Evolutionary appearance of the plasma membrane H\(^+\)-ATPase containing a penultimate threonine in the bryophyte

Masaki Okumura, Koji Takahashi, Shin-ichiro Inoue and Toshinori Kinoshita*

Division of Biological Science; Graduate School of Science; Nagoya University; Nagoya, Japan

Keywords: bryophyte, chara, Physcomitrella patens, phosphorylation, plasma membrane H\(^+\)-ATPase

The plasma membrane H\(^+\)-ATPase provides the driving force for solute transport via an electrochemical gradient of H\(^+\) across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H\(^+\)-ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H\(^+\)-ATPase (pT H\(^+\)-ATPase) and non-pT H\(^+\)-ATPase as in the green algae, and that pT H\(^+\)-ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H\(^+\)-ATPase genes, designated PpHA (Physcomitrella patens H\(^+\)-ATPase). Six isoforms are the pT H\(^+\)-ATPase; a remaining isoform is non-pT H\(^+\)-ATPase. An apparent 95-kD protein was recognized by anti-H\(^+\)-ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H\(^+\)-ATPase. Furthermore, we could not detect the pT H\(^+\)-ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H\(^+\)-ATPase most likely appeared for the first time in bryophyte.

The Plasma Membrane H\(^+\)-ATPase in the Moss Physcomitrella patens

The plasma membrane H\(^+\)-ATPase actively transports H\(^+\) out of the cell and creates an electrochemical gradient of H\(^+\) across the plasma membrane for energizing substance transport coupled with many secondary transporters, the maintenance of membrane potential and pH homeostasis.\(^1\)-\(^4\) The structure of the H\(^+\)-ATPase is highly conserved, apart from the C-terminal region. In vascular plants, the H\(^+\)-ATPase contains the C-terminal region consisting around 100 amino acids, which is known as an autoinhibitory domain and contains a penultimate threonine (Thr).\(^2\) It has been demonstrated that phosphorylation of the penultimate Thr and subsequent binding of the 14–3-3 protein to the phosphorylated penultimate Thr in response to physiological signals has shown to be a major common regulatory mechanism of H\(^+\)-ATPase in vascular plants.\(^5\)-\(^10\) On the other hand, the H\(^+\)-ATPases in yeasts and green algae, including Chlamydomonas reinhardtii, Chlorella variabilis NC64A and Volvox carteri, lack such a C-terminus,\(^1\)-\(^14\) suggesting that the H\(^+\)-ATPase containing a penultimate Thr might have appeared after green algae during evolution.

A recent our study has revealed that plasma membrane H\(^+\)-ATPase in the liverwort Marchantia polymorpha as a non-vascular plant bryophyte, which represents the most basal lineage of extant land plants, expresses both the penultimate Thr-containing H\(^+\)-ATPase (pT H\(^+\)-ATPase) and non-penultimate Thr-containing H\(^+\)-ATPase (non-pT H\(^+\)-ATPase). We further provided the evidence that the pT H\(^+\)-ATPase in M. polymorpha is regulated by phosphorylation of its penultimate Thr in response to physiological signals, such as light, sucrose and osmotic shock, and that light-induced phosphorylation of the pT H\(^+\)-ATPase depends on photosynthesis.\(^15\)

In this study, we examined the plasma membrane H\(^+\)-ATPase in the moss Physcomitrella patens, which is known as a model bryophyte, and the genome has been sequenced.\(^16\),\(^17\) We searched H\(^+\)-ATPase genes with similarity to the typical plasma membrane H\(^+\)-ATPase in Arabidopsis thaliana, AHA2 in the P. patens genome database (www.cosmoss.org) and found seven H\(^+\)-ATPase homologs, designated PpHA1–PpHA7. Of these, six isoforms (PpHA1–PpHA6) possess a penultimate Thr in the C-terminal region. In contrast, the remaining isoform, PpHA7, lacks such a penultimate Thr in the C-terminus. Phylogenetic analysis using full-length amino acid sequences indicated that PpHA1–PpHA5 are clustered with Arabidopsis H\(^+\)-ATPase, and that PpHA7 is close to the non-pT H\(^+\)-ATPase of Chlamydomonas reinhardtii (Crlpump), which has no penultimate Thr (Fig. 1A). Note that PpHA6 is clustered with the non-pT H\(^+\)-ATPases, although this isoform possesses the penultimate Thr. According to classification of gene families in the

*Correspondence to: Toshinori Kinoshita; Email: kinoshita@bio.nagoya-u.ac.jp
Submitted: 05/08/12; Accepted: 05/30/12
http://dx.doi.org/10.4161/psb.20936

©2012 Landes Bioscience. Do not distribute.
The Charophyte Green Alga \textit{Chara braunii} is Unlikely to Express the \(pT \) H\(^+\)-ATPase

