Efficient production of a mature and functional gamma secretase protease

Imran Khan
Edith Cowan University

Sudarsan Krishnaswamy
Edith Cowan University

Miheer Sabale

David M. Groth

Linda Wijaya
Edith Cowan University

See next page for additional authors

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

Part of the Medicine and Health Sciences Commons

Khan, I., Krishnaswamy, S., Sabale, M., Groth, D., Wijaya, L., Morici, M., ... & Verdile, G. (2018). Efficient production of a mature and functional gamma secretase protease. *Scientific reports*, 8(1), 12834. Available [here](https://ro.ecu.edu.au/ecuworkspost2013/4626)
Authors
Imran Khan, Sudarsan Krishnaswamy, Miheer Sabale, David M. Groth, Linda Wijaya, Michael Morici, Imre Berger, Christiane Schaffitzel, Paul E. Fraser, Ralph N. Martins, and Giuseppe Verdile

This journal article is available at Research Online: https://ro.ecu.edu.au/ecuworkspost2013/4626
Efficient production of a mature and functional gamma secretase protease

Imran Khan1,2,3, Sudarsan Krishnaswamy3, Miheer Sabale3, David Groth2, Linda Wijaya3,8, Michael Morici2,3, Imre Berger4,5, Christiane Schaffitzel4,5, Paul E. Fraser6, Ralph N. Martins2,3,7 & Giuseppe Verdile1,2,3

Baculoviral protein expression in insect cells has been previously used to generate large quantities of a protein of interest for subsequent use in biochemical and structural analyses. The MultiBac baculovirus protein expression system has enabled the use of a single baculovirus to reconstitute a protein complex of interest, resulting in a larger protein yield. Using this system, we aimed to reconstruct the gamma (γ)-secretase complex, a multiprotein enzyme complex essential for the production of amyloid-β (Aβ) protein. A MultiBac vector containing all components of the γ-secretase complex was generated and expression was observed for all components. The complex was active in processing APP and Notch derived γ-secretase substrates and proteolysis could be inhibited with γ-secretase inhibitors, confirming specificity of the recombinant γ-secretase enzyme. Finally, affinity purification was used to purify an active recombinant γ-secretase complex. In this study we demonstrated that the MultiBac protein expression system can be used to generate an active γ-secretase complex and provides a new tool to study γ-secretase enzyme and its variants.

Multi-protein complexes have vital roles in many cellular functions1,2. One such complex is the transmembrane γ-secretase enzyme that is responsible for proteolytically cleaving numerous Type I transmembrane proteins2,3. For example, Amyloid Precursor Protein (APP) is proteolytically cleaved by γ-secretase to generate various Aβ peptides, some of which have been shown to accumulate in Alzheimer’s disease (AD) brains4. Amyloidogenic processing of APP is initiated by β-APP cleaving enzyme-1 (BACE1) that cleaves the ectodomain of APP to generate a membrane embedded APP C-terminal fragment (C99). This APP-C99 fragment is subsequently processed by γ-secretase to generate multiple Aβ peptides and the APP intracellular domain (AICD)5. The generation and accumulation of longer Aβ peptides (e.g. Aβ42) plays a key role in the events that lead to neurodegeneration in the AD brain6. Therefore, γ-secretase is a logical target for the development of inhibitors/modulators aimed at lowering Aβ production. However, the complexity of the enzyme and its ability to process many different substrates have hindered targeted, therapeutic development efforts. Undesirable off-target effects related to disruption of Notch signalling are observed in animal and human trials7–10, therefore highlighting a need for a better understanding of γ-secretase’s structure and function.

The enzyme consists of a combination of multi-pass transmembrane proteins, Presenilin (PS1 or PS2), Nicastrin (NCT), Anterior Pharynx Homologue 1 (APH1a [long/short isoform] and APH1b in human and in addition Aph1c in mice) and Presenilin Enhancer 2 (PEN-2). Although high-resolution structural studies11–15 have provided an insight into the process of γ-secretase assembly and activity, additional information is still required. An understanding of the flexible domains of γ-secretase that are responsible for recognition, selection,
Baculovirus mediated recombinant protein expression in insect cells is a suitable eukaryotic system, and is especially useful in generating large amounts of proteins and protein complexes. The flexible baculoviral capsid allows packaging of large heterologous genes (>20 Kb) and recombinant protein expression can range up to 50% of insect cell proteins. Thus, in comparison to yeast and mammalian systems, higher expression of large proteins/protein complexes is achieved. In addition, yeast and mammalian cells express endogenous γ-secretase and other proteases with γ-secretase like activity and γ-secretase binding proteins. These endogenous proteins could potentially influence recombinant γ-secretase expression, assembly, stoichiometry and activity. Additionally, the combinatorial gene assembly method employed in MultiBac, is particularly useful to generate variations of a γ-secretase enzyme complex (such as different subunits and isoforms, mutants etc.) and investigate potential protein modulators of γ-secretase activity (i.e. CD147, TMP21, Rab21).

The versatility and flexibility of the MultiBac expression system is demonstrable in its successful application to the production of large protein complexes (including polytopic transmembrane protein complexes), the development of Virus-like particle (VLP) based vaccines and gene therapy vectors. The MultiBac expression system has been used to reconstitute a 14 subunit complex, transcription factor IID and a bacterial translocase protein complex. In this study, we use the MultiBac baculoviral system to reconstitute an active, multi-subunit transmembrane γ-secretase enzyme complex in insect cells. We also expressed an Autosomal Dominant Alzheimer’s Disease (ADAD) related PS1 mutant- missing exon 9 (PS1Δ9). The PS1 mutation-PS1(Δ9) is of particular interest in understanding the molecular mechanisms of γ-secretase mediated proteolysis. PS1(Δ9) does not need endoproteolytic activation (lacks exon 9 wherein lies the endoproteolytic site), to process γ-secretase substrates.

Results
Reconstitution of γ-secretase using MultiBac baculovirus. The cloning strategy used to insert the γ-secretase components into the pFBDM plasmid is outlined in Fig. 1A,B, with included protein purification tags are shown in Fig. 1C (octa-Histidine at the C-terminus of NCT and Calmodulin Binding Protein at N-terminus of PEN-2) and detailed in Materials and Methods. The final recombinant plasmid, termed pFBDM-γ-secretase, underwent restriction digestion analysis using HindIII (Fig. S1). DNA sequencing was used to confirm that the component gene inserts were incorporated into the pFBDM in the correct orientation. DH10EmBacY E. coli was transformed with pFBDM constructs to generate recombinant EmBacY bacmid. The EmBacY bacmid contains a YFP reporter gene to monitor viral performance and expression of heterologous proteins in insect cells. Sf9 cells were transfected with recombinant EmBacY bacmid extracted from DH10EmBacY E. coli to generate the initial baculoviruses (V0). Subsequently V1 and V2 were generated and baculoviral titre was determined on V2. A 50 ml suspension of Sf9 cells (1 × 10^6 cells/ml; >90% viability), was infected with baculovirus (V2) at multiplicity of infection (MOI) of 1 PFU (plaque forming unit/cell). Robust YFP expression was observed at 48 hours post infection (HPI) (Fig. 2D) compared to Fig. 2B- control EmBacY baculovirus; Fig. 2A,C are respective bright field images). The YFP expression plateaued over the next 48–84 HPI and then declined between 84–96 HPI, concomitant with a reduction in cell viability to ~85% (Fig. 2E). A similar expression/viability profile was observed
for the PS1Δ9 baculoviruses (data not shown). The cells were harvested and whole cell lysates were prepared for the detection of the components of γ-secretase by immunoblotting (Fig. 3A–D) or cell membranes were prepared for co-immunoprecipitation experiments to analyse the interaction between the expressed components of γ-secretase (Fig. 3E–H).

