Phase-space structures – II. Hierarchical Structure Finder

M. Maciejewski,1,2⋆ S. Colombi,1⋆ V. Springel,2⋆ C. Alard1⋆ and F. R. Bouchet1⋆

1Institut d’Astrophysique de Paris, CNRS UMR 7095 & UPMC, 98 bis boulevard Arago, 75014 Paris, France
2Max-Planck-Institut für Astrophysik, Garching, Karl-Schwarzschild-Straße 1, 85741 Garching bei München, Germany

ABSTRACT
A new multidimensional Hierarchical Structure Finder (HSF) to study the phase-space structure of dark matter in N-body cosmological simulations is presented. The algorithm depends mainly on two parameters, which control the level of connectivity of the detected structures and their significance compared to Poisson noise. By working in six-dimensional phase space, where contrasts are much more pronounced than in three-dimensional (3D) position space, our HSF algorithm is capable of detecting subhaloes including their tidal tails, and can recognize other phase-space structures such as pure streams and candidate caustics.

If an additional unbinding criterion is added, the algorithm can be used as a self-consistent halo and subhalo finder. As a test, we apply it to a large halo of the Millennium Simulation, where 19 per cent of the halo mass is found to belong to bound substructures, which is more than what is detected with conventional 3D substructure finders, and an additional 23–36 per cent of the total mass belongs to unbound HSF structures. The distribution of identified phase-space density peaks is clearly bimodal: high peaks are dominated by the bound structures and show a small spread in their height distribution; low peaks belong mostly to tidal streams, as expected. However, the projected (3D) density distribution of the structures shows that some of the streams can have comparable density to the bound structures in position space.

In order to better understand what HSF provides, we examine the time evolution of structures, based on the merger tree history. Given the resolution limit of the Millennium Simulation, bound structures typically make only up to six orbits inside the main halo. The number of orbits scales approximately linearly with the redshift corresponding to the moment of merging of the structures with the halo. At fixed redshift, the larger the initial mass of the structure which enters the main halo, the faster it loses mass. The difference in the mass loss rate between the largest structures and the smallest ones can reach up to 20 per cent. Still, HSF can identify at the present time at least 80 per cent of the original content of structures with a redshift of infall as high as $z \leq 0.3$, which illustrates the significant power of this tool to perform dynamical analyses in phase space.

Key words: methods: data analysis – methods: numerical – galaxies: haloes – galaxies: structure – dark matter.

1 INTRODUCTION

When Zwicky (1933) studied galaxy velocities in clusters, he was the first to notice that there should be about one order of magnitude more matter in the Universe than the observed amount of baryonic matter to explain the proper motions of galaxies through gravitational forces. Dark matter (DM) was introduced to overcome this problem. Later on, the existence of a DM component was confirmed by the analysis of galaxy rotation curves (Van Albada et al. 1985). Recent studies of gravitational lensing (e.g. Van Waerbeke et al. 2000) and, more generally, multiwavelength observations in e.g. the COSMOS project (Massey et al. 2007) provide additional proofs for the existence of DM. Other constraints on the non-baryonic nature of DM were also set by the analysis of the cosmic microwave background (e.g. Hinshaw et al. 2009).

For the last three decades, the DM paradigm has been studied extensively in the context of cosmological N-body simulations.
comparison of structures formed in such simulations to observed ones excluded some of the theoretical models, such as hot DM and led to the nowadays commonly accepted Λ cold dark matter (ΛCDM) model. In the ΛCDM model, DM is collisionless, with a very small velocity dispersion at high redshift; structures are built in a hierarchical, bottom-up process, where small structures arise first, seeded from initial fluctuations, and then merge together to build up larger and larger structures, designated commonly as haloes. Inside the gravitational wells of these DM haloes, baryonic matter forms galaxies (White & Rees 1978).

Recently, the efforts to finally identify the physical nature of DM particles, either directly through detecting them in ground-based DM particle detectors or indirectly by observing their annihilation radiation, have intensified. At the same time, the ever increasing resolution of N-body simulations (e.g. Springel et al. 2008) puts new levels of demand on the field of theoretical study of non-linear haloes. The careful analysis of cosmological structures moves from the study of spherically averaged three-dimensional (3D) density profiles (Navarro, Frenk & White 1997) to the study of the full six-dimensional (6D) phase space. For example, this concerns the analyses of the properties of caustics described analytically in e.g. Bertschinger’s secondary infall model (Bertschinger 1985) and recently reviewed in the context of numerical simulations (Mohayaee & Salati 2008; White & Vogelsberger 2009). Investigations of full phase-space structures include accurate simulations of two-dimensional (2D) phase space (Alard & Colombi 2005; Colombi & Touma 2007) and analyses relying on determining of the particle density in 6D phase space of N-body simulations (Arad, Dekel & Klypin 2004; Ascasibar & Binney 2005; Sharma & Steinmetz 2006; Vogelsberger et al. 2008; White & Vogelsberger 2009).

A particularly important step in understanding DM clustering lies in an analysis of the bound structures found in N-body simulations. This is at present usually carried out with structure finders such as SUBFIND (Springel et al. 2001), ADAPTATION (Aubert, Pichon & Colombi 2004) or PSB (Kim & Park 2006). Following this path, we present a new multidimensional Hierarchical Structure Finder (HSF) which complements all the above numerical methods with an effective and robust analysis of phase-space structures in full 6D space.

The paper is organized as follows. First, we review current structure finders in Section 2. We then present our new multidimensional HSF in Section 3. In Section 4, we use our algorithm to detect and analyse phase-space structures of a large halo taken from the Millennium Simulation. We investigate the space of parameters on which our HSF algorithm depends and try to find the best choice of the parameters according to the application under consideration. We also introduce the simulation merger tree to follow the evolution of structures in phase space. This allows us to analyse in detail a few representative cases. This is followed by a quantitative analysis of HSF structures in the space and time domain. We also discuss the bimodal nature of the substructure population, in terms of bound structures versus tidal tails and tidal streams. Finally, in Section 5 we give a summary and present our conclusions.

2 STRUCTURE FINDERS

An important step in the analysis of cosmological N-body simulations is to search for virialized DM haloes. These are commonly defined as regions around local density maxima enclosed by a certain isodensity contour. The exact definition of such a border changes from method to method. The simplest and the most popular technique for finding virialized haloes is the friends-of-friends (FOF) method (Davis et al. 1985), which links together particles which are separated by less than a fixed length b. Usually b is set to 0.2 times the mean interparticle separation, which corresponds to finding haloes with overdensity approximately equal to 178 times the mean background density ρ_{mean} (Cole & Lacey 1996). The mass function of haloes identified by the FOF method is in good but not perfect agreement with the predictions of the Press–Schechter theory. However, the method tends to link together structures across fine bridges (e.g. Lukić et al. 2009) and it is not capable of detecting substructures inside the virialized haloes themselves. A comparable method is the spherical overdensity (SO) algorithm (Lacey & Cole 1994) which searches for local density peaks and then grows around them spheres out to a radius where the enclosed mean density satisfies a prescribed overdensity criterion. By definition, the SO method finds only spherical structures. It does not link structures together with artificial bridges as FOF does, but it may count mass twice in certain cases.

However, for current high-resolution simulations, one needs to find not only isolated haloes but also their internal substructures. One of the first methods which made it possible to find such structures is the hierarchical FOF scheme (Klypin et al. 1999), in which a set of different linking parameters, b, is used to identify multiple levels of substructures inside haloes.

To distinguish haloes and their substructures in rich environments, each detected structure is then usually tested against an additional binding criterion. This dynamical criterion uses information from velocity space to guarantee that each structure not only exists but also will survive for a longer period of time.

