Three-dimensional printing versus conventional machining in the creation of a meatal urethral dilator: a cost and mechanical strength analysis

CURRENT STATUS: POSTED

Michael Yue-Cheng Chen
Redcliffe Hospital
michaelyuechengchen@hotmail.com
Orcid: https://orcid.org/0000-0001-8294-6876

Jacob Skewes
Queensland University of Technology

Ryan Daley
Queensland University of Technology

Maria Ann Woodruff
Queensland University of Technology

Nicholas John Rukin
Redcliffe Hospital

DOI: 10.21203/rs.2.21033/v1

SUBJECT AREAS
Urology & Nephrology

KEYWORDS
Three-Dimensional Printing, Urology, Urethral Stricture, Intermittent Urethral Catheterization
Abstract

Background Three-dimensional (3D) printing is a promising technology in medicine. Low-cost 3D printing options are accessible but the limitations are often poorly understood. We aim to compare fused deposition modelling (FDM), the most common and low cost 3D printing technique, with selective laser sintering (SLS) and conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market.

Methods A meatal urethral dilator was designed using computer-aided design (CAD). The dilator was 3D printed vertically orientated on a low cost FDM 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in medical stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped.

Results The horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator did not fail but began to bend and deformed at around 5,000g of pressure. The steel dilator did not bend even at 10,000g of pressure. The cost per dilator is highest for the steel dilator if assuming a low quantity of five at 98 USD, but this decreases to 30 USD for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD for a quantity of five but relatively unchanged at 27 for a quantity of 1000.

Conclusions SLS and conventional machining created clinically functional meatal dilators but low-cost FDM printing could not. We suggest that at the current time 3D printing is not a replacement for conventional manufacturing techniques which are still the most reliable way to produce large quantities of parts with a simple geometry such as the meatal dilator. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot be achieved with conventional machining methods.

Background

Three-dimensional (3D) printing, or additive manufacturing, is a promising technology that can create
complex 3D structures layer by layer and is increasingly being used in biomedical and urological research to create patient-specific and geometrically complex constructs in an economical way (1). There are a wide variety of 3D printing techniques now available. Fused deposition modelling (FDM) printing is the most commonly used and lowest cost approach since the expiry of patents. In describing the low cost of 3D printing, many medical research papers quote a price of USD 300 for a 3D printer (2–4). However, many clinicians may be unaware of the quality of print that can be achieved with such a low cost 3D printing method when compared to conventional manufacturing. In our experience, to achieve a consistent result with low cost FDM printing a printer cost of 1000 to 3000 USD is more realistic.

Instead of FDM, research groups frequently employ more advanced 3D printing methods such as stereolithography (SLA) or selective laser sintering (SLS). For example, in the field of urology, many groups have explored the use of 3D printed prostate and kidney models using SLA technology (5–7). Increasingly, researchers are also exploring the potential for 3D printing in creating surgical equipment. This includes basic equipment such as forceps (8) and retractors (9) which are currently mass manufactured using conventional methods. Whilst interesting, this raises the question of whether 3D printing these basic devices will be cost-effective or clinically safe.

Meatal stenosis is an abnormal narrowing of the urethral meatus which is the distal opening of the urethra. It can arise secondary to skin disorders or instrumentation injury. For example the incidence of meatal stenosis following circumcision is around 7–11% (10, 11). Self-dilatation by patients at home is often used as a treatment option in the initial stages with surgery reserved for persisting issues (12, 13).

The Cook© meatal dilator we used at our institutions was recently removed from the Australian market and is no longer available. This prompted us to explore the production of a new meatal dilator which we could potentially 3D print in-house at our institution. Meatal dilators are used by patients at home and do not have to be sterile, thus being a simple low-risk device with which to compare manufacturing methods (13). In this study, we compare cost and mechanical strength of dilators made with four approaches: i) lowest cost FDM 3D printing of a vertically orientated dilator, ii)
horizontally orientated dilator on a higher quality FDM 3D printer, iii) the more advanced 3D printing technique of SLS and iv) conventional lathe machining.

