USING DISCRETE-CONTINUOUS APPROACH FOR THE SOLUTION OF UNSTEADY-STATE MOISTURE TRANSFER EQUATION FOR MULTILAYER BUILDING WALLS

Kirill P. Zubarev 1, 2

1 National Research Moscow State University of Civil Engineering, Moscow, RUSSIA
2 Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences, Moscow, RUSSIA.

Abstract: Moisture regime of enclosing structures is one of the most complicated and controversial directions in construction industry. Temporary climate impact on enclosing structures and low moisture inertia of building materials lead to the situation in which it is impossible to calculate the steady-state moisture regime. Numerical methods are usually used to assess the moisture behaviour of the enclosing structures. In the current paper, a differential equation of moisture transfer is formulated. The solution of the unsteady-state equation of moisture transfer was obtained using the discrete-continuous approach. Thus, a formula which allows scientists to calculate unsteady-state moisture transfer in multilayer walls of buildings was obtained. A two-layer building enclosing structure with aerated concrete base and mineral wool insulation was calculated.

Keywords: moisture regime, mathematical model, discrete-continuous method, moisture potential, multilayer enclosing structure.
1. INTRODUCTION

Heat and moisture transfer inside enclosing structures is a vital problem in modern construction industry [1–7]. In nowadays, there are many multilayers walls that are used in building, so it is crucial to assess heat-conductivity coefficients under various climate conditions [8, 9], durability of building materials [10–13] and influence of the moisture content inside enclosures on human health [14–18].

Calculations of moisture transfer are based on a transfer potential. For instance, it can be gradient of water vapor partial pressure [19]. Moreover, moisture transportation can be described by some moisture transfer potentials. For example, gradient of water vapor partial pressure and gradient of capillary pressure [20] or liquid content pressure [21]. The most convenient method is a moisture potential theory, which allows scientists to solve only one moisture transfer equation using the moisture potential [22]. A huge number of moisture potentials exist but in Russian Federation the moisture potential \(F \), which is included in regulatory documents, was developed by V.G. Gagarin and V.V. Kozlov [23].

The moisture potential \(F \) can be written as a function of moisture and temperature [23]:

\[
F(w,t) = E_s(t) \cdot \varphi(w) + \frac{1}{\mu_0} \int_0^w \beta(\zeta) d\zeta.
\] (1)

where \(F \) – moisture potential, Pa; \(E_s \) – saturated water vapor pressure, Pa; \(\varphi \) – relative air humidity, %; \(\mu \) – vapor permeability coefficient, kg/(m \cdot s \cdot Pa); \(\beta \) – moisture conductivity coefficient, kg/(m \cdot s \cdot kg/kg), which depends on moisture, \(t \) – temperature, °C; \(w \) – material moisture, % by weight (1 kg/kg = 100 % by weight).

Moisture transfer differential equation based on the moisture potential \(F \) can be formulated as [23]:

\[
\frac{\partial F(w,t)}{\partial \tau} = \left(\frac{1}{\mu} \beta(w) + \frac{\partial \varphi(w)}{\partial w} E_s(t) \right) \mu \frac{\partial^2 F(w,t)}{\partial x^2}.
\] (2)

where \(\gamma_0 \) – enclosing structure dry material density, kg/m³, \(\tau \) – time, \(s \) – coordinate, m.

In 2010, the new discrete-continuous approach was developed by Zolotov A.B., Akimov P.A., Sidorov V.N. and Mozgaleva M.L. This approach gives an opportunity to find an analytical solution of the unsteady-state heat transfer equation [24, 25].

The heat transfer equation can be formulated as [24, 25]:

\[
\frac{\partial t}{\partial \tau} = a \frac{\partial^2 t}{\partial x^2}.
\] (3)

where \(a \) – thermal diffusivity coefficient, m²/s.

First-order boundary conditions for the heat transfer equation can be written as [24, 25]:

\[
t_{x=0} = t_{ext}, \quad (4) \\
t_{x=l} = t_{in}, \quad (5)
\]

where \(t_{x=0} \) – temperature in \(x=0, °C \); \(t_{x=l} \) – temperature in \(x=l, °C \); \(t_{ext} \) – temperature of outside air, °C; \(t_{in} \) – temperature of inside air, °C; \(l \) – thickness of researched enclosing structure, m.