Next, we investigated whether the charophyte alga \textit{Chara braunii}, which is the closest relative of the land plants, \(^1\) expresses the \(pT \) H\(^+\)-ATPase using immunoblot and protein blot analyses. The results showed that there are no proteins in \textit{C. braunii} that are recognized by anti-H\(^+\)-ATPase against Arabidopsis H\(^+\)-ATPase; furthermore, the signal did not appear in immunoblots using anti-pThr and protein blots using 14-3-3 protein as a probe when characean cells were treated with FC (Fig. 2A), although endogenous 14-3-3 proteins (31.6 kD, 32.5 kD and 32.9 kD) were recognized by anti-14-3-3 against Arabidopsis GF14phi (Fig. 2B). In contrast, Arabidopsis H\(^+\)-ATPase having \(pT \) H\(^+\)-ATPase, PpHA1–PpHA5 localize between subfamilies I and IV.\(^1\)\(^8\) These results suggest that \textit{P. patens} genome encodes both \(pT \) H\(^+\)-ATPase and non-\(pT \) H\(^+\)-ATPase genes (Fig. 1A). In addition, we identified 11 typical 14-3-3 protein genes in \textit{P. patens} (Fig. 1B).

We then examined a fungal toxin fusicoccin (FC)- and light-induced phosphorylation of the penultimate Thr in H\(^+\)-ATPase in protonemata of \textit{P. patens}.\(^1\)\(^9\) An apparent 95-kD protein as the H\(^+\)-ATPase was phosphorylated in response to FC and light (50 \(\mu \)mol m\(^{-2}\) s\(^{-1}\) for 30 min) as well as in thalli of \textit{M. polymorpha} (Fig. 1C and D), suggesting that the 95-kD protein contains the \(pT \) H\(^+\)-ATPase in \textit{P. patens}, and that light also acts as a physiological signal regulating phosphorylation status of the \(pT \) H\(^+\)-ATPase in protonemata of \textit{P. patens}.

\textbf{The Charophyte Green Alga \textit{Chara braunii} is Unlikely to Express the \(pT \) H\(^+\)-ATPase}

\(pT \) H\(^+\)-ATPase, PpHA1–PpHA5 localize between subfamilies I and IV.\(^1\)\(^8\) These results suggest that \textit{P. patens} genome encodes both \(pT \) H\(^+\)-ATPase and non-\(pT \) H\(^+\)-ATPase genes (Fig. 1A). In addition, we identified 11 typical 14-3-3 protein genes in \textit{P. patens} (Fig. 1B).

We then examined a fungal toxin fusicoccin (FC)- and light-induced phosphorylation of the penultimate Thr in H\(^+\)-ATPase in protonemata of \textit{P. patens}.\(^1\)\(^9\) An apparent 95-kD protein as the H\(^+\)-ATPase was phosphorylated in response to FC and light (50 \(\mu \)mol m\(^{-2}\) s\(^{-1}\) for 30 min) as well as in thalli of \textit{M. polymorpha} (Fig. 1C and D), suggesting that the 95-kD protein contains the \(pT \) H\(^+\)-ATPase in \textit{P. patens}, and that light also acts as a physiological signal regulating phosphorylation status of the \(pT \) H\(^+\)-ATPase in protonemata of \textit{P. patens}.
an apparent mass of 95 kD from the etiolated seedlings was recognized by anti-H+-ATPase and was phosphorylated and bound to 14-3-3 protein in response to FC. In addition, we could not find the H+-ATPase containing the penultimate Thr of charophyte algae in the available database such as National Center for Biotechnology Information. Characean cells, however, have plasma membrane H+-ATPase activity, suggesting that characean cells are unlikely to express pT H+-ATPase, which binds with 14-3-3 protein on phosphorylation of the penultimate Thr, and that they express only the non-pT H+-ATPase.

From these results, we conclude that the pT H+-ATPase most likely appeared for the first time in the bryophyte; in other words, during the transition of plants from water to the terrestrial land. To verify the evolutionary appearance of the pT H+-ATPase in plants, elucidation of whole genome sequence in charophyte algae is required.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgements
We are grateful to Dr. S. Aoki of Nagoya University for providing Physcomitrella patens, and to Ms. N. Yoshino of Nagoya University Technical Center for providing Chara braunii. This work was supported in part by Grants in Aid for Scientific Research (22119005, 21227001, and 23370019 to T.K.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (T.K.); by ALCA from the Japan Science and Technology Agency (T.K.); and by a Grant in Aid for Young Scientists from the Japan Society for the Promotion of Science (S.I.)

