A reduction in the sea surface warming rate in the South China Sea during 1999–2010

Guo-Qing Jiang1,2 · Qinjian Jin3 · Jun Wei4,5 · Paola Malanotte-Rizzoli2 · Arnold L. Gordon6 · Mingting Li4,5

Received: 2 July 2020 / Accepted: 30 April 2021 / Published online: 21 May 2021
© The Author(s) 2021

Abstract

The South China Sea (SCS) experienced a significant reduction in warming rate ($\sim 0.01 \ ^\circ\mathrm{C}\ \mathrm{decade}^{-1}$, $p > 0.10$) during 1999–2010 following an accelerated and unprecedented warming ($+ 0.15 \ ^\circ\mathrm{C}\ \mathrm{decade}^{-1}$, $p < 0.01$) in the last three decades (1970–1998). However, most global climate models of the CMIP5 RCP4.5 scenario failed to capture this SCS warming slowdown. In this study, we identify two drivers through numerical simulations by using a regional high-resolution, ocean–atmosphere coupled climate model: the major variance (75%) in the sea surface warming slowdown could be explained by the strengthened winter monsoon over the SCS, and the minor variance (12%) could be explained by the changes in the upper ocean circulations. The winter monsoon over the SCS is likely linked to the La Niña-like SST pattern in the eastern tropical Pacific, which strengthens the Walker circulation and results in anticyclonic circulation over the northwestern Pacific. This enhanced winter monsoon is the atmospheric driver that slows down the SCS basin-scale warming, while the largest reduction of the warming rate occurs in the northern SCS that can be attributed to the oceanic throughflow via the Luzon Strait. These findings could have important implications for future climate projections over the SCS and adjacent oceans.

1 Introduction

The South China Sea (SCS), surrounded by 13 Southeast Asian countries that are home to over 600 million people, is strategically crucial in shipping goods, lucrative fisheries-based food security, and large oil–gas reserves. Hence, the spatiotemporal variability in the SCS ocean-climate system has immeasurable impacts on human economic activities (He et al. 2014; Tong et al. 2017), ecosystem stability, natural disasters, such as typhoon intensity (Guo and Tan 2018), and SCS summer monsoon onset (Wu 2010).

Embedded between the tropical Indian and Pacific Oceans, the complex climate variability in the SCS is driven by both local air-sea interactions and large-scale remote forcing through oceanic and atmospheric bridges (Gordon 1986; Klein et al. 1999; Wei et al. 2016a). The SCS is injected with western tropical Pacific water by the Luzon Strait and exports water through the Karimata Strait into the Java Sea (Du and Qu 2010; Qu 2000) and the Mindoro-Sibutu pathway into the Sulu Sea (Gordon et al. 2012; Jiang et al. 2019; Li et al. 2018, 2019, 2020; Metzger and Hurlburt 1996). The SCS experiences strong seasonality due to variability in solar radiation and monsoonal forcing (Chen et al. 2003b; He and Wu 2013; Liu et al. 2001; Qu 2001); in addition, there is interannual variability induced by remote forcing from tropical oceans, such as the El Niño-Southern Oscillation (ENSO) (Liu and Xie 1999; Wei et al. 2016a). On a longer timescale, the SCS has experienced accelerated and unprecedented warming since the 1970s. However, the SCS warming was believed to continue until recently according to many previous studies (Lin et al. 2011a, b; Thompson et al. 2017; Xiao et al. 2019; Yang and Wu 2012; Wei et al. 2013), as few of them focused on the SCS warming.
slowdown during 1999–2010, and the mechanisms have not been well addressed.

In the two decades following 1999, a so-called “hiatus” or slowdown of global surface warming was found (Abraham et al. 2013; Balmaseda et al. 2013; Levitus et al. 2009; Meehl et al. 2011). One explanation relates the “hiatus” to the Pacific Decadal Oscillation (PDO) and decadal ENSO signal (Lin et al. 2011a, b; Trenberth and Fasullo 2013). These studies found that the PDO shifted from a positive phase during 1976–1998 (warmer Indo-Pacific pool and cooler Western North Pacific) to a negative phase after 1999 (cooler Indo-Pacific pool and warmer Western North Pacific). During the PDO negative phase, the decadal Niña 3.4 index shows a predominant La Niña-like phase, which enhances trade winds and cools the eastern tropical Pacific. Given that the tropical Pacific largely accounts for the global surface temperature variation, the La Niña-like phase could make a significant contribution to the “hiatus” (Kosaka and Xie 2013). Other explanations, such as heat sinking into the deeper ocean (Chen and Tung 2014), natural variability and radiative forcing of the climate system (Dai et al. 2013), volcanic eruption (Santer et al. 2014), and increased Indo-Paciﬁc throughﬂow (ITF), which transfers Paciﬁc heat into the Indian Ocean (Lee et al. 2015), were also found, arguing that global warming forced by a long-lasting surging trend of anthropogenic aerosol emissions will persist. Some climate model projections suggest that the “hiatus” may continue to the end of the 2020s (England et al. 2014; Medhaug et al. 2017).