If inside and outside temperatures do not change during time, it is possible to use discrete-continuous formula:

\[
\bar{U}(\tau) = e^{\alpha \tau} \cdot \bar{U}_0 - A^{-1} \left(E - e^{\alpha \tau} \right) \cdot \bar{S}.
\] (6)

where \(\bar{U} \) – temperature distribution column vector; \(\bar{U}_0 \) – initial temperature distribution column vector; \(A \) – coefficient matrix; \(\bar{S} \) – boundary conditions column vector.

Opportunities of the formula (6) has been developed by V.N. Sidorov and S.M. Matskevich [26–28]. First-order boundary
International Journal for Computational Civil and Structural Engineering

conditions varied with time, and temperature distribution was described by the following expression at any moment of time:

\[\mathcal{U}(t) = e^{\beta \tau} \cdot U_0 + \int_0^t e^{\beta(t-\sigma)} \cdot S(\sigma) \, d\sigma. \]

(7)

The integral in equation (7) can be determined by method of trapezoidal.

2. THE PROBLEM

To obtain analytical solution of the unsteady-state moisture transfer equation (2) for multilayer building walls using discrete-continuous method.

3. MATERIALS AND METHODS

The formula (2) was reformulated as [29,30]:

\[\frac{\partial F(w,t)}{\partial t} = \kappa F_0 \cdot E_i(t) \frac{\partial^2 F(w,t)}{\partial \xi^2}. \]

(8)

where \(\kappa F_0 \) – average material heat-humidity characteristic coefficient, \(m^2/(s \cdot Pa) \).

Thus, saturated water vapor pressure \(E_i \) depends on temperature and can be calculated by the following expression:

\[E_i(t) = 1.84 \cdot 10^{11} \cdot \exp(-5330/(273 + t)). \]

(9)

In order to simplify equation (8) let us consider the steady-state heat-transfer equation with third order boundary conditions:

\[\frac{\partial^2 t}{\partial \xi^2} = 0. \]

(10)

\[-\lambda \left. \frac{\partial t}{\partial \xi} \right|_{\xi=1} = \alpha_{ext} (t_{ext} - t_i). \]

(11)

\[\lambda \left. \frac{\partial t}{\partial \xi} \right|_{\xi=N} = \alpha_{in} (t_{in} - t_N). \]

(12)

where \(t_i \) – temperature of the enclosing structure surface which contacts with outside air, \(^\circ C\); \(\alpha_{ext} \) – heat exchange coefficient of outside air and enclosing structure section, \(W/(m^2 \cdot ^\circ C) \); \(t_N \) – temperature of the enclosing structure surface which contacts with inside air, \(Pa \); \(\alpha_{in} \) – heat exchange coefficient of inside air and enclosing structure section, \(W/(m^2 \cdot ^\circ C) \).

Third-order boundary condition for moisture transfer equation can be written as:

\[-\mu \left. \frac{\partial F}{\partial \xi} \right|_{\xi=1} = \beta_{ext} (F_{ext} - F_i). \]

(13)

\[\mu \left. \frac{\partial F}{\partial \xi} \right|_{\xi=N} = \beta_{in} (F_{in} - F_N). \]

(14)

where \(F_{ext} \) – outside air moisture potential equal to partial pressure of outside air water vapor, \(Pa \); \(F_{in} \) – inside air moisture potential equal to partial pressure of inside air water vapor, \(Pa \); \(F_i \) – moisture potential of the enclosing structure surface which contacts with outside air, \(Pa \); \(F_N \) – moisture potential of the enclosing structure surface which contacts with inside air, \(Pa \); \(\beta_{ext} \) – moisture exchange coefficient of outside air and enclosing structure section, \(kg/(m^2 \cdot s \cdot Pa) \); \(\beta_{in} \) – moisture exchange coefficient of outside air and enclosing structure section, \(kg/(m^2 \cdot s \cdot Pa) \).

