Search for a light charged Higgs boson in the $H^\pm \rightarrow cs$ channel in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS Collaboration

Abstract

A search is conducted for a low-mass charged Higgs boson produced in a top quark decay and subsequently decaying into a charm and a strange quark. The data sample was recorded in proton-proton collisions at $\sqrt{s} = 13$ TeV by the CMS experiment at the LHC and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed in the process of top quark pair production, where one top quark decays to a bottom quark and a charged Higgs boson, and the other to a bottom quark and a W boson. With the W boson decaying to a charged lepton (electron or muon) and a neutrino, the final state comprises an isolated lepton, missing transverse momentum, and at least four jets, of which two are tagged as b jets. To enhance the search sensitivity, one of the jets originating from the charged Higgs boson is required to satisfy a charm tagging selection. No significant excess beyond standard model predictions is found in the dijet invariant mass distribution. An upper limit in the range 1.68–0.25% is set on the branching fraction of the top quark decay to the charged Higgs boson and bottom quark for a charged Higgs boson mass between 80 and 160 GeV.

"Published in Physical Review D as doi:10.1103/PhysRevD.102.072001."
1 Introduction

The discovery of the Higgs boson in 2012 by the ATLAS [11] and CMS [2, 3] experiments at the CERN LHC has given rise to a wide set of measurements to establish the nature of the discovered particle. The Higgs boson could be the first of many elementary scalars present in nature to be observed in the laboratory. Various extensions of the standard model (SM), such as the two Higgs doublet model (2HDM) [4], including supersymmetry [5-7], predict multiple scalars as the remnants of an additional SU(2) complex doublet introduced to address some known limitations of the SM, such as the origin of dark matter [8, 9] and the hierarchy problem [10]. After spontaneous symmetry breaking, out of the eight degrees of freedom of the two Higgs doublets, three are used to make the W and Z bosons massive, leaving five physical scalar particles. Of these, two are neutral Higgs bosons that are CP-even (scalar), one is neutral and CP-odd (pseudoscalar), and the remaining two are charged Higgs bosons (\(H^\pm \)).

The 2HDM can be classified into different categories depending on the type of interaction of the two doublets with quarks and charged leptons. For example, in the type II 2HDM, leptons and down-type quarks have Yukawa couplings to the first doublet, and up-type quarks couple to the second doublet. The nature of the Yukawa coupling determines the branching fraction \(B \) of the charged Higgs boson decays into different final states. We are interested in the search for a low-mass \((m_{H^+} < m_t) \) charged Higgs boson in the decay channel \(H^+ \to c\bar{s} \) (and its charge conjugate), whose branching fraction can range up to 100%, depending on the type of Yukawa coupling. The latter is expressed in terms of the parameter \(\tan\beta = v_2/v_1 \), where \(v_1 \) and \(v_2 \) are the vacuum expectation values of the two Higgs doublets. In the minimal supersymmetric standard model, this is the dominant decay channel for low values of \(\tan\beta \) for most of the mass range considered in this analysis [11, 12]. We assume that \(B(H^+ \to c\bar{s}) = 100\% \).

As illustrated in Fig. 1 in the signal process for \(H^+ \) production, one of the top quarks decays to \(H^+b \) and the other to \(W^-\bar{b} \), with \(H^- \) production proceeding by the charge conjugate of this process. The principal SM background to this search consists of \(t\bar{t} \) pair production where both top quarks decay to a W boson and a b quark. In this search, we consider the mode where the \(W^+/H^+ \) decays hadronically into a charm and strange antiquark, whereas the \(W^- \) decays leptonically (in the \(t\bar{t} \) case, this is called the “semileptonic” decay channel); we define two channels depending on whether the lepton produced in the \(W^- \) decay is a muon or an electron (events with tau leptons are not specifically considered, but can be selected if the tau lepton decays into a muon or an electron).

![Figure 1: Sample diagrams of \(t\bar{t} \) production via gluon-gluon scattering. The left plot shows the signal process in which the \(t\bar{t} \) pair decay products include a charged Higgs boson. The right plot shows the SM decay of a \(t\bar{t} \) pair in the semileptonic decay channel.](image)

There have been many earlier searches for charged Higgs bosons at LEP, the Tevatron, and the...
LHC. At LEP, these were expected to be dominantly produced by the process $e^+e^- \rightarrow H^+H^-$. Assuming that H^+ decays only to $c\bar{s}$ and $\tau^+\nu_\tau$, i.e., the sum of the branching fractions $B(H^+ \rightarrow \tau^+\nu_\tau) + B(H^+ \rightarrow c\bar{s}) = 1$, lower limits of 79.3 and 80.0 GeV were set on the charged Higgs boson mass at 95% confidence level (CL) from individual collaborations [13–15] and combined LEP data [16], respectively. Under a more general assumption $B(H^+ \rightarrow \tau^+\nu_\tau) + B(H^+ \rightarrow q\bar{q}') = 1$, a slightly less stringent constraint of 76.3 GeV was obtained at 95% CL [17].

Limits on charged Higgs boson production at hadron colliders were set by the Tevatron and LHC experiments, assuming the production mode $t \rightarrow H^+b$. The CDF Collaboration [18] set a 95% CL upper limit on the branching fraction $B(t \rightarrow H^+b)$ of 10–30% for a charged Higgs boson mass lying in the range 60–150 GeV, assuming that H^+ decays only to $c\bar{s}$. Similar limits were obtained by the D0 Collaboration [19]. Using 8 TeV data, the ATLAS [20] and CMS [21] Collaborations set an upper limit at 95% CL on the product $B(t \rightarrow H^+b)B(H^+ \rightarrow \tau^+\nu_\tau)$ of 1.3–0.23% and 1.2–0.13%, respectively, for a charged Higgs boson mass in the range 80–160 GeV. A search for a charged Higgs boson decaying into $c\bar{s}$ was performed with 7 (8) TeV data by the ATLAS (CMS) Collaboration, which set an upper limit at 95% CL on $B(t \rightarrow H^+b)$ in the range <5.1 (6.5–1.2)% for a charged Higgs boson mass between 90 and 160 GeV [22, 23]. The CMS Collaboration also performed a search for a charged Higgs boson in the $H^+ \rightarrow c\bar{b}$ channel and put the most stringent upper limit at 95% CL on $B(t \rightarrow H^+b)$ in the range 0.8–0.5% for a charged Higgs boson mass in the range 90 to 150 GeV [24].

At 13 TeV, the ATLAS and CMS Collaborations have performed several searches for charged Higgs bosons in different search channels such as $H^+ \rightarrow \tau^+\nu, H^+ \rightarrow t\bar{b}, H^+ \rightarrow W^+Z,$ and $H^+ \rightarrow W^+A$ [25–30]. The most stringent upper limit on $\sigma(pp \rightarrow tH^+ + X)B(H^+ \rightarrow \tau^+\nu)$ at 95% CL is 4.2–0.0025 pb for a charged Higgs boson mass in the range from 90 to 2000 GeV from ATLAS [26]. The ATLAS Collaboration has also set an upper limit at 95% CL on $\sigma(pp \rightarrow tH^+ + X)B(H^+ \rightarrow t\bar{b})$ in the range 9.6–0.01 pb for a charged Higgs boson mass in the range 200 to 3000 GeV [27]. Low values of $\tan \beta < 1$ are excluded for a charged Higgs boson mass up to 160 GeV by both ATLAS and CMS [24, 30].

This paper is organized as follows. A brief introduction about the CMS detector is given in Section 2 followed by the description of collision data and simulated samples in Section 3. The reconstruction of various physics objects such as the primary vertex, muons, electrons, jets, and missing transverse momentum are described in Section 4. The event selection and background estimation method are explained in Section 5. The kinematic fitting and categorization of events based on charm jet tagging is discussed in Section 6. The systematic and statistical uncertainties are described in Section 7. The results are presented in Section 8 followed by the summary in Section 9.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. The silicon pixel and tracker detectors identify the trajectory of charged particles and accurately measure their transverse momentum p_T up to pseudorapidity $|\eta| \leq 2.5$. Forward calorimeters extend the η coverage provided by the barrel and endcap detectors. Segmented calorimeters provide sampling of electromagnetic and hadronic showers up to $|\eta| \leq 5$. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid, in the range
of $|\eta| \leq 2.4$.

