Multilevel Bidirectional Cache Filter

Ohad Eytan Roy Friedman
Computer Science Department
Technion
{ohadey,roy}@cs.technion.ac.il

Abstract
Modern caches are often required to handle a massive amount of data, which exceeds the amount of available memory; thus, hybrid caches, specifically DRAM/SSD combination, become more and more prevalent. In such environments, in addition to the classical hit-ratio target, saving writes to the second-level cache is a dominant factor to avoid write amplification and wear out, two notorious phenomena of SSD.

This paper presents BiDiFilter, a novel multilevel caching scheme that controls demotions and promotions between cache levels using a frequency sketch filter. Further, it splits the higher cache level into two areas to keep the most recent and the most frequent items close to the user.

We conduct an extensive evaluation over real-world traces, comparing to previous multilevel policies. We show that using our mechanism yields an $x10$ saving of writes in almost all cases and often improving latencies by up to 20%.

1 Introduction

Distributed caching systems, such as Redis [31] and Memcached [19], improve the access latency perceived by users by storing parts of their applications data closer to the application or end user. In principle, the more storage area allocated for caching, the easier it becomes to ensure that most requested data can be served from cache.

Yet, the cost vs. performance tradeoff of common storage technologies, as illustrated in Table 1, poses the following challenges to such caching systems’ designers. DRAM memory is the fastest, and therefore provides users with the best response time. However, it is also the most expensive, meaning that it is also relatively limited in size. SSD or flash technology is an order of magnitude slower, but also two orders of magnitude cheaper. Further, SSDs can only accommodate a limited amount of writes in each of their memory cells, and also suffer from the write amplification problem, which means that writes becomes slower over time and cause expedite the degradation of the medium. Finally, HDDs are yet another two orders of magnitude slower (at least for random access) and another order of magnitude cheaper. For this reason, many caching solutions are multi-level or hierarchical.

Storage	Latency	Price $/\text{GB}$
DRAM	~60–100ns	~5–10
SSD	~10–200us	~0.1–1
HDD	~2–3ms	~0.02

Table 1: Price vs. performance trade-off. Based on [32,33,39]

Given the significant access time differences between these technologies, often the higher level cache resides in DRAM, the next level in SSD, and if needed, a lower level is placed in HDDs. Sometimes, the combination of DRAM and SSDs serve as a cache for the local HDD. It is common wisdom that the items whom are most likely to be accessed should be placed in the first level of the cache (DRAM), the next set of items in terms of access likelihood in the second level of the cache, etc. This minimizes the overall expected data access time. Due to the price performance trade-off illustrated in Table 1, SSD is indeed the preferred second level cache in many deployed settings [1, 2, 6, 16, 34].

Alas, SSDs suffer from two important limitations when serving as an underlying cache technology. First, each page in an SSD device can endure a limited number of writes [9, 21, 25]. In other words, frequent writes to SSDs shorten their lifetime. Second, SSDs are prone to the write amplification problem [21]. This is due to the fact that the minimal erasable unit of an SSD is a complete page [16, 27, 36], typically at least 4KB. For these reasons, keeping the “hot” data in DRAM reduces the number of writes to SSD, thereby improving the SSD’s lifetime and performance.

The choice of which item should be placed in each cache is governed by a cache management policy. When considering each cache level in isolation, it is known that the best management policy in terms of maximizing the hit-ratio depends
on that cache’s workload. Interestingly, most systems manage each of the cache levels in isolation. We argue that by adding a frequency based filtering mechanism, it is possible to improve the expected access time as well as significantly reduce the number of writes to the second level cache (SSD).

Contributions: We propose a novel scheme for exclusive multi-level caching, in which we place a frequency based filter (with aging) between cache levels, as illustrated in Figure 1. That is, whenever an item \(x \) is evicted from a high level cache \(L_i \), it is only inserted into the lower level cache \(L_{i+1} \) if the corresponding would-be-victim at \(L_{i+1} \), according to \(L_{i+1} \)'s management policy, is less frequent than \(x \). Similarly, we promote an accessed item \(x \) from \(L_{i+1} \) into \(L_i \) only if \(x \) is more frequent than the would-be-victim of \(L_i \) according to \(L_i \)'s management policy. The intuition behind this is that by keeping the more frequently accessed items at higher levels, which offer faster access times, the overall expected access time is shortened. Further, this reduces the amount of items being switched between levels, which reduces the number of writes to the low levels. In particular, when \(L_2 \) (or a lower level) is implemented in SSD, reducing writes is important as discussed above.

