The cozero-divisor graph relative to finitely generated modules

H. Ansari-Toroghy, F. Farshadifar, and Sh. Habibi
THE COZERO-DIVISOR GRAPH RELATIVE TO FINITELY GENERATED MODULES

H. ANSARI-TOROGHY, F. FARSHADIFAR, AND SH. HABIBI

Abstract. Let R be a commutative ring and let M be a finitely generated R-module. Let’s denote the cozero-divisor graph of R by $\Gamma(R)$. In this paper, we introduce a certain subgraph $\Gamma_R(M)$ of $\Gamma(R)$, called cozero-divisor graph relative to M, and obtain some related results.

2010 Mathematics Subject Classification: 05C75; 13A99; 05C99

Keywords: cozero-divisor, complete graph, finitely generated

1. INTRODUCTION

Throughout this paper, R will denote a commutative ring with identity. We denote the set of maximal ideals of R by $\text{Max}(R)$.

A graph G is defined as the pair $(V(G), E(G))$, where $V(G)$ is the set of vertices of G and $E(G)$ is the set of edges of G. For two distinct vertices a and b of $V(G)$, the notation $a \sim b$ means that a and b are adjacent. A graph G is said to be complete if $a \sim b$ for all distinct $a, b \in V(G)$, and G is said to be empty if $E(G) = \emptyset$. Note that by this definition a graph may be empty even if $V(G) \neq \emptyset$. If $|V(G)| \geq 2$, a path from a to b is a series of adjacent vertices $a = v_1 \sim v_2 \sim \cdots \sim v_n = b$. The length of a path is the number of edges it contains. A cycle is a path that begins and ends at the same vertex in which no edge is repeated, and all vertices other than the starting and ending vertex are distinct. If a graph G has a cycle, the girth of G (notated $g(G)$) is defined as the length of the shortest cycle of G; otherwise, $g(G) = \infty$. A graph G is connected if for every pair of distinct vertices $a, b \in V(G)$, there exists a path from a to b. If there is a path from a to b with $a, b \in V(G)$, then the distance from a to b is the length of the shortest path from a to b and is denoted $d(a, b)$. If there is not a path between a and b, $d(a, b) = \infty$. The diameter of G is $\text{diam}(G) = \sup \{d(a, b) | a, b \in V(G)\}$.

The idea of a zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [8]. He assumes that all elements of the ring are vertices of the graph and was mainly interested in colorings and then this investigation of coloring of a commutative ring was continued by Anderson and Naseer in [4]. Anderson and Livingston [7], studied the zero-divisor graph whose vertices are the nonzero zero-divisors.
Let $Z(R)$ be the set of zero-divisors of R. The zero-divisor graph of R denoted by $\Gamma(R)$, is a graph with vertices $Z^*(R) = Z(R) \setminus \{0\}$ and for distinct $x, y \in Z^*(R)$ the vertices x and y are adjacent if and only if $xy = 0$. This graph turns out to exhibit properties of the set of the zero-divisors of a commutative ring. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory language and then the geometric properties of graphs help us explore some interesting results in algebraic structures of rings. The zero-divisor graph of a commutative ring has also been studied by several other authors (e.g., [5, 6, 10]).

In [2], Afkhami and Khashyarmanesh introduced the cozero-divisor graph $\hat{\Gamma}(R)$ of R, in which the vertices are precisely the nonzero, non-unit elements of R, denoted $W^*(R)$, and two vertices x and y are adjacent if and only if $x \not\in yR$ and $y \not\in xR$.

Now let M be a finitely generated R-module. The purpose of this paper is to introduce a certain subgraph $\hat{\Gamma}_R(M)$ of $\hat{\Gamma}(R)$, called the cozero-divisor graph relative to M and obtain some results similar to those of [2] and [3]. This graph, with a different point of view, can be regarded as a reduction of $\hat{\Gamma}(R)$, namely, we have $\hat{\Gamma}_R(R) = \hat{\Gamma}(R)$.

