Case Report

Rare association of secondary superficial siderosis caused by a fourth ventricle hemorrhagic ependymoma mimicking a cavernoma: Case report and literature review

Eduardo E. Espinosa Rodríguez, Rodrigo Carrasco Moro, Juan S. Martínez San Millán, Héctor G. Pian Arias

Departments of Neurosurgery, Radiology and Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain

E-mail: *Eduardo E. Espinosa Rodríguez - dreeer84@hotmail.com; Rodrigo Carrasco Moro - rocamo@gmail.com; Juan S. Martinez San Millán - jsamami@hotmail.com; Héctor G. Pian Arias - hectorpian@yahoo.es
*Corresponding author

Received: 23 May 16 Accepted: 17 November 16 Published: 06 February 17

Abstract

Background: The association of a hemorrhagic tumor with secondary superficial siderosis (SS) is a relatively rare although well described phenomenon.

Case Description: We present the case report of a 35-year-old male with a history of drowsiness, hypoacusia, drop attacks, and multidirectional nystagmus during the last 2 months, who presented with acute obstructive hydrocephalus caused by a fourth ventricle mass displaying radiological signs of repeated intra and extratumoral hemorrhage with SS. He underwent gross surgical removal of the solid component of the tumor. Microscopic examination revealed an ependymoma with atypical features, including prominent angiomatous formations and internal chronic hemorrhages with hemosiderin deposits, resembling a cavernoma. The scarce tumoral component, which extended around these cavernous vessels, lacked the gross typical features of fibrillary stroma or perivascular pseudorosettes.

Conclusion: To our knowledge, including the present case, there are 45 published reports of tumors associating secondary SS. Besides ependymoma, no other hemorrhagic lesion, tumoral or vascular, has been previously published associating a fourth ventricle location with secondary SS. The present case represents the fifth with this finding, and we strongly suggest ependymoma as a presumptive diagnosis when this rare association is encountered. In addition, this appears to be the first case reported in the scientific literature of a hemorrhagic fourth ventricle ependymoma mimicking both, radiologically and histologically, a cavernous malformation.

Key Words: Cerebral ventricle neoplasms, fourth ventricle, subarachnoid hemorrhage

INTRODUCTION

Superficial siderosis (SS) of the central nervous system (CNS) is a rare condition caused by chronic bleeding in the subarachnoid compartment. The source of bleeding remains unknown in up to 35% of cases. The pathologic changes associated with SS have been previously described. Macroscopically, the...
leptomeninges and superficial CNS parenchyma, as well as the subependymal lining throughout the neuroaxis, present a dark, brownish discoloration. Microscopically, extensive hemosiderin deposition can be found in the leptomeninges, as well as in the subpial and subependymal regions. In addition, the leptomeninges are thickened, and varying degrees of neuronal loss, reactive gliosis, and demyelination can be found. In the cerebellum, the superficial folia are almost always involved with loss of Purkinje cells and Bergmann gliosis. Particularly dense hemosiderin deposition can be found in cranial nerve VIII, and to a lesser extent in cranial nerves I and II; these findings are often associated with demyelination and atrophy.[18]

We present a case of SS caused by an ependymoma with unique radiological and pathological features, and include a revision of the current scientific literature concerning this association.

CASE REPORT

History
A 35-year-old male was brought to the emergency department after suffering repeated episodes of drop attacks. He was being studied by an ENT specialist because he had complained of drowsiness, gait instability, left neurosensorial hypoacusia, cervicalgia, and multidirectional nystagmus during the last 2 months.

Examination
In the initial neurological examination, he scored 13 in the Glasgow Coma Scale (GCS) (E: 3; V: 4; M: 6), and presented mild papilledema, horizontal-rotatory nystagmus, and instability.

Imaging and initial management
Emergent computed tomography (CT) [Figure 1a] revealed a heterogeneous fourth ventricle mass causing acute obstructive hydrocephalus (HCP). An emergent insertion of an external ventricular drainage (EVD) was carried out and the patient experienced a complete recovery of his level of consciousness. A brain magnetic resonance imaging (MRI) was then obtained [Figure 1b-d], which confirmed the presence of a fourth ventricle lesion displaying signs of both intra and extratumoral hemorrhage with SS. These findings suggested a radiological diagnosis of myxopapillary ependymoma versus cavernoma. The panspinal MRI excluded the presence of additional lesions.

