Metal-Insulator-Transition in a Weakly interacting Disordered Electron System

C. E. Ekuma, S.-X. Yang, H. Terletska, K.-M. Tam, N. S. Vidhyadhiraja, J. Moreno and M. Jarrell

1Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
2Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
3Theoretical Sciences Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, 560064, India

The interplay of interactions and disorder is studied using the Anderson-Hubbard model within the typical dynamical cluster approximation. Treating the interacting, non-local cluster self-energy ($\Sigma_{\epsilon}(\tilde{g})(i,j \neq i)$) up to second order in the perturbation expansion of interactions, U^2, with a systematic incorporation of non-local spatial correlations and diagonal disorder, we explore the initial effects of electron interactions (U) in three dimensions. We find that the critical disorder strength (W^U_c), required to localize all states, increases with increasing U; implying that the metallic phase is stabilized by interactions. Using our results, we predict a soft pseudogap at the intermediate W close to W^U_c and demonstrate that the mobility edge (ω_i) is preserved as long as the chemical potential, μ, is beyond the mobility edge energy.

PACS numbers: 72.15.Rn,02.70.Uu,64.70.Tg,71.23.An,71.27.+a

Introduction. – The interplay of disorder (W) and Coulomb interactions (U) is an important problem in diverse fields not limited to the physics of cold atoms, photonic and bosonic systems, and optical lattices. It has been actively studied both theoretically and experimentally (see for e.g., the metal-insulator transition of doped semiconductors and some perovskite compounds for the past few decades.

The single-parameter scaling theory of localization (SPSTL) showed the absence of extended states in non-interacting lower (one and two) dimensional systems. Experiments proved however, that interactions could induce an insulator-metal transition, and hence are very important. Ma and Fradkin using $1/N$ expansion in $2 + \epsilon$ dimensions found a new “interacting” fixed point in their study on localization and interactions in a disordered electron gas. Subsequently, Finkelstein and co-workers, using renormalization group arguments, predicted the existence of a quantum critical point in two dimensions (2D). The SPSTL was modified into a two-parameter scaling theory, the validity of which was confirmed through experiments in 2D Si-metal-oxide-semiconductor field-effect transistors. In three-dimensions, the pioneering work of Altshuler and Aronov, employing perturbation theory to the lowest order in U and ignoring all crossing diagrams, showed that interactions can induce a square-root singularity at the Fermi level and hence strongly renormalize a disordered Fermi liquid. Recent work using exact diagonalization predicts a robust zero bias anomaly in the strong coupling, large disorder regime.

In this letter, we focus on the effects of weak local interactions on a disordered systems in three dimensions. Our approach is an extension of the recently developed typical medium-dynamical cluster approximation (TMDCA), which was shown to be highly successful in describing the Anderson localization transition (ALT) for non-interacting systems. The typical medium approaches assume that the typical density of states (TDoS), when appropriately defined, acts as the “proper” order parameter for the ALT. Such an assumption is well justified not only for the non-interacting case but also in the presence of interactions, as shown experimentally. The typical medium theory (TMT) of Dobrosavljević et al. is a special case of the TMDCA when the cluster size $N_c = 1$. Even though the TMT cannot include weak localization effects due to coherent backscattering, it still does qualitatively predict a disorder-driven ALT, and hence incorporates ‘strong localization’ effects. The TMDCA incorporates non-local effects via systematic finite cluster increment and achieves almost perfect agreement with numerical exact calculations. The extension of the TMT to finite interactions show that interactions screen the disorder. In this letter, we show that such a conclusion is robust in the thermodynamic limit through increasing cluster size calculations.

While there have been significant efforts to understand the combined effect of disorder and interactions on the local density of states close to the Fermi level, the band edges have received scant attention. Specifically, the effect of weak interactions on the mobility edge have not been discussed thus far. The main result of this letter is that for $\mu < \omega_i$, arbitrary small interactions lead to the masking of the sharp mobility edge that separates localized and extended states in the non-interacting regime below the critical disorder strength $W^U_c = 0$. Thus, interactions can radically modify the spectrum of a non-interacting system even at the band edges, i.e., in the ‘localized band’. However, when the chemical potential (μ) is outside the mobility edge energy (i.e., $\mu > \omega_i$), the well-defined localization edge is restored. Nevertheless, unlike the non-interacting systems where the TDoS just shifts rigidly as one scans through μ, in the presence of interactions, there is a non-trivial decrease of the TDoS.
vis-à-vis the change in the filling. Further, we predict a soft-pseudogap at intermediate filling W. Below W^U_c in agreement with experiments [22, 23].

