Pancreatic stellate cell: Pandora’s box for pancreatic disease biology

Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.

Key words: Pancreatic stellate cells; Pancreatic fibrosis;
Pancreatic cancer stroma; Physiological functions; Pancreatic stellate cells-cancer-stromal interactions; Therapeutic targets

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Pancreatic stellate cells (PSCs) have emerged as one of the major effector cells in chronic pancreatitis and pancreatic ductal adenocarcinoma. In this review, we discuss the physiological function of PSCs and the profibrogenic mechanisms. We also discuss various pathways, transcription factors and miRNAs implicated in the inflammatory and profibrogenic functions mediated by PSCs. We further discuss the crosstalk among PSCs, pancreatic cancer cells and pancreatic cancer stroma and mechanisms that lead to cancer progression, metastasis, tumour hypoxia, immune evasion and drug resistance. We conclude with recent preclinical and clinical studies that have targeted PSCs and cancer stroma.

Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora’s box for pancreatic disease biology. World J Gastroenterol 2017; 23(3): 382-405 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i3/382.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i3.382

HISTORICAL PERSPECTIVES

Stellate cells were described for the first time in the perisinusoidal spaces of the liver by Karl Wilhelm Von Kupffer in 1876 and were called "Sternzellen" (meaning star shaped cells). Later in 1951, Ito described the presence of lipid droplet containing cells in the perisinusoidal spaces of the liver and named them "Ito cells"[1]. The Ito cells were shown to emit blue-green fluorescence due to the presence of vitamin A in the lipid droplets[2]. Later in 1971, the usage of multiple techniques provided unequivocal evidence that the "sternzellen" reported by Kupffer and "Ito cells" identified by Ito were the same cell type: the hepatic stellate cells (HSCs)[3,4]. In 1982, a cell type carrying vitamin A containing lipid droplets and exhibiting a transient blue-green fluorescence were described in mouse pancreas[5]. In 1991, the cells exhibiting the vitamin A autofluorescence were identified in the healthy pancreatic sections from humans and rats[6]. These cells are now identified as pancreatic stellate cells (PSCs), which localize the periacinar regions, with long cytoplasmic projections extending towards the basolateral aspects of the acinar cells. Later in 1998, the development of in vitro tools to isolate and culture the PSCs laid a strong foundation to characterize their basic biology[7,8]. These cells also surround the perivascular and periductal regions. Sustained PSC cultures have helped to decipher the crucial factors that act in the inflammatory mechanisms and their mechanistic role in the pancreatic fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). However, in view of the challenges of limited viability of the PSCs in primary cultures, there had been several attempts to modify isolation and culture techniques. In this regard, techniques were developed to immortalize the normal and tumour associated PSCs. However, further validation studies will be required prior to their routine use in PSC research[9-12]. Interestingly, even though PSCs were associated primarily with the exocrine pancreas, a recent study has reported isolation of PSCs from rat and human pancreatic islets too. These cells demonstrated certain morphologic and functional differences from the conventional PSCs in terms of fewer lipid droplets, lower rates of proliferation, migration and easier activation[13,14].

BASIC BIOLOGY OF PANCREATIC STELLATE CELLS

Origin

The origin of PSCs is still being debated. Till date no direct studies have been executed to identify the origin of PSCs. However, the studies on the origin of HSCs have helped in gaining some insight into this aspect. Even though initially a neuroectodermal origin of PSCS was proposed, it was eventually negated in genetic cell lineage mapping studies[15]. A recent study forwarded refreshing evidence supporting a mesodermal origin of HSCs by using the conditional lineage analysis approach[16,17]. Since most of the characteristic features and functions that sketched the biology of PSCs are similar to HSCs, it is believed that even PSCs might have evolved from a mesodermal origin. Employing such similar tracer techniques might help in ascertaining the origin of PSCs.

In the context of CP and PDAC, even though most of the proliferating PSCs are derived from the resident PSCs within the pancreas, a proportion of PSCs are thought to originate in the bone marrow. This was proposed in a novel sex mismatched study, which evidenced that even bone marrow (BM) derived cells may also contribute to PSC population in CP and PDAC apart from the resident cells of pancreas[18,19]. The speculation that bone marrow is another potential source of PSC was further supported by a recent study involving dibutylin chloride induced CP wherein a model of stable hematopoietic chimerism by grafting enhanced green fluorescence protein (eGFP)-expressing BM cells was used. In this study, 18% of the PSCs in the pancreas was found to originate in the bone marrow[20]. A recent study that used enhanced green fluorescent protein (EGFP)(+)-CD45(-) cells transplanted from EGFP-transgenic mice in a carbon tetrachloride (CCL4) model suggested that infiltrating monocytes could also differentiate into stellate cells within the pancreas and liver under the influence of
monocyte chemoattractant protein-1 (MCP-1)[21].

Morphologic characteristics

Most of the characteristic features exhibited by quiescent as well as activated PSCs have been determined based on *in vitro* studies using rat and human PSC isolates. Cultured PSCs display prominent vitamin A containing lipid droplets with perinuclear localization in the cytoplasm. These lipid droplets elicit a fugacious blue-green autofluorescence when exposed to UV light at 328 nm or 350 nm wavelength. The expression of glial fibrillary acidic protein (GFAP) is specific to PSCs in the pancreas and presence of lipid droplets in the cytoplasm define the quiescent phenotype of PSCs[5-8]. The underlying mechanisms involved in the accumulation and disappearance of lipid droplets are still not elaborately elucidated. It was demonstrated in a few studies that albumin colocalizes with the lipid droplets within quiescent PSCs. Activated PSCs, which are characterized by disappearance of lipid droplets, re-developed the lipid droplets and showed resistance against the activating effects of transforming growth factor-\(\beta\) (TGF-\(\beta\)) when transfected with the plasmids expressing albumin, thereby confirming the contribution of albumin in lipid droplet formation. The albumin was reported to be a downstream effector of peroxisome proliferator activated receptor-\(\gamma\) (PPAR-\(\gamma\)), a nuclear receptor that is known to inhibit PSC activation[22,23].

The presence of lipid droplets together with expression of GFAP, desmin, nestin and vimentin is used to differentiate the PSCs from pancreatic fibroblasts[24]. Using GFAP-LacZ transgenic mice model, it was proven that GFAP promoter activity was unique to PSCs alone in the pancreas[25].

Autotransformation of quiescent PSCs to activated phenotype is observed *in vitro*. The basic phenotypic differences that were observed when the PSCs switch to activated phenotype include the disappearance of lipid droplets and transformation into a myofibroblast-like phenotype. The expression of \(\alpha\)-smooth muscle actin (\(\alpha\)-SMA) marks the transdifferentiation of the quiescent PSC to an activated phenotype. Figure 1 shows the morphology of PSCs in culture at different time points.

PSC functions

The physiological and pathological functions of PSCs have been summarized in Table 1. Under physiological conditions, PSCs are believed to contribute to the exocrine cell structure and function *via* maintenance of the normal basement membrane[26,27] and carry out normal ductal and vascular regulation by virtue of their localization[28]. Quiescent PSCs have a low mitotic index and bear the capability to synthesize matrix proteins and maintain the physiological extracellular matrix. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are complementary to each other and is a prerequisite to poise the ECM turnover. Increased production of the ECM proteins fibronectin, peristostin, MMPs and TIMPs are the most common features exhibited by the activated PSC phenotype[29] and hence described as the effector cells contributing to the stroma associated with CP and PDAC. Besides laying and maintaining the ECM, PSCs have also been demonstrated to secrete acetylcholine that might function as an intermediate regulator for cholecystokinin mediated pancreatic exocrine secretion[30].

Until recently, much attention was paid to unveil the functions of activated PSCs as a multiple cytokine producing profibrogenic cell type, which promotes self-proliferation, migration and fibrogenesis. However, recent advances have even demonstrated certain non-fibrogenic functions of PSCs, which projected PSCs as immune cells[31], intermediary cell[30,32] and also as a progenitor cell[33-35]. An earlier study showed that PSCs could phagocytize senescent neutrophils in experimental acute pancreatitis (AP) and this was reduced by the presence of cytokines while augmented by presence of PPAR-\(\gamma\) ligand[31]. The same group subsequently demonstrated that PSCs could also phagocytize necrotic acinar cells and themselves undergo cell death. No change in TGF-\(\beta\) concentration was detected in the PSC media and medium with PSC and acinar cells, thereby indicating that the death of PSCs could result in inhibition of fibrogenesis in the setting of AP[36]. This role in innate immunity was further supported by the capacity of PSCs to recognize pathogen-associated molecular patterns *via* Toll-like receptors (TLRs) that are expressed on their surface[37].

Table 1 Function of pancreatic stellate cells in the quiescent state and after activation

Physiological functions	Pathological functions
Store fat and retinoids in perinuclear droplets, expressing GFAP, desmin and vimentin	Exhibit cell proliferation and migration
Secretes MMPs and TIMPs	Deranged ECM turnover due to loss of balance between MMPs and TIMPs
Maintains ECM turnover	Secrete various cytokines, chemokines and growth factors and thereby contribute to inflammatory milieu
Involved in maintenance of pancreatic tissue architecture	Stimulate cancer cell proliferation and migration and inhibit their apoptosis
No or limited secretion of cytokines, chemokines and growth factors	Mediate invasion and metastasis of carcinoma cells
Function as an immune, progenitor and intermediary cell	Mediate chemoattractant and radioresistance thereby promoting cancer cell survival
Possible role in exocrine and endocrine secretions	Contribute to the hypovascular and hypoxic tumour microenvironment
GFAP: Glial fibrillary acidic protein; MMPs: Matrix metalloproteinases; TIMPs: Tissue inhibitors of matrix metalloproteinases; NGF: Nerve growth factor.	Promote angiogenesis, neural invasion and epithelial-mesenchymal transition

Using GPAP-LacZ transgenic mice model, it was proven that GFAP promoter activity was unique to PSCs alone in the pancreas[25].

Autotransformation of quiescent PSCs to activated phenotype is observed *in vitro*. The basic phenotypic differences that were observed when the PSCs switch to activated phenotype include the disappearance of lipid droplets and transformation into a myofibroblast-like phenotype. The expression of \(\alpha\)-smooth muscle actin (\(\alpha\)-SMA) marks the transdifferentiation of the quiescent PSC to an activated phenotype. Figure 1 shows the morphology of PSCs in culture at different time points.

PSC functions

The physiological and pathological functions of PSCs have been summarized in Table 1. Under physiological conditions, PSCs are believed to contribute to the exocrine cell structure and function *via* maintenance of the normal basement membrane[26,27] and carry out normal ductal and vascular regulation by virtue of their localization[28]. Quiescent PSCs have a low mitotic index and bear the capability to synthesize matrix proteins and maintain the physiological extracellular matrix. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are complementary to each other and is a prerequisite to poise the ECM turnover. Increased production of the ECM proteins fibronectin, peristostin, MMPs and TIMPs are the most common features exhibited by the activated PSC phenotype[29] and hence described as the effector cells contributing to the stroma associated with CP and PDAC. Besides laying and maintaining the ECM, PSCs have also been demonstrated to secrete acetylcholine that might function as an intermediate regulator for cholecystokinin mediated pancreatic exocrine secretion[30].

Until recently, much attention was paid to unveil the functions of activated PSCs as a multiple cytokine producing profibrogenic cell type, which promotes self-proliferation, migration and fibrogenesis. However, recent advances have even demonstrated certain non-fibrogenic functions of PSCs, which projected PSCs as immune cells[31], intermediary cell[30,32] and also as a progenitor cell[33-35]. An earlier study showed that PSCs could phagocytize senescent neutrophils in experimental acute pancreatitis (AP) and this was reduced by the presence of cytokines while augmented by presence of PPAR-\(\gamma\) ligand[31]. The same group subsequently demonstrated that PSCs could also phagocytize necrotic acinar cells and themselves undergo cell death. No change in TGF-\(\beta\) concentration was detected in the PSC media and medium with PSC and acinar cells, thereby indicating that the death of PSCs could result in inhibition of fibrogenesis in the setting of AP[36]. This role in innate immunity was further supported by the capacity of PSCs to recognize pathogen-associated molecular patterns *via* Toll-like receptors (TLRs) that are expressed on their surface[37].

Autotransformation of quiescent PSCs to activated phenotype is observed *in vitro*. The basic phenotypic differences that were observed when the PSCs switch to activated phenotype include the disappearance of lipid droplets and transformation into a myofibroblast-like phenotype. The expression of \(\alpha\)-smooth muscle actin (\(\alpha\)-SMA) marks the transdifferentiation of the quiescent PSC to an activated phenotype. Figure 1 shows the morphology of PSCs in culture at different time points.

PSC functions

The physiological and pathological functions of PSCs have been summarized in Table 1. Under physiological conditions, PSCs are believed to contribute to the exocrine cell structure and function *via* maintenance of the normal basement membrane[26,27] and carry out normal ductal and vascular regulation by virtue of their localization[28]. Quiescent PSCs have a low mitotic index and bear the capability to synthesize matrix proteins and maintain the physiological extracellular matrix. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are complementary to each other and is a prerequisite to poise the ECM turnover. Increased production of the ECM proteins fibronectin, peristostin, MMPs and TIMPs are the most common features exhibited by the activated PSC phenotype[29] and hence described as the effector cells contributing to the stroma associated with CP and PDAC. Besides laying and maintaining the ECM, PSCs have also been demonstrated to secrete acetylcholine that might function as an intermediate regulator for cholecystokinin mediated pancreatic exocrine secretion[30].

