Simple Cost-Effective Sequential Injection Lab at Valve with Remote Control Employing Everyday Communication Technology with a Webcam Camera Detector for the Determination of Iron and Phosphate as Model Analytes

Wasin Wongwilai1,2, Kanokwan Kiwfo1,3, Kittipong Phojuang1,4, Narong Kotchabhakdi1,3, Pathinan Paengnakorn1,5, and Kate Grudpan1,2,3,*

1Center of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
2Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
3Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
4Environmental Sciences Program, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
5Biomedical Engineering Institute, Chiang Mai University, Chiang Mai 50200, Thailand

*Corresponding author. E-mail: kgrudpan@gmail.com
https://doi.org/10.12982/CMUJNS.2020.0057

Received: February 24, 2020
Revised: March 11, 2020
Accepted: March 13, 2020

ABSTRACT

Simple cost-effective sequential injection lab at valve (SI-LAV) with remote control employing everyday communication technology, and including a webcam camera detector, was developed for the determination of iron and phosphate as model analytes. The use of a webcam as a detector allowed recording of color data and monitoring flow behavior simultaneously. The remotely controlled system was operated via the internet using readily available software. The utility of the proposed system was investigated for the iron and phosphate reactions, representing fast and slow reaction models, respectively. The system performance was also demonstrated for the assay of phosphate in real samples.

Keywords: Sequential injection lab at valve (SI-LAV), Remote control, Webcam, Information technology (IT), Phosphate, Iron