Title
Abatement costs of soil conservation in China's Loess Plateau: balancing income with conservation in an agricultural system.

Permalink
https://escholarship.org/uc/item/3p22z5nw

Journal
Journal of environmental management, 149(Curr. Opin. Environ. Sustain. 4 5 2012)

ISSN
0301-4797

Authors
Hou, Lingling
Hoag, Dana LK
Keske, Catherine MH

Publication Date
2015-02-01

DOI
10.1016/j.jenvman.2014.09.002

Peer reviewed
Analysis

Sustainable value of degraded soils in China’s Loess Plateau: An updated approach

Lingling Hou a,1, Dana Hoag b,*, Catherine M.H. Keske c,2, Changhe Lu d

a Center for Chinese Agricultural Policy, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. Jia 11 Datun Road, Chaoyang District, Beijing 100101, China
b Department of Agricultural and Resource Economics, Colorado State University, B330 Clark Bldg., Fort Collins, CO 80523-1172, USA
c Institute of Arctic and Alpine Research (INSTAAR), University of Colorado-Boulder, Campus Box 450 UCB, 1560 30th Street, Boulder, CO 80309-0450, USA
d Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, No. Jia 11 Datun Road, Chaoyang District, Beijing 100101, China

A R T I C L E I N F O
Article history:
Received 21 April 2013
Received in revised form 24 August 2013
Accepted 22 October 2013
Available online xxxx

Keywords:
Cropping systems
Loess Plateau, China
Sustainable value

A B S T R A C T
China’s Loess Plateau is a highly distressed region where intensive crop production has been undermined by high soil erosion rates that threaten the long-term livelihood of its inhabitants. Regional policy goals aim to balance economic performance with the sustainable use of natural resources. From a practical perspective, challenges arise when measuring sustainability levels that mix multiple dimensions, scales, and benchmarks. This study addresses these challenges by comparing the sustainability of agricultural systems across varied crops, land types, and cropping techniques in China’s Loess Plateau. Sustainability levels for each system are compared to benchmarks using data envelopment analysis, which is then used to calculate a sustainable value (SV). The SV approach provides a monetary measure of sustainability that includes economic, environmental and social dimensions. Results demonstrate that the most sustainable agricultural systems in the Loess Plateau involve machine intensive cropping systems, a corn–soybean–corn rotation, mulching, furrows ridging, and bench terracing.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Assessing the sustainability of agricultural systems is challenging because measurements often mix multiple dimensions, scales, and benchmarks. This study uses data envelopment analysis (DEA) to develop benchmarks for comparing the sustainability of different agricultural systems and cropping techniques with a measure of sustainability called sustainable value (SV). Incorporating DEA into the sustainable value (SV) approach expands upon the work of Figge and Hahn (2004, 2005), who first introduced SV in the journal Ecological Economics. SV calculations integrate human, natural resource, and financial dimensions to generate a monetary measure of sustainability.

The Loess Plateau provides a rich context to illustrate how sustainability measurements can be used to assess natural resource management trade-offs. It is a highly distressed region where intensive crop production is undermined by high soil erosion rates that threaten the long-term sustainability of the land and local food production (Lu, 2000; Lu et al., 2003). The Loess Plateau is one of the most severely degraded areas in the world, with over 60% of its land subjected to soil degradation and an average annual soil loss of 20–25 t/ha (Shi and Shao, 2000). Land use changes are often extreme. Much of the agricultural land has already been planted to trees through the Grain for Green program (Feng et al., 2005). However, converting from cropland to trees is an extreme conservation measure that generates little economic return to farmers who make a living mostly on their land. Many have migrated to urban areas in order to compensate for lost farm jobs, leading to other unintended consequences. In some cases child-care and other parental activities have been left to the elderly or older children (Li et al., 2012). Rather than focusing on extreme land use changes, the analysis presented in this paper investigates how to balance environmental objectives with continued crop production.

Many frameworks have been proposed to measure sustainability. Macro scale proposals include the Green National Product (Cobb and Cobb, 1994), Ecological Footprints (Wackernagel and Rees, 1998), and Genuine Savings (Hamilton and Clemens, 1999). These methods are generally used to readjust Gross Domestic Product or Gross National Product calculations to account for net changes in environmental degradation. While ecologically minded organizations promulgate these alternative accounting approaches, the frameworks are not widely applied in China. Unlike the DEA/SV method proposed in this paper, these macro-level approaches do not explicitly map the value of meeting different environmental targets (like reduced nitrogen loss) that are affected by local and regional agricultural production practices.
SV is used to calculate net sustainable values, rather than the environmental burden imposed by natural resource use. First presented in Ecological Economics by Figge and Hahn (2004, 2005), SV is based upon Capital Theory (Costanza and Daly, 2003; Harte, 1995; Pearce and Atkinson, 1993; Prugh et al., 1999; Stern, 1997; Victor, 1991). SV assesses the sustainability of a proposed or existing system by comparing the opportunity cost of using capital (e.g., financial, human, and natural capital) in that system rather than a predetermined benchmark.

