A REMARK ON ANALYTIC FREDHOLM ALTERNATIVE

L. GOLINSKII AND S. KUPIN

Abstract. We apply a recent result of Borichev–Golinskii–Kupin on the Blaschke-type conditions for zeros of analytic functions on the complex plane with a cut along the positive semi-axis to the problem of the eigenvalues distribution of the Fredholm-type analytic operator-valued functions.

Introduction and main results

The goal of this note is to refine partially (for a certain range of parameters) a recent result of R. Frank [5, Theorem 3.1] on some quantitative aspects of the analytic Fredholm alternative. Precisely, the problem concerns the distribution of eigenvalues of finite type of an operator-valued function \(W(\cdot) = I + T(\cdot) \), analytic on a domain \(\Omega \) of the complex plane. We always assume that \(T \in \mathcal{S}_\infty \), the set of compact operators on the Hilbert space. A number \(\lambda_0 \in \Omega \) is called an eigenvalue of finite type of \(W \) if \(\ker W(\lambda_0) \neq \{0\} \), (i.e., \(-1\) is an eigenvalue of \(T(\lambda_0) \)), if \(W(\lambda_0) \) is Fredholm (that is, both \(\dim \ker W(\lambda_0) \) and \(\codim \text{ran} W(\lambda_0) \) are finite), and if \(W \) is invertible in some punctured neighborhood of \(\lambda_0 \). The function \(W \) admits the following expansion at any eigenvalue of finite type, see [6, Theorem XI.8.1],

\[
W(\lambda) = E(\lambda)(P_0 + (\lambda - \lambda_0)^{k_1} P_1 + \ldots + (\lambda - \lambda_0)^{k_l} P_l)G(\lambda),
\]

where \(P_1, \ldots, P_l \) are mutually disjoint projections of rank one, \(P_0 = I - P_1 - \ldots - P_l \), \(k_1 \leq \ldots \leq k_l \) are positive integers, and \(E, G \) are analytic operator-valued functions, defined and invertible in some neighborhood of \(\lambda_0 \). The number

\[
\nu(\lambda_0, W) := k_1 + \ldots + k_l
\]

is usually referred to as an algebraic multiplicity of the eigenvalue \(\lambda_0 \).

The following result, Theorem 3.1, is a cornerstone of the paper [5]. By \(\{\lambda_j\} \) we always denote the eigenvalues of \(W = I + T \) of finite type, repeated accordingly to their algebraic multiplicity.

Theorem A. Let \(T(\cdot) \) be an analytic operator-valued function on the domain \(\Omega = \mathbb{C}\setminus \mathbb{R}_+ \), so that \(T \in \mathcal{S}_p \), \(p \geq 1 \), the set of the Schatten–von Neumann operators of order \(p \). Assume that for all \(\lambda \in \mathbb{C}\setminus \mathbb{R}_+ \)

\[
||T(\lambda)||_p \leq \frac{M}{d^\rho(\lambda, \mathbb{R}_+) |\lambda|^\sigma}, \quad \rho > 0, \quad \sigma \in \mathbb{R}, \quad \rho + \sigma > 0,
\]

\(d(\lambda, \mathbb{R}_+) \) is the Euclidean distance from \(\lambda \) to the positive semi-axis. Then for all \(\varepsilon, \varepsilon' > 0 \) and \(\nu \geq 1 \)

\[
\sum_{|\lambda_j| \leq M^{\rho(\rho+\sigma)}} d^{\rho \nu + 1 + \varepsilon}(\lambda_j, \mathbb{R}_+) |\lambda_j|^{\frac{\rho + 1 - \varepsilon}{\rho}} \leq CM^{\frac{\rho (\rho + \sigma) + 1}{\rho}},
\]
where \(q := (p\rho + 2p\sigma - 1 + \varepsilon)_+ \), and
\[
\sum_{|\lambda_j| \geq 2^{M^1/(p+\sigma)} \mu} d^{p\rho + 1 + \varepsilon}(\lambda_j, \mathbb{R}_+) |\lambda_j|^{p\rho - p\rho - 1 - \varepsilon - 1} \leq \frac{C}{\nu^2} e^{2\pi M^{2\rho + \varepsilon}/(p+\sigma)}.
\]

Here \(C \) is a generic positive constant which depends on \(p, \rho, \sigma, \varepsilon, \varepsilon' \).

The similar results for \(\rho = 0 \) are also available.

