A peer-reviewed version of this preprint was published in PeerJ on 15 March 2016.

View the peer-reviewed version (peerj.com/articles/1810), which is the preferred citable publication unless you specifically need to cite this preprint.

Chen I, Wang J, Chou S, Wu Y, Li T, Leu M, Chang W, Yang WC. (2016) Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas) PeerJ 4:e1810 https://doi.org/10.7717/peerj.1810
Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas)

I-Hua Chen, Jiann-Hsiung Wang, Shih-Jen Chou, Yeong-Huey Wu, Tsung-Hsien Li, Ming-Yih Leu, Wen-Been Chang, Wei Cheng Yang

Reverse transcription-quantitative PCR (RT-qPCR) is used for research in gene expression, and it is vital to choose appropriate housekeeping genes (HKGs) as reference genes to obtain correct result. The purpose of this study is to determine stably expressed HKGs in blood of beluga whales (Delphinapterus leucas) that can be the appropriate reference genes in relative quantification in gene expression research. Sixty blood samples were taken from 4 beluga whales. Thirteen candidate HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ) were tested using RT-qPCR. The stability values of the HKGs were determined by four different algorithms. Comprehensive analysis of the results revealed that RPL4, PGK1 and ACTB are strongly recommended for use in future RT-qPCR studies in beluga blood samples. This research provides recommendation of reference gene selection, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans. The gene expression assessment of the immune components in blood have potential to serve as important approach to evaluating cetacean health influenced by environmental insults.
Selection of reference genes for RT-qPCR studies in blood of beluga whales

(Delphinapterus leucas)

I-Hua Chen¹, Jiann-Hsiung Wang¹, Shih-Jen Chou¹, Yeong-Huey Wu², Tsung-Hsien Li³, Ming-Yih Leu³,⁴, Wen-Been Chang³, Wei-Cheng Yang¹*

¹Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan, ROC.

²Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC.

³Department of Biology, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC.

⁴Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan, ROC.

* Corresponding author: Wei-Cheng Yang. 580, Xinmin Rd., Chiayi City, 600, Taiwan, ROC.

jackywc@gmail.com
Abstract

Reverse transcription-quantitative PCR (RT-qPCR) is used for research in gene expression, and it is vital to choose appropriate housekeeping genes (HKGs) as reference genes to obtain correct result. The purpose of this study is to determine stably expressed HKGs in blood of beluga whales (*Delphinapterus leucas*) that can be the appropriate reference genes in relative quantification in gene expression research. Sixty blood samples were taken from 4 beluga whales. Thirteen candidate HKGs (*ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ*) were tested using RT-qPCR. The stability values of the HKGs were determined by four different algorithms. Comprehensive analysis of the results revealed that RPL4, PGK1 and ACTB are strongly recommended for use in future RT-qPCR studies in beluga blood samples. This research provides recommendation of reference gene selection, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans. The gene expression assessment of the immune components in blood have potential to serve as important approach to evaluating cetacean health influenced by environmental insults.

Keywords: beluga, housekeeping, gene expression, quantitative PCR.
Introduction

Reverse transcription quantitative PCR (RT-qPCR) is considered the ideal method in gene expression studies because of its high sensitivity, time efficiency, and reliability (Derveaux, Vandesompele & Hellemans, 2010; Pfister, Tatabiga & Roser, 2011). In gene expression analysis using RT-qPCR, different starting amounts of messenger RNA between samples and different efficiencies of reverse transcriptases and polymerases can be adjusted by relative quantification, which uses a reference gene (often the housekeeping gene, HKG) as an internal control to calculate target gene (e.g., cytokine gene) expression levels. HKG is required for the maintenance of basic cellular function, and is expressed in all types of cells (Pfaffl, 2004), and its expression level is described as stable. However, Brinkhof et al. (2006) reported that in dogs, the most stable control genes were ribosomal protein S5 in the liver, kidney, and mammary glands, beta 2-microglobulin (B2M) in the left ventricle, and ribosomal protein L8 (RPL8) in the prostate, indicating each tissue type has its specific stably-expressed HKG even within the same species. Vorachek et al. (2013a; 2013b) reported that for neutrophils, the most stable gene was glucose-6-phosphate dehydrogenase (G6PD) in sheep, while in bovine calves, the most stable genes were phosphoglycerate kinase I (PGK1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ); however, G6PD was ranked fifth in 10 genes tested. It has been suggested that using an inappropriate reference gene could lead to incorrect normalized
data, leading to misinterpretation of the results (Dheda et al., 2005). Therefore, selecting a suitable reference gene is needed when studying a new species or tissue type.