The “hiatus” of global surface warming has been shown to have great impacts on regional climate, such as the reversal of Indian monsoons (Jin and Wang 2017), ampliﬁed Arctic warming (McGregor et al. 2014), and extreme weather events (Sillmann et al. 2014). In this study, we identiﬁed a signiﬁcant warming slowdown in the SCS during 1999–2010 (Fig. 1a) based on multiple datasets, whereas most of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models failed to capture this regional warming slowdown. With a set of sensitivity experiments using a high-resolution, regional coupled model, the causes of the SCS sea surface warming slowdown during 1999–2010 are analyzed.

2 Data and methods

2.1 Observational and reanalysis datasets

SST data products derived from satellite retrievals, observations, and reanalysis are used in this study. Winds and air temperatures at various vertical atmospheric levels are from National Centers for Environmental Prediction (NCEP) reanalysis products and coupled model intercomparison project phase 5 (CMIP5) simulations. The SST datasets are collected from the Simple Ocean Data Assimilation ocean/sea ice reanalysis (SODA) v3.4.2 (0.25° × 0.25°, Carton et al. 2018) and v2.2.4 (0.4° × 0.4°, Carton and Giese 2008), the Hadley Centre Sea Ice and SST data set (HadISST; 1° × 1°, Rayner et al. 2003), and the Extended Reconstructed SST (ERSST) v5 data set (2° × 2°, Smith et al. 2008). SODA is ocean reanalysis data, including various observational datasets with data assimilation methods. HadISST is a global telecommunications system (GTS)-based dataset. ERSST is a global monthly SST analysis from the International Comprehensive Ocean–Atmosphere Dataset, which does not include satellite data. The air temperatures and winds at the 200 hPa and 850 hPa pressure levels are from the NCEP/NCAR Reanalysis 1 (2.5° × 2.5°, Kalnay et al. 1996). Simulations of SST from 14 CMIP5 simulations with 53 runs are also included (Table 1). The CMIP5 historical runs cover the period of 1970–2002, while for the 2002–2015 period, some historical runs are merged with the so-called RCP4.5 (a medium mitigation scenario called “Representative Concentration Pathway 4.5”) emission scenarios (Taylor et al. 2012). Note that anomaly computation is conducted by removing the SCS basin average, and the decadal trend of ocean and air values is averaged yearly to remove seasonal variability.

2.2 RegCM-FVCOM coupled model

The regional air-sea fully coupled model for the SCS was developed and validated in our previous studies (Wei et al. 2013, 2014; Jiang et al. 2019). The model adopts Regional Climate Model version 3 (RegCM3) as the atmospheric component (Pal et al. 2007), which was originally developed at the National Center for Atmospheric Research (NCAR), and the Finite-Volume Coastal Ocean Model (FVCOM) is adopted as the oceanic component (Chen et al. 2003a), which was developed at the University of Massachusetts-Dartmouth. The atmospheric component adopts the dynamical core based on the hydrostatic version of Pennsylvania State University/NCAR Mesoscale Model Version 5 (MM5) (Grell et al. 1994) and the atmospheric radiative transfer scheme from NCAR’s Community Climate Model Version 3 (CCM3) (Kiehl et al. 1996). A bulk aerodynamic ocean flux parameterization scheme is used to compute the ocean surface fluxes (Zeng et al. 1998). The oceanic component, with an unstructured (triangular) grid, solves the momentum and thermodynamic equations with a second-order finite-volume flux scheme, which amalgamates the advantages of finite-element methods for geometric ﬂexibility and ﬁnite-difference methods for computational efﬁciency. Vertical eddy viscosity and diffusivity are resolved by the Mellor and Yamada level 2.5 turbulent closure scheme (Mellor and
A reduction in the sea surface warming rate in the South China Sea during 1999–2010

Yamada 1982), and horizontal diffusivity is calculated by the Smagorinsky turbulence closure (Smagorinsky 1963).

The model domains of RegCM3 are set from 85° E to 142° E and from 20° S to 30° N, which is slightly larger than the FVCOM. This model covers the entire SCS basin, East Asian monsoon area, SCS throughflow (SCSTF) and Indonesian throughflow (ITF). The horizontal resolution of RegCM3 is homogeneously 60 km; however, the resolution of the FVCOM varies from ~5 km on the shelves, continental slopes and narrow straits to ~50 km within the deep SCS and ~200 km along the ocean open boundaries. The ERA-40 dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) (Uppala et al. 2005) offers the initial and boundary conditions for RegCM3, and the SODA reanalysis product provides the FVCOM model inputs. After a 10-year spin-up during the 1960s, RegCM3 and FVCOM were simultaneously integrated forward from 1970 to 2010 through an OASIS3 coupler, which allowed flexible interpolation and transfer of the coupling fields (winds, heat fluxes and SST) between different grids every 3 h. More detailed model setup and validations can be found in our previous study (Wei et al. 2013). Moreover, the FVCOM-only model is validated against in situ datasets (Xu et al. 2013), and the local air-sea feedback mechanisms with a fully coupled version are also verified in Xue et al. (2014).
2.3 Partial-coupling experiments

