Natural Compounds and Autophagy: Allies Against Neurodegeneration

Alessandra Stacchiotti¹,²* and Giovanni Corsetti¹

1 Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy, ² Interdepartmental University Center of Research “Adaptation and Regeneration of Tissues and Organs (ARTO),” University of Brescia, Brescia, Italy

Prolonging the healthy life span and limiting neurological illness are imperative goals in gerontology. Age-related neurodegeneration is progressive and leads to severe diseases affecting motility, memory, cognitive function, and social life. To date, no effective treatments are available for neurodegeneration and irreversible neuronal loss. Bioactive phytochemicals could represent a natural alternative to ensure active aging and slow onset of neurodegenerative diseases in elderly patients. Autophagy or macroautophagy is an evolutionarily conserved clearing process that is needed to remove aggregate-prone proteins and organelles in neurons and glia. It also is crucial in synaptic plasticity. Aberrant autophagy has a key role in aging and neurodegeneration. Recent evidence indicates that polyphenols like resveratrol and curcumin, flavonoids, like quercetin, polyamine, like spermidine and sugars, like trehalose, limit brain damage in vitro and in vivo. Their common mechanism of action leads to restoration of efficient autophagy by dismantling misfolded proteins and dysfunctional mitochondria. This review focuses on the role of dietary phytochemicals as modulators of autophagy to fight Alzheimer’s and Parkinson’s diseases, fronto-temporal dementia, amyotrophic lateral sclerosis, and psychiatric disorders. Currently, most studies have involved in vitro or preclinical animal models, and the therapeutic use of phytochemicals in patients remains limited.

Keywords: autophagy, polyphenols, alkaloids, terpenes, spermidine, trehalose, Alzheimer’s disease, Parkinson’s disease

INTRODUCTION

The mammalian central nervous system (CNS) is a crowded environment of highly specialized neurons surrounded by glial cells, fibroblasts, and pericytes, with smooth muscle cells and endothelial cells lining associated vessels (Stevens, 2003; Zeng and Sanes, 2017; Laredo et al., 2019; Matias et al., 2019). The unique post-mitotic nature of neurons, with scarce regenerative ability, means that they must have an efficient oxidative metabolism to support their specialized functions and resist cell death (Misgeld and Schwarz, 2017; Area-Gomez et al., 2018). Indeed, proper synapic function strongly depends on mitochondria, endoplasmic reticulum, lysosomes, and axonal flux of calcium ions and neurotransmitters (Wilhelm et al., 2014; Carmona-Gutierrez et al., 2016; Krols et al., 2016; Wu et al., 2017; Eisner et al., 2018). Primary inherited but also adult mitochondrial dysfunctions in neurons are not only linked to mtDNA or mtRNA changes but also to disrupted Krebs cycle, and related biochemical pathways up to reduced ATP availability. Therefore, altered morphology and signaling of crucial organelles, like mitochondria and lysosomes, dramatically
initiate neurodegeneration (Lee et al., 2018; Cowan et al., 2019; Lie and Nixon, 2019) and vulnerable neurons’ death (Andreone et al., 2019).

However, autophagy, literally from ancient Greek “self-eating,” is an evolutionary conserved mechanism to maintain neuronal homeostasis during the development and in mature cells (Kulkarni et al., 2018). This “cleaning” pathway based on lysosomes’ activity, maintains nutrient recycling in starvation, neurotransmitter release, synaptic remodeling and pruning during development in axons and dendrites (Geronimo-Olvera and Massieu, 2019; Lieberman and Sulzer, 2019; Lieberman et al., 2019; Stavoe and Holzbaur, 2019). Recently, Tomoda et al. (2019) outlined a novel essential role of autophagy, at synaptic level, regulating information processing, memory, mood, and cognitive functions in mouse models. Moreover, Lieberman et al. (2020) discovered another essential function of autophagy in the regulation of potassium channels in neurons in the striatum of mice, necessary for excitability and motor learning. However, autophagy is not only a peculiarity of neurons but also present in astrocytes, oligodendrocytes and microglia in aging and neurodegenerative disorders (Kim et al., 2017; Plaza-Zabala et al., 2017; Belgrad et al., 2020; Wang and Xu, 2020).

Since 2006, Mizushima’s and Tanaka’s group reported dysfunctional autophagy in mice lacking fundamental autophagy genes (ATG5 and ATG7 knockout) associated to locomotor abnormalities, neuronal loss in brain and cerebellum, behavioral defects and death within 28 weeks of birth (Hara et al., 2006; Komatsu et al., 2006).

Currently, the idea of a strict interdependence between autophagy and diseases in the CNS is well defined and aberrant autophagy is associated to aging and the pathogenesis of neurodegenerative diseases characterized by abnormal proteostasis (Morimoto and Cuervo, 2014; Tanaka and Matsuda, 2014; Nikoletopoulou et al., 2015). However, in addition to macroautophagy, other degradative mechanisms are involved in the clearance of misfolded proteins in neurons such as the molecular chaperones and the ubiquitin-proteasome (Nixon, 2013; Taylor et al., 2014; Ungelenk et al., 2016; Cristofani et al., 2017; Mogk and Bukau, 2017). Recent evidence indicates that chaperones and ubiquitin-proteasome are mainly required to dismantle short-lived soluble proteins, while autophagy dismantles large misfolded aggregates in non-selective or selective manner (Chu, 2019). This last mechanism, called aggrephagy, implies a receptor and a substrate connection to best recognize abnormal inclusions in damaged neurons (Gatica et al., 2018). Indeed, toxic proteic aggregates impair neurotransmission, calcium flux, mitochondria activity, membrane permeability and are commonly detected in animals and post-mortem brain in patients affected by neurodegenerative diseases like Alzheimer’s (AD), Parkinson’s (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Huntington’s (HD) (Chung et al., 2018; Cheon et al., 2019; Malampati et al., 2020). However, in addition to protein aggregates, selective autophagy removes damaged organelles like mitochondria, ribosomes and the endoplasmic reticulum to maintain neuronal homeostasis (Morishita and Mizushima, 2019; Evans and Holzbaur, 2020).

Consequently, there is extensive evidence that dysfunctional autophagy and/or mitophagy have been implicated in the onset and progression of neurodegenerative and psychiatric disorders like bipolar disorder and schizophrenia (Fujikake et al., 2018; Mizushima, 2018; Bar-Yosef et al., 2019; Kuang et al., 2019; Malik et al., 2019; Palikaras and Tavernarakis, 2020).

In recent years, the belief that autophagy is a druggable target and, consequently, its modulation a promising therapeutic opportunity for CNS diseases have been reported in several authoritative reviews (Morel et al., 2017; Scrivo et al., 2018; Condello et al., 2019; Djajadikerta et al., 2019; Mputhia et al., 2019; Peng et al., 2019; Thellung et al., 2019). However, the complex pathogenesis of neurodegeneration and a better knowledge of autophagy steps and upstream signaling pathways are necessary to extend promising results obtained in animal models to patients. Remarkably, autophagy modulation seems particularly favorable in an early phase of neurodegeneration and long-term autophagy modulators without side effects are urgently required (Li et al., 2015; Menzies et al., 2017; Giampieri et al., 2019).

For all these reasons, we conceived this critical review focusing on recent studies on dietary natural products and herbs able to regulate autophagy and limit neurodegeneration in vitro, in rodent models and eventually in patients. Before analyzing the specific role of natural products in neurodegenerative diseases, a brief explanation of the autophagic mechanisms activated in the brain is shown below.

AUTOPHAGIC SIGNALING

There are three crucial types of autophagy deeply characterized in neurons (Bento-Cuesta et al., 2017) and less in glia (Strohm and Behrends, 2019), defined macroautophagy, chaperone-mediated autophagy (CMA) and endosomal microautophagy.

Macroutaphagy

Macroautophagy (simply referred as “autophagy” hereafter), the most studied dynamic mechanism of recycling macromolecules and organelles, may be beneficial or detrimental for neurons, depending on its intensity, speed (called “the autophagic flux”) and regulation (Feng et al., 2014; Button et al., 2015; Hansen et al., 2018). Indeed, there is a basal beneficial autophagy necessary for proper development to maintain life span and prolong longevity, and a detrimental excessive autophagy, called autophagic cell death or autosis (Galluzzi et al., 2018). This last type is predominant in the hippocampus, where the loss of adult stem neurons, consequent to insulin withdrawal, induces cognitive deficits (Yu et al., 2008; Jung et al., 2020). Moreover, also selected autophagy of mitochondria, called mitophagy, whenever excessive becomes detrimental leading to neuronal death, such as reported in ischemic and hypoxic events in vitro and in rat spinal cord (Feng et al., 2018; Yu et al., 2018). Recent studies in preclinical animal models and in post-mortem brain samples from patients indicated a strict connection between defective autophagy and mitophagy to the pathogenesis of Parkinson’s...
(Gao et al., 2017; Arotcarena et al., 2019; Lin et al., 2019) and Alzheimer's disease (Chakravorthy et al., 2019; Xie et al., 2020).

However, it is essential to precisely modulate and monitor each step of the autophagy process to avoid detrimental irreversible effects instead of benefits in neurons (Mariño et al., 2011). Therefore, we resumed below different stages of mammalian autophagy, considering that for each step it is possible to foresee a genetic or a pharmacologic regulation.

