THE \mathcal{LS} METHOD FOR THE CLASSICAL GROUPS
IN POSITIVE CHARACTERISTIC AND
THE RIEMANN HYPOTHESIS

LUIS ALBERTO LOMELÍ

Abstract. We provide a definition for an extended system of γ-factors for products of generic representations τ and π of split classical groups or general linear groups over a non-archimedean local field of characteristic p. We prove that our γ-factors satisfy a list of axioms (under the assumption $p \neq 2$ when both groups are classical groups) and show their uniqueness (in general). This allows us to define extended local L-functions and root numbers. We then obtain automorphic L-functions $L(s, \tau \times \pi)$, where τ and π are globally generic cuspidal automorphic representations of split classical groups or general linear groups over a global function field. In addition to rationality and the functional equation, we prove that our automorphic L-functions satisfy the Riemann Hypothesis.

INTRODUCTION

Let G_m and G_n denote either split classical groups or general linear groups of ranks m and n, respectively. Let k be a global function field with finite field of constants F_q and ring of ad`eles \mathbb{A}_k. We present a theory of automorphic L-functions $L(s, \tau \times \pi)$, where τ and π are globally generic cuspidal automorphic representations of $G_m(\mathbb{A}_k)$ and $G_n(\mathbb{A}_k)$.

The case of $G_m = GL_m$ and G_n a classical group is made possible by our work on the Langlands-Shahidi method in positive characteristic for the classical groups [10, 11]. Already in this case, the \mathcal{LS} method has particularly interesting applications. In addition to the Ramanujan conjecture for the classical groups over function fields established in [10], the zeros of $L(s, \tau \times \pi)$ satisfy $\Re(s) = 1/2$.

We note that the case of $G_m = GL_m$ and $G_n = GL_n$ gives rise to Rankin-Selberg factors. Indeed, we include a treatise of this case in a self contained manner within the Langlands-Shahidi method in [11]. And, we provide a short proof of the equality of local factors when defined via different methods in [4]. Thanks to the work of Lafforgue on the Langlands correspondence for GL_N over function fields, the Riemann Hypothesis is available for L-functions of products of cuspidal automorphic representations of $GL_m(\mathbb{A}_k)$ and $GL_n(\mathbb{A}_k)$ [8]. In this very important case, all of our results are available with no restriction on the characteristic of k.

Notice that the case of two classical groups G_m and G_n, is treated for the first time here in positive characteristic. We provide axioms for an extended system of γ-factors, L-functions and root numbers which cover all of the above mentioned cases for G_m and G_n. We first establish existence and uniqueness of γ-factors, Theorem 1.5, and then include existence and uniqueness of local L-functions and ε-factors in Theorem 4.3. The theory is complete under the assumption char(k) $\neq 2$.

1
We begin by introducing notation that is useful when dealing with systems of γ-factors, L-functions and root numbers. Local factors $\gamma(s, \tau \times \pi, \psi)$, $L(s, \tau \times \pi)$ and $\varepsilon(s, \tau \times \pi, \psi)$ are defined on the local class $\mathfrak{ls}(p, G_m, G_n)$, while global L-functions and root numbers

$$L(s, \tau \times \pi) = \prod_v L(s, \tau_v \times \pi_v), \quad \varepsilon(s, \tau \times \pi) = \prod_v \varepsilon(s, \tau_v \times \pi_v, \psi_v)$$

are defined on the global class $\mathcal{LS}(p, G_m, G_n)$ (see §1.1 and §1.2). We often write $\mathfrak{ls}(p)$ and $\mathcal{LS}(p)$ when there is no need to specify the groups G_m and G_n.

Theorem. Automorphic L-functions on $\mathcal{LS}(p)$, $p \neq 2$, satisfy the following properties:

(i) (Rationality). $L(s, \tau \times \pi)$ converges on a right half plane and has a meromorphic continuation to a rational function on q^{-s}.

(ii) (Functional equation). $L(s, \tau \times \pi) = \varepsilon(s, \tau \times \pi)L(1 - s, \tilde{\tau} \times \tilde{\pi})$.

(iii) (Riemann Hypothesis) The zeros of $L(s, \tau \times \pi)$ are contained in the line $\Re(s) = 1/2$.

Let us now give a more detailed description of the contents of the article. Theorem 1.5 concerns the existence an uniqueness of a system of γ-factors on $\mathfrak{ls}(p)$. The theorem is true with no assumption on p for $\mathfrak{ls}(p, GL_m, G_n)$. However, we assume $p \neq 2$ in order to produce γ-factors on $\mathfrak{ls}(p, G_m, G_n)$ when both G_m and G_n are classical groups. Extended γ-factors satisfy several local properties including a twin multiplicativity property when the representations are obtained via parabolic induction, as well as a stability property on $\mathfrak{ls}(p, GL_1, G_n)$ with respect to highly ramified characters of GL_1. Globally, γ-factors make an important appearance in the functional equation for partial L-functions on $\mathcal{LS}(p)$.

All of §2 is devoted to a proof of the existence part of Theorem 1.5. With the Langlands-Shahidi method now complete for the split classical groups in positive characteristic, we give a straightforward and linearly ordered presentation of γ-factors on $\mathfrak{ls}(p, GL_m, G_n)$. We recall the basic definitions in §2.1. Then, our results on the Siegel Levi case for the split classical groups [11] are summarized in §2.2. The Siegel Levi case allows us to define exterior and symmetric square γ-factors, which are uniquely characterized and are proved to be in accordance with the local Langlands conjecture for GL_m in [4]. Filling any gaps that were left in [10], the case of $\mathfrak{ls}(p, GL_m, G_n)$ is presented in §2.3 with no assumption on the characteristic. The new case of $\mathfrak{ls}(p, G_m, G_n)$, with both G_m and G_n classical groups, is developed in §2.4 under the assumption $p \neq 2$.

There are fundamental differences in local-to-global arguments between global fields of characteristic zero and characteristic p. In §3, we use a variation of a result of Vignéras that allows us to lift a local pair of irreducible supercuspidal generic representations τ_0 and π_0 to a global pair of globally generic cuspidal automorphic representations τ and π (see Proposition 3.1). We remark that, over number fields, Shahidi makes a crucial improvement upon the local-to-global argument of Henniart and Vignéras by incorporating the archimedean theory that is available at infinite places (Proposition 5.1 of [13]). Over function fields, the main difference is due to the fact that all places are non-archimedean; a place at infinity plays the role of the archimedean places. As a further remark, in the case of two general linear groups
we have a much more precise local-to-global result [4], which allows us to remove stability from the list of properties required in the characterization [6].

The uniqueness part of Theorem 1.5 is proved in § 3 over a global function field with no restriction on \(p \). We first treat the case of \(\mathfrak{L}(p, G_m, G_n) \) in § 3.2, where we can use stability of \(\gamma \)-factors combined with the Grundwald-Wang theorem of class field theory. We then proceed to the general case in § 3.3. Our method of proof resembles the approach taken in [10], and we refer to the introduction for further remarks on the local-to-global argument over a global function field (see also § 3).

Building upon extended \(\gamma \)-factors, we axiomatize local \(L \)-functions and root numbers on \(\mathfrak{L}(p) \) in § 4.1. Additional properties of \(\gamma \)-factors are recorded in § 4.2, these include a local functional equation for which we provide a proof. We extend Theorem 1.5 to a theorem on extended \(\gamma \)-factors, local \(L \)-functions and root numbers in § 4.3. Finally, we establish our main global results in § 4.4, under the assumption \(p \neq 2 \). Theorem 4.4 includes rationality, the functional equation and the Riemann Hypothesis for automorphic \(L \)-functions on \(\mathcal{L}S(p) \).

Our general results are possible since we have established a Langlands functorial lift from globally generic cuspidal automorphic representations \(\pi \) of a classical group \(G_n \) to automorphic representations \(\Pi \) of \(GL_N \) [10]. The integer \(N \) is obtained from the table of § 1.3, by minimally embedding the connected component of the Langlands dual group \(^L G_n \) of \(G_n \) into \(GL_N(\mathbb{C}) \). The image of functoriality can be further expressed as an isobaric sum

\[
\Pi = \Pi_1 \boxplus \cdots \boxplus \Pi_d,
\]

where each \(\Pi_i \) is a self-dual cuspidal automorphic representation of \(GL_{n_i} \). They satisfy the additional condition that, for each \(i \), a partial \(L \)-function \(L^\mathfrak{L}(s, \Pi_i, r \circ \rho_{n_i}) \) has a pole at \(s = 1 \), where \(r = \wedge^2 \) or \(\text{Sym}^2 \) depending on the classical group [17]. Exterior and symmetric square \(L \)-functions, and related \(\gamma \)-factors, are thoroughly studied in [4] [11]. Furthermore, [11] also develops the necessary theory for the Siegel Levi case of quasi-split Unitary groups. This leads us to Asai \(\gamma \)-factors and \(L \)-functions, which are uniquely characterized in [5]. They play a similar role for the quasi-split unitary groups, as the exterior and symmetric square \(L \)-functions do for the split classical groups, when describing the image of the functorial lift of [12] as an isobaric sum.

I would like to thank Freydoon Shahidi for many insightful mathematical conversations. Thanks are also due to Guy Henniart; our collaborative work greatly influenced the axiomatization of the system of \(\gamma \)-factors, \(L \)-functions and \(\varepsilon \)-factors presented in this paper. I would also like to thank the Département de Mathématiques d’Orsay, Université Paris-Sud 11, for their hospitality during a short visit to conduct research in May-June of 2012. Part (iii) of Theorem 4.4 for the case of \(\mathcal{L}S(p, G_m, G_n) \), \(G_n \) a classical group, was an unpublished result of the author since the summer of 2009. The opportunity presented itself to write its proof together with the extended case of \(\mathcal{L}S(p, G_m, G_n) \) during this visit.