In the spirit of the SO and FOF methods, the bound density maxima (BDM; Klypin et al. 1999) and DENMAX (Gelb & Bertschinger 1994) methods were proposed. In BDM, particles are grouped in spheres around local density maxima and are then progressively unbound. In DENMAX, particles are grouped together when they converge to the same local density maximum if they are moved along local gradients, calculated on a rectangular grid. In a final additional step they are attached to groups identified by the FOF method and then their total binding energy is checked. This method was generalized in the SKID algorithm (Governato et al. 1997), in which the local density and its gradient are calculated directly at the particles positions with the smoothed particle hydrodynamics (SPH) method. A similar but simpler method was implemented in the HOP algorithm (Eisenstein & Hut 1998), in which each particle is connected to the one with the highest density (found by SPH) among its N_{nbh} closest neighbours (with N_{nbh} ranging typically between 10 and 20). In this way, space is divided into peak-patches that are then combined into the final structures.

The HOP method gave rise to new structure finders such as SUBFIND, ADAPTATION, VOBOZ and PSB. The differences between them are sometimes quite subtle. In SUBFIND (Springel et al. 2001), each particle marks its two closest neighbours with higher density among the N_{nbh} closest ones. Then particles are sorted by SPH–density in descending order. Particles without a higher density neighbour are marked as the centres of new structures (local density maxima). Then the structures grow down in density till they reach border particles, called saddle points, which have two higher density neighbours belonging to two different structures. The smaller structure is marked as a structure candidate and then both structures are joined together. Structure candidates are arranged in a hierarchical tree and are successively unbound, going from bottom of the tree to the top. Particles which are not bound to a structure are attached to its larger parent structure.

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 396, 1329–1348
Hierarchical Structure Finder

Even though ADAPTAHOP (Aubert et al. 2004) constructs the tree of structures in the opposite way to SUBFIND, from bottom to top, the main ideas are very similar. First, it grows peak-patches around local density maxima as in HOP and then finds border particles and saddle points among them. In addition to SUBFIND, each structure is checked against Poisson noise to infer its level of significance. In ADAPTAHOP, contrary to SUBFIND, only particles above saddle points define structures. VOBIZ (Neyrinck, Gnedin & Hamilton 2005) on the other hand uses Delaunay tessellation to define particle densities and neighbourhood relations, and also checks the significance level of structures against a specific Poisson noise criterion. The PSB algorithm (Kim & Park 2006) uses a grid as in DENMAX to find local density maxima and saddle points, but then constructs a hierarchical structure tree in the same way as in SUBFIND. In PSB, particles below saddle points are first attached to all structures which are above them and then are assigned to individual structures following the process of unbinding. In addition to the standard unbinding procedure, PSB takes into account tidal force criteria.

Even though many of the above structure finders use velocity information for the purpose of a gravitational unbinding procedure, none of them use the full 6D phase-space information. However, the advantage of such an approach is that structures can be defined in a much more natural way in phase space. In particular, they have a higher contrast than in position space. In fact, many structures such as streams and caustics are well defined only in phase space. 6D FOF (Diemand, Kuhlen & Madau 2006) is the first implementation of a structure finder working directly in phase space. It is conceptually a simple extension of FOF based on a 6D distance measure, using a fixed global scaling between position and velocity space. The proposed method finds only local phase-space density maxima and then grows spheres around them like in MINMAK.

In this paper, we propose a new universal multidimensional HSF which is used here to find phase-space structures in cosmological N-body simulations. The algorithm employs, in a higher number of dimensions, a similar approach to SUBFIND and ADAPTAHOP, but with a new and very effective cut or grow criterion, controlled by a connectivity parameter α, to separate accurately structures from each other.

3 THE HIERARCHICAL STRUCTURE FINDER

Our goal is to find the hierarchy of DM haloes and subhaloes, which are defined by locally overdense regions in phase space. The main difference between our approach and previous structure finders is that we focus on all kinds of phase-space structures even those which are not self-bound, such as tidal streams. To enable comparisons, we however implement, in addition to our base algorithm, also an unbinding step. The HSF can be run on a full simulation to detect all the haloes and the subhaloes population, or on standard groups found by a FOF algorithm with, e.g., $b = 0.2$.

Prior to the identification of structures, our HSF algorithm estimates the local phase-space density and the local phase-space neighbourhood of each particle in the sample. Following the proposal of Maciejewski et al. (2009) for optimum local phase-space density estimation, we use the SPH method with N_{gh} neighbours found in the adaptive metric computed by the ENRHD algorithm\(^1\) of Sharma & Steinmetz (2006). We performed a small modification of the ENRHD algorithm to make possible the output for each particle of the N_{gh} closest neighbours among the N_{gh} (in the proper local adaptive metric frame). It is worth mentioning that both phase-space density and neighbourhood estimations by the ENRHD algorithm are computationally inexpensive and are almost as fast as standard 3D SPH estimators.

We define phase-space structures as the regions grown around local density maxima by following the local density gradient. To find such structures, HSF uses a modified version of SUBFIND, which redistributes particles below saddle points in a new fashion. In the first step, the HSF algorithm finds locally overdense regions in phase space by tracing isodensity contours identified by saddle points. In addition, we test on each saddle point if structures are statistically significant when compared to Poisson noise as in ADAPTAHOP.

Particles below phase-space isodensity contours corresponding to saddle points can in principle be attached to many structures simultaneously but our aim is to attach each of them to only one structure. To do that, we use a simple but robust cut or grow criterion depending on a connectivity parameter α, which allows us to reconstruct a multilevel hierarchy of structures within structures. In our implementation, each saddle point defines a connecting bridge between two structures. According to each structure mass, all the particles below this saddle point can be attached to only one of the structures if it is significantly more massive than the other one, or redistributed between both structures if they have comparable masses, as explained below. This way of cutting works like a second Poisson noise criterion and it allows one to grow only structures which are significant.

In detail, the HSF algorithm, sketched in Fig. 1, works as follows.

(i) For each particle, we estimate the local phase-space density with SPH-AM and the local adaptive metric environment using N_{gh} neighbours. We usually perform the SPH interpolation with $N_{\text{gh}} = 64$. This value represents a good compromise between filtering of Poisson noise and identification of faintest significant structures. We find that the final results are rather insensitive to the choice of N_{gh}. Our favourite value is $N_{\text{gh}} = 20$, similar to what is used with HOP, ADAPTAHOP and SUBFIND. Then for each particle, we find the set A of its neighbours among the N_{gh} which have higher density than the particle. We sort the set A ascendingly according to local neighbourhood distances (closest particles are in the beginning of the list). Then we take the two closest elements of A and put them in a second set B. This set can be empty or contain one or two elements.

(ii) We sort the particles by decreasing phase-space density and, following this ordering, we attach each particle to different structures according to the following rules.

(a) The set B is empty. This means that the particle does not have any neighbour with higher density: we found a local maximum and we mark the particle as the beginning of a new structure.

(b) The set B contains two particles which belong to different structures S_m and S_b of which the masses have not been yet compared to each other. It means that we just found a saddle point connecting both structures and we perform the marking $S_m > S_b$, $S_b > S_m$ or $S_m \simeq S_b$. The way the marking is performed in detail can be described as follows.

(1) First, we check the level of significance of structures S_m and S_b when compared to Poisson noise (Aubert et al. 2004). Let (S_m) and (S_b) be the first and the second structure’s average density and ρ_{saddle} be the density of the saddle point connecting them. Each structure is significant if

$$
(S) > \rho_{\text{saddle}} \left(1 + \frac{\beta}{\sqrt{N}} \right),
$$

\(^1\) SPH-AM in the notation of Maciejewski et al. (2009).
be the masses of our structures up to this saddle point \(n \) is the number of particles belonging to the structure. If one of the structures is not significant, then we attach all of its particles to the second structure. In the case where both structures are not significant, we attach all the particles to the structure which has the highest maximum density.

