A Review of Applications and Research of Shape Memory Alloys in Civil Engineering

Ying-qi Jia, Zhou-dao Lu, Ling-zhi Li*, Zhen-li Wu
College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai 200092
lilingzhi@tongji.edu.cn

Abstract. This article presents a timely review of thermomechanical behaviours, recent structural applications, and researches of shape memory alloys (SMAs) in civil engineering. SMAs are used in a variety of fields, such as mechanical, aeronautical and medical fields. Other fields of knowledge have been researching these materials, attracted by their superb shape memory effect and pseudoelasticity under mechanical and thermal conditions. This article not only reports a bibliographic review on the constitutive models and thermodynamic properties for SMAs, but also describes the attributes of SMAs that make them ideally suitable to structural control, intelligent structure and structural damage repair.

1. Introduction
The shape memory alloys (SMAs) have attracted the attention of scholars and engineers in various fields since they were discovered in the 1960s. Because of their shape memory effect and superelasticity of a high standard, SMAs have been widely used in mechanical, aeronautical and medical fields [1]. In addition, SMAs can also be applied in civil engineering, such as sensors and dampers due to their electrical resistance and damping properties.

SMAs can generally be classified into being Ni-Ti-based and Cu-based. Ni-Ti-based SMAs, such as Ni-Ti [2], Ni-Ti-Hf [3], Ni-Ti-Pd [4] and Ni-Ti-Fe [5], are considered most suitable for the majority of engineering applications, given its great superelastic properties and temperature variations stability. Cu-based SMAs, such as Cu-Al-Ni-Co [6], Cu-Al-Fe-Ni [7] and Cu-Al-Mn [8], have good fatigue resistance and can sustain hundreds of cycles under a high cyclic strain.

With the continuous expansion of infrastructures and high-rise buildings, higher requirements have been put forward on the performance of structures in civil engineering. Furthermore, the safety of structures under serious disasters such as earthquakes and fires has drawn constantly growing concerns. Therefore, many innovative materials [9–10], structural forms [11–12], and rehabilitation strategies [13–15] was proposed by researchers. As a new type of alloys with shape memory effect and superelasticity, SMAs have great performance in not only load-bearing capacity, but also earthquake and fire resistance, which provides themselves a wide application prospect in civil engineering.

2. Characteristics of shape memory alloys

2.1. Shape memory effect
It is important to note that SMA can transform from one phase to another over the varying temperature or loads. Furthermore, if the role of the temperature or loads is removed, the shape and mechanical properties of the SMA will return to the original phase, and such characteristic is called shape memory effect (SME) [1]. In general, SMA has two kinds of phases (martensite phase and austenite phase) and
six kinds of crystal structures. As shown in Figure 1, SMA appears as austenitic phase under high temperature or low stress, and appears as martensite phase under the low temperature or high stress. Lobo et al. [16] pointed out that SMAs are totally characterized by four phase transition temperatures from low to high: martensite transition finish temperature \(M_f \), martensitic transition start temperature \(M_s \), reverse martensitic transition start temperature \(A_s \) and reverse martensite phase transition finish temperature \(A_f \), respectively. SMA exists in stable martensite when the temperature is less than \(M_f \) and in stable austenite when the temperature is greater than \(A_f \).

Jani et al. [17] pointed out that the shape memory effect of SMA can be classified in one-way and two-way shape memory effects. One-way memory effect refers to inducing the SMA to produce deformation at low temperature and recover after heating, and two-way shape memory effect is the characteristic that SMA can be restored to the initial form at both high and low temperature.

Figure 1. SMA phase transition induced by temperature or loads.

2.2. Pseudoelasticity or superelasticity
When the temperature of SMA exceeds \(A_f \) and the loading stress exceeds the elastic limit, martensitic transformation induced by stress will arise due to continuous loading. The reverse martensite phase transformation, however, as the stress is removed, will occur even if SMA is not heated so that the original parent phase (austenite phase) state is restored. Meanwhile, the macroscopic deformation under stress will disappear completely, and such characteristic of SMA is called pseudoelasticity or superelasticity, which is influenced by chemical composition, heat treatment method, loading and unloading cycles, cold deformation and experimental conditions.

2.3. Other characteristics
The electrical resistance of SMA is different from ordinary metals; it is affected by axial stress, martensitic fraction, phase transition temperature and strain simultaneously. When the martensitic fraction in SMA changes, the electrical resistance changes accordingly. Therefore, it is possible to induce phase transition by heating the SMA wire, thereby increasing its electrical resistance [18].