To identify the driving factors, the decomposition method with partial-coupling (P–C) experiments was used, following our previous study (Wei et al. 2016a). P–C experiments allow for partial air–sea coupling by controlling either atmospheric or oceanic variables and are widely used in global GCMs (Ding et al. 2014a; Wu et al. 2003; Zhong et al. 2008). The difference between the control run (CTL) and P–C experiments decomposes the effect of the controlled variables. To separate the different roles induced by atmospheric effects and boundary intrusion effects on the SCS, a set of experiments are carried out. The fully coupled model integrated from 1970 to 2010 is referred to as the control run (CTL).

In the temperature tendency equation (Eq. 1),

$$\frac{\partial T}{\partial t} = -\left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial x} \left(A_h \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_h \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_h \frac{\partial T}{\partial z} \right) + \frac{Q}{h \rho_0 C_p},$$

where the left-hand side is the temperature change rate; u, v and w are the ocean current velocities; A_h and K_h are the horizontal and vertical diffusion coefficients; and h, C_p, and ρ_0 are the mixed-layer depth, water density and specific heat of water, respectively. Therefore, the temperature change is controlled by advection, horizontal and vertical diffusion, and heat flux terms. However, advection and heat flux terms always dominate near the surface mixing layer (Jiang et al. 2018; Uhlhorn and Shay 2013; Wei et al. 2016a), occupying up to 96% of the total change over the whole SCS area, from coastal margins to the central realm (Fig. 1b). However, this sea surface warming trend encountered a significant slowdown during 1999–2010, with an overall rate of −0.01 °C decade$^{-1}$ ($p > 0.10$), and continued to flatten even into 2019. The most remarkable warming slowdown occurs in the northern SCS, with a cooling rate of −0.5 °C decade$^{-1}$ (Fig. 1c, $p < 0.10$).

To demonstrate that the sea surface warming slowdown marks a decadal feature, an 18-year running mean of SST trends is carried out (Fig. 2). The recalculated SST trends clearly demonstrate that the SCS SST continues to rise during the period of 1970–1990. However, the sea surface warming rate drops from above 0.1 °C decade$^{-1}$ to below zero after 1990 and is persistent in the following years in the SODA, HadISST and ERSST data.

Further analysis on a seasonal timescale based on HadISST shows that the warming slowdown of the SCS sea surface after 1999 is much stronger during boreal winter (drops from 0.25 to −0.08 °C decade$^{-1}$, $p < 0.10$), followed by spring (drops from 0.20 to −0.03 °C decade$^{-1}$, $p < 0.15$) and summer with a slight slowdown trend, as shown in Fig. 3a. The spatial pattern shows that during 1970–1997 the SCS warming trend is nearly uniform over the entire SCS in the four seasons, while the warm slowdown during 1999–2015 occurs mainly in the northern SCS in the winter and spring seasons. The largest cooling rate along the northern SCS shelf follows the path of the SCS through from the Luzon Strait to the Vietnam coast. Note that this cooling rate along the northern SCS shelf is significantly weakened in the summer and disappeared in the autumn.
3.2 Warming slowdown in models

Given the complex topography of the SCS and its multiple narrow passages to the open western Pacific, global climate models of CMIP5 are usually unable to accurately resolve physical processes in this region due to their coarse resolutions, which could be one of the reasons that most CMIP5 models fail to simulate the SCS SST. To include the local effects from topography, coastlines and islands, we adopted a high-resolution RegCM-FVCOM coupled model. The remarkable warming slowdown in the SCS is reproduced well by the model, with a mean absolute error (MAE) of 0.12 °C and correlation coefficient of 0.90 with observational products (see red line in Fig. 1a). Specifically, compared with the SODA data, the coupled model captures the warming trend in the central and southern SCS well from 1970 to 1997 (Fig. 1b, d) and the cooling trend in the northern SCS during 1999–2010. (Fig. 1c, e).

4 Identifying the drivers of the SCS warming slowdown

4.1 Partial-coupling experiments

Previous studies have shown that the semi-closed SCS climate system is largely driven by the variability in East Asia monsoons and Luzon Strait intrusions (Gordon et al. 2012; Klein et al. 1999; Wei et al. 2016a). Therefore, a set of partially coupled experiments are carried out to investigate the contribution of monsoon winds and Luzon Strait transport to the warming slowdown in the SCS. The experiment details are shown in Sect. 2.3.