(2) If both structures are significant compared to Poisson noise, we test them against the cut or grow criterion. Let \(|S_m| \) and \(|S_n| \) be the masses of our structures up to this saddle point and \(|S_m| > |S_n| \), then we mark structure \(S_m \) as more massive partner of \(S_n \). If \(|S_m| \alpha > |S_n| \), with \(\alpha \in [0, 1] \), then structure \(S_n \) is more than \(1/\alpha \) times less massive than \(S_m \) and we attach all the particles below this saddle point to \(S_m \).

(3) If \((|S_m|/|S_n|) \in [\alpha, 1/\alpha] \), we consider that both structures have the same order of mass: we attach the saddle point to the most massive structure and all particles below are attached according to the rules we set before.

(c) The set \(B \) contains one or two particles which belong to the same structure: we attach the particle to this structure; or set \(B \) contains two particles which belong to different structures \(S_m \) and \(S_n \), and the \(S_m \) structure is marked as a more massive partner of \(S_n \): it means that we already found a saddle point connecting these two structures, and this border particle is attached to the most massive one, \(S_m \).

(iii) Finally, a structure containing less than \(N_{\text{cut}} \) particles is considered insignificant, and all its particles are attached to its more massive partner. If a structure with less than \(N_{\text{cut}} \) particles does not have a more massive partner, we put it on the list of fuzzy particles.

(iv) At the end of this process, we obtain a hierarchical tree of structures. Each particle belongs to only one structure or to the background (fuzzy list). In addition, we add to our algorithm a final step in which we check each structure against an unbinding criterion. Once we have marked its more massive partner for each structure, we sort them recursively such that the larger partners (parents) are always after the smaller ones (children). Then we unbind structure after structure from children to parents and add unbound particles to the larger partner. For each individual structure, we calculate the gravitational potential. We set the structure centre as the position of the particle with the minimum potential and the velocity centre as the mean velocity. We calculate the kinetic energy of each particle relative to the mean velocity of the structure. All the particles with positive total energy are marked and, in that ensemble, 1/4 of the ones with positive total energy are removed. We repeat this process iteratively (starting with a new gravitational potential calculation) up to the moment when we stay with bound particles only. If the structure has less than \(N_{\text{cut}} \) particles after the unbinding process, then we mark it as not bound and attach all its particles to its more massive partner or put them on the fuzzy particles list. To speed up the calculation of the gravitational potential, we use the tree algorithm implemented in \textsc{gadget-2} (Springel 2005).

Most halo finders such as \textsc{DENMAX}, \textsc{BDM}, \textsc{SKID}, \textsc{SUBFIND}, \textsc{ADAPTAHOP} and \textsc{VOBOZ} use a two-step procedure for finding the structures. First, they assign as many particles as possible to each individual structure in 3D space by tracing local overdensities (Fig. 2, top left-hand panel). When we move to phase-space diagram (Fig. 2, top right-hand panel), they however immediately observe that there are many particles belonging to different velocity structures. The unbinding process (Fig. 2, second row of panels) then cleans up all these spurious velocity structures. In the four bottom panels, one can observe the results obtained with the 6D \textsc{usf} algorithm. This method allows us to attach particles to structures in a more natural way, because it treats both position and velocity space (Fig. 2, third row of panels). Note that, after unbinding, the structures detected by...
Hierarchical Structure Finder

1333

Figure 2. Appearance of our Millennium Simulation halo (colour ranging from green to red, scaling logarithmically with phase-space density) and superposed to it, one of its largest substructures found by different algorithms (grey pattern). Left-hand panels: x–y position space; right-hand panels: radius–radial velocity phase space. From top to bottom, the grey pattern corresponds to the substructure found, respectively, by (i) SUBFIND before unbinding, (ii) SUBFIND after unbinding, (iii) HSF before unbinding, (iv) HSF after unbinding. The HSF algorithm are more extended than with standard algorithms working in position space (Fig. 2, bottom panels), an indication that more of the mass belonging to the substructures is recovered.

4 RESULTS FOR A TEST HALO FROM THE MILLENNIUM SIMULATION

To test our algorithm we use a large halo extracted from the Millennium Simulation (Springel et al. 2005). The main cosmological parameters of this ΛCDM simulation are $\Omega_m = 0.25$, $h = 0.73$, $\Omega_\Lambda = 0.75$ and $\sigma_8 = 0.9$ ($H_0 = 100 \, h \, \text{km s}^{-1} \, \text{Mpc}^{-1}$). The simulation volume is a periodic box of size $500 \, h^{-1} \, \text{Mpc}$ and individual particles have a mass $8.6 \times 10^6 \, h^{-1} \, \text{M}_\odot$. In our analysis we take the second largest FOF halo at redshift $z = 0$, which has 3.83×10^6 particles.

This section is organized as follows. In Section 4.1, we discuss the influence of the main parameters in our algorithm on the results. In Section 4.2 we use the merger tree history to follow both qualitatively and quantitatively the evolution of structures. In particular, the structures identified by HSF are cross-correlated with their counterpart prior to merging with the main halo. Finally, Section 4.3 studies the properties of the substructure population obtained with HSF and its bimodality in terms of bound structures versus unbound tidal tails and tidal streams.

4.1 Choice of the main parameters in the algorithm

In the following, we check the influence of the different parameters on the structures found by our HSF algorithm. A basic parameter set-up is given by $N_{\text{sph}} = 64$, $N_{\text{ngb}} = 20$, $\beta = 0$, $\alpha = 0.2$, $N_{\text{cut}} = 20$. We adopt the notation $(N_{\text{sph}}, N_{\text{ngb}}, \beta, \alpha, \text{dimension}, \text{(B)ound/(UN)bound})$ to label each set of parameters. When the dimension is set to 3D, we mean the three-dimensional position space, whereas 6D means six-dimensional phase space. Unless mentioned otherwise, we use the HSF algorithm without additional unbinding step. SUBFIND is in fact one of the versions of our algorithm, characterized by the following parameter set-up (64, 20, 0, always cut smaller partner, 3D, B). In our analysis, we shall call all the particles in a FOF group a halo, the largest structure of the FOF group a main halo and all other structures substructures.

Figs 3 and 4 present the number of substructures per logarithmic mass bin scaled to the main halo mass. While testing the different parameter set-ups, we find that α and β are the most influential. Fig. 3 shows that parameter β is important for the smallest structures: visual inspection suggests that a higher β helps to preserve small-scale connectivity, e.g. between tidal tails and the bound component.
of the substructures. The connectivity parameter α has a similar effect, but on the whole mass range instead of small structures only, as illustrated in Fig. 4. Because of the partial degeneracy between α and β, we prefer to use $\beta = 0$ in most of our analyses. The choice of α indeed influences connectivity as follows: when $\alpha = 0.2$, the main halo always wins the cut or grow criterion and all structures are cut by it; when $\alpha = 0.02$, the largest substructures can grow inside the main halo; when $\alpha = 0.01$, all small substructures grow more aggressively and the halo is divided into more small parts. In brief, focusing on bound structures calls for a value of α of the order of 0.2, while if one is interested in all substructures including tidal streams, it is better to set $\alpha \geq 0.01$–0.02. In the later case, tuning up β can help to control the small-scale connectivity.

Using our base parameter set-up, we now compare HSF bound structures with those given by SUBFIND. The HSF algorithm works in 6D phase space, where the distribution of particles shows much more contrast than in position space alone. Because of that, HSF can better trace contours of individual substructures and attach more particles to them. Even after the unbinding step, HSF therefore attaches more particles to the substructures than SUBFIND. This is illustrated in Fig. 5, where the ratio between the mass of HSF bound structures and the mass of their SUBFIND counterparts is plotted. HSF attaches on average ~1.1 more mass to small structures than SUBFIND and up to twice more to the largest ones.

