Traffic restrictions associated with the Sino-African summit: Reductions of NOx detected from space

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Wang, Yuxuan, Michael B. McElroy, K. Folkert Boersma, Henk J. Eskes, and J. Pepijn Veefkind. 2007. “Traffic Restrictions Associated with the Sino-African Summit: Reductions of NOx detected from Space.” Geophysical Research Letters 34 (8) (April). Portico. doi:10.1029/2007gl029326.

Published Version
doi:10.1029/2007GL029326

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:28344268

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Traffic restrictions associated with the Sino-African summit: Reductions of NO$_x$ detected from space

Yuxuan Wang,1 Michael B. McElroy,1 K. Folkert Boersma,1 Henk J. Eskes,2 and J. Pepijn Veenkind2

Received 11 January 2007; revised 27 February 2007; accepted 27 March 2007; published 28 April 2007.

[1] Aggressive measures were instituted by the Beijing municipal authorities to restrict vehicular traffic in the Chinese capital during the recent Sino-African Summit. We show that reductions in associated emissions of NO$_x$ were detected by the Dutch-Finnish Ozone Monitoring Instrument (OMI) aboard the Aura satellite. Interpretation of these data using a 3-dimensional chemical transport model indicates that emissions of NO$_x$ were reduced by 40% over the period of November 4 to 6, 2006, for which the restrictions were in place. Citation: Wang, Y., M. B. McElroy, K. F. Boersma, H. J. Eskes, and J. P. Veenkind (2007), Traffic restrictions associated with the Sino-African summit: Reductions of NO$_x$ detected from space, Geophys. Res. Lett., 34, L08814, doi:10.1029/2007GL029326.

1. Introduction

[2] A variety of studies have been published in recent years exploring implications for local, regional and global air quality of emissions of pollutants from China [Y. X. Wang et al., 2004; Wang et al., 2006]. A persistent problem has been to reconcile estimates of emissions based on bottom-up studies [Streets et al., 2003] with concentrations of chemical species observed in the atmosphere [Wang et al., 2003; T. Wang et al., 2004]. Emissions required to account for observations of CO and NO$_x$ (NO + NO$_2$) (inferred from application of 3-d models in an inverse mode) were significantly higher than emissions derived using the bottom-up approach. The discrepancy in the case of CO appears to have been resolved by upward revision [Streets et al., 2006] of the bottom-up inventory accounting for industrial sources omitted in the earlier analysis. The influence of a large microbial source has been suggested to account for the discrepancy in the case of NO$_x$ on the regional scale [McElroy and Wang, 2005; Wang et al., 2007].

[3] The Summit of the Forum on China-Africa Co-operation (FOCAC), convened in Beijing on 4 and 5 November 2006, offers an interesting opportunity to test current understanding of emissions of NO$_x$ from the Beijing environment. The Summit involved the largest international gathering to take place in China since 1949, with high-level participants from 48 African countries. Major initiatives were taken to limit traffic in Beijing over the period November 1 to 6, both to accommodate the Summit but also to serve as a dress rehearsal for the 2008 Olympic Games. While the public was advised to drive less for six days, specific and mandatory regulations were instituted only between November 4th and 6th (Beijing Traffic Management Bureau, http://www.bjttgl.gov.cn/Article_tg.asp?AE_ID=418, in Chinese). Bus transport capacity was increased, access to specific roads was limited, and bans were instituted on use of government and commercial vehicles with restrictions also on private vehicles. News reports suggest that approximately 30%, or 800,000, of the city’s 2.82 million vehicles were taken off the roads as a result of measures adopted during the Summit by the Beijing municipal authorities (China Daily, http://www.chinadaily.com.cn/2008/2006-11/07/content_726767.htm). As a result of these initiatives, one might expect a significant decrease in emissions of NO$_x$ from the transportation sector. We show in what follows that a reduction in NO$_x$ emissions was in fact observed by the Ozone Monitoring Instrument (OMI) aboard the EOS Aura satellite and that these observations, in combination with a model analysis, can be used to obtain a quantitative estimate of the magnitude of this reduction.