SV can be used to evaluate the effectiveness of local or regional natural resource management decisions. For example, Van Passel et al. (2007) apply the SV approach to the Flemish dairy industry, finding the method to be useable and workable for smaller enterprises. Two years later the authors improved upon the method by applying a parametrically estimated efficiency frontier to provide individual benchmarks for each system (Van Passel et al., 2009).

The research presented in this paper takes advantage of the SV approach to study cropping systems in the Loess Plateau, but refines it by creating discrete, customized individual benchmarks using a DEA. The DEA allows for comparison between similar systems and creates a discrete benchmark that is specifically comparable to that system. In contrast to previous studies that chose a single “best” benchmark, or a parametrically estimated frontier, the DEA method allows us to create a non-parametric frontier of benchmarks that takes into account the most efficient use of capital for each unique system (crop type, land type and cropping techniques). The SV for over 2000 cropping systems reviewed for the Loess Plateau is recorded in a series of comparison matrices and organized by crop type, cropping technique or land type. These matrices are then used to determine which management practices, like rotation or terracing, have the greatest impact on sustainability.

The SV approach measures the opportunity cost of each form of capital investment (financial, human, and natural capital). In the original papers, the opportunity cost is the value created by a unit of capital that is produced in the market (system benchmark) instead of a unit of capital used in a cropping system, which is the focus of this example. This section presents an illustrative example of Figge and Hahn’s original SV approach, with hypothetical values presented in Table 1, followed by a discussion in the text.

A cropping system produces a positive economic value if it creates more value than would have been generated by investing the same amount of capital in the market. In this example, the objective is to evaluate the opportunity cost of using capital in comparison to a benchmark cropping system, rather than a market. Figge and Hahn’s SV approach incorporates opportunity cost measurements to circumvent an aggregation problem when assessing different forms of capital.

As shown in Table 1, a hypothetical benchmark system (System 0) that is known to be an efficient user of human capital, natural capital (expressed in kg/ha soil erosion) and financial capital might produce a value added of $1000/ha. Whereas, an alternative system (System 1) might produce only $600/ha. These systems are not directly comparable because they use different amounts of capital. For example, System 1 has less soil erosion compared to the benchmark, but has more erosion per unit of value. The SV approach determines how much the comparison system, System 1, would need to earn to offset the opportunity cost of diverting capital from the benchmark. SV is the difference between what the system earns in value added ($600/ha) and what it needs to earn ($900/ha) in order to offset the sum of the opportunity cost of capital. Therefore, SV is −300 in this example.

Furthermore, Figge and Hahn define sustainable efficiency (SE) as the ratio between the value added and the cost of sustainability capital for the system. In this case SE is 0.67 ($600/$900). The system under consideration could produce another $300/ha, or 33% more, if capital resources were used more efficiently (sustainably).

The first step in the SV process is to establish the opportunity cost of using capital in a benchmark. If a unique benchmark is assigned to each observation, opportunity cost for the ith form of capital in the ith cropping system can be computed by:

\[
\text{Opportunity cost}_i = \frac{\text{Value added}_i}{\text{Capital}_i} \tag{1}
\]

Basic data	System 0 (benchmark)	System 1 (crop system)
Value added ($/ha)	$1000	$600
Human capital (labor/ha)	10	12
Natural capital (kg/ha soil loss)	200	150
Financial capital ($/ha)	$2000	$1500
Opportunity cost (Human capital)	$100 = $1000/10	–
Natural capital	$5 = $1000/200	–
Financial capital	$0.5 = $1000/2000	–
Value spread for: Humancapital	0 = ($1000/$10)−$100	−50 = ($600/12)−$100
Natural capital	0 = ($1000/$200)−$5	−$1 = ($500/150)−$5
Financial capital	0 = ($1000/$200)−$0.5	−$0.1 = ($500/$150)−$0.5
Sustainable value	0	−$300 *
Cost of sustainable capital	$1000 = $1000−0	$900 = $600−($300)
Sustainable efficiency ratio	1.0 = $1000/$1000	0.67 = $600/$900

* As expressed in Eq. (3). Sustainable value calculated as: $−300 = (1/3) \left(-50 \right) + (1/12) \left(-1 \right) + (1/150) \left(-0.1 \right) + (1/1500) \left(0 \right)$
The opportunity cost of human capital in Table 1 is $100/ha, computed by dividing the value added from System 0 (i.e., $1000/ha) by the human capital from System 0 (i.e., $10/ha). Value added is simply a parameter reflecting the system's earnings and is equal to crop revenue minus intermediate consumption.

The value spread for the ith form of capital in the ith cropping system reflects the additional value created using capital for the cropping system, compared to the benchmark. It can be calculated by:

\[
\text{Value spread}_{i,j} = \frac{\text{Value added}_{i,\text{benchmark}}}{\text{Capital}_{i,\text{benchmark}}} - \text{Opportunity cost}_{i,j}
\]

(2)

The value spread for human capital in System 1 is $300/ha, as shown in Table 1. A negative value implies that switching to the system away from the benchmark would reduce sustainability. The SV created by firm i can be calculated by adding up the value spreads from every form of capital of s = 1...n (Van Passel et al., 2007) as follows:

\[
\text{Sustainable value}_{i} = \frac{1}{n} \sum_{i=1}^{n} (\text{Value spread}_{i} \times \text{Capital}_{i})
\]

(3)

Dividing by n does not serve to weight different forms of capital but only to avoid multi-counting of value creation (Figge and Hahn, 2005). The SV of System 1 is $300/ha, as shown in Table 1. A negative value means that the observation is on the frontier, it is efficient if the inputs x are reduced to reach the efficient frontier; the assumption D = 1 implies that the observation is on the frontier, it is efficient, and no reduction in inputs is possible. The assumption D > 1 means that the observation will be efficient if the inputs x are reduced to \(x/D \). As Fare et al. (1996) pointed out, since the same factor \(\rho \) is applied to all inputs, only an equiproportional reduction of inputs is considered.

