CONVERGENCE OF DOUBLE COSINE SERIES

KARANVIR SINGH and KANAK MODI

ABSTRACT. In this paper we consider double cosine series whose coefficients form a null sequence of bounded variation of order \((p, 0)\), \((0, p)\) and \((p, p)\) with the weight \((jk)^{p-1}\) for some \(p > 1\). We study pointwise convergence, uniform convergence and convergence in \(L^r\)-norm of the series under consideration. In a certain sense our results extend the results of Young [7], Kolmogorov [3] and Móricz [4, 5].

1. Introduction

Consider the double cosine series

\[
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \lambda_j \lambda_k a_{jk} \cos jx \cos ky,
\]

on positive quadrant \(T = [0, \pi] \times [0, \pi]\) of the two dimensional torus where \(\lambda_0 = \frac{1}{2}\) and \(\lambda_j = 1\) for \(j = 1, 2, 3, \ldots\).

The rectangular partial sums \(S_{mn}(x, y)\) and the Cesàro means \(\sigma_{mn}(x, y)\) of the series (1.1) are defined as

\[
S_{mn}(x, y) = \sum_{j=0}^{m} \sum_{k=0}^{n} \lambda_j \lambda_k a_{jk} \cos jx \cos ky,
\]

\[
\sigma_{mn}(x, y) = \frac{1}{(m+1)(n+1)} \sum_{j=0}^{m} \sum_{k=0}^{n} S_{jk}(x, y), \quad m, n > 0,
\]

Key words and phrases. Rectangular partial sums, \(L^r\)-convergence, Cesàro means, monotone sequences.

2010 Mathematics Subject Classification. Primary: 42A20, 42A32.

DOI 10.46793/KgJMat2003.443S

Received: September 17, 2017.
Accepted: June 05, 2018.
and for \(\lambda > 1 \), the truncated Cesáro means are defined by
\[
V_{mn}^{\lambda}(x, y) = \frac{1}{(\lfloor \lambda m \rfloor - m)(\lfloor \lambda n \rfloor - n)} \sum_{j=m+1}^{\lfloor \lambda m \rfloor - m} \sum_{k=n+1}^{\lfloor \lambda n \rfloor - n} S_{jk}(x, y).
\]

Now assuming the coefficients \(\{a_{jk} : j, k \geq 0\} \) in (1.1) be a double sequence of real numbers which satisfy the following conditions for some positive integer \(p \):
\[
|a_{jk}|(jk)^{p-1} \to 0 \text{ as } \max\{j, k\} \to \infty,
\]
(1.2)
\[
\lim_{k \to \infty} \sum_{j=0}^{\infty} |\triangle_{0p}a_{jk}|(jk)^{p-1} = 0,
\]
(1.3)
\[
\lim_{j \to \infty} \sum_{k=0}^{\infty} |\triangle_{0p}a_{jk}|(jk)^{p-1} = 0,
\]
(1.4)
\[
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\triangle_{pp}a_{jk}|(jk)^{p-1} < \infty.
\]
(1.5)

The finite order differences \(\triangle_{pq}a_{jk} \) are defined by
\[
\begin{align*}
\triangle_{00}a_{jk} &= a_{jk}, \\
\triangle_{pq}a_{jk} &= \triangle_{p-1, q}a_{jk} - \triangle_{p-1, q-1}a_{j+1, k+1}, & p \geq 1, q \geq 0, \\
\triangle_{0q}a_{jk} &= \triangle_{p, q}a_{jk} - \triangle_{p, q-1}a_{j, k+1}, & p \geq 0, q \geq 1.
\end{align*}
\]

Also a double induction argument gives
\[
\begin{align*}
\triangle_{pq}a_{jk} = \sum_{s=0}^{p} \sum_{t=0}^{q} (-1)^{s+t} \binom{p}{s} \binom{q}{t} a_{j+s, k+t}.
\end{align*}
\]

We can call the above mentioned conditions (1.2)-(1.5) as conditions of bounded variation of order \((p, 0), (0, p)\) and \((p, p)\) respectively with the weight \((jk)^{p-1}\). Obviously these conditions generalise the concept of monotone sequences. Also any sequence satisfying (1.5) with \(p = 2 \) is called a quasi-convex sequence [3, 5]. Clearly the conditions (1.3) and (1.4) can be derived from (1.2) and (1.5) for \(p = 1 \) and moreover for \(p = 1 \), the conditions (1.2) and (1.5) reduce to \(|a_{jk}| \to 0 \text{ as } \max\{j, k\} \to \infty\) and
\[
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\triangle_{11}a_{jk}| < \infty.
\]

Generally the pointwise convergence of the series (1.1) is defined in Pringsheim’s sense ([8], Vol. 2, Ch. 17) which means that the rectangular partial sums of the type
\[
S_{mn}(x, y) = \sum_{j=0}^{n} \sum_{k=0}^{m} \lambda_j \lambda_k a_{jk} \cos jx \cos ky, \quad m, n \geq 0,
\]
are formed and then by taking both \(m, n \) tend to \(\infty \) (independently of one another) the limit \(f(x, y) \) (provided it exists) is assigned to the series (1.1) as its sum.
Also let \(\|f\|_r \) denotes the \(L^r(T^2) \)-norm, i.e,
\[
\|f\|_r = \left(\int_0^\pi \int_0^\pi |f(x,y)|^r \, dx \, dy \right)^{1/r}, \quad 1 \leq r < \infty
\]
and \(\|f\| \) denotes \(L^1(T^2) \)-norm, i.e,
\[
\|f\| = \int_0^\pi \int_0^\pi |f(x,y)| \, dx \, dy.
\]
In this paper, we will investigate the validity of the following statements:

(a) \(S_{mn}(x,y) \) converges pointwise to \(f(x,y) \) for every \((x,y) \in T^2 \);

(b) \(S_{mn}(x,y) \) converges uniformly to \(f(x,y) \) on \(T^2 \);

(c) \(\|S_{mn}(x,y) - f(x,y)\|_r = o(1) \) as \(\min\{m,n\} \to \infty \), \(1 \leq r < \infty \).