2. OMI NO$_2$ Columns and GEOS-Chem Simulation

[4] The Dutch-Finnish OMI is a nadir-viewing imaging spectrograph measuring direct and atmospherically back-scattered sunlight in the spectral range 270 nm to 500 nm [Leveldt et al., 2006a, 2006b], from which information on several trace gases, including NO$_2$ [Bucsela et al., 2006] is derived. The Aura satellite is on a polar sun-synchronous orbit crossing the equator at 0145 and 1345 local time. Compared with its predecessors GOME and SCIAMACHY, OMI has the advantage of daily global coverage and small pixel size (24 × 13 km2 in the nadir). The near-real time (NRT) retrieval of tropospheric NO$_2$ columns from OMI is based on the combined retrieval-assimilation-modeling approach developed at the Royal Netherlands Meteorological Institute (KNMI) [Boersma et al., 2004]. The NRT availability of stratospheric slant columns and NO$_2$ profiles is achieved using the TM4 chemistry transport model exercised in a forward time mode based on forecast ECMWF (European Center for Medium Range Weather Forecasting) meteorology and NO$_2$ information assimilated from prior orbits [Boersma et al., 2006]. The 1-sigma uncertainty in NO$_2$ columns for individual OMI retrievals is estimated at ±0.5 − 1.5 × 1015 molecules/cm2 associated with spectral fitting with a relative error of between 10% and 40% attributed to uncertainties in calculation of air mass factors [Boersma et al., 2006].
Column densities of NO\textsubscript{2} derived from OMI for Beijing for the period October 25 and November 19, 2006, are presented in Figure 1a. These results were obtained by averaging multiple OMI pixels over two horizontal scales for the region surrounding Beijing (39.9\degree N, 106.25\degree E), 0.5\degree × 0.5\degree and 2\degree × 2.5\degree, the finer resolution reflecting the approximate size of the Beijing urban area, with the coarser averaging appropriate for the resolution of the chemical transport model described below. Pixels for which cloud radiance fractions exceeded 50\% were excluded from the present analysis. Averaging over multiple pixels is expected to reduce the influence of random errors associated with individual retrievals. A notable feature of the results in Figure 1a is the relatively low column densities of NO\textsubscript{2} observed between November 4th and 6th, coinciding with the traffic restrictions instituted during the Summit and significantly lower (by about a factor of two) than other time periods with relatively low NO\textsubscript{2} (e.g., 13–15 Nov). Day-to-day variability in column densities reflects presumably a combination of changes in emissions and changes due to variations in meteorological conditions and the chemical lifetime of NO\textsubscript{2}. It will be shown below that the reduced NO\textsubscript{2} concentrations on 4–6 Nov can be attributed to reduction in NO\textsubscript{x} sources. Differences between weekday and weekend emissions have been shown to drive a "weekend effect" in NO\textsubscript{2} columns observed from space over industrialized regions and cities in the US, Europe and Japan: no such effect has been observed for China [Beirle et al., 2003].

[5] Since spatial averaging tends to smear contributions from “hot” spots corresponding to high emissions with those from surrounding regions distinguished by lower emissions, column densities inferred for the higher resolu-

Figure 1. Tropospheric vertical columns of NO\textsubscript{2} over Beijing between October 25 and November 19, 2006. OMI data were averages between 1 pm and 3 pm local time as the satellite overpasses Beijing. No data were available from OMI over the Beijing region on October 30 and November 17, 2006. Arrows indicate the period of mandatory traffic restrictions. (a) Mean OMI columns with standard deviations by averaging multiple OMI pixels over two horizontal scales surrounding Beijing: 0.5\degree × 0.5\degree (solid red) and 2\degree × 2.5\degree (dashed red). The number of OMI pixels selected for averaging on the 0.5\degree × 0.5\degree grid is shown at the bottom for individual days. NO\textsubscript{2} columns simulated by the GEOS-Chem model using 2004 emissions and sampled at the overpass time of OMI are shown in black. (b) Day-to-day variations of NO\textsubscript{2} columns from OMI on the 0.5\degree × 0.5\degree grid (red) and the GEOS-Chem model (black). Data shown are percentage deviations from the mean columns for the 23-day period. The mean columns for OMI and the model were calculated separately.