Suppose there are \(i = 1...I \) observations on \(N \) inputs, \(M \) desirable outputs and \(J \) undesirable outputs. Based on the dataset used in this

2.1.3. Using the DEA Method to Formulate Benchmarks

The benchmark choice reflects a normative judgment of sustainable development, and thus biases the way in which the SV is interpreted (Van Passel et al., 2009). Benchmarks should therefore be chosen with great care. Since the goal of this study is to identify the most sustainable cropping systems, the best performance benchmark is preferred. A performance target may also be appropriate, but it may not be easy to specify the reasonable target level. In this paper, many possible cropping systems for the Loess Plateau are considered, so a frontier is constructed for all the possible cropping systems. The frontier takes into account the most efficient use of capital for each unique system, rather than assuming that there is a single best system.

Instead of using the parametric frontier benchmark proposed by Van Passel et al. (2009), this study adopts a non-parametric DEA to determine benchmarks. Both parametric and non-parametric approaches have been proposed in the frontier literature (Reinhard et al., 2000). Data noise can be taken into account in the parametric approach, but specification error may arise from the choice of the functional form. The DEA approach is chosen to avoid functional form specification error. The dataset incorporated in this study is simulated from the EPIC model, which is described in greater detail in Section 3. Data noise is not expected to play a significant role in the estimation of the production frontier in this study because simulated data do not present sampling bias; that is, the simulated data can be readily replicated. The DEA method is also more computationally efficient, especially when multiple capital types are considered in the production process. Another advantage is that a unique frontier benchmark is specified for each cropping system through the consideration of each technology possibility. Mathematically, the DEA benchmarks can be defined, as follows:

Denote all inputs by \(x \in R^M_+ \), all desirable outcomes by \(y \in R^N_+ \), and all undesirable outputs by \(w \in R^J_+ \). The technology set \(S \) can be defined as:

\[
S = \{ (y, w) : x \text{ can produce } y \text{ and } w \}.
\]

(5)

The key tool used to formulate the best performing benchmark is the input distance function, denoted by \(D_i(y, w, x) \). It can be defined as (Fare et al., 1996):

\[
D_i(y, w, x) = \max \left\{ \rho : \left(\frac{x}{\rho}, y, w \right) \in S \right\}
\]

(6)

This function measures the extent, denoted by \(\rho \), that inputs can be decreased to reach the efficient frontier. The assumption \(D_i = 1 \) implies that the observation is on the frontier, it is efficient, and no reduction in inputs is possible. The assumption \(D_i > 1 \) means that the observation will be efficient if the inputs \(x \) are reduced to \(x/D_i \). As Fare et al. (1996) pointed out, since the same factor \(\rho \) is applied to all inputs, only an equiproportional reduction of inputs is considered.

Suppose there are \(i = 1...I \) observations on \(N \) inputs, \(M \) desirable outputs and \(J \) undesirable outputs. Based on the dataset used in this
study, the technology set can be constructed as follows (see Färe et al., 1996):

\[
S = \left\{ (x, y, W) : \sum_{i=1}^{n} \lambda_i x_{i,j} \leq x_j, \ n = 1, \ldots, N, \\
\sum_{i=1}^{M} \lambda_i y_{i,m} \geq y_m, \ m = 1, \ldots, M, \\
\sum_{i=1}^{J} \lambda_i w_{i,j} = w_j, \ j = 1, \ldots, J, \\
\lambda_i \geq 0, \ i = 1, \ldots, I \right\}
\]

(7)

The input distance function for each observation can be computed by solving the following linear programming problem:

\[
[D_i(y_t, w_t, x_t)]^{-1} = \min_{\rho, \lambda} \rho
\]

s.t. \sum_{i=1}^{n} \lambda_i x_{i,j} \leq p x_j, \ n = 1, \ldots, N

\sum_{i=1}^{M} \lambda_i y_{i,m} \geq y_m, \ m = 1, \ldots, M

\sum_{i=1}^{J} \lambda_i w_{i,j} = w_j, \ j = 1, \ldots, J

\lambda_i \geq 0, \ i = 1, \ldots, I

(8)

(9)

(10)

(11)

(12)

Therefore, the opportunity cost for the sth form of capital in the ith firm with a DEA benchmark can be updated by:

\[
\text{Opportunity costs}_{st} = \frac{\text{Value added}_{s,benchmark}}{\text{Capital}_{s,benchmark}} - \frac{\text{Value added}_{t}}{\text{Capital}_{t} / D_t}
\]

(13)

2.2. Cropping System Impacts on Sustainability

SV and SE do not by themselves show which crops or practices contribute most to sustainability. However, that information can be derived from the SV model since the interpretation is that crop mulching contributes 2 dollars to SV compared to a non-mulching technique. In the SV model, the opportunity cost for the ith system, calculated from the SV approach. Different cropping practices, described in Section 3) are represented by sets of dummy variables of 16 dummy variables are used for rotation in the regression model. The coefficients corresponding to the 16 dummy variables are the marginal contribution of each cropping rotation, compared to the basis rotation.