According to the analytical expressions (9) – (14), there is a possibility to find discrete-continuous solution of the moisture-transfer equation for the multi-layer enclosing structure:

\[\vec{F} = p \cdot ((G + K \cdot E_i \cdot A)^{-1} - e^{(G + K \cdot E_i \cdot A)\tau} - \tau \cdot (G + K \cdot E_i \cdot A)^{-1} - (G + K \cdot E_i \cdot A))^{-2} \cdot \vec{L} + \]

\[+ (G + K \cdot E_i \cdot A)^{-1} \cdot e^{(G + K \cdot E_i \cdot A)\tau} - E \cdot \vec{B} + \]

\[+ e^{(G + K \cdot E_i \cdot A)\tau} \cdot F_0. \]

(15)

where \(G \) – matrix of coefficients for materials joint; \(K \) – matrix, which takes into account the differences in the thermal and moisture.
properties of the materials of the calculating enclosing structure; \(A \) – matrix of coefficients for a multilayer enclosing structure; \(\overline{L} \) – a column vector, the first element of which is equal to one, other elements are equal to 0 for a multilayer enclosing structure; \(\overline{B} \) – a column vector, the first and last elements of which describe the boundary conditions on the outer and inner surfaces of the enclosing structure, other elements are equal to 0 for a multi-layer enclosing structure; \(E_t \) – matrix of the saturated water vapour pressure; \(p \) – the coefficient of the external boundary condition for a multilayer building enclosing structure, \(Pa/s^2 \).

A computer program based on formula (15) has been created. It was made by MATHLAB application, which is able to use an engineer’s work.

4. RESULTS AND DISCUSSION

The new discrete-continuous formula was used for calculation of the moisture regime of the building wall with aerated concrete base and mineral wool insulation. The climate data of Moscow (Russian Federation) for temperature and moisture field was taken as initial conditions for moisture behaviour assessment.

The results of the moisture behaviour calculation in the building wall with aerated concrete base and mineral wool insulation in January are given at (Figure 1).

5. CONCLUSIONS

The new efficient method was proposed for HVAC (heating, ventilation and air conditioning) engineers. This method is based on the discrete-continuous approach, which allows scientists calculate unsteady-state moisture transfer by final formula (15).

6. ACKNOWLEDGMENTS

The author expresses gratitude to V.G. Gagarin, professor, Doctor of Engineering Sciences, V.K. Akhmetov, professor, Doctor of Engineering Sciences and V.V. Kozlov, Candidate of Engineering Sciences, for providing valuable advice during the work.

REFERENCES

1. Petrichenko M., Rakova X., Vyatkin M., Musorina T., Kuznetsova D. Architectural renovation of quarter in Mannheim, Germany. // Applied Mechanics and Materials, 2015, Vol. 725–726, 1101–1106.
2. Gamayunova O., Radaev A., Petrichenko M., Bogdanivics R. Predictive model of the dependence of the cost of insulation on thermal characteristics. // E3S Web of Conferences, 2019, Vol. 140, № 04018.
3. Musorina T., Olshevskyi V., Ostrovaia A., Statsenko E. Experimental assessment of moisture transfer in the vertical ventilated channel. // MATEC Web of Conferences, 2016, № 02002.
4. Gamayunova O.S., Radaev A.E., Petrichenko M.R. The procedure for determination of the dependence of the cost of insulation materials on their thermophysical characteristics. // IOP Conference Series:
Materials Science and Engineering, 2019, Vol. 660, No 012018.

5. Gamayunova O., Radaev A., Petrichenko M., Dmitrieva E. The increase in energy efficiency of residential buildings of military towns. // E3S Web of Conferences, 2019, Vol. 110, No 02144.

6. Zaborova D., Vieira G., Musorina T., Butyrin A. Experimental study of thermal stability of building materials. // Advances in Intelligent Systems and Computing, 2017, Vol. 692, pp. 482–489.

7. Castro J.C.L., Zaborova D.D., Musorina T.A., Arkhipov I.E. Indoor environment of a building under the conditions of tropical climate. // Magazine of Civil Engineering, 2017, Vol 8(76), pp. 50–57.

8. Jin H.Q., Yao X.L., Fan L.W., Xu X., Yu Z.T. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content. // International journal of heat and mass transfer, Vol. 92, 2016, pp. 589–602.

9. Hoseini A., Bahrami A. Effects of humidity on thermal performance of aerogel insulation blankets. // Journal of building engineering, Vol. 13, 2017, pp. 107–115.

