Modular symmetry at level 6 and a new route towards finite modular groups

Cai-Chang Li1,2,3,*, Xiang-Gan Liu4,5†, Gui-Jun Ding4,5‡

1School of Physics, Northwest University, Xi’an 710127, China
2Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China
3Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China
4Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
5Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China

Abstract

We propose to construct the finite modular groups from the quotient of two principal congruence subgroups as $\Gamma(N')/\Gamma(N'')$, and the modular group $SL(2, \mathbb{Z})$ is extended to a principal congruence subgroup $\Gamma(N')$. The original modular invariant theory is reproduced when $N' = 1$. We perform a comprehensive study of Γ_6' modular symmetry corresponding to $N' = 1$ and $N'' = 6$, five types of models for lepton masses and mixing with Γ_6' modular symmetry are discussed and some example models are studied numerically. The case of $N' = 2$ and $N'' = 6$ is considered, the finite modular group is $\Gamma(2)/\Gamma(6) \cong T'$, and a benchmark model is constructed.
1 Introduction

The neutrino masses and lepton mixing parameters have been precisely measured by a large number of neutrino oscillation experiments. If neutrinos are Majorana particles, the lepton mixing are described by three mixing angles, one Dirac CP violation phase δ_{CP} and two Majorana CP violation phases α_{21} and α_{31}. The 3σ ranges of lepton mixing angles and neutrino masses for normal ordering (NO) spectrum are determined to be [1]

$$0.02032 \leq \sin^2\theta_{13} \leq 0.02410, \quad 0.269 \leq \sin^2\theta_{12} \leq 0.343, \quad 0.415 \leq \sin^2\theta_{23} \leq 0.616,$$

$$6.82 \text{ eV}^2 \leq \Delta m_{21}^2 \times 10^3 \leq 8.04 \text{ eV}^2, \quad 2.435 \text{ eV}^2 \leq \Delta m_{31}^2 \times 10^3 \leq 2.598 \text{ eV}^2,$$

where θ_{12}, θ_{13} and θ_{23} are three lepton mixing angles in the standard parametrization [2], and $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$ and $\Delta m_{31}^2 \equiv m_3^2 - m_1^2$ are two mass squared differences. Similar results for inverted ordering (IO) spectrum have been obtained [1]. The Dirac phase δ_{CP} is less constrained by the current data, and the forthcoming long-baseline experiments are expected to make precise measurement of δ_{CP}. The Majorana phases of the neutrino mixing matrix can not have any effect in neutrino oscillations, and almost nothing is known about their possible values at present.

Understanding the origin of fermion masses and mixing patterns is a greatest challenge in particle physics. It was found that the non-abelian finite discrete flavor symmetry is particularly suitable to explain the large lepton mixing angles [3–9]. Certain mixing patterns can be obtained if the discrete flavor group is broken down to different remnant subgroups in the charged lepton and neutrino sectors. In the paradigm of traditional discrete flavor symmetry, the flavor group is spontaneously broken by the vacuum expectation values of a set of flavons. In this approach, additional dynamics of vacuum alignment, field content and auxiliary symmetry are necessary to achieve the desired non-trivial vacuum configuration so that the resulting models are rather complicated and the scalar potential has to be cleverly designed.

However, the origin of finite flavor symmetry is still unknown. Recently modular symmetry which naturally appears in string theory has been suggested as the origin of such a finite flavor symmetry [10]. The homogeneous (inhomogeneous) finite modular groups Γ_N (Γ_N') appearing as the quotient group of the two dimensional (projective) special linear group over the principal congruence subgroups is considered in the framework of the modular invariance approach. In this modular approach, the flavon fields other than the modulus τ are unnecessary and the Yukawa couplings are modular forms which are holomorphic functions of the complex modulus τ. The flavor symmetry will be broken when the modulus τ gets vacuum expectation value (VEV). Moreover, the modular invariance and supersymmetry completely determine all higher dimensional operators in the superpotential. As the lepton mixing parameters and masses are only fixed by a small number of free parameters in modular invariant lepton models, the resulting models have strong predictive power.

The inhomogeneous finite modular group Γ_N is the quotient group of the modular group $PSL(2, \mathbb{Z}) \cong \tilde{\Gamma}$ over the principal congruence subgroup $\Gamma(N)$. The phenomenologically viable modular invariant models have been widely discussed by using the inhomogeneous finite modular group Γ_N in the literature, such as models based on the finite modular groups $\Gamma_2 \cong S_3$ [11–15], $\Gamma_3 \cong A_4$ [10–12, 15–43], $\Gamma_4 \cong S_4$ [29, 44–54], $\Gamma_5 \cong A_5$ [49, 55, 56] and $\Gamma_7 \cong PSL(2, \mathbb{Z}_7)$ [57] have been studied. The modular forms of integral weights will be decomposed into irreducible representations of the homogeneous finite modular group Γ_N' which is the double covering of Γ_N [58]. Modular invariant models based on the integral weight modular forms have been built and the corresponding finite modular groups $\Gamma_3' \cong T'$ [58,59], $\Gamma_4' \cong S_4'$ [60,61] and $\Gamma_5' \cong A_5'$ [62,63] have been studied in the modular invariance approach.
Recently the modular weight \(k \) has been extended to a rational number, and the corresponding finite modular group will be extended to its metaplectic covers \([63,64]\). It is remarkable that the modular symmetry also has the merit of conventional abelian flavor symmetry group, the structure of the modular form can produce texture zeros of fermion mass matrices exactly \([30,59]\), the modular weights can play the role of Froggatt-Nielsen charges \([34,49]\), and the hierarchical charged lepton masses can arise solely due to the proximity of the modulus \(\tau \) to a residual symmetry conserved point \([15,41,65]\). Furthermore, the modular invariance approach has been extended to the quark sector to explain the quark mixing and quark masses. Then a unified description of leptons and quarks can be achieved from a common finite discrete modular group \([22,36,40,59,61,63]\). In order to further improve the predictive power of the modular invariance approach, the setup of combining modular symmetry with the generalized CP (gCP) symmetry has been discussed \([66,67]\). The consistency of modular and gCP symmetries requires that the complex modulus \(\tau \) transforms as \(\tau \xrightarrow{CP} -\tau^* \) up to modular transformations \([66–71]\). In this context, the VEV of \(\tau \) is the unique source of both modular and gCP symmetries. In the basis where the representation matrices of both modular generators \(S \) and \(T \) are symmetric, the gCP transformation would reduce to canonical CP and all the coupling constants would be real. Moreover, the possibility of coexistence of multiple moduli has been investigated \([46,72]\).

In the present work, we generalized the modular invariance approach \([10]\) by replacing the modular group \(SL(2,\mathbb{Z}) \) with the principal congruence subgroup \(\Gamma(N') \), the original modular invariant theory is the special case of \(N' = 1 \). The finite modular group is the quotient of two principal congruence subgroups \(\Gamma(N')/\Gamma(N'') \), and the known homogeneous finite modular groups can be reproduced. As examples, we study two cases of \(\Gamma(N') = \Gamma(1) \) and \(\Gamma(N') = \Gamma(2) \) with \(\Gamma(N'') = \Gamma(6) \) to construct models of lepton masses and mixing. The modular symmetry is extended to combine with the gCP symmetry, and invariance under gCP requires all coupling constants to be real in our working basis. We find that the modular forms of weight \(k = 1 \) and level \(N = 6 \) can be obtained from the modular forms of \(\Gamma(3) \) with weight 1 and they can be expressed in terms of the products of Dedekind eta functions. A systematical analysis of the modular invariant lepton models with \(\Gamma_6' \) modular symmetry is performed. The finite modular group \(\Gamma_6' \) has abundant two-dimensional representations which provides new model building possibilities. The left-handed lepton fields, the right-handed charged lepton and the right-handed neutrinos can be assigned to a triplet, doublet plus singlet or three singlets of \(\Gamma_6' \). We are concerned with the phenomenologically viable models with small number of free parameters. We have discussed five types of lepton models classified according to the representation assignments of the lepton fields under \(\Gamma_6' \), and some examples models are presented. The neutrino masses are generated by the effective Weinberg operator in type IV model and by the seesaw mechanism in other types of models. Three right-handed neutrinos are introduced in type I, II, III models while there are two right-handed neutrinos in type V models so that the lightest neutrino is massless. Furthermore, we consider the case of \(\Gamma(N') = \Gamma(2) \) and \(\Gamma(N'') = \Gamma(6) \), the finite modular group is \(\Gamma(2)/\Gamma(6) = \Gamma_3' \cong T' \). The modular forms of level 6 can be arranged into \(T' \) multiplets, and a benchmark model is constructed.

The outline of this paper is as follows. The concept of modular symmetry is recapitulated and a new route towards finite modular groups is given in section 2. In section 3, we give the formalism of the generalized modular invariant supersymmetry theory and modular forms of level 6 are presented. In section 4, lepton models with \(\Gamma_6' \) modular symmetry are studied, and we have discussed five types of models differing in the representation assignments of the lepton fields under \(\Gamma_6' \). As an example, a modular invariant model based on \(\Gamma(2) \) modular symmetry with finite modular group \(T' \) is given in section 5. We conclude the paper in
The group theory of the \(\Gamma_6' \) modular group is presented and the Clebsch-Gordan (CG) coefficients in our working basis are reported in appendix A. The linearly independent higher integral weight modular multiplets of level 6 with finite modular group \(\Gamma_6' \) are listed in appendix B. We present the decomposition of level 6 modular forms with respect to the \(T' \) modular symmetry in appendix C.

2 A new route towards finite modular groups

The finite modular groups and their cover groups have been widely studied as the flavor symmetry groups. They usually arise from the quotient of the group \(SL(2,\mathbb{Z}) \) or \(PSL(2,\mathbb{Z}) \) modulo its normal subgroups \(\Gamma(N) \), where \(SL(2,\mathbb{Z}) \equiv \Gamma \) called the full modular group is defined as

\[
SL(2,\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1, \ a,b,c,d \in \mathbb{Z} \right\}.
\]

The group \(SL(2,\mathbb{Z}) \) has infinite elements and it can be generated by two generators \(S \) and \(T \) with

\[
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},
\]

which fulfill the relations

\[
S^4 = (ST)^3 = 1, \quad S^2T = TS^2.
\]

The infinite normal subgroups \(\Gamma(N) \) which are called principal congruence subgroup of level \(N \) are defined as

\[
\Gamma(N) = \left\{ \gamma \in SL(2,\mathbb{Z}) \mid \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \right\}.
\]

Note that \(\Gamma(1) = SL(2,\mathbb{Z}) \) and \(T^N \in \Gamma(N) \). The homogeneous finite modular group \(\Gamma'_N \) is the quotient group \(\Gamma/\Gamma(N) \):

\[
\Gamma'_N \equiv \Gamma/\Gamma(N) : \quad S^4 = (ST)^3 = T^N = 1, \quad S^2T = TS^2, \quad N < 6.
\]

Note that additional relations are necessary to render the group \(\Gamma'_N \) finite for \(N \geq 6 \). In the present work, we are concerned with the modular group \(\Gamma'_6 \) which satisfies the defining relations

\[
S^4 = T^6 = (ST)^3 = ST^2ST^3ST^4ST^3 = 1, \quad S^2T = TS^2.
\]

The above construction of finite modular group is not unique. The quotient of two congruence subgroups of \(SL(2,\mathbb{Z}) \) can also give finite groups. Let \(N = p_1^{n_1} \cdots p_k^{n_k} \) be the prime factorization of the positive integer \(N \), where \(n_1, \ldots, n_k \in \mathbb{N} \) and \(p_1, \ldots, p_k \) are distinct primes. The prime factorization of all positive integers less than 21 is listed in table 1. It is well known that Chinese remainder theorem gives the isomorphism of rings:

\[
\mathbb{Z}/N\mathbb{Z} \cong (\mathbb{Z}/p_1^{n_1}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_k^{n_k}\mathbb{Z}) .
\]

Then this gives isomorphism:

\[
SL(2,\mathbb{Z}/N\mathbb{Z}) \cong SL(2,\mathbb{Z}/p_1^{n_1}\mathbb{Z}) \times \cdots \times SL(2,\mathbb{Z}/p_k^{n_k}\mathbb{Z}) .
\]

Using isomorphism \(SL(2,\mathbb{Z}/N\mathbb{Z}) \cong \Gamma(1)/\Gamma(N) \), we have

\(^1\)The quotient group \(\Gamma_N = \overline{\Gamma}/\overline{\Gamma}(N) \) is the inhomogeneous finite modular group of level \(N \), where \(\overline{\Gamma} \) and \(\overline{\Gamma}(N) \) are the projective groups \(\overline{\Gamma} = \Gamma/\{ \pm 1 \} \) and \(\overline{\Gamma}(N) = \Gamma(N)/\{ \pm 1 \} \) respectively. Obviously, \(\Gamma_N \) is isomorphic to \(\Gamma'_N/\{ \pm 1 \} \) for \(N > 2 \). Hence \(\Gamma'_N \) is the double cover group of \(\Gamma_N \).
As a consequence, the fundamental domain becomes the upper half plane \(\mathbb{H} \) where \(\mathbb{H} \) is divisible by \(N \) so that \(\Gamma(N') \) is a normal subgroup of \(\Gamma(N) \). \(\Gamma(N') \) acts on the upper half plane \(\mathcal{H} = \{ \tau \in \mathbb{C} | \Im \tau > 0 \} \) by the linear fractional transformation

\[
\gamma \tau = \frac{a \tau + b}{c \tau + d}, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N').
\]

As a consequence, the fundamental domain becomes \(\mathcal{D}' = \mathcal{H}/\Gamma(N') \) in which no two points are related by the modular transformations of \(\Gamma(N') \). The modular forms of the modular subgroup \(\Gamma(N'') \) with weight \(k \) are holomorphic functions \(f(\tau) \) satisfying the property

\[
f_i(h\tau) = (c\tau + d)^k f_i(\tau), \quad h \in \Gamma(N'').
\]

\(^2\)Note that \(S_3 \cong \Gamma_2 = \Gamma(1)/\Gamma(2) = \Gamma(1)/\Gamma(2) = \Gamma' \).
The modular forms $f_i(\tau)$ span a finite dimensional linear space, and they are usual modular forms of level N''. It is possible to choose a basis such that the transformations of modular forms $f_i(\tau)$ under $\Gamma(N')$ can be described by $[10,58]$

$$f_i(\gamma \tau) = (c\tau + d)^k \rho_{ij}(\gamma) f_j(\tau), \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N'),$$

where $\rho(\gamma)$ is the irreducible representation of quotient group $\Gamma(N')/\Gamma(N'')$.

3 Modular symmetry and modular forms of level 6

We generalize the modular invariant supersymmetry theory $[10]$ by replacing $\Gamma \cong SL(2, \mathbb{Z})$ with the principal congruence subgroup $\Gamma(N')$, the original modular invariant theory is the special case of $N' = 1$. Notice that this generalization is already contained in the more general automorphic supersymmetric framework $[72]$. The field content consists of a set of chiral matter superfields Φ_I and a modulus superfield τ, their modular transformation under $\Gamma(N')$ are given by:

$$\begin{aligned}
\tau &\rightarrow \gamma \tau = \frac{a \tau + b}{c \tau + d}, \\
\Phi_I &\rightarrow (c\tau + d)^{-k_I} \rho_I(\gamma) \Phi_I,
\end{aligned}$$

where k_I is called the modular weight of matter field Φ_I, and $\rho_I(\gamma)$ is the unitary representation of quotient group $\Gamma(N')/\Gamma(N'')$. The Kähler potential is still taken to be the minimal $[10]$

$$K(\Phi_I, \bar{\Phi}_I; \tau, \bar{\tau}) = -h \Lambda^2 \log(-i\tau + i\bar{\tau}) + \sum_I (-i\tau + i\bar{\tau})^{-k_I} |\Phi_I|^2,$$

which leads to the kinetic terms for matter fields and the modulus field τ after the modular symmetry breaking induced by non-vanishing VEV of τ. The superpotential $W(\Phi_I, \tau)$ can be expanded in power series of the involved supermultiplets Φ_I,

$$W(\Phi_I, \tau) = \sum_n Y_{I_1...I_n}(\tau) \Phi_{I_1}...\Phi_{I_n},$$

where $Y_{I_1...I_n}(\tau)$ is a modular multiplet of weight k_Y and level N'' as introduced in the previous section, and it fulfills

$$Y_{I_1...I_n}(\tau) \xrightarrow{\gamma} Y_{I_1...I_n}(\gamma \tau) = (c\tau + d)^{k_Y} \rho_Y(\gamma) Y_{I_1...I_n}(\tau), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N').$$

Modular invariance entails that each term of the $W(\Phi_I, \tau)$ should satisfy the following conditions:

$$k_Y = k_{I_1} + ... + k_{I_n}, \quad \rho_Y \otimes \rho_{I_1} \otimes ... \otimes \rho_{I_n} \ni 1.$$

In this work, we will study the normal subgroup $\Gamma(N''') = \Gamma(6)$ as an example, and consider two cases of $\Gamma(N') = \Gamma(1)$ and $\Gamma(N') = \Gamma(2)$ as the full modular symmetries to construct the corresponding lepton models. Accordingly the finite modular groups are $\Gamma(1)/\Gamma(6) = \Gamma_6$ and $\Gamma(2)/\Gamma(6) = \Gamma'_3 \cong T'$ respectively.
3.1 Modular forms of level \(N = 6 \)

The modular forms of weight \(k \) and level \(N \) form a linear space \(\mathcal{M}_k(\Gamma(N)) \), and the general dimension formula of \(\mathcal{M}_k(\Gamma(N)) \) is \([76,77]\)

\[
\dim \mathcal{M}_k(\Gamma(N)) = \frac{(k-1)N+6}{24}N^2 \prod_{p|N} \left(1 - \frac{1}{p^2}\right),
\]

(3.6)

for \(12 > N > 2, k \geq 1 \) or \(N > 2, k \geq 2 \), where the product is over the prime divisors \(p \) of \(N \). For the concerned level \(N = 6 \), the above dimensional formula is

\[
\dim \mathcal{M}_k(\Gamma(6)) = 6k, \quad k \geq 1.
\]

(3.7)

Therefore there are six linear independent modular forms of weight \(k = 1 \) at level 6.

