The Splashback Radius of Planck SZ Clusters*

Dominik Zürcher1,2,3 and Surhud More1,3

1 Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
dominik.zuercher@phys.ethz.ch
2 Institute for Particle Physics and Astrophysics, Department of Physics, ETH Zurich, Wolfgang Pauli Strasse 27, 8093 Zurich, Switzerland
3 The Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India

Received 2018 November 19; revised 2019 February 14; accepted 2019 February 19; published 2019 April 5

Abstract

We present evidence for the existence of the splashback radius in galaxy clusters selected using the Sunyaev–Zeldovich effect, a sample unaffected by systematics related to cluster finding in the optical wavelength range. We show that the deprojected cross-correlation of galaxy clusters found in the Planck survey with galaxies detected photometrically in the Pan-STARRS survey shows a sharp steepening feature (a logarithmic slope steeper than −3), which we associate with the splashback radius. We infer the 3D splashback radius for the SZ cluster sample to be $r_{\text{sp}} = 1.85^{+0.26}_{-0.30} \text{ h}^{-1} \text{ Mpc}$, where the cluster sample has an average halo mass of $M_{500} = 3.0 \times 10^{14} \text{ h}^{-1} M_\odot$ at an average redshift of $z = 0.18$. The inferred value of the splashback radius appears marginally consistent with the expected location for dark matter halos in the standard cold dark matter paradigm. However, given the limited precision of our measurements, we cannot conclusively confirm or rule out the smaller splashback radius measured so far in the literature for optically selected galaxy clusters. We show that the splashback radius does not depend on the galaxy magnitude for galaxies fainter than $M_r = 5 \log h = -19.44$ and is present at a consistent location in galaxy populations divided by color. The presence of the splashback radius in the star-forming galaxy population could potentially be used to put lower limits on the quenching timescales for galaxies. We can marginally rule out the contamination of the star-forming galaxy sample by quenched galaxies, but the results would need further verification with deeper data sets.

Key words: cosmology: observations – dark matter – galaxies: clusters: general – galaxies: halos – methods: observational

1. Introduction

The density distribution of matter within dark matter halos shapes the potential well in which galaxies form and grow. Therefore, the structure of these dark matter halos has been extensively studied both theoretically and in numerical simulations (see e.g., Gunn & Gott 1972; Fillmore & Goldreich 1984; Bertschinger 1985; Navarro et al. 1997; Moore et al. 1999). Studies with numerical simulations show that the density profiles of dark matter halos within their virial radii are roughly self-similar and follow the Navarro–Frenk–White (NFW) profile (Navarro et al. 1997), which asymptotes to a slope of −1 in the inner regions and −3 at large radii. There has been intense debate in the literature about the exact form of the density profile (e.g., Navarro et al. 2004), the value of the asymptotic inner slope, and the outskirts and boundaries of dark matter halos (Cuesta et al. 2008; More et al. 2011; Diemer et al. 2013).

The recent study of Diemer & Kravtsov (2014) has sparked a renewed interest in understanding the structure of dark matter halos on scales beyond the typical virial radii. Diemer & Kravtsov (2014) investigated the outskirts of dark matter halos in numerical simulations and found the existence of a physical feature, namely, a sharp steepening in the density distributions of dark matter halos, which is not captured by commonly used functional forms such as the NFW profile. They showed that even for halos of the same mass, the position of the feature changes depending on the mass accretion rate of the halos. A simple theoretical toy model to explain this feature was presented by Adhikari et al. (2014). They showed that the feature observed by Diemer & Kravtsov (2014) results from the piling up of recently accreted dark matter particles at the apocenters of their orbits, and its location corresponds to the last density caustic in the self-similar models of secondary infall (Fillmore & Goldreich 1984; Bertschinger 1985; Lithwick & Dalal 2011). They coined the term “splashback radius” for this feature. Their toy model also naturally explains the accretion rate dependence—faster accreting halos have smaller splashback radii. Subsequently, More et al. (2015) suggested the use of the splashback radius as a natural boundary for dark matter halos and explored its consequences for the inferred boundaries and growth rates of the halos. Depending on the accretion rate of the halo, the splashback radius can lie well beyond the commonly used virial radius (Diemer & Kravtsov 2014; More et al. 2015).

The interpretation of the accretion rate dependence is straightforward. Due to the continuous change of the gravitational potential of the halo, depending on its accretion rate, the kinetic energy of a recently accreted dark matter particle, gained during its infall onto the cluster, does not suffice to climb the deepened potential well completely again, but instead it “splashes back” at a distance that depends on the recent deepening of the potential well.

Given the mass of the halo, the location of the splashback radius constitutes a direct probe of the halo accretion rate. Motivated by these studies, More et al. (2016) attempted to detect this feature in observations. Using the optically selected Sloan Digital Sky Survey (SDSS) RedMaPPer galaxy cluster catalog (Rykoff et al. 2014), and by cross-correlating it with the SDSS photometric galaxy sample, More et al. (2016) found...
evidence for the steepening of the dark matter density profile and therefore the splashback radius of this sample of galaxy clusters. This was corroborated by including further models for miscentering by Baxter et al. (2017) and in the Dark Energy Survey data by Chang et al. (2018) using optically selected clusters. Somewhat surprisingly, More et al. (2016) found that the location of the splashback radius was inconsistent with that expected from numerical simulations of dark matter by about 20% ± 5% (see also Baxter et al. 2017; Chang et al. 2018).

Although they investigated potential systematic issues, they did not have access to mock cluster catalogs that could mimic the selection effects of optically identified clusters. Busch & White (2017) used a simplified optical cluster selection algorithm on the Millennium simulation and pointed out that optical clusters can be heavily affected by projection issues and could potentially introduce systematics in the inference of the splashback radius, as well as halo assembly bias. The existence of projection effects in the optical cluster catalog in the context of halo assembly bias was also demonstrated by Zu et al. (2017). Regardless of the projection issues present in the optical cluster catalog, there is some inherent circularity present in the logic of using photometric galaxies to select clusters as overdensities in a given aperture and then using the same photometric sample of galaxies to look for the splashback radius. There is a possibility that the aperture used to select the cluster catalogs could be imprinted in a nontrivial way on the measured number density profiles of clusters.

To avoid such optical cluster selection effects, there have been some previous efforts to use X-ray-selected cluster samples to look for the splashback radius using the weak-lensing signal (Umetsu & Diemer 2017; Contigiani et al. 2019). However, stacking issues and the low signal-to-noise ratio (S/N) remain a significant hurdle for both of them. The use of weak-lensing data in these studies could get around the biased nature of the galaxy distribution by directly probing the dark matter distribution. Along those lines, Chang et al. (2018) found evidence for the splashback feature in the weak-lensing signal, but their analysis was again done using optically selected clusters in the Dark Energy Survey that suffer from the aforementioned issues.