Methods
Prototype design
A prototype meatal dilator was created using computer-aided design (CAD) on software Fusion 360 (Autodesk, San Rafael, U.S.). The dilator, excluding the handle, is 90.0 mm in length with a diameter starting from 2.0 mm (6 French) at the tip and 10.7 mm (32 French) at the base (Fig. 1). A handle was added which was designed to be curved to help facilitate machining. This design process took approximately one hour. The design was done in collaboration with an experienced urethral surgeon who approved the shape, diameter and length.

Fused Deposition Modelling
FDM extrudes thermoplastic material via a heated nozzle layer by layer and thus it requires printing of support material for any overhanging areas. Therefore, the easiest way to 3D print the dilator prototype without supports is to print it orientated vertically. However, the orientation of a FDM print affects the mechanical properties as the part will be weakest between each layer (Fig. 2). Therefore, a horizontally orientated dilator would be less likely to snap but would require a more complex and costly 3D printing process.

The prototype dilator was initially 3D printed with a low cost FDM technique using polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) orientated vertically. PLA and ABS are the two most common materials used in 3D printing (14). As we found ABS to be more ductile than PLA as expected, we then printed in ABS orientated horizontally on a higher quality FDM printer using soluble support material. The vertical PLA and ABS dilators were printed on an Ultimaker 2+ (Ultimaker B.V., Geldermalsen, Netherlands) while the horizontal ABS dilators were printed on the Fortus 400 (Stratasys, Eden Prairie, U.S.) which allows dual extrusion of the ABS filament and also a soluble support filament that can be removed after the print is completed.

Selective laser sintering
A SLS technique was used to 3D print in nylon (polyaurinlactam 2200). This material is approved for medical use and bio compatible according to EN ISO 10993-1 and USP/level VI/121 °C standards. The
SLS technique uses a laser to fuse powder particles layer by layer which helps create a part with more isotropic mechanical properties, with less weakness between layers found in FDM printing. In addition, highly complex parts can be printed without supports. The SLS 3D printer used was the Formiga P100 (EOS, Munich, Germany).

Conventional machining
The dilator was also manufactured using a manual lathing process in medical grade 316L stainless steel on a HAFCO Metal Master 350 lathe (Hare & Forbes, Sydney, Australia). This process was chosen because the geometry of the dilator is symmetrical and revolute around its central axis.

Using a lathe to reshape a bar of steel into the desired shape, a material volume wastage of approximately 60% can be expected, as opposed to a possible 0% when compared to 3D printing.

Mechanical testing
To test the mechanical strength of the dilators, we created a “worst-case scenario” in which all the mechanical stress was concentrated at the tip where it is weakest. A custom rig was constructed using a laser cut acrylic to hold the dilator (Fig. 3). The acrylic has markings to display the bending angle of the dilator. A strip of polyurethane is placed at the bottom of the dilator tip to provide a softer surface, more similar to urethra. Calibrated test weights were then hung from the handle end of the dilator in increasing amounts. The process was video recorded to estimate the breaking angle and weight of the dilators. Each type of dilator was tested three times.

Analysis
The primary outcomes were the cost of the dilators and their mechanical strength. The cost analysis of the dilators and 3D printers was based on prices quoted by 3D printing distribution companies. Cost per dilator was based on an assumption of an institution ordering a quantity of five dilators from a company offering 3D printing or machining. Mean and standard deviation breaking weight were calculated for the three tests on each dilator type. One-way ANOVA was used to determine statistical significance using Stata (StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC).

Results
Dilator creation
One issue encountered during the FDM printing process of the vertically orientated dilators was that
each layer at the tip was so small that there was insufficient time for the material to cool after extrusion. In addition, the tiny layers led to some instability of the part which meant the fine details at the tip were not accurately printed (Fig. 4). In contrast, the horizontally printed ABS dilator was able to be printed smoothly with the addition of dual extrusion soluble support material. The SLS nylon dilator printed without issue. All 3D printed dilators were smoothed with sandpaper. The machined steel dilator was manufactured without issue and polished to smooth the surface (Fig. 4).

