PALS: Efficient Or-Parallel Execution of Prolog on Beowulf Clusters

ENRICO PONTELLI, KAREN VILLAVERDE

Department of Computer Science
New Mexico State University
(e-mail: epontell | kvillave@cs.nmsu.edu)

HAI-FENG GUO

Department of Computer Science
University of Nebraska at Omaha
(e-mail: haifengguo@mail.unomaha.edu)

GOPAL GUPTA

Department of Computer Science
University of Texas at Dallas
(e-mail: gupta@utdallas.edu)

submitted 19 April 2005; revised 21 October 2005; accepted 3 July 2006

Abstract

This paper describes the development of the PALS system, an implementation of Prolog capable of efficiently exploiting or-parallelism on distributed-memory platforms—specifically Beowulf clusters. PALS makes use of a novel technique, called incremental stack-splitting. The technique proposed builds on the stack-splitting approach, previously described by the authors and experimentally validated on shared-memory systems, which in turn is an evolution of the stack-copying method used in a variety of parallel logic and constraint systems—e.g., MUSE, YAP, and Penny. The PALS system is the first distributed or-parallel implementation of Prolog based on the stack-splitting method ever realized. The results presented confirm the superiority of this method as a simple yet effective technique to transition from shared-memory to distributed-memory systems. PALS extends stack-splitting by combining it with incremental copying; the paper provides a description of the implementation of PALS, including details of how distributed scheduling is handled. We also investigate methodologies to effectively support order-sensitive predicates (e.g., side-effects) in the context of the stack-splitting scheme. Experimental results obtained from running PALS on both Shared Memory and Beowulf systems are presented and analyzed.

KEYWORDS: Or-Parallelism, Beowulf Clusters, Order-Sensitive Predicates.

1 Introduction

The literature on parallel logic programming (see [16, 29] for a general discussion of parallel logic programming) underscores the potential for achieving excellent
speedups and performance improvements from execution of logic programs on parallel architectures, with little or no programmer intervention. Particular attention has been devoted over the years to the design of technology for supporting or-parallel execution of Prolog programs on shared-memory architectures.

Or-parallelism (OP) arises from the non-determinism implicit in the process of reducing a given subgoal using different clauses of the program. The non-determinism arising during the execution of a logic program is commonly depicted in the form of a search tree (a.k.a. or-tree). Each internal node represents a choice-point, i.e., an execution point where multiple clauses are available to reduce the selected subgoal. Leaves of the tree represent either failure points (i.e., resolvers where the selected subgoal does not have a matching clause) or success points (i.e., solutions to the initial goal). A sequential computation boils down to traversal of this search tree according to some predefined search strategy—e.g., Prolog adopts a fixed strategy based on a left-to-right, depth-first traversal of the search tree.

While in a sequential execution the multiple clauses that match a subgoal are explored one at a time via backtracking, in or-parallel execution we allow different instances of Prolog engines (computing agents)—executing as separate processes—to concurrently explore these alternative clauses. Different agents concurrently operate on different branches of the or-tree, each attempting to derive a solution to the original goal using a different sequence of derivation steps. In this work we will focus on or-parallel systems derived from the multi-sequential model originally proposed by D.H.D. Warren (54). In this model, the multiple agents traverse the or-tree looking for unexplored branches. If an unexplored branch (i.e., an untried clause to resolve a selected subgoal) is found, the agent picks it up and begins execution. This agent will stop either if it fails (reaches a failing leaf), or if it finds a solution. In case of failure, or if the solution found is not acceptable to the user, the agent will backtrack, i.e., move back up in the tree, looking for other choice-points with untried alternatives to explore. The agents need to synchronize if they access the same node in the tree—to avoid repetition of computations. In the rest of this work we will call parallel choice-points those choice-points from which we allow exploitation of parallelism.

Intuitively, or-parallelism allows concurrent search for solution(s) to the original goal. The importance of the research on efficient techniques for handling or-parallelism arises from the generality of the problem—technology originally developed for parallel execution of Prolog programs has found application in contexts such as constraint programming (e.g., (46; 58)) and non-monotonic reasoning (e.g., (20; 59)). Efficient implementation of or-parallelism has also been extensively investigated in the context of AI systems (32; 33).

In sequential implementations of search-based AI systems or Prolog, typically one branch of the tree resides on the inference engine’s stacks at any given time. This simplifies implementation quite significantly. However, in case of parallel systems, multiple branches of the tree co-exist at the same time, making parallel implementation quite complex. Efficient management of these co-existing branches is quite a difficult problem, and it is referred to as the environment management problem (25).
Most research in or-parallel execution of Prolog so far has focused on techniques aimed at shared-memory multiprocessors (SMPs). Relatively fewer efforts (21, 16, 15, 12, 17) have been devoted to implementing Prolog systems on distributed-memory platforms (DMPs). Out of these efforts only a small number have been implemented as working prototypes, and even fewer have produced acceptable speedups. Existing techniques developed for SMPs are inadequate for the needs of DMP platforms. In fact, most implementation methods require sharing of data and control stacks in a SMP context to allow for synchronization between agents with minimal communication. Even in those models, such as stack copying (3), where the different agents maintain independent copies of the various stacks (i.e., they do not physically share them), the requirement of sharing part of the control structure is still present. For example, in the MUSE implementation of stack copying, parts of each choice-point are maintained in a shared data structure, to ensure that the agents reproduce the same observable behavior as in a sequential execution (e.g., they do not duplicate computations already performed by another agent). In the case of recomputation-based methods (17, 4), the sharing appears in the form of the use of a centralized controller (as in the Delphi model) to handle the communication of the different branches of the tree to the computation agents. The presence of these forms of sharing are believed to lead to degradation of performance of these schemes on a distributed memory platform, as the lack of shared memory imposes the need for explicit communication between agents.

Experimental (3) and theoretical studies (41) have demonstrated that stack-copying, and in particular incremental stack-copying, is one of the most effective implementation techniques devised for exploiting or-parallelism. Stack-copying allows sharing of work between parallel agents by copying the state of one agent (which owns unexploited tasks) to another agent (which is currently idle). The idea of incremental stack-copying is to only copy the difference between the state of two agents, instead of copying the entire state each time. Incremental stack-copying has been used to implement or-parallel Prolog efficiently in a variety of systems (e.g., MUSE (3), YAP (13), Penny (37)), as well as to exploit parallelism from non-monotonic reasoning systems (39, 20).

In order to improve the performance of stack-copying and allow its efficient implementation on DMPs, we propose a new technique, called stack-splitting (28, 52). Stack-splitting is a variation of stack-copying, aimed at solving the environment management problem and improving stack-copying by reducing the need for communication between agents during the execution of work. This is accomplished by making use of strategies that distribute the work available in a branch of the search tree between two processors during each scheduling operation. In this paper, we describe stack-splitting in detail, and provide results from the first ever concrete implementation of stack-splitting on both shared-memory multiprocessors (SMPs) and distributed-memory multiprocessors (DMPs)—specifically, a Pentium-based Beowulf—along with a novel scheme to combine incremental copying with stack-splitting on DMPs. The incremental stack-splitting scheme is based on a procedure which labels parallel choice-points and then compares the labels to determine the fragments of data and control areas that need to be exchanged between
agents. We also describe scheduling schemes suitable for our incremental stack-splitting scheme and variations of stack-splitting providing efficient handling of order-sensitive predicates (e.g., side-effects). Both the incremental stack-splitting and the scheduling schemes described have been implemented in the PALS system, a message-passing or-parallel implementation of Prolog. In this paper we present performance results obtained from this implementation. To our knowledge, PALS is the first ever or-parallel implementation of Prolog realized on a Beowulf architecture (built from off-the-shelf components). The techniques have already been embraced by other developers of parallel Prolog systems (44). The techniques we propose are also immediately applicable to other systems based on similar underlying models, e.g., non-monotonic reasoning (39) systems. Indeed, a distributed implementation of answer set programming based on incremental stack splitting has been reported in (9)—note that the execution model of answer set programming relies on a search-tree exploration (built using Davis-Putnam’s procedure) and is not a straightforward Prolog implementation.

The contributions of this paper can be summarized as follows:

• design of a novel methodology—stack splitting—to efficiently support or-parallelism on distributed memory systems;
• enhancement of the methodology to support incremental copying behavior;
• investigation of different splitting modalities, in particular, to facilitate the handling of side-effects;
• implementation of these methodologies in an industrial-strength Prolog system (ALS Prolog) and evaluation of its performance.

In the rest of this work we will focus on the execution of Prolog programs (unless explicitly stated otherwise); this means that we will assume that programs are executed according to the computation and selection rules of Prolog. We will also frequently use the term observable semantics to indicate the overall observable behavior of an execution—i.e., the order in which all visible activities of a program execution take place (order of input/output, order in which solutions are obtained, etc.). If a parallel computation respects the observable Prolog semantics, then this means that the user does not see any difference between such computation and a sequential Prolog execution of the same program—except for improved performance. Our goal in this work is to develop parallel execution models that properly reproduce Prolog’s observable semantics and are still able to guarantee improved performance.

1.1 Related Work

A rich body of research has been developed to investigate methodologies for the exploitation of or-parallelism from Prolog executions on SMPs. Comprehensive surveys describing and comparing these methodologies have appeared, e.g., (24, 29, 16).

A theoretical analysis of the properties of different methodologies has been presented in (41, 40). These works provide an abstraction of the environment representation problem as a data structure problem on dynamic trees. These studies identify
the presence of unavoidable overheads in the dynamic management of environments in a parallel setting, and recognize methods with constant-time environment creation and access as optimal methods for environment representation. Methods such as stack-copying [3], binding arrays [35], and recomputation [17] meet such requirements.

Distributed implementations of Prolog have been proposed by several researchers [21, 7, 15]. However, none of these systems are very effective in producing speedups over a wide range of benchmarks. Foong’s system [21] and Castro et al.’s system [15] are based directly on stack-copying and generate communication overhead due to the shared choice-points (no real implementation exist for the two of them). Araujo’s system uses recomputation [17] rather than stack-copying. Using recomputation for maintaining multiple environments is inherently inferior to stack-copying. The stack frames that are copied in the stack-copying technique capture the effect of a computation. In the recomputation technique these stack-frames are reproduced by re-running the computation. A computation may run for hours and yet produce only a single stack frame (e.g., a tail-recursive computation). Distributed implementations of Prolog have been developed on Transputer systems (The Opera System [13] and the system of Benjumea and Troya [12]). Of these, Benjumea’s system has produced quite good results. However, both the Opera system and the Benjumea’s system have been developed on now-obsolete Transputer hardware, and, additionally, both rely on a stack-copying mechanism which will produce poor performance in programs where the task-granularity is small. A different approach has been suggested by Silva and Watson with their DORPP model [47], which extends the binding array scheme [35] to a distributed setting, relying on the European Declarative System (EDS) platform to support distributed computation (EDS provides a limited form of distributed shared memory); good results have been presented running DORPP on an EDS simulator.

Finally, the idea of stack-splitting bears some similarities with some of the loop transformation techniques which are commonly adopted for parallelization of imperative programming languages, such as loop fission, loop tiling, and index set splitting [56].

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 provides an overview of the main issues related to or-parallel execution of Prolog. Section 3 describes the stack-splitting scheme, while Section 4 describes its implementation. Section 5 analyzes the problem of guaranteeing efficient distribution of work between idle agents. Section 6 describes how stack-splitting can be adapted to provide efficient handling of order-sensitive predicates of Prolog (e.g., control constructs, side-effects). Section 7 analyzes the result obtained from the prototype implementation in the PALS system. Section 8 offers a general discussion about possible optimizations of the implementation of stack-splitting. Finally, Section 9 provides conclusions and directions for future research.

The reader is assumed to be familiar with the basic notions of logic programming,
E. Pontelli, K. Villaverde, H. Guo, G. Gupta

Prolog, and its execution model (e.g., a basic understanding of the Warren Abstract Machine) [31][32][11].

2 Or-Parallelism

In this section, we survey the main issues related to the exploitation of or-parallelism from Prolog programs, and we discuss the main ideas behind the stack-copying method.

2.1 Foundations of Or-Parallelism

Parallelization of logic programs can be seen as a direct consequence of Kowalski’s principle [31]

\[\text{Algorithm} = \text{Logic} + \text{Control} \]

Program development separates the control component from the logical specification of the problem, thus making the two orthogonal. The lack (or, at least, the limited presence) of knowledge about control in the program allows the run-time systems to adopt different execution strategies without affecting the declarative meaning of the program (i.e., the set of logical consequences of the program). The same is true of search-based systems, where the order of exploration of the branches of the search-tree is flexible (within the limits imposed by the semantics of the search strategy—e.g., search heuristics).

Apart from the separation between logic and control, from a programming languages perspective, logic programming offers two key features which make exploitation of parallelism more practical than in traditional imperative languages:

1. From an operational perspective, logic programming languages are single-assignment languages; variables are mathematical entities which can be assigned a value at most once during each derivation (i.e., along each branch of the or-tree)—this relieves a parallel system from having to keep track of complex flow dependencies such as those needed in parallelization of traditional programming languages [63].

2. The operational semantics of logic programming, unlike imperative languages, makes substantial use of non-determinism—i.e., the operational semantics relies on the automatic exploration of a search tree. The alternative possible choices performed during such exploration (points of non-determinism) can be easily converted into parallelism without radically modifying the overall operational semantics. Furthermore, control in most logic programming languages is largely implicit, thus limiting programmers’ influence on the development of the flow of execution.

The second point is of particular importance: the ability to convert existing non-determinism (and other “choices” performed during execution, such as the choice of the subgoal to resolve) into parallelism leads to the possibility of extracting parallelism directly from the execution model, without requiring the programmer to perform any modifications of the original program and without requiring the
introduction of ad-hoc parallelization constructs in the source language (*implicit parallelization*). The typical strategy adopted in the development of parallel logic programming systems has been based on the translation of one (or more) of the choices present in the operational semantics (see Figure 1) into parallel computations. This leads to the three “classical” forms of parallelism:

- **And-Parallelism**, which originates from parallelizing the selection of the next literal to be solved—thus allowing multiple literals to be solved concurrently. This can be visualized by imagining the operation `selectliteral` to return multiple literals that are concurrently processed by the rest of the algorithm.
- **Or-Parallelism**, which originates from parallelizing the selection of the clause to be used in the computation of the resolvent—thus allowing multiple clauses to be tried in parallel. This can be visualized by having the `selectclause` operation to select multiple clauses that are concurrently processed by the rest of the algorithm.
- **Unification Parallelism**, which arises from the parallelization of the unification process.¹

Or-Parallelism originates from the parallelization of the `selectclause` phase in Figure 1. Thus, or-parallelism arises when more than one rule defines a relation and a subgoal unifies with more than one rule head—the corresponding bodies can then be executed in parallel with each other, giving rise to or-parallelism. Or-parallelism is thus a way of efficiently searching for solutions to the query, by exploring in parallel the search space generated by the presence of multiple clauses applicable at each resolution step. Observe that each parallel computation is attempting to compute a distinct solution to the original goal.