Further, we split \(L_1 \)'s total area in two: a **Window space** used to store newly arriving items, and a **Veterans space** that holds items that were promoted from lower levels. The reason for separating between new items and veterans in \(L_1 \) is that we need to give new items some time to build their reference counts and other statistics before we can decide whether it makes sense to continue caching them or not. This is obtained by placing a new item in the Window space, where it does not compete with the veterans until it becomes a victim candidate among the Window space items.

Our next contribution is an extensive performance evaluation study of our scheme against previous methods [20, 38]. We show that our approach yields a saving of at least 90% of the level-two writes among various traces and improves the expected latency, by up to 20% percents on some of them, depending on the measurement technique. We also released our JAVA implementation of all schemes as part of the Caffeine Simulator [28].

Paper roadmap: The rest of this paper is structured as follows: In section 3 we describe our scheme design. Section 4 presents the evaluation and measurements on various traces. Finally, section 5 concludes with a results discussion and possible extensions.

2 Related Work

The task of managing a multi-level cache includes the management policy within each layer coupled with a mechanism to decide how to combine the layers. The problem of managing a single layer cache has been extensively studied, and many policies have been suggested to address this [4, 5, 8, 10, 11, 13, 14, 22, 23, 30, 34, 35, 37]. Below, we discuss in more detail approaches for combining multiple cache levels.

CHOPT [41] is an optimal offline algorithm for data placement in a multi-level cache where a data item can be accessed directly from any level of the cache. The authors of [41] further present a sampling based approximation of CHOPT and demonstrate that on a wide variety of real-world traces it obtained an average access time reduction of 8.2% – 44.8% over other state of the art approaches.

Karma [40] uses application hints to partition blocks according to their expected access patterns. Each such partition is placed in a cache level and managed by a policy that are likely to be best for that partition based on the assumed access pattern. Karma is most suited for environments in which such hints can be obtained, such as databases. In contrast, our scheme BiDiFilter does not rely on any application hints.

DEMOTE [38] tries to mimic a single LRU policy for a two level cache and avoid duplication (exclusive caching) as follows: When an item is demoted from \(L_1 \) to \(L_2 \), it is placed at the tail of the LRU list of \(L_2 \) (as if it was just accessed in \(L_2 \)). Conversely, when an item is promoted from \(L_2 \) to \(L_1 \), it is placed at the head of \(L_2 \)’ LRU list (as if it is the LRU item of \(L_2 \)). This reduces the level of replication between the cache levels, thereby improving the overall hit-rate.

A shortcoming of DEMOTE is that it generates a significant amount of I/O between the cache levels. This is addressed by PROMOTE [20], in which cache layers choose probabilistically whether to store an accessed item or not. The effectiveness of exclusive caching and of combining eviction decisions between the cache levels has been also explored in [3], where a holistic multi-level approach to ARC [30] has been designed and evaluated.

NHC [39] optimizes the overall multi-level cache throughput performance when they are under heavy load by directing some of the excess load to the non-top layer of the cache. This is due to the observation that in many modern settings, latency differences between cache levels are not dramatic. Hence, if the top layer is running at full capacity, it makes sense to enable deeper levels to serve requests directly, thereby improving the throughput of the system.

The multi-level cache simulator described in [17] accounts for several aspects of evaluating multi-level caches beyond hit-ratio. This includes response time analysis, inter-level I/O, and impact on SSD lifetime. Unfortunately, up to the time of this writing, it has not been published.

Kangaroo [29] aims at supporting caching of billions of tiny objects on flash. Its goal is to reduce the write amplification of the flash storage, by splitting the flash cache into a small log-structured cache and a larger set associative cache. Kangaroo also employs a small DRAM cache in front of the flash, but admits almost all objects from the DRAM cache to the flash.
The main focus of Kangaroo is to reduce the number of writes from the on-flash log structured region to the on-flash set associative cache. In contrast, our work aims to reduce the number of objects that are transferred from the L1 cache (typically DRAM), to the lower level (typically flash). Hence, Kangaroo and our approach are orthogonal, and in principle can be combined.