2. Auxiliary results

Let M be an R-module. The support of M is denoted by $\text{Supp}(M)$ and it is defined by

$$\text{Supp}(M) = \{ P \in \text{Spec}(R) | \text{Ann}_R(N) \subseteq P \text{ for some cyclic submodule } N \text{ of } M \}.$$

In the rest of this paper Max($\text{Supp}(M)$) (i.e., the set of all maximal elements in $\text{Supp}(M)$) is denoted by Max(M).

The Jacobson radical of M is denoted by $J(M)$ and it is the intersection of all elements in Max(M). Also, the union of all elements in Max(M) is denoted by $N_R(M)$ [12].

M is said to be a local module if $|\text{Max}(M)| = 1$ [12].

The subset $W_R(M)$ of R is defined by $\{ r \in R | rM \neq M \}$ [12] and set $W_R^*(M) = W_R(M) \setminus \{0\}$.

$Z_R(M) = \{ r \in R \}$ the R-module endomorphism on M defined by multiplication by r is not injective $\}.$

Remark 1 (See [12]). Let M be an R-module. Then $W_R(M) \subseteq N_R(M)$ and we have equality if M is a finitely generated R-module.

Remark 2. Max(M) \subseteq Max(R).

Proof. This follows immediately from the proof of [12, 1.4]. \square
3. MAIN RESULTS

In the rest of this paper M is a finitely generated R-module.

Definition 1. We define the *cozero-divisor graph relative to M*, denoted by $\Gamma_R(M)$, as a graph with vertices $W^*_R(M) = W_R(M) \setminus \{0\}$ and two distinct vertices r and s are adjacent if and only if $r \not\in (sM :_RM)$ and $s \not\in (rM :_RM)$.

Definition 2. We define the *strongly cozero-divisor graph relative to M*, denoted by $\Gamma_R^*(M)$, as a graph with vertices $W^*_R(M) = W_R(M) \setminus \{0\}$ and two distinct vertices r and s are adjacent if and only if $r \not\in \sqrt{(sM :_RM)}$ and $s \not\in \sqrt{(rM :_RM)}$.

The following example shows that $\Gamma(R)$, $\Gamma_R(M)$, and $\Gamma_R^*(M)$ are different.

Example 1. Set $R = \mathbb{Z}$ (here \mathbb{Z} denotes the ring of integers) and $M = \mathbb{Z}_{12}$. Then $W^*_R(R) = \mathbb{Z} \setminus \{-1, 1, 0\}$ and $W^*_R(M) = \mathbb{Z} \setminus \{m : (m, 12) = 1\} \cup \{0\}$, where $(m, 12)$ denotes the greatest common divisor of m and 12. The elements 8 and 12 are adjacent in $\Gamma(R)$ but they are not adjacent in $\Gamma_R^*(M)$. Also, 6 and 8 are adjacent in $\Gamma_R^*(M)$ but they are not adjacent in $\Gamma_R(M)$. Moreover, 6 and 10 are adjacent in $\Gamma_R^*(M)$ but they are not adjacent in $\Gamma_R^*(M)$.

An R-module L is said to be a *multiplication module* if for every submodule N of L there exists an ideal I of R such that $N = IL$.

Theorem 1.

(a) $\Gamma_R(M)$ is a subgraph of $\Gamma(R)$.

(b) $\Gamma_R^*(M)$ is a subgraph of $\Gamma^*(R)$.

(c) If M is a faithful R-module, then $W^*_R(M) = W^*(R)$.

(d) If M is a faithful R-module, then $\Gamma_R^*(M) = \Gamma_R(M)$.

(e) If M is a faithful multiplication R-module, then $\Gamma_R(M) = \Gamma(R)$.

Proof. Parts (a) and (b) are clear.