10. Wu Z., Wong H.S., Buenfeld N.R. Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking. // Cement and concrete research, Vol. 98, 2017, pp. 136–154.

11. Zvicevicius E., Rila A., Cipliese A., Cerniauskiene Z., Kadziuliene Z., Tivikiene V. Effects of moisture and pressure on densification process of raw material from Artemisia Dubai Wall. // Renewable energy, Vol. 119, 2018, pp. 185–192.

12. Georget F., Prevost J.H., Huet B. Impact of the microstructure model on coupled simulation of drying and accelerated carbonation. // Cement and concrete research, Vol. 104, 2018, pp. 1–12.

13. Liu Z.C., Hansen W., Wang F.Z. Pumping effect to accelerate liquid uptake in concrete and its implications on salt frost durability. // Construction and building materials, Vol.158, 2018, pp. 181–188.

14. Petrov A., Ivantsov A. Design and calculation of the internal roof drain system structure in terms of thermal protection and moisture condensation. // IOP Conference Series: Materials Science and Engineering, 2020, Vol. 890, No 022141.

15. Ivantsov A., Petrov A. The influence of architectural and construction parameters of residential buildings on energy efficiency in Russian Federation. // IOP Conference Series: Materials Science and Engineering, 2020, Vol 890, No 022142.

16. Petrov A.S., Kupriyanov V.N. Determination of humidity conditions of enclosing structures by the color indicator method. // IOP Conference Series: Materials Science and Engineering, 2018, Vol. 463, No 022064.

17. Petrov A.S., Kupriyanov V.N. About operational factor influence on vapor permeability of heat-insulating materials. // International Journal of Pharmacy and Technology, 2016, Vol. 8(1), pp. 11248–11256.

18. Girault F., Perrier F. Estimating the importance of factors influencing the radon-222 flux from building walls. // Science of the total environment. 433, 2012, pp. 247–263.

19. Vavrovic, B. Importance of envelope construction renewal in panel apartment buildings in terms of basic thermal properties. // Advanced Materials Research, Vol. 855, 2014, pp. 97–101.

20. Lal S., Lucci F., Defraeye T., Poulakakos LD., Partl MN., Derome D., Carmeliet J. CFD modeling of convective scalar transport in a macroporous material for drying applications. // International journal of thermal sciences, Vol. 123, 2018, pp. 86–98.

21. Galbraith G.H., Guo G.H., McLean R.C. The effect of temperature on the moisture permeability of building materials. // Building research and information, Vol. 28 Iss. 4, 2000 – pp. 245–259.
22. Arfvidsson, J., Claesson J. Isothermal moisture flow in building materials: modelling, measurements and calculations based on Kirchhoff's potential. // Building and Environment. Vol. 35, Iss. 6, 2000, pp. 519–536.

23. Gagarin, V.G., Akhmetov V.K., Zubarev K.P. Assessment of enclosing structure moisture regime using moisture potential theory. // MATEC Web of Conferences, 2018, Vol. 193, № 03053.

24. Zolotov A.B., Mozgaleva M.L., Akimov P.A., Sidorov V.N. Ob otdnom diskretno-kontinualnom podkhode k resheniyu odnomernoy zadachi teploprovodnosti [About one discrete-continual method of solution of one-dimensional heat conductivity problem]. // Academia. Architecture and Construction (Academia. Arkhitektura i stroitelstvo), Iss. 3, 2010, pp. 287–291.

25. Zolotov A.B., Mozgaleva M.L., Akimov P.A., Sidorov V.N. Diskretno-kontinualnyy podkhod k resheniyu zadachi teploprovodnosti [Discrete-continual approach for thermal conductivity problem solution]. // Bulletin of Moscow State University of Civil Engineering (Vestnik MGSU), Iss. 3, 2010. pp. 58–62.

26. Sidorov V.N., Matskevich S.M. Discrete-analytical solution of the unsteady-state heat conduction transfer problem based on the finite element method. // IDT 2016 - Proceedings of the International Conference on Information and Digital Technologies 2016. 2016, pp. 241–244.

