[4] AlmageLab. 2021. AlmageLab datasets. http://imagealb.unimore.it/files/EGO-GROUP.zip.

[5] AlmageLab. 2021. AlmageLab datasets. http://imagealb.unimore.it/files/EGO-HPE.zip.

[6] Xavier Alameda-Pineda, Elisa Ricci, and Nicu Sebe. 2017. Multimodal analysis of free-standing conversational groups. In Frontiers of Multimedia Research. 51–74.

[7] Xavier Alameda-Pineda, Jacopo Staiano, Ramanathan Subramaniam, Ligia Batrinca, Elisa Ricci, Bruno Lepri, Oswald Lanz, and Nicu Sebe. 2015. Salsa: A novel dataset for multimodal group behavior analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 8 (2015), 1707–1720.

[8] Xavier Alameda-Pineda, Yan Yang, Elisa Ricci, Oswald Lanz, and Nicu Sebe. 2015. Analyzing free-standing conversational groups: A multimodal approach. In Proceedings of the 23rd ACM international conference on Multimedia. 5–14.

[9] Stefano Alletto, Giuseppe Serra, Simone Calderara, and Rita Cucchiara. 2015. Understanding social relationships in egocentric vision. Pattern Recognition 48, 12 (2015), 4082–4096. https://doi.org/10.1016/j.patcog.2015.06.006.

[10] Stefano Alletto, Giuseppe Serra, Simone Calderara, and Rita Cucchiara. 2014. From ego to nosvision: Detecting social relationships in first-person views. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 580–585.

[11] P. Althaus, H. Ishiguro, T. Kanda, T. Miyashita, and H. I. Christensen. 2004. Navigation for human-robot interaction tasks. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04, Vol. 2. 1894–1900 Vol.2. https://doi.org/10.1109/ROBOT.2004.1308100

[12] M. Andriluka, S. Roth, and B. Schiele. 2010. Monocular 3D pose estimation and tracking by detection. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 623–630.

[13] University of Michigan (Ann Arbor). 2021. Collective Activity Dataset. http://www.eecs.umich.edu/vision/activity-dataset.html.

[14] Adrian Ball, David Rye, David Silvera-Tawil, and Mari Velonaki. 2015. Group vs. individual comfort when a robot approaches. In International Conference on Social Robotics. Springer, 41–50.

[15] Adrian Keith Ball, David Rye, David Silvera-Tawil, and Mari Velonaki. 2017. How should a robot approach two people? Journal of Human-Robot Interaction 6, 3 (2017), 71–91.

[16] Stefania Bandini, Andrea Gorrini, and Giuseppe Vizzari. 2014. Towards an Integrated Approach to Crowd Analysis and Crowd Synthesis: a Case Study and First Results. Pattern Recognit. Lett. 44 (2014), 16–29.

[17] Hrishav Barua, Pradip Pramanick, Chayan Sarkar, and Theint Mg. 2020. Let me join you! Real-time F-formation recognition by a socially aware robot. In 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020.

[18] Loris Bazzani. 2021. http://www.lorisbazzani.info/code-datasets/multi-camera-dataset/.

[19] Loris Bazzani. 2021. Friends Meet Dataset. https://pavis.it/iit/datasets/indataset & https://pavisdata.iit.it/data/bazzani/fm_dataset/fm_dataset.zip.

[20] Loris Bazzani. 2021. Private. http://www.lorisbazzani.info/code-datasets/multi-camera-dataset/.

[21] L. Bazzani, M. Cristiani, and V. Murino. 2012. Decentralized particle filter for joint individual-group tracking. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. 1886–1893.

[22] Loris Bazzani, Marco Cristiani, Diego Tosato, Michela Farenzena, Giulia Paggetti, Gloria Menegaz, and Vittorio Murino. 2013. Social interactions by visual focus of attention in a three-dimensional environment. Expert Systems 30, 2 (2013), 115–127.

[23] X. P. Burgos-Artizzu, P. Dollár, D. Lin, D. J. Anderson, and P. Perona. 2012. Social behavior recognition in continuous video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. 1322–1329.

[24] Laura Cabrera-Quiros. 2021. The MatchMingle dataset. http://matchmakers.ewi.tudelft.nl/matchmingle/pmwiki/index.php?n=Main.TheDataset.

[25] Konstantinos Charalampous, Ioannis Kostavelis, and Antonios Gasteratos. 2017. Recent trends in social aware robot navigation: A survey. Robotics and Autonomous Systems 93 (2017), 85–104.

[26] Cheng Chen and Jean-Marc Odobez. 2012. We are not contortionists: Coupled adaptive learning for head and body orientation estimation in surveillance video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1544–1551.

[27] Nam-Gyu Cho, Young-Ji Kim, Unsang Park, Jeong-Seon Park, and Seong-Whan Lee. 2015. Group activity recognition with group interaction zone based on relative distance between human objects. International Journal of Pattern Recognition and Artificial Intelligence 29, 05 (2015), 1555007.

[28] Wongun Choi, Yu-Wei Chao, Caroline Pantofaru, and Silvio Savarese. 2014. Discovering groups of people in images. In European conference on computer vision. Springer, 417–433.

[29] Wongun Choi, Yu-Wei Chao, Caroline Pantofaru, and Silvio Savarese. 2014. Discovering Groups of People in Images. In ECCV.
Detecting socially interacting groups using f-formation: A survey

[33] CMU. 2021. CMU Panoptic Dataset. https://domeb.perception.cs.cmu.edu.

[34] Claudio Coppola. 2021. Uol. 3D Social Interaction Dataset. https://lcsa.lincoln.ac.uk/wp/research/data-sets-software/uol-3d-social-interaction-dataset.

[35] Claudio Coppola, Serhan Cosar, Diego R Faria, and Nicola Bellotto. 2017. Automatic detection of human interactions from rgb-d data for social activity classification. In 2017 26th IEEE international symposium on robot and human interactive communication (RO-MAN). IEEE, 871–876.

[36] Marco Cristiani. 2021. CoFreeBreak dataset. http://profsci.univr.it/~cristann/datasets.html.

[37] Marco Cristiani, Loris Bazzani, Giulia Paggetti, Andrea Fossati, Diego Tosatto, Alessio Del Bue, Gloria Menegaz, and Vittorio Murino. 2011. Social interaction discovery by statistical analysis of f-formations. In RMC.

[38] Marco Cristiani, Giulia Paggetti, Alessandro Vinciarelli, Loris Bazzani, Gloria Menegaz, and Vittorio Murino. 2011. Towards computational prosemics: Inferring social relations from interpersonal distances. In 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing. IEEE, 290–297.

[39] Cyberbotics. 2021. Webots-Open Source Robot Simulator. https://cyberbotics.com/.

[40] Yasuharu Den. 2018. F-formation and social context: how spatial orientation of participants’ bodies is organized in the vast field. In Proceedings of LREC 2018 Workshop: Language and Body in Real Life (LB-IRL2018) and Multimodal Corpora (MMC2018) Joint Workshop. 35–39.

[41] Eyal Dim and Tsvi Kuflik. 2013. Social F-formation in blended reality. In Proceedings of the International Conference on Intelligent User Interfaces. 25–28.

[42] Eyal Dim and Tsvi Kuflik. 2014. Automatic detection of social behavior of museum visitor pairs. ACM Transactions on Interactive Intelligent Systems (TiiS) 4, 4 (2014), 1–30.

[43] Alexander Lehmann, Jonas Reimers, Marc René Frieß, and Loren Schwarz. 2010. Detecting social situations from interaction geometry. In H. Hedayati, D. Szafir, and S. Andrist. 2019. Recognizing F-Formations in the Open World. In Garden City, NY. Edward T Hall. 1966. The Hidden Dimension. Anchor Books.

[44] Tian Gan. 2013. Social interaction detection using a multi-sensor approach. In Proceedings of the 21st ACM international conference on Multimedia. 1043–1046.

[45] Tian Gan, Yongkang Wong, Bappaditya Mandal, Vijay Chandrasekhar, Liyuan Li, Joo-Hwee Lim, and Mohan S Kankanhalli. 2014. Recovering social interaction spatial structure from multiple first-person views. In Proceedings of the 3rd International Workshop on Socially-Aware Multimedia. 7–12.

[46] Tian Gan, Yongkang Wong, Daqing Zhang, and Mohan S Kankanhalli. 2013. Temporal encoded F-formation system for social interaction detection. In Proceedings of the 21st ACM international conference on Multimedia. 937–946.

[47] Yuan Gao, Fangkai Yang, Martin Frisk, Daniel Hernandez, Christopher Peters, and Ginevra Castellano. 2019. Learning Socially Appropriate Robot Approaching Behavior Toward Groups using Deep Reinforcement Learning. In 2019 26th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE, 1–8.