Such type of problems have been studied by Young [7] and Kolmogorov [3] for one-dimensional case (single trigonometric series especially cosine series) and by Móricz [4, 5] and K. Kaur, Bhatia and Ram [2] for double trigonometric series. In [5], Móricz studied both double cosine series and double sine series as far as their integrability and convergence in \(L^1 \)-norm is concerned where as in [4] he studied double trigonometric series of the form
\[
\sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} c_{jk} e^{i(jx+ky)},
\]
under coefficients of bounded variation. All of them discussed the case for \(p = 1 \) or \(p = 2 \) only. Our aim in this paper is to extend the above results from \(p = 1 \) to general cases for double cosine series.

In the results, \(C_p \) and \(C_{pr} \) denote constants which may not be the same at each occurrence. Also we write \(\lambda_n = \lfloor \lambda n \rfloor \) where \(n \) is a positive integer, \(\lambda > 1 \) is a real number and \(\lfloor \cdot \rfloor \) means greatest integral part.

The first main result reads as follows.

Theorem 1.1. Assume that conditions (1.2)–(1.5) are satisfied for some \(p \geq 1 \), then

(i) \(S_{mn}(x,y) \) converges pointwise to \(f(x,y) \) for every \((x,y) \in T^2 \) such that \(x, y > 0 \);

(ii) \(\|S_{mn}(x,y) - f(x,y)\|_r = o(1) \) as \(\min\{m,n\} \to \infty \), \(1 \leq r < \infty \).

The above theorem has been proved by Móricz [4, 5] for \(p = 1 \) and \(p = 2 \) using suitable estimates for Dirichlet’s kernel \(D_j(x) \) and Fejér kernel \(K_j(x) \). In the case of a single series for \(p = 2 \), the results regarding convergence have been proved by Kolmogorov [3].

Obviously, condition (1.5) implies any of the following conditions:

\[
(1.6) \quad \lim_{\lambda_n \to 1} \lim_{n \to \infty} \sum_{j=0}^{\infty} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} |\triangle_{pp} a_{jk}|(jk)^{p-1} = 0,
\]
We introduce the following three sums for \(m, n \geq 0 \) and \(\lambda > 1 \):

\[
\sum_{10}^{\lambda}(m, n, x, y) = \sum_{j=m+1}^{\lambda m} \sum_{k=0}^{n} \frac{\lambda_{m} - j + 1}{\lambda_{m} - m} a_{jk} \cos jx \cos ky,
\]

\[
\sum_{01}^{\lambda}(m, n, x, y) = \sum_{j=0}^{\lambda n} \sum_{k=n+1}^{\lambda n} \frac{\lambda_{n} - k + 1}{\lambda_{n} - n} a_{jk} \cos jx \cos ky,
\]

\[
\sum_{11}^{\lambda}(m, n, x, y) = \sum_{j=m+1}^{\lambda m} \sum_{k=n+1}^{\lambda n} \frac{\lambda_{m} - j + 1}{\lambda_{m} - m} \frac{\lambda_{n} - k + 1}{\lambda_{n} - n} a_{jk} \cos jx \cos ky
\]

and we have

\[
\sum_{11}^{\lambda}(m, n; x, y) = \frac{1}{(\lambda_{m} - m)} \sum_{u=m+1}^{\lambda m} \left(\sum_{01}^{\lambda}(u, n; x, y) - \sum_{01}^{\lambda}(m, n; x, y) \right),
\]

\[
\sum_{11}^{\lambda}(m, n; x, y) = \frac{1}{(\lambda_{n} - n)} \sum_{v=n+1}^{\lambda n} \left(\sum_{10}^{\lambda}(m, v; x, y) - \sum_{10}^{\lambda}(m, n; x, y) \right).
\]

This implies

\[
\sum_{11}^{\lambda}(m, n; x, y) \leq \left\{ \begin{array}{l}
2 \sup_{m \leq u \leq \lambda_{m}} \left(|\sum_{01}^{\lambda}(u, n; x, y)| \right) \\
2 \sup_{n \leq v \leq \lambda_{n}} \left(|\sum_{10}^{\lambda}(m, v; x, y)| \right)
\end{array} \right\}.
\]

The second result of this paper is the following theorem.

Theorem 1.2.

(i) Let \(E \subset T^2 \). Assume that the following conditions are satisfied:

\[
\lim_{\lambda_{m} \downarrow 1} \lim_{m, n \to \infty} \left(\sup_{(x,y) \in E} |\sum_{10}^{\lambda}(m, n; x, y)| \right) = 0,
\]

\[
\lim_{\lambda_{n} \downarrow 1} \lim_{m, n \to \infty} \left(\sup_{(x,y) \in E} |\sum_{01}^{\lambda}(m, n; x, y)| \right) = 0.
\]

If \(V_{mn}^{\lambda}(x, y) \) converges uniformly to \(f(x, y) \) on \(E \subset T^2 \) as \(\min\{m, n\} \to \infty \) (that is, in the unrestricted sense), then so does \(S_{mn} \).