Operation
The tumor was resected through a bilateral telovelar approach with neurophysiological monitoring [Figure 2]. The EVD was withdrawn on the second postoperative day.

Pathological findings
Histologically, the lesion presented a capsule and was mainly composed of great cavernous vessels, with areas of hemorrhages and hemosiderin deposits, thus resembling a cavernous malformation. A scarce tumoral component was found in the periphery of the lesion, which was frequently arranged around hyalinized vessels. Tumoral cells showed an eosinophilic, unclearly delimited cytoplasm and pleomorphic nuclei, with finely granular chromatin and small nucleoli. These tumoral cells were glial fibrillary acidic protein (GFAP) positive, and they showed dot-like intracytoplasmic epithelial membrane antigen (EMA) immunoreactivity [Figure 3].

Postoperative course
The patient experienced an almost complete recovery from his initial symptoms in the following month, although he still had persistent neurosensorial hypoacusia and nystagmus. Serial follow-up MRI performed 3, 6, and 12 months after surgery showed compensated triventricular dilation and a stable tumoral remnant on the rostral part of the fourth ventricle; however, the patient refused further treatment.

DISCUSSION

Approximately 0.9–11% of spontaneous intracranial hematomas are produced by brain neoplasms. Tumors presenting as hemorrhagic lesions have a relatively low frequency (2–11%), and up to 42% remain clinically silent at the time of bleeding.[33,62] Among tumoral hemorrhages, three patterns can be distinguished, namely, pure intratumoral (53%), pure extratumoral (intraventricular

Figure 1: (a) Brain CT showing a 3 × 3 × 4 cm 4th ventricle mass, predominantly hyperdense, causing active triventricular dilation. (b) MRI showing a heterogeneous lesion with cystic areas in both T1WI (c) and T2WI (b and d), scarce areas of enhancement (c) and associated edema (b). Linear hypointense signal, in T2WI, along the pial surface/subarachnoid space of the convexity sulci, cerebellar folia, and brainstem and spinal surface, is typical of SS (b, d, e, f). Signs of compensated hydrocephalus are also present (bulging suprasellar cistern, remodelling of the sella turcica) (c and d)
Intratumoral bleeding (13%). \[^{[4]}\] Intratumoral hemorrhage occurs mainly in highly vascular or malignant neoplasms. Excluding pituitary adenoma, which has been found to have a statistically significant higher frequency, those commonly associated with spontaneous intracranial hemorrhage comprise glial tumors, metastatic tumors, meningioma, and choroid plexus papilloma, the majority of which are described in a supratentorial location. An intracranial hemorrhage originated in a tumor located in the posterior fossa represents a relatively uncommon phenomenon (≤0.4%) with a preference for pediatric patients; the predominant histologies described in this location are pilocytic astrocytoma, medulloblastoma, ependymoma, and melanoma. \[^{[27,46,62]}\]

Those tumors which produce repeated extratumoral hemorrhages may lead to SS. This entity, first described by Hamil in 1908,\[^{[16]}\] was mostly a postmortem diagnosis until the advent of modern neuroradiological techniques. The first description of its radiological features was performed by Gomori in 1985.\[^{[31]}\] Currently, it can be defined as a relatively rare condition in which deposits of hemosiderin accumulate in the subpial layer of the CNS as a consequence of prolonged or recurrent low-grade bleeding into the cerebrospinal fluid, which may lead progressively to irreversible neurological dysfunction. The classic clinical triad consists of sensorineural hearing loss (uni or bilateral), cerebellar ataxia, and myelopathy. The latter, together with cognitive decline, has a propensity to appear in secondary forms of the disease that have progressed over many years. Other symptoms suggestive of arachnoiditis, including neckache, backache, and sciatica, are less frequent. These symptoms are not expected to improve with the treatment of the source of bleeding, as occurred in our patient, and only a slight amelioration has been obtained with the employment of iron chelating agents and radical scavengers.\[^{[11,26]}\]