In this work, we explore clusters selected using the SZ effect. While the SZ-selected clusters can also be susceptible to systematic selection effects, the scales on which the SZ signal is measured and the cluster selection is performed are much smaller than the expected location of the splashback radius (typically $R_{500}$). We use this sample to explore the evidence for the splashback radius in observations. Due to the low S/N of the weak-lensing signal, we perform our analysis using cross-correlation of galaxies with clusters.

Dynamical friction is expected to slow down massive subhalos, hosting galaxies that are orbiting the galaxy cluster (Chandrasekhar 1943). If a majority of the observed galaxies are hosted by these massive subhalos, the slowdown due to dynamical friction would reduce the apocenters of their orbits and, in turn, bias the measured splashback radius of the host cluster (More et al. 2016; Diemer 2017). As dynamical friction timescales are inversely proportional to the mass of the subhalos, this effect is stronger for more massive subhalos. Therefore, one expects the splashback radius to be biased low as measured for more massive subhalos (Adhikari et al. 2016). This bias can be overcome by choosing a faint enough galaxy sample such that the majority of the galaxies reside in low-mass subhalos, unaffected by dynamical friction. The SDSS sample used by More et al. (2016) was already deep enough such that biases in the location of the splashback radius due to dynamical friction effects were expected to be small. Nevertheless, we use galaxy samples, which are fainter by 0.5–1 mag compared to those used by More et al. (2016).

Given that the splashback radius represents a true halo boundary, the observations of the splashback radius can be used to study a variety of galaxy formation questions. Questions regarding the timescales and the spatial scales within which star-forming galaxies quench after they fall into the cluster potential are of particular interest to understand the fate of star formation in satellite galaxies. In particular, if star-forming galaxies quench before they reach the apocenters of their orbit after infall, then they are not expected to show a splashback feature in their density distribution. In pursuit of this question, we also explore the dependence of the cluster–galaxy cross-correlations separately for star-forming and quenched galaxy populations as separated by their color.

This paper is organized as follows. We introduce the observational data sets we use in Section 2, namely, the cluster and the galaxy catalogs. We describe the methods and analysis procedures we use in Section 3. We present and discuss our results in Section 4. Finally, we summarize our findings in Section 5 and discuss possible future directions. Throughout the paper, we use a flat $\Lambda$CDM cosmology with $\Omega_m = 0.27$ and a dimensionless Hubble parameter of $h = 0.7$ to convert redshifts and angles into cosmological distances. Also, we denote 3D distances by $r$ and projected distances by $R$. All distance measurements in this paper are given in comoving units.

2. Data

In order to avoid optical cluster selection effects, the aim of this paper is to find observational evidence for the existence of the splashback radius in galaxy clusters that have not been selected using optical photometry. To move away from the optical selection, we use galaxy clusters selected using the Sunyaev–Zeldovich effect. We describe the data we use in this section.

2.1. Cluster Catalog

The baryonic component of a galaxy cluster is dominated by the hot, ionized intracluster medium (ICM), which is gravitationally bound within the cluster. The cosmic microwave background photons that pass through the cluster inverse Compton scatter off the hot electrons and gain energy. This effect is known as the thermal Sunyaev–Zeldovich (SZ) effect (Sunyaev & Zeldovich 1970, 1980). The effect has a characteristic frequency dependence and results in an intensity decrease below 220 GHz and an associated increase at higher frequencies. The multiple frequency channels on the Planck satellite allow a detection of galaxy clusters using the SZ effect (Ade et al. 2016a). As part of the 2015 Data Release of the Planck mission, the second Planck Catalog of Sunyaev–Zeldovich Sources (PSZ2) was made available to the community. The PSZ2 catalog contains detections based on three different techniques (Ade et al. 2016b), and the union of these catalogs has in total 1653 galaxy clusters, of which 1203 have been confirmed by cross-matching to other galaxy clusters from external data sets.
The Astrophysical Journal, 874:184 (13pp), 2019 April 1

Zücher & More

Table 1
Comparison of the PSZ2 Cluster Catalog against the RedMaPPer Cluster Catalog Used by More et al. (2016)

| Parameter                                      | RedMaPPer | PSZ2  |
|------------------------------------------------|-----------|-------|
| $z$                                            | 0.24      | 0.177 |
| No. objects                                    | 8643      | 596   |
| $M_{500c}$ ($h^{-1}10^{14} M_{\odot}$)         | 1.0       | 3.0   |
| $M_{200m}$ ($h^{-1}10^{14} M_{\odot}$)         | 1.9       | 6.1   |
| $\rho_{500c}$ ($h^{-1}$ Mpc)                   | 1.6       | 2.2   |

Note. The values of the mass estimates $M_{500c}$, $M_{200m}$, redshifts $z$, and expected splashback radii $\rho_{500c}$ represent the catalog averages. The redshifts for both catalogs are given from the survey. For the RedMaPPer Catalog the $M_{200m}$ mass estimates were obtained from gravitational lensing, and for the PSZ2 Catalog the $M_{500c}$ estimates were calculated from the survey parameters using the scaling relation between the integrated Compton $Y$-parameter $Y_{500c}$ and $M_{500c}$ as found by Ade et al. (2014). The missing mass estimates and the expected values of the splashback radii were calculated using the Python Package COLOSSUS (Diemer 2018). The predictions for the splashback radii $\rho_{500c}$ are given in comoving units.

The 1σ errors on the cluster positions are $\sim 1.6'$, and the estimated purity of the catalog has a lower limit of 83% (Planck Collaboration et al. 2016). The integrated Compton $Y$-parameters $Y_{500c}$ of each of the clusters are also provided. The mass estimates $M_{500c}$ provided by the Planck Collaboration are based on the scaling relation between $Y_{500c}$ and $M_{500c}$ (Ade et al. 2014, 2016a; Adam et al. 2016). The PSZ2 union cluster catalog is publicly available from the Planck Legacy Archive.4

We restrict ourselves to the redshift range $0.03 \leq z \leq 0.33$ in order to have a similar redshift range to that used in More et al. (2016). Due to the larger beam size of the Planck satellite, the cluster positions as reported in the catalog may be miscentered from the true centers of the galaxy clusters. We perform a visual inspection of Pan-STARRS images taken around the detected galaxy clusters in order to locate the nearest, brightest cluster galaxy (BCG). We regard the position of the BCG as the true cluster location, under the assumption that the BCG is located at the true, gravitational center. Due to this assumption, we additionally study the effects of a possible, remaining miscentering of the cluster positions in our model for the 2D correlation function (see Appendix B).

The final sample that we use consists of 596 galaxy clusters and is about an order of magnitude smaller compared to the sample used in More et al. (2016). The sample we use in this paper has an average redshift of 0.177 and an average cluster mass $M_{500c}$ of about $3.0 \times 10^{14}$ $h^{-1} M_{\odot}$. In Table 1 we compare the main properties of the cluster catalog used in this work to that used by More et al. (2016). Additionally, Figure 5 visualizes the distribution of the masses and redshifts of the used clusters. A map of the sky positions of the clusters and a visualization of their redshift and mass distributions can be found in Appendix A.

