CASE REPORT

Case Report: Primary ganglioneuroblastoma occurrence in lower thoracic spine [version 1; peer review: 1 approved, 1 approved with reservations]

Masuma Islam¹, Muhammad Khurram Zia², Syeda Ifra asad³, Syed Zawahir Hassan⁴, Osama Salam³, Saeed Mazhar⁵, Gohar Jawad⁶, Taha Nafees⁷

¹Internal Medicine, Bangladesh Medical College, Dhaka, 1209, Bangladesh
²Neurology, Liaquat College of Medicine and Dentistry, Karachi, 75290, Pakistan
³Neurology, Dow University of Health Sciences, Karachi, 74200, Pakistan
⁴Internal Medicine, Park Plaza Hospital, Houston, Texas, 77004, USA
⁵Baqai Medical University Hospital, Karachi, 74600, Pakistan
⁶Aga Khan University, Karachi, 74800, Pakistan
⁷Karachi Medical & Dental College, Karachi, 74700, Pakistan

Abstract
Ganglioneuroblastoma is a neural tissue neoplasm, which is derived from the neural crest cells. It is mostly seen in the pediatric population but is very rarely found in the lower thoracic spine. Here, we report a rare case of ganglioneuroblastoma occurrence in the lower thoracic spine. A 2.5-year-old boy presented with spinal compression symptoms and on magnetic resonance imaging, a mass was identified over T10 to L1. The tumor showed round blue cells and mature ganglion cells with hypermitotic activity. Immunohistochemical synaptophysin and neurofilament staining was positive, confirming the diagnosis. The patient showed significant improvement after surgical excision of the tumor. This is the first reported case of ganglioneuroblastoma in the lower thoracic spine that was successfully treated in Pakistan.

Keywords
Ganglioneuroblastoma, Embryonal tumor, Juvenile brain tumor

Open Peer Review

Reviewer Status
Invited Reviewers

version 1
29 Jan 2020
Report
Report

1 Bidyut Prava Das, SCB Medical College (Srima Chandra Bhanja Medical College and Hospital), Cuttack, India
2 Yuvaraja Murugan, Pondicherry Institute of Medical Sciences, Kalapet, India

Any reports and responses or comments on the article can be found at the end of the article.
Corresponding author: Syed Zawahir Hassan (drzawahir@gmail.com)

Author roles: Islam M: Writing – Original Draft Preparation; Khurram Zia M: Supervision; Ifra asad S: Writing – Original Draft Preparation; Hassan SZ: Writing – Review & Editing; Salam O: Writing – Review & Editing; Mazhar S: Supervision; Jawad G: Project Administration; Nafees T: Resources

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2020 Islam M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Islam M, Khurram Zia M, Ifra asad S et al. Case Report: Primary ganglioneuroblastoma occurrence in lower thoracic spine [version 1; peer review: 1 approved, 1 approved with reservations] F1000Research 2020, 9:59 (https://doi.org/10.12688/f1000research.19895.1)

First published: 29 Jan 2020, 9:59 (https://doi.org/10.12688/f1000research.19895.1)
Introduction

Ganglioneuroblastoma is a tumor of peripheral neuroblastic tissue that arises from the neural ectodermal cells. Ganglioneuroblastoma is a variant of neuroblastic tumor, which encompasses neuroblastoma, ganglioneuroblastoma and ganglioneuroma. The most commonly seen is the neuroblastoma, which contributes 97% of the neuroblastic tumors. Among pediatric cancers, the neuroblastoma is the third most common cancer after brain cancer and leukemias. Among neuroblastic tumors, neuroblastoma is the least differentiated, ganglioneuroma is the most differentiated and ganglioneuroblastoma is the intermediate between them. Neuroblastoma histology includes primitive neuroblasts, ganglioneuroblastoma includes both primitive neuroblasts and ganglion cells and ganglioneuromas include mature Schwann cells and ganglion cells as the most differentiated variant. Neuroblastic tumors are seen in the adrenal gland, para spinal neural tissue, chest, neck, spine, intra-abdominal areas and the presentation of these tumors is highly dependent on their location and metastasis. Ganglioneuroblastomas are rarely seen in the spinal column.

The authors present here the first case of primary intraspinal ganglioneuroblastoma of the thoracic and lumbar spine in Pakistan. A histopathological study helped the authors to establish the diagnosis. Surgical excision is the treatment of choice for both cerebral and spinal ganglion cell tumors. Radiotherapy is given for residual disease, recurrence, or progression. We report a 2.5-year-old boy who achieved improvement after surgical excision.

Case presentation

A 2.5-year-old South Asian boy resident of Karachi presented to the emergency room with an inability to urinate for the last seven days. This was followed by sudden paralysis of both lower limbs of two days’ duration, resulting in the patient being completely unable to sit, stand or walk. The patient had a history of difficulty in walking and standing for the prior six months.