The first step of autophagy starts in the cytoplasm with the "phagophore," a peculiar double membrane that subsequently elongates, and closes on itself to produce an "autophagosome," filled with misfolded proteins, lipidic materials or damaged organelles. The "autophagosome" progressively matures and merges with lysosomes becoming an "autolysosome" to complete clearing. In the last final step, all cargo is dismantled by lysosomal hydrolases and eventually a new phagophore is reformed.

Different upstream machineries control the induction of mammalian autophagy and the first initiation step. The most studied are the serine/threonine protein kinase ULK1 (unc-51-like kinase 1), which forms an assembly with autophagy-related proteins 13 and 101 (Zachari and Gauley, 2017), and phosphatidylinositol 3-kinase (PI3K), essential for starting all the process (Deveraux et al., 2013). The following elongation step involves a detailed genetic program and autophagy-related proteins (ATGs), directly regulated by two pathways: the mTOR complex 1 (mTORC1) and Bcl2/Beclin 1, the mammalian ortholog of ATG6. Intriguingly, mTORC1 downregulates ULK1, so inhibiting autophagy, but may be further positively regulated by Akt or negatively by the AMP-activated protein kinase (AMPK). In this last case, autophagy is stimulated. Other kinases regulate Bcl2 by inhibiting its binding to Beclin 1 and stimulating autophagy (He and Klionsky, 2009). Furthermore, selected transcription factors influence the formation of autophagosomes, like the master transcriptional regulator of autophagy/lysosomal biogenesis (TFEB), and peroxisome proliferator-activated receptor alpha (PPAR alpha) (Fullgrabe et al., 2016). Remarkably, to treat devastating neurodegenerative syndromes many efforts have been addressed to modulate TFEB and, consequently, to restore proper autophagy (Cortes and Lo Spada, 2019).

Different set of ATG proteins regulate the maturation and the closure of the autophagosome, and mainly the ATG8/LC3, or microtubule-associated protein 1 light-chain 3 (LC3I), is necessary for the final formation of the autophagic vacuole. Indeed, for this step, the cytosolic LC3I become lipidated and associated with phosphatidylethanolamine to generate LC3II linked to the autophagosomal membrane (Mizushima, 2018). The final degradation of the cargo involves the fusion with lysosomes, strictly dependent on the sequestosome (SQSTM1 or p62) protein, that is a reliable marker of an effective autophagic flux (Sanchez-Martin and Kim, 2018).

Mitophagy, the selective autophagy of mitochondria, requires specific receptors, able to select damaged mitochondria for the removal (Gatica et al., 2018). The most studied are PTEN-kinase 1 (PINK1) and Parkin. PINK1, located in the outer mitochondrial membrane, recruits parkin, an ubiquitin ligase, from the cytoplasm to the depolarized mitochondria, making them recognizable by the autophagosome for dismantling. Altered PINK1/parkin signaling in dopaminergic neurons has been strictly associated to the pathogenesis of PD (Truban et al., 2017; Lin et al., 2019; Noda et al., 2020), and defective mitophagy is an additional hallmark of AD, FTD and ALS diseases (Cai and Jeong, 2020; Xie et al., 2020). Recent evidence indicates in autosomal recessive PD the recruitment of PINK1 to mitochondria-associated membrane (MAM) and the regulation of mitochondria-ER distance and mitophagy (Gelmetti et al., 2017). Intriguingly, an abnormal tethering and consequent disrupted mitophagy have been described in long projecting axon neurons and glia in ALS (Bernard-Mariassal et al., 2018). Curiously, mice lacking PINK1 or Parkin do not present severe PD evidences like neuronal loss or locomotor dysfunctions, typical of humans, but probably due to their limited life span (Evans and Holzbaur, 2020). However, in hypoxia, different mitophagy pathways driven by novel receptors like NIX (Nip3 like protein X)/BNIP3 (Bcl2/adenosine E1B 19 kDa protein-interacting protein 3) or FUNDC1 (FUN14 domain containing 1) are activated. Recently, in mutant dopaminergic neurons, an in vitro model of PD, Ryan et al. (2018) demonstrated that cardiolipin exposure in the outer mitochondrial membrane is necessary for activating mitophagy and refolding of toxic alpha synuclein. Remarkably, all above receptors joined LC3 or gamma-aminobutyric acid receptor-associated protein (GABARAP) on the autophagosome for final mitochondria dismantling (Palikaras et al., 2018). A resumptive plot indicating the progressive macroautophagy signaling and its regulation is shown in Figure 1.

Chaperone-Mediated Autophagy (CMA)

Compared to macroautophagy, chaperone-mediated autophagy (CMA) presents three fundamental peculiarities: it removes only misfolded cytoplasmic proteins and not organelles; it does not require mature autophagosomes but only lysosomes; the recognition of aggregated proteins and the targeting to lysosomes are performed by a cytosolic chaperone hsc70 (Kaushik and Cuervo, 2018). For proper dismantling, all cytosolic proteins must contain an amino acidic sequence related to KFERQ. The complex obtained is then up-taken by the lysosome-associated membrane glycoprotein 2 (LAMP2) and degraded. Failure in CMA has been detected in PD to dismantle abnormal alpha-synuclein aggregates (a favorite CMA substrate), but also in AD, FTD and HD to remove excessive tau protein, TAR DNA-binding protein 43 (TDP-43) and huntingtin protein, respectively (Martinez-Vicente et al., 2010; Cuervo and Wong, 2014; Wu et al., 2015; Tripathi et al., 2019). For these reasons, targeting CMA can be considered another therapeutic opportunity if autophagy is unresponsive (Xilouri et al., 2013). Intriguingly, two pathways modulate CMA in neurons: mTORC2 that inhibits LAMP2A assembly and lysosomal p38 MAPK during ER stress response (Li et al., 2019). Indeed, CMA pathway works together with other homeostatic mechanism like the ER stress response and reduced interaction between these processes results in loss of dopaminergic neurons in the substantia nigra in mice (Li et al., 2019).
et al., 2017). Conversely, proper restoration of both CMA and macroautophagy, by the upstream regulation of the nuclear erythroid 2-related factor 2 (Nrf2) in astrocytes, promotes effective alpha-synuclein degradation and rescue in a PD mice model (Gan et al., 2012).

Microautophagy

This mechanism, still poorly defined in mammals, involves the direct recruitment of cytosolic proteins containing the sequence KFERQ via Hsc70 into a membrane invagination of a late endosome or lysosome then their full degradation (Malik et al., 2019). This peculiar autophagosome-independent transfer occurred at synaptic level and was necessary for the renovation of synaptic proteins. Sato et al. (2019) reported that rapamycin, a known activator of macroautophagy, stimulated microautophagy in cells by TFEB stimulation and hypothesized its involvement in neurodegenerative diseases. The delivery of proteins to be degraded within vesicles resembled a “secretory autophagy” mechanism and intraluminal exosomes formation (Buratta et al., 2020).

NUTRACEUTICALS EFFECTIVE IN NEURODEGENERATION VIA AUTOPHAGY

Chronic neurodegenerative diseases are untreatable and few approved synthetic drugs reduced adverse symptoms but not cure them. In this discouraging scenario, oral supplementation with vegetal bioactive derivatives or the Mediterranean diet are promising to postpone the irreversible progression of AD, PD, ALS, FTD (Vauzour et al., 2017; Hornedo-Ortega et al., 2018; Pohl and Lin, 2018; Fernandez-Sanz et al., 2019).

However, considering that the relation “one-drug, one-target” for the multifactorial pathogenesis of neurodegenerative diseases is clinically unsuccessful, traditional medicinal herbs or plants with beneficial pleiotropic effects may represent a plausible preventive auxiliary therapeutic opportunity (Cummings et al., 2014; Park et al., 2018; Di Paolo et al., 2019). Plants derived compounds or “nutraceuticals” are secondary metabolites, produced by the plants to defend themselves from pathogens or adverse environmental conditions and have been proposed as...
complementary “herbal Medicine” to treat Alzheimer’s (AD) and Parkinson’s disease (PD) (Ahn and Jeon, 2015; Perez-Hernandez et al., 2016; Naai et al., 2019; Renaud and Martinoli, 2019; Chiu et al., 2020).

Nutraceuticals are largely present in fruit, vegetables, cereals, herbs used in the human nutrition, with pleiotropic anti-oxidant, anti-inflammatory, glycemia-regulating properties able to preserve brain (Kennedy and Wightman, 2011; Gonzalez et al., 2019) with fewer side-effects than synthetic drugs (Georgiou et al., 2011; Forni et al., 2019). Recently, an important source of neuroprotective compounds like phytosterols, carotenoids, fucoids and polyphenols have been characterized also in seaweeds consumed in China and Indonesia (Schepers et al., 2020). Most of them are effective anti-inflammatory and anti-oxidants and preserve dendritic spine density in hippocampal neurons. However, the harvest and purification of seaweeds are crucial to obtain bioactive compounds to use at a dosage effective for the brain activity.

Considering the pathogenetic role of aberrant autophagy in neurodegenerative diseases, emerging evidence indicates that nutraceuticals modulators of autophagy may be promising “functional foods” (Fan et al., 2017; Prieto-Dominguez et al., 2018; Xie et al., 2019; Zeng et al., 2019). Moreover, autophagy and mitophagy are involved in the removal of aggregated proteins and dysfunctional mitochondria hallmark of AD, PD, frontotemporal dementia (FTD) and Huntington disease (HD) (Menzies et al., 2017).