The basis (only \(q \)-series form) of weight \(k = 1 \) and level \(N = 6 \) modular forms space can be extracted by using the SageMath algebra system \([78]\) as follows:

\[
a_1(\tau) = 1 + 6q^2 + 6q^6 + 6q^8 + 12q^{14} + 6q^{18} + 6q^{24} + 12q^{26} + \ldots,
\]

\[
a_2(\tau) = q^{1/6}(1 + 2q + 2q^2 + 2q^3 + q^4 + 2q^5 + 2q^6 + 2q^7 + \ldots),
\]

\[
a_3(\tau) = q^{1/3}(1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + 2q^9 + \ldots),
\]

\[
a_4(\tau) = q^{1/2}(1 + q + 2q^3 + q^4 + 2q^6 + 2q^9 + 2q^{10} + q^{12} + \ldots),
\]

\[
a_5(\tau) = q^{2/3}(1 + q^2 + 2q^4 + q^8 + q^{10} + 2q^{12} + q^{16} + 2q^{18} + \ldots),
\]

\[
a_6(\tau) = q(1 - q + q^2 + q^3 - q^5 + 2q^6 - q^7 + q^8 + \ldots),
\]

with \(q = e^{2\pi i \tau} \). Analytically the integral weight modular forms of level \(N = 6 \) can be constructed from the product of the Dedekind eta function defined by

\[
\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \quad q = e^{2\pi i \tau}.
\]

(3.9)

The eta function transforms under the actions of \(S \) and \(T \) as follows \([76]\)

\[
\eta(\tau) \xrightarrow{S} \eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau), \quad \eta(\tau) \xrightarrow{T} \eta(\tau + 1) = e^{3\pi i/12} \eta(\tau).
\]

(3.10)

Notice that \(\Gamma(6) \subset \Gamma(3) \), therefore we have \(\mathcal{M}_1(\Gamma(3)) \subset \mathcal{M}_1(\Gamma(6)) \). By performing the lift \(f(\tau) \to f(2\tau) \) where \(f(\tau) \) is modular form of \(\Gamma(3) \), we can obtain some modular forms of \(\Gamma(6) \) from those of \(\Gamma(3) \) \(^3\). To be more specific, the modular forms space of level \(N = 3 \) and weight \(k = 1 \) is \([58,77]\)

\[
\mathcal{M}_1(\Gamma(3)) = \left\{ \frac{\eta^3(3\tau)}{\eta(\tau)}, \frac{\eta^3(\tau/3)}{\eta(\tau)} \right\},
\]

(3.11)

from which we can obtain four weight 1 modular forms of \(\Gamma(6) \):

\[
\eta^3(3\tau)/\eta(\tau), \quad \eta^3(\tau/3)/\eta(\tau), \quad \eta^3(6\tau)/\eta(2\tau), \quad \eta^3(2\tau/3)/\eta(2\tau).
\]

(3.12)

The modular form space \(\mathcal{M}_k(\Gamma(N)) \) must be closed up to the automorphy factor \((c\tau + d)^k\) under the action of full modular group \(\Gamma \). Considering the modular generator \(S \), we can obtain the other two weight 1 modular forms of \(\Gamma(6) \):

\[
\frac{\eta^3(6\tau)}{\eta(2\tau)} \xrightarrow{S} \frac{\eta^3(-6/\tau)}{\eta(-2/\tau)} = -\tau \frac{i}{6\sqrt{3}} \frac{\eta^3(\tau/6)}{\eta(\tau/2)},
\]

\(^3For any positive divisor \(d \) of \(N/M \), the transformation \(f(\tau) \to f(d\tau) \) maps the modular form space \(\mathcal{M}_k(\Gamma(M)) \) into the modular form space \(\mathcal{M}_k(\Gamma(N)) \) \([76]\).
\[
\frac{\eta^3(2\tau/3)}{\eta(2\tau)} \rightarrow \frac{\eta^3(-2/(3\tau))}{\eta(-2/\tau)} = -\tau \frac{3\sqrt{3} i \eta^3(3\tau/2)}{2 \eta(\tau/2)}.
\] (3.13)

As a consequence, the six independent basis vectors of the linear space \(\mathcal{M}_1(\Gamma(6))\) can be chosen to be

\[
e_1(\tau) = \frac{\eta^3(3\tau)}{\eta(\tau)}, \quad e_2(\tau) = \frac{\eta^3(\tau/3)}{\eta(\tau)}, \quad e_3(\tau) = \frac{\eta^3(6\tau)}{\eta(2\tau)},
\]

\[
e_4(\tau) = \frac{\eta^3(\tau/6)}{\eta(\tau/2)}, \quad e_5(\tau) = \frac{\eta^3(2\tau/3)}{\eta(2\tau)}, \quad e_6(\tau) = \frac{\eta^3(3\tau/2)}{\eta(\tau/2)}.
\] (3.14)

From the expressions of \(q\)-expansion, we find that the above basis vectors \(e_{1,2,3,4,5,6}(\tau)\) are linear combinations of \(a_{1,2,3,4,5,6}(\tau)\) given by SageMath,

\[
e_1(\tau) = a_3(\tau), \quad e_2(\tau) = a_1(\tau) - 3a_3(\tau) + 6a_6(\tau),
\]

\[
e_3(\tau) = a_5(\tau), \quad e_4(\tau) = a_1(\tau) - 3a_2(\tau) + 6a_4(\tau) - 3a_5(\tau),
\]

\[
e_5(\tau) = a_1(\tau) - 3a_5(\tau), \quad e_6(\tau) = a_2(\tau) + a_5(\tau).
\] (3.15)

As one can check, under the actions of the generators \(S\) and \(T\), the modular forms \(e_i(\tau)\) transform as follows:

\[
\begin{pmatrix}
e_1(\tau) \\
e_2(\tau) \\
e_3(\tau) \\
e_4(\tau) \\
e_5(\tau) \\
e_6(\tau)
\end{pmatrix} \rightarrow \begin{pmatrix}
e_1(-1) \\
e_2(-1) \\
e_3(-1) \\
e_4(-1) \\
e_5(-1) \\
e_6(-1)
\end{pmatrix} = (-i\tau) \begin{pmatrix}0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3\sqrt{3} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 6\sqrt{3} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{pmatrix}\begin{pmatrix}e_1(\tau) \\
e_2(\tau) \\
e_3(\tau) \\
e_4(\tau) \\
e_5(\tau) \\
e_6(\tau)
\end{pmatrix},
\] (3.16)

\[
\begin{pmatrix}
e_1(\tau) \\
e_2(\tau) \\
e_3(\tau) \\
e_4(\tau) \\
e_5(\tau) \\
e_6(\tau)
\end{pmatrix} \rightarrow \begin{pmatrix}e_1(\tau + 1) \\
e_2(\tau + 1) \\
e_3(\tau + 1) \\
e_4(\tau + 1) \\
e_5(\tau + 1) \\
e_6(\tau + 1)
\end{pmatrix} = \begin{pmatrix}\omega & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3(1 - \omega) \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}\begin{pmatrix}e_1(\tau) \\
e_2(\tau) \\
e_3(\tau) \\
e_4(\tau) \\
e_5(\tau) \\
e_6(\tau)
\end{pmatrix},
\] (3.17)

with \(\omega = e^{2\pi i/3}\). These six linearly independent modular forms \(e_i(\tau)\) can be arranged into two irreducible representations of \(\Gamma_6 \cong S_3 \times T'\): a doublet \(2\uparrow\) and a quartet \(4\downarrow\),

\[
Y_{2\uparrow}^{(1)}(\tau) \equiv \begin{pmatrix}Y_1 \\
Y_2
\end{pmatrix} = \begin{pmatrix}3e_1(\tau) + e_2(\tau) \\
3\sqrt{2}e_1(\tau)
\end{pmatrix},
\]

\[
Y_{4\downarrow}^{(1)}(\tau) \equiv \begin{pmatrix}Y_3 \\
Y_4 \\
Y_5 \\
Y_6
\end{pmatrix} = \begin{pmatrix}3\sqrt{2}e_3(\tau) \\
-3e_3(\tau) - e_5(\tau) \\
\sqrt{6}(e_3(\tau) - e_6(\tau)) \\
-\sqrt{3}e_3(\tau) + \frac{1}{\sqrt{3}}e_4(\tau) - \frac{1}{\sqrt{2}}e_5(\tau) + \sqrt{3}e_6(\tau)
\end{pmatrix}.
\] (3.18)
The \(q \)-expansions of \(Y_i(\tau) \) read as

\[
Y_1(\tau) = 1 + 6q + 6q^3 + 6q^4 + 12q^7 + 6q^9 + 6q^{12} + 12q^{13} + \ldots ,
\]

\[
Y_2(\tau) = 3\sqrt{2}q^{1/3}(1 + q + 2q^2 + 2q^4 + q^5 + 2q^6 + q^8 + 2q^9 + \ldots),
\]

\[
Y_3(\tau) = 3\sqrt{2}q^{2/3}(1 + q^2 + 2q^4 + 2q^6 + q^{10} + 2q^{12} + q^{16} + 2q^{18} + \ldots),
\]

\[
Y_4(\tau) = -(1 + 6q^2 + 6q^6 + 12q^{14} + 6q^{18} + 6q^{24} + 12q^{26} + \ldots),
\]

\[
Y_5(\tau) = -\sqrt{6}q^{1/6}(1 + 2q + 2q^2 + 2q^3 + q^4 + 2q^5 + 2q^6 + 2q^7 + \ldots),
\]

\[
Y_6(\tau) = 2\sqrt{3}q^{1/2}(1 + q + 2q^3 + q^4 + 2q^6 + 2q^9 + 2q^{10} + q^{12} + \ldots). \tag{3.19}
\]

The \(Y_i(\tau) \) generate the ring of the modular forms of level 6, and the modular forms of higher weights can be built from the products of \(Y_i(\tau) \), as shown in appendix B. From Eq. (3.19), we see that all the Fourier coefficients of \(Y_i \) are all real, thus we have the identity \(Y_i(-\tau^*) = Y_i^*(\tau) \). Furthermore, the CG coefficients of the \(\Gamma_6' \) group are real in the working basis, hence all the integral weight modular forms of level 6 satisfy \(Y_r^{(k)}(-\tau^*) = Y_{r'}^{(k)*}(\tau) \).

3.2 Generalized CP consistent with \(\Gamma_6' \) modular symmetry

In order to make modular invariant models more predictive, we shall assume the theory is invariant under both modular symmetry and gCP symmetry. It is well known that the modular symmetry \(SL(2,\mathbb{Z}) \) can consistently combine the gCP symmetry \([66–71]\), and the modulus \(\tau \) transforms under CP as

\[
\tau \xrightarrow{CP} -\tau^*. \tag{3.20}
\]

If the gCP symmetry is imposed, the modular symmetry \(\Gamma \cong SL(2,\mathbb{Z}) \) is extended to \(\Gamma^* \cong GL(2,\mathbb{Z}) \) with

\[
\Gamma^* = \left\{ \tau \xrightarrow{S} -1/\tau, \ \tau \xrightarrow{T} \tau + 1, \ \tau \xrightarrow{CP} -\tau^* \right\} \tag{3.21}
\]

The action of \(\Gamma^* \) on the complex modulus \(\tau \) is given by

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma^* : \begin{cases}
\tau \rightarrow \frac{a\tau + b}{c\tau + d} & \text{for } ad - bc = 1, \\
\tau \rightarrow \frac{a\tau^* + b}{c\tau^* + d} & \text{for } ad - bc = -1.
\end{cases} \tag{3.22}
\]

Under the action of gCP transformation, the matter fields and the modular form multiplets transform as

\[
\psi(x) \xrightarrow{CP} X_r \overline{\psi}(t, -x), \quad Y(\tau) \xrightarrow{CP} Y(-\tau^*) = X_r Y^*(\tau), \tag{3.23}
\]

where \(X_r \) is the gCP transformation matrix in the irreducible representation \(r \). The consistency between the modular symmetry and gCP symmetry requires the following condition has to be fulfilled \([66, 67]\)

\[
X_r \rho_r^*(\gamma) X_r^{-1} = \chi^{-k}(\gamma) \rho_r(u(\gamma)), \quad \gamma \in \Gamma, \tag{3.24}
\]

where \(\chi(\gamma) \) called character is a homomorphism of \(SL(2,\mathbb{Z}) \) to \{+1, -1\} with \(\chi(S) = \chi(T) = 1 \) or \(\chi(S) = \chi(T) = -1 \), and \(u(\gamma) \) is an outer automorphism of the modular group,

\[
\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto u(\gamma) = \chi(\gamma) \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}. \tag{3.25}
\]
The gCP transformation with $\chi(S) = \chi(T) = -1$ will lead to vanishing mixing angles [54, 60], consequently we consider the case with trivial character $\chi(S) = \chi(T) = 1$. Then the consistency condition in Eq. (3.24) for the generators $\gamma = S, T$ takes the following form,

$$X_r \rho^*_r(S) X_r^{-1} = \rho_r(S^{-1}), \quad X_r \rho^*_r(T) X_r^{-1} = \rho_r(T^{-1}).$$

The representation matrices of generators S and T are unitary and symmetric in our working basis, as shown in Table 5. Therefore the gCP transformation matrix X_r is fixed to be unity matrix up to an overall phase, i.e.

$$X_r = 1_r. \quad (3.27)$$

Moreover, the CG coefficients given in appendix A are real, hence gCP invariance requires all coupling constants to be real in the following models.

3.3 Decomposing modular forms of level $N = 6$ into the representations of $\Gamma(2)/\Gamma(6) \cong T'$

The $\Gamma(6)$ is a normal subgroup of $\Gamma(2)$, Eq. (2.8) gives

$$\Gamma(2)/\Gamma(6) = \Gamma'_3 \cong T' = \langle \tilde{a}, \tilde{b} \mid \tilde{a}^4 = (\tilde{a}\tilde{b})^3 = \tilde{b}^3 = 1, \tilde{a}^2\tilde{b} = \tilde{b}\tilde{a}^2 \rangle$$

where $\tilde{a} = TST^4S^3T$ and $\tilde{b} = T^4$ are the two generators of principal congruence subgroup $\Gamma(2)$. Here T' is the double covering of the tetrahedron group A_4. The representation matrices of \tilde{a} and \tilde{b} in different irreducible representations of T' are given in Table 6. From the general properties of modular forms [58], we know that the modular forms of $\Gamma(6)$ can be decomposed into the irreducible multiplets of the finite group $\Gamma(2)/\Gamma(6) \cong T'$. The six weight 1 modular forms $Y_i(\tau)$ of level 6 in Eq. (3.19) can be arranged into the three doublets of T'

$$Y'^{(1)}_{02} (\tau) = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}, \quad Y'^{(1)}_{22} (\tau) = \begin{pmatrix} Y_3 \\ Y_4 \end{pmatrix}, \quad Y'^{(1)}_{20} (\tau) = \begin{pmatrix} Y_5 \\ Y_6 \end{pmatrix},$$

where $Y'^{(1)}_{02}$ and $Y'^{(1)}_{22}$ denote the two weight 1 modular forms transforming in the representation 2_0^1 of T'. It is worth mentioning that the multiplet $Y'^{(1)}_{22} (\tau)$ is the same as $Y'^{(1)}_{02} (\tau)$ in Eq. (3.18). However the quartet $Y'^{(1)}_{42} (\tau)$ in Eq. (3.18) breaks down to two doublets $Y'^{(1)}_{22} (\tau)$ and $Y'^{(1)}_{20} (\tau)$. Furthermore $Y'^{(1)}_{22} (\tau)$ corresponds to the unique weight 1 modular form $Y'^{(1)}_{20} (\tau)$ of level 3 given in [58]. The different expressions of $Y'^{(1)}_{02} (\tau)$ and $Y'^{(1)}_{22} (\tau)$ arise from the different representation bases used in the present work and [58]. As shown in section 3.2, all couplings would be real if we impose gCP as a symmetry on the theory.

3.4 Decomposing modular forms of level $N = 6$ into representations of $\Gamma(3)/\Gamma(6) \cong S_3$

Similar to the previous case, $\Gamma(6)$ is a normal subgroup of $\Gamma(3)$, and we have

$$\Gamma(3)/\Gamma(6) \cong S_3 = \langle \tilde{c}, \tilde{d} \mid \tilde{c}^2 = (\tilde{c}\tilde{d})^3 = \tilde{d}^2 = 1 \rangle, \quad (3.30)$$

where $\tilde{c} = S^3T^3S$, $\tilde{d} = T^3$ are the generators of $\Gamma(3)$. We summarize the irreducible representation matrices of \tilde{c} and \tilde{d} in Table 6. Analogously the six weight 1 modular forms $Y_i(\tau)$ can be arranged into two singlets and two doublets of S_3 as follows

$$Y'^{(1)}_{13i} (\tau) = Y_1, \quad Y'^{(1)}_{18ii} (\tau) = Y_2, \quad Y'^{(1)}_{20i} (\tau) = \begin{pmatrix} Y_3 \\ Y_5 \end{pmatrix}, \quad Y'^{(1)}_{20ii} (\tau) = \begin{pmatrix} Y_4 \\ Y_6 \end{pmatrix}. \quad (3.31)$$
Fields	Models	Type I	Type II	Type III	Type IV	Type V
L	triplet	triplet	triplet	singlet+doublet	singlet+doublet	
E^c	three singlets	three singlets	singlet+doublet	singlet+doublet	triplet	
N^c	triplet	singlet+doublet	triplet	—	doublet	

Table 2: The representation assignments of lepton matter fields L, E^c and N^c under the finite modular group Γ'_6 in the five types of models.