Events of interest are selected using a two-tiered trigger system [31]. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a time interval of less than 4 µs. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables can be found in Ref. [32].

3 Data and simulation

The data used for the analysis were collected with the CMS detector in 2016, in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV, and correspond to an integrated luminosity of 35.9 fb$^{-1}$.

As shown in Fig. 1, the charged Higgs boson is assumed to decay into $c\bar{s}$ or $c\bar{s}$ only. As a result, in the final state, there will be four jets (two b jets, one c jet, one s jet), one lepton (μ or e; τ is not considered in this analysis), and missing transverse momentum (p_T^{miss}), which is attributed to the neutrino. The SM processes that give the same final states (four jets + one lepton + missing transverse momentum) are considered as background processes for this analysis. Signal and background processes are modeled using simulated samples, generated using the MADGRAPH5_aMC@NLO v2.3.3 [33] and POWHEG v2.0 [34–37] generators at parton level, with the NNPDF 3.0 [37] parton distribution functions (PDFs), with the order matching that in the matrix element calculations. In all cases, these parton-level events are hadronized using PYTHIA 8.212 [38] with the CUETP8M1 underlying event tune [39] and then passed to GEANT4 [40] for simulation of the CMS detector response. Finally, the events are reconstructed after complete detector simulation using the same reconstruction process as for data.

The SM $t\bar{t}$ process is an irreducible background, and represents the largest contribution, about 94% of the total expected background in the signal region. The parton-level SM inclusive $t\bar{t}$ events, which have contributions from semileptonic, fully leptonic, and fully hadronic decay modes, are generated at next-to-leading order (NLO) using POWHEG. The next-to-NLO cross section for $t\bar{t}$ is calculated to be $\sigma_{t\bar{t}} = 832 \pm 20_{-9}^{+29}$ (scale) ± 35 (PDF + α_S) pb [41]. The top quark mass in the simulated samples is taken to be 172.5 GeV.

The charged Higgs boson signal samples are generated using MADGRAPH5_aMC@NLO at leading order (LO). Only H^+ samples are generated, and H^- production is assumed to be the same. The signal sample is generated for several mass points in the range of 80 to 160 GeV (80, 90, 100, 120, 140, 150, 155, and 160 GeV). The generated cross section for $H^- \rightarrow \ell^- \nu_\ell$ (where $\ell = \mu$ or e, neglecting the small contribution from potential τ decays) [42].

The single top quark production processes, where a top quark is produced with jets in the s channel, t channel, or tW channel, can also mimic the signal topology. The s-channel single top production samples are generated using MADGRAPH5_aMC@NLO [33] at NLO, while the t-channel and tW-channel samples are generated using POWHEG [43, 44] at NLO. The production of W and Z bosons with jets, and vector boson pair production, are also considered as background processes. The inclusive W + jets and Z/γ + jets samples are generated at LO using MADGRAPH5_aMC@NLO with up to four partons included in the matrix element calculations. The MLM technique [45] is used to avoid the double counting of jets from the matrix element.
calculation and the parton shower. The vector boson pair production samples (WW/WZ/ZZ, collectively referred to as “VV”) are generated using PYTHIA at LO.

Furthermore, SM events containing only jets produced through the strong interaction, referred to as quantum chromodynamics (QCD) multijet events, can also produce a final state identical to the signal topology, even though these events contain only quarks and gluons at the parton level. QCD multijet events can have reconstructed leptons from, for example, jets misidentified as isolated leptons or decays of bottom and charm hadrons, and p_T^{miss} due to the mismeasurement of hadronic activity inside the CMS detector.

The expected yield for each background process is determined from simulation, with the exception of the QCD multijet background, which is estimated from data, as described in Section 5.

4 Object reconstruction

The physics objects of interest are leptons, jets, missing transverse momentum, vertices of pp collisions, and displaced vertices from the decay of bottom or charm hadrons. The particle-flow (PF) algorithm [46] is used to reconstruct these objects by optimally using various subsystems of the CMS detector.

The collision vertices are obtained using reconstructed tracks in the silicon tracker [47]. First, candidate vertices are obtained by clustering tracks using the deterministic annealing algorithm. Subsequently, candidate vertices with at least two tracks are fitted using the adaptive vertex fitter. A primary vertex associated with a hard interaction is expected to be accompanied by a large number of tracks. The reconstructed vertex with the largest value of summed physics-object p_T^2 is taken to be the primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding algorithm [48, 49] with the tracks assigned to the vertex as inputs, and the missing transverse momentum associated with those jets, taken as the negative vector sum of their p_T.

Muons, being minimum ionizing particles, can traverse a long distance in the CMS detector. The trajectory of the muon is bent due to the presence of a strong magnetic field inside the solenoid and the return magnetic field in the opposite direction outside the solenoid. Muon candidates are identified in the muon detectors and matched to tracks measured in the silicon tracker, resulting in an excellent p_T resolution between 1 and 10% for p_T values up to 1 TeV [50].

Electrons are reconstructed from the tracks in the tracker and energy deposits in the ECAL [51]. The reconstructed trajectory in the tracker is mapped to the energy deposit in the ECAL to form an electron candidate. The bending direction of the trajectory in the tracker is used to identify the charge of an electron. Because of color confinement [52], the quarks and gluons produced in pp collisions cannot exist in free states; instead, they produce a cluster of colorless hadrons, most of which subsequently decay to leptons and photons. As mentioned above, jets are clustered from the PF candidates using the anti-k_T algorithm [48, 49] with a distance parameter of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$, where ϕ is the azimuthal angle. Each jet is required to pass dedicated quality criteria to suppress the impact of instrumental noise and misreconstruction. Additional pp interactions within the same or nearby bunch crossings (pileup) can contribute extra tracks and calorimetric energy deposits, increasing the apparent jet momentum. To mitigate this effect, tracks identified to be originating from pileup vertices are discarded and an offset correction is applied to...
correct for remaining contributions [46]. Jet energy corrections are derived from simulation studies so that the average measured response of jets becomes identical to that of particle-level jets. In situ measurements of the momentum balance in dijet, $\gamma + \text{jet}, Z + \text{jet}$, and multijet events are used to determine any residual differences between the jet energy scale in data and in simulation, and appropriate corrections are applied [53].

The missing transverse momentum vector \vec{p}_{miss} is defined as the projection onto the plane perpendicular to the beam axis of the negative vector sum of the momenta of all PF objects in an event. Its magnitude is referred to as p_{miss}. Neutrinos, being weakly interacting particles with a very low cross section, cannot be directly detected by the CMS detector and thus contribute to p_{miss}. The reconstruction of p_{miss} is improved by propagating the jet energy corrections to it.

There are two b jets in the final state as illustrated in Fig. 1 in both the charged Higgs boson signal process and the SM $t\bar{t}$ background. An accurate identification of b jets substantially reduces the SM backgrounds from other processes, such as $Z/\gamma + \text{jets}, VV, \text{or } W + \text{jets}$. The combined secondary vertex (CSV) algorithm [54] is used to tag a b jet. The algorithm combines information on track impact parameters and secondary vertices within a jet into an artificial neural network classifier that provides separation between a b jet and jets of other flavors. As the charged Higgs boson decays to a charm and a strange antiquark, the identification of charm jets is expected to increase the signal significance. A charm tagger has been developed [54], which is based on the CSV method and works similarly to the b tagging procedure.

The p_T of jets in the simulated samples is corrected using the jet energy scale (JES) and jet energy resolution (JER) data-to-simulation scale factors [53]. The lepton reconstruction, b, and c tagging efficiencies are different in data and simulated samples; to correct for this, the corresponding data-to-simulation scale factors are applied to the simulated events.

5 Event selection

In the event topology of interest, there are four jets (two b jets, one c jet, and one light-flavor jet), one charged lepton, and p_{miss}. Various selection requirements are applied to ensure the resulting events have this topology.

The online event selection requires, at the L1 trigger level, either a muon candidate with $p_T > 22$ GeV or electron/photon candidate with $p_T > 30$ GeV (22 GeV if it is isolated); at the HLT level, an isolated muon (electron) with $p_T > 24 (27)$ GeV is required. The relative isolation (I_{rel}) of a lepton is defined as the ratio of the sum of p_T for all the other particles within a cone of $\Delta R = 0.4$ around the lepton direction, divided by the lepton p_T after correcting for the contribution from pileup [50, 55].

