Expression of immune genes RIG-I and Mx in mallard ducks infected with low pathogenic avian influenza (LPAI): A dataset

Anu S. Helin, Michelle Wille, Clara Atterby, Josef Järhult, Jonas Waldenström, Joanne R. Chapman

Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
Department of Molecular Biosciences, University of Kansas, Lawrence, USA

Article history:
Received 27 January 2018
Accepted 17 April 2018
Available online 23 April 2018

This article provides data on primer sequences used to amplify the innate immune genes RIG-I and Mx and a set of normalizing reference genes in mallards (Anas platyrhynchos), and shows which reference genes are stable, per tissue, for our experimental settings. Data on the expresional changes of these two genes over a time-course of infection with low pathogenic avian influenza virus (LPAI) are provided. Individual-level data are also presented, including LPAI infection load, and per tissue gene expression of RIG-I and Mx. Gene expression in two outlier individuals is explored in more depth.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- Avian influenza virus (AIV) infection of mallards was achieved via a semi-natural, contact infection route to mimic natural transmission of the virus.
- Infection with low pathogenic AIV provides a contrast to most previous studies that used highly pathogenic AIV to study immune gene expression in mallards.
- A set of reference genes that had been experimentally validated as stable under the given experimental treatment were used to stabilize RT-qPCR.
- A table summarizing the methodology and findings of previous studies of Mx and/or RIG-I expression in AIV infected ducks is provided.

1. Data

The dataset provided here provides additional information for Helin et al. [1]. In that paper, we show that the innate immune genes retinoic acid-inducible gene-I (RIG-I) and myxovirus resistance gene (Mx) are rapidly yet transiently upregulated after infection with low pathogenic avian influenza virus (LPAI) subtype H1N1. Helin et al. aims to provide a series of methodological improvements over previous analyses of immune gene expression in ducks infected with avian influenza virus (AIV).

Table 1 shows that most previous studies have used highly pathogenic avian influenza virus (HPAI), which is rarely detected in wild mallards [2,3]. Additionally, infection in previous studies was achieved via artificial inoculation comprising potentially unnatural viral doses and infection routes. These previous studies have almost exclusively been conducted on domestic Pekin ducks, rather than the main wildlife reservoir for avian influenza, mallard ducks (Anas platyrhynchos). Lastly, most previous studies have used a single, non-validated reference gene (often GAPDH) for normalizing gene expression data. This approach leads to potentially misleading interpretation of data [4].
Table 1