Figure 2. Relationship between tropospheric NO\textsubscript{2} columns derived from OMI on two spatial scales surrounding Beijing: 0.5\degree × 0.5\degree (y-axis) versus 2\degree × 2.5\degree (x-axis). Data are for the period between October 25 and November 19, 2006. The correlation coefficient (R) and slope of the reduced-major-axis regression line are shown.
tropospheric NOx (differences in flow patterns observed on the two scales are
observed over any particular region for any particular interval of time: changes in emissions of NOx, changes in the chemical lifetime of NOx, and changes in the horizontal divergence of the flux of NOx (differences in flow into and out of the region). Accounting for mass balance, the relative change in NOx column densities, \(\frac{1}{C} \frac{dC}{dt} \), may be represented by

\[
\frac{1}{C} \frac{dC}{dt} = \frac{E}{C} R - \frac{1}{\tau_{\text{chem}}} - \frac{1}{\tau_{\text{tran}}}
\]

where \(C \) denotes the column density of NOx, \(E \) denotes emissions of NOx, \(\tau_{\text{chem}} \) refers to the chemical lifetime of NOx, \(\tau_{\text{tran}} \) is a time scale associated with the horizontal divergence, and \(R \) defines the ratio of NO2 to NOx column densities. Given the success of the model in reproducing the observed relative variability of OMI columns (i.e., the left-hand side of equation (1)), we conclude that the model may

\[Auxiliary materials are available in the HTML. doi:10.1029/2007GL029326. \]
be used to simulate contributions of individual terms on the right-hand side of equation (1). Since $\tau_{\text{chem}}, \tau_{\text{tran}},$ and R should not depend on assumptions made concerning the magnitude of emissions (nonlinearity introduced by changes of OH on τ_{chem} has been shown to be less than 5% over Beijing for the range of emissions applicable here [Martin et al., 2006]; further discussion related to τ_{chem} is provided in the auxiliary material), we propose to use the relationship between E and C in the model to estimate the emissions of NO$_x$ implied by the column densities measured by OMI. This approach has been applied previously to NO$_2$ using satellite observations for east China [Wang et al., 2007] and for other parts of the globe [Martin et al., 2006] and have been shown to provide a reliable means to determine the strength of relevant emissions.

[10] Emissions of NO$_x$ (molecules/cm2/s) inferred from the data are presented in Figure 4. A 5-day central moving average was applied on the emissions to remove random variations inherent in the time series in order to highlight the underlying trend. Use of a 5-day smoothing interval is appropriate given the 5-day duration of the traffic restrictions. Figure 4 presents time series for emissions corresponding to three spatial scales: $0.5^\circ \times 0.5^\circ$, $1^\circ \times 1^\circ$, and $2^\circ \times 2.5^\circ$.

[11] Highest emissions (emissions per unit area per unit time) were obtained using the highest resolution averaging procedure ($0.5^\circ \times 0.5^\circ$), indicating that emissions from the Beijing urban area are higher than those from the immediate surrounding region. Emission fluxes over the Beijing urban area ($0.5^\circ \times 0.5^\circ$) were reduced by up to 40% during the period when strict traffic restrictions (4 Nov to 6 Nov) went into force. The analysis suggests that the emissions over an extended area of $1^\circ \times 1^\circ$ around Beijing were reduced also by 40% during the period of traffic restrictions. No significant changes in emissions were detected when the data were averaged to the $2^\circ \times 2.5^\circ$ scale. Since traffic restrictions were imposed primarily in the Beijing urban area, the similarity in results obtained with resolutions of $0.5^\circ \times 0.5^\circ$ and $1^\circ \times 1^\circ$ would appear to imply that emissions from the urban area were transported horizontally occupying the $1^\circ \times 1^\circ$ grid and dominate all other sources on that scale. Since the impact of the traffic restrictions is not detectable on the $2^\circ \times 2.5^\circ$ scale, we conclude that emissions from Beijing are significantly diluted on this scale by regional sources.