3 BiDiFilter

3.1 Design

In this section, we present the core components of our system, named BiDiFilter. The main objectives of our design are to:

1. Maintain a high overall hit-ratio (i.e., reduce complete misses).
2. Serve a large portion of the requests from L1 (i.e., increase L1 hits).
3. Reduce writes and bandwidth usage to the lower levels of the cache.

One can easily argue that if the access distribution were i.i.d. and constant over time, then keeping the most frequent items at the higher possible level would benefit objectives 1 and 2. Unfortunately, it is well known [13, 14, 30] that access patterns typically exhibit a mix of recency and frequency characteristics, and specific items’ relative frequency tends to change over time even in frequency biased workloads. To deal with both issues, we split the highest level of the cache (L1) into two parts: a Window space to which items that are new to the cache are inserted, and a Veterans space intended for keeping the most frequent items that were also recently accessed.

![BiDiFilter Scheme](image)

Figure 1: BiDiFilter scheme

Additionally, we measure the frequency of items and filter admissions between the layers of the cache based on it. Filtering is performed in both directions:

1. An item evicted from the Window space (at L1) becomes a candidate to be admitted into the lower cache level (i.e., L2). Its frequency is compared to a victim item from L2 and the one with the higher frequency stays or is inserted depending on the comparison result. This filtering is meant to address objectives 3 and 1.

2. An item at L2 that has been accessed (L2 hit) becomes a candidate to be promoted to the higher cache level (i.e., L1). Its frequency is compared to a victim item from the Veterans space and the one with the higher frequency stays or is inserted depending on the result. The goal of this filtering is to achieve objective 2.

This mechanism results in a flow where new and recent items live in the Window space, other frequent items are admitted into the lower cache, while the most frequent items are promoted back into the Veterans space. Notice that each space has its own internal caching mechanism. The outline of the policy is detailed in Algorithm 1 and is illustrated in Figure 1. For brevity, we omit edge cases, e.g., the cache is still not full.

To implement the filtering mechanism, we rely on a frequency sketch with aging, similar to the TinyLFU mechanism [13]. That is, to enable keeping track of a very large number of items’ frequencies in a space efficient manner, we employ a sketch such as Count-Min Sketch [12]. Moreover, to accomodate for frequency changes, and prevent once popular items from polluting the cache for a long time, we employ periodic halving of the sketch counters. To further expedite this process and reduce memory consumption, we also cap the size of the counters to $[W/C]$, where W is the maximal number of items we are willing to track and C is the number of items in the cache. More detailed motivation for this approach can be found in [13].

3.2 A Multi-Level Extension of BiDiFilter

An extension of BiDiFilter to N levels is presented in Figure 2. Here, we place a TinyLFU filter between each pair of levels. As before, when an item becomes the victim of level L_i, it is admitted to L_{i+1} if its frequency estimate is higher than the would be cache victim of level L_{i+1}. In contrast, when an item at level L_i (for $i > 1$) is accessed, it is promoted to L_{i-1} if its frequency estimate is higher than the frequency estimate of the would be victim of layer L_{i-1}.

3.3 Synthetic Motivating Example

To exemplify the benefit of two areas in the first-level cache, we produced synthetic traces, mixing frequency and recency biases. Given a skew and recency parameters in $(0, 1)$, each access of a trace is generated by picking a recent item with a probability of the recency argument and an item from a Zipf distribution with the skew argument otherwise. The creation process of the traces is described in Algorithm 2.
Algorithm 1 BiDiFilter

1: procedure ONMISs(newItem)
2: insert newItem into Window space
3: candidate ← a victim from Window space
4: victim ← a victim from Main cache
5: if frequency(candidate) ≥ frequency(victim) then
6: admit candidate into Main cache
7: evict victim from Main cache
8: else
9: evict candidate from Window space
10: procedure ONHit(item)
11: if item ∈ L1 then
12: handle item according to the internal cache policy
13: else
14: victim ← a victim from Veterans space
15: if frequency(item) ≥ frequency(victim) then
16: promote item into Veterans space
17: evict victim into Main cache
18: else
19: handle item according to the internal cache policy

Window area (i.e., no Veterans area) and with No Window area (i.e., full Veterans area). The results for those runs are shown in Figure 3. As can be expected, when the recency parameter is close to 0, meaning it is a frequency biased trace, the Full Window version outperforms the No Window version. On the contrary, as the recency increases, the Full Window version becomes better and better. This motivates us to split the first-level cache into two areas to benefit from both worlds.