1. Extended \(\gamma \)-factors

Let \(G_n \) be either the general linear group \(GL_n \) or a split classical group of rank \(n \). Given a ring \(R \) and an algebraic group \(G \) defined over \(R \), we often let \(G \) denote its group of rational points. Given a non-archimedean local field \(F \), let \(O_F \) denote its ring of integers, \(p_F \) its maximal ideal, \(\varpi_F \) a uniformizer, and \(q_F \) the cardinality of
its residue field. Given a global function field field k, we let q denote the cardinality of its field of constants; for a place v of k, we let q_v be the cardinality of the residue field of k_v. Given a representation σ, we let $\tilde{\sigma}$ denote its contragredient.

1.1. **Local notation.** Let $\mathfrak{ls}(p, G_m, G_n)$ denote the class of quadruples (F, τ, π, ψ) consisting of: a non-archimedean local field F of characteristic p; irreducible generic representations τ of $G_m = G_m(F)$ and π of $G_n = G_n(F)$; and, a non-trivial character ψ of F.

Given $(F, \tau, \pi, \psi) \in \mathfrak{ls}(p, G_m, G_n)$, we call it tempered (resp. discrete series, supercuspidal) if τ and π are tempered representations (resp. discrete series, supercuspidal).

1.2. **Global notation.** Let $\mathcal{LS}(p, G_m, G_n)$ denote the class of quadruples (k, τ, π, ψ) consisting of: a global function field k of characteristic p; globally generic cuspidal automorphic representations $\tau = \otimes_v \tau_v$ of $G_m = G_m(k_v)$ and $\pi = \otimes_v \pi_v$ of $G_n = G_n(k_v)$; and, a non-trivial character $\psi = \otimes_v \psi_v$ of $k \setminus k_v$.

Remark. We often write $\mathfrak{ls}(p)$ and $\mathcal{LS}(p)$ when there is no need to specify the groups G_m and G_n.

1.3. **L-groups, principal series and partial L-functions.** The connected components of the L-groups for the split classical groups are embedded into an appropriate dual group of GL_N according to the following table:

G_n	$L G_0^0 \hookrightarrow L GL_N^0$	GL_N
SO_{2n+1}	$\text{Sp}_{2n}(\mathbb{C}) \hookrightarrow GL_{2n}(\mathbb{C})$	GL_{2n}
SO_{2n}	$\text{SO}_{2n}(\mathbb{C}) \hookrightarrow GL_{2n}(\mathbb{C})$	GL_{2n}
Sp_{2n}	$\text{SO}_{2n+1}(\mathbb{C}) \hookrightarrow GL_{2n+1}(\mathbb{C})$	GL_{2n+1}

We include the possibility of $G_n = GL_n$, where we take $N = n$. Also, we let ρ_n denote the standard representation of $GL_n(\mathbb{C})$.

Let $(F, \tau, \pi, \psi) \in \mathfrak{ls}(p, G_m, G_n)$ and assume that τ and π are unramified principal series. Then, the Satake parametrization gives semisimple conjugacy classes $\{A_\tau\}$ in $L G_0^0 \hookrightarrow GL_M(\mathbb{C})$ and $\{B_\pi\}$ in $L G_0^0 \hookrightarrow GL_N(\mathbb{C})$. Then, L-functions for unramified principal series representations are defined by

$$L(s, \tau \times \pi) = \frac{1}{\det(I - \rho_M(A_\tau) \otimes \rho_N(B_\pi)q^{-s})}.$$

Given $(k, \tau, \pi, \psi) \in \mathcal{LS}(p, G_m, G_n)$, we take S to be a finite set of places of k such that τ, π and ψ are unramified for $v \notin S$. The corresponding partial L-functions are defined by

$$L^S(s, \tau \times \pi) = \prod_{v \notin S} L(s, \tau_v \times \pi_v).$$

We can show that partial L-functions converge on a right half plane; in fact, they have a meromorphic continuation to a rational function on q^{-s}.
1.4. **Axioms for a system of γ-factors.** The Langlands-Shahidi method in positive characteristic allows us to produce a system of rational functions \(\gamma(s, \tau \times \pi, \psi) \in \mathbb{C}(q_F^{-s}) \) on \(\mathfrak{I}(p, \text{GL}_m, \text{G}_n) \). In this article, we concoct a system of extended γ-factors on \(\mathfrak{I}(p, \text{G}_m, \text{G}_n) \). Extended γ-factors can be characterized by a list of local properties together with their role in the global functional equation.

(i) (Naturality). Let \((F, \tau, \pi, \psi) \in \mathfrak{I}(p)\), and let \(\eta : F' \to F \) be an isomorphism of local fields. Let \((F', \tau', \pi', \psi') \in \mathfrak{I}(p)\) be the quadruple obtained from \((F, \tau, \pi, \psi)\) via \(\eta \). Then

\[
\gamma(s, \tau \times \pi, \psi) = \gamma(s, \tau' \times \pi', \psi').
\]

(ii) (Isomorphism). Let \((F, \tau, \pi, \psi) \in \mathfrak{I}(p)\). If \((F, \tau', \pi', \psi') \in \mathfrak{I}(p)\) is such that \(\tau \simeq \tau' \) and \(\pi \simeq \pi' \), then

\[
\gamma(s, \tau \times \pi, \psi) = \gamma(s, \tau' \times \pi', \psi).
\]

(iii) (Compatibility with class field theory). Let \((F, \chi_1, \chi_2, \psi) \in \mathfrak{I}(p, \text{GL}_1, \text{GL}_1)\). Then

\[
\gamma(s, \chi_1 \times \chi_2, \psi) = \gamma(s, \chi_1 \chi_2, \psi).
\]

(iv) (Multiplicativity). Let \((F, \tau_0, \pi_j, \psi) \in \mathfrak{I}(p, \text{G}_{m_0}, \text{G}_{n_0})\), \(0 \leq i \leq d, 0 \leq j \leq e; \text{G}_{m_0} \text{ and } \text{G}_{n_0} \text{ can be classical groups or general linear groups; } \text{G}_{m_i} = \text{GL}_{m_i} \text{ and } \text{G}_{n_j} = \text{GL}_{n_j} \text{ for } 1 \leq i \leq d, 1 \leq j \leq e. \) Set \(m = \sum m_i \) and \(n = \sum n_j \). If \(\text{G}_{m_0} \) (resp. \(\text{G}_{n_0} \)) is a classical group, take \(\text{G}_m \) (resp. \(\text{G}_n \)) to be a classical group of the same type. Let \(\text{P}_m \) (resp. \(\text{P}_n \)) be the standard parabolic subgroup of \(\text{G}_m \) (resp. \(\text{G}_n \)) with Levi \(\text{M}_m = \prod_{i=1}^d \text{GL}_{m_i} \times \text{G}_{m_0} \) (resp. \(\text{M}_n = \prod_{j=1}^e \text{GL}_{n_j} \times \text{G}_{n_0} \)).

First, assume \(m_0 \geq 1 \) and \(n_0 \geq 1 \). Let \(\pi \) be the generic constituent of

\[
\text{ind}_{\text{P}_m}(\tau_1 \otimes \cdots \otimes \tau_d \otimes \tau_0),
\]

and let \(\pi \) be the generic constituent of

\[
\text{ind}_{\text{P}_n}(\pi_1 \otimes \cdots \otimes \pi_e \otimes \pi_0).
\]

When \(m_0 = 0 \) (resp. \(n_0 = 0 \)) we make the following conventions: take \(\tau_0 \) (resp. \(\pi_0 \)) to be the trivial character of \(\text{GL}_1(F) \) if \(\text{G}_m \) (resp. \(\text{G}_n \)) is a symplectic group; in all other cases, we interpret \(\gamma \)-factors involving \(\tau_0 \) (resp. \(\pi_0 \)) to be trivial.

(iv.a) If both \(\text{G}_m \) and \(\text{G}_n \) are classical groups, then

\[
\gamma(s, \tau \times \pi, \psi) = \gamma(s, \tau_0 \times \pi_0)
\]

\[
\times \prod_{i=1}^d \gamma(s, \tau_i \times \pi_0, \psi) \gamma(s, \pi_0 \times \tau_0, \psi) \prod_{j=1}^e \gamma(s, \tau_0 \times \pi_j, \psi) \gamma(s, \tau_0 \times \pi_j, \psi)
\]

\[
\times \prod_{1 \leq h \leq d, 1 \leq l \leq e} \gamma(s, \tau_h \times \pi_l, \psi) \gamma(s, \tau_h \times \pi_l, \psi) \gamma(s, \pi_l \times \tau_l, \psi) \gamma(s, \pi_l \times \tau_l, \psi).
\]

(iv.b) If \(\text{G}_m = \text{GL}_m \) and \(\text{G}_n \) is a classical group, then

\[
\gamma(s, \tau \times \pi, \psi) = \prod_{i=0}^d \gamma(s, \tau_i \times \pi_0, \psi) \times \prod_{j=0}^d \prod_{j=1}^e \gamma(s, \tau_i \times \pi_j, \psi) \gamma(s, \tau_i \times \pi_j, \psi).
\]
(iv.c) If \(G_m = \text{GL}_m \) and \(G_n = \text{GL}_n \), then
\[
\gamma(s, \tau \times \pi, \psi) = \prod_{i,j} \gamma(s, \tau_i \times \pi_j, \psi).
\]

(v) (Dependence on \(\psi \)). Let \((F, \tau, \pi, \psi) \in \mathfrak{Is}(p, G_m, G_n)\). Given \(a \in F^\times \), let \(\psi^a \) denote the character of \(F \) given by \(\psi^a(x) = \psi(ax) \). Then
\[
\gamma(s, \tau \times \pi, \psi^a) = \omega_\tau(a)^h \omega_\pi(a)^l |a|^{\frac{h(l(s-\frac{1}{2}))}{2}} \gamma(s, \tau \times \pi, \psi),
\]
where \(h = 2m \) if \(G_m = \text{SO}_{2m} \), \(\text{SO}_{2m+1} \); \(h = 2m+1 \) if \(G_m = \text{Sp}_{2m} \); \(h = m \) if \(G_m = \text{GL}_m \); and, similarly for \(l \), depending on \(G_n \).