Immunoblotting of cell lysates from PS1(wt)-γ-secretase infected cells, showed expression of both PS1-holoprotein and PS1 N-terminal fragment (PS1-NTF) (~45 KDa and 28 kDa, respectively; Fig. 3B, lane 4), indicating that the PS1 holoprotein undergoes endoproteolytic activation in insect cells.46–48 Robust expression of Nicastrin (Fig. 3A, lane 4), APH1αL (Fig. 3C, lane 4) and PEN-2 (Fig. 3D, lane 4) was also observed. All components were shown to co-immunoprecipitate with PS1 (Fig. 3E–H, lane 4), indicating interaction between the components.49 In addition, only the mature/glycosylated form of Nicastrin (Fig. 3E, lane 4; ~110 KDa) co-immunoprecipitated with PS1, consistent with an intact functional complex.49 Immunoblotting using the penta-his antibody detected the “octa-His” tag from insect cell expressing Nicastrin (Fig. 3I; lane 4) and not endogenous Nicastrin from human neuroblastoma SHSY5Y cells (Fig. 3I; lane 3), while the Nicastrin antibody

Figure 1. Cloning Strategy to incorporate cDNA encoding γ-secretase components into the MultiBac pFBDM plasmid. PS1 and APH1αL cDNAs were cloned from pGEM® T vectors. PEN-2 and Nicastrin DNA constructs were cloned into the pUCS and pSPL vectors respectively. The polH and p10 annotations indicate the promoters of the respective baculoviral genes (A) Step 1: PS1 was cloned at multiple cloning site 1 (MCS1) of the pFBDM plasmid to generate pFBDM-PS1. Step 2: APH1αL was cloned into pFBDM-PS1 at the MCS2 to generate pFBDM-PS1-APH1αL. Step 3: PEN-2 cDNA construct was cloned at the SpeI restriction site on pFBDM-PS1-APH1αL. Step 4: The pSPLpolH-NCT-octa-his was cloned into pFBDM-PS1-APh1aL-Pen-2 generated in step 3 by Cre-lox recombination to generate recombinant γ-secretase (B) A map of the pFBDM-γ-secretase used to generate recombinant baculoviruses (C) A schematic of recombinant γ-secretase enzyme expressed in insect cells showing protein purification tags; PEN-2 tagged with Calmodulin Binding Protein (CBP) at the N-terminus (red arrowhead) and NCT expressed with an ‘octa-histidine tag’ at the C-terminus (red circles).
detected NCT in both the SHSY5Y (Fig. 3I; lane 1) and PS1(wt)-γ-secretase expressing insect cells (Fig. 3I; lane 2). Immunoblotting using the PEN-2 antibody detected insect cell expressed PEN-2-CBP at a higher molecular weight (Fig. 3J; lane 2; ~15 kDa) compared to SHSY5Y endogenous PEN-2 (Fig. 3J; lane 1; ~10 kDa). In accordance with previous reports, the presence of these tags did not appear to alter the interaction of the components with PS1 or activity (see below)50–53. Deglycosylation of insect cell expressed and SHSY5Y endogenous NCT indicated similar partial resistance to Endoglycosidase-H (Endo-H) (Fig. 3K; lane 2 and lane 6), and high susceptibility to Peptide-N-glycosidase F (PNGase-F) mediated deglycosylation (Fig. 3K; lanes 4 and 8).

Figure 2. Monitoring cell viability and YFP expression. Representative pictures of baculovirus infected Sf9 cells viewed using bright field (A,C) or fluorescent microscopy (B,D). Sf9 cells infected with empty baculovirus EmBacY (A,B) or those infected with the recombinant baculovirus expressing PS1(wt)-γ-secretase (C,D). (E) V2 recombinant baculoviruses were used to infect Sf9 cells (1 × 10^6 cells/ml; ~90% viability) at MOI of 1 PFU. Every 12 hours post infection (HPI) 1 × 10^6 cells were harvested, and YFP expression was monitored by using a plate reader at ~520 nm against a PBS blank. Relative fluorescence units were plotted against time. Magnification 20x, Scale Bar 100 μm.
Figure 3. The γ-secretase components are expressed and interact with PS1. Expression of all γ-secretase enzyme components was observed in whole cell lysates of insect cells infected with recombinant baculovirus expressing components was observed in whole cell lysates of insect cells infected with recombinant baculovirus expressing PS1(wt)-γ-secretase (A–D, lane 4). No such expression was observed in cells infected with control baculovirus EmBacY (A–D, lane 1) or recombinant baculovirus with control pFBDM plasmid (A–D, lane 2). Both PS1 holoprotein and PS1-NTF (antibody Ab14) were observed in insect cells infected with recombinant baculoviruses PS1(wt)-γ-secretase (B, lane 4); indicating successful endoproteolysis of PS1. Robust expression of mature (A lane 4, ~110 KDa) and minimal expression of immature (A lane 4; ~80 KDa) Nicastrin was observed. (E–H) Immunoprecipitation using PS1 Ab14 antibody was performed on γ-secretase expressing insect cell membranes. All four components of γ-secretase enzyme co-immunoprecipitated with PS1 antibody, indicating interaction with PS1. Only mature NCT (E lane 4; ~110kDa) was observed to interact with PS1. (F) PS1 antibody NT1 was used to detect immunoprecipitated PS1. (I) Western immunoblotting of SHSY5Y
and PS1(wt)-γ-secretase expressing insect cells with NCT antibody (lanes 1 and 2) and penta His antibody (lanes 3 and 4) detected 'octa-His' tag on PS1(wt)-γ-secretase only (lane 4). (J) Western immunoblotting of SHSY5Y and PS1(wt)-γ-secretase expressing insect cells with PEN-2 antibody detected PEN-2-CBP at a higher molecular weight (lane 2: ~15 kDa) due to CBP tag compared to endogenous PEN-2 (lane 1: ~10 kDa). (K) Deglycosylation of Nicastrin from SHSY5Y and PS1(wt)-γ-secretase expressing insect cells with Endo-H (lanes 2 and 6) and PNGase-F (lanes 4 and 8). Nicastrin expressed in insect cells showed partial resistance to Endo-H (lane 6), similar to SHSY5Y endogenous Nicastrin (lane 2), indicating complex glycoalxation in insect cells. Insect cell Nicastrin was highly susceptible to PNGase-F mediated deglycosylation (lane 8), similar to SHSY5Y endogenous Nicastrin (lane 4). No such deglycosylation events occurred in control experiments setup without Endo-H (lanes 1 and 5) and PNGase-F (lanes 3 and 7). Immunoblotting of insect cell lysates expressing PS1(Δ9) showed expression of the PS1 holoprotein (Fig. 3B, lane 3). It was noted, however, that additional protein bands ranging from ~15–30 kDa were detected with the polyclonal PS1 N-terminal antibody, Ab14. The relevance of these additional protein bands is unclear, particularly following expression of the PS1(Δ9), which lacks exon 9 and thus cannot undergo endoproteolysis and thereby could possibly indicate nonspecific proteolysis. These lower molecular weight fragments, were absent following immunoprecipitation with Ab14 and immunoblotting with the monoclonal antibody NT1 (Fig. 3F, lane 3), indicating that they may represent degradation fragments/non-specific artifact.