The proof of this result is based on the identification of the eigenvalues of finite type of \(\mathbb{W} \) with the zeros of certain scalar analytic functions, known as the regularized determinants
\[
f(\lambda) := \det_p (I + T(\lambda)) = \det p(I + T(\lambda)),
\]
see [7, 9] for their definition and basic properties. The point is that the set of eigenvalues of finite type of \(\mathbb{W} \) agrees with the zero set of \(f \), and moreover, \(\nu(\lambda_0, \mathbb{W}) = \mu_f(\lambda_0) \), the multiplicity of zero of \(f \) at \(\lambda_0 \) (see [5] Lemma 3.2) for the rigorous proof.

Thereby, the problem is reduced to the study of the zero distributions of certain analytic functions, the latter being a classical topic of complex analysis going back to Jensen [8] and Blaschke [1].

A key ingredient of the proof in [5] is a result of [2, Theorem 0.2] on the Blaschke-type conditions for zeros of analytic functions in the unit disk which can grow at the direction of certain (finite) subsets of the unit circle. In a recent manuscript [3] some new such conditions on zeros of analytic functions in the unit disk and on some other domains, including the complex plane with a cut along the positive semi-axis, are suggested. Here is a particular case of [3, Theorem 4.5] which seems relevant. We use a convenient shortening
\[
\{u\}_{c,\varepsilon} := (u_- - 1 + \varepsilon)_+ - \min(c, u_+), \quad c \geq 0, \quad \varepsilon > 0, \quad u = u_+ - u_- \in \mathbb{R}.
\]

Theorem B. Let \(h \) be an analytic function on \(\Omega = \mathbb{C} \setminus \mathbb{R}_+ \), \(|h(-1)| = 1 \), subject to the growth condition
\[
\log |h(\lambda)| \leq \frac{K}{|\lambda|^r} \frac{(1 + |\lambda|)^b}{d^a(\lambda, \mathbb{R}_+)} \quad \text{for} \quad \lambda \in \mathbb{C} \setminus \mathbb{R}_+, \quad a, b \geq 0, \quad r \in \mathbb{R}.
\]

Let \(Z(h) \) be its zero set, counting multiplicities (the divisor of \(h \)). Denote
\[
s := 3a - 2b + 2r.
\]

Then for each \(\varepsilon > 0 \) there is a positive number \(C \) which depends on all parameters involved such that the following inequality holds
\[
\sum_{z \in Z(h)} d^{a + 1 + \varepsilon}(z, \mathbb{R}_+) \frac{|z|^s}{(1 + |z|)^r} \leq C \cdot K,
\]
where the parameters \(s_1, s_2 \) are defined by the relations
\[
s_1 := \frac{-2r - a}{a_0} - a - 1 - \varepsilon, \quad s_2 := a + 1 + \varepsilon + \frac{-2r - a}{a_0} + \{s\}_{a,\varepsilon}.
\]

We are aimed at proving the results, which refine Theorem A for a certain range of parameters, by using Theorem B.

Theorem 0.1. Let \(T(\cdot) \) be an analytic operator-valued function on the domain \(\Omega = \mathbb{C} \setminus \mathbb{R}_+ \), which satisfies the hypothesis of Theorem A. Assume that
\[
0 < \rho + \sigma \leq \frac{p}{2}.
\]

Then for all \(0 < \varepsilon < 1 \)
\[
\sum_{|\lambda_j| \leq 2^{M^1/(p+\sigma)}} d^{p\rho + 1 + \varepsilon}(\lambda_j, \mathbb{R}_+) |\lambda_j|^{p\rho - p\rho - 1 - \varepsilon} \leq CM^{p^{1 + \varepsilon}/(2p+\sigma)}.
\]
Theorem 0.2. Theorem 0.2 is not treated in [5].

We follow the line of reasoning from [5]. The scaling

Proof of Theorem 0.1. \[ρ > \]

the values of \(ρ \) Theorem B gives the same results, (0.2) and (0.3), as in Theorem A, for the rest of the values of \(ρ \) and \(σ \), and the eigenvalues tending to infinity.

The case

(0.7) \[ρ > 0, \quad ρ + σ < 0, \]

is not treated in [5].