(vi) (Stability). Let \((F, \eta, \pi_i, \psi) \in \mathfrak{Is}(p, \text{GL}_1, G_n)\), \(i = 1, 2 \), where \(\pi_1 \) and \(\pi_2 \) have the same central character and \(\eta \) is highly ramified. Then
\[
\gamma(s, \eta \times \pi_1, \psi) = \gamma(s, \eta \times \pi_2, \psi).
\]

(vii) (Functional equation). Let \((k, \tau, \pi, \psi) \in \mathcal{LS}(p)\), then
\[
L^S(s, \tau \times \pi) = \prod_{v \in S} \gamma(s, \tau_v \times \pi_v, \psi_v)L^S(1 - s, \tilde{\tau} \times \tilde{\pi}).
\]

1.5. Theorem. There exists a system of \(\gamma \)-factors on \(\mathfrak{Is}(p, \text{GL}_m, G_n) \) satisfying properties (i) – (vii). If \(p \neq 2 \), there exists a system of \(\gamma \)-factors on \(\mathfrak{Is}(p, G_m, G_n) \) satisfying properties (i) – (vii). Any system of \(\gamma \)-factors satisfying properties (i) – (vii) is uniquely determined.

2. Existence

A treatise of \(\gamma \)-factors, \(L \)-functions and root numbers for general linear groups is presented in a self contained manner within the Langlands-Shahidi method in [11] and the appendix [6]. We now complete the study begun in [10] for the cases involving split classical groups.

2.1. The Langlands-Shahidi local coefficient for the split classical groups in positive characteristic. Let \(G \) be a split classical group of rank \(l \) and let \(B = TU \) be the Borel subgroup of upper triangular matrices with maximal torus \(T \) and unipotent radical \(U \). Let \(P \) be the standard maximal parabolic subgroup of \(G \) with maximal Levi \(M = \text{GL}_m \times G_n \), \(l = m + n \), and unipotent radical \(N \). Given \((F, \tau, \pi, \psi) \in \mathfrak{Is}(p, \text{GL}_m, G_n)\), we can form a smooth irreducible generic representation \(\sigma = \tau \otimes \pi \) of \(M \).

Let \(\Sigma \) denote the roots of \(G \) with respect to the maximal torus \(T \), \(\Sigma^+ \) the positive roots, and \(\Delta \) a basis fixed by our choice of Borel subgroup. Let \(N_\alpha \) denote the one parameter subgroup associated to \(\alpha \in \Sigma \). The surjection \(N \rightarrow N/\prod_{\alpha \in \Sigma^+ - \Delta} N_\alpha \simeq \prod_{\alpha \in \Delta} N_\alpha \) allows us to extend the character \(\psi \) of \(F \) to a non-degenerate character \(\psi \) of \(N \) by setting \(\psi(\sum_{\alpha \in \Delta} x_\alpha) = \prod_{\alpha \in \Delta} \psi(x_\alpha) \). Let \(\alpha_m \in \Delta \) be such that \(P \) is the maximal parabolic subgroup corresponding to \(\Delta - \{\alpha_m\} \). Then, we let \(\psi_M \) be the character of \(U_M = U \cap M \) obtained from \(\psi \) via the surjection \(U_M \rightarrow \prod_{\alpha \in \Delta - \{\alpha_m\}} N_\alpha \).

For every \(\alpha \in \Delta \), we fix an embedding for the corresponding semisimple rank one group \(G_\alpha \) into \(G \) and fix a representative \(w_\alpha \) for the corresponding Weyl group element as in [11]. We abuse notation and identify Weyl group elements with their fixed representatives. Let \(w_0 = w_l w_{l,M} \), where \(w_l \) is the longest Weyl group element of \(G \) and \(w_{l,M} \) is the longest Weyl group element with respect to
Then, the non-degenerate characters \(\psi \) of \(N \) and \(\psi_M \) of \(U_M \) are \(w_0 \)-compatible, i.e., \(\psi(u) = \psi_M(w_0^{-1}uw_0) \) for \(u \in U_M \).

Let \(\sigma = \tau \otimes \tilde{\pi} \) be a \(\psi_M \)-generic representation of \(M = \text{GL}_m(F) \times G_n \). We then let \(I(s, \sigma) \) be the unitarily induced representation

\[
\text{ind}^G_F((\det(\cdot))^s, \tau \otimes \tilde{\pi}).
\]

Let \(V(s, \sigma) \) denote the space of \(I(s, \sigma) \). If \(\lambda_M \) is a Whittaker functional for \(\sigma \), then \(I(s, \sigma) \) is \(\psi \)-generic for the Whittaker functional \(\lambda_\psi \) given by

\[
\lambda_\psi(s, \sigma)f = \int_N \lambda_M(w_0^{-1}n)\overline{\psi}(n)\,dn,
\]

where \(f \in V(s, \sigma) \). The integral on the right hand side converges as a principal value integral over compact open subgroups of \(N \).

We also have an intertwining operator \(\Lambda(s, \sigma, w_0) : V(s, \sigma) \to V(-s, w_0^{-1}(\sigma)) \), given by

\[
\Lambda(s, \sigma, w_0)f(g) = \int_N f(w_0^{-1}ng)\,dn,
\]

where we write \(w_0(\sigma) \) for the representation given by \(w_0(\sigma)(x) = \sigma(w_0^{-1}xw_0) \). It converges for \(\Re(s) \gg 0 \) and extends to a rational operator on \(q_F^{-s} \).

The local coefficient is then defined using the uniqueness property of Whittaker models and the relationship

\[
\lambda_\psi(s, \sigma)f = C_\psi(s, \sigma, w_0)\lambda_\psi(-s, w_0(\sigma))\Lambda(s, \sigma, w_0)f.
\]

The local coefficient \(C_\psi(s, \sigma, w_0) \) is a rational function on \(q_F^{-s} \).

2.2. The case of a Siegel Levi subgroup. The case of a Siegel Levi subgroup \(M \simeq \text{GL}_n \) of \(G_n \) is studied in [4] when \(G_n = \text{SO}_{2n} \) or \(\text{SO}_{2n+1} \). In these cases the Langlands-Shahidi method allows us to study exterior square and symmetric square \(L \)-functions; the case of a Siegel Levi subgroup of \(\text{Sp}_{2n} \) is included in [11]. These cases provide an important step in the Langlands-Shahidi method for the split classical groups. Given an irreducible generic representation \(\tau \) of \(\text{GL}_n(F) \), we define

\[
C_\psi(s, \tau, w_0) = \begin{cases}
\gamma(s, \tau, \text{Sym}^2\rho_n, \psi) & \text{if } G = \text{SO}_{2n+1} \\
\gamma(s, \tau, \wedge^2\rho_n, \psi) & \text{if } G = \text{SO}_{2n}.
\end{cases}
\]

Here, \(\rho_n \) is the standard representation of \(\text{GL}_n(C) \), the dual group of \(\text{GL}_n \), and \(\gamma(s, \tau, \psi) \) is a Godement-Jacquet \(\gamma \)-factor. For unramified principal series representations, the above definition agrees with the Satake parametrization and provides a definition of exterior square and symmetric square local factors for general smooth representations. We now state the main result of [4], which shows that Langlands-Shahidi \(\gamma \)-factors are in accordance with the local Langlands correspondence in positive characteristic [9].

Theorem. Let \(\tau \) be an irreducible smooth representation of \(\text{GL}_n(F) \) and let \(\sigma \) be an \(n \)-dimensional Frobenius-semisimple \(\ell \)-adic representation of the Weil-Deligne group in the isomorphism class \(\sigma(\tau) \) corresponding to \(\tau \) via the local Langlands correspondence. Then

\[
\gamma(s, \tau, r \circ \rho_n, \psi) = \gamma(s, r \circ \sigma, \psi),
\]

where \(r = \text{Sym}^2 \) or \(\wedge^2 \).
For the remaining case of a Siegel Levi subgroup of a split classical group, let $\gamma(s, \tau, \psi)$ denote a Godement-Jacquet γ-factor. Then

$$C_{\psi}(s, \tau, w_0) = \gamma(s, \tau, \psi)\gamma(2s, \tau, \lambda_2^2 \rho_n, \psi)$$ if $G = Sp_{2n}$.

2.3. The case of $\mathfrak{sl}(p, GL_m, G_n)$. The study of γ-factors, L-functions and root numbers on $\mathfrak{sl}(p, GL_m, G_n)$ and $LS(p, GL_m, G_n)$ was begun in [10]. We now gather the necessary results that establish the existence part of Theorem [13] in these cases; we use the conventions of [11] regarding Weyl group element representatives and normalization of Haar measures. Let $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p, GL_m, G_n)$ and let $\sigma = \tau \otimes \tilde{\pi}$.

We first assume that σ is a ψ_M-generic representation of M.

