Review

Advances on the Transfer of Lipids by Lipid Transfer Proteins

Louise H. Wong,1 Alenka Čopič,2 and Tim P. Levine1,*

Transfer of lipid across the cytoplasm is an essential process for intracellular lipid traffic. Lipid transfer proteins (LTPs) are defined by highly controlled in vitro experiments. The functional relevance of these is supported by evidence for the same reactions inside cells. Major advances in the LTP field have come from structural bioinformatics identifying new LTPs, and from the development of countercurrent models for LTPs. However, the ultimate aim is to unite in vitro and in vivo data, and this is where much progress remains to be made. Even where in vitro and in vivo experiments align, rates of transfer tend not to match. Here we set out some of the advances that might test how LTPs work.

What Are Lipid Transfer Proteins for?

Along with vesicular traffic between organelles, which is a major subject in membrane cell biology, there are nonvesicular routes for intracellular traffic. Prominent among molecules that traffic by nonvesicular means are lipids that are interchanged between membrane-bound organelles. While lipids are transported as constituents of membrane vesicles, organelles such as mitochondria derive lipids entirely by nonvesicular routes. Pioneering work on nonvesicular lipid traffic focused on the endoplasmic reticulum (ER)–mitochondria route, which has high capacity in both directions [1]. Subsequently, other nonvesicular routes were found, even within the secretory pathway. For instance, lipid traffic between the ER and the plasma membrane is faster than can be accounted by vesicular traffic (half-life, 1–5 min) [2,3]. To solve the riddle of all of this nonvesicular traffic, lipid transfer proteins (LTPs) were postulated as activities that mediate lipid transfer across the cytoplasm. By definition, LTPs stimulate some or all of the following steps: extracting lipid from a membrane, mobilising lipid into the aqueous cytoplasm, and re-inserting lipid into a different membrane.

The first LTPs were identified by their ability to recapitulate lipid transfer in cell-free experiments that contained radio-labelled donor membranes and cold acceptor liposomes [1,4]. LTPs show varying degrees of specificity for the lipids they transfer (Table 1). Structural studies showed that many LTPs shield the hydrophobic portions of the lipid, typically in internal cavities that enclose the lipid with a mobile protein segment, similar to a box with a lid (Figure 1). This makes it energetically possible to carry lipids into the cytoplasm. Underlying any specificity an LTP may have for a lipid headgroup is a hydrophilic binding site that may be inside or outside the cavity (Figure 1). By gene duplication large LTP families have arisen, some with widely divergent lipid specificities [5]. Some families have counterparts in prokaryotes (Table 1), which also need LTPs to shuttle lipids between membranes [6].

The search for accelerators of lipid traffic has led to the identification of LTPs that meet the in vitro definition of recapitulating the lipid transfer activity. However, by solubilising lipids an LTP

1UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
2Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France

*Correspondence: tim.levine@ucl.ac.uk (T.P. Levine).
Table 1. Twenty-Three Protein Families Capable of Trafficking Bilayer Lipids

Superfamily/ Family	Human	Yeast	Species	Ligands	First found	Fold	PDB	Refs	
FAD/NAD binding	13	2	≥3	PE ?Other PL	cryst. 2010	α pocket	3k7m	[94]	
GLTP	4	0	≥3	GSLs	pur. 1982	α	1sx6	[95,96]	
Insect allergen repeat (nitrile-specifier detox)	[Insect]	≥3	PLs	cryst. 2013	α	4rb	[97]		
nsLTP	[Plant]	≥3	PLs	pur. 1981	α	1afh	[98,99]		
Saposin	5	0	≥3	GSLs	pur. 1976	α	1m12	[50,100]	
SCP-2 (also called nsLTP)	5	1	≥3	Sterols PL	pur. 1980	α	1c44	[101,102]	
Elicin/cryptogein	[Plant]	≥3	Sterols	cryst. 1996	αβ	1bco	[103]		
LpX lipid transporter	Mycobacteria	1	Phthiocerol dimyococerosate lipids	cryst. 2006	αβ	2bvo	[104]		
NPC1 (amino terminus)	2	1	1	Sterols	pur. 2008	αβ	3gki	[105]	
NTF2	Prokaryote	≥3	PLs	cryst. 2009	αβ	2ggu	[6]		
ORP	12	7	2+	Pi4P sterol PS	pur. 1989	β barrel + α helices	12ny	[106,107]	
Sec14 (CRAL/TRIO)	28	9	2+	Pi PC sterol non-BL	pur. 1976	αβ	1aua	[108,109]	
StARkin	START	15	0	1+	PL sterols non-BL	pur. 1994	β-grip + α helices	1em2	[110,111]
	PTP	5	0	2+	Pi PC PA	pur. 1974	1km	[4,112]	
	Bet v I	[Plant]	1	Q3OS	cryst. 2000	1m4	[113]		
	PRELI-STAP	4	3	1	PA PS	hom. 2012	4xz	[19,20,22]	
	LAM	3	6	1	sterols	hom. 2014	None	[23]	
TULIP	BPI/Takeout	[14]	0	1+	sterol esters PLs TAG non-BL	pur. 1978/1974	elongated β-grip + α helices	2ob	[12,114,115]
	SMP	5	7	≥3	PLs	hom. 2010	4p42	[9,13]	
Lipocalin/	Prokaryote	1	PLs non-BL	pur. 1968	β barrel	3e3c	[116]		
LPS transport (LptACD)	Prokaryote	1	LPS	gen. 2008	β jellyroll	2r19	[117]		
NPC2/GM2AP	4	1	≥3	Sterols GM2	pur. 1979	β sandwich	1nep1pub	[118-120]	
WIF-1	1	0	1+	PC	cryst. 2010	β sandwich	2yn	[121]	

*Superfamilies include two or more families that share structure but not sequence determined by conventional searches [9,51]. Abbreviations are presented in italics.

**Number of genes coding for intracellular lipid transfer proteins in humans and budding yeast (Saccharomyces cerevisiae).

*Number of lipid species, as identified by differing headgroups or conjugated groups, bound by a single typical LTP in this family.

**Lipid ligands identified within the entire LTP family.

***How and when the family was first found: purified (pur.), crystallised (cryst.), predicted by remote homology (hom.), or by genetics (gen.); dates of publication were between 1968 and 2014.

**LTP families are classified according to the Structural Classification of Proteins system [87].

**Accession code for the earliest solved structure (where available).

**Square brackets indicate extracellular proteins.

**LTPs in this family are confined to prokaryotes.

**Proteins with this fold vary in overall size, and only some are large enough to bind bilayer lipids.

**None of the many metazoal lipocalin domain containing proteins have cavities large enough for bilayer lipids.

**1+ indicates that detailed studies show that some LTPs in this family bind additional lipids, significance as yet unknown. This may turn out to be a general feature of any LTP studied in detail.

**Abbreviations: CRAL, cellular retinaldehyde binding protein; GLTP, glycolipid transfer protein; GM2AP, ganglioside GM2 activator protein; GSL, glycosphingolipid; LPS, lipopolysaccharide; non-BL, nonbilayer lipid; NPC, Niemann-Pick type C proteins; nsLTP, nonspecific LTP (same name applies to a family of plant LTPs and a wide-spread family that is also called SCP-2 for sterol carrier protein-2); NTF2, nuclear transport factor-2; PL, phospholipid; Q3OS, quercetin-3-O-sophoroside; TAG, triacylglycerol; TRIO, triple functional domain protein; WIF, Wnt inhibitory factor.