MultiBac reconstituted γ-secretase enzyme complex is active. The activity of the recombinant PS1(wt)-γ-secretase and PS1(Δ9) was evaluated in cell free assays. PS1(Δ9) does not require other core γ-secretase components to process γ-secretase substrates26,44,45. Cell free assays were prepared with both APP-C99 or Notch-C100 substrates and the A3/AICD (APP intracellular domain) and NICD (Notch intracellular domain) proteolytic cleavage fragments were detected by immunoblotting24,45. AICD and NICD were detected in cell free assay reactions performed with PS1(wt)-γ-secretase containing insect cell membranes, while these products were absent in control cell free assays (Fig. 4A, top and bottom panels compare lanes 1 and 2, with lane 4). Immunoblotting using WO2 (5–8 amino acids of A3) detected a ~4 kDa protein that migrated at a similar size as synthetic A3 peptide (Fig. 4A, middle panel, compare lane 4 with lane 5). ELISA was used to confirm quantitate A3/40 and A3/42 generated in cell free assays (Fig. 4D). These results indicate that the reconstituted wild-type γ-secretase complex is actively processing the two substrates. A dose dependent reduction in the formation of the AICD/A3 and NICD fragments following treatment with the γ-secretase inhibitor, DAPT (a highly potent γ-secretase inhibitor with similar efficacy in blocking APP and Notch processing in *in vitro* cell free assays47), also supported the PS1(wt)-γ-secretase activity (Fig. 4B).

In contrast, when the activity of PS1(Δ9) was examined in cell free assays, four times more protein was required to detect AICD and NICD fragments compared to PS1(wt)-γ-secretase (Fig. 4C). In addition, the quantity of A3 generated, as determined by ELISA, in the PS1(Δ9) cell free assays was markedly reduced relative to the equivalent PS1(wt)-γ-secretase assays (Fig. 4D). As shown in previous studies, PS1(Δ9) also led to the production of significantly less A3/42 compared to A3/4044,45. These results indicate PS1(Δ9) is less efficient in processing γ-secretase substrates, consistent with previous studies36,44,45,57–59.

Purification of PS1(wt)-γ-secretase. Immobilised Metal Affinity Chromatography (IMAC) and Calmodulin affinity (CaM) was used to purify the recombinant γ-secretase enzyme complex. A range of detergents (including CHAPSO, Digitonin, Brij and DDM) at optimum concentrations have been tested to facilitate γ-secretase activity *in vivo*60. Endogenous γ-secretase retains maximal activity when extracted in zwitterionic detergent CHAPSO60, hence initial attempts at purifying γ-secretase were undertaken using CHAPSO. PS1(wt)-γ-secretase expressing insect cells membranes were prepared in 1% (w/v) CHAPSO and used as is or diluted to 0.5% or 0.25% CHAPSO to be applied to IMAC. Using these conditions, a substantial quantity of protein was detected in column flow through and in subsequent washing steps, indicating poor binding of γ-secretase to the TALON resin (data not shown). Similar, results were obtained using Diginigon (used at 1%, 0.5% and 0.25%) and DDM (used at 0.05%) (data not shown). A combination of detergents was then investigated to improve binding of the recombinant γ-secretase to the TALON resin. Insect cell membranes were dissolved in 1% CHAPSO-Hepes buffer and diluted to 0.08% CHAPSO and 0.08% Digitonin (12.5 fold dilution). These detergents have been used at indicated concentrations to purify an intact and active γ-secretase complex45. Batch incubation of solubilized membranes with the TALON-IMAC resin was found to be more appropriate for maximal recovery of recombinant γ-secretase complex. Immunoblotting of purification fractions showed that the majority of the γ-secretase components were enriched in the same elution fractions (100 mM Imidazole; Fig. 5B–E, lanes 7, 8 and 9). Although a protein signal was observed in the diluted sample, flow through and wash fractions, levels of NCT, PS1, APH1α and PEN-2 (Fig. 5B–E; compare lanes 1–2 with lanes 8–9), were enriched in 100 mM Imidazole elution fraction and absent on the recovered TALON resin (data not shown) indicating that the bound components were almost completely eluted. We detected γ-secretase activity and thereby generation of AICD from APP-C99 Flag-tagged substrate only in the 100 mM Imidazole fractions (Fig. 5 lanes 7, 8 and 9). Although, γ-secretase components were detected by western immunoblotting in applied diluted sample, flow through and wash fractions (Fig. 5B–E, lanes 1–3), we did not detect generation of AICD in these fractions. We believe the concentration of recombinant γ-secretase complex in these fractions is lower than that required to produce AICD detectable by western immunoblotting.

The 100 mM Imidazole eluted IMAC fractions were pooled and batch incubated with Calmodulin resin (CaM). The resin was then washed and bound proteins were eluted with 10 mM EGTA and concentrated with...
a 50 kDa molecular weight cut-off centrifugal filter. Coomassie stain of SDS-PAGE gel indicated enrichment of γ-secretase components in the 50MWCO concentrated fraction (Fig. 5G, lane 8). Additionally, western immunoblotting for various γ-secretase components indicated the presence of γ-secretase components in the eluted 10 mM EGTA fractions (Fig. 5H–K, lanes 3–7) and were enriched in 50MWCO concentrated fraction (Fig. 5H–K, lane 8). Protein concentration of the 50MWCO concentrated fraction was measured using a BCA protein concentration estimation assay and indicated a yield of ~0.9 mg/litre (of cell culture) of purified recombinant γ-secretase enzyme complex.