(ii) Assume that the following conditions are satisfied for some \(r \geq 1 \):

\[
\lim_{\lambda_{m} \downarrow 1} \lim_{m, n \to \infty} \left(\|\sum_{10}^{\lambda}(m, n; x, y)\|_{r} \right) = 0,
\]

\[
\lim_{\lambda_{n} \downarrow 1} \lim_{m, n \to \infty} \left(\|\sum_{01}^{\lambda}(m, n; x, y)\|_{r} \right) = 0.
\]

If \(\|V_{mn}^{\lambda} - f\|_{r} \to 0 \) unrestrictedly then \(\|S_{mn} - f\|_{r} \to 0 \) as \(\min\{m, n\} \to \infty \).

We will also prove the following theorem.
Theorem 1.3. Assume that the conditions (1.2)–(1.4) and (1.6)–(1.7) are satisfied for some \(p \geq 1 \), then

(i) if \(V_{mn}^\lambda(x, y) \) converges uniformly to \(f(x, y) \) as \(\min\{m, n\} \to \infty \), then so does \(S_{mn} \);

(ii) if \(\|V_{mn}^\lambda - f\|_r \to 0 \) unrestrictedly for some \(r \) with \(1 \leq r < \infty \), then

\[\|S_{mn} - f\|_r \to 0 \] as \(\min\{m, n\} \to \infty \).

2. Notation and Formulas

We define for every \(\alpha = 0, 1, 2, \ldots \) the sequence \(S_0^n, S_1^n, S_2^n, \ldots \) by the conditions

\[S_0^n = S_n, \quad S_\alpha^n = \sum_{u=0}^{n} S_{\alpha-1}^u, \quad \alpha \geq 1 \]

and

\[A_0^n = 1, \quad A_\alpha^n = \sum_{u=0}^{n} A_{\alpha-1}^u, \quad \alpha \geq 1, \]

denotes binomial coefficients. Also

\[A_\alpha^n = \binom{n + \alpha}{n} \approx \frac{n^\alpha}{\Gamma(\alpha + 1)}, \quad \alpha \neq -1, -2, -3, \ldots. \]

The Cesàro means \(T_\alpha^n \) of order \(\alpha \) of \(\sum a_n \) will be defined by

\[T_\alpha^n = S_\alpha^n A_\alpha^n \] and also it is known [8] that \(\int_0^\pi |T_\alpha^n(x)| dx, \alpha > 0 \), is bounded for all \(n \).

3. Lemmas

We require the following lemmas for the proof of our results.

Lemma 3.1. For \(m, n \geq 0 \) and \(p > 1 \), the following representation holds:

\[S_{mn}(x, y) = \sum_{j=0}^{m} \sum_{k=0}^{n} \lambda_j \lambda_k a_{jk} \cos jx \cos ky \]

\[= \sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{p\lambda a_{j+1,k+1}} S_{j-1}^{p-1}(x) S_{k-1}^{p-1}(y) + \sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{p\lambda a_{j+1,n+1}} S_{j-1}^{p-1}(x) S_{t}^{p-1}(y) \]

\[+ \sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{s\lambda a_{m+1,k+1}} S_{m+1,n}^{s-1}(x) S_{t}^{s-1}(y) + \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{s\lambda a_{n+1,m+1}} S_{m+1,n+1}^{s-1}(x) S_{t}^{s-1}(y). \]

Lemma 3.2 ([1]). For \(m, n \geq 0 \) and \(\lambda > 1 \), the following representation holds:

\[S_{mn} - \sigma_{mn} = \lambda_m + 1 \frac{\lambda_n + 1}{\lambda_m - m} (\sigma_{\lambda_m,n} - \sigma_{\lambda_m,n} - \sigma_{m,\lambda_n} + \sigma_{mn}) \]

\[+ \lambda_m + 1 \frac{\lambda_n + 1}{\lambda_m - m} (\sigma_{\lambda_m,n} - \sigma_{mn}) + \lambda_n + 1 \frac{\lambda_m + 1}{\lambda_n - n} (\sigma_{m,\lambda_n} - \sigma_{mn}) \]

\[- \sum_{i=1}^{\lambda} (m, n, x, y) - \sum_{i=0}^{\lambda} (m, n, x, y) - \sum_{i=0}^{\lambda} (m, n, x, y). \]
Lemma 3.3. For $m, n \geq 0$ and $\lambda > 1$, we have the following representation:

$$V_{mn}^\lambda - S_{mn} = \sum_{11}^\lambda (m, n, x, y) + \sum_{10}^\lambda (m, n, x, y) + \sum_{01}^\lambda (m, n, x, y).$$

Proof. We have

$$V_{mn}^\lambda (x, y) = \frac{1}{(\lambda_m - m)(\lambda_n - n)} \sum_{j=m+1}^{\lambda_m} \sum_{k=n+1}^{\lambda_n} S_{jk}(x, y).$$

Performing double summation by parts, we have

$$V_{mn}^\lambda = \frac{\lambda_m + 1}{\lambda_m - m} \frac{\lambda_n + 1}{\lambda_n - n} \sigma_{\lambda_m, \lambda_n} - \frac{\lambda_m + 1}{\lambda_m - m} \frac{n + 1}{\lambda_n - n} \sigma_{\lambda_m, \lambda_n}$$

$$- \frac{m + 1}{\lambda_m - m} \frac{\lambda_n + 1}{\lambda_n - n} \sigma_{m, \lambda_n} + \frac{m + 1}{\lambda_m - m} \frac{n + 1}{\lambda_n - n} \sigma_{mn}$$

$$= \frac{\lambda_m + 1}{\lambda_m - m} \frac{\lambda_n + 1}{\lambda_n - n} \left(\sigma_{\lambda_m, \lambda_n} - \sigma_{\lambda_m, \lambda_n} - \sigma_{m, \lambda_n} + \sigma_{mn} \right)$$

$$+ \frac{\lambda_m + 1}{\lambda_m - m} (\sigma_{\lambda_m, \lambda_n} - \sigma_{mn}) + \frac{\lambda_n + 1}{\lambda_n - n} (\sigma_{m, \lambda_n} - \sigma_{mn}) + \sigma_{mn}.$$