[48] Carolina Gárate, Sofia Zaidenberg, Julien Badie, and François Brémont. 2014. Group tracking and behavior recognition in long video surveillance sequences. In 2014 International Conference on Computer Vision Theory and Applications (VISAPP), Vol. 2. IEEE, 396–402.

[49] Dylan F Glas, Satoru Satake, Florent Ferreri, Takayuki Kanda, Norhiro Hagita, and Hiroshi Ishiguro. 2013. The network robot system: enabling social human-robot interaction in public spaces. Journal of Human-Robot Interaction 1, 2 (2013), 5–32.

[50] Javier V Gómez, Nikolaos Mavridis, and Santiago Garrido. 2013. Social path planning: Generic human-robot interaction framework for robotic navigation tasks. In 2nd Intl. Workshop on Cognitive Robotics Systems: Replicating Human Actions and Activities.

[51] Nicolas Gourier and James Crowley. 2004. Estimating Face orientation from Robust Detection of Salient Facial Structures. FG Net Workshop on Visual Navigation tasks. In 2nd Intl. Workshop on Cognitive Robotics Systems: Replicating Human Actions and Activities.

[52] Georg Groh, Alexander Lehmann, Jonas Reimers, Marc René Frieß, and Loren Schwarz. 2010. Detecting human-robot interaction in public spaces. Journal of Human-Robot Interaction 1, 2 (2013), 5–32.

[53] Dylan F Glas, Satoru Satake, Florent Ferreri, Takayuki Kanda, Norhiro Hagita, and Hiroshi Ishiguro. 2013. The network robot system: enabling social human-robot interaction in public spaces. Journal of Human-Robot Interaction 1, 2 (2013), 5–32.

[54] Javier V Gómez, Nikolaos Mavridis, and Santiago Garrido. 2013. Social path planning: Generic human-robot interaction framework for robotic navigation tasks. In 2nd Intl. Workshop on Cognitive Robotics Systems: Replicating Human Actions and Activities.

[55] Ewan Gedik and Tsvi Kuflik. 2014. Automatic detection of social behavior of museum visitor pairs.

[56] Tian Gan. 2013. Social interaction detection using a multi-sensor approach. In Proceedings of the 21st ACM international conference on Multimedia. 1043–1046.

[57] Tian Gan, Yongkang Wong, Bappaditya Mandal, Vijay Chandrasekhar, Liyuan Li, Joo-Hwee Lim, and Mohan S Kankanhalli. 2014. Recovering social interaction spatial structure from multiple first-person views. In Proceedings of the 3rd International Workshop on Socially-Aware Multimedia. 7–12.

[58] Tian Gan, Yongkang Wong, Daqing Zhang, and Mohan S Kankanhalli. 2013. Temporal encoded F-formation system for social interaction detection. In Proceedings of the 21st ACM international conference on Multimedia. 937–946.

[59] Yuan Gao, Fangkai Yang, Martin Frisk, Daniel Hernandez, Christopher Peters, and Ginevra Castellano. 2019. Learning Socially Appropriate Robot Approaching Behavior Toward Groups using Deep Reinforcement Learning. In 2019 26th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE, 1–8.

[60] Carolina Gárate, Sofia Zaidenberg, Julien Badie, and François Brémont. 2014. Group tracking and behavior recognition in long video surveillance sequences. In 2014 International Conference on Computer Vision Theory and Applications (VISAPP), Vol. 2. IEEE, 396–402.

[61] Andre Gaschler, Sören Jentzsch, Manuel Giuliani, Kerstin Huth, Jan de Ruiter, and Alois Knoll. 2012. Social behavior recognition using body posture and head pose for human-robot interaction. In 2012 IEEE/RJS International Conference on Intelligent Robots and Systems. IEEE, 2128–2133.

[62] Ewan Gedik and Tsvi Kuflik. 2014. Automatic detection of social behavior of museum visitor pairs.
[65] Michiel P Joosse, Ronald W Poppe, Manja Lohse, and Vanessa Evers. 2014. Cultural differences in how an engagement-seeking robot should approach a group of people. In Proceedings of the 5th ACM international conference on Collaboration across boundaries: culture, distance & technology. 121–130.

[66] Manuela Jungmann, Richard Cox, and Geraldine Fitzpatrick. 2014. Spatial play effects in a tangible game with an f-formation of multiple players. In Proceedings of the Fifteenth Australasian User Interface Conference-Volume 150. 57–66.

[67] Takayuki Kanda, Dylan F Glas, Masahiro Shiomi, and Norihiro Hagita. 2009. Abstracting people’s trajectories for social robots to proactively approach customers. IEEE Transactions on Robotics 25, 6 (2009), 1382–1396.

[68] Daphne Karreman, Geke Ludden, Betsy van Dijk, and Vanessa Evers. 2015. How Can a Tour Guide Robot’s Orientation Influence Visitors’ Orientation and Formations? In Proceedings of 4th International Symposium on New Frontiers in Human-Robot Interaction. Canterbury, UK.

[69] Adam Kendon. 1990. Conducting interaction: Patterns of behavior in focused encounters. Vol. 7. CUP Archive.

[70] Yuki Kizumi, Koh Kakusho, Takeshi Okadome, Takuya Funatomi, and Masaaki Iiyama. 2012. Detection of social interaction from observation of daily living environments. In The First International Conference on Future Generation Communication Technologies. IEEE, 162–167.

[71] Jeni Paay, Jesper Kjeldskov, and Mikael B Skov. 2015. Connecting in the kitchen: an empirical study of physical interactions while cooking together at home. In Proceedings of the 6th international conference on Human-robot interaction. 331–338.

[72] Takahiro Matsumoto, Mitsuhiro Goto, Ryo Ishii, Tomoki Watanabe, Tomohiro Yamada, and Michita Imai. 2018. Where Should Robots Talk? Spatial Arrangement Study from a Participant Workload Perspective. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. 270–278.

[73] sai krishna pathi, andrey kiselev, and amy loutfi. 2019. A Novel Method for Estimating Distances from a Robot to Humans Using Egocentric RGB Camera. IEEE Transactions on Robotics 25, 6 (2020), 1382–1396.

[74] Jonathan Mumm and Bilge Mutlu. 2011. Human-robot proxemics: physical and psychological distancing in human-robot interaction. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction. 256–262.

[75] Kaiwen Hu, Jiale Wang, Yuxuan Wang, and Guangcan Liu. 2021. A computational model of human behavior for a social robot. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction. 301–308.

[76] Hideaki Kuzuoka, Yuya Suzuki, Jun Yamashita, and Keiichi Yamazaki. 2010. Reconfiguring spatial formation arrangement by robot body orientation. In 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 285–292.

[77] Ross Mead and Maja J Matarić. 2011. An experimental design for studying proxemic behavior in human-robot interaction. Technical Report. Citeseer.

[78] Ross Mead and Maja J Matarić. 2013. Automated proxemic feature extraction and behavior recognition: Applications in human-robot interaction. International Journal of Social Robotics 5, 3 (2013), 367–378.

[79] Luis Yoichi Morales Saiki, Satoru Satake, Rajibul Huq, Dylan Glas, Takayuki Kanda, and Norihiro Hagita. 2012. How do people walk side-by-side? Using a computational model of human behavior for a social robot. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction. 276–287.

[80] Sai Krishna, Andrey Kiselev, and Nadia Pantidi. 2017. Using F-formations to analyse spatial patterns of interaction in physical environments. ACM, 445–454.

[81] Hideaki Kuzuoka, Yuya Suzuki, Jun Yamashita, and Keiichi Yamazaki. 2010. Reconfiguring spatial formation arrangement by robot body orientation. In 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 285–292.

[82] Alon Lerner, Yorgos Chrysanthou, and Dani Lisinski. 2007. Crowds by Example. Comput. Graph. Forum 26 (2007), 655–664.

[83] Ruoman Li, Parker Porfilio, and Todd Zickler. 2013. Finding group interactions in social clutter. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2722–2729.

[84] Hideaki Kuzuoka, Yuya Suzuki, Jun Yamashita, and Keiichi Yamazaki. 2010. Reconfiguring spatial formation arrangement by robot body orientation. In 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 285–292.

[85] Takahiro Matsumoto, Mitsuhiro Goto, Ryo Ishii, Tomoki Watanabe, Tomohiro Yamada, and Michita Imai. 2018. Where Should Robots Talk? Spatial Arrangement Study from a Participant Workload Perspective. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. 270–278.