Cytokine gene expression research has been conducted in both free-ranging and human-cared cetaceans. Studying the correlation between cytokine gene expression and pollutants in free-ranging cetaceans can make these mammals useful sentinels for indicating the environmental status (Beineke et al., 2007; Buckman et al., 2011). Cytokine gene expression analysis has also been used as a diagnostic tool in analyzing immune status and stress induced by capture–release assessment in dolphins (Mancia, Warr & Chapman, 2008). Moreover, it has been used to evaluate the effectiveness of vaccine treatment and implicate the best duration for vaccination in human-cared cetaceans (Sitt et al., 2010). Most of the cetaceans in human care facilities have been trained to undergo voluntary blood collection, and the examination frequency can be increased when intensive monitoring is needed. The quantitative analysis of cytokine gene expression in cetacean blood could offer information, in addition to regular blood examination, for estimating the immune status of the animal and facilitating the medical treatment and health management. The most important first step to obtain an accurate assessment of cytokine gene expression in cetacean blood samples is determining the most stably expressed HKG as the reference gene. The purpose of this study is to select the reference gene in blood samples from beluga whales (Delphinapterus leucas), which are one of the most commonly found cetacean
species in human care. It would provide fundamental and practical information for the
quantitative analysis of cytokine gene expression and contribute to preventive medicine and early
diagnosis in human-cared cetaceans.
Materials and methods

Sample collection and preservation

The voluntary blood collection of beluga was performed in accordance with international guidelines, and the protocol has been reviewed and approved by Council of Agriculture of Taiwan (Approval number 1020727724). Sixty blood samples from 4 beluga whales (15 from each one) in National Museum of Marine Biology and Aquarium in Taiwan were taken monthly routine or occasionally assessment from 2011 to 2013. It has been suggested to include samples in different experimental groups or different conditions for reference gene selection (Dheda et al., 2005). Samples were from beluga whales with various body conditions including clinically healthy condition (30 samples from 4 animals), inflammation (6 samples from 4 animals), skin lesions (9 samples from 2 animals), and internal diseases with various abnormalities in blood work and cytology (15 samples from 3 animals). Five hundred microliter EDTA-anticoagulated whole blood was fixed in 1.3 mL RNAlater® (Ambion) within 5 min after drawn. Samples were stored at 4°C in the first 24 h, and then moved to -20°C for long-term storage.

RNA extraction and cDNA synthesis

Total RNA of the samples was extracted using Ribo-Pure™-Blood kit reagent (Ambion) according to the manufacturer’s instructions. RNA Armor™ Reagent (Protech) was added into
RNA solution to eliminate contaminated RNase. RNA concentration was determined using Qubit™ fluorometer with Quant-iT™ RNA Assay Kit (Invitrogen). RNA quantity of all samples was adjusted into 100 ng to keep all the samples on the same starting basis. RNA was treated with genomic DNA (gDNA) wipeout solution (Qiagen) before added into reverse transcription working solution. RNA samples after gDNA elimination were tested using qPCR directly to ensure no residue gDNA, which would interfere the analysis of mRNA expression. QuantiTect® Reverse Transcription kit (Qiagen), provided blend of oligo-dT and random primers, was used for cDNA synthesis. Complementary DNA and the remaining extracted RNA were put into -80°C for long-term storage.

100 **Primer and probe design**

Sequences of the 13 candidate cetacean HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFrC, YWHAZ) were obtained from bottlenose dolphin, striped dolphin, beluga whale, killer whale and fin whale (Balaenoptera physalus) from GenBank (Tables 1, 2). Besides 11 HKGs have been evaluated or used in previous studies (Beineke et al., 2004, 2007; Buckman et al., 2011; Mancia et al., 2008; Martinez-Levasseur et al., 2013; Müller et al., 2013; Sitt et al., 2008, 2010; Spinsanti et al., 2006, 2008), the other 2 genes that could participate in other different cell functions were also included (Echigoya et al. 2009;
Primers and corresponding UPL probes were designed and chosen using Roche UPL design software (ProbeFinder, v.2.49) based on Primer3 software (Table 2). All designed primer pairs were checked by in silico PCR algorithm in ProbeFinder, which searches the relevant genome and transcriptome for possible mis-priming sites for either of the PCR primers. Before qPCR experiment, the specificity of primers of 13 candidate genes was confirmed using Fast-Run Hotstart PCR kit (Protech) and electrophoresis.