References
1. Susman MR. Molecular analysis of proteins in the plant plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 1994; 45:211-34. http://dx.doi.org/10.1146/annurev.pp.45.060194.001235.
2. Palmgren MG. Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 2001; 52:817-35. PMID:11337417. http://dx.doi.org/10.1146/annurev.plant.52.1.817.
3. Duby G, Boutilier M. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Plant Cell 2005; 17:28-45. PMID:15918004. http://dx.doi.org/10.1105/tpc.104.024448.
4. Kinoshita T,Hayashi Y. New insights into the regulation of stomatal opening by blue light and plasma membrane H+-ATPase. Int Rev Cell Mol Biol 2011; 289:89-115. PMID:21749895. http://dx.doi.org/10.1016/b978-0-12-386039-2.00003-1.
5. Kinoshita T, Shimaoka K. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 1999; 18:5548-58. PMID:10523299. http://dx.doi.org/10.1093/emboj/18.20.5548.
6. Kerkeb L, Venema K, Donaire JP, Rodriguez-Rosales MP. Enhanced H/ATP coupling ratio of H+-ATPase and increased 14-3-3 protein content in plasma membrane of tomato cells upon osmotic shock. Physiol Plant 2002; 116:37-41. PMID:12076660. http://dx.doi.org/10.1111/j.1399-3054.2002.01105.x.
7. Niittyla T, Fuglsang AT, Palmgren MG, Fromer WB, Schulze W. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol Cell Proteomics 2007; 6:1711-26. PMID:17586839. http://dx.doi.org/10.1074/mcp.M700164-MCP200.
8. Chen Y, Hoehn K, Weckwerth W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TEG phosphopeptide enrichment and mass accuracy precursor alignment. Plant J 2010; 61:1-17. PMID:20374526.
9. Kinoshita T, Ono N, Hayashi Y, Morimoto S, Nakamura S, Soda M, et al. FLOWERING LOCUS T regulates stomatal opening.Curr Biol 2011; 21:1232-8. PMID:21737277. http://dx.doi.org/10.1101/j.cbio.2011.06.025.
10. Takahashi K, Hayashi K, Kinoshita T. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 2012; 159:632-41. PMID:22349246. http://dx.doi.org/10.1104/pp.112.196428.
11. Portillo F. Regulation of plasma membrane H(+)-ATPase in fungi and plants. Biochim Biophys Acta 2008; 1469:31-42. PMID:18062536.
12. Merchant SS, Prochnik SE, Vallen O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007; 318:245-50. PMID:17932292. http://dx.doi.org/10.1126/science.1143609.
13. Blanc G, Duncan G, Agarwala I, Borodovsky M, Girman J, Kuo A, et al. The Chlorella variabilis NC64A genome reveals adaptation to photobiosynthesis, coevolution with viruses and cryptic sex. Plant Cell 2010; 22:2943-55. PMID:20852019. http://dx.doi.org/10.1105/tpc.110.076606.
14. Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishi I, et al. Genomic analysis of organellar complexity in the multicellular green alga Volvox carteri. Science 2010; 329:223-6. PMID:20616280. http://dx.doi.org/10.1126/science.1188800.
15. Okamura M, Inoue S, Takahashi K, Ishizaki K, Kohchi T, Kinoshita T. Characterization of the plasma membrane H+-ATPase in the liverwort Marchantia polymorpha. Plant Physiol 2012; 159:826-34. PMID:22496311. http://dx.doi.org/10.1104/pp.112.195357.
16. Qin YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, et al. The deepest divergence in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA 2006; 103:15511-6. PMID:17030812. http://dx.doi.org/10.1073/pnas.060335103.
17. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 2008; 319:64-9. PMID:18079367. http://dx.doi.org/10.1126/science.1150646.
18. Arango M, Gévaudan F, Ouafarole M, Boutilier M. The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 2003; 216:355-65. PMID:12520326.
19. Kinoshita T, Shimazaki K. Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin. Plant Cell Physiol 2003; 44:424-32; PMID:12853314; http://dx.doi.org/10.1093/pcp/pce055.

20. Shimmen T, Tazawa M. Control of membrane potential and excitability of Chara cells with ATP and Mg²⁺. J Membr Biol 1977; 37:167-92; http://dx.doi.org/10.1007/BF01940931.

21. Ishizaki K, Chiyoda S, Yamato KT, Kohchi T. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 2008; 49:1084-91; PMID:18535011; http://dx.doi.org/10.1093/pcp/pcn085.

22. Hayashi Y, Nakamura S, Takemura A, Takahashi Y, Shimazaki K, Kinoshita T. Biochemical characterization of in vitro phosphorylation and dephosphorylation of the plasma membrane H+-ATPase. Plant Cell Physiol 2010; 51:1186-96; PMID:20516032; http://dx.doi.org/10.1093/pcp/pcq078.