Having defined exterior and symmetric square γ-factors, which are in accordance with the local Langlands correspondence for GL_n, the γ-factors $\gamma(s, \tau \times \pi, \psi)$ are defined via the local coefficient:

$$C_{\psi}(s, \sigma, w_0) = \begin{cases}
\gamma(s, \tau \times \pi, \psi)\gamma(2s, \tau, \text{Sym}^2 \rho_n, \psi) & \text{if } G = SO_{2n+1} \\
\gamma(s, \tau \times \pi, \psi)\gamma(2s, \tau, \lambda_2^2 \rho_n, \psi) & \text{if } G = Sp_{2n} \text{ or } SO_{2n}.
\end{cases}$$

Let $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p, GL_m, G_n)$, with $\sigma = \tau \otimes \tilde{\pi}$ ψ_M-generic. An isomorphism of local fields $\eta : F' \to F$, takes normalized Haar measures on $N(F)$ to normalized Haar measures on $N(F')$. Hence, the local coefficients $C_{\psi}(s, \sigma, w_0)$ and $C_{\psi'}(s, \sigma', w_0)$ are equal. Also, we have an isomorphism property for the local coefficient given two isomorphic ψ_M-generic representations σ and σ' of M. Thus, properties (i) and (ii) follow for ψ_M-generic σ and σ'. Property (iii) is included in the list of semisimple rank one cases of [11]. Property (iv.b) for the classical groups is Theorem 6.7 of [10], where it is explicitly stated.

We now discuss the relationship for γ-factors as the character varies. Given a triple $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p, GL_m, G_n)$, the representation $\sigma = \tau \otimes \tilde{\pi}$ is generic with respect to a non-degenerate character χ_M of U_M. We will take χ to be a non-degenerate character of U, which is w_0-compatible with χ_M. Now, given the group G, we can embed it into a group \tilde{G} with Borel subgroup $B = TU$. The group \tilde{G} has the same derived group as G and has $H^1(Z_G) = \{1\}$ (see § 5 of [10]). Thus, \tilde{T} acts transitively on the set of non-degenerate characters of U. Let $t \in T$ be such that the non-degenerate character $\tilde{\psi}_M$ of U_M is equal to $\chi_{t, M}$, where $\chi_M(u) = \chi_M(t^{-1}ut)$. The character χ is taken so that $\psi = \chi_t$ on U, and w_0-compatibility is preserved for the action of $t \in \tilde{T}$ on the non-degenerate characters. Let σ_t be defined by $\sigma_t(m) = \sigma(t^{-1}mt)$. It is a ψ_M-generic representation. Then, we have γ-factors defined on all of $\mathfrak{sl}(p, GL_m, G_n)$ via the local coefficient as follows

$$\gamma(s, \pi, \psi) = C_{\psi}(s, \pi_t, w_0).$$

We have a formula for the local coefficient when the character ψ varies. Written explicitly for γ-factors gives property (v) on $\mathfrak{sl}(p, GL_m, G_n)$.

Property (vi), stability of γ-factors in positive characteristic, is the content of Theorem 6.12 of [10] for the split classical groups. This includes the case of characteristic 2.

Finally, let $(F, \tau, \pi, \psi) \in LS(p, GL_m, G_n)$. The crude functional equation for the local coefficient of split classical groups over function fields, Theorem 5.14 of [loc. cit.], reads

$$LS(s, \tau \times \pi)L^S(2s, \tau, r \circ \rho_m) = \prod_{v \in S} C_{\psi_v}(s, \tau_v \otimes \tilde{\pi}_v, w_0)L^S(1-s, \tilde{\tau} \times \tilde{\pi})L^S(1-2s, \tilde{\tau}, r \circ \rho_m),$$
where \(r = \text{Sym}^2 \) or \(\wedge^2 \) depending on the classical group and we use the conventions of \([11]\).

For every \(v \in S \) we have that

\[
C_{\psi_v} = \gamma(s, \tau_v \times \pi_v, \psi_v)\gamma(2s, \tau_v, r \circ \rho_m, \psi_v).
\]

The study of exterior and symmetric square \(\gamma \)-factors begun in \([10]\) is completed in \([11]\). We have the functional equation:

\[
L^S(s, \tau, r \circ \rho_m) = \prod_{v \in S} \gamma(s, \tau_v, r \circ \rho_m, \psi_v)L^S(1 - s, \tilde{\tau}, r \circ \rho_m).
\]

Combining this equation with the crude functional equation of the local coefficient gives property (vii) for the corresponding \(\gamma \)-factors:

\[
L^S(s, \tau \times \pi) = \prod_{v \in S} \gamma(s, \tau_v \times \pi_v, \psi_v)L^S(1 - s, \tilde{\tau} \times \tilde{\pi}).
\]

Therefore, we can conclude that the existence part of Theorem 1.5 holds in the case of \(\mathfrak{sl}(p, \text{GL}_m, G_n) \). Notice that no assumption on the characteristic is made for this part of the theorem.

2.4. The general case. A system of \(\gamma \)-factors on \(\mathfrak{sl}(p, \text{GL}_m, G_n) \) gives a system of \(\gamma \)-factors on \(\mathfrak{sl}(p, G_m, \text{GL}_n) \) via the relationship

\[
\gamma(s, \pi \times \tau, \psi) := \gamma(s, \tau \times \pi, \psi),
\]

for \((F, \pi, \tau, \psi) \in \mathfrak{sl}(p, G_m, \text{GL}_n)\). We now build upon § 9 of \([10]\), which is written under the assumption \(p \neq 2 \). We make this assumption for the rest of this section.

Also, we focus on the case of two classical groups \(G_m \) and \(G_n \); we let \(M \) and \(N \) denote the positive integers obtained from \(m \) and \(n \) via the table on § 1.3.

First, let \((F, \pi, \tau, \psi) \in \mathfrak{sl}(p, G_m, G_n)\) be such that \(\tau \) is supercuspidal. By Proposition 9.4 of \([10]\), there exists a generic representation \(T \) of \(\text{GL}_M \) such that

\[
\gamma(s, \tau \times \rho, \psi) = \gamma(s, T \times \rho, \psi),
\]

for every supercuspidal representation \(\rho \) of \(\text{GL}_n(F) \). The representation \(T \) is unique due to Théorème 1.1 of \([3]\); it is called the local functorial lift of \(\tau \).

An irreducible generic discrete series representation \(\tau \) of a classical group can be described in terms of its inducing data

\[
\tau \hookrightarrow \text{ind}^{G_m}_{F_m}(\delta_1 \otimes \cdots \otimes \delta_d \otimes \delta'_1 \otimes \cdots \otimes \delta'_c \otimes \tau_0),
\]

where the \(\delta_i \)'s and the \(\delta'_i \)'s are essentially square integrable representations of \(\text{GL}_m(F) \) and \(\tau_0 \) is an irreducible generic supercuspidal representation of \(G_{m_0} \), with \(G_{m_0} \) is a classical group of the same type as \(G_m \). Following the results of Moeglin-Tadić \([13]\), this is made precise in equation (9.1) of \([10]\). The case of \(m_0 = 0 \) is allowed, with appropriate interpretations for the corresponding formulas. If \(T_0 \) is the local functorial lift of \(\tau_0 \), then the local functorial lift \(T \) of \(\tau \) is the generic constituent of

\[
\text{ind}^{G_m}_{F_m}(\delta_1 \otimes \cdots \otimes \delta_d \otimes \delta'_1 \otimes \cdots \otimes \delta'_c \otimes T_0 \otimes \delta''_1 \otimes \cdots \otimes \delta''_c \otimes \delta_1 \cdots \otimes \delta_1).
\]

The representation \(T \) is a self-dual tempered representation of \(\text{GL}_M(F) \).

Now, an irreducible generic tempered representation of \(G_m \) is a constituent of

\[
\text{ind}^{G_m}_{F_m}(\delta_1 \otimes \cdots \delta_d \otimes \tau_0),
\]
where the δ_i’s are discrete series representations of $GL_m(F)$ and τ_0 is a generic discrete series of G_m, where G_m is a classical group of the same kind as G_m.

Then, the local functorial lift T of τ is given by

$$\text{ind}_{P_m}^{G_m}(\delta_1 \otimes \cdots \otimes \delta_d \otimes T_0 \otimes \tilde{\delta}_d \otimes \tilde{\delta}_1),$$

where T_0 is the local functorial lift of the generic discrete series representation τ_0.

An arbitrary irreducible generic representation τ of G_m can be described via the
work of Muić on the standard module conjecture $[14]$. Then,

$$\tau = \text{ind}_{P_m}^{G_m}(\tau_1 \nu^{\tau_1} \otimes \cdots \otimes \tau_d \nu^{\tau_d} \otimes \tau_0).$$

Here, each τ_i is a tempered representation of $GL_m(F)$; τ_0 is a generic tempered representation of G_{m_0}, where G_{m_0} is a classical group of the same kind as G_m; and, $\nu = |\text{det}(\cdot)|_F$. If $G_m = SO_{2n}$, and τ_0 is the trivial representation of $G_{m_0}(F)$ and $m_d = 1$, the above formula needs the following modification

$$\tau = \text{ind}_{P_m}^{G_m}(\tau_1 \nu^{\tau_1} \otimes \cdots \otimes \tau_d \nu^{\tau_d}),$$

where we have $0 < |r_d| < r_{d-1} < \cdots < r_1$. In all other cases, it is given by equation (2.5), where the exponents can be taken so that $0 < r_d < \cdots < r_1$.