Until recently, much attention was paid to unveil the functions of activated PSCs as a multiple cytokine producing profibrogenic cell type, which promotes self-proliferation, migration and fibrogenesis. However, recent advances have even demonstrated certain non-fibrogenic functions of PSCs, which projected PSCs as immune cells[31], intermediary cell[30,32] and also as a progenitor cell[33-35]. An earlier study showed that PSCs could phagocytize senescent neutrophils in experimental acute pancreatitis (AP) and this was reduced by the presence of cytokines while augmented by presence of PPAR-\(\gamma\) ligand[31]. The same group subsequently demonstrated that PSCs could also phagocytize necrotic acinar cells and themselves undergo cell death. No change in TGF-\(\beta\) concentration was detected in the PSC media and medium with PSC and acinar cells, thereby indicating that the death of PSCs could result in inhibition of fibrogenesis in the setting of AP[36]. This role in innate immunity was further supported by the capacity of PSCs to recognize pathogen-associated molecular patterns *via* Toll-like receptors (TLRs) that are expressed on their surface[37].
Studies have now also proposed a regenerative role especially in the context of AP, where the interaction between extracellular matrix laid by PSCs and acinar surface integrin receptors could result in a scaffold for acinar regeneration. Excess matrix deposition could also potentially be ameliorated by matrix degrading enzymes and apoptosis/cytolysis of activated PSCs [38].

In addition to the above-mentioned functions of PSCs, it is now becoming more evident that these multifunctional cells also affect endocrine secretion in CP. This speculation surfaced from experiments that demonstrated increased numbers of PSCs in rat pancreas in a Type 2 diabetic model [39]. Extension of this study in vitro showed that PSCs could reduce insulin secretion and induce β-cell apoptosis [40-42]. On the contrary, another study showed that PSCs increase insulin secretion from mouse islets [43]. Interestingly, INS-1 cell culture supernatants reduced the secretion of proinflammatory cytokines (that mediate β-cell dysfunction) and ECM proteins from PSCs [44]. Moreover, the expression of regenerating islet-derived protein-1 was high in islet stellate cells (ISCs) isolated from the diabetic mice, which inhibited the viability, migration, synthesis and secretion of ECM proteins in ISCs in vitro [45]. As the in vitro results are more divergent, meticulous studies need to be designed and executed to understand the precise role played by these cells during their reciprocal interaction.

Figure 1 Morphological changes observed in cultured rat pancreatic stellate cells at different time points after isolation. A: Quiescent pancreatic stellate cells (PSCs) in culture exhibiting a flattened shape with lipid droplets, 6 h after isolation (× 20); B, C: PSCs showing flattened angular appearance and exhibiting cytoplasmic extensions with lipid droplets after 24 and 48 h respectively in cultures (× 20); D: PSCs exhibiting dense lipid droplets (lipid droplets are indicated with black arrows) in the cytoplasm (× 40); E: Activated PSCs showing long cytoplasmic processes with no lipid droplets in the cytoplasm after 72 h in cultures (× 20); F: Passage 2 rat PSCs in culture, immunostained for α-smooth muscle actin (α-SMA), a cytoskeletal marker for activated PSCs. Green striations indicate α-SMA and blue spots indicate nuclei, stained with DAPI (× 20).
The fate of activated PSCs is an important question that remains unresolved. Figure 2 depicts a schematic representation of the fate of PSCs. One of the two possible explanations that were proposed is that sustained inflammation may perpetuate PSC activation, leading to fibrosis; while the other explanation proposed that the activated PSCs may undergo apoptosis or may revert back to the native phenotype if the inflammation or injury is ceased. Recently, Fitzner et al.[46] proposed that activated PSCs could undergo senescence as evidenced by increased senescence-associated β-galactosidase, higher expression of CDKN1A/p21, mdm2 and interleukin (IL)-6. On the contrary, there was lower expression of α-smooth muscle actin. The authors also observed that senescence increased the susceptibility of PSCs to cytolysis and concluded that inflammation, PSC activation and cellular senescence were coupled processes that took place in the same inflammatory microenvironment of CP[46]. Figure 3 depicts the autocrine and paracrine mechanisms of PSC activation and the resulting fibrosis.

Fate of PSCs
The fate of activated PSCs is an important question that remains unresolved. Figure 2 depicts a schematic representation of the fate of PSCs. One of the two possible explanations that were proposed is that sustained inflammation may perpetuate PSC activation, leading to fibrosis; while the other explanation proposed that the activated PSCs may undergo apoptosis or may revert back to the native phenotype if the inflammation or injury is ceased. Recently, Fitzner et al.[46] proposed that activated PSCs could undergo senescence as evidenced by increased senescence-associated β-galactosidase, higher expression of CDKN1A/p21, mdm2 and interleukin (IL)-6. On the contrary, there was lower expression of α-smooth muscle actin. The authors also observed that senescence increased the susceptibility of PSCs to cytolysis and concluded that inflammation, PSC activation and cellular senescence were coupled processes that took place in the same inflammatory microenvironment of CP[46]. In the setting of AP, PSCs could undergo death after phagocytizing necrotic acinar cells.[36].

PSGS AND FIBROSIS
A pathological hallmark of CP and PDAC is progressive fibrosis that is mediated by the PSCs. One of the earliest cellular events at the initiation of fibrosis is activation of PSCs, which can be mediated concomitantly by a variety of factors, such as oxidative stress, cytokines, growth factors, activin-A, angiotensin, hyperglycemia and pressure, to name a few. Interestingly, activation of PSCs can occur by both autocrine and paracrine mechanisms, which imply that the effects of PSC activation, primarily inflammation and resultant fibrosis can progress, even after removing the primary source. The distinctive sources of exogenous factors that activate the PSC include activated macrophages, monocytes, pancreatic acinar cells, endothelial cells, pancreatic cancer cells and platelets in inflamed pancreas.[47-50]. Figure 3 depicts the autocrine and paracrine mechanisms of PSC activation and the resulting fibrosis.

Alcohol, smoking and PSC activation
Alcohol and smoking are now recognized as independent risk factors for the development of CP. It is known that pancreatic acinar cells can metabolize alcohol to form toxic metabolites that results in oxidative stress. This results in inflammation and PSC activation.[51-53]. Furthermore, PSCs themselves can metabolize ethanol to acetaldehyde and generate oxidative stress, thus promoting their own activation and lipid peroxidation. The above findings have been confirmed by immunostaining for 4-hydroxy-nonenal (4-HNE), a reactive product of lipid peroxidation, that demonstrated localization of 4-HNE stained PSCs in fibrotic areas adjacent to acinar cells.[54-56]. Ethanol activated PSCs
showed increased proliferation by enhancing the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system stimulated by platelet derived growth factor (PDGF)\(^5\). Also shown was expression of connective tissue growth factor (CCN2/CTGF) that was attributed to production of acetaldehyde and oxidant stress in ethanol stimulated PSCs, which rendered the properties of cell adhesion, migration and collagen synthesis when stimulated with profibrogenic molecules\(^5\).

Recently, CCN2 was also shown to increase miR-21 expression that in turn enhanced collagen \(\alpha_1\) expression in a murine alcoholic CP model. CCN2 and miR-21 were shown to be colocalized in PSC derived exosomes that were positive for cluster of differentiation (CD) 9. In vitro studies revealed that these exosomes serve as molecular cargos to activate and transfer fibrogenic signals to the adjacent PSCs\(^5\).

Lee et al\(^6\) has recently demonstrated that PSCs express nicotinic acetylcholine nAChRs (isoforms \(\alpha_3, \alpha_7, \beta_1, \epsilon\)). Furthermore, nicotine and nicotine-derived nitrosamine ketone and cigarette smoke extracts were shown to activate PSCs both in the presence and absence of alcohol. This reiterates the clinical observation of role of smoking as an independent risk factor in the initiation and progression of CP\(^6\).

Pressure and PSC activation

Ductal hypertension resulting from obstructing pancreatic ductal calculi or stricture has been long believed to be a major contributor of pain in CP. This formed the rationale for ductal clearance of stone/stricture by endotherapy and/or surgery in an attempt to ameliorate pain in CP. Experimental evidence to support this concept came forward from studies by Asaumi et al\(^6\) where externally applied pressure of 80 mmHg induced activation of PSCs and generation of reactive oxygen species (ROS) within the activated PSCs\(^6\). ROS generation was observed as early as 30 min after application of pressure and reached peak by 1 h.

Hyperglycemia and PSC activation

In a study by Ko et al\(^6\), exposure of PSCs to high glucose concentration resulted in stimulation of \(\alpha\)-SMA expression, proliferation and expression of extracellular matrix proteins such as CTGF and collagen type IV. PSC activation by hyperglycemia was also confirmed.
by subsequent studies by Nomiyama et al. and Hong et al. and the latter study also suggested an additive effect of hyperglycemia and hyperinsulinemia in inducing PSC activation and islet fibrosis in the context of Type 2 diabetes. Observations from these studies have provided an insight into the role of hyperglycemia in preserving the activated phenotype and also in the context of secondary diabetes in patients with CP. A more recent study has indicated that hyperglycemia could result in induction of Cysteine-X-Cysteine ligand (CXCL) 12 production by the PSCs and its receptor, CXCR4 on cancer cells.

Cytokines and other activation factors that mediate proinflammatory function of PSCs

Fibrous tissue in CP and PDAC abounds in type I collagen. Among the cytokines that can cause PSC activation, TGF-β stands among the most important. Studies have shown increased collagen synthesis and upregulation of MMP1 in PSCs that were stimulated with TGF-β1 and TGF-β2. Other activators of PSCs include interleukin-8 (IL-8), MCP-1 and RANTES (Regulated on Activation, Normal T-cell Expressed and Secreted), which promote PSC activation via autocrine pathways. Activin-A and angiotensin II have also been identified as the autocrine activators of PSCs, contributing to further TGF-β1 expression and PSC proliferation. Expression of TGF-β1 and collagen secretion, has also been shown to result from application of external pressure and with hyperglycemia.

Migration and proliferation of PSCs are other important properties that go parallel along with the proinflammatory and profibrotic cascade. Proliferation and migration of PSCs is mediated by PDGFαββ(79,80), (which is expressed after TGF-β1 mediated activation) and endothelin-1. A proinflammatory chemokine, CX3CL1 (fractalkine), reported to circulate in the serum of patients with alcoholic chronic pancreatitis, was demonstrated as an activation and proliferation factor for PSCs and PSCs were shown to express the receptor (CX3CR1) for this chemokine. Recently, another new activation factor, namely parathyroid hormone related protein (PTHRP) was demonstrated to be expressed by acinar cells during experimental pancreatitis using an acinar cell specific PTHR gene knockout model. Receptor for this factor (PTHR1) has been shown to be expressed in PSCs and receptor-ligand interaction between the two proteins resulted in fibrogenesis. Of note, IL-6 has been shown to inhibit both PSCs proliferation and collagen synthesis. Recently it was also demonstrated that IL-4 and IL-13 secreted by PSCs mediate macrophage activation, which in turn participate in promoting the pancreatic fibrosis.

To summarize the effect of the above experimental evidence, different paracrine factors released during the injury will result in activation, proliferation and migration of PSCs and the activated phenotype is further retained by an autocrine loop, even in the absence of paracrine triggers.

Molecular pathways, microRNAs, transcription factors and proteomics in PSC mediated pancreatic fibrosis

Studies conducted over the past decade have implicated the involvement of several proteins and molecular pathways (Figure 4) in perpetuating the profibrogenic role of PSCs.

MAPK, JAK-STAT and PI3K signaling pathways

Mitogen activated protein kinases (MAPKs) are serine/threonine protein kinases with three families: extracellular signal regulated kinase (ERKs), c-Jun N-terminal kinase (JNK) and p38, and all the three MAPKs have been studied extensively for their role in PSCs activation. In vitro studies demonstrated that the activation of ERK1/2 is the initial pathway that precedes the transformation of PSCs into activated phenotype and PDGF was shown to mediate ERK1/2 and Activator protein-1 (AP-1) dependent proliferation and migration of PSCs. Studies have also demonstrated involvement of the Janus-activated kinase-signal transducers and activators of transcription (JAK2-STAT3) pathway in PDGF-BB induced PSC proliferation. All the 3 MAPKs were described in human PSCs to express IL-32α and IL-33 when treated with proinflammatory cytokines. IL-33 was shown to activate PSCs. HNE was reported to activate all the 3 classes of MAPKs and AP-1. PSCs treated with HNE showed increased production of type I collagen with no significant effect on proliferation and transformation, implicating oxidative stress mediated pathogenesis of pancreatic inflammation and fibrosis.

The all the three MAPKs including AP-1 were triggered in PSCs when stimulated with ethanol and acetaldehyde. Inhibition of p38, JNK and Rho associated protein kinase (ROCK) pathways demonstrated the inhibition of PSC activation, supporting the involvement of above mentioned pathways in the pathogenesis of alcohol induced pancreatic injury.

