Maternal tamoxifen treatment expands the macrophage population of early mouse embryos.

Rocío Rojo¹, Kristin A. Sauter¹, Lucas Lefevre¹,², David A. Hume¹,³,⁴* & Clare Pridans¹,⁴*

¹ The Roslin Institute, University of Edinburgh, Easter Bush EH25 9RG, UK.
² Current address: UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK.
³ Current address: Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba QLD 4104, Australia.
⁴ Current address: Medical Research Council Centre for Inflammation Research at the University of Edinburgh, Edinburgh EH16 4TJ, UK

*Joint last authors

Address correspondence to Clare.Pridans@ed.ac.uk or David.Hume@uq.edu.au

Summary sentence: Treatment of pregnant mice with tamoxifen in early gestation produces a large expansion of the embryonic macrophage population.
Abstract

Several different transgenic tamoxifen-inducible cre reporter lines have been used to analyse the contribution of embryonic precursors to the development of the mononuclear phagocyte system in mice. Here we show that tamoxifen treatment of the mother at 8.5dpc with doses commonly-used in lineage trace studies produces a 4-5-fold expansion of the embryonic leukocyte populations by 10.5dpc, detected in whole mounts of embryos using a Csf1r reporter gene or separately by expression of Csf1r, Itgam (CD11b), Adgre1 (F4/80) or Ptpc (CD45) mRNA. These findings indicate that tamoxifen cannot be considered a neutral agonist in macrophage lineage trace studies.
The mononuclear phagocyte system (MPS) is a family of cells that includes committed progenitors, blood monocytes and tissue macrophages. Mononuclear phagocytes are found in every adult tissue (1, 2) where they adapt to local environments to perform specific functions (3-7). The original definition of the MPS proposed that tissue macrophages were continuously replaced by blood monocytes (8). The emerging alternative view is that most tissue macrophages, with exceptions such as dermis and gut, are seeded during embryonic development from yolk sac progenitors and maintained mainly by self-renewal (6, 9-12). This view depends in part upon the interpretation of fate-mapping studies in which tamoxifen treatment of the mother induces recombination and activation of a reporter gene in the embryo. The key assumption in lineage-trace studies is that a single treatment with tamoxifen produces recombination only in cells that are present in the embryo within the narrow time window prior to the onset of definitive hematopoiesis (9). However, Epelman et al (10), suggested that tamoxifen might persist in tissues and initiate recombination in cells at later stages as they infiltrate those tissues. Where this was tested directly in adult mice in an islet transplantation model, there was clear evidence of such persistence (11). Ye et al. (12) highlighted persistent accumulation of tamoxifen and nuclear translocation of Cre-ER(T2) at least 2 months beyond a single pulse, as well as direct effects of tamoxifen on adipogenesis. Similarly, a single low-dose tamoxifen treatment of juvenile males produced long term adverse effect on multiple endocrine systems (13).

A second assumption in the use of tamoxifen-inducible reporters is that the drug does not alter the differentiation of monocyte-macrophage cells in the embryo, based in part upon the reported lack of expression of the estrogen receptors in foetal haematopoietic progenitors (14). However, this assumption is questioned by evidence of the direct effects of estrogen on macrophage gene expression and self-renewal in vivo and in vitro (15). Patel et al (13) noted that >40% of published studies that use tamoxifen to generate conditional mutations lack controls for the impact of tamoxifen. We therefore decided to investigate whether tamoxifen treatment of the mother, at doses used in reported lineage trace studies, alters the development of embryonic macrophage populations.
Materials and Methods

Approval was obtained from The Roslin Institute and The University of Edinburgh Protocols and Ethics Committees under the authority of a UK Home Office Project License under the regulations of the Animals (Scientific Procedures) Act 1986. Adult (>8 weeks) wild type CD1 females and Csf1r-ECFP+ (MacBlue) males were used for this study. Each female was placed overnight with one male in a cage. Detection of a vaginal plug the following morning was considered as 0.5 days postcoitum (dpc). At 8.5 dpc, mice were orally gavaged with vehicle (2.5% ethanol in sunflower oil (Sigma S5007)) or 5 mg of 4-Hydroxytamoxifen (Sigma-Aldrich, H6278), resuspended in vehicle. A naïve group was untreated.