Figure 2: N-dimensional BiDiFilter scheme

Using a skew parameter of 0.5 and recency parameters ranging from 0 to 1, we ran versions of BiDiFilter with Full

Figure 3: Results for a synthetic zipf trace of length 10 million accesses, with 0.5 skewness parameter and different recencies, where level 2 cache size is 50% of the unique items and the ratio between level 1 and level 2 sizes is 1:10.
We implemented BiDiFilter in Java and used the Caffeine cache to study the consequences of choosing one over another. In this section, we describe our evaluation process, conducted in a simulated environment using four real-world modern traces. First, we evaluated multiple configurations of our system to study the consequences of choosing one over another. Then, we compare our chosen version with state-of-the-art competing methods.

3.4 The Tiebreak Dilemma

During our evaluation (described thoroughly in section 4 below), we observed that a substantial amount of the comparisons done by the sketching mechanism results in equal estimated frequencies. Hence, choosing whether to admit or reject in these cases could impact the performance significantly. Choosing to admit biases the policy towards recency and increases the number of writes to lower levels, while choosing to reject biases the policy towards frequency and decreases the number of writes. Below we present the performance of both options. Since the overall mechanism is frequency oriented due to the frequency filter, and since the number of writes is reduced considerably, we chose to admit whenever there is such a tie. However, this can be a configurable option to allow more strict filtering.

3.5 Implementation

We implemented BiDiFilter in Java and used the Caffeine Simulator [28] to test it. Our configuration includes Count-Min Sketch with 4 bits per counter, and we tested different split ratios of L1 between the Window space and the Veterans space. For simplicity, LRU is the internal cache management policy for each of the spaces in L1, and similarly to the main cache in [13], SLRU is employed in the internal cache of L2.

4 Evaluation

In this section, we describe our evaluation process, conducted in a simulated environment using four real-world modern traces. First, we evaluated multiple configurations of our system to study the consequences of choosing one over another. Then, we compare our chosen version with state-of-the-art competing methods.

We measured hits, misses, and the number of writes on all cache levels as well as average latency. From an algorithmic point of view, evictions and writes happen in a sequential manner and hold the following access to the system. Nevertheless, on many production systems, writes are done by a secondary process (often in batches) while reads continue to be served. Obviously, if the system is under pressure, the writes can still delay the reads. To reflect this, we present latencies with and without considering writes. We denote T_i, the access time to serve an item from layer i, H_i the hit ratio of layer i, T_{miss} is time to serve an item that it not in any of the cache levels (miss penalty), while M is the complete miss rate. We combine these to the following formulation:

\[
\text{Avg Read Latency} = \frac{T_{miss} \cdot M}{\text{number of requests}}
\]

\[
\text{Avg Read&Write Latency} = \frac{T_{miss} \cdot M + T_{miss} \cdot W}{\text{number of requests}}
\]

Based on the values in Table 1, we set $T_1 = 2ns$, $T_2 = 200ns$, $T_{miss} = 100ns$, $H = Hits$, $M = Misses$ and $W = Writes$. Keep in mind that the actual latency is in-between Avg Read Latency and Avg Read&Write Latency, and is heavily affected by engineering optimization. We used a version of the Caffeine Simulator [28] modified to handle multilevel caches to run all of our experiments.

4.1 Traces

To conduct our research, we used four real-world modern traces that were published in recent years. SYSTOR [26] is a trace of accesses to a storage of a VDI system. CDN [7] is a trace of Wikipedia CDN deployment. TENCENT [42] is a trace of a large-scale photo service. TWITTER [24] is a trace of anonymized cache requests from a Twitter production cluster. Table 2 lists the number of accesses and uniques items in each trace. Notice that to avoid the complications of size-aware cache policies, we split oversized items into chunks of 4kb, and treated all items as equal-sized. We ran the traces for different L2 cache sizes as a percentage of the unique items number, ranging from 10% to 100% percent, and for different ratios between L1 and L2, ranging from 1:10 to 1:100. Due to the tremendous number of items in the TENCENT trace, we were able to run it with L2 size only up to 50% of the unique items.