SS is a secondary condition in up to 65% of cases.\[^{[31]}\] Including the present case, we have recorded a total of 45 published reports of SS in patients with confirmed, nonoperated, current neoplasms of the CNS [Table 1]. Among these cases, 50% were caused by an ependymal tumor and only 5 were located in the fourth ventricle.\[^{[6,10,15,30]}\] In our case, histopathologically, the mass presented a capsule and was mainly composed of great cavernous vessels, with areas of hemorrhages and hemosiderin deposits – a sign of recent and old intratumoral bleeding, respectively – thus microscopically mimicking a cavernoma. The abundant presence of these anomalous vessels was the probable cause of the chronic bleeding, and given its location with free access to the CSF, finally led to the development of SS. A scarce tumoral component was found in the capsule and surrounding these vessels, but lacked areas of fibrillary stroma or perivascular pseudorosettes, which complicated the diagnosis of ependymoma.\[^{[40]}\] Supporting this diagnosis were the GFAP expression and the dot-like intracytoplasmic EMA immunoreactivity found in the tumoral cells. The radiological findings suggested a preoperative differential diagnosis which included cavernous malformation and myxopapillary ependymoma. After revising the literature on the association of these pathologies with SS, we have found 13 cases of cavernoma with secondary SS, none of which had a fourth ventricle location.\[^{[17,18,24,25,29,30,32,35,42,47,49]}\]
Reference	Age/Sex	Presentation	HCP/Treatment	SOB/Location	Management	Follow-up/Outcome
1 Noetzel 1940	47/M	Deafness, dementia	No	NA	Metastasis*/CxMen	NA
2 Rosenthal 1958	27/M	NA	NA	Incontinence	Oligodendroglioma/NA	NA
3 McGee 1962	54/M	Deafness, myelopathy	NA	NA	Ependymoma/Lum	NA
4 Dastur 1962	26/M	Meningismus	H/A, N/V, papilledema, ataxia	Obstructive/ VP	Pinealoma	STR 1d/Died
5 Tomlinson 1964	16/F	Deafness, ataxia, dementia, incontinence	H/A, dysarthria	Yes/No	Ependymoma/LV	Not treated 2y/Died
6 Brahman 1965	NA/F	NA	NA	NA	Astrocytoma/NA	NA
7 Kott 1966	29/F	Deafness, myelopathy, meningismus	H/A, N/V, papilledema, seizures, bilateral VIcp palsy	No	Ependymoma/LV	SR 1m/Died
8 Sherwin 1972	31/M	NA	NA	NA	Meningioma/NA	NA
9 Gomori 1985	32/M	Deafness, tinnitus, nystagmus	Sciatica	Yes/No	Myx ependymoma/ Lum	SR NA/Sciatica, sphincter dysfunction
10 Koeppen 1988	59/M	Deafness, ataxia, myelopathy	No	No	Ependymoma/Lum	GTR + IChA NA
11 Parnes 1992	59/M	Deafness, ataxia, myelopathy, tinnitus	No	NA	Ependymoma/Lum	NA
12 Willeit 1992	59/M	Deafness, ataxia, myelopathy, tinnitus	Incontinence	No	Ependymoma/Lum	GTR NA
13 Shen 1993	16/F	Meningismus	No	No	Myx Ependymoma/ Lum	GTR NA
14 Mamourian 1993	72/F	Deafness	Incontinence	No	Paraganglioma/Lum	GTR NA
15 Grunshaw 1993	29/F	Loss of taste/smell, deafness, ataxia, myelopathy, nystagmus	No	Obstructive/ No	Unknown****/IVv	Nottreated NA
16 Offenbacher 1996	48/M	No	No	No	Neurinoma/FS	NA
17 Castelli 1997	48/M	Deafness, ataxia	H/A, N/V	Obstructive/ No	Ependymoma/IVv	SR NA
18 Friedman 1998	21/M	Absent	Incontinence, low back pain	No	Myx Ependymoma/ Lum	B NA/Sphincter dysfunction, paraparesis; dissemination 1y/Unchanged
19 Matsumoto 1998	48/M	Deafness, tinnitus, ataxia, myelopathy, sphincter dysfunction	No	Yes/No	Melanocytoma/T	GTR 1y/Unchanged
20 Kato 1998	24/M	Absent	Polydipsia, vertigo	No	Metastasis**/ Suprasellar	GTR + Rt 7m/Dissemination
21 Lemmerling 1998	50/M	Deafness, ataxia	No	No	Ependymoma/Lum	GTR NA
22 Sharma 1998	60/M	Deafness, ataxia	Low back pain	No	Paraganglioma/Lum	GTR NA
23 Durieux 1999	66/M	Deafness, ataxia	No	No	Adenoma/Sellar	SRx 2 + Rt NA