In the following subheadings, we discussed and commented studies published in the last decade on nutraceuticals as regulators of autophagy and their role in neurodegenerative diseases. Natural compounds have been subdivided according to their chemical structure into four categories: polyphenols, alkaloids, terpenes and terpenoids. Finally, the last subheading, entitled “Others,” is dedicated to chemically heterogeneous compounds that are emerging against neurodegeneration and aging, like the pineal indole melatonin, the disaccharide trehalose and the polyamine spermidine, a well-known caloric restriction mimetic (Kiechl et al., 2018; Lee et al., 2018; Madeo et al., 2019).

Polyphenols

Phenolics compounds are commonly present in human diet, due to their large presence in plants. They derived from phenylalanine and contained almost one phenol ring that contributed to different subclasses like: phenols acids, flavonoids, stilbenes and lignans (Tsao, 2010). Compounds belonging to this category deeply involved to attenuate neurodegeneration are: polyphenols like resveratrol in wine and in virgin olive oil; flavonols in cocoa, tea, apples, beans; hydroxycinnamates in coffee; flavonoids in tea, apples, onions, chocolate; anthocyanins in berries (Angeloni et al., 2017; Poti et al., 2019). The effects of polyphenols on autophagy are rapidly emerging as specific to a single step of the process for each neurodegenerative syndrome (Kou and Chen, 2017).

Resveratrol (3,5,4’-trihydroxy-trans-stilbene), largely present in plants and in red wine as derivative from Vitis viniferas, regulated AMPK/mTORC1 pathway and activated the first step of autophagy to alleviate cognitive impairment in AD mice. However, dysfunctional enhanced autophagy has been reported as pathogenic hallmark of AD in dystrophic neurites with autophagic vacuoles, upregulated mTOR and reduced Beclin 1 (Pickford et al., 2008; Lipinski et al., 2010; Bordi et al., 2016). All these studies highlighted the controversial role of autophagy in AD (Castellazzi et al., 2019) and its dependence on neuronal topology and on the stage of cognitive impairment (Liu and Li, 2019).

In a recent proteomic study Lachance et al. (2019) reported in post-mortem brain reduced gene expression for autophagy kinase complex in the para-hippocampal area and hippocampus. Remarkably, the same evidence occurs in mice deprived of BECN1-PIK3C3 complex that showed memory deficits and impaired autophagy. Conversely, the activation of the nuclear receptor binding factor 2 (NRBF2), associated to PI3K complex, greatly influenced autophagy flux progression and demolition of toxic amyloid aggregates (Yang C. et al., 2017). Recently, Reddy and Oliver (2019) reported reduced autophagy and mitophagy caused by excessive amyloidosis and tau deposition in AD. Other authors reported that resveratrol is effective to reduce abnormal beta amyloid deposition in APP/PS1 mice activating AMPK (Di Meco et al., 2020) and sustaining Beclin 1 and LC3II via a Sirtuin1 signaling. Remarkably, its low bioavailability and difficulty to cross the brain blood barrier must be taken in account for its pharmacological efficacy (Salehi et al., 2018). In fact, only the trans isofrom is effective in the hippocampus of AD mice by sustaining autophagy (Porquet et al., 2014). In vitro, in PC12 cells, resveratrol promoted autophagy via Sirtuin 1 protein and subsequent LC3I deacetylation (Deng and Mi, 2016). Resveratrol rescued ischemic damage in the rat brain during middle cerebral artery occlusion or excitotoxicity induced by glutamine (Pineda-Ramirez et al., 2020). In these models the stilbene stimulated mitophagy by activation of AMPK, Beclin 1 and LC3II conversion. Resveratrol potentiated motoneuron recovery and decreased apoptosis, after spinal cord injury in mice, through promotion of Beclin 1, LC3II and autophagy (Hu et al., 2017). Similar results were reported by Wang P. et al. (2018) in rat spinal cord injury, where resveratrol activated AMPK and autophagic flux, and consequently inhibited mTOR pathway, and in vitro in PC12 cells. Moreover, resveratrol induced autophagy, in dopaminergic SH-SY5Y cells challenged with rotenone via haeme oxygenase signaling (Lin et al., 2014).

As for PD mouse model triggered by methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MTP), resveratrol ameliorated locomotor activity and the number of dopaminergic neurons in the substantia nigra pars compacta, promoting Sirtuin 1/ LC3II and reducing p62/SQSTM (Guo et al., 2016). Sirtuin 1 was crucial to maintain tolerance to neurotoxic aggregates in AD and PD by inhibiting mTOR and promoting autophagy (Lee, 2019). Finally, resveratrol restored ATG4 and stimulated LC3 II and autophagy in neuroblastoma SH-SY5Y cells expressing mutant-Huntingtin treated by dopamine (Vidoni et al., 2018).

Curcumin, the main active component of curry spices, and curcuminoid from Curcuma longa plants have been reported to induce autophagy in AD mice limiting mTOR/Akt signaling and sustaining LC3 (Wang C. et al., 2014; Shakeri et al., 2019; Voulgaropoulou et al., 2019). Curcumin protected in vitro...
an AD neuronal cell model (N2a/APP695swe), enhancing a retrograde axonal flux and restoring autophagy via Beclin 1 (Liang et al., 2019). Similarly, solid lipid nanoparticles driving curcumin stimulated CMA in human neuroblastoma cells and in mice neuronal cells challenged with toxic β-amyloid fibrils, it has been successfully adopted as a fluorescent biomarker in the retinas at early stages of AD in patients and mice (Cordeiro et al., 2018). Intriguingly, Zhang et al. (2018) demonstrated that curcumin protected hippocampal neurons in amyloid treated mouse by limiting abnormal Beclin 1 and autophagosomes formation. Curcumin was also effective in PD in vitro model of dopaminergic neurons where modulated autophagy and cleaned α-synuclein aggregates (Liang et al., 2019).

Alkaloids

Alkaloids are neuroprotective agents extracted by different plants and herbs, such as Solanaceae, Papaveraceae, Ranunculaceae, Amarillidaceae (Hussain et al., 2017).

Berberine, an alkaloid derived from Berberis species herbs, ameliorated autophagic flux and removed tau aggregates in AD mice, recovering memory and spatial learning (Chen et al., 2020). Intriguingly, it was also effective in removal of abnormal ubiquitinated TDP-43 deposits in frontotemporal degeneration (FTD) and amyotrophic lateral sclerosis (ALS) by autophagy (Chang et al., 2016). Berberine has also an important anti-cancer effect in glioblastoma by activating autophagy via AMPK signaling decreased glycolytic activity and invasive potential of cells (Chang et al., 2016; Wang et al., 2016). Oral berberine enhanced life span and stimulated autophagic markers in the brain and cerebellum of transgenic N171-82Q mice, a HD model (Jiang et al., 2015). Berberine has also an important anti-cancer effect in glioblastoma by activating autophagy via AMPK signaling decreased glycolytic activity and invasive potential of cells (Chang et al., 2016; Wang et al., 2016). Oral berberine enhanced life span and stimulated autophagic markers in the brain and cerebellum of transgenic N171-82Q mice, a HD model (Jiang et al., 2015).

Caffeine, one of the most common alkaloids in the world, modulated autophagy in SH-SY5Y neuroblastoma cells exposed to prion derived protein, so protecting them against apoptosis (Moon et al., 2014). Caffeine increased LC3 and LAMP2 and reversed toxic α-synuclein deposits.

Conophylline, an alkaloid derived from Ervatamia microphylla, similarly stimulated autophagy in vitro neurons in HD and PD mimetic models (Sasazawa et al., 2015; Umezawa et al., 2018).

Dendrobium nobile, an alkaloid derivative from Orchidaceae very common in China, has been recently demonstrated to protect hippocampal neurons exposed to β-amyloid by promoting Beclin 1 and accelerating autophagic flux (Li et al., 2016).

Terpenes and Terpenoids

Terpenes extracted by essential aromatic oils have a recognized anti-inflammatory and antioxidant role (Quintans et al., 2019).
Monoterpenes have been recently considered also modulators of autophagy (Ashrafizadeh et al., 2019a).

Bergamot essential oil from *Citrus bergamot* and its derived terpene, D-limonene, have been successfully added in vitro to human neuroblastoma cells SH-SY5Y where they induced autophagy, increasing LC3II, and accelerated autophagic flux but independently from Beclin1 (Russo et al., 2014).

Cubeben, a sesquiterpene from *Piper cubeba*, reduced beta amyloid toxicity in vitro in primary neuronal cells recovering autophagy via PI3K/AMPK signaling and inhibiting mTOR (Li et al., 2019a).

Ginaton, an extract from *Ginkgo biloba* leaves, is a mixture of terpenoids, flavonoids and organic acids with pleiotropic roles as antioxidative and neuroprotective product, mainly after 4 h after brain ischemia in stroke (Tian et al., 2017). Li et al. (2019b) induced ischemic stroke in rats, by middle cerebral artery occlusion, and treated animals with ginaton 24 h after reperfusion once a day for 14 days. Neurological symptoms ameliorated and the infarct site decreased, together with enhanced autophagic markers via AMPK and inhibition of apoptosis.

Geraniol, an acyclic monoterpenes present in several aromatic plants, was effective to protect neurons from rotenone stress, an in vitro PD model, by recovering mitochondria and decreasing α-synuclein and improving autophagic flux (Rekha and Sivakamasundari, 2018).

Cucurbitacin E, a terpenoid phytosterol from *Ecballium elaterium* (Cucurbitaceae), partially protected PC12 neurons, treated with toxins to simulate PD, but remarkably, reduced Beclin 1 autophagy, and ameliorated autophagosomes necessary for dismantling toxic deposits (Arel-Dubeau et al., 2014).

