Falsification of dark energy by fluid mechanics

CARL H. GIBSON†

Departments of MAE and SIO, Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093-0411, USA

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts supercluster-void fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.

Key words: Authors should not enter keywords on the manuscript, as these must be chosen by the author during the online submission process and will then be added during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-keywords.pdf for the full list)

1. Introduction

For any physical theory to be useful it must be falsifiable; that is, it must be subject to testing by observations that could render it false. The 2011 Nobel Prize in Physics has been awarded to Perlmutter, Reiss and Schmidt for observations of distant supernovae showing the rate of expansion of the Universe ceased to decrease after the big bang and is now increasing. The purpose of the present paper is to show this remarkable interpretation of supernovae dimness is falsified by dark matter planets in clumps predicted from basic fluid mechanics. The planets in clumps are supported by observations that confirm the falsification. An alternative fluid mechanically based cosmology is proposed.

The standard (concordance) model of cosmology (CC) is $\Lambda CDMHC$, where Λ represents the proposed dark energy material driving the accelerating expansion rate of the Universe by anti-gravitational forces. CDM is Cold Dark Matter, an unknown and at least equally massive (and equally questionable) cosmological material that condenses...
by hierarchical clustering HC. CC cosmology and CDM dynamics are discussed in the following §2 on Theory. The fatal flaw of the CC model is its assumption that fluid mechanics can be ignored assuming ideal collisionless potential flow.

Numerous attempts have been made to include basic fluid mechanical improvements to the CC model starting with Gibson (1996); that is, to include turbulence, kinematic viscosity, diffusivity, stratified fossil turbulence and turbulent mixing. An initial finding was that the dark matter of galaxies must be Earth-mass primordial gas planets in dense Jeans-mass clumps. This prediction of Gibson (1996) was immediately confirmed by Schild (1996) from his 15 year study of quasar microlensing by a galaxy on the line of sight. Schild inferred from the twinkling frequency and brightness of the quasar images that the missing mass and dominant point mass objects of the galaxy must be small planets in clumps, not stars. The improved CC cosmology is termed hydro-gravitational-dynamics, or HGD, cosmology. HGD predicts 3×10^7 planets per star in a galaxy, as observed. Schild (1996): not 8.

A hot big bang event at Planck scales is overwhelmingly accepted as the simplest explanation of observations from modern telescopes in the context of Einstein’s general relativity theory and quantum mechanics, Peacock (2000). However, gravitational accelerations of 10^{53}g must be overcome at Planck length scales 10^{-35}m, Gibson (2005). Gravitational pressures of 10^{113}Pa are required, and are matched by negative stresses of big bang turbulence vortex stretching, Gibson, Schild & Wickramasinghe (2011). Spin from big bang turbulence fossils, Gibson (2004), is preserved at 10^{25}m length scales, Schild & Gibson (2011), 10% of the present horizon scale L_H.

CDM hierarchical clustering HC has been recently falsified by Kroupa et al. (2010) from observations showing the required numbers of small clusters of stars (Local Groups) do not exist in the Milky Way galaxy. This finding falsifies dark energy Λ by removing its theoretical basis. Small dark matter gas planets are also ruled out by $CDMHC$ cosmology. Every small gas planet detected falsifies Λ. HGD cosmology predicts a rapid $\sim t^3$ formation of galactic central black holes, Nieuwenhuizen (2011). Quasars observed at redshifts $z \geq 10$ therefore falsify both $CDMHC$ and Λ from fluid mechanics.

2. Theory

Concordance CC cosmology rejects basic fluid mechanics as unnecessary. Flows are assumed to be ideal, resulting from gradients in a velocity potential. Gravitational structure formation is based on the Jeans analysis of 1902. Table 1 presents the alternative HGD scenario. Proto-galaxies form at the end of the plasma epoch with Nomura scale (L_N) and morphology and evolve on fossil vorticity turbulence vortex lines stretched by the expansion of the universe, Gibson & Schild (2010a) and Gibson & Schild (2010b).