Theorem 0.2. Under conditions (0.7) assume that for all \(λ ∈ \mathbb{C}\backslash \mathbb{R}_+ \)

(0.8) \[\| T(λ) \|_p \leq \frac{M}{d^p(λ, \mathbb{R}_+) |λ|^\sigma}. \]

Then for \(-ρ/2 < ρ + σ < 0 \) and all \(ε > 0 \)

(0.9) \[\sum_{|λ_j| \geq M^{1/(ρ+σ)}} d^{pp+1+ε}(λ_j, \mathbb{R}_+) |λ_j|^{θρ - \frac{1}{2} (1+ε)} \leq C Mρ - \frac{1}{2} pρ, \]

and for \(ρ + σ < -ρ/2 \) and all \(ε > 0 \)

(0.10) \[\sum_{|λ_j| \geq M^{1/(ρ+σ)}} d^{pp+1+ε}(λ_j, \mathbb{R}_+) |λ_j|^{θρ - \frac{1}{2} (1+ε)} \leq C M^{- \frac{1}{2} pρ}, \]

where \(l := (3pp - 2ρσ - 1 + ε)_+ \). Moreover, under conditions (0.7), for all \(ε, ε’ > 0 \)

and \(0 < μ \leq 1 \)

(0.11) \[\sum_{|λ_j| \leq M^{1/(μ+σ)}} d^{pp+1+ε}(λ_j, \mathbb{R}_+) |λ_j|^{θρ - pp - p - ε + ε’} \leq C μ^{ε’} M^{\frac{pp+1+ε}{μ ρ}}. \]

1. Proof of main results

Proof of Theorem 0.7

We follow the line of reasoning from [5]. The scaling \(T_1(λ) := T(M^{1/(ρ+σ)} λ) \) looks reasonable, so

(1.1) \[\| T_1(λ) \|_p \leq \frac{1}{d^p(λ, \mathbb{R}_+) |λ|^\sigma}, \]

and, by [9] Theorem 9.2, (b), we have for the determinant \(f_1 = \det_p(I + T_1) \)

(1.2) \[|f_1(λ) - 1| \leq φ(\| T_1(λ) \|_p), \quad φ(t) := t \exp(Γ_p(t + 1)^ρ), \quad t ≥ 0, \]

holds with a suitable constant \(Γ_p \) which depends only on \(p \), and provides a lower bound for \(f_1 \) whenever the right side is small enough. We have for \(t ≥ 1 \) and \(λ = -t ∈ \mathbb{R}_- \)

(1.3) \[|f_1(-t) - 1| \leq \frac{C_1}{t^ρ}, \]

Note that under assumption (0.5)

(0.7) \[pσ - \frac{1 + ε}{2} \leq -pp + 1 + ε < 0, \]

so for \(|ξ| \leq 1 \)

\[|ξ|^pσ - \frac{1 + ε}{2} ≥ |ξ|^{pp + 1 + ε} ≥ |ξ|^{pσ - \frac{1 + ε}{2}}, \]

that is, (0.6) is stronger than (0.2) with regard to eigenvalues tending to zero.
(in the sequel C_k stand for generic positive constants depending on the parameters involved). If $t \geq (2C_1)^{1/(p+\sigma)} = C_2$, then $|f_1(-t)| \geq 1/2$, and so

$$\log |f_1(-t)| \geq -2(1 - |f_1(-t)|) \geq \frac{2C_1}{t^{p+\sigma}}.$$

Next, put

$$h(\lambda) := \frac{f_1(tl)}{f_1(-1)}, \quad h(-1) = 1.$$

It follows from (1.1) and (1.3) that for $t \geq C_2$

$$\log |h(\lambda)| = \log |f_1(tl)| - \log |f_1(-t)| \leq \frac{1}{t^{p+\sigma}} \left(\frac{1}{d^{p\rho}(\lambda, \mathbb{R}_+)} |\lambda|^{-\rho} + \frac{2C_1}{t^{p+\sigma}} \right) \leq \frac{C_3}{t^{p+\sigma}} \left(\frac{1}{d^{p\rho}(\lambda, \mathbb{R}_+)} |\lambda|^{-\rho} + 1 \right) \leq \frac{C_3}{t^{p+\sigma}} \left(\frac{1}{d^{p\rho}(\lambda, \mathbb{R}_+)} |\lambda|^{-\rho} \right).$$

Theorem B applies now with

$$a = pp, \quad r = p\sigma, \quad b = p(p + \sigma), \quad K = \frac{C_3}{t^{p+\sigma}},$$

and $s = a$, $\{s\}_{a, \varepsilon} = -a$. In view of (1.5) one has $2r + a = p(p + 2\sigma) \leq 0$, so

$$\{-2r - a\}_{a, \varepsilon} = -\min(a, -2r - a) = 2r + a = pp + p\sigma,$$

(recall that, by the assumption, $a > -2r - a$). Hence

$$s_1 = \frac{2p\sigma - 1 - \varepsilon}{2}, \quad s_2 = pp + p\sigma + 1 + \varepsilon,$$

and (1.4) implies

$$\sum_{z \in Z(h)} d^{pp+1+\varepsilon}(z, \mathbb{R}_+) \frac{|z|^{2p\sigma-1-\varepsilon}}{(1 + |z|)^{pp+p\rho+1+\varepsilon}} \leq \frac{C_4}{t^{p+\sigma}},$$

or

$$\sum_{\zeta \in Z(f_1)} d^{pp+1+\varepsilon}(\zeta, \mathbb{R}_+) \frac{|\zeta|^{2p\sigma-1-\varepsilon}}{(t + |\zeta|)^{pp+p\rho+1+\varepsilon}} \leq \frac{C_4}{t^{p+\sigma}}.$$