Method.— The Anderson-Hubbard model (AHM) is a model for studying the interplay between electron-electron interactions and disorder. The Hamiltonian for this model is

$$H = -\sum_{\langle ij \rangle} t_{ij} (c_i^\dagger c_j + h.c.) + \sum_i (V_i - \mu) n_i + U \sum_i n_i^\uparrow n_i^\downarrow.$$

The first term describes the hopping of electrons on the lattice, $c_i^\dagger(c_i)$ is the creation (annihilation) operator of an electron on site i, $n_i = c_i^\dagger c_i$ is the number operator, $t_{ij} = t$ is the hopping matrix element between nearest-neighbor sites. The second term represents the disorder part which is modeled by a local potential V_i randomly distributed according to a probability distribution $P(V_i)$, μ is the chemical potential. The last term describes the Coulomb repulsion between two electrons occupying site i. We set $4t = 1$ as the energy unit, and use a “box” distribution with $P(V_i) = \frac{1}{\pi} \Theta(|V_i| - |V|)$, where $\Theta(x)$ is the Heaviside step function. We use the short-hand notation: $(\ldots) = \int dV_i P(V_i)(\ldots)$ for disorder averaging.

Our focus is on the single-particle Green function and the associated density of states. To obtain these for the AHM [2], we modify the TMDCA to treat both disorder and interactions. Here, an initial guess for the hybridization function $(\Gamma(K, \omega) \equiv 0)$ is used to form the cluster-excluded Green function $\mathcal{G}(K, \omega) = (\omega - \Gamma(K, \omega) - \bar{\epsilon}_K + \mu)^{-1}$, where $\bar{\epsilon}_K$ is the coarse-grained bare dispersion. $\mathcal{G}(K, \omega)$ is then Fourier transformed to form the real space Green function, $G_{n,m} = \sum_K \mathcal{G}(K) \exp(ik \cdot (R_n - R_m))$ and then for a given disorder configuration \tilde{V}, we may calculate the cluster Green function $\bar{G}(\tilde{V}) = (G^{-1} - \tilde{V})^{-1}$.

![FIG. 1. The first and second order diagrams of the interacting self-energy between sites i and j.](image)

Utilizing $\bar{G}(\tilde{V})$, we then calculate the Hartree-corrected cluster Green function $\tilde{\mathcal{G}}^{-1} \tilde{V}, U) = \bar{G}(\tilde{V})^{-1} + \epsilon_d(U)$ (where $\epsilon_d(U) = \bar{\mu} - U \tilde{n}_i/2$ and $\tilde{n}_i = -1/\pi \int_0^\infty 3 \tilde{\mathcal{G}}(\omega) d\omega$ is the site occupancy at zero temperature, $T = 0$).

Here, we choose the chemical potential $\bar{\mu} = \mu + U/2$ to enable simulations both at and away from half-filling. Both $\tilde{\mathcal{G}}$ and \tilde{n}_i are converged and then used to compute the second-order diagram shown in Fig. 1. Thus, the full self-energy due to interactions is then $\Sigma_{\text{int}}(\xi, j, \omega) = \Sigma_{\text{c}}^H(\tilde{\mathcal{G}}) + \Sigma_{\text{c}}^{\text{SOPT}}(\tilde{\mathcal{G}})$, where the first term is the static Hartree correction and the second term is the non-local second-order perturbation theory (SOPT) contribution. We note that the computational cost grows exponentially with each order of the perturbation series making it numerically prohibitive to include more diagrams. However, since our focus is on the weak interaction regime $U/4t \ll 1$, we expect that higher order diagrams are suppressed by at least $\sim (U^3)$. We have carried out extensive benchmarking of the TMDCA-SOPT cluster solver against numerically exact quantum Monte-Carlo calculations within the dynamical cluster approximation (DCA) framework. For weak interactions and essentially all disorder strengths, the corrections due to perturbation orders higher than the second are found to be negligible (for details, see Supplemental Material (SM) [22]).