The two P–C experiments were carried out, and the results are shown in Fig. 4. The total variations in the SCS SST can generally be represented by the two components, explaining over 87% of the total variance (Fig. 4a). The decomposed components show that the change in air surface conditions (CTL–FSC) dominated the remarkable warming slowdown of the SCS, accounting for 75% of the total variance (−0.17 °C decade⁻¹, p < 0.10) during 1999–2010. This result indicates that the SCS warming slowdown is largely attributed to the enhanced monsoons. On the other hand, the SST changes induced by ocean boundary conditions (CTL–FBC) account for 12% of the total variance. The residual (~13% of the total variance) may come from the nonlinear vertical mixing and vertical advection of ocean subsurface, which cannot be linearly decomposed. Note that the ∆SST shown in Fig. 4a, b is calculated as follows:

\[
\text{Total } \Delta \text{ SST} = \text{CTL}(1980s, 1990s, 2000s) - \text{CTL}(1970s);
\]

\[
\Delta \text{ SST due to air surface forcing} = \text{CTL}(1980 − 2010) − \text{FSC}(1980 − 2010),
\]

\[
\Delta \text{ SST due to oceanic boundary} = \text{CTL}(1980 − 2010) − \text{FBC}(1980 − 2010).
\]
decade$^{-1}$, $p < 0.10$) during 1999–2010 (Fig. 5c). The majority of the net heat flux decrease originates from the accelerated latent heat uptake from the ocean surface ($r = -0.94; p < 0.01$), from a negative rate of -0.7 W m$^{-2}$ decade$^{-1}$ ($p < 0.10$) during 1970–1997 to a positive rate of 8.2 W m$^{-2}$ decade$^{-1}$ during 1999–2010 ($p < 0.10$).
A reduction in the sea surface warming rate in the South China Sea during 1999–2010

Fig. 5b. The accelerated evaporation (latent heat uptake) is closely related to the revival of the modeled East Asian winter monsoon (EAWM), from a negative rate of −0.21 ms\(^{-1}\) decade\(^{-1}\) (\(p < 0.10\)) before 1999 to a positive rate of 0.71 ms\(^{-1}\) decade\(^{-1}\) after 1999 (\(p < 0.10\), Fig. 4b). Such a revival of the modeled EAWM is consistent with the National Centers for Environmental Prediction (NCEP) reanalysis products (Fig. 6). Therefore, the warming slowdown trend in boreal winter is obviously attributed to the revival of the EAWM (\(r = -0.49\), \(p < 0.01\), Fig. 4b).

The spatial distribution of the SST trend over the SCS in the FSC experiment shows a basin-wide homogenous warming rate of 0.14 °C decade\(^{-1}\) (\(p < 0.01\), Fig. 4c), which is coincident with the weakened EAWM over the SCS from 1980 to 1997 (Fig. 4b, green line). However, after 1999, the enhanced EAWM resulted in strong sea surface cooling...
over the entire SCS (Fig. 4d). This result confirms that the EAWM shifting before and after 1999 is the major forcing on the SCS SST, accounting for 75% of the SST variance and influencing the entire SCS basin. On the other hand, the effect of oceanic boundary forcing on the SCS SST is small compared to the EAWM effect, but obviously larger than its effect during 1980–1997 (Fig. 4e, f). As demonstrated in many previous studies, the SCS throughflow via the Luzon Strait strengthened after 1999 when the climate system shifts from positive PDO with more El Niño events to negative PDO with more La Niña events (Qiu and Lukas 1996; Kim et al. 2004; Qiu and Chen 2010; Gordon et al. 2014). Our previous study also confirmed the strengthened SCSTF by decomposing the sea surface height (Wei et al. 2016a, b), which drives more cool water from the northern SCS to the central and southern regions.

To reveal the mechanism of the enhanced EAWM, Fig. 7 shows the spatial trends of surface winds and heat fluxes in the SCS, and Fig. 8 indicates the linkage of the SCS domain to the Pacific. The results demonstrate that the SCS SST is positively correlated with the SST over the eastern tropical Pacific (Fig. 8), implying that the SCS warming slowdown can likely be linked to the eastern tropical Pacific. Based on the NCEP atmospheric analysis data, Niña-like sea surface cooling in the eastern tropical Pacific results in convection and an anticyclonic anomaly in the western Pacific in the lower atmosphere (Fig. 8b). This phenomenon has been documented in previous studies (Ding et al. 2014b; Liu et al. 2011; Wang et al. 2000). The anticyclonic air circulation anomaly further enhances the EAWM over the SCS (Fig. 7e). In contrast, the SCS sea surface experiences nonsignificant cooling during the boreal summer (Fig. 7a–d), with a pattern balanced by the opposite phase of the net heat flux trend. This result can be explained by a negative feedback that the cold (warm) SST forces less (more) evaporation and thus less (more) highly reflective cirrus clouds form, and consequently, more (less) shortwave radiation reaches the ocean surface (Ramanathan and Collins 1991). This feedback weakens as the Northern Hemisphere enters the boreal winter season, in which the SCS SST is mainly controlled by the revived EAWM.
A significant slowdown in the SCS warming rate during 1999–2010 is observed in both remote-sensed satellite-derived products and reanalysis datasets (Fig. 1), following a long-term warming trend from 1970 to 1997. However, most of the IPCC CMIP5 climate models failed to reproduce this warming slowdown in the SCS. Based on a high-resolution regional air-sea coupled model with a set of P–C

