On Pseudo-Hermitian Hamiltonians
Soumendu Sundar Mukherjee1, a) and Pinaki Roy2, b)
1) Master of Statistics student, Indian Statistical Institute, Kolkata 700108, India
2) Physics \\& Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India

(Dated: 22 January 2014)

We investigate some questions on the construction of η operators for pseudo-Hermitian Hamiltonians. We give a sufficient condition which can be exploited to systematically generate a sequence of η operators starting from a known one, thereby proving the non-uniqueness of η for a particular pseudo-Hermitian Hamiltonian. We also study perturbed Hamiltonians for which η‘s corresponding to the original Hamiltonian still work.

PACS numbers: 03.65.Ca; 03.65.Aa
Keywords: pseudo-Hermitian, quasi-Hermitian, real spectra, momentum dependent interaction

I. INTRODUCTION

In recent years there has been a growing interest in the study of non-Hermitian quantum mechanics1, primarily because a class of these Hamiltonians admit real eigenvalues despite being non-Hermitian. Among the different non-Hermitian systems the ones with \mathcal{PT}-symmetry2-6 and those which are η-pseudo-Hermitian7-11 have been the most widely studied. Lately non-Hermitian quantum mechanics have found applications in diverse areas of physics12-17.

Here our objective is to examine some features of η-pseudo-Hermitian models7-11. It may be recalled that a non-Hermitian Hamiltonian \mathcal{H} is called η-pseudo-Hermitian if it satisfies the condition

$$\eta \mathcal{H} \eta^{-1} = \mathcal{H}^\dagger, \quad (1)$$

where η is a Hermitian linear automorphism7-11. However, there is no definite method to determine η and for different models it has to be constructed in different ways. Another characteristic of η is that it is not unique. Here we propose to examine the construction of η operators for a class of η-pseudo-Hermitian matrix Hamiltonians. We shall also discuss briefly non-matrix Hamiltonians.

II. TWO THEOREMS ON η

In this section we consider a particular class of pseudo-Hermitian Hamiltonians and present a general procedure to get an infinite set of η‘s provided that we know one for a particular Hamiltonian. This will, in particular, explicitly demonstrate that η is not unique. We shall also construct a class of non-Hermitian Hamiltonians whose members are pseudo-Hermitian with respect to the same η.

Theorem II.1. Let \mathcal{H} be a non-Hermitian Hamiltonian that is pseudo-Hermitian, i.e. there exists a Hermitian linear automorphism η such that $\eta \mathcal{H} \eta^{-1} = \mathcal{H}^\dagger$. Suppose that \mathcal{H}^\dagger is invertible. Then there exists a possibly infinite no.of η‘s, with respect to which \mathcal{H} is pseudo-Hermitian.

Proof. Let $\eta_0 = \eta$. Define a sequence $\{\eta_k\}_{k \geq 1}$ by $\eta_k = \mathcal{H}^\dagger \eta_{k-1} \mathcal{H}^\dagger$. We claim that each η in $\{\eta_k\}_{k \geq 0}$ renders \mathcal{H} pseudo-Hermitian.

We prove the claim by induction. Suppose that for some $m \geq 0$, η_m satisfies the claim, i.e., η_m is a Hermitian linear automorphism with $\eta_m \mathcal{H} \eta_m^{-1} = \mathcal{H}^\dagger$. Consider η_{m+1}. Clearly,

$$\eta_{m+1}^\dagger = (\mathcal{H}^\dagger \eta_m \mathcal{H}^\dagger)^\dagger = \eta_m^\dagger \mathcal{H} \eta_m \mathcal{H}^\dagger = \eta_{m+1}. \quad (2)$$

Also, as both \mathcal{H}^\dagger and η_m are linear automorphisms, so is η_{m+1}. It remains therefore to check that $\eta_{m+1} \mathcal{H} \eta_{m+1}^{-1} = \mathcal{H}^\dagger$. Indeed we have

$$\eta_{m+1} \mathcal{H} \eta_{m+1}^{-1} = \mathcal{H}^\dagger \eta_m \mathcal{H} \eta_m \mathcal{H} \eta_m^{-1} \mathcal{H} = \mathcal{H}^\dagger \eta_m \mathcal{H} \mathcal{H}^\dagger \eta_m^{-1} \mathcal{H} = \mathcal{H}^\dagger \mathcal{H} \mathcal{H}^\dagger = \mathcal{H}^\dagger \mathcal{H} \mathcal{H}^\dagger \mathcal{H} = \mathcal{H}^\dagger \mathcal{H} = \mathcal{H}^\dagger. \quad (3)$$

This completes the induction since η_0 satisfies the claim by definition.