Kosyra et al. (2015) found no evidence for a significant correlation between the density of Planck detections and the weighted average noise of all Planck channels at $z < 0.5$. Since we restrict ourselves to $z < 0.33$, we utilize the selection mask of the PSZ2 union catalog in order to construct a random galaxy cluster catalog, which is roughly one order of magnitude larger than the original catalog. The redshifts of these random objects are drawn from the parent cluster catalog in order to match the redshift distribution of the original cluster catalog.

2.2. Galaxy Catalog

The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is a wide-field astronomical imaging and data processing facility operated by the University of Hawaii’s Institute for Astronomy (Kaiser et al. 2002, 2010). We use data from the $3\pi$ Steradian Survey carried out with this facility, which was released as part of Data Release 1 (DR1). The survey covers the entire sky north of $\delta = -31^\circ$ (in ICRS coordinates) in five broadband filters ($g_{P1}$, $r_{P1}$, $i_{P1}$, $z_{P1}$, $y_{P1}$) with multiple pointings. The mean 5σ point-source limiting sensitivities amount to (23.3, 23.2, 23.1, 22.3, 21.4) mag for the individual bands, respectively.

For the visual inspection and centering of the clusters, we use the Pan-STARRS gri stack images around each cluster position. The galaxy catalog is obtained from the Stack-ObjectThin table, which is publicly available on the Barbara A. Mikulski Archive for Space Telescopes (MAST).5 To select only objects detected with acceptable precision, we restrict our search to those objects that have been flagged as BestDetect. We further restrict the catalog to objects flagged as PrimaryDetect in order to select unique objects. This is necessary since the survey is divided into overlapping projectioncells and skyscells, which causes some objects to be listed multiple times.

The magnitudes of the selected objects are then corrected for the extinction caused by dust present in the Milky Way. This is done using the mwdust6 Python module provided by Bovy et al. (2016). The extinction correction is performed using a dust map combining the measurements of Marshall et al. (2006), Green et al. (2015), and Drimmel et al. (2003). Only objects with an extinction-corrected $i_{P1}$-band Kron magnitude brighter than 22.0 are selected from the catalog. Starting from this catalog, we construct three different subcatalogs corresponding to survey depths of 21.0, 21.5, and 22.0 mag, and we name these catalogs PS 21, PS 21.5, and PS 22, respectively.

As mentioned in the description of the Pan-STARRS survey by Chambers et al. (2016), there is a significant variation in the depth of the $3\pi$ Steradian Survey even on small scales. In order to avoid choosing objects in shallow regions of the survey, the maximum observed Kron magnitude in the $i_{P1}$ band in each skyscell is recorded, and only objects in skyscells with a maximum observed Kron magnitude of 21.0, 21.5, and 22.0 mag or brighter are selected depending on the corresponding catalog. Since most of the shallow regions lie in the galactic plane, we mask out the region at low galactic latitudes $|b| < 20^\circ$. The resultant HEALPix maps showing the excluded areas on the sky can be found in Appendix A. We further disregard objects in bad pixel regions as indicated by the $i_{P1}$-band stack.mask images.

At this point of the analysis, our object catalogs contain both galaxies and stars. The $3\pi$ Steradian Survey provides both the Kron and point-spread function (PSF) model based magnitudes for each object. These magnitudes are expected to be similar for stars, while the Kron magnitudes are brighter for galaxies. Therefore, we flag all objects with a value of

---

5 http://archive.stsci.edu/
6 https://github.com/jobovy/mwdust
\[ \xi_2D(R) = \frac{D_1 D_2}{R_1 D_2}, \]  

where \( D_1 D_2 \) and \( R_1 D_2 \) are the normalized numbers of cluster–galaxy pairs and cluster random–galaxy pairs at a given comoving projected separation \( R \). The subtraction of the signal around random cluster positions gets rid of the uncorrelated pairs and allows us to estimate the projected cross-correlation. The uncertainty in the galaxy distribution masks prevents us from using the Landy–Szalay estimator (Landy & Szalay 1993).

Given the flux-limited galaxy catalog that we use, we expect to observe more correlated galaxies in galaxy clusters that lie closer to us, but with much fainter absolute magnitudes. To avoid such biases with redshift of the clusters, we restrict ourselves to galaxies with absolute magnitudes brighter than a certain magnitude limit, which depends on the depth of the used galaxy catalog. We make the assumption that the galaxies reside at the redshift of the cluster in question. The magnitude limits we use are \(-19.44, -18.94, \) and \(-18.44 \) mag and name the corresponding catalogs PS 21, PS 21.5, and PS 22, respectively.

We use the functional form of Diemer & Kravtsov (2014) in order to model our 2D correlation function measurements. This functional form consists of an inner Einasto profile and an outer power-law profile connected by a smooth transition

\[ \xi_{3D}(r) = \rho_{in}(r)s_{trans}(r) + \rho_{out}(r), \]  

where \( \rho_{in}(r) = \rho_x \exp \left(-\frac{2}{\alpha} \left[ \left( \frac{r}{r_x} \right)^\alpha - 1 \right] \right), \]

\[ \rho_{out}(r) = \rho_0 \left( \frac{r}{r_{out}} \right)^{-3}, \]

\[ s_{trans}(r) = \left( 1 + \left( \frac{r}{r_t} \right)^\beta \right)^{-1/3}, \]

where \( r \) indicates the 3D radial distance from the halo center (Diemer & Kravtsov 2014). We model the 2D correlation function, \( \xi_{2D} \), as an integral over the 3D correlation function

\[ \xi_{2D}(R) = \frac{1}{R_{max}} \int_0^{R_{max}} \xi_{3D}(\sqrt{R^2 + x^2}) dx, \]

where we adopt \( R_{max} = 40 \, h^{-1} \text{Mpc} \) for the maximum projection length. Variations of this length do not change the location of the splashback radius appreciably as tested in More et al. (2016). The functional form adopted in Equation (6) has nine model parameters, \( \rho_x, \alpha, r_x, r_{out}, \rho_0, S_g, r_t, \beta, \) and \( \gamma \). Given the perfect degeneracy between the parameters \( r_{out} \) and \( \rho_0 \), we fix \( r_{out} = 1.5 \, h^{-1} \text{Mpc} \).

Therefore, the model is described by eight model parameters. We infer the posterior distributions of those parameters by fitting the model for the 2D correlation function to the measured 2D correlation signal. We use the affine-invariant Markov chain Monte Carlo sampler of Goodman & Weare (2010) as implemented in the parallel python package emcee by Foreman-Mackey et al. (2013). We let the parameters \( \rho_x, \rho_0, \) and \( S_g \) vary freely during our fitting procedure. Similar to More et al. (2016), we put flat priors on \( \log_{10}(\rho_x) \) and \( \log_{10}(r_x) \), but we double their ranges to \([0.1, 5.0]\) in order to stay conservative. We also use a normal prior with a central value of \( \log_{10}(0.2) \) for \( \log_{10}(\gamma) \) as deduced from mass estimates (Gao et al. 2008). To be conservative, we once again double the scale of the prior to be 1.2 compared to More et al. (2016). For the parameters \( \log_{10}(\beta) \) and \( \log_{10}(\gamma) \) we also use normal priors with central values \( \log_{10}(6.0) \) and \( \log_{10}(4.0) \), respectively. The scale of the priors is again doubled compared to More et al. (2016) and set equal to 0.4.