Figure 4. MultiBac γ-secretase shows activity in cleaving APP-C99 and Notch-C100. Cell free assay using insect cell membranes in 0.25% CHAPSO were incubated with APP-C99-Flag (A, and B, top and middle panels) or Notch-C100-Flag (A and B bottom panel) substrates. AICD and NICD were detected with anti-Flag antibody and Aβ with WO2 antibody. (A) PS1(wt)-γ-secretase lead to formation of AICD (lane 4 top panel), Aβ (lane 4 middle panel, run on the same gel) and NICD (lane 4 bottom panel). (B) The activity of PS1(wt)-γ-secretase could be inhibited by γ-secretase inhibitor DAPT in a dose dependant manner and prevented formation of AICD (top panel), Aβ (middle panel, run on the same gel) and NICD (bottom panel). (C) Cell free assay setup with PS1(Δ9) gave rise to AICD (lane 2 top panel) and NICD (lane 2 bottom panel) when used at 4 times the concentration of PS1(wt)-γ-secretase (lane 3). (D) Cell free assays were setup as above using cell membranes prepared from insect cells expressing PS1(wt)-γ-secretase or PS1(Δ9) or mammalian cells HEK293/ APPSwe or HEK293/APPswe/PS1++ cells. The cell free assay products were analysed by sandwich ELISA. Baculovirally reconstituted PS1(wt)-γ-secretase produced similar levels of Aβ40 when compared to mammalian HEK293 cells stably expressing APPSwe (HEK293/APPswe) and HEK293/APPswe cells transiently overexpressing PS1 (HEK293/APPswe/PS1++). However, in comparison PS1(wt)-γ-secretase generated significantly larger amounts of Aβ42. PS1(Δ9) generated very little Aβ40 and Aβ42.
Cell free assays established with IMAC and CaM affinity purification fractions indicated AICD generation in IMAC purified fractions (100 mM Imidazole, Fig. 5F lanes 6–8). Additionally, pooled IMAC fractions supplemented with CaCl₂ and MgOAc (Fig. 5L, lane 1), CaM affinity flowthrough (Fig. 5L, lane 2, containing unbound recombinant γ-secretase components) and 50MWCO concentrated 10 mM EGTA elution fraction (Fig. 5L, lane 8) generated AICD from APP-C99 in cell free assays.

Discussion
We have used the MultiBac baculoviral expression system to express and create an active γ-secretase enzyme complex, with activity comparable to γ-secretase from mammalian cells. Similar to previous studies in neuroblastoma and primary neuronal cells, overexpression of PS1 in HEK293/APPSwe cells led to an increase in Aβ42 production when compared to endogenous γ-secretase activity. The activity of recombinant γ-secretase in generating AICD and NICD was specific to γ-secretase activity and could be blocked by a γ-secretase inhibitor in a dose dependent manner. Moreover, the activity of the reconstituted γ-secretase enzyme was retained following purification. Previous studies have utilised co-infection of multiple monocistronic baculoviral vectors to reconstitute γ-secretase in insect cells. However due to differences in infectivity and protein production efficiencies of recombinant baculoviruses, it is often difficult and labour intensive to achieve a consistent relative equimolar expression form co-infected baculoviruses. Importantly, co-transfection with multiple viruses reduces the
efficiency of protein production and achieving stoichiometric expression of the reconstituted proteins is difficult. In this study, we have circumvented these issues, by using the MultiBac multicistronic expression system to reconstitute an active γ-secretase enzyme complex. Using the techniques described above we obtained a yield of ~0.9 mg/L of purified recombinant γ-secretase complex. This yield is ~4.5 times greater than that observed in a previous study (0.2 mg/ml) employing a multicistronic mammalian vector. The MultiBac has a number of features that allows for higher recombinant protein yields. The MultiBac employs a recombinant baculovirus DNA with disabled viral cathepsin and chinatase (cysteine protease) genes that are involved in viral mediated cellular liquefaction, thereby improving protein production. Disabling these genes enables better compartmentalisation of recombinant protein production and reduces viral protease mediated degradation of recombinant proteins. Additionally, the utility of MultiBac in studying γ-secretase is in its versatility to modular clone/exchange additional expression cassettes (the baculovirus can accommodate large heterologous DNA cargo). Hence MultiBac can be easily modified to facilitate investigation of potential protein modulators of γ-secretase activity.

The complex glycosylation of MultiBac reconstituted Nicastrin is of particular interest. The majority of the Nicastrin expressed using this MultiBac baculoviral expression system is the highly glycosylated and at a molecular weight corresponding to that observed in mammalian cells. This is in contrast to other baculoviral expression systems employing poly-cistronic baculoviral expression vectors. This observation is encouraging considering proper maturation/glycosylation of Nicastrin is required for γ-secretase activity. Similar to previous studies, the recombinant Nicastrin in our study is also resistant to complete deglycosylation by Endo-H, indicating higher order glycosylation. It is possible that better compartmentalisation of MultiBac infected insect cell secretory pathway gives an opportunity for Nicastrin to fully process to its mature form. Previous studies have indicated that baculoviral infection leads to an upregulation of glycosylation enzymes and ER transport proteins in insect cells. In addition, baculoviral infection also leads to an increase in COPII coated transport vesicles that are involved in shuttling transmembrane proteins from ER to the cis-Golgi. However, the effect that the heterologous γ-secretase components expressed in this study have on intracellular transport needs to be considered. Indeed, PS1 is known to be involved in intracellular APP sorting and is found in association with COPI and COPII vesicles. NCT interacts with ER retrieval signal Rer1p. Although, the SF9 genome is still rudimentary, a role of SF9 endogenous proteins transiently associating with γ-secretase and influencing intracellular transport/localisation cannot be discounted. Partial susceptibility to deglycosylation by EndoH enzyme indicate that insect cell expressed Nicastrin is at least in rich in mannose glycosylation events. Nevertheless, mature mammalian Nicastrin is O-GlcNAcylated and sialylated. The intrinsic limitation of the baculoviral/insect cell expression systems (and MultiBac) is in their inability to faithfully recapitulate post translational protein modifications of complex glycosylation and sialylation observed in mammalian proteins. However, emerging baculoviral expression technologies now allow for expression of more mammalianised recombinant glycoproteins. Further, the MultiBac expression system has been also optimised to produce complex N-linked glycosylated and galactosylated recombinant proteins. Considering, the Nicastrin ectodomain functions to sterically hinder processing APP-C99 obtained by Ahn et al. and studies involving PS1(Δ9) expression with other γ-secretase components expressed in this study have on intracellular transport/localisation needs to be considered. Additionally, the mature complex glycosylated Nicastrin is associated with γ-secretase complex and is essential to reconstitute activity.