In the offline analysis, events that pass the trigger selection and contain a muon (electron) with $p_T > 26 (30)$ GeV and $|\eta| < 2.4 (2.5)$ are selected. To eliminate events where the lepton is found within a jet, the muon is required to have $I_{\text{rel}}^\mu < 0.15$ and the electron is required to have $I_{\text{rel}}^e < 0.08 (0.07)$ in the barrel (endcap) regions. No charge requirement is applied to the lepton. The signal event topology has only one lepton, so events having a second muon with $p_T > 15$ GeV, $|\eta| < 2.4$, and $I_{\text{rel}}^\mu < 0.25$, or an electron with $p_T > 15$ GeV, $|\eta| < 2.5$, and $I_{\text{rel}}^e < 0.18 (0.16)$ in the barrel (endcap) regions, are rejected.

Jets are selected by requiring $p_T > 25$ GeV, $|\eta| < 2.4$, neutral hadron energy fraction < 0.99, neutral electromagnetic energy fraction < 0.99, number of constituents > 1, charged hadron energy fraction > 0, charged-hadron multiplicity > 0, and charged-hadron electromagnetic energy fraction < 0.99, as detailed in Ref. [46]; at least four jets are required. The p_{miss} must
exceed 20 GeV. The events are required to have at least two b jets with a selection that has 63% b tagging efficiency [54]. The corresponding probability of a light-flavor (charm) jet being misidentified as a b jet is 1 (12)% where “light flavor” refers to jets originating from u, d, s, or g. The events are categorized depending on the charm tagging results for the jets, as discussed in Section 6.

To estimate QCD multijet background, a matrix method based on the two uncorrelated variables \(I_{rel} \) and \(p_{miss}^T \), also known as an “ABCD” method, is used, which proceeds as follows. First, a normalization is determined from the (low \(p_{miss}^T \), isolated) and (low \(p_{miss}^T \), anti-isolated) regions; then the QCD background distribution is determined from the (high \(p_{miss}^T \), anti-isolated) region. By using the normalization obtained on the distribution, the expected QCD multijet contribution is determined in the signal region (high \(p_{miss}^T \), isolated). The low- and high-\(p_{miss}^T \) regions are defined by \(p_{miss}^T < 20 \) GeV and \(p_{miss}^T > 20 \) GeV, respectively. In the muon channel, the isolated and anti-isolated regions are defined by \(I^\mu_{rel} < 0.15 \) and \(0.15 < I^\mu_{rel} < 0.4 \), respectively. For the electron channel, the isolated region corresponds to \(I^e_{rel} < 0.08 \) (0.07) and the anti-isolated region to \(0.08 \) (0.07) < \(I^e_{rel} < 0.3 \) for electrons in the barrel (endcap) regions. The QCD multijet background is estimated after applying both b and c tagging.

6 Dijet invariant mass distribution

The invariant mass of the system of the two non-b jets \(m_{jj} \), assumed to be c\bar{s} or $c\bar{s}$, is used as the final observable. The \(m_{jj} \) distribution of the two highest-\(p_T \) non-b jets is shown in the top row of Fig. 2 for the two leptonic channels. If the two observed non-b jets come from a semileptonic $t\bar{t}$ decay, then the \(m_{jj} \) distribution should have a peak at the W boson mass. The observed mean of the \(m_{jj} \) distribution is much higher (around 138 GeV), reflecting the fact that the two non-b jets in each event may not necessarily come from the decay of a W boson.

To identify semileptonic $t\bar{t}$ events, a kinematic fit (KF) is performed on the reconstructed objects using the top quark kinematic fitter package [56]. The top kinematic fitter takes physics objects such as leptons, jets, \(p_{miss}^T \), and their resolutions as input, and gives improved four-vectors of leptons, jets, and a neutrino, along with the overall \(\chi^2 \) and fit probability for the event, as the output. The x and y components of the neutrino momentum are taken from \(p_{miss}^T \), as the missing transverse momentum is attributed to the neutrino, and the z component of the neutrino momentum, \(p_\nu^z \), is determined from the fit. The following kinematic constraints are imposed on the semileptonic $t\bar{t}$ system:

\[
\begin{align*}
 m_{inv}(b_{had}q\bar{q}) &= m_t = 172.5 \text{ GeV} \quad (1a) \\
 m_{inv}(b_{lep}l\nu_\ell) &= m_t = 172.5 \text{ GeV}, \quad (1b)
\end{align*}
\]

where \(m_{inv} \) is the corresponding invariant mass and \(b_{had\,(lep)} \) is the b quark produced by the hadronic (leptonic) top decay. After the fit, \(p_\nu^z \) is determined from Eq. (1b). For every event, a \(\chi^2 \) is constructed and minimized by varying the \(p_T, \eta, \) and \(\phi \) of each object within their resolution. The values of \(p_T, \eta, \) and \(\phi \) are finally selected that minimize the \(\chi^2 \) and at the same time satisfy Eq. (1). In the output, the top quark kinematic fitter gives exactly four jets (two b jets, one from each of the leptonic and hadronic t decays, and two non-b jets from the hadronic t decay), a lepton, and a neutrino. No cut is placed on \(\chi^2 \) and events for which the fit does not converge are discarded.

Also, the same kinematic requirements (on \(p_T, \eta, \) and \(I_{rel} \)) as for the reconstructed objects are applied to the fitted objects. The directions of the kinematically fitted jets and lepton are required to be compatible with those of the reconstructed jets and lepton (\(\Delta R < 0.2 \)), respectively. The
Figure 2: Distributions of m_{jj}, prior to the fit to data, of the two highest p_T non-b jets for the muon + jets channel (left column) and the electron + jets channel (right column). The two distributions in the upper row are obtained using reconstructed jets. The distributions in the lower row are calculated using jets after the kinematic fit. The uncertainty band (showing the absolute uncertainty in the upper panels, and the relative uncertainty in the lower panels) includes both statistical and systematic components. The signal events are scaled by twice the maximum observed upper limit on $B(t \rightarrow H^+ b)$ obtained at 8 TeV [23].
Table 1: The efficiency of the c jet tagger to tag a jet from a c quark (ϵ^c), a b quark (ϵ^b), or light flavor (ϵ^{uds}) at different working points, as determined from simulation \cite{54}.

Working point	ϵ^c (%)	ϵ^b (%)	ϵ^{uds} (%)
Loose	88	36	91
Medium	40	17	19
Tight	19	20	1.2

efficiency of the KF selection for data, simulated $t\bar{t}$, and simulated signal events is 43, 47, and 49%, respectively. The m_{jj} distributions after the KF selection are shown in the bottom row of Fig. 2, showing that the mean of the m_{jj} distribution is closer to the W boson mass.

The two non-b jets coming from the hadronic t decay are further used for charm tagging. There are three c tagging working points (loose, medium, and tight) based on the efficiency of a c quark being tagged as a c jet \cite{54}. The corresponding efficiencies are shown in Table 1. The events are divided exclusively into loose, medium, and tight categories, based on whether at least one of the non-b jets passes the loose but neither passes the medium, at least one passes the medium but neither passes the tight, or at least one passes the tight working points of the charm tagging selection requirements shown in Table 1, respectively. The m_{jj} distributions for the exclusive charm categories are shown in Fig. 3 after a background-only maximum likelihood fit to data. From these figures, it can be seen that the expected signal-to-background ratio increases for the charm categories with tighter requirements, so partitioning the events into categories results in an enhanced signal sensitivity. Table 2 shows the corresponding event yields for the different charm categories after the background-only fit to the data reported in Section 8, with statistical and systematic uncertainties as discussed in Section 7.

7 Systematic uncertainties

There are various sources of systematic uncertainty, which may arise due to detector calibration effects, uncertainty in the measured reconstruction efficiency, the theoretical modeling of signal events, and other effects.

The uncertainty in the integrated luminosity is 2.5\% \cite{57}. Each distribution for simulated events is normalized to the expected number of events in data, using the factor $L_{\text{data}}\sigma_{\text{sim}}/N_{\text{sim}}$, where L_{data} is the integrated luminosity of the data sample, N_{sim} is the total number of events in the simulated sample, and σ_{sim} is the cross section for the simulated process considered; the uncertainties in σ_{sim} thus contribute to the uncertainty in each background prediction. The uncertainties in σ_{sim} for $t\bar{t}$, single t quark, $W +$ jets, $Z/\gamma +$ jets, and VV processes are 6.1, 7.0, 4.5, 5.0, and 4.0\%, respectively. To account for the uncertainty in the pileup distribution, the total inelastic cross section of 69.2 mb is varied by its uncertainty of 4.7\% \cite{58} and the simulated events are reweighted to match the pileup distribution in the data. The systematic uncertainty in the data-to-simulation scale factor for the lepton reconstruction efficiencies is 3.0\% for both muons and electrons \cite{50, 51}.