Quantitative PCR

Quantitative PCR was conducted on 48-well reaction plates using Eco Real-Time PCR System (Illumina). Reactions were prepared in a total volume of 10 μl containing 3 μl 12-fold-diluted cDNA, 0.4 μl of each 10 μM primer, 0.2 μl of UPL probe (Roche), 5 μl FastStart Essential DNA Probes Master (Roche) and 1 μl of RNase/DNase-free sterile water (Protech). The thermocycling conditions were set as follows: polymerase activation at 95°C for 10 min, followed by 45 cycles of denaturation at 95°C for 10 s, and combined primer annealing/elongation at 60°C for 30 s. All reactions including no template control (NTC) and plate control were carried out in triplicate. The plate control is a well that carries the same reaction components on every plate, and the quantification cycle (Cq) data from the plate control wells was measuring variation. A consistent Cq value of plate control across plates was obtained.
allowing the data combination from multiple plates into a single study data set. Baseline value
was automatically determined for all plates using Eco Software V4.0. Thresholds for each HKG
were determined manually (Table 2). The Cq values in triplicate with standard deviation (SD)
<0.5 were averaged as raw Cq value. The five-point (10-fold) standard curve of each probe and
primer pair was generated from serial dilution of a nucleic acid template. The PCR amplification
efficiency (E) and R^2 of each probe and primer pair were calculated from the slope of a standard
curve using the following equation: $E = (10^{(-1/slope)} - 1) \times 100\%$. The average of at least three E
values for each HKG was used as gene-specific E for following relative quantity transformation.
This study was conducted according to MIQE (Minimum information for publication of
quantitative real-time PCR experiments) guidelines (Bustin et al., 2009).

Data analysis

Corrected Cq values (Cq corr) were transformed from raw Cq values using ΔCq formula, Cq
corr = $C_{q_{\text{min}}}$ - $\log_2 E^{\Delta Cq}$, modified from Fu et al. (2013), where ΔCq is the Cq value of a certain
sample minus the Cq value of the sample with the highest expression (lowest Cq, $C_{q_{\text{min}}}$) of each
HKG as calibrator. Stability of all HKGs were evaluated and ranked using algorithms geNorm
(Vandesompele et al., 2002), NormFinder (Andersen et al., 2004), comparative ΔCt method
(Silver et al., 2006) and Bestkeeper (Pfaffl et al. 2004) based on a web-based analysis tool.
RefFinder (http://www.leonxie.com/referencegene.php) (Xie et al. 2011). RefFinder calculated the geometric mean based on rankings obtained from each algorithm and provides the final comprehensive ranking. Thirty samples were randomly selected from the 60 samples, and the results of HKG ranking using 30 and 60 samples were analyzed comparatively.
Result

E values of the 13 candidate HKGs were between 95.47% and 101.39% that fit the strict acceptable range of 95%–105%, and R2 values were 0.992–1.000 that meet the standard of >0.99 (Table 2). According to the mean Cq value of 60 tested samples, the 13 candidate genes can be divided into two groups: high expression level (Cq < 25) and low expression level (Cq > 25; Fig. 1). ACTB showed the highest expression level (Cq = 22.08), while HPRT1 showed the lowest expression level (Cq = 31.48). All HKGs except TFRC displayed a small difference between the maximum and minimum Cq values (<5 cycles). The SD of the Cq value for the plate controls in all experiment was 0.33 (SD < 0.5 is acceptable); therefore, the data of all the plates was combined as one data set.