The local functorial lift T of τ is then given as the unique irreducible quotient of

$$\text{ind}_{P_m}^{GL_m(F)}(\tau_1 \nu^{\tau_1} \otimes \cdots \otimes \tau_d \nu^{\tau_d} \otimes T_0 \otimes \tilde{\tau}_d \nu^{-\tau_d} \otimes \cdots \otimes \tilde{\tau}_1 \nu^{\tau_1}),$$

where T_0 is the local functorial lift of τ_0, with appropriate modifications if the induced representation is given by (2.6). The local lift has the property that

$$\gamma(s, \tau \times \rho, \psi) = \gamma(s, T \times \rho, \psi),$$

for any irreducible generic representation ρ of $GL_n(F)$.

With a description of the local image of functoriality, we can now obtain a system of extended γ-factors. Given $(F, \tau, \pi, \psi) \in \mathcal{I}(p, G_m, G_n)$ let $(F, T, \pi, \psi) \in \mathcal{I}(p, GL_M, G_n)$ be such that T is the local functorial lifts of τ. Then, we define

$$\gamma(s, \tau \times \pi, \psi) := \gamma(s, T \times \pi, \psi).$$

We have that $\gamma(s, \tau \times \pi, \psi) = \gamma(s, \pi \times \tau, \psi)$ for every $(F, \tau, \pi, \psi) \in \mathcal{I}(p, G_m, G_n)$. Furthermore, if $(F, T, \Pi, \psi) \in \mathcal{I}(p, GL_M, GL_N)$, where T and Π are the local functorial images of τ and π, then

$$\gamma(s, \tau \times \pi, \psi) = \gamma(s, T \times \Pi, \psi).$$

It is now an exercise to show that properties (i) and (ii) are verified; property (iii) remains as before; and, our definition is indeed compatible with multiplicativity, property (iv). The dependence on ψ can now be obtained from the corresponding property for $\gamma(s, T \times \Pi, \psi)$ (see property (iv) in the main Theorem of $[6]$). And, stability remains as before.

Given $(k, \tau, \pi, \psi) \in \mathcal{L}(p, G_m, G_n)$ let T and Π be the functorial lifts of τ and π. This is possible via Theorem 9.1 of $[10]$. In fact, the work of Ginzburg, Rallis and Soudry allows us to give a precise description of the image of functoriality $[17]$. The global functorial lift T of τ can be expressed as an isobaric sum

$$T = T_1 \boxplus \cdots \boxplus T_d,$$

where each $T_i, 1 \leq i \leq d$, is a unitary self-dual cuspidal automorphic representation of $GL_{M_i}(A_k)$. Also, $\Pi_i \nmid \Pi_j$ whenever $i \neq j$. Furthermore, if S is a sufficiently large finite set of places of k, then
(i) $L^S(s, \Pi_k, \wedge^2 \rho_m)$ has a pole at $s = 1$, if $G_m = \text{SO}_{2m+1}$;
(ii) $L^S(s, \Pi_k, \text{Sym}^2 \rho_m)$ has a pole at $s = 1$, if $G_m = \text{SO}_{2m}$ or Sp_{2m}.

We can similarly express the global functorial lift Π of π as an isobaric sum.

The functional equation for extended γ-factors can then be obtained from the above description of the global image and the functional equation for Rankin-Selberg γ-factors, i.e.,

$$L^S(s, \tau \times \pi) = L^S(s, T \times \Pi)$$

$$= \prod_{v \in S} \gamma(s, T_v \times \Pi_v, \psi_v)L^S(1 - s, T \times \Pi)$$

$$= \prod_{v \in S} \gamma(s, \tau_v \times \pi_v, \psi_v)L^S(1 - s, \tau \times \pi),$$

for every $(k, \tau, \pi, \psi) \in \mathcal{L}(p, G_m, G_n)$.

3. Uniqueness

In the cases involving classical groups, we use a variation of a local-to-global result of Vignéras, which follows from the proof of Theorem 2.2 of [18]. We note that, over a global function field, a place at infinity plays the role that archimedean places play over number fields; the notion of an automorphic representation over function fields is independent of the choice of place at infinity. To prove the following proposition, we start with a local field F and take a global field k such that $k_{v_0} \simeq F$ at a place v_0 of k. We fix two different places v_1 and v_2 over the same function field k. Then one can apply the observation made on p. 469 of [loc. cit.] to the construction of globally generic cuspidal automorphic representations τ and π from the local representations τ_0 and π_0. Throughout this section, we impose no restriction on p.

3.1. Proposition. Let $(F, \tau_0, \pi_0, \psi_0) \in \mathfrak{L}(p, G_m, G_n)$ be supercuspidal. Then, there exists a $(k, \tau, \pi, \psi) \in \mathcal{L}(p, G_m, G_n)$ and a set of places $S = \{v_0, v_1, v_2\}$ of k such that

(i) $k_{v_0} \simeq F$;
(ii) $\tau_{v_0} \simeq \tau_0$ and $\pi_{v_0} \simeq \pi_0$;
(ii) τ_v is an unramified principal series for $v \notin \{v_0, v_1\}$;
(iv) π_v is an unramified principal series for $v \notin \{v_0, v_2\}$.

3.2. Uniqueness for $\mathfrak{L}(p, GL_1, G_n)$. Let γ be a rule on $\mathfrak{L}(p, GL_1, G_n)$ which assigns to every $(F, \chi, \pi, \psi) \in \mathfrak{L}(p, GL_1, G_n)$ a rational function on q_F^{-s} satisfying properties (i)-(vii). Using property (iv), we can reduce to the case when π is supercuspidal.

Given $(F, \chi_0, \pi_0, \psi_0) \in \mathfrak{L}(p, GL_1, G_n)$ supercuspidal we can lift it to a global $(k, \chi, \pi, \psi) \in \mathcal{L}(p, GL_1, G_n)$ where π_v is an unramified principal series for $v \notin \{v_0, v_1\}$ as in Proposition 3.1. However, in this situation we can take a character χ_{v_0} of $k_{v_0}^{\times}$ which is isomorphic to χ_0 and a highly ramified character χ_{v_2} of $k_{v_2}^{\times}$. We then apply the Grundwald-Wang theorem of class field theory [1], in order to lift χ_{v_0} and χ_{v_2} to a grössencharakter $\chi : k^{\times} \backslash k_k^{\times} \rightarrow \mathbb{C}^{\times}$. From properties (i) and (ii) we have that

$$\gamma(s, \chi_{v_0} \times \pi_{v_0}, \psi_{v_0}) = \gamma(s, \chi_{v_0} \times \pi_{v_0}, \psi_{v_0}),$$

and we can assume ψ_{v_0} is obtained from ψ_0 using property (v) if necessary.
For every \(v \notin \{ v_0, v_2 \} \), we have that
\[
\text{ind}_{B_n}^G(\mu_1, v \otimes \cdots \otimes \mu_n, v),
\]
where \(\mu_1, v, \ldots, \mu_n, v \) are unramified characters. If \(G_n = \text{SO}_{2n} \) or \(\text{SO}_{2n+1} \), then
\[
\gamma_i(s, \chi_v \times \pi, \psi) = \prod_{i=1}^{n} \gamma_i(s, \chi_v \mu_i, v, \psi) \gamma_i(s, \chi_v \mu_i^{-1}, v).
\]
And, if \(G_n = \text{Sp}_{2n} \), then
\[
\gamma_i(s, \chi_v \times \pi, \psi) = \gamma(s, \chi_v, \psi) \prod_{i=1}^{n} \gamma(s, \chi_v \mu_i, v, \psi) \gamma(s, \chi_v \mu_i^{-1}, v).
\]
The \(\gamma \)-factors on the right hand side of the previous two equations are abelian \(\gamma \)-factors of class field theory. Hence, the rule \(\gamma \) is uniquely determined at these places.

At the place \(v_2 \), let \(\xi_1, \ldots, \xi_n \), be characters of \(\text{GL}_1(F) \) such that the restriction of \(\xi_1 \otimes \cdots \otimes \xi_n \) to the center of \(G_n \) agrees with the central character \(\omega_{\pi} \) of \(\pi \). Let \(\tau_{v_2} \) be the generic constituent of
\[
\text{ind}_{B_n}^G(\xi_1 \otimes \cdots \xi_n).
\]
Since we have \(\chi_{v_2} \) sufficiently ramified we can use property (vi) to obtain
\[
\gamma(s, \chi_{v_2} \times \pi_{v_2}, \psi_{v_2}) = \gamma(s, \chi_{v_2} \times \tau_{v_2}, \psi_{v_2}).
\]
Then, using multiplicativity, \(\gamma(s, \chi_{v_2} \times \tau_{v_2}, \psi_{v_2}) \) can be written as a product of abelian \(\gamma \)-factors similar to equations (3.1) and (3.2) above. Any system of \(\gamma \)-factors satisfying properties (i)-(vi) of the Theorem gives the same result at \(v_2 \).

Now, let \(S \) be a finite set of places of \(k \) including \(v_0 \) and such that \(\chi_v, \pi_v, \) and \(\psi_v \) are unramified for \(v \notin S \). Then, property (vii) gives
\[
L^S(s, \tau \times \pi) = \gamma(s, \tau_{v_0} \times \pi_{v_0}, \psi_{v_0}) \prod_{v \in S - \{v_0\}} \gamma(s, \tau_v \times \pi_v, \psi_v) L^S(1-s, \tilde{\tau}_v \times \tilde{\pi}_v).
\]
Since \(\gamma \)-factors are determined for every \(v \notin S - \{v_0\} \) by the above discussion, we can conclude that \(\gamma(s, \tau_{v_0} \times \pi_{v_0}, \psi_{v_0}) \) is completely determined by equation (3.3).

3.3. Uniqueness in general. Let \(\gamma \) be a rule on \(\mathfrak{g}(p) \) which assigns to every quadruple \((F, \tau, \pi, \psi) \in \mathfrak{g}(p) \) a rational function on \(q_F^{1/2} \) satisfying properties (i)-(vii). Using property (iv), we can reduce to the supercuspidal case.