Similarly the decomposition of higher weight modular forms under S_3 can also be performed, we will not enumerate them here. It is interesting to note that the modular weight can be generic nonnegative integer while only even weight modular forms are allowed in the original modular invariant theory with $\Gamma_2 \cong S_3$ modular symmetry [10,58]

4 Model building based on Γ'_6 modular symmetry

In this section we shall construct some typical lepton models based on the Γ'_6 modular symmetry, and no flavon other than complex modulus τ will be introduced. The modular symmetry is broken by the VEV of τ. If gCP symmetry is imposed on the theory, the VEV $\langle \tau \rangle$ also results in CP violation. Without loss of generality, we can limit the value of $\langle \tau \rangle$ in the fundamental domain D_Γ of $SL(2,\mathbb{Z})$:

$$D_\Gamma = \{ \tau \mid |\Re \tau| \leq 1/2 , \Im \tau > 0 , |\tau| \geq 1 \} .$$

(4.1)

Other values of $\langle \tau \rangle$ are related by modular symmetry to those in D_Γ. In the present work, the construction of modular models is guided by the principle of minimalism and simplicity. The neutrinos are assumed to be Majorana particles in these models, and the two Higgs doublets fields $H_{u,d}$ are assumed to be trivial singlet 1^0 under Γ'_6 with vanishing modular weights. The modular group Γ'_6 is isomorphic to $S_3 \times T'$, the direct products of the irreducible representations of S_3 and T' give all irreducible representations of Γ'_6. Therefore all models based on S_3 and T' modular symmetry can be reproduced from Γ'_6. Besides the singlet, doublet and triplet representations, Γ'_6 has the four-dimensional representations $4_0, 4_1, 4_2$ and six-dimensional representations 6 which don’t appear in both S_3 and T' modular symmetries, and there are level 6 modular forms in the above high dimensional representations. Hence the modular group Γ'_6 opens up new model building possibilities not available in these two finite modular groups. The lepton fields are assigned to be three singlets, singlet plus doublet or a triplet of Γ'_6 multiplets. We consider five possible representation assignments in the present work, as summarized in table 2. More free parameters are needed to explain the experimental data for other assignments, consequently we don’t show them in this work. In the following, we present the five types of models with Γ'_6 modular symmetry together with some typical examples.

4.1 Type I models

In the first type of models, the three generations of left-handed (LH) lepton doublets L are assigned to a Γ'_6 triplet 3^r with the modular weight k_L, and the three right-handed (RH) charged leptons $E^c_{1,2,3}$ are Γ'_6 singlets transforming as 1^e_2 with weights $k_{E^c_{1,2,3}}$. In these modes, the neutrino masses are described by the type I seesaw mechanism with $3RHN$.

4.1.1 Charged lepton sector

In this kind of models, the modular form which couples to E_i^c and L should be in the representation 3^t of Γ_6^t with $t \equiv -(r + s) \pmod{2}$. Thus the most general superpotential for the charged lepton masses can be written as:

$$W_c = \alpha(E_1^cL f_1(Y))_{15} H_d + \beta(E_2^cL f_2(Y))_{15} H_d + \gamma(E_3^cL f_3(Y))_{15} H_d,$$ \hspace{1cm} (4.2)

where $f_i(Y) \ (i = 1, 2, 3)$ stand for the level 6 modular forms which transform as 3^t given in table 7. The three terms in Eq. (4.2) have similar form, and they contribute to three rows of the charged lepton mass matrix respectively. Guided by the principle of minimality and simplicity, we shall consider the lower weight modular forms in the following. As an example, let us discuss all possible forms of the first row of the charged lepton mass matrix. Without loss of generality, we assume $L \sim 3^0$ and $E_i^c \sim 1^t_i$. From appendix B we know the modular form function $f_1(Y)$ is $Y_{3^0}^{(2)}$ for $k_L + k_{E_i} = 2$ and $Y_{3^0}^{(4)}$ for $k_L + k_{E_i} = 4$. Then we can read out the first row of the charged lepton mass matrix as follows

$$R'_{w,i} = \alpha(Y_{3^0,1}^{(w)}), Y_{3^0,2}^{(w)}, Y_{3^0,3}^{(w)})P_3^i, \quad w = 2, 4, \quad i = 0, 1, 2,$$ \hspace{1cm} (4.3)

where $w = 2$ for $k_L + k_{E_i} = 2$ and $w = 4$ for $k_L + k_{E_i} = 4$, and the permutation matrix P_3 is shown in Eq. (A.7). Here we use $Y_{3^0,1}^{(w)}$, $Y_{3^0,2}^{(w)}$ and $Y_{3^0,3}^{(w)}$ to represent the three entries of modular multiple $Y_{3^0}^{(w)}$, and this convention will be used throughout the paper. For the assignment $E_i^c \sim 1^t_i$, the possible values of the modular weights $k_L + k_{E_i}$ are 4 and 6, and accordingly the modular function $f_1(Y)$ is $Y_{3^1}^{(4)}$ and $Y_{3^1}^{(6)}$, respectively. For these two cases, the first row of the charged lepton mass matrix reads as

$$R'_{w,i} = \alpha(Y_{3^1,1}^{(w)}), Y_{3^1,2}^{(w)}, Y_{3^1,3}^{(w)})P_3^i, \quad w = 4, 6, \quad i = 0, 1, 2.$$ \hspace{1cm} (4.4)

From appendix B we know

$$Y_{3^1}^{(4)} = \left(\begin{array}{c} Y_{3^0}^{(2)} \\ Y_{3^0,1} \end{array}\right), \quad Y_{3^1}^{(6)} = \left(\begin{array}{c} Y_{3^0}^{(2)} \\ Y_{3^0,3} \end{array}\right).$$ \hspace{1cm} (4.5)

Therefore one can easily check the following identity is satisfied

$$R'_{4,i} = Y_{1^2}^{(2)} R_{2,i} P_3^2, \quad R'_{6,i} = 2 Y_{1^2}^{(2)} R_{4,i} P_3^2.$$ \hspace{1cm} (4.6)

The factor $Y_{1^2}^{(2)}$ can be absorbed into the coupling α, thus $R_{w,i}$ and $R'_{w,i}$ give the same set of possible forms of the first row of the charged lepton mass matrix. Hence it is sufficient to consider the assignments of $L \sim 3^0$ and $E_i^c \sim 1^t_i$ with $k_L + k_{E_i} = 2$ and $k_L + k_{E_i} = 4$, and the first row of the charged lepton mass matrix can take the 6 forms shown in Eq. (4.3). Analogously the other two rows of the charged lepton mass matrix can also take these six forms. Notice that any two rows of a charged lepton mass matrix should not be proportional to each other, otherwise at least one charged lepton would be massless. In the end, we find there are total 20 possible charged lepton mass matrices (up to row permutations). They can be written as

$$m_{e1}(w_1, i; w_2, j; w_3, k) = \left(\begin{array}{c} \alpha R_{w_1,i} \\ \beta R_{w_2,j} \\ \gamma R_{w_3,k} \end{array}\right), \quad \text{with} \quad R_{w_1,i} \neq R_{w_2,j} \neq R_{w_3,k}.$$ \hspace{1cm} (4.7)
where the phase of h_3. Then we can read off the mass matrix for the Majorana neutrinos N. We proceed to discuss the possible form of the Dirac neutrino mass matrix. If the left-handed leptons L and right-handed neutrinos N^c transform as $L \sim 3^0$, $N^c \sim 3^0$ or $L \sim 3^1$, $N^c \sim 3^1$, modular invariance requires Y_D should transform as 1^0_0, 1^1_1, 1^2_2 or 3^0_0 under Γ_6. The lowest non-vanishing weight is $k_L + k_{N^c} = 2$, and the Yukawa coupling is given by

$$W_{\nu_D} = h_1 \left((N^c L)_{30} Y_{30}^{(2)} \right)_{1^0_0} H_u + h_2 \left((N^c L)_{32} Y_{32}^{(2)} \right)_{1^0_0} H_u.$$

Then the Dirac neutrino mass matrix takes the following form

$$m_D = \begin{pmatrix} 2h_1 Y_{30,1}^{(2)} & Y_{30,3}^{(2)}(h_2 - h_1) & -(h_1 + h_2)Y_{32,2}^{(2)} \\ -(h_1 + h_2)Y_{30,3}^{(2)} & 2h_1 Y_{32,2}^{(2)} & (h_2 - h_1)Y_{30,1}^{(2)} \\ (h_2 - h_1)Y_{30,2}^{(2)} & -(h_1 + h_2)Y_{32,1}^{(2)} & 2h_1 Y_{32,3}^{(2)} \end{pmatrix} v_u. \tag{4.12}$$

where the phase of h_1 can be absorbed by field redefinition, while the relative phase of h_1 and h_2 can not be eliminated. For the second possible assignment $L \sim 3^0$, $N^c \sim 3^1$ or

Models	m_e	$(\rho_{E^c},\rho_{E^c},\rho_{E^c})$	$(k_{c_1},k_{c_2},k_{c_3})$	Models	m_e	$(\rho_{E^c},\rho_{E^c},\rho_{E^c})$	$(k_{c_1},k_{c_2},k_{c_3})$
C_1	$m_e(2,0;2,1;2,2)$	$(1^0_0,1^0_1,1^0_2)$	$(2,2,2)$	C_2	$m_e(2,0;2,1;4,0)$	$(1^0_1,1^0_1,1^0_2)$	$(2,2,4)$
C_3	$m_e(2,0;2,1;4,1)$	$(1^0_1,1^0_1,1^0_2)$	$(2,2,4)$	C_4	$m_e(2,0;2,1;4,2)$	$(1^0_1,1^1_1,1^1_2)$	$(2,2,4)$
C_5	$m_e(2,0;2,2;4,0)$	$(1^0_0,1^0_1,1^0_2)$	$(2,2,4)$	C_6	$m_e(2,0;2,2;4,1)$	$(1^0_2,1^0_1,1^1_2)$	$(2,2,4)$
C_7	$m_e(2,0;2,2;4,2)$	$(1^0_1,1^0_1,1^0_2)$	$(2,2,4)$	C_8	$m_e(2,0;4,0;4,1)$	$(1^0_1,1^0_1,1^1_2)$	$(2,2,4)$
C_9	$m_e(2,0;4,0;4,2)$	$(1^0_1,1^0_1,1^0_2)$	$(2,4,4)$	C_{10}	$m_e(2,0;4,1;4,2)$	$(1^0_2,1^0_1,1^1_2)$	$(2,2,4)$
C_{11}	$m_e(2,1;2,2;4,0)$	$(1^0_1,1^0_1,1^0_2)$	$(2,2,4)$	C_{12}	$m_e(2,1;2,2;4,1)$	$(1^0_1,1^0_1,1^1_2)$	$(2,2,4)$
C_{13}	$m_e(2,1;2,2;4,2)$	$(1^0_1,1^0_1,1^0_2)$	$(2,2,4)$	C_{14}	$m_e(2,1;4,0;4,1)$	$(1^1_1,1^0_1,1^1_2)$	$(2,2,4)$
C_{15}	$m_e(2,1;4,0;4,2)$	$(1^1_1,1^0_1,1^0_2)$	$(2,4,1)$	C_{16}	$m_e(2,1;4,1;4,2)$	$(1^1_1,1^0_1,1^1_2)$	$(2,4,4)$
C_{17}	$m_e(2,2;4,0;4,1)$	$(1^1_2,1^0_0,1^0_1)$	$(2,4,4)$	C_{18}	$m_e(2,2;4,0;4,2)$	$(1^0_2,1^0_1,1^1_2)$	$(2,4,4)$
C_{19}	$m_e(2,2;4,1;4,2)$	$(1^1_2,1^0_0,1^0_1)$	$(2,4,4)$	C_{20}	$m_e(4,0;4,1;4,2)$	$(1^1_0,1^1_0,1^0_2)$	$(4,4,4)$

Table 3: The 20 possible charged lepton mass matrices and the corresponding representations and modular weights of charged leptons for the type I models, where $k_{c_i} = k_L + k_{E^c_i}$ denote the sum of the modular weight of the charged lepton fields.

4.1.2 Neutrino sector

In this kind of models, the neutrino masses are generated through the type I seesaw mechanism. The three right-handed neutrinos are embedded into a triplet 3^r of Γ_6. Hence the most general superpotential for the neutrino masses can be generally written as

$$W_N = h(N^c LY_D H_u)_{1^0_0} + \frac{g}{2} \Lambda(N^c N^c Y_N)_{1^0_0}, \tag{4.8}$$

where Y_D and Y_N denote the modular form multiplets of Γ_6. In the case of $k_{N^c} = 0$ and $k_{N^c} = 1$, the corresponding modular multiplets Y_N are constants and $Y_3^{(2)}$, respectively. Then we can read off the mass matrix for the Majorana neutrinos N^c,

$$m_N = \frac{g \Lambda}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \text{for } N^c \sim 3^0,3^1 \quad \text{and } k_{N^c} = 0, \tag{4.9}$$

$$m_N' = \frac{g \Lambda}{2} \begin{pmatrix} 2Y_{30,1}^{(2)} & -Y_{30,3}^{(2)} & -Y_{30,2}^{(2)} \\ -Y_{32,3}^{(2)} & 2Y_{32,2}^{(2)} & -Y_{32,1}^{(2)} \\ -Y_{32,2}^{(2)} & Y_{32,1}^{(2)} & 2Y_{32,3}^{(2)} \end{pmatrix}, \quad \text{for } N^c \sim 3^0,3^1 \quad \text{and } k_{N^c} = 1. \tag{4.10}$$

We proceed to discuss the possible form of the Dirac neutrino mass matrix. If the left-handed lepton L and right-handed neutrinos N^c transform as $L \sim 3^0$, $N^c \sim 3^0$ or $L \sim 3^1$, $N^c \sim 3^1$, modular invariance requires Y_D should transform as 1^0_0, 1^1_1, 1^2_2 or 3^0_0 under Γ_6. The lowest non-vanishing weight is $k_L + k_{N^c} = 2$, and the Yukawa coupling is given by

$$W_{\nu_D} = h_1 \left((N^c L)_{30} Y_{30}^{(2)} \right)_{1^0_0} H_u + h_2 \left((N^c L)_{32} Y_{32}^{(2)} \right)_{1^0_0} H_u.$$

Then the Dirac neutrino mass matrix takes the following form

$$m_D = \begin{pmatrix} 2h_1 Y_{30,1}^{(2)} & Y_{30,3}^{(2)}(h_2 - h_1) & -(h_1 + h_2)Y_{32,2}^{(2)} \\ -(h_1 + h_2)Y_{30,3}^{(2)} & 2h_1 Y_{32,2}^{(2)} & (h_2 - h_1)Y_{30,1}^{(2)} \\ (h_2 - h_1)Y_{30,2}^{(2)} & -(h_1 + h_2)Y_{32,1}^{(2)} & 2h_1 Y_{32,3}^{(2)} \end{pmatrix} v_u. \tag{4.12}$$

where the phase of h_1 can be absorbed by field redefinition, while the relative phase of h_1 and h_2 can not be eliminated. For the second possible assignment $L \sim 3^0$, $N^c \sim 3^1$ or
\(L \sim 3^1, N^c \sim 3^0 \), the resulting Dirac neutrino mass matrix can be obtained from Eq. (4.12) by permutation of columns. After taking into account the charged lepton sector, no new textures of lepton mass matrices are obtained.

Notice that the group \(\Gamma'_6 \) is isomorphic to \(S_3 \times T' \), where \(T' \) is the double cover of \(A_4 \), and the representations \(1^0_k \) \((k = 0, 1, 2)\) and \(3^0 \) are the direct products of the \(A_4 \) representations with the trivial unit representation of \(S_3 \). As a result, the \(\Gamma'_6 \) modular symmetry can not be distinguished from \(A_4 \) in the representations \(1^0_k \) and \(3^0 \). As we have shown, in this type of models it is sufficient to consider the assignments of \(L \sim 3^0, N^c \sim 3^0 \) and \(E_{1,2,3}^c \sim 1^0_k \).

Hence the type I models coincide with the \(A_4 \) modular models which have been systematically analyzed in [40]. We have checked that the numerical results for mixing parameters are the same as those of [40].

4.2 Type II models

In this type of models, the charged lepton sector is the same as that of type I models discussed in section 4.1.1. The light neutrino masses arise from the type I seesaw mechanism with 3RHN, we assume that one right-handed neutrino \(N^c \) transforms as singlet of \(\Gamma'_6 \) and the other two \(N^c_d = (N^c_2, N^c_3) \) form a doublet of \(\Gamma'_6 \). As an example, we consider the transformation assignment \(N^c_1 \sim 1^0_0, N^c_d \sim 2^0 \) with the modular weights \(k_{N^c_1} = k_{N^c_d} = 0 \), the modular weight of the left-handed lepton doublets \(L \) is taken to be \(k_L = 2 \). Then the most general superpotential for neutrino masses is

\[
W_\nu = h_1 N^c_1 (L Y_{3^0})^*_1 H_u + h_2 ((N^c_d L) Y_{6^0})^*_1 H_u + \frac{g_1 \Lambda}{2} N^c_1 N^c_1 + \frac{g_2 \Lambda}{2} (N^c_d N^c_d)^*_1 ,
\]

(4.13)

Then one can read out the Dirac and Majorana mass matrices as follows

\[
m_N = \frac{\Lambda}{2} \begin{pmatrix} g_1 & 0 & 0 \\ 0 & g_2 & 0 \\ 0 & 0 & g_2 \end{pmatrix}, \quad m_D = \begin{pmatrix} h_1 Y_{3^0}^{(2)} & h_1 Y_{3^0}^{(2)} & h_1 Y_{3^0}^{(2)} \\ h_2 Y_{6^0}^{(2)} & h_2 Y_{6^0}^{(2)} & h_2 Y_{6^0}^{(2)} \\ h_2 Y_{6^0}^{(2)} & h_2 Y_{6^0}^{(2)} & h_2 Y_{6^0}^{(2)} \end{pmatrix} v_u.
\]

(4.14)

Then the light neutrino mass matrix \(m_\nu \) only depend on the combinations \(h_2^2/g_1 \) and \(h_2^2/g_2 \) besides the complex modulus \(\tau \). The phase of \(h_2^2/g_1 \) is unphysical and consequently \(h_2^2/g_1 \) can be taken real, while the phase of \(h_2^2/g_2 \) can not be removed by a field redefinition. If \(g_{CP} \) invariance is imposed, both \(h_2^2/g_1 \) and \(h_2^2/g_2 \) are required to be real, i.e. their phases are 0 or \(\pi \).