Contd...
Reference	Age/Sex	Presentation	HCP/ Treatment	SOB/Location	Management	Follow-up/Outcome	
24 Bostantjopoulou 2000	61/F	Deafness, ataxia, myelopathy	No	No	Pilocytic astrocytoma/ TL	GTR	NA
25 Straube 2001	55/F	Deafness, ataxia, polyradiculopathy, sphincter dysfunction	No	No	Pilocytic astrocytoma/ Paraspinal	STR + Rs	NA
26 Das 2001	50/M	H/A, N/V, meningismus, papilledema	Myelopathy	Arreabsorptive/ VPS	Melanocytoma/TL	GTR + Rt	30m/Died; Dissemination (8m)
27 Yoshida 2002	54/F	Deafness, ataxia	No	No	Teratoma/C	GTR	NA
28 Salem 2002	44/F	Deafness, ataxia, cervical pain	No	No	Ependymoma/IVv	GTR	NA
29 Elalaoui 2003	44/F	Deafness, ataxia	No	No	Ependymoma/IVv	STR + Rs	4m/Unchanged
30 Kitis 2003	36/M	Absent	Impaired consciousness	Obstructive/ No	Adenoma/Sellar	STR	NA
31 Kitis 2003	50/M	Deafness, ataxia, myelopathy	Deep hypoestesia	No	Myx Ependymoma/ Lumbar	GTR	NA
32 Vibert 2004	55/F	Deafness, ataxia	Deep hypoestesia	No	Myx Ependymoma/ Lumbar	GTR	NA
33 Messori 2004	65/M	Deafness, ataxia, myelopathy	Deep hypoestesia	No	Myx Ependymoma/ Lumbar	GTR	NA
34 Kumar 2006	49/F	Incontinence, ataxia	Seizures, hemianopsia, hemiparesis	No	Germ cell tumor/ BBGG	B x 2 (Non Diagnostic)	6y/Died
35 Konya 2006	47/M	No	H/A	No	PGNT/FL	GTR	1y/Asymptomatic
36 Spengos 2007	63/M	Deafness, ataxia, myelopathy	No	No	Ependymoma/Lumbar	GTR	NA
37 Léveque 2009	23/M	H/A, N/V, dysphagia, dysarthria, left VI nerve palsy	Sphincter dysfunction	No	Myx Ependymoma/ Lumbar	GTR	3m/Improvement
38 Vreto 2011	47/M	Tinnitus	H/A, VIIcp palsy, left Romberg	No	Melanocytoma/CPA	SR	NA
39 Vyas 2011	40/M	Deafness, ataxia, dementia	No	No	Adenoma/Sellar	SR	NA
40 Steinberg 2013	43/M	No	Hemianopsia	No	Pituitary apoplexy/ Sellar	MT	NA/Decrease in size of the lesion
41 Grech 2013	64/F	Deafness, ataxia	Low back pain	No	Myx Ependymoma/ Lumbar	GTR + CI	NA/Improved
42 Al-Najar 2013	70/M	Ataxia	H/A, N/V, hemiparesis	No	Hemangioblastoma/LV	B + GTR	NA
43 Tosaka 2014	69/M	Deafness, ataxia, dementia	H/A, vision loss	No	Craniopharyngioma/ IIIv	STR	1y/Progression of SS symptoms
44 Pikis 2014	33/M	Deafness	Low back pain	No	Myx Ependymoma/ Lumbar	GTR	2y/Unchanged
45 Present case	35/M	Deafness, nystagmus, cervical pain	Drop attacks, drowsiness, ataxia, papilledema	Yes/EVD	Ependymoma/IVv	GTR	1.5y/No progression of SS symptoms