(c) By part (a), $W^*_R(M) \subseteq W^*(R)$. Now let $r \in W^*(R)$ and $r \not\in W^*_R(M)$. Then $rM = M$. Thus by Nakayama’s Lemma, $1 + rt \in \text{Ann}_RM = 0$. Hence $Rr = R$, which is a contradiction.

(d) By part (c), $W^*_R(M) = W^*(R)$. Now let r and s be two distinct adjacent vertices of $\Gamma_R^*(M)$ and let $r \in \sqrt{(sM :_RM)}$. Then $r^nM \subseteq sM$ for some $n \in \mathbb{N}$. Thus by [11, Theorem 75], there exist $t \in R$ and $k \in \mathbb{N}$ such that $(r^{kn} + st)M = 0$. Since M is faithful, $r^{kn} + st = 0$ and so $r \in \sqrt{sM}$. This contradiction shows that $E(\Gamma_R(M)) \subseteq E(\Gamma_R^*(M))$. The reverse inclusion is clear.

(e) By part (c), $W^*_R(M) = W^*(R)$. Now let r and s be two distinct adjacent vertices of $\Gamma(R)$ and let $r \in (sM :_RM)$. Then $rM \subseteq sM$. Thus by [1], $Rr \subseteq sR$, which is a contradiction. Hence $E(\Gamma(R)) \subseteq E(\Gamma_R(M))$. The reverse inclusion is clear.

Remark 3. By using part (e) of Theorem 1, if $M = R$, then $\Gamma_R(R) = \Gamma(R)$.

We use the following lemma frequently.

Lemma 1. Let M be an R-module and $P \in \text{Max}(M)$. Then $P = (PM :_R M)$.

Proof. Assume $(PM :_R M) = R$ so that $PM = M$. Since M is finitely generated, there exists $x \in P$ such that $(1 + x)M = 0$. Thus $1 + x \in \text{Ann}_R(M)$ but by [12], $P \supseteq \text{Ann}_R(M)$. It follows that $1 \in P$, a contradiction. Now the results follows from $P \subseteq (PM :_R M)$ and Remark 2. □

Proposition 1.
(a) The graph $\hat{\Gamma}_R(M)$ is not complete if and only if there exists an element $s \in W^*_R(M)$ such that $|sM :_R M| > 2$.
(b) $\hat{\Gamma}_R(M)$ is complete if and only if $(sM :_R M) = \{0, s\}$ for all elements s in $W^*_R(M)$.
(c) If R is an integral domain, then $\hat{\Gamma}_R(M)$ is not complete.

Proof. Straightforward □

Theorem 2. $\hat{\Gamma}_R(M)$ is complete if and only if $\hat{\Gamma}_R(M)$ is complete.

Proof. The sufficiency is clear. Conversely, we assume that $\hat{\Gamma}_R(M)$ is complete and r, s be arbitrary distinct elements in $W^*_R(M)$ and $r \in \sqrt{(sM :_R M)}$. Then $r^n M \subseteq sM$ for some $n \in \mathbb{N}$. Since $\hat{\Gamma}_R(M)$ is complete, r^n and s are adjacent. But this is a contradiction by the above arguments. □

We use the notation $\hat{\Gamma}_R(M) \setminus J(M)$ to denote a subgraph of $\hat{\Gamma}_R(M)$ with vertices $W^*_R(M) \setminus J(M)$.

Theorem 3.
(a) The graph $\hat{\Gamma}_R(M) \setminus J(M)$ is connected.
(b) If M is a non-local module, then $\text{diam}(\hat{\Gamma}_R(M) \setminus J(M)) \leq 2$.

