In vitro evaluation of 2-pyrazoline derivatives as DPP-4 inhibitors

Abstract

Objectives: In this study, the synthesis of three pyrazoline derivatives and the evaluation of their inhibitory effects on dipeptidyl peptidase (DPP-4) were aimed.

Materials and methods: Pyrazoline-based compounds (1–3) were obtained via the reaction of 1-(2-furyl)-3-(1,3-benzodioxol-5-yl)-2-propen-1-one with 4-substituted phenylhydrazine hydrochloride. The DPP-4 inhibitory effects of compounds 1–3 were determined with a fluorometric assay using Gly-Pro-Aminomethylcoumarin as the fluorogenic substrate. The cytotoxicity of compounds 1–3 on L929 mouse fibroblast (healthy) cell line was evaluated using MTT assay.

Results: 1-(4-Methylsulfonylphenyl)-3-(2-furyl)-5-(1,3-benzodioxol-5-yl)-2-pyrazoline (2) exhibited the highest DPP-4 inhibitory activity (IC_{50}=5.75 ± 0.35 µM). Moreover, compound 2 exerted no significant cytotoxicity against L929 cells (IC_{50}=34.33 ± 7.09 µM).

Conclusions: Target compounds exhibited moderate DPP-4 inhibitory activity and compound 2 was identified as the most active compound.

Introduction

Diabetes mellitus (DM) is a long-term disease characterized by impaired glucose metabolism and vascular consequences. Insulin-dependent DM is related to immune-mediated devastation of β-cells of the pancreas. However, non-insulin-dependent DM is associated with insulin deficiency caused by β-cell dysfunction and receptor desensitization [1, 2]. An impaired glucoregulatory state can affect many organs and body systems leading to serious and, possibly life-threatening complications. Many complications triggered by diabetes are widely known to cause significant morbidity and mortality rates [3]. Higher mortality rates caused a substantial reduction in life expectancy at all ages in diabetic patients [4]. Although new treatment strategies have been developed to increase the life expectancy and the quality of diabetic patients, unpredictable causes such as epidemics and pandemic infectious diseases often lead to fluctuations in survival rates. This volatility has increased dramatically with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that has infected hundreds of millions of people across the globe and caused the death of nearly 5 million people [5]. Although the symptoms of the SARS-CoV-2 infection range in a wide spectrum, patients with chronic diseases, particularly diabetes, face a difficulty hard to deal with as a result of the epidemic [6]. Various studies have indicated a high mortality rate in T2DM patients, that are more prone to evolve a severe disease state and advancement of coronavirus disease 2019 (COVID-19) patients without a history of diabetes had new-onset hyperglycemia, insulin resistance, and β-cell dysfunction [10, 11]. Although COVID-19 is a novel infectious disease, the scientific data about this linkage is still insufficient but increasing [9, 12]. These results demonstrate that there is a bidirectional linkage between diabetes and severe COVID-19 symptoms.
Therefore, researchers focused on promising treatment strategies and potential mechanisms of interaction between the two pandemics, diabetes mellitus and COVID-19 [3]. Dysregulated immune and inflammatory responses are the junctions of both diseases. Researchers suggest that inconspicuous alterations in the immune system and renin-angiotensin-aldosterone system (RAAS), in addition to the proinflammatory state, oxidative damage, and diminished endothelial function in diabetes can strengthen the reactions initiated by COVID-19 [12]. Free oxygen radicals and interleukin-6 (IL-6), activation of RAAS by COVID-19 trigger insulin resistance, hyperglycemia, and impaired endothelial functions. Angiotensin-converting enzyme 2 (ACE2) is the crucial enzyme of this potential pathway. Although dipeptidyl peptidase-4 (DPP-4) may operate as a linkage point for SARS-CoV-2, ACE2 is the major entrance receptor [13]. Possible links between DPP-4 and RAAS have not been thoroughly investigated but researchers point to possible genetic and functional links that play important roles in the seriousness of SARS-CoV-2, notably in diabetic individuals [14]. Elevations in DPP-4 expression at blood T cells from diabetic individuals; insulin resistance, and the upregulation of DPP-4 in diabetic animals which led to immune response dysregulation, support these findings [13].