The commonly used reference gene exploring algorithm, geNorm, calculates the M value for gene expression stability based on the geometric mean; a lower M value signifies better stability. The gene with highest M value (the least stable gene) is excluded, and the highest M value gene among the rest of the candidates is continuously excluded to obtain a stability ranking order. M values of all the genes were below the default cut-off value (M = 1.5), showing good stability for all the genes tested in both 60- and 30-sample groups (Tables 3, 4). Another value, pairwise variation V, is used to determine the number of reference genes that are required for data analyses. V2/3 values in the 60 and 30 groups were 0.102 and 0.103 (Fig. 2), respectively, which
were below the default cut-off value (0.15). It indicated that using two HKGs as reference genes is enough to obtain reliable normalized results in relative quantification. Based on geNorm analysis, *ACTB, RPL4, PGK1*, and *B2M* were the most stable HKGs in both the 60 and 30 groups (Fig. 3).

The NormFinder program calculates the stability value based on the analysis of gene expression data and ranks the potential reference genes. Lower values are assigned to the most stable genes. The ranking results of NormFinder were essentially identical in both the 60 and 30 groups showing that *PGK1, ACTB, RPL4*, and *RPL18* were the most stable. The program BestKeeper estimates the expression stability by performing a pairwise correlation analysis of Cq values of each pair of candidate genes. BestKeeper analysis showed that the SD of all HKGs (0.423–0.880) were <1, indicating that these genes were basically stably expressed. The most stable genes identified in the BestKeeper analysis in both the 60 and 30 groups were *RPL8, RPS18*, and *B2M*. The comparative ΔCt analysis is similar to the geNorm program in that the pairs of genes are compared using Cq differences, and those genes are either stably expressed or co-regulated if the ΔCq values between the pairs of genes remain constant for all samples tested. The best choice in comparative ΔCt analysis in the 60 and 30 groups was *PGK1, RPL4*, and *ACTB*. According to RefFinder, the most stable HKGs in the 60 group were *RPL4, PGK1, B2M,*
and ACTB, while the most stable HKGs in the 30 group were PGK1, ACTB, RPL4, and RPL8 (Fig. 3).
Discussion

The four algorithms used to assess the stability of HKGs, geNorm, NormFinder, BestKeeper, and comparative ΔCt represent feasible strategies, although none of them are currently considered to be the best. BestKeeper uses raw Cq data instead of the relative expression level employed by geNorm and NormFinder for selecting the least variable gene, and it has been shown that this may lead to the different outputs among these three methods (Scharlaken et al., 2008). Comparative ΔCt and geNorm, which use a pairwise comparison approach, identified the most stable genes by assuming that HKGs are not co-regulated. This may lead to incorrect ranking results when co-regulated genes are included in the analysis (He et al., 2008). The NormFinder is likely less affected by co-regulated HKGs because it considers systematic variations through a model-based approach (Andersen, Jensen & Ørntoft, 2004). In this study, the HKG stability orders suggested by the four different algorithms were not identical, particularly with the BestKeeper program, which could be explained by the distinct principles applied by each of these algorithms. Because these algorithms can demonstrate various rankings of the tested HKGs, in this study, RefFinder was used to comprehensively evaluate and rank HKGs based on the rankings from different algorithms.

The four most stable HKGs (RPL4, PGK1, B2M, and ACTB) in RefFinder were also in high-ranking orders in NormFinder, geNorm, and comparative ΔCt, although the ranking in
BestKeeper appeared inconsistent with that in the other three algorithms. The SD$_{\text{Cq}}$ value of these four HKGs (0.474–0.595) showed in the BestKeeper analysis was essentially low indicating these genes were stably expressed. $B2M$ encodes for beta-2-microglobulin protein, which is a part of major histocompatibility complex class I molecule. It was shown that a decrease in $B2M$ expression is associated with a significant increase in leukocyte counts in dogs (Piek et al., 2011), and therefore, it might not be an appropriate reference gene for immunology studies. As a result of this report, $RPL4$, $PGK1$, and $ACTB$ are strongly recommended for use in future RT-qPCR studies using beluga blood samples. It has been proposed that the reliability of the normalization factor would increase with the number of stably expressed HKGs included in the calculations (Vandesompele et al., 2002). However, in this study the inclusion of more HKGs further reduced the V values. The V2/3 value indicated that it is not needed to include more than two genes into the normalization factor because this would not dramatically improve normalization. Furthermore, it was suggested that one could preferentially choose to use HKGs that have the same expression levels as the target gene in an experimental application to enhance the uniformity of the analysis (Spinsanti et al., 2006). According to mean Cq values, $PGK1$ was classified in the low expression level group (mean Cq > 25) and the other two genes in the high expression level group (mean Cq < 25). Therefore, it is recommended to use $RPL4$ and $PGK1$ for low-expression gene studies, such as cytokine expression studies when using beluga blood.
samples, and RPL4 and ACTB for high-expression gene studies.