For example, consider the following simple logic program:

1 By `mgu(a, b)`, in the Figure, we denote the most general unifier of `a` and `b`.
and the query \(?- f\). The calls to \(p\), \(s\), and \(r\) are non-deterministic and lead to the creation of choice-points—while the calls to \(t\), \(f\), and \(q\) are deterministic. The multiple alternatives in these choice-points can be executed in parallel.

A convenient way to visualize or-parallelism is through the or-tree. Informally, an or-tree (sometimes referred to also as search tree) for a query \(Q\) and logic program \(LP\) is a tree of nodes, each with an associated goal-list, such that:

1. The root node of the tree has \(Q\) as its associated goal-list;
2. Each internal node \(n\) is created as a result of successful unification of the first goal in (the goal-list of) \(n\)’s parent node with the head of a clause in \(LP\),

\[
H := B_1, B_2, \ldots, B_n
\]
The goal-list of node n is $(B_1, B_2, \ldots, B_n, L_2, \ldots, L_m)\theta$, if the goal-list of the parent of n is L_1, L_2, \ldots, L_m and $\theta = mgu(H, L_1)$.

Figure 2 shows the or-tree for the simple program presented above. For the sake of readability, we have also annotated the tree with the variables created and the description of the bindings performed. We have also introduced different notations (empty nodes and filled nodes) to distinguish deterministic reductions versus non-deterministic reductions. The boxes represent environments created for a clause; the dotted lines are used to associate the segment of each branch to the corresponding resolvent existing during that part of the computation; variable bindings are indicated next to the node where the binding is computed.

Note that, since we are considering execution of Prolog programs, the construction of the or-tree will follow the operational semantics of Prolog—at each node we will consider clauses applicable to the first subgoal, and the children of a node will be considered ordered from left to right according to the order of the corresponding clauses in the program. I.e., during sequential execution the or-tree of Figure 2 is built and explored in a left-to-right depth-first manner. However, if multiple agents are available, then multiple branches of the tree can be constructed and explored simultaneously—although, as mentioned later, we will aim at still constructing the same tree, i.e., reproduce the same observable semantics as sequential Prolog. Observe also that, if a fragment of a branch of the or-tree contains multiple choice-points, and this is explored by a single agent, then the agent will employ traditional backtracking to search the various alternatives.

Or-parallelism frequently arises in applications that explore a large search space via backtracking. This is the typical case in application areas such as expert systems, scheduling and optimization problems, and natural language processing. Or-parallelism also arises during parallel execution of deductive database systems.

2.2 The Environment Representation Problem

Despite the theoretical simplicity and results, in practice implementation of or-parallelism is difficult because keeping the run-time and parallelism-related overheads small is non-trivial due to the practical complications which emerge from the sharing of nodes in the or-tree. That is, given two nodes in two different branches of the or-tree, all nodes above (and including) the least common ancestor node of these two nodes are shared between the two branches. A variable created in one of these ancestor nodes might be bound differently in the two branches. Thus, the environments of the two branches have to be organized in such a fashion that, in spite of the ancestor nodes being shared, the correct bindings applicable to each of the two branches are easily discernible.

Let us start by introducing some terminology. Whenever a new clause is applied
to resolve a selected subgoal, an environment is created. The environment plays a role analogous to that of the activation record in the implementation of imperative languages—it stores information to handle the execution of the clause (e.g., return address) and it provides storage for the local variables introduced by the clause. The boxes containing variables shown in Figure 2 can be thought as representing a part of the environment of the clause.

During Prolog execution, variables might receive bindings. If a variable is created before a choice-point but bound after the choice-point (e.g., variable L in Figure 2)—such a variable is referred to as a conditional variable in the literature—then the variable might be bound differently in each branch of the choice-point. In a sequential execution, conditional variables are handled using trailing: whenever the conditional variable is bound, the address of the variable is pushed on a special stack (the trail stack). During backtracking, the content of the trail stack is used to determine which bindings should be removed, thus clearing up (untrailing) conditional variables and preparing them for the new bindings they might receive in the alternative branches explored. This mechanism allows the use of a single memory location to store the value of the variable (since the location can be reused across different branches of the or-tree, by repeatedly clearing it via untrailing).

More generally, consider a variable V in node n1, whose binding b has been created in node n2. If there are no choice-points between n1 and n2, then the variable V will have the binding b in every branch that is created below n2. Such a binding can be stored in-place in V—i.e., it can be directly stored in the memory location allocated to V in n1. However, if there are choice-points between n1 and n2, then the binding b cannot be stored in-place, since other branches created between nodes n1 and n2 may impart different bindings to V. The binding b is applicable to only those nodes that are below n2. Such a binding to a conditional variable is known as a conditional binding. For example, variable Y in Figure 2 is a conditional variable. A binding that is not conditional, i.e., one that has no intervening choice-points between the node where this binding was generated and the node containing the corresponding variable, is termed unconditional. The corresponding variable is called an unconditional variable (for example, variable X in Figure 2).

If the different branches are searched in or-parallel, then the conditional variables (e.g., variable L) receive different bindings in different branches of the tree, all of which will be active at the same time. Storing and later accessing these bindings efficiently is a problem. In sequential execution the binding of a variable is stored in the memory location allotted to that variable. Since branches are explored one at a time, and bindings are untrailed during backtracking, no problems arise. In parallel execution, multiple bindings exist at the same time, hence they cannot be stored in a single memory location allotted to the variable. This problem, known as the multiple environment representation problem in the literature, is a major problem in implementing or-parallelism [41][29].

The main problem in implementing or-parallelism is the efficient representation of the multiple environments that co-exist simultaneously in the or-tree corresponding to a program’s execution—i.e., the development of an efficient way of associating the correct set of bindings to each branch of the or-tree. Note that the main prob-
lem in management of multiple environments is that of efficiently representing and accessing the conditional bindings; the unconditional bindings can be treated as in normal sequential execution of logic programs (i.e., they can be stored in-place). The naive approach of keeping a complete separate copy of the answer substitution for each separate branch is highly inefficient, since it requires the creation of complete copies of the substitution (which can be arbitrarily large) every time a choice-point is created (29; 41). A large number of different methodologies have been proposed to address the environment representation problem in OP (29).

Variations of the same problem arise in many classes of search problems and paradigms relying on non-determinism. For example, in the context of non-monotonic reasoning under stable models semantics (23; 39), the computation needs to determine the possible belief sets of a logical theory; these are determined by guessing the truth values of selected logical atoms, and deriving the consequences of such guesses. In this case, the dynamic environment is represented by the truth values of the various atoms along each branch of the tree.

A more abstract view of the problem has been presented in (41; 40), where its theoretical properties have been investigated. The theoretical results show that methodologies like stack copying and stack recomputation are theoretically superior than other schemes—i.e., in the formal abstraction of the environment representation problem, these methods have a computational complexity that is better than that of other proposed schemes.

2.3 Stack-copying for Maintaining Multiple Environments

Stack-copying (3) is a successful approach for environment representation in OP. In this approach, the environment representation problem is simply resolved by allowing each agent to have its own copy of all the environments present in the branch of the or-tree currently explored—this provides each agent with its own copy of each conditional variable.

In this approach (originally developed in BC-machine (2) and successfully implemented in systems like MUSE (3; 11) and YAP (43)), agents maintain a separate but identical address space—i.e., each agent is a process with its own address space, but separate agents maintain exactly the same organization of the data structures within their address space (i.e., they all locate data structures at the same logical addresses). Whenever an agent \(A \) becomes idle (idle-agent), it will start looking for unexplored alternatives generated by another agent \(B \) (active-agent). Once a choice-point \(p \) is detected in the tree \(T_B \) generated by \(B \), \(A \) will create a local copy of \(T_B \) and restart the computation by backtracking over \(p \). Since all or-agents maintain an identical logical address space,\(^3\) the creation of a local copy of \(T_B \) is reduced to a simple memory copying (Figure 3)—without the need for any explicit pointer relocation. Since each or-agent owns a separate copy of the environments, the environment representation problem is readily solved—each or-agent will store

\(^3\) This design choice, adopted in MUSE, simplifies the implementation in an existing Prolog system—though it potentially limits the use of the model in thread-based implementations.
the locally produced bindings in the local copy of the environments. Additionally, each or-agent performs Prolog execution on a private copy of its tree branch, thus relieving the need for sharing memory. For this reason, stack-copying has been considered highly suitable for execution on DMPs, where stack-copying can be simply implemented using message passing between agents.

In practice, the stack-copying operation is more involved than simple memory copying, as it is desirable to maintain a single copy of each choice-point, stored in a specialized area accessible to all agents. This is important because the set of untried alternatives is now shared between the two agents. If this set is not accessed in mutual exclusion, then two agents may execute the same alternative, leading to duplication of work. In addition, the duplicate execution of the same alternative will lead to an observable behavior which is different from that of a sequential Prolog execution (e.g., if the duplicated alternative contains a side-effect, this will be seen repeated by the user). Thus, after copying, parts of each choice-point in T_B (specifically, the parts related to the set of available alternatives) will be transferred to a shared area—these will be called shared frames. Both active and idle agents will replace their choice-points with pointers to the corresponding shared frames. Shared frames are accessed in mutual exclusion. This whole operation of obtaining work from another agent is usually termed sharing of or-parallel work. This is illustrated in Figure 3. Note that CP denotes the choice-point stack and Env the environment stack in the figure. For illustration purposes we assume that the choice-points and environments are allocated space in separate stacks even though this is not always the case; choice-points and environments may be allocated space in a single common stack. In Figure 3, the part of the tree labeled as shared has been copied from agent P_1 to agent P_2; the choice-points lying in this part of the tree have been also moved to the shared space to avoid repetition of work. In particular, agent P_2 picks an untried alternative from choice-point b, created by P_1. To begin execution along this alternative, P_2 first transfers the choice-points between the root node and b (inclusive) in a global area (accessible by all agents), and then copies P_1’s local stacks from root node up to node b. It untrails the appropriate variables to restore the computation state that existed when b was first created, and it begins the execution of the alternative that was picked.

A major reason for the success of MUSE and YAP is that they effectively implement incremental stack copying with scheduling on bottom-most choice-point. Each idle agent picks work from the bottom-most choice-point of an or-branch. During the sharing operation all the choice-points between the bottom-most and the top-most choice-points are shared between the two agents. This means that, in each sharing operation, we try to maximize the amount of work shared between the two agents. The stack segments upwards of this choice-point are copied before the exploration of this alternative is begun. The copied stack segments may contain other choice-points with untried alternatives—which are locally available without any further copying operation and with very limited synchronization between processors, i.e., they become accessible via simple backtracking (modulo simple use of locks for mutual exclusion). Thus, a significant amount of work becomes available to
the copying agent every time a sharing operation is performed. The cost of having to copy potentially larger fragments of the tree becomes relatively insignificant considering that this technique drastically reduces the number of sharing operations performed. It is important to observe that each sharing operation requires both the agents involved to stop the regular computation and cooperate in the sharing. Furthermore, to reduce the amount of information transferred during the sharing operation, copying is done incrementally, i.e., only the difference between T_A and T_B is actually copied.

2.4 Incremental Stack-Copying

Traditional stack-copying requires agents which share work to transfer a complete copy of the data structures representing the status of the computation. In the case of a Prolog computation, this may include transferring most of the choice-points along with copies of the other data areas (trail, heap, environments). Since Prolog computations can make use of large quantities of memory (e.g., generate large structures on the Heap), this copying operation can become quite expensive. MUSE introduced a variation of stack-copying, adopted by many other stack-copying systems, called Incremental Stack-Copying, which allows to considerably reduce the amount of data transferred during a sharing operation. The idea is to compare the content of the data areas in the two agents involved in a sharing operation, and transfer only the difference between the state of the two agents. This is illustrated in Figure 4. In Figure 4(i) we have two agents (P1 and P2) which have 3 choice-points in common (e.g., from a previous sharing operation). P1 owns two additional choice-points with unexplored alternatives while P2 is out of work. If P2
obtains work from P1, then there is no need of copying again the 3 top choice-points (Figure 4(ii)).

Fig. 4. Incremental Stack-Copying

Incremental stack-copying, in a shared-memory context, is relatively simple to realize—the shared frames can be used to identify which choice-points are common and which are not. This is primarily because all the information needed for performing incremental copying efficiently can be found in the shared frames—the use of shared frames is essential to determine the bottom-most common choice-point between the two agents. The determination of such choice-point is typically accomplished by analyzing the bitmaps stored in the various shared frames, which are used to keep track of the agents which currently maintain a copy of the associated choice-point (each bit is associated to a different agent). An additional component required by incremental stack-copying is the need for binding installation. As illustrated in Figure 4, the part of the environment stack corresponding to the three topmost choice points is not copied. On the other hand, variables present in such environments might have received bindings during the execution of the bottom part of the computation; these bindings need to be explicitly installed after copying, in order to reflect the proper computation state.

3 Choice-point Splitting in the Stack-Copying Model

In this section, we discuss the issues related to porting the stack-copying model to a DMP platform, and we present the basic idea behind the novel stack-splitting scheme.

3.1 Copying on DMPs

As mentioned earlier, to avoid duplication of work and to guarantee effective scheduling, during the copying operation part of the content of each copied choice-point is transferred to a shared memory area; the various agents access each shared frame in mutual exclusion, thus synchronizing and guaranteeing unique execution of each alternative. This solution works fine on SMPs—where mutual exclusion is easily
implemented using locks. However, on a DMP this process is a source of significant overhead—access to the shared area becomes a bottleneck [3]. This is because sharing of information in a DMP leads to frequent exchange of messages and hence considerable overhead. Centralized data structures, such as the shared frames, are expensive to realize in a distributed setting. On the other hand, stack copying appears to be more suitable to support OP in a distributed-memory setting [13, 21, 4], since, although the choice-points are shared, at least other data-structures representing the computation—such as, in the case of Prolog, the environment, the trail, and the heap—are not. Other environment representation schemes, e.g., the popular Binding Arrays scheme [35], have been specifically designed for SMPs and share most of the computation; the communication overhead produced by these alternative schemes on DMPs is likely to be prohibitive.\footnote{Researches have also proposed to combine these methods with distributed shared memory schemes [47].}

To avoid the problem of sharing choice-points in distributed implementations, many implementors have reverted back to the scheduling on top-most choice-point strategy [13, 21]. The reason is that untried alternatives of a choice-point created higher up in the or-tree are more likely to generate large subtrees, and sharing work from the highest choice-point leads to smaller-sized stacks being copied. However, if the granularity does not turn out to be large, then another untried alternative has to be picked and a new copying operation has to be performed. In contrast, in scheduling on bottom-most, more work could be found via backtracking, since more choice-points are copied during the same sharing operation. Additionally, scheduling on bottom-most is closer to the depth-first search strategy used by sequential systems, and facilitates support of Prolog semantics (e.g., support of order sensitive predicates). Indeed, comparative studies about scheduling strategies indicate that scheduling on bottom-most is superior to scheduling on top-most [11]. This is especially true for the stack-copying technique because:

1. the number of copying operations is minimized; and,
2. the alternatives in the choice-points copied are “cheap” sources of additional work, available via backtracking.

However, the fact that these choice-points are shared is a major drawback for a distributed implementation of copying. The question we consider is: can we avoid sharing of choice-points while keeping scheduling on bottom-most? The answer is affirmative, as is discussed next.

\section{Split Choice-point Stack Copying}

In Stack-Copying, the primary reason why a choice-point has to be shared is because we want to serialize the selection of untried alternatives, so that no two agents can pick the same alternative. The shared frame is locked while the alternative is selected to achieve this effect. However, there are other simple ways of ensuring the same property: \textit{the untried alternatives of a choice-point can be split between...}
the two copies of the choice-point stack. We call this operation choice-point stack-splitting or simply stack-splitting. This will ensure that no two agents pick the same alternative.

We can envision different schemes for splitting the set of alternatives between shared choice-points—e.g., each choice-point receives half of the alternatives, or the partitioning can be guided by information regarding the unexplored computation, such as granularity and likelihood of failure. In addition, the need for a shared frame, as a critical section to protect the alternatives from multiple executions, has disappeared, as each stack copy has a choice-point with a different set of unexplored alternatives. All the choice-points can be evenly split in this way during the copying operation.

The choice-point stack-splitting operation is illustrated in Figure 5. The strategy adopted in this example is what we call horizontal splitting: the remaining alternatives in each of the shared choice-points are split between the two agents.

A variation of choice-point stack-splitting relies on splitting the content of the choice-point stack, instead of splitting the individual choice-points. This means that, during a sharing operation, the list of available choice-points is partitioned between the two agents. We will refer to this approach as vertical splitting. In this case, we can assume the availability of a partition function:

\[\text{part} : \text{CP}^* \to \text{CP}^* \times \text{CP}^* \]

where \(\text{CP} \) is the set of all possible choice-points and \(\text{CP}^* \) denotes a list of choice-points. The intuition is that, given the sequence \(B \) of choice-points in the branch to be shared, \(\text{part}(B) \) will return a partition of \(B \) in two subsets \(\langle B_{\text{keep}}, B_{\text{give}} \rangle \), where \(B_{\text{keep}} \) are the choice-points kept by the active agent and \(B_{\text{give}} \) are the choice-points given to the idle agent.

In the rest of this work we will consider two main strategies for partitioning the choice-points:

- alternate\((a_1 a_2 a_3 a_4 \ldots) = (a_2 a_4 \ldots, a_1 a_3 \ldots)\) i.e., the choice-points in the even

Fig. 5. Horizontal stack-splitting based or-parallelism

A variation of choice-point stack-splitting relies on splitting the content of the choice-point stack, instead of splitting the individual choice-points. This means that, during a sharing operation, the list of available choice-points is partitioned between the two agents. We will refer to this approach as vertical splitting. In this case, we can assume the availability of a partition function:

\[\text{part} : \text{CP}^* \to \text{CP}^* \times \text{CP}^* \]

where \(\text{CP} \) is the set of all possible choice-points and \(\text{CP}^* \) denotes a list of choice-points. The intuition is that, given the sequence \(B \) of choice-points in the branch to be shared, \(\text{part}(B) \) will return a partition of \(B \) in two subsets \(\langle B_{\text{keep}}, B_{\text{give}} \rangle \), where \(B_{\text{keep}} \) are the choice-points kept by the active agent and \(B_{\text{give}} \) are the choice-points given to the idle agent.

In the rest of this work we will consider two main strategies for partitioning the choice-points:

- alternate\((a_1 a_2 a_3 a_4 \ldots) = (a_2 a_4 \ldots, a_1 a_3 \ldots)\) i.e., the choice-points in the even

Fig. 5. Horizontal stack-splitting based or-parallelism

A variation of choice-point stack-splitting relies on splitting the content of the choice-point stack, instead of splitting the individual choice-points. This means that, during a sharing operation, the list of available choice-points is partitioned between the two agents. We will refer to this approach as vertical splitting. In this case, we can assume the availability of a partition function:

\[\text{part} : \text{CP}^* \to \text{CP}^* \times \text{CP}^* \]

where \(\text{CP} \) is the set of all possible choice-points and \(\text{CP}^* \) denotes a list of choice-points. The intuition is that, given the sequence \(B \) of choice-points in the branch to be shared, \(\text{part}(B) \) will return a partition of \(B \) in two subsets \(\langle B_{\text{keep}}, B_{\text{give}} \rangle \), where \(B_{\text{keep}} \) are the choice-points kept by the active agent and \(B_{\text{give}} \) are the choice-points given to the idle agent.

In the rest of this work we will consider two main strategies for partitioning the choice-points:

- alternate\((a_1 a_2 a_3 a_4 \ldots) = (a_2 a_4 \ldots, a_1 a_3 \ldots)\) i.e., the choice-points in the even
positions are kept while those in the odd positions are given away (see Figure 6).

- \(\text{block}(a_1 a_2 \ldots a_n) = \langle a_i \ldots a_n, a_1 \ldots a_{i-1} \rangle \) i.e., the list of choice-points is cut in two segments, the first given to the idle agent, while the second is kept by the active agent (see Figure 7).

Observe that, in practice, all choice-points are copied—as it would be too expensive to selectively copy only the required ones—and the ones that are not needed are “cleared” of their alternatives; this is explained in detail in the next section.

The idea of splitting the list of choice-points is particularly useful when the search tree is binary—which is a frequent situation in several Prolog applications as well as in other search problems (e.g., non-monotonic reasoning where the choice-points represent choices of truth values). In these cases the use of horizontal splitting is rather ineffective. Splitting of alternatives can be resorted to when very few choice-points with many alternatives are present in the stack.

Different mixes of splitting of the list of choice-points and choice-point splitting can be tried to achieve a good load balance—as discussed in [51, 41, 53]. Eventually, the user could also be given control regarding how the splitting is done—e.g., by allowing the user to declare one of a set of splitting strategies for given predicates—although our system does not currently support this option.

The major advantage of stack-splitting is that scheduling on bottom-most can still be used without incurring huge communication overheads. Essentially, after splitting the different or-parallel agents become independent of each other, and hence
communication is minimized during execution. This makes the stack-splitting technique highly suitable for DMPs. The possibility of parameterizing the splitting of the alternatives based on additional semantic information (granularity, non-failure, user annotations) can further reduce the likelihood of additional communications due to scheduling.

4 Towards Practical Stack-Splitting and Incremental Stack Splitting

In the rest of the paper we describe the incremental stack-splitting scheme and its implementation issues on a message passing platform, analyzing in detail how the various problems mentioned earlier have been tackled. In addition to the basic stack-splitting scheme, we also

- analyze how stack-splitting can be extended to incorporate incremental copying, an optimization which has been deemed essential to achieve speedups in various classes of applications, and
- analyze how to handle order-sensitive predicates (e.g., side-effects) in the presence of stack-splitting.

The solution we describe has been developed in a concrete implementation, realized by modifying the engine of a commercial Prolog system (ALS Prolog) and making
use of the Message Passing Interface (MPI) as a communication platform. The ALS Prolog system is based on an implementation of the Warren Abstract Machine (WAM).

4.1 Data Structures for Stack-Splitting and Incremental Stack-Splitting

The data structures employed by our distributed engine include all the data areas of a standard Warren Abstract Machine (e.g., stack for the choice-points, stack for the environments, a heap for the dynamic creation of terms, a trail to support undoing of variable bindings during backtracking). We assume that the code-area is initially duplicated between all processors.

During stack-splitting, all WAM areas, except for the code area, are copied from the agent giving work to the idle one. Next, the parallel choice-points are split between the two agents. Blindly copying all the stacks every time an agent shares work with another idle agent can be wasteful, since frequently the two agents already have parts of the stacks in common due to previous copying. We can take advantage of this fact to reduce the amount of copying by performing incremental copying, as discussed earlier. In our stack-splitting scheme, there are no shared frames, hence performing incremental stack-copying will incur more overhead due to the communication overhead involved. In order to figure out the incremental part that only needs to be copied during incremental stack-splitting, parallel choice-points will be labeled in a certain way. The goal of labeling is to uniquely identify the original “source” of each choice-point (i.e., which agent created it), to allow unambiguous detection of copies of common choice-points. Thus, the labels effectively replace the bitmaps used in the shared memory implementations of stack-copying. The labeling procedure is described next.

To perform labeling, each agent maintains a counter. Initially, the counter in each agent is set to 1. The counter is incremented each time the labeling procedure is performed. When a parallel choice-point is copied for the first time, a label for it is created. The label is composed of three parts:

1. agent rank,
2. counter, and
3. choice-point address.

The agent rank is the rank (i.e., id) of the agent which created the choice-point. The counter is the current value of the labeling counter for the agent generating the labels. The choice-point address is the address of the choice-point which is being labeled. The labels for the parallel choice-points are recorded in a separate label stack, in the order they are created—the choice-point address in the label maintains the connection between the label (stored in the label stack) and the corresponding choice-point (stored in the choice-point stack). Also, when a parallel choice-point is removed from the stack, its corresponding label is also removed from the label stack. Initially, the label stack in each agent is set to empty. The label stack keeps a record of the labels for the agent’s shared choice-points. Observe that
the choice of maintaining labels in a stack—instead of associating them directly to the corresponding choice-points—has been dictated by efficiency reasons.

Let us illustrate stack-splitting accompanied by labeling with an example. In the rest of the discussion we assume the use of vertical splitting strategy. Suppose agent A has just created two parallel choice-points and agent B is idle. Agents A and B have their counters set to 1 and their label stacks set to empty. Then agent B requests work from agent A. Agent A first creates labels for its two parallel choice-points. These labels have their rank and counter parts as \(A:1 \). Agent A then pushes these labels into its label stack. This is illustrated in Figure 8; for simplicity, in our figures, we do not show the label stack explicitly but show each label rank and counter parts inside the parallel choice-point being labeled. Notice that agent A incremented its counter to 2 after the labeling procedure was over. In the figure, \(\alpha \) denotes the root of the tree.

\[
\begin{array}{c}
\text{PA cnt=2} \\
\text{PB cnt=1}
\end{array}
\]

![Fig. 8. Agent A Labels its two Parallel Choice-points](image)

The next step requires the actual execution of stack-copying. Agent B receives a message that contains all the parallel choice-points of agent A, along with agent A’s label stack. At this point, it becomes possible to perform stack-splitting. Agent A will keep the alternative \(b_2 \) but not \(a_2 \) and \(a_3 \), and agent B will get the alternatives \(a_2, a_3 \) but not \(b_2 \). We have designed a new WAM scheduling instruction (\textit{schedule}) which is placed in the next alternative field of the choice-point above which there is no more parallel work. The execution of this instruction forces the agent to enter scheduling, and it implements the scheduling scheme described in Section 5. Agent A keeps the alternative \(b_2 \) of choice-point \(b \), changes the next alternative field of choice-point \(a \) to WAM instruction \textit{trust fail} to avoid taking the original alternative of this choice-point, and changes the next alternative field of the choice-point above \(a \) to the new WAM instruction \textit{schedule} which will take agent A into scheduling.\(^5\) The \textit{trust fail} instruction will simply act as a filler to denote that the choice-point does not have any further alternatives. Observe that in practice it is possible to

\[
\begin{array}{c}
\text{PA cnt=2} \\
\text{PB cnt=1}
\end{array}
\]

![Fig. 9. Agent A Gave Work to Agent B](image)

\(^5\) This is a common technique used in other modifications of the WAM—e.g., the MUSE WAM.
optimize this scheme (e.g., in the example, we could have introduced the schedule instruction directly in the choice-point a).

In turn, agent B changes the next alternative field of choice-point b to WAM instruction \texttt{trust fail}, to avoid taking the original alternative of this choice-point, keeps the alternatives $a2$, $a3$ of choice-point a, and changes the next alternative field of the choice-point above a to the schedule instruction. See Figure 9. Afterwards, agent B backtracks, removes choice-point b along with its corresponding label in the label stack, and then takes alternative $a2$ of choice-point a.

Suppose now that agent B creates two parallel choice-points and agent C is idle. Agent C, with its counter set to 1 and its label stack set to 	exttt{empty}, requests work from B. Agent B first creates labels for its two new parallel choice-points. These labels have their rank and counter parts as $B:1$. Agent B then pushes these labels into its label stack. See Figure 10. Notice that agent B incremented its counter to 2.

![Fig. 10. Agent B Labels its Two New Parallel Choice-points](image)

At this point in time, stack-copying takes place. Agent C gets all the parallel choice-points of agent B along with agent B label stack. The stack-copying phase is followed by the actual stack-splitting operation: agent B will keep alternatives $d2$ and $a3$ but not $c2$, and agent C will keep alternative $c2$ but not $d2$ nor $a3$. Notice that all three parallel choice-points of agent B have been split among B and C. Agent B keeps the alternative $d2$ of choice-point d and changes the next alternative field of choice-point c to WAM instruction \texttt{trust fail} to avoid taking the original alternative of this choice-point, and keeps the alternative $a3$ of choice-point a. Agent C changes the next alternative field of choice-point d to WAM instruction \texttt{trust fail} to avoid taking the original alternative of this choice-point, keeps the alternative $c2$ of choice-point c, changes the next alternative field of choice-point a to WAM instruction \texttt{trust fail}, and changes the next alternative field of the choice-point above a to schedule. This is illustrated in Figure 11. Agent C backtracks, removes choice-point d along with its corresponding label in the label stack, and then takes alternative $c2$ of choice-point c.
4.2 Incremental Stack-splitting: The Procedure

In this section we describe how the label stacks are used to compute the incremental part to be copied. Let us assume that agent A is giving work to agent B. Agent A will label all its parallel choice-points which have not been labeled before and will push them into its label stack. Agent A then increments its counter.

If the label stack of agent B is empty, then stack-copying will need to be performed followed by stack-splitting. Agent A sends its complete choice-point stack and its complete label stack to agent B. Then stack-splitting is performed on all the parallel choice-points of agent A. Agent B then tries its new work via backtracking.

However, if the label stack of agent B is not empty, then agent B will send its label stack to agent A. The objective is for agent A to locate the topmost label in common between A and B—and this is realized by comparing the content of the two stacks until a match is found. Let us denote with c_h the most recent choice-point with a common label between A and B. In this way, agents A and B are guaranteed to have the same computation above the choice-point c_h, while their computations will be different below such choice-point.

If the choice-point c_h does not exist, then (non-incremental) stack-copying will need to be performed followed by stack-splitting just as described before. However, if choice-point c_h does exist, then agent B backtracks to choice-point c_h, and performs incremental-copying. Agent A sends its choice-point stack starting from choice-point c_h to the top of its choice-point stack. Agent A also sends its label stack starting from the label corresponding to choice-point c_h to the top of its label stack. Stack-splitting is then performed on all the parallel choice-points of agent A. Afterwards, agent B tries its new work via backtracking.