The Loess Plateau is located between 34°–40°N and 101°–138°E in North China, covering an area of 0.65 million km², with a total population of 108 million (National Development and Reform Commission, NDRC, 2010). It has an extremely hilly loess landscape and a semi-arid climate, with extensive monsoonal influence. The mean annual rainfall is mostly between 350 and 550 mm, of which more than 70% occurs in the rainy season of June to September. It is characterized by steep sloping lands, which are marginally suitable for cropping. The rate of soil loss is generally more than 50 t/ha in the hilly area (Lu et al., 2003). As noted in the introduction, although land use changes may be extreme, the focus of this paper is to investigate how to balance environmental objectives with continued crop production.

3. Data and Study Area

3.1. The Loess Plateau Study Area

The Loess Plateau is located between 34°–40°N and 101°–138°E in North China, covering an area of 0.65 million km², with a total population of 108 million (National Development and Reform Commission, NDRC, 2010). It has an extremely hilly loess landscape and a semi-arid climate, with extensive monsoonal influence. The mean annual rainfall is mostly between 350 and 550 mm, of which more than 70% occurs in the rainy season of June to September. It is characterized by steep sloping lands, which are marginally suitable for cropping. The rate of soil loss is generally more than 50 t/ha in the hilly area (Lu et al., 2003). As noted in the introduction, although land use changes may be extreme, the focus of this paper is to investigate how to balance environmental objectives with continued crop production.

3.2. Data

Lu et al. (2003) identified the cropping systems in Ansai County of the Loess Plateau. A summary of these systems is presented in Table 2. Their dataset includes 2006 cropping systems that are comprised of different combinations of 5 land units, 17 crop rotations, 3 production situations, 3 terracing techniques, 2 tillage techniques, 2 crop residue management techniques and 2 mechanization levels. Corresponding outputs of interest (e.g. yield and soil erosion) were simulated for each system using the Environmental Policy Integrated Climate (EPIC) model and validated with the experimental data as described by Lu et al. (2003). EPIC is a comprehensive simulation model designed to predict the effects of management decisions on soil, water, nutrient and pesticide movements and their combined impact on soil loss, water quality and crop yield (Gassman et al., 2005; Williams et al., 2006). It consists of weather, surface runoff, water and wind erosion, nitrogen leaching, pesticide fate and transport, crop growth and yield, crop rotations, tillage, plant environment control (drainage, irrigation,

Table 2

Characters	Specifications
Crop rotation types	Include 2 mono crops, 8 types of rotation without alfalfa and 7 types of rotation with alfalfa. The 2 mono crops are C and W; the 8 types of rotation without alfalfa are FW/C, CM/a, CSC, PFW/M, PFW/C, MSC, WPM/C, WPM/M; and the 7 types of rotation with alfalfa are AICM, AICM/P, AICM/M, AICM/P, AICM/P, AICM/P, AICM/P.
Conservation techniques	Include 4 techniques: contouring & mulching, contouring & non-mulching, furrow ridging & mulching, furrow ridging & non-mulching.
Terracing techniques	Include 3 terracing situations: no terracing, bench terracing, and spaced terracing.
Land units	Include 5 units classified by land slope steepness: floodplains, gently sloped land, moderately sloped land, steeply sloped land, and very steeply sloped land.
Production situations	Include 3 situations with different availability of water and nutrients: sufficient water and nitrogen, water-limited and nitrogen-limited.
Mechanization levels	Include 2 levels: human and animal labor, semi-mechanization.

Policy makers, farmers, and farm advisors may be interested in comparing the SV and/or SE between any pair of the 17 rotations, or other differences in cropping systems, in order to advise farmers toward adopting more sustainable systems. Therefore, comparison matrices are constructed based on the regression results for cropping practices, land units and conservation techniques as estimated in Eq. (14), and further described in Section 3.
fertilization, furrow diking, liming), economic accounting, and waste management. Lu et al. developed the comprehensive dataset regarding soil, weather, crop management, fertilizer and other parameters to meet the basic requirements to run the EPIC model. Hundreds of equations are applied in EPIC to then simulate processes such as crop growth and soil erosion.

As described in Section 2, in order to apply the SV approach with DEA benchmarks, the value added and capital need to be specified. As previously defined, crop revenue minus intermediate consumption is specified as “value added” in the SV approach. To cope with multidimensionality, it is assumed that each cropping system uses all forms of capital to produce value. Typically, natural capital is difficult to measure. However, the EPIC model provides an opportunity to measure soil loss and nitrogen losses directly. Nitrogen losses are estimated in EPIC through “runoff and sediment, nutrient movement by soil evaporation, denitrification, ammonia nitrification and volatilization, mineralization, immobilization, biological-fixation, contribution of rainfall and irrigation, and NO3-N leaching Lu et al. (2003, p. 315).” Lu et al. note that most of the losses of N resulted from volatilization, runoff and soil erosion.

Soil loss and nitrogen loss from the EPIC model are treated as natural capital inputs in the production process. Labor is viewed as human capital. Financial capital is calculated by aggregating all conventional inputs, including seeds, nutrients (Nitrogen, Phosphorus and Potassium), biocides, irrigation, human labor and no terracing). Descriptive statistics of the data are given in Table 3. Revenue and cost data, except labor, are expressed in Chinese monetary units, the RMB. Natural capital, soil and nitrogen, are described in physical units. Financial capital and human capital are expressed in the RMB monetary units. On average, 5221 RMB/ha ($828.7 US dollars) in revenue can be produced by a 3112 kg/ha soil loss and 15.3 kg/ha nitrogen loss, a cost of 1654 RMB/ha ($262.5 US dollars, excluding labor) and 1390 RMB/ha ($220.6 US dollars) for labor. Prices used to calculate aggregate value added and capital are taken from Lu et al. (2003) (Table 4). Prices used to calculate aggregate value added and capital are taken from Lu et al. (2003) (Table 4). Prices are not updated to the current year to make these results comparable to Lu et al.’s study in 2003; input and output prices have changed at different rates during the past 10 years and some prices could not be recovered from Lu et al. This assumption does not affect lessons from this study.

4. Results

4.1. The DEA Benchmark

The four benchmarks proposed by Van Passel et al. (2007) are fixed to all firms. However, the DEA approach can assign a unique benchmark to each observation. The inputs of the benchmark corresponding to the ith cropping system are calculated by dividing the observed inputs from the ith cropping system by its input distance function. The technology set here is defined as 2006 distinct cropping systems that produce revenue from natural capital, financial capital, and human capital. The mean of the input distance functions for all 2006 cropping systems is 1.742 (Table 5), which implies on average that the same amount of output can be produced by using only 57.4% (i.e. 1/1.742) of the observed inputs. This is the average of all systems evaluated rather than what farmers are actually using. In the case of soil, that means erosion could be reduced dramatically without reducing current production. Descriptive statistics of the inputs from the 2006 benchmark cropping systems are also given in Table 5. For example, the mean of soil loss for all 2006 benchmark systems is 1398 kg/ha, and it has a large range from 0 to 31,272 kg/ha. Mean nitrogen loss is 8.8 kg/ha, with a standard deviation of 5.9 kg/ha. The mean cost of labor is 839 RMB/ha.

4.2. Robustness of the DEA Benchmarks

To test the robustness of DEA benchmarks, we compared the results with those calculated by two of the benchmarks as suggested by Van Passel et al., yielding three potential benchmarks: 1) the DEA benchmark, 2) the average of all cropping systems, and 3) the first observed cropping system, characterized by mono-crop corn, non-mulching, contour, irrigation, human labor and no terracing. As demonstrated in Table 6, a Spearman’s rank correlation of SE between different benchmarks reveals the correlation between the DEA and benchmark 2 to be 0.580; and the correlation to benchmark 3 to be 0.535. This implies that the ranking of the cropping systems is consistent across all three methods, thus supporting the robustness of the DEA benchmark.

4.3. Sustainable Value and Sustainable Efficiency

Descriptive statistics of SV and SE for all 2006 cropping systems are shown in Table 7. Since the best performing cropping systems are chosen as benchmarks, all SVs will be zero or negative. A SV of zero indicates that the cropping system uses all its resources in the most productive way. Large differences in SV of all 2006 cropping systems are observed, ranging from −4700 to 0 RMB/ha (−746 to 0 US dollars/ha). The SV of cropping systems can be improved by applying resources in a more productive way—i.e. moving towards the production frontier. The mean of SV is −1661 RMB/ha (−264 US$/ha); compared to the most sustainable cropping systems, the average cropping system loses 1661 RMB/ha (264 US$/ha) in SV.

The SE under DEA benchmarks is between 0 and 1. A SE of 1 indicates that the cropping systems are the most efficient from a sustainability perspective, while 0 implies the least efficient. The mean of the SE for

Table 3
Descriptive statistics of value added and capital for 2006 cropping systems.
Variable
Revenue (RMB/ha)
Cost except labor (RMB/ha)
Soil loss (kg/ha)
Nitrogen loss (kg/ha)
Labor (RMB/ha)

Source: Lu et al. (2003).