The use of Lemma 3.2, gives

$$V_{mn}^\lambda - S_{mn} = \sum_{j=m+1}^{\lambda_m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_m - j + 1}{\lambda_m - m} \frac{\lambda_n - k + 1}{\lambda_n - n} a_{jk} \cos jx \cos ky$$

$$+ \sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{n} \frac{\lambda_n - k + 1}{\lambda_n - n} a_{jk} \cos jx \cos ky$$

$$+ \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_m - j + 1}{\lambda_m - m} a_{jk} \cos jx \cos ky. \quad \square$$

Lemma 3.4. For $m, n \geq 0$ and $\lambda > 1$, we have the following representation:

$$\sum_{10}^\lambda (m, n; x, y) = \sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{n} \frac{\lambda_m - j + 1}{\lambda_m - m} a_{jk} \cos jx \cos ky$$

$$= \sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{n} \frac{\lambda_m - j + 1}{\lambda_m - m} \Delta_{pp} a_{jk} S_{j}^{p-1}(x) S_{k}^{p-1}(y)$$

$$+ \sum_{j=m+1}^{\lambda_m} \sum_{t=0}^{p-1} \frac{\lambda_m - j + 1}{\lambda_m - m} \Delta_{pt} a_{j, n+1} S_{j}^{p-1}(x) S_{n}^{t}(y)$$

$$+ \frac{1}{\lambda_m - m} \sum_{j=m+1}^{\lambda_m} \sum_{s=0}^{p-1} \sum_{k=0}^{n} \Delta_{sp} a_{j+1, k} S_{j}^{s}(x) S_{k}^{p-1}(y)$$

$$+ \frac{1}{\lambda_m - m} \sum_{j=m+1}^{\lambda_m} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{st} a_{j+1, n+1} S_{j}^{s}(x) S_{n}^{t}(y).$$
\begin{equation}
- \sum_{s=0}^{p-1} \sum_{k=0}^{n} \Delta_{sp} a_{m+1,k} S^s_m(x) S^{p-1}_k(y) \\
- \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{st} a_{m+1,n+1} S^s_m(x) S^t_n(y).
\end{equation}

Proof. We have by summation by parts,
\[
\sum_{k=0}^{n} \cos ky \left(\sum_{j=m+1}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m - m} a_{jk} \cos jx \right) \\
= \sum_{k=0}^{n} \cos ky \left(\sum_{j=m+1}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m - m} \Delta_{p0} a_{jk} S^{p-1}_j(x) \\
+ \frac{1}{\lambda_m - m} \sum_{j=m+1}^{\lambda_m} \sum_{p=0}^{n-1} \sum_{k=0}^{p-1} \Delta_{sp} a_{j+1,k} S^s_j(x) - \sum_{s=0}^{p-1} \Delta_{s0} a_{m+1,k} S^s_m(x) \right) \\
= \sum_{j=m+1}^{\lambda_m} \frac{\lambda_m - j + 1}{\lambda_m - m} S^{p-1}_j(x) \left(\sum_{k=0}^{n} \Delta_{p0} a_{jk} \cos ky \right) \\
+ \sum_{j=m+1}^{\lambda_m} \frac{1}{\lambda_m - m} \sum_{j=m+1}^{\lambda_m} \sum_{p=0}^{n-1} \left(\sum_{k=0}^{p-1} \Delta_{sp} a_{j+1,k} \cos ky \right) S^s_j(x) \\
- \sum_{s=0}^{p-1} \left(\sum_{j=m+1}^{\lambda_m} \sum_{k=0}^{n} \Delta_{sp} a_{m+1,k} \cos ky \right) S^s_m(x).
\]

Similarly we can have representation for \(\sum_{01}^{\lambda}(m, n; x, y). \) \(\square \)

4. **PROOF OF THEOREMS**

Proof of Theorem 1.1. For \(m, n \geq 0 \) and \(p > 1 \), we have from Lemma 3.1,
\[
S_{mn}(x, y) = \sum_{j=0}^{m} \sum_{s=0}^{n} \Delta_{sp} a_{j,k} S^{p-1}_j(x) S^{p-1}_k(y) + \sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{pt} a_{j,n+1} S^t_n(y) \\
+ \sum_{k=0}^{p-1} \sum_{s=0}^{p-1} \Delta_{sp} a_{m+1,k} S^s_m(x) S^{p-1}_k(y) + \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{st} a_{m+1,n+1} S^s_m(x) S^t_n(y).
\]
= \sum_1 + \sum_2 + \sum_3 + \sum_4.