Take a fixed supercuspidal \((F, \tau_0, \pi_0, \psi_0) \in \mathfrak{g}(p, G_m, G_n) \) and lift it to a global \((k, \tau, \pi, \psi) \in \mathcal{L}S(p, G_m, G_n) \) via Proposition 3.3 properties (i), (ii), and (v). Let \(B_m \) (resp. \(B_m \)) be the Borel subgroup of \(G_m \) (resp. \(G_n \)) of upper triangular matrices. For every \(v \notin \{ v_0, v_1 \} \), let \(\chi_{1, v}, \ldots, \chi_{m, v} \) be unramified characters of \(\text{GL}_1(k_v) \) such that \(\tau_v \) occurs as a subrepresentation of the unitarily induced representation
\[
\text{ind}_{B_m}^{G_m} (\chi_{1, v} \otimes \cdots \otimes \chi_{m, v}).
\]
For every \(v \notin \{ v_0, v_2 \} \), let \(\mu_{1, v}, \ldots, \mu_{n, v} \) be unramified characters of \(\text{GL}_1(k_v) \) such that \(\pi_v \) occurs as a subrepresentation of the unitarily induced representation
\[
\text{ind}_{B_m}^{G_m} (\mu_{1, v} \otimes \cdots \otimes \mu_{n, v}).
\]
Take \(v \notin S \), then both \(\tau_v \) and \(\pi_v \) are unramified. We can in then use properties (iii) and (iv) to show that:
\[(a) \text{ If both } G_m \text{ and } G_n \text{ are classical groups, then}
\]
\[
\gamma(s, \tau_v \times \pi_v, \psi_v) = \prod_{i=1}^{d} \gamma(s, \chi_i, v \mu_{0,v}, \psi_v) \prod_{j=1}^{e} \gamma(s, \chi_0, v \mu_{j,v}, \psi_v)
\]
\[
\times \prod_{1 \leq h \leq d \leq i \leq e} \gamma(s, \chi_h, v \mu_{j,v}, \psi_v) \gamma(s, \chi_h, v \mu_{i,v}^{-1}, \psi_v) \gamma(s, \chi_{h,v} \mu_{j,v}, \psi_v) \gamma(s, \chi_{h,v} \mu_{i,v}^{-1}, \psi_v),
\]
\[
\text{where we take } \gamma(s, \chi_0, v \mu_{j,v}, \psi_v) \text{ and } \gamma(s, \chi_0, v \mu_{j,v}^{-1}, \psi_v) \text{ (resp. } \gamma(s, \chi_i, v \mu_{0,v}, \psi_v) \text{ and } \gamma(s, \chi_i, v \mu_{0,v}^{-1}, \psi_v)),
\]
\[
\text{to be trivial if } G_m \text{ (resp. } G_n) \text{ is a special orthogonal group; and, we take } \chi_0 = 1 \text{ (resp. } \mu_0 = 1) \text{ if } G_m \text{ (resp. } G_n) \text{ is a symplectic group.}
\]

\[(b) \text{ If } G_m = GL_m \text{ and } G_n \text{ is a classical group, then}
\]
\[
\gamma(s, \tau_v \times \pi_v, \psi_v) = \prod_{i=0}^{d} \gamma(s, \chi_i, v \mu_{0,v}, \psi_v) \times \prod_{i=1}^{d} \gamma(s, \chi_i, v \mu_{j,v}, \psi_v) \gamma(s, \chi_i, v \mu_{j,v}^{-1}, \psi_v),
\]
\[
\text{where we take } \gamma(s, \chi_j, v \mu_{0,v}, \psi_v) \text{ to be trivial if } G_n \text{ is a special orthogonal}
\]
\[
\text{group; and, we take } \mu_0 = 1 \text{ if } G_n \text{ is a symplectic group.}
\]

\[(c) \text{ If } G_m = GL_m \text{ and } G_n = GL_n, \text{ then}
\]
\[
\gamma(s, \tau_v \times \pi_v, \psi_v) = \prod_{i,j} \gamma(s, \chi_i, v \mu_{j,v}, \psi_v).
\]

Any system of \(\gamma\)-factors satisfying properties (i)-(iv) gives \(\gamma(s, \tau_v \times \pi_v, \psi_v), \nu \notin S\), as a product of abelian \(\gamma\)-factors of Tate’s thesis as above. Hence, it is uniquely determined at these places.

The remaining possibility, at either \(v_1\) or \(v_2\), is that one representation is unramified while the other remains arbitrary. For concreteness, assume \(\tau_{v_1}\) and \(\pi_{v_2}\) are unramified while \(\tau_{v_2}\) and \(\pi_{v_1}\) remain arbitrary. Then \(\tau_{v_1}\) and \(\pi_{v_2}\) are constituents of representations via unitary parabolic induction from a product of unramified characters as before. The multiplicativity property of \(\gamma\)-factors gives \(\gamma(s, \tau_{v_1} \times \pi_{v_2}, \psi_{v_2})\) as a product of \(\gamma\)-factors of the form \(\gamma(s, \chi_{v_1} \times \pi_{v_1}, \psi_{v_1})\), where \(\chi_{v_1}\) is a character of \(GL_1(k_{v_1})\). Similarly, multiplicativity gives an expression for \(\gamma(s, \tau_{v_2} \times \pi_{v_1}, \psi_{v_1})\) as a product of \(\gamma\)-factors of the form \(\gamma(s, \tau_{v_2} \times \mu_{v_2}, \psi_{v_2})\), where \(\mu_{v_2}\) is a character of \(GL_1(k_{v_2})\). In these cases, \(\gamma\)-factors are uniquely determined as shown in § 3.2 where property (vi) is used.

At places where \(\psi_v\) may be ramified, we can use property (v) to compute \(\gamma\)-factors with respect to an unramified character. The functional equation for \(\gamma\)-factors gives,
\[
L^S(s, \tau \times \pi) = \gamma(s, \tau_{v_0} \times \pi_{v_0}, \psi_{v_0}) \prod_{\nu \in S \setminus \{v_0\}} \gamma(s, \tau_{\nu} \times \pi_{\nu}, \psi_{\nu}) L^S(1 - s, \tilde{\tau}_v \times \tilde{\pi}_v).
\]

Since partial \(L\)-functions are uniquely determined, and we have shown that \(\gamma\)-factors are uniquely determined at places other than \(v_0\), we can conclude that \(\gamma(s, \tau_{v_0} \times \pi_{v_0}, \psi_{v_0})\) is uniquely determined.

4. Extended \(L\)-functions and \(\varepsilon\)-factors

We now turn towards the defining properties of \(L\)-functions and \(\varepsilon\)-factors. We assume that \(p \neq 2\), which is necessary to study the case \(\mathfrak{s}\langle p, G_m, G_n \rangle\), when \(G_m\) and \(G_n\) are both classical groups.
4.1. Axioms for a local system of L-functions and root numbers. With a system of γ-factors on $\mathfrak{sl}(p)$ satisfying properties (i)-(vii), we can proceed to define rational functions $L(s, \tau \times \pi)$ and monomials $\varepsilon(s, \tau \times \pi, \psi)$ on the variable q_F^{-s} for every $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p)$.

(viii) (Tempered L-functions). For $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p)$ tempered, let $P_{\tau \times \pi}(t)$ be the unique polynomial with $P_{\tau \times \pi}(0) = 1$ and such that $P_{\tau \times \pi}(q_F^{-s})$ is the numerator of $\gamma(s, \tau \times \pi, \psi)$. Then

$$L(s, \tau \times \pi) = P_{\tau \times \pi}(q_F^{-s})^{-1}.$$

(ix) (Holomorphy of tempered L-functions). Let $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p)$ be tempered. Then, $L(s, \tau \times \pi)$ is holomorphic and non-zero for $\Re(s) > 0$.

(x) (Tempered ε-factors). Let $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p)$ be tempered, then

$$\varepsilon(s, \tau \times \pi, \psi) = \gamma(s, \tau \times \pi, \psi) \frac{L(s, \tau \times \pi)}{L(1 - s, \tau \times \pi)}.$$

(xi) (Twists by unramified characters). Let $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p, \text{GL}_m, \text{G}_n)$, then

$$L(s + s_0, \tau \times \pi) = L(s, \varepsilon(\text{det}(\cdot))^{s_0}_F \tau \times \pi)$$

$$\varepsilon(s + s_0, \tau \times \pi, \psi) = \varepsilon(s, \varepsilon(\text{det}(\cdot))^{s_0}_F \tau \times \pi, \psi).$$

(xii) (Multiplicativity). Let $(F, \tau_i, \pi_j, \psi) \in \mathfrak{sl}(p, \text{GL}_{m_i}, \text{GL}_{n_j})$, $1 \leq i \leq d, 1 \leq j \leq e$, be quasi-tempered, and let $(F, \tau_0, \pi_0, \psi) \in \mathfrak{sl}(p, \text{G}_{m_0}, \text{G}_{n_0})$ be tempered. Let $m = \sum m_i$ and $n = \sum n_j$. Let G_m and G_n be of the same type as G_{m_0} and G_{n_0}. Let P_m and P_n be parabolic subgroups of G_m and G_n with Levi subgroups $M_m \simeq \prod_{i=1}^d \text{GL}_{m_i} \times \text{G}_{m_0}$ and $M_n \simeq \prod_{j=1}^e \text{GL}_{n_j} \times \text{G}_{n_0}$. Suppose that $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p)$ is such that τ is the generic constituent of

$$\text{ind}_{\text{P}_m}^{\text{G}_m} (\tau_1 \otimes \cdots \otimes \tau_d \otimes \tau_0),$$

and π is the generic constituent of

$$\text{ind}_{\text{P}_n}^{\text{G}_n} (\pi_1 \otimes \cdots \otimes \pi_e \otimes \pi_0).$$

When $m_0 = 0$ (resp. $n_0 = 0$) we make the following conventions: take τ_0 (resp. π_0) to be the trivial character of $\text{GL}_1(F)$ if G_m (resp. G_n) is a symplectic group; in all other cases, we interpret local factors involving τ_0 (resp. π_0) to be trivial.