Remark II.1. By the definition in the above theorem we have $\eta_k = (\mathcal{H}^\dagger)^k \eta$.

Example II.1. Consider now a quantum particle on a coordinate axis consisting of two points. The Hamiltonian for this system is given by a 2×2 matrix of the form18

$$\mathcal{H} = \begin{pmatrix} x & y \\ \bar{y} & \bar{x} \end{pmatrix} \quad (4)$$

where $\Im(x) \neq 0$. This Hamiltonian is \mathcal{PT}-symmetric18. However it is also pseudo Hermitian w.r.t. the following

a) soumendu041@gmail.com
b) pinaki@isical.ac.in
Consider now a two level system associated with the classical motion of a simple harmonic oscillator with frequency \(\omega(t) \). Then the relevant Hamiltonian is of the form\(^7\)-\(^\text{11}\)

\[
\mathcal{H}(t) = \begin{pmatrix} 0 & i \omega(t) \cr -i \omega(t)^2 & 0 \end{pmatrix}.
\]

\(^{(3)}\)

It can be easily verified that in this case one can choose

\[
\eta = \begin{cases} 0 & \text{if } y \neq 0; \\ 1 & \text{otherwise}. \end{cases}
\]

Therefore, in the case \(y = 0 \), we have

\[
\eta_k = (\mathcal{H}^\dagger)^k \eta = \begin{pmatrix} 0 & \hat{x}^k \\ \hat{x}^k & 0 \end{pmatrix}.
\]

Although the operator can be also be obtained when \(y \neq 0 \), the expression for \((\mathcal{H}^\dagger)^k \eta\) is cumbersome and so, we omit it.

Example II.2. Consider now a two level system associated with the classical motion of a simple harmonic oscillator with frequency \(\omega(t) \). Then the relevant Hamiltonian is of the form\(^7\)-\(^\text{11}\)

\[
\mathcal{H}(t) = \begin{pmatrix} 0 & i \omega(t) \cr -i \omega(t)^2 & 0 \end{pmatrix}.
\]

\(^{(3)}\)

It can be easily verified that in this case one can choose

\[
\eta = \begin{cases} 0 & \text{if } y \neq 0; \\ 1 & \text{otherwise}. \end{cases}
\]

Therefore, in the case \(y = 0 \), we have

\[
\eta_k = (\mathcal{H}^\dagger)^k \eta = \begin{pmatrix} 0 & \hat{x}^k \\ \hat{x}^k & 0 \end{pmatrix}.
\]

Although the operator can be also be obtained when \(y \neq 0 \), the expression for \((\mathcal{H}^\dagger)^k \eta\) is cumbersome and so, we omit it.

Example II.2. Consider now a two level system associated with the classical motion of a simple harmonic oscillator with frequency \(\omega(t) \). Then the relevant Hamiltonian is of the form\(^7\)-\(^\text{11}\)

\[
\mathcal{H}(t) = \begin{pmatrix} 0 & i \omega(t) \cr -i \omega(t)^2 & 0 \end{pmatrix}.
\]

\(^{(3)}\)

It can be easily verified that in this case one can choose

\[
\eta = \begin{cases} 0 & \text{if } y \neq 0; \\ 1 & \text{otherwise}. \end{cases}
\]

Therefore, in the case \(y = 0 \), we have

\[
\eta_k = (\mathcal{H}^\dagger)^k \eta = \begin{pmatrix} 0 & \hat{x}^k \\ \hat{x}^k & 0 \end{pmatrix}.
\]

Although the operator can be also be obtained when \(y \neq 0 \), the expression for \((\mathcal{H}^\dagger)^k \eta\) is cumbersome and so, we omit it.

Theorem II.2. Consider a non-Hermitian Hamiltonian \(\mathcal{H} \). Suppose \(\eta \) is a Hermitian linear automorphism such that \(\eta \mathcal{H} \eta^{-1} = \mathcal{H}^\dagger \). Further suppose \(K \) is Hermitian and commutes with \(\eta \). Let \(\mathcal{H} = \mathcal{H} + K \). Then \(\mathcal{H} \) is also non-Hermitian and pseudo Hermitian with respect to \(\eta \).

Proof. Clearly, \(\mathcal{H}^\dagger = \mathcal{H} + K \). Let \(\mathcal{H} = \mathcal{H} + K \). Then \(\mathcal{H} \) is also non-Hermitian and pseudo Hermitian with respect to \(\eta \).