Including the present case, there are 45 published case reports of superficial siderosis secondary to nonoperated CNS tumors. 9/45 (20%) had an intraventricular location, 12/45 (27%) were located intracranially, 21/45 (47%) had a spinal location, 2 case reports did not describe the location and 1 was a carcinomatous meningioma. BBGG: Basal ganglia (r: right, l: left), B: Biopsy, C: Cervical spine, CI: Cochlear implant, cp: cranial pair, CPA: Cerebellopontine angle, H/A: Headache, FL: Frontal lobe (r: right, l: left), FS: Frontal sinus, GTR: Gross total resection, HCP: Hydrocephalus, Hmen: Hemangioblastic meningioma, IChA: Iron chelating agent, IIIv: Third ventricle, IVv: Fourth ventricle, LV: Lateral ventricle (r: right, l: left), Lumbar; MT: Medical treatment, NA: Not available, N/V: Nausea/vomiting, PGNT: Papillary glioneuronal tumor, Rs: Radiosurgery, Rt: Radiotherapy, Sp: Spinal, SR: Surgical resection, removal degree not specified, SS: Superficial siderosis, STR: Subtotal resection, T: Thoracic spine, TL: Thoracolumbar spine, VP: Ventricular puncture, **: Gastric carcinoma, ***: Embryonal carcinoma, ****: Bilateral subdural hematomas which required surgical evacuation, *****: Suspicion diagnosis of ependymoma.
all 8 cases of myxopapillary ependymoma had an intraspinal location;[12‑14,20,30,38,45,52] thus, it would seem that our differential diagnosis was statistically improbable. All four previously published cases of a fourth ventricular hemorrhagic mass and SS have been diagnosed as ependymoma. We suggest that, in the rare cases where this association is found, the diagnosis of ependymoma should be strongly considered. Nevertheless, the establishment of a definite radiological diagnosis represents a difficult task in such a radiological context as intraventricular cavernomas frequently lack the characteristic peripheral hypointense rim in T2-weighted MRI due to the absence of bleeding into the surrounding brain tissue.[9]

Chronic HCP has been reported in one-third of those cases presenting SS secondary to current tumors, and has been attributed to impairment of the absorption of CSF caused by subarachnoid adhesions.[39,57] Although the location of the tumor in our patient may explain by itself the development of HCP, a revision of the other 4 cases of fourth ventricle tumors with SS reveal that, in two there was no HCP,[10,30] while it was described as mild in the remaining two;[6,15] therefore, we think that a mixed etiology cannot be completely ruled out in the present case. The drop attacks experienced by our patient were probably caused by transient intratumoral bleeding, producing sudden decompensation of a preexisting HCP. The clinical tolerance of our patient to EVD removal and the presence of triventricular dilation in follow-up MRIs provide additional support for this hypothesis.

CONCLUSION

Primary or secondary SS is a rare, progressive condition that can potentially lead to severe and irreversible CNS sequelae. In the case of SS secondary to CNS tumors, the fact that its symptoms at presentation can derive from the tumor itself, SS or both, forces clinicians to be aware of the existence of this entity, since its initial manifestations may be subtle.

Current imaging technology, specifically gradient echo susceptibility T2-weighted MRI, has considerably improved our capacity to establish the diagnosis of SS. The necessity to look for a primary etiology of SS cannot be overemphasized; thus, we think it is mandatory to perform a complete examination of the CNS, once its presence has been determined, to rule out a hemorrhagic lesion. Although the optimal management remains to be determined, if a bleeding source can be established, its surgical ablation appears to halt the progression of the disease, greatly improving the prognosis of the patient.