A neurological examination revealed sensory loss below the T12 vertebra and a bilateral increase in muscle tone. Using the Medical Research Council scale for muscle power, power was 0/5 on the left side and 1/5 on the right side upon flexion and extension. Babinski reflexes were normal on both sides, indicating an upper motor lesion. The child had no past history of birth asphyxia, hypertension, diabetes mellitus or tuberculosis and their vaccination history was normal, with vaccines administered at routine time points. The child had no past history of trauma or other constitutional symptoms. The child was afebrile. An MRI scan was carried out, which showed a large homogenous enhancing lesion spreading from the T8 to L1 vertebrae. The intra-spinal region was completely adherent to the extradural region of the spine. The tumor had extrudal growth and encircled the tissue around the spinal cord, extending into the retroperitoneal area as well. The biopsy sample was sent for histopathological reporting, which revealed a tumor consisting primarily of nodules and sheets of mature looking ganglion cells with abundant Schwannian stroma with diffusely present round blue cells, hyperchromatic nuclei and scanty cytoplasm. These cells showed increased mitotic activity as well. Hematoxylin and eosin staining showed the tumor to be neurofilament and synaptophysin positive. According to the International Neuroblastoma Staging System, the patient had a stage 4 tumor as metastasis to other organs was found. In conclusion, the histopathology report confirmed the diagnosis of an intermixed ganglioneuroblastoma, and the patient was assigned to intensive modulation radiation therapy with a dose of 18 grays for six months.

At the follow-up appointment two weeks later, a physical examination was carried out and power was found to be improved on the right side, measuring 2/5, and on the left side, measuring 1/5. The patient returned two months later for a follow-up appointment, when a detailed neuro-physical examination was carried out and power was increased, measuring 3/5 on the left side and 2/5 on the right side. A timeline of events from initial symptoms to post-surgery follow up meeting is shown in Figure 1.

Discussion

Ganglioneuroblastomas are a rare type of neuroblastic tumor that are composed of a varying proportion of undifferentiated neuroblast and mature ganglionic cells. Ganglioneuroblastoma is a pediatric tumor and is uncommon in the adult population. The histology of ganglioneuroblastomas involves tumor cells derived from the mantle layer of the embryological spinal cord that populate the embryological sympathetic ganglia and adrenal medulla. Ganglioneuroblastoma histology includes undifferentiated small round cells in all stages of neuronal differentiation and ganglioneuromatous stroma. These embryological neural crest cells may mature to become Schwann cells or remain undifferentiated, called neuroblasts.

Ganglioneuroblastomas are subdivided into two categories (nodular and intermixed) and both have significance in terms of prognosis, along with age of disease presentation, disease pathogenesis, genetics, nuclear maturation and grading. Ganglioneuroblastomas have both ganglionic and neuroblast cells, which both have the potential to become malignant. In the nodular type of ganglioneuroblastoma, there is ganglioneuromatous stroma around nodules of neuroblasts and in the intermixed type, there are small numbers of neuroblasts with ganglioneuromatous stroma. Symptoms of ganglioneuroblastomas are highly dependent on the primary location of the tumor and metastasis. Symptoms include abdominal distension, weight loss, irritability, focal neurological deficits and opsoclonus-myoclonus. The most common presentation of ganglioneuroblastoma is abdominal distension. Survival rates in infancy are almost 91% and decline as...
the age of presentation increases. Ganglioneuroblastomas show no gender predominance and are seen equally among males and females. Ganglioneuroblastomas predominantly present in the first decade of life and are very uncommon among adults, with most affected patients being under five years of age. Genetics plays an important role in the pathogenesis of neuroblastic tumors, although sporadic cases are also common.

Ganglioneuroblastomas predominantly involve the adrenal gland, although other sites such as retroperitoneal ganglion, posterior mediastinum and pelvis are also involved. Ganglioneuroblastomas are likely to be seen among the sympathetic ganglia and therefore often occur in the paramedian region in the neck, pelvis and head. Ganglioneuroblastoma arising in the lower thoracic spine is one of the rare presentations of this tumor. The least common sites for ganglioneuroblastomas to occur are the thymus, cauda equina, lung, spinal column and kidney. The spinal column is a rare site for ganglioneuroblastomas to occur and it is quite possible that the tumor extended intraspinally from the mediastinum. In the spinal column, ganglioneuroblastomas are seen as extradural lesions with a dumbbell shape.

Ganglioneuroblastomas are associated with various diseases including Von Recklinghausen disease, Hirschprung disease, DiGeorge syndrome and Beckwith-Weidman syndrome. The most common site of ganglioneuroblastoma metastasis is the bone, which is called Hutchinson’s disease and presents as limping and unexplained irritability. Other metastatic locations include the liver and skin. Definitive treatment involves resection of the tumor, and radiotherapy is also included in cases of high-grade tumors.