5 Summary and discussion

A significant slowdown in the SCS warming rate during 1999–2010 is observed in both remote-sensed satellite-derived products and reanalysis datasets (Fig. 1), following a long-term warming trend from 1970 to 1997. However, most of the IPCC CMIP5 climate models failed to reproduce this warming slowdown in the SCS. Based on a high-resolution regional air-sea coupled model with a set of P–C

Fig. 6 The same as Fig. 3, but for surface meridional wind speed abnormally from NCEP dataset. The positive trends mean northward monsoon while negative trends mean southward (e.g. negative trends in winter mean stronger winter monsoon)
Fig. 7 Spatial trends of wind, heat flux and SST in FSC. a–d Decadal spatial trends of SST versus surface wind (a), latent heat flux uptake (b), short wave heat flux absorbed (c) and net heat flux absorbed (d) during boreal summer, respectively. e–h The same as a–d, but for boreal winter.

Fig. 8 Correlations between SCS SST and Pacific temperature and wind. a Correlation coefficients between SCS SST and NCEP air temperature (shading) and wind vectors (purple arrows) at 200 hPa over Pacific Ocean during boreal winter (DJF) of 1970–2015. b Similar with a, but for the wind vectors at 850 hPa and SODA SST. HadISST and ERSST indicate the same pattern and are not shown here. The Walker Circulation is highlighted with bigger orange and light blue vectors. The dark blue curves with arrows in b indicate the circulation trends at 850 hPa during 1999–2015. The black dots indicate the significant correlation with temperature at the 95% level. Those insignificant correlation coefficient with wind vectors are omitted.
experiments, the model results show that this SCS warming slowdown has the largest magnitude in boreal winter and spring, forced by strengthened EAWM winds during 1999–2010 and thus increased latent heat uptake over the SCS (Figs. 4, 5). The strengthened EAWM may be linked to the La Niña-like SST pattern in the eastern tropical Pacific, which was not simulated by those CMIP5 models. The largest reduction in the SCS warming rate can be attributed to the oceanic throughflow by the Luzon Strait, where most of the CMIP5 models are unable to resolve the local topography and coastlines, as well as the Luzon Strait throughflow.

Increasing local resolution has been adopted in regional models to improve model simulations in the SCS and surrounding oceans and seas (Wei et al. 2013; Lin et al. 2011a, b; Liu et al. 2011; Van Sebille et al. 2014; Tranchant et al. 2016; Li et al. 2019; Jiang et al. 2019; Xue et al., 2014). However, less attention has been given to the linkage of the SCS to large-scale remote forcing through atmospheric bridges. Figure 8 demonstrates that the SCS SST is positively correlated with the SST over the eastern tropical Pacific and positively correlated with the anticyclonic circulation at 850 hPa in the northwestern Pacific during boreal winter. The warming trend of the SCS sea surface during 1970–1997 was captured well by most CMIP5 models when the El Niño-like SST pattern was dominant in the eastern tropical Pacific. However, an obvious warming slowdown occurred over the eastern tropical Pacific during 1999–2015, resulting in cyclonic circulation at 850 hPa in the northwest.
Pacific during boreal winter (Fig. 9), which was not resolved by most of the CMIP5 models. Specifically, 43 out of 53 models were able to capture the warming during 1970–1997 (Fig. 11a); however, more than 40 models failed to simulate the observed warming slowdown in the SCS sea surface during 1999–2015 under the RCP4.5 scenario (Figs. 10, 11b). The importance of the La Niña-like SST pattern in the eastern tropical Pacific during 1999–2010 was pointed out by Kosaka and Xie (2013), and then they successfully reproduced the so-called global “hiatus” phenomenon by artificially prescribing a cool SST tongue in the eastern tropical Pacific in a GCM. Compared to the remote atmospheric forcing, the effect of the oceanic circulation changes due to the Luzon Strait intrusion is rather small, accounting for 12% of the total SST variance. One of the reasons is that the SCS throughflow transport is about 4–6 Sv, with local effect within the northern SCS shelf (Wei et al. 2016a). On the other hand, the SCS general circulation is anticyclonic as an oceanic response to the monsoon winds. The SCS throughflow is strengthened not only by the Luzon Strait intrusions, but also the enhanced EAWM. As shown in Fig. 4, the cooling rate on the northern SCS shelf due to the wind effect in the FSC run (Fig. 4d) is even larger than the oceanic boundary forcing in the FBC run (Fig. 4f). This finding indicates that for a regional model, increasing local ocean model resolution may help to better resolve the regional spatial patterns through improved bathymetry oceanic pathways, while improving large-scale atmospheric and oceanic boundary forcing can help to control the model long-term trend by linking local processes to large-scale remote forcings.