Mechanical testing
All three FDM printed prototype meatal dilators snapped cleanly during testing (Table 1). As expected, the horizontally printed ABS dilator was more ductile than the vertically printed ABS and PLA dilators respectively (503 g vs 283 g vs 163 g, p < 0.001). Figure 5 shows just before breaking how the ductility of the horizontally printed ABS dilator allows it to bend to a far greater degree.

Prototype	Material	Printer / machine cost, ~USD	Total labour time, hours	Cost per dilator (assuming order quantity of 5)	Failure angle, degrees	Maximum weight in grams, mean (SD),
Vertical ABS 1	Ultimaker 2+	2500	3	12	12	283 (15)
Vertical PLA 1	Ultimaker 2+	2500	3	11	10	163 (51)
Horizontal ABS 6	Fortus 400	185,000	4	45	40	503 (6)
SLS Nylon 3	Formiga P100	175,000	1.5	33	No failure	>5000
Machined stainless steel 4	HAFCO metal master 320-G	2400	0.75	98	No failure	>10,000

The SLS nylon dilator was unexpectedly strong and elastic and did not fail during our mechanical testing with calibrated weights. When the weight reached around 1000 g, the dilator elastically deformed and slipped out of the rig. When approximately 5000 g of manual force was directly applied to the nylon dilator tip, it did not snap but began to bend (Fig. 5). As expected, the steel dilator was not able to be bent or snapped even when approximately 10,000 g was manually to the tip.

Cost analysis
Table 1 summarises the comparison between the dilator types in terms of various costs. Assuming an order quantity of five from an external company, conventional machining is more costly than 3D printing with a unit price of USD 98. However, if we assume a quantity of 1,000 then the unit price of the stainless steel dilators drops to around USD 30. 3D printing does not have the same benefit in producing large quantities and the unit price plateaus at a quantity of around 100 parts. For example, the SLS nylon dilators cost USD 33 each for a quantity of five, but USD 27 each for a quantity of 100 which then plateaus.

Discussion

3D printing is a promising new technology that has the potential to revolutionise medicine. Many non-invasive uses for 3D printing in urology have been explored ranging from surgical simulation (15–18), histopathological correlation (19, 20), augmented reality surgery (21, 22) and anatomical models (5, 6, 23–26). However, the next frontier in 3D printing research is the development of clinically useful 3D printed equipment, tools and implants. Oft-quoted low cost FDM 3D printers costing USD 300 suggest low barriers for this goal. To that end, some have begun exploring whether 3D printing could be used to create basic surgical equipment (8, 9). However, many clinicians are unaware of the limitations of low cost FDM 3D printing and the strengths of conventional manufacturing techniques.

Whilst FDM printing can be low cost and accessible to hospitals around the world, the quality of the parts produced may not be mechanically consistent enough, particularly in healthcare where standards of safety are high. To produce higher quality parts, the setup cost of a 3D printer or machine will be much higher such as the SLS printer used in this study which costs approximately USD 175,000. It is therefore unlikely that individual institutions will be able to use low cost FDM 3D printing to manufacture devices in-house at a quality that is clinically safe and reliable.

One of the difficulties in designing this study was the lack of data on what threshold of mechanical strength would be needed. Although the use of intermittent self-catheterisation to prevent stricture recurrence is established in the literature (27), most studies are focused on dilatation using long urethral catheters rather than the short meatal dilator in our study. In fact, the literature on meatal dilators is extremely limited (13). Therefore, our design aims to stress the dilator at its weakest point,
although this may not occur in clinical practice. Based on clinical experience we are confident that the SLS dilator not breaking even at 5,000 g of force is sufficiently safe for clinical use. Even the horizontal ABS dilator which could take 500 g of weight and only failed at a 40 degree bend would likely be safe as a patient is unlikely to bend the dilator to that angle during use in the urethra. If a portion of the dilator did snap it would need to be retrieved via flexible cystoscopy by a urologist under local anaesthetic with overall minimal morbidity to the patient.