Using the results as given in [6] that \(S_j^p(x) = O\left(\frac{1}{xp}\right) \), for all \(p \geq 2, 0 < x \leq \pi \), etc, we have for \(0 < x, y \leq \pi \),

\[
\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} |\Delta_{pp}a_{jk}S_j^{p-1}(x)S_k^{p-1}(y)| < \infty \quad \text{(by (1.2))}
\]

and also by (1.3)–(1.5), we have

\[
\sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{pt}a_{j,n+1} \leq \sum_{t=0}^{p-1} \sum_{v=0}^{t} \left(\sum_{j=0}^{m} |\Delta_{p0}a_{j,n+1+v+1}| \right)
\]

\[
\leq \sup_{n<k\leq n+p} \sum_{j=0}^{m} |\Delta_{p0}a_{jk}|
\]

\[
\leq \sup_{n<k\leq n+p} \sum_{j=0}^{m} |\Delta_{p0}a_{jk}| \rightarrow 0 \text{ as } \min\{m, n\} \rightarrow \infty.
\]

Thus,

\[
\sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{pt}a_{j,n+1}S_j^{p-1}(x)S_n^{p-1}(y) \rightarrow 0 \text{ as } \min\{m, n\} \rightarrow \infty.
\]

And similarly

\[
\sum_{s=0}^{p-1} \sum_{k=0}^{n} \Delta_{sp}a_{m+1,k} \leq \sum_{s=0}^{p-1} \sum_{u=0}^{s} \left(\sum_{k=0}^{n} |\Delta_{0p}a_{m+1,u+k}| \right)
\]

\[
\leq \sup_{m<j\leq m+p} \sum_{k=0}^{n} |\Delta_{0p}a_{jk}|
\]

\[
\leq \sup_{m<j\leq m+p} \sum_{k=0}^{n} |\Delta_{0p}a_{jk}| \rightarrow 0 \text{ as } \min\{m, n\} \rightarrow \infty.
\]

Thus,

\[
\sum_{s=0}^{n} \sum_{k=0}^{p-1} \Delta_{sp}a_{m+1,k}S_m^{s}(x)S_k^{p-1}(y) \rightarrow 0,
\]

as \(\min\{m, n\} \rightarrow \infty \). Also

\[
\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{st}a_{m+1,n+1} \leq \sum_{s=0}^{p-1} \sum_{u=0}^{s} \sum_{v=0}^{u} \left(\sum_{t=0}^{v} |\Delta_{00}a_{m+1,u+v+1}| \right)
\]

\[
\leq \sup_{j>m,k>n} |a_{jk}| \rightarrow 0 \text{ as } \min\{m, n\} \rightarrow \infty.
\]

So,

\[
\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \Delta_{st}a_{m+1,n+1}S_m^{s}(x)S_n^{p}(y) \rightarrow 0 \text{ as } \min\{m, n\} \rightarrow \infty.
\]
Consequently, series (1.1) converges to the function \(f(x, y) \) where

\[
f(x, y) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \Delta_{p} \alpha_{jk} \mathcal{S}_{\delta}^{\va})(x) \mathcal{S}_{\delta}^{\va}(y) \quad \text{and} \quad \lim_{m,n \to \infty} S_{mn}(x, y) = f(x, y).
\]

Now we will calculate \(\| \Sigma_1 \|, \| \Sigma_2 \|, \| \Sigma_3 \| \) and \(\| \Sigma_4 \| \) in the following way:

\[
\| \Sigma_1 \| = \left\| \sum_{j=0}^{m} \sum_{k=0}^{n} \Delta_{p} \alpha_{jk} \mathcal{S}_{\delta}^{\va}(x) \mathcal{S}_{\delta}^{\va}(y) \right\|
\leq \sum_{j=0}^{m} \sum_{k=0}^{n} \left| \Delta_{p} \alpha_{jk} \right| \int_{0}^{\pi} \int_{0}^{\pi} | \mathcal{S}_{\delta}^{\va}(x) \mathcal{S}_{\delta}^{\va}(y) | dx dy
\leq \sum_{j=0}^{m} \sum_{k=0}^{n} \left| \Delta_{p} \alpha_{jk} \right| A_{p}^{\va} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} | \mathcal{T}_{\delta}^{\va}(x) \mathcal{T}_{\delta}^{\va}(y) | dx dy
\leq C_{p} \sum_{j=0}^{m} \sum_{k=0}^{n} \left| \Delta_{p} \alpha_{jk} \right| j^{p-1} k^{p-1},
\]

\[
\| \Sigma_2 \| = \left\| \sum_{j=0}^{m} \sum_{t=0}^{n} \Delta_{l} \alpha_{j,n+1} \mathcal{S}_{\delta}^{\va}(x) \mathcal{S}_{\delta}^{\va}(y) \right\|
\leq \sum_{j=0}^{m} \sum_{t=0}^{n} \left(\frac{t}{v} \right) \left(\sum_{j=0}^{m} \left| \Delta_{p} \alpha_{j,n+1} \right| \right) A_{p}^{\va} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} | \mathcal{T}_{\delta}^{\va}(x) \mathcal{T}_{\delta}^{\va}(y) | dx dy
\leq C_{p} \sup_{n \leq k \leq n+p} \sum_{j=0}^{m} \left| \Delta_{p} \alpha_{jk} \right| j^{p-1} \left(\sum_{t=0}^{n} n^{t} \right)
\leq C_{p} \sup_{n \leq k \leq n+p} \sum_{j=0}^{m} \left| \Delta_{p} \alpha_{jk} \right| j^{p-1} k^{p-1},
\]