We illustrate the above procedure by the following example. Suppose agent A has three parallel choice-points and agent C requests work from A. Agent A first labels its last two parallel choice-points which have not been labeled before and then increments its counter. Afterwards, agent C sends its label stack to agent A. Agent A compares its label stack against the label stack of agent C and finds the last choice-point c_h with a common label. Above choice-point c_h, the Prolog trees of agents A and C are equal. Below choice-point c_h, the Prolog trees of agents A and C differ. See Figure 12.
Now, agent C backtracks to choice-point \(ch \). Incremental stack-copying can then take place. Agent A sends its choice-point stack starting from choice-point \(ch \) to the top of its choice-point stack. Agent A also sends its label stack starting from the label corresponding to choice-point \(ch \) to the top of its label stack. Then, stack-splitting takes place on the three parallel choice-points of agent A. See Figure 13. Agent C backtracks to choice-point \(i \) and takes alternative \(i_2 \).

4.3 Incremental Stack-splitting: Challenges

Four issues that were not discussed above and which are fundamental for the correct implementation of the incremental stack-splitting scheme presented are discussed below.

4.3.1 Sequential Choice-points

The first issue is related to the management of sequential choice-points. Typically, only a subset of the choice-points present during the execution are suitable to provide work that can be effectively parallelized. These choice-points are traditionally called parallel choice-points, to distinguish them from sequential choice-points, whose alternatives are meant to be explored by a single agent. Systems like PALS, MUSE, and Aurora allow the user to explicitly declare predicates as parallel (while, by default, the others are treated as sequential).

The problem arises when sequential choice-points are located among the parallel choice-points that will be split between two agents. If the alternatives of these choice-points are kept in both agents, we may have repeated, useless or wrong computations. Hence, the alternatives of these choice-points should only be kept in one agent—e.g., the agent that is giving work. In our current approach, we keep the alternatives of sequential choice-points in the agent giving work; as a consequence, the agent that is receiving work should change the next alternative field of all
these choice-points to the WAM instruction `trust fail` to avoid taking the original alternatives of these choice-points.

4.3.2 Installation Process

The second issue has to do with the bindings of conditional variables (i.e., variables that may be bound differently in different or-parallel branches) which need to be copied too as part of the incremental stack-splitting process.

For example, suppose that in our last example, before agent A gives work to agent C, agent A created the variable \(X \) before choice-point \(ch \) was created, and the variable \(X \) was instantiated after the creation of \(ch \). This is shown in Figure 14. We can see that the binding for \(X \) was not copied during incremental stack-splitting. This is because \(X \) is a conditional variable which was created before choice-point \(ch \), and the incremental part of the heap or environment stack that was copied did not contain its binding. This means that the receiving agent does not see \(X \) becoming automatically instantiated thanks to the copying of the heap or environment stack.

![Fig. 14. The Binding of Conditional Variable X Needs to be Copied](image)

In order to solve the problem, we need to ensure that, during the sharing operation, also the bindings of the conditional variables created in the common part of the branch are transferred from the agent giving work to the idle agent. In the current implementation, we have tackled this problem by modifying the trail structure of the ALS WAM engine. The trail is a stack, maintained by the WAM, which records which conditional variables have been bound along the current branch of execution. The trail is used by the WAM to support removal of bindings during backtracking. In our system, the trail has been modified to a value trail (35), thus maintaining with each bound conditional variable also a reference to its value. The value trail is employed by agent giving work to build a special message containing the values of the bound conditional variables, sent to the idle agent during the sharing operation. The idle agent will make use of this message and install the appropriate bindings for the conditional variables existing in the common segment of the search tree branch.
Observe that a similar problem appears also in shared-memory implementations of stack-copying (3)—though they do not need to rely on value-trails, since each agent can directly retrieve the values of the bindings from the other agent’s environments (which are in shared memory).

4.3.3 Garbage Collection

The third issue arises when garbage collection takes place. In the current implementation of the ALS system (the underlying WAM we modified for this project), garbage collection occurs also on the choice-point stack, leading to possible shifting of choice-points. When this situation occurs, the labels in our label stack may no longer label the correct parallel choice-points—since labels are connected to choice-points by storing the address of the corresponding choice-points inside the label. Therefore, we need to modify our labeling procedure so that when garbage collection on an agent takes place, the label stack of this agent is invalidated. This has been realized by just setting its label stack to empty. The next time this agent gives work, full stack-copying will have to take place. This solution is analogous to the one adopted in the MUSE system (3) to address the similar problem in stack-copying. Alternative solutions—e.g., use of indirect labels—would introduce costs in each step of sharing, instead of an occasional additional cost during garbage collection, and have not been used in our system.

4.3.4 Next Clause Fields

The fourth issue arises when the next clause fields of the parallel choice-points between the first parallel choice-point \(\text{first cp} \) and the last choice-point \(\text{ch} \) with a common label in the agent giving work are not the same compared to the ones in the agent receiving work. This situation occurs after several copying and splitting operations—that caused the next clause field of some choice-points to be changed to \texttt{trust fail}, while other agents still have active alternatives in such choice-points. In this case, it is not correct to just copy the part of the choice-point stack between choice-point \(\text{ch} \) and the top of the stack and then perform the splitting. This is because the splitting will not be performed correctly.

For example, suppose that in our previous example (see Fig. 14), when agent C requests work from agent A, we have this situation, as illustrated in Figure 15. Let us assume that the scheduler decides to transfer the choice-point \(g \) to agent C. But agent C does not have the right next clause field for this choice-point. Hence, we need to modify our procedure once again. This can be done by having the agent giving work send all the next clause fields between its first parallel choice-point \(\text{first cp} \) and choice-point \(\text{ch} \) to the agent receiving work. Then the splitting of all parallel choice-points can take place correctly. See Figure 16.
Scheduling is an important aspect of any parallel system. The scheduling strategy adopted largely determines the level of speedup obtained for a particular parallel execution. The main objective of a scheduling strategy is to balance the amount of parallel work done by different agents. Additionally, work distribution among agents should be done with a minimum of communication overhead. These two goals are somewhat at odds with each other, since achieving perfect balance may result in a very complex scheduling strategy with considerable communication overhead, while a simple scheduling strategy which re-distributes work less often may incur a lower communication overhead but lead to a poorer balancing of work. Therefore, it is obvious that there is an intrinsic contradiction between distributing parallel work as evenly as possible and minimizing the distribution overhead. Thus our main goal is to find a trade-off point that results in a reasonable scheduling strategy.

We adopt a simple and fair distributed algorithm to implement a scheduling strategy in the PALS system. A new data structure—the load vector—is introduced to provide an approximated view of the work-loads of different agents. The work-load of an agent is approximated by the number of parallel choice-points with unexplored alternatives present in its local computation tree. This is analogous to the approach originally used by MUSE, and it can be efficiently implemented within ALS; furthermore, the majority of examples we encountered offer parallel choice-points with a small number of alternatives (often just two), thus making our approximated notion of work-load essentially equivalent to more refined versions. Each agent keeps a work-load vector V in its local memory, and the value of $V[i]$ represents the estimated work-load of the agent with rank i. Based on the work-load vector, an idle agent can request parallel work from other agent with the greatest work-load, so that parallel work can be fairly distributed. The load vector is updated at runtime. When stack-splitting is performed, a SendLoadInfo message with updated load information will be broadcasted to all the agents so that each agent has the latest information of work-load distribution. Additionally,
load information is attached with each incoming message. For example: when a Request_Work message is received from agent P_1, the value of P_1’s work-load, 0, can be inferred.

Based on its work-load each agent can be in one of two states: scheduling state or running state. When an agent has some work to do, it is in a running state, otherwise, it is in a scheduling state. An agent that is running, occasionally checks whether there are incoming messages. Two possible types of messages are checked by the running agent: one is Request_Work message sent by an idle agent, and the other is Send_LoadInfo message, which is sent when stack-splitting occurs. The idle agent in scheduling state is also called a scheduling agent. An idle agent wants to get work as soon as possible from another agent, preferably the one that has the largest amount of work. The scheduling agent searches through its local load vector for the agent with the greatest work-load, and then sends a Request_Work message to that agent asking for work. If all the other agents are idle (in scheduling state), then the execution of the current query is finished and the agent halts. When a running agent receives a Request_Work message, stack-splitting will be performed if the running agent’s work-load is greater than a predefined threshold (the splitting threshold), otherwise, a Reply_Without_Work message with a positive work-load value will be sent as a reply. If a scheduling agent receives a Request_Work message, a Reply_Without_Work message with work-load 0 will be sent as a reply.

The distributed scheduling algorithm mainly consists of two parts: one is for the scheduling agent, and the other is for the running agent. The running agent’s algorithm can be briefly described as follows:

1: while (any incoming message) {
2: get an incoming message;
3: switch (message type) {
4: case Send_LoadInfo:
5: update the corresponding agents’ work-load;
6: break;
7: case Request_Work:
8: if (local work-load > Splitting Threshold) {
9: reply a message of type Reply_With_Work and perform
10: stack-splitting;
11: broadcast the updated work-load to all the agents;
12: }
13: else {
14: reply a message of type Reply_Without_Work
15: and the value of its own work-load;
16: set work-load of the message source to 0;
17: }
18: }
19: }

At fixed time intervals (which can be selected at initialization of the system) the agent examines the content of its message queue for eventual pending messages. Send_LoadInfo messages are quickly processed (lines 4-6) to update the local view of the overall load in the system. Messages of the type Request_Work are handled
as described above (lines 7-17). If stack-splitting is realized (line 9), then the agent will also notify the whole system of the new work-loads (line 10).

We should remark that the implementation concretely checks for the presence of the two types of messages with different frequency—i.e., request for work messages are considered less frequently than requests for load update. All messages are handled asynchronously; `Send_LoadInfo` messages are given higher priority by the receiving agents (i.e., they are processed before any other types of messages), to ensure that the work-load vector remains as much up-to-date as possible. The reason of keeping work-load vector up-to-date as much as possible for each agent is that when a scheduling agent is looking for work, it is able to obtain work from the agent with the highest work-load immediately. We have observed worse performance by giving higher priority to other types of messages. This is because if work-loads are not up-to-date, an agent thought to have the highest work-load may turn out to have work-load lower than others, reducing the granularity of work obtained and increasing the number of splitting operations performed.

The scheduling agent’s algorithm can be briefly described as follows:

```plaintext
1: while (1) {
2:     D = the rank of the agent with the greatest work-load;
3:     if (D’s work-load == 0) and termination detection returns true
4:        then halt; /* The whole work is done */
5:     send a Request_Work message to D;
6:     matched = false;
7:     while (!matched) {
8:         get an incoming message;
9:         switch (message type) {
10:             case Reply_With_Work:
11:                stack-splitting with the agent which sent the message;
12:                update the corresponding work-load;
13:                simulate failure and go to execute the split work;
14:                return;
15:             case Reply_Without_Work:
16:                if (source of message is D) matched = true;
17:                V[message sender Id] = work-load of agent which sent
18:                the message;
19:                break;
20:             case Request_Work:
21:                reply a message of type Reply_Without_Work and
22:                its work-load 0 to the source of incoming message;
23:                V[message sender Id] = 0;
24:                break;
25:             case Send_LoadInfo:
26:                update the corresponding agents’ work-load;
27:                break;
28:         }
29:     }
30: }
```

Observe:

- a Request_Work message is sent to the agent with the greatest work-load according to the local load vector (lines 2 and 4); an optimization to avoid
some communication overhead is that if the greatest work-load is below the splitting threshold value, the Request_Work message can be delayed until there exists some agent that has work-load higher than the threshold; in other words, if all the other agents have low work-load, no stack-splitting takes place in our strategy;

- the loop 6–27 is repeated until a reply is received from the agent contacted in line 4;
- if a reply is positive, then the scheduling phase is left and execution restarted; if the reply is negative, then another iteration of the outermost loop is performed;
- during scheduling, requests for work from other agents are denied (and this is used to update to zero the work-load of the requesting agent), as shown in lines 18–22;
- messages containing new work-load information are used to update the work-load vector (lines 23–25);
- if the work-load vector contains only zeros (line 3), then the scheduler initiates a procedure to verify global termination. The global termination process is based on a fairly standard black-white token ring scheme [36].

Let us point out that the scheduling procedure bears some similarities with the Argonne scheduler used by Aurora [14]. In our experiments on both shared-memory as well as distributed-memory platforms we did not perceive the problems noticed in other similar schedulers (e.g., see [11]) with this approach (e.g., the “honey-pot” problem, where every worker tries to grab the same piece of work).

6 Supporting Prolog’s Sequential Semantics

In this section, we discuss how the stack-splitting scheme can be adapted to support the correct semantics during parallel execution of programs containing side-effects and other order-sensitive predicates.

6.1 Order Sensitive Predicates

A parallel Prolog system that maintains Prolog semantics reproduces the behavior of a sequential system (same solutions, in the same order, and with the same termination properties). Sequential Prolog systems include features that allow the programmer to introduce a component of sequentiality in the execution. These may be in the form of facilities to express side-effects (e.g., I/O) or constructs to control the order of construction of the computation (e.g., pruning operations, user-defined search strategies). In a parallel system, such Order Sensitive Components (OSC)—i.e., built-in predicates whose semantics is tied to the sequential operational semantics of Prolog—need to be performed in the same order as in a sequential execution; if this requirement is not met, the parallel computation may lead to an observable semantics different from the one indicated by the programmer [29].

In the context of Prolog, there are three different classes of OSC: side-effects
predicates (e.g., I/O), meta-logical predicates (e.g., test the instantiation state of variables), and control predicates (e.g., for pruning branches of the search tree). In the context of or-parallelism only certain classes of OSC require sequentialization across parallel computations—only side-effects and control predicates. The presence of OSC does not require a sequentialization of the whole execution involved, only the OSC themselves need to be sequentialized. If the OSC are infrequent and spaced apart, good speedups can be obtained, even in a DMP. The correct order of execution of OSC corresponds to an in-order traversal of the computation tree. A specific OSC α can be executed only if all the OSC that precede α in the traversal have been completed (this assumes also that we do not have infinite branches in the computation tree). Detecting when all the OSC to the left have been executed is an undecidable problem,\(^6\) thus requiring the use of approximations. The most commonly used approximation is to execute an OSC only when the branch containing it becomes the left-most branch in the tree.\(^6\) Thus, we approximate the termination of the preceding OSC by verifying the termination of the branches that contain them. Most of the schemes proposed\(^{12,29}\) rely on traversals of the tree, where the computation attempting an OSC walks up its branch verifying the termination of all the branches to its left. These approaches can be realized\(^{30,3,49}\) in presence of a shared representation of the computation tree—required to check the status of other executions without communication. These solutions do not scale to the case of DMP, where a shared representation of the computation tree is not available. Simulation of a shared representation is infeasible, as it leads to unacceptable bottlenecks.\(^{50}\) Some attempts to generalize mechanisms to handle OSC to DMPs have been made\(^6\), but only at the cost of sub-optimal scheduling mechanisms. It is unavoidable to introduce a communication component to handle OSC in a distributed setting. We demonstrate that stack-splitting can be modified to solve this problem with minimal communication.\(^{53}\) The modification is inspired by the optimal algorithms for OSC studied in\(^{42}\). In particular, in the context of this work we focus on side-effect predicates; we believe these results can provide the foundations to handle also cut and pruning operators, but their effective management requires more significant changes, e.g., to the scheduling strategies, and they are not addressed in the scope of this work.