Carotenoids, known also as tetraterpenoids, are common bioactive pigments present in fruits and vegetables in the human diet, such as peach, watermelon, tomato, spinach, carrots, broccoli, and seaweeds with antioxidant and anti-inflammatory activities, useful against neurodegeneration (Cho et al., 2018). Fucoxanthin, a carotenoid from brown seaweeds, has been an

Nutraceuticals	Disease model	Dose/Signaling	References
Polyphenols			
Resveratrol	AD-Aβ25-35 treated PC12	20 μM- Increased PARP1-SIRT1	Li et al., 2014; Deng and Mi, 2016; Guo et al., 2016; Viddoni et al., 2018; Pineda-Ramirez et al., 2020
Pomegranate extract	AD-Aβ25-35 treated PC12	20 μM- Increased Heme oxygenase	Li et al., 2014; Deng and Mi, 2016; Guo et al., 2016; Viddoni et al., 2018; Pineda-Ramirez et al., 2020
Curcumin	AD-N2a/APP695swe AD-hippocampal neurons	1–10 μM-TFEB binding	Wang C. et al., 2014; Song et al., 2016; Li et al., 2017; Zhang et al., 2018; Liang et al., 2019; Zholos et al., 2019
Flavonoids			
Quercetin	AD-Aβ25-35 treated PC12	50 μM-AMPK activation; 10–12 M-Restored autophagic flux	Ashrafizadeh et al., 2019b
Baicalein	AD-Aβ25-35 treated PC12	10 μM for 24 h-Activated autophagic flux	Kuang et al., 2017
Terpenes			
D-Limonene	AD-Aβ25-35 treated PC12	0.005–0.3% LC3II and autophagic flux activation	Russo et al., 2014
Others			
β-Asarone	AD-PC12 neurons	24–72 μM-LC3II - Beclin 1 induction	Wang et al., 2020
Melatonin	AD-PC12 neurons	1 μM L-1- Beclin 1-autophagic flux activation	Nopparat et al., 2017
Trehalose	NSC34 cells	100 mM for 24 h-TFEB activation/Akt inhibition	Rusmini et al., 2019
activator of main autophagic markers, and a neuroprotector in mice model of traumatic brain injury via Nrf2 pathway (Zhang et al., 2017).

Others

_**Spermidine**, a safe polyamine present in several seeds and plant-based food, like soy and wheat germ (Muñoz-Esparza et al., 2019), prolongs lifespan in lower organisms like flies, yeast and worms, and ameliorate cognitive ability in mice and old humans (Schwarz et al., 2018). Moreover, in addition to induce autophagy by removing inhibitory acetyltransferase EP300 (Pietrocola et al., 2015), spermidine was an anti-inflammatory drug that alleviated experimental autoimmune encephalomyelitis in mice (Yang Q. et al., 2016).

_**Beta-asarone** (cis-2,4,5-trimethoxy-1-allyl-phenyl), a volatile oil from _Acorus tatarinowi_ herb, has been successfully tested in an AD model in PC12 neurons challenged with amyloid (Aβ42), the toxic protein in plaques. Both autophagy, the autophagic flux and mitophagy pathways were triggered and ameliorated by this compound in a dose dependent manner (Wang et al., 2020). However, if _in vitro_ this product sustained Beclin 1 and LC3II signaling, the same markers were inhibited _in vivo_ in double transgenic APP/PS1 mice and autophagosomes decreased in hippocampal neurons (Deng et al., 2016). Probably, _in vivo_ autophagy was not the main mechanism targeted by beta-asarone able to ameliorate memory and learning in mice.

_**Melatonin**, the pineal indole, also present in vegetal food, seeds and fruit, has been considered a powerful anti-inflammatory and antioxidant dietary supplement in neurodegeneration (Shukla et al., 2019). Melatonin intake reduced experimental subarachnoid hemorrhage (SAH) in rats by blocking neuronal apoptosis and abnormal autophagy just 2 h post SAH (Shi et al., 2018). Moreover, melatonin sustained Parkin/PINK1 pathway and mitophagy but inhibited inflammasome in the same animal model (Cao et al., 2017). Similarly, _in vitro_ in senescent SH-SY5Y cells, melatonin was a potent autophagy inducer and

Table 2 | Nutraceuticals effective against neurodegeneration via autophagy _in vivo._

Nutraceuticals	Disease model	Dose/Signaling	References
Polyphenols			
Resveratrol	AD-AβPP/PS1 mice	1% for 10 months-AMPK/Sirtuin	Porquet et al., 2014; Guo et al., 2016; Hu et al., 2017; Zhao et al., 2017; Wang P. et al., 2018; Vidoni et al., 2018; Pineda-Ramirez et al., 2020
Brain ischemia rat		1.8 mg/kg- AMPK/Beclin1	
Spinal cord injury rat and mice	200 mg/kg/day i.p. for 3 days-LKB1/AMPK		
PD-MPTP mice		100 mg/kg/day for 33 days-Sirtun 1-LC3	
Curcumin	AD-APP/PS1 mice	160–1000 ppm for 6 months-Downregulated PIK3Akt/mTOR	Wang C. et al., 2014; Song et al., 2016; Gao et al., 2017; Li et al., 2017
Traumatic brain injury-rat	25–100 mg/kg-Enhanced Beclin 1, LC3		
Oleuropein aglycone	AD-TgCRND8 mice PD mice	5 mg/kg/diet for 8 weeks-AMPK activation, mTOR inhibition EVOO-rich diet for 6 months-Atg5-Atg7-AMPK	Rigacci et al., 2015; Al Rihani et al., 2019
Flavonoids			
Quercetin	AD-PD mice	5 mg/kg/day for 4 weeks	Ashrafizadeh et al., 2019b; Liu et al., 2019; Zhang et al., 2020
Silymarin	Traumatic brain-injury rat	50 mg/kg i.p. for 12–24h	Hirayama et al., 2016
Baicalein	Forebrain ischemia-rat	7 mg/kg-reduced autophagic flux	
Alkaloids	PD-Rotenone injected mice	100 mg/kg i.p. for 5 weeks-LC3 activation	Kuang et al., 2017
Berberine	AD and HD mice	40 mg/kg-Akt inhibition	Jiang et al., 2015; Wang et al., 2017.
Caffeine	Spinal cord injury-rat	20 mg/kg-AMPK activation	Chen et al., 2020
Terpenes	PD mice	1 g/L for 3 months-LC3II-LAMP2A activation	Luan et al., 2018
Ginaton	Brain ischemia mice	50 mg/kg for 14 days-AMPK activation	Tian et al., 2017; Li et al., 2019b
Carotenoids	Traumatic brain injury mice	50–200 mg/kg i.g.-Beclin 1-LC3 activation	Zhang et al., 2017
Others			
β-Asarone	AD-AβPP/PS1 mice	10 mg/kg-Beclin 1-Akt reduction	Deng et al., 2016
Melatonin	SAH rats	5–10 mg/kg i.v.-abnormal autophagy decrease	Cao et al., 2017; Shi et al., 2018
Trehalose	Batten disease mice	2% oral-TFEB activation	He et al., 2016; Holler et al., 2016; Tien et al., 2016; Palmieri et al., 2017
AD, PD, FTD mice			
an antagonist of NF-κB signaling by sirtuin 1 deacetylase (Nopparat et al., 2017).

Trehalose, a disaccharide present in bacteria, yeast, fungi and plants but not in vertebrates, has caught the attention as an autophagic regulator in neurodegenerative diseases (Khalifeh et al., 2019). Palmieri et al. (2017) demonstrated that trehalose, administered to a mice model of Batten disease (a neurodegenerative lysosomal disease), stimulated the clearance of toxic aggregates via activation of TFEB, the fundamental regulator of lysosomal pathway. In AD, PD and frontotemporal dementia models, the disaccharide destroyed misfolded proteins and triggered an efficient autophagic flux and lysosomal activity (He et al., 2016; Holler et al., 2016; Tien et al., 2016). Conversely, other studies on transgenic AD mice and on alpha-synuclein challenged neuroblastoma cells and primary rat cortical neurons, reported a protective activity but independent from autophagy or a block of the final step of autophagy and autolysosomes formation (Portbury et al., 2017; Yoon et al., 2017; Lee et al., 2018). A recent study on immortalized motoneurons demonstrated that trehalose induced TFEB nuclear translocation and autophagy and that TFEB silencing counteracted its effect (Rusmini et al., 2019). Unfortunately, trehalose cannot be assumed orally in humans because degraded by trehalase, an enzyme present in the gastrointestinal tract. However, recently nanolipid-trehalose conjugated have been developed as effective autophagy inducers to overcome the poor pharmacokinetics of this sugar and its efficacy at higher doses (Colombo et al., 2019).

To recapitulate, the signaling of nutraceuticals driving autophagy in vitro or in rodent models of CNS diseases are shown in Tables 1, 2, respectively.