\[
\| \Sigma_3 \| = \left\| \sum_{s=0}^{m} \sum_{k=0}^{n} \Delta_{s} \alpha_{m+1,k} \mathcal{S}_{\delta}^{\va}(x) \mathcal{S}_{\delta}^{\va}(y) \right\|
\leq \sum_{s=0}^{m} \sum_{u=0}^{n} \left(\frac{s}{u} \right) \left(\sum_{k=0}^{n} \left| \Delta_{p} \alpha_{m+u+1,k} \right| \right) A_{p}^{\va} \int_{0}^{\pi} \int_{0}^{\pi} | \mathcal{T}_{\delta}^{\va}(x) \mathcal{T}_{\delta}^{\va}(y) | dx dy
\leq C_{p} \sup_{m \leq k \leq m+p} \sum_{s=0}^{n} \left| \Delta_{p} \alpha_{jk} \right| k^{p-1} \left(\sum_{s=0}^{m} m^{s} \right)
\leq C_{p} \sup_{m \leq k \leq m+p} \sum_{s=0}^{n} \left| \Delta_{p} \alpha_{jk} \right| j^{p-1} k^{p-1},
\]

\[
\| \Sigma_4 \| = \left\| \sum_{s=0}^{m} \sum_{t=0}^{n} \Delta_{s} \alpha_{m+1,n+1} \mathcal{S}_{\delta}^{\va}(x) \mathcal{S}_{\delta}^{\va}(y) \right\|
\]
\[
\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \sum_{u=0}^{s} t u \left(\frac{t}{u} \right) |\Delta_{00} \alpha_{m,u+1,n+1} | A_m^s A_n^t \int_{0}^{\pi} \int_{0}^{\pi} |T_m^s(x) T_n^t(y)| \, dx \, dy \\
\leq C_p \sup_{j>m,k>n} |a_{jk}| j^{p-1} k^{p-1}.
\]

Now let \(R_{mn} \) consists of all \((j, k)\) with \(j > m \) or \(k > n \), that is,

\[
\sum \sum_{(j, k) \in R_{mn}} = \sum_{j=m+1}^{\infty} \sum_{k=0}^{n} + \sum_{j=0}^{n} \sum_{k=n+1}^{\infty} + \sum_{j=m+1}^{\infty} \sum_{k=n+1}^{\infty}.
\]

Then

\[
\|f - S_{mn}\|_r = \left(\int_{0}^{\pi} \int_{0}^{\pi} |f(x, y) - S_{mn}(x, y)|^r \, dx \, dy \right)^{1/r}, \quad 1 \leq r < \infty,
\]

\[
\leq \sum \sum_{(j, k) \in R_{mn}} \Delta_{pq} |a_{jk}| S_j^{p-1} \left(x \right) S_k^{p-1} \left(y \right)\bigg|_r \\
+ \sum_{j=0}^{m} \sum_{t=0}^{p-1} \Delta_{pt} |a_{j,n+1}| S_j^{p-1} \left(x \right) S_t^{p-1} \left(y \right)\bigg|_r \\
+ \sum_{k=0}^{n} \sum_{s=0}^{p-1} \Delta_{sp} |a_{m+1,k}| S_m^{s} \left(x \right) S_k^{p-1} \left(y \right)\bigg|_r \\
+ \sum_{s=0}^{p-1} \sum_{k=0}^{p-1} \Delta_{st} |a_{m+1,k+1}| S_m^{s} \left(x \right) S_t^{p-1} \left(y \right)\bigg|_r
\]

\[
\leq C_p \left\{ \left(\sum \sum_{(j, k) \in R_{mn}} |\Delta_{pq} a_{jk}| j^{p-1} k^{p-1} \right) \right. \\
+ \left(\sup_{n < k \leq n+p} m \sum_{j=0}^{m} |\Delta_{pq} a_{jk}| j^{p-1} k^{p-1} \right) \\
+ \left(\sup_{m < j \leq m+p} n \sum_{k=0}^{n} |\Delta_{pq} a_{jk}| j^{p-1} k^{p-1} \right) \\
+ \left(\sup_{j > m,k > n} |a_{jk}| j^{p-1} k^{p-1} \right) \right. \\
\left. \rightarrow 0 \right. \text{ as } \min\{m, n\} \rightarrow \infty \quad \text{(by (1.2)-(1.5))},
\]

which proves (ii) part.

Proof of Theorem 1.2. Using the relation (1.8), we find that (1.9) or (1.10) implies

\[
\lim_{\lambda \uparrow 1} \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} \sum_{1}^{\lambda} (m, n; x, y) \right) = 0.
\]
Assume that \(V^\lambda_{mn}(x, y) \) converges uniformly on \(E \) to \(f(x, y) \). Then by Lemma 3.3, we get
\[
\lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} \left| S_{mn}(x, y) - V^\lambda_{mn}(x, y) \right| \right) \leq \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} \left| \sum^\lambda_{01} (m, n; x, y) \right| \right) + \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} \left| \sum^\lambda_{11} (m, n; x, y) \right| \right).
\]

After taking \(\lambda \downarrow 1 \) the result follows from (1.9), (1.10) and (4.1).

For (ii) part of theorem, we have
\[
\left\| \sum^\lambda_{11} (m, n; x, y) \right\|_r = \frac{1}{\lambda_m - m} \sum_{u=m+1}^{\lambda_m} \left(\left\| \sum^\lambda_{01} (u, n; x, y) \right\|_r + \left\| \sum^\lambda_{01} (m, n; x, y) \right\|_r \right) \leq 2 \left(\sup_{m \leq u \leq \lambda_m} \left(\left\| \sum^\lambda_{01} (u, n; x, y) \right\|_r \right) \right).
\]
Thus (1.11) implies
\[
\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left\| \sum^\lambda_{11} (m, n; x, y) \right\|_r = 0.
\]
Thus, the result of Theorem 1.2 (ii) follows.