The systematic uncertainties due to JES and JER data-to-simulation scale factors in the p_T of the jets and p_T^{miss} are estimated by varying these within their uncertainties \cite{53}. The b and c tag data-to-simulation scale factors are varied within their uncertainties to estimate the corresponding uncertainties, with correlations applied \cite{54}.

To estimate the systematic uncertainty in the QCD multijet background estimation, the muon (electron) relative isolation threshold is conservatively changed to 0.17 (0.11) and the corresponding changes in the QCD yields are determined.
Figure 3: Distributions of m_{jj} after a background-only fit to the data, in the exclusive charm tagging categories for the muon + jets (left column) and electron + jets (right column) channels. The upper row shows the exclusive loose category, the middle row shows the exclusive medium category, and the lower row shows the exclusive tight category. The expected signal significance (prior to the fit) can be observed to vary across the different categories. The uncertainty band (showing the absolute uncertainty in the upper panels, and the relative uncertainty in the lower panels) includes both statistical and systematic components after the background-only fit. The signal distributions are scaled by twice the maximum observed upper limit on $B(t \rightarrow H^+ b)$ obtained at 8 TeV [23].
Table 2: Expected event yields for different signal mass scenarios and backgrounds in each of the channels and event categories. The number of events is shown along with its uncertainty, including statistical and systematic effects. The yields of the background processes are obtained after a background-only fit to the data. The total uncertainty in the background process is calculated by taking into account all the positive as well as negative correlations among the fit parameters. The signal event yields are scaled by twice the maximum observed upper limit on \(B(t \to H^+b) \) obtained at 8 TeV [23].

Process	Loose	Medium	Tight
\(m_{t^+} = 80 \text{ GeV} \) & 7690 ± 550 & 5430 ± 380 & 6560 ± 490 & 4700 ± 370 & 2670 ± 270 & 1860 ± 180			
\(m_{t^+} = 90 \text{ GeV} \) & 7710 ± 550 & 5620 ± 400 & 6770 ± 510 & 4860 ± 380 & 2630 ± 260 & 1870 ± 190			
\(m_{t^+} = 100 \text{ GeV} \) & 7950 ± 590 & 5550 ± 400 & 7070 ± 540 & 4950 ± 360 & 2770 ± 270 & 2000 ± 200			
\(m_{t^+} = 120 \text{ GeV} \) & 7620 ± 570 & 5360 ± 400 & 6870 ± 510 & 4780 ± 360 & 2650 ± 260 & 1960 ± 190			
\(m_{t^+} = 140 \text{ GeV} \) & 6160 ± 500 & 4370 ± 360 & 5420 ± 420 & 3840 ± 310 & 2010 ± 210 & 1500 ± 150			
\(m_{t^+} = 150 \text{ GeV} \) & 4530 ± 390 & 3230 ± 280 & 3850 ± 330 & 2800 ± 250 & 1340 ± 140 & 1030 ± 120			
\(m_{t^+} = 155 \text{ GeV} \) & 3700 ± 340 & 2560 ± 250 & 2980 ± 270 & 2230 ± 220 & 1020 ± 120 & 766 ± 86			
\(m_{t^+} = 160 \text{ GeV} \) & 2780 ± 270 & 2080 ± 200 & 2370 ± 230 & 1710 ± 180 & 728 ± 83 & 510 ± 59			
\(\tau\bar{t} \)	100540 ± 410 & 71800 ± 470 & 73210 ± 320 & 52340 ± 290 & 18760 ± 130 & 13380 ± 130		
Single t quark	2750 ± 220 & 1970 ± 160 & 1940 ± 160 & 1400 ± 110 & 421 ± 35 & 302 ± 26		
QCD multijet	520 ± 130 & 2120 ± 470 & 498 ± 98 & 1460 ± 210 & 88 ± 28 & 346 ± 39		
W + jets	1360 ± 140 & 1061 ± 90 & 950 ± 110 & 681 ± 58 & 127 ± 23 & 102 ± 9		
Z/\gamma + jets	189 ± 18 & 240 ± 25 & 132 ± 13 & 132 ± 14 & 56 ± 7 & 31 ± 4		
VV	61 ± 9 & 43 ± 6 & 56 ± 8 & 11 ± 4 & 15 ± 5 & 3 ± 1		
All background	105410 ± 500 & 77240 ± 690 & 76780 ± 390 & 56020 ± 380 & 19470 ± 140 & 14160 ± 140		
Data	105474 & 77244 & 76807 & 56051 & 19437 & 14179		

It is found that the \(p_T \) distribution of t quarks in \(\tau\bar{t} \) events in data is softer compared to that in simulated samples [59]. This is corrected by applying the following weight as a function of \(p_T \) for SM \(\tau\bar{t} \) and charged Higgs boson signal samples:

\[
w_t = \sqrt{SF(t)SF(\tau)}, \quad \text{with} \quad SF \equiv \exp(0.09494 - 0.00084p_T).
\] (2)

The values in the exponent are derived in Ref. [60]. The generator-level \(p_T \) of the t and \(\tau \) are used to calculate SF. To evaluate the systematic uncertainty due to \(w_t \), it is varied to 1 and \(w_t^2 \).

The SM \(\tau\bar{t} \) sample was generated with \(m_t = 172.5 \text{ GeV} \). To evaluate the effect of the chosen \(m_t \) on the \(m_\ell \) distribution, alternate \(\tau\bar{t} \) samples with \(m_t = 171.5 \) and 173.5 GeV are considered. To observe the effect of NLO matrix element parton shower matching, additional SM \(\tau\bar{t} \) samples are generated by changing the default damping parameter \(h_{damp} \) value of 1.58\(m_t \) to 2.24\(m_t \) and \(m_t \) [61]. Similarly, SM \(\tau\bar{t} \) samples where the common nominal value of renormalization and factorization scales is simultaneously changed by factors of 0.5 and 2 are used to evaluate the uncertainties due to these scales [62]. The systematic uncertainties due to t quark mass, parton shower matching, and renormalization and factorization scales are in the ranges 0.2–3.3, 0.7–1.9, and 0.4–1.6%, respectively, depending on the channel and charm tagging category.

The signal extraction procedure is based on a binned maximum likelihood fit of the \(m_\ell \) distributions, as described in Section 3. The systematic uncertainties prior to the fit on the different process yields are listed in Table 3 when they differ from process to process. All systematic
uncertainties are incorporated into the fit as nuisance parameters, where the effect of each systematic uncertainty on the overall normalization of the m_{jj} distribution is included as a lognormal probability distribution. The statistical uncertainties in the total yield of all backgrounds and the signal samples are also shown in Table 3. However, these are not incorporated in the likelihood. To account for the statistical uncertainty in each bin of m_{jj}, one nuisance parameter per bin is considered for the sum of all backgrounds and charged Higgs boson samples.

Table 3: Systematic and statistical uncertainties in the event yield for the different processes in %, when they differ from process to process, prior to the fit to data, for the exclusive charm categories in the muon (electron) channel. The “—” indicates that the corresponding uncertainties are either not considered for the given process, or too small to be measured.