DPP-4 has two types; the soluble form circulating in the blood and the plasma membrane-bound form and is responsible for normal glucose tolerance and insulin metabolism. DPP-4 also plays a key role in inflammatory and immune functions [13, 15, 16]. The enzyme is expressed in different tissues such as respiratory and urinary tracts, gastrointestinal system, and immune system including T cells. DPP-4 is thought to be associated with the regulation of many cytokines and chemokines activity, and incretins [17–19]. Incretins not only induce insulin secretion but also weigh down glucagon secretion in a blood-glycemia-dependent manner to normalize blood glucose levels [19]. DPP-4 reduces insulin secretion and abnormal adipose tissue metabolism via the degradation of incretins [20]. DPP-4 inhibitors known as gliptins are used to regulate both fasting and postprandial hyperglycemia by increasing circulating incretin levels [21].

Apart from its role in the glucose and insulin mechanism, DPP-4 might exacerbate COVID-19 transmission through the respiratory tract and propagation to other organs and systems and might participate in excessive cytokine release and immune dysregulation [18].

In addition, DPP-4 is the target of the viral spread Middle East respiratory syndrome coronavirus (MERS-CoV) and might contribute to the pathological process of COVID-19 as a coreceptor. The simple and expeditious mutational characteristics of COVID-19 may lead to the emergence of a new coronavirus that uses the DPP-4 enzyme as a gateway. In this case, DDP-4 inhibition may result in effective protection against mutant coronavirus [19, 22].

The possible role of DPP-4 in DM and COVID-19 also makes DPP-4 a valuable therapeutic target and therefore the discovery of DPP-4 inhibitors is of great importance.

There are several therapeutic applications of pyrazolines, considered as cyclic hydrazine motifs, and one of them is diabetic treatment [23, 24]. The antidiabetic effects of pyrazoline derivatives may be attributed to their inhibitory effects on DPP-4 [25, 26].

Encouraged by the aforementioned findings, herein we performed the synthesis of three pyrazoline-based compounds (1–3) and focused on their DPP-4 inhibitory effects and cytotoxicity. Furthermore, molecular docking was conducted for compounds 1–3 to enlighten their interactions in the active site of DPP-4.

Materials and methods

Chemistry

The chemicals were procured from commercial vendors and used without further purification. The melting points (M.p., °C) of the compounds were detected on an Electrothermal IA9200 melting point apparatus (Staffordshire, UK). Thin Layer Chromatography (TLC) was performed on TLC Silica gel 60 F254 aluminum sheets (Merck, Darmstadt, Germany) using petroleum ether-ethyl acetate solvent systems (3:1 and 1:1). Nuclear magnetic resonance (NMR, 1H and 13C) spectra were recorded on a Bruker spectrometer (Bruker, Billerica, MA, USA). Mass spectra were recorded on a Shimadzu LCMS-8040 (Shimadzu, Kyoto, Japan).

General procedure for the preparation of the compounds

1-(2-Furyl)-3-(1,3-benzodioxol-5-yl)-2-propen-1-one: A mixture of 2-furyl methyl ketone (0.02 mol) and piperonal (0.02 mol) in the presence of 10% (w/v) aqueous sodium hydroxide (5 mL) in absolute ethanol (30 mL) was stirred at room temperature for 24 h. Upon completion of the reaction, the reaction mixture was poured into crushed ice. The precipitated solid was filtered, washed with water, and dried [27].

1-(4-Substituted phenyl)-3-(2-furyl)-5-(1,3-benzodioxol-5-yl)-2-pyrazolines (1–3): A mixture of 4-substituted phenylhydrazine hydrochloride (2 mmol), 1-(2-furyl)-3-(1,3-benzodioxol-5-yl)-2-propen-1-one (1 mmol) and glacial acetic acid (0.5 mL) in absolute ethanol (20 mL) was heated for 10 h. The precipitate was filtered and dried. The product was crystallized from ethanol.