Can act equally well as a lipid sensing protein or as a lipid presenting protein, which would lead to signalling or lipid modification (Figure 2) [7]. Mechanistic understanding is required to distinguish between these possibilities, though they may not be mutually exclusive and may also depend on the physiological state of a cell. This article reviews recent advances and describes how future progress might be made using in vivo and in vitro experimental approaches that test the role of LTPs in net lipid transfer.
Redrawing the Picture of Lipid Traffic

The LTP field has been reinvigorated this decade by a few major developments. Here we describe in detail two recent advances: an increase in the number of known LTPs, particularly at membrane contact sites; and an unexpected finding that oxysterol binding protein (OSBP)-related proteins (ORPs) solubilise phosphatidylinositol (PI) 4-phosphate (PI4P), which provides a way to generate lipid gradients.

LTP Numbers Have Risen Dramatically since 2010, Especially at Contact Sites

The number of LTPs that are known to exist has increased partly as a result of predictions using structural bioinformatics tools such as HHsearch, which detects remote homology with great...
Figure 2. Schematic Illustrations of the Various Functions of a Lipid Binding Domain. (A) Lipid traffic by lipid transfer proteins (LTPs). Either transfer or exchange of lipid can take place at one membrane. Here a countercurrent model is shown, where one LTP (blue) exchanges two lipids (numbered 1 and 2, shown in green and red, respectively) between two membranes. In this example, a steep gradient of Lipid #2 is maintained by its synthesis from Lipid #3 (orange) on the left side, and conversion back to Lipid #3 on the right side. Such a gradient can drive the countercurrent exchange of Lipid #1 up a gradient, albeit this gradient is less steep than that of Lipid #2. This has been shown for oxysterol binding protein (OSBP) homologues, where Lipid #2 is phosphatidylinositol-4-phosphate, Lipid #3 is phosphatidylinositol, and Lipid #1 can be either sterol or phosphatidylserine [38]. (B) LTP as a sensor: An LTP directly senses a lipid if it changes conformation upon binding a lipid and passes that information to a binding partner. Here an interaction is shown between a signalling protein and lipid-bound LTP, whereas the non-lipid-bound form does not interact. This might lead to lipid-dependent signalling, as has been shown for OSBP [48]. Lipid-dependent conformations could also be important for lipid transfer reactions, for example, in membrane targeting (not shown). (C) LTP as a presenter: the LTP–lipid interaction exposes part of the lipid (typically the headgroup) to other proteins, for example, an enzyme (purple) that modifies the lipid (turns from green to red). This applies to the presentation of glycosphingolipids to hydrolytic enzymes by GM2 activator protein (GM2AP) [49]. LTPs that enclose lipid inside a cavity, such as Sec14, may still present lipids as they enter or leave the cavity (not shown) [43]. (D) LTP with an additional lipid modifying function: a protein that can solubilise a lipid ligand will thereby have properties of an LTP; the same protein may also act as a lipid modifying enzyme with other substrates, as is the case for GM2AP when it interacts with phosphatidylcholine and platelet activating factor [52].

sensitivity [8]. The first example is the discovery that so-called synaptotagmin, mitochondrial and lipid binding protein (SMP) domains of previously unknown function are intracellular homologues of extracellular tubular lipid binding proteins (TULIPs) [9]. These are known to traffic lipids [10], and contain dimeric LTP domains that can form a long hydrophobic tunnel [11,12]. Bioinformatic approaches predicted SMP domains as intracellular TULIPs, and thereafter crystal structures were obtained for the SMP domains of extended-synaptotagmin-2 (E-Syt2) [13] and Mdm12 [14]. Like extracellular TULIPs, SMP domains dimerise to form a long hydrophobic tube that binds up to four lipids (two per monomer). The TULIP domain of E-Syt2 binds glycerolipids preferentially to sterol by a factor of up to 5:1 [13,15]. While E-Syt2 shows little or no headgroup specificity, Mdm12 shows considerable specificity for cationic
headgroups [16], possibly because of binding to the acidic side chain D255, found only in Mdm12 [14].

Remote structural homologies have also added two large LTP families to the STARKin superfamily, which includes proteins related to the steroidogenic acute response protein (STAR) and homologues of the major allergen from birch *Betula verrucosa* (Bet v 1) (Table 1) [17]. The first new STARKin family contains the PRELI proteins (proteins of relevant evolutionary and lymphoid interest; in yeast called Ups for 'unprocessed Mgm1'). Unlike intracellular TULIP proteins, PRELI/Ups proteins had been previously implicated in lipid metabolism [18]. Their predicted role as LTPs [19] has since been strengthened by PRELI/Ups crystal structures [20–22]. These show PRELI/Ups in complex with a small accessory subunit TP53-regulated inhibitor of apoptosis-1, (TRIAP1; Mdm35 in yeast), which adds extra helices on to the STARKin β-grip domain, structurally similar to an extra helix found in PI/phosphatidylycholine (PC) transfer protein (PTP) members of the STARKin superfamily (Table 1). The other new family of STARKin proteins contains the LTPs anchored at membrane contact sites (LAMs), a group of proteins with no prior link to lipid metabolism [23]. In this family, the prediction of a STARKin structure is supported by findings that they transfer sterol in vitro [24].

Virtually all intracellular TULIPs and LAMs studied so far are found at contact sites [25]. These are narrow (10–30 nm) gaps between organelles that can be spanned by individual proteins. Contact sites have been found between an increasingly wide range of organelles [25–27]. They were already known to contain a range of LTPs, in particular and many OSBP-related proteins (ORPs, in yeast also called OSBP homologues, Osh), ceramide transfer protein (CERT), PITPs related to RdgB in flies (Nir in humans) [28], and possibly the glycolipid transfer protein four-phosphate adaptor protein-2 (also called FAPP2) [29]. These LTPs use similar combinations of domains to target contacts between the ER and organelles of the exocytic and endocytic pathways. The intracellular TULIP and LAM families all localise to contact sites in a different way, as they are irreversibly embedded in the ER through transmembrane domains.

In addition to these predictions from remote homology, during the same period (2010 to present day) three unexpected LTP families were discovered through structural work that revealed proteins with cavities containing bilayer lipids (Table 1). Thus, structural approaches overall have increased LTP numbers considerably (80 → 106 in humans, 18 → 37 in yeast).

Two Lipids Drive Faster Than One

New mechanistic understanding of lipid traffic has grown from a detailed analysis of anomalies in lipid traffic by ORPs: PI4P (and to a lesser extent PI4,5P2) was known to strongly influence ORP-mediated lipid transfer, but the mechanism was unclear [30]. Work from the labs of Guillaume Drin and Bruno Antonny resolved this by showing that Osh4 not only binds the headgroups of PI4Ps via basic residues on its surface but can also transfer PI4P [31]. For the transfer activity, PI4P binds inside the hydrophobic cavity at a site that overlaps the previously characterised internal sterol binding site (Figure 1C) [31]. The PI4P binding site is the most conserved part of ORPs, thus PI4P is likely to be the common ligand among them. This finding and its interpretation have transformed the field because they have led to a model where ORPs at ER contact sites can drive forward the traffic of one lipid in a countercurrent that is powered by PI4P.