[86] sai krishna pathi, andrey kiselev, and amy loutfi. 2019. A Novel Method for Estimating Distances from a Robot to Humans Using Egocentric RGB Camera. IEEE Transactions on Robotics 25, 6 (2020), 1382–1396.

[87] Jonathan Mumm and Bilge Mutlu. 2011. Human-robot proxemics: physical and psychological distancing in human-robot interaction. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction. 256–262.

[88] sai krishna pathi, andrey kiselev, and amy loutfi. 2019. A Novel Method for Estimating Distances from a Robot to Humans Using Egocentric RGB Camera. Sensors 19, 14 (2019), 3142.

[89] Robert Fisher School of Informatics (Univ. of Edinburgh). 2021. BEHAVE: Computer-assisted prescreening of video streams for unusual activities. http://homepages.inf.ed.ac.uk/rbf/BEHAVE/.

[90] Jeni Paay, Jesper Kjeldskov, and Mikael B Skov. 2015. Connecting in the kitchen: an empirical study of physical interactions while cooking together at home. In Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems-Volume 3. International Foundation for Autonomous Agents and Multiagent Systems, 1047–1054.

[91] Jeni Paay, Jesper Kjeldskov, Mikael B Skov, and Kenton O’Hara. 2012. Cooking together: a digital ethnography. In Proceeding of 4th International Symposium on New Frontiers in Human-Robot Interaction. Canterbury, UK.

[92] Jeni Paay, Jesper Kjeldskov, Mikael B Skov, and Kenton O’Hara. 2012. Cooking together: a digital ethnography. In Proceeding of 4th International Symposium on New Frontiers in Human-Robot Interaction. Canterbury, UK.
Detecting socially interacting groups using f-formation: A survey

[95] S. K. Pathi, A. Kristoffersson, A. Kiselev, and A. Loutfi. 2019. Estimating Optimal Placement for a Robot in Social Group Interaction. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1–8. https://doi.org/10.1109/RO-MAN46459.2019.8956318

[96] S. Krishna Pathi, Annica Kristoffersson, Andrey Kiselev, and Amy Loutfi. 2019. F-Formations for Social Interaction in Simulation Using Virtual Agents and Mobile Robotic Telepresence Systems. Multimodal Technologies and Interaction 3, 4 (2019), 69.

[97] Tomislav Pejša, Michael Gleich, and Bilge Mutlu. 2017. Who, me? How virtual agents can shape conversational footing in virtual reality. In International Conference on Intelligent Virtual Agents. Springer, 347–359.

[98] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. 2009. You’ll never walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th International Conference on Computer Vision. 261–268.

[99] Samira Pouyaifar, Yimin Yang, Shu-Ching Chen, Mei-Ling Shyu, and SS Iyengar. 2018. Multimedia big data analytics: A survey. ACM computing surveys (CSUR) 51, 1 (2018), 1–34.

[100] Profs. 2014 modified. F-formation discovery in static images. http://profs.scienze.univr.it/cristanm/sop/

[101] Anoop Rajagopal, Ramanathan Subramanian, Radu Vieriu, Elisa Ricci, Oswald Lanz, Kalpathi Ramakrishnan, and Nicu Sebe. 2012. An Adaptation Framework for Head-Pose Classification in Dynamic Multi-view Scenarios, Vol. 7725. 652–666. https://doi.org/10.1007/978-3-642-37444-9_51

[102] Anoop Kolar Rajagopal, Ramanathan Subramanian, Elisa Ricci, Radu Vieriu, Oswald Lanz, Nicu Sebe, et al. 2014. Exploring transfer learning approaches for head pose classification from multi-view surveillance images. International journal of computer vision 109, 1-2 (2014), 146–167.

[103] C. V. Raman and Hayley Hung. 2019. Towards automatic estimation of conversation floors within F-formations. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (2019), 175–181.

[104] Omar Adair Islas Ramírez, Mihai Andries, Mohamed Chetouani, and Raja Chatila. 2016. Modeling the dynamics of individual behaviors for group detection in crowds using low-level features. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 1104–1111.

[105] Laurel D. Riek. 2018. Robot-Centric Human Group Detection Angelique.

[106] Paolo Rota, Nicola Conci, and Nicu Sebe. 2012. Real time detection of social interactions in surveillance video. In European Conference on Computer Vision. Springer, 111–120.

[107] Tomislav Pejsa, Michael Gleich, and Bilge Mutlu. 2017. Who, me? How virtual agents can shape conversational footing in virtual reality. In Proceedings of the 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (2019), 147–153.

[108] M. S. Ryoo and J. K. Aggarwal. 2009. Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities. In Proceedings of robotics: Science and systems VII. Kluwer Academic Publishers, 1–8. https://doi.org/10.1109/RO-MAN46459.2019.8956318

[109] S. K. Pathi, A. Kristoffersson, Andrey Kiselev, and Amy Loutfi. 2019. Estimating Optimal Placement for a Robot in Social Group Interaction. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1–8. https://doi.org/10.1109/RO-MAN46459.2019.8956318

[110] S. Krishna Pathi, Annica Kristoffersson, Andrey Kiselev, and Amy Loutfi. 2019. F-Formations for Social Interaction in Simulation Using Virtual Agents and Mobile Robotic Telepresence Systems. Multimodal Technologies and Interaction 3, 4 (2019), 69.

[111] Tomislav Pejša, Michael Gleich, and Bilge Mutlu. 2017. Who, me? How virtual agents can shape conversational footing in virtual reality. In International Conference on Intelligent Virtual Agents. Springer, 347–359.

[112] Satoru Satake, Takayuki Kanda, Dylan F Glas, Michita Imai, Hiroshi Ishiguro, and Norihiro Hagita. 2009. How to approach humans? Strategies for social robots to initiate interaction. In Proceedings of the 7th ACM/IEEE international conference on Human robot interaction. 109–116.

[113] Audrey Serna, Lili Tong, Aurélien Tabard, Simon Pageaud, and Sébastien George. 2016. F-formations and collaboration dynamics study for designing mobile collocation. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. 1138–1141.

[114] Francesco Setti, Hayley Hung, and Marco Cristani. 2013. Group detection in still images by F-formation modeling: A comparative study. In 2013 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). IEEE, 1–4.

[115] Francesco Setti, Oswald Lanz, Roberta Ferrario, Vittorio Murino, and Marco Cristani. 2013. Multi-scale F-formation discovery for group detection. In 2013 IEEE International Conference on Image Processing. IEEE, 3547–3551.

[116] Francesco Setti, Chris Russell, Chiara Bassetti, and Marco Cristani. 2015. F-formation detection: Individuating free-standing conversational groups in images. PloS one 10, 5 (2015), e0123783.

[117] Chao Shi, Michihiro Shimada, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. 2011. Spatial formation model for initiating conversation. Proceedings of robotics: Science and systems VII (2011), 305–313.

[118] Chao Shi, Masahiro Shiomi, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. 2015. Measuring communication participation to initiate conversation in human–robot interaction. International Journal of Social Robotics 7, 5 (2015), 889–910.

[119] Francesco Solera, Simone Calderara, and Rita Cucchiara. 2015. Socially constrained structural learning for groups detection in crowd. IEEE transactions on pattern analysis and machine intelligence 38, 5 (2015), 995–1008.

[120] Rainer Stiefelhagen, Rachel Bowers, and Jonathan Fiscus. 2008. Multimodal Technologies for Perception of Humans: International Evaluation Workshops CLEAR 2007 and RT 2007, Baltimore, MD, USA, May 8-11, 2007, Revised Selected Papers. Vol. 4625. https://doi.org/10.1007/978-3-540-68585-2

[121] Ramanathan Subramanian, Jagannadan Varadarajan, Elisa Ricci, Oswald Lanz, and Stefan Winkler. 2015. Jointly estimating interactions and head, body pose of interactors from distant social scenes. In Proceedings of the 23rd ACM international conference on Multimedia. 835–838.

[122] Adriana Tapus, Antonio Bandera, Ricardo Vazquez-Martín, and Luis V Calderita. 2019. Perceiving the person and their interactions with the others for social robotics—a review. Pattern Recognition Letters 118 (2019), 3–13.