Fig. 10 SCS SST time series and spatial trends of CMIP5 simulations. a SCS SST Time series of CMIP5 RCP45 ensemble mean (blue solid line) and RCP85 ensemble mean (red dashed line). The blue shaded area represents one standard deviation of 53 ensembles of RCP45. The linear decadal trends (denoted by ‘rc’) are listed in the box located at northwest side. All p values are less than 0.01. Note that most of RCP85 EM is overlapped by RCP45 EM before 2005. b, c Spatial pattern of decadal SST trends of CMIP5 RCP45 ensemble mean during 1970–1997 and 1999–2015 respectively, similar in RCP85. The black dots show the 99% significant level.
A reduction in the sea surface warming rate in the South China Sea during 1999–2010

Fig. 11 SCS and eastern Tropical Pacific SST trends. a The SCS SST trends from 3 observations, RegCM-FVCOM model and 53 CMIP5 RCP45 runs during 1970–1997. b Similar with a, but for the trends during 1999–2015. c, similar with b, but for eastern Tropical Pacific. Each number of 1–53 corresponds to one simulation listed in Table 1. The solid filled bars represent the trends reach 90% significant level, while the white blank bars are not. The grey dashed lines highlight those good CMIP5 members successfully capturing the slowdown of SST warming. d–f Frequency distribution of SST linear trend corresponding to a–c respectively. The stars indicate the trends distribution of observations (black stars), RegCM-FVCOM (blue star) and CMIP5 ensemble mean (orange star)
Table 1 List of CMIP5 simulations, corresponding to the number indices in Figs. 11, 13 and 14

Number	Model Name
01	ACCESS1-0_r1i1p1
02	ACCESS1-3_r1i1p1
03	CCSM4-ri1p1
04	CCSM4_r2i1p1
05	CCSM4_r3i1p1
06	CCSM4_r4i1p1
07	CCSM4_r5i1p1
08	CCSM4_r6i1p1
09	CESM1-BGC_r1i1p1
10	CESM1-CAM5_r1i1p1
11	CESM1-CAM5_r2i1p1
12	CESM1-CAM5_r3i1p1
13	CMCC-CM_r1i1p1
14	CMCC-CMS_r1i1p1
15	CNRM-CMS_r1i1p1
16	CSIRO-Mk3-6-0_r1i1p1
17	CSIRO-Mk3-6-0_r2i1p1
18	CSIRO-Mk3-6-0_r3i1p1
19	CSIRO-Mk3-6-0_r4i1p1
20	CSIRO-Mk3-6-0_r5i1p1
21	CSIRO-Mk3-6-0_r6i1p1
22	CSIRO-Mk3-6-0_r7i1p1
23	CSIRO-Mk3-6-0_r8i1p1
24	CSIRO-Mk3-6-0_r9i1p1
25	CSIRO-Mk3-6-0_r10i1p1
26	GFDL-CM3_r1i1p1
27	GFDL-ESM2_r1i1p1
28	GFDL-ESM2M_r1i1p1
29	GISS-E2-H-CC_r1i1p1
30	GISS-E2-H_r1i1p1
31	GISS-E2-H_r1i1p2
32	GISS-E2-H_r1i1p3
33	GISS-E2-R-CC_r1i1p1
34	GISS-E2-R_r1i1p1
35	GISS-E2-R_r1i1p2
36	GISS-E2-R_r1i1p3
37	inmcm4_r1i1p1
38	IPSL-CM5A-LR_r2i1p1
39	IPSL-CM5A-LR_r3i1p1
40	IPSL-CM5A-LR_r4i1p1
41	IPSL-CM5A-LR_r5i1p1
42	IPSL-CM5B-LR_r1i1p1
43	MIROC-ESM-CHEM_r1i1p1
44	MIROC-ESM_r1i1p1
45	MIROC5_r1i1p1
46	MIROC5_r2i1p1
47	MIROC5_r3i1p1
48	MPI-ESM-LR_r1i1p1
49	MPI-ESM-LR_r2i1p1
50	MPI-ESM-LR_r3i1p1
51	MPI-ESM-MR_r1i1p1
52	MRI-CGCM3_r1i1p1
53	NorESM1-M_r1i1p1

Acknowledgements

This study was supported by the Guangdong Province Key Area Research and Development Program (2020B11111020003), the National Natural Science Foundation of China (41976007 and 91558101), the Special Expert of Guangxi Zhuang Autonomous Region (2018B08) and the China Scholarship Council. M.L. was supported by Guangdong Basic and Applied Basic Research Foundation (grant 2019B08) and the China Scholar Council (CSC). We thank Prof. Chien Wang of MIT for providing important comments on this work. We thank the European Centre for Medium-Range Weather Forecasts (ECMWF, http://apps.ecmwf.int/datasets/) for providing the ERA-40 reanalysis for the atmospheric boundary conditions, the Simple Ocean Data Assimilation (SODA) reanalysis (http://www.atmos.umd.edu/~ocean/) for the oceanic boundary conditions, the Hadley Center of the SST observational products (https://www.metoffice.gov.uk/hadobs/hadiss/) for the National Oceanic and Atmospheric Administration (NOAA) for the ERSST data (https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v5), the NOAA for the Optimum Interpolation Sea Surface Temperature (OISST) data (https://www.ncdc.noaa.gov/oisst), and the NOAA National Center for Environmental Prediction (NCEP) for providing the NCEP/NCAR reanalysis data (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html).

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, and indicate changes were made. The material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

Abraham JP et al (2013) A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev Geophys 51:450–483

Balmaseda MA, Trenberth KE, Källen E (2013) Distinctive climate signals in reanalysis of global ocean heat content. Geophys Res Lett 40:1754–1759

Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136:2999–3017

Carton JA, Chepurin GA, Chen L (2018) SODA3: a new ocean climate reanalysis. J Clim 31:6967–6983

Chen X, Tung KK (2014) Climate. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345:897–903

Chen CS, Liu HD, Beardsley RC (2003a) An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J Atmos Ocean Technol 20:159–186

Chen JM, Chang CP, Li T (2003b) Annual cycle of the South China Sea surface temperature using the NCEP/NCAR reanalysis. J Meteorol Soc Jpn 81:879–884

Dai A, Fyfe JC, Xie S-P, Dai X (2015) Decadal modulation of global surface temperature by internal climate variability. Nat Clim Change 5:555–559

Ding H, Greatbatch RJ, Park W, Latif M, Semenov VA, Sun XG (2014a) The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model. Clim Dyn 42:367–379

Ding H, Greatbatch RJ, Park W, Latif M, Semenov VA, Sun X (2014b) The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model. Clim Dyn 42:367–379

Du Y, Qu T (2010) Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation. Dyn Atmos Oceans 50:233–256

England MH et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227

Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91:5037–5046

Gordon AL, Huber BA, Metzger EJ, Susanto RD, Hurlburt HE, Adi TR (2012) South China Sea throughflow impact on the Indonesian throughflow. Geophys Res Lett 39:11

Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado
for Atmospheric Research, Tech. Note NCAR/TN-398 + STR, 122 pp
Guo YP, Tan ZM (2018) Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Nino. Nat Commun 9:1507
He Z, Wu R (2013) Coupled seasonal variability in the South China Sea. J Oceanogr 69:57–69
He L, Zhang A, Weese D, Li S, Li J, Zhang J (2014) Demographic response of cutlassfish (Trichiurus japonicus and T. nantaisen) to fluctuating palaeo-climate and regional oceanographic conditions in the China seas. Sci Rep 4:6380
Huber M, Knutti R (2014) Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat Geosci 7:651–656
Jiang GQ, Xu J, Wei J (2018) A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models. Geophys Res Lett 45:3706–3716
Jiang GQ, Wei J, Malanotte-Rizzoli P, Li M, Gordon AL (2019) Seasonal and interannual variability of the subsurface velocity profile of the Indonesian throughflow at Makassar Strait. J Geophys Res Oceans 124:9644–9657
Jin Q, Wang C (2017) A revival of Indian summer monsoon rainfall since 2002. Nat Clim Change 7:587–594
Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471
Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP (1996) Description of the NCAR community climate model (CCM3). NCAR Technical Note. 108(2):55–60
Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J Clim 12:917–932
Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407
Lee S-K, Park W, Baringer MO, Gordon AL, Huber B, Liu Y (2015) Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat Geosci 8:445–449
Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mischnov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608
Li M, Gordon AL, Wei J, Gruenburg LK, Jiang G (2018) Multidecadal timeseries of the Indonesian throughflow. Dyn Atmos Oceans 81:84–95
Li M, Wei J, Wang D, Gordon AL, Yang S, Malanotte-Rizzoli P, Jiang G (2019) Exploring the importance of the Mindoro-Sibutu pathway to the upper-layer circulation of the South China Sea and the Indonesian throughflow. J Geophys Res Oceans 124:5045–5066
Li M, Gordon AL, Gruenburg LK, Wei J, Yang S (2020) Interannual to decadal response of the Indonesian throughflow vertical profile to Indo-Pacific forcing. Geophys Res Lett 47:11
Lin CY, Ho CR, Zheng Q, Huang SJ, Kuo NJ (2011a) Variability of sea surface temperature and warm pool area in the South China Sea and its relationship to the western Pacific warm pool. J Oceanogr 67(6):719–724
Lin CY, Ho CR, Zheng Q, Kuo NJ, Chang P (2011b) Warm pool variability and heat flux change in the global oceans. Glob Planet Change 77:26–33
Liu WT, Xie X (1999) Spacebased observations of the seasonal changes of South Asian monsoons and oceanic responses. Geophys Res Lett 26:1473–1476
Liu Q, Yang H, Liu Z (2001) Seasonal features of the Sverdrup circulation in the South China Sea. Prog Nat Sci 11:205–206
Liu Q, Feng M, Wang D (2011) ENSO-induced interannual variability in the southeastern South China Sea. J Oceanogr 67:127–133
McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin F-F, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892
Medhaug I, Stolpe MB, Fischer EM, Knutti R (2017) Reconciling controversies about the “global warming hiatus.” Nature 545:41–47
Meehl GA, Arblaster JM, Faluol TJ, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1:360–364
Melor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875
Metzger EJ, Hurburt HE (1996) Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J Geophys Res C Oceans 101:12331–12352
Pal JS et al (2007) Regional climate modeling for the developing world—the ICTP RegCM3 and RegCNET. B Am Meteorol Soc 88:1395
Qu T (2000) Upper-layer circulation in the South China Sea. J Phys Oceanogr 30:1450–1460
Qu T (2001) Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J Geophys Res Oceans 106:6943–6955
Ramanathan V, Collins W (1991) Thermodynamic regulation of Ocean Warming by cirrus clouds deduced from observations of the 1987 El-Nino. Nature 351:27–32
Rayner NAA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:D14
Santer BD et al (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci 7:185–189
Stommel J, Donat MG, Fyfe JC, Zwiers FW (2014) Observed and simulated temperature extremes during the recent warming hiatus. Environ Res Lett 9(6):064023
Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91:99–164
Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. B Am Meteorol Soc 93:495–498
Thompson B, Tkalich P, Malanotte-Rizzoli P (2017) Regime shift of the South China Sea SST in the late 1990s. Clim Dyn 48(5–6):1873–1882
Tong H, Cai L, Zhou G, Yuan T, Zhang W, Tian R, Qian PY (2017) Temperature shapes coral-algal symbiosis in the South China Sea. Sci Rep 7(1):1–12
Tranchant B, Reffray G, Greiner E, Nugroho D, Koch Larrouy A, Giorgi F (2014) CMIP5 climate model performance: an overview. B Am Meteorol Soc 95:995–1024
Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming. Nat Clim Change 4:888–892
Van Sebille E, Sprintall J, Schwarzwolf S, England MH, Biastoch A, Böning CW (2014) Pacific-to-Indian ocean connectivity: Tasman leakage, Indonesian throughflow, and the role of ENSO. J Geophys Res Oceans 119:1365–1382. https://doi.org/10.1002/2013JC009525
Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536
Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M (2014) Contribution of natural decadal variability to global warming acceleration and hiatus. Nat Clim Change 4:893–897
Wei J, Malanotte-Rizzoli P, Eltahir EAB, Xue P, Xu D (2013) Coupling of a regional atmospheric model (RegCM3) and a regional oceanic model (FVCOM) over the maritime continent. Clim Dyn 43:1575–1594
Wei J, Wang D, Li M, Malanotte-Rizzoli P (2014) Coupled seasonal and intraseasonal variability in the South China Sea. Clim Dyn 44:2463–2477
Wei J, Malanotte-Rizzoli P, Li M-T, Wang H (2016a) Decomposition of thermal and dynamic changes in the South China Sea induced by boundary forcing and surface fluxes during 1970–2000. J Geophys Res Oceans 121:7953–7972
Wei J, Li MT, Malanotte-Rizzoli P, Gordon AL, Wang DX (2016b) Opposite variability of Indonesian throughflow and South China Sea throughflow in the Sulawesi Sea. J Phys Oceanogr 46:3165–3180
Wu R (2010) Subseasonal variability during the South China Sea summer monsoon onset. Clim Dyn 34(5):629–642
Wu L, Liu Z, Gallimore R, Jacob R, Lee D, Zhong Y (2003) Pacific decadal variability: the tropical Pacific mode and the North Pacific mode. J Clim 16:1101–1120
Xiao F, Wang D, Zeng L, Liu QY, Zhou W (2019) Contrasting changes in the sea surface temperature and upper ocean heat content in the South China Sea during recent decades. Clim Dyn 53(3–4):1597–1612
Xu D, Malanotte-Rizzoli P et al (2013) The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian through flow (ITF): an ocean model study. Dyn Atmos Oceans 63:103–130
Xue PF, Eltahir EAB, Malanotte-Rizzoli P, Wei J (2014) Local feedback mechanisms of the shallow water region around the maritime continent. J Geophys Res Oceans 119:6933–6951
Yang H, Wu L (2012) Trends of upper-layer circulation in the South China Sea during 1959–2008. J Geophys Res Oceans 117:C08037
Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644
Zhong Y, Liu Z, Jacob RA (2008) Origin of Pacific multidecadal variability in community climate system model, version 3 (CCSM3): a combined statistical and dynamical assessment. J Clim 21:114–133

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.