(xii.a) If both G_m and G_n are classical groups, then

$$L(s, \tau \times \pi) = L(s, \tau_0 \times \pi_0)$$

$$\times \prod_{i=1}^d L(s, \tau_i \times \pi_0) L(s, \tilde{\tau}_i \times \pi_0) \prod_{j=1}^e L(s, \tau_0 \times \pi_j) L(s, \tilde{\tau}_0 \times \tilde{\pi}_j)$$

$$\times \prod_{i=1}^d \prod_{j=1}^e L(s, \tau_i \times \pi_j) L(s, \tilde{\tau}_i \times \pi_j) L(s, \tau_i \times \tilde{\pi}_j) L(s, \tilde{\tau}_i \times \tilde{\pi}_j),$$

where $\tilde{\tau}_i$ and $\tilde{\pi}_j$ are the generic constituents of τ_i and π_j, respectively.
4.2. Additional properties of γ-factors. The following properties are satisfied by any system of γ-factors on $\mathfrak{I}(p)$ satisfying properties (i)-(vii).

(xiii) (Local functional equation). Let $(F, \tau, \pi, \psi) \in \mathfrak{I}(p)$, then
\[\gamma(s, \tau \times \pi, \psi) \gamma(1 - s, \pi \times \pi, \psi) = 1. \]

(xiv) (Twists by unramified characters). Let $(F, \tau, \pi, \psi) \in \mathfrak{I}(p, \text{GL}_m, \mathbf{G}_n)$, then
\[\gamma(s + s_0, \tau \times \pi, \psi) = \gamma(s, |\text{det}(\cdot)|_{p, F}^{s_0} \tau \times \pi, \psi). \]

(xv) (Commutativity). Let $(F, \tau, \pi, \psi) \in \mathfrak{I}(p)$, then
\[\gamma(s, \tau \times \pi, \psi) = \gamma(s, \pi \times \tau, \psi). \]

We now give a proof of property (xiii) following the proof of uniqueness given in § 3. Notice that it is a property of abelian γ-factors: if $(F, \chi, \mu, \psi) \in \mathfrak{I}(p, \text{GL}_1, \mathbf{G}_n)$, then
\[\gamma(s, \chi \mu, \psi) \gamma(1 - s, \chi^{-1} \mu^{-1}, \psi) = 1, \]
see for example equation (1.3) of [11]. First, we prove the local functional equation for the case of $\mathfrak{I}(p, \text{GL}_1, \mathbf{G}_n)$. We can reduce to the supercuspidal case via multiplicativity. Lift a supercuspidal $(F, \chi_0, \pi_0, \psi_0) \in \mathfrak{I}(p, \text{GL}_1, \mathbf{G}_n)$ to $(k, \chi, \pi, \psi) \in \mathcal{LS}(p, \text{GL}_1, \mathbf{G}_n)$ as in § 3.2. Notice that the method of proof gives an expression for every $\gamma(s, \pi \times \chi, \psi_0)$, $v \notin \{v_0\}$, as a product of abelian γ-factors. Then, the local functional equation at v_0 follows from the global functional equation applied twice.
Now, in the proof of uniqueness for the general case of § 3.3, let $(k, \tau, \pi, \psi) \in LS(p, G_m, G_n)$ be the global quadruple obtained from the supercuspidal quadruple $(F, \tau_0, \pi_0, \psi_0) \in \mathfrak{ls}(p, G_m, G_n)$. The method of proof gives an expression for every $\gamma(s, \tau_0 \times \pi_0, \psi_0, v) \neq \{v_0\}$, in terms of γ-factors for $\mathfrak{ls}(p, G_{l_1}, G_n)$, $\mathfrak{ls}(p, G_m, GL_1)$ or $\mathfrak{ls}(p, GL_1, GL_1)$. In all of these cases, the local functional equation holds. Hence, it follows at v_0 by applying the global functional equation twice.

We leave the proofs of properties (xiv) and (xv) as exercises.

4.3. **Theorem.** It $p \neq 2$, there exists a system of local factors on $\mathfrak{ls}(p)$ satisfying properties (i)-(xii). Any system of local factors on $\mathfrak{ls}(p)$ satisfying properties (i)-(xii) is uniquely determined.

Proof. We have already established the existence and uniqueness part of the theorem concerning properties (i)-(vii). We now construct local L-functions and ε-factors.

We first treat the tempered case, where property (viii) is taken as the definition of a local L-function. Notice that the multiplicativity property of γ-factors gives the multiplicativity property of local L-functions in the tempered case.

We now prove property (ix) for the new case of two classical groups G_m and G_n. Let $(F, \tau, \pi, \psi) \in \mathfrak{ls}(p, G_m, G_n)$ be tempered. The representation τ is a constituent of

$$\text{ind}_{P_m}^G(\delta_1 \otimes \cdots \otimes \delta_d \otimes \tau_0),$$

as in equation (2.3) with $\delta_i, i = 1, \ldots, d$, generic discrete series representations of $GL_m(F)$, and τ_0 a generic discrete series representation of G_{m_0}. Similarly, π is a constituent of

$$\text{ind}_{P_n}^G(\rho_1 \otimes \cdots \otimes \rho_e \otimes \tau_0),$$

with $\rho_j, j = 1, \ldots, e$, generic discrete series representations of $GL_{m_j}(F)$, and τ_0 a generic discrete series representation of G_{n_0}.

Let T_0 and Π_0 be the local functorial lifts of τ_0 and τ_0 given by equation (2.2). Notice that they are self-dual tempered representations of $GL_{M_0}(F)$ and $GL_{N_0}(F)$.

The local functorial lift T of τ is given by

$$\text{ind}_{P_m}^G(\delta_1 \otimes \cdots \otimes \delta_d \otimes T_0 \otimes \tilde{\delta}_1 \otimes \cdots \otimes \tilde{\delta}_1)$$

and the lift Π of π is given by

$$\text{ind}_{P_n}^G(\rho_1 \otimes \cdots \otimes \rho_e \otimes \Pi_0 \otimes \tilde{\rho}_e \otimes \cdots \otimes \tilde{\rho}_1).$$

Then

$$L(s, \tau \times \pi) = L(s, T_0 \times \Pi_0) \prod_{i=1}^d L(s, \delta_i \times \Pi_0) L(s, \tilde{\delta}_i \times \Pi_0) \prod_{j=1}^e L(s, T_0 \times \rho_j) L(s, T_0 \times \tilde{\rho}_j)$$

$$\times \prod_{i=1}^d \prod_{j=1}^e L(s, \delta_i \times \rho_j) L(s, \tilde{\delta}_i \times \rho_j) L(s, \delta_i \times \tilde{\rho}_j) L(s, \tilde{\delta}_i \times \tilde{\rho}_j).$$

Each L-function on the right hand side is a Rankin-Selberg L-function for products of representations of general linear groups, known to be holomorphic for $\Re(s) > 0$. Hence, the extended L-function $L(s, \tau \times \pi)$ is holomorphic for $\Re(s) > 0$. Thus, our local L-functions satisfy property (ix) in the tempered case.

Next, for tempered $(F, \tau, \pi, \psi) \in \mathfrak{ls}(p)$, property (x) is taken as the definition of root numbers. Then $\varepsilon(s, \tau \times \pi, \psi)$ is a monomial in q_F^{-s}. For this, we use the
local functional equation of γ-factors, property (xiii), together with property (ix) to ensure that no cancellations occur on the strip $0 < \Re(s) < 1$.

Having defined local L-functions and root numbers for tempered representations, they are then defined on $\mathfrak{sl}(p)$ with the aid of Langlands classification. In the case of $G_m = GL_m$ and $G_n = GL_n$, we include a treatment of L-functions and ε-factors in [11] in a self contained manner within the \mathcal{LS}-method. The definition given by equations (7.6) of [loc. cit.] is in accordance with the definition of Rankin-Selberg local factors [7]. We will now define extended L-functions and root numbers on $\mathfrak{sl}(p, GL_m, G_n)$, when both G_m and G_n are classical groups. Obtaining explicit defining relations for local L-functions and ε-factors on $\mathfrak{sl}(p, GL_m, G_n)$, with G_n a classical group, is left as an exercise.

Assume that both G_m and G_n are classical groups. Let τ be given by equation (2.5)

$$\text{ind}_{\pi_m}^{G_m}(\tau_1 \nu^{r_1} \otimes \cdots \otimes \tau_d \nu^{r_d} \otimes \tau_0),$$

where each τ_i is a tempered representation of $GL_m(F)$ and τ_0 is a generic tempered representation of G_{m_0}. With the appropriate modifications if τ is given by equation (2.6). Similarly, π is given by

$$\text{ind}_{\pi_n}^{G_n}(\pi_1 \nu^{r_1} \otimes \cdots \otimes \pi_d \nu^{r_d} \otimes \pi_0),$$

where each π_i is a tempered representation of $GL_n(F)$ and π_0 is a generic tempered representation of G_{n_0}. With appropriate modifications if π is given by equation (2.7).