For a given interaction strength U and randomly chosen disorder configuration \tilde{V}, we calculate the fully dressed cluster Green function $\bar{G}(\tilde{V}, U) = (G^{-1} - \tilde{V} - \Sigma_{\text{int}}(U) + U/2)^{-1}$. The typical density of states $\rho_{\text{typ}}(\mathbf{K}, \omega)$ is then obtained using $\bar{G}(\mathbf{K}, \omega, V, U)$ following the prescriptions of Ref. [22] which avoids self-averaging. The disorder and interaction averaged typical cluster Green function is obtained using the Hilbert transform $G_{\text{typ}}(\mathbf{K}, \omega) = \int d\omega' \rho_{\text{typ}}(\mathbf{K}, \omega')/(\omega - \omega')$. We close the self-consistency loop by calculating the coarse-grained cluster Green function of the lattice $\bar{G}(\mathbf{K}, \omega) = N_0(\mathbf{K}, \omega) d\epsilon = N_0(\mathbf{K}, \omega) d\epsilon = \int (G_{\text{typ}}(\mathbf{K}, \omega))^{-1} + \Gamma(\mathbf{K}, \omega) - \epsilon + \tau(\mathbf{K})^{-1}$, where $N_0(\mathbf{K}, \epsilon)$ is the bare partial density of states.

Results and Discussion—We start the analysis of our results by comparing the algebraic (or average) density of states (ADoS) (obtained from the DCA, where the algebraic averaging is utilized in the self-consistency) and the typical density of states (TDoS) (obtained from the TMDCA-SOPT, where the self-consistency environment is defined by a typical medium) for a finite cluster $N_c = 38$ at various disorder strengths for $U = 0.0$ and 0.1 at half-filling (Figs. 2(a) and (b)).

At weak disorder, $W \sim 0.5$, the TDoS resembles the
ADoS. However, for larger W_c, comparing the $U = 0.0$ results (Fig. 2(a)) with those of $U = 0.1$ (Fig. 2(b)), a noticeable renormalization of the spectrum is observed. There is a gradual suppression of the TDoS as the disorder strength is increased for both $U = 0.0$ and 0.1. The TDoS at $\omega = 0$ is noticeably larger when the U is finite. This indicates a delocalizing effect of interactions which is consistent with a real space renormalization group study \cite{40} and has been interpreted as a screening of the disorder \cite{34, 41}. For a given disorder strength, the band edges at half-filling for the interacting case appear to be identical to that of the $U = 0$ spectrum. This seems to imply that the mobility edge is preserved when U is turned on. However, this is not the case, and this becomes clear upon examining the tails of the density of states.

For the TMT ($U = 0$) results (Fig. 2(a)) with those of $U = 0.0$ and 0.1, a noticeable renormalization of the spectrum is observed. However, for larger U, the TDoS bands. As it is evident from Fig. 3, the sharp mobility edge is restored as the mobility edge energy is approached in tandem with the Fermi liquid description.

The smearing of the TDoS edge can further be inferred from the convolutions found in the second order (and higher) diagrams (cf. Fig. 1), which will mix states above and below the non-interacting localization edge. Consider two such states: one localized and the other extended, which are now degenerate due to this mixing. Since these states hybridize with each other and both states become extended \cite{10, 11}.

Next, we explore the effect of interactions on the half-filled, disorder-driven localization transition. We show in Fig. 4 the evolution of the TDoS at the band center, $\omega = 0$, for various cluster sizes. The integrated escape rate $\int \! \text{d}K \Gamma(K, \omega)$ (not shown) characterizes the rate of diffusion of electrons between the impurity/cluster and the typical medium. The vanishing of the hybridization paths lead to a localization transition. The TDoS vanishes at the same value of W_c^U as the integrated escape rate.