Smad signaling pathway

TGF-β1, which is a proven profibrogenic cytokine, is required in the regulation of PSC activation. Smads are the signaling effectors of TGF-β1 mediated functions and have also been ascribed a regulatory role in PSC functions. Results from co-expression of Smad2/3 with dominant negative Smad2/3 mutants and inhibition of ERK showed that the activation, proliferation and TGF-β1 mRNA expression are mediated through the Smad2/3 and ERK dependent pathways in PSCs. The autocrine loop between IL-1β and TGF-β1 and the one existing between the IL-6 and TGF-β1 were
mediated by Smad3/ERK dependent and Smad2/3 and ERK dependent pathways. Further investigations had confirmed the existence of a TGF-β autocrine loop and supported the role of PSCs in preserving the activated phenotype and collagen synthesis\[92,93\]. TGF-β1 induced expression of cyclooxygenase-2 (COX-2) by PSCs also followed Smad2/3 dependent pathway in response to proinflammatory cytokines\[94\]. This pathway has been suggested to be protective against the inhibitory activity of reversion-inducing-cysteine-rich protein with kazal motifs (RECK), a membrane anchored MMP inhibitor in the activated PSCs\[95\]. The stimulation of activated PSCs with TGF-β unveiled the possible role of Ras-ERK and PI3/Akt pathways in the expression of MMP-1\[68\].

Wnt signaling and β-catenin pathway

Yet another signaling pathway aberration that could result in PSC activation, proliferation and transformation into a profibrotic phenotype is that of Wnt signaling. This observation came from an experimental CP model by Hu et al\[96\] where the authors have shown that there was increased expression of Wnt and its second messenger β-catenin and that this imbalance could result in persistent activation of PSCs. Yet another study by Xu et al\[97\] showed that cancer cell invasion and migration are promoted by Wnt2 protein secreted by the PSCs.

Hedgehog signaling pathway

Indian hedgehog (IHH) and sonic hedgehog (SHH) are the other important pathways in PSCs. Receptors, namely smoothened and patched-1, for the IHH protein are expressed on the surface of PSCs and the receptor-ligand binding results in localization of the membrane-type 1 matrix metalloproteinase on PSC plasma membrane, which in turn could mediate PSC migration\[98\]. SHH was shown to influence the PSC mobility and differentiation\[99\] and also perineural invasion, metastasis, tumour growth and pain in pancreatic cancer\[100,101\].

microRNAs

Implications on the involvement of microRNAs (miRs) has recently being reported frequently in the context of CP and PSCs. A recent study reported upregulation and downregulation of 42 miRs each in activated PSCs\[102\]. miR-15b and 16 have been shown to induce apoptosis of rat PSCs via influencing the anti-apoptotic Bcl-2 protein\[103\]. An even more recent study demonstrated a paracrine pathway wherein CCN2 mRNA and miR-21 containing exosomes liberated by PSCs were engulfed by surrounding PSCs. This results in further expression of the CCN2 and miR-21 by the activated PSCs\[99\].

Figure 4 Signaling pathways mediating pancreatic stellate cell activation. Expression of α-SMA, proliferation, migration and deposition of matrix proteins are the important properties attained by activated pancreatic stellate cells (PSCs) when stimulated with various growth factors and proinflammatory cytokines. Proliferation and migration is mediated through the MAP kinase and PI3K pathways when PSCs are stimulated with HNE, alcohol, PDGF and IL-33 and other cytokines. TGF-β1 induces the Smad proteins and stimulates the proliferation and collagen secretion by PSCs. Activation of Indian Hedgehog (IHH) signaling in PSCs promotes their migration, proliferation and collagen deposition. PSC mediated Sonic Hedgehog (SHH) signaling promotes cancer cell invasion and migration. Wnt signaling can cause collagen deposition and cancer progression. PDGF: Platelet derived growth factor; HNE: Hydroxy-nonenal; ERK: Extracellular signal-regulated kinases; JNK: c-Jun N-terminal kinase; TGF-β: Transforming growth factor-β; α-SMA: α-smooth muscle actin; COX-2: Cyclooxygenase-2; IL: Interleukin.
Transcription factors and interactions with cytokines

Different cytokines exert their effect by inducing various transcription factors such as nuclear factor-κB (NF-κB), Activator protein-1 (AP-1), STAT proteins and Gli, to name a few. NF-κB is stimulated by various cytokines associated with different cellular functions[104]. Activated PSCs showed NF-κB mediated expression of intracellular adhesion molecule when stimulated with IL-1β and tumor necrosis factor (TNF-α), which was not observed in the quiescent phenotype[105]. Expression of MCP-1, cytokine inducing neutrophil chemoattractant-1, IL-6, IL-8 and RANTES was observed via NF-κB activation when induced with galectin-1, various ligands of TLR and cytokines, substantiating the role of PSCs in mediating the infiltration and accumulation of inflammatory cells[106-108].

Proteomics

Proteomic studies using the immortalized PSC lines from Mus musculus and Rattus norvegicus showed the expression of cytoskeletal and ribosomal proteins by activated PSCs. The studies also demonstrated proteins involved in protein degradation, MAPK 3 and Ras related proteins by pseudo-quiescent PSCs[109,110]. Proteomic profiling of mild and severe CP by label free quantitative proteomic approach displayed varied expression of proteins with a relative change in the proteins related to ECM and PSC activation which includes perioisin, fibrillin 1, transgelin and a group of collagen. An accompanying study showed increased expression of transgelin in stromal and periaclinar regions of CP, confirming its role in PSC activation[111,112].

A comparative proteomic profiling of human HSC and PSC lines LX-2 and RLT-PSCs identified 1223 different proteins. Among 1223 proteins 1222 were found to be commonly expressed in both cell lines and a single protein (amintransferase) was found expressed in HSCs alone. The proteins in abundance from human PSC lines in this study were implicated for their role in maintaining the cellular structure[113]. The proteomic analysis of nicotine treated human, mouse and rat PSCs by GeLC-MS/MS approach demonstrated the differential expression of proteins and signaling pathways, while the expression of integral protein 2B, procollagen type VI alpha, toll interacting protein and amyloid interacting proteins was found to be common[114]. Expression of lysosomal proteins, indicators of pancreatic disease, proteins involved in defense mechanism and alteration in the phosphorylation sites were observed in another study[115]. Few other proteomic studies of similar kind have reported the mechanism and alteration in the phosphorylation sites were observed in another study[116].

PSC-PANCREATIC CANCER CELLS-CANCER STROMAL INTERACTIONS

It has now been conclusively demonstrated that majority (50%-80%) of PDAC volume is composed of a fibrous stroma, amidst which lay the islands of cancer cells[118]. There has been increasingly accumulating evidence that supports substantial two-way interactions between the stromal components and cancer cells and the association between the cancer cells and cancer associated PSCs have received several monikers such as “dangerous liaisons”[119], “friend or foe”[120] and “unholy alliance”[121]. The stroma in pancreatic cancer consists predominantly of collagenous fibres laid down by the PSCs, along with other cellular [mast cells, macrophages, lymphocytes, myeloid derived suppressor cells (MDSC) and endothelial cells][122-131] and non-cellular (ECM proteins such as collagen, laminin, fibronectin, glycoproteins, proteoglycans and glycosaminoglycans; non-ECM proteins such as growth factors, osteopontin, perioisin and serine protein-acidic and rich in cysteine] components[122,131]. These stromal components can mediate the interaction between the PSCs and cancer cells and eventually influence the biological behavior and clinical outcomes of PDAC. Apart from vascular endothelial growth factor (VEGF) and angiopoietin-1, PSCs also secrete hepatocyte growth factor (HGF) and mediators responsible for endothelial cell proliferation and tube formation. This appears to operate through the HGF/c-MET pathway via induction of the downstream PI3K and p38 signaling pathways[134]. Of note, upon neutralizing the HGF activity, proliferation and migration of cancer cells could be inhibited and apoptosis could be induced[135].

Even though fibrosis that was observed early in development of PDAC led to the belief that PSC produced stroma is protective, this eventually shifted towards the concept of the stroma having a tumour permissive effect. However, the current opinion holds that PSC-stroma-cancer cell interaction is dynamic and stage-dependent, with protective effect in the earliest stage and harmful effect in later stages[38]. The mechanism of PSC induced fibrosis in PDAC is similar to that seen in CP. Therefore, in the next section we will discuss only the cancer specific interactions and phenotypic effects of stroma-cancer cell interactions. While the PSC-pancreatic cancer cell interactions result in cancer growth and PSC activation, interaction between PSCs and stromal cells may be instrumental in metastasis, immune evasion, tumour hypoxia and resistance to chemoradiotherapy.

PSC-PDAC crosstalk

Pancreatic intraepithelial neoplasia (PanINs) are the precursor lesions of PDAC. It is now well known that PSCs get activated even at the early PanIN stages of
PDAC and initiates fibrosis around these precursor lesions. Several in vitro and in vivo studies have provided insight into the bipolar interactions between the PSCs and PDAC. In vitro co-culturing of PSCs with pancreatic cancer cells accelerated the proliferation and increased survival by inhibiting apoptosis\[^{139}\]. Furthermore, co-culturing also resulted in epithelial-mesenchymal transition (EMT) as evidenced by increased expression of vimentin and snail (mesenchymal marker) with corresponding reduction in E-cadherin and cytokeratin (both epithelial markers)\[^{137}\]. This was associated with migration of the cancer cells, which indicates the capability of PSCs to trigger the metastasis of pancreatic cancer cells\[^{138}\].

Recurrent of PDAC after therapy has been postulated to be an effect of persistence of a treatment resistant cancer stem cell niche. PSCs have been shown to regulate the genesis of a cancer stem cell niche as marked by increased expression of stem cell markers such as ABCG-2, Lin28 and nestin, while also attaining capability to form spheroids in vitro\[^{139}\]. Interestingly, it has been shown that the same PDAC can contain a heterogeneous population of PSCs based on the expression of CD10, which is a cell-membrane associated MMP. CD10(+) cells are associated with a higher propensity to proliferate and invade, thereby indicating that the relative proportion of PSC subtypes could also determine the disease biology and prognosis\[^{140}\].

While the foregoing paragraphs discussed the effect of PSCs on pancreatic cancer cells, the cancer cells also induce profound effects on the PSCs. Pancreatic cancer cells produce factors such as PDGF, trefoil factor 1\[^{141}\] and COX-2, which could induce PSC proliferation. COX-2 expression is upregulated not only in the cancer cells, but also in the PanINs and PSCs exposed to conditioned medium from cancer cell lines\[^{142-145}\]. Galectin-1 and Galectin-3, members of galectin family of β-galactoside binding proteins, are also important drivers of the PSC-PDAC crosstalk. Galectin-3 expression by pancreatic cancer cell lines was found to promote its own proliferation along with PSCs\[^{146,147}\].

Figure 5 outlines the overall crosstalk between PSCs and pancreatic cancer cells.

Role of PSCs on invasion and metastasis

Galectin-3\[^{147}\], thrombospondin-2\[^{148}\], stromal cell derived factor\[^{149}\] and nerve growth factor (NGF)\[^{150}\] expressed by PSCs are shown to drive the invasion of PDACs. Studies on xenograft models showed that PSCs exert a modulatory function and potentiate the invasiveness of SUIT2 pancreatic cancer cells expressing serine protease inhibitor nexin2 (SERPINE2)\[^{151,152}\]. Pancreatic cancer cells and PSCs express fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) that have been shown to mediate interaction between the tumour and stromal cells resulting in development of an invasive phenotype\[^{153}\].

A recent study confirmed that pro-invasive character results from nuclear localization of FGFR1 and FGFR2 in PSCs\[^{154}\]. Perhaps the most convincing and concept changing data on the role of PSCs in metastasis was reported in the study by Xu et al\[^{155}\] which showed that the PSCs could rapidly acquire a tumour inductive property even after a short exposure of pancreatic cancer cells, thereby facilitating tumour growth and metastasis. The authors used a gender mismatch approach in which they injected a combination of female pancreatic cancer cells and male human PSCs into the pancreas of female nude mice. Interestingly, they could demonstrate Y-chromosome positive (i.e.,...
the injected male human PSCs) in metastatic liver nodules. This implied that the PSCs from the liver could intravasate blood vessels, transport in circulation and extravasate into metastatic nodules alongside the metastatic cancer cells. The findings also suggest that the metastatic PSCs could mount an active stromal reaction even in the metastatic nodule. The property of transendothelial migration of the PSCs was further supported by in vitro studies and was found to be mediated by PDGF.

Besides contributing to distant metastasis, PSCs have also been implicated in neural invasion. This notion has been supported by studies that reported expression of neurotrophic factors such as glial derived neurotrophic factor and brain derived neurotrophic factor and stimulation of neurite formation towards pancreatic cancer cells by activated PSCs. These effects appear to be mediated by SHH paracrine signaling pathway[100,101].