It has been a common concern that the profile in Equation (2) introduces a point of minimum slope in the logarithmic derivative profile, simply due to the functional form. However, Baxter et al. (2017) used a Bayesian evidence approach to assess that the data are described significantly better by the general profile in Equation (2) (with the splashback feature) rather than by the same profile with fixed \( s_{trans} = 1 \) (without the splashback feature). The same conclusion was made by Umetsu & Diemer (2017), who conducted a similar study but using weak-lensing data.

The location of the splashback radius can be identified in various ways, e.g., as the radius of the outermost shell in theoretical models of spherical symmetric collapse (Adhikari et al. 2014;
Shi 2016), or using nonspherical shells of density jumps (Mansfield et al. 2017), or the average location of the apecenter of particles falling into the cluster potential (Diemer et al. 2017). Although these definitions have subtle differences, they all follow the general trend of a decreasing splashback radius with increasing rate of accretion (Diemer et al. 2017). In this paper, we adopt the convention of More et al. (2015), who define the location of the splashback radius for halos on galaxy cluster scales to be the location of the steepest logarithmic slope of the radially averaged density profile, due to its ease of accessibility in data.

We estimate the steepest slope of both the 2D and 3D cross-correlation functions. The locations of the steepest slope in the 2D and 3D cases are expected to be different by about 20% for typical cluster halo parameters (Diemer & Kravtsov 2014; More et al. 2016). Miscentering of the central cluster positions can affect the small-scale correlation function on scales smaller than the typical miscentering distance. Although the splashback radius is located at much larger scales, the change of the inner part of the correlation function can alter the model fit significantly. Miscentering effects are not expected to change the location of the splashback feature, but they can in principle decrease the significance of the evidence for the splashback feature (Baxter et al. 2017). We discuss the modeling of miscentering and its effects on the inferred splashback radii in Appendix B.

3.1. Separation of Red and Blue Galaxies

We are also interested in measuring the cluster–galaxy cross-correlations for the blue and red galaxy samples separately. We use a \( g_{P1} - r_{P1} \) color cut that varies with the redshift of the clusters in order to account for the \( k \)-corrections, which cannot be computed individually for each galaxy.

In order to compute the color cut to be used, we first match spectroscopic galaxies in the SDSS (DR8) to their Pan-STARRS photometry. We bin these galaxies in narrow redshift bins and produce a histogram of the \( g_{P1} - r_{P1} \) colors of the galaxies in each bin. Due to the presence of the 4000 Å break in the quenched galaxy population, the two galaxy populations separate in such histograms into two populations, and we fit a double-Gaussian distribution to it. Based on the fitted distribution, we use a cut in color to exclude a contamination to the star-forming galaxy population with a confidence of \( 3\sigma \). We repeat this procedure for each redshift bin, to obtain a redshift-dependent color cut that separates the red from the blue population, minimizing the contamination of the blue population by red galaxies. Although being much simpler and faster than calculating the individual \( k \)-corrections for each galaxy, this procedure has its own shortcomings as discussed in Appendix C, in particular due to the photometric errors of red galaxies. We would therefore exercise appropriate caution while interpreting the results obtained by dividing galaxies into color bins.

In our analysis, the same galaxy may be considered red or blue depending on the cluster redshift under consideration. Our method avoids the use of uncertain photometric redshifts to derive \( k \)-corrections (see Baxter et al. 2017). We will study the cross-correlations to derive the splashback radii for these galaxy populations separately. The caveats in the interpretation of these results due to photometric errors are discussed in Appendix C.

4. Results

The measurements of the 2D cluster–galaxy cross-correlations are shown as black points with error bars in the first row of Figure 1. The different columns correspond to the three different absolute magnitude limits that we have used to select all the galaxies when calculating the cross-correlations. The cross-correlation signal is clearly detected in all three measurements. The S/Ns of the three different estimates of the 2D cross-correlation signals amount to 42.4, 43.3, and 30.9 for the galaxy samples PS 21, PS 21.5, and PS 22, respectively. For comparison, the detection S/N in More et al. (2016) was 263, a much higher number due to the size of the cluster sample used in their study.

We fit these measurements with our parametric model in Equation (6) and compute the posterior distribution of the model parameters as described in Section 3. The median of the MCMC fit is indicated by the central solid line, while the shaded area marks the 68% credible interval for the fit. The median values of the posterior distributions of the parameters, along with their 68% confidence intervals, are listed in Table 3 along with the corresponding reduced \( \chi^2 \) values for the best fit.

We show the 2D posterior distributions for each pair of parameters for the PS 21.5 sample in Figure 2. The posterior distributions for the other data sets show similar degeneracies and are not included in the paper for brevity. It is observed that there are some strong degeneracies present between parameters describing the same part of the model in Equation (2) (namely, \( \rho_{\text{in}}, f_{\text{trans}}, \) and \( \rho_{\text{out}} \)). This is expected since certain combinations of parameter values can very well result in the same functional shape of the different parts of the model. This degeneracy also leads to some of the parameters not being constrained tightly (especially \( \rho_{\text{in}} \) and \( r_{\text{s}} \), due to their strong degeneracy with \( \alpha \)). On the other hand, it is important to note that there is little to no degeneracy present between parameters describing different parts of the model, which means that the location of the transition region is well constrained. Therefore, the uncertainties of the individual parameters within the independent parts of the profile do not directly translate into an uncertainty in the location of the splashback feature.

The second row in Figure 1 shows the corresponding analytical derivatives of the 2D cross-correlations and the 68% confidence interval based on our model fits. The logarithmic derivatives show a distinct steepening feature at around \( 1.3 \ h^{-1} \) Mpc. The figure shows that the location of the steepest slope does not change appreciably when the magnitude limit is changed, even though we use a sample that is 1 mag fainter than \( M_i - 5 \log h = -19.44 \). The 68% confidence interval of the location of the steepest slope is indicated by the vertical, shaded region. We also show the location of the virial radius \( r_{200m} \) based on the Planck SZ mass estimate as a black dotted line in each panel.