4.2.1 Numerical results

The charged lepton mass matrices can take the twenty forms \(C_i \) \((i = 1, \cdots, 20)\) given in table 3, and they all have three real coupling constants \(\alpha, \beta \) and \(\gamma \). Thus all the six lepton masses, three lepton mixing angles and three \(CP \) violation phases depend on six dimensionless parameters

\[
\tau, \quad \arg \left(g_1 h_2^2/(g_2 h_1^2) \right), \quad \beta/\alpha, \quad \gamma/\alpha, \quad |g_1 h_2^2/(g_2 h_1^2)|,
\]

(4.15)

and two overall scales \(\alpha_{ud} \) and \(h_2^2 v_{ud}^2/(g_1 \Lambda) \). If \(g_{CP} \) symmetry is considered, the parameter \(\arg \left(g_1 h_2^2/(g_2 h_1^2) \right) \) can only take two values 0 and \(\pi \). We shall perform a numerical analysis for each possible model without \(g_{CP} \) and with \(g_{CP} \). In order to quantitatively assess whether a model can accommodate the experimental data on lepton masses and mixing parameters, we perform a conventional \(\chi^2 \) analysis, and the \(\chi^2 \) function is defined as
The predictions for lepton mixing parameters, neutrino masses and models of type II models, where both scenarios with gCP and without gCP symmetry are considered.

Table 4: The best fit results for lepton masses and mixing parameters in the five phenomenologically viable models of type II models, where both scenarios with gCP and without gCP symmetry are considered.

Charged Lepton Sector without gCP	Charged Lepton Sector with gCP				
$\Re(\tau)$	$\Re(\tau)$				
$\Im(\tau)$	$\Im(\tau)$				
β/α	β/α				
γ/α	γ/α				
$	g_1 h_2^2/(g_2 h_1^2)	$	$	g_1 h_2^2/(g_2 h_1^2)	$
$\arg(g_1 h_2^2/(g_2 h_1^2))/\pi$	$\arg(g_1 h_2^2/(g_2 h_1^2))/\pi$				
$\alpha_{\nu_d}/\text{MeV}$	$\alpha_{\nu_d}/\text{MeV}$				
$(h_3^2 v_u^2/(g_1 \Lambda))/\text{eV}$	$(h_3^2 v_u^2/(g_1 \Lambda))/\text{eV}$				
m_e/m_μ	m_e/m_μ				
m_μ/m_τ	m_μ/m_τ				
$\Delta m^2_{\text{atm}}/\Delta m^2_{\text{sol}}$	$\Delta m^2_{\text{atm}}/\Delta m^2_{\text{sol}}$				
$\sin^2 \theta_{13}$	$\sin^2 \theta_{13}$				
$\sin^2 \theta_{12}$	$\sin^2 \theta_{12}$				
$\sin^2 \theta_{23}$	$\sin^2 \theta_{23}$				
δ_{CP}/π	δ_{CP}/π				
α_{21}/π	α_{21}/π				
α_{31}/π	α_{31}/π				
m_1/meV	m_1/meV				
m_2/meV	m_2/meV				
m_3/meV	m_3/meV				
$\sum m_i/\text{meV}$	$\sum m_i/\text{meV}$				
$m_{\beta\beta}/\text{meV}$	$m_{\beta\beta}/\text{meV}$				
χ^2_{min}	χ^2_{min}				

\[
\chi^2 = \sum_{i=1}^{7} \left(\frac{P_i - \mu_i}{\sigma_i} \right)^2 ,
\]

(4.16)

where σ_i, μ_i and P_i refer to the 1σ deviations, the global best fit values and the theoretical predictions for the seven dimensionless observable quantities as functions of free parameters:

$\frac{m_e}{m_\mu}$, $\frac{m_\mu}{m_\tau}$, $\sin^2 \theta_{12}$, $\sin^2 \theta_{13}$, $\sin^2 \theta_{23}$, δ_{CP}, $\frac{\Delta m^2_{12}}{\Delta m^2_{31}}$.

(4.17)

The overall scales α_{ν_d} and $h_3^2 v_u^2/(g_1 \Lambda)$ are fixed by the electron mass and the neutrino mass squared splitting $\Delta m^2_{21} = m_2^2 - m_1^2$ respectively. For normal ordering neutrino masses, the best fit values and the 1σ errors of the observables in Eq. (4.17) are [1, 2]

\[
\begin{align*}
\frac{m_e}{m_\tau} & = 0.0048^{+0.0002}_{-0.0002}, & \frac{m_\mu}{m_\tau} & = 0.0565^{+0.0045}_{-0.0045}, & \sin^2 \theta_{12} |_{bf+1 \sigma} & = 0.304^{+0.012}_{-0.012}, \\
\sin^2 \theta_{13} |_{bf+1 \sigma} & = 0.02219^{+0.00062}_{-0.00063}, & \sin^2 \theta_{23} |_{bf+1 \sigma} & = 0.573^{+0.016}_{-0.020}, \\
\frac{\delta_{CP}}{\pi} |_{bf+1 \sigma} & = 1.094^{+0.15}_{-0.13}, & \frac{\Delta m^2_{21}}{\Delta m^2_{31}} |_{bf+1 \sigma} & = 0.0294^{+0.00089}_{-0.00089}.
\end{align*}
\]

(4.18)

We find that five of the twenty models are phenomenologically viable for both models without gCP and with gCP. The predictions for lepton mixing parameters, neutrino masses
Figure 1: The experimentally allowed values of the complex modulus τ and the correlations between the neutrino mixing parameters in the example model of type II. The green and red regions denote points compatible with experimental data for models without and with gCP respectively. The light blue bounds represent the 1σ and 3σ ranges respectively [1]. The orange (cyan) dashed lines in the last panel represent the most general allowed regions for NO (IO) neutrino masses respectively, where the neutrino oscillation parameter are varied within their 3σ ranges. The present upper limit $m_{\beta\beta} < (61 \pm 165)$ meV from KamLAND-Zen [79] is shown by horizontal grey band. The vertical grey exclusion band denotes the current bound from the cosmological data of $\sum m_i < 0.120 eV$ at 95% confidence level given by the Planck collaboration [81].

and the best fit values of the input parameters for the five phenomenologically viable models are summarized in table 4. Here the parameter $m_{\beta\beta}$ refers to the effective Majorana mass in neutrinoless double beta decay and $\sum m_i$ is the sum of the light neutrino masses. At present, the most stringent bounds are $m_{\beta\beta} < (61 - 165)$ meV from the KamLAND-Zen experiment [79] and $\sum m_i < 0.12 eV$ from the Planck Collaboration [80]. We see that the minimal values of the χ^2 are quite small, the experimentally measured lepton masses and mixing angles can be accommodated very well, and the values of $m_{\beta\beta}$ and $\sum m_i$ are much below the present experimental bounds [79, 80].

In order to show the viability and predictions of this type of models, we shall give detailed numerical results of the model in which the charged lepton sector is C_6. We comprehensively
However, all couplings are real and Dirac CP phase δ in green and red respectively. From figure 1, we find that the atmospheric mixing θ_{23} and Dirac CP phase δ_{CP} can take all possible values in their 3σ regions if gCP is not considered. However, all couplings are real and $\Re\tau$ is the unique source of CP violation if gCP invariance is required in the model. As a consequence, the three CP violation phases are constrained to lie in narrow ranges in figure 1.

4.3 Type III models

In this type of models, the left-handed lepton fields L are assigned to a triplet of Γ'_6, and the right-handed charged leptons are the direct sum of singlet and doublet. Without loss of generality, we assume that E^c_i with modular weight $k_{E^c_i}$ transforms as singlet 1^c_i under Γ'_6, and the right-handed charged leptons $E^c_d = (E^c_2, E^c_3)$ with modular weight $k_{E^c_d}$ transform as a doublet of Γ'_6. The most general superpotential for the charged lepton masses is of the following form:

$$W_e = \alpha(E^c_i L f_1(Y))_{1^c_i} H_d + \beta(E^c_d L f_d(Y))_{1^c_d} H_d,$$

(4.19)

where $f_1(Y)$ and $f_d(Y)$ are functions of modular forms of level 6 given in appendix B. The charged lepton mass matrix is denoted as

$$m_e = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix},$$

(4.20)

where v_i ($i = 1, 2, 3$) are three rows of charged lepton mass matrix m_e. From the analysis in section 4.1.1, we find that the first row v_1 can take the six possible forms in Eq. (4.3).

Now let us consider the possible forms of the second row v_2 and the third row v_3. For the representation assignment $L \sim 3^r$ and $E^c_i \sim 2^i$, modular invariance requires the presence of modular form in the representation 6. From table 7, we know that the lowest weight modular multiplet transforming as 6 under Γ'_6 is of weight 2, and accordingly the charged lepton mass term is

$$\beta \left((E^c_d L)^6 Y_i^{(2)}\right)_{1^c_d} H_d,$$

(4.21)

which leads to the second and third rows of the charged lepton mass matrix to be

$$\begin{pmatrix} v_2 \\ v_3 \end{pmatrix} = \beta P_2 \begin{pmatrix} Y_{6,1}^{(2)} \\ Y_{6,2}^{(2)} \end{pmatrix} \begin{pmatrix} P_3^t \end{pmatrix} v_d, \quad r = 0, 1, \quad i = 0, 1, 2,$$

(4.22)

where matrices P_2 and P_3 are shown in Eq. (A.7). As the general form of the three rows of the charged lepton mass matrix have been obtained, then one can obtain the charged lepton mass matrix m_e for all possible models. As the hermitian combination $m^\dagger m_e$ will take the same form for $r = 0$ and $r = 1$. Then the effect of P_2^t in above equation can be absorbed by right-handed charged leptons.

If the lepton fields L and E^c_d transform as $L \sim 3^s$ and $E^c_d \sim 2^s$ respectively, from the multiplication rules $2^r_i \otimes 3^s = 2^t_i \oplus 2^l_i \oplus 2^2_i$ and $2^r_i \otimes 2^s_j = 1^t_i \oplus 3^t$, we find that the doublet modular forms $Y^{(k_L+k_{E^c_d})}_{2^i}$ are necessary to make the second term in Eq. (4.19) invariant under the action of Γ'_6. From appendix B, we find that the lowest weight $k_L + k_{E^c_d}$ with
non-vanishing \(Y_{2j}^{(k_L+k_{E_d})} \) is \(Y_{22}^{(1)} \). Without loss of generality, we take \(E_d^c \sim 2^0_1 \) and \(L \sim 3^0 \) with \(k_L + k_{E_d} = 1 \). The second term in Eq. (4.19) can be written as

\[
\beta \left((E_d^c L)_{21} Y_{22}^{(1)} \right)_{10} H_d.
\] (4.23)

Then one can straightforwardly obtain

\[
\begin{pmatrix} v_2 \\ v_3 \end{pmatrix} = \beta \left(\begin{array}{cc} 0 & Y_{12} \\ \sqrt{2} Y_{21} & \sqrt{2} Y_{11} \end{array} \right)_{10} P_{3i} v_d.
\] (4.24)

Guided by the principle of minimality and simplicity, the modular form \(Y_{2j}^{(k_L+k_{E_d})} \) can also take to be \(Y_{21}^{(3)} \). Then we can take \(E_d^c \sim 2^1_1 \) and \(L \sim 3^0 \) with \(k_L + k_{E_d} = 3 \), and the charged lepton Yukawa coupling reads as

\[
\beta \left((E_d^c L)_{21} Y_{21}^{(3)} \right)_{10} H_d,
\] (4.25)

which gives rise to

\[
\begin{pmatrix} v_2 \\ v_3 \end{pmatrix} = \beta \left(\begin{array}{cc} \sqrt{2} Y_{21}^{(3)} & 0 \\ 0 & -Y_{21}^{(3)} \end{array} \right)_{10} P_{3i} v_d.
\] (4.26)

We give an example model in the following. Both the left-handed lepton \(L \) and the right-handed neutrinos \(N^c \) transform as \(3^0 \) under \(\Gamma' \), and the right-handed charged leptons \(E_i^c \) and \(E_d^c \) transform as \(1^0_0 \) and \(2^2_2 \), respectively. The modular weights take to be \(k_L = k_{E_i} = k_{E_d} = k_{N^c} = 1 \). Then the charged lepton mass matrix is given by

\[
m_e = \begin{pmatrix} \alpha Y_{30,1}^{(2)} & \alpha Y_{30,2}^{(2)} & \alpha Y_{30,3}^{(2)} \\ \beta Y_{6,2}^{(2)} & \beta Y_{6,1}^{(2)} & \beta Y_{6,3}^{(2)} \\ \beta Y_{6,5}^{(2)} & \beta Y_{6,4}^{(2)} & \beta Y_{6,6}^{(2)} \end{pmatrix}
\] (4.27)

The neutrino masses originate from the type I seesaw mechanism, see section 4.1.2 for details. The Majorana mass matrix of right-handed neutrinos and the Dirac neutrino mass matrix are given by Eq. (4.10) and Eq. (4.12) respectively. For this model, we find the minimum of \(\chi^2 \) is \(\chi^2_{\text{min}} = 20.975 \), and the best fit values of the free parameters are

\[
\Re(\tau) = 0.498, \quad \Im(\tau) = 0.867, \quad \beta/\alpha = 0.0713, \quad |h_2/h_1| = 1.085,
\]

\[
\arg(h_2/h_1) = 1.628 \pi, \quad h_2^2 v_u^2/(g \Lambda) = 110.499 \text{ meV}.
\] (4.28)

At the best fit point, the neutrino masses and mixing parameters are determined to be

\[
\sin^2 \theta_{13} = 0.02219, \quad \sin^2 \theta_{12} = 0.304, \quad \sin^2 \theta_{23} = 0.499, \quad \delta_{CP} = 1.499 \pi, \quad \alpha_{21} = 1.9990 \pi, \quad \alpha_{31} = 0.9995 \pi, \quad m_1 = 444.081 \text{ meV}, \quad m_2 = 444.164 \text{ meV},
\]

\[
m_3 = 446.164 \text{ meV}, \quad m_{\beta \beta} = 444.163 \text{ meV}.
\] (4.29)

Although the predictions for neutrino mixing angels are compatible with experimental data, the light neutrino masses are quasi-degenerate and the effective Majorana mass \(m_{\beta \beta} \) is larger than the latest upper bound. We have considered other type II models, and we find the neutrino mass spectrum tends to be degenerate and they are usually disfavored by the data of neutrinoless double beta decay.
4.4 Type IV models

In this type of models, both left-handed leptons L and right-handed charged leptons E^c are assumed to transform as singlet plus doublet under Γ'_6. Since the Γ'_6 modular group has six one-dimensional representations 1^r_k and nine two-dimensional representation 2^r_k with $r = 0, 1$ and $k = 0, 1, 2$, there are a lot of possible representation assignment for the lepton fields, and we find many of them can explain the experimental data. We will not shall all these models one by one. In order to see how well this type of models agree with the experimental data on mixing parameters and lepton masses, we will present an example model. We assume that neutrinos masses are described by the Weinberg operator, the transformation properties and modular weights of the lepton fields are given by

$$L_1 \sim 1^0_2, \quad L_d = (L_2, L_3)^T \sim 2^1_1, \quad E^c_1 \sim 1^0_1, \quad E^c_d = (E^c_2, E^c_3)^T \sim 2^2_2,$$

$$k_{L_1} = 3, \quad k_{L_d} = 2, \quad k_{E^c_1} = -3, \quad k_{E^c_3} = 3. \quad (4.30)$$

Then the superpotential for the lepton mass is determined to be

$$W = \alpha E^c_1 L_1 H_d + \beta L_1 \left(Y^{(6)}_{22} E^d_d \right)_{11}^0 H_d + \gamma \left(Y^{(4)}_{22} L_d E^c_d \right)_{10}^0 H_d + \frac{g_1}{2\Lambda} L_1 \left(Y^{(5)}_{20} L_d \right)_{11}^0 H_u H_u$$

$$+ \frac{g_2}{2\Lambda} \left(Y^{(4)}_{30} L_d L_d \right)_{10}^0 H_u H_u + \frac{g_3}{2\Lambda} Y^{(4)}_{20} \left(L_d L_d \right)_{12}^0 H_u H_u. \quad (4.31)$$