Besides, SMA has a high damping and its elastic modulus changes with the temperature. Heller et al. [19] pointed out that the damping ratio of SMA superelasticity can be measured by SMA stress-strain curve, according to the quasi-static tensile test at room temperature. In addition, Dib et al. [18] pointed out that the elastic modulus of SMA changes during phase transition, and the elastic modulus of austenite phase is higher than that of martensite phase, which can be used to make SMA actuator.

3. The constitutive models and thermomechanical behaviours

3.1. Constitutive models
The typical constitutive models of SMA include TnakaSa model, Linag-Rogers model, Brinson model, Boyd-Lagoudas model and Ivshin-penee model. These models can be roughly classified in four categories: (1) Monocrystraline theoretical model based on thermodynamic theory and free energy; (2) Mathematical model based on phase-boundary motion dynamics; (3) Phenomenological model based on thermomechanics and thermodynamics; (4) Microscopic mechanical model based on energy
dissipation theory. Among them, the one-dimensional phenomenological model proposed by Brinson [20] is widely used in civil engineering because of its simple form and experimental basis, which can be expressed as:

$$\sigma - \sigma_0 = D(\xi)\epsilon - D(\xi_0)\epsilon_0 + \Omega(\xi)\xi - \Omega(\xi_0)\xi_0 + \theta(T - T_0)$$ \hspace{1cm} (1)$$

where σ and ϵ are the stress and strain of SMA, respectively, θ is the thermodynamic parameter of SMA, and the environment temperature is given by T. Subscript "S" and "0" mean stress and a reference to the initial state, respectively. $D(\xi)$ and $\Omega(\xi)$ are modulus of elasticity and phase transformation coefficient which depend on the content of martensite ξ, respectively.

On the basis of Brinson's theoretical model, a one-dimensional piecewise linear model of pseudoelasticity of SMA was proposed by Du et al. [21], and the rationality of the theoretical formula was verified by applying low-cycle reciprocating load and dynamic load to the spring-SMA system. The model is expressed as

$$\sigma = \sigma_0 + k_i \epsilon_i, \hspace{1cm} i = 1, 2, 3, 4$$ \hspace{1cm} (2)$$

where σ_0 and k_i are the initial stress and slope at each stage, respectively.

3.2. Thermomechanical behaviours

As shown in Figure 2, relevant scholars [22-25] have studied the mechanical properties of Ni-Ti SMAs with different diameters. It is shown that the hysteresis energy dissipation (E) and damping ratio (ζ) increase with peak strain, and decrease as the cycling time increases. In addition, with the increase of the diameter of Ni-Ti SMAs, E and ζ increase at first, and then begin to decrease after the diameter is greater than 0.80 mm.

Concerning SMAs under high temperatures, which exists complex force-temperature coupling, Tian et al. [26] pointed out that martensite has a good effect of strain strengthening by studying Ti-Pd-Ni SMA, despite the austenite has higher yield strength, and their ultimate strength are close. In addition, the damping capacity of Ti-Pd SMA [27], thermomechanical behavior of Ti-Pd-Ni-W SMA [28] and cyclic stability of Ni-Ti-Hf SMA [29-31] at high temperature were studied by different researchers.

![Figure 2](image-url). Hysteresis performance of Ni-Ti SMAs in different diameters measured by cycling test.
4. Applications and research in civil engineering

The applications of SMAs in civil engineering can be classified into three categories according to their mechanism as shown in Table 1: structural control, intelligent structure and structure damage repair.

Table 1. General analysis method of main SMA structure or member models

SMA model	Theoretical analysis	Numerical analysis	Test analysis
Cantilever beam	First-order model [32]		Cyclic loading test [32]
	Shear lag model [46]	Phenomenological	Three point bending test
	Layerwise theory and Brinson equation [39]	model [47]	[31, 33, 43]
	Thermodynamic constitutive relation model [40, 42]		
Bridge structure	Nonlinear time history analysis [38]		
Tubular structure	Layered optimization model [41]		
Supporting brace	Nonlinear time history analysis [35]	Cyclic loading test	[35, 37]
End-plate connection	Auricchio's approach [36]	Adaptive genetic	test [36]
Membrane structure	Thermo-Elastic Analysis [34]	algorithm [34]	