The MultiBac expression system was also used to express the PS1(Δ9) clinical mutant in the absence of the other γ-secretase components. Intriguingly, and consistent with previous reports, the mutant PS1 was found to be active, albeit the activity was lower than that observed for PS1(wt)-γ-secretase. It has been suggested that the PS1(Δ9) is constitutively active due to deletion of an “autoinhibitory domain” that blocks the catalytic site of Presenilins, or, as Ahn et al. suggested, appropriate positioning of the catalytic aspartic dyad. Nevertheless, baculovirally expressed PS1(Δ9) led to negligible amounts of Aβ42 production when compared to Aβ340 production, consistent with previous observations. However, this finding is in contrast to activities of PS1(Δ9) in processing APP-C99 obtained by Ahn et al. and studies involving PS1(Δ9) expression with other γ-secretase components. The reasons for this discrepancy are not clear. It has been suggested that γ-secretase substrates are first recruited by Nicastrin and interact with an exosite consisting of Nicastrin and PEN-2. The exosite is thought to interact, orientate, and recruit appropriate substrates. It could be speculated that due to missing γ-secretase component involved in substrate recruitment, our PS1(Δ9) construct although constitutively active is also less efficient. Cell free assay reactions are inherently disordered and spatial restriction of enzyme on proteoliposomes or active recruitment of substrates would enhance enzymatic activity. However, we cannot discount the possibility that PS1(Δ9), produces Aβ3 species other than Aβ340 and Aβ42. Overall, our findings have validated the utility of the MultiBac expression system to concisely express components of heterologous protein complexes, such as γ-secretase. This baculoviral expression system can now be used as a method to further understand the functions of this important Aβ generating enzyme complex. In addition, the modular assembly employed in MultiBac would be particularly beneficial in understanding the effect of γ-secretase component heterogeneity on substrate specificity and the potential roles of protein modulators of γ-secretase activity.
The system can also be adapted to characterize ADAD linked PS mutations and their effects on substrate binding and cleavage, thereby contributing to resolving the dominant gain or loss of function debate. The γ-secretase cleavage of APPL1, APL2 and APP, or fragments thereof, could be compared. Chemical inhibitor/modulator screening, selectivity and binding sites could be explored using the MultiBac system. MultiBac has also now been modified to expedite highly efficient transduction of large heterologous DNA cargo in more relevant in vitro models such as primary neurons and in vivo studies in zebrafish embryos (MultiPrime). With high throughput pipeline for screening co-expression constructs currently available, this exciting approach provides a new tool for the study of γ-secretase that can be manipulated in many ways to provide significant insight into γ-secretase structure and activity.

Material and Methods

The MultiBac utilizes restriction enzyme digestion/ligation and ‘Cre-loxP’ site-specific recombination techniques (pFBDM, pUCDM and pSPL) making it more versatile. The pFBDM plasmid has two expression cassettes each containing multiple cloning sites (MCS 1 and MCS 2 for restriction enzyme cloning) and driven by promoters of baculoviral polH and p10 genes. Additionally, pFBDM backbone contains a multiplication module (containing unique restriction sites) and a LoxP site (for Cre-lox cloning) that facilitate modular insertion and exchange of expression cassettes from other vectors. The EMBacY bacmid (contained within competent E. coli DH10BacEMBacY) has been engineered with viral cathepsin and chitinase genes disabled and a yellow fluorescent protein (YFP) expression cassette (under baculoviral promoter of ‘polH’ gene) allowing real-time monitoring of heterologous protein production. The EMBacY baculovirus DNA contains a mini-AttTn7 acceptor site to facilitate integration of the pFBDM plasmid (containing Tn7-R and Tn7-L donor sequences), while concomitantly allowing blue-white selection for detection of successful transposition.

Generation of recombinant MultiBac Baculovirus DNA. The recombinant pFBDM plasmids (pFBDM-PsiI-wt-γ-secretase and pFBDM-PsiI(Δ9)) generated above were transformed into DH10BacEMBacY competent E. coli, containing the EMBacY bacmid. The recombinant pFBDM plasmid transposes into the baculovirus DNA at the mini-attTn7 site, located within a Lacz gene, thereby disabling it and thus allowing for blue-white identification of successfully transposed colonies in presence of IPTG and BmoGal. The colonies were selected in presence of gentamycin and kanamycin. This process generated two recombinant EMBacY bacmid containing either pS1(wt)-γ-secretase or PsiI(Δ9) cDNAs.

Cell Culture and Generation of initial baculovirus. Human embryonic kidney cells over expressing ‘Swedish’ mutant of APP (HEK293/APP-Swe cells) described before and human neuroblastoma SHSY5Y cells (ATCC, CRL2266) were cultured in DMEM (Sigma-Aldrich, UK D6546) and DMEM/F12 (Sima-Aldrich, Australia 12297016).
DNA was mixed with qPCR reagent (12.5 µl of a final volume of 25 µl) to obtain plaque forming unit (PFU)/ml of conditioned media. Next, the recombinant and internal standard baculoviruses (supplied) were resuspended in 200 µl of BSA in PBS buffer (v/v) and incubated for 4 hours at 80°C long term and used to infect larger Sf9 cultures. The V2 viral titre was determined using the baculoQUANT titration kit (Oxford Expression Technologies, UK), in accordance with the manufacturer’s protocol. Briefly, recombinant baculovirus DNA was extracted from viral particles and baculoviral gene gp64 was measured using qPCR and viral titre was estimated by plotting against a standard curve. Recombinant baculoviruses were pelleted from 80 µl of conditioned media by centrifuging at 16,000 × g for 5 minutes at room temperature. Next, the recombinant and internal standard baculoviruses (supplied) were resuspended in 20 µl of lysis buffer (supplied) and lysed in a thermocycler and heating to 65°C for 15 minutes, 96°C for 2 minutes, 65°C for 4 minutes, 96°C for 1 minute, 65°C for 1 minute, 96°C for 30 seconds. Next, 2 µl of recombinant baculovirus DNA was mixed with qPCR reagent (12.5 µl) and baculoviral gp64 gene primers and probes (3 µl) (supplied) to a final volume of 25 µl. The qPCR reactions were carried out in triplicates for each sample in a Viia7 Real-Time PCR System (Applied Biosystems). Mean Ct values of unknown samples were plotted against the standard curve to obtain plaque forming unit (PFU)/ml of conditioned media.

Protein expression analysis. Suspension Sf9 culture (10 ml at 1 × 10^6 cells/ml) were infected with V2 at multiplicity of infection (MOI) of 1 PFU/cell. Every 12 hours post transfection; an aliquot of cell culture was harvested and cells were counted. Cell viability was estimated using 0.4% Trypan Blue exclusion method. Additionally, YFP expression was measured to estimate extent of baculoviral infection and recombinant protein expression. Every 12 hours 1 × 10^6 infected insect cells were harvested, washed and resuspended in 200 µl of PBS. Following brief sonication (30% amplitude for 10 seconds on ice), cell debris was removed by centrifugation at 18,000 × g for 5 minutes at 4°C. The supernatant was transferred to a 96 well plate and YFP was measured against a PBS blank in a fluorescence plate reader (excitation: 488 nm; emission: 520 nm).