The present article represents the fifth published case of a fourth ventricle lesion with SS. All have been found to be caused by an ependymoma. We believe that in the future cases associating a fourth ventricle lesion with secondary SS, the diagnosis of ependymoma should be strongly considered.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Al-Najar M, Al-Hadidy A, Saleh A, Al-Tamimi A, Al-Darawish A, Obeidat F. Sporadic Lateral Ventricular Hemangioendothelioma presenting with Intraventricular and Subarachnoid Haemorrhage. Sultan Qaboos Univ Med J 2013;13:597-600.
2. Bostantjopoulu S, Katsarou Z, Pigadas A, Kazis A. Superficial CNS siderosis and spinal pilocytic astrocytoma. Neurology 2000;5:450.
3. Bruehlman J, Wolman M. Subgaleal siderosis of the central nervous system. Acta Neuropathol 1965;4:559-62.
4. Carrasco R, Pascual JM, Navas M, Fraga J, Manzanares-Soler R, Sola RG. Spontaneous acute hemorrhage within a subependymoma of the lateral ventricle: Successful emergent surgical removal through a frontal transcortical approach. Neurocirugia 2010;21:478-83.
5. Carrasco R, Pedrosa M, Pascual JM, Navas M, Liberal R, Sola RG. Cavernous angiomias of the lateral ventricles. Acta Neurochir 2009;151:149-54.
6. Castelli ML, Husband A. Superficial siderosis of the central nervous system: An underestimated cause of hearing loss. Laryngol Otolar 1997;111:60-2.
7. Das A, Ratnapal P, Puvanendran K, Teo JG. Spinal meningial melanocytoma with hydrocephalus and intracranial superficial siderosis. Intern Med J 2001;31:562-4.
8. Dastur D, Singh G. Toxic iron and the nervous system. Siderotic necrosis of spinal root sheaths, ganglia and nerve, and siderosis of central border-zones, in a case of pinesloma. Acta Neuropathol 1962;2:161-76.
9. Durieux A, Flocard F, Ferreira A, Azulay JP, Felten O, Navarro V, et al. Superficial siderosis of the central nervous system. Rev Neurol 1999;155:201-7.
10. Elaloui A, BozorgGrayeli A, Boucara D, Amibert-Dahan E, Cyna-Gorse F, Kraunik A, et al. Progressive bilateral hearing loss with superficial hemosiderosis of the central nervous system: Contribution of cochlear implantation. Ann Otolar 2003;120:225-30.
11. Fearnley JM, Stevens JM, Rudge P. Superficial siderosis of the central nervous system. Brain 1995;118:1051-66.
12. Friedman DP, Hollander MD. Neuropathology case of the day. Myxopapillary ependymoma of the conus medullaris or filum terminale resulting in superficial siderosis and dissemination of tumor along CSF pathways. Radiographics 1998;18:794-8.
13. Gomori JM, Grossman RI, Bilaniuk LT, Zimmerman RA, Goldberg HI. High-field MR imaging of superficial siderosis of the central nervous system. J Comput Assist Tomogr 1985;9:972-5.
14. Grech R, Galvin L, Loooby S, Thornton J. Spinal ependymoma complicated by superficial siderosis. BMJ Case Rep 2013 pii: bcr2013201036.
15. Grunshaw ND, Blanshard KS, Hussain SS, Grace AR. Superficial siderosis of the central nervous system—diagnosis by magnetic resonance imaging. Clin Radiol 1993;48:186-8.
16. Hamil RC. Report of a case of melanosis of the brain, cord and meninges. J Nerv Ment Dis 1908;35:594.
17. Hashimoto M, Hoyt WF. Superficial siderosis and episodic fourth nerve paresis. Report of a case with clinical and magnetic resonance imaging findings. J Neuroophthalmol 1996;16:277-80.
18. Hsu WC, Loevner LA, Forman MS, Thaler ER. Superficial siderosis of the CNS associated with multiple cavernous malformations. AJNR Am J Neuroradiol 1999;20:1245-8.
19. Kato K, Tomura N, Takahashi S, Watarai J, Sasajima H, Mizo K. Superficial siderosis appeared in a case of suprasellar embryonal carcinoma. No To Shinkei 1998;50:936-40.
Superficial siderosis of the central nervous system: MRI findings. TaniGisrAg 2003:9;36-40.
21. Kooppen AH, Dentinger MP. Brain hemosiderin and superficial siderosis of the central nervous system. J Neuropathol Exp Neurol 1988;47:249-70.
22. Konya D, Peker S, Ozgen S, Kurtkaya O, Necmettin Pamir M. Superficial siderosis due to papillary glioneural tumor. J Clin Neuroradiol 2006;13:950-2.
23. Kost E, Bechar M, Bornstein B, Askenasy HM, Sandbank U. Secondary superficial hemosiderosis of the central nervous system. Acta Neurochir 1966;14:287-98.
24. Kumar A, Aggarwal S, Willinsky R, TerBruggie KG. Secondary superficial siderosis. J Neurol Neurosurg Psychiatry 1996;66:1144-52.
25. Leussink VI, Flachenecker P, Brechtelsbauer D, Bendszus M, Sliwka U, Gold R, et al. Superficial siderosis of the central nervous system: Pathogenetic heterogeneity and therapeutic approaches. Acta Neurol Scand 2003;107:54-61.
26. Lévéque M, Mc Laughlin N, Bojanowski MW. Secondary superficial siderosis of the central nervous system: Report of three cases. Neurochirurgie 2009;55:315-21.
27. Levy M, Turtzo C, Llinas RH. Superficial siderosis: A case report and review of the literature. Nat Clin Pract Neurol 2007;3:54-8.
28. Li KW, Haroun RI, Clatterbuck RE, Murphy K, Rigamonti D. Superficial siderosis due to a lumbar ependymoma mimicking adult-onset spinal cerebellar ataxia. Clin Neurol Neurosurg 2010;67:638-9.
29. Locksley HB, Sahs AL, Sandler R. Report on the cooperative study of intracranial aneurysms and subarachnoid hemorrhage. Section II. General survey of cases in the central registry and characteristics of the sample population. J Neurol Surg 1966;26:922-32.
30. Mamourian AC. MR of superficial siderosis. AJNR Am J Neuroradiol 1993;14:1445-8.