\(^{6}\) It is a fairly simple exercise to show that the ability to detect precedence of side effects can be used to decide termination of computations—a known undecidable problem.

6.2 Optimal Algorithms for Order-sensitive Executions

The problem of efficiently handling OSC during parallel executions has been pragmatically tackled in a variety of proposals\(^{29}\). Nevertheless, only recently the problem has been formally studied, deriving solid theoretical foundations regarding the inherent complexity of testing for leftmostness in a dynamically changing tree.\(^{42}\) Let $T = (N, E)$ be the computational tree (where N are its nodes and E the current edges). The computation tree is dynamic; the modifications to the tree can...
be described by two operations: **expand** which adds a (bounded) number of children to a leaf, and **delete** which removes a leaf from the tree. Whenever a branch encounters a side-effect, it must check if it can execute it. This check boils down to verifying that the branch containing the side-effect is currently the leftmost active computation in the tree. If \(n \) is the current leaf of the branch where the side-effect is encountered, its computation is allowed to continue only if \(\mu(n) = \text{root} \), where \(\mu(n) \) indicates the highest node \(m \) in the tree (i.e., closest to the root) such that \(n \) is in the leftmost branch of the subtree rooted at \(m \). \(\mu(n) \) is also known in the parallel logic programming community as the **subroot node** of \(n \) \((30)\). Thus, checking if a side-effect can be executed requires the ability to performing the operation **find subroot** \((n)\) which, given a leaf \(n \), computes the node \(\mu(n) \).

The work presented in \((42)\) studies the data structure problem leading to the following result: any sequence of **expand**, **delete**, and **find subroot** operations can be performed in \(O(1) \) time per operation on pure pointer machines—i.e., without the need of complex arithmetic (i.e., the solution does not rely on the use of “large” labels). The data structure used to support this optimal solution is based on maintaining a dynamic list—i.e., a list which allows arbitrary insertions and deletions to be performed at run-time—which represents the frontier of the tree (the solid arrows in Figure 17). The dynamic list can be updated in \(O(1) \) time each time leaves are added or removed (i.e., when expanding a branch and performing backtracking). Subroot nodes can be efficiently maintained for each leaf (these are depicted by dotted lines in the Figure)—in particular, each delete operation affects the subroot node of at most one other leaf. Identification of the computations an \(\text{OSC} \) \(\alpha \) depends on can be simply accomplished by traversing the list of leaves right-to-left from \(\alpha \). Executability (i.e., leftmostness) can be verified in constant time by simply checking whether the subroot of the leaf points to the root of the tree \((42)\). Although the use of an explicit list to maintain the frontier of the computation tree has been suggested in other works (e.g., in the Dharma scheduler \((48)\)), the data structure which allows its management in constant-time was proposed for the first time in \((42)\). The reader is referred to \((42)\) for more details.

This solution is feasible in a shared memory context but requires adjustment in a distributed-memory context. In the rest of this section we show how stack-splitting can incorporate a good solution to the problem, following the spirit of this optimal scheme.
6.3 Stack-Splitting and Order-sensitive Computations

Determining the executability of an OSC α in a distributed-memory setting requires two coordinated activities: (a) determining what are the computations to the left of α in the computation tree—i.e., which agents have acquired work in branches to the left of α; (b) determining what is the status of the computations to the left of α. On DMPs, both steps require exchange of messages between agents. The main difficulty is represented by step (a)—without the help of a shared data structure, discovering the position of the different agents requires arbitrary localization messages exchanged between the agent in charge of α and all the other agents. What we propose is a shift in perspective, directed from the ideas presented in Section 6.2: through a simple modification in the strategy for stack-splitting, we can guarantee that agents are aware of the position of their subroot nodes.\(^7\) Thus, instead of having to locate the subroot nodes whenever an OSC occurs, these are implicitly located (without added communication) whenever a sharing operation is performed (a very infrequent operation, compared to the frequency of OSC steps). Knowledge of the position of the subroot nodes allows agents to maintain an approximation of the ordering of the leaves of the tree, which in turn can be used to support the execution of step (b) above.

In the original stack-splitting procedure—using vertical splitting (Section 3.2)—during a sharing operation the parallel choice-points are alternatively split between two agents. The agent that is giving the work keeps the bottom-most choice-point, the third bottom-most choice-point, the fifth bottom-most choice-point, etc. The agent that receives the work keeps the second bottom-most choice-point, the fourth bottom-most choice-point, etc. In our previous works \(^{28,51}\) we have demonstrated that this splitting strategy is effective and leads to good speedups for large classes of representative benchmarks. The alternation in the distribution of choice-points is aimed at reducing the danger of focusing a particular agent on a set of fine-grained computations.

This strategy for splitting a computation branch between two agents has a significant drawback w.r.t. execution of OSC, since the two agents, through backtracking, may arbitrarily move left or right of each other. This makes it impossible to know a-priori whether one agent affects the position of the subroot node of other agents, preventing the detection of the position of agents in the frontier of the tree. From Section 6.2 we learn that an agent operating on a leaf of the computation tree can affect other agents’ subroot nodes only in a limited fashion. The idea can be easily generalized: if an agent limits its activities to the bottom part of a branch, then the number of leaves affected by the agent is limited and well-defined. This observation leads to a modified splitting strategy, where the agent giving work keeps the lower segment of its branch as private, while the agent receiving work obtains the upper segment of the branch. This modification guarantees that the agent receiving work will be always to the right of the agent giving the work. Since the result of a sharing operation is always broadcasted to all the agents—to allow agents to maintain an

\(^7\) Note that it is practically infeasible to have all processors know the location of all shared nodes.
approximate view of the distribution of work—this method also allows each agent to have an approximate view of the composition of the frontier of the computation tree.

Observe that this modification to the splitting strategy leads to a scheduling strategy different from the traditional bottom-most scheduling mentioned earlier. Nevertheless, as discussed in the experimental evaluation section, this modification does not harm parallel performance in applications with presence of \textit{OSC}, and it does not relevantly degrade performance in absence of \textit{OSC}.

The next sections show how this new splitting strategy can be made effective to support \textit{OSC} without losing parallel performance.

6.3.1 Implementation

\textit{Data Structures}: In order to support the new splitting strategy and use it to support \textit{OSC} steps, each agent will require only two additional data structures: (1) the Linear Vector and (2) the Waiting Queue. Each agent keeps and updates a linear vector which consists of an array of agent Ids that represents the linear ordering of the agents in the search tree—i.e., the respective position of the agents within the frontier of the computation tree (section 6.2). The idea behind this linear vector is that whenever an agent wants to execute an \textit{OSC}, it first waits until there are no agents Ids to its left on the linear vector. Such a status indicates that all the agents that were operating to the left have completed their tasks and moved to the right side of the computation tree, and the subroot node has been pushed all the way to the root of the tree. Once this happens, the agent can safely execute the \textit{OSC}, being left-most in the search tree. Initially, the linear vector of all agents contains only the Id of the first running agent. In the original bottom-most scheduler developed for stack-splitting (Section 4), every time a sharing operation is performed, a \texttt{Send LoadInfo} message is broadcast to all agents; this is used to inform all agents of the change in the workload and of the agents involved in the sharing. For every \texttt{Send LoadInfo} message, each agent updates its linear vector by moving the Id of the agent that received work immediately to the right of the Id of the agent giving work. Each agent also maintains a waiting queue of Ids, representing all the agents that are waiting to execute an \textit{OSC} but are located to the right of this agent. Whenever an agent enters the scheduling state to ask for work, it informs all agents in its waiting queue that they no longer need to wait on it to execute their \textit{OSC}.

\textit{The Procedure}: In stack-splitting (Section 4), an agent can only be in one of two states: running state or scheduling state. In order to handle \textit{OSC}, we need another state: the order-sensitive state. All agents wanting to execute an \textit{OSC} will enter this state until it is safe for them to execute their \textit{OSC}. The transition between the states requires the introduction of three types of messages: (1) \texttt{Request OSC}, (2) \texttt{OSC Acknowledgment}, and (3) \texttt{Reply In OSC}. Their detailed explanations are shown in the following scheduling algorithms.

We update the distributed scheduling algorithms as follows to support handling \textit{OSC}. Only those parts related to handling \textit{OSC} are presented in the algorithms.
The ignored parts (denoted by) can be found from the previous algorithms presented in Section 5. The scheduling algorithm for an agent in an order-sensitive state is described as follows:

send a Request_OSC message to all the agents whose Ids are on the left of its own Id in the linear vector;
while (its own Id is not on the leftmost in the linear vector) {
 get an incoming message;
 switch (message type) {
 case Request_OSC:
 update the requesting agent's work-load;
 consult the linear vector;
 if (the requesting agent Id is on the right of its own Id)
 enqueue the requesting agent Id in the waiting queue;
 else
 reply a message of type OSC_Acknowledgment;
 break;
 case OSC_Acknowledgment:
 update the sending agent's work-load;
 remove the message sender Id from the linear vector;
 break;
 case Send_LoadInfo:
 update the splitting agents' work-load;
 update the linear vector by placing the Id of the agent who receives work to the right of the agent Id giving work;
 if (the agent Id who receives work is on the left of its own ID)
 send a Request_OSC message to the agent;
 break;
 case Request_Work:
 remove the requester Id from the linear vector;
 reply a message of type Reply_In_OSC;
 V[the requester ID] = 0;
 break;
 }
 change to the running state to perform the OSC;
 send a Send_LoadInfo message to all other agents;
}

Once an agent arrives to the order-sensitive state, it first sends a Request_OSC to all the agents to its left in its linear vector. It then waits for OSC_Acknowledgment messages from each of them. An OSC_Acknowledgment is sent by an agent when it is no longer to the left of the agent wanting to execute the OSC. When this message is received, the Id of the agent sending it will be removed from the linear vector. The position of the sending agent will be re-acquired when such agent acquires more work in the successive scheduling phase. Notice that when the agent is waiting for these messages, it may receive Send_LoadInfo messages. If this happens, the agent has to update its linear vector. In particular, if due to this sharing operation an agent moves to its left, a Request_OSC message needs to be sent to this agent as well. Once the agent receives OSC_Acknowledgment messages from all these agents, it can safely perform the OSC. And, finally, after the OSC is successfully performed,
a Send_LoadInfo message will be broadcasted to all other agents with the precise
work-load information.

In addition, an agent in an order-sensitive state is not allowed to share work;
requests to share work are denied with the Reply_In_OSC message. Its linear vector
can be easily updated by removing the Id of the agent requesting work. Just as
we attach load information to messages in the traditional stack-splitting scheduling
algorithm, we also attach updated load information to these three new messages.

The updated scheduling algorithm for a running agent is described as follows:

```c
while (any incoming message) {
    get an incoming message;
    switch (message type) {
        case Send_LoadInfo:
            update the linear vector by placing the Id of the agent
            who receives work to the right of the agent Id giving work;
            ... ...
        case Request_Work:
            if (local work-load > Splitting Threshold) {
                update the linear vector by placing the requesting
                agent Id to the right of its own Id;
                ... ... % stack-splitting
            }
            else { % no stack-splitting
                remove the requester Id from the linear vector;
                ... ...
            }
            break;
        case Request_OSC:
            consult the linear vector;
            if (the requesting agent Id is on the right of its own Id)
                enqueue the requesting agent Id in the waiting queue;
            else
                reply a message of type OSC_Acknowledgment;
            break;
    }
}
```

When an agent is in running state and receives a Request_OSC message, it consults
its linear vector and reacts in the following way. If the Id of the agent wanting to
execute an OSC is to its right in the linear vector, the Id of the requesting agent is
inserted in the waiting queue. When the running agent runs out of work and moves
to the scheduling state, an OSC_Acknowledgment message will be sent back to the
agent wanting to execute the OSC. If the Id of the agent wanting to execute the
OSC is to its left, an OSC_Acknowledgment message is immediately sent back to
the agent wanting to execute the OSC. This means that the running agent is no
longer to the left of the agent wanting to execute the OSC.

The updated scheduling agent’s algorithm can be briefly described as follows:

```c
dequeue all the agent Ids from the waiting queue and
send an OSC_Acknowledgment to all of them;
while (1) {
```
while (!matched) {
 get an incoming message;
 switch (message type) {
 case Reply_With_Work:
 update the linear vector by placing the own Id
 to the right of the message sender Id;

 case Reply_Without_Work:
 if (the work-load of the message sender is 0)
 remove the message sender Id from the linear vector;

 case Request_Work:
 remove the requester Id from the linear vector;

 case Send_LoadInfo:
 update the linear vector by placing the Id of
 the agent who receives work to the right of the
 agent Id giving work;

 case Reply_In_OSC:
 update the work-load of the message sender to 1;
 break;
 case Request_OSC:
 update the work-load of the message sender;
 reply a message of type OSC_Acknowledgment;
 break;
 }
}

When an agent enters the scheduling state, it dequeues all the Ids from its waiting
queue and sends an OSC_Acknowledgment to all these agents, informing them that it
is no longer to their left. When a scheduling agent receives a Reply_In_OSC, which
means the current agent with the highest work-load is in an order-sensitive state, it
then updates the work-load of that agent to 1 so that in the next round the agent
will choose another agent with high work-load to request work from. The precise
work-load will be updated later after the agent in the order-sensitive state becomes
a running-state agent.

6.3.2 Implementation Details

Partitioning Ratios: The stack-splitting modification divides the stack of parallel
choice-points into two contiguous partitions, where the bottom partition is kept by
the agent giving work and the upper partition is given away. This stack-splitting
modification guarantees that the agent that receives work will be to the immediate
right of the other agent. The question is what is the partitioning ratio that will
produce the best results? We first tried using a partition where the agent that is
giving work keeps the bottom half of the branch and only gives away the top half.
After experimenting with lots of different partition ratios, we found out that with
a partition ratio of $3/4 - 1/4$ where the agent that is giving work keeps the bottom
3/4 of the parallel choice-points and gives away the top 1/4 of the parallel choice-points, our benchmarks without side-effects obtain excellent speedups—similar to our original alternating splitting (51). When we run our benchmarks with side-effects, the partition ratio of 3/4 − 1/4 performed superior to the partition ratio of 1/2. One of the reasons is that it is common to have more side-effects towards the bottom part of the computation tree; thus, using the proposed partition we assign smaller chunks of work, but with a greater probability of not encountering side-effects. Additionally, keeping larger numbers of side-effects locally reduces the number of interactions.