Proof of Theorem 1.3. Using the Lemma 3.4, we can write the expression for \(\sum^\lambda_{01}(m, n; x, y) \) as
\[
\sum^\lambda_{01}(m, n; x, y) = \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} a_{jk} \cos jx \cos ky
\]
\[
= \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{pp}a_{jk} S^{p-1}_j(x) S^{p-1}_k(y)
\]
\[
+ \frac{1}{\lambda_n - n} \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \sum_{s=0}^{p-1} \Delta_{sp}a_{m+1,k} S^{s}_m(x) S^{p-1}_k(y)
\]
\[
+ \frac{1}{\lambda_n - n} \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \sum_{l=0}^{p-1} \sum_{s=0}^{p-1} \Delta_{st}a_{m+1,k+1} S^{s}_m(x) S^{t}_k(y)
\]
\[
- \sum_{l=0}^{p-1} \sum_{j=0}^{m} \Delta_{pl}a_{j,n+1} S^{p-1}_j(x) S^{l}_n(y)
\]
\[- \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \triangle_{st} a_{m+1,n+1} S^s_m (x) S^{t}_n (y) \]
\[= I_1 + I_2 + I_3 + I_4 + I_5 + I_6. \]

Now by using (1.2)–(1.4) and (1.6) along with estimates of \(S^p_j (x) \) etc., as mentioned in [6], we have the following estimates in brief:

\[
|I_1| = \left| \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} \triangle_{pp} a_{jk} S^p_j (x) S^{j-1}_k (y) \right| \\
\leq \sum_{j=0}^{m} \sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} |\triangle_{pp} a_{jk}| \\
\rightarrow 0 \quad \text{as } \min\{m,n\} \rightarrow \infty.
\]

Consequently, \(\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |I_1| \right) \rightarrow 0 \) as \(\min\{m,n\} \rightarrow \infty \). Also,

\[
|I_2| = \left| \sum_{k=n+1}^{\lambda_n} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \frac{\lambda_n - k + 1}{\lambda_n - n} \triangle_{sp} a_{m+1,k} S^s_m (x) S^{j-1}_k (y) \right| \\
\leq \sum_{s=0}^{p-1} \sum_{u=0}^{t} \frac{\lambda_n}{\lambda_k - n} |\triangle_{sp} a_{jk}| \\
\leq \sup_{m<j \leq m+p} \sum_{k=n+1}^{\lambda_n} |\triangle_{sp} a_{jk}| \rightarrow 0 \quad \text{as } \min\{m,n\} \rightarrow \infty.
\]

So, \(\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |I_2| \right) \rightarrow 0 \) as \(\min\{m,n\} \rightarrow \infty \). Also,

\[
|I_3| \leq \sup_{n<k \leq \lambda_n} \sum_{t=0}^{p-1} \sum_{j=0}^{m} |\triangle_{pt} a_{j,k+1}| \\
\leq \sup_{n<k \leq \lambda_n} \sum_{t=0}^{p-1} \sum_{v=0}^{m} \left(\frac{t}{v} \right) \sum_{j=0}^{m} |\triangle_{pt} a_{j,v+1}| \\
\leq \sup_{n<k \leq \lambda_n} \sum_{p=0}^{m} |\triangle_{pt} a_{jk}| \rightarrow 0 \quad \text{as } \min\{m,n\} \rightarrow \infty,
\]

which implies \(\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |I_3| \right) \rightarrow 0 \) as \(\min\{m,n\} \rightarrow \infty \). Now,

\[
|I_4| \leq \sup_{n<k \leq \lambda_n} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} |\triangle_{st} a_{m+1,k+1}| \\
\leq \sup_{j>m,k>n} |a_{jk}| \rightarrow 0 \quad \text{as } \min\{m,n\} \rightarrow \infty.
\]
Thus, combining all these, we have
\[|I_5| \leq \sum_{t=0}^{p-1} \sum_{s=0}^{t} \left(\frac{t}{v} \right) \sum_{j=0}^{m} |\triangle_{p0} a_{j,n+v+1}| \leq \sup_{m} \sum_{j=0}^{m} |\triangle_{p0} a_{jk}| \to 0 \text{ as } \min \{m,n\} \to \infty,
\]
which implies
\[\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left(\sup_{(x,y) \in E} |I_5| \right) \to 0 \text{ as } \min \{m,n\} \to \infty. \]

Proof of (ii). We have
\[\|S_{mn} - f\|_r \leq \|S_{mn} - V_{mn}^\lambda\|_r + \|V_{mn}^\lambda - f\|_r. \]

By assumption \(\|V_{mn}^\lambda - f\|_r \to 0 \), so it is sufficient to show that
\[\|S_{mn} - V_{mn}^\lambda\|_r \to 0 \text{ as } \min \{m,n\} \to \infty. \]

By Lemma 3.3, we have
\[\|S_{mn} - V_{mn}^\lambda\|_r \leq \| \sum_{j=0}^{\lambda} (m,n;x,y) \|_r + \| \sum_{j=0}^{\lambda} (m,n;x,y) \|_r + \| \sum_{j=0}^{\lambda} (m,n;x,y) \|_r. \]