Table 4

Input name	Input price	Unit	Output name	Output price	Unit
Nitrogen (N)	2.9	RMB/kg	Corn	1.24	RMB/kg
Phosphorus (P)	7.8	RMB/kg	Millet	1.28	RMB/kg
Potassium (K)	4.8	RMB/kg	Wheat	1.40	RMB/kg
Biocide	40.0	RMB/kg	Soybean	2.40	RMB/kg
Human labor	10.0	RMB/day	Autumn potato	0.60	RMB/ha
Oxen labor	20.0	RMB/day	Summer potato	0.90	RMB/ha
Donkey labor	15.0	RMB/day	Flax	1.68	RMB/kg
-	-	-	Alfalfa	0.60	RMB/kg

1 US dollar = 6.3 RMB at year 2012.

Table 5

Input name	Mean	Standard deviation	Minimum	Maximum
Input distance function	1.742	0.540	1	4.733
Soil loss (kg/ha)	1398	3084	0	31,272
Nitrogen surplus (kg/ha)	8.8	5.9	0.014	54
Labor (RMB/ha)	839	447	40	2014

1 US dollar = 6.3 RMB at year 2012.
all cropping systems is 0.689; on average the SE can be improved by 31.1%.

The histograms shown in Figs. 1 and 2 indicate the distribution of the SVs and efficiency scores. Almost 100 systems were perfectly efficient (have an SE of 1.0) and over 170 were very efficient with an SE of 0.9 or more. About 140 systems had a near zero SV (meaning they are already as sustainable as the benchmark). The distribution of the SVs is skewed with a large left tail, while the SE has a smaller left tail. The larger left tail for SV shows the magnitude of sustainability losses for the least sustainable systems.

4.4. SV and SE Comparisons

Three SV matrices for rotation, terrace techniques and land units are created using the estimation results and shown in Tables 8, 9 and 10. These tables can be used to compare the SVs between any pair of rotation types, terrace techniques or land units. Several more detailed tables can be found in Hou (2012) for those interested. The SV matrix for the 17 cropping systems is given in Table 8. The rotation types in the first row serve as references. Each value represents a movement from the system on the horizontal axis to the system along the vertical axis. For example, SV is reduced by 465.52 RMB (73.9 US dollars) when switching from corn to wheat and improved by 441 RMB (70 US dollars) if moving from corn to the best system, which is the CSC (i.e. corn, soybean, corn) rotation. A3CM (i.e. alfalfa for 3 years, corn, millet) and FA5MC (i.e. flax, alfalfa for 5 years, millet, corn) rank second. The cropping systems with PWCM (potato, wheat, corn, millet) and PWPM (i.e. flax, wheat, potato, millet) create the lowest SV. Wheat is typically low compared to rotations.

The SV matrix for three terrace techniques (Table 9) implies that bench terracing contributes most to SV, followed by spaced terracing. The cropping systems with no terraces have the least SV when all other practices are held equal. Not surprisingly, based on the SV matrix for five types of land units (Table 10), a floodplain is efficient, while very steeply sloped land has the least value.

A similar set of SE matrices reinforces the same results, but is not shown here.

5. Discussion

One of the priorities of this study is to make practical recommendations for improving sustainable agricultural practices in China’s Loess Plateau to balance economic and environmental objectives. SV is computed for different agricultural systems (crop types, land types and cropping techniques) and recorded and organized into comparison matrices. These comparison matrices can be used to compare the relative sustainability of different crops or management practices like rotations and terracing. For example, cropping systems with potatoes or wheat typically were less sustainable than systems with alfalfa and corn. A regression was also used to specify the marginal contribution of cropping system characteristics on SV or SE. Overall, the DEA/SV analysis of Lu et al.’s 2006 potential cropping systems for the region demonstrated that, all things held equal, bench terracing contributes the most to SV. SV is reduced by 465.52 RMB (73.9 US dollars) when switching from corn to wheat and improved by 441 RMB (70 US dollars) if moving from corn to the best system, which is the CSC (i.e. corn, soybean, corn) rotation.

On average, SV is −1661 RMB (−264 US dollars) and SE is 69%. Clearly, soil erosion could be reduced without sacrifices in income if producers switched to more efficient systems. However, these results are limited to the present data and the dimensions of sustainability that were considered. Income might be affected, for example, if a change in cropping systems leads to less diversity, and therefore more exposure to the risk of disease.

In contrast to other accounting approaches that make adjustments to GDP, the DEA/SV method can be used to inform policy makers, farmers, and farm managers about the sustainability of regional natural resource management decisions. However, a limitation in the analysis is that the sustainability values are based on simulation, rather than the sustainability of current agricultural practices (i.e. what farmers are currently using). Therefore, the results should be viewed in the context of potential, rather than actual impacts.
The fragile ecosystem in the Loess Plateau is associated with environmental degradation. The region concerns environmentalists, ecologists, economists, agronomists and policy makers alike. As previously stated, much of the agricultural land in the region has already been converted to trees through the Grain for Green program (Feng et al., 2005). However, planting land to permanent forests is an extreme conservation measure that generates little economic return to farmers (Osmund et al., 2012). Perhaps excessive erosion has been traded in for excessive conservation. Policy makers need information and ways to compare systems if they aim to realize both strong economic and social performance with sustainable use of natural resources (Fan et al., 2005; Guobin, 1999; Wang et al., 2003). Combining the DEA with the SV metric allows for customizable benchmarks that can, at least in theory, facilitate a practical comparison between agricultural land management decisions.