At 10.5 dpc females were culled by cervical dislocation and embryos were dissected. Embryos were imaged using a StereoLumar v12 (Zeiss) dissection microscope. Excitation and emission wavelengths used to detect ECFP signal were 426-446 nm and 460-500nm, respectively.

For mRNA quantitation, total RNA from 10.5 dpc mouse embryos was isolated using RNeasy Mini Plus kit (Qiagen). The quantity and quality of total RNA were controlled by using the NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific) and the 2200 TapeStation (Agilent) respectively. The RNA Integrity Number (RIN) values were all >7. cDNA was synthesised from 1 ug total RNA with oligo(dT)20 and random primers (3:1, v/v) using Superscript III reverse transcriptase (Thermo Fisher Scientific) according to the manufacturer’s instructions. For quantitative PCR, cDNA was amplified with Fast SYBR Green Master Mix using the 7500 fast Real Time PCR system (Applied Biosystems, Thermo Fisher Scientific). The oligonucleotides spanning an intron were designed using Primer3 web version 4.0.0.

The oligonucleotides used were:

- **Hprt**
 - fwd 5’- GCGATGATGAACCAGGTTATGA-3’
 - rev 5’- CCTTCATGACATCTCGAGCAAG-3’

- **Csf1**
 - fwd 5’- AGTATTGCCAAGGAGGTGTCAG-3’
 - rev 5’- ATCTGGCATGAAGTCTCCATTT-3’ (16).

- **Csf1r**
 - fwd 5’- CAGTTCAGAGTGATGTGTGGTC-3’
 - rev 5’- CTTGTTGTTCACTAGGATGCCG-3’

- **Adgre** (Emr1)
 - fwd 5’- TCTGGGGAGCTTACGATGGA-3’
 - rev 5’- ACAGCAGGAAGGTGGCTATG-3’

- **Ptprc** (CD45)
 - fwd 5’- AACAGAGCCTCAGCTACACTC-3’
 - rev 5’- TAGACACCAAGGGCTTTTGGGTTC-3’

- **Itgam** (CD11b)
 - fwd 5’- CTGTCACACTGAGCAAAATCC-3’
 - rev 5’- AGGATGGAAGGTCACACTGAAT-3’
Kit fwd 5'- GAAAGTGATGTCTGGTCCTATGG-3'

Kit rev 5'- CCTTGATCATCTTAGAAGCTTGG-3'.

Primer efficiency was validated with a standard curve of four serial dilution points (efficiency ranging between 95% and 105%). Data were normalised using the dCq model (17).
Results and discussion.

The MacBlue transgenic mice have a co-insertion of a modified *Csf1r* promoter driving the artificial transcription factor, Gal4-VP16, alongside a Gal4-dependent UAS-ECFP reporter. In many adult organs, the ECFP reporter provides a marker for recently-arrived monocytes, which are ECFP-positive, where most adult tissue macrophages are ECFP-negative (18, 19). In the embryo, the ECFP marker is detectable in the earliest macrophage-like cells in Reichert’s membrane and retained on the majority of embryonic macrophages throughout development (19). Because the ECFP marker is so bright, it can be detected readily in whole mounts of the embryo and provides a unique global overview of macrophage development.

We injected 4-OH tamoxifen into four pregnant wild-type female mice mated to MacBlue positive males at 8.5dpc using standard protocols, doses and vehicle described by others (e.g. (9, 20-22)). At 10.5dpc, we removed the embryos and compared the pattern of ECFP expression. Two controls were untreated, and two were treated with the vehicle. An increase in ECFP-positive cells in response to treatment was evident throughout the body, notably concentrated in the ventricles of the developing brain, where cells expressing *Csf1r* mRNA are concentrated at 10.5dpc (23). There was also a smaller, but detectable, effect of the injection of the vehicle alone (Figure 1).

To assess the difference, we used ImageJ to quantify embryo size and fluorescence intensity (Figure 2). ECFP fluorescence was increased around 4-fold compared to untreated or control vehicle-treated embryos. Since macrophages are a major source of somatic growth factors, including Insulin-like growth factor 1 (IGF1) in embryonic and postnatal development (24), the increased size of the embryo could be a consequence of increased macrophage numbers.