Tumour hypoxia and resistance

Similar to CP, PDAC is also characterized by hypoxic microenvironment. Tumour hypoxia arising from fibro-inflammatory environment is shown to induce the expression of hypoxia-inducible factor-1α (HIF-1α) and stimulate the secretion of SHH ligand by cancer cells, leading to stromal deposition by tumour associated fibroblasts. Organotypic culture of thick pancreatic sections under hypoxic conditions depicted the activation (α-SMA) and proliferation (Ki67) of PSCs along with higher expression of HIF-1α, mediating the activation of hypoxic pathways[102]. In vitro studies on the role of hypoxic milieu on the interactions between PSCs and PDACs led to interesting observations. The hypoxia exposed PSCs expressed type I collagen and VEGF, showed increased migration and also promoted the endothelial cell proliferation, migration and angiogenesis[157]. Another study also yielded similar results where the hypoxia induced PSCs showed increased expression of periostin, collagen type I, VEGF and fibronectin. In co-cultures, the hypoxia treated PSCs enhanced the endostatin production by cancer cells and increased the endothelial cell growth[158]. A similar kind of study using 3D matrices also reported that the hypoxia induced procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs promotes cancer cell migration[159]. Periostin, a matrix protein, with its persevered autocrine loop was shown to promote ECM synthesis and cancer cell growth under hypoxia and starvation during chemotherapy by maintaining the activated phenotype of PSCs[160]. PSCs were also shown to express miR-21 and miR-210 under hypoxic conditions, where miR-20 was reported to regulate the interactions between PSCs and PDACs via ERK and Akt pathways[161] and miR-21 contributing to cancer cell invasion and metastasis[162]. Apart from these 2 miRs, miR-199a and miR-214 expressed by PSCs shown to have a pro-tumoral effect and also promote their own proliferation and migration[163].

Overexpression of miR-29, the expression of which was lost during the transformation of PSCs into activated phenotype, resulted in the reduction of collagen deposition, cancer cell growth and viability[164].

The outcomes of the above studies not only confirmed the central role of PSCs in desmoplasia but also exhibited the proangiogenic functions mediated by them in tumour hypoxia.

Immune escape of PDAC

Emerging data over the recent years have strongly suggested that pancreatic cancer cells could evade host immune surveillance. One of the major factors that mediate immune evasion of pancreatic cancer cells is by sequestration of CD8(+) cells within the stroma, thereby preventing them from invading peritumoral areas where they could mediate immune mediated injury to the cancer cells. This appears to be mediated by the chemokine CXCL12[145]. The other important mediator that sustain an immunosuppressive milieu is the β-galactoside binding lectin galectin-1, which is overexpressed by PSCs in pancreatic cancer. Using siRNA induced knockout and overexpression studies, it was shown that galectin-1 could induce T-cell apoptosis and reduced Th-1 response (with concomitant increase in Th-2 responses) and thereby reducing the immune mediated injury to the cancer cells. This was further reconfirmed and was shown that the effects were significantly higher in poorly differentiated tumours compared to the well-differentiated ones[166].

Other PSC mediated mechanisms that has been proposed to result in disruption of anti-tumour immunity are cytokine secretion by macrophages[167] and expression of the fibroblast activation protein-α[168], migration of MDSC[169], mast cell degradation leading to release of tryptase and IL-13[124].

THERAPEUTIC IMPLICATIONS

Given the background of substantial understanding of the mechanisms of PSC involvement in pancreatic fibrosis and pancreatic cancer, several experimental, preclinical and early phase clinical studies on CP and pancreatic cancer have appeared in the literature over the recent years. Experimental studies (both in vivo and in vitro) that have targeted the profibrogenic function of PSCs have shown favorable results; however these results have not yet been satisfactorily reproduced in human CP. Table 2 summarizes the drugs and their effects in experimental studies of CP[169-218].

In the context of pancreatic cancer, where conventional chemotherapy has shown dismal results, the current concept is to target the stroma along with conventional chemotherapy. Since the pancreatic cancer stroma has been shown to be associated with tumour hypoxia, metastasis, drug resistance, it is expected that prior stromal degradation could result in chemosensitivity of the tumour even with the conventional chemotherapeutic drugs. Table 3 shows the
Amino sulfonic acid
Ethanol stimulated culture activated rat PSCs
Rofecoxib
Wistar Bonn/Kobori rats
Agent
In vivo
Outcome of the study
Trinitrobenzene sulfonic acid (TNBS)
Mutant MCP-1
Ascorbic acid
Increased pancreatic weight and decreased pancreatic MPO and serum ACE activity was observed
Camostat mesilate
Candesartan
Antifibrotic cytokine
DBTC induced CP in Sprague-Dawley rats
Decreased malondialdehyde (MDA), hyaluronic acid, laminin concentrations and pancreatic injury
DBTC induced pancreatic fibrosis in Wistar rats
Allopurinol
Oral protease inhibitor
AdTb-ExR
Lisinopril and
Increased pancreatic weight and expression of angiotensinogen and angiotensin II receptor type 2 mRNA
Thioredoxin-1 (TRX-1)
Class/type of agent
Suppressed the expression of IL-6 and CINC and pancreatic acute phase proteins (PAP and p8)
Inhibited Caerulein induced experimental CP in female
PPAR-α/γ agonist
Carboxamide derivative
Antioxidant
Adenoviral vector system
Increased pancreatic weight and expression of angiotensinogen and angiotensin II receptor type 2 mRNA
Decreased: pancreatic MPO and serum ACE activity and hydroxyl proline content

Ref.	Agent	Class/type of agent	In vivo/in vitro (study) model	Outcome of the study	
Nakamura et al.[159]	FOY-007	Synthetic serine protease inhibitor	Cytokine stimulated human periacinar fibroblast like cells	Both attenuated proliferation and procollagen type I C-terminal peptide (PPI)	
Xie et al.[160] 2002	FOY-305	Carboxamide derivative	Wistar Bonn/Kobori rats	Suppressed the expression of IL-6 and CINC and pancreatic acute phase proteins (PAP and p8)	
Kuno et al.[161] 2003	IS-741	Angiotensin-converting enzyme (ACE) inhibitor	Wistar Bonn/Kobori rats	Increased pancreatic weight and decreased pancreatic MPO and serum ACE activity was observed	
Yamada et al.[162] 2003	Lisinopril	Wistar Bonn/Kobori rats	Decrease in serum MCP-1 levels, intra-pancreatic hydroxyproline content was identified		
Xie et al.[163] 2002	Lisinopril	Wistar Bonn/Kobori rats	Suppressed TGF-β1 mRNA overexpression		
Nagashio et al.[164] 2002	FOY-007	Synthetic serine protease inhibitor	FOY-007 also inhibited collagen synthesis		
Masaumura et al.[165] 2003	FOY-305	Carboxamide derivative	DBTC induced CP in Lewis rats	Reduced the activated PSCs, number of apoptotic acinar cells and fibrosis	
Zhao et al.[166] 2005	Mutant MCP-1	Wistar Bonn/Kobori rats	Decreased MCP-1, fibrosis and hydroxyl proline levels		
Gibo et al.[167] 2004	Camostat mesilate	Oral protease inhibitor	Wistar Bonn/Kobori rats	Reduced IL6, TGF-β1, IL-1β, MCP-1 and PDGF expression	
Yamada et al.[168] 2005	Lisinopril and candesartan	Culture activated PSCs	In vivo: DBTC induced CP in Lewis rat	In vivo: Inflammation, fibrosis and cytokines expression was inhibited	
van Westerloo et al.[169] 2005	Teglitazone	PPAR-γ ligand	Caerulein induced experimental CP in female C57BL/6 mice	Suppressed mRNA expression of TGF-β1, PDGF-β and TNF-α	
Reding et al.[170] 2006	Retinol and its metabolites	Vitamin of vitamin A	Ethanol stimulated culture activated rat PSCs	Suppressed mRNA expression of TGF-β1, PDGF-β and TNF-α	
Asaumi et al.[171] 2006	Taurine	Amino sulfonyl acid	DBTC induced pancreatic fibrosis in Wistar rats	Inhibited PSC activation, proliferation, expression of collagen I: All MAP kinases were activated	
Rickmann et al.[172] 2007	Tocopherols	Vitamin E family members	Culture activated PSCs from Wistar rats	Reduced viability of activated PSCs by apoptosis and autophagy	
Reference	Compound	Description	Effect		
-----------	----------	-------------	--------		
Michalski CW et al. 2008	Cannabinoid WIN 55,212-2	Aminomethylindole derivative	Reduced fibronectin, collagen I and α-SMA levels		
Weylandt et al. 2008	Omega-3 polyunsaturated fatty acids (n-3 PUFA)		Decreased IL-6, MCP-1 and MMP-2 secretion and invasiveness by PSCs		
Karatas et al. 2008	Halofuginone	Synthetic halogenated derivative of leftriugine	Increased n-3 PUFA tissue levels		
Fitzner et al. 2008	Bosentan	ET-1-receptor antagonist	Less pancreatic fibrosis and collagen content		
Schwer et al. 2010	Carbon monoxide-releasing molecules-2 (CORMs)	Metal carbonyl compounds delivering carbon monoxide	Inhibited PSC proliferation and collagen synthesis		
Nathan et al. 2010	Pancreatic secretory trypsin inhibitor (PSTI)	Culture activated PSCs isolated from Wistar rats	Reduced the expression of ET-1, α-SMA and CTGF		
González et al. 2011	Palm oil tocotrienol-rich fraction	Vitamin E family member	PSC proliferation was inhibited through p38/HO-1 pathway activation		
Long et al. 2011	Octreotide	Analog of somatostatin	Reduced MPO activity and inflammatory cell infiltration		
Li et al. 2011	Pancreatic stone protein/regenerating protein	Secretory stress proteins family	Reduced amylase, hydroxyproline and TGF-β1 levels were observed		
Tang et al. 2011	Sinisan	Chinese herb	Diminished α-SMA, fibroactin and collagen expression was identified		
Wei et al. 2011	Pravastatin	Competitive inhibitor of HMG-CoA reductase	Inhibited PSC proliferation, migration and reduced collagen I and fibronectin		
Li et al. 2011	α-Tocopherol	Vitamin E family member	Reduced serum amylase, mRNA expression of TNF-α, IL-1β and COX-2 were reduced and IL-10 was increased		
Monteiro et al. 2012	Vitamin E supplementation	Ethanol induced (alcoholic) CP in Wistar rats	Reduced fibrosis and enhanced survival rate		
Matsushita et al. 2012	Taurine	Amino sulfonic acid	Inhibited acinar cell apoptosis		
Yang et al. 2012	L-Cysteine	Amino acid	Decreased α-SMA, TIMP-1, IL-1β, TGF-β1 expression and hydroxyproline levels and increased MMP-2 levels		
Bai et al. 2012	Sulindac	Non-steroidal anti-inflammatory drug	Suppressed PSC proliferation and ECM synthesis		
Lee et al. 2012	Simvastatin and Troglitazone	HMG-CoA reductase inhibitor and PPAR agonists	Reduced fibrosis, acinar cell loss and inflammatory cell infiltration		
				Expression of TGF-β, PDGF-β, SHH and Gli was reduced	
		Culture activated PSCs isolated from Sprague-Dawley rats	PSC proliferation was inhibited synergistically		
Both drugs inhibited PSC proliferation.

Bone morphogeneic protein inhibits PSC proliferation.

In vivo studies showed that rats body weight was improved and reduced the fibrosis.

Apigenin inhibited the expression of TGF-β, IL-6, and other inflammatory cytokines.

PSCs isolated from C57BL6JOlaHsd mouse suppressed the expression of IL-1β and TNF-α.

Hydroxyflavone inhibited TGF-β and IL-6 expression.

Vitamin A metabolite, retinoid, and vitamin D3 inhibited PSC proliferation.

Immortalized human pancreatic stellate cell line was used to study the antifibrotic effects of compounds.

Collagen type I, fibronectin, and other extracellular matrix proteins were reduced in the treated samples.

Chemokine inhibitor, integrin inhibitor, and MEK inhibitor decreased the expression of TGF-β and IL-1β.

Pancreatic fibrosis, acinar cell atrophy and loss were reduced.

Increased HGF and decreased IL-1β, TGF-β, and collagen type I expression.

Decreased expression of TGF-β, IL-1β, and collagen type I in the treated samples.

Decreased the phosphorylation of ERK1/2 and NF-κB activation.

Decreased the expression of TGF-β and IL-1β.

Pancreatic fibrosis, acinar cell atrophy and loss were reduced.

Decreased the activation of NF-κB and PSC activation was inhibited.

Reduced the expression of TGF-β and IL-1β.

Decreased the phosphorylation of ERK1/2 and NF-κB activation.

Decreased the expression of TGF-β and IL-1β.

Decreased the activation of NF-κB and PSC activation was inhibited.

Reduced the expression of TGF-β and IL-1β.

Decreased the phosphorylation of ERK1/2 and NF-κB activation.

Decreased the expression of TGF-β and IL-1β.

Decreased the activation of NF-κB and PSC activation was inhibited.

Reduced the expression of TGF-β and IL-1β.

Decreased the phosphorylation of ERK1/2 and NF-κB activation.

Decreased the expression of TGF-β and IL-1β.

Decreased the activation of NF-κB and PSC activation was inhibited.

Reduced the expression of TGF-β and IL-1β.

Decreased the phosphorylation of ERK1/2 and NF-κB activation.

Decreased the expression of TGF-β and IL-1β.

Decreased the activation of NF-κB and PSC activation was inhibited.

Reduced the expression of TGF-β and IL-1β.