This is due, in part, to the fact that this combined DEA/SV approach accounts for the depreciation of natural capital through soil erosion and nitrogen losses, along with human capital. Policy makers can consider tradeoffs between economic and environmental objectives, as well as extreme solutions that focus on just the environment or just economics. In this comparison of over 2000 possible cropping systems, switching from mono-crop corn to a corn-soybean–corn rotation would generate 441 RMB/ha in SV. When armed with this knowledge, Chinese policy makers can take steps to educate farmers about the benefits of these trade-offs. In poor areas of China, farmers may lack knowledge about advanced cropping practices. The government also can provide financial incentives to farmers to switch from unsustainable to sustainable cropping systems by subsidizing or offering technological support.

6. Conclusions

One of the major challenges in measuring sustainability is determining how to compare market (e.g. profit) and non-market (e.g. environmental degradation) impacts. This study finds that the SV approach can be used efficiently and effectively to investigate the sustainability of cropping systems and include multiple forms of capital. It is especially useful to create a method to monetize the depletion of soil and nitrogen natural capital so that tradeoffs could be compared to profit maximization of crops, while also accounting for other forms of capital.

Table 10 Sustainable value comparison matrix for 5 types of land units (RMB/ha).a.

Land Type	Floodplain	Gently sloping	Moderately sloping	Steeply sloping	Vey steeply sloping
Floodplain	0	−496.7***	0	−771.8***	−908.1***
Gently sloping	−496.7***	0	−275.1***	0	−136.3***
Moderately sloping	−771.8***	−275.1***	0	−136.3***	−20.0***
Steeply sloping	−908.1***	−136.3***	−20.0***	0	
Vey steeply sloping	−935.1***	−483.4***	−163.3***	−20.0***	

0 = no significant difference; * = significantly different at 10% level; ** = significantly different at 5% level; *** = significantly different at 1% level.

a SV switching from the land type on the top to the land type on the side is negative if the switch is less sustainable and positive if more sustainable.
The mean SV for over 2000 cropping systems in the Loess Plateau is 1661 RMB/ha (−$264/ha); SE is 69%. Therefore, the sustainable performance of available cropping systems in the Loess Plateau can be improved by 1661 RMB/ha, or about 30%, by allocating resources to the best systems as compared to average systems. This analysis developed comparison matrices to examine which practices contribute most to sustainability. Based on these matrices for all cropping rotations, the corn-soybean-corn rotation is most sustainable. Flax–wheat–potato–millet is the least efficient. Bench terracing generates the most SV and produces the highest SE. Not surprisingly, the SV with a floodplain is better than sloped lands. Cropping systems with crop mulching, furrow ridging and intensive mechanization are more sustainable than those with non-mulching, contouring and lower mechanization level, respectively. Finally, the machine intensive cropping system characterized by the rotation corn, soybean, corn, with mulching, furrows ridging, and bench terracing in a floodplain, has the highest SE.

In a broader context of the sustainability measurement literature, this study enhances the SV method by creating individual, customized benchmarks through the use of the DEA. This method proves robust for estimating SV and SE, while offering a customized individual benchmark for each of the 2006 cropping systems. In theory, adding the DEA facilitates a practical comparison between agricultural systems that lends to the identification of the most sustainable agricultural management practices. Although the example presented is based upon simulated data published by Lu (2000) and Lu et al. (2003), a combined DEA/SV approach could be used as an extension of Lu's body of work. A DEA/SV could be used to empirically assess changes in the actual agricultural practices of farmers in the Loess Plateau Region if land use data were collected. Should an empirical study prove successful, the customizable nature of the DEA benchmarks would allow the DEA/SV method to inform policy makers, farmers, and farm managers about the sustainability of cropping the region versus putting most of the farmland into trees as was done by the Green for Grain Program.

Acknowledgment

The authors extend appreciation to two anonymous reviewers whose input improved the quality of the manuscript. The authors also extend appreciation to the funding sources, including: the State Scholarship Fund from China Scholarship Council, and the National Natural Science Foundation of China under the Youth Project “Sustainable Soil Management and its policies: A Case Study of Conservation Practices in the North-east of China” (project number: 71030226), the USDA AR4-NIFA, grant# 2010-65504-20357, for which Dr. Keske is PI, and the Colorado Agricultural Experiment Station for funding Dr. Hoag.

References

Cobb, C.W., Cobb, J.B. 1994. The Green National Product: A Proposed Index of Sustainable Economic Welfare. 1st ed. Lanham, Maryland, USA, Univ. Press of America. Costanza, R., Daly, H.E., 2003. Natural capital and sustainable development. Conserv. Biol. 6 (1), 37–46.

De Koeijer, T.J., Wossink, G.A.A., Stuik, P.C., Renkema, J.A., 2002. Measuring agricultural sustainability in terms of efficiency: the case of Dutch sugar beet growers. J. Environ. Manag. 66 (1), 9–17.

Fan, T., Stewart, B.A., Yong, W., Luo, J., Zhou, G., 2005. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China. Agric. Ecosyst. Environ. 106, 313–329.

Färe, R., Grosskopf, S., Tyeeca, D., 1996. An activity analysis model of the environmental performance of firms—application to fossil-fuel-fired electric utilities. Ecol. Econ. 18 (2), 161–175.