![Figure 1. Visualisation of the impact of maternal tamoxifen treatment at 8.5dpc on embryonic macrophages.](image-url)

Pregnant wild-type female mice mated to MacBlue+ males were injected with vehicle or 4-OH tamoxifen at 8.5dpc. Untreated dams were not injected. Embryos were collected at 10.5dpc and examined for ECFP expression. Images are representative of 3 (untreated), 4 (vehicle) and 8 (tamoxifen) embryos from two separate litters. Scale bar=500µm.
The impact of maternal tamoxifen treatment on embryonic macrophage development was examined further in a separate cohort of pregnant mice by analysis of the expression of markers associated with leukocytes or macrophages (Figure 3). Like the Csfr1 reporter gene, Csfr1 mRNA expression is restricted to macrophages in the developing embryo (23). Accordingly, the Csfr1 promoter has been used to drive macrophage-specific inducible recombinase expression in many lineage trace studies (21, 22, 25). A cluster of 120 macrophage-associated transcripts, including Adgre1, Itgam, Cd68, Sirpa, Fcgr1 (Cd64) and Mertk, was strongly correlated with Csfr1 in a time course of mouse embryonic development (26). The coordinated expression of genes within this cluster provided a surrogate for the expansion of tissue macrophage numbers in multiple tissues in the developing embryo. The expression of Csfr1, and of two other macrophage-associated transcripts, Adgre1 (F4/80) and Itgam (Cd11b) mRNA, was increased 4- to 5-fold in the embryos from tamoxifen-treated mothers. The pan-leukocyte marker, Ptprc (CD45) was also elevated to the same extent as the macrophage markers. At this developmental stage, the large majority of leukocytes in the whole embryo are macrophages (23) and Ptprc expression parallels Csfr1 (26).
In each case, there was a smaller impact of treatment with vehicle compared to naïve mice. This is a second control that is not commonly performed. The vehicle is 2.5% ethanol in sunflower oil. It is possible that either of the components of the vehicle is pharmacologically active. Perhaps more likely, the oral gavage per se may produce a stress response that can also impact the embryo. Walker et al (27) demonstrated a significant activation of the hypothalamic-pituitary-adrenal axis in response to oral gavage in mice. Whilst we are not aware of direct evidence for impacts on early macrophage development, there is a large literature on the impact of maternal stress on the immune system of offspring (28).

In view of the known sensitivity of Csf1 mRNA to hormonal stimulation (29) and the impact of maternal anti-CSF1R treatment to reduce embryonic macrophage numbers (21) we considered the possibility that the treatment(s) might induce Csf1 mRNA in the embryo. However, although Csf1 mRNA was readily detected, it did not vary amongst treatment groups (Figure 3). Finally, we also examined expression of Kit, which is expressed by erythro-myeloid progenitor cells in the yolk sac (21). Results obtained using a tamoxifen-inducible lineage trace based upon Kit suggested that most adult tissue macrophages are derived from definitive haematopoietic stem cells (30). By contrast to the macrophage-lineage specific genes, Kit mRNA was not increased in response to tamoxifen, suggesting that the treatment does not act directly to expand the progenitor pool.

Depending upon the nature of the estrogen receptor complex in target cells, tamoxifen can be either an agonist or an antagonist of estrogen receptor signaling (31). Samokhvalov et al. (9) based their original lineage trace protocol on the reported lack of estrogen receptors in foetal hematopoietic progenitors. However, tamoxifen might equally act on the mother, for example regulating growth factor availability across the placenta. The lineage trace study indicating that myb-independent cells generated in the yolk sac contribute to the development of adult macrophages (22) included co-administration of progesterone, to prevent complications of tamoxifen administration late in pregnancy as proposed by earlier authors (32). Estrogen and progesterone together have been shown to produce substantial increases in expression of Csf1 mRNA in the uterus. Csf1 in turn regulates development of the placenta (29). The production of Csf2 (GM-CSF) mRNA by uterine epithelial cells is also highly-regulated by ovarian steroid hormones (33). Alternatively, like most cancer chemotherapeutic agents, tamoxifen has multiple side effects mediated by interactions with targets other than estrogen receptors. For example, tamoxifen is a potent inhibitor of the lysosomal enzyme, acid ceramidase, which in turn regulates the levels of pro-apoptotic ceramide and mitogenic sphingosine-1-phosphate (34). Actively phagocytic macrophages derived from the yolk sac proliferate extensively as they infiltrate tissues. We speculate that the expansion of yolk sac-derived macrophage populations
in response to tamoxifen would produce an over-estimate of their contribution to adult macrophage populations. If tamoxifen administered at 8.5dpc is retained in tissues (10), it could also compromise the onset of definitive haematopoiesis in the liver at 10.5dpc. Haematopoietic stem cells are estrogen-responsive and estrogen receptor signalling is required for the expansion of stem cell self-renewal and erythropoiesis that occurs in female mice during pregnancy (35). Treatment of adult mice with tamoxifen at doses used herein produced a marked reduction in bone marrow cellularity, and depletion of haematopoietic stem cells (36).