Decreased the phosphorylation of ERK1/2 and NF-κB activation.

Decreased the expression of TGF-β and IL-1β.

Decreased the activation of NF-κB and PSC activation was inhibited.

Reduced the expression of TGF-β and IL-1β.

Decreased the phosphorylation of ERK1/2 and NF-κB activation.

Decreased the expression of TGF-β and IL-1β.

Decreased the activation of NF-κB and PSC activation was inhibited.

Reduced the expression of TGF-β and IL-1β.

Decreased the phosphorylation of ERK1/2 and NF-κB activation.

Decreased the expression of TGF-β and IL-1β.

Decreased the activation of NF-κB and PSC activation was inhibited.
Table 3 Therapeutic agents that have been evaluated in experimental/pre-clinical studies targeting pancreatic stellate cells and cancer stroma in pancreatic ductal adenocarcinoma

Ref.	Agent	Class/type of agent	In vivo/in vitro (study) model	Outcome of the study
Feldmann et al. 2007	Cyclosporine	Steroidal alkaloid	Orthotopic xenograft model	Inhibited cancer cell invasion and metastasis by suppressing hedgehog
Diep et al. 2011	Erlotinib	EGFR tyrosine kinase inhibitors	In vitro: Pancreatic cancer cell lines	Inhibited cancer cell proliferation, EGFR receptor signaling and induced apoptosis
	RDEA191 and AZD6244	Tyrosine kinase inhibitors	In vivo: BxPC-3 and MIA PaCa-2 mice xenograft model	Suppressed tumour growth
Froeling et al. 2011	ATRA, 9-cis-RA and 13-cis-RA	Metabolites of vitamin A	In vivo: LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice	Retinoic acid induced PSC quiescence and decreased migration
			In vitro: AsPC1 and Capan1 pancreatic cancer cell lines, PS1 and other PSC cell lines	Decreased and induced proliferation and apoptosis of cancer cells
Chauhan et al. 2013	Losartan	Angiotensin inhibitor	Orthotopic mice model	Reduced stromal collagen production, expression of TGF-β, CCN2 and ET-1
Sun et al. 2013	Curcumin	Phenolic compound	TGF-β1 stimulated PANC-1 cell line	Improved drug and oxygen delivery to tumour
			Cancer associated fibroblasts	Inhibited proliferation and promoted apoptosis
Edderkaoui et al. 2013	Ellagic acid	Polyphenolic and benzoquinone phytochemical	Pancreatic cancer cells and PSCs	Cancer cell invasion and migration was decreased
	Embelin			Induced apoptosis and inhibited proliferation
				NF-κB activity was decreased
Macha et al. 2013	Guggulsterone	Plant polyphenol	CD18/HPAF and Capan1 cell clones	Inhibited growth and colony formation
				Induced apoptosis and arrested cell cycle
				Decreased motility and invasion
Kozono et al. 2013	Pirfenidone	Pyridone compound	Orthotopic tumour mice Model	Reduced tumour growth, PSC proliferation and the deposition of collagen type I and periostin in tumours was decreased
			In vitro: PSCs isolated from pancreatic tissue	In vitro: Proliferation, invasiveness and migration of PSCs was inhibited
Guan et al. 2014	Retinoic acid	Vitamin A derivative	Panc-1 and Aspc-1 cell lines	Reduced α-SMA, FAP and IL-6 expression
			Cancer associated fibroblasts	Inhibited cancer cell migration and EMT
Gonzalez-Villasana et al. 2014	Bisphosphonates and nab-paclitaxel	Monocyte-macrophage lineage inhibitors	Human PSCs and cancer cell line	In vitro: Inhibited PSC activation, proliferation MCP-1 release and collagen 1 expression and induced apoptosis
				Proinflammatory cytokine and PSC proliferation was inhibited
Pominowska et al. 2014	Prostaglandin E2 (PGE2)	Lipid compound	Human PSCs isolated from resected pancreatic tumour tissue	IL-1β and FGF induced COX-2 expression, TGF-β1 induced collagen synthesis and PDGF induced PSC proliferation was inhibited
Gong et al. 2014	Nexrutine	Phytocerucial with COX-2 Inhibitor activity	In vitro: Pancreatic cancer cell lines	Suppressed COX-2 expression
			In vivo: BKS-COX-2 transgenic mice	In vivo: Improved drug and oxygen delivery to tumour
Yan et al. 2014	Crizotinib	c-MET/HGF receptor and ALK tyrosine kinase inhibitors	In vitro: Human pancreatic cancer cell lines AsPC-1, PANC-1, MIA PaCa-2 and Capan-1	In vitro: Growth and proliferation was inhibited
			In vivo: Mouse xenograft model	Induced apoptosis
				In vitro: Inhibited angiogenesis, tumour growth and ALK activity
Zhang et al. 2014	5-Azacytidine	Cytidine analogue	Bxpc-3 cancer cell line	Inhibited cancer cell proliferation by suppressing Wnt/β-catenin signaling
Wang et al. 2014	miR-216a	microRNA	Capan-2 and PANC-1 pancreatic cancer cell lines	In vitro: Inhibited cell growth and induced apoptosis
			In vivo: BALB/c nude mice	Down regulated survivin and XIAP expression
Kumar et al. 2015	miR-let-7b and GDC-0449	microRNA and Hedgehog inhibitor	Capan-1, HPAF-II, T3M4 and MIA PaCa-2 cell lines	In vitro: Decreased cell proliferation and induced apoptosis via Gli dependent mechanism
			In vivo: Reduced tumour cell proliferation with increased apoptosis and tumour growth was inhibited	
Petrova et al. 2015	RU-5KI 43	Hedgehog acyltransferase inhibitor	Pancreatic cancer cell lines	Increased Akt and mTOR activity
			In vivo: Pancreatic cancer cell lines	In vitro: Tumour growth decreased
Masso-Valles et al. 2015	Ibrutinib	Tyrosine kinase inhibitor	Pancreatic mouse and xenograft mice models	Reduced fibrosis and extended survival
Zhou et al. 2015	Zileuton	5-LOX inhibitor	Pancreatic cancer SW1990 cell line	Inhibited apoptosis, decreased proliferation and expression of 5-lipoxygenase
recently tested drugs/biologics that targeted pancreatic cancer stroma in preclinical studies[219-242]. Besides the preclinical studies, several SHH pathway inhibitors have also been tested in advanced or metastatic PDACs in phase I and II studies (both open labeled and randomized double-blind controlled trials). Few of these include Vismodegib (GDC-0449), Saridegib (IPI-926) and Erismodegib (LDE225), PDGFR inhibitor (TKI258), hyaluran (PEGPH20) and dasatinib, to name a few. These have been used along with gemcitabine and/or nab-Paclitaxel and FOLIRINOX. Discussion of details of the study designs and results of these trials can be obtained from recent high quality reviews[243,244]

REFERENCES

1. Ito T. Cytological studies on stellate cells of Kupffer and fat storing cells in the capillary wall of the human liver. Acta Anat Jpn 1951; 26: 42.

2. Wake K. Development of vitamin A-rich lipid droplets in multivesicular bodies of rat liver stellate cells. J Cell Biol 1974; 63: 683-691 [PMID: 4421899 DOI: 10.1083/jcb.63.2.683]

3. Wake K. “Sternzellen” in the liver: perisinusoidal cells with special sinusoidal cell type and storage of vitamin A. Am J Anat 1971; 132: 429-462 [PMID: 4942297 DOI: 10.1002/aja.101320404]

4. Wake K, Motomatsu K, Senoo H. Stellate cells storing retinol in the liver of adult lamprey, Lampetra japonica. Cell Tissue Res 1987; 249: 289-299 [PMID: 3621303 DOI: 10.1007/BF00215511]

5. Watari N, Hotta Y, Mabuchi Y. Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anat Jpn 1982; 58: 837-858 [PMID: 7122019 DOI: 10.2535/ofaj1936.58.4-6.837]

6. Ikejiri N. The vitamin A-storing cells in the human and rat pancreas. Kurume Med J 1990; 37: 67-81 [PMID: 2255178 DOI: 10.2739/kurumemedj.37.67]

7. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, Pirola RC, Wilson JS. Periaccinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 1998; 43: 128-133 [PMID: 9771417 DOI: 10.1136/gut.43.1.128]

8. Bachem MG, Schneider E, Gross H, Weidenbach H, Schmid RM, Menke A, Stech B, Meger H, Grünert A, Adler G. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 1999; 115: 421-432 [PMID: 9670048 DOI: 10.1016/S0016-5085(98)70209-4]

9. Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T. Establishment and characterization of a rat pancreatic stellate cell line by spontaneous immortalization. World J Gastroenterol 2003; 9: 2751-2758 [PMID: 14669327 DOI: 10.3748/wjg.v9.i12.2751]

10. Sparmann G, Hohenadl C, Tomase J, Jaster R, Fitzer B, Koeck D, Thiesen HJ, Glass A, Winder D, Liebe S, Emmrich J. Generation and characterization of immortalized rat pancreatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2004; 287: G211-G219 [PMID: 14977634 DOI: 10.1152/ajpgi.00347.2003]

11. Jesowsk R, Fürst D, Ringel J, Chen Y, Schrödel K, Klee J, Kolb A, Schareck WD, Lör J. Immortalization of pancreatic stellate cells as an in vitro model of pancreatic fibrosis: deactivation is induced by matrigel and N-acetylcysteine. Lab Invest 2005; 85: 1276-1291 [PMID: 16127427 DOI: 10.1038/labinvest.3700329]

12. Rosendahl AH, Gundewar C, Said Hilmersson K, Ni L, Saleem MA, Andersson R. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-1. Exp Cell Res 2015; 330: 300-310 [PMID: 25304103 DOI: 10.1016/j.yexcr.2014.09.033]

13. Zha M, Li F, Xu W, Chen B, Sun Z. Isolation and characterization of islet stellate cells in rat. Islets 2014; 6: e28701 [PMID: 25483957 DOI: 10.4161/28701]

14. Zha M, Xu W, Jones PM, Sun Z. Isolation and characterization of human islet stellate cells. Exp Cell Res 2016; 341: 61-66 [PMID: 268
Barlow A, Vander Borght S, Libbrecht L, Pachnis V. Hepatic stellate cells do not derive from the neural crest. *J Hepatol* 2006; 44: 1098-1104 [PMID: 16458991 DOI: 10.1016/j.jhep.2005.09.023]

Asahina K, Tsai SY, Li P, Ishii M, Maxson RE, Sucev HM, Tsukamoto H. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. *Hepatology* 2009; 49: 998-1011 [PMID: 19083596 DOI: 10.1002/hep.22721]

Asahina K, Zhou B, Pu WT, Tsukamoto H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. *Hepatology* 2011; 53: 983-995 [PMID: 21294146 DOI: 10.1002/hep.24119]

Marrache F, Pendyala S, Bhagat G, Betz KS, Song Z, Wang TC. Role of bone marrow-derived cells in experimental chronic pancreatitis. *Gut* 2008; 57: 1113-120 [PMID: 18367560 DOI: 10.1136/gut.2007.143271]

Scarlett CJ, Colvin EK, Pinese M, Chang DK, Morey AL, Lee SH, Rhee M, Ko SH, Cho JH, Choi YH, Song SY, Robl WJG. Senescence of a pancreatic stellate cell population with properties of progenitor cells: new role for stellate cells in the pancreas. *Biochem J* 2009; 421: 181-191 [PMID: 19379129]

Mato E, Lucas M, Petriz J, Gomis R, Novials A. Identification of a pancreatic stellate cell population with properties of progenitor cells: new role for stellate cells in the pancreas. *Biochem J* 2009; 421: e1-e4 [PMID: 19552623 DOI: 10.1042/BJ20090779]

Kordes C, Sawitzki I, Götzs S, Häussinger D. Stellate cells from rat pancreas are stem cells and can contribute to liver regeneration. *PLoS One* 2012; 7: e51878 [PMID: 23272184 DOI: 10.1371/journal.pone.0051878]

Takahara J, Shimizu K, Shiratori K. Engulfment of necrotic acinar cells by pancreatic stellate cells inhibits pancreatic fibrogenesis. *Pancreas* 2008; 37: 69-74 [PMID: 18580447 DOI: 10.1097/MPA.0b013e318160f5cb]

Nakamura T, Ito T, Oono T, Igarashi H, Fujimori N, Uchida M, Niina Y, Yasuda M, Suzuki K, Takayanagi R. Bacterial DNA promotes proliferation of rat pancreatic stellate cells through toll-like receptor 9: potential mechanisms for bacterial/induced fibrosis. *Pancreas* 2011; 40: 823-831 [PMID: 21747311 DOI: 10.1097/MPA.0b013e318224a501]

Apte M, Pirola RC, Wilson JS. Pancreatic stellate cell: physiologic role, role in fibrosis and cancer. *Curr Opin Gastroenterol* 2015; 31: 416-423 [PMID: 26125317 DOI: 10.1097/MOG.0000000000000196]

Hong OK, Lee SH, Rhee M, Ko SH, Cho JH, Choi YH, Song KH, Son HY, Yoon KH. Hyperglycemia and hyperinsulinemia have additive effects on activation and proliferation of pancreatic stellate cells: possible explanation of islet-specific fibrosis in type 2 diabetes mellitus. *J Cell Biochem* 2007; 101: 665-675 [PMID: 17212361 DOI: 10.1002/jcb.21222]