Proof. (a) If M is a local module, then $W^*_R(M) \setminus J(M)$ is a empty set, which is connected. So we assume that $|\text{Max}(M)| > 1$. Let r and s be arbitrary distinct elements in $W^*_R(M) \setminus J(M)$. Suppose that r is not adjacent to s. We may assume that $r \in (sM :_R M)$. Since $r \not\in J(M)$, there exists $P \in \text{Max}(M)$ such that $r \not\in P$. Thus $P \not\subseteq J(M)$, otherwise, $P \subseteq J(M)$ or $P \subseteq (sM :_R M)$. In first case, $J(M) = P$ so that $|\text{Max}(M)| = 1$. In second case, $P = (sM :_R M)$ by Lemma 1. In either case we have a contradiction. Choose t in $P \setminus J(M) \cup (sM :_R M)$. Now by using Lemma 1, we see that $r - t - s$ is the required path.
(b) This follows from the proof of part (a). □

Corollary 1. Let M be a non-local R-module with $J(M) = 0$. Then $\hat{\Gamma}_R(M)$ is connected and $\text{diam}(\hat{\Gamma}_R(M)) \leq 2$.

Theorem 4. Let M be a non-local module such that for every element $r \in J(M)$, there exist $P \in \text{Max}(M)$ and $s \in P \setminus J(M)$ with $r \not\in (sM :_R M)$. Then $\hat{\Gamma}_R(M)$ is connected and $\text{diam}(\hat{\Gamma}_R(M)) \leq 3$.
Suppose that \(r, s \in W_1^s(M) \) and \(r \) is not adjacent to \(s \). We may assume that \(r \in (sM :_R R) \). Then, we have the following cases:

Case 1. Suppose that \(s \in J(M) \). We claim that \(r \in J(M) \). Otherwise there exists \(P \in Max(M) \) such that \(r \notin P \). Then \(rM \subseteq sM \subseteq PM \). Thus by Lemma 1, \(r \in (PM :_R R) = P \), a contradiction. Thus by hypothesis, there exists \(t \in P \setminus J(M) \) for some \(P \in Max(M) \) with \(r \notin (tM :_R R) \). Also \(t \notin (rM :_R R) \); otherwise, we have \(tM \subseteq rM \subseteq sM \). Thus \(t \in (sM :_R R) \subseteq (PM :_R R) = P \) for each \(P \in J(M) \) so that \(t \in J(M) \), a contradiction. Thus \(r \) is adjacent to \(t \). By similar arguments, we see that \(t \) is adjacent to \(s \). Hence \(r - t - s \) is the required path.

Case 2. Suppose that \(r, s \notin J(M) \). Then \(r \notin P \), for some \(P \in Max(M) \). If \(P = (sM :_R R) \), then since \(r \in (sM :_R R) \), we have a contradiction. Choose \(p \) in \(P \setminus (sM :_R R) \). By similar arguments as in part (a), we see that \(r - p - s \) is the desired path.

Case 3. Assume that \(s \notin J(M) \) and \(r \in J(M) \). By our assumption, there exists \(q \in P \setminus J(M) \), for some \(P \in Max(M) \) such that \(r \notin (qM :_R R) \). We claim that \(q \notin (rM :_R R) \). Otherwise, \(qM \subseteq rM \subseteq PM \) for every \(P \in Max(M) \). Thus by Lemma 1, \(q \in (PM :_R R) = P \) for every \(P \in Max(M) \), a contradiction. Hence \(r \) is adjacent to \(q \). Further, \(s \notin (qM :_R R) \). If \(q \notin (sM :_R R) \), then we get the the path \(r - q - s \). Otherwise, we can apply case 2 for the elements \(q \) and \(s \) to get a path \(q - u - s \) for some \(u \in W_1^s(M) \). Hence we have \(r - q - u - s \). \(\square \)

Theorem 5. Let \(M \) be a non-local module. Then \(g(\hat{\Gamma}_R(M) \setminus J(M)) \leq 5 \) or \(g(\hat{\Gamma}_R(M) \setminus J(M)) = \infty \).

Proof. Use the technique of [2, 2.8] and apply Theorem 3. \(\square \)

Theorem 6. Let \(|Max(M)| \geq 3 \). Then \(g(\hat{\Gamma}_R(M)) = 3 \).

