The influence of iron microstructure on tool capacity during cutting process

G K Davletshina, A G Kondrashov, B F Zairov and L.F. Zairov

Kazan Federal University, Naberezhnye Chelny Institute, 423812, Russia, Naberezhnye Chelny, Prospekt Syuyumbike 10A

kpfu.ktomp@yandex.ru

Abstract. An overview of machinability by cutting cast irons is given. The effect of the microstructure of cast iron on the tool's working capacity during cutting has been studied. The reasons for the tool failure during drilling are revealed.

Despite a significant amount of research on the study of machinability of materials by cutting, currently conventional units of measurement of this characteristic have not been established. It is generally accepted [1-6] that the material has good workability if during cutting, the cutting force and depreciation of the tool are negligible, and the tool life and the quality of the treated surface are sufficiently high.

The machinability parameters depend on the structure and properties of the cast iron, which are determined by its grade, the composition of the raw materials, the production technology, heat treatment regimes and other technological factors. It is impossible to evaluate the machinability for only one of the parameters of the cutting process, since processing of different materials with even one hardness can be characterized by different values of cutting forces or temperatures [7-9].

The machinability of cast irons is determined by the specific features of the form of castings, the conditions of casting and, but above all, their microstructure.

No less important is the microstructure of the metal base (matrix) of cast iron. The features of the structure of the matrix of high-strength cast iron with nodular graphite are: a) the location of ferrite mainly in the form of rims around inclusions of globular graphite; b) thinner than gray cast iron, the structure of lamellar perlite, often resembling sorbitolike perlite. The microstructure of the matrix affects the stability of the cutting tool, the level of optimum cutting conditions and the processing efficiency [10, 11].

The main drawback of high-strength cast iron during machining is the varying resistance of the cutting tool. The processing of high-strength cast iron products requires a three-fold increase in the number of tools compared to the treatment of gray cast iron. High-strength cast iron contains more silicon and alloying elements in the form of hard-to-digest carbides. This results in more intensive abrasive depreciation of the working surfaces of the cutting tool and the release of a significant amount of heat, which further reduces the resistance of the tool due to a decrease in the ability to resist...
depreciation. With a low rigidity of the technological system, the tool also wears out as quickly because of the unevenness of the cut layer, high shock loads and oscillations in cutting forces. [12,13].

Studies have been conducted on the machinability of parts made of cast iron which is widely used in automotive industry. The experiment included the processing of 10 samples. Cutting tools – drill diameter 10...16 mm. Chemical composition of cast iron was determined by spectroscopy by using microphotometry MFS-51 and spectrograph, AFS-51. Selection and preparation of samples for investigations were conducted in accordance with State Standard 3443-87. A 4% solution of nitric acid was used as a reagent for etching pig iron.

As a result of the research, the influence of the microstructure of the cast iron on the operability of the cutting tool was revealed. Thus, when drilling with high-strength cast iron, with a different microstructure, a metal base and the presence of graphite of a spherical regular and irregular shape, which is uniformly and unevenly distributed in an amount of 8-12% (State Standart3443-87), the cutting tool breaks down (Table).

Table 1

Parameters of cast iron properties in castings

Partname	Hardness, HB	Metalbase	Extrafactors
Body 6520-3104055	187-197	Perlite plate 30 ... 60% and ferrite	Inclusions of vermicular graphite, unevenly distributed
Plate 4326-3105040	477	Needle martensite and residual austenite and ferrite (F6-10%) perlite in some places 80-90%	Martensite in a metal base. Hardness is too high
Bearingcover 5320-2402079	285	Perlite plate is approximately 60% and ferrite.	Hardness is too high
Body 6520-3104055	156	Perlite lamellar in an amount of 10 to 30% and of 30 to 60%	From the surface to a depth of 1.0 mm, clusters of rectilinear graphite are observed, joined together by a film of particles of the undecomposed modifier; in the defect zone, there is a duster and pearlitic rim - "oxide deposit" - a defect in the casting.
Cover 53205-2502209	143-149	Ferrite	From the surface to a depth of 0.18 mm there is a ferrite rim. Also there are accumulations of rectilinear graphite joined together by a film with particles of undecomposed modifier propagating to a depth of up to 4.5 mm - defect of casting production - "oxide deposit"
Body 5320-2402112	217	Perlite granular ≈40%; ferrite ≈ 40%;	Troostite with microhardness HV 349-371
The results of the study are as follows: the structural factors of the non-diffusive decomposition of austenite (troostite, martensite, etc.) with high microhardness are the main factors of the cutting tool failure during drilling operations. In cast iron with a ferritic base, defects in casting are observed, which also have an effect on the performance of the tool during machining.

Thus, in order to reduce breakage of tools when drilling cast iron, it is necessary to provide stable characteristics in structure, hardness and purity of the alloy.

References

[1] Lyubimov V E and others 1991 *Guide to metal cutting processing* (K.: Technics) 239 p

[2] Baranchikov V I and others 1990 *Progressive cutting tools and conditions* (M.: Engineering) 285 p

[3] Kas’yanov S V, Kondrashov A G, and Safarov D T 2017 *Rapid Assessment of Wear-Resistant Tool Coatings* Russian Engineering Research Vol 37 No 11 pp 969–73

[4] Safarov D T, Kondrashov A G, Safarova L R and Glinina G F 2017 *Energy planning in production shops with numerically controlled machine tools* Russian Engineering Research Vol 37 No 9 pp 827–34

[5] Golovko A.N., I.V. *Kinematic calculation of the error in gear shaving* Russian Engineering Research Vol 31 Is10 pp 1034–35

[6] Golovko A. *Determination of the profile of the worm-type tool* MATEC Web of Conferences 129 01043

[7] Batygin Yu V, Lalazarova N A, Plotnikov I V 2011 *Research of high-strength cast iron machinability with spherical graphite* Vestnik KhNADU Issue 54

[8] Trenev D V 2007 *Processing of cast iron by cutting* Tool, technology, equipment No 3 pp 56-57

[9] Grechishnikov V A, Petukhov Y E, Pivkin P M, Romanov V B, Ryabov E A, Yurasov O I, Yurasova S Y 2017 *Trochoidal slot milling* Russian Engineering Research Vol 37 No 9 pp 821-23

[10] *Machining of Cast Irons* 1989 Metals Handbook Ninth Edition V 16 pp 648-65

[11] Petrov S M, Davletshina G K, Zairov B F, Zairov L F 2017 *Cutter profile of a mill for machining screw channels* Russian Engineering Research Vol 37 No 8 pp 728-29

[12] Davletshina G K, Zairov B F, Petrov S M 2014 *The use of carbide inserts in the processing of high-strength cast iron* Collection of articles based on the XVIII-XIX International scientific-practical conference No 11-12 (17) 120 p

[13] Davletshina G K, Astashchenko V I, Zamarayeva T A 2010 *Properties and prospects of products’ application from high-strength cast iron in mechanical engineering* Education and science-production: International scientific-technical and educational conference Part 1 book 3 273 p