1-(4-Bromophenyl)-3-(2-furyl)-5-(1,3-benzodioxol-5-yl)-2-pyrazoline (Q): Yield: 82%. M.p.: 100–102 °C. 1H NMR (300 MHz, DMSO-d6) δ (ppm): 3.01 (dd, JAB=17.46 Hz, JAX=5.79 Hz, 1H, C4-HA pyrazoline), 3.80 (dd, JAB=17.40 Hz, JEX=12.03 Hz, 1H, C4-HB pyrazoline), 5.40 (dd,
\[J_{ax} = 11.97 \text{ Hz}, J_{ax} = 5.79 \text{ Hz}, 1H, C-H_3 \text{ pyrazoline}, \ 5.97 (d, J=2.10 \text{ Hz}, 2H), 6.61-6.74 (m, 3H), 6.92-6.98 (m, 4H), 7.45 (d, J=8.76 \text{ Hz}, 2H), 7.81 (t, J=1.56 \text{ Hz}, 0.84 \text{ Hz}, 0.72 \text{ Hz}, 1H). \ 1^C \text{ NMR (75 MHz, DMSO-d$_6$)} \delta (ppm): 44.32 (CH$_2$), 63.27 (CH), 101.59 (CH$_2$), 106.54 (CH), 109.16 (CH), 110.35 (CH), 115.36 (2CH), 119.56 (CH), 122.72 (CH), 128.34 (d, J=11.97 Hz, 1H, C$_s$-H$_{4s}$ pyrazoline), 5.55 (dd, J=1.68 Hz, 1H, C$_s$-H$_{3s}$ pyrazoline), 5.98 (d, J=1.80 Hz, 2H), 6.64-6.66 (m, 1H), 6.72-6.78 (m, 2H) 6.87 (d, J=8.01 Hz, 2H), 7.00 (d, J=8.91 Hz, 2H), 7.68 (m, 2H), 6.84-6.90 (m, 2H, m/z 412.90, [M+H]+ 411.90). \] 1-(4-Methylsulfonylphenyl)-3-(2-furyl)-5-(1,3-benzodioxol-5-yl)-2-pyrazoline (2): Yield: 85%. M.p.: 126 °C. \[J_{ax} = 17.61 \text{ Hz}, J_{ax} = 11.94 \text{ Hz}, 1H, C$_s$-H$_{3s}$ pyrazoline), 5.55 (dd, J=11.85 Hz, J=4.32 Hz, 1H, C$_s$-H$_{3s}$ pyrazoline), 5.98 (d, J=1.80 Hz, 2H), 6.64-6.66 (m, 1H), 6.72-6.78 (m, 2H) 6.87 (d, J=8.01 Hz, 2H), 7.00 (d, J=8.91 Hz, 2H), 7.68 (m, 2H), 6.84-6.90 (m, 2H, m/z 411.90, [M+H]+ 411.90). \] \[1-(4-Sulfonamidophenyl)-3-(2-furyl)-(1,3-benzodioxol-5-yl)-2-pyrazoline (3) [28]: Yield: 87%. M.p.: 136-138 °C. \[J_{ax} = 17.61 \text{ Hz}, J_{ax} = 11.94 \text{ Hz}, 1H, C$_s$-H$_{3s}$ pyrazoline), 5.55 (dd, J=11.85 Hz, J=4.32 Hz, 1H, C$_s$-H$_{3s}$ pyrazoline), 5.98 (d, J=1.80 Hz, 2H), 6.64-6.66 (m, 1H), 6.72-6.78 (m, 2H) 6.87 (d, J=8.01 Hz, 2H), 7.00 (d, J=8.91 Hz, 2H), 7.68 (m, 2H), 6.84-6.90 (m, 2H, m/z 411.90, [M+H]+ 411.90). \] Biochemistry

Determination of DPP-4 inhibitory potency: The experiment was performed using Cayman’s DPP-4 inhibitor screening assay kit based on the manufacturer’s instructions. The kit includes the fluorogenic substrate, Gly-Pro-Aminomethylcoumarin (AMC), to measure DPP-4 activity. The cleavage of the peptide bond by DPP releases the free AMC group, resulting in fluorescence that is measured at an excitation wavelength of 350–360 nm and emission wavelength of 450–465 nm.

Cell culture and drug treatment: L929 mouse fibroblast (ATCC® CRL-6364™) cells were cultured and drug treatments were carried out as previously described [29].

MTT test: The level of cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan by mitochondrial succinate dehydrogenase was quantified as previously reported [30] with small modifications [29]. The stock solutions of compounds 1–3 in dimethylsulfoxide (DMSO) were prepared and diluted before use. To detect their cytotoxicity, L929 cells (2 × 10^4 cells/mL) were treated with the compounds to give a final concentration in the range of 0.98–250 µM for 24 h. At the end of this period, MTT was added to a final concentration of 0.5 mg/mL, and the cells were incubated for a further 4 h at 37 °C. After the medium was removed and the formazan crystals were solubilized by the addition of 200 µL DMSO to each well and the absorbance was read at 540 nm with a microplate spectrophotometer (BioTek, Winooski, VT, USA). Each concentration was repeated in three wells. IC50 values were defined as the drug concentrations that reduced absorbance to 50% of control values.