In previous studies on reference gene selection in cetaceans, 30 skin biopsy samples in striped dolphins (Stenella coeruleoalba) (Spinsanti et al., 2006), 20 skin biopsy samples from 7 blue whales (Balaenoptera musculus), 7 fin whales (Balaenoptera physalus), and 6 sperm whales (Physeter macrocephalus) (Martinez-Levasseur et al., 2013), and 75 blood samples in bottlenose dolphins (Tursiops truncatus) (Chen et al., 2015) were used. Some practical points, such as available sample sizes and costs of expression stability experiments, may have an effect on the reference gene selection experiments. There is a unique opportunity in this study to compare the HKG expression stability values of 30- and 60-sample groups. The three most stable HKGs were PGK1, ACTB, and RPL4 in RefFinder when only 30 randomly selected beluga blood samples were used. The result is consistent with that using 60 samples, only differing in the ranking order of the most stable genes. These three HKGs were the most stable expression genes in geNorm, NormFinder, and comparative ΔCt, and the SD_{Cq} value (0.564–0.647) showed that they were also stably expressed. The result indicated that using only 30 beluga blood samples with various body conditions could select reliable HKGs as reference genes. Chen et al. (2015) showed similar results that using 35 bottlenose dolphin blood samples could perform reference gene selection, and PGK1, HPRT1, and RPL4 are superior reference genes. PGK1 and RPL4 are recommended as reference genes in both beluga whales (in this study) and bottlenose dolphins (Chen et al.,...
239) and it provides essential information and facilitates future reference gene studies.

240 However, there is still not enough evidence to say that these two genes are the most stable genes
241 in blood samples from toothed whales. Further studies are needed to identify if there are
242 universal reference genes applicable for an accurate normalization of gene expression in cetacean
243 blood samples because of the important value of these animals in various captive environments
244 and the significant susceptibility to environmental degradation in free-ranging species. Cytokine
245 gene expression studies using cetacean blood samples have been conducted using several
246 different HKGs as reference genes, including GAPDH and YWHAZ in harbor porpoises (Beineke
247 et al., 2004, 2007; Müller et al., 2013), GAPDH in bottlenose dolphins (Mancia et al., 2008), and
248 RPS9 in bottlenose dolphins, beluga whales, and Pacific white-sided dolphins (Lagenorhynchus
249 obliquidens) (Sitt et al., 2008, 2010). RPS9 could potentially be a suitable reference gene when
250 studying beluga blood samples because in this study it was is ranked in the middle using
251 NormFinder and comparative ΔCt, and its values in geNorm and BestKeeper were below the
252 default value, indicating basically good expression stability.

253 We reported the essential background information for the selection of reference genes in RT-
254 qPCR studies of beluga blood samples. A total of 13 candidate HKGs were evaluated, and a suite
255 of best reference genes were recommended to accurately normalize and quantify gene expression
256 in beluga whale blood. To the best of our knowledge, this is the first study to investigate
reference gene selection in beluga whales. This investigation is an important basis for future clinical immunology studies in cetaceans.

Acknowledgments

We would like to thank all veterinarians, trainers, students and assistants who participated in this project for their help. We thank two anonymous reviewers for their pertinent and helpful comments.
References

1. Andersen CL, Jensen JL, Ørntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. *Cancer Research* 64:5245-5250.

2. Beineke A, Siebert U, Müller G, Baumgärtner W. 2007. Increased blood interleukin-10 mRNA levels in diseased free-ranging harbor porpoises (*Phocoena phocoena*). *Veterinary Immunology and Immunopathology* 115:100-106.

3. Beineke A, Siebert U, van Elk N, Baumgartner W. 2004. Development of a lymphocyte-transformation-assay for peripheral blood lymphocytes of the harbor porpoise and detection of cytokines using the reverse-transcription polymerase chain reaction. *Veterinary Immunology and Immunopathology* 98:59-68.