Category	Process	Pileup	jet & p_T^{miss}	b & c jets	Normalization	Statistical	p_T (t)
Loose	$m_{H^+} = 100$ GeV	0.6 (1.1)	4.2 (3.5)	6.1 (6.1)	6.1 (6.1)	1.0 (1.2)	1.4 (1.8)
	$t\bar{t}$	0.9 (1.1)	3.6 (3.6)	5.8 (5.8)	6.1 (6.1)	0.2 (0.2)	1.5 (1.9)
	Single t quark	0.6 (0.8)	4.9 (5.4)	6.5 (6.6)	5.0 (5.0)	0.7 (0.8)	—
	$W +$ jets	2.3 (0.4)	13 (6.9)	10 (10)	5.0 (5.0)	3.9 (4.5)	—
	$Z/\gamma +$ jets	1.8 (2.4)	11 (8.4)	9.2 (9.0)	4.5 (4.5)	5.7 (4.2)	—
	VV	1.5 (7.9)	19 (13)	7.2 (7.0)	4.0 (4.0)	19 (22)	—
	QCD multijet	—	—	—	10 (10)	20 (7.3)	—
Medium	$m_{H^+} = 100$ GeV	0.4 (0.3)	3.5 (2.0)	6.7 (6.8)	6.1 (6.1)	1.1 (1.3)	1.6 (1.9)
	$t\bar{t}$	0.3 (0.4)	3.0 (3.0)	7.3 (7.3)	6.1 (6.1)	0.2 (0.3)	1.5 (2.0)
	Single t quark	0.3 (0.1)	4.4 (4.1)	8.1 (8.1)	5.0 (5.0)	0.9 (1.0)	—
	$W +$ jets	2.9 (1.6)	14 (6.8)	12 (11)	5.0 (5.0)	4.8 (5.7)	—
	$Z/\gamma +$ jets	0.7 (3.4)	9.0 (11)	12 (11)	4.5 (4.5)	5.9 (5.9)	—
	VV	0.6 (4.4)	15 (49)	10 (9.4)	4.0 (4.0)	20 (36)	—
	QCD multijet	—	—	—	10 (10)	19 (9.4)	—
Tight	$m_{H^+} = 100$ GeV	1.2 (1.3)	2.2 (3.0)	9.2 (9.2)	6.1 (6.1)	1.6 (1.9)	1.4 (1.8)
	$t\bar{t}$	0.9 (1.0)	2.7 (3.1)	9.4 (9.4)	6.1 (6.1)	0.4 (0.5)	1.4 (1.8)
	Single t quark	0.4 (0.5)	4.3 (4.5)	9.8 (9.8)	5.0 (5.0)	1.8 (2.1)	—
	$W +$ jets	1.1 (2.8)	23 (3.4)	13 (13)	5.0 (5.0)	12 (14)	—
	$Z/\gamma +$ jets	3.7 (2.7)	7.5 (10)	13 (12)	4.5 (4.5)	9.1 (15)	—
	VV	2.3 (8.9)	36 (0.3)	11 (10)	4.0 (4.0)	38 (100)	—
	QCD multijet	—	—	—	10 (10)	47 (17)	—

The most important sources of uncertainties in terms of impact on the expected limit on $B(t \to H^+ b)$ for $m_{H^+} = 100$ GeV, after the individual charm tagging categories and the muon and electron channels have been combined, as discussed in Section 8, are the lepton selection (3.8%), QCD multijet background estimate (2.4%), $t\bar{t}$ cross section (1.9%), and b/c tagging (1.9%). The effect of each of the remaining systematic uncertainties on the expected limit is estimated to be less than 0.3%.

The number of events in the background processes and the corresponding uncertainty bands shown in Fig. 3 are obtained using a background-only fit to data. After the fit, several uncertainties (both statistical and systematic) are significantly anticorrelated, resulting in a reduction in the overall uncertainty. This is a feature of doing an extended maximum likelihood fit. The anticorrelations reflect the fact that while our analysis can constrain the background normalization with the statistical power of the data, it cannot distinguish as well between different sources which do not represent independent degrees of freedom in the model. Prior to the fit,
as shown in Table 3, they are either uncorrelated or positively correlated.

8 Results

After applying all selection requirements, the expected number of background events agrees with the data within the uncertainties. The absence of a charged Higgs boson signal in the data is characterized by setting exclusion limits on the branching fraction $B(t \to H^+b)$. An asymptotic 95% CL limit on $B(t \to H^+b)$ is calculated using the CL$_s$ method [64, 65] with likelihood ratios [66]:

$$\tilde{q}_x = -2 \ln \frac{L(\text{data}|x, \hat{\Theta}_x)}{L(\text{data}|\hat{x}, \hat{\Theta})}. \quad (3)$$

where the likelihood is defined as

$$L(\text{data}|x, \Theta) = \prod_{j=1}^{3} \prod_{i=1}^{N} N_{ij}(x, \Theta)^{n_{ij}} \frac{1}{n_{ij}!} e^{-N_{ij}(x, \Theta)} \prod_{k} p(\tilde{\Theta}_k|\Theta_k). \quad (4)$$

In this equation, $x = B(t \to H^+b)$ is the parameter of interest, the first product over j designates the three charm tagging categories, and i runs over the bins of the m_{jj} distributions shown in Fig. 3. For a given mass bin i and charm tagging category j, n_{ij} is the observed number of events in that bin and charm tagging category, and $N_{ij}(\Theta)$ is the expected number of events. The last term is the product over the individual nuisance parameters k of the probability density function $p(\tilde{\Theta}_k|\Theta_k)$, where Θ_k is the value of the nuisance parameter. The estimators \hat{x} and $\hat{\Theta}$ correspond to the global maximum of the likelihood defined in Eq. 4. The expected number of events $N_{ij}(\Theta)$ is given by, in the presence of signal:

$$N_{ij}(x, \Theta) = 2x(1-x)N_{ij}^{t\bar{t} \to H^+W^-}(\Theta) + (1-x)^2 N_{ij}^{t\bar{t} \to W^+W^-}(\Theta) + N_{ij}^{\text{other}}(\Theta), \quad (5)$$

and in the absence:

$$N_{ij}(\Theta) = N_{ij}^{t\bar{t} \to W^+W^-}(\Theta) + N_{ij}^{\text{other}}(\Theta), \quad (6)$$

where $N_{ij}^{t\bar{t} \to H^+W^-}(\Theta)$ and $N_{ij}^{t\bar{t} \to W^+W^-}(\Theta)$ are the number of events from the simulated signal process and the SM $t\bar{t}$ process, respectively. Both are normalized to the expected $t\bar{t}$ cross sections, as described in Section 3. The factor of 2 in Eq. 5 is derived from the assumption that the event yield and $B(t \to H^-b)$ for H^- are the same as those of H^+.

The exclusion limits on $B(t \to H^+b)$ as a function of charged Higgs boson mass using the m_{jj} distribution in the range 15–165 GeV and combining different exclusive event categories based on charm tagging are shown in Fig. 4 and in Tables 4 and 5. Among the individual categories, the expected limits from the exclusive medium category are most stringent, followed by those from the exclusive loose and tight categories. By construction, the exclusion limits on $B(t \to H^-b)$ are the same as those on $B(t \to H^+b)$.

9 Summary

A search for a light charged Higgs boson produced by top quark decay has been performed in the muon + jets and electron + jets channels at $\sqrt{s} = 13$ TeV, using a data sample corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The observed and predicted number of events from standard model processes are in agreement within the uncertainties. An exclusion limit at
Figure 4: The expected and observed upper limit in % on $B(t \to H^+ b)$ as a function of m_{H^+} using m_{jj} after the individual charm tagging categories have been combined, for the muon + jets (upper left) and electron + jets (upper right) channels, and their combination (lower).
Table 4: Expected and observed 95% CL exclusion limits in % on $B(t \rightarrow H^+ b)$ in the muon + jets (electron + jets) channel, after the individual charm tagging categories have been combined.

m_{H^+} (GeV)	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$	Observed
	m_H	m_H	median	m_H	m_H	m_H
80	1.58 (1.96)	2.10 (2.61)	2.95 (3.63)	4.16 (5.10)	5.61 (6.84)	2.44 (2.77)
90	0.69 (0.79)	0.92 (1.06)	1.28 (1.47)	1.79 (2.05)	2.39 (2.74)	0.72 (1.38)
100	0.35 (0.42)	0.46 (0.56)	0.64 (0.77)	0.90 (1.08)	1.19 (1.43)	0.34 (0.53)
120	0.24 (0.28)	0.32 (0.37)	0.44 (0.52)	0.61 (0.72)	0.82 (0.95)	0.32 (0.44)
140	0.21 (0.24)	0.28 (0.32)	0.39 (0.44)	0.54 (0.61)	0.72 (0.81)	0.47 (0.32)
150	0.20 (0.23)	0.27 (0.31)	0.37 (0.43)	0.52 (0.60)	0.69 (0.80)	0.52 (0.26)
155	0.20 (0.23)	0.27 (0.31)	0.38 (0.42)	0.53 (0.60)	0.71 (0.80)	0.57 (0.26)
160	0.22 (0.26)	0.30 (0.35)	0.42 (0.48)	0.59 (0.68)	0.80 (0.92)	0.53 (0.32)