Algorithm 2 Creation of Synthetic Traces

```plaintext
1: procedure CREATE TRACE(length, groundSet, skew, recency)
2:     trace ← emptyList()
3:     while trace size < length do
4:         if rand() < recency then
5:             trace.append(one of the 10 recent items)
6:         else
7:             trace.append(sample an item from a Zipf distribution with skew and groundSet parameters)
8:     return trace
```

Table 2: Summary of Traces

Name	Accesses	Unique Objects
SYSTOR1 [26]	527 millions	452 millions
CDN1 [7]	4,541	628
TENCENT1 [42]	2,797	1,110
TWITTER1 [24]	939	44

Total number of accesses and unique objects for each trace.

4.2 Comparison of different configurations

As mentioned above, our system has few available configurations, mainly the ratio we split the level-one cache and whether we admit or reject in a frequency tie. To get some insights into these configurations, we ran BiDiFilter with a window space of 1%, 50%, and 99%, as well as with admission and rejection on a tie. Combining those options, we get six different versions. We name them BiDiFilterXY, where X is the window size and Y is T or F for admission or rejection, respectively. Additionally, we ran a version where the level-one cache is united (i.e., window and veterans share together all the space) and we admit on a tie, and name it BiDiFilterLRU. The results of these simulations are presented in figures 4 and 5.

The most eye-catching phenomenon is the large difference in the number of writes between tie-admission configurations and tie-rejection configurations. Figure 4 shows the number of writes on a log scale, and the difference between those two sets of configurations is about two orders of magnitude on all traces and cache sizes. This indicates that a significant part of the potential admissions are tied; probably most of them are with low frequencies. Notice that among the tie-admission group – the 1% window usually has fewer writes, but among the tie-rejection group – the 99% is better. However, the split ratio seems less important here.

Regarding the latencies in figure 5, BiDiFilterLRU is noticeably the poorest option. For TENCENT1 and TWITTER1 traces, the tie-rejection group is considerably worse, sometimes by an x2 factor, apparently because they are very recency oriented with fresh items arriving constantly. On the contrary, in SYSTOR1 and CDN1, the differences are much smaller, and there is no clear split between the groups. There is also no notable impact if we measure the latency with or without writes. In all cases, BiDiFilter50T performs well; hence we continue to test this configuration against other existing methods.

4.3 Comparison with other policies

Here, we compare BiDiFilter with a 50% window and admission on tie to other alternatives. The first two are versions of the traditional LRU modified to multilevel settings. One is De-

5 Discussion

This work explored the use of an aging frequency sketch as a bidirectional filter between levels in a hybrid cache environment. We saw a clear benefit in terms of write saving by at least one order of magnitude in almost all cases compared to competing approaches. We also observed latency improvements on many workloads.

Here we used LRU and SLRU to manage the internal cache levels. Using the same framework with a simpler internal cache, such as FIFO [18], or advanced ones like ARC [30], is left for future work and could provide additional benefit. We also believe that combining improvements such an adaptivity mechanism [14] and size-aware admission [15] should improve the hit ratio and latency, especially where it currently lags.

As described in [17], comprehensive performance evaluation of multilevel caching is a complex and daunting task. We hope that new tools and methods will be developed and released in the coming future, and will provide further analysis and results, showing the potential benefits of using our scheme.
Figure 4: Number of writes to L2 for multiple traces and multiple ratios between L1 and L2
Figure 5: Average latency per request, assuming latencies of 2ms, 200us and 100ns for disk, L2, and L1 respectively, for multiple traces and multiple ratios between L1 and L2.
Figure 6: Number of writes to L2 for multiple traces and multiple ratios between L1 and L2
SYSTOR1
Hit-Ratio ranges from 7%–23%

(a) \(L_1 : L_2 = 1 : 10 \)
(b) \(L_1 : L_2 = 1 : 20 \)
(c) \(L_1 : L_2 = 1 : 50 \)
(d) \(L_1 : L_2 = 1 : 100 \)