Figure 4(a) shows that an increase in U from 0.1 to 0.5 leads to a concomitant increase in W_c^U. One can say loosely that, the zero-temperature effect of correlations is an effective reduction in the disorder strength \cite{38, 44}, leading to the increase in W_c as indicated by the arrow. For the TMT ($N_c = 1$), the W_c^U increases as 1.85, 2.05, 2.15, 2.26, and 2.33 for $U = 0.1 – 0.5$, while for the TMDCA ($N_c \geq 12$), W_c^U increases as 2.30, 2.50, 2.82, and 3.05 for $U = 0.1–0.4$. We note the difference in the W_c^U for $U = 0.5$ for TMDCA $N_c = 12$ ($W_c = 3.20$) and $N_c = 38$ ($W_c = 3.38$) which can be attributed to finite size effects. We also note that W_c^U increases more

To explore the effect of weak interactions on the localization of a disordered electron system, we show in Fig. 5 the evolution of the TDoS with $\delta = W/W_c^U$ for various values of U on a log-log plot at various μ. Clearly for $U = 0$, a sharp, well-defined mobility edge is observed (see also Fig 2(a)). However, even for a very small $U = 0.1$ (1/30 of the bandwidth), and for both the TMT and TMDCA-SOPT, the sharp localization edge is replaced by an exponential tail, when $\mu < \omega_c$. Hence, the incorporation of Coulomb interactions in the presence of disorder for $\mu < \omega_c$ leads to long band tails that are exponentially decaying. This fingerprint can be understood from a Fermi liquid perspective.

If we inject an electron into a Fermi liquid with an energy ω above the Fermi energy, then, we expect the particle to experience an inelastic scattering, due to U which is proportional to ω^2. One factor of ω is due to energy conservation and the other to momentum conservation with both constrained by the Pauli principle. I.e., the inelastic scattering vanishes as $\omega \to 0$. However, if we apply the same logic to an interacting disordered system, then, we might expect the edge of the TDoS to be smeared out by these inelastic scattering processes whenever the edge energy is above the Fermi energy, but become sharp as the edge approaches it. Though, some argue that this reasoning fails for a disordered system, especially for a strongly disordered system since a well-defined quasiparticle no longer exists \cite{44, 45}. As a consequence, the concept of a mobility edge would not hold and the TDoS should have pronounced exponential “tails” even when the Fermi energy approaches the top or bottom of the TDoS bands. As it is evident from Fig. 5 the sharp mobility edge is restored as the mobility edge energy is approached in tandem with the Fermi liquid description.
quickly with \(U \) as one goes from single-site \((N_c = 1) \) to finite clusters \((N_c = 12 \) and 38). This is likely due to the effect of a finite \(U \) on the coherent backscattering, which is absent for \(N_c = 1 \) and is systematically incorporated as \(N_c \) increases.

In Figure 4(b), we show the interaction \(U \) dependence of the critical disorder strength \(W^c_U \) for \(N_c = 1, 12, \) and 38 for the half-filled AHM. For each of the \(N_c \), we obtain a correlated metal below the lines, and above we have the gapless Anderson-Mott insulator. The trend in both the single site and finite cluster are alike \((i.e., W^c_U \) increases with increasing \(U \)) except for the difference in \(W^c_U \). The almost linear trend observed for the low \(U \) is in agreement with previous studies \[13\]. We note that the \(N_c = 12 \) and 38 results are identical until \(U = 0.4 \). This is consistent with the \(U = 0 \) results \[8\] and shows that the TMDCA converges quickly as a function of cluster size, with small clusters giving exactly exact results. Figure 4(c) depicts the \(W^c_U \) as a function of \(1/N_c \) at \(U = 0 \) and \(U = 0.2 \) for the half-filled AHM. Note the systematic and fast convergence of \(W^c_U \) with cluster size for both cases.

We further show in Fig. 5 the evolution of the TDoS(\(\omega \)) for \(N_c = 12 \) at \(U = 0.0 \) (Fig. 5(a)) and 0.2 (Fig. 5(b)) for various \(\delta = W/W^c_U \). For finite \(U \) a soft-pseudogap develops (note, this is true irrespective of electron filling) at intermediate disorder strengths immediately before the system becomes localized. In Fig. 5(c), we show that the pseudogap is robust as a function of \(U < 1 \). Noting that we only have short-range interaction, this soft-pseudogap cannot be attributed to excitonic effects \((\text{which are negligible here}) \) as in the Efros-Shklovskii theory \[14\]. Such soft-pseudogap at weak interactions and strong disorder has been observed in SrRu\(_{1-x}\)Ti\(_x\)O\(_3\) \((\text{see for e.g., Refs. [22, 23]}) \).