Proof. Clearly, \(g(\hat{\Gamma}_R(M)) \geq 3 \). Let \(P_1, P_2, \) and \(P_3 \) be distinct elements of \(Max(M) \). By Remark 2, \(Max(M) \subseteq Max(R) \). Choose \(a_i \in P_i \setminus \bigcup_{j=1}^{3} P_j \), \(1 \leq i \leq 3 \) and \(j \neq i \). Then by using 1, we see that \(a_1 - a_2 - a_3 - a_1 \) is a cycle. Therefore \(g(\hat{\Gamma}_R(M)) = 3 \). \(\square \)

For a graph \(G \), let \(\chi(G) \) denote the **chromatic number of the graph** \(G \), i.e., the minimal number of colors which can be assigned to the vertices of \(G \) in such a way that every two adjacent vertices have different colors. A **clique** of a graph is its complete subgraph and the number of vertices in the largest clique of \(G \), denoted by \(\text{clique}(G) \), is called the clique number of \(G \).

Theorem 7. (a) Let \(R \) not be a field. Then if \(Max(M) \) has an infinite number of maximal ideals, then \(\text{clique}(\hat{\Gamma}_R(M)) \) is also infinite; otherwise \(\text{clique}(\hat{\Gamma}_R(M)) \geq |Max(M)| \).

(b) If \(\chi(\hat{\Gamma}_R(M)) < \infty \), then \(|Max(M)| < \infty \).

Proof. Use the technique of [2, 2.14]. \(\square \)
A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends.

Theorem 8. Assume that $|\text{Max}(M)| \geq 5$. Then $\hat{\Gamma}_R(M)$ is not planar.

Proof. Assume that $|\text{Max}(M)| \geq 5$. Choose $a_i \in m_i \setminus \cup_{j=1}^{5} m_j$, where $m_i \in \text{Max}(M)$, $1 \leq i \leq 5$, and $j \neq i$. Then $a_i \notin (a_j :_R M)$. Otherwise, $a_i \in (a_j :_R M) \subseteq (m_j :_R M) = m_j$ by Lemma 1. Similarly, $a_j \notin (a_i :_R M)$. Hence m_1, m_2, m_3, m_4, m_5 forms a complete subgraph of $\hat{\Gamma}_R(M)$ which is isomorphic to K_5. Thus by [9, p.153], $\hat{\Gamma}_R(M)$ is not planar.

For any vertex x of a connected graph G, the eccentricity of x, denoted by $e(x)$, is the maximum of the distances from x to the other vertices of G, and the minimum value of the eccentricity is the radius of G, which is denoted by $r(G)$.

Theorem 9. Let M be a non-local module with $J(M) = 0$. Then $r(\hat{\Gamma}_R(M)) = 2$ if and only if for each $t \in W^*_R(M)$, there exists $s \in W^*_R(M)$ such that t is not adjacent to s.

Proof. The proof is similar to that of [2, 3.14].

Theorem 10. Let R be a Noetherian ring. If $\hat{\Gamma}_R(M)$ is totally disconnected, then M is a local module with maximal ideal of the from $(xM :_R M)$ for some $x \in W^*_R(M)$.

Proof. It is easy to see that M is a local module. Set $\text{Max}(M) = m$. Assume to contrary that m is not the form of $(rM :_R M)$ for every $r \in W^*_R(M)$. Set $A = \{(rM :_R M), r \in W^*_R(M)\}$. Then A has a maximal member, say $(\hat{r}M :_R M)$ for some $\hat{r} \in W^*_R(M)$. Choose $s \in m \setminus (\hat{r}M :_R M)$. We claim that $\hat{r} \notin (sM :_R M)$. Otherwise, we have $(\hat{r}M :_R M) \subseteq (sM :_R M)$, so $(\hat{r}M :_R M) = (sM :_R M)$ by maximality. Hence $s \in (\hat{r}M :_R M)$ so that \hat{r} is adjacent to s, a contradiction.