One of the key facts in the countercurrent model is that PI4P is synthesised by PI 4-kinases (3 in yeast, 4 in humans) in the cytoplasmic leaflet of the late Golgi, plasma membrane, or endosomes, and that PI4P is destroyed in the ER by Sac1. The implication of the internal binding site for PI4P is that any ORP can transfer it from a site of synthesis to the ER. Because PI4P is hydrolysed at this site, the same ORP is unlikely to pick up PI4P for traffic out of the ER. Instead, it will take another lipid. The second specificity for ORPs varies: for OSBP and Osh4 it is sterol, for ORP5/8
and Osh6/7 it is phosphatidylserine (PS) [32-34], and it is not known in other cases (e.g., Osh3 [35]). Thus, the asymmetric distribution of PI 4-kinase and PI 4-phosphatase can create multiple lipid gradients (Figure 2A) [36,37]. In this way, ORPs resemble ion antiporters carrying out secondary active transport of one ion up a gradient by harnessing the energy created by another ion flowing down a steeper gradient. Among the strongest in vivo evidence that supports the countercurrent model is the recruitment of PI 4-kinases and ORPs to viral replication sites that become highly enriched in both PI4P and cholesterol [38]. Lipid countercurrents are likely to be highly efficient at membrane contact sites, as shown by the rapid delivery of PS from ER to plasma membrane in yeast [34]. However, contacts are not mechanistically essential for countercurrent [31,37].

Asymmetries in lipid distribution are seen throughout the cell [39,40]. The countercurrent model of ORP function is very appealing because it explains how some of the asymmetries in lipid distribution might be achieved. Nevertheless, more detailed studies are required to determine whether the production rate of PIPs can match the required lipid transfer rate. The model has raised the importance of considering second lipids for LTPs other than ORPs [41]. Other LTPs with second lipids that might engage in countercurrent include alpha-tocopherol transfer protein among other Sec14 homologues [42,43] and RdgB/Nir [44,45], where PI is likely to be the lipid under metabolic control.

The focus on countercurrents prompts a greater interest in minor ligands for all other LTPs, especially if they could engage in a countercurrent. For example, CERT mediates the transfer of ceramide from the ER to the trans-Golgi network (TGN). After delivery, ceramide is converted to sphingomyelin with co-production of DAG, which is potentially toxic to the TGN. The minor ability of CERT to solubilise and transfer DAG [46] may therefore be physiologically relevant, and ceramide plus DAG may engage in a countercurrent mediated by CERT to extract DAG from the TGN, and to deliver ceramide.

Nonlipid Transfer Functions for LTPs

In addition to transferring lipids, LTPs can also act as lipid sensors and lipid presenters. For example, some StARKin domains are found in transcription factors, where their ability to bind lipid correlates with transcription [47]. For LTPs to act as lipid sensors, LTP–lipid interactions must produce unique structural conformations (Figure 1A–C) that then cause signalling events (Figure 2B). To establish a function in lipid sensing, it is important to exclude lipid transfer as the cause of the LTP-derived signal. The easiest way to separate the two activities might be to show that the main function of an LTP is (or is not) lipid transfer, for example, by heterologous replacement (see below).

LTPs may also function as lipid presenting proteins (also called lipid chaperones [5]) when they present part of a lipid, typically the hydrophilic head group, to another protein (Figure 2C). For example, GM2 activator protein (GM2AP) presents glycolipids such as GM2 to a hydrolysing enzyme HexA, acting as an essential enzyme cofactor [48]. Some presenting proteins such as saposins are LTPs, but they are also called ‘liftases’, because they lift lipids out of the bilayer, enhancing access to them by enzymes [50]. Presentation of lipids by LTPs such as Sec14 and its homologues, where bound lipid is located entirely within an internal cavity (Figure 1D), has been proposed to occur during lipid entry into and exit out of the binding pocket, in which case the act of lipid exchange is key [43]. In addition, lipid presentation may occur between cells, for example, by the CD1 major histocompatibility complex, which presents lipid headgroups to T-cell receptors [51].

Finally, LTPs can have lipid-modifying functions (Figure 2D). For example, GM2AP not only presents the sphingolipid GM2, but also has a hydrolase activity for glycerolipids that have
choline headgroups, including PC and platelet activating factor (PAF) [52], although the physiological relevance of this activity is not yet clear. There are other examples where structural and sequence homologues of LTPs are known as lipid-modifying enzymes [53,54], and it is appealing to speculate that LTPs originated from lipid-modifying enzymes, as has been observed for other enzyme–non-enzyme pairs [55].

Approaches to Study Lipid Transfer by LTPs

There are many different experimental approaches to understanding LTPs, with an obvious split being between *in vitro* and *in vivo* experiments. Each approach asks a specific set of questions about a lipid transport step, which provides useful information that other approaches may not probe.

Cell-Free Reconstitution of Lipid Traffic

Even the simplest LTP activity will consist of many discrete steps (Figure 3). To reconstitute such a reaction, we need purified LTP, knowledge about the membranes between which it operates to mimic them with liposomes, and various readouts to follow the reaction and possibly the individual steps in real time. In such a reductionist approach, protein activities and individual parameters can be tested directly one by one. Furthermore, we can gain information on the duration of reaction steps, the number of protein conformations, and the energy of the reaction.

An *in vitro* system must adequately approximate the *in vivo* reaction, which may require many components and so seems daunting. However, highly complex reactions such as the initiation of DNA replication [56] or vesicle fusion [57] can be reconstituted in cell-free systems that are highly informative (Box 1). In contrast to these processes, lipid transfer reactions can be observed with single proteins [4,21]. More complex reconstitutions have now been carried out with contact site bridging by membrane receptors [58], countercurrent generation by PI 4-phosphatase [37], and Ca2+-induced lipid transport [15,59]. For lipid countercurrents, it is clear that LTPs such as ORPs preferentially unload their first ligand when the second ligand is available in the acceptor membrane [31].

Replicating the membrane environment is a difficult issue, accounting for many ways in which *in vitro* LTP assays might give false-negative or inefficient results. For example, the donor or
Box 1. *In Vitro* Reconstitution Approaches: Lessons from SNARE-Dependent Membrane Fusion

The complexity of a living cell can hardly be matched by an *in vitro* reconstitution. However, a continuous effort at improving a biochemical reaction in a membrane environment can yield enormous insights, as can be shown by the example of soluble NSF attachment protein (SNAP) receptor (SNARE) proteins and membrane fusion. One enduring argument against the importance of SNAREs in membrane fusion was that the fusion reaction with liposomes and purified SNARE proteins was at first very slow [57]. It was difficult to imagine how such a reaction could drive the release of neurotransmitters in the brain (five orders of magnitude faster). It was only through the efforts and persistence of many researchers over many years that the importance of SNAREs in membrane fusion has become widely accepted [85]. Several lessons from this venture may be informative for studies of LTPs. Crucial advances were made by (i) identifying core and accessory factors, (ii) defining rate-limiting steps, and (iii) understanding the impact of membrane composition, in this case, the lipids. When one compares the initial reconstitution experiments with the most recent ones, the core machinery remains the same: a set of SNARE proteins distributed between donor and acceptor membranes. However, including additional proteins and lipids to better mimic the composition of authentic organelles and understanding several ‘off-pathway’ reactions have together combined to tremendously increase efficiency, speed, and fidelity of the reconstituted reaction [86,87].