Table 5: Expected and observed 95% CL exclusion limits in % on $B(t \rightarrow H^+ b)$, after the individual charm tagging categories and the muon and electron channels have been combined.

m_{H^+} (GeV)	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$	Observed
	m_H	m_H	median	m_H	m_H	m_H
80	1.29	1.72	2.39	3.36	4.50	1.68
90	0.54	0.72	0.99	1.38	1.84	0.60
100	0.28	0.37	0.51	0.71	0.94	0.25
120	0.19	0.25	0.35	0.49	0.64	0.25
140	0.17	0.22	0.31	0.42	0.56	0.28
150	0.16	0.21	0.29	0.41	0.54	0.26
155	0.16	0.21	0.29	0.41	0.54	0.28
160	0.17	0.23	0.32	0.45	0.61	0.29

95% confidence level on the branching fraction $B(t \rightarrow H^+ b)$ has been computed by assuming $B(H^+ \rightarrow cs) = 100\%$. The observed exclusion limits are in the range, for a charged Higgs boson mass between 80 and 160 GeV, 2.44–0.32, 2.77–0.26, and 1.68–0.25% for the muon + jets, electron + jets, and the combination of the two channels, respectively. These are the first results from the LHC at $\sqrt{s} = 13$ TeV for the above final states, and represent an improvement by a factor of approximately 4 over the previous results at $\sqrt{s} = 8$ TeV.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy
of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIAT (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MOST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306; the Lendület (“Momentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIAT research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Education, grant no. 14.W03.31.0026 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and “Nauka” Project FSWW-2020-0008 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

[1] ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214

[2] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235
[3] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at \(\sqrt{s} = 7 \) and 8 TeV”, *JHEP* 06 (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571

[4] G. C. Branco et al., “Theory and phenomenology of two-Higgs-doublet models”, *Phys. Rept.* 516 (2012) 1, doi:10.1016/j.physrep.2012.02.002, arXiv:1106.0034

[5] S. P. Martin, “A supersymmetry primer”, in *Perspectives on Supersymmetry II*, G. L. Kane, ed., p. 1. World Scientific, 2010. arXiv:hep-ph/9709356. Adv. Ser. Direct. High Energy Phys., vol. 21. doi:10.1142/9789814542340_0001

[6] Yu. A. Golfand and E. P. Likhtman, “Extension of the algebra of Poincaré group generators and violation of P invariance”, *JETP Lett.* 13 (1971) 323, doi:10.1142/9789814542340_0001

[7] J. Wess and B. Zumino, “Supergauge transformations in four dimensions”, *Nucl. Phys.* 70 (1974) 39, doi:10.1016/0550-3213(74)90355-1

[8] Planck Collaboration, “Planck 2013 results. XVI. Cosmological parameters”, *Astron. Astrophys.* 571 (2014) A16, doi:10.1051/0004-6361/201321591, arXiv:1303.5076

[9] Planck Collaboration, “Planck 2013 results. I. Overview of products and scientific results”, *Astron. Astrophys.* 571 (2014) A1, doi:10.1051/0004-6361/201321529, arXiv:1303.5062

[10] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The hierarchy problem and new dimensions at a millimeter”, *Phys. Lett. B* 429 (1998) 263, doi:10.1016/S0370-2693(98)00466-3, arXiv:hep-ph/9803315

[11] M. Aoki, S. Kanemura, K. Tsumura, and K. Yagyu, “Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology”, *Phys. Rev. D* 80 (2009) 015017, doi:10.1103/PhysRevD.80.015017, arXiv:0902.4665

[12] E. Ma, D. P. Roy, and J. Wudka, “Enhanced three-body decay of the charged Higgs boson”, *Phys. Rev. Lett.* 80 (1998) 1162, doi:10.1103/PhysRevLett.80.1162, arXiv:hep-ph/9710447

[13] L3 Collaboration, “Search for charged Higgs bosons at LEP”, *Phys. Lett. B* 575 (2003) 208, doi:10.1016/j.physletb.2003.09.057, arXiv:hep-ex/0309056

[14] ALEPH Collaboration, “Search for charged Higgs bosons in \(e^+e^- \) collisions at energies up to \(\sqrt{s} = 209 \) GeV”, *Phys. Lett. B* 543 (2002) 1, doi:10.1016/S0370-2693(02)02380-8, arXiv:hep-ex/0207054

[15] DELPHI Collaboration, “Search for charged Higgs bosons at LEP in general two Higgs doublet models”, *Eur. Phys. J. C* 34 (2004) 399, doi:10.1140/epjc/s2004-01732-6, arXiv:hep-ex/0404012

[16] ALEPH, DELPHI, L3, and OPAL Collaborations and LEP working group on Higgs boson searches, “Search for charged Higgs bosons: Combined results using LEP data”, *Eur. Phys. J. C* 73 (2013) 2463, doi:10.1140/epjc/s10052-013-2463-1, arXiv:1301.6065
[17] OPAL Collaboration, “Search for charged Higgs bosons in e⁺e⁻ collisions at √s = 189 – 209 GeV”, Eur. Phys. J. C 72 (2012) 2076,
doi:10.1140/epjc/s10052-012-2076-0, arXiv:0812.0267

[18] CDF Collaboration, “Search for charged Higgs bosons in decays of top quarks in pPb collisions at √s = 1.96 TeV”, Phys. Rev. Lett. 103 (2009) 101803,
doi:10.1103/PhysRevLett.103.101803, arXiv:0907.1269

[19] D0 Collaboration, “Search for charged Higgs bosons in top quark decays”, Phys. Lett. B 682 (2009) 278,
doi:10.1016/j.physletb.2009.11.016, arXiv:0908.1811

[20] ATLAS Collaboration, “Search for charged Higgs bosons decaying via H± → τ±ν in fully hadronic final states using pp collision data at √s = 8 TeV with the ATLAS detector”, JHEP 03 (2015) 088,
doi:10.1007/JHEP03(2015)088, arXiv:1412.6663

[21] CMS Collaboration, “Search for a charged Higgs boson in pp collisions at √s = 8 TeV”, JHEP 11 (2015) 018,
doi:10.1007/JHEP11(2015)018, arXiv:1508.07774

[22] ATLAS Collaboration, “Search for a light charged Higgs boson in the decay channel H⁺ → c̄s in tt events using pp collisions at √s = 7 TeV with the ATLAS detector”, Eur. Phys. J. C 73 (2013) 2465,
doi:10.1140/epjc/s10052-013-2465-z, arXiv:1302.3694

[23] CMS Collaboration, “Search for a light charged Higgs boson decaying to c̄s in pp collisions at √s = 8 TeV”, JHEP 12 (2015) 178,
doi:10.1007/JHEP12(2015)178, arXiv:1510.04252

[24] CMS Collaboration, “Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at √s = 8 TeV”, JHEP 11 (2018) 115,
doi:10.1007/JHEP11(2018)115, arXiv:1808.06575

[25] ATLAS Collaboration, “Search for charged Higgs bosons produced in association with a top quark and decaying via H± → τν using pp collision data recorded at √s = 13 TeV by the ATLAS detector”, Phys. Lett. B 759 (2016) 555,
doi:10.1016/j.physletb.2016.06.017, arXiv:1603.09203

[26] ATLAS Collaboration, “Search for charged Higgs bosons decaying via H± → τ±νττ in the τ+jets and τ+lepton final states with 36 fb⁻¹ of pp collision data recorded at √s = 13 TeV with the ATLAS experiment”, JHEP 09 (2018) 139,
doi:10.1007/JHEP09(2018)139, arXiv:1807.07915

[27] ATLAS Collaboration, “Search for charged Higgs bosons decaying into top and bottom quarks at √s = 13 TeV with the ATLAS detector”, JHEP 11 (2018) 085,
doi:10.1007/JHEP11(2018)085, arXiv:1808.03599

[28] CMS Collaboration, “Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with eµµ or µµµ in proton-proton collisions at √s = 13 TeV”, Phys. Rev. Lett. 123 (2019) 131802,
doi:10.1103/PhysRevLett.123.131802, arXiv:1905.07453

[29] CMS Collaboration, “Search for charged Higgs bosons produced via vector boson fusion and decaying into a pair of W and Z bosons using pp collisions at √s = 13 TeV”, Phys. Rev. Lett. 119 (2017) 141802,
doi:10.1103/PhysRevLett.119.141802, arXiv:1705.02942
[30] CMS Collaboration, “Search for charged Higgs bosons in the $H^\pm \to \tau^\pm \nu_\tau$ decay channel in proton-proton collisions at $\sqrt{s} = 13$ TeV”, *JHEP* 07 (2019) 142, doi:10.1007/JHEP07(2019)142, arXiv:1903.04560.