4. Brinkhof B, Spee B, Rothuizen J, Penning LC. 2006. Development and evaluation of canine reference genes for accurate quantification of gene expression. *Analytical Biochemistry* 356:36-43.

5. Buckman AH, Veldhoen N, Ellis G, Ford JKB, Helbing CC, Ross PS. 2011. PCB-associated changes in mRNA expression in killer whales (*Orcinus orca*) from the NE Pacific Ocean.
6. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. *Clinical Chemistry* 55:611-622.

7. Chen IH, Chou LS, Chou SJ, Wang JH, Stott J, Blanchard M, Jen IF, Yang WC. 2015. Selection of suitable reference genes for normalization of quantitative RT-PCR in peripheral blood samples of bottlenose dolphins (*Tursiops truncatus*). *Scientific Reports* 5:15425.

8. Derveaux S, Vandesompele J, Hellemans J. 2010. How to do successful gene expression analysis using real-time PCR. *Methods* 50:227-230.

9. Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Rook GA, Zumla A. 2005. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. *Analytical Biochemistry* 344:141-143.

10. Echigoya Y, Sato T, Itou T, Endo H, Sakai T. 2009. Molecular characterization and expression pattern of the equine lactate dehydrogenase A and B genes. *Gene* 447:40-50.

11. Fu W, Xie W, Zhang Z, Wang S, Wu Q, Liu Y, Zhou X, Zhou X, Zhang Y. 2013. Exploring valid reference genes for quantitative real-time PCR analysis in *Plutella xylostella*.
(Lepidoptera: Plutellidae). *International Journal of Biological Sciences* 9:792-802.

12. He JQ, Sandford aJ, Wang IM, Stepants S, Knight Da, Kicic a, Stick SM, Paré PD. 2008. Selection of housekeeping genes for real-time PCR in atopic human bronchial epithelial cells. *The European Respiratory Journal* 32:755-762.

13. Kullberg M, Nilsson MA, Arnason U, Harley EH, Janke A. 2006. Housekeeping genes for phylogenetic analysis of eutherian relationships. *Molecular Biology and Evolution* 23:1493-1503.

14. Mancia A, Warr GW, Chapman RW. 2008. A transcriptomic analysis of the stress induced by capture-release health assessment studies in wild dolphins (*Tursiops truncatus*). *Molecular Ecology* 17:2581-2589.

15. Martinez-Levasseur LM, Gendron D, Knell RJ, Acevedo-Whitehouse K. 2013. Control and target gene selection for studies on UV-induced genotoxicity in whales. *BMC Research Notes* 6:264.

16. Muller S, Lehnert K, Seibel H, Driver J, Ronnenberg K, Teilmann J, van Elk C, Kristensen J, Everaarts E, Siebert U. 2013. Evaluation of immune and stress status in harbour porpoises (*Phocoena phocoena*): can hormones and mRNA expression levels serve as indicators to assess stress? *BMC Veterinary Research* 9:145.

17. Pfaffl M, Tichopad A, Prgomet C, Neuvians T. 2004. Determination of stable housekeeping
319 genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters 26:509-515.

321 18. Pfaffl MW. 2004. Relative quantification. In: Dorak T, ed. Real-time PCR. San Diego, CA: International University Line, 63-82.

19. Pfister C, Tatabiga MS, Roser F. 2011. Selection of suitable reference genes for quantitative real-time polymerase chain reaction in human meningiomas and arachnoidea. BMC Research Notes 4:275-275.

20. Piek CJ, Brinkhof B, Rothuizen J, Dekker A, Penning LC. 2011. Leukocyte count affects expression of reference genes in canine whole blood samples. BMC Research Notes 4:36-36.

21. Scharlaken B, de Graaf DC, Goossens K, Peelman LJ, Jacobs FJ. 2008. Reference gene selection for insect expression studies using quantitative real-time PCR: the head of the honeybee, Apis mellifera, after a bacterial challenge. Journal of Insect Science 8:33.