Kikutaka K, Masamune A, Hamada S, Takikawa T, Nakano E, Shimosogawa T. Pancreatic stellate cells reduce insulin expression and induce apoptosis in pancreatic β-cells. *Biochem Biophys Res Commun* 2013; 433: 292-297 [PMID: 23500461 DOI: 10.1016/j.bbrc.2013.02.095]

Zha M, Xu W, Zhao Q, Li F, Chen B, Sun Z. High glucose aggravates the detrimental effects of pancreatic stellate cells on Beta-cell function. *Int J Endocrinol* 2014; 2014: 165612 [PMID: 25097548 DOI: 10.1155/2014/165612]

Li FF, Chen BJ, Li W, Li L, Zha M, Zhou S, Bachem MG, Sun ZL. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell. *J Diabetes Res* 2016; 2016: 6924593 [PMID: 26697502 DOI: 10.1155/2016/6924593]

Zang G, Sandberg M, Carlson PO, Welsh N, Jansson L, Barbera A. Activated pancreatic stellate cells can impair pancreatic islet function in mice. * Ups J Med Sci* 2015; 120: 169-180 [PMID: 25854824 DOI: 10.1007/s11033-014-0271-2]

WJG | www.wjgnet.com

January 21, 2017 | Volume 23 | Issue 3 | 398
747 Patel M, Fine DR. Fibrogenesis in the pancreas after acinar cell injury. Scand J Surg 2005; 94: 108-111 [PMID: 1611091 DOI: 10.1177/145754909509402057]

748 Li N, Li Y, Li Z, Huang C, Yang Y, Lang M, Cao J, Jiang W, Xu Y, Dong J, Ren H. Hypoxia Inducible Factor 1 (HIF-1) Recruits Macrophage to Activate Pancreatic Stellate Cells in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2016; 17: E799 [PMID: 27271610 DOI: 10.3390/ijms17060799]

749 Vonlaufen A, Joshi S, Qu C, Phillips PA, Xu Z, Parker NR, Toi CS, Pirolo RC, Wilson JS, Goldstein D, Apte MV. Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res 2008; 68: 2085-2093 [PMID: 18381413 DOI: 10.1158/0008-5472.CAN-07-2477]

750 Bachem MG, Schümann M, Ramadani M, Siech M, Beger H, Buck A, Zhou S, Schmid-Kotsas A, Adler G. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology 2005; 128: 907-921 [PMID: 15825074 DOI: 10.1016/j.gastro.2004.12.036]

751 Apte MV, Norton TD, Wilson JS. Ethanol induced acinar cell injury. Alcohol Alcohol Suppl 1994; 2: 365-368 [PMID: 8974537]

752 Haber PS, Apte MV, Applegate TL, Norton ID, Korsten MA, Pirolo RC, Wilson JS. Metabolism of ethanol by rat pancreatic acinar cells. J Lab Clin Med 1998; 132: 294-302 [PMID: 9794700 DOI: 10.1016/S0022-2548(98)00422-7]

753 Wilson JS, Apte MV. Role of alcohol metabolism in alcoholic pancreatitis. Pancreas 2003; 27: 311-315 [PMID: 14576493 DOI: 10.1097/00006667-200511000-00007]

754 Masamune A, Kikuta K, Satoh M, Satoh A, Shimosegawa T. Alcohol induces activator protein-1 and mitogen-activated protein kinases in rat pancreatic stellate cells. J Pharmacol Exp Ther 2002; 302: 36-42 [PMID: 12065697 DOI: 10.1124/jpet.302.1.36]

755 Apte MV, Pirolo RC, Wilson JS. Battle-scared pancreas: role of alcohol and pancreatic stellate cells in pancreatic fibrosis. J Gastroenterol Hepatol 2006; 21 Suppl 3: S97-S101 [PMID: 16958649 DOI: 10.1111/j.1440-1746.2006.04387.x]

756 Casalí A, Galli A, Pignaclus F, Frulloni L, Grappone C, Milani S, Pedersoli P, Cavallini G, Surrenti C. Collagen type I synthesized by pancreatic stellate cells: partners in crime with pancreatic cancer cells. J Pathol 2000; 196: 81-89 [PMID: 10951404 DOI: 10.1002/1096-9896(20000999)

757 Hu R, Wang YL, Ertldekker J, Mugea L, Apte MV, Pandol SJ. Ethanol augments PDGF-induced NADPH oxidase activity and shedding of matrix metalloproteinase-1 upregulation. Lab Invest 2013; 93: 720-732 [PMID: 23608755 DOI: 10.1038/labinvest.2013.59]

758 Andoh A, Takaya H, Saotome T, Shimada M, Hata K, Araki Y, Nakamura F, Shintani F, Fujiyama Y, Bamba T. Cyokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periarcic myofibroblasts. Gastroenterology 2000; 119: 211-219 [PMID: 10889171 DOI: 10.1053/gast.2000.5838]

759 Ohnishi N, Miyata T, Ohnishi H, Yasuda H, Tamada K, Ueda N, Mashima H, Sugano K. Activin A is a positive autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis. Gut 2003; 52: 1487-1493 [PMID: 12970143 DOI: 10.1136/gut.52.10.1487]

760 Hama K, Ohnishi H, Aoki H, Kita Y, Yamamoto H, Osawa H, Sato K, Tamada K, Mashima H, Yasuda H, Sugano K. Angiotensin II promotes the proliferation of activated pancreatic stellate cells by Smad7 induction through a protein kinase C pathway. Biochem Biophys Res Commun 2006; 340: 742-750 [PMID: 16380801 DOI: 10.1016/j.bbrc.2005.12.069]

761 Jaster R, Sparmann G, Emmrich J, Lieb S. Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut 2002; 51: 579-584 [PMID: 12235084 DOI: 10.1136/gut.51.4.579]

762 Masamune A, Kikuta K, Satoh M, Kume K, Shimosegawa T. Differential roles of signaling pathways for proliferation and migration of rat pancreatic stellate cells. Tohoku J Exp Med 2003; 199: 69-84 [PMID: 12705352 DOI: 10.1620/tjem.199.69]

763 Klouowski-Stumpe H, Reimruch F, Fischer R, Warakulis U, Lüthen R, Häussinger D. Production and effects of endothelin-1 in rat pancreatic stellate cells. Pancreas 2003; 27: 67-74 [PMID: 12826908 DOI: 10.1097/00006667-200307000-00010]

764 Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T. Endothelin-1 stimulates contraction and migration of rat pancreatic stellate cells. World J Gastroenterol 2005; 11: 6144-6151 [PMID: 16275641 DOI: 10.3748/wjg.v11.i39.6144]

765 Uchida M, Ito T, Nakamura T, Igarashi H, Oono T, Fujinomi T, Kawabe K, Suzuki K, Jensen RT, Takayangi R. ERK pathway and sheddases play an essential role in ethanol-induced CX3CL1 release in pancreatic stellate cells. Lab Invest 2013; 93: 41-53 [PMID: 23147224 DOI: 10.1038/labinvest.2012.156]

766 Uchida M, Ito T, Nakamura T, Hijioka M, Igarashi H, Oono T, Kato M, Nakamura K, Suzuki K, Takayangi R, Jensen RT.
Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist. Pancreas 2014; 43: 708-719 [PMID: 24681877 DOI: 10.1097/MPA.0000000000000109]

Liu NS, Morinaga H, Kim J, Lagakos W, Taylor S, Keshwani M, Perkins G, Dong H, Kayali AG, Sweet IR, Oflejsky J. The fraktalkine/CX3CR1 system regulates β cell function and insulin secretion. Cell 2013; 153: 413-425 [PMID: 23582329 DOI: 10.1016/j.cell.2013.03.001]

Bhatia V, Rastellini C, Han S, Aronson JF, Greeley GH, Falzon M. Acinar cell-specific knockout of the PTPH1 gene decreases the proinflammatory and profibrotic responses in pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307: G533-G549 [PMID: 25035110]

Mews P, Phillips P, Fahny R, Korsten M, Pirola R, Wilson J, Apte M. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut 2002; 50: 535-541 [PMID: 11889076 DOI: 10.1136/gut.50.4.535]

Xue J, Sharma V, Hsieh MH, Chawla A, Murali R, Pandol SJ, Shimosegawa T. A c-Jun NH2-terminal kinase inhibitor SP600125 inhibits interleukin-1β-mediated NF-κB translocation and NF-κB activity in pancreatic stellate cells. J Cell Physiol 2005; 203: 715-726 [PMID: 15983918 DOI: 10.1002/jcp.20224]

Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endoc Rev 2001; 22: 153-183 [PMID: 11298422 DOI: 10.1210/edrv.22.2.0428]

Masamune A, Satoh M, Kikuta K, Suzuki N, Shimosegawa T. Activation of JAK-STAT pathway is required for platelet-derived growth factor-induced proliferation of pancreatic stellate cells. World J Gastroenterol 2005; 11: 3385-3391 [PMID: 15948243 DOI: 10.3748/wjg.v11.i22.3385]

Nishida A, Andoh A, Shioya M, Kim-Mitsuyama S, Takayanagi A, Fujiyama Y. Phosphatidylinositol 3-kinase/Akt signaling mediates interleukin-2alpha induction in human pancreatic periacinar myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2008; 294: G831-G838 [PMID: 18239058 DOI: 10.1152/ajpgi.00353.2007]

Masamune A, Watanabe T, Kikuta K, Satoh K, Kanno A, Shimosegawa T. Nuclear expression of interleukin-33 in pancreatic acinar cells and periacinar myofibroblasts. Gastroenterology 2008; 135: 2942-2954 [PMID: 18463247 DOI: 10.1053/j.gastro.2008.01.069]

Kikutani K, Masamune A, Satoh M, Suzuki N, Shimosegawa T. Nuclear expression of interleukin-33 in pancreatic acinar cells. J Biol Chem 2009; 284: 28643-28650 [PMID: 19571610 DOI: 10.1074/jbc.M109.003655.2]

Han L, Ma J, Duan W, Zhang L, Yu S, Xue J, Song J, Zhang D, Wu E, Xie K. Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res 2014; 20: 4326-4338 [PMID: 24947933 DOI: 10.1158/1078-0432.CCR-13-3426]

Mukherjee N, Kanagasabai T, Koppula T, Yagyu A, Shimosegawa T. Activation of the JAK/STAT pathway by phosphatidylinositol 3-kinase/Akt signaling plays a role in pancreatic stellate cell function. J Biol Chem 2004; 279: 37999-38006 [PMID: 15372442 DOI: 10.1074/jbc.M404154200]

Lee H, Lim C, Lee J, Kim N, Bang S, Lee H, Min B, Park G, Noda M, Sterlter-Stevenson WG, Oh J. TGF-beta signaling preserves RECK expression in activated pancreatic stellate cells. J Cell Biochem 2008; 104: 1065-1074 [PMID: 18300271 DOI: 10.1002/jcb.21692]

Hu Y, Wan R, Yu G, Shen J, Ni J, Yin G, Xing M, Chen C, Fan Y, Xiao W, Xu G, Wang X, Hu G. Imbalance of Wnt/Dkk negative feedback promotes persistent activation of pancreatic stellate cells in chronic pancreatitis. PLoS One 2014; 9: e95145 [PMID: 24747916 DOI: 10.1371/journal.pone.0095145]

Xu Y, Li H, Huang C, Zhao T, Zhang H, Zheng C, Ren H, Hao J. Wnt2 protein plays a role in the progression of pancreatic cancer promoted by pancreatic stellate cells. Med Oncol 2015; 32: 97 [PMID: 25731618 DOI: 10.1007/s12032-015-0513-2]

Shinozaki S, Ohnishi H, Hama K, Kita H, Yamamoto H, Osawa H, Sato K, Tamada K, Mushima H, Sugano K. Indian hedgehog promotes the migration of rat activated pancreatic stellate cells by increasing membrane type-1 matrix metalloproteinase on the plasma membrane. J Cell Physiol 2008; 216: 38-46 [PMID: 18286538 DOI: 10.1002/jcp.21372]

Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffrey T, Ouellette MM, Hollingsworth MA. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 2008; 14: 5995-6004 [PMID: 18829478 DOI: 10.1158/1078-0432.CCR-08-0291]

Li X, Wang M, Ma Q, Xu Q , Liu H, Duan W, Lei J, Ma J, Wang X, Lv S, Han L, Li W, Guo J, Guo K, Zhang D, Wu E, Xie K. Sonic hedgehog paracrine signaling activates stromal cells to promote perineural invasion in pancreatic cancer. Clin Cancer Res 2014; 20: 4326-4338 [PMID: 24947933 DOI: 10.1158/1078-0432.CCR-13-3426]

Han L, Ma J, Duan W, Zhang L, Yu S, Xu Q, Lei J, Li J, Xing F, Wang Z, Wu Z, Huang JH, Wu E, Ma Q, Ma Z. Pancreatic stellate cells contribute pancreatic cancer pain via activation of hH1 signaling pathway. Oncotarget 2016; 7: 18164-18175 [PMID: 26934446 DOI: 10.18632/oncotarget.7776]