31. Marin H, Vargas MI, Bogorin A, Lenz V, Warter JM, Jacques C, et al. Siderosis of the brain and spinal cord. Report of two cases. J Neurol Neurosurg Psychiatry 2003;70:60-4.
32. Matsumoto S, Kang Y, Sato S, Kawakami Y, Oda Y, Araki M, et al. Spinal meningeal melanocytoma presenting with superficial siderosis of the central nervous system. Case report and review of the literature. J Neurosurg 1998;88:890-4.
33. McGee D. Subpial Cerebral Siderosis. Neurology 1962;12:108.
34. Messori A, Di Bella P, Herber N, Logullo F, Ruggiero M, Salvolini U. The importance of suspecting superficial siderosis of the central nervous system in clinical practice. J Neurol Neurosurg Psychiatry 2004;75:188-90.
35. Miliar G, Bostanjopoulou S, Arygroupolou M, Kyritsis A, Polyzoidis K. Superficial siderosis of the CNS: Report of three cases and review of the literature. Clin Neuroradiol Neurosurg 2006;108:499-502.
36. Nobuyuki K, Saburo Y, Tomiichi H, Tomori T. Pathologic features of ependymoma: Histologic patterns and a review of the literature. Neuropathology 1998;18:1-12.
37. Noetzel H. Diffusion von Blutfarbstoff in der inneren Randzone und ausseren Oberfläche des Zentral nervaln systems bei subarachnoidalner Blutung. Arch Psychiatr Nervenkr 1940;111:129-38.
38. Nogueira C, Meehan T. Successful outcome of cochlear implantation in a patient with superficial siderosis. B-ENT 2012;8:57-9.
39. Miliaras G, Bostantjopoulou S, Argyropoulou M, Kyritsis A, Polyzoidis K. Secondary superficial siderosis. Neurosurgery 2006;66:1144-52.
40. Nogueira C, Meehan T. Successful outcome of cochlear implantation in a patient with superficial siderosis. J Neuropathol Exp Neurol 1988;47:249-70.
41. Obe K, Rockefeller AA, Dentinger MP. Brain hemosiderin and superficial siderosis of the central nervous system. J Neuropathol Exp Neurol 1988;47:249-70.
42. Offenbacher H, Fazekas F, Schmid J, Kapeller P, Fazekas G. Superficial siderosis of the central nervous system: MRI findings and clinical significance. Neuroradiology 1996;38(Suppl 1):S51-6.
43. Parnes SM, Weaver SA. Superficial siderosis of the central nervous system: A neglected cause of sensorineural hearing loss. Otolaryngol Head Neck Surg 1992;107:69-77.
44. Pikis S, Cohen JE, Vargas AA, Romov JM, Harnof S, Ishayek E. Superficial siderosis of the central nervous system secondary to spinal epedymoma. J Clin Neurosci 2014;21:2017-9.
45. Reichenthal E, Rubinstein AB, Cohen ML. Infratentorial intratumoral hemorrhage. Mt Sinai J Med 1989;56:309-14.
46. Rieder CR, dos Santos Souza MP, de Farias RM. Fricke D. Superficial siderosis of the central nervous system associated with parkinsonism. Parkinsonism Relat Disord 2004;10:443-5.
47. Rosenthal P. Siderosis of the marginal zones of the central nervous system. Dtsch Z Nervenheilk 1958;178:431-72.
48. Sabat SB. Intraventricular cavernous malformation with superficial siderosis. Arch Neurol 2010;67:638-9.
49. Salem A, Krainik A, Helias A, Boucara D, Gaillard B, Feydy A, et al. MRI findings in a case of superficial siderosis associated with an ependymoma. J Neurol Neurosurg Psychiatry 2002;7:136-8.
50. Sharma A, Gaikwad SB, Goyal M, Mishra NK, Sharma MC. Calcified fulmin termale parangangioma causing superficial siderosis. AJR Am J Roentgenol 1998;170:1650-2.
51. Shen WC, Ho YJ, Lee SK, Lee KR. Ependymoma of the cauda equina presenting with superficial siderosis. Neurosurgery 1999;55:315-21.
52. Shen WC, Ho YJ, Lee SK, Lee KR. Ependymoma of the cauda equina presenting with superficial siderosis. AJNR Am J Neuroradiol 1993;14:399-400.
53. Sherwin I, Telli K. Superficial hemosiderosis of the central nervous system. Dis Nerv Syst 1972;33:413-7.
54. Spengos K, Vassilopoulos S, Tsigoula G, Karachalios G, Vassilopoulos D. Superficial siderosis due to a lumbar ependymoma mimicking adult-onset spinocerebellar ataxia. Clin Neurol Neurosurg 2007;109:705-7.
55. Steinberg J, Cohen JE, Gomori JM, Frafield S, Moscovici S, Rosenthal G, et al. Superficial siderosis of the central nervous system due to chronic hemorrhage from a giant invasive prolactinoma. J Clin Neurosci 2013;20:1032-4.
56. Straube A, Dodel C, Wegerle G, Klopstock T. Polyradiculopathy in the course of superficial siderosis of the CNS. J Neurol 2001;248:63-4.
57. Tozawa S, Nakamura K, Amenuma M, Higuchi T, Arai M, Aishima K, et al. Superficial Siderosis of the Central Nervous System Caused by Hemorrhagic Intraventricular Cranialparyngioma: Case Report and Literature Review. Neurol Med Chir 2015;55:89-94.
58. Vibert D, Hausler R, Llovd K.O, Schrotz G. Hearing loss and vertigo in superficial siderosis of the central nervous system. Am J Otolaryngol 2004;25:142-9.
59. Vetto G, Raggi A, Nkhami A, Leka L, Rakacolli M, Petrella M. Meningeal melanocytoma of the cerebellopontine angle as the unusual cause of superficial siderosis. Neuroradiology 2011;53:927-30.
60. Vyasa S, Garagani S, Singh P, Bansal A, Khandelwal N. Superficial siderosis. Ann Indian Acad Nervol 2011;14:58-9.
61. Walski S, Yamakawa K, Manaka S, Takakura K. Spontaneous intracranial hemorrhage caused by brain tumor: Its incidence and clinical significance. Neurosurgery 1982;10:437-44.
62. Willeit J, Aichner F, Felber S, Berek K, Deisenhammer F, Kiechl S, et al. Superficial siderosis of the central nervous system: Report of three cases and review of the literature. J Neurol Sci 1992;111:20-5.
63. Yoshida S, Shidoh M, Matsumura S, Ohyama H. Superficial siderosis from spinal teratoma. Lancet 2002;360:1539.
Commentary