For $|\zeta| \leq 1$ we fix t, say, $t = C_2$, and since $t + |\zeta| \leq C_2 + 1$, we come to

$$\sum_{\zeta \in Z(f_1)\cap \mathbb{D}} d^{pp+1+\varepsilon}(\zeta, \mathbb{R}_+) |\zeta|^{p\sigma - \frac{1}{t^{p+\sigma}}} \leq C_5,$$

which, after scaling, is (1.6). The proof is complete.

Proof of Theorem B

The idea is much the same with the only technical differences. In the above notation relation (1.1) still holds, and the function T_1 tends to zero as $t \to 0$—whenever $\rho + \sigma < 0$. So

$$\log |f_1(-t)| \geq -2(1 - |f_1(-t)|) \geq -\frac{2C_1}{t^{p+\sigma}} = -2C_1 t^{p+\sigma}, \quad 0 < t \leq C_2.$$

For the function h (1.4) we now have

$$\log |h(\lambda)| \leq C_3 t^{p+\sigma} \left(\frac{1}{d^{p\rho}(\lambda, \mathbb{R}_+)} |\lambda|^{-\rho} + 1 \right),$$

and as

$$\frac{1}{d^{pp}(\lambda, \mathbb{R}_+)} |\lambda|^{-\rho} + 1 \leq \frac{|\lambda|^{p\rho} + |\lambda|^{p\rho}}{d^{pp}(\lambda, \mathbb{R}_+)} \leq \frac{|\lambda|^{p\rho} (1 + |\lambda|)^{p\rho + \sigma}}{d^{pp}(\lambda, \mathbb{R}_+)},$$

therefore
we come to the bound
\begin{equation}
\log |h(\lambda)| \leq C_3 |\rho + \sigma| |\lambda|^{p+\sigma} \frac{(1 + |\lambda|)^{p+\sigma}}{d^{p+\sigma}(\lambda, \mathbb{R}_+)}.
\end{equation}

Theorem B applies with
\[a = pp, \quad r = -a = -pp, \quad b = -p(\rho + \sigma), \quad K = \frac{C_3}{t^{p+\sigma}}, \]
and \(-2r - a = a > 0, so\]
\[\{ -2r - a \}_a, \varepsilon = -a = -pp, \quad s_1 = -pp - \frac{1 + \varepsilon}{2}. \]

The sign of \(s = 3a - 2b + 2r = p(3\rho + 2\sigma) \) (which can be either positive or negative) affects the computation of \(\{ s \}_a, \varepsilon \), so we will differ two situations. In the case \(-\rho/2 \leq \rho + \sigma < 0\) we have
\begin{equation}
\{ s \}_a, \varepsilon = - \min(a, s_+) = -s,
\end{equation}
since, by \((0.7) \), \(s_+ = s = p(3\rho + 2\sigma) < pp = a \). So \(s_2 = -p(\rho + \sigma) + 1 + \varepsilon \), and \((0.4) \) leads to
\begin{equation}
\rho|\rho + \sigma + \frac{1}{2} |^d \sum_{\zeta \in \mathbf{Z}(f_t)} \frac{|\zeta|^{-p\rho - \frac{1}{2}}}{(t + |\zeta|)^{p\rho + \sigma + 1 + \varepsilon}} \leq C_4 \frac{1}{t^{p+\sigma}}, \quad 0 < t \leq C_2.
\end{equation}

A simple bound \((C_2 + |\zeta|)^{-1} \geq C_5 |\zeta|^{-1} \) for \(|\zeta| \geq 1 \) and fixed \(t = C_2 \) gives
\[\sum_{\zeta \in \mathbf{Z}(f_t) \cap \mathbb{D}} d^{p+1+\varepsilon}(\zeta, \mathbb{R}_+) |\zeta|^{\rho\sigma - \frac{3}{2} (1+\varepsilon)} \leq C_6, \quad \mathbb{D} := \{ |\zeta| \geq 1 \}, \]
which, after scaling, is \((0.9) \).