The recent increase in interest in lipid transport at membrane contact sites has led to the identification of many new players and many new hypotheses, but also, not surprisingly, to controversies and impatience to have ‘the real answer’. In the case of SNARE-dependent fusion, *in vitro* reconstitution assays at first only qualitatively approached what happens *in vivo*. However, this strategy enabled gradual progress to a point where the reaction in the tube accurately represents the reaction in the cell, along the way clarifying the contributions of individual players.

acceptor composition may produce LTP–membrane interactions that are either too weak for LTP association or too strong for LTP dissociation [19]. Another factor is that net transfer between liposomes *in vitro* will alter lateral pressures in the liposomes’ external leaflets unless a component of the liposomes can flip to rebalance leaflet contents. Since flipping is slow for glycerolipids, assays *in vitro* might under-report LTP activity. However, there are ways around this problem by designing assays where the LTP returns a lipid from acceptor to donor [21].

Maybe less obviously, an LTP reaction can also give false positives. If the membrane composition or the curvature leads to an unstable bilayer, natural barriers to lipid extraction might be overcome. Reconstitutions can mimic the relevant organelles by using representative liposomes in terms of polar headgroups, acyl chains, and membrane curvature to address topics such as the influence of bilayer packing defects on lipid transfer [37].

Other properties of cellular membranes are extremely difficult to replicate in a synthetic system. These include transverse and lateral heterogeneity and the large number of other proteins, which leads to crowding [60,61]. Among the elementary steps of the LTP cycle reconstituted in cell-free reactions, those that are more likely to be affected by experimental approximations are protein diffusion, and every step that corresponds to an ‘on’ reaction, such as collisions of the protein with the membranes (Figure 3; Steps 1, 4, 5, and 8). By contrast, ‘off’ reactions should be less affected by the *in vitro* approximation because they correspond to dissociation between well-defined components. Fast reactions require stopped-flow kinetic measurements, but some steps, such as membrane binding and lipid extraction, are difficult to uncouple experimentally. Limited parts of the LTP reaction cycle can be simulated using molecular dynamics [34,37].

Other important ingredients that might be missing from current assays are cytosolic or membrane proteins that reduce the energy barrier to lipid extraction, which is the rate-limiting step [62]. Some accessory domains that accompany LTPs may alter the stability of the bilayer locally [63,64]. Some interactions might orient LTPs to enhance their productive interactions with the membrane. In addition, at high local concentrations, which are found at membrane contact sites, LTPs and associated domains may show co-operativity. Finally, there are regulatory interactions that might provide energy inputs that accelerate rates of productive lipid transfer by LTPs. Phosphorylation–dephosphorylation cycles are known to regulate LTPs
In addition, some LTPs interact with chaperones; for example, Osh1 with the AAA-ATPase Atg2p [66]. The roles of any of these factors have not yet been tested in vitro.

Some Lipid Traffic Pathways Are More Amenable to Study Than Others
When it comes to studying lipid traffic in living cells, some pathways are more difficult to work on than others. The combination of in vitro specificity and in vivo localisation of an LTP may suggest its in vivo activity. However, the key evidence is whether measured rates of in vivo lipid traffic are affected by changes in LTP levels. Such evidence has been obtained in some examples: (i) traffic by CERT of ceramide from the ER to the TGN for sphingomyelin synthesis; (ii) uptake by STAR of cholesterol into mitochondria for steroid hormone synthesis; and (iii) delivery by Ups1p/Mdm35p of phosphatidic acid (PA) from the outer mitochondrial membrane to the inner mitochondrial membrane for cardiolipin synthesis (see Figure 4 and Box 2). In these cases, it has been uncontroversial to suggest that these LTPs mediate net lipid traffic [19,46,67]. In other cases, it has been far harder to determine the in vivo LTP because important features that allow the crucial in vivo experiments to work are missing. One of these features is linearity of the transport pathway. For lipid traffic, connectivity of organelles via membrane contact sites is often circular, compared with the more linear secretory pathway, at least in its early stages.

![Figure 4](image-url)
Figure 4. Discrepancies between Rates of Lipid Transfer Protein (LTP) Transfer In Vitro and In Vivo. (A) In vitro rates of phosphatidic acid (PA) transfer by Ups1p/Mdm35. In highly reproducible, well-controlled assays by Watanabe et al. [21], the calculated rate at which the LTP moves PA from any one liposome to another is 1/s (details in Box 2A). This is the upper limit for net traffic. At ‘Start’, the measured emission from 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)–PA is inhibited as it undergoes Förster resonance energy transfer (FRET) with rhodamine–phosphatidylethanolamine (PE), which emits at 585 nm (yellow signal). Note that although NBD–PA and rhodamine–PE are diffusing freely in the donor membrane, they are illustrated close together to indicate the proximity for FRET, which is <2 nm. As the reaction progresses to ‘End’, the measured NBD fluorescence increases as NBD–PA is moved to acceptor liposomes lacking rhodamine–PE, where it emits at 535 nm (green signal). (B) Estimate of in vivo rate of PA import into mitochondria in budding yeast. Cardiolipin (CL) is made in the mitochondrial matrix from a phosphatidylglycerol (PG) and a cytidine diphosphate diaclyglycerol, each of which is made from one imported PA molecule. The lower limit of in vivo PA transfer by Ups1 is estimated to be 12/s (details in Box 2B). This is >12-fold faster than the rate measured in (A). See Box 2 for potential sources of error. Abbreviations: Ac, acceptor; Dn, donor; PRELI, proteins of relevant evolutionary and lymphoid interest (in yeast called Ups for ‘unprocessed Mgm1’); TRIAP1, TPS3-regulated inhibitor of apoptosis-1 (Mdm35 in yeast).
Box 2. Detailed Analysis of PA Import into Mitochondria by Ups1 in Yeast

(A) Evaluation of In Vitro PA Transfer Assays by Ups1/Mdm35 (Yeast Homologs of PRELI/TRIAP1) in Watanabe et al. [21].

Analysis of three factors yields a rate of 1/s for the in vitro transfer of PA by Ups1/Mdm35 complex that is shown in diagrammatic form in Figure 4A: (i) the proportion of transfers measured by fluorescence of NBD-PA, (ii) the rate of signal increase, and (iii) the number of NBD-PA transfers at equilibrium.