The left-hand panels of Fig. 6 compare bound structures found by both methods in position space. The area of each circle is proportional to the structure mass.

With the parameters set-up chosen here, HSF finds around 10 per cent more structures, mostly small ones, in the outskirts of the main halo and clearly attaches more mass than SUBFIND to most of them. Nevertheless, the spatial distributions of HSF and SUBFIND substructures are nearly the same, as expected. To complete this visual inspection, the right-hand panels of Fig. 6 compare the 200 largest bound structures found by both methods. Most of the HSF structures are matched by SUBFIND, except that they are more extended. As mentioned before, many of these structures have 1.1–2 times more mass in HSF than in SUBFIND. Interestingly, this confirms the mass excess found around SUBFIND substructures in a comparison of simulation with gravitational lensing observations by Natarajan, De Lucia & Springel (2007).

If bound substructures are counted as a function of maximum circular velocity instead of mass, a much closer agreement is found, however. This is seen in Fig. 7, where the cumulative velocity functions of bound substructures for HSF and SUBFIND are compared. HSF tends to find a few more small substructures, but both algorithms essentially identify the same set of more massive structures, confirming the results above.

4.2 Phase-space structures and merger tree

In the following sections we describe a method to follow back in time the structures detected by our HSF, paying particular attention to the definition of what we use for initial halo. Then we study in detail a set of specific but representative cases. The goal of this analysis is to physically understand the nature of the structures found by our algorithm, before and after unbinding. In particular, we aim to separate clearly tidal streams from compact bounded subhaloes. With the additional time information, we can also associate tidal streams to objects at the stage they were prior to merging with the main halo. We can also study quantitatively how in general phase-space structures evolve in time.

4.2.1 Evolution with time and the merger tree

To study in detail the nature of phase-space structures found by the HSF algorithm we use the merger tree history\(^2\) to follow their evolution in time of a DM halo as a stand alone structure, while each node of it corresponds to the event of merging between two haloes or more. Note that, due to the collisionless
Figure 6. Left-hand panels: spatial distribution of HSF bound structures and SUBFIND structures, with at least 20 particles. The area of each circle is proportional to the structure mass. Right-hand panels: first 200 most massive bound substructures identified by HSF and their SUBFIND counterparts. Particles belonging to the same substructure share the same colour.

Evolution backwards in time. Then we count how many particles are shared between each structure prior to merging with the main halo and its counterpart detected by HSF at $z = 0$. This process uses pieces of information which are already available for the processed Millennium Simulation (Springel et al. 2005, supplementary information) and it is divided into three steps: (i) cross-correlating the HSF structure catalogue with the SUBFIND one, (ii) following the evolution of SUBFIND structures using the already implemented merger tree history and (iii) using each particle’s universal index\(^3\) to follow structures at different output times. We now explain each of these steps in turn.

(i) Cross-correlation between HSF and SUBFIND: information about structures in the Millennium Simulation is organized in terms of two levels: first, particles are attached to different FOF groups (found with $b = 0.2$). Then, in each FOF group, they are separated into the main halo, the substructures found by SUBFIND, and unbound nature of DM, the haloes can pass through each other and separate again: in practice, the structure of such a tree can be non-trivial.

\(^3\)The universal index of a particle is just a number associated to each single particle in order to identify it unambiguously, which is useful for analyses of Lagrangian nature such as performed in this work.

‘fuzzy’ particles if present. Running the HSF algorithm with the base parameter set-up (64, 20, 0, 0.2, 6D UB/B) provides a phase-space structure list. Then, for each member of that list, the SUBFIND substructure sharing the largest possible number of particles with it is identified. If the HSF structure shares less than 20 particles with any SUBFIND substructure, it is put into an unmatched list. In the opposite case, we call this SUBFIND substructure a seed of the HSF structure.

(ii) Following SUBFIND structures back in time: information about the time evolution of structures is stored in the Millennium Simulation in a merger tree (more details in Springel et al. 2005, supplementary information). We use the tree information which gives for each halo or substructure its most massive progenitor, if there is any. Once the list of seed SUBFIND substructures is obtained, each of them is traced back in time by following its most massive progenitor recursively up to the moment when this past structure was the main halo of a FOF group. This is the last occurrence of the structure as being distinguishable as an isolated halo. We store the redshift of this event and all particles belonging to the main halo found in this way are denoted as the initial halo. There is a small number of substructures which do not have a proper progenitor, they are dropped from the analysis.
To demonstrate the effects described above, we choose one particular structure in our test halo. The top panel of Fig. 8 shows all the particles belonging to the initial halo traced to redshift $z = 0$, while the second row of panels corresponds to the full traced initial FOF group. This structure goes around the main halo one time (its orbit is shown in the second row of panels of Fig. 9). The initial FOF group is tidally disrupted during this process and its various components are clearly separated from each other. SUBFIND recognizes the central part of the bound object (bottom panels of Fig. 8). The HSF bound structure contains more particles (fourth row of panels in Fig. 8). These particles belong to tidal tails, but are in fact still gravitationally linked to the structure. The HSF structure (prior to unbinding) contains 55 per cent of the particles of the initial halo, and reproduces perfectly its shape (on third row of panels in Fig. 8).

4.2.3 Qualitative analysis of structure evolution

To better understand all the processes at play during structure evolution, we study in greater detail five different cases displayed in Fig. 9. The colours in the figure are coded as follows.

(i) Green and red particles belong to one structure found by the HSF algorithm (without unbinding): green particles belong to the initial halo, while the red particles do not belong to it.

(ii) Black particles belong to the SUBFIND seed of the HSF structure.

(iii) Blue particles belong to the initial halo, but do not belong to the HSF structure.

(iv) Yellow particles belong to the initial halo and belong to any HSF structure, besides the one we take for the current analysis. We mark particles in yellow only for structures in the last three rows of panels of Fig. 9.

The particles are plotted in the following order: blue, red, green, black and finally yellow. Various structures parameters are listed in Table 1, for each of the five cases considered here. The pink curve shows the orbit of the object inside the main halo. We now discuss in detail each of these five cases.

(i) The first case corresponds to a structure which is at a moment just before crossing for the first time the main halo centre and starts to be significantly tidally disrupted. The HSF structure still contains 97 per cent of particles of the initial main halo, while the SUBFIND bound structure accounts for only 26 per cent. Indeed, HSF manages to attach to the structure unbound particles which already crossed the main halo centre and contribute to a tidal tail.

(ii) The second structure is the same as in Fig. 8. It entered the halo at redshift $z = 0.56$ and made an orbit inside it. This is the reason why we identify only 55 per cent of the initial structure, but still more than SUBFIND (35 per cent). HSF attaches some additional particles to the structure, i.e. particles that do not belong to the initial main halo, but in fact we found that a large fraction of them belong to the initial FOF group.

(iii) The third row of panels corresponds to a rare occurrence when HSF partly fails. The HSF structure contains 65 per cent of particles of the initial one. It is falling inside the main halo centre and some of the particles already crossed the centre. Parts of the initial structure are identified as other HSF objects: the initial halo shares 72 per cent of its particles with all detected HSF substructures. There is however a large fraction of particles associated with the HSF structure (in red) that should just belong to the background. Indeed, we checked that most of them cannot even be associated with the initial FOF group.
Figure 8. Follow up of a particular substructure (in colour) of our Millennium test halo (in grey). From left to right: x–y position space, radius r–radial velocity v_r, radius r–phase-space density f. In the two left-hand columns of panels, the colour traces the logarithm of the phase–space density (from dark grey to light grey or from dark blue to red). In the right-hand column of panels, the colour just traces the projected particle density. From top to bottom: initial main halo traced to $z = 0$, initial FOF group traced to $z = 0$, HSF unbound structure, HSF bound structure and SUBFIND structure.
(iv) The fourth row of panels shows the typical case of a massive structure which, after only two orbits (so it passed nearby the halo centre only twice), already dissolved in the main halo, because of massive tidal disruption. Even though the HSF structure contains only 11 per cent of the particles of the initial halo, we find that other HSF substructures match some parts of the initial halo: 90 per cent of particles inside such substructures come from the initial halo, although some of them belong to other members of the initial FOF group. In other words, it means that our algorithm is capable of finding remnants of tidal tails. All blue particles cannot be distinguished from the main halo anymore and correspond to the part of the structure which has been completely diluted.