NON-SPECIFIC EFFECTS OF NUTRACEUTICALS IN NEURODEGENERATION

The majority of nutraceuticals reported here has been selected for their effects on the macroautophagy machinery in experimental neurodegenerative models. However, it is important to emphasize that their activity is non specific, because the same compound has multiple roles and may act as an anti-aging, anti-apoptotic, free radicals-scavenger or anti-inflammatory drug (Howes et al., 2020). For example, ferulic acid, a phenolic compound commonly present in fruits and vegetables, orally administered at 80–100 mg/kg in rats 30 min before middle cerebral artery occlusion, limits ischemia reducing apoptosis and activating autophagy (Cheng et al., 2019). Conversely, crocin, a flavonoid from Crocus and Gardenia species, ameliorated memory and behavior in AD rat model, reducing apoptosis and citochrome c release but was ineffective on autophagic markers beclin 1/LC3 (Asadi et al., 2015). Moreover, not only a single natural principle but often mixed formulation of components may be adopted in experimental and clinical trials. For example, sailuotong, a mixture of saffron from Crocus sativus, Ginkgo biloba, and Panax ginseng, has been tested successfully in old adults, with mild cognitive impairment, to ameliorate cognitive abilities (Steiner et al., 2018). The synergistic effect of berberine and curcumin was more potent than the single compound to improve cognitive function after 3 months of treatment in AD mice (Lin et al., 2020). Extra virgin olive oil, a mixture of polyphenols, α and γ-tocopherols, added for 6 months to the diet in a taupathy mice model, alleviated synaptic activity in the hippocampus and memory impairment (Lauretti et al., 2020). Currently, more intense pharmacological and pharmacokinetic studies are required to ameliorate safety, purity, bioavailability of nutraceuticals, together with the urgent requirement of a unique worldwide regulation (Helal et al., 2019).

CONCLUSION

This review focused on the regulatory role of natural dietary compounds on autophagy to postpone or alleviate neurodegeneration in vitro and in animal models. Unfortunately, major knowledge on the defective autophagy in humans is urgent to successfully treat patients. The importance of preventive or therapeutic autophagy regulation in neurodegenerative diseases is still debated (Bar-Yosef et al., 2019; Maiuri and Kroemer, 2019; Park et al., 2020; Suomi and Mc Williams, 2020). Negrete-Hurtado et al. (2020) reported in ATG5 KO mice brain, a non canonical role of ATG proteins and that lipidation machinery is not required for neuronal survival. Indeed, the main function of ATG-induced LC3 lipidation is to regulate microtubular dynamic in en passant boutons. According to this study, to enhance autophagy may be deleterious in forebrain axons, affecting retrograde flux and function.

Nevertheless, there is wide consensus on the efficacy of natural pleiotropic compounds able to enhance or restored insufficient autophagy in aggregated-prone proteins pathologies like AD, PD, HD in preclinical rodent models (Djadadjikerta et al., 2019; Rahman et al., 2020). Remarkably, it is clear that the neuronal damage, the intensity and stage of disease greatly condition the beneficial or detrimental use of nutraceuticals and autophagy tuning in brain injury and aging (Galluzzi et al., 2017; Yessenkyzy et al., 2020). Therefore, it must be remembered that autophagy can be a double-sided process. Ferrucci et al. (2018) critically indicated that there was not a unique beneficial role of autophagy in the hypoxic brain and that may be better to inhibit autophagy to alleviate chronic ischemia. For this reason, nutraceuticals like Leonurine, an active extract from Leonurus cardiaca, inhibited ATG pathways and autophagy, so reducing neuronal damage (Liu et al., 2016).

Moreover, neurodegenerative diseases are multifactorial and many pathways must be considered (Kuang et al., 2019). Therefore, not only autophagy but also necrosis and apoptosis contributed to neuronal cell death (Leong et al., 2020). Remarkably, natural compounds able to limit neurodegeneration in vitro might not be effective in vivo and multiple products are suggested both natural and synthetic (Mazzanti and Di Giacomo, 2016). Moreover, different types of autophagy, reciprocally regulated, might concur...
to alleviate abnormal proteins deposition and to clear organelles in neurons (Wang H. et al., 2018; Oshima et al., 2019; Cai and Jeong, 2020). Recently, Mizushima (2018) claimed that to measure autophagic flux in humans is still impossible and consequently the direct analysis of the efficacy of natural drugs on autophagy is lacking, due to the absence of adequate quantitative methods. However, we are confident that new discoveries on autophagy tuning in the brain may confirm the utility of safe bioactive compounds and their importance to prevent or limit unavoidable neurodegeneration. Major advances in our understanding of their mechanisms of action and pharmacokinetic and nonspecific effects are necessary for success in the struggle against neurodegenerative disorders.

REFERENCES

Achour, I., Aré-Dubéau, A., Renaud, J., Legrand, M., Attard, E., Germain, M., et al. (2016). Oleuropein prevents neuronal death, mitigates mitochondrial superoxide production and modulates autophagy in a dopaminergic cellular model. *Int. J. Mol. Sci.* 17:12939. doi: 10.3390/ijms17081293

Ahn, T., and Jeon, B. (2015). The role of quercetin on the survival of neuron-like PC12 cells and the expression of α-syneulin. *Neurog. Regener. Res.* 10, 1113–1119. doi: 10.4103/1673-5374.160106

Al Rihani, S., Darakjian, L., and Kaddoumi, A. (2019). Oleocanthal-rich extra-virgin olive oil restores the blood-brain barrier function through NLRP3 inflammasome inhibition simultaneously with autophagy induction in TgSwDI mice. *ACS Chem. Neurosci.* 10, 3534–3554. doi: 10.1021/acschemneuro.9b00175

Andredone, B., Lohrammer, M., and Lewcock, J. (2019). Cell death and Neurodegeneration. *Cold Spring Harb. Perspect. Biol.* 12:a036434. doi: 10.1011/cshperspect

Angeloni, C., Malaguti, M., Bartalace, M., and Hrelia, S. (2017). Bioactivity of olive oil phenols in neuroprotection. *Int. J. Mol. Sci.* 18:2230. doi: 10.3390/ijms18112230

Area-Gómez, E., de Groof, A., Bonilla, E., Montesinos, J., Tanji, K., Boldogh, I., et al. (2018). A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. *Cell Death Dis.* 9:335. doi: 10.1038/s41419-017-0215-0

Arel-Dubeau, A., Longpré, F., Bournival, J., Tremblay, C., Demers-Lamarche, I., Haskova, P., et al. (2014). Curcubitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. *Oxid. Med. Cell. Longev.* 2014:425496. doi: 10.1155/2014/425496

Arotcarena, M., Teil, M., and Dehay, B. (2019). Autophagy in synucleinopathy: the overwhelming, and defective machinery. *Cells* 8:565. doi: 10.3390/cells0800656

Asadi, F., Jamshidi, A., Khodagholi, F., Yans, A., Azimi, L., Faizi, M., et al. (2015). Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis marke. *Pharmacol. Biochem. Behav.* 139, 47–58. doi: 10.1016/j.pbb.2015.10.011

Ashrafizadeh, M., Ahmadi, Z., Farkhondeh, T., and Samarghandian, S. (2019a). Autophagy as a molecular target of quercetin underlying its protective effects in human diseases. *Arch. Physiol. Biochem.* 28, 1–9. doi: 10.1080/13813455.2019.1671458

Ashrafizadeh, M., Ahmadi, Z., Mohammadianeizad, R., Kavivani, N., and Tavakol, S. (2019b). Monoterpenes modulating autophagy: A review study. *Basic Clin. Pharmacol. Toxicol.* 126:31237736. doi: 10.1111/bcpt.13282

Bar-Yosef, T., Damri, O., and Agam, G. (2019). Dual role of autophagy in diseases of motor and sensory neurons: a broken mitochondria and mitophagy as drivers of Alzheimer's disease pathogenesis. *Front. Aging Neurosci.* 11:31. doi: 10.3389/fnagi.2019.00311

Chang, C., Lee, Y., and Jeong, Y. (2016). Therapeutic effect of berberine on TDP-43 related pathogenesis in FTLD and ALS. *J. Biomed. Sci.* 23:72. doi: 10.1186/s12262-016-0290-z

Chen, Y., Chen, Y., Liang, Y., Hongda, C., Ji, X., and Huang, M. (2020). Berberine mitigates cognitive decline in an Alzheimer's disease mouse model by targeting tau hyperphosphorylation and autophagic clearance. *Biomed. Pharmacol. J.* 12:109670. doi: 10.1016/j.biopharma.2019.109670

Cheng, C., Kao, S., and Lee, Y. (2019). Ferulic acid exerts anti-apoptotic effects against ischemic injury by activating HSP70/Bcl2 and HSP70/autophagy mediated signaling after permanent focal cerebral ischemia in rats. *Am. J. Chinese Med.* 47, 39–61. doi: 10.1142/s0192415x19500034

Chen, S., Kim, H., Rubinsztein, D., and Lee, J. (2019). Autophagy, cellular aging and age-related human diseases. *Exp. Neurobiol.* 28, 643–657. doi: 10.5607/en.2019.28.6.643

Chiu, H., Venkatakrishnan, K., and Wang, C. (2020). The role of nutraceuticals as complementary therapy against various neurodegenerative diseases: a mini review. *J. Trad. Compl. Med.* 10, 434–439. doi: 10.1016/j.jtc.2020.03.008

Cho, K., Shin, M., Kim, S., and Lee, S. (2018). Recent advances in studies on the therapeutic potential of dietary carotenoids in neurodegenerative disorders.
Cowan, K., Anichtchik, O., and Luo, S. (2019). Mitochondrial integrity in Alzheimer’s disease drug development pipeline: Few candidates, frequent failure. *Alzheimers Res. Ther.* 11, 41. doi: 10.1186/s13072-018-0599-5

Feng, J., Chen, X., Guan, B., Li, C., Qiu, J., and Shun, J. (2018). Inhibition of peroxinitrite-induced mitophagy activation attenuates cerebral ischemia-reperfusion injury. * Mol. Neurobiol.* 8, 6369–6678. doi: 10.1007/s12035-017-0859-x