CDN1
Hit-Ratio ranges from 20%–86%

(e) \(L_1 : L_2 = 1 : 10 \)
(f) \(L_1 : L_2 = 1 : 20 \)
(g) \(L_1 : L_2 = 1 : 50 \)
(h) \(L_1 : L_2 = 1 : 100 \)

Figure 7: Average latency per request, assuming latencies of 2ms, 200us and 100ns for disk, L2, and L1 respectively, for multiple traces and multiple ratios between L1 and L2.
Figure 7: Average latency per request, assuming latencies of 2ms, 200us and 100ns for disk, L2, and L1 respectively, for multiple traces and multiple ratios between L1 and L2.
References

[1] Netflix Technology Blog: Application Data Caching Using SSDs, 2016. https://netflixtechblog.com/application-data-caching-usingssds-5bf25df851ef.

[2] Netflix Technology Blog: Evolution of Application Data Caching: From RAM to SSD, 2018. https://netflixtechblog.com/evolution-of-application-data-caching-from-ram-to-ssd-a33d6fa7a690.

[3] Raja Appuswamy, David C van Moolenbroek, and Andrew S Tanenbaum. Cache, Cache Everywhere, Flushing all Hits Down the Sink: On Exclusivity in Multilevel, Hybrid Caches. In IEEE Symposium on Mass Storage Systems and Technologies (MSST), pages 1–14, 2013.

[4] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with Adaptive Replacement. In Proc. of the 3rd USENIX Conf. on File and Storage Technologies (FAST), pages 187–200, 2004.

[5] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: Improving Cache Hit Rate by Maximizing Hit Density. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pages 389–403, 2018.

[6] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grososf, Sathya Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and Gregory R. Ganger. The CacheLib Caching Engine: Design and Experiences at Scale. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 753–768, November 2020.

[7] Daniel S Berger, Nathan Beckmann, and Mor Harchol-Balter. Practical Bounds on Optimal Caching with Variable Object Sizes. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2(2):1–38, 2018.

[8] Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. AdaptSize: Orchestrating the Hot Object Memory Cache in a Content Delivery Network. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pages 483–498, 2017.

[9] Simona Boboila and Peter Desnoyers. Write Endurance in Flash Drives: Measurements and Analysis. In 8th USENIX Conference on File and Storage Technologies (FAST), February 2010.

[10] Gregory Chockler, Guy Laden, and Ymir Vigfusson. Data Caching as a Cloud Service. In Proceedings of the 4th ACM International Workshop on Large Scale Distributed Systems and Middleware (LADIS), LADIS ’10, pages 18–21. ACM, 2010.

[11] Gregory Chockler, Guy Laden, and Ymir Vigfusson. Design and Implementation of Caching Services in the Cloud. IBM Journal of Research and Development, 55(6):9:1–9:11, 2011.

[12] Graham Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The Count-min Sketch and Its Applications. J. Algorithms, 55(1):58–75, April 2005.

[13] G. Einziger, R. Friedman, and B. Manes. TinyLFU: A Highly Efficient Cache Admission Policy. ACM Transactions on Storage (TOS), 2017.

[14] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben Manes. Adaptive Software Cache Management. In Proceedings of the 19th International Middleware Conference, pages 94–106, 2018.

[15] Gil Einziger, Ohad Eytan, Roy Friedman, and Benjamin Manes. Lightweight Robust Size Aware Cache Management. arXiv preprint arXiv:2105.08770, 2021.

[16] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan Stutsman, Mohammad Alizadeh, and Sachin Katti. Flashield: a Hybrid Key-value Cache that Controls Flash Write Amplification. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pages 65–78, February 2019.

[17] Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez Zadok. Desperately Seeking... Optimal Multi-Tier Cache Configurations. In 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage), 2020.

[18] Ohad Eytan, Danny Harnik, Effi Ofir, Roy Friedman, and Ronen Kat. It’s time to revisit lru vs. fifo. In 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 20), 2020.

[19] Brad Fitzpatrick. Distributed cCaching with Memcached. Linux J., 2004(124):5–, August 2004.