Fig. 18. Example of Messages Out of Order

Messages Out of Order: SendLoadInfo messages may arrive out of order and then the linear vectors may be outdated. E.g., agent 2 receives from agent 0 a RequestWork message but decides not to share work. Since agent 0 is requesting work, agent 2 removes 0 from its linear vector. Later on, agent 0 gets work from agent 1, and agent 1 broadcasts a SendLoadInfo message. Afterwards, agent 0 gives work to agent 3 and also broadcasts a SendLoadInfo message. Now, suppose that agent 2 receives the second SendLoadInfo message first and the first SendLoadInfo next. When agent 2 tries to insert 3 to the immediate right of 0 in the linear vector, 0 is not located and therefore 3 cannot be inserted (see Figure 18). MPI (used in our system for agent communication) does not guarantee that two messages sent from different agents at different times will arrive in the order that they were sent. The scenario presented above can be avoided if, in every sharing operation, both involved agents broadcast a SendLoadInfo message to all the other agents. In this case every agent will be informed that a sharing operation occurred either by the giver or by the receiver of work. Agent 2 in the above scenario
will first know that agent 0 obtained work from agent 1, and then will know that agent 0 gave work to agent 3. Duplication of \texttt{SendLoadInfo} messages is handled through the use of two dimensional arrays \textit{send1} and \textit{send2} of size N^2, where \textit{N} is the total number of agents; \textit{send1}[i][j] (\textit{send2}[i][j]) is incremented when a sharing message from \textit{i} to \textit{j} is received from agent \textit{i} (\textit{j}). Thus, \textit{send1}[i][j] and \textit{send2}[i][j] keep track of how many times \textit{i} and \textit{j} have shared work; \textit{send1} records how many times \textit{i} notified of a sharing with \textit{j} and \textit{send2} records how many times \textit{j} notified of a sharing with \textit{i}. The linear vector will be updated only if \textit{send1}[i][j] $>$ \textit{send2}[i][j] (\textit{send2}[i][j] $>$ \textit{send1}[i][j]) and the message comes from agent \textit{i} (\textit{j}).

7 Performance Results

In this section, we present experimental results and their evaluations obtained from two implementations of the proposed methodologies—one developed on a shared-memory platform and one on a Beowulf platform. All the timings proposed have been obtained as an average over 10 consecutive runs (excluding the lowest and highest times), executed on lightly loaded machines.

7.1 Shared Memory Implementation

The stack-splitting procedure has been implemented on top of the commercial ALS Prolog system using the MPI library for message passing—specifically, the MPI-1 library natively provided by Solaris 5.9 (HPC 4.0). The whole system runs on a Sun Enterprise 4500 with fourteen processors (Sparc 400Mhz with 4GB of memory). While the Sun Enterprise is a SMP, it should be noted that all communication—during scheduling, copying, splitting, etc.—is done using messages. This has enabled an easy migration of the system to a Beowulf machine. The timing results in seconds from our incremental stack-splitting system on the 14 processor Sun enterprise are presented in Table 1. This system is based on the scheduling strategy described in Section 5.

The benchmarks that we have used to test our system are the following. The 9 Costas and 8 Costas benchmarks compute the Costas sequences8 of length 9 and 8 respectively. The Knight benchmark consists of finding a path of knight-moves on a chess-board of size 5, starting at (1,1) and finishing at (1,5), and visiting every square on the board just once. The Stable benchmark is a simple engine to compute the models of a logic program with negation. The Send More benchmark consists of solving the classical crypto-arithmetic puzzle. The 8 Puzzle benchmark is a solution to the puzzle involving a 3-by-3 board with 8 numbered tiles. The Bart benchmark is a simulator used to test the safety of the controller for a train. The Solitaire benchmark is a solution to the standard game involving a triangular board with pegs and one empty hole. The 10 Queens and 8 Queens benchmarks consist of placing a number of queens on a chessboard so that no two queens attack each other. The Hamilton benchmark consists of finding a closed path through a graph.

8 Costas sequences are special numeric series used in signal processing.
such that all the nodes of the graph are visited once. The Map Coloring benchmark consists of coloring a planar map.

The 9 Costas, 8 Costas, Knight, Stable, 10 Queens, 8 Queens, Hamilton, and Map Coloring benchmarks compute all the possible solutions. The Send More, 8 Puzzle, Bart, and Solitaire benchmarks stop at the first solution (observe that Bart actually has a unique solution). The 9 Costas, 8 Costas, and Bart benchmarks are fairly large programs, while the rest are simpler. However, all benchmarks provide sufficiently different program structures to extensively test the behavior of the parallel engine.

Benchmark	1	2	# Agents	8	14
9-Costas	715.369	368.298 (1.94)	184.141 (3.88)	92.165 (7.76)	53.453 (13.38)
Stable	653.705	368.943 (1.77)	185.474 (3.52)	92.811 (7.04)	53.860 (12.13)
Knight	275.737	141.213 (1.95)	70.528 (3.9)	35.539 (7.75)	22.403 (12.3)
Send More	115.183	65.271 (1.76)	31.447 (3.66)	16.496 (6.98)	9.686 (11.89)
8-Costas	66.392	34.281 (1.93)	17.192 (3.86)	8.680 (7.64)	5.202 (12.76)
8-Puzzle	52.945	29.601 (1.78)	15.026 (3.52)	7.845 (6.74)	4.754 (11.13)
Bart	25.562	15.411 (1.65)	6.808 (3.72)	3.577 (7.14)	2.144 (11.93)
Solitaire	12.912	7.598 (1.69)	3.813 (3.38)	2.029 (6.36)	1.335 (9.67)
10-Queens	7.575	3.922 (1.93)	2.087 (3.62)	1.378 (5.49)	1.141 (6.63)
Hamilton	6.895	3.879 (1.77)	1.940 (3.55)	1.151 (5.99)	0.761 (9.06)
Map Coloring	2.036	1.298 (1.56)	0.696 (2.92)	0.479 (4.25)	0.430 (4.73)
8-Queens	0.306	0.198 (1.54)	0.143 (2.13)	0.157 (1.94)	0.149 (2.05)

Table 1. Incremental Stack-splitting on Shared Memory (time in seconds and speedups)

We observe that for benchmarks with substantial running time (large benchmarks), i.e., 9-Costas, 8-Costas, Knight, and Stable, the speedups are very good. We also observe that for benchmarks with not so substantial but also not very small running time (medium benchmarks), i.e., Send More, 8-Puzzle, Bart, Solitaire, and Hamilton, the speedups are still quite good. See Figure 19 under the label Incremental Stack-splitting on Shared Memory.
Nevertheless, our system is reasonably efficient, given that even for small benchmarks it can produce reasonable speedups.

In order to compare our incremental stack-splitting system we have also implemented two other techniques using non-incremental stack-copying: we copy the entire WAM data areas when sharing work instead of copying them incrementally as described above. One of these techniques is based on stack-splitting, and the other is based on scheduling on top-most choice-point: this methodology transfers between agents only the highest (i.e., closer to the root) choice-point in the computation tree which contains unexplored alternatives. Observe that we employed non-incremental copying with top-most scheduling since our previous experiments did not indicate a significant impact of incremental copying in presence of top-most scheduling. The timing results in seconds from these other systems are presented in Tables 2 and 3. These two systems also used the scheduling strategy described above. The speedups for these systems are shown in Figure 19 under the labels Complete and Top.

Most benchmarks show that the incremental stack-splitting system obtains higher speedups than the non-incremental systems. Between the non-incremental systems, the stack-splitting system performs better in most of the benchmarks than the scheduling on top-most choice-point system. This is particularly evident in the case of the Hamilton benchmark (Figure 19). Some of the benchmarks (9-Costas, 8-Costas, and Knight) show almost no difference in performance among the three systems. One of the reasons why this is happening is that during the execution of these benchmarks there are only very few parallel choice-points which are given away or split per sharing; in particular, by analyzing the source code for these benchmarks, we can see that in the three benchmarks just one parallel choice-point contains all the parallel work.

Finally, the incremental stack-splitting system introduces a reasonably small overhead with respect to the original sequential ALS Prolog system. Our PALS system, on a single agent, is on average 5% slower than the sequential ALS system.

7.2 Beowulf Implementation

7.2.1 Stack-Splitting

The stack-splitting procedure has been implemented by modifying the commercial ALS Prolog system, using the MPI library for message passing—i.e., the mpich MPI-1 installation natively supported by Myrinet (an instance of mpich 1.2.5). The whole system runs on a distributed-memory machine (a network of Xeon 1.7GHz nodes connected by Myrinet-2000 Switches). All communication—during scheduling, copying, splitting, etc.—is done using explicit message passing via MPI.

The timing results in seconds from our incremental stack-splitting system are presented in Table 4. The modifications made to the ALS WAM are very localized and reduced to the minimum necessary. This has allowed us to keep a very clean design—that, we hope, can be easily ported to other WAM-based implementations—and to keep under control the parallel overhead—our engine (in its incremental stack-
Table 2. Complete Stack-splitting on Shared Memory (time in seconds and speedups)

Benchmark	# Agents				
	1	2	4	8	14
9-Costas	715.963	366.385	182.654	93.602	52.901
Stable	614.582	374.259	184.404	93.884	54.022
Knight	276.849	141.118	70.568	35.741	20.958
Send More	116.518	65.936	31.892	16.882	10.364
8-Costas	66.221	34.053	17.126	8.656	5.202
8-Puzzle	52.909	29.615	15.148	8.206	5.654
Bart	25.734	13.898	6.863	3.704	2.382
Solitaire	12.676	7.552	3.910	2.177	1.606
10-Queens	7.557	3.935	2.116	1.483	1.535
Hamilton	6.908	3.910	1.963	1.284	0.991
Map Coloring	2.009	1.332	0.721	0.476	0.675
8-Queens	0.308	0.194	0.158	0.161	0.138

splitting version) running on a single processor is on average only 10% slower than the ALS WAM.\(^{10}\) The corresponding speedups are presented in Figure 20 under the label incremental.

We observe that for large benchmarks (9-Costas, Knight, 8-Costas, Stable, and Send More) the speedups are very good. We also observe that for medium benchmarks (Bart, Solitaire, 8-Puzzle, and Hamilton) the speedups are still quite good. Note that for the benchmarks with small running time (10-Queens, Map Coloring and 8-Queens) the speedups deteriorate. This is consistent with our belief that DMP implementations should be used for parallelizing programs with coarse-grained parallelism. For programs with small-running times, there is not enough work to offset the cost of exploiting parallelism using a distributed communication model. Nevertheless, our system is reasonably efficient, given that even for small benchmarks it can produce some speedups. It is also interesting to observe that in no cases we have observed slow-downs due to parallel execution—thanks to the simple granularity

\(^{10}\) The overhead in the non-incremental stack-splitting engine are slightly lower.
Benchmark	1	2	# Agents		
9-Costas	756.785	385.251 (1.96)	192.157 (3.39)	96.560 (7.83)	55.602 (13.61)
Stable	644.989	384.961 (1.67)	192.991 (3.34)	99.071 (6.51)	55.764 (11.56)
Knight	270.672	139.307 (1.94)	69.951 (3.86)	35.338 (7.65)	22.504 (12.02)
Send More	111.345	64.650 (1.72)	32.502 (3.41)	16.504 (6.74)	9.806 (11.35)
8-Costas	70.362	35.899 (1.95)	19.383 (3.63)	9.197 (7.65)	5.441 (12.93)
8-Puzzle	53.843	48.754 (1.1)	15.490 (3.47)	12.731 (4.22)	8.111 (6.63)
Bart	26.419	14.378 (1.83)	7.513 (3.51)	3.870 (6.82)	2.540 (10.4)
Solitaire	11.883	7.187 (1.65)	3.664 (3.24)	1.955 (6.07)	1.363 (8.71)
10-Queens	7.595	3.857 (1.96)	2.117 (3.58)	1.330 (5.71)	1.160 (6.54)
Hamilton	6.964	4.061 (1.71)	2.246 (3.1)	1.941 (3.58)	1.606 (4.33)
Map Coloring	2.207	1.389 (1.58)	0.816 (2.7)	0.595 (3.7)	0.469 (4.7)
8-Queens	0.304	0.194 (1.56)	0.181 (1.67)	0.155 (1.96)	0.177 (1.71)

Table 3. Top-most Scheduling on Shared Memory (time in seconds and speedups)

control mechanisms embedded in the scheduler (i.e., the use of splitting thresholds, as mentioned in Section 5).

Note that the 8-Puzzle benchmark shows a very irregular behavior; we believe this is due to the small number of parallel choice-points created, and to the patterns of communication that arise in presence of different number of processors (for certain patterns, a successful distribution of work takes places, for others it does not).

One of the objectives of the experiments performed is to validate the effectiveness of incremental stack-splitting as a methodology for efficient exploitation of parallelism on DMPs. In particular, there are two aspects that we were interested in exploring: (i) verifying the effectiveness of stack-splitting versus a more “direct” implementation of the stack-copying method as implemented in MUSE (3) (i.e., keeping single copies of choice-points around the system); (ii) verifying the impact of incremental splitting.

Validity of stack-splitting vs. stack-copying can be inferred from the experiments described in Section 7.2.2, a direct implementation of stack-copying (where we simulate shared frames by keeping “ownership” of choice-points to specific processors) would produce an amount of communication that is at least as high as in the case of centralized scheduling described in Section 7.2.2.
PALS: Efficient Or-Parallelism on Beowulf Clusters

Fig. 19. Comparison of Speedups using Complete copying, Incremental Copying, and Top Most Scheduling (Shared Memory)

In order to evaluate the impact of incrementality, we have measured the performance of the system without the use of incremental splitting—i.e., each time a sharing operation takes place, a complete copy of the WAM data areas is performed. The results obtained from this experiment are reported in Figure 20. The figure compares the speedups observed with and without incremental splitting. We can observe that our incremental stack-splitting system obtains higher speedups than the non-incremental stack-copying system. As expected, the difference is more significant in those benchmarks where a large number of parallel choice-points is generated, as there is an increased possibility of applying incremental splitting. It is also important to observe that in the majority of the cases the incremental behavior has lead to an improvement in performance w.r.t. non-incremental splitting.
Table 4. Timings for Incremental Stack-Splitting (Time in sec.)