Manuscript submitted to ACM
[123] Angelique Taylor and Laurel Riek. 2016. Robot perception of human groups in the real world: State of the art. In 2016 AAAI Fall Symposium Series.
[124] Angelique Marie Taylor, Darren Chan, and Laurel Riek. 2019. Robot-centric perception of human groups. ACM Transactions on Human-Robot Interaction (THRI) (2019).
[125] Lili Tong, Audrey Serna, Simon Pageaud, Sébastien George, and Aurélien Tabard. 2016. It’s Not How You Stand, It’s How You Move: F-formations and Collaboration Dynamics in a Mobile Learning Game. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’16). ACM, New York, NY, USA. Florence, Italy, 318–329. https://doi.org/10.1145/2955334.2955343
[126] Khai N Tran, Apurva Bedagkar-Gala, Ioannis A Kakadiaris, and Shishir K Shah. 2013. Social Cues in Group Formation and Local Interactions for Collective Activity Analysis. In VISAPP (1). 539–548.
[127] Jagannadan Varadarajan, Ramanathan Subramanian, Samuel Rota Bulò, Narendra Ahuja, Oswald Lanz, and Elisa Ricci. 2017. Joint Estimation of Human Pose and Conversational Groups from Social Scenes. International Journal of Computer Vision 126 (07 2017). https://doi.org/10.1007/s11263-017-1026-6
[128] Sebastiano Vascon, Eyasu Zemene Mequanint, Marco Cristani, Hayley Hung, Marcello Pelillo, and Vittorio Murino. 2014. A game-theoretic probabilistic approach for detecting conversational groups. In Asian conference on computer vision. Springer, 658–675.
[129] Sebastiano Vascon, Eyasu Z. Mequanint, Marco Cristani, Hayley Hung, Marcello Pelillo, and Vittorio Murino. 2016. Detecting conversational groups in images and sequences: A robust game-theoretic approach. Computer Vision and Image Understanding 143 (2016). 11–24.
[130] Marynel Vázquez, Elizabeth J Carter, Braden McDorman, Jodi Forlizzi, Aaron Steinfeld, and Scott E Hudson. 2017. Towards robot autonomy in group conversations: Understanding the effects of body orientation and gaze. In 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 42–52.
[131] Marynel Vázquez, Aaron Steinfeld, and Scott E Hudson. 2015. Parallel detection of conversational groups of free-standing people and tracking of their lower-body orientation. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 3010–3017.
[132] Computational Vision and Geometry Lab (CVGL) at Stanford. 2021. Discovering Groups of People in Images. http://cvgl.stanford.edu/projects/groupdiscovery/.
[133] TeV TECHNOLOGIES OF VISION. 2021. Resources. http://tev.fbk.eu/resources.
[134] TeV TECHNOLOGIES OF VISION. 2021. SALSA Dataset. http://tev.fbk.eu/salsa.
[135] Wikipedia. 2021. https://en.wikipedia.org/wiki/Line_(formation).
[136] Wikipedia. 2021. https://en.wikipedia.org/wiki/Column_(formation).
[137] Wikipedia. 2021. https://en.wikipedia.org/wiki/Echelon_formation.
[138] Wikipedia. 2021. https://en.wikipedia.org/wiki/V_formation.
[139] Wikipedia. 2021. https://en.wikipedia.org/wiki/Infantry_square.
[140] Alexander Wisowaty. 2019. Group Human-Robot Interaction: A Review. (2019).
[141] Shih-An Yang, Edwin Gamborino, Chuen-Tang Yang, and Li-Chen Fu. 2017. A study on the social acceptance of a robot in a multi-human interaction using an F-formation based motion model. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2766–2771.
[142] Naoyuki Yasuda, Koh Kakusho, Takeshi Okadome, Takuya Funatomi, and Masashi Iiyama. 2014. Recognizing conversation groups in an open space by estimating placement of lower bodies. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 544–550.
[143] Mohammad Abu Yousuf, Yoshinori Kobayashi, Yoshinori Kuno, Keiichi Yamazaki, and Akiko Yamazaki. 2012. Establishment of spatial formation by a mobile guide robot. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction. 281–282.
[144] Gloria Zen, Bruno Lepri, Elisa Ricci, and Oswald Lanz. 2010. Space speaks: towards socially and personality aware visual surveillance. In Proceedings of the 1st ACM international workshop on Multimodal pervasive video analysis. 37–42.
[145] Lu Zhang and Hayley Hung. 2016. Beyond F-Formations: Determining Social Involvement in Free Standing Conversing Groups from Static Images. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), 1086–1095.
[146] Lu Zhang and Hayley Hung. 2021. On Social Involvement in Mingling Scenarios: Detecting Associates of F-Formations in Still Images. IEEE Transactions on Affective Computing 12, 1 (2021). 165–176. https://doi.org/10.1109/TAFFC.2018.2855750
Online Appendix to:
Detecting Socially Interacting Groups using F-formation: A Survey of Taxonomy, Methods, Applications, Challenges and Future Research Directions

HRISHAV BAKUL BARUA, Robotics & Autonomous Systems (Cognitive Robotics), TCS Research, India
THEINT HAYTHI MG, Myanmar Institute of Information Technology, Myanmar
PRADIP PRAMANICK, Robotics & Autonomous Systems (Cognitive Robotics), TCS Research, India
CHAYAN SARKAR, Robotics & Autonomous Systems (Cognitive Robotics), TCS Research, India

The Appendix consists of two long tables as a part of electronic supplementary material. These Tables 1 and 2 summarizes the surveyed methods and techniques for group, interaction and F-formation detection on the basis of various parameters. The Table 1 compares among the static rule based AI methods, while Table 2 informs about the Machine learning or Deep learning based techniques. The tables consists of some short forms in the table headers used to label each column and in other rows: ML (Machine Learning), DL (Deep Learning), RL (Reinforcement Learning), Su (Supervised), UnS (Unsupervised), SS (Semi-supervised), S (Single group), M (Multiple groups), Exo (Exocentric vision or global view), and Ego (Egocentric or first person view).

ACM Reference Format:
Hrishav Bakul Barua, Theint Haythi Mg, Pradip Pramanick, and Chayan Sarkar. 2018. Online Appendix to: Detecting Socially Interacting Groups using F-formation: A Survey of Taxonomy, Methods, Applications, Challenges and Future Research Directions. 1, 1 (August 2018), 12 pages. https://doi.org/10.1145/1122445.1122456

Table 1. Comparison between Static AI based methods for detecting F-formation and social interactions.

Methods and Techniques	Static AI approach	Detection capability	Features selected	Datasets used for testing	Camera and/or Sensors			
	Fixed rules	Assumptions	Geometric reasoning	Static (S/M)	Dynamic (S/M)	Follow, show, validate	indoor [51]	ActivMedia Performance PeopleBot
Wizard-of-Oz (2006) [51]	✓	✓	✓	✓	✓	indoor		
approach behavior (2009) [88](SVM for classification)	✓	✓	✓	✓	✓	indoor		
Wizard-of-Oz approach(2010) [58]	✓	✓	✓	✓	✓	indoor		

Continued on next page
Study	Methodology	Technique	Indoor Environment(s)	Humanoid Robot(s)	Notes and Sketches
sociologically principled	[34] (DT)	Sampling, Voting, O-space validation	indoor [62]	Humanoid Robot(s)	EATURES
proposed model (2011) [92]	(DT)	proposed model (2011) [92] (DT)			
rapid ethnography	method (2011) [62]	rapid ethnography method (2011) [62]			
The Compensation (or	proposed model (2011) [92] (DT)	proposed model (2011) [92] (DT)			
The Attraction-Mediation	proposed model (2011) [92] (DT)	proposed model (2011) [92] (DT)			
The Attraction-Transformation	proposed model (2011) [92] (DT)	proposed model (2011) [92] (DT)			
digital ethnography (2012)	[71]	digital ethnography (2012) [71]			
Museum guide robot system	[108]	Museum guide robot system (2012) [108]	indoor [108]	Humanoid Robot(s)	Exo sensors
museum guide robot system	[108]	Museum guide robot system (2012) [108]	indoor [108]	Humanoid Robot(s)	Exo sensors
extended F-formation system	[39] (DT)	extended F-formation system (2013) [39] (DT)	indoor [39]	Kinetic depth sensors	Exo sensors
Multi-scale Hough voting	approach (2013) [90] (DT)	Multi-scale Hough voting approach (2013) [90]	Indoor [90]	Synthesis Data	Exo cameras
HFF (Hough for F-	Formations) (2013) [89]	HFF (Hough for F-Formations) (2013) [89]	Indoor [89]	Idiap Poster Data	Exo
O-space model (2013) [45]		O-space model (2013) [45]	Indoor [45]	WiFi based Tracking	Exo
two-Gaussian mixture model(2013) [45]		two-Gaussian mixture model(2013) [45]	Indoor [45]	WiFi based Tracking	Exo
O-space model (2013) [45]		O-space model (2013) [45]	Indoor [45]	WiFi based Tracking	Exo
Wifi based tracking, Laser-		Wifi based tracking, Laser-based tracking,	Indoor [44]	Service Robots	Exo
Vision-based tracking,		Vision-based tracking, Position tracking	Indoor [44]	Service Robots	Exo
Position tracking system(2013)	[44]	Position tracking system (2013) [44]	Indoor [44]	Service Robots	Exo