Note that the term proportional to g_3 gives null contributions because the contraction $2^1_1 \otimes 2^1_1 \rightarrow 1^0_2$ is antisymmetric. In comparison with previous types of models, the modular form $Y^{(5)}_{40}$ in the four-dimensional representation of Γ'_6 is involved in this model. We can straightforwardly read off the lepton mass matrices as follow,

$$m_e = \begin{pmatrix} \alpha & 0 & 0 \\ \beta Y^{(6)}_{22,1} & \gamma Y^{(5)}_{40,4} & -\gamma Y^{(5)}_{40,3} \\ \beta Y^{(6)}_{22,2} & -\gamma Y^{(5)}_{40,2} & \gamma Y^{(5)}_{40,1} \end{pmatrix} v_d,$$

$$m_\nu = \frac{v_\nu^2}{2\Lambda} \begin{pmatrix} 0 & -g_1 Y^{(5)}_{20,1} & g_1 Y^{(5)}_{20,0} \\ -g_1 Y^{(5)}_{20,2} & -2\sqrt{2}g_2 Y^{(4)}_{30,0} & 2g_2 Y^{(4)}_{30,2} \\ g_1 Y^{(5)}_{20,1} & 2g_2 Y^{(4)}_{30,0} & 2\sqrt{2}g_2 Y^{(4)}_{30,2} \end{pmatrix}. \quad (4.32)$$

The phases of the couplings α, β, γ and g_1 can be absorbed by lepton fields while g_2 is complex without gCP. This model can agree with the experimental data very well for certain values of the input parameters. We find $\chi^2_{\min} = 2.871$ and the best fit values of the free parameters are determined to be

$$\Re\langle\tau\rangle = -0.329, \quad \Im\langle\tau\rangle = 1.080, \quad \beta/\alpha = 105.467, \quad \gamma/\alpha = 12.954,$$

$$|g_2/g_1| = 0.816, \quad \arg(g_2/g_1) = 0.958\pi, \quad g_1 v_\nu^2/\Lambda = 29.321 \text{ meV}. \quad (4.33)$$

The observable quantities are predicted to be

$$\sin^2\theta_{13} = 0.02217, \quad \sin^2\theta_{12} = 0.304, \quad \sin^2\theta_{23} = 0.570, \quad \delta_{CP} = 1.347\pi,$$

$$\alpha_{21} = 1.942\pi, \quad \alpha_{31} = 0.953\pi, \quad m_1 = 37.424 \text{ meV}, \quad m_2 = 38.399 \text{ meV},$$

$$m_3 = 62.588 \text{ meV}, \quad \sum_i m_i = 138.411 \text{ meV}, \quad m_{\beta\beta} = 37.661 \text{ meV}. \quad (4.34)$$

If gCP is imposed on the model, the coupling g_2 would be real and it can be either positive or negative. We find that the minimum value of χ^2 function is $\chi^2_{\min} = 2.914$ when the input parameters take the following values

$$\Re\langle\tau\rangle = -0.334, \quad \Im\langle\tau\rangle = 1.092, \quad \beta/\alpha = 105.717, \quad \gamma/\alpha = 12.696,$$
\[\frac{g_2}{g_1} = -0.810, \quad g_1 v^2_\alpha / \Lambda = 30.315 \text{ meV}. \]

(4.35)

The best fitting results for mixing parameters and neutrino masses are given by

\[
\sin^2 \theta_{13} = 0.02216, \quad \sin^2 \theta_{12} = 0.304, \quad \sin^2 \theta_{23} = 0.568, \quad \delta_{CP} = 1.347 \pi, \\
\alpha_{21} = 1.954 \pi, \quad \alpha_{31} = 0.952 \pi, \quad m_1 = 38.275 \text{ meV}, \quad m_2 = 39.229 \text{ meV}, \\
m_3 = 63.101 \text{ meV}, \quad \sum_i m_i = 140.604 \text{ meV}, \quad m_{\beta\beta} = 38.557 \text{ meV}.
\]

(4.36)

We numerically scan over the parameter space of the model, the lepton masses and mixing parameters are required to lie in the experimentally preferred 3\(\sigma\) regions. The allowed region of the modulus \(\tau\) and the correlations among different observables are shown in figure 2, where the red and green regions are the results with gCP and without gCP, respectively. We see that the model is very predictive and the neutrino mixing parameters are determined to vary in small regions. After including the gCP symmetry, the predictive power is improved further and the allowed regions shrink drastically.

4.5 Type V models

As the finite modular group \(\Gamma'_6\) has nine two-dimensional irreducible representations \(2_k\) and \(2'_k\) with \(r = 0, 1, k = 0, 1, 2\), it is convenient to construct minimal seesaw models involving two right-handed neutrinos in \(\Gamma'_6\) modular symmetry. The two right-handed neutrinos \(N^c = (N^c_1, N^c_2)^T\) are embedded into a doublet of \(\Gamma'_6\) and its modular weight is \(k_{N^c}\). In order to take full advantage of the abundant two-dimensional representations of \(\Gamma'_6\), the three generations of left-handed lepton doublets are arranged into one singlet and one doublet of \(\Gamma'_6\). The three right-handed charged leptons are assumed to transform as a triplet under \(\Gamma'_6\) otherwise more modular invariant terms as well as more free parameters would be needed. There are many different possible representation assignments for the matter fields, and it is too lengthy to list them. For illustration, we give one example, the transformation properties and modular weights of the lepton fields are given by

\[
L_1 \sim 1^9, \quad L_d = (L_2, L_3) \sim 2_2^0, \quad E^c \sim 3^0, \quad N^c \sim 2_2^1, \\
k_{L_1} = 1, \quad k_{L_d} = 3, \quad k_{E^c} = 3, \quad k_{N^c} = 2,
\]

(4.37)

which completely fixes the superpotential of the lepton masses as follows,

\[
\mathcal{W} = \alpha L_1 \left(Y_{30}^{(4)} E^c \right)_{11} H_d + \beta \left(Y_{6i}^{(6)} L_d E^c \right)_{10} H_d + \gamma \left(Y_{6ii}^{(6)} L_d E^c \right)_{15} H_d + \delta \left(Y_{6iii}^{(6)} L_d E^c \right)_{10} H_d \\
+ h_1 \left(Y_{42i}^{(5)} L_d N^c \right)_{10} H_u + h_2 \left(Y_{42ii}^{(5)} L_d N^c \right)_{10} H_u + \frac{gA}{2} \left(Y_{30}^{(4)} N^c N^c \right)_{10} H_u.
\]

(4.38)

We impose gCP symmetry such that all coupling constants are real. Notice that the neutrino Yukawa coupling between \(L_1\) and \(N^c\) is forbidden by modular invariance. The neutrino Dirac mass matrix and Majorana mass matrix are given by

\[
m_D = \begin{pmatrix}
0 & -h_1 Y_{42i,4}^{(5)} - h_2 Y_{42ii,4}^{(5)} & h_1 Y_{42i,3}^{(5)} + h_2 Y_{42ii,3}^{(5)} \\
0 & h_1 Y_{42i,2}^{(5)} + h_2 Y_{42ii,2}^{(5)} & -h_1 Y_{42i,1}^{(5)} - h_2 Y_{42ii,1}^{(5)}
\end{pmatrix} v_u, \\
m_N = \frac{gA}{2} \begin{pmatrix}
\sqrt{2} Y_{30,1}^{(4)} & -Y_{30,3}^{(4)} \\
-Y_{30,1}^{(4)} & -\sqrt{2} Y_{30,2}^{(4)}
\end{pmatrix}.
\]

(4.39)
Figure 2: The correlations between the neutrino parameters predicted in the example model of type IV. We adopt the same convention as figure 1.

The predictions for the lepton mixing parameters and lepton masses agree rather well with their measured values for certain values of the input parameters. The best fit point is found to be given by

\[\Re \langle \tau \rangle = -0.393, \quad \Im \langle \tau \rangle = 1.237, \quad \beta/\alpha = 0.0287, \quad \gamma/\alpha = 0.0293, \]
\[\delta/\alpha = -0.875, \quad h_2/h_1 = -1.347, \quad h_1^2 v_2^2 / (g \Lambda) = 3.688 \text{ meV}, \quad (4.40) \]

with \(\chi^2_{\text{min}} = 0.464 \). Accordingly the neutrino masses and mixing parameters are

\[\sin^2 \theta_{13} = 0.02219, \quad \sin^2 \theta_{12} = 0.304, \quad \sin^2 \theta_{23} = 0.573, \quad \delta_{\text{CP}} = 1.004\pi \]
\[\alpha_{21} = 0.340\pi, \quad m_1 = 0 \text{ meV}, \quad m_2 = 8.597 \text{ meV}, \quad m_3 = 50.167 \text{ meV}, \]
\[\sum_i m_i = 58.763 \text{ meV}, \quad m_{\beta\beta} = 3.224 \text{ meV}, \quad (4.41) \]

Similar to previous cases, a numerical analysis is performed, and the results are plotted in figure 3. It is worth noting that the Dirac CP phase \(\delta_{\text{CP}} \) is limited to a very narrow range.
5 Model building based on $\Gamma(2)$ modular symmetry with finite modular group T'

Applying the general formalism outlined in section 3, we consider construction of modular models for $N' = 2$ and $N'' = 6$ in this section, the full flavor symmetry is the $\Gamma(2)$ modular group. It is worth mentioning that the $\Gamma(2)$ modular symmetry was used to understand the quantum hall effect [82]. In this context, the inequivalent vacuum of the modulus τ is given by the fundamental domain of $\Gamma(2)$:

$$\mathcal{D}_{\Gamma(2)} = \{ \tau \mid |\Re \tau| \leq 1, \Im \tau > 0, |\tau \pm 1/2| \geq 1/2 \},$$

which is displayed in figure 4. The modular forms of level 6 can be arranged into irreducible multiplets of the finite modular group $\Gamma(2)/\Gamma(6) \cong T'$, as is summarized in table 8. It can be seen that at a given weight, there are several modular multiplets in the same representation of T'. Comparing with the modular forms of level 3 and their decomposition under $\Gamma'_3 \cong T'$ [58], we see there are more modular multiplets at a given weight. The T' group has three one-dimensional representations 1^0_k with $k = 0, 1, 2$, three two-dimensional representations 2^0_k and a three-dimensional representation 3^0. The Kronecker products between different representations of T' can be straightforwardly obtained from Eq. (A.6) as follows,

$$1^0_i \otimes 1^0_j = 1^0_m, \quad 1^0_i \otimes 2^0_j = 2^0_m, \quad 1^0_i \otimes 3^0 = 3^0, \quad 2^0_i \otimes 2^0_j = 1^0_m \oplus 3^0, \quad 2^0_i \otimes 3^0 = 2^0_0 \oplus 2^0_1 \oplus 2^0_2, \quad 3^0 \otimes 3^0 = 1^0_0 \oplus 1^0_1 \oplus 1^0_2 \oplus 3^0_1 \oplus 3^0_2,$$

Moreover, one can easily obtain the CG coefficients of T' group from those of Γ'_6 in appendix A.
In the same fashion as section 4, one can also systematically analyze the possible modular models based on $\Gamma(2)$ modular symmetry with finite modular group T'. It is too lengthy to present all possibilities here, for illustration we shall give an example model in the following. The left-handed lepton doublets L are assigned to a triplet 3^0 of T' with the modular weight $k_L = 1$. The three right-handed charged leptons transform as $E_c^i \sim 1^0_1$ and $E_d^c = (E_c^1, E_c^2, E_c^3) \sim 2^0_2$ under T', and their modular weights are $k_{E_c^i} = 1$ and $k_{E_d^c} = 0$, respectively. We assume the neutrino masses are described by the effective Weinberg operator. From the Kronecker product $3^0 \otimes 3^0 = 1^0_0 \oplus 1^0_1 \oplus 1^0_2 \oplus 3^1_1 \oplus 3^0_2$, we know that all the six weight 2 modular multiplets $Y_{10}^{(2)}, Y_{12}^{(2)}, Y_{20}^{(2)}, Y_{30}^{(2)}$ and $Y_{30}^{(2)}$ can couple with the operator LLH_uH_u to fulfill modular invariance. Thus the superpotential for neutrino masses is given by

\[
\mathcal{W}_\nu = \frac{g_1}{2\Lambda} Y_{43}^{(2)} (LL)_1 H_u H_u + \frac{g_2}{2\Lambda} Y_{13}^{(2)} (LL)_5 H_u H_u + \frac{g_3}{2\Lambda} Y_{12}^{(2)} (LL)_1 H_u H_u + \frac{g_4}{2\Lambda} (LL)_{31} Y_{30}^{(2)} H_u H_u + \frac{g_5}{2\Lambda} (LL)_{32} Y_{30}^{(2)} H_u H_u + \frac{g_6}{2\Lambda} (LL)_{33} Y_{30}^{(2)} H_u H_u.
\]

(5.3)

From the CG coefficients given in appendix A, we can easily read off the light neutrino mass matrix. Furthermore, the Yukawa interactions for the charged leptons are of the following form

\[
\mathcal{W}_e = \alpha_1 E_1^c \left(L Y_{43}^{(2)} \right)_{15} H_d + \alpha_2 E_1^c \left(L Y_{43}^{(2)} \right)_{15} H_d + \alpha_3 E_1^c \left(L Y_{43}^{(2)} \right)_{15} H_d + \beta_1 \left(L E_d^c \right)_{2} Y_{2}^{(1)}_{21} H_d + \beta_2 \left(L E_d^c \right)_{2} Y_{2}^{(1)}_{21} H_d + \beta_3 \left(L E_d^c \right)_{2} Y_{2}^{(1)}_{21} H_d,
\]

(5.4)

which leads to the charged lepton mass matrix

\[
\mathbf{m}_e = \begin{pmatrix}
\alpha_1 Y_4^{(2)} + \alpha_2 Y_7^{(2)} + \alpha_3 Y_1^{(2)} & \alpha_1 Y_6^{(2)} + \alpha_2 Y_9^{(2)} + \alpha_3 Y_1^{(2)} & \alpha_1 Y_5^{(2)} + \alpha_2 Y_8^{(2)} + \alpha_3 Y_1^{(2)} \\
\beta_1 Y_2 & \sqrt{2} \beta_1 Y_1 - \beta_2 Y_4 - \beta_3 Y_6 & \sqrt{2} (2 \beta_2 Y_3 + \beta_3 Y_5) \\
\beta_1 Y_1 - \sqrt{2} (2 \beta_2 Y_4 + \beta_3 Y_6) & - \beta_2 Y_3 - \beta_3 Y_5 & \sqrt{2} \beta_1 Y_2
\end{pmatrix} v_d.
\]

(5.5)

All the coupling constants in Eqs. (5.3,5.4) are real due to gCP invariance. This model contains enough free parameters to fit the experimental data, and we find the best fit values of all observables can be reproduced for the following values of the input parameters:

\[
\Re(\tau) = -0.0263, \quad \Im(\tau) = 1.789, \quad \alpha_2/\alpha_1 = 285.994, \quad \alpha_3/\alpha_1 = 199.982,
\]

23
\[
\frac{\beta_1}{\alpha_1} = 623.202, \quad \frac{\beta_2}{\alpha_1} = 886.017, \quad \frac{\beta_3}{\alpha_1} = 3.243, \quad \frac{g_2}{g_1} = 972.843, \\
\frac{g_3}{g_1} = 469.822, \quad \frac{g_4}{g_1} = 455.144, \quad \frac{g_5}{g_1} = 789.301, \quad \frac{g_6}{g_1} = 172.997. \quad (5.6)
\]

The resulting models usually contain a large number of free parameters if the modular flavor symmetry is some principal congruence subgroup \(\Gamma(N')\) rather than the modular group \(SL(2, \mathbb{Z}) \cong \Gamma(1)\), consequently the predictive power is reduced to certain extent. The top-down construction in string theory generally lead to both modular symmetry and traditional flavor symmetry, the full flavor symmetry named as eclectic flavor group is a nontrivial product of traditional favor group and finite modular group [83–87]. The couplings in modular invariant models are subject to strong constraints from traditional flavor symmetry, and some terms allowed by the modular group could be forbidden by the traditional flavor group. Thus we expect that the modular invariant models based on \(\Gamma(N')\) and finite modular group can become much more predictive by combining with certain traditional flavor group in the paradigm of eclectic flavor group.

6 Conclusion

Modular symmetry is a promising framework to understand the hierarchical masses and flavor mixing patterns of quarks and leptons [10]. In the present work, we generalize the modular invariance approach [10] and a new route towards finite modular groups is proposed. The theory is assumed to be invariant under the principal congruence subgroup \(\Gamma(N')\), the finite modular group is the quotient of two principal congruence subgroups \(\Gamma(N')/\Gamma(N'')\). The known homogeneous finite modular groups can be reproduced, as shown in Eq. (2.11), and the original modular invariant theory is the special case of \(N' = 1\).

For \(N' = 1\) and \(N'' = 6\), the finite modular group is the homogeneous finite modular group \(\Gamma(1)/\Gamma(6) = \Gamma_6\) which is isomorphic to \(S_3 \times T'\). The gCP symmetry consistent with the modular symmetry is considered. The representation matrices of both modular generators \(S\) and \(T\) are symmetric and unitary in all irreducible representations of \(\Gamma_6\), consequently the gCP transformation is a unit matrix up to modular transformations and all coupling constants are real if gCP invariance is imposed. We have constructed the weight 1 modular forms of level 6 in terms of the Dedekind eta function, and they can be arranged into a doublet and a quartet of \(\Gamma_6\). We also give the expressions of the linearly independent higher weight modular forms which are the tensor products of weight 1 modular forms.

We have performed a comprehensive analysis of models for lepton masses and mixing with \(\Gamma_6\) modular symmetry, and five types of models summarized in table 2 have been studied. In the type I models, both left-handed leptons \(L\) and right-handed neutrinos \(N^c\) are assumed to be triplets of \(\Gamma_6\), the right-handed charged fermions are singlets of \(\Gamma_6\). It turns out that the type I models with small number of free parameters coincide with the \(A_4\) modular models discussed in [40]. Different from the type I models, the three right-handed neutrinos are assigned to the direct product of a singlet and a doublet of \(\Gamma_6\) in the type II models. We find that five of the twenty modular models can accommodate the experimental data no matter whether gCP symmetry is included or not, as shown in table 4. The type III models differ from the type I models in the assignment of right-handed charged leptons which are assumed to be singlet plus doublet of \(\Gamma_6\). The light neutrino masses arise from the effective Weinberg operator and the minimal seesaw with two right-handed neutrinos in the type IV and type V models respectively. Moreover, we numerically scan over the parameter space of some example models, and the correlations among the mixing parameters are plotted.