Benchmark	1	2	# Agents 8	16	32
9 Costas	412.579	210.228 (1.96)	52.686 (7.83)	26.547 (15.54)	14.075 (29.31)
Knight	159.950	81.615 (1.95)	20.754 (7.7)	10.939 (14.62)	8.248 (19.39)
Stable	62.638	35.299 (1.77)	9.117 (6.87)	4.844 (12.93)	3.315 (18.89)
Send More	61.817	32.953 (1.87)	8.931 (6.92)	4.923 (12.55)	3.916 (15.78)
8 Costas	38.681	19.746 (1.95)	5.052 (7.65)	2.733 (14.15)	1.753 (22.06)
8 Puzzle	27.810	15.387 (1.8)	10.522 (2.64)	3.128 (8.89)	5.940 (4.68)
Bart	13.619	7.958 (1.71)	2.031 (6.7)	1.600 (8.51)	0.811 (16.79)
Solitaire	5.909	3.538 (1.67)	1.003 (5.89)	0.628 (9.4)	0.535 (11.04)
10 Queens	4.572	2.418 (1.89)	0.821 (5.56)	0.143 (4.38)	0.905 (5.05)
Hamilton	3.175	1.807 (1.75)	0.610 (5.2)	0.458 (6.93)	0.486 (6.53)
Map Coloring	1.113	0.702 (1.58)	0.319 (3.48)	0.318 (3.5)	0.348 (3.19)
8 Queens	0.185	0.162 (1.14)	0.208 (0.88)	0.169 (1.09)	0.180 (1.02)

7.2.2 Scheduling

One of the major reasons to adopt stack-splitting, as described earlier, is the ability to perform scheduling on the bottom-most choice-point. Other DMP implementations of or-parallelism have reversed to the use of scheduling on the top-most choice-point (e.g., 7, 13, 14), where during a sharing operation only the oldest choice-point with unexplored alternatives is exchanged between agents. Top-most scheduling will share only one choice-point at the time, thus relieving the engine from the need of controlling access to shared choice-points.

To validate the effectiveness of our claim, we have developed a top-most scheduler for our incremental stack-splitting system, and compared its performance with that of the incremental stack-splitting with bottom-most scheduling.\(^\text{11}\) Figure 21 compares the speedups observed using the two different schedulers. As we can observe from Figure 21, in most benchmarks bottom-most scheduling provides a sustained speedup considerably higher than top-most scheduling. For example, in Hamilton we have a large number of choice-points (which can be easily and quickly found),

\(^{11}\) The top-most scheduler used here is a different implementation than the one described in the previous section, though based on the same principles.
each with relatively small alternatives; the top-most scheduling forces an excessive number of interactions between agents—since agents quickly run out of work and they require additional sharing operations. This situation derives from the reduced number of calls to the scheduler performed during the execution—agents are busy for a longer period of time than using top-most scheduling. In the remaining benchmarks, top-most and bottom-most scheduling provide similar results, as a
small number of choice-points are created and only one at a time is shared between agents.

Another aspect of our implementation that we are interested in validating is the performance of the distributed scheduler. As mentioned in Section 5, our scheduler is based on keeping in each agent an “approximated” view of the load in each other agent. The risk that this method may encounter is that an agent may have out-of-date information concerning the load in other agents, and as a consequence it may try to request work from idle agents or ignore agents that may have unex-
explored alternatives. Figure 22 provides some information concerning the number of attempts that an agent needs to perform before receiving work. The figure on the left measures the average number of requests that an agent has to send (experiments performed using an 8-agent run); as we can see, the number is very small (in most cases 1 to 3 requests are sufficient) and such number is generally better if we adopt bottom-most scheduling. The figure on the right shows the maximum number of requests observed; these numbers tend to grow towards the end of the computation (when less work is available)—nevertheless, typically only one or two agents achieve these maximum values, while the majority of the agents remain close to the average number of attempts.

To further validate our scheduling approach, we have compared it with an alternative scheduling scheme developed in PALS. This alternative scheme is an implementation of a centralized scheduling algorithm, designed following the guidelines of the scheduler used in the Opera system (13). In the centralized scheduler approach, one agent, called central, does not perform actual computation, but it is only in charge of keeping track of the load information. Idle agents send their requests for work directly to the central agent. In turn, the central agent is in charge of implementing a matchmaking algorithm between idle and busy agents. The central agent matches requests from idle agents with busy agents with highest load. The central agent is also in charge of detecting termination. When stack-splitting occurs, only the central agent is informed about the load information update. Figure 23 compares the speedups achieved using centralized scheduling with the speedups observed using the distributed scheduling approach.\(^\text{12}\) As evident from the figure, in many benchmarks (mostly those with medium and small size computations) the speedups observed in centralized scheduling are almost negligible—this is due to the inability of the scheduling method to promptly respond to the requests for new work. Also, the use of a reasonably fast interconnection network (Myrinet) leads to the creation of a severe bottleneck at the level of the centralized scheduler. From our experiments we can observe that the centralized scheduler is a feasible solution only if very few coarse-grained tasks are generated. For benchmarks such as Hamilton, where a fairly large number of choice-points is generated, the centralized scheduler leads to a considerable loss of performance.

The results presented in (11) suggest that random selection of work may provide a simple and effective alternative when searching for or-parallel work. We have experimented with this idea, by modifying the scheduler to select any busy agent for

\(^\text{12}\) We had to limit the experiments to a smaller number of CPUs due to unavailability of half of the machine at that time.
scheduling instead of the one with the highest load. The idea is to avoid bottleneck situations where multiple idle agents are concentrating their requests for work towards the same busy agent. We have named this new version of the scheduler Random Scheduler. In this version, an idle agent searches its load vector for the next agent with load greater than a given small threshold (effectively performing a round-robin management). Figure 23 compares the speedups observed in the Random scheduler with those from the standard bottom-most scheduling with selection of agent with highest load. The results indicate that the Random scheduler is less
effective. This suggests that selecting work from the agent with highest load is not a severe bottleneck and sending requests to possibly lightly loaded agents may increase the number of calls to the scheduler.

7.2.3 Tuning the System

The implementation of stack-splitting depends on a number of parameters, such as (1) the frequency at which each agent checks for incoming requests, and (2)
the frequency of propagation of load information. We have performed a number of experiments to study the impact of these parameters on the overall performance.

Regarding the first parameter, the previously presented results make use of a frequency of one test every 200 procedure calls. Figs. 25-27 show that this choice was the best, although in some benchmarks only minimal differences can be observed for different frequency values.

Regarding the second parameter, we are currently propagating load information only in presence of a sharing operation. We tried to increase the frequency of prop-
aggregation of load information, hoping to provide agents with a more accurate view of the load in the system. The results from this experiment are reported in Figure 28. As we can see, with the exception of Hamilton, in all other cases increasing the frequency leads only to a higher message traffic without any apparent advantage. In particular, the higher the frequency, the lower is the resulting speedup.

The last optimization that we tried concerns the check for termination of the computation. In our incremental stack-splitting system, once an agent finds that
there is no one to ask for work, it goes into a dead-end loop just waiting for the halt signal. Therefore, we modified our system to let an idle agent in this situation get out of this dead-end loop once it finds that its load vector has been updated so that it can go back to life and ask for work. We call this version delay termination. However, we still observed (see Figure 29) that our incremental stack-splitting system obtains higher speedups than using the delay termination version. This is probably due to the reason that, in most of these benchmarks, bringing the agents back leads to additional traffic of sharing requests, while actual work does not become available for sharing. However, in general, we believe that the delay termination version ought to work better because it results in more agents participating in the computation.

13 Observe that some of the experiments have been limited to smaller number of processors due to the previously mentioned hardware problems.
7.3 Order-sensitive Computations

We implemented the techniques to handle OSC described in Section 6 in our PALS Prolog system and tested it with the Stable, Knight, 9 Costas, Hamilton, 10 Queens, and Map Coloring benchmarks. These benchmarks compute all solutions and execute side-effect predicates, e.g., write to describe the computations. The number of solutions for each benchmark are reported in Table 5.

Figure 28 shows the speedups obtained by this technique under the label side-effect. The figures also show the speedups obtained when running these benchmarks without treating the write predicate as a side-effect but using the stack splitting approach described in Section 6.3. Two main observations arise from these experiments. First of all, the speedups obtained using the modified scheduling scheme are not that different from those observed in our previous experiments (50); this means that the novel splitting strategy does not deteriorate the parallel performance of the system. For benchmarks with substantial running time and with the fewest number of printed solutions (Knight, Stable) the speedups are very good and close to the speedups obtained without handling OSC. We also observe that for benchmarks with smaller running time but larger number of side-effects (Hamilton) the speedups are still good but less close to the speedups obtained without side-effects. Note that for benchmarks with small running time and the greatest number of printed solutions (Map Coloring, 10 Queens), the speedups deteriorate significantly and may be less than 1. This is not surprising; the presence of large
numbers of side-effects (proportional to the number of solutions) implies the introduction of a large sequential component in the computation, leading to reduced speedups. 9 Costas has the largest number of solutions, but its speedups are good.

The results obtained are consistent with our belief that DMP implementations should be used for programs with coarse-grained parallelism and a modest number of OSC. Coarse-grained computations are even more important if we want to handle large numbers of side-effects where it is necessary that the OSC be spaced far apart. For programs with small-running times there is not enough work to offset the cost of exploiting parallelism and even less for handling OSC. Nevertheless, our system is reasonably efficient given that it produces good speedups for large and medium size benchmarks with even a considerable number of OSC, and produces no slow downs except for benchmarks with huge numbers of side-effects and small running times. Even in presence of OSC, the parallel overhead observed is substantially low—on average 5.5% and seldomly over 10% (it is slightly higher than what described in the previous sections, due to some additional tests required for checking presence of messages related to OSC). Figure 31 compares with the speedups for some benchmarks obtained using a variant of the MUSE system on SMP.

Fig. 29. Incremental Stack-Splitting vs. Delay Termination
Table 5. Benchmarks (Time in sec.)
(i.e., a highly optimized stack-copying system on shared-memory platform).14 The results highlight the fact that, for benchmarks with significant running time, our methodology is capable of approximating the best behavior on SMPs.

14 This is the original version of MUSE with bottom-most scheduling and no suspensions, modified from version 14.07 of MUSE.
8 Optimizations and Discussion

In this section we discuss some limitations of the current stack-splitting scheme and some possible optimizations.

8.1 Shared Frames and Distributed Computations

The adoption of stack-splitting releases the system from the need of keeping shared frames to support sharing of work. The shared frame used in the stack-copying technique on shared-memory platforms is also where global information related to scheduling is kept. The shared frames provide a globally accessible description of the or-tree, and each shared frame keeps information regarding which agent is working in which part of the tree. This last piece of information is needed to support the kind of scheduling typically used in stack-copying systems—work is taken from the agent that is “closer” in the computation tree, thus reducing the amount of information to be copied—since the difference between the stacks is minimized. The shared nature of the frames ensures accessibility of this information to all agents, providing a consistent picture of the computation.

However, under stack-splitting the shared frames no longer exist; scheduling and work-load information has to be maintained in some other way. While we have already described how to maintain work-load information in a distributed setting, through the use of work-load vectors, we did not discuss how to provide agents with knowledge of their relative positions in the computation tree. This type of information could be kept in a global shared area similar to the case of SMPs—e.g., by building a centralized representation of the or-tree—or distributed over multiple agents and accessed by message passing in case of DMPs. The maintenance of global scheduling information represents a problem which is orthogonal to the environment representation. This means that scheduling management in a DMP will anyway require communication between agents.

Shared frames are also employed in MUSE to detect the Prolog order of choice-points, needed to execute order-sensitive predicates (e.g., side-effects, extra-logical predicates) in the correct order. As in the case of scheduling, some information regarding global ordering of choice-points needs to be maintained to execute order-
sensitive predicates in the correct order—see Section 6. Thus, stack-splitting does not completely remove the need of a shared description of the or-tree. The use of stack-splitting can mitigate the impact of accessing shared resources—e.g., stack-splitting allows scheduling on bottom-most which, in general, leads to a reduction of the number of calls to the scheduler.

8.2 The Cost of Stack-Splitting

The stack-copying operation in Stack-Splitting is slightly more involved than in stack-copying on shared-memory platforms. In MUSE, the original choice-point stack is traversed and the choice-points transferred to the shared area. This operation involves only those choice-points that have never been shared before—shared choice-points already reside in the global shared area. For this reason the actual sharing of the choice-points is performed by the active-agent (i.e., the agent that is providing work to the idle agent)—which is forced to interrupt its regular computation to assist the sharing process. The actual copying of the stack takes place only after the choice-points have been copied to the shared memory area.

In the stack-splitting technique, once the copying is completed, the actual sharing (i.e., transferring of choice-points to a shared area) is replaced by a phase of splitting, performed by both agents, where they traverse the copied choice-points, completing the splitting of the untried alternatives. In the case of SMP implementations, this operation is expected to be considerably cheaper than transferring the choice-points to the shared area—and indeed our experimental studies have highlighted this by denoting improved performance of stack-copying on SMPs. The actual splitting can be represented by a simple pair of indices that refer to the list of alternatives—which, in a SMP system like MUSE, is static and shared by all the agents. In the case of DMP implementations, the situation is similar: since each agent maintains a local copy of the code, the splitting can be performed by communicating to the copying agent which alternatives it can execute for each choice-point (e.g., a pair of pointers to the list of alternatives). It is simple to encode such information within the choice-point itself during copying.

In both cases we expect the sharing operation to have comparable complexity; a slight delay may occur in stack-splitting, due to the traversal of the choice-point stack performed by each agent. On the other hand, in stack-splitting the two traversals—one in the idle-agent and one in the active-agent—can be overlapped. However, if the stack being copied, S_o, is itself a copy of some other stack, then unlike regular stack-copying (where once a choice-point is shared—i.e., moved to a shared area—it will not have to be shared again), we may still need to traverse both the source and target stacks and split the choice-points (even those that have been acquired through previous sharing operations). The presence of this additional step depends on the policy adopted for the partitioning of the alternatives between agents. It is, for example, required if we adopt a policy which assigns half of the alternatives to each of the agents. In such cases, the cost of sharing will be slightly more than the cost of regular stack-copying.
Once an agent selects new work, it will look for work again only after it finishes the exploration of all alternatives acquired via stack-splitting.

8.3 From Vertical to Horizontal Splitting

As we mentioned earlier, different splitting modalities can be envisioned, e.g., horizontal vs. vertical splitting. Horizontal splitting, which is useful for programs having choice-points with many alternatives, incurs a linear cost due to the need of traversing a linear list of alternatives (provided by the WAM representation of procedures) to perform the partition. The cost incurred in splitting the untried alternatives between the copied stack and the stack from which the copy is made, can be eliminated by amortizing it over the operation of picking untried alternatives. Let us assume that the untried alternatives are evenly split using horizontal splitting (as in Figure 32).

![Choicepoint Tree]

Fig. 32. Amortizing Splitting Overhead

In the modified approach, no traversal and modification of the choice-points is done during copying. The untried alternatives are organized as a binary tree (see Figure 32). The binary alternatives can be efficiently maintained in an array, using standard techniques found in any data-structure textbook. In addition, each choice-point maintains the “copying distance” from the very first original choice-point as a bit string. This number is initially 0 when the computation begins. When stack-splitting takes place and a choice-point whose bit string is n is copied from, then the new choice-point’s bit string is $n1$ (1 appended to the bit string n), while the old choice-point’s bit string is changed to $n0$ (0 tagged to bit string n). When an agent backtracks to a choice-point, it will use its bit string to navigate in the tree of untried alternatives, and find the alternatives that it is responsible for. For example, if the bit-string of an agent is 10, then all the alternatives in the left subtree of the right subtree of the or-tree are to be executed by that agent. This scheme (originally proposed in [28]) has been introduced as part of the YapDss implementation [44].