Feng, Y., He, D., Yao, Z., and Klonsky, D. (2014). The machinery of mitophagy. *Cell Res.* 24, 24–41. doi: 10.1038/cr.2013.168

Fernandez-Sanaz, P., Ruiz-Gabarre, D., and Garcia-Escudero, V. (2019). Modulating effect of diet on Alzheimer’s disease. *Diseases* 7:12. doi: 10.3390/diseases7010012

Ferrucci, M., Biagioni, F., Ryskalín, L., Limanagi, F., Gambardella, S., Frati, A., et al. (2018). Ambiguous effects of autophagy activation following hyperperfusion/ischemia. *Int. J. Mol. Sci.* 19:2756. doi: 10.3390/ijms19092756

Forni, C., Facchiano, F., Bartoli, M., Pierotti, S., Facchiano, A., D’Arcangelo, D., et al. (2019). Beneficial role of phytochemicals on oxidative stress and age-related diseases. *BioMed. Res. Int.* 2019:8748253. doi: 10.1155/2019/8748253

Fujikake, N., Shin, M., and Shimizu, S. (2018). Association between autophagy and neurodegenerative diseases. *Front. Neurosci.* 12:255. doi: 10.3389/fnins.2018.00225

Fullgrabe, J., Ghislat, G., Cho, D., and Rubinstein, D. (2016). Transcriptional regulation of mammalian autophagy at a glance. *J. Cell Sci.* 129, 3059–3066. doi: 10.1242/jcs.188920

Galluzzi, L., Bravo-San Pedro, J., Levine, B., Green, D., and Kroemer, G. (2017). Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. *Nat. Rev. Drug Discov.* 16, 487–511. doi: 10.1038/nrd.2017.22

Galluzzi, L., Vitale, L., Aaronson, S., Abrams, J., Adam, D., Agostinis, P., et al. (2018). Molecular mechanisms of cell death: reccomendations of the Nomenclature Committee on cell death. *Cell Death Diff.* 25, 486–514. doi: 10.1038/s41418-017-0012-4

Gan, L., Vargas, M., Johnson, D., and Johnson, J. (2012). Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. *J. Neurosci.* 32, 17775–17787. doi: 10.1523/JNEUROSCI.3049-12.2012

Gao, F., Yang, J., Wang, D., Li, C., Fu, Y., Wang, H., et al. (2017). Mitophagy in Parkinson’s disease: pathogenesis and therapeutic implications. *Front. Neurosci.* 8:527. doi: 10.3389/fneur.2017.00527

Gao, Y., Zhuang, Z., Gao, S., Li, X., Zhang, Z., Ye, Z., et al. (2017). Tetrahydrocannabinol reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. *Am. J. Transl. Res.* 9, 887–899.

Gatica, D., Lahiri, V., and Klonsky, D. (2018). Cargo recognition and degradation by selective autophagy. *Nat. Cell Biol.* 20, 233–242. doi: 10.1038/ncb3656-018-0037-x

Geletti, V., De Rosa, P., Torosantucci, L., Marini, E., Romagnoli, A., Di Rienzo, A., et al. (2018). PANK1 and Becn1 relaxoase at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. *Autophagy* 13, 654–669. doi: 10.1080/15548627.2016.1277309

Georgiou, N., Larsen, J., and Wittkamp, R. (2011). Pharma-nutrition interface: the successful combination of natural products with neuronal and metabolic benefits through autophagy induction. *Int. J. Mol. Sci.* 12, 4139–4156. doi: 10.3390/ijms12054139

Gomez-Olvera, C., and Massieu, L. (2019). Autophagy as a homeostatic mechanism in response to stress conditions in the central nervous system. *Mol. Neurobiol.* 56, 6594–6608. doi: 10.1007/s12035-019-1546-x

Gonzalez, I., Morales, M., and Rojas, A. (2019). Polyphenols and AGES/RAGE axis. *Trends Chell. Food Sci. Int.* 129:108843. doi: 10.1016/j.tcfsi.2019.108843

Guo, Y., Dong, S., Cui, X., Feng, Y., Liu, T., Yin, M., et al. (2016). Resveratrol alleviates MPTP-induced motor impairment and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. *Mol. Nutr. Food Res.* 60, 2161–2175. doi: 10.1002/mnfr.201600111

Hansen, M., Rubinstein, D., and Walker, D. (2018). Autophagy as a promoter of longevity: insights from model organisms. *Nat. Mol. Cell Biol.* 19, 579–593. doi: 10.1038/nmc.2019.06

Haruna, T., Nakamura, K., Matsumi, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., et al. (2006). Suppression of basal autophagy in neuronal cells...
causes neurodegenerative disease in mice. Nature 441, 885–889. doi: 10.1038/ nature04724
He, C., and Klimovsky, D. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93. doi: 10.1146/annurev-genet-102808-114119
He, Q., Koprich, J., Wang, Y., Wu, X., Xiao, B., Brotchjie, J., et al. (2016). Treatment with trehalose prevents behavioural and neurochemical deficits produced in an AAV alpha-synuclein rat model of Parkinson's disease. Mol. Neurobiol. 53, 2258–2268. doi: 10.1007/s12035-015-1973-7
Helal, N., Eassa, H., Amer, A., Eltokhy, M., Edaiogho, I., and Nounn, M. (2019). Nutracuticals' novel formulations: the good, the bad, the unknown and patents. Recent Pat. Drug Deliv. Formul. 13, 105–156. doi: 10.2174/187221131666619053112040
Hirayama, K., Oshima, H., Yamashita, A., Sakatani, K., Yoshino, A., and Katayama, Y. (2016). Neuroprotective effects of silymarin on ischemia-induced delayed neuronal cell death in rat hippocampus. Brain Res. 1646, 297–303. doi: 10.1016/j.brainres.2016.06.018
Holler, C., Taylor, G., McEachin, Z., Deng, Q., Watkins, W., Hudson, K., et al. (2016). Trehalose upregulates progranulin expression in human and mouse models of gpr haploinsufficiency: A novel therapeutic lead to treat frontotemporal dementia. Mol. Neurodegener. 11:46. doi: 10.1186/s13024-016-0114-3
Hornedo-Ortega, R., Cerezo, A., de Pablos, R., Kriza, S., Richard, T., Garcia-Parrilla, M., et al. (2018). Phenolic compounds characteristic of the Mediterranean Diet in mitigating microglia-mediated neuroinflammation. Front. Cell. Neurosci. 12, 1273. doi: 10.3389/fncel.2018.00137
Hoes, M., Perry, N., Vasquez-Londono, C., and Perry, E. (2020). Role of phytochemicals as nutraceuticals for cognitive functions affected in aging. Br. J. Pharmacol. 177, 1294–1315. doi: 10.1111/bph.14989
Hu, J., Han, H., Cao, P., Yu, W., Yang, C., Gao, Y., et al. (2017). Resveratrol improves neuron protection and functional recovery trough enhancement of autophagy after spinal cord injury in mice. Am. J. Transl. Res. 9, 4607–4616.
Hussain, G., Rasul, A., Anwar, H., Aziz, N., Razzaq, A., Wei, W., et al. (2018). Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int. J. Biol. Sci. 14, 341–357. doi: 10.7150/ijbs.23247
Jaroonwitchawan, T., Chaicharoenaudomrung, N., Namkaew, J., and Noisa, P. (2017). Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci. Lett. 636, 40–47. doi: 10.1016/j.neulet.2016.10.050
Jiang, W., Wei, W., Gaertig, M., Li, S., and Li, X. (2015). Therapeutic effect of curcumin on cognitive deficit induced by Abeta25-35 in hippocampal neurons in vitro. CNS Neurosci. Ther. 21, 564–574. doi: 10.1111/cns.12223
Kang, H., Tan, C., Tian, H., Liu, L., Yang, F., Hong, F., et al. (2019). Exploring the bi-directional relationship between autophagy and Alzheimer's disease. CNS Neurosci. Ther. 25, 155–166. doi: 10.1111/cns.13216
Kuang, L., Cao, X., and Lu, Z. (2017). Baicalein protects against rotenone-induced neurotoxicity through induction of autophagy. Biol. Pharm. Bull. 40, 1537–1543. doi: 10.1248/bpb.b17-00392
Kulkarni, A., Chen, J., and Maday, S. (2018). Neuronal autophagy and intercellular flux in N2a/APP695swe cells. Autophagy 14, 341ñ357. doi: 10.7150/ijbs.23247s
Khalifeh, M., Barreto, G., and Sahebkar, A. (2019). Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. Br. J. Pharmacol. 176, 1173ñ1189. doi: 10.1111/bph.14623
Lee, M., Perry, N., Vasquez-Londono, C., and Perry, E. (2020). Role of phytochemicals as nutraceuticals for cognitive functions affected in aging. Br. J. Pharmacol. 177, 1294–1315. doi: 10.1111/bph.14989
Lee, A., Hirabayashi, Y., Kwon, S., Lewis, T., and Polleux, F. (2018). Emerging roles of mitochondria in synaptic transmission and neurodegeneration. Curr. Opin. Physiol. 3, 82–93. doi: 10.1016/j.cophys.2018.03.009
Lee, H. (2019). Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med. 51:012.
Lee, H., Yoon, Y., and Lee, S. (2018). Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis. 9:12. doi: 10.1038/s41419-018-0749-9
Leong, Y., Ng K., Chye, S., Ling, A., and Koh, R. (2020). Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metabol. Brain Dis. 35, 31–30. doi: 10.1007/s11011-019-00516-y
Li, L., Li, Y., Nie, J., Xu, Y., Zhang, W., Yang, W., et al. (2017). Dendroboon nobile Lindl alkaloid a novel autophagy inducer, protects against axonal degeneration induced by Abeta25-35 in hippocampal neurons in vitro. CNS Neurosci. Ther. 23, 324–340. doi: 10.1111/cns.12678
Li, P., Ma, K., Wu, H., Wu, Y., and Li, B. (2017). Isoflavones induce BEX2-dependent autophagy to prevent ATR-induced neurotoxicity in SH-SYSY cells. Cell Physiol. Biochem. 43, 1866–1879. doi: 10.1159/000484075
Li, W., Nie, T., Xu, H., Yang, J., Yang, Q., and Mao, Z. (2019). Chaperone-mediated autophagy: Advances from bench to bedside. Neurobiol. Dis. 122, 41–48. doi: 10.1016/j.nbd.2018.05.010
Li, X., Song, J., and Dong, R. (2019a). Cubeben induces autophagy via PI3K-Akt-mTOR pathway to protect primary neurons against amyloid beta in Alzheimer's disease. Cytotechnology 71, 679–686. doi: 10.1007/s10616-019-00313-6
Li, X., Zhang, D., Bai, Y., Xiao, J., Jiao, H., and He, R. (2019b). Ginkton improves neurological function in ischemic stroke rats via inducing autophagy and maintaining mitochondrial homeostasis. Neuropsych. Dis. Treat. 15, 1813–1822. doi: 10.2147/NDT.s205612
Li, Y., Guo, Y., Wang, X., Yu, X., Duan, W., Hong, K., et al. (2015). Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in a mouse model. Neuroimage 54, S204–S217. doi: 10.1016/j.neuroimage.2010.06.020
Kou, X., and Chen, N. (2017). Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer's disease. Nutrients 9,927. doi: 10.3390/nu9090927
Krols, M., Van Isterdael, G., Asselbergh, B., Kremer, A., Lippens, S., Timmerman, V., et al. (2016). Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol. 13, 505–523. doi: 10.1007/s00401-015-1528-7
Kuang, I., He, Q., Koprich, J., Wang, Y., Yu, W., Xiao, B., Brotchjie, J., et al. (2016). Treatment with trehalose prevents behavioural and neurochemical deficits produced in an AAV alpha-synuclein rat model of Parkinson's disease. Mol. Neurobiol. 53, 2258–2268. doi: 10.1007/s12035-015-1973-7
Kratz, C., Taylor, G., McEachin, Z., Deng, Q., Watkins, W., Hudson, K., et al. (2016). Trehalose upregulates progranulin expression in human and mouse models of gpr haploinsufficiency: A novel therapeutic lead to treat frontotemporal dementia. Mol. Neurodegener. 11:46. doi: 10.1186/s13024-016-0114-3
Palmieri, M., Pal, R., Nelvagal, H., Lotfi, T., Sinnett, G., Seymour, M., et al. (2017). mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun. 8:14338. doi: 10.1038/scomm14338