Re: Rare association of secondary superficial siderosis caused by a fourth ventricle hemorrhagic ependymoma mimicking a cavernoma: Case report and literature review

Secondary superficial siderosis (SS) is a rare condition in which there is iron staining of the cortical surface or ventricles depending on the location of the causative lesion. SS is not mentioned in the encyclopedic Youmans Neurological Surgery. Most neurosurgeons would never have encountered a patient with SS. Neurosurgeons and neuroradiologists should be aware of it because of its potential for causing serious neurological decline.

As the authors state, SS is caused by low-grade chronic or repeated hemorrhage in the subarachnoid space. According to the authors, in 35% of the cases, the source for the hemorrhage is not identified. SS is identified on magnetic resonance imaging (MRI), as described in the article; during surgery, it appears as a brownish discoloration of the brain surface.

SS may cause a multitude of potentially serious and progressive neurological sequelae, which are well described in the article. Espinosa et al. have performed a thorough literature search and identified 45 cases of brain tumors associated with SS. Half of the tumors were ependymomas, and 5 of the 45 were in the fourth ventricle. Espinosa et al. describe an additional patient with SS caused by an ependymoma in the fourth ventricle.

The authors also point out that the ependymoma of the fourth ventricle could have similar radiological features to a cavernous hemangioma (CH) because in this location there is no typical hemosiderin ring around the CH.

The key point in management is that, when SS is identified on MRI, a thorough search for the source of hemorrhage should be undertaken and the primary pathology should be eliminated. Notwithstanding the necessity to treat the primary lesion, potentially serious neurological decline may thus be avoided.

Jeffrey V. Rosenfeld
Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia
E-mail: j.rosenfeld@alfred.org.au

REFERENCE

1. Youmans Neurological Surgery. Winn RH. 6th Ed. Philadelphia, PA: Elsevier, Saunders; 2011. ISBN 9780323249485.