Theorem 11. Assume that M is a non-local module. Then the following conditions are equivalent.

(a) $\hat{\Gamma}_R(M) \setminus J(M)$ is complete bipartite.

(b) $\hat{\Gamma}_R(M) \setminus J(M)$ is bipartite.

(c) $\hat{\Gamma}_R(M) \setminus J(M)$ contains no triangles.

Proof. Use the technique of [3, 2.13].

Proposition 2. If the graph $\hat{\Gamma}_R(M) \setminus J(M)$ is n-partite for some positive integer n, then $|\text{Max}(M)| \leq n$.

Proof. Assume to the contrary that $|\text{Max}(M)| > n$. Since $\hat{\Gamma}_R(M) \setminus J(M)$ is an n-partite graph, there are maximal ideals P_1 and P_2 of $\text{Max}R(M)$ with $(rM :_R M) \subseteq P_1 \setminus P_2$ and $(sM :_R M) \subseteq P_2 \setminus P_1$, where r, s belong to the same part. But this implies that r is adjacent to s which is a contradiction.
Theorem 12. Let M be an R-module with $\text{Max}(M) = \{m_1, m_2\}$. Then $\hat{\Gamma}(M) \setminus J(M)$ is a complete bipartite graph with parts $m_i \setminus J(M)$, $i = 1, 2$, if and only if every pair of ideals $(rM :_R M)$, $(sM :_R M)$ contained in $(m_1 \setminus J(M))$ or $(m_2 \setminus J(M))$, where $r, s \in R$, are totally ordered.

Proof. Suppose that $\hat{\Gamma}(M) \setminus J(M)$ is a complete bipartite graph with parts $m_i \setminus J(M)$, $i = 1, 2$. Further assume to the contrary that there exist ideals $(rM :_R M)$, $(sM :_R M) \subseteq m_1 \setminus J(M)$ such that $(rM :_R M) \not\subseteq (sM :_R M)$ and $(sM :_R M) \not\subseteq (rM :_R M)$. We claim that r is adjacent to s in $m_1 \setminus J(M)$. Otherwise, without loss of generality, we assume that $r \in (sM :_R M)$ and $s \in m_1 \setminus J(M)$ and we have $rM \subseteq (sM :_R M)M$. Thus $(rM :_R M) \subseteq ((sM :_R M)M :_R M) = (sM :_R M)$, a contradiction. Hence r is adjacent to s in $m_1 \setminus J(M)$, which is again a contradiction by hypothesis. Conversely, assume that $i \in \{1, 2\}$ and $(rM :_R M), (sM :_R M) \subseteq m_i \setminus J(M)$. We may assume that $(rM :_R M) \subseteq (sM :_R M)$. Then clearly, $r, s \in m_i \setminus J(M)$ and r is not adjacent. Now if $r \in m_1 \setminus m_2$ and $s \in m_2 \setminus m_1$, then by using 1, we see that r is adjacent to s. Therefore $\hat{\Gamma}(M) \setminus J(M)$ is a complete bipartite graph with parts $m_i \setminus J(M)$, $i = 1, 2$.

Theorem 13. Let M be a faithful R-module and $Z_R(M) \neq W_R(M)$. Then $\hat{\Gamma}_R(M)$ is finite if and only if R is finite.

Proof. Clearly if R is finite, then $\hat{\Gamma}_R(M)$ is finite. So we assume that $\hat{\Gamma}_R(M)$ is finite and show that R is finite. Suppose that R is infinite and look for a contradiction. By Remark 1, we have $Z_R(M) \subset W_R(M) = N_R(M)$. Choose $x \in W_R(M) \setminus Z_R(M)$. Since Rx is a finite R-module and $R \setminus W_R(M)$ is an infinite set, there exist distinct elements $r_1, r_2 \in R \setminus W_R(M)$ such that $r_1x = r_2x$. Therefore $(r_1 - r_2)x = 0$. Then we have $x((r_1 - r_2)M) = 0$. Since x is a nonzero-divisor on M, we have $(r_1 - r_2)M = 0$ so that $r_1 - r_2 \in \text{Ann}_R(M)$. Thus $r_1 = r_2$, a contradiction.