There are fate-mapping studies using promoters such as Runx1, S100a4, Cx3cr1, Kit and Flt3 that do not involve the use of tamoxifen. Rather than supporting an exclusive foetal origin of tissue macrophages, many such studies indicate progressive contributions from the recruited monocyte progeny of definitive hematopoietic stem cells (Reviewed by (10)). For example, a recent detailed study of peritoneal macrophages indicated their progressive replacement by monocyte-derived cells with age (37). In the developing chick, where in ovo cellular transplantation is possible, macrophages derived from transplanted yolk sac progenitors are replaced by the time of hatch whereas those derived from transplanted bone marrow are retained in adults (38).

A compromise view is that macrophages in tissues occupy specific anatomical niches or territories which can be filled either by monocyte infiltration or by local proliferation of resident macrophages depending upon circumstance, opportunity and host genotype (1, 2, 39). Based upon the impacts of treatment with CSF1, or with anti-CSF1R, the local availability of this key growth factor, regulated by macrophages, may be one determinant of niche occupancy (2, 39). This compromise is compatible with the original descriptions of the mononuclear phagocyte system, almost 40 years ago, which clearly recognised the dual origin of tissue macrophages (40-42).
References

1. Hume DA. The mononuclear phagocyte system. Curr Opin Immunol. 2006;18(1):49-53.
2. Jenkins SJ, Hume DA. Homeostasis in the mononuclear phagocyte system. Trends Immunol. 2014;35(8):356-67.
3. Chang MK, Raggatt LJ, Alexander KA, Kuliwala JS, Fazzalari NL, Schroder K, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181(2):1232-44.
4. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfeld DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159(6):1327-40.
5. Kaur S, Raggatt LJ, Batoo L, Hume DA, Levesque JP, Pettit AR. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Semin Cell Dev Biol. 2017;61:12-21.
6. Mass E, Ballesteros I, Farlik M, Halbritter F, Gunther P, Crozet L, et al. Specification of tissue-resident macrophages during organogenesis. Science. 2016;353(6304).
7. Okabe Y, Medzhitov R. Tissue biology perspective on macrophages. Nat Immunol. 2016;17(1):9-17.
8. van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46(6):845-52.
9. Samokhvalov IM, Samokhvalova NI, Nishikawa S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007;446(7139):1056-61.
10. Epelman S, Lavine KJ, Randolph GJ. Origin and Functions of Tissue Macrophages. Immunity. 2014;41(1):21-35.
11. Reinert RB, Kanz J, Misfeldt AA, Poffenberger G, Gannon M, Brissova M, et al. Tamoxifen-Induced Cre-loxP Recombination Is Prolonged in Pancreatic Islets of Adult Mice. PLoS One. 2012;7(3):e33529.
12. Ye R, Wang QA, Tao C, Vishvanath L, Shao M, McDonald JG, et al. Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Mol Metab. 2015;4(11):771-8.
13. Patel SH, O’Hara L, Atanassova N, Smith SE, Curley MK, Rebourcet D, et al. Low-dose tamoxifen treatment in juvenile males has long-term adverse effects on the reproductive system: implications for inducible transgenics. Sci Rep. 2017;7.
14. Igarashi H, Kouro T, Yokota T, Comp PC, Kincade PW. Age and stage dependency of estrogen receptor expression by lymphocyte precursors. Proc Natl Acad Sci U S A. 2001;98(26):15131-6.
15. Pepe G, Braga D, Renzi TA, Villa A, Bolego C, D’Avila F, et al. Self-renewal and phenotypic conversion are the main physiological responses of macrophages to the endogenous estrogen surge. Sci Rep. 2017;7:44270.
16. Wei S, Nandi S, Chitu V, Yeung YG, Yu W, Huang M, et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010;88(3):495-505.
17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8.
18. Rodero MP, Poupel L, Lohyer PL, Harmon P, Licata F, Pessell C, et al. Immune surveillance of the lung by migrating tissue monocytes. eLife. 2015;4:e07847.
19. Sauter KA, Pradins C, Sehgal A, Bain CC, Scott C, Moffat L, et al. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS One. 2014;9(8):e105429.
20. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792-804.
21. Hoeffel G, Houssier F, Lavin Y, Low D, Almeida FF, See P, et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;42(4):665-78.
22. Schulz C, Gomez Perdiguer D, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86-90.
23. Lichanska AM, Browne CM, Henkel GW, Murphy KM, Ostrowski MC, McKercher SR, et al. Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood. 1999;94(1):127-38.
24. Gow DJ, Sester DP, Hume DA, CSF-1, IGF-1, and the control of postnatal growth and development. J Leukoc Biol. 2010;88(3):475-81.
25. Gomez Perdiguer D, Klaproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547-51.
26. Summers KM, Hume DA. Identification of the macrophage-specific promoter signature in FANTOM5 mouse embryonic developmental time course data. J Leukoc Biol. 2017.
27. Walker MK, Boberg JR, Walsh MT, Wolf V, Trujillo A, Duke MS, et al. A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice. Toxicol Appl Pharmacol. 2012;260(1):65-9.