Continued on next page
Online Appendix to:
Detecting Socially Interacting Groups using F-formation: A Survey of Taxonomy, Methods, Applications, Challenges and Future Research Directions

Method	Indoor	Social Attributes	Heat Map	Social Bases	Attributes	Challenges	Future Research Directions
Estimating positions and the orientations of lower bodies (2014) [107]	✓	✓	✓	✓	head position together with facial orientation	[18]	Ego
(2014) [99]	✓	✓		✓	positions of the persons and head/body orientations, 2D histogram	Foster Data [50], Cocktail Party [100], Coffee Break [34], Synth [34], GDet [34]	Exo
Group tracking and behavior recognition (2014) [41]	✓	✓	✓	✓	the average of the intra-object distance, the average standard deviations of speed and direction	recorded in subway	Exo
Search-based method (2014) [38]	✓	✓	✓	✓	2D Local Coordinate System (LCS) indoor [38]	-Ego wearable sensors	
(2015) [70]	✓	✓	✓	✓	time stamped map Youtube videos	Exo, Ego	
Graph-Cuts for F-formation (GCFF) (2015) [91]	✓	✓	✓	✓	HOG of head and body	Synthetic [36], Coffee Break [35], IDIAP Poster Data [52], Cocktail Party [104], GDet [17]	Exo
GRUPO (2015) [102]	✓	✓	✓	✓	head orientations, lower body orientation	Cocktail Party [104]	Exo
Grounded Theory Method (2015) [55] (DT)	✓	✓	✓	✓	human orientations and face reaction	HOGs robot	
Link Method (2016) algorithm is inspired by learning and forgetting curves combined with proxemics. [81]	✓	✓	✓	✓	low level features	Friends Meet [99], SALSA [105]	Exo
Interpersonal Synchrony Method (2016) exploits interpersonal synchrony to refine clusters of people obtained mixing proxemics and the intersections of the 2D fields-of-view of people. [81]	✓	✓	✓	✓	low level features	Friends Meet [99], SALSA [105], synthetic data set	Exo

Continued on next page
Model Description	Single Frame	Multi-frame	Features	Dataset/Environment
Frustum of attention modeling (2016) [100]	✓	✓	orientation invariant features, social prior features, proximity features	Idiap Poster Data [53], Exo
✗ F-formation as dominant set model (2016) [110]	✓	✓	orientation invariant features, social prior features, proximity features	Idiap Poster Data [53], Exo
✗ HRI (Human Robot Interaction motion planning system) (2017) [106]	✓	✓	omnidirectional mobility feature	Indoor [106], VR
✗ Footing behavior models (Spatial-Reorientation Model, Eye-Gaze Model) (2017) [76]	✓	✓	space, size, distance, angle	Indoor [85], Nao robot
✗ MC-HBPE method (matrix completion for head and body pose estimation) (2017) [5]	✓	✓	quadrants	Indoor telepresence robot, Ego
✗ Haar cascade face detection algorithm (2017) [57] (DT)	✓	✓	quadrants	Prima head pose image dataset [46], mobile robot telepresence (MRP)
✗ Haar cascade face detection algorithm (2017) [73] (DT)	✓	✓	quadrants	MBrobot platform, Ego
Approaching method (2018) [87]	✓	✓	human-friendly features	Indoor [87], Ego robot
Measuring Workload Method (2018) [63]	✓	✓	NASA-TLX (NASA Task Load Index) Scores, Dual-task Method Scores	Indoor [63], Ego robot
✗ F-formation as dominant set model (2018) [111]	✓	✓	orientation invariant features, social prior feature	Idiap Poster Data [53], SALSA [105], Exo
✗ (2019) [74] (DT)	✓	✓	Robot Positoning Spot (RPS) 2D frustum, autonomous features	EgoView robot Mobile Robotic Telepresence System in Simulation Environment
✗ (2019) [75] (DT)	✓	✓	Robot Positoning Spot (RPS) 2D frustum, autonomous features	EgoView robot Mobile Robotic Telepresence System in Simulation Environment

Continued on next page
Table 2. Comparison between ML based methods for detecting F-formation and social interactions.

Methods	Approach classification	Learning paradigm	Detection capability	Feature selection	Dataset	Camera and/or Sensors
(2004) [11]	✓	☑ Su	✓	✓	state diagram	- Egoview robot
IR tracking technique (2010) [47], (Gaussian Mixture Model, Naive Bayes, Support Vector Machine)	✓	✓	✓	✓	data points of location and orientation	indoor [47]
SVM classifier(2010) [109]	✓	✓	✓	✓	(S)	- Exo
graph-based clustering method (2011)[50]	✓	✓	✓	✓	Minimum distance, Velocity, Number of intimate, personal and social relationships,	indoor [109]
Gaussian clustering, Expectation-Maximization (EM) learning method (2011) [55]	✓	✓	✓	✓	(S)	- Exo
GRID WORLD SCENARIO(three level hierarchical modeling approach)(2011) [56]	✓	✓	✓	✓	Gaussian components	public area outdoor
coupled adaptive classifier learning (2012)[26]	✓	✓	✓	✓	(S)	- Exo (software agent bird’s eye view)
Region-based approach with level set method (2012) [56]	✓	✓	✓	✓	✓	surveillance camera

Continued on next page
Method	Salient Motion Features	Dataset Description
Proposed method with o-space and without o-space (SVM) (2012)	✓	own dataset: SI (Social Interactions) Dataset [65], YouTube CCTV videos, BEHAVE database [69]
Hidden Markov Model (HMM) (2012) [42] (Haar-feature classifier, 3-layer artificial neural network (ANN))	✓ ✓ ✓ ✓	body posture and head pose estimation (torso and hand positions (excluding the arms), body alignment, head pose (given both as a normal vector and as pitch and yaw angles), as well as the two spatial group arrangement features)
Voting based approach (2013) [60] (SVM)	✓ ✓ ✓ ✓	coffee-room scenario [20], PETS 2007/S07 dataset
Hidden Markov Models (HMMs) (2013) [64]	✓ ✓ ✓ ✓	Classroom Interaction Database [60], UT-Interaction Dataset [86], Caltech Resident-Intruder Mouse Dataset [23]
Graph-based clustering algorithm (2013) [97] (SVM classifier)	✓ ✓ ✓ ✓	CoffeeBreak dataset [33], Collective Activity dataset [13]
Poselet detection model (SVM) (2014) [29]	✓ ✓ ✓ ✓	Structured Group Dataset (SGD) [103]
Head pose estimation technique (2014) [10] (structure SVM)	✓ ✓ ✓ ✓	EGO-GROUP [3], EGO-HPE [4]

Continued on next page
Method	✓	✗	✗	✓	✓ (M)	Dataset	Environments
Hidden Markov Model (2014)	✓	✗	✗	✓	✓ (M)	mingling dataset	-single worn accelerometer, audio sensing
MLP transfer learning	✓	✗	✗	✗	✓	CLEAR dataset	-Exo
MLP head pose	✓	✗	✗	✗	✓	Group Interaction Energy (GIE), Attraction and Repulsion Features (ARF)	-Exo
Matrix Completion	✓	✗	✗	✓	✓ (M)	head and body visual features	-Exo
Hypothesis Learning Clustering (CC) through Structured Learning	✓	✗	✗	✓	✓ (M)	physical identity and social identity	-Exo
Long Short Term Memory LSTM (2015)	✓	✓	✗	✓	✓ (S)	distance and orientation features	-Ego
Hough Voting	✓	✗	✗	✓	✓ (M)	facial landmark feature	-Ego
matrix based batch learning for Long Short Term Memory LSTM	✓	✓	✗	✓	✓ (S)	people localization, face orientation estimation, 3D people localization	-Ego