Innate Gene	Strain	Viral dose	Innoculation Method	Tissuesanalysed	RG	Timepoints	N. individsg	Breed	Result\(^f\)	Refs.
RIG-I	HPAI	H5N1\(^a\)	10^5 of EID\(_{50}\) Dripped into nares, eyes & trachea	Lung, intestine	GAPDH	1, 3 dpi	3	Pekin	Lung: ~200-fold at 1dpi, ~20-fold at 3 dpi Intestine: ~5-fold at 1dpi, ~2.5-fold at 3 dpi	[6]
RIG-I	LPAI	H5N2	10^6 of EID\(_{50}\) Dripped into nares, eyes & trachea	Lung, intestine	GAPDH	1, 3 dpi	2-3	Pekin	No significant changes	[6]
RIG-I	HPAI	H5N1	10^5 of EID\(_{50}\) Intranasal	Spleen	β-actin\(^b\)	2 dpi	4	Pekin	13-fold	[7]
RIG-I	LPAI	H7N1	2 x 10^5 of EID\(_{50}\) Dripped intranasally & intratracheal	Lung, bursa, ileum	18S\(^c\)	0.8, 2, 4, 7, 14 dpi	6	Pekin	Spleen: ~10-fold at 1 & 2 dpi, 2-4-fold at 3 & 4 dpi Lung: ~2.5-fold at 0.8 dpi at 1, 2, 3, 4, 5, 7 dpi	[8]
RIG-I	HPAI	H7N1	2 x 10^5 of EID\(_{50}\) Dripped intranasally & intratracheally	Lung, brain, spleen	18S	0.3, 1, 2, 3, 4, 5, 7 dpi	6	Pekin	Spleen: ~65-fold in 5wk old ducks, ~4-fold in 2wk old ducks Lung: ~10-fold at 1 & 2 dpi, ~6-fold at 3 & 4 dpi	[9]
RIG-I	HPAI	H5N1\(^a\)	10^5 of EID\(_{50}\) Intranasal	Spleen, lung	β-actin	2 dpi	4	Pekin	Lung: ~65-fold in 5wk old ducks, ~2-fold in 2wk old ducks	[10]
Mx	LPAI	recombinant	0.1 MOI Cells & virus mixed together	Embryo fibroblast cells	GAPDH	2, 4, 8, 12, 24 hpi	NA	Pekin	~500-1000-fold at 8-24 hpi	[11]
Mx	HPAI	H5N1	1.0 MOI Cells & virus mixed together	Peripheral blood mononuclear cells	GAPDH	4, 8, 12, 24, 36, 48 hpi	NA	Mallard	25-40-fold at 8-24 hpi	[12]
Mx	LPAI	H1N1	0.1 MOI Cells & virus mixed together	Primary lung cells	GAPDH	12, 24, 48 hpi	NA	Pekin	No significant changes	[13]
Mx	LPAI	H5N9	0.1 MOI Cells & virus mixed together	Primary lung cells	GAPDH	12, 24, 48 hpi	NA	Pekin	~5-fold at 12 hpi, 12-fold at 24 hpi, ~8-fold at 48 hpi	[13]
Mx	LPAI	H7N1	10^7 PFU Intrachoanal cleft & oral	Illeum	GAPDH	1, 6 dpi	6-7	Pekin	Upregulation at 1 & 6 dpi\(^i\)	[14]
Mx	LPAI	H7N1	10^7 PFU Intrachoanal cleft & oral	Illeum	GAPDH	1, 6 dpi	3	Pekin	Upregulation at 1 & 6 dpi\(^i\)	[15]

\(^a\) Three strains, derived from chicken, egret and duck.
\(^b\) Authors state β-actin was stable between uninfected and infected, but no details given and no other RGs investigated.
\(^c\) Authors state that 18S had the most stable expression over time and between tissues in ducks, but data is not shown and no indication of which RGs were compared.
\(^d\) Five control individuals.
\(^e\) Many results were inferred from graphs because exact results were not listed. In such cases, ~ is used to indicate fold changes are approximate.
\(^f\) Results not expressed as fold-change. Significant upregulation with one of the two tested viruses only.
2. Experimental design, materials and methods

To address these methodological issues, in Helin et al. [1] we use a semi-natural infection regime to infect mallards with low pathogenic H1N1 AIV. We then use a set of reference genes (Tables 2 and 3), that we have previously demonstrated to be stable under these experimental settings [5], to normalize RT-qPCR data. A full description of the experimental design, materials and methods is provided in Helin et al. [1].

Datasets describing the fold-change in expression between experimental time-points, and per individual, for each tissue type and gene are provided as Supplementary tables S1–4 and Figs. S1–S4 to this article. Fig. S5 provides a more in-depth analysis of two individuals with extremely high expression, showing that this over-expression was restricted to a specific tissue and a single gene at single time-point.

Acknowledgements

The authors would like to thank the staff of the animal house at SVA for their assistance with duck husbandry and Conny Tolf for assistance with RNA extraction. We additionally thank QQB participants for their contribution to this study. This work was supported by the Swedish Research Council Vetenskapsrådet (grant numbers 2011–3568 and 2015–03877) and the Swedish Research Council FORMAS (grant number 211–2013–1320).
Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.04.061.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.04.061.

References

[1] A.S. Helin, M. Wille, C. Atterby, J. Järhult, et al., A rapid and transient innate immune response to avian influenza infection in mallards, Mol. Immunol. 95 (2018) 64–72. http://dx.doi.org/10.1016/j.molimm.2018.01.012.