(v) In the last case, we take a structure which merged with the main halo at high redshift $z = 1.5$, and already made four orbits inside. As expected, this structure has experienced strong tidal stripping: the HSF structure contains only 8 per cent of the initial structure. Most of it indeed already dissolved inside the main halo. Still, some remnants were identified as disjoint HSF components and represent 25 per cent of the initial structure.
To conclude this section, objects which recently entered the main halo and typically made up to one orbit inside it are in most cases fully recovered by HSF. When the structures make more orbits, they are more tidally disrupted, especially when they come close to the halo centre, so the fraction of particles identified decreases. HSF still finds in most cases remnants of strongly disrupted objects as individual tidal streams detached from the bound component (if this later still exists).

4.2.4 Quantitative analysis of structure evolution

To test the performance of HSF quantitatively, one can for example study the fraction $M_{\text{shared}}/M_{\text{initial}}$ of particles inside the initial halo found at the present time in the corresponding HSF structure, as a function of redshift of merging with the main halo (top-left-hand panel of Fig. 10) or as a function of initial mass (top-right-hand panel of Fig. 11). Indeed, one expects a strong correlation between the value of $M_{\text{shared}}/M_{\text{initial}}$ and the initial halo mass and the redshift z of merging. Obviously, the higher z, the larger the number of orbits (Fig. 12) and the larger the number of particles lost due to tidal stripping (top-left-hand panel of Fig. 10). At low redshift, $z \lesssim 0.3$, where the number of orbits is typically less than one, there is no strong structure evolution in phase space and HSF identifies 80–100 per cent of the initial structure mass (upper-left-hand panel of Fig. 10). There are a few structures at redshift $z \sim 0.1–1.0$ for which HSF can find only a very small fraction of their initial mass. All of them are tidal remnants.

The effect of unbinding on the ratio $M_{\text{shared}}/M_{\text{initial}}$ is shown in the lower-left-hand panel of Fig. 11 (as a function of mass) and upper-right-hand panel of Fig. 10 (as a function of redshift). Obviously, after unbinding, the fraction of particles recovered by HSF decreases significantly, even for a small redshift of merging $z \lesssim 0.3$. Indeed, a significant fraction of the mass in substructures is contained in tidal tails that are very well identified by HSF, at least for $z \lesssim 0.3$, but that are no longer bound to the substructures. Note that, as expected, the SUBFIND (bound) substructures are not very different from the HSF bound ones, except that they contain a slightly smaller fraction of the mass of the initial structures (lower-right-hand panel of Fig. 11).

The best-fitting parameters, found by a standard least-square method, are listed in Table 2. The fact that mass loss is more pronounced for more massive objects is clear, and was also to be expected. This behaviour can simply be explained as follows: small structures are more strongly bound, because they are more concentrated (e.g. Angulo et al. 2008), so they do not lose as much mass as large structures from tidal stripping. Indeed, the largest structures are less compact and are more sensitive to dynamical friction. As a result, they are strongly disrupted while they are orbiting around the main halo. They also tend to have more radial orbits.

Nr.	Orbits	z	HSF par.	Initial FOF group par.	Initial halo par.	SUBFIND (per cent)	HSF bound (per cent)	HSF (per cent)	Any HSF (per cent)
1	0	0.09	37,417	39,511	32,383	26	84	97	99
2	1	0.56	36,248	85,225	53,186	35	44	55	57
3	1	0.62	17,971	17,053	14,264	32	38	65	72
4	2	0.83	14,477	140,799	119,621	2	5	11	12
5	4	1.50	854	10,696	9,896	3	6	8	25

Table 1. Properties of five chosen structures. Column description: Nr.: structure number, in the same order as listed in the text and in Fig. 9; Orbits: number of orbits inside the main halo; HSF par.: number of particles belonging to the HSF structure; Initial FOF group par.: number of particles belonging to the initial FOF group; Initial halo par.: number of particles belonging to the initial main halo; SUBFIND: fraction of the particles of the initial halo that are still identified in SUBFIND (in HSF bound, HSF, Any identified HSF structures, respectively, for the next columns).
4.3 Bound subhaloes, tidal tails and tidal streams

By studying the merger tree history, we could show that the HSF algorithm is capable of finding both substructures and their tidal tails. As we noticed, some of the tidal tails are still connected to their host substructures, while others are recognized as separate objects. We now study this bimodality more carefully.

To better separate tidal streams from the bound counterpart of substructures, we now take a small value of the connectivity parameter, $\alpha = 0.01$. In the following analysis, we shall study the five following populations:

(i) bound substructures found by HSF;
(ii) bound substructures found by SUBFIND;
(iii) all HSF substructures (before unbinding);
(iv) unbound HSF structures: substructures found by HSF which disappear during the unbinding process, such as tidal streams;
(v) bound HSF structures: substructures found by HSF (along with their tidal tails) which remain after the unbinding process.

To analyse substructures properties, we estimate, for each of them, the phase-space density maximum f_{max} and the minimum f_{min}. These two quantities are measured for the full set of particles belonging to the substructure prior to the unbinding process. To better measure high phase-space density peaks, we use the SPH-AM ENBID method with 32 neighbours.

In the top right-hand panel of Fig. 14, the distribution of the f_{max} values is shown. It is clearly bimodal, and this property is in fact independent of α. It is straightforward to understand the origin of the bimodality. The local phase-space density can for instance be approximated as follows (Binney & Tremaine 1987):

$$ f(x, v) = \frac{\rho(x)}{(2\pi)^{3/2}\sigma(x)^3} \exp \left\{ -\frac{(v - v_0(x))^2}{2\sigma^2(x)} \right\}. $$ (3)
Two cases can be considered. In the centre of a bound substructure, i.e. a standalone structure that survived the unbinding process, the local density ρ is high and the local velocity dispersion $\sigma(x)$ is low, which gives a high local phase-space density maximum. On the other hand, when substructures are disrupted by strong tidal forces, their local density ρ decreases and their velocity dispersion, $\sigma(x)$, increases, so their peak phase-space density is lower.

These statements can be directly checked by unbinding the substructures found by \textsc{hsf}. On the top right-hand panel of Fig. 14, the high-density maxima peak of the distribution is dominated by the bound substructures, as expected. There is a small fraction of bound substructures for which f_{max} resides in the lower density maxima regime. We checked that this happens only for the smallest substructures with around 20 particles, for which Poisson noise fluctuations start to be significant. The lower peak of the distribution of values with around 20 particles, for which Poisson noise fluctuations are still some unbound substructures residing in the higher peak. They have less than 100 particles and can be considered as ‘Poisson clusters’ (even in Poisson noise it is possible to find high-density contrasts).