We use the posterior distributions of our model parameters to infer the 3D cross-correlation and its first- and second-order logarithmic derivatives. These inferences, along with the corresponding 68% confidence intervals, are presented in the last three rows of Figure 1. The 3D cross-correlations also show significant steepening in each of the cases that we have explored, reaching logarithmic derivatives steeper than \( -3 \). The inferred 68% confidence regions of the locations of the steepest slope of the 3D cross-correlations are shown with vertical, shaded regions in each panel. The posterior distributions of the locations of the steepest slope in the 2D and 3D
Figure 1. Main results of the study. The first two rows show the inferred 2D cross-correlation signals and their derivatives. The three different columns correspond to the three different galaxy samples cross-correlated with the cluster sample. The magnitude limit applied to the galaxy catalog is indicated in each tile of the first row along with the S/N. The measurements of the 2D cross-correlation signals (black circles) are shown in the first row as well. There, the colored curves show the 2D model fits of the functional form in Equation (6). The vertical, shaded regions indicate the estimates of the locations of steepest slope of the profiles as estimated from the corresponding minima of the 2D derivative profiles, which are shown in the second row. Rows 3–5 show the corresponding 3D model fit with the functional form given by Equation (2), as well as its first- and second-order derivatives. In rows 3–5 the vertical, shaded regions indicate the estimates of the splashback radii as estimated from the corresponding minima of the 3D derivative profiles. The gray curves show the corresponding, estimated first- and second-order derivatives of the one-halo term (namely, $\rho_{\text{dm}}(r) f_{\text{trans}}(r)$ in Equation (2)). For comparison, the location of the $r_{200m}$ radius as calculated from the average cluster sample properties is indicated by the black dotted lines.
cross-correlations can be found in the left and middle panels of Figure 3, respectively. The estimates of the splashback radii for each of the samples are listed in Table 3, and our results show that the location of the splashback radius does not depend on the sample once we use galaxies fainter than $M_i - 5 \log h = -19.44$. Our measurements have an accuracy of $\sim15\%$.

Following Baxter et al. (2017), we also present the values of the first-order logarithmic derivatives at the location of the steepest slope for the total 3D cross-correlations in the right panel of Figure 3. The logarithmic slope of the cross-correlation is significantly steeper than $-3$ at the location of the splashback radius, making it difficult to be reproduced by classical fitting functions like the NFW profile, which reach such slopes only asymptotically and even that only without the presence of the outer two-halo term. This provides evidence for the existence of the splashback feature. From the second-order derivative profiles we also note that the drop in the cross-correlation signal is very sharp and happens within a factor of 2 in radius.

We perform a preliminary comparison of the measurements with expectations from cold dark matter models. The average halo mass of the PSZ2 clusters as estimated from the Sunyaev–Zeldovich signal is $M_{500c} = 3.0 \times 10^{14} h^{-1} M_{\odot}$. We convert this mass estimate to $M_{200m} = 6.2 \times 10^{14} h^{-1} M_{\odot}$ using the average concentration mass relation of halos (Diemer & Kravtsov 2015) assuming an NFW profile (Hu & Kravtsov 2003).Given the average mass and redshift of our cluster sample, we calculate the expected splashback radius to be $2.2 h^{-1}$ Mpc. We base this estimate on the fitting functions presented in More et al. (2015). The splashback radius we find for the three samples is marginally consistent with this expectation but on the lower side. Given our large error bars further investigation is warranted.

Next, we present our measurements of the projected and 3D cross-correlations of the red and blue galaxy populations satisfying $M_i - 5 \log h < -18.94$ with our SZ-selected cluster sample. The projected cross-correlations and the 3D counterparts are shown in Figure 4. The shaded regions show the 68% confidence intervals from our fits. The vertical, shaded bands with different colors indicate the 68% confidence regions of the locations of the steepest slope of the 2D and 3D cross-correlations. The black dashed lines show these ranges for the entire galaxy sample without regard to color. The best-fit parameters and the inferred splashback radii are listed in Table 3. We see that the red galaxies have a steeper cross-correlation profile than the blue galaxies. Although there seems to be a tendency for the red galaxies to have a smaller splashback radius, the differences we see are not statistically significant given the current errors. The slopes of the 3D cross-correlations reach values steeper than $-2.5$ at the splashback radius, which is difficult to model with traditional NFW profiles. We take the detection of those steepening features as evidence for the existence of the splashback feature in both galaxy populations. Taken at face value, our finding of the splashback feature in the blue population would imply that there needs to be a reasonable fraction of blue galaxies that fall into the cluster and continue to stay blue even after reaching their apocenters.

At face value, this result seems to be at odds with the findings presented by Baxter et al. (2017), who find no splashback feature in the blue galaxy population. Our independent investigations suggest that the splashback feature gets less prominent as we cross-correlate the galaxy clusters with galaxies that are progressively bluer in color. In their paper, Baxter et al. (2017) considered the bluest quartile of the galaxy population. Therefore, it is conceivable that they see no evidence for the splashback feature in their data set in the bluest population of galaxies. We would also like to note that the approach used by Baxter et al. (2017) used to separate galaxies into red and blue populations is also fundamentally different from our approach. While Baxter et al. (2017) use k-corrected magnitudes from SDSS relying on the photometric redshifts of galaxies (which could have different uncertainties for the red and blue populations), we rely on a color cut that depends on the redshift of the cluster under consideration. The differences in our conclusions therefore need to be carefully examined given these analysis differences.

We caution that the cut we use to define our color-separated samples was defined based on spectroscopic galaxies, which tend to be brighter than the typical galaxies we use for the cross-correlation. As we use galaxies at fainter magnitudes for the cross-correlation, the photometric errors increase dramatically and can scatter many more of the red galaxies into the blue galaxy sample. We report on our investigations in Appendix C as a cautionary tale and to guide future efforts to establish the splashback radius in the blue galaxy population. We show that, given the current state of the data, we can marginally exclude a contamination of the correlation function of blue galaxies from the red galaxy population, but appropriate caution is warranted in the interpretation or use of the results derived using the color-separated galaxy populations.

### 5. Conclusions and Future Directions

The splashback radius of dark matter halos is a unique observational probe of the mass accretion rate of dark matter halos. Although the splashback radius has been well