However, it is not very clear which of the two strategies—incuring cost of splitting at copying time vs amortizing the cost over the selection of untried alternatives—would be more efficient. In case of amortization, the cost of picking an alternative
from a choice-point is now slightly higher, as the binary tree of choice-points needs to be traversed to find the right alternative.

Stack-splitting essentially performs semi-dynamic work distribution, as the untried alternatives are split at the time of picking work. If the choice-points that are split are balanced, then we can expect good performance. Thus, we should expect to see good performance when the choice-points generated by the computation that are parallelized contain a large number of alternatives. This is the case for applications which fetch data from databases and for most generate & test type of applications.

For choice-points with a small number of alternatives, stack-splitting is more susceptible to problems created by the semi-dynamic work distribution strategy that implicitly results from it: for example, in cases where OP is extracted from choice-points with only two alternatives. Such choice-points arise quite frequently, from the use of predicates like `member` and `select`:

```
member(X,X). select(X,[X|Y]).
member(X,[Y|Z]) :- member(X,Y).
select(X,[Y|Z],[Y|R]) :- select(X,Z,R).
```

Both these predicates generate choice-points with only two alternatives—thus, at the time of sharing, a single alternative is available in each choice-point. The different alternatives are spread across different choice-points. Stack-splitting would assign all the alternatives to the copying agent, thus leaving the original agent without local work. However, the problems raised by such situations can be solved using a number of techniques:

- Use knowledge about the inputs and partial evaluation, or automatic optimizations (e.g., Last Alternative Optimization (LAO)\(^{(26)}\)) to collapse the different choice-points into a single one.
- Use more complex splitting strategies, e.g., if a choice-point has odd number of untried alternatives remaining \((2n + 1)\), then one agent will be assigned \(n\) alternatives and the other \(n + 1\). The agent which gets \(n\) and the agent which gets \(n + 1\) can be alternated for the different choice-points encountered in the stack, thus ensuring that no processor is left completely without work.
- Perform a vertical splitting of the choice-points;

Additionally, observe that the splitting strategy adopted (e.g., horizontal splitting, vertical splitting) can be changed depending on the specific structure of the computation. For example, along these lines Rocha et al.\(^{(44)}\) have recently proposed a splitting strategy—diagonal splitting—that combines vertical and horizontal splitting and performs well for certain classes of benchmarks.

9 Conclusion

In this paper, we presented a technique called stack-splitting for implementing OP and discussed its advantages and disadvantages. We showed how stack-splitting
can be extended to incremental stack-splitting which incrementally copies the difference of two stacks. Implementations on both a shared memory multiprocessor and a distributed-memory multiprocessor were realized and reported. Our DMP implementation is the first ever implementation of a Prolog system on a Beowulf architecture.

Stack-splitting is an extension of stack-copying. Its main advantage, compared to other techniques for implementing OP, is that it allows large grain-sized work to be picked up by idle agents and executed efficiently without incurring excessive communication overhead. The technique bears some similarity to the Delphi model (17) used in parallel execution of Prolog (the Delphi model was not the inspiration for our stack-splitting technique), where computation leading to a goal with multiple alternatives is replicated in multiple agents, and each agent chooses a different alternative when that goal is reached. Instead of recomputing we use stack-copying, which, we believe, is more efficient—and the existing literature has indicated this is the case for shared-memory implementations of Prolog (29). In a separate work (10), we also showed how stack-splitting can be used for implementing non-monotonic reasoning systems under stable models semantics—by exploiting or-parallelism from a careful implementation of the Davis-Putnam procedure and using stack-splitting to transfer atom-split operations between processors. Also in this case, copying with stack-splitting provides a superior performance than recomputation.

The current implementation of stack-splitting in the PALS system is stable, and work is in progress to evaluate its performance on larger applications. A number of issues are still open, and they will be addressed as future work. First of all, it is clear from our experience that the giving the ability to the programmer to supply information about the program can greatly affect parallel performance; we are currently working in developing tools to analyze parallel executions of PALS (e.g., through visualization of the parallel computation) and support user-annotations to guide exploitation of parallelism. Work is also in progress in supporting order-sensitive control predicates (e.g., pruning predicates) in PALS, and developing adaptive scheduling heuristics, which take advantage of knowledge of the structure of the computation to improve distribution of work.

Acknowledgments

Thanks to C. Geyer, L. Castro, V. Santos Costa, F. Silva, M. Carro, and M. Hermenegildo for discussions on implementation of distributed LP systems.

The authors wish to thank the anonymous referees for their thorough reviews and their insightful comments.

Pontelli and Villaverde have been been supported by NSF grants CNS-0220590, CNS-0454066, and HRD-0420407, Guo by NSF Nebraska EPSCoR grant, and Gupta by NSF grant CNS-0130847 and grants from the US Environmental Protection Agency.
PALS: Efficient Or-Parallelism on Beowulf Clusters

References

H. Aït Kaci. Warren’s Abstract Machine: a Tutorial Reconstruction. MIT Press, 1991.

K.A.M. Ali. Or-parallel Execution of Prolog on BC-machine. In Proceedings of the International Conference and Symposium on Logic Programming, MIT Press, pp. 1531–1545, 1988.

K.A.M. Ali and R. Karlsson. The MUSE Approach to Or-Parallel Prolog. International Journal of Parallel Programming, 19(2):129–162, 1990.

H. Alshawi and D.B. Moran. The Delphi Model and Some Preliminary Experiments. In Fifth International Conference and Symposium on Logic Programming, MIT Press, pp. 1578–1589, 1988.

K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

L. Araujo. Full Prolog on a Distributed Architecture. In Euro-Par, pages 1173–1180. Springer Verlag, 1997.

L. Araujo and J. Ruz. A Parallel Prolog System for Distributed Memory. Journal of Logic Programming, 33(1):49–79, 1998.

H. Babu. Porting muse on ipsc860. Master’s thesis, New Mexico State University, 1996.

M. Balduccini, E. Pontelli, and F. Bermudez. Non-monotonic Reasoning on Beowulf Platforms. In Proceedings of the Symposium on Prac ticals Aspects of Declarative Languages, Springer Verlag, pp. 37–57, 2003.

M. Balduccini, E. Pontelli, O. Elkhattib, H. Le. Issues in Parallel Execution of Non-monotonic Reasoning Systems. Parallel Computing, 31(6):608–647, 2005.

A.J. Beaumont and D. H. D. Warren. Scheduling Speculative Work in Or-Parallel Prolog Systems. In D. S. Warren, editor, Proceedings of the International Conference on Logic Programming, pages 135–149, Cambridge, MA, 1993. MIT Press.

V. Benjumea and J.M. Troya. An OR Parallel Prolog Model for Distributed Memory Systems. In M. Bruynooghe and J. Penjam, editors, International Symposium on Programming Languages Implementations and Logic Programming, pages 291–301, Heidelberg, 1993. Springer Verlag.

J. Briat, M. Favre, C. Geyer, and J. Chassin de Kergommeaux. OPERA: Or-Parallel Prolog System on Supernode. In P. Kacsuk and M. Wise, editors, Implementations of Distributed Prolog, pages 45–64. J. Wiley & Sons, New York, 1992.

R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeek, and R. Stevens. Scheduling Or-Parallelism: An Argonne Perspective. In Proceedings of the International Conference and Symposium on Logic Programming, MIT Press, pp. 1565–1577, 1988.

J.S. Conery. Binding Environments for Parallel Logic Programs Using Multiple Processors. New Generation Computing, 5:361–376, 1988.

R. Finkel, V. Marek, N. Moore, and M. Truszczynski. Computing Stable Models in Parallel. In A. Provetti and S.C. Tran, editors, Proceedings of the AAAI Spring Symposium on Answer Set Programming, pages 72–75, Cambridge, MA, 2001. AAAI/MIT Press.
E. Pontelli, K. Villaverde, H. Guo, G. Gupta

W-K. Foong. Combining and- and or-parallelism in Logic Programs: a distributed approach. PhD thesis, University of Melbourne, 1995.

S. Ganguly, A. Silberschatz, and S. Tsur. A Framework for the Parallel Processing of Datalog Queries. In H. Garcia-Molina and H. Jagadish, editors, Proceedings of ACM SIGMOD Conference on Management of Data, New York, 1990. ACM Press.

M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs. In International Symposium on Logic Programming, pages 1070–1080. MIT Press, 1988.

G. Gupta. Multiprocessor Execution of Logic Programs. Kluwer, 1994.

G. Gupta and B. Jayaraman. Analysis of Or-parallel Execution Models. ACM Transactions on Programming Languages and Systems, 15(4):659–680, 1993.

G. Gupta and E. Pontelli. Last Alternative Optimization for Or-parallel Logic Programming Systems. In Eight International Symposium on Parallel and Distributed Processing. IEEE Computer Society, 1996.

G. Gupta and E. Pontelli. Optimization Schemas for Parallel Implementation of Non-deterministic Languages and Systems. In International Parallel Processing Symposium, Los Alamitos, CA, 1997. IEEE Computer Society.

G. Gupta and E. Pontelli. Stack-splitting: A Simple Technique for Implementing Or-parallelism and And-parallelism on Distributed Machines. In International Conference on Logic Programming, pages 290–304. MIT Press, 1999.

G. Gupta, E. Pontelli, M. Carlsson, M. Hermenegildo, and K.M. Ali. Parallel Execution of Prolog Programs: a Survey. ACM Transactions on Programming Languages and Systems, 23(4):472–602, 2001.

B. Hausman, A. Ciepielewski, and A. Calderwood. Cut and Side-Effects in Or-Parallel Prolog. In ICOT Staff, editor, International Conference on Fifth Generation Computer Systems, pages 831–840, Tokyo, Japan, November 1988. Springer Verlag.

R.A. Kowalski. Logic for Problem Solving. Elsevier North-Holland Inc., Amsterdam, 1979.

V. Kumar and L.N. Kanal. Parallel Depth-First Search on Multiprocessors. International Journal of Parallel Programming, 16(6):479–499, 1987.

T-H. Lai and S. Sahni. Anomalies in Parallel Branch-and-Bound Algorithms. Communications of the ACM, 27(6):594–602, 1984.

J.W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.

E. Lusk, R. Butler, T. Disz, R. Olson, R. Stevens, D. H. D. Warren, A. Calderwood, P. Szeredi, P. Brand, M. Carlsson, A. Ciepielewski, B. Hausman, and S. Haridi. The Aurora Or-parallel Prolog System. New Generation Computing, 7(2/3):243–271, 1990.

J. Misra. Detecting Termination of Distributed Computations using Markers. ACM Symposium on Principles of Distributed Computing, ACM Press, pp. 290-294, 1983.

J. Montelius and K. Ali. A Parallel Implementation of AKL. New Generation Computing, 14(1):31–52, 1996.

L. Perron. Search Procedures and Parallelism in Constraint Programming. In J. Jaffar, editor, Proceedings of the International Conference on Principles and Practice of Constraint Programming, volume 1713 of LNCS, pages 346–360, Heidelberg, 1999. Springer Verlag.

E. Pontelli and O. El-Kathib. Construction and Optimization of a Parallel Engine for Answer Set Programming. In I. V. Ramakrishnan, editor, Practical Aspects of Declarative Languages, volume 1990 of LNCS, pages 288–303, Heidelberg, 2001. Springer Verlag.

E. Pontelli, D. Ranjan, and A. Dal Palu. An Optimal Data Structure to Handle Dynamic Environments in Non-Deterministic Computations. In Computer Languages, 28(2):181–201, 2002.

D. Ranjan, E. Pontelli, and G. Gupta. On the Complexity of Or-Parallelism. New Generation Computing, 17(3):285–308, 1999.
D. Ranjan, E. Pontelli, and G. Gupta. Data Structures for Order-Sensitive Predicates in Parallel Nondeterministic Systems. *ACTA Informatica*, 37(1):21–43, 2000.

R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog System based on Environment Copying. In LNAI 1695, *Proceedings of EPIA’99: The 9th Portuguese Conference on Artificial Intelligence*, pages 178–192. Springer-Verlag LNAI Series, September 1999.

R. Rocha, F. Silva, R. Martins. YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters. In *Proceedings of the Portuguese Conference on Artificial Intelligence (EPIA)*, Springer Verlag, pages 136–150, 2003.

C. Schulte. Comparing Trailing and Copying for Constraint Programming. In *International Conference on Logic Programming*, pages 275–289. MIT Press, 1999.

C. Schulte. Parallel Search Made Simple. In N. Beldiceanu et al., editor, *Proceedings of Techniques for Implementing Constraint Programming Systems, Post-conference workshop of CP 2000*, number TRA9/00, pages 41–57, University of Singapore, 2000.

F. Silva and P. Watson. Or-Parallel Prolog on a Distributed Memory Architecture. *Journal of Logic Programming*, 43(2):173–186, 2000.

R. Sindaha. The Dharma Scheduler — Definitive Scheduling in Aurora on Multiprocessor Architecture. In *Proceedings of the Symposium on Parallel and Distributed Processing*, IEEE Computer Society, pp. 296–303, 1992.

P. Szeredi. Using dynamic predicates in an or-parallel prolog system. In V. Saraswat and K. Ueda, editors, *Proceedings of the International Logic Programming Symposium*, pages 355–371, Cambridge, MA, October 1991. MIT Press.

K. Villaverde. *An Efficient Methodology to Exploit Or-parallelism on Distributed Memory Systems*. PhD thesis, New Mexico State University, 2002.

K. Villaverde, E. Pontelli, G. Gupta, and H. Guo. Incremental Stack Splitting Mechanisms for Efficient Parallel Implementation of Search-based Systems. In *International Conference on Parallel Processing*. IEEE Computer Society, 2001.

K. Villaverde, E. Pontelli, G. Gupta, and H. Guo. PALS: An Or-parallel Implementation of Prolog on Beowulf Architectures. In *Proc. International Conference on Logic Programming*. Springer Verlag, 2001.

K. Villaverde, E. Pontelli, G. Gupta, and H. Guo. A Methodology for Order-sensitive Execution of Non-deterministic Languages on Beowulf Platforms. In *Euro-Par*, 2003.

D.H.D. Warren. The SRI Model for OR-Parallel Execution of Prolog—Abstract Design and Implementation. In *Proceedings of the Symposium on Logic Programming*. IEEE Computer Society, pp. 92–102, 1987.

D.H.D. Warren and S. Haridi. The Data Diffusion Machine – a Scalable Shared Virtual Memory Multiprocessor. In *Fifth Generation Computer Systems*, pp. 943–952, 1988.

M. Wolfe. *High Performance Compiler for Parallel Computing*. Addison Wesley, 1996.

O. Wolfson and A. Silberschatz. Distributed Processing of Logic Programs. In H. Boral and P. Larson, editors, *Proceedings of the SIGMOD International Conference on Management of Data*, pages 329–336, New York, 1988. ACM, ACM Press.

H. Zima and B. Chapman. *Supercompilers for Parallel and Vector Computers*. ACM Press, New York, 1991.