[20] Binny S Gill. On Multi-Level Exclusive Caching: Offline Optimality and Why Promotions are Better than Demotions. In FAST, volume 8, pages 1–17, 2008.

[21] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. The Unwritten Contract of Solid State Drives. In Proceedings of the Twelfth European Conference on Computer Systems, EuroSys, page 127–144. ACM, 2017.
[22] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: an Effective Improvement of the CLOCK Replacement. In Proc. of the USENIX Annual Technical Conference (ATC), 2005.

[23] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High Performance Buffer Management Replacement Algorithm. In Proc. of the 20th Int. Conf. on Very Large Data Bases (VLDB), pages 439–450, 1994.

[24] Rashmi Vinayak Juncheng Yang, Yao Yue. A large scale analysis of hundreds of in-memory cache clusters at twitter. In 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), USENIX Association, November 2020.

[25] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2FS: A New File System for Flash Storage. In 13th USENIX Conference on File and Storage Technologies (FAST), pages 273–286, February 2015.

[26] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo, Naoto Fukumoto, and Mariko Sugawara. Understanding Storage Traffic Characteristics on Enterprise Virtual Desktop Infrastructure. In Proceedings of the 10th ACM International Systems and Storage Conference, pages 1–11, 2017.

[27] Cheng Li, Philip Shilane, Fred Douglis, and Grant Wallace. Pannier: Design and Analysis of a Container-Based Flash Cache for Compound Objects. ACM Trans. on Storage (ToN), 13(3), September 2017.

[28] Ben Manes. Caffeine: A High Performance Caching Library for Java 8. https://github.com/ben-manes/caffeine, 2016.

[29] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S. Berger, Nathan Beckmann, and Gregory R. Ganger. Kangaroo: Caching Billions of Tiny Objects on Flash. In Proceedings of the 28th ACM SIGOPS Symposium on Operating Systems Principles (SOSP), page 243–262, 2021.

[30] Nimrod Megiddo and Dharmendra S. Modha. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proc. of the 2nd USENIX Conf. on File and Storage Technologies (FAST), pages 115–130, 2003.

[31] Redis-Labs. Using Redis as an LRU cache. https://redis.io/topics/lru-cache, 2020.

[32] Malte Schwarzkopf. Lecture notes in Fundamentals of Computer Systems. http://cs.brown.edu/courses/csci0300/2021/notes/109.html.

[33] Colin Scott. Latency Numbers Every Programmer Should Know. https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html.

[34] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd. Learning Relaxed Belady for Content Distribution Network Caching. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pages 529–544, 2020.

[35] Ranjith Subramanian, Yannis Smaragdakis, and Gabriel H. Loh. Adaptive Caches: Effective Shaping of Cache Behavior to Workloads. In Proc. of the 39th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO, pages 385–396, 2006.

[36] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li. RIPQ: Advanced Photo Caching on Flash for Facebook. In 13th USENIX Conference on File and Storage Technologies (FAST), pages 373–386, February 2015.

[37] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun Park. Cache Modeling and Optimization using Miniature Simulations. In USENIX Annual Technical Conference (ATC), pages 487–498, 2017.

[38] Theodore M Wong and John Wilkes. My Cache or Yours?: Making Storage More Exclusive. In USENIX Annual Technical Conference, General Track, pages 161–175, 2002.

[39] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnathan Alagappan, Rathijit Sen, Kwanghyun Park, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. The Storage Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage Devices with Orthus. In 19th USENIX Conference on File and Storage Technologies (FAST), pages 307–323, 2021.

[40] Gala Yadgar, Michael Factor, and Assaf Schuster. Karma: Know-It-All Replacement for a Multilevel Cache. In Fast, volume 7, pages 25–25, 2007.

[41] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vigfusson. Optimal Data Placement for Heterogeneous Cache, Memory, and Storage Systems. Proc. of the ACM on Measurement and Analysis of Computing Systems, 4(1):1–27, 2020.

[42] Ke Zhou, Si Sun, Hua Wang, Ping Huang, Xubin He, Rui Lan, Wenyuan Li, Wenjie Liu, and Tianming Yang. Demystifying Cache Policies for Photo Stores at Scale: A Tencent Case Study. In Proceedings of the 2018 International Conference on Supercomputing, pages 284–294, 2018.