[12] Since the present study is focused mainly on the relative changes in emissions during the traffic restriction, systematic errors associated with the OMI data and the model simulation and systematic mismatches between the two data sources are not expected to influence significantly conclusions drawn from the present analysis. Errors thus come mainly from random errors of OMI and the model. The standard deviation of daily emissions (prior to smoothing) during the period of normal levels of emissions (i.e., excluding 4–6 November) is adopted as a proxy to represent the random errors in the system. This method gives an estimate of 25% uncertainty, significantly lower than the 40% reduction in emissions inferred for the period of traffic restrictions.

4. Concluding Remarks

[13] We conclude that traffic restrictions implemented during the Sino-African Summit were remarkably successful in reducing emissions of NO$_x$—by as much as 40%. Recent analysis of extremely high ozone events in Beijing urban plumes in summer showed strong positive linear correlations between O$_3$ and total reactive nitrogen [Wang et al., 2006]. Given the important role of NO$_x$ in the formation of O$_3$, our analysis suggests that traffic restrictions could be effective also in controlling O$_3$ pollution by reducing emissions of both NO$_x$ and VOCs from vehicles.

[14] The bottom-up method estimates that vehicular emissions contributes about 70% of NO$_x$ sources over the Beijing urban area during non-heating seasons (the official winter heating period in Beijing starts in late November) (Q. Zhang and D. Chen, personal communication, 2007). If we adopt this number and assume further that there were no changes in non-mobile sources during the Summit, the present study would indicate that traffic restrictions reduced vehicular emissions of NO$_x$ by about 50%. This number appears to be higher than the fractional change in on-road vehicle numbers reported in the news media. Detailed data on vehicle energy usage (e.g., gasoline sales data) will be required to develop a more precise value for the relative reduction in vehicular emissions.

[15] Temporal variations in NO$_2$ over the period October 25 to November 19 are accurately captured by the GEOS-Chem model employed in this analysis. The model assumed an inventory of emissions available for 2004. Absolute values of NO$_2$ column densities obtained with the model were typically lower than observed columns, by about 30%. This discrepancy may be due at least in part to the increase in emissions that has occurred since 2004: new car registrations are growing at present by about 15% annually. It is anticipated that restrictions similar to those implemented during the Sino-African Summit will be instituted in the future as Beijing prepares to host the 2008 Olympic Games. OMI NO$_2$ data can be used in the NRT mode to check if such measures are indeed effective. Coordinated observations of multiple species on such occasions can provide invaluable opportunities to test and refine our understanding.
of atmospheric chemistry not only for Beijing but also for the large region of East Asia.

[16] Acknowledgments. OMI NRT data were provided by KNMI (The Netherlands) and were produced in collaboration with NASA (USA). OMI, a Dutch-Finnish built instrument, is a part of NASA's EOS-Aura payload. The OMI project is managed by NIVR and KNMI in The Netherlands. Y. X. Wang thanks Shuxiao Wang, Weihua Ge, Dan Chen at Tsinghua University, and Qiang Zhang at Argonne National Laboratory for helpful discussions. This research was supported by the National Science Foundation, grant ATM-0635548.

References

Beirle, S., U. Platt, M. Wenig, and T. Wagner (2003), Weekly cycle of NO\textsubscript{2} by GOME measurements: A signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225–2232.

Boersma, K. F., H. J. Eskes, and E. J. Brinksma (2004), Error analysis for tropospheric NO\textsubscript{2} retrieval from space, J. Geophys. Res., 109, D04311, doi:10.1029/2003JD003962.