22. Silver N, Best S, Jiang J, Thein SL. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology 7:33-33.

23. Sitt T, Bowen L, Blanchard MT, Gershwin LJ, Byrne Ba, Dold C, McBain J, Stott JL. 2010. Cellular immune responses in cetaceans immunized with a porcine erysipelas vaccine.
24. Sitt T, Bowen L, Blanchard MT, Smith BR, Gershwin LJ, Byrne BA, Stott JL. 2008. Quantitation of leukocyte gene expression in cetaceans. *Developmental and Comparative Immunology* 32:1253-1259.

25. Spinsanti G, Panti C, Bucalossi D, Marsili L, Casini S, Frati F, Fossi MC. 2008. Selection of reliable reference genes for qRT-PCR studies on cetacean fibroblast cultures exposed to OCs, PBDEs, and 17beta-estradiol. *Aquatic Toxicology* 87:178-186.

26. Spinsanti G, Panti C, Lazzeri E, Marsili L, Casini S, Frati F, Fossi CM. 2006. Selection of reference genes for quantitative RT-PCR studies in striped dolphin (*Stenella coeruleoalba*) skin biopsies. *BMC Molecular Biology* 7:32-32.

27. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology* 3:RESEARCH0034.

28. Vorachek W, Bobe G, Hall J. 2013a. Reference gene selection for quantitative PCR studies in bovine neutrophils. *Advances in Bioscience and Biotechnology* 4:6-14.

29. Vorachek WR, Hugejiletu, Bobe G, Hall JA. 2013. Reference gene selection for quantitative PCR studies in sheep neutrophils. *International Journal of Molecular Sciences* 14:11484-11495.
30. Xie F, Sun G, Stiller JW, Zhang B. 2011. Genome-wide functional analysis of the cotton
transcriptome by creating an integrated EST database. *PloS one* 6:e26980.
Table 1. Function, symbol and name of HKGs in this study.

Function	Gene	Name						
Carbohydrate Metabolism	GAPDH	Glyceraldehyde-3-phosphate dehydrogenase						
	PGK1	Phosphoglycerate kinase 1						
	LDHB	Lactate dehydrogenase B						
Ribosomal Protein	RPS9	Ribosomal protein S9						
	RPL4	Ribosomal protein L4						
	RPL8	Ribosomal protein L8						
	RPL18	Ribosomal protein L18						
	RPS18	Ribosomal protein S18						
MHC	B2M	β-2-microglobin						
Transporter	TFRC	Transferrin receptor						
Cytoskeleton	ACTB	β-actin						
Signal	YWHAZ	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta						
Others	HPRT1	Hypoxantine phosphoribosyltransferase 1						
HKG Name	Accession Number	Primer Sequence (5’-3’)	UPL Probe Number	Amplicon Size (bp)	Threshold	Efficiency (%)± SD	R²	
----------	------------------	--------------------------	------------------	-------------------	-----------	-------------------	-----	
ACTB	AB603937.1	F-AGGACCTCTATGCCAACACG R-CCTTCTGCATCCTGTCAGC	157	75	0.02	97.69 ± 1.15	0.999	
B2M	DQ404542.1	F-GGTGGAGCAATCAGACCTGT R-GCGTTGGGAGTGAAACTCAG	93	78	0.035	95.81 ± 0.61	0.999	
GAPDH	DQ404538.1	F-CACCTCAAGATCGTGACAGCAA R-GCCGAAGTGGGTCATGGGAT	119	81	0.02	97.03 ± 1.32	1.000	
HPRT1	DQ533610.1	F-GTGGGCTCTCTGTGCTGTC R-ACATATTTCTGTCTGATGGAGTGT	120	81	0.012	98.17 ± 1.44	0.999	
LDHB	AB477024.1	F-TGGGGGTTAACCAGTTGTT R-AGGGTGTCTGCACCTTTCTTG	161	78	0.005	100.49 ± 1.58	0.995	
PGK1	DQ533611.1	F-CACGTGCGCTCTGCGATA R-GCAACAGCCTCAGCATCTTC	108	84	0.015	95.47 ± 0.31	0.999	
RPL4	DQ404536.1	F-CAGCCGCTGTAGTCTAAAA R-GCAAACAGCCTCCTTGTTG	119	108	0.035	96.91 ± 0.98	0.999	
RPL8	GQ141092.1	F-CGATGAGCTTGGAGGACAT R-GGTAGAGGGTTGTCCGCGATG	131	65	0.02	101.39 ± 2.47	0.997	
RPL18	DQ403041.1	F-GCAAGATCCCTCACCTTCGAC R-GAAATGCCTCATTTTTTTTG	93	104	0.02	96.55 ± 0.39	1.000	
RPS9	EU638307.1	F-CCTGACGCTGATGAGAAAGAC R-AATGCTGTCGACACTTCTTCG	155	77	0.02	98.96 ± 1.39	0.999	
RPS18	DQ404537	F-GTACGGAGCCAGCACAACC R-TAACAGACCAACGCCCACAAA	114	90	0.02	98.46 ± 1.23	0.999	
TFRC	DQ533608.1	F-TCCTTTCCGGACATATCTTCTTG R-CCGCAGCTTTTAAAGTCTGTAGT	106	73	0.02	97.79 ± 2.49	0.996	
YWHAZ	DQ404539	F-TCTCTTGCAAAAAACGGCATT	R-TGCTGTCTTTGTATGACTCTTCACT	135	76	0.003	98.35 ± 0.66	0.992
Table 3. Results of stability among 13 candidate genes computed by 4 algorithms using 60 beluga blood samples.