Conclusions—Based upon experiment, theory, and simulations, there is a growing consensus that the local density of state in a disordered system develops a highly skewed \[13\], log-normal distribution \[20, 35, 47\] with a typical value given by the geometric mean that vanishes at the localization transition, and hence, acts as the order parameter for the ALT. New mean field theories for localization, including the TMT and its cluster extension, the TMDCA, have been proposed. In this letter, we extend the TMDCA to weakly interacting systems using second order perturbation theory. We find that weak local interactions lead to increase in \(W^c_U \), with the localization edge preserved when the chemical potential is outside the mobility edge energy. For finite \(U \) we observe a soft-pseudogap for values of the disorder strength just above \(W^c_U \).

Acknowledgments—This work is supported by NSF DMR-1237565 and NSF EPSCoR Cooperative Agreement EPS-1003897. Supercomputer support is provided by the Louisiana Optical Network Initiative (LONI) and HPC@LSU.

\[\text{FIG. 4. (Color online). (a) The evolution of the TDoS (at} \ \omega = 0 \ \text{as a function of the disorder strength} \ W \ \text{for various interactions for} \ N_c = 1, 12, \text{and 38 at half-filling. The integral} \int 3\pi(K, \omega) dK d\omega \text{vanishes at the same} \ W_c \text{as the TDoS for a given} \ U \ \text{not shown), signifying that the absence of the hybridization paths leads to the vanishing of the TDoS. As indicated by the arrow, increasing} \ U \text{pushes} \ W_c \text{to larger values. (b) The interaction dependence of the critical disorder} \ W^c_U \text{for different cluster sizes} \ N_c = 1, 12, \text{and 38 at half-filling. The unit is fixed by setting} 4\ell = 1 \text{. The plot is generally in agreement with the results of Ref. [14]. (c) The} \ W^c_U \text{vs} 1/N_c \text{on a semi-log plot at} \ U = 0.0 \text{and} \ U = 0.2 \text{for the half-filled AHM. Note the systematic and fast convergence of} \ W^c_U \text{with cluster size for both cases.} \]

\[\text{FIG. 5. (Color online). The TDoS vs energy} \ \omega \ \text{for} \ N_c = 12 \ (U = 0.0) \ \text{(a)} \text{and} \ N_c = 12 \ (U = 0.2) \ \text{(b)} \text{at various} \ \delta = W/W^c_U \text{showing the formation of a pseudogap at intermediate} \ W \text{just before} W^c_U = 0.2 \text{, which is absent when} \ U = 0. \ \text{(c) Shows the TDoS vs} \ \omega \ \text{at a fixed} \ W \ \text{(close to} W^c_U = 2.50) \text{for various} \ U \text{. Note, the data has been scaled with} \ U. \]

\[\text{Acknowledgments—This work is supported by NSF DMR-1237565 and NSF EPSCoR Cooperative Agreement EPS-1003897. Supercomputer support is provided by the Louisiana Optical Network Initiative (LONI) and HPC@LSU.} \]

* Electronic address: cekuma1@lsu.edu
† Electronic address: jarellphysics@gmail.com
[1] P. W. Anderson. Phys. Rev. 109, 1492–1505 (1958).
[2] E. Abrahams et al., Phys. Rev. Lett. 42, 673–676 (1979).
[3] B. Kramer and A. MacKinnon. Rep. Prog. Phys. 56(12), 1460 (1993).
In our formulation of both the dynamical cluster approximation (DCA) and typical medium DCA (TMDCA), we treat both disorder and interactions using the Anderson-Hubbard Hamiltonian

\[H = - \sum_{\langle ij \rangle} t_{ij} (c^\dagger_i c_j + h.c.) + \sum_i (V_i - \mu) n_i + U \sum_i n_{i\uparrow} n_{i\downarrow}. \]

For the TMDCA, instead of using the conventional Matsubara frequency approach, we reformulate our formalism in real frequency. This facilitates the analysis of the zero-temperature physics, where Matsubara-frequency-based approaches may not be adequate. It also avoids the difficulty of analytical continuation of the major observables, the Green function and the self-energy, from the Matsubara-frequency to real frequency. To achieve this, we recall that the second order perturbation theory self-energy is the expansion up to the second order in \(U \) around the Hartree-corrected host propagator given as

\[\Sigma_c^{int}(i, j, \omega) = \Sigma_c^H(\hat{g}) + \Sigma_c^{(SOPT)}(\hat{g}) \]