Feng, Z., Yang, X., Zhang, Y., Zhang, P., Li, Y., 2005. Grain-for-green policy and its impacts on grain supply in West China. Land Use Policy 22, 301–312.

Figge, F., Hahn, T., 2004. Sustainable value added: measuring corporate contributions to sustainability beyond eco-efficiency. Ecol. Econ. 48 (2), 173–187.

Figge, F., Hahn, T., 2005. The cost of sustainability capital and the creation of sustainable value by companies. J. Ind. Ecol. 9 (4), 47–58.

Gassman, P.W., Williams, J.R., Benson, V.W., Izzaurralde, R.C., Hauck, L.M., Jones, C.A., Atwood, J.D., Kiniry, J., Flowers, J.D., 2005. Historical Development and Applications of the EPIC and APEX Models. Center for Agricultural and Rural Development, Iowa State University (Report WP-397).

Guobin, L., 1999. Soil conservation and sustainable agriculture on the Loess Plateau: challenges and prospects. Ambio 28 (8), 663–668.

Hamilton, R., Clemens, M., 1999. Genuine savings rates in developing countries. World Bank Econ. Rev. 13 (2), 333–356.

Harte, M.J., 1995. Ecology, sustainability, and environment as capital. Ecol. Econ. 15 (2), 157–164.

Hou, Linqing, 2012. Soil Degradation in China: Implications for Agricultural Sustainability, Food Security and the Environment. Ph.D. Dissertation Colorado State University, USA.

Jollands, N., Lermitt, J., Patterson, M., 2004. Aggregate eco-efficiency indices for New Zealand—a principal components analysis. J. Environ. Manage. 73 (4), 293–305.

Li, N., Lin, W.H., Wang, X., 2012. From rural poverty to urban deprivation? The plight of Chinese rural–urban migrants through the lens of Lost Train Home. East Asia 29, 173–186.

Lu, C.H., 2000. Breaking the Spiral of Un sustainable: An Exploratory Land Use Study for Anhai, the Loess Plateau of China. Ph.D. Dissertation Wageningen University, The Netherlands.

Lu, C.H., van Ittersum, M.K., Rabbinge, R., 2003. Quantitative assessment of resource-use efficient cropping systems: a case study for Anhai in the Loess Plateau of China. Eur. J. Agron. 19 (2), 311–326.

National Development and Reform Commission (NDRC). 2010. Integrated Management of the Loess Plateau, Beijing. (Huangtu Gaoyuan Diqu Zonghe Zhili Dangang). Available at: http://www.sdpd.gov.cn/zcfb/zcfbzt/2010zq/W020110117531609590135.pdf.

Osmond, D.L., Meals, D.W., Hoag, D.L.K., Arashi, M., 2012. How to Build Better Agricultural Conservation Programs to Protect Water Quality: the NIFA-CEAP Experience. Soil and Water Conservation Society, Ankeny, Iowa, USA.

Pearce, D.W., Atkinson, G.D., 1993. Capital theory and the measurement of sustainable development: an indicator of "weak" sustainability. Ecol. Econ. 6 (2), 103–108.

Picazo-Tadeo, A.J., Gómez-Limón, J.A., Reig-Martínez, E., 2011. Assessing farming eco-efficiency: a data envelopment analysis approach. J. Environ. Manage. 92 (4), 1154–1164.

Prugh, T., Daly, H., Goodland, R., Cumberland, J.H., Norgaard, R.B., 1999. Natural Capital and Human Economic Survival. 2nd ed. CRC Press, USA.

Reinhard, S., Knox Lovell, C.A., Thijiszen, G.J., 2000. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 129 (2), 297–303.

Shi, H., Shao, M., 2000. Soil and water loss from the Loess Plateau in China. J. Arid Environ. 45 (1), 9–20.

Smith, D.J., 1997. The political support for sustainable development: a critical appraisal. J. Econ. Issues 31 (1), 145–173.

Van Passel, S., Nevens, F., Mathijs, E., Van Huylenbroeck, G., 2007. Measuring farm sustainability and explaining differences in sustainable efficiency. Ecol. Econ. 62 (1), 149–161.

Van Passel, S., Van Huylenbroeck, G., Lauwers, L., Mathijs, E., 2009. Sustainable value assessment of farms using frontier efficiency benchmarks. J. Environ. Manage. 90 (10), 3057–3069.

Victor, P.A., 1991. Indicators of sustainable development: some lessons from capital theory. Ecol. Econ. 4, 191–213.

Wackernagel, M., Rees, W., 1998. Our Ecological Footprint: Reducing Human Impact on the Earth. New Society Publishers, British Columbia, Canada.

Wang, J., Fu, B., Qiu, Y., Chen, L., 2003. Analysis on soil nutrient characteristics for sustainable land use in Danangou catchment of the Loess Plateau of China. Catena 54 (1–2), 17–29.

Williams, J.R., Wang, E., Meinardus, A., Harman, W.L., Siemens, M., Atwood, J., 2006. EPIC Users Guide v. 0509. Texas Agrilife Blackland Research and Extension Center, Texas, USA.

Wossink, A., Denaux, Z.S., 2006. Environmental and cost efficiency of crop rotations in the east of China. Agric. Ecosyst. Environ. 106, 313–329.