If \(|\zeta| \leq \mu \leq 1 \), we multiply \((1.8) \) through by \(t^{\rho + \sigma - 1 + \varepsilon} \) and integrate it termwise with respect to \(t \) from 0 to \(t^{C_2} \) (the idea comes from [3])
\[\int_0^{t^{C_2}} \frac{(p-1)|\rho + \sigma + \frac{1}{2} |^{d-1+\varepsilon}}{(t + |\zeta|)^{p\rho + \sigma + 1 + \varepsilon}} dt = |\zeta|^{\rho\sigma - \frac{3}{2} (1+\varepsilon)} \int_0^{t^{C_2}/|\zeta|} \frac{t^{p\rho + \sigma + 1 + \varepsilon}}{(1 + t)^{p\rho + \sigma + 1 + \varepsilon}} dx \]
\[\geq C_7 |\zeta|^{\rho\sigma - \frac{3}{2} (1+\varepsilon)}, \]
to obtain
\[\sum_{\zeta \in \mathbf{Z}(f_t) \cap \mathbb{D}_\mu} d^{p+1+\varepsilon}(\zeta, \mathbb{R}_+) |\zeta|^{\rho\sigma - \rho - 1 + \varepsilon} \leq C_8 (t^{C_2})^{\varepsilon}, \quad \mathbb{D}_\mu := \{ |\zeta| \leq \mu \}, \]
which, after scaling, gives \((0.11) \).

In the case \(\rho + \sigma < -\rho/2 \) the proof is the same with \(s \leq 0 \) and
\[\{ s \}_a, \varepsilon = (-3pp - 2\rho \sigma - 1 + \varepsilon)_+ = l, \quad s_2 = \frac{pp + l}{2} + 1 + \varepsilon. \]

\[\square \]

Remark 1.1. The case \((0.7) \) can be reduced to the one considered in Theorem A by means of the transformation (the change of variables) \(\lambda \to 1/\lambda \) and the general formula
\[d(1/\lambda, \mathbb{R}_+) = \frac{d(\lambda, \mathbb{R}_+)}{|\lambda|^2}, \quad \lambda \in \mathbb{C} \backslash \mathbb{R}_+. \]

Remark 1.2. The general form of \([3] \) Theorem 4.5] allows a finite number of singularities on \(\mathbb{R}_+ \). So we can obtain the similar results on eigenvalues of finite type for analytic operator-valued functions \(W = I + T \) on \(\mathbb{C} \backslash \mathbb{R}_+ \) subject to the bound
\[\| T(\lambda) \|_p \leq M \frac{(1 + |\lambda|)^{\tau}}{d^{\rho}(\lambda, \mathbb{R}_+)/|\lambda|^{\rho}} \prod_{j=1}^{n} |\lambda - t_j|^{c_j}, \quad \rho, \tau, c_j, \varepsilon_j \geq 0, \quad \sigma \in \mathbb{R}, \]
where \(\{t_j\} \) and \(\{t'_k\} \) are two disjoint finite sets of distinct positive numbers.

References

[1] W. Blaschke. Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen. S.-B. Sächs Akad. Wiss. Leipzig Math.-Natur. Kl. 67 (1915), 194–200.

[2] A. Borichev, L. Golinskii, S. Kupin. A Blaschke-type condition and its application to complex Jacobi matrices, Bull. Lond. Math. Soc. 41 (2009), 117–123.

[3] A. Borichev, L. Golinskii, S. Kupin. On zeros of analytic functions satisfying non-radial growth conditions, manuscript, arXiv: http://arxiv.org/abs/1603.04104.

[4] M. Demuth; M. Hansmann; G. Katriel. On the discrete spectrum of non-selfadjoint operators, J. Funct. Anal. 257 (2009), no. 9, 2742–2759.

[5] R. Frank. Eigenvalue bounds for Schrödinger operators with complex potentials, III, arxiv: http://arxiv.org/abs/1510.03411.

[6] I. Gohberg, S. Goldberg, M. Kaashoek. Classes of linear operators, Vol. 1. Birkhäuser Verlag, Basel, 2000.

[7] I. Gohberg, M. G. Krein. Introduction to the theory of non-selfadjoint operators in the Hilbert space, AMS, Providence, RI, 1969.

[8] J. Jensen. Sur un nouvel et important théorème de la théorie des fonctions, Acta Math. 22 (1899), 359–364.

[9] B. Simon. Trace ideals and their applications, 2nd edition. AMS, Providence, RI, 2005.