---

**Table 3**

| gal cat | log10($r_p$) | log10($r_s$) | log10($r_i$) | $r_0$ | $\chi$ | $\log_{10}(\epsilon_1)$ | $\log_{10}(\epsilon_2)$ | $\log_{10}(\epsilon_3)$ | $\chi^2/\nu$ |
|---------|--------------|--------------|--------------|-------|-------|------------------------|------------------------|------------------------|-----------|
| PS 21   | $-2.93^{+0.44}_{-0.50}$ | $-1.06^{+0.14}_{-0.18}$ | $0.35^{+0.27}_{-0.24}$ | $0.000179^{+0.000075}_{-0.000086}$ | $0.78^{+0.24}_{-0.19}$ | $0.123^{+0.015}_{-0.032}$ | $0.35^{+0.01}_{-0.013}$ | $1.38^{+0.088}_{-0.096}$ | $1.86^{+0.23}_{-0.034}$ | $1.524$ |
| PS 21.5 | $-2.94^{+0.45}_{-0.45}$ | $-0.85^{+0.13}_{-0.16}$ | $0.38^{+0.25}_{-0.25}$ | $0.000103^{+0.000045}_{-0.000085}$ | $0.56^{+0.29}_{-0.22}$ | $0.099^{+0.045}_{-0.115}$ | $0.32^{+0.02}_{-0.10}$ | $1.53^{+0.086}_{-0.098}$ | $1.85^{+0.30}_{-0.26}$ | $0.285$ |
| PS 22   | $-2.95^{+0.44}_{-0.44}$ | $-0.91^{+0.17}_{-0.17}$ | $0.28^{+0.27}_{-0.25}$ | $0.000062^{+0.000051}_{-0.000051}$ | $0.41^{+0.28}_{-0.28}$ | $0.094^{+0.090}_{-0.190}$ | $0.70^{+0.29}_{-0.14}$ | $1.31^{+0.031}_{-0.14}$ | $1.90^{+0.010}_{-0.22}$ | $0.211$ |
| PS 21.5 (R) | $-0.69^{+0.55}_{-0.55}$ | $-0.99^{+0.17}_{-0.20}$ | $0.24^{+0.31}_{-0.30}$ | $0.000065^{+0.000038}_{-0.000047}$ | $0.63^{+0.20}_{-0.27}$ | $0.157^{+0.091}_{-0.171}$ | $0.54^{+0.20}_{-0.26}$ | $1.43^{+0.089}_{-0.17}$ | $2.13^{+0.21}_{-0.37}$ | $0.502$ |
| PS 21.5 (B) | $-1.00^{+0.24}_{-0.24}$ | $-0.31^{+0.21}_{-0.15}$ | $0.22^{+0.31}_{-0.23}$ | $0.0078^{+0.0047}_{-0.0047}$ | $0.52^{+0.24}_{-0.21}$ | $0.31^{+0.27}_{-0.27}$ | $0.64^{+0.44}_{-0.39}$ | $1.43^{+0.13}_{-0.13}$ | $2.34^{+0.34}_{-0.34}$ | $1.355$ |

**Note.** For each parameter estimate the median and the 16% and 84% quantiles of the posterior distribution are given. We also list the estimated locations of the steepening feature in the 2D cross-correlation signal ($r_{sp}^{2D}$), as well as the 3D splashback radius ($r_{sp}^{3D}$). In the last column the minimum, reduced $\chi^2$ value of the model fit is indicated.
characterized in simulations, the observational evidence for the splashback radius presented using optical cluster catalogs has come under intense scrutiny. In this work, we tackle this issue by searching for evidence of the splashback radius in galaxy clusters found by the Planck Surveyor using the thermal Sunyaev–Zeldovich effect. The use of this sample avoids the circularity of using photometric galaxy catalogs to identify clusters and to detect the splashback radius.

We cross-correlate these clusters with photometric galaxies from the Pan-STARRS survey to obtain the 2D cross-correlation function and search for evidence for the splashback feature. Additionally, we divided our galaxy catalog into two subsamples of red and blue galaxies and investigated the cross-correlations of the two subsamples with the clusters separately.

Our main findings can be summarized as follows:

1. We detect a clear signature of a steepening feature in the cross-correlation of Planck SZ clusters with Pan-STARRS galaxies. The steepest logarithmic slopes that we find in our cross-correlation signals are steeper than $-3$ and would hence be poorly fit by the NFW profile. We associate this steepening with the splashback feature.

2. The location of the inferred splashback radius is $r_{sp} = 1.85^{+0.26}_{-0.30} h^{-1}$ Mpc, which is marginally consistent...
with expectations from numerical simulations for halos of an average mass $M_{500c} = 3.0 \times 10^{14} h^{-1} M_{\odot}$ at an average redshift of $z = 0.18$ in a collisionless dark matter universe. However, given the errors, further investigation is warranted.

3. We find that the location of the steepest slope does not strongly depend on the magnitude of the galaxy samples we use, once we go fainter than $M_r - 5 \log h = -19.44$.

4. By separately studying the cross-correlation of red and blue galaxies with the clusters, we present evidence for the presence of the splashback feature in both populations. The existence of the splashback radius for the star-forming galaxy population could be of significance for the models of satellite quenching in galaxy clusters. However, photometric errors hinder a clean interpretation of the signal.

The S/N of the current measurement is a result of the limited depth of the Pan-STARRS catalog, as well as the limited number of galaxy clusters detected using the SZ effect. As we consider fainter galaxy catalogs, the sky fraction in which the Pan-STARRS galaxy catalogs are complete reduces. Furthermore, the contamination from background galaxies is expected to increase at deeper magnitudes as well. A more precise estimation of the uncorrelated component would be possible by using a random galaxy catalog in addition to the random cluster sample. The masking information in Pan-STARRS is not currently easily accessible, which prevents the use of the more sophisticated Landy & Szalay estimator. Increasing the redshift range of clusters could potentially yield a bigger cluster sample but would require us to use a sample of galaxies with a brighter absolute magnitude limit for galaxies, which reduces the number of galaxies that can be used to infer the cross-correlation signal. We are exploring the use of alternative cluster catalogs such as those detected from X-ray surveys.

The separation of the blue and red galaxy populations as described in Section 3.1 is prone to photometric errors as explored in Appendix C. A deeper galaxy catalog would be required in order to confirm or rule out the existence of the splashback feature in the blue galaxy population. The ongoing deep galaxy surveys such as the Hyper Suprime-Cam (Aihara et al. 2018) and the Dark Energy Survey (Abbott et al. 2018) would be able to provide such data sets, albeit in a limited area. The Large Synoptic Survey Telescope (LSST Science Collaboration et al. 2009) would eventually provide deep and wide galaxy catalogs to establish the locations of the splashback radius at high significance.

Lastly, but most importantly, the investigation of any systematics that might originate from the SZ selection of the Planck clusters is beyond the scope of the current work. We caution that there may be residual systematics in the selection that could affect the interpretation of our measurements. We plan to investigate such selection systematics with the help of hydrodynamical simulations.

Our curated galaxy catalogs from the Pan-STARRS survey for different depths and the corresponding masks are available upon request.

While this work was in preparation, we became aware of a related study by Shin et al. (2018). Our results are complementary to theirs given the different data samples and cluster catalogs.

D.Z. is grateful to Kavli IPMU for its hospitality during this research project. S.M. is supported by a grant-in-aid by the Japan Society for Promotion of Science (JSPS), grant No. 16H01089. We acknowledge useful discussions regarding this work with Benedikt Diemer, Neal Dalal, Bhuvnesh Jain, and Andrey Kravtsov, as well as participants of the KITP UCSB workshop on the Galaxy-Halo connection in 2017. S.M. was supported in part by the National Science Foundation under grant No. NSF PHY-1125915 during this workshop. Further, we also thank the anonymous referee for helpful comments and suggestions that helped improve the manuscript.

The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for...
Appendix A
Properties of the SZ Clusters and the PS Galaxy Sample

We present the main properties of the data catalogs we have used in our analysis. In Figure 5, we show the mass and the redshift distribution of the Planck SZ clusters. In Figure 6, we present the sky locations of the SZ-selected clusters from the PSZ2 catalog that we used in our study (red circles). The purple areas mark the regions that have been masked out from the galaxy catalogs. All sky maps presented use the ICRS coordinate system.