4.1. The applications of SMAs in structural control.

For the active control of structures, Yang et al. [32] tested the end position of cantilever beams and plates with SMA actuator charged by electric current, and the results showed satisfactory control of deformation. Formentini et al. [33] pointed out that SMA yields to varying degrees at different temperatures, once the actuator is embedded in the windward surface of structures, automatic absorption or release of energy can be achieved. Wang et al. [34] pointed out that the shape of membrane structure can be maintained by use of SMA. While for the passive control of structures, Li et al. [35] designed a double X SMA damper applied to the frame bridge pier, and the damping effect was studied by cycle reciprocating test. Fang et al. [36] replaced the high strength bolt endplate connections with SMA stud, thus a "super elastic hinge" formed in the connection and the equivalent viscous damping ratio reached 17.5%. Leonardo et al. [37] made SMA support installed in shear walls for seismic reinforcement, and improvement in strength, slip performance and energy dissipation was found.

4.2. The applications of SMAs in intelligent structure

The damage curves of traditional bridges and intelligent bridges with SMA were compared obtained by by Zheng et al. [38] using nonlinear time history analysis, it was found that the duration of the SMA intelligent bridge was longer. Based on the Layerwise theory and Brinson equation, the control equation of SMA beam was established and the behaviour of thermal buckling was analysed by Bayat et al. [39]. Meanwhile, the effects of anisotropy and SMA pre-strain on the buckling behaviour of SMA beam were investigated. Lagoudas et al. [40] proposed the thermodynamic constitutive relation
model of SMA to predict the residual deformation of SMA cantilever beam. Chen et al. [41] pointed out that the axial stress and radial stress of tubular structure were basically unchanged after adding SMA flakes through finite element analysis with the layered optimization model. In this case, the cyclic stress decreases by 7.9% and the shear stress decreases by 20%-30%, which can effectively avoid stress concentration. Wong et al. [42] investigated concrete beams with steel bars partially replaced by SMA. Moreover, Shajil et al. [43] conducted three point loading tests on concrete beams and beam-column joints with SMA distributed randomly inside, which proved their satisfactory self-centering ability and ductility.

4.3. The applications of SMAs in structural damage repair

Since SMA can be restored to its original form after being energized or heated, the structure with SMA can be repaired in the process of producing pretension. Choi et al. [44] fabricated twelve mortar beams with SMA and conducted three point bending test, then the damaged beams were repaired at different temperatures and the peak stress was found to reduce by 70%. SMA and calcium nitrate microcapsules were set in concrete beams by Bonilla et al. [45] to give it a dual self-healing mechanism; it was found that the stiffness of the concrete beams with SMA and calcium nitrate microcapsules could be repaired by 75%. The thermodynamic behavior of SMA concrete structure with damage was analyzed by shear lag model, and its damage evaluation criterion was given through theoretical analysis by Hu et al. [46]. Hübner et al. [47] proposed the finite element evaluation method of SMA structure considering SMA pretreatment and load conditions based on the phenomenological model.

5. Conclusions

Due to its unique shape memory effect and superelasticity, SMAs were widely used in structural control, intelligent structure, damage repair, and other fields of civil engineering. In spite of comprehensive studies of SMAs in theoretical calculation, experimental investigation, and finite element analysis were conducted, there are still some problems to be solved:

1. The applications of SMAs in intelligent structure are mostly energized with electricity. However, it is difficult to connect the SMA embedded in the structure to electricity with wires in practical engineering. In addition, after the completion of energization, the incentive effect will suffer a serious loss.

2. In fact, incentives can also be realized by elevated temperature. If SMA is embedded in structure members, which is in martensitic phase at room temperature, the reverse martensitic phase transition will take place when the fire occurs. Due to the shortening of the length, the pre-tightening force can be strengthened in a timely manner to reduce the loss of life and property. However, the behaviors of SMAs during and after fire still need further study.

3. SMAs are difficult to be used in civil engineering due to their expensive costs.

References

[1] Uto K, Deforest C A and Kim D 2016 Soft Shape-Memory Materials Biomaterials Nanoarchitectonics (Ebara M: William Andrew Publishing) pp 237-251

[2] Pereiro-Barceló J and Bonet J L 2017 Constr. Build. Mater. 155 348-362

[3] Han X L, Song K K and Zhang L M et al. 2018 J. Mater. Eng. Perform. 27 1005-1015

[4] Narayana P L, Kim S and Hong J et al. 2018 Met. Mater. Int.

