OVERVIEW

Systems approaches to optimizing deep brain stimulation therapies in Parkinson’s disease

Sabato Santaniello1 | John T. Gale2 | Sridevi V. Sarma3

1Biomedical Engineering Department and CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut
2Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
3Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland

Correspondence
Sabato Santaniello, Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269.
Email: sabato.santaniello@uconn.edu

Funding information
NIH, Grant/Award number: R01NS073118-02; NSF PECASE Award, Grant/Award number: 1055550; Burroughs Wellcome Fund CASI Award, Grant/Award number: 1007274

Over the last 30 years, deep brain stimulation (DBS) has been used to treat chronic neurological diseases like dystonia, obsessive–compulsive disorders, essential tremor, Parkinson’s disease, and more recently, dementias, depression, cognitive disorders, and epilepsy. Despite its wide use, DBS presents numerous challenges for both clinicians and engineers. One challenge is the design of novel, more efficient DBS therapies, which are hampered by the lack of complete understanding about the cellular mechanisms of therapeutic DBS. Another challenge is the existence of redundancy in clinical outcomes, that is, different DBS programs can result in similar clinical benefits but very little information (e.g., predictive models, longitudinal data, metrics, etc.) is available to select one program over another. Finally, there is high variability in patients’ responses to DBS, which forces clinicians to carefully adjust the stimulation settings to each patient via lengthy programming sessions. Researchers in neural engineering and systems biology have been tackling these challenges over the past few years with the specific goal of developing novel DBS therapies, design methodologies, and computational tools that optimize the therapeutic effects of DBS in each patient. Furthermore, efforts are being made to automatically adapt the DBS treatment to the fluctuations of disease symptoms. A review of the quantitative approaches currently available for the treatment of Parkinson’s disease is presented here with an emphasis on the contributions that systems theoretical approaches have provided to understand the global dynamics of complex neuronal circuits in the brain under DBS.

This article is categorized under:
Translational, Genomic, and Systems Medicine > Therapeutic Methods
Analytical and Computational Methods > Computational Methods
Analytical and Computational Methods > Dynamical Methods
Physiology > Mammalian Physiology in Health and Disease

KEYWORDS
deep brain stimulation, neural systems and control, neuroengineering, neuroprosthetics, Parkinson’s disease

1 | INTRODUCTION

Chronic deep brain stimulation (DBS) devices (Figure 1) were first approved by the U.S. Food and Drug Administration (FDA) in 1997 to treat tremor. Since then, DBS therapies have been used to treat patients with Parkinson’s disease (PD), dystonia, obsessive–compulsive disorders, and epilepsy (Hickey & Stacy, 2016; Miocinovic, Somayajula, Chitnis, & Vitek, 2013). More recent applications of DBS include the treatment of refractory depression, psychiatric disorders, and neurodegenerative dementias (Holtzheimer et al., 2012; Ponce et al., 2016; Wu et al., 2013).
In patients with advanced PD, DBS is used to ameliorate motor symptoms and reduce motor fluctuations while decreasing the dosages of anti-parkinsonian medications (Fasano et al., 2016; Okun et al., 2012), which leads to a more efficient and prolonged management of the PD symptoms (Hickey & Stacy, 2016; Miocinovic et al., 2013). Clinical ratings of motor symptoms typically improve by more than 50% in appropriately selected PD patients (Miocinovic et al., 2013) and this explains the increasing number of patients (8,000–10,000) who receive DBS surgery every year compared to patients with other neurological diseases (Rowland, Sammartino, & Lozano, 2017) (Box 1).

The success of DBS, though, critically depends on the parameters defining the electrical pulses delivered by the pulse generator (i.e., duration, amplitude, and frequency) and must be carefully assigned (Figure 1) (Benabid, Chabardes, Mitrofanis, & Pollak, 2009). Tuning of the DBS parameters must account for the unique combination of symptoms that each patient presents and may require several adjustments (Picillo, Lozano, Kou, Puppi Munhoz, & Fasano, 2016). Because of the therapeutic relevance of the stimulation parameters, current clinical protocols require that the DBS devices are programmed manually through multiple sessions over a few days or weeks. During these sessions, the range of viable parameter values must be carefully probed while a trained clinician (e.g., neurologist, neurosurgeon, fellow, occupational therapist, etc.) must evaluate the symptomatic benefits of the stimulation by using clinical rating scales and finally identify the most adequate parameter values (Goetz et al., 2008).

**BOX 1**

**CLINICAL INDICATIONS FOR DBS IN THE TREATMENT OF PARKINSON’S DISEASE**

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. Prevalence of PD is estimated around 0.3% of the general population, with rates increasing to 1–2% and 4–5% for individuals over age 65 and 85, respectively. Major motor symptoms of PD include bradykinesia (i.e., slowness of voluntary movements), rigidity, tremor, and postural instability. The severity of these symptoms increases as the disease progresses. Current treatments help alleviate symptomatic effects, but no available therapy has been proven to cure or slow disease progression. DBS is typically recommended to PD patients who are still responsive to anti-PD medications but have developed medication-induced dyskinesia. On average, patients undergoing the DBS surgery are at relatively advanced stages of the disease, with severe motor complications and a mean disease duration at the time of surgery of 12 to 15 years. By adding DBS therapy, these late-stage PD patients may better manage the dyskinesia and other motor complications, reduce their dosages of anti-PD medications by 30–50% on average, and overall prolong the management of PD symptoms.
The complexity and time-consuming nature of these programming protocols have promoted an intense research activity to devise new computational tools that may assist the clinicians and shorten the programming phase. In this effort, researchers in neural control and systems biology had an important role in pioneering closed-loop programming procedures, adaptive DBS solutions, and model-based control policies that may optimize the therapeutic effects of DBS while coping with the fluctuations of the disease symptoms. Moreover, computational models and systems analyses have been developed to investigate the cellular mechanisms of therapeutic DBS protocols and to design novel DBS technologies.

We provide a review of the quantitative approaches that have been recently developed for the treatment of PD via DBS, with an emphasis on the contributions that systems theoretical approaches have provided to understand the global dynamics of complex neuronal circuits in the brain under DBS. Several modeling approaches have been proposed to describe the brain dynamics under PD and to personalize the DBS therapy, for example, see (Lowery, 2017) for a comprehensive overview. Our goal here is to review the implications and insights that have been gained by using a systems theoretical approach in association with these models to analyze the neural dynamics and optimize the DBS therapy via model-based techniques.

2 | BASAL GANGLIA AND PARKINSON’S DISEASE

Current protocols for DBS surgery in PD recommend the placement of the DBS electrode in either the subthalamic nucleus (STN) or the internal globus pallidus (GPI) (Benabid et al., 2009; Moro et al., 2010) in the basal ganglia (Figure 1).

The basal ganglia are a group of subcortical nuclei involved in multiple segregated circuits (e.g., limbic, prefrontal, motor, oculomotor loop) that modulate the cortical activity (DeLong & Wichmann, 2015) (Figure 2a). The motor circuit is involved in the planning of movements and consists of multiple parallel polysynaptic loops, which are hypothesized to convey bits of information independent of the other loops about a selected motor program (Gale, Amirnovin, Williams, Flaherty, & Eskandar, 2008; Montgomery & Baker, 2000). Each loop in the motor circuit begins with a convergent input from the premotor and sensorimotor cortices to the striatum (putamen region, Kandel, 2013) and then proceeds through different pathways to the GPI or the substantia nigra pars reticulata (SNr), which project to the ventrolateral thalamus and the brainstem. The ventrolateral thalamus is believed to process, integrate, and relay sensory information selectively to the sensorimotor, premotor, and motor cortices (DeLong & Wichmann, 2015; Haber & Calzavara, 2009). Other nuclei involved in the motor circuit are the substantia nigra pars compacta (SNc), the STN, and the external globus pallidus (GPe). A widely accepted functional model of the motor circuit (Albin, Young, & Penney, 1989) suggests that there are two dopamine-mediated pathways through the basal ganglia, i.e., the direct and indirect pathway, see Figure 2a. Based on the polarities of known connections, the direct pathway is thought to facilitate movements while the indirect pathway is thought to suppress movements.

PD degenerates the neurons in the SNc and the consequent loss of dopamine alters the function of these pathways (Gale et al., 2008) (Figure 2b) and contributes to the emergence of the movement disorders. A functional explanation for the effects of dopamine depletion on the basal ganglia was first provided by Albin et al. (1989). Based on anatomical and physiological

![Figure 2](image-url)
considerations, they observed that there are different types of dopaminergic receptors in the putamen, that is, D₁-type for the direct pathways and D₂-type for the indirect pathways, respectively, which have opposite effects on the activation of the striatal neurons (Kreitzer, 2009). Specifically, a loss of dopamine would suppress the striatal neurons projecting onto the GPi and therefore inhibit the direct pathway. Conversely, a loss of dopamine would facilitate the activity of the neurons projecting onto the GPe, thus exciting the indirect pathway (Figure 2b). A result of this dual effect would be an over-inhibition of the thalamus, which would corrupt the information relayed back to cortex (Albin et al., 1989; DeLong & Wichmann, 2015).

It is important to note that such arguments were originally phrased in terms of average firing rates of neurons. Numerous experimental studies later demonstrated that the dynamics, that is, the temporal arrangement of the spikes, in the basal ganglia neurons play an important role in the pathophysiology of PD. First, it has been shown that a severe deficiency of dopamine positively correlates with the formation of abnormal oscillatory activity, mostly confined to the beta band (13–35 Hz), throughout the entire system of the basal ganglia (Brown, 2007; Brown et al., 2001; Courtemanche, Fujii, & Graybiel, 2003; Gale, 2004; Gale, Shields, Jain, Amirnovin, & Eskandar, 2009; Kuhn et al., 2009; Levy et al., 2002; Wichmann, Bergman, & DeLong, 1994; Williams, Neimat, Cosgrove, & Eskandar, 2005). These oscillations are suppressed by medications that target the central dopaminergic activity and their amplitude correlates with the intensity of the bradykinesia and rigidity symptoms of PD (Kuhn et al., 2009; Kuhn, Kupsch, Schneider, & Brown, 2006). Furthermore, the beta activity is phasic and organized in long, high-amplitude bursts (Tinkhauser et al., 2017), which suggests a pervasive oscillatory synchronization within the entire motor circuit.

Second, studies (Pessiglione et al., 2005; Schneider & Rothblat, 1996) quantified the ability of the neurons in the ventrolateral thalamus to encode sensorimotor information such as tactile stimuli and passive movements of the limbs under PD conditions. They reported that the selectivity of the thalamic response to the stimuli significantly decreases under dopamine depletion, which may indicate a loss of functional segregation along the loops forming the motor circuit.

Overall, there is converging evidence suggesting that, under Parkinsonian conditions, the parallel loops forming the motor circuit become rhythmic and overly-synchronized, which consequently limits their ability to convey independent bits of information about specific motor programs through different, parallel pathways (Gale et al., 2008).

3 | DBS THERAPY

The DBS implant consists of an electrode lead inserted in the basal ganglia (STN or GPi) and connected to an insulated wire (a.k.a. “extension”) that passes under the skin of the head, neck and shoulder and terminates at the implanted pulse generator (Figure 1). The pulse generator sits inferior to the collar bone and delivers electrical stimulation to the tip of the electrode via the extension.

The generator delivers voltage-controlled, charge-balanced pulses with a regular pattern (i.e., constant interpulse intervals) and the typical parameter settings of voltage, pulse width, and frequency are 1–3.5 V, 60–210 μs, and 130–185 Hz, respectively (Moro et al., 2002; Rizzone et al., 2001; Volkmann, Herzog, Kopper, & Deuschl, 2002). In a large, multicenter study involving PD patients, Obeso et al. (Deep-Brain Stimulation for Parkinson's Disease Study Group et al., 2001) determined the mean stimulus parameter settings being 3 V, 82 μs, and 152 Hz for STN DBS, and 3.2 V, 125 μs, and 162 Hz for GPi DBS, respectively.

The ranges of voltage, pulse width, and frequency were mainly determined through empirical studies conducted on relatively homogenous groups of PD patients. For instance, Rizzone et al. (2001) estimated the relationship between pulse width and stimulus intensity (i.e., voltage) while monitoring the patients’ wrist rigidity as a hallmark for movement disorders. They found an inverse relationship between pulse width and voltage and reported that the minimum voltage value causing side effects increases as the pulse width decreases, thus concluding that DBS devices should be programmed with the shortest possible pulse duration. Moro et al. (2002), instead, showed that the clinical benefits saturate above 3 V, while voltages above 3.6 V should be avoided because they result in an increased drain of the battery with no significant increment in the volume of neural elements excited. Finally, studies (Limousin et al., 1995; Volkmann et al., 2002) investigated the effects of the stimulation frequency on akinesia and rigidity in case of STN DBS. They reported that these symptoms reduce for frequencies above 50 Hz, the amount of symptom reduction increases almost linearly with the DBS frequency up to around 130 Hz, and the symptom reduction has a further small, nonlinear increase for frequencies from 130 Hz to 185 Hz.

The body of knowledge gained through these studies had a dual effect. On one side, it assisted with the formulation of the current protocols for DBS programming (Picillo et al., 2016). On the other, it contributed to formulate hypotheses about the therapeutic mechanisms of DBS (Dorval et al., 2008; Grill, Snyder, & Miocinovic, 2004; Montgomery & Baker, 2000; Rubin & Terman, 2004). Specifically, since the largest clinical benefits were achieved with a combination of high frequency, short pulse width, and high voltage, it was hypothesized that the mechanisms of therapeutic DBS involve replacing the
pathological rhythms of the basal ganglia output seen in PD with a tonic, high frequency (HF) firing. This increased activity would prevent neurons from modulating the activity in their neighboring structures, thus creating an information lesion in the area (Dorval et al., 2008; Grill et al., 2004; Montgomery & Baker, 2000; Rubin & Terman, 2004).

The scenario, though, has rapidly changed in the last few years. First, studies (Gale et al., 2009; Raz, Vaadia, & Bergman, 2000; Rubin & Terman, 2004) have shown that nonparkinsonian neural activity is irregular and low frequency. Second, pilot studies (Akbar et al., 2016; Brocker et al., 2013, 2017) have shown that carefully designed nonregular, low-frequency stimulation patterns may have clinical merits comparable to those of high-frequency, regular DBS. Altogether, these studies suggest that (a) therapeutic mechanisms other than the information lesion are possible but need further investigation, and (b) novel, low-power DBS solutions can be devised. These solutions could preserve the clinical benefits of current DBS therapies while addressing major limitations of the current technology, such as the inefficient battery consumption, the need for lengthy manual programming, and the widespread influence on nearby cognitive loops with possible adverse side effects (De Gaspari et al., 2006; Le Jeune et al., 2010; Munhoz et al., 2016; Selzler, Burack, Bender, & Mapstone, 2013; Temel et al., 2006; Wojtecki et al., 2006).

This invokes, however, for a deeper understanding of the dynamical interactions between nuclei in the cortico-basal ganglia–thalamo–cortical motor circuit (Figure 2) in healthy and PD conditions, with and without DBS (Benabid et al., 2009; Perlmutter & Mink, 2006). It also invokes for the development of tools to optimize the stimulus waveforms and patterns, to use the battery power efficiently, and to robustly adapt the DBS input to the patient’s neurological conditions.

4 | CHALLENGES IN MODELING THE EFFECTS OF DBS

Neuronal networks in the brain communicate information about a subject’s intent, internal state, and external environment through electrical activity. In PD, the lack of dopamine in the SNc is associated with pathological dynamics in the motor-related neuronal network spanning the cortico-basal ganglia–thalamo–cortical circuit (Figure 2b), including pathological oscillations and synchronization (Gale et al., 2008). Such dynamics are related to the manifestation of movement disorders including resting tremor, rigidity, and bradykinesia (slowness of movements) (Kuhn et al., 2006, 2009).

DBS has been introduced to the clinical practice to interfere with pathological network dynamics and restore behavior (Benabid et al., 2009). From a systems perspective, DBS works as an exogenous localized control input into the network. It injects pulses of electrical current in well-defined anatomical sites (e.g., STN and GPi), but its effects spread throughout the entire network. Therapeutic DBS operates in open-loop and is typically high in power, which—although generally safe for the brain tissue (Moss, Ryder, Aziz, Graeber, & Bain, 2004)—leads to several problems: frequent surgical battery replacements, adverse side effects, and lack of adaptation of the stimulation to the patient’s needs and symptoms’ fluctuations (Butson & McIntyre, 2008; Wei & Grill, 2009). Moreover, high-power stimulation does not restore network dynamics back to a healthy state, rather it appears to “block” certain regions (e.g., GPi) that are most pathological (Grill et al., 2004). Since single neurons in the brain do not have sustained firing at high frequency (>100 Hz) and high-power signals in healthy conditions (Gale et al., 2009; Raz et al., 2000), there is an important opportunity to restore network dynamics with low-power DBS, thus minimizing adverse side effects and improving safety. Furthermore, since pathological signatures and severity may vary in different patients, there is a need for adapting the DBS input to the patient’s own state, thus improving the potential therapeutic impact. To design adaptive low-power signals, though, a predictive model of the affected neuronal networks is required and a mathematically suitable framework for investigating innovative stimulation strategies must be formulated.

The research efforts reviewed in the next sections pursued models that may generate activity in healthy and diseased conditions and may characterize the influence of DBS applied to specific target regions in the network. Some of these models also aimed to be amenable to analysis and simulation and were paired with control tools for designing computationally efficient DBS control strategies. The construction of models that satisfy all these features at the same time, though, remains an open-problem for several reasons:

- **System is distributed.** Networks involving brain structures are an interconnection of large groups of neuronal populations wherein information may be corrupted and communicated with delays.
- **Fundamental units in system are complex.** Single neurons are nonlinear multi-input single-output continuous-valued stochastic systems whose electrophysiological dynamics depend on the neuron type and location, the interconnections with other neurons, and the signals provided by the extra- and intracellular environments.
- **System phenomena change nontrivially in the diseased state.** Pathological signatures such as synchronization and prominent oscillations typically arise in the diseased network and corrupt information transfer. These signatures may be localized in the network but have a global effect, which must be captured by the model.
DBS influences the system's dynamics in a nontrivial way. DBS changes the extracellular environment in surrounding structures which in turn impacts the activity of each neuron, ultimately leading to a network effect. Different models have tried to capture these aspects with various degrees of success.

Supporting data are difficult to collect. To construct a realistic model of the system, in vivo recordings from an entire neural circuit in healthy and diseased subjects, with and without DBS applied, must be obtained. These experiments are extremely difficult to perform and must be done with care on animals. Consequently, very few laboratories in the world have collected such data.

Current models of neurons and neuronal networks are predominantly biophysically based and account for several factors that influence the electrophysiology of neurons, like processing of synaptic inputs in the dendritic trees, ionic basis of electrical excitability, process of exogenous inputs such as the DBS signal (Hahn & McIntyre, 2010; Rubin & Terman, 2004; Santaniello et al., 2015; Santaniello, Fiengo, Glielmo, & Grill, 2007a, 2007b; So, Kent, & Grill, 2012). On the other hand, some models ignore subcellular neurophysiological data and biophysics, and represent the neuronal circuit as a network of phase oscillators to study phenomena such as synchronization (Ermentrout & Kopell, 1991; Tass, 2003; Tass & Hauptmann, 2007). These models do not account for biophysical factors such as short- and long-term temporal dependencies that exist in the spiking activity (e.g., refractoriness, bursting). However, they provide insight into network dynamics and may be more amenable for control design than biophysically based models. Finally, several researchers have taken a purely data-driven statistical modeling approach, where the key idea is to model only the timing between information-carrying events captured in the neuronal network activity as opposed to modeling the biophysical mechanisms leading to the generation of spikes. These critical events are sudden spikes in the neuronal transmembrane voltage, called action potentials (Brodal, 2016), which are modulated by both extrinsic factors (e.g., external stimuli, DBS signal) and intrinsic factors (e.g., neuron’s own spiking history and history of neighboring neurons), and capture temporal dependencies observed in neuronal activity.

4.1 | Biophysical models

These models comprise single neuron elements which are variations of the Hodgkin–Huxley (HH) model (1952). The HH model is an equivalent electrical circuit (Figure 3) of the membrane electrochemistry, which characterizes the membrane potential, \( V_m \), of a neuron as a function of the transmembrane ionic currents:

\[
C_m \frac{dV_m}{dt} + \sum_i g_i(V_m)(V_m - E_i) = I_e
\]  

(1)

The reversal potential for ion \( i \), \( E_i \), (also known as the Nernst potential) is the membrane potential at which there is no net flow of ions \( i \) from one side of the membrane to the other, and the conductances, the \( g_i \)'s, depend nonlinearly on \( V_m \) and are determined experimentally. Typical expressions for sodium (Na) and potassium (K) conductances in the HH model are

\[
g_{Na}(V_m) = g_{Na_{max}} m^3 h(V_m) \quad \text{and} \quad g_{K}(V_m) = g_{K_{max}} n^4(V_m)
\]

respectively, where \( s = (s_{\infty}(V_m) - s)/\tau_s(V_m), s = h, m, n \), and \( s_{\infty}(V_m), \tau_s(V_m) \) are monotonic functions for all \( s \). With \( r \) types of ionic currents involved, the HH model for a single-compartmental neuron has at least \( r + 1 \) states. The DBS signal is typically modeled as an additive exogenous current, \( I_e = I_{DBS} \), in Equation (1) (Rubin & Terman, 2004).

These models have been extremely useful for understanding the underlying mechanisms that drive the cellular membrane voltage and have been used to introduce novel hypotheses about the mechanisms of therapeutic DBS. A model by Rubin and Terman (2004) first introduced the notion of thalamic relay fidelity as a potential metric of success for DBS and provided a qualitative explanation of the therapeutic effects of high-frequency DBS by using bifurcation analysis. An expansion of the

![Figure 3](image-url)
model introduced by Rubin and Terman was later used to disentangle the contributions of local cells in the subthalamo-pallidal subsystem (i.e., STN, GPe, and GPi) and fibers of passage to the modulation of thalamocortical neurons (So et al., 2012) while other models of the subthalamo-pallidal subsystem (Hahn & McIntyre, 2010; Santaniello et al., 2007a, 2007b) highlighted the cellular mechanisms that may lead to a shift in rate and pattern of neurons in the basal ganglia under DBS.

More recently, we developed a comprehensive network model of the interactions between the basal ganglia, the motor cortex, and the thalamus, and we analyzed the effects of PD and DBS on the exchange between neurons across different structures (Santaniello et al., 2015). Through numerical simulations, this model allowed to quantify the effects of DBS on multiple nested circuits as the frequency of stimulation increases. It demonstrated that high-frequency therapeutic DBS may evoke resonant effects over the cortico-basal ganglia–thalamo–cortical motor circuit. The model showed that the emergence of resonance depends on the frequency of DBS, modifies the global dynamics of the motor circuits, and results in a general improvement of the metrics of functional neural activity (e.g., thalamic relay fidelity, power spectral content, etc.) that correlate with motor symptoms reduction, thus leading to the hypothesis that therapeutic DBS works by restoring the normal function and information processing capabilities of the motor circuit. Interestingly, this hypothesis overcomes the limitations of the information lesion theory (Dorval et al., 2008; Grill et al., 2004; Rubin & Terman, 2004), as it suggests that the therapeutic effects of HF DBS need both the feedforward modulation of the pallido-thalamic pathway (which is accounted for by the information lesion theory) and the feedback modulation of the basal ganglia-cortico pathway to elicit resonance. Furthermore, it complements the information lesion theory as it shows that the high-frequency modulation of the prethalamic input restores the functional role of the thalamus in motor programming rather than leaving the thalamus in an inconsistent state. This is likely related to the nature of thalamocortical relay neurons, whose relay function depends on the temporal and spectral features of the presynaptic input. It has been shown in (Agarwal & Sarma, 2012), in fact, that different classes of presynaptic temporal patterns may result in similar relay performances and that both high-frequency oscillatory patterns (i.e., like those generated by GPi under high-frequency DBS) and irregular patterns (i.e., like those generated by GPi under healthy conditions) may result in similar relay fidelity values in thalamocortical relay neurons.

Interestingly, Equation (1) captures the point-wise relationship between ionic current densities and membrane potential in a single point along the neuron’s membrane (Neher & Sakmann, 1992). Models in (Hahn & McIntyre, 2010; Rubin & Terman, 2004; Santaniello et al., 2007a, 2007b, 2015; So et al., 2012) are denoted as single-compartment as they assume that a point-wise relationship like Equation (1) is representative of the global behavior of an entire neuron or, at least, of its soma, thus neglecting the effects of the inhomogeneous distribution of ion channels, the gradient in membrane potential along the neuron’s dendrites and axons, and the geometry of the DBS electrode.

Multicompartment models (Butson & McIntyre, 2008; Kent & Grill, 2013; McIntyre, Grill, Sherman, & Thakor, 2004; Miocinovic et al., 2006), instead, explicitly focus on the inhomogeneity of the neuron’s membrane and surrounding medium. In these models, the point-wise Equation (1) is used as a model-unit to be repeated as many times as the number of neuron’s segments (a.k.a., compartments) to be modeled, and the compartments are interconnected according to the neuron’s own anatomy. Similarly, a finite element description of the DBS electrode is paired with the neuron model and the anisotropy of the brain tissue is explicitly accounted for, thus resulting in a detailed three-dimensional (3-D) representation of the interaction between the DBS-evoked electric field and the neuron. By encompassing a similar level of details, models have been used to investigate the local effects of DBS around the electrode and the complex electrochemical processes emerging at the interface between the DBS electrode and the nervous tissue as current is injected.

One caveat with the use of single-compartment and multicompartment biophysically based models, though, is that they grow quickly in complexity as more neurons and segments are modeled, thus making analyses and the design of computationally efficient DBS control strategies intractable. Furthermore, parameters of these models are difficult to tune as they require intracellular measurements taken from single neurons in vitro via voltage-, current- or patch-clamp techniques (Neher & Sakmann, 1992). Therefore, several researchers have investigated other classes of models to describe and analyze the dynamics of neurons under PD conditions and DBS.

4.2 Mean-field models

Mean-field models have been explored as an alternative to biophysically based neuron models to simulate and analyze the neural activity around the DBS lead. Defined in (Ermentrout, 1998), these models tend to have a smaller number of state variables and equations than biophysically based neuron models and capture the average electrophysiological activity of large, spatially distributed ensembles of neurons, thus resulting amenable for both theoretical analysis and extensive simulations of large neural tissue layers.

The mean-field models proposed thus far to investigate the basal ganglia belong to the “neural mass” (NM) class (Pinotsis, Robinson, Beim Graben, & Friston, 2014), that is, they primarily focus on the temporal dynamics of the basal ganglia and neglect spatial variability within each nucleus.
NM models have been extensively used to investigate the initiation of band-limited (e.g., beta-band) neural oscillations in the basal ganglia. Studies (Gillies & Willshaw, 1998; Gillies, Willshaw, & Li, 2002) proposed the following model template to describe the interaction between the average field potentials in the basal ganglia:

\[ \tau_n \dot{x}_n = -x_n + \sum_{j} \alpha_{j \rightarrow n} \sigma_{j \rightarrow n}(x_j) + I_{e,n}(t) \]  

(2)

where \( n \) is a generic nucleus in the basal ganglia (i.e., \( n = \text{STN}, \text{GPe}, \text{etc.} \)), \( x_n \) is the average field potential in the nucleus \( n \), and \( \sigma_{j \rightarrow n}(x_j) \) is a sigmoidal function that relates the average field potential \( x_j \) in the nucleus \( j \) to the average firing frequency of the neurons in the nucleus \( n \). \( I_{e,n}(t) \) provides a lump description of noise and external, nonspecific inputs to the nucleus (e.g., input from secondary projections), and it can be expanded to include the DBS input. Finally, the time constant \( \tau_n \) and the parameters \( \alpha_{j \rightarrow n} \) must be estimated from data.

This model template was adopted in (Gillies et al., 2002) to investigate the dynamics of the STN–GPe system and to show that oscillations consisting of bursts of high-frequency activity repeated at a low rate can be induced by increasing the inhibition of the GPe, which is typically observed in PD. Similarly, Modolo, Henry, and Beuter (2008) modified this model template to investigate the population effects of STN DBS and, through numerical simulations, they showed that low-frequency DBS (i.e., \( \leq 20 \) Hz DBS) causes a phase-locking between the existing low-frequency pattern of the STN–GPe system and the DBS frequency, which determines an enhancement of the burstiness and synchrony across the STN. Vice versa, HF DBS gradually decreases the burstiness of the STN activity and promotes tonic oscillations, whose frequency saturates to 100 Hz.

Finally, Pavlides, Hogan, and Bogacz (2015) extended the modeling framework provided by Equation (2) to include the projections between the STN–GPe system, striatum, thalamus, and cortex. Through numerical simulations, they showed that pathologic, widespread beta-band oscillations can equally originate in the motor cortex or the STN–GPe system and then resonate throughout the basal ganglia. This modeling result is interesting because it suggests that the beta-band oscillations could be an emergent property of the entire motor circuit rather than a localized phenomenon. This would help to explain why the application of DBS in virtually any structure along the motor circuit can eventually modulate the power of beta oscillations and deliver some amelioration of the symptoms of PD.

A different approach to NM modeling was taken instead in (Moran et al., 2011). In this study, the stochastic-based dynamic causal modeling (DCM) framework (Moran et al., 2007) was used to investigate the spectral properties of large neural ensembles in the basal ganglia. Specifically, a DCM was fitted on measurements of auto- and cross-power spectra from the local field potentials of the STN, GPe, cortex, and striatum in a rodent model of PD. The model parameters were then analyzed to determine the effects of dopamine depletion on the connectivity between nuclei. Through this effort, authors demonstrated that chronic dopamine depletion reorganizes the motor circuit by increasing the effective connectivity between the cortex and the STN and decreasing the connectivity from the STN to the GPe. Moreover, this study complements the results in (Pavlides et al., 2015) as it shows that, upon dopamine depletion, the effective connectivity along the indirect pathway may be relevant to the resonance of the beta-band oscillations.

Although amenable for computational and theoretical studies, these models often present limitations for control applications, as they typically focus on a single biomarker (e.g., beta-band oscillations) estimated under stationary conditions. However, recent experiments (Johnson et al., 2016; Tinkhauser et al., 2017) indicate that band-limited oscillations may equally emerge under healthy and PD conditions, are nonstationary, and may be modulated in frequency and pattern by the execution of movements. Overall, this suggests that multiple biomarkers should be simultaneously considered.

### 4.3 Oscillator network models

Another modeling approach that describes the dynamics of periodically spiking neurons has proposed the use of networks of phase oscillators, where each oscillator represents the phase of the membrane voltage, \( V \), of a single neuron (Ermentrout & Kopell, 1991; Tass, 2003; Tass & Hauptmann, 2007). A population of \( N \) interacting phase oscillators subject to stimulation, \( S_j \), and to random forces, \( F_j \), obeys to the equation:

\[ \dot{\theta}_j = \omega - \frac{K}{N} \sum_{k=1}^{N} \sin(\theta_j - \theta_k) + \omega_j(t) S_j(\theta_j) + F_j(t) \]  

(3)

where \( \theta_j \) denotes the phase of the \( j \)th phase oscillator. All oscillators have the same eigenfrequency \( \omega \) and are globally coupled with strength \( K > 0 \). The impact of an electrical stimulus depends on the neuron’s phase and is modeled by a 2\( \pi \)-periodic function such as \( S_j(\theta_j) = I \cos(\theta_j) \) with intensity parameter \( I \). \( F_j(t) \) characterizes random forces modeled as Gaussian white noise (Tass, 2003; Tass & Hauptmann, 2007).

The study of large-scale networks of oscillator has raised significant interest in the control theory and systems biology communities (Stiefel & Ermentrout, 2016). In PD, the emergence of pathological oscillations and synchronization in the
10–30 Hz range in the STN, GPi, and cortex (Brown, 2007; Raz et al., 2000) has inspired the use of oscillator networks to investigate the transition from a normal, desynchronized state to an abnormal, hyper-synchronous state. Perhaps more importantly, the theoretical framework provided by the oscillator model in Equation (3) has been highly amenable to design novel DBS patterns and closed-loop, adaptive DBS paradigms. Early contributions by Tass (2003) and Tass and Hauptmann (2007) have suggested that DBS may be used to periodically reset the STN neurons and thus achieve a de-synchronized state. Furthermore, they suggested that local field potentials from the DBS electrode may be a proxy for the abnormal synchronization in the STN and that, by using the local field potentials as feedback variable in a closed-loop-controlled DBS configuration, it is possible to desynchronize the STN neurons through low-amplitude, nonpulsatile DBS currents (Popovych, Hauptmann, & Tass, 2006; Popovych & Tass, 2010).

The idea of using DBS to reset a hyper-synchronized state has been further explored in recent years by introducing the notion of phase response curve (PRC). In a series of computational studies (Holt & Netoff, 2014; Holt, Wilson, Shinn, Moehlis, & Netoff, 2016; Snari et al., 2015), Netoff, Moehlis, and colleagues have investigated metrics to characterize the level of synchronization in a large population of neurons and have proposed a closed-loop programming paradigm to maximally desynchronize the STN neuronal activity in PD patients. An example of the resultant model predictions is reported in Figure 4.

One caveat with the model in Equation (3), though, is that the acquisition of precise measurements of the level of synchronization in a large population of neurons may be challenging with the currently implanted DBS electrodes, which may limit the practical application of the methods proposed in (Holt et al., 2016). Several studies have proposed local field potentials as a reliable proxy of the network activity (Kent et al., 2015; Santaniello, Fiengo, Glielmo, & Grill, 2011) but the variability of the field potential amplitude and frequency content across patients may hamper the translation of the proposed solutions.

4.4 | Statistical models

An alternative to the parametric models presented in the previous sections is provided by nonparametric, data-driven models estimated from spike trains recorded in PD patients during the DBS surgery or animal models of parkinsonism. One of the most amenable mathematical formulations for spike trains is provided by point processes (Kass, Eden, & Brown, 2014; Snyder, & Miller, 1991). Combined with generalized linear models and maximum likelihood estimation methods, point processes provide a modular modeling framework to capture higher-order statistical properties of spike trains (Barbieri, Quirk, Frank, Wilson, & Brown, 2001; Brown, Barbieri, Eden, & Frank, 2003; Coleman & Sarma, 2010), quantify the effects of exogenous stimuli (e.g., sensorimotor feedback, DBS, etc.) on the spiking patterns of neurons (Truccolo, Eden, Fellows, Donoghue, & Brown, 2005), and reconstruct the functional connectivity between neurons in large networks (Chen, Putrino, Ghosh, Barbieri, & Brown, 2011).

A point process model (PPM) generalizes the rate of a Poisson process to one that is history dependent, and can characterize the relative contribution of intrinsic factors (e.g., spike history) and extrinsic factors (e.g., behavior, DBS, etc.) on the probability that a neuron will spike at any given time (Barbieri et al., 2001; Kass et al., 2014). Formally, a point process is a series of 0–1 random events that occur in continuous time. For a neural spike train, the 1s are individual spike times and the 0s are the times at which no spikes occur. To define a PPM of neural spiking activity, we consider an observation interval.
(0, T] and let \( N(t) \) be the number of spikes counted in (0, t] for \( t \in (0, T] \). The PPM is then completely characterized by its conditional intensity function (CIF) \( \lambda_t \) defined as

\[
\lambda_t(\mathcal{H}_t) = \lim_{\Delta \to 0} \frac{\mathbb{P}(N(t+\Delta) - N(t) = 1|\mathcal{H}_t)}{\Delta}
\]

where \( \mathcal{H}_t \) denotes the history of spikes and any other variable that impacts the spiking propensity up to time \( t \) (\( t \) is not included) and \( \mathbb{P} \) is probability. It follows from Equation (4) that the probability of a single spike in a small interval \((t, t+\Delta] \) is approximately \( \mathbb{P}(\text{spike in } (t, t+\Delta]) \approx \lambda_t(\mathcal{H}_t)\Delta \) (Kass et al., 2014). For any realization of these processes, the sample path likelihood for the interval \((t_0, T]\)

\[
\mathcal{L} = \exp \left( \int_{t_0}^{T} \log \lambda_u(\mathcal{H}_u) dN(u) - \int_{t_0}^{T} \lambda_u(\mathcal{H}_u) du \right)
\]

can be computed and used for static parameter estimation and model comparison (Brown et al., 2003). Because the CIF completely characterizes a spike train, defining a model for the CIF defines a model for the spike train (Kass et al., 2014; Snyder & Miller, 1991).

In recent years, we proposed the use of point process models to characterize the response of neurons to DBS and account for certain features of neuronal firing like refractoriness, bursting, and oscillations. In a series of seminal studies on the statistical properties of STN neurons from PD patients and primates, Pedoto et al. (2012) and Sarma et al. (2008, 2009, 2010, 2012) used point process models to discriminate healthy vs. pathological discharge patterns, and quantify the effects of exogenous sensory stimuli on the subthalamic activity. A schematic of PPM for STN neurons under DBS is reported in Figure 5. Filters \( \mathcal{F}_1 \) and \( \mathcal{F}_2 \) are linear and estimated from spike trains collected in PD patients or primates. Parameters in \( \mathcal{F}_1 \) and \( \mathcal{F}_2 \) are estimated by using the maximum likelihood method while the order and mathematical structure of the filters are chosen by maximizing the goodness-of-fit on the available data. Model parameters in \( \mathcal{F}_1 \) and \( \mathcal{F}_2 \) are then used to quantify the effects of exogenous sensory stimuli on the neuronal spiking pattern and to infer intrinsic neural dynamics like refractoriness, bursting, and rate oscillations.

A similar PPM-based approach was later applied to spike trains collected across the entire motor circuit (i.e., GPi, GPe, striatum, ventral and medial thalamus, motor, and sensory cortices) in nonhuman primates both before and after developing parkinsonism, with and with STN DBS (Deng et al., 2017; Santaniello, Gale, Montgomery, & Sarma, 2010a, 2010b, 2012; Santaniello, Montgomery, Gale, & Sarma, 2012; Saxena, Santaniello, Montgomery, Gale, & Sarma, 2010). The analysis showed that, on average, neurons in different brain regions have similar responses to the DBS pulse, which may be a consequence of activating multiple neuronal circuits simultaneously, but the efficacy (Montgomery, 2006) of such response is generally low at nontherapeutic DBS frequencies. As the stimulation frequency increases, though, the efficacy significantly improves and reaches a peak value for DBS frequencies around 130 Hz, which is a highly therapeutic frequency for nonhuman primates (Hashimoto, Elder, Okun, Patrick, & Vitek, 2003). Furthermore, the analysis revealed that increments of the stimulation frequency are associated with increments in neural entrainment and complexity, that is, ensembles of neurons under the same DBS input would spike in a more similar manner over time and the discharge patterns would be highly nonstationary. Overall, these results indicate that neurons across the entire cortico-basal ganglia–thalamo–cortical circuit may have an increased capability of transferring and processing information under DBS, which would compensate for the loss due to PD (Vyas, Huang, Gale, Sarma, & Montgomery, 2016).
5 | OPTIMIZING DBS THERAPY

All the modeling approaches presented thus far have contributed to investigate the cellular effects of electrical stimulation, to analyze the pathophysiology of PD, and to formulate novel hypotheses about the source of therapeutic merit for high-frequency regular DBS. These approaches have also resulted in numerical simulators of the cortico-basal ganglia–thalamo-cortical motor circuit with various degrees of complexity, resolution, and accuracy.

Simulators based on multicompartment biophysically based neuron models have been primarily used as computational testbeds to evaluate novel DBS pulse waveforms, electrode geometries, and stimulation modalities. Examples include current- vs. voltage-controlled stimulation, unipolar- vs. bipolar-stimulation, and so on (Butson & McIntyre, 2008; Howell & Grill, 2014; Howell, Huyhn, & Grill, 2015; Lai et al., 2012; Wei & Grill, 2005; Willsie & Dorval, 2015). Perhaps more interestingly, these models have been used to optimize the DBS therapy at the level of individual patients by combining numerical simulations and medical imaging, as summarized in Figure 6. First, the detailed models of DBS electrode and neurons are used to carefully estimate the volume of neural tissue that is likely activated by a DBS pulse train. Then, the estimated volume is overlapped with reconstructed 3-D images of the patient’s brain. Finally, the overlap between the estimated volume and the image-based reconstruction of the STN (for subthalamic DBS), GPi (for pallidal DBS), or ventrolateral thalamus (for thalamic DBS) is maximized. The maximization problem is solved by using convex optimization and machine-learning tools, and is formulated either at the time of DBS surgery (Butson, Cooper, Henderson, & McIntyre, 2007; Butson, Cooper, Henderson, Wolgamuth, & McIntyre, 2011), that is, when the trajectory of the electrode in the brain is planned and the final electrode position must be chosen, or at the time of DBS programming (Frankemolle et al., 2010; Lehto et al., 2017; Pena, Zhang, Deyo, Xiao, & Johnson, 2017; Shamir et al., 2014; Shamir, Dolber, Noecker, Walter, & McIntyre, 2015; Xiao, Pena, & Johnson, 2016), that is, when the electrode has been already implanted and the DBS pulse settings must be programmed.
Numerous models at different levels of detail and complexity have contributed to isolate potential factors to the therapeutic process. Significant progress has been made in understanding and optimizing DBS in the last few years using systems approaches. DBS input and neural dynamics that are completely unrelated to the PD condition (Johnson et al., 2016) indicate that a closed-loop DBS therapy may be more energy-efficient and robust to motor fluctuations than open-loop DBS. Despite the success in early studies, though, model-based closed-loop DBS is still under investigation. The advantages in robustness, adaptivity, and energy-efficiency, in fact, are paired with the computational cost of the optimization routines and multicompartment model simulations, the cost for the integration of image processing and computational models, and the cost for gathering and harmonizing data from multiple sources at different stages of the DBS surgery such as presurgery imaging, intraoperative recordings, and so on.

Simulators based on single-compartment neuron models, instead, have been used in two distinct DBS design problems. One problem is the offline optimization of the DBS pattern, where the goal is to design an optimal DBS pulse train that may be delivered in an open-loop configuration. Studies (Brocker et al., 2017; Feng, Shea-Brown, Greenwald, Kosut, & Rabitz, 2007) paired a model of the subthalamo-pallidal subsystem (Rubin & Terman, 2004) with a genetic algorithm to optimize the DBS temporal pattern. In both studies, the goal of the optimization procedure was to maximize the relay reliability index (Rubin & Terman, 2004), which measures the relay capability of the thalamocortical recipients of the subthalamo-pallidal subsystem. Results indicated that low-frequency, nonregular DBS patterns can (a) significantly improve the thalamic relay reliability over the baseline value under PD conditions and (b) provide results similar to therapeutic, high-frequency, regular DBS. Moreover, Brocker et al. (2017) tested these optimized DBS patterns on both PD patients and rodent models of PD. Results showed that (i) the optimized DBS patterns were effective in the treatment of bradykinesia and tremor, which are two of the most impairing motor symptoms of PD, and (ii) the average improvement in clinical ratings under DBS correlates well with the increments in relay reliability measured in the model under the same DBS input. Overall, these results suggest that nonperiodic, low-frequency DBS patterns may be as effective as high-frequency, regular DBS but—to efficiently design such patterns—metrics must be introduced to quantify the effects of DBS on the dynamics of the cortico-basal ganglia—thalamo—cortical motor circuit.

The second problem involving single-compartment neuron models is the closed-loop regulation of DBS. Studies (Agarwal & Sarma, 2010; Gorzelic, Schiff, & Sinha, 2013; Grant & Lowery, 2013; Huang & Santanello, 2017; Liu et al., 2016, 2017; Liu, Khalil, & Oweiss, 2011) have investigated potential feedback variables and model-based control strategies for DBS. A common trait of these studies is the focus on the pallido-thalamic interface, which involves the synaptic currents from the GPI to thalamus, is considered a proxy for the thalamic relay reliability, and is used as a feedback variable. Different techniques have been proposed to design the controller (e.g., PID; Gorzelic et al., 2013), model-predictive control (Liu et al., 2016), linear control (Huang & Santanello, 2017), nonlinear control (Liu et al., 2011), etc. and to estimate the synaptic input to thalamus by processing extracellular field potentials in the GPI. Despite the variety of control design techniques, though, all these studies aim to attenuate aberrant oscillations in the pallido-thalamic interaction, which has been suggested to deteriorate the thalamic relay reliability (Agarwal & Sarma, 2012), and to restore a more normal activity across the cortico-basal ganglia—thalamo—cortical circuit. Furthermore, all the proposed solutions include a reference signal for the closed-loop scheme and design such signal off-line by simulating the single-compartment neuron models under non-PD conditions. Results from these studies consistently indicate that a nonpulsatile, nonperiodic, low-amplitude DBS input can produce the same effects on the neural circuit as high-frequency DBS pulse trains while using a fraction of the energy required by the DBS pulse trains. Similar conclusions are derived in three studies (Huang & Santanello, 2017; Popovych, Lysyansky, & Tass, 2017; Santanello et al., 2011) where the pulsatile nature of the DBS input is preserved, and the control strategy aims to adapt the amplitude and frequency of the DBS pulse train.

Overall, the main advantages of the proposed control solutions are (a) to impose a desired pattern to the neural activity while using a fraction of the power of current DBS programs and (b) to adapt the stimulation to the actual state of the neurons in the cortico-basal ganglia—thalamo—cortical circuit. These results were later confirmed in PD patients (Arlotti, Rossi, Rosa, Marceglia, & Priori, 2016; Little et al., 2013) and indicate that a closed-loop DBS therapy may be more energy-efficient and robust to motor fluctuations than open-loop DBS. Despite the success in early studies, though, model-based closed-loop DBS is still under investigation. The advantages in robustness, adaptivity, and energy-efficiency, in fact, are paired with the need for more sophisticated pulse generators, fast signal processing algorithms, and more computational power. Furthermore, the design of the reference signal is critical for the control performance and may cause unintended interference between the DBS input and neural dynamics that are completely unrelated to the PD condition (Johnson et al., 2016).

6 | CONCLUSIONS

Significant progress has been made in understanding and optimizing DBS in the last few years using systems approaches. Numerous models at different levels of detail and complexity have contributed to isolate potential factors to the therapeutic
merit of high-frequency, regular DBS. Computational models have also fueled the investigation of novel, irregular and low-frequency DBS programs, thus leading to the important conclusion that the set of therapeutic DBS programs is overall larger than initially hypothesized. New tools and methods are therefore necessary to search this set and to systematically identify the most adequate DBS program for each patient. Furthermore, there is a growing interest in using these models to predict the therapeutic outcomes of novel electrode geometries. With the possibility of fabricating multipolar electrodes with a growing number of contacts, there is an opportunity to finely shape the electric field applied to the stimulation target and therefore models are required to carefully evaluate different contact configurations. Finally, the ability to model complex neuronal networks that span several brain nuclei offer a unique opportunity to evaluate novel stimulation targets, that is, to simulate the effects of DBS on the neural circuits when the DBS electrode is placed in novel sites in the brain. These model-assisted therapies would help clinicians identify the most effective DBS location and program for each class of dominant motor symptoms and would lead to the development of quantitative criteria for planning the most adequate DBS surgery for each patient.

The proposed modeling frameworks have been often paired with model-based control techniques to design and evaluate closed-loop adaptive DBS strategies. The effort in designing control strategies for DBS has led in recent years to promising solutions that may help cope with the fluctuations of the PD conditions and neural variability. These solutions, though, still require further analysis to avoid unintended interactions with brain functions that are not affected by PD. Furthermore, the development of these solutions poses novel engineering challenges and design constraints on the stimulation devices, for which a thorough costs/benefits analysis is still required. Finally, these solutions are still in their early stages and need to translate from preclinical testing phases to clinical trials. This explains why the empirical evidence of the promised benefits is at the moment encouraging but still limited.

ACKNOWLEDGMENTS
The authors would like to thank E. B. Montgomery Jr. and E. N. Eskandar for providing valuable data and discussions on the topic of DBS over the years.

CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.

RELATED WIREs ARTICLES
Electrophysiological models of neural processing
An energy systems approach to Parkinson’s disease
Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools

ORCID
Sabato Santaniello http://orcid.org/0000-0002-2133-9471

REFERENCES
Agarwal, R., & Sarma, S. V. (2010). Restoring the basal ganglia in Parkinson’s disease to normal via multi-input phase-shifted deep brain stimulation. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1539–1542.
Agarwal, R., & Sarma, S. V. (2012). Performance limitations of relay neurons. PLoS Computational Biology, 8, e1002626.
Akbar, U., Raife, R. S., Hack, N., Hess, C. W., Skinner, J., Martinez-Ramirez, D., … Okun, M. S. (2016). Randomized, blinded pilot testing of nonconventional stimulation patterns and shapes in Parkinson’s disease and essential tremor: Evidence for further evaluating narrow and biphasic pulses. Neuromodulation, 19, 343–356.
Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375.
Arlotti, M., Rossi, L., Rosa, M., Marzeglia, S., & Priori, A. (2016). An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson’s disease. Medical Engineering & Physics, 38, 498–505.
Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001). Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. Journal of Neuroscience Methods, 105, 25–37.
Benabid, A. L., Chabardes, S., Mitrofanis, J., & Pollak, P. (2009). Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurology, 8, 67–81.
Brocker, D. T., Swan, B. D., So, R. Q., Turner, D. A., Gross, R. E., & Grill, W. M. (2017). Optimized temporal pattern of brain stimulation designed by computational evolution. Science Translational Medicine, 9, eaah3532.
Brocker, D. T., Swan, B. D., Turner, D. A., Gross, R. E., Tatter, S. B., Koop, M. M., … Grill, W. M. (2013). Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Experimental Neurology, 239, 60–67.
Brodal, P. (2016). The central nervous system (5th ed.). New York, NY: Oxford University Press.
Johnson, L. A., Nebeck, S. D., Muralidharan, A., Johnson, M. D., Baker, K. B., & Vitek, J. L. (2016). Closed-loop deep brain stimulation effects on Parkinsonian motor symptoms in a non-human primate - is beta enough? Brain Stimulation, 9, 892–896.

Kandel, E. (2013). Principles of Neural Science (5th ed.). New York, NY: McGraw-Hill Education.

Kass, R. E., Eden, U. T., & Brown, E. N. (2014). Analysis of neural data. New York, NY: Springer.

Kent, A. R., & Grill, W. M. (2013). Neural origin of evoked potentials during thalamic deep brain stimulation. Journal of Neurophysiology, 110, 826–843.

Kent, A. R., Swan, B. D., Brocker, D. T., Turner, D. A., Gross, R. E., & Grill, W. M. (2015). Measurement of evoked potentials during thalamic deep brain stimulation. Brain Stimulation, 8, 42–56.

Kreitzer, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147.

Kuhn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. The European Journal of Neuroscience, 23, 1956–1960.

Kuhn, A. A., Tsui, A., Aziz, T. R., Ray, N., Brucke, C., Kupsch, A., … Brown, P. (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity. Experimental Neurology, 215, 380–387.

Lai, H. Y., Liao, L. D., Lin, C. T., Hsu, J. H., He, X., Chen, Y. Y., … Shih, Y. Y. (2012). Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Journal of Neural Engineering, 9, 036001.

Le Jeune, F., Peron, J., Grandjean, D., Draper, S., Haegele, C., Garin, E., … Verin, M. (2010). Subthalamic nucleus stimulation affects limbic and associative circuits: A PET study. European Journal of Nuclear Medicine and Molecular Imaging, 37, 1512–1520.

Lehto, L. J., Slopsema, J. P., Johnson, M. D., Shatillo, A., Teplitzky, B. A., Uleet, L., … Michaeli, S. (2017). Orientation selective deep brain stimulation. Journal of Neural Engineering, 14, 016016.

Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain, 125, 1196–1209.

Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J. F., Broussé, E., … Benabid, A. L. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91–95.

Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., … Brown, P. (2013). Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 74, 449–457.

Liu, C., Wang, J., Deng, B., Wei, X., Yu, H., Li, H., … Loparo, K. A. (2016). Closed-loop control of tremor-predominant Parkinsonian state based on parameter estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24, 1109–1121.

Liu, C., Wang, J., Li, H., Lu, M., Deng, B., Yu, H., … Loparo, K. A. (2017). Closed-loop modulation of the pathological disorders of the basal ganglia network. IEEE Transactions on Neural Networks and Learning Systems, 28, 371–382.

Liu, J., Khalil, H. K., & Oweiss, K. G. (2011). Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and parkinsonian states. Journal of Neural Engineering, 8, 045002.

Lowery, M. M. (2017). Modeling deep brain stimulation for Parkinson's disease. In A. A. Moustafa (Ed.), Computational models of brain and behavior (pp. 109–123). Hoboken, NJ: John Wiley & Sons.

McIntyre, C. C., Chaturvedi, A., Shamir, R. R., & Lempka, S. F. (2015). Engineering the next generation of clinical deep brain stimulation technology. Brain Stimulation, 8, 21–26.

McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.

Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., & McIntyre, C. C. (2006). Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96, 1569–1580.

Miocinovic, S., Somayajula, S., Chitnis, S., & Vitek, J. L. (2013). History, applications, and mechanisms of deep brain stimulation. JAMA Neurology, 70, 163–171.

Modolo, J., Henry, J., & Beuter, A. (2008). Dynamics of the subthalamo-pallidal complex in Parkinson's disease during deep brain stimulation. Journal of Physiology, 34, 251–266.

Montgomery Jr., E. B. (2006). Effects of GPi stimulation on human thalamic neuronal activity. Clinical Neurophysiology, 117, 2691–2702.

Montgomery Jr., E. B., & Kass, R. E. (2000). Mechanisms of deep brain stimulation and future technical developments. Neurological Research, 22, 259–266.

Moran, R. J., Kiebel, S. J., Stephen, K. E., Reilly, R. B., Daunizeau, J., & Friston, K. J. (2007). A neural mass model of spectral responses in electrophysiology. NeuroImage, 37, 706–720.

Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7, e1002124.

Moro, E., Esselink, R. J., Xie, J., Hommel, M., Benabid, A. L., & Pollak, P. (2002). The impact on Parkinson's disease of electrical parameter settings in STN stimulation. Neurology, 59, 706–713.

Moro, E., Lozano, A. M., Pollak, P., Agid, Y., Rehncriona, S., Volkman, J., … Lang, A. E. (2010). Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Movement Disorders, 25, 578–586.

Moss, J., Ryder, T., Aziz, T. Z., Graeber, M. B., & Bain, P. G. (2004). Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson's disease. Brain, 127, 2755–2763.

Munhoz, R. P., Picillo, M., Fox, S. H., Bruno, V., Panisset, M., Honey, C. R., & Fasano, A. (2016). Eligibility criteria for deep brain stimulation in Parkinson's disease, tremor, and dystonia. The Canadian Journal of Neurological Sciences, 43, 462–471.

Neher, E., & Sakmann, B. (1992). The patch clamp technique. Scientific American, 266, 44–51.

Okun, M. S., Gallo, B. V., Mandybur, G., Jagid, J., Foote, K. D., Revilla, F. J., … SIM DBS Study Group. (2012). Subthalamic deep brain stimulation with a constant-current device in Parkinson's disease: An open-label randomised controlled trial. Lancet Neurology, 11, 140–149.

Pavlidis, A., Hogan, S. J., & Bogacz, R. (2015). Computational models describing possible mechanisms for generation of excessive beta oscillations in Parkinson's disease. PLoS Computational Biology, 11, e1004609.

Pedoto, G., Santaniello, S., Fiengo, G., Gielimo, L., Hallett, M., Zhuang, P., & Sarma, S. V. (2012). Point process modeling reveals anatomical non-uniform distribution across the subthalamic nucleus in Parkinson's disease. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2539–2542.

Pena, E., Zhang, S., Deyo, S., Xiao, Y., & Johnson, M. D. (2017). Particle swarm optimization for programming deep brain stimulation arrays. Journal of Neural Engineering, 14, 016014.

Perlmutter, J. S., & Mink, J. W. (2006). Deep brain stimulation. Annual Review of Neuroscience, 29, 229–257.

Pessiglione, M., Guehl, D., Rolland, A. S., Francois, C., Hirsch, E. C., Feger, J., & Tremblay, L. (2005). Thalamic neuronal activity in dopamine-depleted primates: Evidence for a loss of functional segregation within basal ganglia circuits. The Journal of Neuroscience, 25, 1523–1531.

Picillo, M., Lozano, A. M., Kou, N., Puppi Munhoz, R., & Fasano, A. (2016). Programming deep brain stimulation for Parkinson's disease: The Toronto western hospital algorithms. Brain Stimulation, 9, 425–437.
Wei, X. F., & Grill, W. M. (2005). Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. *Journal of Neural Engineering, 2*, 139–147.

Wei, X. F., & Grill, W. M. (2009). Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. *Journal of Neural Engineering, 6*, 046008.

Wichmann, T., Bergman, H., & DeLong, M. R. (1994). The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. *Journal of Neurophysiology, 72*, 521–530.

Williams, Z. M., Neimat, J. S., Cosgrove, G. R., & Eskandar, E. N. (2005). Timing and direction selectivity of subthalamic and pallidal neurons in patients with Parkinson disease. *Experimental Brain Research, 162*, 407–416.

Willisie, A. C., & Dorval, A. D. (2015). Computational field shaping for deep brain stimulation with thousands of contacts in a novel electrode geometry. *Neuromodulation, 18*, 542–550; discussion 550-1.

Wojtecki, L., Timmermann, L., Jorgens, S., Sudmeyer, M., Maarouf, M., Treuer, H., … Schnitzler, A. (2006). Frequency-dependent reciprocal modulation of verbal fluency and motor functions in subthalamic deep brain stimulation. *Archives of Neurology, 63*, 1273–1276.

Wu, H., Van Dyck-Lippens, P. J., Santegoeds, R., van Kuyck, K., Gabriels, L., Lin, G., … Nuttin, B. (2013). Deep-brain stimulation for anorexia nervosa. *World Neurosurgery, 80*, S29 e1–S29 e10.

Xiao, Y., Pena, E., & Johnson, M. D. (2016). Theoretical optimization of stimulation strategies for a directionally segmented deep brain stimulation electrode array. *IEEE Transactions on Biomedical Engineering, 63*, 359–371.

**How to cite this article:** Santaniello S, Gale JT, Sarma SV. Systems approaches to optimizing deep brain stimulation therapies in Parkinson’s disease. *WIREs Syst Biol Med*. 2018;10:e1421. [https://doi.org/10.1002/wsbm.1421](https://doi.org/10.1002/wsbm.1421)