Conclusion

Ganglioneuroblastoma is a neuroblastic tumor that is mostly seen in the pediatric population. The lower thoracic spine is a rare location for a tumor and it is very important to include ganglioneuroblastoma in the differential diagnosis when investigating lower thoracic spine masses. With proper investigative approaches, ganglioneuroblastoma can be diagnosed early and can be managed accordingly, decreasing morbidity and mortality in patients.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Consent

Written informed consent for publication of their clinical details and clinical images was obtained from the patient.

References

1. Shohet JM, Nuchtern JG: Epidemiology, pathogenesis, and pathology of neuroblastoma. Hentet fra. 2016. Reference Source
2. Singh SK, Srivastava C, Ojha BK, et al.: Ganglioneuroblastoma of the conus: a rare and aggressive tumor. Neurol India. 2010; 58(6): 966–8. PubMed Abstract | Publisher Full Text
3. Tripathy K, Misra A, Gouda AK, et al.: Primary intraspinal ganglioneuroblastoma of the thoracic spine: a rare case report. Indian J Pathol Microbiol. 2012; 55(4): 536–7. PubMed Abstract | Publisher Full Text
4. Kleihues P: Pathology and genetics of tumors of the nervous system. In: Kleihues P. Editor. World Health Organization Classification of Tumors. Lyon: IARC Press. 2000; 141–4
5. Joshi VV: Peripheral neuroblastic tumors: pathologic classification based
on recommendations of international neuroblastoma pathology committee (Modification of Shimada classification). Pediat Dev Pathol. 2000; 3(2): 184–99.

PubMed Abstract

6. Matthay KK: Neuroblastoma: a clinical challenge and biologic puzzle. CA Cancer J Clin. 1995; 45(3): 179–92.

PubMed Abstract | Publisher Full Text

7. Lonergan GJ, Schwab CM, Suarez ES, et al: Neuroblastoma, ganglioneuroblastoma, and ganglioneuroma: radiologic-pathologic correlation. Radiographics. 2002; 22(4): 911–34.

PubMed Abstract | Publisher Full Text

8. Fatimi SH, Bawany SA, Ashfaq A: Ganglioneuroblastoma of the posterior mediastinum: a case report. J Med Case Rep. 2011; 5(1): 322.

PubMed Abstract | Publisher Full Text | Free Full Text

9. Ramaswamy B, Bhandarkar AM, Menon SS, et al: Ganglioneuroblastoma of Skull Base. J Clin Diagn Res. 2015; 9(8): MD01–3.

PubMed Abstract | Publisher Full Text | Free Full Text

10. Kikuchi K, Saito M: Ganglion-cell tumor of the filum terminale: immunohistochemical characterization. Tohoku J Exp Med. 1999; 188(3): 245–56.

PubMed Abstract | Publisher Full Text

11. Patnaik A, Mishra SS, Mishra S, et al: Primary extradural spinal ganglioneuroblastoma: a case report. Turk Neurosurg. 2014; 24(2): 253–5.

PubMed Abstract | Publisher Full Text

12. Alessi S, Grignani M, Carone L: Ganglioneuroblastoma: Case report and review of the literature. J Ultrasound. 2011; 14(2): 84–8.

PubMed Abstract | Publisher Full Text | Free Full Text

Page 5 of 8
A very challenging case and its management has been described in a clear manner by the authors. However, the absence of any supporting evidence - i.e., radiological or clinical pictures, histopathology pictures - severely limits the utility of this case report to another clinical practitioner.

I recommend that the authors provide the entire gamut of clinical and radiological images along with histopathology to enrich the value of this article.

Is the background of the case's history and progression described in sufficient detail? Yes

Are enough details provided of any physical examination and diagnostic tests, treatment given and outcomes? Partly

Is sufficient discussion included of the importance of the findings and their relevance to future understanding of disease processes, diagnosis or treatment? Yes

Is the case presented with sufficient detail to be useful for other practitioners? Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Spinal surgery, Orthopaedics
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 25 March 2020

https://doi.org/10.5256/f1000research.21831.r61414

© 2020 Das B. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bidyut Prava Das
Department of Pathology, SCB Medical College (Srirama Chandra Bhanja Medical College and Hospital), Cuttack, Odisha, India

It is an excellent article with full progressive history of the patient and every possible investigation has been considered to arrive at the diagnosis. The authors have also discussed different criteria to exclude the other possible differential diagnosis to arrive at the final diagnosis. It will help the practitioners for future reference.

Is the background of the case's history and progression described in sufficient detail?
Yes

Are enough details provided of any physical examination and diagnostic tests, treatment given and outcomes?
Yes

Is sufficient discussion included of the importance of the findings and their relevance to future understanding of disease processes, diagnosis or treatment?
Yes

Is the case presented with sufficient detail to be useful for other practitioners?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Immunogenetics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Author Response 31 Mar 2020

Zawahir Hassan, Park Plaza Hospital, Houston, USA

Thank you so much for your time.
Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com