27. Sidorov V.N., Matskevich S.M. Solving unsteady boundary value problems using discrete-analytic method for non-iterative simulation of temperature processes in time. // Key Engineering Materials, Vol. 685, 2016, pp. 211–216.

28. Sidorov V.N., Matskevich S.M. Discrete-analytic solution of unsteady-state heat conduction transfer problem based on a theory of matrix function. // Procedia Engineering, Vol. 111, 2015, pp. 726–733.

29. Gagarin V.G., Akhmetov V.K., Zubarev K.P. Moisture behavior calculation of single-layer enclosing structure by means of discrete-continuous method. // MATEC Web of Conferences, 2018, Vol. 170, № 03014.

30. Gagarin V.G., Akhmetov V.K., Zubarev K.P. The moisture regime calculation of single-layer enclosing structures on the basis of the discrete-continuum method application. // IOP Conference Series: Materials Science and Engineering, 2018, Vol. 456, № 012105.

СПИСОК ЛИТЕРАТУРЫ

1. Petrichenko M., Rakova X., Vyatkin M., Musorina T., Kuznetsova D. Architectural renovation of quarter in Mannheim, Germany. // Applied Mechanics and Materials, 2015, Vol. 725–726, 1101–1106.

2. Gamayunova O., Radaev A., Petrichenko M., Bogdanivics R. Predictive model of the dependence of the cost of insulation on thermal characteristics. // E3S Web of Conferences, 2019, Vol. 140, № 04018.

3. Musorina T., Olshevskyi V., Ostrovaia A., Statsenko E. Experimental assessment of moisture transfer in the vertical ventilated channel. // MATEC Web of Conferences, 2016, № 02002.

4. Gamayunova O.S., Radaev A.E., Petrichenko M.R. The procedure for determination of the dependence of the cost of insulation materials on their thermophysical characteristics. // IOP Conference Series: Materials Science and Engineering, 2019, Vol. 660, № 012018.

5. Gamayunova O., Radaev A., Petrichenko M., Dmitrieva E. The increase in energy efficiency of residential buildings of military towns. // E3S Web of Conferences, 2019, Vol. 110, № 02144.

6. Zaborova D., Vieira G., Musorina T., Butyrin A. Experimental study of thermal stability of building materials. // Advances in Intelligent Systems and Computing, 2017, Vol. 692, pp. 482–489.

7. Castro J.C.L., Zaborova D.D., Musorina T.A., Arkhipov I.E. Indoor environment of...
Using Discrete-Continuous Approach for the Solution of Unsteady-State Moisture Transfer Equation for Multilayer Building Walls

a building under the conditions of tropical climate. // Magazine of Civil Engineering, 2017, Vol 8(76), pp. 50–57.

8. Jin H.Q., Yao X.L., Fan L.W., Xu X., Yu Z.T. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content. // International journal of heat and mass transfer, Vol. 92, 2016, pp. 589–602.

9. Hoseini A., Bahrami A. Effects of humidity on thermal performance of aerogel insulation blankets. // Journal of building engineering, Vol. 13, 2017, pp. 107–115.

10. Wu Z., Wong H.S., Buenfeld N.R. Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking. // Cement and concrete research, Vol. 98, 2017, pp. 136–154.

11. Zvicevicius E., Raila A., Cipliene A., Cerniauskiene Z., Kadziuliene Z., Tilvikiene V. Effects of moisture and pressure on densification process of raw material from Artemisia Dubai Wall. // Renewable energy, Vol. 119, 2018, pp. 185–192.

12. Georget F., Prevost J.H., Huet B. Impact of the microstructure model on coupled simulation of drying and accelerated carbonation. // Cement and concrete research, Vol. 104, 2018, pp. 1–12.

13. Liu Z.C., Hansen W., Wang F.Z. Pumping effect to accelerate liquid uptake in concrete and its implications on salt frost durability. // Construction and building materials, Vol.158, 2018, pp. 181–188.

14. Petrov A., Ivantsov A. Design and calculation of the internal roof drain system structure in terms of thermal protection and moisture condensation. // IOP Conference Series: Materials Science and Engineering, 2020, Vol 890, № 022141.

15. Ivantsov A., Petrov A. The influence of architectural and construction parameters of residential buildings on energy efficiency in Russian Federation. // IOP Conference Series: Materials Science and Engineering, 2020, Vol 890, № 022142.