Continued on next page
Uses HMM model with two states (2017)	✓	x	✓	✓	(S)	Upper Joint Distances, Body relative orientations, Temporal Orientation similarity, O-space based features, QTCC relation, QTCC histogram	Uol-3D Social Interaction Dataset [31]	-Exo			
Learning Methods for HPE and BPE (2017) [98]	✓	x	x	x	✓	(M)	Head and body features	Cocktail Party [100][104], Coffee Break [33], SALSA [7][105]	-Exo		
Human aware motion planner (2017) [25]	x	✓	✓	x	✓	(M)	Gaussian distribution, metric map	-	-		
3D skeleton reconstruction using patch trajectory (2017) [51]	x	x	✓	✓	✓	(M)	Node proposals, part proposals, skeletal proposals	Social Interaction Dataset [30]	-Exo		
GAMUT (Group Based Meta-classifier learning Using local neighborhood Training) (2018) [43]	✓	x	x	✓	✓	✓	(M)	Pairwise feature	Indoor [43]	-Exo	
Group detection method (2018) [82]	x	✓	x	x	✓	✓	✓	(M)	The position of pedestrians and size of the BB (Bounding boxes)	Outdoor [82]	-Ego-centric telepresence robot
Multi-Person 2D pose estimation (2019) [72]	✓	x	x	✓	✓	✓	(M)	Part Affinity Fields (PAFs) feature, facial or body features	Laboratory-based dataset containing distance measures at three key distances, one laboratory-based dataset with distance measures from three predefined distances, dataset with distance measurements collected in a crowded open space [72]	-Ego	
Long Short Term Memory (LSTM) network/recurrent neural network [83]	x	✓	✓	✓	✓	✓	(M)	Pairwise representations, label extractions	MatchNMingle dataset [24]	-wearable sensors	
Staged Social Behavior Learning (SSBL) (2019) [40]	x	x	✓	✓	✓	✓	(S)	Feature-map	SoftBank Pepper robot	-	
identifies people, proximity, velocity

own RGB-D pedestrian dataset [96]

EGO-GROUP [3], own dataset

Egoview robot

SALSA dataset [8]

Ego Double Telepresence Robot

EGO-GROUP

- (S)

MAN

- (S)

MAN

- (S)

MAN

- (S)

MAN

REFERENCES

[1] Maedeh Aghaei, Mariella Dimiccoli, and Petia Radeva. 2015. Towards social interaction detection in egocentric photo-streams. In Eighth International Conference on Machine Vision (ICMV 2015). Vol. 9875. International Society for Optics and Photonics, 987514.

[2] Maedeh Aghaei, Mariella Dimiccoli, and Petia Radeva. 2016. With whom do I interact? Detecting social interactions in egocentric photo-streams. In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2959–2964.

[3] AlmageLab. 2021. AlmageLab datasets. http://imagelab.ing.unimore.it/files/EGO-GROUP.zip.

[4] AlmageLab. 2021. AlmageLab datasets. http://imagelab.ing.unimore.it/files/EGO-HPE.zip.

[5] Xavier Alameda-Pineda, Elisa Ricci, and Nicu Sebe. 2017. Multimodal analysis of free-standing conversational groups. In Frontiers of Multimedia Research. 51–74.

[6] Xavier Alameda-Pineda, Jacopo Staiano, Ramanathan Subramanian, Ligia Batrinca, Elisa Ricci, Bruno Lepré, Oswald Lanz, and Nicu Sebe. 2015. Salsa: A novel dataset for multimodal group behavior analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 8 (2015), 1707–1720.

[7] X. Alameda-Pineda, J. Staiano, R. Subramanian, L. Batrinca, E. Ricci, B. Lepré, O. Lanz, and N. Sebe. 2016. SALSA: A Novel Dataset for Multimodal Group Behavior Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 8 (2016), 1707–1720.

[8] Xavier Alameda-Pineda, Yan Yan, Elisa Ricci, Oswald Lanz, and Nicu Sebe. 2015. Analyzing free-standing conversational groups: A multimodal approach. In Proceedings of the 23rd ACM international conference on Multimedia. 5–14.

[9] Stefano Alletto, Giuseppe Serra, Simone Calderara, and Rita Cucchiara. 2015. Understanding social relationships in egocentric vision. Pattern Recognition 48, 12 (2015), 4082–4096.

[10] Stefano Alletto, Giuseppe Serra, Simone Calderara, Francesco Solera, and Rita Cucchiara. 2014. From ego to nos-vision: Detecting social relationships in first-person views. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 580–585.

[11] P. Althaus, H. Ishiguro, T. Kanda, T. Miyashita, and H. I. Christensen. 2004. Navigation for human-robot interaction tasks. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. Vol. 2. 1894–1900 Vol.2. https://doi.org/10.1109/ROBOT.2004.1308100

[12] M. Andriuhka, S. Roth, and B. Schiele. 2010. Monocular 3D pose estimation and tracking by detection. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 623–630.

[13] University of Michigan (Ann Arbor). 2021. Collective Activity Dataset. http://www.eecs.umich.edu/vision/activity-dataset.html.

[14] Adrian Ball, David Rye, David Silvera-Tawil, and Mari Velonaki. 2015. Group vs. individual comfort when a robot approaches. In International Conference on Social Robotics. Springer, 41–50.

[15] Stefania Bandini, Andrea Gorrini, and Giuseppe Vizzari. 2014. Towards an Integrated Approach to Crowd Analysis and Crowd Synthesis: a Case Study and First Results. Pattern Recognit. Lett. 44 (2014), 16–29.

[16] Harishv Barua, Pradip Pramanick, Chayan Sarkar, and Theint Mg. 2020. Let me join you! Real-time F-formation recognition by a socially aware robot. In 29th IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2020.

[17] Stefano Alletto, Giuseppe Serra, Simone Calderara, and Rita Cucchiara. 2015. Understanding social relationships in egocentric vision. Pattern Recognition 48, 12 (2015), 4082–4096.

[18] Loris Bazzani, Marco Cristani, and V. Murino. 2012. Decentralized particle filter for joint individual-group tracking. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. 1886–1893.

[19] Loris Bazzani, Marco Cristani, Diego Tosato, Michela Farenzena, Giulia Paggetti, Gloria Menegaz, and Vittorio Murino. 2013. Social interactions by visual focus of attention in a three-dimensional environment. Expert Systems 30, 2 (2013), 115–127.

[20] Ben Benfold and Ian Reid. 2009. Guiding Visual Surveillance by Tracking Human Attention. British Machine Vision Conference, BMVC 2009 - Proceedings. https://doi.org/10.5244/C.23.14

[21] B. Benfold and I. Reid. 2011. Unsupervised learning of a scene-specific coarse gaze estimator. In 2011 International Conference on Computer Vision. 2344–2351.

[22] X. P. Burgos-Artizzu, P. Döllár, D. Lin, D. J. Anderson, and P. Perona. 2012. Social behavior recognition in continuous video. In 2012 IEEE Conference on Computer Vision and Pattern Recognition. 1322–1329.
[24] L. Cabrera-Quiros, A. Demetriou, E. Gedik, L. v. d. Meij, and H. Hung. 2018. The MatchNMingle dataset: a novel multi-sensor resource for the analysis of social interactions and group dynamics in-the-wild during free-standing conversations and speed dates. *IEEE Transactions on Affective Computing* (2018), 1–1.

[25] Konstantinos Charalampous, Ioannis Kostavelis, and Antonios Gasteratos. 2017. Recent trends in social aware robot navigation: A survey. *Robotics and Autonomous Systems* 93 (2017), 85–104.

[26] Cheng Chen and Jean-Marc Odobez. 2012. We are not contortionists: Coupled adaptive learning for head and body orientation estimation in surveillance video. In *2012 IEEE Conference on Computer Vision and Pattern Recognition*. IEEE, 1544–1551.

[27] Nam-Gyu Cho, Young-Ji Kim, Unsang Park, Jeong-Seon Park, and Seong-Whan Lee. 2015. Group activity recognition with group interaction zone based on relative distance between human objects. *International Journal of Pattern Recognition and Artificial Intelligence* 29, 05 (2015), 1555007.

[28] Wongun Choi, Yu-Wei Chao, Caroline Pantofaru, and Silvio Savarese. 2014. Discovering Groups of People in Images. In *ECCV*.

[29] Wongun Choi, Yu-Wei Chao, Caroline Pantofaru, and Silvio Savarese. 2014. Discovering groups of people in images. In *European conference on computer vision*. Springer, 417–433.

[30] CMU. 2021. CMU Panoptic Dataset. https://domedb.perception.cs.cmu.edu.

[31] Claudio Coppola. 2021. UoL 3D Social Interaction Dataset. https://cas.lincoln.ac.uk/wp/research/data-sets-software/uol-3d-social-interaction-dataset.

[32] Claudio Coppola, Serhan Cosar, Diego R Faria, and Nicola Bellotto. 2017. Automatic detection of human interactions from rgb-d data for social activity classification. In *2017 26th IEEE international symposium on robot and human interactive communication (RO-MAN)*. IEEE, 871–876.

[33] Marco Cristani. 2021. CoffeeeBreak dataset. http://profs.sci.univr.it/~cristanm/datasets.html.

[34] Marco Cristani, Loris Bazzani, Giulia Paggetti, Andrea Fossati, Diego Tosato, Alessio Del Bue, Gloria Menegaz, and Vittorio Murino. 2011. Social interaction discovery by statistical analysis of F-formations. In *BMVC*.