[2] N. Latorre-Margalef, C. Tolf, V. Grosbois, A. Avril, et al., Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe, Proc. R. Soc. Lond. B Biol. Sci. 281 (2014) 20140098. http://dx.doi.org/10.1098/rspb.2014.0098.

[3] S.H. Olson, J. Parmley, C. Soos, M. Gilbert, et al., Sampling strategies and biodiversity of influenza A subtypes in wild birds, PLoS One (2014). http://dx.doi.org/10.1371/journal.pone.0090826.

[4] J.R. Chapman, J. Waldenström, With reference to reference genes: a systematic review of endogenous controls in gene expression studies, PLoS One 10 (2015) e0141853. http://dx.doi.org/10.1371/journal.pone.0141853.

[5] J.R. Chapman, A.S. Helin, M. Wille, C. Atterby, et al., A panel of stably expressed reference genes for real-time qPCR gene expression studies of mallards (Anas platyrhynchos), PLoS One 11 (2016) e0149454. http://dx.doi.org/10.1371/journal.pone.0149454.

[6] M.R. Barber, J.R. Aldridge Jr., R.G. Webster, K.E. Magor, Association of RIG-I with innate immunity of ducks to influenza, Proc. Natl. Acad. Sci. USA 107 (2010) 5913–5918. http://dx.doi.org/10.1073/pnas.1001755107.

[7] C. Cagle, J. Wasilenko, S.C. Adams, C.J. Cardona, et al., Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam, Avian Dis. 56 (2012) 479–487. http://dx.doi.org/10.1637/10030-120511-Reg.1.

[8] J.B. Cornelissen, J. Post, B. Peeters, L. Vervelde, J.M. Rebel, Differential innate responses of chickens and ducks to low-pathogenic avian influenza, Avian Pathol. 41 (2012) 519–529. http://dx.doi.org/10.1080/03079457.2012.732691.

[9] J.B. Cornelissen, L. Vervelde, J. Post, J.M. Rebel, Differences in highly pathogenic avian influenza viral pathogenesis and associated early inflammatory response in chickens and ducks, Avian Pathol. 42 (2013) 347–364. http://dx.doi.org/10.1080/03079457.2013.807325.

[10] M.J. Pantin-Jackwood, D.M. Smith, J.L. Wasilenko, C. Cagle, et al., Effect of age on the pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses, Virus Res. 167 (2012) 196–206. http://dx.doi.org/10.1016/j.viruses.2012.04.015.

[11] S. Adams, Z. Xing, J.L. Li, K. Mendoza, et al., The effect of avian influenza virus NS1 allele on virus replication and innate gene expression in avian cells, Mol. Immunol. 56 (2013) 358–368. http://dx.doi.org/10.1016/j.molimm.2013.05.236.

[12] Z. Cui, J. Hu, L. He, Q. Li, et al., Differential immune response of mallard duck peripheral blood mononuclear cells to two highly pathogenic avian influenza H5N1 viruses with distinct pathogenicity in mallard ducks, Arch. Virol. 159 (2014) 339–343. http://dx.doi.org/10.1007/s00705-013-1820-6.

[13] H. Jiang, H. Yang, D.R. Kapczynski, Chicken interferon alpha pretreatment reduces virus replication of pandemic H1N1 and H5N9 avian influenza viruses in lung cell cultures from different avian species, Virol. J. 8 (2011) 447. http://dx.doi.org/10.1186/1743-422X-8-447.

[14] S.M. Soubies, C. Volmer, G. Croville, J. Loupias, et al., Species-specific contribution of the four C-terminal amino acids of influenza A virus NS1 protein to virulence, J. Virol. 84 (2010) 6733–6747. http://dx.doi.org/10.1128/JVI.02427-09.

[15] C. Volmer, S.M. Soubies, B. Grenier, J.L. Guerin, R. Volmer, Immune response in the duck intestine following infection with low-pathogenic avian influenza viruses or stimulation with a Toll-like receptor 7 agonist administered orally, J. Gen. Virol. 92 (2011) 534–543. http://dx.doi.org/10.1099/vir.0.026443-0.