16. Petrov A.S., Kupriyanov V.N. Determination of humidity conditions of enclosing structures by the color indicator method. // IOP Conference Series: Materials Science and Engineering, 2018, Vol. 463, № 022064.

17. Petrov A.S., Kupriyanov V.N. About operational factor influence on vapor permeability of heat-insulating materials. // International Journal of Pharmacy and Technology, 2016, Vol. 8(1), pp. 11248–11256.

18. Girault F., Perrier F. Estimating the importance of factors influencing the radon-222 flux from building walls. // Science of the total environment. 433, 2012, pp. 247–263.

19. Vavrovic, B. Importance of envelope construction renewal in panel apartment buildings in terms of basic thermal properties. // Advanced Materials Research, Vol. 855, 2014, pp. 97–101.

20. Lal S., Lucci F., Defraeye T., Poulikakos LD., Partl MN., Derome D., Carmeliet J. CFD modeling of convective scalar transport in a macroporous material for drying applications. // International journal of thermal sciences, Vol. 123, 2018, pp. 86–98.

21. Galbraith G.H., Guo G.H., McLean R.C. The effect of temperature on the moisture permeability of building materials. // Building research and information, Vol. 28 Iss. 4, 2000 – pp. 245–259.

22. Arfvidsson, J., Claesson J. Isothermal moisture flow in building materials: modelling, measurements and calculations based on Kirchhoff's potential. // Building and environment. Vol.35, Iss.6,2000, pp. 519–536.

23. Gagarin, V.G., Akhmetov V.K., Zubarev K.P. Assessment of enclosing structure moisture regime using moisture potential theory. // MATEC Web of Conferences, 2018, Vol. 193, № 03053.

24. Золотов А.Б., Мозгалева М.Л., Акимов П.А., Сидоров В.И. Об одном дискретно-континуальном подходе к решению
одномерной задачи теплопроводности. // Academia. Архитектура и строительство, Iss. 3, 2010, pp. 287–291.
25. Золотов А.Б., Мозгалева М.Л., Акимов П.А., Сидоров В.Н. Дискретно-континуальный подход к решению задачи теплопроводности. // Вестник МГСУ, Iss. 3, 2010. pp. 58–62.
26. Sidorov V.N. Matskevich S.M. Discrete-analytical solution of the unsteady-state heat conduction transfer problem based on the finite element method. // IDT 2016 - Proceedings of the International Conference on Information and Digital Technologies 2016. 2016, pp. 241–244.
27. Sidorov V.N. Matskevich S.M. Solving unsteady boundary value problems using discrete-analytic method for non-iterative simulation of temperature processes in time. // Key Engineering Materials, Vol. 685, 2016, pp. 211–216.
28. Sidorov V.N. Matskevich S.M. Discrete-analytic solution of unsteady-state heat conduction transfer problem based on a theory of matrix function. // Procedia Engineering, Vol. 111, 2015, pp. 726–733.
29. Gagarin V.G., Akhmetov V.K., Zubarev K.P. Moisture behavior calculation of single-layer enclosing structure by means of discrete-continuous method. // MATEC Web of Conferences, 2018, Vol. 170, № 03014.
30. Gagarin V.G., Akhmetov V.K., Zubarev K.P. The moisture regime calculation of single-layer enclosing structures on the basis of the discrete-continuum method application. // IOP Conference Series: Materials Science and Engineering, 2018, Vol. 456, № 012105.

Kirill P. Zubarev, Candidate of Engineering Sciences, senior lecturer at the department of heat and gas supply and ventilation of National Research Moscow State University of Civil Engineering; 129337, Moscow, Yaroslavskoe shosse, 26; tel. +7 (495) 781-80-07; fax. +7 (499) 183-44-38. e-mail.: zubarevkirill93@mail.ru.

Зубарев Кирилл Павлович, кандидат технических наук, старший преподаватель кафедры теплогазоснабжения и вентиляции Национального исследовательского Московского государственного строительного университета; 129337, г. Москва, Ярославское шоссе, 26; тел. +7 (495) 781-80-07; факс. +7 (499) 183-44-38. e-mail.: zubarevkirill93@mail.ru.