[35] Marco Cristani, Giulia Paggetti, Alessandro Vinciarelli, Loris Bazzani, Gloria Menegaz, and Vittorio Murino. 2011. Towards computational proxemics: Inferring social relations from interpersonal distances. In *2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing*. IEEE, 290–297.

[36] Alessandro Farinelli. 2021. http://profs.sci.univr.it/~cristanm/datasets.html.

[37] Tian Gan. 2013. Social interaction detection using a multi-sensor approach. In *Proceedings of the 21st ACM international conference on Multimedia*. 1043–1046.

[38] Tian Gan, Yongkang Wong, Bappaditya Mandal, Vijay Chandrasekhar, Luyuan Li, Joo-Hwee Lim, and Mohan S Kankanahalli. 2014. Recovering social interaction spatial structure from multiple first-person views. In *Proceedings of the 3rd International Workshop on Socially-Aware Multimedia*. 7–12.

[39] Tian Gan, Yongkang Wong, Daqing Zhang, and Mohan S Kankanahalli. 2013. Temporal encoded F-formation system for social interaction detection. In *Proceedings of the 21st ACM international conference on Multimedia*. 937–946.

[40] Yuan Gao, Fangkai Yang, Martin Frisk, Daniel Hernandez, Christopher Peters, and Ginevra Castellano. 2019. Learning Socially Appropriate Robot Approaching Behavior Toward Groups using Deep Reinforcement Learning. In *2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)*. IEEE, 1–8.

[41] Carolina Gárate, Sofia Zaidenberg, Julien Badie, and François Brémond. 2014. Group tracking and behavior recognition in long video surveillance sequences. In *2014 International Conference on Computer Vision Theory and Applications (VISAPP)*. Vol. 2. IEEE, 396–402.

[42] André Gschicher, Sören Jentzsch, Manuel Giudici, Kerstin Huth, Jan de Ruiter, and Alois Knoll. 2012. Social behavior recognition using body posture and head pose for human-robot interaction. In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*. IEEE, 2128–2133.

[43] Ekin Gedik and Hayley Hung. 2018. Detecting conversing groups using social dynamics from wearable acceleration: Group size awareness. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies* 2, 4 (2018), 1–24.

[44] Dylan F Glas, Satoru Satake, Florent Ferreri, Takayuki Kanda, Norihiro Hagita, and Hiroshi Ishiguro. 2013. The network robot system: enabling social observation of Deictic Gestures (01 2004).

[45] Javier V Gómez, Nikolaos Mavridis, and Santiago Garrido. 2013. Social path planning: Generic human-robot interaction framework for robotic navigation tasks. In *2nd Intl. Workshop on Cognitive Robotics Systems: Replicating Human Actions and Activities*.

[46] Nicolas Gouvier and James Crowley. 2004. Estimating Face orientation from Robust Detection of Salient Facial Structures. *FG Net Workshop on Visual Observation of Deictic Gestures* (01 2004).

[47] Georg Groh, Alexander Lehmann, Jonas Reimers, Marc René Frièß, and Loren Schwarz. 2010. Detecting social situations from interaction geometry. In *2010 IEEE Second International Conference on Social Computing*. IEEE, 1–8.

[48] H. Hedavati, D. Szafir, and S. Andrés. 2019. Recognizing F-Formations in the Open World. In *2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)*. IEEE, 558–559.

[49] Hayley Hung and Ben Kröse. 2011. Detecting f-formations as dominant sets. In *Proceedings of the 13th international conference on multimodal interfaces*. 84–91.

[50] Hayley Hung and Ben Kröse. 2011. Inferring social relations from interpersonal distances. In *Proceedings of the 16th international conference on multimodal interaction*. 231–238.

[51] Helge Hüttnerreac, Kerstin Eklundh, Anders Green, and Elin Anna Topp. 2006. Investigating Spatial Relationships in Human-Robot Interaction. 5052–5059. https://doi.org/10.1109/IROS.2006.282535

[52] Idiap Research Institute. 2021. Idiap Poster Data. http://www.idiap.ch/scientific-research/resources.

[53] Idiap Research Institute. 2021. Idiap Poster Data. https://www.idiap.ch/en/dataset/idiap-poster-data/idiap-poster-data.

Manuscript submitted to ACM
Detecting Socially Interacting Groups using F-formation: A Survey of Taxonomy, Methods, Applications, Challenges and Future Research Directions

[54] Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Banerjee, Timothy Godisart, Bart Nabbe, Iain Matthews, et al. 2017. Panoptic studio: A massively multiview system for social interaction capture. IEEE transactions on pattern analysis and machine intelligence 41, 1 (2017), 190–204.

[55] Daphne Karremans, Geke Ludden, Betsy van Dijk, and Vanessa Evers. 2015. How Can a Tour Guide Robot’s Orientation Influence Visitors’ Orientation and Formations?. In Proceedings of 4th International Symposium on New Frontiers in Human-Robot Interaction. Canterbury, UK.

[56] Yuki Kizumi, Koh Kakusho, Takashi Okadome, Takuya Funatomi, and Masaaki Iiyama. 2012. Detection of social interaction from observation of daily living environments. In The First International Conference on Future Generation Communication Technologies. IEEE, 162–167.

[57] Sai Krishna, Andrey Kiselev, and Amy Loutfi. 2017. Towards a Method to Detect F-Formations in Real-Time to Enable Social Robots to Join Groups. In HRI 2017.

[58] Hideaki Kuzuoka, Yuya Suzuki, Jun Yamashita, and Keichi Yamazaki. 2010. Reconfiguring spatial formation arrangement by robot body orientation. In 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 285–292.

[59] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. 2007. Crowds by Example. Comput. Graph. Forum 26 (2007), 655–664.

[60] Ruonan Li, Parker Porfilio, and Todd Zickler. 2013. Finding group interactions in social clutter. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2722–2729.

[61] Nicolai Marquardt, Ken Hinckley, and Saul Greenberg. 2012. Cross-device interaction via micro-mobility and F-formations. In Proceedings of the 25th annual ACM symposium on User interface software and technology. 13–22.

[62] Paul Marshall, Yvonne Rogers, and Nadia Pantidi. 2011. Using F-formations to analyse spatial patterns of interaction in physical environments. ACM, 445–454.

[63] Takahiro Matsumoto, Mitsuhiro Goto, Ryo Ishii, Tomoki Watanabe, Tomohiro Yamada, and Miichita Imai. 2018. Where Should Robots Talk? Spatial Arrangement Study from a Participant Workload Perspective. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. 270–278.

[64] Ross Mead, Amin Atrash, and Maja J Matarić. 2013. Automated proxemic feature extraction and behavior recognition: Applications in human-robot interaction. International Journal of Social Robotics 5, 3 (2013), 367–378.

[65] MMLAB. 2021. Multimedia Signal Processing and Understanding Lab. http://mmlab.science.unitn.it/USID/.

[66] Jonathan Mum and Bilge Mutlu. 2011. Human-robot proxemics: physical and psychological distancing in human-robot interaction. In Proceedings of the 6th international conference on Human-robot interaction. 331–338.

[67] Kavin Preethi Narasimhan. 2011. Towards modelling spatial cognition for intelligent agents. In Proceedings of the 29th Annual European Conference on Cognitive Ergonomics. 253–254.

[68] Narrative. 2021. Narrative Clip 2. http://getnarrative.com/.

[69] Robert Fisher School of Informatics (Univ. of Edinburgh). 2021. BEHAVE. Computer-assisted prescreening of video streams for unusual activities. http://homepages.inf.ed.ac.uk/rbf/BEHAVE/.

[70] Jeni Paay, Jesper Kjeldskov, and Mikael B Skov. 2015. Connecting in the kitchen: an empirical study of physical interactions while cooking together at home. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing. 276–287.

[71] Jeni Paay, Jesper Kjeldskov, Mikael B Skov, and Kenton O’Hara. 2012. Cooking together: a digital ethnography. In CHI ’12 Extended Abstracts on Human Factors in Computing Systems. 1883–1888.

[72] Sai Krishna Pathi, Andrey Kiselev; Annica Kristoffersson, Dirk Repsilber, and Amy Loutfi. 2019. A Novel Method for Estimating Distances from a Robot to Humans Using Ego-centric RGB Camera. Sensors 19, 14 (2019), 3142.

[73] S. K. Patli, A. Kristoffersson, A. Kiselev, and A. Loutfi. 2019. Estimating F-Formations for Mobile Robotic Telepresence. In HRI ’17.