Now in order to estimate \(\| \sum_{j=0}^{\lambda} (m,n;x,y) \|_r \), we first find \(\|I_1\|, \|I_2\|, \|I_3\|, \|I_4\|, \|I_5\| \) and \(\|I_6\| \), so we have
\[\|I_1\| = \left\| \sum_{j=0}^{\lambda} \sum_{k=n+1}^{m} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{pp} a_{jk} S_j^{p-1}(x) S_k^{p-1}(y) \right\|
\leq \sum_{j=0}^{\lambda} \sum_{k=n+1}^{m} \frac{\lambda_n - k + 1}{\lambda_n - n} \Delta_{pp} a_{jk} A_j^{p-1} A_k^{p-1} \int_0^{\pi} \int_0^{\pi} |T_j^{p-1}(x) T_k^{p-1}(y)| \, dx \, dy. \]
Thus, we can estimate

\[
\|I_2\| \leq C_p \left(\sum_{j=0}^{m} \frac{\lambda_n}{\lambda_n - n} |\Delta_{pp} \alpha_{jk}| j^{p-1} k^{p-1}, \right.
\]

\[
\|I_3\| \leq C_p \left(\sup_{m \leq n+1} \left(\sum_{s=0}^{p} u \right) \sum_{k=n+1}^{p} \frac{\lambda_n}{\lambda_n - n} \Delta_{0p} \alpha_{m+1,k} |k^{p-1} m^s \right)
\]

\[
\|I_4\| \leq C_p \left(\sup_{m \leq n+1} \left(\sum_{s=0}^{p} u \right) \sum_{k=n+1}^{p} \frac{\lambda_n}{\lambda_n - n} \Delta_{0p} \alpha_{m+1,k} |k^{p-1} m^s \right)
\]

\[
\|I_5\| \leq C_p \left(\sup_{m \leq n+1} \left(\sum_{s=0}^{p} u \right) \sum_{k=n+1}^{p} \frac{\lambda_n}{\lambda_n - n} \Delta_{0p} \alpha_{m+1,k} |k^{p-1} m^s \right)
\]

\[
\|I_6\| \leq C_p \left(\sup_{m \leq n+1} \left(\sum_{s=0}^{p} u \right) \sum_{k=n+1}^{p} \frac{\lambda_n}{\lambda_n - n} \Delta_{0p} \alpha_{m+1,k} |k^{p-1} m^s \right)
\]

Thus, we can estimate

\[
\left\| \sum_{r=1}^{\lambda} (m, n; x, y) \right\| \leq C_{pr} \left(\sum_{k=n+1}^{\lambda_n} \frac{\lambda_n - k + 1}{\lambda_n - n} |\Delta_{pp} \alpha_{jk}| j^{p-1} k^{p-1}, \right.
\]

\[
+ C_{pr} \left(\sup_{m \leq n+1} \left(\sum_{s=0}^{p} u \right) \sum_{k=n+1}^{p} \frac{\lambda_n}{\lambda_n - n} \Delta_{0p} \alpha_{m+1,k} |j^{p-1} k^{p-1} \right)
\]
\[C_{pr} \left(\sup_{n<k\leq n+p} \sum_{j=0}^{m} |\Delta_{p0}a_{jk}|j^{p-1}k^{p-1} \right) \]
\[+ C_{pr} \left(\sup_{j>m,k>n} |a_{jk}|j^{p-1}k^{p-1} \right) \]
\[+ C_{pr} \left(\sup_{n<k\leq n+p} \sum_{j=0}^{m} |\Delta_{p0}a_{jk}|j^{p-1}k^{p-1} \right) \]
\[+ C_{pr} \left(\sup_{j>m,k>n} |a_{jk}|j^{p-1}k^{p-1} \right). \]

By (1.2)–(1.4) and (1.6), we conclude that
\[\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left(\| \sum_{01}^{\lambda} (m, n; x, y) \|_r \right) = 0. \]

Similarly, by conditions (1.2)–(1.4) and (1.7), we get
\[\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left(\| \sum_{10}^{\lambda} (m, n; x, y) \|_r \right) = 0. \]

Also, by (1.8), we have
\[\lim_{\lambda \downarrow 1} \lim_{m,n \to \infty} \left(\| \sum_{11}^{\lambda} (m, n; x, y) \|_r \right) = 0. \]

Thus, \(\| S_{mn} - V_{\lambda mn}^{\lambda} \|_r \to 0 \) as \(\min\{m, n\} \to \infty. \)

Acknowledgements. The authors are very thankful to the referee for his/her valuable suggestions.

REFERENCES

[1] C. P. Chen and Y. W. Chauang, \(L^1 \)-convergence of double Fourier series, Chin. J. Math. 19(4) (1991), 391–410.
[2] K. Kaur, S. S. Bhatia and B. Ram, \(L^1 \)-Convergence of complex double trigonometric series, Proc. Indian Acad. Sci. 113(3) (2003), 1–9.
[3] A. N. Kolmogorov, Sur l’ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bulletin L’Academie Polonaise des Sciences (1923), 83–86.
[4] F. Móricz, Convergence and integrability of double trigonometric series with coefficients of bounded variation, Proc. Amer. Math. Soc. 102 (1988), 633–640.
[5] F. Móricz, On the integrability and \(L^1 \)-convergence of double trigonometric series, Studia Math. (1991), 203–225.
[6] T. M. Vukolova, Certain properties of trigonometric series with monotone coefficients (English, Russian original), Moscow Univ. Math. Bull. 39(6) (1984), 24–30, translation from Vestnik Moskov. Univ. 1(6) (1984), 18–23.
[7] W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. 12(2) (1913), 41–70.
[8] A. Zygmund, Trigonometric Series, Vols. I, II, Cambridge University Press, Cambridge, 1959.
1Department of Applied Mathematics,
GZS Campus College of Engineering and Technology,
Maharaja Ranjit Singh Punjab Technical University Bathinda, Punjab, India
Email address: karanvir@mrsptu.ac.in

2Department of Mathematics,
Amity University of Rajasthan,
Jaipur, India
Email address: kmodi@jpr.amity.edu