Note that the high f_{max} distribution peak is very sharp, corresponding to $f_{\text{max}} \approx 0.2 M_\odot h^{-1} \text{kpc}^{-3} \text{km}^{-3} \text{s}^{-3}$. As already noticed in Maciejewski et al. (2009), all the bound substructures present approximately the same value of f_{max} (see also Vass et al. 2008). This property could be simply an upper bound imposed by numerical resolution or set by the dynamics, or more likely a combination of both (e.g. Binney 2004; Vass et al. 2008). The second peak, dominated by tidal streams, is less pronounced, although still quite well defined, with a maximum at $f_{\text{max}} \approx 4.0 \times 10^{-4} M_\odot h^{-1} \text{kpc}^{-3} \text{km}^{-3} \text{s}^{-3}$, a value about 3.7 orders of magnitude lower than what is found for bound structures (all the values are summarized in Table 3). This shows again the very clear separation between bound structures and tidal streams.

Another way of separating various substructure populations consists of measuring their ‘peakness’, i.e. the parameter $\epsilon_f = f_{\text{max}}/f_{\text{min}}$, where f_{min} is the minimum value of the phase-space density.
distribution function of the HSF structures (prior to unbinding). The advantage of the peakness parameter is that, as opposed to f_{max}, it does not depend on a specific choice of units: a structure with a bound component should present a peakness parameter very large compared to unity, contrary to a pure tidal stream. The measurement of c_f is however meaningful only if f_{min} is well defined. This is a priori not obvious as one expects f_{min} to be very sensitive to local fluctuations in the noise, which indeed affect the local topology strongly. We checked that in fact f_{min} is a robust statistic, as suggested by the rather symmetric behaviour of the curves shown in the bottom right-hand panel of Fig. 14. The distribution of measured values of c_f is shown in the bottom left-hand panel, and presents of course the same bimodal nature as f_{max}. For instance, one finds that c_f is typically of the order of 10^2 for bound structures, while it is only of the order of 10 for tidal streams.

Finally, the top left-hand panel shows the distribution of measured values of f for each DM particle. In this plot, particles left over after unbinding HSF substructures, i.e. belonging to the tidal tails of these substructures, are put on the list of unbound substructures. The high phase-space density region is dominated by bound substructures, which is consistent with the observations we made for the f_{max} distribution function. Note that HSF bound substructures are more extended into lower phase-space density regions than SUBFIND ones and are more likely to overlap in terms of density with unbound streams. There is in total almost 19 per cent of mass in HSF bound substructures to compare with 12.4 per cent in SUBFIND ones (see Table 4). This additional mass in HSF bound substructures comes from particles which were not found with the saddle point algorithm working in 3D position space on which SUBFIND is based. This means that the total bound mass of substructures strongly depends on the cutting criterion applied to the 3D density field ρ, even with the additional unbinding procedure.

An examination of the top left-hand panel of Fig. 14 suggests that it is possible to perform an optimal cut on f, with a value chosen between 3×10^{-5} and $3 \times 10^{-4} \, M_\odot \, h^2 \, \text{km}^{-3} \, \text{s}^{-2}$, so that most particles with phase-space density above this threshold belong to bound substructures. Such a criterion was used before in the literature to mark substructures (Stadel et al. 2008). Tidal streams and possibly signatures of caustics occupy the middle range of phase-space densities, with 31.6 per cent (22.5 per cent for $\alpha = 0.2$) of the total FOF halo mass belonging to them, which is more than for bound substructures. Similarly as for bound substructures, we can set some lower limit around $10^{-5} \, h^{-1}$ for the phase-space density and claim that most particles with higher value of f than this limit belong to substructures of some kind (bound or unbound). The low

![Figure 12. Number of orbits each structure made inside the main halo as a function of redshift of merging of the structure with the halo. The symbol size is proportional to M_{initial}, expressed in units of $M_\odot \, h^{-1}$. In addition, we plot the median value (in red) and the σ errors (in green) calculated in 10 logarithmic bins with at least 10 structures in each bin (for convenience, binning is performed on y-axis). In our sample the structures do not make more than six orbits inside the main halo, before they disappear.](image1)

![Figure 13. Mass loss as a function of redshift of merging z for masses binned in four logarithmic bins (dotted curves) with its smooth fit given by equation (2) (thick curves). For each dotted curve, the number of bins is equal to $2\sqrt{N}$, where N is the number of samples. These two panels are equivalent to bottom panels of Fig. 10. To make adequate fitting, we perform Levenberg–Marquardt least-square minimization with σ errors set from Poisson noise counting distribution. Masses are expressed in units of $M_\odot \, h^{-1}$.](image2)
Table 2. Parameters used in equation (2) to fit results presented in Fig. 13.

Mass min	Mass max	HSF x	HSF η	HSF γ	SUBFIND x	SUBFIND η	SUBFIND γ
1.7×10^{10}	9.8×10^{10}	0.54	0.04	0.78	0.30	−0.00	0.66
9.9×10^{10}	5.6×10^{11}	1.02	0.05	1.82	0.40	0.00	1.06
5.6×10^{11}	3.1×10^{12}	20.11	0.00	28.31	1.46	−0.03	3.01
3.2×10^{12}	1.8×10^{13}	19 188.89	0.01	28 851.01	18.93	−0.07	25.61

Figure 14. Disentangling tidal streams from bound substructures: phase-space density distributions. Top left-hand panel: distribution function of logarithm of phase-space density f estimated for all particles belonging to each category of substructures as indicated inside the panel (100 logarithmic bins). The black dashed lines represent the best fitted Gaussian functions for the main halo found by SUBFIND, the main halo found by HSF and the unbound structures found by HSF (including the tidal tails of bound structures). This means in fact that for each of these components, f is lognormal if the fit is good. To make adequate fitting, we perform Levenberg–Marquardt least-square minimization with σ errors set from Poisson noise counting distribution. Top right-hand, bottom right-hand panels: distribution function of substructures maxima, f_{max}, and minima, f_{min} (50 logarithmic bins). The substructures are separated into unbound components (blue) and bound ones (green), while the black curve corresponds to all the substructures. Bottom left-hand panel: distribution function of substructures phase-space ‘peakness’, defined as $c_{f} = f_{\text{max}}/f_{\text{min}}$.

As a final note on the upper left-hand panel of Fig. 14, we found that the shape of the distribution function of values f observed for each component has interesting properties: it is very well fit by a lognormal distribution both for the main halo component found by SUBFIND and HSF, and the unbound substructures found by HSF. This complements the findings of Vass et al. (2008), who performed a similar analysis but used a more ad hoc approach to separate various components contributing to the phase-space distribution function. The best-fitting parameters of a Gaussian on the logarithm of f are given in Table 5. The interpretation of these results did not

(c) 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 396, 1329–1348

Downloaded from https://academic.oup.com/mnras/article-abstract/396/3/1329/990336 by guest on 27 July 2018
instead of
\[\alpha_{\text{min}} = 0.01 \]
\[f = f_{\text{max}} / f_{\text{min}} \] and 3D density ‘peakness’, \(\rho_s = \rho_{\text{max}} / \rho_{\text{min}} \). Phase-space density is quoted in \(\text{M}_\odot h^2 \text{kpc}^{-3} \text{km}^{-3} \text{s}^{-1} \), while \(\rho \) is expressed in units of total average density (\(\rho \)).

Structure class	\(f_{\text{max}} \)	\(f_{\text{min}} \)	\(c_f \)	\(\rho_{\text{max}} \)	\(\rho_{\text{min}} \)	\(c_\rho \)
HSF unbound	\(4.0 \times 10^{-5} \)	\(3.3 \times 10^{-6} \)	8.7	\(2.1 \times 10^{3} \)	69.2	6.1
HSF bound	0.2	\(2.7 \times 10^{-6} \)	1.1 \(\times 10^{5} \)	\(1.4 \times 10^{4} \)	31.2	35.5

Table 5. Best parameters of the Gaussians fitted to the distribution function of the logarithm of phase-space density estimated for all particles belonging to each category of substructures (top left-hand panel of Fig. 14).