[74] S. K. Pathi, A. Kiselev, A. Kristoffersson, and Amy Loutfi. 2019. Estimating Optimal Placement for a Robot in Social Group Interaction. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). 1–8. https://doi.org/10.1109/RO-MAN46459.2019.8956318

[75] Sai Krishna Pathi, Annica Kristoffersson, Andrey Kiselev, Amy Loutfi. 2019. F-Formations for Social Interaction in Simulation Using Virtual Agents and Mobile Robotic Telepresence Systems. Multimodal Technologies and Interaction 3, 4 (2019), 69.

[76] Tomislav Pejša, Michael Gleichere, and Bilge Mutlu. 2017. Who, me? How virtual agents can shape conversational footing in virtual reality. In International Conference on Intelligent Virtual Agents. Springer, 347–359.

[77] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. 2009. You’ll never walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th International Conference on Computer Vision. 261–268.

[78] Anoop Rajagopal, Ramanathan Subramanian, Radu Vieriu, Elisa Ricci, Oswald Lanz, Kalpathi Ramakrishnan, and Nicu Sebe. 2012. An Adaptation Framework for Head-Pose Classification in Dynamic Multi-view Scenarios, Vol. 7725. 652–666. https://doi.org/10.1007/978-3-642-37444-9_51

[79] Anoop Kolar Rajagopal, Ramanathan Subramanian, Elisa Ricci, Radu L Vieriu, Oswald Lanz, Nicu Sebe, et al. 2014. Exploring transfer learning approaches for head pose classification from multi-view surveillance images. International Journal of computer vision 109, 1-2 (2014), 146–167.

[80] C. Y. Raman and Hayley Hung. 2019. Towards automatic estimation of conversation floors within F-formations. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIDW) (2019), 175–181.

[81] Omar Adair Islas Ramirez, Giovanna Varni, Mihai Andries, Mohamed Chetouani, and Raja Chatila. 2016. Modeling the dynamics of individual behaviors for group detection in crowds using low-level features. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 1104–1111.

[82] Laurel D. Riek. 2018. Robot-Centric Human Group Detection Angelique.

[83] Alessio Rosatelli, Ekin Gedik, and Hayley Hung. 2019. Detecting F-formations & Roles in Crowded Social Scenes with Wearables: Combining Proxemics Dynamics using LSTMs. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIDW) (2019), Manuscript submitted to ACM.
[84] Paolo Rota, Nicola Conci, and Nicu Sebe. 2012. Real time detection of social interactions in surveillance video. In European Conference on Computer Vision. Springer, 111–120.

[85] Peter AM Ruijten and Raymond H Cuijpers. 2017. Stopping distance for a robot approaching two conversating persons. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 224–229.

[86] M. S. Byroo and J. K. Aggarwal. 2009. Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities. In 2009 IEEE 12th International Conference on Computer Vision. 1593–1600.

[87] SM Bhagya P Samaraskon, MA Viraj J Muthugala, and AG Buddhika P Jayasekara. 2018. Replicating natural approaching behavior of humans for improving robot’s approach toward two persons during a conversation. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 552–558.

[88] Satoru Satake, Takayuki Kanda, Dylan F Glas, Michita Imai, Hiroshi Ishiguro, and Norihiro Hagita. 2009. How to approach humans? Strategies for social robots to initiate interaction. In Proceedings of the 4th ACM/IEEE international conference on Human robot interaction. 109–116.

[89] Francesco Setti, Hayley Hung, and Marco Cristani. 2013. Group detection in still images by F-formation modeling: A comparative study. In 2013 14th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS). IEEE, 1–4.

[90] Francesco Setti, Oswald Lanz, Roberta Ferrario, Vittorio Murino, and Marco Cristani. 2013. Multi-scale F-formation discovery for group detection. In 2013 IEEE International Conference on Image Processing. IEEE, 3547–3551.

[91] Francesco Setti, Chris Russell, Chiara Bassetti, and Marco Cristani. 2015. F-formation detection: Individualizing free-standing conversational groups in images. PloS one 10, 5 (2015), e0123783.

[92] Chao Shi, Michihiro Shimada, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. 2011. Spatial formation model for initiating conversation. Proceedings of robotics: Science and systems VII (2011), 306–313.

[93] Francesco Solera, Simone Calderara, and Rita Cucchiara. 2015. Socially constrained structural learning for groups detection in crowd. IEEE transactions on pattern analysis and machine intelligence 38, 5 (2015), 995–1008.

[94] Rainer Stiefelhagen, Rachel Bowers, and Jonathan Fiscus. 2008. Multimodal Technologies for Perception of Humans: International Evaluation Workshops CLEAR 2007 and RT 2007, Baltimore, MD, USA, May 8-11, 2007, Revised Selected Papers. Vol. 4625. https://doi.org/10.1007/978-3-540-68585-2

[95] Ramanathan Subramanian, Jagannadan Varadarajan, Elisa Ricci, Oswald Lanz, and Stefan Winkler. 2015. Jointly estimating interactions and body pose of interactors from distant social scenes. In Proceedings of the 23rd ACM international conference on Multimedia. 835–838.

[96] Angelique Marie Taylor, Darren Chan, and Laurel Riek. 2019. Robot-centric perception of human groups. ACM Transactions on Human-Robot Interaction (THRI) (2019).

[97] Khai N Tran, Apurva Bedagkar-Gala, Ioannis A Kakadiaris, and Shishir K Shah. 2013. Social Cues in Group Formation and Local Interactions for Collective Activity Analysis. In VISAPP (1). 539–548.

[98] Jagannadan Varadarajan, Ramanathan Subramanian, Samuel Rota Bulò, Narendra Ahuja, Oswald Lanz, and Elisa Ricci. 2017. Joint Estimation of Human Pose and Conversational Groups from Social Scenes. International Journal of Computer Vision 126 (07 2017). https://doi.org/10.1007/s11263-017-1026-6

[99] Sebastian Vascon, Eyasu Z Mequanint, Marco Cristani, Hayley Hung, Marcello Pelillo, and Vittorio Murino. 2014. A game-theoretic probabilistic approach for detecting conversational groups. In Asian conference on computer vision. Springer, 658–675.

[100] Sebastian Vascon, Eyasu Z Mequanint, Marco Cristani, Hayley Hung, Marcello Pelillo, and Vittorio Murino. 2016. Detecting conversational groups in images and sequences: A robust game-theoretic approach. Computer Vision and Image Understanding 143 (2016), 11–24.

[101] Marynel Vázquez, Elizabeth J Carter, Braden McDorman, Jodi Forlizzi, Aaron Steinfeld, and Scott E Hudson. 2017. Towards robot autonomy in group conversations: Understanding the effects of body orientation and gaze. In 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 42–52.

[102] Marynel Vázquez, Aaron Steinfeld, and Scott E Hudson. 2015. Parallel detection of conversational groups of free-standing people and tracking of their lower-body orientation. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 3010–3017.

[103] Computational Vision and Geometry Lab (CVGL) at Stanford. 2021. Discovering Groups of People in Images. http://cvgl.stanford.edu/projects/groupdiscovery/.

[104] TeV TECHNOLOGIES OF VISION. 2021. Resources. http://tev.fbk.eu/resources.

[105] TeV TECHNOLOGIES OF VISION. 2021. SALSA Dataset. http://tev.fbk.eu/salsa.

[106] Shih-An Yang, Edwin Gamborino, Chun-Tang Yang, and Li-Chen Fu. 2017. A study on the social acceptance of a robot in a multi-human interaction using an F-formation based motion model. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2766–2771.

[107] Naoyuki Yasuda, Koh Kakusho, Takeshi Okadome, Takuya Funatomi, and Masaaki Iiyama. 2014. Recognizing conversation groups in an open space by estimating placement of lower bodies. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 544–550.

[108] Mohammad Abu Yousuf, Yoshinori Kobayashi, Yoshinori Kuno, Keiichi Yamazaki, and Akiko Yamazaki. 2012. Establishment of spatial formation by a mobile guide robot. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction. 281–282.

[109] Gloria Zen, Bruno Lepri, Elisa Ricci, and Oswald Lanz. 2010. Space speaks: towards socially and personality aware visual surveillance. In Proceedings of the 1st ACM international workshop on Multimodal pervasive video analysis. 37–42.

[110] Lu Zhang and Hayley Hung. 2016. Beyond F-Formations: Determining Social Involvement in Free Standing Conversing Groups from Static Images. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), 1086–1095.

[111] Lu Zhang and Hayley Hung. 2021. On Social Involvement in Mingling Scenarios: Detecting Associates of F-Formations in Still Images. IEEE Transactions on Affective Computing 12, 1 (2021), 165–176. https://doi.org/10.1109/TAFFC.2018.285759