(i) Donor (Dn) and acceptor (Ac) liposomes (ratio 1:4, both 100 nm diameter) have initial composition differences: Ac contains unlabelled PA (~1250 nM in external leaflet). The PA in Dn is replaced by fluorescent NBD-PA (~250 nM in external leaflet), which is quenched by rhodamine-PE present only in Dn. When LTP is added to both Dn and Ac, there is an increase in NBD fluorescence with first-order kinetics, indicating net traffic of NBD-PA from Dn to Ac (Figure SB in [21]). We assume equivalent net traffic of PA from Ac to Dn, and that the reaction tends to an equilibrium where the total PA content of each liposome is composed of a 1:5 ratio of NBD-PA and unlabelled PA. Among the distinct movements of the LTP, transfer from Dn → Ac is only one; others will be Dn → Dn, Ac → Ac, and Ac → Dn. Assuming that the LTP interacts equally with Dn and Ac, the net transfers registered by gain of fluorescence (Dn → Ac) represent approximately (17% × 83%) = 14% of all transfers.

(ii) Initial rate (the signal increase from t = 5 – 15 s, after subtraction of background without LTP, as proportion of maximum signal) = (from Figure SB in Watanabe 1.4%/set et al. [21]).

(iii) Since equilibrium requires 20 nM of LTP to transfer ~200 nM of NBD-PA from Dn to Ac, equilibrium occurs when each LTP has undergone 200/20 = 10 rounds of such transfer. Thus, the in vitro rate of traffic between any two liposomes is as follows:

\[
\text{rate} = \frac{1.4/5}{\text{number rounds} = 10} \approx 1/\text{s}
\]

Fraction (transfers reported) = 14%/s

Additional analysis of transfer assays using radiolabeled PA in the place of NBD-PA from Connerth et al. [19] yields a similar rate, indicating that the NBD headgroup does not affect transfer. This rate is also comparable to that measured for other LTPs, for example, ORPs [31].

(B) Estimate of Minimum In Vivo Rate of PA Import across the Mitochondrial Intermembrane Space in Budding Yeast

This analysis of in vivo transfer, as shown in diagrammatic form in Figure 4B, uses three approximations to estimate the lower limit of transfer by Ups1 as ~12/s: (i) the minimum synthesis rate of cardiolipin (CL) to reproduce its content in a single-cell cycle, (ii) the copy number of Ups1 per cell, and (iii) the proportion of PA import mediated by Ups1.

(i) The production of one CL requires delivery of two PA molecules to the inner membrane. Mitochondria in yeast have a similar surface area [88] and similar amount of lipid [89] to the plasma membrane, which has approximately 2 × 10^9 phospholipids (PLs) [90]. Therefore, we assume that the number of mitochondrial PLs per cell is ~2 × 10^9. CL makes up ~15% of mitochondrial PLs [91,92], that is, 3 × 10^7 per cell. By comparison, levels of all precursors to CL are low (<10% of PLs), and are discounted here. To make this amount of CL, the number of imported PA is 6 × 10^7.

Mitochondrial CL must be made at least once per cell cycle (~5000 s).

Import rate of PA ≥ 6 × 10^7 /5000 = 12000/s

(ii) The estimated copy number of Ups1 is ~700 per cell [93]

(iii) Ups1 carries out approximately 70% of CL import (see Connerth et al. [19], Figure 1B).

Transfer by Ups1 ≥ 0.7 × 12000/700

≥ 12/s

That is, >12-fold faster than rate measured in vitro – see the ‘Evaluation of In Vitro PA Transfer Assays by Ups1/Mdm35 (Yeast Homologs of PRELI/TRIAP1) in Watanabe et al. [21]’ section.

Potential Sources of Error

(i) Overestimate of Ups1 role: some experiments in Connerth et al. [19] indicate that ups1 has 50% CL synthesis of wild-type, not 30%, error factor × 1.4.

(ii) Overestimate of mitochondrial area; this might include an error by a further factor ×3.

If both (i) and (ii) apply, in vivo LTPs transfer rate is still >3/s that is, ~3× faster than the measured rate.
Almost any pair of organelles is linked by a contact site, meaning that lipid can traffic from A\leftrightarrowB\leftrightarrowC\leftrightarrowA. In such a circular arrangement, blocking any one step still allows lipid to access all compartments. A well-explored example of this is the lipid traffic pathway ER\leftrightarrowvacuole (yeast equivalent of lysosome)\leftrightarrowmitochondria\leftrightarrowER. Blocking either of the routes involving mitochondria leads to hypertrophy of the other route, which is presumed to be a compensatory change that allows lipids to reach mitochondria \cite{68,69}. Multiple circularities may explain how genetic screens fail to identify LTPs along key routes where lipid traffic is highly complex \cite{70}.

What Is the Limit for Experiments in Living Cells?
A focus for the future will be to build up techniques that overcome the problems of studying some lipid transport pathways \textit{in vivo}. Here we look at three techniques by which we might advance our understanding of the transfer of lipids between cellular compartments by LTPs.

Lipid Probes to Pulse and Chase
A major difficulty for \textit{in vivo} studies of lipid traffic is to find a lipid reporter that allows the study of transport at high temporal and spatial resolution in an intact environment. The value of fluorescent lipids is often limited by the effects of large groups on the physicochemical properties of the native lipid. This can be partly overcome by using reporters with only minimal changes compared to the original lipid, such as additional conjugated double bonds in either cholesterol or acyl chains, although these molecules are hard to image \cite{71,72}. Radiolabelled lipids or precursors have long been used to probe traffic pathways, and they continue to be useful \cite{1,73}, although their value is limited for following intracellular location. One way to deliver a pulse of lipid is to use caged lipids. These are nonpolar precursors that are activated by light, and they can be highly informative \cite{74}. Another way to pulse lipid into cells is to add a nonbilayer precursor, such as a lysolipid, that is rapidly converted into a bilayer lipid. For example, in yeast lyso-PS is acylated to PS in the ER within 1 min, allowing PS traffic out of the ER to be followed in a time-resolved manner \cite{32,34}. In addition, lipids added externally can be minimally modified, creating so-called bifunctional lipids. Most often two small chemical groups are added, typically to the acyl chain: azide for photo-crosslinking and alkyne for detection (after fixation) by click chemistry \cite{75}. So far, this pair of groups has been added only to lipid precursors such as fatty acid or sphingosine, but their use in bilayer lipids could be informative.

Protein Reporters
The localisation of a particular lipid can also be determined with a protein reporter that binds its headgroup. The reporter should be detectable when present at low stoichiometry, so its binding does not affect the total lipid pool. The reporter should also be nonbiased toward any given lipid pool, which has been achieved for PI4P detection using a bacterial reporter \cite{76}. By contrast, detection of cholesterol with perfringolysin (subunit D) is biased for chemically active sterol not bound to other lipids, so a large proportion of sterol in the plasma membrane is undetectable \cite{77}. Future advances might include the development of probes specific for PC, phosphatidylethanolamine, and PI, or that can identify all sterols.

Heterologous Replacement
In addition to directly studying lipid traffic, a proposed LTP activity can be inferred when its function is replaceable with an LTP with the same \textit{in vitro} specificity but without sequence homology (hence heterologous). This has been demonstrated for StARD4, overexpression of which has similar functional consequences on sterol traffic as microinjection of cyclodextrin, a small sugar polymer that can transfer sterols \cite{78}. Other experiments are less clear. Deletion of Ysp2p, a putative sterol transfer protein in yeast, is partially rescued by the unrelated sterol transfer domain from human StAR\textsubscript{D3} \cite{73}. Similarly, deletion of Sec14, a PI/PC-specific member of the cellular retinaldehyde binding protein/triple functional domain protein (CRAL/TRIO) superfamily, is partially rescued by an unrelated PI/PC transfer protein from the Starkin
superfamily [79]. The lack of strong rescue in both these cases may indicate a greater degree of complexity, for example, in intracellular targeting.

Genetics (Fast versus Slow Approaches)

Genetic manipulation of one or multiple LTPs has yielded many insights, but there are limits imposed by the ability of cells to adapt, in particular by hypertrophy of parallel pathways, as we have described. More subtle approaches may be developed to minimise cellular adaptations to deletion of LTPs. For example, the problems of cellular adaptation to loss of ER ⇄ mitochondrial LTPs [68,80] can be mitigated by hyperactive Vps13p mutants that bypass that genetic lesion, hence preventing gross hypertrophy of vacuole ⇄ mitochondrial contacts [81,82]. Other approaches for the future include rapid relocation of LTPs within cells [83] or using small molecular inhibitors, such as the ORPhilins to inhibit ORPs [38].

Concluding Remarks: The Eventual Goal Is to Align In Vitro and In Vivo Experiments

The function of some LTPs is still uncertain. Even though many LTPs are thought to mediate the net transfer of lipids along specific routes in cells, these routes have yet to be studied in detail. It would be a big advance if a combination of in vitro and in vivo techniques was applied to produce a coherent set of results for each route. One way to link in vitro and in vivo experiments, perhaps revealing the disparities between them, would be to focus (if only briefly) on estimates of the rate of lipid transfer arising from each approach. The extent to which these match each other indicates how close we are to a full understanding (see Outstanding Questions).

Taking sterol traffic in yeast as an example, it has been shown in yeast that Osh4 (30,000 copies per cell, the major ORP in numeric terms) can transfer sterol at a rate of up to 0.5/s [31]. It is therefore possible that it meets the demand for forward sterol traffic out of the ER to allow cellular replication (replication requires ~10,000 sterols/s) [37]. However, this set of estimates must be reconciled with other studies that estimate the maximal rate of sterol traffic is tenfold higher [62]. Other LTP-mediated steps show discrepancies between rates of transfer measured in vitro and in vivo. We have used the literature to consider one example in detail: import of PA across the mitochondrial intermembrane space for cardiolipin synthesis by the Ups1/Mdm35 complex in yeast [19]. In vitro, the LTP complex can transfer PA at ≤1 lipid/s (Figure 4A and Box 2A) [21], However, in vivo, we estimate each LTP complex imports ≥12 lipids/s (Figure 4B and Box 2B). Such a fast imputed rate for in vivo traffic is not unique. For example, STAR has been suggested to transfer sterol at 7/s [84]. In addition, fast nonvesicular lipid traffic is not limited to either sterols or import into mitochondria, as it appears to occur for ER to plasma membrane traffic of PS [34], though not all phospholipids have been tested. We interpret these findings not to say that the studies cited are in any way flawed. Instead, the discrepancies (here ≥12-fold) might stimulate further research.

To understand LTPs, lipid traffic in vivo should be measured accurately. Factors that might affect lipid transfer should be replicated for assays in vitro. Together, these steps may advance us toward a more united picture.

Acknowledgements

L.W. was funded by the MRC (MR/J006850/1) and BBSRC (BB/P003818/1), A.C. was funded by the CNRS and a Marie Curie Grant (8319977). We would like to thank Daniel Alexander (UCL) and Bruno Antony (IPMC, Sophia-Antipolis) for helpful discussions, and Anant Menon (Weill Medical College) for sharing material prior to publication.
References

1. Witz, K.-W. and Zilversmit, D.B. (1968) Exchange of phospholipids between liver mitochondria and microsomes in vitro. J. Biol. Chem. 243, 3596–3602
2. Daum, G. et al. (1986) Intracellular transfer of phospholipids in the yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta 878, 93–101
3. Pagano, R.E. (1990) Lipid traffic in eukaryotic cells: mechanisms for intracellular transport and organelle-specific enrichment of lipids. Curr. Opin. Cell Biol. 2, 652–663
4. Helmkamp, G.M., Jr et al. (1974) Phospholipid exchange between membranes. Purification of bovine brain proteins that preferentially catalyze the transfer of phosphatidylinositol. J. Biol. Chem. 249, 6382–6389
5. Chiapparino, A. et al. (2016) The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Prog. Lipid Res. 61, 30–39
6. Malinverni, J.C. and Sihavy, T.J. (2009) An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proc. Natl. Acad. Sci. U. S. A. 106, 8009–8014
7. Grabon, A. et al. (2015) Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology. Biochim. Biophys. Acta 1851, 724–735
8. Scolding, J. et al. (2005) The Hipriped interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248
9. Koper, K.O. et al. (2010) Homology of SMP domains to the TULP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 26, 1927–1931
10. Zilversmit, D.B. et al. (1975) Stimulation of cholesterol ester exchange by lipoprotein-free rabbit plasma. Biochim. Biophys. Acta 409, 393–398
11. Beamer, L.J. et al. (1997) Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science 276, 1861–1864
12. Qiu, X. et al. (2007) Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat. Struct. Mol. Biol. 14, 106–113
13. Schauder, C.M. et al. (2014) Structure of a lipid-bound extended syntaxotymin indicates a role in lipid transfer. Nature 510, 552–555
14. Jeong, H. et al. (2016) Crystal structure of Mtm12 reveals the architecture and dynamic organization of the ER-MES complex. EMBO Rep. 17, 1857–1871
15. Yu, H. et al. (2016) Extended syntaxotymins are Ca2+-dependent lipid transfer proteins at membrane contact sites. Proc. Natl. Acad. Sci. U. S. A. 113, 4363–4368
16. AhYoung, A.P. et al. (2015) Conserved SMP domains of the ER-MES complex bind phospholipids and mediate tether assembly. Proc. Natl. Acad. Sci. U. S. A. 112, E3179–E3188
17. Wong, L.H. and Levine, T.P. (2016) Lipid transfer proteins do their thing anchored at membrane contact sites... but what is the story? Biochem. Soc. Trans. 44, 517–527
18. Sasaki, H. et al. (2006) Up1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p. J. Cell Biol. 173, 651–658
19. Connert, M. et al. (2012) Intramitochondrial transport of phosphatidic acid by yeast in a lipid transfer protein. Science 338, 815–818
20. Miliana, X. et al. (2015) Structural insight into the TRAP1/PEL1-like family of mitochondrial phospholipid transport complexes. EMBO Rep. 16, 824–835
21. Watanabe, Y. et al. (2015) Structural and mechanistic insights into phospholipid transfer by Up1p-Mtm35 in mitochondria. Nat. Commun. 6, 7922
22. Yu, F. et al. (2015) Structural basis of intramitochondrial phosphatidic acid transport mediated by Up1p-Mtm35 complex. EMBO Rep. 16, 813–823
23. Khafif, M. et al. (2014) Identification and phylogenetic analyses of VAS2, an uncharacterized protein domain associated with lipid-binding domains in eukaryotes. BMC Bioinformatics 15, 222
24. Murley, A. et al. (2015) Lic1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contact sites. J. Cell Biol. 209, 539–548
25. Gatta, A.T. and Levine, T.P. (2017) Piecing together the patchwork of contact sites. Trends Cell Biol. 27, 214–229
26. Daniele, T. and Schaffino, M.V. (2016) Lipid transfer and metabolism across the endoplasmic-solominal mitochondrial boundary. Biochim. Biophys. Acta 1861, 880–894
27. Perez-Sancho, J. et al. (2016) Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol. 26, 705–717
28. Tournay, A. and Prinz, W.A. (2011) Lipid transfer and signaling at organelle contact sites: the tip of the iceberg. Curr. Opin. Cell Biol. 23, 458–463
29. Miktova, V. and Levine, T.P. (2012) Analysis of the key elements of FFAT-like motifs identifies new proteins that potentially bind VAP on the ER, including two AKAPs and FAPP2. PLoS One 7, e30455
30. Schul, T.A. et al. (2009) Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J. Cell Biol. 187, 889–903
31. de Saint-Jean, M. et al. (2011) OsHsp exchanges sterols for phosphatidylinositol 4- phosphate between lipid bilayers. J. Cell Biol. 195, 965–978
32. Maeda, K. et al. (2013) Interactive map uncover phosphotidylserine transport by oxysterol-binding proteins. Nature 501, 257–261
33. Chung, J. et al. (2015) Intracellular transport: P4P/phosphatidylserine countertransport at ORPs- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428–432
34. Moser von Filek, J. et al. (2015) Intracellular transport: phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349, 432–436
35. Tong, J. et al. (2013) Structure of Osh3 reveals a conserved mode of phosphoinositol binding in oxysterol-binding proteins. Structure 21, 1203–1213
36. Mesmin, B. et al. (2013) A four-step cycle driven by PtdEPI hydrolysis directs sterol/PtdEPI exchange by the ER-Golgii tether OSBP. Cell 155, 830–843
37. Moser von Filek, J. et al. (2015) A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipido gradient between membranes. Nat. Commun. 6, 6671
38. Mesmin, B. and Antony, B. (2016) The counterflow transport of sterols and P4P. Biochim. Biophys. Acta 1861, 940–951
39. Bigay, J. and Antony, B. (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell 23, 886–895
40. Holthus, J.C. and Menon, A.K. (2014) Lipid landscapes and pipelines in membrane homeostasis. Nature 510, 49–57
41. Drin, G. et al. (2016) New molecular mechanisms of inter-organelle lipid transport. Biochem. Soc. Trans. 44, 486–492
42. Kono, N. et al. (2013) Impaired alpha-TTP-PtP interaction underlines familial vitamin E deficiency. Science 340, 1106–1110
43. Schaal, G. et al. (2008) Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol. Cell 29, 191–206
44. Kim, Y.J. et al. (2015) Phosphatidylinositol-phosphatic acid exchange by Ni2 at ER–PM contact sites maintains phosphoinositide signaling competence. Dev. Cell 33, 549–561
45. Yadav, S. et al. (2015) RGS6a, a PtdIns(4,5)P2/PhD luminal transfer protein, regulates G-protein-coupled PtdIns4,5P2 signaling during Drosohiphola phototransduction. J. Cell Sci. 128, 3330–3344
46. Hanada, K. et al. (2003) Molecular machinery for non-vascularial trafficking of ceramide. Nature 426, 803–809
47. Schink, K. et al. (2014) Shared functions of plant and mamma- lian STAP-related lipid transfer (START) domains in modulating transcription factor activity. BMC Biol. 12, 70
48. Wang, P.Y. et al. (2005) OSBP is a cholesterol-regulated scaffold protein in control of ER/PM 1/2 activation. Science 307, 1472–1476
49. Conzelmann, E. et al. (1982) Complexing of glycolipids and their transfer between membranes by the activator protein for degradation of lysosomal ganglioside GM2. Eur. J. Biochem. 123, 455–464
50. Furst, W. and Sandhoff, K. (1982) Activator proteins and topology of lysosomal sphingolipid catalysis. Biochem. Biophys. Acta 1126, 1–16
51. Beckmann, E.M. et al. (1994) Recognition of a lipid antigen by CD1-restricted alpha beta T cells. Nature 372, 691–694
52. Wright, C.S. et al. (2005) Crystal structure analysis of phosphatidylcholine-GM2-activator protein complexes: evidence for hydrolysis activity, Biochemistry 44, 13510–13521
53. Iyer, L.M. et al. (2001) Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 43, 134–144
54. Eberhardt, R.Y. et al. (2013) Filling out the structural map of the NTF2-like superfamily. BMC Biophysics 14, 327
55. Todd, A.E. et al. (2002) Sequence and structural differences between enzyme and nonenzyme homologs. Structure 10, 1435–1451
56. Wehrli, T. et al. (2015) Regulated eukaryotic mRNA degradation origin fitting with purified proteins. Nature 519, 431–435
57. Weber, T. et al. (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772
58. Mesmin, B. et al. (2013) Insights into the mechanisms of sterol transport between organelles. Cell. Mol. Life Sci. 70, 3405–3421
59. Saheki, Y. et al. (2016) Control of plasma membrane lipid homeostasis by the extended synaptogaminins. Nat. Cell Biol. 18, 504–515
60. Derganc, J. et al. (2013) Membrane bending: the power of membrane imbalance. Trends Biochem. Sci. 38, 576–584
61. Marquardt, D. et al. (2015) Asymmetric lipid membranes: towards more realistic model systems. Membranes 5, 180–196
62. Dittman, J.S. and Menon, A.K. (2017) Speed limits for nonvesicular intracellular sterol transport. Trends Biochem. Sci. 42, 90–97
63. Suresh, S. and Edwardson, J.M. (2010) The endoplasmic N-BAR domain perturbs the structure of lipid bilayers. Biochemistry 49, 5766–5771
64. Padlock, B.E. et al. (2011) Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo. J. Neurosci. 31, 2248–2257
65. Weber, P. et al. (2015) A computational model of PKD and CERT interactions at the trans-Golgi network of mammalian cells. BMC Syst. Biol. 9, 9
66. Wang, P. et al. (2005) AAA ATPases regulate membrane association of yeast oxysterol binding proteins and sterol metabolism. EMBO J. 24, 2969–2999
67. Stocco, D.M. and Clark, B.J. (1996) Role of the sterol regulatory acute regulatory protein (SAR) in sterologenesis. Biochem. Pharm. 51, 197–205
68. Elbaz-Alon, Y. et al. (2014) A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30, 95–102
69. Honscher, C. et al. (2014) Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30, 86–94
70. Voelker, D.R. (2009) Genetic and biochemical analysis of nonvesicular lipid traffic. Annu. Rev. Biochem. 78, 827–856
71. Soltanik, K.A. et al. (2015) Fluorescent sterols and cholesterol esters as probes for intracellular cholesterol transport. Lipid Insights 8, 95–114
72. Kuerschner, L. et al. (2005) Polyene-lipids: a new tool to image lipids. Nat. Methods 2, 39–45
73. Gatta, A.T. et al. (2010) A new family of START domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife 4, e07253
74. Hoglinger, D. et al. (2015) Intracellular sphingosine releases calcium from lysosomes. eLife 4, e08116
75. Haberkant, P. and Holthuis, J.C. (2014) Fat and fabulous: bifunctional lipids in the spotlight. Biochim. Biophys. Acta 1841, 1022–1030
76. Hammond, G.R. et al. (2014) A novel probe for phosphatidylcholine-bilayer 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205, 113–126
77. Das, A. et al. (2014) Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. eLife 3, e02882
78. Mesmin, B. et al. (2011) STARD4 abundance regulates sterol transport and sensing. Mol. Biol. Cell 22, 4004–4015
79. Shimmer, H.B. et al. (1983) Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J. 12, 4775–4784
80. Kimmann, B. et al. (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481
81. Lang, A.B. et al. (2015) ER-mitochondrial junctions can be bypassed by dominant mutations in the endoplasmic protein Vps13. J. Cell Biol. 210, 883–890
82. Kojima, R. et al. (2016) A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro. Sci. Rep. 6, 30777
83. Voss, B. et al. (2015) Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr. Opin. Chem. Biol. 28, 194–201
84. Artemenko, I.P. et al. (2001) Mitochondrial processing of newly synthesized steroidogenic acute regulatory protein (SARP), but not total SARP, mediates cholesterol transfer to cytochrome P450 side chain cleavage enzyme in adrenal cells. J. Biol. Chem. 276, 46583–46596
85. Bombarider, J.P. and Munson, M. (2015) Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Curr. Opin. Chem. Biol. 29, 66–71
86. Zick, M. et al. (2014) Membranes linked by trans-SNARE complexes require lipids prone to non-bilayer structure for progression to fusion. eLife 3, e01879
87. Ma, C. et al. (2013) Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339, 421–425
88. Perkold, A. et al. (2007) Organelle association visualized by three-dimensional ultrastuctural imaging of the yeast cell. FEBS Yeast Res. 7, 629–638
89. Jakovljevic, S. et al. (1971) Cardiolipin content of wild type and mutant yeasts in relation to mitochondrial function and development. J. Cell Biol. 48, 490–502
90. Sullivan, D.P. et al. (2006) Sterol trafficking between the endoplasmic reticulum and plasma membrane in yeast. Biochem. Soc. Trans. 34, 358–358
91. Zinser, E. et al. (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J. Bacteriol. 173, 2026–2034
92. Horvath, S.E. and Daum, G. (2013) Lipids of mitochondria. Prog. Lipid Res. 52, 590–614
93. Gheemmaghamsi, S. et al. (2003) Global analysis of protein expression in yeast. Nature 425, 737–741
94. Kachalova, G.S. et al. (2010) Crystal structure analysis of free and substrate bound 6-hydroxy-l-nicotine oxidase from Arthrobacter nicotinovorans. J. Mol. Biol. 396, 785–799
95. Ahe, A. et al. (1982) A protein purified from pig brain accelerates the inter-membranous translocation of mono- and dihexosylceramides, but not the translocation of phospholipids. Biochim. Biophys. Res. Commun. 104, 1386–1393
96. Malina, L. et al. (2004) Structural basis for glycosphingolipid transfer specificity. Nature 430, 1046–1053
97. Mueller, G.A. et al. (2013) The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. J. Allergy Clin. Immunol. 132, 1420–1426
98. Kader, J.C. (1975) Proteins and the intracellular exchange of lipids. I. Stimulation of phospholipid exchange between
99. Gomar, J. et al. (1994) Solution structure and lipid binding of a non-specific lipid transfer protein extracted from maize seeds. *Protein Sci.*, 5, 655-677

100. de Alba, E. et al. (2000) Solution structure of human saposin C: pH-dependent interaction with phospholipid vesicles. *Biochemistry* 42, 14729-14738

101. Noland, B.J. et al. (1988) Purification and properties of sterol carrier protein 2. *J. Biol. Chem.* 265, 4282-4289

102. Choinowski, T. et al. (2000) Structure of sterol carrier protein 2 at 1.8 Å resolution reveals a hydrophobic tunnel suitable for lipid binding. *Biochemistry* 39, 1897-1902

103. Blossey, G. et al. (1996) Crystal structure of a fungal effector secreted by *Phytophthora cryptogea*, a member of a novel class of plant nectrotic proteins. *Structure* 4, 1429-1439

104. Sulzenbacher, G. et al. (2006) LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of *Mycobacterium tuberculosis*. *EMBO J.* 25, 1436-1444

105. Infante, R.E. et al. (2008) Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1279-amino acid membrane protein. *J. Biol. Chem.* 283, 1052-1083

106. Dawson, P.A. et al. (1989) Purification of oxysterol binding protein from hamster liver cytosol. *J. Biol. Chem.* 264, 9046-9052

107. Im, Y.J. et al. (2005) Structural mechanism for sterol sensing and transport by OSBP-related proteins. *Nature* 437, 154-158

108. Srikantaiah, M.V. et al. (1976) Purification and properties of sterol carrier protein 1. *J. Biol. Chem.* 251, 5496-5504

109. Sha, B. et al. (1996) Crystal structure of the Saccharomycodes cerevisiae phosphatidylinositol-transfer protein. *Nature* 381, 506-510

110. Clark, B.J. et al. (1994) The purification, cloning, and expression of a novel luteinizing hormone-induced microsomal protein in MA-10 mouse Leydig tumor cells. Characterization of the sterol-diagenic acute regulatory protein (SAR). *J. Biol. Chem.* 269, 28314-28322

111. Tsujihata, Y. and Hurley, J.H. (2000) Structure and lipid transport mechanism of a SRA-related domain. *Nat. Struct. Biol.* 7, 406-414

112. Yoder, M.D. et al. (2001) Structure of a multifunctional protein: mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. *J. Biol. Chem.* 276, 9246-9252

113. Markovic-Housley, Z. et al. (2003) Crystal structure of a hypoallergenic isomer of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. *J. Mol. Biol.* 325, 123-133

114. Chajek, T. and Fielding, C.J. (1978) Isolation and characterization of a human serum cholesteryl ester transfer protein. *Proc. Natl. Acad. Sci. U. S. A.* 75, 3445-3449

115. Kramer, K.J. et al. (1974) The juvenile hormone binding protein in the hemolymph of *Manduca sexta* Johannsen (Lepidoptera: Sphingidae). *Proc. Natl. Acad. Sci. U. S. A.* 71, 493-497

116. Jobichen, C. et al. (2009) Identification and characterization of the lipid-binding property of GrP, a locus of enterocyte effacement regulator. *Biochem. J.* 420, 191-199

117. Suits, M.D. et al. (2008) Novel structure of the conserved gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. *J. Mol. Biol.* 380, 476-488

118. Conzelmann, E. and Sandhoff, K. (1979) Purification and characterization of an activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A. *Hoppe-Seylers Z. Physiol. Chem.* 360, 1837-1849

119. Wright, C.S. et al. (2000) Crystal structure of human GM2:activator protein with a novel beta-cup topology. *J. Mol. Biol.* 304, 411-422

120. Friedland, N. et al. (2003) Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. *Proc. Natl. Acad. Sci. U. S. A.* 100, 2512-2517

121. Malinauskas, T. et al. (2011) Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. *Nat. Struct. Mol. Biol.* 18, 886-893