28. Veru F, Laplante DP, Luu heshi G, King S. Prenatal maternal stress exposure and immune function in the offspring. Stress. 2014;17(2):133-48.

29. Pollard JW, Bartocci A, Arceci R, Orlofsky A, Ladner MB, Stanley ER. Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature. 1987;330(6147):484-6.

30. Sheng J, Ruedl C, Karjalainen K. Most Tissue-Resident Macrophages Except Microglia Are Derived From Fetal Hematopoietic Stem Cells. Immunity. 2015;43(2):382-93.

31. Gallo MA, Kaufman D. Antagonistic and agonistic effects of tamoxifen: significance in human cancer. Semin Oncol. 1997;24(1 Suppl 1):S1-71-S1-80.

32. Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev Dyn. 2006;235(9):2603-12.

33. Robertson SA, Mayrhofer G, Seamark RF. Ovarian steroid hormones regulate granulocyte-macrophage colony-stimulating factor synthesis by uterine epithelial cells in the mouse. Biol Reprod. 1996;54(1):183-96.

34. Morad SA, Levin JC, Tan SF, Fox TE, Feith DJ, Cabot MC. Novel off-target effect of tamoxifen—Inhibition of acid ceramidase activity in cancer cells. Biochim Biophys Acta. 2013;1831(12):1657-64.

35. Nakada D, Oguro H, Levi BP, Ryan N, Kitano A, Saitoh Y, et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature. 2014;505(7484):555-8.

36. Sanchez-Aguilera A, Arranz L, Martin-Perez D, Garcia-Garcia A, Stavropoulou V, Kubovcakova L, et al. Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis. Cell stem cell. 2013;15(6):791-804.

37. Bain CC, Hawley CA, Garner H, Scott CL, Schridde A, Steers NJ, et al. Long-lived self-renewing bone marrow-derived macrophages displace embryoid-derived cells to inhabit adult serous cavities. Nature communications. 2016;7:ncomms11852.

38. Garceau V, Balic A, Garcia-Morales C, Sauter KA, McGrew MJ, Smith J, et al. The development and maintenance of the mononuclear phagocyte system of the chick is controlled by signals from the macrophage colony-stimulating factor receptor. BMC Biol. 2015;13:12.

39. Guilliams M, Scott CL. Does niche competition determine the origin of tissue-resident macrophages? Nat Rev Immunol. 2017;17(7):451-60.

40. Crofton RW, Diesellhoff-den Duik MM, van Furth R. The origin, kinetics, and characteristics of the Kupffer cells in the normal steady state. J Exp Med. 1978;148(1):1-17.

41. van Furth R, Diesellhoff-den Duik MM. Dual origin of mouse spleen macrophages. J Exp Med. 1984;160(5):1273-83.

42. van oud Alblas AB, van Furth R. Origin, Kinetics, and characteristics of pulmonary macrophages in the normal steady state. J Exp Med. 1979;149(6):1504-18.