Figure 4. We present the cross-correlations inferred for the color-separated galaxy samples. The 2D cross-correlations of the red and blue galaxy populations as inferred by cross-correlating the cluster sample with the color-separated subsamples that were extracted from the PS 21.5 galaxy catalog are shown in the top panel, whereas the associated derivative profiles are shown in the second panel. The vertical, shaded bands indicate the locations of steepest slope of the 2D cross-correlation signal as inferred from the two subsamples, whereas the black dashed lines indicate the upper and lower bounds of the same feature but as estimated from the full PS 21.5 galaxy catalog. Panels 3–5 show the corresponding 3D cross-correlations, as well as the corresponding splashback radii (indicated by the colored, vertical bands) and their first- and second-order derivative profiles. The light-colored curves show the corresponding first- and second-order derivatives of the one-halo term (namely, \( \rho_{\text{halo}}(r) \) in Equation (2)). Here, the black dashed lines indicate upper and lower bounds of the 3D splashback radius corresponding to the full PS 21.5 galaxy sample.

Figure 5. Distribution of the masses and redshifts of the galaxy clusters from the PSZ2 catalog that we use in our analysis. The histograms on the right-hand side and the bottom show the distribution in mass and redshift, respectively.
Appendix B
Modeling Cluster Miscentering

As can be seen from the analysis and results in Baxter et al. (2017), the miscentering of the central cluster positions in optical clusters was not large enough to change the location of the steepest slope in the cluster–galaxy cross-correlations. Therefore, we explore the effects of miscentering on the correlation function and its influence on the results.

The mass dependence of the exact miscentering fractions (for the brightest galaxy to be the central) is not well understood, and miscentering effects are therefore difficult to model (Skibba et al. 2011; Hoshino et al. 2015). We follow the approach outlined in Baxter et al. (2017) to take the effects of a possible miscentering of a fraction of the cluster positions into account by modeling the influence on the 2D correlation function.

If a fraction \( f_{\text{mis}} \) of the galaxy clusters in our sample are miscentered, then the measured correlation function \( \xi_{\text{2D}}(R) \) is given by

\[
\xi_{\text{2D}}(R) = (1 - f_{\text{mis}}) \xi_{\text{2D}}(R) + f_{\text{mis}} \xi_{\text{2D,mis}}(R),
\]

where \( \xi_{\text{2D,mis}} \) denotes the contribution of the miscentered clusters to the correlation function and \( \xi_{\text{2D}}(R) \) corresponds to the contribution of the correctly centered clusters. We model the miscentered component \( \xi_{\text{2D,mis}}(R) \) as

\[
\xi_{\text{2D,mis}}(R) = \int_0^\infty dR_{\text{mis}} P(R_{\text{mis}}) \xi_{\text{2D}}(R|R_{\text{mis}}),
\]

where \( P(R_{\text{mis}}) \) denotes the probability that a cluster is centered at a comoving distance \( R_{\text{mis}} \) from the brightest galaxy. The contribution \( \xi_{\text{2D,mis}}(R|R_{\text{mis}}) \) is related to the correlation function of the correctly centered clusters \( \xi_{\text{2D}}(R) \) as

\[
\xi_{\text{2D,mis}}(R|R_{\text{mis}}) = \int_0^{2\pi} \frac{d\theta}{2\pi} \xi_{\text{2D}}(\sqrt{R^2 + R_{\text{mis}}^2 + 2RR_{\text{mis}}\cos\theta}),
\]

according to Yang et al. (2006) and Johnston et al. (2007). We model the miscentering probability \( P(R_{\text{mis}}) \) as a Rayleigh distribution,

\[
P(R_{\text{mis}}) = \frac{R_{\text{mis}}}{\sigma^2} \exp\left(-\frac{R_{\text{mis}}^2}{2\sigma^2}\right).
\]

Thus, the miscentered contribution is fully characterized by the two parameters \( f_{\text{mis}} \) and the width of the miscentering probability distribution \( \sigma \).

To find the priors for the two miscentering parameters \( f_{\text{mis}} \) and \( \sigma \), we cross-match our SZ-selected cluster sample with the X-ray-selected ACCEPT cluster sample (Cavagnolo et al. 2009). Assuming the ACCEPT clusters to lie at the minimum of the gravitational potential, we infer Gaussian priors for the two miscentering model parameters \( f_{\text{mis}} = 0.15 \pm 0.21 \) and \( \sigma = 0.41 \pm 0.30 \).

To study the influence of miscentering on our findings, we repeat the MCMC model fitting using our new model including miscentering given in Equation (7), which now includes two more model parameters.

We find that the use of a projected miscentering model increases the error bars on the predicted confidence intervals for the projected cross-correlation signal by \( \sim 25\% \). However, the effect is barely noticeable in the 3D profiles. The inclusion of miscentering is reflected as a small increase in the inferred errors of the projected and 3D splashback radii as seen in Table 4. Although we notice shifts in the inferred central values of the splashback radii, none of these shifts appear systematic or significant given the errors.

Table 4
Listing of the Splashback Radii Inferred by Including the Effects of Miscentering of the Central Cluster Positions (Labeled with Subscript “mis”) and the Fiducial Results for Comparison

| gal cat | \( R_{\text{3D,mis}}^{\text{sp}} \) | \( \sigma_{\text{3D,mis}}^{\text{sp}} \) | \( R_{\text{3D}}^{\text{sp}} \) | \( \sigma_{\text{3D}}^{\text{sp}} \) |
|--------|------------------|------------------|------------------|------------------|
| PS 21  | 1.35±0.13        | 1.76±0.29        | 1.38±0.086       | 1.86±0.25        |
| PS 21.5| 1.30±0.10        | 1.81±0.33        | 1.32±0.068       | 1.85±0.30        |
| PS 22  | 1.33±0.17        | 1.96±0.45        | 1.31±0.11        | 1.90±0.40        |
| PS 21.5 (R) | 1.45±0.12    | 2.23±0.27        | 1.43±0.099       | 2.13±0.22        |
| PS 21.5 (B) | 1.42±0.20    | 2.39±0.39        | 1.43±0.13        | 2.34±0.34        |

Appendix C
Estimating the Contamination of the Blue Galaxy Population

To infer the color cut that separates star-forming (blue) galaxies from the quenched (red) galaxy population, we cross-matched the SDSS spectroscopic sample to its Pan-STARRS photometry. In Figure 7, we show the plot of the Pan-STARRS (g_p − r_p) color as a function of redshift, as well as the color cut we use in our analysis. The SDSS spectroscopic sample is, however, quite shallow and thus consists of galaxies that are brighter than the Pan-STARRS galaxies that we wish to cross-correlate. At fainter magnitudes, we can expect red galaxies to scatter into the blue population, due to photometric errors, potentially contaminating the correlation function measurement. This could erroneously cause the splashback feature observed in the blue population. Therefore, we need to assess the possibility of such a contamination.
The galaxies that we use in our cross-correlation analysis for the red/blue galaxy population have an upper absolute magnitude limit of $M_0 - 5\log h = -18.94$. This corresponds to a different apparent magnitude limit at each redshift. For each spectroscopically matched galaxy, we figure out how faint the apparent magnitude limit in the $I_{p1}$ band is compared to the actual apparent magnitude of the galaxy, recorded by Pan-STARRS. Assuming that the populations of galaxies that we use to cross-correlate with clusters have the same intrinsic colors but are just fainter, we infer the true intrinsic magnitude of the galaxies that we cross-correlate in the $g_{p1}$ and $r_{p1}$ bands. We randomly perturb these magnitudes by the expected photometric errors at that magnitude.