Jeans (1902) reduced the Navier Stokes equations to acoustics by neglecting viscosity (Euler’s equation), neglecting density (Jeans swindle), neglecting non-linearity by the application of linear perturbation stability analysis (no turbulence), and neglecting diffusion of weakly interacting massive particles (no neutrinos). Self gravitational structure formation is permitted only for length scales $L_H \geq L \geq L_J = V_S \tau_g$, where V_S is the speed of sound, $\tau_g = (\rho G)^{-1/2}$ is the gravitational free fall time, ρ is density, G is Newton’s gravitational constant, the horizon scale $L_H = ct$ is the scale of causal connection, c is light speed, and t is time since the big bang.

Without fluid mechanics, cold dark matter is needed to explain structure formation during the plasma epoch $10^{11} \leq t \leq 10^{13}$ seconds because $L_J \geq L_H$ for the plasma during this period. With fluid mechanics, it is only necessary to recognize that the low densities and high temperatures of the early $H - He^4$ plasma and gas Universe give large kine-
matic viscosities ν values that dominate self-gravitational structure formation, contrary to Jeans (1902) and all CDM cosmology models. In the plasma epoch photons transport momentum by elastic collisions with electrons (Thomson scattering) that communicate it to the ions. Protosupercluster fragmentation occurs at 10^{12} s when $L_H \geq L_{SV}$.

Most of the dark matter of the Universe is non-baryonic (not composed of protons and neutrons). Whatever its particles are, they must be nearly collisionless, like neutrinos, or they would have been detected. It was assumed by CC cosmology that somehow non-baryonic dark matter NBDM material would have a smaller Jeans scale if it were cold, so it could condense by the Jeans 1902 criterion. These small condensate seeds would then clump together (HC) to make massive halos into which the baryonic dark matter would fall and condense as stars, galaxies and galaxy clusters (in this order). Such assumptions are fluid mechanically untenable.

Consider a clump of perfectly cold non-baryonic dark matter (NBDM), or a cluster of smaller clumps termed a halo. The initially motionless particles immediately start to move toward the center of gravity of the halo. No matter how small the collision cross section of CDM particles is assumed to be, a density will be reached (in a free fall time) large enough for the collisionless assumption to fail, so the halo simply diffuses away. The size of CDM halos is found by matching the diffusion velocity to the gravitational velocity at the Schwarz diffusive length scale $L_{SD} = (D^2 \rho G)^{1/4}$, where D is the diffusivity. From fluid mechanics, $D = (n/\sigma)v_p$, n is the particle number density, σ is the particle collision cross section and v_p is the particle velocity. No CDM structure formation is possible during the plasma epoch because $L_{SD} \geq L_H$ during this period, Gibson (1996).

Viscous forces balance self-gravitational forces at the Schwarz viscous scale $L_{SV} = (\gamma \nu/\rho G)^{1/2}$, where γ is the rate of strain and ν is the kinematic viscosity. Viscous forces were small in the beginning instant of the big bang event 10^{-43} s because the Planck length scale 10^{-35} m for collisions of Planck particles was the only one available at Planck temperatures 10^{32} K. Viscous and inertial vortex forces matched at the Kolmogorov scale, Gibson (2005), so the Schwarz turbulence scale $L_{ST} = (\varepsilon/\rho G)^{3/2}$ remained larger than the Planck scale and Schwarz viscous L_{SV} scale during the big bang turbulence event until quenched by gluon-viscosity at the strong force freeze out temperature 10^{28} K. Viscous dissipation rates ε of 10^{60} W homogenize small scales of the turbulence. Negative gluon-viscous stresses power anti-gravitational inflation of the fossilizing turbulent fireball to meter scales preserving Planck density, Gibson (2004).

A 10^{25} m fossil big bang turbulence vortex line persists as the axis of evil (a preferred direction on the sky), Schild & Gibson (2011). Such a preferred direction on large scales falsifies the intrinsically scalar aspect of the dark energy concept Λ. Turbulence effects indicated on the cosmic microwave background (studies of Sreenivasan and Bershadski) have been discussed, fig. 5, Gibson (2010).

3. Observations

Figure 1 illustrates falsification of dark energy by the fluid mechanics of HGD cosmology. Hubble Space Telescope optical observations of the Helix planetary nebula (bottom) are compared to Supernovae Ia dimness observations (top) as a function of redshift z (Gibson 2011, fig 8). Further discussion is found in the reference.