Masamune A, Nakano E, Hamada S, Takakawa T, Yoshida N, Shimosegawa T. Alteration of the microRNA expression profile during the activation of pancreatic stellate cells. Scand J Gastroenterol 2014; 49: 323-331 [PMID: 24404812 DOI: 10.3109/00365521.2013.876447]

Shen J, Wan R, Hu G, Yang L, Xiong J, Wang F, Shen J, He S, Guo X, Ni J, Guo C, Wang X, miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bel-2 in vitro. Pancreatology 2012; 12: 91-99 [PMID: 22487517 DOI: 10.1016/j.pan.2012.02.008]

Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004; 6: 203-208 [PMID: 15380510 DOI: 10.1016/j.ccr.2004.09.003]

Masamune A, Sakai Y, Kikutani K, Satoh M, Apte M, Shimosegawa T. Activated rat pancreatic stellate cells express intercellular
adhesion molecule-1 (ICAM-1) in vitro. *Pancreas* 2002; 25: 78-85 [PMID: 12131776 DOI: 10.1097/00006676-200207000-00018]

Shimada M, Andoh A, Hata K, Tasaki K, Araki Y, Fujiyama Y, Bamba T. IL-6 secretion by human pancreatic periacinar myofibroblasts in response to inflammatory mediators. *J Immunol* 2002; 168: 861-868 [PMID: 11777983 DOI: 10.4049/jimmunol.168.2.861]

Masamune A, Kikuta K, Watanabe T, Satoh K, Satoh A, Shimosgage T. Pancreatic stellate cells express Toll-like receptors. *J Gastroenterol* 2008; 43: 352-362 [PMID: 18592153 DOI: 10.1007/s00535-008-1882-0]

Masamune A, Satoh M, Hirabayashi J, Kasai K, Satoh K, Shimosgage T. Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells. *Am J Physiol Gastrointest Liver Physiol* 2006; 290: G729-G736 [PMID: 16373424 DOI: 10.1152/ajpgi.00511.2005]

Paulo JA, Urrutia R, Banks PA, Conwell DL, Steen H. Proteomic analysis of an immortalized mouse pancreatic stellate cell line identifies differentially-expressed proteins in activated vs nonproliferating cell states. *J Proteome Res* 2011; 10: 4835-4844 [DOI: 10.1021/pr2006318]

Paulo JA, Urrutia R, Banks PA, Conwell DL, Steen H. Proteomic analysis of a rat pancreatic stellate cell line using liquid chromatography tandem mass spectrometry (LC-MS/MS). *J Proteomics* 2011; 75: 708-717 [PMID: 21968429 DOI: 10.1016/j.jprot.2011.09.009]

Pan S, Chen R, Stevens T, Bronner MP, May D, Tamura Y, McIntosh MW, Brentnall TA. Proteomics portrait of archival lesions of chronic pancreatitis. *PLoS One* 2011; 6: e27574 [DOI: 10.1371/journal.pone.0027574]

Apte MV, Yang L, Phillips PA, Xu Z, Kaplan W, Cowley M, Pirola RC, Wilson JS. Extracellular matrix composition significantly influences pancreatic stellate cell gene expression pattern: role of transgelin in PSC function. *Am J Physiol Gastrointest Liver Physiol* 2013; 305: G408-G417 [PMID: 23868411 DOI: 10.1152/ajpgi.00160.2013]

Paulo JA, Kadiyala V, Banks PA, Conwell DL, Steen H. Mass spectrometry-based quantitative proteomic profiling of human pancreatic and hepatic stellate cell lines. *Genomics Proteomics Bioinformatics* 2013; 11: 105-113 [PMID: 23529454 DOI: 10.1016/j.ypgp.2013.01.009]

Paulo JA, Urrutia R, Kadiyala V, Banks P, Conwell DL, Steen H. Cross-species analysis of nicotine-induced proteomic alterations in pancreatic cells. *Proteomics* 2013; 13: 1499-1512 [PMID: 23458891 DOI: 10.1002/pmic.201200492]

Paulo JA, Gaun A, Gygi SP. Global Analysis of Protein Expression and Phosphorylation Levels in Nicotine-Treated Pancreatic Stellate Cells. *J Proteome Res* 2015; 14: 4244-4256 [PMID: 26265967 DOI: 10.1021/acs.jproteome.5b00398]

Wehr AY, Furth EE, Sangar V, Blair IA, Yu KH. Analysis of the human pancreatic stellate cell secretome. *Proteomics* 2011; 40: 557-566 [PMID: 21499210 DOI: 10.1007/MPA.0b0133e18214efaf]

Marzooq AJ, Giese N, Hoheisel JD, Alhambani MS. Proteome variations in pancreatic stellate cells upon stimulation with proinflammatory factors. *J Biol Chem* 2013; 288: 32517-32527 [PMID: 24089530 DOI: 10.1074/jbc.M113.488387]

Apte MV, Xu Z, Pothula S, Goldstein D, Pirola RC, Wilson JS. Pancreatic cancer: The microenvironment needs attention too! *Pancreatology* 2015; 15: S32-S38 [PMID: 25845856 DOI: 10.1016/j.pan.2015.02.013]

Apte MV, Wilson JS. Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. *J Gastroenterol Hepatol* 2012; 27 Suppl 2: 69-74 [PMID: 22320920 DOI: 10.1111/j.1440-1746.2011.07000.x]

Gore J, Korc M. Pancreatic cancer stroma: friend or foe? *Cancer Cell* 2014; 25: 711-712 [PMID: 24937454 DOI: 10.1016/j.ccr.2014.05.026]

Vonlaufen A, Phillips PA, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Pancreatic stellate cells and pancreatic cancer cells: an unholy alliance. *Cancer Res* 2008; 68: 7707-7710 [PMID: 18829522 DOI: 10.1158/0006-6577.CAN-08-1132]

Chang DZ, Ma Y, Ji B, Wang H, Deng D, Liu Y, Abbuzzese JL, Liu YJ, Logsdon CD, Hwu P. Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. *Clin Cancer Res* 2011; 17: 7015-7023 [PMID: 21976550 DOI: 10.1158/1078-0432.CCR-11-0607]

Chang DZ, Macamune A, Watanabe T, Ariga H, Itoh H, Hamada S, Satoh K, Fujigaya S, Ueda Y, Shimosegawa T. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. *Biochem Biophys Res Commun* 2010; 380: 380-384 [PMID: 20811133 DOI: 10.1016/j.bbrc.2010.11.040]

Fujisawa K, Ohuchida K, Ohtsuka T, Mizumoto K, Shindo K, Ikenaga N, Cui L, Takahata S, Aishima S, Tanaka M. Migratory activity of CD105+ pancreatic cancer cells is strongly enhanced by pancreatic stellate cells. *Pancreas* 2013; 42: 1283-1290 [PMID: 24308064 DOI: 10.1097/MPA.0b013e318293e7bd]
Pancreatic stellate cells promote pancreatic cancer cell invasion through release of TGF-β. J Surg Res 2009; 156: 155-160 [PMID: 19592030 DOI: 10.1016/j.sjs.2009.03.040]

Zhou Y, Zhou Q, Chen R. Pancreatic stellate cells promote the perineural invasion in pancreatic cancer. Med Hypotheses 2012; 78: 811-813 [PMID: 22513235 DOI: 10.1016/j.mehy.2012.03.017]

Buchholz M, Biebl A, Neesse A, Wagner M, Iwamura T, Leder G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic cancer. Gastroenterology 2007; 132: 1447-1464 [PMID: 17468861 DOI: 10.1053/j.gastro.2007.01.031]

Takikawa T, Masamune A, Hamada S, Nakano E, Yoshida N, Shimosegawa T. miR-210 regulates the interaction between pancreatic cancer cells and stellate cells. Biochem Biophys Res Commun 2013; 437: 433-439 [PMID: 23831622 DOI: 10.1016/j.bbrc.2013.06.097]

Kadera BE, Li L, Toste PA, Wu N, Adams C, Dawson DW, Donahue TR. MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS One 2013; 8: e71978 [PMID: 23991015 DOI: 10.1371/journal.pone.0071978]

Kaniuti PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic cancer. Oncotarget 2016; 7: 16396-16408 [PMID: 26918939 DOI: 10.18632/oncotarget.7651]

Kwon JB, Naberding SC, Vega Z, Sahu SS, Alluri RK, Abdul-Sater Z, Yu Z, Gore J, Naleta G, Saxena R, Koc M, Kato J. Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep 2015; 5: 11450 [PMID: 26095125 DOI: 10.1038/srep11450]

Ene-Ohong A, Clear AJ, Watt J, Wang J, Fatah R, Riches JC, Marshall JF, Chin-Along J, Chelala C, Gribben JG, Ramsay AG, Kocher HM. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtapuntumolar compartment of pancreatic ductal adenocarcinoma. Gastroenterology 2013; 145: 1121-1132 [PMID: 23891972 DOI: 10.1053/j.gastro.2013.07.025]

Tang D, Gao J, Wang S, Yuan Z, Ye N, Chong Y, Xu C, Jiang X, Li B, Yin W, Mao Y, Wang D, Jiang K. Apoptosis and anergy of T cell induced by pancreatic stellate cell-derived galectin-1 in pancreatic cancer. Tumour Biol 2015; 36: 5617-5626 [PMID: 25725585 DOI: 10.1007/s13277-015-3233-5]

Shi C, Washington MK, Chaturvedi R, Drosos Y, Revetta FL, Weaver CJ, Buzhardt E, Ull F, Blackwell TS, Sosa-Pineda B, Whitehead RH, Beauchamp RD, Wilson KT, Means AL. Fibrogenesis in pancreatic cancer is a dynamic process regulated by macrophage-stellate cell interaction. Lab Invest 2014; 94: 120-128
Inhibitory effects of interferons on pancreatic stellate cell activation.

Baumert JT
[PMID: 16436093 DOI: 10.1111/j.1365-2362.2006.01599.x]

(-)-epigallocatechin-3-gallate inhibits ethanol-induced activation of pancreatic stellate cells.

Nomiyama Y, Nakamura H, Otsuki M. Green tea polyphenol
teatment in an animal model (WBN/Kob rats): significant reduction in fibrosis via inhibition of monocytes and pancreatic stellate cells.

Gibo J
[PMID: 1759-1767 DOI: 10.1136/gut.2004.049403]

Rho kinase inhibitors block activation of pancreatic stellate cells.

Br J Pharmacol 2003; 140: 1292-1302 [PMID: 14581180 DOI: 10.1038/sj.bjp.0705551]

Inhibitory effects of (-)-epigallocatechin-3-gallate on the activation of rat pancreatic stellate cells are mediated by STAT1 and involve down-regulation of CTGF expression.

Cell Signal 2007; 19: 782-790 [PMID: 17116388 DOI: 10.1016/j.cellsig.2006.10.002]

Ohashi S, Nishio A, Nakamura H, Asada M, Tamaki H, Kawasaki K, Fukui T, Yodoi J, Chiba T. Overexpression of redox-active protein thiodioxidin-1 prevents development of chronic pancreatitis in mice.

Antioxid Redox Signal 2006; 8: 1835-1845 [PMID: 16967036 DOI: 10.1089/ars.2006.1835]

McCarroll JA, Phillips PA, Santucci N, Pirola RC, Wilson JS, Apte MV. Vitamin A inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis.

Gut 2006; 55: 79-89 [PMID: 16043492 DOI: 10.1136/gut.2005.064543]

Tasci I, Deveci S, Işık AF, Comert B, Akay C, Mas N, Inal V, Yamanel I, Mas MR. Allopurinol in rat chronic pancreatitis: effects on pancreatic stellate cell activation.

Pancreas 2007; 35: 366-371 [PMID: 18090245 DOI: 10.1097/01.pmp.0000283910.96646.83]

Lu XL, Song YH, Fu YB, Si JM, Qian KD. Ascorbic acid alleviates pancreatic damage induced by dibutyltin dichloride (DBTC) in rats.

Yonsei Med J 2007; 48: 1028-1034 [PMID: 18159597 DOI:10.3349/ymj.2007.48.6.1028]

Shirahige A, Mizushima T, Matsushita K, Sawa K, Ochi K, Ichimura M, Tanioka H, Shinji T, Koide N, Tanimoto M. Oral administration of taurine improves experimental pancreatic fibrosis.

J Gastroenterol Hepatol 2006; 23: 321-327 [PMID: 17764527 DOI: 10.1111/j.1440-1746.2007.05127.x]

Rickmann M, Vaqueiro EC, Malagalda JR, Molero X. Tocotrienols induce apoptosis and autophagy in rat pancreatic stellate cells through the mitochondrial death pathway.

Gastroenterology 2007; 132: 2518-2532 [PMID: 17570223]

Michalski CW, Maier M, Erkan M, Sauliniute D, Bergmann F, Pacher P, Batkai S, Giese NA, Giese T, Friers H, Kleeff J. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells. PLoS One 2008; 3: e701 [PMID: 18310776 DOI: 10.1371/journal.pone.0001701]

Weylandt KH, Noladny A, Kahlke L, Köhne T, Schmöcker RA. Protection against chronic pancreatitis and pancreatic fibrosis in mice overexpressing pancreatic secretory trypsin inhibitor.