HKGs	Geometric Mean	Geomean of Ranking Value	Rank	Average of SD	Rank	Delta CT	Rank	SD	Rank	Stability value	Rank	M value	Rank
RPL4	2.3	1	2	0.562	2	0.523	7	0.319	2	0.336	1	0.336	1
PGK1	2.38	2	1	0.556	1	0.595	8	0.296	1	0.386	4	0.386	4
B2M	3.08	3	5	0.614	3	0.474	3	0.418	6	0.336	1	0.336	1
ACTB	3.57	4	3	0.569	3	0.522	6	0.326	3	0.345	3	0.345	3
RPL18	4.6	5	4	0.587	4	0.509	4	0.34	4	0.478	7	0.478	7
RPL8	4.82	6	9	0.664	9	0.423	1	0.499	10	0.46	6	0.46	6
RPS18	4.86	7	7	0.634	7	0.45	2	0.466	8	0.435	5	0.435	5
RPS9	6.82	8	6	0.629	6	0.712	9	0.416	5	0.507	8	0.507	8
YWHAZ	8.43	9	8	0.649	8	0.728	10	0.454	7	0.541	9	0.541	9
LDHB	9.64	10	12	0.74	12	0.519	5	0.594	12	0.594	12	0.594	12
HPRT1	10.19	11	10	0.674	10	0.761	12	0.493	9	0.564	10	0.564	10
GAPDH	11	12	11	0.684	11	0.759	11	0.511	11	0.58	11	0.58	11
TFRC	13	13	13	0.956	13	0.88	13	0.857	13	0.655	13	0.655	13
Table 4. Results of stability among 13 candidate genes computed by 4 algorithms using 30 beluga blood samples.

HKGs	Geomean of Geometric Mean Rank	Average of SD Rank	SD Rank	Stability value Rank	M Value Rank
PGK1	2.21	1	0.552	1	0.26
ACTB	2.45	2	0.593	3	0.356
RPL4	2.74	3	0.591	2	0.362
RPL8	4.43	4	0.678	8	0.51
RPL18	4.53	5	0.616	4	0.359
B2M	4.56	6	0.637	6	0.491
RPS18	4.7	7	0.642	7	0.431
RPS9	6.71	8	0.625	5	0.372
LDHB	7.52	9	0.705	10	0.529
YWHAZ	9.72	10	0.703	9	0.513
GAPDH	10.74	11	0.732	11	0.558
HPRT1	12	12	0.738	12	0.565
TFRC	13	13	1.023	13	0.926
Fig. 1 Expression levels of candidate HKGs in the tested beluga blood samples (n=60). Values are given as qPCR cycle threshold numbers (Cq values). Dots represent mean Cq values and whiskers the range of Cq values in the 60 samples.
Fig. 2 Pairwise variations generated by geNorm algorithm: (A) 60 samples; (B) 30 samples.
Fig. 3 Stability values and ranking orders determined by 4 algorisms and RefFinder: (A) 60 samples; (B) 30 samples.