The strengths of 3D printing are in the creation of patient-specific parts, manufacturing complex parts which conventional methods cannot achieve, or prototyping. Despite the enormous potential of the technology, 3D printing should not be viewed yet as a replacement for conventional manufacturing techniques. This is especially true for parts needed in high quantities with simple geometry such as the dilator. For example, the quoted unit price of five machined steel dilators is around USD 98, but the unit price if ordering a quantity of 1000 becomes around USD 30. It is also worth noting that with modern machining parts with simple geometry such as the dilator can also be made to be patient-specific, particularly with the aid of computer numerical controlled (CNC) machining (28).

In the urological field, Park et al (29) used 3D printing to create a ureteric stent prototype which prevented reflux in vitro. This is a valid use of 3D printing to prototype a part in small quantities. However, if such a prototype entered mainstream use then 3D printing would not necessarily be the best method to continue production. Del Junco et al (30) tested 3D printed ureteric stents and laparoscopic trochars in porcine models and concluded it was feasible, despite the initial functional failures they described and with no discussion on cost.

3D printing in medicine has perhaps advanced the most in the field of orthopaedic surgery. 3D-printed acetabular cups demonstrate the strengths of 3D printing that we have discussed as they can be patient-specific but also they are highly porous to encourage bone ingrowth which conventional manufacturing cannot achieve (31), however the long term outcomes remain to be seen.

Our study is one of the first to examine the practicalities of using 3D printing techniques to produce low risk clinically applicable medical devices such as the urethral meatal dilator. Whilst many clinicians may be aware of how low cost 3D printing can be, we hope to show that there are
limitations to this technology. 3D printing medical research should not seek to replace all conventional techniques in producing simple devices but instead capitalise on the advantages of 3D printing in creating complex geometries or patient-specific parts. To our knowledge, this is also the first project to investigate a method for mechanically testing the strength of urethral dilators.

In this study we have compared different materials as well as different manufacturing methods. This was necessary due to the practicalities of each method, for example low cost FDM printing cannot be used to 3D print in metals. We have performed relatively simple mechanical testing which would be suitable for a low risk device such as a meatal urethral dilator. However, higher risk devices that are required to be sterile would need more rigorous testing. Any discussion around cost is likely to change in the future as 3D printing technology continues to evolve and become cheaper and more accessible.

Our quoted prices are from single commercial sources which should be taken as approximations only, valid at the present time (2019).

Conclusions
3D printing is not a replacement for all conventional manufacturing techniques. Although low cost FDM printing technology is easily accessible, the meatal urethral dilators created were mechanically weak and their quality was too inconsistent for clinical use. Higher quality 3D printing options such as SLS are available but are more costly. 3D printing in medicine should be reserved for patient-specific parts, prototyping, or complex parts that add functionality that cannot be achieved with conventional manufacturing.

Abbreviations
Three-dimensional printing (3D printing)
Fused deposition modelling (FDM)
Stereolithography (SLA)
Selective laser sintering (SLS)
Acrylonitrile butadiene styrene (ABS)
Polylactic acid (PLA)
Computer aided design (CAD)

Declarations
Ethics approval and consent to participate:
Not applicable

Consent for publication:
Not applicable

Availability of data and materials:
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Competing interests:
The authors declare that they have no competing interests

Funding:
This research was funded by the Herston Biofabrication Institute, a publicly government funded institute of clinicians and researchers. No funding from external funding bodies was received.

Authors’ contributions: MC developed the ideas for the project, collected data and performed mechanical testing, cost analysis, statistical analysis and wrote the manuscript. JS designed the dilator, performed mechanical testing, made the figures and assisted in the manuscript. RD produced the steel dilator and assisted in the manuscript. MW and NR provided supervision, guidance and assistance in writing the manuscript. All authors have read and approved the manuscript.