METAL-INSULATOR-TRANSITION IN A WEAKLY INTERACTING DISORDERED ELECTRON SYSTEM: SUPPLEMENTARY NOTES

DETAILS OF THE FORMALISM
where \(i\) and \(j\) are site indices. The first term \(\Sigma^H[\tilde{G}] = U\tilde{n}_i/2\) is the Hartree term, while the second term is the density-density term which in the Matsubara frequency is

\[
\Sigma^{SOPT}_c[\tilde{G}] = -\lim_{\omega \rightarrow \omega^+} \left[\frac{U^2}{N^2\beta^2} \sum_{m,p,Q} \tilde{G}(K+Q,i\omega_n+i\nu_m)\tilde{G}(P+Q,i\omega_p+i\nu_m)\tilde{G}(P,i\omega_p) \right]
\]

where \(\beta\) is the inverse temperature. We note further that the analytic continuation process may miss important features of the observable being studied if not done carefully aside its inability to study zero-temperature physics, which coincidentally, is the regime we are interested in the present study. Thus, to avoid such analytic continuation, and since our cluster problem is solved in real space, more also, for the fact that it is numerically more advantageous to work in the real frequency than in the Matsubara frequency, we convert the Matsubara sums (Eq. 4) to real frequency integrals using the spectral representation:

\[
\tilde{G}(i\omega) = \int d\epsilon \rho(\tilde{G}(\epsilon))/[i\omega - \epsilon], \quad \text{where} \quad \rho(\tilde{G}(\epsilon)) = -\frac{1}{\pi} \Im \tilde{G}(\epsilon).
\]

Defining \(\rho_\Sigma(i,j,\omega) = -\frac{1}{\pi} \Im \Sigma^{SOPT}(i,j,\omega)\), the second order term of the self-energy in real frequency is

\[
\rho_\Sigma(\omega) = U^2 \int d\epsilon_1 d\epsilon_2 \rho_{\tilde{G}}(\epsilon_1)\rho_{\tilde{G}}(\omega - \epsilon_1 + \epsilon_2)\rho_{\tilde{G}}(\epsilon_2) \times [n_f(-\epsilon_1)n_f(\epsilon_2)n_f(-\omega + \epsilon_1 - \epsilon_2) + n_f(\epsilon_1)n_f(-\epsilon_2)n_f(\omega - \epsilon_1 + \epsilon_2)]
\]

where site labels have been suppressed, \(\rho_{\tilde{G}} = -1/\pi \Im \tilde{G}\), and \(n_f = 1/(e^{\beta\epsilon} + 1)\) is the Fermi function. We note that \(\rho_{\tilde{G}}\) vanishes only for \(|\omega| \geq 3B/2\), where \(B\) is the full bandwidth (12\(t\) = 3 in our unit). The real part of the second order term of the interacting self-energy, \(\Sigma^{SOPT}_R(i,j,\omega)\) on each cluster site is obtained via the Hilbert transform

\[
\Sigma^{SOPT}_R(i,j,\omega) = \int d\omega' \frac{\rho_\Sigma(i,j,\omega')}{\omega - \omega'}.
\]

Since \(1/(x + i0^+) = \mathcal{P}(1/x) - i\pi\delta(x)\) (where ‘\(\mathcal{P}\)’ is the principal value of the integral), the non-local SOPT self-energy is then

\[
\Sigma^{SOPT}_c(i,j,\omega) = \Sigma^{SOPT}_R(i,j,\omega) - i\pi\rho_\Sigma(i,j,\omega).
\]

We note that Eq. 6 scales as an \(O[N^3]\), where \(N\) is the number of the grid points used for the integration. This \(N^3\) process is dramatically reduced to scale logarithmically as \(N \ln N\) using fast Fourier transformation [2].

BENCHMARKING THE TMDCA-SOFT

To validate our developed method and benchmark its suitability for studying the Anderson-Hubbard model, we compare our results for the Anderson-Hubbard model at half-filling with results from the dynamical cluster approximation (DCA) using the continuous-time quantum Monte Carlo method (CTQMC) [3, 4, 5] as the cluster solver. The quantum Monte Carlo (QMC) methods are a powerful tool that enable controlled calculations of the properties of large quantum many-particle systems. Details of the CTQMC formalisms are well described in the literature (see for e.g., Refs. 3–9) as such, and we will not attempt to give a detailed description of the algorithms here but will just give an overview which enables us to compare the QMC results with our Hilbert transformed imaginary frequency data. In the CTQMC, to avoid any possible time discretization error in the imaginary time axis, we adopt the recent improvements in the QMC algorithms in the continuous imaginary time [3, 4, 5]. This significantly improves the quality of the data.