Furthermore, we consider the modular invariant models for \(N' = 2\) and \(N'' = 6\). Then the full modular flavor symmetry is \(\Gamma(2)\) and the finite modular group is \(\Gamma(2)/\Gamma(6) \cong T'\).
The modular forms of level 6 can be decomposed into multiplets of T'. From table 8 we see that there are a number of modular forms in the same representation of T' at a given weight. As a consequence, the resulting model has a plenty of free parameters. We expect that the independent free parameters could be reduced considerably if the modular symmetry is combined with the traditional flavor symmetry for instance in the context of eclectic flavor group [83–87].

It is well-known that top quark is much heavier than other quark masses. Therefore the first and the second generations of quark fields are usually assigned to a doublet of certain flavor symmetry group while the third generation is assigned to a singlet. The modular group Γ_6' has abundant one-dimensional and two-dimensional irreducible representations. It is interesting to apply the Γ_6' modular symmetry to understand the hierarchical quark masses and mixing angles and construct a quark-lepton unification model which can describe the experimentally measured values of both leptons and quarks for a common modulus τ. This is beyond the scope of present work, and the results of this work pave the way for such future studies.

Acknowledgements

CCL is grateful to Dr. Jun-Nan Lu for their kind help on numerical analysis. CCL is supported by the National Natural Science Foundation of China under Grant Nos. 12005167, 12047502 and the Anhui Province Natural Science Foundation Grant No. 1908085QA24. XGL and GJD are supported by the National Natural Science Foundation of China under Grant Nos. 11975224, 11835013 and 11947301.
Appendix

A Group Theory of Γ'_6

The homogeneous finite modular group Γ'_6 can be generated by the modular generators S and T obeying the multiplication rules 4:

\[
S^4 = T^6 = (ST)^3 = ST^2ST^3ST^4ST^3 = 1, \quad S^2T = TS^2.
\]

From Eq. (2.8), we know that Γ'_6 is isomorphic to $\Gamma'_2 \times \Gamma'_3 = S_3 \times T'$ where $\Gamma'_3 \cong T'$ is the double covering of the tetrahedron group A_4 and $\Gamma'_2 \cong S_3$ is the permutation group of order 3.

The group $\Gamma'_6 \cong S_3 \times T'$ can also be generated by four generators $\tilde{a}, \tilde{b}, \tilde{c}$ and \tilde{d} fulfilling the following relations

\[
\tilde{a}^4 = \tilde{b}^3 = (\tilde{a}\tilde{b})^3 = 1, \quad \tilde{a}^2\tilde{b} = \tilde{b}\tilde{a}^2, \\
\tilde{c}^2 = \tilde{d}^2 = (\tilde{c}\tilde{d})^3 = 1, \\
\tilde{a}\tilde{c} = \tilde{c}\tilde{a}, \quad \tilde{a}\tilde{d} = \tilde{d}\tilde{a}, \quad \tilde{b}\tilde{c} = \tilde{c}\tilde{b}, \quad \tilde{b}\tilde{d} = \tilde{d}\tilde{b}.
\]

(A.2)

where \tilde{a} and \tilde{b} are the generators of T', and \tilde{c} and \tilde{d} are the generators of S_3. It is easy to check that the multiplication rules of Γ'_6 in above two bases are fulfilled by

\[
\tilde{a} = TST^4S^3T, \quad \tilde{b} = T^4, \quad \tilde{c} = S^3T^3S, \quad \tilde{d} = T^3,
\]

(A.3)

In the same fashion, the following relations can also be obtained

\[
S = \tilde{a}\tilde{c}\tilde{d}\tilde{c}, \quad T = \tilde{b}\tilde{d}.
\]

(A.4)

The 144 elements of the modular group Γ'_6 can be divided into 21 conjugacy classes and it has 104 non-trivial abelian subgroups which include seven Z_2 subgroups, thirteen Z_3 subgroups, twelve Z_4 subgroups, three K_4 subgroups, thirty-seven Z_6 subgroups, nine $Z_2 \times Z_4$, four $Z_3 \times Z_3$ subgroups, three Z_{12} subgroups, twelve $Z_2 \times Z_6$ subgroups and four $Z_3 \times Z_6$ subgroups. The Γ'_6 group has twenty-one irreducible representations: six singlet representations which are labeled as 1^r_k, nine two-dimensional representations defined as 2^r_k and 2^s_k, two three-dimensional representations 3^r, three four-dimensional representations labeled as 4^r_k and one six-dimensional representation 6, where the superscript r and the subscript k can take the values $r = 0, 1$ and $k = 0, 1, 2$, respectively. In the present work, the explicit forms of the generators S and T ($\tilde{a}, \tilde{b}, \tilde{c}$ and \tilde{d}) in the twenty-one irreducible representations are summarized in table 5 (table 6), where the matrices a_2, b_2, a_3 and b_3 in the two tables are taken to be

\[
a_2 = \frac{i}{\sqrt{3}} \begin{pmatrix} 1 & \sqrt{2} \\ \sqrt{2} & -1 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 1 & 0 \\ 0 & \omega \end{pmatrix}, \quad a_3 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}.
\]

(A.5)

From the representation matrices of generators in table 5 or table 6, one can easily to obtain the character table of Γ'_6. Then the Kronecker products between different irreducible representations read as

\[
1^r_i \otimes 1^s_j = 1^t_m, \quad 1^r_i \otimes 2^r_j = 2^m, \quad 1^r_i \otimes 2^s_j = 2^m, \quad 1^r_i \otimes 3^s = 3^t.
\]

\[\text{The defining relations of inhomogeneous finite modular group } \Gamma_6 \text{ are } S^2 = T^6 = (ST)^3 = ST^2ST^3ST^4ST^3 = 1, \text{ and } \Gamma_6 \text{ is isomorphic to } S_3 \times A_4.\]
Table 5: The representation matrices of the generators S and T for the twenty-one irreducible representations of Γ_6 in the chosen basis, where $\omega = e^{2\pi i/3}$, $r = 0,1$, $k = 0,1,2$ and matrices a_2, b_2, a_3 and b_3 are shown in Eq. (A.5).

	1^r_k	2_k	2^r_k	3^r	4_k	6
S	$(1)^r$	$\frac{1}{2}(1 - \sqrt{3})$	$(-1)^r a_2$	$(-1)^r a_3$	$\frac{1}{2}(a_2 - \sqrt{3}a_2)$	$\frac{1}{2}(a_3 - \sqrt{3}a_3)$
T	$(-1)^r \omega^k$	$\omega^k (1 0 0 -1)$	$(-1)^r \omega^{k+1} b_2$	$(-1)^r b_3$	$\omega^{k+1} (b_2 0_2 0_2 - b_2)$	$(b_3 0_3 0_3 - b_3)$

Table 6: The representation matrices of the generators \hat{a}, \hat{b}, \hat{c} and \hat{d} for the irreducible representations of groups T', S_3 and Γ_6' in the chosen basis, where $\omega = e^{2\pi i/3}$, $r = 0,1$ and $k = 0,1,2$. In the present work, the representation matrices of T' are related to those of [88] by the similarity transformation $u_2 = \text{diag}(1, e^{\pi i/3}) P_2$ for two-dimensional representations 2^r_k and $u_3 = \text{diag}(1, \omega^2, \omega)$ for three-dimensional representation 3^r. The representation matrices of generators of S_3 can be found in [4]. The irreducible representations of $\Gamma_6' = S_3 \times T'$ can be obtained from the direct products of those of S_3 and T' [89]. For example, the two-dimensional representation 2^r_k of Γ_6' is exactly the direct product $2^r_k \times 6$.

	T'	S_3
$1^r_k = 1^r_0 \times 1^0_k$	$\frac{1}{2}$	$(-1)^r$
$2^r_k = 2^0_0 \times 1^0_k$	$\frac{1}{2}$	$(-1)^r$
$3^r = 1^0_0 \times 3^0$	$\frac{1}{2}$	$(-1)^r \mathbb{I}_3$
$4^r = 2^0_0 \times 2^0_0$	$\frac{1}{2}$	$(-1)^r \mathbb{I}_3$
$6 = 2^0_0 \times 3^0$	$\frac{1}{2}$	$(-1)^r \mathbb{I}_3$

$1^r \otimes 4_j = 4_m$, $1^r \otimes 6 = 6$, $2^r \otimes 2_j = 1^0_m \oplus 1^1_m \oplus 2_m$, $2^r \otimes 2^r_j = 4_m$, $2^r \otimes 3^r = 6$, $2^r \otimes 4_j = 2_0^m \oplus 2^1_m \oplus 4_m$, $2^r \otimes 6 = 3^0 \oplus 3^1 \oplus 6$, $2^r \otimes 2^r_j = 1^r_m \oplus 3^r$, $2^r \otimes 3^r = 2_0^r \oplus 2^1_r \oplus 2^2_r$, $2^r \otimes 4_j = 2_m \oplus 6$, $2^r \otimes 6 = 4_0 \oplus 4_1 \oplus 4_2$, $3^r \otimes 3^r = 1^0_0 \oplus 1^1_0 \oplus 1^2_0 \oplus 3^1_0 \oplus 3^2_0$, $3^r \otimes 4_j = 4_0 \oplus 4_1 \oplus 4_2$, $3^r \otimes 6 = 2_0 \oplus 2_1 \oplus 2_2 \oplus 6_1 \oplus 6_2$, $4^r \otimes 4_j = 1^0_m \oplus 1^1_m \oplus 2_m \oplus 3^0 \oplus 3^1 \oplus 6$.

27
where \(i, j = 0, 1, 2 \) and \(r, s = 0, 1 \), and we have defined \(m \equiv i + j \pmod{3} \) and \(t \equiv r + s \pmod{2} \). The symbol \(6_1 \) and \(6_2 \) stand for two six-dimensional representations \(6 \) that appear in the Kronecker products. The subscript “\(S \)” (“\(A \)” refers to symmetric (antisymmetric) combinations. In the following, we list the CG coefficients in our basis, the irreducible representations. We shall adopt the following notations facilitate the expressions of CG coefficients. Furthermore, we shall adopt the following notations facilitate the expressions of CG coefficients.

\[
P_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad P_3 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad P_4 = \begin{pmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{pmatrix}, \quad P_6(r, i) = \begin{pmatrix} 0_3 & 1_3 \\ -1_3 & 0_3 \end{pmatrix} \begin{pmatrix} P_3 & 0_3 \\ 0_3 & P_3 \end{pmatrix},
\]

(A.7)

\(1^r_i \otimes 2_j = 2_m \)	\(1^t_i \otimes 2^t_j = 2^t_m \)	\(1^r_i \otimes 3^s = 3^t \)	\(1^r_i \otimes 4_j = 4_m \)	\(1^r_i \otimes 6 = 6 \)
\(2_m : \alpha_1 P^{r_2}_2 (\beta_1 \beta_2) \)	\(2^t_m : \alpha_1 \beta_1 \beta_2 \)	\(3^t : \alpha_1 P^t_3 (\beta_1 \beta_2 \beta_3) \)	\(4_m : \alpha_1 P^{r_4}_3 (\beta_1 \beta_2 \beta_3 \beta_4) \)	\(6 : \alpha_1 P^6_6 (r, i) \)

(A.6)

\(2^0_i \otimes 2^r_j = 1^{0}_m \otimes 1^t_m \otimes 2_m \)	\(2^0_i \otimes 2^r_j = 4_m \)	\(2^0_i \otimes 3^s = 6 \)
\(1^0_m : \alpha_1 \beta_1 + \alpha_2 \beta_2 \)	\(4_m : P^t_4 (\alpha_1 \beta_1 \alpha_1 \beta_2 \alpha_2 \beta_1 \alpha_2 \beta_2) \)	\(6 : \alpha_1 P^6_6 (r, i) \)

(A.6)

\(2^0_i \otimes 4_j = 2^0_m \otimes 2^t_m \otimes 4_m \)	\(2^0_i \otimes 6 = 3^0 \otimes 3^t \otimes 6 \)
\(2^0_m : (\alpha_1 \beta_1 + \alpha_2 \beta_3) (\alpha_1 \beta_2 + \alpha_2 \beta_4) \)	\(3^0 : P^i_3 (\alpha_1 \beta_1 + \alpha_2 \beta_4 \alpha_1 \beta_2 + \alpha_2 \beta_5 \alpha_1 \beta_3 + \alpha_2 \beta_6) \)
\(2^r \otimes 2^s = 1^t_m \oplus 3^t\)	\(2^r \otimes 4_j = 2_m \oplus 6\)
---------------------------------	--------------------------------
\(1^t_m : \alpha_1 \beta_2 - \alpha_2 \beta_1\)	\(2_m : P^r_2\left(\frac{\alpha_1 \beta_2 - \alpha_2 \beta_1}{\alpha_1 \beta_4 - \alpha_2 \beta_3}\right)\)
\(3^t : P^m_3\left(\frac{\alpha_1 \beta_2 + \alpha_2 \beta_1}{\sqrt{2 \alpha_2 \beta_2}}\right)\)	\(6 : P_6(r, i)\left(\begin{array}{c} \alpha_1 \beta_2 + \alpha_2 \beta_1 \\ \sqrt{2 \alpha_2 \beta_2} \\ -\sqrt{2 \alpha_1 \beta_1} \\ \alpha_1 \beta_4 + \alpha_2 \beta_3 \\ \sqrt{2 \alpha_2 \beta_4} \\ -\sqrt{2 \alpha_1 \beta_3} \end{array}\right)\)

\(2^r \otimes 3^s = 2^t_0 \oplus 2^t_1 \oplus 2^t_2\)	\(2^r \otimes 6 = 4_0 \oplus 4_1 \oplus 4_2\)
\(2^t_i : \left(\frac{\alpha_1 \beta_2 + \sqrt{2 \alpha_2 \beta_3}}{\sqrt{2 \alpha_1 \beta_2} - \alpha_2 \beta_1}\right)\)	\(4_i : P^r_4\left(\frac{\alpha_1 \beta_3 + \sqrt{2 \alpha_2 \beta_3}}{\sqrt{2 \alpha_1 \beta_2} - \alpha_2 \beta_1}\right)\)
\(2^t_{i+1} : \left(\frac{\alpha_1 \beta_2 + \sqrt{2 \alpha_2 \beta_3}}{\sqrt{2 \alpha_1 \beta_2} - \alpha_2 \beta_1}\right)\)	\(4_{i+1} : P^r_4\left(\frac{\alpha_1 \beta_3 + \sqrt{2 \alpha_2 \beta_3}}{\sqrt{2 \alpha_1 \beta_2} - \alpha_2 \beta_1}\right)\)
\(2^t_{2+i} : \left(\frac{\alpha_1 \beta_2 + \sqrt{2 \alpha_2 \beta_3}}{\sqrt{2 \alpha_1 \beta_2} - \alpha_2 \beta_1}\right)\)	\(4_{2+i} : P^r_4\left(\frac{\alpha_1 \beta_3 + \sqrt{2 \alpha_2 \beta_3}}{\sqrt{2 \alpha_1 \beta_2} - \alpha_2 \beta_1}\right)\)

\(3^r \otimes 3^s = 1^t_0 \oplus 1^t_1 \oplus 1^t_2 \oplus 3^t_1 \oplus 3^t_2\)	\(3^r \otimes 4_i = 4_0 \oplus 4_1 \oplus 4_2\)	\(3^r \otimes 6 = 2_0 \oplus 2_1 \oplus 2_2 \oplus 6_1 \oplus 6_2\)
\(1^t_0 : \alpha_1 \beta_1 + \alpha_2 \beta_3 + \alpha_3 \beta_2\)	\(4_i : P^r_4\left(\frac{\alpha_1 \beta_1 + \sqrt{2 \alpha_2 \beta_3}}{\sqrt{2 \alpha_2 \beta_3}}\right)\)	\(2^r \oplus 6 = 2_0 \oplus 2_1 \oplus 2_2 \oplus 6_1 \oplus 6_2\)
\(1^t_1 : \alpha_1 \beta_2 \alpha_2 \beta_1 + \alpha_3 \beta_3\)	\(1^t_2 : \alpha_1 \beta_3 + \alpha_2 \beta_2 + \alpha_3 \beta_1\)	\(2^r \oplus 6 = 2_0 \oplus 2_1 \oplus 2_2 \oplus 6_1 \oplus 6_2\)
\(3^t_1 : \left(\frac{2 \alpha_1 \beta_1 - \alpha_2 \beta_3 - \alpha_3 \beta_2}{-\alpha_1 \beta_2 - \alpha_2 \beta_1 + 2 \alpha_3 \beta_3} - \alpha_1 \beta_3 + 2 \alpha_2 \beta_2 - \alpha_3 \beta_1\right)\)	\(4_{1+i} : P^r_4\left(\frac{\sqrt{2 \alpha_1 \beta_2} + \alpha_2 \beta_1}{\sqrt{2 \alpha_1 \beta_2} + \alpha_2 \beta_1}\right)\)	\(6_1 : P_6(r, 0)\left(\frac{\alpha_1 \beta_1 - \alpha_2 \beta_2}{-\alpha_2 \beta_1 + \alpha_3 \beta_3}\right)\)
\(3^t_2 : \left(-\alpha_2 \beta_3 + \alpha_3 \beta_2\right) - \alpha_1 \beta_2 + \alpha_2 \beta_1\)	\(\alpha_1 \beta_3 - \alpha_3 \beta_1\)	\(6_2 : P_6(r, 0)\left(\alpha_2 \beta_3 - \alpha_3 \beta_2\right)\)
\(4_{2+i} : P^r_4\left(\frac{\sqrt{2 \alpha_1 \beta_2} + \alpha_3 \beta_1}{\sqrt{2 \alpha_1 \beta_2} + \alpha_3 \beta_1}\right)\)	\(\alpha_1 \beta_1 - \alpha_2 \beta_2\)	\(\alpha_1 \beta_2 - \alpha_2 \beta_1\)
\(\alpha_1 \beta_3 - \alpha_3 \beta_1\)	\(\alpha_2 \beta_3 - \alpha_3 \beta_2\)	\(\alpha_1 \beta_1 - \alpha_2 \beta_2\)
\[4_i \otimes 4_j = 1^0_m \oplus 1^1_m \oplus 2_m \oplus 3^0 \oplus 3^1 \oplus 6\]