Boersma, K. F., et al. (2006), Near-real time retrieval of tropospheric NO\textsubscript{2} from OMI, Atmos. Chem. Phys. Discuss., 6, 12,301–12,345, SRef-ID:1680-7375/acpd/2006-6-12301.

Bucsela, E. J., E. A. Celarier, M. O. Wenig, J. F. Gleason, J. P. Veefkind, K. F. Boersma, and E. J. Brinksma (2006), Algorithm for NO\textsubscript{2} vertical column retrieval from the Ozone Monitoring Instrument, IEEE Trans. Geosci. Remote Sens., 44, 1245–1258, doi:10.1109/TGRS.2005.863715.

LeveI, P. F., G. H. J. van den Oord, M. R. Dobber, A. Målkkö, H. Visser, J. de Vries, P. Stamnes, J. O. V. Lundell, and H. Saari (2006a), The ozone monitoring instrument, IEEE Trans. Geosci. Remote Sens., 44, 1093–1101, doi:10.1109/TGRS.2006.872333.

LeveI, P. F., E. Hilsenrath, G. W. Leppelmeier, G. H. J. van den Oord, P. K. Bhartia, J. Tamininen, J. F. de Haan, and J. P. Veefkind (2006b), Science objectives of the ozone monitoring instrument, IEEE Trans. Geosci. Remote Sens., 44, 1093–1101.

Martin, R. V., C. E. Sioris, K. Chance, T. B. Ryerson, T. H. Bertram, P. J. Wooldridge, R. C. Cohen, J. A. Neuman, A. Swanson, and F. M. Flocke (2006), Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America, J. Geophys. Res., 111, D15308, doi:10.1029/2005JD006680.

McElroy, M. B., and Y. X. Wang (2005), Human and animal wastes: Implications for atmospheric N\textsubscript{2}O and NO\textsubscript{X}, Global Biogeochem. Cycles, 19, GB2008, doi:10.1029/2004GB002429.

Streets, D. G., et al. (2003), An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093.

Streets, D. G., Q. Zhang, L. Wang, K. He, J. Hao, Y. Wu, Y. Tang, and G. R. Carmichael (2006), Revisiting China’s CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations, J. Geophys. Res., 111, D14306, doi:10.1029/2006JD007118.

Wang, T., A. J. Ding, D. R. Blake, W. Zahorowski, C. N. Poon, and Y. S. Li (2003), Chemical characterization of the boundary layer outflow of air pollution to Hong Kong during February–April 2001, J. Geophys. Res., 108(D20), 8787, doi:10.1029/2002JD003272.

Wang, T., et al. (2004), Relationships of trace gases and aerosols and the emission characteristics at Lin’an, a rural site in eastern China, during spring 2001, J. Geophys. Res., 109, D19S05, doi:10.1029/2004JD004119.

Wang, T., A. Ding, J. Guo, and W. S. Wu (2006), Strong ozone production in urban plumes from Beijing, China, Geophys. Res. Lett., 33, L21806, doi:10.1029/2006GL027689.

Wang, X. Y., M. B. McElroy, T. Wang, and P. I. Palmer (2004), Asian emissions of CO and NO\textsubscript{X}; Constraints from aircraft and Chinese station data, J. Geophys. Res., 109, D24304, doi:10.1029/2004JD005250.

Wang, Y. M. B. McElroy, R. V. Martin, D. G. Streets, Q. Zhang, and T.-M. Fu (2007), Seasonal variability of NO\textsubscript{X}, emissions over east China constrained by satellite observations: Implications for combustion and microbial sources, J. Geophys. Res., 112, D06301, doi:10.1029/2006JD007538.

K. F. Boersma, M. B. McElroy, and Y. Wang, Department of Earth and Planetary Sciences and Division of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA. (wang3@fas.harvard.edu)

H. J. Eskes and J. P. Veefkind, Royal Netherlands Meteorological Institute, Postbus 201, NL-3730 AE De Bilt, Netherlands.