Park, G., Kusuma, L., and Kim, Y. (2018). Multiple bioactivities of traditional medicinal herbs for treatment of neurodegenerative diseases. Evid Based Compl. Altern. Med. 2018:3075458. doi: 10.1155/2018/3075458

Park, H., Kang, I., and Lee, S. (2020). Autophagy in neurodegenerative diseases: a hunter for aggregates. Int. J. Mol. Sci. 21:3639. doi: 10.3390/ijms20193639

Peng, W., Minakagi, G., Nguyen, M., and Krainc, D. (2019). Preserving lysosomal function in the aging brain: insights from neurodegeneration. Neurotherapeutics 16, 611–634. doi: 10.1007/s13311-019-00742-3

Perez-Hernandez, J., Zaldivar-Machorro, V., Villanueva-Porras, D., Vega-Avila, E., and Chavarria, A. (2016). A potential alternative against neurodegenerative diseases: Phytodrugs. Oxid. Med. Cell. Long. 2016:8378613. doi: 10.1155/2016/8378613

Perrone, L., Squillano, T., Napolitano, F., Terracciano, C., Sampaolo, S., and Melone, M. (2019). The autophagy signaling pathway: a potential multifunctional therapeutic target of curcumin in neurological and neuromuscular diseases. Nutrients 11:1881. doi: 10.3390/nu11081881

Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jager, P., et al. (2019). Amyloid beta and phosphorylated tau-induced neurodegeneration. Cells 8:E488. doi: 10.3390/cells08050488

Rahman, M., Rahman, R., Zaman, T., Uddin, S., Islam, R., Abdel-Daim, M., et al. (2020). Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr. Pharmaceut. Des. 7, 772–779. doi: 10.2174/1381613066666200714251

Reddy, P., and Oliver, D. (2019). Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer's disease. Cells 8:E488. doi: 10.3390/cells08050488

Rekha, K., and Sivakamasundari, R. (2018). Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s disease. Neurochem. Res. 43, 1947–1962. doi: 10.1007/s11064-018-2617-5

Renaud, J., and Martinoli, M. (2019). Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci. 20:1883. doi: 10.3390/ijms20081883

Rigacci, S., Miceli, C., Nediani, C., Berti, A., Cascella, R., Pantano, D., et al. (2015). Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight. Oncotarget 6:35344. doi: 10.18632/oncotarget.6119

Rusmini, P., Cortese, K., Crippa, V., Cristofani, R., Cicardi, M., Ferrari, V., et al. (2019). Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 4, 651–651. doi: 10.1080/15548627.2018.1535292

Russo, R., Cassiano, M., Ciocciaro, A., Adornetto, A., Varano, G., Chiappini, C., et al. (2014). Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells. PLoS One 9:e113682. doi: 10.1371/journal.pone.0113682

Ryan, T., Bamm, V., Stukel, M., Coackley, C., Humphries, K., Jamieson-Williams, R., et al. (2018). Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat. Commun. 9:817. doi: 10.1038/s41467-018-0324-9

Salehi, B., Mishra, A., Nigam, M., Sener, B., Kilic, M., Sharifi-Rad, M., et al. (2018). Resveratrol: A double-edged sword in health benefits. Biomolecules 6:91. doi: 10.3390/biom6030091

Sanchez-Martín, P., and Komatsu, M. (2018). P62/SQSTM1-steering the cell through health and disease. J. Cell Sci. 131:ccs22836. doi: 10.1242/jcs.22836

Sasazawa, Y., Sato, N., Umezawa, K., and Simizu, S. (2015). Conophylline protects cells in cellular models of neurodegenerative diseases by inducing mammalian target of rapamycin (mTOR)-independent autophagy. J. Biol. Chem. 290, 6166–6178. doi: 10.1074/jbc.M114.606293

Sato, M., Seki, T., Konno, A., Hirai, H., Kurauchi, Y., Hisatsune, A., et al. (2019). Rapamycin activates mammalian microautophagy. J. Pharmacol. Sci. 140, 201–204. doi: 10.1016/j.jphs.2019.03.007

Schepers, M., Martens, N., Tiane, A., Vanbrabant, K., Liu, H., Lutjohann, D., et al. (2020). Edible seaweed-derived constituents: an undiscovered source of neuroprotective compounds. Neural Regen. Res. 15, 790–795. doi: 10.4103/1673-5374.268894

Schwarz, C., Stekovic, S., Wirth, M., Benson, G., Royer, P., Sigrist, S., et al. (2018). Safety and tolerability of spermidine supplementation in mice and older adults with subjective cognitive decline. Aging 10, 19–33. doi: 10.18632/aging.101354

Scrivo, A., Bourdoux, M., Pampolie, O., and Cuervo, A. (2018). Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 17, 802–815. doi: 10.1016/S1474-4422(18)30238-2

Shakeri, A., Cicerò, A., Panah, Y., and Sahbekar, A. (2019). Curcumin: a naturally occurring autophagy modulator. J. Cell Physiol. 234, 5643–5654. doi: 10.1002/jcp.27404

Shi, L., Liang, F., Zheng, J., Zhou, K., Chen, S., Yu, J., et al. (2018). Melatonin regulates apoptosis and autophagy via ROS-MST1 pathway in sub-archnoid hemorrhage. Front. Mol. Neurosci. 11:93. doi: 10.3389/fnmol.2018.00093

Shukla, M., Chinchalchgongorn, V., Govitrapong, P., and Reiter, R. (2019). The role of melatonin in targeting cell signalling pathways in neurodegeneration. Ann. N Y Acad. Sci. 1443, 75–96. doi: 10.1111/nyas.14005

Song, J., Sun, Y., Peluso, I., Zeng, Y., Yu, X., Wang, M., et al. (2016). A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of mTOR inhibition. Autophagy 12, 1372–1389. doi: 10.1080/15548627.2016.1179404

Stave, A., and Holzbaur, E. (2019). Axonal autophagy: Mini-review for autophagy in the CNS. Neuro. Lett. 697, 17–23. doi: 10.1016/j.neulet.2018.03.025

Steinert, G., Bensoussan, A., Liu, J., Hohenberg, M., and Chang, D. (2018). Study protocol for randomized, double-blind, placebo-controlled 12 week pilot phase II trial of salutong (SIT) for cognitive function in older adults with mild cognitive impairment. Trials 19:522. doi: 10.1186/s13063-018-2912-0

Stevens, B. (2003). Gla-much more than the neuron’s side-kick. Curr. Biol. 13, R469–R472. doi: 10.1016/S0960-9822(03)00404-4