Gastroenterology 2008; 135: 1861-1869 [PMID: 18612819 DOI: 10.1053/j.gastro.2008.03.015]

Fitzner B, Brock P, Holzhütter SA, Nizze H, Sparmann G, Emmrich J, Liebe S, Jaster R. Synergistic growth inhibitory effects of the dual endothelin-1 receptor antagonist bosentan on pancreatic stellate cell proliferation by activating p38 mitogen-activated protein kinase.

J Surg Res 2010; 168: 63-69 [PMID: 19298621 DOI: 10.1016/j.jss.2009.08.020]

Fitzner B, Brock P, Nechutova H, Glass A, Karopka T, Koczan D, Thiesen HH, Sparmann G, Emmrich J, Liebe S, Jaster R. Inhibitory effects of interferon-gamma on activation of rat pancreatic stellate cells are mediated by STAT1 and involve down-regulation of CTGF expression.

Cell Signal 2007; 19: 782-790 [PMID: 17116388 DOI: 10.1016/j.cellsig.2006.10.002]
Bynigeri RR et al. Pancreatic stellate cells in health and disease

10.1152/ajpgi.00485.2010

Long D, Lu J, Luo L, Guo Y, Li C, Wu W, Shan J, Li J, Li S, Li Y, Lin T, Feng L. Effects of octreotide on activated pancreatic stellate cell-induced pancreas graft fibrosis in rats. *J Surg Res* 2012; 176: 248-259 [PMID: 2186420; DOI: 10.1016/j.jss.2011.06.009]

Li B, Bimmerl D, Graf R, Zhou S, Sun Z, Chen J, Siech M, Bachem MG. P53 reg inhibits cultured pancreatic stellate cell and regulates MMP/TIMP ratio. *Eur J Clin Invest* 2011; 41: 151-158 [PMID: 20860757 DOI: 11.1111-j.1365-2326.2010.2390.x]

Tang Y, Liao Y, Kagawa-Sakita N, Raut V, Fakhreijehani E, Qian N, Toi M. Sinasin, a traditional Chinese medicine, attenuates experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid in rats. *J Hepatobiliary Pancreat Sci* 2011; 18: 551-558 [PMID: 21234610 DOI: 10.1007/s00534-010-0368-z]

Wei L, Yamamoto M, Harada M, Otsuki M. Treatment with pravastatin attenuates progression of chronic pancreatitis in rat. *Lab Invest* 2011; 91: 872-884 [PMID: 21383674 DOI: 10.1038/labinvest.2011.41]

Li XC, Lu XL, Chen HH. α-Tocopherol treatment ameliorates chronic pancreatitis in an experimental rat model induced by trinitrobenzene sulfonic acid. *Pancreatology* 2011; 11: S-5-S11 [PMID: 23131207 DOI: 11.1056/003902952]

Monteiro TH, Silva CS, Cordeiro Simões Ambrosio LM, Zucoloto S, Vannucchi H. Vitamin E alters inflammatory gene expression in alcoholic chronic pancreatitis. *J Nutrigenet Nutrigenomics* 2012; 5: 94-105 [PMID: 22890014 DOI: 11.1590/S03036076]

Matsushita K, Mizushima T, Shirahige A, Tanioka H, Sawa K. Protective effects of edaravone on experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid. *Acta Med Okayama* 2012; 66: 329-334 [PMID: 22918265]

Yang L, Shen J, He S, Hu G, Shen J, Wang F, Xu L, Dai W, Xiong J, Ni J, Guo C, Wang R, Wang X. L-cysteine administration attenuates fibrosis induced by TNBS in rats by inhibiting the activation of pancreatic stellate cell. *PLoS One* 2012; 7: e31807 [PMID: 22396533 DOI: 10.1371/journal.pone.0031807]

Bai H, Cao Y, Yang W, Duan C, Aronson JF, Rastellini C, Chao C, Gao J, Chen C, Lu H, Hu G, Shen J, Zhu S, Wu M, Wang X, Huang P, Bawendi MG, Boucher Y, Jain RK. Angiotensin II antagonists block Hedgehog signaling to slow tumor progression. *Oncol Rep* 2016; 36: 1486-1497, 1497.e1-14 [PMID: 21745888 DOI: 10.1053/j.astro.2011.06.047]

Diep CH, Munoz RM, Choudhary A, Von Hoff DD, Han H. Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type pancreatic cancer cells. *Clin Cancer Res* 2011; 17: 2744-2756 [PMID: 21385921 DOI: 10.1186/1473-7442-11-2024]

Chauhan VP, Martin JD, Liu H, Lalorac DA, Jain SR, Kozin SV, Stylianopoulos T, Mousa AS, Popović Z, Huang P, Bawendi MG, Boucher Y, Jain RK. Angiotensin II antagonists enhance drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. *Nat Commun* 2013; 4: 2516 [PMID: 24084631 DOI: 10.1038/ncomms3516]

Sun XD, Liu XE, Huang DS. Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. *Oncof Rep* 2013; 29: 2401-2407 [PMID: 23563640 DOI: 10.3892/or.2013.2385]

Edderkaoui M, Luea A, Hui H, Eibl G, Lu QY, Moro A, Lu X, Li G, Go VL, Pandol SJ. Ellagic acid and embelin affect key cellular components of pancreatic adenocarcinoma, cancer, and stellate cells. *Nutr Cancer* 2013; 65: 1232-1244 [PMID: 24127740 DOI: 10.1080/01635381.2013.832779]

Macha MA, Rachagani S, Gupta S, Pai P, Ponnumasy MP, Batra SK, Jain M. Guggulsterone decreases proliferation and metastatic trans-resveratrol on pancreatic stellate cells. *Biomed Pharmacother* 2015; 71: 91-97 [PMID: 25960221 DOI: 10.1016/j.biopharm.2015.02.013]
behavior of pancreatic cancer cells by modulating JAK/STAT and Src/FAK signaling. *Cancer Lett* 2013; 341: 166-177 [PMID: 23920124 DOI: 10.1016/j.canlet.2013.07.037]

226 **Kozono S**, Ohuchida K, Eguchi D, Ikenaga N, Fujiwara K, Cui L, Mizumoto K, Tanaka M. Pifendione inhibits pancreatic cancer desmosplasia by regulating stellate cells. *Cancer Res* 2013; 73: 2345-2356 [PMID: 23348422 DOI: 10.1158/0008-5472.CAN-12-3180]

227 **Guan J**, Zhang H, Wen Z, Gu Y, Cheng Y, Sun Y, Zhang T, Jia C, Lu Z, Chen J. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. *Cancer Lett* 2014; 345: 132-139 [PMID: 24334138 DOI: 10.1016/j.canlet.2013.12.006]

228 **Gonzalez-Villalasa V**, Rodriguez-Aguayo C, Arumugam T, Cruz-Monserrate Z, Fuentes-Matti E, Deng D, Hwang RF, Wang H, Ivan C, Garza RJ, Cohen E, Gao H, Armaiz-Pena GN, Del C Monroig-Bosque P, Philip B, Rashed MH, Aslan B, Erdogan MA, Gutierrez-Puente Y, Ozoprat B, Reuben JM, Sood AK, Logsdon C, Lopez-Berestein G. Bisphosphonates inhibit stellate cell activity and enhance antitumor effects of nanoparticle albumin-bound paclitaxel in pancreatic ductal adenocarcinoma. *Mol Cancer Ther* 2014; 13: 2583-2594 [PMID: 25193509 DOI: 10.1158/1535-7163.MCT-13-2086]

229 **Pomianowska E**, Sandnes D, Gryzb K, Schijlberg AR, Aasrum M, Tvetearaa IH, Tjomsland V, Christoffersen T, Gladhaug JP. Inhibitory effects of prostaglandin E2 on collagen synthesis and cell proliferation in human stellate cells from pancreatic head adenocarcinoma. *BMJ Cancer* 2014; 4: 413 [PMID: 24912820 DOI: 10.1186/1471-2407-14-413]

230 **Gong J**, Xie J, Bedolla R, Rivas P, Chakravarthy D, Freeman JW, Reddick R, Kopetz S, Peterson A, Wang H, Fischer SM, Kumar AP. Combined targeting of STAT3/NF-κB/COX-2/EP4 for effective management of pancreatic cancer. *Clin Cancer Res* 2014; 20: 1259-1273 [PMID: 24542096 DOI: 10.1158/1078-0432.CCR-13-1644]

231 **Yan HHI**, Jung KH, Son MK, Fang Z, Kim SJ, Ryu YL, Kim J, Kim MH, Hong SS. Crizotinib exhibits antitumor activity by targeting ALK signaling not c-MET in pancreatic cancer. *Oncotarget* 2014; 5: 9150-9168 [PMID: 25193856 DOI: 10.18632/oncotarget.2363]

232 **Zhang H**, Zhou WC, Li X, Meng WB, Zhang J, Zhu XL, Zhu KX, Bai ZT, Yan J, Liu T, Xu XC, Li YM. 5-Azacitidine suppresses the proliferation of pancreatic cancer cells by inhibiting the Wnt/β-catenin signaling pathway. *Genet Mol Res* 2014; 13: 5064-5072 [PMID: 25061731 DOI: 10.4234/2014.23]

233 **Wang S**, Chen X, Tang M. MicroRNA-216a inhibits pancreatic cancer by directly targeting Janus kinase 2. *Oncol Rep* 2014; 32: 2824-2830 [PMID: 25220761 DOI: 10.3892/or.2014.3478]

234 **Kumar V**, Mondal G, Slavik P, Rachagani S, Batra SK, Mahato RI. Codelivery of small molecule hedgehog inhibitor and miRNA for treating pancreatic cancer. *Mol Pharm* 2015; 12: 1289-1298 [PMID: 25679326 DOI: 10.1021/mp500847y]

235 **Petrova E**, Matevosian A, Resh MD. Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma. *Oncogene* 2015; 34: 263-268 [PMID: 24469057 DOI: 10.1038/onc.2013.575]

236 **Massó-Vallés D**, Jauss T, Serrano E, Sodir NM, Pedersen K, Affara NI, Whitfield JR, Beaulieu ME, Evan GI, Elias L, Arribas J, Soucek L. Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. *Cancer Res* 2015; 75: 1675-1681 [PMID: 25878147 DOI: 10.1158/0008-5472.CAN-14-2852]

237 **Zhou GX**, Ding XL, Wu SB, Zhang HF, Cao W, Qu LS, Zhang H. Inhibition of 5-lipoxygenase triggers apoptosis in pancreatic cancer cells. *Oncol Rep* 2015; 33: 661-668 [PMID: 25483364 DOI: 10.3892/or.2014.3650]

238 **Lui KY**, Kovacevic Z, V Menezes S, Kalinowski DS, Merlot AM, Sahni S, Richardson DR. Novel thiosemicarbazones regulate the signal transducer and activator of transcription 3 (STAT3) pathway: inhibition of constitutive and interleukin-6-induced activation by iron depletion. *Mol Pharm* 2015; 87: 543-560 [PMID: 25561562 DOI: 10.1021/acs.molpharmaceut.5b00362]

239 **Khan S**, Ebeling MC, Chauhan N, Thompson PA, Gara RK, Ganju A, Vallapu MM, Behrman SW, Zhao H, Zafar N, Singh MM, Jaggi M, Chauhan SC. Ormeloxifene suppresses desmosplasia and enhances sensitivity of gemcitabine in pancreatic cancer. *Cancer Res* 2015; 75: 2292-2304 [PMID: 25840985 DOI: 10.1158/0008-5472.CAN-14-2397]

240 **Liu QQ**, Chen K, Ye Q, Jiang XH, Sun YW. Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling pathway. *Cancer Cell Int* 2016; 16: 57 [PMID: 27453691 DOI: 10.1186/s12935-016-0336-z]

241 **Haqq J**, Howells LM, Garcea G, Dennison AR. Targeting pancreatic cancer using a combination of gemcitabine with the omega-3 polyunsaturated fatty acid emulsion, Lipidem™. *Mol Nutr Food Res* 2016; 60: 1437-1447 [PMID: 26603273 DOI: 10.1002/mnfr.201500755]

242 **Ji T**, Li S, Zhang Y, Lang J, Ding Y, Zhao X, Zhao R, Li Y, Shi J, Hao J, Zhao Y, Nie G. An MMP-2 Responsive Liposome Integrating Antifibrosis and Chemotherapeutic Drugs for Enhanced Drug Perfusion and Efficacy in Pancreatic Cancer. *ACS Appl Mater Interfaces* 2016; 8: 3438-3445 [PMID: 26759926 DOI: 10.1021/acsami.5b1619]

243 **Delitto D**, Wallet SM, Hughes SJ. Targeting tumor tolerance: A new hope for pancreatic cancer therapy? *Pharmacol Ther* 2016; 166: 9-29 [PMID: 27343757 DOI: 10.1016/j.pharmthera.2016.06.008]

244 **Heinemann V**, Reni M, Ychou M, Richel DJ, Macarulla T, Ducoux M. Tumour-stroma interactions in pancreatic ductal adenocarcinoma: rationale and current evidence for new therapeutic strategies. *Cancer Treat Rev* 2014; 40: 118-128 [PMID: 23849556 DOI: 10.1016/j.ctrv.2013.04.004]