Structure class	Mean	\(\sigma \)	\(\chi^2 \) error
SUBFIND main halo	\(4.7 \times 10^{-6} \)	0.73	7.39
HSF main halo	\(2.7 \times 10^{-6} \)	0.55	1.11
HSF unbound substructures	\(1.4 \times 10^{-5} \)	0.65	0.34

seem straightforward to us, so we decided to leave it for future work. Certainly, a path to follow is to examine the arguments developed by Coles & Jones (1991) to explain the close to lognormal behaviour of the projected 3D density, \(\rho \), relying on the continuity equation and the positivity of the density.

In practice, in observations of, e.g. X-rays clusters or gravitational lensing, the 3D density \(\rho \) (or its projection on the sky) is usually used to model DM haloes instead of the phase-space density \(f \). To illustrate how the previous results translate in terms of \(\rho \), Fig. 15 is similar to Fig. 14, but the calculations are performed for the normalized density \(1 + \delta = \rho / \langle \rho \rangle \) instead of \(f \). The 3D density is measured using ENBID’s SPH kernel with 32 neighbours. Contrary to Fig. 14, the distribution function of values of \(\rho_{\text{max}} \) (upper right-hand panel) shows only one peak. The difference between bound and unbound structures shows much less contrast (see Table 3 for numerical estimates of typical values of \(\rho_{\text{max}} \), \(\rho_{\text{min}} \) and \(c_\rho = \rho_{\text{max}} / \rho_{\text{min}} \)). In particular, bound structures present a large spread on their 3D local density maxima of about two orders of magnitudes, in contrast with what happens with \(f_{\text{max}} \), and they are more difficult to disentangle from their unbound counterparts, even with the peakness, \(c_f \), although this latter quantity seems to have a better separating power than \(\rho_{\text{max}} \) (lower left-hand panel).

Interestingly, the particle density distribution diagram (top left-hand panel of Fig. 15) is populated in a different way from what happens in phase space. In particular, tidal streams occupy the low-density region although they still spread over a large dynamic range, while the main halo dominates the high-density regime. Bound substructures are rather subdominant and spread over the whole dynamic range.

To complete this section, Figs 16 and 17 show the appearance of bound structures, unbound ones and of the smooth part of the halo after removal of all HSF structures. There is a subtle but significant difference between the two figures. In Fig. 16, the top panels show only the bound part of the bound substructures, while the top panels of Fig. 17 show the bound structures along with their tidal tails. In the middle panels of Fig. 16, particles both belonging to unbound structures and particles removed from the bound structures during the unbinding process are shown. In contrast, the bottom panels of Fig. 17 show only particles belonging to unbound structures. This results in an asymmetry in middle right-hand panel of Fig. 16, which reflects the fact that structures passed through (or nearby) the centre of the halo one more time in the upper part of the phase-space diagram than in the lower part. Tidal disruption is indeed more significant and thus removes particles with higher values of \(f \) in the upper part of the phase-space diagram than in the lower part. Not surprisingly, the asymmetry disappears in the bottom right-hand panel of Fig. 17. Note that bound structures are absent in the region close to the main halo centre, as expected. Note as well the rather elongated tidal streams, in particular close to the halo centre, in the bottom right-hand panel of Fig. 16 and the middle right-hand panel of Fig. 17. These are the left overs of structures disrupted by strong tidal forces. In the bottom right-hand panel of Fig. 16, the main halo still presents, after cleaning, some filamentary structures, which are parts of tidal tails, or less likely, signatures of caustics. It can be cleaned even more by using a smaller value of the connectivity parameter \(\alpha \).

5 DISCUSSIONS AND CONCLUSIONS

We introduced a new universal multidimensional HSF which was employed here to study DM structures in 6D phase space. The algorithm used, for each particle, the phase-space density and local neighbourhood estimated with the SPH method with adaptive metric implemented in the ENBID package (Sharma & Steinmetz 2006). To detect structures, HSF builds on the SUBFIND and ADAPTHOP algorithms, with the introduction of a new simple but robust cut or grow criterion depending on a single connectivity parameter \(\alpha \).

The main steps of the algorithm are as follows: (i) local phase-space density maxima are detected and structures around them are grown by following local gradients up to saddle points; (ii) at each saddle point level, the density \(f \) of each structure is compared to Poisson noise: the structure is kept if \(f / \beta \) times more significant than the Poisson rms noise level. At the same time its mass and the mass of its partner (connected to it through the saddle point) are measured and the cut or grow criterion is applied: if one structure is \(\alpha \) times smaller than its neighbour, then all particles below the saddle point are attached to the neighbour. When the two structures have comparable mass within a factor \(\alpha \), they are both set to grow down as before. This criterion allows us to better trace substructures.
in phase space, with a good control of the effect of Poisson noise, which is very important in this rather sparsely sampled space.

We demonstrated the potential of HSF on a large FOF DM halo taken from the Millennium Simulation. Our tests show that β and especially α are important control parameters. To better study the smallest possible structures, β should be set close to 0. The smaller α, the more subtle the structures found by the algorithm. In our analysis, we give preference to $\alpha = 0.2$, which provides a good balance between finding the finest possible substructures and not overgrowing them. This value of α is particularly appropriate when an additional binding step is performed. In contrast, an analysis of tidal tails is best carried out with small α, around 0.01–0.001, which separates structures into smaller pieces. It is possible to use it in combination with $\beta = 4–10$, which tends to reconnect the structures together in a consistent way, to reconstruct tidal tails rather well. A more advanced method of reconnecting phase-space structures, by using the topology of the hierarchical tree created by the HSF algorithm is under investigation.

We used the Millennium Simulation merger tree (Springel et al. 2005, supplementary information) to compare the HSF phase-space structures found at the present time with the same structures traced back to the time just before they entered the main halo. While the best 3D algorithms used currently, such as SUBFIND, manage to find only the main part of bound structures, HSF is capable of finding more extended bound components along with their tidal tails. There is much more information about structure evolution still stored in phase space than in 3D and this information can be potentially fully recovered from the data by a 6D algorithm such as HSF.

The main results of our analysis in time and space domain are the following.

(i) HSF structures contain on average 80–100 per cent of the mass inside the initial structures up to a redshift of merging $z = 0.3–0.4$. This value drops down to 50 per cent for $z = 1$. On the other hand, bound HSF structures contain on average 80–100 per cent of the mass inside the initial haloes only up to $z = 0.09$ and 50 per cent up to $z = 1$.

Figure 15. Disentangling tidal streams from bound substructures: projected 3D density distributions. Top left-hand panel: distribution function of normalized density $1 + \delta = \rho/\langle \rho \rangle$ estimated for all particles belonging to each category of substructures as indicated on the panel (100 logarithmic bins). Top right-hand, bottom right-hand panels: distribution function of substructure maxima $\rho_{\text{max}}/\langle \rho \rangle$, minima $\rho_{\text{min}}/\langle \rho \rangle$ (50 logarithmic bins); bottom left-hand panel: distribution function of substructures density ‘peakness’ defined as $c_\rho = \rho_{\text{max}}/\rho_{\text{min}}$.

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 396, 1329–1348
Figure 16. Appearance of bound and unbound structures in our Millennium test halo. Top panels: particles belonging to HSF bound structures (so unbound particles are removed). Middle panels: particles which belong to HSF unbound substructures or are left over in the tails of HSF bound substructures after the unbinding process. Bottom panels: the main halo after removal of all substructures. From left to right: x–y position space, radius r–radial velocity v_r phase space. The pictures are computed in three steps as follows: (i) division of space into a 3D equally spaced grid with $N = 400$ divisions across each x, y, z axes; (ii) calculation of the mean density f of all particles inside each cell and (iii) projection of this density on the x–y plane by taking in each z column the cell with the highest density. To enhance the contrasts, equalization of the histograms in log f was implemented.