1^0_m	1^1_m	2_m	3^0	3^1	6
\(\alpha_1 \beta_2 - \alpha_2 \beta_1 + \alpha_3 \beta_4 - \alpha_4 \beta_3\)	\(\alpha_1 \beta_4 - \alpha_2 \beta_3 - \alpha_3 \beta_2 + \alpha_4 \beta_1\)	(\(\alpha_1 \beta_2 - \alpha_2 \beta_1 - \alpha_3 \beta_4 + \alpha_4 \beta_3\), \(-\alpha_1 \beta_4 + \alpha_2 \beta_3 - \alpha_3 \beta_2 + \alpha_4 \beta_1\))	\(\alpha_1 \beta_4 + \alpha_2 \beta_3 - \alpha_3 \beta_2 - \alpha_4 \beta_1\)	\(\sqrt{2} (\alpha_2 \beta_4 - \alpha_4 \beta_2)\)	\(\sqrt{2} (-\alpha_1 \beta_3 + \alpha_3 \beta_1)\)

3^1 : \(P_3^m\)	6 : \(P_6(0, m)\)
\(\alpha_1 \beta_2 + \alpha_2 \beta_1 + \alpha_3 \beta_4 + \alpha_4 \beta_3\)	\(\alpha_1 \beta_4 + \alpha_2 \beta_3 - \alpha_3 \beta_2 - \alpha_4 \beta_1\)
\(\sqrt{2} (\alpha_2 \beta_2 + \alpha_4 \beta_4)\)	\(\sqrt{2} (-\alpha_1 \beta_3 + \alpha_3 \beta_1)\)
\(-\sqrt{2} (\alpha_1 \beta_1 + \alpha_3 \beta_3)\)	\(-\sqrt{2} (\alpha_2 \beta_2 + \alpha_4 \beta_4)\)

\[4_i \otimes 6 = 2^0_i \oplus 2^0_{1+i} \oplus 2^0_{2+i} \oplus 2^1_0 \oplus 2^1_1 \oplus 2^1_2 \oplus 4_0 \oplus 4_1 \oplus 4_2\]

2^0_i	2^0_{1+i}	2^0_{2+i}	2^1_i	2^1_{1+i}	2^1_{2+i}	4_i	4_{1+i}	4_{2+i}
\((\alpha_1 \beta_1 + \sqrt{2} \alpha_2 \beta_3 + \alpha_3 \beta_4 + \sqrt{2} \alpha_4 \beta_6)\)	\((\alpha_1 \beta_2 + \sqrt{2} \alpha_2 \beta_1 - \alpha_3 \beta_5 + \sqrt{2} \alpha_4 \beta_4)\)	\((\sqrt{2} \alpha_1 \beta_3 - \alpha_2 \beta_2 + \sqrt{2} \alpha_3 \beta_6 - \alpha_4 \beta_5)\)	\((\alpha_1 \beta_4 + \sqrt{2} \alpha_2 \beta_6 - \alpha_3 \beta_1 - \sqrt{2} \alpha_4 \beta_3)\)	\((\sqrt{2} \alpha_1 \beta_5 - \alpha_2 \beta_4 - \sqrt{2} \alpha_3 \beta_2 + \alpha_4 \beta_1)\)	\((\sqrt{2} \alpha_1 \beta_6 - \alpha_2 \beta_5 - \sqrt{2} \alpha_3 \beta_3 + \alpha_4 \beta_2)\)	\((\alpha_1 \beta_4 + \sqrt{2} \alpha_2 \beta_3 - \alpha_3 \beta_4 - \sqrt{2} \alpha_4 \beta_6)\)	\((\alpha_1 \beta_2 - \alpha_2 \beta_1 - \alpha_3 \beta_4 - \alpha_4 \beta_3)\)	\((\alpha_1 \beta_3 + \sqrt{2} \alpha_2 \beta_2 - \alpha_3 \beta_1 - \sqrt{2} \alpha_4 \beta_5)\)
\((\sqrt{2} \alpha_1 \beta_2 - \alpha_2 \beta_1 + \sqrt{2} \alpha_3 \beta_5 - \alpha_4 \beta_4)\)	\((\sqrt{-2} \alpha_1 \beta_3 - \alpha_2 \beta_2 + \sqrt{-2} \alpha_3 \beta_6 + \alpha_4 \beta_5)\)	\((\sqrt{-2} \alpha_1 \beta_4 - \alpha_2 \beta_3 + \sqrt{-2} \alpha_3 \beta_4 - \alpha_4 \beta_6)\)	\((\sqrt{-2} \alpha_1 \beta_5 - \alpha_2 \beta_4 - \sqrt{-2} \alpha_3 \beta_2 + \alpha_4 \beta_1)\)	\((\sqrt{-2} \alpha_1 \beta_6 - \alpha_2 \beta_5 - \sqrt{-2} \alpha_3 \beta_3 + \alpha_4 \beta_2)\)	\((\sqrt{2} \alpha_1 \beta_6 - \alpha_2 \beta_5 - \sqrt{2} \alpha_3 \beta_3 + \alpha_4 \beta_2)\)	\((\alpha_1 \beta_3 + \sqrt{2} \alpha_2 \beta_2 - \alpha_3 \beta_1 - \sqrt{2} \alpha_4 \beta_5)\)	\((\alpha_1 \beta_4 - \alpha_2 \beta_3 - \alpha_3 \beta_2 - \sqrt{2} \alpha_4 \beta_3)\)	\((\sqrt{2} \alpha_1 \beta_6 - \alpha_2 \beta_5 - \sqrt{2} \alpha_3 \beta_3 + \alpha_4 \beta_2)\)
linearly independent modular forms of weight 2 can be arranged into the following multiplets

Multiplet	Description
1^0_{10}	$\alpha_1 \beta_1 + \alpha_2 \beta_3 + \alpha_3 \beta_6 + \alpha_4 \beta_4 + \alpha_5 \beta_5 + \alpha_6 \beta_6$
1^0_{11}	$\alpha_1 \beta_2 + \alpha_2 \beta_1 + \alpha_3 \beta_3 + \alpha_4 \beta_5 + \alpha_5 \beta_4 + \alpha_6 \beta_6$
1^0_{12}	$\alpha_1 \beta_3 + \alpha_2 \beta_2 + \alpha_3 \beta_6 + \alpha_4 \beta_6 + \alpha_5 \beta_6 + \alpha_6 \beta_4$
1^0_{11}	$\alpha_1 \beta_4 + \alpha_2 \beta_6 + \alpha_3 \beta_5 - \alpha_4 \beta_1 - \alpha_5 \beta_3 - \alpha_6 \beta_2$
1^0_{12}	$\alpha_1 \beta_5 + \alpha_2 \beta_4 + \alpha_3 \beta_6 - \alpha_4 \beta_2 - \alpha_5 \beta_1 - \alpha_6 \beta_3$
1^0_{11}	$\alpha_1 \beta_6 + \alpha_2 \beta_5 + \alpha_3 \beta_4 - \alpha_4 \beta_3 - \alpha_5 \beta_2 - \alpha_6 \beta_1$

B Higher weight modular forms of Γ'_{6}

The space of modular forms of weight 2 has dimension $6 \times 2 = 12$ and they can be calculated by the contractions of $Y_{12}^{(1)}$ and $Y_{41}^{(1)}$ which are the modular multiplets of weight 1 discussed in section 3.1. Hence there are 9 constraints between the 21 products $Y_i Y_j$. The 12 linearly independent modular forms of weight 2 can be arranged into the following multiplets.
From the tensor product of the modular multiplets of weight 2 and weight 3, we find that

The modular multiplets of weight 4 are given by

where \((\ldots)_r \) denotes a contraction into the \(\Gamma_6' \) irreducible representation \(r \) according to the CG coefficients listed in appendix A. We summarize the modular forms of level \(N = 6 \) up to weight 6 in table 7, and their explicit forms are given in the following. For weight 3, the modular forms take the following form

\[
Y_{30}^{(2)}(\tau) = \left(Y_{41}^{(1)} Y_{12}^{(1)} \right)_{12}, \quad Y_{20}^{(2)}(\tau) = \left(Y_{41}^{(2)} Y_{12}^{(1)} \right)_{20},
\]

(B.1)

The modular multiplets of weight 4 are given by

\[
Y_{21}^{(4)}(\tau) = \left(Y_{20}^{(2)} Y_{10}^{(2)} \right)_{10}, \quad Y_{10}^{(4)}(\tau) = \left(Y_{12}^{(2)} Y_{12}^{(2)} \right)_{10}, \quad Y_{12}^{(4)}(\tau) = \left(Y_{12}^{(2)} Y_{12}^{(2)} \right)_{12}, \quad Y_{20}^{(4)}(\tau) = \left(Y_{20}^{(2)} Y_{20}^{(2)} \right)_{20},
\]

(B.3)

From the tensor product of the modular multiplets of weight 2 and weight 3, we find that the modular forms of weight 5 are

\[
Y_{20}^{(5)}(\tau) = \left(Y_{20}^{(2)} Y_{12}^{(3)} \right)_{20}, \quad Y_{12}^{(5)}(\tau) = \left(Y_{20}^{(2)} Y_{12}^{(3)} \right)_{21}, \quad Y_{21}^{(5)}(\tau) = \left(Y_{20}^{(2)} Y_{12}^{(3)} \right)_{21}, \quad Y_{40}^{(5)}(\tau) = \left(Y_{12}^{(2)} Y_{20}^{(3)} \right)_{40},
\]

(B.4)

There are 36 linearly independent modular forms arising at weight 6 and level \(N = 6 \)

\(k \)	Modular form \(Y_r^{(k)} \)
1	\(Y_{21}^{(1)} , Y_{41}^{(1)} \)
2	\(Y_{12}^{(2)} , Y_{12}^{(2)} , Y_{30}^{(2)} , Y_{96}^{(2)} \)
3	\(Y_{20}^{(3)} , Y_{20}^{(3)} , Y_{20}^{(3)} , Y_{20}^{(3)} , Y_{20}^{(3)} , Y_{20}^{(3)} \)
4	\(Y_{12}^{(4)} , Y_{12}^{(4)} , Y_{12}^{(4)} , Y_{12}^{(4)} , Y_{12}^{(4)} , Y_{12}^{(4)} \)
5	\(Y_{21}^{(5)} , Y_{21}^{(5)} , Y_{21}^{(5)} , Y_{21}^{(5)} , Y_{21}^{(5)} , Y_{21}^{(5)} \)
6	\(Y_{12}^{(6)} , Y_{12}^{(6)} , Y_{12}^{(6)} , Y_{12}^{(6)} , Y_{12}^{(6)} , Y_{12}^{(6)} \)

Table 7: Integral weight modular multiplets of level 6 up to weight 6, the subscript \(r \) denotes the transformation property under homogeneous finite group \(\Gamma_6' \). Here \(Y_{6i}^{(4)} \) and \(Y_{6ii}^{(4)} \) stand for two six-dimensional modular multiplets of \(\Gamma_6 \) of weight 4. The same convention is adopted for other modular forms.
Table 8: Summary of modular forms of level $N = 6$ up to weight 6 in the irreducible multiplets of finite group T', where the subscripts denote the transformation property under the T' modular symmetry.

which may be necessary in model construction, we give them in the following,

\[
\begin{array}{l}
Y^{(6)}_{1_0^0}(\tau) = \left(Y^{(3)}_{0_0} Y^{(3)}_{0_2} \right)_{1_0^0}, \quad Y^{(6)}_{1_0^1}(\tau) = \left(Y^{(3)}_{2_0} Y^{(3)}_{1_1} \right)_{1_0^1}, \quad Y^{(6)}_{1_0^2}(\tau) = \left(Y^{(3)}_{0_1} Y^{(3)}_{2_1} \right)_{1_0^2}, \\
Y^{(6)}_{2_0^0}(\tau) = \left(Y^{(3)}_{2_1} Y^{(3)}_{4_2} \right)_{2_0^0}, \quad Y^{(6)}_{2_0^1}(\tau) = \left(Y^{(3)}_{3_0} Y^{(3)}_{0_0} \right)_{2_0^1}, \quad Y^{(6)}_{2_0^2}(\tau) = \left(Y^{(3)}_{2_1} Y^{(3)}_{3_0} \right)_{2_0^2}, \\
Y^{(6)}_{3_0^0}(\tau) = \left(Y^{(3)}_{2_1} Y^{(3)}_{4_2} \right)_{3_0^0}, \quad Y^{(6)}_{3_0^1}(\tau) = \left(Y^{(3)}_{3_0} Y^{(3)}_{0_0} \right)_{3_0^1}, \quad Y^{(6)}_{3_0^2}(\tau) = \left(Y^{(3)}_{2_1} Y^{(3)}_{3_0} \right)_{3_0^2}, \\
Y^{(6)}_{6_0^0}(\tau) = \left(Y^{(3)}_{3_0} Y^{(3)}_{4_0} \right)_{6_0^0}, \quad Y^{(6)}_{6_0^1}(\tau) = \left(Y^{(3)}_{3_0} Y^{(3)}_{0_1} \right)_{6_0^1}, \quad Y^{(6)}_{6_0^2}(\tau) = \left(Y^{(3)}_{3_0} Y^{(3)}_{2_1} \right)_{6_0^2}.
\end{array}
\]

C Higher weight modular forms of level $N = 6$ under T'

In the case of $N' = 2$ and $N'' = 6$, the modular forms of $\Gamma(6)$ can be decomposed into the irreducible multiplets of finite modular group T', as listed in table 8, and their explicit forms up to weight 6 are given in the following. Through the tensor products of the modular forms $Y^{(1)}_{2_0^0}(\tau)$, $Y^{(1)}_{2_0^1}(\tau)$ and $Y^{(1)}_{2_0^2}(\tau)$ in section 3.3 one can find, at weight 2, the following linearly independent modular multiplets:

\[
\begin{array}{l}
Y^{(2)}_{1_0^0}(\tau) = \left(Y^{(1)}_{2_0^0} Y^{(1)}_{2_0^1} \right)_{1_0^0}, \quad Y^{(2)}_{1_0^1}(\tau) = \left(Y^{(1)}_{2_0^0} Y^{(1)}_{2_0^2} \right)_{1_0^1}, \quad Y^{(2)}_{1_0^2}(\tau) = \left(Y^{(1)}_{2_0^0} Y^{(1)}_{2_0^2} \right)_{1_0^2}, \\
Y^{(2)}_{2_0^0}(\tau) = \left(Y^{(1)}_{2_0^1} Y^{(1)}_{2_0^2} \right)_{2_0^0}, \quad Y^{(2)}_{2_0^1}(\tau) = \left(Y^{(1)}_{2_0^1} Y^{(1)}_{2_0^2} \right)_{2_0^1}, \quad Y^{(2)}_{2_0^2}(\tau) = \left(Y^{(1)}_{2_0^1} Y^{(1)}_{2_0^2} \right)_{2_0^2}.
\end{array}
\]

The weight 3 modular forms decompose as

\[
\begin{array}{l}
Y^{(3)}_{2_0^0}(\tau) = \left(Y^{(2)}_{2_0^0} Y^{(2)}_{2_0^1} \right)_{2_0^0}, \quad Y^{(3)}_{2_0^1}(\tau) = \left(Y^{(2)}_{2_0^0} Y^{(2)}_{2_0^2} \right)_{2_0^1}, \quad Y^{(3)}_{2_0^2}(\tau) = \left(Y^{(2)}_{2_0^0} Y^{(2)}_{2_0^2} \right)_{2_0^2}, \\
Y^{(3)}_{2_0^3}(\tau) = \left(Y^{(2)}_{2_0^1} Y^{(2)}_{2_0^2} \right)_{2_0^3}, \quad Y^{(3)}_{2_0^4}(\tau) = \left(Y^{(2)}_{2_0^1} Y^{(2)}_{2_0^2} \right)_{2_0^4}, \quad Y^{(3)}_{2_0^5}(\tau) = \left(Y^{(2)}_{2_0^1} Y^{(2)}_{2_0^2} \right)_{2_0^5}.
\end{array}
\]
The linear space of modular forms of level 6 and weight 4 under \(T' \) can be decomposed into
\[
Y_{10}^{(4)}(\tau) = \left(Y_{10}^{(2)} Y_{10}^{(2)}\right)_{10}^1, \quad Y_{10}^{(4)}(\tau) = \left(Y_{10}^{(2)} Y_{10}^{(2)}\right)_{10}^1.
\]

The modular forms of weight 5 under the finite modular group \(T' \) take the following form
\[
Y_{20}^{(5)}(\tau) = \left(Y_{20}^{(2)} Y_{20}^{(3)}\right)_{20}^1, \quad Y_{20}^{(5)}(\tau) = \left(Y_{20}^{(2)} Y_{20}^{(3)}\right)_{20}^1.
\]

Finally there are 36 independent weight 6 modular forms of level 6 under the finite modular group \(T' \):
\[
Y_{12}^{(6)}(\tau) = \left(Y_{12}^{(3)} Y_{12}^{(3)}\right)_{12}^1, \quad Y_{12}^{(6)}(\tau) = \left(Y_{12}^{(3)} Y_{12}^{(3)}\right)_{12}^1.
\]

References

[1] I. Esteban, M. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” JHEP 2009 (2020) 178, arXiv:2007.14792 [hep-ph].