Let $(F, \tau, \pi, \psi) \in \mathfrak{sl}(p)$, then we define local L-functions by

$$L(s, \tau \times \pi) = L(s, \tau_0 \times \pi_0) \times \prod_{i=1}^{d} L(s + r_i, \tau_i \times \pi_0)L(s - r_i, \tilde{\tau}_i \times \pi_0) \prod_{j=1}^{e} L(s + t_j, \tau_0 \times \pi_j)L(s - t_j, \tau_0 \times \tilde{\tau}_j)$$

$$\times \prod_{i=1}^{d} \prod_{j=1}^{e} L(s + r_i + t_j, \tau_i \times \pi_j)L(s - r_i + t_j, \tilde{\tau}_i \times \pi_j)$$

$$\times L(s + r_i - t_j, \tau_i \times \tilde{\tau}_j)L(s - r_i - t_j, \tilde{\tau}_i \times \tilde{\tau}_j),$$

and local root numbers by

$$\varepsilon(s, \tau \times \pi, \psi) = \varepsilon(s, \tau_0 \times \pi_0, \psi) \times \prod_{i=1}^{d} \varepsilon(s + r_i, \tau_i \times \pi_0, \psi)\varepsilon(s - r_i, \tilde{\tau}_i \times \pi_0, \psi) \prod_{j=1}^{e} \varepsilon(s + t_j, \tau_0 \times \pi_j, \psi)\varepsilon(s - t_j, \tau_0 \times \tilde{\tau}_j, \psi)$$

$$\times \prod_{i=1}^{d} \prod_{j=1}^{e} \varepsilon(s + r_i + t_j, \tau_i \times \pi_j, \psi)\varepsilon(s - r_i + t_j, \tilde{\tau}_i \times \pi_j, \psi)$$

$$\times \varepsilon(s + r_i - t_j, \tau_i \times \tilde{\tau}_j, \psi)\varepsilon(s - r_i - t_j, \tilde{\tau}_i \times \tilde{\tau}_j, \psi).$$

It is now possible to show that our construction is compatible with properties (xi) and (xii). Notice that the definition of local L-functions and root numbers is based on an extended system of γ-factors, and only uses special cases of properties (viii)-(xii). Hence, any system of extended γ-factors, local L-functions and root numbers satisfying properties (i)-(xii) is uniquely determined.
4.4. **Theorem.** Assume that \(p \neq 2 \). For every \((k, \tau, \pi, \psi) \in \mathcal{LS}(p)\), let

\[
L(s, \tau \times \pi) = \prod_v L(s, \tau_v \times \pi_v), \quad \varepsilon(s, \tau \times \pi) = \prod_v \varepsilon(s, \tau_v \times \pi_v, \psi_v).
\]

Automorphic \(L \)-functions satisfy the following properties:

(i) (Rationality). \(L(s, \tau \times \pi) \) converges on a right half plane and has a meromorphic continuation to a rational function on \(q^{-s} \).

(ii) (Functional equation). \(L(s, \tau \times \pi) = \varepsilon(s, \tau \times \pi) L(1 - s, \bar{\tau} \times \bar{\pi}) \).

(iii) (Riemann Hypothesis) The zeros of \(L(s, \tau \times \pi) \) are contained in the line \(\Re(s) = 1/2 \).

Proof. First, given \((F, \tau, \pi, \psi) \in \mathfrak{ls}(p, \text{GL}_m, \text{G}_n)\), we know that partial \(L \)-functions \(L^S(s, \tau \times \pi) \) converge on a right half plane. The rationality argument of Harder for Eisenstein series [2], allows us to give an automorphic forms proof that \(L^S(s, \tau \times \pi) \) is a rational function on \(q^{-s} \), Corollary 6.6 of [10]. Now, notice that each local \(L \)-function in the product

\[
\prod_{v \in S} L(s, \tau_v \times \pi_v)
\]

is a rational function on \(q_v^{-s} = q^{-\deg(v)s} \). Hence, property (i) follows for completed automorphic \(L \)-functions in this case. Also, the definition of local \(L \)-functions and \(\varepsilon \)-factors at the places \(v \in S \) can be incorporated into the functional equation satisfied by \(\gamma \)-factors in order to obtain property (ii) for global \(L \)-functions and \(\varepsilon \)-factors on \(\mathcal{LS}(p, \text{GL}_m, \text{G}_n) \).

Next, we treat the case of \(\mathcal{LS}(p, \text{G}_m, \text{G}_n) \), with both \(\text{G}_m \) and \(\text{G}_n \) classical groups. Let \((k, \tau, \pi, \psi) \in \mathcal{LS}(p, \text{G}_m, \text{G}_n)\). The functorial lift of Theorem 9.1 of [10] is compatible with the local functorial lift at every place \(v \) of \(k \). The construction of the local lift is reviewed in § 2.4. Equation (2.9) enables us to write the global lifts \(T \) of \(\tau \) and \(\Pi \) of \(\pi \) as isobaric sums

\[
(4.2) \quad T = T_1 \boxplus \cdots \boxplus T_d \quad \text{and} \quad \Pi = \Pi_1 \boxplus \cdots \boxplus \Pi_e.
\]

We have that

\[
L^S(s, \tau \times \pi) = L^S(s, T \times \Pi),
\]

which converge on a right half plane and have a meromorphic continuation to a rational function on \(q^{-s} \). At the remaining places, extended \(L \)-functions \(L(s, \tau_v \times \pi_v) \) are rational on \(q_v^{-s} \). Hence, the completed automorphic \(L \)-function \(L(s, \tau \times \pi) \) satisfies property (i). The way local factors are defined can be coupled with the functional equation satisfied by extended \(\gamma \)-factors in order to establish property (ii) for automorphic \(L \)-functions on \(\mathcal{LS}(p, \text{G}_m, \text{G}_n) \).

Finally, let \((k, \tau, \pi, \psi) \in \mathcal{LS}(p, \text{G}_m, \text{G}_n)\). If both \(\text{G}_m \) and \(\text{G}_n \) are classical groups, take \(T \) and \(\Pi \) to be the global functorial lifts of \(\tau \) and \(\pi \) of equation (4.2). If \(\text{G}_m = \text{GL}_m \), we just take \(T = \tau \). Then

\[
L(s, \tau \times \pi) = L(s, T \times \Pi) = \prod_{i,j} L(s, T_i \times \Pi_j),
\]

where \((k, T_i, \Pi_j, \psi) \in \mathcal{LS}(p, \text{GL}_m, \text{GL}_n)\), for \(1 \leq i \leq d, 1 \leq j \leq e \). Thanks to the work of Lafforgue on the global Langlands conjecture for \(\text{GL}_N \) over function fields, each Rankin-Selberg \(L \)-function \(L(s, T_i \times \Pi_j) \) satisfies the Riemann Hypothesis (see Théorème VI.10(ii) of [3]). Hence, so does \(L(s, \tau \times \pi) \). We conclude that automorphic \(L \)-functions on \(\mathcal{LS}(p) \) satisfy the Riemann Hypothesis.
References

[1] E. Artin and J. Tate, *Class Field Theory*, Amer. Math. Soc., Providence, RI, 2009.

[2] G. Harder, *Chevalley groups over function fields and automorphic forms*, Annals of Math. 100 (1974), 249-306.

[3] G. Henniart, *Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires*, Invent. Math. 113 (1993), 339-350.

[4] G. Henniart and L. Lomelí, *Local-to-global extensions for GLn in non-zero characteristic: a characterization of γp(s, π, Sym2ψ) and γp(s, π, ∧ψ)*, American J. of Math. 133 (2011), 187-196.

[5] ———, *Characterization of γ-factors: the Asai case*, International Mathematics Research Notices (Advanced Access July 27, 2012), rns171; doi:10.1093/imrn/rns171

[6] ———, *Uniqueness of Rankin-Selberg products for representations of GLm and GLn*, appendix to *On automorphic L-functions in positive characteristic*, preprint.

[7] H. Jacquet, I. I. Piatetski-Shapiro and J. A. Shalika, *Rankin-Selberg convolutions*, Amer. J. Math. 105 (1983), 387-464.

[8] L. Lafforgue, *Chcoucas de Drinfeld et correspondance de Langlands*, Invent. Math. 147 (2002), 1-241.

[9] G. Laumon, M. Rapoport, and U. Stuhler, *D-elliptic sheaves and the Langlands correspondence*, Invent. Math. 113 (1993) 217-338.

[10] L. Lomelí, *Functoriality for the classical groups over function fields*, International Mathematics Research Notices 22 (2009), 4271-4335.

[11] ———, *On automorphic L-functions in positive characteristic*, preprint.

[12] ———, *The Ramanujan conjecture and the Riemann Hypothesis for the Unitary groups over function fields*, preprint.

[13] C. Mœglin and Tadić, *Construction of discrete series for p-adic classical groups*, J. A. M. S. 15 (2002), 715-786.

[14] G. Muić, *A proof of Casselman-Shahidi’s conjecture for quasi-split classical groups*, Canad. Math. Bull. 44 (2001), 298-312.

[15] F. Shahidi, *A proof of Langlands’ conjecture for Plancherel measures; complementary series of p-adic groups*, Ann. Math. 132 (1990), 273-330.

[16] ——— *Local coefficients as Mellin transforms of Bessel functions: towards a general stability*, International Mathematics Research Notices 39 (2002), 2075-2119.

[17] D. Soudry, *On Langlands functoriality from classical groups to GLn*, Astérisque 298 (2005), 335-390.

[18] M.-F. Vignéras, *Correspondance entre représentations automorphes de GL(2) sur une extension quadratique de GS(p(4)) sur Q, conjecture locale de Langlands pour GS(p(4))*, Contemporary Math. 53 (1986), 463-527.