$z = 0.6$. This shift in the mass loss is caused by the existence of tidal tails, which are joined to HSF structures, but do not belong to their bound part. In other words we can say that HSF is able to reconstruct in most cases the full dynamical structures which enter the halo at redshifts as high as $z = 0.3$–0.4.

(ii) The distribution function of the phase-space density maxima f_{\max} of HSF structures clearly shows a bimodality. We can explain it by partitioning the structures into two distinct groups. In the first group, corresponding to the high phase-space density peak regime, $f_{\max} \approx 0.2M_\odot h^2 \text{kpc}^{-3} \text{km}^{-3} \text{s}^{-3}$, with a small spread around that value, there are mostly bound structures. In the second group, corresponding to a three orders of magnitude smaller phase-space density regime, $f_{\max} \approx 3.3 \times 10^{-5}M_\odot h^2 \text{kpc}^{-3} \text{km}^{-3} \text{s}^{-3}$, and a larger spread around this value, there are all unbound structures i.e. tidal tails, streams and possibly some caustics. In terms of ‘peakiness’, $c_f = f_{\max}/f_{\min}$, where f_{\min} is minimum value of f in each
substructure, this translates into \(c_f = 1.1 \times 10^5 \) and 8.7 for bound and unbound structures, respectively.

(iii) We noticed, similarly as Vass et al. (2008), that the distribution function of the values of \(f \) around each DM particle is close to lognormal for the smooth component of the halo and the unbound part of the substructures (tidal streams).

(iv) We found that there is more mass in bound HSF substructures than in SUBFIND ones. Fig. 18 shows the cumulative mass of substructures divided by the total halo mass as a function of substructure mass. Around 18.5 per cent of halo mass is stored in bound HSF structures, and this quantity almost does not depend on \(\alpha \). In comparison, about 12.4 per cent of the mass is stored in SUBFIND bound structures. The additional mass in HSF bound structures comes mainly from the fact that subhaloes are better defined in phase space and are more extended. However, the set of identified bound substructures is nearly identical in both methods, and hence the cumulative abundance of substructures as a function of maximum circular velocity is the same as well.

We note that in our test halo, 41.2 per cent of the mass belongs to substructures for \(\alpha = 0.2 \), 50.4 per cent for \(\alpha = 0.01 \) and 55.2 per cent for \(\alpha = 0.001 \). When we subtract from these numbers the contribution of bound structures, we find that 22.9–36.4 per cent of halo mass is stored in unbound structures. This should be taken into account when analytical models of haloes with substructures are proposed.

(v) While we would need a larger statistical sample of haloes to perform robust measurements, we noticed that at fixed redshift of merging with the main halo, small structures tend to lose less mass than larger ones, in agreement with expectations based on the higher concentration of smaller haloes. Furthermore, we found a strong correlation between mass loss and the number of orbits a substructure can make inside the main halo.
When we observe our own Galaxy, we do not have access to different ‘snapshots’ anymore, in stark difference with the world of simulations. Instead, we have to be content with the data at the present time. However, because we now know that our phase-space structure finder can identify dynamical structures that were bound before tidal disruption, it can provide totally new insights about the past dynamical history of our Galaxy. Within the hierarchical framework, we expect that our Galaxy should be made through the merging of more than about 100 smaller subcomponents. Comparing structures in observational data and simulations can be one of the best tests for the theory of hierarchical galaxy formation, and provide important constraints on cosmological models such as ΛCDM.

Up to now, we studied only the evolution of DM, but we can also similarly study the evolution of baryons in gas and stars. Galaxies are observed in many different ways, ranging from star distributions, velocity and chemical properties, to H I measurements etc. Our phase-space structure finder with local metric fitting is in fact implemented in such a way that it can be used in any number of dimensions, where each dimension can have completely different physical units. So it is in principle straightforward to use it for studying galaxy structure evolution in multidimensional space with the appropriate probabilistic weightings to take into account the noise and holes (missing measurements) in the data hypercube. We think that such an approach can yield a deeper understanding of galaxy evolution, and looks especially promising in light of the upcoming GAIA mission (Gilmore et al. 1998) which plans to map the positions of around one billion stars in our Galaxy.

ACKNOWLEDGMENTS

We thank S. D. M. White for many important suggestions and G. Lavaux, R. Mohayaee and D. Weinberg for useful discussions. Part of this work was completed during a visit of MM and SC at MPA/Garching. This work was completed within the framework of the HORIZON project (www.projet-horizon.fr). MM was funded by the European program MEST-CT-2004-504604 and supported by French ANR (OTARIE).

REFERENCES

Alard C., Colombi S., 2005, MNRAS, 359, 123
Angulo R. E., Lacey C. G., Baugh C. M., Frenk C. S., 2008, MNRAS, submitted (arXiv:0810.2177)
Arad I., Dekel A., Klypin A., 2004, MNRAS, 353, 15
Ascasibar Y., Binney J., 2005, MNRAS, 356, 872
Aubert D., Pichon C., Colombi S., 2004, MNRAS, 352, 376
Bertschinger E., 1985, ApJS, 58, 39
Binney J., 2004, MNRAS, 350, 939
Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton, NJ
Cole S., Lacey C., 1996, MNRAS, 281, 716
Coles P., Jones B., 1991, MNRAS, 248, 1
Colombi S., Touma J., 2007, Commun. Nonlinear Sci. Numer. Simul., 03, 012
Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
Diemand J., Kuhlen M., Madau P., 2006, ApJ, 649, 1
Eisenstein D. J., Hut P., 1998, ApJ, 498, 137
Gelb J., Bertschinger E., 1994, ApJ, 436, 467
Gilmore G. F. et al., 1998, Proc. SPIE, 3550, 541
Governato F., Moore B., Cen R., Stadel J., Lake G., Quinn T., 1997, New Astron., 2, 91
Hinshaw G. et al., 2009, ApJS, 180, 225
Kim J., Park C., 2006, ApJ, 639, 600
Klypin A., Gottlober S., Kravtsov A. V., Khokhlov A. M., 1999, ApJ, 516, 530
Lacey C., Cole S., 1994, MNRAS, 271, 676
Lukić Z., Reed D., Habib S., Heitmann K., 2009, ApJ, 692, 217
Maciejewski M., Colombi S., Alard C., Bouchet F., Pichon C., 2009, MNRAS, 393, 703
Massey R. et al., 2007, Nat, 445, 286
Mohayaee R., Salati P., 2008, MNRAS, 390, 1297
Natarajan P., De Lucia G., Springel V., 2007, MNRAS, 376, 180
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Neyrinck M. C., Gnedin N. Y., Hamilton A. J. S., 2005, MNRAS, 356, 1222
Sharma S., Steinmetz M., 2006, MNRAS, 373, 1293
Springel V., 2005, MNRAS, 364, 1105
Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS, 328, 726
Springel V. et al., 2005, Nat, 435, 629
Springel V. et al., 2008, Nat, 456, 73
Stadel J., Potter D., Moore B., Diemand J., Madau P., Zemp M., Kuhlen M., Quilis V., 2008, MNRAS, submitted (arXiv:0808.2981)
Van Albada T. S., Bahcall J. N., Begeman K., Sanscisi R., 1985, ApJ, 295, 305
Van Waerbeke L. et al., 2000, A&A, 358, 30
Vass H. M., Valluri M., Kravtsov A. V., Kazantzidis S., 2008, MNRAS, submitted (arXiv:0810.0277)
Vogelsberger M., White S. D. M., Helmi A., Springel V., 2008, MNRAS, 385, 236
White S. D. M., Rees M. J., 1978, MNRAS, 183, 341
White S. D. M., Vogelsberger M., 2009, MNRAS, 392, 281
Zwicky F., 1933, Helv. Phys. Acta, 6, 110

This paper has been typeset from a TeX/\LaTeX file prepared by the author.