Remark II.3. Under the hypotheses of Theorem II.2, \(f(K) \) is also Hermitian for any \(f(x) \in \mathbb{R}[x] \), the ring of all real polynomials, and commutes with \(\eta \). Thus, the same \(\eta \) works for \(\mathcal{H} = \mathcal{H} + f(K) \) also.

Below we give two automatic choices for \(K \).

1. Take \(K = \alpha \eta \), where \(\alpha \in \mathbb{R} \). Then \(K \) satisfies the hypotheses of the above theorem and hence \(\eta \) works for the class of Hamiltonians defined by \(\mathcal{H}_\alpha = \mathcal{H} + \alpha \eta \).

2. Take \(K = \alpha I \), where \(\alpha \in \mathbb{R} \). Then clearly \(K \) is Hermitian and commutes with every other operator, in particular \(\eta \). Thus \(K \) satisfies the hypotheses of the above theorem and hence for \(\mathcal{H} = \mathcal{H} + \alpha I \), the same \(\eta \) works.

Example II.3. Consider the Hamiltonian in Example II.2. Here

\[
\mathcal{H}_{\alpha k}(t) = \mathcal{H}(t) + \alpha \eta_k(t),
\]

and \(\mathcal{H}_{\alpha k}(t) \) is pseudo-Hermitian with respect to \(\eta_k(t) \).

We shall now consider a class of non-matrix Hamiltonians. It was shown by Bender and Boettcher\(^1\) that each member of the class of Hamiltonians \(\mathcal{H} = p^2 + m^2 x^2 - (i x)^N \), \(N \) real, has a real spectrum and they conjectured that this is due to \(PT \)-symmetry. Although several \(PT \)-symmetric Hamiltonians were found to possess real discrete spectra, it was also found that the non-\(PT \)-symmetric complex potential of the form\(^2\),

\[
V(x) = \alpha V(x - \beta - i \gamma)
\]

always yields a real spectrum and Hamiltonians with these potentials are pseudo-Hermitian with respect to

\[
\eta = e^{-\theta \gamma},
\]

where the parameter \(\theta = 2 \gamma \) takes different forms for different potentials.

It may be noted that \(e^{-\theta \gamma} \) has the following two nice properties:
1. $e^{-\theta p}c e^{\theta p} = c$, for any constant $c \in \mathbb{C}$, and
2. $e^{-\theta p}pe^{\theta p} = p$.

In fact, it follows from the above two properties that $e^{-\theta p}f(p)e^{\theta p} = f(p)$, where $f(x) \in \mathbb{C}[x]$, the ring of all complex polynomials. Now, since p is Hermitian, we can take $K = p$ or more generally, in view of Remark II.3,

$$K = f(p), \text{ where } f(x) \in \mathbb{R}[x].$$

So, $\eta = e^{-\theta p}$ renders \tilde{H} pseudo-Hermitian with an appropriate choice of θ, where

$$\tilde{H} = p^2 + f(p) + V(x),$$

and $V(x)$ is given by (4). It may be noted that the above Hamiltonian represents momentum dependent interaction23.

Example II.4. In view of the discussion in the above paragraph, let us look at a concrete example. Take $f(x) = \alpha x$ where $\alpha \in \mathbb{R}$. Then

$$\tilde{H} = p^2 + \alpha p + V(x).$$

Remark II.4. The assumption in Theorem II.1 that H^\dagger is invertible seems to be a bit restrictive. We can, however, relax this assumption to some extent by combining Theorems II.1 and II.2 in the following manner. Note that invertibility of H^\dagger is equivalent to 0 not being in the spectrum of \mathcal{H}. Suppose that \mathcal{H} has a discrete spectrum $\text{spec}(\mathcal{H})$. (By definition, for an operator H on a complex Hilbert space, $\text{spec}(\mathcal{H}) = \{ \lambda \in \mathbb{C} : \lambda I - \mathcal{H} \text{ is singular} \}$). If $0 \notin \text{spec}(\mathcal{H})$, Theorem II.1 is readily applicable. If not, then we can find $\alpha \in \mathbb{R}$, such that $0 \notin \text{spec}(\mathcal{H} + \alpha I)$. Defining $\tilde{H} = \mathcal{H} + \alpha I$, it follows that \tilde{H}^\dagger is invertible. Now Theorem II.2 applies to $\mathcal{H} = \tilde{H} + (-\alpha)I$. So, the class of η’s generated for \tilde{H} using Theorem II.1 works for \mathcal{H}.