Acknowledgments
The authors would like to acknowledge the Herston Biofabrication Institute for bringing clinicians and researchers together for this project.

References

1. Chen MY, Skewes J, Desselle M, Wong C, Woodruff MA, Dasgupta P, et al. Current applications of 3D printing in urology. BJU international. 2019.

2. Coles-Black J, Chao I, Chuen J. Three-dimensional printing in medicine. Medical
3. Colaco M, Igel DA, Atala A. The potential of 3D printing in urological research and patient care. Nature reviews Urology. 2018;15(4):213-21.

4. Ventola CL. Medical Applications for 3D Printing: Current and Projected Uses. P T. 2014;39(10):704-11.

5. Porpiglia F, Bertolo R, Checcucci E, Amparore D, Autorino R, Dasgupta P, et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists' and patients' perception. World journal of urology. 2018;36(2):201-7.

6. Wake N, Rosenkrantz AB, Huang R, Park KU, Wysock JS, Taneja SS, et al. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: impact on patient education. 3D Printing in Medicine. 2019;5(1):4.

7. Chandak P, Byrne N, Lynch H, Allen C, Rottenberg G, Chandra A, et al. Three-dimensional printing in robot-assisted radical prostatectomy - an Idea, Development, Exploration, Assessment, Long-term follow-up (IDEAL) Phase 2a study. BJU international. 2018;122(3):360-1.

8. George M, Aroom KR, Hawes HG, Gill BS, Love J. 3D Printed Surgical Instruments: The Design and Fabrication Process. World J Surg. 2017;41(1):314-9.

9. Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG. Three-dimensional printing surgical instruments: are we there yet? The Journal of surgical research. 2014;189(2):193-7.

10. Stenram A, Malmfors G, Okmian L. Circumcision for phimosis: a follow-up study. Scandinavian journal of urology and nephrology. 1986;20(2):89-92.

11. Van Howe RS. Incidence of meatal stenosis following neonatal circumcision in a primary care setting. Clinical pediatrics. 2006;45(1):49-54.
12. Searles JM, MacKinnon AE. Home-dilatation of the urethral meatus in boys. BJU international. 2004;93(4):596-7.

13. Shaw R. A MEATAL DILATOR FOR SELF-USE. The Lancet. 1957;269(6975):915.

14. Wojtyła S, Klama P, Baran T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. Journal of Occupational and Environmental Hygiene. 2017;14(6):D80-D5.

15. Cheung CL, Looi T, Lendvay TS, Drake JM, Farhat WA. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. Journal of surgical education. 2014;71(5):762-7.

16. Golab A, Smektala T, Kaczmarek K, Stamirowski R, Hrab M, Slojewski M. Laparoscopic Partial Nephrectomy Supported by Training Involving Personalized Silicone Replica Poured in Three-Dimensional Printed Casting Mold. Journal of laparoendoscopic & advanced surgical techniques Part A. 2017;27(4):420-2.

17. Maddox MM, Feibus A, Liu J, Wang J, Thomas R, Silberstein JL. 3D-printed soft-tissue physical models of renal malignancies for individualized surgical simulation: a feasibility study. Journal of robotic surgery. 2018;12(1):27-33.

18. von Rundstedt FC, Scovell JM, Agrawal S, Zaneveld J, Link RE. Utility of patient-specific silicone renal models for planning and rehearsal of complex tumour resections prior to robot-assisted laparoscopic partial nephrectomy. BJU international. 2017;119(4):598-604.

19. Priester A, Natarajan S, Le JD, Garritano J, Radosavcev B, Grundfest W, et al. A system for evaluating magnetic resonance imaging of prostate cancer using patient-specific 3D printed molds. American journal of clinical and experimental urology. 2014;2(2):127-35.
20. Wu HH, Priester A, Khoshnoodi P, Zhang Z, Shakeri S, Afshari Mirak S, et al. A system using patient-specific 3D-printed molds to spatially align in vivo MRI with ex vivo MRI and whole-mount histopathology for prostate cancer research. Journal of magnetic resonance imaging: JMRI. 2019;49(1):270-9.

21. Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A, Bellin A, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D) technology: a radiological and pathological study. BJU international. 2019;123(5):834-45.

22. Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Augmented Reality Robot-assisted Radical Prostatectomy: Preliminary Experience. Urology. 2018;115:184.

23. Shin T, Ukimura O, Gill IS. Three-dimensional Printed Model of Prostate Anatomy and Targeted Biopsy-proven Index Tumor to Facilitate Nerve-sparing Prostatectomy. European urology. 2016;69(2):377-9.

24. Atalay HA, Canat HL, Ulker V, Alkan I, Ozkuvanci U, Altunrende F. Impact of personalized three-dimensional -3D- printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. International braz j urol : official journal of the Brazilian Society of Urology. 2017;43(3):470-5.

25. Bernhard JC, Isotani S, Matsugasumi T, Duddalwar V, Hung AJ, Suer E, et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World journal of urology. 2016;34(3):337-45.

26. Chen MY, Skewes J, Woodruff MA, Rukin NJ. Using bespoke 3D-printed models to improve patient understanding of an encrusted ureteric stent. Journal of Clinical Urology. 2019:2051415819876514.

27. Kjaergaard B, Walter S, Bartholin J, Andersen JT, Nohr S, Beck H, et al. Prevention of urethral stricture recurrence using clean intermittent self-catheterization. British
journal of urology. 1994;73(6):692-5.

28. Karunakaran KP, Suryakumar S, Pushpa V, Akula S. Retrofitment of a CNC machine for hybrid layered manufacturing. The International Journal of Advanced Manufacturing Technology. 2009;45(7):690-703.

29. Park CJ, Kim HW, Jeong S, Seo S, Park Y, Moon HS, et al. Anti-Reflux Ureteral Stent with Polymeric Flap Valve Using Three-Dimensional Printing: An In Vitro Study. J Endourol. 2015;29(8):933-8.

30. del Junco M, Okhunov Z, Yoon R, Khanipour R, Juncal S, Abedi G, et al. Development and initial porcine and cadaver experience with three-dimensional printing of endoscopic and laparoscopic equipment. Journal of endourology. 2015;29(1):58-62.

31. Dall’Ava L, Hothi H, Di Laura A, Henckel J, Hart A. 3D Printed Acetabular Cups for Total Hip Arthroplasty: A Review Article. Metals. 2019;9(7).

Figures

![Figure 1](image)

Prototype dilator design and dimensions in millimetres (mm) and French (Fr)
A comparison of how the orientation of the dilator in a FDM 3D printer can affect the mechanical strength at the tip. The vertically orientated 3D printed dilator (purple) will be more likely to snap completely due to the weakness between the layers compared to the horizontally printed dilator (yellow). However, the downside is that overhanging parts like the tip of the dilator when orientated horizontally requires printing of a support material.
Figure 3

Setup for mechanical testing of dilators. Dilator inserted into custom laser-cut acrylic with markings for tip length and angles and held in place by vice. Calibrated weights are hung from handle of dilator.
Figure 4

A: 3D printed meatal urethral dilators (left to right): commercial Cook© meatal dilator, vertical PLA, vertical ABS, horizontal ABS, SLS nylon. B: Comparison in the 3D print quality of the tips of the vertically orientated ABS dilator (left) which shows notches on the left where imperfections have developed and horizontally orientated ABS dilator (right) which was printed with soluble support material and has a smoother result. C: Machined stainless
A freeze frame of the video the moment before the vertical PLA (A), vertical ABS (B) and horizontal ABS (C) dilators snapped. The approximate angle of bending before snapping was estimated as 10°, 12° and 40° respectively. SLS nylon 3D printed dilator (D) after applying approximately 5kg of manual pressure to the tip bent but did not break.