Recombinant protein expression was observed by western immunoblotting of infected cell lysates. Cell lysates were prepared by homogenising cells in Nonidet P-40 cell lysis buffer (50 mM Tris- HCl, 150 mM NaCl, cOmplete™ protease inhibitor cocktail (Roche, Germany), 2 mM EDTA and 1% Nonidet P-40 detergent v/v) and incubating on ice, with intermittent vortexing every ten minutes, for a total time of 30 minutes. Soluble proteins were extracted by centrifuging the homogenised cells at 18,000 × g at 4°C for 10 minutes. Protein concentration was estimated using BCA assay (Micro BCA Protein Assay Kit, Thermo Scientific USA 23235). Approximately 5 µg of total proteins were resolved on 4–12% SDS-PAGE gels and γ-secretase components were detected by Western immunoblotting. Well characterised primary antibodies were used; NT1 (1:5000, PS1 N-terminal, kindly provided by Professor Paul Fraser University of Toronto); Ab14 (1:5000, PS1 N-terminal, kindly provided by Professor Sam Gandy Mt Saini Hospital, NY); Nicastrin (1:1000, Sigma-Aldrich, USA N1660); PEN-2 (1:1000, Sigma–Aldrich, USA P5622) and APH1aL (1:1000, Sigma–Aldrich, USA A9603). Other primary antibodies used in this study were WO2 (1:5000, APP/Aβ, kindly provided by Professor Colin Masters University of Melbourne); 6E10 (1:1000, APP/Aβ, Covance USA 39300), penta-histidine antibody (1:1000, Qiagen, Germany 34660) and Flag-M2-HRP (1:1000, Sigma–Aldrich, USA A8592). Immunoblots were developed using electrochemiluminescence reagent (Amersham ECL, GE, USA RPNN2232; or BioRad, USA 1705061) and protein bands were detected using X-ray films (Amersham Hyperfilm ECL, GE, USA 28906835) or ChemiDoc XRS+ (BioRad).

Deglycosylation experiments. Human neuroblastoma SHSY5Y cells or PS1(wt)-γ-secretase infected Sf9 cell lysates were prepared in Nonidet P-40 lysis buffer as mentioned above. Next, 5 µg of PS1(wt)-γ-secretase expressing insect cell lysate and 50 µg of SHSY5Y cell lysates were denatured and deglycosylated with either Endo-H (NEB P0702) or PNGase -F (NEB P0704) enzymes following manufacturer’s protocol.

Co-Immunoprecipitation studies. Co-Immunoprecipitation was carried out as described previously. Infected insect cell membranes were dissolved in 1% CHAPS-HEPES buffer (25 mM HEPES, pH 7.4; 150 mM NaCl; 1% CHAPSO w/v; Buffer A) and diluted to 1 mg/ml protein concentration, using the same buffer. Soluble membranes were incubated with PS1 antibody Ab14 (rabbit polyclonal raised against 1–25 amino acids of PS1) overnight at 4°C under gentle agitation. Protein-A Mag Sepharose (GE, UK 28951376) was used to harvest protein antibody complex and eluted in LDS sample buffer (Invitrogen, USA NP0070) at 37°C for 15 minutes for SDS-PAGE and Western immunoblotting.

Preparation of cell membranes from Sf9 cells. Sf9 suspension cultures were infected with recombinant baculoviruses at MOI of 1 PFU. Following maximal protein expression (as monitored by YFP measurement), cells were collected by centrifugation at 300 × g for 5 minutes at room temperature. The cell pellet was homogenised in equal volume of homogenising buffer (5 mM Hepes pH 7.4; 250 mM Sucrose; 1 mM EDTA and cOmplete™ protease inhibitor) and lysed by drawing in and out of a 26 gauge needle, ~15 times (for small 25–50 ml cultures) or freeze thawing cell suspension (for 500–1000 ml cultures). Cell and nuclear debris were removed by centrifugation at 800 × g for 10 minutes at 4°C. The supernatant was transferred to ultracentrifugation tubes and the cell membranes were pelleted by centrifugation at 100,000 × g for 60 minutes at 4°C. The membrane pellet was stored
at −80 °C until required. The membrane pellet was resuspended in buffer A and homogenised using a 26-gauge needle, drawing in and out 15 times (for small 25–50 ml cultures) or 20 strokes of a Dounce homogeniser (for 500–1000 ml cultures) on ice. The cell membranes were allowed to solubilise at 4 °C for 1 hour, using end over end rotation (10 rpm). Insoluble membranes were removed by centrifugation at 100,000 × g for 60 minutes at 4 °C and the supernatant containing dissolved membranes was used immediately.

Purification of reconstituted γ-secretase enzyme complex. PS1(wt) γ-secretase infected SF9 cell membranes (100 ml culture growing at 2 × 10⁶ cells/ml) were prepared as mentioned above in 1% CHAPOSE-HEPES buffer (Buffer A, containing cOmplete™, EDTA-free Protease Inhibitor Roche 11873580001; henceforth called buffer B). The membranes were then diluted to 0.08% CHAPOSE and 0.08% Digitonin (from a 2% stock solution) using Buffer B. The sample was then incubated at 4 °C with end to end rotation of 10 rpm for 16 hours with 3 ml of His TALON, IMAC resin (GE, Sweden 28957502) pre-equilibrated with 0.08% CHAPOSE and 0.08% Digitonin- Buffer B. The resin was collected into an empty PD10 column (GE, USA 17043501) and flowthrough was saved. The resin was then rinsed with 30 ml of buffer B to remove unbound proteins. Next, the resin was rinsed twice in 3 ml of 5 mM Imidazole in Buffer B, to remove any weekly bound proteins. Finally, γ-secretase was eluted in 3 ml fractions of 100 mM Imidazole in Buffer B.

Next, IMAC purified 100 mM Imidazole fractions were pooled and supplemented with 2 mM Calcium Chloride (CaCl₂) and 2 mM Magnesium acetate (MgOAc). The pooled fractions were then incubated at 4 °C with end to end rotation of 10 rpm for 16 hours with 3 ml of Calmodulin affinity Resin (CaM) (GE, Sweden 17052901) equilibrated in buffer B supplemented with 2 mM CaCl₂ and 2 mM Magnesium acetate (Buffer C). The resin was rinsed in 30 ml of Buffer C and eluted in 3 ml fractions of 0.5% CHAPOSE in 25 mM Tris, 150 mM NaCl and 2 mM MgOAc (Buffer D) supplemented with 10 mM of EGTA. The 10 mM EGTA fractions were pooled and concentrated with a 50 kDa molecular weight cut-off centrifugal filter (50MWCO, GE USA 28932362). The IMAC and CaM purification fractions were resolved on a 4–20% SDS-PAGE and various components of γ-secretase enzyme complex were detected by Coomassie stain and Western immunoblotting.

Cell free γ-secretase assay. In vitro cell-free assays were performed using E. coli expressed APP-C99-Flag (N-terminal 99 amino acids of APP-CTF, starting with an additional methionine and a Flag tag at C-terminus) and Notch-C100-Flag (N-terminal 99 amino acids of NotchΔE, starting with an additional methionine and a Flag tag at C-terminus) as previously described. Briefly, APP-C99-Flag and Notch-C100-Flag inserts were cloned into pET29 vector and transformed into BL21(DE3) E. coli cells (New England Biolabs) for substrate expression. Recombinant protein expression was induced using 1 mM IPTG following the manufacturer’s protocol. The cells were collected by centrifugation at 8000 × g for 10 minutes at 4 °C. Cell pellet was re-suspended in solubilising buffer (50 mM Tris-HCl pH8.0, 150 mM NaCl and cOmplete™ protease inhibitor). The cell suspension was sonicated 6 times in an ice bath at 15% amplitude for 10 seconds, with intermittent cooling of 1 minute each. The homogenate was then supplemented with 1% Nonidet P-40 (v/v) detergent and incubated on ice for 1 hour. Detergent soluble substrates were collected by centrifuging the homogenised cells at 20,000 × g for 10 minutes at 4 °C. The solubilised substrates were aliquoted and rapidly frozen in liquid nitrogen and stored at −80 °C.

Insect cell membranes dissolved in 1% CHAPOSE-Hepes buffer were diluted to 0.5% CHAPOSE with 150 mM Sodium citrate, (pH 6.4) and mixed with equal parts of cell free assay reaction buffer (150 mM Sodium Citrate (pH 6.4); 20 mM Dithiothreitol (DTT); 0.1% phosphatidylcholine (PC) lipid (Avanti Polar Lipids, USA 840053); 0.025% phosphatidylethanolamine (PE) lipid (Avanti Polar Lipids, USA 840022); 0.2% BSA; 2 mM EDTA; cOmplete™ protease inhibitor cocktail (Roche, 500 mg/ml) and 10 μl of substrate). Final detergent concentrations were 0.25% CHAPOSE and <0.05% Nonidet P-40. Enzymatic reactions were carried out at 37 °C for 16 hours and terminated by adding LDS gel loading sample buffer/freezing at −80 °C. Similarly, IMAC and CaM purification fractions were incubated with equal volumes of reaction buffer containing appropriate substrate. The reaction products were resolved by SDS-PAGE and immunoblotted to detect AICD/Aβ and variants containing γ-secretase enzyme complex were detected by Coomassie stain and Western immunoblotting.

References

1. Kopan, R. & Ilagan, M. X. Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 5, 499–504, https://doi.org/10.1038/nrm1406 (2004).
2. Haapasaalo, A. & Kovacs, D. M. The many substrates of presenilin/gamma-secretase. J Alzheimers Dis 23, 3–28, https://doi.org/10.3233/JAD-2011-101063 (2011).
3. Krishnaswamy, S., Verdile, G., Groth, D., Kanyenda, L. & Martins, R. N. The structure and function of Alzheimer's gamma secretase enzyme complex. Crit Rev Clin Lab Sci 46, 282–301, https://doi.org/10.3109/10408360803335821 (2009).
4. De Strooper, B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 90, 465–494, https://doi.org/10.1152/physrev.00023.2009 (2010).
5. Takami, M. et al. gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 29, 13042–13052, https://doi.org/10.1523/JNEUROCIRCUITRY.2362-09.2009 (2009).
6. Minati, L., Edginton, T., Bruzzone, M. G. & Giaccone, G. Current concepts in Alzheimer's disease: a multidisciplinary review. American journal of Alzheimer's disease and other dementias 24, 95–121, https://doi.org/10.1177/1533317508328602 (2009).
7. Albright, C. F. et al. Pharmacodynamics of selective inhibition of gamma-secretase by avagacestat. J Pharmacol Exp Ther 334, 686–695, https://doi.org/10.1124/jpet.112.199356 (2013).
8. Qyang, Y. et al. Myeloproliferative disease in mice with reduced presenilin gene dosage: effect of gamma-secretase blockade. Biochemistry 43, 5352–5359, https://doi.org/10.1021/bi040826u (2004).
9. Hadland, B. K. et al. Gamma-secretase inhibitors repress thymocyte development. Proc Natl Acad Sci USA 98, 7487–7491, https://doi.org/10.1073/pnas.131202798 (2001).
10. Searfoss, G. H. et al. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-secretase inhibitor. J Biol Chem 278, 46107–46116, https://doi.org/10.1074/jbc.M307757200 (2003).
39. Fitzgerald, D. J.
40. Nie, Y.
41. Trowitzsch, S.
42. Komar, J., Botte, M., Collinson, I., Schaffitzel, C. & Berger, I. ACEMBLing a multiprotein transmembrane complex: the functional
39. Fitzgerald, D. J.
40. Nie, Y.
41. Trowitzsch, S.
42. Komar, J., Botte, M., Collinson, I., Schaffitzel, C. & Berger, I. ACEMBLing a multiprotein transmembrane complex: the functional
39. Fitzgerald, D. J.
40. Nie, Y.
41. Trowitzsch, S.
42. Komar, J., Botte, M., Collinson, I., Schaffitzel, C. & Berger, I. ACEMBLing a multiprotein transmembrane complex: the functional
39. Fitzgerald, D. J.
40. Nie, Y.
41. Trowitzsch, S.
42. Komar, J., Botte, M., Collinson, I., Schaffitzel, C. & Berger, I. ACEMBLing a multiprotein transmembrane complex: the functional
87. Geisler, C., Mabashi-Asazuma, H. & Jarvis, D. L. An Overview and History of Glyco-Engineering in Insect Expression Systems.

86. Palmberger, D., Wilson, I. B., Berger, I., Grabherr, R. & Rendic, D. SweetBac: a new approach for the production of mammalianised recombinant glycoproteins in insect cells.

85. Wagner, R. & Annaert, W. G. A functional assay for assaying the activity of gamma-secretase.

80. Spasic, D. & Annaert, W. G. Building beta-secretase - the bits and pieces.

81. Nandakumar, S., Ma, H. & Khan, A. S. Whole-Genome Sequence of the Spodoptera frugiperda Sf9 Insect Cell Line.

76. Yu, Q. et al. Signature amyloid beta profiles are produced by different gamma-secretase complexes.

77. Rechards, M. et al. Mature glycosylation and trafficking of nicastrin modulate its binding to presenilins.

79. Kim, J., Hamamoto, S., Ravazzola, M., Orci, L. & Schekman, R. Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles.

78. Rechards, M., Xia, W. M., Oorschot, V. M. J., Selkoe, D. J. & Klumperman, J. Presenilin-1 exists in both pre- and post-Golgi compartments.

75. Carinhas, N. et al. Purification and characterization of the human gamma-secretase complex.

72. Shirotani, K. et al. Transcriptome analysis in insect cells to produce “mammalianized” recombinant glycoproteins in insect cells.

70. Yang, D. S. et al. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2.

69. Mansouri, M. et al. Three-dimensional structure of human gamma-secretase.

68. Lu, P. et al. Gamma-secretase activity is associated with a conformational change of nicastrin.

66. Sokolenko, S. et al. The presenilin-1 DeltaE9 mutation results in reduced gamma-secretase activity, but not total loss of PS1 function, in isogenic human stem cells.