[31] CMS Collaboration, “The CMS trigger system”, *JINST* 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.

[32] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[33] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, *JHEP* 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[34] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[35] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, *JHEP* 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.

[36] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, *JHEP* 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[37] NNPDF Collaboration, “Parton distributions from high-precision collider data”, *Eur. Phys. J. C* 77 (2017) 663, doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.

[38] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[39] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, *Eur. Phys. J. C* 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.

[40] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[41] M. Beneke, P. Falgari, S. Klein, and C. Schwinn, “Hadronic top-quark pair production with NNLL threshold resummation”, *Nucl. Phys. B* 855 (2012) 695, doi:10.1016/j.nuclphysb.2011.10.021, arXiv:1109.1536.

[42] Particle Data Group, M. Tanabashi et al., “Review of particle physics”, *Phys. Rev. D* 98 (2018) 030001, doi:10.1103/PhysRevD.98.030001.

[43] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions”, *JHEP* 09 (2009) 111, doi:10.1088/1126-6708/2009/09/111, arXiv:0907.4076 [Erratum: doi:10.1007/JHEP02(2010)011].

[44] E. Re, “Single-top Wt-channel production matched with parton showers using the POWHEG method”, *Eur. Phys. J. C* 71 (2011) 1547, doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.
References

[45] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.

[46] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[47] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[48] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\(k_T \) jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[49] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[50] CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at \(\sqrt{s} = 13 \) TeV”, JINST 13 (2018) P06015, doi:10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.

[51] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at \(\sqrt{s} = 8 \) TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[52] A. M. Polyakov, “Quark confinement and topology of gauge groups”, Nucl. Phys. B 120 (1977) 429, doi:10.1016/0550-3213(77)90086-4.

[53] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[54] CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, doi:10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.

[55] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[56] J. D’Hondt et al., “Fitting of event topologies with external kinematic constraints in CMS”, CMS Note 2006/023, 2006.

[57] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[58] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at \(\sqrt{s} = 13 \) TeV”, JHEP 07 (2018) 161, doi:10.1007/JHEP07(2018)161, arXiv:1802.02613.

[59] CMS Collaboration, “Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV”, Phys. Rev. D 95 (2017) 092001, doi:10.1103/PhysRevD.95.092001, arXiv:1610.04191.

[60] CMS Collaboration, “Measurements of \(t\bar{t} \) differential cross sections in proton-proton collisions at \(\sqrt{s} = 13 \) tev using events containing two leptons”, JHEP 02 (2019) 149, doi:10.1007/JHEP02(2019)149, arXiv:1811.06625.
[61] CMS Collaboration, “Investigations of the impact of the parton shower tuning in Pythia 8 in the modelling of tt at √s = 8 and 13 TeV”, CMS Physics Analysis Summary CMS-PAS-TOP-16-021, 2016.

[62] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865.

[63] R. J. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, Comput. Phys. Commun. 77 (1993) 219, doi:10.1016/0010-4655(93)90005-W.

[64] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[65] A. L. Read, “Presentation of search results: The CLs technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[66] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].
University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China
W. Fang, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, D. Leggat, H. Liao, Z. Liu, R. Sharma, A. Spiezia, J. Tao, J. Thomas-wilsker, J. Wang, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, A. Levin, Q. Li, M. Lu, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
E. Salama

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M.A. Mahmoud, Y. Mohammed

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Brücken, F. Garcia, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J-L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, France
S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, C. Charlot, O. Davignon, B. Diab, G. Falmagne, R. Granier de Cassagnac, A. Hakimi, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze, Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee,
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia a,b, R. Aly a,b, C. Aruta a,b, A. Colaleo a, D. Creanza a,c, N. De Filippis c,c, M. De Palma a,b, A. Di Florio a,b, A. Di Pilato a,b, W. Elmetenawee a,b, L. Fiore a, A. Gelm i a,b, M. Gul a, G. Iaselli a,b, M. Ince a,b, S. Lezki a,b, G. Maggi a,c, M. Maggi a,d, I. Margjeka a,b, V. Mastrapasqua a,b, J.A. Merlin a,b, S. My a,b, S. Nuzzo a,b, A. Pompili a,b, G. Pugliese a,c, A. Ranieri a, G. Selvaggi a,b, L. Silvestris a, F.M. Simone a,b, R. Venditti a, P. Verwilligen a

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi a, C. Battilana a,b, D. Bonacorsi a,b, L. Borgonovi a,b, S. Braibant-Giacomelli a,b, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, C. Ciocca a, M. Cuffiani a,b, G.M. Dallavalle a, T. Diotallevi a,b, F. Fabbr i a, A. Fanfani a,b, E. Fontanesi a,b, P. Giacomelli a, C. Grandi a, L. Guiducci a,b, F. Iemmi a,b, S. Lo Meo a,b, S. Marcellini a, G. Masetti a, E.L. Navarria a,b, A. Perrotta a, F. Primavera a,b, A.M. Rossi a,b, T. Rovelli a,b, G.P. Sirol i a,b, N. Tosi a

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergo a,b,39, S. Costa a,b, A. Di Mattia a, R. Potenza a,b, A. Tricomi a,b,39, C. Tuve a,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbagli a, C. Cassese a, R. Ceccarelli a,b, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, F. Fior i a, E. Focardi a,b, G. Latino a,b, P. Lenzi a,b, M. Lizzo a,b, M. Meschi a, S. Paoletti a, R. Seidita a,b, G. Sguazzoni a, L. Viliani a

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
M. Bozzo a,b, F. Ferro a, R. Mulargia a,b, E. Robutti a, S. Tosi a,b

INFN Sezione di Milano-Bicocca a,b, Università di Milano-Bicocca b, Milano, Italy
A. Benaglia a, A. Beschi a,b, F. Brivio a,b, F. Cetorelli a,b, V. Ciriolo a,b,18, F. De Guio a,b, M.E. Dinardo a,b, P. Dini a, S. Gennai a, S. Ghezzi a,b, P. Govoni a,b, L. Guzz i a,b, M. Malberti a, S. Malvezzi a, D. Menasce a, F. Monti a,b, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, T. Tabarelli de Fatis a,b, D. Valsecchi a,b,18, D. Zuolo a,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Napoli, Italy, Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma, Italy
S. Buontempo a, N. Cavallo a,c, A. De Iorio a,b, F. Fabbiozzi a,c, F. Fienga a, A.O.M. Iorio a,b, L. Layer a,b, L. Lista a,b, S. Meola a,d,18, P. Paolucci a,b,18, B. Rossi a, C. Sciacca a,b, E. Voevodina a,b

INFN Sezione di Padova a, Università di Padova b, Padova, Italy, Università di Trento c, Trento, Italy
P. Azzi a, N. Bacchetta a, A. Boletti a,b, A. Bragagnolo a,b, R. Carlin a,b, P. Checchia a, P. De Castro Manzano a, T. Dorigo a, F. Gaspari n a,b, U. Gasparini a,b, S.Y. Hoh a,b, M. Margoni a,b, A.T. Meneguzzo a,b, M. Presilla a,b, P. Ronchese a,b, R. Ross i a,b, F. Simonetto a,b, G. Strong a, A. Tiko a, M. Tosi a,b, H. YARAR a,b, M. Zanetti a,b, P. Zotto a,b, A. Zucchetta a,b, G. Zumerle a,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
C. Aime a,b, A. Braghieri a, S. Calzaferri a,b, D. Fiorina a,b, P. Montagna a,b, S.P. Ratti a,b, V. Re a, M. Ressegotti a,b, C. Riccardi a,b, P. Salvini a, I. Vai a, P. Vitullo a,b
INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, V. Marianiaa,b, M. Menichellia, F. Moscatellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaa, T. Tedeschia, b