Corollary 2. Let R be a domain and let $Z_R(M) = \{0\}$. If $\hat{\Gamma}_R(M)$ is a finite graph, then R is a field.

Proof. If $W_R(M) \neq \{0\}$, then by Theorem 13, R is finite so that R is a field. Otherwise, if $W_R(M) = \{0\}$, then we have $W_R(M) = \bigcup_{p \in \text{Max}(M)} P = \{0\}$ by Remark 1. This implies that the zero ideal of R is a maximal ideal and hence R is a field.

Remark 4. One can see, by using the same technique, that the results about $\hat{\Gamma}_R(M)$ in this section is also true for $\Gamma_R(M)$.

References

[1] Z. Abd El-Bast and P. F. Smith, “Multiplication modules,” Commun. Algebra, vol. 16, no. 4, pp. 755–779, 1988.

[2] M. Afkhami and K. Khaskyarmanesh, “The cozero-divisor graph of a commutative ring,” Southeast Asian Bull. Math., vol. 35, no. 5, pp. 753–762, 2011.
[3] M. Afkhami and K. Khashyarmanesh, “On the cozero-divisor graphs of commutative rings and their complements,” *Bull. Malays. Math. Sci. Soc. (2)*, vol. 35, no. 4, pp. 935–944, 2012.

[4] D. D. Anderson and M. Naseer, “Beck’s coloring of a commutative ring,” *J. Algebra*, vol. 159, no. 2, pp. 500–514, 1993.

[5] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, “The zero-divisor graph of a commutative ring, II,” in *Ideal theoretic methods in commutative algebra. Proceedings of the conference in honor of Professor James A. Huckaba’s retirement, University of Missouri, Columbia, MO, USA*, ser. Lect. Notes Pure Appl. Math., D. D. Anderson, Ed. New York: Marcel Dekker, 2001, vol. 220, pp. 61–72.

[6] D. F. Anderson, R. Levy, and J. Shapiro, “Zero-divisor graphs, von Neumann regular rings, and Boolean algebras,” *J. Pure Appl. Algebra*, vol. 180, no. 3, pp. 221–241, 2003.

[7] D. F. Anderson and P. S. Livingston, “The zero-divisor graph of a commutative ring,” *J. Algebra*, vol. 217, no. 2, pp. 434–447, 1999.

[8] I. Beck, “Coloring of commutative rings,” *J. Algebra*, vol. 116, no. 1, pp. 208–226, 1988.

[9] J. A. Bondy and U. S. R. Murty, *Graph theory with applications*. New York: American Elsevier Publishing Co., 1976.

[10] G. A. Cannon, K. M. Neuerburg, and S. P. Redmond, “Zero-divisor graphs of nearrings and semifields,” in *Nearrings and nearfields. Proceedings of the conference on nearrings and nearfields, Hamburg, Germany, July 27–August 3, 2003*, H. Kiechle, Ed. Dordrecht: Springer, 2005, pp. 189–200.

[11] I. Kaplansky, *Commutative rings*. Chicago: University of Chicago Press, 1978.

[12] S. Yassemi, “Maximal elements of support and cosupport,” http://www.ictp.trieste.it/\simpub/off.

Authors’ addresses

H. Ansari-Toroghy
Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.
E-mail address: ansari@guilan.ac.ir

F. Farshadifar
University of Farhangian, Tehran, Iran.
E-mail address: f.farshadifar@gmail.com

Sh.Habibi
Department of pure Mathematics, Faculty of mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.
E-mail address: sh.habibi@guilan.ac.ir