[2] Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.

[3] G. Altarelli and F. Feruglio, “Discrete Flavor Symmetries and Models of Neutrino Mixing,” Rev. Mod. Phys. 82 (2010) 2701–2729, arXiv:1002.0211 [hep-ph].

[4] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, “Non-Abelian Discrete Symmetries in Particle Physics,” Prog. Theor. Phys. Suppl. 183 (2010) 1–163, arXiv:1003.3552 [hep-th].

[5] S. F. King and C. Luhn, “Neutrino Mass and Mixing with Discrete Symmetry,” Rept. Prog. Phys. 76 (2013) 056201, arXiv:1301.1340 [hep-ph].
[6] S. F. King, A. Merle, S. Morisi, Y. Shimizu, and M. Tanimoto, “Neutrino Mass and Mixing: from Theory to Experiment,” *New J.Phys.* **16** (2014) 045018, arXiv:1402.4271 [hep-ph].

[7] S. F. King, “Models of Neutrino Mass, Mixing and CP Violation,” *J.Phys.* **G42** (2015) 123001, arXiv:1510.02091 [hep-ph].

[8] S. King, “Unified Models of Neutrinos, Flavour and CP Violation,” *Prog.Part.Nucl.Phys.* **94** (2017) 217–256, arXiv:1701.04413 [hep-ph].

[9] F. Feruglio and A. Romanino, “Lepton flavor symmetries,” *Rev. Mod. Phys.* **93** no. 1, (2021) 015007, arXiv:1912.06028 [hep-ph].

[10] F. Feruglio, “Are neutrino masses modular forms?,” in *From My Vast Repertoire …. Guido Altarelli’s Legacy*, A. Levy, S. Forte, and G. Ridolfi, eds., pp. 227–266. 2019. arXiv:1706.08749 [hep-ph].

[11] T. Kobayashi, K. Tanaka, and T. H. Tatsuishi, “Neutrino mixing from finite modular groups,” *Phys.Rev.* **D98** (2018) 016004, arXiv:1803.10391 [hep-ph].

[12] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi, and H. Uchida, “Finite modular subgroups for fermion mass matrices and baryon/lepton number violation,” *Phys.Lett.* **B794** (2019) 114–121, arXiv:1812.11072 [hep-ph].

[13] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, “Modular S_3-invariant flavor model in SU(5) grand unified theory,” *PTEP* **2020** (2020) 053B05, arXiv:1906.10341 [hep-ph].

[14] H. Okada and Y. Orikasa, “Modular S_3 symmetric radiative seesaw model,” *Phys.Rev.* **D100** (2019) 115037, arXiv:1907.04716 [hep-ph].

[15] P. Novichkov, J. Penedo, and S. Petcov, “Fermion Mass Hierarchies, Large Lepton Mixing and Residual Modular Symmetries,” arXiv:2102.07488 [hep-ph].

[16] J. C. Criado and F. Feruglio, “Modular Invariance Faces Precision Neutrino Data,” *SciPost Phys.* **5** (2018) 042, arXiv:1807.01125 [hep-ph].

[17] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, “Modular A_4 invariance and neutrino mixing,” *JHEP* **1811** (2018) 196, arXiv:1808.03012 [hep-ph].

[18] F. J. de Anda, S. F. King, and E. Perdomo, “$SU(5)$ grand unified theory with A_4 modular symmetry,” *Phys.Rev.* **D101** (2020) 015028, arXiv:1812.05620 [hep-ph].

[19] H. Okada and M. Tanimoto, “CP violation of quarks in A_4 modular invariance,” *Phys.Lett.* **B791** (2019) 54–61, arXiv:1812.09677 [hep-ph].

[20] P. Novichkov, S. Petcov, and M. Tanimoto, “Trimaximal Neutrino Mixing from Modular A_4 Invariance with Residual Symmetries,” *Phys.Lett.* **B793** (2019) 247–258, arXiv:1812.11289 [hep-ph].

[21] T. Nomura and H. Okada, “A modular A_4 symmetric model of dark matter and neutrino,” *Phys.Lett.* **B797** (2019) 134799, arXiv:1904.03937 [hep-ph].
[22] H. Okada and M. Tanimoto, “Towards unification of quark and lepton flavors in A_4 modular invariance,” *Eur. Phys. J. C* **81** no. 1, (2021) 52, arXiv:1905.13421 [hep-ph].

[23] T. Nomura and H. Okada, “A two loop induced neutrino mass model with modular A_4 symmetry,” *Nucl. Phys. B* **966** (2021) 115372, arXiv:1906.03927 [hep-ph].

[24] G.-J. Ding, S. F. King, and X.-G. Liu, “Modular A_4 symmetry models of neutrinos and charged leptons,” *JHEP* **1909** (2019) 074, arXiv:1907.11714 [hep-ph].

[25] H. Okada and Y. Orikasa, “A radiative seesaw model in modular A_4 symmetry,” arXiv:1907.13520 [hep-ph].

[26] T. Nomura, H. Okada, and O. Popov, “A modular A_4 symmetric scotogenic model,” *Phys.Lett.* **B803** (2020) 135294, arXiv:1908.07457 [hep-ph].

[27] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, “A_4 lepton flavor model and modulus stabilization from S_4 modular symmetry,” *Phys.Rev.* **D100** (2019) 115045, arXiv:1909.05139 [hep-ph].

[28] T. Asaka, Y. Heo, T. H. Tatsuishi, and T. Yoshida, “Modular A_4 invariance and leptogenesis,” *JHEP* **2001** (2020) 144, arXiv:1909.06520 [hep-ph].

[29] G.-J. Ding, S. F. King, X.-G. Liu, and J.-N. Lu, “Modular S_4 and A_4 symmetries and their fixed points: new predictive examples of lepton mixing,” *JHEP* **1912** (2019) 030, arXiv:1910.03460 [hep-ph].

[30] D. Zhang, “A modular A_4 symmetry realization of two-zero textures of the Majorana neutrino mass matrix,” *Nucl.Phys.* **B952** (2020) 114935, arXiv:1910.07869 [hep-ph].

[31] T. Nomura, H. Okada, and S. Patra, “An inverse seesaw model with A_4-modular symmetry,” *Nucl. Phys. B* **967** (2021) 115395, arXiv:1912.00379 [hep-ph].

[32] X. Wang, “Lepton flavor mixing and CP violation in the minimal type-(I+II) seesaw model with a modular A_4 symmetry,” *Nucl.Phys.* **B957** (2020) 115105, arXiv:1912.13284 [hep-ph].

[33] T. Kobayashi, T. Nomura, and T. Shimomura, “Type II seesaw models with modular A_4 symmetry,” *Phys.Rev.* **D102** (2020) 035019, arXiv:1912.00637 [hep-ph].

[34] S. J. King and S. F. King, “Fermion mass hierarchies from modular symmetry,” *JHEP* **2009** (2020) 043, arXiv:2002.00969 [hep-ph].

[35] G.-J. Ding and F. Feruglio, “Testing Moduli and Flavon Dynamics with Neutrino Oscillations,” *JHEP* **2006** (2020) 134, arXiv:2003.13448 [hep-ph].

[36] H. Okada and M. Tanimoto, “Quark and lepton flavors with common modulus τ in A_4 modular symmetry,” arXiv:2005.00775 [hep-ph].

[37] T. Nomura and H. Okada, “A linear seesaw model with A_4-modular flavor and local $U(1)_{B-L}$ symmetries,” arXiv:2007.04801 [hep-ph].

[38] T. Asaka, Y. Heo, and T. Yoshida, “Lepton flavor model with modular A_4 symmetry in large volume limit,” *Phys.Lett.* **B811** (2020) 135956, arXiv:2009.12120 [hep-ph].
[39] H. Okada and M. Tanimoto, “Spontaneous CP violation by modulus τ in A_4 model of lepton flavors,” *JHEP* 03 (2021) 010, arXiv:2012.01688 [hep-ph].

[40] C.-Y. Yao, J.-N. Lu, and G.-J. Ding, “Modular Invariant A_4 Models for Quarks and Leptons with Generalized CP Symmetry,” *JHEP* 05 (2021) 102, arXiv:2012.13390 [hep-ph].

[41] F. Feruglio, V. Gherardi, A. Romanino, and A. Titov, “Modular invariant dynamics and fermion mass hierarchies around $\tau = i$,” *JHEP* 05 (2021) 242, arXiv:2101.08718 [hep-ph].

[42] P. Chen, G.-J. Ding, and S. F. King, “SU(5) GUTs with A_4 modular symmetry,” *JHEP* 04 (2021) 239, arXiv:2101.12724 [hep-ph].

[43] H. Okada, Y. Shimizu, M. Tanimoto, and T. Yoshida, “Modulus τ linking leptonic CP violation to baryon asymmetry in A_4 modular invariant flavor model,” *JHEP* 07 (2021) 184, arXiv:2105.14292 [hep-ph].

[44] J. Penedo and S. Petcov, “Lepton Masses and Mixing from Modular S_4 Symmetry,” *Nucl.Phys.* B939 (2019) 292–307, arXiv:1806.11040 [hep-ph].

[45] P. Novichkov, J. Penedo, S. Petcov, and A. Titov, “Modular S_4 models of lepton masses and mixing,” *JHEP* 1904 (2019) 005, arXiv:1811.04933 [hep-ph].

[46] I. de Medeiros Varzielas, S. F. King, and Y.-L. Zhou, “Multiple modular symmetries as the origin of flavor,” *Phys.Rev.* D101 (2020) 055033, arXiv:1906.02208 [hep-ph].

[47] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, “New A_4 lepton flavor model from S_4 modular symmetry,” *JHEP* 2002 (2020) 097, arXiv:1907.09141 [hep-ph].

[48] S. F. King and Y.-L. Zhou, “Trimaximal TM1 mixing with two modular S_4 groups,” *Phys.Rev.* D101 (2020) 015001, arXiv:1908.02770 [hep-ph].

[49] J. C. Criado, F. Feruglio, and S. J. King, “Modular Invariant Models of Lepton Masses at Levels 4 and 5,” *JHEP* 2002 (2020) 001, arXiv:1908.11867 [hep-ph].

[50] X. Wang and S. Zhou, “The minimal seesaw model with a modular S_4 symmetry,” *JHEP* 2005 (2020) 017, arXiv:1910.09473 [hep-ph].

[51] X. Wang, “Dirac neutrino mass models with a modular S_4 symmetry,” *Nucl.Phys.* B962 (2021) 115247, arXiv:2007.05913 [hep-ph].

[52] S. F. King and Y.-L. Zhou, “Twin modular S_4 with SU(5) GUT,” *JHEP* 04 (2021) 291, arXiv:2103.02633 [hep-ph].

[53] G.-J. Ding, S. F. King, and C.-Y. Yao, “Modular $S_4 \times SU(5)$ GUT,” arXiv:2103.16311 [hep-ph].

[54] B.-Y. Qu, X.-G. Liu, P.-T. Chen, and G.-J. Ding, “Flavor mixing and CP violation from the interplay of S_4 modular group and gCP,” arXiv:2106.11659 [hep-ph].

[55] P. Novichkov, J. Penedo, S. Petcov, and A. Titov, “Modular A_5 symmetry for flavour model building,” *JHEP* 1904 (2019) 174, arXiv:1812.02158 [hep-ph].
[56] G.-J. Ding, S. F. King, and X.-G. Liu, “Neutrino mass and mixing with A_5 modular symmetry,” *Phys.Rev.* **D100** (2019) 115005, arXiv:1903.12588 [hep-ph].

[57] G.-J. Ding, S. F. King, C.-C. Li, and Y.-L. Zhou, “Modular Invariant Models of Leptons at Level 7,” *JHEP* **2008** (2020) 164, arXiv:2004.12662 [hep-ph].

[58] X.-G. Liu and G.-J. Ding, “Neutrino Masses and Mixing from Double Covering of Finite Modular Groups,” *JHEP* **1908** (2019) 134, arXiv:1907.01488 [hep-ph].

[59] J.-N. Lu, X.-G. Liu, and G.-J. Ding, “Modular symmetry origin of texture zeros and quark lepton unification,” *Phys.Rev.* **D101** (2020) 115020, arXiv:1912.07573 [hep-ph].

[60] P. P. Novichkov, J. T. Penedo, and S. T. Petcov, “Double cover of modular S_4 for flavour model building,” *Nucl. Phys. B* **963** (2021) 115301, arXiv:2006.03058 [hep-ph].

[61] X.-G. Liu, C.-Y. Yao, and G.-J. Ding, “Modular invariant quark and lepton models in double covering of S_4 modular group,” *Phys. Rev. D* **103** no. 5, (2021) 056013, arXiv:2006.10722 [hep-ph].

[62] X. Wang, B. Yu, and S. Zhou, “Double covering of the modular A_5 group and lepton flavor mixing in the minimal seesaw model,” *Phys. Rev. D* **103** no. 7, (2021) 076005, arXiv:2010.10159 [hep-ph].

[63] C.-Y. Yao, X.-G. Liu, and G.-J. Ding, “Fermion masses and mixing from the double cover and metaplectic cover of the A_5 modular group,” *Phys. Rev. D* **103** no. 9, (2021) 095013, arXiv:2011.03501 [hep-ph].

[64] X.-G. Liu, C.-Y. Yao, B.-Y. Qu, and G.-J. Ding, “Half-integral weight modular forms and application to neutrino mass models,” *Phys. Rev. D* **102** no. 11, (2020) 115035, arXiv:2007.13706 [hep-ph].

[65] H. Okada and M. Tanimoto, “Modular invariant flavor model of A_4 and hierarchical structures at nearby fixed points,” *Phys. Rev. D* **103** no. 1, (2021) 015005, arXiv:2009.14242 [hep-ph].

[66] P. Novichkov, J. Penedo, S. Petcov, and A. Titov, “Generalised CP Symmetry in Modular-Invariant Models of Flavour,” *JHEP* **1907** (2019) 165, arXiv:1905.11970 [hep-ph].

[67] G.-J. Ding, F. Feruglio, and X.-G. Liu, “CP Symmetry and Symplectic Modular Invariance,” *SciPost Phys.* **10** (2021) 133, arXiv:2102.06716 [hep-ph].

[68] B. S. Acharya, D. Bailin, A. Love, W. Sabra, and S. Thomas, “Spontaneous breaking of CP symmetry by orbifold moduli,” *Phys.Lett.* **B357** (1995) 387–396.

[69] T. Dent, “CP violation and modular symmetries,” *Phys.Rev. D* **64** (2001) 056005.

[70] J. Giedt, “CP violation and moduli stabilization in heterotic models,” *Mod.Phys.Lett.* **A17** (2002) 1465–1473.

[71] A. Baur, H. P. Nilles, A. Trautner, and P. K. Vaudrevange, “Unification of Flavor, CP, and Modular Symmetries,” *Phys.Lett. B795* (2019) 7–14, arXiv:1901.03251 [hep-th].
[72] G.-J. Ding, F. Feruglio, and X.-G. Liu, “Automorphic Forms and Fermion Masses,” JHEP 01 (2021) 037, arXiv:2010.07952 [hep-th].

[73] R. de Adelhart Toorop, F. Feruglio, and C. Hagedorn, “Finite Modular Groups and Lepton Mixing,” Nucl.Phys. B858 (2012) 437–467, arXiv:1112.1340 [hep-ph].

[74] J. P. Serre, “A course in arithmetic,” Springer-Verlag (1973).

[75] T. Miyake, Modular forms. Springer Science & Business Media, 2006.

[76] F. Diamond and J. M. Shurman, A first course in modular forms, vol. 228 of Graduate Texts in Mathematics. Springer, 2005.

[77] D. Schultz, “Notes on Modular Forms.” https://faculty.math.illinois.edu/~schult25/ModFormNotes.pdf, 2015.

[78] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.4), 2018.

[79] KamLAND-Zen Collaboration, A. Gando et al., “Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen,” Phys. Rev. Lett. 117 no. 8, (2016) 082503, arXiv:1605.02889 [hep-ex]. [Addendum: Phys.Rev.Lett. 117, 109903 (2016)].

[80] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].

[81] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron.Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].

[82] Y. Georgelin, T. Masson, and J.-C. Wallet, “γ(2) modular symmetry, renormalization group flow and the quantum hall effect,” Journal of Physics A: Mathematical and General 33 no. 1, (2000) 39.

[83] H. P. Nilles, S. Ramos-Sánchez, and P. K. Vaudrevange, “Eclectic Flavor Groups,” JHEP 2002 (2020) 045, arXiv:2001.01736 [hep-ph].

[84] H. P. Nilles, S. Ramos-Sanchez, and P. K. Vaudrevange, “Lessons from eclectic flavor symmetries,” Nucl.Phys. B957 (2020) 115098, arXiv:2004.05200 [hep-ph].

[85] H. P. Nilles, S. Ramos-Sanchez, and P. K. Vaudrevange, “Eclectic flavor scheme from ten-dimensional string theory – I. Basic results,” Phys.Lett. B808 (2020) 135615, arXiv:2006.03059 [hep-th].

[86] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sanchez, and P. K. Vaudrevange, “The eclectic flavor symmetry of the Z2 orbifold,” JHEP 2102 (2021) 018, arXiv:2008.07534 [hep-th].

[87] H. P. Nilles, S. Ramos–Sánchez, and P. K. Vaudrevange, “Eclectic flavor scheme from ten-dimensional string theory - II detailed technical analysis,” Nucl.Phys. B966 (2021) 115367, arXiv:2010.13798 [hep-th].

[88] G.-J. Ding, “Fermion Mass Hierarchies and Flavor Mixing from T-prime Symmetry,” Phys. Rev. D 78 (2008) 036011, arXiv:0803.2278 [hep-ph].

[89] W. K. Tung, GROUP THEORY IN PHYSICS. 1985.