Statistical analyses: Statistical Package for the Social Sciences (SPSS) for Windows 15.0 was used for statistical analysis. Data was expressed as Mean ± SD. Comparisons were performed by one way ANOVA test for normally distributed continuous variables and post hoc analyses of group differences were expressed by the Tukey test.

Molecular docking

Compounds 1–3 were docked to the active site of DPP-4, which was retrieved from Protein Data Bank (PDB) server (PDB code: 5J3J), using Schrödinger Release 2016–2 (Schrödinger, LLC, New York, NY, USA).

Results

As depicted in Figure 1, the synthesis of compounds 1–3 was performed efficiently via the cyclization reaction of

Figure 1: The synthetic route for the preparation of compounds 1–3. Reagents and conditions: (i) Piperonal, 10% (w/v) NaOH, absolute ethanol, rt, 24 h; (ii) 4-substituted phenylhydrazine hydrochloride, AcOH, absolute ethanol, reflux, 10 h.
4-substituted phenylhydrazine hydrochloride with 1-(2-furyl)-3-(1,3-benzodioxol-5-yl)-2-propen-1-one, which was obtained as described earlier [27].

The DPP-4 inhibitory effects of compounds 1–3 were examined at 100 µM concentration. These compounds displayed their inhibitory effects on DPP-4 with the inhibition values of 23.17 ± 1.89%, 57.44 ± 2.67%, 53.72 ± 2.59%, respectively when compared with sitagliptin (100.00%), the reference agent. p-Methylsulfonyl-substituted compound 2 was determined as the most promising DPP-4 inhibitor in this series as shown in Table 1.

The IC_{50} values of the compounds that inhibit DPP-4 enzyme activity by more than 50% at 100 µM were determined. p-Methylsulfonyl-substituted compound 2 was determined as the DPP-4 inhibitor with the highest potential among the tested compounds as shown in Table 2.

The cytotoxic activities of compounds 1–3 toward L929 cells were detected using MTT method. The effective concentration of compound 2 has no cytotoxicity to L929 cells (Table 3).

Molecular docking data revealed that compounds 1–3 showed good affinity in the active site of DPP-4 (Figure 2). However, only compound 2 presented substrate-specific interactions. p-Methylsulfonyl substituent of compound 2 formed hydrogen bonds with Gln553 and Tyr585 in the active site of DPP-4 as shown in Figure 3A and B. In silico data indicated the significance of the p-methylsulfonyl group for DPP-4 inhibitory efficacy.

Discussion

Enzymes are key molecules of biochemical processes. Regulation of enzyme activities by natural and synthetic agents is one of the important strategies in the treatment of diseases.

Enzyme inhibitors are used in many disorders ranging from hypercholesterolemia to cancer treatment. Currently, it is important to note that approximately 47% of drugs used clinically all over the world act through enzyme inhibition [31, 32]. Enzymes are common therapeutic targets for researchers and pharmaceutical companies due to their widespread role in metabolic control and high market share. Another part of this investigation is the design and synthesis of new drug molecules.

Among biologically active heterocycles, pyrazoline is a versatile motif existing in diverse agents with various therapeutic effects such as antidiabetic, anti-inflammatory, antiviral, and so on [33]. It has been reported that some pyrazoline derivatives are more effective in lowering blood glucose levels compared to insulin, which is the standard hypoglycemic agent, in the alloxan-induced diabetic rat model [34]. Although there is no information about the mechanism of the antidiabetic action in this study, there are some studies in the literature indicating that the inhibition of some enzymes may play a role in this effect. Kumar et al.

Table 1: DPP-4 inhibition percentages (%) of compounds 1–3.

Compound (100 µM)	Inhibition % (Mean ± SD)
1	23.17 ± 1.89
2	57.44 ± 2.67
3	53.72 ± 2.59
Sitagliptin	100

Table 2: IC{sub}50 values of compounds 1–3 for DPP-4 inhibition.

Compound	IC{sub}50 (µM)
2	5.75 ± 0.35
3	67.5 ± 3.54
Sitagliptin	0.019 ± 0.001

Table 3: IC{sub}50 values of compounds 1–3 for L929 cells after 24 h incubation.