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova, P. Azzurria, G. Bagliesia, V. Bertacchia,c, L. Bianchinia, T. Boccalia, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, M.R. Di Domenicoa,b, S. Donatoa, L. Gianninia,c, A. Giassia, M.T. Grippoa, F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, G. Ramirez-Sancheza,c, A. Rizzia,b, G. Rolandia,c, S. Roy Chowdhurya,c, A. Scrimbolia, N. Shafieia,b, P. Spagnoloa, R. Tenchinia, G. Tonellia, A. Venturia, P.G. Verdinia

INFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy
F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Kovellia, F. Santanastasioa,b, L. Soffia,b, R. Tramontanoa,b

INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, A. Belloraa,b, C. Biinoa, A. Cappettia,b, N. Cartigliaa, S. Comettia, M. Costaa,b, R. Covarellia,b, N. Demariaa, B. Kiania,b, F. Leggera, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, G. Ortonaa, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, M. Ruspaa,c, R. Salvaticoa,b, F. Sivieroa,b, V. Solaa, A. Solanoa,b, D. Soldia,b, A. Staianoa, D. Trocinoa,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b

Kyungpook National University, Daegu, Korea
S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon

Hanyang University, Seoul, Korea
B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea
J. Goh, A. Gurtu

Sejong University, Seoul, Korea
H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea
J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon
University of Seoul, Seoul, Korea
D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, Y. Roh, D. Song, I.J. Watson

Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, Y. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bia³kowska, M. Bluj, B. Boimska, T. Frueboes, M. Gó³rski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araújo, P. Bargassa, D. Bastos, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, D. Seitova, V. Shalaev, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, A. Zarubin, I. Zhizhin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim, E. Kuznetsova, V. Murzin, V. Oreshkin, I. Smirnov, D. Sokolov, V. Sulimov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Deremenov, S. Gninenko, N. Golubev, A. Karneiyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lykhkovskaya, A. Nikitenko, V. Popov, G. Safronov, A. Spiridonov, A. Stepenov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
M. Chadeeva, A. Oskin, P. Parygin, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terekulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Baiyshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uznias, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh

Tomsk State University, Tomsk, Russia
V. Borchsh, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Serbia
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, CristinaF. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, A. García Alonso, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, L. Úrda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, J. Ripoll Sau, V. Rodríguez Bouza, S. Sanchez Cruz, A. Trapote

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazín Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieyes, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
MK Jayananda, B. Kailasapathy, D.U.J. Sonnadara, DDC Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, N. Beni, M. Bianco, A. Bocci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, G. Cerminara, L. Cristella, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, M. Dele, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita, D. Fasanello, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Guilhaud, D. Gulhan, M. Haranko, J. Hegeman, Y. Iiyama, V. Innocente, T. James, P. Janot, J. Kaspar, J. Kieseler, M. Komm, N. Kratcochwil, C. Lange, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiiba, J. Niedziela, S. Orfanelli, L. Orsini, F. Panteleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwik, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Spica, J. Steggemann, S. Summers, V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandrì, N. Chernyavskaya, A. De Costa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann,
A.-M. Lyon, R.A. Manzoni, M.T. Meinhard, F. Micheli, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, L. Perrozzi, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, V. Stampf, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler
56, C. Botta, D. Brzhechko, M.F. Canelli, R. Del Burgo, J.K. Heikkilä, M. Huwiler, A. Jofrehei, B. Kilminster, S. Leontsinis, A. Macchiolo, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, G. Raucu, A. Reimers, P. Robmann, K. Schweiger, Y. Takahashi, S. Wertz

National Central University, Chung-Li, Taiwan
C. Adloff
57, C.M. Kuo, W. Lin, A. Roy, T. Sarkar
33, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceadr, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Science Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Damarseckin
58, Z.S. Demiroglu, F. Dolek, C. Dozen
59, I. Dumanoglu
60, E. Eskut, G. Gokbulut, Y. Guler, E. Gürpinar Guler
61, I. Hos
62, C. Isik, E.E. Kangal
63, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir
64, A. Polatoz, A.E. Simsek, B. Tali
65, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak
66, G. Karapinar
67, K. Ocalan
68, M. Yalvac
69

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya
70, O. Kaya
71, Ö. Özçelik, S. Tekten
72, E.A. Yetkin
73

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak
60, Y. Komurcu, S. Sen
74

Istanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci
65, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci
65

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev
75, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams
Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, G. Fedi, G. Hall, G. Iles, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, C. Madrid, B. McMaster, N. Pastika, S. Sawant, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
A. Akpinar, A. Albert, D. Arcaro, C. Cosby, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Y. Yao, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, R. Cousins, A. Dasgupta, A. Florent, D. Hamilton, J. Hauser, M. Ignatenko, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghias Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinnan, J. Richman, U. Sarica, D. Stuart, S. Wang

California Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu
G. Krintiras, A. Kropivnitskaya, C. Lindsey, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabili, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts*, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. González Fernández, I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, K. Mohrman, Y. Musienko†, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygala

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, A. Lefeld, B.L. Winer, B.R. Yates

Princeton University, Princeton, USA
P. Das, G. Dezoort, P. Elmer, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos,
G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar, M. Stojanovic

Rice University, Houston, USA
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts†, J. Rorie, W. Shi, A.G. Stahl Leiton

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, O. Karacheban22, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali85, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon86, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, L. Pernié, D. Rathjens, A. Safonov, J. Sturdy

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamicchane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA
E. Appelt, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
P.E. Karchin, N. Poudyal, P. Thapa

University of Wisconsin - Madison, Madison, WI, USA
K. Black, T. Bose, J. Buchanan, C. Caillon, S. Dasu, I. De Bruyn, P. Everaerts, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert, W. Vetens

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Department of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at University of Chinese Academy of Sciences, Beijing, China
10: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
11: Also at Joint Institute for Nuclear Research, Dubna, Russia
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Now at Fayoum University, El-Fayoum, Egypt
15: Also at Purdue University, West Lafayette, USA
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
18: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
19: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
20: Also at University of Hamburg, Hamburg, Germany
21: Also at Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
22: Also at Brandenburg University of Technology, Cottbus, Germany
23: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
24: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
25: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
26: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
27: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
28: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
29: Also at Institute of Physics, Bhubaneswar, India
30: Also at G.H.G. Khalsa College, Punjab, India
31: Also at Shoolini University, Solan, India
32: Also at University of Hyderabad, Hyderabad, India
33: Also at University of Visva-Bharati, Santiniketan, India
34: Also at Indian Institute of Technology (IIT), Mumbai, India
35: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
36: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
37: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
38: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
39: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
40: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
41: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico
42: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
43: Also at Institute for Nuclear Research, Moscow, Russia
44: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
45: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
46: Also at University of Florida, Gainesville, USA
47: Also at Imperial College, London, United Kingdom
48: Also at P.N. Lebedev Physical Institute, Moscow, Russia
49: Also at California Institute of Technology, Pasadena, USA
50: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
51: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
52: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
53: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
54: Also at National and Kapodistrian University of Athens, Athens, Greece
55: Also at Universität Zürich, Zurich, Switzerland
56: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
57: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
58: Also at Şırnak University, Şırnak, Turkey
59: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China
60: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
61: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
62: Also at Istanbul Aydın University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
63: Also at Mersin University, Mersin, Turkey
64: Also at Piri Reis University, Istanbul, Turkey
65: Also at Adiyaman University, Adiyaman, Turkey
66: Also at Ozyegin University, Istanbul, Turkey
67: Also at Izmir Institute of Technology, Izmir, Turkey
68: Also at Necmettin Erbakan University, Konya, Turkey
69: Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
70: Also at Marmara University, Istanbul, Turkey
71: Also at Milli Savunma University, Istanbul, Turkey
72: Also at Kafkas University, Kars, Turkey
73: Also at Istanbul Bilgi University, Istanbul, Turkey
74: Also at Hacettepe University, Ankara, Turkey
75: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
76: Also at IPPP Durham University, Durham, United Kingdom
77: Also at Monash University, Faculty of Science, Clayton, Australia
78: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
79: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
80: Also at Bingöl University, Bingöl, Turkey
81: Also at Georgian Technical University, Tbilisi, Georgia
82: Also at Sinop University, Sinop, Turkey
83: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
84: Also at Nanjing Normal University Department of Physics, Nanjing, China
85: Also at Texas A&M University at Qatar, Doha, Qatar
86: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea