Two variants of the support problem for products of abelian varieties and tori

Antonella Perucca

Abstract

Let G be the product of an abelian variety and a torus defined over a number field K. Let P and Q be K-rational points on G. Suppose that for all but finitely many primes p of K the order of $(Q \mod p)$ divides the order of $(P \mod p)$. Then there exist a K-endomorphism ϕ of G and a non-zero integer c such that $\phi(P) = cQ$. Furthermore, we are able to prove the above result with weaker assumptions: instead of comparing the order of the points we only compare the radical of the order (radical support problem) or the ℓ-adic valuation of the order for some fixed rational prime ℓ (ℓ-adic support problem).

1 Introduction

Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a K-rational point on G and let ϕ be a K-endomorphism of G. Then for all but finitely many primes p of K the order of $(\phi(R) \mod p)$ divides the order of $(R \mod p)$. The support problem is concerned with the converse: what can we say about two K-rational points P and Q satisfying the following condition?

\textbf{(SP)} The order of $(Q \mod p)$ divides the order of $(P \mod p)$ for all but finitely many primes p of K.

This question was first studied in [5], [7] and [4]. Larsen solved the support problem for abelian varieties by showing that there exist a K-endomorphism ϕ and a non-zero integer c such that $\phi(P) = cQ$ ([9, Theorem 1]). In general, one can not take $c = 1$ even if P and Q have infinite order ([9, Proposition 2]).

We study two variants of the support problem, which we call respectively ℓ-adic support problem and radical support problem. We require weaker conditions on the points:

\textbf{(LSP)} Fix a rational prime ℓ and suppose that the ℓ-adic valuation of the order of $(Q \mod p)$ is less than or equal to the ℓ-adic valuation of the order of $(P \mod p)$, for all but finitely many primes p of K.

Fix an infinite set S of rational primes and suppose that for every ℓ in S the order of $(Q \mod p)$ is coprime to ℓ whenever the order of $(P \mod p)$ is coprime to ℓ, for all but finitely many primes p of K.

We strengthen Larsen’s result on the support problem by proving the following:

Main Theorem. Let G be the product of an abelian variety and a torus defined over a number field K. Let P and Q be K-rational points on G. Suppose that P and Q satisfy condition (LSP) or condition (RSP). Then there exist a K-endomorphism ϕ of G and a non-zero integer c such that $\phi(P) = cQ$.

For abelian varieties, our result has an alternative proof: the proof by Larsen of [9, Theorem 1] only requires condition (RSP); the proof by Wittenberg of [9, Theorem 1] inspired from [10] only requires condition (LSP), see [15]. For the multiplicative group or simple abelian varieties and assuming condition (LSP), equivalent results were proven respectively by Khare in [6, Proposition 3] and by Barańczuk in [1, Theorem 8.2].

Let G be the product of an abelian variety and a torus defined over a number field K. Let P and Q be points in $G(K)$ satisfying one of the conditions above. Let c be the least positive integer such that cQ belongs to the left $\text{End}_K G$-submodule of $G(K)$ generated by P. We prove the following:

Assuming condition (SP), c divides a non-zero integer m which depends only on G and K. For abelian varieties this result has an alternative proof by Larsen, see [10].

Assuming condition (LSP), the ℓ-adic valuation of c is less than or equal to the ℓ-adic valuation of a non-zero integer m which depends only on G and K (notice that m does not depend on ℓ).

Assuming condition (RSP), there exists a non-zero integer m depending only on G and K such that the following holds: for every ℓ in S coprime to m the ℓ-adic valuation of c is zero.

See section 4 for more results concerning c under conditions (SP), (LSP) and (RSP) respectively.

Finally we discuss the *multilinear support problem*, which is a variant of the support problem introduced by Barańczuk in [1]. The points P and Q are replaced by n-tuples of points and the following condition is required:

(MSP) Suppose that for all but finitely many primes p of K and for all positive integers m_1, \ldots, m_n the point $(m_1Q_1 + \ldots + m_nQ_n \mod p)$ is zero whenever the point $(m_1P_1 + \ldots + m_nP_n \mod p)$ is zero.

This condition is stronger than requiring condition (SP) on each pair of points (P_i, Q_i) so there exist K-endomorphisms ϕ_i and an integer c such that $\phi_i(P_i) = cQ_i$. One would
like to prove that \(\phi_i \) and \(\phi_j \) are related for \(i \neq j \). This is true if the endomorphism ring is \(\mathbb{Z} \) (see [1]) but in general \(\phi_i \) and \(\phi_j \) are not related for \(i \neq j \), see section 5. Another multilinear condition has recently been considered by Barańczuk, see [2].

2 Preliminaries

Let \(G \) be the product of an abelian variety and a torus defined over a number field \(K \). Let \(R \) be a \(K \)-rational point on \(G \) and call \(G_R \) the smallest algebraic \(K \)-subgroup of \(G \) containing \(R \). Write \(G_R^0 \) for the connected component of the identity of \(G_R \) and write \(n_R \) for the number of connected components of \(G_R \).

We say that \(R \) is independent if \(R \) is non-zero and \(G_R = G \). The point \(R \) is independent in \(G \) if and only if \(R \) is independent in \(G \times \bar{K} \). Furthermore, \(R \) is independent in \(G \) if and only if \(R \) is non-zero and the left \(\text{End}_K G \)-submodule of \(G(K) \) generated by \(R \) is free. See [13, Section 2].

Proposition 1. Let \(G \) be the product of an abelian variety and a torus defined over a number field \(K \). Let \(R \) be a \(K \)-rational point on \(G \). Then \(n_R \) divides a non-zero integer which depends only on \(G \) and \(K \).

Proof. Write \(G = A \times T \) and \(R = (R_A, R_T) \). Since \(G_R \subseteq G_{R_A} \times G_{R_T} \), we know that \(G_R^0 = A' \times G_{R_T} \) and a subtorus \(T' \) of \(G_{R_T}^0 \) (see [13, Proposition 5]). We have \(A' = G_{R_A}^0 \) because \(A' \) contains a non-zero multiple of \(R_A \). Analogously we have \(T' = G_{R_T}^0 \). So \(G_R = G_{R_A}^0 \times G_{R_T}^0 \) hence \(n_R \) divides the number of connected components of \(G_{R_A} \times G_{R_T} \). Then it suffices to prove the statement for \(A \) and for \(T \) respectively.

For \(A \) the statement is proven in [12, Lemma 2.2.4]. Now we prove the statement for \(T \): we reduce at once to the case \(T = \mathbb{G}_m^r \). Write \(R = (R_1, \ldots, R_n) \) and let \(e \) be the exponent of \(\mathbb{G}_m^r(K)_{\text{tors}} \). Since \(n_R \) divides \(e \) times \(n_{e \mathbb{G}_m^r} \), we reduce to the case where \(R_1, \ldots, R_n \) generate a torsion-free subgroup of \(\mathbb{G}_m(K) \). We conclude by proving that in this case \(n_R = 1 \). We may clearly assume that \(R \) is non-zero. Fix a rational prime \(\ell \). Remark that \(R_1, \ldots, R_n \) generate a free subgroup of \(\mathbb{G}_m(K) \). By choosing a basis for this subgroup, we find an integer \(s \geq 1 \) and a point \(R' \) independent in \(\mathbb{G}_m^r \) such that \(\text{ord}(R \mod p) = \text{ord}(R' \mod p) \) for all but finitely many primes \(p \) of \(K \). By [13, Proposition 12] there exist infinitely many primes \(p \) such that \(v_p[\text{ord}(R' \mod p)] = 0 \). Then for infinitely many primes \(p \) we have \(v_p[\text{ord}(R \mod p)] = 0 \). By [13, Main Theorem], it follows that \(v_p(n_R) = 0 \).

Lemma 2. Let \(G \) be the product of an abelian variety and a torus defined over a number field \(K \). Let \(L \) be a finite Galois extension of \(K \) of degree \(d \). Let \(P \) and \(Q \) be \(K \)-rational points on \(G \). If \(Q \) belongs to \(\text{End}_L G \cdot P \) then \(dQ \) belongs to \(\text{End}_K G \cdot P \).

Proof. Suppose that there exists \(\psi \) in \(\text{End}_L G \) such that \(\psi(P) = Q \). Set \(\phi = \sum_{\sigma \in \text{Gal}(L/K)} \psi^\sigma \).
Then ϕ is in $\text{End}_K G$ and we have:

$$
\phi(P) = \sum_{\sigma \in \text{Gal}(L/K)} \psi^\sigma(P) = \sum_{\sigma \in \text{Gal}(L/K)} \psi(P)^\sigma = \sum_{\sigma \in \text{Gal}(L/K)} Q^\sigma = dQ.
$$

\[\square\]

Lemma 3. Let A and B be products of an abelian variety and a torus defined over a number field K. Let α be an isogeny in $\text{Hom}_K(A, B)$ and let d be the exponent of the kernel of α (which divides the degree of α). Let R be a K-rational point on A. For all but finitely many primes p of K the following holds: the order of $(dR \mod p)$ divides the order of $(\alpha(R) \mod p)$.

Proof. For every ψ in $\text{Hom}_K(B, A)$ and for every point W in $B(K)$ the following holds: the order of $(\psi(W) \mod p)$ divides the order of $(W \mod p)$ for all but finitely many primes p of K. Call $\hat{\alpha}$ the isogeny in $\text{Hom}_K(B, A)$ such that $\hat{\alpha} \circ \alpha = [d]$. The statement follows by applying the first assertion to $\psi = \hat{\alpha}$ and $W = \alpha(R)$.

\[\square\]

Lemma 4. Let K be a number field. Let $I = \{1, \ldots, n\}$. For every $i \in I$ let B_i be the product of an abelian variety and a torus defined over K. Suppose that for $i \neq j$ either $B_i = B_j$ or $\text{Hom}_K(B_i, B_j) = \{0\}$. Let $H = \prod_{j \in J} B_j$ for some subset J of I and let R be a point in $H(K)$ which is independent in H. Let W be a point in $B_n(K)$. Then if (R, W) is not independent in $H \times B_n$ there exists a non-zero f in $\text{End}_K B_n$ such that $f(W)$ belongs to $\text{Hom}_K(H, B_n) \cdot R$.

Proof. We know that there exists a non-zero F in $\text{End}_K(H \times B_n)$ such that $F(R, W) = 0$. Write $F = (F_1, F_2)$ in the decomposition

$$
\text{End}_K(H \times B_n) = \text{End}_K(H, H \times B_n) \times \text{End}_K(B_n, H \times B_n).
$$

We then have $F_1(R) + F_2(W) = F(R, W) = 0$.

Since $F \neq 0$ there exists a factor B_m of $H \times B_n$ such that $\pi_m \circ F \neq 0$ where π_m is the projection of $H \times B_n$ onto B_m. Now we prove that $\pi_m \circ F_2 \neq 0$. Suppose not. Then we must have $\pi_m \circ F_1 \neq 0$. If B_m is not equal to any factor of H and $B_m = B_n$ we have $\text{Hom}_K(H, B_n) = \{0\}$ hence $\pi_m \circ F_1 = 0$, contradiction. So we may assume that there is an inclusion map i from B_m to H. We have $i \circ \pi_m \circ F_1 \neq 0$ and $i \circ \pi_m \circ F_1(R) = -i \circ \pi_m \circ F_2(W) = 0$, which contradicts the fact that R is independent in H.

Since $\pi_m \circ F_2 \neq 0$, we have $\text{Hom}_K(B_m, B_n) \neq \{0\}$ hence $B_m = B_n$. Call $f = \pi_m \circ F_2$. Then f is a non-zero element of $\text{End}_K B_n$ and we have $f(W) = -\pi_m \circ F_1(R)$ hence $f(W)$ belongs to $\text{Hom}_K(H, B_n) \cdot R$.

\[\square\]

Lemma 5. Let K be a number field and let $I = \{1, \ldots, n\}$. Let $G = \prod_{i \in I} B_i$ where for every $i B_i$ is either \mathbb{G}_m or a K-simple abelian variety and for $i \neq j$ either $B_i = B_j$ or $\text{Hom}_K(B_i, B_j) = \{0\}$. Let $P = (P_1, \ldots, P_n)$ be a point on $G(K)$ of infinite order. Then
there exist a subset \(J = \{ j_1, \ldots, j_s \} \) of \(I \) and a non-zero integer \(d \) such that the point \(P' = (P_{j_1}, \ldots, P_{j_s}) \) is independent in \(G' = \prod_{j \in J} B_j \) and such that for all but finitely many primes \(p \) of \(K \) the order of \((P \mod p) \) divides \(d \) times the order of \((P' \mod p) \).

Proof. We prove the statement by induction on \(n \). If \(n = 1 \), the point \(P_1 \) is independent in \(B_1 \) so take \(J = \{ 1 \}, d = 1 \). Now we prove the inductive step. Let \(P = (P_1, \ldots, P_n) \) and set \(\tilde{P} = (P_1, \ldots, P_{n-1}) \). If \(\tilde{P} \) is a torsion point then \(P_n \) is independent in \(B_n \) and we easily conclude. So assume that \(\tilde{P} \) has infinite order and let \(\tilde{J}, \tilde{d}, \tilde{P}' \) and \(\tilde{G}' \) be as in the statement. If the point \((\tilde{P}', P_n) \) is independent in \(\tilde{G}' \times B_n \) take \(J = \tilde{J} \cup \{ n \} \) and \(d = \tilde{d} \). Otherwise by Lemma 4 there exists a non-zero \(f \) in \(\text{End}_K B_n \) such that \(f(P_n) \) is in \(\text{Hom}_K(\tilde{G}', B_n) \cdot \tilde{P}' \).

Since \(f \) is an isogeny, there exist \(\hat{f} \) in \(\text{End}_K B_n \) and a non-zero integer \(r \) such that \([r] = \hat{f} \circ f \). Consequently \(rP_n \) belongs to \(\text{Hom}_K(\tilde{G}', B_n) \cdot \tilde{P}' \) and so we can take \(J = \tilde{J} \) and \(d = \text{l.c.m.}(\tilde{d}, r) \).

\[\text{Lemma 6.} \quad \text{[Proposition 2, Appendix of [3]] Let } A \text{ be an abelian variety defined over a number field } K. \text{ There exists a non-zero integer } t \text{ such that the following holds: for every } K \text{-rational point } R \text{ on } A \text{ there exists an abelian subvariety } Z \text{ of } A \text{ defined over } K \text{ such that } G_R + Z = A \text{ and } G_R^0 \cap Z \text{ has order dividing } t. \]

The previous lemma can also be found in [14, Proposition 5.1].

3 The proof of the Main Theorem

Lemma 7. Let \(A \) and \(B \) be products of an abelian variety and a torus defined over a number field \(K \) and \(K \)-isogenous. If the Main Theorem is true for \(B \), then it is true for \(A \).

Proof. Suppose that the Main Theorem holds for \(B \). Let \(\alpha \) be a \(K \)-isogeny from \(A \) to \(B \), call \(d \) the degree of \(\alpha \) and call \(\hat{\alpha} \) the isogeny in \(\text{Hom}_K(B, A) \) satisfying \(\hat{\alpha} \circ \alpha = [d] \). Because of Lemma 3 if \(P \) and \(Q \) satisfy condition (LSP) then for all but finitely many primes \(p \) of \(K \) we have:

\[v_p[\text{ord}(\alpha(P) \mod p)] \geq v_p[\text{ord}(dP \mod p)] \geq v_p[\text{ord}(dQ \mod p)] \geq v_p[\text{ord}(\alpha(dQ) \mod p)]. \]

So \(\alpha(P) \) and \(\alpha(dQ) \) satisfy condition (LSP). By Lemma 3 if \(P \) and \(Q \) satisfy condition (RSP) then \(\alpha(P) \) and \(\alpha(Q) \) satisfy condition (RSP) for the subset of \(S \) consisting of the primes coprime to \(d \). We deduce that

\[\psi(\alpha(P)) = r(\alpha(dQ)) \]

where \(\psi \) is in \(\text{End}_K B \) and \(r \) is a non-zero integer. Set \(\phi = \hat{\alpha} \circ \psi \circ \alpha, \; c = rd^2. \) Then \(\phi \) is in \(\text{End}_K A, \; c \) is a non-zero integer and we have:

\[\phi(P) = \hat{\alpha} \circ \psi \circ \alpha(P) = \hat{\alpha} \circ [r] \circ \alpha(dQ) = rd^2Q = cQ. \]
Proof of the Main Theorem.

First step. We reduce to prove the theorem for \(G = \prod_{i \in I} B_i \) where for every \(i \) the factor \(B_i \) is either \(\mathbb{G}_m \) or a \(K \)-simple abelian variety and for \(i \neq j \) either \(B_i = B_j \) or \(\text{Hom}_K(B_i, B_j) = \{0\} \). To accomplish this, it suffices to combine two things: the statement holds for \(G \) if it holds for \(G \times_K L \), where \(L \) is a finite Galois extension of \(K \); the statement holds for \(G \) if it holds for \(\alpha(G) \) where \(\alpha \) is a \(K \)-isogeny. The first assertion is a consequence of Lemma \(\ref{lem:main} \). The second assertion is proven in Lemma \(\ref{lem:replace} \).

Second step. Let \(G = \prod_{i \in I} B_i \) and write \(P = (P_1, \ldots, P_n) \), \(Q = (Q_1, \ldots, Q_n) \). Without loss of generality we may replace \(Q \) by \((Q_1, 0, \ldots, 0) \).

We may assume that \(Q \) has infinite order (otherwise take \(\phi = 0 \) and \(c = \text{ord}(Q) \)). Then we may assume that also \(P \) has infinite order. Otherwise, let \(\ell \) be either the prime of condition (LSP) or a prime of \(S \) coprime to \(\text{ord}(P) \). We find a contradiction by \cite[Corollary 14]{knp} since there exist infinitely many primes \(p \) of \(K \) such that \(v_{\ell}[\text{ord}(Q \text{ mod } p)] > v_{\ell}[\text{ord}(P)] \).

Third step. Apply Lemma \(\ref{lem:main} \) to \(P \) and let \(J, d, P', G' \) be as in Lemma \(\ref{lem:main} \). Since \(P' \) is a projection of \(P \), it suffices to prove that there exist \(\psi \) in \(\text{Hom}_K(G', B_1) \) and a non-zero integer \(c \) such that \(\psi(P') = cQ_1 \).

Fourth step. The point \((P', Q_1)\) is not independent in \(G' \times B_1 \). Otherwise, let \(\ell \) be either the prime of condition (LSP) or a prime of \(S \) coprime to \(d \) and apply \cite[Proposition 12]{knp}. There exist infinitely many primes \(p \) of \(K \) such that \(v_{\ell}[\text{ord}(P' \text{ mod } p)] = 0 \) and \(v_{\ell}[\text{ord}(Q_1 \text{ mod } p)] = v_{\ell}(d) + 1 \). We find a contradiction since by definition of \(d \) we may assume that \(v_{\ell}[\text{ord}(P \text{ mod } p)] \leq v_{\ell}(d) + v_{\ell}[\text{ord}(P' \text{ mod } p)] \).

Fifth step. By definition \(P' \) is independent in \(G' \) so we can apply Lemma \(\ref{lem:main} \) to the points \(P' \) and \(Q_1 \). Then since \((P', Q_1) \) is not independent in \(G' \times B_1 \) there exists a non-zero \(f \) in \(\text{End}_K B_1 \) such that \(f(Q_1) \) belongs to \(\text{Hom}_K(G', B_1) \cdot P' \). Since \(f \) is an isogeny, there exist \(\tilde{f} \) in \(\text{End}_K B_1 \) and a non-zero integer \(c \) such that \([c] = \tilde{f} \circ f \). Consequently \(cQ_1 \) belongs to \(\text{Hom}_K(G', B_1) \cdot P' \).

The following corollary is the analogue to \cite[Corollary 6]{knp}.

Corollary 8. Let \(G_1 \) and \(G_2 \) be products of an abelian variety and a torus defined over a number field \(K \). Let \(P \) and \(Q \) be \(K \)-rational points respectively on \(G_1 \) and \(G_2 \) satisfying condition (LSP) or condition (RSP). Then there exist \(\phi \) in \(\text{Hom}_K(G_1, G_2) \) and a non-zero integer \(c \) such that \(\phi(P) = cQ \).

Proof. Apply the Main Theorem to \(G_1 \times G_2 \) and the points \((P, 0)\) and \((0, Q)\). \(\square \)

4 On the integer \(c \) of the Main Theorem

The following proposition is the generalization of a result by Khare and Prasad (\cite[Theorem 1]{knp}).
Proposition 9. Under the assumptions of Corollary 8 and if the point \(P \) is independent in \(G_1 \), one can take \(c \) coprime to \(\ell \) under condition (LSP) and coprime to every \(\ell \) in \(S \) under condition (RSP).

Proof. We have \(\phi P = cQ \) for some \(\phi \) in \(\text{Hom}_K(G_1, G_2) \) and some non-zero integer \(c \). Let \(\ell \) be either the prime of condition (LSP) or a fixed prime of \(S \). By iteration, it suffices to prove that if \(c \) is divisible by \(\ell \) there exists \(\psi \) in \(\text{Hom}_K(G_1, G_2) \) such that \(\psi P = \frac{c}{\ell}Q \). So suppose that \(c \) is divisible by \(\ell \). Let \(P' \) be a point in \(G_1(K) \) such that \(\ell P' = P \). We then have \(\phi(P') = \frac{c}{\ell}Q + Z \) for some \(Z \) in \(G_2[\ell] \). Write \(L \) for a finite extension of \(K \) over which \(G_1[\ell] \) is split and where \(P' \) is defined. Notice that \(P' \) is also independent in \(G_1 \). The condition of Corollary 8 clearly implies that for all but finitely many primes \(q \) of \(L \) the order of \((Q \mod q) \) is coprime to \(\ell \) whenever the order of \((P \mod q) \) is coprime to \(\ell \).

First we prove that \(\phi = [\ell] \circ \psi \) for some \(\psi \) in \(\text{Hom}_K(G_1, G_2) \). Suppose not and then let \(T \) be a point in \(G_1[\ell] \setminus \ker(\phi) \).

Suppose that \(\phi(T) \neq Z \). By [13, Proposition 11] there exist infinitely many primes \(q \) of \(L \) such that \(v_q(\text{ord}(P' - T \mod q)) = 0 \). We deduce that \(v_q(\text{ord}(P \mod q)) = 0 \) and that the point \((\phi(P') - \phi(T) \mod q) \) has order coprime to \(\ell \). Then

\[
r_q\phi(T) = r_q\phi(P') = r_q(\frac{c}{\ell}Q + Z) \mod q
\]

for some integer \(r_q \) coprime to \(\ell \). Therefore

\[
r_q\frac{c}{\ell}Q = r_q(\phi(T) - Z) \mod q.
\]

By discarding finitely many primes \(q \), we may assume that the order of \((\phi(T) - Z \mod q) \) is \(\ell \). We deduce that \(v_q(\text{ord}(Q \mod q)) > 0 \) and we find a contradiction.

Now suppose that \(\phi(T) = Z \). Then \(\phi(P') = \frac{c}{\ell}Q + \phi(T) \). By [13, Proposition 11] there exist infinitely many primes \(q \) of \(L \) such that \(v_q(\text{ord}(P' \mod q)) = 0 \). Then \(v_q(\text{ord}(P \mod q)) = 0 \). By discarding finitely many primes \(q \), we may assume that the order of \((\phi(T) \mod q) \) is \(\ell \). We deduce that \(v_q(\text{ord}(Q \mod q)) > 0 \) and we find a contradiction.

So we can factor \(\phi \) as \([\ell] \circ \psi \) for some \(\psi \) in \(\text{Hom}_K(G_1, G_2) \). Then \(\psi(P) = \frac{c}{\ell}Q + T' \) for some \(T' \) in \(G_2[\ell] \). It suffices to prove that \(T' = 0 \). By [13, Proposition 12], there exist infinitely many primes \(q \) of \(L \) such that \(v_q(\text{ord}(P \mod q)) = 0 \). If \(T' \neq 0 \), we may assume that the order of \((T' \mod q) \) is \(\ell \). We deduce that \(v_q(\text{ord}(Q \mod q)) > 0 \) and we have a contradiction. \(\square \)

Proposition 10. Under the assumptions of the Main Theorem, let \(c \) be the least positive integer such that \(cQ \) belongs to \(\text{End}_K G \cdot P \). If condition (LSP) holds then \(v_\ell(c) \leq v_\ell(m) \) for some non-zero integer \(m \) depending only on \(G \) and \(K \). If condition (RSP) holds then \(v_\ell(c) = 0 \) for every \(\ell \) in \(S \) coprime to \(m \), for some non-zero integer \(m \) depending only on \(G \) and \(K \).
Proof. We first reduce to the case $G = A \times T$ where A is an abelian variety and $T = \mathbb{G}_m$. It suffices to show that the statement holds for G if it holds for $G \times_K L$ where L is a finite Galois extension of K. This can be deduced from the proof of Lemma[2] if m is as in the statement for $G \times_K L$ then for G one can take $[L : K]m$.

We reduce to the case where G_P is connected. By Proposition[1] nP divides an integer h depending only on G and K. We can then replace P and Q with nP and hQ.

If P is zero then from [13, Corollary 14] we immediately deduce that Q is a torsion point. In this case c divides the exponent of $G(K)_{\text{tors}}$.

Now we assume that G_P is connected and that P has infinite order. By [13] Proposition 5, we have $G_P = A' \times T'$ where A' is an abelian subvariety of A and T' is a sub-torus of \mathbb{G}_m. Since P is independent in G_P, from Proposition[9] it follows there exist ψ in $\text{Hom}_K(G_P, G)$ and an integer r coprime to ℓ (respectively to every prime of S) such that $\psi(P') = rQ$.

Write $P = (P_A, P_T)$ and remark that $A' = G_{P_A}$ (see the proof of Proposition[1]). Apply Lemma[6] to P_A. Let Z and t be as in Lemma[6]. Then the map

$$j : A' \times Z \to A; (x, y) \mapsto x + y.$$

is a K-isogeny in $\text{Hom}_K(A' \times Z, A)$ of degree dividing t. Call j the isogeny in $\text{Hom}_K(A, A' \times Z)$ satisfying $j \circ j = [t]$. We have:

$$j(P_A) = j(P_A, 0) = (tP_A, 0).$$

Then there is an element π_A in $\text{Hom}_K(A, A')$ mapping P_A to tP_A. Since T' is a direct factor of T, there exists π_T in $\text{Hom}_K(T, T')$ such that $\pi_T(P_T) = tP_T$. Let Π be $\pi_A \times \pi_T$. Then Π is in $\text{Hom}_K(G, G_P)$ and $\Pi(P) = tP$. The map $\phi = \psi \circ \Pi$ is in $\text{End}_K G$ and we have $\phi(P) = rtQ$.

Since r is coprime to ℓ (respectively to every prime of S) and t depends only on G and K, this concludes the proof. \qed

Unless $G(K)$ is finite, one clearly cannot bound $v_p(c)$ for any rational prime p different from ℓ (assuming condition (LSP)) or not in S (assuming condition (RSP)).

Assuming condition (LSP), a straightforward adaptation of [9, Proposition 2] shows that in general one cannot take c coprime to ℓ even if P and Q have infinite order. For a split torus or for an abelian variety and assuming condition (RSP), one cannot in general bound $v_\ell(c)$ for every ℓ in S:

Example 11. Let ℓ be a rational prime. Let G be either the multiplicative group or an elliptic curve without complex multiplication defined over a number field K. Suppose that $G(K)$ contains a point R of infinite order and a torsion point T of order ℓ. Consider the points $P = (\ell^h R, T)$ and $Q = (R, 0)$ on G^2, for some fixed h in \mathbb{N}. Then the points P and Q satisfy condition (RSP) where S is the set of all primes but one has to take c such that
\(v_\ell(c) \geq h\). By varying \(h\), we see at once that one cannot bound \(v_\ell(c)\) with a constant depending only on \(G\) and \(K\).

Proposition 12. In the Main Theorem, assuming condition (LSP) and if \(G\) is a split torus then one can take \(c\) coprime to \(\ell\).

Proof. We may assume that \(G = \mathbb{G}_m^n\). Recall that \(\mathbb{G}_m[a] \simeq \mathbb{Z}/a\mathbb{Z}\) for every \(a \geq 1\). Without loss of generality we may assume that \(Q = (Q_1, 0, \ldots, 0)\). If \(P\) is a torsion point then (because of \(\phi(P) = cQ\)) \(Q_1\) is also a torsion point and the statement easily follows from condition (LSP). Now assume that \(P\) has infinite order. Since \(\text{End}_K \mathbb{G}_m \simeq \mathbb{Z}\), we may assume that \(P\) is of the following form:

\[P = (R_1, \ldots, R_h, T, 0, \ldots, 0)\]

where the point \((R_1, \ldots, R_h)\) is independent in \(\mathbb{G}_m^h, h \geq 1\) and \(T\) is a torsion point. Call \(t\) the \(\ell\)-adic valuation of the order of \(T\).

We have

\[aT + \sum_{i=1}^{h} a_i R_i = cQ_1\]

for some \(a, a_1, \ldots, a_h\) in \(\mathbb{Z}\) and for some non-zero integer \(c\). Suppose that \(c\) is divisible by \(\ell\). It suffices to find an expression analogous to (1) where \(c\) is replaced by \(c\ell\) and we conclude by iteration.

Now we prove that \(a\) is divisible by \(\ell\). Suppose not. We may clearly assume that \(t \neq 0\), otherwise we can multiply every coefficient of (1) by an integer coprime to \(\ell\) and replace \(a\) by zero. By [13, Proposition 12] there exist infinitely many primes \(p\) of \(K\) such that \(v_\ell(\text{ord}(R_i \mod p)) = 0\) for every \(i\). We may assume that \(v_\ell(\text{ord}(T \mod p)) = t\). We deduce that \(v_\ell(\text{ord}(Q \mod p)) \geq t + 1\) and that \(v_\ell(\text{ord}(P \mod p)) = t\) so we find a contradiction.

Without loss of generality we prove that \(a_h\) is divisible by \(\ell\). Suppose not. The point \((R_1, \ldots, R_{h-1}, a_h R_h + aT)\) is independent in \(\mathbb{G}_m^h\). Thus by [13, Proposition 12] there exist infinitely many primes \(p\) of \(K\) such that \(v_\ell(\text{ord}(R_i \mod p)) = 0\) for every \(i \neq h\) and \(v_\ell(\text{ord}(a_h R_h + aT \mod p)) = t + 1\). We easily deduce that \(v_\ell(\text{ord}(Q \mod p)) \geq t + 2\) and that \(v_\ell(\text{ord}(P \mod p)) = t + 1\), contradiction.

Now we can write

\[\frac{a}{\ell}T + \sum_{i=1}^{m} \frac{a_i}{\ell} R_i = \frac{c}{\ell} Q_1 + W\]

where \(W\) is in \(\mathbb{G}_m[\ell]\).

If \(t \geq 1\) then \(W\) is a multiple of \(T\) and we conclude. If \(W = 0\) we also conclude. Now suppose that \(t = 0\) and \(W \neq 0\). By [13, Proposition 12] there exist infinitely many primes \(p\) of \(K\) such that \(v_\ell(\text{ord}(R_i \mod p)) = 0\) for every \(i\). We may assume that the order of \((W \mod p)\) is \(\ell\). We deduce that \(v_\ell(\text{ord}(P \mod p)) = 0\) and \(v_\ell(\text{ord}(Q \mod p)) \geq 1\), a
By the previous proposition and Lemma 2 assuming condition (LSP) for a torus one can take c such that $v_\ell(c) \leq v_\ell(d)$ where d is the degree of a finite Galois extension of K where the torus splits. In particular, if G is a 1-dimensional torus one can take c coprime to ℓ (since every endomorphism is defined over K).

We may weaken condition (LSP) in the Main Theorem as follows: there exists an integer $d \geq 0$ such that for all but finitely many primes p of K $v_\ell[\text{ord}(P \mod p)]$ is greater than or equal to $v_\ell[\text{ord}(Q \mod p)] - d$. Indeed, it is immediate to see that P and $\ell^d Q$ satisfy condition (LSP).

Notice that the set S in condition (RSP) needs in general to be infinite:

Example 13. Let S be a finite family of prime numbers and let m be the product of the primes in S. Let G be either the multiplicative group or an elliptic curve without complex multiplication defined over a number field K. Suppose that $G(K)$ contains a torsion point T of order m and that the rank of $G(K)$ is greater than 1. Then let (R, W) be a point in $G^2(K)$ which is independent. Consider the points $P = (R, T)$, $Q = (W, 0)$ in $G^2(K)$. The order of P is a multiple of m for all but finitely many primes p of K hence the points P and Q satisfy condition (RSP) for the set S. Nevertheless, no non-zero multiple of Q lies in the left $\text{End}_K G^2$-submodule of $G^2(K)$ generated by P.

Now suppose that condition (SP) holds. In general one can not take $c = 1$ even if P and Q have infinite order ([9, Proposition 2]). As a consequence of Proposition 9 one can take $c = 1$ if P is independent in G. This is the generalization of a result by Khare and Prasad ([8, Theorem 1]). As a consequence of Proposition 10 one can take c such that it divides a constant depending only on G and K. This was known for abelian varieties, see [10, Corollary 4.4 and Theorem 5.2] by Larsen. More precisely, Larsen proved that for abelian varieties one can take c dividing the exponent of $G(K)_{\text{tors}}$ whenever the Tate-modules are all integrally semi-simple (and in every K-isogeny class there is such an abelian variety). Notice that assuming condition (SP) it is not true in general that there exist a K-endomorphism ϕ and a K-rational torsion point T such that $\phi(P) = Q + T$. A counterexample was found by Larsen and Schoof in [11].

5 The multilinear support problem

In this section we discuss the multilinear support problem, introduced by Barańczuk in [1]. We first show that condition (MSP) (see the Introduction) is stronger than the condition of the support problem on each pair of points.

Remark 14. Assuming condition (MSP), the following holds: for every $i = 1, \ldots, n$ the order of $(Q_i \mod p)$ divides the order of $(P_i \mod p)$ for all but finitely many primes p of K.

10
Proof. Without loss of generality it suffices to prove the claim for \(P_1 \) and \(Q_1 \). Let \(\mathfrak{p} \) be a prime ideal of \(K \) such that condition (MSP) holds. For every \(i \neq 1 \) fix \(m_i \) such that
\[
(m_i P_1 \mod \mathfrak{p}) = 0 \quad \text{and} \quad (m_i Q_2 \mod \mathfrak{p}) = 0.
\]
Then for every positive integer \(m_1 \) we have
\[
(m_1 Q_1 \mod \mathfrak{p}) = 0 \quad \text{whenever} \quad (m_1 P_1 \mod \mathfrak{p}) = 0.
\]
Consequently, the order of \((Q_1 \mod \mathfrak{p})\) divides the order of \((P_1 \mod \mathfrak{p})\). \(\square\)

Because of the previous remark and the Main Theorem, there exist \(K \)-endomorphisms \(\phi_i \) and an integer \(c \) such that \(\phi_i(P_i) = cQ_1 \). One would like to prove that \(\phi_i \) and \(\phi_j \) are related for \(i \neq j \). This is true if the endomorphism ring is \(\mathbb{Z} \) (see \(\mathbb{I} \)) but in general \(\phi_i \) and \(\phi_j \) are not related for \(i \neq j \):

Example 15. Let \(E \) be an elliptic curve defined over a number field \(K \). Let \(R_1, R_2 \) be points in \(E(K) \) and let \(\phi_1, \phi_2 \) be in \(\text{End}_K E \). The following points in \(E^2(K) \) satisfy condition (MSP):
\[
P_1 = (R_1, 0); \quad P_2 = (0, R_2); \quad Q_1 = (\phi_1(R_1), 0); \quad Q_2 = (0, \phi_2(R_2)).
\]

The next example shows that \(\phi_i \) and \(\phi_j \) are in general not related, not even for an elliptic curve, if we require the following weaker condition:

\(\text{(LMSP)} \) Fix a rational prime \(\ell \) and suppose that for all but finitely many primes \(\mathfrak{p} \) of \(K \) and for all positive integers \(m_1, \ldots, m_n \) the order of \((m_1 Q_1 + \ldots + m_n Q_n \mod \mathfrak{p})\) is coprime to \(\ell \) whenever the order of \((m_1 P_1 + \ldots + m_n P_n \mod \mathfrak{p})\) is coprime to \(\ell \).

Example 16. Let \(E \) be an elliptic curve defined over a number field \(K \) such that \(\text{End}_K E = \mathbb{Z}[i] \). Let \(\phi_1 \) and \(\phi_2 \) be in \(\text{End}_K E \) and let \(P_1 \) be in \(E(K) \). The following points satisfy condition (LMSP) for \(\ell = 3 \):
\[
P_1; \quad P_2 = i(P_1); \quad Q_1 = \phi_1(P_1); \quad Q_2 = \phi_2(P_2).
\]

Indeed, let \(\mathfrak{p} \) be a prime of \(K \) of good reduction for \(E \) and not over 3 and suppose that
\[
(m_1 P_1 + m_2 P_2 \mod \mathfrak{p}) \text{ has order coprime to } 3.
\]
It is clearly sufficient to show that both
\[
(m_1 P_1 \mod \mathfrak{p}) \text{ and } (m_2 P_2 \mod \mathfrak{p}) \text{ have order coprime to } 3.
\]
By multiplying \(P_1 \) and \(P_2 \) by an integer coprime to 3, we may assume that
\[
(P_1 \mod \mathfrak{p}) = (R \mod \mathfrak{p}) \text{ for a point } R \in E[3^\infty].
\]
Then we have
\[
(m_1 R + m_2 i(R) \mod \mathfrak{p}) = 0 \quad \text{and by the injectivity of the reduction modulo } \mathfrak{p} \text{ on } E[3^\infty] \text{ we deduce that } m_1 R + m_2 i(R) = 0.
\]
We have to show that \(m_1 R = 0 \). Let \(3^h \) be the order of \(R \). Then the annihilator of \(R \) is an ideal of \(\mathbb{Z}[i] \) containing \(3^h \) but not \(3^{h-1} \).
Since 3 is prime in \(\mathbb{Z}[i] \), the annihilator of \(R \) is \((3^h) \). Since \(m_1 + m_2 i \) belongs to \((3^h) \), we can write
\[
(m_1 + m_2 i) = 3^h(a_1 + a_2 i) \quad \text{for some integers } a_1, a_2.
\]
Therefore
\[
m_1 R = 3^h a_1 R = 0.
\]

We can also weaken condition (MSP) by imposing that \(m_1 = 1 \). Then one would like to prove that for every \(i \) there exist \(K \)-endomorphisms \(\phi_i \) and an integer \(c \) such that
\[
\phi_i(P_i) = cQ_i.
\]
Without loss of generality it suffices to take \(n = 2 \):
(WMSP) Suppose that for all but finitely many primes p of K and for all positive integers m the point $(Q_1 + mQ_2 \mod p)$ is zero whenever the point $(P_1 + mP_2 \mod p)$ is zero.

If G is a simple abelian variety, under condition (WMPS) Barańczuk showed that for $i = 1, 2$ there exist K-endomorphisms ϕ_i and an integer c such that $\phi_i(P_i) = cQ_i$, see [1, Theorem 8.1]. The same proof holds for the multiplicative group hence for 1-dimensional tori. This result is in general false for a non-simple abelian variety or for a torus of dimension > 1, as the following example shows.

Example 17. Let G be either an elliptic curve without complex multiplication or the multiplicative group defined over a number field K. Suppose that the rank of $G(K)$ is greater than 1. Then let (R,W) be a K-rational point on G^2 which is independent. Consider the following points in $G^2(K)$:

$$P_1 = Q_1 = Q_2 = (R, 0); P_2 = (0, W).$$

These points satisfy condition (WMSP) but there do not exist a K-endomorphism ϕ of G^2 and a non-zero integer c such that $\phi(P_2) = cQ_2$.

Acknowledgements

I thank Brian Conrad, Marc Hindry, René Schoof for helpful discussions. I thank Jeroen Demeyer and Willem Jan Palenstijn for Example 16 and the case of 1-dimensional tori.

References

[1] S. Barańczuk, *On reduction maps and support problem in K-theory and abelian varieties*, J. Number Theory 119 (2006), no. 1, 1–17.

[2] S. Barańczuk, *On a generalization of the support problem of Erdős and its analogues for abelian varieties and K-theory*, arXiv:0809.1991v3, 2008.

[3] D. Bertrand, *Minimal heights and polarizations on abelian varieties*, preprint M.S.R.I. 06220-87, 1987.

[4] G. Banaszak, W. Gajda, and P. Krasoń, *Support problem for the intermediate Jacobians of ℓ-adic representations*, J. Number Theory 100 (2003), no. 1, 133–168.

[5] C. Corrales-Rodríguez and R. Schoof, *The support problem and its elliptic analogue*, J. Number Theory 64 (1997), no. 2, 276–290.

[6] C. Khare, *Compatible systems of mod p Galois representations and Hecke characters*, Math. Res. Lett. 10 (2003), no. 1, 71–83.
[7] C. Khare and D. Prasad, *Reduction of homomorphisms mod p and algebraicity*, arXiv:0211004v1, 2002.

[8] C. Khare and D. Prasad, *Reduction of homomorphisms mod p and algebraicity*, J. Number Theory 105 (2004), no. 2, 322–332.

[9] M. Larsen, *The support problem for abelian varieties*, J. Number Theory 101 (2003), no. 2, 398–403.

[10] M. Larsen and R. Schoof, *Whitehead’s lemma and Galois cohomology of abelian varieties*, http://mlarsen.math.indiana.edu/~larsen/unpublished.html, 2004.

[11] M. Larsen and R. Schoof, *A refined counter-example to the support conjecture for abelian varieties*, J. Number Theory 116 (2006), no. 2, 396–398.

[12] M. McQuillan, *Division points on semi-abelian varieties*, Invent. math. 120 (1995), no. 1, 143–159.

[13] A. Perucca, *Prescribing valuations of the order of a point in the reductions of abelian varieties and tori*, J. Number Theory 129 (2009), no. 2, 469–476.

[14] N. Ratazzi and E. Ullmo, *Galois + Équidistribution = Manin–Mumford*, http://www.math.u-psud.fr/~ratazzi/recherche.html, 2007.

[15] O. Wittenberg, *Le problème du support pour les variétés abéliennes, d’après Larsen*, http://www.dma.ens.fr/~wittenberg/autres.html, 2003.

Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

e-mail: antonella.perucca@epfl.ch