To make the comparison, we convert our real frequency data to Matsubara frequency using the Hilbert transformation, and obtain the local Green function and self-energy, respectively, as

\[
G_{loc}(i\omega_n) = -\frac{1}{\pi} \int_{-\infty}^{\infty} d\omega \Im G_{loc}(\omega)/i\omega_n - \omega, \quad \text{(8a)}
\]

\[
\Sigma_{loc}(i\omega_n) = -\frac{1}{\pi} \int_{-\infty}^{\infty} d\omega \Im \Sigma_{loc}(\omega)/i\omega_n - \omega, \quad \text{(8b)}
\]

where \(\omega_n = (2n + 1)\pi/\beta\) with \(\beta = 1/k_BT\) and \(n \in \mathbb{Z}\) is the fermionic Matsubara frequency, and \(k_B\) (=1) is the universal Boltzmann’s constant.
SOPT and DCA-CTQMC for low U.

The remarkable exact agreement between the TMDCA-SOPT and DCA-CTQMC at $T = 0.025$ for the half-filled Hubbard model (zero disorder and the finite Coulomb interaction $U > 0$). The comparison of the imaginary part of the local self-energy for $N_c = 1$ (a) and $N_c = 14$ (b), respectively, on a log-log scale. Also shown is the corresponding comparison of the local Green function for $N_c = 1$ (c) and $N_c = 14$ (d), respectively on a linear scale. Smaller values ($U < 0.3$ for $N_c = 1$) and ($U < 0.4$ for $N_c = 14$) are not shown on the local Green functions plot for easy readability as they are too close to each other. In both cases, the dotted lines with symbols are for the TMDCA-SOPT, while the solid lines depict the DCA-CTQMC results. Further, for the self-energy plots, smaller interaction strengths ($U \leq 0.5$) are on top of each other and as such, may appear indistinguishable.

Limit of Zero Disorder: Hubbard Model

As a natural consequence, the self-energy of the Hubbard model of the numerically exact DCA-CTQMC contains the most vital information for benchmarking with a mean-field theory like the TMDCA-SOPT. We show in Figs. 6(a) and 6(b) the comparison plots of our TMDCA-SOPT (using Eq. 8a) as compared with the DCA-CTQMC data for the $N_c = 1$ and finite cluster, 14, respectively, at various values of the interaction. As it is evident from the plots, our data benchmarks well up to $U \sim 2.25$ for $N_c = 1$ and $U \sim 0.75$ for $N_c = 14$ showing both quantitative and qualitative agreement between our TMDCA-SOPT data and the DCA-CTQMC results. The remarkable exact agreement between the TMDCA-SOPT and DCA-CTQMC for low U (≤ 0.75), at all frequencies for both single-site and finite cluster shows that our self-energy has the correct behavior and as such, ensures that the conclusions arrived in the main paper are numerically correct. At least for the smaller U-values (which is the regime we are interested in), the good agreement with DCA-CTQMC further shows that the perturbation expansion of the self-energy up to $O[(U/B)^2]$ in U should capture all the dominant quantum fluctuations guaranteeing that quantitatively correct results are obtained. Hence, the results we presented in the main paper which are for small interacting disordered electron system are accurate to within the computational accuracy of our formalism.

We further show in Figs. 6(c) and 6(d), the plot of the imaginary local Green function of our data (transformed from real to Matsubara frequency using Eq. 8a) as compared to the DCA-CTQMC data for $T = 0.025$ and $W = 0$ for the $N_c = 1$ and $N_c = 14$, respectively. Again, as a confirmation of the good agreement in the local self-energy, the local Green function from the two methods are numerically the same especially for the small U-values. They are practically on top of each other up to $U \approx 1.50$ for both $N_c = 1$ and 14.

Finite Disorder and Interaction: Anderson-Hubbard Model

To further check the applicability of the expansion of the interacting self-energy in powers of U up to the second order for the study of interacting disordered electron system, we further benchmark our developed method for the Anderson-Hubbard model with the DCA-CTQMC. This again becomes imperative as we are not aware of a prior benchmarking especially for the finite cluster.