Compound	IC{sub}50 (µM)
1	226.67 ± 12.58
2	34.33 ± 7.09
3	66.50 ± 6.36
demonstrated that some 1,2,3-triazole-pyrazoline hybrids have strong α-glucosidase inhibitory activity and some of them have higher inhibitory effect than acarbose. The researchers suggested that pyrazoline-triazole hybrids may be precursor compounds for lowering blood glucose concentration [35]. Jun et al. reported that several pyrazoline derivatives with β-amino acyl group displayed inhibitory potency on DPP-4 enzyme activity [26]. Furthermore, Ahn et al. showed the inhibitory effects of cyano-pyrazoline derivatives on DPP-4 enzyme activity in both in vitro and in vivo experiments [25].

Although DPP-4 is the target of antidiabetic agents, the enzyme has also become a part of coronavirus-related research in recent years and some authors evaluate the potential function of DPP-4 as a target of therapeutic strategies in the pathology of SARS-CoV-2 [18, 19, 22]. Moreover, the investigators suggested that vitamin D and DPP-4 inhibitor combination may play a protective role in the pathophysiology of COVID-19 through different mechanisms [36].

Besides its effect on incretin hormones, DPP-4 has a role in a wide range of biochemical processes such as the regulation of immune response, inflammation, cardiovascular function, vascular events, and viral entry into cells [37].

In conclusion, DPP-4 plays a central role in different diseases, especially diabetes and therefore the discovery of new DPP-4 inhibitors will contribute to the elucidation of the importance of this enzyme in physiological processes and the treatment of diabetes. As a keynote, it can be concluded that pyrazoline derivatives affect key biological targets including DPP-4 involved in diverse biochemical pathways, and this capability makes them promising molecules for drug discovery. The data obtained from our work indicate the potential inhibitory effects of 2-pyrazolines on DPP-4.

Research funding: None declared.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: Authors state no conflict of interest.

Ethical approval: Not applicable.

Informed consent: Informed consent was obtained from all individuals included in this study.

References

1. Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother 2018;108:656–62.
2. Fadini GP, DiPersio JF. Diabetes mellitus as a poor mobilizer condition. Blood Rev 2018;32:184–91.
3. Fox T, Ruddiman K, Lo KB, Peterson E, Deloy R, Salacup G, et al. The relationship between diabetes and clinical outcomes in COVID-19: a single-center retrospective analysis. Acta Diabetol 2021;58:33–8.
4. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 2020;10:14790.
5. Rendeiro AF, Vorkas CK, Krumsiek J, Singh HK, Kapadia SN, Cappelli LV, et al. Metabolic and immune markers for precise
monitoring of COVID-19 severity and treatment. Front Immunol 2022;12:809937.

6. Selvin E, Juraschek P. Diabetes epidemiology in the COVID-19 pandemic. Diabetes Care 2020;43:1690–4.

7. Yang Y, Cai Z, Zhang J. Insulin treatment may increase adverse outcomes in patients with COVID-19 and diabetes: a systematic review and meta-analysis. Front Endocrinol 2021;12:696087.

8. Yang Y, Cai Z, Zhang J. DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: a meta-analysis. PLoS One 2021;16:e0251916.

9. Kumar A, Arora A, Sharma P, Anikhindi SA, Bansal N, Singla V, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab Syndr 2020;14:335–45.

10. Montefusco L, Nasr MB, D’Addio F, Loretelli C, Rossi A, Pastore I, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab 2021;3:774–85.

11. Rubino F, Amiel SA, Zimmet P, Alberti G, Eckel RH, et al. New-onset diabetes in Covid-19. N Engl J Med 2020;383:789–90.

12. Roberts J, Pritchard AL, Treweeke AT, Rossi AG, Brace N, Cahill P, et al. Why is COVID-19 more severe in patients with diabetes? The role of angiotensin-convertase enzyme 2, endothelial dysfunction and the immunoinflammatory system. Front Cardiovasc Med 2021;7:629933.

13. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol 2021;17:11

14. Valencia I, Peiró C, Lorenzo Ó, Sánchez-Ferrer CF, Eckel J, Romacho T. DPP4 and ACE2 in diabetes and COVID-19: therapeutic targets for cardiovascular complications? Front Pharmacol 2020;11:711161.