Next, we compute the fraction of galaxies that were intrinsically red that now entered the blue population by the perturbation, where we defined the separation of the populations using the same color cut. We find such a contamination of intrinsically red galaxies to the blue population to be about 5%. This value would apply for a galaxy population measured in the field. Given that the red fraction is higher in clusters ($\sim 60\%$ in the whole cluster) than in the field ($\sim 40\%$), we expect there to be a larger proportion of red galaxies in the cluster that could potentially contaminate the blue galaxies due to photometric errors. This would roughly double the contamination to be about 10%.

This is a conservative estimate of the contamination, because the spectroscopic galaxy sample we use has a large incompleteness at the blue end at redshifts beyond 0.2, where SDSS targeted the luminous red galaxy population, recording only very few blue galaxies. Thus, we are missing a lot of the blue galaxy population in the highest-redshift bins in our spectroscopic sample. Nevertheless, we assess whether a $\sim 10\%$ contamination could cause the splashback signal found in the cross-correlation for the blue galaxies.

The null hypothesis that we would like to establish or rule out is that the blue galaxies just consist of the infall population and show no splashback feature. We assume a simple $r^{-1.5}$ power law for the 3D cross-correlation of the blue population consistent for clusters with an infalling population and a 3D cross-correlation equal to the signal found for the red galaxy population in our analysis. Given these cross-correlation functions, we can estimate the cross-correlation of the blue population when contaminated with a given amount of red galaxies, by considering a weighted sum of the two signals. We find that in order to reproduce the observed cross-correlation function of the blue galaxies, we need a contamination of about 20%. While our conservatively estimated contamination is smaller than this value, a proper modeling of this contamination is warranted before definitive conclusions can be drawn. Larger galaxy surveys with better photometry such as the HSC or LSST would be of significant help in alleviating these issues.

**References**

Abdalla, F. A., Abdalla, M. C., Abdalla, A., et al. 2018, ApJS, 239, 18
Adam, R., Ade, P., Aghanim, N., et al. 2016, A&A, 594, A1
Ade, P. A., Aghanim, N., Armitage-Caplan, C., et al. 2014, A&A, 571, A16
Ade, P. A., Aghanim, N., Arnaud, M., et al. 2016a, A&A, 594, A27
Ade, P. A., Aghanim, N., Arnaud, M., et al. 2016b, A&A, 594, A13
Adhikari, S., Dalal, N., & Chamberlain, R. T. 2014, JCAP, 2014, 019
Adhikari, S., Dalal, N., & Clampitt, J. 2016, JCAP, 2016, 022
Aihara, H., Armstrong, R., Bickerton, S., et al. 2018, PASJ, 70, S8
Baxter, E., Chang, C., Jain, B., et al. 2017, ApJ, 841, 18
Bertschinger, E. 1985, ApJS, 58, 39
Bovy, J., Rix, H.-W., Green, G. M., Schlafly, E. F., & Finkbeiner, D. P. 2016, ApJ, 818, 130
Busch, P., & White, S. D. 2017, MNRAS, 470, 4767
Cavagnolo, K., Donahue, M., Voit, G., & Sun, M. 2009, yCat, 218
Chambers, K. C., Maginn, E. A., Metcalfe, N., et al. 2016, arXiv:1612.05560
Chandrasekhar, S. 1943, ApJ, 97, 255
Chang, C., Baxter, E., Jain, B., et al. 2018, ApJ, 864, 83
Contigiani, O., Hoekstra, H., & Bahé, Y. 2019, MNRAS, 485, 408
Cuesta, A., Prada, F., Klypin, A., & Moles, M. 2008, MNRAS, 389, 385
Davis, M., & Peebles, P. 1983, ApJ, 267, 465
Diemer, B. 2017, ApJ, 831, 35
Diemer, B. 2018, ApJS, 239, 35
Diemer, B., & Kravtsov, A. V. 2014, ApJ, 789, 1
Diemer, B., & Kravtsov, A. V. 2015, ApJ, 799, 108
Diemer, B., Mansfield, P., Kravtsov, A. V., & More, S. 2017, ApJ, 843, 140
Diemer, B., More, S. R., & Kravtsov, A. V. 2013, ApJ, 766, 25
Drimmel, R., Cabrera-Lavers, A., & López-Cóndor, D. 2003, A&A, 409, 205
Farrow, D. J., Cole, S., Metcalfe, N., et al. 2013, MNRAS, 437, 748
Fillmore, J. A., & Goldreich, P. 1984, ApJ, 281, 1
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
Gao, L., Navarro, J. F., Cole, S., et al. 2008, MNRAS, 387, 536
Goodman, J., & Weare, J. 2010, Commun. Appl. Math. Comput. Sci., 5, 65
Görski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Green, G. M., Schlafly, E. F., Finkbeiner, D. P., et al. 2015, ApJ, 810, 25
Gunn, J. E., & Gott, J. R., III 1972, ApJ, 176, 1
Hoshino, H., Leauthaud, A., Lackner, C., et al. 2015, MNRAS, 452, 498
Hu, W., & Kravtsov, A. V. 2003, ApJ, 584, 702
Johnston, D. E., Sheldon, E. S., Wechsler, R. H., et al. 2007, arXiv:0709.1159
Kaiser, N., Aebersold, H., Burke, B. E., et al. 2010, Proc. SPIE, 7733, 77330E
Kosyra, R., Gruen, D., Seitz, S., et al. 2015, MNRAS, 452, 2353
Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64
Lüthi, Y., & Dalal, N. 2011, ApJ, 734, 100
LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009, arXiv:0912.0201

**ORCID iDs**

Dominik Zürcher @ https://orcid.org/0000-0002-9240-1826
Surhud More @ https://orcid.org/0000-0002-2986-2371

**Figure 7.** Scatter plot showing the $(g_{p1} - r_{p1})$ colors of the matched galaxies vs. their redshifts, where the red circles correspond to galaxies identified as red from the SDSS spectroscopic colors and blue circles correspond to galaxies identified as blue. The black solid line indicates the spline cut separating the two populations and excluding the red galaxies from the blue population at a confidence level of $3\sigma$.