The dark energy proposition is falsified because it does not take into consideration the possibility that the atmospheres of evaporated dark matter planets (Table 1) may randomly dim or not dim the light of Sne Ia events depending on the line of sight. Error bars on the dimness data points (top fig 1) are smaller than the scatter, and cannot be explained as "uniform grey dust". Solid ovals support a "nonlinear grey dust"
Figure 1. Dark energy is a systematic dimming error due to baryonic dark matter BDM planet atmospheres surrounding dying stars such as the White Dwarf in Helix (fig. 8, Gibson (2010)).
C. H. Gibson

mass exceeds energy, plasma epoch begins, $L_H \leq L_{SV}$
protosupercluster fragmentation occurs when $L_H \geq L_{SV}$, 10^5 K
$L_N = 10^{20}$ m plasma protogalaxy fragmentation on vortex lines
$v_{\text{plasma}} = 10^{26} m^2 s^{-1}$ (photon viscosity), $v_{\text{gas}} = 10^{13} m^2 s^{-1}$
gas epoch begins, 3000 K, $\rho = \rho_0 = 4 \times 10^{-17} kg m^{-3}$

Table 1. HGD cosmology plasma to gas transition events → the biological big bang
space observatory, Wilcock et al. (2011). The wide range of frequencies permit detection of low temperatures and high densities of dense core regions with star formation. The core densities closely match the high density of first fragmentation \(\rho_0 \) expected from \(HGD \) cosmology (Table 1). Core temperatures 14 K match the triple point temperature of hydrogen (13.8 K), attributed to evaporating planets merging to form stars. Black dots circling the core at \(10^{16} \) m represent large gas planets evaporating at Oort cloud distances. Such planets are shown (bottom right insert fig. 1) at this distance. Their size \(\geq 10^{13} \) m indicates previous dark matter planet mergers.

4. Conclusions

The accelerating expansion rate of the Universe and Dark Energy concepts rewarded by the 2011 Nobel Prize in Physics are falsified by fluid mechanics. The standard (Concordance Cosmology) \(\Lambda CDMHC \) model of cosmology must be replaced by \(HGD \) cosmology.

REFERENCES

Gibson, C. H. 1996 Turbulence in the ocean, atmosphere, galaxy and universe Appl. Mech. Rev. 49, 299–315.

Gibson, C. H. 2004 The first turbulence and the first fossil turbulence Flow Turbul. Combust. 72, 161–179.

Gibson, C. H. 2005 The first turbulent combustion Combust. Sci. Tech. 177, 1049–1071.

Gibson, C. H. 2010 Turbulence and turbulent mixing in natural fluids Phys. Scr. T142, 014030 1–9.

Gibson, C. H., R. E. Schild & N. C. Wickramasinghe 2011 The origin of life from primordial planets Int. J. Astrobol. 10(2), 83–98.

Gibson, C. H. & R. E. Schild 2010a Turbulent Formation of Protogalaxies at the End of the Plasma Epoch: Theory and Observation Journal of Cosmology 6, 1351–1360.

Gibson, C. H. & R. E. Schild 2010b Evolution Of Proto-Galaxy-Clusters To Their Present Form: Theory And Observations Journal of Cosmology 6, 1514–1532.

Jeans, J. H. 1902 The Stability of a Spherical Nebula Philosophical Transactions of the Royal Society of London, Series A 199, 1–53.

Kroupa, Pavil et al. 2010 Local-Group Tests of Dark-Matter Concordance Cosmology: Towards a New Paradigm for Structure Formation Astronomy & Astrophysics: DOI: 10.1051/0004-6361/201014892 523, 2011 Journal of Cosmology 15, 6204–6228.

Nieuwenhuizen, Theo M. 2011 Model for common growth of supermassive black holes Europh. L. (accepted) [arXiv:1108.1697v1 [astro-ph.CO]].

Peacock, J. A. 2000 Cosmological Physics Cambridge University Press, 1–682.

Schild, R. E. 1996 Microlensing variability of the gravitationally lensed quasar Q0957+561 A,B The Astrophysical Journal 464, 125.

Schild, R. E. & C. H. Gibson 2011 Goodness in the Axis of Evil Journal of Cosmology 16, 6892–6903.

Wilcock, L. A. 2011 The initial conditions of high-mass star formation: radiative transfer models of IRDCs seen in the Herschel Hi-GAL survey Astronomy & Astrophysics (accepted) arXiv:1101.3154v1 [astro-ph. GA].