[5] Basak C B, Krishnan M and Kumar R et al. 2014 J. Alloy. Compd. 597 15-20

[6] Haidar A M, Saud S N and Hamzah E 2017 Metallography, Microstructure, and Analysis 7 57-64

[7] Yildiz K, Balci E and Akpınar S 2017 J. Therm. Anal. Calorim. 129 937-945

[8] Liu J, Huang H and Xie J et al. 2017 Scripta Mater. 136 106-110

[9] Yu K Q, Yu J T and Dai J G et al. 2018 Construction & Building Materials 158 217-227

[10] Ozawa M, Uchida S and Kamada T et al. 2012 Construction & Building Materials 37 621-628

[11] Yu K, Li L and Yu J et al. 2018 Eng. Struct. 170 11-20
[12] Christopoulos C, Tremblay R and Kim H J et al. 2008 J. Struct. Eng. 134 96-107
[13] Yu J T, Liu K K and Li L Z et al. 2018 Compos. Struct. 193 1-7
[14] Jiang C J, Lu Z D and Li L Z 2017 Journal of Structural Engineering - ASCE 143 4017007
[15] Li L Z, Cai Z W and Lu Z D et al. 2017 Eng. Struct. 144 73-87
[16] Lobo P S, Almeida J and Guerreiro L 2015 Procedia Engineering 114 776-783
[17] Jani J M, Leary M and Subic A et al. 2014 Materials and Design 56 1078-1113
[18] Dib M E, Gorbet R and Kubica E et al. 2011 Smart Mater. Struct. 20 115018
[19] Heller L, Aittner P and Pilch J et al. 2009 J. Mater. Eng. Perform. 18 603-611
[20] Brinson L C 1993 J. Intel. Mat. Syst. Str. 4 229-242
[21] Du X W, Sun G and Sun S S 2005 Materials Science and Engineering: A 393 332-337
[22] Wang R, Dai S and Zheng J 2016 Noise and Vibration Control 36 189-193
[23] Wang W 2012 The constitutive model and experimental study of shape memory alloy Dalian university of technology Dalian China
[24] Xi Z Q 2017 Cryogenic construction technology 39 12-14
[25] Zhang Q 2017 Experimental study on flexural performance of reinforced concrete beams reinforced with superelastic SMA/ECC Zhengzhou university Zhengzhou China
[26] Tian Q and Wu J 2002 Materials Science and Engineering A 325 249-254
[27] Xue D, Zhou Y and Ding X et al. 2015 Materials Science and Engineering: A 632 110-119
[28] Mizuuchi K, Inoue K and Hamada K et al. 2002 Materials Science and Engineering: A 557-562
[29] Canadine D, Treherne W and Ozcan H et al. 2017 Scripta Mater. 135 92-96
[30] Saghaian S M, Karaca H E and Tobe H et al. 2017 Acta Mater. 134 211-220
[31] Meng X L, Cai W and Zheng Y F et al. 2002 Mater. Lett. 55 111-115
[32] Yang S, Roh J and Han J et al. 2006 J. Intel. Mat. Syst. Str. 17 767-777
[33] Formentini M and Lenci S 2018 Automation in Construction 85 220-231
[34] Wang X, Zheng W and Hu Y 2008 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics pp 1108-1113
[35] Li R, Ge H and Shu G 2018 J. Aerospace Eng. 31 4017100
[36] Fang C, Yam M C H and Lam A C C et al. 2014 J. Constr. Steel Res. 94 122-136
[37] Cortés-Puentes W L and Palermo D 2018 J. Struct. Eng. 144 4017200
[38] Zheng Y, Dong Y and Li Y 2018 Constr. Build. Mater. 158 389-400
[39] Bayat Y and Ekhteraeitoussi H 2017 Aerosp. Sci. Technol. 67 484-494
[40] Lagoudas D C and Shu S G 1999 Int. J. Mech. Sci. 41 595-619
[41] Chen H, Sun H and Liu T 2009 Compos. Struct. 89 497-508
[42] Wong B and Liu J 2017 Mag. Concrete Res. 69 327-336
[43] Shajil N, Srinivasan S M and Santhanam M 2015 Mater. Struct. 49 783-793
[44] Choi E, Joo Kim D and Youn H et al. 2015 Smart Mater. Struct. 24 125010
[45] Bonilla L, Hassan M M and Noorvand H et al. 2018 J. Mater. Civil Eng. 30 4017277
[46] Hu Z, Xiong K and Wang X 2005 Acta Mech. Sinica-PRC 21 286-293
[47] Hübner M, Gurka M and Schmeer S et al. 2013 Smart Mater. Struct. 22 94002