Stromb, L., and Behrends, C. (2019). Gla-specific autophagy dysfunction in ALS. Semin. Cell Dev. Biol. 99, 172–182. doi: 10.1016/j.secmdb.2019.05.024
Suomi, F., and Mc Williams, T. (2020). Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signaling 3:SN20180134. doi: 10.1042/NSN20180134

Tan, S., Yu, C., Sim, Z., Low, Z., Lee, B., See, F., et al. (2019). Pomegranate activates TFE2 to promote autophagy-lysosomal fitness and mitophagy. Sci. Rep. 9:7277. doi: 10.1038/s41598-018-37400

Tanaka, K., and Matsuda, N. (2014). Proteostasis and neurodegeneration: The roles of proteasomal degradation and autophagy. BBA-Mol. Cell Res. 1843, 197–204. doi: 10.1016/j.bbamcr.2013.03.012

Taylor, R., Berendzen, K., and Dillin, A. (2014). Systemic stress signalling: Understanding the cell-non-autonomous control of proteostasis. Nat. Rev. Mol. Cell Biol. 15, 211–217. doi: 10.1038/nrm3575

Thellung, S., Corsaro, A., Nizzari, M., Barbieri, F., and Florio, T. (2019). Neuronal autophagy in synaptic function and psychiatric disorders. Biol. Psychiatry. 87, 787–796. doi: 10.1016/j.biopsych.2019.07.018

Tripathi, M., Rajput, C., Mishra, S., Rasheed, M., and Singh, M. (2019). Dysfunctioning of chaperone-mediated autophagy in Parkinson’s disease: Feats, Constraints, and Flaws of modulators. Neurotoxicity Res. 35, 260–270. doi: 10.1007/s12640-018-9917-z

Truban, D., Hou, X., Caulfield, T., Fiesel, F., and Springer, W. (2017). Proteostasis and neurodegeneration: The roles of proteasomal degradation and autophagy. BBA-Mol. Cell Res. 1843, 197–204. doi: 10.1016/j.bbamcr.2013.03.012

Ungelenk, S., Moayed, F., Ho, C., Grousl, T., Scharf, A., Mashaghi, A., et al. (2018). Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nat. Commun. 9:291. doi: 10.1038/s41467-018-04203-w

Vidoni, C., Secomandi, E., Castiglioni, A., Melone, M., and Isidoro, C. (2018). Biogenesis of the autophagosome: a primer for neuroscientists. Neuronal Signaling 3:SN20180134. doi: 10.1042/NSN20180134

Wang, D., Li, S., Wu, W., Zhu, X., Wang, Y., and Yuan, H. (2014). Downregulation of PI3K/Akt/mTOR signalling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur. J. Pharmacol. 740, 312–320. doi: 10.1016/j.ejphar.2014.06.051

Wang, D., Li, S., Wu, W., Zhu, X., Wang, Y., and Yuan, H. (2014). Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem. Res. 39, 1533–1543. doi: 10.1007/s11064-014-1343-x

Wang, H., Jiang, T., Li, W., Gao, N., and Zhang, T. (2018). Resveratrol attenuates oxidative damage trough activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol. Lett. 282, 100–108. doi: 10.1016/j.toxlet.2017.10.021

Wang, H., Liu, C., Mei, X., Cao, Y., Guo, Z., Yuan, Y., et al. (2017). Berberine attenuated pro-inflammatory factors and protect against neuronal damage via triggering oligodendrocyte autophagy - in spinal cord injury. Oncotarget 8, 9279–9832. doi: 10.18632/oncotarget.21203

Wang, J., Qi, F., Feng, Z., Zhang, X., Huang, B., Chen, A., et al. (2016). Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1 pathway. Oncotarget 7, 66944–66958. doi: 10.18632/oncotarget.11396

Wang, J., and Xu, C. (2020). Astrocytes autophagy in aging and neurodegenerative disorders. Biomed. Pharmacother. 122:109691. doi: 10.1016/j.biopha.2019.109691

Wang, N., Wang, H., Li, L., Li, Y., and Zhang, R. (2020). β-ararone inhibits amyloid-β by promoting autophagy in a cell model of Alzheimer’s disease. Front. Pharmacol. 11:5259. doi: 10.3389/fphar.2019.01529

Wang, P., Jiang, L., Zhou, N., Zhou, H., Liu, H., Zhao, W., et al. (2018). Resveratrol ameliorates autophagic flux to promote functional recovery in rats after spinal cord injury. Oncotarget 9, 8427–8440. doi: 10.18632/oncotarget.23877

Wilhelm, B., Mandad, S., Truckenbrodt, S., Krohnert, K., Schafer, C., Rammmer, B., et al. (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028. doi: 10.1126/science.1252884

Wu, H., Chen, S., Ammar, A., Xu, J., Wu, Q., Pan, K., et al. (2015). Crosstalk between macroautophagy and chaperone-mediated autophagy: Implications for the treatment of neurological diseases. Mol. Neurobiol. 52, 1284–1296. doi: 10.1007/s12053-014-9393-0

Wu, Y., Whitens, C., Xu, C., Hayworth, K., Weinberg, R., Hesse, H., et al. (2017). Contacts between the endoplasmic reticulum and other membranes in neurons. PNAS 114, E4859–E4867. doi: 10.1073/pnas.1701784

Xie, C., Aman, Y., Adriane, B., Cader, M., Plun-Favette, H., Xiao, J., et al. (2020). Culpitr or Bystander: Defective mitophagy in Alzheimer’s disease. Front. Cell Dev. Biol. 7:391. doi: 10.3388/fcell.2019.00391

Xie, J., Liang, J., and Chen, N. (2019). Autophagy-associated signal pathways of functional foods for chronic diseases. Food Sci. Hum. Wellness 8, 25–33. doi: 10.1016/j.fshw.2019.03.002

Xilouri, M., Brekk, O., Landeck, N., Pitychotis, P., Papasilekas, T., Papadopoulou-Dairoz, I., et al. (2013). Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain 136, 2130–2146. doi: 10.1093/brain/awt131

Yang, C., Cai, C., Song, J., Tan, J., Durairajian, S., Iyaswamy, A., et al. (2017). NRBF2 is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models. Autophagy 13, 2028–2040. doi: 10.1080/15548627.2017.1379633

Yang, Q., Zheng, C., Cao, J., Cao, G., Shou, P., Lin, L., et al. (2016). Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 23, 1850–1861. doi: 10.1038/cdd.2016.71

Yessenkazy, A., Saliiev, T., Zhanailevya, H., Masoud, A., Umbeayev, B., Serzagy, S., et al. (2020). Polyphenols as caloric-restriction mimetics and autophagy inducers in aging research. Nutrients 12:1344. doi: 10.3390/nu12051344

Yoon, Y., Cho, E., Ahn, W., Lee, K., Lee, S., and Lee, H. (2017). Is trehalose an autophagic inducer? Unraveling the roles of non-reducing disaccharides triggering oligodendrocyte autophagy - in spinal cord injury. Cell Death Dis. 8, e28309. doi: 10.1038/cddis.2017.501

Yu, D., Li, M., Nie, P., Zhang, Z., and Zhou, Y. (2018). Bel-2/E1B-19kD-Interacting protein 3/light chain 3 interaction induces mitophagy in spinal cord injury in rats both in vivo and in vitro. J. Neurotrauma. 35, 2183–2194. doi: 10.1089/neu.2017.5280

Yu, S., Back, S., Brennan, R., Bradley, C., Park, S., Lee, Y., et al. (2008). Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells 26, 2602–2610. doi: 10.1634/stemcells.2008-0153

Zachari, M., and Gauley, I. (2017). The mammalian ULK1 complex and autophagy initiation. Ess. Biochem. 61, 585–596. doi: 10.1016/EBC20170021
Zeng, H., and Sanes, J. (2017). Neuronal cell-type classification: challenges, opportunities and the path forward. *Nat. Rev. Neurosci.* 18:530. doi: 10.1038/nrn.2017.85

Zeng, Q., Siu, W., Li, L., Liang, S., Cao, M., Ma, M., et al. (2019). Autophagy in Alzheimer’s disease and promising modulatory effects of herbal medicine. *Exp. Gerontol.* 119, 100–110. doi: 10.1016/j.exger.2019.01.027

Zhang, L., Fang, Y., Cheng, X., Lian, Y., Zeng, Z., Wu, C., et al. (2018). The potential protective effect of curcumin on amyloid-β-42 induced cytotoxicity in HT-22 cells. *Biomed. Res. Int.* 2018:8134902. doi: 10.1155/2018/8134902

Zhang, L., Wang, H., and Fan, Y. (2017). Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. *Sci. Rep.* 7:46763. doi: 10.1038/srep46763

Zhang, X., Chen, J., Ouyang, D., and Lu, J. (2020). Quercetin in animal models of Alzheimer’s disease: a systematic review of preclinical studies. *Int. J. Mol. Sci.* 21:493. doi: 10.3390/ijms2102493

Zhao, H., Chen, S., Gao, K., Zhou, Z., Wang, C., Shen, Z., et al. (2017). Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signalling pathway. *Neuroscience* 348, 241–251. doi: 10.1016/j.neuroscience.2017.02.027

Zholos, A., Moroz, O., and Storozhuk, M. (2019). Curcuminoids and novel opportunities for the treatment of Alzheimer’s disease: Which molecules are actually effective? *Curr. Mol. Pharmacol.* 12, 12–26. doi: 10.2174/187446721666181012150847

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Stacchiotti and Corsetti. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.