III. SUMMARY

Let us now summarize the main results of this paper. We have given sufficient conditions using which one can systematically construct a sequence of η operators for a pseudo-Hermitian Hamiltonian starting from a known one. We have also investigated conditions which ensure that a single η operator works for two different pseudo-Hermitian (or quasi-Hermitian) Hamiltonians. As the construction of an η operator is not always straightforward for a general non-Hermitian Hamiltonian, these conditions are useful to enlarge the class of non-Hermitian Hamiltonians to which a known η operator applies. This ideas are illustrated through a few useful examples.

1C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having \mathcal{PT}-symmetry,” Physical Review Letters \textbf{80}, 5243 (1998).

2C. M. Bender, S. Boettcher, and P. N. Meisinger, “\mathcal{PT}-symmetric quantum mechanics,” Journal of Mathematical Physics \textbf{40}, 2201 (1999).

3C. M. Bender, D. C. Brody, and H. F. Jones, “Complex extension of quantum mechanics,” Physical Review Letters \textbf{89}, 270401 (2002).

4F. Fernández, R. Guardiola, J. Ros, and M. Znojil, “Strong-coupling expansions for the \mathcal{PT}-symmetric oscillators,” Journal of Physics A: Mathematical and General \textbf{31}, 10105 (1998).

5G. Lévai and M. Znojil, “Systematic search for \mathcal{PT}-symmetric potentials with real energy spectra,” Journal of Physics A: Mathematical and General \textbf{33}, 7165 (2000).

6G. Lévai, F. Cannata, and A. Ventura, “\mathcal{PT} symmetry breaking and explicit expressions for the pseudo-norm in the Scarf II potential,” Physics Letters A \textbf{300}, 271–281 (2002).

7A. Mostafazadeh, “Pseudo-Hermiticity versus \mathcal{PT}-symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian,” Journal of Mathematical Physics \textbf{43}, 205 (2002).

8A. Mostafazadeh, “Pseudo-Hermiticity versus \mathcal{PT}-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum,” Journal of Mathematical Physics \textbf{43}, 2814 (2002).

9A. Mostafazadeh, “Pseudo-Hermiticity versus \mathcal{PT}-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries,” Journal of Mathematical Physics \textbf{43}, 3944 (2002).

10A. Mostafazadeh, “Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians,” Journal of Mathematical Physics \textbf{43}, 6343 (2002).

11A. Mostafazadeh, “Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians,” Nuclear Physics B \textbf{640}, 419–434 (2002).

12S. Longhi, “Bloch Oscillations in Complex Crystals with \mathcal{PT} symmetry,” Phys. Rev. Lett. \textbf{103}, 123601 (2009).

13T. Kottos, “Optical physics: Broken symmetry makes light work,” Nature Physics \textbf{6}, 166–167 (2010).

14S. Longhi, “\mathcal{PT}-symmetric laser absorber,” Physical Review A \textbf{82}, 031801 (2010).

15K. Makris, R. El-Ganainy, D. Christodoulides, and Z. H. Musslimani, “Beam dynamics in \mathcal{PT} symmetric optical lattices,” Physical Review Letters \textbf{100}, 103904 (2008).

16A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides, “Observation of \mathcal{PT}-symmetry breaking in complex optical potentials,” Physical review letters \textbf{103}, 93902 (2009).

17C. E. K" oster, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nature Physics \textbf{6}, 192–195 (2010).

18C. M. Bender, M. Berry, and A. Mandilara, “Generalized \mathcal{PT} symmetry and real spectra,” Journal of Physics A: Mathematical and General \textbf{35}, L467 (2002).

19R. Kretschmer and L. Szymanowski, “Quasi-Hermiticity in infinite-dimensional Hilbert spaces,” Physics Letters A \textbf{325}, 112–117 (2004).

20F. Scholtz, H. Geyer, and F. Hahne, “Quasi-hermitian operators in quantum mechanics and the variational principle,” Annals of Physics \textbf{213}, 74–101 (1992).

21P. Siegl, Quasi-Hermitian Models, Ph.D. thesis, Master’s thesis (Faculty of Nuclear Sciences and Physical Engineering, CTU, Prague) smf. fiji. cvut. cz/2008/siegl thesis. pdf (2008).

22Z. Ahmed, “Pseudo-Hermiticity of Hamiltonians under imaginary shift of the coordinate: real spectrum of complex potentials,” Physics Letters A \textbf{290}, 19–22 (2001).

23M. S. Swanson, “Transition elements for a non-Hermitian quadratic Hamiltonian,” Journal of Mathematical Physics \textbf{45}, 585 (2004).