We show in Figs. 7 the comparison of our developed method for fixed interaction strengths ($U = 0.1, 0.2,$ and 0.5) at various disorder strengths, respectively (using Eq. 28), with the imaginary frequency data of DCA-CTQMC. As it is evident from the plots, there is almost a perfect agreement between our Hilbert transformed data with the DCA-CTQMC results even for relatively large value of the interaction strengths ($U \sim 0.5$) for all the disorder strengths up to the localization transitions. This further confirms that our truncation of the perturbation series expansion of the interacting self-energy at $O[(U/B)^2]$ (at least in the weak interaction regime) is enough to account for the quantum fluctuations in the typical environment. One can thus affirm that at least, within the weak interaction regime ($U/4t \ll 1$) in a disordered electron system that higher order diagrams in the expansion of the $\Sigma^{(1t)}_{c}$ are suppressed by at least $\sim (U^3)$.

EXPLORING THE MOBILITY EDGE

We show in Fig. 8 the plot of the typical density of states on a log-linear scale at half-filling for the TMT ($N_c = 1$) and for the finite clusters ($N_c = 12$ and 38) for increasing U-values at different disorder strengths for 3D. Clearly for $U = 0$, the slopes of the TDoS for both the TMT ($N_c = 1$) and TMDCA ($N_c = 12$ and 38) becomes.
infinity signifying the existence of a sharp, well-defined mobility edge. However, for a very small $U = 0.1$ (1/30 of the bandwidth), and for both the TMT and TMDCA-SOPT, the slope is evidently finite up to high frequencies signifying that the sharp well-defined localization edge is replaced by an exponentially fast cross-over. Hence, the incorporation of Coulomb interactions in the presence of disorder at half-filling leads to long band tails that are exponentially decaying.

One can argue that since the tails are far away from the chemical potential, μ when $\mu = 0$, they do not generally participate in transport since only states in the proximity of the Fermi energy is excited. This can be attributed to the fact that at half-filling with finite U, interaction induces the mixing of the localized and extended states with different energies of the states at the mobility edge leading to the suppression of the sharp, well-defined mobility edge boundary with the emergence of long tails with exponentially fast crossover. This is consistent with the delocalization nature of U at $\omega = 0$ states at half-filling leading to the increase in W_c. As demonstrated in the main text, the mobility edge is well defined even in the presence of interactions as long as the chemical potential is located beyond the mobility edge energy of $U = 0$. Hence, Fig. 8 essentially shows that at half-filling, due to the mixing of states induced by the interaction, the mobility edge energies develop tails with exponentially fast crossover which masks its detection. However, if we move the chemical potential energy outside the mobility edge energy (see the main text), the sharp, well-defined mobility edge is restored.

The masking of the localization edge in the TDoS due to the mixing of the the states induced by the small interaction can further be confirmed from the convolutions point of view. This can be seen from the convolutions found in the second order (and higher) diagrams. These convolutions will mix the states above and below the non-interacting localization edge. Consider two such states: one localized and the other extended, which are now degenerate due to this mixing. Since the elastic disorder scattering causes these states to hybridize with each other, both states will become extended.

* Electronic address: cekuma1@lsu.edu
† Electronic address: jarrellphysics@gmail.com
[1] F. Gebhard et al., Euro. Phys. B 36(4), 491–509 (2003).
[2] M. Frigo and S. Johnson. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, vol. 3, 1381–1384 (1998).
[3] A. N. Rubtsov et al., Phys. Rev. B 72, 035122 (2005).
[4] A. N. Rubtsov and A. I. Lichtenstein. JETP Lett. 80, 61 (2004).
[5] E. Gull et al., Rev. Mod. Phys. 83, 349–404 (2011).
[6] E. Gull et al., EPL (Europhysics Letters) 82(5), 57003 (2008).
[7] S. Fuchs et al., Phys. Rev. B 83, 235113 (2011).
[8] J. E. Hirsch and R. M. Fye. Phys. Rev. Lett. 56, 2521–2524 (1986).
[9] N. Blümer. Phys. Rev. B 76, 205120 (2007).
[10] N. F. Mott. Metal-Insulator Transitions, 2nd ed. (Taylor and Francis, London) (1990).
[11] N. F. Mott. Advances in Physics 16(61), 49–144 (1967).