65. Mena, J. A., Ramirez, O. T. & Palomares, L. A. Population kinetics during simultaneous infection of insect cells with two different baculoviruses.

64. Aucoin, M. G., Perrier, M. & Kamen, A. A. Production of adeno-associated viral vectors in insect cells using triple infection.

63. Annaert, W. G. et al. Detergent-dependent dissociation of active gamma-secretase reveals an interaction between two substrates Notch and amyloid precursor protein.

61. Cacquevel, M., Aeschbach, L., Houacine, J. & Fraering, P. C. Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified gamma-secretase complexes.

60. Bentahir, M. et al. Trans-dominant negative effects of pathogenic PSEN1 mutations on gamma-secretase activity and Abeta production.

59. Bentahir, M. et al. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms.

58. Heilig, E. A. et al. Gamma-secretase activity in purified gamma-secretase complexes.

57. Kimberly, W. T. et al. Gamma-secretase activity is associated with a conformational change of nicastrin.

56. Chen, F. et al. Three-dimensional structure of human gamma-secretase.

55. Fraering, P. C. et al. Detergent-dependent dissociation of active gamma-secretase reveals an interaction between Pen-2 and PS1.

54. Chen, F. et al. TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity.

53. Carinhas, N. et al. Gamma-secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation.

52. Fraering, P. C. et al. Purification and characterization of the human gamma-secretase complex.
89. Juliant, S. et al. Engineering the baculovirus genome to produce galactosylated antibodies in lepidopteran cells. Methods Mol Biol 988, 59–77, https://doi.org/10.1007/978-1-62703-327-5_3 (2013).

90. Bolduc, D. M., Montagna, D. R., Gu, Y., Selkoe, D. J. & Wolfe, M. S. Nicastin functions to sterically hinder gamma-secretase-substrate interactions driven by substrate transmembrane domain. Proc Natl Acad Sci USA 113, E509–518, https://doi.org/10.1073/pnas.1312952113 (2016).

91. Moniruzzaman, M., Ishihara, S., Nobuhara, M., Higashide, H. & Funamoto, S. Glycosylation status of nicastrin influences catalytic activity and substrate preference of gamma-secretase. Biochem Biophys Res Commun 502, 98–103, https://doi.org/10.1016/j.bbrc.2018.05.126 (2018).

92. Arawaka, S. et al. The levels of mature glycosylated nicastrin are regulated and correlate with gamma-secretase processing of amyloid beta-precursor protein. J Neurochem 83, 1065–1071 (2002).

93. Knappenberg, K. S. et al. Mechanism of gamma-secretase cleavage activation: is gamma-secretase regulated through autoinhibition involving the presenilin-1 exon 9 loop? Biochemistry 43, 6208–6218, https://doi.org/10.1021/bi036072v (2004).

94. Fukumori, A., Fluhrer, R., Steiner, H. & Haass, C. Three-amino acid spacing of presenilin endoproteolysis suggests a general stepwise cleavage of gamma-secretase-mediated intramembrane proteolysis. J Neurosci 30, 7853–7862, https://doi.org/10.1523/JNEUROSCI.1443-10.2010 (2010).

95. Shah, S. et al. Nicastin functions as a gamma-secretase-substrate receptor. Cell 122, 435–447, https://doi.org/10.1016/j.cell.2005.05.022 (2005).

96. Beel, A. J. & Sanders, C. R. Substrate specificity of gamma-secretase and other intramembrane proteases. Cell Mol Life Sci 65, 1311–1334, https://doi.org/10.1007/s00018-008-7462-2 (2008).

97. Fukumori, A. & Steiner, H. Substrate recruitment of gamma-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping. The EMBO Journal https://doi.org/10.15252/embj.201694151 (2016).

98. Wolfe, M. S. When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8, 136–140, https://doi.org/10.1038/sj.embor.7400896 (2007).

99. Vijayachandran, L. S. et al. Robots, pipelines, polyproteins: enabling multiprotein expression in prokaryotic and eukaryotic cells. J Struct Biol 175, 198–208, https://doi.org/10.1016/j.jsb.2011.03.007 (2011).

100. Trowitzsch, S., Bienesse, C., Nie, Y., Garzoni, F. & Berger, I. New baculovirus expression tools for recombinant protein complex production. J Struct Biol 172, 45–54, https://doi.org/10.1016/j.jsb.2010.02.010 (2010).

101. Ancolio, K. et al. Unusual phenotypic alteration of γ amyloid precursor protein (γAPP) maturation by a new Val-715 — Met γAPP-770 mutation responsible for probable early-onset Alzheimer’s disease. Proceedings of the National Academy of Sciences 96, 4119–4124, https://doi.org/10.1073/pnas.96.7.4119 (1999).

102. Chen, F. S. et al. Nicastin binds to membrane tethered Notch. Nature Cell Biology 3, 751–754, https://doi.org/10.1038/35087069 (2001).

103. Gu, Y. et al. APH-1 interacts with mature and immature forms of presenilins and nicastrin and may play a role in maturation of presenilin nicastin complexes. J Biol Chem 278, 7374–7380, https://doi.org/10.1074/jbc.M204999200 (2003).

104. Meckler, X. et al. Reduced Alzheimer’s disease ss-amyloid deposition in transgenic mice expressing β-palmitoylation-deficient APH1al and nicastrin. J Neurosci 30, 16160–16169, https://doi.org/10.1523/JNEUROSCI.4436-10.2010 (2010).

105. Verdile, G. et al. Inhibiting amyloid precursor protein C-terminal cleavage promotes an interaction with presenilin 1. J Biol Chem 275, 20794–20798, https://doi.org/10.1074/jbc.C000208200 (2000).

106. Li, Y. et al. Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc Natl Acad Sci USA 97, 6138–6143, https://doi.org/10.1073/pnas.110126897 (2000).

Acknowledgements
IK acknowledges financial support by University of Western Australia (SIRF and UIS). GV is supported by NH&MRC APP1045507 and APP1105698 and the Curtin University Senior Research Fellowship (CRF140196); and PEF is supported by the Canadian Institutes of Health Research (CHIR MOP-115056, TAD-117950) and Alzheimer’s Society of Ontario. C.S and I.B. acknowledge funding from the BBSRC (BB/P000940/1). IK acknowledges the contribution of Dr Xavier Meckler of French National Centre for Scientific Research for his help in development of co-immunoprecipitation protocol.

Author Contributions
G.V., R.N.M., I.B., D.G. conceived the study. I.K. and G.V. wrote the manuscript. I.K. performed the experiments. S.K., I.B., C.S. designed and made the transfer vector. I.B. and C.S. provided cloning and transfer vectors and DH10EMBacY. P.E.F. assisted with drafting of manuscript and provided substrate expression vectors. M.S., L.W. and M.M. assisted with experiments. R.N.M. and D.G. assisted with drafting of manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-30788-w.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018