15. Filardi T, Morano S. COVID-19: is there a link between the course of infection and pharmacological agents in diabetes? J Endocrinol Invest 2020;43:1053–60.

16. Singh AK. Dipeptidyl peptidase-4 inhibitors: novel mechanism of actions. Indian J Endocrinol Metab 2018;12:753–9.

17. Strollo R, Pozzilli P. DPP4 inhibition: preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes Metab Res Rev 2020;36:e3330.

18. Danta CC. Dipeptidyl peptidase-4: a potential therapeutic target in diabetic kidney disease with SARS-CoV-2 infection. ACS Pharmacol Transl Sci 2020;3:1020–22.

19. Chen CF, Chien CH, Yang YP, Chou SJ, Wang ML, Huo TI, et al. Role of dipeptidyl peptidase-4 inhibitors in patients with diabetes infected with coronavirus-19. J Chin Med Assoc 2020;83:710–1.

20. Lacobellis G. COVID-19 and diabetes: can DPP4 inhibition play a role? Diabetes Res Clin Pract 2020;162:108125.

21. Ahrén B, Foley JE. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism. Diabetologia 2016;59:907–17.

22. Lisikova A, Samec M, Koklesova L, Samuel SM, Zhai K, Al-Ishaq RK, et al. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomed Pharmacother 2021;138:111430.

23. Alex IM, Kumar R. 4,5-Dihydro-1H-pyrazole: an indispensible scaffold. J Enzym Inhib Med Chem 2014;29:427–42.

24. Kharbanda C, Alam MS, Hamid H, Javed K, Dhulap A, Bano S, et al. Antidiabetic effect of novel benzenesulfonlyureas as PPAR-γ agonists and their anticancer effect. Bioorg Med Chem Lett 2015;25:4601–5.

25. Ahn JH, Kim HM, Jung SH, Kang SK, Kim KR, Dal Rhee S, et al. Synthesis and DP-IV inhibition of cyano-pyrazoline derivatives as potent anti-diabetic agents. Bioorg Med Chem Lett 2004;14:4461–5.

26. Jun MA, Park WS, Kang SK, Kim KY, Kim KR, Dal Rhee S, et al. Synthesis and biological evaluation of pyrazoline analogues with β-amino acyl group as dipeptidyl peptidase IV inhibitors. Eur J Med Chem 2008;43:1889–1902.

27. Özdemir A, Al tintop MD, KaplançikliZA, Turan-Zitouni G, Akalin Çiftçig, Demirci F. Synthesis and biological evaluation of a new series of pyrazolines as new antidiabetic agents. Pharm Chem J 2014;48:605–14.

28. Basaif SA, Albar HA, Faidallah HM. Synthesis of new pyrazoline and pyrazole derivatives. Indian J Heterocycl Chem 1995:5:121–4.

29. Sever B, Al tintop MD, Demir Y, Yilmaz N, Akalin Çiftçi G, Beydemir Ş, et al. Identification of a new class of potent aldose reductase inhibitors: design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem Biol Interact 2021;345:109576.

30. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;16:55–63.

31. Copeland RA. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists, 1st ed. USA: Wiley-Interscience; 2005:2 p.

32. Ramsey RR, Tipton KF. Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules 2017;22:1192.

33. Marella A, Ali MR, Alam MT, Saha R, Tanwar O, Akhter M, et al. Pyrazolines: a biological review. Mini Rev Med Chem 2013;13:921–31.

34. Emayavaramban M, Santhi N, Gopi C, Manivannan C, Raguraman A. Synthesis, characterization and anti-diabetic activity of 1,3,5-triaryl-2-pyrazolines in acetic acid solution under ultrasound irradiation. Int Lett Chem Phys Astron 2013;14:172–85.

35. Kumar L, Lal K, Yadav P, Kumar A, Paul AK. Synthesis, characterization, β-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids. J Mol Struct 2020;1216:128253.

36. Pinheiro MM, Fabbri A, Infante M. Cytokine storm modulation in COVID-19: a proposed role for vitamin D and DPP-4 inhibitor combination therapy (VIDPP-4). Immunotherapy 2021;13:753–65.

37. Kang SM, Park JH. Pleiotropic benefits of DPP-4 inhibitors beyond glycemic control. Clin Med Insights Endocrinol Diabetes 2021;14:11795514211051698.

Supplementary Material: The online version of this article offers supplementary material (https://doi.org/10.1515/tjb-2022-0161).